Rutheniumkatalysierte Addition von nicht aktivierten C(sp²)–H- und C(sp³)–H-Bindungen an Alkene

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen

im Promotionsprogramm Chemie

der Georg-August University School of Science (GAUSS)

vorgelegt von

Marvin Schinkel

aus Nienburg/Weser

Göttingen, 2013

Betreuungsausschuss

Prof. Dr. L. Ackermann, Institut für Organische und Biomolekulare Chemie Prof. Dr. U. Diederichsen, Institut für Organische und Biomolekulare Chemie

Mitglieder der Prüfungskommission

Referent: Prof. Dr. L. Ackermann, Institut für Organische und Biomolekulare Chemie

Korreferent: Prof. Dr. U. Diederichsen, Institut für Organische und Biomolekulare Chemie

Weiter Mitglieder der Prüfungskommission:

Prof. Dr. Dr. h. c. L. F. Tietze, Institut für Organische und Biomolekulare Chemie

Prof. Dr. H. Laatsch, Institut für Organische und Biomolekulare Chemie

Prof. Dr. D. Stalke, Insitut für Anorganische Chemie

Prof. Dr. M. Buback, Institut für Physikalische Chemie

Tag der Disputation: 19.04.2013

Curriculum Vitae

Marvin Schinkel	
Geburtsdatum:	07.06.1984
Geburtsort:	Neustadt am Rübenberge
Staatsangehörigkeit:	Deutsch
Familienstand:	Verheiratet
<u>Hochschulausbildung</u>	
09/2011-11/2011	Forschungsaufenthalt im Arbeitskreis von Prof. Dr. Ilan Marek, Israel Institute of Technology, Haifa, Israel
11/2009-04/2013:	Promotion im Arbeitskreis von Prof. Dr. Lutz Ackermann, Institut für Organische und Biomolekulare Chemie, Georg- August Universität Göttingen
10/2009:	Diplomprüfung mit der Gesamtnote "Sehr gut"
01/2009-06/2009:	Diplomarbeit mit dem Thema "Palladiumkatalysierte Aminierungs-Hydroaminierungssequenz zur Synthese von Indolen mit sterisch anspruchsvollen Aminen" im Arbeitskreis von Prof. Dr. Lutz Ackermann, Institut für Organische und Biomolekulare Chemie, Georg-August Universität Göttingen
04/2007:	Diplomvorprüfung mit der Gesamtnote "Gut"
10/2004:	Studienbeginn im Studiengang Chemie (Diplom) an der Georg- August Universität Göttingen
<u>Schulausbildung</u>	
1997-2004:	Gymnasium Hindenburgschule, Nienburg/Weser
1995-1997:	Orientierungsstufe II, Nienburg/Weser

1991-1995:Grundschule Langendamm (Nienburg/Weser)

Konferenzen und Posterpräsentationen

10/2010	Niedersächsisches Katalyse Symposium, Göttingen
07/2011	Heidelberg Forum of Molecular Catalysis, Heidelberg
08/2012	4th EuCheMS Chemistry Congress, Prag
10/2012	Wissenschsaftsforum Sartorius AG, Göttingen
10/2012	Niedersächsisches Katalyse Symposium, Göttingen

<u>Publikationen</u>

L. Ackermann, R. Sandmann, M. Schinkel, M. V. Kondrashov, "Palladium-Catalyzed Sequential Indole Synthesis Using Sterically Hindered Amines" Tetrahedron (Symposium in print) **2009**, *65*, 8930–8939.

M. Schinkel, I. Marek, L. Ackermann, "Carboxylate-Assisted Ruthenium(II)-Catalyzed Hydroarylations of Unactivated Alkenes via C–H Cleavage" Angew. Chem. Int. Ed. **2013**, 52, DOI: 10.1002/anie.201208446.

Danksagung

Mein besonderer Dank gilt meinem Doktorvater Prof. Dr. Lutz Ackermann für seine stete Unterstützung, anregende Diskussionen und das mir entgegen gebrachte Vertrauen. Ohne seine enormen Bestrebungen die technische Ausstattung der Labore kontinuierlich auszubauen und zu verbessern hätte eine solche Qualität und Quantität der Ergebnisse dieser Arbeit kaum erreicht werden können.

Herrn Prof. Dr. Ulf Diederichsen danke ich für die freundliche Übernahme des Zweitgutachtens und die gute Unterstützung als Zweitbetreuer.

Den Herren Prof. Dr. M. Buback, Prof. Dr. H. Laatsch, Prof. Dr. D. Stalke und Prof. Dr. Dr. h. c. L. F. Tietze danke ich für die Teilnahme an der Prüfungskommission.

Prof. Dr. Ilan Marek und seinem ganzen Arbeitskreis, speziell Tom Mejuch, danke ich für die einmalige Gelegenheit chemisch und vor allem auch kulturell etwas ganz anderes erlebt haben zu dürfen.

Meinen Lieben Kollegen Emelyne Diers, Christoph Kornhaaß und Weifeng Song danke ich besonders für das aufmerksame und zügige Korrekturlesen dieser Arbeit.

Dr. Sergei I. Kozhushkov danke ich neben dem gründlichen Korrekturlesen auch für seine intensive Hilfe bei der Cyclopropanchemie und den unverwechselbaren Humor.

Spezieller Dank gebührt auch Stefan Beußhausen, "Gabi" Keil-Knepel und Karsten Rauch für ihre unentbehrliche Unterstützung im Zusammenhang mit EDV, Verwaltung und Laborequipment.

Der gesamten Belegschaft der analytischen Abteilungen unter Herr Machinek und Dr. Frauendorf danke ich für die schnellen und gewissenhaften Messungen und besonders Herr Machinek persönlich möchte ich für die interessanten und lehrreichen Diskussionen danken.

Dem gesamten Arbeitskreis danke ich für das angenehme Arbeitsklima und die lehrreichen interkulturellen Erfahrungen.

Mein besonderer Dank gebührt hier Weifeng Song und René Sandmann für die gute Laborgemeinschaft, die eine oder andere "geliehene Hand" sowie die vielen chemischen und nicht-chemischen Diskussionen.

Den Damen aus Labor 308, Emelyne Diers und "Karo" Karolina Graczyk, danke ich für die erfrischende Stimmung und viele witzige Abende und Wochenenden.

Nora Hofmann danke ich neben der guten Zusammenarbeit an unseren nah verwandten Themen besonders für den steten Zuspruch und auch für so manches außeruniversitäre Amüsement.

Meinen Bachelorstudenten Jan Wallbaum, Benjamin Schröder und Kris Bielefeld danke ich für die exzellente Zusammenarbeit, die musikalische Untermalung der gemeinsamen Arbeitszeit sowie das eine oder andere Feierabendbier.

Den Abteilungspraktikanten Zhiyong Qin, Matthias Heger, Anna Peters, Amine Tchere Kakia und Alexunder Gers-Barlag möchte ich für die Synthese von Startmaterialien danken.

Meinen Kameraden vom TUSPO Weende danke ich für den hervorragenden Teamgeist und den körperlichen Ausgleich auch wenn die letzten Jahre, vom stetigen Kampf gegen den Abstieg überschattet, nicht ganz einfach waren.

All meinen Freunden und besonders Philipp Slawojewski sowie der ganzen "Reisegruppe" danke ich für die Zerstreuung und vielen schönen, anstrengenden, ermutigenden, witzigen, entspannenden,… oder einfach alle gemeinsam erlebten Aktivitäten.

Mein größter Dank gilt den wichtigsten Personen in meinem Leben, meiner Frau Mona-Elena, die so einige Abende lange auf mich warten und mich einige Male aufbauen musste, sowie meinen Eltern Petra und Friedhelm, die immer ein offenes Ohr für Probleme, Ängste, Frust und auch Freude hatten. Ohne Euch hätte ich das alles nicht geschafft!

Inhalt	t
--------	---

1	E	inleitun	g	1
	1.1	Alky	lierung von Arenen	1
	1.2	Carb	ooxylatassistierte Cyclometallierungen	10
	1.3	Hyd	roalkylierung durch Spaltung von C(sp ³)–H-Bindungen	14
2	A	ufgaber	nstellung	18
3	E	rgebniss	e und Diskussion	20
	3.1	Synt	hesen der Startmaterialien	20
	3	.1.1	Synthesen von 2-Phenylpyridinderivaten	20
	3	.1.2	Synthesen von Biheteroaromaten	24
	3	.1.3	Synthesen von funktionalisierten Alkenen	25
	3.2	Ruth	neniumkatalysierte Hydroarylierung von Methylencyclopropanen	27
	3	.2.1	Reaktionsoptimierung	29
	3	.2.2	Rutheniumkatalysierte Hydroarylierungen mit [RuCl ₃ ·(H ₂ O) _n]	31
	3	.2.3	Rutheniumkatalysierte Hydroarylierungen mit [Ru(MesCO ₂) ₂ (p-Cymol)] (117)	36
	3.3	Ruth	neniumkatalysierte Hydroarylierung von terminalen nicht aktivierten Alkenen	40
	3	.3.1	Reaktionsoptimierung	40
	3	.3.2	Hydroarylierung von funktionalisierten terminalen Alkenen	43
		3.3.2.1	Untersuchungen zur Hydroarylierung interner Alkene	49
		3.3.2.2	Vergleich der rutheniumkatalysierten direkten Alkylierung und Hydroarylierung	51
	3	.3.3	Hydroarylierung mit substituierten 2-Phenylpyridinderivaten	52
	3	.3.4	Hydroarylierung von Arenen mit acyclischen dirigierenden Gruppen	55
	3	.3.5	Hydroarylierung mit Heteroarenen	56
	3.4 Hyd	Mec Iroarylie	hanistische Untersuchungen zur carboxylatassistierten rutheniumkatalysier rung	ten 61
	3.5	Ruth	neniumkatalysierte Alkylierung von terminalen nicht aktivierten Alkenen	71
	3	.5.1	Reaktionsoptimierung	72
	3	.5.2	Anwendungsbandbreite der α-Alkylierung von cyclischen Aminen	75
4	Z	usamme	enfassung und Ausblick	78
5	E	xperime	nteller Teil	83
	5.1	Vork	pemerkungen	83
	5.2	Allge	emeine Arbeitsvorschriften	86
	5 A	.2.1 .rylpyrid	Allgemeine Arbeitsvorschrift zur nickelkatalysierten Synthese von inderivaten via Kumada-Corriu-Kreuzkupplungen (AAV 1)	2- 86

5.2.2	Allgemeine Arbeitsvorschrift zur eisenkatalysierten Synthese von 2	!-
Arylpyri	idinderivaten via Kumada-Corriu-Kreuzkupplung (AAV 2)8	7
5.2.3 Methyle	Allgemeine Arbeitsvorschrift zur rutheniumkatalysierten Hydroarylierung von encyclopropanen mit $[RuCl_3 \cdot (H_2O)_n]$ (AAV 3)8	n 7
5.2.4 Methyle	Allgemeine Arbeitsvorschrift zur rutheniumkatalysierten Hydroarylierung vor encyclopropanen mit [Ru(MesCO ₂) ₂ (p -Cymol)] (117) (AAV 4)82	n 7
5.2.5 termina	Allgemeine Arbeitsvorschrift zur rutheniumkatalysierten Hydroarylierung vo alen Alkenen (AAV 5)	n 7
5.2.6 Decen (7	Allgemeine Arbeitsvorschrift zur rutheniumkatalysierten Hydroalkylierung von 1 7q) mit 2-Aminopyridinen (AAV 6)88	 8
5.3 Syn	nthesen 88	8
5.3.1	Synthesen der Startmaterialien	8
5.3.2	Rutheniumkatalysierten Hydroarylierungen von 2-Phenylmethylencyclopropan 110	0
5.3.3	Rutheniumkatalysierten Hydroarylierung mit [RuCl ₂ (<i>p</i> -Cymol)] ₂ (41)	1
5.3.3 5.3.4 von tern	Rutheniumkatalysierten Hydroarylierung mit [RuCl ₂ (p-Cymol)] ₂ (41) 12: Intermolekulare Konkurrenzexperimente zur rutheniumkatalysierten Hydroarylierun minalen Alkenen	1 g)
5.3.3 5.3.4 von tern 5.3.5 Isotoper	Rutheniumkatalysierten Hydroarylierung mit [RuCl ₂ (p-Cymol)] ₂ (41) 12: Intermolekulare Konkurrenzexperimente zur rutheniumkatalysierten Hydroarylierun minalen Alkenen	1 g 0 s 2

Abkürzungsverzeichnis

AAV	Allgemeine Arbeitsvorschrift	GC/MS	Gaschromatografie/Massen-
асас	Acetylacetonat		spektrometrie-Kopplung
Ad	Adamantyl	ges.	gesättigt
Am	Amyl	h	Stunde
AMLA	ambiphilic metal ligand	HASPO	Heteroatomsubstituierte
	activation		sekundäre Phospinoxide
Äquiv.	Äquivalente	Hept	Heptyl
ATR	abgeschwächte Totalreflexion	Het	Heterocyclus
BINAP	2,2'-Bis(diphenylphosphino)-	Hex	Hexyl
	1,1'-binaphthyl	HIMesCl	1,3-Bis(2,4,6-trimethylphenyl)-
Bn	Benzyl		imidazoliumchlorid
br	breit	HIPrCl	1,3-Bis(2,6-di <i>iso</i> propylphenyl)-
Bu	Butyl		imidazoliumchlorid
°C	Grad Celsius	HMDS	Hexamethyldisilazan
CMD	concerted metalation	HRMS	heteronuclear multiple bond
	Deprotonation		correlation
cod	1,5-Cyclooctadien	Hz	Hertz
Ср*	1,2,3,4,5-Pentamethyl-	IES	internal electrophilic substitution
	cyclopentadienyl	IR	Infrarotspektroskopie
Су	Cyclohexyl	J	Kopplungskonstante
δ	Chemische Verschiebung	JohnPhos	2-(Di- <i>tert</i> -butylphosphino)-
d	Dublett beziehungsweise Tag		biphenyl
Dec	Decyl	kat.	Katalytisch
DFT	Dichtefunktionaltheorie	L	Ligand
DG	dirigierende Gruppe	Lit.	Literatur
DMA	N,N-Dimethylacetamid	Lsgm.	Lösungsmittel
DMBA	N,N-Dimethylbenzamin	m	Multiplett beziehungsweise milli
DMF	N,N-Dimethylformamid	М	Molar
DMSO	Dimethylsulfoxid	[M ⁺]	Molekülionenpeak
DPE-Phos	(Oxydi-2,1-phenyl)-bis-	Me	Methyl
	(diphenylphosphin)	Mes	Mesityl
dppe	1,2-Bis(diphenylphosphino)ethan	MHz	Megahertz
dppf	1,1'-Bis(diphenylphosphino)-	min	Minuten
	ferrocen	L	Liter
EI	Elektronenstoßionisation	MS	Massenspektrometrie
ESI	Elektronensprayionisation	MTBE	tert-Butylmethylether
Et	Ethyl	m/z	Masse / Ladung
et al.	et alii	n	normal
eV	Elektronenvolt	n. b.	nicht bestimmt
Fa.	Firma	NHC	N-heterocyclisches Carben
Fg	funtionelle Gruppe	NMP	N-Methyl-2-pyrrolidon
g	Gramm	NMR	nulcear magnetic resonance
GC	Gaschromatopraphie		(Kernspinresonanz-
			spektroskopie)

Non	Nonyl
OAc	Acetat
Oct	Octyl
ÖPV	Ölpumpenvakuum
PCy ₃	Tricyclohexylphosphin
Ph	Phenyl
ppm	parts per million
Pr	Propyl
Ру	Pyridin
rac	racemisch
S	singulett
Smp.	Schmelzpunkt
t	tertiär
t	Triplett
Т	Temperatur
THF	Tetrahydrofuran
Ts	<i>p</i> -Toluolsulfonyl
wässr.	wässrig
Х	Halogen
X-Phos	2-Dicyclohexylphosphino-
	2',4',6'-tri <i>iso</i> propylbiphenyl

1 Einleitung

1.1 Alkylierung von Arenen

Die C–C-Bindungsknüpfung stellt eine der wichtigsten Transformationen der organischen Chemie dar. Nach grundlegenden Arbeiten zur kupfervermittelten Homokupplung von Haloarenen **1** durch *Ullmann*¹ (Schema 1) entwickelte sich daraus mit den katalysierten Kreuzkupplungen (Schema 2) ein vielfältiger Bereich der organischen Synthesechemie.²

Schema 1: Biarylsynthese nach Ullmann

So wurden im Jahr 2010 *Heck, Negishi* und *Suzuki* für ihre richtungsweisenden Arbeiten auf diesem Gebiet mit dem Nobelpreis der Chemie ausgezeichnet. Während zunächst die C(sp²)–C(sp²)-Kupplung eine Domäne der Kreuzkupplung war, ist mittlerweile selbst die Nutzung von Alkylorganometallverbindungen für C(sp²)–C(sp³)-Kreuzkupplungen möglich.³

Schema 2: Allgemeiner Mechanismus der Kreukupplung

Große Hürden bei dieser Entwicklung sind die Nebenreaktionen der Alkylübergangsmetallverbindungen durch β-Hydrideliminierung und die vielfach geringe Reaktionsrate der oxidativen Addition. Speziell unter Betrachtung der Atomökonomie⁴ und Nachhaltigkeit ist die direkte C(sp²)–H-Bindungsfunktionalisierung eine Alternative, da hierbei auf eine Präfunktionalisierung des Arens und auf den stöchiometrischen Einsatz einer Organometallverbindungen sowie die damit verbundene

¹ a) F. Ullmann, J. Bielecki, Ber. Dtsch. Chem. Ges. **1901**, 34, 2174–2185; b) F. Ullmann, Liebigs Ann. Chem. **1904**, 334, 38–81.

 ² a) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, *Chem. Rev.* 2002, *102*, 1359–1470; b) J.-P. Corbet, G. Mignani, *Chem. Rev.* 2006, *106*, 2651–2710; c) H. Li, C. C. C. Johansson Seechurn, T. J. Colacot, *ACS Catal.* 2012, *2*, 1147–1164; d) *Chem. Soc. Rev.* 2011, *40*, Sonderheft 10 "Cross coupling reactions in organic synthesis", 4877–5208; e) *Acc. Chem. Res.* 2008, *41*, Sonderheft 11 "Cross Coupling", 1439–1564.

 ³ S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1439; b) C. C. C. Johansson-Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062–5085; c) R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417–1492; d) G. Cahiez, A. Moyeux, Chem. Rev. 2010, 110, 1435–1462.

⁴ a) B. M. Trost, *Science* **1991**, *254*, 1471–1477; b) B. M. Trost, *Acc. Chem. Res.* **2002**, *35*, 695–705.

Generierung von stöchiometrischen Mengen metall- und halogenhaltigen Abfällen verzichtet werden kann.⁵ In diesem Zusammenhang haben sich vor allem Rutheniumkomplexe als besonders reaktiv gezeigt, was aufgrund des vergleichbar geringen Rohmetallpreises imense ökonomische Vorteile mit sich bringt.⁶

Bereits 1877 beobachteten *Friedel* und *Crafts⁷* bei der Reaktion von Arenen **3** mit Alkylhalogeniden **4** in Anwesenheit substöchiometrischer Mengen von Aluminiumtrihalogeniden die entsprechenden alkylierten Arene **5** (Schema 3).

Schema 3: Friedel-Crafts-Alkylierung

Hierbei kann es beim Einsatz von primären und sekundären Haloalkanen oder langkettigen Alkenen nach Generierung der carbokationischen Spezies **6** potentiell zu einer *Wagner-Meerwein*-Umlagerung⁸ und somit zu Produktgemischen kommen.⁹ Ein weiteres Selektivitätsproblem ergibt sich aus der Reaktivitätssteigerung des Arens nach einer ersten Alkylierung, so dass ein großer Überschuss des zu funktionalisiernden Arens verwendet werden muss um Mehrfachalkylierungen statistisch zu minimieren. Zusätzlich kann es basierend auf dem Substitutionsmuster und der Natur der Substituenten zu Regioisomerenbildung kommen, da diese durch die Stabilität der möglichen *Wheland*-Komplexe bestimmt wird.¹⁰

Inzwischen ist die Alkylierung von Benzol (**3a**) mit Ethen (**7a**) mit 27 Mt/a eine der tonnagenstärksten C–C-bindungsbildenden industriellen Prozesse, da das gebildete Ethylbenzol (**5a**) die Vorstufe zum Styrol (**7b**) darstellt.¹¹ Traditionell wurden hierbei cokatalytische Mengen HCl zugesetzt, wobei sich zusammen mit Aluminiumtrichlorid und Ethen die reaktive Spezies **8** bildet (Schema 4). Da diese Kombination von korrosiven Substanzen, trotz des katalytischen Einsatzes, problematisch bezüglich der Reaktionsführung und Abfallentsorgung ist, werden seit einiger Zeit Heterogenkatalysatoren wie Zeolite verwendet.¹¹

 ⁵ a) L. Ackermann, Acc. Chem. Res. 2013, 46, DOI:10.1021/ar3002798; J. J. Mousseau, A.B. Charrette, Acc. Chem. Res. 2013, 46, 412–424; c) S. I. Kozhushkov, L. Ackermann, Chem. Sci. 2013, 4, 886–896, und dort Ref. [12]; d) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879–5918.

⁶ Durchschnittspreise von Platin, Rhodium, Iridium, Palladium und Ruthenium im Februar 2013: 1677, 1224, 1025, 754 und 85 US\$ pro Feinunze, s: http://www.platinum.matthey.com/

⁷ C. Friedel, J.-M. Crafts, J. Chem. Soc. **1877**, 32, 725–791.

⁸ a) G. Wagner, W. Brickner, Ber. Dtsch. Chem. Ges. 1899, 32, 2302–2325; b) H. Meerwein, Liebigs Ann. Chem. 1914, 405, 129–175.

⁹ L. Kürti, B. Czakó, Strategic Applications of Named Reactions in Organic Synthesis, 1st Ed., Elsevier: Burlington, 2005, S. 178 und 476.

¹⁰ R. Brückner, *Reaktionsmechanismen 3. Auflage*, Spektrum Akad. Verlag, Elvesier: München, **2004**, S. 203 ff.

¹¹ F. Calderazzo, M. Catellani, G. P. Chiusoli, in *Metal-Catalysis in Industrial Organic Processes* (*Eds.*: G. P. Chiusoli, P. M. Maitlis), RSC: Cambridge, **2007**, S. 163–200.

Schema 4: Ethylbenzolsynthese unter HCl und AlCl₃-Katalyse

Eine Alternative zur Vermeidung der Mehrfachalkylierungen bildet die *Friedel-Craft*-Acylierung,¹² bei welcher zunächst ein Acetophenonderivat generiert wird, welches die Reaktivität des Aromaten gegenüber einer weiteren elektrophilen aromatischen Substitution verringert. Um jedoch das alkylierte Produkt zu erhalten, muss nun eine Reduktion der Ketofunktion folgen, was jedoch neben der verminderten Atomökonomie auch in Bezug auf die Toleranz gegenüber anderer funktioneller Gruppen zu unerwünschten Nebenreaktionen führen kann.⁹

Schema 5: "Directed ortho Metalation" (DoM)

Im Laufe der 1940er Jahre begegneten *Gilman*¹³ und *Wittig*¹⁴ unabhängig von einander dem oben genannten Selektivitätsproblem mit der Entwicklung der sogenannten *"Directed ortho Metalation"*(DoM).¹⁵ Hier wird die C–H-Bindungslithiierung an einem Phenylring **9** durch Präkoordination der Organolithiumspezies an einer dirigiernde Gruppe (DG) in der entsprechenden *ortho*-Postition forciert, worauf die gebildete Phenyllithiumspezies **11** mit einem Elektrophil zum gewünschten Produkt **12** umgesetzt werden kann (Schema 5).

Schema 6: Hydroarylierung nach Lewis

Im weiteren Verlauf wurden solche dirigierenden Gruppen zur Entwicklung der Cyclometallierungsreaktionen^{16,17} mit Übergangsmetallen genutzt. Im Jahr 1986 zeigte *Lewis*¹⁸ mit

¹² a) E. Ador, J. Crafts, Ber. Dtsch. Chem. Ges. 1877, 10, 2173–2176; b) J.-M. Crafts, E. Ador, Bull. Soc. Chim. 1880, 34, 531– 532.

¹³ H. Gilman, R. L. Bebb, J. Am. Chem. Soc. **1939**, 61, 109–112.

¹⁴ G. Wittig, G. Fuhrmann, *Chem. Ber.* **1940**, *73*, 1197–1218.

¹⁵ V. Snieckus, *Chem. Rev.* **1990**, *90*, 879–933.

¹⁶ a) M. I. Bruce, Angew. Chem. Int. Ed. **1977**, *16*, 73–86; b) A. D. Ryabov, Chem. Rev. **1990**, *90*, 403–424.

der *ortho*-selektiven Hydroarylierung von Phenol (**13**) das erste Beispiel einer C–C-Bindungsknüpfung, welche durch einen *ortho*-cyclometallierten Komplex katalysiert wird (Schema 6). *Lewis* postulierte einen Mechanismus nach welchem zunächst bei dem eingesetzten cyclometallierten Komplex **14** einer der Phosphitliganden durch Ethen (**7a**) substituiert wird. Nach Insertion des Ethens in die Ruthenium-Aren-Bindung, kommt es nun zur chelatassitierten *ortho*-selektiven Insertion des Rutheniums in die C–H-Bindung eines zweiten Triphenylphosphitliganden, wodurch der Hydridokomplex **17** gebildet wird. Durch reduktive Eliminierung und erneute Ligandsubstitution wird der aktive Komplex **14** zurückgebildet und das alkylierte Phosphit **22** freigesetzt. Umesterung mit Phenol liefert schließlich Triphenylphosphit und *ortho*-Ethylphenol.

Schema 7: Mechanismus der Hydroarylierung nach Lewis

Wird dieser Katalysezyklus ohne vorherige Ligandsubstitution und Umesterung nochmals durchlaufen, kommt es zur Bildung des dialkylierten Produktes **16**.

¹⁷ K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. **2012**, 45, 788–802.

¹⁸ L. N. Lewis, J. F. Smith, J. Am. Chem. Soc. **1986**, 108, 2728–2735.

Ein großer Durchbruch gelang *Murai* durch die Nutzung der katalysierten Cyclometallierung mittels dirigierender Gruppe, wobei eine Rutheniumhydridospezies **23** gebildet wird, und ein Alken **7** anschließend in eben diese Hydridbindung (Schema 8) insertiert.¹⁹

Schema 8: Hydroarylierung nach Murai

In den folgenden Jahren^{20,21} erweiterte *Murai* die Anwendungbreite dieser Reaktion auf die Hydroarylierung von internen Alkinen^{22,23} anstelle von terminalen Alkenen. Desweiteren wurden Ester,²⁴ Aldimine,²⁵ Oxazoline²⁶ und Aldehyde²⁷ als dirigierende Gruppen eingesetzt.

Schema 9: Sequentielle Hydroalkylierung nach Murai

Hierbei zeigte sich, dass für die Hydroarylierung mittels sauerstoffbasierten dirigierenden Gruppen ein Ruthenium(II)hydridopräkatalysator genutzt werden muss, während bei stickstoffbasierten dirigierenden Gruppen der Ruthenium(0)carbonylkomplex [Ru₃(CO)₁₂] eine hohe Aktivität zeigte

¹⁹ S. Murai, F. Kakiuchi , S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani, *Nature* **1993**, *366*, 529–531.

 ²⁰ a) S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani, *Pure Appl. Chem.* 1994, *66*, 1527–1534;
b) S. Murai, N. Chatani, F. Kakiuchi, *Pure Appl. Chem.* 1997, *69*, 589–594.

²¹ a) M. Sonoda, F. Kakiuchi, N. Chatani, S. Murai, Bull. Chem. Soc. Jpn. **1997**, 70, 3117–3128; b) F. Kakiuchi, S. Murai, Acc. Chem. Res. **2002**, 35, 826–834.

²² F. Kakiuchi, Y. Yamamoto, N. Chatani, S. Murai, *Chem. Lett.* **1995**, 681–682.

²³ F. Kakiuchi, H. Ohtaki, M. Sonoda, N. Chatani, S. Murai, *Chem. Lett.* **2001**, 511–514

²⁴ M. Sonoda, F. Kakiuchi, A. Kamatani, N. Chatani, S. Murai, *Chem. Lett.* **1996**, 109–110.

²⁵ F. Kakiuchi, M. Yamauchi, N. Chatani, S. Murai, *Chem. Lett.* **1996**, 111–112.

²⁶ F. Kakiuchi, T. Sato, M. Yamauchi, N. Chatani, S. Murai, *Chem. Lett.* **1999**, 19–20.

²⁷ F. Kakiuchi, T. Sato, K. Igi, N. Chatani, S. Murai, *Chem. Lett.* **2001**, 386–387.

(Schema 9)^{20b,28} Ein solches Protokoll erlaubt somit den Zugang zu einer Reihe von alkylierten Arenen **5** und Enonen bei einem Maximum an Atomökonomie und perfekter Regioselektivität.

Zeitgleich zu *Murais* ersten Arbeiten zu derartigen Alkylierungen von cyclische^{23,29} und acyclische³⁰ Enonen zeigte *Trost*³¹ auch die Anwendbarkeit des Präkatalysators [$RuH_2(CO(PPh_3)_3)$] in der Alkylierung von substituierten Acrylsäureestern.

Schema 10: Katalysecyclus der Murai-Reaktion

Intensive mechanistische Studien^{32,33} zeigten, dass die Bildung der Rutheniumhydridospezies **23** *via* Cyclometallierung und die Insertion des Olefins **7** in die Rutheniumhydridbindung reversibel verläuft

²⁸ F. Kakiuchi, T. Sato, T. Tsujimoto, M. Yamauchi, N. Chatani, S. Murai, *Chem. Lett.* **1998**, 1053–1054.

²⁹ F. Kakiuchi, Y. Tanaka, T. Sato, N. Chatani, S. Murai, *Chem. Lett.* **1995**, 679–680.

³⁰ T. Sato, F. Kakiuchi, N. Chatani, S. Murai, *Chem. Lett.* **1998**, 893–894.

³¹ B. M. Trost, K. Imi, I. W. Davies, J. Am. Chem. Soc. **1995**, 117, 5371–5372.

³² F. Kakiuchi, H. Ohtaki, M. Sonoda, N. Chatani, S. Murai, *Chem. Lett.* **2001**, 918–919.

³³ F. Kakiuchi, T. Kochi, E. Mizushima, S. Murai, J. Am. Chem. Soc. **2010**, 132, 17741–17750.

(Schema 10). Der zu beobachtende Isotopenaustausch aller vinylischer Protonen des reisolierten Olefins **7** beim Einsatz von Pentadeuterobenzoesäuremethylester lässt darauf schließen, dass eine verzweigte Spezies **34** gebildet wird. Diese scheint jedoch keine reduktive Eliminierung einzugehen, da kein entsprechend verzweigtes Produkt isoliert werden kann.³² Diverse experimentelle^{28,33} sowie quantentheoretische^{34,35} Studien zeigten, dass die C–C-bindungsknüpfende reduktive Eliminierung den geschwindigkeitsbestimmenden Schritt darstellt.

Neuere Untersuchungen³³ geben einen genaueren Einblick in die Natur der aktiven Spezies. So zeigte sich, dass bei erhöhter Temperatur der Präkatalysator **36a** das Alken **7d** reduziert und, darauf ein cyclometallierter Komplex **37**, analog dem von *Lewis*¹⁸ eingesetzten, entsteht (Schema 11). Aus diesem bildet sich darauf, selbst bei Umgebungstemperatur, mit dem Aren **24** über eine vermutete Ruthenium(0)-spezies **38** die cyclometallierte Spezies **23a**.

Den großen Nachteil der Luftempfindlichkeit des Rutheniumhydridopräkatalysators konnten *Genet et al.*³⁶ durch ein Protokoll zu der *in situ*-Generierung einer Rutheniumhydridospezies **36** aus $[RuCl_2(p-Cymol)]_2$ (**41**), PPh₃ und NaHCO₂ überwinden. Dieses System eignet sich für die Hydroarylierung von Vinylsilanan und Styrol mit α -Tetralon und Acetophenonderivaten sowie für die Alkylierung von *Michael*-Akzeptoren³⁷ **39** (Schema 12). Im Fall von Styrolderivaten wurde hierbei eine Abhängigkeit des Verhältnisses von *Markovnikov*- zu *anti-Markovnikov*-Selektivität vom sterischen Anspruch des verwendeten Phosphanliganden beobachtet. So steigt mit dem sterischen Anspruch der Anteil des unverzweigten Produktes.³⁸ In weiteren Arbeiten konnten Reaktivitätssteigerungen durch den Einsatz eines *iso*-Propanol-Aceton-Gemisches als Lösungmittel sowie die Nutzbarkeit von Rutheniumtrichloridhydrat in Kombination mit elektronenarmen Phosphanliganden erreicht werden.³⁹

Schema 12: Hydroarylierung nach Genet

³⁴ T. Matsubara, N. Koga, D. G. Musaev, K. Morokuma, J. Am. Chem. Soc. **1998**, 120, 12692–12693.

³⁵ T. Matsubara, N. Koga, D. G. Musaev, K. Morokuma, *Organometallics* **2000**, *19*, 2318–2329.

³⁶ R. Martinez, R. Chevalier, S. Darses, J.-P. Genet, *Angew. Chem. Int. Ed.* **2006**, *45*, 8232–8235.

³⁷ M.-O. Simon, R. Martinez, J.-P. Genet, S. Darses, *Adv. Synth. Catal.* **2009**, 351, 153–157.

³⁸ R. Martinez, J.-P. Genet, S. Darses, *Chem. Commun.* **2008**, 3855–3857.

³⁹ a) M.-O. Simon, R. Martinez, J.-P. Genet, S. Darses, *J. Org. Chem.* **2009**, 75, 208–210; b) M.-O. Simon, J.-P. Genet, S. Darses, *Org. Lett.* **2010**, *12*, 3038–3041; c) M.-O. Simon, G. Ung, S. Darses, *Adv. Synth. Catal.* **2011**, *353*, 1045–1048.

Analog zu der von *Murai* beobachteten Chemioselektivität (Schema 9) konnten unter Verringerung der Phosphanligandkonzentration aromatische Aldimine alkyliert werden.

Detaillierte mechanistische Untersuchungen⁴⁰ zeigten die Bildung eines Komplexes **36b**, welcher dem von verwendeten *Murai* sehr ähnelt (Schema 13). So lieferte die Reaktion des dimeren Rutheniumkomplexes **41** mit Triphenylphosphan und Thalliumformiat bei Umgebungstemperatur den Komplex **42**, welcher bei höherer Temperatur durch Decarboxylierung in den Hydridokomplex **43** übergeht und schließlich nach Ligandsubstitution und erneuter CO₂-Abspaltung den Rutheniumdihydridokomplex **44** bildet. Dieser kann nun mittels Alkenreduktion analog zu Schema 11 in die katalytisch aktive Rutheniumspezies **45** übergehen.

Schema 13: Bildung der aktiven Ruthenium(0)spezies nach Genet

Ein weiteres leicht zu handhabendes Katalysatorsystem, bestehend aus Ruthenium(III)chlorid und Silbertriflat, zeigte *Sames*.⁴¹ Dieses System eignet sich zur Synthese von benzanellierten Carbocyclen und stickstoff- oder sauerstoffhaltiger Heterocyclen.

Satoh und *Miura* berichteten kürzlich ebenfalls, dass eine Kombination von Silberhexafluoroantimonat und $[RuCl_2(p-Cymol)]_2$ (**41**) die Hydroarylierung von internen Alkinen ermöglicht, wobei als dirigierende Gruppen *N*,*N*-Dialkylamide, Pyrazol und Imidazol genutzt werden können.⁴²

Fast all diese Protokolle sind auf die Hydroarylierung von terminalen Alkenen beschränkt, welche keine allylischen Wasserstoffatome tragen, da diese zu unreaktiven internen Olefinen isomerisieren.^{33,43} Gleiches beobachtete *Kim* bei der rhodiumkatalysierten Hydroarylierung mit 2-Phenylpyridinderivaten **46**.^{44,45}

Das von Ackermann und Kozhushkov^{46,47} entwickelte Katalysatorsystem zur intermolekularen stereoselektiven Hydroarylierung von hoch gespannten Methylencyclopropanen, bestehend aus

⁴⁰ R. Martinez, M.-O. Simon, R. Chevalier, C. Pautigny, J.-P. Genet, S. Darses, *J. Am. Chem. Soc.* **2009**, *131*, 7887–7895.

⁴¹ S. W.Youn, S. J. Pastine, D. Sames, Org. Lett. **2004**, *6*, 581–584.

 ⁴² a) Y. Hashimoto, K. Hirano, T. Satoh, F. Kakiuchi, M. Miura, Org. Lett. 2012, 14, 2058–2061; b) Y. Hashimoto, K. Hirano, T. Satoh, F. Kakiuchi, M. Miura, J. Org. Chem. 2013, 78, 638–646.

⁴³ A. J. A. Watson, A. C. Maxwell, J. M. J. Williams, Org. Lett. 2010, 12, 3856–3859.

⁴⁴ Y.-G. Lim, Y. H. Kim, J.-B. Kang, *Chem. Commun.* **1994**, 2267–2268.

⁴⁵ V. Ritleng, C. Sirlin, M. Pfeffer, *Chem. Rev.* **2002**, *102*, 1731–1769.

⁴⁶ S. I. Kozhushkov, D. S. Yufit, L. Ackermann, *Org. Lett.* **2008**, 10, 3409–3412.

[RuCl₂(cod)]_n und X-Phos in 1,4-Dioxan, erlaubte erstmals eine derartige C–C-Bindungsknüpfung unter Erhalt des Cyclopropanrings.⁴⁸ Wärend die Ringspannungsenergie von Methylcyclopropan 29.8 kcal/Mol beträgt, liegt die des Methylencylopropans bei 39.5 kcal/Mol.⁴⁹ Aufgrund dieser inherenten Reaktivität eigenen sich Methylencyclopropane besonders um grundlegende Mechanismen der organischen Chemie zu untersuchen, wobei es nur wenige Beispiele für deren Funktionalisierung unter erhalt der Cyclopropanstruktur gibt.⁵⁰ So muss das Methylencyclopropan **47** selbst unter den optimierten Reaktionsbedingungen in kleinen Portion zuzugeben werden, da es durch rutheniumkatalysierte Ringöffnungen und anschließende *Diels-Alder*-Cycloaddition zu Nebenreaktionen kommt. Es zeigte sich, dass Stickstoffheterocyclen wie Pyridin, Pyrazol und Oxazolin als dirigierende Gruppen genutzt werden können (Abbildung 1).

Abbildung 1: Rutheniumkatalysierte Hydroarylierung von 2-Phenylmethylencyclopropan 47 nach Ackermann und Kozhushkov

Während die chelatassistierte Hydroarylierung über viele Jahre eine Domäne der Ruthenium- und analogen Rhodiumkomplexe war,^{5,45,51} zeigten *Yoshikai et al.* und *Nakamura et al.* in den Jahren 2010 und 2011 erste Beispiele für cobaltkatalysierte Hydroarylierungen von terminalen Alkenen^{52,53} und

⁴⁷ L. Ackermann, S. I. Kozhushkov, D. S. Yufit, *Chem. Eur. J.* **2012**, *18*, 12068–12077.

 ⁴⁸ Ringöffnung von Methylencyclopropanen unter Übergangsmetallkatalyse: a) C. Aïssa, A. Fürstner, J. Am. Chem. Soc. 2007, 129, 14836–14837, b) D. J. Mack, J. T. Njardarson, ACS Catalysis 2012, 3, 272–286; c) B.-L. Lu, L. Dai, M. Shi, Chem. Soc. Rev. 2012, 41, 3318–3339; d) C. Aïssa, Synthesis 2011, 3389–3407; e) M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117–3179.

⁴⁹ R. D. Bach, O. Dmitrienko, J. Am. Chem. Soc. **2004**, 126, 4444–4452.

 ⁵⁰ a) T.-L. Liu, Z.-L.He, H.-Y.Tao, Y.-P.Cai, C.-J. Wang, *Chem.Commun.* 2011, *47*, 2616 –2618; b) T.-L. Liu, Z.-L.He, H.-Y.Tao, Y.-P.Cai, C.-J. Wang, *Chem.Commun.* 2011, *47*, 2616–2618; c) Y. Fall, H. Doucet, M. Santelli, *Tetrahedron* 2010, *66*, 2181–2188; d) M. Shirakura, M. Suginome, *J. Am. Chem. Soc.* 2009, *131*, 5060–5061; e) G. Q. Tian, M.Shi, *Org. Lett.* 2007, *9*, 4917–4920; f) D. Takeuchi, K. Anada, K. Osakada, *Angew. Chem. Int. Ed.* 2004, *43*, 1233–1235; g) M. Itazaki, Y. Nishihara, K. Osakada, *J. Org. Chem.* 2002, *67*, 6889–6895; h) T. Pohlmann, A. de Meijere, *Org. Lett.* 2000, *2*, 3877–3879; i) T. Saget, D. Perez, N. Cramer, *Org. Lett.* 2013, *15*, 1354–1357; j) C. L. Ladd, D. S. Roman, A. B. Charette, *Org. Lett.* 2013, *15*, 1350–1353; k) C. W. Liskey, J. F. Hartwig, *J. Am. Chem. Soc.* 2013, *135*, 3375–3378; l) T. Saget, N. Cramer, *Angew. Chem. Int. Ed.* 2012, *51*, 12842–12845; m) M. Wasa, K. M. Engle, D. W. Lin, E. J. Yoo, J.-Q. Yu, *J. Am. Chem. Soc.* 2011, *133*, 19598–19601; m) A. Kubota, M. S. Sanford, *Synthesis* 2011, 2579–2589.

⁵¹ F. Kakiuchi, T. Kochi, *Synthesis* **2008**, 3013–3039.

⁵² L. Ilies, Q. Chen, X. Zeng, E. Nakamura, J. Am. Chem. Soc. **2011**, 133, 5221–5223.

⁵³ a) K. Gao, N. Yoshikai, Angew. Chem. Int. Ed. 2011, 50, 6888–6892; b) K. Gao, N. Yoshikai, J. Am. Chem. Soc. 2011, 133, 400–402.

internen Alkinen,⁵⁴ wobei als dirigierende Gruppen Ketimine, *N*-Methylamid und Pyridin genutzt wurden. Diesen Katalysatorsystemen mangelt es jedoch, durch den nötigen Einsatz von Grignardreagenzien, an Toleranz gegenüber vielen funktionellen Gruppen. Kürzlich konnte zudem die erste mangankatalysierte Hydroarylierung gezeigt werden.⁵⁵

1.2 Carboxylatassistierte Cyclometallierungen

Aufbauend auf ersten Beobachtungen durch *Shaw*⁵⁶ bezüglich des positiven Effektes von Natriumacetat bei der Cyclometallierung von Iridium-, Platin- und Palladiumkomplexen vermutete *Reutov*⁵⁷ erstmals einen carboxylatassistierten Übergangszustand **51** (Abbildung 2). Einen ähnlichen Übergangszustand **52** postulierte *Ryabov* auf der Basis von detaillierten kinetischen Studien.^{58,59}

Abbildung 2: Carboxylatassistierte Cyclopalladierung nach Reutov und Ryabov

Im weiteren Verlauf lieferten vielfältige Untersuchungen⁶⁰ weitere Einblicke in die Natur solcher Reaktionen. Nach der natriumacetatassistierten Synthese der analogen cyclometallierten Ruthenium-, Iridium- und Rhodiumkomplexe⁶¹ von Benzylimin und auf der Basis von DFT-Berechnungen⁶² zur Cyclopalladierung von *N*,*N*-Dimethylbenzamin (DMBA) schlossen *Davies* und *Macgregor* einen *Wheland*-ähnlichen Komplex aus und beschrieben eine agostische Wechselwirkung zwischen dem Palladiumatom und der C–H-Bindung, welche durch das gebundene Acetat intramolekular stabilisiert wird. Letzteres dient schließlich als intramolekulare Base zur Deprotonierung. Mit diesem Modell des ambiphilen Charakters der Palladiumacetatspezies in einem sechsgliedrigen Übergangszustand prägten sie den Begriff *ambiphilic metal ligand activation* [AMLA (6)] (Schema 14).⁶³

Schema 14: Ambiphilic Metal Ligand Activation [AMLA (6)] für die Cyclopalladierung nach Davies und Macgregor

⁵⁴ K. Gao, P.-S. Lee, T. Fujita, N. Yoshikai, J. Am. Chem. Soc. **2010**, 132, 12249–12251.

⁵⁵ B. Zhou, H. Chen, C. Wang, J. Am. Chem. Soc. **2013**, 135, 1264–1267.

 ⁵⁶ a) J. M. Duff, B. L.Shaw, J. Chem. Soc., Dalton Trans. 1972, 2219–2225; b) J. M. Duff, B. E. Mann, B. L. Shaw, B. Turtle, J. Chem. Soc., Dalton Trans. 1974, 139–145; c) J. C. Gaunt, B. L. Shaw, J. Organomet. Chem. 1975, 102, 511–516.

⁵⁷ V. I. Sokolov, L. L. Troitskaya, O. A. Reutov, J. Organomet. Chem. **1979**, 182, 537–546.

⁵⁸ A. D. Ryabov, I. K. Sakodinskaya, A. K. Yatsimirsky, J. Chem. Soc., Dalton Trans. **1985**, 2629–2638.

⁵⁹ S. A. Kurzeev, G. M. Kazankov, A. D.Ryabov, *Inorg. Chim. Acta* **2002**, *340*, 192–196.

⁶⁰ L. Ackermann, *Chem. Rev.* **2011**, *111*, 1315–1345.

⁶¹ D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton, D. R. Russel, *Dalton. Trans.* 2003, 4132–4138.

⁶² D. L. Davies, S. M. A. Donald, S. A. Macgregor, J. Am. Chem. Soc. **2005**, 127, 13754–13755.

⁶³ Y. Boutadla, D. L. Davies, S. A. Macgregor, A. I. Poblador-Bahamonde, *Dalton Trans.* **2009**, 5820–5831.

Weitere DFT-Berechnungen anhand des Iridiumkomplexes **57** und DMBA lieferten hingegen keinen Hinweis auf agostische Wechselwirkungen im Übergangszustand. Zudem wurde ein denkbarer AMLA (4)-Übergangszustand **60** ausgeschlossen (Schema 15).⁶⁴ Einen viergliedrigen Übergangszustand postulierten hingegen *Periana et al.*⁶⁵ für die C–H-Bindungsaktivierung von Benzol durch den Iridiumkomplex **61** und beschrieben ihn als σ -Bindungsmetathese, was sie wenig später, nach genaueren Berechnungen,⁶⁶ revidierten und als *internal electrophilic substitution* (IES) bezeichneten (Schema 16).

Schema 15: AMLA (6)- und AMLA (4)-Übergangszustand für die Cycloiridierung nach Davies und Macgregor

Schema 16: Internal Electrophilic Substitution (IES) nach Periana

Einen weiteren basenassistierten Mechanismus zur C–H-Bindungsmetallierung diskutierten *Maseras* und *Echavarren*^{67,68} für die palladiumkatalysierte intramolekulare direkte Arylierung, wobei ein

⁶⁴ D. L. Davies, S. M. A. Donald, O. Al-Duaij, S. A. Macgregor, M. Pölleth, J. Am. Chem. Soc. **2006**, 128, 4210–4211.

⁶⁵ W. J.TennIII, K. J. H. Young, G. Bhalla, J. Oxgaard, W. A. Goddard III, R.Periana, J. Am. Chem. Soc. **2005**, 127, 14172–14713.

⁶⁶ J. Oxgaard, W. J. Tenn III, R. J. Nielsen, R. A. Periana, W. A. Goddard III, Organometallics **2007**, 26, 1565–1567.

⁶⁷ D. García-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006,128, 1066–1067.

⁶⁸ D.García-Cuadrado, P. de Mendoza, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2007, 129, 6880– 6886.

Carbonat inter- (66) oder intramolekular (67) an einem *concerted metalation deprotonation* (CMD)-Prozess beteiligt ist (Abbildung 3).

Abbildung 3: CMD-Übergangszustände nach Maseras und Echavarren

Im weiteren Verlauf stellten sich insbesondere Carboxylate als äußerst effektive Additive in derartigen direkten Arylierungen heraus.⁶⁹ So postulierte *Fagnou* einen analogen Übergangszustand **68** für die pivalatassistierte intermolekulare direkte Arylierung (Abbildung 4).

Abbildung 4: CMD-Übergangszustand nach Fagnou

Die Arbeitsgruppe um *Ackermann* zeigte aufbauend auf ersten Studien anhand von (Heteroatom-)substituierte sekundäre Phospinoxide [(HA)SPO]-Liganden^{70,71} in weiteren Arbeiten mit Carboxylaten das immense Potential der carboxylatassistierten Cyclorruthenierung.^{5d,72} So wurde für die HASPOassistierten direkten Arylierungen ein dem CMD-Mechanismus analoger Übergangszustand **69** postuliert (Schema 17).^{73,74a}

Schema 17: CMD-Mechanismus mit (HA)SPO

Mit Carbonsäuren als Additiven gelangen schließlich direkte Arylierungen unter Verwendung verschiedener dirigierender Gruppen (Schema 18).^{60,74} Als Elektrophile konnten neben Arylhalo-

⁶⁹ M. Lafrance, K. Fagnou, J. Am. Chem. Soc. **2006**, 128, 16496–16497.

 ⁷⁰ a) L. Ackermann, Org. Lett. 2005, 7, 3123-3125; b) L. Ackermann , A. Althammer, R. Born, Angew. Chem. Int. Ed. 2006, 45, 2619–2622; c) L. Ackermann, M. Mulzer, Org. Lett. 2008, 10, 5043–5045.

⁷¹ Sekundäre Phosphinoxide in Kreuzkupplungsreaktionen: T. M. Shaikh, C.-M. Weng, F.-E. Hong, *Coord. Chem. Rev.* **2012**, 256, 771–803.

⁷² Modern Arylation Methods (Ed.: Ackermann, L.), 1st ed., Wiley-VCH: Weinheim, 2009.

⁷³ L. Ackermann, R. Vicente, *Top. Curr. Chem.* **2010**, *292*, 211–229.

 ⁷⁴ a) L. Ackermann, R. Vicente, A. Althammer, *Org. Lett.* 2008, *10*, 2299–2302; b) L. Ackermann, *Pure Appl. Chem.* 2010, *82*, 1403–1413; c) E. Diers, N. Y. P. Kumar, T. Mejuch, I. Marek, L. Ackermann, *Tetrahedron* 2013, DOI:10.1016/j.tet.2013.01.006; d) L. Ackermann, E. Diers, A. Manvar, *Org. Lett.* 2012, *14*, 1154–1157.

geniden auch Arylpseudohalogenide und insbesondere *in situ*^{70c,75} generierte Pseudohalogenide genutzt werden.

Schema 18: Direkte Arylierungen nach Ackermann

Dieses Konzept konnte in weiteren Arbeiten auf die direkte Alkylierung und Benzylierung ausgeweitet werden (Schema 19).⁷⁶

Schema 19: Direkte Alkylierungen und Benzylierungen nach Ackermann

Hierbei ist zu bemerken, dass die direkte Alkylierung mit sekundären Bromiden eine zunächst unerwartete Funktionalisierung in *meta*-Position zur dirigierenden Gruppe liefert (Schema 20).^{77,78}

⁷⁵ L. Ackermann, J. Pospech, H. K. Potukuchi, *Org. Lett.* **2012**, *14*, 2146–2149

⁷⁶ a) L. Ackermann, P. Novák, R. Vicente, N. Hofmann, Angew. Chem. Int. Ed. 2009, 48, 6045–6048 ; b) L. Ackermann, Chem. Comm. 2010, 46, 4866–4877; c) L. Ackermann, P. Novák, Org. Lett. 2009, 11, 4966–4969.

⁷⁷ N. Hofmann, L. Ackermann, *J. Am. Chem. Soc.* **2013**, *135*, DOI:10.1021/ja401466y.

⁷⁸ N. Hofmann, *Dissertation*, Universität Göttingen, **2013**.

Schema 20: Meta-selektive direkte Alkylierung mit sekundären Alkylbromiden nach Ackermann

1.3 Hydroalkylierung durch Spaltung von C(sp³)–H-Bindungen

Während seinen Arbeiten zur rhodiumkatalysierten Carbonylierung von $C(sp^3)$ –H-Bindungen in α -Position zu Amino-⁷⁹ und Amidogruppen⁸⁰ beobachtete *Murai* bei der Verwendung von Rutheniumkomplexen anstelle der Carbonylierungsprodukte **72** die entsprechenden Alkylierungsprodukte **74** (Schema 21).^{81,82} Weitere Studien zeigten eine erhöhte Reaktivität bei der Verwendung von *iso*-Propanol als Lösungsmittel und die Anwendbarkeit dieses Protokolls auf eine Vielzahl von cyclischen und nichtcyclischen Aminen, terminalen und cyclischen internen Alkinen sowie Styrol.⁸³

Schema 21: Carbonylierung von Piperazinen, Pyrrolidinen und deren Homologen nach Murai

Aufgrund von gaschromatografisch detektiertem Aceton postulierte *Murai* für den positiven Effekt des *iso*-Propanols einen Mechanismus, nach welchem der durch oxidative Addition generierte Rutheniumhydridokomples **75** durch eine α -Eliminierung in eine stabile Rutheniumcarbenspezies **76** übergeht und somit dem Katalysecyclus entzogen wird. Diese Carbenspezies kann wiederum durch *iso*-Propanol reduziert werden, und somit Aceton und die aktive Spezies **75** zurückbilden (Schema 22). Eine analoge durch α -Eliminierung gebildete Iridiumcarbenspezies konnte zuvor bereits durch *Crabtree et al.* charakterisiert werden (Schema 23).⁸⁴

⁷⁹ Y. Ishii, N. Chatani, F. Kakiuchi, S. Murai, *Organometallics* **1997**, *16*, 3615–3622.

⁸⁰ Y. Ishii, N. Chatani, F. Kakiuchi, S. Murai, *Tetrahedron Lett.* **1997**, *38*, 7565–7568.

⁸¹ N. Chatani, T. Asaumi, T. Ikeda, S. Yorimitsu, Y. Ishii, F. Kakiuchi, S. Murai, J. Am. Chem. Soc. **2000**, 122, 12882–12883.

⁸² K. R. Campos, Chem. Soc. Rev. **2007**, 36, 1069–1084.

⁸³ N. Chatani, T. Asaumi, S. Yorimitsu, T. Ikeda, F. Kakiuchi, S. Murai, J. Am. Chem. Soc. **2001**, 123, 10935–110941.

⁸⁴ D.-H. Lee, J. Chen, J. W. Faller, R. H. Crabtree, *Chem. Comm.* **2001**, 213–214.

Schema 22: Lösungsmitteleinfluss bei der Alkylierung nach Murai

Nachdem *Crabtree*^{84,85} die C(sp³)–H-Bindungsmetallierung von 2-(Dimethylamino)pyridin (**77**) und einem kationischen Iridiumkomplex **78** beobachtete, wobei sich nach der Cyclometallierung durch α -Eliminierung ein Iridiumcarbenkomplex **79** bildete (Schema 23), nutzte *Shibata*⁸⁶ ebenfalls einen kationischen Iridiumkomplex zur Alkenylierung von *N*,*N*-Dimethylamiden **83** (Schema 24).

Schema 23: Bildung einer Iridiumcarbenspezies nach Crabtree

Schema 24: Iridiumkatalysierte Alkenylierung von Amiden nach Shibata

Unter Verzicht auf eine Kohlenstoffmonoxidatmosphäre, welche *Murai* zuvor nutze,^{79–83} gelang *Jun* bereits 1998 die rutheniumkatalysierte Alkylierung von *N*-Pyrid-2-ylbenzylamin mit terminalen und cyclischen internen Alkenen sowie Styrol.⁸⁷

Anhand eines Rutheniumhydridokomplexes zeigte *Yi* die Alkylierung von sekundären cyclischen Aminen **87** ohne zusätzliche dirigierende Gruppe, wobei es gleichzeitig zu einer Transferhydrierung kam und somit ein alkyliertes Imin **88** gebildet wurde (Schema 25).⁸⁸

⁸⁵ E. Clot, J. Chen, D.-H. Lee, S. Y. Sung, L. N. Appelhans, J. W. Faller, R. H. Crabtree, O. Eisenstein, J. Am. Chem. Soc. 2004, 126, 8795–8804.

⁸⁶ K. Tsuchikama, M. Kasagawa, K. Endo, T. Shibata, Org. Lett. **2009**, *11*, 1821–1823.

⁸⁷ C.-H. Jun, D.-C. Hwang, S.-J. Na, Chem. Comm. **1998**, 1405–1406.

⁸⁸ C. S. Yi, S. Y. Yun, I. A. Guzei, *Organometallics* **2004**, *23*, 5392–5395.

Schema 25: α-Alkylierung von sekundären cyclischen Aminen nach Yi

Während sich das Gebiet der übergangsmetallkatalysierten C(sp³)–H-Funktionalisierung^{89,90} immer weiter entwickelte, blieb die Funktionalisierung von cyclischen Aminen⁹¹ eine Domäne der Rutheniumchemie.

Schema 26: Direkte Arylierungen von α -Amino-C(sp³)–H-Bindungen nach Sames bzw. Maes

Bereits 2006 nutzte *Sames* den Trisrutheniumdodecacarbonylkomplex für die Arylierung⁸⁹ von Pyrrolidin mit Boronsäureestern.⁹² Wobei der Zusatz eines Ketons als Additiv essentiell für den Verlauf der Reaktion ist (Schema 26, links). So dient dieses zunächst als Hydridakzeptor nach der oxidativen Addition des Rutheniums in die C–H-Bindung von **91** und das so gebildete Alkoholat schließlich als Akzeptor der Borspezies während der Transmetallierung. Dieses Konzept nutzte auch

⁸⁹ F. Bellina, R. Rossi, *Chem. Rev.* **2010**, *110*, 1082–1146.

⁹⁰ R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin, *Chem. Eur. J.* **2010**, *16*, 2654–2672.

⁹¹ E. A. Mitchell, A. Peschiulli, N. Lefevre, L. Meerpoel, B. U. W. Maes, *Chem. Eur. J.* **2012**, *18*, 10092–10142.

⁹² S. J. Pastine, D. V. Gribkov, D. Sames, J. Am. Chem. Soc. **2006**, 128, 14220–14221.

Schnürch für die analoge Arylierung von *N*-Pyridylbenzaminen.⁹³ *Maes* verwendete für die direkte Arylierung von vergleichbar unreaktiven Piperidinen Alkohole als Lösungsmittel, so dass es nach Bildung der Rutheniumhydridospezies **92** zur Wasserstoffentwicklung kommt, wobei das gebildete Alkoholat ebenfalls durch Bildung eines Borsäureesters die Borspezies bindet (Schema 26, rechts).⁹⁴

⁹³ N. Dastbaravardeh, M. Schnürch, M. D. Mihovilovic Org. Lett. **2012**, *14*, 1930–1933.

⁹⁴ H. Prokopcov, S. D. Bergman, K. Aelvoet, V. Smout, W. Herrebout, B. van der Veken, L. Meerpoel, B. U. W. Maes, Chem. Eur. J. 2010, 16, 13063–13067.

2 Aufgabenstellung

Die übergangsmetallkatalysierten Funktionalisierungen von nicht aktivierten C–H-Bindungen haben sich in den letzten Jahren, speziell durch die Nutzung von carboxylatassistierten Katalysatorsystemen, als vielseitige, ökonomische und nachhaltige Syntheserouten hervorgetan.^{5d,60} So zeigt besonders die Additionsreaktion von C–H-Bindungen an ungesättigte C–C-Bindungen ein Maximum an Atomökonomie.

Der bereits beschriebenen *Murai*-Reaktion mangelt es jedoch nach wie vor an einer Anwendbarkeit auf nicht aktivierte Alkene.^{19–33} Zudem stellten sich als aktivste Präkatalysatoren die häufig nicht luftstabilen und relativ teuren Rutheniumhydridokomplexe heraus. Selbst die äußerst praktische, von *Darses* und *Genet*^{36–40} entwickelte *in situ*-Generierung einer aktiven Spezies aus luftstabilen Komponenten unterliegt jedoch den gleichen Beschränkungen in Bezug auf die Substratbandbreite.

Daher sollte zu Beginn dieser Arbeit zunächst die Anwendungsbandbreite des von *Ackermann* und *Kozhushkov*^{46,47} vorgestellten Systems auf verschiedene 2-Phenylpyridinderivate **46** untersucht werden. Des Weiteren standen Untersuchungen zur Verwendbarkeit der carboxylatassistierten Cycloruthenierung für eine anschließende Hydroarylierung im Fokus dieser Arbeit, wobei zunächst das durch seine Ringspannung⁴⁹ aktivierte 2-Phenylmethylencyclopropan (**47**) als Modellsubstrat genutzt werden sollte (Abbildung 5).

Abbildung 5: Rutheniumkatalysierte Hydroarylierung von 2-Phenylmethylencyclopropan (47)

Im weiteren Verlauf sollte das so entwickelte Katalysatorsystem auf die Funktionalisierung von anspruchsvollen nicht aktivierten Olefinen ausgeweitet werden. Hierbei standen unter anderem die Untersuchungen zur Toleranz gegenüber synthesechemisch wichtiger und nutzbarer funktioneller Gruppen im Vordergrund (Schema 27).

Schema 27: Untersuchungen zur Toleranz gegenüber funktioneller Gruppen

Da Heterocyclen wichtige Strukturmotive von biologisch aktiven Substanzen sind, sollte auch die Möglichkeit zu deren Funktionalisierung mittels carboxylatassistierter Hydroarylierung geprüft werden (Schema 28).

Neben der Nutzbarmachung alternativer dirigierender Gruppen, wobei ebenfalls potentiell biologisch aktive Heterocyclen (Het) als solche untersucht werden sollten (Schema 29), mussten auch detailierte mechanistische Studien angestellt werden, um die genaue Wirkungsweise des Katalysatorsystems zu verstehen und auf diese Weise Limitierungen zu überwinden.

Weiterhin sollte untersucht werden ob die carboxylatassistierte C–H-Bindungsfunktionalisierung auf sp³-hybridisierte Kohlenstoffe übertragbar ist, wobei als Modellsystem cyclische Amine gewählt wurden (Schema 30).

Schema 30: Alkylierung von C(sp³)–H-Bindungen in gesättigten N-Heterocyclen

3 Ergebnisse und Diskussion

3.1 Synthesen der Startmaterialien

3.1.1 Synthesen von 2-Phenylpyridinderivaten

Die in der vorliegenden Arbeit verwendeten 2-Phenylpyridinderivate wurden anhand literaturbekannter Protokolle mittels *Kumada-Corriu*-Kreuzkupplung synthetisiert,^{95,96} wobei im Fall des 3-Methoxy-2-phenylpyridins (**46b**) zunächst das 2-Brom-3-methoxypyridin (**105a**)⁹⁷ durch eine *Williamson*-Ethersynthese⁹⁸ dargestellt wurde (Schema 31).

Schema 31: Darstellung von 2-Brom-3-methoxypyridin (105a)

Das für die Synthese von 2-[4-(Benzyloxy)phenyl]pyridins (**46c**) benötigte 1-Brom-4-benzyloxybenzol (**1a**)⁹⁹ wurde in quantitativer Ausbeute ebenfalls anhand einer Williamson-Ethersynthese durch Umsetzung von 1-Brom-4-hydroxybenzol (**1b**) mit Natriumhydrid und Benzylbromid erhalten (Schema 32).

Schema 32: Darstellung von 2-(4-(Benzyloxy)phenyl)pyridins (106a)

Zur Synthese von 5-Methyl-2-phenylpyrimidin (**101a**) wurde zunächst Thymin (**107**) zum 2,4-Dichlor-5-methylpyrimidin (**108**),¹⁰⁰ und dieses zum 2-Chlor-5-methylpyrimidin (**109a**)¹⁰¹ umgesetzt. Die Dichlorierung mit Phosphorylchlorid gelang im Gegensatz zur Dechlorierung mit Zinkstaub in einer sehr guten Ausbeute (Schema 33).

Schema 33: Darstellung von 2-Chlor-5-methylpyrimidin (109a)

⁹⁵ V. P. W. Böhm, T. Weskamp, C. W. K. Gstöttmayr, W. A. Herrmann, Angew. Chem. Int. Ed. 2000, 39, 1602–1604.

⁹⁶ J. Quintin, X. Franck, R. Hocquemiller, B. Figadère, *Tetrahedron Lett.* **2002**, *43*, 3547–3549.

⁹⁷C. Finkentey, E. Langhals, F. Langhals, *Chem. Ber.* **1983**, *116*, 2394–2397.

⁹⁸ A. W. Williamson, *Liebigs Ann. Chem.* **1851**, 77, 37–49.

⁹⁹ J. Kim, Y. K. Kim, N. Park, J. H. Hahn, K. H. Ahn, *J. Org. Chem.* **2005**, *70*, 7087–7092.

¹⁰⁰ C. Zhao, J. W. Malecha, S. A. Noble, S. G. Duron, A. K. Lindstrom, A. K. Shiau (Kalypsys Inc.), US 2005/0234046 A1, 2005.

¹⁰¹ M. M. Claffey, C. J. Helal, P. R. Verhoest (Pfizer Inc.), US 2010/0190771 A1, **2010**.
Die Synthesen von 5-Methyl-2-phenylpyridin (**46d**) und 3-Methyl-2-phenylpyridin (**46e**) erfolgten mittels Eisenkatalysierter *Kumada-Corriu*-Kreuzkupplung (Schema 34).⁹⁶

Schema 34: Darstellung von 3- und 5-Methyl-2-phenylpyridin (46d und 46e)

Aufgrund der relativ hohen Kosten für die verwendeten 2-Brompyridinderivate **105c** und **105d** sowie der mäßigen Ausbeuten von 53% respektive 41% wurde im folgenden das etwas kostenintensivere Katalysatorsystem bestehend aus Ni(acac)₂ und dem NHC-Liganden HIPrCl verwendet. Diese erlaubte eine effizientere Umsetzung der Brompyridine und zudem auch den Einsatz von günstigeren Chlorpyridinen (Tabelle 1).⁹⁵

 Tabelle 1: Nickelkatalysierte Synthese von 2-Phenylpyridinderivaten.^a

Eintrag	1	105/109	46/99/101	Isolierte Ausbeute [%]
2	Br	CI	↓ ↓	86
	1c	105e	46a	
3	Br D D D D D	CI		52
	[D ₅]-1c	105e	[D₅]-46a	
4	Br	MeO Rr	MeO	70
	1c	105 a	46b	
5	Br	Me N CI	Me N N	57
	1c	109 a	101a	
6	Br	F CI	$F \qquad Ph \\ F \qquad V \qquad V$	67 + 9
	1c	105f	46f + 46g	
7	Br	CI N	N	98
	1e	105e	46h	
8	Br		N	88
	1f	105e	46i	

Eintrag	1	105/109	46/99/101	Isolierte Ausbeute [%]
9	Br		₩ F	69
	1g	105e	46j	
10	Br	CI N	N F	42
	1h	105e	46k	
11	Br OMe	CI N	N OMe	88
	1i	105e	461	
12	Br OBn	CI N	N OBn	40
	1a	105e	46c	
13	Br	CI	N S	27 ^b
	1j	105g	99a	

^а **1** (1.67 Äquiv., 2.5–1.0 м in THF), **105/110** (1.00 Äquiv., 1.5 м in THF), Ni(acac)₃ (3.0 Mol %), HIPrCl (3.0 Mol %), 25 °C, 16–22 h; ^b Ni(acac)₃ (5.0 Mol %), HIPrCl (5.0 Mol %), 50 °C, 24 h.

Tendenziell steigt die Ausbeute mit der Nucleophilie der eingesetzten Grignard-Verbindungen. Zudem liefert das nickelbasierte Katalysatorsystem generell höhere Ausbeuten als das eisenbasierte. So gelang die Synthese des 5-Methyl-2-phenylpyridins (**46d**) nun in einer sehr guten Ausbeute von 88% (Tabelle 1, Eintrag 1). Bemerkenswerterweise konnte beim Einsatz des 2-Chlor-5-fluorpyridins (**105f**) neben dem erwarteten Produkt **46f** auch das diarylierte Produkt **46g** isoliert werden, wobei Nickel-NHC-Komplexe bereits für die Funktionalisierung von unreaktiven C–F-Bindungen bekannt sind.¹⁰² Die Darstellung von 2-Heteroarylpyridinen gelang im Fall des 2-(Benzo[*b*]thiophen-3yl)pyridins (**99a**) selbst unter erhöhter Temperatur und Katalysatorbeladung nur in einer mäßigen Ausbeute (Tabelle 1, Eintrag 13).

3.1.2 Synthesen von Biheteroaromaten

Für die Synthesen weiterer Biheteroarene wurde ein bekanntes Protokoll zur palladiumkatalysierten *Kumada-Corriu*-Kreuzkupplung verwendet (Schema 35).¹⁰³

Schema 35: Palladiumkatalysierte Synthese von 2-Heteroarylpyridinen 100b-d

Trotz der unbefriedigenden Ausbeuten genügten die erhaltenen Stoffmengen für einige Testreaktionen im weiteren Verlauf dieser Arbeit.

Weiterhin wurde 3-Methyl-1-*H*-indol (**112**) basenvermittelt durch nukleophile aromatische Substitution mit 2-Chlor-5-methylpyrimidin (**109a**), 2-Chlorpyrimidin (**109b**) und 2-Brompyridin (**105g**) *N*-aryliert (Schema 36).¹⁰⁴

Des Weiteren sollten für Untersuchungen der Variabilität der dirigierenden Gruppe in der Hydroarylierung 2- und 4-Phenylpyrimidin synthetisiert werden. 4-Phenylpyrimidin (**101b**)¹⁰⁵ wurde unter Mikrowelleneinwirkung durch Kondensation von Acetophenon (**24a**) mit Formamid (**113**)

¹⁰² V. P. W.Böhm, C. W. K. Gstöttmayr, T. Weskamp, W. A.Herrmann, *Angew. Chem. Int. Ed.* **2001**, *40*, 3387–3389.

¹⁰³ L. Ackermann, H. K. Potukuchi, A. R. Kapdi, C. Schulzke, *Chem. Eur. J.* **2010**, *16*, 3300–3303.

¹⁰⁴ L. Ackermann, A. V. Lygin, *Org. Lett.* **2011**, *13*, 3332–3335.

¹⁰⁵ S. Tyagarajan, P. K. Chakravarty, *Tetrahedron Lett.* **2005**, *46*, 7889–7891.

gewonnen (Schema 37), während zur Synthese des 2-Phenylpyrimidins (**101c**)¹⁰⁶ ein Protokoll zur *Suzuki-Miaura*-Kreuzkupplung genutzt wurde.

Schema 36: Darstellung von N-Heteroaryl-3-methyl-1-H-indolen 100e–100g

Schema 38: Darstellung von 2-Phenylpyrimidin (101c) via Suzuki-Miaura-Kreuzkupplung

3.1.3 Synthesen von funktionalisierten Alkenen

Um die Toleranz des im Verlaufe dieser Arbeit entwickelten Katalysatorsystems gegenüber unterschiedlichen funktionellen Gruppen zu untersuchen, wurden 4-Methoxystyrol (**7e**)¹⁰⁷ und,

¹⁰⁶ B. Song, X. Zheng, J. Mo, B. Xu, *Eur. J. Org. Chem.* **2010**, 4376–4380.

¹⁰⁷ S. J. Cho, N. H. Jensen, T. Kurome, S. Kadari, M. L. Manzano, J. E. Malberg, B. Caldarone, B. L. Roth, A. P. Kozikowski, J. *Med. Chem.* 2009, *52*, 1885–1902.

ausgehend vom kommerziell erhältlichen 9-Decen-1-ol (**7f**), die entsprechenden (Pseudo-)-Halogenverbindungen **7g–j**, der Ether **7k** und das Keton **7l** dargestellt (Schema 39 und Abbildung 6).

Die *Wittig*-Reaktion von 4-Methoxybenzaldehyd (**24b**) und dem Ylid des Methyltriphenylphosphonium-bromids (**115**) lieferte das 4-Methoxystyrol (**7e**) in exzellenter Ausbeute von 89% (Schema 39).

Schema 39: Darstellung von 4-Methoxystyrol (7e)

1-Bromdec-9-en (**7g**)¹⁰⁸ und 1-Chlordec-9-en (**7h**)¹⁰⁹ wurden durch nucleophile Substitution mit dem entsprechenden Phosphortrihalogenid aus 9-Decen-1-ol (**7f**) dargestellt (Abbildung 6).

Abbildung 6: Darstellungen von funktionalisierten Alkenen 7g-I

Ersteres wurde wiederum zur Synthese des 11-Dodecen-2-on (**7**I)¹¹⁰ verwendet, wofür mittels Umpolung die entsprechende Grignardverbindung hergestellt wurde, welche für einen nucleophilen Angriff am Acetanhydrid genutzt wurde. Die Darstellung von 1-loddec-9-en (**7**i)¹¹¹ wurde mittels *Wiley*-Reaktion¹¹² unter Verwendung von Triphenylphosphan und Iod durchgeführt. Während zur Synthese von 9-Decen-1-yl-4-methylbenzolsulfonat (**7**j)¹¹³ Toluolsulfonsäure als Reaktant und Pyridin als Base genutzt wurden, lieferte die *Williamson*-Ethersynthese⁹⁸ aus dem Alkohol **7**f, Natriumhydrid und Iodmethan das 10-Methoxydec-1-en (**7**k).

¹⁰⁸ E. G. Samsel, J. K. Kochi, *Inorg. Chem.* **1986**, *25*, 2450–2451.

¹⁰⁹ B. H. Lipshutz, P. Mollard, S. S. Pfeiffer, W. Chrisman, J. Am. Chem. Soc. **2002**, 124, 14282–14283.

¹¹⁰ G. Midgley, C. B. Thomas, J. Chem. Soc., Perkin Trans. II, **1987**, 1103–1108.

¹¹¹ V. Hickmann, M. Alcarazo, A. Fürstner, J. Am. Chem. Soc. **2010**, 132, 11042–11044.

¹¹² G. A. Wiley, R. L. Hershkowitz, B. M. Rein, B. C. Chung, J. Am. Chem.Soc. **1964**, 86, 964–965.

¹¹³ I. A. Moussa, S. D. Banister, C. Beinat, N. Giboureau, A. J. Reynolds, M. Kassiou, *J. Med. Chem.* **2010**, *53*, 6228–6239.

3.2 Rutheniumkatalysierte Hydroarylierung von Methylencyclopropanen

Zu Beginn dieser Arbeit sollte zunächst die Anwendungsbreite des von Ackermann und Kozhushkov^{46,47} vorgestellten Systems auf verschieden substituierte 2-Phenylpyridinderivate **46** untersucht werden. Um den elektronischen Einfluss der Substituenten am Phenylring zu studieren wurden Methoxy-, Fluor- und Methylsubstituenten in der sterisch nicht reaktivitätsbeeinflussenden para-Position eingeführt. Ebenso wurden Derivate getestet, welche eine Metyhlgruppe in *meta*-beziehungsweise *ortho*-Stellung zum Pyridinring aufweisen (Tabelle 2).

 Tabelle 2: Rutheniumkatalysierte Hydroarylierung von 2-Phenylmethylencyclopropan 47.^a

^a **46** (1.0 mMol), **48** (4 × 0.75 mMol), [RuCl₂(cod)]_n (5.0 Mol %), X-Phos (10 Mol %), 1,4-Dioxan (3 mL), 120 °C, 48 h. Der Umsatz wurde *via* GC/MS-Analyse bestimmt.

Hierbei zeigte bereits die gaschromatografische Analyse der Reaktionsmischungen unabhängig vom elektronischen Charakter der Substituenten geringere Umsätze als beim unsubstituierten 2-Phenylpyridin (46a) (Tabelle 2). Aufgrund der unzureichenden Umsätze wurden lediglich drei der Produkte isoliert, um die Molekülstruktur und die Genauigkeit der gaschromatografischen Analyse zu verifizieren. Während die isolierte Ausbeute des Produktes 48a niedriger als der GC-Umsatz ausfiel (Tabelle 2, Eintrag 1), was auf die sehr ähnliche Polarität des Substrates 46a und des Produktes 48a und der damit einhergehenden Schwierigkeiten bei der säulenchromatografischen Trennung zurückzuführen ist, waren die gaschromatografisch bestimmten Umsätze mit den isolierten Ausbeuten der Produkte 48m und 48h konsistent (Tabelle 2, Einträge 2 und 5).

Da im Fall des Produktes **48h** ein alternatives Konstitutionsisomer denkbar ist, wurde die Struktur des gebildeten Produktes zusätzlich mittels 2D-NMR-Spektroskopie detailliert überprüft (Abbildung 7). Die ³J-Kopplungen der Methylenprotonen H-1" mit dem quartären Kohlenstoffatom C-1' und dem tertiären Kohlenstoffatom C-3', sowie die ³J-Kopplungen der Methylprotonen zu zwei tertiären Kohlenstoffatomen bestätigen die Struktur von Verbindung **48h**.

Abbildung 7: HMBC-Spektrum der Verbindung 48h

3.2.1 Reaktionsoptimierung

Aufgrund der bemerkenswerten Ergebnisse auf dem Gebiet der carboxylatassistierten rutheniumkatalysierten C–H-Bindungsfunktionalisierung durch *Ackermann*,^{73,70c,76} *Vicente, Althammer, Mulzer, Novák* und *Hofmann* wurden sowohl einige Carboxylatalkalimetallsalze als auch die entsprechenden Carbonsäuren unter Zusatz von K₂CO₃ als Additive in der rutheniumkatalysierten Hydroarylierung von 2-Phenylmethylencyclopropan (**47**) mit 2-Phenylpyridin (**46a**) getestet (Tabelle 3).

Tabelle 3: Testreaktionen zur Additivoptimierung.^a

	+ Ph [RuCl ₂ (coo X-Phos Additiv (15 1,4-Dioxan	d)] _n (5 Mol %) (10 Mol %) 5–300 Mol %) , 120 °C, 48 h	Ph
	46a 47	48a	
Eintrag	Additiv	[Mol %]	Isolierte Ausbeute
1	NaOAc	30	47
2	KO ₂ Ct-Bu	30	47
3	KO ₂ C(1-Ad)	30	50
4	$1-AdCO_2H/K_2CO_3$	30/15	47
5	MesCO ₂ H/K ₂ CO ₃	30/15	77

Eintrag	Additiv	[Mol %]	Isolierte Ausbeute
6	KO ₂ C ^t Bu	300	85 ^b
7	KO₂C <i>t</i> -Bu	300	_c

^a 46a (1.0 mMol), 47 (4 × 0.75 mMol), [RuCl₂(cod)]_n (5.0 Mol %), X-Phos (10 Mol %), Additiv (15–300 Mol %), 1,4-Dioxan (3 mL), 120 °C, 48 h; ^b Ohne X-Phos; ^c Ohne X-Phos, ohne [RuCl₂(cod)]_n.

Auf Alkylcarbonsäuren basierende Additive zeigten dabei mäßige Ausbeuten (Tabelle 3, Einträge 1– 4). Dabei lieferten die gaschromatografische Analysen der Reaktionen mit KOAc beziehungsweise NaOAc die gleichen Umsätze, weshalb nur Letztere exemplarisch aufgearbeitet wurde. Auch der Vergleich des Kaliumadamantylcarboxylates mit dem entsprechenden *in situ*-System bestehend aus 1-Adamantylcarbonsäure und K₂CO₃ lieferte vergleichbare Ausbeuten (Tabelle 3, Einträge 3 und 4). Lediglich die Mesitylcarbonsäure in Verbindung mit K₂CO₃ erhöhte die isolierte Ausbeute auf 77% (Tabelle 3, Eintrag 5). Bemerkenswerterweise konnte mit stöchiometrischen Mengen Kaliumpivalat und unter Weglassen des X-Phos-Liganden eine noch höhere Ausbeute von 85% erreicht werden. Die gaschromatografische Analyse der Kontrollexperimente sowohl ohne Rutheniumquelle als auch in Abwesenheit von X-Phos zeigte keinerlei Produktbildung, wodurch ein rein basenvermittelter Mechanismus ausgeschlossen werden kann.

Somit sollten die Reaktionsbedingungen unter Ausschluss von X-Phos in Bezug auf die Rutheniumquelle, das Carboxylatadditiv und die Menge des Additivs weiter optimiert werden. Hierzu wurden neben den Ruthenium(II)vorläufern $[RuCl_2(cod)]_n$ und $[RuCl_2(p-Cymol)]_2$ (**41**) auch die Ruthenium(III)quellen $[RuCl_3 \cdot (H_2O)_n]$ und $RuCl_3$ getestet (Tabelle 4).

	N + Ph -	[Ru] (5 Mol %) Additiv (30–300 Mol %) ▲ 1,4-Dioxan, 120 °C, 48 h	Ph	
	46a 47		48a	
Eintrag	[Ru]	Additiv	[Mol %]	Isolierte
1	[RuCl ₂ (cod)] _n	KO ₂ CMes	30	49
2	$[RuCl_3 \cdot (H_2O)_n]$	KO ₂ CMes	30	66
3	[RuCl ₂ (<i>p</i> -Cymol)] ₂	KO ₂ CMes	30	66
4	[RuCl₃]	KO ₂ CMes	30	39
5	$[RuCl_3 \cdot (H_2O)_n]$	NaOAc	30	62
6	$[RuCl_3 \cdot (H_2O)_n]$	NaOAc	100	63
7	$[RuCl_3 \cdot (H_2O)_n]$	NaOAc	300	62
8	[RuCl ₂ (<i>p</i> -Cymol)] ₂	NaOAc	30	44
9	$[RuCl_3 \cdot (H_2O)_n]$	KO ₂ Ct-Bu	100	77
10	$[RuCl_3 \cdot (H_2O)_n]$	KO ₂ Ct-Bu	300	90
11	[RuCl₃·(H₂O) _n]	КОАс	30	57

Tabelle 4: Testreaktionen zur Optimierung der Rutheniumquelle und des Carboxylatadditivs.^a

Eintrag	[Ru]	Additiv	[Mol %]	Isolierte
12	$[RuCl_3 \cdot (H_2O)_n]$	KOAc	100	76
13	$[RuCl_3 \cdot (H_2O)_n]$	CsOAc	100	60
14	$[RuCl_3 \cdot (H_2O)_n]$	КОН	100	0
15	$[RuCl_3 \cdot (H_2O)_n]$	K ₂ CO ₃	100	27

^a **46a** (1.0 mMol), **47** (4 × 0.75 mMol), [Ru] (5.0 Mol %, 2.5 Mol % des dimeren Komplexes **41**), Additiv (30–300 Mol %), 1,4-Dioxan (3 mL), 120 °C, 48 h.

In Kombination mit Kaliummesitylcarboxylat (**116**) lieferten die Komplexe [RuCl₂(*p*-Cymol)]₂ (**41**) und [RuCl₃·(H₂O)_n] mit jeweils 66% die höchsten Ausbeuten (Tabelle 4, Einträge 1–4). Aufgrund der Preise von 12199 €/Mol¹¹⁴ beziehungsweise 3085 €/Mol bietet letzterer hierbei einen enormen ökonomischen Vorteil. Als preisgünstigstes Carboxylatsalz lieferte NaOAc, unabhängig von der Beladung, etwas geringere Ausbeuten und in Kombination mit [RuCl₂(*p*-Cymol)]₂ (**41**) sogar nur 44% (Tabelle 4, Einträge 5–8). Das sterisch anspruchsvollere Kaliumpivalat lieferte in stöchiometrischen Mengen eine gute und im Überschuss von 3 Äquivalenten sogar eine sehr gute Ausbeute (Tabelle 4, Einträge 9 und 10). Mit dem ebenfalls sehr kostengünstigen KOAc konnte bei stöchiometrischem Einsatz eine gute Ausbeute von 76% erreicht werden, während mit katalytischen Mengen lediglich 57% erhalten wurden (Tabelle 4, Einträge 11 und 12). Das K₂CO₃ lediglich eine mäßige Ausbeute lieferte und der Umsatz bei Verwendung einer Hydroxybase vollständig einbricht (Tabelle 4, Einträge 14 und 15) zeigt, dass die Carboxylatsalze eine essentielle Rolle im Reaktionsmechanismus einnehmen.

3.2.2 Rutheniumkatalysierte Hydroarylierungen mit $[RuCl_3 \cdot (H_2O)_n]$

Mit dem äußerst preiswerten Katalysatorsystem bestehend aus $[RuCl_3 \cdot (H_2O)_n]$ und KOAc in 1,4-Dioxan sollte die Anwendungbreite der rutheniumkatalysierten Hydroarylierung von 2-Phenylmethylencyclopropan (**47**) durch die Verwendung verschiedener 2-Phenylpyridinderivate **46** untersucht werden (Tabelle 5).

¹¹⁴ www.abcr.de (Stand 07.Januar 2013).

		$\underbrace{[\operatorname{RuCl}_3 \bullet (\operatorname{H}_2 \operatorname{O})_n] (5 \operatorname{Mol} \%)}_{\operatorname{RuCl}_3 \bullet (\operatorname{H}_2 \operatorname{O})_n] (5 \operatorname{Mol} \%)} \xrightarrow{\operatorname{R}^1 \underbrace{[I]}_{I} \\ \times \\ }$	•Ph
	$R^2 \frac{1}{1}$	KOAc (1 Äquiv.) 1,4-Dioxan, 120 °C, 48 h	
	46 47	48	
Eintrag	46	48	Isolierte Ausbeute [%]
1	CF ₃	Ph CF ₃	50
2	460 N OMe 461	480 N OMe A81	48
3		401 N F	52
4	46k MeO N	48k MeO Ph	79
5	46b Me	48b	64
	46d	48d	

Tabelle 5: Rutheniumkatalysierte Hydroarylierung von 2-Phenylmethylencyclopropan (**47**) mit [RuCl₃·(H₂O)_n].^a

^a **46** (1.0 mMol), **48** (4 × 0.75 mMol), [RuCl₃·(H₂O)_n] (5.0 Mol %), KOAc (1.0 Äquiv.), 1,4-Dioxan (3 mL), 120 °C, 48 h.

Analog zu dem Katalysatorsystem von *Ackermann* und *Kozhushkov* lieferte auch das System mit $[RuCl_3 \cdot (H_2O)_n]$ für 2-Arylpyridinderivate sowohl mit Elektronendonor- als auch mit Elektronenakzeptorsubstituenten in *para*-Postion zum Pyridinring mäßige Ausbeuten im Bereich von 50% (Tabelle 5, Einträge 1–3). Elektronendonierende Substituenten am dirigierenden Pyridin bewirken hingegen einen erheblichen Reaktivitätszuwachs (Tabelle 5, Einträge 4 und 5), so dass **48b** in einer Ausbeute von 79% erhalten werden konnte.

Schema 40: Intramolekulares Konkurrenzexperiment mit 2-(3-Methoxyyphenyl)pyridin (46i)

Die intramolekularen Konkurrenzexperimente (Tabelle 5, Einträge 6 und 7 sowie Schema 40) mit *meta*-substituierten Arenen zeigen, dass die Regioselektivität primär durch sterische Wechselwirkungen bestimmt wird und das Arylpyridin somit bevorzugt an der sterisch weniger abgeschirmten *ortho*-Position reagiert. Im Fall von Substrat **46i** wirkt die *meta*-Methoxygruppe durch Koordination als sekundäre dirigierende Gruppe, wodurch die sterisch stärker gehinderte Verbindung **48h'** als Hauptprodukt gebildet wird (Schema 40).

Abbildung 8: HMBC-Spektren der Verbindungen 48i und 48i'

Die Struktur von Produkt **48p** konnte durch die ¹³C–¹⁹F-Kopplungen im ¹³C-NMR bestätigt werden. So zeigen zwei tertiäre Kohlenstoffatome spezifische ³ $J_{(C-F)}$ -Kopplungen mit Kopplungskonstanten von 4 Hz. Die Verifizierung der Struktur von **48h** gelang bereits im Abschnitt 3.2. Durch Analysen der 2D-NMR-Spektren von Verbindung **48i** und **48i'**, wobei vor allem die HMBC-NMR-Spektren Aufschluss gaben, konnten die Strukturen bestätigt werden. Im Fall von **48i** sind ³J-Kopplungen der

Methylenprotonen H-1" zu dem quartären Kohlenstoffatom C-1', sowie zu dem tertiären Kohlenstoffatom C-3' zu beobachten, wohingegen die Methylenprotonen H-1" von **48i**^{, 3}*J*-Kopplungen mit den zwei quartären Kohlenstoffatomen C-1' und C-3'aufweisen (Abbildung 8).

Des Weiteren wurde die Anwendbarkeit des Katalysatorsystems bestehend aus [RuCl₃·(H₂O)_n] und KOAc auf die Hydroarylierung verschiedener Olefine mit 2-Phenylpyridin (**46a**) untersucht. Während die Hydroarylierung von Phenylacetylen (**84a**) mit 2-Phenylpyridin (**46a**) sowohl unter den Standardbedingungen bei 120 °C in 1,4-Dioxan als auch bei einer erhöhten Reaktionstemperatur von 150 °C in NMP als Lösungsmittel unbefriedigende Umsätze von 11% respektive 15% in der GC/MS-Analyse zeigte, konnte das Hydroarylierungsprodukt **98ab** von 2-Phenylpyridin (**46a**) und Styrol (**7b**) mit Kaliumpivalat als Additiv in einer Ausbeute von 32% erhalten werden (Schema 41).

Schema 41: Hydroraylierung von Styrol (7b)

Wie *Kozhushkov* und *Ackermann*⁴⁶ bereits zeigen konnten, ist es möglich, die Selektivität in Bezug auf Dialkylierung des 2-Phenylpyridins **46a** bei der Hydroarylierung von Bicyclopropyliden (**118**) mit [RuCl₂(cod)]_n als Katalysator durch die Wahl des Liganden zu steuern (Schema 42, a). Während mit X-Phos das dialkylierte Produkt **119b** als Hauptprodukt entsteht, wird unter Verwendung von John-Phos als Ligand das monoalkylierte Produkt **119a** bevorzugt gebildet. Mit dem Katalysatorsystem bestehend aus [RuCl₃·(H₂O)_n] und KOAc wurde ebenfalls das monoalkylierte Produkt **119a** bevorzugt gebildet (Schema 42, b).

Schema 42: Hydroarylierung von Bicyclopropyliden (118)

3.2.3 Rutheniumkatalysierte Hydroarylierungen mit [Ru(MesCO₂)₂(*p*-Cymol)] (117)

Da das auf $[RuCl_3 \cdot (H_2O)_n]$ basierende Katalysatorsystem zum Teil unzureichende Ausbeuten lieferte und in der Reaktionsoptimierung bereits aufgefallen war, dass KO₂CMes (**116**) ein durchaus potentes Additiv darstellt (Tabelle 3, Eintrag 5; Tabelle 4, Einträge 2 und 3), wurde dieses in einer weiteren Reaktionsoptimierung genauer untersucht (Tabelle 6). Zudem wurde der mittlerweile von *Ackermann* und *Vicente¹¹⁵* synthetisierte Rutheniumkomplex [Ru(MesCO₂)₂(*p*-Cymol)] (**117**) eingesetzt um zu eruieren, ob mit dem vorgeformten Komplex eine Verbesserung der Ausbeute im Vergleich zu dem *in situ*-generierten System erreicht werden kann.

 Tabelle 6: Reaktionsoptimierung unter Verwendung von KO₂CMes (116) als Additiv.^a

46a 47	48a	
[Ru]	KO ₂ CMes [Mol %]	Isolierte Ausbeute [%]
[RuCl ₂ (<i>p</i> -Cymol)] ₂	30	66
[Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)]	0	82
[Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)]	10	79
[Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)]	20	97
[Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)]	20	54 ^b
	[Ru] [RuCl ₂ (<i>p</i> -Cymol)] ₂ [Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)] [Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)] [Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)] [Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)]	46a 47 48a [Ru] KO2CMes [Mol %] [RuCl2(p-Cymol)]2 30 [Ru(MesCO2)2(p-Cymol)] 0 [Ru(MesCO2)2(p-Cymol)] 10 [Ru(MesCO2)2(p-Cymol)] 20 [Ru(MesCO2)2(p-Cymol)] 20

^a **46a** (1.0 mMol), **47** (4 × 0.75 mMol), [Ru] (5.0 Mol %, 2.5 Mol % des dimeren Komplexes **41**), **116** (0– 30 Mol %), 1,4-Dioxan (3 mL), 120 °C, 48 h; ^b Zugabe von **47** (3.0 mMol) in einer Portion.

Unter Einsatz des definierten Komplexes [Ru(MesCO₂)₂(*p*-Cymol)] (**117**) war es möglich das Produkt **48a** in einer sehr guten Ausbeute von 82% zu isolieren (Tabelle 6, Eintrag 2). Der Zusatz von weiterem KO₂CMes (**116**) wirkte sich sehr positiv aus, so dass die Ausbeute auf exzellente 97% gesteigert werden konnte (Tabelle 6, Eintrag 4). Der Versuch, die Reaktion durch einmalige Zugabe des Methylencyclopropans anwenderfreundlicher zu gestalten, brachte hingegen nicht den erwünschten Erfolg, so dass lediglich 54% isolierte Ausbeute erreicht werden konnten (Tabelle 6, Eintrag 2).

Der Versuch, die Reaktionszeit durch Einsatz eines Mikrowellenreaktors anstelle des konventionellen Heizens *via* Ölbad zu reduzieren, zeigte bei 180 °C nach 1 h einen Umsatz von 27%. Nach einer Reaktionszeit von 4 h wurde ein Umsatz von 57% erreicht, wohingegen nach Aufarbeitung lediglich 38% des gewünschten Produkts isoliert werden konnten (Schema 43). Daher wurde im Folgenden auf die Anwendung des Mikrowellenreaktors verzichtet.

¹¹⁵ L. Ackermann, R. Vicente, H. K. Potukuchi, V. Pirovano, *Org. Lett.* **2010**, *12*, 5032–5035.

Schema 43: Rutheniumkatalysierte Hydroarylierung unter Mikrowellenbestrahlung

Somit sollte nun erneut mit dem in Tabelle 6 gefundenen, deutlich verbesserten Katalysatorsystem die Anwendungsbreite anhand einiger Pyridinderivate **46** untersucht werden (Tabelle 7).

Tabelle 7: Rutheniumkatalysierte Hydroarylierung und Hydroalkenylierung von 2-Phenylmethylencyclopropan (**47**) unter Verwendung von [Ru(MesCO₂)₂(*p*-Cymol)] (**117**).^a

Fintrog	46/120	40/101	Isolierte Ausbeute
Entrag	40/120	40/121	[%]
5	Me	Me N Ph	80
	46d	48d	
6	F N	F N Ph	71
	46f	48f	
7	Me	N Me Ph	56
	46h	48h	
8	N	Ph Ph	62
	120a	121	
9	Ph	_	-
	120b		

^a **46/120** (1.0 mMol), **47** (4 × 0.75 mMol), **117** (5.0 Mol %), **116** (20 Mol %), 1,4-Dioxan (3 mL), 120 °C, 48 h.

Mit diesem Katalysatorsystem, bestehend aus[Ru(MesCO₂)₂(*p*-Cymol)] (**117**) und KO₂CMes (**116**) in 1,4-Dioxan, ließ sich das Produkt **48I** in einer wesentlich besseren Ausbeute von 82% im Vergleich zu dem System basierend auf [RuCl₃·(H₂O)_n] isolieren, welches das identische Produkt in einer mäßigen Ausbeute von 48% lieferte (Tabelle 5, Eintrag 2; Tabelle 7, Eintrag 2). Das Produkt **48k** konnte mit dem neuen System in einer nahezu identischen Ausbeute von 57% wie mit dem vorherigen System erhalten werden (Tabelle 7, Eintrag 3). Die tolylsubstituierten Pyridinderivate **48m** und **48h** hingegen, lieferten mäßige 47% beziehungsweise 56% Ausbeute (Tabelle 7, Einträge 1 und 7) und somit eine geringere Ausbeute als mit dem [RuCl₃·(H₂O)_n]-basierten System. Eine Variation des elektronischen Charakters des Pyridinrings durch Einführung eines Fluor-, Methyl- beziehungsweise Methoxysubstituenten lieferte gute bis sehr gute Ausbeuten im Bereich von 68% bis 80% (Tabelle 7, Einträge 4–6). Es konnte sogar eine Hydroalkenylierung mit 1-Cyclohexylpyridin (120a) in einer Ausbeute von 62% realisiert werden, wohingegen das Hydroalkenylierungsprodukt aus (E)-2-Styrylpyridin (120b) und 2-Phenylmethylencyclopropan (47) nur in Spuren gebildet wurde (Tabelle 7, Einträge 8 und 9).

Um zu untersuchen, inwiefern es möglich ist, die dirigierende Gruppe Pyridin gegen einen anderen Heterocyclus zu ersetzen wurden Hydroarylierungsreaktionen von 2-Phenylmethylencyclopropan (47) mit 2-Phenyl-2-oxazolin (101d), 2-Phenyloxazol (101e), 2-Phenylbenzo[d]oxazol (101f) und 1-Phenyl-1*H*-pyrazol (**101g**) sowohl mit [RuCl₃·(H₂O)_n] und KOAc als auch mit [Ru(MesCO₂)₂(*p*-Cymol)] (117) und KO₂CMes (116) in 1,4-Dioxan durchgeführt (Abbildung 9). Hierbei zeigten die gaschromatografischen Analysen der Reaktionsgemische, dass beide Katalysatorsysteme lediglich bei der Reaktion mit 1-Phenyl-1*H*-pyrazol (**101g**) signifikante, jedoch unbefriedigende Umsätze von 33% beziehungsweise 52% lieferten. Bereits Davies beobachtete, dass eine stöchiometrische Cyclometallierung von 4,4-Dimethyl-2-phenyl-2-oxazolin nur mit NaOAc und [IrCl₂Cp*] in CH₂Cl₂ stattfindet, während [RuCl₂(*p*-Cymol)]₂ (**41**) keinen Umsatz lieferte.⁶¹

Abbildung 9: Variation der dirigierenden Gruppe

Im weiteren Verlauf der Untersuchungen sollte die Verwendbarkeit des verbesserten, auf $[Ru(MesCO_2)_2(p-Cymol)]$ (117) basierenden, Katalysatorsystems für die Hydroarylierung verschiedener Alkene und Alkine mit 2-Phenylpyridin (46a) untersucht werden (Abbildung 10). Da Reaktionen mit 4-Methoxystyrol (7e), 4-Trifluormethylstyrol (7m), Triethoxyvinylsilan (7c), Tolan (84b), Phenylacetylen (84a), Cyclohexen (7n) und Cyclopenten (7o) nur sehr geringe Umsätze zeigten, war es umso erfreulicher, dass mit dem nicht aktivierten terminalen Alken 1-Hexen (7p) eine isolierte Ausbeute von 53% erreicht werden konnte (Schema 44).

Schema 44: Rutheniumkatalysierte Hydroarylierung von 1-Hexen mit [Ru(MesCO₂)₂(p-Cymol)] (117) als Katalysator

Da es für den Einsatz von nicht aktivierten terminalen Olefinen in rutheniumkatalysierten Hydroarylierungsreaktionen wenige Beispiele in der Literatur gibt, sollte dieser Entdeckung weiter nachgegangen werden. Aufgrund des Siedepunkts des 1-Hexens von 63 °C ist davon auszugehen,

dass sich bei einer Reaktionstemperatur von 120 °C ein großer Teil des Olefins in der Gasphase anreichert, was zu einer Verringerung der 1-Hexenkonzentration im Reaktionsmedium und somit zu Umsatzeinbußen führt.

3.3 Rutheniumkatalysierte Hydroarylierung von terminalen nicht aktivierten Alkenen

3.3.1 Reaktionsoptimierung

Um die optimale Kombination aus Rutheniumquelle, Additiv und Lösungsmittel für die Hydroarylierung von terminalen nicht aktivierten Alkenen ausfindig zu machen, wurden weitere Untersuchungen mit 1-Decen (**7q**), welches einen Siedepunkts von 172 °C aufweist, vorgenommen (Tabelle 8).

Tabelle 8: Optimierung der Hydroarylierung von 1-Decen (7q) mit 2-Phenylpyridin (46a).^a

[Ru] (5 Mol %) Additiv (15–30 Mol %) Lsgm.,120 °C, 18 h				
		7q	98aq	
Eintrag	[Ru]	Additiv (Mol %)	Lösungsmittel	Isolierte Ausbeute (Umsatz) [%]
1	[RuCl ₂ (<i>p</i> -Cymol)] ₂	KPF ₆ (15)	PhMe	(0) ^b
2	[RuCl ₂ (<i>p</i> -Cymol)] ₂	NaPF ₆ (15)	PhMe	(0) ^b
3	[RuCl ₂ (<i>p</i> -Cymol)] ₂	AgOAc (30)	PhMe	(27) ^b
4	[RuCl ₂ (<i>p</i> -Cymol)] ₂	AgOTf (30)	PhMe	(13) ^b
5	[RuCl ₂ (<i>p</i> -Cymol)] ₂	PPh₃ (15) NaHCO₂ (30)	PhMe	(6)
6	[RuCl ₂ (<i>p</i> -Cymol)] ₂	NaHCO ₂ (15)	PhMe	(0) ^{b,c}
7	[RuCl ₂ (<i>p</i> -Cymol)] ₂	KOAc (30)	1,4-Dioxan	(48)
8	[RuCl ₂ (<i>p</i> -Cymol)] ₂	KO ₂ C ^t Bu (30)	1,4-Dioxan	(56)
9	[RuCl ₂ (<i>p</i> -Cymol)] ₂	KO ₂ C(1-Ad) (30)	1,4-Dioxan	71 (80)
10	[RuCl ₂ (<i>p</i> -Cymol)] ₂	KO₂CMes (30)	1,4-Dioxan	72 (85)
11	[RuCl ₂ (<i>p</i> -Cymol)] ₂	MesCO ₂ H (30) K ₂ CO ₃ (30)	1,4-Dioxan	(11)
12	[Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)]	-	1,4-Dioxan	63 (75)
13	[Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)]	KO₂CMes (20)	1,4-Dioxan	73 (87)
14	[RuCl ₂ (cod)] _n	KO ₂ CMes (30)	1,4-Dioxan	(5)
15	$[RuCl_3 \cdot (H_2O)_n]$	KO ₂ CMes (30)	1,4-Dioxan	(5)
16	[RuCl ₂ (Benzol)] ₂	KO ₂ CMes (30)	1,4-Dioxan	74 (88)
17	[RuCl ₂ (Benzol)] ₂	KO ₂ CMes (30)	DMF	(10)
18	[RuCl ₂ (Benzol)] ₂	KO ₂ CMes (30)	DMA	(39)

Eintrag	[Ru]	Additiv (Mol %)	Lösungsmittel	Isolierte Ausbeute (Umsatz) [%]
19	[RuCl ₂ (Benzol)] ₂	KO ₂ CMes (30)	NMP	(44)
20	[RuCl ₂ (Benzol)] ₂	KO ₂ CMes (30)	H ₂ O	(72)
21	[RuCl ₂ (Benzol)] ₂	KO ₂ CMes (30)	o-Xylol	77 (93)
22	[RuCl ₂ (Benzol)] ₂	KO ₂ CMes (30)	PhMe	82 (94)
23	[RuCl ₂ (<i>p</i> -Cymol)] ₂	KO ₂ CMes (30)	PhMe	79 (95)
24	[RuCl ₂ (<i>p</i> -Cymol)] ₂	_	PhMe	Spuren
25	-	KO ₂ CMes (30)	PhMe	-

^a 46a (1.0 mMol), 7q (3.0 mMol), [Ru] (5 Mol %, 2.5 Mol % des dimeren Komplexes 41), Additiv (0– 30 Mol %), Solvens (3 mL), 120 °C, 18 h. Der Umsatz wurde *via* GC-Analyse mit *n*-Tridecan als internem Standard bestimmt; ^b 100 °C; ^c [Ru] (2.5 Mol %).

Während sich mit den zur Generierung kationischer Komplexe genutzten Additiven KPF₆ und NaPF₆ kein Umsatz beobachten ließ, wiesen Reaktionen mit den Silbersalzen AgOTf und AgOAc eine geringe Produktbildung auf (Tabelle 8, Einträge 1–4). Das von *Genet et al.*³⁶ vorgestellte Katalysatorsystem aus [RuCl₂(*p*-Cymol)]₂ (**41**), PPh₃ und NaHCO₂ zur *in situ*-Generierung einer katalytisch aktiven Rutheniumhydridospezies lieferte ebenso wie die Testreaktion ohne Triphenylphosphan keinerlei Umsatz des 2-Phenylpyridins (**46a**) (Tabelle 8, Einträge 5 und 6). Mit den einfachen Carboxylatsalzen KOAc und KOPiv konnten unter Einsatz von [RuCl₂(*p*-Cymol)]₂ (**41**) in 1,4-Dioxan bereits mäßige Umsätze erhalten werden, wohingegen die sterisch sehr anspruchsvollen Mesityl- und Adamantylderivate gute Ausbeuten von über 70% lieferten (Tabelle 8, Einträge 7–10). Die *in situ*-Bildung des Carboxylatsalzes aus Mesitylcarbonsäure und K₂CO₃ führt zu einem sehr geringen Umsatz von 11%, wobei diese Beobachtung in den Untersuchungen des Reaktionsmechanismus weiter nachgegangen wurde.

Wie bereits bei der Hydroarylierung von 2-Phenylmethylencyclopropan (**47**) zu beobachten war (Tabelle 6), weist auch hier der definierte Komplex [Ru(MesCO₂)₂(*p*-Cymol)] (**117**) eine hohe Reaktivität auf, welche sich durch Zusatz von KO₂CMes (**116**) weiter steigern lässt (Tabelle 8, Einträge 12 und 13). Der direkte Vergleich von Eintrag 10 und 13 zeigt, dass mit beiden Rutheniumkomplexen bei gleicher Gesamtcarboxylatkonzentration vergleichbare Umsätze und Ausbeuten erhalten werden. Bei der Untersuchung anderer Rutheniumquellen war zu beobachten, dass sowohl das zuvor im System von *Ackermann* und *Kozhushkov* genutzte [RuCl₂(cod)]_n als auch das ebenfalls zur Hydroarylierung von 2-Phenylmethylencyclopropan (**47**) genutzte [RuCl₃·(H₂O)_n], in Kombination mit katalytischen Mengen KO₂CMes (**116**), nicht für die Hydroarylierung von 1-Decen (**7q**) genutzt werden konnte (Tabelle 8, Einträge 14 und 15). Das strukturell dem [RuCl₂(*p*-Cymol)]₂ (**41**) analoge [RuCl₂(Benzol)]₂ lieferte hingegen in sehr geringem Maße eine weitere Verbesserung des Umsatzes und der Ausbeute (Tabelle 8, Eintrag 16).

Somit wurde in weiteren Testreaktionen die Verwendbarkeit anderer Lösungsmittel mit [RuCl₂(Benzol)]₂ geprüft. Polar aprotische Lösungsmittel (Tabelle 8, Einträge 17–19) lieferten geringe Umsätze, wobei mit unpolaren Lösungsmitteln wie *o*-Xylol und Toluol der Umsatz und die Ausbeute gegenüber dem zuvor genutzten 1,4-Dioxan erneut deutlich gesteigert werden konnte (Tabelle 8, Einträge 21 und 22). Bei der Reaktion in entgastem demineralisiertem H₂O konnte eine

Phasentrennung beobachtet werden, was dazu führt, dass die Reaktion vornehmlich in der organischen Phase abläuft und ein bemerkenswerter Umsatz von 72% erreicht werden kann (Tabelle 8, Eintrag 20). Dieses zeigt, dass das hier entwickelte Katalysatorsystem für die ruthenium(II)katalysierte Hydroarylierung Wasser in der Reaktionsmischung toleriert.¹¹⁶ Da [RuCl₂(*p*-Cymol)]₂ (**41**) (33,62 €/mMol)¹¹⁷ deutlich kostengünstiger als [RuCl₂(Benzol)]₂ (69,90 €/mMol) ist und beide Rutheniumkomplexe in Toluol als Lösungsmittel vergleichbare Ausbeuten lieferten (Tabelle 8, Einträge 22 und 23), konnte als ideales Katalysatorsystem [RuCl₂(*p*-Cymol)]₂ (**41**) mit KO₂CMes (**116**) in Toluol gefunden werden. Eine Hintergrundaktivität zwischen **46a** und **7q** konnte unter Verzicht auf [RuCl₂(*p*-Cymol)]₂ (**41**) beziehungsweise KO₂CMes (**116**) ausgeschlossen werden (Tabelle 8, Einträge 24 und 25).

Schließlich wurden noch Versuche unternommen die Reaktionstemperatur, die Katalysatorbeladung sowie die Menge des eingesetzten Alkens zu verringern. Zudem lag aufgrund der Differenz zwischen gaschromatografisch bestimmtem Umsatz und isolierter Ausbeute der Verdacht nahe, dass in geringem Maße das dialkylierte Produkt **122** gebildet wird, was in den weiteren Untersuchungen ebenfalls berücksichtigt werden sollte (Tabelle 9).

 ¹¹⁶ a) C.-J. Li, Acc. Chem. Res. 2010, 43, 581–590, b) B. H. Lipshutz, A. R. Abela, Ž. V. Bošković, T. Nishikata, C. Duplais, A. Krasovskiy, *Top. Catal.* 2010, *53*, 985–990; c) R. N. Butler, A. G. Coyne, *Chem. Rev.* 2010, *110*, 6302–6337.

¹¹⁷ www.alfa-aesar.de (Stabnd 24.01.2013)

11	2	[Ru(MesCO ₂) ₂ (<i>p</i> -Cymol)] (2.5)	-	100	n. b.	80	3	
12	3	[RuCl ₂ (<i>p</i> -Cymol)] ₂ (2.5)	30	120	-	7 4 ^b	-	

^a **46a** (0.50–1.0 mMol, 0.33 M in PhMe), **1q** (1.2–3.0 Äquiv.), [Ru] (0.50–5.0 Mol %), Additiv (0– 30 Mol %), 18 h. Der Umsatz wurde *via* GC-Analyse mit *n*-Tridecan als internem Standard bestimmt; ^b H₂O (3 mL) statt PhMe.

Bei einer Reduktion der Temperatur über 100 °C auf 80 °C lieferte die gaschromatografische Untersuchung eine Umsatzverringerung um 5%, wobei vornehmlich die Menge an dialkyliertem Produkt **122aq** gesenkt werden konnte (Tabelle 9, Einträge 1–3). Eine Verringerung des Substratverhältnisses auf 1:2 zeigte den gleichen Effekt, während ein Verhältnis von 1:1.2 eine signifikante Umsatz- und Ausbeutenminderung herbeiführte (Tabelle 9, Einträge 4 und 5). Die Katalysatorbeladung konnte erfolgreich auf 1.25 Mol % des dimeren Rutheniumkomplexes (**41**) und 15 Mol % des KO₂CMes (**116**) herabgesetzt werden, wohingegen sich der Umsatz mit lediglich 0.5 Mol % [RuCl₂(*p*-Cymol)]₂ (**41**) und 6 Mol % KO₂CMes (**116**) auf 54% verringerte (Tabelle 9, Einträge 6–9). Der vorgeformte Komplex [Ru (MesCO₂)₂(*p*-Cymol)] (**116**) zeigte auch bei 100 °C ohne Zusatz von weiterem Carboxylatsalz vergleichbare Ausbeuten wie das *in situ*-generierte System (Tabelle 9, Einträge 10 und 11). Da er jedoch nicht kommerziell erhältlich ist, wurde mit Rücksicht auf die Anwenderfreundlichkeit mit der Kombination aus [RuCl₂(*p*-Cymol)]₂ (**41**) und KO₂CMes (**116**) für weitere Untersuchungen vorlieb genommen.

3.3.2 Hydroarylierung von funktionalisierten terminalen Alkenen

Mit dem optimierten Katalysatorsystem sollte nun die Toleranz gegenüber unterschiedlichen funktionellen Gruppen untersucht werden. Neben Kettenlängenvariationen der Alkene und ausgewählten Substraten, welche bereits zuvor in der Literatur für derartige Funktionalisierungen verwendet wurden, sollte auch die Toleranz gegenüber funktionellen Gruppen, wie Halogeniden, Estern, Ethern, Ketonen und Alkoholen, getestet werden (Tabelle 10).

	N + ∞R 46a 7	[RuCl ₂ (<i>p</i> -cymol)] ₂ (1.25 Mol % KO ₂ CMes (15 Mol %) PhMe, 100 °C, 18 h	$\xrightarrow{(6)} \qquad \qquad$	+ R 122	,R
Eintrag	7	98	Isolierte Ausbeute (98) [%]	122	Isolierte Ausbeute (126) [%]
1	<i>∕∕∕</i> t-Bu	N t-Bu	20 ^e	_	-
	7r	98ar			

Tabelle 10: Rutheniumkatalysierte Hydroarylierung von Alkenen 7.^a

Eintrag	7	98	Isolierte Ausbeute (98) [%]	122	Isolierte Ausbeute (126) [%]
2	<i>∕∕</i> n-Bu	N n-Hex	78	<i>n</i> -Hex <i>n</i> -Hex	4
	7р	98ap		122ap	
3	<i>n</i> -Pent	N <i>n</i> -Hept	81	<i>n</i> -Hept	7
	7s	98as		122as	
4	n-Hex	N n-Oct	82	<i>n</i> -Oct	6
	7t	98at		122at	
5	n-Hept	N n-Non	85	<i>n</i> -Non <i>n</i> -Non	8
	7u	98au		122au	
6	<i>∕∕∕n</i> -C ₁₃ H ₂₇	<i>n</i> -C ₁₅ H ₃₁	83	<i>n</i> -C ₁₅ H ₃₁	8
	7v	98av		122av	
7	<i>∕∕∕n</i> -C ₁₄ H ₂₉	<i>n</i> -C ₁₆ H ₃₃	83	<i>n</i> -C ₁₆ H ₃₃	6
	7w	98aw		122aw	
8	Si(OEt) ₃	Si(OEt) ₃	41 [°] (EtO) ₃ Si Si(OEt) ₃	3 ^c
	7c	98ac		122ac	

-44-

Eintrag	7	98	Isolierte Ausbeute (98) [%]	122	Isolierte Ausbeute (126) [%]
9	SiMe ₃	SiMe ₃	75	Me ₃ SiSiMe ₃	19
	7d	98ad		122ad	
10	SiEt ₃	SiEt ₃	63	Et ₃ Si SiEt ₃	29
	7x	98ax		122ax	
11	OMe	OMe	41 ^b	-	_
	7e	98ae			
12			87	_	_
	7у	(<i>rac</i>)- 98ay			
13	<i>■</i> (→) ^{OH} 8	N OH 9	45 ^d	_	-
	7f	98af			
14	∕∕ (→ OMe 8	N 9 OMe	79	_	_
	7k	98ak			
15	O Me		56 ^c	_	-
	7z	98az			

^a **7** (1.0 mMol), **46a** (2.0 mMol), **41** (1.3 Mol %), **116** (15 Mol %), PhMe (3 mL), 100 °C, 18 h; ^b **41** (2.5 Mol %), **116** (30 Mol %), **116** (30 Mol %), **120** °C, 24 h; ^d **7f** (3 mMol), **41** (5.0 Mol %), **116** (60 Mol %), 120 °C, 25 h; ^e Ausbeute *via* ¹H-NMR aus isolierter Mischung von **46a** und **98aq** bestimmt.

Während 3,3-Dimethylbuten (**7**r) mit einem Siedepunkt von 41 °C selbst unter Verwendung eines 10 mL Schlenkkolbens zur Minimierung des Gasvolumens nur einen Umsatz von 20% lieferte, konnte mit 1-Hexen (**7**p), welches einen Siedepunkts von 63 °C aufweist, bereits eine isolierte Ausbeute der mono- und disubstituierten Produkte **98ap** und **126ap** von 78% beziehungsweise 4% erreicht werden (Tabelle 10, Eintrag 1). Mit Alkenen unterschiedlichster Kettenlängen zwischen 1-Hepten (**7s**) und 1-Hexadecen (**7w**) konnten die monoalkylierten Produkte **98as–aw** in Ausbeuten von 81–85% erhalten werden, wobei auch die jeweiligen dialkylierten Produkte **122as–aw** zu 4–8% isoliert wurden (Tabelle 10, Einträge 2–7). Dieses war mit bisher bekannten Protokollen aufgrund der Isomerisierung zu internen Alkenen nicht selektiv möglich.^{19,21b,33,43,44} Mit Triethoxyvinylsilan(**7c**) konnte selbst bei

erhöhter Katalysatorbeladung, Reaktionstemperatur und Reaktionsdauer nur eine unbefriedigende kombinierte Ausbeute von 44% erzielt werden (Tabelle 10, Eintrag 8). Das häufig als Standardreagenz genutzte Trimethylvinylsilan (**7b**)^{19,20a,21b,33,36,39b} zeigt auch mit dem vorliegenden Katalysatorsystem eine exzellente Reaktivität (Tabelle 10, Eintrag 9). Wird Triethylvinylsilan (**7x**) verwendet, verschiebt sich das Verhältnis bei gleichbleibendem Umsatz zugunsten des dialkylierten Produktes **122ax** (Tabelle 10, Eintrag 10). Das unter Verwendung diverser Styrolderivate beste Resultat lieferte 4-Methoxystyrol (**7e**) mit einer isolierten Ausbeute von 41% (Tabelle 10, Eintrag 11). Norbornen (**7y**), welches von *Yoshikai et al.*⁵³ in der cobaltkatalysierten Hydroarylierung mit Phenylketiminen beziehungsweise von *Williams et al.*⁴³ in der rutheniumkatalysierte Hydroarylierung mit Acetophenon erfolgreich eingesetzt wurde, ergab auch mit dem vorliegenden Katalysatorsystem eine sehr gute Ausbeute von 87% (Tabelle 10, Eintrag 12).

Die Untersuchungen zur Toleranz gegenüber funktionellen Gruppen erbrachte bemerkenswerte Ergebnisse. Während sogar die freie Hydroxylgruppe des Dec-9-en-1-ols (**7f**) unter Verwendung drastischer Reaktionsbedingungen toleriert wurde, konnte mit dem entsprechenden Ether **7k** eine sehr gute Ausbeute von 79% erreicht werden (Tabelle 10, Einträge 13 und 14). Ebenso konnte durch eine Erhöhung von Katalysatorbeladung sowie Reaktionsdauer und -temperatur mit dem kurzkettigen Hex-5-en-2-on (**7z**) eine befriedigende Ausbeute erhalten werden, wohingegen das langkettige Keton **7l** bereits unter Standardreaktionsbedingungen eine exzellente kombinierte Ausbeute von 91% lieferte. Hierbei fiel das dialkylierte Produkt (**122al**) lediglich in 9% an (Tabelle 10, Einträge 15 und 16).

Angesichts des von Ackermann, Novák, Vicente und Hofmann⁷⁶ entwickelten ähnlichen Katalysatorsystems zur direkten Alkylierung von 2-Phenylpyridin (46a) und 1-Phenylpyrazol (101g) war es zunächst erstaunlich, dass 1-Bromdec-9-en (7g) eine Ausbeute von 60% des Hydroarylierungsproduktes lieferte. Genauere Untersuchungen zum Vergleich der rutheniumkatalysierten direkten Alkylierung und Hydroarylierung folgen deshalb in Abschnitt 3.3.2.2. Die noch reaktiveren (Pseudo)Halogen substituierten Alkene 1-Ioddec-9-en (7i) und 9-Decen-1-yl-4methylbenzoylsulfonat (7j) lieferte aufgrund Zersetzung hingegen deren unter den Reaktionsbedingungen keine brauchbaren Umsätze.

Des Weiteren beeinflussen weder Ester- noch Chloridfunktionalitäten signifikant die Reaktivität, so dass Produkt **98aaa** und **98ah** in guten Ausbeuten erhalten wurde. Selbst die äußert elektronenarme Doppelbindung des 1*H*,1*H*,2*H*-Perfuoroct-1-en (**7ab**) erlaubt, im Gegensatz zu den aktivierten Doppelbindungen der Acrylester **123a**, **123b** und **123c**, sowie den Acrylnitrilen **123d** und **123e**(Abbildung 11), eine Hydroarylierung mit 2-Phenylpyridin (**46a**) in einer guten Ausbeute von 68% (Tabelle 10, Einträge 17–19). Hierbei ist anzumerken, dass die gaschromatografische Analyse des Reaktionsgemisches einen vollständigen Umsatz des 2-Phenylpyridins (**46a**) und eine signifikante Menge des dialkylierten Produktes zeigte. Dieses weist auf die inhärente Reaktivität des 1*H*,1*H*,2*H*-Perfluoroctens (**7ab**) hin. Da fluorierte Substanzen, aufgrund der besonderen Eigenschaften, wie erhöhte Löslichkeit, Bioverfügbarkeit und metabolische Stabilität, von besonderem Interesse sind, wuchs über die letzten Jahre die Nachfrage an deren Synthesemethoden.¹¹⁸ Daher wurden weitere Untersuchungen zur Hydroarylierung des oligofluorierten Alkens **7ab** durchgeführt. Mit nahezu

¹¹⁸ a) Ed.: V. A. Soloshonok, *Fluorine-Containing Synthons (ACS Symposium Series)* **2005**, *911*; b) K. Müller, C. Faeh, F. Diederich, *Science* **2007**, *317*, 1881–1886; c) K. I. Kirk, *Org. Proc. Res. & Dev.* **2008**, *12*, 305–321; d) T. Furuya, A. S. Kamlet, T. Ritter, *Nature* **2011**, *473*, 470–476.

äquimolaren Mengen der Substrate konnten unterschiedlich substituierte 2-Phenylpyridinderivate **98aab**– in sehr guten Ausbeuten direkt alkyliert werden (Tabelle 11).

Tabelle 11: Rutheniumkatalysierte Hydroarylierung von 1H,1H,2H-Perfluoroctens (7ab). ^a

		[RuCl ₂ (<i>p</i> -Cymol)] ₂ (2.5 Mol %) R ¹ [[KO ₂ CMes (30 Mol %)) v
	$R^2 \frac{\Gamma}{U}$ + C_6	F ₁₃ PhMe, 120°C, 24 h	C ₆ F ₁₃
	46 7ab		98
Eintrag	46	98	Isolierte Ausbeute [%]
1	N	$ \begin{array}{c} $	78
	46a	98aab	
2	Me	$ \begin{array}{c} Me\\ N\\ F_2 \\ F_2 \end{array} CF_3 $	80
	46d	98dab	
3	MeO	$MeO \xrightarrow{F_2} F_2 F_2 F_2 F_2 F_2 F_2 F_2 F_2 F_2 F_2$	84
	46q	98qab	
4	MeO	$MeO \xrightarrow{N} F_2 \xrightarrow{F_2} F_2 \xrightarrow{F_2} F_2 \xrightarrow{C} C $	78
	46b	98bab	
5	F ₃ C	F_2 F_2 F_2 F_2 F_3 F_2	82
	46p	98pab	

46 (1.0 mMol), 7ab (1.1 mMol), 41 (2.5 Mol %), 116 (30 Mol %), PhMe (3 mL), 120 °C, 24 h.

Aufgrund der 2008 von *Zhang et al.*¹¹⁹ vorgestellten ersten rutheniumkatalysierten chelatassistierten Hydroarylierung von terminalen Alkinen wurden auch Phenylacetylen (**84a**) und 1-Octin (**84c**) mit dem vorliegenden System als Substrate getestet, wobei beide Alkine nur unzureichende Umsätze von unter 10% zeigten (Abbildung 11). Auch die internen Alkine^{22,23,27,42,120} Tolan (**84b**) und 3-Octin (**84d**) lieferten unbefriedigende Umsätze von maximal 25%. Des Weiteren konnten auch mit den geminal disubstituierten Alkenen^{19,121} **7ac**, **7ad** und **7ae** sowie den 1,2-disubstituierten Alkenen¹²¹ **7n** und **7af** nur geringe Umsätze erzielt werden.

Abbildung 11: Alkene und Alkine geringer Reaktivität.

3.3.2.1 Untersuchungen zur Hydroarylierung interner Alkene

Da *Bergman, Ellman et al.*¹²² bereits eine enantioselektive intramolekulare rhodiumkatalysierte Hydroarylierung unter Nutzung von chiralen Phosphanliganden beschrieben haben und die gaschromatografische Analyse einer Testreaktion mit 2-Octin (**7ag**) einen Umsatz von 10% ergab, sollte untersucht werden, ob der Einsatz von chiralen Additiven die enantioselektive Synthese von sekundären Arylalkenen möglich macht.

¹¹⁹ K. Cheng, B. Yao, J. Zhao, Y. Zhang, *Org. Lett.* **2008**, *10*, 5309–5312.

¹²⁰ Y.-G. Lim, K.-H. Lee, B. T. Koo, J.-B. Kang, *Tetrahedron Lett.* **2001**, *42*, 7609–7612.

¹²¹ K.-H. Kwon, D. W. Lee, C. S. Yi, *Organometallics* **2010**, *29*, 5748–5750.

¹²² H. Harada, R. K. Thalji, R. G. Bergman, J. A. Ellman, *J. Org. Chem.* **2008**, *73*, 6772–6779.

	N + Me n-Pent	[Ru] (5 Mol %) Additiv (15 Mol %) PhMe, 100 °C, 18 h	
	46a 7ag	98at	
Eintrag	[Ru]	Additiv	Umsatz (Isolierte Ausbeute) (98at) [%]
1	[RuCl ₂ (<i>p</i> -Cymol)] ₂		8
2	[RuCl ₂ (<i>p</i> -Cymol)] ₂		26
3	[RuCl ₂ (<i>p</i> -Cymol)] ₂	Me O Me OK HN O tBu	18
4	[RuCl ₂ (<i>p</i> -Cymol)] ₂	KPF ₆	7
5	[RuCl ₂ (<i>p</i> -Cymol)] ₂	AgSbF ₆	7
6	[RuCl ₂ (<i>p</i> -Cymol)] ₂	NH_4PF_6	-
7	[RuCl ₂ (<i>p</i> -Cymol)] ₂	КОАс	11
8	[RuCl ₂ (<i>p</i> -Cymol)] ₂	KO ₂ CBn	13
9	[RuCl ₂ (<i>p</i> -Cymol)] ₂	KO ₂ CMes	20
10	[RuCl ₃]	KO ₂ CMes	4
11	[RuBr₃·(H₂O) _n]	KO ₂ CMes	10
12	[Rul ₃]	KO ₂ CMes	1
13	[Ru ₃ (CO) ₁₂]	KO ₂ CMes	3
14	[RuCl ₂ (PPh ₃) ₃]	KO ₂ CMes	5
15	$[RuCp*(PPh_3)_2Cl]_2$	KO ₂ CMes	<1
16	[RuCl₃·(H₂O) _n]	KO ₂ CMes	6
17	[RuCl ₂ (Benzol)] ₂	KO ₂ CMes	20 (10)

	1 II - AII	а
Tabelle 12: Untersuchungen zur enantioselektiven Hy	ydroaryllerung interner Alkene	г.

^a **46a** (0.50 mMol), **7ag** (1.5 mMol), [Ru] (5 Mol %, 2.5 Mol % des dimeren Komplexes **41**), Additiv (15 Mol %), PhMe (2 mL), 100 °C, 18 h. Der Umsatz wurde *via* GC-Analyse mit *n*-Tridecan als internem Standard bestimmt.

Die Substitution von Kaliummesitylcarboxylat (**116**) durch die Kaliumsalze der Aminosäurederivate *N*-Pivalylleucin, -phenylalanin und -valin zeigt unzureichende Umsätze (Tabelle 12, Einträge 1–3), so dass zunächst geprüft werden musste, ob der Umsatz durch Variation der Additive und Rutheniumquellen erhöht werden kann. Das Additiv mit der höchsten Reaktivität war nach wie vor Kaliummesitylcarboxylat. Beim Vergleich unterschiedlicher Rutheniumquellen zeigte sich, dass lediglich die Dichloroarenrutheniumkomplexe (Tabelle 12, Einträge 9–20) Umsätze von mehr als 15% liefern. Die NMR-spektroskopische Analyse des gebildeten Produktes der Reaktion mit [RuCl₂(Benzol)]₂ und KO₂CMes (**116**) zeigte, dass das lineare Produkt **98at** isoliert wurde. Somit konnte die bereits von *Kang*⁴⁴ beobachtete Isomerisierungs-Hydroarylierungskaskade auch mit dem vorliegenden Katalysatorsystem durchgeführt werden.

3.3.2.2 Vergleich der rutheniumkatalysierten direkten Alkylierung und Hydroarylierung

*Ackermann, Novák, Vicente und Hofmann*⁷⁶ konnten bereits ausschließen, dass das Produkt **98ap** der direkten Alkylierung durch Eliminierung von Halogenwasserstoff aus dem Alkylhalogenid und anschließender Hydroarylierung gebildet wird (Schema 45).

Schema 45: Hydroarylierungsversuch anhand des Protokolls zur direkten Alkylierung^{76a}

Während für die direkte Alkylierung eine Kombination aus der sterisch anspruchsvollen 1-Adamantylcarbonsäure und K_2CO_3 in NMP Verwendung findet, wurde für die Hydroarylierung Kaliummesitylcarboxylat (**116**) als Additiv und Toluol als Lösungsmittel in Abwesenheit einer Base verwendet, wobei beide Systeme die identische Rutheniumquelle nutzen.

Da mit Toluol in der Optimierung der direkten Alkylierung eine Ausbeute von 51% erhalten wurde und die Hydroarylierung in NMP einen Umsatz von 44% (Tabelle 8, Eintrag 19) generierte, scheint für die unterschiedliche Chemoselektivität kein Lösungsmitteleffekt verantwortlich zu sein. Ebenso konnten Mesitylcarbonsäure für die direkte Alkylierung und Kalium-1-adamantylcarboxylat (Tabelle 8, Eintrag 9) in der Hydroarylierung erfolgreich eingesetzt werden. Daraus folgt, dass auch die Natur der verwendeten Carbonsäure nicht den Selektivitätsunterschied beider Katalysatorsysteme erklärt. Einen weiteren Faktor stellte somit das eingesetzte Kaliumcarbonat dar.

Die in Tabelle 13 dargestellten Experimente zeigten, dass, unabhängig vom Lösungsmittel, durch die Anwesenheit einer Carbonatquelle, wie sie im Katalysatorsystem der direkten Alkylierung vorliegt, die Hydroarylierung inhibiert wird. Der hohe Umsatz und die isolierte Ausbeute von 70% bei einer Kombination aus Kaliumhydrogencarbonat und Kaliumbromid in Toluol kann durch die äußerst geringe Löslichkeit des Kaliumhydrogencarbonats in Toluol erklärt werden, was durch den Einsatz des besser löslichen Cäsiumhydrogencarbonats belegt werden konnte.

		[Ru(M	1esCO ₂) ₂ (p-Cymol)] (5 Mol %) KO ₂ CMes (20 Mol %)	
		i ∕∕ `n-Oct	Additiv (2 Äquiv.) 120 °C, 18 h	Dec
	46a	7q	98aq	
Fintrag		Solvens	Additive	Umsatz (Isolierte
Lintrag		Solvens	Additive	Ausbeute) [%]
1		1,4-Dioxan	K ₂ CO ₃	9
2		1,4-Dioxan	K ₂ CO ₃ , KBr	9
3		1,4-Dioxan	KHCO₃, KBr	20
4		NMP	K ₂ CO ₃	9
5		NMP	K ₂ CO ₃ , KBr	7
6		PhMe	K ₂ CO ₃	14 ^b
7		PhMe	K ₂ CO ₃ , KBr	12 ^b
8		PhMe	KHCO ₃ , KBr	84(70) ^b
9		PhMe	CsHCO₃, KBr	10 ^b

Tabelle 13: Untersuchungen zum Einfluss von Carbonat auf die Hydroarylierung.^a

^a **46a** (1.0 mMol), **7q** (3.0 mMol), **117** (5 Mol %), **116** (20 Mol %), Additive (jeweils 2 Äquiv.), Solvens (3 mL), 120 °C, 18 h. Der Umsatz wurde *via* GC-Analyse mit *n*-Tridecan als internem Standard bestimmt; ^b **41** (2.5 Mol %), **116** (30 Mol %).

3.3.3 Hydroarylierung mit substituierten 2-Phenylpyridinderivaten

Um die sterischen und elektronischen Einflüsse verschiedener Substituenten am 2-Phenylpyridin nachzugehen, wurden die entsprechenden Derivate mit 1-Decen (**7q**) umgesetzt (Tabelle 14), wobei die Katalysatorbeladung gegenüber dem in Abschnitt 3.3.1 gefundenen System erhöht wurde, da erste Testreaktionen Ausbeuten zum Teil unter 80% aufwiesen.

Tabelle 14: Rutheniumkatalysierte Hydroarylierung mit diversen 2-Phenylpyridinderivaten 46.ª

Eintrag	46	98	Isolierte Ausbeute (98) [%]	122	Isolierte Ausbeute (122) [%]
2	Ph	Ph N <i>n</i> -Dec	55	_	
3	46g	98gq F N n-Dec	55 ^b	_	
4	46f Me	98fq Me n-Dec	28	_	
5	46e MeO 46b	98eq MeO 98ba	81	_	
6	Me	Me <i>n</i> -Dec	5	-	
7	46n MeO 46q	98nq NeO 98qq	84	_	

^a **46** (1.0 mMol), **7q** (2.0 mMol), **41** (2.5 Mol %), **116** (30 Mol %), PhMe (3 mL), 100 °C, 18 h; ^b Ausbeute *via* ¹H-NMR aus isolierter Mischung von **46f** und **98fq**. Zusätzliche Substituenten am Pyridin haben einen signifikanten Einfluss auf die Reaktivität des Phenylpyridinderivats 46. Während ein Methylsubstituent in para-Position zum Phenylrest eine exzellente Ausbeute bei einer Selektivität von 10:1 zugunsten des monoalkylierten Produktes 98dg lieferte, sank die Ausbeute im Fall eines Fluor- oder Phenylsubstituenten auf 55%, wobei die entsprechenden dialkylierten Produkte 122 nicht beobachtet werden konnten (Tabelle 14, Einträge 1–3). Ebenso verringerte ein Methylsubstituent in *ortho*-Position die Ausbeute, was auf sterische Wechselwirkungen zwischen Methylgruppe und dementsprechenden Aren zurückzuführen ist (Tabelle 14, Einträge 4 und 6). Dieser Effekt kommt unter Verwendung der Substrate 46b und 46q und aufgrund des geringeren sterischen Anspruchs durch die freie Drehbarkeit der CH₃-O-Bindung nicht zum tragen, so dass hier eine sehr gute Ausbeute von jeweils über 80% erreicht werden konnte (Tabelle 14, Einträge 5 und 7). Substituenten in para-Position zum Pyridin führten unabhängig von den elektronischen Eigenschaften der Substituenten zu sehr guten bis exzellenten kombinierten Ausbeuten, wobei mit zunehmendem elektronenziehenden Charakter der Anteil der dialkylierten Produkte 122cq-oq auf bis zu 23% stieg (Tabelle 14, Einträge 8–12). Des Weiteren zeigte sich, dass im Fall des hoch aktivierten trifluorierten Phenylpyridins 46r 79% des monoalkylierten sowie 5% des dialkylierten Produktes isoliert werden konnten (Tabelle 14, Eintrag 12).

3.3.4 Hydroarylierung von Arenen mit acyclischen dirigierenden Gruppen

Im weiteren Verlauf dieser Arbeiten sollte, inspiriert durch die Vorarbeiten von *Lygin* und *Hofmann*,¹²³ untersucht werden, ob das Protokoll zur carboxylatassistierten rutheniumkatalysierten Hydroarylierung auch auf Substrate mit acyclische dirigierenden Gruppen ausgeweitet werden kann. So konnte *Lygin* beobachten, dass sich bei der oxidativen Anellierung durch C–H/N–H-Bindungsfunktionalisierung^{5a} von *N*-Methylbenzamid (**124**) und Tolan (**84b**) zum Aufbau von Isochinolonen (**125**) bei Substitution des Oxidationsmittels Kupfer(II)acetat durch Kaliumadamantylcarboxylat der Anteil an nicht cyclisiertem Hydroarylierungsprodukt **126** steigern lässt (Schema 46).¹²⁴

Schema 46: Rutheniumkatalysierte Anellierung versus Hydroarylierung

Hierauf wurde das in Abschnitt 3.3.1 optimierte Protokoll mit polaren und unpolaren Lösungsmitteln wie Toluol, 1,4-Dioxan, NMP, DMF, DMA, *t*-AmOH und H_2O für die Hydroarylierung von Tolan (**84b**) mit *N*-Methylbenzamid (**124**) getestet. Anhand von gaschromatografischen Analysen der Reaktionsmischungen konnte H_2O als bestes Lösungsmittel ermittelt werden, mit welchem ein

¹²³ L. Ackermann, A. V. Lygin, N. Hofmann, *Angew. Chem. Int. Ed.* **2011**, *50*, 6379–6382.

¹²⁴ A. V. Lygin, L. Ackermann, unveröffentlichte Ergebnisse.

Umsatz von 35% zum gewünschten Produkt erreicht wurde. Daraufhin wurde der Einfluss der Stickstoffsubstituenten des Benzamids bei 110 °C in H₂O unter Einsatz von 2.5 Mol % [RuCl₂(*p*-Cymol)]₂ (**41**) sowie 30 Mol % KO₂CMes (**116**) untersucht. So konnte im Fall von *N*,*N*-Dimethylbenzamid (**83a**) und dem unsubstituierten Benzamid (**127**) keinerlei Produktbildung festgestellt werden, wohingegen *N*-Methoxy-*N*-Methylbenzamid (**128**) bereits einen gaschromatografisch bestimmten Umsatz von 12% lieferte. Bei Verwendung des bereits zuvor von *Fagnou*¹²⁵ für die rhodiumkatalysierte Synthese von Isochinolonen genutzten *N*-Methoxybenzamids (**129**) konnte vollständiger Umsatz zum Anellierungsprodukt **130** erzielt werden (Schema 47).¹²⁶

Schema 47: Rutheniumkatalysierte Isochinolonsynthese mittels C–H/N–H-Bindungsfunktionalisierung

Eine Übertragung dieser Reaktionsbedingungen auf die Anellierungsreaktion mit dem nicht aktivierten Alken 1-Decen (**7q**) und *N*-Methoxy-*N*-Methylbenzamid (**128**) oder *N*-Methoxybenzamid (**129**) zur Synthese von entsprechenden 3,4-Dihydroisochinolon in H₂O als Lösungsmittel, sowie eine analoge Hydroarylierung von Benzamid (**127**), *N*-Methylbenzamid (**124**) oder *N*,*N*-Dimethylbenzamid (**83a**) konnte nicht erreicht werden. Jedoch zeigten *Wang et al.*¹²⁷ wenig später derartige Umsetzungen von *N*-Methoxybenzamid (**129**) unter Verwendung von Methanol und 2,2,2-Trifluoroethanol als Lösungsmittel, wonach die oxidative Alkenylierung mit Acrylsäureestern (**123**) sowie die Anellierung mit Styrol (**7b**) und Norbornen (**7y**) möglich sind.

3.3.5 Hydroarylierung mit Heteroarenen

Weiterhin sollte die Möglichkeit untersucht werden das Protokoll zur carboxylatassistierten rutheniumkatalysierten Hydroarylierung auch auf die Funktionalisierung von Heteroaromaten sowie auf die Verwendung anderer Heteroaromaten als dirigierende Gruppen zu nutzen. Es zeigte sich, dass die Reaktivität von 1-Decen (**7q**) in der Hydroarylierung stark von der verwendeten dirigierenden Gruppe beeinflusst wird. So lieferten die Imidazol-, Pyrazol-, und Oxazolderivate **101** nur geringe oder sogar keine Produktbildung (Abbildung 13). Auch das von *Ackermann* und *Diers*^{74c} in der carboxylatassistierten direkten Arylierung verwendete Phenoxypyridin **130** zeigte keine Reaktivität. Im Gegensatz dazu konnte 2-Phenylpyrimidin (**101c**) in einer akzeptablen kombinierten Ausbeute von 57% alkyliert werden (Schema 48).

¹²⁵ N. Guimond, C. Gouliaras, K. Fagnou, J. Am.Chem. Soc. **2010**, 132, 6908–6909.

¹²⁶ Siehe auch: L. Ackermann, S. Fenner, *Org. Lett.* **2011**, *13*, 6548–6551.

¹²⁷ B. Li, J. Ma, N. Wang, H. Feng, S. Xu, B. Wang, Org. Lett. **2012**, *14*, 736–739.

Schema 48: Alkylierung von 2-Phenylpyrimidin (101c)

Testreaktionen zur Hydroarylierung von Heteroaromaten zeigten, dass 2-(1*H*-Pyrrol-1-yl)pyridin (**99h**), 1-(Pyrimidin-2-yl)-1*H*-indol (**99i**) und 1-(Pyrimidin-2-yl)-1*H*-benzo[*d*]imidazol (**99j**) unter Verwendung von [RuCl₂(*p*-Cymol)]₂ (**41**) und KO₂CMes (**116**) als Katalysatorsystem weder in Toluol, *tert*-Amylalkohol oder 1,4-Dioxan noch bei 100 °C oder 120 °C die gewünschten Produkte liefern. Wie auch der Einsatz von [RuCl₃·(H₂O) _n] und [RuCl₂(PPh₃)₃] als Rutheniumquelle brachten Variationen des Carboxylatadditivs bei der Reaktion von 1-Decen (**7q**) mit 1-(Pyridin-2-yl)-1*H*-indol (**99k**) keine Reaktivitätssteigerung (Schema 49).

Schema 49: Untersuchungen verschiedener Kaliumcarboxylate in der direkten Indolalkylierung

Weitere Untersuchungen der Rohprodukte, von Reaktionen in D₂O beziehungsweise unter Zusatz von D₂O, mittels ¹H-NMR-Spektroskopie machten deutlich, dass die C–H-Bindungsmetallierung nicht der geschwindigkeitsbestimmende Elementarschritt bei der Hydroarylierung der untersuchten Heteroaromaten darstellt (Schema 50). Diese Beobachtungen stehen im Einklang mit den bekannten carboxylatassistierten rutheniumkatalysierten direkten Funktionalisierungen.⁶⁰

Schema 50: Rutheniumkatalysierter H/D-Austausch in Heteroarenen 99

Anstelle des 1-Decens (**7q**) wurden Vinyltriethylsilan (**7x**) und Vinyltrimethylsilan (**7d**), welche sich bereits als sehr gute Substrate herausgestellt hatten (Tabelle 10), für die Hydroarylierung von Heteroarenen verwendet (Tabelle 15).

Tabelle 15: Rutheniumkatalysierte	Hydroarylierung von '	Vinylsilanen 7 .ª
-----------------------------------	-----------------------	--------------------------

	PG X X + ≫	[(RuCl ₂ (<i>p</i> -Cymc KO ₂ CMes R	D ⁽¹⁾] ₂ (2.5 Mol %) (30 Mol %) D ^o C, 24 h	ł
	99/101 7		100/102	
Eintrag	99/101	R	100/102	Isolierte Ausbeuten (100/102) [%]
1	N N N	SiEt ₃	NN SiEt ₃	65
	101g	7x	102gx	
2	Me ^{-N} N	SiEt ₃	Me ^{-N} N SiEt ₃	51
	101j	7x	102jx	
3	HNNN	SiEt ₃	HN N SiEt ₃	50
	101 i	7x	102ix	

Eintrag	99/101	R	100/102	lsolierte Ausbeuten (100/102) [%]
4	Me ^{-N} ,N	SiEt₃	Me ^{-N} , N SiEt ₃	60 ^c
	101	7x	102lx	
5	N Me	SiMe ₃	N Me	95 ^d
	99e	7d	100ed	
6	N Me	SiEt₃	N Me	77 ^{b,d}
	99e	7x	100ex	
7	N = N $N = N$ $N =$	SiEt ₃	$N = N$ $N = N$ $N = N$ $SiEt_3$ Me	83 ^c
	99f	7x	100fx	
8	Me N N N Me	SiEt ₃	N = N $N = N$	74
	99g	7x	100gx	
9	N S	SiMe ₃	SiMe ₃	60 ^{b,d}
	99c	7d	100cd	

Eintrag	99/101	R	100/102	Isolierte Ausbeuten (100/102) [%]
10	N S	SiEt ₃	N SiEt ₃	19 ^b
	99a	7x	100ax	
11	S S	SiMe₃	SiMe ₃	12 ^d
	99d	7d	100dd	
12	N OMe	SiEt ₃	Et ₃ Si N OMe	76 ^c
	99b	7x	100bx	

^a **99/101** (0.20–1.0 mMol), **100/102** (2.0 Äquiv.), **41** (2.5 Mol %), **116** (30 Mol %), PhMe (3 mL), 120 °C, 24 h; ^b 100 °C, 18 h; ^c **41** (5 Mol %), **116** (60 Mol %); ^d **7** (3 Äquiv.).

Während die Arene 99/101 mit 1-Decen (7q) nur unzureichende Ergebnisse lieferten (Abbildung 13), gelang die Hydroarylierung von Vinyltriethylsilan (7x) sogar mit dem NH-freien 2-Phenylimidazol (101i) (Tabelle 15, Eintrag 3). Die 3-Methylindolderivate 99e–g konnten sowohl mit Vinyltriethyl- (7x) als auch Vinyltrimethylsilan (7d) in guten bis exzellenten Ausbeuten alkylierte werden (Tabelle 15, Einträge 5-8). An dieser Stelle wurden neben Pyridin auch Pyrimidin und 5-Methylpyrimidin als dirigierende Gruppen genutzt, welche sich mit Hilfe von Natriumethanolat in DMSO entfernen^{104,128,129} lassen, um das N-unsubstituierte 1,2-funktionalisierte Indol zu erhalten. Wie bereits in Tabelle 14 zu beobachten war, steigt mit zunehmender Elektronendichte am dirigierenden Stickstoffatom die Reaktivität der Substrate. So konnte auch hier beobachtet werden, dass mit Pyridin bereits bei 100 °C und innerhalb von 18 h eine gute Ausbeute von 77% erreicht werden kann (Tabelle 15, Eintrag 6). Bei der Einführung eines weiteren Heteroatoms konnte eine ähnliche Ausbeute erst mit einer erhöhten Menge an Katalysator und nach 24 h bei 120 °C erhalten werden (Tabelle 15, Eintrag 7), wohingegen die Modifikation mit einer elektronendonierenden Methylgruppe wiederum die Reduktion der Katalysatorbeladung ermöglichte (Tabelle 15, Eintrag 8). Während 2-(Thieno-3-yl)pyridin (99c) selektiv in 2-Position in einer akzeptablen Ausbeute von 60% alkyliert wurde (Tabelle 15, Eintrag 9), lieferte das entsprechende benzanellierte Substrat 99a nur ungenügende 19% des gewünschten Produktes 100ax (Tabelle 15, Eintrag 10). Ebenso zeigt 2-(Thieno-2-yl)pyridin (99d) eine sehr geringe Ausbeute (Tabelle 15, Eintrag 11). Das 2,3'-

¹²⁸ L. Ackermann, A. V. Lygin, *Org. Lett* . **2012**, *14*, 764–767.

¹²⁹ M. Nishino, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. **2012**, 51, 6993–6997.

Bipyridinderivat **99b** zeigte indessen ein enorme Reaktivität, so dass selektiv das dialkylierte Produkt **100bx** gebildet wird (Tabelle 15, Eintrag 12).

3.4 Mechanistische Untersuchungen zur carboxylatassistierten rutheniumkatalysierten Hydroarylierung

Um einen Einblick in den Mechanismus der carboxylatassistierten rutheniumkatalysierten Hydroarylierung zu erlangen, wurden intramolekulare (Tabelle 16) und intermolekulare (Abbildung 16 und Schema 51) Konkurrenzexperimente anhand von *meta*- beziehungsweise *para*-substituierten 2-Phenylpyridinderivaten (**46**) durchgeführt. Des Weitern wurden Versuche mit dem deuterierten 2-Pentadeuterophenylpyridin ([**D**₅]-**46**) sowie mit D₂O als Reaktionsmedium unternommen (Abbildung 17).

Tabelle 16: Intramolekulare Konkurrenzexperimente mit meta-substituierten 2-Phenylpyridinderivaten 46.ª

^a 46 (1 mMol), 7q (2 mMol), 41 (2.5 Mol %), 116 (30 Mol %), PhMe (3 mL), 100 °C, 18 h.

Die in Tabelle 16 dargestellten Ergebnisse zeigen, dass die Regioselektivität hauptsächlich durch sterische Wechselwirkungen beeinflusst wird (Einträge 1 und 2). Jedoch kommt es, in Analogie zu Schema 40, aufgrund eines sekundären Chelateffektes eines Methoxysubstituenten in *meta*-Position zur bevorzugten Bildung der sterisch stärker gehinderten Verbindung **98iq'** (Eintrag 3). Mit dem *meta*-fluorsubstituierte Substrat **46j** wird ebenfalls die 2-alkylierte Verbindung **98jq'** als Hauptprodukt gebildet, was auf den bekannten *ortho*-Fluoreffekt¹³⁰ zurückzuführen ist (Eintrag 4).

Abbildung 14: HMBC-Spektrum der Verbindung 98hq

Die Konnektivitäten von **98pq**, **98jq** und **98jq**' konnten durch die ¹³C–¹⁹F-Kopplungen im ¹³C-NMR bestätigt werden. So zeigen im Fall von **98pq** zwei tertiäre Kohlenstoffatome spezifische ³J_{C-F}-Kopplungen mit Kopplungskonstanten von 4 Hz. Im ¹³C-NMR-Spektrum von **98jq** sind sowohl die entsprechenden ¹J_{C-F}-, ³J_{C-F}- und ⁴J_{C-F}-Kopplungen mit 244 Hz, 7 Hz sowie 3 Hz der quartären Kohlenstoffatomen als auch die ²J_{C-F}- und ³J_{C-F}-Kopplungen mit 22 Hz, 21 Hz und 8 Hz der tertiären Kohlenstoffatome zu finden. Wohingegen das ¹³C-NMR-Spektrum von **98jq**' ¹J_{C-F}-, ²J_{C-F}- und ³J_{C-F}- Kopplungen mit 244 Hz, 17 Hz sowie 5 Hz der quartären Kohlenstoffatomen und ²J_{C-F}-, ³J_{C-F}- und ⁴J_{C-F}- Kopplungen mit 244 Hz, 17 Hz sowie 5 Hz der tertiären Kohlenstoffatome aufweist. Des Weiteren ist im letzteren Spektrum auch eine ³J_{C-F}-Kopplung mit 3 Hz des Brückenkopfkohlenstoffs der Alkylkette zu beobachten. Durch Analysen der 2D-NMR-Spektren, vor allem der HMBC-NMR-Spektren, konnten die Strukturen von Verbindungen **98hq**, **98iq** und **98iq**' bestätigt werden. Im Fall von **98iq** sind ³J-Kopplungen der Methylenprotonen H-1" zu dem quartären Kohlenstoffatom C-1', sowie zu dem

 ¹³⁰ a) E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady, R. N. Perutz, *Acc. Chem. Res.* 2011, 44, 333–348; b) M. E. Evans, C. L. Burke, S. Yaibuathes, E. Clot, O. Eisenstein, W. D. Jones, *J. Am. Chem. Soc.* 2009, 131, 13464–13473; c) E. Clot, C. Mégret, O. Eisenstein, R. N. Perutz, *J. Am. Chem. Soc.* 2009, 131, 7817–7827.

tertiären Kohlenstoffatom C-3' zu beobachten, wohingegen die Methylenprotonen H-1" von **98iq'** ³*J*-Kopplungen mit den zwei quartären Kohlenstoffatomen C-1' und C-3'aufweisen. Die Struktur von Verbindung **98hq** ergibt sich aufgrund der ³*J*-Kopplungen der Methylenprotonen H-1" mit dem quartären Kohlenstoffatom C-1' und dem tertiären Kohlenstoffatom C-3' koppeln, sowie die ³*J*-Kopplungen der Methylprotonen zu zwei tertiären Kohlenstoffatomen.

Abbildung 15: HMBC-Spektren der Verbindungen 98iq und 98iq'

Aus den intermolekularen Konkurrenzexperimenten (Abbildung 16) kann eine Reaktivitätsbeeinflussung der Substituenten mit der Reihenfolge F>OMe>H>Me abgelesen werden. Somit kann ein elektrophiler Mechanismus ausgeschlossen werden. Zudem zeigt sich eine höhere Reaktivität von Substrat **46I** gegenüber Substrat **46i**. Daraus folgt, dass die erhöhte Selektivität zu Gunsten von **98Iq** gegenüber **98iq** (Tabelle 16, Eintrag 4) trotz der zusätzlichen Koordination durch die Methoxygruppe hauptsächlich durch sterische Einflüsse bestimmt wird.

Abbildung 16: Intermolekulare Konkurrenzexperimente zum Einfluss von Substituenten am Aren

Zudem verdeutlicht Schema 51 eine erhöhte Reaktivität von elektronenreichen dirigierenden Gruppen, was den geringen Umsatz von aromatischen dirigierenden Gruppen mit mehr als einem Heteroatom erklärt (Abschnitt 3.3.5).

Schema 51: Intermolekulares Konkurrenzexperiment zum Einfluss von Substituenten am Pyridin

Abbildung 17: Mechanistische Untersuchungen der 1-Decenhydroarylierung mittels ²H-Isotopenmarkierung

Die Hydroarylierungen mit D₂O als Reaktionsmedium und dem pentadeuterierten Substrat [D₅]-46a beweisen die Reversibilität der C–H-Bindungsmetallierung, da in beiden Fällen ein H/D-Austausch in der Position *ortho* zum Pyridin festzustellen ist (Abbildung 17, Schema i und ii). Stöchiometrische Reaktionen durch *Davies* zeigten bereits die geringe Aktivierungsenergie einer carboxylatassistierten Cycloruthenierung.⁶¹ So kommt es bereits bei Umgebungstemperatur zur Bildung des cyclometallierten Komplexes. Zusätzlich führt es sowohl in der α - als auch in der β -Position der Alkylkette zu einem Isotopenaustausch, was dafür spricht, dass die Insertion der Doppelbindung in die Ruthenium–Deuteridbindung reversibel und unselektiv stattfindet und sowohl zum linearen als auch zum verzweigten Intermediat **132a** beziehungsweise **132b** führt (Schema 52). Die Anwesenheit einer Carboxylatbase ist hierbei essentiell für eine effiziente C–H-Bindungsmetallierung (Abbildung 17, Schema iii). Somit kann ohne Zusatz von KO₂CMes (**116**) kein Isotopenaustauch im Vergleich zum

Restprotonengehalt des Startmaterials [**D**₅]-46a beobachtet werden, was sich mit den Beobachtungen von *Davies*⁶¹ deckt.

Schema 52: Insertion des Alkens in die Ruthenium-Hydridbindung

Eine solche verzweigte Spezies **132a** kann auch die niedrige Ausbeute mit dem Hex-5-en-2-on (**7z**) erklären (vgl. Tabelle 10). Eine Koordination der Carbonylgruppe am Ruthenium führt im Fall dieser Spezies **134** zu einem relativ stabilen sechsgliedrigen Ruthenacyclus, welcher eine weitere Reaktion teilweise inhibiert (Abbildung 18).

Abbildung 18: Möglicher stabiler sechsgliedriger Ruthenacyclus

Während Ackermann und Kozhushkov⁴⁶ bei analogen Versuchen zur Hydroarylierung von 2-Phenylmethylencyclopropan (**47**) lediglich einen Isotopenaustausch am tertiären Kohlenstoffatom in der Zielverbindung $[D_n]$ -**48a** beobachteten (Schema 53), zeigte sich unter Verwendung des carboxylatbasierten Protokolls zudem auch ein H/D-Austausch an der verbrückenden Methyleneinheit (Abbildung 19).

Schema 53: Experiment zum Isotopenaustausch nach Ackermann und Kozhushkov⁴⁶

Abbildung 19: Mechanistische Untersuchungen der Hydroarylierung von Methylencyclopropan 47 mittels ²H-Isotopenmarkierung

Daraus ist abzuleiten, dass die Alkeninsertion von Spezies **133** zu Spezies **132a** beziehungsweise **132b** auch im Fall des 2-Phenylmethylencyclopropans reversibel verläuft (Schema 54). Dies scheint auf den ersten Blick unwahrscheinlich, da eine, aufgrund der Ringspannung, hochreaktive stark gespannte Doppelbindung⁴⁹ zurückgebildet wird. Jedoch sind derartige β -Hydrideliminierungen bereits aus der Chemie des Palladiums bekannt.^{131,132}

Eine alternative Erklärung liefert die Sequenz aus $C(sp^3)$ –H-Bindungsmetallierung an der verbrückenden Methyleneinheit im Produkt **48a** und **98aq** und anschließender H/D-Austausch. Eine solche Umsetzung müsste über einen sechsgliedrigen Ruthenacyclus als Intermediat verlaufen, wofür bisher nur ein Beispiel von *Ackermann* und *Diers*^{74c} bekannt ist, wobei es sich zudem um die Cycloruthenierung einer $C(sp^2)$ –H-Bindung handelt. Die in Abbildung 20 gezeigten Resultate schließen eine derartige Reaktivität schließlich aus.

Abbildung 20: Deuterierungsexperimente mit den Hydroarylierungsprodukten 48a und 98aq

Die Umsetzung stöchiometrischer Mengen des cycloruthenierten Komplexes **135** mit 1-Decen (**7q**) lieferte das entsprechende Produkt in einer sehr guten Ausbeute (Abbildung 21). Des Weiteren zeigten katalytische Mengen dieses Komplexes eine vergleichbare Aktivität wie der Biscarboxylatkomplex (**117**) und das *in situ*-generierte System (Tabelle 9, Einträge 8 und 11). Somit liegt es nahe, dass der Komplex **135** oder eine daraus resultierende Spezies im Cycloruthenierungsschritt gebildet wird (Abbildung 21).

¹³¹ R. Grigg, P. Kennewell, A. Teasdale, V. Sridharan, *Tetrahedron Lett.* **1993**, *34*, 153–156.

¹³² A. Brandi, A. Goti, *Chem. Rev.* **1998**, *98*, 589–636.

Abbildung 21: Untersuchungen anhand des cycloruthenierten Komplexes 135

Regioselektive intermolekulare direkte Alkylierungen von Phenylpyridinen, Pyrazolen und Ketiminen durch *Ackermann, Novak, Vicente* und *Hofmann*^{76,133} zeigten bereits, dass die reduktive Eliminierung aus einem Alkyl-Aryl-Rutheniumkomplex der Art **136** (Schema 54) signifikant schneller abläuft als die konkurrierende β-Hydrideliminierung und somit keinerlei Eliminierungsprodukte zu beobachten waren. Zudem haben DFT-Berechnungen¹³⁴ zufolge bereits geringe Änderungen in der Komplexstruktur große Auswirkungen auf den energetischen Verlauf der β-Hydrideliminierung. Dementsprechend scheint im vorliegenden katalytischen System die freie Reaktionsenthalpie der β-Hydrideliminierung, während für Intermediat **132b** der gegenteilige Effekt zum tragen kommt und somit selektiv nur das *anti-Markovnikov* Produkt gebildet wird. Diese Beobachtungen decken sich mit denen von *Kang*⁴⁴ und *Murai.*²⁸ *Genet* und *Darses* beobachteten zudem bei der Hydroarylierung von Styrolderivaten mit Acetophenonen eine Abhängigkeit des Verhältnisses von *Markovnikov-* zu *anti-Markovnikov*-Selektivität vom sterischen Anspruch des verwendeten Phosphanliganden.³⁸

Aufgrund der beobachteten Reversibilität der C–H-Bindmetallierung und der Insertion des Olefins in die Ruthenium–Hydridbindung sowie Beobachtungen von *Murai*^{28,33} ist davon auszugehen, dass der geschwindigkeitsbestimmende Schritt die reduktive Eliminierung ist. Mit diesem Wissen kann auch der Einfluss der Substituenten rationalisiert werden. Die Stärke der polaren Ruthenium-Kohlenstoffbindungen ist maßgeblich für die benötigte Aktivierungsenergie der reduktiven Eliminierung. Daher sollte mit steigendem positiven induktiven Effekt der Substituenten die Elektronendichte am entsprechenden Kohlenstoffatom zunehmen und folglich die Ruthenium-Kohlenstoffbindung stärker werden. Woraus wiederum folgt, dass die Reaktivität vom fluorsubstituierten (**46k**) zum methylsubstituierten 2-Phenylpyridin (**47m**) abnimmt, was sich mit den experimentellen Beobachtungen deckt (Abbildung 16). Auch die Regioselektivitäten der intramolekularen Konkurrenzexperimente lassen sich auf analoge Weise erklären (Tabelle 16). Während im Fall der Methyl- und Trifluormethylsubstituenten ein 1,2,3-Substitutionsmuster der Produkte aufgrund von sterischen Wechselwirkungen nicht möglich ist, wird eben dieses durch die

¹³³ L. Ackermann, N. Hofmann, R. Vicente, *Org. Lett.* **2011**, *13*, 1875–1877.

¹³⁴ Q. Meng, F. Wang, M. Li, J. Molec. Model. **2012**, 18, 4955–4983.

Nähe eines sterisch weniger anspruchsvollen Substituenten mit elektronenziehender Natur begünstigt. Desweiteren sollte die reduktive Eliminierung mit steigendem sterischen Anspruch der Liganden beschleunigt werden, was die höhere Reaktivität des Systems mit KO₂CMes (**116**) an Stelle von KOAc erklärt (Tabelle 8, Einträge 7–10).

Schema 54: Postulierter Mechanismus der carboxylatassistierten ruthenkatalysierten Hydroarylierung

Zusammenfassend kann ein möglicher Katalysecyclus postuliert werden (Schema 54). Ausgehend vom direkt eingesetzten oder *in situ*-gebildeten Komplex **117** (vgl. Tabelle 9, Einträge 10 und 11) bildet sich die katalytisch aktive Spezies **137**. Darauf kommt es nach Koordination des Pyridinstickstoffs zur carboxylatassistierten Cycloruthenierung **139**. Nach Koordination des Olefins und Bildung einer Rutheniumhydridospezies **140**, wobei die Abfolge der Elementarschritte noch unklar ist, kommt es zur Olefininsertion in die Rutheniumhydridobindung, wodurch die oben

diskutierten Spezies **132a** und **132b** gebildet werden können. Aufgrund der Untersuchungen mit [**D**₅]-**46a** und D₂O als Lösungsmittel (Abbildung 17, Abbildung 19) kommt als Hydridquelle das durch C–H-Ruthenierung zuvor abgespaltene Proton in Frage, welches wiederum mit einem Carboxylat stabilisiert potentiell als 2,4,6-Trimethylbenzoesäure vorliegt und daher ein Isotopenaustausch mit D₂O erfolgen kann. Die geschwindigkeitsbestimmende reduktive Eliminierung aus Komplex **132b** liefert schließlich das Hydroarylierungsprodukt **98** und die katalytisch aktive Spezies **137**. Es bleibt anzumerken, dass die genaue Struktur der diskutierten Spezies vor allem in Bezug auf die Ligandensphäre noch genauerer Untersuchungen bedarf. So bleibt es fragwürdig, ob das *p*-Cymol als Ligand im Verlauf der Reaktion die Haptizität wechselt oder sogar gegen andere potentielle Liganden wie 2-Phenylpyridin (**46a**) beziehungsweise Solvensmoleküle¹³⁵ ausgetauscht wird. Denn bereits bei 50 °C konnte *Darses* eine Dissoziation des *p*-Cymols unter den von ihm entwickelten Reaktionsbedingungen beobachten.⁴⁰ Es ist jedoch zu bemerken, dass *Darses'sche* System keine katalytische Reaktivität bei der Hydroarylierung der untersuchten Phenylpyridine zeigte (Tabelle 8, Eintrag 5).

3.5 Rutheniumkatalysierte Alkylierung von terminalen nicht aktivierten Alkenen

Im weiteren Verlauf dieser Arbeit sollte die Möglichkeit untersucht werden, das entwickelte Katalysatorsystem auf die pyridindirigierte Hydroalkylierung von terminalen nicht aktivierten Alkenen durch C(sp³)–H-Bindungsmetallierung auszuweiten. Eine Testreaktion mit 1-Decen (**7q**) sowie dem von *Murai*⁸³ verwendeten 2-(1-Pyrrolidin-1-yl)pyridin (**103a**) lieferte hierbei zunächst keinen Umsatz (Abbildung 22).

Abbildung 22: Hydroalkylierungsversuch mit dem Katalysatorsystem zur Hydroarylierung

Aufgrund der oben gemachten Beobachtungen und Ergebnissen von *Murai*⁸³ konnte von einer Reversibilität des C–H-Bindungsmetallierung ausgegangen werden, so dass durch Zusatz von D₂O überprüft werden sollte mit welchem Katalysatorsystem ein C–H-Bindungsbruch erzielt werden kann (Abbildung 23). Im Gegensatz zu dem von *Murai*⁸³ verwendeten [Ru₃(CO)₁₂] zeigten weder der Hydroarylierungskatalysator noch die Kombination von Carboxylat und dem Rutheniumcarbonylkomplex eine Aktivität.

¹³⁵ J. W. Hull, Jr., W. L. Gladfelter, *Organometallics* **1984**, *3*, 605–613.

Trotz des inhibierenden Einflusses des Kaliummesitylcarboxylates wurden, aufgrund der vielfältigen C–H-Funktionalisierungen,^{60,5d} welche durch die Entdeckung der Carboxylatassistenz entwickelt werden konnten, sowie der Verwendung von kationischen Iridiumkomplexen^{84,85,86} in der C(sp³)–H-Funktionalisierung, in den folgenden Optimierungsstudien zunächst beide Konzepte auf die Anwendbarkeit in der rutheniumkatalysierten C(sp³)–H-Bindungsalkylierung untersucht.

3.5.1 Reaktionsoptimierung

Bei weiteren Testreaktionen mit 1-Decen (**7q**), 2-(1-Pyrrolidinyl)pyridin (**103a**), verschiedenen Carboxylaten, wie Kaliummesitylcarboxylat, Kaliumpivalat und Kaliumacetat, sowie den Rutheniumquellen $[Ru_3(CO)_{12}]$ und $[RuCl_2(p-Cymol)]_2$ (**41**) konnte das gewünschte Produkt nur in Spuren gaschromatografisch beobachtet werden. Hierbei wurde, hinsichtlich der Beobachtungen von *Murai*⁸³ (Schema 22), als Lösungsmittel *iso*-Propanol genutzt wurde. Somit wurde dieser Ansatz verworfen und, inspiriert durch *Shibatas*⁸⁶ Arbeiten, Kombinationen von Phosphanliganden mit Salzen nur schwach koordinierender Anionen getestet (Tabelle 17).

	N.	[R	uCl ₂ (<i>p</i> -Cymol)] ₂ (2.5 Mo Ligand (6–12 Mol %) Additiv (30 Mol %)	ol %)	_	N	
	$\langle \stackrel{N}{\rangle}$	n-Oct	<i>i-</i> PrOH, 100 °C, 24 h	$\langle N \rangle$	<i>n</i> -Dec <i>n</i> -Dec		C
	103a	7q		104	a	105a	
			Isolierte				Isolierte
Fintrag	Ligand	Additiv	Ausbeute	Fintrag	Ligand	Additiv	Ausbeute
Lintiag	(Mol %)	/ tourity	104a/105a	Linting	(Mol %)	naann	104a/105a
			(Umsatz) [%]				(Umsatz) [%]
1	PPh₃ (12)	KPF ₆	(5)	10	<i>rac-</i> BINAP (6)	AgOTf	39/18 (79)
2	PPh ₃ (12)	AgOAc	(12)	11	HIMesCl (12)	AgOTf	(28)
3	PPh₃ (12)	AgSbF ₆	(22)	12	HIPrCl (12)	AgOTf	(23)
4	PPh ₃ (12)	$AgBF_4$	(26)	13	JohnPhos (12)	AgOTf	(22)
5	PPh₃ (12)	AgOTf	(26)	14	dppf (6)	AgOTf	(41)
6	<i>rac</i> -BINAP (6)	KPF ₆	(44)	15	dppe (6)	AgOTf	(21)
7	<i>rac-</i> BINAP (6)	AgOAc	(23)	16	PCy ₃ (12)	AgOTf	(25)
8	<i>rac</i> -BINAP (6)	AgSbF ₆	38/12 (68)	17	X-Phos (12)	AgOTf	(25)
9	<i>rac</i> -BINAP (6)	AgBF ₄	29/19 (74)	18	DPE-Phos (6)	AgOTf	(25)

Tabelle 17: Untersuchungen von Ligand-Additiv-Kombinationen.^a

^a **103a** (0.5 mMol), **7q** (1.0 mMol), **41** (2.5 Mol %), Additiv (30 Mol %), Ligand (monodentate Liganden: 12 Mol %; bidentate Liganden: 6 Mol %), Solvens (1 mL), 100 °C, 24 h. Der Umsatz wurde *via* GC-Analyse mit *n*-Tridecan als internem Standard bestimmt.

Der Einsatz von Triphenylphosphan lieferte unabhängig vom verwendeten Additiv nur unzureichende Umsätze (Tabelle 17, Einträge 1–5), wohingegen mit *rac*-BINAP sowie den Additiven AgSbF₆, AgBF₄ und AgOTf kombinierte Ausbeuten von mehr als 50% erreicht wurden (Tabelle 17, Einträge 8–10). Da mit AgOAc lediglich 23% Umsatz erzielt wurde, konnte erneut kein Hinweis auf einen carboxylatassistierten Reaktionsverlauf gefunden werden (Tabelle 17, Einträg 7). Somit wurden mit AgOTf als Additiv der Wahl weitere Phosphane und NHC-Vorläufer als potentielle Liganden getestet (Tabelle 17, Einträge 11–18). Die NHC-Vorläufer HIMesCl und HIPrCl, sowie die Phosphane JohnPhos, dppe, PCy_{3} , X-Phos und DPE-Phos lieferten hierbei mit 22–28% gaschromatografisch bestimmten Umsätzen keine Verbesserung. Auch die mit dem zweizähnigen dppf erreichten 41% Umsatz reichten nicht an das Ergebnis mit *rac*-BINAP

Die Verwendung unterschiedlicher Lösungsmittel zeigte, dass die besten Ergebnisse mit primären und sekundären Alkoholen zu erzielen sind (Tabelle 18). Hiermit konsistent sind Beobachtungen von *Murai*,⁸³ welcher beim Einsatz von *iso*-Propanol als Lösungsmittel die Bildung von Aceton beobachtete (Schema 22).

	N + ≠	[Ru 	Cl ₂ (<i>p</i> -Cymol)] ₂ (2.5 Mc <i>rac</i> -BINAP (6 Mol %) AgOTf (30 Mol %) Lsgm., T, 24 h	$\xrightarrow{N} (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)$	+ <i>n</i> -Dec <i>n</i> -Dec	N N N N - Dec	
	∖/ 103a	7q		\/ 104	la	∖∕ 105a	
Eintrag	Lsgm.	T [°C]	Isolierte Ausbeute 104a/105a (Umsatz) [%]	Eintrag	Lsgm.	T [°C]	Isolierte Ausbeute 104a/105a (Umsatz) [%]
1	t-AmOH	120	-(40)	7	MeCN	100	-(17)
2	1,2-DCE	100	-(50)	8	MePh	120	-(31)
3	NMP	120	-(54)	9	1-Butanol	120	50/24 (79)
4	DMA	120	-(54)	10	2-Butanol	120	32/7 (66)
5	DMF	120	-(30)	11	<i>i</i> -Butanol	120	48/22 (81)
6	1,4-Dioxan	120	-(49)				

Tabelle 18: Optimierung des Lösungsmittels.^a

^a **103a** (0.5 mMol), **7q** (1.0 mMol), **41** (2.5 Mol %), AgOTf (30 Mol %), *rac*-BINAP (6 Mol %), Solvens (1 mL), 100–120 °C, 24 h. Der Umsatz wurde *via* GC-Analyse mit *n*-Tridecan als internem Standard bestimmt.

Im Verlaufe der Optimierungsstudien konnte im Fall von *iso*-Butanol als Lösungsmittel gaschromatografisch und per NMR eine Spezies beobachtet werden, welche schließlich isoliert¹³⁶ und in Übereinstimmung mit den literaturbekannten spektroskopischen Daten¹³⁷ als 1,1-Di*iso*butyloxy-2-methylpropan (**106**) identifiziert werden konnte. Für die Bildung dieser Spezies **106** ist eine Oxidation des *iso*-Butanols (**107**) zu *iso*-Butanal (**108**) nötig, welche nach dem von *Murai*⁸³ vorgeschlagenen

¹³⁶ K. Bielefeld, *Bachelorarbeit*, Universität Göttingen, **2012**.

¹³⁷ K. Nagai, M. Nakayama, S. Hayashi, *Bull. Chem. Soc. Jpn.* **1978**, *51*, 3273–3276.

Mechanismus verlaufen kann (Schema 22). Darauf schließt sich eine lewissäurekatalysierte Kondensation zum Acetal **109** an (Schema 55). Eine solche Reaktion wurde bereits 2004 in unabhängigen Arbeiten von De^{138} und $Chan^{139}$ mit RuCl₃ beziehungsweise RuCl₃·(H₂O)_n als Katalysator berichtet.

Schema 55: Rutheniumkatalysierte Acetalbildung.

Tabelle 19: Optimierung der Rutheniumquelle.^a

		[Ru] (5 Mol %) <i>rac</i> -BINAP (6 Mol %) AgOTf (30 Mol %)		N	
	+ ≥ 'n-Oct − N 103a 7q	1-BuOH, 120 °C, 24 h	 	Dec n-Dec N 105a	-Dec
Eintrag	[Ru] (Mol %)	Umsatz [%]	Eintrag	[Ru] (Mol %)	Umsatz [%]
1	[Ru ₃ (CO) ₁₂]	(16)	3	[RuCl ₃]	(36)
2	[RuCp*Cl(PPh ₃) ₂]	(29)	4	[RuCl₃·(H₂O)₄]	(37)
3	[Ru(MesCO ₂) ₂ (p-Cymol)]	(36)	5	$[RuCl_2(PPh_3)_3]$	(97)

^a **103a** (0.5 mMol), **7q** (1.0 mMol), [Ru] (5 Mol %), *rac*-BINAP (6 Mol %), AgOTf (30 Mol %), 1-BuOH (1 mL), 120 °C, 24 h. Der Umsatz wurde *via* GC-Analyse mit *n*-Tridecan als internem Standard bestimmt.

In weiteren Untersuchungen zeigten sich die Rutheniumquellen $[Ru_3(CO)_{12}]$, $[RuCp*Cl(PPh_3)_2]$, $[Ru(MesCO_2)_2(p-Cymol)]$ (**117**), $[RuCl_3]$ und $[RuCl_3 \cdot (H_2O)_n]$ als weniger effektiv, wohingegen mit $[RuCl_2(PPh_3)_3]$ einen nahezu vollständiger Umsatz von 97% erreicht wurde. Da jedoch mit steigendem Umsatz auch der Anteil an dialkyliertem Produkt **105a** stieg, sollten die Reaktionsbedingungen bezüglich Substrat- und Additivverhältnis sowie Reaktionstemperatur und -zeit optimiert werden (Tabelle 20).

¹³⁸ S. K. De, R. A. Gibbs, *Tetrahedron Lett.* **2004**, *45*, 8141–8144.

¹³⁹ J.-Y. Qi, J.-X.Ji, C.-H.Yueng, H.-L. Kwong, A. S. C. Chan, *Tetrahedron Lett.* **2004**, *45*, 7719–7721.

		[RuCl ₂ (PPh ₃) ₃] (<i>rac</i> -BINAP (6 AgOTf (6-12 I	5 Mol %) Mol %) Mol %)	N	N
	$\langle N \rangle$	Solvens , T,	18 h	∧ <i>n</i> -Dec <i>n</i> -Dec <i>n</i> -Dec	√ ^N ∕ <i>n</i> -Dec
	∖∕ 103a 7q			104a	\/ 105a
Eintrag	103a : 7q [mMol : mMol]	AgOTf (Mol %)	Solvens	Temperatur [°C]	Isolierte Ausbeute (104a/105a) [%]
1	1:1.1	6	1-BuOH	120	51/4
2	1:1.1	12	1-BuOH	120	44/16
3	1.2:1	6	1-BuOH	140	44/-
4	1.2:1	12	1-BuOH	140	57/-
5	2:1	12	1-BuOH	140	67/-
6	4:1	12	1-BuOH	140	85/-
7	3:1	12	1-BuOH	120	63/-
8	3:1	12	2-BuOH	120	56/-
9	3:1	12	<i>i</i> -PrOH	120	64/-
10	3:1	12	t-AmOH	120	48/-
11	3:1	12	<i>i</i> -BuOH	120	72/-
12	2:1	12	1-BuOH	140	_b
13	2:1	12	1-BuOH	140	_c

Tabelle 20: Optimierung der Substrat- und Additivverhältnisse sowie der Reaktionstemperatu

^a **103a** und **7q** im Angegebenen Verhältnis, [RuCl₂(PPh₃) ₃] (5 Mol %), AgOTf (6–12 Mol %), *rac*-BINAP (6 Mol %), Solvens (1 mL), 120–140 °C, 18 h; ^b ohne [RuCl₂(PPh₃)₃]; ^c ohne *rac*-BINAP

Während mit einer Verminderung der 1-Decenkonzentration erwartungsgemäß die Menge an gebildetem dialkylierten Produkt **105a** sinkt, erhöht sich letztere mit zunehmender AgOTf-Beladung (Tabelle 20, Einträge 1–4). Wird 1-Decen (**7q**) sogar als limitierendes Reagenz eingesetzt, kann mit zunehmender Menge an 2-(1-Pyrrolidinyl)pyridin (**103a**) die isolierte Ausbeute drastisch gesteigert werden (Tabelle 20, Einträge 5 und 6). So konnten beim Einsatz von vier Äquivalenten **103a** 85% Ausbeute an monoalkylierten Produkt **104a** isoliert werden. Aus ökonomischen Gründen wurde jedoch ein Verhältnis von 3:1 gewählt und anhand dessen erneut der Einfluss unterschiedlicher Alkohole als Lösungsmittel überprüft, wobei sich *iso*-Butanol als ideal herausstellte (Tabelle 20, Einträge 7–11). Die Testreaktionen unter Verzicht auf [RuCl₂(PPh₃)₃] beziehungsweise *rac*-BINAP lieferten keinen signifikanten Umsatz (Tabelle 20, Einträge 12–13).

3.5.2 Anwendungsbandbreite der α-Alkylierung von cyclischen Aminen

Mit diesem katalytischen System wurde nun die Anwendbarkeit auf die α -Alkylierung anderer Substrate untersucht werden (Tabelle 21).¹³⁶

	$R^{1} \xrightarrow{N} + \xrightarrow{n-Oct} -$	RuCl ₂ (PPh ₃) ₃] (5 Mol %) <i>rac</i> -BINAP (6 Mol %) AgOTf (12 Mol %) <i>i</i> -BuOH ,120 °C, 18 h	-Dec
	∑x ^{≁)} n 103 7q	∑x ^{≁)} n 104	
Eintrag	103	104	Isolierte Ausbeute [%]
1		N N N N N-Dec	27
	103b	104b	
2		N N N N Dec	19 (41) ^b
	103c	104c	
3		N N N N N-Dec	11
	103d	104d	
4	Me	Me N N-Dec	99
	103e	104e	
5	MeO N	MeO N n-Dec	82
. <u></u>	103f	104f	

Tabelle 21: α -Alkylierung von cyclischen Aminen 103.^a

Eintrag	103	104	Isolierte Ausbeute [%]
6	CF ₃ N N	CF ₃ N N-Dec	66
	103g	104g	
7	Me N N	Me N N N N-Dec	73
	103h	104h	

^a **103** (0.5 mMol), **7q** (1.5 mMol), [RuCl₂(PPh₃) ₃] (5 Mol %), AgOTf (12 Mol %), *rac*-BINAP (6 Mol %), *i*-BuOH (1 mL), 120 °C, 18 h; ^b **103** (1.5 mMol), **7q** (0.5 mMol).

Die für die Alkylierung von **103a** gefundenen Reaktionsbedingungen ließen sich nur begrenzt auf die Funktionalisierung weiterer cyclischer Amine übertragen (Tabelle 21, Einträge 1–3). Eine Inversion des Substratverhältnisses zeigte jedoch, dass eine Ausbeutensteigerung mit weniger reaktiven Aminen durch einen Überschuss des Alkens erreicht werden kann.

Während die elektronischen Eigenschaften von Pyridinsubstituenten *para* zum Amin nur einen geringen Einfluss haben, lieferten Substrate mit Substituenten in *ortho*-Position eine erhöhte Ausbeute (Tabelle 21, Einträge 4–9). Dieser sterische Effekt, durch welchen sich die zu funktionalisierende C–H-Bindung dem rutheniumkoordinierenden Pyridinstickstoff annähert konnte bereits durch *Na*⁸⁷ und *Schnürch*⁹³ für die Funktionalisierung von *N*-Pyridylbenzaminen genutzt werden.

4 Zusammenfassung und Ausblick

Verlauf dieser Arbeit konnte carboxylatassistierten Im das Prinzip der C-H-Atom-⁴ Bindungsfunktionalisierung, welches sich durch eine besonders hohe und Syntheseschrittökonomie auszeichnet, erstmals auf die Additionsreaktion von C(sp²)–H- an C–C-Mehrfachbindungen angewendet werden. Somit ist im Vergleich zur bereits nachhaltigen direkten Alkylierung eine weitere Steigerung hin zur perfekten Atomökonomie gelungen. Hierbei konnten unter milden Bedingungen vor allem anspruchsvolle nicht aktivierte Alkene hydroaryliert werden, wobei eine hohe Bandbreite funktioneller Gruppen toleriert wurde. Das entwickelte Katalysatorsystem erlaubte zudem die Alkylierung von divers substituierten Phenylpyridinen und Heterocyclen. Weiterhin konnen eine Reihe dirigierender Gruppen verwendet werden.

Am Beispiel von 2-Phenylpyridinderivaten **46** und 2-Phenylmethylencyclopropanen **47** konnte erstmals das Konzept der carboxylatassistierten C–H-Bindungsfunktionalisierung auf eine äußerst atomökonomische Hydroarylierung angewendet werden, wobei die sensible Cyclopropaneinheit erhalten bleibt. Es konnte neben dem sehr kostengünstigen Katalysatorsystem bestehend aus [RuCl₃·(H₂O)_n] und KOAc auch ein noch effizienteres System aus [Ru(MesCO₂)₂(*p*-Cymol)] (**117**) und cokatalytischen Mengen KO₂CMes (**116**) gefunden werden. Sowohl Elektronendonor-, als auch Elektronenakzeptorsubstituenten am 2-Phenylpyridin lieferten gute bis sehr gute Ausbeuten. Zudem gelang die Alkylierung des relativ unreaktiven 2-(Cyclohexen-2-yl)pyridins **120** (Abbildung 24).

Abbildung 24: Rutheniumkatalysierte Hydroarylierung von 2-Phenylmethylencyclopropan (47)

Weitere Untersuchungen zeigten die Übertragbarkeit des entwickelten Katalysatorsystems auf die Hydroalkylierung von anspruchsvollen nicht aktivierten Olefinen, wobei eine große Bandbreite von wichtigen funktionellen Gruppen, wie Ketone, Ester, Ether, Alkohole und Halogene, toleriert wurden (Abbildung 25). Zudem zeichnete sich das entwickelte System durch eine geringe Katalysatorbeladung aus.

Abbildung 25: Untersuchungen zur Toleranz gegenüber funktioneller Gruppen

Da fluorierte Substanzen aufgrund ihrer besonderen Eigenschaften, wie erhöhte Löslichkeit, Bioverfügbarkeit und metabolische Stabilität, von besonderem Interesse sind, wuchs über die letzten Jahre die Nachfrage an deren Synthesemethoden. Mit dem entwickelten Katalysatorsystem besteht nun eine neuartige Möglichkeit zur regio- und chemoselektiven Einführung von Perfluoralkanketten durch Hydroarlierung, wobei weitgehend unabhängig vom Substitutionsmuster sehr gute Ausbeuten erhalten werden konnten (Abbildung 26).

Abbildung 26: Oligofluoralkylierungen mittels Hydroarylierung

Generell werden diverse Substituenten, unabhängig von ihrer elektronischen Natur, toleriert (Abbildung 27).

Da Heterocyclen wichtige Strukturmotive von biologisch aktiven Substanzen sind, wurde die Möglichkeit zu deren Funktionalisierung mittels Hydroarylierung beziehungsweise deren Nutzung als dirigierende Gruppen geprüft (Schema 28). Es ist anzumerken, dass durch die Nutzung von entfernbaren dirigierenden Gruppen ein Syntheseweg zu NH-freien Indolderivaten gefunden werden konnte.

Abbildung 28: Nutzung von Heterocyclen in der rutheniumkatalysierten Hydroarylierung

Detailierte mechanistische Studien anhand von inter- und intramolekularen Konkurrenzexperimenten sowie mit isotopenmarkierten Startmaterialien und Lösungmitteln, zeigen zum einen, dass ein Mechanismus nach elektrophiler aromatischer Substitution ausgeschlossen werden kann. Zum anderen kann durch elektronenreiche dirigiernde Gruppen die Reaktivität signifikant verbessert werden. Des Weiteren kann unter anderem aufgrund der Reversibilität der C– H-Bindungsmetallierung von einer geschwindigkeitsbestimmenden reduktiven Eliminierung ausgegangen werden. Hierzu sollten zusätzliche ¹³C-spektroskopische Untersuchungen, nach der von *Singleton*^{140,141} vorgestellten Methodik, durchgeführt werden. Desweiteren könnte der geschwindigkeitsbestimmende Schritt durch einen weiter erhöhten sterischen Anspruch, der als Liganden fungierenden Carboxylate, zusätzlich beschleunigt werden. Den gleichen Effekt sollten, wie die elektronenreichen dirigierenden Gruppen, auch zusätzliche elektronendonierenden Liganden bewirken. Da nach den durchgeführten Mechanistischen Studien unklar bleibt wie genau die Alkeninsertion abläuft und somit die Struktur der Spezies, aus welcher die reduktive Eliminierung stattfindet, unbekannt bleibt, sollten hierzu ebenfalls weitere Untersuchungen durchgeführt werden.

Als weiteres Projekt konnte ein Katalysatorsystem, basierend auf einem *in situ*-generierten kationischen Rutheniumkomplex zur α -Alkylierung von cyclischen Aminen entwickelt werden. Da es sich hierbei um eine Hydroalkylierungsreaktion handelt, verläuft auch diese unter hoher Atomökonomie. Es zeigte sich, dass die Reaktivität maßgeblich durch das Substitutionsmuster an der dirigierenden Pyridineinheit beeinflusst wird.

Abbildung 29: Alkylierung von α -Amino-C(sp³)-H-Bindungen

Während unter den zuvor gefundenen Reaktionsbedingungen zur carboxylatassistierten Hydroarylierung und auch in weiteren Optimierungsstudien kein Hinweis auf einen carboxylatassistierten Mechanismus gefunden werden konnten, berichtete zum Ende dieser Arbeiten *Maes*, dass eine Kombination aus [Ru₃(CO)₁₂] und der Dicarbonsäure *trans*-1,2-Cy(CO₂H)₂ in 2,4-Dimethyl-3-pentanol für die Alkylierung von 2-(*N*-Pyrrolidinyl)pyridinderivaten mit Alkenen genutzt werden kann.¹⁴² Ebenso stellte zeitgleich *Schnürch* für die Arylierung von *N*-Pyridylbenzamin ein Katalysatorsystem zur carboxylatassistierten C(sp³)–H-Funktionalisierung vor.¹⁴³

Da sich im Verlauf dieser Arbeit zur katalytischen Alkylierung von C(sp³)–H-Bindungen *rac*-BINAP als äußerst potenter Ligand herausgestellt hat, sollten Untersuchungen zur enantioselektiven Alkylierung von cyclischen Aminen mittels enantiomerenreinem BINAP oder ähnlichen chiralen Phosphanliganden durchgeführt werden. Denn die Möglichkeit zur Abspaltung der dirigierenden Gruppe⁹³ könnte so, im Gegensatz zu dem carboxylatassisitierten Verfahren,¹⁴³ einen einfachen

¹⁴⁰ D. A. Singleton, A. A. Thomas, *J. Am. Chem.* Soc. **1995**, *117*, 9357–9358.

¹⁴¹ D. A. Singleton, S. R. Merrigan, B. J. Kim, P. Beak, L. M. Phillips, J. K. Lee, J. Am. Chem. Soc. **2000**, 122, 3296–3300.

¹⁴² S. D. Bergman, T. E. Storr, H. Prokopcov, K. Aelvoet, G. Diels, L. Meerpoel, B. U. W. Maes, *Chem. Eur. J.* **2012**, *18*, 10393– 10398.

¹⁴³ a) N. Dastbaravardeh, M. Schnürch, M. D. Mihovilovic Org. Lett. **2012**, *14*, 3792–3795, b) N. Y. P. Kumar, R. Jeyachandran, L. Ackermann, J. Org. Chem. **2013**, *78*, DOI:10.1021/jo400658d.

Zugang zu enantiomerenangereicherten oder sogar -reinen N-unsubstituierten α -Alkylaminen ermöglichen.

5 Experimenteller Teil

5.1 Vorbemerkungen

Allgemeines

Alle Reaktionen mit hydrolyse- oder sauerstoffempfindlichen Reagenzien wurden in ausgeheizten Glasapparaturen (ÖPV) unter Stickstoff oder Argon durchgeführt. Die zum Transfer der Lösungsmittel und Reagenzien benutzten Spritzen und Kanülen wurden zuvor mehrmals mit Stickstoff oder Argon gespült.

Chromatografie

Säulenchromatografische Trennungen wurden mit Kieselgel der Fa. MERCK (Kieselgel 60,Korngröße 0.040–0.063 mm, 230–400 mesh ASTM für die Flash-Säulenchromatografie) durchgeführt. Für die Dünnschichtchromatografie (DC) wurden Fertigplatten Kieselgel 60 F 254 der Fa. MERCK verwendet. Die Detektion der Chromatogramme erfolgte entweder mittels UV-Licht der Wellenlangen 254 nm und 366 nm oder durch Entwickeln der DC-Platten mit gängigen Färbereagenzien.

Gaschromatografie

Zur Reaktionsverfolgung mittels GC standen folgenden Geräte zur Verfügung: Ein Gaschromatograf 5890 Series II der Firma HEWLETT & PACKARD mit FID-Detektor. Säule: HP Ultra-2,5% Phenylmethylpolysiloxan, 12 m × 0.2 mm × 0.33 µm. Ein GC/GC/MS Dualsystem GC 7890A der Firma AGILENT TECHNOLOGIES mit einem 5975C Massendetektor und FID-Detektor Säulen: AGILENT TECHNOLOGIES HP-5MS, 30 m × 0.25 mm × 0.25 µm. Als interner Standard wurde *n*-Tridecan eingesetzt. Zur Reaktionsverfolgung mittels GC/MS standen Gaschromatografen HP 5890 mit massenselektiven Detektoren HP 5973 der Fa. HEWLETT & PACKARD zur Verfügung. Säulen: DB-5MS, 5% Phenylmethylpolysiloxan, 15 m × 0.25 mm × 0.25 µm bzw. 30 m × 0.25 mm × 0.25 µm.

Hochleistungsflüssigkeitschromatografie

Trennungen per HPLC wurden an Geräten der Fa. KNAUER (Smartline Pump 100, Dynamische Mischkammer, Injektions- und Schaltventil, Smartline UV Detektor 2500) und einer C18-RP-Säule (EC 150/4.6 Nucleodur 100-5) der Fa. MACHEREY-NAGEL durchgeführt.

Vakuum

An den verwendeten Ölvakuumpumpen wurden Drücke <0.5 mbar gemessen, diese sind nicht korrigiert.

Infrarotspektroskopie

Infrarotspektren wurden mit einem BRUKER Alpha FT-IR mit einer ATR-Messvorrichtung zur Vermessung der Proben verwendet. Die Auswertung der Spektren erfolgte mit der Software OPUS 6.

Kernresonanzspektroskopie

Kernresonanzspektren wurden an den Geräten Mercury-Vx-300 (300 MHz), Unity-300 (300 MHz), Inova-500 (500 MHz) und Inova-600 (600 MHz) der Fa. VARIAN aufgenommen. Chemische Verschiebungen sind als δ -Werte in ppm bezogen auf Tetramethylsilan gegen den Restprotonengehalt des verwendeten deuterierten Lösungsmittels bzw. dessen Kohlenstoff-Atome. Als Referenz für ¹⁹F-NMR-Spektren dient Trichlorfluormethan als externer Standard.

	¹ H-NMR	¹³ C-NMR
CDCl₃:	7.26 ppm	77.0 ppm

Zur Beschreibung der Resonanzen wurden folgende Abkürzungen bzw. Kombinationen dieser verwendet: s (Singulett), d (Dublett), dd (Dublett von Dubletts), ddd (Dublett von Dubletts von Dubletts), dt (Dublett von Tripletts), t (Triplett), q (Quartett), quint. (Quintett), m (Multiplett).

Aufgrund der Nachweisgrenze der ¹H-NMR-Spektroskopie von 95–98% sind die angegebenen Deuterierungsgrade potentiell mit einem entsprechenden Fehler behaftet. Analog ist zu beachten, dass ein sehr geringer Deuterierungsgrad (<10%) aufgrund von Mess- und Analyseungenauigkeiten fehlinterpretiert werden kann.

Massenspektrometrie

Massenspektren wurden mit einem AccuTOF (EI-MS) der Fa. JEOL bzw. mit einem MAT 95 (EI-MS) Elektronenstoß Ionisation (EI) bei einer Quellentemperatur von 250 °C und einer Elektronenenergie von 70 eV oder einem Ion-Trap-Massenspektrometer LCQ (ESI-MS) der Fa. FINNIGAN aufgenommen. Angegeben werden die Quotienten aus Masse zu Ladung, sowie in Klammern die relativen Intensitäten bezogen auf den Basispeak (I = 100). Die Messung der EI-HRMS-Spektren erfolgte mit einem AccuTOF der Fa. JEOL. Die Messung der ESI-HRMS-Spektren erfolgte entweder an einem microTOF der Fa. BRUKER DALTONIK oder an einem 7 Tesla-Fourier Transform Ion Cyclotron Resonance (FTICR)-Massenspektrometer) APEX IV der Fa. BRUKER, das mit einer Apollo-Quelle der Fa. BRUKER und einer Spritzenpumpe 74900 series der Fa. COLE-PARMER ausgestattet ist.

Schmelzpunkte

Schmelzpunkte wurden mit einem Stuart R Melting Point Apparatus SMP 3 der Fa. BARLOWORLD SCIENTIFIC gemessen. Die angegebenen Temperaturwerte sind nicht korrigiert.

Reaktionen unter Mikrowellenbestrahlung

Reaktionen unter Mikrowellenbestrahlung wurden mit einem Mikrowellenreaktor des Typs Initiator Microwave Synthesizer der Fa. BIOTAGE in 0.5–20 mL Mikrowellen-fläschchen durchgeführt.

Verwendete Lösungsmittel

Alle für die Reaktionen mit hydrolyseempfindlichen Substanzen benötigten trockenen Lösungsmittel wurden nach folgenden Standardverfahren getrocknet und unter Schutzgas (Argon oder Stickstoff) destilliert und aufbewahrt. Das zur Lagerung von Lösungsmitteln verwendete Molekularsieb (4 Å) wurde im Vakuum (<0.5 mbar) bei 200 °C über 16 h getrocknet.

Acetonitril wurde über Natriumhydrid getrocknet, destilliert und über Molekularsieb (4 Å) gelagert.

Toluol, Tetrahydrofuran, Diethylether, *N,N***-Dimethylformamid** und **Dichlormethan** wurden mit einem B.BRAUN Solvent Purification System (SPS) aufgereinigt und bis zur Verwendung über Molekularsieb (4 Å) aufbewahrt.

t-Amylalkohol, t-Butanol, 1-Butanol, 2-Butanol, *i***-Butanol** und *i***-Propanol** wurden über Molekularsieb (4 Å) vorgetrocknet, über Natrium getrocknet, destilliert und über Molekularsieb (4 Å) gelagert.

 H_2O (demineralisiert) und D_2O (NMR-Lösungsmittelqualität) wurden im Ultraschallbad durch kontinuierliches Einleiten von Argon über 1 h entgast.

1,4-Dioxan und *o***-Xylol** wurde in einer Umlaufapparatur über Natrium/Benzophenon getrocknet und destilliert.

N-Methyl-2-pyrrolidon, Dimethylsulfoxid und 1,2-Dichlorethan wurde über Calciumhydrid getrocknet und destilliert.

N,N-Dimethylacetamid wurde über Kaliumhydrid getrocknet und destilliert. Lösungsmittel für die Aufarbeitung der Reaktionen und Laufmittel für säulenchromatografische Trennungen wurden vor Gebrauch am Rotationsverdampfer destilliert.

Reagenzien

Kommerziell erhältliche Chemikalien wurden ab einer Reinheit von 95% ohne weitere Reinigung direkt eingesetzt. Der Wasseranteil (n) der Komplexe $[RuCl_3 \cdot (H_2O)_n]$ und $[RuBr_3 \cdot (H_2O)_n]$ errechnet sich auf Basis des Rutheniumgehalts zu wie folgt:

Komplex	Rutheniumgehalt [%]	Wasseranteil (n)
$[RuCl_3 \cdot (H_2O)_n]$	36	4.1
$[RuBr_3 \cdot (H_2O)_n]$	25	3.5

Folgende Verbindungen wurden nach Literaturvorschriften synthetisiert: 1-Brom-4-benzyloxybenzol (**1a**),⁹⁹ 4-Methoxystyrol (**7e**),¹⁰⁷ 1-Bromdec-9-en (**7g**),¹⁰⁸ 1-Chlordec-9-en (**7h**),¹⁰⁹ 1-loddec-9-en (**7i**),¹¹¹ 9-Decen-1-yl-4-methylbenzolsulfonat (**7j**),¹¹³ 10-methoxydec-1-en (**7k**),⁹⁷ 11-Dodecen-2-on (**7l**),¹¹⁰ 2-Phenylpyridinderivate (**46**),^{95,96} 2-(Benzo[*b*]thiophen-3-yl)pyridin (**99a**),^{95,103} 6'-Methoxy-2,3'-bipyridin (**99b**),¹⁰³ 2-(Thiophen-3-yl)pyridin (**99d**),¹⁰³ 3-Methyl-1-(pyridin-2-yl)-1*H*-indol (**99d**),¹⁰⁴ 3-Methyl-1-(pyrimidin-2-yl)-1*H*-indol (**99g**),¹⁰⁴ 4-Phenylpyrimidin (**101b**),¹⁰⁵ 2-Phenylpyrimidin (**101c**),¹⁰⁶ 2-Brom-3-methoxypyridin (**105a**),⁹⁷ 2-Chlor-5-methylpyrimidin (**109**).^{100,101}

[RuCl₂(*p*-Cymol)]₂ (**41**), 2-(4-Methylphenyl)pyridin (**46m**), 2-(2-Methylphenyl)pyridin (**46n**), [2-(2-Methoxyphenyl)pyridin (**46q**), [Ru(MesCO₂)₂(*p*-Cymol)] (**117**), [RuCl₂(Benzol)]₂, HIMesCl und HIPrCl wurden freundlicher Weise von Herrn Karsten Rauch zur Verfügung gestellt.

2-(4-Trifluormethylphenyl)pyridin (**460**) wurde freundlicher Weise von Dr. Rubén Vicente Arroyo zur Verfügung gestellt.

2-(3-Trifluorethylphenyl)pyridin (**46p**) wurde freundlicher Weise von Dr. Harish Potukuchi zur Verfügung gestellt.

N,*N*-Dimethylbenzamid (**83a**), *N*-Methylbenzamid (**124**), *N*-Methoxybenzamid (**129**) und *N*-Methoxy-*N*-methylbenzamid (**128**) wurden freundlicher Weise von Dipl. Chem. Ratna Wolfram zur Verfügung gestellt.

2-(4-Methoxyphenoxy)-4-methylpyridin (**130**) wurde freundlicher Weise von M. Sc. Emelyne Diers zur Verfügung gestellt.

 KO_2CMes (**116**), $KO_2C(1-Ad)$ und KO_2Ct -Bu wurden freundlicher Weise von Dr. Ruben Vicente zur Verfügung gestellt.

2-(3,4,5-Trifluorphenyl)pyridin (**46r**), 2-Phenyloxazol (**101d**), 2-Phenylbenzo[*b*]oxazol (**101f**), *N*-Methyl-2-phenylimidazol (**101j**), Aminosäuresalze, *N*-Methyl-2-phenylbenzo[*b*]imidazol (**101i**) wurden freundlicher Weise von Dr. Nora Hofmann zur Verfügung gestellt.

2-(Cyclohex-1-en-1-yl)pyridin (**120**) wurde freundlicher Weise von B. Sc. Alexander Gers-Barlag zur Verfügung gestellt.

2-(1-Pyrrolidinyl)pyridin (**99h**) und *N*-Pyridylindol (**99k**) wurden freundlicher Weise von Dr. Alexander Lygin zur Verfügung gestellt.

2-Phenylmethylencyclopropan (**47**) und 1,1'-Bi(cyclopropyliden) (**118**) wurden freundlicher Weise von Dr. Sergei I. Kozhushkov zur Verfügung gestellt.

1-(Pyridin-2-yl)azepan (**103b**), 2-(Piperidin-1-yl)pyridin (**103c**), 4-(Pyridin-2-yl)morpholin (**103d**), 2-(Pyrrolidin-1-yl)-3-(methyl)pyridin (**103e**), 2-(Pyrrolidin-1-yl)-3-(methoxy)pyridin (**103f**), 2-(Pyrrolidin-1-yl)-5-(trifluormethyl)pyridin (**103g**) und 2-(Pyrrolidin-1-yl)-5-(methyl)pyridin (**103h**) wurden freundlicher Weise von B. Sc. Kris Bielefeld zur Verfügung gestellt.

5.2 Allgemeine Arbeitsvorschriften

5.2.1 Allgemeine Arbeitsvorschrift zur nickelkatalysierten Synthese von 2-Arylpyridinderivaten via Kumada-Corriu-Kreuzkupplungen (AAV 1)

In einem ausgeheizten mit Septum, Magnetrührstab und Rückflusskühler versehenen 2-Halsrundkolben werden Magnesiumspäne (1.73 Äquiv.), Bromaren **1** (1.67 Äquiv.) und THF (2.5–1.0 M bzgl. **1**) unter Schutzgasatmosphäre über 1 h in der Siedehitze gerührt. Die so bereitete Grignardreagenz-Lösung wird nach Abkühlen auf Umgebungstemperatur unter Schutzgasatmosphäre langsam zu einer eisgekühlten Suspenion von Ni(acac)₂ (3.0 Mol %), HIPrCl (3.0 Mol %) und Pyridinderivat **105** (1.00 Äquiv.) in THF (1.5 M bzgl. **105**) in einem zuvor ausgeheizten mit Septum und Magnetrührstab ausgestatteten Schlenkkolben getropft. Nach vollständiger Zugabe wird die Reaktionsmischung unter Schutzgasatmosphäre bei Umgebungstemperatur gerührt. Der Reaktionsfortschritt wird mittels GC/MS-Analyse und Dünnschichtchromatografie verfolgt. Bei maximalem Umsatz wird wässr. ges. NH₄Cl-Lösung (50 mL) hinzugegeben und die wässr. Phase mit MTBE (3 × 100 mL) extrahiert. Die vereinigten organischen Phasen werden mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel und anschließende Kugelrohrdestillation liefert das Produkt.

5.2.2 Allgemeine Arbeitsvorschrift zur eisenkatalysierten Synthese von 2-Arylpyridinderivaten via Kumada-Corriu-Kreuzkupplung (AAV 2)

Zu einer Lösung von 2-Brompyridinderivat **105** (1.00 Äquiv.) und Fe(acac)₃ (10 Mol %) in THF (0.7 M bzgl. **105**) in einem ausgeheizten mit Septum und Magnetrührstab versehenen Schlenkkolben wird bei -30 °C unter Schutzgasatmosphäre eine nach AAV 1 hergestellte Phenylgrignard-Lösung (2.20 Äquiv., 2.5 M) getropft. Nach vollständiger Zugabe wird die Reaktionsmischung unter Schutzgasatmosphäre bei -30 °C gerührt. Der Reaktionsfortschritt wird mittels GC/MS-Analyse und Dünnschichtchromatografie verfolgt. Bei maximalem Umsatz wird H₂O (50 mL) und wässr. HCl-Lösung (50 mL, 1 M) hinzugegeben und die wässr. Phase mit MTBE (3 × 100 mL) extrahiert. Die vereinigten organischen Phasen werden mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel und anschließende Kugelrohrdestillation liefert das Produkt.

5.2.3 Allgemeine Arbeitsvorschrift zur rutheniumkatalysierten Hydroarylierung von Methylencyclopropanen mit $[RuCl_3 \cdot (H_2O)_n]$ (AAV 3)

In einem ausgeheizten 25 mL-Schlenkrohr wird eine Suspension von $[RuCl_3 \cdot (H_2O)_n]$ (13 mg, 50 μ Mol), KOAc (98 mg, 1.0 mMol) und 2-Phenylpyridinderivat **46** (1.0 mMol) in 1,4-Dioxan (3 mL) bei 120 °C über 48 h unter Schutzgasatmosphäre gerührt, während Alken **7** (3.0 mMol) in vier gleichen Portionen (nach 0, 12, 24, 36 h) zugegeben wird. Nach Abkühlen der Reaktionsmischung wird der Umsatz mittels GC/MS-Analyse bestimmt. Die Lösungsmittel werden nach Zugabe von Kieselgel (1.5 g) im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel liefert das Produkt.

5.2.4 Allgemeine Arbeitsvorschrift zur rutheniumkatalysierten Hydroarylierung von Methylencyclopropanen mit [Ru(MesCO₂)₂(*p*-Cymol)] (117) (AAV 4)

In einem ausgeheizten 25 mL-Schlenkrohr wird eine Suspension von $[Ru(MesCO_2)_2(p-Cymol)]$ (117) (28 mg, 50 μ Mol), KO₂CMes (116) (40 mg, 0.20 mMol) und 2-Phenylpyridinderivat 46 (1.0 mMol) in 1,4-Dioxan (3 mL) bei 120 °C über 48 h unter Schutzgasatmosphäre gerührt, während Alken 7 (3.0 mMol) in vier gleichen Portionen (nach 0, 12, 24, 36 h) zugegeben wird. Nach Abkühlen der Reaktionsmischung wird der Umsatz mittels GC/MS-Analyse bestimmt. Die Lösungsmittel werden nach Zugabe von Kieselgel (1.5 g) im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel liefert das Produkt.

5.2.5 Allgemeine Arbeitsvorschrift zur rutheniumkatalysierten Hydroarylierung von terminalen Alkenen (AAV 5)

In einem ausgeheizten 25 mL-Schlenkrohr wird eine Suspension von $[RuCl_2(p-Cymol)]_2$ (**41**) (7.7 mg, 13 µMol), KO₂CMes (**116**) (30 mg, 0.15 mMol), 2-Phenylpyridinderivat **46** (1.00 mMol) und Alken **7** (2.00 mMol) in PhMe (3 mL) bei 100 °C über 18 h unter Schutzgasatmosphäre gerührt. Tridekan (25 µL) und EtOAc (7 mL) werden zu der abgekühlten Reaktionsmischung gegeben und der Umsatz mittels GC-Analyse bestimmt. Die Lösungsmittel werden nach Zugabe von Kieselgel (1.5 g) im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel liefert das Produkt.

5.2.6 Allgemeine Arbeitsvorschrift zur rutheniumkatalysierten Hydroalkylierung von 1-Decen (7q) mit 2-Aminopyridinen (AAV 6)

In einem ausgeheizten 25 mL-Schlenkrohr wird eine Suspension von [RuCl₂(PPh₃)₃] (48 mg, 50 μMol), AgOTf (31 mg, 0.12 mMol), *rac*-BINAP (37 mg, 60 μMol), *iso*-Butanol (2.0 mL), 1-Decen (**7q**) und das entsprechende 2-Aminopyridin (**103**) im angegebenen Verhältnis bei 120 °C über 18 h unter Schutzgasatmosphäre gerührt. Nach Abkühlen der Reaktionsmischung wird der Umsatz mittels GC/MS-Analyse bestimmt. Die Lösungsmittel werden nach Zugabe von Kieselgel (1.5 g) im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel liefert das Produkt.

5.3 Synthesen

5.3.1 Synthesen der Startmaterialien

Darstellung von 1-Brom-4-benzyloxybenzol (1a)

In einem ausgeheizten mit Septum, Magnetrührstab, Schlenkhahn und Blasenzähler versehenen 3-Halsrundkolben wird zu einer Suspension von Natriumhydrid (4.80 g, 120 mMol, 60% ig in Paraffinöl) in DMF (120 mL) bei 0 °C 4-Bromphenol (**1b**) (17.3 g, 100 mMol) getropft und 20 min bei 0 °C gerührt. Nach Zugabe von Benzylbromid (17.1 g, 100 mMol) bei 0 °C wird weitere 2 h bei Umgebungstemperatur gerührt. Das Reaktionsgemisch wird mit wässr. ges. NH₄Cl-Lösung (50 mL) versetzt, die wässr. Phase mit MTBE (3 × 50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (100 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 3:1) liefert **1a** (26.3 g, 100%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.46–7.29 (m, 7H), 6.90–6.81 (m, 2H), 5.04 (s, 2H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 157.8 (C_q), 136.5 (C_q), 132.3 (CH), 128.6 (CH), 128.1 (CH), 127.4 (CH), 116.7 (CH), 113.1 (C_q), 70.2 (CH₂).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 264/262 (6/7) [M⁺], 145/143 (5/5), 91 (100), 65 (19).

HR-MS (EI): *m*/*z* berechnet für C₁₃H₁₁OBr⁺ 261.9993, gefunden 261.9998.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.⁹⁹

Darstellung von 4-Methoxystyrol (7e)

In einem 2-Halsrundkolben mit Schlenkhahn und Blasenzähler wird zu einer Lösung von 4-Methoxybenzaldehyd (**24b**) (2.72 g, 20.0 mMol) und Methyltriphenylphosphoniumbromid (**115**) (8.57 g, 24.0 mMol) in THF (100 mL) bei 0 °C Natriumhydrid (1.92 g, 48.0 mMol, 60%ig in Paraffinöl) gegeben und über 14 h unter langsamer Erwärmung auf Umgebungstemperatur gerührt. Es wird wässr. ges. NaCl-Lösung (100 mL) zugegeben, die organische Phase mit wässr. ges. NaCl-Lösung (3 × 100 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung (*n*-Hexan/EtOAc 10:1) an Kieselgel liefert **7e** (2.40 g, 89%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, $CDCI_3$): δ = 7.40–7.31 (m, 2H), 6.92–6.83 (m, 2H), 6.67 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.62 (dd, *J* = 17.6, 1.0 Hz, 1H), 5.13 (dd, *J* = 10.9, 1.0 Hz, 1H), 3.82 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.3 (C_q), 136.2 (CH), 130.4 (C_q), 127.3 (CH), 113.9 (CH), 111.5 (CH₂), 55.3 (CH₃).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 134 (100) [M⁺], 119 (51), 91 (50), 65 (23).

HR-MS (EI): m/z berechnet für C₉H₁₀O⁺134.0732, gefunden 134.0726.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁴⁴

Darstellung von 1-Bromdec-9-en (7g)

In einem ausgeheizten mit Septum und Schlenkhahn versehenen 2-Halsrundkolben wird bei -40 °C unter Schutzgasatmosphäre zu Dec-9-en-1-ol (**7f**) (15.9 g, 102 mMol) eine Lösung von PBr₃ (3.8 mL, 40 mMol) in Et₂O (50 mL) gegeben, und das Reaktionsgemisch über 16 h auf Umgebebungstemperatur erwärmt. Es wird H₂O (50 mL) hinzugegeben, mit Et₂O (100 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Fraktionierende Destillation (2.4 mbar) liefert **7g** (11.1 g, 50%) als farblose Flüssigkeit.

Sdp.: 77 °C (2.4 mbar) [Lit.: 69–75 °C (1.3 mbar)]¹⁴⁵

¹**H-NMR** (600 MHz, CDCl₃): δ = 5.79 (ddt, *J* = 17.1, 10.2, 6.7 Hz, 1H), 4.97 (ddt, *J* = 17.1, 2.2, 1.8 Hz, 1H), 4.91 (ddt, *J* = 10.2, 2.2, 1.2 Hz, 1H), 3.39 (t, *J* = 6.9 Hz, 2H), 2.06–1.99 (m, 2H), 1.87–1.79 (m, 2H), 1.45–1.32 (m, 4H), 1.32–1.24 (m, 6H).

¹⁴⁴ E. Alacid, C. Nájera, *Adv. Synth. Catal.* **2006**, *348*, 2085–2091.

¹⁴⁵ Y. Haramoto (Nippon Chemical Industrial Co.), JP 2002356473 A, **2002.**

¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.1 (CH), 114.2 (CH₂), 34.0 (CH₂), 33.7 (CH₂), 32.8 (CH₂), 29.3 (CH₂), 29.0 (CH₂), 28.9 (CH₂), 28.7 (CH₂), 28.1 (CH₂).

MS (70 eV, EI): *m/z* (relative Intensität) = 220/218 (1/1) [M⁺], 178/176 (5/5), 164/162 (11/11), 150/148 (31/31), 137/135 (16/16), 97 (67), 83 (43), 69 (72), 55 (100).

HR-MS (EI): m/z berechnet für C₁₀H₁₉Br⁺ 218.0670, gefunden 218.0670.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.^{145,146}

Darstellung von 1-Chlordec-9-en (7h)

In einem ausgeheizten mit Septum und Schlenkhahn versehenen 2-Halsrundkolben wird bei Umgebungstemperatur unter Schutzgasatmosphäre zu einer Lösung von PCl₃ (1.2 mL, 14 mMol) in DMF (50 mL) Dec-9-en-1-ol (**7f**) (3.15 g, 20.2 mMol) gegeben und 1.5 h bei Umgebebungstemperatur gerührt. Es wird unter Rühren NaHCO₃ (2.4 g, 28 mMol) hinzugegeben. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand mit H₂O (6 mL) und *n*-Pentan (2 × 10 mL) in eine Scheidetrichter überführt. Es wird mit *n*-Pentan (3 × 50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (2 × 100 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Fraktionierende Destillation (18 mbar) liefert **7h** (1.62 g, 46%) als farblose Flüssigkeit.

Sdp.: 118 °C (18 mbar).

¹**H-NMR** (300 MHz, CDCl₃): δ = 5.79 (ddt, *J* = 17.1, 10.2, 6.7 Hz, 1H), 4.97 (ddt, *J* = 17.1, 2.1, 1.8 Hz, 1H), 4.91 (ddt, *J* = 10.2, 2.1, 1.3 Hz, 1H), 3.51 (t, *J* = 6.8 Hz, 2H), 2.13–1.96 (m, 2H), 1.85–1.67 (m, 2H), 1.50–1.18 (m, 10H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.1 (CH), 114.2 (CH₂), 45.2 (CH₂), 33.8 (CH₂), 32.6 (CH₂), 29.3 (CH₂), 29.0 (CH₂), 28.9 (CH₂), 28.8 (CH₂), 26.9 (CH₂).

IR (ATR): \tilde{v} = 2926, 2855, 1641, 1464, 1286, 993, 909, 724 cm⁻¹.

MS (70 eV, EI): *m/z* (relative Intensität) = 176/174 (4/13) [M⁺], 137 (11), 111 (10), 104 (19), 97 (75), 83 (90), 69 (71), 55 (100).

HR-MS (ESI): m/z berechnet für $C_{10}H_{19}CI^{+}$ 174.1175, gefunden 174.1178.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.^{147,148}

¹⁴⁶ E. B. Bauer, F. Hampel, J. A. Gladysz, *Organometallics* **2003**, *22*, 5567–5580.

¹⁴⁷ G. I. Nikishin, L. L. Sokova, A. O. Chizhov, V. D. Makhaev, N. I. Kapustina, *Russ. Bull. Chem.* **2004**, *53*, 2200–2204.

¹⁴⁸ A. C. Bissember, A. Levina, G. C. Fu, J. Am. Chem. Soc. **2012**, 134, 14232–14237.

Darstellung von 1-loddec-9-en (7i)

In einem ausgeheizten mit Septum und Schlenkhahn versehenen 2-Halsrundkolben wird bei Umgebungstemperatur unter Schutzgasatmosphäre zu einer Lösung von PPh₃ (7.03 g, 26.8 mMol), Imidazol (1.9 g, 27 mMol) und I₂ (7.2 g, 28 mMol) in MeCN (22) und Et₂O (68 mL) Dec-9-en-1-ol (**7f**) (2.85 g, 18.2 mMol) gegeben und bei Umgebebungstemperatur über 2.5 h gerührt. Es wird wässr. ges. NaHCO₃-Lösung (50 mL), mit Et₂O (2 × 50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. Na₂S₂O₃-Lösung (40 mL) und wässr. ges. NaCl-Lösung (40 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung (*n*-Hexan/EtOAc 20:1) an Kieselgel liefert **7i** (4.50 g, 93%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 5.81 (ddt, *J* = 17.0, 10.3, 6.7 Hz, 1H), 4.99 (ddt, *J* = 17.0, 2.1, 1.8 Hz, 1H), 4.93 (ddt, *J* = 10.3, 2.1, 1.3 Hz, 1H), 3.18 (t, *J* = 7.0 Hz, 2H), 2.11–1.96 (m, 2H), 1.88–1.75 (m, 2H), 1.47–1.22 (m, 10H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.1 (CH), 114.2 (CH₂), 33.7 (CH₂), 33.5 (CH₂), 30.5 (CH₂), 29.2 (CH₂), 29.0 (CH₂), 28.8 (CH₂), 28.5 (CH₂), 7.2 (CH₂).

IR (ATR): $\tilde{\nu}$ = 29247, 2924, 1653, 1461, 1192, 993, 908, 720 cm⁻¹.

MS (70 eV, EI): *m/z* (relative Intensität) = 266 (6) [M⁺], 224 (9), 155 (10), 128 (7), 97 (26), 83 (61), 69 (49), 55 (100).

HR-MS (EI): m/z berechnet für C₁₀H₁₉I⁺ 266.0531, gefunden 266.0530.

Darstellung von 9-Decen-1-yl-4-methylbenzolsulfonat (7j)

T OTs

In einem ausgeheizten mit Septum und Schlenkhahn versehenen 2-Halsrundkolben wird zu einer Lösung von *para*-Toluolsulfonsäurechlorid (7.63 g, 40.0 mMol), Pyridin (8.0 mL) in CH₂Cl₂ (25 mL) Dec-9-en-1-ol (**7f**) (3.00 g, 19.2 mMol) gegeben und über 16 h unter Schutzgasatmosphäre bei Umgebungstemperatur gerührt. Es wird wässr. ges. NaHCO₃-Lösung (20 mL) hinzugegeben, mit CH₂Cl₂ (3 × 50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung (*n*-Hexan/NEt₃40:1 \rightarrow 10:1) an Kieselgel liefert **7j** (3.66 g, 59%) als Farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.83–7.75 (m, 2H), 7.38–7.30 (m, 2H), 5.81 (ddt, *J* = 17.1, 10.2, 6.7 Hz, 1H), 4.98 (ddt, *J* = 17.1, 2.1, 1.8 Hz, 1H), 4.92 (ddt, *J* = 10.2, 2.1, 1.3 Hz, 1H), 4.01 (t, *J* = 6.5 Hz, 2H), 2.45 (s, 3H), 2.09–1.95 (m, 2H), 1.71–1.57 (m, 2H), 1.41–1.12 (m, 10H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 144.6 (C_q), 139.0 (CH), 133.2 (C_q), 129.7 (CH), 127.8 (CH), 114.2 (CH₂), 70.6 (CH₂), 33.7 (CH₂), 29.2 (CH₂), 28.9 (CH₂), 28.8 (CH₂), 28.8 (CH₂), 28.8 (CH₂), 25.3 (CH₂), 21.6 (CH₃).

MS (70 eV, EI): *m/z* (relative Intensität) = 173 (23), 155 (42), 138 (46), 109 (32), 91 (67), 82 (67), 68 (89), 55 (100).

HR-MS (ESI): *m*/*z* berechnet für C₁₇H₂₆O₃S+Na⁺ 333.1500, gefunden 333.1494.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁴⁹

Darstellung von 10-Methoxydec-1-en (7k)

∕ OMe

In einem ausgeheizten mit Septum und Schlenkhahn versehenen 2-Halsrundkolben wird zu einer Lösung von Natriumhydrid (0.56 g, 14 mMol, 60% ig in Paraffinöl) in Et₂O (10 mL) bei 0 °C Dec-9-en-1ol (**7f**) (1.57 g, 10.0 mMol) gegeben und über 20 Min unter Schutzgasatmosphäre auf Umgebungstemperatur erwärmt. Es wird erneut auf 0 °C abgekühlt und lodmethan (1.0 mL, 16 mMol) hinzugetropft und über 14 h auf Umgebungstemperatur erwärmt. Es wird H₂O (10 mL) hinzugegeben, mit Et₂O (3 × 10 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung (*n*-Hexan/EtOAc 100:1 \rightarrow 50:1) an Kieselgel liefert **7k** (0.672 g, 39%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 5.81 (ddt, *J* = 17.1, 10.2, 6.7 Hz, 1H), 4.98 (ddt, *J* = 17.1, 2.1, 1.8 Hz, 1H), 4.92 (ddt, *J* = 10.2, 2.1, 1.3 Hz, 1H), 3.36 (t, *J* = 6.6 Hz, 2H), 3.33 (s, 3H), 2.09–1.97 (m, 2H), 1.63–1.48 (m, 2H), 1.44–1.20 (m, 10H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.2 (CH), 114.1 (CH₂), 73.0 (CH₂), 58.5 (CH₃), 33.8 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.4 (CH₂), 29.1 (CH₂), 28.9 (CH₂), 26.1 (CH₂).

MS (70 eV, EI): *m/z* (relative Intensität) = 170 (2) [M⁺], 138 (30), 109 (11), 95 (26), 82 (39), 67 (46), 55 (49), 45 (100).

HR-MS (ESI): m/z berechnet für C₁₁H₂₂O+H⁺ 171.1749, gefunden 171.1739.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁵⁰

Darstellung von Dodec-11-en-2-on (7l)

In einem ausgeheizten mit Septum, Magnetrührstab und Rückflusskühler versehenen 2-Halsrundkolben werden Magnesiumspäne (1.03 g, 42.4 mMol), 1-Bromdec-9-en (**7**g) (7.74 g,

¹⁴⁹ C. Waring, P. A. J. Bagot, M. W. P. Bebbington, M. T. Räisänen, M. Buck, M. L. Costen, K. G. McKendrick, J. Phys. Chem. Lett. **2010**, *1*, 1917–1921.

¹⁵⁰ G. Chen, X. S. Ma, Z. Guan, J. Am. Chem. Soc. **2003**, 125, 6697–6704.
35.3 mMol) und Et_2O (35 mL) unter Schutzgasatmosphäre über 1 h in der Siedehitze gerührt. Zu der so bereiteten Grignardreagenz-Lösung wird nach Abkühlen auf -78 °C über 2 h langsam Acetanhydrid (7.21 g, 70.6 mMol) getropft. Die Reaktionsmischung wird unter Rühren über 16 h auf Umgebungstemperatur erwärmt. Es wird wässr. ges. NH₄Cl-Lösung (50 mL) hinzugegeben und die wässr. Phase mit Et_2O (3 × 100 mL) extrahiert. Die vereinigten organischen Phasen werden mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Fraktionierende Destillation (1.9 mbar) liefert **7I** (4.18 g, 65%) als farblose Flüssigkeit.

Sdp.: 77 °C (1.9 mbar) [Lit.: 85 °C (2.7 mbar)].¹⁵¹

¹**H-NMR** (300 MHz, CDCl₃): δ = 5.80 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 4.98 (ddt, *J* = 16.9, 2.1, 1.8 Hz, 1H), 4.92 (ddt, *J* = 10.2, 2.1, 1.3 Hz, 1H), 2.41 (t, *J* = 7.4 Hz, 2H), 2.12 (s, 3H), 2.08–1.95 (m, 2H), 1.61–1.48 (m, 2H), 1.45–1.21 (m, 10H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 209.4 (C_q), 139.3 (CH₂), 114.3 (CH₂), 44.0 (CH₂), 33.9 (CH₂), 30.0 (CH), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.0 (CH₂), 24.0 (CH₂).

MS (70 eV, EI): *m/z* (relative Intensität) = 182 (1) [M⁺], 124 (9), 97 (7), 82 (11), 71 (30), 58 (64), 55 (32), 43 (100).

HR-MS (ESI): *m/z* berechnet für C₁₂H₂₂O-H⁺ 181.1598, gefunden 181.1597.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.^{151,152}

Darstellung von 2-Phenylpyridin (46a)

Nach AAV 1 werden Magnesiumspäne (2.54 g, 105 mMol) und Brombenzol (**1c**) (15.5 g, 10.5 mL, 99.6 mMol) in THF (40 mL), sowie Ni(acac)₂ (462 mg, 1.80 mMol), HIPrCl (921 mg, 1.80 mMol, 83%ig) und 2-Chlorpyridin (**105e**) (6.8 g, 5.6 mL, 60 mMol) in THF (40 mL) über 16 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Pentan/EtOAc 10:1 \rightarrow 5:1) und anschließende Kugelrohrdestillation (ÖPV, 100 °C) liefert **46a** (7.99 g, 86%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): *δ* = 8.70 (ddd, *J* = 4.8, 1.7, 1.0 Hz, 1H), 8.05–7.95 (m, 2H), 7.81–7.68 (m, 2H), 7.53–7.37 (m, 3H), 7.29–7.17 (m, 1H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 157.2 (C_q), 149.4 (CH), 139.2 (C_q), 136.5 (CH), 128.7 (CH), 128.5 (CH), 126.7 (CH), 121.9 (CH), 120.3 (CH).

¹⁵¹ T. Kazuhiko; K. Oshima, H. Nozaki, Bull. Chem. Soc. Jpn. **1981**, 54, 1281–1282.

¹⁵² A. Schulze, A. Giannis, *Synthesis* **2006**, 257–260.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁵³

Darstellung von 2-(Pentadeuterophenyl)pyridin ([D₅]-46a)

Nach AAV 1 werden Magnesiumspäne (0.60 g, 25 mMol) und Pentadeuterobrombenzol ($[D_5]$ -1c) (2.5 mL, 24 mMol) in THF (10 mL), sowie Ni(acac)₂ (110 mg, 0.428 mMol), HIPrCl (182 mg, 0.381 mMol, 89%ig) und 2-Chlorpyridin (**105e**) (1.64 g, 14.4 mMol) in THF (10 mL) über 4 d umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1 \rightarrow 10:1) und anschließende Kugelrohrdestillation (ÖPV, 100 °C) liefert [D_5]-46a (1.19 g, 52%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.8, 1.7, 1.1 Hz, 1H), 7.78–7.69 (m, 2H), 7.70 (ddd, *J* = 6.1, 4.8, 2.5 Hz, 1H).

¹³**C-NMR** (125 MHz, CDCl₃): δ = 157.3 (C_q), 149.6 (CH), 139.1 (C_q), 136.6 (CH), 128.3 (CD, *J* = 25 Hz), 128.1 (CD, *J* = 25 Hz), 126.4 (CD, *J* = 25 Hz), 122.0 (CH), 120.5 (CH).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 160 (100) [M⁺], 132 (11), 80 (11).

HR-MS (EI): m/z berechnet für $C_{11}H_4D_5N^+$ 160.1049, gefunden 160.1045.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.⁴⁶

Darstellung von 3-Methoxy-2-phenylpyridin (46b)

Nach AAV 1 werden Magnesiumspäne (1.10 g, 45.3 mMol) und Brombenzol (**1c**) (6.9 g, 6.9 mL, 44 mMol) in THF (20 mL), sowie Ni(acac)₂ (160 mg, 0.623 mMol), HIPrCl (320 mg, 0.625 mMol, 83%ig) und 2-Brom-3-methoxypyridin (**105a**) (3.83 g, 20.4 mMol) in THF (20 mL) über 18 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Pentan/EtOAc 10:1 \rightarrow 4:1) und anschließende Kugelrohrdestillation (0.5 mbar, 110 °C) liefert **46b** (2.64 g, 70%) als farbloses Öl.

¹⁵³ Y. Kobayashi, A. D. William, R. Mizojiri, *J. Organomet. Chem.* **2002**, *653*, 91–97.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.30 (dd, *J* = 4.5, 1.5 Hz, 1H), 7.92–7.86 (m, 2H), 7.47–7.31 (m, 3H), 7.26 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.20 (dd, *J* = 8.3, 4.5 Hz, 1H), 3.83 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 153.5 (C_q), 148.1 (C_q), 141.3 (CH), 137.7 (C_q), 129.3 (CH), 128.2 (CH), 127.9 (CH), 122.8 (CH), 118.5 (CH), 55.4 (CH₃).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 184 (100) [(M-H)⁺], 154 (5), 142 (7), 115 (22), 77 (13).

HR-MS (ESI): *m*/*z* berechnet für C₁₂H₁₁NO-H⁺ 184.0762, gefunden 184.0761.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁵⁶

Darstellung von 2-(3-Methoxyphenyl)pyridin (46c)

Nach AAV 1 werden Magnesiumspäne (1.27 g, 52.3 mMol) und 1-Brom-4-methoxybenzol (**1i**) (8.8 g, 5.9 mL, 47 mMol) in THF (20 mL), sowie Ni(acac)₂ (240 mg, 934 μ Mol), HIPrCl (460 mg, 898 μ Mol, 83%ig) und 2-Chlorpyridin (**105e**) (3.4 g, 2.8 mL, 30 mMol) in THF (20 mL) über 16 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Pentan/EtOAc 25:1 \rightarrow 5:1) und anschließende Kugelrohrdestillation (ÖPV, 140 °C) liefert **46c** (4.87 g, 88%) als weißer Feststoff.

Smp.: 53 °C (Lit.: 53 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.69 (ddd, *J* = 4.8, 1.7, 1.0 Hz, 1H), 7.82–7.67 (m, 2H), 7.63–7.49 (m, 2H), 7.38 (t, *J* = 7.9 Hz, 1H), 7.29–7.18 (m, 1H), 6.97 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H), 3.90 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.6 (C_q), 157.2 (C_q), 149.6 (CH), 136.7 (CH), 132.1 (C_q), 128.2 (CH), 121.5(CH), 119.9 (CH), 114.2 (CH), 55.4 (CH₃).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 184 (100) [(M-H)⁺], 154 (77), 140 (32), 115 (17), 78 (24).

HR-MS (ESI): *m/z* berechnet für C₁₂H₁₁NO+H⁺ 186.0919, gefunden 186.0915.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.^{160,159, 154}

⁻⁹⁵⁻

¹⁵⁴ L. Ackermann, A. Althammer, *Org. Lett.* **2006**, *8*, 3457–3460.

Darstellung von 5-Methyl-2-phenylpyridin (46d)

Nach AAV 2 werden 2-Brom-5-methylpyridin (**105c**) (2.51 g, 14.6 mMol), Phenylgrignard-Lösung (13 mL, 32 mMol, 2.45 M) und Fe(acac)₃ (373 mg, 1.45 mMol), THF (20 mL) über 2 h bei -30 °C und schließlich 18 h bei Umgebungstemperatur umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1) und anschließende Kugelrohrdestillation (ÖPV, 125 °C) liefert **46d** (1.30 g, 53%) als weißer Feststoff.

Nach AAV 1 werden Magnesiumspäne (2.06 g, 84.8 mMol) und Brombenzol (**1c**) (12.6 g, 80.2 mMol) in THF (80 mL), sowie Ni(acac)₂ (390 mg, 1.52 mMol), HIPrCl (640 mg, 1.34 mMol, 89%ig) und 2-Brom-5-methylpyridin (**105c**) (8.65 g, 50.3 mMol) in THF (50 mL) über 16 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Pentan/EtOAc 10:1) und anschließende Kugelrohrdestillation (ÖPV, 125 °C) liefert **46d** (7.47 g, 88%) als weißen Feststoff.

Smp.: 53 °C (Lit.: 52–54 °C).¹⁵⁵

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.54–8.50 (m, 1H), 7.99–7.93 (m, 2H), 7.59–7.51 (m, 1H), 7.51–7.33 (m, 3H), 2.37 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 154.8 (C_q), 150.1 (CH), 139.4 (C_q), 137.3 (CH), 131.6 (C_q), 128.7 (CH), 128.5 (CH), 126.7 (CH), 120.0 (CH), 18.1 (CH₃).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 169 (100) [M⁺], 154 (11), 141 (24), 115 (15).

HR-MS (ESI): m/z berechnet für C₁₂H₁₁N⁺ 169.0891, gefunden 169.0899.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁵⁵

Darstellung von 3-Methyl-2-phenylpyridin (46e)

Nach AAV 2 werden 2-Brom-3-methylpyridin (**105d**) (2.52 g, 14.6 mMol), Phenylgrignard-Lösung (13 mL, 32 mMol, 2.45 M) und Fe(acac)₃ (373 mg, 1.45 mMol), THF (20 mL) über 2 h umgesetzt.

¹⁵⁵ L. Feng, D. Kumar, D. M. Birney, S. M. Kerwin, Org. Lett. **2004**, *6*, 2059–2062.

Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc $5:1\rightarrow 4:1$) und anschließende Kugelrohrdestillation (ÖPV, 120 °C) liefert **46e** (1.02 g, 41%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.54–8.48 (m, 1H), 7.59–7.47 (m, 3H), 7.47–7.33 (m, 3H), 7.15 (dd, J = 7.7, 4.8 Hz, 1H), 2.33 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.6 (C_q), 146.9 (CH), 140.5 (C_q), 138.4 (CH), 130.7 (C_q), 128.5 (CH), 128.0 (CH), 127.8 (CH), 122.0 (CH), 20.0 (CH₃).

MS (70 eV, EI): m/z (relative Intensität) = 168 (100) [(M-H)⁺], 139 (4), 115 (7), 83 (6), 77 (7).

HR-MS (ESI): m/z berechnet für C₁₂H₁₁N⁺ 169.0891, gefunden 169.0893.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁵⁶

Darstellung von 5-Fluor-2-phenylpyridin und (46f) 2,5-Diphenylpyridin (46g)

Nach AAV 1 werden Magnesiumspäne (0.31 g, 13 mMol) und Brombenzol (**1c**) (1.88 g, 12.1 mMol) in THF (8 mL), sowie Ni(acac)₂ (61 mg, 0.24 mMol), HIPrCl (102 mg, 0.240 mMol) und 2-Chlor-5-fluorpyridin (**105f**) (1.40 g, 7.97 mMol) in THF (8 mL) über 20 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 30:1) und anschließende Kugelrohrdestillationen (ÖPV, 120 °C beziehungsweise 160 °C) liefert **46f** (0.922 g, 67%) sowie **46g** (0.168 g, 9%) als weiße Feststoffe.

46f:

Smp.: 50 °C.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.53 (d, *J* = 2.9 Hz, 1H), 7.95–7.89 (m, 2H), 7.70 (ddd, *J* = 8.8, 4.3, 0.6 Hz, 1H), 7.51–7.35 (m, 4H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.8 (C_q, ¹J_{C-F} = 256 Hz), 153.8 (C_q, ⁴J_{C-F} = 4 Hz), 138.4 (C_q), 137.7 (CH, ²J_{C-F} = 24 Hz), 128.8 (CH), 128.8 (CH), 126.7 (CH), 123.4 (CH, ²J_{C-F} = 27 Hz), 121.3 (CH, ⁴J_{C-F} = 4 Hz).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -(129.7–129.9) (m).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 173 (100) [M⁺], 149 (13), 146 (7).

HR-MS (EI): m/z berechnet für C₁₁H₈FN⁺ 173.0641, gefunden 173.0639.

¹⁵⁶ A. Lemire, M. Grenon, M. Pourashraf, A. B. Charette, *Org. Lett.* **2004**, *6*, 3517–3520.

46g:

Smp.:172 °C (Lit.: 172–174 °C).

¹**H-NMR** (300 MHz, $CDCl_3$): δ = 8.92 (dd, J = 2.4, 0.9 Hz, 1H), 8.06–8.00 (m, 2H), 7.94 (dd, J = 8.3, 2.4 Hz, 1H), 7.80 (dd, J = 8.3, 0.9 Hz, 1H), 7.65–7.60 (m, 2H), 7.53–7.36 (m, 6H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 156.2 (C_q), 148.1 (CH), 139.0 (C_q), 137.7 (C_q), 135.1 (CH), 134.9 (C_q), 129.1 (CH), 129.0 (CH), 128.8 (CH), 128.0 (CH), 127.0 (CH), 126.8 (CH), 120.3 (CH).

MS (70 eV, EI): *m/z* (relative Intensität) =231 (100) [M⁺], 202 (9), 127(5), 102 (12).

HR-MS (EI): m/z berechnet für C₁₇H₁₃N⁺ 231.1048, gefunden 233.1056.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁵⁷

Darstellung von 2-(3-Methylphenyl)pyridin (46h)

Nach AAV 1 werden Magnesiumspäne (2.53 g, 104 mMol) und 1-Brom-3-methylbenzol (**1e**) (17 g, 12 mL, 99 mMol) in THF (40 mL), sowie Ni(acac)₂ (462 mg, 1.80 mMol), HIPrCl (869 mg, 1.80 mMol, 88%ig) und 2-Chlorpyridin (**105e**) (6.82 g, 60.1 mMol) in THF (40 mL) über 18 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 15:1) und anschließende Kugelrohrdestillation (ÖPV, 120 °C) liefert **46h** (9.93 g, 98%) als farbloses Öl.

¹**H-NMR** (300 MHz, $CDCl_3$): δ = 8.67–8.65 (ddd, J = 4.8, 1.5, 1.0 Hz, 1H), 7.82 (s_{br}, 1H), 7.77–7.67 (m, 3H), 7.35 (t, J = 7.7 Hz, 1H), 7.26–7.16 (m, 2H), 2.42 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 157.6 (C_q), 149.6 (CH), 139.4 (C_q), 138.4 (C_q), 136.6 (CH), 129.7 (CH), 128.6 (CH), 127.6 (CH), 124.0 (CH), 122.0 (CH), 120.6 (CH), 21.5 (CH₃).

MS (70 eV, EI): m/z (relative Intensität) = 169 (100) [M⁺], 154 (11), 115 (6), 83 (5).

HR-MS (EI): m/z berechnet für C₁₂H₁₁N⁺ 169.0891, gefunden 169.0895.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁵⁸

 ¹⁵⁷ a) J. W. Tilley, S. Zawoiski, J. Organomet. Chem. **1988**, 53, 386–390; b) M. Movassaghi, M. D. Hill, J. Am. Chem. Soc. **2006**, 128, 4592–4593; c) Liu, W. Yang, Chem. Commun. **2009**, 6267–6269.

¹⁵⁸ A. Núñez, A. Sánchez, C. Burgos, J. Alvarez-Builla, *Tetrahedron* **2004**, *60*, 6217–6224.

Darstellung von 2-(3-Methoxyphenyl)pyridin (46i)

Nach AAV 1 werden Magnesiumspäne (1.27 g, 52.3 mMol) und 1-Brom-3-methoxybenzol (**1f**) (8.8 g, 5.9 mL, 47 mMol) in THF (20 mL), sowie Ni(acac)₂ (240 mg, 934 μ Mol), HIPrCl (460 mg, 898 μ Mol, 83%ig) und 2-Chlorpyridin (**150e**) (3.4 g, 2.8 mL, 30 mMol) in THF (20 mL) über 16 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Pentan/EtOAc 25:1 \rightarrow 5:1) und anschließende Kugelrohrdestillation (ÖPV, 140 °C) liefert **46i** (4.87 g, 88%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.69 (ddd, *J* = 4.8, 1.7, 1.0 Hz, 1H), 7.82–7.67 (m, 2H), 7.63–7.49 (m, 2H), 7.38 (t, *J* = 7.9 Hz, 1H), 7.29–7.18 (m, 1H), 6.97 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H), 3.90 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.1 (C_q), 157.2 (C_q), 149.6 (CH), 140.9 (C_q), 137.0 (CH), 129.7 (CH), 122.2 (CH), 120.7 (CH), 119.3 (CH), 115.1 (CH), 112.0 (CH), 55.4 (CH₃).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 184 (100) [(M-H)⁺], 154 (77), 140 (32), 115 (17), 78 (24).

HR-MS (ESI): *m*/*z* berechnet für C₁₂H₁₁NO+H⁺ 186.0919, gefunden 186.0915.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.^{160, 159}

Darstellung von 2-(3-Fluorphenyl)pyridin (46j)

Nach AAV 1 werden Magnesiumspäne (2.54 g, 105 mMol) und 1-Brom-3-Fluorbenzol (**1g**) (17.5 g, 100 mMol) in THF (40 mL), sowie Ni(acac)₂ (462 mg, 1.80 mMol), HIPrCl (869 mg, 1.82 mMol, 89%ig) und 2-Chlorpyridin (**105e**) (6.77 g, 59.6 mMol) in THF (40 mL) über 20 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 30:1 \rightarrow 20:1) und anschließende Kugelrohrdestillation (ÖPV, 120 °C) liefert **46j** (7.11 g, 69%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.8, 1.7, 0.9 Hz, 1H), 7.79–7.63 (m, 4H), 7.41 (ddd, *J* = 8.2, 8.2, 6.0 Hz, 1H), 7.26 (ddd, *J* = 6.7, 4.8, 1.5 Hz, 1H), 7.11 (ddd, *J* = 8.3, 2.6, 0.9 Hz, 1H).

¹⁵⁹ M. Parmentier, P. Gros, Y. Fort, *Tetrahedron* **2005**, *61*, 3261–3269.

¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.3 (C_q, ¹J_{C-F} = 245 Hz), 156.0 (C_q, ⁴J_{C-F} = 3 Hz), 149.7 (CH), 141.7 (C_q, ³J_{C-F} = 8 Hz), 136.8 (CH), 130.2 (CH, ³J_{C-F} = 8 Hz), 122.6 (CH), 122.4 (CH, ⁴J_{C-F} = 3 Hz), 120.5 (CH), 115.7 (CH, ²J_{C-F} = 21 Hz), 113.8 (CH, ²J_{C-F} = 23 Hz).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 173 (100) [M⁺], 154 (11), 146 (15), 125 (8), 120 (9), 75 (7).

HR-MS (EI): *m*/*z* berechnet für C₁₁H₈FN⁺ 173.0641, gefunden 173.0642.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁶⁰

Darstellung von 2-(4-Fluorphenyl)pyridin (46k)

Nach AAV 1 werden Magnesiumspäne (1.27 g, 52.3 mMol) und 1-Brom-4-fluorbenzol (**1h**) (8.74 g, 49.9 mMol) in THF (20 mL), sowie Ni(acac)₂ (240 mg, 934 μ Mol), HIPrCl (460 mg, 963 μ Mol, 89%ig) und 2-Chlorpyridin (**150e**) (3.45 g, 30.4 mMol) in THF (20 mL) über 22 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 25:1 \rightarrow 9:1) und anschließende Kugelrohrdestillation (ÖPV, 120 °C) liefert **46k** (2.23 g, 42%) als weißen Feststoff.

Smp.: 40 °C (Lit.: 36–38 °C).¹⁶⁰

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.53 (ddd, *J* = 4.8, 1.7, 0.9 Hz, 1H), 8.00–7.91 (m, 2H), 7.71 (ddd, *J* = 7.2, 7.4, 1.7 Hz, 1H), 7.67–7.62(m, 1H), 7.25–7.09 (m,3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.3 (C_q, ¹J_{C-F} = 248 Hz), 156.3 (C_q), 149.5 (CH), 136.7 (CH), 135.4 (C_q, ⁴J_{C-F} = 3 Hz), 128.6 (CH, ³J_{C-F} = 8 Hz), 121.9 (CH), 120.1 (CH), 115.5 (CH, ²J_{C-F} = 22 Hz).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 173 (100) [M⁺], 146 (7), 121 (5), 75 (6).

HR-MS (EI): *m*/*z* berechnet für C₁₁H₈FN⁺ 173.0641, gefunden 173.0639.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁶⁰

¹⁶⁰ J. Xu, G. Cheng, D. Su, Y. Liu, X. Wang, Y. Hu, *Chem Eur. J.* **2009**, *15*, 13105–13110.

Darstellung von 2-[4-(Benzyloxy)phenyl]pyridin (46l)

Nach AAV 1 werden Magnesiumspäne (292 mg, 12.0 mMol) und 4-Brombenzyloxybenzol (**1a**) (2.62 g, 9.96 mMol) in THF (8 mL), sowie Ni(acac)₂ (77 mg, 0.30 mMol), HIPrCl (128 mg, 0.30 mMol) und 2-Chlorpyridin (**105e**) (1.16 g, 10.2 mMol) in THF (8 mL) über 17 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1) und anschließende Kugelrohrdestillation (ÖPV, 150 °C) liefert **46I** (1.06 g, 41%) als weißen Feststoff.

Smp.: thermische Zersetzung ab 250 °C.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68–8.63 (m, 1H), 7.99–7.92 (m, 2H), 7.76–7.63 (m, 2H), 7.50–7.29 (m, 5H), 7.20–7.15 (m, 1H), 7.04–7.12 (m, 2H), 5.13 (s, 2H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 159.6 (C_q), 157.1 (C_q), 149.5 (CH), 136.8 (C_q), 136.6 (CH), 132.3 (C_q), 128.6 (CH), 128.2 (CH), 128.0 (CH), 127.5 (CH), 121.4 (CH), 119.8 (CH), 115.0 (CH), 70.0 (CH₂).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 261 (22) [M⁺], 170 (7), 141 (6), 91 (100), 65 (12).

HR-MS (EI): m/z berechnet für C₁₈H₁₅NO⁺ 261.1154, gefunden 261.1162.

Darstellung von 2-(Benzo[b]thiophen-3-yl)pyridin (99a)

Nach AAV 1 werden Magnesiumspäne (403 mg, 16.6 mMol) und 3-Brombenzo[*b*]thiophen (**1**j) (3.20 g, 15.0 mMol) in THF (15 mL), sowie Ni(acac)₂ (128 mg, 498 μ Mol), HIPrCl (213 mg, 501 μ Mol) und 2-Brompyridin (**105g**) (1.57 g, 9.92 mMol) in THF (10 mL) über 24 h bei 50 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1 \rightarrow 5:1) und anschließende Kugelrohrdestillation (0.5 mbar, 160 °C) liefert **99a** (563 mg, 27%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.74 (ddd, J = 5.1, 1.8, 1.0 Hz, 1H), 8.49–8.40 (m, 1H), 7.94–7.85 (m, 1H), 7.80 (s, 1H), 7.76 (dd, J = 7.6, 1.9 Hz, 1H), 7.71–7.64 (m, 1H), 7.49–7.34 (m, 2H), 7.30–7.21 (m, 1H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 154.5 (C_q), 149.5 (CH), 140.8 (C_q), 137.2 (C_q), 136.7 (CH), 136.5 (C_q), 126.5 (CH), 124.6 (CH), 124.5 (CH), 124.0 (CH), 122.7 (CH), 122.6 (CH), 122.0 (CH).

IR (ATR): $\tilde{\nu}$ =3081, 3010, 1558, 1567, 1466, 1434, 1152, 863, 761, 690 cm⁻¹.

MS (70 eV, EI): *m*/*z* (relative Intensität) =211 (82) [M⁺], 210 (100), 166 (13), 139 (9), 83 (11), 69 (18).

HR-MS (EI): *m*/*z* berechnet für C₁₃H₉NS⁺ 211.0456, gefunden 211.0457.

Darstellung von 6'-Methoxy-2,3'-bipyridin (99b)

Zu einer Lösung von 5-Brom-2-methoxypyridin (**1k**) (2.31 g, 12.3 mMol), $Pd_2(dba)_3$ ·dba (575 mg, 0.500 mMol) und (1-Ad)_2P(O)H (637 mg, 2.00 mMol) in THF (1.0 M bzgl. **1k**) in einem ausgeheizten mit Septum, Magnetrührstab und Rückflusskühler versehenen 2-Halsrundkolben wird bei Umgebungstemperatur unter Schutzgasatmosphäre eine nach AAV 1 hergestellte Pyridylgrignard-Lösung (65 mL, 0.30 M, 20 mMol) getropft. Nach vollständiger Zugabe wird die Reaktionsmischung unter Schutzgasatmosphäre bei 60 °C über 24 h gerührt. Nach Abkühlen auf Umgebungstemperatur wird H₂O (50 mL) und wässr. ges. NH₄Cl-Lösung (75 mL) hinzugegeben der Niederschlag abfiltriert die Phasen getrennt und die wässr. Phase mit EtOAc (3 × 50 mL) extrahiert. Die vereinigten organischen Phasen werden mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Mehrfache säulenchromatografische Trennung (*n*-Hexan/EtOAc 30:1→3:1) an Kieselgel liefert **99b** (52 mg, 2%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.72 (dd, *J* = 2.5, 0.8 Hz, 1H), 8.65 (ddd, *J* = 4.8, 1.8, 1.0,1H), 8.24 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.73 (ddd, *J* = 8.0, 7.4, 1.8 Hz, 1H), 7.64 (ddd, *J* = 8.0, 1.1, 1.0 Hz, 1H), 7.21 (ddd, *J* = 7.4, 4.8, 1.1 Hz, 1H), 6.83 (dd, *J* = 8.7, 0.8 Hz, 1H), 3.98 (s, 3H).

¹³**C-NMR** (125 MHz, CDCl₃): δ = 164.7 (C_q), 155.0 (C_q), 149.7 (CH), 145.5 (CH), 137.3 (CH), 136.9 (CH), 128.5 (C_q), 122.0 (CH), 119.8 (CH), 110.9 (CH), 53.7 (CH₃).

MS (70 eV, EI): *m/z* (relative Intensität) = 186 (80) [M⁺], 185 (100), 155 (41), 142 (13), 129 (8), 116 (9), 89 (11), 78 (13).

HR-MS (EI): *m/z* berechnet für C₁₁H₁₀N₂O⁺ 186.0793, gefunden 186.0794.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁰³

Darstellung von 2-(Thiophen-3-yl)pyridin (99c)

Zu einer Lösung von 3-Bromthiophen (1) (3.23 g, 19.8 mMol), Pd₂(dba)₃·dba (916 mg, 1.00 mMol) und (1-Ad)₂P(O)H (1.27 g, 3.99 mMol) in THF (1.0 M bzgl. 1l) in einem ausgeheizten mit Septum, Magnetrührstab und Rückflusskühler versehenen 2-Halsrundkolben wird bei Umgebungstemperatur unter Schutzgasatmosphäre eine nach AAV 1 hergestellte Pyridylgrignard-Lösung (200 mL, 0.30 M, Nach vollständiger Zugabe wird die 60 mMol) getropft. Reaktionsmischung unter Schutzgasatmosphäre über 4 d bei 60 °C gerührt. Nach Abkühlen auf Umgebungstemperatur wird H₂O (100 mL) hinzugegeben die wässr. Phase mit EtOAc (3 × 100 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung (n-Hexan/EtOAc 20:1 \rightarrow 4:1) an Kieselgel und anschließende Kugelrohrdestillation (ÖPV, 120 °C) liefert 99c (672 mg, 21%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.65–8.58 (m, 1H), 7.92–7.86 (m, 1H), 7.75–7.54 (m, 3H), 7.31 (dd, J = 5.1, 3.0 Hz, 1H), 7.19–7.11 (m, 1H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 153.4 (C_q), 149.5 (CH), 142.1 (C_q), 136.6 (CH), 126.2 (CH), 126.1 (CH), 123.4 (CH), 121.7 (CH), 120.2 (CH).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 161 (100) [M⁺], 135 (11), 117 (29).

HR-MS (ESI): m/z berechnet für C₉H₇NS+H⁺ 162.0377, gefunden 162.0373.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁰³

Darstellung von 2-(Thiophen-2-yl)pyridin (99d)

Zu einer Lösung von 2-Bromthiophen (**1m**) (1.61 g, 9.9 mMol), $Pd_2(dba)_3 \cdot dba$ (458 mg, 0.500 mMol) und (1-Ad)₂P(O)H (637 mg, 2.00 mMol) in THF (1.0 M bzgl. **1m**) in einem ausgeheizten mit Septum, Magnetrührstab und Rückflusskühler versehenen 2-Halsrundkolben wird bei Umgebungstemperatur unter Schutzgasatmosphäre eine nach AAV 1 hergestellte Pyridylgrignard-Lösung (100 mL, 0.3 M) getropft. Nach vollständiger Zugabe wird die Reaktionsmischung unter Schutzgasatmosphäre bei 60 °C über 4 d gerührt. Nach Abkühlen auf Umgebungstemperatur wird H₂O (50 mL) hinzugegeben die wässr. Phase mit EtOAc (3 × 50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die

Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung (*n*-Hexan/EtOAc 20:1 \rightarrow 4:1) an Kieselgel und anschließende Kugelrohrdestillation (ÖPV, 120 °C) liefert **99d** (188 mg, 12%) als hellgelben Feststoff.

Smp.: 62 °C (Lit.: 62 °C).¹⁶²

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.57 (ddd, *J* = 4.9, 1.7, 1.0 Hz, 1H), 7.74–7.62 (m, 2H), 7.58 (dd, *J* = 3.7, 1.1 Hz, 1H), 7.39 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.20–7.05 (m, 2H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 152.5 (C_q), 149.5 (CH), 144.8 (C_q), 136.6 (CH), 128.0 (CH), 127.5 (CH), 124.5 (CH), 121.8 (CH), 118.7 (CH).

MS (70 eV, EI): *m*/*z* (relative Intensität) = 161 (100) [M⁺], 135 (9), 117 (25), 89 (19), 63 (21), 45 (41).

HR-MS (ESI): *m/z* berechnet für C₉H₇NS+H⁺ 162.0377, gefunden 162.0375.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.^{161,162}

Darstellung von 3-Methyl-1-(pyridin-2-yl)-1H-indol (99e)

In einem 2-Halsrundkolben mit Rückflusskühler wird zu einer Lösung von KOH (1.40 g, 25.0 mMol) in DMSO (15 mL) 3-Methyl-1*H*-indol (**112**) (1.31 g, 10.0 mMol) und 2-Brompyridin (**105g**) (1.58 g, 10.0 mMol) gegeben und die erhaltene Reaktionsmischung bei 120 °C über 47 h gerührt. Es wird erneut 2-Brompyridin (**105g**) (1.59 g, 10.1 mMol) hinzugegeben und bei 120 °C weitere 3 d gerührt. Nach Abkühlen auf Umgebungstemperatur wird ges. wässr. NH₄Cl-Lösung (30 mL) hinzugegeben die wässr. Phase mit EtOAc (3 × 30 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (30 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung (*n*-Hexan/EtOAc 50:1→20:1) an Kieselgel und anschließende Kugelrohrdestillation (0.3 mbar, 150 °C) liefert **99e** (1.21 g, 58%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, $CDCI_3$): δ = 8.53 (ddd, J = 5.0, 1.9, 0.9 Hz, 1H), 8.21 (dt, J = 8.3, 0.9 Hz, 1H), 7.77 (ddd, J = 8.4, 7.4, 2.0 Hz, 1H), 7.59 (ddd, J = 7.7, 1.5, 0.7 Hz, 1H), 7.53–7.49 (m, 1H), 7.44 (dt, J = 8.3, 0.9 Hz, 1H), 7.29 (ddd, J = 8.4, 7.1, 1.4 Hz, 1H), 7.28–7.15 (m, 1H), 7.10 (ddd, J = 7.4, 4.9, 0.9 Hz, 1H), 2.37 (d, J = 1.2 Hz, 3H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 152.5 (C_q), 148.8 (CH), 138.2 (CH), 135.3 (C_q), 131.0 (C_q), 123.2 (CH), 123.1 (CH), 120.8 (CH), 119.4 (CH), 119.0 (CH), 114.8 (C_q), 114.0 (CH), 113.0 (CH), 9.7 (CH₃).

¹⁶¹ M. R. Luzung, J. S. Patel, J. Yin, *J. Org. Chem.* **2010**, *75*, 8330–8332.

¹⁶² D. Crich, M. Patel, *Tetrahedron* **2006**, *62*, 7824–7837.

MS (70 eV, EI): *m*/*z* (relative Intensität) = 208 (100) [M⁺], 130 (43), 103 (9), 78 (15).

HR-MS (ESI): m/z berechnet für C₁₄H₁₂N₂+H⁺ 209.1079, gefunden 209.1073.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁶³

Darstellung von 3-Methyl-1-(pyrimidin-2-yl)-1H-indol (99f)

In einem 2-Halsrundkolben mit Rückflusskühler wird zu einer Lösung von KOH (893 mg, 15.9 mMol) in DMSO (20 mL) 3-Methyl-1*H*-indol (**112**) (835 g, 6.36 mMol) und 2-Chlorpyrimidin (**109b**) (1.09 g, 9.55 mMol) gegeben und die erhaltene Reaktionsmischung über 24 h bei 120 °C gerührt. Es wird erneut 2-Chlorpyrimidin (**109b**) (1.00 g, 8.73 mMol) hinzugegeben und bei 120 °C weitere 5 d gerührt. Nach Abkühlen auf Umgebungstemperatur wird ges. wässr. NH₄Cl-Lösung (30 mL) hinzugegeben die wässr. Phase mit MTBE (3 × 50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (100 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung (*n*-Hexan/EtOAc 20:1 \rightarrow 10:1) an Kieselgel liefert **99f** (1.12 g, 84%) als weißen Feststoff.

Smp.: 76 °C (Lit.: 76 °C).¹⁰⁴

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.76 (ddd, *J* = 8.3, 1.8, 0.8 Hz, 1H), 8.65 (d, *J* = 4.8 Hz, 2H), 8.02 (s, 1H), 7.60–7.49 (m, 1H), 7.33 (ddd, *J* = 8.4, 7.1, 1.4 Hz, 1H), 7.29–7.20 (m, 1H), 6.97 (t, *J* = 4.8 Hz, 1H), 2.34 (m, 3H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 158.0 (CH), 157.6 (C_q), 135.6 (C_q), 132.0 (C_q), 123.7 (CH), 122.9 (CH), 121.7 (CH), 118.8 (CH), 116.2 (CH), 116.1 (C_q), 115.5 (CH), 9.77 (CH₃).

MS (70 eV, EI): *m/z* (relative Intensität) = 209 (100) [M⁺], 155 (7), 130 (40), 77 (14), 69 (14).

HR-MS (ESI): m/z berechnet für C₁₃H₁₁N₃-H⁺ 208.0875, gefunden 208.0872.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁰⁴

¹⁶³ A. K. Verma, J. Singh, R. C. Larock, *Tetrahedron* **2009**, *65*, 8434–8439.

Darstellung von 3-Methyl-1-(5-methylpyrimidin-2-yl)-1H-indol (99g)

In einem 2-Halsrundkolben mit Rückflusskühler wird zu einer Lösung von KOH (298 mg, 5.31 mMol) in DMSO (3 mL) 2-Chlor-5-methylpyrimidin (**109b**) (254 mg, 1.97 mMol) und 3-Methyl-1*H*-indol (**112**) (264 mg, 2.01 mMol) gegegeben und die erhaltene Reaktionsmischung bei 120 °C über 17 h gerührt. Nach Abkühlen auf Umgebungstemperatur wird ges. wässr. NH₄Cl-Lösung (10 mL) hinzugegeben, die wässr. Phase mit MTBE (3 × 10 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (10 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung (*n*-Hexan/EtOAc 20:1) an Kieselgel liefert **99g** (69.2 mg, 16%) als weißen Feststoff.

Smp.: 115 °C.

¹**H-NMR** (300 MHz, $CDCI_3$): δ = 8.75 (ddd, *J* = 8.3, 1.7, 0.8 Hz, 1H), 8.49 (s, 2H), 8.01 (s, 1H), 7.60–7.53 (m, 1H), 7.35 (ddd, *J* = 8.5, 7.1, 1.4 Hz, 1H), 7.29–7.20 (m, 1H), 2.37 (m, 3H), 2.29 (d, *J* = 1.2 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.0 (CH), 156.1 (C_q), 135.5 (C_q), 131.8 (C_q), 124.5 (C_q), 123.5 (CH), 122.9 (CH), 121.4 (CH), 118.7 (CH), 115.9 (CH), 115.5 (C_q), 15.0 (CH₃), 9.7 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2921, 1576, 1547, 1453, 1381, 1236, 1147, 915, 836, 760, 640 cm⁻¹.

MS (70 eV, EI): *m/z* (relative Intensität) = 223 (100) [M⁺], 144 (26), 130 (58), 98 (22), 77 (32), 57 (53).

HR-MS (EI): *m/z* berechnet für C₁₄H₁₃N₃⁺ 223.1109, gefunden 223.1107.

Darstellung von 5-Methyl-2-phenylpyrimidin (101a)

Nach AAV 1 werden Magnesiumspäne (75.4 mg, 3.10 mMol) und Brombenzol (**1c**) (471 mg, 3.00 mMol) in THF (3 mL), sowie Ni(acac)₂ (15.4 mg, 59.9 μ Mol), HIPrCl (25.5 mg, 60.0 μ Mol) und 2-Chlor-5-methyl-pyrimidin (**109a**) (258 mg, 2.00 mMol) in THF (2 mL) über 18 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1 \rightarrow 10:1) und anschließende Kugelrohrdestillation (0.5 mbar, 140 °C) liefert **101a** (196 mg, 57%) als weißen Feststoff.

Smp.: 68 °C (Lit.: 68 °C).¹⁶⁴

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.63 (s, 2H), 8.46–8.33 (m, 2H), 7.55–7.41 (m, 3H), 2.33 (s, 3H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 162.4 (C_q), 157.3 (CH), 137.6 (C_q), 130.3 (CH), 128.5 (CH), 128.3 (C_q), 127.8 (CH), 15.5 (CH₃).

MS (70 eV, EI): *m/z* (relative Intensität) = 170 (89) [M⁺], 143 (13), 103 (100), 76 (33), 52 (15), 39 (40).

HR-MS (EI): m/z berechnet für C₁₁H₁₀N₂⁺ 170.0844, gefunden 170.0848.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁶⁴

Darstellung von 4-Phenylpyrimidin (101b)

In einem Biotage-Mikrowellen-Fläschchen (20 mL) mit Magnetrührstab werden Acetophenon (**24a**) (603 mg, 5.02 mMol), Toluolsulfonsäure-monohydrat (955 mMol, 5.02 mMol) und HMDS (4.04 g, 25.0 mMol) in Formamid (**113**) (15 mL) über 13 min bei 215 °C unter Mikrowellenbestrahlung umgesetzt. Das Reaktionsgemisch wird mit wässr. ges. NaHCO₃-Lösung (20 mL) versetzt, die wässr. Phase mit EtOAc (3 × 50 mL) extrahiert, die vereinigten organischen Phasen mit Wasser (100 mL) und wässr. ges. NaCl-Lösung (100 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 4:1 \rightarrow 2:1) liefert **101b** (488 mg, 62%) als weißen Feststoff.

Smp.: 66 °C (Lit.: 63 °C)¹⁰⁵

¹**H-NMR** (300 MHz, CDCl₃): δ = 9.28 (d, *J* = 1.4 Hz, 1H), 8.77 (d, *J* = 5.3 Hz, 1H), 8.17–8.04 (m, 2H), 7.72 (dd, *J* = 5.3, 1.4 Hz, 1H), 7.58–7.48 (m, 3H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 163.8 (C_q), 159.1 (CH), 157.4 (CH), 136.4 (C_q), 131.0 (CH), 129.0 (CH), 127.1 (CH), 117.0 (CH).

MS (70 eV, EI): *m/z* (relative Intensität) = 156 (100) [M⁺], 129 (78), 102 (62), 76 (23).

HR-MS (EI): m/z berechnet für C₁₀H₈N₂⁺ 156.0687, gefunden 156.0685.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.^{105,165}

¹⁶⁴ K. Burdeska, H. Fuhrer, G. Kabas, A. E. Siegris, *Helv. Chim. Acta* **1981**, *64*, 113–152.

¹⁶⁵ T. Sasada, F. Kobayashi, N. Sakai, T. Konakahara, Org. Lett. **2009**, *11*, 2161–2164.

Darstellung von 2-Phenylpyrimidin (101c)

In einem ausgeheizten mit Septum, Magnetrührstab und Rückflusskühler versehenen 2-Halsrundkolben werden Phenylboronsäure (**114**) (2.93 g, 24.0 mMol), 2-Chlorpyrimidin (**109b**) (2.29 g, 20.0 mMol), Na₂CO₃ (21.2 g, 200 mMol) und Pd(PPh₃)₂Cl₂ (140 mg, 0.200 mMol) in 1,4-Dioxan (50 mL) bei 90 °C über 18 h umgesetzt. Das Reaktionsgemisch wird mit Wasser (100 mL) versetzt, die wässr. Phase mit EtOAc (3×50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (100 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 30:1 \rightarrow 10:1) liefert **101c** (2.36 g, 75%) als weißen Feststoff.

Smp.: 42 °C (Lit.: 37 °C).¹⁰⁶

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.78 (d, J = 4.8 Hz, 2H), 8.50–8.40 (m, 2H), 7.55–7.45 (m, 3H), 7.16 (t, J = 4.8 Hz, 1H).

¹³**C-NMR** (75 MHz, $CDCl_3$): δ = 164.7 (C_q), 157.1 (CH), 137.5 (C_q), 130.7 (CH), 128.5 (CH), 128.1 (CH), 119.0 (CH).

MS (70 eV, EI): *m/z* (relative Intensität) = 156 (100) [M⁺], 129 (9), 103 (57), 76 (14).

HR-MS (EI): m/z berechnet für C₁₀H₈N₂⁺ 156.0687, gefunden 156.0685.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁰⁶

Darstellung von 2-Brom-3-methoxypyridin (105a)

MeC

In einem ausgeheizten mit Septum, Magnetrührstab und Rückflusskühler versehenen 2-Halsrundkolben wird zu einer Suspension von gemörsertem Kaliumhydroxid (5.87 g, 88.9 mMol, 85%ig) in DMSO (26 mL) 2-Brompyridin-3-ol (**105b**) (4.53 g, 26.2 mMol) gegeben und 20 Min bei 60 °C unter Schutzgasatmosphäre gerührt. Iodmethan (2.0 mL, 32 mMol) wird innerhalb von 20 min hinzugetropft und das Reaktionsgemisch weitere 10 min bei 60 °C gerührt. Das Reaktionsgemisch wird auf Eiswasser gegossen (50 mL), mit MTBE (3 × 100 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Kugelrohrdestillation (0.1 mbar, 90 °C) liefert **105a** (3.83 g, 78%) als weißen Feststoff.

Smp.: 46 °C (Lit.: 45 °C).⁹⁷

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.95 (dd, *J* = 4.6, 1.6 Hz, 1H), 7.20 (dd, *J* = 8.1, 4.6 Hz, 1H), 7.11 (dd, *J* = 8.1, 1.6 Hz, 1H), 3.88 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): *δ* = 152.9 (C_q), 141.2 (CH), 132.6 (C_q), 123.4 (CH), 118.5 (CH), 56.1 (CH₃).

MS (70 eV, EI): *m/z* (relative Intensität) = 189/187 (81/84) [M⁺], 146/144 (14/15), 108 (32), 93 (17), 79 (8).

HR-MS (ESI): m/z berechnet für C₆H₆BrNO⁺ 186.9633, gefunden 186.9637.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.⁹⁷

Darstellung von 2,4-Dichlor-5-methylpyrimidin (108)

In einem ausgeheizten mit Septum, Magnetrührstab und Rückflusskühler versehenen 2-Halsrundkolben wird zu Phosphorylchlorid (20 mL, 0.22 Mol) Thymin (**107**) (6.31 g, 50.0 mMol) gegeben und die Suspension über 1 h bei 120 °C gerührt. Das Reaktionsgemisch wird auf Eis (400 mL) gegossen. Nach Aufwärmen auf Umgebungstemperatur wird mit CH₂Cl₂ (3 × 100 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und das Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Kugelrohrdestillation (ÖPV, 60 °C) liefert **108** (6.65 g, 82%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.37 (d, J = 0.8 Hz, 1H), 2.31 (d, J = 0.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 162.4 (C_q), 159.9 (CH), 158.0 (C_q), 128.9 (C_q), 15.7 (CH₃).

IR (ATR): $\tilde{\nu}$ = 1559, 1519, 1392, 1371, 1319, 1179, 1099, 1002, 860, 759, 711, 665 cm⁻¹.

MS (70 eV, EI): *m/z* (relative Intensität) = 166/164/162 (11/65/100) [M⁺], 139/137/135 (7/38/61), 129/127 (19/59), 100 (59), 74 (20), 64 (27).

HR-MS (EI): m/z berechnet für C₅H₄N₂Cl₂⁺ 161.9752, gefunden 161.9756.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁶⁶

¹⁶⁶ H. Wang, K. Wen, L. Wang, Y. Xiang, X. Xu, Y.Shen, Z. Sun, *Molecules* **2012**, *17*, 4533–4544.

Darstellung von 2-Chlor-5-methylpyrimidin (109a)

In einem mit Stopfen, Magnetrührstab und Rückflusskühler versehenen 2-Halsrundkolben werden 2,4-Dichlor-5-methylpyrimidin (**108**) (3.25 g, 19.9 mMol) und Zinkstaub (3.92 g, 60.0 mMol) in demineralisiertem H₂O (35 mL) bei 100 °C über 16 h gerührt. Nach Abkühlen auf Umgebungstemperatur wird das Reaktionsgemisch durch Celit filtriert und der Filterkuchen mit CH₂Cl₂ (20 mL) gewaschen. Die wässr. Phase wird mit CH₂Cl₂ (3 × 50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (100 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und das Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel (CH₂Cl₂/MeOH 99:1 \rightarrow 24:1) liefert **109a** (0.650 g, 25%) als weißen Feststoff.

Smp.: 91 °C (Lit.: 89–91 °C).¹⁰⁰

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.42 (s, 2H), 2.28 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): *δ* = 159.6 (CH), 158.9 (C_q), 129.4 (C_q), 14.9 (CH₃).

MS (70 eV, EI): m/z (relative Intensität) = 130/128 (34/100) [M⁺], 103/101 (22/68), 62 (18), 39 (60).

HR-MS (ESI): m/z berechnet für C₅H₅N₂Cl+H⁺ 129.0220, gefunden 129.0214.

Die analytischen Daten stehen in Einklang mit den publizierten Werten. ^{100,167}

5.3.2 Rutheniumkatalysierten Hydroarylierungen von 2-Phenylmethylencyclopropan

Darstellung von 2-{[2-(cis-2-Phenylcyclopropyl)methyl]phenyl}pyridin (48a)

In einem ausgeheizten 25 mL-Schlenkrohr wird eine Suspension von $[RuCl_2(cod)]_n$ (14 mg, 50 μ Mol), X-Phos (48 mg, 0.10 mMol) und **46a** (150 mg, 966 μ Mol) in 1,4-Dioxan (3 mL) über 48 h bei 120 °C unter Schutzgasatmosphäre gerührt, während **47** (388 mg, 2.98 mMol) in vier gleichen Portionen (nach 0, 12, 24, 36 h) zugegeben wird. Nach Abkühlen der Reaktionsmischung wird der Umsatz *via*

¹⁶⁷ R. F. Newton, D. P. Reynolds, C. F. Webb, S. N. Young, Z. Grudzinski, S. M. Roberts, *J. Chem. Soc., Perkin Trans.* 1 **1979**, 2789–2792.

GC/MS-Analyse bestimmt, wässr. ges. NaHCO₃-Lösung (20 mL) hinzugegeben, die wässr. Phase mit MTBE (3 × 50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Pentan/Et₂O 20:1 \rightarrow 5:1) liefert **48a** (112 mg, 41%) als hellgelbes Öl.

Nach AAV 3 werden **46a** (160 mg, 1.03 mMol) und **2a** (400 mg, 3.07 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 20:1 \rightarrow 10:1) liefert **46a** (223 mg, 76%) als hellgelbes Öl.

Nach AAV 4 werden **46a** (159 mg, 1.02 mMol) und **47** (396 mg, 3.04 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 20:1 \rightarrow 2:1) liefert **46a** (285 mg, 97%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.65 (ddd, *J* = 4.8, 1.5, 0.8 Hz, 1 H), 7.70 (td, *J* = 7.8, 1.8 Hz, 1H), 7.32–7.14 (m, 9H), 7.06 (dd, *J* = 4.3, 1.8 Hz, 2H), 2.56 (dd, *J* = 15.0, 6.0 Hz, 1H), 2.32 (dd, *J* = 15.0, 8.3 Hz, 1H), 2.12 (ddd, *J* = 8.8, 8.5, 5.8 Hz, 1H), 1.31–1.18 (m, 1H), 0.89 (ddd, *J* = 8.5, 8.5, 5.3 Hz, 1H), 0.59 (ddd, *J* = 5.8, 5.5, 5.3 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.4 (C_q), 149.2 (CH), 140.5 (C_q), 140.1 (C_q), 139.3 (C_q), 136.2 (CH), 129.8 (CH), 129.7 (CH), 129.0 (CH), 128.3 (CH), 127.9 (CH), 125.9 (CH), 125.7 (CH), 124.3 (CH), 121.7 (CH), 31.4 (CH₂), 21.7 (CH), 20.3 (CH), 9.9 (CH₂).

IR (ATR): $\tilde{\nu}$ = 3058, 3024, 1584, 1495, 1462, 1424, 1204, 1148, 988, 848, 793, 750, 728, 698 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 285 (4) [M⁺], 194 (16), 180 (100), 167 (28), 152 (9), 110 (8).

HR-MS (ESI): m/z berechnet für C₂₁H₁₉N+H⁺ 286.1596, gefunden 286.1593.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.⁴⁶

Darstellung von 3-Methoxy-2-{2-[(cis-2-phenylcyclopropyl)methyl]phenyl}pyridin (48b)

Nach AAV 3 werden **46b** (90 mg, 0.49 mMol) und **47** (200 mg, 1.54 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 20:1 \rightarrow 1:1) liefert **48b** (122 mg, 79%) als hellgelbes Öl.

Nach AAV 4 werden **46b** (181 mg, 0.98 mMol) und **47** (390 mg, 3.00 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 20:1 \rightarrow 4:1) liefert **48b** (211 mg, 68%) als hellgelbes Öl. ¹**H-NMR** (300 MHz, CDCl₃): δ = 8.30 (dd, *J* = 4.6, 1.3 Hz, 1H), 7.37–7.22 (m, 5H), 7.22–7.10 (m, 4H), 7.07–6.98 (m, 2H), 3.58 (s, 3H), 2.44 (dd, *J* = 15.1, 5.5 Hz, 1H), 2.11 (ddd, *J* = 8.6, 8.4, 5.9 Hz, 1H), 2.00 (dd, *J* = 15.1, 8.9 Hz, 1H), 1.36–1.18 (m, 1H), 0.90 (ddd, *J* = 8.4, 8.3, 5.4 Hz, 1H), 0.53 (ddd, *J* = 5.9, 5.7, 5.4 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 153.2 (C_q), 150.0 (C_q), 140.8 (CH), 140.5 (C_q), 139.2 (C_q), 137.3 (C_q), 129.5 (CH), 128.7 (CH), 128.7 (CH), 128.0 (CH), 127.6 (CH), 125.6 (CH), 125.4 (CH), 122.8 (CH), 117.6 (CH), 55.0 (CH₃), 31.3 (CH₂), 21.3 (CH), 19.7 (CH), 9.8 (CH₂).

IR (ATR): $\tilde{\nu}$ = 3057, 3023, 2935, 1452, 1424, 1273, 1193, 1124, 1015, 799, 751, 698 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 314 (10) [(M-H)⁺],284 (19), 210 (100), 195 (15), 183 (11), 167 (24), 154 (24), 115 (11).

HR-MS (EI): m/z berechnet für C₂₂H₂₁NO⁺ 315.1623, gefunden 315.1629.

Darstellung von 5-Methyl-2-{[(cis-2-phenylcyclopropyl)methyl]phenyl}pyridin (48d)

Nach AAV 3 werden **46d** (85 mg, 0.50 mMol) und **47** (190 mg, 1.46 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 25:1 \rightarrow 15:1) liefert **48d** (96 mg, 64%) als hellgelbes Öl.

Nach AAV 4 werden **46d** (170 mg, 1.00 mMol) und **47** (395 mg, 3.03 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 25:1 \rightarrow 10:1) liefert **48d** (240 mg, 80%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.48–8.45 (m, 1H), 7.48 (ddd, *J* = 8.0, 2.3, 0.7 Hz, 1H), 7.33–7.08 (m, 8H), 7.07–6.99 (m, 2H), 2.55 (dd, *J* = 14.9, 6.2 Hz, 1H), 2.38 (s, 3H), 2.32 (dd, *J* = 14.9, 8.2 Hz, 1H), 2.10 (ddd, *J* = 8.6, 8.5, 5.9 Hz 1H), 1.32–1.18 (m, 1H), 0.88 (ddd, *J* = 8.5, 8.4, 5.4 Hz, 1H), 0.60 (ddd, *J* = 5.9, 5.7, 5.4 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 157.4 (C_q), 149.5 (CH), 140.3 (C_q), 140.0 (C_q), 139.2 (C_q), 136.6 (CH), 130.9 (C_q), 129.6 (CH), 129.6 (CH), 128.9 (CH), 128.0 (CH), 127.8 (CH), 125.8 (CH), 125.6 (CH), 123.6 (CH), 31.2 (CH₂), 21.6 (CH), 20.3 (CH), 18.2 (CH₃), 9.7 (CH₂).

IR (ATR): \tilde{v} = 2999, 2922, 1600, 1559, 1495, 1475, 1443, 1376, 1219, 1160, 1117, 1024, 837, 749 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 299 (25) [M⁺], 284 (7), 208 (39), 194 (100), 181 (41), 167 (15), 152 (14), 115 (14).

HR-MS (EI): m/z berechnet für C₂₂H₂₁N⁺ 299.1674, gefunden 299.1677.

Darstellung von 5-Fluoro-2-{2-[(cis-2-phenylcyclopropyl)methyl]phenyl}pyridin (48f)

Nach AAV 4 werden **46f** (176 mg, 1.02 mMol) und **47** (407 mg, 3.13 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 70:1 \rightarrow 20:1) liefert **48f** (218 mg, 71%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, $CDCl_3$): δ = 8.48–8.46 (m, 1H), 7.38 (td, *J* = 8.3, 3.0 Hz, 1H), 7.32–7.08 (m, 8H), 7.08–6.99 (m, 2H), 2.51 (dd, *J* = 15.0, 6.2 Hz, 1H), 2.28 (dd, *J* = 15.0, 8.2 Hz, 1H), 2.12 (ddd, *J* = 8.6, 8.4, 5.9 Hz, 1H), 1.33–1.17 (m, 1H), 0.90 (ddd, *J* = 8.4, 8.1, 5.5 Hz, 1H), 0.60 (ddd, *J* = 5.9, 5.7, 5.5 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.3 (C_q, ¹J_{C-F} = 255 Hz), 156.3 (C_q, ⁴J_{C-F} = 4 Hz), 140.0 (C_q), 139.2 (C_q) 139.0 (C_q), 137.1 (CH, ²J_{C-F} = 23 Hz), 129.6 (CH, ³J_{C-F} = 8 Hz), 128.9 (CH), 128.4 (CH), 127.81 (CH), 125.8 (CH), 125.7 (CH), 125.0 (CH), 124.9 (CH), 122.8 (CH, ²J_{C-F} = 18 Hz), 31.2 (CH), 21.5 (CH₂), 20.0 (CH₂), 9.7 (CH).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -(130.0–130.2) (m).

IR (ATR): $\tilde{\nu}$ = 3060, 3024, 2923, 1581, 1493, 1473, 1443, 1377, 1261, 1220, 1111, 1020, 908, 840, 747 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 303 (2) [M⁺], 212 (10), 198 (100), 185 (17), 170 (4), 115 (7).

HR-MS (ESI): m/z berechnet für C₂₁H₁₈FN+H⁺ 304.1502, gefunden 304.1498.

Darstellung von 2-{5-Methyl-2-[(cis-2-phenylcyclopropyl)methyl]phenyl}pyridin (48h)

In einem ausgeheizten 25 mL-Schlenkrohr wird eine Suspension von $[RuCl_2(cod)]_n$ (14 mg, 50 µMol), X-Phos (48 mg, 0.10 mMol) und **46h** (176 mg, 1.04 mMol) in 1,4-Dioxan (3 mL) über 48 h bei 120 °C unter Schutzgasatmosphäre gerührt, während **47** (387 mg, 2.97 mMol) in vier gleichen Portionen (nach 0, 12, 24, 36 h) zugegeben wird. Nach Abkühlen der Reaktionsmischung wird der Umsatz *via* GC/MS-Analyse bestimmt, wässr. ges. NaHCO₃-Lösung (20 mL) hinzugegeben, die wässr. Phase mit MTBE (3 × 50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Pentan/Et₂O100:1 \rightarrow 30:1) liefert **48h** (86 mg, 28%) als hellgelbes Öl.

Nach AAV 3 werden **46h** (168 mg, 0.99 mMol) und **47** (386 mg, 2.96 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 30:1 \rightarrow 3:1) liefert **48h** (197 mg, 66%) als hellgelbes Öl.

Nach AAV 4 werden **46h** (170 mg, 1.00 mMol) und **47** (393 mg, 3.02 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 25:1 \rightarrow 5:1) liefert **48h** (170 mg, 56%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.66 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.68 (td, *J* = 7.7, 1.9 Hz, 1H), 7.33–6.99 (m, 10H), 2.53 (dd, *J* = 14.9, 5.9 Hz, 1H), 2.35 (s, 3H), 2.26 (dd, *J* = 14.9, 8.4 Hz, 1H), 2.11 (ddd, *J* = 8.6, 8.5, 5.9 Hz, 1H), 1.32–1.17 (m, 1H), 0.88 (ddd, *J* = 8.5, 8.4, 5.4 Hz, 1H), 0.58 (ddd, *J* = 5.9, 5.7, 5.4 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.1 (CH), 140.1 (C_q), 139.2 (C_q), 136.8 (C_q), 135.9 (CH), 135.2 (C_q), 130.3 (CH), 129.5 (CH), 128.9 (CH), 128.8 (CH), 127.8 (CH), 125.5 (CH), 124.2 (CH), 121.5 (CH), 30.8 (CH₂), 21.5 (CH), 20.9 (CH₃), 20.4 (CH), 9.7 (CH₂).

IR (ATR): $\tilde{\nu}$ = 3058, 3023, 2920, 1586, 1562, 1496, 1469, 1426, 1027, 828, 793, 749, 697 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 298 (16) [(M-H)⁺], 208 (36), 194 (100), 181 (34), 167 (29), 115 (12).

HR-MS (EI): m/z berechnet für C₂₂H₂₁N⁺ 299.1674, gefunden 299.1686.

Darstellung von 2-{5-Methoxy-2-[(*cis*-2-phenylcyclopropyl)methyl]phenyl}pyridin (48i) und 2-{3-Methoxy-2-[(*cis*-2-phenylcyclopropyl)methyl]phenyl}pyridin (48i')

Nach AAV 3 werden **46i** (177 mg, 0.955 mMol) und **47** (394 mg, 3.03 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc $10:1\rightarrow 5:1$) liefert **48i** (51 mg, 17%) und **48i'** (113 mg, 37%) als hellgelbe Öle.

48i:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.75–8.61 (m, 1H), 7.67 (td, *J* = 7.7, 1.8 Hz, 1H), 7.33–6.99 (m, 8H), 6.98–6.74 (m, 2H), 3.79 (s, 3H), 2.49 (dd, *J* = 15.0, 6.1 Hz, 1H), 2.26 (dd, *J* = 15.0, 8.3 Hz, 1H), 2.11 (ddd, *J* = 8.6, 8.5, 5.9 Hz, 1H), 1.33–1.14 (m, 1H), 0.88 (ddd, *J* = 8.5, 8.4, 5.4 Hz, 1H), 0.58 (ddd, *J* = 5.9, 5.7, 5.4 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.9 (C_q), 157.4 (C_q), 149.0 (CH), 141.1 (C_q), 139.1 (C_q), 136.0 (CH), 132.0 (C_q), 130.6 (CH), 128.7 (CH), 127.7 (CH), 125.5 (CH), 124.1 (CH), 121.6 (CH), 114.5 (CH), 114.1 (CH), 55.2 (CH₃), 30.3 (CH₂), 21.4 (CH), 20.4 (CH), 9.6 (CH₂).

IR (ATR): $\tilde{\nu}$ = 3001, 2935, 2834, 1578, 1562, 1458, 1257, 1145, 1031, 769, 698 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 315 (14) [M⁺], 224 (33), 210 (100), 198 (25), 182 (24), 167 (40), 154 (23).

HR-MS (ESI): *m*/*z* berechnet für C₂₂H₂₁NO⁺ 315.1623, gefunden 315.1613.

48iʻ:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.67 (ddd, *J* = 4.8, 1.8, 1.0 Hz, 1H), 7.70 (td, *J* = 7.7, 1.8 Hz, 1H), 7.33–7.07 (m, 6H), 6.98–6.87 (m, 4H), 3.86 (s, 3H), 2.73 (dd, *J* = 13.9, 4.1 Hz, 1H), 2.06 (dd, *J* = 13.9, 10.4 Hz, 1H), 2.00 (ddd, *J* = 8.6, 8.5, 5.9 Hz, 1H), 1.43–1.27 (m, 1H), 0.71 (ddd, *J* = 8.6, 8.5, 5.4 Hz, 1H), 0.46 (ddd, *J* = 5.9, 5.7, 5.4 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 158.0 (C_q), 149.0 (CH), 141.8 (C_q), 139.5 (C_q), 135.9 (CH), 129.2 (C_q), 128.6 (CH), 127.6 (CH), 126.4 (CH), 125.2 (CH), 124.5 (CH), 122.0 (CH), 121.5 (CH), 110.3 (CH), 55.5 (CH₃), 24.6 (CH₂), 21.5 (CH), 19.6 (CH), 9.5 (CH₂).

IR (ATR): \tilde{v} = 2999, 2934, 2833, 1585, 1562, 1496, 1468, 1426, 1222, 1032, 757, 699 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 314 (7) [(M-H)⁺], 284 (15), 224 (14), 210 (100), 196 (25), 182 (18), 167 (26), 154 (22).

HR-MS (ESI): *m*/*z* berechnet für C₂₂H₂₁NO⁺ 315.1623, gefunden 315.1621.

Darstellung von 2-{4-Fluoro-2-[(cis-2-phenylcyclopropyl)methyl]phenyl}pyridin (48k)

Nach AAV 3 werden **46k** (87 mg, 0.50 mMol) und **47** (199 mg, 1.53 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 25:1 \rightarrow 10:1) liefert **48k** (79 mg, 52%) als hellgelbes Öl.

Nach AAV 4 werden **46k** (173 mg, 1.00 mMol) und **47** (394 mg, 3.03 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 25:1 \rightarrow 10:1) liefert **48k** (173 mg, 57%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.64 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.68 (td, *J* = 7.7, 1.9 Hz, 1H), 7.34–7.11 (m, 6H), 7.11–7.01 (m, 2H), 7.01–6.86 (m, 2H), 2.52 (dd, *J* = 15.2, 6.5 Hz, 1H), 2.38 (dd, J = 15.2, 6.5 Hz, 1H)

8.0 Hz, 1H), 2.17 (ddd, *J* = 8.6, 8.5, 5.9 Hz, 1H), 1.37–1.18 (m, 1H), 0.94 (ddd, *J* = 8.5, 8.4, 5.5 Hz, 1H), 0.64 (ddd, *J* = 5.9, 5.7, 5.5 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 162.5 (C_q, ¹*J*_{C-F} = 246 Hz), 159.2 (C_q), 149.1 (CH), 142.6 (C_q, ³*J*_{C-F} = 7 Hz), 138.7 (C_q), 136.4 (C_q, ⁴*J*_{C-F} = 3 Hz), 136.1 (CH), 131.2 (CH, ³*J*_{C-F} = 8 Hz), 128.8 (CH), 127.8 (CH), 125.7 (CH), 124.2 (CH), 121.6 (CH), 116.0 (CH, ²*J*_{C-F} = 21 Hz), 112.6 (CH, ²*J*_{C-F} = 21 Hz), 31.3 (CH₂), 21.4 (CH), 19.7 (CH), 9.6 (CH₂).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -(114.2–114.3) (m).

IR (ATR): \tilde{v} = 3060, 3004, 1564, 1497, 1465, 1428, 1225, 1150, 1027, 962, 785, 748, 698, 593 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 303 (11) [M⁺], 212 (28), 198 (100), 185 (37), 170 (9), 115 (11).

HR-MS (EI): *m/z* berechnet für C₂₁H₁₈FN⁺ 303.1423, gefunden 303.1427.

Darstellung von 2-{4-Methoxy-2-[(cis-2-phenylcyclopropyl)methyl]phenyl}pyridin (48)

Nach AAV 3 werden **46I** (93 mg, 0.50 mMol) und **47** (180 mg, 1.38 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 5:1) liefert **48I** (75 mg, 48%) als hellgelbes Öl.

Nach AAV 4 werden **46I** (185 mg, 1.00 mMol) und **47** (387 mg, 2.97 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc $20:1\rightarrow 3:1$) liefert **48I** (258 mg, 82%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.62 (ddd, *J* = 5.1, 1.8, 0.9 Hz, 1H), 7.65 (td, *J* = 7.8, 1.8 Hz, 1H), 7.27–7.07 (m, 8H), 6.78 (dd, *J* = 5.7, 2.7 Hz, 1H), 6.70 (d, *J* = 2.4 Hz, 1H), 3.77 (s, 3H), 2.53 (dd, *J* = 15.0, 6.5 Hz, 1H), 2.41 (dd, *J* = 15.0, 7.8 Hz, 1H), 2.10 (ddd, *J* = 8.6, 8.6, 5.9 Hz, 1H), 1.13–1.18 (m, 1H), 0.89 (ddd, *J* = 8.6, 8.5, 5.5 Hz, 1H), 0.61 (ddd, *J* = 5.9, 5.8, 5.5 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.0 (C_q), 159.4 (C_q), 149.0 (CH), 141.7 (C_q), 139.2 (C_q), 135.9 (CH), 133.1 (C_q), 130.9 (CH), 128.8 (CH), 127.8 (CH), 125.6 (CH), 124.2 (CH), 121.2 (CH), 115.0 (CH), 111.3 (CH), 55.2 (CH₃), 31.3 (CH₂), 21.5 (CH), 20.3 (CH), 9.7 (CH₂).

IR (ATR): $\tilde{\nu}$ = 3000, 2933, 1603, 1586, 1461, 1426, 1280, 1236, 1151, 1044, 1019, 988, 845, 729 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 315 (13) [M⁺], 300 (5), 224 (24), 210 (100), 197 (18), 167 (28), 154 (17), 115 (7).

HR-MS (ESI): *m/z* berechnet für C₂₂H₂₁NO+H⁺ 316.1701, gefunden 316.1697.

Darstellung von 2-{4-Methyl-2-[(*cis*-2-Phenylcyclopropyl)methyl]phenyl}pyridin (48m)

In einem ausgeheizten 25 mL-Schlenkrohr wird eine Suspension von $[RuCl_2(cod)]_n$ (14 mg, 50 µMol), X-Phos (48 mg, 0.10 mMol) und **46m** (168 mg, 994 µMol) in 1,4-Dioxan (3 mL) über 48 h bei 120 °C unter Schutzgasatmosphäre gerührt, während **47** (385 mg, 2.96 mMol) in vier gleichen Portionen (nach 0, 12, 24, 36 h) zugegeben wird. Nach Abkühlen der Reaktionsmischung wird der Umsatz *via* GC/MS-Analyse bestimmt, wässr. ges. NaHCO₃-Lösung (20 mL) hinzugegeben, die wässr. Phase mit MTBE (3 × 50 mL) extrahiert, die vereinigten organischen Phasen mit wässr. ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, der Feststoff abfiltriert und die Lösungsmittel am Rotationsverdampfer im Vakuum entfernt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Pentan/Et₂O 100:1→15:1) liefert **48m** (122 mg, 41%) als hellgelbes Öl.

Nach AAV 4 werden **46m** (170 mg, 1.00 mMol) und **47** (387 mg, 2.97 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 25:1 \rightarrow 5:1) liefert **48m** (142 mg, 47%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.65 (ddd, *J* = 4.9, 1.7, 0.7 Hz, 1H), 7.68 (td, *J* = 7.7, 1.7 Hz, 1H), 7.30–7.11 (m, 6H), 7.09–7.02 (m, 3H), 6.92 (s, 1H), 2.52 (dd, *J* = 14.8, 6.2 Hz, 1H), 2.36 (dd, *J* = 14.8, 8.2 Hz, 1H), 2.33 (s, 3H), 2.11 (ddd, *J* = 8.6, 8.5, 5.9 Hz, 1H), 1.33–1.18 (m, 1H), 0.88 (ddd, *J* = 8.5, 8.4, 5.4 Hz, 1H), 0.61 (ddd, *J* = 5.9, 5.7, 5.4 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.0 (CH), 139.7 (C_q), 139.2 (C_q), 137.8 (C_q), 137.5 (C_q), 136.0 (CH), 130.5 (CH), 129.6 (CH), 128.8 (CH), 127.8 (CH), 126.5 (CH), 125.6 (CH), 124.2 (CH), 121.3 (CH), 31.2 (CH₂), 21.5 (CH), 21.2 (CH₃), 20.4 (CH), 9.7 (CH₂).

IR (ATR): $\tilde{\nu}$ = 3024, 3000, 2922, 1600, 1495, 1475, 1444, 1375, 1079, 1024, 836, 749, 698, 645, 405 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 299 (5) [M⁺], 208 (17), 194 (100), 181 (20), 167 (6), 152 (8), 115 (9).

HR-MS (ESI): m/z berechnet für C₂₂H₂₁N+H⁺ 300.1752, gefunden 300.1748.

Darstellung von 2-{4-Trifluoromethyl-2-[(cis-2-phenylcyclopropyl)methyl]phenyl}pyridin (480)

Nach AAV 3 werden **460** (112 mg, 0.502 mMol) und **47** (190 mg, 1.46 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc $25:1 \rightarrow 10:1$) liefert **480** (88 mg, 50%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.65 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.71 (td, *J* = 7.7, 1.9 Hz, 1H), 7.48 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.43–7.33 (m, 2H), 7.33–7.09 (m, 5H), 7.09–6.99 (m, 2H), 2.58–2.40 (m, 2H), 2.15 (ddd, *J* = 8.6, 8.6, 5.9 Hz, 1H), 1.33–1.18 (m, 1H), 0.91 (ddd, *J* = 8.6, 8.5, 5.5 Hz, 1H), 0.63 (ddd, *J* = 5.9, 5.7, 5.5 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.8 (C_q), 149.3 (CH), 143.5 (C_q), 140.9 (C_q), 138.6 (C_q), 136.3 (CH), 130.1 (C_q, ²J_{C-F} = 33.2 Hz), 129.9 (CH), 128.8 (CH), 127.9 (CH), 126.4 (CH, ³J_{C-F} = 3.8 Hz), 125.8 (CH), 124.0 (CH), 122.6 (CH, ³J_{C-F} = 3.8 Hz), 124.2 (C_q, ¹J_{C-F} = 270.5 Hz), 122.2 (CH), 31.2 (CH₂), 21.4 (CH), 19.7 (CH), 9.5 (CH₂).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -62.5 (s).

IR (ATR): $\tilde{\nu}$ = 3060, 3003, 1586, 1496, 1427, 1333, 1212, 1160, 1119, 1026, 894, 842, 789, 750, 730, 699 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 353 (2) [M⁺], 262 (14), 248 (100), 235 (18), 115 (12), 91 (10), 78 (8).

HR-MS (ESI): *m*/*z* berechnet für C₂₂H₁₈F₃N+H⁺ 354.1470, gefunden 354.1462.

Darstellung von 2-{5-Trifluoromethyl-2-[(cis-2-phenylcyclopropyl)methyl]phenyl}pyridin (48p)

Nach AAV 3 werden **46p** (229 mg, 1.03 mMol) und **47** (393 mg, 3.02 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) und anschließende HPLC (C_{18} , MeCN/H₂O 1.5:1 \rightarrow 4:1) liefert **48p** (131 mg, 36%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.66 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.60– 7.48 (m, 2H), 7.32–7.10 (m, 6H), 7.07–6.99 (m, 2H), 2.56 (dd, *J* = 15.1, 6.5 Hz, 1H), 2.41 (dd, *J* = 15.1, 8.0 Hz, 1H), 2.14 (ddd, *J* = 8.6, 8.5, 5.9 Hz, 1H), 1.34–1.18 (m, 1H), 0.91 (ddd, *J* = 8.6, 8.4, 5.4 Hz, 1H), 0.61 (ddd, *J* = 5.9, 5.7, 5.4 Hz, 1H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.7 (C_q), 149.3 (CH), 142.4 (C_q, ¹J_{C-F} = 266.5 Hz), 138.7 (C_q), 136.4 (CH), 130.0 (CH), 128.8 (CH), 128.2 (C_q, ²J_{C-F} = 32.4 Hz), 127.9 (CH), 126.5 (CH, ³J_{C-F} = 3.7 Hz), 126.0 (C_q), 125.8 (CH), 124.8 (CH, ³J_{C-F} = 3.8 Hz), 124.1 (CH), 122.4 (C_q), 122.2 (CH), 31.3 (CH₂), 21.5 (CH), 19.7 (CH), 9.6 (CH₂).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -62.3 (s).

IR (ATR): $\tilde{\nu}$ = 3061, 3000, 1590, 1425, 1330, 1211, 1160, 1029, 880, 751, 725 cm⁻¹.

MS (EI): m/z (relative Intensität) = 352 (4) [(M-H)⁺], 262 (13), 248 (100), 235 (13), 115 (7).

HR-MS (ESI): m/z berechnet für C₂₂H₁₈F₃N⁺ 353.1391, gefunden 353.1386.

Darstellung von 2-{2-[(cis-2-Phenylcyclopropyl)methyl]cyclohex-1-enyl}pyridin (121)

Nach AAV 4 werden **120a** (163 mg, 1.03 mMol) und **47** (384 mg, 2.95 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1 \rightarrow 10:1) liefert **121** (185 mg, 62%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.54 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 7.52 (td, *J* = 7.7, 1.9 Hz, 1H), 7.18–7.01 (m, 4H), 6.95 (dt, *J* = 7.8, 1.1 Hz, 1H), 6.92–6.85 (m, 2H), 2.46–2.02 (m, 4H), 2.02 (ddd, *J* = 8.6, 8.4, 5.9 Hz, 1H), 1.81 (dd, *J* = 14.3, 5.3 Hz, 1H), 1.75–1.59 (m, 4H), 1.47 (dd, *J* = 14.2, 8.9 Hz, 1H), 1.21–1.07 (m, 1H), 0.91 (ddd, *J* = 8.6, 8.4, 5.3 Hz, 1H), 0.54 (ddd, *J* = 5.9, 5.7, 5.3 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 162.2 (C_q), 149.1 (CH), 139.3 (C_q), 135.7 (CH), 135.6 (C_q), 132.7 (C_q), 128.6 (CH), 127.6 (CH), 125.3 (CH), 123.5 (CH), 120.8 (CH), 32.1 (CH₂), 30.5 (CH₂), 29.1 (CH₂), 23.1 (CH₂), 22.9 (CH₂), 21.1 (CH), 18.6 (CH), 9.9 (CH₂).

IR (ATR): $\tilde{\nu}$ = 3059, 3001, 2925, 2856, 1584, 1562, 1465, 1428, 771, 748, 728, 697 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 289 (11) [M⁺], 246 (6), 198 (29), 184 (100), 170 (17), 156 (26), 143 (14), 130 (16), 117 (16), 91 (17).

HR-MS (EI): m/z berechnet für C₂₁H₂₃N⁺ 289.1830, gefunden 289.1816.

Darstellung von 2-[(2-Bicyclopropyl-1-yl)phenyl]pyridin (119a) und 2-[2,6-Bis(bicyclopropyl-1-yl)phenyl]pyridin (119b)

Nach AAV 3 werden **46a** (80 mg, 0.52 mMol) und **118** (120 mg, 1.50 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc $25:1 \rightarrow 10:1$) liefert **119a** (53 mg, 44%) und **119b** (45 mg, 27%) als farblose Feststoffe.

119a:

Smp.: 41 °C (Lit.: 43–45 °C).⁴⁶

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.69 (ddd, *J* = 4.9, 1.7, 0.8 Hz, 1H), 7.73 (td, *J* = 7.7, 1.9 Hz, 1H), 7.62–7.53 (m, 1H), 7.46–7.19 (m, 5H), 1.48–1.34 (m, 1H), 0.44–0.28 (m, 6H), 0.15–0.04 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 148.9 (CH), 143.9 (C_q), 141.4 (C_q), 135.4 (CH), 131.8 (CH), 129.9 (CH), 128.1 (CH), 126.2 (CH), 124.4 (CH), 121.5 (CH), 24.9 (C_q), 18.8 (CH), 11.7 (CH₂), 3.2 (CH₂).

MS (EI): m/z (relative Intensität) = 234 (2) [(M-H)⁺], 206 (100), 180 (26), 152 (6).

119b:

Smp.: 89 °C (Lit.: 92 °C).46

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.70 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.73 (td, *J* = 7.6, 1.8 Hz, 1H), 7.44 (ddd, *J* = 7.8, 1.0, 0.9 Hz, 1H), 7.31–7.22 (m, 4H), 1.37–1.18 (m, 2H), 0.63–0.36 (m, 4H), 0.36–0.05 (m, 8H), 0.05–(-0.23) (m, 4H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.5 (C_q), 148.2 (CH), 144.4 (C_q), 142.5 (C_q), 134.5 (CH), 129.8 (CH), 127.7 (CH), 126.2 (CH), 121.4 (CH), 25.5 (C_q), 18.3 (CH), 11.4 (CH₂), 10.4 (CH₂), 3.3 (CH₂), 3.0 (CH₂).

MS (EI): m/z (relative Intensität) = 314 (2) [(M-H)⁺], 286 (100), 258 (8), 230 (9), 204 (7).

Die analytischen Daten stehen in Einklang mit den publizierten Werten.⁴⁶

Darstellung von 2-(2-Phenethylphenyl)pyridin (98ab)

Nach AAV 3 werden **46a** (154 mg, 0.99 mMol), **7b** (320 mg, 3.07 mMol) und KO₂Ct-Bu (140 mg, 1.00 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Pentan/EtOAc 50:1 \rightarrow 10:1) liefert **98ab** (83.2 mg, 32%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.76 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.73 (td, *J* = 7.7, 1.9 Hz, 1H), 7.50–7.13 (m, 9H), 7.13–7.02 (m, 2H), 3.22–3.00 (m, 2H), 2.94–2.76 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.1 (C_q), 148.9 (CH), 141.9 (C_q), 140.3 (C_q), 139.6 (C_q), 136.1 (CH), 129.8 (CH), 129.6 (CH), 128.2 (CH), 128.2 (CH), 128.1 (CH), 126.0 (CH), 125.6 (CH), 123.8 (CH), 121.5 (CH), 37.7 (CH₂), 35.3 (CH₂).

MS (EI): *m/z* (relative Intensität) = 258 (84) [(M-H)⁺], 180 (19), 167 (100), 155 (21).

HR-MS (EI): m/z berechnet für C₁₉H₁₇N⁺ 259.1361, gefunden 259.1364.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.¹⁶⁸

5.3.3 Rutheniumkatalysierten Hydroarylierung mit [RuCl₂(*p*-Cymol)]₂ (41)

Darstellung von 6-[2-(Pyridin-2-yl)phenyl]hexylacetat (98aaa)

Nach AAV 5 werden **41** (15 mg, 25.0 μMol), **116** (60 mg, 0.30 mMol), **46a** (154 mg, 0.99 mMol) und **7aa** (282 mg, 1.98 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 5:1) liefert **98aaa** (238 mg, 80%) als hellgrünes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.66 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.40–7.18 (m, 6H), 3.96 (t, *J* = 6.8 Hz, 2H), 2.75–2.61 (m, 2H), 2.00 (s, 3H), 1.57–1.34 (m, 4H), 1.27–1.11 (m, 4H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 171.1 (C_q), 160.3 (C_q), 149.1 (CH), 140.5 (C_q), 140.3 (C_q), 136.1 (CH), 129.7 (CH), 129.7 (CH), 128.3 (CH), 125.8 (CH), 124.0 (CH), 121.6 (CH), 64.5 (CH₂), 32.8 (CH₂), 31.0 (CH₂), 28.9 (CH₂), 28.4 (CH₂), 25.5 (CH₂), 21.0 (CH₃).

¹⁶⁸ X. Chen, C. E. Goodhue, J. Q. Yu, *J. Am. Chem. Soc.* **2006**, *128*, 12634–12635.

IR (ATR): \tilde{v} = 2930, 2856, 1734, 1585, 1561, 1467, 1425, 1364, 1235, 1023, 795, 751, 635 cm⁻¹.

MS (EI): m/z (relative Intensität) = 297 (10) [M⁺], 238 (46), 182 (100), 167 (44).

HR-MS (EI): *m/z* berechnet für C₁₉H₂₃NO₂⁺ 297.1729, gefunden 297.1727.

Darstellung von 2-{2-[2-(Triethoxysilyl)ethyl]phenyl}pyridin (98ac) und 2-{2,6-Bis[2-(triethoxysilyl)ethyl]phenyl}pyridin (122ac)

Nach AAV 5 werden $[RuCl_2(p-Cymol)]_2$ (**41**) (15.3 mg, 25.0 μ Mol, 2.5 Mol %), **116** (60 mg, 0.30 mMol, 30 Mol %), **46a** (160 mg, 1.03 mMol) und **7c** (384 mg, 2.02 mMol) in PhMe (3 mL) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1 \rightarrow 5:1) liefert **98ac** (147 mg, 41%) als hellgelbes Öl und **122ac** (17 mg, 3%) als braunes Öl.

98ac:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.67 (ddd, *J* = 4.9, 1.8, 1.0 Hz, 1H), 7.74 (td, *J* = 7.7, 1.9 Hz, 1H), 7.39 (dt, *J* = 7.8, 1.1 Hz, 1H), 7.36–7.19 (m, 5H), 3.71 (q, *J* = 7.0 Hz, 6H), 2.88–2.72 (m, 2H), 1.15 (t, *J* = 7.0 Hz, 9H), 0.92–0.77 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.2 (C_q), 149.1 (CH), 142.7 (C_q), 139.8 (C_q), 136.1 (CH), 129.7 (CH), 129.2 (CH), 128.5 (CH), 125.7 (CH), 124.1 (CH), 121.6 (CH), 58.2 (CH₂), 26.2 (CH₂), 18.2 (CH₃), 12.7 (CH₂).

IR (ATR): \tilde{v} = 2973, 1584, 1425, 1380, 1165, 1071, 954, 776, 751, 452 cm⁻¹.

MS (ESI): *m*/*z* (relative Intensität) = 346 (30) [M+H⁺], 332 (97), 318 (100), 394 (62).

HR-MS (ESI): m/z berechnet für C₁₉H₂₇NO₃Si+H⁺ 346.1838, gefunden 346.1833.

122ac:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.69 (ddd, *J* = 4.9, 1.7, 0.9 Hz, 1H), 7.73 (td, *J* = 7.7, 1.8 Hz, 1H), 7.32–7.18 (m, 3H), 7.15 (d, *J* = 7.5 Hz, 2H), 3.63 (q, *J* = 7.0 Hz, 12H), 2.49–2.32 (m, 4H), 1.11 (t, *J* = 7.0 Hz, 18H), 0.95–0.66 (m, 4H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.5 (C_q), 149.4 (CH), 142.6 (C_q), 138.9 (C_q), 135.9 (CH), 128.4 (CH), 126.0 (CH), 125.0 (CH), 121.5 (CH), 58.2 (CH₂), 26.6 (CH₂), 18.2 (CH₃), 12.5 (CH₂).

IR (ATR): \tilde{v} = 2973, 2886, 1586, 1469, 1425, 1389, 1165, 1073, 955, 833, 749, 620, 456 cm⁻¹.

MS (ESI): *m*/*z* (relative Intensität) = 558 (7) [M+Na⁺], 536 (100) [M+H⁺], 522 (47), 508 (10).

HR-MS (ESI): m/z berechnet für C₂₇H₄₅NO₆Si₂+H⁺ 536.2864, gefunden 536.2862.

Darstellung von 2-{2-[2-(Trimethylsilyl)ethyl]phenyl}pyridin (98ad) und 2-{2,6-Bis[2-(trimethylsilyl)ethyl]phenyl}pyridin (122ad)

Nach AAV 5 werden **46a** (152 mg, 0.98 mMol) und **7d** (200 mg, 2.00 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98ad** (189 mg, 75%) als hellgelbes Öl und **122ad** (65 mg, 19%) als weißen Feststoff.

98ad:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.8, 1.4, 1.0 Hz, 1H), 7.74 (td, *J* = 7.5, 1.8 Hz, 1H), 7.42–7.20 (m, 6H), 2.77–2.63 (m, 2H), 0.76–0.61 (m, 2H), -0.08 (s, 9H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.1 (CH), 143.5 (C_q), 139.7 (C_q), 136.0 (CH), 129.7 (CH), 129.2 (CH), 128.4 (CH), 125.6 (CH), 124.0 (CH), 121.5 (CH), 27.3 (CH₂), 19.2 (CH₂), -2.0 (CH₃).

IR (ATR): \tilde{v} = 2951, 1586, 1469, 1424, 1426, 908, 840, 780, 690, 635, 620 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 255 (45) [M⁺], 182 (100), 167 (60).

HR-MS (EI): *m*/z berechnet für C₁₆H₂₁NSi⁺ 255.1443, gefunden 255.1444.

122ad:

Smp.: 70 °C.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.74–8.68 (m, 1H), 7.73 (td, *J* = 7.6, 1.8 Hz, 1H), 7.30–7.21 (m, 3H), 7.11 (d, *J* = 7.5 Hz, 2H), 2.36–2.20 (m, 4H), 0.80–0.47 (m, 4H), -0.16 (s, 18H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.6 (C_q), 149.3 (CH), 143.5 (C_q), 138.8 (C_q), 135.7 (CH), 128.2 (CH), 125.8 (CH), 125.0 (CH), 121.5 (CH), 27.8 (CH₂), 19.2 (CH₂), -2.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2951, 1582, 1561, 1449, 1428, 1245, 1174, 1129, 989, 857, 827, 792, 781, 755, 692 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 355 (26) [M⁺], 282 (100), 73 (52).

HR-MS (EI): *m*/*z* berechnet für C₂₁H₃₃NSi₂⁺ 355.2152, gefunden 355.2153.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.⁵³

Darstellung von 2-[2-(4-Methoxyphenethyl)phenyl]pyridin (98ae)

Nach AAV 5 werden **41** (14.7 mg, 24.0 μ Mol), **116** (60 mg, 0.30 mMol), **46a** (161 mg, 1.04 mMol) und 7e (270 mg, 2.01 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1) liefert **98ae** (124 mg, 41%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.71 (ddd, *J* = 4.8, 1.8, 0.8 Hz, 1H), 7.72 (td, *J* = 7.6, 1.6 Hz, 1H), 7.40– 7.18 (m, 6H), 6.97–6.86 (m, 2H), 6.81–6.70 (m, 2H), 3.75 (s, 3H), 3.05–2.92 (m, 2H), 2.77–2.65 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.2 (C_q), 157.6 (C_q), 149.0 (CH), 140.4 (C_q), 139.8 (C_q), 136.1 (CH), 134.1 (C_q), 129.9 (CH), 129.7 (CH), 129.1 (CH), 128.3 (CH), 126.0 (CH), 124.0 (CH), 121.6 (CH), 113.6 (CH), 55.1 (CH₃), 36.8 (CH₂), 35.6 (CH₂).

IR (ATR): \tilde{v} = 2931, 1609, 1584, 1509, 1465, 1440, 1424, 1299, 1452, 1176, 1089, 1034, 796, 750, 635, 529 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 289 (21) [M⁺], 167 (41), 121 (100).

HR-MS (EI): *m*/*z* berechnet für C₂₀H₁₉NO⁺ 289.1467, gefunden 289.1457.

Darstellung von 10-[2-(Pyridin-2-yl)phenyl}decan-1-ol (98af)

Nach AAV 5 werden **41** (30.0 mg, 49.0 μ Mol), **116** (121 mg, 0.60 mMol), **46a** (148 mg, 0.95 mMol) und **7f** (469 mg, 3.00 mMol) in PhMe (3 mL) über 25 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 3:1 \rightarrow 2:1) liefert **98af** (133 mg, 45%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.65 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.71 (td, *J* = 7.7, 1.8 Hz, 1H), 7.40–7.16 (m, 6H), 3.54 (t, *J* = 6.6 Hz, 2H), 2.76–2.54 (m, 2H), 1.98 (s_{br}, 1H), 1.56–1.32 (m, 4H), 1.32–0.97 (m, 12H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.0 (CH), 140.7 (C_q), 140.3 (C_q), 136.0 (CH), 129.7 (CH), 129.6 (CH), 128.2 (CH), 125.7 (CH), 124.1 (CH), 121.5 (CH), 62.9 (CH₂), 32.9 (CH₂), 32.7 (CH₂), 31.2 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 25.7 (CH₂).

IR (ATR): $\tilde{\nu}$ = 3334, 2923, 2852, 1587, 1562, 1466, 1425, 1057, 1023, 794, 750, 621 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 311 (15) [M⁺], 182 (100), 167 (51).

HR-MS (EI): *m*/*z* berechnet für C₂₁H₂₉NO⁺ 311.2249, gefunden 311.2245.

Darstellung von 2-[2-(10-Brom-*n*-decyl)phenyl]pyridin (98ag)

Nach AAV 5 werden **46a** (152 mg, 0.98 mMol) und **7g** (438 mg, 2.00 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98ag** (60% *via* NMR) als 2.6 : 1-Mischung (255 mg) mit **46a** als hellgelbes Öl. Anschließende HPLC (C_{18} , MeOH/H₂O 1:1 \rightarrow 1:0) liefert das reine Produkt als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.66 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.72 (td, *J* = 7.7, 1.9 Hz, 1H), 7.41–7.17 (m, 6H), 3.38 (t, *J* = 6.9 Hz, 2H), 2.77–2.58 (m, 2H), 1.91–1.72 (m, 2H), 1.51–1.02 (m, 14H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.1 (CH), 140.7 (C_q), 140.3 (C_q), 136.0 (CH), 129.7 (CH), 129.7 (CH), 128.2 (CH), 125.7 (CH), 124.1 (CH), 121.5 (CH), 34.0 (CH₂), 32.9 (CH₂), 32.8 (CH₂), 31.2 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 28.7 (CH₂), 28.1 (CH₂).

IR (ATR): \tilde{v} = 2924, 2853, 1586, 1465, 1425, 1024, 908, 794, 750, 731, 644 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 373 (6) [M⁺], 294 (23), 182 (100), 167 (63).

HR-MS (ESI): *m/z* berechnet für C₂₁H₂₈NBr+H⁺ 374.1478, gefunden 374.1474.

Darstellung von 2-[2-(10-Chlor-*n*-decyl)phenyl][[pyridin (98ah) und 2-(2,6-bis(10-chlor-*n*-decyl)-phenyl)pyridin (122ah)

Nach AAV 5 werden **46a F**55 mg, 1.00 mMol) und **7h** (344 mg, 1.97 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98ah** (257 mg, 78%) und **122ah** (27 mg, 5%) als hellgelbe Öle.

98ah:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.67 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.72 (td, *J* = 7.7, 1.9 Hz, 1H), 7.41–7.18 (m, 6H), 3.50 (t, *J* = 6.8 Hz, 2H), 2.75–2.60 (m, 2H), 1.81–1.65 (m, 2H), 1.52–1.05 (m, 14H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.1 (CH), 140.7 (C_q), 140.3 (C_q), 136.0 (CH), 129.7 (CH), 129.6 (CH), 128.2 (CH), 125.7 (CH), 124.0 (CH), 121.5 (CH), 45.1 (CH₂), 32.9 (CH₂), 32.6 (CH₂), 31.2 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.2 (CH₂), 28.8 (CH₂), 26.8 (CH₂).

IR (ATR): $\tilde{\nu}$ =2924, 2853, 1586, 1562, 1465, 1442, 1425, 1293, 1149, 990, 909, 879, 794, 750, 732 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 332/330 (18/50) [M+H⁺], 294 (17), 182 (100), 167 (78), 139 (4).

HR-MS (EI): *m*/*z* berechnet für C₂₁H₂₇NCl⁺ 328.1832, gefunden 328.1838.

122ah:

¹**H-NMR** (300 MHz, CDCl₃): 8.76–8.66 (m, 1H), 7.73 (td, J = 7.7, 1.9 Hz, 1H), 7.31–7.16 (m, 3H), 7.11 (d, J = 7.5 Hz, 2H), 3.52 (t, J = 6.7 Hz, 4H), 2.28 (t, J = 7.6 Hz, 4H), 1.83–1.67 (m, 4H), 1.47–1.31 (m, 8H), 1.33–1.06 (m, 20H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.6 (C_q), 149.2 (CH), 140.7 (C_q), 139.8 (C_q), 135.7 (CH), 127.9 (CH), 126.5 (CH), 124.9 (CH), 121.5 (CH), 45.2 (CH₂), 33.5 (CH₂), 32.6 (CH₂), 31.0 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 26.8 (CH₂).

IR (ATR): \tilde{v} = 2923, 2853, 1563, 1424, 879, 789, 751 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 507/505/503 (2/13/24) [M⁺], 294 (17), 182 (100), 167 (78), 139 (4).

HR-MS (EI): *m*/*z* berechnet für C₃₁H₄₇NCl₂⁺ 503.3083, gefunden 503.3090.

Darstellung von 2-[2-(10-Methoxydecyl)phenyl]pyridin (98ak)

Nach AAV 5 werden **46a** (163 mg, 1.05 mMol) und **7k** (346 mg, 2.03 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98ak** (268 mg, 79%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.73–8.60 (m, 1H), 7.71 (td, *J* = 7.7, 1.8 Hz, 1H), 7.42–7.15 (m, 6H), 3.33 (t, *J* = 6.7 Hz, 2H), 3.30 (s, 3H), 2.75–2.58 (m, 2H), 1.62–1.00 (m, 16H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.1 (CH), 140.7 (C_q), 140.3 (C_q), 136.0 (CH), 129.7 (CH), 129.6 (CH), 128.2 (CH), 125.7 (CH), 124.0 (CH), 121.5 (CH), 72.9 (CH₂), 58.5 (CH₃), 32.9 (CH₂), 31.2 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 26.1 (CH₂).

IR (ATR): $\tilde{\nu}$ =1923, 2852, 1585, 1562, 1464, 1424, 1117, 1023, 794, 750, 620 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 325 (15) [M⁺], 182 (100), 167 (48).

HR-MS (EI): m/z berechnet für C₂₂H₃₁NO⁺ 325.2406, gefunden 325.2395.

Darstellung von 12-[2-(Pyridin-2-yl)phenyl]dodecan-2-on (98al) und 10,10'-[2-(Pyridin-2-yl)-1,3-phenylen]bis(dodecan-2-on) (122al)

Nach AAV 5 werden **46a** (147 mg, 0.95 mMol) und **7l** (367 mg, 2.01 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 7:1 \rightarrow 5:1) liefert **98al** (262 mg, 82%) und **122al** (37 mg, 9%) als hellgelbe Öle.

98al:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.66 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.71 (td, *J* = 7.7, 1.8 Hz, 1H), 7.39–7.17 (m, 6H), 2.72–2.61 (m, 2H), 2.38 (t, *J* = 7.4 Hz, 2H), 2.11 (s, 3H), 1.59–1.31 (m, 4H), 1.31–1.05 (m, 12H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 209.3 (C_q), 160.3 (C_q), 149.1 (CH), 140.7 (C_q), 140.3 (C_q), 136.0 (CH), 129.7 (CH), 129.6 (CH), 128.2 (CH), 125.7 (CH), 124.0 (CH), 121.5 (CH), 43.8 (CH₂), 32.9 (CH₂), 31.2 (CH₂), 29.8 (CH₃), 29.3 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 23.8 (CH₂).

IR (ATR): \tilde{v} =2923, 2852, 1714, 1585, 1562, 1465, 1424, 1357, 1162, 795, 751 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 337 (14) [M⁺], 182 (100), 167 (50).

HR-MS (ESI): m/z berechnet für C₂₃H₃₁NO+H⁺ 338.2484, gefunden 338.2478.

122al:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.67 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.71 (dd, *J* = 9.6, 6.7 Hz, 1H), 7.27–7.17 (m, 3H), 7.07 (d, *J* = 7.6 Hz, 2H), 2.37 (t, *J* = 7.4 Hz, 4H), 2.25 (t, *J* = 7.8 Hz, 4H), 2.10 (s, 6H), 1.60–1.44 (m, 4H), 1.44–0.95 (m, 28H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 209.3 (C_q), 159.6 (C_q), 149.2 (CH), 140.6 (C_q), 139.7 (C_q), 135.7 (CH), 127.8 (CH), 126.4 (CH), 124.9 (CH), 121.5 (CH), 43.7 (CH₂), 33.5 (CH₂), 31.0 (CH₂), 29.8 (CH₃), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 29.1 (CH₂), 23.8 (CH₂).

IR (ATR): $\tilde{\nu}$ =2923, 2853, 1715, 1584, 1562, 1461, 1424, 1358, 1164, 1025, 790, 753, 719 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 519 (37) [M⁺], 462 (20), 364 (100), 194 (19).

HR-MS (ESI): *m/z* berechnet für C₃₅H₅₃NO₂+Na⁺ 542.3974, gefunden 542.3967.

Darstellung von 2-(2-*n*-Hexylphenyl)pyridin (98ap) und 2-(2,6-Di-*n*-hexylphenyl)pyridin (122ap)

Nach AAV 5 werden **46a** (147 mg, 0.95 mMol) und **7p** (170 mg, 2.02 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98ap** (177 mg, 78%) und **122ap** (13 mg, 4%) als farblose Öle.

98ap:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.8, 1.6, 0.9 Hz, 1H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.42–7.14 (m, 6H), 2.76–2.58 (m, 2H), 1.52–1.32 (m, 2H), 1.29–0.96 (m, 6H), 0.80 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.5 (C_q), 149.3 (CH), 140.9 (C_q), 140.5 (C_q), 136.2 (CH), 129.8 (CH), 129.8 (CH), 128.4 (CH), 125.8 (CH), 124.2 (CH), 121.7 (CH), 33.1 (CH₂), 31.6 (CH₂), 31.4 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 14.2 (CH₃).

IR (ATR): \tilde{v} = 2924, 2855, 1585, 1561, 1465, 1424, 1260, 1023, 493, 748, 636, 620 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 239 (14) [M⁺], 182 (100), 167 (59).

HR-MS (EI): *m*/*z* berechnet für C₁₇H₂₁N⁺ 239.1674, gefunden 239.1666.

122ap:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.75–8.67 (m, 1H), 7.73 (dt, *J* = 7.5, 3.8 Hz, 1H), 7.31–7.20 (m, 3H), 7.11 (d, *J* = 7.6 Hz, 2H), 2.37–2.20 (m, 4H), 1.50–1.27 (m, 4H), 1.27–0.98 (m, 12H), 0.80 (t, *J* = 6.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.8 (C_q), 149.4 (CH), 140.9 (C_q), 140.0 (C_q), 135.8 (CH), 128.0 (CH), 126.6 (CH), 125.1 (CH), 121.7 (CH), 33.7 (CH₂), 31.6 (CH₂), 31.2 (CH₂), 29.3 (CH₂), 22.6 (CH₂), 14.2 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2924, 2856, 1583, 1562, 1459, 1423, 1377, 1146, 1025, 989, 788, 750, 620, 562 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 322 (37) [(M-H)⁺], 266 (100), 180 (25).

HR-MS (EI): m/z berechnet für C₂₃H₃₃N⁺ 323.2613, gefunden 323.2603.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.⁷⁶
Darstellung von 2-(2-n-Decylphenyl)pyridin (98aq) und 2-(2,6-Di-n-decylphenyl)pyridin (122aq)

Nach AAV 5 werden **46a** (163 mg, 1.05 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98aq** (254 mg, 82%) und **122aq** (29 mg, 6%) als farblose Öle.

98aq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.8, 1.6, 0.9 Hz, 1H), 7.74 (td, *J* = 7.7, 1.8 Hz, 1H), 7.46–7.17 (m, 6H), 2.77–2.58 (m, 2H), 1.51–1.35 (m, 2H), 1.35–1.04 (m, 14H), 0.87 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.5 (C_q), 149.3 (CH), 140.9 (C_q), 140.5 (C_q), 136.2 (CH), 129.9 (CH), 129.8 (CH), 128.4 (CH), 125.8 (CH), 124.2 (CH), 121.7 (CH), 33.1 (CH₂), 32.0 (CH₂), 31.4 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 22.8 (CH₂), 14.3 (CH₃).

IR (ATR): $\tilde{\nu}$ =2922, 2852, 1585, 1465, 1424, 1148, 1023, 989, 794, 746, 620 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 295 (7) [M⁺], 182 (100), 167 (54).

HR-MS (EI): m/z berechnet für C₂₁H₂₉N⁺ 295.2300, gefunden 295.2292.

122aq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.71–8.66 (m, 1H), 7.75–7.66 (m, 1H), 7.29–7.14 (m, 3H), 7.08 (d, *J* = 7.5 Hz, 2H), 2.26 (t, *J* = 8.1 Hz, 4H), 1.50–0.98 (m, 32H), 0.85 (t, *J* = 6.8 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.8 (C_q), 149.4 (CH), 140.9 (C_q), 140.0 (C_q), 135.8 (CH), 128.1 (CH), 126.6 (CH), 125.1 (CH), 121.7 (CH), 33.7 (CH₂), 32.1 (CH₂), 31.2 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 22.8 (CH₂), 14.3 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2921, 2852, 1562, 1460, 1423, 1377, 1024, 788, 749, 620 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 434 (37) [(M-H)⁺], 322 (100), 308 (19), 194 (22).

HR-MS (ESI): *m*/*z* berechnet für C₃₁H₄₉N+H⁺ 436.3943, gefunden 436.3925.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.⁷⁶

Darstellung von 2-(2-*n*-Heptylphenyl)pyridin (98as) und 2-(2,6-Di-*n*-heptylphenyl)pyridin (122as)

Nach AAV 5 werden **46a** (155 mg, 1.00 mMol) und **7s** (190 mg, 1.94 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98as** (206 mg, 81%) und **122as** (25 mg, 7%) als farblose Öle.

98as:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.66 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.71 (td, *J* = 7.7, 1.8 Hz, 1H), 7.40–7.17 (m, 6H), 2.71–2.62 (m, 2H), 1.50–1.32 (m, 2H), 1.28–1.03 (m, 8H), 0.82 (t, *J* = 6.9 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.5 (C_q), 149.2 (CH), 140.9 (C_q), 140.5 (C_q), 136.2 (CH), 129.8 (CH), 129.8 (CH), 128.4 (CH), 125.8 (CH), 124.2 (CH), 121.7 (CH), 33.0 (CH₂), 31.8 (CH₂), 31.4 (CH₂), 29.5 (CH₂), 29.1 (CH₂), 22.7 (CH₂), 14.2 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2923, 2853, 1585, 1562, 1466, 1424, 1023, 989, 794, 748, 636, 620 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 253 (22) [M⁺], 182 (100), 167 (67).

HR-MS (EI): m/z berechnet für C₁₈H₂₃N⁺ 253.1830, gefunden 253.1830.

122as:

¹**H-NMR** (300 MHz, $CDCl_3$): δ = 8.72–8.64 (m, 1H), 7.71 (td, *J* = 7.6, 1.8 Hz, 1H), 7.29–7.17 (m, 3H), 7.09 (d, *J* = 7.7 Hz, 2H), 2.33–2.19 (m, 4H), 1.48–1.26 (m, 4H), 1.26–1.01 (m, 16H), 0.81 (t, *J* = 6.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.8 (C_q), 149.4 (CH), 140.9 (C_q), 140.0 (C_q), 135.8 (CH), 128.0 (CH), 126.6 (CH), 125.1 (CH), 121.7 (CH), 33.7 (CH₂), 31.8 (CH₂), 31.2 (CH₂), 29.6 (CH₂), 29.0 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2923, 2854, 1583, 1563, 1460, 1423, 1377, 1260, 1024, 788, 750, 621 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 350 (42) [(M-H)⁺], 280 (100), 181 (22).

HR-MS (EI): m/z berechnet für C₂₅H₃₇N⁺ 351.2926, gefunden 351.2910.

Darstellung von 2-(2-n-Octylphenyl)pyridin (98at) und 2-(2,6-Di-n-octylphenyl)pyridin (122at)

Nach AAV 5 werden **46a** (153 mg, 0.99 mMol) und **7t** (226 mg, 2.01 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98at** (216 mg, 82%) und **122at** (24 mg, 6%) als farblose Öle.

98at:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.73 (td, *J* = 7.7, 1.8 Hz, 1H), 7.41–7.19 (m, 6H), 2.76–2.63 (m, 2H), 1.54–1.35 (m, 2H), 1.35–1.04 (m, 10H), 0.86 (t, *J* = 6.9 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.1 (CH), 140.7 (C_q), 140.3 (C_q), 136.0 (CH), 129.7 (CH), 129.6 (CH), 128.2 (CH), 125.7 (CH), 124.0 (CH), 121.5 (CH), 32.9 (CH₂), 31.8 (CH₂), 31.2 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR(ATR): $\tilde{\nu}$ = 2923, 2853, 1585, 1562, 1465, 1424, 1149, 1023, 989, 794, 748, 620 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 267 (18) [M⁺], 182 (100), 167 (49).

HR-MS (EI): m/z berechnet für C₁₉H₂₅N⁺ 267.1987, gefunden 267.1976.

122at:

¹**H-NMR** (300 MHz, $CDCl_3$): δ = 8.77–8.64 (m, 1H), 7.73 (td, *J* = 7.8, 1.8 Hz, 1H), 7.33–7.19 (m, 3H), 7.11 (d, *J* = 7.5 Hz, 2H), 2.39–2.16 (m, 4H), 1.51–1.30 (m, 4H), 1.30–0.99 (m, 20H), 0.85 (t, *J* = 6.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.7 (C_q), 149.2 (CH), 140.7 (C_q), 139.8 (C_q), 135.6 (CH), 127.9 (CH), 126.5 (CH), 124.9 (CH), 121.5 (CH), 33.5 (CH₂), 31.8 (CH₂), 31.1 (CH₂), 29.5 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2922, 2853, 1583, 1563, 1460, 1423, 1377, 1025, 989, 788, 750, 620 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 379 (41) [M⁺], 294 (100), 280 (19), 194 (27), 181 (31).

HR-MS (EI): m/z berechnet für C₂₇H₄₁N⁺ 379.3239, gefunden 379.3269.

Die analytischen Daten stehen in Einklang mit den publizierten Werten.⁷⁶

Darstellung von 2-(2-*n*-Nonylphenyl)pyridin (98au) und 2-(2,6-Di-*n*-nonylphenyl)pyridin (122au)

Nach AAV 5 werden **46a** (147 mg, 0.95 mMol) und **7u** (252 mg, 2.00 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98au** (227 mg, 85%) und **122au** (31 mg, 8%) als farblose Öle.

98au:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.74–8.65 (m, 1H), 7.73 (td, *J* = 7.7, 1.8 Hz, 1H), 7.43–7.20 (m, 6H), 2.76–2.62 (m, 2H), 1.53–1.36 (m, 2H), 1.36–1.04 (m, 12H), 0.87 (t, *J* = 6.9 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.1 (CH), 140.7 (C_q), 140.3 (C_q), 136.0 (CH), 129.7 (CH), 129.6 (CH), 128.2 (CH), 125.7 (CH), 124.0 (CH), 121.5 (CH), 32.9 (CH₂), 31.8 (CH₂), 31.2 (CH₂), 29.4 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2922, 2852, 1585, 1562, 1465, 1424, 1148, 1023, 989, 794, 748, 636, 620 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 281 (28) [M⁺], 182 (100), 167 (63).

HR-MS (EI): m/z berechnet für C₂₀H₂₇N⁺ 281.2143, gefunden 281.2130.

122au:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.72–8.64 (m, 1H), 7.71 (td, *J* = 7.7, 1.8 Hz, 1H), 7.29–7.18 (m, 3H), 7.09 (d, *J* = 7.6 Hz, 2H), 2.36–2.17 (m, 4H), 1.49–1.30 (m, 4H), 1.30–0.97 (m, 24H), 0.85 (t, *J* = 6.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.7 (C_q), 149.3 (CH), 140.7 (C_q), 139.8 (C_q), 135.6 (CH), 127.9 (CH), 126.5 (CH), 125.0 (CH), 121.5 (CH), 33.5 (CH₂), 31.8 (CH₂), 31.1 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2922, 2853, 1583, 1563, 1460, 1423, 1024, 788, 750, 620 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 407 (65) [M⁺], 308 (100), 181 (24).

HR-MS (EI): m/z berechnet für C₂₉H₄₅N⁺ 407.3552, gefunden 407.3535.

Darstellung von 2-(2-*n*-Pentadecylphenyl)pyridin (98av) und 2-(2,6-Di-*n*-pentadecylphenyl)pyridin (122av)

Nach AAV 5 werden **46a** (154 mg, 0.99 mMol) und **7v** (421 mg, 2.00 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98av** (300 mg, 83%) als farbloses Öl und **122av** (44 mg, 8%) als weißen Festoff.

98av:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.67 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.40–7.19 (m, 6H), 2.73–2.62 (m, 2H), 1.51–1.35 (m, 2H), 1.35–1.05 (m, 24H), 0.86 (t, *J* =6.7 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.1 (CH), 140.8 (C_q), 140.3 (C_q), 136.0 (CH), 129.7 (CH), 129.7 (CH), 128.2 (CH), 125.7 (CH), 124.1 (CH), 121.5 (CH), 32.9 (CH₂), 31.9 (CH₂), 31.2 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2918, 2849, 1586, 1463, 1425, 1260, 1023, 793, 752, 623 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 365 (43) [M⁺], 182 (100), 167 (46).

HR-MS (EI): m/z berechnet für C₂₆H₃₉N⁺ 365.3083, gefunden 365.3073.

122av:

Smp.: 51 °C.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.72–8.65 (m, 1H), 7.70 (dt, *J* = 7.7, 1.9 Hz, 1H), 7.28–7.18 (m, 3H), 7.09 (d, *J* = 7.6 Hz, 2H), 2.32–2.21 (m, 4H), 1.48–0.98 (m, 52H), 0.86 (t, *J* = 6.7 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.7 (C_q), 149.3 (CH), 140.7 (C_q), 139.8 (C_q), 135.6 (CH), 127.9 (CH), 126.5 (CH), 125.0 (CH), 121.5 (CH), 33.5 (CH₂), 31.9 (CH₂), 31.1 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2917, 2847, 1585, 1462, 1426, 1261, 1026, 798, 756, 723, 623 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 575 (49) [M⁺], 392 (100), 379 (19).

HR-MS (ESI): m/z berechnet für C₄₁H₆₉N+H⁺ 576.5495, gefunden 576.5503.

Darstellung von 2-(2-*n*-Hexadecylphenyl)pyridin (98aw) und 2-(2,6-Di-*n*-hexadecylphenyl)pyridin (122aw)

Nach AAV 5 werden **46a** (151 mg, 0.97 mMol) und **7w** (450 mg, 2.01 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98aw** (307 mg, 83%) und **122aw** (37 mg, 6%) als weiße Feststoffe.

98aw:

Smp.: 35 °C.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.72–8.64 (m, 1H), 7.73 (td, *J* = 7.7, 1.8 Hz, 1H), 7.41–7.19 (m, 6H), 2.75–2.63 (m, 2H), 1.53–1.37 (m, 2H), 1.37–1.06 (m, 26H), 0.88 (t, *J* = 6.7 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.1 (CH), 140.8 (C_q), 140.3 (C_q), 136.0 (CH), 129.7 (CH), 129.7 (CH), 128.2 (CH), 125.7 (CH), 124.1 (CH), 121.5 (CH), 32.9 (CH₂), 31.9 (CH₂), 31.2 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2917, 2847, 1584, 1463, 1424, 1023, 989, 795, 748, 723, 635, 621, 560 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 378 (27) [(M-H)⁺], 182 (100), 167 (58).

HR-MS (ESI): m/z berechnet für C₂₇H₄₁N+H⁺ 380.3317, gefunden 380.3315.

122aw:

Smp.: 52 °C.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.72–8.64 (m, 1H), 7.71 (td, *J* = 7.7, 1.8 Hz, 1H), 7.28–7.18 (m, 3H), 7.09 (d, *J* = 7.5 Hz, 2H), 2.32–2.21 (m, 4H), 1.49–0.99 (m, 56H), 0.90–0.79 (m, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.7 (C_q), 149.3 (CH), 140.7 (C_q), 139.8 (C_q), 135.6 (CH), 127.9 (CH), 126.5 (CH), 124.9 (CH), 121.5 (CH), 33.5 (CH₂), 31.9 (CH₂), 31.1 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2917, 2848, 1583, 1462, 1425, 1026, 791, 755, 719 cm⁻¹.

MS (EI): m/z (relative Intensität) = 602 (44) [(M-H)⁺], 406 (100), 392 (19).

HR-MS (ESI): m/z berechnet für C₄₃H₇₃N+H⁺ 604.5816, gefunden 604.5806.

Darstellung von 2-{2-[2-(Triethylsilyl)ethyl]phenyl}pyridin (98ax) und 2-{2,6-Bis[2-(triethylsilyl)ethyl]phenyl}pyridin (122ax)

Nach AAV 5 werden **46a** (79 mg, 0.51 mMol) und **7x** (147 mg, 1.03 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1 \rightarrow 20:1) liefert **98ax** (95 mg, 63%) als hellgelbes Öl und **122ax** (65 mg, 29%) als weißen Feststoff.

98ax:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.67 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.72 (td, *J* = 7.7, 1.9 Hz, 1H), 7.37 (dt, *J* = 7.8, 1.1 Hz, 1H), 7.35–7.27 (m, 3H), 7.27–7.18 (m, 2H), 2.73–2.61 (m, 2H), 0.81 (t, *J* = 7.9 Hz, 9H), 0.75–0.64 (m, 2H), 0.40 (q, *J* = 7.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.2 (C_q), 149.0 (CH), 143.9 (C_q), 139.5 (C_q), 136.2 (CH), 129.7 (CH), 129.2 (CH), 128.5 (CH), 125.6 (CH), 124.1 (CH), 121.6 (CH), 27.3 (CH₂), 14.3 (CH₂), 7.3 (CH₃), 3.1 (CH₂).

IR (ATR): \tilde{v} = 2950, 2973, 1586, 1468, 1424, 1237, 1175, 1015, 891, 794, 775, 620 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 297 (16) [M⁺], 268 (34), 182 (100), 167 (24), 87 (11).

HR-MS (EI): *m*/*z* berechnet für C₁₉H₂₇NSi⁺ 297.1913, gefunden 297.1913.

122ax:

Mp.: 32 °C.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.71–8.67 (m, 1H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.33–7.18 (m, 3H), 7.10 (d, *J* = 7.6 Hz, 2H), 2.34–2.20 (m, 4H), 0.76 (t, *J* = 7.9 Hz, 18H), 0.76–0.51 (m, 4H), 0.32 (q, *J* = 7.9 Hz, 12H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.5 (CH), 149.3 (C_q), 143.8 (CH), 140.6 (C_q), 135.8 (C_q), 128.4 (CH), 125.8 (CH), 125.1 (CH), 121.6 (CH), 27.8 (CH₂), 14.2 (CH₂), 7.3 (CH₃), 3.0 (CH₂).

IR (ATR): $\tilde{\nu}$ = 2951, 2873, 1684, 1653, 1578, 1547, 1422, 1236, 1176, 1147, 1007, 968, 789, 762, 722 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 439 (25) [M⁺], 410 (36), 324 (100), 294 (23), 208 (11), 115 (16), 87 (55).

HR-MS (EI): *m*/*z* berechnet für C₂₇H₄₅NSi₂⁺ 439.3091, gefunden 439.3082.

Darstellung von rac-2-{2-[(1RS,2RS,4SR)-Bicyclo[2.2.1]heptan-2-yl]phenyl}pyridin (rac-98ay)

Nach AAV 5 werden **46a** (147 mg, 0.948 mMol) und **7y** (188 mg, 2.00 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert *rac-98ay* (206 mg, 87%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.69 (ddd, *J* = 5.0, 1.9, 0.9 Hz, 1H), 7.74 (td, *J* = 7.7, 1.8 Hz, 1H), 7.44– 7.38 (m, 1H), 7.38–7.32 (m, 2H), 7.32–7.19 (m, 3H), 2.95 (dd, *J* = 8.8, 6.1 Hz, 1H), 2.41–2.31 (m, 1H), 2.31–2.20 (m, 1H), 1.64 (dp, *J* = 9.8, 1.9 Hz, 1H), 1.59–1.42 (m, 3H), 1.37 (ddd, *J* = 12.1, 9.0, 2.4 Hz, 1H), 1.24–1.14 (m, 1H), 1.14–1.01 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.7 (C_q), 148.9 (CH), 145.1 (C_q), 140.5 (C_q), 135.9 (CH), 129.6 (CH), 128.1 (CH), 125.6 (CH), 125.2 (CH), 124.4 (CH), 121.4 (CH), 43.3 (CH), 42.7 (CH), 40.1 (CH₂), 36.9 (CH), 36.5 (CH₂), 30.4 (CH₂), 28.7 (CH₂).

IR (ATR): \tilde{v} = 2948, 2867, 1584, 1561, 1466, 1441, 1023, 795, 748 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 249 (70) [M⁺], 220 (100), 208 (28), 193 (79), 180 (63), 167 (60), 152 (18).

HR-MS (ESI): *m*/*z* berechnet für C₁₈H₁₉N⁺ 249.1517, gefunden 249.1514.

Darstellung von 6-[2-(Pyridin-2-yl)phenyl]hexan-2-on (98az)

Nach AAV 5 werden **41** (15 mg, 25.0 μ Mol), **116** (60 mg, 0.30 mMol), **46a** (154 mg, 0.99 mMol) und **7z** (195 mg, 1.99 mMol) in PhMe (3 mL) bei 120 °C über 24 h umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 2:1) liefert **98az** (142 mg, 56%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.8, 1.9, 1.1 Hz, 1H), 7.75 (td, *J* = 7.7, 1.8 Hz, 1H), 7.41–7.21 (m, 6H), 2.71 (t, *J* = 7.4 Hz, 2H), 2.29 (t, *J* = 7.0 Hz, 2H), 2.06 (s, 3H), 1.54–1.38 (m, 4H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 208.9 (C_q), 160.2 (C_q), 149.0 (CH), 140.2 (C_q), 140.0 (C_q), 136.1 (CH), 129.7 (CH), 129.6 (CH), 128.3 (CH), 125.8 (CH), 124.0 (CH), 121.6 (CH), 43.3 (CH₂), 32.6 (CH₂), 30.6 (CH₂), 29.7 (CH₃), 23.5 (CH₂).

IR (ATR): $\tilde{\nu}$ = 2934, 2862, 1711, 1585, 1562, 1468, 1441, 1425, 1358, 1150, 1023, 989, 843, 796 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 253 (19) [M⁺], 182 (100), 180 (34), 167 (87), 139 (7).

HR-MS (EI): m/z berechnet für C₁₇H₁₉NO⁺ 253.1467, gefunden 253.1469.

Darstellung von 2-[2-(3',3',4',4',5',5',6',6',7',7',8',8',8'-Tridecafluoroctyl)phenyl]pyridin (98aab)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46a** (155 mg, 1.00 mMol) und **7ab** (368 mg, 1.06 mMol) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1 \rightarrow 10:1) liefert **98aab** (389 mg, 78%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃) δ = 8.64 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.76 (td, *J* = 7.7, 1.8 Hz, 1H), 7.52–7.13 (m, 6H), 3.12–2.80 (m, 2H), 2.54–2.24 (m, 2H).

¹³**C-NMR** (125 MHz, CDCl₃) δ = 159.4 (C_q), 148.9 (CH), 140.4 (C_q), 137.5 (C_q), 136.4 (CH), 130.1 (CH), 129.9 (CH), 128.7 (CH), 126.8 (CH), 123.6 (CH), 121.9 (CH), 121.0–107.5 (m, -C₆F₁₃), 33.1 (t, ²J_{C-F} = 22 Hz, CH₂), 24.6 (t, ³J_{C-F} = 5 Hz, CH₂).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -81.0 (tt, *J* = 10.0, 2.5 Hz, 3F), -(114.8–114.9) (m, 2F), -(122.0–122.1) (m, 2F), -(123.0–123.1) (m, 2F), -(123.8–123.9) (m, 2F), -(126.2–126.4) (m, 2F).

IR (ATR): $\tilde{\nu}$ = 3067, 1588, 1564, 1472, 1443, 1427, 1232, 1188, 1142, 1119, 1079, 748, 707, 695 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 501 (27) [M⁺], 482 (8), 182 (100), 167 (53), 69 (7).

HR-MS (EI): m/z berechnet für C₁₉H₁₂F₁₃N⁺ 501.0762, gefunden 501.0752.

Darstellung von 3-Methoxy-2-[2-(3',3',4',4',5',5',6',6',7',7',8',8',8'-tridecafluoroctyl)phenyl]pyridin (98bab)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46b** (206 mg, 1.11 mMol) und **7ab** (379 mg, 1.10 mMol) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1 \rightarrow 5:1) liefert **98bab** (459 mg, 78%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃) δ = 8.27 (t, *J* = 3.0 Hz, 1H), 7.40–7.25 (m, 6H), 3.76 (s, 3H), 2.79–2.68 (m, 2H), 2.40–2.16 (m, 2H).

¹³**C-NMR** (125 MHz, CDCl₃) δ = 153.3 (C_q), 149.0 (C_q), 141.1 (CH), 137.7 (C_q), 137.6 (C_q), 130.2 (CH), 129.1 (CH), 128.6 (CH), 126.6 (CH), 123.4 (CH), 117.9 (CH), 121.0–107.5 (m, -C₆F₁₃), 55.2(CH₃), 32.5 (t, ²J_{C-F} = 22 Hz, CH₂), 24.2 (t, ³J_{C-F} = 5 Hz, CH₂).

¹⁹**F-NMR** (282 MHz, $CDCl_3$): δ = -81.6 (tt, *J* = 10.0, 2.5 Hz, 3F), -(115.1–115.3) (m, 2F), -(122.0–122.2) (m, 2F), -(122.9–123.1) (m, 2F), -(123.9–123.9) (m, 2F), -(126.2–126.4) (m, 2F).

IR (ATR): $\tilde{\nu}$ = 2946, 2840, 1581, 1455, 1427, 1275, 1233, 1188, 1142, 1119, 1069, 729, 694, 525 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 531 (21) [M⁺], 512 (7), 500 (16), 212 (100), 197 (32), 182 (20), 154 (6), 69 (8).

HR-MS (EI): m/z berechnet für C₂₀H₁₄F₁₃NO⁺ 530.0868, gefunden 531.0888.

Darstellung von 5-Methyl-2-[2-(3',3',4',4',5',5',6',6',7',7',8',8',8',8'-tridecafluoroctyl)phenyl]pyridin (98dab)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46d** (165 mg, 0.98 mMol) und **7ab** (394 mg, 1.14 mMol) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1 \rightarrow 25:1) liefert **98dab** (401 mg, 80%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃) δ = 8.51–8.43 (m, 1H), 7.56 (ddd, *J* = 8.0, 2.2, 0.9 Hz, 1H), 7.40–7.22 (m, 5H), 3.03–2.89 (m, 2H), 2.51–2.24 (m, 2H), 2.37 (s, 3H).

¹³**C-NMR** (125 MHz, CDCl₃) δ = 156.6 (C_q), 149.3 (CH), 140.3 (C_q), 137.5 (C_q), 137.0 (CH), 131.4 (C_q), 130.0 (CH), 129.9 (CH), 128.4 (CH), 126.8 (CH), 123.1 (CH), 121.0–107.5 (m, -C₆F₁₃), 33.1 (t, ²J_{C-F} = 22 Hz, CH₂), 24.6 (t, ³J_{C-F} = 5 Hz, CH₂), 18.2 (CH₃).

¹⁹**F-NMR** (282 MHz, $CDCl_3$): δ = -81.0 (tt, *J* = 10.0, 2.5 Hz, 3F), -(114.7–114.9) (m, 2F), -(122.0–122.1) (m, 2F), -(122.9–123.1) (m, 2F), -(123.8–123.9) (m, 2F), -(126.2–126.4) (m, 2F).

IR (ATR): $\tilde{\nu}$ = 3007, 2940, 1599, 1479, 1366, 1233, 1189, 1142, 1119, 1070, 1070, 1024, 809, 746 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 515 (28) [M⁺], 496 (4), 196 (100), 181 (41), 69 (6).

HR-MS (EI): m/z berechnet für C₂₀H₁₄F₁₃N⁺ 515.0919, gefunden 515.0933.

Darstellung von 2-[2-Methoxy-6-(3',3',4',4',5',5',6',6',7',7',8',8',8'-tridecafluoroctyl)phenyl]pyridin (98qab)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46q** (193 mg, 1.04 mMol) und **7ab** (377 mg, 1.09 mMol) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1 \rightarrow 5:1) liefert **98qab** (468 mg, 84%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃) δ = 8.67 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.73 (td, *J* = 7.7, 1.8 Hz, 1H), 7.35–7.21 (m, 3H), 6.94–6.83 (m, 2H), 3.70 (s, 3H), 2.70–2.59 (m, 2H), 2.39–2.15 (m, 2H).

¹³**C-NMR** (125 MHz, CDCl₃) δ = 157.1 (C_q), 156.0 (C_q), 149.3 (CH), 139.2 (C_q), 135.8 (CH), 129.8 (C_q), 129.4 (CH), 125.6 (CH), 122.0 (CH), 121.7 (CH), 109.4 (CH), 121.0–107.5 (m, -C₆F₁₃), 55.8 (CH₃), 32.8 (t, ²J_{C-F} = 22 Hz, CH₂), 24.4 (t, ³J_{C-F} = 5 Hz, CH₂).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -80.9 (tt, *J* = 10.0, 2.5 Hz, 3F), -(114.9–115.2) (m, 2F), -(122.0–122.2) (m, 2F), -(122.9–123.1) (m, 2F), -(123.8–124.0) (m, 2F), -(126.1–126.3) (m, 2F).

IR (ATR): $\tilde{\nu}$ = 2946, 2840, 1589, 1565, 1470, 1460, 1439, 1427, 1232, 1187, 1142, 1066, 740 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 531 (29) [M⁺], 512 (5), 212 (100), 197 (44), 154 (13), 69 (7).

HR-MS (EI): m/z berechnet für C₂₀H₁₄F₁₃NO⁺ 531.0868, gefunden 531.0847.

Darstellung von 2-[2-(3',3',4',4',5',5',6',6',7',7',8',8',8'-Tridecafluoroctyl)-5-(trifluormethyl)phenyl]pyridin (98pab)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46p** (124 mg, 0.56 mMol) und **7ab** (207 mg, 0.60 mMol) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1 \rightarrow 20:1) liefert **98qab** (259 mg, 82%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃) δ = 8.66 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.80 (td, *J* = 7.7, 1.8 Hz, 1H), 7.67–7.55 (m, 2H), 7.48–7.38 (m, 2H), 7.31 (ddd, *J* = 7.6, 4.9, 1.1 Hz, 1H), 3.11–2.92 (m, 2H), 2.56–2.28 (m, 2H).

¹³**C-NMR** (125 MHz, CDCl₃) δ = 158.0 (C_q), 149.1 (CH), 141.7 (C_q), 140.9 (C_q), 136.8 (CH), 130.7 (CH), 129.3 (C_q,²J_{C-F} = 32 Hz), 126.8 (CH,³J_{C-F} = 4 Hz), 125.3 (CH,³J_{C-F} = 4 Hz), 123.9 (C_q,¹J_{C-F} = 271 Hz), 123.6 (CH), 122.6 (CH), 121.0–107.5 (m, -C₆F₁₃), 32.8 (t, ²J_{C-F} = 22 Hz, CH₂), 24.7 (t, ³J_{C-F} = 5 Hz, CH₂).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -62.7 (s, 3F), -81.0 (tt, *J* = 10.0, 2.5 Hz, 3F), -(114.8–114.9) (m, 2F), -(122.0–122.1) (m, 2F), -(122.9–123.1) (m, 2F), -(123.8–123.8) (m, 2F), -(126.2–126.4) (m, 2F).

IR (ATR): $\tilde{\nu}$ = 2983, 2972, 1590, 1337, 1168, 1122, 1080, 843, 794, 747, 707, 659 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 569 (9) [M⁺], 550 (3), 300 (2), 250 (100), 235 (23), 69 (14).

HR-MS (EI): m/z berechnet für C₂₀H₁₁F₁₆N⁺ 569.0636, gefunden 569.0610.

Darstellung von 2-(2-n-Decylphenyl)-3-methoxypyridin (98bq)

Nach AAV 5 werden **41** (15 mg, 25 μMol), **116** (60 mg, 0.30 mMol), **46b** (189 mg, 1.02 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1) liefert **98bq** (269 mg, 81%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.36–8.22 (m, 1H), 7.40–7.17 (m, 6H), 3.77 (s, 3H), 2.54–2.38 (m, 2H), 1.50–1.34 (m, 2H), 1.34–1.06 (m, 14H), 0.87 (t, *J* = 6.9 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 153.4 (C_q), 150.3 (C_q), 141.3 (C_q), 140.9 (CH), 137.3 (C_q), 129.5 (CH), 128.9 (CH), 128.1 (CH), 125.4 (CH), 122.9 (CH), 117.6 (CH), 55.3 (CH₃), 33.0 (CH₂), 31.9 (CH₂), 30.7 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2922, 2852, 1581, 1453, 1424, 1274, 1191, 1122, 1072, 1016, 797, 778, 750 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 325 (26) [M⁺], 294 (63), 212 (100), 197 (42), 182 (34).

HR-MS (EI): *m*/z berechnet für C₂₂H₃₁NO⁺ 325.2406, gefunden 325.2391.

Darstellung von 2-(2-*n*-Decylphenyl)-5-methylpyridin (98dq) und 2-(2,6-Di-*n*-decylphenyl)-5-methylpyridin (122dq)

Nach AAV 5 werden **41** (15 mg, 25 μMol), **116** (60 mg, 0.30 mMol), **46d** (169 mg, 1.00 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98dq** (253 mg, 82%) als hellgelbes Öl und **122dq** (37 mg, 8%) als farbloses Öl.

98dq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.58–8.45 (m, 1H), 7.61–7.46 (m, 1H), 7.39–7.17 (m, 5H), 2.78–2.55 (m, 2H), 2.39 (s, 3H), 1.52–1.36 (m, 2H), 1.36–1.09 (m, 14H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 157.5 (C_q), 149.5 (CH), 140.8 (C_q), 140.3 (C_q), 136.6 (CH), 130.9 (C_q), 129.7 (CH), 129.6 (CH), 128.0 (CH), 125.6 (CH), 123.5 (CH), 32.9 (CH₂), 31.9 (CH₂), 31.2 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 22.7 (CH₂), 18.2 (CH₃), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2922, 2852, 1597, 1559, 1474, 1376, 1022, 835, 772, 748, 645 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 309 (20) [M⁺], 196 (100), 181 (47).

HR-MS (EI): m/z berechnet für C₂₂H₃₁N⁺ 309.2457, gefunden 309.2444.

122dq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.60–8.47 (m, 1H), 7.60–7.46 (m, 1H), 7.31–7.03 (m, 4H), 2.40 (s, 3H), 2.34–2.20 (m, 4H), 1.52–0.98 (m, 32H), 0.87 (t, *J* = 6.8 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 156.6 (C_q), 149.6 (CH), 140.9 (C_q), 139.7 (C_q), 136.2 (C_q), 130.7 (CH), 127.7 (CH), 126.4 (CH), 124.3 (CH), 33.5 (CH₂), 31.9 (CH₂), 31.1 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.7 (CH₂), 18.2 (CH₃), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2922, 2852, 1561, 1489, 1457, 1376, 1024, 833, 758, 721, 646 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 449 (25) [M⁺], 336 (100), 208 (15).

HR-MS (EI): m/z berechnet für C₃₂H₅₁N⁺ 449.4022, gefunden 449.4032.

Darstellung von 2-(2-n-Decylphenyl)-3-methylpyridin (98eq)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46e** (176 mg, 1.04 mMol) und **7q** (0.38 mL, 2.00 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1 \rightarrow 10:1) liefert **98eq** (91 mg, 28%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.54–8.40 (m, 1H), 7.55 (ddd, *J* = 7.7, 1.7, 0.7 Hz, 1H), 7.34–7.05 (m, 5H), 2.49–2.25 (m, 2H), 2.09 (s, 3H), 1.47–0.96 (m, 16H), 0.85 (t, *J* = 6.9 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.7 (C_q), 146.5 (CH), 140.5 (C_q), 139.8 (C_q), 137.6 (CH), 131.5 (C_q), 129.3 (CH), 128.7 (CH), 127.9 (CH), 125.6 (CH), 122.0 (CH), 32.9 (CH₂), 31.9 (CH₂), 30.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 19.2 (CH₃), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2922, 2852, 1566, 1422, 1379, 1116, 1023, 789, 752, 626 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 309 (10) [M⁺], 294 (57), 196 (100), 181 (41).

HR-MS (EI): m/z berechnet für C₂₂H₃₁N⁺ 309.2457, gefunden 309.2454.

Darstellung von 2-(2-n-Decylphenyl)-5-fluorpyridin (98fq)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46f** (173 mg, 1.00 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 70:1) liefert **98fq** (55% *via* NMR) als 1.4: 1-Mischung (242 mg) mit **46f** als hellgelbes Öl. Anschließende HPLC (C₁₈, MeCN/H₂O 1:1 \rightarrow 1:0) liefert das reine Produkt als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.52 (d, *J* = 2.9 Hz, 1H), 7.50–7.17 (m, 6H), 2.74–2.55 (m, 2H), 1.54–1.34 (m, 2H), 1.34–1.03 (m, 14H), 0.87 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.3 (C_q, ¹J_{C-F} = 256 Hz), 156.5 (C_q, ⁴J_{C-F} = 4 Hz), 140.9 (C_q), 139.2 (C_q), 137.1 (CH, ²J_{C-F} = 23 Hz), 129.7 (CH, ³J_{C-F} = 7 Hz), 128.4 (CH), 125.7 (CH), 124.9 (CH), 124.8 (CH), 122.9 (CH, ²J_{C-F} = 18 Hz), 32.9 (CH₂), 31.9 (CH₂), 31.2 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.7 (CH₂), 14.1 (CH₃).

¹⁹**F-NMR** (282 MHz, $CDCl_3$): δ = -(130.2–130.1) (m).

IR (ATR): $\tilde{\nu}$ = 2922, 2853, 1583, 1472, 1443, 1222, 1018, 839, 748, 569 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 313 (22) [M⁺], 200 (100), 158 (54).

HR-MS (EI): m/z berechnet für C₂₁H₂₈FN⁺ 313.2206, gefunden 313.2213.

Darstellung von 2-(2-n-Decylphenyl)-5-phenylpyridin (98gq)

Ph n-Dec

Nach AAV 5 werden **41** (7.7 mg, 12.5 μ Mol), **116** (30 mg, 0.15 mMol), **46g** (116 mg, 0.50 mMol) und **7q** (140 mg, 1.00 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1 \rightarrow 4:1) liefert **98gq** (103 mg, 55%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.92 (dd, *J* = 2.4, 0.7 Hz, 1H), 7.93 (dd, *J* = 8.1, 2.4 Hz, 1H), 7.70–7.61 (m, 2H), 7.54–7.22 (m, 8H), 2.80–2.68 (m, 2H), 1.57–1.35 (m, 2H), 1.35–1.04 (m, 14H), 0.84 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.0 (C_q), 147.5 (CH), 140.9 (C_q), 140.9 (C_q), 139.9 (C_q), 137.7 (C_q), 134.4 (CH), 129.8 (CH), 129.7 (CH), 129.0 (CH), 128.3 (CH), 128.0 (CH), 127.0 (CH), 125.7 (CH), 123.9 (CH), 32.9 (CH₂), 31.9 (CH₂), 31.3 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2921, 2851, 1591, 1468, 1366, 1020, 846, 786, 752, 695 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 371 (16) [M⁺], 258 (100), 243 (32).

HR-MS (EI): m/z berechnet für C₂₇H₃₃N⁺ 371.2613, gefunden 371.2599.

Darstellung von 2-(2-n-Decyl-5-methylphenyl)pyridin (98hq)

n-Dec Me

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46h** (174 mg, 1.03 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n* Hexan/EtOAc 20:1) liefert **98hq** (213 mg, 67%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.60 (ddd, *J* = 4.1, 1.7, 0.9 Hz, 1H), 7.70 (dd, *J* = 7.7, 5.9 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 1H), 7.26–7.08 (m, 4H), 2.70–2.54 (m, 2H), 2.33 (s, 3H), 1.50–1.32 (m, 2H), 1.32–1.05 (m, 14H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.4 (C_q), 149.1 (CH), 140.1 (C_q), 137.6 (C_q), 135.9 (CH), 135.1 (C_q), 130.3 (CH), 129.6 (CH), 128.9 (CH), 124.0 (CH), 121.4 (CH), 32.4 (CH₂), 31.9 (CH₂), 31.3 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 22.6 (CH₂), 20.9 (CH₃), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2921, 2852, 1587, 1562, 1465, 1426, 1039, 991, 820, 793, 747 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 309 (19) [M⁺], 196 (100), 181 (47).

HR-MS (EI): m/z berechnet für C₂₂H₃₁N⁺ 309.2456, gefunden 309.2448.

Darstellung von 2-(2-*n*-Decyl-5-methoxyphenyl)pyridin (98iq) und 2-(2-*n*-Decyl-3-methoxyphenyl)pyridin (98iq')

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46i** (184 mg, 0.99 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1 \rightarrow 10:1) liefert **98iq** (74 mg, 23%) und **98iq'** (121 mg, 37%) als hellgelbe Öle.

98iq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.66 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.70 (td, *J* = 7.7, 1.8 Hz, 1H), 7.35 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.28–7.14 (m, 2H), 6.92–6.84 (m, 1H), 6.88 (s, 1H), 3.79 (s, 3H), 2.69–2.50 (m, 2H), 1.49–1.03 (m, 16H), 0.85 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.1 (C_q), 157.4 (C_q), 149.1 (CH), 141.1 (C_q), 135.9 (CH), 132.8 (C_q), 130.7 (CH), 123.9 (CH), 121.6 (CH), 114.6 (CH), 114.2 (CH), 55.2 (CH₃), 32.0 (CH₂), 31.8 (CH₂), 31.4 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2922, 2852, 1581, 1454, 1424, 1474, 1191, 1123, 1072, 1016, 797, 450, 622 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 325 (27) [M⁺], 212 (100), 198 (50), 182 (44).

HR-MS (EI): m/z berechnet für C₂₂H₃₁NO⁺ 325.2406, gefunden 325.2391.

98iqʻ:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.71–8.62 (m, 1H), 7.70 (dt, *J* = 7.6, 1.9 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.27–7.15 (m, 2H), 6.95–6.86 (m, 2H), 3.84 (s, 3H), 2.68–2.51 (m, 2H), 1.50–1.34 (m, 2H), 1.34–1.02 (m, 14H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 157.8 (C_q), 149.0 (CH), 141.8 (C_q), 135.8 (CH), 129.8 (C_q), 126.2 (CH), 124.1 (CH), 121.9 (CH), 121.5 (CH), 110.3 (CH), 55.6 (CH₃), 31.9 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 26.5 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2922, 2852, 1581, 1453, 1424, 1274, 1191, 1122, 1073, 1016, 797, 778, 750, 622 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 325 (20) [M⁺], 212 (100), 198 (28).

HR-MS (EI): m/z berechnet für C₂₂H₃₁NO⁺ 325.2406, gefunden 325.2392.

Darstellung von 2-(2-*n*-Decyl-3-fluorphenyl)pyridin (98jq') und 2-(2-*n*-Decyl-5-fluorphenyl)pyridin (98jq)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46j** (173 mg, 0.99 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 40:1 \rightarrow 20:1) liefert **98jq** (33 mg, 11%) als hellgelbes Öl und **98jq'** (206 mg, 66%) als farbloses Öl.

98jq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.66 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.73 (td, *J* = 7.7, 1.8 Hz, 1H), 7.34 (dt, *J* = 7.8, 1.1 Hz, 1H), 7.30–7.16 (m, 2H), 7.07–6.95 (m, 2H), 2.71–2.54 (m, 2H), 1.47–1.32 (m, 2H), 1.17 (s, 14H), 0.85 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 162.4 (C_q, ¹J_{C-F} = 244 Hz), 159.1 (C_q, ⁴J_{C-F} = 3 Hz), 149.2 (CH), 141.7 (C_q, ³J_{C-F} = 7 Hz), 135.5 (C_q, ⁴J_{C-F} = 3 Hz), 136.2 (CH), 131.1 (CH, ³J_{C-F} = 8 Hz), 123.9 (CH), 122.0 (CH), 116.3 (CH, ²J_{C-F} = 22 Hz), 114.9 (CH, ²J_{C-F} = 21 Hz), 32.1 (CH₂), 31.9 (CH₂), 31.3 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -(118.2–118.0) (m).

IR (ATR): $\tilde{\nu}$ = 2923, 2853, 1585, 1565, 1496, 1466, 1426, 1197, 1179, 991, 902, 873, 747 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 313 (32) [M⁺], 200 (100), 185 (78).

HR-MS (EI): *m*/*z* berechnet für C₂₁H₂₈FN⁺ 313.2206, gefunden 313.2212.

98jqʻ:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.60 (ddd, *J* = 4.9, 1.6, 0.7 Hz, 1H), 7.73 (td, *J* = 7.7, 1.8 Hz, 1H), 7.40–7.30 (m, 1H), 7.30–7.14 (m, 2H), 7.14–6.98 (m, 2H), 2.76–2.58 (m, 2H), 1.51–1.33 (m, 2H), 1.33–1.02 (m, 14H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.5 (C_q, ¹J_{C-F} = 244 Hz), 159.1 (C_q, ⁴J_{C-F} = 3 Hz), 149.1 (CH), 142.5 (C_q, ³J_{C-F} = 5 Hz), 136.1 (CH), 128.4 (C_q, ²J_{C-F} = 17 Hz), 126.7 (CH, ³J_{C-F} = 9 Hz), 125.3 (CH, ⁴J_{C-F} = 3 Hz), 124.0 (CH),

121.9 (CH), 115.0 (CH, ${}^{2}J_{C-F} = 23 \text{ Hz}$), 31.9 (CH₂), 30.1 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 25.6 (CH₂), ${}^{3}J_{C-F} = 3 \text{ Hz}$, CH₂) 22.6 (CH₂), 14.1 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -(117.7–117.5) (m).

IR (ATR): $\tilde{\nu}$ = 2922, 2853, 1564, 1452, 1423, 1237, 1130, 992, 881, 774, 747, 700 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 313 (17) [M⁺], 200 (100), 185 (82).

HR-MS (EI): *m*/*z* berechnet für C₂₁H₂₈FN⁺ 313.2206, gefunden 313.2209.

Darstellung von 2-(2-*n*-Decyl-4-fluorphenyl)pyridin (98kq) und 2-(2,6-Di-*n*-decyl-4-fluorphenyl)pyridin (122kq)

Nach AAV 5 werden **41** (15 mg, 25 μMol), **116** (60 mg, 0.30 mMol), **46k** (173 mg, 1.00 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98kq** (229 mg, 73%) und **122kq** (105 mg, 23%) als hellgelbe Öle.

98kq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.65 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.71 (td, *J* = 7.7, 1.9 Hz, 1H), 7.38–7.17 (m, 3H), 7.03–6.87 (m, 2H), 2.75–2.57 (m, 2H), 1.51–1.34 (m, 2H), 1.34–1.04 (m, 14H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 162.6 (C_q, ¹*J*_{C-F} = 246 Hz), 159.4 (C_q), 149.2 (CH), 143.5 (C_q, ³*J*_{C-F} = 7 Hz), 136.4 (C_q, ⁴*J*_{C-F} = 3 Hz), 136.1 (CH), 131.4 (CH, ³*J*_{C-F} = 9 Hz), 124.1 (CH), 121.7 (CH), 116.1 (CH, ²*J*_{C-F} = 21 Hz), 112.5 (CH, ²*J*_{C-F} = 21 Hz), 32.9 (CH₂), 31.9 (CH₂), 30.9 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -(114.6–114.4) (m).

IR (ATR): $\tilde{\nu}$ = 2923, 2853, 1588, 1501, 1465, 1428, 1263, 1221, 1149, 1026, 868, 786, 747, 566 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 313 (18) [M⁺], 200 (100), 185 (41).

HR-MS (EI): m/z berechnet für C₂₁H₂₈FN⁺ 313.2206, gefunden 313.2194.

122kq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.71 (td, *J* = 7.7, 1.8 Hz, 1H), 7.32–7.14 (m, 2H), 6.79 (d, *J* = 9.8 Hz, 2H), 2.35–2.11 (m, 4H), 1.52–0.99 (m, 32H), 0.85 (t, *J* = 6.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 162.2 (C_q, ¹*J*_{C-F} = 244 Hz), 158.9 (C_q), 149.4 (CH), 143.3 (C_q, ³*J*_{C-F} = 7 Hz), 135.9 (C_q, ⁴*J*_{C-F} = 3 Hz), 135.8 (CH), 125.2 (CH), 121.7 (CH), 112.9 (CH, ²*J*_{C-F} = 21 Hz), 33.5 (CH₂, ⁴*J* = 2 Hz), 31.9 (CH₂), 30.7 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -115.3 (t, *J* = 10 Hz).

IR (ATR): $\tilde{\nu}$ = 2922, 2853, 1598, 1563, 1454, 1424, 1260, 1131, 1025, 860, 793, 749 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 453 (52) [M⁺], 340 (100), 212 (39).

HR-MS (EI): *m*/z berechnet für C₃₁H₄₈FN⁺ 453.3771, gefunden 453.3759.

Darstellung von 2-(2-*n*-Decyl-4-methoxyphenyl)pyridin (98lq) und 2-(2,6-Di-*n*-decyl-4-methoxyphenyl)pyridin (122lq)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46I** (185 mg, 1.00 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1 \rightarrow 10:1) liefert **98Iq** (258 mg, 79%) als hellbraunes Öl und **122Iq** (59 mg, 13%) als hellgelbes Öl.

98lq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.64 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.68 (td, *J* = 7.7, 1.9 Hz, 1H), 7.32 (dt, *J* = 7.9, 0.9 Hz, 1H), 7.30–7.23 (m, 1H), 7.18 (ddd, *J* = 7.5, 4.9, 1.1 Hz, 1H), 6.80 (dt, *J* = 8.3, 2.6 Hz, 2H), 3.82 (s, 3H), 2.76–2.59 (m, 2H), 1.53–1.32 (m, 2H), 1.32–1.03 (m, 14H), 0.85 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.1 (C_q), 159.5 (C_q), 149.0 (CH), 142.5 (C_q), 135.9 (CH), 133.2 (C_q), 131.0 (CH), 124.1 (CH), 121.2 (CH), 115.2 (CH), 110.9 (CH), 55.2 (CH₃), 33.1 (CH₂), 31.9 (CH₂), 31.1 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2922, 2852, 1606, 1589, 1505, 1463, 1426, 1276, 1234, 786, 747, 588 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 325 (16) [M⁺], 212 (100), 197 (29).

HR-MS (EI): m/z berechnet für C₂₂H₃₁NO⁺ 325.2406, gefunden 325.2400.

122lq:

¹**H-NMR** (300 MHz, $CDCl_3$): δ = 8.72–8.61 (m, 1H), 7.69 (td, *J* = 7.6, 1.9 Hz, 1H), 7.30–7.14 (m, 2H), 6.64 (s, 2H), 3.81 (s, 3H), 2.25 (t, *J* = 7.9 Hz, 4H), 1.49–0.96 (m, 32H), 0.85 (t, *J* = 6.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.6 (C_q), 159.0 (C_q), 149.3 (CH), 142.4 (C_q), 135.6 (CH), 132.9 (C_q), 125.5 (CH), 121.4 (CH), 111.8 (CH), 55.1 (CH₃), 33.8 (CH₂), 31.9 (CH₂), 31.0 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2921, 2852, 1602, 1584, 1458, 1423, 1313, 1192, 1153, 1020, 749 cm⁻¹.

MS (EI): m/z (relative Intensität) = 465 (51) [M⁺], 352 (100), 338 (26), 224 (26).

HR-MS (EI): m/z berechnet für C₃₂H₅₁NO⁺ 465.3971, gefunden 465.3961.

Darstellung von 2-(2-*n*-Decyl-4-methylphenyl)pyridin (98mq) und 2-(2,6-Di-*n*-decyl-4-methylphenyl)pyridin (122mq)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46m** (168 mg, 0.99 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98mq** (236 mg, 76%) und **122mq** (26 mg, 6%) als hellgelbe Öle.

98mq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.66 (ddd, *J* = 4.9, 1.7, 0.9 Hz, 1H), 7.69 (td, *J* = 7.7, 1.8 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.27–7.15 (m, 2H), 7.12–7.01 (m, 2H), 2.71–2.59 (m, 2H), 2.36 (s, 3H), 1.51–1.34 (m, 2H), 1.34–1.04 (m, 14H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.4 (C_q), 149.0 (CH), 140.6 (C_q), 137.8 (C_q), 137.5 (C_q), 135.9 (CH), 130.4 (CH), 129.7 (CH), 126.4 (CH), 124.1 (CH), 121.3 (CH), 32.9 (CH₂), 31.9 (CH₂), 31.3 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 21.2 (CH₃), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2921, 2852, 1613, 1586, 1465, 1426, 1148, 1026, 989, 822, 786, 747, 719, 624 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 309 (12) [M⁺], 196 (100), 181 (40).

HR-MS (EI): m/z berechnet für C₂₂H₃₁N⁺ 309.2457, gefunden 309.2454.

122mq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.72–8.63 (m, 1H), 7.69 (td, *J* = 7.7, 1.8 Hz, 1H), 7.27–7.17 (m, 2H), 6.91 (s, 2H), 2.32 (s, 3H), 2.24 (t, *J* = 8.0 Hz, 4H), 1.47–0.96 (m, 32H), 0.86 (t, *J* = 6.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.8 (C_q), 149.2 (CH), 140.6 (C_q), 137.3 (C_q), 137.1 (C_q), 135.6 (CH), 127.2 (CH), 125.2 (CH), 121.4 (CH), 33.5 (CH₂), 31.9 (CH₂), 31.2 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.7 (CH₂), 21.3 (CH₃), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2921, 2852, 1610, 1586, 1562, 1457, 1424, 1025, 856, 792, 749, 721, 623 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 449 (100) [M⁺], 336 (95), 208 (24).

HR-MS (EI): m/z berechnet für C₃₂H₅₁N⁺ 449.4022, gefunden 449.4006.

Darstellung von 2-(2-n-Decyl-6-methylphenyl)pyridin (98nq)

Nach AAV 5 werden **41** (15 mg, 25 μMol), **116** (60 mg, 0.30 mMol), **46n** (166 mg, 0.98 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **98nq** (15 mg, 5%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.75–8.63 (m, 1H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.30–7.14 (m, 3H), 7.08 (t, *J* = 7.0 Hz, 2H), 2.37–2.21 (m, 2H), 2.00 (s, 3H), 1.46–0.99 (m, 16H), 0.85 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.8 (C_q), 149.5 (CH), 140.7 (C_q), 140.1 (C_q), 136.0 (CH), 135.8 (C_q), 127.9 (CH), 127.4 (CH), 126.6 (CH), 124.7 (CH), 121.6 (CH), 33.4 (CH₂), 31.9 (CH₂), 31.1 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.7 (CH₂), 20.3 (CH₃), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2923, 2853, 1584, 1563, 1460, 1026, 908, 789, 731, 645 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 309 (46) [M⁺], 196 (100), 181 (50).

HR-MS (EI): m/z berechnet für C₂₂H₃₁N⁺ 309.2457, gefunden 309.2455.

Darstellung von 2-[2-*n*-Decyl-4-(trifluormethyl)phenyl]pyridin (98oq) und 2-[2,6-Di-*n*-decyl-4-(trifluormethyl)phenyl]pyridin (122oq)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **460** (223 mg, 1.00 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 30:1 \rightarrow 20:1) liefert **980q** (272 mg, 75%) und **1220q** (102 mg, 20%) als hellgelbe Öle.

98oq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.75 (td, *J* = 7.7, 1.8 Hz, 1H), 7.60–7.18 (m, 5H), 2.80–2.62 (m, 2H), 1.52–1.35 (m, 2H), 1.35–1.06 (m, 14H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.0 (C_q), 149.3 (CH), 143.6 (C_q), 141.8 (C_q), 136.3 (CH), 130.3 (C_q,²J_{C-F} = 32 Hz), 130.1 (CH), 127.8 (C_q, ¹J_{C-F} = 272 Hz), 126.4 (CH,³J_{C-F} = 4 Hz), 123.9 (CH), 122.5 (CH,³J_{C-F} = 4 Hz), 122.2 (CH), 32.9 (CH₂), 31.9 (CH₂), 31.0 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -62.5 (s).

IR (ATR): $\tilde{\nu}$ = 2924, 2854, 1587, 1466, 1412, 1329, 1262, 1163, 1122, 1084, 1025, 791, 746 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 363 (21) [M⁺], 250 (100), 235 (46).

HR-MS (EI): m/z berechnet für C₂₂H₂₈F₃N⁺ 363.2174, gefunden 363.2186.

122oq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.70 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.74 (td, *J* = 7.7, 1.8 Hz, 1H), 7.40–7.14 (m, 4H), 2.40–2.20 (m, 4H), 1.52–0.98 (m, 32H), 0.86 (t, *J* = 6.8 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.4 (C_q), 149.5 (CH), 143.1 (C_q), 141.8 (C_q), 136.0 (CH), 130.0 (C_q,²*J*_{C-F} = 32 Hz), 124.6 (CH), 124.3 (C_q, ¹*J*_{C-F} = 272 Hz), 123.2 (CH,³*J*_{C-F} = 4 Hz), 122.1 (CH), 33.5 (CH₂), 31.9 (CH₂), 30.8 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -62.5 (s).

IR (ATR): $\tilde{\nu}$ = 2923, 2854, 1586, 1460, 1346, 1218, 1160, 1123, 885, 749 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 503 (100) [M⁺], 390 (93), 377 (24), 262 (33), 249 (28).

HR-MS (EI): m/z berechnet für C₃₂H₄₈F₃N⁺ 503.3739, gefunden 503.3727.

Darstellung von 2-[2-n-Decyl-5-(trifluormethyl)phenyl]pyridin (98pq)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46p** (226 mg, 1.01 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1) liefert **98pq** (338 mg, 92%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.9, 1.7, 0.9 Hz, 1H), 7.76 (td, *J* = 7.7, 1.8 Hz, 1H), 7.64–7.48 (m, 2H), 7.42–7.34 (m, 2H), 7.28 (ddd, *J* = 7.6, 4.9, 1.1 Hz, 1H), 2.80–2.63 (m, 2H), 1.51–1.34 (m, 2H), 1.34–1.04 (m, 14H), 0.85 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.9 (C_q), 149.3 (CH), 145.0 (C_q), 140.7 (C_q), 136.4 (CH), 130.1 (CH), 128.1 (C_q, ²J_{C-F} = 32 Hz), 126.6 (CH), ³J_{C-F} = 4 Hz), 124.9 (CH, ³J_{C-F} = 4 Hz), 124.2 (C_q, ¹J_{C-F} = 272 Hz), 124.0 (CH), 122.4 (CH), 32.9 (CH₂), 31.9 (CH₂), 30.9 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -62.3 (s).

IR (ATR): $\tilde{\nu}$ = 2924, 2854, 1588, 1411, 1335, 1259, 1166, 1122, 1078, 832, 794, 747, 647 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 363 (16) [M⁺], 250 (100), 235 (49), 167 (10).

HR-MS (EI): m/z berechnet für C₂₂H₂₈F₃N⁺ 363.2174, gefunden 363.2162.

Darstellung von 2-(2-n-Decyl-6-methoxyphenyl)pyridin (98qq)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46q** (191 mg, 1.03 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1 \rightarrow 5:1) liefert **98qq** (283 mg, 84%) als hellgrünes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.70 (ddd, *J* = 4.9, 0.9, 0.8 Hz, 1H), 7.72 (td, *J* = 7.7, 1.9 Hz, 1H), 7.35–7.16 (m, 3H), 6.91 (d, *J* = 8.0, 1H), 6.81 (d, *J* = 8.0, 1H), 3.70 (s, 3H), 2.44–2.28 (m, 2H), 1.48–1.00 (m, 16H), 0.87 (t, *J* = 6.9 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 157.5 (C_q), 157.3 (C_q), 149.6 (CH), 143.2 (C_q), 136.0 (CH), 130.0 (C_q), 129.2 (CH), 126.1 (CH), 122.1 (CH), 122.0 (CH), 108.7 (CH), 56.1 (CH₃), 33.4 (CH₂), 32.3 (CH₂), 31.3 (CH₂), 29.9 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 23.1 (CH₂), 14.5 (CH₃).

IR (ATR): \tilde{v} = 2922, 2852, 1586, 1466, 1424, 1255, 1078, 1024, 989, 783, 742, 603 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 325 (17) [M⁺], 212 (100), 197 (37).

HR-MS (EI): *m*/*z* berechnet für C₂₂H₃₁NO⁺ 325.2406, gefunden 325.2394.

Darstellung von 2-(2-*n*-Decyl-3,4,5-trifluorphenyl)pyridin (98rq) und 2-(2,6-Di-*n*-decyl-3,4,5-trifluorphenyl)pyridin (122rq)

Nach AAV 5 werden **41** (15 mg, 25 μMol), **116** (60 mg, 0.30 mMol), **46r** (209 mg, 1.00 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1) liefert **98rq** (276 mg, 79%) und **122rq** (23 mg, 5%) als hellgelbe Öle.

98rq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.77 (td, *J* = 7.7, 1.8 Hz, 1H), 7.40–7.21 (m, 2H), 7.08–6.92 (m, 1H), 2.75–2.59 (m, 2H), 1.49–1.34 (m, 2H), 1.34–1.02 (m, 14H), 0.87 (t, *J* = 6.9 Hz, 3H).

¹³**C-NMR** (125 MHz, CDCl₃): δ = 157.3 (C_q), 149.9 (C_q, ¹J_{C-F} = 246 Hz, ²J_{C-F} = 10 Hz, ³J_{C-F} = 4 Hz), 149.3 (CH), 148.5 (C_q, ¹J_{C-F} = 247 Hz, ²J_{C-F} = 10 Hz, ³J_{C-F} = 4 Hz), 139.6 (C_q, ¹J_{C-F} = 251 Hz, ²J_{C-F} = 15 Hz), 136.4 (CH), 136.0 (C_q, ³J_{C-F} = 10 Hz, ⁴J_{C-F} = 4 Hz), 126.1 (C_q, ²J_{C-F} = 14 Hz, ³J_{C-F} = 4 Hz), 123.9 (CH), 122.4 (CH), 113.1 (CH, ²J_{C-F} = 18 Hz, ³J_{C-F} = 3 Hz), 31.9 (CH₂), 30.1 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 25.7 (CH₂), 22.7 (CH₂), 14.2 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -(137.7–137.4) (m, 1F), -138.7 (ddd, 6.5, 10.8, 21.4 Hz, 1F), -160.9 (td, 7.4, 21.0 Hz, 1F).

IR (ATR): \tilde{v} = 2924, 2854, 1516, 1468, 1443, 1359, 1257, 1118, 994, 861, 792, 748, 666 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 349 (14) [M⁺], 236 (100), 221 (57).

HR-MS (EI): m/z berechnet für C₂₁H₂₆F₃N⁺ 349.2017, gefunden 349.2012.

122rq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.70 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.76 (dt, *J* = 7.7, 3.9 Hz, 1H), 7.32 (ddd, *J* = 7.6, 4.9, 1.1 Hz, 1H), 7.22 (dt, *J* = 7.6, 1.0 Hz, 1H), 2.28 (t, *J* = 7.8 Hz, 4H), 1.47–0.96 (m, 32H), 0.87 (t, *J* = 6.9 Hz, 6H).

¹³**C-NMR** (126 MHz, CDCl₃): δ = 156.5 (C_q), 149.4 (CH), 147.5 (C_q, ¹J_{C-F} = 245 Hz, ²J_{C-F} = 10 Hz, ³J_{C-F} = 4 Hz), 139.4 (C_q, ¹J_{C-F} = 250 Hz, ²J_{C-F} = 16 Hz), 135.9 (CH), 135.5 (C_q, ³J_{C-F} = 8 Hz, ⁴J_{C-F} = 4 Hz), 125.3 (C_q, ²J_{C-F} = 12 Hz, ³J_{C-F} = 5 Hz), 125.0 (CH), 122.3 (CH), 31.9 (CH₂), 30.0 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.0 (CH₂), 26.4 (CH₂), 22.7 (CH₂), 14.2 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -142.1 (d, 22.0 Hz, 2F), -161.5 (t, 21.5 Hz, 1F).

IR (ATR): $\tilde{\nu}$ = 2923, 2853, 1586, 1497, 1464, 1427, 1365, 1259, 1089, 1016, 796, 750, 668 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 489 (46) [M⁺], 376 (100), 363 (41), 248 (38).

HR-MS (EI): m/z berechnet für C₃₁H₄₆F₃N⁺ 489.3582, gefunden 489.3572.

Darstellung von 2-{2-[2-(Triethylsilyl)ethyl]benzo[b]thiophen-3-yl}pyridin (100ax)

Nach AAV 5 werden **41** (7.7 mg, 12.6 μ Mol), **116** (30 mg, 150 μ Mol), **99a** (115 mg, 543 μ Mol) und **7x** (133 mg, 931 μ Mol) in PhMe (1.5 mL) über 18 h bei 100 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1) liefert **100ax** (24 mg, 13%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.77 (ddd, *J* = 5.0, 1.8, 0.9 Hz, 1H), 7.86–7.75 (m, 2H), 7.68–7.60 (m, 1H), 7.45 (dt, *J* = 7.8, 1.1 Hz, 1H), 7.34–7.22 (m, 3H), 3.03–2.87 (m, 2H), 1.05–0.93 (m, 2H), 0.88 (t, *J* = 7.9 Hz, 9H), 0.48 (q, *J* = 7.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 154.5 (C_q), 149.8 (CH), 149.0 (C_q), 139.7 (C_q), 138.1(C_q), 136.4 (CH), 131.0 (C_q), 125.0 (CH), 124.3 (CH), 123.7 (CH), 122.3 (CH), 122.0 (CH), 121.9 (CH), 23.4 (CH₂), 14.8 (CH₂), 7.3 (CH₃), 3.0 (CH₂).

IR (ATR): $\tilde{\nu}$ = 2950, 2873, 1586, 1464, 1434, 1015, 993, 750, 727, 642 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 353 [M⁺] (57), 324 (34), 296 (7), 238 (100), 223 (29), 87 (14), 59 (25)

HR-MS (EI): *m*/*z* berechnet für C₂₁H₂₇NSSi⁺ 353.1633, gefunden 353.1635.

Darstellung von 6'-Methoxy-2',4'-bis[2-(triethylsilyl)ethyl]-2,3'-bipyridin (100bx)

Nach AAV 5 werden **41** (7.2 mg, 12 μ Mol), **116** (29 mg, 0.14 mMol), **99b** (44 mg, 0.24 mMol) und **7x** (68 mg, 0.47 mMol) in PhMe (0.8 mL) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **100bx** (84 mg, 76%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.73–8.64 (m, 1H), 7.72 (td, *J* = 7.7, 1.6 Hz, 1H), 7.30–7.19 (m, 2H), 6.47 (s, 1H), 3.93 (s, 3H), 2.39–2.31 (m, 4H), 2.27–2.19 (m, 4H), 0.78(t, *J* = 7.8 Hz, 9H), 0.75 (t, *J* = 7.8 Hz, 9H), 0.34 (q, *J* = 7.8 Hz, 6H), 0.32 (q, *J* = 7.8 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.4 (C_q), 160.0 (C_q), 158.1 (C_q), 156.1 (C_q), 149.5 (CH), 136.1 (CH), 127.4 (C_q), 125.6 (CH), 121.8 (CH), 105.9 (CH), 53.3 (CH₃), 29.9 (CH₂), 27.6 (CH₂), 12.9 (CH₂), 11.7 (CH₂), 7.3 (CH₃), 7.2 (CH₃), 3.0 (CH₂), 2.9 (CH₂).

IR (ATR): $\tilde{\nu}$ = 2950, 2874, 1595, 1561, 1456, 1386, 1346, 1172, 1047, 807, 720 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 470 [M⁺] (56), 455 (6),441 (100), 355 (77), 325 (19), 311 (14), 297 (8), 239 (8), 206 (20), 192 (11), 115 (11), 87 (36), 59 (25).

HR-MS (EI): *m/z* berechnet für C₂₇H₄₆N₂OSi₂⁺ 470.3149, gefunden 470.3144.

Darstellung von 2-[2-{2-(Trimethylsilyl)ethyl}thiophen-3-yl]pyridin (100cd)

Nach AAV 5 werden **41** (7.7 mg, 13 μ Mol), **116** (30 mg, 0.15 mMol), **99c** (85 mg, 0.53 mMol) und **7x** (0.22 mL, 1.5 mMol) in PhMe (1.5 mL) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1 \rightarrow 5:1) liefert **100cd** (83 mg, 60%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.64 (ddd, *J* = 4.9, 1.9, 1.1 Hz, 1H), 7.70 (td, *J* = 7.6, 1.9 Hz, 1H), 7.41 (dt, *J* = 7.6, 1.1 Hz, 1H), 7.24 (d, *J* = 5.3 Hz, 1H), 7.15 (ddd, *J* = 7.6, 4.9, 1.1 Hz, 1H), 7.10 (d, *J* = 5.3 Hz, 1H), 3.19–3.00 (m, 2H), 1.05–0.89 (m, 2H), 0.03 (s, 9H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 155.3 (C_q), 149.3 (CH), 147.8 (C_q), 136.3 (CH), 135.9 (C_q), 128.7 (CH), 122.7 (CH), 121.4 (CH), 121.1 (CH), 23.4 (CH₂), 19.8 (CH₂), -1.9 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2951, 1585, 1568, 1473, 1436, 1246, 1150, 990, 858, 836, 701 cm⁻¹.

MS (ESI): m/z (relative Intensität) = 262 (100) [M+H⁺].

HR-MS (ESI): *m*/*z* berechnet für C₁₄H₁₉NSSi+H⁺ 262.1080, gefunden 262.1080.

Darstellung von 2-{3-[2-(Trimethylsilyl)ethyl]thiophen-2-yl}pyridin (100dd)

Nach AAV 5 werden **41** (7.7 mg, 13 μ Mol), **116** (30 mg, 0.15 mMol), **99d** (81 mg, 0.50 mMol) und **7d** (150 mg, 1.50 mMol) in PhMe (1.5 mL) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **100dd** (16 mg, 12%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.65–8.56 (m, 1H), 7.68 (d, *J* = 8.0, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.31–7.19 (m, 1H), 7.14 (dd, *J* = 6.9, 5.3 Hz, 1H), 6.98 (d, *J* = 5.1 Hz, 1H), 2.98–2.80 (m, 2H), 0.98–0.76 (m, 2H), -0,01 (s, 9H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 153.5 (C_q), 149.5 (CH), 143.4 (C_q), 136.7 (C_q), 136.3 (CH), 130.4 (CH), 125.7 (CH), 121.7 (CH), 121.3 (CH), 23.8 (CH₂), 18.1 (CH₂), -1.9 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2950, 1583, 1467, 1435, 1246, 833, 782, 737, 690, 647 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 261 [M⁺] (8), 246 (10), 188 (100), 173 (17), 73 (14), 45 (8)

HR-MS (EI): *m*/*z* berechnet für C₁₄H₁₉NSSi⁺ 261.1007, gefunden 261.1004.

Darstellung von 3-Methyl-1-(pyridin-2-yl)-2-[2-(trimethylsilyl)ethyl]-1H-indol (100ed)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **99e** (206 mg, 0.99 mMol) und **7d** (0.44 mL, 3.0 mMol) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **100ed** (288 mg, 95%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.63 (ddd, *J* = 4.9, 1.9, 0.8 Hz, 1H), 7.91–7.81 (m, 1H), 7.56–7.47 (m, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.35–7.22 (m, 2H), 7.17–7.05 (m, 2H), 2.94–2.81 (m, 2H), 2.30 (s, 3H), 0.62–0.45 (m, 2H), -(0.04–0.19) (m, 9H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 164.8 (CH), 151.9 (C_q), 149.5 (CH), 139.6 (C_q), 138.1 (CH), 136.4 (C_q), 129.6 (C_q), 121.5 (CH), 120.8 (CH), 120.1 (CH), 118.1 (CH), 109.7 (CH), 108.6 (C_q), 19.0 (CH₂), 16.9 (CH₂), 8.7 (CH₃), -2.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 3053, 2950, 1585, 1569, 1470, 1458, 1435, 1362, 1246, 1089, 992, 859, 832, 776 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 308 (100) [M⁺], 293 (17), 265 (6), 235 (71), 221 (97), 219 (41), 260 (14), 73 (40).

HR-MS (EI): *m*/*z* berechnet für C₁₉H₂₄N₂Si⁺ 308.1709, gefunden 308.1712.

Darstellung von 3-Methyl-1-(pyridin-2-yl)-2-[2-(triethylsilyl)ethyl]-1H-indol (100ex)

SiEt₃ Me

Nach AAV 5 werden **41** (7.7 mg, 13 μ Mol), **116** (30 mg, 0.15 mMol), **99e** (102 mg, 0.49 mMol) und **7x** (212 mg, 1.49 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1 \rightarrow 20:1) liefert **100ex** (131 mg, 77%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.63 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 7.91–7.82 (m, 1H), 7.55–7.49 (m, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.34–7.22 (m, 2H), 7.18–7.07 (m, 2H), 2.92–2.82 (m, 2H), 2.31 (s, 3H), 0.84 (t, *J* = 7.9 Hz, 9H), 0.66–0.51 (m, 2H), 0.44 (q, *J* = 7.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 151.8 (C_q), 149.5 (CH), 139.9 (C_q), 138.2 (CH), 136.4 (C_q), 129.6 (C_q), 121.6 (CH), 121.5 (CH), 120.9 (CH), 120.1 (CH), 118.1 (CH), 109.7 (CH), 108.4 (C_q), 19.0 (CH₂), 11.8 (CH₂), 8.6 (CH₃), 7.3 (CH₃), 3.0 (CH₂).

IR (ATR): $\tilde{\nu}$ = 2949, 2873, 1585, 1470, 1458, 1435, 1362, 1222, 1014, 875, 768, 734 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 350 (95) [M⁺], 321 (73), 293 (24), 235 (100), 221 (83), 219 (37), 206 (15), 115 (11), 87 (23).

HR-MS (EI): *m*/*z* berechnet für C₂₂H₃₀N₂Si⁺ 350.2178, gefunden 350.2175.

Darstellung von 3-Methyl-1-(pyrimidin-2-yl)-2-[2-(triethylsilyl)ethyl]-1H-indol (100fx)

Nach AAV 5 werden **41** (10 mg, 16 μ Mol), **116** (40 mg, 0.20 mMol), **99f** (68 mg, 0.33 mMol) und **7x** (72 mg, 0.51 mMol) in PhMe (1 mL) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1) liefert **100fx** (96 mg, 83%) als hellgelben Feststoff.

Smp.: 76 °C.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.74 (d, *J* = 4.8 Hz, 2H), 8.26–8.18 (m, 1H), 7.51–7.43 (m, 1H), 7.22–7.13 (m, 2H), 7.09 (t, *J* = 4.8 Hz, 1H), 3.19–3.07 (m, 2H), 2.27 (s, 3H), 0.92 (t, *J* = 7.9 Hz, 9H), 0.78–0.65 (m, 2H), 0.53 (d, *J* = 7.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.4 (C_q), 158.1 (CH), 140.2 (C_q), 136.1 (C_q), 130.6 (C_q), 122.5 (CH), 121.4 (CH), 117.8 (CH), 116.6 (CH), 113.6 (CH), 111.5 (C_q), 20.4 (CH₂), 12.2 (CH₂), 8.7 (CH₃), 7.4 (CH₃), 3.1 (CH₂).

IR (ATR): $\tilde{\nu}$ = 2948, 2969, 1573, 1558, 1455, 1430, 1314, 1017, 878, 801, 771, 727 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 351 (97) [M⁺], 322 (87), 294 (37), 236 (79), 222 (100), 220 (54), 207 (15), 115 (21), 87 (34).

HR-MS (EI): *m*/*z* berechnet für C₂₁H₂₉N₃Si⁺ 351.2131, gefunden 351.2132.

Darstellung von 3-Methyl-1-(5-methylpyrimidin-2-yl)-2-[2-(triethylsilyl)ethyl]-1H-indol (100gx)

Nach AAV 5 werden **41** (2.8 mg, 4.6 μ Mol), **116** (11 mg, 55 μ Mol), **99g** (41 mg, 0.18 mMol) und **7x** (55 mg, 0.39 mMol) in PhMe (0.6 mL) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **100gx** (49 mg, 74%) als weißen Feststoff.

Smp.: 101 °C.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.58 (s, 2H), 8.17–8.08 (m, 1H), 7.52–7.43 (m, 1H), 7.22–7.12 (m, 2H), 3.19–3.04 (m, 2H), 2.34 (s, 3H), 2.28 (s, 3H), 0.92 (t, *J* = 7.9 Hz, 9H), 0.78–0.66 (m, 2H), 0.53 (q, *J* = 7.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.1 (CH), 156.5 (C_q), 140.0 (C_q), 136.1 (C_q), 130.4 (C_q), 125.9 (C_q), 122.3 (CH), 121.0 (CH), 117.8 (CH), 113.1 (CH), 110.8 (C_q), 20.2 (CH₂), 15.1 (CH₃), 12.1 (CH₂), 8.7 (CH₃), 7.4 (CH₃), 3.1 (CH₂).

IR (ATR): \tilde{v} = 2945, 2870, 1594, 1434, 1366, 1346, 1311, 1216, 1176, 1045, 789, 773, 742 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 365 (99) [M⁺], 336 (72), 308 (27), 250 (64), 236 (100), 115 (13), 87 (19).

HR-MS (EI): *m*/*z* berechnet für C₂₂H₃₁N₃Si⁺ 365.2287, gefunden 365.2281.

Darstellung von 2-(2-*n*-Decylphenyl)pyrimidin (102cq) und 2-(2,6-Di-*n*-decylphenyl)pyrimidin (131cq)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **101c** (156 mg, 1.00 mMol) und **7q** (0.38 mL, 2.0 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1 \rightarrow 5:1) liefert **102cq** (110 mg, 37%) und **131cq** (88 mg, 20%) als hellgelbe Öle.

102cq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.82 (d, *J* = 4.9 Hz, 2H), 7.77–7.63 (m, 1H), 7.42–7.07 (m, 4H), 2.98–2.81 (m, 2H), 1.54–1.36 (m, 2H), 1.35–1.07 (m, 14H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 168.0 (C_q), 156.8 (CH), 142.0 (C_q), 137.9 (C_q), 130.4 (CH), 130.3 (CH), 129.3 (CH), 125.8 (CH), 118.5 (CH), 33.4 (CH₂), 31.9 (CH₂), 31.5 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2923, 2853, 1568, 1553, 1452, 1413, 907, 820, 753, 731, 645 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 296 (26) [M⁺], 183 (88), 170 (100).

HR-MS (EI): *m*/*z* berechnet für C₂₀H₂₈N₂⁺ 296.2252, gefunden 296.2251.

131cq:

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.85 (d, *J* = 4.9 Hz, 2H), 7.26 (t, *J* = 4.9 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 2H), 2.40–2.23 (m, 4H), 1.48–1.33 (m, 4H), 1.33–1.02 (m, 28H), 0.86 (t, *J* = 6.8 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 168.6 (C_q), 156.7 (CH), 140.3 (C_q), 138.5 (C_q), 128.4 (CH), 126.7 (CH), 118.8 (CH), 33.5 (CH₂), 31.9 (CH₂), 30.9 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2922, 2852, 1566, 1556, 1463, 1412m 802, 758, 732 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 436 (90) [M⁺], 323 (82), 310 (100), 195 (29), 182 (32).

HR-MS (EI): m/z berechnet für C₃₀H₄₈N₂⁺436.3817, gefunden 436.3811.

Darstellung von 1-[2-{2-(Triethylsilyl)ethyl]phenyl}]-1H-pyrazole (102gx)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **101g** (68 mg, 0.47 mMol) und **7x** (144 mg, 1.01 mMol) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert **102gx** (87 mg, 65%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.69 (d, *J* = 2.0 Hz, 1H), 7.56 (dd, *J* = 2.0 Hz, 1H), 7.36–7.31 (m, 2H), 7.28–7.21 (m, 2H), 6.41 (t, *J* = 2.0 Hz, 1H), 2.58–2.44 (m, 2H), 0.85 (t, *J* = 7.9 Hz, 9H), 0.70–0.59 (m, 2H), 0.43 (q, *J* = 7.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 141.9 (C_q), 140.1 (CH), 139.0 (C_q), 130.7 (CH), 129.8 (CH), 128.8 (CH), 126.6 (CH), 126.2 (CH), 106.1 (CH), 25.8 (CH₂), 13.5 (CH₂), 7.3 (CH₃), 3.0 (CH₂).

IR (ATR): $\tilde{\nu}$ = 2950, 2873, 1516, 1497, 1455, 1416, 1393, 1328, 1177, 1115, 1043, 939, 730, 624 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 286 (9) [M⁺], 257 (100), 171 (24), 87(10).

HR-MS (EI): *m*/*z* berechnet für C₁₇H₂₆N₂Si⁺ 286.1865, gefunden 286.1868.

Darstellung von 2-[2-{2-(Triethylsilyl)ethyl}phenyl]-1H-imidazole (102ix)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **101i** (72.1 mg, 0.50 mMol) und **7x** (143 mg, 1.00 mMol) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 2:1) liefert **102ix** (71 mg, 50%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.39–7.23 (m, 3H), 7.16 (td, *J* = 7.2, 1.9 Hz, 1H), 7.00 (s, 2H), 2.87–2.69 (m, 2H), 0.83 (t, *J* = 7.9 Hz, 9H), 0.70–0.57 (m, 2H), 0.42 (q, *J* = 7.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 146.5 (C_q), 145.0 (C_q), 129.5 (C_q), 129.4 (CH), 129.4 (CH), 129.0 (CH), 125.6 (CH), 122.2 (CH), 27.8 (CH₂), 14.1 (CH₂), 7.3 (CH₃), 3.1 (CH₂).

IR (ATR): $\tilde{\nu}$ = 2950, 2873, 1567, 1449, 1417, 1236, 1174, 1105, 1015, 952, 766, 725 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 286 (17) [M⁺], 257 (60), 171 (100), 156 (10), 115 (7), 87(10).

HR-MS (EI): *m/z* berechnet für C₁₇H₂₆N₂Si⁺ 286.1865, gefunden 286.1872.

Darstellung von 1-Methyl-2-[2-{2-(triethylsilyl)ethyl}phenyl]-1H-imidazole (102jx)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **101j** (70 mg, 0.44 mMol) und **7x** (139 mg, 0.98 mMol) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 2:1) liefert **102jx** (68 mg, 51%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.38–7.27 (m, 2H), 7.25–7.18 (m, 2H), 7.09 (d, *J* = 1.2 Hz, 1H), 6.94 (d, *J* = 1.2 Hz, 1H), 3.44 (s, 3H), 2.54–2.41 (m, 2H), 0.83 (t, *J* = 7.9 Hz, 9H), 0.68–0.56 (m, 2H), 0.40 (q, *J* = 7.9 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 147.3 (C_q), 146.5 (C_q), 130.5 (CH), 129.4 (CH), 129.2 (C_q), 128.9 (CH), 128.0 (CH), 125.3 (CH), 120.2 (CH), 33.3 (CH₃), 27.6 (CH₂), 13.9 (CH₂), 7.3 (CH₃), 3.0 (CH₂).

IR (ATR): \tilde{v} =2950, 2908, 2873, 1457, 1404, 1278, 1237, 1175, 1133, 765, 718 cm⁻¹.

MS (EI): *m*/*z* (relative Intensität) = 300 (11) [M⁺], 271 (26), 185 (100), 93 (7).

HR-MS (EI): *m/z* berechnet für C₁₈H₂₈N₂Si⁺ 300.2022, gefunden 300.2029.

Darstellung von 1-Methyl-2-{2-[2-(triethylsilyl)ethyl]phenyl}-1H-benzo[d]imidazol (102lx)

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (61 mg, 0.30 mMol), **101** (104 mg, 500 μ Mol) und **7x** (140 mg, 984 μ Mol) in PhMe (1.5 mL) über 24 h bei 120 °C umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 5:1) liefert **102lx** (106 mg, 61%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.86–7.72 (m, 1H), 7.50–7.20 (m, 7H), 3.60 (s, 3H), 2.62–2.50 (m, 2H), 0.75–0.63 (m, 2H), 0.71 (t, *J* = 8.0 Hz, 6H), 0.32 (q, *J* = 8.0 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 153.3 (C_q), 146.2 (C_q), 143.0 (C_q), 135.4 (C_q), 130.3 (CH), 129.9 (CH), 129.0 (CH), 128.9 (C_q), 125.4 (CH), 122.4 (CH), 122.1 (CH), 119.8 (CH), 109.2 (CH), 30.6 (CH₃), 27.7 (CH₂), 14.0 (CH₂), 7.1 (CH₃), 2.9 (CH₂).

IR (ATR): $\tilde{\nu}$ = 3059, 2949, 2908, 2873, 1458, 1378, 1325, 1175, 1006, 806, 741 cm⁻¹.

MS (EI): *m/z* (relative Intensität) = 350 [M⁺] (34), 321 (34), 235 (100), 220 (25), 205 (18), 132 (14), 118 (22), 87 (16), 59 (22).

HR-MS (EI): *m/z* berechnet für C₂₂H₃₀N₂Si⁺ 350.2178, gefunden 350.2177.

5.3.4 Intermolekulare Konkurrenzexperimente zur rutheniumkatalysierten Hydroarylierung von terminalen Alkenen

Nach AAV 5 werden **41** (15 mg, 25 μ Mol), **116** (60 mg, 0.30 mMol), **46k** (173 mg, 1.00 mMol), **46m** (174 mg, 1.05 mMol) und **7q** (67 mg, 0.48 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 10:1) und anschließende HPLC (C₁₈, MeCN/H₂O 1.5:1 \rightarrow 4:1) liefert **98kq** (67 mg, 44%) und **98mq** (28 mg, 19%).

Nach AAV 5 werden **41** (15.3 mg, 25.0 µMol), **116** (60 mg, 0.30 mMol), **46k** (173 mg, 1.00 mMol), **46l** (185 mg, 1.00 mMol) und **7q** (70 mg, 0.50 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1→15:1) liefert **98kq** (75 mg, 48%) und **98lq** (48 mg, 29%).

Nach AAV 5 werden **41** (15.3 mg, 25.0 μ Mol), **116** (60 mg, 0.30 mMol), **46a** (147 mg, 0.95 mMol), **46l** (185 mg, 1.00 mMol) und **7q** (71 mg, 0.51 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 30:1 \rightarrow 5:1) liefert **98aq** (54 mg, 36%) und **98lq** (83 mg, 51%).

Nach AAV 5 werden **41** (15.3 mg, 25.0 µMol), **116** (60 mg, 0.30 mMol), **46i** (147 mg, 0.95 mMol), **46i** (185 mg, 1.00 mMol) und **7q** (71 mg, 0.51 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1→10:1) liefert **98iq'** (25 mg, 15%) und **98lq** (96 mg, 57%).

Nach AAV 5 werden **41** (15.3 mg, 25.0 μ Mol), **116** (60 mg, 0.30 mMol), **46a** (152 mg, 0.98 mMol), **46m** (166 mg, 0.98 mMol) und **7q** (70 mg, 0.50 mMol) umgesetzt. GC-Analyse der Reaktionsmischung liefert Umsätze zu den Produkten **98aq** und **98mq** von 38% respektive 31%.

Nach AAV 5 werden **41** (15.3 mg, 25.0 μ Mol), **116** (60 mg, 0.30 mMol), **46m** (173 mg, 1.02 mMol), **46l** (183 mg, 0.99 mMol) und **7q** (77 mg, 0.55 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 25:1 \rightarrow 10:1) liefert **98mq** (56 mg, 33%) und **98lq** (82 mg, 46%).

Nach AAV 5 werden **41** (15.3 mg, 25.0 μ Mol), **116** (60 mg, 0.30 mMol), **46f** (173 mg, 1.00 mMol), **46d** (169 mg, 1.00 mMol) und **7q** (71 mg, 0.51 mMol) umgesetzt. GC-Analyse der Reaktionsmischung liefert Umsätze zu den Produkten **98fq** und **98dq** von 12% respektive 45%.

5.3.5 Mechanistische Untersuchungen der rutheniumkatalysierten Hydroarylierung mittels Isotopenmarkierung

Nach AAV 5 wird **46a** (165 mg, 1.06 mMol) in D_2O (3 mL) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 20:1) liefert [**D**_n] -98aq (265 mg, 89%) als farbloses Öl. Der Deuterierungsgrad wurde *via* ¹H-NMR-Spektroskopie bestimmt.

¹**H-NMR** (600 MHz, CDCl₃): δ = 8.67 (ddd, *J* = 5.0, 1.8, 1.1 Hz, 1H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.37 (dt, *J* = 7.7, 1.1 Hz, 1H), 7.35–7.27 (m, 2H), 7.27–7.21 (m, 2H), 2.71–2.63 (m, 1.3H), 1.46–1.36 (m, 1.0H), 1.33–1.07 (m, 14H), 0.87 (t, *J* = 7.1 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.3 (C_q), 149.1 (CH), 140.7(C_q), 140.2(C_q), 136.0 (CH), 129.7 (CH), 129.4 (t, *J* = 24 Hz, CD), 128.2 (CH), 125.6 (CH), 124.1 (CH), 121.5 (CH), 32.9–32.3 (m, CDH), 31.9 (CH₂), 31.3–30.3 (m, CDH), 29.7–29.1 (m, CH₂) 29.6 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

Nach AAV 5 werden **41** (15.3 mg, 25.0 μ Mol%), **116** (60 mg, 0.30 mMol) und [**D**₅]-**46a** (162 mg, 1.01 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/Et₂O 12:1 \rightarrow 5:1) liefert [**D**_n]-**98aq** (259 mg, 86%) als farbloses Öl. Der Deuterierungsgrad wurde *via* ¹H-NMR-Spektroskopie bestimmt.

¹**H-NMR** (600 MHz, CDCl₃): δ = 8.67 (ddd, *J* = 4.9, 1.9, 1.1 Hz, 1H), 7.71 (td, *J* = 7.6, 1.9 Hz, 1H), 7.36 (dt, *J* = 7.6, 1.1 Hz, 1H), 7.32 (s, 0.9H), 7.22 (ddd, *J* = 7.6, 4.9, 1.1 Hz, 1H), 2.70–2.64 (m, 1.5H), 1.46–1.38 (m, 1.6H), 1.31–1.07 (m, 14H), 0.86 (t, *J* = 7.2 Hz, 3H).

¹³**C-NMR** (125 MHz, CDCl₃): δ = 160.3 (C_q), 149.0 (CH), 140.6 (C_q), 140.2 (C_q), 135.9 (CH), 129.5 (CH), 129.2 (t, *J* = 24 Hz, CD), 127.6 (t, *J* = 24 Hz, CD), 125.2 (t, *J* = 24 Hz, CD), 124.0 (CH), 121.4 (CH), 32.9–32.1 (m, CDH), 31.2–3.05 (m, CDH), 31.8 (CH₂), 29.7–29.1 (m, 2CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 22.6 (CH₂), 14.0 (CH₃).

Nach AAV 4 werden **46a** (152 mg, 989 μ Mol) und **47** (388 mg, 2.98 mMol) in D₂O (2 mL) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1 \rightarrow 10:1) und anschließende HPLC (C₁₈, MeCN/H₂O 2.3:1 \rightarrow 4:1) liefert [**D**_n]-**48a** (53 mg, 19%) als farbloses Öl. Der Deuterierungsgrad wurde *via* ¹H-NMR-Spektroskopie bestimmt.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.65 (ddd, *J* = 4.8, 1.5, 0.8 Hz, 1 H), 7.70 (td, *J* = 7.8, 1.8 Hz, 1H), 7.32–7.14 (m, 8H), 7.06 (dd, *J* = 4.3, 1.8 Hz, 2H), 2.64–2.50 (m, 0.7H), 2.41–2.27 (m, 0.6H), 2.22–2.06 (m, 1H), 1.40–1.20 (m, 0.5H), 0.97–0.80 (m, 1H), 0.70–0.54 (m, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.2 (C_q), 149.0 (CH), 140.1 (C_q), 140.0 (C_q), 139.1 (C_q), 136.1 (CH), 129.6 (CH), 129.5–128.9 (m, CD), 128.8 (CH), 128.2 (CH), 127.8 (CH), 125.7 (CH), 125.6 (CH), 124.2 (CH), 121.6–121.2 (CDH), 121.5 (CH), 32.2–31.4 (m, CDH), 21.6–21.3 (CD), 20.3 (CH), 9.9 (CH₂).

Nach AAV 4 werden $[D_5]$ -46a (170 mg, 1.06 mMol) und 47 (388 mg, 2.98 mMol) umgesetzt. Säulenchromatografische Aufreinigung an Kieselgel (*n*-Hexan/EtOAc 50:1 \rightarrow 10:1) und anschließende HPLC (C₁₈, MeCN/H₂O 2.3:1 \rightarrow 4:1) liefert $[D_n]$ -48a (120 mg, 44%) als farbloses Öl. Der Deuterierungsgrad wurde *via* ¹H-NMR-Spektroskopie bestimmt.

¹**H-NMR** (300 MHz, CD_2Cl_2): δ = 8.67 (ddd, J = 4.9, 1.9, 1.1 Hz, 1H), 7.71 (td, J = 7.6, 1.9 Hz, 1H), 7.39–7.16 (m, 6H), 7.16–7.06 (m, 2H), 2.70–2.54 (m, 0.9H), 2.47–2.33 (m, 0.9H), 2.25–2.11 (m, 1H), 1.43–1.24 (m, 0.8H), 1.00–0.85 (m, 1H), 0.73–0.60 (m, 1H).

¹³**C-NMR** (75 MHz, CD₂Cl₂): δ = 160.5 (C_q), 149.2 (CH), 140.8 (C_q), 140.4 (C_q), 139.5 (C_q), 136.3 (CH), 129.8 (CH), 129.8–129.1 (m, CD), 129.0 (CH), 128.5–127.5 (m, CD), 128.1 (CH), 125.9 (CH), 125.9–125.2 (m, CD), 124.4 (CH), 121.9 (CH), 31.5–30.9 (m, CDH), 21.9–21.4 (m, CDH), 20.6 (CH), 9.7 (CH₂).

5.3.6 Rutheniumkatalysierte α-Alkylierung von cyclischen Aminen

Darstellung von 2-(2-*n*-Decylpyrrolidin-1-yl)pyridin (48)

Nach AAV 6 werden 2-(Pyrrolidin-1-yl)pyridin (**18**) (384 mg, 2.59 mMol), **7q** (149 mg, 1.06 mMol) umgesetzt. Säulenchromatografische Trennung an Kieselgel (CH₂Cl₂) liefert **48** (223 mg, 72%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.12 (ddd, *J* = 5.0, 2.0, 1.0 Hz, 1H), 7.37 (ddd, *J* = 8.8, 7.1, 2.0 Hz, 1H), 6.45 (ddd, *J* = 7.1, 5.0, 1.0 Hz, 1H), 6.35–6.23 (m, 1H), 3.90–3.84 (m, 1H), 3.55–3.48 (m, 1H), 3.40–3.31 (m, 1H), 2.04–1.70 (m, 6H), 1.32–1.24 (m, 16H), 0.89–0.84 (m, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 156.9 (C_q), 148.2 (CH), 136.6 (CH), 110.8 (CH), 106.6 (CH), 57.7 (CH), 47.1 (CH₂), 33.0 (CH₂), 31.9 (CH₂), 30.1 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 26.5 (CH₂), 23.3 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2922, 2852, 1709, 1595, 1481, 1438, 1379, 988, 767 cm⁻¹.

MS (EI): *m/z*(relative Intensität) = 288 (6) [M⁺], 189 (4), 161 (7), 147 (100), 133 (6), 107 (8), 78 (13), 55 (4), 41 (10).

HR-MS (EI): m/z berechnet für C₁₉H₃₂N₂⁺ 288.2565, gefunden 288.2565.
Darstellung von 2-(2-n-Decylpiperidin-1-yl)pyridin (56a)

Nach AAV 6 werden 2-(Piperidin-1-yl)pyridin (**55a**) (88 mg, 0.54 mMol), **7q** (210 mg, 1.50 mMol), [RuCl₂(PPh₃)₃] (25 mg, 5.0 Mol %), AgOTf (16 mg, 12 Mol %) und *rac*-BINAP (6.0 Mol %, 19 mg) in *iso*-Butanol (1.0 mL) umgesetzt. Säulenchromatografische Trennung an Kieselgel (*n*-Hexan/Essigester 50:1 \rightarrow 10:1) liefert **56a** (66.7 mg, 41%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.14 (ddd, *J* = 5.0, 2.0, 1.0 Hz, 1H), 7.41 (ddd, *J* = 8.8, 7.1, 2.0 Hz, 1H), 6.57 (d, *J* = 8.8 Hz, 1H), 6.48 (ddd, *J* = 7.1, 5.0, 1.0 Hz, 1H), 4.40–4.35 (m, 1H), 4.22–4.16 (m, 1H), 2.97–2.88 (m, 1H), 1.72–1.56 (m, 6H), 1.29–1.18 (m, 18H), 0.93–0.82 (m, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 172.9 (C_q), 147.6 (CH), 137.4 (CH), 111.4 (CH), 106.9 (CH), 51.6 (CH), 39.5 (CH₂), 31.9 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 28.4 (CH₂), 27.6 (CH₂), 26.7 (CH₂), 25.4 (CH₂), 22.7 (CH₂), 19.2 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2922, 2852, 1590, 1476, 1434, 1311, 1258, 927, 766 cm⁻¹.

MS (EI): *m/z*(relative Intensität) = 301 (5) [(M-H)⁺], 161 (100), 133 (17), 107 (9), 95 (10), 78 (10), 55 (8), 43 (14).

HR-MS (EI): m/z berechnet fürC₂₀H₃₃N₂⁺ 301.2644, gefunden 301.2651.

Darstellung von 2-n-Decyl-1-(pyridin-2-yl)azepan (56e)

n-Dec

Nach AAV 6 werden 1-(Pyridin-2-yl)azepan (**55f**) (265 mg, 1.50 mMol), **7q** (80 mg, 0.57 mMol), [RuCl₂(PPh₃)₃] (24 mg, 5.0 Mol %), AgOTf (16 mg, 12 Mol %) und *rac*-BINAP (19 mg, 6.0 Mol %) in *iso*-Butanol (1.0 mL) umgesetzt. Säulenchromatografische Trennung an Kieselgel (*n*-Hexan/Essigester 50:1 \rightarrow 40:1) liefert **56e** (48 mg, 27%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.11 (ddd, *J* = 5.0, 2.0, 1.0 Hz, 1H), 7.36 (ddd, *J* = 8.8, 7.1, 2.0 Hz, 1H), 6.46–6.40 (m, 2H), 4.37–4.21 (m, 1H), 3.83 (d, *J* = 14.6 Hz, 2H), 3.09–3.00 (m, 2H), 2.16 (ddd, *J* = 14.6, 8.4, 6.3 Hz, 2H), 1.80–1.40 (m, 6H), 1.36–1.14 (m, 16H), 0.88–0.83 (m, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 157.9 (C_q), 147.8 (CH), 136.9 (CH), 110.3 (CH), 105.1 (CH), 54.3 (CH), 41.5 (CH₂), 34.6 (CH₂), 34.2 (CH₂), 31.9 (CH₂), 30.3 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 30.0 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 27.0 (CH₂), 26.1 (CH₂), 25.1 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2921 (m), 2851, 1593, 1483 (m), 1201, 1161, 1055, 971, 764 cm⁻¹.

MS (EI): *m/z*(relative Intensität) = 316 (5) [M⁺], 207 (6), 189 (6), 175 (100), 133 (9), 119 (7), 107 (10), 78 (11), 5 (9), 41 (15).

HR-MS (EI): *m/z* berechnet für C₂₁H₃₆N₂⁺ 316.2878, gefunden 316.2888.

Darstellung von 3-n-Decyl-4-(pyridin-2-yl)morpholin (56d)

Nach AAV 6 werden 4-(Pyridin-2-yl)morpholin (**55j**) (82 mg, 0.50 mMol), **7q** (218 mg, 1.55 mMol), [RuCl₂(PPh₃)₃] (24 mg, 5.0 Mol %), AgOTf (15 mg, 12 Mol %) und *rac*-BINAP (19 mg, 6.0 Mol %) in *iso*-Butanol (1.0 mL) umgesetzt. Säulenchromatografische Trennung an Kieselgel (*n*-Hexan/Essigester $10:1\rightarrow 5:1$) liefert **56d** (17 mg, 11%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.17 (dd, *J* = 5.0, 2.0 Hz, 1H), 7.46 (ddd, *J* = 8.8, 7.1, 2.0 Hz, 1H), 6.63–6.49 (m, 2H), 4.07–3.88 (m, 4H), 3.69–3.56 (m, 2H), 3.20 (td, *J* = 12.6, 3.7 Hz, 1H), 1.93–1.81 (m, 1H), 1.53–1.44 (m, 1H), 1.33–1.17 (m, 16H), 0.87–0.83 (m, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.6 (C_q), 147.9 (CH), 137.4 (CH), 112.6 (CH), 106.5 (CH), 68.3 (CH₂), 67.0 (CH₂), 52.3 (CH), 40.0 (CH₂), 31.9 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 26.7 (CH₂), 26.7 (CH₂), 26.7 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2922, 2852, 1591, 1476, 1434, 1311, 1225, 938, 769, 730 cm⁻¹.

MS (EI): *m/z*(relative Intensität) = 304 (7) [(M-H)⁺], 177 (6), 163 (100), 119 (13), 107 (13), 78 (13), 43 (17).

HR-MS (EI): m/z berechnet für C₁₉H₃₂N₂O⁺ 304.2515, gefunden 304.2514.

Darstellung von (2-n-Decylpyrrolidin-1-yl)-3-methylpyridin (58a)

n-Dec

Nach AAV 6 werden 3-Methyl-2-(pyrrolidin-1-yl)pyridin (**62a**) (250 mg, 1.54 mMol), **7q** (72 mg, 0.51 mMol), [RuCl₂(PPh₃)₃] (24 mg, 5.0 Mol %), AgOTf (16 mg, 12 Mol %) und *rac*-BINAP (18 mg, 6.0 Mol %) in *iso*-Butanol (1.0 mL) umgesetzt. Säulenchromatografische Trennung an Kieselgel (*n*-Hexan/Essigester 50:1 \rightarrow 10:1) liefert **58a** (154 mg, 99%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.06 (dd, *J* = 5.0, 2.0 Hz, 1H), 7.30–7.27 (m, 1H), 6.65 (dd, *J* = 7.1, 5.0 Hz, 1H), 4.28–4.20 (m, 1H), 3.70–3.62 (m, 1H), 3.23–3.11 (m, 1H), 2.23 (s, 3H), 2.19–2.09 (m, 2H), 1.95–1.54 (m, 4H), 1.29–1.17 (m, 16H), 0.89–0.85 (m, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.6 (C_q), 144.6 (CH), 139.1 (CH), 121.9 (C_q), 114.6 (CH), 58.2 (CH), 51.7 (CH₂), 34.2 (CH₂), 31.9 (CH₂), 31.2 (CH₂), 29.9 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 25.9 (CH₂), 24.9 (CH₂), 22.7 (CH₂), 20.1 (CH₃), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2922, 2853, 1588, 1564, 1424, 1346, 1186, 993, 775 cm⁻¹.

MS (EI): *m/z*(relative Intensität) = 302 (5) [M⁺], 287 (3), 210 (5), 161 (100), 133 (10), 107 (9), 92 (14), 43 (10).

HR-MS (EI): m/z berechnet für C₂₀H₃₄N₂⁺ 302.2722, gefunden 302.2724.

Darstellung von 2-(2-n-Decylpyrrolidin-1-yl)-3-methoxypyridin (58c)

Nach AAV 6 werden 3-Methoxy-2-(pyrrolidin-1-yl)pyridin (**62b**) (276 mg, 1.55 mMol), **7q** (74 mg, 0.53 mMol), [RuCl₂(PPh₃)₃] (24 mg, 5.0 Mol %), AgOTf (15 mg, 12 Mol %) und *rac*-BINAP (19 mg, 6.0 Mol %) in *iso*-Butanol (1.0 mL) umgesetzt. Säulenchromatografische Trennung an Kieselgel (*n*-Hexan/Essigester 50:1 \rightarrow 10:1) liefert **58c** (139 mg, 82%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.79 (dd, *J* = 5.0, 1.4 Hz, 1H), 6.92 (dd, *J* = 7.7, 1.4 Hz, 1H), 6.59 (dd, *J* = 7.7, 5.0 Hz, 1H), 4.36–4.30 (m, 1H), 3.76 (s, 3H), 3.78–3.70 (m, 1H), 3.45–3.41 (m, 1H), 2.11–1.63 (m, 6H), 1.29–1.18 (m, 16H), 0.89–0.86 (m, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 150.4 (C_q), 144.9 (C_q), 138.9 (CH), 116.8 (CH), 112.7 (CH), 58.5 (CH), 55.3 (CH₃), 49.9 (CH₂), 34.5 (CH₂), 31.9 (CH₂), 30.8 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 26.4 (CH₂), 23.7 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

IR (ATR): \tilde{v} = 2921, 2852, 1590, 1452, 1354, 1207, 1019, 776, 752 cm⁻¹.

MS (EI): *m/z*(relative Intensität) = 318 (5) [M⁺], 177 (100), 162 (4), 149 (4), 134 (5), 123 (4), 78 (5), 55 (6), 41 (13).

HR-MS (EI): *m*/*z* berechnet für C₂₀H₃₃N₂O⁺ 317.2593, gefunden 317.2589.

Darstellung von 2-(2-n-Decylpyrrolidin-1-yl)-5-methylpyridin (58f)

Nach AAV 6 werden 5-Methyl-2-(pyrrolidin-1-yl)pyridin (**62e**) (247 mg, 1.52 mMol), **7q** (72 mg, 0.51 mMol), [RuCl₂(PPh₃)₃] (25 mg, 5.0 Mol %), AgOTf (15 mg, 12 Mol %) und *rac*-BINAP (18 mg, 6.0 Mol %) in *iso*-Butanol (1.0 mL) umgesetzt. Säulenchromatografische Trennung an Kieselgel (*n*-Hexan/Essigester 50:1 \rightarrow 10:1) liefert **58f** (112 mg, 73%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.97 (s, 1H), 7.25 (d, *J* = 8.8 Hz, 1H), 6.28 (d, *J* = 8.8 Hz, 1H), 3.87–3.82 (m, 1H), 3.56–3.50 (m, 1H), 3.40–3.31 (m, 1H), 2.16 (s, 3H), 2.05–1.70 (m, 6H), 1.32–1.26 (m, 16H), 0.90–0.86 (m, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 155.5 (C_q), 147.7 (CH), 137.8 (CH), 119.4 (C_q), 106.3 (CH), 57.8 (CH), 47.4 (CH₂), 33.2 (CH₂), 31.9 (CH₂), 30.2 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 26.5 (CH₂), 23.4 (CH₂), 22.7 (CH₂), 17.3 (CH₃), 14.1 (CH₃).

IR (ATR): $\tilde{\nu}$ = 2921, 2852, 1612, 1497, 1401, 1369, 1162, 1017, 802 cm⁻¹.

MS (EI): *m/z*(relative Intensität) = 302 (7) [M⁺], 161 (100), 133 (7), 92 (9), 41 (7).

HR-MS (EI): m/z berechnet für C₂₀H₃₅N₂⁺ 303.2800, gefunden 303.2805.

Darstellung von 2-(2-n-Decylpyrrolidin-1-yl)-5-(trifluormethyl)pyridin (58e)

Nach AAV 6 werden 2-(Pyrrolidin-1-yl)-5-(trifluormethyl)pyridin (**62f**) (330 mg, 1.53 mMol), **7q** (70 mg, 0.50 mMol), [RuCl₂(PPh₃)₃] (24 mg, 5.0 Mol %), AgOTf (16 mg, 12 Mol %) und *rac*-BINAP (19 mg, 6.0 Mol %) in *iso*-Butanol (1.0 mL) umgesetzt. Säulenchromatografische Trennung an Kieselgel (*n*-Hexan/Essigester 50:1 \rightarrow 10:1) liefert **58e** (117 mg, 66%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.36–8.34 (m, 1H), 7.53 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.31 (d, *J* = 8.8 Hz, 1H), 3.95 (s, 1H), 3.57–3.33 (m, 2H), 2.08–1.69 (m, 6H), 1.33–1.24 (m, 16H), 0.91–0.84 (m, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.1 (C_q), 146.1 (CH, ³*J*_{C-F} = 4.4 Hz), 133.6 (CH, ³*J*_{C-F} = 3.2 Hz), 126.8 (C_q, ¹*J*_{C-F} = 270.3 Hz), 113.4 (C_q, ²*J*_{C-F} = 32.4 Hz), 105.7 (CH), 58.0 (CH), 47.2 (CH₂), 34.8 (CH₂), 32.6 (CH₂), 31.9 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 26.5 (CH₂), 23.2 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): δ = - 60.9 (s, 3F).

IR (ATR): $\tilde{\nu}$ = 2924, 2854, 1609, 1515, 1422, 1325, 1302, 1109, 810 cm⁻¹.

MS (EI): *m/z*(relative Intensität) = 355 (100) [(M-H)⁺], 215 (97), 175 (9), 146 (9), 83 (9), 69 (22), 55 (24), 43 (58).

HR-MS (EI): m/z berechnet für C₂₀H₃₂F₃N₂⁺ 357.2518, gefunden 357.2512.