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CHAPTER 1

Introduction

L2-invariants have an analytic definition for closed Riemannian manifolds and a
topological definition for finite CW complexes. A central idea is to lift classical
topological notions to the universal covering taking into account the free action of the
fundamental group by deck transformations. Let us consider the simplest example,
the L2-Betti numbers. Given a connected finite CW complex X with fundamental

group Γ, the universal covering X̃ has a cellular chain complex of ZΓ-modules Cp(X̃).

We complete it to the L2-cellular chain complex C
(2)
p (X̃) = `2Γ⊗ZΓCp(X̃). A cellular

basis of Cp(X) endows each C
(2)
p (X̃) with the structure of a Hilbert space with

isometric Γ-action. So the differentials determine the Γ-equivariant L2-Laplacian

∆p = d∗pdp + dp+1d
∗
p+1 on C

(2)
p (X̃). We define the L2-Betti numbers of X̃ to be

the von Neumann dimensions of the harmonic L2-chains, b
(2)
p (X̃) = dimN (Γ) ker ∆p.

Note that L2-Betti numbers are a priori real valued as the von Neumann dimension
is induced by the trace of the group von Neumann algebra N (Γ). It turns out
that L2-Betti numbers provide powerful invariants with many convenient properties.
Their alternating sum gives the Euler characteristic and a positive L2-Betti number
obstructs nontrivial self-coverings and nontrivial circle actions. The p-th Novikov–

Shubin invariant of X̃, denoted by α̃p(X̃), captures information on eigenspaces
of ∆p in a neighborhood of zero. It takes values in [0,∞] ∪ {∞+} that measure
with respect to von Neumann dimension how slowly aggregated eigenspaces grow
for small positive eigenvalues. Finally the third L2-invariant we will consider is

the L2-torsion of X̃ denoted by ρ(2)(X̃) ∈ R. It is the L2-counterpart of classical

Reidemeister torsion and it is only defined if X̃ is det-L2-acyclic which essentially

means that b
(2)
p (X̃) = 0 for p ≥ 0.

We obtain the analytic definition of L2-Betti numbers, Novikov–Shubin invari-
ants and L2-torsion when we replace ∆p by the Laplace–de Rham operator acting
on p-forms of the universal covering of a closed Riemannian manifold. The key
observation of the theory is that if we choose a triangulation, analytic and topological
L2-invariants agree. This flexibility effects that beside their apparent relevance for
geometry and topology, L2-invariants have additionally shown up in contexts as
diverse as algebraic K-theory, ergodic theory, type II1 factors, simplicial volume,
knot theory and quantum groups. The subject of our concern is not yet in the list:
group theory. Groups enter the picture when we consider aspherical spaces so that
the L2-invariants, being homotopy invariants, depend on the fundamental group

only. Thus if a group Γ has a finite CW model for BΓ we set b
(2)
p (Γ) = b

(2)
p (EΓ),

α̃p(Γ) = α̃p(EΓ) and ρ(2)(Γ) = ρ(2)(EΓ) if EΓ is det-L2-acyclic in which case we
say that Γ itself is det-L2-acyclic. Note that L2-Betti numbers and Novikov–Shubin
invariants of arbitrary group actions have been defined in [28,68] and [69] so that

b
(2)
p (Γ) and α̃p(Γ) are in fact defined for any group Γ. An interesting case occurs if

a group happens to have a closed manifold model for BΓ, because then the equality
of topological and analytic L2-invariants permits to calculate invariants of discrete
groups by geometric methods.
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2 1. INTRODUCTION

A class of groups that has extensively been studied in this context is given by
torsion-free uniform lattices in semisimple Lie groups. Such a Γ ⊂ G acts properly
and thus freely on the symmetric space X = G/K where K ⊂ G is a maximal
compact subgroup. Since X is contractible, the locally symmetric space Γ\X is a
closed manifold model of BΓ. M. Olbrich [85] has built on previous work by J. Lott
and E. Hess–T. Schick to compute the three L2-invariants of Γ with the analytic
approach. We will recall the precise statement in Theorem 3.19. The computation
uses (g,K)-cohomology as well as the Harish-Chandra–Plancherel Theorem. Uniform
lattices in semisimple Lie groups can be seen as the chief examples of CAT(0)
groups. Similarly, their geometric counterpart, the closed locally symmetric spaces
of noncompact type, form the main examples of nonpositively curved manifolds.
Therefore they often serve as a test ground for general assertions on nonpositive
curvature. It is however fairly restrictive to require that lattices be uniform as this
already rules out the most natural example SL(n,Z) which is central to number
theory and geometry. In fact, a theorem of D. A. Kazhdan and G. A. Margulis
[57] characterizes the nonuniform lattices in semisimple linear Lie groups without
compact factors as those lattices that contain a unipotent element. Therefore
nonuniform lattices possess infinite unipotent subgroups. Group theoretically this
expels nonuniform lattices from the CAT(0) region in M. Bridson’s universe of
finitely presented groups [20]. However, they stay in the nonpositively curved area
as they form the key examples of CAT(0) lattices for which an interesting structure
theory has recently been developed in [23,24]. Geometrically the locally symmetric
spaces Γ\X of torsion-free nonuniform lattices Γ provide infinite BΓs with cusps or
ends and the unipotent subgroups are reflected in certain nilmanifolds that wind
around the ends.

The purpose of this thesis is to calculate L2-invariants of nonuniform lattices
in semisimple Lie groups using suitable compactifications of locally symmetric
spaces. Of course the compactification has to be homotopy equivalent to the original
Γ\X to make sure it is a BΓ. One way to achieve this is to simply chop off the
ends. An equivalent construction due to A. Borel and J.-P. Serre suggests to add
boundary components at infinity so that Γ\X forms the interior of a compact
manifold with corners. To expand on this, let us first suppose that Γ is irreducible
and rankRG > 1. Then G. Margulis’ celebrated arithmeticity theorem says we may
assume there exists a semisimple linear algebraic Q-group G such that G = G0(R)
and such that Γ is commensurable with G(Z). We assemble certain nilmanifolds NP
and so-called boundary symmetric spaces XP = MP/KP to boundary components
e(P) = NP×XP associated with the rational parabolic subgroups P ⊂ G. We define
a topology on the bordification X = X ∪

⋃
P e(P) specifying which sequences in X

will converge to points in which boundary components e(P). The Γ-action on X
extends freely to X. The bordification X is still contractible but now has a compact
quotient Γ\X called the Borel–Serre compactification of the locally symmetric space
Γ\X. For not necessarily arithmetic torsion-free lattices in semisimple Lie groups
with rankR(G) = 1, H. Kang [56] has recently constructed a finite BΓ by attaching
nilmanifolds associated with real parabolic subgroups.

We will use these two types of compactifications to conclude information on
Novikov–Shubin invariants and L2-torsion of Γ. For the L2-Betti numbers, how-
ever, the problem can more easily be reduced to the uniform case by the work of
D. Gaboriau [40]. To state the result let us recall that the deficiency of G is given
by δ(G) = rankC(G)− rankC(K) and that every symmetric space X of noncompact
type has a dual symmetric space Xd of compact type. There is moreover a canonical
choice of a Haar measure µX on G which gives µX(Γ\G) = vol(Γ\X) for the induced
G-invariant measure in case Γ is torsion-free.
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Theorem 1.1. Let G be a connected semisimple linear Lie group with symmetric
space X = G/K fixing the Haar measure µX . Then for each p ≥ 0 there is a

constant B
(2)
p (X) ≥ 0 such that for every lattice Γ ≤ G we have

b(2)
p (Γ) = B(2)

p (X)µX(Γ\G).

Moreover B
(2)
p (X) = 0 unless δ(G) = 0 and dimX = 2p, when B

(2)
p (X) = χ(Xd)

vol(Xd)
.

As an example, let us consider the modular group PSL(2,Z). We obtain

B
(2)
1 (H2) = 1

2π because the dual of the hyperbolic plane is the 2-sphere. Integrating

the volume form dx∧dy
y2 over the interior of the standard fundamental domain of

PSL(2,Z) acting on the upper half-plane, we obtain µH2(PSL(2,Z)\PSL(2,R)) = π
3 .

Thus b
(2)
1 (PSL(2,Z)) = 1

6 . Note that generally b
(2)
p (Λ) = [Γ : Λ] b

(2)
p (Γ) for finite

index subgroups. This is interesting because PSL(2,Z) contains the free group F2

on two letters. As BF2 = S1∨S1, it is easy to see that b
(2)
1 (F2) = 1. So we conclude

that every embedding F2 → PSL(2,Z) has either infinite index or index six. If one
takes the isomorphism PSL(2,Z) ∼= Z/3 ∗ Z/2 for granted, this can also be shown
with the help of Wall’s rational Euler characteristic [107].

It remains to investigate Novikov–Shubin invariants and L2-torsion. To the
author’s knowledge, the only results in this direction for nonuniform lattices have
been obtained in the hyperbolic case. J. Lott and W. Lück give bounds for α̃p(Γ) if

G = SO0(3, 1) [65] in the context of computing L2-invariants of 3-manifolds. In a
follow-up paper W. Lück and T. Schick [72] compute ρ(2)(Γ) for G = SO0(2n+ 1, 1)
as follows.

Theorem 1.2. There are certain nonzero numbers T (2)(H2n+1) such that for every
torsion-free lattice Γ ⊂ SO0(2n+ 1, 1) we have ρ(2)(Γ) = T (2)(H2n+1)vol(Γ\H2n+1).

The first constants T (2)(H2n+1) for n = 1, 2, 3 are − 1
6π , 31

45π2 and − 221
70π3 . In

the hyperbolic case the nilpotent Lie groups defining the boundary nilmanifolds are
actually abelian so that the structure of Kang’s compactification is quite transparent.
The boundary is a finite disjoint union of flat manifolds which thus are finitely
covered by tori. We check that the calculations of Lott–Lück for Novikov–Shubin
invariants in the special case G = SO0(3, 1) hold more generally to give

Theorem 1.3. Let Γ be a lattice in SO0(2n+ 1, 1). Then α̃n(Γ) ≤ 2n.

For uniform Γ ⊂ SO0(2n+ 1, 1) J. Lott had computed α̃n(Γ) = 1
2 [63, Proposi-

tion 46]. It follows from the Cartan classification that the groups G = SO0(2n+ 1, 1)
are up to finite coverings the only connected semisimple Lie groups without com-
pact factors and with rankR(G) = 1 that define a symmetric space of nonvanish-
ing fundamental rank. So by Theorem 1.1 the remaining examples SO0(2n, 1),
SU(n, 1), Sp(n, 1) and F4(−20) have lattices with nonvanishing middle L2-Betti
number. This prevents an easy generalization of Theorem 1.3 to give bounds on
middle Novikov–Shubin invariants in these cases. We can however say something
about Novikov–Shubin invariants right below the top dimension.

Theorem 1.4. Let G be a connected semisimple linear Lie group of rankR(G) = 1
with symmetric space X = G/K. Suppose that n = dimX ≥ 3. Let P ⊂ G be a
proper real parabolic subgroup. Then for every nonuniform lattice Γ ⊂ G

α̃n−1(Γ) ≤ d(NP )
2 .

Here d(NP ) denotes the degree of polynomial growth of the unipotent radical
NP of P . This theorem contrasts Olbrich’s result that all uniform lattices have ∞+

as Novikov–Shubin invariant in this high dimension. On a second thought this is
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maybe not so surprising because Novikov–Shubin invariants tend to be finite for
infinite amenable groups. While no lattice Γ ⊂ G is amenable, we have already
mentioned that a torsion-free nonuniform lattice Γ has infinite unipotent subgroups
which are geometrically reflected in the nilmanifolds at infinity of the symmetric
space. These take their toll and bound Novikov–Shubin invariants. The L2-torsion
in turn is only defined for lattices acting on det-L2-acyclic symmetric spaces X
which according to Theorem 1.1 is equivalent to δ(G) > 0. So Theorem 1.2 of
Lück–Schick answers all the questions on L2-torsion when rankR(G) = 1.

Let us now assume that G is a connected semisimple linear Lie group without
compact factors and with rankR(G) > 1. Then one version of Margulis arithmeticity
says that for every irreducible lattice Γ ⊂ G there exists a connected semisimple
linear algebraic Q-group G such that Γ and G(Z) are abstractly commensurable
(Corollary 4.4). Therefore [69, Theorem 3.7.1] says that Γ and all arithmetic
subgroups of G(Q) have equal Novikov–Shubin invariants. Moreover G and G(R)
define the same symmetric space X. So it remains to analyze the arithmetic case
where the Borel–Serre bordification X is available. Let q be the middle dimension
of X, so either dimX = 2q or dimX = 2q + 1.

Theorem 1.5. Let G be a connected semisimple linear algebraic Q-group. Suppose
that rankQ(G) = 1 and δ(G(R)) > 0. Let P ⊂ G be a proper rational parabolic
subgroup. Then for every arithmetic subgroup Γ ⊂ G(Q)

α̃q(Γ) ≤ δ(MP) + d(NP ).

The new phenomenon that occurs is that apart from the nilmanifolds NP ,
boundary symmetric spaces XP = MP/KP show up in ∂X whenever rankR(G) >
rankQ(G). Certain subgroups of Γ act cocompactly on XP and NP so that ultimately
the theorem reduces to Olbrich’s work in order to control the boundary symmetric
space and to a theorem of M. Rumin [97] which gives bounds for the Novikov–Shubin
invariants of graded nilpotent Lie groups.

In the most complicated case of arbitrary rankR(G) ≥ rankQ(G) > 1, the

structure of ends is intriguing. In fact the boundary ∂X is connected and can be
built up by rankQ(G)− 1 consecutive pushouts attaching boundary components of
increasing dimensions which result in a smooth manifold with corners. If δ(G) > 0,
it is possible to bound the middle Novikov–Shubin invariant of Γ by going over to
the boundary, α̃q(X) ≤ α̃q(∂X). But Novikov–Shubin invariants only satisfy a very
weak version of additivity with respect to pushouts so that it remains unclear if
α̃q(∂X) is finite. For the L2-torsion, however, we are able to cover half of all cases.

Theorem 1.6. Let G be a connected semisimple linear algebraic Q-group. Suppose
that G(R) has positive, even deficiency. Then every torsion-free arithmetic lattice
Γ ⊂ G(Q) is det-L2-acyclic and

ρ(2)(Γ) = 0.

Unlike Novikov–Shubin invariants, L2-torsion behaves additively with respect to
pushouts in the same way as the ordinary Euler characteristic does. The projection
to Γ\∂X of the closures e(P) of boundary components in ∂X are total spaces
of fiber bundles of manifolds with corners. We identify the basis with the Borel–
Serre compactification of the boundary locally symmetric space ΓMP

\XP for a
certain induced lattice ΓMP

. The typical fiber is given by the closed nilmanifold
Γ ∩NP \NP . A theorem due to C. Wegner [108] says that the L2-torsion of finite
aspherical CW-complexes with infinite elementary amenable fundamental group
vanishes. Using additivity and a product formula for fiber bundles, the nilfibers
therefore finally effect that ρ(2)(∂X) vanishes. This is sufficient for the conclusion of
the theorem because dimX has the same parity as δ(G(R)) and in even dimensions
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ρ(2)(∂X) = 2ρ(2)(X) as a consequence of Poincaré duality. Also note that by this
equality Theorem 1.6 is trivial for uniform lattices.

L2-torsion obeys a simpler product formula than Novikov-Shubin invariants
do. Therefore we can get rid of the irreducibility assumption and invoke Margulis
arithmeticity for a statement about all lattices in semisimple Lie groups with positive,
even deficiency. To do so, let us say a group Γ is virtually det-L2-acyclic if a finite
index subgroup Γ′ has a finite det-L2-acyclic Γ′-CW model for EΓ′. In that case its

virtual L2-torsion is well-defined by setting ρ
(2)
virt(Γ) = ρ(2)(Γ′)

[Γ:Γ′] .

Theorem 1.7. Let G be a connected semisimple linear Lie group with positive, even
deficiency. Then every lattice Γ ⊂ G is virtually det-L2-acyclic and

ρ
(2)
virt(Γ) = 0.

For example ρ
(2)
virt(SL(n,Z)) = 0 if n > 2 and n ≡ 1 or 2 mod 4. In the case

of odd deficiency in contrast, our methods break down completely. For one thing,
the equation ρ(2)(∂X) = 2ρ(2)(X) is no longer true. For another, Theorem 1.2,
Olbrich’s Theorem 3.19 and Conjecture 1.12 below suggest that we should expect
nonzero L2-torsion also for nonuniform lattices if δ(G) = 1. But the corresponding
nonzero constants T (2)(X) that occur in Theorem 3.19 seem to hint at an intimate
connection of the L2-torsion of Γ with the representation theory of G. So it seems
unlikely to come up with those values by mere topological means.

The computation of L2-invariants is a worthwhile challenge in itself. Yet we
want to convince the reader that the problem is not isolated within the mathematical
landscape. The following conjecture goes back to M. Gromov [44, p. 120]. We state
it in a version that appears in [67, p. 437].

Conjecture 1.8 (Zero-in-the-spectrum Conjecture). Let M be a closed aspherical
Riemannian manifold. Then there is p ≥ 0 such that zero is in the spectrum of the
minimal closure of the Laplacian

(∆p)min : dom((∆p)min) ⊂ L2Ωp(M̃)→ L2Ωp(M̃)

acting on p-forms of the universal covering M̃ with the induced metric.

The conjecture has gained interest due to its relevance for seemingly unrelated
questions, see [64] for an expository article. For one example, the zero-in-the-
spectrum conjecture for M with Γ = π1(M) is a consequence of the strong Novikov
conjecture for Γ which in turn is contained in the Baum–Connes conjecture for
Γ. Following the survey [67, Chapter 12], let us choose a Γ-triangulation X of

M̃ . We define the homology N (Γ)-module HΓ
p (X;N (Γ)) = Hp(N (Γ)⊗ZΓ C∗(X))

where we view the group von Neumann algebra N (Γ) as a discrete ring. Then the
zero-in-the-spectrum conjecture has the equivalent algebraic version that for some
p ≤ dimM the homology HΓ

p (X;N (Γ)) does not vanish. L2-invariants enter the

picture in that for a general finite Γ-CW complex X we have HΓ
p (X;N (Γ)) = 0 for

p ≥ 0 if and only if b
(2)
p (X) = 0 and α̃p(X) =∞+ for p ≥ 0.

Therefore Olbrich’s theorem implies that closed locally symmetric spaces Γ\X
coming from uniform lattices satisfy the conjecture. The statement of the con-
jecture does not immediately include locally symmetric spaces Γ\X coming from
nonuniform lattices because they are not compact. But since already the strong
Novikov conjecture is known for large classes of groups, including Gromov hyper-
bolic groups, it should pay off to think about generalizing the formulation of the
zero-in-the-spectrum conjecture. One such generalization would be to cross out the
word “aspherical” in the statement of Conjecture 1.8 above. But then there are
counterexample due to M. Farber and S. Weinberger [36]. Compare also [50]. So we
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should stick with aspherical spaces and try to relax the condition “closed manifold”
instead. This gives a question that W. Lück has asked, see [67, p. 440].

Question 1.9. If a group Γ has a finite CW-model for BΓ, is there p ≥ 0 such that
HΓ
p (EΓ;N (Γ)) does not vanish?

Now this question makes sense for nonuniform lattices, and as we said, L2-Betti
numbers and Novikov–Shubin invariants provide a way to answer it. In our case
Theorem 1.4 gives number (i) and Theorems 1.1 and 1.5 give number (ii) of the
following result.

Theorem 1.10. The answer to Question 1.9 is affirmative for

(i) torsion-free nonuniform lattices of connected semisimple linear Lie groups G
with rankR(G) = 1,

(ii) torsion-free arithmetic subgroups of connected semisimple linear algebraic
Q-groups G with rankQ(G) = 1.

In a different direction, recall that two lattices Γ and Λ, uniform or not, in the
same noncompact Lie group H give the prototype example of measure equivalent
groups in the sense of M. Gromov. The group H together with the left and right
actions Γ y H x Λ provides a measure coupling, meaning H endowed with Haar
measure µ is an infinite Lebesgue space and the two actions are free, commute

and both have finite measure fundamental domains X and Y . The ratio µ(X)
µ(Y ) is

called the index of the measure coupling. It is explained in [38, p. 1061] that it
follows from the work of R. J. Zimmer [111] that lattices in different higher rank
simple Lie groups are not measure equivalent. A remarkable rigidity theorem due
to A. Furman [38, Theorem 3.1] therefore says that the measure equivalence class of
a lattice Γ in a higher rank simple Lie group G coincides up to finite groups with
the set of all lattices in G. On the other hand, Furman explains how it follows from
[90] that all countable amenable groups form one single measure equivalence class.
Moreover he uses the measure coupling of two measure equivalent groups Γ and Λ
to induce unitary Λ-representations to unitary Γ-representations, thereby showing
that Kazhdan’s Property (T) is a measure equivalence invariant [38, Corollary 1.4].
In this context, Furman proposes the problem of finding other measure equivalence
invariants of groups, besides amenability and Property (T) [38, Open question 3,
p. 1062]. Since such an invariant cannot distinguish amenable groups, one should
probably consider invariants that have turned out to be useful in the “opposite”
Property (T) world. In particular, typical quasi-isometry invariants like growth
functions, cohomological dimension or Gromov hyperbolicity fail to be measure
equivalence invariant.

In a far-reaching paper D. Gaboriau [40] has proven that the property of having a
zero p-th L2-Betti number is indeed a measure equivalence invariant. More precisely,

he shows that if Γ and Λ have a measure coupling of index c, then b
(2)
p (Γ) = c ·b(2)

p (Λ).
On the other hand, Novikov–Shubin invariants are not invariant under measure
equivalence. This is immediate for amenable groups, for example α̃1(Zn) = n

2 .
Beyond that, for G = Sp(n, 1) and G = F4(−20) Theorem 1.4 gives Property (T)
counterexamples, see [59, Remark 10]. These are also counterexamples to the
relaxed version that for two measure equivalent groups Γ, Λ we had α̃p(Γ) =∞+ ⇔
α̃p(Λ) =∞+. The now obvious question for the L2-torsion has already been asked
by W. Lück and R. Sauer [67, Question 7.35, p. 313].

Question 1.11. Let Γ and Λ be measure equivalent, det-L2-acyclic groups. Is it
true that ρ(2)(Γ) = 0⇔ ρ(2)(Λ) = 0?

This question of course includes the question whether ρ(2)(Γ) = 0 whenever
Γ is amenable and has a finite BΓ. As mentioned, C. Wegner has verified this
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for elementary amenable groups. H. Li and A. Thom have very recently given the
complete affirmative answer by identifying the L2-torsion of Γ with the entropy of a
certain algebraic action of Γ [62]. Meanwhile in view of Gaboriau’s theorem and the
similar behavior of L2-Betti numbers and L2-torsion, Question 1.11 has become the
following more precise conjecture [71, Conjecture 1.2].

Conjecture 1.12 (Lück–Sauer–Wegner). Let Γ and Λ be det-L2-acyclic groups.
Assume that Γ and Λ are measure equivalent of index c. Then ρ(2)(Γ) = c · ρ(2)(Λ).

In fact, Lück–Sauer–Wegner only assume the groups to be L2-acyclic and make
it part of the conclusion of the conjecture that they are of det ≥ 1-class, see
Remark 3.7 (iii). They prove the conjecture if measure equivalence is replaced by
the way more rigorous notion of uniform measure equivalence of groups. In case
of finitely generated amenable groups for example, uniform measure equivalence
classes and quasi-isometry classes agree [101, Lemma 2.25; 103, Theorem 2.1.7].
Regarding the original Conjecture 1.12, our Theorem 1.7 and the above discussion
of the work of Zimmer and Furman translate as follows.

Theorem 1.13. Let Leven be the class of det-L2-acyclic groups that are measure
equivalent to a lattice in a connected simple linear Lie group with even deficiency.
Then Conjecture 1.12 holds true and Question 1.11 has affirmative answer for Leven.

Of course in fact ρ(2)(Γ) = 0 for all Γ ∈ Leven, which one might find unfortunate.
On the other hand, Leven contains various complete measure equivalence classes
of det-L2-acyclic groups so that Theorem 1.13 certainly has substance. Gaboriau
points out in [39, p. 1810] that apart from amenable groups and lattices in connected
simple linear Lie groups of higher rank, no more measure equivalence classes of
groups have completely been understood so far. The same reference gives a concise
survey on further measure equivalence invariants of groups.

Among the open problems we will list, we find the odd deficiency case of
Theorem 1.7 most exigent. A promising strategy seems to be a generalization of the
methods in [72] where the asymptotic equality of the analytic L2-torsion of a finite-
volume hyperbolic manifold and the cellular L2-torsion of a compact exhaustion
is proved. Such a generalization will require analytic estimations of heat kernels
and thus a detailed understanding of the asymptotic geometry of symmetric spaces.
In particular a suitable coordinate system that allows one to make precise what
“chopping off the ends” in the higher rank case should mean is desirable. This has
led us to considerations about adapting Chevalley bases of complex semisimple Lie
algebras to a given real structure. As the main result we construct a basis for every
real semisimple Lie algebra such that the structure constants are (half-)integers
which can be read off from the root system of the complexification together with
the involution determining the real structure. One application gives coordinates for
symmetric spaces in a uniform way. They single out maximal flat totally geodesic
submanifolds and complementing nilmanifolds given by Iwasawa N -groups. The
structure of the Iwasawa N -groups is likewise made explicit. These results are of
independent interest and have appeared as a preprint in [55].

The outline of the remaining chapters is as follows. In Chapter 2 we give a
detailed exposition on the Borel–Serre compactification widely following the modern
approach in [15]. We include a brief survey on the similar Kang compactification
designed for nonarithmetic lattices in rank one groups. Chapter 3 details the
definitions and facts from [67] about L2-invariants that are essential for our purposes.
Chapter 4 forms the core of the thesis where the theorems as outlined in this
introduction are proven. Chapter 5 concludes with the results on integral structures
in real semisimple Lie algebras we mentioned lastly.
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CHAPTER 2

Borel–Serre compactification

In this chapter we introduce the Borel–Serre compactification of a locally symmetric
space mostly following the modern treatment by A. Borel and L. Ji [15, Chapter
III.9, p. 326]. The construction is built on the structure theory of rational parabolic
subgroups of a reductive linear algebraic group G defined over Q. We will present
this theory incorporating methods of Harish-Chandra [46] in order to allow for
disconnected groups G. This enables us to recover the recursive character of the
construction which is pronounced in the original treatment by A. Borel and J.-P. Serre
[17].

The outline of sections is as follows. In Section 1 we recall basic notions of
linear algebraic groups, their arithmetic subgroups and associated locally symmetric
spaces. We recall a criterion to decide whether such a locally symmetric space
is compact. Section 2 studies rational parabolic subgroups and their Langlands
decompositions. These induce horospherical decompositions of the symmetric space.
We classify rational parabolic subgroups up to conjugacy in terms of parabolic roots.
The general sources for the background material in Sections 1 and 2 are [10], [11]
and [15]. We will however give precise references whenever we feel the stated fact
would not exactly be standard. Section 3 introduces and examines the bordification,
a contractible manifold with corners which contains the symmetric space as an open
dense set. In Section 4 we see that the group action extends cocompactly to the
bordification. The compact quotient gives the desired Borel–Serre compactification.
We will examine its constituents to some detail. Finally Section 5 gives a brief
survey on Kang’s compactification of locally symmetric spaces defined by lattices
in rank one simple Lie groups. Throughout the presentation, all concepts will be
illustrated in the example of the simplest symmetric space: the hyperbolic plane.

1. Algebraic groups and arithmetic subgroups

Let G ⊂ GL(n,C) be a linear algebraic group defined over Q. A Zariski-closed
subgroup T ⊂ G is called a torus of G if it is isomorphic to a product of copies
of C∗ = GL(1,C). If k = Q, R or C, then T is called k-split if T and this
isomorphism are defined over k. All maximal k-split tori of G0, the unit component,
are conjugate by elements in G0(k) and their common dimension is called the
k-rank of G. Clearly rankQ(G) ≤ rankR(G) ≤ rankC(G). The group G is called
k-anisotropic if rankk(G) = 0. A k-character on G is a homomorphism G→ C∗
defined over k. The k-characters of G form an abelian group under multiplication
which we denote by Xk(G). The radical R(G) of G is the maximal connected
normal solvable subgroup of G. Similarly, the unipotent radical Ru(G) of G is
the maximal connected normal unipotent subgroup of G. As G is defined over Q,
so are R(G) and Ru(G). The group G is called reductive if Ru(G) is trivial and
semisimple if R(G) is trivial. Any reductive k-subgroup of a general k-group G is
contained in a maximal reductive k-subgroup. The maximal reductive k-subgroups
are called Levi k-subgroups. They are conjugate under Ru(G)(k) [17, Section 0.4,
p. 440]. The k-group G is the semidirect product of any Levi k-subgroup L by the
unipotent radical, G = Ru(G) o L.

9
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From now on we will assume that the linear algebraic Q-group G is reductive
and that it satisfies the following two conditions.

(I) We have χ2 = 1 for all χ ∈ XQ(G).
(II) The centralizer ZG(T) of each maximal Q-split torus T ⊂ G meets every

connected component of G.

This class of groups appears in [46, p.1]. Condition (I) implies that XQ(G0)
is trivial. Thus G has Q-anisotropic center. Note that the structure theory of
reductive algebraic groups is usually derived for connected groups, see for example
[11, Chapter IV]. But if one tries to enforce condition (I) for a connected reductive
Q-group H by going over to

⋂
χ∈XQ(H) kerχ2, the resulting group will generally be

disconnected. That is why we impose the weaker condition (II) which will turn out
to be good enough for our purposes.

The group G ⊂ GL(n,C) is an affine variety in M(n + 1,C) ∼= C(n+1)2

by

means of the embedding g 7→
(
g 0

0 det(g)−1

)
. The integer points G(Z) given by the

intersection G ∩M(n + 1,Z) form a subgroup of G. A subgroup Γ ⊂ G(Q) is
called arithmetic if it is commensurable with G(Z). This means Γ ∩G(Z) has finite
index both in Γ and in G(Z). If ϕ : G → G′ is a Q-isomorphism, then G′(Z) is
commensurable with ϕ(G(Z)) [93, Proposition 4.1, p. 171]. It follows that the set of
arithmetic subgroups of G is closed under conjugation with elements in G(Q).

The real points G = G(R) form a reductive Lie group with finitely many
connected components [11, Section 24.6(c)(i), p. 276]. Due to condition (I), an
arithmetic subgroup Γ ⊂ G(Q) is a lattice in G, which means the quotient space
G/Γ has finite G-invariant measure. This is a deep result of A. Borel and Harish-
Chandra [13, Theorem 9.4, p. 522] that generalizes classical reduction theories of
quadratic forms to the setting of general arithmetic groups. Selberg’s Lemma [2]
says that Γ has torsion-free subgroups of finite index. We want to assume that Γ is
torsion-free to begin with. This ensures that Γ acts freely and properly from the
left on the symmetric space X = G/K where K is a maximal compact subgroup of
G. Corresponding to K there is a Cartan involution θK on G which extends to an
algebraic involution of G [17, Definition 1.7, p. 444]. If G is semisimple, θK is the
usual Cartan-involution. The symmetric space X is connected because K meets
every connected component of G. In general, it is the product of a symmetric space
of noncompact type and a Euclidean factor. The quotient Γ\X = Γ\G/K is called
a locally symmetric space. The locally symmetric space Γ\X is a connected finite-
volume Riemannian manifold and in fact a classifying space for Γ because its universal
covering X is contractible. The question under which further conditions on G the
quotient Γ\G or equivalently the locally symmetric space Γ\X is actually compact
has also been settled in the work of Borel and Harish-Chandra [13, Theorem 11.8,
p. 529]. An alternative proof with different methods has independently been given by
G. D. Mostow and T. Tamagawa [80, p. 452]. For the third part see [7, Theorem 5.4(b),
p. 43].

Proposition 2.1. The following are equivalent.

(i) The locally symmetric space Γ\X is compact.
(ii) No nontrivial element in G(Q) is unipotent.

(iii) The group G is Q-anisotropic.

If rankQ(G) > 0, then the Borel–Serre compactification Γ\X will be a manifold
with “corners” that contains Γ\X as an open dense subset. The maximal codimension
of the corners is given by rankQ(G). In this sense the Q-rank of G measures how
intricate the structure of Γ\X at infinity is. A high Q-rank allows for a rich
combinatorial structure of rational parabolic subgroups of G which are crucial for
understanding the structure of Γ\X at infinity as we will see next.
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2. Rational parabolic subgroups

If G is connected, a closed Q-subgroup P ⊂ G is called a rational parabolic subgroup
if G/P is a complete (equivalently projective) variety. If G is not connected, we
say that a closed Q-subgroup P ⊂ G is a rational parabolic subgroup if it is the
normalizer of a rational parabolic subgroup of G0. These definitions are compatible
because rational parabolic subgroups of connected groups are self-normalizing. It
is clear that P0 = P ∩G0, and condition (II) on G ensures that P meets every
connected component of G [46, Lemma 1, p. 2], so G/P is complete.

Given a rational parabolic subgroup P ⊂ G we set NP = Ru(P) and we denote
by LP = P/NP the Levi quotient of P. Let SP ⊂ LP be the maximal central
Q-split torus and set MP =

⋂
χ∈XQ(LP) kerχ2. The Q-group MP is reductive and

satisfies conditions (I) and (II). It complements SP as an almost direct product in
LP [46, p. 3]. This means LP = SPMP and SP ∩MP is finite. For the groups of
real points LP = LP(R), AP = SP(R)0 and MP = MP(R) the situation is even
better behaved. One can verify that LP = APMP but now the finite group AP∩MP

is actually trivial because AP is torsion-free. Since both AP and MP are normal,
the product is direct. We would like to lift these decompositions to some Levi
k-subgroup of P. The following result due to A. Borel and J.-P. Serre asserts that
the maximal compact subgroup K ⊂ G singles out a canonical choice for doing so
[17, Proposition 1.8, p. 444]. The caveat is that k = Q needs to be relaxed to k = R.
We view x0 = K as a base point in the symmetric space X.

Proposition 2.2. Let P ⊂ G be a rational parabolic subgroup and let K ⊂ G be
maximal compact. Then P contains one and only one R-Levi subgroup LP,x0

which
is stable under θK .

We remark that for a given P, the maximal compact subgroup K which is
identified with the base point x0 = K in X can always be chosen such that LP,x0 is
a Q-group. In fact, LQ,x0

is then a Q-group for all parabolic subgroups Q ⊂ G that
contain P. This follows from the proof of [15, Proposition III.1.11, p. 273]. In this
case we will say that x0 is a rational base point for P. In general however, there is
no universal base point x0 such that the θK-stable Levi subgroups of all rational
parabolic subgroups would be defined over Q [42, Section 3.9, p. 151].

The canonical projection π : LP,x0 → LP is an R-isomorphism. The groups
SP and MP lift under π to the R-subgroups SP,x0

and MP,x0
of P. The rational

parabolic subgroup P thus has the decomposition

(2.3) P = NPSP,xoMP,x0
∼= NP o (SP,x0MP,x0)

where LP,x0
= SP,x0

MP,x0
is an almost direct product. Similarly the Lie groups

LP, AP and MP lift to the Lie subgroups LP,x0
, AP,x0

and MP,x0
of the cuspidal

group P = P(R).

Definition 2.4. The point x0 ∈ X yields the rational Langlands decomposition

P = NPAP,x0
MP,x0

∼= NP o (AP,x0
×MP,x0

).

We intentionally used a non-bold face index for NP = NP(R) because NP
coincides with the unipotent radical of the linear Lie group P . The number
s-rank(P) = dimRAP,x0

is called the split rank of P [53, p. 445]. Let KP = P ∩K
and K ′P = π(KP ). Inspecting [17, Proposition 1.8, p. 444] we see that KP ⊂ LP,x0

so K ′P ⊂ LP. Since K ′P is compact, we have χ(K ′P ) ⊂ {±1} for each χ ∈ XQ(LP)
so that actually K ′P ⊂ MP and thus KP ⊂ MP,x0

. Moreover G = PK so that P
acts transitively on the symmetric space X = G/K.

Definition 2.5. The map (n, a,mKP ) 7→ namK is a real analytic diffeomorphism

NP ×AP,x0
×XP,x0

∼= X
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of manifolds called the rational horospherical decomposition of X with respect to P
and x0 and with boundary symmetric space XP,x0

= MP,x0
/KP .

Note that KP ⊂ MP,x0
is maximal compact as it is even so in P [17, Propo-

sition 1.5, p. 442]. Write an element p ∈ P according to the rational Langlands
decomposition as p = nam and write a point x1 ∈ X according to the rational horo-
spherical decomposition as x1 = (n1, a1,m1KP ). Then we see that the left-action
of P on X is given by

nam.(n1, a1,m1KP ) = (n amn1, aa1,mm1KP ),

where we adopt the convention to write hg for the conjugation hgh−1.

Example 2.6. Let G = SL(2,C). The diagonal subgroup S =
{(

a 0
0 a−1

)
: a ∈ C∗

}
is an example of a maximal Q-split torus of G so that rankQ(G) = 1. The

group P =
{(

a b
0 a−1

)
: a ∈ C∗, b ∈ C

}
is a both minimal and maximal rational

parabolic subgroup. Its unipotent radical is NP = {( 1 b
0 1 ) : b ∈ C}. The subgroup

K = SO(2,R) of G = SL(2,R) is maximal compact. It provides a rational base point
x0 = K for P so that we can identify LP = SP

∼= LP,x0
= SP,x0

from the start.
The Q-character group of LP is given by XQ(LP) = {χk : k ∈ Z}, where χ sends(
a 0
0 a−1

)
∈ S to a. Thus MP,x0

= {± ( 1 0
0 1 )}. We obtain the rational Langlands

decomposition of P with respect to x0

P ∼= NP o (AP,x0
×MP,x0

)

with NP = {( 1 b
0 1 ) : b ∈ R}, AP,x0

=
{(

a 0
0 a−1

)
: a ∈ R>0

}
and MP,x0

= {± ( 1 0
0 1 )}.

As KP = MP,x0 , the boundary symmetric space XP,x0 is a point. The rational
horospherical decomposition of X = G/K with respect to P and x0 reduces to

X ∼= NP ×AP,x0 .

Since G = SL(2,R) ∼= SO0(2, 1), the symmetric space X can be identified with
the hyperbolic plane. In the upper half-plane model, {1} ×AP,x0

is the imaginary
coordinate axis whose NP -translates are geodesic vertical lines that connect points
from the boundary line R to the point at infinity. Accordingly NP × {1} and its
AP,x0

-translates are the horizontal lines which are horocycles or one-dimensional
horospheres that join at the point at infinity. This explains the terminology. For the
opposite parabolic subgroup P−=

{(
a 0
b a−1

)
: a ∈ C∗, b ∈ C

}
the one-dimensional

subspace {1} ×AP−,x0
of X is again the imaginary axis but now its NP−-translates

are geodesic half-circles with both ends in the boundary line R, one end being the
origin. Accordingly NP−× {1} and its AP−,x0

-translates are pinched circles tangent
to the boundary line R at zero, see Figure 2.7. A generic rational parabolic subgroup
P has a nonzero boundary point in R as limit point for the geodesics and tangent
point for the horospheres in the corresponding horospherical decomposition of X.
In this sense one might want to say that a rational parabolic subgroup singles out a
“direction to infinity” in the symmetric space X.

The horospherical decomposition realizes the symmetric space X as the product
of a nilmanifold, a flat manifold and yet another symmetric space XP,x0 . The
isomorphism π identifies the latter one with the symmetric space XP = MP/K

′
P .

It is the symmetric space of the reductive Q-group MP which meets conditions (I)
and (II). The group MP inherits the arithmetic lattice Γ′MP

which is the image of
ΓP = Γ∩NG(P ) under the projection P → P/NP ∼= LP . Here we have Γ′MP

⊂MP

because χ(Γ′MP
) ⊂ {±1} for all χ ∈ XQ(LP) as χ(Γ′MP

) ⊂ GL(1,Q) is arithmetic.
In general Γ′MP

might have torsion elements. But there is a condition on Γ that
ensures it does not.
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Figure 2.7. Horospherical decomposition of the symmetric space
SL(2,R)/SO(2). Horospheres and geodesics intersect orthogonally.

Definition 2.8. A matrix g ∈ GL(n,Q) is called neat if the subgroup of C∗
generated by the eigenvalues of g is torsion-free. A subgroup of GL(n,Q) is called
neat if all of its elements are neat.

The notion of neatness is due to J.-P. Serre. It appears first in [10, Section 17.1,
p. 117]. A neat subgroup is obviously torsion-free. Every arithmetic subgroup of a
linear algebraic Q-group has a neat subgroup of finite index [10, Proposition 17.4,
p. 118] and neatness is preserved under morphisms of linear algebraic groups [10,
Corollaire 17.3, p. 118]. Therefore Γ′MP

is neat if Γ is, and in that case Γ′MP

acts freely and properly on the boundary symmetric space XP. We observe that
rankQ(MP) = rankQ(G) − dimAP. In this sense the locally symmetric space
Γ′MP
\XP is closer to being compact than the original Γ\X. This is a key observation

for the construction of the Borel–Serre compactification. If in particular P is a
minimal rational parabolic subgroup, then SP,x0

⊂ P is G-conjugate to a maximal
Q-split torus of G so that rankQ(MP) = 0 and thus Γ′MP

\XP is compact by
Proposition 2.1.

Now the group MP has itself rational parabolic subgroups Q′ whose cuspidal
subgroups Q′ have a Langlands decomposition Q′ = NQ′AQ′,x′0

MQ′,x′0
with respect to

the base point x′0 = K ′P . The isomorphism π identifies those groups as subgroups of
MP,x0 . We set N∗Q = NPNQ′ ∼= NP oNQ′ , A

∗
Q,x0

= AP,x0AQ′,x′0
= AP,xo oAQ′,x′0

and M∗Q,x0
= MQ′,x′0

. Then we define Q∗ = N∗QA
∗
Q,x0

M∗Q,x0
. The group Q∗ is

the cuspidal group of a rational parabolic subgroup Q∗ of G such that Q∗ ⊂ P.
Equivalently, Q∗ is a rational parabolic subgroup of P. The Langlands decomposition
of Q∗ with respect to x0 is the decomposition given in its construction.

Lemma 2.9. The map Q′ 7→ Q∗ gives a bijection of the set of rational parabolic
subgroups of MP to the set of rational parabolic subgroups of G contained in P.

This is [46, Lemma 2, p. 4]. We use the inverse of this correspondence to
conclude that for every rational parabolic subgroup Q = Q∗ ⊂ P we obtain a
rational horospherical decomposition of the boundary symmetric space

(2.10) XP,x0
∼= XP

∼= NQ′ ×AQ′,x′0
×XQ′,x′0

.

In the case P = G condition (I) gives MG,x0 = G so that we get back the original
rational horospherical decomposition of Definition 2.5.

In the rest of this section we will recall the classification of rational parabolic
subgroups of G up to conjugation in G(Q) in terms of parabolic roots. The reference
for this material is [46, Chapter 1, pp. 3–4]. Still let P ⊂ G be a rational parabolic
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subgroup and let x0 = K be a base point. Let g0, p, nP , aP,x0
and mP,x0

be the
Lie algebras of the Lie groups G, P , NP , AP,x0

and MP,x0
. From the viewpoint of

algebraic groups, these Lie algebras are given by R-linear left-invariant derivations
of the field of rational functions defined over R on the unit components of G, P, NP,
SP,x0

and MP,x0
, respectively. A linear functional α on aP,x0

is called a parabolic
root if the subspace

nP,α = {n ∈ nP : ad(a)(n) = α(a)n for all a ∈ aP,x0
}

of nP is nonzero. We denote the set of all parabolic roots by Φ(p, aP,x0
). If

l = dim aP,x0 , there is a unique subset ∆(p, aP,x0) ⊂ Φ(p, aP,x0) of l simple parabolic
roots such that every parabolic root is a unique linear combination of simple
ones with nonnegative integer coefficients. The group AP,x0 is exponential so
that exp: aP,x0

→ AP,x0
is a diffeomorphism with inverse “log”. Therefore we

can evaluate a parabolic root α ∈ Φ(p, aP,x0
) on elements a ∈ AP,x0

setting
aα = exp(α(log a)) where now “exp” is the ordinary real exponential function.

The subsets of ∆(p, aP,x0) classify the rational parabolic subgroups of G that
contain P as we will now explain. Let I ⊂ ∆(p, aP,x0) be a subset and let ΦI ⊂
Φ(p, aP,x0

) be the set of all parabolic roots that are linear combinations of simple
roots in I. Set aI =

⋂
α∈I kerα and nI =

⊕
α∈Σ nP,α where Σ = Σ(p, aP,x0

) denotes
the set of all parabolic roots which do not lie in ΦI . Consider the sum pI = nI⊕z(aI)
of nI and the centralizer of aI in g0. Let PI = NG(pI) be the normalizer of pI in G.
If x1 ∈ X is a different base point, then x1 = p.x0 for some p ∈ P and aP,x1

= paP,x0

as well as n(Ip) = pnI . It follows that the group PI , thus its Zariski closure PI , is
independent of the choice of base point. Since rational base points exist for P, the
Lie algebra of PI , which as a variety is given by C-linear left-invariant derivations
of the field of rational functions on P0

I , is defined over Q. It follows that PI is a
Q-group [46, p. 1]. In fact, PI is a rational parabolic subgroup of G with cuspidal
group PI . Let NI and AI be the Lie subgroups of PI with Lie algebras nI and
aI . Then NI ⊂ PI is the unipotent radical and AI = SPI,x0

(R)0. The parabolic
roots Φ(pI , aI) are the restrictions of Σ(p, aP,x0) to aI where simple parabolic roots
restrict to the simple ones ∆(pI , aI) of pI .

Every rational parabolic subgroup of G that contains P is of the form PI for a
unique I ⊂ ∆(p, aP,x0

). The two extreme cases are P∅ = P and P∆(p,aP,x0
) = G.

If P is minimal, the groups PI form a choice of so called standard rational parabolic
subgroups. Every rational parabolic subgroup of G is G(Q)-conjugate to a unique
standard one. Whence there are only finitely many rational parabolic subgroups
up to conjugation in G(Q). There are even only finitely many when we restrict
ourselves to conjugating by elements of an arithmetic subgroup Γ ⊂ G(Q). This is
clear from the following result of A. Borel [46, p. 5].

Proposition 2.11. Let P ⊂ G be a rational parabolic subgroup and let Γ ⊂ G(Q)
be an arithmetic subgroup. Then the set Γ\G(Q) /P(Q) is finite.

3. Bordification

From now on we drop x0 and x′0 from our notation. The resulting notational
collisions AP = AP,x0

, MP = MP,xo and XP = XP,x0
regarding Levi quotients

and Levi subgroups are justified by Proposition 2.2 and the discussion throughout
the preceding section. We will use the symbol “

⋃
· ” for general disjoint unions in

topological spaces, whereas the symbol “
∐

” is reserved for the true categorical
coproduct.

Let P ⊂ G be a rational parabolic subgroup. It determines the rational
horospherical decomposition X = NP × AP × XP of Definition 2.5. Define the
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boundary component of P by e(P) = NP × XP. Then as a set, the Borel–Serre
bordification X of the symmetric space X is given by the countable disjoint union

X =
∐

P⊂G
e(P)

of all boundary components of rational parabolic subgroups P ⊂ G. This includes
the symmetric space X = e(G). In order to topologize the set X we introduce
different coordinates on e(P) for every parabolic subgroup Q ⊂ P. We do so by
writing the second factor in e(P) = NP ×XP according to the rational horospherical
decomposition of the boundary symmetric space XP = NQ′ ×AQ′ ×XQ′ given in
(2.10). From the preparation of Lemma 2.9 we have NQ = NPNQ′ and MQ = MQ′

so that we are left with

(2.12) e(P) = NQ ×AQ′ ×XQ.

The closed sets of X are now determined by the following convergence class of
sequences [15, I.8.9–I.8.13, p. 113].

A sequence (xi) of points in e(P) converges to a point x ∈ e(Q) if Q ⊂ P and
if for the coordinates xi = (ni, ai, yi) of (2.12) and x = (n, y) of e(Q) = NQ ×XQ

the following three conditions hold true.

(i) aαi → +∞ for each α ∈ Φ(q′, aQ′),
(ii) ni → n within NQ,
(iii) yi → y within XQ.

A general sequence (xi) of points in X converges to a point x ∈ e(Q) if for each
P ⊂ G every infinite subsequence of (xi) within e(P) converges to x.

Note that in the case Q = P the set Φ(q′, aQ′) is empty so that condition (i) is
vacuous. We therefore obtain the convergence of the natural topology of e(P). In
particular, the case Q = P = G gives back the natural topology of X. It is clear
that we obtain the same set X with the same class of sequences if we go over from
G to G0. We thus may cite [15, Section III.9.2, p. 328] where it is stated that this
class of sequences does indeed form a convergence class of sequences. This defines
the topology of X.

Example 2.13. As in Example 2.6, let G = SL(2,C). We have identified the
symmetric space X with the upper half plane. Within the Riemann sphere C∪∞, it
thus has the natural boundary R∪∞. The boundary symmetric space XP is a point
for every rational parabolic subgroup P ⊂ G. Thus e(P) = NP is homeomorphic
to the real line. The bordification X is now constructed from X by adding one
real line e(P) for each point in Q ∪∞. The topology on X ensures that for each
n ∈ NP = e(P) the curve a 7→ n × exp(a) × pt ∈ NP × AP ×XP

∼= X with time
parameter a ∈ aP ∼= R is the unique geodesic in X converging to n ∈ e(P). Thus
in Figure 2.7, the boundary component e(P) can be thought of as an additional
horosphere at infinity which parametrizes the geodesics converging to zero.

Since a sequence (xi) in e(P) can only converge to a point x ∈ e(Q) if Q ⊂ P,
it is immediate that the Borel–Serre boundary ∂X ⊂ X of X defined as

(2.14) ∂X =
⋃
·

P(G

e(P)

is closed in X. Whence its complement e(G) = X ⊂ X is open. The following
proposition sharpens [15, Lemma III.16.2, p. 371].

Proposition 2.15. The closure of the boundary component e(P) in the bordification
X can be canonically identified with the product

e(P) = NP ×XP

where XP is the Borel–Serre bordification of the boundary symmetric space XP.
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Proof. By construction of the convergence class of sequences we have

(2.16) e(P) =
⋃
·

Q⊂P
e(Q).

In terms of the rational parabolic subgroup Q′ ⊂MP of Lemma 2.9 the boundary
component e(Q) can be expressed as

(2.17) e(Q) = NQ ×XQ = NP ×NQ′ ×XQ′ = NP × e(Q′).
In the distributive category of sets we thus obtain

e(P) =
∐

Q⊂P
e(Q) =

∐
Q′⊂MP

NP × e(Q′) = NP ×
∐

Q′⊂MP

e(Q′) = NP ×XP.

We have to verify that this identifies the spaces e(P) and NP ×XP also topologically
if we assign the bordification topology to XP. For this purpose we show that the
natural convergence classes of sequences on e(P) and NP ×XP coincide. Let us
refine our notation and write Q′ = Q|P to stress that Q′ ⊂MP. Let R ⊂ Q be
a third rational parabolic subgroup. Then the equality MQ = MQ|P implies the
cancellation rule R|Q = (R|P)|(Q|P). Incorporating coordinates for e(Q) with
respect to R as in (2.12), equation (2.17) can now be written as

e(Q) = NR ×AR|Q ×XR = NP × (NR|P ×A(R|P)|(Q|P) ×XR|P).

Here the product NR|P × A(R|P)|(Q|P) × XR|P gives the coordinates (2.12) for
e(Q|P) with respect to R|P. Let (ni, ai, yi) be a sequence in e(Q) converging to

(n, y) ∈ e(R). We decompose uniquely ni = nPi n
R|P
i and n = nPnR|P according to

NR = NPNR|P ∼= NP oNR|P . Then firstly nPi → nP in NP . Secondly (n
R|P
i , ai, yi)

is a sequence in e(Q|P) that converges to (nR|P , y) ∈ e(R|P) according to the
convergence class of the bordification XP. Since the convergence class of NP ×XP

consists of the memberwise products of convergent sequences inNP and the sequences
in the convergence class of XP, this clearly proves the assertion. �

One special case of this proposition is e(G) = X. The other important special
case occurs when P is a minimal rational parabolic subgroup. Then rankQ(MP) = 0

so that XP = XP which means that e(P) is closed.

As we have e(P) =
⋃
· e(Q), the union running over all Q ⊂ P, we should also

examine the subset
e(P) =

⋃
·

Q⊃P
e(Q) ⊂ X.

To this end consider the rational horospherical decomposition X = NP ×AP ×XP

of X given P. Let ∆(p, aP) = {α1, . . . , αl} be a numbering of the simple parabolic
roots. The map a 7→ (a−α1 , . . . , a−αl) defines a coordinate chart ϕP : AP → (R>0)l.
The minus signs make sure the “point at infinity” of AP will correspond to the
origin in Rl. Let AP be the closure of AP in Rl under the embedding ϕP. Given
Q ⊃ P, let I ⊂ ∆ = ∆(p, aP) be such that Q = PI (see Section 2, p. 14) and set

AP,Q = exp(
⋂

α∈∆\I
kerα)

Since the simple roots ∆(p, aP) restrict to the simple roots ∆(pI , aI), we obtain
inclusions AP,Q × AQ ⊂ AP. If oQ ∈ AQ denotes the origin, these inclusions
combine to give a disjoint decomposition

AP =
⋃
·

Q⊃P
AP,Q × oQ

of the corner AP into the corner point (for Q = P), the boundary edges, the boundary
faces, . . . , the boundary hyperfaces and the interior (for Q = G). In the coordinates
e(Q) = NP ×AP′ ×XP as in (2.12), the group AP′ can be identified with the group
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AP,Q [15, Lemma III.9.7, p. 330]. It follows that the subset NP ×AP,Q × oQ ×XP

in NP ×AP ×XP can be identified with e(Q) and hence

(2.18) e(P) ∼= NP ×AP ×XP

has the structure of a real analytic manifold with corners. For a proof that the
involved topologies match, we refer to [15, Lemmas III.9.8–10, pp. 330–332]. The
manifold e(P) is called the corner in X corresponding to the rational parabolic

subgroup P. The corners e(P) are open. With their help neighborhood bases of

boundary points in X can be described [15, Lemma III.9.13, p. 332]. These demon-
strate that X is a Hausdorff space [15, Proposition III.9.14, p. 333]. The corners
e(P) form an open cover of the bordification X. One verifies that their analytic

structures are compatible to conclude the following result [15, Proposition III.9.16,
p. 335].

Proposition 2.19. The bordification X has a canonical structure of a real analytic
manifold with corners.

Corollary 2.20. The bordification X is contractible.

Proof. According to [17, Appendix] the corners of X can be smoothened to endow
X with the structure of a smooth manifold with boundary. The collar neighborhood
theorem thus implies that X is homotopy equivalent to its interior. The interior X
is contractible as we have already remarked in Section 1. �

Another corollary of Proposition 2.19 together with Proposition 2.15 is that the
closures of boundary components e(P) are real analytic manifolds with corners as

well. In fact, the inclusion e(P) ⊂ X realizes e(P) as a submanifold with corners of
X. Note that topologically a manifold with corners is just a manifold with boundary.
We conclude this section with the observation that

(2.21) e(P) ∩ e(Q) = e(P ∩Q)

if P ∩Q is rational parabolic. Otherwise the intersection is empty. Dually,

e(P) ∩ e(Q) = e(R)

where now R denotes the smallest rational parabolic subgroup of G that contains
both P and Q. If R = G, the intersection equals X.

4. Quotients

We extend the action of G(Q) on X to an action on X. Given g ∈ G(Q) and a
rational parabolic subgroup P, let k ∈ K, n ∈ NP , a ∈ AP and m ∈MP such that
g = kman. Note that we have swapped m and n compared to the order in the
rational Langlands decomposition in Definition 2.4. This ensures that a and n are
unique. In contrast, the elements k and m can be altered from right and left by
mutually inverse elements in KP . Their product km is however well-defined. We
therefore obtain a well-defined map g. : e(P)→ e(kP) setting

(2.22) g.(n0,m0KP ) = (kma(nn0), k(mm0)KkP ).

Using the convergence class of sequences, one checks easily that this defines a
continuous and in fact a real analytic action of G(Q) on X which extends the action
on X [15, Propositions III.9.15–16, pp. 333–335]. The restricted action of Γ ⊂ G(Q)
is proper [15, Proposition III.9.17, p. 336] and thus free because Γ is torsion-free.
The quotient Γ\X is therefore Hausdorff and in fact a real analytic manifold with
corners. It is called the Borel–Serre compactification of the locally symmetric space
Γ\X in view of the following result.
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Theorem 2.23. The real analytic manifold with corners Γ\X is compact.

By Corollary 2.20 the Borel–Serre compactification Γ\X is a classifying space
for Γ. It is therefore of key importance that it is compact. So let us briefly comment
on the proof [15, Theorem III.9.18, p. 337].

Proof. For t > 0 let AP,t = {a ∈ AP : aα > t for each α ∈ ∆(p, aP)}. For any two
bounded sets U ⊂ NP and V ⊂ XP, the subset

SP,U,t,V = U ×AP,t × V
of NP ×AP ×XP = X is called a Siegel set of X associated with P. According to
Proposition 2.11 there is a finite system P1, . . . ,Pr of Γ-representatives of rational
parabolic subgroups. It follows from [10, Théorème 15.5, p. 104] that there are
associated Siegel sets U1 × AP1,t1 ×W1, . . . , Ur × APr,tr ×Wr which project to a
cover of Γ\X. We can assume that the sets Ui and Wi are compact. The sets
APi,ti have compact closure APi,ti in APi . In view of (2.18) the closures of the

Siegel sets within X are given by Ui × AP,ti ×Wi and thus are compact. The

Γ-translates of the compact sets Ui ×AP,ti ×Wi are closed because Γ acts properly

discontinuously. Since X ⊂ X is dense, they cover X. Therefore the projections of
the sets Ui ×AP,ti ×Wi form a finite cover of Γ\X by compact sets. �

The subgroup ΓP = Γ ∩NG(P ) of Γ leaves e(P) invariant. Let us denote the
quotient by e′(P) = ΓP \e(P). Since g.e(P) ∩ e(P) = ∅ for every g ∈ Γ that does
not lie in ΓP , we have the following disjoint decomposition of the quotient Γ\X
[15, Proposition III.9.20, p. 337].

Proposition 2.24. Let P1, . . . ,Pr be a system of representatives of Γ-conjugacy
classes of rational parabolic subgroups in G. Then

Γ\X =
r⋃
·
i=1

e′(Pi).

Example 2.25. In the setting of Example 2.13 let Γ ⊂ SL(2,Q) be any torsion-
free arithmetic subgroup. The quotient e′(P) = ΓP \e(P) is homeomorphic to the
circle S1. The locally symmetric space Γ\X is a hyperbolic surface and has finitely
many ends or hyperbolic cusps. From Proposition 2.24 we see that one obtains its
Borel–Serre compactification Γ\X by adding one circle e′(P) at the infinity of each
of the hyperbolic cusps.

The closure of e′(P) in Γ\X is compact and has the decomposition

(2.26) e′(P) =
⋃
·

Q⊂P
e′(Q).

This follows from the compatibilities e′(P) = ν(e(P)) and e′(P) = ν(e(P)) and from
(2.16) where ν : X → Γ\X denotes the canonical projection [17, Proposition 9.4,

p. 476]. By (2.16) and the remarks preceding Proposition 2.24 we see that e′(P) =

ν(e(P)) also equals ΓP \e(P). We will examine this latter quotient.
Let ΓNP = Γ ∩NP . The rational Langlands decomposition 2.4 defines a projec-

tion P → MP. Let ΓMP
be the image of ΓP under this projection. Equivalently,

ΓMP
is the canonical lifting under π of the group Γ′MP

defined on p. 12, see [14, Propo-
sition 2.6, p. 272]. We should however not conceal a word of warning. The lift
Γ′MP

→ ΓMP
does not necessarily split the exact sequence

1 −→ ΓNP −→ ΓP −→ Γ′MP
−→ 1,

not even if the suppressed base point was rational for P. By [14, Propositions 2.6
and 2.8, p. 272] we have ΓP ⊂ NPΓMP

= NPΓP . We analyze how the action of ΓP
on e(P) behaves regarding the decomposition e(P) = NP ×XP of Proposition 2.15.
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Proposition 2.27. Let p ∈ ΓP and let p = mn be its unique decomposition with
m ∈ ΓMP

and n ∈ NP . Let (n0, x) ∈ NP ×XP = e(P). Then

p.(n0, x) = (m(nn0),m.x).

Proof. There is a unique rational parabolic subgroup Q ⊂ P and there are unique
elements n′0 ∈ NQ′ and m′0 ∈MQ′ such that

x = (n′0,m
′
0KQ′) ∈ NQ′ ×XQ′ = e(Q′) ⊂ XP.

We decompose m ∈ MP as m = km′a′n′ with k ∈ KP , m′ ∈ MQ′ , a
′ ∈ AQ′

and n′ ∈ NQ′ . By (2.17) we have NP × e(Q′) = e(Q) = NQ × XQ and under
this identification our element (n0, x) corresponds to (n0n

′
0,m

′
0KQ). We have

p = km′a′(n′n) with m′ ∈ MQ′ = MQ, a′ ∈ AQ′ ⊂ AQ and n′n ∈ NQ. According
to (2.22) the element p therefore acts as

p.(n0n
′
0,m

′
0KQ) = (km

′a′(n′nn0n
′
0), k(m′m′0)KkQ).

For the left-hand factor we compute

km′a′(n′nn0n
′
0) = km′a′(n

′
(nn0)n′n′0) = km′a′n′(nn0) km

′a′(n′n′0) =

= m(nn0) km
′a′(n′n′0).

Transforming back from NQ ×XQ to NP × e(Q′) we therefore obtain

p.(n0, x) = (m(nn0), (km
′a′(n′n′0), k(m′m′0)KkQ)) = (m(nn0),m.x). �

If Γ is neat, then Proposition 2.27 makes explicit that we have a commutative
diagram

e(P) //

��

ΓP \e(P)

��
XP

// ΓMP
\XP

of bundle maps of manifolds with corners. The bundle structure of ΓP \e(P) will
later be of particular interest.

Theorem 2.28. Suppose that Γ ⊂ G(Q) is a neat arithmetic subgroup. Then

the manifold with corners e′(P) = ΓP \e(P) has the structure of a real analytic
fiber bundle over the manifold with corners ΓMP

\XP with the compact nilmanifold
ΓNP \NP as typical fiber.

Also for later purposes we remark that the Borel–Serre compactification Γ\X
clearly has a finite CW-structure such that the closed submanifolds e′(P) are
subcomplexes. The bordification X is a regular covering of this finite CW complex
with deck transformation group Γ, in other words a finite free Γ-CW complex in
the sense of [105, Section II.1, p. 98]. In the sequel we want to assume that X is
endowed with this Γ-CW structure as soon as a torsion-free arithmetic subgroup
Γ ⊂ G(Q) is specified. Then Corollary 2.20 and Theorem 2.23 say in more abstract
terms that the bordification X is a cofinite classifying space EΓ. In fact, something
better is true. The bordification is a model for the classifying space EΓ for proper
group actions for every general, not necessarily torsion-free, arithmetic subgroup
Γ ⊂ G(Q). This means every isotropy group is finite and for every finite subgroup

Λ ⊂ Γ the fix point set X
Λ

is contractible (and in particular nonempty). This
was pointed out in [1, Remark 5.8, p. 546] and L. Ji thereafter supplied a proof in
[52, Theorem 3.2, p. 520].
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5. Nonarithmetic lattices

The Q-structure of the group G is crucial for the construction of the Borel–Serre
bordification X because requiring parabolic subgroups to be rational specifies a
countable subcollection of all R-parabolic subgroups of G which are supposed to
determine boundary components. The price to pay is that only the action of rational
points g ∈ G(Q) can naturally be extended to the boundary because conjugates
gP of rational parabolic subgroups P have to be rational again. Therefore the
Borel–Serre bordification X only permits a natural action by arithmetic subgroups
Γ ⊂ G(Q). We will recall in Corollary 4.4 that for the geometer interested in lattices
in semisimple Lie groups, this is unproblematic as long as the group has real rank
at least two. However, honestly nonarithmetic lattices are known to exist in the
rank one simple Lie groups SO0(n, 1) for all n ≥ 2 and in SU(n, 1) at least if n ≤ 3.
So in the rank one case one should look for a different type of bordification.

Such a bordification has been suggested by H. Kang [56]. The idea is to imitate
the construction of the Borel–Serre compactification in its essential ideas but to work
with real Langlands and real horospherical decompositions instead of the rational
ones. The central point is to find an additional geometric condition that distinguishes
a countable set of real parabolic subgroups whose boundary components still cover
all directions to infinity of the locally symmetric space. To make this more precise,
let G be a connected semisimple linear Lie group. As usual K ⊂ G denotes a
maximal compact subgroup and X = G/K is the associated symmetric space. By
[110, Theorem 3.37, p. 38] there is a connected semisimple linear algebraic R-group
G such that G(R)0 = G. A real parabolic subgroup P ⊂ G is an R-subgroup
such that G/P is a complete (equivalently projective) variety. In that case we call
P = P(R)0 a parabolic subgroup of G. Proposition 2.2 is in fact stated for real
parabolic subgroups P ⊂ G in [17, Proposition 1.8, p. 444]. We thus obtain the real
Langlands decomposition and associated real horospherical decomposition

P = NP ×AP ×MP and X = NP ×AP ×XP

working over the field R instead of Q. If P happens to be a rational parabolic
subgroup, then real and rational decompositions agree if and only if rankR(G) =
rankQ(G) [15, Remark III.1.12, p. 274]. Now let rankR(G) = 1. Similar to the
Borel–Serre bordification, we define as boundary component e(P ) = NP × XP .
Since every proper parabolic subgroup P ⊂ G is minimal (and maximal), we have
MP ⊂ K, as can be seen from the description of the Lie algebra of P in terms
of restricted roots [15, Section I.1.3, p. 30]. Therefore in fact e(P ) = NP if P is
proper, and e(G) = X for the improper parabolic subgroup G. Let Γ ⊂ G be a
lattice. Motivated by the “rational boundary components” in [5] we will say that a
parabolic subgroup P ⊂ G is geometrically rational with respect to Γ if Γ ∩NP is a
lattice in NP . Note that lattices in nilpotent Lie groups are always uniform. Let
∆Γ be the set of geometrically rational parabolic subgroups of G. Trivially G ∈ ∆Γ.
As a set, Kang’s compactification is given by

XΓ =
∐

P∈∆Γ

e(P ).

The topology on XΓ is defined by a convergence class of sequences just like it was
done for the Borel–Serre bordification. The action of Γ on XΓ can likewise be defined
using horospherical coordinates. It is proper and cocompact. The bordification
XΓ is a smooth manifold with boundary ∂XΓ =

∐
P(G e(P ) and with interior X.

Again it follows that it is contractible, thus a cofinite EΓ if Γ is torsion-free. As the
main result of his thesis Kang proves that in fact XΓ has the structure of a finite
Γ-CW complex and is a model for the classifying space for proper Γ-actions EΓ.



CHAPTER 3

L2-invariants

In this chapter we review L2-Betti numbers, Novikov–Shubin invariants and L2-
torsion of CW complexes and Riemannian manifolds with group actions following [67,
Chapters 1–3]. The outline of sections is as follows. We introduce the three invariants
abstractly in terms of spectral density functions of morphisms of Hilbert N (Γ)-
modules in Section 1. Section 2 applies this theory to the Laplacians of the L2-chain
complex of a finite free Γ-CW complex. This gives the cellular or topological versions
of L2-invariants. We list convenient properties that facilitate their computation.
In Section 3 we replace the cellular Laplacians by the form Laplacians of a free
proper cocompact Riemannian Γ-manifold. This yields the analytic L2-invariants.
In the case of L2-torsion one has to cope with some complications as we discuss
in detail. We cite a theorem which says that the analytic invariants equal their
cellular counterparts on a free proper cocompact Riemannian Γ-manifold with
equivariant triangulation. If the Riemannian manifold is a symmetric space, analytic
L2-invariants can be defined if Γ only acts with a finite-volume quotient. The
resulting values have been computed explicitly as we will recall.

1. Hilbert modules and spectral density functions

Let Γ be a discrete countable group. It acts unitarily from the left on the Hilbert space
`2Γ of square-integrable functions Γ→ C. This Hilbert space has a distinguished
vector e ∈ Γ ⊂ `2Γ. The Γ-equivariant bounded operators N (Γ) = B(`2Γ)Γ form a
weakly closed unital ∗-subalgebra of B(`2Γ) called the group von Neumann algebra
of Γ. Let V be a Hilbert space with isometric left Γ-action. We call V a Hilbert
N (Γ)-module if there is a Hilbert space H such that V embeds Γ-equivariantly and
isometrically into H ⊗ `2Γ. A Hilbert N (Γ)-module V is called finitely generated if
H can be chosen finite-dimensional. Homomorphisms of N (Γ)-Hilbert modules are
Γ-equivariant bounded operators. An orthonormal basis {ξi} of H defines the von
Neumann trace on the set of positive endomorphisms H ⊗ `2Γ→ H ⊗ `2Γ setting
trN (Γ)(f) =

∑
i〈f(ξi ⊗ e), ξi ⊗ e〉 ∈ [0,∞]. It is independent of the basis {ξi}. By

means of an embedding any Hilbert N (Γ)-module V inherits its own unique von
Neumann trace from this construction. Define the von Neumann dimension of V
by dimN (Γ)(V ) = trN (Γ)(idV ).

Now let f : dom(f) ⊂ U → V be a possibly unbounded closed densely de-
fined Γ-equivariant operator of Hilbert N (Γ)-modules. The selfadjoint operator

f∗f : dom(f∗f) ⊂ U → U defines a family {Ef
∗f
λ } of Γ-equivariant spectral projec-

tions.

Definition 3.1. The spectral density function of f is the monotone non-decreasing
right continuous function F (f) : [0,∞)→ [0,∞] given by

F (f)(λ) = dimN (Γ)(im(Ef
∗f
λ2 )).

In all what follows let us assume that f is a Fredholm operator which means
that there is λ > 0 such that F (λ) < ∞. This is automatic if U has finite von
Neumann dimension.

21
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Definition 3.2. The L2-Betti number of f is given by

b(2)(f) = F (f)(0) ∈ [0,∞).

Thus the L2-Betti number of f is the von Neumann dimension of the Hilbert
N (Γ)-module ker(f).

Definition 3.3. The Novikov–Shubin invariant of f is given by

α(f) = lim inf
λ→0+

log(F (f)(λ)− F (f)(0))

log(λ)
∈ [0,∞]

unless F (f)(ε) = b(2)(f) for some ε > 0 in which case we set α(f) =∞+.

The Novikov–Shubin invariant measures how slowly the density function grows
in a neighborhood of zero. The fractional expression is so chosen that we obtain
α(f) = k if the spectral density function happens to be a polynomial with highest
order k. For the case that F (f) is constant in a neighborhood of zero, we have
introduced the formal symbol α(f) =∞+ and we decree r <∞ <∞+ for all r ∈ R.
The value α(f) =∞+ thus indicates a spectral gap at zero.

Let us now restrict to the case that f : U → V is a morphism of Hilbert
N (Γ)-modules whose von Neumann dimensions are finite. Recall that the spectral
density function F = F (f) determines a Lebesgue-Stieltjes measure dF on the Borel
measure space [0,∞).

Definition 3.4. The Fuglede–Kadison determinant of f is given by

detN (Γ)(f) = exp

(∫ ∞
0+

log(λ)dF (λ)

)
∈ [0,∞).

We agree that this definition shall not exclude the possibility of the diverging
integral

∫∞
0+ log(λ)dF (λ) = −∞ in which case detN (Γ)(f) = 0. We call f of

determinant class if
∫∞

0+ log(λ)dF (λ) > −∞. The symbol 0+ means that we exclude
zero and integrate over the measure subspace (0,∞). If for instance Γ is finite, we

obtain detN (Γ)(f) = (
∏r
i=1 λi)

1
2|Γ| with the positive eigenvalues λ1, . . . , λr of the

positive endomorphism f∗f . In case f is invertible this is just the |Γ|-th root of the
ordinary determinant of |f | =

√
f∗f . Now let {fp} = {fp}∞p=0 be a whole family of

determinant class morphisms fp : U → V such that fp = 0 for almost all p.

Definition 3.5. The L2-torsion of {fp} is given by

ρ(2)({fp}) = −1

2

∑
p

(−1)p p log(detN (Γ)(fp)) ∈ R.

We see that the three abstract L2-invariants of {fp} absorb more and more
spectral information. The p-th L2-Betti number is the value of the spectral density
function of fp at zero. The p-th Novikov–Shubin invariant describes the growth
behavior of the spectral density function of fp in a neighborhood of zero. Finally
the abstract L2-torsion depends on the full spectral density function of each fp.

2. Cellular L2-invariants

Let X be a finite free Γ-CW-complex in the sense of [105, Section II.1, p. 98].
Equivalently, X is a Galois covering of a finite CW-complex with deck transformation
group Γ. Let C∗(X) be the cellular ZΓ-chain complex. The L2-chain complex

C
(2)
∗ (X) = `2Γ ⊗ZΓ C∗(X) is a finite chain complex of finitely generated Hilbert

N (Γ)-modules whose differentials cp : C
(2)
p (X)→ C

(2)
p−1(X) are Fredholm operators

induced from the differentials in C∗(X). These define the p-th Laplace operator

∆p : C
(2)
p (X) → C

(2)
p (X) given by ∆p = cp+1c

∗
p+1 + c∗pcp. We say that X is of

determinant class if ∆p (equivalently cp) is of determinant class for all p ≥ 0.
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Definition 3.6 (Cellular L2-invariants).

(i) The p-th L2-Betti number of X is given by b
(2)
p (X;N (Γ)) = b(2)(∆p).

(ii) The p-th Novikov–Shubin invariant of X is given by α̃p(X;N (Γ)) = α(∆p).

(iii) Assume that b
(2)
p (X) = 0 for all p ≥ 0 and that X is of determinant class.

Then the L2-torsion of X is given by ρ(2)(X;N (Γ)) = ρ(2)({∆p}).
In what follows we will say that X is det-L2-acyclic if it satisfies the conditions

in (iii). Moreover, we will frequently suppress N (Γ) from our notation.

Remark 3.7.

(i) By [67, Lemma 1.18, p. 24] we get alternatively b
(2)
p (X) = dimN (Γ)(H

(2)
p (X))

where the N (Γ)-module H
(2)
p (X) = ker cp/ im cp+1 is called the p-th reduced

L2-homology of X.
(ii) For many purposes it seems to be more convenient to work with a finer version

of Novikov–Shubin invariants defined as αp(X) = α(cp|im(cp+1)⊥). We gain

back the above version by the formula α̃p(X) = 1
2 min{αp(X), αp+1(X)}.

(iii) The assumption that all L2-Betti numbers of X vanish, in other words that
X is L2-acyclic, will make sure that ρ(2) is a homotopy invariant, at least
if Γ lies within a large class of groups G that notably contains all residually
finite groups [102]. In this reference it is also shown that the determinant
conjecture holds for the class G. This conjecture does not only state that
X is of determinant class but makes the even stronger assertion that Γ is of
det ≥ 1-class. This means that any A ∈ M(m,n,ZΓ) induces a morphism

r
(2)
A : (`2Γ)m → (`2Γ)n with detN (Γ)(r

(2)
A ) ≥ 1. For our later purpose, it will be

enough to know that lattices in connected semisimple linear Lie groups belong
to G. This follows because they are finitely generated [110, Theorem 4.58,
p. 62], thus residually finite by an old theorem of A. Malcev [74].

(iv) A finite free Γ-CW-pair (X,A) defines a relative L2-chain complex C
(2)
∗ (X,A).

Its Laplacians define the relative L2-invariants b
(2)
p (X,A), αp(X,A) and also

ρ(2)(X,A) provided (X,A) is det-L2-acyclic.

We will use the standard terminology that a group virtually has a property P if
some finite-index subgroup has the property P .

Theorem 3.8 (Selected properties of cellular L2-invariants).

(i) Homotopy invariance. Let f : X → Y be a weak Γ-homotopy equivalence
of finite free Γ-CW-complexes. Then

b(2)
p (X) = b(2)

p (Y ) and αp(X) = αp(Y ) for all p ≥ 0.

Suppose that X or Y is L2-acyclic and that Γ ∈ G. Then

ρ(2)(X) = ρ(2)(Y ).

(ii) Poincaré duality. Let the Γ-CW-pair (X, ∂X) be an equivariant triangulation
of a free proper cocompact orientable Γ-manifold of dimension n with possibly
empty boundary. Then

b(2)
p (X) = b

(2)
n−p(X, ∂X) and αp(X) = αn+1−p(X, ∂X).

Suppose X is det-L2-acyclic. Then so is (X, ∂X) and

ρ(2)(X) = (−1)n+1ρ(2)(X, ∂X).

Thus ρ(2)(X) = 0 if the manifold is even-dimensional and has empty boundary.
(iii) First Novikov–Shubin invariant. Let X be a connected free finite Γ-CW

complex. Then the group Γ is finitely generated and it determines α1(X).
More precisely
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(a) α1(X) < ∞ if and only if Γ is virtually nilpotent. In that case α1(X)
equals the growth rate of Γ.

(b) α1(X) =∞ if and only if Γ is amenable but not virtually nilpotent.
(c) α1(X) =∞+ if and only if Γ is finite or is not amenable.

(iv) Euler characteristic and fiber bundles. Let X be a connected finite CW-
complex. Then the classical Euler characteristic χ(X) can be computed as

χ(X) =
∑
p≥0

(−1)p b(2)
p (X̃).

Let F → E → B be a fiber bundle of connected finite CW-complexes. Assume
that the inclusion Fb → E of one (then every) fiber induces an injection of

fundamental groups. Suppose that F̃b is det-L2-acyclic. Then so is Ẽ and

ρ(2)(Ẽ) = χ(B) · ρ(2)(F̃ ).

(v) Aspherical CW-complexes and elementary amenable groups. Let X
be a finite CW-complex with contractible universal covering. Suppose that
Γ = π1(X) is of det ≥ 1-class and contains an elementary amenable infinite
normal subgroup. Then

b(2)
p (X̃) = 0 for p ≥ 0, αp(X̃) ≥ 1 for p ≥ 1 and ρ(2)(X̃) = 0.

The proofs are given in [67, Theorem 1.35, p. 37, Theorem 2.55 p. 97, The-
orem 3.93, p. 161, Corollary 3.103, p. 166, Theorem 3.113, p. 172, Lemma 13.6,

p. 456]. The assertion ρ(2)(X̃) = 0 in (v) is due to C. Wegner [109] who has recently
given a slight generalization in [108]. For a survey on amenable and elementary
amenable groups see [67, Section 6.4.1, p. 256]. What lies behind these properties
is that to some extent, homological algebra can be developed for Hilbert N (Γ)-
modules. J. Cheeger and M. Gromov pioneered this idea to conclude information on
L2-Betti numbers [27, Section 2]. Subsequently, consequences for Novikov–Shubin
invariants and L2-torsion have been examined by J. Lott–W. Lück [65] and by
W. Lück–M. Rothenberg [70]. We will give a short account of this theory in the next
theorem.

Let C∗ be a finite chain complex of finitely generated Hilbert N (Γ)-modules.
As in Remark 3.7 (i) we define the p-th reduced L2-homology of the chain complex

C∗ as H
(2)
p (C∗) = ker cp/ im cp+1. Let {∆p} be the Laplacians of C∗. We set

b
(2)
p (C∗) = b(2)(∆p), α̃p(C∗) = α(∆p) and αp(C∗) = α(cp|im(cp+1)⊥). We call

C∗ L
2-acyclic if b

(2)
∗ (C∗) = 0 and of determinant class if ∆p is of determinant

class for every p. If C∗ is of determinant class, we set ρ(2)(C∗) = ρ(2)({∆p}). A

sequence of Hilbert N (Γ)-modules U
i→ V

p→ W is called exact if ker p = im i

and weakly exact if ker p = im i. A morphism U
f→ V of Hilbert N (Γ)-modules

is called a weak isomorphism if 0 → U
f→ V → 0 is weakly exact. In that case

dimN (Γ) U = dimN (Γ) V .

Theorem 3.9 (L2-invariants and short exact sequences). Consider the short exact

sequence 0 → C∗
i∗→ D∗

j∗→ E∗ → 0 of finitely generated Hilbert N (Γ)-chain
complexes.

(i) We have a long weakly exact homology sequence

· · ·
H

(2)
p+1(j∗)
−→ H

(2)
p+1(E∗)

∂p+1−→ H(2)
p (C∗)

H(2)
p (i∗)−→ H(2)

p (D∗)
H(2)
p (j∗)−→ H(2)

p (E∗)
∂p−→ · · ·
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(ii) We have the inequalities

1

αp(D∗)
≤ 1

αp(C∗)
+

1

αp(E∗)
+

1

α(∂p)
,

1

αp(E∗)
≤ 1

αp−1(C∗)
+

1

αp(D∗)
+

1

α(H
(2)
p−1(i∗))

,

1

αp(C∗)
≤ 1

αp(D∗)
+

1

αp+1(E∗)
+

1

α(H
(2)
p (j∗))

.

(iii) Suppose that C∗, D∗ and E∗ are L2-acyclic and that two of them are of
determinant class. Then all three are of determinant class and if additionally
detN (Γ)(i∗) = detN (Γ)(j∗), then

ρ(2)(D∗) = ρ(2)(C∗) + ρ(2)(E∗).

In (ii) some straightforward rules [67, Notation 2.10, p. 76] are understood to
make sense of these inequalities when a Novikov–Shubin invariant takes one of the
values 0, ∞ or ∞+. We briefly discuss three further conclusions which will be of
particular importance for our later applications.

Lemma 3.10. Let the Γ-CW-pair (X, ∂X) be an equivariant triangulation of a free
proper cocompact orientable L2-acyclic Γ-manifold. Then for each p ≥ 1

1
2 min{αp(X), αn−p(X)} ≤ αp(∂X).

Proof. We apply the last inequality of Theorem 3.9 (ii) to the sequence of the pair

(X, ∂X). As b
(2)
p (X) = 0, we have αp(H

(2)
p (j∗)) =∞+ so that

1

αp(∂X)
≤ 1

αp(X)
+

1

αp+1(X, ∂X)
.

The lemma follows because αp+1(X, ∂X) = αn−p(X) by Theorem 3.8 (ii). �

Note that the lemma yields α̃q(X) ≤ αq(∂X) if dimX = 2q + 1 or dimX = 2q.
In the latter case it gives in fact more precisely αq(X) ≤ 2αq(∂X).

Lemma 3.11. Let the Γ-CW-pair (X, ∂X) be an equivariant triangulation of a
free proper cocompact orientable Γ-manifold of even dimension. Assume X is
det-L2-acyclic. Then so is ∂X and

ρ(2)(X) = 1
2ρ

(2)(∂X).

Proof. See [67, Exercise 3.23, p. 209]. Theorem 3.8 (ii) says the pair (X, ∂X) is
det-L2-acyclic and ρ(2)(X, ∂X) = (−1)n+1ρ(2)(X). By Theorem 3.9 (i) the boundary
∂X is L2-acyclic. Applying Theorem 3.9 (iii) we conclude that ∂X is of determinant
class and ρ(2)(X) = ρ(2)(∂X) + ρ(2)(X, ∂X). �

Lemma 3.12. Consider the pushout of finite free Γ-CW complexes

X0
j2 //

j1

��

X2

��
X1

// X

where j1 is an inclusion of a Γ-subcomplex, j2 is cellular and X carries the induced
Γ-CW-structure. Assume that Xi is det-L2-acyclic for i = 0, 1, 2. Then so is X and

ρ(2)(X) = ρ(2)(X1) + ρ(2)(X2)− ρ(2)(X0).
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Proof. See [67, Theorem 3.93(2), p. 161]. The pushout is cellular in the sense
of [66, Definition 3.11, p. 41]. Therefore we obtain a short exact Mayer-Vietoris
sequence of finitely generated Hilbert N (Γ)-chain complexes

0→ C
(2)
∗ (X0)→ C

(2)
∗ (X1)⊕ C(2)

∗ (X2)→ C
(2)
∗ (X)→ 0.

Theorem 3.9, (i) and (iii) imply the lemma. �

We conclude this section with the remark that L2-invariants, being homotopy
invariants by Theorem 3.8 (i), yield invariants for groups whose classifying spaces

have a finite CW-model BΓ. For this purpose we set b
(2)
p (Γ) = b

(2)
p (EΓ;N (Γ))

as well as αp(Γ) = αp(EΓ;N (Γ)). We say that Γ is det-L2-acyclic if EΓ is, and

set ρ(2)(Γ) = ρ(2)(EΓ;N (Γ)) in that case. In fact, L2-Betti numbers have been
generalized to arbitrary Γ-spaces and thus to arbitrary groups [28, 68]. Novikov–
Shubin invariants can likewise be defined for general groups [69]. So we shall allow

ourselves to talk about b
(2)
p (Γ), αp(Γ) and α̃p(Γ) for any countable discrete group Γ.

Only for the L2-torsion such a generalization has not (yet) been given.

3. Analytic L2-invariants

Let M be a cocompact free proper Riemannian Γ-manifold of dimension n without
boundary. Our main example is any Galois covering of a closed connected Riemann-
ian n-manifold with deck transformation group Γ. Consider the pre-Hilbert space
Ωp
c(M) of compactly supported p-forms associated with the complexified tangent

bundle TM ⊗R C. On this space Γ acts isometrically by pulling back forms. Using
a fundamental domain of the Γ-action on M one can construct a Γ-equivariant
isomorphism of the L2-completion L2Ωp(M) of Ωp

c(M) and `2Γ ⊗ L2Ωp(Γ\M)
[4, pp. 57 and 65]. Therefore L2Ωp(M) is endowed with the structure of a Hilbert
N (Γ)-module. The de Rham differential dp : Ωp

c(M) → L2Ωp+1(M) has the ad-
joint δp : Ωpc(M)→ L2Ωp−1(M). The Laplacian ∆p : Ωpc(M)→ L2Ωp(M) given by
∆p = dp−1δp + δp+1dp is a densely defined Γ-equivariant unbounded operator. Let
∆a
p be its minimal closure [67, p. 55] which in fact equals the maximal closure accord-

ing to [4, Proposition 3.1, p. 53]. Similarly let dpmin be the minimal closure of dp with

domain dom(dpmin) and let dp⊥min be the restriction of dpmin to dom(dpmin)∩ im(dp−1
min )⊥.

The spectral density functions F (∆a
p) and F (dp⊥min) have only finite values so that

∆a
p and dp⊥min are Fredholm [67, Lemma 2.66(1), p. 104].

Definition 3.13 (Analytic L2-Betti numbers and Novikov–Shubin invariants).

(i) The p-th analytic L2-Betti number of M is given by b
(2a)
p (M) = b(2)(∆a

p).

(ii) The p-th analytic Novikov–Shubin invariant of M is α̃
(a)
p (M) = α(∆a

p).

Let us also define the refined analytic Novikov–Shubin invariant α
(a)
p (M) =

α(dp−1⊥
min ). We obtain α̃

(a)
p (M) = 1

2 min{α(a)
p (M), α

(a)
p+1(M)} [67, Lemma 2.66(2),

p. 104]. Of course one would like to define the analytic L2-torsion by setting
ρ(2a)(M) = ρ(2)({∆a

p}). While this is essentially what it will be, we need to find a
replacement for the Fuglede–Kadison determinant detN (G)(∆p) in Definition 3.5
which we have only defined for morphisms of Hilbert N (Γ)-modules with finite
von Neumann dimension. A similar problem does already occur when one tries to
find the analytic counterpart to the classical Reidemeister torsion of M . Following
[67, Sections 3.1.3 and 3.5.1, pp. 123, 178], we review how to resolve the issue in
that case because this will guide us to the definition of analytic L2-torsion. The
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Reidemeister torsion is given by

ρ(M ;V ) = −1

2

∑
p≥0

(−1)p p log(detR(∆p)) ∈ R

if we require additionally that M is acyclic. Here ∆p : V ⊗ZΓCp(X)→ V ⊗ZΓCp(X)
is the cellular Laplacian, where X is a smooth equivariant triangulation X →M and
V is a fixed finite-dimensional orthogonal Γ-representation. Now one would like to
replace the cellular Laplacian with the form Laplacian ∆p : Ωp(M ;V )→ Ωp(M ;V )
but one has to cope with what the determinant of a positive automorphism of infinite-
dimensional vector spaces should be. To this end we observe that if λ1, . . . , λr are
the eigenvalues of the cellular Laplacian ∆p, listed according to their multiplicities,
then

log(detR(∆p)) = − d

ds

∣∣∣∣
s=0

(
r∑
i=1

λ−si

)
.

Therefore let us set ζp(s) =
∑
λ>0 λ

−s, summing over all positive eigenvalues of the
form Laplacian ∆p : Ωp(M ;V )→ Ωp(M ;V ). The eigenvalues grow fast enough to
ensure that the series converges to define a holomorphic function for Re(s) > n

2 . It
has a meromorphic extension to the whole complex plain without pole in zero. We
define the analytic Reidemeister torsion or Ray–Singer torsion of M by

ρa(M ;V ) =
1

2

∑
p≥0

(−1)p p
d

ds

∣∣∣∣
s=0

ζp(s).

J. Cheeger [26] and W. Müller [81] independently proved the conjecture of D. B. Ray
and I. M. Singer [94, p. 151] that Ray–Singer torsion equals Reidemeister torsion. In
our L2-setting, the passage from the finite-dimensional orthogonal representation
V to the infinite-dimensional unitary representation `2Γ effects that the spectrum
of the Laplacian can no longer be assumed discrete. Nevertheless, we can use the
Γ-function Γ(s) =

∫∞
0
ts−1e−t dt to rewrite

(3.14) ζp(s) =
1

Γ(s)

∫ ∞
0

ts−1
∑
λ>0

e−λtdt.

The widespread use of the Γ-function throughout mathematics should prevent any
confusion with our notation “Γ” for the group acting on M . The sum

∑
λ>0 e

−λt

now has an obvious generalization to our L2-Laplacian. It is given by

(3.15) θ⊥p (t) =

∫ ∞
0

e−tλdF (λ)− b(2a)
p (M)

which is the Laplace transform θp(t) =
∫∞

0
e−tλdF (λ) of the spectral density function

F of ∆p : Ωp
c(M) → L2Ωp(M) subtracted by the p-th analytic L2-Betti number

of M because the eigenvalue zero was explicitly excluded in the sum. In order to
substitute the sum in (3.14) by (3.15) we have to discuss convergence of the integral
in (3.14). Fix ε > 0. For t → 0 one verifies again that 1

Γ(s)

∫ ε
0
ts−1θ⊥p dt defines a

holomorphic function for Re(s) > n
2 with meromorphic extension to C and no pole

in zero. The convergence for t→∞ is the problematic part. If αap(M) =∞+, then

θ⊥p decays exponentially, the integral converges and we can simplify

d

ds

∣∣∣∣
s=0

1

Γ(s)

∫ ∞
ε

ts−1θ⊥p (t)dt =

∫ ∞
ε

θ⊥p (t)

t
dt.

In the general case, however, we do not see any ad hoc reason why the small
eigenvalues of ∆p should ensure that θ⊥p decays fast enough to yield a convergent
integral. Instead, we introduce a bit of new terminology. We call M of analytic
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determinant class if
∫∞
ε

θ⊥p (t)

t dt < ∞ for p = 0, . . . , n and one (then all) ε > 0.
Finally, we are in the position to give the following definition.

Definition 3.16 (Analytic L2-torsion). Let M be of analytic determinant class.
Then the analytic L2-torsion of M is given by

ρ(2a)(M) =
1

2

∑
p≥0

(−1)p p

(
d

ds

∣∣∣∣
s=0

1

Γ(s)

∫ ε

0

ts−1θ⊥p (t)dt +

∫ ∞
ε

θ⊥p (t)

t
dt

)
.

Note that in the analytic picture we had no need to require that M were
analytically L2-acyclic. The Laplace transform θp(t) =

∫∞
0
e−tλdF (λ) is precisely

the von Neumann trace of the operator e−t∆
a
p defined by spectral calculus. According

to [4, Proposition 4.16, p. 63] this trace can be calculated as

θp(t) =

∫
F

trC(e−t∆
a
p (x, x))dvol

where F is a fundamental domain for the Γ-action on M and e−t∆
a
p(x, y) denotes

the heat kernel associated with ∆a
p. If M happens to be a homogeneous manifold,

for example a symmetric space, then trC(e−t∆
a
p (x, x)) is constant throughout x ∈M

whence ρ(2)(M) = C(M) vol(Γ\M) with a constant C(M) independent of Γ. This
is in fact only one special case of a way more general peculiarity of analytic L2-
invariants.

Theorem 3.17 (Proportionality principle). Given a simply connected Riemannian

manifold M , there are constants B
(2)
p (M), Ap(M) and T (2)(M) such that for every

free proper cocompact isometric action Γ yM (of analytic determinant class)

b(2a)
p (M ;N (Γ)) = B(2)

p (M) vol(Γ\M),

α(a)
p (M ;N (Γ)) = Ap(M),

ρ(2a)(M ;N (Γ)) = T (2)(M) vol(Γ\M).

The theorem is proven in [67, Theorem 3.183, p. 201]. For the relationship
between topological and analytic L2-invariants we obtain the best possible result.

Theorem 3.18 (Topological and analytic L2-invariants). Let M come equipped
with a finite equivariant Γ-triangulation. Then

b(2)
p (M) = b(2a)

p (M) and αp(M) = α(a)
p (M) for each p.

The Γ-CW-complex M is of determinant class if and only if the Riemannian manifold
M is of analytic determinant class. If so and if M is L2-acyclic, then

ρ(2)(M) = ρ(2a)(M).

The result is due to J. Dodziuk for the L2-Betti numbers [33], to A. V. Efremov
for the Novikov–Shubin invariants [35] and lastly to D. Burghelea, L. Friedlander,
T. Kappeler and P. McDonald for the L2-torsion [22]. This bridge theorem between
topological and analytical methods makes L2-invariants powerful because strong
properties such as homotopy invariance or proportionality are apparent in one
picture while arcane in the other.

One advantage of the analytic picture is that as soon as a simply connected
Riemannian manifold M has any cocompact action by isometries, the constants

B
(2)
p (M), Ap(M) and T (2)(M) are defined. We can then take Theorem 3.17 as the

definition of analytic L2-invariants for the Γ-manifold M if Γ only acts with finite
volume quotient and not necessary cocompactly. This applies in particular to the
case that M is a symmetric space of noncompact type, M = G/K for a semisimple
Lie group G with maximal compact subgroup K. Let g and k be the Lie algebras of
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G and K. Recall that the deficiency of G is given by δ(G) = rankC(gC)− rankC(kC).
We may assume G ⊂ GL(n,R) and obtain compact subgroups K ⊂ U ⊂ GL(n,C)
corresponding to k ⊂ u = k⊕ ip ⊂ gl(n,C). We call Md = U/K the dual symmetric
space of M of compact type. It inherits a unique Riemannian metric from M by
requiring that multiplication with “i” give an isometry TK(M)→ TK(Md).

Theorem 3.19 (L2-invariants of symmetric spaces). Let M = G/K be a symmetric
space of noncompact type and let m = δ(G) and n = dim(M).

(i) We have B
(2)
p (M) = 0 unless m = 0 and n = 2p in which case

B(2)
p (M) =

χ(Md)

vol(Md)
.

(ii) We have Ap(M) =∞+ unless m > 0 and p ∈ [n−m2 + 1, n+m
2 ] in which case

Ap(M) = m.

(iii) We have T (2)(M) = 0 unless m = 1 in which case M = X0×X1 is a product of
a symmetric space X0 = G0/K0 of noncompact type with δ(G0) = 0 and X1 =
Xp,q = SO0(p, q)/SO(p)×SO(q) with p, q odd or X1 = XSL = SL(3,R)/SO(3).

The constant is then given by T (2)(M) = (−1)
dim(X0)

2
χ(Xd0 )

vol(Xd0 )
T (2)(X1) with

T (2)(Xp,q) = (−1)
pq−1

2
χ(Xd

p−1,q−1)

vol(Xd
p,q)

πQp+q−1 or T (2)(XSL) =
2π

3 vol(Xd
SL)

where the Qk are certain positive rational numbers.

Part (i) can already be found in [12]. Parts (ii) and (iii) are due to M. Olbrich
[85] generalizing previous work of J. Lott [63] and E. Hess–T. Schick [49]. We note
that n−m (thus n+m) is always even and positive. It is of course a consequence
of the classical Cartan classification of symmetric spaces that δ(G) = 1 implies the
specific form of M described in (iii). To make sure that the formula for T (2)(Xp,q)
includes the case of hyperbolic space, let us moreover agree that Xp−1,q−1 and its
dual is a point if p = 1 or q = 1. The first few numbers Qk are Q3 = 1

3 , Q5 = 31
45 and

Q7 = 221
210 . There is an interesting yet unhandy general formula for Qk involving the

Weyl dimension polynomial for finite dimensional representations of compact Lie
groups [85, Proposition 5.3, p. 235]. If we assign the invariant metric to XSL which is
induced from the standard trace form on sl(3,R), we obtain vol(Xd

SL) = 4π3 whence

T (2)(XSL) = 1
6π2 [85, Proposition 1.4, p. 223]. The Killing form metric would in

turn give T (2)(M) = 1
66π2 .





CHAPTER 4

L2-invariants of lattices

This chapter brings together the two preceding ones. We will apply the cellular
definitions of L2-invariants to the Borel-Serre compactification and Kang’s com-
pactification for lattices in rank one groups in order to conclude the results on
L2-invariants of lattices in semisimple Lie groups as stated in the introduction.
The outline of sections is as follows. In Section 1 we will recall that a theorem of
D. Gaboriau reduces the computation of L2-Betti numbers of nonuniform lattices
to the well-known uniform case. Section 2 about Novikov-Shubin invariants begins
with a precise explanation how Margulis arithmeticity reduces the case of irreducible
lattices in higher rank groups to arithmetic subgroups of Q-groups. We then prove
Theorem 1.5 which gives an upper bound for the middle Novikov-Shubin invariant
in the case of positive fundamental rank and rational rank one. We illustrate the
Theorem in a concrete example. Then we turn to the rank one case where we
apply Kang’s bordification to prove Theorem 1.3 which gives an upper bound for
the middle Novikov-Shubin invariant of lattices in SO0(2n+ 1, 1). Lastly we prove
Theorem 1.4 which gives an upper bound for the Novikov-Shubin invariant of a
nonuniform lattice right below the top dimension. This disproves the idea that
cellular and analytic Novikov-Shubin invariants could also be equal for nonuniform
lattices. In Section 3 we prove the vanishing of (virtual) L2-torsion for lattices in
even deficiency groups. We make no assumption on the rational rank so that the full
structure theory of the Borel-Serre compactification will come into play. Section 4
on related results and problems concludes the chapter.

1. L2-Betti numbers

Let us recall the following definition due to M. Gromov [43, Section 0.5.E, p. 16].
We give it in the equivalent version that appears in [38, Definition 1.1, p. 1059]. A
Lebesgue measure space is a standard Borel space with a σ-finite measure.

Definition 4.1. Two countable groups Γ and Λ are called measure equivalent if
there exists an infinite Lebesgue measure space (Ω, µ) with commuting, free, measure
preserving actions of Γ and Λ such that both actions admit fundamental domains of
finite measure.

The space (Ω, µ) together with the actions of Γ and Λ is called a measure
coupling of Γ with Λ. If X ⊂ Ω and Y ⊂ Ω are fundamental domains of finite

measure for the actions of Γ and Λ respectively, then the ratio c = µ(X)
µ(Y ) > 0 is called

the index of the measure coupling. Scaling the translation action Z y R shows that
in general a pair of measure equivalent groups can have measure couplings with
varying indices. The standard example of measure equivalent groups are two lattices
Γ and Λ, uniform or not, in the same locally compact second countable group H.
Since H has lattices, it is unimodular so that it provides itself a measure coupling
with its Haar measure where Γ and Λ act by left and right multiplication.

31
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Theorem 4.2 (D. Gaboriau). Let Γ and Λ be two countable measure equivalent
groups with a measure coupling of index c. Then for all p ≥ 0

b(2)
p (Γ) = c · b(2)

p (Λ).

In fact Gaboriau defines L2-Betti numbers for (countable standard measure
preserving) Borel relations building on the theory of L2-cohomology for group
actions on general spaces developed by J. Cheeger and M. Gromov [28]. In case
the equivalence relation is induced by a free measure preserving action of Γ on a
standard Borel space (without atoms) these L2-Betti numbers equal the L2-Betti
numbers of Γ defined by Cheeger and Gromov. In this sense Gaboriau’s theorem is
a successful implementation of a third viewpoint on L2-invariants: measure theory.
Since any infinite amenable group is measure equivalent to Z [90, Theorem 6, p. 163],
the theorem shows that all L2-Betti numbers of infinite amenable groups vanish.

If G is a connected semisimple Lie group, then an invariant metric on the
symmetric space X = G/K fixes a Haar measure µX on G by requiring∫

G

f(g)dµX(g) =

∫
G/K

∫
K

f(gk)dν(k) dvol(gK)

for integrable functions f where the Haar measure ν on K is normalized to have
total measure ν(K) = 1. If Γ ⊂ G is a torsion-free lattice, then clearly µX(Γ\G) =
vol(Γ\X) for the induced invariant measure.

Theorem 1.1. Let G be a connected semisimple linear Lie group with symmetric
space X = G/K fixing the Haar measure µX . Then for each p ≥ 0 there is a

constant B
(2)
p (X) ≥ 0 such that for every lattice Γ ≤ G we have

b(2)
p (Γ) = B(2)

p (X)µX(Γ\G).

Moreover B
(2)
p (X) = 0 unless δ(G) = 0 and dimX = 2p, when B

(2)
p (X) = χ(Xd)

vol(Xd)
.

Proof. According to [9, Theorem C, p. 112] G possesses a uniform lattice Λ. By
Selberg’s Lemma [2] we may assume that Λ is torsion-free. Let A ⊂ G and B ⊂ G
be fundamental domains for the left and right actions of Γ and Λ respectively. If
B′ ⊂ G is a fundamental domain for the left action of Λ, then µX(B) = µX(B′)
because G is unimodular. Theorem 4.2, Theorem 3.18 and Theorem 3.17 imply

b(2)
p (Γ) = µX(A)

µX(B′) b
(2)
p (Λ) = µX(A)

vol(Λ\X) b
(2a)
p (X;N (Λ)) = µX(Γ\G)B

(2)
p (X).

The information on the constant B
(2)
p (X) was stated in Theorem 3.19 (i). �

2. Novikov–Shubin invariants

It was one of the great 20th century breakthroughs in mathematics when G. Margulis
realized that for higher rank semisimple Lie groups, taking integer points of algebraic
Q-groups is essentially the only way to produce lattices. Recall that a lattice Γ in a
connected semisimple Lie group G without compact factors is called reducible if G
admits infinite connected normal subgroups H and H ′ such that G = HH ′, such
that H ∩H ′ is discrete and such that Γ/(Γ ∩H)(Γ ∩H ′) is finite. Otherwise Γ is
called irreducible.

Theorem 4.3 (Margulis arithmeticity [75, Theorem 1, p. 97]). Let G be a connected
semisimple linear algebraic R-group with rankR(G) > 1 and without direct R-
anisotropic factor. Let Γ ⊂ G(R)0 be an irreducible lattice. Then there is a linear
algebraic Q-group H and an R-epimorphism ϕ : H→ Ad G such that the Lie group
(kerϕ)(R) is compact and such that ϕ(H(Z)) is commensurable with Ad Γ.
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We reformulate this theorem in a version that is more appropriate for the
purposes we have in mind. Two groups are called abstractly commensurable if they
have isomorphic subgroups of finite index.

Corollary 4.4. Let G be a connected semisimple linear Lie group of rankR(G) > 1
without compact factors. Let Γ ⊂ G be an irreducible lattice. Then there is a
connected semisimple linear algebraic Q-group H such that Γ and H(Z) are abstractly
commensurable and such that G and H(R) define isometric symmetric spaces.

Proof. By [110, Theorem 3.37, p. 38] there is a linear algebraic R-group G such
that G(R)0 = G. The group G cannot have R-anisotropic factors because then G
would have compact factors. Moreover G is semisimple, for example because its Lie
algebra is the complexification of the Lie algebra of G(R). Since (G0(R))0 = G(R)0,
we can assume that G is connected. By the theorem there is a Q-group H and an
R-epimorphism ϕ : H→ Ad G with properties as stated. Since kerϕ has compact
real points, it cannot contain the additive or multiplicative groups Ga and Gm of
the field C as R-subgroups. Therefore kerϕ is reductive. The center Z(kerϕ) is
normal in H and intersects H(Z) in a finite group. By replacing H with H/Z(kerϕ)
if necessary, we may therefore assume that H is semisimple, being an extension
of semisimple groups. By Selberg’s Lemma [2] the arithmetic subgroup H(Z) has
a torsion-free subgroup of finite index on which ϕ must restrict to an injection.
Similarly G finitely covers Ad G so that a torsion-free finite index subgroup of
Γ is mapped injectively to Ad G. Since ϕ(H(Z)) is commensurable to Ad Γ, we
conclude that H(Z) and Γ have isomorphic subgroups of finite index. Moreover H0

has finite index in H so that the connected group H0 allows the same conclusion.
Any maximal compact subgroup KH ⊂ H0(R) must contain the normal compact

subgroup (kerϕ)(R)∩H0(R). Therefore ϕ induces an isometry H0(R)/KH
∼→ G/K

of symmetric spaces, possibly after rescaling one of the invariant metrics. �

W. Lück, H. Reich and T. Schick have shown in [69, Theorem 3.7.1] that ab-
stractly commensurable groups have equal Novikov–Shubin invariants. Therefore all
irreducible lattices in higher rank semisimple Lie groups are covered when we work
for the moment with arithmetic subgroups of connected semisimple linear algebraic
Q-groups. The rank one case will be treated afterwards. Before we come to the
proof of Theorem 1.5, we need to recall the following definition for a compactly
generated locally compact group H with compact generating set V ⊂ H and Haar
measure µ (compare [45]).

Definition 4.5. The group H has polynomial growth of order d(H) ≥ 0 if

d(H) = inf

{
k > 0: lim sup

n→∞

µ(V n)
nk

<∞
}
.

This definition is independent of the choice of V and of rescaling µ [45, p. 336].
If H is discrete and V is a finite symmetric generating set, we get back the familiar
definition in terms of metric balls in the Cayley graph defined by word lengths. As
in Chapter 2, let G = G(R) and let K ⊂ G be a maximal compact subgroup giving
rise to the symmetric space X = G/K. Let q be the middle dimension of X, so
either dimX = 2q + 1 or dimX = 2q. Let us recall the result we want to prove.

Theorem 1.5. Let G be a connected semisimple linear algebraic Q-group. Suppose
that rankQ(G) = 1 and δ(G(R)) > 0. Let P ⊂ G be a proper rational parabolic
subgroup. Then for every arithmetic subgroup Γ ⊂ G(Q)

α̃q(Γ) ≤ δ(MP) + d(NP ).

Here the deficiency of a reductive Lie group G′ is defined as δ(G′) = rankC(G′)−
rankC(K ′) for a maximal compact subgroup K ′ ⊂ G′ as in the case of semisimple
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groups. The deficiency of G′ is also known as the fundamental rank f-rank(X ′) of the
associated symmetric space X ′ = G′/K ′. Note that G trivially satisfies conditions
(I) and (II) of page 10. Since rankQ(G) = 1, all proper rational parabolic subgroups
are conjugate under G(Q) so that the constant δ(MP) + d(NP ) only depends on
G. One example of a group G as in Theorem 1.5 is of course G = SO(2n+ 1, 1;C).
But for this special group we will prove the more general Theorem 1.3 anyway. The
point of Theorem 1.5 is that no restriction is made on the real rank of G and we
will consider groups G with higher real rank in Example 4.11 after proving the
theorem. The proof will require an estimation of Novikov–Shubin invariants of
the boundary components e(P) = NP × XP of the Borel–Serre bordification X.
Since a product formula is available for Novikov–Shubin invariants, the calculation
eventually reduces to Theorem 3.19 (ii) and the following theorem due to M. Rumin
[96, Theorem 3.13, p. 144], see also [97, Theorem 4, p. 990].

Theorem 4.6 (M. Rumin). Let N be a simply connected nilpotent Lie group whose
Lie algebra n comes with a grading n =

⊕r
k=1 nk. Fix a left-invariant metric and

assume that N possesses a uniform lattice. Then for each p = 1, . . . ,dimN

0 < Ap(N) ≤
r∑

k=1

k dim nk.

In fact, Rumin gives a finer pinching than the above, which in special cases gives
precise values. For example A2(N) =

∑r
k=1 k dim nk if N is quadratically presented

[96, Section 4.1, p. 146]. We remark that Rumin defines the p-th Novikov–Shubin
invariant of N as

αRp (N) = 2 lim inf
λ→0+

logF (dpmin|ker(dp)⊥)(
√
λ)

log λ

[96, equation (1), p. 125]. Since b
(2a)
p (N) = 0 by Theorem 3.8 (v) and Theorem 3.18,

we have F (dpmin|ker(dp)⊥)(0) = 0. Moreover im(dp−1) lies dense in ker(dp) so that

ker(dp)⊥ = im(dp−1)⊥ whence dpmin|ker(dp)⊥ = dp⊥min. Finally, substituting λ 7→ λ2

cancels out the factor of two so that we have αRp (N) = α
(a)
p+1(N) in our notation.

Compare the remark in [95, p. 4] on the confusion in the literature about indexing
Novikov–Shubin invariants.

Corollary 4.7. Let P ⊂ G be a proper rational parabolic subgroup. Then for every
torsion-free arithmetic subgroup Γ ⊂ G(Q) and each p = 1, . . . ,dimNP we have

αp(NP ;N (ΓNP )) ≤ d(NP ).

Proof. At the end of Section 2 in Chapter 2 we have seen that the Lie algebra nP
of NP is conjugate to a standard nI =

⊕
α∈Σ nP,α and thus graded by the lengths of

parabolic roots. Since [nP,α, nP,β ] ⊂ nP,α+β by Jacobi identity, this graded algebra
can be identified with the graded algebra associated with the filtration of nP coming
from its lower central series. It thus follows from [45, Théorème II.1, p. 342] that
the weighted sum appearing in Theorem 4.6 equals the degree of polynomial growth
of NP . Moreover αp(NP ;N (ΓNP )) = Ap(NP ) by Theorem 3.17. �

Proposition 4.8. Suppose rankQ(G) = 1. Then for every proper rational parabolic
subgroup P ⊂ G and every torsion-free arithmetic subgroup Γ ⊂ G(Q) we have

αq(e(P);N (ΓP )) ≤ f-rank(XP) + d(NP ).

Proof. Fix such P ⊂ G and Γ ⊂ G(Q). We mentioned below Definition 2.8 that
Γ possesses a neat and thus torsion-free subgroup of finite index. It induces a neat
subgroup of finite index of ΓP . Since Novikov–Shubin invariants remain unchanged
for finite index subgroups, we may assume that Γ itself is neat. Thus ΓMP

acts freely
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on XP. As rankQ(G) = 1, every proper rational parabolic subgroup is minimal
(and maximal). So the boundary component e(P) is closed as we observed below
Proposition 2.15. Therefore the ΓP -action on e(P) is cocompact. Theorems 3.17
and 3.18 imply

αq(e(P);N (ΓP )) = αq(NP ×XP;N (ΓNP × ΓMP
)).

This observation enables us to apply the product formula for Novikov–Shubin
invariants [67, Theorem 2.55(3), p. 97]. It says that αq(NP ×XP;N (ΓNP × ΓMP

))
equals the minimum of the union of the four sets

{αi+1(NP ) + αq−i(XP) : i = 0, . . . , q − 1},
{αi(NP ) + αq−i(XP) : i = 1, . . . , q − 1},

{αq−i(XP) : i = 0, . . . , q − 1, b
(2)
i (NP ) > 0},

{αi(NP ) : i = 1, . . . , q, b
(2)
q−i(XP) > 0}.

We need to discuss one subtlety here. Applying the product formula requires us
to verify that both NP and XP have the limit property. This means that “lim inf”
in Definition 3.3 of the Novikov–Shubin invariants equals “lim sup” of the same
expression. But this follows from the explicit calculations in [97] and [85]. Note
that the third set above is actually empty because of Theorem 3.8 (v). The group
MP = ZPM′

P is the almost direct product of its center ZP and the derived subgroup
M′

P = [MP,MP] which is semisimple. Accordingly, the boundary symmetric space
XP = XEucl

P ×Xnc
P is the product of a Euclidean symmetric space and a symmetric

space of noncompact type. Clearly f-rank(XEucl
P ) = dimXEucl

P so that

f-rank(XP) = f-rank(XEucl
P ×Xnc

P ) = dimXEucl
P + f-rank(Xnc

P ).

As s-rank(P) = 1 we get dim e(P) = dimX − 1 with dimX = 2q or dimX = 2q+ 1.
Let us set n = dimNP , hence dimXP = dimX−1−n. Now we distinguish two cases.
First we assume that f-rank(XP) = 0. Then XP = Xnc

P is even-dimensional and we

obtain from Theorem 3.19 (i) that b
(2)
q−dn2 e

(XP) > 0. Here for a real number a ∈ R
we denote by dae and bac the smallest integer not less than a and the largest integer
not more than a, respectively. Therefore the Novikov–Shubin invariant αdn2 e(NP )

appears in the fourth set above and is bounded by d(NP ) according to Corollary 4.7.
Now let us assume f-rank(XP) > 0. We compute q−dn2 e = bdimXP+1

2 c if dimX = 2q

and q − bn2 c = ddimXP

2 e if dimX = 2q + 1. We claim that both values lie in the

interval [ 1
2 (dimXP − f-rank(XP)) + 1, 1

2 (dimXP + f-rank(XP))]. This is clear if

dimXP is odd because then both values equal dimXP+1
2 which is the arithmetic

mean of the interval limits. If on the other hand dimXP is even, then both values
equal dimXP

2 . The fundamental rank f-rank(XP) is then likewise even and thus

f-rank(XP) ≥ 2. Therefore 1
2 (dimXP − f-rank(XP)) + 1 ≤ dimXP

2 and the claim is
verified. It follows from [67, equation (5.14), p. 230] that in the two cases αq−dn2 e(XP)

and αq−bn2 c(XP) are bounded by f-rank(Xnc
P ) + dimXEucl

P = f-rank(XP). Moreover

αdn2 e(NP ) ≤ d(NP ) and αbn2 c(NP ) ≤ d(NP ) again by Corollary 4.7 so that either the

number αdn2 e(NP ) + αq−dn2 e(XP) or the number αbn2 c(NP ) + αq−bn2 c(XP) appears

in the second of the four sets above and both are bounded by d(NP ) + f-rank(XP).
So in any case we conclude αq(e(P)) ≤ f-rank(XP) + d(NP ). �

We make one last elementary observation to prepare the proof of Theorem 1.5.

Lemma 4.9. Let the discrete group Γ act freely and properly on the path-connected
space X. Let Y ⊂ X be a simply connected subspace which is invariant under the
action of a subgroup Λ ≤ Γ. Then the induced homomorphism Λ = π1(Λ\Y ) →
π1(Γ\X) is injective.
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Proof. From covering theory we obtain a commutative diagram of groups

π1(Λ\Y ) //

��

Λ

��
π1(Γ\X) // Γ.

The upper map is an isomorphism and the right hand map is injective. So the left
hand map must be injective as well. �

Proof (of Theorem 1.5). Again by Selberg’s Lemma and stability of Novikov-
Shubin invariants for finite index subgroups [69, Theorem 3.7.1], we may assume
that Γ is torsion-free. The bordification X is L2-acyclic by Theorem 1.1. According
to Lemma 3.10 we thus have α̃q(X) ≤ αq(∂X). Recall from (2.14) that the Borel–

Serre boundary ∂X =
⋃
· P(G e(P) is given by the disjoint union of all boundary

components of proper rational parabolic subgroups. Since rankQ(G) = 1, every
proper rational parabolic subgroup is minimal so all the boundary components are
closed. As X is normal (T4), the Borel–Serre boundary is in fact the coproduct
∂X =

∐
P min e(P) of all boundary components of minimal rational parabolic

subgroups. Proposition 2.24 implies that there is a finite system of representatives
P1, . . . ,Pk of Γ-conjugacy classes of minimal rational parabolic subgroups which

give the decomposition Γ\∂X =
∐k
i=1 e

′(Pi). It thus follows from Lemma 4.9

applied to each e(Pi) ⊂ X and ΓPi ≤ Γ that ∂X =
∐k
i=1 e(Pi)×ΓPi

Γ. According

to [67, Lemma 2.17(3), p. 82] we obtain αq(∂X) = mini {αq(e(Pi)×ΓPi
Γ)}. Since

the minimal rational parabolic subgroups P1, . . . ,Pk are G(Q)-conjugate, we have
in fact αq(∂X) = αq(e(P1)×ΓP1

Γ). The induction principle for Novikov–Shubin

invariants [67, Theorem 2.55(7), p. 98] in turn says that αq(e(P1)×ΓP1
Γ; N (Γ)) =

αq(e(P1); N (ΓP1
)) which is bounded from above by f-rank(XP1

)+d(NP1
) according

to Proposition 4.8. �

We want to discuss how the upper bound δ(MP) + d(NP ) appearing in The-
orem 1.5 can actually be computed for a particular choice of G. To this end we
shall allow ourselves a brief digression on the classification theory of semisimple
algebraic groups over a general field k as outlined in [104]. Let K be the separable
closure of k and let G = Gal(K/k) be the absolute Galois group of k. Let G be
a semisimple algebraic k-group. Then any maximal torus T ⊂ G is K-split and
contains a maximal k-split torus S. Let Z be the maximal central k-anisotropic
torus of the centralizer ZG(S) of S. Then the derived subgroup ZG(S)′ is called
the semisimple anisotropic kernel and the group ZZG(S)′ is called the reductive
anisotropic kernel of G. Both are well-defined up to k-isomorphism. A Theorem of
J. Tits [104, Theorem 2, p. 43] says that the k-isomorphism type of G is determined
by its K-isomorphism type, the semisimple anisotropic kernel and the Tits index.
The Tits index is given by the triple (∆,∆0, ∗) where ∆ denotes a set of simple
roots in the root system Φ(G,T) ⊂ XK(T) of G, the subset ∆0 ⊂ ∆ is given by
the simple roots in ∆ which restrict to zero on S and “∗” denotes the star action
of G on ∆ defined as follows. The Galois group G naturally acts on the characters
XK(T) such that the root system Φ(G,T) is an invariant subset. An element σ ∈ G
maps the simple roots ∆ to yet another set of simple roots σ(∆). Since the Weyl
group of Φ(G,T) acts simply transitively on Weyl chambers, there is a unique Weyl
group element w such that w(σ(∆)) = ∆ and we define σ∗ = w ◦ σ. Tits indices
can be visualized by the Dynkin diagram of Φ(G,T) representing the simple roots
∆ where elements in the same ∗-orbit are drawn close to one another and where
the distinguished orbits, those that do not lie in ∆0, are circled. An example is
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presented in Figure 4.10 where on the right hand side each of the two upper nodes
is close to the facing lower node.

Figure 4.10. The Tits index of exceptional type 2E16
6,2 which

occurs for k = Q but does not exist over finite or p-adic fields.

The notation for Tits indices follows the pattern gXt
n,r where Xn denotes the

type of the Dynkin diagram and r gives the number of distinguished orbits, which is
equal to the k-rank of G. The index g is the order of the effectively acting quotient
of G and t is a further characteristic number which we agree to be the dimension
of the reductive anisotropic kernel in the case of exceptional types; for classical
types we put t in parentheses and we let it denote the degree of a certain division
k-algebra which can be used to define G. If g = 1, we say the group is of inner
type, otherwise of outer type. The Tits index of the semisimple anisotropic kernel
is obtained by dropping the distinguished vertices and the edges starting or ending
in it. J. Tits lists the possible indices in [104, Table II, pp. 54-61].

Now let us specialize to a group G over k = Q as in Theorem 1.5. We first
explain how to compute the number d(NP ). The Lie algebra nP of NP has the
decomposition nP =

⊕
α∈Σ nP,α as we saw at the end of Section 2 in Chapter 2 so

that nP is graded by parabolic root lengths. In view of the formula in Theorem 4.6
it only remains to determine Σ and the multiplicities mα given by the dimensions
of the root spaces nP,α. Note from below Proposition 2.2 that we can choose a base
point x0 = K such that the decomposition P = NPSP,xoMP,x0

= NPSPMP in
equation (2.3) consists of Q-groups. Since P is minimal, the torus SP is in fact
a maximal Q-split torus in G. Associated with SP we have the restricted roots
Φ(G,SP) ⊂ XQ(SP) and the minimal parabolic subgroup P corresponds to a choice
of positive restricted roots Φ+(G,SP) ⊂ Φ(G,SP) which can be identified with
Σ. Let T ⊂ G be a maximal torus that contains SP. We turn the R-vector space
XQ(T) ⊗Z R into a Euclidean space by choosing an inner product 〈·, ·〉 invariant

under the (finite) Weyl group NG(T)/T. We can identify XQ(SP)⊗Z R with the
subspace of XQ(T)⊗Z R orthogonal to the characters vanishing on SP. Note that
characters over k-split tori are automatically defined over k so that we have a
restriction map XQ(T)→ XQ(SP) which corresponds to the orthogonal projection

XQ(T) ⊗Z R → XQ(SP) ⊗Z R. The subset of positive roots in Φ(G,T) which do

not restrict to zero on SP maps surjectively to Φ+(G,SP), which specifies Σ. Since
root spaces over the algebraic closure Q are one-dimensional, the multiplicities mα

for α ∈ Σ are moreover given by the number of roots in Φ(G,T) that restrict to α.
Next we turn our attention to the summand δ(MP). From comparison with

standard parabolic subgroups we see that the Lie algebra of P has the decomposition
p = nP ⊕ z(aP). Accordingly the centralizer of SP is given by ZG(SP) = SPMP.
In the proof of Proposition 4.8 we had written MP = ZPM′

P as the almost direct
product of the center and the derived subgroup. The torus ZP is Q-anisotropic
because MP satisfies condition (I), p. 10. By the above, M′

P is the derived subgroup
of ZG(SP) as well. This shows that MP is the reductive anisotropic kernel and
M′

P is the semisimple anisotropic kernel of G. It follows from [104, equation (1),
p. 40] that dim ZP = |∆| − |∆0| − r where r denotes the number of distinguished
orbits in the Tits index of G. In particular ZP is trivial, and thus MP and M′

P

coincide, if G is of inner type. In general we have δ(MP) = rankR(ZP) + δ(M ′P). As
mentioned we obtain the Tits index of M′

P over Q by removing the distinguished



38 4. L2-INVARIANTS OF LATTICES

orbits of the Tits index of G. It is however the Tits index over R which is relevant
for determining δ(MP). Thus some further inspection in the particular cases is
necessary as we want to illustrate in the following example.

Example 4.11. Upon discussions with F. Veneziano and M. Wiethaup we have
come up with the family of senary diagonal quadratic forms

Qp = 〈1, 1, 1,−1,−p,−p〉

over Q where p is a prime congruent to 3 mod 4. Let Gp = SO(Qp;C) be the
Q-subgroup of SL(6;C) of matrices preserving Qp. By Sylvester’s law of inertia,
the groups Gp are R-isomorphic to SO(3, 3;C), so that G(R) ∼= SO(3, 3) which has
deficiency one. Over Q there is an obvious way of splitting off one hyperbolic plane,

Qp = 〈1,−1〉 ⊥ 〈1, 1,−p,−p〉,

but the orthogonal complement 〈1, 1,−p,−p〉 is Q-anisotropic. To see this, recall
from elementary number theory that if a prime congruent to 3 mod 4 divides a sum of
squares, then it must divide each of the squares. It thus follows from infinite descent
that the Diophantine equation x2

1+x2
2 = p(x2

3+x2
4) has no integer and thus no rational

solution other than zero. Therefore rankQ(Gp) = 1 and Gp satisfies the conditions

of Theorem 1.5. The group Gp is Q-isomorphic to SO(6;C) which accidentally has
SL(4;C) as a double cover and thus is of type A3. Since Gp has precisely one distin-
guished orbit, only two indices in Tit’s list are possible, 1A2

3,1 and 2A1
3,1, as pictured.

To decide which one is correct, note that the hyperbolic plane in the above
decomposition of Qp gives an obvious embedding of a one-dimensional Q-split
torus S into Gp. Let P be a minimal parabolic subgroup corresponding to a
choice of positive restricted roots of Gp with respect to S = SP. The central-
izer ZGp(SP) obviously contains a Q-subgroup that is R-isomorphic to SO(2, 2;C)
so that SO(2, 2;C) ⊂ M′

P as an R-embedding. Because of the exceptional iso-
morphism D2 = A1 × A1, the Dynkin diagram of M′

P must contain two dis-
joint nodes. Removing the distinguished orbits, we therefore see that only the
left hand Tits index 1A2

3,1 can correspond to Gp. Since it is of inner type,
the center ZP of MP is trivial and in fact MP = M′

P
∼=R SO(2, 2;C). Thus

δ(MP) = δ(SO(2, 2)) = δ(SL(2;R)× SL(2,R)) = 0.
Let T ⊂ G be a maximal torus containing SP. The root system Φ(G,T) is

three-dimensional so that everything needed to compute d(NP ) can be seen visually
in Figure 4.12. In the Tits index of 1A2

3,1, the left hand node corresponds to the
arrow pointing up front, the center node corresponds to the arrow pointing down
right and the right hand node corresponds to the arrow pointing up rear. Since
both the left and right nodes of the Tits index do not lie in distinguished orbits, the
subspace XQ(SP)⊗Z R is given by the intersection of the planes orthogonal to their
corresponding arrows which is the line going through the centers of the left face and
right face of the cube. It follows that the restricted root system Φ(Gp,SP) is of type
A1 and that four roots of Φ(Gp,T) restrict to each of the two roots in Φ(Gp,SP).
Thus we have only one root of length one and multiplicity four in Σ = Φ+(GP,SP)
which gives d(NP ) = 4. The symmetric space of Gp(R) has dimension nine, so
Theorem 1.5 gives

α̃4(Gp(Z)) ≤ 4.

Note that the bound is uniform in p even though the quadratic forms Qp and hence
the groups Gp are definitely not mutually Q-isomorphic. Since SO(6;C) is doubly
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Figure 4.12. The root system of type A3 with the restricted root
system of the Tits index 1A2

3,1 depicted by thick arrows.

covered by SL(4;C), we can take the preimage of Gp(Z) to get nonuniform lattices
in SL(4;R) whose fourth Novikov-Shubin invariant is equally bounded by four.

Now we come to the case of real rank one semisimple Lie groups, where nonar-
ithmetic lattices exist. Since the construction of Kang’s compactification for lattices
in rank one semisimple Lie groups largely parallels the Borel–Serre compactification,
we easily obtain the statement for not necessarily arithmetic lattices acting on
odd-dimensional hyperbolic space.

Theorem 1.3. Let Γ be a lattice in SO0(2n+ 1, 1). Then α̃n(Γ) ≤ 2n.

Proof. We may assume that Γ is torsion-free, so Kang’s bordification XΓ is a finite
Γ-CW model for EΓ, see Chapter 2, Section 5. Due to Theorem 1.1, the bordification
XΓ is L2-acyclic. We conclude from Lemma 3.10 that α̃n(Γ) = α̃n(XΓ) ≤ αn(∂XΓ).
According to [56, p. 122], the boundary components e(P ) are closed (“type C2”) in
XΓ if P 6= G. Therefore the boundary ∂XΓ is the coproduct ∂XΓ =

∐
P∈∆Γ

e(P ).

Moreover, it follows from the proof of [56, Proposition IV.23, p. 137] that there
are only finitely many geometrically rational parabolic subgroups P1, . . . , Pk ∈ ∆Γ

up to Γ-conjugacy. Whence ∂XΓ =
∐k
i=1NPi ×ΓPi

Γ and as in the preceding

proof we obtain αn(∂XΓ) = αn(NP1 ;N (ΓNP1
)). Since NP1

∼= R2n, as we will
recall in Section 6.1 of Chapter 5, the latter term is bounded by 2n according to
Theorem 4.6. �

We can give some sparse information about the Novikov–Shubin invariants
outside middle dimension. The first observation is that only the value ∞+ occurs
in the first and in the top degree n = dimX = dimG − dimK. Indeed, it is
well-known that lattices Γ in noncompact semisimple Lie groups are not amenable
[106, Example 2.7, p. 240 and Proposition 2.5, p. 241]. Thus α1(Γ) =∞+ according
to Theorem 3.8 (iiic). But also αn(Γ) =∞+. For nonuniform lattices this follows
from [65, Lemma 3.5.5, p. 34] because either Kang’s compactification or the Borel-
Serre compactification provide a topological manifold with nonempty boundary as
classifying space of a finite-index subgroup of Γ. For uniform lattices the assertion
follows from Theorem 3.8 (ii). For nonuniform lattices in rank one groups, we obtain
moreover an upper bound in the degree right below the top dimension.

Theorem 1.4. Let G be a connected semisimple linear Lie group of rankR(G) = 1
with symmetric space X = G/K. Suppose that n = dimX ≥ 3. Let P ⊂ G be a
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proper real parabolic subgroup. Then for every nonuniform lattice Γ ⊂ G

α̃n−1(Γ) ≤ d(NP )
2 .

Proof. Again we may assume that Γ is torsion-free. We apply the third inequality
of Theorem 3.9 (ii) to the sequence of the pair (XΓ, ∂XΓ) given by Kang’s com-

pactification, see Chapter 2, Section 5. Since n ≥ 3, we have b
(2)
1 (XΓ) = 0 by

Theorem 1.1 and therefore α(H
(2)
1 (j∗)) =∞+ so that the inequality takes the form

1

α1(∂XΓ)
≤ 1

α1(XΓ)
+

1

α2(XΓ, ∂XΓ)
.

We have α1(XΓ) =∞+ by Theorem 3.8 (iiic). Using Theorem 3.8 (ii) we thus obtain
αn−1(XΓ) ≤ α1(∂XΓ). As in the above proof of Theorem 1.3 we get α1(∂XΓ) =
α1(e(P );N (ΓNP )). Since e(P ) = NP , Theorem 3.8 (iiia) says α1(e(P );N (ΓNP )) =
d(NP ). By Remark 3.7 (ii) and since αn(Γ) = ∞+ as explained above, we have

α̃n−1(Γ) = 1
2 min{αn−1(Γ), αn(Γ)} ≤ 1

2 min{d(NP ),∞+} = d(NP )
2 . �

Note that in fact we proved αn−1(Γ) ≤ d(NP ) for the alternative version of
Novikov-Shubin invariants. The Cartan classification divides the connected simple
Lie groups G with rankR(G) = 1 into five different types. We collect the data
relevant for Theorem 1.4 in the following table.

Cartan type G X dimX d(NP )

BII /DII SO0(n, 1) HnR n n− 1
AIV SU(n, 1) HnC 2n 2n
CII Sp(n, 1) HnH 4n 4n+ 2
F II F4(−20) H2

O 16 22

The groups NP appear as the nilpotent groups in Iwasawa decompositions of G.
The growth rates can therefore easily be established by root system considerations
as we did in Example 4.11. In that case the relevant information is given in a Satake
diagram which corresponds to the Tits indices over R if the Lie group is given by
the R-points of a semisimple algebraic R-group. We will give the precise structure
of the groups NP in Chapter 5, Section 6. Except for the groups SO0(2n+ 1, 1), all
of the groups G have vanishing fundamental rank, so that their lattices have middle
L2-Betti numbers by Theorem 1.1. The theorem therefore says that the nonuniform
ones give examples of lattices which both have a nonzero L2-Betti number and a
finite Novikov–Shubin invariant. There are no uniform lattices in semisimple Lie
groups with this property. The same observation gives counterexamples to the

tempting idea that for any torsion-free lattice Γ we had αp(Γ) = α
(a)
p (X;N (Γ)) with

the definition for the right hand side given on p. 28. For example if Γ ⊂ SO0(4, 1) is
torsion-free nonuniform, in other words Γ is the fundamental group of a noncompact
finite-volume hyperbolic 4-manifold, then α3(Γ) ≤ 3 because in that case NP ∼= R3,

but α
(a)
3 (H4;N (Γ)) =∞+ by Theorem 3.19 (ii) because δ(SO0(4, 1)) = 0.

3. L2-torsion

Recall that the L2-torsion is only defined for groups which are det-L2-acyclic.
According to Theorem 1.1, for a lattice Γ ⊂ G in a semisimple Lie group this is
equivalent to δ(G) > 0. Among the rank one simple Lie groups, the only groups
with positive deficiency are G = SO0(2n+ 1, 1) which have been treated by W. Lück
and T. Schick in Theorem 1.2. For higher rank Lie groups, we again have Margulis
arithmeticity available so that the following Theorem will be enough to cover general
lattices in even deficiency groups as we will see subsequently.
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Theorem 1.6. Let G be a connected semisimple linear algebraic Q-group. Suppose
that G(R) has positive, even deficiency. Then every torsion-free arithmetic lattice
Γ ⊂ G(Q) is det-L2-acyclic and

ρ(2)(Γ) = 0.

Note that in the odd deficiency case, Borel and Serre have proved correspondingly
that χ(Γ) = 0 in [17, Proposition 11.3, p. 482]. The core idea will also prove successful
for the proof of Theorem 1.6 though various technical difficulties arise owed to the
considerably more complicated definition of L2-torsion. A combinatorial argument
will reduce the calculation of the L2-torsion of X =

⋃
P⊆G e(P) to the calculation

of the L2-torsion of the manifolds with corners e(P) for proper rational parabolic
subgroups P ⊂ G which form the boundary ∂X of the bordification. This in turn
is settled by the following proposition.

Proposition 4.13. Let P ⊂ G be a proper rational parabolic subgroup. Then for
every torsion-free arithmetic subgroup Γ ⊂ G(Q) the finite free ΓP -CW complex

e(P) ⊂ X is det-L2-acyclic and ρ(2)(e(P);N (ΓP )) = 0.

Proof. L2-torsion is multiplicative under finite coverings [67, Theorem 3.96(5),
p. 164] so that similar to the proof of Proposition 4.8, we may assume that Γ is neat.

We have already remarked below Theorem 2.23 that e(P), hence its closure e(P),

is a ΓP -invariant subspace of the bordification X. So e(P) regularly covers the

subcomplex e′(P) of Γ\X with deck transformation group ΓP . It thus is a finite free

ΓP -CW complex. In fact e(P) is simply connected so that it can be identified with

the universal covering of e′(P). The nilpotent group ΓNP is elementary amenable and
therefore of det ≥ 1-class [102]. It is moreover infinite because it acts cocompactly on
the nilpotent Lie group NP . This Lie group is diffeomorphic to a nonzero Euclidean
space because P ⊂ G is proper. By Theorem 3.8 (v) the universal cover NP of
the finite CW-complex ΓNP \NP is L2-acyclic and ρ(2)(NP ;N (ΓNP )) = 0. The

canonical base point KP ∈ XP and Proposition 2.15 define an inclusion NP ⊂ e(P).

Applying Lemma 4.9 to NP ⊂ e(P) and ΓNP ⊂ ΓP shows that the fiber bundle

e′(P) of Theorem 2.28 satisfies the conditions of Theorem 3.8 (iv). We conclude

that e(P) is det-L2-acyclic and

ρ(2)(e(P),N (ΓP )) = χ(ΓMP
\XP) ρ(2)(NP ;N (ΓNP )) = 0. �

We remark that as an alternative to C. Wegner’s theorem 3.8 (v), we could
have concluded ρ(2)(NP ;N (ΓNP )) = 0 from the fact that the nilmanifold ΓNP \NP
topologically is an iterated torus bundle over a torus. It therefore admits various
S1-actions so that the inclusion of an orbit induces an injection on fundamental
groups. This also implies vanishing L2-torsion according to a theorem of W. Lück
[67, Theorem 3.105, p. 168].

Proof (of Theorem 1.6). Fix a torsion-free arithmetic subgroup Γ ⊂ G(Q). By
Remark 3.7 (iii) the bordification X is of determinant class. It is L2-acyclic by
Theorem 1.1 because δ(G) > 0. Lemma 3.11 says that the boundary ∂X is det-L2-
acyclic and since X is even-dimensional we have proven the theorem when we can
show ρ(2)(∂X;N (Γ)) = 0. To this end consider the space Yk =

∐
s-rank(P)=k e(P)

for k = 1, . . . , rankQ(G), the coproduct of all boundary components e(P) of rational
parabolic subgroups P ⊂ G with split rank k. The usual action given in (2.22)
defines a free proper action of Γ on Yk because the split rank of a rational parabolic
subgroup is invariant under conjugation with elements in G(Q). This action extends

uniquely to a free proper action on the coproduct Yk =
∐

s-rank(P)=k e(P) of closed
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boundary components because Yk ⊂ Yk is dense. The canonical Γ-equivariant map
Yk → X lies in the pullback diagram

Yk
//

��

X

��
Γ\Yk // Γ\X.

By Proposition 2.24, we have a finite system of representatives of Γ-conjugacy
classes of rational parabolic subgroups of G. Let Pk

1 , . . . ,P
k
rk

be an ordering of

the subsystem of rational parabolic subgroups with split rank k. Then Γ\Yk =∐rk
i=1 e

′(Pk
i ). We apply Lemma 4.9 to each inclusion e(Pk

i ) ⊂ X and ΓPki ≤ Γ

to conclude that Yk =
∐rk
i=1 e(P

k
i ) ×Γ

Pk
i

Γ. Since every space e(Pk
i ) ×Γ

Pk
i

Γ is a

Γ-invariant subcomplex of ∂X, this endows Yk with the structure of a finite free
Γ-CW complex such that the equivariant map Yk → ∂X is cellular. By the induction
principle for L2-torsion [67, Theorem 3.93(6) p. 162] and Proposition 4.13 Yk is
det-L2-acyclic and

ρ(2)(Yk;N (Γ)) =

rk∑
i=1

ρ(2)(e(Pk
i )×Γ

Pk
i

Γ;N (Γ)) =

rk∑
i=1

ρ(2)(e(Pk
i );N (ΓPki )) = 0.

From Lemma 3.11 we conclude that also the boundary ∂Yk = Yk\Yk is det-L2-acyclic.
The lemma says moreover that ρ(2)(∂Yk;N (Γ)) = 0 if Yk is even-dimensional. But
the same is true if Yk is odd-dimensional because of Theorem 3.8 (ii). Consider the
Γ-CW subcomplexes Xk =

⋃
· s-rank(P)≥k e(P) of X where k = 1, . . . , rankQ(G). It

follows from (2.21) that they can be constructed inductively as pushouts of finite
free Γ-CW complexes

(4.14) ∂Yk
//

��

Xk+1

��
Yk

// Xk.

The beginning of the induction is the disjoint union XrankQ(G) =
⋃
· P min. e(P) within

X. Since e(P) is closed if P is minimal, we observe as in the proof of Theorem 1.5

that in fact XrankQ(G) =
∐

P min. e(P) = Y rankQG. Therefore Lemma 3.12 verifies

that each Xk is det-L2-acyclic and ρ(2)(Xk;N (Γ)) = 0. This proves the theorem
because X1 = ∂X. �

A group Λ has type F, if it possesses a finite CW model for BΛ. If Λ is finitely
presented, type F can be algebraically characterized as type FL, meaning that the
trivial ZΛ-module Z has a finite free resolution [21, Proposition 6.3, p. 200 and
Theorem 7.1, p. 205]. The Euler characteristic of a type F group is defined by
χ(Λ) = χ(BΛ). A slight generalization of this is due to C. T. C. Wall [107]. If Λ

virtually has type F, its virtual Euler characteristic is given by χvirt(Λ) = χ(Λ′)
[Λ:Λ′]

for a finite index subgroup Λ′ with finite CW model for BΛ′. This is well-defined
because the Euler characteristic is multiplicative under finite coverings. Since the
L2-torsion in many respects behaves like an odd-dimensional Euler characteristic,
we want to define its virtual version as well. If a group Γ is virtually det-L2-acyclic,

we define ρ
(2)
virt(Γ) = ρ(2)(Γ′)

[Γ:Γ′] for a finite index subgroup Γ′ with finite det-L2-acyclic

Γ′-CW model for EΓ′. Again this is well-defined because ρ(2) is multiplicative under
finite coverings.
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Lemma 4.15. Let Λ be virtually of type F and let Γ be virtually det-L2-acyclic.
Then Λ× Γ is virtually det-L2-acyclic and

ρ
(2)
virt(Λ× Γ) = χvirt(Λ) · ρ(2)

virt(Γ).

Proof. Let Λ′ ≤ Λ and Γ′ ≤ Γ be finite index subgroups with finite classifying
spaces such that EΓ′ is det-L2-acyclic. Applying Theorem 3.8 (iv) to the trivial
fiber bundle BΓ′ → B(Λ′ × Γ′) = BΛ′ ×BΓ′ → BΛ′, we obtain that E(Λ′ × Γ′) is
det-L2-acyclic and ρ(2)(Λ′ × Γ′) = χ(Λ′)ρ(2)(Γ′). Therefore

ρ
(2)
virt(Λ× Γ) =

ρ(2)(Λ′ × Γ′)

[Λ× Γ : Λ′ × Γ′]
=

χ(Λ′)ρ(2)(Γ′)

[Λ : Λ′][Γ : Γ′]
= χvirt(Λ)ρ

(2)
virt(Γ). �

Theorem 1.7. Let G be a connected semisimple linear Lie group with positive, even
deficiency. Then every lattice Γ ⊂ G is virtually det-L2-acyclic and

ρ
(2)
virt(Γ) = 0.

Proof. By Selberg’s Lemma there exists a finite index subgroup Γ′ ⊂ Γ which is
torsion-free. Thus Γ′ can neither meet any compact factor nor the center of G which
is finite because G is linear. Therefore we may assume that G has trivial center and
no compact factors. Suppose Γ′ was reducible. By [110, Proposition 4.24, p. 48] we
have a direct product decomposition G = G1 × · · · × Gr with r ≥ 2 such that Γ′

is commensurable with Γ′1 × · · · × Γ′r where Γ′i = Gi ∩ Γ′ is irreducible in Gi for
each i. Again by Selberg’s Lemma we may assume that Γ′1 × · · · × Γ′r is torsion-free.
If rankR(Gi) = 1, then Γi is type F by Kang’s compactification, see Chapter 2,
Section 5. If rankR(Gi) > 1, then Γi is virtually type F by Margulis arithmeticity,
Corollary 4.4, and the Borel-Serre compactification. Therefore, and by Theorem 1.1
and Remark 3.7 (iii), Γ′1 × · · · × Γ′r and thus Γ is virtually det-L2-acyclic. Thus we
may assume that Γ′1 × · · · × Γ′r is honestly det-L2-acyclic and we have to show that
ρ(2)(Γ′1 × · · · × Γ′r) = 0.

Since δ(G) > 0, there must be a factor Gi0 with δ(Gi0) > 0. Let H be the
product of the remaining factors Gi and let ΓH be the product of the corresponding
irreducible lattices Γi. If δ(H) > 0, then ΓH is det-L2-acyclic by Theorem 1.1
and ρ(2)(Γ′1 × · · · × Γ′r) = ρ(2)(Γ′i0 × ΓH) = 0 by Lemma 4.15 because χ(Γ′i0) = 0
by Theorem 3.8 (iv). If δ(H) = 0, then δ(Gi0) is even, and Lemma 4.15 says
that ρ(2)(ΓH × Γ′i0) = χ(ΓH)ρ(2)(Γ′i0). So we may assume that the original Γ′

was irreducible. We have rankR(G) ≥ δ(G) ≥ 2 as follows from [18, Section III.4,
Formula (3), p. 99]. By Margulis arithmeticity, Corollary 4.4, Γ′ is abstractly
commensurable to H(Z) for a connected semisimple linear algebraic Q-group H.
Moreover δ(H(R)) = δ(G) because H(R) and G define isometric symmetric spaces.
Theorem 1.6 completes the proof. �

It remains to give some details for our application to the Lück–Sauer–Wegner
conjecture.

Theorem 1.13. Let Leven be the class of det-L2-acyclic groups that are measure
equivalent to a lattice in a connected simple linear Lie group with even deficiency.
Then Conjecture 1.12 holds true and Question 1.11 has affirmative answer for Leven.

Proof. Let Γ ∈ Leven be measure equivalent to Λ ⊂ G with G as stated. Then
δ(G) > 0 by Theorem 1.1 because Γ is L2-acyclic by assumption. Since Γ has a finite
BΓ, it is of necessity torsion-free so that Γ is a lattice in AdG by [38, Theorem 3.1,
p. 1062]. Theorem 1.7 applied to Γ ⊂ AdG completes the proof. �
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4. Related results and problems

We conclude this chapter with a brief survey on related results and some follow-
up questions. Theorem 1.1 gives all L2-Betti numbers of lattices Γ in semisimple Lie

groups G. Moreover the formula B
(2)
p (X) = χ(Xd)

vol(Xd)
expresses the proportionality

constant in terms of the topology and geometry of the dual symmetric space. It
would however be desirable to explain the constant in terms of the surrounding
Lie group G itself in order to do justice to the rigidity phenomena of Margulis and
Furman which seem to characterize Γ as some kind of “discrete copy” of G. This
has been achieved by H. D. Petersen in his Ph. D. thesis [92] in the more general
context of lattices in locally compact groups. Petersen defines L2-Betti numbers

b
(2)
p (G,µ) for second countable, unimodular, locally compact groups G with Haar

measure µ and establishes the formula

(4.16) b(2)
p (Γ) = b(2)

p (G,µ)µ(Γ\G)

for all lattices Γ ⊂ G provided G possesses a uniform one. This gives back Theo-
rem 1.1 if G is a semisimple Lie group. The L2-Betti numbers of locally compact

groups are defined by b
(2)
p (G,µ) = dim(N (G),ψ)H

p(G,L2G) where ψ is the canon-
ical weight of the group von Neumann algebra N (G). The weight ψ is tracial
because G is unimodular. This makes it possible to define the dimension function
dim(N (G),ψ) which measures the size of the continuous cohomology Hp(G,L2G).
One of the difficulties compared to the discrete case is that ψ is in general only
semifinite and not finite. An advantage of the more general setting is that there
are many interesting examples of second countable, unimodular, locally compact,
totally disconnected groups for whose lattices Petersen shows equation (4.16) without
assuming the existence of uniform lattices. This is important in view of the example
G = Sp2n(Fq((t))), the symplectic group over the nonarchimedean local field Fq((t))
of formal Laurent series over the finite field Fq, which for n ≥ 2 possesses lattices

though no such is uniform. Petersen shows b
(2)
n (Sp2n(Fq((t))), µ) > 0 for large

enough q and thus b
(2)
n (Γ) > 0 for every lattice Γ ⊂ Sp2n(Fq((t))). In this context

Petersen coined the slogan that whenever one has a result on some class of discrete
groups, one should spare a thought whether it doesn’t hold more generally for the
corresponding class of totally disconnected groups. So the next step would be:

Problem 4.17. Give a definition for Novikov-Shubin invariants of locally compact
groups and compare the resulting values to the Novikov-Shubin invariants of the
various lattices.

As we hinted at, Petersen’s theory of L2-Betti numbers of locally compact
groups is built on W. Lück’s general dimension theory of modules over a group von
Neumann algebra. These modules split into projective and torsion parts. Novikov-
Shubin invariants, or rather their inverse capacities, measure the size of the torsion
parts in much the same way as L2-Betti numbers measure the size of the projective
parts. So the hope is that capacities can also be defined in the more general situation
using group von Neumann algebras of unimodular locally compact groups. Note
that by the example SO0(4, 1) we considered on p. 40, there can be no definition
αp(G,µ) of Novikov-Shubin invariants for a locally compact group G such that
αp(G,µ) = αp(Γ) for all lattices Γ ⊂ G. So it would be interesting to know what
values the most natural definition of αp(G,µ) will give in the case of a semisimple
Lie group G with symmetric space X. One candidate would be the values Ap(X),
which coincide with the Novikov-Shubin invariants of the uniform lattices of G;
another possibility would be the values αp(Γ) for an arithmetic subgroup Γ ⊂ G(Q)
of a linear algebraic Q-group G with G0 = G0(R) and rankQG = rankRG, which
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would correspond to the Novikov-Shubin invariants of the arithmetic subgroups
for the most natural linear embedding of G. A conceptual reason to favor the
first possibility is that Novikov-Shubin invariants are likely to be quasi-isometry
invariants of discrete groups [67, Question 7.36, p. 313; 100, Theorem 1.6, p. 480].
As for Theorem 1.5 a solution to the following problem would of course be pleasing.

Problem 4.18. Relax the conditions rankQ(G) = 1 and δ(G) > 0 in Theorem 1.5.

In the current proof both conditions are essential. We are using the weak
version of additivity for Novikov-Shubin invariants given by Theorem 3.9 (ii). The
inequalities are only useful if the third summand vanishes so that we need δ(G) > 0.
If one tries to apply the first inequality to the short exact sequence coming from
the pushout diagram in (4.14), one obtains min{αp(∂Y k), αp(Xk)} ≤ 2αp(Xk+1)

but we do not see that αp(∂Y k) ≥ αp(Xk) except of course when ∂Y 1 = ∅ which
happens if and only if rankQ(G) = 1. However, we are more optimistic about the
following problem.

Problem 4.19. Compute the virtual L2-torsion of all lattices in odd deficiency
semisimple Lie groups.

By the same proof as for Theorem 1.1, Conjecture 1.12 would imply that

ρ
(2)
virt(Γ) = T (2)(X)µX(Γ\G) for any lattice Γ in a connected semisimple linear Lie

group G. In particular this would mean ρ
(2)
virt(Γ) 6= 0 if and only if δ(G) = 1. As

we have already remarked in the introduction, for odd deficiency there is hardly
any hope for a solution similar to the even case that would rely on the topological
structure of the Borel-Serre compactification only. A more promising approach
should be to try and generalize the method that has proven successful in the
hyperbolic case in [72]. It suggests to look for comparison theorems between the
analytic L2-torsion of the finite-volume locally symmetric interior of the Borel-
Serre compactification with the topological L2-torsion of an exhaustion by compact
manifolds that are obtained by chopping off the ends. Such an exhaustion has been
described explicitly by E. Leuzinger [60, 61] which could be a helpful reference. The
heat kernel manipulations performed by Lück and Schick in [72] make intensive use
of the constant sectional curvature structure in the hyperbolic case. This and also
the corners that arise in the Borel-Serre compactification in the higher Q-rank case
definitely prevent a straightforward generalization of the paper. On the other hand
the work of Leuzinger, Olbrich and Rumin provide a set of powerful tools so that
Problem 4.19 does not seem hopelessly difficult at this point.

More recently a twisted version ρ
(2)
τ (X) of L2-torsion has come into focus. To

explain this, let us assume that Γ is an arithmetic, uniform, torsion-free lattice so
that Γ is commensurable with G(Z) for an anisotropic semisimple Q-group G with
G = G(R). As usual we write X = G/K for the symmetric space. Choose a rational
irreducible representation τ : G→ GL(V ). Associated with the restriction of τ to Γ
is the flat bundle Eτ over Γ\X which comes equipped with a distinguished hermitian
fiber metric called admissible in [77, Lemma 3.1, p. 375]. Let ∆p(τ) be the Laplacian

acting on p-forms on Γ\X with values in Eτ and let ∆̃p(τ) be the lift to the universal

covering X. Then we define the twisted L2-torsion ρ
(2)
τ (X) by the same formula

as in Definition 3.16 but using ∆̃p(τ) instead of the ordinary “∆p”. We get back
the classical analytic L2-torsion when τ is the trivial representation. The invariant

ρ
(2)
τ (X) is of interest because it detects an algebraic property of the arithmetic group

Γ: the size of the torsion part of the cohomology modules H∗(Γ,M) for the local
system defined by a Γ-invariant lattice M ⊂ V . Already from the classical equality
of topological Reidemeister torsion and analytic Ray–Singer torsion S. Marshall
and W. Müller have concluded that the order of H2(Γ,M2k), which is completely
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torsion, grows exponentially in k2 in the special case of certain arithmetic uniform
lattices Γ in SL(2,C) with representation V = S2k(C2) and arbitrary Γ-stable
lattice M2k ⊂ S2k(C2) [76]. This type of result has been generalized by W. Müller
and J. Pfaff to all closed odd-dimensional hyperbolic manifolds and more general
representations in [83] and subsequently to all closed locally symmetric spaces in [84].
In both cases the strategy is an asymptotic comparison between Ray–Singer and
twisted L2-torsion along a ray of highest weight representations and the computation
of the twisted L2-torsion along the lines of Olbrich [85]. Of course we now ask the
following.

Problem 4.20. Compute the twisted L2-torsion of finite-volume locally symmetric
spaces for suitable rays of highest weight representations. Conclude information
about torsion in the cohomology of nonuniform arithmetic groups.

Müller and Pfaff have attacked the simplest case, when X is hyperbolic space,
in [82]. Instead of fixing the lattice and varying the local system, N. Bergeron and
A. Venkatesh fix a local system and vary the lattice through a tower of congruence
subgroups {ΓN} with trivial intersection [8]. These lattices are again assumed
to be arithmetic subgroups of an anisotropic semisimple Q-group and thus are in
particular uniform lattices. Bergeron-Venkatesh conjecture that the limit

lim
N

log |Hj(ΓN ,M)tors|
[Γ : ΓN ]

always exists and that it is positive (a constant times the volume of Γ\X) if and
only if the ordinary L2-torsion of Γ does not vanish and j is the middle dimension;
in other words if and only if δ(G) = 1 and dimX = 2j + 1. So again an exponential
growth of torsion is suspected, this time with respect to increasing the covolume of
Γ. To support their conjecture they prove that if δ(G) = 1 and if the arithmetic
Γ-module M is strongly acyclic, then

(4.21) lim inf
N

∑
j

log |Hj(ΓN ,M)tors|
[Γ : ΓN ]

≥ cG,Mvol(Γ\X) > 0,

summing over all j with the same parity as dimX−1
2 .

Problem 4.22. Proof inequality (4.21) if Γ is a nonuniform arithmetic subgroup.

While Bergeron–Venkatesh suspect their assumptions of {ΓN} being congruence
subgroups with trivial intersection both being essential, they say explicitly that
they expect (4.21) to hold for suitable sequences of subgroups of the nonuniform
arithmetic group SL(2,Z[i]) as well [8, p. 3].

Let us quit listing further problems and revisit Problem 4.19 instead, which
appears most urgent to us at this point. To actually carry out the suggested strategy
of comparing the cellular L2-torsion of a compact exhaustion with the analytic
L2-torsion of the finite-volume locally symmetric space, a precise understanding
of the geometry of the symmetric space is indispensable. As a first step we have
uniformly constructed bases for all real semisimple Lie algebras such that the
structure constants can be read off from the root system of the complexification
with the involution determining the real structure; precisely the data given by a
Tits–Satake diagram. Since this is work of independent interest, we give a self-
contained presentation in the final chapter of this thesis. One consequence is that
we obtain explicit coordinates for all symmetric spaces of noncompact type. These
coordinates distinguish both a maximal flat totally geodesic submanifold and the
complementing nilmanifold given by an Iwasawa N -group which coincides with the
group NP for a suitable minimal rational parabolic subgroup P in the case of a
standard Q-embedding G = G0(R) with rankQ(G) = rankR(G).



CHAPTER 5

Integral structures in real semisimple Lie algebras

In this chapter we construct a convenient basis for all real semisimple Lie algebras
by means of an adapted Chevalley basis of the complexification. It determines
(half-)integer structure constants which we express in terms of the root system
and the automorphism defining the real structure only. Provided the real algebra
admits one, the basis exhibits an explicit complex structure. Part of the basis spans
the nilpotent algebra of an Iwasawa decomposition. This gives an intrinsic proof
that Iwasawa N -groups have lattices. We give explicit realizations of all Iwasawa
N -groups in the real rank one case and we construct coordinate charts for symmetric
spaces of noncompact type in a uniform way. This chapter is available as a preprint
in [55].

1. Summary of results

Let g be a complex semisimple Lie algebra with Cartan subalgebra h ⊂ g and Killing
form B. Denote its root system by Φ(g, h) ⊂ h∗. Given a root α ∈ Φ(g, h), let
gα ⊂ g be its root space and let tα ∈ h be the corresponding root vector which
is defined by B(tα, h) = α(h) for all h ∈ h. Set hα = 2tα

B(tα,tα) and for a choice of

simple roots ∆(g, h) = {α1, . . . , αl} ⊂ Φ(g, h), set hi = hαi . The following definition
appears in [51, p. 147].

Definition 5.1. A Chevalley basis of (g, h) is a basis C = {xα, hi : α ∈ Φ(g, h), 1 ≤
i ≤ l} of g with the following properties.

(i) xα ∈ gα and [xα, x−α] = −hα for each α ∈ Φ(g, h).
(ii) For all pairs of roots α, β ∈ Φ(g, h) such that α+β ∈ Φ(g, h), let the constants

cαβ ∈ C be determined by [xα, xβ ] = cαβxα+β . Then cαβ = c−α−β .

The existence of a Chevalley basis is easily established. C. Chevalley showed
that the structure constants for such a basis are integers. More precisely in 1955 he
published the following now classical theorem in [29, Théorème 1, p. 24], see also
[51, Theorem 25.2, p. 147].

Theorem 5.2. A Chevalley basis C of (g, h) yields the following structure constants.

(i) [hi, hj ] = 0 for i, j = 1, . . . , l.
(ii) [hi, xα] = 〈α, αi〉xα for i = 1, . . . , l and α ∈ Φ(g, h).

(iii) [xα, x−α] = −hα and hα is a Z-linear combination of the elements h1, . . . , hl.
(iv) cαβ = ±(r + 1) where r is the largest integer such that β − rα ∈ Φ(g, h).

As is customary we have used the notation 〈β, α〉 =
2B(tβ ,tα)
B(tα,tα) ∈ Z with α, β ∈

Φ(g, h) for the Cartan integers of Φ(g, h). The Z-span g(Z) of such a basis is
obviously a Lie algebra over Z so that tensor products with finite fields can be
considered. Certain groups of automorphisms of these algebras turn out to be simple.
With this method Chevalley constructed infinite series of finite simple groups in a
uniform way. For g exceptional he also exhibited some previously unknown ones
[25, p. 1].

47
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But Theorem 5.2 states way more than the mere existence of a basis with integer
structure constants. Up to sign, it gives the entire multiplication table of g only in
terms of the root system Φ(g, h). The main result of this chapter will be an analogue
of Theorem 5.2 for any real semisimple Lie algebra g0. To make this more precise,
let g0 = k⊕ p be a Cartan decomposition of g0 determined by a Cartan involution
θ. Let h0 ⊂ g0 be a θ-stable Cartan subalgebra such that h0 ∩ p is of maximal
dimension. Consider the complexification (g, h) of (g0, h0). The complex conjugation
σ in g with respect to g0 induces an involution of the root system Φ(g, h). We will
construct a real basis B of g0 with (half-)integer structure constants. More than
that, we compute the entire multiplication table of g0 in terms of the root system
Φ(g, h) and its involution induced by σ. For the full statement see Theorem 5.18.

The idea of the construction is as follows. We pick a Chevalley basis C of (g, h)
and for xα ∈ C we consider twice its real and its imaginary part, Xα = xα + σ(xα)
and Yα = i(xα − σ(xα)), as typical candidates of elements in B. It is clear that
σ(xα) = dαxασ for some dα ∈ C where ασ denotes the image of α under the action
of σ on Φ(g, h). But to hope for simple formulas expanding [Xα, Xβ ] as linear
combination of other elements Xγ , we need to adapt the Chevalley basis C to
get some control on the constants dα. A starting point is the following lemma of
D. Morris [78, Lemma 6.4, p. 480]. We state it using the notation we have established
so far. Let τ be the complex conjugation in g with respect to the compact form
u = k⊕ ip.

Lemma 5.3. There is a Chevalley basis C of (g, h) such that for all xα ∈ C
(i) τ(xα) = x−α,

(ii) σ(xα) ∈ {±xασ ,±ixασ}.
In fact Morris proves this for any Cartan subalgebra h ⊂ g which is the

complexification of a general θ-stable Cartan subalgebra h0 ⊂ g0. With our special
choice of a so-called maximally noncompact θ-stable Cartan subalgebra h0, we can
sharpen this lemma. We will adapt the Chevalley basis C to obtain σ(xα) = ±xασ
(Proposition 5.8) and we will actually determine which sign occurs for each root
α ∈ Φ(g, h) (Proposition 5.13). By means of a Chevalley basis of (g, h) thus adapted
to σ and τ we will then obtain a version of Theorem 5.2 over the field of real numbers
(Theorem 5.18). We remark that a transparent method of consistently assigning
signs to the constants cαβ has been proposed by Frenkel–Kac [37].

Various applications will be given. To begin with, if g0 admits a complex
structure, the basis B uncovers a particular complex structure explicitly. If a
complex structure of g0 is known, we explain how the freedom of choices in the
construction of B can be used to reproduce the initial complex structure in this
fashion. This leads to a nice characterization of the three different special cases of a
semisimple algebra g0 (split, compact or complex) in terms of the type of roots of
the complexification (Theorem 5.19) which in itself was most likely known before.
We see that in the split case the basis B boils down to twice the Chevalley basis 2C.
In the compact case it becomes the basis in the standard construction of a compact
form of a complex semisimple algebra g.

As another notable feature of the basis B we observe that part of it spans
the nilpotent algebra n in an Iwasawa decomposition g0 = k ⊕ a ⊕ n. In fact, a
variant of B is the disjoint union of three sets spanning the Iwasawa decomposition
(Theorem 5.20). For all Iwasawa n-algebras we obtain integer structure constants
whose absolute values have upper bound six. Invoking the classification of complex
semisimple Lie algebras, we improve this bound to four (Theorem 5.21). Moreover,
with our basis and a fixed set of signs for the constants cαβ , the multiplication
table of all exponentiated Iwasawa N -groups can be read off from the root system
Φ(g, h) and the involution σ. By a criterion of Malcev [73] the basis verifies that
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Iwasawa N -groups contain uniform lattices (Corollary 5.22). This is a property
which only countably many isomorphism types of nilpotent Lie groups possess. Yet
it is easy to construct uncountable families of nonisomorphic nilpotent Lie groups.
We explain a uniform way of constructing coordinate systems for symmetric spaces
of noncompact type (Section 5.4). Finally we illustrate our methods by giving
explicit realizations of Iwasawa N -groups case by case for real rank one semisimple
Lie algebras (Sections 6.1-6.4). For g0 = so(n, 1) and g0 = su(n, 1) we obtain the
abelian group Rn−1 and the Heisenberg group H2n−1 (compare [58, Problem 5,
p. 426] and [47, Exercise E1, p. 215]). Similarly, for g0 = sp(n, 1) and g0 = f4(−20)

the resulting groups are the quaternionic and octonionic Heisenberg groups HH4n−1

and OH15 (compare [91, Section 9.3, p. 33]).
The outline of sections is as follows. Section 2 recalls the concept of restricted

roots as well as the Iwasawa decomposition of real semisimple Lie algebras. Section 3
carries out the adaptation procedure for a Chevalley basis as we have indicated. In
Section 4 the Chevalley-type theorem for real semisimple Lie algebras is proven.
Sections 5 and 6 conclude with the applications described above.

2. Restricted roots and the Iwasawa decomposition

Again let g0 be a real semisimple Lie algebra with Cartan decomposition g0 = k⊕ p
determined by a Cartan involution θ. There is a maximal abelian θ-stable subalgebra
h0 ⊆ g0, unique up to conjugation, such that a = h0 ∩ p is maximal abelian in
p [48, pp. 259 and 419–420]. The dimension of a is called the real rank of g0,
rankR g0 = dimR a. Given a linear functional α on a, let

g0
α =

{
x ∈ g0 : [h, x] = α(h)x for each h ∈ a

}
.

If g0
α is not empty, it is called a restricted root space of (g0, a) and α is called a

restricted root of (g0, a). Let Φ(g0, a) be the set of restricted roots. The Killing
form B0 of g0 restricts to a Euclidean inner product on a which carries over to the
dual a∗.

Proposition 5.4. The set Φ(g0, a) is a root system in a∗.

For a proof see [48, p. 456]. Note two differences to the complex case. On the
one hand, the root system Φ(g0, a) might not be reduced. This means that given
α ∈ Φ(g0, a), it may happen that 2α ∈ Φ(g0, a). On the other hand, reduced root
spaces will typically not be one-dimensional. Now choose positive roots Φ+(g0, a).
Then define a nilpotent subalgebra n = ⊕ g0

α of g0 by the direct sum of all restricted
root spaces of positive restricted roots. We want to call it an Iwasawa n-algebra.

Proposition 5.5 (Iwasawa decomposition). The real semisimple Lie algebra g0 is
the direct vector space sum of a compact, an abelian and a nilpotent subalgebra,

g0 = k⊕ a⊕ n.

A proof is given in [48, p. 250, Theorem 3.4]. The possible choices of positive
restricted roots exhaust all possible choices of Iwasawa n-algebras in the decom-
position. Their number is thus given by the order of the Weyl group of Φ(g0, a).
Let g = g0

C be the complexification. Then h = h0
C is a Cartan subalgebra of g. It

determines the set of roots Φ(g, h) ⊆ h∗. Let B = B0
C be the complexified Killing

form. Let hR ⊂ h be the real span of the root vectors tα for α ∈ Φ(g, h). It is
well-known that the restriction of B turns hR into a Euclidean space.

Proposition 5.6. We have hR = a⊕ i(h0 ∩ k).
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For a proof see [48, p. 259, Lemma 3.2]. In what follows, we will need various
inclusions as indicated in the diagram

a

i
��

k

{{xx
xx

xx
x

// g0

l
��

hR
j // h // g.

The compatibility l∗B = B0 is clear. Let Σ = {α ∈ Φ(g, h) : i∗α 6= 0} be the set of
roots which do not vanish everywhere on a. The following proposition explains the
term “restricted roots”. It is proven in [48, pp. 263 and 408].

Proposition 5.7.

(i) We have Φ(g0, a) = i∗Σ.
(ii) For each β ∈ Φ(g0, a), we have g0

β = (
⊕

i∗α=β
α∈Σ

gα) ∩ g0.

Statement (i) says in particular that each α ∈ Σ takes only real values on a. In
fact, j∗Φ(g, h) is a root system in h∗R and the restriction map i∗ translates to the
orthogonal projection k∗ onto a∗.

3. Adapted Chevalley bases

Recall that σ and τ denote the complex anti-linear automorphisms of g given by
conjugation with respect to g0 = k⊕ p and the compact form u = k⊕ ip, respectively.
Evidently θ = l∗(στ) so that στ is the unique complex linear extension of θ from g0

to g which we want to denote by θ as well. Since σ, τ and θ are involutive, σ and τ
commute. Choose positive roots Φ+(g, h) such that i∗Φ+(g, h) = Φ+(g0, a)∪{0} and
let ∆(g, h) ⊂ Φ+(g, h) be the set of simple roots. For α ∈ Φ(g, h) let hα = 2

B(tα,tα) tα
and set hi = hαi for the simple roots αi ∈ ∆(g, h) where 1 ≤ i ≤ l = rankC(g).

Let ασ, ατ , αθ ∈ h∗ be defined by ασ(h) = α(σ(h)), ατ (h) = α(τ(h)) and αθ(h) =
α(θ(h)) where α ∈ h∗, h ∈ h. If α ∈ Φ(g, h) and xα ∈ gα, then

[h, σ(xα)] = σ([σ(h), xα]) = σ(α(σ(h))xα) = α(σ(h))σ(xα)

so that σ(xα) ∈ gασ and similarly for τ and θ. Thus in this case ασ, ατ and αθ are
roots. From Proposition 5.6 we see directly that ατ = −α for each α ∈ Φ(g, h). We
adopt a terminology of A. Knapp [58, p. 390] and call a root α ∈ Φ(g, h) real if it is
fixed by σ, imaginary if it is fixed by θ and complex in all remaining cases. Note
that ασ = −α if and only if α is imaginary. A real root vanishes on h0 ∩ k, thus
takes only real values on h0. An imaginary root vanishes on a, thus takes purely
imaginary values on h0. A complex root takes mixed complex values on h0. The
imaginary roots form a root system ΦiR [48, p. 531]. The complex roots ΦC and the
real roots ΦR give a decomposition of the set Σ = ΦC ∪ ΦR which restricts to the
root system i∗Σ = Φ(g0, a). Let ∆0 = ∆(g, h) ∩ ΦiR be the set of simple imaginary
roots and let ∆1 = ∆(g, h) ∩ Σ be the set of simple complex or real roots.

Recall Definition 5.1, Theorem 5.2 and Lemma 5.3 of Section 1. Our goal is to
prove the following refinement of Lemma 5.3.

Proposition 5.8. There is a Chevalley basis C = {xα, hi : α ∈ Φ(g, h), 1 ≤ i ≤ l}
of (g, h) such that

(i) τ(xα) = xατ = x−α for each α ∈ Φ(g, h),
(ii) σ(xα) = ±xασ for each α ∈ Φ(g, h) and

σ(xα) = +xασ for each α ∈ ΦiR ∪∆1.

Remark 5.9. A. Borel [9, Lemma 3.5, p. 116] has built on early work by F. Gant-
macher [41] to prove a lemma which at least assures that σ(xα) = ±xασ for all
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α ∈ Φ(g, h). But Borel assumes a technical condition, namely that θ leaves invariant
an element in hR which is regular in g. In Proposition 3.7, p. 118 of the same
reference he achieves this condition using previous joint work with G. D. Mostow
[16, Theorem 4.5]. But with this method he of necessity comes up with a maximally
compact θ-stable Cartan subalgebra h0 of g0, which is one that has intersection
with k of maximal dimension. Since we will be interested in geometric applications
such as symmetric spaces and the Iwasawa decomposition, we need to work with
a maximally noncompact θ-stable Cartan subalgebra h0 that has intersection with
p of maximal dimension. For these types of θ-stable Cartan subalgebras, Borel’s
technical assumption definitely goes wrong.

We will say that a Chevalley basis C is τ -adapted if it fulfills (i) and σ-adapted
if it fulfills (ii) of the proposition. We prepare the proof with the following lemma.

Lemma 5.10. There is a unique involutive permutation ω : ∆1 → ∆1 and there are
unique nonnegative integers nβα with α ∈ ∆1 and β ∈ ∆0 such that for each α ∈ ∆1

(i) αθ = −ω(α)−
∑
β∈∆0

nβαβ,

(ii) nβ ω(α) = nβα and
(iii) ω extends to a Dynkin diagram automorphism ω : ∆(g, h)→ ∆(g, h).

Part (i) is due to I. Satake [99, Lemma 1, p. 80]. As an alternative to Satake’s
original proof, A. L. Onishchik and E. B. Vinberg suggest a slightly differing argument
as a series of two problems in [89, p. 273]. We will present the solutions because
they made us observe the additional symmetry (ii) which will play a key role in
all that follows. Part (iii) can be found in the appendix of [86, Theorem 1, p. 75],
which was written by J. Šilhan.

Proof. Let C be an involutive (n×n)-matrix with nonnegative integer entries.
It acts on the first orthant X of Rn, the set of all v ∈ Rn with only nonnegative
coordinates. We claim that C is a permutation matrix. Since C is invertible, every
column and every row has at least one nonzero entry. Thus we observe |Cv|1 ≥ |v|1
for all v ∈ X. Suppose the i-th column of C has an entry cji ≥ 2 or a second
nonzero entry. Then the standard basis vector εi ∈ X is mapped to a vector of
L1-norm at least 2. But that contradicts C being involutive.

Let α ∈ ∆1. Then αθ is a negative root, so we can write

αθ = −
∑
γ∈∆1

nγαγ −
∑
β∈∆0

nβαβ

with nonnegative integers nγα and nβα. Consider the transformation matrix of
θ acting on h∗ with respect to the basis ∆(g, h). In terms of the decomposition
∆(g, h) = ∆1 ∪∆0 it takes the block form(

−nγα 0
−nβα 1

)
with 1 representing the |∆0|-dimensional unit matrix. The block matrix squares
to a unit matrix. For the upper left block we conclude that (nγα) is a matrix C
as above and thus corresponds to an involutive permutation ω : ∆1 → ∆1. This
proves (i). For the lower left block we conclude that nβα =

∑
δ∈∆1

nβδnδα = nβω(α)

because (nδα) is the aforementioned permutation matrix, so nδα = 1 if δ = ω(α)
and nδα = 0 otherwise. This proves (ii).

For (iii) we only mention the construction. Choose canonical generators of
g with respect to the Cartan subalgebra h ⊂ g. These yield the decomposition
Aut g = Int g o Aut ∆(g, h) of automorphisms of g into inner and outer ones, the
outer ones being identified with Dynkin diagram automorphisms. The extension
of ω is provided by the composition sν where s is the outer part of θ ∈ Aut g and



52 5. INTEGRAL STRUCTURES IN REAL SEMISIMPLE LIE ALGEBRAS

ν is the outer part of a Weyl involution w ∈ Aut g. A Weyl involution is obtained
from the root system automorphism α 7→ −α for α ∈ Φ(g, h) using the canonical
generators. �

Lastly, we recall a well-known fact on simple roots which is for instance proven
in [51, p. 50, Corollary 10.2.A].

Lemma 5.11. Each positive root α ∈ Φ+(g, h) decomposes as a sum α1 + · · ·+ αk
of simple roots αi ∈ ∆(g, h) such that each partial sum α1 + · · ·+ αi is a root.

Proof (of Proposition 5.8). Pick a Chevalley basis C of the pair (g, h). The
proofs of Lemma 5.3 (i) by Borel and Morris make reference to the conjugacy theorem
of maximal compact subgroups in connected Lie groups. We have found a more
hands-on approach that has the virtue of giving a more complete picture of the
proposition: The adaptation of C to τ is gained by adjusting the norms of the xα.
Thereafter the adaptation of C to σ is gained by adjusting the complex phases of
the xα.

From Definition 5.1 (i) we obtain − 2tα
B(tα,tα) = [xα, x−α] = B(xα, x−α)tα, there-

fore B(xα, x−α) < 0 because B(tα, tα) > 0. But also B(xα, τxα) < 0. Indeed,
(xα + τxα) ∈ k where B is negative definite, so B(xα + τxα, xα + τxα) < 0 and
B(xα, xβ) = 0 unless α+ β = 0. If constants bα ∈ C are defined by τxα = bαx−α
for α ∈ Φ(g, h), we conclude that the bα are in fact positive real numbers. More-
over, b−α = b−1

α because τ is an involution. We use Definition 5.1 (ii) to deduce
bα+β = bαbβ from [τxα, τxβ ]=τ([xα, xβ ]) whenever α, β, α+ β ∈ Φ(g, h). In other
words and under identification of α and tα, the map b defined on the root system
j∗Φ(g, h) extends to a homomorphism from the root lattice Q = Z(j∗∆(g, h)) to the
multiplicative group of positive real numbers. We replace each xα by 1√

bα
xα and

easily check that we obtain a Chevalley basis with unchanged structure constants
that establishes (i).

Now assume that C is τ -adapted. It is automatic that σ(xβ) = +xβσ = x−β for
each β ∈ ΦiR because S. Helgason informs us in [48, Lemma 3.3 (ii), p. 260] that for
each imaginary root β the root space gβ lies in k ⊗ C. But k ⊗ C is the fix point
algebra of θ, so the assertion follows from (i) and σ = τθ. We define constants
uα ∈ C by θ(xα) = uαxαθ for α ∈ Φ(g, h). As we have just seen, uα = 1 if α
is imaginary. In general, the τ -adaptation effects σ(xα) = uαxασ and uα = u−α
because σ = τθ = θτ . Note that

−uαu−αhαθ = [uαxαθ , u−αx−αθ ] = [θ(xα), θ(x−α)] = −θ(hα) = −hαθ ,

so u−α = u−1
α and |uα| = 1. From θ2(xα) = xα we get uαθ = u−1

α = u−α (∗).
Next we want to discuss the relation between uα and uω(α) for α ∈ ∆1. First
assume that for a given two-element orbit {α, ω(α)} the integers nβα of Lemma 5.10
vanish for all β ∈ ∆0. A notable case where this condition is vacuous for all
α ∈ ∆1, is that of a quasi-split algebra g0 when ∆0 = ∅. From nβα = 0 we get
ω(α)θ = −α. Thus uω(α) = u−ω(α)θ = uα by means of (∗). Now assume on the
other hand there is β0 ∈ ∆0 such that nβ0α > 0. From Lemma 5.10 (i) and (ii) we
get that −ω(α)θ = α +

∑
β∈∆0

nβαβ is the unique decomposition of −ω(α)θ as a
sum of simple roots. Lemma 5.11 tells us that that this sum can be ordered as
−ω(α)θ = α1 + · · ·+αk such that all partial sums γi = α1 + · · ·+αi are roots. Thus

x−ω(α)θ =
k−1∏
i=1

c −1
αi+1γi ad(xαk) · · · ad(xα2

)(xα1
).
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For one i0 we have αi0 = α and the remaining αi are imaginary. Hence by (∗)
uω(α)x−ω(α) = u−ω(α)θx−ω(α) = θ(x−ω(α)θ ) =

=
k−1∏
i=1

c −1
αi+1γi uα ad(xαθk) · · · ad(xαθ2)(xαθ1) =

=
k−1∏
i=1

c
αθ
i+1

γθ
i

cαi+1γi
uα x−ω(α) = ±uαx−ω(α).

Here we used that cαβ = ±cαθβθ by Theorem 5.2 (iv) because θ induces an auto-
morphism of the root system Φ(g, h). It follows that uω(α) = ±uα and the sign
depends on the structure constants of the Chevalley basis only. We want to achieve
uω(α) = +uα. So for all two-element orbits {α, ω(α)} with uα = −uω(α), replace
xω(α) and x−ω(α) by their negatives. This produces a new τ -adapted Chevalley basis
{x′α, hi : α ∈ Φ(g, h)} though some structure constants might have changed sign.
Set θ(x′α) = u′αx

′
αθ for all α ∈ Φ(g, h). We claim that u′ω(α) = u′α for all α ∈ ∆1.

The only critical case is that of an α ∈ ∆1 with nβ0α > 0 for some β0 ∈ ∆0. But in
this case we deduce from Lemma 5.10 that neither −αθ nor −ω(α)θ is simple, yet
only vectors xω(α), x−ω(α) corresponding to simple roots ω(α) with uω(α) = −uα
have been replaced. So still u′ω(α) = u′α if we had uω(α) = uα. If uω(α) = −uα, the

replacement is given by x′αθ = xαθ and x′ω(α)θ = xω(α)θ as well as x′α = xα whereas

x′ω(α) = −xω(α). Thus,

u′αx
′
αθ = θ(x′α) = θ(xα) = uαxαθ = uαx

′
αθ and

u′ω(α)x
′
ω(α)θ = θ(x′ω(α)) = θ(−xω(α)) = −uω(α)xω(α)θ = −uω(α)x

′
ω(α)θ .

It follows that u′ω(α) = −uω(α) = uα = u′α. Since ∆(g, h) is a basis of h∗, there

exists h ∈ h such that eα(h) = u′α and (−i)α(h) ∈ (−π, π] for all α ∈ ∆(g, h). From
u′β = 1 for each β ∈ ∆0 we get h ∈

⋂
β∈∆0

ker(β) and from u′ω(α) = u′α we get

α(h) = ω(α)(h) for each α ∈ ∆1. Thus by Lemma 5.10 we have for each α ∈ ∆1

αθ(h) = −α(h).

We remark that since α(θh) = α(−h) holds true for all α ∈ ∆(g, h), it follows

θ(h) = −h, so h ∈ ia. Let x′′α = e−
α(h)

2 x′α for each α ∈ Φ(g, h). Then Definition 5.1 (i)
and (ii) hold for the new x′′α. But so does Proposition 5.8 (i) because α(h) is purely
imaginary for each α ∈ Φ(g, h) and because τ is complex antilinear. For α ∈ ∆1 we
calculate

θ(x′′α) = e−
α(h)

2 θ(x′α) = e−
α(h)

2 u′αx
′
αθ = e

α(h)
2 e

αθ(h)
2 x′′αθ = x′′αθ .

From now on we will work with the basis {x′′α, hi : α ∈ Φ(g, h)} and drop the double
prime. We have θ(xα) = xαθ for each α ∈ ΦiR∪∆1. It remains to show θ(xα) = ±xαθ
for general α ∈ Φ(g, h). First let α ∈ Φ(g, h)+ be positive and let α = α1 + · · ·+ αk
be a decomposition as in Lemma 5.11. For 1 ≤ j ≤ k let γj = α1 + · · ·+ αj . Then
we have

xα =
k−1∏
i=1

c −1
αi+1γi ad(xαk) · · · ad(xα2

)(xα1
).

Thus

θ(xα) =
k−1∏
i=1

c −1
αi+1γi ad(xαkθ ) · · · ad(xα2

θ )(xα1
θ ) =

k−1∏
i=1

c
αi+1

θγθ
i

cαi+1γi
xαθ = ±xαθ .

Finally we compute

[θ(x−α),±xαθ ] = [θ(x−α), θ(xα)] = θ(hα) = hαθ = [x−αθ , xαθ ],

hence θ(x−α) = ±x−αθ . We conclude θ(xα) = ±xαθ and σ(xα) = ±xασ for all
α ∈ Φ(g, h). �
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The constructive method of proof also settles two obvious questions that remain.
Which combinations of signs of the cαβ can occur for a σ- and τ -adapted Chevalley
basis {xα, hα}? And if we set σ(xα) = sgn(α)xασ for α ∈ Φ(g, h), how can we
compute sgn(α) ∈ {±1}? We put down the answers in the following two propositions.

Proposition 5.12. A set of Chevalley constants {cα,β : α+ β ∈ Φ(g, h)} of g can
be realized by a σ- and τ -adapted Chevalley basis if and only if for each two-element
orbit {α, ω(α)} of roots in ∆1 with nβ0α > 0 for some β0 ∈ ∆0 we have

k−1∏
i=1

c
αi+1

θγθ
i

cαi+1γi
= 1

where −ω(α)θ = α1 + · · ·+ αk with αi ∈ ∆(g, h) and γi = α1 + · · ·+ αi ∈ Φ(g, h)
for all i = 1, . . . , k.

Proof. If the condition on the structure constants holds, take a Chevalley basis
of (g, h) which realizes them and start the adaptation procedure of the proof of
Proposition 5.8. Thanks to the condition, the replacement xα 7→ x′α in the course
of the proof is the identity map. The other two adaptations xα 7→ 1√

bα
xα and

x′α 7→ x′′α leave the structure constants unaffected. Conversely, if cαβ are the
structure constants of a σ- and τ -adapted Chevalley basis, we compute similarly as
in the proof of Proposition 5.8 that for each such critical α ∈ ∆1 we have

x−ω(α) = θ(x−ω(α)θ ) =
k−1∏
i=1

c
αi+1

θγθ
i

cαi+1γi
x−ω(α). �

In particular, for all quasi-split g0 as well as for all g0 with ω = id∆1
all

structure constants of any Chevalley basis of (g, h) can be realized by a σ- and
τ -adapted one. To compute sgn(α) first apply σ to the equation [xα, x−α] = −hα
to get sgn(α)sgn(−α)[xασ , x−ασ ] = −hασ , so sgn(α) = sgn(−α) for all α ∈ Φ(g, h).
Moreover, we get the recursive formula

sgn(α+ β) = sgn(α)sgn(β)
cασβσ

cαβ

for all α, β ∈ Φ(g, h) such that α + β ∈ Φ(g, h). This follows from applying σ to
the equation [xα, xβ ] = cαβxα+β . Since sgn(α) = 1 for α ∈ ∆(g, h) the following
absolute version of the recursion formula is immediate.

Proposition 5.13. Let {xα, hα} be a σ- and τ -adapted Chevalley basis of (g, h). If
α ∈ Φ(g, h)+, let α = α1 + · · ·+αk with αi ∈ ∆(g, h) and γi = α1 + · · ·+αi ∈ Φ(g, h)
for all i = 1, . . . , k. Then

sgn(α) =
k−1∏
i=1

cαi+1
σγσ
i

cαi+1γi
.

It is understood that the empty product equals one. Also note that cασβσ =
c−ασ−βσ = cαθβθ . For carrying out explicit computations we still need to comment
on how to find a choice of signs for the cαβ in Theorem 5.2 (ii) as to obtain some
set of Chevalley constants to begin with. This problem has created its own industry.
One algorithm is given in [98, p. 54]. A similar method is described in [25, p. 58],
introducing the notion of extra special pairs of roots. A particularly enlightening
approach goes back to I. B. Frenkel and V. G. Kac in [37, p. 40]. It starts with the
case of simply-laced root systems, which are those of one root length only, then
tackles the non-simply-laced case. An exposition is given in [54, Chapters 7.8–7.10,
p. 105] and also in [32, p. 189]. In this picture the product expression appearing in
Propositions 5.12 and 5.13 can be easily computed. So this approach shall be our
method of choice. We briefly describe how it works.
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Let Φ be a root system of type Al with l ≥ 1, Dl with l ≥ 4 or El with l = 6, 7, 8
in a Euclidean space V with scalar product (·, ·) such that (α, α) = 2 for all α ∈ Φ.
Let Q = ZΦ ⊂ V be the root lattice.

Definition 5.14. A map ε : Q×Q→ {1,−1} is called an asymmetry function if
for all α, β, γ, δ ∈ Q it satisfies the three equations

ε(α+ β, γ) = ε(α, γ)ε(β, γ),

ε(α, γ + δ) = ε(α, γ)ε(α, δ),

ε(α, α) = (−1)
1
2 (α,α).

Immediate consequences of the defining equations are ε(α, 0) = ε(0, β) = 1 and
ε(α, β)ε(β, α) = (−1)(α,β) as well as

ε(α, β) = ε(−α, β) = ε(α,−β) = ε(−α,−β)

for α, β ∈ Q. If α ∈ Φ is a root, we have ε(α, α) = −1. We construct an asymmetry
function. Choose simple roots ∆ = {α1, . . . , αl} ⊂ Φ and label each edge of the
Dynkin diagram of (Φ,∆) with an arrow pointing to either of the adjacent nodes.
The resulting diagram is called an oriented Dynkin diagram. Then for αi, αj ∈ ∆
define ε(αi, αj) = −1 if either i = j or if αi and αj are connected by an edge whose
arrow points from αi to αj . In all other cases set ε(αi, αj) = 1. Then extend ε from
∆×∆ to Q×Q by the first two equations of Definition 5.14.

Let h(Φ) be a complex vector space with basis {ṫ1, . . . , ṫl}. For each α ∈ V let

ṫα =
∑l
i=1 siṫi if α =

∑l
i=1 siαi and let gα(Φ) be a one-dimensional complex vector

space with basis {xα}. Set

g(Φ) = h(Φ)⊕
⊕
α∈Φ

gα(Φ).

A bilinear, antisymmetric map [·, ·] : g(Φ)× g(Φ) −→ g(Φ) is determined by

[ṫi, ṫj ] = 0 for 1 ≤ i, j ≤ l,
[ṫi, xα] = (α, αi)xα for 1 ≤ i ≤ l and α ∈ Φ,

[xα, x−α] = −ṫα for α ∈ Φ,

[xα, xβ ] = 0 for α, β ∈ Φ, α+ β /∈ Φ, β 6= −α,
[xα, xβ ] = ε(α, β)xα+β for α, β, α+ β ∈ Φ.

Proposition 5.15. This bracket turns g(Φ) into a simple Lie algebra of type Al, Dl

or El with Cartan subalgebra h(Φ) and root space decomposition as given above.

The proof is given in [54, Proposition 7.8, p. 106]. Its essential part is the
verification of the Jacobi identity. In particular, the proposition identifies Φ with
the root system of g(Φ) with respect to the Cartan subalgebra h(Φ).

Proposition 5.16. The set C(Φ) = {xα, ṫi : α ∈ Φ, 1 ≤ i ≤ l} is a Chevalley basis
of (g(Φ), h(Φ)).

Proof. It only remains to verify that the elements ṫα coincide with the elements
hα = 2

BΦ(tα,tα) tα. Here hα and tα are defined by the Killing form BΦ of g(Φ) as in

the beginning of Section 1. To check this, we define another bilinear form (·, ·)Φ

on g(Φ) by setting (ṫi, ṫj)Φ = (αi, αj) and (xα, xβ)Φ = −δα,−β (Kronecker-δ) for
α, β ∈ Φ as well as (h, xα)Φ = 0 for h ∈ h(Φ) and α ∈ Φ. It is easily seen that (·, ·)Φ

is invariant. Thus it is proportional to the Killing form BΦ. So if (·, ·)Φ = λ−1BΦ

for λ ∈ C, then from the second equation defining the bracket above, we get

(ṫi, ṫj)Φ = (αi, αj) = αi(ṫj) = BΦ(tαi , ṫj) = λ(tαi , ṫj)Φ
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for all 1 ≤ i, j ≤ l. It follows that ṫα = λtα for all α ∈ Φ. Hence

ṫα = 2
(ṫα,ṫα)Φ

ṫα = 2
BΦ(tα,tα) tα = hα. �

Let now Φ be more precisely of type Dl+1 with l ≥ 3, A2l−1 with l ≥ 2, E6 or
D4. Then in the first three cases the Dynkin diagram of (Φ,∆) has a nontrivial
automorphism µ̄ : ∆→ ∆ of order r = 2 and in the remaining case an automorphism
µ̄ : ∆→ ∆ of order r = 3. Choose a µ̄-invariant orientation of the Dynkin diagram
inducing the asymmetry function ε. The diagram automorphism µ̄ extends to
an outer automorphism µ̄ : Φ → Φ of the root system. This induces an outer
automorphism µ of the Lie algebra g(Φ) which still has order r. Let

Ψl = {α ∈ Φ: µ̄(α) = α},
Ψs = {r−1

(
α+ µ̄(α) + · · ·+ µ̄r−1(α)

)
: α ∈ Φ, µ̄(α) 6= α}.

Then Ψ = Ψl∪Ψs is the decomposition into long and short roots of an irreducible root
system of type Bl, Cl, F4 or G2 respectively. We have a corresponding decomposition
of simple roots of Ψ given by Π = Πl ∪Πs where

Πl = {α ∈ ∆: µ̄(α) = α},
Πs = {r−1

(
α+ · · ·+ µ̄r−1(α)

)
: α ∈ ∆, µ̄(α) 6= α}.

If α ∈ Ψl, let α′ = α ∈ Φ. If α ∈ Ψs, let α′ = β for some β ∈ Φ with α =
r−1

(
β + · · ·+ µ̄r−1(β)

)
. Define yα ∈ g(Φ) by yα = xα′ if α ∈ Ψl and yα =

xα′ + · · · + xµ̄r−1(α′) if α ∈ Ψs. Note that we have ṫα = ṫα′ if α ∈ Ψl and ṫα =

r−1
(
ṫα′ + · · ·+ ṫµ̄r−1(α′)

)
if α ∈ Ψs. As usual, let hα = 2

BΦ(tα,tα) tα = 2
(ṫα,ṫα)Φ

ṫα

for α ∈ Ψ. If Π = {α1, . . . , αl}, let hi = hαi . For α ∈ Ψ let gα(Ψ) be the one-
dimensional subspace of g(Φ) spanned by yα. Let h(Ψ) be the subspace of h(Φ)
spanned by all hi for 1 ≤ i ≤ l. Set

g(Ψ) = h(Ψ)⊕
⊕
α∈Ψ

gα(Ψ).

Proposition 5.17. The fix point algebra of the automorphism µ acting on g(Φ) is
given by g(Ψ). It is simple of type Bl, Cl, F4 or G2 respectively. A Cartan subalgebra
is given by h(Ψ) which induces the root space decomposition as given above. The
set C(Ψ) = {yα, hi : α ∈ Ψ, 1 ≤ i ≤ l} is a Chevalley basis of (g(Ψ), h(Ψ)). If
α, β, α+ β ∈ Ψ, we have

[yα, yβ ] = ε(α′, β′)(p+ 1)yα+β

where p is the largest integer such that α − pβ ∈ Ψ and where α′, β′ ∈ Φ are so
chosen that α′ + β′ ∈ Φ.

The proof is given in [54, Proposition 7.9, p. 108].

4. Integral structures

Let us return to the Lie algebra g = g0 ⊗ C with g0 real semisimple. Pick a σ- and
τ -adapted Chevalley basis C of (g, h). Set Xα = xα + σ(xα) and Yα = i(xα − σ(xα))
for α ∈ Φ(g, h). Let H1

α = hα + hασ and H0
α = i(hα − hασ). In other words, Xα,

H1
α are twice the real part and Yα, H0

α are twice the imaginary part of xα, hα in
the complex vector space g with real structure σ. Let Zα = Xα + Yα. Let Φ+ ∗

C be

Φ+
C with one element from each pair {α, ασ} removed and set Φ∗C = Φ+ ∗

C ∪ −Φ+ ∗
C .

Here, as always, the plus sign indicates intersection with all positive roots. Pick one
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element from each two-element orbit {α, ω(α)} in ∆1 and subsume them in a set
∆∗1. Consider the sets

BR = {Zα : α ∈ ΦR}, BiR = {Xα, Yα : α ∈ Φ+
iR}, BC = {Xα, Yα : α ∈ Φ∗C},

H1 = {H1
α : α ∈ ∆1 \∆∗1}, H0 = {H0

α : α ∈ ∆0 ∪∆∗1}

and let B be their union. We agree that cαβ = 0 if α+ β /∈ Φ(g, h) and xα = 0 thus
Xα = Yα = Zα = 0 if α /∈ Φ(g, h). Since 〈β, α〉 (see below Theorem 5.2) is linear in
β, we may allow this notation for all root lattice elements β ∈ Q = ZΦ(g, h).

Theorem 5.18. The set B is a basis of g0 and the subsets H1 and H0 are bases of
a and h0 ∩ k. The resulting structure constants lie in 1

2Z and are given as follows.

(i) Let α, β ∈ Φ(g, h). Then [Hi
α, H

j
β ] = 0 for i, j ∈ {0, 1} and

(ii) [H1
α, Xβ ] = 〈β + βσ, α〉Xβ , [H1

α, Yβ ] = 〈β + βσ, α〉Yβ ,
[H0

α, Xβ ] = 〈β − βσ, α〉Yβ , [H0
α, Yβ ] = −〈β − βσ, α〉Xβ.

(iii) Let α ∈ ΦR. Then
[Zα, Z−α] = −sgn(α)2H1

α

and H1
α is a Z-linear combination of elements in H1.

(iv) Let α ∈ Φ+
iR. Then

[Xα, Yα] = H0
α

and H0
α is a Z-linear combination of elements H0

β for β ∈ ∆0.

(v) Let α ∈ Φ∗C. Then
[Xα, X−α] = −H1

α, [Xα, Y−α] = −H0
α, [Yα, Y−α] = H1

α

where H1
α and 2H0

α are Z-linear combinations in H1 and H0, respectively.
(vi) Let α, β ∈ Φ(g, h) with β /∈ {−α,−ασ}. Then

[Xα, Xβ ] = cαβXα+β + sgn(α)cασβXασ+β ,
[Xα, Yβ ] = cαβYα+β + sgn(α)cασβYασ+β ,
[Yα, Yβ ] = −cαβXα+β + sgn(α)cασβXασ+β.

Note that (ii) and (vi) also yield the structure constants involving Zβ because
for β ∈ ΦR we have Zβ = Xβ if sgn(β) = 1 and Zβ = Yβ if sgn(β) = −1. Also, in
(vi) there is no reason to prefer α over β and indeed, by anticommutativity we have
sgn(α)cασβXασ+β = sgn(β)cαβσXα+βσ and similarly we obtain sgn(α)cασβYασ+β =
−sgn(β)cαβσYα+βσ . Of course the basis 2B has integer structure constants.

Proof. By construction the set B consists of linear independent elements and we
have |B| = dimC g = dimR g0. So B is a basis. Moreover, θ(Hj

α) = (−1)jHj
α for all

α ∈ Φ(g, h) so that H1 ⊂ a and H0 ⊂ h0 ∩ k. Since dimR a = |∆1| − |∆∗1|, these
subsets generate. We verify the list of relations. Part (i) is clear. For part (ii) we
compute

[H1
α, Xβ ] = [hα + hασ , xβ + sgn(β)xβσ ] = 〈β, α〉xβ + sgn(β)〈βσ, α〉xβσ+

+ 〈β, ασ〉xβ + sgn(β)〈βσ, ασ〉xβσ = 〈β + βσ, α〉Xβ

where we used that 〈βσ, ασ〉 = 〈β, α〉. The other three equations follow similarly.
Let α ∈ ΦR. Then Zα = Xα if sgn(α) = 1 and Zα = Yα if sgn(α) = −1. In
the two cases we have [Xα, X−α] = [2xα, 2x−α] = −4hα = −2H1

α and [Yα, Y−α] =
−4[xα, x−α] = 2H1

α so we get the first part of (iii). We verify that H1
α is a Z-linear

combination within H1 for general α ∈ Φ(g, h). Under the Killing form identification
of h with h∗ the elements tα ∈ h correspond to the roots α ∈ h∗. The elements
hα ∈ h correspond to the forms 2α

B(α,α) ∈ h∗ which make up a root system as well,

namely the dual root system of Φ(g, h) with simple roots {hβ : β ∈ ∆(g, h)}. We
thus have

hα =
∑
γ∈∆1

kγhγ +
∑
β∈∆0

kβhβ
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with certain integers kγ , kβ which are either all nonnegative or all nonpositive. Since
βσ = −β for β ∈ ∆0, we have

H1
α = hα + hασ =

∑
γ∈∆1

kγ(hγ + hγσ ) =
∑
γ∈∆1

kγH
1
γ .

From Lemma 5.10 we see γ+γσ = ω(γ)+ω(γ)σ and B(ω(γ), ω(γ)) = B(γ, γ). Thus

H1
γ = hγ+hγσ =

2tγ
B(γ,γ) +

2tγσ

B(γσ,γσ) =
2tγ+γσ

B(γ,γ) =
2tω(γ)+ω(γ)σ

B(ω(γ),ω(γ)) = hω(γ)+hω(γ)σ = H1
ω(γ)

and it follows that

H1
α =

∑
γ∈∆1\∆∗1

((1− δγ,ω(γ))kω(γ) + kγ)H1
γ

with Kronecker-δ. This proves the second part of (iii). Let α ∈ ΦiR. Then

[Xα, Yα] = [xα + x−α, i(xα − x−α)] = 2ihα = H0
α.

Since the elements hα for α ∈ ΦiR form the dual root system of ΦiR, we see that
H0
α is a Z-linear combination of elements H0

β = 2ihβ with β ∈ ∆0. This proves

(iv). To prove (v) note first that for each α ∈ Φ(g, h) the difference α − ασ is
not a root. Indeed, if it were, then from the recursion formula on p. 54 we would
get sgn(α − ασ) = sgn(α)sgn(−ασ)

cασ,−α
cα,−ασ

= −1 contradicting Proposition 5.8 (ii)

because α−ασ = α+αθ ∈ ΦiR. With this remark the three equations are immediate.
It remains to show that H0

α is a 1
2Z-linear combination within H0. From the above

decomposition of hα as a sum of simple dual roots we get

H0
α = i(hα − hασ ) =

∑
γ∈∆1

kγH
0
γ +

∑
β∈∆0

kβH
0
β .

We still have to take care of H0
γ for γ ∈ ∆1 \∆∗1. From Lemma 5.10 we conclude

hγσ = 2
B(γ,γ) tγσ = hω(γ) +

∑
β∈∆0

nβγ
B(β,β)
B(γ,γ)hβ

and the numbers mβγ = nβγ
B(β,β)
B(γ,γ) are integers. We thus get

H0
γ = i(hγ − hγσ ) = i(hγ − hω(γ) −

∑
β∈∆0

mβγhβ) =

= −H0
ω(γ) − 2i

∑
β∈∆0

mβγhβ = −H0
ω(γ) −

∑
β∈∆0

mβγH
0
β .

If ω(γ) ∈ ∆∗1, this realizes H0
γ as a Z-linear combination within H0. If ω(γ) = γ, we

obtain H0
γ = − 1

2

∑
β∈∆0

mβγH
0
β and this is the only point where half-integers might

enter the picture. Finally to prove (vi) use the recursion formula to compute

[Xα, Xβ ] = [xα + sgn(α)xασ , xβ + sgn(β)xβσ ] =

= cαβxα+β + sgn(α)sgn(β)cασβσxασ+βσ+

+ sgn(α)cασβxασ+β + sgn(β)cαβσxα+βσ =

= cαβxα+β + cαβsgn(α+ β)xασ+βσ+

+ cασβsgn(α)xασ+β + cασβsgn(α)sgn(ασ + β)xα+βσ =

= cαβXα+β + sgn(α)cασβXασ+β .

The other two equations follow similarly. �
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5. Consequences and applications

5.1. Special cases of g0. We recall that g0 is called split if a = h0, compact
if B0 is negative definite, that is if k = g0, and (abstractly) complex if g0 has an
R-vector space automorphism J such that J2 = −id and [JX, Y ] = J [X,Y ] for all
X,Y ∈ g0. In the following theorem we will characterize these properties in terms
of the three different types of roots in Φ(g, h). In particular we construct an explicit
complex structure J of g0 if it admits one. Afterwards we discuss how the three
special cases endow the basis B with additional features.

Theorem 5.19. The semisimple Lie algebra g0 is split, compact or complex if and
only if all roots in Φ(g, h) are real, imaginary or complex, respectively.

Proof. We have ΦR = Φ(g, h) if and only if ασ = α for all α ∈ Φ(g, h) if and only
if ∆0 = ∆∗1 = H0 = ∅ if and only if h0 = RH1 = a. Similarly, ΦiR = Φ(g, h) if
and only if ασ = −α for all α ∈ Φ(g, h) if and only if ∆1 = H1 = ∅ if and only if
h0 = RH0 ⊂ k and (gα ⊕ g−α) ∩ g0 ⊂ k for all α ∈ Φ(g, h) if and only if g0 = k.

Let ΦC = Φ(g, h). Then ∆0 = ∅ so ω is an order-two permutation of ∆(g, h).
We have ω(α) = ασ for each α ∈ ∆(g, h) by Lemma 5.10. So ω is a Dynkin diagram
automorphism. Moreover, ω is fix point free because ΦR = ∅. In particular |∆(g, h)|
is even and ω does not leave invariant a connected component of the Dynkin diagram.
Indeed, if it did, this component would necessarily be of type A2n with ω being the
flip because ω is fix point free. But then the sum of the two middle roots would be a
real root which is absurd. Thus the Dynkin diagram consists of pairs of isomorphic
components swapped by ω. Choose one component from each such pair and let
their union be ∆∗1. Let Φ∗C be the root system with simple roots ∆∗1. We define a
complex structure J on g0 by means of the basis B of g0, setting

Xα 7→ Yα, Yα 7→ −Xα for α ∈ Φ∗C,

H1
α 7→ H0

ω(α), H0
ω(α) 7→ −H

1
α for α ∈ ∆1 \∆∗1.

It follows that JH1
α = H0

ασ and JH0
ασ = −H1

α for all α ∈ σ(Φ∗C) whereas JH1
α =

−H0
ασ and JH0

ασ = H1
α for all α ∈ Φ∗C. By construction J2 = −id and inspecting the

equations in Theorem 5.18 we easily verify that [JX, Y ] = J [X,Y ] for all X,Y ∈ g0.
Let g0 possess the complex structure J . For this last step compare [89, Example

2, p. 273]. Let g0 be equal to g0 as real Lie algebras but with complex structure −J .

Then the map x⊗ y 7→ y⊗ x defines a real form of the complex algebra g0 ⊕ g0 and
this real form is clearly isomorphic to g0. So the complexifications are isomorphic,
that is g ∼= g0 ⊕ g0. Let u0 be a compact form of the complex algebra g0 with
conjugation τ0. Then g0 = u ⊕ Ju is a Cartan decomposition of the real algebra
g0 and the Cartan involution θ equals τ0. Let t ⊂ u be maximal abelian. Then
as real algebras h0 = t⊕ Jt is a θ-stable Cartan subalgebra of g0 and as complex
algebras h0 is a τ0-stable Cartan subalgebra of g0. The conjugation τ0 provides an
isomorphism (g0, h0) ∼= (g0, h0) of pairs of complex Lie algebras. So the root system

Φ(g, h) of g ∼= g0⊕g0 with Cartan subalgebra h = h0⊕h0 consists of two orthogonal
copies of the root system Φ(g0, h0) of the complex algebra g0. These two copies are
swapped by σ. It follows that Φ(g, h) has neither real nor imaginary roots. �

If g0 is split, then ασ = α and sgn(α) = 1 for all α ∈ Φ(g, h). So in that case we
have B = 2C and Theorem 5.18 boils down to the list of ordinary Chevalley constants
of g multiplied by two, compare [51, Theorem 25.2, p. 147]. If g0 is compact, then
ασ = −α and sgn(α) = 1 for all α ∈ Φ(g, h). In this case B gives the basis in the
standard construction of a compact real form of a complex semisimple Lie algebra,
see [48, equation (2), p. 182]. If g0 is complex, we choose Cartan decomposition and
θ-stable subalgebra h0 as in the proof of Theorem 5.19. We conclude that Φ(g, h) is
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the orthogonal sum of two copies of the root system Φ(g0, h0) of the complex algebra
g0 swapped by σ. We let Φ∗C with simple roots ∆∗1 be the copy corresponding to

g0 in the decomposition g ∼= g0 ⊕ g0. This decomposition is exactly the eigenspace
decomposition of the extension of J from g0 to g with eigenvalues i and −i. Then
the set {

Xα, H
1
β : α ∈ Φ∗C, β ∈ ∆1 \∆∗1

}
⊂ B

is a Chevalley basis of the complex semisimple Lie algebra g0 with respect to the
complex Cartan subalgebra h0. Moreover, JXα = J(xα + sgn(α)xασ) = ixα +
sgn(α)(−i)xασ = Yα and similarly for Yα, H1

α and H0
ω(α) so that J coincides with

the complex structure constructed from B above.

5.2. Iwasawa decompositions. We construct a slight modification of the
basis B. It is going to be the union of three sets spanning the fixed Iwasawa
decomposition g0 = k⊕ a⊕ n. We start by discussing the Iwasawa n-algebra. The
observation σ(gα) = gασ allows us to state Proposition 5.7 (ii) more precisely as

g0
β =

⊕
α∈Φ∗C : i∗α=β

(gα ⊕ gασ ) ∩ g0
⊕

α∈ΦR : i∗α=β

gα ∩ g0

for each β ∈ Φ(g0, a). It follows that the set

N =
{
Xα, Yα, Zβ : α ∈ Φ∗+C , β ∈ Φ+

R
}
⊂ B

is a basis of n. The structure constants are given in Theorem 5.18 (vi) so they are
still governed by the root system Φ(g, h). We will compute them explicitly in case
rankR g0 = 1 in Section 6.

Now we consider the maximal compact subalgebra k. For α ∈ Φ(g, h) let
Uα = Xα + τXα = Xα +X−α and similarly Vα = Yα + τYα = Yα − Y−α as well as
Wα = Zα + τZα = Uα + Vα. By counting dimensions we verify

K = H0 ∪
{
Uα, Vα, Xβ , Yβ ,Wγ : α ∈ Φ∗+C , β ∈ Φ+

iR, γ ∈ Φ+
R
}

is a basis of k. Thus K ∪H1 ∪N is a basis of g0 = k⊕ a⊕ n. The elements Uα, Vα,
Wγ are by construction Z-linear combinations of elements in B. Conversely, the
only elements in B which do not lie in K ∪H1 ∪N are X−α, Y−α for α ∈ Φ∗+C and

Z−β for β ∈ Φ+
R . But for those we have X−α = Uα −Xα, Y−α = −Vα + Yα and

Z−α = sgn(α)(Wα − Zα). It follows that the change of basis matrices between B
and K ∪H1 ∪N both have integer entries and determinant ±1. Theorem 5.18 thus
gives the following conclusion.

Theorem 5.20. The set K ∪H1 ∪N is a basis of g0 spanning the Iwasawa decom-
position k⊕ a⊕ n. The structure constants lie in 1

2Z.

5.3. Iwasawa N-Groups. Let G be a connected semisimple Lie group with
Lie algebra g0. Let K, A, N be the analytic subgroups of G with Lie algebra k, a,
n respectively. Then the map (k, a, n) 7→ kan is an analytic diffeomorphism of the
product manifold K×A×N onto G. This is the global Iwasawa decomposition of G,
see [48, Theorem 5.1, p. 270]. The groups A and N are simply-connected. Therefore
g0 determines the groups N and S = A n N up to Lie group isomorphism. The
group N is called the Iwasawa N -group of g0 and we want to call S the symmetric
space group of g0 with solvable symmetric space algebra s = a ⊕ n. A simply-
connected nilpotent Lie group is exponential, which means that the exponential
map exp: n→ N is a diffeomorphism, see [88, Example 5, p. 63]. Since the Baker–
Campbell–Hausdorff formula terminates for nilpotent Lie algebras, the basis N also
gives a complete algebraic description of Iwasawa N -groups. Indeed, we can identify
N = n as sets and realize the multiplication as

X · Y =log(expX expY )=X + Y + 1
2 [X,Y ] + 1

12 ([X, [X,Y ]]− [Y, [X,Y ]])∓ · · ·
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for X,Y ∈ N . Moreover, we have the following result.

Theorem 5.21. Every Iwasawa n-algebra has a basis with integer structure constants
of absolute value at most four.

Proof. From Theorem 5.18 (vi) we obtain 2|cαβ | as an upper bound of the absolute
value of structure constants. Theorem 5.2 (iv) and the well-known fact that root
strings are of length at most four, tell us that cαβ ∈ ±{1, 2, 3}. The Chevalley
constants cαβ = ±3 can only occur when g contains an ideal of type G2. But G2 has
only two real forms, one compact and one split. A compact form does not contribute
to n. For the split form divide all corresponding basis vectors in N by two. Let α
be the short and β be the long simple root. Then we have just arranged that the
equation [Z2α+β , Zα] = ±3Z3α+β gives the largest structure constant corresponding
to this ideal. If g0 happens to have an ideal admitting a complex G2-structure,
then g has two G2-ideals swapped by σ. In that case the corresponding two G2

root systems are perpendicular. So one of the two summands in every equation of
Theorem 5.18 vanishes and the ideal in g0 does not yield structure constants larger
than three either. �

In [30] it is shown that the Iwasawa n-algebras of a semisimple Lie algebra
g0 with rankR g0 = 1 comprise exactly the “H-type Lie algebras” fulfilling the
“J2-condition”. G. Crandall and J. Dodziuk have shown in [31] that every H-type Lie
algebra has a basis with integer structure constants which can even be chosen to lie
in the set {−1, 0,+1}. In accordance with this result, we will see in Section 6 that
in the rank one case our method also allows for structure constants within this set.

Corollary 5.22. Every Iwasawa N -group contains a lattice.

Proof. According to a criterion of A. I. Malcev [73, Theorem 7, p. 24] the assertion
is equivalent to n admitting a Q-structure which is just a basis with rational structure
constants. �

Any lattice in a nilpotent Lie group is uniform. The set of isomorphism classes
of nilpotent Lie algebras with Q-structure is clearly countable. A. L. Onishchik and
E. B. Vinberg remark in [87, p. 46] that all nilpotent Lie algebras up to dimension six
admit Q-structures. On the other hand a continuum of pairwise nonisomorphic seven
dimensional six-step nilpotent Lie algebras is constructed in N. Bourbaki [19, Exercise
18, p. 95]. P. Eberlein [34] describes moduli spaces with the homeomorphism type of
arbitrary high dimensional manifolds even for two-step nilpotent Lie algebras. So in
this somewhat stupid sense most nilpotent Lie groups do not contain lattices.

5.4. Coordinates in symmetric spaces. Recall that a Lie algebra t over
a field F is called triangular if for all x ∈ t the endomorphism ad(x) has all
eigenvalues in F . The symmetric space algebra s = a ⊕ n is triangular over R as
is clear inspecting Theorem 5.18 (ii) and (vi). In fact a⊕ n is maximal triangular
in g0 as proven by G. D. Mostow in [79, paragraph 2.4, p. 506]. A Lie group H
is called triangular if all operators Ad(h) for h ∈ H have only real eigenvalues.
Clearly, a connected Lie group is triangular if and only if its Lie algebra is. It
follows that the symmetric space group S ⊂ G is simply connected triangular, thus
exponential according to [88, Example 6, p. 63]. Let P = exp(p) and let θ̃ be the
global geodesic symmetry, that is the automorphism of G with differential θ. Then
the assignment ψ : s 7→ θ̃(s)s−1 defines a diffeomorphism of the closed subgroup S
of G onto the closed submanifold P of G, see [48, Proposition 5.3, p. 272]. Moreover,
the projection π : G → G/K restricts to a diffeomorphism of P onto the globally
symmetric space G/K according to Theorem 1.1.(iii), p. 253 of the same reference.
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Finally, the basis H1 ∪N of s provides a vector space isomorphism φ : Rn → s with
n = |Σ+|+ rankRg

0. Hence we get a chain of diffeomorphisms

Rn φ−→ s
exp−→ S

ψ−→ P
π−→ G/K

which defines a coordinate system of the globally symmetric space G/K of noncom-
pact type. We have thus constructed coordinate charts for all symmetric spaces
of noncompact type in a uniform way. Note moreover that the diffeomorphism ψ
restricts to s 7→ s−2 on the closed abelian subgroup A = S ∩ P of G. Thus ψ leaves
A invariant. It follows that in our coordinates the set φ−1(H1) spans the maximal
flat, totally geodesic submanifold π(A) of G/K.

6. Real rank one simple Lie algebras

To illustrate our methods we now compute the structure constants of all Iwasawa
n-algebras of simple Lie algebras g0 with rankR g0 = 1. These are precisely the Lie
algebras of the isometry groups of rank-1 symmetric spaces of noncompact type.
According to the Cartan classification (see [48, table V, p. 518]) the complete list
consists of so(n, 1), su(n, 1), sp(n, 1) for n ≥ 2 and the exceptional f4(−20). They
correspond to real, complex and quaternionic hyperbolic spaces HnR, HnC, HnH and to
the Cayley plane H2

O. Since g0 is of real rank one, Φ(g0, a) can only be of type A1 or
BC1. The corresponding Iwasawa n-algebra is correspondingly abelian or two-step
nilpotent. The Campbell–Baker–Hausdorff formula thus takes a particularly simple
form and we have X · Y = X + Y + 1

2 [X,Y ] for X and Y in the Iwasawa N -group

of g0.
All relevant data identifying the isomorphism type of a real semisimple Lie

algebra can be pictured in a convenient diagram which has been introduced in [99].

Definition 5.23. The Satake diagram of g0 is the Dynkin diagram of g with all
imaginary roots shaded and each two-element orbit of ω in ∆1 connected by a
curved double-headed arrow.

The Satake diagram is a complete invariant of real semisimple Lie algebras as
proven by S. Araki in [3]. It is connected if and only if g0 is simple. Satake diagrams
of all isomorphism types of real simple Lie algebras are displayed on pp. 32/33 of
Araki’s article. Note that the Tits indices we have introduced above Example 4.11
give a generalization of this concept in the context of algebraic groups over a general
field k.

6.1. Real hyperbolic space HnR. In this case g0 = so(n, 1) with maximal
compact subalgebra k = so(n). For even n, the Lie algebra g0 is of type BII which
corresponds to the Satake diagram . . . with l = n

2 nodes. The root
system j∗Φ(g, h) ⊆ h∗R is thus of type Bl for which we use the following common
model (see [51, p. 64]). Let E be standard Euclidean l-space and εi ∈ E the i-th
standard vector. Then Φ = {±εi}∪ {±(εi± εj) : i 6= j} as a union of short and long
roots. A natural choice of a set ∆ of simple roots is given by the l − 1 long roots
ε1 − ε2, ε2 − ε3, . . . , εl−1 − εl and the short root εl. In this order, they correspond
to the nodes of the Satake diagram from left to right. The Satake diagram tells us
that in this model a∗ is given by Rε1, the orthogonal complement of the subspace
spanned by all the shaded roots ∆ \ {ε1 − ε2}. The orthogonal projection k∗ thus
becomes p(v) = 〈v, ε1〉ε1 for v ∈ E. Therefore Σ+ = {ε1, ε1 ± εi : i ≥ 2} so that
p(Σ+) = {ε1} which says Φ(g0, a) is of type A1. The case n = 6 is illustrated in
Figure 5.24.

For n odd, g0 is of type DII and has the Satake diagram
. . .

with l = n+1
2 nodes. Thus Φ(g, h) is of type Dl and we use the model E = Rl,
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Figure 5.24. The root system of so(7;C) with restricted root
system Φ(so(6, 1), a) depicted as thick arrows. The short root ε1 is
pointing right, the short root ε2 is pointing upwards and the short
root ε3 is pointing to the front.

Φ = {±(εi±εj) : i 6= j} with simple roots ∆ = {ε1−ε2, . . . , εl−1−εl, εl−1 +εl}. The
restriction k∗ becomes p as above, so that Σ+ = {ε1±εi : i ≥ 2}, thus p(Σ+) = {ε1}.
Hence in any case Φ(g0, a) is of type A1. But then n must be abelian. All structure
constants in any basis are zero.

6.2. Complex hyperbolic space HnC. In this case g0 = su(n, 1) with maximal
compact subalgebra k = su(n). For n arbitrary, g0 is of type AIV which has the

Satake diagram . . . with l = n nodes. So Φ(g, h) is of type Al and
as a model let E be the orthogonal complement of ε1 + · · ·+ εl+1 in Rl+1. Then
Φ = {εi − εj : i 6= j} and ∆ = {εi − εi+1 : 1 ≤ i ≤ l} is a basis of simple roots. The
middle l − 2 shaded nodes in the Satake diagram tell us that the line a∗ must lie in
the span of ε1 and εl+1. The bent arrow in turn says ε1 − ε2 and εl − εl+1 yield the
same restricted root in a∗ via k∗. But then of necessity a∗ = R(ε1 − εl+1). Thus
p(v) = 1

2 〈v, ε1−εl+1〉(ε1−εl+1) for v ∈ E. Now for i = 1, . . . , l−1, set αi = ε1−εi+1.

Then αi = 1
2 (ε1−εl+1)+( 1

2ε1−εi+1 + 1
2εl+1) is the decomposition of αi with respect

to E = a∗⊕a∗⊥. It follows that ασi = 1
2 (ε1−εl+1)−( 1

2ε1−εi+1+ 1
2εl+1) = εi+1−εl+1.

Let β = ε1 − εl+1. Then Σ+ = {αi, ασi , β} and the projection takes the values
p(αi) = p(ασi ) = 1

2β and p(β) = β. Thus Φ(g0, a) is of type BC1. We observe that
αi +ασi = β while all other sums of two roots in Σ+ do not lie in Φ. The case n = 3
is illustrated in Figure 5.25.
Pick a σ- and τ -adapted Chevalley basis of (g, h). Then n has the basis N consisting
of the 2l − 1 elements

Zβ , Xαi , Yαi for i = 1, . . . , l − 1.

The recursion formula on p. 54 gives sgn(β) = sgn(αi)
2
cασ
i
αi

cαiασi
= −1. So Zβ = Yβ .

Note that the ασi -string through αi in Φ is of length two, so cασi αi = ±1 by
Theorem 5.2 (iv). Hence by Theorem 5.18, the only nonzero structure constants are
given by

[Xαi , Yαi ] = Zβ

where we have replaced Xαi by −Xαi if sgn(αi)cασi αi = −1. In other words, n is a

2-step nilpotent Lie algebra isomorphic to the Heisenberg Lie algebra h2l−1. This
Lie algebra is also known as the H-type algebra nl−1

1 corresponding to the Clifford

module Cl−1
1 , see [30, p. 6]. It has a one-dimensional center with basis {Zβ}.



64 5. INTEGRAL STRUCTURES IN REAL SEMISIMPLE LIE ALGEBRAS

Figure 5.25. The root system of sl(4;C) with restricted root
system Φ(su(3, 1), a) depicted as thick arrows. The root ε1 − ε2 is
pointing up front, the root ε2 − ε3 is pointing down right and the
root ε3 − ε4 is pointing up back.

6.3. Quaternionic hyperbolic space HnH. In this case g0 = sp(n, 1) with
maximal compact subalgebra k = sp(n). For n ≥ 2 arbitrary, g0 is of type CII which
has the Satake diagram . . . with l = n+ 1 nodes. So Φ(g, h) is of
type Cl and as a model let E = Rl and Φ = {±2εi,±(εi±εj) : i 6= j}. A basis of the
root system is given by ∆ = {ε1 − ε2, . . . , εl−1 − εl, 2εl}. We have a∗ = R(ε1 + ε2),
thus p(v) = 1

2 〈v, ε1+ε2〉(ε1+ε2) for v ∈ E. Now for i = 1, . . . , l−2, set αi = ε1+εi+2

and βi = ε1−εi+2. It follows ασi = ε2−εi+2 and βσi = ε2 +εi+2. Let γ = 2ε1 so that
γσ = 2ε2 and let δ = ε1 + ε2. Then Σ+ = {αi, ασi , βi, βσi , γ, γσ, δ : i = 1, . . . , l − 2}
and p(γ) = p(γσ) = δ while p(α

(σ)
i ) = p(β

(σ)
i ) = 1

2δ. So again, Φ(g0, a) is of type
BC1. We have αi+βi = γ, thus ασi +βσi = γσ, and αi+ασi = βi+βσi = δ. All other
sums of two roots in Σ+ do not lie in Φ. The case n = 2 is featured in Figure 5.26.

1

2

3

Figure 5.26. The root system of sp(3;C) with restricted root
system Φ(sp(2, 1), a) depicted as thick arrows. The root ε1 − ε2 is
labeled “1”, the root ε2 − ε3 is labeled “2” and the root 2ε3 is
labeled “3”.

We consider . . . . . . , a µ̄-invariantly oriented Dynkin dia-
gram of type A2l−1. By Proposition 5.17 it defines the simple complex Lie algebra
g(Ψ) with Cartan subalgebra h(Ψ), Chevalley basis C(Ψ) = {yα, hi} and asymmetry
function ε. Here Ψ and thus g(Ψ) are of type Cl and Ψ has simple roots Π. We
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have a canonical bijection ∆(g, h)→ Π because the Dynkin diagram of type Cl has
no symmetries. This induces an isomorphism h→ h(Ψ). Pick arbitrary nonzero ele-
ments xα ∈ gα for α ∈ ∆(g, h). Then the assignment xα 7→ yα and the isomorphism
h → h(Ψ) extend to a unique isomorphism ϕ : g → g(Ψ), see [51, Theorem 14.2,
p. 75]. Thus C = ϕ−1(C(Ψ)) is a Chevalley basis of (g, h) with the same structure
constants as C(Ψ) in g(Ψ). We adapt C to σ and τ as in the proof of Proposition 5.8.
The Satake diagram of g0 has no curved arrows, so ω = id∆1

. As remarked below
Proposition 5.12, we thus did not change the structure constants when adapting
C. The αi-string through βi has length three and βi − αi is a root. The αi-string
through ασi as well as the βi-string through βσi have length two. Hence cαiβi = ±2,
cασi αi = ±1 and cβσi βi = ±1. We compute the sign in these three expressions. For
brevity, let us denote the simple roots by ϑ1 = ε1 − ε2, . . . , ϑl−1 = εl−1 − εl and
ϑl = 2εl. As sums of simple roots, we have

αi = ϑ1 + · · ·+ ϑi+1 + 2(ϑi+2 + · · ·+ ϑl−1) + ϑl, ασi = ϑ2 + · · ·+ ϑi+1,

βi = ϑ1 + · · ·+ ϑi+1, βσi = ϑ2 + · · ·+ ϑi+1 + 2(ϑi+2 + · · ·+ ϑl−1) + ϑl.

Let η1, . . . , η2l−1 be the simple roots from left to right in the oriented Dynkin
diagram. Then a choice of primed roots written as a sum as in Lemma 5.11 is given
by

αi
′ = η1 + · · ·+ η2l−i−2, ασi

′ = η2l−i−1 + · · ·+ η2l−2,

βi
′ = η2l−i−1 + · · ·+ η2l−1, βσi

′ = η2 + · · ·+ η2l−i−2.

From the description of the root system of type A in Section 6.2, we see that
ασi
′ + αi

′, βσi
′ + βi

′ and αi
′ + βi

′ are roots. We calculate

ε(ασi
′, αi

′) = ε(η2l−i−1, η2l−i−2) = −1,

ε(βσi
′, βi

′) = ε(η2l−i−2, η2l−i−1) = 1,

ε(αi
′, βi

′) = ε(η2l−i−2, η2l−i−1) = 1.

By Proposition 5.17 we thus get cασi αi = −1, cβσi βi = 1 and cαiβi = 2 for i = 1, . . . , l−
2. It only remains to compute sgn(αi) and sgn(βi). For j = 2, . . . , 2l − 2 let us
decree ϑj+1

′ = η2l−j−1 and ϑσj+1
′ = (−ϑj+1)′ = −η2l−j−1. Then ϑj+1

′ + ασj−1
′ and

ϑσj+1
′+αj−1

′ as well as ϑj+1
′+βj−1

′ and ϑσj+1
′+βσj−1

′ are roots. By Propositions 5.13
and 5.17 we have

sgn(αi) = sgn(ασi ) =
i∏

j=2

ε(ϑσj+1
′, αj−1

′)

ε(ϑj+1
′, ασj−1

′) =
i∏

j=2

ε(−η2l−j−1, η1+···+η2l−j−1)
ε(η2l−j−1, η2l−j+···+η2l−2) =

=
i∏

j=2

ε(η2l−j−1, η2l−j−1)ε(η2l−j−1, η2l−j−2)
ε(η2l−j−1, η2l−j)

=
i∏

j=2

(−1)(−1)
(+1) = +1,

sgn(βi) =
ε(ϑσ2

′,ϑσ1
′)

ε(ϑ2
′,ϑ1

′)

i∏
j=2

ε(ϑσj+1
′,βσj−1

′)

ε(ϑj+1
′,βj−1

′) = −
i∏

j=2

ε(−η2l−j−1, η2+···+η2l−j−1)
ε(η2l−j−1, η2l−j+···+η2l−1) = −1.

Now we have collected all necessary data. The Chevalley basis C defines the basis
N of the Iwasawa algebra n of g0 consisting of the 4l − 5 elements

Xαi , Yαi , Xβi , Yβi , Xγ , Yγ , Zδ for i = 1, . . . , l − 2.
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Since sgn(δ) = −1 we have Zδ = Yδ. Theorem 5.18 says that the following relations
give the nonzero structure constants.

[Xαi , Xβi ] = 2Xγ , [Xαi , Yβi ] = 2Yγ , [Xαi , Yαi ] = −Zδ,
[Yαi , Yβi ] = −2Xγ , [Yαi , Xβi ] = 2Yγ , [Xβi , Yβi ] = −Zδ.

The Lie algebra n is also isomorphic to the H-type algebra nl−2,0
3 determined by the

Clifford module Cl−2,0
3 . Alternatively, by comparison with the structure constants

given in [6, p. 185], we see that n is isomorphic to the Lie algebra of the quaternionic
Heisenberg group HH4n−1. If we rescale the elements Xαi , Yαi , Xβi , Yβi , Xγ , Yγ by
1
2 and the element Zδ by 1

4 , we obtain structure constants within the set {−1, 0,+1}.

6.4. Octonionic hyperbolic plane H2
O. This is the exceptional case g0 =

f4(−20) with maximal compact subalgebra so(9). The Cartan label of g0 is F II and the

Satake diagram is . The root system Φ(g, h) is of type F4, so as a model
take E = R4 and Φ = {±εi,±(εi ± εj),± 1

2 (ε1 ± ε2 ± ε3 ± ε4) : 1 ≤ i, j ≤ 4, i 6= j},
a total of 48 roots. Let ϑ1 = 1

2 (ε1 − ε2 − ε3 − ε4), ϑ2 = ε4, ϑ3 = ε3 − ε4 and
ϑ4 = ε2 − ε3. Then ∆ = {ϑ1, ϑ2, ϑ3, ϑ4} is a set of simple roots. We see a∗ = Rε1

and p(v) = 〈v, ε1〉ε1 for v ∈ E. Set δ = ε1, γi = ε1 − εi+1 for i = 1, 2, 3 and αi =
ϑ1 + · · ·+ ϑi for i = 1, 2, 3, 4. Then Σ+ = {δ, γi, γσi , αj , ασj : i = 1, 2, 3; j = 1, 2, 3, 4}
and we compute p(δ) = p(γ

(σ)
i ) = δ and p(α

(σ)
j ) = 1

2δ. So Φ(g0, a) is of type BC1,
too. We have αi + ασi = δ for i = 1, 2, 3, 4. Additionally we get

α1 + ασ4 = γ1, α1 + ασ3 = γ2, α1 + ασ2 = γ3,

α2 + α3 = γ1, α2 + α4 = γ2, α3 + α4 = γ3.

Together with six more equations obtained by applying σ, these comprise all sums
of two roots in Σ+ lying in Φ.

We consider the µ̄-invariantly oriented Dynkin diagram of
type E6. Just like in Section 6.3, we obtain a σ- and τ -adapted Chevalley basis C of
(g, h) whose structure constants arise from the Dynkin diagram as in Proposition 5.17.
We see that αi − ασi is not a root, so we have cασi αi = ±1 for i = 1, 2, 3, 4. On the
other hand, if two roots in {αi, ασi } add up to some γi or γσi then their difference
is a root, too. Since root strings in F4 are of length at most three, this gives
cα1ασ4

, cα1ασ3
, cα1ασ2

, cα2α3
, cα2α4

, cα3α4
∈ {±2}. We compute the signs. As sums

of simple roots we have

ασ1 = ϑ1 + 3ϑ2 + 2ϑ3 + ϑ4, ασ2 = ϑ1 + 2ϑ2 + 2ϑ3 + ϑ4,

ασ3 = ϑ1 + 2ϑ2 + ϑ3 + ϑ4, ασ4 = ϑ1 + 2ϑ2 + ϑ3.

Denote the upper root of the oriented Dynkin diagram by η4 and the lower roots
from left to right by η1, η2, η3, η5 and η6. We make choices of primed roots whose
sums are roots by inspecting a standard description of a type E6 root system as for
example in [48, p. 473] or [88, p. 225]. Then we obtain

ε(ασ1
′, α1

′) = ε(η1 + 2η2 + 2η3 + η4 + η5, η6) = −1,

ε(ασ2
′, α2

′) = ε(η1 + η2 + 2η3 + η4 + η5, η5 + η6) = 1,

ε(ασ3
′, α3

′) = ε(η1 + η2 + η3 + η4 + η5, η3 + η5 + η6) = −1,

ε(ασ4
′, α4

′) = ε(η1 + η2 + η3 + η5, η3 + η4 + η5 + η6) = 1,
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for the roots summing up to δ. For the roots summing up to γi we do not get
varying values. Indeed, we compute

ε(α1
′, ασ4

′) = ε(η6, η1 + η2 + η3 + η5) = 1,

ε(α1
′, ασ3

′) = ε(η6, η1 + η2 + η3 + η4 + η5) = 1,

ε(α1
′, ασ2

′) = ε(η6, η1 + η2 + 2η3 + η4 + η5) = 1,

ε(α2
′, α3

′) = ε(η1 + η2, η3 + η5 + η6) = 1,

ε(α2
′, α4

′) = ε(η1 + η2, η3 + η4 + η5 + η6) = 1,

ε(α3
′, α4

′) = ε(η1 + η2 + η3, η3 + η4 + η5 + η6) = 1.

This gives all signs of the above list of constants by Proposition 5.17. Lastly,

sgn(α1) = 1,

sgn(α2) = sgn(α1)
ε(ϑσ2

′, ασ1
′)

ε(ϑ2
′, α1

′) = ε(−η2, η1+2η2+2η3+η4+η5)
ε(η2, η1) = 1,

sgn(α3) = sgn(α2)
ε(ϑσ3

′, ασ2
′)

ε(ϑ3
′, α2

′) = ε(−η3, η1+η2+2η3+η4+η5)
ε(η3, η1+η2) = −1,

sgn(α4) = sgn(α3)
ε(ϑσ4

′, ασ3
′)

ε(ϑ4
′, α3

′) = − ε(−η4, η2+η3+η4+η5+η6)
ε(η4, η1+η2+η3) = 1

by Proposition 5.13. The basis N of the Iwasawa n-algebra of g0 consists of the 15
elements

Xα1 , Yα1 , Xα2 , Yα2 , Xα3 , Yα3 , Xα4 , Yα4 ,

Xγ1 , Yγ1 , Xγ2 , Yγ2 , Xγ3 , Yγ3 , Zδ.

By Theorem 5.18 we have the following nonzero structure constants.

[Xα1
,Yα1

] = −Zδ, [Xα2
,Yα2

] = Zδ, [Xα3
,Yα3

] = Zδ, [Xα4
,Yα4

] = Zδ,

[Xα1,Xα2 ] = 2Xγ3 , [Xα1,Xα3 ] = −2Xγ2 , [Xα1,Xα4 ] = 2Xγ1 , [Xα1,Yα2 ] = −2Yγ3 ,

[Xα1,Yα3 ] = 2Yγ2 , [Xα1,Yα4 ] = −2Yγ1 , [Yα1,Xα2 ] = 2Yγ3 , [Yα1,Xα3 ] = −2Yγ2 ,

[Yα1
,Xα4

] = 2Yγ1
, [Yα1

,Yα2
] = 2Xγ3

, [Yα1
,Yα3

] = −2Xγ2
, [Yα1

,Yα4
] = 2Xγ1

,

[Xα2
,Xα3

] = 2Xγ1
, [Xα2

,Xα4
] = 2Xγ2

, [Xα2
,Yα3

] = 2Yγ1
, [Xα2

,Yα4
] = 2Yγ2

,

[Yα2
,Xα3

] = 2Yγ1
, [Yα2

,Xα4
] = 2Yγ2

, [Yα2
,Yα3

] = −2Xγ1
, [Yα2

,Yα4
] = −2Xγ2

,

[Xα3,Xα4 ] = 2Xγ3 , [Xα3,Yα4 ] = 2Yγ3 , [Yα3,Xα4 ] = 2Yγ3 , [Yα3,Yα4 ] = −2Xγ3 .

The Lie algebra n is isomorphic to theH-type algebra n1
7 corresponding to the Clifford

module C1
7 . Alternatively, it is isomorphic to the Lie algebra of the octonionic

Heisenberg group OH15 [91, Section 9.3, p. 33]. A basis of its seven-dimensional
center is given by the set {Xγ1

, Yγ1
, Xγ2

, Yγ2
, Xγ3

, Yγ3
, Zδ}. If we rescale Zδ ∈ N

by 1
4 and the other 14 elements by 1

2 , we obtain structure constants in the set
{−1, 0,+1}.
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