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Chapter 1

Introduction

1.1 Basics of heterojunction diodes

One of the most common configurations of semiconductor based devices is the rec-
tifying p-n junction diode which was first developed by Shockley in 1949 [EH

The corresponding development of the transistor by Bardeen and Brittain in 1947
bipolar transistor) as well as by Shockley in 1949 (on a p-n junction based system)
h—é] led to the development of integrated circuits by Kilby in 1958 M] and therefore
provided a key element in the development of modern electronics based on semicon-
ductor technology [B]

In the past decades, the resulting progress in semiconductor technology associated
with increasing knowledge of semiconductor materials and fabrication processes re-
sulted in the miniaturization of integrated circuit (IC) structures. In addition, a
variety of semiconductor-based electronic components ﬂﬂ] such as different basic
types of transistor and integrated circuits as well as diode based devices such as
photo-diodes, light-emitting diodes (LEDs) [@@] or solar cells, originally developed
by Chapin et al. in 1954 using a silicon p-n junction ﬂﬁ], were developed ﬂa]

In the course of progressing miniaturization processes and the incorporation of wide-
band-gap semiconductors in industrial-grade devices such as SiC, GaN and several
other wide band-gap materials @], the optimization of fabrication processes as well
as the basic understanding of the electrical properties of fabricated devices became
increasingly important, including studies about possible interference effects due to
imperfections of the related structural properties.

While the dimensions of the device structures are related to the accuracy of the
underlying preparation steps, especially the precision of the frequently used lithog-
raphy techniques, the corresponding electrical properties of fabricated devices are
often affected by interface states inside the device structure as well as defect states
originating from the micro-structural properties and the composition of the device
material [5].

Therefore, aside from the continuous improvements in manufacturing techniques
and device layout, the basic analysis of effects related to unintentionally arising
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imperfections in structural properties and the corresponding deviations from ideal
electrical behavior becomes also more important.

In this context, most of up-to-date IC device applications start to suffer from in-
creased leakage currents due to the miniaturization processes as the progressive
reduction of insulator layer thicknesses lead to arising tunneling currents ﬂgj__;l_'] In
addition, the electrical properties of rectifying devices such as breakdown stability
at high electric fields and high temperatures are affected by unintentional recombi-
nation processes inside the corresponding depletion regions. These recombination
processes primarily emerge due to the presence of defect centers inside the materi-
als as well as arising interface states inside typically layered heterostructures. The
effects of structural properties on the resulting electrical properties of related device
structures can frequently be observed in pre-commercial grade materials and were,
for instance, described in great detail for the research on silicon carbide (SiC) sub-
strates and corresponding device applications M}

Focusing on a variety of different diode structures such as p-n junction, Schottky
and heterojunction diodes, photo diode and solar cell applications, the electrical
properties of most commercially fabricated diode structures can be described by the
theory of Sah, Noyce and Shockley, published in 1957 ﬂﬁ] and was originally devel-
oped for the characteristics of p-n diode structures, as well as appropriate extensions
of the other diode compositions, e.g. referring to Schottky diodes @—@]

The corresponding current-voltage characteristic of a p-n junction diode can be de-
scribed by the Shockley equation @, @]

et (e[ 1), w

where [, is the saturation current, T the temperature and n the so called ideality
factor of the diode which is directly linked to the recombination processes inside the
diode structure.

For ideal p-n diodes, in particular, desirable for solar cell application, an ideality
factor approaching unity is desired. The ideality factors of real p-n diodes are also
described by the Sah-Noyce-Shockley theory yielding values of n =1 at a low volt-
age and n = 2 at higher voltages. If there were no defects present, the total diode
current would be based exclusively on diffusion and n would be 1. Therefore, no
recombination processes are expected inside the space-charge region. The resulting
minimization of leakage current loss at reverse bias and increased rectification char-
acteristic are favorable properties of such devices.

As recombination processes are driven by defects, more defects lead to more space-
charge recombination increasing n up to 2 (the "non-ideal” case). For p-n diodes, an
ideality factor n > 2 is not covered by the Sah-Noyce-Shockley theory and suggests
the presence of surface or interface states, indicating that the junction is far from
being ideal M]

Nevertheless, several studies report on a variety of homo- and heterojunction diodes
as well as of metal-insulator-semiconductor %% structures exhibiting large ideal-
ity factors ranging from n = 2 to n ~ 22 [E, ] In addition, other publications
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report on large turn-on voltage (or threshold voltage), in some cases in excess of
10 V, extracted from I-V curves of heterojunction diodes, which may also be an
indication of a large ideality factor 44__41]
In this context, Breitenstein et al. [37] introduced a model to describe ideality fac-
tors n > 2 arising in silicon solar cell devices based on coupled defects @] and donor
acceptor pair recombination, both leading to an increased recombination current. It
is stated that for a high density of defect states, hopping conduction in the defect
volume may govern the reverse conductivity of the devices. However, the model is
only able to explain ideality factors in the range of n < 6.
Furthermore, several groups analyzed the phenomenon on the basis of MIS-structures
, ], and basically linked the effect of increased ideality factors to arising inter-
face states originating from metal/insulator and insulator /semiconductor interface
properties inside the particular MIS-diode structures @, ,@]
All these approached] to explain high ideality factors are sound and useful as long as
a well defined junction structure exists. In particular, the temperature dependence
is a crucial test of the different models. However, ideality factors n > 6 are not cov-
ered by these approaches and none of them provided a generally valid conduction
model for more than one specific heterojunction system.
In addition, similar heterojunction diodes on the basis of metal /diamond like amor-
hous carbon (DLC)/silicon heterostructures were investigated by several groups
p@ |. Instead of an insulating layer, these heterojunctions are equipped with
an amorphous diamond-like carbon thin-film deposited onto the Si-substrates by
filtered cathodic vacuum arc (FCVA) deposition [@] as well as rf-plasma assisted
chemical vapor deposition (CVD) methods using methane @, @] All of these het-
erojunctions exhibited pronounced rectifying current-voltage (I-V) characteristics
but also relatively high turn-on voltages.
The rectifying character of these kind of heterojunctions can also be verified based
on publications of the author’s work-group by Ronning et al. ﬂﬁ] as well as Hofséass
et al. @] The corresponding heterostructures were based on hydrogen-free tetra-
hedral amorphous carbon (ta-C) thin-films, the most sp*-rich form of diamond-like
carbon, grown by mass-selected ion-beam deposition (MSIBD).
In this context, the dominating conduction mechanism of the grown thin-films
around room temperature was found to be governed by thermal activation of elec-
trons trapped in localized bound states, e.g. Frenkel-Poole conduction [@, @], due
to the amorphous character of the ta-C thin-films.
The same conduction mechanism (Frenkel-Poole) was also reported for defect-rich
turbostratic boron-nitride thin-films by Ronning et al. [@] as well as by Nose
et al., who also analyzed the structural properties of the grown thin-films using
transmission-electron microscopy (TEM) measurements @E]
However, despite a general idea of the dominating conduction mechanism inside the
grown thin-films as well as basic information about the structural properties of the
grown thin-film, there is still no general conduction model available for such kind of

Ldescribed in more detail in reference ﬂﬁ]
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heterostructures. In addition, temperature dependencies of the heterojunction char-
acteristics as well as substantial explanations regarding the origin of the rectifying
characteristics and considerations of possibly present interface structures have also
not been taken into account.

1.2 Aims of this thesis

Therefore, the aims of this thesis are the comprehensive analysis of dominating
conduction mechanism inside amorphous thin-films as well as the effect of different
amorphous structures on the electrical properties of several heterojunction systems
in terms of defect and interface configuration. Both will be performed on the basis
of detailed structural characterizations of the corresponding heterostructures.

For that reason, various heterostructures on the basis of different single-crystalline
semiconducting substrates such as silicon (Si), silicon carbide in 6H configuration
(6H-SiC) and zinc oxide (Zn0O) covered with a thin-film of an amorphous or highly
disordered material such as tetrahedral amorphous carbon (ta-C) and so called tur-
bostratic boron nitride (t-BN) as well as an evaporated metal contact on top have
been investigated during this work. The thin-films were grown by mass-selected
ion-beam deposition (MSIBD) including reference samples based on highly doped
n-type silicon substrates in order to study the corresponding conduction mechanisms
of the thin-films. As a side-effect, additional ion-induced defect structures can also
be investigated similar to doping of semiconductors by ion-beam implantation [B]
The fundamentals of these structures including material properties as well as sample
preparation steps are described in detail in chapter

Furthermore, the structural properties of each metal-amorphous semiconductor-
semiconductor (MASS) heterostructure (see section 21]) has been investigated us-
ing cross-sectional high resolution transmission electron microscopy measurements
(HRTEM) as shown in chapter

Based on these results as well as the theory of corresponding conduction mechanisms,
summarized in chapter 3] the electrical properties of all grown heterostructures were
investigated using temperature dependent current-voltage (I-V) measurements re-
sulting in the development of a general, temperature dependent conduction model for
all metal-amorphous semiconductor-semiconductor (MASS) heterojunction diodes.
The corresponding results are illustrated in chapter [6l

Furthermore, the photosensitivity (chapter [7]) as well as the AC properties (chapter
R) of the MASS heterojunction systems were investigated in order to verify or even
extend the developed conduction models.

Finally, this thesis is completed by a brief conclusion as well as an outlook on possible
improvements in future experiments (chapter [).



Chapter 2

Fundamentals of MASS diode
structures

2.1 Introduction

In this thesis, the Metal-Amorphous Semiconductor-Semiconductor (MASS) het-
erostuctures were fabricated according to the assembly sketched in figure 21

A crystalline semi conducting substrate, e.g. silicon, zinc oxide or silicon carbide, is
covered by a grown thin film of an amorphous or disordered semiconductor, i.e. tetra-
hedral amorphous carbon (ta-C) or turbostratic boron nitride (t-BN), and metal
Schottky contacts (i.e. Au or Cr/Au, see section [3.6) evaporated on top.

In the following, the MASS diode structure will be described providing basic infor-
mation about its features as well as the fabrication process.

[ Metal | O

Amorphous Semiconductor (P

back contact (e.g. Ag)

Figure 2.1: Schematic of a Metal-Amorphous Semiconductor-Semiconductor (MASS) het-
erostructure.
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2.2 Semiconducting Substrates

As semiconductor material of the MASS diode structure, single crystalline semi-
conducting substrates like silicon (Si), silicon carbide (SiC) and zinc oxide (ZnO)
were used. The subsequent sections will provide some basic information about the
substrates e.g. resistivity, crystalline orientation and lattice parameters as well as
origin. The corresponding information about all substrates investigated in this work
are summarized in table 211

’ substrate [ n"™-Si | p-Si \ ZnO \ SiC ‘
structure diamond diamond wurtzite 6H-polytype
lattice a=0.543 nm | a=0.543 nm | a=0.325 nm 0.30806 nm
constant ¢=0.521 nm | ¢=1.51173 nm

band-gap [eV] 1.17 1.17 3.37 3.0
effective mass [m.] 1.09 0.81 0.24 0.42
orientation 111 100 0001 0001

dopant element phosphorus boron — nitrogen

resistivity [Qcm] 0.005-0.01 10 100-10000 0.05-0.1

Table 2.1: Basic parameters of semiconducting substrates investigated in this work.

2.2.1 Silicon

Silicon (Si) is an indirect semiconductor with a cubic diamond lattice structure as
shown in figure In this crystalline structure, the Si atoms are coordinated in a
fourfold geometry with sp3-bonds between the atoms and a tetrahedral alignment.
It can easily be doped p- as well as n-type during growth or subsequently by ion-
implantation. While p-type doping is almost solely achieved by the incorporation
of boron as group IIl acceptor element, n-type doping is typically realized using
the group V elements phosphorous or arsenic as donor atoms. In addition, silicon

U@ (om l64]).

¢ c Figure 2.2: Cubic diamond
O ®e .. - FE structure of the silicon lattice.
& o The Si atoms are coordinated
¢ * . in a fourfold geometry with
¢ L @ sp® bonds between the atoms
‘o v i [ ] : and a tetrahedral alignment
¢ ©

is also sensitive to light leading to diverse applications in the fields of solar cell
@], photo diode @] and sensor technology. Moreover, intrinsic silicon crystals can
be fabricated at very high purity levels with contaminant ratios below 107! cm—3
@] especially regarding transitions metals with high diffusion rates like Cu which
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tend to interrupt the performance of Si-based technology in a severe way. Fur-
thermore, various detailed measurements and simulations were performed by many
groups in order to determine the material properties such as the lattice constant of
a = 0.543 nm or its band structure with a small, indirect bandgap of 1.17 eV at a
temperature of 300 K @] The effective masses of electrons and holes are 1.09 m,
l69] and 0.81 m, [70] at 300 K.

In this thesis, boron doped single crystalline 4 inch Si-wafers with (100) orientation
were purchased from Wacker Siltronic. These wafers were cut out a single crystal
grown by the most common growth techniques for Si single crystals, the Czochralski
(CZ) growth method ﬂﬂ], and doped with boron. They are one side polished and
exhibit p-type conductivity as well as a resistivity of approximately 10 Qcm. Fur-
thermore, the thickness was specified to 625 + 10 pum.

In addition to the low doped p-type silicon, heavily doped n-type silicon wafers were
also used in this thesis. With a diameter of 4 inch and a thickness of 625 + 20 um
the dimensions of the wafers were almost identical to the p-type Si. These wafers
are (111) oriented and were heavily doped with phosphorous in order to achieve an
almost metallic conduction due to a very low resistivity of approximately (0.005 —
0.01) Qem. Therefore, these substrates were primely used for the fabrication of
amorphous semiconductor reference samples in order to determine the electrical
properties of those thin films (see chapter @ and []).

2.2.2 n-type 6H-SiC

Silicon carbide (SiC) is a polymorphic wide band-gap semiconductor and exists in
about 250 different structures including crystalline as well as amorphous structures.
The crystalline part of these structures are called polytypes. These polytypes are
variations of the same chemical composition exhibiting identical stoichiometry and
mass density of p = 3.21 g/ cm® [@, ] Furthermore, all of these structures are
identical in two dimensions but they differ in the third which can be interpreted as
a deviation in stacking order of the different crystals. Therefore, the different poly-
types originate from different stacking sequences of the layers. As a result, the unit
cell sizes and alignment configurations vary from one polytype to another. Despite
the great number of polytypes, most of scientific as well as commercial interest is
focused on 3C-, 4H and 6H-SiC configurations.

3C-SiC (also: B-SiC) is the only cubic polymorph and has a zinc blende crystal
structure. It is mostly referred to as 3C-SiC because of the 3 layer stacking se-
quence (ABC) and cubic structure. Despite many different approaches, there are
still no single crystalline substrates available up to now.

Furthermore, a-SiC (2H-SiC) and the related polytypes 4H-SiC and 6H-SiC, exhibit
a hexagonal unit cell with 2H-SiC actually forming a wurtzitic structure with an
ABAB stacking sequence. This periodicity is doubled in 4H-SiC and even tripled in
6H-SiC with corresponding stacking sequences of ABCB (4H) and ABCACB (6H)
including the formation of additional cubic lattice sites inside the structures (4H: 1,
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6H-SIC

Figure 2.3: Crystalline
structures of 3C-, 4H- and
6H-SiC polytypes (adapted
from [74])

3C-SIC

Lo

6H: 2). All of these crystal structures are sketched in figure

The hexagonal polytypes 4H and 6H-SiC are commercially fabricated in single crys-
talline wafers up to 100 mm in diameter and have been investigated in great detail
over the past five decades ﬂﬂ] The most prominent and commercially used growth
technique of bulk SiC single crystals is physical vapor transport via seeded subli-
mation [@, @} In the past two decades the main focus was directed towards the
reduction of defects during the growth process of SiC single crystals (boules). In this
context, a special type of defect, so called micropipes, was investigated by many re-
search groups. 4%] Micropipes are bulk defects (voids) emerging during growth
of a SiC single crystal and propagating through the length of the boule, starting
with the seed crystal. Due to a lower solubility in comparison to dopant atoms like
N or Al ], impurity transition metal atoms, e.g. vanadium, accumulate in the
vicinity of micropipes leading to decreased blocking voltages in Schottky diodes or
high leakage currents in SiC based high power devices, e.g. thyristors.

Regarding the general properties of silicon carbide, it can be doped n-type using
nitrogen or phosphorus @, 77 as well as p-type due to incorporation of aluminum,
boron, gallium or beryllium ,], with N and Al being the most popular dopant in
commercially fabricated SiC. N doping results in a blue or even green color whereas
Al doping leads to black crystals ﬂé] The doping of SiC single crystals itself is real-
ized by the incorporation of doping atoms during the growth process or, afterwards,
by ion implantation.

In this thesis, single crystalline 2”7 wafers of nitrogen doped 6H-SiC were purchased
from SiCrystal AG. The hexagonal structure of 6H-SiC exhibits a large unit cell
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with lattice parameters of a = 0.30806 nm and ¢ = 1.51173 nm m] The band-gap
is in the range of F, = 3.0 — 3.05 eV ﬂﬁ, , ] and effective electron masses
were determined to m; = 2.0(2)mg (longitudinal) and m, = 0.42(2)my (transversal,
along the ¢ axis) [@] The wafers are (0001) oriented and exhibit a resistivity of
0.06 — 0.1 Qcm as well as a thickness of 250 + 25 pm. All of them were one side pol-
ished (Si-face) and the micropipe density was specified to a value below 100 cm 2.
Prior to the actual sample preparation, the wafers were cut into pieces of 5 x 5 mm?

and 5 x 10 mm? using a dicing saw.

2.2.3 Zinc-oxide (Zn0O)

Zinc Oxide (ZnO) is a II-VI wide band gap semiconductor crystallizing in a cubic
zincblende or a hexagonal wurtzite structure. The wurtzite structure is the most
common form of ZnO due to its stability at ambient conditions. The zincblende
structure of ZnQO, in contrast, is only formed at certain conditions on substrates
with cubic lattice structures. In either case, Zn and O atoms are coordinated in a
fourfold geometry leading to tetrahedrally aligned bonds. These bonds are largely
ionic due to the discrepancy in electron affinity and electro negativity between zinc
and oxygen.

A detailed review of ZnO and its properties are given by Ozgiir et al. @] as well as
Pearton et al. @] The wurtzite ZnO structure is shown in figure 24 and possesses
lattice parameters of a = 0.325(1) nm and ¢ = 0.521(1) nm @, @] In addition,

Figure 2.4: Wurtzite structure of ZnO (taken from reference @] Copyright 1993 by The Amer-
ican Physical Society.)

wurtzite ZnO exhibits a large direct band-gap of E, = 3.37 eV determined by var-
ious experiments [@] Therefore, ZnO shows several favorable properties such as
high breakdown voltages, the ability to sustain large electric fields as well as high
thermal stability. This leads to applicability of ZnO in high-temperature and high-
power operation devices.

In general, intrinsic ZnO has a n-type character, even without any intentional dop-
ing during or after growth of the crystals. This is typically caused by irregularities
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in stoichiometry of the crystal like oxygen vacancies or interstitial Zn atoms leading
to intrinsic n-type conduction. In this context, the effective electron mass has a
value of 0.24 m, [82].

The n-type doping can easily be controlled by substitution of Zn atoms with group-
ITI elements such as Al, Ga, In. Alternatively, this can also be achieved by a substi-
tution of oxygen with group-VII elements like chlorine or iodine @] In addition,
its worth mentioning that p-type doping was only reported by a few groups and is
almost impossible in terms of commercial use due to the absence of a sufficient quan-
tity regarding low level acceptor states as well as the presence of intrinsic donors
states E]

The growth of single crystals can be realized by a variety growth methods such as
a gas transport method (e.g. vapor-phase deposition), synthesis of crystals from
a melt or hydrothermal growth. The first two methods are difficult to realize on
a commercial scale based on the facts that ZnO possesses a high vapor pressure
(melt) and the gas transport is difficult to control, in particular on a large scale.
Therefore, the only growth method remaining and controllable on a larger scale is
the hydrothermal growth.

An example of this growth technique is the Chemical Vapor Transport (CVT) growth
method. It is described in detail by Takahashi et al. [@] In principle, this hy-
drothermal growth method is based on the formation of a crystal from an aqueous
solutions at high-temperatures and high vapor pressures. The single-crystalline char-
acter is achieved using appropriate seed crystals. The setup, usually used for this
growth method, is a thick-walled steel cylinder, a so called autoclave. It is equipped
with a hermetic seal resistive to high temperatures and pressures. In order to avoid
corrosion of the autoclave’s inner cavity due to interaction with the solvents used in
the process, protective inserts are often used.

In this particular case of CVT, the actual crystallization vessel is an inner platinum
(Pt) container inserted into the autoclave. As only a small volume of the autoclave
is occupied by this kind of floating type insert, an appropriate amount of distilled
Water is supplied in the space between the autoclave cavity and the inner container
for pressure balance reasons. The inner Pt container itself is filled with a solution
made up of HyO, a nutrient (ZnO powder) and a small amount of KOH and LiOH.
The latter are called mineralizers facilitating the transport of insoluble nutrient like
Zn to a seed crystal on the basis of a reversible chemical reaction. The growth
of ZnO single crystals takes place at temperatures of 300-400°C and pressures of
80-100 MPa. During growth, ZnO powder reacts with hydrogen forming gaseous
Zn and H50O at one side of the furnace. Then, the gas phase Zn is transported by
hydrogen and another, inert gas in the direction of the seed crystal on the opposite
side of the furnace. There, the Zn is reoxidized by a reaction with oxygen gas leading
to the growth of ZnO on seed crystals. In the process, all gases are supplied through
separate tubes.

Compared to other semiconductor single crystal growth methods, CVT is relatively
slow at a rate of approximately 0.2 mm per day. The grown crystals exhibit high
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crystallinity but contain a significant percentage of Fe and Al, in terms of the effect
in semiconductors, as well as small amounts of K and Li in the ppm range. Fe and
Al possibly originate from impurities in the original ZnO powder. The origin of K
and Li impurities, on the other hand, can be pinpointed to the use of mineralizers.
Depending on the exact percentage of these metallic impurities, the electrical prop-
erties of hydrothermally grown single crystals can vary significantly. An image of
a typical 2”7 ZnO single crystal is shown in figure 25l The typical dimensions of

Figure 2.5: Typical 2” ZnO single crystal grown by a hydrothermal method (taken from ﬂ@])

wafers sliced out of such a bulk crystal are 2 inch in diameter and 0.5 mm thickness.
They are polished by a chemical mechanical polishing technique (CMP) and damage
is caused at the surface of the wafers. Therefore, they are annealed for 4 hours at
1100°C in air and a pressure of 1 atm.

In this thesis, hydrothermal grown single crystals with one sided Zn-face polish and
an (0001) orientation were purchased from Crystec. Due to the growth process, this
kind of ZnO contains several impurities such as Mg, Al, Si, Ti, Cu, Fe, Ca and Ag
at an unknown percentage between 0.002-0.005%. All samples were cut out of a

single crystalline wafer and have dimensions of 5 x 10mm? as well as a thickness of
500 pm.
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2.3 Ohmic back contact preparation

Another important part of the sample preparation process is prevention of unneces-
sary interference barrier build up in terms of the electronic structure often originating
from the preparation steps of metal-semiconductor contacts. In this thesis, metal
contacts were evaporated on the back side of the semiconductor substrates and an-
nealed afterwards in order to achieve a minimal contact resistance and an ohmic
current-voltage characteristic of the substrates. Annealing procedures, if necessary,
were performed in an rapid thermal processing (RTP) furnace at certain tempera-
tures and durations. The basic information about ohmic back contact preparation
of each substrate are summarized in table The electrical characterization setup
is described in detail in section and actual measurements and characterization
of the particular substrates are discussed in chapter [l

semiconductor | contact | annealing conditions | references
p-Si Al 900°C (Ar), Imin, RTP | [86, 87]
6H-SiC Ni 950°C, 1min, RTP (88, 89|
ZnO Ti/Au no annealing [90, 91]

Table 2.2: Summary of ohmic back contact preparation used in this work.

2.3.1 Si based MASS diodes

In the beginning of silicon based integrated circuit (IC) fabrication, aluminum con-
tacts were used as ohmic contacts as well as rectifying ”Schottky contacts”. In
this context, the publication of H.C. Card provides a brief review as well as a de-
tailed investigation of interface behavior in Al-Si contacts regarding different types
of heat treatment [@] Right after the preparation process, fresh Al contacts on
Si are very sensitive to surface properties of the Si substrate like surface cleaning,
possible residual contaminants and evaporation conditions. In this context, an as de-
posited Al contact on p-type Si which contained a thin oxide surface layer (~ 2 nm)
leads to rectifying characteristics of this heterostructure. However, long-time ”low-
temperature” treatment below or around 300°C of these samples led to a significant
reduction of Schottky barrier height between Al and Si determined by capacitance-
voltage measurements. An increase in temperature up to the eutectic temperature
of 550°C led to further decrease of the barrier height. In this context, the final
barrier height does not depend on duration of the annealing procedure as long as a
minimal time of 1 min is reached. Still, the barrier height is a function of the cool-
ing rate after annealing [@] Above the eutectic temperature, further penetration
of Al into the interface is observed. The resulting current-voltage characteristics of
Al/p-type Si contacts at room temperature regarding the different annealing steps
are illustrated in figure 2.6l In addition, it has also been shown that the electrical
properties of Al contacts on n-type Si progress in the opposite direction under the
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Figure 2.6: Current-voltage characteristics at room temperature of Al/p-type Si contacts, in-
cluding a very thin oxide layer of d=2 nm, at different annealing conditions. (a) The Al contacts
are freshly evaporated. (b) The conductivity in forward bias increases due to aging and low tem-
perature annealing at 7' < 300°C. (c¢) The characteristic becomes ohmic after annealing at 550°C.
(taken from reference [86], ©1976 IEEE)

same conditions as low doped n-type silicon substrates form Schottky barriers of up
to 0.9 eV in barrier height.

In the past decades, associated with advancing progress in device processing, metal
silicides replaced Al as a contact material because of considerable lower diffusion
rates into unintended areas of the devices, e.g. during high temperature processing
steps.

However, Al contacts were chosen in this work due to the simplicity of contact prepa-
ration compared to alternative methods.

In a first step, the Si substrate was mounted inside a Leybold UNIVEX 350 evap-
oration chamber and a shadow mask with two rectangular bars of 10 mm x 2 mm
divided by a distance of 3 mm, shown in figure 2.7, was applied to the rough backside
of the Si substrates. After reaching an operating base pressure of about 5-107% mbar,
the back side of the p-type Si substrates was sputter-cleaned for (10-15) min using
Ar ions at an energy of 2 keV and an etching rate of (4-5) nm/min. The sample
holder was rotated constantly in order to provide a homogeneous sputter rate all
over the sample. After that, the Al deposition was started using an electron-beam
evaporation unit. The e-beam had an energy of 7 keV and was swept dynamically
over the Al surface inside the melting pot. The resulting evaporation rate was 4 A /s.
Meanwhile, the shutter right in front of the sample was closed and the first 15 nm
were evaporated blind in order to avoid contamination of the contacts with oxide or
other contaminants. Then, the actual deposition was started by opening the shutter
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26.0mm

Figure 2.7: Shadow mask applied to the backside of the silicon substrates prior to aluminum
deposition.

and 250 nm Al were homogeneously deposited on the rotating sample.

The contacts obtained from this procedure exhibited a comparatively high resis-
tivity but were almost ohmic contacts. Therefore, the substrates were additionally
annealed in a rapid thermal processing (RTP) furnace, an ANNEALSYS AS100
TOWER, at 900°C under Argon atmosphere. The Ar-flow was inserted at a flow-
rate of about 500 sccm and the heating ramp was set to 30 s until the annealing
temperature was reached. In order to ensure a sufficient reaction, an annealing time
of 1 min was chosen. In a final step, the chamber was cooled down. In doing so,
a temperature of approximately 300°C was reached in about 1 min. Compared to
the results from Card, these annealing steps ensure a high diffusion rate of the Al
into Si resulting in a sufficient decrease of barrier height and a strong increase in
carrier concentration due to the formation of Al-Si compounds inside of the interface
region.

As a result, these contacts exhibit a low resistive and ohmic characteristic. The cor-
responding current-voltage characteristics of the different contacts are shown and
discussed in detail in section

2.3.2 SiC based MASS diodes

SiC is a suitable material for high power and high temperature device application
based on its large band-gap in combination with a variety of possible doping and fa-
vorable thermal properties. Such devices often demand low resistive ohmic contacts
as a key feature to be addressed.

In this context, Crofton et al. gave a detailed review on ohmic contacts to SiC in
[89]. As no p-type SiC were used in this thesis, only contact materials applied to
n-type SiC will be discussed at this point. The basic concept in the fabrication of all
ohmic contacts on n-type SiC is the annealing of an, at first, refractory metal caus-
ing a formation of silicides with a lowered Schottky barrier height at the metal-SiC
interface. There have been many reports on the formation of ohmic contacts based
on a variety of transition metals like Mo, Co, Hf, Ta, W and several Ti compounds
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[92-96]. However, contacts made up of Ni are most frequently used and well inves-
tigated by several groups [93, 196-98].

In an earlier work, Crofton et al. investigated nickel contacts on 6H-SiC operating
at high temperatures as well as the effects of different annealing temperatures [8§].
After annealing for 2 min at 950°C in vacuum, these contacts exhibit low specific
contact resistance and additionally provides good electrical and physical stability fit-
ting the requirements of long-term high temperature devices as well as high power
device applications. In principle, a successful preparation of low resistive ohmic con-
tacts is based on a reaction of Ni and SiC at sufficient high annealing temperatures
above 900°C and short-term annealing times between 1 and 5 min leading to the
formation of a metal-rich nickel silicide layer of NiySi. Furthermore, this reaction is
accompanied by a migration of C away from the interface and accumulation on the
free silicide surface as well as possible formation of vacancies in the interface region
during the reaction of Ni and SiC. Both processes might facilitate the ohmic behav-
ior of the contacts. All of these results have been confirmed and complemented by

26.0mm

Figure 2.8: Shadow mask applied to the backside of the silicon substrates prior to nickel deposi-
tion.

Liu et al. and several other groups [93, 196-98].

In addition, Marinova et al. suggested the deposition of Ni/Si multilayers instead
of pure Ni in order to lower the accumulation rate of carbon as it might be a source
of contact degradation at high temperatures [99)].

In this thesis, pure nickel contacts were used as back contact material. Regarding
the evaporation and annealing processes during contact preparation, identical setups
compared to the Si substrates in the section above were used. Due to the sample
size, the bar-patterns of the shadow mask are significantly smaller with dimensions
of 3 mm x 1 mm divided by a distance of 2.5 mm as it is shown in figure 2.8
During evaporation nickel contacts with a thickness of 100 nm were homogeneously
deposited at a rate of (4-5) A/s onto the 6H-SiC. They were annealed at 900°C for
about 1 min under vacuum conditions (1-107% mbar) in the rapid thermal processing
(RTP) furnace. As a result, the resistance was significantly lowered by two orders
of magnitude compared to as grown Ni contacts (see section [G.4.T]).
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2.3.3 ZnO based MASS diodes

Zinc oxide has attracted much interest in the fields of UV light-emitters, high-power
electronics, surface acoustic wave devices and many more. Therefore, ohmic as well
as rectifying Schottky contacts have been extensively investigated by various groups
in order to improve their quality and match application demands @]
In this context, Ip et al. gave a detailed review of ohmic and Schottky contacts on
Zn0O [@] Regarding rectifying Schottky contacts, metals such as Au, Ag, Pt and Pd
form suitable Schottky barriers according to several publications, mainly focusing
on Au and Ag.
Focusing on ohmic conduction of evaporated metal contacts, there are many reports
in literature on low resistive contacts made up of Ti/Al, Ta/Au and Pt based con-
tacts as well as on more complex Ti/Al/Pt/Au structures |82, l10d, ]
Furthermore, the formation of ohmic contacts on the basis of titanium and gold
Ti/Au) has attracted interest by some groups and was first studied by Kim et al.
i@] They reported on the electrical properties of ohmic Ti/Au contacts on rf mag-
netron sputtered and Al doped ZnO. They showed that annealing of 30 nm Ti/50 nm
Au contacts at 300 °C under nitrogen atmosphere for 1 min led to linear current
voltage characteristics up to 5 V and a specific contact resistance of 2 x 10~* Qcm?.
In further work, they also showed the formation of ohmic Ti/Au contacts on n-type
ZnO bulk crystals with a specific contact resistance of 5 x 1075 Qcm?.
In principle, a Ti-oxide layer is formed due to the chemical reactivity of Ti and
oxygen. There are indications that the formation of the Ti-O phase is fed by out-
diffusion of oxygen from the ZnO leading to the accumulation of oxygen vacancies
near the ZnO surface. These vacancies act as donors in the ZnO increasing the car-
rier concentration near the surface of ZnO leading to a formation of ohmic contacts.
In this thesis, Ti/Au contacts were chosen due to the number of available publi-
cations as well as the fact that only a marginal or even no annealing procedure is
needed to form ohmic contacts on ZnO. Titanium and Gold were thermally evapo-
rated in a layered structure of (15-20) nm Ti and 60 nm Au using an identical shadow
mask layout as for SiC substrates (shown in figure 2.8)) due to similar sample sizes.
These contacts were fabricated at an ambient pressure of (0.5 —1)-107% mbar in an
evaporation chamber of our own work-group which is described in detail in section
and was also used for the evaporation of the metal contacts of the MASS diode
structure. Due to degrading electrical conduction (see section [6.2)) only one sample
was annealed afterwards under the described conditions.
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2.4 Amorphous Semiconductors

The amorphous semiconductor of MASS diodes is made up of a thin film of tetrahe-
dral amorphous carbon (ta-C) or turbostratic boron nitride (t-BN). In this context,
detailed reviews on the properties of these kind of materials have been published
by Robertson et al. for amorphous carbon (a-C) M] and by Mirkarimi et al. for
boron-nitride (BN) @] It has to be noted that ion deposited amorphous (ta-C)
or nano-crystalline (t-BN) thin films do not form classical acceptor or donor levels
due to the high defect density and therefore cannot be doped like e.g. amorphous
silicon. In fact, they show a similar behavior to the "I” part in MIS structures but
exhibit a higher conductivity [46, 47].

2.4.1 tetrahedral amorphous carbon (ta-C)

The most common microscopical configurations of carbon are graphite and diamond.
Graphite consists of six-folded carbon rings stacked in layers based on a threefold
coordination of the carbon atoms, the sp?-hybridization. The sp-hybridized carbon
sites are the stable configuration of carbon in a crystalline as well as in an amorphous
structure. In contrast, diamond is made up of a metastable fourfold coordination of
carbon atoms leading to sp®*-bonding of carbons forms tetrahedrons resulting in the
diamond structure.

In addition to those crystalline structures, multiple carbon amorphous structures
(a:C) can be formed. They contain a mixture of sp*- and sp3-bonded carbon states
and, at some cases, even a small content of sp!-states. Furthermore, hydrogen can
be incorporated depending on the fabrication method. This leads to the formation
of hydrogenated amorphous carbon (a-C:H). If these amorphous carbons contain a
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Figure 2.9: Ternary phase-diagram of bonding in amorphous carbon — hydrogen alloys (taken
from reference @], (©2002, Elsevier).
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Eﬁure 2.10: Microstructure of tetrahedral-amorphous carbon (ta-C), taken from Niesser et al.

]

significant percentage of sp®>-bonded carbon atoms, this metastable group of a-Cs
is called diamond-like carbon (DLC). Depending on the sp*- to sp3-ratio, there is
a variation in density, hardness, permittivity and resistivity. Finally, if these DLC
films are hydrogen free, they are called tetrahedral amorphous carbon (ta-C). The
corresponding ternary phase diagram of bonding in all of these amorphous carbon-
hydrogen alloys is displayed in figure

As the growth conditions are far away from equilibrium, diamond like carbon thin
films can only be synthesized using various methods to create energetic particles.
Examples are filtered arc deposition as well as ion beam deposition techniques (e.g.
mass selected ion beam deposition (MSIBD)) providing only a low energy fluctuation
of the ions and thus well defined thin film properties such as a high resistivity.

In this thesis, all ta-C thin films were grown using MSIBD (see section [2Z.3]) at an
ion energy of 100 eV exhibiting a sp*-content of about 80%. As a result, these thin
films possess a mass density of about 3 g/cm?, a high resistivity (= 1077 Qcm) as
well as a high hardness (> 40 GPa). The typical structural configuration of ta-C,
a dispersion of sp?- and sp3-bonds in an amorphous matrix, is displayed in figure
2. 10
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2.4.2 turbostratic boron-nitride (t-BN)

The crystalline structures of boron nitride are very similar to those formed by car-
bon. All of them cannot be found in nature and therefore have to be synthesized
using boron acids or boron-trioxide as starting material. In comparison to carbon,
the phase stability between the hexagonal and the cubic phase is inverted. The sp3-
bonded cubic phase, cubic boron-nitride (c-BN), is the stable phase and possesses
a zinc-blende structure along with high hardness, a large bandgap and thermal sta-
bility similar to diamond. The hexagonal phase, hexagonal boron nitride (h-BN) or
"white graphite”, is metastable.

In contrast to its carbon counterpart, h-BN is not a conducting material but a wide
bandgap semiconductor with a bandgap of about E, = 5.2 eV [68]. The sp?>-bonded
layered structure is very similar to graphite. However, the layers are not displaced

(a)
A
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Figure 2.11: Crystalline structures of boron nitride: (a) the sp?-bonded structure of hexagonal
boron-nitride (h-BN) is similar to graphite, (b) the sp>-bonded phase, cubic boron-nitride (c-BN),
exhibits a zincblende structure similar to diamond. (adapted from [103], ©1997 Elsevier)

against each other. Instead, the hexagonal rings of the basal planes in h-BN are
positioned directly above each other and rotated by 180° between alternate layers.
Both crystalline structures are shown in figure 2.111

In addition, another hexagonal boron nitride phase often forms during growth at-
tempts of h-BN thin films with ion-beam assisted deposition techniques (IBAD),
the so called turbostratic boron-nitride (t-BN). It is a disordered, micro-crystalline
form of the hexagonal phase. The two-dimensional in-plane order of the hexagonal
structure of the basal planes is almost identical to those in h-BN. However, they
are stacked in a random sequence and with random orientation about the c-axis. In
more detail, the [0002] planes of t-BN grow perpendicular to a substrate surface,
sometimes on top of an additional amorphous interlayer formed by a mixture of B,
N and the substrate material M} Furthermore, the orientation of the [0002] direc-
tions about the film are random and, in addition, the graphitic layers are randomly
rotated about the [0002] directions. As a result, there are no preferred out of plane
direction present in such films. All of these aspects are sketched in figure 2121 An
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Figure 2.12: Properties of the turbostratic boron-nitride (t-BN) structure: (a) 3D view of basal
planes (after McCulloch et al. |[105]), (b) [0002] in-plane orientation for t-BN (both pictures taken
from [103], ©1997 Elsevier).

Figure 2.13: In plan HRTEM image of a t-BN thin-film. The basal planes are highly distorted
and exhibit a high defect- and dislocation-density. Therefore, they extend only short distances of
particular areas (taken from McCarty et al. [108], ©1996 Elsevier).

additional HRTEM image of a "real” t-BN film in plan view is shown in figure 2.13]
In this work, all t-BN films were grown using mass selected ion-beam deposition
(MSIBD) at an energy of 100 eV. The basic material parameters such as mass den-
sity p = 2.25 g/cm?® [107] as well as the lattice parameters a = 0.250(1) nm and
¢ = 0.666(1) nm [68] were obtained from h-BN providing a good approximation due
to a similar crystalline structure of the basal planes. A detailed structural analysis
of the grown t-BN thin-films in this thesis was performed using transmission electron
microscopy (see section [).
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2.5 Thin-film growth — Mass Selected Ion-Beam
Deposition (MSIBD)

All ta-C and t-BN thin-films of this work were grown using a mass selected ion
beam deposition technique at the ion accelerator ADONIS (Anlage zur DepOsition
niederenergetischer lonen auf Substrate). The setup of the ion accelerator ADONIS
is described in detail in section 2521 The ions are generated by a hot filament hollow
cathode ion source. The functional principle of such an ion source is described in

section 2201

2.5.1 Ion source

The setup of the hot filament hollow cathode ion source (also known as Sidenius ion
source ﬂﬁ, ]) is sketched in figure 214l All conducting parts are separated by
boron nitride isolators. The cathode is made up of a tungsten filament fixed by a
graphite and a tantal ring.

In a first step, the filament is heated (25 A at 6 V-8 V). As a result, electrons are
emitted from the filament due to thermionic emission and accelerated towards the
anode, another graphite ring, using a bias of 250 V between anode and cathode. In
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Figure 2.14: Setup of a Sidenius ion source.

order to ignite an ion plasma, a gas (i.e. Ar, Ny, CO2) or a gaseous material (i.e.
heated B20Os3) is fed through the anode into the hollow part of the ion source in the
opposite direction. At a gas pressure of (1.5—6)-107° mbar the accelerated electrons
cause an electric discharge due to impact ionization. In the process, additional
electrons are knocked out of the electron shell and also accelerated towards the
anode leading to a cascade effect. Therefore, the anode bias can be reduced to 30 V
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still maintaining a high electron current. The positively charged ions of the ignited
plasma are accelerated towards the cathode. After passing the radial symmetric
cathode and leaving the ion source through a circular aperture of (0.7-0.9) mm in
diameter the ions are extracted and accelerated by a high tension of 30 kV.
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2.5.2 The ion-accelerator ADONIS

The setup of the ion accelerator ADONIS is shown in figure First of all, in
order to start the MSIBD, the Sidenius ion source is brought to an operational mode
(see [Z5T]). It can be fed by numerous gases, i.e. Ar, Ny or CO,. In addition, solid
elements or compounds (i.e. heated ByO3) can be evaporated using an additional
furnace. The ion source is charged by a high tension of 30 kV. The ions are ex-
tracted and accelerated to an energy of 30 keV by the extraction dome on ground
potential. The energy straggling is in the range of 5 eV-10 eV and is based on the
energy distribution inside of the ion beam. After extraction the ion beam is focused
by an electrostatic lens (20 kV) and separated by mass while passing through a 90°
sector-field magnet. Following the mass-separation, ions with the desired ¢/m ratio
pass a x-y steering unit, simply two pairs of parallel plate capacitors, and a variable
slit which basically defines the mass resolution of the setup.

In a next step, the ion beam is focused with another electrostatic lens as well as a
quadrupole lens. An additional electrostatic capacitor with a deflection of 7° removes
neutral particles (i.e. neutralization due to interaction with electrons) avoiding de-
fects in the grown films due to 30 keV particles. Before deposition the beam quality
as well as the mass resolution of every section of the beam line can be monitored
using a Faraday-cup. In the final section of the setup, the ion-beam is swept across
the substrate by an electrostatic sweeping system leading to a homogeneous depo-
sition of the thin-film material. In order to suppress neutralization of ions inside
the deposition chamber due to interactions with secondary electrons, the setup is
equipped with an additional electron lens. Right before deposition, the ion beam is
defocused by an electrostatic lens leading to an increased deposition area.
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Figure 2.15: Detailed schematic of the ion-accelerator ADONIS (adapted from [111]).
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2.5.3 Deposition of ta-C and t-BN thin films

Prior to deposition, all substrates were cleaned with acetone in an ultrasonic bath
followed by a 2-propanol bath or a flush. At last, the liquid film was rapidly removed
by a pressurized nitrogen flow. In this way, possible contaminants and dirt are
removed from the semiconductor surface. During the process, it is imperative that
the substrates stay moistened by the liquid film until all solvents are removed.

In the next step, all samples were in-situ sputter cleaned inside ADONIS using an
1 keV Ar" ion-beam with a total charge of 15 mC in order to remove impurities as
well as existing oxide layers from the substrate surface. Furthermore, the surface
roughness is reduced inside the surface layer of the substrates. In the growth process
of turbostratic boron nitride (t-BN), ! B* and “N7 ions were alternately deposited
onto the different substrates with an ion energy of 100 eV at a pressure of 10~ mbar.
In addition, **C* ions were continuously deposited with an ion energy of 100 eV
during growth of tetrahedral-amorphous carbon (ta-C) under the same conditions.
Between the alternate deposition cycles of B and N ions the deposition was stopped
for 0.5 s avoiding possible carbon contamination during switching of the magnet.
In comparison to previous work ﬂﬁ], the length of each deposition cycle has been
increased from 1 - 10' ions/cycle to 4.5 - 10' ions/cycle in order to optimize the
duration time of the deposition. The stability of the stoichiometry has been verified
by additional in-situ characterization of the samples (see sections LTI and £.2.2).
The growth process of t-BN and ta-C thin-films during MSIBD is well described by
the cylindrical spike model by Hofséss et al. ] During deposition, the charge of
the ions is measured by a current integrator with an accuracy of a few percent.
The thickness dgsqmpie 0f each sample can be estimated by measuring the area of
irradiation A as well as using the known mass-density p of the thin film material,
its molar mass M and the collected charge of the ions q:

q M
dsam e:_'Na'— ) 2.1
pe= Loy 2 21)

with an elementary charge of ¢, = 1.602 - 107! C. The collected charge of the ions
is integrated over time using a current integrator (CI and monitored with a PC.
In addition, the switching of the magnet as well as the deflection of the beam are
automated processes controlled by the same PC.

!The accuracy of the CI has been verified empirically (see section [B.3)).
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2.6 Metal top contacts

In the final step of the sample preparation the MASS diode structure is completed
by evaporating metal contacts on top of the grown amorphous semiconductor (AS)
thin-film.

These metal contacts were made up of 100 nm thick pure gold (Au) films as well
as of chromium/gold combination (Cr/Au, 10 nm/100 nm thickness). The Cr was
added to the contact structure in order to increase the adhesion of the Au contacts
on the deposited AS thin-films which showed delamination effects in early experi-
ments of this work.

The setup is equipped with two different evaporation sources, more precisely an
evaporation boat made up of tungsten and an electron-beam evaporation setup.
The two sources are displaced by an angle of 90°. The sample was mounted on a
turnable plate and covered by a shadow mask with circular holes of different diam-
eters between 0.6 mm and 1.1 mm. The shadow mask was made up of copper and
is exemplarily shown in figure for 0.9 mm contacts. In order to avoid over-

"M 2 0mm

0000000000000 0 0°5Mm
0000000 OGOCOIOIOIOS

26.0mm 2000000000000
0000000000000

000000000 OCOCGOIOGS
2000000000000

Figure 2.16: Typical shadow mask used for the evaporation of Cr/Au top-contacts of the MASS
structures. The diameter of circular holes in the example at hand is 0.9 mm.

lapping displacement of the Cr and Au films during deposition, the mask has to
be close-fitting to the sample. In addition, all samples were mounted at the lowest
possible angle regarding both evaporation sources. The thickness of the metal films
can be measured using an oscillating crystal at a known density and Z-ratio of the
evaporated metal. The crystal is on the same height as the sample plate and is
positioned right above the tungsten boat.

Prior to deposition, the chamber was pumped down until a vacuum of 4.0-10~% mbar,
at most, was reached in order to avoid oxidation and contamination effects. During
deposition, the chromium is thermally evaporated using the electron beam evapo-
ration setup. As the source material chromium flakes with a purity of 99.9 % were
used. Right before the actual deposition some nanometers of the chromium were
evaporated in order to get rid of any chromium-oxide contaminants in the raw ma-
terial surface. During the deposition of the 10 nm Cr-layer, the pressure was in the
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range of (0.5—1.0)-107° mbar. The evaporation rate was measured to approximately
(0.4-0.8) A/s. Due to the displacement between the e-beam evaporation unit and
the crystal there is an error margin of around 30 % regarding these values. After
a short cool-down time of the Cr source, the gold is evaporated using the tungsten
boat. It is heated by a high DC current power supply leading to evaporation rates
of (2.0-3.5) A/s at pressures of (0.5 — 1.0) - 10~° mbar.



Chapter 3

Electrical properties of MASS
diodes

A significant part of this thesis was the investigation of the electrical properties of
different MASS diode heterostructures. Regarding the electrical properties of grown
thin films during this work, extensive reviews have been given by Jonscher as well
as by Simmons on the electronic properties of various dielectric films , ]
The publication of Jonscher mainly discusses the electric properties of amorphous
semiconductors while Simmons focused on the properties of insulating films. As
disordered or amorphous materials like tetrahedral amorphous carbon (ta-C) or
turbostratic boron-nitride (t-BN) show similarities to both classes of materials (see
sections 224 and 224.2]), basic conduction mechanisms of both have to be considered
in this work.

Therefore, the following sections will provide an overview on the basic conduction
mechanisms occurring in amorphous and disordered dielectric films. Furthermore,
the formation of different heterojunctions will be explained in principle.

3.1 Ohmic conduction

Ohmic conduction typically occurs in metals and some semiconductors with low
activation energies. The conduction in metals is described by the Drude-model using
a free electron gas approximation ] The resistance of the metal is caused by
interactions of the electrons with phonons and impurity atoms. The corresponding
cross-section is a function of temperature and therefore, the resistivity of a metal
is also temperature dependent. At very low temperatures near 0 K the number of
interactions is minimal but increases with temperature. Therefore, the resistivity of
the metal increases accordingly.

In the process, current-voltage (I-V) characteristics are linear according to Ohm’s
law |:

U
I =— 3.1
R? ( )

27
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where R is the resistance of the conductor. In a simple approximation the resistance
can also be calculated by using the cross section area A of the conductor, its length
1 as well as the specific resistivity of the investigated material p,

A
= —. 2
R= (3.2)

Regarding the incorporated materials of the investigated heterostructures in this
work, an ohmic contact at a metal-semiconductor or metal-insulator interface can
only be realized if the work function ¢ of the metal is lower than that of the insulator
or semiconductor. Otherwise, a Schottky-contact is formed (see section B.6]). The
whole process is sketched in figure Bl At thermal equilibrium conditions, electrons
are injected from the metal into the semiconductor or insulator leading to the for-
mation of a space-charge region and a corresponding induced electric field. In the
process, charge carriers accumulate near the interface inside the semiconductor or
insulator supplying them according to bias conditions. Therefore, the conduction
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Figure 3.1: Energy diagram of an ohmic contact at a metal-semiconductor or metal-insulator
interface (redrawn from ). The ohmic contact can only be realized if the work function v of
the metal is lower than that of the insulator or semiconductor. At thermal equilibrium conditions,
electrons are injected from the metal into the semiconductor or insulator leading to the formation
of a space-charge region and a corresponding induced electric field. In the process, charge carriers

accumulate near the interface inside the semiconductor or insulator supplying them according to
bias conditions.

process is limited by the flow rate of electrons inside the bulk of the material (bulk-
limited).

In a semiconductor, the conductivity is directly proportional to the number of charge
carriers and therefore to exp(—AFE/(kgT)) with an activation energy E and the
Boltzmann constant kg. At higher temperatures and low activation energies this

leads to:
—AFE
]ocV-exp(kBT). (3.3)
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3.2 Hopping mechanisms

In general, amorphous or highly disordered materials often exhibit a form of hopping
conduction as part of their electrical properties. In comparison to the forbidden gap
of a crystalline semiconductor, amorphous or highly disordered materials possess
a high quantity of localized levels in this region. This is exemplarily sketched in
figure B2 At a very high density of these states, this leads to an overlap of the

Crystalline Amorphous
4 Energy ‘ Energy
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Density of states o Density of stotes

Figure 3.2: Schematic comparison of the electronic band structure of crystalline and amorphous
dielectrics (taken from reference ], (©1967 Elsevier). In contrast to the forbidden gap of a
crystalline semiconductor (left), amorphous or highly disordered materials possess a high quantity
of localized levels in that region (right).

corresponding wave functions and an almost metallic conduction.

At greater distances between adjacent centers, electrons can propagate through the
material using a phonon-assisted tunneling process from one center to another, the
so called hopping conduction. The effect is accompanied by a low mobility of charge
carriers and a linear dependence of current and voltage.

Furthermore, the activation energy of such a hopping mechanism is much lower
compared to those of donor or acceptor centers in doped semiconductors. However,
in non-crystalline materials the activation energy is not clearly defined due to a broad
spectrum of deep states in this region ] The hopping process itself is provided
by a certain percentage of energy from lattice vibrations, e.g. to compensate for
the slight difference between energy levels of initial and final state resulting from
applied electric fields. Therefore, it also exhibits a slight temperature dependence.
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3.2.1 Variable Range Hopping

A more detailed approach regarding the temperature dependence in hopping mecha-
nisms is given by Mott in the Variable Range Hopping (VRH) model |. Regard-
ing the hopping process in localized states near the Fermi level based on the thermal
activation of electrons, it is dominated by the Boltzmann factor exp(kBLT), with E
being the energy difference between the hopping states, and the phonon frequency of
the underlying spectrum. Furthermore, the overlap of the wave-functions regarding
adjacent deep-levels have also taken into account. As a result, the conductivity in
three dimensions has a form of HE]

1
0 X 0gexp <W> . (3.4)

The resulting current-voltage characteristics are linear and comparable to ohmic
conduction. Therefore, the two mechanisms can only be distinguished by performing
temperature dependent measurements. At higher electrical fields, the characteristics
deviate from a linear dependence. As a result, a moderate field correction has to be
applied leading to [@]

1
g X 0g - exp (m + /{jBiT) s (35)

where [ is the hopping range of the electrons. In this formula, the physical size
of defects, the defect density near the Fermi-level as well as the typical phonon
frequency have also been considered. In addition, the conductivity of materials with
lower dimensions, e.g. thin-films, can be described by a modified form of equation

B [117):

o o oo(d) - exp ( L ) , (3.6)
Tam

with dimension d and a dimension dependent o as the volume as well as ranges

of possible hopping states depend on the number of available dimensions of the

investigated material. At higher temperatures as well as at low barrier heights ¢,

the conductivity is dominated by electrons excited into the conduction band of the

disordered material. In this context, the temperature dependence is given by:

0 X exp (%) , (3.7)
B

where ¢ 1S Econduction - EFermi-
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3.3 Frenkel-Poole effect

The Frenkel-Poole effect was first reported by J. Frenkel in 1938 [@] and is a a com-
mon conduction mechanism occurring in amorphous or disordered semiconducting
and insulating materials. It is governed by thermal activation of electrons trapped
in localized bound states originating from defects and fixed trap centers between
the valence and the conduction band near the Fermi-energy. The average potential
of these states is —®pp [V] below the conduction band [32].

In principle, the effect is based on a point defect as a center of a Coulomb potential.
By applying an electric field of sufficient strength, the barrier height is lowered due
to slanted bands, an asymmetric displacement of edges of the barrier. As a result,
bound electrons with an electronic energy level of —®gp are more likely excited
into the conduction band and the thermionic emission is enhanced. In this context,
the Frenkel-Poole emission process is sketched in figure The current through a

symmetric Coulomb potential, no bias
— — asymmetric displacement due to applied bias

- applied electric field _ _//
Lo
- -~
7 Bottom of
.S N
7, conduction band

) . L AD ) .
barrier lowering L — = —= — .5 = :
by uniform e
electric field PFag :

-7 D
v

electron energy level
in a point defect

Figure 3.3: The Frenkel-Poole emission process. By applying an electric field of sufficient
strength, the barrier height of a Coulomb potential surrounding a point defect is lowered due
to slanted bands, an asymmetric displacement of edges of the barrier. As a result, the thermionic
emission of electrons is enhanced.

disordered thin-film of thickness d with relative static permittivity €, and localized
states bound at an average barrier height ®pp is given by

I
kT P Tegeyd
Here, a constant electric field £ = V/d is assumed across the film, A is the con-
tact area and og is the electrical conductivity of the thin-film. The I-V charac-

V
I o< Aoyg— exp (3.8)

d
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teristic of a Frenkel-Poole emission dominated sample is typically symmetric and
S-shaped. At high electric fields, an almost linear dependence is expected when
plotting In(I) vs. vV, a so called Schottky-plot. Both display formats are exem-
plarily illustrated in figure 341

As only point defects in a uniform electric field and therefore emission of electrons
into only one direction are covered by the Frenkel-Poole model, it is just a simplified
and idealized model. For an application in three dimensions, a perfect symmetrical
and spherical shaped potential has to be assumed. Furthermore, a constant barrier
height and a fixed dielectric constant inside the volume are assumed for this bulk-
effect. As a result, when compared to real current-voltage characteristics based on
measured data, equation only provides basic information about the conduction
mechanism itself, a comparison of theoretical and actual temperature dependence
as well as an approximation of the parameters within the formula.
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Figure 3.4: Simulated current-voltage characteristic of a Frenkel-Poole resistor according to
equation on a linear (left) as well as on a logarithmic scale plotted vs. v/V (right). In this so
called Schottky-plot, an almost linear dependence is expected at high electric fields.

3.4 Schottky effect

The Schottky effect is the analogue of the Frenkel-Poole effect at an interfacial
barrier. More specific, the Schottky effect, also known as Schottky-Emission, is
the thermionic emission of charge carriers over an interface barrier between a metal
and a dielectric lowered by an external electric field. In this context, the lowering
of the potential energy is induced by the corresponding image force. The process
is displayed in figure The corresponding current-voltage characteristic can be
described by the Richardson-Schottky-equation:

e IV
kT SE dmege,d

where A* is the effective Richardson constant and ®sg the barrier height of the
Schottky-emission. All other parameters have already been described in equation

I o< A*T?exp (3.9)
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Figure 3.5: Schottky effect at an interfacial barrier (taken from [114]). The effect is based on
the thermionic emission of charge carriers over interface barrier between a metal and a dielectric
lowered by an external electric field eF'. In this context, the lowering of the potential energy is
induced by the corresponding image force.

At high electric fields, the corresponding characteristic is quite similar to that
of Frenkel-Poole conduction (see figure 3.0). The formula also leads to a linear
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Figure 3.6: Simulated current-voltage characteristic of a Schottky resistor according to equation
Drawn in a Schottky-plot, the characteristic is linear.

characteristic at high electric fields in a Schottky-plot.

However, the temperature dependence of Schottky Emission differs from the Frenkel-
Poole effect due to the additional T2 as well as the characteristic at low electric fields
resulting from the missing linear component of the electric field. Furthermore, the
additional factor of 4 in the equation originates from a different geometry as the
distance between the electron and its mobile image charge is two times the distance
between electron and local traps regarding the FP-effect.
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3.5 p-n junction diode — the Shockley model

In principle, a p-n junction is formed at the interface between a p-type and a n-type
doped semiconductor. If the junction consists of only one material, it is called a
homojunction, otherwise a heterojunction. The formation is explained in principle
on the basis of a homojunction for simplicity reasons and displayed in figure B.7]
In a theoretical, decoupled state, the Fermi-levels of the semiconductors differ by
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Figure 3.7: Band-scheme of a pn-diode based on a homojunction in a theoretical, decoupled state
(adapted from M]) The Fermi-levels of the semiconductors differ by an energy difference based
on their particular acceptor and donor concentrations and levels.

an energy difference based on their particular acceptor and donor concentrations
and levels. In a ”"real” crystal under thermal equilibrium conditions the Fermi-
energy has to be constant resulting in band bending, shown in figure At the
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Figure 3.8: Band-scheme of a pn-diode based on a homojunction in a coupled state (adapted
from [120]). In a ”real” crystal under thermal equilibrium conditions the Fermi-energy has to be
constant resulting in band bending.

same time, regarding the interface region of the p-n junction, there is a gradient
in concentration of opposite charge carriers (electrons and holes). According to the
law of mass action, the product of concentrations related to electrons (n) and holes
(p) has to be constant at thermal equilibrium. This can be written as:

n; = np. (3.10)



3.5 p-n junction diode — the Shockley model 35

A non-equilibrium state leads to diffusion of electrons into the p-type doped region
of the junction and holes accordingly towards the n-type doped semiconductor. The
resulting ionized states of the donor and acceptor atoms near the interface of the
junction lead to the formation of an electric field which, on the other hand, counters
the continuous diffusion of free charge-carriers without an external field. In this
state, thermal equilibrium is reached and the so called space-charge- or depletion-
region is formed. The whole process is sketched in figure 3.9 Furthermore, the band
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Figure 3.9: Formation of a space-charge region at thermal equilibrium conditions (from MD
Regarding the interface region of a ”real” p-n junction, there is a gradient in concentration of
opposite charge carriers (electrons and holes). Such a non-equilibrium state results in diffusion of
electrons into the p-type doped region of the junction and holes accordingly towards the n-type
doped semiconductor. The resulting ionized states near the interface lead to the formation of
an electric field which counters the continuous diffusion of free charge-carriers without an external
field. As a result, thermal equilibrium is reached and the so called space-charge- or depletion-region
is formed.

bending can be approximated by a so called macro potential V(x) at position x of
the junction and linked to the corresponding space-charge p(z) using the Poisson
equation:

2

OViz) _ ple) (3.11)

0x? €€o

If the diode is biased by an external potential V, the band edges as well as the
Fermi-levels will be displaced against each other by a value of e|V], resulting in
a variation of the extent of the space-charge-region depending on the polarity of
the potential with respect to the diode. Based on the processes described above, a
reduction of barrier height leads to a shrinkage of the space-charge-region and an
increase in charge carrier transport (figure B.I0kh). The p-n junction is operated at
forward-bias direction. By biasing the junction in opposite direction, the width of
the space-charge-region increases, the junction is operated at reverse-bias direction
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(a) reverse-bias (b) forward-bias

X

Figure 3.10: Band-scheme of a biased pn-diode based on a homojunction (adapted from @})
An external potential V causes a displacement of the band edges as well as the Fermi-levels by a
value of e|V|, resulting in a variation in dimension of the space-charge-region depending on the
polarity of the potential with respect to the diode. (a) A reduction of barrier height leads to a
shrinking of the space-charge-region and an increase in charge carrier transport. The p-n junction
is operated in forward direction. (b) By biasing the junction in opposite direction, the width of
the space-charge-region increases, the junction is operated at reverse-bias direction.

(figure BJ0b). The corresponding current-voltage characteristic of a p-n junction
diode can be described by the Shockley equation (@, ])

e (o[22 1), 12

where I, is the saturation current, 7' the temperature of the diode and n the so
called ideality factor of the diode.

For ideal p-n diodes, in particular, desirable for solar cell application, an ideality
factor approaching unity is desired. The ideality factors of real p-n diodes may
be described by the Sah-Noyce-Shockley theory, published in 1957 @}, yielding
values of n = 1 at a low voltage and n = 2 at higher voltages. If there were no
defects present, the total diode current would be based exclusively on diffusion and
n would be 1. Therefore, no recombination processes are expected inside the space-
charge region. The resulting minimization of leakage current loss at reverse bias
and increased rectification characteristic are favorable properties of such devices.
As recombination processes are driven by defects, more defects lead to more space-
charge recombination increasing n up to 2 (the "non-ideal” case). For p-n diodes, an
ideality factor n > 2 is not covered by the Sah-Noyce-Shockley theory and suggests
the presence of surface or interface states, indicating that the junction is far from
being ideal.
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3.6 Schottky diode

By evaporating a metal contact onto the surface of a semiconducting or almost in-
sulating material, a Schottky contact is formed at the interface. The corresponding
junction, a Schottky diode, exhibits very similar properties compared to a p-n junc-
tion diode. In principle, one side of the p-n junction is replaced by a metal contact.
Hence, a Schottky-contact is often referred to as ”one-sided p-n junction”. Regard-
ing the interface conditions of the junction, the band structure of the semiconductor
is "pinned” to states at the metal-semiconductor interface and the Fermi-levels have
to be equal at thermal equilibrium conditions. Therefore, the band structure of the
semiconductor is bend. If the semiconductor is n-type doped, the donors in the
interface region will be depleted and the electrons diffuse in the direction of the
metal. As a result, a depletion region is formed inside the semiconductor due to the
positive charge while the negative charge accumulates inside the metal contact. The
band-scheme of such a Schottky diode is shown in figure B.11l If, on the other hand,
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Figure 3.11: Band-scheme of a Schottky diode based on a metal/n-type semiconductor junction
(adapted from M}) The band structure of the semiconductor is "pinned” to states at the metal-
semiconductor interface and the Fermi-levels have to be equal at thermal equilibrium conditions.
Therefore, the band structure of the semiconductor is bend. The donors in the interface region are
depleted and the electrons diffuse in the direction of the metal. As a result, a depletion region is
formed inside the semiconductor due to the positive charge while the negative charge accumulates
inside the metal contact.

the semiconductor is p-type doped, electrons will diffuse from the metal into the
semiconductor ionizing the acceptor states inside the interface region. Therefore,
the holes of the semiconductor are depleted and the space-charge-region is formed
accordingly.

The effects of an external potential are comparable to those described for p-n junc-
tions above, but only one side of the junction, the semiconductor, is affected. At
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forward bias, the potential barrier is lowered and the charge carrier transport is
increased. At reverse bias, only a few electrons can overcome the barrier leading
to very low currents. However, there is also a probability to tunnel through the
barrier. A corresponding sketch is shown in figure The tunneling current T(E)

metal TE n-type semiconductur

X

Figure 3.12: Tunneling principle in a reverse-biased Schottky diode based on a metal/n-type
semiconductor junction (adapted from ﬂm At reverse bias, only a few electrons can overcome
the barrier leading to very low currents. However, there is also a probability to tunnel through
the barrier. The tunneling current T(E) increases with higher bias-voltages and corresponding
field-intensity E due to deformation of the barrier leading to an increase in height and a significant
reduction in width.

increases with higher bias-voltages and corresponding field-intensity E due to defor-
mation of the barrier leading to an increase in height and a significant reduction in
width. Finally, after reaching a certain current density, such a junction breaks down
and is irreversibly damaged as impurity atoms might form a conducting filament
along the tunneling path. The current-voltage characteristic of a Schottky diode
is very similar to a p-n junction diode and can also be described by the Shockley
equation. In this context, reverse saturation current given by @, @l

* 2 q®s
I, = AA™T" exp ( kT) : (3.13)
where A is the diode area, A* is the effective Richardson constant, and ®, is the
Schottky barrier height of the metal-semiconductor junction. As a result, such
heterojunctions exhibit a different temperature dependence when compared to p-n
junctions. The effective Richardson constant can be calculated using the effective
mass megm, of the majority charge-carriers of the semiconducting material in the
following expression: ,

k

A" =4n-q- meffme-h3

(3.14)
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The extraction of Schottky diode parameters from forward current-voltage charac-
teristics is discussed by Cheung et al. providing some helpful suggestions on the
analysis of [-V characteristics based on MASS diodes [@]

3.7 Tunneling mechanisms

Another conduction mechanism in dielectrics is tunneling. As mentioned in section
3.6l the tunneling mechanism occurs at high but thin barriers. The transmission
probability is anti-proportional to the thickness of the barrier and the shape of
the barrier has also to be taken into account. In addition, there is also a certain
probability for the transmission of an electron trough the semiconductor or insulator
based on the thickness of the material.

Corresponding current densities J regarding tunneling through a barrier have been
calculated by Simmons et al. @] on the basis of a trapezoidal shaped barrier using
the Wentzel-Kramers-Brillouin (WKB) approximation which considers the limit of
extremely thin boxes forming an integral. This derivation is described by many
quantum mechanical lecture books, e.g. by Schwabl [@] In addition, similar
calculations were also performed by O’Dwyer ] on the basis of a triangular
potential leading to comparable results.

The calculations by Simmons et al. result in rather complex formulas regarding
the thermal, temperature dependent as well as the isothermal J-V characteristic
of such a system. As one result, they showed that there is almost no temperature
dependence present. As the percentage change in current density is only in the range
of around one tenth between 0 K and room temperature, the effect is rather small.
Furthermore, at high electric fields, the calculated equations lead to the so called
Fowler-Nordheim equation which can be used as an approximation for the current
density of the tunneling process. Considering the effective mass of electrons m*
inside the insulator or semiconductor, the current density is given by

J = aFE*exp (—%) (3.15)
with
a=1.5413-107 %, (3.16)
B=6.828 107,/ —d>. (3.17)
m

Finally, there are also reports in literature about constant residual conductivity phe-
nomena at low temperatures, which occur in disordered thin-film systems, compara-
ble to those of this thesis. However, they cannot be linked to any thermally activated
mechanism like Frenkel-Poole-Emission, Schottky-emission or Variable Range Hop-
ping (see section B3] B4l and B2T]) even if the corresponding characteristics show
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similar behavior in some parts. Several authors suggest, that such an effect origi-
nates from some kind of temperature independent tunneling process which cannot
be linked to those described above M, ]

In order to explain such a characteristic, a tunneling mechanism exhibiting a linear
characteristic at high electric fields in a Schottky plot (In(I) vs. V'/2), similar to
Frenkel-Poole- or Schottky-emission, is described in the following based on the work
of O’'Dwyer et al. @]

Electrons in a dielectric material exhibiting localized states near the conductions
band can occasionally be excited even at low temperatures after being exposed to
an electric field of high intensity. If the number of interactions between these trapped
electrons and the surrounding lattice is much lower than interactions involving states
in the conduction band, the temperature of the electrons is likely higher compared
to the surrounding lattice. This assumption eventually leads to to a tunneling char-
acteristic similar to Frenkel-Poole or Schottky emission at high electric fields in a
Schottky-plot (In(I) vs V'/2), more precisely:

v E, V?
J x Eexp (Eﬁ?d?) s (318)

where V is the bias-voltage, d the layer thickness, E, the band gap, AE the range
of the shallow traps and F' the breakdown field strength.

3.8 Photoconductivity in semiconductors

In general, the basic aspect of photoconductivity is the increase of electrical conduc-
tivity of semiconductors or insulators after irradiation with electromagnetic waves of
a broad spectrum from infrared light to gamma radiation @] In the process,
illustrated in simplified terms in figure B.I3] the light is absorbed by the irradiated
material, e.g. a semiconductor as in this thesis. As a result, the number of free
electrons and holes changes due to the generation of electron-hole pairs. In an in-
trinsic semiconductor (1), the corresponding energy E = hv has to exceed or at
least match the band-gap energy E,,, of the semiconductor in order to generate
enough free charge carriers inside the semiconductor by excitation. If the semicon-
ductor is additionally doped, e.g. p-type, there will be acceptor states present in
the semiconductor (2), leading to electron-hole pair generation at much lower energy
levels of the absorbed electromagnetic waves. However, due to the limited number
of acceptor states, the effect on electrical conductivity regarding such an excitation
is much lower compared to the irradiation with electromagnetic waves exceeding
the energy of the band-gap. In addition, the same arguments are valid for n-type
semiconductors exhibiting donor states near the conduction band (3). Therefore,
the electrons can be excited out of donor states right into the conduction band lead-
ing to electron-hole pair generation at a similar energy range. Finally, the same
processes can also be triggered by additional defect states near the valence or the
conduction band (marked blue).
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Furthermore, the conductivity of a material can be investigated as a function of pho-
ton energy (or rather wavelength of light). This spectral response typically exhibits
a rather pronounced maximum near the band-gap energy of the material, the equiv-
alent of the minimal energy required to excite an electron from a bonded state into
the conduction band. Furthermore, photoconductivity also occurs in biased semi-
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Figure 3.13: Principle of photoconductivity. The increase of electrical conductivity of semicon-
ductors or insulators is basically caused by the generation of electron-hole pairs resulting from
irradiation with electromagnetic waves. (1) In an intrinsic semiconductor, the corresponding en-
ergy I/ = hv has to exceed or at least match the band-gap energy Eg,, of the semiconductor in
order to generate enough free charge carriers inside the semiconductor by excitation.

(2) If the semiconductor is p-type doped, there are additional acceptor states present near the va-
lence band. As a result, the level of energy required for electron-hole pair generation significantly
lowered.

(3) A similar behavior can be observed for a n-type semiconductor for excitations of electrons into
the conduction band. In addition, the same processes can also be triggered by additional defect
states near the valence or the conduction band (marked blue).

conductor heterostructures leading to the fabrication of photosensitive devices, e.g.
photodiodes. They are usually made up of a p-n junction or a PIN heterostructure.
If the incident light is absorbed in the depletion region of the device the generated
carriers will be drained by the electrical field inside the space-charge-region towards
the electrodes resulting in a photocurrent. When operated at reverse bias, the width
of the depletion region increases and the capacitance decreases. As a result, the re-
sponse times of such devices are drastically reduced.

In addition, another characteristic property of such devices is the decay time of
photoconductivity, more precisely the time until equilibrium conditions are reached
right after stopping the excitation. It is correlated to the lifetime of charge carri-
ers and the density of potentially trapped charge carriers. As a result, a detailed
analysis of the decay time and comparison of different heterostructures might pro-
vide some information about the origin of photoresponses as well as the underlying
excitation processes.
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Chapter 4

Characterization techniques

4.1 Structural characterization

The structural characterization of the grown thin-films was performed in-situ by
X-ray photoemission spectroscopy (XPS) in order to determine the chemical com-
position of the grown thin-films as well as the dominating crystallographic phase.

In addition, the micro-structure of all fabricated heterostructures has been analyzed
by performing cross-section transmission electron microscopy (TEM) measurements.

4.1.1 X-ray photoemission spectroscopy (XPS)

The X-ray photoemission spectroscopy (XPS) is an in-situ analysis method of ADO-
NIS (see section 2.5.2)) and used to analyze the composition of the grown thin-films
directly after the deposition process. The functional principle is based on the pho-
toelectric effect described by Einstein in 1905 ﬂ@] In detail, the surface of the
sample is irradiated by a X-ray beam at a photon energy of hv. As a result, elec-
trons are ejected from occupied states in the inner-shell orbitals of surface atoms
with a kinetic energy Ej;,. Compared to the original excitation energy hv, the ki-
netic energy is reduced by the binding energy Ej of the exited electrons as well as
the work function ® of the solid [@]

This leads to a mapping of occupied electronic states in solids (binding energy Ej)
according to their distribution. Therefore, it is possible to analyze the chemical
composition as well as the stoichiometry of the thin film surfaces. In addition, XPS
provides information about possible plasmon excitations inside the sample surface
during irradiation. The plasmon energy can directly be linked to the sp*- to sp3-ratio
of the bonds inside the analyzed solid leading to information about the crystalline
structure of the sample. Due to these plasmon excitations, the kinetic energy is
reduced by an additional value of Awp, where wp is the plasmon frequency
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Figure 4.1: Principle of X-ray photoemission spectroscopy (XPS). The surface of the sample is
irradiated by a focused X-ray beam at a photon energy of hv. As a result, electrons are ejected
from occupied states in the inner-shell orbitals of the surface atoms with a kinetic energy FEp;p.
Compared to the original excitation energy hv, the kinetic energy is reduced by the binding energy
E, of the exited electrons as well as the work function ® of the solid.

All XPS-measurements were performed in-situ on several ta-C as well as t-BN based
samples right after deposition at a pressure of 5- 107 mbar. The excitation was
realized using an Omicron DAR400 X-ray source which provides characteristic X-ray
lines of Mg-K,, as well as Al-K,,.

In this thesis, the Mg-K,, line at an energy of 1253.6 eV and an emission current of
12 mA were used. The intensity was always measured as a function of binding energy.
The photo electrons were detected by an Omicron EA125 hemispherical analyzer.
It is equipped with 7 single channel electron multiplier, so called Channeltrons, and
powered by an EAC2000-125 power supply. The energy scale of the detector is
calibrated prior to the actual XPS-measurements and described in detail in section
Bl The information depth of the analyzed samples is in the range of just a few
nanometers. The exact range depends on the inelastic mean free path of the electrons
in the analyzed material.
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4.1.2 Transmission-Electron-Microscopy (TEM)

In order to investigate the crystalline micro-structure of the grown samples on the
nanometer scale, cross section transmission electron microscopy (TEM) measure-
ments were performed on all fabricated heterostructures.

Each cross section TEM lamella was cut out along the surface normal using a fo-
cused ion beam (FIB) setup, more precisely a Dual FIB Nanolab 600 from FEIL.
The cut out and the subsequent thinning processes down to a few nanometers were
performed using a focused Ga-ion-beam at 30 kV acceleration voltage as well as
various current settings and resulting sputter rates. The lamella was fixed to a
Cu TEM-grid, also using Pt, as it is exemplarily shown in figure Prior to the
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Figure 4.2: Typical SEM-images of cross-section TEM-lamellas right after the focused ion-beam
preparation process. The lamellas are fixed to the Cu-grid with platinum.

lamella preparation, the surface of the sample was covered by a thin Pt-layer with
dimensions of 12 x 1.5 x 0.2 um? protecting the sample’s surface against ion beam
sputtering. During the whole process, all samples could be examined right away
using an integrated scanning electron microscope (SEM). In principle, the whole
FIB preparation was performed according to the detailed guideline provided by the
PhD-thesis of Dr. H. Zutz @]

Subsequently, the actual TEM measurements were performed using a Philips CM-
200-FEG-UT microscope provided by the group of Prof. Dr. M. Seibt at the 4th
institute of Physics, University of Gottingen. It is equipped with a field emission gun
(FEG) serving as the electron source. These electrons are accelerated by a voltage of
200 kV. The resulting wavelength of the electrons combined with an arrangement of
several lenses and apertures results in a resolution of this setup almost down to the
atomic scale. In theory, the resolution could be even higher according to Abbe’s law
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but is limited by quality of the electron lenses used in the experimental setup. In the
present experiment, the high resolution lens provides a point resolution of 0.188 nm.
The microscope itself, on the other hand, provides a minimal resolution of the elec-
tron beam down to about 0.5 nm. The images of TEM- and HRTEM-measurements
were recorded using a fiber-optic coupled and peltier cooled CCD-camera setup from
Gatan.

The TEM-measurements, provided by this setup, lead to a detailed analysis of thin-
film and possibly present interlayer thicknesses as well as the layered structure of
the grown heterostructures, especially the MASS diode structures.

In addition, high resolution TEM-measurements (HRTEM) with magnifications of
up to 560k were performed in order to determine the precise crystallographic orien-
tation of the grown thin-films (e.g. t-BN) as well as the defect density inside the
grown thin-films and the surface of the substrates. Furthermore, the roughness of
the substrates’ surface and possible interface layers were investigated in detail.

In addition, the microscope also provides a scanning transmission electron mi-
croscopy (STEM) mode. The focused electron beam is scanned across the sample
causing the generation of characteristic X-rays. The corresponding energies can be
linked to the excited orbitals of elements inside the TEM-lamella. The X-rays can be
analyzed using an energy dispersive X-ray (EDX) setup, more precisely a Link ISIS
setup from Oxford Instruments. It has an energy range of 0-20 keV and a resolution
of 1024 channels. In this context, it has to be noted that elements with masses lower
then carbon cannot be detected by this setup due to noise at the lower end of the
energy spectrum caused by the detector itself. Furthermore, the focused electron
beam can also be scanned along a line, e.g. perpendicular to the substrate surface,
leading to a detailed chemical composition analysis along the scan path including
crucial areas like the interface layer of the grown heterostructures.

The results of all these measurements provide possible indications for the actual
growth process and will also be linked to the electrical properties of the grown
samples in the course of this work (see sections [0.3] and [@]).
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4.2 Electrical characterization (DC)

The electrical characterization of the grown MASS heterostructures is the key as-
pect of this thesis. Therefore, direct current (DC) measurements were performed on
different MASS diode structures.

A Source Measurement Unit (SMU 237) from Keithley serves as power supply. Fur-
thermore, it is also equipped with sensitive Ampere- and Voltmeters in order to
conduct precise current and voltage measurements. The investigated samples are
mounted on a sample holder (section L2.2)) and connected to the SMU. In this con-
text, the bias-voltage or current can be applied to the samples in different probe
geometries such as local and remote configuration which are described in detail in
section 211

Furthermore, the temperature of the samples can be regulated either by a low-
temperature setup inside a vacuum chamber at approximately 1-107¢ mbar (see
section .2.3)) or by high-temperature setup inside a aluminum-box under ambient
conditions (see section L.2.4]). In either case, the temperature can be monitored and
regulated by a PC.

Finally, the actual measurements can be conducted fully automated using the same
PC. The procedure of data recording and processing as well as essential aspects of
the controls are described in section 2.5

4.2.1 Probe geometry

As mentioned above, there are two basic probe geometries applied to the samples.
The local measurement (figure [.3h) is basically a two point setup. The bias of the
SMU (output high) is connected to the top-contact of the sample, the ground (out-
put low), on the other hand, to the back contact. The optional bias sensing ports
of the SMU (sense) are short circuited. In this geometry, all resistances originating
from contacts and wires outside the investigated heterostructure interfere with the
original characteristic of the sample and are included in the recorded datasets. The
remote configuration (figure 3b) requires two additional connections to the SMU
and four separate contacts on the sample surface, two in each contact area, are
mandatory. The power is supplied by two wires (output high and low) and decou-
pled from the voltage probing contacts (sense high and low).

For example, if there are high contact resistances present while recording a current-
voltage (I-V) characteristic the power supply will compensate by increasing the
output bias until the desired voltage at the sense ports is reached. In this context,
the voltage probing itself is not effected by high contact resistances up to values in
the M()-range due to the internal resistance of the voltmeter. Furthermore, the cur-
rent applied to the sample also increases at the same time. As a result, the recorded
resistance data are significantly lower compared to the local setup and correspond to
the actual heterostructure. Therefore, contact resistances due to poor contact qual-
ity as well as resistances of the wires can be neglected in a remote setup. However,
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Figure 4.3: Probe geometries: (a) The local measurement — basically a two point setup. The bias
of the SMU (output high) is connected to the top-contact of the sample, the ground (output low),
on the other hand, to the back contact. The optional bias sensing ports of the SMU (sense) are
short circuited. (b) The remote measurement — a four point setup. Compared to the local setup,
two additional connections to the SMU are required and four separate contacts on the sample
surface, two in each contact area, are mandatory. The power is supplied by two wires (output high
and low) and adjusted on the basis of decoupled voltage probing contact measurements (sense
high and low). (c¢) Pseudo remote measurement applied to a MASS heterostructure. The contact
resistance of the back-contacts is eliminated. Output and sense high are short-circuited by the top-
contact of the sample. In that way, the resistances of the cables are eliminated but the intended
MASS heterostructure is preserved.

the geometry of the sample has to be considered in a four point probing configura-
tion, in particular regarding the measurement of samples containing thin-films.

In this work, all investigated samples possess layered structures as described in chap-
ter 2l Therefore, the substrate forms one contact area whereas the evaporated metal
contact forms the opposite one. As this contact itself is part of the investigated het-
erostructure, an actual remote measurement with two separate top-contacts cannot
be realized. As a result, so called pseudo remote measurements were performed
(figure A.3k).

In principle, the grounded wires of the SMU, output and sense low, are both con-
nected to separate back contacts of the sample as in a normal remote measurement
eliminating occurring contact resistances on the back side of the samples. However,
the output as well as the sense high port are connected to the same top-contact
of the sample. In that way, the resistances of the cables are eliminated but the
intended MASS heterostructure is preserved.

As a closing remark, it has to be noted that the local configuration of the SMU is
realized by just short circuiting the output and sense terminals inside the device in
this thesis.
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4.2.2 Mounting of samples

The samples were mounted on a sapphire with evaporated chromium/gold (Cr/Au)
contact-pads on top (figure 4]). The sapphire provides good thermal conduction
properties but also insulation in terms of electrical conduction to grounded parts of
the setup. The samples were fixed to the sample holder and connected to the con-
tacts pads using liquid conductive silver preferably in the area of evaporated ohmic
contacts (section 2.3)).

The top contacts of the samples were connected to the contact pads on the sapphire
using very thin aluminum wires, so called bonds. The Al-bonds were processed with
a KULICKE & SOFFA 4523 wedge bonder using Al wires with a diameter of 30 ym
at room temperature. In principle, a small wedge shaped hammer is vibrating at
an ultrasonic frequency leading to a deformation of the Al-wire near the tip during
contact. As a result it is bonded to the particular contact pad. For practical reasons,

—
3.5mm

Figure 4.4: Sample Holders: sapphire with evaporated Cr/Au-contacts on top (left) and prefab-
ricated sample-board with Ni/Au contact-pads and an additional ground at the edge (right).

due to a limited number of contact pads, most of the top contacts are provided with
just one Al bond (pseudo remote measurement configuration) leading to greater
statistics of measured top contacts.

Experiments, conducted during this work, showed that the resistances of the wires
and BNC connectors as well as the sample holder contacts are all below 5 2 and
therefore negligible compared to the investigated samples. A typical setup is sketched
for a true remote measurement in figure In a few cases, such as due to delam-
inating contacts, Au pressure contacts were directly pressed onto the top-contact
pads.

In addition to the sapphire sample holders, circuit boards with a similar contact
shape and area, originally designed for impedance and photoresponse measurements,
were used. The contacts pads are made up of nickel and gold. Furthermore, the
boards are equipped with an additional ground at the edge, shown in the right image

of figure .41
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Figure 4.5: Electrical characterization setup (DC) of grown MASS heterostructures in remote
configuration.

4.2.3 Low-temperature setup

In order to investigate and identify the conduction mechanisms occurring in het-
erostructures, it is essential to perform temperature dependent measurements, pref-
erentially at low temperatures. Therefore, the sample holder is mounted inside a
low-temperature setup as sketched in figure In more detail, the sample holder
is mounted on a Cu-plate and fixed with conductive silver additionally providing an
increase of thermal conductivity due to compensation of surface roughness at the
interface.

The sample can be cooled down using a closed cycle helium cryostat from CTI Cryo-
genics. A spiral of indium (In) is pressed between the Cu-plate and the cold-head of
the cryostat providing good thermal conduction. Furthermore, a Cr/Ni heating wire
(R =50 Q) is wrapped around the Cu—plateEl providing an incremental compensation
of thermal energy loss or even heating. The whole setup is mounted inside a vacuum
chamber. The electrical contact between the SMU and the sample is realized using
a total of six electrical vacuum feedthroughs. The vacuum conditions are provided
by a turbo-molecular pumping unit at pressures of (51077 —3-107%) mbar. In
addition, the thermal radiation of the surrounding chamber is reduced by an addi-
tional cold shielding. In this setup, -V measurements in the temperature range of
(14-300) K can be realized.

During the experiment, the temperature is monitored and adjusted by a PID control
unit, a LAKESHORE 331 Temperature Controller. The temperature is measured
by the temperature controller using two DT-470-CU-12 semiconductor temperature
diodes from Lake Shore which are fixed to the Cu-plate as well as to the cold head.
In order to reach the desired temperature, the heating wire is supplied by the tem-
perature controller with a suitable percentage of the maximum power output. The
whole process can be controlled remotely by a PC via an IEEE-interface. That way
the measured temperature data can also be transferred.

land fixed with thermally high conducting but electrically insulating compound, called Stycast
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Figure 4.6: Low-temperature setup. The whole setup is mounted inside a vacuum chamber. The
sample holder is mounted on a Cu-plate and fixed with conductive silver additionally providing
an increase of thermal conductivity due to compensation of surface roughness at the interface.
The sample can be cooled down using a closed cycle helium cryostat. A spiral of indium (In) is
pressed between the Cu-plate and the cold-head of the cryostat providing good thermal conduction.
Furthermore, a Cr/Ni heating wire is wrapped around the Cu-plate providing an incremental com-
pensation of thermal energy loss or even heating. The temperature is monitored and adjusted by a
temperature controller with an integrated PID control unit. In addition, the electrical connection
between the SMU and the sample are realized using a total of six electrical vacuum feedthroughs.
The whole process can be remotely controlled by a PC via an IEEE-interface.
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4.2.4 High-temperature setup

For high-temperature measurements in a temperature range of (300-650) K the
cryostat is replaced by an appropriate setup shown in figure 71 The sample holder
is mounted inside a small aluminum box (gray dashed line) to reduce the tempera-
ture gradient between the sample and the ambient air. Furthermore, it is connected
to the SMU using Au pressure contacts. The heat is provided by a hot plate.
The temperature is monitored by a Voltcraft K204 data-logger using thermocouples
(type-K). The whole setup is mounted inside a ”black-box”d under ambient condi-

SMU 237
| control PC
low }_@' high
| [ VoltcraftJ
K204
T=300K-650K
ower
sample P
pressure contacts (Au) temperature — supply
| / sensor /
[ L ——sample holder
| hotplate I

"Blackbox"

Figure 4.7: High-temperature setup. The sample holder is mounted inside a small aluminum
box (gray dashed line) and connected to the SMU using Au pressure contacts. The heat for
measurements in the temperature range of 300-650 K is provided by a hot plate. The temperature
is monitored by a Voltcraft K204 data-logger using thermocouples (type-K). In addition, the power
supply can remotely be turned off using a PC-controlled switch.

tions. Prior to temperature dependent measurements, this black-box setup was also
used for room-temperature measurements, testing of the bond contact quality as
well as verification of stable contact quality (top and back) of the samples.

During the experiments, the heating process, temperature monitoring and data
recording are controlled by a PC. The temperature is usually increased at a rate
of (1-2) K/min, depending on the setting of the power supply. An I-V measurement
is remotely started and recorded right after the desired temperature is reached and
takes less than 10 s. Therefore, the temperature can be assumed to be constant
during the measurement (AT ~ 0.1 K). After reaching the maximum temperature
of the measurement, the power supply is remotely cut and the temperature of the
sample decreases at a much slower cooling rate compared to the heating curve. Dur-
ing the cooling process additional measurements are performed and recorded at the

2another Al-box, further shielding the setup from emerging temperature gradients as well as
from irradiation of light
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same temperatures in order to verify the previous measurements.

In principle, HT measurements complement room and low temperature measure-
ments leading to a comprehensive study of the underlying conduction mechanisms.
In particular, HT measurements are useful regarding conduction mechanisms dom-
inated by thermionic emission.

4.2.5 Data recording and processing

All of the measurement setups mentioned above are controlled, monitored and read
out by a PC. They can be performed manually as well as in automated process
cycles using a user interface (UI). The control commands as well as data obtained
from the SMU and the Lake Shore temperature controller are transferred via an
IEEE-interface. The Voltcraft K204, on the other hand, is connected and read out
via a COM-port.

All control commands for the different devices used in the process are provided
by python scripts, written in Python 2.7 @], and the user interface is coded in
WXPython 2.8 M] All applied python scripts in this thesis were written by H.-G.
Gehrke and subsequently edited by the author in some cases.

Regarding the limited number of vacuum feedthroughs as well as contact pads on
the sample holders usually only a "pseudo” remote measurement is performed in
most of the measurements. In this context, the setup is equipped with a so called

LPT1-interface .
Switch-box
control
IEEE-interface temperature | Tdode
PC controller [~Reating wire
(PID)
COM:-interface
SMU 237 L
Voltcraft | T-sensor
- user-interface K204
- WX-python
- python skripts power
supply \
— control interface —— coaxial cable (I-V) —— data cable —— power supply
(monitoring)

Figure 4.8: Basic layout of the data-processing setup.

switch-box, a remotely controlled relay-array, ensuring the investigation of different
top contacts of one sample at identical conditions. Each real top-port is assigned
to a so called parport of the switch-box. The switch-box itself is controlled via the
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LPT1 port of the PC and connected to the set of output and sense high.

During measurements, the compliance of the SMU is usually set to the maximum
value of 100 mA. If samples are effected by high currents, the compliance can be
decreased using the UI. Furthermore, an additional delay between measurement
steps can be applied in the ms and s range to avoid or suppress charging effects
during measurements. The Ul also permits free control of parameters like step-size,
limits, integration time, number of averaged datasets and free choice of local or
remote measurement. Regarding temperature dependent measurements, the exact
temperature steps as well as the sequential order of heating and cooling can also
be controlled using the Ul (LT) or another python script (HT). In order to verify
the reproducibility of the performed measurements at least 3 characteristics were
recorded for each temperature step in the low temperature measurement. Due to the
duration time of approximately 10 s and continuous heating at the same time, only
one measurement is taken at each temperature step in the HT measurement. After
completing a full temperature cycle, corresponding datasets of a certain temperature
are assigned to each other and averaged using another python scriptﬁ. In these
final output files, the I-V data are sorted by temperature in separate files for each
measured parport.

In addition, these datasets can also be transposed in such a way that the current can
be plotted as a function of temperature at a fixed bias-voltage. The whole process
of data-recording is sketched in figure .8

3auswertung 1.08 written by H.-G. Gehrke
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4.3 Impedance spectroscopy AC

In addition to the direct current measurements, described above, the AC-properties
of all different MASS heterostructures have been investigated by measuring the com-
plex impedance as a function of bias voltage, comparable to the DC mode, as well
as of frequency in the range of 20 Hz to 1 MHz.

The measurements were performed using a Hewlett-Packard HP4284A auto-balance
bridge (figure (left)). It was operated in a so called Z-theta (deg) mode mea-
suring the complex series impedance Z = |Z|exp(if) and recording values of the
impedance |Z| and the phase 6.

Therefore, an impedance spectroscopy measurement at alternating currents and dif-
ferent frequencies provides insight into the frequency dependence of impedances and
corresponding phase information regarding the characteristics of MASS heterostruc-
tures as well as information about emerging capacitances in comparison to direct
current measurements. The measurements were performed using an automated con-
trol program with a command line interface (CLI) providing an input of file name,
operator, bias range and bias step sizd]. The properties of this setup as well as the
softward’ are described in detail in the work of J. A. Amani ]

Regarding the actual measurements of this work, all of them have been performed
without the use of any correction functions provided by the HP4284A due to unrea-
sonable results in case study experiments when using them. In order to verify the
AC characteristics, obtained under these conditions, additional measurements were
performed on almost pure capacitive and pure resistive reference samples. Both of
them led to reasonable results.

During the measurement, the sample holder (see section .22]) is mounted in an
additional fixture (see figure (right)) surrounded by a boxed Al-housing (left)
screening the setup in order to ensure minimal interference from external electro-
magnetic sources. In addition, stray capacitances, inductances and resistances were
minimized. The fixture consists of a layered structure of grounded, insulating and
conducting parts. The top layer is made up of another board equipped with pres-
sure contacts made up of bronze in order to connect the pads on the sample holder.
The power is supplied by the auto-balance bridge through a serial arrangement of
BNC—jacksﬁ, coaxial cables and MMCX connectors on the connector board.

The working principle of the auto-balance bridge and corresponding circuit diagrams
as well as detailed specifications of the sample fixture and screening are also pro-
vided in reference ﬂ_‘_Lpﬁ] In principle, the mounting of the sample is very similar
compared to a DC measurement in a true remote configuration. Therefore, some
top-contacts were provided with an additional Al-bond. However, the back-contacts
of the samples are additionally short-circuited using a small amount of conductive
silver in order to avoid additional resistances and capacitances, eventually caused by

4all saved in an additional log file
5coded in python 2.7 by J.A. Amani
Sall crimped inside the boxed housing
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Figure 4.9: Impedance spectroscopy setup: (left) LCR-meter — a Hewlett-Packard HP4284A
auto-balance bridge. The sample is surrounded by a boxed Al-housing in order to screen the setup
and ensure minimal interference from external electromagnetic sources. (right) The top-contacts
of the sample are equipped with two Al-bonds each, the back-contacts of the samples are short-
circuited using a small amount of conductive silver. The sample holder is mounted in an additional
fixture and connected to the auto-balance bridge via MMCX-jacks.

a low conducting substrate or two Schottky contacts on the back side of the sample
which would interfere with the characteristic of the investigated structure even more
and might lead to an unbalanced system during the measurement. As a result of
the short-circuit, the characteristic is basically comparable to a local measurement
configuration of the same sample in DC mode.

The actual AC-measurement was typically performed right after the temperature
dependent DC measurement. The limits in bias-voltage were determined in the
foregoing DC I-V measurements. The integration time is set to ”long” and the
oscillator level to 100 m V1.

7100 mV on the display is equivalent to an rms amplitude of 141 mV
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4.4 Photoresponse measurements

As mentioned in section 3.8 several semiconductor-based structures show a photore-
sponse when exposed to light. In the following, different illumination procedures as
well as the corresponding setup and recording techniques are described in detail.

4.4.1 Case study experiments

In a case study work step, samples were biased in reverse and, in some cases, also
in forward direction and exposed to the light of a "white” LED. It was placed
at a distance of about 1 mm and an irradiation angle of approximately 25° (see
figure LI0). Regarding measurements of different heterostructures the same LED

AN
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back contact (i.e. Ag)

Figure 4.10: Photoconductivity setup of case study measurements. The samples were biased in
reverse and, in some cases, also in forward direction and exposed to the light of a ”white” LED.
The resulting photo-response was investigated by recording the current of the samples as a function
of time using a SMU.

was always operated at a constant power (3.12 V, 0.011 A) in order to ensure
reproducibility of the measurements. As shown in a cathodo-luminescence spectrum
in figure [L.11] the LED exhibits a sharp blue line at a wavelength of around 450 nm
and a rather broadened green line at 550 nm.

The samples were exposed for 10 s and 100 s at different bias-voltages. The resulting
photo-response was investigated by recording the current of the samples as a function
of time using a SMU (see section [L.2]). The minimal time-resolution of the SMU 237
is approximately 20 ms. In each measurement, the data recording was continued
until equilibrium was reached. After that, the sample was exposed again for a
different duration of time.
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Figure 4.11: Cathodo-luminescence spectrum of a white LED used for case study photo-response
measurements. The LED exhibits a sharp blue line at a wavelength of around 450 nm and a rather
broadened green line at 550 nm.
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4.4.2 Time-resolved photoresponse

Due to the fact that the time resolution of the SMU is limited to the high ms range,
a new setup was designed in the work of Amani et al. ﬂ@] using a pulsed Nd:YAG
laser in the nanosecond range, another SMU as power supply and an oscilloscope in
order to investigate photoresponses with a time resolution of some nanoseconds.

In principle, a MASS heterostructure, biased by the SMU, is irradiated by discrete
pulses of a laser-beam at two different wavelengths (green and UV). The resulting
photoresponse is monitored and recorded using an oscilloscope with time-resolution
in the nanosecond range while being triggered by the laser-setup. Furthermore, the
sample holder fixture of the setup is identical to that of the impedance spectroscopy
setup but is equipped with two additional holes to mount it on a XZ-stage. In order
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Figure 4.12: Time-resolved photoresponse setup. The samples are illuminated using a pulsed
Nd:YAG laser providing wavelengths of 266 nm, 532 nm and 1064 nm. Focusing on the setup for
the green line at 532 nm, the accompanying infrared line is screened from the laser beam using a
laser line filter (green dash). Due to alignment and intensity reasons, the laser beam is widened
and parallelized by lenses in the optical pathway and further lowered in intensity by two iris
diaphragms. The sample is biased by a SMU and the position can be adjusted using a XZ-stage.
The input impedance of the oscilloscope is set to 50 €2. The ground potential of the oscilloscope
is connected to the SMU low output by shortening the inner and outer conductor of the coaxial
cables. The trigger of the oscilloscope was connected to the Q-switch sync trigger of the laser.
The UV-setup as well as deviations from the original setup are marked gray. An optional input
impedance (Osc.) of 1 MQ and the corresponding coupling capacitance are marked orange.
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to hit the sample at the desired spots (top contacts), the XZ-position of the sample
holder was adjusted and the optical path of the setup was fixed. The whole setup
is sketched in figure .12}

Regarding the essential components of the setup in more detail, the laser, a Quantel
Ultra 75, operates at an original wavelength of 266 nm leaving the casing through
a designated aperture. After reflection by 2 dichroic mirrors the wavelength is also
doubled and quadrupled, respectively, leading to two new laser lines at wavelengths
of 532 nm (green) and 1064 nm (infrared). Both of them leave the laser casing
through an additional aperture right next to the UV exit. The green laser-light can
be separated from the infrared by using a laser line filter from Thorlabs, a FL.532-10,
with a central wavelength of (532£2) nm and a full width half mean of (10£2) nm.
As the power of the laser exceeds the damage threshold of the filter even at its low-
est setting, the intensity of the beam has to be lowered. Therefore, the beam was
widened using a biconcave lens with a focal length of f = —20 mm. After passing
the filter, the divergent beam was parallelized using an achromatic lens with a focal
length of f = 250 mm. Two iris diaphragms were additionally used to align the
optical pathway and, on the other hand, to further reduce the beam-intensity of the
laser. Furthermore, a tilted mirror was used to reflect the beam by 90° right onto
the sample. Finally, an additional iris diaphragm reduces the diameter of the beam
to about (1.5-2) mm so that the particular top-contacts are fully illuminated during
the measurement. In this context, a TV-camera is used to adjust the XZ-stage and
match the laser beam to the top-contacts of the samples.

In addition, the samples are also illuminated using the UV-line at 266 nm. Due
to absorption of the UV-light inside the lenses and possibly resulting damage they
are removed from the optical pathway (dashed gray lines in figure [L12]). The laser
pulses are only aligned by using the iris diaphragms and, in the process, reduced
in intensity. The tilted mirror is removed and the XZ-stage placed right into the
optical pathway of the laser-beam (also marked gray).

The position of the sample is adjusted by using an UV-sensitive sheet of paper. In
addition, due to the lack of an infrared laser-line filter this wavelength could not be
measured during this thesis.

During the measurements, the samples are biased at various voltages using a Keith-
ley 2611A SMU. Even at zero bias the SMU is in operating mode for interference
and correction reasons. Furthermore, all samples are connected in a local setup
configuration and mounted in the fixture described above. As explained in section
3l the fixture is connected to the SMU via MMCX jacks and the sample holder
itself is connected using pressure contacts made up of bronze.

One port of the sample is connected to an input port of an oscilloscope, a Tektronix
DPO4104, and eventually to the ground potential. The other port is connected to
the output high of the SMU. By shortening the inner and outer conductor of the
coaxial cables the ground potential of the oscilloscope is connected to the SMU low
output. That way the ground potential of the SMU and the oscilloscope are linked
to each other. As a result, a change in polarity of the SMU (negative bias-voltage)
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causes a change in ground potential. Therefore, the sample is always connected
in such a way that a positive bias-voltage is applied. In order to choose between
forward and reverse bias direction of a sample, the ports have to be switched right
at the connectors of the fixture.

The input impedance of the oscilloscope which is also the resistor of the photore-
sponse measurement can be set to 50 2 and 1 MQ (marked orange). In addition, it
is equipped with an optional coupling capacitance.

The trigger of the oscilloscope was connected to the Q-switch sync trigger of the
laser. During the experiments, several repetition rates of 1, 2, 5, 10 and 20 Hz are
available and are chosen depending on the maximal decay time of the particular
sample. Furthermore, the Nd:YAG laser exhibits pulse times of 6 ns at 532 nm
wavelength and 5 ns at 266 nm. As the trigger signal of the laser possesses two
rising edges at a very low time-interval instead of one, a trigger hold-off was set to
500 ps.

On every laser pulse, the voltage drop at the input impedance was recorded as a
function of time. In addition, the rise and decay times of each recorded dataset are
determined by the software of the oscilloscope. Per definition, this is the time until
the signal changes between 10 % and 90 % of the maximum amplitude of the signal.
In this thesis, only the mean value of 512 single measurements is taken to counter
the effect of time jitter caused by the laser. However, the actual time jitter regarding
the datasets of the whole response curve cannot be eliminated. Nevertheless, the
signal averaging routine of the Tektronix DP0O4104 is also used here and an average
response characteristic is recorded as a mean value of 512 sweeps. As a result, due
to the time jitter, the averaged response signal is significantly broadened compared
to a single measurement. For comparison, some of the single measurements are also
recorded.

In addition, the electromagnetic pulse caused an induction into the leads of the
setup leading to additional oscillations and interference with the original response
signal. Therefore, a reference measurement was taken and averaged for a period of
512 pulses while the laser-beam was shuttered from the optical pathway. Then, the
obtained data was subtracted from the signal of the actual measurement.



62

Characterization techniques




Chapter 5

Structural characterization

5.1 Introduction

The structural properties of the heterostructures were investigated in two steps.
Right after deposition, the thin-films were investigated using XPS-measurements
(see section [L.I.T]) in order to verify the intended type of phase (t-BN) or fraction
of phases (ta-C).

After the completion of all electrical measurements, at least one sample of each type
of heterostructure was investigated using transmission electron microscopy (TEM,
see section [ T.2)) in order to study their crystalline micro-structure as well as to de-
termine the correct film thicknesses compared to the calculated values (see equation

2.1l in section 2Z5.3)).

5.2 XPS-measurements

X-ray photoemission spectroscopy (XPS) measurements were performed in order to
determine the chemical composition of the grown thin-films as well as the dominat-
ing crystallographic phase.

Preliminary to the actual measurement, the detector was calibrated by measuring
an Au-reference target. In order to avoid possible contaminants on the surface, the
gold target was sputter-cleaned prior to the measurement using the typical charge
of 15 mC Ar*-ions at an energy of 1 keV. By calibrating the setup, a possible energy
shift of a single channeltron can be compensated by correcting the data of the actual
XPS-measurements. For this purpose, the *f5/» and *f75 orbitals of Au with lines
at binding energies of 84.0 eV and 87.7 eV were chosen @] A typical spectrum
of a corresponding channeltron is shown in figure B.Th.

63
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The peak-positions were determined using a Gaussian distribution fit (see figure
EIb). The binding energies were subsequently subtracted by the values obtained
from the detector software. After that, a mean value of the displacement regarding
both Au-peaks was calculated for each channeltron. The resulting offset-values were
subsequently used to correct the actual XPS datasets of each channeltron. Therefore,
the datasets were finally averaged in order to improve the signal to noise ratio of
the measurements particularly at low statistics.
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Figure 5.1: (a) Typical XPS-Spectrum of an Au-reference sample. (b) The peak-positions of the
Au *f5 )5 and *f7/5 orbitals with lines at binding energies of 84.0 eV (red) and 87.7 ¢V (blue) were
determined using a Gaussian distribution fits.
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5.2.1 ta-C samples

As mentioned in section Z.4.7] ta-C thin-films were deposited at 100 eV ion energy
onto the semiconducting substrates leading to a sp>-ratio of about 80 %.

In order to verify this radio between sp?- and sp®-bonds in the first few nanometers
of the amorphous carbon matrix, XPS-measurements were performed at an energy
range around the C-1s peak. Depending on the type of bonding, this peak is located
at a binding energy of 284.4 eV for graphite and at 285.2 eV for diamond according
to Merel et al. %] For an amorphous diamond-like carbon film such as ta-C,
the recorded XPS-spectrum of the carbon peak has an intermidiate binding energy
as it contains both types of bonding. Therefore, it can be fitted by a sum of two
Gaussian distributions leading to an estimate of the sp3- to sp2-ratio of the films.
In this context, it has to be noted that the detectors have been near the end of their
lifetime circle resulting in a limited energy resolution while suffering an increased
noise-ratio of the spectra at the same time. Therefore, a more accurate method to
determine the type of phase inside of the grown thin-film using XPS is the calcula-
tion of the plasmon energy. Regarding equation [4.2] plasmon excitations reduce the
kinetic energy of the electrons and can therefore be found at higher binding energies
with a corresponding energy difference.

According to Berger et al. %ﬁ], the plasmon energy of a ta-C thin-film has a typical
value of around 30 eV and is in-between the plasmon energies of purely sp? and sp?
bonded carbon with an energy difference of 26.0 eV and 33.8 eV, respectively.

In this context, the plasmon energy is directly proportional to the plasmon-frequency
wp according to equation L2l Based on a harmonic oscillator approximation regard-
ing the motion of the electron gas, the plasmon frequency wp is directly proportional
to the square root of the electron density: wp o /ng [64]. As a result, the plasmon
energy can be directly linked to the electron density and therefore to the correspond-
ing hybridization states of bonds inside the material.

Typical XPS-spectra of a ta-C film grown in this work are shown in figure [.2]
The position of the C-1s peak has been determines to a value of 285.0+0.1 eV us-
ing only a single Gaussian distribution fit (figure B.2h). The low energy difference
compared to pure diamond and the fact that the sp?-ratio could not be determined,
eventually as a result of insufficient detector resolution, indicate a high sp?-ratio.
Furthermore, the position of the plasmon peak (figure 5.2k) and the resulting en-
ergy difference was sufficiently determined by using another Gaussian distribution
leading to a value of 31.58+0.05 eV. These values are in good agreement with liter-
ature. Therefore, the desired high sp?-content of the grown ta-C thin-films has been
verified. In addition, all relevant energy values are consistent for the entire stock of
grown ta-C samples at random measurements.




66 Structural characterization

T T T T T T T T T T T T T
7500 -\—typical XPS-measurement of a ta-C thin-film E
———————————>
AE=(31.58+0.05)eV !
= 5000
S,
>
=
)
C
QO 2500
£
0 N 1 ! N ! N ! N ! N !
270 280 290 300 310 320 330
bind. Energy [eV]
15000 |-|—— XPS-data of i 1000
C-1s peak
—— Gaussian fit
3 S 800
o, 10000 o,
g g
2 2
600
2 5000 Q
—— Gaussian fit
400 - 4
282 284 286 288 300 310 320 330
bind. Energy [eV] bind. Energy [eV]

Figure 5.2: Typical XPS-spectrum of a typical ta-C thin-film. The survey spectrum around the
C-1s peak of carbon is shown in (a). In addition, the position of the C-1s (b, blue) as well as the
corresponding plasmon peak (c, red) has been determined using Gaussian distributions.
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5.2.2 t-BN samples
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Figure 5.3: Typical XPS-spectrum of a typical t-BN thin-film. In addition to survey spectra of
B (a) and N (b), the analysis method using Gaussian distribution is illustrated on the basis of B (c
and d). The peak of the inter-band excitation is marked green while the plasmon peak is marked
red.

The XPS-measurements of the t-BN thin-films have been performed according to the
procedure described in the section above. In comparison to ta-C, the turbostratic
boron nitride is exclusively based on the sp?-bonded hexagonal phase. Therefore,
only one Gaussian peak as well as just one plasmon peak is expected in recorded
spectra. According to Widmayer et al. the hexagonal phase of BN has a charac-
teristic plasmon energy of approximately 26 eV |. In addition, due to m-bonds
inside sp?-bonded materials, there is also an inter-band transition 7 — 7* with an
energy of about 8 eV @]

The XPS-measurements of the t-BN thin films were performed on energy ranges
around the B- and N-peak. Again, the results were consistent regarding all investi-
gated samples.

Typical XPS-spectra of the B- and N-peaks are shown in figure 5.3k and b. The
corresponding energy ranges regarding the inter-band and plasmon excitations were
also investigated. The results are displayed in figure 5.3k and d. The 7 — 7* tran-
sition has an average value of (9.37£0.19) eV. In particular, the 7 — 7* transition
regarding the N-1s peak exhibits a huge error margin resulting from a very high noise



68 Structural characterization

ratio caused by the edge of the plasmon peak, an increase of secondary electrons
regarding this energy range as well as an overlap with a plasmon peak resulting from
the polychromatic fraction of X-rays. In addition, the plasmon energy was deter-
mined by using another Gaussian distribution for the B-1s and the N-1s peak as well
as the corresponding plasmon peaks leading to an average value of (26.6440.07) eV.
As the value of 26 eV in literature is related to a purely hexagonal structure and the
turbostratic, disordered nature of the deposited thin-films might cause a slight shift
in plasmon energy due to stress inside the film, this result is a strong indication for a
successful growth of a hexagonal BN phase. Furthermore, the values are consistent
for all grown samples at random measurements.
In addition, in order to justify the increase in ions per cycle (see section 2.5.3)), the
stoichiometry has been calculated based on the XPS-data of the B and N peaks.
Basically, the stoichiometry of the t-BN thin-films can be estimated by a compari-
son of peak intensities of the elements. To begin with, the background signal of a
particular peak is subtracted. In this context, the background is assumed to exhibit
a linear characteristic between initial and final point of a peak (red shaded in fig-
ure [5.4)) in first order approximation. Subsequently, the intensity of the peaks, the
equivalent to their integral, is determined (blue shaded). Considering an excitation
energy of 1253.6 eV from the Mg-Ka-line of the X-ray source and the cross-sections
o; of a specific element i ], this leads to the following equation for the stoichio-
metric ratio na /ng:

na  Ix-os

ng N I B OA )
The results of grown t-BN films matches the expected ratio of 1:1 for B and N with
an uncertainty of approximately 0.5 %, averaged for all measured samples.

(5.1)
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Figure 5.4: Determination of stoichiometry of a typical t-BN thin-film. The intensity of the
B- (left) and N-peak (right), respectively, is represented by the blue shaded area. The linear
background has been subtracted and is marked by the red shaded area.
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5.2.3 Contaminant analysis

Due to some maintenance and alignment issues of the ADONIS setup, some sam-
ples grown in this work between #1235 and #1313 were partially contaminated
with a small percentage (< 0.1 %) of Cu. The beam inside the ion accelerator was
widened compared to the samples before. As a result, previously formed Cu-deposits
originating from several sputter experiments were re-sputtered onto the substrates
during the sputter-cleaning process and therefore partially incorporated into the
grown thin-films. As a result, up to one half of the samples’ area was contaminated
with a thin layer of copper.

In order to estimate the degree of contamination, XPS-spectra of the Cu-lines (*p;
and %p; /2) were recorded for different samples with different deposition areas and
compared to each other. That way, the contamination was stopped by determin-
ing the optimal point of adjustment of the defocussing lens to a value of -4 keV.
Exemplary XPS-spectra of two ta-C samples are shown in figure 5.5 While the
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Figure 5.5: Cu contaminant analysis based on the comparison of two ta-C samples. While the
samples with a smaller area of irradiation (e.g. #1314) do not show any sign of Cu, previous
samples (e.g. #1313) show pronounced Cu-lines at 932.2 eV and 952.0 eV.

samples with a smaller area of irradiation (e.g. #1314) do not show any sign of Cu,
previous samples (e.g. #1313) show pronounced Cu-lines at 932.2 eV and 952.0 eV.
In this context, the same procedure was performed as for the stoichiometry of BN in
section The ratio of Cu contaminants was estimated to approximately 0.1 %
in the first 5 nm of the samples’ surfaces using the intensity of the peaks as well as
equation .11
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Zutz and Lyzwa showed that the majority of such a percentage of copper segregates
to the surface if co-deposited during growth of a ta-C matrix i@, . The impact
on the conductivity of the grown thin films is not known yet and will be investigated
and discussed in section .13l
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5.3 HRTEM-measurements

In the second part of the structural characterization, high resolution TEM mea-
surements (HRTEM) were performed on cross-sections of all produced MASS hete-
rostructure as well as on cross-sections of the reference heterostructures leading to
detailed analysis of the micro-structure.

The preparation process of the cross-section TEM-lamellas as well as the charac-
terization technique are described in section An SEM-image of a typical
cross-section TEM-lamella taken right after the thinning process using the focused
ion-beam setup is shown in figure Prior to the actual TEM-measurement, the

cross-section
EM-lamellas
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Figure 5.6: SEM-image of a typical cross-section TEM-lamellas taken right after the thinning
process inside the focused ion-beam setup. The lamellas are fixed to the Cu-grid with platinum
(left). Depending on the position of the lamella with respect to the Cu-grid as well as on possible
slight misalignments and deformations of the grid itself, the lamellas have to be aligned prior to
the actual TEM-measurements (right).

beam path is aligned using the electrostatic lenses and corrections of the setup,
especially to correct astigmatism of the images, and the position of the sample in
z-direction is set to eucentric height of the setup.

In addition, the heterostructures are aligned with respect to the lattice planes of the
single-crystalline substrates as this is the only defined and known part of each grown
heterostructure. For the main part, this alignment process has to be performed in
order to compensate for small angle deviation from the intended perpendicular view
onto the cross section. These deviations are mainly caused by minor deformations
of the TEM-grid and small misalignment issues during the mounting process of the
lamella onto the grid during the FIB-preparation.

In this context, the sample holder can be tilted independently in a- and (-direction
(LB, both with respect to the x-y plane). The holder is tilted until the closest
pole of the crystalline structure in diffraction mode is positioned in the center of the
fluorescent screen. The correction angles are typically between -2.5° and +2.5°.
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During the measurements, one of the main aspects is the determination of thick-
nesses of the grown layers and comparison to the calculated values according to
equation 2] in section leading to an estimate of accuracy regarding the cal-
culations. In order to guarantee a representative investigation of the different het-
erostructures, TEM-measurements were performed on cross-section lamellas which
were cut out of homogeneous areas located in the middle of a deposited thin-film.
Furthermore, high resolution images with magnification above 150k were recorded.
At these resolutions the crystalline structures including single lattice planes as well
as very thin layers of a few nanometers become visible. Therefore, the structure
of the grown thin-films and the interface between the grown thin-films and the
particular underlying substrates can be investigated in detail. This leads to basic
information about the growth process of the thin-films and indications about possi-
ble conduction mechanisms inside the different layers of the heterostructure as they
are usually linked to a certain type of micro-crystalline structure (see section [3]).
In addition, crystalline structures can be identified and linked to the corresponding
material by a systematical analysis of the lattice constants usually obtained from
the spacing between adjacent lattice planes. The distance is measured with the pro-
gram Digital Micrograph (version 1.71.38) from Gatan along a line perpendicular
to the plane-directions. In more detail, the contrast of the image along the line is
converted into an intensity spectrum as a function distance. Therefore, the distance
of ten lattice planes was measured ten times and averaged afterwards in order to
minimize stress induced contrast fluctuations and defocus. The obtained values can
be compared to theoretical values based on the lattice constants obtained from lit-
erature. They depend on the type of crystalline structure and the corresponding
lattice constants of the material as well as on orientation of the crystal itself with
respect to the incident electron beam. The spacing between adjacent lattice planes
in a hexagonal crystal structure can be calculated using the following equation:

a

dhkl = - . (52)
VA2 bk k) + %

The parameters a and c represent the lattice constants and h, k, [ the Miller indices
of the hexagonal structure. Due to symmetry reason, the calculation of spacing
between adjacent lattice planes in a cubic structure with lattice constant a is much

easier:
a

Ay = .
(R Rt )

In addition, depending on the type of crystalline structure, there are further param-
eters of crystalline structures influencing diffraction of electrons. The arrangement
of the atoms inside a particular crystalline matrix equivalent to the position of the
atoms inside the corresponding unit cell leads to constructive or destructive inter-
ference of electrons scattered at the lattice planes.

The resulting object wave functions o of a particular crystalline structure converges
to spots in the back focal plane of the microscope forming diffraction patterns which

(5.3)
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crystalline Bravais present absent material
structure lattice reflections reflections
simple cubic primitive any h,k,1 none e.g. Po
body centered cubic BCC h+k+1 = even h+k+1 = odd e.g. chromium
(BCC)
face centered cubic FCC h,k,] unmixed h,k,1 mixed Al, Au, Ag, Pt, Cu
(FCC)
similar to FCC, but h,k,] mixed and
zincblende FCC absent if all even and if all even and diamond, silicon
h+k+1 # 4N h+k+1 # 4N
h+2k=3N with 1 even h+2k = 3N
hexagonal close-packed hexagonal | h+2k=3N=+1 with 1 odd with 1 odd h-BN, ZnO
(HCP) h+2k=3N=+1 with | even

Table 5.1: Selection rules of different crystalline structures.

can be projected onto a screen. This kind of projection is equal to the intensity of
the scattered beam and therefore proportional to the square of the absolute value
regarding the scattering amplitude (atomic form factor)

Iy oc | F(0)[ . (5.4)

Assuming plane waves for the incident electron beam
wo = Z Ag627rigg’ (55>
9

the spots of the particular diffraction pattern are equivalent to the Fourier transfor-
mation of the incoming plane wave in mathematical terms. In Fourier-space, this is
the sum of § functions multiplied with the scattering amplitude.

F(o) =) A (g—q). (5.6)

In addition, the interference of plane waves is accompanied by a loss of phase infor-
mation in this projection. In this context, the so called structure factor describes
the influence of atomic arrangement on the intensity of the diffracted electron beam
leading to a decrease in intensity of certain reflections. As a result, the related se-
lection rules have to be considered regarding the resulting reflection patterns. The
selection rules of common crystalline structures are summarized in table 5.1
Compared to the so called ”conventional” specimen preparation including an incre-
mental thinning process using Ar-ions (see Williams, Carter: chapter 10, p. 173-193
]), TEM-lamellas prepared in an focused ion-beam setup using Ga-ions often
exhibit lower overall crystalline quality due to occasional presence of amorphous
areas after the thinning-process as well as partial incorporations of Ga-ions (e.g.
in the form of clusters). In addition, the thickness of the lamellas is significantly
larger compared to ”conventional” specimen preparation and accompanied by fre-
quent stress as well as slight deformations inside the TEM-lamella. Therefore, direct
diffraction images were not recorded during this thesis.

Nevertheless, as the real image, recorded by the CCD-camera, is an inverse Fourier
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transformation of the diffraction image in terms of mathematics additional infor-
mation can be gathered regarding the crystalline structure of the particular layers
of the heterostructure by performing so called Fast-Fourier Transformation (FFT)
analyses on significant areas of TEM-images subsequent to their recording using
again the software Digital Micrograph. The corresponding image wave functions 1);
are a convolution of the object wave function v, and an expansion function P

Pi = o *x P. (5.7)

They are projected onto the image screen or the CCD-camera. Therefore, the in-
tensity I of the real space image corresponds to the square of the absolute value of
the image wave functions

I o< [;]* o< [thy % P (5.8)
In general, a Fourier transformation of the intensity distribution
F (L) o< F (1o * PI*) (5.9)

is not equal to equation except one special condition. The equality of equation
and is only valid if the FT of the intensity spectrum is equal to a sum of
0 functions equivalent to the diffraction pattern. This condition is only met for a
crystalline structure and corresponding lattice planes. Amorphous structures, on
the other hand, will lead to homogeneous circular patterns if there are no crystal-
lites with predominant orientation present in the surrounding matrix.

In general, Fast-Fourier Transformations are also frequently used to determine the
lattice parameters of crystalline structures and typically performed on large area
segments of recorded images leading to average values of the lattice parameters.
Unfortunately, most of the investigated areas, especially inside the t-BN structure,
are too small to obtain suitable results. Therefore, only the less accurate method,
described earlier in this section, was used. In a final step, EDX measurements were
performed but only on some ta-C based MASS diode structures as the B-signal can-
not be reasonably detected by this setup.

The XPS-data in sections [£.2.1] and indicate a successful growth of boron-
nitride based on a hexagonal structure as well as tetrahedral amorphous carbon.
Therefore, the resulting heterostructures on ZnO, n-type as well as p-type Si and
6H-SiC are investigated in detail by TEM-measurements in the following sections.
The different combinations of investigated heterostructures are summarized in table
W

| compound || ZnO | n"-Si | p-Si | 6H-SiC |
t-BN + [ + [ + T
ta-C - F | + +

Table 5.2: Overview of investigated MASS heterostructures using TEM. All of them were suc-
cessfully fabricated.
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5.3.1 t-BN/ZnO heterostructures

During this thesis, TEM-measurements were first performed on heterostructures
based on boron-nitride grown on zinc oxide. Corresponding images of a typical
BN/ZnO heterostructure are shown in figure 0.7 First of all, the images show
a continuous boron-nitride layer with slight variation of thickness and low surface
roughness of the underlying zinc oxide substrate. The BN thin-film is made up of
only a single, hexagonal phase of BN and exhibits an abrupt interface to the single
crystalline ZnO-substrate indicating a direct thin-film growth without the formation
of a significant interlayer.

The hexagonal lattice planes of the grown BN thin-film are oriented perpendicular
to the ZnO substrate surface (figure B.7b). Furthermore, the thin-film exhibits a
high density of dislocations inside the hexagonal matrix (marked white in (7).
In order to identify the different structures as well as their orientation, fast Fourier
transformations (FFTs) of certain areas corresponding to the investigated structures
(squares in figure [B.7b) were performed. The results are shown in figure (.8 The
performed FFT corresponding to the ZnO in figure [.8h (black square) shows an-
ticipated {1010}-, {1011}-, {0001}- and {0002}-reflections of the [2110]-pole which
can be linked to the [0002] orientation of the visible lattice planes. The large-area
FFT of the hexagonal BN-planes in figure shows a textured ring with twofold
symmetry which is typically observed for the turbostratic phase of boron-nitride. If
a FFT is performed of a very small area of the thin film (small white square in figure
E7b), additional reflections will become more clearly visible indicating the presence
of a "real” hexagonal phase in very small parts of thin-film (see figure E.8).
Another way to identify the particular structures is the precise measurement of
the lattice spacing and lattice constants. Since both materials exhibit a hexago-
nal structure, theoretical calculations were performed according to equation [5.2] and
compared to measurements performed with Digital Micrograph as mentioned in the
section above. In order to provide reproducibility, the distance of ten lattice planes
was measured ten times at different positions of the TEM-lamella for each material
of the heterostructure and averaged afterwards.

As for the (0002) planes of ZnO this leads to an experimental value in the range of
dooo2 = 0.254(5) nm. This result is in good agreement with the calculated value of
dooo2 = 0.261 nm. Regarding the turbostratic boron nitride thin-film, the spacing
of the lattice planes was determined to a value of dygpz = 0.341(11) nm. This result
is slightly higher than the calculated value of dygpe = 0.333 nm for a perfect h-BN
crystal. The increase in the lattice constant of the grown t-BN thin-films compared
to h-BN is likely caused by the high density of defects and displacements leading
to a slight expansion and a bending of the crystalline structure which results in an
increase of distance between lattice planes.

In another step of the structural characterization, the thickness of the grown t-BN-
layer can be measured by using the Digital Micrograph software. In the present ex-
ample, the determined value of the thin-film thickness of 130(2) nm is much smaller
(~ 30 %) than the calculated value using equation 2] of 183.5 nm. A possible
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-dislocations-inside the t-BN=hin-film
with regard:to the {0002)-planes - -

Figure 5.7: TEM-images of a t-BN/ZnO heterostructure. (a) The heterostructure exhibits a
continuous BN-layer and a low surface roughness of the underlying zinc oxide substrate. (b) The
BN thin-film is made up of only a single, hexagonal phase of BN. The hexagonal lattice planes of
the grown thin-film are oriented perpendicular to the ZnO substrate surface. Fast Fourier trans-
formations (FFTs) were performed on certain areas (marked by squares) in order to identify the
different structures as well as the corresponding orientation. They are shown in figure (c) The
thin-film also exhibits a high density of dislocations (marked white) inside the hexagonal matrix.
(d) The different crystalline structures are identified at the same magnification by determining the
spacing of the particular lattice planes. In addition, the intermixing-layer between ZnO and t-BN
is marked by the dashed white lines.

explanation can be derived from simulations of the deposition process using TRIM
calculationd] of the SRIM2008 software @] During the initial sputter-cleaning

Leach simulation was performed for an irradiation 100000 ions
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Figure 5.8: FFTs of TEM-images related to a t-BN/ZnO heterostructure shown in figure E.7b.
The FFT corresponding to the ZnO structure shows {1010}-, {1011}-, {0001}- and {0002}-
reflections of the [2110]-pole which can be linked to the (0002) planes of ZnO (a). A large-area
FFT of the hexagonal BN-planes shows a textured ring with twofold symmetry which is typically
observed for the turbostratic phase of boron-nitride. In addition, FFTs small areas recorded at
high resolution show pronounced reflections of the hexagonal phase of boron-nitride (c).

process, the Art-ions damage the ZnO substrate up to a depth of about 2.5 nm
(6.5 nm max) based on the average ion-range distribution with a straggle of approx-
imately 2 nm (4.5 nm max). At the same time, ZnO exhibits a high sputter yield of
approximately 4.84 atoms/ion in total when irradiated with Ar*-ions at 1 keV and
the bigger part of the damaged area is likely constantly removed. As a side effect,
the high sputter-yield, more precisely favoring zinc atoms with a ratio of 3.1:1.74
compared to oxygen, leads to a more balanced stoichiometry of the interface inside
the heterostructure as the substrates are Zn-face polished [144].

At the beginning of thin-film deposition, additionally performed TRIM calculations
indicate the formation of an intermixing-layer containing ZnO as well as implanted
B- and N-atoms right at the interface of the heterostructure. The thickness of this
layer would be approximately 3 nm based on the ion-ranges of B- and N-ions at
an energy of 100 eV in ZnO. In fact, there is a thin region of approximately 2 nm
thickness where none of the two crystalline structures is dominant (e.g. figure B.7d,
dashed white lines). However, this fact is hard to prove since the layer is almost
invisible, even at a magnification of 560k, and especially due to the absence of any
reasonable EDX-data regarding boron (as stated above) and also nitrogen.
Assuming a successful nucleation of BN after a short time-interval, the continuous
irradiation of a thin hexagonal boron-nitride layer with an alternate sequence of
boron and nitrogen atoms likely causes the main part of the atomic loss during the
growth process. With an estimated density of 2.25 g/cm® (h-BN) of the BN-layer,
the irradiation with B*-ions at an energy of 100 eV results in a sputter-yield of
0.283 atoms/B-ion in total, favoring N-atoms with a ratio of 0.21:0.073. The B*-
ions have a range of about 2.5 nm and a straggle of about 1.25 nm. In case of the
deposition of NT-ions, the sputter-yield has a value of 0.186 atoms/N-ion favoring



78 Structural characterization

N-atoms with a ratio of 0.145:0.041. Range and straggle of the N*-ions are almost
identical to boron due to the similar atomic mass. Both processes remove nitrogen
from the nucleating layer, likely leading to a simultaneous shift of the sputtering
ratio with respect to boron until an equilibrium state between B and N is reached
again. Taking into account inter-mixing processes at the beginning of the deposition
process, the dynamic process regarding the ratio of B and N atoms in the surface lay-
ers of the nucleating and growing thin-film as well as a sputter-yield in the range of
(0.19-0.28) atoms/deposited ion, a value of 30 % in loss of deposited ions is realistic.

Based on the obtained knowledge/findings, the growth process of the thin-film
can be summarized as follows:

A hexagonal phase of boron nitride nucleates on top of the flat surface of the
ZnO-substrate without any formation of an amorphous interlayer. The (0002)
planes of the BN are oriented perpendicular to the substrate surface. Due to
the ion based deposition technique, turbostratic boron-nitride is formed instead
of the hexagonal phase. The difference between the calculated and the actually
measured thickness of the BN thin-film is likely caused by a dynamic sputtering
process accompanying the actual growth process.




5.3 HRTEM-measurements 79

5.3.2 t-BN/n-Si heterostructures

In a next step, silicon based heterostructures were investigated. To begin with, the
micro-structure as well as the growth process of turbostratic boron-nitride reference
samples based on highly n-type doped (111) silicon substrates were analyzed. Cor-
responding cross-section TEM-images are illustrated in figure The continuously
grown t-BN thin-film exhibits low surface roughness as well as a smooth interface to
the underlying substrate. Again, the (0002)-planes of the t-BN are aligned perpen-
dicular to the surface of the Si-substrate and the thin-film exhibits a high dislocation
density in this kind of heterostructure as well (white marks in figure [5.9d).

A major difference in comparison with the t-BN/ZnO system (see section [(.3.1]) is
the formation of an amorphous interlayer between the grown thin-film and the sili-
con substrate which is marked by the dashed lines in figure [[.9h-d. A Fast-Fourier
transformation performed on this layer leads to a non-textured circular pattern in-
dicating an entire amorphous structure. The formation of this interlayer can be
explained using TRIM calculations of the sputter-cleaning process. At an energy
of 1 keV the Art-ions exhibit an average range of about 3.5 nm with a straggle of
1.5 nm and a maximum range of about 10 nm. As a result, the silicon substrate is
damaged up to 10 nm in depth.

Regarding the publication of Al-Bayati et al., low energy irradiation exceeding a flu-
ency of about 10 cm™? causes intensive damage as well as stress and strain inside of
the crystalline matrix and the structure of silicon becomes amorphous ] In the
experiments of this thesis, this threshold is exceeded by three orders of magnitude
regarding the deposited charge of 15 mC Ar*-ions at an energy of 1 keV. Therefore,
the amorphous layer originates from the sputter-cleaning process prior to thin-film
growth. The measured thickness of 9.8(6) nm (see figure (.9h,d) is in very good
agreement with the simulated data. Nevertheless, the silicon surface is smoothened
and remaining contaminants as well as common thin SiO,-layers covering the Si-
surface are removed in the process due to sputtering of silicon surface atoms at a
sputter-yield of 0.585 atoms/ion.

Furthermore, the crystalline structures of t-BN and the (111) silicon substrate have
also been verified by additional FFTs. All of them were performed in the areas
marked by squares in figure [0.9b. The FFT of the boron-nitride results in the well
known pattern of a textured ring with twofold symmetry (figure B10c) from the
section above. The FFT of the silicon lattice (figure [.I0R) shows {111}-, {131}-
and {022}-reflections of [112]-pole which can be linked to the [111] orientation of the
silicon substrate. The small area FFT of the Si-interlayer only leads to a circular
pattern without any predominant texture indicating an amorphous structure. For
additional Si related FFTs and their interpretation, see the textbook of Williams
and Carter [@]

In addition, the crystalline structures were also analyzed by measuring the lattice
spacings. Again, the theoretical values of t-BN structure can be calculated using
equation for a hexagonal lattice. As silicon possesses a cubic diamond crystalline
structure, equation was used. The actual measurements were performed identi-
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Figure 5.9: TEM-images of a t-BN/n-Si heterostructure. (a) The t-BN thin-film exhibits low
surface roughness as well as a smooth interface to the underlying substrate. The heterostructure
also includes an amorphous silicon interlayer between the grown thin-film and the silicon sub-
strate (marked by the dashed lines) originating from the sputter-cleaning process prior to thin-film
growth. The (0002)-planes of the t-BN are aligned perpendicular to the surface of the Si-substrate.
(b) FFTs were performed on the areas marked by squares to identify the different structures. They
are shown in figure[2.I0l (c) The different crystalline structures are verified by measuring the spac-
ing of the corresponding lattice planes. (d) The t-BN thin-film exhibits a high dislocation density
(marked white) as well as an intermixing layer containing B, N and Si (marked red).

cally to those in section (.3l Regarding the (111)-planes of the Si substrate, the
experimental value of dy;; = 0.323(8) nm is in good agreement with the calculated
value of dj1; = 0.3135 nm. Furthermore, the measured spacing of the t-BN (0002)-
lattice planes with a value of dgge = 0.359(13) nm is significantly higher than the
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(a) FFT n-Si (b) FFT a-Si (c) FFT t-BN

Figure 5.10: FFTs of TEM-images related to a t-BN/n-Si heterostructure and performed on the
marked areas in figure 5:9b. (a) The FFT corresponding to the Si structure shows {111}-, {131}-
and {022}-reflections of the [112]-pole which can be linked to the (111) planes of Si. (b) The small
area FFT of the amorphous Si-layer leads to a circular pattern without any predominant texture
indicating an amorphous structure. (c¢) The FFT of the hexagonal BN-planes results in the typical
textured ring with twofold symmetry indicating the presence of the turbostratic phase of BN.

calculated value of dggge = 0.333 nm. Again, the increase in the measured lattice
constant of the grown t-BN is caused by the high density of defects and dislocations
inside the thin-films resulting in an increase of distance between lattice planes. In
addition, the value is also noticeably higher than for thin-films deposited on ZnO
but still within the error margins and therefore comparable.

In order to complete the analysis, the thickness of the grown t-BN-layer was mea-
sured by using the Digital Micrograph software. The result is quite similar to the
t-BN/ZnO system as the measured value of 57.6(19) nm is also much smaller than
the calculated value of 86.6 nm using equation 2.l The percentage in loss of thin-
film material is about 34.9 % and therefore comparable. As the sputter-cleaning
process leads to the formation of the amorphous interlayer, the loss of atoms most
likely originates from the deposition process itself similar to the t-BN/ZnO system.
Therefore, additional TRIM calculations based on the t-BN/Si system were per-
formed.

At the beginning of thin-film deposition, the formation of a thin intermixing-layer
containing Si as well as implanted B- and N-atoms right at the interface of the
heterostructure is very likely. Based on an ion-energy of 100 eV, the ion-ranges of
BT- and N*-ions into silicon are calculated to average values of 1.5 nm and 1.2 nm
with a straggling of 0.8 nm and 0.7 nm, respectively, leading to a maximal esti-
mated thickness of around 4 nm. At high magnifications (e.g. 560k), such a region
becomes slightly visible for Si-based samples. This is exemplarily shown in figure
for an 2.0(3) nm thick layer (marked red) right at the interface between Si and
BN. However, due to the lack of sufficient EDX-data regarding boron and nitrogen,
evidence is just circumstantial.

Nevertheless, after a successful nucleation of BN according to the thermal-spike
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model, the growth process itself is almost identical to the t-BN/ZnO system sup-
ported by the corresponding TRIM calculations. Taking into account the dy-
namic nucleation and growth process as well as the calculated sputter-yields of
0.282 atoms/B-ion and 0.189 atoms/N-ion in total and adding a slightly higher ion-
range during the inter-mixing process compared to the t-BN/ZnO system, a value
between 30 % and 35 % in loss of deposited ions is a reasonable assumption match-
ing the experimental values.

The growth process of a t-BN thin-film on silicon can be summarized in the
following way:

During the sputter-cleaning process, the crystalline structure of silicon-substrate
is damaged by the Art-ions resulting in an amorphous Si-interlayer with a thick-
ness of up to 10 nm. At the beginning of the deposition process, the hexagonal
phase of boron nitride nucleates on top of the flat surface of the amorphous
silicon layer. In this context, the roughness of the crystalline silicon is also
small. The (0002) planes of the BN are oriented perpendicular to the substrate
surface. Due to the ion based deposition technique, turbostratic boron-nitride
is formed instead of the hexagonal phase. The difference between the calcu-
lated and the actually measured thickness of the BN thin-film is likely caused
by the deposition process itself due to a dynamic sputtering process of boron
and nitrogen.
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5.3.3 ta-C/n-Si heterostructures

In another set of reference heterostructure samples, a tetrahedral amorphous car-
bon thin-film was deposited onto the highly doped n-type silicon substrates instead
of the turbostratic boron nitride. Corresponding images of typical ta-C/n-Si het-
erostructures are shown in figure 5111

The grown ta-C thin-film exhibits a homogeneous structure and is again separated
from the Si-substrate by an amorphous Si-layer which is marked by the dashed lines
in figure [B.1Th and b. The two amorphous structures can be differentiated by con-

vz

B Dareas of FFT

Figure 5.11: TEM-images of a ta-C/n-Si heterostructure. (a) The grown ta-C thin-film exhibits
a homogeneous structure and is separated from the Si-substrate by an amorphous Si-layer which
is marked by dashed lines. The two amorphous structures can be differentiated by contrast as well
as tiny randomly oriented crystallites on the nanometer scale inside the matrix of the amorphous
carbon thin-film. (b) The micro-structure was primarily analyzed by performing FFTs on the
marked areas. The resulting patterns are illustrated in figure

trast as well as tiny randomly oriented crystallites on the nanometer scale inside the
matrix of the amorphous carbon thin-film.

As the sputter-cleaning procedure is maintained for all utilized substrates of this
work, the estimated values of dimensions regarding the amorphous Si-layer based
on TRIM calculations are identical to those in section for t-BN/n-Si samples.
Therefore, the measured thickness of 7.6(5) nm is in good agreement with the sim-
ulated data of the amorphous Si-layer.

Due to the amorphous character of the grown thin-film, the micro-structure was
primarily analyzed by performing FFTs on the marked areas in figure 5.11b. The
images of the corresponding patterns are illustrated in figure The FFT of
the silicon lattice (figure 5.12h) again shows the familiar {111}-, {131}- and {022}-
reflections of [112]-pole originating from the Si (111) planes of the substrate. In
contrast, the small area FFT of the Si-interlayer possesses only a circular pattern
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(a) FFT n-Si (b) FFT a-Si-C (c) FFT ta-C

Figure 5.12: FFTs of the TEM-image in figure B.TIb related to a ta-C/n-Si heterostructure. (a)
The FFT of the area inside the crystalline Si possesses {111}-, {131}- and {022}-reflections of the
[112]-pole originating from the Si (111) planes of the substrate. (b) The small area FFT of the
amorphous Si-layer results in a circular pattern without any predominant texture confirming the
amorphous character of this volume. (c¢) The FFT of the grown ta-C thin-film also leads to a
non-textured, but narrowed circular pattern proving the amorphous character of ta-C and indicate
a random orientation of the nanometer scaled crystallines.

without any predominant texture confirming the amorphous character of this vol-
ume. In addition, the FFT of the grown ta-C thin-film also leads to a non-textured,
but narrowed circular pattern proving the amorphous character of ta-C and indicate
a random orientation of the nanometer scaled crystallines.

The structural analysis is completed by a detailed measurement of the lattice spacing
regarding the (111)-planes of the Si-substrate as well as of the grown film-thickness.
Regarding the lattice spacing of the (111)-planes of the Si substrate, the experimen-
tal value of dj;; = 0.326(8) nm is in good agreement with the calculated value of
dy17 = 0.3135 nm, similar to the t-BN/n-Si system.

However, the experimentally determined values of the ta-C thickness do not deviate
as much from the calculated values of equation 2] as a corresponding t-BN layer.
Regarding the examples shown in this section, the determined film-thicknesses of
the grown ta-C layers feature values of 38.6(5) nm (fig. BITal) and 20.4(3) nm (fig.
B.11D) matching the calculated values of 41.2 nm and 20.6 nm quite well. These
results can likewise explained using the conclusions drawn from additionally per-
formed TRIM calculations.

Starting with a flat Si surface right after the sputter-cleaning process, an irradiation
with C*-ions at an energy of 100 eV will lead to a thin region of mixed Si- and
C-atoms with a maximal depth of 4.5 nm based on the average ion-range of 1.3 nm
accompanied with a straggling of 0.8 nm. Almost one third of this volume is simul-
taneously removed because of the sputter-yield of 0.3 Si-atoms/C-ion. Therefore,
the majority of the implanted carbon atoms will accumulate at the surface-region.
As a result, in combination with the continuous deposition of C-atoms, this leads
to the nucleation and subsequent growth of ta-C according to the thermal-spike
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model. After a successful nucleation of some mono-layers of ta-C with a density of
approximately 3 g/cm?, the average range of the CT-ions is drastically reduced to
just 0.7 nm with a straggle of 0.3 nm. In the process, the sputter-yield decreases
down to 0.088 atoms/C-ion of the ta-C layer.

Considering an average sputter-yield of just below 10 %, the formation of a thin
intermixing-layer during the nucleation process as well as slight variations of film-
thickness in the nm-range, an estimate of 5-10 % in loss of deposited ions is reason-
able.

The growth process of tetrahedral amorphous carbon (ta-C) onto a silicon sub-
strate can be summarized as follows:

During the sputter-cleaning process, the crystalline structure of silicon-substrate
is damaged by the Ar'-ions leading to the formation of an amorphous Si-
interlayer with a thickness of up to 10 nm. At the beginning of the deposi-
tion process, the tetrahedral amorphous carbon nucleates on top of the flat, but
amorphous Si-surface. The slight deviation between the calculated and the actu-
ally measured thickness of the ta-C thin-film is mainly caused by the deposition
process itself due to a dynamic sputtering process of the carbon.
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5.3.4 t-BN/p-Si heterostructures

In addition to the reference samples, similar heterostructures were fabricated on the
basis of low doped p-type (100) silicon substrates. Starting with samples containing
turbostratic boron-nitride, images of typical t-BN/p-Si heterostructures are shown
in figure B. 13l The structural properties of these heterostructures are very similar
to the t-BN/n-Si system. The crystalline (100) silicon is covered by a homogeneous
layer of amorphous Si followed by the grown t-BN thin-film. The interface exhibits
a small roughness and the (0002)-planes of t-BN are aligned perpendicular to the
Si-surface. Furthermore, the t-BN exhibits the accompanying high dislocation den-
sity which is marked white in figure (.13k.

Fast-Fourier transformations of all structures were performed on the areas marked
with the squares in figure[5.130 and are shown in figure[5.14l The FFT of the silicon
lattice (figure B.I4h) shows {002}-,{111}- and {022}-reflections of [011]-pole which
can be linked to the [100] orientation of the silicon substrate. The small area FFT
of the Si-interlayer (figure [.14b) on the other hand possesses again only a circular
pattern without any predominant texture confirming the presence of an amorphous
structure. Finally, the FFT of the turbostratic boron-nitride shows the expected
pattern of a textured ring with twofold symmetry (figure E14k). For this particular
sample, the texture is very distinct and exhibits additional reflections likely resulting
from a less distorted hexagonal structure.

All results up to this point indicate an almost identical growth process for the dif-
ferently silicon substrates independent of their orientation. Due to the fact that cor-
responding TRIM calculations are just based on a statistical distribution of atoms
and therefore basically on an amorphous structure inside the irradiated material,
crystallographic orientation and possible corresponding channeling effects are not
considered. As a result, calculated ion-ranges, straggling and sputter-yields are iden-
tical to the t-BN/n-Si system in section .32l Therefore, the thickness of 9.0(3) nm
regarding the amorphous Si-layer, formed during the sputter-cleaning process, is in
good agreement with the calculated value of (6.5-10) nm.

In addition, deposited ions are also partially implanted into the amorphous silicon
forming an intermixing layer. This is shown in figure based on the loss of
crystalline structure inside the BN and a maintained contrast to the homogeneous
amorphous Si-layer at the same time. The thickness of this region, marked in green
color, has a value of 3.1(3) nm and matches the calculated range of (1.5-4) nm
regarding the irradiation of Si with B- and N-ions at an energy of 100 eV.
Furthermore, the measured lattice spacing of the (100)-planes of silicon has a value
of dyop = 0.549(18) nm and is therefore in very good agreement with the theoretical
value of digg = 0.543 nm. In the other hand, the measured spacing of the t-BN
(0002)-lattice planes with a value of dpop2 = 0.358(17) nm is almost identical to
the one measured for the t-BN/n-Si system and also significantly higher than the
calculated value of dggpe = 0.333 nm. Finally, the measured thickness of 66.9(3) nm
regarding the grown t-BN thin-film is approximately 32 % lower than the calculated
value of 97.5 nm which is in accordance with the previous results.
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Figure 5.13: TEM-images of t-BN/p-Si heterostructures. (a) The crystalline (100) silicon is
covered by a homogeneous layer of amorphous Si (marked by dashed white lines) followed by the
grown t-BN thin-film. (b) The (0002)-planes of t-BN are aligned perpendicular to the Si-surface.
Fast-Fourier transformations of all structures were performed on the marked areas and are shown
in figure 514l (c¢) The t-BN exhibits a high dislocation density (marked white). Furthermore, an
intermixing layer is formed by partial implantation of deposited ions into the amorphous silicon
(marked green). In addition, the lattice spacing of the silicon (100)-planes was measured. (d) Some
samples exhibit a significantly different structure inside the interface region of the heterostructure.
The amorphous Si-layer has an unusual large thickness. The surface of the crystalline silicon is
rather rough and exhibits kinks with dimensions of about 5 nm (marked by the dotted white line).
Moreover, additional crystalline Si-clusters are embedded inside the amorphous Si-layer (marked
black).
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(a) FFT p-Si (b) FFT a-Si (c) FFT t-BN

Figure 5.14: FFTs of the TEM-image in figure E.I3b related to a t-BN/p-Si heterostructure.
(a) The FFT of Si lattice shows {002}-,{111}- and {022}-reflections of [011]-pole which can be
linked to the [100] orientation of the silicon substrate. (b) The small area FFT of the amorphous
Si-interlayer on the other hand possesses only a circular pattern without any predominant texture
confirming the presence of an amorphous structure. (¢) The FFT of the turbostratic boron-nitride
shows the expected pattern of a textured ring with twofold symmetry. For this particular sample,
the texture is very distinct and exhibits additional reflections likely resulting from a less distorted
hexagonal structure.

In contrast to these consistent results, approximately half of the fabricated samples
based on p-type doped (100) silicon exhibit a significantly different structure inside
the interface region of the heterostructure. An example is shown in figure for
another t-BN /p-Si heterostructure.

Comparing the measured thickness of 59.1(6) nm to the calculated value of 93.4 nm,
the loss of deposited ions of approximately 36 % is consistent with the other BN-
based heterostructures. Furthermore, the measured lattice spacings are almost iden-
tical to samples with the same type of heterostructure.

However, the amorphous Si-layer has a thickness of 25.6(23) nm which is about
150 % too high. In addition, marked by the dotted line in figure [5.13d], the surface
of the crystalline silicon is rather rough and exhibits kinks with dimensions of about
5 nm. Moreover, there are additional crystalline Si-clusters embedded inside the
amorphous Si-layer. As this phenomenon is common for heterostructures based on
p-type (100) Si in this work, it is analyzed in more detail in the following section
based on the ta-C/p-Si system, particularly using EDX-measurements.
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5.3.5 ta-C/p-Si heterostructures

The structural analysis of silicon based heterostructures is completed by the inves-
tigation of heterostructures based on grown ta-C thin-film onto p-type (100) silicon
substrates. Corresponding images of a typical ta-C/p-Si heterostructure fabricated
during this thesis is shown in figure 5.15l The grown ta-C layer possesses a homoge-
neous amorphous structure accompanied by a slight variation in thickness (see figure
ET5a). Furthermore, as anticipated due to the previous results, the grown thin-film
is also separated from the crystalline substrate by an amorphous interlayer.

All of these structures were primarily verified due to the amorphous character of the
ta-C thin-film using fast Fourier transformations of the areas marked by the squares
in figure B.I5d The results are illustrated in figure The FFT of the silicon
lattice (figure B.I6k) again shows the familiar {200}-, {111}- and {022}-reflections
of [011]-pole which can be linked to the [100] orientation of the silicon substrate.
The FFT of the amorphous Si-interlayer (figure 5.I6b) on the other hand possesses
only a circular pattern without any predominant texture confirming the assumptions
based on real images. In addition, the FFT of the grown ta-C thin-film also leads
to a non-textured circular pattern indicating an amorphous structure of ta-C.

The structural characterization is complemented by the precise measurement of the
lattice spacing regarding the (100)-planes of the silicon substrate. In this context,
the averaged experimental value of djgp = 0.553(8) nm is in very good agreement
with the theoretical value of dijgg = 0.543 nm. Despite slight variance in thickness
between 61.2(3) nm and 65.5(3) nm possibly caused by minor inhomogeneities in
the deposited thin-film, the measured values are very close to the calculated value
of 65.2 nm with a maximum discrepancy of 7.2 % matching the calculated range of
5 %10 % in loss of C-atoms when deposited onto silicon in section [5.3:3] Therefore,
the measurements of ta-C grown onto p-type (100) silicon substrates also show the
anticipated results.

However, all of the few ta-C/p-Si samples which were prepared for cross-sectional
TEM-measurements during this thesis exhibit a large interlayer as well as a high
roughness of the crystalline silicon similar to the t-BN/p-Si heterostructures ex-
emplarily shown in figure £.13d] of section 5.3 4l Again, there are also crystalline
clusters present inside the amorphous Si-layer (marked red in figure and d).
As mentioned in section (.34 the calculated values of ion-ranges, straggling and
sputter-yields obtained from TRIM-calculations are identical to the counterpart on
n-type silicon, which has been described in section [5.3.3] Therefore, the formation of
an amorphous Si-layer with a thickness between 6.5 nm and 10 nm is expected. The
corresponding area according to these calculations is marked by the dashed white
lines in figures B.13b-d. Focusing on a typical high resolution TEM-image of the
crystalline clusters at a magnification of 560k shown in figure [B.13dl all of them are
located in a depth just exceeding the threshold range of the Ar*-ions. Additional
performed FF'Ts of the particular clusters have been performed on the marked areas
of the crystalline clusters in figure and are shown in figure B.I7] All of these
FFTs exhibit a couple of reflections identical to those originating from the [011]-pole
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Figure 5.15: TEM-images of a ta-C/p-Si heterostructure. (a) The grown ta-C layer possesses a
homogeneous amorphous structure accompanied by a slight variation in thickness and is separated
from the crystalline substrate by an amorphous interlayer. The interlayer exhibits an unusual large
thickness as well as a high roughness of the crystalline silicon (dotted white line) similar to some
t-BN/p-Si heterostructures (see figure [E.13d) accompanied by some crystalline clusters (marked
black). (b) Based on TRIM-calculations, the predicted area of the amorphous layer caused by the
sputter-cleaning process is marked by dashed white lines. The numerous Si-clusters are marked red.
(¢) All structures were primarily verified by performing fast Fourier transformations in the marked
areas. The lattice spacing regarding the (100)-planes of the silicon substrate is also measured.

(d) The crystalline Si-clusters inside the amorphous Si-layer (marked red) are investigated in
detail using additional FFTs (marked by white squares) which are illustrated in figure ET7 The
orientation of the corresponding lattice planes has also been marked.
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(a) FFT p-Si (b) FFT a-Si-C (c) FFT ta-C

Figure 5.16: FFTs of TEM-images related to a ta-C/p-Si heterostructure shown in figure EI5k.
(a) The FFT of the crystalline exhibits the familiar {002}-, {111}- and {022}-reflections of [011]-
pole which can be linked to the [100] orientation of the silicon substrate. (b) The FFT of the
amorphous Si-interlayer (figure [E.IGb) possesses only a circular pattern without any predominant
texture confirming the assumptions based on real images. (¢) The FFT of the grown ta-C thin-film
also leads to a non-textured circular pattern indicating an amorphous structure of ta-C.

the original crystalline (100) silicon. For clarity reasons regarding the low resolution
of small area FF'Ts, particular types of reflections have been marked:

e squares for {200}-reflections.
e circles for {111}-reflections
e triangles for {022}-reflections

In this context, cluster I exhibits reflections of the (022)- and (111)-lattice planes.
Cluster II, on the other hand, exhibits reflections of the (200)- and (111)-lattice
planes. Finally, cluster III exhibits all kind of reflections related to the [011]-pole of
(100) silicon. Therefore, all of these clusters are made up of pure silicon and, in ad-
dition, even match the original orientation of the wafer. The different corresponding
directions of the lattice planes inside the clusters are also marked in figure [(.15d
Combining all of these results related to the crystalline clusters inside the amorphous
interlayer with the unusual thickness, it can be concluded that all of these features
likely originate from the particular wafers themselves. Beyond that, these results
are backed up by several previous TEM-measurements performed during the work
of Zutz on ta-C:Ni multilayer structures [132]. All of these structures were grown
on top of an approximately 20 nm thick ta-C interlayer. The ta-C was deposited on
sputter-cleaned p-type (100) silicon of the same stock of wafers at identical condi-
tions compared to the ta-C/p-Si heterostructures of this work.

From a statistical point of view, regarding all performed TEM-analyses of ta-C/p-Si
interfaces over the past four years, about half of them show a flat crystalline surface
of (100) silicon covered with a thin and smooth amorphous Si-layer. In contrast,
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(a) FFT Si-cluster I (b) FFT Si-cluster II (c) FFT Si-cluster III

Figure 5.17: FFTs of crystalline clusters inside the interface region of a ta-C/p-Si heterostructure
taken from the marked areas in figure [B.15dl All patterns can be linked to reflections of pure
silicon. The particular reflections are marked in the following way: {200}-reflections — squares,
{111}-reflections — circles, {022}-reflections — triangles.

the other half of the samples exhibit a very rough surface of the crystalline Si ac-
companied by a thick amorphous Si-layer and also Si-clusters in some parts of the
particular lamellas. Two of these opposing samples are exemplarily shown in figure
B.I8 for each type of interface structure (smooth interface: a and ¢, rough interface:
b and d). Therefore, the micro-structures of both particular types of interlayers are
almost identical to the ones investigated during this thesis. Furthermore, the pure
ta-C layer of each sample had a thickness of about 18.7(4) nm which is in good
agreement with the calculated value of 20.6 nm for these kind of layers. As these
numbers are equivalent to a loss in carbon atoms of 9.2 %, there is more statistics
backing up the calculated value of 5-10 % using SRIM (see section [5.3.3)).

In addition, EDX-linescans (see section ALI.2]) were performed on each sample along
the green lines in figures 5.I8h and b at a resolution of 256 points. The correspond-
ing intensity spectra are shown in figure B.I9 As only the solid part of the lines
contributes to the analysis of this work, the remaining parts of the scans (dotted
lines) have been excluded. In addition, all spectra were normalized relative to their
particular peak-intensity and the analysis is performed only qualitatively.

Starting with a pure ta-C film on the left side of the spectra, both samples exhibit
only a gradual interface between C and Si as the silicon signal increases gradually
at the expense of carbon. Due to shifts of the line-scan relative to the original posi-
tion during the measurements caused by thermal sample drift and minor automatic
beam-shift correction the width of the line-scan increases. As a result, the slopes of
the signals become even more gradual. Therefore, the obtained range of about 10 nm
regarding the intermixing layer of C and Si is too high, but still inside an adequate
error margin for this qualitative analysis compared to the calculated value of 5 nm
at maximum range. Finally, regarding the EDX-line-scan of the smooth sample in
figure [5.18al, there are no unexpected kinks in the silicon spectrum as well as no
abrupt increase of the oxygen signal in the interface region between the crystalline
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Figure 5.18: Investigation of different interface structures in the ta-C/p-Si system. According
to statistics, about half of them show a flat crystalline surface of (100) silicon covered with a thin
and smooth amorphous Si-layer. The other half exhibits a very rough surface of the crystalline Si
accompanied by a thick amorphous Si-layer interspersed by some Si-cluster. The smooth interface
(marked by the dashed lines) is shown in (a) and (c), the rough interface (marked by the white
dotted line), on the other hand, in (b) and (d). EDX-linescans were performed on each sample
along the green lines. As only the solid part of the lines contributes to the analysis of this work, the
remaining part of the scans (dotted lines) have been excluded. The corresponding EDX-intensity
spectra are shown in figure

and the amorphous structure of silicon. In addition, illustrated in figure E.I80 the
performed line-scan of the rough sample ends right in the middle of the amorphous
layer but exceeds the range of the mixing region. Again, the corresponding spectra
do not show any sign of oxygen contaminants (e.g. from SiO,) or abrupt changes in
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Figure 5.19: EDX-line-scans of a ta-C/p-Si heterostructure performed along the green solid lines
in figure at a resolution of 256 points. All spectra were normalized relative to their particular
peak-intensity. Starting with a pure ta-C film on the left side of the spectra, both samples exhibit
only a gradual interface between C and Si. Therefore, the thickness of the intermixing region (gray
dashed lines) of C and Si is too high when compared to TEM-measurements. (a) EDX spectra of
the linescan in figure [[.I8al There are no unexpected kinks in the silicon spectrum as well as no
abrupt increase of oxygen signal in the interface region between the crystalline and the amorphous
structure of silicon. (b) EDX spectra of the linescan in figure Again, the corresponding
spectra do not show any sign of oxygen contaminants or abrupt changes in the Si signal. Therefore,
this layer originally contains only pure silicon.

the Si signal. Therefore, this layer originally contains only pure silicon, too.
For comparison reasons, an EDX-spectrum of a vanadium-dioxide/silicon heterostruc-
ture is shown in figure B.20h. It was performed as part of the thesis of P. Ehrhardt
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Figure 5.20: (a) EDX-line-scans of a VO3/Si heterostructure containing a SiOs-layer. The
heterostructure exhibits a very thin SiOs-layer in the interface region (marked by green dashed
lines) right on top of the crystalline silicon resulting in an abrupt decrease of the vanadium signal
and an increase in the Si-signal while the oxygen-signal is almost constant at first and decreases
slowly with increasing Si-content. (b) This can be clarified on the basis of the corresponding
intensity ratios indicating the presence of a very thin layer containing Si and O.

(marked by green dashed lines) right on top of the crystalline silicon resulting in
an abrupt decrease of the vanadium signal and an increase in the Si-signal while
the oxygen-signal is almost constant at first and decreases slowly with increasing
Si-content. This can be clarified on the basis of the corresponding intensity ratios in
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figure indicating the presence of a very thin layer containing Si and O. Thus,
compared to the spectra in figure [5.19] SiOs-contaminations of the amorphous layer
in the p-Si based systems of this work can be ruled out.

In addition, as the resolution of the focused ion-beam is well below the size of the
(thin) amorphous layers as well as of the silicon-clusters in the nanometer range, the
formation of well defined thin amorphous layers during FIB-preparation can also be
excluded.

Regarding all the results at hand obtained from a variety of samples with dif-
ferent methods, the two interface configurations shown in the performed TEM-
analyses of the ta-C/p-Si system most likely originate from the original surface
properties of the silicon wafers. A possible cause is the formation of an amorphous
layer during the polishing process of each wafer. Due to a lack of corresponding
TEM- and EDX-analyses of the identical substrates right before deposition, the
proof of this statement is only based on statistics and therefore circumstantial.

In summary, the actual growth process of t-BN and ta-C onto (100) p-type
silicon is almost identical to heterostructures based on the t-BN/n-Si and ta-
C/n-Si systems described in sections [5.3.2] and Deviations from the an-
ticipated structural properties of MASS heterostructures based on silicon most
likely originated from the original condition of the wafer surface prior to the
sputter-cleaning process.
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5.3.6 t-BN/6H-SiC heterostructures

The last type of heterostructures is based on single-crystalline (0001) 6H-SiC sub-
strates. Again, starting with samples containing turbostratic boron-nitride, images
of typical t-BN/SiC heterostructures are shown in figure 5.2Il The structural prop-
erties are very similar to heterostructures based on t-BN and silicon which are
described in sections and (.34

First of all, the crystalline (0001) silicon-carbide exhibits a very flat surface and
is covered by a homogeneous, amorphous layer made up of SiC with thicknesses
of 5-7 nm. On top of that, the grown t-BN thin-film again exhibits a high den-
sity of dislocations which was not marked in the images of this system for clarity
reasons. Nevertheless, dislocations can be well identified inside the t-BN in figure
E2Td Furthermore, the (0002)-planes of t-BN are also aligned perpendicular to the
SiC-surface comparable to the other substrates and the interface of t-BN and SiC
exhibits only a small roughness.

In order to verify the structures of all materials, fast-Fourier transformations were
performed on the areas marked with the squares in figure [0.21d and are shown in
figure The FFT of the crystalline SiC shows {0006}- and {0110}-reflections
of the [1120]-pole, typical for (0001) SiC in 6H-configuration. Moreover, the FFT
of the boron-nitride results in the usual pattern of a textured ring with twofold
symmetry (figure 0.22c). The small area FFT of the SiC-interlayer (figure [.22b)
on the other hand exhibits a circular pattern without any predominant texture con-
firming the presence of an amorphous structure. In order to determine the origin of
the amorphous interlayer in SiC based heterostructures, TRIM-calculations of the
sputter-cleaning process were performed at first. During the irradiation of SiC at an
energy of 1 keV, the Ar-ions exhibit an average range of 2.5 nm with a straggling
of 0.9 nm and a maximum range of about 5.5 nm causing damage inside the crys-
talline SiC-matrix of the substrate. With a value of 4.9(2)-6.9(4) nm, depending
on the particular sample, the measured thickness of the amorphous layer is in very
good agreement with the calculated value and can be linked to the sputter-cleaning
process prior to deposition of the thin-film. During the process, remaining con-
taminants covering the SiC-surface are removed due to sputtering of surface atoms
at a sputter-yield of 0.535 atoms/Ar-ion in total favoring Si-atoms with a ratio of
0.345:0.190 compared to carbon. As the substrates are Si-face polished, this leads to
a more balanced stoichiometry of the interface inside the heterostructure similar to
the ZnO based heterostructures in section .3} At the beginning of the deposition
process, BT- and N*-ions are partially implanted into the amorphous silicon carbide
forming an intermixing layer. This is illustrated and marked red in figure 5.21b
based on the loss of the crystalline structure inside the t-BN layer and, at the same
time, a steady contrast to the amorphous SiC-layer. The thickness of this layer,
regarding this particular sample, has been measured to a value of 2.5(3) nm. This
is also consistent with additional TRIM calculations performed for the irradiation
of SiC (p =3.21 g/cm?) with boron- and nitrogen-ions. At an energy of 100 eV this
leads to a calculated average ion-range of of 0.9 nm with a straggling of 0.4 nm for
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Figure 5.21: HRTEM-measurements of t-BN/SiC heterostructures. (a) The crystalline (0001)
silicon-carbide exhibits a very flat surface and is covered by a homogeneous, amorphous layer made
up of SiC (marked by dashed white lines). The t-BN thin-film is homogeneously grown on top.
(b) The (0002)-planes of t-BN are also aligned perpendicular to the SiC-surface. The interface of
t-BN and SiC exhibits only a small roughness (white dashed line). An intermixing layer is formed
resulting from partial implantation of B*- and NT-ions into the amorphous silicon carbide at the
beginning of the deposition process (red dashed lines). Furthermore, the lattice spacings of the
crystalline structures were determined. (c¢) In order to verify the structures of all materials, fast-
Fourier transformations were performed on the areas marked with the squares. The corresponding
images are shown in figure (d) Some of the fabricated t-BN/SiC heterostructures exhibit an
unusual thick amorphous interlayer. The measured thickness is about 5 times too high compared
to common samples. The predicted amorphous region of common samplesis marked by the dashed
teal lines. The different structures were identified by additionally performed FFTs in the marked
areas and are shown in figure [0.23
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(a) FFT 6H-SiC (b) FFT a-SiC (c) FFT t-BN

Figure 5.22: FFTs of TEM-images related to a t-BN/SiC heterostructure shown in figure E.21d
(a) The FFT of the crystalline SiC shows {0006}- and {0110}-reflections of the [1120]-pole, typical
for (0001) SiC in 6H-configuration. (b) The small area FFT of the Si-interlayer on the other
hand exhibits a circular pattern without any predominant texture confirming the presence of an
amorphous structure. (c¢) The FFT of the boron-nitride results in the usual pattern of a textured
ring with twofold symmetry.

boron and 0.8 nm with a straggling of 0.4 nm for nitrogen. The maximum ranges
are approximately 2 nm and 1.8 nm, respectively. The corresponding sputter-yields
are 0.243 atoms/B-ion (0.162:0.081) and 0.245 atoms/N-ion (0.165:0.08). The cal-
culations of the thin-film growth after a successful nucleation of the material are
identical to those of sections 531l and (5321

Furthermore, the lattice spacings of the crystalline structures were experimentally
determined and compared to calculated values using equation (.2l The lattice spac-
ing of SiC (0006)-planes has a value of dpops = 0.265(3) nm and is therefore in
very good agreement with the theoretical value of dyoog = 0.252 nm. On the
other hand, the measured spacing of the t-BN (0002)-lattice planes with a value
of dogoz = 0.355(12) nm is consistent with values obtained for t-BN based systems
and significantly higher than the calculated value of dyppe = 0.333 nm.

Finally, the measured thickness of the grown t-BN thin-films is in accordance with
the previous results as the measured values of 41.6(4) nm and 42.2(2) nm (figures
(2Th and c) exhibit a loss of approximately 36.2 % and 35.0 % in comparison to
the calculated value of 65.2 nm for both samples.

In summary, all results are consistent with the predicted growth model. However,
similar to the heterostructures based on (100) silicon in sections5.3.4land [£.3.5 some
of the fabricated t-BN/SiC heterostructures exhibit an unusual thick amorphous in-
terlayer. This is exemplarily shown in figure E2Id. With a value of 25.0(6) nm,
the measured thickness is about 5 times too high compared to the theoretical value
of 5.5 nm at maximum. In this context, the predicted amorphous region resulting
from Ar-sputtering during the sputter-cleaning process prior to deposition of the
thin-film is marked by the dashed teal lines in figure 5.21H.

Nevertheless, regarding the remaining parts of the heterostructure, the structural
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properties are almost identical to those of regular t-BN/SiC samples. The differ-
ent structures were identified by additionally performed FFTs in the marked ar-
eas of figure [.3.6H resulting in the anticipated patterns of the t-BN/SiC system.
Again, the FFT of the crystalline SiC results in a pattern related to {0006}- and
{0110}-reflections of the [1120]-pole, indicating (0001) oriented silicon carbide in
6H-configuration. On the other hand, the FFT of the amorphous interlayer (figure
5.23b) exhibits only a circular pattern and does not show any signs of crystalline
structures confirming the predicted amorphous characteristic of the layer. At last,
the FFT of the t-BN thin-film shows a strong textured ring with twofold symme-
try almost forming (0002)-reflexions and likely originating from well aligned t-BN
planes. Furthermore, the measured thickness of the grown t-BN thin-film has a

(a) FFT 6H-SiC (b) FFT a-SiC (c) FFT t-BN

Figure 5.23: FFTs of TEM-images related to a t-BN/SiC heterostructure shown in figure
All of them lead to the anticipated patterns of the t-BN/SiC system. (a) The FFT of the crystalline
SiC results in a pattern related to {0006}- and {0110}-reflections of the [1120]-pole, indicating
(0001) oriented silicon carbide in 6H-configuration. (b) The FFT of the amorphous interlayer
exhibits only a circular pattern and does not show any signs of crystalline structures confirming
the predicted amorphous characteristic of the layer. (c) At last, the FFT of the t-BN thin-film
shows a strong textured ring with twofold symmetry almost forming (0002)-reflexions and likely
originating from well aligned t-BN planes.

value of 55.8(4) nm which is 31.5 % below the theoretical value of 81.5 nm matching
the estimated value of 30 %35 % in loss of atoms in sections B.3.1] and 5321 Fi-
nally, the sputtered region of the amorphous interlayer can be identified by a faint
difference in contrast between the two amorphous layers. The determined thickness
of 6.5(6) nm is quite close to the theoretical value of 5.5 nm at maximum.

With all these conclusive results at hand regarding the t-BN/SiC system except
only one, the thick layer of the amorphous material might also be caused by the
fabrication or polishing process of the original SiC wafers. Considering the detector
properties and especially the lack of a reasonable B-signal, a detailed analysis us-
ing EDX-linescans of such a thick interlayer was performed on comparable samples
based on the ta-C/SiC system in section[5.3.7in order to determine the composition
of the amorphous material.
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5.3.7 ta-C/6H-SiC heterostructures

Finally, ta-C thin-films were also deposited onto (0001) 6H silicon carbide substrates.
Corresponding images of a typical ta-C/SiC heterostructure are shown in figure [5.24]
Similar to the t-BN/SiC system in the section right above, the grown ta-C thin-film
is separated from the crystalline SiC substrate by an amorphous interlayer with
an unusual large thickness. In the example at hand, the thickness was determined
to 40.4(21) nm which is well above the estimated value of 5.5 nm obtained from
TRIM-calculations but comparable to the t-BN/SiC sample shown in figure [.21d
in section In this context, it has to be noted that all TEM-lamellas of the
ta-C/SiC system prepared and analyzed during this thesis possess an interlayer of
similar size. Moreover, the anticipated thickness of the amorphous region caused
by Ar-ions during the sputter-cleaning process is marked by the teal dashed lines
in figure B.24h-c for clarity reasons. In addition, the surface of the SiC substrate,
marked by the white dotted lines in figures and b, exhibits a high roughness
accompanied by several kinks with a height of approximately 5 nm. In contrast, the
interface between the homogeneously grown ta-C and the amorphous interlayer is
rather smooth. Both structures can easily be visually separated by contrast. More-
over, the strong contrast in SiC is likely caused by stress in the surface region of
SiC.

Based on the amorphous structure of the adjacent layers, the anticipated micro-
structural properties of the different materials were primarily verified using fast
Fourier transformations of the areas marked by the squares in figure .24k and d.
The resulting patterns are shown in figure First of all, the FFT of the crys-
talline SiC leads to the typical pattern of {0006}- and {0110}-reflections confirming
the (0001) orientation of the substrate. In contrast, the FFT of the amorphous
interlayer features only a circular pattern without any sign of texture confirming
the amorphous structure inside the volume. Furthermore, in comparison to the in-
terlayer, the FFT of the ta-C thin-film also shows a non-textured circular pattern
verifying the amorphous structure but exhibits a more pronounced inner ring indi-
cating the presence of small, randomly oriented crystallites inside the amorphous
matrix on a nanometer scale. In this context, an additional small area FFT in figure
[B.24k results in a faint texture of the circular pattern actually revealing signs for the
existence of tiny crystallites with a predominant direction on the nanometer scale.

In addition to the FFTs, the crystalline structure of the SiC-substrate was con-
firmed using detailed measurements of the lattice spacing. With respect to the
(0006)-planes of SiC, the measured value of dyps = 0.261(9) nm is in accordance
with the theoretical one of dyypg = 0.252 nm.

In a next step, a detailed EDX-analysis of the amorphous interlayer material was
performed in order to determine the composition of the amorphous material. First
of all, an overall EDX-spectrum of a ta-C/SiC heterostructure (STEM-image at a
magnification of 480k, approximately 400 x 400 nm? in area) was recorded to identify
the containing elements. Such a spectrum is shown in figure (.26l In this context,
the peaks of the recorded elements are marked red. The most prominent peaks can
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Figure 5.24: HRTEM-measurements of a ta-C/SiC heterostructure. (a) The grown ta-C thin-film
is separated from the crystalline SiC substrate by an amorphous interlayer with an unexpected
large thickness. The surface of the SiC substrate (white dotted lines) exhibits a high roughness
accompanied by several kinks with a height of approximately 5 nm. The anticipated thickness of
the amorphous region caused by sputtering of Ar-ions is marked by the teal dashed lines in all
images. (b) The thickness of the amorphous interlayer has been determined. (c) Interface region
between ta-C and the amorphous interlayer. FFTs were performed on the marked areas inside the
ta-C-thin film and are shown in figure and d. An intermixing layer of C and SiC can be
identified based on the change in contrast with respect to the amorphous SiC-layer as well as the
ta-C thin-film (red dashed line). (d) Interface region between the amorphous interlayer and the
crystalline SiC-phase. Additional FFTs were performed on the marked areas of amorphous and
crystalline SiC and are shown in figure [£.28h and b. The crystalline structure of the SiC-substrate
was also confirmed using detailed measurements of the lattice spacing.
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(a) FFT 6H-SiC (b) FFT a-SiC

(c) FFT ta-C (d) FFT ta-C (small area)

Figure 5.25: FFTs of TEM-images related to a ta-C/SiC heterostructure shown in figure 524k
and d. (a) The FFT of the crystalline SiC leads to the typical pattern of {0006}- and {0110}-
reflections of the [1120]-pole confirming the (0001) orientation of the substrate. (b) The FFT of
the amorphous interlayer features only a circular pattern without any sign of texture confirming
the amorphous structure inside the volume. (c¢) The FFT of the ta-C thin-film also shows a non-
textured circular pattern verifying the amorphous structure but exhibits a more pronounced inner
ring indicating the presence of small, randomly oriented crystallites inside the amorphous matrix
on a nanometer scale. (d) An additional small area FFT results in a faint texture of the circular
pattern solidifying the assumption of the existence of tiny crystallites with a predominant direction
on the nanometer scale.

be linked to carbon, silicon, platinum, copper and gallium. The carbon signal orig-
inates from the ta-C thin-film and the SiC as well as, in small amounts, from the
precursor-gas used in the Pt-deposition during the FIB-preparation. The Pt-peak
itself results solely from the deposited Pt-layer and the Si-signal is exclusively based
on the SiC-substrate. The small Ga-peak is caused by the Ga-ion implanted into the
lamella during cutout- and especially the thinning-processes of the FIB-preparation.
The additional Cu signals originates from the TEM-grid which is made up of pure
copper. Furthermore, the recorded spectrum does not show any sign of oxygen or
other contaminants of sufficient quantity to form amorphous structures like SiO, for
example. The position of a possible oxygen peak has additionally been marked in
the overall spectrum.
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Figure 5.26: Typical overall EDX-spectrum of a ta-C/SiC heterostructure (screen shot). The
most prominent peaks occurring in the spectrum can be linked to carbon, silicon, platinum, copper
and gallium. The Cu-signal is based on X-rays from the TEM grid while Pt and Ga originate from
the FIB-preparation process. C and Si are the only two elements of the heterostructure. In
addition, there are no signs of oxygen (position marked in the spectrum) or other contaminants
of sufficient quantity incorporated in the heterostructure. The peaks of recorded elements in the
linescans are marked red.

Then, in order to analyze composition of the different layers regarding the ta-C/SiC
heterostructure, EDX-linescans were performed along the growth-direction of the
heterostructurdl. In this context, only data of elements marked in figure were
recorded. The corresponding TEM-image, taken afterwards, is shown in figure 5.27h.
The linescan itself is marked green. The spectra of the different elements are illus-
trated in figure[5.27b. The length of the linescan was measured using the TEM-image
to calibrate the position in the EDX-spectra by dividing the total length of linescan,
206(1) nm, by its resolution of 512 points.

Each spectrum was normalized with respect to its particular maximum in order to
ensure comparability of the different spectra regardless of their absolute intensities.
Starting inside the Pt-layer of the lamella, the spectrum is dominated by the Pt-
signal accompanied by some carbon originating from the Pt-containing precursor
gas used in the FIB-preparation process. At the interface between platinum and
the grown ta-C thin-film, the Pt-signal decreases abruptly to zero while the C-signal
reaches its maximum. It is maintained throughout the pure carbon-layer. After a
distance of about 60 nm inside the ta-C layer the electron beam reaches the interface
of the amorphous interlayer and the carbon signal decreases relatively slow, com-
pared to the changes of the first interface, until an almost constant level is reached.
At the same time, the intensity of silicon increases at the same rate featuring an
almost inverse slope. No other element but Si and C is included in this layer in-
dicating the presence of another SiC phase or Si-C compound with an amorphous
structure (a-SiC). The total width of this interface area between pure carbon (ta-C)
and the amorphous SiC is estimated to be of about 20 nm, marked blue in figure
BE27h. As this interface exhibits almost twice the size compared to the first one,

2at least in the STEM-mode at a tilting-angle of 15° due to the detector geometry
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Figure 5.27: EDX-line-scan of a ta-C/SiC heterostructure. (top) The corresponding TEM-image
taken right after the EDX-measurement. The EDX-linescan is marked green. The interface be-
tween the amorphous and the crystalline SiC is marked red.

(bottom) EDX-spectra of the different elements. The length scale was calibrated using the corre-
sponding TEM-image. All spectra were normalized with respect to their particular maximum.

combined with decreasing slope of the spectra, the presumption of an intermixing
of carbon and the amorphous SiC is reasonable.

Regarding the total values of the interface-widths, it has to be noted that the slopes
of the different spectra right at the interface blur due to slight thermal drift of
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the TEM-lamella during the measurement. More precisely, the lamella has a drift
velocity of approximately 0.5-1 nm/min and the duration of each measurement is
5—10 min.

Continuing along the path of the linescan, the Si-spectrum possesses a small valley
at around 150 nm in length of the linescan, matching the area around the exact
position of the interface between the amorphous and the crystalline SiC. Therefore,
it is marked red in figure (top). After that, the Si signal increases slightly and
continuously. In contrast, the carbon signal is virtually constant in this area. This is
caused by the very low signal to noise ratio (an intensity of 5 counts/s at a noise level
of 3 counts/s) of the original dataset. Therefore, even anticipated opposing changes
in intensity compared to silicon are beyond the resolution limits of the setup.

As a result, consistency in the stoichiometry of both silicon-carbide phases cannot
be verified. A possible, but highly speculative explanation is that the shift in in-
tensity of the Si-signal might originate from a change in density and/or different
sputter-yield with respect to a Ga-irradiation during the FIB-preparation.
Nevertheless, the main result of the EDX-analysis is the verification of the amor-
phous SiC phase forming the thick amorphous interlayer. Similar the heterostruc-
tures based on p-type Si (see sections (.34 and [£3.0]), the two interface configu-
rations shown in the performed TEM-analyses of SiC based samples also originate
most likely from the original surface properties of the silicon carbide wafers. In
this context, the formation of an amorphous layer might be caused by the polishing
process of each wafer.

In addition, a closer look at the interface between ta-C and the a-SiC at high magni-
fications (e.g. 560k) provides additional evidence for the existence of an intermixing
layer originating from ion implantation of pure carbon into the amorphous SiC.
Such a layer can be identified based on the change in contrast with respect to the
amorphous SiC-layer as well as the ta-C thin-film and is marked by the red dashed
line in figure 5.24k.

Assuming an amorphous SiC surface with the common mass density of 3.21 g/cm?
for the TRIM-calculations, the irradiation with carbon-ions at an energy of 100 eV
would lead to the formation of a very thin intermixing layer with a maximum range
of about 1.8 nm based on the ion ranges of 0.8 nm with a straggling of 0.4 nm for
carbon. In the process, the corresponding sputter-yield has a value 0.252 atoms/C-
ion favoring silicon atoms with a ratio of 0.175:0.077. The measured thickness of
2.8(3) nm, regarding this particular sample, is in accordance with the theoretical
value.

Finally, the thickness of the grown ta-C thin-film was measured. The thickness
varies between 59.7(3) nm and 70.4(3) nm depending on the position of the mea-
surement with respect to flat sections of the ta-C thin-film. These are separated
by bended parts of the heterostructure resulting from surface patterns of the orig-
inal SiC which is analyzed and discussed in section using scanning electron-
microscopy (SEM) images. Nevertheless, the lower threshold of the measurement is
in accordance with the calculated value of 65.5 nm with a difference of about 8.9 %.
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In summary, the growth process of turbostratic boron-nitride (t-BN) and
tetrahedral amorphous carbon (ta-C) onto a silicon carbide substrate in 6H-
configuration can be described in the following way:

During the sputter-cleaning process, the crystalline structure of silicon-substrate
is damaged by the Art-ions leading to the formation of an amorphous SiC-
interlayer with a thickness of about 5 nm—7 nm. At the beginning of the deposi-
tion process, the t-BN and ta-C each nucleate on top of the flat, but amorphous
SiC-surface. The slight deviation between the calculated and the actually mea-
sured thickness of the thin-films is mainly caused by the deposition process itself
due to a dynamic sputtering processes.
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5.3.8 Surface properties of 6H-SiC

In order to investigate the surface morphology of the silicon carbide substrates uti-
lized in this thesis, scanning electron-microscopy (SEM) images were taken from the
surface of virgin 6H-SiC substrates as well as from the heterostructures formed by
the t-BN/SiC and ta-C/SiC systems right before the FIB-preparation process. The

surface of pure 6H-SiC t-BN surface on 6H-SiC
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Figure 5.28: SEM-images of different SiC surfaces. The surface of the virgin silicon carbide (a)
is traversed by a great number of lines of contrast deviations forming patterns with a triangular
and trapezoidal shape. These patters are present at any magnification and even after a complete
deposition cycle of t-BN (b) or ta-C (c) including the usual sputter-cleaning process. Furthermore,
each single pattern is formed by smaller ones which become visible at higher magnifications. In
addition, the different Pt-deposits of the FIB-preparation process are shown in (b) for e-beam Pt
and in (d) for ion-beam Pt.

corresponding images are shown in figure [£.28
The surface of the virgin silicon carbide surface (figure [.28al) is traversed by a
great number of lines of contrast deviations forming patterns with triangular and
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trapezoidal shape. These patters are present at any magnification and even after
a complete deposition cycle of t-BN (figure £.28D) or ta-C (figure (.28d) includ-
ing the usual sputter-cleaning process. Furthermore, each single pattern is formed
by smaller ones which become visible at higher magnifications. These facts indi-
cate either grain boundaries or a deformation of the SiC-surface along the visible
straight lines. Regarding the HRTEM-images of the SiC-based heterostructures,
there are no evidence for the presence of any grain boundaries inside the SiC as
all images illustrate a single-crystalline structure. Therefore, a deformation of the
surface is more likely. A closer look at the cross-section TEM-measurement of a
typical heterostructure of the ta-C/SiC system at low magnification confirms this
statement. An appropriate image is shown in figure The triangular patters in

Figure 5.29: Low magnification cross-section TEM-measurement of a typical heterostructure of
the ta-C/SiC system. The triangular patters in the SEM-images of figure .28 are actually grooves
and scratches in the silicon carbide surface, the amorphous as well as the crystalline, occurring at
irregular intervals between approximately 150 nm and 400 nm and at different depths of about
2-10 nm.

the SEM-images are actually grooves and scratches in the silicon carbide surface,
the amorphous as well as the crystalline, occurring at irregular intervals between
approximately 150 nm and 400 nm and at different depths of about 2-10 nm. As
even the virgin SiC as well as every SiC-based sample exhibit the same patterns
regardless of surface treatment, coating material or resolution of the images, an un-
intentional creation during the sample-preparation-process of this thesis can be ruled
out. They likely originate from the from the surface polishing process of the wafers.
Unfortunately, additional information from the manufacturer could not be obtained.
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Comparing the results of this work with independent reports in literature of similar
patters on the SiC surface of wafers by different groups, there is proof that these
patterns are in fact scratches on the SiC surface caused by the mechanical polishing
process of the SiC wafers m, @]
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5.4 Summary

The successful growth of tetrahedral amorphous carbon (ta-C) as well as turbostratic
boron nitride (t-BN)ﬁ thin-films has been verified on the basis of phase composition
and crystalline micro-structure analyses using wn-situ X-ray photoemission spec-
troscopy (XPS) measurements and subsequently cross-section transmission-electron-
microscopy (TEM), respectively.

Based on the results of the large number of investigated heterostructures using cross-
section TEM-measurements, the growth process of the t-BN and ta-C thin-films can
be generalized in the following way:

All grown t-BN as well as ta-C thin-films of this thesis each exhibit almost identi-
cal, uniform structural properties. In more detail, both types of thin-films contain
only a single type structural configuration of the deposited material. The ta-C thin-
films feature an entirely amorphous structure while t-BN thin-films always exhibit
a "semi-crystalline” structure of hexagonal (0002)-planes oriented perpendicular to
each substrate surface and accompanied by a high defect density throughout the
entire thin-film. Both structures have additionally been verified using Fast-Fourier
Transformations (FFTs) of the recorded TEM-images. Moreover, both of them
exhibit a low surface roughness as well as a smooth interface to the underlying sub-
strate material.

In addition, Si and SiC based heterostructures also exhibit amorphous interlayers
between the grown thin-films and the particular substrate surface which is formed
during the sputter-cleaning process using 1 keV Art-ions prior to the deposition
of the thin-films. The interface of the t-BN/ZnO system, on the other hand, does
not exhibit such amorphous interlayers. Therefore, the formation of such an amor-
phous layer can exclusively be linked to damage cascades caused by implanted ions
during the sputter-cleaning process based on corresponding TRIM-calculations. In
this context, the particular ion ranges and recoil effects are primarily based on the
material properties of the single crystalline semiconducting substrates. Despite as-
suming an amorphous matrix, the TRIM-calculations are in good agreement with
the TEM-analyses of the resulting depths of the damaged substrate surface forming
the amorphous interlayer.

Moreover, further deviations from the anticipated structural properties in the form
of additional thick amorphous layers inside several p-type silicon and silicon carbide
based samples have been linked to the original condition of the wafer surfaces prior
to the sputter-cleaning process while the consistency regarding the composition of
the layers has been verified using EDX-measurements. Based on the similarities
of the particular thin-film structures grown on a variety of different substrates, the
actual growth process of the thin-films does not depend on the composition or orien-
tation of the substrate. Due to the amorphous or turbostratic character of the grown
thin-films, the electrical properties of all grown MASS heterostructure in this thesis

3Due to the ion based deposition technique, turbostratic boron-nitride is formed instead of the
hexagonal phase.



112 Structural characterization

will likely be affected by strong contribution from conduction mechanisms related to
amorphous or highly disordered materials like Hopping mechanisms, Frenkel-Poole
or Schottky emission (see sections B.2] and [B4]). Furthermore, the amorphous
interlayers of p-Si and 6H-SiC based MASS systems will also likely result in an ad-
ditional contribution from a defect related conduction mechanism.

Focusing on the actual growth process, the particular thin-films nucleate on top of
the flat substrate surface] right after the deposition of a few mono-layers (equal to
x - 10 ions) of atoms. In the process, an intermixing layer is formed in each system
due to implantation of deposited ions into the surface layer of the semiconducting
material at the beginning of the deposition process. The resulting dimensions of
these layers obtained from the HRTEM-measurements are basically consistent with
additionally performed TRIM-calculations of the deposition process. However, the
exact ion-ranges and, in particular, the resulting compositions of the intermixing
layers of the different systems depend on the original material properties of the sin-
gle crystalline substrates as well as on the collision cascades of the implanted ions
and the resulting configuration inside the surface layer of the substrate.

In addition, the mixing process might also lead to an incorporation of correspond-
ing substrate- or dopant-atoms into the grown thin-films. The distribution of such
kind of atoms inside the grown thin-films would depend on the solubility inside the
particular thin-film matrices as well as on the corresponding sputter-yields and re-
coil distributions of these atoms. Furthermore, either a gradual distribution or a
segregation process towards the surface would be the most likely results due to the
dynamic sputtering process during deposition of the thin-films. However, due to the
lack of an appropriate sensitive analysis technique regarding the detection of single
atoms inside an 2 nm thick defect-rich intermixing layer, these assumptions are just
circumstantial. Nevertheless, the electrical properties of the grown thin-films might
be affected by these kind of processes.

Focusing on the lattice constants of the single crystalline substrates, all of them
are in very good agreement with the corresponding values derived from the lattice-
constants taken from literature. Furthermore, the discrepancies regarding the lattice
constants of the (0002)-planes inside the grown t-BN thin-films can be linked to the
high density of defects and dislocations inside the turbostratic structure.

Finally, regarding the film-thicknesses obtained from the TEM-images, ta-C as well
as t-BN thin-films each exhibit an almost constant loss of thickness compared to
the calculated values based on the deposited charge and material parameters ac-
cording to equation 21 more precisely 5 %10 % for ta-C and 30 %-35 % for t-BN
thin-films. In this context, the loss of thickness regarding each type of thin-film is
consistent in all investigated heterostructures regardless of the particular substrate
material. The corresponding values of all samples investigated in the scope of this
thesis are summarized in table Taking into account additional TRIM calcula-
tions regarding the sputter processes during the actual growth of the thin-films, the

4primarily realized by the polishing process right after fabrication of the wafers and by the
sputter-cleaning process prior to deposition of the thin-films



5.4 Summary 113

heterostructure calculated | measured | difference
system sample | thickness | thickness
(nm] [nm)] %]
t-BN /n-Si 1221 86.6 57.6(19) 34.9
ta-C/n-Si 1245 20.6 20.4(3) -
1272 41.2 38.6 6.3
t-BN/ZnO 1174 183.5 130.2 30
1220 93.6 64.3(5) 31.3
ta-C/p-Si 1305a 65.2 61.2(3) 7.2
t-BN/SiC 1242 65.2 41.6(4) 36.2
1246b 65.2 42.2(2) 35.0
1274a, 81.5 55.8 31.5
ta-C/SiC 1308a 65.5 59.7(3) 8.9
1320a 73.1 65.4(3) 10.5
t-BN/p-Si 1196b 97.5 66.9(3) 32
1197 93.4 59.1(6) 36

Table 5.3: Comparison of calculated film thicknesses and measured values obtained from TEM-
measurements.

difference between the calculated and the actually measured thickness of the t-BN
and ta-C thin-films is likely caused by dynamic sputtering effects of the deposited
ions themselves accompanying the actual growth process. Based on these results,
the thin-film thickness of each sample can be calculated with high accuracy in future
experiments based on the deposited charge and sample geometry using equation 2]
and applying a correction factor of each thin-film material.



114 Structural characterization




Chapter 6

Electrical characterization

A significant part of this thesis is the investigation of the electrical properties of
different MASS diode heterostructures (see figure 2.1I). Direct current (DC) mea-
surements were performed at different temperatures according to the description of
section and interpreted on the basis of the conduction mechanisms mentioned in
chapter Bl In this context, the main issue is the development of a general, temper-
ature dependent conduction model for all MASS diode systems.

In the following, the initial development of such a conduction model will be illus-
trated step by step. Furthermore, several essential extensions, mainly based on the
structural properties of the different heterostructures, will be taken into account
and explained in detail. In addition, preliminary investigations of each particular
semiconducting substrate were performed regarding different back-contact materials
and preparation steps (see section 2.3)) prior to the actual electrical characterization
of the different MASS diode systems.

In a first step, the current-voltage (I-V) characteristics of ta-C and t-BN reference
samples on highly doped n-type Si-substrates were investigated at different tem-
peratures in order to verify the conduction mechanism of the grown thin-films. In
addition, general limits can be set for potential fit parameters of the amorphous
semiconductor part in MASS diode heterojunctions.

In a next step, the I-V characteristics of t-BN/ZnO as well as ta-C/Si MASS diodes
were investigated at temperatures of 20 K-300 K. In this context, the I-V char-
acteristics are well described by the so called Frenkel-Poole and ideal diode model
(FPID-model) based on a serial arrangement of an ideal Schottky diode, a Frenkel-
Poole type resistor and an ohmic resistor. As a side effect, comparisons with a
more simplified non-ideal diode model (NID-model) provide possible explanations
of apparently high ideality factors mentioned in literature (see chapter [II). A sig-
nificant part of these findings, more precisely the development of the FPID-model
itself based on selected I-V characteristics measured at room temperature (RT),
was already published in the scope of this thesis [@, ] In addition, the model
is verified by temperature dependent measurements and related numerical fits using
python scripts.

115
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In order to extend the validity of the model, it was applied to less rectifying -V
characteristics of SiC based MASS diodes. In comparison to previous results, these
heterojuctions show an increased leakage current at reverse-bias. Fortunately, these
results can be directly linked to the structural properties of the heterostructures (see
chapter [Al) leading to an extension of the FPID model. This extension of the model
based on I-V characteristics of t-BN/SiC heterojunctions at RT was also already
published during the completion of this thesis ﬂish]

In the end, all results will be merged leading to a successful development of a general
and temperature dependent DC conduction model for all MASS diodes.

6.1 I-V characteristics of reference samples

According to previous publications by Ronning et al. ﬂﬁ, @] and Hofséss et al.
as well as to corresponding results published during the scope of this thesis
: , ], turbostratic boron-nitride (t-BN) and tetrahedral amorphous carbon
(ta-C) thin-films both basically exhibit a conduction mechanism similar to Frenkel-
Poole emission (see section B.3)).
In order to verify Frenkel-Poole like conduction as the dominant mechanism inside
the grown amorphous and disordered thin-films, sufficient quantities of reference
samples regarding both types of thin-films were fabricated and characterized electri-
cally by performing temperature dependent measurements during this work. They
were grown on highly doped n-type silicon substrates (see section [Z2T]). Based on
the resistivity of (0.005 — 0.01) Qcm, these substrates are referred to as "metallic”
silicon.
The electrical properties of these substrates were investigated using Ag back-contacts
as well as evaporated Au/Cr contacts on the polished top-side. The corresponding
[-V characteristics are exemplarily shown in figure 6.1l In the example at hand, the
resulting [-V characteristic is perfectly linear and exhibits a very low resistance of
about 1.25(2) €2, which has been determined using a linear fit (red) indicating no
formation of any interfering Schottky barriers between the silicon and the particular
metal contact. It has to be noted, that both sides of the substrate were etched
prior to the application of Ag contacts using hydrofluoric acid in order to remove
the commonly present SiO, surface. In an alternative approach, low ohmic back-
contacts can also be realized by partially removing the silicon dioxide via scratching
the surface with a small diamond.
Either way, any formation of Schottky barriers between the Si and Ag or Cr/Au
is neutralized by the high density of free charge carriers inside the highly doped
substrate. Therefore, highly conductive ohmic contacts with a resistivity of about
1 Q on highly doped n-type silicon can easily be obtained using Ag. As a result,
the electrical characterization of the reference samples is independent of any back-
contact resistances.
In the following, the I-V characteristics of ta-C as well as t-BN thin-films have been
investigated at different temperatures in order to determine their characteristic pa-
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Figure 6.1: I-V characteristic of the Au/Cr/n-Si/Ag interface structure. The resistance has been
determined to a value of 1.25(2) Q using a linear fit (red).

rameters according to equation [3.8] especially the average barrier height of the local-
ized traps ®pp. In addition, the datasets and determined parameters of this thesis
are compared to former reference sample measurements of metal /t-BN/metal struc-
tures grown on polished steel substrates and metal/ta-C/metal structures grown on
polished nickel substrates, respectively.
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6.1.1 Metal/t-BN/metallic Si heterostuctures

Starting with a detailed analysis of t-BN reference samples on metallic n-type silicon
substrates, temperature dependent measurements in the range of 20 K-383 K were
performed using the low temperature setup (see section 23] for temperatures up
to 300 K and the high temperature setup (see section [£.24]) above. The separate I-V
datasets were merged and assembled in a single plot for each sample. Corresponding
[-V characteristics of a typical t-BN reference sample are shown in figure for
different temperatures in a Schottky-plot (log(I) versus v/V). AllI-V curves exhibit a

|-V characteristic of
t-BN reference sample
on metallic n-type Si
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Figure 6.2: Temperature dependent I-V measurements of a typical t-BN reference sample ar-
ranged in a Schottky-plot (log(I) versus v/V). All recorded I-V curves (colored circles) exhibit a
symmetric behavior and are in good agreement with numerical simulations (colored solid lines) of
the FP-model of this work based on equation regarding a parallel arrangement of a Frenkel-
Poole resistor Rpp and a parasitic resistance Rp according to figure[G.3l down to a temperature of
about 240 K. Below that temperature, the fits start to deviate from the measured data indicating
the presence of an additional conduction mechanism dominating at lower temperatures.

symmetric behavior and can be well described by a parallel arrangement of a Frenkel-
Poole resistor Ryp, dominating the characteristic at higher temperatures and electric
fields, and a parasitic resistance Rp which may also include contributions from
variable range hopping and/or tunneling at lower electric fields and temperatures.
Therefore, Rp is an ohmic resistor in first-order approximation. An appropriate
equivalent circuit diagram of the Frenkel-Poole model in this thesis is illustrated in
figure and the corresponding current is given by

% 1% %
[:R—P—I—A-aogexp 7 Dpp — d

(6.1)
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R Figure 6.3: Equivalent circuit diagram
FP of the Frenkel-Poole model (FP-model)
of this work describing the I-V charac-
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RP tor/metallic Si heterostructures based on a
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In this context, the parameters of the FP-resistor are identical to those in equation
3.8 The original prediction of possible conduction mechanisms like Frenkel-Poole
emission accompanied by hopping or tunneling is primarily based on the structural
properties of the grown thin-films obtained from the TEM-analysis in section [(.3.2]
In this context, the high density of dislocations and defects inside the grown thin-
films are particularly most accountable for the resulting conduction mechanisms.
In terms of mathematics, the large number of free parameters in equation [6.I]leads to
to an over-determined system of equations. As a result, the range of vital parameters
has to be narrowed down prior to the fitting process and preferably kept constant
with respect to T for a whole array of curves based on physical reasons. In this
context, the most important parameter is the average barrier height ®pp. It is
determined by comparing two adjacent I-V characteristics measured at different
temperatures with a small temperature difference AT/T < 0.2, e.g. 10 K. In the
process, the linear region in the Schottky-plots are extrapolated towards vV — 0
leading to a value of 1(0) = I(v/V — 0). Therefore, ®gp can be obtained by

TT, k (1T1(0>)
Orp &~ —In . 6.2
T Ty g \ U (0) (6.2)

In order to guarantee reproducibility, this procedure was repeated for several sam-
ples at a temperature range of 250 K-365 K. In this context, the lower threshold
of 250 K is based on a significantly increased margin of error regarding the linear
extrapolation below that temperature resulting from an insufficient number of data-
points forming the linear region of the characteristic in a Schottky-plot. A further
increase of field intensity exceeding the typical maximum of about 1-10% V/cm? is
not a viable option as this frequently led to an abrupt and irreversible increase of
conductivity in the particular probed sample regions. Nevertheless, the average bar-
rier height, determined in this thesis, has an average value of ®pp;_py = 0.33(2) V
and is in very good agreement with previously published values of ®pp on metal
and metallic silicon substrates, in detail ®ppi_py = 0.34(2) V (t-BN on polished
steel substrates) and ®pp_pn = 0.32(2) V (t-BN on metallic n-type Si substrates)
@, ] For a known average barrier height ®gp and a film thickness d, the relative
static permittivity €, and the conductivity og can be obtained from numerical fits,
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displayed as solid lines in figure Both of them exhibit temperature dependen-
cies according to an exp(1/T) relation. In order to limit the range of possible values
prior to the fitting-process, the conductivity of the thin-film oy can alternatively be
estimated using the slope of the [-V characteristics close to zero-bias:

dl
Og ~ W

1

voo  Itp

) dexp(q®Prp/kT). (6.3)

In addition, the relative static permittivity €, with respect to equation can also
be estimated from the inverse slope of the Schottky plot corrected by a term of
2/+/V due to the linear contribution in the I-V curve:

¢ {d(ln([/[o) 2 r.

dvv) WV

Comparing the resulting numerical fits to the measured datasets of different temper-
atures, they are in good agreement down to a temperature of about 240 K. Below
that temperature, in a transition region down to 200 K-220 K, the fits start to
deviate from the measured data indicating the presence of an additional conduction
mechanism dominating at lower temperatures. Furthermore, the measured datasets
become temperature independent with decreasing temperature, especially below ap-
proximately 125 K. ®pp has been kept constant for all numerical fits based on theory
that such a barrier height is constant or even increases at lower temperatures. The
corresponding essential parameters of the fits according to equation regarding
each investigated sample of this work are compared and summarized in table for
room temperature (RT) measurements, also including a partially Cu-contaminated
sample (#1286). In comparison to common t-BN reference samples the conductiv-
ity is increased by a factor of around 20 and exhibits a more pronounced curvature
of the characteristic. As a result, the values of the parameters ¢, and oy change
significantly. However, the average barrier height based on the analysis performed

€ R

~ 6.4
k2T?2meqd (6-4)

sample substrate d cont. diam. Ppp 0o (e Rp
[nm)] [mm)] [V] [mS/m] [MQ]

1185b ntt-Si 93 1.08 0.32(2) 0.82 19.0 | 9.78
1221 nt+-Si 65 1.08 0.32(6) 0.33 20.03 | 11.6
1286a, nt+-Si 80 0.9 0.35(4) 1.76 24.27 | 7.51
1286b** nt+-Si 80 0.9 0.31(5) 29.47 18.37 | 0.13
1322a || n''-Si | 63 0.9 0.33(2) | 1.14 | 2022 | 122

Table 6.1: Frenkel-Poole parameter comparison of t-BN reference samples. Notes: **Cu-
contaminated area.

according to equation is almost identical common samples and therefore unaf-
fected by the small amounts of Cu contaminants inside the thin-film. As a result,
these kind of samples can also conclusively be described by the Frenkel-Poole model
of this thesis. The effect of Cu-contaminants on the electrical properties of grown
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thin-films of this thesis is analyzed in more detail in section

In addition, a significant observation regarding table [6.1]is the consistent rather high
value of €, in the range of 15-25 compared to typical values of about 5 regarding
such kind of t-BN thin-films, e.g. performed and reported by Fukarek et al. using
in-situ ellipsometry measurements during thin-film growth .

Based on the simplifications of the model, described in section 3.3, the FP-model
cannot be improved or extended with respect to a more realistic dielectric constant.
Even at high temperatures above RT, the change in curvature of the characteristic
cannot be simulated by changing the remaining parameters. In order to guarantee
consistency, the parameter ¢, is only bound to the shape of the particular I-V char-
acteristics throughout this thesis. Alternatively, €, in equation can be replaced
by (-€,, where €, is the real dielectric constant of the thin-film and  a factor related
to the curvature of the I-V characteristic

I P
kT P meglend

In a further step, I(T) analyses were performed based on the measured datasets.
The current is plotted on a logarithmic scale as a function of temperature in an
Arrhenius-plot for multiple constant bias voltages and displayed for a typical t-BN
reference sample in figure 6.4l For clarity reasons, especially regarding the overlap
of axis captions and data-points at higher temperatures in an Arrhenius-plot, the
datasets of the LT- and HT-setup were split into separate graphs. For high tempera-
tures between 300 K and 365 K almost perfect linear characteristics can be observed
indicating an exp(1/T)-relation of the current and the corresponding conductivity o
as expected for conduction mechanism dominated by thermal excitation like Frenkel-
Poole conduction (see section B3). At lower temperatures, the I(T)-characteristic
starts to bend slightly with decreasing temperature. However, the determined av-
erage barrier height is almost constant down to the threshold temperature of 250 K
as described above. Furthermore, the I(T) characteristic also exhibits a transition
region between 250 K and 220 K featured by increased bending. The process is also
accompanied by a change in bending of the I-V characteristic and represented by a
change in the corresponding parameter ( - €.. Below a characteristic temperature of
about 200 K-220 K, the dominating conduction mechanism changes drastically.
This can be demonstrated by comparing the I(T) characteristics to simulated datasets,
marked by the dashed green line in figure [6.4h and b. The simulated data has been
calculated for a mid-level constant bias voltage of 1.2 V based on equation using
the parameters obtained from the numerical fits in figure in the temperature
range of 300 K-150 K. The I-V characteristics become increasingly independent
of temperature leading to the formation of a "plateau” region below 125 K in the
Arrhenius-plot. At the same time, the symmetry of the particular I-V characteristics
as well as a Frenkel-Poole emission like behavior are still intact. Therefore, this kind
of residual conductivity regarding the I(T) characteristic of particular bias voltages
is similar to the tunneling mechanism of the systems described in section 3.7}

Vv Vv
]:R—P%—A-aogexp

(6.5)
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Figure 6.4: Arrhenius-plots of a typical t-BN reference sample for multiple constant bias voltages.
(a) High temperature setup: between 300 K and 365 K almost perfect linear characteristics can be
observed indicating an exp(1/T)-relation of the current as expected for FP-conduction. (b) Low
temperature setup: the I(T)-characteristic starts to bend slightly with decreasing temperature due
to the temperature dependence of the corresponding parameters. At 200 K—220 K, the charac-
teristics deviate from the predicted behavior illustrated by simulated datasets (dashed green lines
in a and b) for a mid-level constant bias voltage of 1.2 V based on equation and parameters
obtained from the numerical fits in figure [6.2] for T=300 K-150 K. Below 125 K, the I-V character-
istics become increasingly temperature independent leading to the formation of a ”plateau” region

with residual conductivity of the samples.
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6.1.2 Metal/ta-C/metallic Si heterostuctures

The I-V characteristics of a typical ta-C reference sample are illustrated in another
Schottky-plot for different temperatures in figure

In general, the conductivity of ta-C thin-films is significantly higher, e.g. by a factor
of about 100 at room temperature, when compared to a t-BN thin-film exhibit-
ing similar dimensions of thickness and contact-area. In a next step, the electrical
properties of ta-C reference samples on metallic n-type silicon substrates were in-
vestigated using temperature dependent measurements in the range of 20 K-383 K.
Prior to the actual fitting process, the average activation barrier height ®gp of ta-
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Figure 6.5: Temperature dependent Schottky-plot of a typical ta-C reference sample. All I-V
characteristics exhibit a symmetric behavior similar to t-BN and can also be well described by the
FP-model in figure based on equation down to a temperature of about 200 K. At lower
temperatures, the numerical fits start to deviate from the original data indicating the presence of
an additional conduction mechanism dominating at lower temperatures similar to t-BN samples.

C was again determined by comparing a linear extrapolation I(0) = I(~/V — 0)
according to equation of two I-V curves at adjacent temperatures down to ap-
proximately 220 K leading to an average value of 0.248(6) V based on the samples
fabricated during this thesis also including several Cu contaminated samples.

Despite the change of substrate, this value is in very good agreement with previous
results Ppp = 0.245(5) V of ta-C reference samples grown on polished nickel
substrates |. In comparison to t-BN thin-films, the lower barrier height might
be referable to the high level of homogeneity inside the amorphous structure of ta-C
compared to deep level traps at dislocations inside the more crystalline turbostratic
structure of t-BN according to the TEM-analyses of both systems in sections
and In addition, the leakage current, dominating at low electric fields, is also
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significantly higher in ta-C compared to t-BN thin-films supporting the theory.

Focusing on the recorded datasets in figure [6.5] all I-V characteristics exhibit a
symmetric behavior similar to t-BN and can also be well described by the parallel
arrangement of a Frenkel-Poole resistor Rgp and an ohmic parasitic resistor Rp illus-
trated in figure according to equation [6.J] The corresponding fits are marked by
the colored solid lines in figure For a known film thickness d, the corresponding
parameters ( - €. and oy can be obtained from these numerical fits. Prior to the ac-
tual fit, the ranges of both parameters have been narrowed down similar to the t-BN
system using equations and The particular parameters of the fits according
to equation regarding each investigated sample of this work are compared and
summarized in table[0.2l Again, the average barrier height of ta-C is also unaffected

sample | substrate d cont. diam. Ppp 0o (e Rp
[nm] [mm) [V] [mS/m] (k€]
1213c nt+-Si 82.5 0.7 0.244(5) 13.65 11.78 | 15.37
1260** nt+-Si 82.5 0.7 0.247(11) | 1637.90 | 30.54 | 0.75
1287** nt+-Si 62 0.9 0.258(19) | 649.60 | 23.93 | 7.05
1314a nt+-Si 73 0.6 0.242(3) 41.20 12.97 | 12.74
1314b ntt-Si 73 0.9 0.249(9) 106.39 | 19.60 | 10.30

Table 6.2: Frenkel-Poole parameter comparison of ta-C reference samples. ** Cu-contaminants.

by small amounts of Cu contaminants sample (analyzed as well in more detail in
section [GI.3). Furthermore, the corresponding dielectric constants resulting from
the numerical fits of Cu-free samples in the range of 10-20 are too high compared
to a value of 4-6 obtained from ellipsometry measurements for diamond-like carbon
films by several groups in literature [@, , @] However, none of them provided
sufficient information about possible interference of the substrate surface or a pos-
sible interface layer as shown in section Therefore, the results of these kind
of experiments could not be verified or reproduced during this work and compar-
isons are highly speculative. In addition, several values were also obtained in a way
similar to equation [6.4], which is only a very raw estimate as it is eventually based
on the original Frenkel-Poole formula and corresponding simplifications. Moreover,
most of the characteristics exhibit hysteresis effects and were neither completely
symmetric nor linear in the related Schottky plots of those publications. Based on
the high sensitivity of the obtained values with respect to small variations of the
estimated slope in a Schottky plot, such an analysis is therefore questionable with
respect to the determination of precise values of ( - ¢, from these kind of electrical
measurements. At best, the order of magnitude might be obtainable by this method
as it was performed in this thesis.

Focusing on the numerical fits in figure 6.5 they are in good agreement with the
recorded datasets down to a temperature of about 200 K followed by a transition
region to around 140 K-180 K, depending on the particular sample (presence of
contaminants, homogeneity, position of the measurement). This region is again
characterized by a progressive deviation of the numerical fits from the original data
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indicating the presence of an additional conduction mechanism dominating at lower
temperatures similar to t-BN samples. Below that temperature, the I-V character-
istics become temperature independent with decreasing temperature. In the whole
fitting process, the average barrier height was again kept constant while the pa-
rameters oy and ( - €, exhibit a significant temperature dependence similar to t-BN
reference samples.

Furthermore, the recorded datasets were also arranged in an Arrhenius-plot in order
to investigate the I(T) characteristic of the ta-C reference samples. For high temper-
atures of 300 K-383 K the characteristics are linear indicating again an exp(1/T)-
relation related to a conduction mechanism dominated by thermal excitation like
Frenkel-Poole conduction similar to t-BN samples. At lower temperatures, the I(T)-
characteristic starts to bend slightly with decreasing temperature. However, the
effect is less pronounced compared to t-BN and the threshold temperature of 220 K
for the determination of the average barrier height is slightly lower. In addition, the
I(T) characteristic of ta-C samples also exhibits a transition region in the range of
220 K and 180 K featured by a progressive bending of the characteristics at various
bias voltages. Similar to t-BN, the process is accompanied by a change in shape of
the I-V characteristic leading to changes in the corresponding parameters ( - ¢, and
oo of the numerical fits. Below a characteristic temperature of about 140 K-180 K,
the dominating conduction mechanism changes drasticall.

This change is demonstrated by comparing the I(T) characteristics to simulated
datasets, marked by the dashed green line in figure The simulated data has
been calculated for a mid-level constant bias voltage of 1.5 V based on equation
using the parameters obtained from the numerical fits in figure in the tempera-
ture range of 300 K-100 K. The I-V characteristics become increasingly independent
of temperature leading to the formation of a "plateau” region below 100 K-140 K
in the Arrhenius-plot. At the same time, the symmetry of the particular I-V char-
acteristics as well as a Frenkel-Poole emission like behavior are also still intact.
Furthermore, the effect of residual conductivity regarding the I(T) characteristic of
particular bias voltages is less distinct than for t-BN reference samples.

1A detailed analysis of ta-C reference samples in this temperature region is provided by H.-G.

Gehrke in reference ]
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Figure 6.6: Arrhenius-plots of a typical ta-C reference sample. (a) High temperature setup:
between 300 K and 383 K an almost perfect linear characteristic can be observed indicating an
exp(1/T)-relation of the current as expected for FP-conduction similar to t-BN samples. (b) Low
temperature setup: the I(T)-characteristic starts to bend slightly with decreasing temperature due
to T-dependencies of the corresponding parameters. At 140 K-180 K, the characteristics deviate
from the predicted behavior again illustrated by simulated datasets (dashed green lines in a and b)
for a mid-level constant bias voltage of 1.5 V based on equation [6.1] and parameters obtained from
the numerical fits in figure for T=300 K-100 K. The I-V characteristics become increasingly
temperature independent leading to the formation of a ”plateau” region with residual conductivity

of the samples below 100 K-140 K.
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6.1.3 Contaminant analysis

Based on the XPS-analysis in section [.2.3] the effect of Cu contaminants on the
electrical properties of the grown thin-films was additionally investigated.
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Figure 6.7: Comparison of I-V characteristics (Schottky plots) of typical t-BN (a) and ta-C (b)
thin-films on metallic silicon with contaminated samples at room temperature. The additional
copper contaminants lead to an increase in conductivity about a factor of approximately 30-40.
However, the characteristics still exhibit a symmetric behavior and are qualitatively almost iden-
tical to the Cu-free samples. Therefore, the Cu contaminants inside the t-BN and ta-C matrices
eventually lead to an increase in conductivity of the samples but do not basically alter the domi-
nating conduction mechanisms.



128 Electrical characterization

As previously shown in tables and [6.2] the corresponding average barrier height
is unaffected while the curvature, represented by ( - €., and especially the conduc-
tivity of the film oy change. However, the characteristics still exhibit a symmetric
behavior and are qualitatively almost identical to the Cu-free samples.

The corresponding [-V characteristics of the LT-setup as well as appropriate nu-
merical fits according to equation are exemplarily shown for t-BN as well as
ta~-C thin-films on metallic silicon in figure In this context, characteristic tem-
perature thresholds such as the transition region as well as the region of residual
conductivity are very similar to Cu-free samples. As a result, Frenkel-Poole emis-
sion is also the dominant conduction mechanism in Cu contaminated samples above
temperatures of about 160 K for ta-C and about 200 K for t-BN thin-films. In
addition, comparing the conductivity of comparable copper contaminated t-BN and
ta-C reference sample, the resulting factor is very similar to the one obtained for
common reference samples in the sections above. Therefore, the Cu contaminants
inside the ta-C matrix eventually lead to an increase in conductivity of the samples
but do not basically alter the dominating conduction mechanisms.

Comparing the I-V characteristics of typical t-BN and ta-C thin-films on metallic
silicon with those of contaminated samples at room temperature the additional cop-
per contaminants lead to an increase in conductivity about a factor of approximately
30-40 in both thin-film systems. However, there is also a significant problem arising
from unintentional doping of copper. The electrical stability at high electric fields
decreases leading to higher probabilities of electrical breakthrough (abrupt increase
in conductivity by several orders of magnitude).

In principle, tiny metal clusters are likely formed during the growth process. Even
if most of them are accumulated at the surface of the thin-film (see section [.2.3)),
a significant amount of them will be dispersed throughout the amorphous matrix.
As a result, they provide possible pathways for a partial or even complete electrical
breakthrough. The latter one instantly leads to an ohmic behavior and a resistance
in the single digit Ohm range. The former one, on the other hand, often leads
to asymmetric I-V characteristics besides a significant increase in conductivity of
several orders of magnitude. However, some of them are still symmetric but differ
from the commonly recorded characteristics by a significant change in temperature
dependence.

The temperature dependence almost vanishes completely indicating the absence of
a thermally driven transport mechanism replaced by a temperature independent
tunneling mechanism. This is additionally illustrated in an appropriate I(T) plot in
figure
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Figure 6.8: Arrhenius-plot of a ta-C reference sample damaged by a partial electrical break-
through of the thin-film. The temperature dependence almost vanishes completely indicating the
absence of a thermally driven transport mechanism replaced by a temperature independent tun-
neling mechanism.
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6.2 t-BN/ZnO heterostructures

The first heterojunction investigated in this work are formed by t-BN/ZnO het-
erostructures with Cr/Au contacts evaporated on top. They exhibit a pronounced
rectifying characteristic of about three orders of magnitude accompanied by unusual
high turn-on voltages of 5-10 V compared to typical p-n junctions (see chapter [I).
Furthermore, they possess high stability with respect to electric field intensities
across the deposited thin-films in the range of approximately 1-107 V /cm at a max-
imum bias voltage of about 70 V. The corresponding I-V characteristic of a typical
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Figure 6.9: I-V characteristic of a typical Au/Cr/t-BN/ZnO heterojunction at room temperature.
The recorded dataset (black circles) can be well described by a serial arrangement of an ideal
Schottky diode D (n = 1), a voltage dependent resistor exhibiting Frenkel-Poole like conduction
Rpp and an additional ohmic resistor Rg covering present contact and substrate resistances. The
numerical simulation (blue solid line) of this Frenkel-Poole and ideal diode model (FPID-model, see
figure [6.I0) is in very good agreement with the recorded dataset. Furthermore, the MASS diode
exhibits an apparently high ideality factor of about 200 according to a non-ideal diode model
(NID-model, red solid line) in figure

Au/Cr/t-BN/ZnO heterostructure is shown in figure [6.91

The recorded datasets of Au/Cr/t-BN/ZnO heterojunctions are well described by
a serial arrangement of an ideal Schottky diode D (n = 1), a voltage dependent re-
sistor exhibiting Frenkel-Poole conduction Rpp and an additional ohmic resistor Rg
covering present contact and substrate resistances. Furthermore, leakage currents
of the Frenkel-Poole resistor and the diode can be approximated by additional para-
sitic ohmic resistors and are arranged parallel to each one. The resulting equivalent
circuit diagram is illustrated in figure[6.10l The corresponding numerical simulation
is also illustrated in figure by the blue solid line and is in very good agreement
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Figure 6.10: Equivalent circuit diagram of the Frenkel-Poole and ideal diode model (FPID-
model): The MASS diodes are described by a serial arrangement of an ideal Schottky diode
(n = 1), a voltage dependent resistor Rpp exhibiting Frenkel-Poole conduction and an additional
ohmic resistor Rg covering present contact and substrate resistances. The leakage currents of the
diode and the Frenkel-Poole resistor can be approximated by additional parasitic ohmic resistors
Rp1 and RPQ.

with the recorded data.

In this context, the development of this so called Frenkel-Poole and ideal diode model
(FPID-model) is primarily based on the correlation between the structural prop-
erties of essential parts with respect to the MASS diode heterostructure and the
corresponding electrical properties resulting in the formation of a heterojunction.
First of all, in the absence of any intrinsic doping mechanisms inside the grown thin-
films, the formation of a p-n heterojunction between the ”semiconducting” materials
of the MASS structure is very unlikely. In addition, based on the results of the t-BN
reference samples in section [6.1.], additional Schottky barriers between the metal
top-contacts and the t-BN can also be ruled out.

Therefore, the formation of a depletion region inside the semiconductor caused by
the metal top-contact similar to MIS-structures is a reasonable assumption. Hence,
the one sided p-n junction is formed between the metal top-contact and the semi-
conductor substrate and provides the basis for the conduction model. As the struc-
tural analysis of t-BN/ZnO heterostructures in section (.31 does not provide any
applicable results about the dimensions of such a depletion region and related re-
combination processes, the diode of this model is presumed to be ”ideal” (n = 1)@.
The related leakage current of the diode at reverse-bias, dominated by the leakage
currents inside the depletion region, is described by a high resistive parasitic ohmic
resistor Rp; in first order approximation. Compared to a ”virgin” ZnO substrate of
the same charge, the resulting leakage current might be increased due to additional
free-charge carriers provided by the implanted B- and N-ions at the beginning of the
growth process as well as defects caused by the Ar-irradiation during the sputter-
cleaning process.

2 A variation of n between 1 and 2 does not result in any significant deviations of the FPID-model
from the recorded datasets
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In contrast, the forward-bias region of this MASS diode is dominated by the grown
t-BN thin-film exhibiting Frenkel-Poole like conduction. The electrical properties of
the heterojunction itself including interface effects and the amorphous or disordered
thin-film have been derived from the structural properties according to the corre-
sponding TEM-analysis in section [5.3.1] for the system at hand.

Based on the perpendicular and direct growth of t-BN on ZnO substrates accompa-
nied by a very similar structure and orientation of the grown t-BN thin-film itself
compared to the t-BN reference samples, the presence of a Frenkel-Poole like resistor
according to equation dominating the forward-bias direction of the heterojunc-
tion is a reasonable assumption. Therefore, the parameters of the corresponding
FP-resistor are predominantly based on the results of the t-BN reference samples,
especially the average barrier height of ®pp; gy = 0.33(2) V.

Furthermore, another parasitic ohmic resistor Rp; parallel to Rpp represents possible
leakage currents inside the t-BN thin-film. However, for ZnO based heterostuctures
the leakage current of the Frenkel-Poole is several orders of magnitude lower com-
pared to t-BN reference samples and therefore negligible for this system.

Finally, back-contact resistances as well as the intrinsic resistance of the semicon-
ducting substrate can be represented by an additional resistor Rg arranged in series
to the essential parts of the MASS heterojunction. Both of these effects were inves-
tigated prior to the analysis of the actual heterostructure.

Some of the samples were equipped with Ti/Au contacts. They were evaporated
based on the procedure described in section As shown in figure [6.17], the as
deposited Ti/Au contacts exhibit a linear characteristic indicating ohmic conduc-
tion. The corresponding resistance varies from 25 k{2 to 70 k2 depending on the
particular sample. Unfortunately, the annealing procedure, also described in section
233, results in an increase of resistivity by a factor of about three and a slight
bending of the characteristic, colored red in figure 611l In this context, the high
density of metal-impurities inside the ZnO substrates (see section 223 combined
with an exposure to ambient air may lead to oxidation processes as well as diffusion
of nitrogen and hydrogen into the intrinsic oxygen-vacancies of the ZnO-crystal.
That way, the number of free charge carriers would have been reduced resulting in
an increase of resistivity.

Furthermore, the majority of experiments were performed using a local measure-
ment setup on the basis of single large-area Ag back-contacts covering almost the
whole back-side of the substrates. For comparison reasons, additional substrates
were equipped with two separate Ag contacts and an appropriate area size. How-
ever, due to the liquid form of the conductive silver and a resulting spread out
between sample holder and substrate, these kind of contacts usually exhibit a 2-3
times larger area than evaporated Ti/Au contacts. The corresponding I-V charac-
teristics are also shown in figure G111

Right after preparation, fresh Ag contacts exhibit a resistivity of the same order of
magnitude but are also accompanied by a non-linear characteristic which is colored
blue. After several measurement cycles and a resulting continuous increase in maxi-
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Figure 6.11: I-V characteristics of different back-contact materials on zinc oxide substrates on
a linear (a) and on a logarithmic scale (b). The as deposited Ti/Au contacts (green squares)
exhibit a linear characteristic indicating ohmic conduction. The corresponding resistance is in
the two-digit kQ2-range. Contrary to theory (section 233, the annealing procedure results in an
increase of resistivity by a factor of about three and a slight bending of the corresponding I-V
characteristic (red circles). Fresh Ag contacts exhibit a resistivity of the same order of magnitude
as evaporated Ti/Au but is also accompanied by a non-linear characteristic (blue triangles). After
several measurement cycles and a resulting continuous increase in maximum bias voltage, the
conductivity of Ag contacts increases of about one order of magnitude (teal triangles).

mum bias voltage, the conductivity increases of about one order of magnitude. The
corresponding [-V characteristic of V., = 20 V is colored teal in figure [Tl The
conductivity is even higher compared to as deposited Ti/Au contacts but primarily
based on the enlarged contact areas. In addition, the characteristic is not linear.

However, the characteristic of large area Ag contacts can be approximated by an
ohmic resistor in first order as the main part of this serial resistor is caused by the
ZnO substrates itself. Assembling all of these results into a single conduction model
of the whole heterostructure leads to the development of the Frenkel-Poole and ideal
diode model (FPID-model), covering all conduction mechanism dominating at dif-
ferent bias voltages ranges based on their point of origin inside the heterostructure
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as well as on the resulting contributions according to the electrical dependencies
illustrated in the corresponding equivalent circuit diagram (ECD) of figure 610 As
the corresponding numerical simulation is in very good agreement with the recorded
dataset, the effect of each part of the heterostructure on the electrical properties
of the resulting heterojunction diode characteristic can be analyzed with respect
to the applied bias voltage or intensity of the applied electrical field, respectively.
In principle, the reverse-bias region is dominated by the Schottky diode and the
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Figure 6.12: Fractional bias voltages of a typical Au/Cr/t-BN/ZnO heterojunction at room
temperature based on the numerical simulation of the FPID-model in figure In principle, the
reverse-bias region is dominated by the Schottky diode and the corresponding parasitic resistor
Rp. The forward-bias region, on the other hand, is basically governed by Frenkel-Poole conduction
of the t-BN thin-film and contributions from the ohmic serial resistor at high electric fields.

corresponding parasitic resistor Rp. The forward-bias region, on the other hand, is
basically governed by Frenkel-Poole conduction of the t-BN thin-film and contribu-
tions from the ohmic serial resistor at high electric fields.

This can be elaborated in more detail on the basis of the fractional bias voltages in
figure regarding the individual components of the FPID-model circuit accord-
ing to the numerical fit data in figure

In the forward-bias region, the increase in the I-V characteristic is almost entirely
dominated by a Frenkel-Poole type resistor up to a bias voltage of approximately
25 V=30 V. At higher electric fields, the exponential increase in conductivity of the
FP-resistor leads to a progressive increase of the voltage drop across the ohmic serial
resistor Rs. The voltage drop across the t-BN thin-film decreases accordingly. At
a bias voltage of 70 V, the ohmic serial resistor provides a significant contribution
of about 30 % but becomes even more dominant at higher voltages. For V < 15 V
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at reverse-bias, the characteristic is also primarily dominated by the FP-resistor.
However, the voltage drop progressively shifts towards the Schottky diode D with
increasing field intensity. At high electric fields in the reverse-bias region, almost
the entire voltage drop (> 80 %) takes place across the Schottky diode including
the parasitic resistor Rp; accompanied by a slight contribution from the FP-resistor
of the thin-film (~ 20 %).

In order to classify this kind of heterojunction in terms of the Shockley-equation (see
eq. BI2) regarding common p-n and Schottky junction diodes similar to the work of
several other groups in literature (see chapter [Il), a so called non-ideal diode model
(NID model) was developed during earlier work [@] prior to the FPID model. In
this extended Shockley model, the heterojunction is described by a non-ideal diode
with an ideality factor of n > 2, an ohmic parasitic leakage resistor Rp, arranged
parallel to the diode, and a serial ohmic resistor Rg covering additional contact re-
sistances as well as those resistances caused by the substrate. This is illustrated

NID-model
D ——

N
L1

Rs

Re
@’ 0 o0——
| \

Figure 6.13: Equivalent circuit diagram of the Non-ideal diode model (NID-model): In this
extended Shockley model, the heterojunction is described by a serial arrangement of a non-ideal
Schottky diode (n > 2) and an additional ohmic resistor Rg covering present contact and substrate
resistances. An an ohmic parasitic leakage resistor Rp of the diode covering present contact and
substrate resistances has also been taken into account.

in an appropriate equivalent circuit diagram in figure and the corresponding
numerical fit is colored red in figure

In comparison to the FPID model, the NID-model only provides a good approx-
imation for high electric fields in both directions. For low fields (JV| < 20 V' in
the example at hand) on the other hand, the fits deviate significantly from the
recorded datasets, in particular around zero-bias. In this context, the serial as well
as the parasitic ohmic resistor are very similar to those of the FPID-model while
the obtained apparently high ideality factor of the non-ideal diode is in the range
if n ~ 115 — 205, depending on the particular sample, accompanied by saturation
currents of Is ~ 20 nA — 100 nA. Based on the Shockley theory (see section B.H))
these high ideality factors cannot be explained on a physical basis such as extended
forms of recombination processes. However, despite exceeding the array of possi-
ble ideality factors covered by the Shockley theory, a comparison of the FPID and
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NID-model provides a possible explanation of such apparently high ideality factors
reported in literature for a variety of heterojunctions.

Based on the similarities of the simulated datasets, especially and high electric
fields, the presence of high defect densities or amorphous regions inside particu-
lar heterostructures might also cause interference of thermionic emission processes
like Frenkel-Poole with the originally intended diode characteristic. As a result,
this interference affects for instance the electrical properties of the whole device by
dominating in the forward-bias region of the heterojunction resulting in apparently
high ideality factors of the diode. In addition, these apparently high ideality factors
can also be estimated from the slope of the high current region (I/Is > 1) of the
forward-bias region of Schottky plots according to:

q dV

n= KT din(1)’ (6.6)

In a final step, temperature dependent I-V measurements of Au/Cr/t-BN/ZnO het-
erostructures were performed in order to verify the validity of the FPID-model and
the temperature dependencies of the individual components within.

The corresponding characteristics of a typical sample are shown in figure m
The pronounced rectifying characteristic can be observed down to a temperature
of about 160 K-170 K. After that, at temperatures around 150 K, the tempera-
ture dependence of the characteristics starts to vanish accompanied by an increase
in symmetry. Finally, at temperature below 125 K, the I-V characteristics of the
t-BN/ZnO system become completely temperature independent and additionally
exhibit an almost linear dependence. Considering the residual conductivity of t-BN
in this temperature region (see section [G.I.T]) as well as the serial arrangement of
the individual components in the FPID-model circuit, this behavior might either be
caused by insulation effects inside the ZnO substrate (and/or the ZnO /back-contact
interface) or by reaching the lower noise threshold of the SMU.

Furthermore, the numerical simulations based on the FPID-model are represented
by solid lines of the same colors as the corresponding recorded datasets in figure
In general, these simulations are in very good agreement with the recorded
[-V characteristics down to temperatures of about 160 K (175 K in the example
at hand). However, at temperatures below 260 K the measured data show slight
discrepancies from the predicted characteristics of the simulation for bias voltages
exceeding about 35 V-40 V at reverse-bias indicating slight imperfections of the
model, especially regarding ohmic conduction of the parasitic resistor of the diode
at all temperatures and field intensities. At approximately 150 K, the simulated
data start to deviate from the measured I-V characteristic most notably at low elec-
tric fields in the range of about -10 V to 420 V. This behavior can also be linked to
the residual conductivity of the t-BN thin-film. As the FPID-model is only valid for
a Frenkel-Poole like resistor, the emerging residual conductivity of the t-BN at this

3Tn this context, the kinks of the particular characteristics are basically caused by slight hys-
teresis effects during the measurements and the subsequent averaging process of the data
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Figure 6.14: Temperature dependent I-V measurements of a typical Au/Cr/t-BN/ZnO hetero-
junction. The pronounced rectifying characteristics can be observed down to a temperature of
about 160 K-170 K. Below that, the I-V characteristics become progressively temperature inde-
pendent accompanied by an increase in symmetry. The numerical simulations based on the FPID
model (colored lines) are in very good agreement with the recorded I-V characteristics (colored
circles) down to temperatures of about 160 K. At approximately 150 K, the simulated data start to
deviate from the measured I-V characteristic most notably at low electric fields due to the residual
conductivity of the t-BN thin-film. In addition, the numerical simulations also exhibit slight dis-
crepancies from the measured data at high electric fields in reverse-bias for 7' < 260 K indicating
slight imperfections of the model regarding ohmic conduction of the parasitic resistor of the diode.

temperature range (see section [E.1.1]) leads to deviations between the FPID-model
and the recorded data and eventually to the breakdown of the model for 7" < 125 K.
In addition, these observations can be verified by further characteristics of fractional
bias voltages as exemplarily illustrated for temperatures of 300 K, 240 K and 200 K
in figure G151

As long as the simulated datasets are in good agreement with the recorded charac-
teristics, the fractional bias voltages remain almost constant at reverse-bias except
for very low voltages of V' < 10 V. As the diode component is dominated by the
diode itself at low and by the parasitic leakage at higher bias voltages, this is most
likely caused by the different temperature dependence of the Schottky diode and the
FP-resistor leading to a higher contribution of the diode in this region. At forward-
bias, the ohmic serial resistor becomes progressively more dominant with decreasing
temperature at the expense of FP-conduction. Therefore, the assumption of insu-
lating effects inside the ZnO crystal at very low temperatures is reasonable based
on the gradual and pronounced increase of the serial resistor below 225 K of up to
two orders of magnitude.
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Figure 6.15: Fractional bias voltages of a typical Au/Cr/t-BN/ZnO heterojunction at different
temperatures of 300 K, 240 K and 200 K based on the numerical simulations in figure[6.14l As long
as the simulated datasets are in good agreement with the recorded characteristics, the fractional
bias voltages remain almost constant at reverse-bias except for very low voltages of V' < 10 V.
At forward-bias, the ohmic serial resistor becomes progressively more dominant with decreasing
temperature at the expense of FP-conduction.

In the whole "fitting”-process, the Schottky barrier height ®g has been kept con-
stant at all temperatures similar to the average barrier height ®pp of the FP-resistor
which has been taken from the analysis of t-BN reference samples in section 6.1l
As the Fermi-Dirac distribution of the semiconductor becomes less gradual at lower
temperatures @] accompanied by a decrease in thermal excitation of free charge
carriers inside the band-gap, a decrease in barrier height can be excluded. Further-
more, the conductivity oq of the t-BN thin-film inside t-BN/ZnO heterostructures,
extracted from the corresponding numerical simulation results in figure [6.14] differs
significantly to those of t-BN reference samples in section [6. .11 by about three orders
of magnitude but still exhibits a very similar temperature dependence proportional
to exp(1/T) as shown in figure The strong decrease in conductivity com-
pared to t-BN reference samples likely results from a significantly lowered number
of additional free charge carriers provided by the high resistive ZnO substrate and
incorporated in the intermixing process during deposition as described in section
B3

In addition, the remaining free parameters of the FPID-model such as ( - €, of the
t-BN film as well as especially the additional resistors Rp; and Rg each exhibit a
significant temperature dependence. In this context, the corresponding resistances
increase considerably by several orders of magnitude up to values of about 1-10° €.
Based on superposition of the different voltage and temperature dependencies of the
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Figure 6.16: Arrhenius-plot regarding the conductivity og of the t-BN thin-films inside t-BN/ZnO
heterostructures extracted from the corresponding numerical simulation results in figure 6141 The
conductivity differs significantly by about three orders of magnitude to those of t-BN reference
samples in section but still exhibits a very similar temperature dependence proportional to

exp(1/T).

individual components, small deviations from the predicted conduction mechanisms
cannot be exclusively linked to single parameters of the model. For instance, po-
tentially present non-linearities of anticipated ohmic resistor components at lower
temperatures such as slight bending of the corresponding I-V characteristics would
be interpreted as a change of curvature  and related to the grown thin-film in terms
of the FPID-model regardless of its origin. As a result, the temperature relations of
the remaining parameters obtained from the numerical simulations are not entirely
conclusive and will therefore not be interpreted any further in this work.
Nevertheless, the present temperature dependence proportional to exp(1/T) is con-
sistent with the anticipated behavior of the thin-film component.
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6.3 ta-C/p-Si heterostructures

In the next step, the electrical properties of Au/Cr/ta-C/p-Si heterostructures were
investigated. A typical I-V characteristic at room temperature (RT) is shown in
figure [E.17h. Similar to the t-BN/ZnO heterostructures in section [6.2] the ta-C/p-
Si system exhibits a pronounced rectifying characteristic of about three orders of
magnitude at room temperature. However, the orientation of the diode is inverted.
Anticipating the presence of another Schottky diode, this is solely caused by the
change in doping type of the semiconductor substrate resulting in a depletion of
holes instead of electrons compared to a n-type semiconductor such as ZnOl. Never-
theless, from a qualitative point of view, the characteristics of the ta-C/p-Si system
are very similar to t-BN/ZnO heterojunctions. In addition, the increase in conduc-
tivity, especially at forward-bias, is in accordance with the results of the reference
samples regarding the comparison between t-BN and ta-C. Therefore, the FPID-
model (see figure [6.I0) was also applied to the Au/Cr/ta-C/p-Si heterojunctions
and therefore to another system with different composition but similar structural
properties. The corresponding numerical simulation of the FPID-model is addition-
ally illustrated in figure by the blue solid line and is in good agreement with
the recorded data. Again, in order to limit the number of free parameters inside
the FPID-model all essential parameters were determined or alternatively estimated
prior to the actual fitting process.

First of all, additional Schottky barriers between the metal top-contacts and the
ta-C can also be ruled out based on the results of the ta-C reference samples in
section Furthermore, as neither p- nor n-type conduction could be realized
by boron-, nitrogen- and phosphorous-doping during MSIBD-deposition of ta-C [@],
the formation of any p-n junction between ta-C and the silicon is also highly unlikely.
Therefore, the assumption of another one-sided p-n or Schottky junction between
the Au/Cr top-contact and the p-type silicon is reasonable despite the presence of
a thick amorphous silicon-layer in some areas of the original Si-wafer surface, dis-
cussed and analyzed in section As Schottky barriers are also formed at the
interface between amorphous silicon and several metal contact materials M], the
resulting change of band-gap energy is likely accompanied by a slight shift of diode
parameters such as barrier height and effective mass of the majority carriers. Due to
the lack of suitable analysis-methods regarding the recombination processes inside
the depletion region and pronounced effects of the ideality factor onto the simulated
data of FPID-model, the Schottky diode is presumed "ideal” (n = 1) for both types
of interlayer structures.

The leakage of the diode is still approximated by an ohmic parasitic resistor despite
the presence of an additional amorphous interlayer of about 5 nm thickness covering
the surface of all Si-substrates according to the TEM-analysis in section (.35 How-
ever, in comparison to the original single crystalline Si-substrate, the presence of the

4This is discussed in more detail in the end of the section based on similar grown ta-C/Si
heterostructures on n-type Si-substrates with identical conductivity.
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Figure 6.17: (a) I-V characteristic of a typical Au/Cr/ta-C/p-Si heterostructure at 300 K. The
ta-C/p-Si system exhibits a pronounced rectifying characteristic of about three orders of magnitude
at room temperature. However, the orientation of the diode is inverted compared to ZnO based
samples due the p-type doping of the silicon. The corresponding numerical simulation of the FPID-
model (blue solid line) is in good agreement with the recorded data despite the presence of the
amorphous interlayer according to TEM-measurements in section (b) Fractional bias voltage
characteristic based on the numerical simulation of the FPID-model.

amorphous interlayer, resulting from the sputter-cleaning process, in combination
with the implanted carbon ions into its surface most likely leads to an increase of
parasitic currents.

The forward-bias direction, on the other hand, is primarily dominated by Frenkel-
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Poole like conduction according to equation of the grown ta-C thin-film. Again,
based on the TEM-analyses in sections and 530 the ta-C thin-film growth
on p-type silicon is almost identical to the corresponding ta-C reference samples on
n-type silicon. Therefore, the parameters of the corresponding Frenkel-Poole (FP)
resistor are predominantly based on the results of the ta-C reference samples in
section [6.1.2] especially the average barrier height of ®pp o = 0.25(2) V. Similar
to t-BN on ZnO, the corresponding leakage current of the FP-resistor is in the pA
range and several orders of magnitude lower compared to ta-C reference samples.
Therefore, it can also be neglected for this system.

Finally, contact resistances as well as the intrinsic resistance of the semiconducting
substrate were analyzed in order to estimate the ohmic serial resistor of the par-
ticular heterojunctions of the ta-C/p-Si system. During the scope of this thesis,
the quality of back-contacts was continuously optimized for these substrates. In the
process, different back contact materials such as Ag, similar to the ta-C reference
samples, and Al-back-contacts according to section 2231l in an as deposited as well
as an annealed state were used. Therefore, the electrical properties of the differ-
ent contact materials were investigated. The corresponding I-V characteristics of 2
separate back contacts each are summarized in figure on a linear (a) as well
as on a logarithmic scale (b). The as deposited Al contacts (colored red) exhibit a
high resistance in the two-digit k{2-range and a S-shaped curvature which is likely
caused by some kind of Schottky barrier formation at the interface between Al and
Si. Nevertheless, after annealing at 900°C, the resistivity decreases by more than
one order of magnitude at low electric fields and the resulting I-V characteristic
(colored green) is almost perfectly linear indicating ohmic conduction. Based on the
large distance of the back-contacts (see figure 2.7]) compared to the actual substrate
thickness of 625 pm, the actual serial ohmic resistor of the FPID-model is presum-
ably even further reduced by at least one order of magnitude.

On the other hand, Ag back-contacts (colored teal) always exhibit a non-linear, S-
shaped characteristic likely caused by some kind of Schottky barrier formed between
Ag and Si. Nevertheless, if the Ag is applied to the Si right after scratching the
back-side of the substrates, the resulting contact resistance is almost identical to an-
nealed Al-contacts. At bias voltages exceeding approximately 4 V, the Ag contacts
exhibit even lower resistances compared to the well defined, low ohmic Al-contacts.
However, similar to ZnO substrates, due to the liquid form of the conductive sil-
ver and a resulting spread out between sample holder and substrate, each of these
contacts is usually also 2-3 times larger than evaporated contacts leading to an in-
crease in current. In addition, after a period of several days, these kind of contacts
start to degrade resulting in an increase of resistivity and even in slight asymmetric
characteristics (colored blue). As the solvent of the liquid Ag vaporizes over time,
small fissures inside the back-contact material might lead to a progressing oxidation
of the silicon surface eventually leading to high resistive back-contacts after some
time (months).

During the actual investigation of the ta-C/p-Si heterojunctions, the high resistiv-
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Figure 6.18: I-V characteristics of different back-contact materials on p-type silicon substrates.
As deposited Al contacts (colored red) exhibit high resistances in the two-digit kQ-range and a S-
shaped curvature likely caused by some kind of Schottky barrier formation at the interface between
Al and Si. After annealing at 900°C, the resistivity decreases by more than one order of magnitude
at low electric fields and the resulting I-V characteristic (colored green) is almost perfectly linear
indicating ohmic conduction. The resistance of about 1 mathrmk2 is primarily based on the
resistivity of the p-Si substrate. Fresh Ag back-contacts (colored teal) always exhibit a non-linear,
S-shaped characteristic likely caused by Schottky barrier formation but also low resistances at
higher electric fields. However, after a period of several days, these kind of contacts start to
degrade resulting in an increase of resistivity (colored blue).

ity of the Ag and as deposited Al contacts was compensated by a remote setup of
the samples. In contrast, ta-C/p-Si heterostructures exhibiting annealed Al back-
contacts were investigated in remote and also local configuration setup, especially
during photosensitive (see chapter [7) and frequency dependent measurements (see
chapter ).

Focusing on the numerical simulation in figure according to the FPID-model,
the fractional bias voltages again provide detailed information about the electrical
properties of the individual components of the MASS diode structure as well as their
interaction and are shown in figure G.I7b. In this context, the corresponding struc-
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tural properties based on the TEM-analysis in section have also been taken
into account.

At forward-bias, the major voltage drop is across the ta-C thin-film (=~ 90%) with a
slight but progressively decreasing contribution from the Schottky diode. At higher
voltages (>3 V), there is also a slight contribution from the serial resistor which is
progressively increasing at higher electrical fields. The serial resistor primarily orig-
inates from the silicon substrate itself as measurements were performed in remote
configuration eleminating the back-contact resistances almost entirely. At low bias
voltages in the reverse-bias region (V' < 1 V), the I-V characteristic is also signif-
icantly affected by the FP-resistor (70 %—10 %, gradually decreasing). At higher
elelectric fields, almost the complete voltage drop takes place across the Schottky
diode including the parasitic resistor Rp; (> 90 %). On a side-note, the character-
istic in forward-bias direction exhibits an apparently high ideality factor of n ~ 25
estimated by equation in terms of the NID-model.

In order to analyze the stability and possible breakdown thresholds of the hetero-
junctions, additional measurements were performed at significantly higher maximum
bias voltages around RT and ambient conditions. None of the performed measure-
ments showed any sign of electrical breakdown up to reverse-bias voltages of about
125 V. Due to a slight top-contact degradation due to partial oxidization of the
Cr-layer, these kind of measurements were only performed on a few samples. A typ-
ical I-V characteristic including a numerical simulation of the recorded data with
respect to the FPID-model as well as the corresponding fractional bias voltages is
illustrated in figure

In general, the rectifying effects of the heterojunction diode increase even further at
high currents to about four orders of magnitude. The forward-bias direction, in this
context, is even limited to a value of just 16 V due to the compliance of the SMU
of 0.1 A.

At forward-bias, the simulation matches the recorded data almost perfectly as ex-
pected from the previous measurements at lower voltages shown in figure [G.I7 At
reverse-bias voltages exceeding about 30 V, the simulated data overestimate the
actual current values of the recorded I-V characteristic leading to a progressively
increasing deviation of up to about 50 % at higher electric fields. Therefore, the sat-
uration process of the heterojunction diode is more distinct at high field-intensities
than predicted by the FPID-model. In this context, possible causes are a voltage
dependent barrier height of the Schottky diode or a voltage dependent parasitic
leakage current of the diode inversely proportional to the applied bias voltage.
Nevertheless, considering the simplicity of the individual components of the FPID-
model, the numerical simulation is still in good agreement with the recorded data.
In addition, focusing on the corresponding fractional bias voltages, the results are in
accordance with those shown in figure [.I7b. As predicted, the ohmic serial resistor
becomes more dominant at higher bias voltages at forward-bias. Furthermore, at
reverse-bias voltages above 100 V the voltage drop across the Schottky diode includ-
ing the parasitic resistor Rp; has a value of nearly 99 % despite of the discrepancies
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Figure 6.19: (a) I-V measurement of a typical Au/Cr/ta-C/p-Si heterojunction at high electric
fields. At forward-bias, the simulation matches the recorded data almost perfectly as expected
from the previous measurements at lower voltages shown in figure [(.I7l At reverse-bias voltages
exceeding about 30 V, the simulated data slightly overestimate the actual current values of the
recorded I-V characteristic leading to a progressively increasing deviation of up to about 50 % at
higher electric fields. Nevertheless, the numerical simulation is still in good agreement with the

recorded data considering the simplicity of the individual components of the FPID-model.

(b) Fractional bias voltage characteristic based on the numerical simulation of the FPID-model.
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between the recorded data and the simulation caused by approximation issues of
the component itself in this region.

Finally, the validity of the FPID-model with respect to the ta-C/p-Si MASS diodes
was verified by additional temperature dependent I-V measurements in the range of
300 K-100 K and corresponding numerical simulations. The resulting datasets of a
typical heterostructure are summarized in figure including additional fractional
bias voltage characteristics at temperatures of 300 K, 260 K and 220 K. All recorded
characteristics exhibit a pronounced rectifying characteristic. Due to a higher tem-
perature dependence of the reverse-bias region of the heterojunction compared to the
FP-dominated forward-bias direction, the rectifying effect of the diode is increasing
at lower temperatures. The numerical simulations according to the FPID-model are
in very good agreement with the recorded I-V characteristics down to temperatures
of about 180 K-160 K.

In this context, the corresponding temperature dependence of the ta-C conductivity
09, extracted from the numerical simulations in figure [6.20] is again proportional to
exp(1/T) as shown in figure and therefore consistent with the results of pre-
vious sections. However, compared to ta-C reference samples, the values of oq are
about one order of magnitude lower compared to ta-C reference samples on metallic
Si which might also be caused by the growth process similar to the discrepancies
observed for t-BN based samples in section Furthermore, the ohmic resistors
Rp, and Rg again exhibit a pronounced temperature dependence and increase by
several orders of magnitude in this temperature range.

At around 160 K-140 K, the numerical simulations start to deviate from the recorded
datasets in the forwards-bias region as well as at low bias voltages in the reverse-bias
region.

In contrast, the recorded dataset of the reverse-bias region is basically in good agree-
ment with the predicted characteristics of the FPID-model as well as the correspond-
ing temperature dependence of the diode. In this context, the related temperature
dependence of the parasitic resistor Rp; is very similar to its equivalent of the t-
BN/ZnO system (see figure [6.14]). Based on the fractional bias voltage analyses in
figures and [6.19, the discrepancies are predominantly present in bias regions
dominated by Frenkel-Poole conduction. In addition, the critical temperature range
is almost identical to the transition region and starting point of the residual conduc-
tivity of the ta-C reference samples in section As a result, the failure of the
FPID-model with respect to the temperature dependence can be linked to a change
of the dominant conduction mechanism inside the grown ta-C thin-films due to the
arising residual conductivity of ta-C in this temperature region (see section [(6.1.2).
The comparison of fractional bias voltage characteristics at different temperatures
of 300 K, 260 K and 220 K (see figure [6.20) provides further information about
the effect of different temperatures on the individual components inside the MASS
heterojunction structure.

At high electric fields in forward-bias direction, the voltage drop across all elements
of the ECD is almost temperature independent and therefore constant. However,
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Figure 6.20: (a) Temperature dependent I-V measurements of a typical Au/Cr/ta-C/p-Si het-
erojunction (colored circles). All recorded characteristics exhibit a pronounced rectifying char-
acteristic. Due to a more pronounced temperature dependence of the reverse-bias region of the
heterojunction compared to the FP-dominated forward-bias direction, the rectifying effect of the
diode is increasing at lower temperatures. The numerical simulations according to the FPID-
model (colored solid lines) are in very good agreement with the recorded I-V characteristics down
to temperatures of about 180 K-160 K. Below that temperature, the numerical simulations start
to deviate from the recorded datasets in the forwards-bias region as well as at low bias voltages in
the reverse-bias region due to the arising residual conductivity of ta-C in this temperature region.
(b) Comparison of fractional bias voltage characteristics at different temperatures of of 300 K,
260 K and 220 K.
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Figure 6.21: Arrhenius-plot regarding the conductivity o of the ta-C thin-films inside ta-C/p-Si
heterostructures extracted from the numerical simulations in figure Again, the conductivity
is proportional to exp(1/T) but about one order of magnitude lower compared to ta-C reference
samples on metallic Si.

for the rest of applied voltages (V' > —3 V) a significant shift of voltage drop to-
wards the Schottky diode and the corresponding parasitic leakage in expense of
the Frenkel-Poole resistor can be observed at decreasing temperatures, especially
between 300 K and 260 K. As a result, the transition between FP-resistor and
Schottky diode becomes distinctively more abrupt around zero-bias and the voltage
drop almost entirely takes place across the diode-component in reverse-bias direction
of the heterojunction (= 95%). Therefore, interference of the FP-resistor is almost
negligible in this bias-region at lower temperatures.

In general, the observed shift in fractional bias voltages is caused by the different
temperature dependencies of the separate regions of the heterojunction, primarily
between the Frenkel-Poole dominated thin-film and the depletion region inside the
semiconducting substrate.
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6.3.1 Comparison of different top-contact materials

During the investigation of the ta-C/p-Si system, one of the samples was additionally
equipped with several Al top-contacts in order to investigate the effect of the top
contact composition onto the characteristic of the heterojunction, especially onto
the region dominated by the Schottky diode.

They were evaporated in a homogeneous area with minimal variation of film-thickness
right next to the Au/Cr contact pads and exhibit an identical diameter. As they
were not annealed to prevent any damage to the grown heterostructure, a formation
of some kind of Schottky contact is expected according to theory (see section 2Z.3.7]).
However, the adhesion of Al-films is relatively low compared to Au/Cr leading to
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Figure 6.22: IV characteristics of Al and Au/Cr top-contacts on ta-C/p-Si heterostructures
recorded in a local measurement setup. Compared to a (pseudo-) remote measurement using
a Cr/Au top-contact (black circles), the effect of non-annealed Al back-contacts onto the I-V
characteristic (red circles) is only limited to the forward-bias direction. Focusing on the local
measurements of the different top-contact materials, the recorded I-V characteristics are almost
identical at forward-bias indicating no dependency of the Frenkel-Poole like conduction mechanism
on contact composition and corresponding interface for constant film-thicknesses. At reverse-bias,
on the other hand, the characteristics differ significantly by a factor of about 2 indicating an
increased barrier height of Al-contacts of approximately 4 % compared to Au/Cr accompanied by
a reduction of the parasitic leakage current of about 50 % based on FPID-model simulations.

delamination effects of the evaporated contacts. As a result, only one half of them
(3 out of 6) were stable and could be bonded properly but only once.

The corresponding I-V characteristics of both contact-types are shown in figure [6.22]
As both I-V measurements (Al: green, Au/Cr: red) were only recorded in a local
measurement setup, they are additionally compared to a (pseudo-) remote measure-
ment (black circles) of the same Au/Cr top-contact to illustrate the effect of contact
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resistances on the I-V characteristics of MASS heterojunctions. In this context, the
I-V characteristics of the local measurement setup exhibit a much lower conductivity
compared to the remote setup. However, the effect is only limited to the forward-
bias direction as these samples were equipped with ”as deposited”, non-annealed Al
back-contacts.

Combining the results of the fractional bias voltage analyses in figures and the
electrical properties of these contacts, shown in figure 618, the discrepancy is solely
based on non-linear I-V characteristic of the back-contact in the k{2 range and not
related to the ta-C thin-film itself or top-contact properties.

Focusing on the local measurements of the different top-contact materials, the
recorded I-V characteristics are almost identical at forward-bias. As predicted by
theory, the Frenkel-Poole like conduction mechanism is only proportional to the
contact area but does not depend on top-contact composition and corresponding
interface for constant film-thicknesses.

At reverse-bias, on the other hand, the characteristics differ significantly by a factor
of about 2. Based on FPID-model simulations, this is equal to an increased barrier
height of Al-contacts of approximately 4 % compared to Au/Cr accompanied by a
reduction of the parasitic leakage current of about 50 %. In the absence of any other
differences in structural properties and composition of the MASS heterostructure,
the discrepancies at reverse-bias can be linked entirely to the difference between
the two work-functions of the metal top-contacts and the corresponding difference
in barrier heights. Due to the lack of a pure Schottky contact between the semi-
conductor and the evaporated metal, any comparisons of work-functions or barrier
heights to literature data would only be highly speculative.

6.3.2 Comparison with ta-C/n-Si heterostructures

In a last step, in order to verify the presence of an one-sided p-n junction inside
MASS diode heterostructures, the results of the ta-C/p-Si system are compared to
the results of previous experiments based on ta-C/Si heterostructures grown on n-
type silicon. The n-type doped Si substrates were also single-side polished, (100)
oriented and had a resistivity of 5 — 14 Qcm. Therefore, they are comparable to
the p-type silicon used in this work. The thin-films were grown inside the same ion-
accelerator setup (see section 2Z5]) and feature an estimated film thickness of about
80 nm based on the calculations using equation 1] and the results of the TEM-
analyses in chapter Bl Electrical back contacts to Si were realized using conductive
silver. Al contacts with a diameter of d = 0.4 mm were evaporated on top of the
ta-C surface. The connections to the SMU (identical to the one used in this thesis)
were realized using pressure contacts made of osmium.

The original datasets were recorded and published by Ronning et al. ﬂﬁ], but re-
analyzed in the scope of this thesis in terms of the MASS diode structure and the
corresponding development of the FPID-model ] The I-V characteristic of a
typical sample as well as corresponding numerical simulations of the FPID- and the
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Figure 6.23: I-V measurement of a typical Al/ta-C/n-Si heterojunction (black circles) at room
temperature. The heterojunction exhibits a pronounced rectifying characteristic as well as similar
parasitic currents at reverse-bias and an inverse polarity compared to p-Si based samples. The
numerical simulation of the FPID-model (blue solid line) is in good agreement with the recorded
dataset while the NID-model simulation (red solid line) is only valid for high electric fields (n ~ 80).

NID-model are shown in figure [5.23

The heterojunctions exhibit a pronounced rectifying characteristic and similar para-
sitic currents at reverse-bias compared to p-Si based samples. However, in compari-
son to ta-C based MASS diodes on p-type silicon the diode of the ta-C/n-Si system
exhibits inverse polarity. Based on the similar composition of the two systems such
as an identical deposition technique, similar contact materials (mentioned in section
[6.30)), resistivity and orientation of the Si-substrates as well as similar parasitic
currents of both systems, the opposite polarities of the particular diodes can only
be linked to the type of doping regarding the Si-substrates. This is consistent with
the formation of Schottky barriers between the evaporated metal contacts and the
semiconducting substrates according to theory, described in section B.6l

In addition, the FPID-model can successfully be applied to these heterojunctions.
The corresponding characteristic is colored blue in figure and in good agree-
ment with the recorded dataset while the NID-model simulation (red solid line) is
again only valid for high electric fields (n ~ 80). As the measurements were only
recorded in a local measurement setup, the resulting parameters of the FP-resistor
obtained in forward-bias direction as well as a precise value of the serial resistor are
just estimates of the actual values. Nevertheless, at least the contact resistance can
be estimated to a value of several k) and the average barrier height of the FP-like
resistor with a value of ®pp = 0.245 is still valid.

Furthermore, the numerical simulation leads to a rough estimate of the correspond-
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ing fractional bias voltages as shown in figure [6.24] In the forward-bias region, the
major voltage drop is across the ta-C film, modeled by a Frenkel-Poole type resis-
tance. In addition, there are slight contributions from the ohmic contact resistance
(a few hundred Ohm) and the ideal Schottky diode. At high reverse-bias, almost
the complete voltage drop takes place across the Schottky diode (including parasitic
resistance Rpy).

Therefore the I-V characteristic of a MASS diode is governed by the (ideal) Schot-
tky barrier at reverse-bias and by Frenkel-Poole conduction of the disordered film
at forward-bias similar to the ta-C/p-Si system.
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Figure 6.24: Fractional bias voltages of an Al/ta-C/n-Si heterojunction at room temperature
based on the numerical simulation of the FPID-model in figure [6.23]
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6.4 SiC-based MASS diodes

In a further step, SiC based MASS heterostructures were investigated with respect
to their electrical properties. As described in section [2.3.2] most of the samples were
equipped with annealed Ni contacts. However, some of them were only equipped
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Figure 6.25: I-V characteristics of different back-contact materials on 6H silicon carbide sub-
strates on a linear (a) and and log scale (b). Ag back-contacts (colored green) exhibit very high
resistances of about 10% Q likely caused by the formation of Schottky barriers at the interface of
the SiC substrates. The as deposited pure Ni back contacts lead to a decrease in resistivity of
about three orders of magnitude. The subsequent annealing process eventually results in another
significant increase of conductivity of approximately four orders of magnitude and an almost per-
fect linear I-V characteristic (blue circles) indicating successful fabrication of very low resistive
ohmic Ni contacts on 6H-SiC in the range of about 20 €.

with as deposited Ni contacts or Ag back-contacts of comparable size. In order
to estimate the ohmic serial resistor of the particular heterojunctions of SiC based
systems, the contact resistances as well as the intrinsic resistance of the semicon-
ducting substrate were analyzed similar to the other MASS diode systems. The [-V
characteristics of all three different types of back-contacts are summarized in figure
0.20
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Ag back-contacts (colored green) exhibit very high resistances of about 10® € likely
caused by the formation of Schottky barriers at the interface of the SiC substrates
despite their low resistivity of just 0.05—0.1 Qcm. As a result, these kind of contacts
interfere significantly with the original I-V characteristic of the heterojunction and
cannot be entirely corrected by the SMU using a remote measurement setup as the
internal resistance of the SMU is in the same order of magnitude.

On the other hand, the evaporation of pure Ni back contacts onto the back-side of
the SiC-substrates, as described in section 2.3.2] lead to a decrease in resistivity of
about three orders of magnitude and an I-V characteristic (black squares) closer to
ohmic conduction. The subsequent annealing process eventually results in another
significant increase of conductivity of approximately four orders of magnitude and
an almost perfect linear I-V characteristic (blue circles) indicating successful fabri-
cation of very low resistive ohmic Ni contacts on 6H-SiC. The resulting resistances
are in the range of about 20 2 and primarily based on the resistivity of the SiC
substrates as well as the distance of the contact pads. Therefore, the contact resis-
tances are negligible.

6.4.1 t-BN/SiC heterostructures

Starting with samples containing t-BN thin-films, another type of MASS hetero-
junction is formed by Au/Cr/t-BN/SiC heterostructures. The corresponding image
of a typical I-V characteristic at room temperature is illustrated in figure [6.26h. The
heterojunctions show a pronounced diode characteristic extending over a bias volt-
age range of £20 V but exhibit a rectifying behavior of just one order of magnitude.
Based on similar structural properties (see section [5.3.6) compared to p-type silicon
based samples as well as on the successful application of the model to two different
MASS heterostructures in the previous section, the FPID-model was also applied to
the I-V-characteristic of the t-BN/SiC heterojunctions.

Comparing the recorded dataset (black circles) with the numerically simulated
FPID-model (red solid line), an almost perfect fit at forward-bias can be observed.
However, there is a progressively increasing discrepancy between the datasets and
the simulated I-V curves at reverse-bias exceeding —4 V. Based on the results of the
sections above, this bias-region of MASS heterojunctions is primarily dominated by
leakage currents of the diode and therefore affected by the composition and presence
of defects.

Therefore, the focal point of the analysis is shifted towards the impact of structural
properties regarding the SiC-surface as well as the interface region between SiC and
the grown thin-film onto the electrical properties of the diode component of the
ECD in order to correct the flaws of the conduction model in this bias-region.
According to the TEM-analysis in section £.3.0] the growth of the t-BN thin-film is
not direct with respect to the substrate surface due to the formation of an amor-
phous interlayer of about 5-7 nm thickness. This interlayer is primarily caused by
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Figure 6.26: (a) I-V characteristic of a typical Au/Cr/t-BN/SiC heterojunction at 300 K (black
circles). The numerical simulation of the FPID-model (red solid line) is in accordance with the
recorded data in forward-bias but deviates from the measured characteristic at reverse-bias voltages
exceeding —4 V. The discrepancy can be compensated by an additional voltage dependent Frenkel-
Poole like parasitic resistor resulting in a perfect fit of the numerical simulation (blue solid line) of
this extended FPID-model (eFPID model). The corresponding equivalent circuit diagram is shown
in figure (b) Corresponding fractional bias voltage characteristics based on the numerical
simulation of the eFPID-model.
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the sputter-cleaning process using Ar-ions prior to the actual thin-film-growth. In
addition, the performed SRIM-calculations indicate implantations of B- and N-ions
into the first few nanometers of the amorphous SiC surface during the deposition
process. As a result, the amorphous interlayer exhibits a large number of defect
states as well as additional free-charge carriers or even additional doping centers
inside an already highly conductive SiC material.

Therefore, the presence of an additional serial resistor accompanied by a significant
voltage drop can be ruled out. Instead, the assumption of increased leakage currents

Ree, eFPID-model

D |— AS film -
L

Figure 6.27: Equivalent circuit diagram of the extended Frenkel-Poole and ideal diode model
(eFPID-model): The serial arrangement of an ideal Schottky diode, a Frenkel-Poole like resistor
Rpp; and an ohmic resistor Rg is identical to the FPID-model (figure [G.10). In order to emulate
the increased and exponentially increasing leakage currents in several MASS heterostructures, an
additional voltage dependent Frenkel-Poole like parasitic resistor Rppo has been added to the
model based on the amorphous character and the high defect density of the interlayer according
to TEM-analyses. Furthermore, the original parasitic resistor Rp; is still maintained in order to
represent the ohmic leakage currents inside the depletion region of the crystalline substrate.

of the diode is more reasonable and represented in the corresponding equivalent cir-
cuit diagram (see figure [0.27]) by an additional leakage resistor arranged parallel to
the diode.

Based on the amorphous structure of this region and a high defect density ac-
companied by the shape of the exponential characteristic of the heterojunction at
reverse-bias (see figure[6.26]) similar to a thermally activated conduction mechanism,
the leakage of the diode is approximated by another voltage dependent resistor Rgpo
with Frenkel-Poole like conduction according to equation 61l Due to the lack of
information regarding the precise composition and defect density inside the interface
region, the parameter ranges cannot be limited by preliminary analyses. However,
the thickness of this amorphous interlayer can directly be obtained from the corre-
sponding TEM-analyses of t-BN/SiC heterostuctures in section [£.3.0l
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Furthermore, the original parasitic resistor Rp; is still maintained in order to rep-
resent the ohmic leakage currents inside the depletion region of the crystalline sub-
strate. In this context, the effect of thick amorphous SiC layers covering some parts
of the original wafer surface according to the TEM analysis in sections and
(.31 can also not be determined as the efforts for an analysis of the whole contact
areas, e.g. using TEM-measurements, of each investigated sample are way out of
proportion.

Focusing on the numerical simulation of this extended Frenkel-Poole and ideal diode
model (eFPID-model), it is in very good agreement with the measured I-V charac-
teristic as illustrated by the blue solid line in figure[6.26h. Comparing the parameters
of the retained components of the whole device, all parameters of the diode and the
voltage dependent Frenkel-Poole resistor Rpp1, the dimension of the parasitic ohmic
leakage resistor Rp; as well as the ohmic serial resistor Rg have only been slightly
adjusted.

Again, the corresponding fractional bias voltages, displayed in figure [6.20b, provide
additional information about the voltage drop across the individual components of
the equivalent circuit diagram in figure as well as about the resulting impact
onto the I-V characteristic of the whole device at different bias voltages.

In the forward-bias region, the exponential increase of the I-V characteristic is al-
most entirely dominated by a Frenkel-Poole type resistor. Thus, in this region the
major voltage drop (=~ 90 — 95%) is across the t-BN film accompanied by a slight
contribution from the Schottky diode component at V' < 5 V. In addition, the
ohmic serial resistor is almost negligible compared to the t-BN thin-film due to the
low resistivity of the annealed Ni contacts as well as the highly doped SiC substrate
(a few Ohm each) and will only dominate at much higher electrical field intensities.
At reverse-bias, the percentage of voltage drop (= 40 — 45%) across the diode com-
ponents is significantly lower compared to MASS diodes based on ZnO as well as
p-type Si and is primarily caused by the increased leakage currents of the Schottky
diode. As a result, the highly resistive t-BN thin-film provides also a significant
contribution of about 55-60 % at reverse-bias voltages. In this context, the voltage
drop across both components will most likely reach saturation limits around 50 %
for much higher applied electrical fields.

Therefore, the I-V characteristic of a Au/Cr/t-BN/SiC heterojunction is governed
by the one-sided p-n junction and the corresponding leakage currents at reverse-bias
as well as by Frenkel-Poole conduction of the disordered thin-film at forward-bias.
The transition between these two regions of the diode is rather abrupt around zero-
bias and similar to the ta-C/p-Si system (see e.g. figure [6.17]).

Finally, temperature dependent I-V measurements in the range of 20 K-300 K were
performed in order to verify the validity of the eFPID-model. The I-V character-
istics of a typical Au/Cr/t-BN/SiC heterojunction (colored circles) as well as the
corresponding numerical simulation (solid lines of the same colors) are shown in
figure [628h. All recorded I-V characteristics exhibit a pronounced rectifying char-
acteristic, even down to temperatures of just 20 K. Below a temperature of 60 K,
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Figure 6.28: (a) Temperature dependent I-V measurements of a typical Au/Cr/t-BN/SiC het-
erojunction (colored circles). All recorded I-V characteristics (colored circles) exhibit a pronounced
rectifying characteristic. The numerical simulations of the eFPID-model (colored solid lines) are
in very good agreement with the recorded datasets down to a temperature of about 220 K-200 K.
At lower temperatures, the simulations start to deviate progressively from the recorded datasets
with decreasing temperature due to the arising residual conductivity of the t-BN thin-film.

(b) Comparison of fractional bias voltages at different temperatures of 300 K, 260 K and 220 K
based on the corresponding numerical simulations of the eFPID-model.
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the resistances dominating the characteristics especially at high electrical fields such
as Rg as well as Rp; and Rppsy increase considerably by several orders of magnitude
up to values of about 1-10° . Similar to the other systems, this behavior is most
likely caused by the semiconducting substrate.

Focusing on the numerical simulations of the eFPID-model, the calculated datasets
are in very good agreement with the recorded I-V measurements. In particular, the
reverse-bias direction of the I-V characteristics is suitably described by the eFPID-
model at reverse-bias with respect to the temperature dependence in addition to the
appropriate simulation of the voltage dependent leakage currents of each tempera-
ture step. Therefore, the predicted presence of a second Frenkel-Poole like resistor
dominating at reverse-bias is in fact a reasonable assumption. Similar to the systems
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Figure 6.29: Arrhenius-plot regarding the conductivity oq of the t-BN thin-films inside t-BN/SiC
heterostructures extracted from the numerical simulation data in figure Again, oy exhibits
a temperature dependence proportional to exp(1/T) but the corresponding values are about one
order of magnitude lower compared to the t-BN reference samples.

investigated before, the corresponding conductivity of the t-BN thin-film, extracted
from the numerical simulation data, also exhibits a temperature dependence propor-
tional to exp(1/T) as shown in figure but the corresponding values are about
one order of magnitude lower compared to the t-BN reference samples coincidentally
matching the difference of original substrate resistances.

At lower temperatures between 200 K and 180 K the simulations start to deviate
from the recorded datasets in a low forward-bias range of 0 V -5 V underestimat-
ing the actual current of the samples. Furthermore, the discrepancies between the
simulation and the recorded I-V characteristics become more pronounced at lower
temperatures. This discrepancies primarily increases at lower electric fields which
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are dominated by the Frenkel-Poole like conduction mechanism of the grown thin-
film according to the fractional bias voltages in figure [6.26b. Again, these results are
in accordance with the emergence of residual conductivity inside the t-BN thin-films
as shown in section based on t-BN reference samples.

In addition, the comparison of fractional bias voltage characteristics at different tem-
peratures of 300 K, 260 K and 220 K is shown in figure and provides further
information about the effect of different temperatures on the individual components
inside the MASS diode structure.

At these temperatures, the characteristics of all components are much alike and
differ only by a few percent and shape around zero-bias. In more detail, the shift
towards a complete voltage drop across the t-BN thin-film becomes more smooth
in forward-bias direction. In addition, a slight contribution of a few percent from
the ohmic serial resistor arises at high electric fields at around 260 K. In contrast,
the shift towards a voltage drop across the diode components becomes more abrupt
at lower temperatures and the saturation limits of the voltage drops across both
components are almost reached at low electric field.

However, around 260 K the characteristic differs from the predicted trend of tem-
perature dependence at reverse-bias and intersects the fractional bias characteristic
of 220 K around zero-bias. This is most likely caused by the rather complex inter-
ference of four individual components in this bias-region all exhibiting different or
even opposing temperature dependencies.

In principle, the observed shift in fractional bias voltages is still caused by the differ-
ent temperature dependencies between the Frenkel-Poole dominated t-BN thin-film
and the depletion region inside the semiconducting substrate including all present
leakage effects.
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6.4.2 ta-C/SiC heterostructures
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Figure 6.30: (a) I-V characteristic of a typical Au/Cr/ta-C/SiC heterojunction at room temper-
ature. The numerical simulation of the eFPID-model (blue solid line) is in very good agreement
with the recorded datasets (black circles). The discrepancy of the FPID-model (red solid line)
at reverse-bias is very similar to the t-BN based system and also progressively increasing with
the applied bias voltage. (b) Corresponding fractional bias voltage characteristics based on the
numerical simulation of the eFPID-model.
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Based on the TEM-analysis in section (537 the ta-C/SiC system exhibits very
similar layered structure compared to t-BN/SiC heterostructures. Therefore, the
eFPID-model according to figure was also applied to the I-V characteristics of
typical Au/Cr/ta-C/SiC heterojunctions at room temperature as shown in figure
[630h. The rectifying effect of the MASS diode has a value of about two orders
of magnitude and is therefore considerably larger than in SiC based heterojunc-
tions containing a t-BN thin-film. Furthermore, the leakage current of the diode
as well as the conductivity at forward-bias are significantly higher in ta-C based
samples compared to the t-BN/SiC system. In detail, the conductivity at reverse-
bias is increased by a factor of about 20 while the conductivity of the ta-C/SiC
heterostructures at forward-bias is even approximately 200 times higher compared
to the t-BN/SiC system.

Nevertheless, the numerical simulation of the eFPID-model (blue solid line) is still
in very good agreement with the recorded datasets (black circles) in figure [G.30h. In
addition, a numerical simulation of the FPID-model was also performed for compar-
ison reasons and is illustrated by the red solid line in figure [.30h. The discrepancy
at reverse-bias is very similar to the t-BN based system and also progressively in-
creasing with the applied bias voltage. Except for the additional voltage dependent
leakage resistor Rppsy, the corresponding parameters of the remaining individual com-
ponents regarding the equivalent circuits of the FPID- as well as the eFPID-model
are almost identical, similar to the t-BN/SiC system, supporting the assumption
of similar structural and electrical properties. The interaction of the individual
components is analyzed on the basis of the corresponding fractional bias voltage
characteristics shown in figure [6.30b.

At forward-bias, the major voltage drop takes place across the Frenkel-Poole like
resistor Rpp; (= 90 %) accompanied by slight contributions from the diode compo-
nents (< 10 %). In this context, the small bulge around zero-bias is mainly caused
by the complex interference of four different resistors with significant contribution
percentages. However, based on the higher conductivity of ta-C compared to t-BN
and the resulting more pronounced exponential increase of the corresponding I-V
characteristic, a slight contribution of the ohmic serial resistor Rg arises at around
6 V and increases progressively at higher electric fields at the expense of the Frenkel-
Poole like resistor. In addition, as the Schottky diodes of both SiC based systems
are supposedly almost identical due to their structural properties obtained from
TEM-analyses and the identically processed Au/Cr top-contacts, the higher con-
ductivity of ta-C compared to t-BN also leads to a reduced contribution from the
Frenkel-Poole resistor of the grown thin-film at reverse-bias. As a result, the voltage
drop across the diode components is increased leading to enhanced currents with
respect to the total bias voltages of the two systems. Therefore, the reverse-bias
region of the MASS diode is dominated by the diode components but still exhibits a
significant contribution from the ta-C thin-film and the saturation limits of ~ 70 %
(diode) and ~ 30 % (Rpp1) are already reached at low bias voltages around 2 V.
In addition, the leakage current of the whole device can also be affected by slight
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variations in the electrical properties of the diode components themselves. In this
context, the implantation of carbon-ions instead of boron and nitrogen into the sput-
tered SiC-surface might result in a slight variation of stoichiometry or differences in
doping levels compared to t-BN/SiC heterostructures and therefore may also lead to
changes regarding the leakage current of the diode. In addition, slight differences in
sputter-yields and straggling effects between the particular types of deposited ions
according to sections and [0.3.7 as well as the arrangement of the implanted
ions inside the amorphous SiC-matrix might also influence the electrical properties
of the diode component. Due to the lack of suitable analysis techniques, these effects
could not be examined during this thesis.

The validity of the eFPID-model and the individual components within were once
again verified using additional temperature dependent measurements in the range
of 20 K-300 K. The corresponding I-V characteristics of a typical Au/Cr/ta-C/SiC
MASS diode are shown in figure [6.3Th. The numerical simulations (colored solid
lines) are in very good agreement with the recorded datasets (colored circles) down
to a temperature of about 160 K. Again, the corresponding conductivity of the ta-C
thin-film inside the ta-C/SiC heterostructures, extracted from the numerical sim-
ulation data, also exhibits a temperature dependence proportional to exp(1/T) as
shown in figure However, compared to the t-BN/SiC system, the correspond-
ing values are even lower and differ by about two orders of magnitude from those of
ta-C reference samples.

At lower temperatures, the simulations start to differ from the I-V measurements
especially in the forward-bias region dominated by Frenkel-Poole conduction of the
ta-C thin-film. Similar to all MASS diodes investigated before, the actual cur-
rent values of the recorded I-V characteristics are underestimated by the calculated
datasets of the eFPID-model. In contrast, the reverse-bias region of the heterojunc-
tion can be approximated in an appropriate way except for very low electric fields.
As the arising discrepancies as well as the corresponding temperature ranges are
consistent with the results obtained from ta-C reference sample and from ta-C/Si
heterojunctions, the failure of the eFPID-model is once more primarily related to
the residual conductivity of the grown ta-C thin-film.

Finally, the comparison of fractional bias voltage characteristics at different temper-
atures of 300 K, 260 K and 220 K is shown in figure and provides additional
information about the temperature dependencies of the individual components of
the MASS heterojunction. In general, the contributions of the diode components
become more dominant with decreasing temperatures exclusively at the expense of
the Frenkel-Poole like resistor of the ta-C thin-film. As a result, the voltage de-
pendent transition area completely shifts from the reverse- towards the forward-bias
region of the characteristic. Therefore, the fractional bias percentages become al-
most static at reverse-bias and successively converge towards a constant ratio of
fractional bias voltages at low temperatures with corresponding saturation limits at
high electric fields of about 75 % and 25 %, respectively. In forward-bias direction,
on the other hand, the increase of contributions related to the grown thin-film be-
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Figure 6.31: (a) Temperature dependent I-V measurements of a typical Au/Cr/ta-C/SiC het-
erojunction. The numerical simulations of the eFPID-model (colored solid lines) are in very good
agreement with the recorded datasets down to a temperature of about 160 K. At lower temper-
atures, the simulations start to differ from the I-V measurements especially in the forward-bias
region dominated by Frenkel-Poole like conduction due to the residual conductivity of the ta-C
thin-film. (b) Comparison of fractional bias voltage characteristics at different temperatures of
300 K, 260 K and 220 K based on the corresponding numerical simulations of the eFPID-model.
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Figure 6.32: Arrhenius-plot regarding the conductivity oo of the ta-C thin-films inside ta-C/SiC
heterostructures extracted from the numerical simulation data in figure The temperature
dependence is proportional to exp(1/T) and the values differ by about two orders of magnitude
from those of ta-C reference samples.

come less distinct at lower temperatures and a contribution from the ohmic serial
resistor additionally arises at higher electric fields indicating a significant voltage
drop across the SiC substrate.



166 Electrical characterization

6.4.3 The effect of Cu contaminants

Similar to the reference samples analyzed in section B.1.3] also a few SiC based het-
erostructures are partially contaminated by a small amount of Cu. The resulting I-V
characteristic as well as the corresponding fractional bias voltages are exemplarily
shown on the basis of a Au/Cr/t-BN/SiC heterojunction in figure The most
significant difference compared to I-V characteristics of typical t-BN/SiC samples
(see figure [0.26]) are the significantly elevated current-levels at low and mid-level
electric fields in forward-bias indicating a considerable increase in conductivity of
the t-BN thin-film. The reverse-bias direction, in contrast, exhibits a very similar
voltage dependent conductivityﬁ. In addition, the numerical simulation of the ex-
tended FPID-model (gray solid line) is still in very good agreement with the recorded
dataset. In this context, based on the previous results of Cu-contaminated reference
samples, only the curvature parameter ¢ as well as the conductivity of the t-BN
thin-film have been varied significantly whereas the average barrier height was kept
constant. Furthermore, the remaining parameters such as parasitic and serial ohmic
resistors as well as diode parameters are very similar to typical t-BN/SiC hetero-
junctions.

The effects of Cu-contaminants can additionally be visualized using the correspond-
ing fractional bias voltage characteristics in figure [6.33b.

In comparison with typical heterojunctions of the t-BN/SiC system (see figure [6.20]),
the voltage drop across the t-BN thin-film is considerably reduced due to the in-
creased conductivity of the t-BN thin-film. As a result, contributions from the diode
components at reverse-bias as well as the ohmic serial resistor at forward-bias be-
come significantly more dominant. At reverse-bias, almost the entire voltage drop
takes place across the diode components accompanied by a slight and progressively
increasing contribution from the t-BN thin-film. In this context, the ratio is even
more pronounced than inside typical ta-C/SiC heterojunctions (see figure [6.30]) also
indicating a high conductive thin-film. At forward-bias, the contribution from the
t-BN thin-film is limited to lower electric fields and superseded by the ohmic serial-
resistor at higher field intensities.

Nevertheless, in summary, the eFPID-model is still valid for Cu-contaminated het-
erojunctions and the shifts of fractional bias voltages can entirely be linked to a
electrical modification of the grown thin-film.

5Note: This sample exhibits a significantly lower film thickness as well as larger contact areas
compared to the heterojunction shown in figures [6.26] and [6.28]
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Figure 6.33: (a) I-V characteristic of a typical Au/Cr/t-BN/SiC heterojunction containing Cu-
contaminants (open circles, taken from reference [150]). (a) The most significant difference com-
pared to typical t-BN/SiC samples (see figure [6.20)) are the significantly elevated current-levels at
low and mid-level electric fields in forward-bias indicating a considerable increase in conductivity
of the t-BN thin-film. Again, the numerical simulation (blue solid line) of the eFPID-model is in
very good agreement with the recorded data while the calculated characteristic of the FPID-model
deviates from the recorded measurement at higher reverse-bias voltages. (b) Corresponding frac-
tional bias voltage characteristics based on the numerical simulation of the eFPID-model. The
contributions from the diode components at reverse-bias as well as the ohmic serial resistor at
forward-bias become significantly more dominant while the contribution from the t-BN thin-film
is limited to lower electric fields at forward-bias.
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6.5 Additional MASS heterostructures

In another step, additional heterojunctions based on the ta-C/ZnO as well as the
t-BN/p-Si system have been analyzed during this work. Due to the absence of
suitable temperature dependent I-V measurements in remote configuration, both
MASS diode systems were only investigated with respect to their conformity with
the developed conduction models.

6.5.1 t-BN/p-Si heterostructures

Starting with the t-BN/p-Si system, all samples were investigated using a local
measurement setup and large area Ag back-contacts. However, they exhibit a pro-
nounced rectifying characteristic of about two orders of magnitude and an identical
polarity compared to the ta-C/p-Si system. The I-V characteristic of a typical
Au/Cr/t-BN/p-Si heterostructure (black circles) is shown in figure In compar-
ison to ta-C based samples on the same substrates the t-BN/p-Si system exhibits
relatively large leakage currents. Based on the TEM-analysis in section £.3.4] the
structural properties are very similar to ta-C/p-Si heterostructures in terms of the
layered structure as well as the implantation effects into the silicon substrate. Nev-
ertheless, they are also comparable to t-BN/SiC based MASS diodes with respect
to the sequence of layers. Therefore, numerical simulations of the FPID- (red solid
line) as well as the eFPID-model (blue solid line) were performed. Both of them are
also illustrated in figure [6.34]

The eFPID-model is in good agreement with the recorded data whereas the applica-
tion of the FPID-model leads to the well-known discrepancies at reverse-bias of the
heterojunction. Furthermore, the serial resistor of both conduction models is in the
range of just a few k{2 and therefore very similar to the ta-C/p-Si system indicating
a low resistive Ag back-contact.

The corresponding fractional bias voltages of the eFPID-simulation are also shown
in figure 034l The forward-bias region is primarily dominated by Frenkel-Poole
like conduction of the t-BN thin-film accompanied by a slight contribution from
the diode components low electric fields. In addition, there is also a progressively
increasing voltage drop across the ohmic serial resistor at higher electric fields. In
contrast, the reverse-bias region of the heterojunction is dominated by the diode
components with a maximum of nearly 100 % voltage drop around zero-bias. How-
ever, due to the high leakage current of the diode and a high resistivity of the t-BN
thin-film, an additional contribution of the FP-resistor related to the t-BN thin-film
arises at reverse-bias and increases progressively at increasing field-intensity.
Comparing the electrical properties of the two p-Si based heterojunctions, both of
them can be well described by the simpler FPID-model in forward-bias direction
and at low electric-fields at reverse-bias. The increased leakage current of the Schot-
tky diode, on the other hand, can only be explained by the eFPID-model despite
similar structural properties overall. Regarding the growth process of the thin-films,
described in sections .34 and B.3.5] this effect can be caused by the different com-
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Figure 6.34: (a) I-V measurement (black circles) of a typical Au/Cr/t-BN/p-Si heterostructure
at room temperature. The numerical simulations of the eFPID-model (blue solid line) are in good
agreement with the recorded data whereas the application of the FPID-model (red solid line) leads
to the well-known discrepancies at reverse-bias of the heterojunction. This is in accordance with
the structural properties obtained from the TEM-analysis of the t-BN/p-Si system.

(b) Corresponding fractional bias voltage characteristics of the individual components with respect
to the eFPID-model simulation.

position of the intermixing layer as it contains B- and N-ion instead of C. As boron
and nitrogen (especially boron) are frequently used in the doping process of silicon
devices based on ion-implantation, the implantation of these ions might lead to the
formation of a significant number of additional acceptor- or donor-states inside the



170 Electrical characterization

silicon surface which would result in a weakening of the Schottky barrier stabil-
ity. Carbon-ions, in contrast, will likely form some kind of Si—-C compound or only
slightly increase the conductivity of the surface layer. In addition, the turbostratic
and therefore ”semi- or micro-crystalline” character of the t-BN thin-film compared
to the amorphous structure of ta-C might also result in a different interface forma-
tion with respect to the sputtered amorphous surface layer of the semiconducting
substrate interfering with the original barrier stability.

6.5.2 ta-C/ZnO heterostructures

Another MASS diode system is formed by Au/Cr/ta-C/ZnO heterostructures. The
[-V characteristic of a typical sample is shown in figure In comparison to
the t-BN/ZnO system in section [.2], the rectifying characteristic is less pronounced
accompanied by significantly increased leakage currents as well as increased overall
conductivity. However, numerical simulations of the FPID-conduction model are in
good agreement with the recorded datasets. An appropriate simulation is illustrated
by the blue solid line in figure Due to the lack of an appropriate TEM-analysis
of the ta-C/ZnO system, the underlying structural properties can only be derived
from the results of the t-BN/ZnO system. Therefore, a direct growth of the ta-C
thin-film without the formation of an additional amorphous interlayer is predicted.
Furthermore, an intermixing layer will likely be formed by the implanted carbon-
ions into the ZnO crystal during deposition.

Based on the results of the previous sections, ta-C exhibits a much lower resistivity
compared to t-BN. Therefore, the voltage drop across a similar diode component
of a heterojunction containing ZnO would be increased compared to the t-BN/ZnO
system leading to a corresponding increase in current. In addition, the leakage of
the diode might also be affected by the different composition of the intermixing layer
due to the incorporation of carbon instead of boron and nitrogen.

In this context, the voltage drop across the individual components of the hetero-
junction is analyzed in more detail on the basis of the corresponding fractional bias
voltage characteristics shown in figure [6.35 The forward-bias region is primarily
dominated by the Frenkel-Poole resistor but also exhibits a progressively increasing
contribution from the serial resistor caused by the ZnO substrate. Compared to
t-BN based samples, the contribution of the serial resistor Rg is much stronger and
even present at higher voltages at reverse-bias.

For V' < 2.5 V at reverse-bias, the characteristic is also primarily dominated by
the FP-resistor. However, the voltage drop progressively shifts towards the diode
components with increasing field intensity. At high electric fields in the reverse-
bias region, almost the entire voltage drop (> 80 %) takes place across the diode
components accompanied by a slight contribution from the FP-resistor of the thin-
film (=~ 20 %). Even though the corresponding electric fields are significantly lower
compared to the t-BN/ZnO system, the fractional bias voltage characteristic of ta-
C/ZnO samples at reverse-bias is almost identical in a qualitative way indicating a
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Figure 6.35: (a) I-V characteristic of a typical Au/Cr/ta-C/ZnO heterostructure at room tem-
perature. Compared to t-BN/ZnO samples in section [6:2] the rectifying characteristic is less
pronounced accompanied by significantly increased leakage currents as well as overall conductiv-
ity. However, numerical simulations of the FPID-conduction model are in good agreement with
the recorded datasets. (b) Corresponding fractional bias voltage characteristics of the individual
components with respect to the FPID-model simulation.

very similar conduction mechanism. Moreover, the distinct shift of the fractional
bias voltage percentage towards the serial resistor at forward-bias is primarily caused
by the large resistivity of the ZnO substrate interfering with the highly voltage de-
pendent conductivity of the ta-C thin-film. As a result, the recorded datasets are
still in accordance with the predicted characteristic of the FPID-model.
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6.6 Summary

As predicted on the basis of the structural characterization results obtained from
TEM-analyses in chapter [ the electrical properties of turbostratic boron nitride
(t-BN) as well as tetrahedral amorphous carbon (ta-C) thin-films are dominated
by a Frenkel-Poole like conduction mechanism in all grown heterostructures of this
work.

Due to the imperfections of the original one-dimensional Frenkel-Poole conduction
model, described in section B3] the Frenkel-Poole model (FP-model) of this work
was improved in order to cover additional conduction mechanisms dominating at
low electric fields and temperatures as well as possibly present leakage currents of
the thin-film matrices. As a result, the symmetric characteristics of the thin-films
can be well described by a parallel arrangement of a Frenkel-Poole like resistor Rgp,
dominating the characteristic at higher temperatures and electric fields, and a par-
asitic resistor Rp which may also include contributions from variable range hopping
and/or tunneling at lower electric fields and temperatures. Therefore, Rp has been
approximated by an ohmic resistor in first-order.

Furthermore, the static parameter of conductivity oy has been replaced by a tem-
perature dependent one and a curvature factor 1/¢ has been added accompanying
the dielectric constant €, of the original FP-formula in order to sustain the dielectric
properties while describing the I-V characteristics more accurately.

The corresponding numerical simulations of this uniform FP-model, shown in fig-
ure and based on equation [6], are in very good agreement with the recorded
datasets down to temperatures of 240 K for t-BN and 200 K for ta-C reference
samples on metallic n-type silicon. Below those temperatures, the simulations start
to differ from the actual measurements as the dominating conduction mechanism
inside the thin-films changes accompanied by a progressive deviation of temperature
dependencies from the predicted trend regarding the free parameters of the model
as illustrated by corresponding Arrhenius-plots of each system in figures and
Finally, the temperature dependencies vanish almost completely below temper-
atures of about 125 K for t-BN and 100 K for ta-C (less pronounced) leading to the
formation of "plateau”-regions of residual conductivity of the thin-films similar to a
tunneling conduction mechanism described in section B.7]

Based on these results, the electrical properties of MASS heterostructures on real
semiconducting substrates were investigated. All of these systems exhibit pro-
nounced rectifying characteristics and possess high stability with respect to elec-
tric field intensities across the deposited thin-films in the range of approximately
1-10" V/em. However, the characteristics also exhibit unusually high turn-on volt-
ages and apparently high ideality factors of 30-200 in terms of the Shockley theory
of diode characteristics, described in section B3l In this context, the values were
obtained by using numerical simulations of a non-ideal diode model (NID-model) in
figure [6.13]
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Due to almost identical structural properties of each type of grown thin-film regard-
less of composition of the semiconducting substrate, this unusual characteristics
could generally be linked to the presence of Frenkel-Poole like conduction mecha-
nisms dominating at forward-bias of all MASS diode systems.

In addition, the rectifying behavior of the heterostructures has been linked to the
presence of an one-sided p-n junction with reasonable Schottky barrier heights be-
tween the top-metal contacts and the particular semiconducting substrate. This
was exemplarily illustrated on the basis of silicon based MASS diodes in section
as a change of doping type exclusively results in an inversion of polarity regarding
the diode characteristic while the remaining parameters such as resistivity, satura-
tion currents and curvature remain almost constant. Moreover, the Schottky barrier
height depends on the composition of the evaporated top-contacts and correspond-
ing work-functions with respect to the semiconducting substrates.

Furthermore, preliminary analyses of different back-contact materials on all semi-
conducting substrates provide additional information about present contact and
intrinsic substrate resistances in each MASS diode system as well as possible inter-
ferences with the actual characteristic of the heterojunction. Therefore, the recorded
dataset of all heterojunctions in this thesis can basically be well described by a se-
rial arrangement of an ideal Schottky diode D (n = 1), a voltage dependent resistor
exhibiting Frenkel-Poole like conduction Rpp; and an additional ohmic resistor Rg
covering present contact and substrate resistances. In this context, the correspond-
ing leakage currents of the diode component have been linked to the structural
properties of the interface region between crystalline semiconductor surface and the
grown thin-films obtained from TEM-analyses in chapter il As a result, the leakage
of the diode is approximated by a parasitic ohmic resistor Rp; in order to represent
the ohmic leakage currents inside the depletion region of the crystalline substrate
and an additional Frenkel-Poole like resistor Rpps in case of a present amorphous
interlayer interfering with the original heterojunction.

The corresponding equivalent circuit diagram of this extended Frenkel-Poole and
ideal diode model (eFPID-model) is shown in figure [6.361 The resulting numerical
simulations of this general conduction model are in very good agreement with the
[-V characteristics of all investigated heterojunctions and were successfully applied
to a total of eight different MASS diode heterostructures (six of them shown in this
work). In this context, the effect of each part of the heterostructure on the electrical
properties of the resulting heterojunction diode characteristic can be analyzed with
respect to the applied bias voltage on the basis of fractional bias voltage character-
istics of the individual components regarding the eFPID-model.

Furthermore, the validity of the model as well as of the individual components
within have been verified by additional temperature dependent measurements and
corresponding numerical simulations. Deviations from the predicted characteristics
below temperatures in the range of 150 K—200 K, depending on the particular het-
erostructure compositions, are mainly caused by the residual conductivity of the
grown t-BN and ta-C thin-films as well as imperfections of the ohmic approxima-
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Figure 6.36: Equivalent circuit diagram of the extended Frenkel-Poole and ideal diode model
(eFPID-model): A serial arrangement of an ideal Schottky diode D (n = 1), a voltage dependent
resistor exhibiting Frenkel-Poole like conduction Rpp; and an additional ohmic resistor Rg covering
present contact and substrate resistances. Based on the structural properties of the interface region
between crystalline semiconductor surface and the grown thin-films obtained from TEM-analyses,
the leakage of the diode is approximated by a parasitic ohmic resistor Rp; in order to represent the
ohmic leakage currents inside the depletion region of the crystalline substrate and an additional
Frenkel-Poole like resistor Rppo in case of a present amorphous interlayer interfering with the
original heterojunction. The resulting numerical simulations of this general conduction model are
in very good agreement with the I-V characteristics of all investigated heterojunctions and were
successfully applied to a total of eight different MASS diode heterostructures.

tions regarding the I-V characteristics of leakage and serial resistors. Nevertheless,
the consistency of the conduction model was exemplarily illustrated on the basis of
Arrhenius-plots regarding the thin-film conductivity og and resulting temperature
dependencies proportional to exp(1/T) in various heterojunction systems.

In addition, the conductivity of the grown thin-films is considerably lowered by at
least one order of magnitude inside all MASS diode systems compared to the cor-
responding reference samples on metallic Si. Moreover, a comparison of thin-film
conductivity parameters oq of the different heterostructures of this work at room
temperature, extracted from corresponding numerical simulations and shown in ta-
ble [6.3] indicates some kind of correlation between the conductivity of the grown
thin-films and the original composition as well as resistivity of the original semicon-
ducting substrates. This is likely caused by the fabrication process of the MASS
heterostructures, in particular, by the growth process of the thin-film using the
MSIBD-technique. Based on the results of corresponding TEM-analyses in chapter
[l each heterostructure exhibits a rather thin layer of mixed atoms originating from
the deposited thin-film as well as from the substrate surface. Therefore, the for-
mation of intermixing layers accompanied by dynamic sputtering effects during the
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MASS thin-film substrate
diode conductivity | resistivity
system [S/m] [Qcm]
t-BN/n**-Si 0.05-0.2 0.005-0.01
t-BN/ZnO 0.00035 1000*
t-BN/SiC 0.01 0.005-0.01
ta-C/nt+-Si 1-10 0.005-0.01
ta-C/p-Si 0.1 10
ta-C/SiC 0.025 0.005-0.01

Table 6.3: Comparison of thin-film conductivity parameters oy of the different heterostructures
of this work at room temperature. *: estimated value based on I-V characteristics of contact
reference measurements.

deposition processes might affect the composition of the grown thin-films due to an
incorporation of dopant or substrate atoms from the original substrate. As a result,
the conductivity would increase. However, the effect would still be limited by the
solubility and related distribution of substrate atoms as well as related doping effects
inside the respective t-BN or ta-C matrix. Unfortunately, these assumptions can-
not be verified in the absence of an adequate sensitive analysis technique regarding
the exact composition on an atomic level and further detailed analyses of thin-film
composition are mandatory in order to improved the conduction models in future
experiments.

Finally, the effects of unintentional Cu-contaminants on the conduction mechanism
of the grown thin-films have also been covered in this thesis. As Cu contaminants
only lead to an increase in conductivity in the range of 3040 in ta-C as well as in
t-BN thin-films while the average barrier height is almost unaffected. Therefore, as
shown in sections and [6.4.3] the conduction models of this work are still valid
for small amounts of Cu-contaminants.

In summary, a generalized temperature dependent conduction model has been
developed for all grown MASS heterojunction diodes in the scope of thesis con-
sidering the structural properties derived from the results of performed TEM-
analyses of each particular heterostructure as well as the related electrical prop-
erties and corresponding temperature dependencies regarding the individual
components forming the heterojunction.
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Chapter 7
Photoresponse of MASS diodes

In addition to the temperature dependent electrical characterization in DC-mode
all MASS diode heterostructures were analyzed with respect to their photoresponse
properties as described in section using the setups described in detail in section
B4 As all fabricated heterojunction diodes exhibit a pronounced photosensitivity
and a variety of response characteristics when exposed to a light source, the main fo-
cus of this chapter is on the localization of its origin as well as on possible correlation
to the developed general conduction model.

7.1 Case studies of photoconductivity measure-
ments

Starting with the case studies of photoconductivity measurements using the simple
setup described in section .41l all types of heterostructures were illuminated for
10 s with a main spot-size of about 4 mm?. The remainder of the samples was
also exposed but at a much lower intensity. Based on the cathodo-luminescence
spectrum of the "white” LED (figure L11]), the maximum photon energy provided
by this setup has a value of about 2.76 eV.

7.1.1 Reference samples

As mentioned in section B.8], the origin of photoconductivity and response effects is
typically located inside the space-charge region of semiconductor-based heterojunc-
tions. Due to the high number of doping states inside the metallic silicon substrates
of the reference samples and the resulting absence of a real band-gap, a photore-
sponse is highly unlikely.

Therefore, the photo-sensitivity of the grown thin-films can be investigated on the
basis of ta-C and t-BN reference samples. Typical characteristics of the current as
a function of time for constant bias voltages are shown in figure [L.Th and b for both
types of reference samples. The points of irradiation are marked by the red dashed
lines. None of them showed any sign of a photoresponse.

177
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Figure 7.1: Case study photoconductivity measurements of typical t-BN (a) and ta-C (b) refer-
ence samples using a ”white” LED and the setup described in LZ.Jl The points of irradiation are
marked by the red dashed lines. None of them shows any sign of a phoresponse.

In theory, photoconductivity or photoresponse effects are basically caused by the
excitation of electrons and holes from the valence band and trapping states into the
conduction band of the semiconductor (see figure B3] in section B.8)). The absence
of any photon induced excitations regarding ta-C as well as t-BN thin-film reference
samples on metallic Si is mainly based on high number of defect states in the amor-
phous and doping centers inside the crystalline semiconductor.

In both materials, excited electrons and holes are almost instantly re-trapped by
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an adjacent defect center or doping atom in the surrounding area. Therefore, the
number of additional free charge carriers resulting from possible excitations near the
conduction- or valence band of the semiconductor is still within the noise level of
the recorded signal and cannot be detected.
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7.1.2 MASS heterojunctions

Based on the results of the reference samples, any significant photoresponses of
MASS heterojunction systems do not originate from the grown thin-films. There-
fore, the particular semiconducting substrate as well as related interface areas of
each MASS diode system are the only sources of emerging photo-currents during
the irradiation process. Furthermore, all investigated heterojunctions do not show
any significant photoresponses at forward-bias, but exhibit a pronounced increase
in photo-current during the irradiation-process at applied reverse-bias voltages indi-
cating absorption processes related to the diode components of the heterojunctions.
Typical photoconductivity measurements are exemplarily shown in figure on the
basis of the t-BN/ZnO as well as the t-BN/SiC system. At the beginning of the
irradiation process, the conductivity of the sample increases instantly (within the
time-resolution of the SMU of about 20 ms) followed by an additional but gradual
increase in the course of the irradiation. This effect can especially be observed for
an irradiation time of 100 s and most likely originates from thermal excitation due
to the proximity of the LED. The corresponding maximum of photo-current has a
value of up to 500 % compared to the equilibrium current prior to the exposure. As
soon as the LED is switched-off, the current drops abruptly down to one forth of
the maximum value followed by a slower decay rate on a much longer time-scale. In
this context, the whole decay-process of excited states can be described by a ternary
decay-function but only in terms of mathematics. Moreover, such kind of decay is
present in all MASS diode systems except of ta-C/p-Si heterostructures.

After exposure, all of them exhibit qualitative similar characteristics and correspond-
ing time constants 7; of the decay processes of approximately 0.5(3) s, 15(5) s and a
very long decay rate in the range of several hundred seconds. The resulting response
times of the particular systems are summarized in table[Z.Jl In terms of physics, the

MASS system 75 T T3
t-BN /ZnO 0.5(3) s | 15(5) s | 170(15) s
t-BN/SiC 0.4(2) s | 15(4) s | 625(42) s
ta-C/SiC 0.45(19) s | 14(3) s | 280(30) s
ta-C/p-Si <0.5(3) s - 180(25) s

Table 7.1: Time constants 7; obtained from case study photoconductivity measurements.

short decay times can be interpreted as two different relaxation processes of the free
charge carriers inside the system. Due to the applied bias, the unoccupied states
inside the valence band of the semiconductor can be reoccupied in a very short pe-
riod of time. Without any irradiation of the sample, the photocurrent between the
valence and the conduction band is disrupted almost instantly. Deep level defect
states (marked blue in figure BI3)), on the other hand, are reoccupied or depleted
at a considerable lower rate based on the limited number inside the interface region
and on a larger timescale as a the relaxation of this defect states is mainly based on
diffusion of electrons. Furthermore, the longest decay rate of these systems is in the
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Figure 7.2: Case study photoconductivity measurements of typical MASS diodes exemplarily
shown on the basis of the t-BN/ZnO (a) as well as the ta-C/SiC system (b) using a ”white”
LED and the setup described in LZ.Il All of them exhibit qualitative similar characteristics and
corresponding time constants 7; regarding the decay processes after exposure of approximately
0.5(3) s, 15(5) s and a very long decay rate in the range of several hundred seconds. The resulting
response times of the particular systems are summarized in table [Z.I

range of several hundred seconds and is most likely also caused by the thermal ex-
citation of the samples as a result of heating provided by the LED during exposure.
However, all of these conclusions are just circumstantial and cannot be verified us-
ing this simple setup and without any further detailed information in literature. In
comparison to the common” photoconductivity characteristics of MASS diodes in
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this work, the ta-C/p-Si system exhibits a different response. The I(t) characteristic
of a typical sample at a constant reverse bias of 1 V is shown in figure While
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Figure 7.3: Photoconductivity measurements of a ta-C/p-Si heterojunction using a ”white” LED
and the setup described in [£4.Jl The duration of the irradiation process is marked red and the
photoresponse right after irradiation is pronounced. The changes in current are instant in terms
of the limited time-resolution of 20 ms provided by the SMU.

the response of the I(t) characteristic in the form of an abrupt increase in current
is very similar to those of the rest of the MASS heterojunctions during the irradi-
ation, the change in current right after switching-off the LED is instantly in terms
of the limited time-resolution of 20 ms provided by the SMU. In order to analyze
these fast photoresponse processes inside the MASS heterojunctions, more precise
measurements were performed using the laser assisted time-resolved photoresponse
setup described in section and are discussed in section
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7.2 Time-resolved photoresponse measurements

In order to investigate the origin of photo-sensitivity of the MASS diode heterostruc-
tures and especially the corresponding decay rates of the excited states in more de-
tail, a much higher time resolution in the nanosecond range is required and provided
by the pulsed-laser based setup described in section 1.4.2l Based on the case study
results in section [ZI] reverse-bias voltages were applied to the investigated samples
during the measurements. In addition, due to the high sensitivity of the setup,
the photorespose at zero-bias was also analyzed for every sample. Due to the time
jitter of the laser, all recorded datasets shown in the following sections are based
on a mean value of 512 measurement sweeps. Nevertheless, compared to the case
study system, the time-resolved photoresponse measurement setup provides a much
more standardized analysis technique in terms of illuminated area, light intensity
and time-resolution of the recorded photoresponse signals.

In order to provide enough energy for excitations inside the particular semiconductor
substrate, the bang-gap energies of corresponding intrinsic ones are equal to an up-
per threshold wavelength of the incident laser beam. These values are summarized
in table [[2l Comparing these values to the available laser lines at 266 nm (equal

SC | band-gap [eV] | wavelength [nm)]
Zn0O 3.37 368
Si 1.17 1060
6H-SiC 3.0 413

Table 7.2: Corresponding wavelengths of semiconductor band-gaps.

to an energy of 4.67 eV) and 532 nm (with an energy of 2.33 eV), the green laser
line only provides a sufficient energy for the silicon substrates. However, in order
to generate a large number of photon induced free charge carriers inside the ZnO
as well as the SiC material, the corresponding samples have to be exposed to the
UV-laser line at 266 nm while the green line will likely not trigger any significant
photoresponse.

Furthermore, as also mentioned in section 4.2l the beam spot is about 1.5-2 mm
in diameter and the area of the evaporated top-contacts are fully illuminated during
the measurement. However, a significant percentage (=~ 25 %) of each light-pulse
is blocked by the Au layer of the top-contact (0.9 mm in diameter). Therefore,
the generated charge carriers likely have to travel relatively long distances inside
the substrate before being drained by the applied electric field beneath the contact
area. Furthermore, additional reflections at the interface regions of the transparent
grown thin-films might also contribute to the resulting photo-currents. As a result,
an identical illumination of two different MASS diode systems cannot be guaranteed.
However, the results of one particular system are reproducible.
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7.2.1 Au/Cr/ta-C/p-Si heterostructures

Starting with the time-resolved photoresponse measurements of Au/Cr/ta-C/p-Si
heterojunctions, the original setup of the green laser-line (8 ns pulses at 532 nm)
with an input impedance of 50 €2 and no additional adjustment circuits was used as
described in section [.4.2] figure

The resulting photoresponse characteristic of a typical sample at a reverse-bias of 4 V
and an averaging rate of 512 sweeps is shown in figure [[4l In order to visualize the
90:10 criteria of rise and decay process, the spectrum was normalized with respect to
the maximum photo current. The characteristic exhibits a fast rise time in the range
of about 30 ns while the decay time has a larger value of approximately 100 ns. The
exact values of the example at hand are listed inside the corresponding spectrum
and are increased by the averaging process due to time-jitter effects compared to a
single measurement (marked gray in figure [[4h). Furthermore, the characteristic
exhibits several signal artifacts in the form of ripples which are caused by deviations
between the two averaged signals of the actual photoresponse measurement and
the dark-current measurement but ultimately result from the subtraction process of
those two.

In addition, the photoresponse was investigated as a function of applied reverse-
bias voltage. For comparison reasons, the recorded spectra were normalized with
respect to the maximum photoresponse at a reverse-bias voltage of 4 V and the zero
point of time is shifted towards the point of maximum photo current. The resulting
characteristics are shown in figure[Z.4b. All of them exhibit fast rise and decay times
but increase slightly at lower bias voltages as the effects of time jittering become
more significant. As a result, the signal artifacts originating from the induction
processes of the laser setup become more distinct at lower bias voltages as the
signal to noise ratio decreases. Compared to a reverse-bias voltage of 4 V, primarily
dominated by the diode component of the heterojunction according to section .3,
the photo-current signal decreases significantly at lower bias voltages and reaches a
value of just 5 % of the original signal at zero-bias. Therefore, the photo-current
of Au/Cr/ta-C/p-Si heterojunctions can be significantly increased by applying high
electric fields at reverse-bias in order to drain the generated charge-carriers. As
a result, an absorption of photons primarily in the depletion layer of the MASS
heterojunction is a reasonable assumption and in good agreement with theory (see

section B.8).
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Figure 7.4: Time resolved photoresponse measurements of a typical Au/Cr/ta-C/p-Si hetero-
junction using the green laser-line (8 ns pulses at 532 nm). (a) The normalized photoresponse
characteristic exhibits a fast rise time in the range of about 30 ns while the decay time has a larger
value of approximately 100 ns. Both are increased by the averaging process due to time jitter
effects compared to a single measurement (gray). (b) Photoresponse characteristics as a function
of applied reverse-bias voltage: The maximum photo-current is voltage dependent indicating an
absorption inside the depletion layer of the heterojunction located inside the silicon substrate.
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7.2.2 Au/Cr/t-BN/SiC heterostructures

In a next step, Au/Cr/t-BN/SiC heterojunctions were analyzed using the UV-line
setup (5 ns pulses at 266 nm, marked gray in figure L.12)) in order to provide enough
energy to overcome the band-gap of SiC. In addition, all samples were also exposed
to the green laser line for comparison reasons. The corresponding photoresponses
of a typical Au/Cr/t-BN/SiC heterojunction are shown in figure [0 At a reverse-
bias voltage of 5 V, the resulting characteristic exhibits fast rise and decay times
of about 12 ns and 18.5 ns. Again, these values are slightly increased due to time
jitter effects and listed in more detail within the plot. Furthermore, the oscilla-
tion artifacts resulting from the subtraction of the reference signal are significantly
more pronounced leading to a false measurement of the decay times. Therefore, a
more accurate value can be estimated using an exponential fit of the decay process.
This leads to a more realistic decay constant of 7 ~ 55(5) ns. Furthermore, after
exposing the sample to the green laser line (532 nm) at the same applied voltage,
the corresponding characteristic (teal solid line in figure [.5h) does not show any
significant sign of a photoresponse (even at an input impedance of 1 M(2) which is
in accordance with the predicted transparency of SiC regarding visible light.

In addition, the photoresponse was also analyzed as a function of applied bias volt-
age. The results are illustrated in figure [LOb. Similar to the ta-C/p-Si based
heterojunctions, the photo-current signal is maximal for high electric fields at re-
verse bias and therefore also primarily dominated by the diode components of the
heterojunction (see section [LAT]). Again, the relative photo-current decreases sig-
nificantly at lower bias voltages reaching a value of about 12 % of the original signal
at zero-bias. Furthermore, the oscillation artifacts become less distinct accompa-
nied by an unexpected decrease of the decay time constants. Both of them might
be correlated to each other or be caused by thermal effects at higher bias voltages
and corresponding increased photo-currents. One way or another, the precise cause
of these effects could not be determined during the scope of this thesis.
Nevertheless, based on the obtained results, the photo-current of Au/Cr/t-BN/SiC
heterojunctions can also be significantly increased by applying high electric fields
at reverse-bias in order to drain the generated charge-carriers and the absorption of
photons is primarily located in the depletion layer of the MASS heterojunction.
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Figure 7.5: Time resolved photoresponse measurements of a typical Au/Cr/t-BN/SiC hetero-
junction using the UV laser-line setup (5 ns pulses at 266 nm). (a) The normalized photoresponse
characteristic exhibits a fast rise time in the range of about 12 ns while the decay time has a
larger value of approximately 55 ns. (b) Photoresponse characteristics as a function of applied
reverse-bias voltage: The maximum photo-current is voltage dependent indicating again an ab-
sorption inside the depletion layer of the heterojunction located inside the SiC substrate similar
to the ta-C/p-Si MASS diode systems.
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7.2.3 Au/Cr/ta-C/SiC heterostructures

Furthermore, Au/Cr/ta-C/SiC heterojunctions were investigated. The correspond-
ing characteristics of a typical Au/Cr/ta-C/SiC heterojunction are illustrated in
figure and the time-constants are listed within. Compared to the t-BN/SiC sys-
tem, the normalized photoresponse characteristics are very similar including shape,
voltage dependency of maximum photo-currents, rise and decay times as well as the
decay constant of 7 ~ 84(6) ns estimated using an exponential fit in order to com-
pensate for the typical signal artifacts which are apparently present in all SiC based
MASS heterojunctions. Therefore, the relative photoresponse does not depend on
the composition of the grown thin-film or the interface of the substrate. The abso-
lute photo-currents, on the other hand, differ as the absolute current of each sample
is primarily affected by the conductivity of the grown thin-films according to the
results of chapter

However, the consistency of the resulting time constants in both SiC based MASS
diode systems indicate almost no interactions between the UV-light of the laser and
the grown ta-C as well as t-BN thin-films. Hence, based on the voltage dependency
of the photo-current, the absorption of photons takes primarily place in the depletion
layer of the heterojunction.
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Figure 7.6: Time resolved photoresponse measurements of a typical Au/Cr/ta-C/SiC hetero-
junction using the UV laser-line setup (5 ns pulses at 266 nm). (a) The normalized photoresponse
characteristic exhibits a fast rise time in the range of about 12 ns while the decay time has a larger
value of approximately 55 ns very similar to the t-BN/SiC system in figure[[.5l (b) Photoresponse
characteristics as a function of applied reverse-bias voltage: The maximum photo-current is voltage
dependent indicating again an absorption inside the depletion layer of the heterojunction located
inside the ZnO substrate similar to the other MASS diode systems.
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7.2.4 Au/Cr/t-BN/ZnO heterostructures

Finally, the photoresponse of Au/Cr/t-BN/ZnO heterojunctions was investigated.
The corresponding characteristic of a typical sample is shown in figure [[.7l Regard-
ing the normalized photoresponse characteristic at a single reverse-bias voltage of
40 V (figure [[7h), the corresponding rise time of about 13.5 ns is quite similar to
other MASS diode systems investigated before. The decay time, however, is several
orders of magnitude higher and typically exhibits a value in the range of 2-3 us.
This slow decay rate can also be observed at lower bias voltages of 30 V-10 V shown
in figure [ 7b. Nevertheless, the photo-sensitivity of these heterojunctions decreases
towards lower bias voltages and almost vanishes at zero-bias. In comparison to other
MASS diode systems, the applied bias voltages are significantly higher due to the
low conductivity of the samples (section [2]). Furthermore, the relative increase in
current is significantly larger compared to the other heterojunctions leading to a
considerable reduction of oscillation artifacts.

However, the voltage dependence of the particular photo-currents is linked to the
voltage drop across the diode components of the heterojunction similar to the other
MASS diode systems indicating again an absorption inside the depletion layer of the
heterojunction located inside the ZnO substrate. Therefore, the relatively high de-
cay constants are also likely caused by the ZnO substrate itself. In this context, the
low conductivity of the substrate as well as deep level defects like oxygen vacancies
might hamper the relaxation process of charge carriers after exposure resulting in a
rather low decay process.
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Figure 7.7: Time resolved photoresponse measurements of a typical Au/Cr/t-BN/ZnO hetero-
junction using the UV laser-line setup (5 ns pulses at 266 nm). (a) The normalized photoresponse
characteristic at a reverse-bias voltage of 40 V exhibits a rise time of about 13.5 ns. The decay
time, however, is several orders of magnitude higher and typically exhibits a value in the range of
2-3 ps. (b) Photoresponse characteristics as a function of applied reverse-bias voltage: The maxi-
mum photo-current is voltage dependent indicating again an absorption inside the depletion layer
of the heterojunction located inside the ZnO substrate similar to the other MASS diode systems.
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7.3 Summary

According to case study photoconductivity measurements in section [Z.J] using a sim-
ple LED setup, all heterojunction systems exhibit a distinct photo-sensitivity when
biased in reverse-bias direction while the ta-C and t-BN reference samples do not
show any signs of photoresponse. In this context, unusually long decay constants
of several hundred seconds obtained for the heterojunction diodes can be linked to
thermal excitations of the samples during the measurement and are originally caused
by the LED.

Further time-resolved photoresponse measurements on the basis of a pulsed laser as-
sisted setup provide a more standardized analysis technique in terms of illuminated
area, light intensity and time-resolution of the recorded photoresponse signals. The
signal to noise ratio is very low for photoresponse measurements based on a single
laser pulse. Furthermore, the photoresponse signal is affected by time jitter of the
system. Therefore, all recorded datasets are based on the averaged characteristic
of 512 measurement sweeps. Despite the effects of time jittering, all MASS hetero-
junctions exhibit fast rise times in the low two digit nanosecond range indicating
an immediate drain of the generated charge carries in each system, especially when
reverse-bias voltages are applied. However, the photoresponse decreases significantly
at lower voltages reaching a minimum at zero-bias. Based on the results of chapter
[6l this effect is accompanied by an increase of fractional bias voltage percentage
across the grown thin-films at the expense of the diode components in all investi-
gated MASS heterojunctions, especially around zero-bias. In addition, based on the
results of the SiC based heterojunctions, the photoresponse of the heterojunctions is
almost unaffected by the composition of the grown thin-films confirming the results
of the case study setup regarding the reference samples grown on low-resistive n-
type silicon substrates. Therefore, the distinct voltage dependence of photo-currents
in all investigated MASS diode systems indicates an absorption of light inside the
depletion-layer region of the particular heterojunctions.

Finally, the obtained decay time constants depend almost entirely on the substrate
of the particular heterostructures and do not correspond to the properties of the
grown thin-films. In fact, all performed measurements of this thesis do not indicate
any interaction of light with the grown thin-films. If any percentage of light is ab-
sorbed in the thin-films during illumination, the generated free charge carriers will
likely be trapped initially due to the larger number of localized defect states inside
ta-C and t-BN.

While Si and SiC based MASS diodes exhibit fast decay rates of the excited states
in the range of 100-200 ns, the decay rate in ZnO based samples is several orders
of magnitude higher and typically exhibits a value in the range of 2-3us. This fact
might be caused by the low conductivity of the substrate as well as deep level de-
fects like oxygen vacancies hampering the relaxation process of charge carriers after
exposure.



Chapter 8

Impedance spectroscopy

Based on the results of chapters [l and [0 the electrical properties (DC) of all fab-
ricated MASS diode heterojunctions of this thesis are substantially affected by the
high defect density inside all grown t-BN and ta-C thin films and interface layers
inside the heterostructure as well as depleted states inside the space-charge regions
of semiconducting substrates. As all the processes are related to trapping or deple-
tion processes of free-charge carriers, the presence of additional capacitive elements
inside the heterostructures featuring frequency dependent behavior in an alternate
current (AC) setup is a reasonable assumption.

Therefore, the AC-properties of several MASS heterostructures have been investi-
gated by measuring the complex impedance Z(V,w) as a function of bias voltages
as well as of frequency in the range of 20 Hz to 1 MHz using the setup described
in section In this context, separate characteristics of the absolute impedance
|Z(V,w)| and the phase 8(V,w) were recorded as a function of frequency and ap-
plied bias voltage in order to identify contributing capacitive components inside the
MASS heterostructures in comparison to previous direct current measurements.

8.1 Fundamentals

A thorough survey of the theoretical basics regarding AC conduction in dlsordered
materials like t-BN and ta-C has already been provided in the work of Amam
chapter 2) with basic references to previous works of Jonscher et al. 4ﬁDyre
et al. Nﬁ] and Scher et al. ﬂﬁ] as well as several other pubhcatlons

8.1.1 Complex capacitance and constant phase element (CPE)

In essence, the complex impedance Z of a system can be expressed by
Z = R(w) +iX (w), (8.1)
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where the resistance R is the real part of the impedance exhibiting no phase-shifting
and the reactance X is the imaginary part of the system. In polar form

Z = R(w) +iX(w) = | Z| exp(if(w)) (8.2)

the magnitude |Z(w)| of the impedance as well as the phase difference 6(w) between
voltage and current of the investigated system can be extracted. In this context,
the corresponding phase shift of an ideal capacitor is 7/2, while a DC resistor does
not exhibit any phase shift due to the infinite impedance of the capacitive element
of the system.

In contrast, the dielectric response of amorphous or defect-rich materials exhibiting
some kind of hopping or thermally enhanced conduction mechanisms (e.g. Frenkel-
Poole emission) is a little different as the frequency dependence of such materials
is expressed by the ”universal power law” w”~! leading to a so called ”universal
capacitance” C, of the particular system:

Oy (w) = Cliw)~ = Cur! [sin <§> —icos (%)} , (8.3)
with a universal power of 0 < v < and an apparent constant capacitance C
m, ] Moreover, the phase is constant at a value of —%F. Therefore, the
universal capacitance is also often referred to as constant phase element (CPE).
Furthermore, the reactance of a single capacitor X can simply be expressed by the
corresponding capacitance and applied frequency w = 27 f
1

Xelw) == ey (8.4)

If the system is more complex, e.g. due to the presence of an additional small resistor
arranged in series (Rg) as well as a much larger resistor arranged parallel (Rp) to
the capacitor as illustrated in an exemplary test circuit in figure B2 the complex
capacitance of the system can be written as:

Z(w) = Zs(w) + Zopp(w) = Rs + (Rp' — iwCp) ™ (8.5)

with )
ZCP,P(W) = (Rgl — iWCp) . (86)
In polar form, the impedance of this parallel arrangement can also be expressed by:
1 Zp(w)| = (Rp® + w*C}) 2 (8.7)
Op(w) = arctan (—wCpRp) . (8.8)

The corresponding impedance spectrum of the whole system is illustrated in figure
based on an ideal capacitor (v = 1). As long as the resistance of Rp is several

!The parameter v can be derived from the slope of a log-log plot of absolute impedance versus
frequency.
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Figure 8.1: Exemplary impedance circuit: the capacitive element of the system Xcp is comple-
mented by a small serial ohmic resistor as well as a much larger parallel ohmic resistor dominating
the DC-conduction of the system. The corresponding impedance spectrum of the whole system is
illustrated in figure
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Figure 8.2: Corresponding absolute impedance and phase spectra of the exemplary impedance
circuit illustrated in figure The characteristics are described in detail in the text below.

orders of magnitude higher than the reactance Xcp of the capacitive element, the
absolute impedance as well as the phase of the system are almost constant.

However, as soon as the reactance of the system matches the order of magnitude of
Rp at higher frequencies, the absolute impedance of the system starts to decrease
considerably. In this context, the related cut-off frequency we, (marked red in fig-
ure B2) of the system is defined by reaching an impedance of Zcpp(weo) = Rp/2
accompanied by a decrease in phase down to —%E At higher frequencies, the reac-
tance of the system decreases with w™! which can easily be obtained from the slope
of the absolute impedance characteristic in this frequency range. Therefore, the

2The cut-off frequency can also be estimated by determining the intercepts of the extrapolated
straight lines (blue) related to the capacitive characteristic as well as the resistor Rp.
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impedance characteristic of the system is ”capacitive” in this frequency region and
dominated by the capacitive element inside the equivalent circuit. As a result, the
corresponding phase decreases down to a value of —%. Furthermore, the decrease
in absolute impedance is limited by the serial resistor Rg as soon as the reactance
Xcp exhibits the same order of magnitude as Rg. As a result, the straight decrease
changes towards a constant absolute impedance equal to Rg. At the same time, the

phase of the system shifts back to a value of zero at much higher frequencies.

8.1.2 Capacitances of diodes

In addition, the depletion layer of a diode also forms some kind of capacitive ele-
ment as opposite charges are accumulated at different sides of the depletion layer
and are therefore separated by this high resistive region. As a results, this capacitor
is arranged parallel to the particular diode components of a system [@] including
leakage resistors.

For an ideal interface, e.g. provided by a MIS-structure (see chapter[), the frequency-
dependence would be consistent with a normal capacitor. However, the samples of
this work differ considerably from MIS-structures. Based on the intermixing layers
or even amorphous interlayer of the heterostructures according to TEM-analyses
results in chapter [l and corresponding increased leakage currents of the diodes ac-
cording the results of chapter [@l, the presence of another constant phase element is a
reasonable assumption and was already successfully included into numerical simula-
tions of an FPID-model (see section [6.2] figure [6.10]) based on the ta-C/p-Si system
in the work of Amani ]H

8.1.3 Parameter determination and numerical simulations

Therefore, the DC FPID-model was successfully extended with respect to the AC-
properties of the grown thin-films as well as the depletion layer of the diode. How-
ever, all measurements of that work were only performed at room temperature and
on the basis of ta-C/Si based heterojunctions as well as reference samples without
performing detailed temperature dependent I-V measurements in DC-mode.

As a result, most of the parameters used in the corresponding numerical simulations
of the two systems differ considerably from the results of this work and are, to some
extent, contradictory to the consistent DC results of this thesisH even though iden-
tical samples were used for the ta-C/p-Si system.

In this context, the most striking differences are reliable thickness values of the
grown thin-films in this thesis, as demonstrated in chapter [ as well as the determi-
nation of the corresponding average barrier height. Based on the thermal character

3Furthermore, according to Jonscher et al., frequency dependent characteristics of normal ca-
pacitors have only been observed in very few systems M}

4Slight reductions of resistivity compared to the original conduction model components of this
work due to bypassing effects of the DC-resistors at higher frequencies were already factored in.
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of the related Frenkel-Poole like conduction mechanism the average barrier height
can only be determined by temperature dependent measurements as described in
section and an unrestricted variation of the parameter in a numerical simula-
tion eventually leads to an arbitrariness of the resulting fit.
Hence, only the general idea of additionally present constant phase elements in-
side the corresponding equivalent circuit diagrams were applied to the developed
DC-conduction models of this work in order to reevaluate the conformity of these
frequency dependent extensions on the basis of a larger number of different hetero-
junction systems.
In the absence of a temperature dependent impedance measurement setup, the cor-
responding parameters were solely adapted from the previous DC I-V measure-
ment results of chapter [l in order to guarantee consistent interpretation results of
the recorded characteristics. The parameters related to capacitive elements of the
particular conduction models were primarily determined by plotting the absolute
impedance as well as the phase as a function of frequency at several constant bias
voltages. In this context, the voltages were selected on the basis of the correspond-
ing DC fractional bias voltage characteristics of each heterojunction in chapter
The applied simulation software has originally been developed in the work of Amani
| using the Mathematica environment and was adapted in this thesis in order to
match the demands of all the different MASS diode systems and related equivalent
circuit diagrams of the following sections, especially the eFPID-model of SiC based
samples.
During the actual analysis, the thin-film reference samples were investigated first,
similar to the DC measurements, in order to determine basic capacitive parameters
of the grown thin-films.
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8.2 AC properties of thin-film reference samples

8.2.1 Metal/ta-C/metallic Si heterostuctures

Starting with the AC properties of ta-C reference samples on metallic n-type sil-
icon substrates, the corresponding impedance characteristics |Z(V,w)| and 6(V,w)
(black circles) of a typical ta-C/metallic Si heterostucture are shown in figure 83l
Similar to electrical measurements in DC-mode, the characteristics are symmetric
at all frequencies and show only slightly increased conductivity at 20 Hz compared
to the DC measurements in chapter [fl At low frequencies, the characteristics are
dominated by the DC resistors of the system (see figure [6.3]) as the phase is very
close to zero for mid-level and high electric fields. However, due to the highly re-
sistive leakage currents of the system around zero-bias, the corresponding complex
impedance characteristic exhibits a considerable contribution from a capacitive ele-
ment in this region even at 20 Hz leading to the formation of a region with a higher
phase shift referred to as ”valley” in the following sections.

Furthermore, at higher frequencies exceeding 10 kHz and low electric fields, the
phase of the system decreases significantly, accompanied by a frequency dependent
increase of conductivity indicating a shift towards a present constant phase element
(CPE) of the ta-C thin-film bypassing the DC conductivity of the system due to
considerably lower resistivity of the capacitive element.

Based on the low resistivity of the highly doped n-type silicon (0.005-0.01 Qcm), the
substrate impedance is negligible similar to DC conduction. In addition, capacitive
elements originating from the substrate are also highly unlikely in the absence of
any Schottky barriers.

Therefore, the recorded characteristics can primarily be linked to the AC properties
of the ta-C thin-film, and the DC Frenkel-Poole model of this work (see figure [6.3))
can be extended by an additional constant phase element as shown in figure B4l
Moreover, the FP-model has also been extended by two additional ohmic resistors
Rs and Rc. The serial resistor Rg was added in order to cover possible contact
resistances interfering with the complex impedance characteristics of the thin-films
at high frequencies. However, it is negligible regarding the corresponding resistances
of the reference samples in this thesis. The ohmic resistor R¢, on the other hand,
covers the theoretical finite saturation resistance of the grown thin-films at very high
electric fields.

The resulting numerically simulations (red circles) are also illustrated in figure
and are basically in good agreement with measured datasets (black circles). In this
context, the simulation is in almost perfect agreement with the recorded datasets
at high electric fields indicating a successful implementation of the AC properties
related to the Frenkel-Poole like conduction of the grown ta-C thin-film dominating
at higher bias voltages according to chapter [l Therefore, the basic parameters of
the constant phase element can be extracted leading to estimates of universal power
v =~ 0.84 and capacitance of the amorphous layer C' ~ 16.5 nF.

However, the simulated phase differs significantly from the recorded data around
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Figure 8.3: Typical complex impedance measurement of a ta-C reference sample (black circles)
including separate characteristics of the absolute impedance |Z(V,w)| (a) and the corresponding
phase 6(V,w) (b). The simulated datasets of the AC FP-model (red circles) according to figure
are basically in good agreement with the recorded characteristics at high voltages but differ

around zero-bias at higher frequencies.

zero-bias indicating the presence of another capacitive element related to the leak-

age current of the thin-film.
This is also illustrated using cross-sections of the complex impedance characteristics
at zero-bias as well as at maximum applied bias voltage. The corresponding charac-

teristics of absolute impedance |Z(w)| (black) and corresponding phase #(w) (blue)
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Figure 8.4: Equivalent circuit diagram for AC impedance characteristics of amorphous thin-film
reference samples. Compared to the DC model in figure [6.3] an additional constant phase element
(CPE) has been added parallel to the FP-resistor representing the capacitance of the amorphous
thin-film.

as a function of frequency at these constant voltages are shown in figure As
the leakage resistor of the grown-films is likely based on hopping and/or tunneling
conduction mechanisms, the corresponding capacitor might also differ significantly
from the original properties of a voltage-independent CPE.

In this context, the absolute impedance characteristics in figure B.3h additionally ex-
hibit a progressively widening saturation region around zero-bias at higher frequen-
cies exceeding 10 kHz and correspond to the shift towards the CPE of the thin-film.
Therefore, this phenomenon can be directly linked to the capacitive components of
the system. As a result, the model might be improved due to implementation of
an additional leakage capacitance or a voltage dependent constant phase element of
the grown thin-films related to the low-field leakage currents.

However, despite the absence of a temperature dependent AC-setup as well as de-
tailed information about the origin of the DC leakage resistor, the AC FP-model in
figure B4l is a good approximation regarding the AC properties of the grown ta-C
thin-films.
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Figure 8.5: Absolute impedance and corresponding phase of a typical ta-C reference sample at
constant voltages of zero-bias (circles) as well as of maximum applied bias voltage of 2.5 V (squares)
extracted from figures B3k and b.

8.2.2 Metal/t-BN/metallic Si heterostuctures

In a next step, the t-BN reference samples on metallic n-type silicon substrates were
investigated with respect to their AC properties. The corresponding impedance
characteristics |Z(V,w)| and 0(V,w) (black circles) of a typical t-BN/metallic Si
heterostucture are shown in figure including corresponding numerical simula-
tions (red circles) of the AC Frenkel-Poole model according to figure 841

Again, the symmetric characteristics exhibit only slightly increased conductivity
at 20 Hz compared to DC measurements in section In comparison to ta-C
reference samples, the cut-off frequency at high electric fields of about 1 kHz is sig-
nificantly lower. This is primarily caused by the much higher resistivity of the t-BN
thin-films compared to the corresponding capacitive component of ta-C reference
samples according to the characteristics shown in figure At zero-bias, this effect
is even more pronounced as the phase is already shifted away from a pure DC related
behavior even at 20 Hz. In addition, the voltage dependency of the characteristics
vanishes around 2-3 kHz indicating a complete bypass of the DC resistors of the
system.

Nevertheless, at high electric fields, the numerical simulations of the absolute impe-
dance as well as the corresponding phase characteristics are in very good agreement
with the recorded data. Therefore, the basic parameters of the constant phase
element can be extracted leading to estimates of universal power v ~ 0.94 and
capacitance of the thin-film layer C' =~ 1.8 nF. Compared to ta-C thin-films the
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Figure 8.6: Typical complex impedance measurement of a t-BN reference sample (black circles)
including separate characteristics of the absolute impedance |Z(V,w)| (a) and the corresponding
phase 8(V,w) (b). The simulated datasets of the AC FP-model (red circles) according to figure [8.4]
are basically in good agreement with the recorded characteristics at high voltages.

capacitance is about one order of magnitude lower while the value of the universal
power in t-BN indicates the presence of a more "ideal” capacitor likely caused by
the high resistivity of the dielectric material.

Despite the successful application of the AC FP-model at high electric-fields, the
simulated phase differs significantly from the actual values below 10 kHz around
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zero-bias accompanied by an overestimation of absolute impedance below 1 kHz
similar to the effects observed for ta-C reference samples. Therefore, the presence
of an additional capacitive component dominating around zero-bias is a reasonable
assumption for t-BN reference samples as well.

These results are again emphasized by cross-sections of the characteristics in figure
and illustrated in figure based on absolute impedance (black) and corre-
sponding phase characteristics (blue) as a function of frequency at constant voltages
of zero-bias (circles) as well as of maximum applied bias voltage of 1.5 V (squares).
Nevertheless, the agreement of simulated and recorded data at higher frequencies
around zero-bias implies that the observed discrepancies are merely restricted to the
transition region between the dominating DC and AC conduction properties of the
grown thin-films, at least for highly resistive thin-film materials such as t-BN.
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Figure 8.7: Absolute impedance (black) and corresponding phase (blue) of a typical t-BN ref-
erence sample as a function of frequency at constant voltages of zero-bias (circles) as well as of
maximum applied bias voltage of 1.5 V (squares) extracted from figures B.6h and b. The corre-
sponding numerical simulations are in almost perfect agreement at maximum applied bias voltage
but differ considerably at zero-bias below frequencies of 10 kHz.
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8.3 AC properties of MASS heterojunctions

Based on the results of the thin-film reference samples, the constant phase element
Xcpg related to the ta-C or t-BN layer has been included as an extension into
the DC Frenkel-Poole and ideal diode models (FPID-models, shown in figures
and [0.27) including the slight adjustment of ohmic serial resistors of the system.
Furthermore, an additional constant phase element Xcprp related to the depletion

Rc Rep, (V) Re, AC FPID-model
— [ 1
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Figure 8.8: Equivalent circuit diagrams of the DC Frenkel-Poole and ideal diode models (FPID-
model (a), eFPID-model (b)) extended with respect to the AC properties of the individual com-
ponents. A constant phase element Xcpg related to the ta-C or t-BN layer has been included into
both Frenkel-Poole and ideal diode models including the slight adjustment of ohmic serial resistors
of the system. Furthermore, an additional constant phase element Xcpg, p related to the depletion
layer of the MASS diodes according to section Bl was also added to the equivalent circuits of the
conduction models. The remaining components are identical to the original DC conduction models
in figures and

layer of the MASS diodes according to section was also added to the equivalent
circuits of the conduction models. The resulting equivalent circuits diagrams are
shown in figures B8h (AC FPID-model) and (AC eFPID-model).

Again, due to the lack of temperature dependent measurements, the characteristic
parameters of each MASS diode system such as curvature, dielectric constants, bar-
rier heights and parasitic resistances have been adapted from the different values
obtained from numerical simulations of the DC conduction models.
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8.3.1 ta-C/p-Si heterostructures

Starting with the AC properties of Au/Cr/ta-C/p-Si heterojunctions, the corre-
sponding impedance characteristics |Z(V,w)| and 6(V,w) (black circles) are illus-
trated in figure including numerical simulations (red circles) of the AC FPID-
model according to figure B.8h. All absolute impedance characteristics show a pro-
nounced rectifying behavior in the whole frequency spectrum accompanied by dis-
tinct differences regarding cut-off frequencies of forward- (1 MHz) and reverse-bias
direction (1 kHz) of the MASS diode due to different character of the correspond-
ing regions inside the heterostructure regarding the structural properties as well as
related resistivity and capacitance.

Focusing on the numerical simulations of the AC FPID-model, they are basically
in good agreement with the recorded datasets as long as the characteristics are
dominated by the DC resistors of the system, more precisely at low frequencies of
f <20 kHz at forward-bias and f < 2 kHz at reverse-bias.

At higher frequencies, on the other hand, the simulated datasets deviate progres-
sively from the recorded datasets around zero-bias as well as at low- and mid-level
electric fields in the rectifying region of the characteristics. With respect to the
arrangement of components in terms of the equivalent circuit, these discrepancies
are mainly caused by an insufficient simulation regarding the voltage dependencies
of the capacitive elements besides the consistent DC resistor arrangement.
However, at high electric fields, the numerical simulations are again in accordance
with the recorded measurements which can be emphasized by additional cross-
sections of the characteristics at maximum applied bias voltages in forward- and
reverse-bias direction. The corresponding characteristics of absolute impedance
|Z(w)| (black) and corresponding phase #(w) (blue) as a function of frequency at
these constant voltages are illustrated in figure

The slight discrepancy at maximum reverse-bias exceeding a frequency of 50 kHz is
mainly caused by interference with the constant phase element of the ta-C thin-film.
In addition, roughly estimated values of basic parameters related to the constant
phase elements can be extracted from these numerical simulations leading to val-
ues of 0.86 (ta-C) and 0.92 (diode) for the universal power v and capacitances of
Crp ~ 3.5 nF (ta-C) and Cp =~ 90 pF (diode). Compared to ta-C reference samples
in section B 2.1, the universal power is almost identical while the capacitance of the
ta-C thin-film is considerably lowered by a factor of about 5.

Finally, the absolute impedance characteristics exhibit some kind of abrupt changes
in frequency dependence at low electric fields in forward-bias in form of a small step
around a frequency of 100 kHz (blue arrows in figure8.3]). The small step in absolute
impedance is accompanied by a pronounced valley in phase characteristics at low
electric fields similar to the one observed in ta-C reference samples. However, this
minimum progressively shifts from about -0.5 V at 1 kHz to around -2 V at 1 MHz
while the valleys of the numerical simulated datasets of the AC FPID-model are
fixed at a constant value of -0.5 V and exhibit considerably larger phase shifts. In
addition, the observed voltage dependency is very similar to the widening process of
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Figure 8.9: Typical complex impedance characteristic of a Au/Cr/ta-C/p-Si heterojunction
(black circles) including separate characteristics of the absolute impedance |Z(V,w)| (a) and the
corresponding phase 6(V,w) (b). The simulated datasets of the AC FP-model (red circles) ac-

cording to figure B8k are basically in good agreement with the recorded characteristics at high
voltages.

the saturation limit of ta-C reference samples with increasing frequency in figure B3]
of section B 2Tl Although this context might be just coincidental, the shift of the
phase minimum accompanied by a deviation of the applied conduction model still
indicates some kind of voltage dependence regarding the corresponding capacitive
element dominating this frequency and bias voltage domains.
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Figure 8.10: Absolute impedance |Z(w)| (black) and corresponding phase 6(w) (blue) of a
Au/Cr/ta-C/p-Si heterojunction as a function of frequency at maximum applied bias voltages

of £5 V in forward- (squares) and reverse-bias direction (circles) extracted from figures [0k and
b.
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8.3.2 ta-C/SiC heterostructures
In a next step, the AC properties of 6H-SiC based heterojunctions were investigated.

As illustrated in figure B.8b, the predicted AC eFPID-model is rather complex lead-
ing to an interference of seven different resistors and capacitive elements around
zero-bias, at least at low frequencies. Therefore, the system of equations is mas-
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Figure 8.11: Typical complex impedance characteristic of a Au/Cr/ta-C/SiC heterojunction
(black circles) including separate characteristics of the absolute impedance |Z(V,w)| (a) and the
corresponding phase 6(V,w) (b). The simulated datasets of the AC FP-model (red circles) accord-
ing to figure are basically in accordance with the recorded characteristics at high voltages.

sively over-determined in terms of free-parameters and reasonable results of the
numerical calculations depend almost entirely on the previous DC-measurements in

section as well as on suitable initial values of universal power and capacitances.
Nevertheless, starting with Au/Cr/ta-C/SiC heterojunctions, the corresponding
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impedance characteristics |Z(V,w)| and 6(V,w) (black circles), illustrated in fig-
ure BTl can basically be matched by the numerical simulations (red circles) of the
AC eFPID-model according to figure B.8b, especially again at high electric fields in
forward- as well as reverse-bias direction of the diode.

On the other hand, there are also considerable deviations between the numerical
simulations and the recorded data at low electric fields all over the investigated
frequency spectrum especially around zero-bias. The discrepancies at forward-bias
direction are primarily based on an progressively arising saturation effect of the ab-
solute impedance around zero-bias and frequencies above approximately 5-10 kHz.
In this context, the shape of the absolute impedance characteristics as well as the
frequency range are almost identical compared to the effects observed for ta-C refer-
ence samples in section and also slightly for t-BN reference samples in section
indicating a point of origin inside the grown thin-films or at their interfaces.
Furthermore, the effect is also accompanied by the formation of ”plateau”-region
inside the phase characteristics which cannot be successfully fitted by the existing
conduction model.

In addition, despite a suitable modulation of the corresponding phase at reverse-bias
matching the recorded datasets with a low margin of error (figure 8IIb), the discrep-
ancies between the numerical simulation data and the actual absolute impedance
characteristics at reverse-bias (figure RITh) are likely caused by a failure of the AC
eFPID-model in terms of combined frequency and voltage dependencies regarding
the capacitive diode components.

Eventually, the capacitive properties of the depletion layer inside these heterojunc-
tions will essentially be affected by the voltage dependent diode leakage resistor
exhibiting Frenkel-Poole like conduction in corresponding DC-measurements (see
section [6.4.2)). Therefore, the electrical properties of the amorphous interlayer in
SiC-based heterojunctions have to be analyzed in future experiments in terms of
possibly related capacitive properties.

However, based on the overall basic agreement regarding the numerical simulations
of the absolute impedance characteristics as well as a quite good agreement of the
corresponding phase characteristics in most parts of the spectrum, the basic param-
eters related to the capacitive elements of the system can be estimated by additional
cross-sections of the characteristics at maximum applied bias voltages in forward-
and reverse-bias direction of the diode. The resulting characteristics of absolute
impedance |Z(w)| (black) and corresponding phase §(w) (blue) as a function of fre-
quency at these constant voltages are illustrated in figure

All of them are in good agreement with the corresponding numerical simulations
(red). However, considering the discrepancies at lower electric fields all over the
frequency spectrum, the values of basic parameters related to the constant phase
elements can only be roughly estimated based on these numerical simulations. Any-
how, the resulting values of 0.865 (ta-C) and 0.96 (diode) for the universal power v
and capacitances of Cpp ~ 6 nF (ta-C) and Cp ~ 1.3 nF (diode) are comparable to
ta-C/p-Si heterojunctions in section
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Figure 8.12: Absolute impedance |Z(w)| (black) and corresponding phase 6(w) (blue) of a
Au/Cr/ta-C/SiC heterojunction as a function of frequency at maximum applied bias voltages

of +5 V in forward- (squares) and reverse-bias direction (circles) extracted from figures BITh and
b.
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8.3.3 t-BN/SiC heterostructures

Finally, the AC properties of Au/Cr/t-BN/SiC heterojunctions were investigated.
The corresponding impedance characteristics (|Z(V,w)| and 6(V,w), black circles)
are shown in figure including corresponding numerical simulations of the AC
eFPID-model (red circles). The actual characteristics of the sample as well as the
deviations of the corresponding numerical simulations are qualitatively very similar
to ta-C based samples on 6H-SiC.

Therefore, despite a basic agreement of the numerical simulations with the actual
absolute impedance characteristics as well as accordance of the corresponding phase
characteristics, the AC eFPID-model still has to be revised in terms of voltage and
frequency dependencies of the capacitive components regarding SiC-based hetero-
junction systems.

In addition, similar to ta-C/SiC heterojunctions, these heterojunction also exhibit
progressively increasing saturation processes regarding the forward-bias region at
higher frequencies starting at above 2-3 kHz and likely originated from the same,
but yet unknown processes inside the grown thin-film structure.

Nevertheless, the basic parameters related to the capacitive elements of the sys-
tem can again be estimated by additional cross-sections of the characteristics at
maximum applied bias voltages in forward- and reverse-bias direction of the diode.
The resulting characteristics of absolute impedance |Z| (black) and corresponding
phase 6 (blue) as a function of frequency at these constant voltages are illustrated
in figure All of them are in good agreement with the corresponding numerical
simulations (red). However, considering the discrepancies at lower electric fields all
over the frequency spectrum, the values of basic parameters related to the constant
phase elements can only be roughly estimated based on these numerical simulations.
The resulting values of 0.94 (t-BN) and 0.96 (diode) for the universal power v and
capacitances of Cpp ~ 1.2 nF (t-BN) and Cp ~ 100 pF (diode) are comparable to
t-BN reference samples in section as well as ta-C/SiC based heterojunctions
in section R332
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Figure 8.13: Typical complex impedance characteristic of a Au/Cr/t-BN/SiC heterojunction
(black circles) including separate characteristics of the absolute impedance |Z(V,w)| (a) and the
corresponding phase 0(V,w) (b). The simulated datasets of the AC FP-model (red circles) accord-
ing to figure B8b are basically in good agreement with the recorded characteristics at high voltages

but exhibit discrepancies at low- and mid-level bias voltages.
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Figure 8.14: Absolute impedance |Z(w)| (black) and corresponding phase 6(w) (blue) of a
Au/Cr/t-BN/SiC heterojunction as a function of frequency at maximum applied bias voltages
of £10 V in forward- (squares) and reverse-bias direction (circles) extracted from figures BI3h and
b.
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8.4 Summary

The general DC conduction models have been successfully extended with respect to
the AC properties of the particular MASS diode systems resulting in basic overall
agreement of the numerical simulations with the recorded impedance characteristics
of the different MASS heterostructures.

The corresponding parameters of the resistors were solely adapted from the previous
temperature dependent DC I-V measurement results in chapter [l in order to guar-
antee consistent interpretation results of the recorded characteristics as no temper-
ature dependent impedance measurement setup was available, yet. The parameters
related to capacitive elements of the particular conduction models were primarily
determined by plotting the absolute impedance as well as the phase as a function
of frequency at several constant bias voltages. In this context, the voltages were se-
lected on the basis of the corresponding DC fractional bias voltage characteristics of
each heterojunction in chapter [0l Similar to the analysis of DC I-V characteristics,
the basic parameters of the capacitive components related to the grown thin-films
have been derived from impedance measurements of the corresponding reference
samples.

While the numerical simulations are in good agreement with the recorded datasets
at high electric fields, the absolute impedance is consistently overestimated around
zero-bias in all investigated systems and accompanied by, to some extent, huge dis-
crepancies regarding the corresponding phase characteristics.

In this context, corresponding voltage and frequency dependent saturation effects
of the absolute impedance characteristics in several systems of this thesis indicate
some kind of voltage dependencies of the related capacitive elements and are likely
caused by the grown amorphous thin-films. Furthermore, the consistency of simu-
lated and recorded datasets at higher frequencies based on t-BN reference samples
implies that the observed discrepancies are merely restricted to the transition region
between the dominating DC and AC conduction properties of the grown thin-films,
at least for highly resistive thin-film materials such as t-BN.

Therefore, the extensions of the general DC conduction models based on the imple-
mented constant phase elements just represent a raw approximation of the actual
AC properties of the different MASS heterostructures and need to be analyzed in
more detail in future experiments, especially with respect to the related voltage de-
pendencies of the capacitive components and the corresponding structural properties
of the particular heterostructure.
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Conclusion and Outlook

In conclusion, a generalized temperature dependent conduction model has been suc-
cessfully developed for all grown Metal-Amorphous Semiconductor-Semiconductor
(MASS) heterojunctions diodes of this thesis.

The model is mainly based on the structural properties derived from the results of
performed TEM-analyses of each particular heterostructure as well as the related
electrical properties and corresponding temperature dependencies of the individual
components forming the heterojunction. The corresponding equivalent circuit dia-
gram of the extended Frenkel-Poole and ideal diode model (eFPID-model) is once
again illustrated in figure [0.11

The recorded datasets of all heterojunctions in this thesis can basically be well de-
scribed by a serial arrangement of an ideal Schottky diode D (n = 1), a voltage
dependent resistor exhibiting Frenkel-Poole like conduction Rpp; and an additional
ohmic resistor Rg covering present contact and substrate resistances. Based on the
structural properties of the interface region between crystalline semiconductor sur-
face and the grown thin-films obtained from TEM-analyses, the leakage of the diode
is approximated by a parasitic ohmic resistor Rp; in order to represent the ohmic
leakage currents inside the depletion region of the crystalline substrate and an ad-
ditional Frenkel-Poole like resistor Rpps in case of a present amorphous interlayer
interfering with the original heterojunction. As long as the interface does not ex-
hibit any distinct amorphous interlayers, the two leakage resistors can be combined
resulting in the simpler FPID-model. The resulting numerical simulations of this
general conduction model are in very good agreement with the I-V characteristics
of all investigated heterojunctions and were successfully applied to a total of eight
different MASS-diode heterostructures.

Furthermore, the validity of the model as well as of the individual components within
have been verified by additional temperature dependent measurements and corre-
sponding numerical simulations. Deviations from the predicted characteristics below
temperatures in the range of 150 K200 K, depending on the particular heterostruc-
ture compositions, are mainly caused by imperfections of the ohmic approximations
regarding the I-V characteristics of leakage and serial resistors as well as the residual
conductivity of the grown t-BN and ta-C thin-films.

215
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Ree, eFPID-model

1

Figure 9.1: Equivalent circuit diagram of the extended Frenkel-Poole and ideal diode model
(eFPID-model): A serial arrangement of an ideal Schottky diode D (n = 1), a voltage dependent
resistor exhibiting Frenkel-Poole like conduction Rpp; and an additional ohmic resistor Rg covering
present contact and substrate resistances. Based on the structural properties of the interface region
between crystalline semiconductor surface and the grown thin-films obtained from TEM-analyses,
the leakage of the diode is approximated by a parasitic ohmic resistor Rp; in order to represent the
ohmic leakage currents inside the depletion region of the crystalline substrate and an additional
Frenkel-Poole like resistor Rppo in case of a present amorphous interlayer interfering with the
original heterojunction. The resulting numerical simulations of this general conduction model are
in very good agreement with the I-V characteristics of all investigated heterojunctions and were
successfully applied to a total of eight different MASS-diode heterostructures.

Therefore, the shift towards a more temperature independent conduction mechanism
should be investigated in more detail in future experiments of these heterostructures.
Nevertheless, the results of Ronning et al. ﬂﬁ, |6_§] and Hofsass et al. ﬂﬁ] regarding
the electrical properties of ta-C and t-BN reference samples have additionally been
verified on the basis of a more uniform Frenkel-Poole model (FP-model), developed
in this work, down to temperatures of 200 K (ta-C) and 240 K (t-BN). In this con-
text, additional parasitic currents at lower electric fields and temperatures as well
as a temperature dependence of the thin-film conductivity proportional to exp(1/T)
were considered.

Furthermore, all MASS-herojunctions exhibit unusually high turn-on voltages and
apparently high ideality factors of 30-200 in terms of the Shockley theory similar
to the heterojunction diodes described by other groups (see chapter [I). Therefore,
these structures might also possess an interfacial disordered or amorphous layer with
Frenkel-Poole conduction properties dominating at forward-bias of the correspond-
ing diode systems.

In terms of the structural properties, all grown t-BN as well as ta-C thin-films of
this thesis each exhibit almost identical, uniform structural properties regardless
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of the underlying substrate. Therefore, the growth mechanism of the thin-films
does not depend on the orientation or composition of the substrate. On the other
hand, Si and SiC based heterostructures also exhibit amorphous interlayers between
the grown thin-films and the substrate surface which is formed during the sputter-
cleaning process prior to the deposition of the thin-films. The formation of such an
amorphous layer can exclusively be linked to damage cascades caused by implanted
ions during the sputter-cleaning process based on corresponding TRIM-calculations.
In this context, the particular ion ranges as well as recoil effects are primarily based
on the material properties of the single crystalline semiconducting substrates and
the resulting TRIM-calculations are in good agreement with the TEM-analyses of
the resulting depths of the damaged surface of the substrate forming the amorphous
interlayer.

As a result, the effects of damage cascades prior to the actual deposition processes
should be minimized in upcoming experiments by reducing the ion-energies during
the sputter-cleaning process. However, the results have to be frequently examined
using cross-section TEM-analyses as well as DC I-V measurements in order to avoid
delamination of the grown thin-films due to contaminants on top of the surface of
the semiconducting substrates or an insufficient smoothening resulting in mechani-
cal and electric breakthroughs.

Furthermore, in the beginning of the deposition process, an intermixing layer is
formed in each system due to implantation of deposited ions into the surface layer
of the semiconducting material.

Due to Sputtering and recoil effects on a small scale (A-nm), the mixing process
might lead to an incorporation of corresponding substrate- or dopant-atoms into the
grown thin-films. The distribution of such kind of atoms inside the grown thin-films
would depend on the solubility inside the particular thin-film matrices and on the
corresponding sputter-yields and recoil distributions of these atoms. Hence, either
a gradual distribution or a segregation process towards the surface would be the
most likely results due to the dynamic sputtering process during deposition of the
thin-films.

As the electrical properties of the grown thin-films are likely affected by these
kind of processes, further experiments should be focused on a detailed analysis of
intermixing-layer as well as amorphous interlayer compositions. Based on the obser-
vation of this thesis, the concentration of dopant atoms inside the grown thin-films
as well as the resulting conductivity will likely correlate with the doping concen-
tration inside the original substrates. Therefore, a detailed analysis of these effects
is important for future extension of the developed conduction models. Additional
measurement techniques such as Electron microprobe might provide more accurate
information about the composition of these layers.

In this context, the effects of unintentional Cu-contaminants on the conduction
mechanism of the grown thin-films was also briefly covered in this thesis. As Cu
contaminants only lead to an increase in conductivity in the range of 30-40 in ta-C
as well as in t-BN thin-films while the average barrier height is unaffected, the con-
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duction models of this work are still valid for small amount of Cu-contaminants.
In addition, all MASS-heterojunctions exhibit a distinct photo-sensitivity in reverse-
bias while the ta-C and t-BN reference samples do not show any signs of photore-
sponse effects. The fast rise times of photo currents in MASS-diode heterojunctions
in the low nanosecond range indicate an immediate drain of the generated charge
carries in each system, especially by applied reverse-bias voltages. However, the
photoresponse decreases significantly at lower voltages reaching a minimum at zero-
bias.

Based on the results of I-V measurements of this work (chapter [@l), this effect is ac-
companied by an increase of fractional bias voltage percentage across the grown thin-
films at the expense of the diode components in all investigated MASS-heterojunctions,
especially around zero-bias. In addition, based on the results of the SiC based het-
erojunctions, the photoresponse of the heterojunctions is almost unaffected by the
composition of the grown thin-films. Therefore, the distinct voltage dependence of
photo-currents in all investigated MASS-diode systems indicates an absorption of
light inside the depletion-layer region of the particular heterojunctions and therefore
the presence of a one-sided p-n junction diode.

Moreover, the obtained decay time constants depend almost entirely on the sub-
strate of the particular heterostructures and do not correspond to the properties
of the grown thin-films. In fact, all performed measurements of this thesis do not
indicate any interaction of light with the grown thin-films.

As the photoresponse of MASS-diode was only investigated on the basis of just two
constant wavelengths of 266 nm and 532 nm, wavelength dependent photoresponse
measurements in the range of 200 nm—1200 nm might provide additional informa-
tion about the wavelength dependent photoresponse of the substrates as well as
wavelength dependent photoresponse characteristics of the grown thin-films based
on the sensitivity of the measurement setup.

Finally, the general DC conduction models have been successfully extended with re-
spect to the AC properties of the particular MASS-diode systems resulting in basic
overall agreement of the numerical simulations with the recorded impedance char-
acteristics of the different MASS heterostructures.

While the numerical simulations are in good agreement with the recorded datasets
at high electric fields, the absolute impedance is consistently overestimated around
zero-bias in all investigated systems and accompanied by, to some extent, huge dis-
crepancies regarding the corresponding phase characteristics.

In this context, corresponding voltage and frequency dependent saturation effects
of the absolute impedance characteristics in several systems of this thesis indicate
voltage dependencies of the related capacitive elements and are likely caused by
the grown amorphous thin-films. Furthermore, the consistency of simulated and
recorded datasets at higher frequencies based on t-BN reference samples implies
that the observed discrepancies are merely restricted to the transition region be-
tween the dominating DC and AC conduction properties of the grown thin-films, at
least for highly resistive thin-film materials such as t-BN.



219

Therefore, the extensions of the general DC conduction models based on the imple-
mented constant phase elements just represent a raw approximation of the actual
AC properties of the different MASS-heterostructures and need to be analyzed in
more detail in future experiments, especially with respect to the related voltage
dependencies of the capacitive components and the corresponding structural prop-
erties of the particular heterostructure.

In addition, based on the complexity of the investigated heterojunction diode sys-
tems of up to seven interfering components around zero-bias, the construction of a
temperature dependent measurement setup is mandatory in order to separate the
different resistors and reactances as well as the related temperature dependent pa-
rameters of the components. Moreover, such a setup might also provide valuable
inside into the effect of residual conductivity of the grown thin-films due to poten-
tially conclusive changes with respect to the capacitive behavior.

Finally, an upgrade of the auto-balance bridge, in terms of applicable frequencies,
might improve the interpretation of the MASS-diode systems as the cut-off frequency
of ta-C reference samples is close to the current frequency threshold.
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