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Motivation and main results

The area of holomorphic dynamics deals with the iteration of holomorphic func-
tions, that is, complex functions of one complex variable which are differentiable
wherever the function is defined. The study of iteration of functions was princi-
pally developed by Fatou and Julia in the early 20’s. Even though their inspiration
may lie behind in the 19th century in the work of Henri Poincaré who used iter-
ation in his studies of celestial mechanics. Another starting point for the theory
lies on the work of Ernst Schröder who showed the existence of attracting basins,
now and then named after him.

In the beginning of the 1920’s Pierre Fatou and Gaston Julia worked mainly with
the iteration of rational functions and set down a large number of the fundamental
results for such functions. Later in 1926 Fatou began the study of iteration of
transcendental entire functions giving examples and establishing the significant
differences to the theory developed for rational functions.

Fatou and Julia proved that the Julia set J of a rational function is the closure of
the set of repelling periodic points, but they did it through different approaches.
Fatou firstly showed that any point in J is the limit point of periodic points and
afterwards showed that there exist only finitely many non-repelling points. On the
contrary, Julia started by showing that the set of repelling or indifferent periodic
points is not empty and from there he developed his theory on the closure of the
set of repelling points. Both proofs have one or the other argument which cannot
be generalised to transcendental functions. Fatou himself mentioned that it is of
great difficulty to generalise the work of Julia to the transcendental case.

In the subsequent years there was a small development in the subject only. We
mention, however, two historical works due to Cremer in 1925 and to Brolin in
1967. The two of them worked with iteration of rational functions only. Neverthe-
less, in the mid 1950’s Noel Baker received the suggestion to work with functional
equations and used much of the theory developed by Fatou and Julia, unknown by
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that time. He was strongly interested in the subject and continued with this re-
search answering some of the questions concerning transcendental entire functions
left open by Fatou.

Around 1980, the subject was reborn mainly because of the arrival of accessible
computer graphics and the information alluded by them. By that time, Baker had
completed the foundations begun by Fatou and Julia earlier, applying techniques
of classical complex analysis.

One of the main differences in the iteration of rational functions and transcendental
functions is the occurrence of two new types of dynamics or Fatou components,
known as Baker domains and wandering domains. Baker showed the existence of
wandering domains in 1976, which was one of Fatou’s open questions. Some years
later in 1983 Sullivan proved they do not exist for rational functions. Sullivan’s
proof of the No Wandering Domain Theorem used a new technique in the subject,
the quasiconformal conjugacies. Baker succeeded to generalise this proof to certain
families of transcendental functions.

Until now we mentioned the theory of dynamical systems in a classical sense, that
is, looking at the iteration of a single function. There is, however, another basic
problem in the theory that studies the changes of the iterative behaviour of a whole
family of functions or for a given function under perturbation. In the present work
we are concerned with the two latter approaches: on the one hand we study the
dynamical behaviour of a family of transcendental entire functions, on the other
hand, this family arises from the perturbation to a family of transcendental entire
functions. We describe the minimal conditions such that we obtain stability of
both the Julia and the Fatou sets under the perturbation.

The Fatou set F(f) of an entire function f is the set of points in the complex plane
where the sequence of iterates of f forms a normal family in some neighbourhood
of the point. The Julia set J (f) is the complement of F in the Riemann sphere.
Roughly speaking F is the stable set and on J the dynamics are chaotic.

It is well-known that the convergence in a dynamical sense is not guaranteed only
from the converge in an analytical sense, that is, when the functions converge
uniformly on compact sets. There is a strong dependence on the properties of the
limit function and it is well-known that attracting basins are stable under small
perturbations. Hence the first idea is study stability after perturbing basins of
attraction.

The first example where the dynamical convergence is satisfied is due to Devaney et
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al. [20]. Inspired by the uniform convergence of the polynomials P (z) =
(
1 + z

d

)d
to the function f(z) = ez, they showed that the exponential family E(λ, z) = λez

is approximated by the family of polynomial Pd(λ, z) = λ
(
1 + z

d

)d
in a dynamical

sense as d tends to infinity. In other words, the Julia set J (P ) converges to J (E)
in the Hausdorff metric. Fagella obtained the same result in [27] for the standard
complex family G(λ, z) = λzez, which is approximated by the family of polynomial

Qd(λ, z) = λz
(
1 + z

d

)d
.

It is worth to mention that in these cases the transcendental functions are of finite
type, that is the set of singularities of the inverse function consists of finitely
many points only. In particular, this implies that the limit functions have neither
wandering domains nor Baker domains, and in this sense their dynamics resemble
the dynamics of polynomials. However, the convergence is guaranteed for a wider
class of functions.

A first general result due to Kisaka can be found in [36], where he assumes that the
limit function f is transcendental entire. This result was extended by Krauskopf
and Kriete in [44] for meromorphic functions and says

Let {fn}n∈N converge to f uniformly on compact subsets. If F(f) is the union of
basins of attracting periodic orbits and ∞ ∈ J (f), then {J (fn)}n∈N converges to
J (f) in the Hausdorff metric. The union may be empty, in which case J (f) = Ĉ.

The result is sharp, since there are counterexamples when the Fatou set of the limit
function features other types of components. Notice that there is no restriction
on the number of singular values. Lauber considered in [48] the functions f(z) =
z − c + R(z)eaz where R(z) is a polynomial and Re ac > 0. He proved that if
f has no wandering domains, Siegel discs or parabolic basins and has only one
Baker domain, then there exists a family of polynomials Pn converging uniformly
on compact subset to f and for which the Julia sets converge in the Hausdorff
metric. However, when ac ∈ [1, 2), then there exists a family of polynomials Qn
for which the Julia set convergence is not satisfied. This example is a generalisation
of a work due to Morosawa in [53]. He presented the function f(z) = z + ez − 1
and approximations by two different families of polynomials showing positive and
negative convergence on the Julia set.

At last we mention that Baker domains are not stable under perturbation. An
example of this instability is due to Lauber in [49]. He studied the Fatou family
F (c, z) = z − c + ez, with c = c1 + ic2, which has a Baker domain as a unique
Fatou component when c1 > 0. In contrast to this, if c1 = 0, then F(fc) consists
of infinitely many different Baker domains, a Baker domain and its preimages,
wandering domains, or it can even be empty. However, J (fc1+ic2) converges to
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J (fic2) in the Hausdorff metric as c1 tends to zero. Hence the stability of Julia
sets is stronger than the stability of the Fatou components.

One of the techniques used in the examples above is the logarithmic lift of func-
tions, which is usually used to prove the existence of Baker domains. Starting
with a self-map g of C∗ with known dynamics around the origin we can lift the
dynamics via the exponential function. For a function f and ϕ(z) = eaz we say
that f is the logarithmic lift of g if ϕ ◦ f = g ◦ϕ holds for some appropriate a 6= 0.
Such a function f exists and is entire, since g(ϕ(z)) 6= 0 for every z ∈ C. It was
proved by Bergweiler in [13] that J (f) = ϕ−1(J (g)).

In the view of the examples and results mentioned until now, we present our
work. In a few words, we studied the approximation of a transcendental entire
function featuring a Baker domain which cannot by constructed via logarithmic
lift. Furthermore, the limit function has infinitely many singular values, that is,
it is not of finite type, and may feature more than one Fatou component. We
approximate these functions by transcendental entire functions, in contrast to
most known examples, where the approximations are done through polynomials.

The starting point is the limit function

gλ(z) = z − 1 + λzez with λ ∈ C∗

featuring a unique Baker domain Bλ. The function gλ has a free critical point, that
is, the Baker domain Bλ contains all critical points except at most one, denoted by
c0. The dynamics of c0 depend on the parameter λ and in the case that c0 ∈ Bλ,
then it is the only Fatou component and it is completely invariant. Otherwise,
c0 may lie in a basin of attraction, a parabolic basin, a Siegel disc, a wandering
domain or the Julia set. In the first three cases, we disclaim the existence of
wandering domains. The existence of the Baker domain Bλ and further properties
of the function gλ were proved by Lauber in his Dissertation [48]. We present in
Section 3.1 a discussion concerning the existence of wandering domains including
a proof of the non-existence in the case that gλ has only the Baker domain or
additionally a non-repelling cycle.

As mentioned above, we wonder how we can perturb the family of functions gλ in
a way that we guarantee the Hausdorff convergence of the Julia sets. The answer
is to approximate Bλ by basins of attraction, reached by multiplying the function
by a contracting factor. Hence we define the functions

gλ,µ(z) = (1− µ)(z − 1 + λzez) with µ ∈
(

0,
1

2

)
.
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We see that gλ,µ converges uniformly on compact subsets of C to gλ as µ tends to
zero.

There exists a µ1 ∈
(
0, 12
)

such that the function gλ,µ has an attracting fixed point

zµ for every µ ≤ µ1 and lying in the interval
(
− 1
µ , 2−

1
µ

)
⊂ R. In order to

give a first geometrical description of its basin of attraction Aµ we construct an
absorbing domain defined as the union of two smaller domains Hη,ρ := Hη ∪Mρ.
The subdomains are defined as Mρ for points with 1 − 1

2µ < Re z < x0 and Hη
for points with Re z ≤ 1− 1

2µ in Equations 2.22 and 2.23.

We prove in Section 2.4 the existence of a µ2 ∈ (0, µ1) such that the domain Hη,ρ
is invariant under the function gλ,µ for every µ ≤ µ2. One of the first steps to show
the convergence of the Fatou sets is achieved by proving the convergence of the
the absorbing domain Hη,ρ to an analogue absorbing domain M1/2 of the Baker
domain Bλ. Later in Subsection 3.3.1 this is a useful tool to prove the convergence
of the attracting basin Aµ to Bλ as follows.

Theorem 3.14. Kernel convergence to the Baker domain Bλ. Let λ ∈ C∗ be
such that all critical values belong to the Baker domain Bλ. Then Aµ converge to
Bλ as kernel in the sense of Carathéodory.

The set of singularities of a function, denoted by sing(f−1), plays an important role
in the theory of holomorphic dynamics, as we discuss in more detail in the following
chapter in Section 1.6. For a transcendental entire function f the set sing(f−1)
consists of critical values and asymptotic values. In our case, the function gλ,µ has
no finite asymptotic values, however ∞ might but not need to be an asymptotic
value. The set of critical values of gλ,µ equals the set of critical values of gλ,
since the zeros of the derivative remain invariant when we multiply the function
by a constant. In particular, the set of critical points is countable, unbounded
and has no accumulation points in C. Furthermore, it is possible to introduce a
labelling for the critical points with respect to their imaginary part, since they lie
on a parametrised curve.

For parameters λ ∈ C∗ \ R+ write ck for a critical point with k ∈ Z. Then the
following holds for every µ ∈

(
0, 12
)
.

• For k = 0 we have Im c0 ∈ (−π, π), and in particular Im c0 > 0 for Imλ > 0.

• For k > 0 and Imλ ≥ 0 we have Im ck > π. For k < 0 we have Im ck < 0.

• In general Im ck > Im cj if k > j.

• |Im ck − Im ck+1| and |ck − ck+1| tend to 2π as |k| tends to ∞.
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In particular, only a finite number of the critical points is contained in the ab-
sorbing domain Hη,ρ. Hence we cannot guarantee that there are no other Fatou
components besides Aµ or the non-repelling cycle generated by the free critical
point c0.

For parameters λ ∈ R∗ we separately prove that gλ,µ has none, one or two different
critical points lying on R if λ > 0, while for λ < 0 gλ,µ has exactly one critical
point on R. In contrast to this, the number of fixed points lying on R presents the
“opposite behaviour”. For parameters λ > 0 the function gλ,µ has a unique fixed
point, which is the known fixed point zµ. But for values of λ < 0, the function
gλ,µ exhibits a bifurcation scheme.

There exist, besides the fixed point zµ, one or two fixed points which change
their behaviour as the parameter λ moves continuously on the real line forward
−∞. The fixed points go from no existing to the emergence of one parabolic
fixed point, which then bifurcates into two fixed points, one attracting and one
repelling. The repelling fixed point maintains its nature, while the multiplier of
the attracting fixed point changes from having norm smaller than one, then equals
one, and finally greater than one, maintaining its repelling nature afterwards for
every parameter as λ keeps decreasing. The bifurcation scheme continuous as
the attracting condition is transferred from the latter parabolic fixed point to an
attracting cycle of period two, and later to an attracting cycle of period four, and
so on.

The behaviour of the free critical point c0 changes in analogy to the behaviour
of these periodic points. At the beginning, c0 belongs to the basin of attraction
Aµ, then to the parabolic and attracting basins that arise with the existence of
the fixed points. Later, the critical point c0 belongs to the new parabolic basin
and then to the basin of attraction of period two, and so on. The critical point
eventually lies in the Julia set J (gλ,µ) after the parameter λ goes through all
components of the copy of the Mandelbrot set.

The absorbing domainHη,ρ described above is contained in a left half-plane. More-
over the attracting basin Aµ features a larger structure which extends to the right
hand side in form of horizontal strips. In order to describe it, we construct a
family of invariant Jordan curves {Γk,µ}k with |k| ≤ N, k 6= 0 as follows.

Theorem 2.37 Structure Theorem. Let ck be a critical point and vk its value
for some k ∈ Z∗. Then there exists an N ∈ N, N = N(µ), and a family of Jordan
curves {Γk,µ}k with |k| ≤ N, k 6= 0, and Γk,µ : t 7→ γk(t) for t ∈ [0,∞). The family
{Γk,µ}k has the following properties

i) For each k, there is exactly one critical point ck on Γk,µ.
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ii) For each Γk,µ we have: γk(0) = zµ and Re (γk(t)) → ∞ as t → ∞ while
Im (γk(t)) is bounded.

iii) The curves Γk,µ \ {γk(0)} are pairwise disjoint.

iv) For each k, the set Γk,µ ∪ (−∞, zµ) is completely invariant.

The existence of the invariant Jordan curves has several implications. It follows by
continuity the existence of open neighbourhoods around each curve that belong to
the Fatou set. Hence the Julia set J (gλ,µ) must be contained in strips that extend
horizontal asymptotically to infinity for points with large real part illustrating a
Cantor bouquet structure. Further Fatou components must be trapped as well in
these strips. Even though we guarantee the existence and invariance only for a
finite number of these curves depending on the parameter µ, we prove the existence
of countably many strips which belong to the basin of attraction Aµ distributed
horizontally above and below the curves Γk,µ.

Of great importance is the construction of a polynomial-like triple (gλ,µ, V, gλ,µ(V ))
as follows, whose proof is mainly based on the properties of the Structure Theorem.
The theorem implies, roughly speaking, that the dynamics of gλ,µ locally resemble
the iterates of a polynomial of the given degree.

Theorem 2.39 Polynomial-like Mapping. For every d ∈ N with d ≥ 2 and any
given λ ∈ C∗ \ R+ there exists a sufficiently small µ0 ∈

(
0, 12
)

and a domain V
such that the critical points ck ∈ V for −d < k < d and the triple (gλ,µ, V, gλ,µ(V ))
is a polynomial-like mapping of degree at most 2d for every µ ≤ µ0.

After giving a detailed description of the dynamics of gλ,µ, which depends mainly
on the parameter λ, we deal with the convergence of the Fatou and Julia sets
as µ tends to zero. In order to give an appropriate concept of convergence in a
dynamical sense, there exist in the literature two kinds of convergence. The first
regards open sets and is known as kernel convergence in the sense of Carathéodory.
The second is the Hausdorff convergence of compact sets. We refer the reader to
Section 1.9 for detailed definitions and a discussion on the topic.

As described above the function gλ,µ has a free critical point which may belong
to the attracting basin Aµ or to other Fatou components as we show in the detail
in the case λ ∈ R∗. The function gλ features an analogue behaviour of the free
critical point. In the case that gλ has an indifferent fixed point zp, we show the
existence of a sequence of attracting fixed points zp,µ of gλ,µ which converges to
zp. Furthermore we prove the convergence of the attracting basins to parabolic
basins in the case that these indifferent fixed points are parabolic.
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Theorem 3.18 Kernel convergence to parabolic basins of fixed points. Let
gλ and gλ,µ be as described above. Then for every parabolic fixed point zp ∈
∂D

(
−2

3 ,
1
3

)
and every µ ≤ µ∗, the attracting basins Ap,µ converge as kernels to

the parabolic basin Dp as µ tends to zero.

In the case that the Fatou set of the limit function gλ has no parabolic cycles
and no wandering domains, we prove a slightly stronger result than the Hausdorff
convergence of the Julia set. To this end we define the filled Julia set for the
function gλ as

K(gλ) := C \ Bλ.

For the approximating functions gλ,µ we define

K(gλ,µ) := C \ Aµ,

where Aµ is the attracting basin converging to Bλ as µ tends to zero. With this,
we prove the following result.

Theorem 3.26 Convergence of filled Julia sets. Let λ ∈ C∗ be arbitrary but
fixed such that gλ has no wandering domains and no parabolic cycles. Then K(gλ,µ)
converges to K(gλ) in the Hausdorff metric as µ tends to zero.

Finally all results presented until now conduce to prove the convergence of the
Julia sets in the Hausdorff metric.

Theorem 3.27 Hausdorff Convergence of Julia sets. Let λ ∈ C∗. If the
function gλ satisfies one of the following conditions

• F(gλ) consists only of the Baker domain Bλ,

• gλ has an attracting periodic cycle (of any period),

• gλ has a Cremer cycle (of any period),

• gλ has a Siegel disc, which centre is an indifferent fixed point, or

• gλ has a parabolic fixed point,

then J (gλ,µ) converges to J (gλ) in the Hausdorff metric as µ tends to zero.

For fixed λ ∈ C∗ at most one of these conditions can be satisfied.

In Chapter 1 we give a small introduction to the theory of holomorphic dynamics
and some known results which we use during the present work. We include as well
a detailed definition of convergences on the one hand of open sets as kernels in the
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sense of Carathéodory, and on the other hand of compact sets in the Hausdorff
metric.

We continue in Chapter 2 with a description of the function gλ,µ in a dynamical
sense. At first we prove the existence of the attracting basin Aµ, followed by a
discussion and some computations of the function gλ,µ restricted as real functions.
In Section 2.3 we describe the location of the critical points and values of gλ,µ
which serves to introduce the construction of the absorbing domains presented in
Section 2.4. The construction of the invariant Jordan curves and the proof of the
Structure Theorem can be found in Section 2.5. We finish that chapter by proving
the property of Polynomial-Like Mapping in Section 2.6.

In Chapter 3 we are mainly concerned with convergences as µ tends to zero.
Therefore we prove in Section 3.1 the non existence of wandering domains for gλ
and present further results of this function needed in the sequel. In Section 3.2 we
prove the existence of a sequence of attracting fixed points zp,µ of gλ,µ converging
to an indifferent fixed point zp of gλ. In Section 3.3 we establish separately the
kernel convergence of the attracting basins Aµ to the Baker domain Bλ, and of
the attracting basins Ap,µ to the basin Dp in the case that zp is a parabolic fixed
point. In Section 3.4 we show the convergence of the filled Julia sets and conclude
the present work with the convergence of the Julia sets in the Hausdorff metric,
that is, J (gλ,µ)→ J (gλ) as µ tends to zero.
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Stories out of pictures

a1) λ = −4 ; Re z ∈ (−25, 15);
Im z ∈ (−15, 15)

a2) λ = −4 ; Re z ∈ (−25, 15);
Im z ∈ (108 − 30, 108)

Figure 1: Fatou components of the function gλ: Baker domain Bλ and
basin of attraction A0 close to the origin. J (gλ) is drawn in brown.

In Figures 1 we see the Baker domain Bλ in blue. The absorbing domain M1/2 in
drawn in light green and is contained in a left half-plane. The Julia set J (gλ) is
showed in light brown and a neighbourhood of each critical point is drawn in red.
We see that for points with small imaginary part in a1) as for points with large
imaginary part in a2) the critical points lie close to ∂M1/2. For the parameter
λ = −4 ∈ R− the free critical point c0 does not belong to Bλ but to the basin of
attraction A0, which can be found in black close to the origin in a1).

Figures 2 b1) to d1) show both basins of attraction Aµ and A0,µ for the same
parameter λ = −4 ∈ R− and different values of µ ∈

(
0, 12
)
. The subsets of the

absorbing domain Hη,ρ are showed in light green for Mρ and dark green for Hη.
We appreciate that for µ = 1

10 which is not sufficiently small, the subdomain Mρ

is not large enough. The Julia set J (gλ,µ), drawn in light brown, exhibits a very
chaotic behaviour for points with very large imaginary part in b2). However, as
the value of µ decreases towards zero, the absorbing domain grows. For µ = 1

20 the
dynamics are well controlled for points with small imaginary part and for points
with large imaginary part the picture ”looks better“. For µ = 1

100 a larger number
of critical points lie close to ∂Mρ, as it can be seen in d2).

In other words, as we take the limit µ → 0 the control over the critical values
improves as there is a larger number of them lying in Mρ. The possibly existing
Fatou components besides Aµ and A0,µ shrink upwards and downwards to∞ until
they vanish in the limit.
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b1) λ = −4 ; µ = 1
10
; Re z ∈ (−25, 15);

Im z ∈ (−15, 15)
b2) λ = −4 ; µ = 1

10
; Re z ∈ (−25, 15);

Im z ∈ (108 − 30, 108)

c1) λ = −4 ; µ = 1
20
; Re z ∈ (−25, 15);

Im z ∈ (−15, 15)
c2) λ = −4 ; µ = 1

20
; Re z ∈ (−25, 15);

Im z ∈ (108 − 30, 108)

d1) λ = −4 ; µ = 1
100

; Re z ∈ (−25, 15);
Im z ∈ (−15, 15)

d2) λ = −4 ; µ = 1
100

; Re z ∈ (−25, 15);
Im z ∈ (108 − 30, 108)

Figure 2: Fatou components of the function gλ,µ: Basin of attraction
Aµ and basin of attraction A0,µ close to the origin. J (gλ,µ) is drawn in
brown.
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1

Preliminaries and known results

During the present work we deal with the iteration of analytic functions of one
complex variable, that is, with holomorphic functions. Therefore the area is also
known as Holomorphic Dynamics. Even though we deal mainly with transcenden-
tal entire functions, we present in the following sections results which may apply
as well to polynomials and rational functions or even to meromorphic functions.
We mention it explicitly in case there is a distinction.

We begin by giving a short compendium of results in complex analysis, followed by
some definitions and theorems in the theory of holomorphic dynamics. All theo-
rems presented in this chapter are known results, therefore we state them without
proof but giving explicit reference to the literature, if considered as necessary.

Some references for standard results on rational functions are Beardon’s [10], Mil-
nor’s [51] or Carleson and Gamelin’s [15] books. A book which considers both
transcendental entire and meromorphic functions is due to Morosawa et. al. [54].
One of the first surveys dealing with meromorphic functions is due to Bergweiler
[12]. Rippon [56] dedicated a survey to Baker domains, in honour to the trajec-
tory of Prof. Noel Baker. Further important works about transcendental func-
tions are [25, 26] or the classical references due to Fatou, Julia or Cremer are
[17, 29, 30, 34, 35], among others.
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1.1 Preliminaries from complex analysis

Let C be the complex plane and Ĉ := C∪{∞} the Riemann sphere, that is, the one-
point compactification of the complex plane. During this chapter let f : C → C
be a transcendental entire function, or f : Ĉ → Ĉ be a polynomial or a rational
function and in the three cases f is neither constant nor a linear function. We
present some relevant results from complex analysis required for the definitions of
the Fatou and Julia sets and further results in the area of holomorphic dynamics.
Some of this results may apply as well for meromorphic functions. Even though,
we restrict to assertions for entire functions which lie within the scope of this work.

A transcendental entire function can be defined as a function of a complex variable
z which is differentiable everywhere on the complex plane and it is not a polyno-
mial. A different point of view on the definition of a transcendental entire function
is that these functions can be represented as the limit of an everywhere-convergent
Taylor series expansion for all finite z, that is, as

f(z) = a0 + a1z + a2z
2 + . . .+ anz

n + . . . ,

where infinitely many of the coefficients an are not vanishing. In particular, tran-
scendental entire functions have an essential singularity at infinity.

The consequences of this representation are enormous. The first of this is that
if f(z) is any entire function which is never zero, then f(z) is of the form eg(z),
where g(z) is also an entire (not necessarily transcendental) function.

We refer in the following to a simple closed curve as a Jordan curve and to a
simple arc as a Jordan arc. Furthermore a domain U is an open simply connected
subset of C equipped with the euclidean metric. In the case that U is consider
as a subset of Ĉ, then we mention it explicitly and consider Ĉ equipped with the
chordal metric.

For any given entire function f : C → C we consider the sequence of iterates
{fn}n∈N, with fn = f ◦ fn−1 for n ≥ 1 and f0 = id. Roughly speaking, the Fatou
set of f is set of points in the complex plane where the sequence of iterates are
locally stable and the Julia set is its complement in the Riemann sphere. In order
to give a precise definition for this, we introduce the concept of a normal family.

Consider a family of holomorphic functions {fj}j∈I for some index set I. Then
{fj} is said to be a normal family on a domain U if every sequence of fj ’s contains
either a subsequence that converges uniformly on every compact subset of U to a
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holomorphic function g : U → C, or a subsequence that converges uniformly on
every compact subset of U to ∞.

A useful tool used to determine whether a family of functions is normal, or which
is the largest domain where the family does not fail to be normal, is given by
Montel’s Theorem.

Theorem 1.1. Let {fj} be a family of holomorphic functions fj : C→ C. Assume
there exist two distinct values z1 and z2 in U ⊆ C that are never taken by the
functions fj, that is fj(z) ∈ C \ {z1, z2} for every z ∈ U and every fj. Then {fj}
is a normal family on U .

If the functions fj satisfy fj : Ĉ→ Ĉ, then they should omit three distinct points
in order to form a normal family. In the present work we usually take for such
a family the sequence of iterates fn, with n ∈ N, of a given entire function f .
Another important result in the theory of complex analysis is the Picard’s little
theorem.

Theorem 1.2. If f is a transcendental entire function, then the equation f(z) = w
has infinitely many roots for any w ∈ C, except for at most one value.

There are several versions of this theorem, some of them stated by Picard himself.
Another formulation says that an entire function with more than one finite omitted
value reduces to a constant. But in the context of this work, the version stated
above is the one which at the best reflects its application. In the frame of this
theorem we call a point w ∈ C Picard omitted value or exceptional point if and
only if it has at most a finite number of preimages.

The following theorem is in fact a corollary to Cauchy’s integral formula for mero-
morphic functions and the argument principle. However, it is best known as
Rouché’s Theorem.

Theorem 1.3. Let γ be a Jordan curve homologous to zero in a domain U . As-
sume f and g are holomorphic in U and satisfy the inequality |f(z)− g(z)| < |f(z)|
on γ. Then f(z) and g(z) have the same number of zeros enclosed by γ.

A theorem due to Weierstrass states that given a sequence of holomorphic func-
tions {fn(z)}n∈N in a domain U converging uniformly on every compact subset of
U to a limit function f(z), then f(z) is holomorphic in U as well. Moreover, f ′n(z)
converges uniformly to f ′(z) on every compact subset of U .

One last result from the complex analysis which we mention is the Riemann-
Hurwitz Formula for domains.
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Lemma 1.4. Let D1 and D2 be domains in Ĉ whose boundaries consists of a
finite number of Jordan curves. Let f(z) be a proper holomorphic map of D1 onto
D2. Then:

i) Every z ∈ D2 has the same number k of preimages counted with multiplicity.

ii) Denote by N the number of critical points of f in D1 counted with multiplicity.
Then

(2− d1) = k(2− d2)−N,

where dj is the number the boundary components of Dj.

In particular, if both the Dj are simply connected, then f has at most k−1 critical
points.

1.2 Singular values

The set of singular values plays an important role in the theory of holomorphic
dynamics, as we shall see below in Section 1.6. A point ζ ∈ C is a singular value
if for every neighbourhood V of ζ, there exists a branch of the inverse of f that is
not holomorphic in V . We denote the set of singular values by sing(f−1) and its
forward iterates, called the post-singular values, by P (f) :=

⋃∞
n=0 f

n(sing(f−1)).

For an entire function sing(f−1) consists of critical values and finite asymptotic
values. In the case that f has infinitely many critical and asymptotic values, then
their limit points belong as well to sing(f−1).

We say that ζ ∈ C is a critical value of an entire function f if it is the image of a
critical point z, it means ζ = f(z), where z satisfies the condition that f ′(z) = 0.

A point ζ ∈ C is called a finite asymptotic value of f if there exists a parametrized
curve γ : [0,∞)→ C satisfying limt→∞ γ(t) =∞ and limt→∞ f(y(t)) = ζ.

The set of singular values of a polynomial or a rational function consists of the
critical values, only, and there is always a finite number of them. In contrast
to this, transcendental functions may have infinitely many singular values. A
transcendental entire function that has only finitely many singular values is called
critically finite.
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1.3 Fixed and periodic points

Consider now a fixed point of a function, that is, a point z such that f(z) = z.
In a more general way, a periodic point satisfies fp(z0) = z0 for some (minimal)
p ≥ 1. In case that z0 is a periodic point of period p, we define the cycle of z0 as
the set {z0, f(z0), . . . , f

p−1(z0)}.

A fixed point z0 is called attracting if |f ′(z0)| < 1, repelling if |f ′(z0)| > 1 and
indifferent if |f ′(z0)| = 1. In the special case when f ′(z0) = 0, z0 is called su-
perattracting fixed point. These definitions hold as well for periodic points by
considering the derivative (fp)′ instead of f ′. The derivative (fp)′(z0) is called
multiplier of z0 and it has the same value for all points in the cycle of z0.

If |f ′(z0)| = 1, then we may write f ′(z0) = e2πiθ0 for some θ0 ∈ [0, 1). Then the
point z0 is called rationally indifferent or parabolic if θ0 is a rational number, and
irrationally indifferent otherwise.

The forward orbit of a point z is defined as the set O+(z) :=
⋃
n∈N f

n(z). Notice
that this set is finite for any periodic or preperiodic point, where the latter is a
point z such that fn(z) = fm(z) for some n,m ∈ N with m < n. The backward
orbit of z is the set O−(z) := {w ∈ C : fn(w) = z for some n ∈ N}. It is not
difficult to see that a rational function has periodic points of any period p ≥ 1.
Even though this question may not be trivial for entire functions, this result was
firstly prove by Fatou and generalised by Rosenbloom in the following form.
Theorem 1.5. A transcendental entire function has infinitely many periodic points
of period p for all p ≥ 2.

It is worth to mention that an irrational indifferent periodic point z0 may lie in the
Julia set as well as in the Fatou set, while parabolic periodic points always lie in
the Julia set. It holds that z0 lies in the Fatou set if and only if z0 is linearisable.
A irrational indifferent point z0 which lies in J(f) is called Cremer point and
satisfies the following result.
Theorem 1.6. If z is a Cremer point of an entire function f , then z is contained
in the set of accumulation points of P (f).

1.4 Fatou and Julia sets

The field of holomorphic dynamics deals with the iteration of functions in the
complex plane or in the Riemann sphere. We divide the complex plane into two
main sets according to the behaviour under the iterates of f on a given point,
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that is, under the sequence {fn}n∈N, where fn = f ◦ fn−1 and f0 is the identity
function.

Consider f to be a non linear entire function or a rational map of degree at least
two. We define the Fatou set of f , F(f), as the set of points z ∈ C where the
sequence of iterates {fn}n∈N is well-defined and forms a normal family in some
neighbourhood of z. The Julia set is defined as its complement in the Riemann
sphere, that is, J (f) := Ĉ \F(f). It implies by definition, that ∞ ∈ J (f) for any
transcendental entire function, since ∞ is the only essential singularity for such
functions.

Some properties of the Fatou and Julia sets are:

• F(f) is an open set and J (f) is a closed set.

• F(f) and J (f) are completely invariant.

• J (f) is a perfect set; that is, J (f) is closed, non-empty and contains no
isolated points.

• For every positive n ∈ N, J (fn) = J (f) and F(fn) = F(f).

• Either J (f) = Ĉ or J (f) has empty interior.

• If z0 ∈ J (f) is not an Picard omitted value, then J (f) = O−(z0).

For any z0 ∈ J (z) and U a neighbourhood of z0, it follows by Montel’s Theorem
that C \ ∪∞n=1f

n(U) consists of at most two points. This reflects the sensitivity of
the Julia set to initial conditions, one of the chaotic characteristics of this set.

Note that all repelling periodic points lie in the Julia set. Moreover, J (f) equals
the closure of set of repelling periodic points of f . Rationally indifferent periodic
points lie as well in the Julia set, since there have attracting directions and re-
pelling directions. Therefore, we cannot have uniform convergence of the iterates
in any neighbourhood of these points. It is clear in the same way, that attracting
periodic points lie in the Fatou set.

The topological structure of the Julia set may be very intricate. Devaney and
Krych studied in [19] the exponential family Eλ(z) = λez and found out that for
parameters 0 < λ < 1/e the Julia set J(Eλ) consists of a Cantor set of curves
called Cantor bouquet. Since then there are several examples of functions having
Cantor bouquets. For example, Devaney and Tangerman showed the existence of
Cantor Bouquets for some class of critically finite entire functions; see [21]. Aarts
and Overteegen extended in [1] the notion of Cantor bouquets, also called straight
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brush, for some class of hyperbolic entire functions, that is functions for which
sing(f−1) is relatively compact in F(f).

Moreover, Misiurewicz gave in [52] a straightforward proof that the Julia set of
E(z) = ez equals the whole plane. This holds for every Eλ(z) = λez with λ > 1/e
as it was showen by Devaney in [18]. Devaney gave as well a description of an
invariant compact set, an indecomposable continuum, for parameters λ > 1/e and
further properties of the Julia set for the exponential family. These ideas reflect
the complexity of the Julia set. We present further characteristics of the Julia set
which are directly related to Baker and wandering domains in Section 1.7.

A last result beautiful for its simplicity and strength is mentioned by Bergweiler
in [12]. It states that if f is a transcendental entire function, then J (f) does not
contain isolated Jordan arcs. Its proof lies mainly on the fact that J (f) = O−(z0)
for some z0 ∈ J (f).

1.5 Fatou components

A connected component U ⊂ C of F(f) is called a Fatou component. If there
exists a minimal p ∈ N∗ such that fp(U) ⊂ U then U is called a periodic Fatou
component of period p and we denote it by Up. A component U is called preperiodic
if there exist p > q ≥ 0 such that Up ⊂ Uq. Analog to periodic points, we call
{U,U1, . . . , Up−1} a (periodic) cycle of components. If p = 1, that is, f(U) ⊂ U ,
then U is called invariant. Most of these components have a direct relation with
fixed or periodic points of f .

There are four possible types of periodic Fatou components that can occur for
entire functions or rational functions. We introduce as well the notation we use
in the present work for each component.

• If f has an attracting or superattracting periodic point z0 of period p, then
let A consists of all points z ∈ C such that fnp(z) → z0 as n → ∞. A is
generally called attracting basin of z0 or in particular Böttcher domain if z0
is superattracting, or Schröder domain if z0 is attracting. The immediate at-
tracting basin A∗ is the component containing the periodic point z0. It holds
that ∂A = J and each component of A is a preperiodic Fatou component.

• Given a parabolic periodic point z0, we call a parabolic basin D the set of
points z ∈ C such that fnp(z)→ z0 as n→∞. In this case z0 ∈ ∂D and the
immediate parabolic basin is the set D∗ =

⋃m
j=1Dj such that

⋂m
j=1 ∂Dj = z0.
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The component D is also called Leau domain. It holds again that ∂D = J
and each component of D is a preperiodic Fatou component.

• A Siegel disc S is a periodic Fatou component on which fp : S → S is
analytically conjugate to an irrational rotation of the open unit disc onto
itself. S contains an irrational indifferent fixed point which is called the
centre of the Siegel disc.

• A Herman Ring H is a periodic Fatou component on which fp : H → H is
analytically conjugated to an irrational rotation of an annulus A = {z ∈ C :
1 < |z| < r}, for some r > 1, onto itself.

• If f is a transcendental function, then a Baker domain or domain at ∞ is a
Fatou component B with fnp(z)→∞ as n→∞ for all z ∈ B.

For a meromorphic function, the definition of a Baker domain extends to those
points z where fnp(z) → z0, with z0 ∈ ∂B and fp(z0) is not defined. For entire
functions the only singularity lies at ∞, hence the definition of a Baker domain
reduces to the case mentioned above.

Herman Rings may appear only for rational functions or transcendental mero-
morphic function, using the maximum principle, and we mention them here for
completeness only. Moreover Baker domains occur only for transcendental entire
or transcendental meromorphic functions.

Furthermore, transcendental entire (and meromorphic) functions may have a com-
ponent W that is neither periodic nor eventually periodic.

• A wandering domain W is a domain where the sequence of iterates is never
preperiodic, i.e. fn(W) ∩ fm(W) = ∅ whenever n 6= m for n,m ∈ N.

One of the fundamental theorems in holomorphic dynamics is due to Sullivan.

Theorem 1.7. Let f be a rational function. Then F(f) has no wandering do-
mains.

It was already proved by Fatou in [29] that the connectivity of an invariant compo-
nent of F(f) takes one of the values 1, 2 or∞ if f is a rational function. It implies
the same result for periodic components but not for preperiodic components. It
was proved by Baker, Kotus und Lü in [6] that preperiodic components may take
any connectivity if f is a rational or a meromorphic function.

In contrast to this Baker proved that for polynomials the connectivity of any
component, periodic or preperiodic, is 1 or 2, where 2 only occurs for Herman
rings. His results extends to entire functions as follows.
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Theorem 1.8. If f is a transcendental entire function, then any preperiodic com-
ponent is simply connected.

In other words, multiply connected components are necessarily wandering do-
mains. Moreover, Kisaka and Shishikura proved in [38] that there does not exist
any entire function with multiply connected components of finite connectivity,
that is, wandering domains must be infinitely connected.

In the present work we concern mainly with the convergence of functions and
their Fatou and Julia sets. A first result in this direction is called persistence of
attracting (resp. repelling) cycles. The reader can find a proof of the following
result in [44], which is mainly based on the well-known result of Hirsch and Smale
(persistence under C1 perturbations) and on Rouché’s Theorem.
Theorem 1.9. Let f be a transcendental entire function and let {fn} be a sequence
of entire functions converging to f uniformly on compact subsets of C. Let z0 be
an attracting (resp. repelling) fixed point of f . Then

• There is an N ∈ N such that fn has an attracting (resp. repelling) fixed
point zn for all n ≥ N . Moreover, zn converges to z0 and the orbit O+(z0)
converges to O+(z0) as compact sets with respect to the Hausdorff metric.

• Let A(z0) be the basin of attraction of z0. Then for every compact K ⊂ A(z0)
there is an N ∈ N, such that K ⊂ A(zn) for all n > N , where A(zn) is the
basin attraction of zn converging to z0.

The result holds also for attracting (rep.) periodic cycles and their orbits. See
Section 1.9 for a definition of convergence in the Hausdorff metric.

1.6 Singular values and Fatou components

The importance of the set of singular values mainly lies in its relation with the
Fatou components. This relation was already established by Fatou in the early 20’s
who proved that any basin of attraction must contain at least one singular value in
its immediate basin. Fatou proved in [29] the following result for rational functions
but his proof extends to meromorphic functions, as mentioned by Bergweiler in
[12].
Theorem 1.10. Let f be an entire function, and let C = {U0, U1, . . . , Up−1} a
periodic cycle of components of F(f).

• If C is a cycle of attracting basins or parabolic basins, then Uj∩sing(f−1) 6= ∅
for some j ∈ {0, 1, . . . p− 1}.
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• If C is a cycle of Siegel discs, then ∂Uj ⊂ O+(sing(f−1)) for all j ∈
{0, 1, . . . p− 1}.

It follows directly that if f has n singular values, then f can have at most n
attracting and parabolic basins. Moreover, if f is a rational functions, it is possible
to estimate in general the number of Fatou components in terms of its degree. The
first estimates were done by Fatou and Sullivan and sharpened by Shishikura, [58].
If f is a rational function of degree d, then the number of cycles of immediate
attracting basins, parabolic basins, and Siegel discs plus twice the number of
Herman rings does not exceed 2d− 2.

There is not direct relation between singular values and Baker domains. In fact
there are examples of univalent Baker domains as well as examples of Baker do-
mains with infinitely many singular values, as we present more in detail in the
following section. Nevertheless it is possible to exclude the existence of Baker
domains regarding the distribution of the set of singular values. Eremenko and
Lyubich [26] proved the following theorem.
Theorem 1.11. Let f be a transcendental entire function such that sing(f−1) is
a bounded set. Then f has no Baker domains.

A generalisation of this result states that∞ is in the derived set of P (f) if f has a
cycle of Baker domains. Hence it follows as a corollary that if f has finitely many
singular values, then f has no Baker domains. The following result is an analogue
result about wandering domains
Theorem 1.12. Let f be a transcendental entire function with finitely many sin-
gular values. Then f has no wandering domains.

1.7 On Baker domains and wandering domains

We already mentioned above some results concerning wandering domains and
Baker domains. Here we dedicate a section to these Fatou components since they
play a central role in the present work.

The first example of a transcendental entire function having a Baker domain was
given by Fatou in [30]. Fatou considered the function f(z) = z + 1 + e−z and
proved that for points z with Re z > 0, the iterates under f tend to infinity. In
this case, the domain B is invariant and contains the right half-plane H+ and
infinitely many singular values which lie on iR.

As we mention before Baker domains may or may not contain singular values.
In the latter case, we called them univalent Baker domains. Bergweiler gave an
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example of an univalent Baker domain in [11]. He proved via logarithmic lift that
the function f(z) = 2z + log 2 − 2 + e−z has a Baker domain B and that ∂B is a
Jordan curve in Ĉ.

An example of a periodic cycle of Baker domains for transcendental entire func-
tions was given by Rippon and Stallard in [57]. Firstly they showed that the
function f(z) = az(1 + ez

−p
), with a > 1, p ∈ N, has p invariant Baker domains,

one in each sector {z ∈ C : | arg z−2kπ/p| < π/p}, k ∈ {0, 1, . . . , p−1}. Secondly,
it follows that the function g(z) = e2πi/pf(z) has a p-cycle of Baker domains.

In general, the boundary of a Baker domain may have a complicated topological
structure. Therefore we introduce the concept of an absorbing domain for f , which
is a domain D ⊂ B satisfying the following conditions:

• D is simply connected.

• f(D) ⊂ D.

• For every compact set K ⊂ B there exists an n ∈ N such that fn(K) ⊂ D.

In Fatou’s example above, an absorbing domain of B is the half-plane H+. This
definition is mostly used for Baker domains, but it can be also applied for basins
of attraction or even for domains in the attracting directions of parabolic fixed
points. In the latter case, these domains are usually called attracting petals of a
parabolic fixed point. Notice that an absorbing domain need not be unique.

The following theorem is result concerning Baker and the singular values of the
function and it was proved by Bergweiler in [11, Lemma 3].

Theorem 1.13. Let f be a transcendental entire function with an invariant Baker
domain B. Suppose that K ⊂ B is compact and that τ > 1. Then there exists n0
such that

D(fn(z), τdist(fn(z), ∂B)) ∩ P (f) 6= ∅

for all z ∈ K and n ≥ n0.

Notice that the result applies as well to any univalent Baker domain B and in this
case implies that the singular values are (always) close to the boundary of B.

We present now a classification of the types of Baker domains of a function f due
to König; see [40]. Let ψ be a Riemann mapping from a simply connected domain
D onto U . Then the function g := ψ−1 ◦ f ◦ ψ is a self-mapping of D. Using
Denjoy-Wolff Theorem, there is a point ζ ∈ D such that gn(z)→ ζ as n→∞ for
every z ∈ D. The point ζ is called the Denjoy-Wolff point. In [16] Cowen proved
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that g is conjugated to a Möbius transformation T under certain conditions and
classified the self-maps g of D for any domain U using the following definition.

Let f be an entire function and U a domain. The triple (D,φ, T ) is called a
conformal conjugacy of f in U if:

• D ⊂ U is an absorbing domain for f .

• φ : U → Ω ⊂ {C,H+} is analytic and univalent in D.

• T : Ω → Ω is a Möbius transformation, and Φ(D) is an absorbing domain
for T .

• φ(f(z)) = T (φ(z)), for z ∈ U .

Cowen proved that if the Denjoy-Wolff point ζ lies in ∂D, then the mapping g
always has a conformal conjugacy. If f is an entire function and B is a Baker
domain, then B is simply connected and the fact that fn → ∞ in B implies that
ζ ∈ ∂D. Based on Cowen’s classification, König introduced a notation to classify
the Baker domains as follows.
Theorem 1.14. Let f be an entire function with a Baker domain B. Then there
exists a conformal conjugacy of f in B, which is exactly one of the following.

i) T (z) = z + 1 and Ω = C.

ii) T (z) = z ± i and Ω = H+.

iii) T (z) = az, for a > 1, and Ω = H+.

Case i) is called parabolic of type I, case ii) is called parabolic of type II and case
iii) is called hyperbolic.

König generalised this classification to meromorphic functions with finitely many
poles and gave further geometrical criteria in [16]. There exists as well a classifi-
cation for univalent Baker domains due to Barański and Fagella; see [9]. Fagella
and Henriksen extended the latter classification in [28] to Baker domains B where
f |B is a proper map. In these cases the results lie beyond the scope of this work,
hence we omit them only including their reference.

Concerning the boundary of Baker domains, we present some results which we use
in the following chapters. Baker and J. Weinreich proved in [8] for any unbounded
invariant Fatou component U of an entire function that if ∂U is a Jordan curve,
then U must be a Baker domain and f |U must be univalent.

Consider again the Riemann mapping ψ : D → U for an unbounded component
U and define the radial limit set as Θ := {eiθ : ψ(reiθ) → ∞ as r → 1}. This set
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was introduced by Kisaka in [37] to study the connectivity of the Julia set and to
proved the following theorem.

Theorem 1.15. Let f be a transcendental entire function. Then J (f) is con-
nected in Ĉ if and only if f has no multiply connected wandering domains.

In particular, for a Baker domain B the set Θ is not empty. Baker and Domı́nguez
proved in [7] the following result.
Theorem 1.16. Let B be an invariant Baker domain of an entire functions f
such that f |B is not univalent. Then Θ contains a perfect set.

The latter results imply that ∞ has infinitely many accesses from within B, since
every point in Θ corresponds to a different access and Θ is dense in ∂D. Hence
∂B has infinitely many components, that is J (f) \∞ is disconnected. This result
is in accordance with the concept of Cantor bouquets mentioned above in Section
1.4. For a larger list of examples and more detailed properties of Baker domains
we refer the reader to the survey by Rippon in [56] or to Morosawa et al.’s book,
[54].

Finally, we mention that for most points z in a Baker domain |f | is not more than
a multiple of |z| and that f growths slowly. This was proved by Baker in [5] for
entire functions having an invariant Baker domain.
Theorem 1.17. Let B be an invariant Baker domain of an entire function f .
Then

• For any compact subset K ⊂ B there exist positive constant C and n0 such
that |fn(z′)| ≤ C|fn(z)| for z, z′ ∈ K and n ≥ n0.

• For all z ∈ B, ln |fn(z)| = O(n) as n→∞, where the constant O(n) depends
on z.

• For any z0 ∈ B and a path γ =
⋃∞
n=0 f

n(γ0) where γ0 ⊂ B joins z0 to f(z0)
and 0 /∈ γ, there exists a positive constant C such that

1

C
|z| ≤ |f(z)| ≤ C|z| for z ∈ γ.

The theorem was extended by Rippon in [55] for the more general case if f is a
meromorphic function having a p-cycle of Baker domains.

The first example of an entire function with a wandering domain was given by
Baker in 1976; see [4], which was an example of a multiply connected wandering
domain.
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A further example of a simply connected wandering domain constructed in a more
elementary way was obtained via Newton’s method by Herman in 1984; see [32].

Consider the function h(z) = ez − 1 and g(z) = z − h′(z)
h(z) = z − 1 + e−z, its New-

ton’s method. For every k ∈ Z the point zk = 2πki is a superattracting fixed
point of g. Denote by Uk the Fatou component containing zk, that is, its immedi-
ate basin of attraction. It can be proved that Uk is simply connected for every k.
Finally consider the function f(z) = g(z) + 2πi = z− 1 + e−z + 2πi. It holds that
F(f) = F(g) and that f(Uk) = Uk+1. Hence F(g) has a wandering domain.

It is well known that if f is an entire function and W is a wandering domain of
f , then all finite limit functions of fn|W are constant. Fatou was aware of this
result in 1920, [29], and Cremer proved it in 1936 as well, [17]. Baker proved
that constant limit functions in any Fatou components are contained in P (f)∪∞,
[2]. These results imply the following theorem proved by Bergweiler et al. in [14]
using elementary methods of complex analysis. Denote by P (f)′ the derived set
of P (f), that is, the set of finite limit points of P (f) = O+(sing(f−1)).
Theorem 1.18. Let f be an entire function and let W be a wandering domain of
f . Then all limit functions of {f |W} are contained in P (f)′ ∪∞.

This theorem enables to prove that certain functions do not have wandering do-
mains, as we do it for a large set of parameters of the family of functions gλ in
Section 3.1.

1.8 On the polynomial-like mappings

If we study a family of functions that depends analytically on a parameter, it is
common to find copies of the Mandelbrot set in the parameter plane as we attempt
to classify values of the parameter depending on the dynamical properties of the
function. One way to explain this is, that for such families of functions there exist
parameters for which the function behaves (locally) like a polynomial of degree
2 under iterates. The knowledge of polynomial-like mappings was developed by
Douady and Hubbard in the middle 80’s in order to give a precise meaning of
”behaving like”; see [23].

This behaviour is not intrinsic to rational maps, but can also be found in families of
transcendental entire functions, as long as there is some analytical dependence on
the parameter. McMullen prove this for any holomorphic family of rational maps
and called it “Universality of the Mandelbrot set”, [50]. However, the universality
is still not proved in general for families of transcendental entire functions. There-
fore in Section 2.6 we apply this notion to the family of functions presented during
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this work. In general the concept is extended to the behaviour of a polynomial of
degree d and we present here the definition and some results.

Let U and V be bounded simply connected domains such that U ⊂ V . A
polynomial-like mapping of degree d is a the triple (f, U, V ), where f : U → V
is a holomorphic proper mapping of degree d.

If (f, U, V ) is a polynomial-like mapping of degree d ≥ 2, we define the filled Julia
set Kf by setting

Kf := {z ∈ C : fn(z) ∈ U for every n > 0}.

The Straightening Theorem allows us to derive various properties from polynomials
to the polynomial-like mappings of the same degree.
Theorem 1.19. Let (f, U, V ) be a polynomial-like mapping of degree d ≥ 2. Then
f is hybrid equivalent to a polynomial P of degree d, that is, we can find a qua-
siconformal map ϕ of a neighbourhood W of the filled Julia set Kf in U into C
which satisfies

i) ϕ(Kf ) = KP ,

ii) µ(ϕ) = 0 almost everywhere on Kf ,

iii) ϕ ◦ f = P ◦ ϕ on W ∩ f−1(W ).

Moreover, if Kf is connected, then P is unique up to conjugation by an affine
map.

A corollary of this is that for every parameter c in the main cardioid of the Man-
delbrot set, the Julia set J (Pc) is a quasicircle, that is, the image of a circle under
a quasiconformal map.

1.9 Hausdorff and kernel convergence

The starting point of the present work is a family of functions gλ(z) = z−1+λzez

having an invariant Baker domain for every parameter λ. Then we perturb this
family in a way that the Baker domain vanishes and in its place an attracting
basin “appears”. The perturbed functions are gλ,µ(z) = (1−µ)(z− 1 +λzez) and
we obtain that gλ,µ → gλ uniformly on compact subsets of C as µ→ 0.

In order to prove the convergence also in a dynamical sense, we use the notion of
Hausdorff convergence for compact sets and the kernel convergence for open sets,
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presented in this section. We begin with the notion of kernel given by Golusin in
the 1950’s; see [31].
Definition 1.1. (Kernel) Let I be an index set and {Bj}j∈I be a sequence of
connected domains in C all of them containing a marked point z0. A domain
B is called a kernel of the sequence {Bj}j∈I if it is the largest connected domain
containing the marked point z0 and satisfying the property that any compact subset
K of B is contained in all Bj except for at most finitely many of them.

We may compare this definition with the ones used by Krauskopf and Kriete in
[42], and by Morosowa in [53], who omitted the concept of marked point. Instead
of this, Morosawa required that if an open set U is contained in {Bj} for infinitely
many j, then U should be contained as well in B. In contrast to this, Krauskopf
and Kriete called B a kernel if it is the maximal open set satisfying the compact
set property, that is, if this property is not held by any domain B̃ with B ( B̃.
Hence in both cases, the requirement that the marked point z0 is contained in all
{Bj} and therefore also in B may be replaced by a neighbourhood of z0.

Even though these three definitions are equivalent, Golusin’s definition using a
marked point is more detailed. Notice that the marked point z0 is useful for
the uniqueness of the kernel with respect to z0. Otherwise, the kernel may not
be unique in the sense that there may be more than one kernel for a given se-
quence of domains each one corresponding to a different marked point. In this
case, Krauskopf and Kriete admitted a kernel as the union of two or more sim-
ply connected domains. Now we define the Kernel Convergence in the sense of
Carathéodory ; see [31].
Definition 1.2. Let I be an index set. We say that a sequence of connected
domains {Bj}j∈I converges to the kernel B if the domain B is a kernel of every
subsequence of {Bj}j∈I .

If a sequence of domains converges to a domain B in the sense that every boundary
point of Bj is arbitrarily closed to the boundary points of B for infinitely many j’s,
then the domain B is a kernel of the sequence {Bj} and the convergence as kernel is
assured. In particular, if the sequence of domains {Bj} satisfies B1 ⊃ B2 ⊃ B3 · · ·
or B1 ⊂ B2 ⊂ B3 · · · , then {Bj} converges to its kernel.

Now consider the Riemann sphere Ĉ with the chordal metric. The Hausdorff
distance between two non-empty compact sets A, B ⊂ Ĉ is defined in the usual
way as

distH(A,B) := inf {ε > 0 | A ∈ Uε(B) and B ∈ Uε(A)}

where Uε(X) denotes the ε-neighbourhood of a compact set X ⊂ Ĉ. For sequences
of index sets {In}n∈N we define the convergence in the Hausdorff metric as follows.
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Definition 1.3. Let K and {Kj}j∈In be non-empty compact sets in Ĉ. Then Kj

converges to K in the Hausdorff metric, if distH(K,Kj)→ 0 as n→∞.

In the Riemann sphere or in the complex plane we have the following relation
between Hausdorff and kernel convergence.
Lemma 1.20. Let Kj, with j ∈ In, and K be nonempty compact subsets of Ĉ.
Then distH(Kj ,K) → 0 as n → ∞ if and only if the following two conditions
hold:

• Each component B of Kc := Ĉ \K is a kernel of a sequence of components
Bj of Kc

j := Ĉ \Kj, and

• Every kernel of an infinite subsequence Bjn of components of Kc
jn

is a com-
ponent of Kc .

One direction of the Hausdorff convergence of Julia sets is satisfied almost imme-
diately by the uniform convergence of the functions. This fact is true since the
Julia set is the closure of the repelling fixed points. The latter will be close to each
other using the uniform convergence and Rouché’s Theorem. This is also known
as lower semi-continuity of Julia sets; see [22] for a proof due to Douady.
Lemma 1.21. If fn converges to f locally uniformly on compact subsets, then for
an arbitrary ε > 0 there exists an N ∈ N such that

J (f) ⊂ Uε(J (fn))

for all n > N .
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1.10 Notation

Here we present a list of notations used in the present work, for clarification.

N {0, 1, 2, . . .}.
C Complex plane.

Ĉ = C ∪∞ Riemann sphere.
D = {z ∈ C : |z| < 1} Unit disc.
D(x, ε) Disc of radius ε centered at the point x.
d(a, b) Euclidian distance between a and b.
dist(x,A) Distance from a point x to a set A defined as

inf{d(x, a) : a ∈ A}.
distH(A,B) Hausdorf distance between two non empty

compact sets A and B.
A ⊂⊂ B A is relatively compact in B.
a ≈ b b is a numerical approximation of a.
f(z) ' g(z) g(z) is the linear approximation of f(z)

by means of its Taylor expansion.
a u b b is an analytical approximation of a.
P (f) forward orbit of the set of singularities of f .
F Fatou set.
J Julia set.
K Filled Julia set.
O+(z), O−(z) Forward and backward orbits of z.
O(x) Big O of x.



2

Dynamical description of the
family gλ,µ

In this chapter we present a study of the dynamical properties of the family of
functions gλ,µ(z) = (1− µ) (z − 1 + λzez) as the real parameter µ < 1

2 tends to
zero and where λ is a non-zero complex constant. It is easy to see that gλ,µ
converges uniformly to gλ(z) = z− 1 + λzez on compact subsets of C. In Chapter
3 we prove results about the convergence of gλ,µ to gλ in a dynamical sense, as the
Hausdorff convergence of the Julia sets and the kernel convergence of the different
Fatou components. Keeping this in mind here we present some properties of the
Fatou set F(gλ,µ).

The Fatou set of gλ,µ has an attracting basin Aµ containing the fixed point zµ,
which in turn is contained in a neighbourhood of 1 − 1

µ . In [48], Lauber showed
that the limit function gλ has an unbounded absorbing domainMδ contained in a
left half-plane. Iterates of points z inMδ with large negative real part behave like
iterates under the mapping z 7→ z− 1, and so he deduced thatMδ is contained in
a Baker domain Bλ. In the approximating process by the function gλ,µ as µ→ 0,
the fixed point zµ of gλ,µ tends to −∞. In the limit, the attracting basin of Aµ
becomes the Baker domain Bλ.

In particular, it was also proved by Lauber that Bλ contains all critical points of
gλ except at most one, which we denote by c0. That is, for certain values of λ
there is at most one free critical point, and in case that c0 /∈ Bλ then F(gλ) has
one non-repelling cycle. We prove that this behaviour is also exhibited by gλ,µ,
independent of the value of µ. In Section 2.2 we analyse as an explicit example the
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behaviour of the critical point c0 for λ ∈ R and gλ,µ restricted to the real line. For
positive values of λ the critical point c0 belongs always to Aµ. Then there exists
a value q ∈ (−2, 0) such that depending on the value of λ one of the following
possibilities holds

• c0 lies in Aµ for q < λ < 0,

• c0 lies in a basin of attraction denoted by A0 for r < λ < q,

• c0 lies in J (gλ,µ) for λ ≤ r,

whereby r ≈ −5 and A0 ∩ Aµ = ∅. Note that the critical point c0 is not real
anymore when λ /∈ R. Using continuity arguments, this behaviour is satisfied by
parameters λ in a domain H1 in C such that H1 ∩ R = (r, q). In other words,
for complex parameters λ ∈ H1 the function gλ,µ has an attracting fixed point
different from zµ. In the following chapter in Section 3.2 we show the existence of
attracting fixed points of gλ,µ which converge to parabolic fixed points of gλ.

In order to give a first geometrical approach of the basin of attraction Aµ we
construct an invariant absorbing domainHη,ρ ⊂ Aµ and prove that a finite number
of critical points (and hence critical values) are contained in Hη,ρ. Since the
behaviour under iterates of gλ,µ is unknown for critical points with large imaginary
part, we cannot exclude the existence of further Fatou components distinct from
the attracting basin Aµ and the non-repelling cycle attached to the free critical
point c0.

We construct for every arbitrary but fixed parameter λ a family of Jordan curves
{Γk,µ}k∈Z∗ depending on µ ∈

(
0, 12
)

where Γk,µ : t 7→ γk,µ(t) for t ≥ 0. These
curves improve the understanding of the dynamics of the family gλ,µ. For each k,
with |k| ≤ N , Γk,µ contains a simple curve segment joining the critical point ck to
the fixed point zµ. Since we construct a Jordan curve for each ck contained in Aµ,
we obtain a finite number of curves Γk,µ. The definition γk,µ(0) := zµ is given in
a natural way by construction. Furthermore, the curves Γk,µ \ {zµ} are pairwise
disjoint and as t → ∞ we have that Re γk,µ(t) → ∞ while Im γk,µ(t) is bounded.
For each k and µ, the curve Γk,µ ∪ (−∞, zµ) is completely invariant. The latter
implies that Aµ contains a set of disjoint horizontal right strips, that is, a set of
strips bounded to the left and unbounded to the right which are asymptotically
horizontal for points with large positive real part.

The structure gave by the Jordan curves enable us to delimit a domain on which
we function gλ,µ “behaves like” a polynomial. This kind of “behaviour” is better
known as polynomial-like mapping. We show that for any given d ∈ N, with
d ≥ 2, there exists a bounded domain V where gλ,µ|V is a proper map of degree
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at most 2d. Therefore, the triple (gλ,µ, V, gλ,µ(V )) is polynomial-like as defined in
the introduction in Section 1.8.

In Section 2.1 we prove the existence of the attracting basin Aµ. In Section 2.2 we
present the analysis of gλ,µ restricted to the real line followed by some properties
for the critical points and values in Section 2.3. The sequent Section 2.4 is divided
into two subsections, devoted to the construction of the absorbing domainHη,ρ and
to the proof of its invariance under gλ,µ respectively. Finally we show in Section
2.5 the construction of the family of Jordan curves Γk,µ followed by the prove of
the polynomial-like mapping’s property in Section 2.6. During the present chapter
we mostly omit in the notation the parameter λ for simplicity, as for example in
Aµ instead of Aµ,λ, even though the results depend on the parameter λ.

2.1 Basin of attraction Aµ

We begin the description of the dynamical properties of the function

gλ,µ(z) = (1− µ) (z − 1 + λzez) , with µ ∈
(

0,
1

2

)
. (2.1)

by showing that it has a basin of attraction Aµ for every λ ∈ C∗ and for sufficiently
small µ0, with µ0 = µ0(λ). We firstly prove that gλ,µ has an attracting fixed point
for every µ ≤ µ0.

Theorem 2.1. Let λ ∈ C∗ be any arbitrary but fixed parameter. Then for any

ε ∈ (0, 1] there exists a µ1 ∈
(
0, 12
)

sufficiently small that if |λ| < µ2ε exp(1/µ−1−ε)
|µ−εµ−1|(1−µ)

for all µ ≤ µ1, then the function gλ,µ has a unique fixed point zµ in D
(

1− 1
µ , ε
)

which is always attracting.

Proof. During the present proof, let pµ(z) = (1− µ) (z − 1) be a family of poly-
nomials depending on µ. These functions have a unique fixed point at 1 − 1

µ .
Using Rouché’s theorem we claim that gλ,µ(z) − z and pµ(z) − z have the same

number of zeros in D
(

1− 1
µ , ε
)

if |(gλ,µ(z)− z)− (pµ(z)− z)| < |pµ(z)− z| for

z ∈ ∂D
(

1− 1
µ , ε
)

. For such points z, we have
∣∣∣z − 1 + 1

µ

∣∣∣ = ε. Then they satisfy

|z| ≤
∣∣∣1− 1

µ − ε
∣∣∣ and Re z ≤ 1 − 1

µ + ε < 0 for all µ < 1
2 . Let µ1 = µ1(λ) be

sufficiently small that the inequality

|λ| < e
1
µ
−1−ε εµ2

|µ− εµ− 1|(1− µ)
(2.2)
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is satisfied for all µ ≤ µ1. This is equivalent to

|λ|
∣∣∣∣1− 1

µ
− ε
∣∣∣∣ e1− 1

µ
+ε
<

εµ

(1− µ)

=⇒ |λ| |z| eRe z <
εµ

(1− µ)

⇐⇒ |(1− µ) (λzez)| < εµ = |µ|
∣∣∣∣z − 1 +

1

µ

∣∣∣∣ .
Since |gλ,µ(z)− pµ(z)| = |(1− µ) (λzez)| equals the left side from the inequal-
ity above and |pµ(z)− z| = |−µz − (1− µ)| the right side, we can conclude by
Rouché’s theorem that gλ,µ has a unique fixed point as desired, which we denote
by zµ.

We now show that for points z ∈ D
(

1− 1
µ , ε
)

the multiplier g′λ,µ has modulus

smaller than one. For such points z, the point z + 1 lies in the disc D
(

2− 1
µ , ε
)

implying that |z + 1| < |2 − 1
µ − ε| and Re z < 1 − 1

µ + ε. Let µ2 = µ2(λ) be
sufficiently small that the inequility

|λ| < e
1
µ
−1−ε µ2

(1− µ)(1− 2µ+ εµ)
(2.3)

holds for every µ ≤ µ2. Equivalently we obtain

|λ| e1−
1
µ
+ε
(

1

µ
− 2 + ε

)
<

µ

1− µ
=⇒ (1− µ) |λ| eRe z |z + 1| < µ

⇐⇒ (1− µ) + (1− µ) |λez(z + 1)| < 1

=⇒ (1− µ) |1 + λez(z + 1)| < 1.

We finally show that given a µ satisfying condition (2.2), then Equation (2.3) is
also satisfied for this µ. In other words, if gλ,µ has a fixed point zµ in the disc

D
(

1− 1
µ , ε
)

, then it is attracting. Comparing the above conditions for λ we have

e
1
µ
−1−ε εµ2

|µ− εµ− 1|(1− µ)
< e

1
µ
−1−ε µ2

(1− µ)(1− 2µ+ εµ)

⇐⇒ ε <
|µ− εµ− 1|
1− 2µ+ εµ

=
1− µ+ εµ

1− 2µ+ εµ
,

which is true for all 0 < ε ≤ 1 and µ < 1. Hence for any given λ the maximum
value µ1 suffices and the fixed point zµ is attracting for all µ ≤ µ1.
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Corollary 2.2. For every λ ∈ C∗ there exists µ0 = µ0(λ) ∈
(
0, 12
)

such that for
every µ ≤ µ0 satisfying

|λ| < e
1
µ
−2 µ2

1− µ
. (2.4)

gλ,µ has a unique attracting fixed point zµ in a neighbourhood of radius 1 around
1− 1

µ .

The corollary follows directly from the theorem above by taking the value ε = 1,
for which the desired result is satisfied and simplifies the notation. We remark at
this point that the function gλ,µ may have another attracting fixed point outside

the disc D
(

1− 1
µ , 1
)

for some values of λ ∈ C∗. In particular we prove the latter

statement in Subsection 2.2.2 in Theorem 2.8 for some real parameters λ < 0.

2.2 Dynamics on the real line

Here we describe briefly the dynamics of gλ,µ considered as a real function. It is
easy to see that if λ is in R∗ = R \ 0, then gλ,µ(R) ⊂ R. Hence it is reasonable to
analyse gλ,µ(x) for x ∈ R and λ ∈ R∗. We show that there exist either one or two
attracting fixed points depending on the value of λ. The first one, xµ, corresponds
to the fixed point zµ presented in the previous section and exists for every λ. For
certain values of λ < 0 we prove the existence of an additional attracting fixed
point xr close to the origin by analysing the behaviour of the critical point c0.

In this section we write gλ,µ(x) and its derivatives as follows

gλ,µ(x) = (1− µ) (x− 1 + λxex) ,

g′λ,µ(x) = (1− µ) (1 + λex + λxex) , (2.5)

g′′λ,µ(x) = (1− µ) (λex) (x+ 2) .

We can easily see that g′′λ,µ(x) = 0 if and only if x = −2. Therefore g′λ,µ(x) has a
change of slope only at the point x = −2 and the value g′λ,µ(−2) will determine
the number of critical points of gλ,µ.

Before pursing this line of argument, we firstly present an alternative proof for
the existence of xµ restricted to the real line. This alternative proof gives some
insight which is helpful for the proof of the existence of further fixed points.

Theorem 2.3. For every λ ∈ R∗, there exists δ ∈ (0, 1] and µ1 ∈ (0, 1/3) such that

gλ,µ(x) has an attracting fixed point xµ ∈
(

1− 1
µ − δ, 1−

1
µ + δ

)
for all µ ≤ µ1.
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Proof. At any fixed point, we have that gλ,µ(x) has a fixed point if and only if
(1− µ) (λxex) = x− (1− µ) (x− 1), which is in turn equivalent to

λxex =
xµ

1− µ
+ 1 or to

λex =
µ

1− µ
+

1

x
. (2.6)

Write h(x) = µ
1−µ + 1

x for the function on the right side in the latter equation.
On the one hand, we have that h(x) is strictly monotonic decreasing for every x

and has negative values for x in
(

1− 1
µ , 0
)

. In other words, h(x) = 0 only for

x = 1 − 1
µ . Then for every ε > 0, there exists a δ (w.l.o.g. δ ≤ 1) such that if x

lies in the interval
(

1− 1
µ − δ, 1−

1
µ + δ

)
, then |h(x)| < ε.

On the other hand, we have that λex is strictly monotonic increasing (resp. de-
creasing) for λ > 0 (resp. for λ < 0) and with values greater (resp. smaller) than
zero. We also know that λex → 0 as x → −∞. Thus, for any λ and any given ε

there exists µ1 <
1
3 sufficiently small that

∣∣∣λe1− 1
µ

∣∣∣ < ε for every µ ≤ µ1. Finally,

there exists an xµ ∈
(

1− 1
µ − δ, 1−

1
µ + δ

)
such that λexµ = h(xµ). If λ > 0,

then λex > 0 and with this xµ < 1− 1
µ , resp. xµ > 1− 1

µ for λ < 0.

To show that the fixed point xµ is attracting, we prove the inequality
∣∣∣g′λ,µ(x)

∣∣∣ < 1

for points in the interval
[
− 1
µ , 2−

1
µ

]
which contains

(
1− 1

µ − δ, 1−
1
µ + δ

)
for

δ ≤ 1. If µ < 1
4 , then 2− 1

µ < −2 holds and it suffice to prove the inequality for the

boundary points, since g′λ,µ is either increasing for λ > 0 or decreasing for λ < 0.

For 1/4 ≤ µ < 1/3, we obtain −2 ≤ 2 − 1
µ < −1 and the global minimum (resp.

maximum) of g′λ,µ is inside the interval. Therefore, we compute the multiplier at

the boundary values
{
− 1
µ , 2−

1
µ

}
and at the extreme point −2.

Let x0 be an arbitrary fixed point. We use equality (2.6) to simplify the derivative
as follows

g′λ,µ(x0) = (1− µ)

(
2 +

1

x0
+

(x0 + 1)µ

1− µ

)
. (2.7)

After simple computations and using the equation above we obtain for x0 = − 1
µ

that
∣∣∣g′λ,µ (− 1

µ

)∣∣∣ = (1 − µ)2 < 1 for all µ < 1. In the same way, we compute for

x0 = 2 − 1
µ the multiplier

∣∣∣g′λ,µ (2− 1
µ

)∣∣∣ = (1 − µ)
∣∣∣1− µ(3µ−1)

(1−µ)(2µ−1)

∣∣∣. For µ < 1/3
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the inequality 0 < µ(3µ−1)
(1−µ)(2µ−1) < 1 holds if and only if µ(3µ− 1) > (1−µ)(2µ− 1)

which is in turn equivalent to 5µ2 − 4µ + 1 > 0. We simplify the equation as

5µ2 − 4µ + 1 = 5
((
µ− 2

5

)2
+ 1

25

)
, showing that the multiplier has norm smaller

than one.

Finally, using Equation (2.7) we compute the multiplier at the extreme point
x = −2 as ∣∣g′λ,µ (−2)

∣∣ = (1− µ)

∣∣∣∣32 − µ

1− µ

∣∣∣∣ =

∣∣∣∣3− 5µ

2

∣∣∣∣
which is smaller than one for 1

5 < µ < 1, including the interval
[
1
4 ,

1
3

]
. With

this we conclude that the multiplier for any fixed point in
[
− 1
µ , 2−

1
µ

]
and every

0 < µ ≤ µ1 < 1/3 is smaller than one.

Among the properties of gλ,µ as a real function it is important to remark that
gλ,µ(0) = −1 + µ ∈ (−1, 0) for all λ and 0 < µ < 1, that is, x = 0 is never a fixed
point. Furthermore,

g′λ,µ(0) = (1− µ) (1 + λ), (2.8)

which is greater or smaller than zero depending on λ. As we mentioned before,
the value g′λ,µ(−2) = (1 − µ)(1 − λe−2) also directly depends on the sign of λ.
Therefore we divide the analysis into two subsections considering λ > 0 and λ < 0
separately. Furthermore, we search for the number of fixed points pursing the
analysis for x < 0 and x > 0 also independently, since 0 is never a fixed point. We
remark here that

g′λ,µ(−1) = 1− µ > 0 for all λ. (2.9)

With this, the value gλ,µ(−1) will be useful for locating the critical points of gλ,µ
on R.

2.2.1 Dynamics for λ > 0

During this subsection, let λ > 0 and µ < 1/3. We show that for these values of
λ there exist exactly one attracting fixed point and one repelling fixed point, and
the number of critical points changes as λ varies.
Theorem 2.4. For λ > 0, gλ,µ(x) has exactly two fixed points. The first is the
attracting fixed point xµ, and the second is the fixed point xr, which is always
repelling.

Proof. We follow the line of argument in the proof of Theorem 2.3. Using Equation
(2.6), we obtain that h(x) = µ

1−µ + 1
x > 0 if and only if x < µ−1

µ or x > 0.



38 2. Dynamical description of the family gλ,µ

Furthermore h′(x) = − 1
x2

is negative for every x. Since λex and its derivative are
always positive for λ > 0, there are exactly two fixed points of gλ,µ(x), that is,
there exist two x values where λex = h(x). The first one is xµ and lies in the

interval
(

1− 1
µ − δ, 1−

1
µ

)
=
(
− 1
µ , 1−

1
µ

)
for δ = 1. It was proved in Theorem

2.3 that it is attracting. The second fixed point, denoted by xr, is contained in
the interval (0,∞).

We show now that xr is always repelling. Using Equation (2.7) for the derivative
of fixed points, we obtain

g′λ,µ(xr) = (1− µ)

(
2 +

1

xr

)
+ µ(xr + 1)

>

(
1

2

)(
2 +

1

xr

)
+ µ(xr + 1) for µ <

1

2

= 1 +
1

2xr
+ µ(xr + 1) > 1 for every xr > 0,

yielding the result.

We continue our analysis by giving the number of critical points.

Lemma 2.5. For λ > 0, gλ,µ(x) has either none, one or two real critical points.
Furthermore, the global minimum of g′λ,µ(x) is at x = −2.

Proof. After computing the second derivative in (2.5), we see that g′′λ,µ(x) ≤ 0 for
every x ≤ −2. Hence g′λ,µ(x) = (1−µ)(1 + λ(x+ 1)ex) has its global minimum at
x = −2 for every λ > 0. Furthermore, as x → −∞ we obtain that λ(x + 1)ex is
negative and tends to zero. Then g′λ,µ(x) tends to 1− µ from below as x→ −∞.
Hence there exists a negative s sufficiently large that g′λ,µ(x) > 0 for all x ≤ s.
Recall that g′λ,µ(−1) = 1− µ is always positive and g′λ,µ(x)→∞ as x→∞.

Now consider g′λ,µ(−2) = (1− µ)
(
1− λe−2

)
as a function of λ. It follows that

the value g′λ,µ(−2) lies on a line with negative slope −(1− µ)e−2 and equals zero

at λ = e2. In other words, the g′λ,µ(−2) may be positive, equal zero or negative,
depending on the parameter λ, yielding the result.

As a direct conclusion from the previous lemma we obtain the following statements:

i) For 0 < λ < e2, we have g′λ,µ(−2) > 0 and with this g′λ,µ has no real zeros.
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a) λ = 5 b) λ = e2 c) λ = 10

Figure 2.1: Graphs of the derivative g′λ,µ(x) = (1 − µ)(1 + λex + λxex)

for µ = 1
4 and some positive values of λ. As λ increases from zero, the

function gλ,µ has no real critical points, a unique critical point c0 = −2,
or two different critical points, denoted by c01 and c02.

ii) For λ = e2, the point x = −2 is a zero of both g′λ,µ and g′′λ,µ. Hence gλ,µ has a
unique critical point c0. This is the only parameter for which a critical point
is not simple.

iii) For λ > e2, g′λ,µ(−2) < 0 and since g′λ,µ(−1) > 0 (see Equation (2.9)), we
conclude that g′λ,µ(x) has two zeros aligned as c02 < −2 < c01 < −1.

iv) The critical point c02 is in the interval
(

2− 1
µ ,−2

)
as we prove below in

Lemma 2.6.

The position of the critical point c02 has a direct connection with the basin of
attraction of xµ. Therefore we recall the maximum value of µ1 = µ1(λ) as stated
in the Inequality (2.4) such that the attracting fixed point exists for every µ ≤ µ1.
Lemma 2.6. Let µ ≤ µ2 = min{µ1, 1/3}, where µ1 is such that |λ| < e

1
µ
−2 µ2

1−µ

for all µ < µ1. Then the critical point c02 lies in the interval
(

2− 1
µ ,−2

)
.

Proof. For λ < e2 the functions gλ,µ has no critical points. Therefore we consider
only λ > e2. In this case, we proved in Lemma 2.5 that g′λ,µ(−2) < 0 and it

suffices to show that g′λ,µ

(
2− 1

µ

)
> 0. After some computations we have that

g′λ,µ

(
2− 1

µ

)
= (1− µ)

(
1 + λe

2− 1
µ

(
3− 1

µ

))
is positive if and only if

λe
2− 1

µ <
−µ

3µ− 1
. (2.10)
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From the hypothesis on µ and λ, we have on the one hand

λe
2− 1

µ < e
1
µ
−2
(

µ2

1− µ

)
e
2− 1

µ =
µ2

1− µ
,

and on the other hand

µ2

1− µ
<

µ

1− 3µ
if and only if 3µ2 − 2µ+ 1 > 0,

which is valid for every µ ∈ N. We proved with this the validity of (2.10) as
desired.

We point out some characteristics of gλ,µ, which clarifies the behaviour of the
iterates under the function for positive λ’s.

If x lies in
(

1− 1
µ , 0
)

, then it follows gλ,µ(x) < x. Analogously, gλ,µ(x) > x

for points satisfying x < − 1
µ < xµ. For every x > xr, x < gλ,µ(x). This follows

directly from the fact that there is no fixed point larger than xr, and g′λ,µ(x) > 1 for
every x ≥ xr. We proceed to prove these properties in the following proposition.
Proposition 2.7. For λ > 0 and x < 0 we obtain one of the following

• For every x ∈
(

1− 1
µ , 0
)

it holds that gλ,µ(x) < x.

• For every x ≤ − 1
µ , we have x < gλ,µ(x).

Proof. For every negative x we have λxex < 0. Such points satisfy as well that
(1−µ)(x− 1) < x if and only if 1− 1

µ < x. Hence we obtain the first statement as

gλ,µ(x) = (1− µ) (x− 1) + (1− µ) (λxex) < (1− µ) (x− 1) < x.

We proved in Lemma 2.6 that the derivative g′λ,µ is positive for all x ≤ 2− 1
µ under

the assumption that µ and λ satisfy Inequality (2.4). Then gλ,µ is increasing for
every x ≤ − 1

µ < 2− 1
µ and it suffices to prove the second statement for x = − 1

µ .
It follows that

− 1

µ
< gλ,µ

(
− 1

µ

)
= (1− µ)

(
− 1

µ
− 1− λ

(
1

µ

)
e
− 1
µ

)
(2.11)

if and only if −µ < −1−µ
µ λe

− 1
µ or equivalently if µ2

1−µ > λe
− 1
µ . The latter inequal-

ity follows using again Inequality (2.4). Thus we have

λe
− 1
µ < e

1
µ
−2 µ2

1− µ
e
− 1
µ = e−2

µ2

1− µ
,

and it finally implies the claimed result in (2.11) from e−2 µ2

1−µ <
µ2

1−µ .
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Considering gλ,µ(z) again as a complex function (as we do in Section 2.3 and
beyond) then the latter proposition imply that the interval (xr,∞) is contained
in the Julia set.

2.2.2 Dynamics for λ < 0

In this subsection we show how the dynamics varies for different negative values of
λ, such that the function gλ,µ(x) has a unique critical point. Furthermore, gλ,µ(x)

has either one, two or three fixed points in the interval
(

1− 1
µ , 0
)

following a

bifurcation scheme.

Firstly, gλ,µ has xµ as unique attracting fixed point for λ ∈ [−2, 0). Secondly,
there exists a λp ∈ (−3,−2) such that gλ,µ has a fixed point different from xµ. We
denote it by xp and prove that it is a parabolic fixed point. Thirdly, xp bifurcates
into an attracting fixed point, denoted by xr, and a repelling fixed point, denoted
by xl, located respectively right and left from xp. Fourthly, as λ decreases forward
below −4, we find a second parameter λr such that the attracting fixed point xr
becomes parabolic. Finally, for further parameters λ < λr, xr is always repelling.
The fixed point xµ is always attracting and xl is repelling for all parameters λ for
which it exists.

Within this subsection, we consider µ ∈
(
0, 15
)

sufficiently small that Corollary 2.2

is satisfied, that is, |λ| < e
1
µ
−2 µ2

1−µ .
Theorem 2.8. For λ < 0 there exist either one, two or three fixed points, all

contained in the interval
(

1− 1
µ , 0
)

. The attracting fixed point xµ is in the interval(
1− 1

µ , 2−
1
µ

)
. If the additional fixed points exist, they are distributed as follows

i) For λ ∈ [−2, 0) the point xµ is the only fixed point.

ii) There exists a λp ∈ (−3,−2), such that gλ,µ(x) has a parabolic fixed point,
denoted by xp.

iii) There exists λr < −4 such that for λr < λ < λp, the parabolic fixed point
bifurcates into a repelling fixed point xl and an attracting fixed point xr, with
xl < xr.

iv) For λ = λr < −4 the attracting fixed point xr becomes parabolic.

v) For all λ < λr both fixed points xl and xr (different from xµ ) are repelling.
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a) λ = −2 b) λ = −3

c) λ = −5 d) λ = −10

Figure 2.2: Graph of gλ,µ(x) = (1− µ) (x − 1 + λxex) together with the
identity map for µ = 1

10 and some values of λ < 0. Figures show four
different stages of the bifurcation scheme. In Figure a) there exists a
unique fixed point xµ. Later in Figure b) the point xp bifurcated already
into xl and xr, one being repelling and the other attracting. Finally both
points xl and xr are repelling in Figure c) and in Figure d).

Before we proceed with the proof of this theorem, we show some characteristics of
gλ,µ for negative λ, among them that there is a unique critical point. The proof of
Theorem 2.8 follows immediately from Lemma 2.11 for the existence, and Lemmas
2.12 and 2.13 for the nature of the multipliers presented below. In Proposition
2.14 we show the computations for the approximated value of λp and in Proposi-
tion 2.15 for λr.

Proposition 2.9. For λ < 0 there exists exactly one critical point c0, which is a
global maximum for gλ,µ.

Proof. For negative λ we have g′′λ,µ(x) = (1 − µ)(λex)(x + 2) ≤ 0 if and only if
x ∈ [−2,∞). Therefore g′λ,µ(x) attains its maximum at x = −2. The value of the

derivative at this point is g′λ,µ(−2) = (1− µ) (1− λe−2), which is always positive.
Recall that g′λ,µ(−1) > 0 for all λ in R∗ as showed in Equation (2.9). Furthermore
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g′λ,µ(x) = (1− µ) (1+λex(x+1)) ≥ (1−µ) for x ≤ −1. Hence there are no critical
points in the interval (−∞,−1].

Now, we separately consider the cases x in (−1, 0) and x ≥ 0. After some com-
putations, we obtain that g′λ,µ(x) = 0 if and only if λex = −1

x+1 . On the one hand,

write h(x) := −1
x+1 for the function on the right side of the latter equality. For

−1 < x < 0 we have that h(x) < −1. If x ≥ 0, then −1 ≤ h(x) < 0. On the other
hand, the function λex on the left side is negative, decreasing for all λ < 0. It
equals λ at x = 0. Therefore if λ < −1 and x ≥ 0 we obtain λex ≤ λ < −1. For
these λ’s the equality −1

x+1 = λex has a solution only for x < 0.

Concluding, the critical point c0 is located as follows

i) For −1 < λ < 0, c0 > 0.

ii) For λ = −1, the critical point c0 equals 0.

iii) For λ < −1, c0 ∈ (−1, 0).

At the beginning of the proof we showed that g′′λ,µ(x) ≤ 0 for x ≥ −2. With this,
we conclude that c0 ∈ (−1,∞) is a global maximum of gλ,µ.

a) λ = −0.4 b) λ = −5

Figure 2.3: Graphs of the derivatives g′λ,µ(x) = (1− µ) (1 + λxex + λex)

for µ = 1
10 and some values of λ < 0. In Figure a) the critical point c0 is

positive. While in Figure b) c0 lies in the interval (−1, 0).

Notice that for λ < −1 the derivative g′λ,µ(x) is negative for all x ≥ 0, since
g′λ,µ(0) = (1− µ)(1 + λ) comparing with Case (iii) above.

For any fixed point x0 of gλ,µ(x), we have that λex0 = µ
1−µ + 1

x0
. Making a
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substitution in its derivative g′λ,µ we obtain that

g′λ,µ(x0) = (1− µ)

(
1 +

(
µ

1− µ
+

1

x0

)
(x0 + 1)

)
= (1− µ)

(
2 +

1

x0

)
+ µ(x0 + 1).

We write

ϕ(x) := (1− µ)

(
2 +

1

x

)
+ µ(x+ 1)

and study its behaviour, as it describes the values of the derivative at any fixed
point.
Lemma 2.10. Let ϕ(x) = (1− µ)

(
2 + 1

x

)
+ µ(x + 1) be a real function, with

0 < µ ≤ 1
5 . Then ϕ(x) takes its local maximum at xϕ = −

√
1/µ− 1 and for

x ∈ (−1, 0) it holds ϕ(x) < 1. Furthermore, for negative values of x, ϕ(x)→ −∞
as x approaches 0.

Proof. The derivative ϕ′(x) = µ−1
x2

+ µ equals zero if and only if x1,2 = ±
√

1−µ
µ .

Computing the second derivative ϕ′′(x) = 2(1−µ)
x3

, we can see that it is positive for
x > 0 and negative for x < 0, showing that ϕ(x) attains a local maximum at the
negative square root x2 and a local minimum at the positive square root x1. We
now focus on values for x < 0. Denote by

xϕ = −
√

1− µ
µ

< 0 (2.12)

the negative square root. The value at the maximum is:

ϕ(xϕ) = (1− µ)

(
2−

√
µ

1− µ

)
+ µ

(
1−

√
1− µ
µ

)
= 2− µ− 2

√
µ(1− µ).

Then ϕ(xϕ) < 2 if and only if
√
µ(1− µ) > −µ

2 , which is true for all 0 < µ < 1.
We now claim that ϕ(xϕ) ≥ 1 for all µ ≤ 1

5 . After some computations the claim
is equivalent to 5µ2 − 6µ + 1 ≥ 0 and holds for µ ≤ 1

5 and µ ≥ 1. With this, we
proved that ϕ(xϕ) ∈ [1, 2) for µ ∈

(
0, 15
]
.

Hence for x < 0 and µ < 1
5 there are exactly two points where the function ϕ(x)

attains the value 1, more precisely at the points x1,2 =
µ−1±

√
(1−µ)(1−5µ)
2µ .
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Of particular interest is the fact that, for x ∈ (−1, 0), the function ϕ(x) has values
smaller than 1 and, as x→ 0, ϕ(x)→ −∞. The first assertion is true because for
−1 < x < 0 we obtain ϕ(x) = (1− µ)

(
2 + 1

x

)
+µ(x+ 1) < (1−µ)(2− 1) +µ = 1.

The second assertion follows immediately for every x < 0 from the inequality
ϕ(x) < (1−µ)

x + 2− µ.

Figure 2.4: Graph of g′λ,µ(x0) := ϕ(x0) = (1− µ)
(

2 + 1
x0

)
+ µ(x0 + 1)

for any fixed point x0 and µ = 1
10 . The lines y = ±1 are shown in red

and green respectively.

A solution for ϕ(x) = 1 exists for µ ≤ 1/5 only. Because of this, we take values for
µ always smaller or equal to 1/5 within this subsection. Since the main interest
of this work is an approximation process taking place in the limit as µ approaches
0, this bound does not affect the final results.

Lemma 2.11. Let λ < 0 and µ ∈
(
0, 15
)

be small enough that |λ| < e
1
µ
−2 µ2

1−µ .
Then gλ,µ(x) = (1− µ)(x− 1 + λxex) has either one, two or three fixed points as
λ decreases.

Proof. We proceed with the proof of the existence of the fixed points xp and later
on xl and xr as λ < 0 decreases. Analogously to the proof of Theorem 2.3, a point
x is fixed if and only if λex = µ

1−µ + 1
x . For negative parameters it follows that

λex < 0. Then a fixed point can exist only if µ
1−µ + 1

x < 0 as well. This is true if

and only if 1− 1
µ < x < 0.

We proved in Theorem 2.3 the existence of an attracting fixed point xµ lying in the

interval
(

1− 1
µ , 2−

1
µ

)
. Hence we consider only the points lying in the interval(

2− 1
µ , 0
)

. A point x is fixed if and only if it satisfies the equality λxex = µ
1−µx+1;

see Figure 2.5. Denote the different sides of the equation by

h(x) = λxex and f(x) =
µ

1− µ
x+ 1. (2.13)
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a) λ = −2 b) λ = −3

c) λ = −5 d) λ = −10

Figure 2.5: Functions h(x) = λxex for λ < 0 and f(x) = µ
1−µx + 1 with

µ = 1
10 . Figures show the bifurcation scheme from the unique fixed point

xµ before the fixed point xp exists in a), into the existence of xl and xr
in b) and the change from attracting into repelling nature of xr in c) and
d) as λ decreases.

On the one hand, the function h(x) has its global maximum at x = −1, since it is
the unique zero of h′(x) = λex(x+ 1) and its second derivative h′′(x) = λex(x+ 2)
is negative at x = −1 for all λ < 0. Notice that h(x) ≥ 0 for all x ≤ 0. For x > 0,
h(x)→ −∞ and therefore f(x) and h(x) cannot be equal.

On the other hand, we can see that f(x) is a linear function with positive slope and
unique zero at x = 1− 1

µ . Furthermore, for every µ ≤ 1
5 the value f(−1) = 2− 1

1−µ
lies in

[
3
4 , 1
)
. Hence the value of h(x) at x = −1 will determine the existence of

fixed points of gλ,µ.

Consider x ≤ 0. Firstly, we prove that h
(

2− 1
µ

)
< f

(
2− 1

µ

)
with |λ| <

e
1
µ
−2 µ2

1−µ . On the one hand,

f

(
2− 1

µ

)
=

µ

1− µ

(
2µ− 1

µ

)
+ 1 =

µ

1− µ
.
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On the other hand,

h

(
2− 1

µ

)
= λ

(
2− 1

µ

)
e
2− 1

µ < e
1
µ
−2 µ2

1− µ

(
2µ− 1

µ

)
e
2− 1

µ =
µ(2µ− 1)

1− µ
.

Finally, comparing both values we obtain

µ(2µ− 1)

1− µ
<

µ

1− µ
if and only if µ < 1.

Secondly, we see that h(−1) = −λe−1 > 0 for all λ < 0 and that h increases as
λ decreases to −∞. Furthermore, for −2 ≤ λ < 0 we have h(−1) ≤ 2e−1 < 3

4 ,
implying that h(−1) < 3

4 ≤ f(−1). Since h′(x) is always increasing for x < −1,

there is no intersection of f(x) and h(x) in the interval
(

2− 1
µ , 0
)

for λ ∈ [−2, 0).

Thirdly, for λ ≤ −3 the value h(−1) ≥ 3e−1 > 1. Then h(−1) > f(−1) and
since both functions are strictly increasing for x < −1, we can conclude that there

exists an xl ∈
(

2− 1
µ ,−1

)
such that h(xl) = f(xl). For x ∈ (−1, 0), f(x) lies in

the interval
[
3
4 , 1
)

and is increasing, while h(x) decreases from −λe−1 to 0. Hence
there again exists a point xr ∈ (−1, 0) such that h(xr) = f(xr).

Denote by xp a point such that h′(xp) = µ
1−µ . Since h′(xp) > 0, then xp <

−1 and h(xp) < h(−1). Following the argumentation from previous paragraph,
for parameters λ ≤ −3 the functions h(x) and f(x) intersect twice, in contrast
to parameters λ ∈ [−2, 0) where there exists no such an intersection. Then by
continuity, there must exist a λp ∈ (−3,−2) such that f(x) is tangent to h(x).
Since f(x) is a linear function with slope µ

1−µ , the tangency point is precisely
xp.

Lemma 2.12. The point xp is a parabolic fixed point of gλ,µ(x), while xl is always
a repelling fixed point.

Proof. By definition of the point xp, h
′(xp) = λexp(xp + 1) = µ

1−µ . Using this
equality in the computation of the multiplier, the first assertion follows from

g′λ,µ(xp) = (1− µ)
(

1 + µ
1−µ

)
= 1− µ+ µ = 1.

The point xl is a solution to the equality gλ,µ(x) = x. Recall that gλ,µ has a
unique critical point c0 > −1 which is a global maximum. Furthermore, for values
of λ smaller than λp, we have that xl < xp < −1. Hence 1 = g′λ,µ(xp) < g′λ,µ(x)
for x ∈ [xl, xp).
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Lemma 2.13. The point xr is an attracting fixed point of gλ,µ(x) for parameters
λ between λr and λp. For the latter parameter xp is a parabolic fixed point and for
all λ < λr, xr is repelling.

Proof. We proved in the previous lemma, that g′λ,µ(xp) = 1. For λ < λp and using
Lemma 2.11, we have that xp < xr. As λ decreases, the maximum value of the
function h(x) increases, and with this, the point xr increases from xp above −1
and approaches 0. Hence there exists a λ0 < λp such that xr is in the interval
(−1, 0) for all λ ≤ λ0.

Using now the derivative function for fixed points ϕ(x) as defined in Lemma 2.10,
it holds that ϕ(xp) = 1 > ϕ(xr). With this we have that xr is an attracting fixed
point for parameters λ ∈ (λp − ε, λp), for some ε > 0. We proved in Lemma 2.10
that if x ∈ (−1, 0), then ϕ(x) < 1 always. In particular, xr remains attracting
as it increases above −1. Even more, we proved that ϕ(x) → −∞ as x → 0.
Then, there exists a parameter λr such that ϕ(xr) = −1 and for further λ < λr,
ϕ(xr) < −1, meaning that the fixed point xr is repelling for all parameters below
λr.

The parameters λ for which the fixed points xp or xl and xr exist are smaller
than −2, as we proved in Lemma 2.11. This implies that the critical point c0 is
in (−1, 0) and approaches −1 as λ decreases toward −∞.

Of particular interest is the maximum value of gλ,µ, that is gλ,µ(c0), since it tends
to infinity as c0 approaches −1. From Equation (2.6), we obtain that c0 is a critical
point if and only if λec0 = −1

c0+1 . Hence its value is given by

gλ,µ(c0) = (1− µ)

(
c0 − 2 +

1

c0 + 1

)
.

It follows that gλ,µ(c0) has an asymptotic point at c0 = −1 and that gλ,µ(c0) ≥ 0
for c0 ∈ (−1,−1 + ε] and some 0 < ε < 1

2 .

Now, we present some computations to approximate the value λr u −3e1/3, that
is, the parameter λr for which the fixed point xr is parabolic after being attracting
and before it becomes repelling.
Proposition 2.14. Let xr be a fixed point contained in (−1, 0). Then the param-

eter λr for which xr is parabolic satisfies λr < −3 exp
(

1−µ
3−2µ

)
and tends to −3e1/3

as µ tends to zero.

Proof. We proved in Lemma 2.13 that the fixed point xr is at first attracting, later
parabolic and finally repelling as λ decreases below −3. We also showed that xr
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is in the interval (−1, 0) if ϕ(xr) = −1. Therefore we restrict the point x within
this proof to this interval.

Notice that for x ∈ (−1, 0) the function ϕ(x) is decreasing. We also have that
ϕ(x) = (1 − µ)

(
2 + 1

x

)
+ µ(x + 1) > (1 − µ)

(
2 + 1

x

)
and the latter equals −1 if

x = 1−µ
−3+2µ which is negative. Since xr is a fixed point, it satisfies the equation

λexr = 1
xr

+ µ
1−µ . It also holds that xr > − 1−µ

3−2µ >
−1
3 for all µ and with this

λr = e−xr
(

1

xr
+

µ

1− µ

)
< e

1−µ
3−2µ

(
−3 + 2µ

1− µ
+

µ

1− µ

)
= −3e

1−µ
3−2µ .

We finalise with λr < −3e1/3 ≈ −4.1868, and tends to this value as µ→ 0.

We gave in Lemma 2.11 a qualitative proof for the existence of a parameter
λp ∈ (−3,−2) such that gλ,µ has a fixed point xp different from xµ and which
is parabolic. This qualitative proof was helpful to show the dynamical behaviour
for negative parameters λ and the bifurcation scheme presented by the fixed points
xp, xl and xr. Here we present a numerical approximation for the parameter λp.

Proposition 2.15. Let xp be a fixed point contained in
(

2− 1
µ ,−1

)
. Then the

parameter λp for which xp is parabolic satisfies λp >
(
−1 + 2µ

1−µ

)
exp

(
1 + µ

1−2µ

)
and tends to −e as µ tends to zero.

Proof. Assume the fixed point xp < −1 is parabolic with multiplier ϕ(xp) = 1.
Then it holds that ϕ(x) = (1 − µ)

(
2 + 1

x

)
+ µ(x + 1) < (1 − µ)

(
2 + 1

x

)
since

µ(x+ 1) < 0. From this we obtain

(1− µ)

(
2 +

1

x

)
= 1 if and only if x =

1− µ
2µ− 1

.

Since xp is a fixed point, we may compute λ for xp <
1−µ
2µ−1 as in previous lemma

λp = e−xp
(

1

xp
+

µ

1− µ

)
> e

1−µ
1−2µ

(
−1 + 2µ

1− µ
+

µ

1− µ

)
=

(
−1 +

2µ

1− µ

)
e
1+ µ

1−2µ ,

where the last expression converges to −e from above as µ→ 0.

Using the approximation for λ in the two previous propositions, we can say that

for points xr in the interval
(
−1− µ

1−2µ ,−
1−µ
3−2µ

)
, xr is an attracting fixed point of
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the function gλ,µ(x). The result in the following proposition implies in particular
that the basin of attraction of xr is small and remains close to the origin. The
study of the family gλ,µ on the complex plane in the next sections will provide a
more complete description of the dynamics and the structure of its Fatou set.
Proposition 2.16. Let λ < 0. Then the function gλ,µ(x) has no fixed points
outside of the interval [1− 1

µ , 0].

Proof. We prove the statement by showing that for x < 1− 1
µ we have x < gλ,µ(x)

and for all x > 0 then gλ,µ(x) < x. Furthermore, if λ ≤ −1 we obtain that
gλ,µ(x) < 0 for all x ≥ 0.

On the one hand, we have for x < 1 − 1
µ < 0 that x < (1− µ) (x − 1) together

with λxex > 0. Hence it immediately follows that

x < (1− µ) (x− 1) < (1− µ) (x− 1) + (1− µ) (λxex) = gλ,µ(x).

On the other hand, if x > 0, then λxex < 0. In particular we obtain that x > 1− 1
µ

for a fixed point. In this case we have

x > (1− µ) (x− 1) > (1− µ) (x− 1) + (1− µ) (λxex) = gλ,µ(x).

Finally we show that gλ,µ(x) < 0 for every x ≥ 0 and λ ≤ −1. We notice that
g′λ,µ(0) = (1 − µ)(1 + λ) < 0 if and only if λ ≤ −1. We prove that for such λ’s,
the critical point c0 lies in (−1, 0]. Then g′λ,µ(x) ≤ 0 for all x ≥ 0. Hence it
immediately follows that g(x) < gλ,µ(0) = µ− 1 < 0.

2.3 Singular points and values of gλ,µ

In the following, consider again gλ,µ(z) = (1 − µ)(z − 1 + λzez) as a complex
function with λ ∈ C∗ and µ ∈

(
0, 12
)
. It is known that the critical points are

points where the inverse map cannot be uniquely defined. For entire functions
this is equivalent to finding the zeros of the derivative. In addition to critical
points, entire transcendental functions may have asymptotic values.

In this chapter we firstly prove that gλ,µ has no asymptotic values for every λ ∈ C∗
and every µ ∈ (0, 1). Then we construct a domain Mc,µ such that the critical
points lie on its boundary and derive some of its properties. Recall that the set
of critical points of gλ,µ equals the set of critical points of gλ(z) = z − 1 + λzez.
Hence for completeness we include some results due to Lauber [48] concerning the
approximated location of critical points originally made for gλ but which apply
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for gλ,µ as well. To conclude we present some results about the location of critical
values of gλ,µ.
Proposition 2.17. Let λ ∈ C∗ and µ ∈

(
0, 12
)
. Then gλ,µ(z) = (1−µ)(z−1+λzez)

has no asymptotic values.

Proof. Assume that gλ,µ has at least one asymptotic value a. Then there exists a
Jordan arc γ(t) with t ∈ [0,∞) such that

lim
t→∞
|γ(t)| =∞ and lim

t→∞
gλ,µ(γ(t)) = a.

Then

limt→∞ gλ,m(γ(t))

limt→∞ γ(t)
= lim

t→∞

(1− µ)(γ(t)− 1 + λγ(t)eγ(t))

γ(t)

= lim
t→∞

(1− µ)

(
1− 1

γ(t)
+ λeγ(t)

)
= 0

if and only if

1− µ = lim
t→∞

(1− µ)

(
1

γ(t)
− λeγ(t)

)
which implies that 1 = −λ limt→∞ e

γ(t), a contradiction for any fixed λ ∈ C∗.

Now we concentrate on the properties and location of the critical points and values
of gλ,µ. The derivative of gλ,µ is given by:

g′λ,µ(z) = (1− µ) (1 + λez(z + 1)).

For every z 6= −1 the derivative equals zero if and only if:

λez =
−1

z + 1
or equivalently λzez = −1− λez. (2.14)

Let c 6= −1 be a critical point. The last two equations imply that each critical
value v can be described by the expression:

v := gλ,µ(c) = (1− µ)

(
c− 2 +

1

c+ 1

)
. (2.15)

Recall that the main goal of this work is to study the perturbation of the function

gλ(z) = z − 1 + λzez with λ ∈ C∗.
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It is easy to see that the critical points are preserved by the perturbation, since
the zeros of the derivative g′λ(z) = 1 + λez(z + 1) remain invariant. However the
invariance is not fulfilled by the critical values of gλ,µ, which are contracted in
direction to the origin by 1 − µ in comparison to the critical values of gλ. There
are infinitely many critical points, since zero is not a Piccard’s omitted value of
g′λ,µ. Furthermore we have that following result.
Corollary 2.18. The set of critical points of gλ,µ is unbounded.

The idea of the proof is based on the fact that the set of critical points of gλ
remains invariant under the perturbation gλ,µ. Since the Fatou set of gλ contains
a Baker domain, the proof follows from a result of Eremenko and Lyubich stated
as Theorem 1.11 in the introduction.

Another property preserved by the perturbation of gλ is revealed by the construc-
tion of the domain Mc,µ. All critical points c of gλ,µ(z) lie on the boundary of
Mc,µ, where

Mc,µ :=
{
z ∈ C :

∣∣g′λ,µ(z)− (1− µ)
∣∣ < 1− µ

}
= {z ∈ C : |(1− µ)(λez)(z + 1)| < 1− µ}

since the equality is achieved when g′λ,µ(z) = 0. The domain Mc,µ coincides with
an analogue domain in the dynamical plane of the function gλ constructed by
Lauber in [48]. The critical points of gλ lie on the boundary of the domain defined
as Mc = {z ∈ C : |g′λ(z)− 1| < 1} = {z ∈ C : |(λez)(z + 1)| < 1}. In accordance
with the definition, all points z ∈ Mc,µ satisfy that g′λ,µ(z) lies in the disc D(1−
µ, 1− µ) and for z ∈ ∂Mc,µ it follows that g′λ,µ(z) ∈ ∂D(1− µ, 1− µ).

In both cases we have the equivalent expression for the domains:

Mc =Mc,µ =

{
z = x+ iy : y2 <

e−2x

|λ|2
− (x+ 1)2

}
. (2.16)

The latter equation implies that the domain Mc,µ does not dependent on the
parameter µ. In other words, it is also invariant under the perturbation.
Proposition 2.19. (adapted from Lauber, [48], Lemma 14) Mc,µ is non-empty,
symmetric with respect to the real axis, consists of at most two components and ex-
actly one component is unbounded. If there are two components, then the bounded
one is contained in the strip {z ∈ C : |Im z| ≤ 1/2}. If z ∈ Mc,µ and Im z > 1/2,
then x + iy ∈ Mc,µ for all x, y satisfying x < Re z, |y| < Im z. Furthermore, if
x ∈ (C \Mc,µ) ∩ (−1,∞), then Mc,µ ⊂ {z : Re z < x}.

Proof. Having Equation (2.16) in mind, we write h(x) := e−2x

|λ|2 − (x + 1)2. Then

h′(x) = −2e−2x

|λ|2 −2(x+1) equals zero if and only if e
−2x

|λ|2 = −(x+1). Hence, a critical
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point x of h(x) satisfies h(x) = −(x+1)−(x+1)2 ≤ 1
4 for all x ∈ R. Furthermore,

h′′(x) = 4e−2x

|λ|2 − 2 has at most one root, and, consequently, there are at most two

roots of h′. Hence h has at most one maximum value and one minimum value
which are smaller than 1/4. The maximum and minimum are smaller than −1,
since h′(x) < 0 for all x > −1. Finally, h(x)→ +∞ as x→ −∞.

a) |λ| = 0.1 b) |λ| = 2

c) |λ| = e2 d) |λ| = 10

Figure 2.6: Boundary of domainMc,µ = {x+iy ∈ C : y2 < e−2x

|λ|2 −(x+1)2}
for some values of λ where the critical points of gλ,µ lie on.

The definition of the domain Mc,µ depends on |λ|, from which we can say that
∂Mc,µ is symmetric with respect to the real axis for every λ ∈ C∗. This does not
imply the same statement for the critical points. Notice that λez = λez if and only
if λ = λ. Hence, the functions gλ,µ and g′λ,µ map points with real axis symmetry

in the sense that gλ,µ(z) = gλ,µ(z) (resp. for g′λ,µ), if and only if λ ∈ R∗.

Therefore we may state the results for a critical point c with Im (c) > ε for some
ε > 0 and they will follow for c′ with Im (c′) < −ε. Following the same line
of argumentation, we may state the results for λ with Imλ ≥ 0 without loss of
generality, and they are analogously satisfied by λ.
Remark 2.1. Critical points depend holomorphically on λ for any arbitrary but
fixed µ ∈

(
0, 12
)
. Notice that z is a critical point if and only if λ = −e−z

z+1 . The
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function h(z) = −e−z
z+1 maps critical points of gλ,µ to the parameter λ. Since h′(z) =

e−z(z+2)
(z+1)2

, the singularities of the inverse function of h are the critical value e2

and the asymptotic value 0. Then all inverse branches of h are well defined and
holomorphic in the domain C∗\R+, and each of these branches maps the parameter
value λ to one of the critical points of the corresponding function gλ,µ.

Recall that for λ ∈ R− the real line contains exactly one critical point of gλ,µ in
contrast to parameters λ ∈ R+, where the function may have none, one or two
real critical points. Because of this, some of the results stated within this and the
following chapter are valid for parameters λ ∈ C∗ \ R+.
Lemma 2.20. Let λ ∈ C∗, with λ 6= e2, then all critical points are simple.

Proof. A critical point c is simple if f ′(c) = 0 implies f ′′(c) 6= 0. We prove the
lemma by showing that if a critical point is not simple, then λ = e2. We have
on the one hand that g′′λ,µ(c) = (1− µ) (λec) (c+ 2) equals zero if and only if

c = −2. On the other hand c = −2 is a critical point exactly for λ = e2, since
g′λ,µ(−2) = (1− µ)

(
1− λe−2

)
.

Following the representation of ∂Mc,µ in Equation (2.16), we label the critical
points ck for k ∈ Z∗ after their distribution with respect to their imaginary part.

Labelling. Let k ∈ Z. We label the critical points as follows.

• For λ ∈ R∗ we denote by c0 the real critical point if it is unique, and c01, c02
in case there are two real critical points; see Section 2.2.

• In general, for λ ∈ C∗ and k = 0 it holds that Im c0 ∈ (−π, π).

• For a critical point with Im ck > 0 we use an index k > 0. Analogously
negative values of k are used when Im ck < 0.

• The general order is given by Im ck+1 > Im ck for k ∈ Z.

In the following proposition we show that the labelling is well defined and con-
venient to give an estimated position for the critical points. Some tools used in
the proof of Theorem 2.21 will be presented in form of lemmas and the proof
itself is written directly after these lemmas. In the sense of Remark 2.1 recall
that the critical points ck = ck(λ) depend on λ. But for convenience we omit this
dependence in the labelling.
Theorem 2.21 (Lauber, Lemma 16 [48]). Let λ ∈ C∗ \ R+ and ck be a critical
point with k ∈ Z. Then ck has the following properties.

i) Im ck > π for k > 0 and Imλ ≥ 0.
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ii) Im ck < 0 for k < 0.

iii) Im c0 > 0 for Imλ > 0.

iv) Im c0 ∈ (−π, π).

v) Im ck > Im cj if k > j.

vi) |Im ck − Im ck+1| and |ck − ck+1| tend to 2π as |k| tends to ∞.
Lemma 2.22 (adapted from Lauber, [48] Lemma 24). Let Imλ > 0 and ck be a
critical point with Im ck ∈

(
−π

2 , 0
)
. Then Re ck < −1 and Re gλ,µ(ck) < Re ck − 2.

Proof. Let λ = a+ ib with b > 0. We write

g′λ,µ(z) = (1− µ)(1 + λ(z + 1)ez)

= (1− µ)(1 + (a+ ib)(x+ 1 + iy)ex(cos y + i sin y))

= (1− µ)(1 + ex(aα1 − bα2) + iex(aα2 + bα1))

with

α1 = (x+ 1) cos y − y sin y and (2.17a)

α2 = (x+ 1) sin y + y cos y. (2.17b)

Let ck = xk + iyk with yk ∈ (−π/2, 0). Since ck is a critical point, it holds that
Im g′λ,µ(ck) = (1 − µ)exk(aα2 + bα1) = 0. Assume that xk > −1, which implies
that α2 < 0. Firstly, if we assume that aα1 < 0 together with b > 0, then we
obtain aα2 + bα1 6= 0. Secondly, for aα1 > 0 it follows that Re g′λ,µ(xk + iyk) =
(1 − µ)(1 + ex(aα1 + bα2)) > 1 − µ. Thirdly, if aα1 = 0, then we obtain also
that Re g′λ,µ(xk + iyk) > 1− µ. In the three cases above, the assumptions lead to
a contradiction to the fact that ck is a critical point. Finally, if xk = −1, then
we obtain that α1 and α2 are non zero. Hence we obtain that xk < −1 must be
satisfied as claimed.

The proof of the second statement follows directly from Equation (2.15), since

Re gλ,µ(ck) = (1− µ)
(
xk − 2 + xk+1

|ck+1|2

)
< xk − 2 for every xk < −1.

Lemma 2.23 (adapted from Lauber, Lemmas 16 and 25 [48]). Let λ = a + ib.
We obtain the following negative results.

i) For λ ∈ R− the function gλ,µ has no critical points in the strips {z ∈ C : 0 <
Im z ≤ π} and {z ∈ C : −π ≤ Im z < 0}.

ii) For λ ∈ C∗ with b ≥ 0, the function gλ,µ has no critical points on the line
{z = x+ iy : y = π}.
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iii) For λ ∈ C∗ with b ≥ 0, the function gλ,µ has no critical points on the line
{z = x+ iy : y = −2π}.

Proof. We prove the first statement by using the notation from Lemma 2.22. Write
λ = a+ ib with a < 0 and b = 0. Then we have

g′λ,µ(x+ iy) = (1− µ)(1 + aex(α1 + iα2)).

The imaginary part of g′λ,µ equals zero if and only if α2 = (x+1) sin y+y cos y = 0.
For y ∈ (0, π] the equality holds for (x+1) cos y < 0. The latter inequality together
with the assumption a < 0 imply Re g′λ,µ(x+iy) = (1−µ)(1+aexα1) > 1−µ. Hence
the existence of a critical point under such conditions is not possible. Symmetry
arguments yield to the same conclusion for z = x+ iy with y ∈ [−π, 0).

For proving the second statement, let z = x+ iπ with x ∈ R and λ = a+ ib with
b ≥ 0. Then |z| 6= 0. We assume that z is a critical point. Then g′λ,µ(x+ iπ) = 0

if and only if λ = −e−z
z+1 = −e−(x+iπ)

x+1+iπ = e−x x+1−iπ
|x+1+iπ|2 . The latter equality implies in

particular that Imλ = −iπe−x
|x+1+iπ|2 < 0, leading to a contradiction.

The third statement is proved in a similar way. Let z = x− i2π be a critical point
and b ≥ 0. Then g′λ,µ(x − i2π) = (1 − µ)

(
1 + λ(x+ 1− i2π)ex−i2π

)
= 0 if and

only if

λ =
−e−x

x+ 1− i2π
= e−x

(
−x− 1

|x+ 1− i2π|2
− i2π

|x+ 1− i2π|2

)
.

Then it must hold that Imλ = b < 0, proving our statement.

Lemma 2.24 (adapted from Lauber, Lemma 25, [48]). There exists a λ ∈ R−
such that Im c1 > π and Im c−2 < −2π.

Proof. As we proved in Lemma 2.23 there exist no critical points in the strips of
height π above and below the real axis. Hence Im c1 > π and Im c−1 < −π.

For parameters λ with sufficiently small norm we may assume that the curve
γ := ∂Mc,µ ∩ {z ∈ C : −2π ≤ Im z < −π} is close to a segment of length π. In
particular its length is less than 3π

2 . Furthermore, γ ⊂ {z ∈ C : Re z > −2} holds
also for |λ| sufficiently small. Hence g′′λ,µ(z) = (1 − µ)(λ(z + 2)ez) 6= 0 on γ and
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using our definition of Mc,µ we obtain for points z ∈ γ

|g′′λ,µ(z)| = |(1− µ)(λ(z + 1)ez + λez)|
≤ (1− µ)|λ(z + 1)ez|+ (1− µ)|λez|

= (1− µ)|λ(z + 1)ez|+ 1− µ
|z + 1|

= (1− µ)

(
1 +

1

|z + 1|

)
≤ (1− µ)

(
1 +

1

π

)
< 1 +

1

π
<

4

3
.

Since g′λ,µ(z) ∈ ∂D(1 − µ, 1 − µ), this implies that there is at most one critical
point contained in γ, which is the point c−1. Hence Im c−2 < −2π.

Proof of Theorem 2.21. The proof of the first statement in the theorem follows
directly from the computations in Lemma 2.23, that is, that Im c0 < π for param-
eters Imλ ≥ 0. In particular, we proved that Im ck > π for k > 0 and Imλ ≥ 0.

Next if x is a real critical point, then λ is real as well. Since in this case λ is
restricted to R−, then c0 is the unique critical point on the real line and we have
Im ck < 0 for k < 0. This proves statement ii).

To prove the third statement, that is Im c0 > 0 for Imλ > 0, it suffices to show
that there exists a parameter in the upper half-plane such that the line iπ

2 contains

a critical point. Let x ∈ R. The parameter λ = −e−x−iπ/2
x+1+iπ/2 satisfies

g′λ,µ

(
x+ i

π

2

)
= (1− µ)

(
1− e−x−iπ/2

x+ 1 + iπ/2
(x+ 1 + iπ/2)ex+iπ/2

)
= 0.

Then z = x+iπ2 must to be the critical point c0 using statements i) and ii). Hence
c0 is contained in the strip bounded by the real axis and the horizontal line at iπ
when Imλ > 0.

Using symmetry arguments, the statement above also follows for λ with Imλ < 0,
which applies that c0 is always contained in the strip {z ∈ C : −π < Im z < π}
for every λ ∈ C+ \ R+, yielding result iv).

To show the fifth statement, let Imλ ≥ 0. Firstly, assume that |Im ck| > 1
2 . Then

we consider critical points which lie in the boundary of the unbounded component
ofMc,µ, which is the union of the graphs of two continuous monotonous functions
as we proved in Lemma 2.19. Note that two critical points never collide for a
parameters outside from R+, otherwise some function ck(λ) would not be analytic
at this parameter. Since all critical points move along the boundary of Mc,µ,
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which itself moves continuously with respect to λ, we obtain that Im ck > Im cj
for k > j and for critical points outside the strip {z ∈ C : |Im z| < 1/2}. Now,
inside the strip we may meet the difficulty that the boundary ofMc,µ is not longer
the graph of a monotonous function for every parameter λ. But we know that
Im ck > 0 if k > 0, Im c1 > π and Im c−1 < 0 as proved in Lemmas 2.23 and 2.24.
So it remains to show that Im c−2 < −2π. This is true for λ ∈ R− as shown in
Lemma 2.24. But we also showed that the line −2πi does not contain any critical
point if Imλ ≥ 0, which yields the claim.

To prove the last statement, recall that ∂Mc,µ is mapped by g′λ,µ into the boundary
of the disc D(1−µ, 1−µ) and contains all critical points. It suffices to show that
|g′′λ,µ(z)| tends to 1− µ for z ∈ ∂Mc,µ as |z| tends to ∞. We compute

|g′′λ,µ(z)| = (1− µ)|λ(z + 1)ez + λez|

≤ (1− µ)(|λ(z + 1)ez|+ |λez|) = (1− µ)

(
1 +

1

|z + 1|

)
,

which under these conditions tends to 1− µ.

We now present some estimates for the critical values.
Proposition 2.25. Let c ∈ C be a critical point different from −1 and denote its
value by v = gλ,µ(c). If Im c 6= 0, then |Im v| < |Im c|. Furthermore, for critical
points with |Im c| > 2 we obtain that the critical value v ∈ D

(
(1− µ)(c− 2), 12

)
.

Proof. Firstly, recall that any critical value satisfies Equation (2.15), which is

equivalent to v = (1 − µ)
(
c− 2 + c+1

|c+1|2

)
. Then for c = x + iy we obtain that

Im v < y if and only if

−µy − (1− µ)y

|c+ 1|2
< 0.

The latter inequality holds for every y > 0 and µ > 0. Analogously, we obtain
y < Im v for every y < 0.

Secondly, to prove that v ∈ D
(
(1− µ)(c− 2), 12

)
we again use Equation (2.15).

From the assumption that |Im c| > 2 we have that 2 < |Im (c+ 1)| ≤ |c+ 1|. Then

|v− (1−µ)(c−2)| = (1−µ)
∣∣∣ 1
c+1

∣∣∣ < ∣∣∣ 1
c+1

∣∣∣ < 1
2 , which yields the desired result.

Proposition 2.26 (adapted from Lauber, [48] Lemma 22). Let ck = xk + iyk be
a critical point with yk > 0 and λ ∈ C∗. Then the following properties hold.

i) For every x < xk it is satisfied Im gλ,µ(xk + iyk) < Im gλ,µ(x+ iyk) < yk and
∂
∂x Im gλ,µ(x+ iyk) < 0.
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ii) Denote by L = {x + iyk : x < xk}. If L ⊂ Mc,µ or xk < −1, then all z ∈ L
with x < xk satisfy Re gλ,µ(x+ iyk) < Re gλ,µ(xk + iyk).

iii) If xk > −1, then Re gλ,µ(x+ iyk) < Re gλ,µ(xk + iyk) for all x ∈ [−2, xk).

Proof. Let λ = a + ib and z = x + iy. During this proof we write the product
λez := ex(ρ1 + iρ2) whereby

ρ1 = a cos y − b sin y and

ρ2 = a sin y + b cos y.

Then we write

gλ,µ(x+ iy) = (1− µ)(x− 1 + iy + ex(xρ1 − yρ2) + iex(xρ2 + yρ1)) and

g′λ,µ(x+ iy) = (1− µ)(1 + ex((x+ 1)ρ1 − yρ2) + iex((x+ 1)ρ2 + yρ1))

using the notation above. Notice that the functions ρ1 and ρ2 depend on y and λ
only.

We now proceed to prove the first statement. As we have shown in Proposition
2.25, Im gλ,µ(ck) < yk for every k 6= 0, then Im gλ,µ(xk + iyk)− yk < 0. Denote by
h(x) the function defined for every x ∈ R and the fixed value yk as

h(x) = Im gλ,µ(x+ iyk)− yk = −µyk + (1− µ)ex(xρ2 + ykρ1).

Then h′(x) = (1 − µ)ex((x + 1)ρ2 + ykρ1) coincides with Im g′λ,µ(x + iyk). This
implies that h′(x) has exactly one root at xk. Since h(xk) is negative by definition
and h(x) tends to −µyk < 0 as x → −∞, we conclude that h(x) < 0 for x < xk.
Furthermore, we obtain for all x < xk

h′(x) =
∂(Im g′λ,µ(x+ iyk))

∂x
< (1− µ)exk((xk + 1)ρ2 + ykρ1) = 0.

Then h(xk) < h(x), which yields the statement.

In order to prove the second property, assume first that L ⊂ Mc,µ. Then g′λ,µ(z)
lies in the disc D(1 − µ, 1 − µ) for all z ∈ L. We have then for such z that
Re g′λ,µ(z) lies in the interval (0, 2(1−µ)). Hence 0 = Re g′λ,µ(ck) < Re g′λ,µ(z) and
Re gλ,µ(x+ iyk) is an increasing function of x. Finally Re gλ,µ(z) < Re gλ,µ(ck) for
all x < xk.

Assume now that xk < −1 and yk > 0. Furthermore, assume that ρ1 < 0. Then
Im g′λ,µ(ck) = (1 − µ)exk((xk + 1)ρ2 + ykρ1) = 0 implies ρ2 < 0 and this gives
Re g′λ,µ(ck) = (1 − µ)(1 + exk((xk + 1)ρ1 − ykρ2)) > (1 − µ)(1 + exk) > 1 − µ,
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which leads to a contradiction for a critical point ck. We conclude that ρ1 ≥ 0
and ρ2 > 0 must hold, thus we obtain

Re gλ,µ(x+ iyk) = (1− µ)(x− 1 + ex(xρ1 + ykρ2))

< (1− µ)(xk − 1 + exk(xkρ1 + ykρ2) = Re gλ,µ(ck)

for all x < xk. In other words, Re gλ,µ(z) < Re gλ,µ(ck) holds also for critical
points with xk < −1 and z ∈ L.

We finally prove the last statement in a similar way as above. Let xk > −1 and
assume ρ1 > 0. Again, Im g′λ,µ(ck) = 0 implies ρ2 < 0 and Re g′λ,µ(ck) > (1 − µ),
which is a contradiction to ck being a critical point. Hence we have that ρ1 ≤ 0
and ρ2 > 0. Beside this, Re g′′λ,µ(x + iyk) = (1 − µ)ex((x + 2)ρ1 − ykρ2) < 0 for
−2 ≤ x < xk. Then Re g′λ,µ(x + iyk) > Re g′λ,µ(xk + iyk) = 0 for x ∈ [−2, xk), as
desired.

Corollary 2.27. Let ck be a critical point and vk its value for every k ∈ Z∗. If
Im ck < Im cj, then Im vk < Im vj and |ck| < |cj |. In particular, the result is valid
for j = k + 1.

This result follows immediately from Theorem 2.21 and Proposition 2.25. As a
conclusion we mention that if |k| ≥ 1 it follows from the properties of the critical
points that |Im ck| > π > 2 implying that vk ∈ D

(
(1− µ)(ck − 2), 12

)
for all such

points.

2.4 Absorbing domain Hη,ρ

In Section 2.1 we have shown the existence of an attracting fixed point zµ for the
function gλ,µ. In order to give a first description of the basin of attraction of zµ,
Aµ, we construct an absorbing domain contained in it. The aim of this work is to
prove the dynamical convergence of the functions gλ,µ to gλ. One way of proving
this is to show the convergence of their Fatou components. Therefore we prove
later in Section 3.3 that the basin of attraction Aµ converges to the Baker domain
Bλ using the convergence of the absorbing domains.

A first suggestion is an appropriate variation of the absorbing domain for the Baker
domain defined as Mδ = {z ∈ C : |gλ(z) − (z − 1)| < δ} for δ ∈ (0, 1). Hence we
construct an analogous domain Mδ,µ = {z ∈ C : |gλ,µ(z)− (1− µ) (z − 1)| < δ},
presented below in Subsection 2.4.1. The geometry of the domain Mδ,µ is pre-
served by the approximating functions gλ,µ, but it is not invariant under these
functions.
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One of the limitations presented by the action of gλ,µ is the multiplicative factor
1 − µ. If we multiply any point z by 1 − µ, then it is contracted in direction of
the straight line connecting the point z with the origin by a factor of its norm.
Notice that points z ∈Mδ,µ are mapped very close to (1−µ)(z− 1). Therefore, z
is firstly mapped close to z− 1 and secondly contracted in direction to the origin.
Consequently, points with large norm and lying close to the boundary of Mδ,µ

may be mapped out of the domain after the first iteration. In fact, the dynamics
for points with very large imaginary part have a very intricate dynamic as we can
see in Figure 2.7.

However, the intricate dynamic depends strongly on the parameter µ and vanishes
up to infinity in the direction of the imaginary axis as µ tends to zero. Hence
we firstly restrict the domain Mδ,µ to a subset denoted by Mρ, which is its
intersection with the right half-plane {z ∈ C : Re z > 1 − 1

2µ}. Furthermore, for

points z = x+ iy with x ≤
(

1− 1
2µ

)
we define a domain Hη ⊂Mδ,ρ.

a) Im z ≈ 108, λ = −4 and µ = 1
10
. b) Im z ≈ 108, λ = −4 and µ = 1

20
.

Figure 2.7: Fatou and Julia sets of gλ,µ(z) = (1 − µ)(z − 1 + λzez) for
points with large imaginary part. The back region belongs to the basin
of attraction Aµ, each red circle is the neighbourhood of a critical point
and J (gλ,µ) is in yellow. As µ tends to zero, the “chaotic” behaviour
of J (gλ,µ) shrinks upwards and downwards ∞ in the iR direction and
disappears in the limit.

In Subsection 2.4.1 we present some geometrical properties of the domainMδ,µ. In
Subsection 2.4.2 we construct the domainHη,ρ = Hη∪Mρ and prove its invariance
under the function gλ,µ.
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2.4.1 First approach by Mδ,µ

In this subsection we present the geometrical description of the domain Mδ,µ. In
the following, the value of µ is sufficiently small that the attracting fixed point zµ
exists as required in Theorem 2.1.

For every λ ∈ C∗ we define the domainMδ,µ, with µ ∈
(
0, 12
)
, µ→ 0 and δ ∈ (0, 1)

as

Mδ,µ = {z ∈ C : |gλ,µ(z)− (1− µ) (z − 1)| < δ} (2.18)

Since |gλ,µ(z)− (1− µ) (z − 1)| = |(1− µ) (λzez)|, we obtain after some computa-
tions that the domain Mδ,µ can equivalently be described as

Mδ,µ =

{
z = x+ iy ∈ C : y2 <

(
δ

(1− µ) |λ|

)2

e−2x − x2
}
.

The equivalence between the two definitions is independent of the parameters λ,
µ and δ. Furthermore, with a change of variable x 7→ t + 1 we can rewrite the
domain as

Mδ,µ =

{
z = t+ 1 + iy ∈ C : y2 <

(
δe−1

(1− µ)

)2
e−2t

|λ|2
− (t+ 1)2

}
. (2.19)

Hence,Mδ,µ is just a translation by one to the left of the domainMc,µ described
in the previous section with the Equation (2.16). We may neglect the constant,
since it does not depend on λ and tends to δe−1 ≈ 1 as µ tends to zero. We obtain
the following result.
Proposition 2.28. The domain Mδ,µ is non-empty, symmetric with respect to
real axis, consists of at most two connected components of which exactly one is
unbounded. If there are two components, the bounded one is contained in the strip
{z ∈ C : |Im z| < 1/2}. Furthermore ∂Mδ,µ can be parametrized as a function of

x for x ≤ σµ := min
{
−e, 2 ln

(
δ

(1−µ)|λ|

)}
.

In the following proofs we use some properties of lnx. For x > 0 we have

i) 1− 1
x ≤ lnx ≤ x− 1.

ii) lnx < x
2 .

The first statement follows immediately from the equality at x = 1 and the defini-
tion of lnx. The second statement is valid for all x ∈ (0,∞). Notice its equivalence
to x < ex/2 and to x2 < ex, which in turn holds for positive values of x.
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Figure 2.8: Absorbing domain Mδ,µ for δ = 1
2 , µ = 1

100 and λ = −10
in orange contained in a left half-plane. Critical points and values are
shown in dark blue and white circles, resp. The yellow part belongs to
the basin of attraction Aµ and the Julia set J (gλ,µ) is in black.

Proof. The symmetry ofMδ,µ, the number of its components and their properties
are inherited from the domainMc,µ as proved in Lemma 2.19. Now, the boundary
ofMδ,µ is described by the graph of the function hδ,µ, that is, as the set of points
{(x, y) : y = ±hδ,µ(x)} with

hδ,µ(x) :=

√(
δ

(1− µ) |λ|

)2

e−2x − x2. (2.20)

We compute the upper boundary for the values x ∈ R such that hδ,µ is well defined.
The discriminant of the function hδ,µ is positive if and only if

|x| ex ≤ δ

(1− µ) |λ|
or equivalently

ln |x|+ x ≤ ln

(
δ

(1− µ) |λ|

)
.

For x ≤ −e it follows x+ ln |x| < x+ 1
2 |x| = x

2 . We define

σµ := min

{
−e, 2 ln

(
δ

(1− µ) |λ|

)}
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and assume that x ≤ σµ. Then for σµ = −e the result follows immediately from
the arguments presented above. Otherwise we obtain

ln |x|+ x <
x

2
≤ ln

(
δ

(1− µ) |λ|

)
which also yields the result. In particular, the function hδ,µ(x) equals zero at

x = 2 ln
(

δ
(1−µ)|λ|

)
.

Proposition 2.29. For every λ ∈ C∗, δ ∈ (0, 1) and x < σµ, hδ,µ(x) is monoton-
ically decreasing.

Proof. For simplicity in this proof we use the notation A := δ
(1−µ)|λ| . Notice that

A is always positive. Then rewriting hδ,µ(x) =
√
A2e−2x − x2 we have

h′δ,µ(x) =
−2A2e−2x − 2x

2hδ,µ(x)
=
−A2e−2x − x√
A2e−2x − x2

.

To show that hδ,µ(x) is monotonically decreasing, we show −A2e−2x−x is negative.
Since x ≤ σµ < 0, we write s = −x > 0 and distinguished between the following
two cases.

Case 1: x < −e < 2 lnA. Then s > e and we have 0 < 3−e = 3 ln e−e < 3 ln s−e
as well as ln s < 4 ln s+ 2 lnA < 2s+ 2 lnA. The latter inequality is equivalent to
s < A2e2s which implies in turn −A2e−2x − x < 0.

Case 2: x < 2 lnA < −e. Then we obtain for positive values −s < 2 lnA, implying
that ln s < s = 2s − s < 2s + 2 lnA. Again, the latter inequality is equivalent to
s < A2e2s providing the same result as in the first case.

We remark that the boundary ofMδ,µ is symmetric with respect to the real axis,
as the domainMc,µ does. Therefore ∂Mδ,µ is monotonically decreasing for values
above the real axis and monotonically increasing for values above the real axis.
The previous proposition implies in particular for values of x ≤ σµ that ∂Mδ,µ is
an unbounded simple curve.

2.4.2 Invariance of domain Hη,ρ under gλ,µ

We devote this subsection to invariance of the smaller domain Hη,ρ := Hη ∪Mρ

contained in Mδ,µ. It can be the case that Mδ,µ is mapped completely into
Hη,ρ, after several iterations, or even that Mδ,µ intersects the Julia set, in which
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case is the reasons not to be invariant. The occurrence of one behaviour or the
other depends on the given parameter λ and its relations with µ and δ, as we
show subsequently. In other words, there may exist z ∈ Mδ,µ \ Hη,ρ belonging to
the Julia set. Therefore we restrict to the smaller region Mρ and construct an
unbounded domain Hη contained in a half plane located at the left side of Mρ

where we can guarantee the invariance under the function gλ,µ.

LetMδ,µ be the domain defined in the previous subsection by the expression (2.18)
and bounded by the curves ±hδ,µ(x) defined in Equation (2.20). Consider a fixed
parameter δ = 1

2 and write the discriminant of h1/2,µ as

ρµ(x) =

(
e−x

2(1− µ)|λ|

)2

− x2. (2.21)

We denote by

Mρ :=

{
z = x+ iy : 1− 1

2µ
< x < x0 and y2 < ρµ(x)

}
(2.22)

the restriction ofMδ,µ to values of x in the interval
(

1− 1
2µ , x0

)
, where x0 satisfies

ρµ(x) ≥ 0 for all x ≤ x0. In Lemma 2.28 we stated that the function ρµ(x) is not

negative for x ≤ σµ := min
{
−e, 2 ln

(
1

2(1−µ)|λ|

)}
. In the following we refer to σµ

simply as the value x0 such that ρµ(x) ≥ 0 for every x ≤ x0.

For values of x ≤ 1 − 1
2µ we construct the domain Hη as follows. Let ±ηµ(x) be

straight lines that join the origin with the points zρ,± =
(

1− 1
2µ ,±

√
ρµ(1− 1

2µ)
)

.

Notice that the points zρ,± lie on the boundary of Mρ. We define the domain as

Hη :=

{
z = x+ iy : x ≤ 1− 1

2µ
and |y| < ηµ(x)

}
(2.23)

with ηµ(x) := −x

√(
µe(1−2µ)/2µ

(2µ− 1)(1− µ)|λ|

)2

− 1.

Recalling Corollary 2.2 there exists a µ1 for every λ ∈ C∗ such that |λ| < e
1
µ
−2 µ2

1−µ
for all µ ≤ µ1 <

1
2 . Under this assumption the existence of the attracting fixed

point zµ is guaranteed. However, we show below in Lemma 2.32 that we require
a smaller boundary value of µ such that the invariance of the absorbing domain
is assured for any given λ. In order to state the theorem on invariance we give
here the necessary conditions on the parameters and remark that for these µ’s
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Figure 2.9: Invariant absorbing domain Hη,ρ defined as the union of two
regions: firstly Hη, which lies between the lines ηµ and −ηµ, and secondly
Mρ, which is a restriction of M1/2,µ for Re z > 1− 1

2µ .

the existence of the attracting fixed point is automatically fulfilled. Let µ2 be
sufficiently small that

|λ| < e
1
2

(
1
µ
−2
)
µ2

1− µ
for all µ ≤ µ2. (2.24)

Now we obtain for the domains and the parameters as defined above the following
result.
Theorem 2.30 (Invariance of absorbing domain). Let Hη,ρ := Hη ∪Mρ. Then
the domain Hη,ρ is invariant under gλ,µ for every λ ∈ C∗ and for every µ ∈ (0, µ2],
with µ2 = µ2(λ).

We first present some lemmas needed for the proof. The proof of Theorem 2.30
follows in conclusion. A first tool to prove the invariance of the absorbing domain
Hη,ρ is achieved by showing that two subdomains of Hη,ρ are mapped into Hη,ρ.
The first region is given by the intersection Mδ,µ with a right half-plane and we
prove that it is mapped to the left. The second region is the intersection of Hη,ρ
with an upper and a lower half-planes which are mapped towards the real axis.



2.4. Absorbing domain Hη,ρ 67

Let δ ∈ (0, 1). We define

HRe :=Mδ,µ ∩
{
z ∈ C : Re z > 1− 1

µ
+
δ

µ

}
and

HIm :=Mδ,µ ∩
{
z ∈ C : |Im z| > δ

µ

}
.

Lemma 2.31. For the domains defined above we obtain

• If z ∈ HRe, then Re gλ,µ(z) < Re z.

• If z ∈ HIm, then |Im gλ,µ(z)| < |Im z|.

Proof. Firstly consider z ∈ HRe. In particular z is also contained in Mδ,µ, there-
fore (1− µ)|λzez| ≤ δ is satisfied. On the one hand we have z ∈ HRe if and only
if −µRe z ≤ 1− µ− δ which is equivalent to

(1− µ)(Re z − 1) + δ ≤ Re z.

On the other hand, Re gλ,µ(z) ≤ (1 − µ)Re (z − 1) + (1 − µ) |λzez| holds. Since
z ∈Mδ,µ this implies

Re gλ,µ(z) ≤ (1− µ)(Re z − 1) + δ.

In the first case equality holds for z with Re z = 1 − 1
µ + δ

µ , that is, on the left
side of HRe. In the second case we obtain equality only for z ∈ R ∩ ∂Mδ,µ, that
is, on the right side of HRe. We can resume that both equalities never occur
simultaneously for z ∈ C. This assures the strict inequality Re gλ,µ(z) < Re z.

Secondly let z ∈ HIm. We prove the result for Im z ≥ δ
µ and it analogously follows

for Im z ≤ − δ
µ . The inequality Im z ≥ δ

µ is equivalent to (1 − µ)Im z + δ ≤ Im z.
Then such a point also satisfies Im gλ,µ(z) ≤ (1 − µ)Im z + (1 − µ) |λzez|. This
yields that

Im gλ,µ(z) ≤ (1− µ)Im z + δ.

In this case equality holds if the intersection of ∂HIm with ∂Mδ,µ lies on iR.
However it is not possible, because Re z < 0 for all z ∈ ∂Mδ,µ. Hence we obtain
a strict inequality as well.

In order to proof that the domain Hη,ρ is invariant with respect to gλ,µ, we firstly
show that gλ,µ(∂Hη,ρ) ⊂ Hη,ρ. The latter statement follows almost immediately
from the lemma above if HRe ∩ HIm 6= ∅. A non-empty intersection is assured
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Figure 2.10: Domain Mδ,µ together with regions HIm and HRe, where
|Im gλ,µ(z)| < |Im z| and Re gλ,µ(z) < Re z respectively. The intersection
of HRe and HIm is non empty for δ ≤ 1

2 .

when hδ,µ

(
1− 1

µ + δ
µ

)
> δ

µ . For δ = 1 the inequality reduces to hδ,µ(1) > 1
µ which

is fulfilled if and only if e−2 > |λ|2 (1 − µ)2(1 + 1
µ2

). This is a strong restriction,
hardly satisfied by an arbitrary parameter λ. In other words, we can always find
values of λ such that the intersection is empty, even when we take the limit µ→ 0.

In contrast to this, consider now a small value of δ ∈ (0, 1), for example δ = µ.
Then the intersection of HRe and HIm is non empty, since it is equivalent to

2
√

1
µ − 1 > 1. But with this, the disc D ((1− µ)(z − 1), δ) containing gλ,µ(z) as

defined for points z ∈Mδ,µ collapses to a point as we take the limit δ = µ→ 0.

Following these arguments, we may restrict the value of δ so that we can continue
with the analysis for arbitrary values of λ ∈ C∗ and µ ∈ (0, µ2]. Let δ ≤ 1

2 and µ2
be sufficiently small that Equation (2.24) is fulfilled for all µ ≤ µ2. Then we have

as well that 1
|λ|2 > e

(
2− 1

µ

)
(1−µ)2
µ4

.

We claim that HRe is not empty for δ = 1
2 . We prove it by showing that

ρµ

(
1− 1

µ + δ
µ

)
> 0 for values of µ2 and λ as above. After some computation,
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we obtain

ρµ

(
1− 1

µ
+
δ

µ

)
=

(
δ

1− µ

)2 1

|λ|2
e
−2
(
1− 1

µ
+ δ
µ

)
−
(

1− 1

µ
+
δ

µ

)2

>
δ2

µ4
e
2− 1

µ e
−2
(
1− 1

µ
+ δ
µ

)
−
(

1− 1

µ
+
δ

µ

)2

which is positive if and only if e
1
µ
(1−2δ)

> µ2

δ2
(µ− 1 + δ)2. Then for δ = 1

2 we

obtain e
1
µ
(1−2δ)

= 1 > 4µ2
(
µ− 1

2

)
for all 0 < µ ≤ 1

2 .

In what follows, we consider the fixed value δ = 1
2 and denote the function hδ,µ

defined in Equation (2.20) simply by hµ. Recall that hµ(x) =
√
ρ(x) as described

in Equation (2.21).

Lemma 2.32. Let δ = 1
2 and µ2 sufficiently small that |λ| < e

1
2

(
1
µ
−2
)
µ2

1−µ for all
µ ≤ µ2. Then HRe ∩HIm 6= ∅.

Proof. We show that hµ

(
1− 1

2µ

)
> 1

2µ . On the one hand

hµ

(
1− 1

2µ

)
=

√(
1

2(1− µ)|λ|

)2

e
−2
(
1− 1

2µ

)
−
(

1− 1

2µ

)2

>

√
1

4(1− µ)2
e
−
(

1
µ
−2
)

(1− µ)2

µ4
e

1
µ
−2 −

(
1− 1

2µ

)2

=

√
1

4µ4
−
(

1− 1

2µ

)2

On the other hand, the latter expression is larger than 1
2µ if and only if

1

4µ4
>

(
1− 1

2µ

)2

+
1

4µ2
=

(2µ− 1)2 + 1

4µ2
.

The inequality above is equivalent to 1 > µ2(2µ−1)2+µ2. Finally, for all µ <
(
0, 12
]

it follows that (2µ−1)2 lies in the interval [0, 1) and with this µ2((2µ−1)2+1) < 1
2 ,

yielding the desired result.

An important consequence of choosing the parameter δ = 1
2 is stated as follows.

Corollary 2.33. For δ = 1
2 the domains HRe and Mρ coincide.
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A second tool in the proof of the invariance of Hη,ρ is to characterise points
z ∈ Mδ,µ that are at a distance 1

2 from the point (1 − µ)(z − 1). We prove in
the following lemma that a point z belongs to such a disc if and only if z lies in
a neighbourhood of the attracting fixed point zµ tangent to HRe and HIm as it is
shown in Figure 2.11. Recall that for δ = 1/2 these domains simplify by

HRe ⊂
{
z ∈ C : Re z > 1− 1

2µ

}
and

HIm ⊂
{
z ∈ C : |Im z| > 1

2µ

}
.

Corollary 2.34. Let δ = 1/2 and z ∈ M1/2,µ.Then the point z is contained in

D
(
(1− µ)(z − 1), 12

)
if and only if z ∈ D

(
1− 1

µ ,
1
2µ

)
.

Proof. Let z ∈M1/2,µ. Using definition the definition ofM1/2,µ we obtain that z

lie in the disc D
(

1− 1
µ ,

1
2µ

)
, that is∣∣∣∣z − (1− 1

µ

)∣∣∣∣ =

∣∣∣∣z +

(
1− µ
µ

)∣∣∣∣ < 1

2µ

which is equivalent to |µz + 1− µ| = |z − (1− µ)(z − 1)| < 1
2 . It means, z lies as

well in the disc D
(
(1− µ)(z − 1), 12

)
.

For the rest of the section we assume δ = 1
2 and 1

|λ|2 > e
−
(

1
µ
−2
)
(1−µ)2
µ4

for all

µ ≤ µ2, as stated in Theorem 2.30. Furthermore, we show the results for points z
with Im z > 0 and they analogously apply for z with Im z < 0, following the same
argument for the functions −ηµ(x) and −hµ(x).

Proof of Theorem 2.30. Now we prove the invariance of the domain Hη,ρ. It is
clear that the attracting fixed point zµ is contained in Hη,ρ, since zµ lies in the

disc D
(

1− 1
µ , 1
)
⊂ D

(
1− 1

µ ,
1
2µ

)
for all µ < 1

2 . Then it is enough to show that

gλ,µ(∂Hη,ρ) ⊂ Hη,ρ.

Let zb be an arbitrary point in the boundary ofHη,ρ and denote the disc containing
its image gλ,µ(zb) by Db := D

(
(1− µ)(zb − 1), 12

)
. Notice that zb ∈ HRe ∪ HIm.

Hence using Corollary 2.34, zb /∈ Db. We show either directly gλ,µ(zb) ∈ Hη,ρ or
that the whole disc Db is contained in Hη,ρ.

Firstly, assume zb ∈ Mρ ∩ ∂Hη,ρ as it can be seen in Figure 2.9. Since HRe
and Mρ coincide for δ = 1

2 , we obtain Re gλ,µ(zb) < Re zb. Since the curve
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Figure 2.11: Invariant fundamental domain Hη,ρ defined for δ =

1/2, µ ≤ µ2. The disc D
(

1− 1
µ ,

1
2µ

)
is tangent to the boundaries of

the domains HRe and HIm.

∂Mρ is monotonically decreasing (reps. monotonically increasing) for point with
imaginary part greater (resp. lower) than zero as proved in Proposition 2.29, we
have that gλ,µ(zb) ∈ Mρ. In particular this implies that the whole disc Db is as
well contained in Mρ.

Secondly, write zρ :=
(

1− 1
2µ ,
√
ρµ(1− 1

2µ)
)

for the boundary point lying on ∂Mρ

such that Re zρ < Re z for every z ∈ Mρ as it is marked in Figure 2.11. Using
Lemma 2.32 zρ ∈ HRe ∩ HIm. Hence Re gλ,µ(zρ) < Re zρ and Im gλ,µ(zρ) < Im zρ
which implies that gλ,µ(zρ) ∈ Hη,ρ.

Thirdly, consider a point zb ∈ ∂Hη. Then it satisfies zb = xb + iηµ(xb) and we
refer the reader to Figure 2.12 for a sketch of the following computations. Recall
that every zb ∈ ∂Hη ⊂M1/2,µ satisfies (1− µ)|λzbezb | < 1

2 . Hence we obtain

Re gλ,µ(zb) = (1− µ)(xb − 1) + (1− µ)Re (λzbe
zb)

≤ (1− µ)(xb − 1) + (1− µ)|λzbezb | < (1− µ)(xb − 1) +
1

2
.

Analogously Im gλ,µ(zb) < (1 − µ)Im zb + 1
2 holds. We prove that gλ,µ(zb) lies in

Hη by showing that Im gλ,µ(zb) < ηµ(Re gλ,µ(zb)). Since zb ∈ ∂Hη, it suffices to
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show that

(1− µ)ηµ(xb) +
1

2
< ηµ

(
(1− µ)(xb − 1) +

1

2

)
. (2.25)

Since ηµ(x) is a linear function, we rewrite the previous inequality as 1
2 < ηµ

(
µ− 1

2

)
.

If we compute directly

ηµ

(
µ− 1

2

)
=

(
1

2
− µ

)√(
µ

(2µ− 1)(1− µ)

)2 1

|λ|2
e

1
µ
−2 − 1

we obtain the inequality

1

(2− µ)2
<

(
µ

(2µ− 1)(1− µ)

)2 1

|λ|2
e

1
µ
−2 − 1

Recall that the parameter λ satisfies 1
|λ|2 > e

(
2− 1

µ

)
(1−µ)2
µ4

. Then the right side of

the latter inequality is greater than(
µ

(2µ− 1)(1− µ)

)2

e
−
(

1
µ
−2
)

(1− µ)2

µ4
e

1
µ
−2 − 1 =

1

(2µ− 1)µ2
− 1.

Finally comparing the latter two computations, the Inequality (2.25) is satisfied
provided 1 + (2µ− 1)2 < 1

µ2
which is valid for every µ < 1

2 .

Fourthly, we show for completeness that the point zRI = 1 − 1
2µ + i 1

2µ , lying at

the left bottom of HRe ∩HIm as marked in Figure 2.11, is also mapped inside. In
particular, it holds

Re gλ,µ(zRI) < (1− µ)

(
1− 1

2µ
− 1

)
+

1

2
= 1− 1

2µ
= Re zRI

and

Im gλ,µ(zRI) < (1− µ)

(
1

2µ

)
+

1

2
=

1

2µ
= Im zRI .

The arguments presented during the whole proof are analogously satisfied for
points of Hη,ρ with negative imaginary part. Due to continuity, the intersection
of the real axis with Hη,ρ is also mapped inside of Hη,ρ by gλ,µ, completing the
proof

We have shown in Theorem 2.30, that the domain Hη,ρ is forward invariant. Now
we prove that it is an absorbing domain for Aµ. For this it is left to show that
given any compact set K in the basin of attraction Aµ, there exists an n ∈ N such
that gnλ,µ(K) ⊂ Hη,ρ. We show it in the following result.
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Figure 2.12: For a boundary point zb = xb + iηµ(xb) on ∂Hη the disc
containing its image gλ,µ(zb) denoted by Db := D

(
(1− µ)(zb − 1), 12

)
is mapped inside of Hη,ρ.

Proposition 2.35. The domain Hη,ρ ⊂ Aµ is absorbing for gλ,µ.

Proof. Let K be any compact set contained in the basin of attraction Aµ. Let Dµ

denote the disc D
(

(1− 1
µ), 1

2µ

)
⊂ Aµ and recall that Dµ ⊂ Hη,ρ is tangent to HRe

and HIm. In particular Dµ contains the attracting fixed point zµ and all points
z in Dµ convergence to zµ under iterates. Even more, for every z ∈ Aµ exists an
n ∈ N such that gnλ,µ(z) ∈ Dµ. Hence, Aµ ⊂

⋃
n∈N g

−n
λ,µ(Dµ). In particular, this

covers the compact set K. Then there exists a finite subcovering
⋃
m∈I g

−m
λ,µ (Dµ)

of K with a finite index set I ⊂ {0, . . . , n0}. This implies that gn0
λ,µ(K) ⊂ Dµ and

in particular it is also contained in Hη,ρ for some n ≤ n0.

It was proved by Lauber in [48] thatMδ contains all critical values, with at most
one exception. In comparison to this and together with the properties of critical
points and values presented in the previous section we show that a finite number
of the critical values of gλ,µ are also contained in Hη,ρ. More precisely we obtain
the following result.
Corollary 2.36. A finite number of critical values vk are contained in the ab-
sorbing domain Hη,ρ while all critical points ck lie outside of it.

Proof. As we showed at the beginning of this section in Equation (2.19), the
boundary of M 1

2
,µ is approximately a translation by one to the left of ∂Mc,µ

where the critical points are located, yielding the second statement. Since vk ∈
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D
(
ck − 2, 12

)
using Lemma 2.25, then that all critical values are in M 1

2
,µ by def-

inition of the domain. In other words, the critical values are in the preliminary
domain M 1

2
,µ, before we take the restriction to the smaller domain Mρ. With

this, we obtain only a finite number of them in Hη,ρ, that is only the first |k|
contained in Mρ.

In other words, Corollary 2.36 implies that gλ,µ is univalent in the absorbing
domain. However, since the Baker domain is not univalent, it follows that its
boundary is not a Jordan curve, using a result due to Baker and Weinreich men-
tioned in the introduction. In the following sections we use the location of the
critical points and values as stated in the corollary above to construct further
structure in the basin of attraction outside the absorbing domain. This enable us
a better understanding of the Julia set of gλ,µ.

2.5 Further structures in F(gλ,µ)

We now present some results about the structure of the basin of attraction Aµ.
In the previous section we constructed an invariant absorbing domain for gλ,µ,
denoted by Hη,ρ. In this section, we use some of the characteristics of the absorb-
ing domain, as the position of the critical points and values with respect to its
boundary ∂Hη,ρ, in order to construct a family of invariant Jordan curves {Γk,µ}k.
The curves Γk,µ describe the structure of the basin of attraction Aµ beyond the
absorbing domain and enable us to give an approximated position of the Julia set
in strips bounded above and below by two subsequent curves. In Section 2.6, we
use the Jordan curves {Γk,µ}k to construct a domain V depending on λ and µ
where the restriction of gλ,µ forms a polynomial-like triple for every µ < µ0.

Let λ ∈ C∗ and µ0 ∈
(
0, 12
)

be such that the invariance of the absorbing domain is
satisfied. From now on consider µ ≤ µ0. Furthermore, consider the critical values
vk with k 6= 0 contained in the absorbing domain Hη,ρ as stated in Corollary 2.36.
For each one of these values vk we define an invariant curve Γk,µ containing the
corresponding critical point ck and joining the critical value with the attracting
fixed point zµ at one end of the curve. At the other end, the curve Γk,µ tends
horizontal asymptotically to ∞ for points with large positive real part. The case
for k = 0 is not considered since the function gλ,µ may have more than one crit-
ical point in a neighbourhood of R for arbitrary λ. In the following theorem we
describe these curves in more detail.
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Theorem 2.37 (Structure Theorem). Let ck and vk be a critical point and its
value for some k ∈ Z∗. Then there exists an N ∈ N, N = N(µ), and a family of
Jordan curves {Γk,µ}k with |k| ≤ N, k 6= 0, and Γk,µ : t 7→ γk(t) for t ∈ [0,∞).
The family {Γk,µ}k has the following properties

i) For each k, there is exactly one critical point ck on Γk,µ.

ii) For each Γk,µ we have: γk(0) = zµ and Re (γk(t)) → ∞ as t → ∞ while
Im (γk(t)) is bounded.

iii) The curves Γk,µ \ {γk(0)} are pairwise disjoint.

iv) For each k, the set Γk,µ ∪ (−∞, zµ) is completely invariant.

Figure 2.13: Sketch of curve Γk,µ constructed as the union γ1k∪γ0k∪γ
−1
k ∪γ

h
k

for some k > 0.

Proof. We denote by N = N(µ), the maximal index such that the critical value

vk ∈ Mρ. Then it holds Im vk <

√
ρµ

(
1− 1

2µ

)
for every |k| ≤ N . For k 6= 0 let

ck the critical point such that gλ,µ(ck) = vk. We describe the proof for k > 0 and
the case for k < 0 follows analogously. Each curve Γk,µ will be constructed as the
union of four simple arcs as follows:

i) The arc γ0k joins the critical point ck with its critical value vk.

ii) The arc γ1k continues from γ0k and joins the critical value vk to the fixed point
zµ.

iii) Write wk for the preimage of the fixed point zµ under the inverse branch hk
of gλ,µ that satisfies h(vk) = ck. Then the arc γ−1k goes from ck to wk.

iv) Finally, the arc γhk is constructed as the preimage of the interval (−∞, zµ]
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under the same inverse branch hk of gλ,µ. Furthermore, γhk extends asymp-
totically horizontal from wk to ∞.

We prove the properties stated in the theorem by the time we describe the con-
struction of the curves {Γk,µ}k.

Consider at first a simple arc joining ck with vk and denote it by γ0k . We define
γ1k :=

⋃∞
n=1 g

n
λ,µ(γ0k)∪{zµ}. Since vk lies in Hη,ρ, then gnλ,µ(vk) ∈ Hη,ρ for all n ∈ N

and limn→∞ g
n
λ,µ(vk) = zµ. Hence γ1k is a continuous path joining vk with zµ. In

particular, γ1k is a simple arc, since gλ,µ is univalent in Hη,ρ using Corollary 2.36.

We claim that γ1k \ {zµ} and γ1j \ {zµ} are pairwise disjoint for any k 6= j.
Since the Euclidean distance between two subsequent critical values vk−1 and
vk is positive, we can always choose the arcs such that γ0k ∩ γ0k−1 = ∅. Hence
gnλ,µ(γ0k) ∩ gnλ,µ(γ0k−1) = ∅ for every n ≥ 1, again since gλ,µ is univalent in Hη,ρ.
The latter argument holds in particular for two subsequent critical values with
indices k and k − 1, but also in general for any pair of critical values vk and vj
with k 6= j.

Denote by hk the inverse branch of gλ,µ such that hk(vk) = ck. The curve γ0k ∪ γ1k
is forward invariant and goes from a critical point ck to the fixed point zµ. Recall
that ck is a simple critical point for all k 6= 0. Therefore the preimage of γ1k ∪ γ0k
is mapped two-to-one onto itself by gλ,µ and can be seen as consisting of two
components. The first component of the preimage must be the curve γ1k∪γ0k itself.
The second component joins the critical point ck with wk, where the latter denotes
the preimage of the fixed point zµ under the inverse branch hk. For every k we
define γ−1k as the arc joining ck with wk as defined above.

We now construct γhk as the preimage of the interval (−∞, zµ) under the appro-
priate inverse branch hk. From Section 2.2, there are neither critical values nor
fixed points in (−∞, zµ). This means, there exists only one curve as preimage
with respect to each inverse branch hk which is attached to wk. We claim that
the curve γhk extends from wk to +∞. Otherwise, if the curve γhk is bounded
also to the right, then the function gλ,µ must map a bounded curve onto the un-
bounded interval (−∞, zµ), which is a contradiction to the fact that gλ,µ has no
finite asymptotic values.

Finally, we prove that the curves γhk tends asymptotically horizontal to∞. For this
consider a strip of the form L := {z : Re z < zµ+ε, |Im z| < ε} for some ε ∈ (0, 1).
In other words, L is an open neighbourhood of (−∞, zµ). Using continuity, the
preimage of L is mapped around the curve γhk by the inverse branch hk and belongs
to the Fatou set. If we extend hk(L) := Lhk to the left and around the curve Γk,
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then at some point we reach the critical point ck. Consider now two subsequent
open strips Lhk and Lhk−1 defined as the preimages of L under hk and hk−1. If
we extend them until ck and ck−1 belong respectively to each of them, then there
must exist a repelling fixed point lying in the Julia set located in between. More
over, there exists a whole curve belonging to J (gλ,µ) that extends as well to +∞
and which serves as separation between two preimages on L under two different
inverse branches. Therefore the curves γhk extend asymptotically horizontal to ∞,
that is, their imaginary part is bounded as the real part goes to ∞, concluding
our result.

Corollary 2.38. The basin of attraction Aµ contains countable many horizontal
strips unbounded to the right and contained in a right half-plane.

Even though only a finite number of critical points are contained in Hη,ρ, the basin
of attraction Aµ contains an infinite set of disjoint horizontal right half strips that
extend to ∞. These strips are the preimages of an open neighbourhood of the
interval (−∞, zµ) as it was described in the proof above by the strip L. There
must be countably many of these strips, since each one of these must contain a
preimage of zµ, say wk, under an inverse branch of gλ,µ.

2.6 Polynomial-like mapping

The Jordan curves {Γk,µ}k give a structure in the basin of attraction Aµ beyond
the absorbing domain Hη,ρ. The absorbing domain Hη,ρ describes a domain un-
bounded to the left. The curves Γk,µ glue to Hη,ρ a set of strips unbounded to the
right as described above in the remark.

Even more, the curves {Γk,µ}k are helpful to construct a region where the dynamics
of gλ,µ “behave well”. Consider the curves Γk,µ and Γ−k,µ for some large k ∈ N.
We use these two curves to construct a domain V where the triple (gλ,µ, V, gλ,µ(V ))
is polynomial-like. Firstly, we construct a domain E bounded by two consecutive
curves from the family {Γk,µ}k placed w.l.o.g. in the upper half-plane. Later we

restrict to a smaller domain Ẽ ⊂⊂ E, such that gλ,µ|Ẽ is a proper map. The

boundary of E and Ẽ are built up of four curves as we sketch in Figure 2.14 for
the domain E. Then we use the upper boundary component of Ẽ and the lower
boundary component of an analogue set below the real axis to construct a large
set V on which we define a polynomial-like triple.

We present in Theorem 2.39 the construction of the domain V and use the result
of Lemma 2.40 presented below to prove that gλ,µ|V is a proper map. The proof of
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Theorem 2.39 is written at the end of the section. In the proofs in this section we
use the notation Γ̃d instead of Γ̃d,µ, that is without the parameter µ, for simplicity.
Keep in mind, however, that the proofs and arguments depend on the parameter
µ as well as on the parameter λ.
Theorem 2.39 (Polynomial-like Mapping). For every d ∈ N with d ≥ 2 and any
given λ ∈ C∗ \ R+ there exists a sufficiently small µ0 ∈

(
0, 12
)

and a domain V
such that the critical points ck ∈ V for −d < k < d and the triple (gλ,µ, V, gλ,µ(V ))
is a polynomial-like mapping of degree at most 2d for every µ ≤ µ0.

We present here the main tool used in the proof. We start by constructing a
smaller domain E where the function gλ,µ is univalent by describing the curves
that form its boundary. We obtain that the image of E under gλ,µ is not relatively
compact in gλ,µ(E), since it contains two critical points. Hence, we consider a

slightly smaller domain Ẽ and prove that gλ,µ(Ẽ) ⊂⊂ Ẽ by means of the Riemann
Mapping Theorem and Schwarz Lemma on the unit disc.
Lemma 2.40. Let E be a domain bounded by Γ̃d ⊂ Γd,µ and Γ̃d−1 ⊂ Γd−1,µ above

and below and by the line segments joining Γ̃d with Γ̃d−1 to the left and right,
denoted by Ld and Kd respectively. Then any domain Ẽ ⊂⊂ E is mapped onto a
larger domain gλ,µ(Ẽ) satisfying Ẽ ⊂⊂ gλ,µ(Ẽ) ⊂⊂ gλ,µ(E).

Proof. Let µ ∈
(
0, 12
)

be a sufficiently small parameter which is arbitrary but
fixed such that the invariance of the absorbing domain is satisfied. Recalling the
structure theorem we denote by d the largest index for which the Jordan curves
{Γk,µ}k are well defined for all |k| ≤ d, k 6= 0. We may assume that d > 1.

Consider two consecutive Jordan curves Γd−1 and Γd. We construct the domain
E by giving its boundary components. Delimit the domain E above by a subset
of Γd and below by a subset of Γd−1 both bounded as follows. The left boundary
points are choose as the points zd ∈ Γd, respectively zd−1 ∈ Γd−1, such that
Re zd = Re zd−1 = 1 − 1

2µ . Now we construct the boundary on the right. Since
the Jordan curves are invariant under gλ,µ, set wd := gλ,µ(zd) which lies as well
on Γd. Furthermore, the curves are mapped two-to-one by the function gλ,µ onto
itself. Therefore the point wd has two different preimages under the corresponding
inverse branch of gλ,µ. We denote by z̃d the other preimage of wd and remark that
Rewd < Re zd < Re vd < Re cd < Re z̃d, where cd and vd are the critical point and
value lying on Γd. Similarly we define the points wd−1, zd−1 and z̃d−1 on Γd−1.

For the right end on the curve Γ̃d, we choose the point ζd ∈ Γd with the property
that Re ζd = max{x+,Re z̃d}, where x+ is a large positive number satisfying

i) |λ|x+ > 1, and
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ii) x+ > Im ζd.

Note that if Re z̃d ≥ x+, then the point z̃d still holds conditions i) and ii), which
means ζd = z̃d. Finally we define ζd−1 on Γd−1 such that Re ζd−1 = Re ζd.

With the conditions mentioned above, we define the boundary of E as the union
of the four curves Γ̃d ∪Kd ∪ Γ̃d−1 ∪ Ld, where

i) The upper boundary Γ̃d ⊂ Γd goes from zd to ζd.

ii) The lower boundary Γ̃d−1 ⊂ Γd−1 goes from zd−1 to ζd−1.

iii) On the right side Kd is the line segment joining ζd with ζd−1.

iv) On the left side Ld is the line segment joining zd with zd−1.

Figure 2.14: Domain E bounded above and below by the curves Γ̃d and
Γ̃d−1. The left and right boundary components are the lines Ld and Kd

respectively.

We describe now the image of E under the function gλ,µ. We claim that gλ,µ(Kd)

is contained in C \D(0, 2x+). The value x+ was chosen to be large enough that
x+ > Im ζd. Hence x+ > Im z for all z ∈ Γ̃d as for all z ∈ Kd. It is also true that
Im ζd > 2π for any d > 1 as it follows from properties i) and iv) in Theorem 2.21.
Then x+ > 2π and |ez| ≥ ex+ > 6x+. Moreover, for every z ∈ Kd we obtain that
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|z − 1| ≤ |x− 1|+ |y| < |x|+ |Im ζd| ≤ 2x+. Then

|gλ,µ(z)| = (1− µ)|z − 1 + λzez|
≥ (1− µ) (|λzez| − |z − 1|)

> (1− µ) (6x+ − 2x+) > 2x+ for all µ ∈
(

0,
1

2

)
.

The image of Kd describes a large Jordan arc connecting ξd := gλ,µ(ζd) with
ξd−1 := gλ,µ(ζd−1). This is true, since Kd is a straight line with sufficiently large
positive real part and does not contain any singular value. In particular, we have
that |zµ| > |gλ,µ(ζd)| > 2x+, where zµ denotes the attracting fixed point.

Using the structure theorem again we prove that the curve Γ̃d is mapped two-to-
one into Γd such that vd is the boundary point at the right end of gλ,µ(Γ̃d). The

image of left and right ends of Γ̃d coincide at ξd, the left end of gλ,µ(Γ̃d). In other

words, the image of Γ̃d goes from vd to ξd. Recall that Re ξd ≤ Rewd = Re gλ,µ(z̃d).

Similarly, gλ,µ(Γ̃d−1) connects vd−1 with ξd−1 as we sketch in Figure 2.15. Finally,
for all z ∈ Ld it follows that Re gλ,µ(z) < Re z since Ld ⊂ ∂HRe; see Lemma 2.31.

Figure 2.15: Image of domain E under the function gλ,µ. The curve

gλ,µ(Kd) ⊂ C \D(0, 2x+) is a large Jordan arc connecting ξd = gλ,µ(ζd)

with ξd−1 = gλ,µ(ζd−1). We remark that the intersection of gλ,µ(Γ̃d) with

Γ̃d is not empty.
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The domain E is simply connected and gλ,µ|E is univalent. Thus gλ,µ(E) is also
simply connected and gλ,µ(∂E) is connected. Consider now the domain gλ,µ(E)
and the inverse branch of gλ,µ that leaves the strip in between Γd and Γd−1 in-
variant. We obtain that gλ,µ(E) is mapped by g−1λ,µ to E, a smaller domain and
containing two critical points on the boundary. Then there exists a fixed point in
E, say zE , which is attracting with respect to g−1λ,µ.

Hence, there exists a Riemann mapping ϕ : gλ,µ(E) → D with ϕ(zE) = 0 which

can be holomorphically extended to a map ϕ : gλ,µ(E)→ D. Let ψ : D→ gλ,µ(E)
denote the pull-back of ϕ, so that the following diagram commutes.

gλ,µ(E)
g−1
λ,µ //

ϕ

��

E

ϕ

��
D

ϕ◦g−1
λ,µ◦ψ

//

ψ

TT

ϕ(E)

We describe the distribution of the marked points on D after the projection. The
marked points of gλ,µ(Γd) go under the action of ϕ to the points w′d, ϕ(zd), ϕ(vd),
w′′d and ϕ(ξd) lying on ∂D clockwise in this order. Under the pull-back ψ we obtain

ψ(w′d) = wd = ψ(w′′d). Analogously for the curve gλ,µ(Γ̃d−1) we label the image of
the marked points under ϕ such that w′d−1, ϕ(zd−1), ϕ(vd−1), w

′′
d−1 and ϕ(ξd−1)

lie in this order counter-clockwise on ∂D and ψ(w′d−1) = wd−1 = ψ(w′′d−1).

The point ϕ(gλ,µ(zE)) = 0 is an attracting fixed point. Using Schwarz Lemma,
the function ϕ ◦ g−1λ,µ ◦ ψ maps D = ϕ(gλ,µ(E)) into a smaller domain ϕ(E) acting
as a contraction on D. Note, however, that ∂ϕ(gλ,µ(E))∩∂ϕ(E) 6= ∅ and that the
intersection is a subset of ∂D.

What does ϕ(E) look like? We answer this question again through the description
of the boundary of ϕ(E) and refer the reader to Figure 2.16 for a better under-
standing. A first boundary curve lies in D joining the point ϕ(zd−1) with ϕ(zd).
Later the boundary continues with an arc segment on ∂D joining ϕ(zd) with ϕ(vd),
where the latter equals the intersection of ϕ(gλ,µ(Γ̃d))∩ϕ(Γ̃d). The boundary car-
ries forward with a curve which lies in D joining ϕ(vd) with ϕ(cd) and further
going through ϕ(ζd), ϕ(ζd−1) and ϕ(cd−1) until it again reaches ∂D at ϕ(vd−1).
The boundary closes with the arc segment connecting ϕ(vd−1) with ϕ(zd−1) on
∂D. Similarly it holds that ϕ(vd−1) equals the intersection of ϕ(gλ,µ(Γ̃d−1)) with

ϕ(Γ̃d−1).

Finally, we proceed to define the smaller domain Ẽ ⊂ E. Take any closed disc
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Figure 2.16: The Riemann mapping ϕ projects the marked points of
∂gλ,µ(E) on ∂D as described in the figure. The curves and points distin-
guished in D are part of ∂ϕ(E) = ∂((ϕ ◦ g−1λ,µ ◦ ψ)(D)).

Dr := {z ∈ C : |z| ≤ r} with r < 1. Then Dr is mapped strictly inside Dr, that is,
(ϕ◦g−1λ,µ◦ψ)(Dr) is relatively compact in Dr. Consider the pull-back of the disc and

later its image under g−1λ,µ. It follows that ψ(Dr) ⊂ gλ,µ(E) and (g−1λ,µ◦ψ)(Dr) ⊂ E.

We define ∂gλ,µ(Ẽ) := ψ(∂Dr). Its image under g−1λ,µ defines the curve ∂Ẽ, which is

strictly contained in E. In particular, we have (ϕ◦g−1λ,µ◦ψ)(Dr) = ϕ(Ẽ) ⊂⊂ ϕ(E),
as a consequence of the contraction in D.

From the point of view of the function gλ,µ, we defined an arbitrary domain Ẽ

relatively compact in E which boundary is mapped outside of Ẽ but inside of
gλ,µ(E) yielding the desired result.

As a conclusion, note that if we choose a radius r sufficiently close to one, then
ψ(∂Dr) = ∂gλ,µ(Ẽ) is very close to ∂gλ,µ(E). Part of the boundary of Ẽ is a

curve very close to Γ̃d (resp. a curve close to Γ̃d−1) inside of E which is mapped
by gλ,µ “surrounding” gλ,µ(Γ̃d) (resp. gλ,µ(Γ̃d−1)) and inside of gλ,µ(E). This is

as a consequence of the fact that gλ,µ maps Γ̃d two-to-one onto it self, but gλ,µ
is univalent in the interior of E. In particular, we have that gλ,µ is a one-to-one

mapping in Ẽ and on ∂Ẽ, that is gλ,µ|Ẽ is a proper map.
Remark 2.2. The proof of Lemma 2.40 depends on the first hand on the param-
eters µ and λ, and on the invariance of the curves Γk and the absorbing domain.
On the other hand, the arguments to prove that gλ,µ is a proper map restricted
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to Ẽ heavily depends on the value x+ which is defined to be a large positive num-
ber. Furthermore, for a radius r sufficiently close to one, we guarantee that ∂Ẽ
contains no critical values. Therefore, the proof applies in a similar way to any
given d ∈ Z with |d| > 1 and for any pair of subsequent curves Γd and Γd−1 or
analogously Γ−d and Γ−d+1 below the real axis.

Recall that a triple (f,A,B) is a polynomial-like mapping if the sets A and B
are bounded simply connected domains satisfying A ⊂ B and f : A → B is a
holomorphic proper map. With this we proceed to prove the theorem. At first we
construct a domain U for given µ0 and d by means of the Structure Theorem 2.37
and Lemma 2.40. Afterwards we take the restriction of gλ,µ to a domain V ⊂ U
constructed in such a way that V is simply connected and V ⊂ gλ,µ(V ) implying
that gλ,µ|V is a proper map.

Proof of Theorem 2.39. Let µ ∈
(
0, 12
)

be sufficiently small that the existence of
the absorbing domain Hη,ρ is guaranteed. Furthermore let d be the largest index
such that the family of Jordan curves {Γk,µ}k is well defined for every |k| ≤ d, k 6= 0
as described in the Structure Theorem 2.37. Assume without loss of generality
that d > 1.

We proceed with the construction of ∂U by considering the curves Γd and Γ−d. We
mark the points zd ∈ Γd and z−d ∈ Γ−d satisfying Re zd = 1− 1

2µ = Re z−d. Define
the points ζd ∈ Γd and ζ−d ∈ Γ−d with the properties Re ζd = max{x+,Re z̃d} and
Re ζ−d = max{x+,Re z̃−d}, where

i) gλ,µ(z̃d) = wd = gλ,µ(zd),

ii) gλ,µ(z̃−d) = w−d = gλ,µ(z−d),

iii) x+ is large enough that |λ|x+ > 1, and

iv) x+ > max{|Im ζd|, |Im ζ−d|},

as in the proof of Lemma 2.40. We restrict the curves Γd and Γ−d to the seg-
ments going from zd to ζd and from z−d to ζ−d, and denote them by Γ̃d and Γ̃−d
respectively.

We define the right component of ∂U by the line segment K joining ζd with ζ−d.
The left component of ∂U consists of the line segment L ⊂ {z ∈ C : Re z = 1− 1

2µ}
joining zd with z−d. Finally we define ∂U := L ∪ Γ̃d ∪K ∪ Γ̃−d.

The curves Γ̃1 and Γ̃−1 are contained in U and hence there exists at least two
critical points and their values in U . Let c±d denote the critical points lying on
the curves Γ±d respectively. Then by Theorem 2.21 we have |Im c±d| > 2π. In
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particular, the latter implies 2π < |Im c±d| < |Im z| for all z ∈ Γ±d such that
Re c±d < Re z.

Now we describe the image of U under the function gλ,µ by means of the result
in Lemma 2.40 that describes gλ,µ(∂E). For points z lying on L we obtain that
Re gλ,µ(z) < Re z. Furthermore, for points z ∈ K we have by definition that
|z| ≤ max{|ζd|, |ζ−d|}. Then gλ,µ(K) describes a large arc going from ξd to ξ−d,
but, in contrast to the construction of the domain E, this arc is not simple. The
number of times the arc gλ,µ(K) twists around U depends on the number of critical
points contained in U in terms of the Residue Theorem. Then it twists at most
2d−1 times, counting the critical point c0 that lies in a neighbourhood of the real
axis using Property iv) in Theorem 2.21. The construction of the points ζd and ζ−d
guarantees for all z ∈ K that |gλ,µ(z)| > 2x+. Hence gλ,µ(K) is mapped outside
the disc D(0, 2x+) implying that gλ,µ(K) ∩ gλ,µ(L) = ∅. Finally by applying

Lemma 2.40 again, we conclude that the image of Γ̃d (resp. Γ̃−d) goes from ξd
to vd (resp. from ξ−d to v−d). In other words, the curves are mapped by gλ,µ
two-to-one overlapping onto itself.

Figure 2.17: The domain Ũ is defined through its boundary ∂Ũ := Lr ∪
Γ̃d,r ∪Kr ∪ Γ̃−d,r. The outer non-simple closed curve sketches the image

gλ,µ(∂Ũ).
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The latter argument implies that ∂U ∩ gλ,µ(∂U) 6= ∅. Therefore, we define a

smaller domain Ũ ⊂ U as follows. To this end, recall the pull back of the disc Dr

for some r ∈ (0, 1) close to one as described in Lemma 2.40. Denote by Γ̃d,r the

curve mapped below Γ̃d by the action of g−1λ,µ ◦ψ on the corresponding arc segment

of Dr. Analogously we denote by Γ̃−d,r the curve above Γ̃−d as it can be seen in
Figure 2.17. The left side of the boundary is denoted by Lr ⊂ L and has as corner
points the intersection of the curves Γ̃±d,r with the line L. Similarly we define the
right component of the boundary denoted by Kr ⊂ K. In conclusion, we have

∂Ũ := Lr ∪ Γ̃d,r ∪Kr ∪ Γ̃−d,r.

We remark that by construction ∂Ũ ∩gλ,µ(∂Ũ) = ∅. However, gλ,µ(Ũ) may not be
simply connected, since the image of Kr is not a simple arc. Therefore we define
the domain V ′ ⊂ gλ,µ(Ũ) as the simply connected component of C \ gλ,µ(∂Ũ) that

contains Ũ . Denote by V the preimage of V ′ under the function gλ,µ. The map
gλ,µ|V is proper and the triple (gλ,µ, V, V

′) is polynomial-like with gλ,µ(V ) = V ′.
Finally notice that there are exactly 2(d− 1) + 1 critical points contained in V for
r sufficiently close to one and λ ∈ C∗ \R+. Hence the degree of (gλ,µ, V, V

′) equals
2d using the Riemann-Hurwitz Formula for domains, presented in the introduction
as Lemma 1.4.

A different point of view of Theorem 2.39 is expressed with respect to an arbi-
trarily large domain in C and not depending on the degree of the polynomial-like
mapping.

Corollary 2.41. For every given bounded domain M ⊂ C there exist d ∈ N and
a domain V with V ⊃ M such that the triple (gλ,µ, V, gλ,µ(V )) is polynomial-like
of degree 2d.

Proof. For any given domain M ⊂⊂ C, let M ′ be a bounded domain containing
M and gλ,µ(M). Let µ ∈

(
0, 12
)

be sufficiently small that zµ < Re z for every
z ∈M ′ and that the existence of the absorbing domain Hη,ρ is guaranteed.

Let d ∈ N be such that the family of Jordan curves {Γk,µ}k is well defined for
every |k| ≤ d, k 6= 0 and set ζ±d ∈ Γ±d with equal real parts and satisfying

Im ζ−d < Im z < Im ζd

for every z ∈ M ′. Furthermore, consider the value x+ large enough with the
additional condition that x+ > Re z for all z ∈ M ′. If the assumptions with
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respect to the real and imaginary parts of z ∈M ′ are not satisfied, we may take a
smaller value of µ. Then the result follows immediately from Theorem 2.39 which
yields a domain U ⊃⊃M ′ with the values x+ and d as described above.

The family of Jordan curves enables us to see more of the structure of the basin
of attraction. Besides the domain Hη,ρ, that is unbounded to the left, the basin
of attraction also contains countable many strips unbounded to the right. Fur-
thermore, using the Straightening Theorem, the function gλ,µ restricted to V is
hybrid equivalent to a polynomial of degree 2d.

We can see that the Julia set is contained in the “gaps” in between these strips.
Even though the Julia set J (gλ,µ) exhibits a lot of the structure known as Cantor
bouquets intrinsic of functions having an exponential component, the function gλ,µ
has a structure much more intricate as than expected. However, the convergence
of the Julia sets holds. We describe the Julia set of gλ,µ and its convergence to
J (gλ) more in the detail in Chapter 3.



3

Convergence of the families gλ,µ
to gλ

This chapter focuses mainly on the approximation in a dynamical sense of the
family of transcendental functions gλ(z) = z − 1 + λzez by gλ,µ(z) = (1− µ) (z −
1 + λzez) for every λ ∈ C∗ and µ ∈

(
0, 12
)

as µ tends to 0.

Hinkkanen et al, [33] began investigating the transcendental entire function gλ for
the parameter λ = −2e1/2. Using a different parametrisation of gλ they showed
that the function features the origin as a superattracting fixed point together
with a Baker domain. Afterwards, Lauber continued in [48] with the analysis for
arbitrary λ ∈ C∗. He proved that the Fatou set of gλ contains a unique Baker
domain Bλ for every λ and for some parameters also an attracting basin. In
general, gλ has at most one free critical value; that is, F(gλ) contains at most one
non-repelling cycle besides Bλ.

In Chapter 2 we proved that the Fatou set of gλ,µ has an attracting basin Aµ for
every λ ∈ C∗ and for every 0 < µ ≤ µ0 with sufficiently small µ0 = µ0(λ). The

attracting fixed point zµ is contained in the disc D
(

1− 1
µ , 1
)

and zµ → −∞ as

µ→ 0. In order to give a more detailed description of the basin of attraction, we
constructed an invariant absorbing domain Hη,ρ ⊂ Aµ which is unbounded to the
left. One of the main results in this chapter is the convergence of the attracting
basins Aµ to the Baker domain Bλ for every fixed parameter λ as µ→ 0. In order
to show this convergence we prove that the absorbing domains Hη,ρ converge as
kernels in the sense of Carathéodory to the absorbing domain Mδ of Bλ.

In Section 2.5 we described the dynamics in the basin of attraction Aµ for points



88 3. Convergence of the families gλ,µ to gλ

with large positive real part by constructing a family of invariant Jordan curves
{Γk,µ}k. These Jordan curves imply the existence of open regions which are asymp-
totically horizontal as the real part increases to ∞. An analogue to this result for
gλ enables us to prove that F(gλ) has no wandering domains if the free critical
point belongs to the Baker domain Bλ or to an attracting basin A0; see Theo-
rem 3.6. In the case that the free critical point belongs to another non-repelling
cycle different from A0, the non-existence of wandering domains follows, too, as
we prove in Corollary 3.8. Unfortunately, we are not able to extend this result to
the function gλ,µ, since we do not have control on the critical points with large
imaginary part.

In the first section we prove the non-existence of wandering domains for the func-
tion gλ and present some other results obtained previously by Lauber, which are
required in the subsequent sections. Section 3.3 is devoted to prove the kernel
convergence as µ tends to zero. We firstly show the convergence of the attracting
basins Aµ to Baker domain Bλ, and secondly of the basins of attraction Ap,µ to
the parabolic basin Dp in the case that gλ has a parabolic fixed point zp. For this
aim, we prove in Section 3.2 the approximation of any indifferent fixed point zp by
attracting fixed points zp,µ of gλ,µ. In Section 3.4 we consider parameters for which
the free critical point c0 of gλ is neither in Bλ nor in a parabolic basin Dp. For
these parameters λ we define filled Julia sets K(gλ) and K(gλ,µ) and prove their
Hausdorff convergence for µ ≤ µ∗. Finally, we use most of the results presented
until then to prove the Hausdorff convergence of J (gλ,µ) to J (gλ) as µ → 0 in
Section 3.5.

It is important to note that a family of functions having a Baker domain, such
as gλ, is approximated by a family of transcendental functions gλ,µ. This is a
new approach as found in the literature, where the transcendental functions are
approximated by polynomials.

3.1 Some results about the family gλ

In this section we prove the non-existence of wandering domains for functions
gλ having either only the Baker domain Bλ or additionally a non-repelling cycle.
Furthermore, we present as well some results about this family of functions due to
Lauber and found in his Dissertation [48] which are useful for the convergence and
the results in the rest of the chapter. We present Lauber’s results here without
proofs and recall the original numeration as a reference.
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During this chapter let λ ∈ C∗ and gλ be the function defined as

gλ(z) = z − 1 + λzez. (3.1)

We start by presenting some results about the dynamics of gλ and the Baker do-
main Bλ.

Theorem 3.1. (Thm. 2) Bλ contains all critical points of gλ except at most one.

Corollary 3.2. (Cor. 9) Let c0 denote the free critical point. Then there exists
an ε > 0 such that dist (P (gλ) \O+(c0), ∂Bλ) > ε.

Proposition 3.3. (Prop. 3) There exists at most one cycle of non-repelling pe-
riodic points of gλ and Bλ is the only Baker domain in F(gλ).

In the case that gλ has an attracting cycle besides Bλ we obtain that the critical
points are at a positive distance of the Julia set. An approximative geometrical
description of the Baker domain is given by the absorbing domainM1/2 contained
in a left half-plane. In Section 2.5 we construct invariant Jordan curves Γk,µ for
the function gλ,µ which are asymptotically horizontal for points with large positive
real part and are contained in the basin of attraction Aµ. In the case of gλ, the
Baker domain presents an analogue structure, as it was proved by Lauber.

Proposition 3.4. (Prop. 4) There exist Jordan curves Γk, k ∈ Z \ {0} such that

i) All Γk are pairwise disjoint.

ii) Each Γk is forward invariant and contained in Bλ.

iii) Each Γk contains exactly one critical point.

iv) Each Γk is contained in a horizontal strip of height 5π.

v) Each Γk stretches from −∞ to ∞.

Hence there exist “strips” which asymptotically extend horizontally to +∞ outside
of the absorbing domainM1/2. We refer the reader to Figures 1 and 2 in the first
chapter for pictures of these. The latter arguments imply that if there exists a
Fatou component besides Bλ, then it must consist of infinitely many components
trapped in small regions. With this, the distance from these components to the
Julia set must be bounded. These ideas enable us to use the following result
from Hinkkanen et al. [33], which in turn is a modification of Theorem 1.13 due
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to Bergweiler. Recall that P (f) denotes the forward orbit of the set of singular
values of f .
Lemma 3.5. ([33, Lemma 15]) Let f be a transcendental entire function and
U ⊂ C be an open subset of the plane invariant with respect to f . We assume
P (f) ⊂ U and

dist(P (f), ∂U) := inf{|z − w| : z ∈ P (f), w ∈ ∂U ∩ C} > σ

for some positive constant σ. If there exists ζ0 ∈ F(f) such that fn(ζ0) /∈ U for
every n ∈ N and

dist(fn(ζ0), ∂U) := inf
z∈∂U

|z − ζ0| < C

for some constant C > 0, then ζ0 is not contained in a Baker domain nor in a
wandering domain of f .

We state now the result on wandering domains.

Theorem 3.6. Let λ ∈ C∗ be such that F(gλ) consists of a Baker domain only,
or such that the free critical point is in the basin of an attracting periodic cycle.
Then gλ has no wandering domains.

Proof. Throughout this proof, let λ be an arbitrary but fixed parameter satisfying
the hypothesis stated in the theorem. If the free critical point c0 belongs to the
attracting basin of the fixed point z0, denote by A0 its immediate basin. In the
case that z0 is a periodic point, replace A0 by the cycle of immediate basins.
Assume without loss of generality that c0 ∈ A0 and denote by ε0 the positive
constant defined as ε0 := infz∈O+(c0) dist(z, ∂A0).

Let U = Bλ ∪ A0. Then U is an open subset of C satisfying P (f) ⊂ U . Using
Proposition 3.3, there exists no other Baker domain beside Bλ. Furthermore,
assume that there exists a wandering domain W and let ζ0 be an arbitrary point
in W. Since ζ0 /∈ Bλ and using Proposition 3.4 we find a constant C > 0 such
that dist(gnλ(ζ0), ∂U) < C for all n ∈ N . Let σ = min{ε0, ε}, where ε denotes
the distance between P (gλ) \O+(c0) and ∂Bλ as in Corollary 3.2. We have found
constants C and σ as required in the hypothesis of Lemma 3.5 concluding that ζ0
cannot be contained in a wandering domain.

Lauber proved the following theorem to rule out the existence of wandering do-
mains. We explicitly express in the corollary below the conditions on the function
gλ such that it has no wandering domains.

Theorem 3.7. (Thm. 3) If gλ has a wandering domain W, then
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• there are no non-repelling periodic points, and

• the free critical point exists and is contained in the Julia set, but not in
the boundary of a wandering domain (in particular, it is not contained in a
wandering domain). The sequence of its iterates has infinitely many accu-
mulation points, including ∞.

Corollary 3.8. Let c0 denote the free critical point of gλ. Then exactly one of
the following statements holds.

• The critical point c0 lies in the Baker domain Bλ.

• The function gλ has a non-repelling cycle different from Bλ.

• The function gλ may (but not need to) have a wandering domain.

Proof. Denote by P (gλ)′ the derived set of the post-singular set of gλ, that is the
set of all limit points of the forward orbit of the singular values. Write W for a
wandering domain.

We mentioned in the introduction in Theorem 1.18 that all limit functions of {f |W}
are constant and contained in P (f)′∪∞. Hence, if the unique free critical point lies
in the Baker or an attracting basin, then there can not exist a wandering domain,
as we proved above. If gλ has an indifferent cycle, either rational or irrational, the
limit functions of W cannot lie in P (gλ)′ since they belong to the closure of the
Fatou component of the non-repelling cycle and remain bounded. In all of these
cases there can not exist a wandering domain.

Concerning the set of escaping points, that is, the set of points which tend to ∞
under iterates, there exists only two possibilities as stated in the corollary below.
It particular it reflects the complexity of the dynamics for points in any neigh-
bourhood of infinity.

Corollary 3.9. (Cor. 10) If gnλ(z)→∞, then z ∈ Bλ ∪ J (gλ).

3.2 Approximation of indifferent fixed points

We showed in Section 2.1 that the approximating family gλ,µ always has an at-
tracting fixed point zµ which converges to −∞ as µ→ 0. Furthermore we showed,
that if the free critical point c0 of the limit function gλ belongs to a basin of
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attraction for a given λ0, then there exists a µ0 such that the function gλ,µ also
has an attracting periodic point for this parameter λ0 and for every µ ≤ µ0; see
Section 2.2 for explicit computations restricted to the real line.

A different approach to the convergence of fixed points can be made through the
parameter plane, that is, by considering a parameter λ0 for which gλ0 has certain
dynamical properties and approximating the function by gλ0,µ. Lauber showed
that the parameter plane of the function gλ contains a copy of the Mandelbrot
set Mλ, where the main cardioid corresponds to the parameters for which the
critical point c0 belongs to the basin of an attracting fixed point z0. Our result
on polynomial-like mappings presented in Section 2.5 implies that the parameter
plane λ of the function gλ,µ also contains a copy of the Mandelbrot set, which we
denote by Mλ,µ. The persistence of attracting cycles under uniform convergence
of functions implies that for a given parameter λ0 ∈Mλ the attracting fixed point
z0 can be approximated by a sequence of attracting fixed points z0,µ of gλ,µ. In
other words, given a fixed point z0 with multiplier |g′λ(z0)| < 1, there exists a µ∗
and a sequence of fixed points z0,µ such that |g′λ,µ(z0)| < 1 for every µ ≤ µ∗. The
latter arguments in turn imply that the basin of attraction of z0 is approximated
by the attracting basins of z0,µ.

Our present question is whether we can extend this result to an arbitrary but
fixed parameter λ lying on the boundary of the domain Mλ. We obtain a positive
answer for parameters lying on the boundary of the main cardioid. To achieve
this, we describe the indifferent fixed point of gλ denoted by zp, by solving the
fixed point equation gλ(z) = z. Through this equation we express the parameter

as λp = e−zp
zp

. For such parameters, zp is an indifferent fixed point if and only

if zp lies on the boundary of the disc D
(
−2

3 ,
1
3

)
. For the parameter λp and the

corresponding indifferent fixed point zp there exists a sequence of fixed points of
gλ,µ, denoted by zp,µ, that converge to zp as µ → 0. Further below in Theorem
3.10 we prove that the points zp,µ are attracting. In the proof of the theorem we
approximate the multiplier g′λ,µ using a quotient function Q(zp). Some properties
of Q(zp) imply that the restriction of the parameter µ to R is convenient as we
discuss in Remark 3.1.

In the present section we firstly describe the indifferent fixed points zp of gλ and
their approximation by attracting fixed points zp,µ of gλ,µ. This is proved in
Theorem 3.10. Later on we analyse the quotient function Q(zp) and approximate
the points zp,µ by means of the Implicit Function Theorem and the points zp.

The fixed point equation of the function gλ provides an expression of the parameter
with respect to the fixed point, that is, by solving gλ(z) = z − 1 + λzez equal to
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z. Then we can write the parameters that satisfy the equation

λ =
e−z

z
. (3.2)

The substitution of λ in the derivative yields g′λ(z) = 1 +λez(z+ 1) = 2 + 1
z , valid

for every fixed point. Looking for indifferent fixed points the equation

|g′λ(zp)| =
∣∣∣∣2 +

1

zp

∣∣∣∣ = 1

describes the points zp on the boundary of the disc with centre −2
3 and radius 1

3 .
Solving the equation above we parametrise the points zp = xp + iyp as

y2p =
−3x2p − 4xp − 1

3
. (3.3)

Figure 3.1: Curve P =
{
λp ∈ C∗ : λp(zp) = e−zp

zp

}
describing the param-

eters λp for which the function gλ(z) = z − 1 + λzez has an indifferent
fixed point zp ∈ ∂D

(
−2

3 ,
1
3

)
. The discontinuity on the real axis is due

to the singularity of the parametrisation for zp = −1 at λp = −e and
numerical computations.

We describe in the parameter plane a curve of parameters λp as a function of the
indifferent fixed points zp using the parametrisation of the points zp. The curve

P :=

{
λp ∈ C∗ : λp(zp) =

e−zp

zp

}
with zp ∈ ∂D

(
−2

3
,
1

3

)
has a cardioid form. Seen as a function, λp(zp) has a critical point at zp = −1,

since λ′p(zp) =
−ezp (zp+1)

zp
. The curve meets the real axis at λp(−1) = −e and at

λp(−1
3) = −3e1/3; see Figure 3.1.
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Fix a parameter λp 6= −e on the curve P and let zp 6= −1. The fixed point
equation for the function gλp,µ(z) = (1− µ)(z − 1 + z

zp
ez−zp) has a solution if and

only if

ez−zp

zp
− 1

z
= −1 +

1

1− µ
. (3.4)

Denote by zp,µ the points z that solve Equation 3.4 for given µ ∈
(
0, 12
)
. It is clear

that the points zp,µ converge to zp as µ tends to zero. We claim that the points
zp,µ lie on a curve slightly shifted to the right from the disc D(−2

3 ,
1
3); see Figure

3.2. Moreover, we prove in Theorem 3.10 that the points zp,µ are attracting fixed
points for the function gλ,µ.

Figure 3.2: Curve containing the points zp,µ for µ = 1
20 given through

the approximation zp,µ ' zp + µ
z2p
zp+1 . Recall that zp,µ tends to zp ∈

∂D
(
−2

3 ,
1
3

)
as µ→ 0.

Theorem 3.10. Let λp ∈ P be a fixed parameter with zp ∈ ∂D
(
−2

3 ,
1
3

)
and

zp 6= −1. Then for every zp it follows zp,µ → zp as µ → 0. Furthermore there
exists a sufficiently small µ0 such that the fixed points zp,µ are attracting with
respect to the function gλ,µ for every µ ≤ µ0.

Proof. The points zp,µ are defined as the solutions of the fixed point equation
gλ,µ(z)− z = 0, regarding the functions gλ,µ as a perturbation of gλ with respect
to µ. Even though we cannot compute these solutions explicitly, we obtain an
approximation for the points zp,µ through its limit value zp. We show in Lemma

3.12 below that zp,µ ' zp + µ
(

z2p
zp+1

)
. Using this expression in the derivative g′λ,µ
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we obtain:

g′λp,µ(zp,µ) = (1− µ)

(
1 +

ezp,µ−zp

zp
(zp,µ + 1)

)
(3.5)

' (1− µ)

(
1 + e

(
µ

z2p
zp+1

)(
1

zp

)(
zp + µ

z2p
zp + 1

+ 1

))

' (1− µ)

(
1 +

(
1 + µ

z2p
zp + 1

)(
zp + 1

zp
+

µzp
zp + 1

))

where the last approximation is made by means of Taylor expansion, since e
µ

z2p
zp+1 '(

1 + µ
z2p
zp+1

)
for small values of µ. Proceeding forward with the computations and

associating terms with respect to µ, we obtain

g′λp,µ(zp,µ) ' 2 +
1

zp
+ µ

(
−1− 1

zp
− 1

zp + 1
+ zp

)
+ µ2

(
−1 +

1

zp + 1
+

z3p
(zp + 1)2

)
+ µ3

(
−z3p

(zp + 1)2

)

'
(

2 +
1

zp

)
(1 + µ ·Q(zp)) , (3.6)

neglecting the terms of order two and three. The function Q(zp) denotes the
quotient

Q(zp) :=

(
−1− 1

zp
− 1

zp + 1
+ zp

)
·
(

2 +
1

zp

)−1
. (3.7)

We claim that |g′λ,µ(zp,µ)| < 1. An analysis of both the real and imaginary parts
of Q(zp) shown below in Lemma 3.11 implies the existence of a sufficiently small
µ0, with µ0 = µ0(ε1, ε2, zp), such that using Equation (3.6) we obtain

|g′λ,µ(zp,µ)|2 '
∣∣∣∣2 +

1

zp

∣∣∣∣2 |1 + µ ·Q(zp)|2 = |1 + µ ·Q(zp)|2

= (1 + µReQ(zp))
2 + (µImQ(zp))

2

< (1− ε1)2 + (ε2)
2 < 1

for every zp ∈ ∂D
(
−2

3 ,
1
3

)
\{−1} and for some appropriate positive ε1 and ε2.

Note that the value ε2 strongly depends on the point zp since its imaginary part
|ImQ(zp)| tends to∞ as xp → −1, which is proved in Lemma 3.11 below. But for
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every fixed value xp > −1 there exists a µ such that µ ImQ(zp) < ε2 as required.
We present now the tools used in the proof of Theorem 3.10 and further results
related to the parabolic fixed point and its approximation.

Lemma 3.11. The function Q(zp) =
(
−1− 1

zp
− 1

zp+1 + zp

)
·
(

2 + 1
zp

)−1
has

negative real part for every zp ∈ ∂D
(
−2

3 ,
1
3

)
and the imaginary part tends to ±∞

as zp → −1.

Proof. Using the parametrisation of the points zp = xp + iyp as described in
Equation (3.3) for xp ∈

(
−1,−1

3

]
we write the real and imaginary parts of Q(zp)

as real functions of xp as follows

ReQ(zp) := u(xp) =
4x2p − 26xp − 9

2(4xp + 1)

and

ImQ(zp) := v(xp) = ±
√

(3xp + 1)(−xp − 1)

3

(
64x3p + 84x2p − 24xp − 17

2(4xp + 1)2(xp + 1)

)
.

By simple computations we obtain that u(xp) = 0 for x1,2 = 1
4(13 ±

√
205). It

follows from

u′(xp) =
8x2p + 4xp + 5

(4xp + 1)2
> 0 for every xp ∈ R

that u(xp) < 0 for every xp ≤ −1
3 < x1 ≈ −0.3294. Furthermore v(xp) is only

defined for values of xp ∈
(
−1,−1

3

]
. Furthermore, v(x) tends to ±∞ as xp → −1

while it equals zero at x1 = −1
3 and x2 ≈ −0367697.

Lemma 3.12. Let zp be an indifferent fixed point of gλ, with zp 6= −1. Then the

approximating fixed points zp,µ of gλ,µ can be expressed as zp,µ ' zp + µ
(

z2p
zp+1

)
.

Proof. We analyse the points zp,µ as they converge to the indifferent fixed points
zp on the boundary of the disc D

(
−2

3 ,
1
3

)
. This approximation can be seen as a

continuous function of µ representing the perturbation of gλ by the factor 1− µ.
Therefore, consider during this proof the function gzp(µ) : C → C with µ 7→
(1 − µ)

(
z − 1 + z

zp
ez−zp

)
with a complex parameter µ. Then using the Implicit

Function Theorem, if the function

G(µ, z) = (1− µ)

(
z − 1 +

z

zp
ez−zp

)
− z
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Figure 3.3: Graph of the quotient Q(zp) defined in Equation 3.7. The
curve is parametrised for points zp = xp+iyp with y2p = (−3x2p−4xp−1)/3

and xp ∈
(
−1,−1

3

]
.

satisfies the equation G(µ0, z0) = 0 for some µ0 and z0 and ∂G
∂z (µ0, z0) is invertible,

then there exist open neighbourhoods U of µ0 and V of z0 as well as a unique
holomorphic function g̃ : U → V such that

G(µ, z) = G(µ, g̃(µ)),

dg̃

dµ
(µ) = −

(
∂G

∂z
(µ, g̃(µ))

)−1
· ∂G
∂µ

(µ, g̃(µ))

and g̃(µ) = z holds for every µ ∈ U and z ∈ V . For our purpose consider the point

(µ0, z0) = (0, zp) for which ∂G
∂z (µ, z) = (1− µ)

(
1 + ez−zp

zp
(z + 1)

)
− 1 is invertible

if and only if zp 6= −1.

In particular, the solutions of g̃(µ) = z coincide with zp,µ for every z ∈ V . Even
though the explicit expression g̃(µ) only exists for µ0 = 0 and z0 = zp, we can use
the result to express zp,µ = g̃(µ) by means of its Taylor expansion as

zp,µ = g̃(µ0) + (µ− µ0)
dg̃

dµ
(µ0) +O(µ2)
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for µ ∈ U . By simple computations we obtain for µ0 = 0 and z0 = zp

dg̃

dµ
(0) = −

(
∂G

∂z
(0, zp)

)−1
· ∂G
∂µ

(0, zp)

=

(
1 +

ezp−zp

zp
(zp + 1)− 1

)−1
·
(
zp − 1 +

zp
zp
ezp−zp

)
=

z2p
zp + 1

,

obtaining the desired approximation for zp,µ by neglecting the higher terms O(µ2).

Remark 3.1. Note that the approximation of the attracting fixed points zp,µ de-
pends strongly on the parameter µ. Even though we consider µ as a complex pa-
rameter in the proof of Lemma 3.12, we take the restriction of µ as a real number.
The proof of Theorem 3.10 requires that the norm of the multiplier Mµ = g′λ,µ(zp,µ)
is smaller than one. This in turn goes back to the quotient function Q(zp) anal-
ysed in Lemma 3.11. The condition that the norm |1 + µQ(zp)| must be smaller
than one would strongly restrict the values of Q(zp) if we consider µ as a complex
number.

The reasoning of the remark is based on the computations of |1 +µQ(zp)|. Recall
that Q(zp) is defined for x ∈

(
−1,−1

3

]
only. On the one hand, we see that

ImQ(zp) equals zero in this interval if and only if x1 = −1
3 and x2 ≈ −0.3676.

Furthermore, ImQ(zp) has a local maximum (resp. local minimum for negative
ImQ(zp)) at the point xm ≈ −0.3417 ∈ (x2, x1). On the other hand, ReQ(zp)
takes approximated values −1.1692 at x2 and −0.4809 at xm. With this, for values
of x in (x2, x1) we have |Q(zp)| < 1.3670. Hence for real µ < 1

2 it is satisfied that
|g′λp,µ(zp,µ)| ' |1 + µQ(zp)| < 1. But as x approaches −1, values of the quotient

Q(zp) have very large norm and its argument approaches π/2 (resp. −π/2 for
ImQ(zp) < 0). As we multiply with a complex parameter µ, the real part of
µQ(zp) equals Reµ ·ReQ(zp)− Imµ · ImQ(zp) which may be positive for µ with
negative imaginary part. Hence in this case (Re (1+µQ(zp)))

2 can easily be greater
than one.

Recall that the value x = −1
3 corresponds to the indifferent fixed point zp = −1

3

and the parameter λp = −3e1/3. The arguments above imply the existence of
a (quite) small neighbourhood of λp = −3e1/3 where the approximation of the
function of gλ,µ with a complex parameter µ may be extended. But a general
statement for all parameters λp does not exists. It is of special difficulty to do the
computations close to the parameter λp = −e where the curve P has a cuspid.

The fact that ∂G
∂z (0, zp) is not invertible at zp = −1 agrees with the singularity of

the curve P in the parameter plane. In conclusion, for zp = −1 we can apply the
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Implicit Function Theorem to approximate zp,µ through zp, We can also not prove
that these fixed points are attracting using the quotient function Q(z0). Hence we
explicitly show in the proposition below the existence of a sequence of attracting
fixed points converging to −1. Within this proof the functions gλ and gλ,µ are
restricted to the real axis, since in this case the parameters and the fixed point
are real, facilitating the proof.

Proposition 3.13. Let λp = −e. The function gλp has a parabolic fixed point
at zp = −1 with multiplier equals 1. Furthermore, the points zp,µ satisfying the
equation ezp,µ+1 + 1

zp,µ
= −µ

1−µ are attracting fixed points of the function gλp,µ and
converge to zp as µ tends to 0.

Proof. During this proof we consider the function g−e(z) = z−1−zez+1. The first
part of the proposition follows by computing its derivative g′−e(z) = 1−ez+1(z+1)
at the point zp = −1.

Consider now the functions g−e,µ = (1− µ)(z − 1− zez+1), with µ ∈
(
0, 12
)
. The

fixed points of g−e,µ are the solutions z to the equation

ez+1 +
1

z
=
−µ

1− µ
. (3.8)

These solutions clearly converge to the fixed point of g−e as µ tends to zero, since
g−e(z) = z if and only if ez+1 = −1

z . We have that −µ
1−µ = 1 − 1

1−µ lies in the

interval
(
−1

2 , 0
)

for µ ∈
(
0, 12
)
. Since the parameter λp = −e and the fixed point

zp = −1 are both real, we may restrict the functions g−e,µ and g−e to the real axis
for the rest of the proof. The function f(x) := ex+1 + 1

x takes values in
(
−1

2 , 0
)

for x ∈
(
−1,−1

2

)
. Then we obtain from Equation (3.8)

1− µ =
1

1− f(x)
=

−x
xex+1 + 1− x

and

g′−e,µ(x) = (1− µ)(1− (x+ 1)ex+1)

=
(x2 + x)ex+1 − x
xex+1 + 1− x

.

The function g′−e,µ(x) equals zero at x1 = 0, at x2 ≈ −0.432 and has the value
g′−e,µ(−1) = 1. Furthermore the second derivative

g′′−e,µ(x) =
x2e2x+2 + (−x3 + 3x+ 1)ex+1 − 1

x2e2x+2 + (−2x2 − 2x)ex+1 + (1− x)2
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has zeros at x′1 ≈ −6.5889, x′2 ≈ −1.6363 and x′3 ≈ −0.2191. The point x′2 is a
local maximum while x′3 is a local minimum with h(x′3) ≈ −0.2085, as shown in
Figure 3.4. Then the function g′−e,µ(x) has values in (−0.2085, 1) for x ∈ (−1, 0),

implying that |g′λ,µ(x)| < 1 for every x ∈ (−1,−1
2) as expected.

Figure 3.4: Graph of the function g′−e,µ(x) considered as a real function.

3.3 Kernel convergence on the Fatou set

In the previous chapter we described the dynamical behaviour of the family of
functions gλ,µ. In Section 3.1 we introduced the limit family of functions gλ giving
some results related to the Baker domain Bλ and wandering domains. Now we
continue with the approximation of Bλ through the basins of attraction Aµ of gλ,µ
as µ tends to zero. This is followed by the convergence to the parabolic basins
Dp by attracting basins Ap,µ for parameters λ such that gλ has a parabolic fixed
point. The first case automatically implies the kernel convergence of Fatou sets
when F(gλ) equals the Baker domain.

Recall that a domain B is a kernel of a sequence of domains {Bj}j∈I if B is the
largest domain containing the marked point z0 and such that for every compact
set K ⊂ B, implies that K ⊂ Bj for all Bj except at most finitely many. The
convergence holds when B is a kernel of every subsequence of {Bj}.

Note that Definitions 1.1 and 1.2 presented in Section 1.9 consider discrete se-
quences of open sets Bj with j in an index set I. In our case, the open sets
depend on a continuous parameter µ ∈

(
0, 12
)
. Therefore we may choose during

the proofs an arbitrary subsequence of parameters {µj}j∈N ⊂
(
0, 12
)
, with µj → 0

as n→∞. However, the arguments do not depend on the choice of {µj}j∈N but on
the upper boundary value µ0 only. Hence we omit the subindex j in the notation
and present the results for arbitrary parameters µ ≤ µ0.

At first we present the approximation of the Baker domain Bλ by attracting basins
Aµ in Subsection 3.3.1. This is followed by the convergence of the attracting basins
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Ap,µ to the parabolic basins Dp in Subsection 3.3.2. To this end, we firstly prove
in Proposition 3.19 the convergence of the multipliers Mµ to M0 of the points
zp,µ and zp respectively. In both cases we use the existence of the attracting fixed
points zµ and zp,µ of the function gλ,µ proved in previous sections.

3.3.1 Kernel convergence to the Baker domain Bλ

In Section 2.4 we constructed an invariant absorbing domain Hη,ρ for the attract-
ing basin Aµ and introduced the analogue absorbing domain Mδ for the Baker
domain Bλ. Now we prove the convergence of Hη,ρ to Mδ as kernel in the sense
of Carathéodory.

For the function gλ the absorbing domainMδ is defined as the set of points z ∈ C
for which their image under gλ is at a distance δ from z−1, with δ ∈ (0, 1). However
we could assured the invariance of the domain Hη,ρ for δ = 1

2 ; see Subsection 2.4.2.
Hence we take the fixed value δ = 1/2 also for Mδ obtaining:

M1/2 =

{
z ∈ C : |gλ(z)− (z − 1)| < 1

2

}
=
{
x+ iy : y2 < ρ(x)

}
for ρ(x) :=

e−2x

(2 | λ |)2
− x2. (3.9)

The absorbing domain Hη,ρ invariant under the function gλ,µ is defined as the
union of two smaller domains for δ = 1

2 and µ ≤ µ0, µ0 ∈
(
0, 12
)
, as follows

Hη,ρ = Hη ∪Mρ, with (3.10)

Hη :=

{
z = x+ iy : x ≤ 1− 1

2µ
and |y| < ηµ(x)

}

for ηµ(x) := −x

√(
µe(1−2µ)/2µ

(2µ− 1)(1− µ)|λ|

)2

− 1, (3.11)

and

Mρ :=

{
z = x+ iy : 1− 1

2µ
< x < x0 and y2 < ρµ(x)

}
for ρµ(x) =

(
e−x

2(1− µ)|λ|

)2

− x2 and ρ(x0) ≥ 0. (3.12)
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The boundary value µ0 for the parameter µ is chosen sufficiently small such that

|λ| < e
1
2

(
1
µ
−2
)
µ2

1−µ holds for all µ ≤ µ0, which guarantees the existence of the
attracting fixed point zµ and the invariance of the absorbing domain.

Comparing Equations (3.9) and (3.12) we can see that as µ → 0, the parametri-
sation ρµ(x) uniformly converges to ρ(x) as real functions. Furthermore, it is also

true that the graph of ρµ converges to the graph of ρ as compact subsets of Ĉ in
the Hausdorff metric; see Figure 3.5. Hence the functions ±

√
ρ(x) and ±

√
ρ(x)

satisfy the same properties. We remark that these arguments apply to the bound-
aries of M1/2 and Mρ but not necessarily for the entire ∂Hη,ρ. Nevertheless,

we consider µ sufficiently small that 1 − 1
2µ is large negative, in addition to the

properties mentioned above, so that the domain Mρ is sufficiently large for our
purposes.

Figure 3.5: Boundaries of absorbing domains ∂M1/2 = {x + iy : y2 =

ρ(x)} and ∂Hη,ρ = {x + iy : x > 1 − 1
2µ ; y2 = ρµ(x)} ∪ {x + iy : x ≤

1− 1
2µ , y = ±ηµ(x)}.

We now present the kernel convergence of the absorbing domains. This is followed
by Lemma 3.16 showing the persistence of compact sets useful in the convergence
proof. Afterwards we present Lemma 3.15 showing some properties of the func-
tions ρµ(x) and ηµ(x). Lemma 3.15 implies in particular that the domains Hη,ρ
do not form a nested sequence of sets, which would immediately imply the kernel
convergence of Hη,ρ to the domain M1/2; compare with the discussion on this
topic in Section 1.9.

Theorem 3.14. Let M1/2 and Hη,ρ be absorbing domains for Bλ under gλ and
for Aµ under gλ,µ respectively as defined in Equations (3.9) and (3.10). Then Hη,ρ
converges to M1/2 as kernel in the sense of Carathéodory as µ→ 0.
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Proof. Let λ ∈ C∗ and µ0 ∈
(
0, 12
)

both be arbitrary but fixed parameters, with
µ0 sufficiently small that the absorbing domain Hη,ρ is invariant. In order to make
clear the dependence of the domains Hη,ρ on the parameter µ during this proof, we
specify it in the notation as Hµη,ρ or Hµη andMµ

ρ for the subdomains. We start by
mentioning some properties of the boundary curves. Then we give an appropriate
marked point, prove the compact set property and finish by proving the validity
for every subsequence.

Making some computations we can see that

0 < ρ(x) =
e−2x

(2|λ|)2
− x2 <

(
1

1− µ

)2 e−2x

(2|λ|)2
− x2 = ρµ(x), (3.13)

for every µ < 1
2 and x ∈ R. Hence it is sufficient to take a value x0 such that

ρ(x) ≥ 0 for all x ≤ x0, implying that ρµ(x) is also well defined for every x ≤ x0
and every µ. We obtain that

ρµ(x) < ρµ0(x) and ηµ0(x) < ηµ(x) (3.14)

for every 0 < µ < µ0 as we show below in Lemma 3.15.

We firstly show thatM1/2 contains the marked point of Hµ
η,ρ for every µ ∈

(
0, 12
)
.

As marked point we use the attracting fixed point zµ0 (depending on the fixed

parameter µ0) and which lies in the interval
(
− 1
µ0
, 2− 1

µ0

)
as it is proved in

Corollary 2.2. We claim this holds by construction that zµ0 ∈ H
µ
η,ρ = Hµη ∪Mµ

ρ

for every µ ∈
(
0, 12
)
. On the one hand, if there exists a µ∗ such that zµ0 > 1− 1

2µ∗
,

that is zµ0 ∈ M
µ∗
ρ , then it implies zµ0 ∈ M

µ
ρ for all µ < µ∗, since ρµ(x) < ρµ∗(x)

and 1 − 1
2µ∗

< 1 − 1
2µ for such parameters µ. On the other hand, if for some

µ∗ it holds zµ0 ≤ 1 − 1
2µ∗

, that is zµ0 ∈ H
µ∗
η , then zµ0 ∈ H

µ
η for all µ ≥ µ∗. In

particular, it follows that zµ0 < x0 < σµ := min
{
−e, 2 ln

(
1

2(1−µ)|λ|

)}
; compare

with Equation (3.13) and Proposition 2.28 for the construction of σµ. Hence
zµ0 < ±

√
ρ(x) and lies in M1/2 as desired.

We continue by showing that given any compact set K ⊂ M1/2, there exists
a µ∗ such that K is also contained in Hµη,ρ for every µ ≤ µ∗. Let µ∗ be an
arbitrary but fixed parameter. If K ⊂ M1/2 ∩ {z ∈ C : Re z > 1 − 1

2µ∗
} then

the result immediately follows from Inequality (3.13). Hence we may assume that
K ∩ {z ∈ C : Re z ≤ 1 − 1

2µ0
} 6= ∅ and denote the intersection by K̃. Since K̃

is bounded and ηµ(x) approaches
√
ρ(x) from below (resp. −ηµ(x) approaches

−
√
ρ(x) from above), we claim that for every z ∈ K̃ there exists µ∗ such that

|Im z| < ηµ∗(Re z) and with this |Im z| < ηµ(Re z) for every µ ≤ µ∗; compare with
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Inequation (3.14). If this is not the case, we may assume that Re z > 1 − 1
2µ∗

which leads to the first assumption. Otherwise we can always choose a smaller µ∗
such that every z ∈ K satisfies one of the both cases mentioned above, that is,
either K̃ = ∅ and z ∈Mµ∗

ρ or z ∈ Hµ∗η .

To prove thatM1/2 is kernel for every subsequence {Hµη,ρ}µj is equivalent to prove
that there exists a µ∗ such that if U is an open subset of Hµη,ρ for every µ ≤ µ∗,
then U ⊂ M1/2 as well. For every z ∈ U it holds z ∈ Hµη,ρ = Hµη ∪Mµ

ρ . Then

either z is contained in Hµη for every µ or there exists a µ∗ such that 1− 1
2µ∗

< Re z
for every µ ≤ µ∗. In the first case, the proof follows immediately. In the latter
case it holds that z ∈ Mµ

ρ for all µ ≤ µ∗. Assume z /∈ M1/2. This implies
that |Im z| > ρ(Re z). Since U is an open set, there exists ε > 0 such that
dist(z, ρ(x)) ≥ ε, D(z, ε/2) ⊂ U and D(z, ε/2) ⊂ C \M1/2. Since ρµ → ρ in the
Hausdorff metric, there exists a µ̃ such that distH(ρ, ρµ) < ε/2 for every µ < µ̃.
In particular, this implies also that |Im z| ≥ ρµ(Re z) for every µ < µ̃ and with
this z /∈Mµ

ρ leading to a contradiction.

The convergence of ρµ to ρ implies that M1/2 is a maximal set satisfying the
properties of a kernel. Finally we assume without loss of generality that µ∗ ≤ µ0,
otherwise we may take a smaller value for µ∗ without changing the arguments
above.

Figure 3.6: Boundaries of absorbing domains Hη,ρ for two different pa-
rameters µ2 < µ1 <

1
2 . The figure illustrates that the absorbing domains

do not form a nested sequence of domains as µ tends to zero.

Now we present some of the properties of the curves ρµ and ηµ used in the proof
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above. This properties depend on the parameter µ, only, and are independent of
the parameter λ.

Lemma 3.15. Let x be a negative real number having an arbitrary but fixed value
and 0 < µ0 < 1/2 sufficiently small such that the invariance of the absorbing
domain Hη,ρ = Hη ∪Mρ is guaranteed. Then for parameters µa < µb ≤ µ0 we
obtain:

• The parametrisations of ∂Mµa
ρ and ∂Mµb

ρ satisfy |
√
ρµa(x)| < |

√
ρµb(x)|.

• The parametrisations of ∂Hµaη and ∂Hµbη satisfy |ηµa(x)| > |ηµb(x)|.

Proof. We prove the statements for the positive values of parametrisations ρµ(x)
and ηµ(x) and they analogously follow for the negative values. The first statement

follows from the definition ρµ(x) =
(

1
1−µ

)2
e−2x

(2|λ|)2 − x
2, since 1 < 1

1−µa <
1

1−µb ≤
1

1−µ0 for all µa < µb ≤ µ0 < 1/2.

To prove the second statement we obtain for x < 0 that ηµb(x) < ηµa(x) if and
only if

−x

√(
µbe(1−2µb)/2µb

(2µb − 1)(1− µb)|λ|

)2

− 1 < −x

√(
µae(1−2µa)/2µa

(2µa − 1)(1− µa)|λ|

)2

− 1

⇐⇒

∣∣∣∣∣ µbe
(1−2µb)/2µb

(2µb − 1)(1− µb)

∣∣∣∣∣ <
∣∣∣∣∣ µae

(1−2µa)/2µa

(2µa − 1)(1− µa)

∣∣∣∣∣
⇐⇒ e

1
2

(
1
µb
− 1
µa

)
<

µa
(1− 2µa)(1− µa)

(1− 2µb)(1− µb)
µb

,

since 2µ− 1 < 0 for all µ < 1/2. The last inequality is proved using the following
computations. Firstly, the exponent 1

µb
− 1

µa
is negative. Secondly, the right hand

side of the inequality is positive for the given µ values. Now we may fix the value
µb without loss of generality and with this the left part of the inequation becomes
arbitrarily small as µa → 0. Furthermore, we obtain (1−2µb)(1−µb)

µb
≥ 1 for every

µb ≤ 1 − 1√
2

and it increases asymptotically to infinity as µb → 0. Then there

exists some constant C = C(µb) > 1 such that

µa
(1− 2µa)(1− µa)

· C <
µa

(1− 2µa)(1− µa)
(1− 2µb)(1− µb)

µb

concluding our result.
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We apply the convergence of the absorbing domains to prove that the Baker do-
main is arbitrarily close to the basins of attraction. The Baker domain B may
or may not be contained in the basins of attraction Aµ. Therefore the kernel
convergence does not follows automatically and we prove it using the following
proposition.
Proposition 3.16. Let K be an arbitrary compact set contained in Bλ. Then
there exists a µ∗ ∈

(
0, 12
)

such that K ⊂ Aµ for all µ < µ∗.

Proof. Let K be a compact set contained in Bλ. Using the definition of an ab-
sorbing domain, there exists an n ∈ N such that gnλ(K) is contained in M1/2; see
Section 1.7 for the definition. In particular, gnλ(K) is also compact. The kernel
convergence stated in Theorem 3.3 implies the existence of a µ1 ∈

(
0, 12
)

such
that for every µ ≤ µ1 the compact set gnλ(K) is contained in Hη,ρ, the absorbing
domain of Aµ. Denote by U := Uε(g

n
λ(K)) an open neighbourhood of gnλ(K) such

that U ⊂⊂ Hη,ρ. The uniform convergence of the functions gλ,µ to gλ guarantees
the existence of µ2 ∈

(
0, 12
)

such that for every µ ≤ µ2, g
n
λ,µ(K) ⊂ U for every

fixed n ∈ N. Take µ ≤ µ∗ = min{µ1, µ2}. Hence gnλ,µ(K) and K are contained in
Aµ for every µ < µ∗, which yields the desired result.

Finally, the kernel convergence of Aµ to Bλ follows from the previous results, under
the additional condition that there does not exist any further Fatou component.
Theorem 3.17. Let λ ∈ C∗ be such that all critical values belong to the Baker
domain Bλ. Then Aµ converge to Bλ as kernel in the sense of Carathéodory.

Proof. The marked point is inherited from the absorbing domainsM1/2 and Hη,µ.
The other two statements required for the kernel convergence follow from the
previous proposition and properties of the Fatou set. Firstly, the condition on
compact sets was proved in Proposition 3.16. Secondly, if there exists a µ∗ such
that given any open set U is contained in Aµ for every µ < µ∗, we claim that
U ⊂ Bλ as well. If U ⊂ Aµ, then U is in the Fatou of gλ,µ for every µ ≤ µ∗. Then
U is contained as well in the Fatou set of gλ, since gλ,µ converges uniformly to gλ
and then the iterates of gλ also form a normal family on U . But all critical points
of gλ belong to Bλ, then F(gλ) = Bλ yielding the desired result.

The kernel convergence follows under more general assumptions, provided that we
are able to control the critical points of gλ and with this, its Fatou components.
This will be a consequence of the Hausdorff convergence of the Julia sets as we
show below in Section 3.5. The Hausdorff convergence and the kernel convergence
are equivalent, if we can prove that all components of F(gλ) are kernels of the
Fatou components of gλ,µ as we discuss in Section 1.9. We can not prove this
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directly. However we firstly show the kernel convergence in the particular case
that gλ has a parabolic basin. In Section 3.5 we prove the Hausdorff convergence
for all parameters λ for which gλ has no wandering domains and for which we
guarantee also kernel convergence for all Fatou components.

3.3.2 Kernel convergence to the parabolic basin Dp

The second particular case where we show the convergence of Fatou components
as kernels in the sense of Carathéodory is when the free critical point c0 of the
limit functions belongs to the attracting basin of a parabolic fixed point. In this
case, the Fatou set F(gλ) consists of two non-repelling cycles: the Baker domain
Bλ and the parabolic basin Dp.

We proved in Section 3.2 that the function gλ has an indifferent fixed point zp which
is approximated by a sequence of attracting fixed points zp,µ of gλ,µ depending on
both parameters µ and λ. The points zp,µ are given by the solutions of

ez−zp

zp
− 1

z
= −1 +

1

1− µ

for every zp in ∂D
(
−2

3 ,
1
3

)
, λp = e−zp

zp
and every µ ≤ µ∗ for some µ∗ ∈

(
0, 12
)
.

Assume now that g′λ(zp) equals a root of unity, that is, zp is a parabolic fixed point.
Then for this parameter λp the free critical point c0 belongs to the parabolic basin
of zp. In this section we prove that the parabolic basin is the kernel of every
sequence of the attracting basins of the points zp,µ. With this result we prove
below in Section 3.5 that the Hausdorff convergence of Julia set J (gλ,µ) to J (gλ)
is satisfied also when the free critical point belongs to a parabolic basin of a
rational fixed point.

The proof of Theorem 3.18 consists of several reparametrisations of the func-
tions gλ and gλ,µ and constructions of invariant compact sets. Moreover, the
proof is based essentially on the Main Lemma 3.20, for which we need to do the
reparametrisations. Therefore we firstly present the required tools before we write
both proofs, of the theorem and the main lemma, at the end of the section.

During this subsection we omit the parameter λp from the notation, since it is
considered arbitrary but fixed and depending on the parabolic fixed point zp.

We start with the reparametrisation of the functions gλ and gλ,µ by sending the
fixed points zp and zp,µ to the origin. Then we express the reparametrisated
functions ĝ and ĝµ by their Taylor expansion in a small neighbourhood U of zero.
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The fixed point zp has multiplier Mp, which is a q-th root of unity. Hence we may
substitute the function ĝ by its q-th iterate and the multiplier Mp := M0 = 1. It
follows that Mp,µ := Mµ ∈ D and convergences to 1. We prove in Proposition 3.19
that this convergence is not tangent to ∂D.

Afterwards we lift the neighbourhood U of the origin to a neighbourhood of ∞
by a biholomorphic mapping to the Riemann surface of the m-th root, where m
denotes the number of attracting petals of the parabolic fixed point. We show
that any compact set K ⊂ U which is invariant under ĝ is also invariant under
ĝµ. In other words, K is also contained in the basin of attraction Ap,µ. To this
aim, we construct an appropriate neighbourhood Wµ of infinity using the lifting
and which contains K such that it remains invariant under ĝ and ĝµ. Finally we
prove the theorem using all these results

Let D∗p denote the immediate attracting basin of the parabolic fixed point zp.
The set D∗p is defined as the union of the largest open sets Uj called petals, for

j ∈ {1, . . . ,m}, satisfying
⋂m
j=1(Uj) = zp and gnλ(z) → zp for every z ∈ Uj . Then

denote by Dp the parabolic basin of zp, that is, all points z ∈ C∗ that are eventually
mapped into D∗p. In the same way, denote by Ap,µ (resp. A∗p,µ) the (immediate)
basin of attraction of the point zp,µ. The main result is the following.
Theorem 3.18. Let gλ and gλ,µ be as described above. Then for every parabolic
fixed point zp ∈ ∂D

(
−2

3 ,
1
3

)
and every µ ≤ µ∗, the attracting basins Ap,µ converge

as kernels to the parabolic basin Dp as µ tends to zero.

Suppose the parameter µ∗ is such that the convergence of zp,µ to zp is guaranteed
for every µ ≤ µ∗. We proceed with the analysis of the function

g(z) = z − 1 + ez−zp
z

zp
(3.15)

and its approximation by the functions

gµ(z) = (1− µ)

(
z − 1 + ez−zp

z

zp

)
(3.16)

considering the limit as µ tends to zero.

We proved in Section 3.2 that the function gµ has an attracting fixed point zp,µ
converging to zp as µ → 0 in the general case that |g′(zp)| = 1. In particular, it
applies to the case that g′(zp) is a root of unity, that is, its argument is a rational
number.

Write M0 := g′(zp) and Mµ := g′µ(zp,µ) for the multipliers at the fixed points.
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Then M0 = 2 + 1
zp

and

Mµ = (1− µ)

(
2 +

1

zp,µ

)
+ µ(zp,µ + 1) u

(
2 +

1

zp

)
(1 + µQ(zp))

with Q(zp) =
(
zp − 1− 1

zp
− 1

zp+1

)(
2 + 1

zp

)−1
computed by using the approxi-

mation for the fixed point zp,µ u zp + µ
(

z2p
zp+1

)
carried out in Theorem 3.10.

We now show that the convergence of Mµ ∈ D to M0 is not tangential to ∂D for
M0 6= 1. That is, | arg(M0 −Mµ)− arg(M0)| ≤ π

2 − C for some C = C(zp) > 0.

Proposition 3.19. Let M0 and Mµ denote the multipliers of the parabolic and
attracting fixed points respectively, with M0 6= 1. Then Mµ lies in D and the
convergence of Mµ to M0 is not tangential to ∂D.

Proof. The fact that Mµ ∈ D follows immediately from Theorem 3.10. To prove
that the convergence is not tangential, we show that | arg(M0−Mµ)−argM0| < π

2 .
For µ ∈ R we obtain

|arg(M0 −Mµ)− argM0| =
∣∣∣∣arg

(
M0 −Mµ

M0

)∣∣∣∣ ≈ | arg(1− (1 + µQ(zp)))|

= | arg(−µQ(zp))| = | arg(Q(zp))|.

Finally, | arg(Q(zp))| ≤ π
2−C with C = C(xp) > 0 for any given value xp > −1.

We remark that C(zp) tends to zero as the point zp tends to −1 on ∂D(−2
3 ,

1
3).

However, for our purposes we may take C(zp) arbitrarily small. In other words and
taking in consideration Lemma 3.11 and Proposition 3.13, we conclude that even
though |ImQ(zp)| is not bounded, we find for every fixed point zp ∈ D(−2

3 ,
1
3)

a sufficiently large constant L > 0 and δ > 0 such that if |zp − 1| ≥ δ, then
|ImQ(zp)| < L.

In order to simplify the proof of Theorem 3.18, we reparametrise the function g by
sending the fixed point zp to the origin. Let ψ(z) := z − zp, zp 6= −1, and define
the function ĝ as follows

ĝ(z) := ψ ◦ g ◦ ψ−1(z)

= z − 1 + ez
(
z + zp
zp

)
.
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The function ĝ has z0 = 0 as a fixed point with multiplier M0. In other words,
the translation leaves the multiplier of g invariant at the fixed point. This is clear,

since ĝ′(z) = 1 + ez
(
z+zp+1
zp

)
which equals 2 + 1

zp
at z0 = 0.

Furthermore, we can use the Taylor expansion of ĝ at zero to simplify the notation
and computations in the proof obtaining

ĝ(z) =

(
2 +

1

zp

)
z +

(
1 +

2

zp

)
z2

2
+ · · ·+

(
1 +

n

zp

)
zn

n!
+ · · ·

= M0 z +

∞∑
n=2

anz
n, (3.17)

with an = 1
n!

(
1 + n

zp

)
and z close to the origin.

In an analogue way we reparametrise the function gµ(z) for every µ ∈ (0, µ∗] by
conjugating with the function ψµ(z) = z − zp,µ as

ĝµ(z) := ψµ ◦ gµ ◦ ψ−1µ (z)

= (1− µ)

(
z + zp,µ − 1 + ez+zp,µ−zp

(
z + zp,µ
zp

))
− zp,µ.

In this case we also obtain that ĝµ fixes the origin and the multiplier remains
invariant at z0 = 0. Computing the derivative we obtain

ĝµ
′(z) = (1− µ)

(
1 + ez+zp,µ−zp

(
z + zp,µ + 1

zp

))
and

ĝµ
′(0) = (1− µ)

(
1 + ezp,µ−zp

(
zp,µ + 1

zp

))
which coincides with g′µ(zp,µ) = Mµ comparing with Equation (3.5). Since zp,µ is

a fixed point of gµ, it satisfies the equality ezp,µ−zp
zp

= µ
1−µ + 1

zp,µ
. Hence we may

rewrite

ĝµ
′(z) = (1− µ)

(
1 + ez

(
µ

1− µ
+

1

zp,µ

)
(z + zp,µ + 1)

)
. (3.18)

Finally, the Taylor expansion of ĝµ(z) at 0 is given by ĝµ(z) = Mµz+
∑∞

n=2 an,µz
n

with

an,µ = (1− µ)

(
µ

1− µ
+

1

zp,µ

)(
zp,µ + n

n!

)
=

1− µ
n!

(
zp,µ

(
−1 +

1

1− µ

)
+ n

(
−1 +

1

1− µ

)
+ 1 +

n

zp,µ

)
,
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using the expression (3.18) for the derivative. We claim that the coefficients of
the Taylor expansion converge, that is, for every n ≥ 2 we have that an,µ tends

to an as µ→ 0. As we take the limit µ→ 0, then an,µ tends to 1
n!

(
1 + 1

zp,µ

)
and

zp,µ tends to zp yielding the convergence.

We continue by proving that any compact set K ⊂ Dp is contained in Ap,µ and
is invariant under gλ,µ as well. We firstly state in the Main Lemma below that if
K is close enough to zp, then K is also contained in A∗p,µ. Later we show in the
proof of the theorem that this implies the result for an arbitrary compact set K
in the parabolic basin. The proof of the Main Lemma is also written at the end
of the section, together with the proof of Theorem 3.18.
Lemma 3.20 (Main Lemma for Parabolic Basins). Let zp be a parabolic fixed point
of g and U a small neighbourhood of zp. Then for every compact set K ⊂ U ∩D∗p
there exists an µ∗ ∈

(
0, 12
)

such that K ⊂ A∗p,µ for all µ < µ∗.

The invariance under the functions gλ and gλ,µ is equivalent to the invariance
under the reparametrised functions ĝ and ĝµ. To prove the invariance under ĝµ we
use the fact that ĝ behaves like a translation when we send the neighbourhood U
of the origin to a neighbourhood Wλ of infinity. Then we show that the functions
ĝµ are small perturbations of this translation, leaving Wλ also invariant and with
it, the compact set K.

Until now, we worked with an arbitrary parabolic fixed point zp 6= 1 such that zp
lies on the boundary of D

(
−2

3 ,
1
3

)
and later with its translation to the origin. In

particular, its multiplier lies on ∂D and it is a q-th root of unity, for some q ∈ N.
Consider now zp fixed but arbitrary under the restrictions above. We substitute
the reparametrised function ĝ by its q-th iterate. This implies that the multiplier
M̂0 := 1 and the function is of the form:

ĝ(z) = z + âm+1z
m+1 + âm+2z

m+2 + · · ·

with âm+1 6= 0 and where m ≥ 1 is called the multiplicity of zp. The number
m describes in particular that the parabolic basin of zp consists of m petals; see
Theorem 10.7 in [51].

Analogously, we substitute ĝµ(z) by its q-th iterate. The multiplier M̂µ is still

contained in D and M̂µ → 1 as µ → 0. Since we translate and reparametrise by

conformal mappings, the convergence of M̂µ to M̂0 = 1 is also not tangent to ∂D.
Furthermore, the convergence of the coefficients ân,µ to ân is also preserved. The
approximating functions are of the form

ĝµ(z) = M̂µz + âm+1,µz
m+1 + . . .
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with âm+1,µ 6= 0, M̂µ ∈ D and M̂µ tending to 1 as µ tends to 0. Notice that the
coefficients âk,µ equal zero for 1 ≤ k ≤ m. The index m is the multiplicity of
the fixed point zp = 0, meaning the order of annulation of ĝ(zp) = zp. Since the
functions ĝµ converge uniformly to ĝ, the order of the fixed point zp,µ = 0 must
be preserved by ĝµ for every µ ≤ µ0 and µ0 sufficiently small. In both cases the
higher terms are bounded and depend on zp for g and on zp,µ and µ for gµ. For
µ = 0 we set ĝ0(z) = ĝ(z) and for simplicity we maintain the notation ak,µ instead

of âk,µ, Mµ instead of M̂µ keeping in mind that M0 = 1.

Consider now an arbitrary but fixed neighbourhood U of the origin and proceed
with the construction of a neighbourhood of ∞. To this end we make a change
of coordinates applying a method utilised by Douady and Hubbard in [24] and by
Kriete in [46] among others.

The function ϕ : z 7→ z−m is a holomorphic mapping from C∗ to itself, but it is not
injective in any neighbourhood of the origin. Therefore we consider the Riemann
surface of them-th root denoted by S∗m. In the casem > 1 the immediate parabolic
basin consists of more than one simply connected domain, namely of m petals.

The mapping ϕ defines a biholomorphic mapping φ : C∗ → S∗m and the projection
ρ : S∗m → C∗. Hence it holds that ρ ◦ φ = ϕ and diagram below commutes.

S∗m

ρ

��
C∗

φ
==||||||||

ϕ
// C∗

In other words, φ is a lifting of the mapping ϕ to the Riemann surface S∗m. More-
over, φ maps a punctured neighbourhood of the origin to a punctured neighbour-
hood of infinity biholomorphically. We define for every µ ∈ [0, µ∗] the function

fµ := φ ◦ ĝµ|U ◦ φ−1.

The function fµ is a biholomorphic function, that is, it is well defined on a punc-
tured neighbourhood of ∞ on the Riemann surface S∗m. For any r > 0 sufficiently
large write Ωr := {ξ ∈ S∗m : |ξ| > r}. Then Ωr describes a disc around ∞ in S∗m.
Let now r and R be sufficiently large with 0 < R < r < ∞. It follows that the
function f0 maps Ωr into ΩR holomorphically, since ϕ acts like an expansion close
to the origin.
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Lemma 3.21. The expression of the function fµ in the ξ-coordinates on S∗m close
to ∞ is given by

ξ 7→M−mµ ξ − 1 +O(ξ−
1
m ) for every µ ∈ [0, µ∗]. (3.19)

Recall that ϕ(z) = z−m and ϕ−1(z) = z−
1
m . Then after some computations, it

follows for any point z in a small neighbourhood of zero

ϕ ◦ ĝµ ◦ ϕ−1(z) =

(
Mµz

− 1
m + am+1,µ

(
z−

1
m

)m+1
+O

(
(z−

1
m )m+2

))−m
=
(
Mµz

− 1
m

)−m(
1 +

am+1,µ

Mµ
(z−

1
m )m +O

(
(z−

1
m )m+1

))−m
.

Applying Taylor expansion at zero to the term on the right side we obtain

ϕ ◦ ĝµ ◦ ϕ−1(z) = (M−mµ z)

(
1− mam+1,µ

Mµ
z−1 +O

(
z
−m−1
m

))
= M−mµ z −mM−m−1µ am+1,µ +O

(
z−

1
m

)
.

Furthermore, from the definition of fµ = φ ◦ ĝµ ◦ φ−1 together with φ = ρ−1 ◦ ϕ
we can rewrite the function fµ in the new coordinates. Given a large r for each
ξ ∈ Ωr ⊂ S∗m there exists a z close enough to zero with ρ(ξ) = z. It holds that ĝµ(z)
is also close enough to zero. Hence ξ = ρ−1(z) and fµ(ξ) = ρ−1(ĝµ(z)) lie both on
the same leaf of S∗m. Finally we obtain the expected expression by an appropriate
reparametrisation such that the constant −mM−m−1µ am+1,µ is replaced by −1.

The following constructions and lemmas are presented and proved by Kriete in
his doctoral thesis [46]. Kriete proved the results for an analytic family of ratio-
nal functions depending on a parameter λ ∈ D, even though we reach the same
expression (3.19) as he did. It means that both families have the same analytic
expression in a small neighbourhood of the parabolic fixed point and his results
apply also for our functions. We rewrite the results with our notation and omit
most of the proofs. Nevertheless we write some sketches of them necessary for
the understanding of the Main Lemma’s proof and adapted to transcendental
functions if it is necessary.

We start by constructing an appropriate neighbourhood of ∞ via Ωr(∞) and its
projection ρ(Ωr(∞)) ⊂ C∗ which will be invariant under the perturbation ĝµ of ĝ.
Let K be an arbitrary compact set in D∗p. By definition, for every point z0 in D∗p
there exists an n0 ∈ N such that ĝn0 (z0) ∈ U∩D∗p for every n ≥ n0. Moreover, there
exists a neighbourhood V of z0 such that ĝn0 (V ) ⊂⊂ U∩D∗p for every n ≥ n0. Then
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for the compact set K ⊂ D∗p we can choose an n1 ∈ N such that ĝn0 (K) ⊂⊂ U ∩D∗p
for every n ≥ n1. Hence, we continue with the proof on an arbitrary compact set
K ⊂ U ∩ D∗p, that is, close to the origin.

The previous arguments in particular imply that fn0 (φ(K)) ⊂ Ωr for every n ∈ N
and an appropriate r > 0. Recall that f0(ξ) u ξ − 1 +O

(
ξ−

1
m

)
. For sufficiently

large r > 0 and ξ ∈ Ωr it holds that Re (ρ(f0(ξ))) < Re (ρ(ξ))− 1
2 . Then for every

n ∈ N and any ξ ∈ φ(K) this implies that

Re (ρ(fn0 (ξ))) < Re (ρ(ξ))− n

2
. (3.20)

With this, we may and will assume that Re (ρ(ξ)) < −r for an arbitrary ξ ∈
fn0 (φ(K))) and n ∈ N.

Consider the multiplier Mµ at the fixed point zp,µ = 0 for µ ∈ [0, µ∗]. Recall
that M0 = 1 and that Mµ ∈ D converges to 1 ∈ ∂D non-tangentially. Hence we
assume that Mµ lies on a curve contained in a triangle ∆ symmetric with respect
to the real axis and such that ∂∆ ∩ ∂D = {1}. Let β denote the angle between
the real axis and one of the sides of ∆. Since ∆ ⊂ D it holds that β ∈ (0, π2 ).

Define η := min
{
β
2 ,

1
2

(
π
2 − β

)}
and choose a sufficiently large r such that ξ ∈ Ωr

satisfies |Im ρ(f0(ξ)) − Im ρ(ξ)| < 1
2 tan η

2 . Then for any ξ ∈ φ(K) and n ∈ N we
obtain

π − η

2
< arg (ρ(fn0 (ξ))− ρ(ξ)) < π +

η

2
. (3.21)

Equations (3.20) and (3.21) ensure the existence of n0 ∈ N such that

π − η < arg (ρ(fm0 (ξ))) < π + η

for all m ≥ n0 and ξ ∈ φ(K). Therefore we may restrict the proof of the invariance
for points ξ in a compact set K ⊂ U ∩ D∗p such that

φ(K) ⊂ B′(r, β) := {ξ ∈ Ωr : |π − arg(ρ(ξ))| < η and Re (ρ(ξ)) < −r}.

We denote by B(r, β) := ρ(B′(r, β)). The results above yield the proof of the
following lemma.
Lemma 3.22. The domain B′(r, β) is invariant under f0.

The domain B′(r, β) is invariant under f0 by construction and contains the com-
pact set φ(K). The action of f0 on ξ is mainly a translation by −1, since M0 = 1.
In contrast to this, the function fµ additionally acts as a small rotation by M−mµ .
To find an invariant domain under fµ we extend B(r, β) by adding the domain Vµ
defined as the complement of a bounded closed disc which intersects B(r, β).
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We claim that the domainW ′µ := {ξ : ρ(ξ) ∈ B(r, β)∪Vµ} is invariant under fµ for
every µ ∈ (0, µ∗]. To prove this we firstly show the invariance under the function
hµ defined as hµ(ξ) := M−1µ ξ − 1 for points ξ ∈ W ′µ. In the ξ-coordinates, the

function fµ is a small perturbation of hµ just by adding O(ξ−
1
m ). Afterwards we

prove that the invariance of Wµ is preserved by small perturbations of hµ finally
implying that ρ−1(Wµ) is invariant under fµ.

We construct the domain Vµ by defining its intersection with B(r, β). Denote each
component of ∂B(r, β) by

B0 := ∂B(r, β) ∩ {Re ξ = −r}
B1 := ∂B(r, β) ∩ {arg ξ = π + η}
B2 := ∂B(r, β) ∩ {arg ξ = π − η}.

Lemma 3.23. Let hµ(ξ) = M−1µ ξ − 1. Then hµ(ξ) ∈ B(r, β) holds for every ξ in
∂B(r, β). Furthermore there exist µ3 > 0, δ = δ(µ3) and some constant C > 0 such
that if |Mµ−M0| < δ for every µ ≤ µ3 then d(hµ(B0 ∪B1 ∪B2,µ), ∂B(r, β)) > CB.

The proof of Lemma 3.23 is written in detail by Kriete in [46]. Here we provide
a sketch of the proof since some of the arguments are helpful for the construction
of the domain Vµ.

Fix r > 0 sufficiently large. It is clear that h0(B0) ⊂ B(r, β) since M0 = 1 and that
d(h0(B0), ∂B(r, β)) does not depend on r. Then it follows that hµ(B0) ⊂ B(r, β)
and d(hµ(B0), ∂B(r, β)) > C0 for every |Mµ −M0| < δ0 with µ ≤ µ0, δ0 = δ0(µ0)
and some appropriate constant C0 independent of r.

Now consider δ1 ∈ (0,min{tan η, δ0}) with 0 ≤ argMµ < η. Then it holds that
0 ≥ argM−1µ > −η. For points ξ ∈ B1 we obtain π < arg(M−1µ ξ) ≤ π + η and
Re (M−1µ ξ) < Re (ξ). This implies Im (hµ(ξ)) ≥ Im ξ and Re (hµ(ξ)) ≤ Re (ξ) − 1
finally implying that hµ(ξ) ∈ B(r, β). We also find a constant C1 > 0 independent
from r such that d(hµ(B1), ∂B(r, β)) > C1.

We continue by showing the invariance of the upper boundary component. For
ξ ∈ B2 it suffices that π − η < arg(hµ(ξ) − ξ) < π holds in order to prove
hµ(ξ) ∈ B(r, β). The claim follows from the inequations Re (hµ(ξ)− ξ) ≤ −1 and
Im (hµ(ξ)− ξ) ≤ tan η

2 , which we prove now.

WriteMµ = 1−a+ib with a ∈ (0, 1) and b ∈ R satisfying |b| ≤ a tanβ. It is possible
to show that for ξ ∈ B2 and a small a ∈ (0, 1) we obtain Re (M−1µ ξ) ≤ Re (ξ).
Furthermore there exists δ2 ∈ (0, δ1) such that for |Mµ − M0| < δ2 we obtain
tan η < (1− a) cotβ − b. Then for these values of Mµ the inequation

Re (hµ(ξ)− ξ) ≤ −1 (3.22)
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holds. The inequation

Im (hµ(ξ)− ξ) ≤ tan
η

2
(3.23)

is only satisfied for a subset B2,µ of B2 defined as follows. For b ≥ 0 we obtain
Im (M−1µ ξ) ≥ Im ξ and arg(hµ(ξ)− ξ) < π. Using Equation (3.22) we compute

0 < tan (π − arg(hµ(ξ)− ξ)) = − Im (hµ(ξ)− ξ)
Re (hµ(ξ)− ξ)

≤ Im (hµ(ξ)− ξ).

If Im (hµ(ξ)−ξ) ≤ tan η
2 is satisfied, then it yields π−η < arg(hµ(ξ)−ξ) < π using

the monotony of the tangent function. Hence we conclude that hµ(ξ) ∈ B(r, β).

By further computations we obtain by writing ξ = −x+ iy with x, y > 0 that

Im (hµ(ξ)− ξ) =
x · b+ y(1− a)− y((1− a)2 + b2)

|Mµ|2

=
x
(
b+ a(1− a) tan η − b2 tan η

)
|Mµ|2

for y = x tan η. Furthermore, Inequation (3.23) holds for |Mµ−M0| = |Mµ− 1| <
δ2 and b ≤ a tanβ provided the points ξ ∈ B2 satisfy

x · a
(

tanβ + tan η + a tan2 β · tan η

|1− δ2|2

)
≤ tan

η

2
.

Approximating the second factor on the left hand side of the inequation by an
appropriate constant L as an upper bound we define ζ2 = ζ2(µ) ∈ B2 such that
x · a · L = tan η

2 and

B2,µ := {ξ ∈ B2 : Re (ξ) ≥ Re (ζ2)}.

For a point ξ ∈ B2,µ it is possible to approximate the distance of its value hµ(ξ) to
the boundary as d(hµ(ξ),B0) > 1, d(hµ(ξ),B1) > r ·tan η and d(hµ(ξ),B2) > tan η

2 .
We may assume w.l.o.g. that r ≥ 1 and with this we set C2 := min{1, tan η

2} for
which we have d(hµ(ξ), ∂B(r, β)) > C2. To complete the hypothesis of Lemma
3.23 we set the constant CB := min{C0, C1, C2}.

We define the domain Vµ using the point ζ2. Firstly consider the repelling fixed

point of hµ given by ξ0 =
Mµ

1−Mµ
. We choose the circle γµ with centre at ξ0 and

radius Rµ = |ζ2 − ξ0| as the boundary of Vµ. That is to say, we define Vµ as the
unbounded component of C∗ \ γµ. It is clear that ∂Vµ ∩ ∂B2 = ζ2.
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Lemma 3.24. The domain Vµ is invariant under the function hµ. Furthermore,
there exist δ3 = δ3(µ3) > 0 and a positive constant CV independent of r such
that if |Mµ − M0| < δ3 for every µ ≤ µ3, µ3 ∈ (0, µ2), then d(hµ(γµ), γµ) ≥
d(hµ(γµ),B(r, β) \ Vµ) > CV

Sketch of Proof. Firstly, in order to prove that hµ(Vµ) ⊂ Vµ consider a point
ξ ∈ ∂Vµ = γµ. The vector hµ(ξ)− ξ is the tangent vector at the point ξ which lies
on the logarithmic spiral starting at the fixed point ξ0. Then the vector hµ(ξ)− ξ
points into the interior of Vµ, proving the first claim.

Secondly, let µ3 ∈ (0, µ2) and δ3 = δ3(µ3) as described in the lemma. We claim
that γµ ∩ D(0, r) = ∅. This follows from an approximation of Rµ. On the one
hand, recall that ζ2 = a−1 · L · (−1 + i tan η), with a ∈ (0, 1). Then there exists
some positive constant L′ such that |ζ2| = a−1 · L′. On the other hand, using
the inequation 0 ≤ arg((1 −Mµ)−1) ≤ β together with 0 ≤ arg(Mµ) ≤ η

2 implies
0 ≤ arg(ξ0) ≤ π−η. Hence it is possible to find a constant CV > 1 and 0 < δ3 <

1
2

such that Rµ ≥ a−1 · CV . For such a δ3 we can find a r > 0 such that the claim
holds.

Finally, the distance d(hµ(γµ), γµ) can be computed by evaluating the expression

|hµ(ξ)− ξ0| −Rµ for some ξ = ξ0 +Rµe
it ∈ γµ. Since |hµ(ξ)− ξ0| = Rµ

|Mµ| , we have

|hµ(ξ)− ξ0| −Rµ =
Rµ(1−Mµ)
|Mµ| ≥ (1−δ3)·CV

δ3|Mµ| .

To conclude the proof of the invariance of any compact set φ(K) under fµ we
define the sets

Wµ := B(r, β) ∪ Vµ and W ′µ := {ξ : ρ(ξ) ∈ Wµ}

for every µ ≤ µ3. The lemma below follows directly from Lemmas 3.23 and 3.24.
Lemma 3.25. For every Mµ such that |Mµ −M0| < δ with δ = δ(µ3) it holds
that hµ(Wµ) ⊂ Wµ and d(hµ(Wµ), ∂Wµ) > min{CB, CV}.

The function fµ differs from the function hµ on the terms of order |ξ|−
1
m only.

Thus there exists some r > 0 sufficiently large such that for every ξ ∈ Ωr we
obtain |ρ(fµ(ξ)) − hµ(ρ(ξ))| < min{CB, CV}. Using Lemma 3.25 it immediately
follows that W ′µ is invariant under fµ and we are now ready to prove the Main
Lemma.

Proof of Main Lemma 3.20. Let zp and zp,µ be fixed points of g and gµ respec-
tively. Lemma 3.10 implies that zp,µ → zp as µ tends to zero. Then for every



118 3. Convergence of the families gλ,µ to gλ

small neighbourhood U of zp there exists an µ1 ∈
(
0, 12
)

such that zp,µ ∈ U ∩ D∗p
for every µ ≤ µ1.

Consider an arbitrary but fixed small neighbourhood U of zp. Now consider a
corresponding neighbourhood of infinity Ωr with r sufficiently large. We showed
above that given any compact K ⊂ U ∩D∗p, then gn0 (K) ⊂⊂ U ∩D∗p, which in turn
implies fn0 (K) ⊂ φ(K). We also proved for φ(K) ⊂ B′(r, β) ⊂ Ωr that B′(r, β) is
invariant under f0.

In order to prove the invariance under fµ we constructed a larger domain Wµ :=
B(r, β)∪Vµ, with B(r, β) = ρ(B′(r, β)). We have shown thatWµ is invariant under
the function hµ = M−1µ ξ − 1 for every µ ≤ µ∗.

Since the function hµ satisfies d(hµ(Wµ), ∂Wµ) > C∗, for some positive constant
C∗ and fµ is a small perturbation of hµ, the invariance of W ′µ is preserved by fµ.
Then the domain Uµ := φ−1(W ′µ) is invariant under gµ and with this the compact
set K is a subset of U ∩ A∗p,µ for every µ ≤ µ3.

To prove the kernel convergence recall the analytic representation gµ(z) = Mµz+
am+1z

m+1, with M0 = 1 for µ = 0 and Mµ ∈ D for µ > 0. Notice that this
reparametrisation indicates the number of petals of the parabolic basin of g0,
namely m petals.

Proof of Theorem 3.18. Let µ1 ∈
(
0, 12
)

be a parameter such that the convergence
zp,µ → zp holds and c0 be the free critical point contained in D∗p. It is well-known
that g0 maps the petals on each other building a cycle. Denote the petals by Pj ,

j = 0, . . . ,m−1, such that c0 ∈ P0 and cj := gj0(c0) ∈ Pj . We claim that
⋃m−1
j=0 Pj

is a kernel of the basins of attraction A∗p,µ. This means that each petal Pj is a
kernel of the basins distinguished by the marked point cj .

We firstly prove that the points cj belong to Ap,µ for all µ ≤ µ1. The set of critical
points for g0 and gµ are equal. It follows that c0 is a critical point of gµ too and,
in particular, it is contained in A∗p,µ. We claim that cj ∈ A∗p,µ for every µ ≤ µ1
as well. Using the uniform convergence we can find a δ = δ(µ, n) > 0 for every
fixed µ such that |gµ(c0) − g0(c0)| < δ together with |gnµ(c0) − gn0 (c0)| < δ for
n = 2, . . . ,m− 1. Hence gn0 (c0) ∈ A∗p,µ for every µ < µ1 and n = 1, . . . ,m− 1. It
follows by construction that each marked point cj belongs to a petal Pj , proving
the condition on marked points.

We proved in the Main Lemma 3.20 that any given compact subset K ⊂ U ∩D∗p is
also contained inA∗p,µ for every µ ≤ µ∗. It implies the condition on compact sets for
the kernel convergence for compact sets Kj := K∩Pj for every j ∈ {0, . . . ,m−1}.
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Finally we prove that
⋃m−1
j=0 Pj is a kernel of the basins of attraction for any

subsequence of parameters in (0, µ1). For this, it is enough to show that if there
exists an open set U and a µ2 such that U ⊂ A∗p,µ for every µ ≤ µ2 then U ⊂⋃m−1
j=0 Pj is satisfied as well.

Assume U *
⋃m−1
j=0 Pj . Then there exists z0 ∈ U such that z0 /∈ Pj for some j.

On the one hand z0 ∈ U ⊂ A∗p,µ. For each fixed µ we have that gnµ(z0) converges
to zp,µ as n → ∞. Since U ⊂ F(gµ) and the iterates gnµ form a normal family
then there exist an ε = ε(n, µ) and δ = δ(ε) > 0 such that if Uδ(z0) ⊂ U , then
gnµ(Uδ(z0)) ⊂ Uε/2(zp,µ), a small neighbourhood of the attracting fixed point zp,µ.
In particular this holds for every µ ≤ µ2.

On the other hand zp,µ convergences to zp as µ tends to zero. Then there ex-
ists µ3 such that zp ∈ Uε/2(zp,µ) for all µ ≤ µ3. We obtain that the distance
d(gnµ(z0), zp) < ε and can be arbitrarily small as n → ∞. This implies that z0 is
arbitrarily close to zp under iterates. In other words z0 is arbitrarily close to an
attracting direction of zp, which is a contradiction to z0 /∈ Pj . We conclude that
U ⊂

⋃m−1
j=0 Pj for all µ ≤ µ∗ with µ∗ := min{µ1, µ2, µ3}.

We remark that the procedure described above cannot be generalised to parabolic
periodic point zp without directly proving it for a given period n. Let {zp} denote
a parabolic periodic cycle corresponding to a parameter λp on the boundary of
an hyperbolic component Hn. Such a domain Hn is a component in the copy of
the Mandelbrot set for which the free critical point c0 belongs to the basin of an
attracting periodic cycle of period n. Starting with a parameter λp, the periodic
cycle satisfies |(gnλ)′(zp)| = 1. The first difficulty is that we cannot guarantee
that a sequence of attracting periodic cycles {zp,µ} of gλ,µ of the same period n
converges to the cycle {zp}. However, it still can be possible to find a sequence of
attracting cycles for which the convergence holds, but of a different period.

A second difficulty is that the previous arguments may not be computable in an
analytic way. That is, the computations for each periodic cycle need not to be
explicitly executable, since we search for solutions of the equation gnλ(z) = z. In
the best case there exists an analytic expression for the periodic cycle {zp}. Then
the approximation through an attracting periodic cycle {zp,µ} may yield as well
very complicated computations.

We claim, for example, that we can approximate the parabolic cycle {zp} by
attracting cycles of (1− µ)gnλ instead of taking the n-th iterate of (1− µ)gλ. But
this function is different from gnλ,µ and therefore this is a different story, which has
to be told in a different occasion.
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3.4 Filled Julia sets

In the case that the Fatou set of the limit function gλ has no parabolic cycles
and no wandering domains, we are able to prove a slightly stronger result than
the Hausdorff convergence of the Julia set. In this section we prove the Hausdorff
convergence of the filled Julia set under the assumptions above. Since in this case
Siegel discs or other attracting basins are admissible, we use parts of the results
stated below to prove Theorem 3.27 on the Hausdorff convergence of Julia sets in
the following section.

In Section 3.3 we proved the kernel convergence under the assumption that the
Fatou set F(gλ) consists only of a Baker domain or contains a parabolic basin.
We approximated those components by basins of attraction of gλ,µ. The cases not
considered until now are that gλ has an attracting basin A0 containing the unique
free critical point c0 or a Siegel disc, in which case an irrational fixed point belongs
to the Fatou set.

Kriete consider in [47] a family of meromorphic functions fn converging uniformly
on C to a meromorphic function f . He proved the Hausdorff convergence of the
filled Julia set, when f fulfils certain conditions, that is, when f has no wandering
domains, Baker domains or rationally indifferent cycles. In our case, the functions
gλ do not fulfil these conditions. Hence we can not directly apply his result but
we are able to adapt his definitions and results for our particular case. We begin
by defining the filled Julia set in an analogue way to the well-known filled Julia
set.

In the case of polynomials, ∞ is always an attracting fixed point. Therefore
the filled Julia set is defined as the complement of the basin of attraction of ∞.
For rational maps the point at infinity is a regular point and it can present any
behaviour. For transcendental entire functions the point at ∞ is an essential
singularity and is always contained in the Julia set. In our case, F(gλ) has a
Baker domain Bλ for every λ where the iterates converge to ∞. Hence it make
sense to define the filled Julia set as the complement of Bλ

K(gλ) := C \ Bλ.

For the approximating functions gλ,µ we define

K(gλ,µ) := C \ Aµ,

where Aµ is the attracting basin converging to Bλ as µ tends to zero. Note that
K(gλ) and K(gλ,µ) contain the Julia sets J (gλ) and J (gλ,µ) respectively. We state
the result for these sets as follows.
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Theorem 3.26. Let λ ∈ C∗ be arbitrary but fixed such that gλ has no wander-
ing domains and no parabolic cycles. Then K(gλ,µ) converges to K(gλ) in the
Hausdorff metric as µ tends to zero.

Proof. Recall that K(gλ) and K(gλ,µ) are closed and completely invariant under gλ
and gλ,µ respectively. From the Kernel convergence of Aµ to Bλ there exists a µ∗
such that if an open set U ⊂ Bλ, then U is contained in Aµ for every µ ≤ µ∗. For
some ε > 0 consider the neighbourhood Uε(K(gλ)). The latter argument implies
that K(gλ,µ) ⊂ Uε(K(gλ)) for every µ ≤ µ∗. Therefore to prove the Hausdorff
convergence we only need to show that K(gλ) ⊂ Uε(K(gλ,µ)) for any given ε > 0.

Assume that this is false. Then there exists some ε > 0 and µ0 ∈
(
0, 12
)

such
that K(gλ) * Uε(K(gλ,µ)) for every µ ≤ µ0. Since K(gλ) has no isolated points
(otherwise J (gλ) would have some) there exists z0 ∈ K(gλ) with Uε/2(z0)∩K(gλ) 6=
∅ and Uε/2(z0) ∩ K(gλ,µ) = ∅ for every µ ≤ µ0. Let {µk}k∈N be an arbitrary
sequence of parameters in (0, µ0] such that µk → 0 as k → ∞. For each µk
we consider points zµk ∈ K(gλ,µk) and define the set of accumulation points of
sequences {zµk}k∈N denoted by E .

We have that E ⊂ K(gλ) but E 6= K(gλ). Using the lower-semicontinuity described
in Section 1.9 we obtain that J (gλ) ⊂ Uε(J (gλ,µ)) for each given ε > 0 and every
µ ≤ µ0. Combining the three previous statements yields J (gλ) ⊂ E , recalling that
J (gλ) = ∂K(gλ).

Thus, there exists some domain G ⊂⊂ K(gλ) \ E such that G ∩ K(gλ,µ) = ∅ for
all µ ≤ µ0. By assumption gλ has no wandering domains, parabolic cycles and
any further Baker domain different from Bλ. Since G ∩ J (gλ) = ∅ and K(gλ) and
E are invariant under gλ we may assume that G lies in a periodic component of
F(gλ). After switching to an appropriate iterate of gλ we may assume that G lies
in an invariant component of F(gλ). The following two cases may occur.

i) G ⊂⊂ A for some component of F(gλ) containing an attracting periodic point
z0, or

ii) G lies in a Siegel disc of F(gλ).

Now we consider both cases separately.

i) We have that G ⊂⊂ A ⊂ int(K(gλ)) and G ⊂⊂ Ĉ\J (gλ) ⊂ C. Since G is not
contained in Bλ, then G ⊂ A0, where A0 is the basin of attraction containing
the unique free critical point c0. Using the persistence of attracting cycles,
we conclude that G lies in the basin of some attracting periodic point z0,µ of
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gλ,µ different from Aµ. In other words, G ⊂ A0,µ, the basin of attraction of

z0,µ, and G ⊂ Ĉ \ Aµ = K(gλ,µ) for every µ ≤ µ0, which is a contradiction.

ii) If G lies in a Siegel disc S, then there exists some m ∈ N such that after m
iterates

⋃m
k=0 g

m
λ (G) ⊂⊂ K(gλ) \ K(gλ,µ) contains a curve γ invariant with

respect to gλ. On the one hand, this implies that γ and gλ(γ) are homotopic
in C \ K(gλ,µ) for every µ ≤ µ0. This in turn implies that γ and gλ,µ(γ) are
also homotopic in C \ K(gλ,µ) for every µ ≤ µ0. Then gλ,µ(γ) and g2λ,µ(γ)
are homotopic in C \ gλ,µ(K(gλ,µ)) = C \ K(gλ,µ). Continuing inductively, we
obtain that γ is homotopic to gkλ,µ(γ) in C \ K(gλ,µ) for every k ∈ N. On the

other hand, γ ⊂ Aµ = C \ K(gλ,µ). Then gkλ,µ(γ) is homotopic to a point for
sufficiently large k. Finally γ is homotopic to a point in C \ K(gλ,µ).

Denote by G1 the component of Ĉ\γ containing ∂S and by G2 the other com-
ponent. In particular, G2 contains the centre ξ2 of the Siegel disc S, which
is an irrational fixed point of gλ. Recall that ∂S ⊂ J (gλ). The density of re-
pelling periodic points in the Julia set implies the existence of a repelling point
ζ1 ∈ G1 ∩ J (gλ). Now, Rouché’s Theorem yields the existence of repelling
periodic points ζµ of gλ,µ in G1 for every µ ≤ µ0 such that limµ→0 ζµ = ζ1.

We have that γ ⊂ C\K(gλ,µ) = Aµ which implies G2 ⊂ Aµ. The homotopy of
γ to a point in C \K(gλ,µ) together again with Rouché’s Theorem implies the
existence of fixed points ξµ of gλ,µ which converge to ξ2. The latter implies
ξµ ∈ G2 for all µ ≤ µ0. Hence ξµ ∈ Aµ and each fixed point ξµ must coincide
with the attracting fixed point zµ. We obtain limµ→0 zµ = limµ→0 ξµ = ξ2, a
contradiction.

The theorem above shows that the biggest difficulty to prove convergence in a
dynamical sense comes from the presence of wandering domains or parabolic cy-
cles in the Fatou set of the limit function. In the present case the convergence of
the filled Julia set K(gλ,µ) to K(gλ) implies automatically the convergence of the
(usual) Julia sets under the assumption that gλ has no parabolic cycles and the
Siegel disc is of period one.

Remark 3.2. Concerning the case that gλ has a Siegel disc S, note that the proof
above does not specify through which kind of Fatou component it is approximated.
If the centre of S is an indifferent fixed point, we can approximate it through
basins of attracting fixed points. Nevertheless, if the centre is an indifferent period
point, we cannot guarantee the existence of a sequence of attracting periodic points
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converging to the centre having the same period, analogously to the case of parabolic
periodic points.

In the light of Kriete’s result in [47] we could extend his result since we control
the existing Baker domain. In other words, the kernel convergence of Aµ to Bλ
guarantees the convergence of their complements in the plane, the filled Julia sets,
under the restrictions mentioned above. The second reason that allows to extend
the result is that the Fatou set F(gλ) contains no other Baker domain different
from Bλ. Therefore it is important to be able to control and to have convergence
on any existing Baker domain.

3.5 Hausdorff convergence of Julia sets

The main result of the present work is the Hausdorff convergence of J (gλ,µ) to
J (gλ), which is achieved under certain conditions. A first example where such
convergence was successful is due to Devaney et. al presented in [20]. They showed
convergence on subsets of the parameter plane of polynomials Pλ,d(z) = λ(1 + z

d)d

and the exponential family Eλ(z) = λez. Krauskopf proved in [41] that J (Pλ,d)
converges to J (Eλ) if the Fatou set of Eλ consists only of basins of attraction or
if it is empty.

Such convergences are not guarantee in general for families of functions fn con-
verging uniformly on compact subset to f . Let f and {fn}n∈N be meromorphic
functions such that fn → f as n → ∞. The Hausdorff convergence of J (fn)
to J (f) can be assured if the Fatou set of the limit function f consists only of
basins of attraction and ∞ ∈ J (f), as it was proved by Krauskopf and Kriete in
[44]. This result was previously proved for entire functions by Kisaka in [36]. In
contrast to this, if f has a Baker domain or other Fatou components there exist
several counterexamples, as those showed by Lauber in [48, 49] or by Krauskopf
and Kriete in [42, 43], among others.

We present in this section some minimal conditions such that the Hausdorff con-
vergence of the Julia set J (gλ,µ) to J (gλ) applies. One of the main tools in the
proof is the kernel converge of absorbing domains when gλ has a Baker domain or
a parabolic basin, presented in Section 3.3. The rest of the arguments follow from
the convergence of the filled Julia sets, presented in Section 3.4.

In order to state the main theorem we define an analogue concept to hyperbolic
components in the parameter plane of the functions gλ. Consider a family of
entire functions of finite type, that is, functions f such that sing(f−1) consists
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of finitely many points. An entire function f of finite type is called hyperbolic if
P (f) = O+(sing(f−1)) is relatively compact in F(f). If a family of functions Fβ
depends analytically on a parameter β ∈ C, then an hyperbolic component H is
defined as the set of parameters β for which the functions fβ are hyperbolic. It
is well-known that H is an open subset of the parameter plane and may consist
of infinitely many components. This definition applies as well for meromorphic
functions.

The family of functions Gλ is not of finite type and is never hyperbolic, since
P (f)→∞ ∈ J (gλ) for every singular value, except at most one. Therefore P (f)
cannot be relatively compact in the Fatou set. Even though the Fatou set of the
family Gλ,µ may consist only of basins of attraction, we cannot guarantee that
P (f) satisfies the conditions for hyperbolicity, since we do not control all singular
values. However we can distinguish parameters λ for Gλ in the following manner.
Let c0 be the free critical point of gλ, Bλ the Baker domain and An a basin of
attraction of period n. We define the following subsets of the parameter plane

HB := {λ ∈ C∗ | c0 ∈ Bλ} and

Hn := {λ ∈ C∗ | c0 ∈ An}.

Lauber proved in [48] that the set HB is open and all components of HB ∪{0} are
simply connected. Furthermore, he proved as well that the parameter plane of gλ
contains a copy of the Mandelbrot set M. Hence the components Hn correspond
to the hyperbolic components of M. It is well-known that each domain Hn is
open.

If λ ∈ Hn, then gλ has a non-repelling periodic point z, that is, |(gnλ)′(z)| ≤ 1. In
the case that zp is an indifferent fixed point, it means that λ ∈ ∂H1, we explicitly
compute in Section 3.2 an expression for the fixed point zp. Furthermore, we
give a parametrisation of the curve ∂H1 for these parameters λ depending on zp.
In this case, the parametrisation of ∂H1 has a singularity at zp = −1 and the
corresponding parameter λp = −e.

For higher period n the boundary of Hn has at most countably many singularities
which we call corners and use the notation

C := {singularities of ∂Hn}.

In particular C is a discrete subset of ∂Hn. Recall that for parameters λ ∈ ∂Hn
one of the following possibilities occurs

• gλ has a cycle of rational indifferent points lying in J (gλ) coming with a
parabolic basin Dp.
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• gλ has a Siegel disc S, with a linearisable irrational periodic point in F(gλ)
as the centre of S.

• gλ has a Cremer point, that is, a non-linearisable irrational periodic point
contained in J (gλ).

In the latter case, the Fatou set has no other non-repelling cycle than the Baker
domain, as we showed in Section 3.1. Now we state the conditions for the conver-
gence of the Julia sets.

Theorem 3.27 (Hausdorff Convergence Theorem). Let λ ∈ C∗ and H :=
⋃
n∈NHn.

If the function gλ satisfies one the following

i) F(gλ) consists only of the Baker domain Bλ,

ii) gλ has an attracting periodic cycle (of any period),

iii) gλ has a Cremer cycle (of any period),

iv) gλ has a Siegel disc, which centre is a fixed point, or

v) gλ has a parabolic fixed point for λ ∈ ∂H1,

then J (gλ,µ) converges to J (gλ) in the Hausdorff metric as µ tends to zero.

Proof. At first recall that for parameters λ ∈ HB ∪ H we proved in Corollary 3.8
that gλ cannot have wandering domains. This include all cases listed above. Let
ε > 0 be arbitrary but fixed. The lower-semicontinuity implies the existence of a
µ0 such that J (gλ) ⊂ Uε(J (gλ,µ)) for every µ ≤ µ0.

The inverse inclusion remains to be shown, that is, J(gλ,µ) ⊂ Uε(J (gλ)). Write

Uε := Uε(J (gλ)) for the ε-neighbourhood of the Julia set, and Kε := Ĉ \ Uε for
its complement. Notice that Uε may consist of several connected components.
Moreover Kε is a compact subset of C.

We claim that Kε consists only of finitely many components. If F(gλ) = Bλ,
then it is completely invariant and Kε consists only of one component, since all
critical points are contained in Bλ. If F(gλ) has other components beside the
Baker domain Bλ, assume that our claim is false. Since Kε is bounded, an infinite
number of its components accumulate at some point ζ0. Assume these are covered
by one element of a finite subcovering, says by V . Then the diameter of the
components of Kε as well as the diameter of the complement of Kε contained in
V tend to zero. This is a contradiction to the fact that Uε is an ε-neighbourhood
for some fixed ε.
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Since Kε is contained in F(gλ), Kε intersects only finitely many connected com-
ponents of it. We continue by individually considering the cases of the possible
different components of F(gλ).

i) If F(gλ) = Bλ then, as mentioned above, Kε consists only of one component
and it is contained in Bλ. The result follows immediately from the Kernel
convergence of the basins of attraction Aµ to Bλ proved in Theorem 3.14 and
Lemma 3.16. Therefore Kε ⊂ Aµ for every µ ≤ µ0.

ii) If c0 belongs to a basin of attraction A0, then there does not exist a parabolic
basin nor a Siegel disc. Furthermore, the persistence of attracting cycles
stated as Theorem 1.9 implies the existence of sequence of attracting periodic
points z0,µ converging to a given cycle of any period. Then we use the con-
vergence of the filled Julia set proved in Theorem 3.26 to complete the result.
The latter result implies in particular that Kε is contained in F(gλ,µ).

iii) This case reduces to case i), since if gλ has a Cremer point, there does not exist
any other Fatou component beside Bλ (in particular no wandering domain).

iv) In the case the free critical point lies in a Siegel disc S, again there does not
exist a parabolic basin. We use again the convergence of the filled Julia set
proved in Theorem 3.26. But in contrast to the attracting case, we can just
assure the convergence if the centre of Ĉ is a fixed point and therefore ap-
proximated by attracting fixed points of gλ,µ. We refer the reader to Remark
3.2 for a detailed discussion on this.

v) If F(gλ) contains a parabolic basin Dp in addition to Bλ, then a finite number
of components of Kε are contained in Dp. Analogously, we apply the kernel
convergence of the basins of attraction Ap,µ to Dp proved in Theorem 3.18.
For this we apply Lemma 3.20 a finite number of times. Using the property
on compact subset of the kernel convergence for the Baker domain and the
parabolic basin we obtain that if Kε ⊂ Bλ ∪ Dp then Kε ⊂ Aµ ∪ Ap,µ.

In each of the cases above we obtain J (gλ,µ) ⊂ Ĉ \Kε = Uε(J (gλ)) for each one
of the cases stated in the theorem and every µ ≤ µ0, yielding the desire result.

We remark that the convergence has been proved in the case that gλ has a parabolic
fixed point and not in a more general case, when gλ has a parabolic period point
of higher period. Even though this does not imply, the convergence is impossible
for parabolic periodic cycles, but each should be proved for each given period n
in particular. We proved the dynamical approximation of the parabolic basins by
basins of attracting using reparametrisations of the functions gλ and gλ,µ. The
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reparametrisation may be generalised, but it may be of great difficulty.

Another problem to be considered is that the approximation of the fixed points of
the iterate gnλ may not be approximated dynamically by the analogue fixed points
of an iterate of the same period gnλ,µ. In other words, given a parameter λp such
that gλp has a parabolic periodic point of period n, we cannot guarantee that gλp,µ
has a sequence of periodic points of period n which are attracting and converging
to zp as µ→ 0.

We claim, however, we may achieve the approximation of parabolic periodic points
of a given period n by attracting fixed points of the functions (1−µ)gnλ , for which
the reparametrisations in Section 3.2 may apply.
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Outlook

We begin by describing some characteristics of the functions we study which cannot
be found in the literature. We study the approximation of a transcendental entire
function gλ that features a Baker domain. We carry out the approximation by
a family of transcendental functions too. Most of the examples on convergence
and, especially, the first general results were proved for approximations through
polynomials. As we mention in the Motivations, the Baker domain Bλ is not the
result of a logarithmic lift of an attracting basin, which would immediately imply
the convergence of Aµ to Bλ by taking the logarithmic change of coordinates
of the functions gλ and gλ,µ. Finally we mention that the existence of further
Fatou components enriches the dynamics of both functions, as we can see in the
differences between the conditions for having convergence of the filled Julia sets
and the (usual) Julia sets.

As we introduce the concept of kernel and Hausdorff convergence in Section 1.9 we
mention that these definitions are equivalent considering open sets as complement
of compact sets under two conditions: every component in the complement of the
compact limit set is a kernel and every kernel of the sequence of open sets is a
component of the complement of the compact limit set. In other words, we need
to control the Fatou components for all parameters and each of these must be a
kernel of the complements of the approximating Julia sets. Since this need not be
the case, we prove the Hausdorff convergence of Julia sets directly.

We can interpret the convergence of the filled Julia sets as an approximation
from “outside” into the Fatou components. This corresponds to the approach of
Gaston Julia to the theory of iteration of functions. An implication is that we
can approximate a Siegel disc of any period, since it is not relevant through which
kind of Fatou component we approximate it. Even though the approximation for
a Siegel disc of period one can follow through basins of attraction, for Siegel discs
of higher period this might occur through parabolic basins.
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In other words, we approach the irrational angle of the multiplier through rational
angles. Hence we obtain a sequence of parabolic basins for which the number of
petals increases and finally tends to infinity as they tend to the Siegel disc. This
kind of behaviour is allowed since we consider Fatou components and together with
their boundaries. In contrast to this, if we consider the Hausdorff convergence of
the (usual) Julia set, such approximation though a sequence of parabolic basins
can not occur. Accordingly, we must restrict the Hausdorff convergence of Julia
sets only to Siegel discs of period one.

On the contrary, a parabolic basin must be approach from the “inside” in other
that the Julia set remains stable. This, in turn, corresponds to the approach of
Pierre Fatou. Hence we approximate a rational indifferent fixed point through a
sequence of attracting fixed points. And as we mentioned at the end of Section
3.3.2, we have to prove it directly for a given arbitrary period, since we cannot
generalise it from the convergence of period one. Therefore we guarantee the
Hausdorff convergence of the Julia only if there exists a parabolic basin of period
one, and we cannot extended to the filled Julia sets.

Regarding the parameter plane of the functions gλ, we define in Section 3.5 the
domainsHB andHn depending on the dynamical property of the free critical point
c0. We define in an analogous manner in the parameter plane of gλ,µ a domain HA
of parameters for which c0 lies in Aµ, and Hn,µ if c0 lies in a cycle of attracting
basins of period n. We claim that HA ∪ Hn,µ converges as kernel to HB ∪ Hn as
µ tends to zero.

An open question is: could we extend the convergence mentioned above toHB∪Hn
as compact subsets of Ĉ? The release of this question lies in a result due to
Krauskopf and Kriete in [43], who proved that the closure of hyperbolic compo-
nents is approximated by the analogue sets of approximating polynomials in the
Hausdorff metric. Their proof heavily depends on the dynamical convergence of
the functions for arbitrary but fixed parameters and in the fact that the limit
functions are of finite type. In the case of HB the question is not trivial, since it is
well-known that Baker domains are not stable. In our case a problem could arise
only if there exist wandering domains for parameters lying in ∂HB.

At last we refer to the structure of the Julia set J (gλ,µ) for points with large
imaginary part. It is possible that the critical points which are “trapped” in the
chaotic region of J (gλ,µ) either lie in the Julia set or in another Fatou component,
which must have very small area. An interesting question is if, in this case, the
Julia set has positive area, or if these behaviour increases for µ ∈ C. However,
since this behaviour is produced by the perturbation and the limit functions do
not present it, the “chaotic region” vanishes in the limit.
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baja dimensión” MTM2005-02139 Ministerio de Educación y Ciencia.

I thank Dr. Pablo Ramacher for the collaboration during the winter semester 2008
through the project “Harmonische Analysis auf affinen G-Varietäten”, Emmy-
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