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Abstract

The electric activity of neurons creates extracellular potential fields. Recent findings
show that these endogenous fields act back onto the neurons, contributing to synchro-
nization of population activity. The influence of extracellular potential fields is also
relevant for understanding therapeutic approaches such as transcranial direct current
stimulation, transcranial magnetic stimulation and deep brain stimulation. The mu-
tual interaction between fields and the neuronal membrane is not captured by today’s
modeling tools of neuronal electrophysiology, as those are based on isolated membranes
in an infinite, isopotential extracellular space. Even the direct influence of the field
is not correctly represented by the commonly used “activating function”. While a re-
duced set of Maxwell’s equations can be used to couple membrane currents to extra-
and intracellular potentials, this approach is rarely taken, most likely because adequate
computational tools are missing. This thesis presents a computational method that
implements this set of equations. The fundamentals of the method are thoroughly de-
scribed starting from first principles, passing by the discretization procedure, and up
to the solution algorithms. By introducing an implicit solver, numerical stability is
attained even with large time-steps: this allows simulation times of tens of minutes
instead of weeks, even for complex problems. The method was implemented as an
open source software package which is now freely available to the neuroscience com-
munity. This tool allows simulation of cells under realistic conditions: a conductive,
non-homogeneous space, sub-micron cell morphology, mixed boundary conditions and
various ion channel properties and distributions. The extracellular fields are accurately
represented, including secondary fields, which originate at inhomogeneities of the ex-
tracellular space and can reach several millivolts. Example applications of this method
and the tool are also presented.
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1 Introduction

Humans, by nature, search for simplified mind abstractions to understand complex phe-
nomena. Minimalistic representations help visualization and the creation of tractable
mathematical models. Analysis of the neuronal cell does not escape this rule. For
decades, the cable equation [3, 4] has simplified the computational treatment of whole-
neuron behavior. Large part of our quantitative understanding of neural electrophys-
iology is based on this equation which describes the cell as a concatenation of one-
dimensional entities isolated in isopotential space. Although practical, the cable equa-
tion does not fully describe the brain’s electric phenomena. It has largely been known
than in vivo, neurons are embedded in a dense matrix with other cells. This pack-
ing of cells is tight enough to leave only ~20% of conductive space [5] and average
inter-membrane distances of only tens of nanometers [6]. Work by Denk, Hayworth
and others [1, 7] has shown the intricacies of this arrangement. Figure 1.1 presents
how, a few dozen cubic micrometers of mouse brain are crossed by dozens of neuronal
processes.

The electrical picture in this extracellular matrix is also excitingly rich. Neuronal
activity itself, synaptic currents, sub-threshold oscillations and action currents sum-up
over neuronal populations and continuously change the local extracellular potentials.
Recent experimental findings in vitro and in vivo contribute to the mounting evidence
that these endogenous extracellular potentials talk back to neurons and influence the
synchronization of firing patterns (8, 9, 10|.

These enhanced perspectives of the neuron’s environment demand for new modeling
tools that can help elucidate the behavior of the cell in interaction with its surroundings.
The benefits from these new tools will be countless: from understanding the influence
of diffusion on synaptic signaling and ion channel conductance, to synchronization of
neuronal populations, the study of the neuronal extracellular space promises to be the
next frontier in neuronal modeling [11]'.

For instance, considering of the extracellular space in neuronal models is fundamen-
tal for the development of stimulation devices. Electrical stimulation is increasingly be-
ing used for diagnostics and therapy given its benefits compared to medication. Strong,
super-threshold fields are being used in the form of electroconvulsive therapy, transcra-
nial magnetic stimulation, deep brain stimulation or closed loop cortical stimulation to
activate large populations of neurons [13, 14, 15, 16]. Also recently, techniques that
utilize weaker, sub-threshold fields such as direct current stimulation or alternating

! Also from personal communication with NEURON’s [12] developer T. Carnevale.

13



14 CHAPTER 1. INTRODUCTION

Figure 1.1:  The process of Serial Block-Face Scanning Electron Microscopy [1] for
reconstruction of a block of Mouse brain [2]. (Images (©) of TED Conferences LLC free
for non commercial use under Creative Commons license "Attribution - NonCommercial

- NonDerivative")
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current stimulation have been developed [17, 18] and were reported to influence mo-
tor cortex excitability, motor learning and memory [19, 20, 21| among other functions.
Tools to model the brain’s extracellular space will reduce experimentation costs and
help develop new stimulation paradigms.

Neuroscientific applications will follow. Neuroscience research already demands for
tools to calculate the extracellular potential from neuronal sources [22|, and to study
the unidirectional effects of extracellular potentials [23, 24, 25]. Moreover, the require-
ment of models of simultaneous stimulation and recording in complex set-ups has arisen
over the last years for the development of multi-unit arrays and novel brain-machine
interfaces |26, 27, 28, 29|. Extracellular signal recordings, such as those of the local
field potential or from individual units, have been used empirically for decades in elec-
trophysiology [30] and are critical for investigating network activity [31]. Determining
the influence of the complex extracellular space in the potential signal is key to un-
derstand the shape of extracellularly recorded action potentials and in general, of local
field potentials. The effect of the distribution of other cells in the potential signal is still
debated [32] and new tools are required to understand better the filtering properties of
extracellular media [33].

1.1 Previous approaches

Although a number of modeling tools have been introduced to study the interaction of
extracellular potentials and neurons [34, 35, 36, 37, 38, 39| these tools are limited in
their representation power. When the “forward” effect, i.e. the creation of extracellular
potentials by neuronal activity is of interest, extracellular potentials are calculated with
the line-source approximation [36]: the membrane currents are computed for each linear
segment of a one-dimensional compartmental neuron model. These currents are then
used to calculate the extracellular potential according to the “volume conductor” theory
[33, 40, 41]. This approach does not consider the feed-back from extracellular potentials
to the neuron and its applicability is limited to locations farther than 1pm away from
the active membrane [36]. Interactions between adjacent cells within sub-micrometer
distance, and the effect of clustering of ion channels cannot be treated. Furthermore,
volume conductor theory assumes the extracellular medium to be homogeneous and
isotropic. This ignores the strong secondary fields caused by the inhomogeneities of
tissue [42], which give rise to the so called “virtual electrodes”, and can dominate the
effect of extracellular potentials on excitable tissue [43].

To simulate the changes in the cell caused by extracellular potentials i.e. the “feed-
back” effect, similar principles are used. The extracellular potential is computed from
external current sources while assuming homogeneity and isotropy, hence ignoring the
possibility of virtual electrodes. Neurons are then represented by a concatenation of
one-dimensional cables and the effect of the extracellular potential is included by means
of the activation function [34, 44]. In finite cables, this effect is calculated by projecting
the extracellular field on to the axis of the cables [45, 46, 47, 48§].

The activating function is an approximation and has been questioned in several
works [49, 50]. Its applicability is also limited to particular geometries. A simple
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Figure 1.2: Alternative representations in the cable equation (middle, right) for a spher-
ical cell body (left). The electric field (E) is perpendicular to the axis of the body on
the right. The problems of this representation are presented in Chapter 7.

illustration of the problem is its inability to properly represent a spherical cell body
inside a homogeneous field. To compute the effect, the sphere has to be approximated
by cylindrical sections (see Figure 1.2). When the field is directed perpendicular to the
cylinders’ axes, it does not exert any influence on the cell body.

A correct solution of the forward and feed-back problem in the potential-neuron in-
teraction requires a complete spatial representation of the neuronal membrane and its
relation to the intra- and extracellular potentials. This comprises a self-consistent solu-
tion of the Laplace equation governing the potential, and the non-linear equations that
determine the voltage-dependent membrane currents (i.e. the sources of the potential
changes). The solution to the Laplace equation for arbitrary geometries can be achieved
with finite difference (FDM), finite volume (FVM), or finite element methods (FEM).
A numerical time iteration scheme then has to be selected to model the evolution of
the potentials.

FDMs, FVMs and FEMs have been used to model stimulation of arbitrarily shaped
cells for studies of the effects of electroporation, as well as to model simple neuronal
geometries [35, 37, 51, 39, 52|. These approaches have however failed to provide a
widely available tool that can fully model the neuron-extracellular potential bidirec-
tional interaction. The deficiencies of these approaches can be summarized in three:
computational limitations to represent detailed geometries, lack of efficient time evolu-
tion schemes, and the use of closed and commercial numerical tools to solve the methods.
FDM approaches such as that described in [51] represent geometries in meshes with a
fixed-grid spacing determined by the smallest feature in the domain. Due to the very
large number of elements, the computation time of these simulations is impractically
long for realistic, sub-micrometer morphological features. FEM and FVM have been
employed in other cases [35, 37, 38, 39, 53, 52|, but these systems have been limited to
unrealistic spatial scales |38, 53|, restrictive time evolution schemes [35, 37, 38, 53, 52|,
two dimensions [37], and the absence of ion channels |35, 37, 38, 52]. The use of closed
source [37, 38, 53] and commercial software [35, 39, 52| is a common feature among all
these works, hindering its replicability and applicability in other scientific studies.

If the details of neuronal geometries are considered, e.g. in fine distal dendrites, or
the sub-micrometer distances between cells, the importance of computationally efficient
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methods is emphasized. In the 2D simulations of Ying and Henriquez [37] for instance,
the forward Euler method was used. The forward Euler method requires extremely
fine time steps for micrometer geometries, limiting the physiological times that can be
simulated. Besides the realistic, true sub-micron distances fundamental for the study
of cell-to-cell interaction, times beyond a few milliseconds are crucial for the study of
neuronal synchronization and more complex stimulation protocols.

1.2 Objective of this work

This thesis work is dedicated to the numerical treatment of heterogeneous, three-
dimensional, intra- and extracellular spaces separated by membranes with voltage-
dependent conductances. The main result is a computational tool to simulate these
phenomena efficiently and for detailed geometries. To improve over existing tools two
main strategies were used: first, the equations governing the time evolution of the
electric potential in space were separated from the non-linear equations that treat the
membrane currents. This follows the ideas of heart bidomain solvers 54| and a previous
approach [37|. Second, an implicit time iteration scheme based on the Crank-Nicolson
method [55] was introduced. This scheme allowed simulation time-steps orders of mag-
nitude longer than the forward Euler scheme, without causing numerical instabilities.
The use of this implicit method also grants applicability of adaptive time step schemes,
shortening computation times by one to two orders of magnitude. It also enabled simu-
lations to run over physiologically relevant times (tens to hundreds of microseconds), to
represent the detailed, sub-micrometer cell morphology and to include ion channels with
arbitrary voltage-dependent gating schemes. The new tool can represent stimulation,
recording and feedback between extracellular fields and membrane voltage at realistic
spatial and temporal scales. An example morphology and the resulting simulation at a
fixed time step produced with the tool is presented in Figure 1.3.

1.3 Structure of this work

The structure of this thesis work takes the reader from general considerations on the
time and space scales of electric and magnetic phenomena in biological tissue and the
corresponding simplifications of Maxwell’s equations (Chapter 2). Then it proceeds
to the formulation of the so called “space/membrane equations” (from Section 2.5 on)
and then to example solutions (Chapter 3.) The finite element formalism introduced
in the method is presented in Chapter 4. Before the implementation is detailed in
Chapter 6, the conditions under which the numerical method provides stable solutions
are scrutinized in Chapter 5. This analysis leads to the implementation of the implicit
Crank-Nicolson method in Chapter 4.5.2. The concrete software implementation of the
numerical scheme is described in Chapter 6. The validation and exemplary applica-
tions of the numerical methods are summarized in a manuscript in Section 7. This
work points out the limitations of the cable equation and how the tool is superior to
this method. As only free and open source software was used and the developed code
was made available online, the methods described here can be directly adopted by any
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researcher with basic knowledge in the field. This aspect is particularly important, as
to the author’s knowledge, no comparable software is available. The software manual
for installation of the tool is presented in the appendix Chapter B. An additional re-
sult of this work was the construction of a tool for the simulation of one-dimensional
cables under extracellular fields and a tool for the simulation of transcranial magnetic
stimulation coils. The cable tool was used to validate the results of the main three-
dimensional solver and is presented in appendix Chapter E. The coil tool was used to
model realistic electric fields produced by transcranial magnetic stimulation coils. The
realistic electric field modeling results are presented in appendix Chapter C and the
coil tool in appendix Chapter F.
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2 Fundamentals: the space/membrane
equations

2.1 Introduction

The functioning of the neuron depends on the electric field across its membrane. Neu-
rons are filled with, and surrounded by, conductive material and the activity across
their membranes produces trans-membrane currents and extracellular potentials. As
physical phenomena, the neuron’s activity is explained by the theory of electricity and
electricity in biological matter and cells.

Several experimental and theoretical efforts have advanced directly or indirectly this
theory. These began with fundamental progresses such as Thompson’s studies on the
propagation of signals over long cables [56], Maxwell’s equations [57] and Bernstein’s
membrane theory [58]. Many other works followed including Hodgkin and Huxley’s
theory of signal propagation in the axon [3|, Rall’s description of current flow in the
dendritic tree [4], Plonsey’s volume conductor theory [59], and Nagarajan et al. stimu-
lation of finite cables [45].

More recent works have considered the electrical phenomena around the cell. Key
developments include the analysis of a single cell under external fields by Cartee and
Plonsey [60], the extended cable equations of Lindsay [61], and the treatment of the
volumetric membrane by Vofen and co-workers [38].

In this chapter a theory for the treatment of a three-dimensional neuron and its intra-
and extracellular space is presented. The equations that provide this description will be
deduced from Maxwell’s equations, and in particular, Maxwell’s macroscopic equations
[62]. These equations will be presented and will be the pillar for the description of the
electrical activity of the neuron and extracellular space. A combination of Maxwell’s
macroscopic equations and the material properties of biological matter will lead to a
more specific set of Maxwell’s equations known as the quasi-static approximation.

Auxiliary equations which will help further validation of the model and its numerical
solution will be deduced subsequently. Once the quasi-static reduction is obtained, the
evolution of currents in conductive material will be considered in the context of the
“volume conductor theory” [59]. With these two tools, the equations to represent the
cell will emerge in their integral form. An important proof is then done to the equations,
showing they can reduce to the well know neuronal cable equation. The way external
conditions, such as boundary conditions and stimulation sources are treated is then
provided. Finally a section is dedicated to consider how the magnetic field can enter

21
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the picture for relevant applications in neuronal stimulation.

A complete derivation of the equations describing the electric field in and around
the cell, departing from basic principles up to the inclusion of the magnetic field has
not been found in the previous literature. It is hopped this summary will be a useful
reference for future works.

2.2 Maxwell’s equations

Maxwell’s equations describe the origin of the electric and magnetic field from charges
and currents. Maxwell’s general microscopic equations (also known as Maxwell’s equa-
tions in empty space) allow representing the electric and magnetic vector fields from the
total charge and current in a volume of space. The microscopic equations consider all
charges and movement of charges, even in the atomic level where charges are bounded
in atomic and molecular configurations. Maxwell’s microscopic equations are:

V.E =2 (2.1)
€o
V.-B = 0, (2.2)
0B
E = — 2.
V X BT (2.3)
OE
VxB = MOJt—i_gO,UOE- (24)

Equation (2.1) is known as Gauss’s law for the electric field and charges and describes
how the total charge density p; gives origin to the electric field E. A proportionality
constant known as the free space permittivity ¢y is used to relate the quantities. Equa-
tion (2.2) is known as Gauss’s law for magnetism with B the magnetic field (or more
precisely the magnetic induction field) and states that the magnetic field is selenoidal
and no magnetic monopoles exist. Equation (2.3) is known as Faraday’s law and de-
scribes how a varying magnetic field induces an electric field. Finally, equation (2.4)
is Mazwell’s extended Ampere’s law which describes the origin of the magnetic field by
currents and by a changing electric field. Here, J; is the total current density field (free
and bound current) and the values are related by the free space permeability constant
to. The term OE/0t on Ampere’s law is the displacement current and is the correc-
tion done by Maxwell to explain how current can flow through a capacitor. Maxwell’s
microscopic equations are described in more detail elsewhere [63, 64].
Maxwell’s macroscopic equations are

V-D = p, :
V-B = 0, (2.6)
0B
E = — 2.
V x R (2.7)
VxH = J+ 8_D (2.8)

ot
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In contrast to Maxwell’s microscopic equations, Maxwell’s macroscopic equations
describe electrodynamics in matter and deal with free charges and currents. Eqgs. (2.5-
2.8) separate free and bounded charges and currents, explicitly representing the electric
and magnetic fields bounded to the medium®. These equations factor out the bounded
charges and material magnetization through special auxiliary fields: in the macroscopic
equations the displacement field D is introduced as the sum of the electric field times
go and the medium polarization P in the relation

D = ¢E + P.

The magnetic field intensity H is also introduced and is defined as the combination
of magnetic field and the medium magnetization M,

B M
H=—-—
Ko Ho
implying
B = uoH + M.

For neuronal modeling in biological, linear materials the fields P and M can be
considered parallel to E and H respectively and J can be considered parallel to E
[62, 61]. Hence constants can be added to account for them creating the expressions

D= ErffoE,
B = pirp10H,
and Ohm’s law
J=0E. (2.9)

Here ¢, represents the relative permittivity, u, the relative permeability, and o the
conductivity of the medium. Noting that the permittivity and permeability parameters
are also usually written in a single value as € = ¢,6¢ and p = p,po. Replacing in Eqgs.
(2.5-2.8) the Maxwell’s equations for linear material take the form of Eqs. (2.10-2.13):

V-e.e0E = p, (2.10)
V-pu-poH = 0, (2.11)
OH
E = —ppo—, 2.12
V X Hrbo~5; (2.12)
OE
VxH = ¢cE+ 57‘50%. (213)

An equation auxiliary to the Maxwell’s equation is the so called continuity equation
and can be now directly obtained. The continuity equation describes how current
leaving a volume should be proportional to the loss in charge density inside the volume.

'Note that in (2.8) the terms p and J represent the free charge density and the free current density field
instead of the total charge and total current density p: and J.
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Returning to Ampere-Maxwell’s equation (2.8) and employing the vector identity V -
(V x H) = 0 in a material with permittivity constant in time, it is true that

oD
. H) = Ay =
V- (V xH) \Y ( + BN ) ;
OE
= - J — .
0 \Y ( +e BT >
The continuity equation emerges as
OE
J=—_V.e— 2.14
\Y V.-e 5 ( )

Eq. (2.14) can be also expressed in the more familiar form

dp
V-J=—-———
ot
considering that V - ¢E = p from Eq. (2.21). Equations (2.10-2.13) and (2.14) will

be base for an electric theory of the neuronal membrane.

2.3 The quasi-static approximation of Maxwell’s equations

The set of macroscopic Maxwell’s Eqgs. (2.5-2.8) describe complex phenomena evolving
on time scales of nanoseconds to seconds. Neuronal activity of interest can extend from
milliseconds to seconds. Simulating the full set of Eqs. (2.5-2.8) in the scale of seconds
of activity would be an excessively demanding computational task. However a closer
inspection of the space and time scales in which these equations are of interest, and of
the parameter values in living matter, shows that some their terms can be neglected.

The typical temporal dimensions where neuronal electric events develop, together
with the permittivity ¢ and conductivity o of the extracellular medium imply that
charges decay instantly in the extracellular space. Any free, unbalanced charge is bal-
anced in the medium within fractions of a nanosecond, being faster than the scale at
which the electric processes of interest unfold. Secondly, the typical spatial and tempo-
ral dimensions, together with the permeability ;1 and conductivity o of the extracellular
medium, allow to decouple the feedback of the magnetic field onto the electric field. This
implies that electromagnetic wave propagation does not play an important role at the
scales observed. This approximation takes the name of quasi-static Maxwell’s equations
[65, 61, 62] and is introduced next.

2.3.1 Decay of free charge in biological media

First the decay of free charge is considered. Taking the divergence on (2.13) and using
the mathematical identity V - V x H = 0 the following is true:

0=V- (O’E—Fé}ﬁo%—?) . (215)
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To estimate the relative magnitude of the summands, a spatially variable field oscillating
with frequency w is considered:

E (x,t) = Eg (x) exp (iwt).
Taking the time derivative and replacing the temporal derivative in (2.15) produces
V- (0E + iwe,e0E) = 0.
The term preceded by iwe,eq is negligible if this ratio is much smaller than 1:

WERE
r0<<1‘

o

Considering a typical frequency for neuronal phenomena w = 1000H z, using the
relative permittivity constant of water ¢, = 81, taking a typical intracellular and ex-
tracellular conductivity of ¢ = 10mS - ecm™ = 15 - m™! (see Appendix A), and the
permittivity of free space in convenient units gg = 8.85 x 10725 - S - m™!, this ratio is

we,g _ 21 x 10%s7 x 81 x 8.85 x 107125 - S -m~t L5 % 10-6.
o 1S -m-1

The value is much smaller than 1 indicating that the current from the temporal change
of the electric field in the medium is negligible.
Lindsay et al. [61] provides an alternative reduction. Eq. (2.13) can also be written

as

ot o

Taking the divergence in both sides of the equation

OE ,
VXH:J(E—FTE—),TE:ggO.

OZU(V'E—FTEV'%—};})

o
Eréo

and using Gauss’s law V - E = results in the partial differential equation

9 __»
ot T
The general solution for this equation is

mmwzp@mnm(—i)

TE

which describes the decay of free charge with initial distribution p (z,0). With the
parameters above, 7. ~ 0.72x 107 seconds. The charge in the extracellular space decays
in nanoseconds while events of interest are in the order of micro- and milliseconds. Also,
the charge term in 2.10 is negligible. The term 7.2 is also seen to be negligible on a,

ot
microsecond timescale.
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Maxwell’s equations can be reduced to the set

V-geE = 0, (2.16)

Vo =0, (2.17)
OH

VxE = —[I,T/LOE, (218)

VxH = oE. (2.19)

The step to deduce the quasi-static form is executed next.

2.3.2 Decoupling the feedback of the magnetic field onto the electric field

The previous procedure justifies the instantaneous decay of free charge. The electric
and magnetic field are still coupled in Eq. (2.18) but as will be seen next, part of this
coupling can be disregarded. Combining (2.19) and (2.18) results in

V xH

Y

E =

g

and

OH
H=—0oupo—.
V xV x THrho o

Vector identity V x V xH =V (V-H) — V- (VH) can be used and Gauss’s law of
magnetism V - H = 0 implies that

OH
V-VH = ey
O [y [ ot

This equation is a Poisson’s like equation and can be interpreted as diffusion of the
magnetic field. For a proper comparison of the space and time differentials the equation

should be non-dimensionalized. Using the non-dimensional terms H = Hﬂo, x = Xio,
and t' = % results into the equation
0
V'-V'H  oppg OH’
= 2o (2.20)

Xz T, o’

As a non-ferromagnetic substance biological media has a relative permeability of p, = 1.
A typical time and space values are Ty = 1073s and Xy = 10~°m, and as in the previous
section 0 = 1.5 -m™! and pg = 47 x 1077, then

oo X _ 1S -m™ x1x4rx1077s- S~ m™! x 107192

=13x1071,
T(] 1035

The impact on the electric field (proportional to the left hand side of (2.20)) of a time
changing magnetic field (right side) is governed by the magnitude of this very small non-
dimensional parameter. This indicates that under these scales and parameters the right
hand side of (2.20) is negligible. In other words the magnetic field can be determined
from the electric field, but the former is not influencing the electric field back.
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The final set of Maxwell’s equations is then the quasi-static approximation:

V-ge0E = 0, (2.21)
V-pu-pH = 0, (2.22)
VxE = 0, (2.23)
VxH = oE. (2.24)

From Eq. (2.23) it can be concluded that the electric field is conservative and derivable
from a scalar field, for convenience the negative potential field ® is chosen so,

E=-V&. (2.25)
A direct consequence of Ohm’s law (2.9) and Eq. (2.25) is the relation
J=—oVd (2.26)

And from (2.21) and (2.25) the quasi-static equations lead to Laplace’s equation for the
potential in biological material (such as the intra- and extracellular space):

V-V =0. (2.27)

The intracellular and extracellular space zero divergence also applies for current
densities implying
v-J=0. (2.28)

This new equation gives origin to the so called volume conductor theory which de-
scribes approximately current flow in tissue. This theory is expanded next.

2.4 Volume conductor theory

The presence of current sources and their effect in biological conductive media is stud-
ied by the volume conductor theory [66]. Sources of current in biological media include
electro-physiological processes such as action potentials, synaptic potentials and stim-
ulating electrodes. In the previous section an approximation to represent the electric
field in extra- and intracellular media was presented but the picture is not complete
without field sources.

As established by the quasi-static approximation, in the intracellular and extra-
cellular space, free charges can be disregarded. The balance of charges in this space
is such, that their electric field cancels out. However measurable electric fields exist
in the brain. In the quasi-static/volume conductor framework these are allowed by
“endogenous”® current sources. That is, although current sources can exist inside the
conductive volume, the points or regions where these sources originate do not belong to
the volume and are for instance boundary conditions. In Figure 2.1 the volume con-
ductor idea is illustrated. For any small volume not touching the gray area equation,
V -J = 0 is true. Regions at the exterior boundary of the conductor can also be the
origin of currents.

2Endogenous in the meaning of “growing or developing from within or originating within”.
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+%

-

Figure 2.1: Ilustration of endogenous current sources in the volume conductor. In the
volume conductor (white) the quasi-static approximation applies and it is assumed that
no electric field sources from free charges exist. Endogenous current sources (gray) do
not belong to the volume conductor but act as boundary conditions and can introduce
currents, and hence electric fields, to it.

These “endogenous” field sources are now combined with the quasi-static approxi-
mation to provide a more complete description of the intra- and extra-cellular space
and they are the core of volume conductor theory.

One of the conclusions of the quasi-static equations is that given all the currents no
charge sources exist as expressed by the divergence zero equation (2.28)

V-J=0.

With field J representing the free current. To introduce the endogenous sources an
additional element must be added in Ohm'’s law (2.9) as a current density source field

Js:
J=0cE+J,. (2.29)

Employing the zero divergence equation implies that
V- (-oV®+J,)=0.

A space and time dependent volume source current can be defined as

s(x,t)=—-V-J, (2.30)

and a Poisson’s equation is obtained for the potential and the volume sources in
—V.-oV® =s(x,t). (2.31)

The way volume sources are treated, that is, determining which equation applies
for the potential (Laplace’s (2.27) or Poisson’s (2.31)) depends on the presence or not
of sources in a region of space. In any arbitrary imaginary volume where s (x,t) = 0,
Laplace’s equation applies. For point sources, the mathematical treatment is identical to
the treatment of point charges within Gauss’s law (2.1): any Gaussian surface containing
a point source will have a non-zero surface flow and —V - oV ® (x,t) will be different
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| Equation | Electrostatics | QS/VC |
Electric field E=-V& E=-V®
Displacement field/electric current D=cE J=0E
Electric field divergence V-cE=p V-ocE=s
Potential from point charges/currents = — [, 2dV = [, 2dV

Table 2.1: Electrostatics-Quasi-static/Volume conductor (QS/VC) duality.

from zero exactly in the points x where there are sources (e.g. in a delta function
fashion). Non-punctual, volumetric sources will have a net current flow in any Gaussian
surface fully containing them. Volumes such as one cell, will be in practice two volume
conductors: one internal and one external, with the membrane current the boundary
condition.

Considering the sources in Eq. (2.29) the equation of continuity (2.14) becomes

OE
(0E+J)=-V 2,
V- (cE+Jy) V-e o
and in terms of volume sources (2.30) this is
OE

The quasi-static and volume conductor equations can be seen as dual to the basic
electrostatic equations by replacing permittivity by conductivity and charge density by
current density [47]. This duality is presented in Table 2.1.

2.5 The space/membrane equations

The basic tools for a description of the neuron and its extra- and intra-cellular space
are now in place:

e The electric field equation (2.25),

e Ohm’s law (2.26),

e Laplace’s equation for the potential (2.27),

e Poisson’s equation for the potential 2.31, and
e the continuity equation (2.32).

A combination of these equations will produce the intra- and extra-cellular space and
membrane equations required for this work. These equations will be referred for short
as the space/membrane equations.

Given the volumetric nature of the cell and the intra- and extra- cellular space, the
space/membrane equations are more naturally defined from a volumetric stand point
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of imaginary enclosed Gauss’s surfaces. An integral form provides a first and easy to
grasp approach to the problem. After the volumetric form is obtained, a differential
form of the equations will be required for the finite element formulation. This will be
developed at the end of this section.

In the space/membrane equations the membrane acts as a especial boundary region
where charge accumulation is allowed (capacitance) and possibly non-linear ionic flux
occurs through. In the volumetric form, a piece of the membrane or a “patch” is defined
easily as the divider of an imaginary volume intersecting the membrane [61, 38|. The
extracellular and intracellular space are then any volume not intersecting it (see Figure
2.2 for notation and illustration).

Charge accumulation on the membrane requires the time derivative term of Ampere’s
law (2.8) as preserved by the continuity equation. The staring point is then the modified
continuity equation with sources (2.32)

OE
V-oE=-V.-e— +s.
o 5at—|—s

This equation will be valid for any volume B in space. Integrating both sides for this
volume results in the equation

E
/V-aEdV: —/ V-sa—dv+/ sdV. (2.33)

Here the term V-cE represents free charge. With the time derivative this term indicates
that the decay of charge within any volume will contribute to the total current flowing
through its surface.

The treatment of Equation (2.33) will depend on whether the volume fully belongs
to the intra- or extra-cellular space or intersects the membrane. These cases will be
presented now.

2.5.1 Extracellular/Intracellular space

In the extracellular and intracellular space, equation (2.33) loses the time derivative
term as specified by the quasi-static approximation. Applying Eq. (2.21), Eq. (2.33) is

reduced to
/V~0EdV:/ sdV
B B

for any volume B such that BN T = (). Furthermore, when no endogenous current
sources are present the right hand side is zero so

/V-aEdeO.
B

2.5.2 Membrane

The membrane acts as a capacitive and resistive element. Consequently, current flows
through the membrane and charge can accumulate on or dissipate from the membrane.
For any volume intersecting the membrane B N T # () the time derivative term of the
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Figure 2.2: Schematic of the cell and volume regions. Volume B can either intercept
or not the membrane.

continuity equation remains. Applying the divergence theorem in Eq. (2.32) a more
convenient surface form is obtained

/ JE'anS:—/ aa—E'anS—l—/st.
OB ap Ot B

With ng an unitary vector normal to the surface 9B of volume B. Without loss of
generality it will be assumed that no volume sources are found touching the membrane
and that the membrane itself does not have external sources, so that the term s can be
dropped?:

/ cE -ngdS = —/ aa—E -ngdS.
OB op Ot

This tells that there is current flowing through the membrane and charge can flow
from/to it creating current. To find the influence of these fluxes on the electric field
the volume intersecting the membrane will be divided in two parts: an extracellular B,
and an intracellular B; part so that B = B, N B; (Figure 2.3). The normal unit vector
np, will denote the normal vector in the extracellular part.

The extracellular part

E
/ o.E-np dS = —/ 58— -npg,dS (2.34)
OB. oB, Ot

will now be treated. Any operation will apply for the intracellular part equivalently.
In the part of the volume that touches the membrane, each side of the equality will

3For sources very close to the membrane, not touching it, a small volume can always be found that will
contain the same section of membrane but that will exclude the source current.
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Figure 2.3:  Close look to the volume intersecting the membrane. The volume is
partitioned in an extracellular B, and an intracellular part B;.

be associated with a different type of current flow: the left hand side term with the
trans-membrane current and the right hand side with the capacitive current.

2.5.2.1 Trans-membrane current

For the left hand side term of (2.34) the surface area can be divided in two parts,
one touching the membrane I'g and the rest of the volume surface: 9B, — I'g (Figure
2.3). For this term, the current flux in the part touching the membrane will be set to
match the ionic flux J;,,. The membrane conductance here is let unspecified as different
mechanisms (even non-linear) might lead to ionic current. The extracellular shell will
still conserve the quasi-static properties. The new expression is

/ o.E-npdS = o.E-npdS + Jion - n.dS.

0B, 8B.—T'p I's

The normal unitary vector of volume B, will be named np, while the normal to the
volume B, that intersects the membrane I' will take the notation n..

Vector n, preserves the orientation of the normal vector to the extracellular volume
i.e. pointing towards the intracellular part. Ionic current by convention is positive
out, so the scalar ionic current will be defined with a sign opposite to the extracellular
volume normal

Iion = _Jion - .

Finally, the total volumetric surface current is

/ o.E - np,dS = o.E-npdS — | ILpmdS. (2.35)
OBe 0B.—TI'p

I'p
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2.5.2.2 Capacitive current

As in the previous step the right hand side of (2.34) will be separated in the exterior
shell and membrane so

OE OE OE
/BBE sa ‘np.dS = _— sa -np,dS + /FB 5FE -n.dS.

Here er is the membrane permittivity*. From the quasi-static approximation charge
accumulation in the non-membrane part 0B, — ['g is disregarded:

OE OE

/ e— -npdS = ep— - n.dS.
op, Ot r, Ot

The membrane voltage V,, is defined for any point on the membrane as the potential

difference from the same point at on the intra- and the extracellular part:

Vin = O, (x;) — Pe (x.) on I (2.36)

with x;, x, two points on opposite sides of the membrane and separated by membrane
thickness
Ar = |x; — X,/ .

As in the trans-membrane current, the capacitive current will be positive outwards.
The scalar value of the electric field times the normal of the membrane surface will
have opposite sign. The magnitude of the electric field on the membrane over a short
Ar can be approximated by

Vm
A
The capacitance of a flat parallel plate capacitor, such as the membrane in this case, is
defined as the dielectric constant times the area, an this divided by the plates separation

E-n =

_€FAF
C = A

The membrane capacitance will be defined by its surface area ratio C,, = A% which
implies

er

E.

The capacitive current can then be approximated by

Cr =

L A A 1)
ot T Ar ot ™ot
Finally
OE oV,
/8Be 55 . nBedS = — - Cmﬁds (237)

4See appendix Section A.5 for an estimation of this parameter.
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2.5.3 Integral form

The integral form of the space/membrane equations can now be presented. The first
equation is in fact the one obtained in section 2.5.1:

/ V- oEdV = / sdV (2.38)
B B

for any volume B.
The second equation will be the combination of membrane Eqs. (2.35) and (2.37)
replaced back into (2.34)

E
/ o.E-ngdS = —/ 88— ‘npg,dS
8Be 8Be at
Vin
/ o.E-npg dS — Ly, dS = Cma—dS.
8Be—Tp I's I's ot
Reorganizing
oV,
/ o.E-npdS= | (.2 11, ds. (2.39)
9B.—Tp I's ot

The third equation corresponds to the intracellular part which is the same Eq. 2.39
but corrected for the oppositely oriented normal vectors

/ 0E -npdS = — / (Cm% + In) ds. (2.40)
OB;—T'p T's ot

Adding these two, corroborates that the volume B intersecting the membrane has also
zero net flux

/ aeE-nBedS—i-/ oE-ngdS = 0
9Be—Tp

0B.-T'p

implying that even for volumes intersecting the membrane the zero net current flux is

preserved®
/ cE-n BdS = 0.
OB

This is equivalent to the no-source version of (2.38).
A useful definition will be to lump the capacitive and ionic currents in a single term
called the membrane current

OV,

. —C 2™

+ Lion- (2.41)

Although the name “membrane current” has been used by others to imply the trans-
membrane current or the ionic currents (for instance in Dayan and Abbott’s book [67])
the name “membrane current” from Hodgkin and Huxley’s classical paper was adopted

13]°.
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Figure 2.4: A small imaginary cylinder sitting on top of a piece of membrane.

2.5.4 Differential form

A differential form of the space/membrane equations, useful for the finite element defi-
nition of the problem, is now obtained. The space/membrane equations in their integral
form (2.38), (2.39), (2.40) are defined for any volume B. The space Eq. (2.38) is valid
for any volume and this can only be true if

V.0E =s. (2.42)

The small imaginary cylinder presented in Figure 2.4 is now required. For this small
cylinder, the surface area 0B, — I'g approximates that of I'g. For an infinitesimally
short cylinder Ahg — 0 the integral areas are the same and

/ o.E -npdS = / I,,dS
FB FB

O'EE ‘Np, = Im

The normal np, points to the outside of the cell but the more convenient and opposite
surface normal n. pointing inside of the cell can be used. The differential version of
(2.39) and (2.40) are then

I, = —-ocE-n.=0.V®, n, (2.43)
and the intracellular equivalent

Im = O'iE ‘Nn; = —an@z + 1, (244)

2.6 Reduction of the space/membrane equations to the cable
equation

Given the assumptions of an infinite, grounded extracellular space and a one-dimensional
intracellular space, the cable equation can be deduced from the space/membrane equa-
tions. This deduction is now presented providing a validation to the system of equations.
Before the derivation is presented the cable equation is first introduced.

5But not necessarily their conforming shells.
5More exactly in their paper the name “membrane current density” was used (denoted I in their case). This
represented the sum of capacitive and membrane current.
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2.6.1 The cable equation

The cable equation provides a mathematical model of the electric potential and the
current flow in neuron fibers. This equation describes the membrane as a combination of
a capacitive component representing the lipid bilayer and a purely resistive current flow
representing the sub-threshold membrane leak. Conduction along the cable corresponds
to a conductive ohmic current flux, dependent on the fiber’s intracellular resistivity.
Among others”, the two core assumptions in cable theory are: first, that the potential
on any cross-section of the fiber is equal, and second, that the extracellular space
is isopotential and set to be zero. The first assumption results from the relatively
short fiber diameter respect to its length, so the only important flow of current occurs
along it and not radially. The second assumption results from the theoretically low
extracellular resistance along the cable exterior. The cable equation only considers a
single dimension, namely the axis of the fiber. Although a general neuron structure can
comprise fibers oriented in any direction, the cable equation can be treated then as one
dimensional.

At any point along the cylindrical fiber, current can flow along the fiber or through
the membrane. The intracellular current along the fiber I; flows through a resistive
medium of resistance per unit length r; in ®/em for the units used in this work. This
current has an electric field associated to it namely

With the usual convention of decaying potential indicating positive field. The intracel-

lular or axial current equals

1
I,=—E

T’L
and is positive in the fiber axis x for increasing values of . The two previous equations

produce

10V,
[ =—_—_T 2.4
! r; 0% (2.46)

The current can also, transversely cross the membrane so the loss of axial intracel-
lular current corresponds to the membrane current
ol1;

I, =— . 2.4
n ox (2:47)

The flux trough the membrane corresponds to capacitive current flow and ionic flux.
Capacitance is specified for the cable equation as ¢,, in units of capacitance per surface
area for unit distance: #F'/em? - cm.

In the case of passive flux, charges cross the membrane via an ideal linear conducting
leak channel with an associated resistance r,, for unit area per unit length®: Qem?/cp,.
The membrane current corresponds to

"See for instance [68] for a summary on the assumptions of the neuronal cable equation.
8 A more logical unit would be conductance as it can be seen similarly to capacitance in units per area for
unit distance, i.e. S/cm? - cm. However this is just the inverse of 2¢m®/em.
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Figure 2.5: A view of the volumetric representation of the cable. One segment of length
Ax is delimited intra-cellularly by non-membrane areas Ay and A;.

I, = cp—o= 4 21 (2.48)

Combining 2.47 and2.48

T Im o Tm 2.49
—=c + (2.49)
and replacing with (2.46) produces

0 (10V\ _ . OV , Vi
or \r; 0z ) ™ Ot T
Assuming a homogeneous along the cable intracellular resistance the cable equation is

1 9%V, oV Vi

ot T'm
An alternative form is defining the length and time constants [69] A = /™/r, and
T = rmCm then

0V, OV,

2
A 0x? -7 ot

+ Vin.

2.6.2 The cable equation is a special case of the space/membrane equations

Beginning from the intracellular integral equation (2.40)
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/ O'Z‘E . nBidS = —/ (Cm% -+ ]i0n> dsS
9B;—T'p s ot

define the intracellular resistivity as R; = o, ! consider only passive currents I, =
Vm/R,, with membrane resistance for unit area R,,, and use the electric field gradient
definition to obtain

—/ LV<I>Z» ‘ny,dS — iV(I% ‘ny,dS = —/ (Cm% + ﬁ) ds.
Ao R A R Tp ot Ry

The non-membrane intracellular surfaces were replaced by the cylinder caps Ay,
A, of the intracellular cable section (see Figure 2.5). As the intracellular currents are
radially homogeneous, voltages change as AV, AV; across small distances Az, Axy.
The electric field crossing the cylinder caps Ay, A; can be replaced the ratios of these
terms. The positive direction of current is along the growing x and in ny4, a sign change
must be applied producing:

1 AV, 1 AV WV | Vi
— 245 — | ——1dS=-— Cp—=2 4+ 2 d8S.
Ao R; Axg Ay R; Az, /FB ( ot * Rm)

From the first assumption of the cable equation the delta terms are area independent,

so the integrals are their products with area W%Q. With Az the distance of the short
cable section, the cylindrical side area mdAx also replaces the right hand side integral:

d>1 (AV; AV, OV |78
- = (=2 - =220 = rdARC, 22 Ap—2.
L) R (Axl Axo) mdAxC,, 5 + wd J:Rm

Factoring the Ax term

ot R,

2 1 % _ M
77% E <Aw1A Az | _ Wdean _}_Wdﬁ
i i

and defining the axial resistance per unit length

R;
r, = ——
7 d2 Y
ey
the capacitance for unit distance
Cm = wdCy,,
the membrane resistance per unit length
R,
'm = —7,
md

and taking the limit case Azy — 0,Az; — 0,Ax — 0, results in the cable equation
(2.50):
1 0%V, OV Vi

J— — Cm
r; 0%x ot T,
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2.7 Boundary conditions and time evolution of the space/mem-
brane equations

The quasi-static assumption rules out charge accumulation or dissipation over time
for the intra- and extra-cellular space. Nevertheless the space/membrane equations
do not rule out potential changes over time. Change of the potentials over time in
these equations is fully given by membrane charges and boundary conditions. In the
membrane, charge accumulation and dissipation is allowed via capacitance while in
space, the potential can be disturbed by boundary conditions such as the endogenous
sources of volume conductors. The time evolution due to membrane and boundary
conditions are detailed now.

2.7.1 Capacitance and ionic currents

Capacitance creates an effective current “through” the membrane. Charges (e.g. anions)
that accumulate at the inside of the membrane lead to an accumulation of oppositely
charged ions (e.g. cations) on the outside. This releases anions that precisely balance
the cations trapped. The net effect is a time dependent, virtual current across the
membrane. During this process charge density on the membrane is altered and the
membrane voltage changes. This current is the time derivative term in Eq. (2.41):

OV
[m = Cm Iion7
ot

Tonic currents across the membrane can also be the source of changes in the potential
over space. The currents depend on the membrane potential, and because the lipid
bilayer is an excellent insulator, on the activity of ion channels. For specific cases
the ionic current can be seen as linear and behaves similar to an ohmic leak in the
membrane, in this case

[ion = ;_m
m

This form of I,,, was already used in the cable equation. A more general case is
when the current components are mediated by specific ion-channels that regulate their
conductance in a voltage and time dependent manner. These can be described by non-
linear ordinary differential equations involving a state vector of gating variables and
the membrane voltage as in

Iion = Iion (Vma qion)

with
dqion
dt

=f (Vm7 qion) .

An example gating scheme is the classical Hodgkin-Huxley model [3] where the ionic
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Figure 2.6: Schematic of the solution domain (SD) and example boundary conditions
(BC). (A) The SD is divided in intra (£2;) and extracellular (£2.) regions, separated by
a membrane (I). The exterior boundary is represented by 02 . (B) Example of mixed
boundary conditions (BC). Neumann zero flux BC are used at the top and bottom
boundaries, while a Dirichlet zero BC on the right represents. The BC create extracel-
lular (®.) and intracellular (®;) potential gradients. (C) Corresponding potential for
the stimulus gradient along the dashed line in (B).

current is described by the set of ordinary differential equations

[ion = gNam3h (Vm - ENa) + gKn4 (Vm - EK) + 9L (Vm - EL)

dm
dh
= (I =h)an (Vi) — hB, (Vin)
dn

Here q;on, = (m, h, n)T and Fy,, Fx and E, are the sodium, potassium and leak offset
potentials [70]. The offset potentials reveal the fact that for ionic media and selective
conductances the driving force of fluxes is not only electrical potential gradients but
electro-chemical. Therefore current can flow across membranes even in the absence of
electric potential gradients as there is a concentration gradient. Functions «, and (3,
depend only on V,, and have exponential form. More detail about these functions is
beyond the scope of this work but is provided in the work of Hodgkin and Huxley [3].

2.7.2 Boundary and initial values

The space/membrane equations as a complete boundary and initial value problem is
now defined. The problem exists in a finite domain 2 with boundaries in the exterior
0 and an interior membrane I' (Figure 2.6(A)). The membrane boundary separates
the domain in an extracellular €2, and intracellular €2; sub-domains. In the domains,
material changes might exist and the conductivity coefficients can be defined as spatially
dependent tensors o, () and o; (x) with x the space variable. Initial conditions for
the potential also might exist. In general there is a difference between the intra and
extracellular potentials of the cell. The intracellular space can have an initial value
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such as
(I)i = q)o (l’) for t = 0.

A typical starting condition for the extracellular space will be the ground condition
®, =0fort=0
and for the membrane current the zero flux condition
I, =0fort=0.

On the exterior boundary 0f., Dirichlet, Neumann or a mixture of both boundary
conditions may apply:
d, = Op (x,t) on 0Qp, and (2.51)

0.V, -n, = Iy (z,t) on 0Ny. (2.52)

With exclusive Dirichlet and Neumann boundaries 0Qp NOQy = 0. Iy is as a current
density on the boundary and is positive when entering the domain. If at least one
Dirichlet boundary is specified, the solution to the space/membrane problem is unique.
When only Neumann boundary conditions are specified, the problem is solvable up to
an arbitrary constant if the total current through the boundary has net flux zero [71].

Extracellular and intracellular current towards I' is continuous as shown for (2.43)
and (2.44) so the following continuity condition applies

l,=n.,-0,V®, = —n,; -o;VP, on . (2.53)

Special external sources may also apply. As explained in Section 2.4 current injection
anywhere behaves as a special zero dimensional boundary. Extracellular stimulation
with electric and magnetically induced electric fields are also treated as boundary con-
ditions in the space/membrane equations. This is specified next.

2.7.3 Endogenous current sources

In terms of potentials and the domains of Figure 2.6 the main space equation 2.42 is split
in the two Poisson’s equations to consider endogenous extracellular and intracellular
current sources:

— V0. (x) VO, (2,t) = s, (x,t) in (2.54)
— V.0, (x) VO, (x,t) = s; (x,t) in (2.55)
In the absence of endogenous sources, this simplifies to Laplace’s equation,

-V Uev(I)e =-V- O'qu)l = 0.



42 CHAPTER 2. FUNDAMENTALS: THE SPACE/MEMBRANE EQUATIONS

2.7.4 Extracellular stimulation with electric and magnetic fields

Extracellular fields such as those produced by planar electrodes or by magnetic stim-
ulation can also be modeled with the space/membrane system. Extracellular electric
stimulation can be easily represented by boundary conditions with a spatially variable
Dirichlet condition in (2.51) or by flux conditions in (2.52). Grounding planar elec-
trodes can be represented as regions in d€)p where the potential is zero (e.g. Figure
2.6(B)). Introducing magnetic stimulation requires a more careful analysis given the
assumptions of the quasi-static approximation.

Neuronal magnetic stimulation is becoming a common technique that does not re-
quire invasive electrodes. Changing magnetic fields can induce electric fields. This
induced electric field can enter the equations as a field complementary to the potential
gradient. From the original Maxwell’s equations, Faraday’s law (2.3) relates the electric

and magnetic field with

0B
E=—.
V X T

Vector field B is selenoidal so a vector potential field A exist such that
B=VxA

Vector field A is known as the magnetic vector potential. In Faraday’s law, replacing
B one obtains 5
A

The field E + % is irrotational and by vector calculus it is the gradient of a scalar field.
This can even be the negative potential field? so

0A
—-Vé=E+ —.
\Y + 5
Reorganizing the terms,
0A
E=-Vb—- — 2.57

This expression is valid in the general Maxwell’s equations framework and does not
contradict the electrostatic field Equation (2.25). The electric field can be defined then

as the sum of the electric potential and the time derivative of the magnetic vector
potential. In the framework of the quasi-static approximation %—‘? is guaranteed to
be the sole contribution of the magnetic field to the electric field (A produced by an
external source). This is because secondary fields are not significant. The term %

is then effectively an external electric field source not very different from the current
sources in the volume conductor (e.g. Eq. (2.29)). In a conductive medium, the induced
field behaves essentially as a “current everywhere” injection.

9This is better described in p. 179 of the first edition of Jackson’s electrodynamics book [72]. Mathematically
this can also be proven with the identity V x (~V®) =0so V x (E + %—’?) =V x (=V®) and (2.56) follows.
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Figure 2.7: Projection of the electric field along a finite cable.

In conclusion, the magnetic field enters the space/membrane integral equations as
a new source. The space integral equation (2.38) is now

A
—/ V'qu)dV:/SdV—F/ V-Ua—dV, (2.58)
B B B ot

for any volume B0,

Assuming the magnetic field has no influence in the trans-membrane current (see
appendix Section A.6 for a discussion) the magnetic field enters the intracellular and
extracellular membrane equations (2.39) and (2.39) as

A
_ / 0.V -, dS — o OB ds = (Cm% N In) s (2.59)
0B.-T'p 8B.—T'p ot g ot

and

A m
_/ aN«I' . nBZ.dS— O’ia ~nB¢dS = _/ (Cmal + [ion) ds. (2.60)
8B;—Tp 8B;—Tp ot g ot

In the differential pair of membrane equations this is equivalent to an additional
current source term in every membrane patch scaled according to the field orientation
respect to the membrane. It can be seen from the dot product that fields perpendicular
to the membrane produce the largest effect.

2.7.4.1 Extracellular stimulation in the cable equation

For a proper comparison of the space/membrane equations and the cable equation
in further chapters the effect of extracellular fields in the cable equation needs to be
considered. Extracellular stimulation with a electric or a magnetically induced field

enters the cable equation as a current source proportional to the spatial derivative of
the field [44, 45]. This is shown now.

10Note that the right hand side magnetic term vanishes for homogeneous fields.
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The electric field expression for the cable Eq. (2.45) is modified with an additional
field term E, which represents the external electric field component along the cable axis
(Figure 2.7):

oV
ox

1 oV,
L=—(-S"+E,
T < ox + )

and the cable equation (2.49) takes the form

O (1 (Vg N\ OV Ve
ox \r; \ Oz ) )T o T

E= + E.

Axial current (2.46) is now

Assuming a homogeneous intracellular resistance and expanding, results in
10%V,, 10K, OV Vi
— - — = Cm —.
r; 02 r; Ox ot T

Re-arranging terms, the new cable equation reads

l@QVm oV, ﬁ laES
r; 02

:Cm

ot + T + r; Ox (2.61)

The term with the spatial derivative of the electric field is known as the activating
function [34]. The external electric field component along the cable produces current
flow inside the cable. If the current along the fiber changes, by continuity this current
must pass through the membrane and cause stimulation. The spatial derivative along
the cable describes this change. Where is the derivative different from zero? One
possibility is a change in the relative orientation between cable and field as it occurs at
bends of the cable. This can occur even if the field is homogeneous. This also occurs
at cable ends.

Under a presence of a spatially homogeneous field, a straight cable segment of length
L receives a current injection described by impulse functions [73]:

1
Iy (x,t) = —E,(t) (6 (z) =6 (z — L)). (2.62)
See appendix Section A.4 for an example calculation of this term in the context of
cable simulators.

2.8 Summary

In this chapter the fundamental set of equations for resolving the activity of three-
dimensional cells in conductive space was introduced. The so called space/membrane
equations result from the combination of the quasi-static approximation of Maxwell’s
equations and the Volume Conductor theory. Given the existence of the membrane
boundary, the equations were first derived for convenience in their volumetric form.
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The differential form was then obtained. The integral form of the equations was used
to obtain the well know cable equation demonstrating that the latter is a special case
of the space/membrane equations.

The main set of equations is formed by a set of partial and ordinary differential
equations. Ordinary differential equations can appear in the ionic current term. For
this, proper initial and boundary conditions had to be defined for the problem. Extra-
cellular stimulation can be represented in the model via external boundary conditions
and current sources. Although current sources can be inside the solution domain, they
are treated essentially as endogenous. The application of the extracellular field to a
cable results in the extended cable equation with the activation function term [34]. In
the following chapter a known set of solutions to the main equations will be presented.
These will be useful to validate the numerical solutions in later chapters.
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3 Solutions to the space/membrane equa-
tions

3.1 Introduction

This chapter provides a summary of known analytic solutions to the space/membrane
equations introduced in Chapter 2. This set of solutions was used to validate the nu-
merical schemes presented in Chapter 4, for an analysis of the stability conditions in
Chapter 5, and for the numerical convergence tests presented in Chapters 5 and 7. So-
lutions for the case of extracellular stimulation of a pair of infinite parallel membranes
and for the finite cable are exemplified graphically and some example values are pro-
vided. These examples were really useful in understanding the behavior and properties
of this set of equations.

Except for the solution of the pair of infinite parallel membranes presented in the
second section, the remaining solutions in this chapter are available in the literature.
Solutions to the point and line current source can be found in Plonsey’s work [47]. A
solution for the finite cable equation under an extracellular field was provided by Rotem
et al. [73] and Monai and colleagues [74]. A more general solution to the finite cable
equation for current injection at an arbitrary point can be found in Tuckwell [69] but
will not be included in this summary. Solution to the extracellular stimulation of a
two dimensional cell was presented by Krassowska and Neu [75]. A solution for the
extracellular stimulation of a three dimensional cell was presented by Kotnik and col-
leagues [76]. The membrane current during current injection and the decay of potential
of a charged spherical cell are also available in Plonsey’s work [47]. To my knowledge,
a compendium of solutions for the space/membrane has not been presented before,
therefore this summary can also be a reference for future works.

A central observation in these solutions will be that the time response of the space/mem-
brane equations evolves in two main regimes: the slow, membrane-resistance/capacitance
regime and, the fast, intracellular-resistance /capacitance regime. These will be respec-
tively associated to the well known membrane time constant 7, and the less known and
much shorter cell time constant 7,.. This separation will be fundamental for the numeri-
cal treatment of the equations and reveals how, the full treatment of the electrodynamic
equations for the neuron goes beyond traditional cable analysis. Although a family of
time constants appears in the analytical solution of the cable equation (Section 3.5) it is
usually obscured by the easier to understand membrane time constant. The membrane
time constant will be seen to be dominant in the response of long cables, but for short

47
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cables the cell time constant primes. This difference and its relevance will become more
clear in Chapters 5 and 7.

Notice that the units used in this chapter are chosen to be convenient for typical
realistic currents and volumes. The units used follow the usage in the software tool
(Appendix B).

3.2 Potential for point and line sources of current

The volume conductor introduced in Section 2.4, with two simple endogenous sources
is considered. Provided no membranes exist, a solution for the potential in Eq. (2.31)
in a volume V' with continuous charge distributions s (x) is given by [47]

& (x) = L/V@dv

dro T

with x' = [2/, 4/, 2’| an arbitrary position, and the radial distance

r—\/m—x (y—y)° + (2 —2)%
A solution also exist for a finite number of current density point sources s;

1 .
dx)=—>73 3

dro 1y
j

For a distributed linear source of current density s (z) [A/cm| the potential differ-

ential is
1 s(x)

Ao 7

dd = dx,

x the position variable along the linear source (e.g. the position along a one-dimensional
neuron fiber). For any point x" in space the potential is

o (x') = 1 /L iiE)dx.

4o T

This is known as the line-source approximation [36]. A solution for the integral
can be found for a constant current source sy and a finite cable . Assuming 2’ = 0,

z=2 =0
r=/2%+y?

and

47r<7/ \/a:Q—i—y
= —ln‘x—i—\/xz—i—y

dro

s L LN\, L IAE
= o ln2+ (2) +y In 2+ 5 +y

I
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3.3 Infinite parallel membranes

A closed solution for a pair of infinite parallel, passive, planar membranes embedded
in a homogeneous conductive medium was found. The conductive medium is delimited
by two parallel boundaries separated by distance D and the membranes are separated
by a distance d. This reduced problem is the simplest instance of the space/membrane
equations and is useful for studying the time behavior of the equations. The problem
is equivalent to the one-dimensional problem described in Figure 3.1(A). A “1D cell”
is represented in a piecewise domain delimited by left and right membrane at points
xr, and xr. An exterior electric field stimulus is implemented by Dirichlet conditions
DY = &p (x9), L, = ®p (71). The membrane voltages are V.E = &, (z) — @, (z1) and
VE = &, (zg) — ®. (rr). The membrane separation and domain length are d and D
respectively.

Provided initial and boundary condition values, the problem has a unique solution in
terms of the membrane voltage V,,,. Following the notation of Fig.3.1(A) the membrane
current can be written as

Ad L+ VE_VLE_ 9

I, =—-0—=—0

Ax D

Assuming identical intra- and extra-cellular conductivities, currents in both sides
of the membranes are equal. The two membrane voltages have the same magnitude

and opposite sign. Defining V,,, = VE = VL &, = &L, — ®% and exterior current
Ip = —O'— the membrane current is
20V,
L,=1Ip— D (3.1)

The continuous membrane time evolution Eq. (2.41) is now

av, 20V, Vi

Factorizing
dv, 1 1 Ip
Vin = —.
it (cmD/zo + C’mRm> .
This is a first order ordinary differential equation:
av, 1
@ c
-1
= <C 5/ | oy R ) ’ (3:3)

whose solution is
—t/rp ]D
Vi () = ce + o

m
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With the initial condition V, (0) = 0, the unknown coefficient ¢ is ¢; = —é—f’nTp pro-
ducing:

Vi (1) = é—ZTp <1 — e_t/T”> .

A solution can also be obtained for the capacitive current

OV, (t) _
I (t) = Copp—2l = Ipe~ v,
() =c¢ ot pe
and for the membrane current
t/¢ Vm t
Im(t):IDG/p—i—R—i).

These functions are quite informative about the time response of the membrane
voltage and current to a pulse stimulus. Similar behavior is also observed in finite two-
dimensional and three-dimensional cells and in short cables. An example solution for
this equation is presented in Fig. 3.1(B). Current densities on the infinite membrane
are presented in the main figure, while the membrane voltage can be seen in the inset.
At stimulus onset the capacitive current I, dominates, because the electric field simply
passes through the membrane. As charges accumulate in both sides of the membrane
(t > 0) the stimulus field is counteracted by the capacitor’s own field, decreasing the
current reaching the membrane. As the capacitance saturates and less and less charge
can be stored, but the difference in charges polarity creates membrane voltage, enabling
ionic flux. Ultimately, the membrane potential is so large that the entire injected current
is carried by the ionic current across the membrane and the membrane capacitance is
not charged further.

3.4 Extracellular stimulation of a single cell

The response of an infinitely long, cylindrical cell in three-dimensions to a traverse
homogeneous field was presented by Krassowska and Neu [75] for a Beeler-Reuter ionic
model [77]| and later by Ying and Henriquez for a passive membrane model [37]. The
problem is analyzed as a circular cell of diameter d in two dimensions. Potentials for
the cell under a homogeneous step field E are

O, (r,0,t) = —a(t) - Ercosf r<d/2
2

O, (r,0,t) = —FErcosf —b(t) - EZ—COS@ r>d/2 (3.4)
r

t

Vin (0,t) = Edcos 6 (1 — e_?> (1 —¢€) = FEdcosf (1 - (e_% + (1 — e_f) e)) . (3.5)
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Figure 3.1: Analytic solution of the infinite parallel membranes problem. (A) Illustra-
tion of the geometry used to derive the relation between membrane current and voltage
of Eq. (3.1). (B) Analytic solution of the 1D Problem.
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With

a(t) = Ufjeae {6_3 + (1 — e_£> 6}
b(t)=1-— ‘201» {6_% + <1 — €_£> 6}

o; + O¢
1 T
T = 1 200¢ ) €=
CmBRm Cmd(0i+ge) OmRm
Assuming o; = o,
1 o \ ¢

sc — : 3.6
i (cmRm " Cmd) (36)

The left term in the sum is the inverse of the membrane time constant 7, = C,,R,,.
The right term is the inverse of the so called “cell time constant” [75]:

e

g;

(3.7)

Te

The overall time constant for the single cell 7. is seen to be related to these two.
Respectively, they govern the step response of the cell as determined by the intra-
cellular resistivity/membrane capacitance circuit and the membrane resistance/mem-
brane capacitance circuit. The cell constant is clearly smaller than the cell time con-
stant and dominates the value of 7,.. Some typical values for the above parameters are
Cp=1pF/cm?, 0,=0;=10mS/cm, d=10pm, R,,=1mS/cm?. A typical membrane con-
stant would be 7,,=1ms and the cell constant 7.=0.1us implying 7. ~0.1ps. The cell
time constant is much shorter, implying a major contribution to the overall constant in
(3.6) for cells in the 1-10pm diameter range. Traverse stimulation of these cells reacts
quite rapidly and this will have major implications in the numerical solution of the
space/membrane equations. In that case, a similar relation was found for the stability
restrictions with the typical size of a mesh subdivision. The results presented for the
equivalent 2D cell in this section also extend to three dimensions where a similar time
constant is found for spherical cells [76].

3.5 Cable solution for extracellular stimulation

An analytic solution for a cable with sealed ends under a homogeneous extracellular
parallel step field was provided by Cartee and Plonsey [60] and extended by Monai and
colleagues for arbitrary fields [74]. Green’s function method was used in [74] to find the
series solution to Eqs. 2.61 and 2.62, which reads:

Vi (2,8) = ni;oAn () L7, (1 exp (—i>> (3.8)

Tn
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with I, the total stimulus current!, the amplitude term

A, (1) = N (0 (L) — 00 (0)) g ().

TmQn,n

eigenfunctions ¢, (x) = cos (u,x), eigenvalues p1,, = %, eigenfunctions inner prod-

ucts ay, , = %, and a family of time constants

1
232 *

Th — — 519
" 1 4 Hadt
Tm Tm

The behavior of this solution for short cables is illustrated in Figure 3.2.
The cell time constant is also implicit in 7,,. Note that with A2 = mand T, = TnCm

1 2 1\
e = (w2 (39)

= 27222 2
I e EQA Tm L2c,, r;

Replacing r; = 4/o;xd? and ¢, = 7dC,,

1 2 72 do; \
Th=|—+n"— ,
Tim L24C,,
a term similar to the cell time constant (3.7) appears in the n-independent term

B C,AL?
 odn?

TCC

In terms of this “cable-cell time constant” 7. the family of time constants is now

(o)
Tn=|—"+n"—
Tm TCC

(ber)
n o= (—+—
Tm TCC
1 1\!
T2 = (——|—4—)
Tm 7—CC
1 1\ !
T3 = (—+9—>
Tm TCC

1 1\ ¢
T4 = —+16—
Tm TCC

Too = 0.

and some values are

'The relation of the total stimulus current to the electric field was not provided in Monai et al. [74]. Using
Plonsey’s core conductor model this can be calculated as I, = £/r. with E the magnitude of the electric field,
re = 4/o.nD? the extracellular axial resistance and D the diameter of the extracellular core conductor. Usually
D can be a very large value which after some point looses its influence on V,,,. See Plonsey and Barr for a
description of the core-conductor model (p. 40, 156, 228 [47]).
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This family of time constants shows that in general, the response of the finite cable
to stimulation cannot simply be determined by the membrane time constant 7, but it
is still related to the cell constant.

For typical cases of a cable with finite length near the length constant A, the cell
constant term is dominant. First of all, notice that for this particular solution of
Vim, the amplitude term A, (z) equals zero for n = {0,2,4,6,...}. This results from
the eigenfunction sum ¢, (L) — ¢, (0) canceling out for even n. This implies that
Tin, T2, T4, - . . dOo not contribute to the solution. For values similar to the previous section
(Cy,=1pF /cm?, 0;=10mS/cm, d=1pm, R,,=1mS/cm? and a short cable L=80pm as in
Fig. 3.2) the time constants take the value 7,,,=1ms, 7..—26ps and the first five family
values are 7o=1ms, 71=25ps, 75=06.5ps, 73=2.9ps, and 7,=1.6ps. As g is irrelevant, the
time constant of the response is largely determined by 7.. and the first few values of 7,
(their influence decreases for larger n because V,,, o 7,).

The membrane time constant only recovers its influence on 7,, when L > \. This
can be seen for instance in Eq. (3.9) where a growing L brings the denominator close
to 1. For an infinitely long cell L — oo, 7., — o0 and 7, & 7,, is constant in Eq. (3.8),
leaving the sum. The time evolution is then given by the membrane time constant only.

3.6 Current injection and discharge of a spherical cell

The next equations provide a practical way to calculate the voltage and potential around
a spherical cell. These values will be useful for comparison and validation of potential
and membrane current values in the following chapters. First, the membrane current
density relation to potential is discussed. The total current passing the passive mem-
brane of a cell during current injection must amount for the total current being injected
as shown by the membrane current continuity Eq. (2.53). A spherical cell can be mod-
eled as a spherical current source of radius R and area A = 47R%. In a medium of
conductivity o, the potential at a point distance r is given by [33, 78|:

2

(D(r):RJforT>R
oer

with J the current surface density

I
/= 47 R?

and I the total current injected. An example value of the extracellular potential mea-
sured around the spherical cell is now provided. At the peak rising rate of an action
potential, a cell can emit up to 1000pA/cm? of current. For a medium with conduc-
tivity 10mS/cm and a 10pm diameter cell, R =5pm and a the potential near the cell
is A
0.0005¢m)” 100045 -6
CID(T’):( 1118 Cm2=25><10 mV - cm
10@7" r

At distances of 10 and 100pm this produces potentials of 0.025 and 0.0025 mV respec-
tively, which are typical ranges for extracellular recordings.
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Figure 3.2: Illustration (left) and analytic solution (right) of the response of a short neu-
ronal cable (80pm long, Ipm diameter, 1pF/cm? membrane capacitance, 100 Ohm*cm
intra and extra-cellular resistivity, IkOhm*cm? membrane resistance) to a homogeneous
extracellular stimulation pulse (1 x 10mV /cm). Currents and voltages are measured
at the right tip of the cable. Arrows indicate the direction of membrane currents flow
(largest at the cable boundaries) and the colors follow the traces in the right. No-
tice that in the cable equation approximation, the cable has no transversal area so
theoretically, current does not flow through the caps of this “cylinder”.
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The charging of the membrane voltage for the same cell is given by [47]

R t
= m — e t/™m
Vo (1) = I (1 e ) .

Provided that stimulation has stopped and a certain initial potential Vj is reached,
the cell will proceed to discharges as [47]

Vi (t) = Ve ¥/,

The discharge follows the membrane time constant. The current density behavior during
discharge is given by a negative capacitive current decaying negatively to zero and a
positive ionic current also decaying to zero with the same time constant. Note that the
membrane current [, for this case is zero indicating no potential gradients inside the
cell. For a cell to produce a membrane current and thus an extracellular potential in
this situation, lateral or external currents would be needed (e.g. by a cell process). The
limit case of a membrane with infinite resistance would imply the cell wont discharge,
retaining the initial potential. If the membrane resistance was zero the cell would
immediately discharge.

3.7 Summary

Solutions for analytically treatable geometrical configurations of the space/membrane
equations were presented. These solutions are provided as a summary of previous
works and also as a reference for further chapters. When no cells are present and a
homogeneous medium is considered, potential can be calculated easily from the current
sources distribution. Moreover, the simplest case of membrane presence can be studied
in the infinite parallel membranes case presented in Section 3.3. This problem provides
an easy to visualize case and reveals important properties of the response of the cell to
extracellular stimulation. The response of a quasi two dimensional cell to extracellular
stimulation was then presented and will be crucial for the stability analysis of Chapter
5.

The cable solution of Section 3.5 showed how, the typical neuronal cable behaved
under extracellular stimulation and that, in the analysis of the cable equation the
membrane time constant is not the only parameter of the time response. Finally, the
chapter focuses in the reaction of a spherical passive cell to intracellular injection which
is required to study the extracellular signature of the action potential in Chapter 7.

A common theme in the analytical solutions of Sections 3.4 and 3.5 is the emer-
gence of the cell time constant parameter. The cell time constant is different from the
membrane time constant and typically smaller in value. As this parameter dominates
the time response, the time evolution of the cell response to extracellular potentials is
largely affected by it and has an important influence in the numerical treatment of the
problem. As it will be seen in the next chapters, an explicit time solution algorithm finds
trouble if the iteration time step is larger than the cell time constant of the individual
grid elements. Implicit algorithms are necessary to deal with this restriction.



4 Discretization and numerical strategy

4.1 Introduction

The space/membrane equations describe the spatio-temporal evolution of potential in
conductive media and across the cell membrane. An alternative to these equations is
the reduced cable equation but this assumes that the cell lives in an homogeneous,
isopotential medium. Meanwhile cells are quite often found in heterogeneous media,
surrounded by other cells and enclosed by a number of boundary conditions. Real cells
and particularly neurons, also exhibit complex three-dimensional morphologies. The
space/membrane equations can model such configurations but only for few cases with
high symmetry, an analytic solution can be derived (see for instance previous chapter).
Solving the space/membrane equations for arbitrary geometries demands numerical
methods.

Solution to the partial differential equations (2.54) and (2.55) for arbitrary ge-
ometries requires then numerical treatment and techniques such as the finite differ-
ence method (FDM), the boundary element method (BEM), the finite volume method
(FVM), or the finite element method (FEM). Solution to the time dependent equation
(2.41) requires explicit or implicit numerical time integration schemes.

Although very few attempts have been made to produce computer solvers for these
specific equations, two other research areas: hearth electrophysiology and electropora-
tion, have dealt with similar problems. The main concern of heart electrophysiology
modeling is the simulation of bundles of muscle cells or myocites and a set of partial
differential equations (PDEs) similar to the space/membrane equations is used. These
equations are known as the bidomain equations which model cell bundles and the space
between them into a homogenous overlap of intra- and extra-cellular space |79, 80]. In
the bidomain the single cell individual membrane is not explicitly modeled.

In electroporation cells are exposed to strong electric fields to increase their electrical
conductivity and permeability to external substances. In cell electroporation modeling,
equations similar to the space/membrane equations and in a few studies, numerical
PDE solvers have been used to model arbitrarily shaped cells. Although those solvers
exist, no ideal method was found in this area with the ability to model the detailed
three-dimensional neuronal membrane and the extra/intra-cellular space.

Before the strategy presented in this chapter and the tool presented in Chapter 6
were developed, a complete and fast solver of the full space/membrane equations was
missing. Previously existing works had a number of limitations. In their numerical ap-
proaches, two main drawbacks were recognized: computational restrictions to represent

o7
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detailed geometries and the lack of efficient time evolution schemes. The use of com-
mercial numerical tools has also hindered the development of these methods but this
will be discussed further in Chapter 6. Previous attempts to solve the space/membrane
equations are now listed.

4.1.1 Previous work

Methods related to the finite difference method, namely the equivalent circuit method
[81, 82| and the transport lattice method [83, 84| divide the cell in discrete electrical
circuit components and were introduced to easily calculate the current and potential on
and around the cell in electroporation. These methods are limited in the geometries they
can describe, as discrete pieces of the intracellular, extracellular space and membrane
have to be explicitly described to form circuits of capacitors and resistors.

BEM approaches to solve this equations were developed in the early 1990’s [85, 86]
providing fast computation times. Although computationally more efficient, the BEM
is generally limited to cylindrical symmetry, requires a careful design depending on the
number of cells, and cannot represent spatially heterogeneous conductivities. Finite
difference method approaches such as the one described by See and colleagues [51]
represent geometries in meshes with a fized-everywhere grid spacing determined by
the smallest feature in the domain. Due to the very large number of elements, the
computation time of these simulations would be impractically long for realistic, sub-
micrometer morphological features.

The finite element method allows representing more detailed geometries as the dis-
cretization can be irregular and adapted to have higher resolutions in regions of interest.
Early FEM models for cell stimulation were able to describe the potentials around sin-
gle and multiple cells in a conducting bath [87, 88| but these were not time dependent.
FEM |35, 37, 39, 52] and finite volume methods [38, 53| have been employed in similar
cases, but these have been limited to unrealistic spatial scales |38, 53|, restrictive time
integration schemes [35, 37, 38, 53, 52|, two dimensions [37], and the absence of ion
channels [35, 37, 38, 52].

In the interest of modeling electrode/cell configurations, models such as the thin-
film approximation have been used. The thin-film approximation supposedly models
the electrical and thermal resistance in the interface between two solids. Moulin et al.
adapted this method to represent the capacitance and conductance of the cell membrane
[39]. The continuity of current between the extracellular and intracellular space was
preserved through Neumann boundary conditions. Although interesting, the technical
details of this method belong to COMSOL, Inc. The technical document cited by
Moulin et al. was not accessible at the writing of this work.

Specialized FEM models to represent gap junctions by Fear and Stuchly [35] and elec-
troporation by Pucihar et al. [52] can model more detailed two- and three-dimensional
time dependent geometries. Although these models consider finer details, they were
not developed for large time simulations. None of these works described the time dis-
cretization strategy used. Both Fear and Stuchly and Pucihar et al. used commercial
tools to solve the equations.

In the two-dimensional work of [37] the time strategy is clearly specified as an explicit
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forward Euler method. With the forward Euler method applied on grids with sub-
micron elements, extremely fine timesteps have to be used for numerical stability (see
Chapter 5). As a result, overall computation time is impractically long for sub-micron
geometries. An accelerated time strategy was presented in [51] but is limited to box
elements in a FDM scheme. The scheme of Xylouris [89] included Newton’s method for
the solution of the non-linear ionic currents. This scheme imposes scalability restrictions
as the number of channels increases.

As a side note, except for the cable equation, experimental validation of the numer-
ical methods for the solution of the space/membrane equations is scarce. An attempt
to compare the result of simulations to experimental results was made by Pucihar et
al. [90]. In this study numerical calculations where compared to experimental mea-
surements of homogeneous field cell stimulation with a potential sensitive dye. The
calculated steady state potential was found to match the observed dye response. How-
ever this model did not consider membrane capacitance. Neuronal cable solvers can
also be considered as solvers of the space/membrane equations and enough experimen-
tal evidence suggests it is accurate. However cable solvers do not model the extracellular
space. Cable solvers will be discussed again at the end of this chapter.

In the next sub-sections the preferred method for solution of the space/membrane
equations, the FEM, is presented and the solution strategy used is discussed. In the
rest of the chapter the strategy is finely detailed. This level of detail was fundamental
for the implementation of the computer software described in Chapter 6.

4.2 The finite element method

The finite element method (FEM) was chosen as the solution method for the space/mem-
brane equations. The FEM provides a robust numerical algorithm for approximating
the solution of partial differential equations in complex geometries. The FEM subdi-
vides the problem in small sub-domains named “elements” whose individual solutions
match accordingly to provide a global, consistent solution. The method’s “plan of at-
tack” can be roughly divided in four steps:

e First, the problem is formulated in its so called “weak form”. A problem in weak
form is not required to satisfy an absolute solution but a “weak” one, i.e. a solution
that partially satisfies the problem’s equation even when its derivatives might not
exist (e.g. local regions of the solution are not smooth enough).

e Second, the solution domain is divided in its discrete version, that is, a collection
of discrete elements and the weak form is transferred to this finite dimensional
space. A common form is the division of the spatial domain in triangles for two-
dimensional problems or tetrahedra for three-dimensional problems ) although
other geometries can be used.

e Third, the finite dimensional version of the problem is converted to an equivalent
algebraic form in a process known as assembly. In the algebraic form, the problem
is equivalent to a linear system of equations where the value of the solution at the
element vertices are the unknowns. The problem parameters and terms associated
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Figure 4.1: The finite element algorithm for a cell (light red) and extracellular space
(blue) geometry. A special condition in this problem is that the membrane will represent
an additional mesh. The right most figure represents the non zero elements of the
coefficient matrix.

to the partial differential equation typically form the left-hand coefficient matrix
and the boundary conditions the right hand side of the system.

e The linear system is solved with an appropriate linear solver whose choice depends
on the spectral properties of the system.

See Figure 4.1 for an illustration of the method in cell electrophysiology.

The FEM provides just an approximation to the solution of the differential equation
in the discrete domain. The FEM was developed in the middle of the 20th century
where elasticity and structural analysis applications prompted for design and simulation
methods that could reduce experimentation costs [91]. Well known works provide a
mathematical treatment of the method, such as Ciarlet’s book [92]. The work presented
in this chapter required one of the most basic FEM forms. A very practical approach
to the finite element method and a valuable guide during this thesis was found in the
work of Olver [93, 94].

4.3 Solution strategy

A numerical strategy that separates the spatial potential problem from the time de-
pendent, membrane currents problem is used to solve the space/membrane equations.
Treating the space/membrane equations involves the solution of a linear parabolic par-
tial differential equation for the potential in space and a time iteration method for the
solution of the membrane current. Treatment of the membrane currents can also involve
the solution of a large set of non-linear ordinary differential equations that represent the
ionic current kinematics. Ideally, the solution of the entire system of equations would
be solved simultaneously, considering all the variables involved, and using an implicit
time discretization method. This is however impractical for large problems. Three main
aspects prompt for alternative methods:
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e The piecewise nature of the problem, imposed by the capacitive and conductive
cell membrane, brings a strong discontinuity on the solution domain and requires
special treatment.

e The frequent non-linearity of the equations describing the ionic currents implies
that non-linear solution methods would be needed. Methods such as the New-
ton—Raphson could be used but the mathematical treatment would be cumber-
some and its solution computationally expensive.

e Besides the spatial potential and membrane current equations, each ionic current
can imply two or more ordinary differential equations. Modern neuron descriptions
requiring 10 or more ionic currents [40] would imply simultaneous implicit solution
of tens of variables for each finite element and a considerably large Jacobian matrix
in the case of the Newton-Raphson method.

Thankfully, as a consequence of the quasi-static approximation, most of the solution
domain is time independent. As charge decay only occurs in the membrane, temporal
processes do not occur inside the intracellular or extracellular space. The potential can
be calculated statically. Time iteration is only relevant in the membrane so a smaller
problem can be defined for the membrane domain alone. The spatial potentials can be
solved independently for a fixed time while the time iteration can be done assuming
the potentials remain constant. From the space/membrane equations the problem only
needs to be expressed in terms of a potential and membrane current variable. Solution
of these two should, at the same time, satisfy the constrains imposed by the exterior
boundary conditions and the membrane voltage. Moreover this separation simplifies
the implementation of the solution software, allowing modularity between the different
solution algorithms.

The handling of discontinuities in the spatial domain is a know as “domain decom-
position” in the applied mathematics literature and extensive work exists in this area
[95, 96]. An specific approach together with a discretization and proof of existence of
the solution for the spatial problem in Eqgs. (2.42), (2.39) and (2.40) was presented
by Wohlmuth and Lamichhane |71, 97]. This approach was selected as the solution
approach®.

After an spatial solution is obtained for the boundary value problem, the membrane
voltage has to be integrated over time. At least one more approach for solving the
space/membrane equations uses this alternative [37]. This solution scheme is logical
and shares some similarities with bidomain solvers [98, 54, 99]. Once the spatial problem
is separated from the time problem, explicit or implicit methods can be used for the
time discretization [100].

Explicit methods as the forward Euler method or implicit methods as the backward
Euler or the Crank-Nicolson method [55] can be used. The forward Euler was the first

"Wohlmuth and Lamichhane method allows for a spatial discretization in which the elements describing
the domains are non-matching, that is, that they do not necessarily share common nodes on the interface
between domains. The implementation in this thesis assumed the interface nodes matched simplifying the
implementation. The use of non-matching grids was considered unnecessary for the presented work, however
the solution algorithm could be extended in the future it that was needed.
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attempted method because it is easy to implement. This method is limited as will
be presented in Chapter 5 and brings strict restrictions in the time steps. Ying et al.
opted for an explicit method [37]. The more favorable, implicit Crank-Nicolson was
implemented next and demonstrated to be more robust for large timesteps. Also, a
solution strategy was found that employs an algebraic structure not much more compli-
cated than in the forward Euler method. The Crank-Nicolson scheme allows simulation
time-steps orders of magnitude larger than the Euler scheme, without causing numerical
instabilities. The use of this implicit method also grants applicability of adaptive time
step schemes, shortening computation times by one to two orders of magnitude. This
will be proven in Chapter 7.

4.3.1 Solution algorithm

To solve the complete space and membrane problem, the equations governing the po-
tentials in the intra- and extracellular domains and the equations governing the time
development of the membrane currents are solved in an alternating loop:

e Poisson’s Eqs. (2.54), (2.55), for the potential and the current continuity Eq.
(2.53) with boundary conditions (2.51) and (2.52) and a fixed V},, are solved with
the FEM for a given moment in time. In this step, the system of partial differential
equations is solved to obtain variables ®.; at each of the domain finite elements
and finding I,, = n, - 0. V®, = —n,; - 0;V®P; at each of the elements touching the
membrane. At ¢ = 0 the potential and membrane current take the values of the
initial conditions.

e After this, the membrane currents Eq. (2.41) is integrated using the newly cal-
culated membrane current [,,,. The ionic currents are solved using the previous
value of V,, i.e. the one used in the first part of the algorithm. After this step is
completed, a new value for V,, is found.

Appendix Chapter G presents a more concrete version of this algorithm as script code.
In the next sections the spatial and temporal discretizations are detailed.

4.4 Space discretization

4.4.1 Weak formulation
4.4.1.1 Spatial potential problem
The weak finite element formulation is obtained by multiplying equations (2.54) (and
identically the intracellular Eq. (2.55)):
-V -0, Vo, = s,

by test functions v, (and v;), multiplying and integrating on both sides,spatial potential
problem

- / (V- 0.VD,) (v.) dV = / 50 (v2) dV.

e
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Green’s first identity can be applied to the left hand side:

/ (0.V,) - (Vo) dV — / (Vo -n,) (0.)dS = / 5o (v) dV.

Qe Qe

The extracellular space ), boundary 02, can be divided in three parts: a region of
the exterior boundary where Dirichlet boundary conditions apply 0€2p, a region of the
exterior boundary where Neumann boundary conditions apply 02y, and the membrane
part of the boundary I". The second term in the left hand side can then be separated
in three integrals

/ (0.V,) - (Vo) dV — / (0.V®, -n.) (1) dS —

e/(o—ewe'ne) @)ds= [ @Vo. n)@)as = [ s (w)av,
o0p 0N Qe

The Dirichlet section of the integral vanishes? as the FEM requires v, = 0 on 9§)p
SO

/(aewbe) (V) dV—/[mvedS— / Inv.dS = /sevedV.

Qe T 0N Qe

Moving the unknowns to the left hand side produces

/Jevq)e-VvedV—/ImvedS: / INUedS—F/sevedV. (4.1)
O r Ny Qe

The intracellular version of the equation assumes than no cell is open to the exterior
boundary and uses the opposite normals on the membrane integral

Note that the interface condition on I' is comparable to a Neumann boundary condition,
with the difference that in this model I,, is an unknown function on membrane space.
Combining (4.1) and (4.2) produces

/JVCD -VodV + /Im (v; — ) dS = / InvdS + /svdV
Q r My Q

Here, o, ®,v represent the conductivity, potential and test function in any of the
non-overlapping domains €2.;. The bracket operator ||, is introduced to change the

2Note that although the Dirichlet part disappears now as required by the finite element method, it has to
be considered in the matrix assembly by making the boundary node values known variables with the Dirichlet
values. This is a tricky part of the method but I refer to other works for an explanation.
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sign of the operand according to the face of I' that is being evaluated

{—f(x) x in Iy

[f (X)]i,e = f (X) X in Fe-

The spatial potential problem is, with this notation
/UV@ : VvdV—i—/Im [v],;dS = / INUdS—i-/svdV. (4.3)
Q

Q T AN

Integration is performed in the intracellular and extracellular face of I'.

4.4.1.2 Membrane voltage condition

The membrane voltage condition (2.36) is expressed in the weak form as

/(Cbi — o) udS = /VmudS,
T

r

with u a test function, also restricted to membrane space. Eq. (4.4) can be understood
as a special Dirichlet boundary condition where the values must comply with a fixed
potential difference V,,,. With the bracket operator this translates to

/[(I)]w. udS = /VmudS. (4.4)

The complete system of spatial equations is formed by Eqgs. (4.3) and (4.4).

4.4.2 Matrix form of the problem

The matrix form of the problem is obtained by choosing two set of piecewise linear basis
functions:

° {01,1}2, e ,UNQ} for each of the Ng nodes in a triangulation over the solution
domain € namely Q" and

° {ul,uZ, e ,uNF} for each of the Nr nodes in a triangulation over the solution
domain I" namely I'".

Here h refers to the typical length of the triangulation. The result is a collection of
M = Nq + Nr equations,

/avfb -VuldV + /Im [vi]“.dS = /svidV i=1,.., Nq, (4.5)
Q r Q

/uj (@], ,dS = /uijdS j=1,..,Nr. (4.6)
r

T
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For simplicity the Neumann boundary condition term |, ooy | yvdS was dropped but
can be added in any future step as a known value.

Let ®*, IJ , and V!, be the approximations of values ® (2¥), I,,, (') and V}, (z') at
triangulation nodes z € Q" 29 € I'* and ' € T'". The continuous functions can be

approximated by

Nqg
b = E Prok,
k=1

Nr
I, =~ E I v, and
=1

Nr
Ve & Y Vo,
1=1
and the potential gradient by
Nq
Vo~ Y 0Vt
k=1

The collection of equations (4.5) and (4.6) for a given i and a given j become

O'ZCI)k/VUk : VvidV—i—ZLjﬂ/uj [v'], . dS = /svidV, (4.7)
k 0 i r Q

k

Z@k/uj [v"], . dS = ZVﬂn/ulude. (4.8)
T ! T
The left hand entries of the matrix linear system form can be defined then as

Ak = a/ VoK - VoldV
Q

and

Bl = /uj [viLedS.
r

Right hand vector entries can be defined as
fi= / sv'dV
Q

and
G = /ulude.

T
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The collection of equations
Z Pk Ak + Z II BY = fi (4.9)
k J
> kB ="V, (4.10)
k 1
can then be written in matrix form as

ool lav.] (a1

with vectors ®, I,,,, f and V,, or shortly

Mu=>b
with

[ A B
M = _BT 0}

B P

u = 1L,

[ f
b= | ev, |

The matrix linear equation (4.11) has to be solved to obtain the potential ® and mem-
brane current I,, vectors at any time step.

4.4.3 Reduction of the system

Although the Laplacian A matrix is positive definite, in general the matrix M is sym-
metric but indefinite. In Wohlmuth and Krause [71], and in a latter improvement by
Lamichhane and Wohlmuth [97], a factorization procedure was developed that can pro-
duce a reduced positive definite system after elimination of vector I,, through static
condensation®. The procedure is adapted for this work now.

4.4.3.1 Obtaining of the membrane current term

Obtaining an expression for the membrane current I,, in terms of the potential ® is
required to reduce the system to a positive definite form and in general, to separate
in two the solution process of the space/membrane problem. To achieve this a node
reorganization is required. In [71] the main unknown vector! is decomposed in three
components: all the sub-domain interior nodes (i.e. nodes not touching any interface®),

3Differently from [71] and [97] matrices in the present work were denoted with bold letters. For instance
main matrices are mapped as: A - A, B — B.

4In their paper this vector is known as uy, corresponding to ® in the present work.

5Denoted I in their work
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the interface nodes in the mortar sides®, and the interface nodes in the non-mortar
sides”. For simplicity and because collapsing the first two does not bring any important
difference, vector ® is now only decomposed into two components: the first containing
all the nodes that do not touch any interface and the interface nodes in the “exterior”
part of the interface®, and the second containing the interface nodes in the “interior” part
of the interface’. The number of nodes in each part will be denoted with Roman literals
¢ and d (not to mix up with the diameter symbol d) respectively. So ® = [ P, Py }T,
and the system Mu = b is decomposed as

Acc Acd L Qc fc
Age. Agqg D b, | = | £ (4.12)
L D o L, g
with vector
and matrices
L
B-|p)

Given the correspondence of nodes for ®4 and I,,, matrix D is diagonal [71] while matrix
L represents the rest of elements in B. As an example, in Figure 4.1, the nodes that
will correspond to ®4 will be nodes 38 to 45. The nodes associated with I, would be
nodes 1 to 8 of the addtional membrane mesh. Note that the number elements in I,
will be always d.

Taking the second row of (4.12)

AP + Aga®q + DI, = fy,
and rearranging, an expression for I, can be obtained,
L,=D"(f; — Ag®q — Agq®y). (4.13)

Introducing matrix W as
Wi'=10 D],

the I,, term can be directly obtained from the vector difference f — A ®:
I,=WT(f - A®). (4.14)

The zero part of W7 erases the A.. and A.q blocks, effectively producing (4.13).

5The problem in this thesis is not exactly a mortar problem as the nodes match. The naming is just more
convenient here to compare with the previous work. In their work this was denoted as M.

7i.e. the nodes of the interface side A, that determine the “master” interface discretization and whose
number corresponds to the number of degrees of freedom N.

8This corresponds to the interface nodes on the extracellular space in the biological cell case.

9This corresponds to the interface nodes on the intracellular space.
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In the computer implementation this decomposition can be achieved via simple node
reorganization!-!!,

Replacing (4.14) back into Eq. (4.11), a linear system exclusively in terms of ® can
be obtained. The simple term W7 (f — A®) however does not produce a symmetric
positive definite system and algebraic manipulation is required to obtain the final re-
duced system. This is a static condensation procedure and is key to understand the
last and symmetric form and for the computer implementation. Neither Wohlmuth and
Krause [71], nor Lamichhane and Wohlmuth [97| presented these procedures in detail.
The required operations are presented now.

4.4.3.2 First static condensation

Having I,, isolated, a first static condensation can be obtained by simply replacing L,
(4.14) in the main system (4.11):

A B P f
{BT oHWT(f—A@}—{g}' (4.15)
Extracting and manipulating the first row product
A® +BW! (f-A®) = f
A® + BW'f —-BWTA® =
(A—BW'A)® = (Id—BWT")f.

Back in (4.15) the following expression is obtained

A B Id B (Id — BWT) f
{BT OH_WTAP_[ > (4.16)
The left hand side matrix of equation (4.16) is not square and represents an algebraic
system with more equations than unknowns. Standard solution techniques such as the

conjugate gradient method [101] cannot be used.

4.4.3.3 Second static condensation

An square version of the left hand side matrix can be obtained by multiplying from the

left by the test functions [ vl u? ] and restricting the space of test functions making

'%Tn Lamichhane and Wohlmuth’s latter paper [97] a transformation matrix that also reorders the elements
in the vector f — A® was introduced: matrix E7 in their notation. This matrix was used on the computer
implementation. In the next sections the notation for the semi-inverse matrix W7 is preserved.

" Two important notation changes exist between Wohlmuth and Krause’s 2001 paper [71] and Lamichhane
and Wohlmuth’s 2004 paper [97]:

e Matrix B in the 2001 paper is equivalent to matrix B in the 2004 paper. For the present work the
notation for the main matrix from the 2001 paper was preferred.

e In the 2001 paper matrix W is equivalent to the product (DflET)T in the 2004 paper. For instance,
in the 2001 paper Aj, (which corresponds to I,,) is defined as Ay, = W7 (f — Aus). In the 2004 paper
M = D7YET (fr, — Auy,). In the 2004 paper there is also a completely different matrix W defined as
W =ED 'B.
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the test function u a function of v, u = W'v and

[ ][ e - e[ om0

Replacing u = Wlv

Wi [ B[ e - e e [ 0B

and factorization leads to

v [ 1d W]{P‘:“T ]S’H_VI‘%A]@ = v'[1d W}[(Id_EWT)f].

Canceling v¥

(14 W o || wra

]@ = (Id-BW")f+Wg.  (4.17)

The left hand side of Eq. (4.17) is square but not symmetric. Standard techniques
such as the Generalized Minimal Residual algorithm (GMRES) [102] for non-symmetric
linear systems can be used.

4.4.3.4 Third static condensation

For mathematical and computational issues a symmetric system is preferred. A sym-
metric version of the linear system can be obtained again by restriction of the space of
test functions and by algebraic manipulation of the expression for I,,. By addition and
subtraction of the term WTAWBT?®, 1, in (4.14) can also be written as

I,=W/f-W'A® + W AWB ® - W AWB” ®.
In the second row of (4.15) BT® = g, so

L, = W' (f-A®+AWB"®) - W AWg
= W' (f+A(WB" —1d) &) - W AWg. (4.18)

Substituting I,,, in the original system

{é&T ]3][WT(HA(WBT?Id)@)—WTAWg] B {2}

Expansion leads to

A®+BW' (f+A(WB" -1d)®) = f+BW'AWg
A® +BW'A (WB" -1d)® = f+BW'AWg—-BW'Y.
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Re-factorizing

A B P [ f-BW'f+ BW AWg
BT 0 WTA (WB?T —1d)® | g
and extracting the common vector ®
A B 1d > — (Id —-BWT*) f + BW AWg
BT 0 W7TA (WB” —1d) N g '

According to [71] another possible choice for the restricted test function u is u =
WTA (WBT — Id) v, then u” = v7 (BWT — Id) AW. Multiplying both sides

[v* “T][BAT ](?HWTA(V{%T—M)]‘I’
(VT T ] [ (Id — BW7) f + BW'AWg ]
g

Expanding
T T A B Id
V' [1d (BW Id)Aw}[BT o || wra wer—1a) | ®
_ T T
V[ 1d (BWT—Id)AW}[(Id BW)t"g+BW AWg}

and factoring

& —

[1d (BWT—Id)AW}{A BH Id

BT 0 || (BW” —Id) AW)"
(Id-BW')f+ BW'AWg + (BW' —1d) AWg =
(Id—BW") f + (2BW' —Id) AWg.

The final system

T A B Id
1d (BW _Id)Aw][BT 0} (BWT 1) AW)" | ® =
(Id—BW7") f + (2BW’ —1d) AWg (4.19)

is symmetric and positive definite [71].

4.4.4 Efficient reduction of the system

The computer implementation of the reduction procedure does not necessarily match
the mathematical version. The computer implementation of the reduction procedure
and the solver should minimize the number of matrix and vector operations to speed
up the solution. Detailed geometries imply that the number of elements to describe
the solution domain are large and in consequence the degrees of freedom will be large.
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Particular care has been taken in the computational implementation of the algebraic
operations that have to be performed for every geometry. Matrix multiplication for in-
stance can reach O (n3) complexity so optimal algebraic procedures that minimize the
number of matrix and vector operations are desirable. For instance, a common matrix
operation such as X7YX might have an optimized routine in the toolkit. Rearranging
the system to take this form can speed up the processing. Moreover, computational
libraries that handle matrix and vector operations provide restrictions on the mathe-
matical expressions they can process, reducing verbosity and providing more efficient
and compact code.

Not only processor resources but memory and can be optimized. Memory space
used for intermediate matrices can be re-used lowering the total memory requirements
of the program. The computer library used for the solver presented in Chapter 6 is
the Portable, Extensible Toolkit for Scientific Computation: PETSc [103]. PETSc
introduces other restrictions in the operations as consistency has to be maintained
across several computers in parallel operations. The reorganizations in the matrix and
vector operations presented next have considered in detail these restrictions and where
the ones used in the final implementation of the computer solver.

4.4.4.1 Efficient reduction to the symmetric system

The symmetric condensed form in system (4.19) requires composition of an auxiliary
right hand side matrix

A = [Id (BWT—Id)AW][A B Id ]

BT o0 } { WTA (WB” —1d)
This can be expanded!? as a sum matrices with the size of A. Multiplying the first part
Id
ro_ T _ T
A" = [A+(BWT —1d) AWB” B] [WTA(WBT_M) ]
and fully expanding

A" = A+ (BW"-1d) AWB” + BW"A (WB” —1d)
= A+BW AWB” - AWB’” + BW/AWB’” - BW’A.

Factorizing
A’ = A+2BWTAWB” —BW”A — (BW”A)" . (4.20)
The right hand side must also be treated

' = (Id-BW")f+ (2BW’ —Id) AWg
= f—BW'f+ BW AWg + BW AWg — AWg

12For practical reasons in the computer implementation handling of matrices with the size of A is simpler
A B
B” o
in the same memory section at the end of the system reduction. Optimized matrix/scalar routines such as
X =X+ aY exist in PETSc.

than building the extended and larger system [ } A’ has the same size than A and can be stored
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resulting in
f = f-BW'f+ 2BW' AW — AW) g (4.21)

In the previous expressions in can be observed that the term BW7 repeats several
times. In the computed implementation this matrix can even be directly assembled
from the finite elements without the matrix product. From decomposition (4.12) notice

that B = [ L D }T and WT = [ 0, D! ], this implies

7 | Oce (LD_l)Cd
BW" = Ogc Idg,

The product LD is a matrix were each row corresponds to the one of the nodes that
do not touch any membrane or the interface nodes in the exterior part of the membrane.
Each column corresponds to one of the nodes in the interior membrane. The matrix
itself consists of 0 or -1 values. Values of -1 appear where an exterior interface node
matches an interior interface node. Regardless of the value of the entries in B this can
be seen with a simple example for a system with four interface nodes with test function
coefficients b;:

_ o, -
—by
—by
L .
o [3]-
D _bs
bo
by
ba
I bs |
This implies
_ by -
—bs 1/bo
-1 _ 1/61
LD =1 1/by
: 1/bs
L _b3—
SO } )
-1
—1
1 :
LD = |
- _1_
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Matrix BW7 can be easily constructed in the assembly procedure. The new matrix
will be defined as
N = -BW".
With the negative sign to save one scalar-matrix operation in the matrices toolkit.
The term —BWT A is also common in (4.20) and (4.21). This matrix will be called
P:
P=NA=-BW'A.

Now, using (4.20) and (4.21) the system (4.19) is
A'®d =1

SO

(A+P+PT+2PN" )® =f + Nf + (—2PW — AW) g
Producing and storing the transpose of N can be avoided. Matrix PN is symmetric
SO
PN” = (PN”)" = NP”.
At the same time, the transpose P7 which needs to be computed, can be used twice.
Two additional auxiliary matrices can also be defined:
Q=AW
R =-2PW -Q
Matrix R only has to be computed once for the right hand side. Finally,
[A+P+P"+2(NP") |® =f+Nf+Rg (4.22)
The I,,, term could be obtained from the long expression (4.18) but also from the shorter
Eq. (4.14):
I,=WT'(f-A®)=W'f-W'A®
so the transpose of matrix Q can be reused when 1, is calculated as
I, =W f-Q'®.
In the above operations three specific PETSc aspects were considered:
e PETSc can do fast multiplications with products of the form X7 AX. However
doing 2NP7 is better than 2NANT because: in both cases a new matrix has to

be created; the transpose of N is not required anywhere else; and the product NA
is already in P.

e In cases as the right hand side product (—2PW — Q) g is preferred to have a
single matrix to multiply with as this has to be done every timestep (g is not
constant). That is why matrix R is created.

e At the end of every timestep I,, has to be calculated so a copy of W7 is needed in
any case. It would be expensive to multiply W7 and A every time step so matrix
Q was created. Q could also use less memory space than A.

With this procedure only four matrix products, four matrix sums and four vector sums
are required in total.
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4.4.4.2 Efficient reduction to the asymmetric system

The asymmetric system (4.17) will be used in a specific solution scheme with the Crank-
Nicolson solver. Expanded

~WTA
(A+ WB" —BW'A)® =

[ A+WB” B][ 1d ]i) = f—-BW'f+Wg

For the computer implementation'® matrix N can again be used
N =-BW".

Matrix G in g = GV, from (4.11) needs to be preserved so an auxiliary matrix S is
created
S" =NG.

The asymmetric system is then
(A-N"+NA)® =f+Nf+S"V,, (4.23)
The membrane current is calculated with auxiliary matrix'4 T
T=-W'A

SO

I, =Wif+T®.

4.5 Time discretization

Equation (2.41) is integrated at time step n after solution of the potential equations
(2.54) and (2.55), preserving the continuity condition (2.53). Each step the potential
®" is obtained for a fixed voltage vector V) using the linear system from Section 4.4.
Two alternative time integration schemes can then be applied and are now presented.

4.5.1 Forward Euler

After finding ®", the simplistic explicit Euler method can be used to produce membrane
current I? (®") using (4.14). This last, together with the vector of ionic currents per

node I? (V2), is used to find the new membrane voltage V*™!. The discrete form of

the explicit time equation can be written as

At
Vi = Vi o (5 (@ (Vi) — (Vi) (1.21)

3For historical reasons in the current computer implementation matrix N corresponds to matrix —X.
MMatrix T is called matrix R in the code.
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State variables for the ionic currents can also be approximated explicitly as
Ao = " + A (V] ).

The new V7 is then ready to be used again to solve the spatial equations. The spatial
equation for the explicit Euler can be solved with the optimized reduced system (4.22).
The Euler scheme is limited and requires extremely small time steps. Chapter 5 will be
dedicated to explain this restriction.

4.5.2 Implicit Crank-Nicolson

The Crank-Nicolson is an implicit, backward difference method in time, developed
for the numerical solution of the parabolic diffusion equation [55]. For the diffusion
equation with finite difference methods the Crank-Nicolson method is unconditionally
stable, meaning that regardless of the time step size the numerical solution always
converges [104]. As a backward method, the method involves an unknown, n + 1 term
in the right hand side of the time step equation. In the finite difference scheme for the
diffusion equation this unknown is treated by a simple algebraic manipulation displacing
the linear term to the left side and employing the linear solver to find a solution [105].
Due to the membrane discontinuity, the same artifice requires a special treatment in
the present case.

To integrate the time equation (2.41) the Crank-Nicolson requires the value of the
membrane current at step n + 1 in:

At
Vit = Vi g (5 @0 @) 15 @) -1, (Vhaah) . (02

I*+1 is the unknown future value of I,,,.

Through term re-arrangement the spatial linear solver can be used. Defining h" =
Vo + Aﬂi (IIn — 12 ) one gets

non

At At
Vn+1 — In+1 Vn = In _ In
At
— 20 In+1 + hn

Combining V2! with the linear system (4.11) in the advanced time step n + 1 results

in
A B Hot1 £
8 8115 [ gaco o) |

The lower row produces

At
BIo™! = o —-GL" + Ghj

which reordered is

At

BT(I)n+1 _
2C,

GIM = Gh.
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With C = —ﬁ—fnG the Crank-Nicolson linear system!® is

A B o+l o
o) -] 429
In this form the system could be solved with the GMRES algorithm [102] but a system
in terms of ® only is easier to handle. Unfortunately the system (4.26) is different from
system (4.11) and it cannot be solved with the optimized reduced system (4.22).

As C # 0 a simple solution could be obtained using the Schur complement [106].
The last row of (4.26) produces

B7®"! 4 CI'! = Gh"
and reordering and inverting C
I = C! (Gg® — BT®)
In the first system row
AP L B = fn
12! can be replaced

A®""' + BC™' (Gg) —B"®") = f"
A®" —BC'BTe*! = f - BC'Gh"
The new reduced system is
(A-BC 'B") "' =f" — BC 'Gh).
The membrane current could be found as
In+1 — _lhn _ C_lBT¢n+1.
m h v

The Schur complement solution is quite easy to implement but requires inversion
of matrix C. Although C is sparse, in general the inverse of a sparse matrix is not,
making this approach memory inefficient.

Presence of matrix C makes the static condensation of Section 4.4.3.4 asymmetric.
Lacking the theoretical background to find a symmetric version of this matrix, the
procedure for obtaining the asymmetric version of the system (4.23) was used. For
numerical solution the GMRES algorithm [102| was then employed.

Contrary to the Euler method, any solution to (4.26) depends on the previous I,,

(implicit in h"). This makes the method particularly weak at initialization and fast
changing exterior stimuli. A better solution can be obtained by pre-calculating an

n 1 . . . . .
intermediate step ImJr2 in a predictor-corrector scheme. This improvement is referred
as the Euler-Crank-Nicolson (ECN) method and a computer implementation is shown
in the appendix Section G.3.

15 Although c is writen as constant At might be variable in time (e.g. in adaptive time steps) and C,, variable
in space (e.g. the axon myelin sheet). In such cases 1/c,, should be a matrix and the left hand side would need
to be scaled properly each time step. The 1/c,, matrix is implemented in the current version of the computer
solver.
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4.6 Cable solvers

A specific type of solvers for the space/membrane equations are computational solvers
of the cable equation. These can simultaneously solve the membrane voltage for tree-
shaped structures made of simpler cables. Cable equation solvers can model combi-
nations of non-linear ionic currents representing neurons in close to realistic set-ups.
Besides the state variables required for ionic currents, cable solvers deal mainly with
a single variable i.e. the membrane voltage along the cable. By comparison, a full
three-dimensional solver like the one proposed in this work has to deal with two main
unknowns: potential in space (which directly determines the membrane voltage) and
membrane current (calculated on the membrane surface). Although in principle differ-
ent, it is interesting to review cable solvers.

Several free accessible solvers of the cable equation exist, the most notable are NEU-
RON [12] and GENESIS (GEneral NEural SImulation System) [107]. Other less known
alternatives include Surf-Hippo [108] and NeuroDUNE [109]. With the exception of
NeuroDUNE, which uses a one dimensional finite volume method, all these packages
use finite differences to solve the spatial part of the cable equation. In the finite differ-
ences method, a cable equation (2.50) for a piece of cable j of length Az, voltage Vi,
and adjacent, identical cable section potentials VI Vi=1 reads [12]:

. : - .
d Virt—2vi + vV :Cm%+lj
4R; Ax? ot on

An implicit in time, finite difference version of this equation reads

o (Vi +A) =Vi (@) d ViF (4 At) —2V3 (¢ + At) + Vit (t + At)
—I(t+ At).

Obtaining a linear algebraic system for this equation is relatively simple. Voltage
terms in the new step t + At are all linear and can be set in the left hand side of the
equation. In combination with all other cable sections, a system of equations can be
formed with the adjacent terms of V,,. The final algebraic system matrix will have
entries only for the connected sections.

Other properties of the neuron structure facilitate the numerical solution of the
cable equation. The four computer solvers presented above employ the core numerical
algorithms proposed by Hines [110, 111, 112]. The so called “Hines method” consists of
three strategies:

e Take advantage of the tree structure of neurons to construct a linear system for
the spatial variables whose main matrix is almost tridiagonal (non diagonal only
on branching points). Being nearly tridiagonal, the linear system can be solved
fast with Gaussian elimination. An O(n) Gaussian elimination algorithm can be
written taking advantage of this structure. The speed up for trees is comparable
to what would be achievable for a single unbranched cable.
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e Hodgkin-Huxley like membrane currents can all be written in the form

with x any of the channel types. Although g, involves non linear terms, if its value
is known, the current density I, can be written linearly with respect to V,,,. The
second Hines strategy proposes calculating g, at an intermediate step t + % and
keeping V,,, for the next time step preserving accuracy, that is

L (t+At) =g, (vm (1), g (z- %)) (Vi (£ + At) — E,) .

In this form, the currents can be added in the calculation of the step t + At as
linear terms of V,, (t + At) and implicit methods used.

e The last strategy proposes the use of pre-multiplied Hodgkin-Huxley rate function
tables. The conductance variables in Hodgkin-Huxley type models are indepen-
dent from each other and all have exponential function dependencies in V,,,. The
term V,, remains within a relatively short range for biologically realistic values
(e.g. -100 to 100 mV). Every conductance variable can then be integrated in the
form

q(t—F%) =P(aq,ﬁq)+Q(%5q)q(t_%)

with P, some function of o, and 3, which are in turn functions of V,,, only. Static
tables for P and @) as a function of V,,, can be created and interpolated to obtain
continuous values for V,, in biophysically relevant ranges.

Hines reported a 10 to 20-fold reduction in the amount of time required to solve the cable
equation compared to more “brute force” explicit methods. Note that these experiments
were performed in the 80’s and modern computers do not benefit so much from the third
strategy.

An implicit scheme such as the Crank-Nicolson method has been used in NEU-
RON and can be configured in GENESIS [112|. Although it achieves better accuracy
compared to a backward Euler method, the latter is preferred as it does not produce
oscillations in the solution for large timesteps [12].

Besides the use of static rate function tables, no other of these considerations were
taken during the development of the space/membrane equations tool. The first Hines
strategy could not be used as the full tree-dimensional structure that defines the mem-
brane and extracellular space is far more dense. The second Hines strategy could be
used in future versions of the tool.

It should be noted that the NEURON simulation environment allows for a simplified
representation of the extracellular space. This is added as an exterior core conductor but
the flux of currents is only allowed along the cable making it essentially one-dimensional.

4.7 Summary

Solution of the space/membrane equations for general three-dimensional geometries re-
quires numerical methods. The main method of solution proposed by this work was
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presented in this chapter. Although previous approaches have tried to provide solutions
for the space/membrane equations they were limited by two main aspects: computa-
tional restrictions to represent detailed geometries and the lack of efficient time evolu-
tion schemes. From the partial differential equation solvers available, the finite element
method was preferred. Availability of other similar tools that could be reused was one
of the main reasons for this choice as will be discussed in Chapter (6).

The core of the solution strategy lies in the separation of the spatial problem and
the time evolution. This separation is supported by the quasi-static approximation and
facilitates the development of computer algorithms for the solution. For the spatial
solution a static condensation procedure based on the static equations of Wohlmuth
and coworkers was used and a optimized computer version of it was developed.

Time integration schemes for the forward Euler and the Crank-Nicolson method
were presented. The use of the Crank-Nicolson scheme is innovative and has not been
found in the literature for equivalent problems. Optimized methods, that can help
speed up the matrix operations in the computer were presented. The details presented
in this chapter are fundamental for the software implementation of the finite element
tool. The one-dimensional, tree-like structure dependence in a single variable, and many
other simplifications make the solution of the cable equation ideal for obtaining of fast
results in neuron simulation. Lessons can be learned from cable solvers.
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5 Stability of the numerical method

5.1 Introduction

The numerical treatment of any set of partial differential equations needs to be care-
fully scrutinized. In the previous chapter, a procedure to bring the space/membrane
equations to a discrete form was shown. However, derivation of the discrete equations
alone does not imply a correct solution. Inadequate numerical strategies can affect the
accuracy of the result and even, completely miss the solution. To ensure that a solution
obtained by a numerical scheme is true and accurate, validation of the scheme is re-
quired. A valid partial differential equation solution scheme must be stable, consistent
and convergent. Stability and consistency are in general easy to prove, while conver-
gence normally requires demanding functional analysis. Fortunately, it is enough to
show stability and consistency as convergence follows from the Lax—Richtmyer equiva-
lence theorem [105].

In this chapter the numerical strategy presented in Chapter 4 is validated through
stability analysis. On the literature, the forward Euler, Crank-Nicolson, and finite
element method are well known to be consistent and this will not be shown. An ap-
proximation to the stability criterion for the scheme will be obtained first from the
recurrence relation, and then with a von Neumann analysis. The non standard form of
the time integration expressions (4.24) and (4.25) required particular assumptions but
these are justified during this chapter and corroborated with numerical experiments.
In the next sections the rationale of the proof is given first and the mathematical pro-
cedure follows. The final sections discuss the results and summarize the chapter. In
Chapter 7 convergence is shown numerically.

The theory behind stability analysis is not simple and is left to the reader. Informa-
tive and mathematically accessible resources to this theory can be found in the lecture
notes of Trefethen [105], Olver [94] and Otto [113] and in the book of Strikwerda [114].
Stability analysis has also been performed before for cable solvers [115].

5.2 Rationale

Implementation of the discrete version of the space/membrane equations preceded the
mathematical stability analysis. Once the computer version of the solver was functional,
numerical experiments followed in order to validate the approach. The first choice for
a time iteration scheme was the simpler forward Euler method but the results were
not acceptable. The very simple simulation of a two dimensional cell under an extra-

81
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cellular field required time steps of nanoseconds to converge (Figure 5.1). The goal
of the tool was to perform simulations of tens to hundred of milliseconds and these
restrictions proved inadequate. With little fundamental background, implementation
of the Crank-Nicolson scheme came after and the empirical results showed an impres-
sive improvement. With Crank-Nicolson, time steps of hundreds of microseconds were
possible.

Two questions emerged then: First, what elements of the system determined the
numerical divergence in the Euler case?, and second, how robust would be the Crank-
Nicolson for other parameters?. A numerical experiment was devised to better under-
stand the relation between the time step At and the typical spatial length parameter
h. The question was how, as h was reduced, At had to be reduced to keep the solution
stable. The experiment consisted on simulating a circular and a spherical cell under a
field with the forward Euler method (Figure 5.1). The tests were performed for different
cell diameters (to see if d had any influence) and decreasing values of h. The results for
these experiments are shown in Figure 5.2. Fits of the values showed an h® relation with
a between 0.7 and 1.9. The results also seemed to show a dimensionality dependence
from the 2D and 3D case.

An attempt to find the At and h relation analytically was tried then. Full analysis
of the space discretization restrictions for the space/membrane equations was however
not simple. The piecewise nature of the problem, together with the separation of the
time and space solutions were at the center of the problem. Algebraically this implied
that the Forward Euler 4.24 and Crank-Nicolson 4.25 expressions needed to be written
in terms of V,,, and not as expressions of V,, and I,,. A similar analysis was not found
in the literature or in textbook examples, which only consider spatially continuous
problems such as in the diffusion equation.

The first approach to understand this relation was an approximation through the
space independent recurrence relation V2! = oV + 3 (Section 5.3) for the pair of
infinite membranes (Section 3.3). This analysis indicated that the cell time constant
(Section 3.4) was dominant in the forward Euler solution. The cell time constant is in
the order of nanoseconds explaining why the Euler method required such small time
steps. Surprisingly the same analysis revealed that the Crank-Nicolson method was
stable for time steps up to the membrane time constant. The membrane time constant
is usually larger than 1 millisecond showing for the first time the robustness of the
method.

Still the stability picture was not complete as the h parameter could not be in-
cluded in the first analysis. One more approximation combined the recurrence relation
approach with a simplified space discretization and showed similar but partial results.
This is shown in Sections 5.4 and 5.5. Stability analysis tools [114] from finite difference
methods were used at last. This approach was still not free from the V,,, I,, issue and
the previous approaches had to be combined with von Neumann analysis [104] for a
final approximation. This is shown in 5.6. An alternative to von Neumann analysis,
the “matrix method” [114] required an analytical expression for the full FEM matrix
and its inverse and this was not attempted due to its complexity.

In the next sections the progression of approximations to the stability analysis is
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Figure 5.1: Examples of the Circular and spherical cells of changing diameter (d) and
typical length (h) parameter. In this case d=20pm and h=8pm. The cells were put
under a 10*mV /cm constant homogeneous stimulus and simulated with forward Euler.
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Figure 5.2: Experimental results finding the critical time step for a circular and spherical
cell. The solution was stable above the solid lines. Dotted lines represent the fits for the
At and h relation. The criterion for stability was that the simulation remained stable
in steady state at least up to t = 107,.

shown. Due to the non standard form of the equations, a direct approximation with the
von Neumann stability would not have been simple. The following steps are considered
introductory to it.

5.3 Analysis with the space independent recurrence relation

A first approximation to the stability criterion can be obtained for the simple pair
of parallel infinite membranes (Section 3.3). The discrete time forward Euler scheme
(4.24) for the infinite membranes (3.2) is

20At At ) IpAt

n+1 __ _ _ n
Vin _(1 oD o) mt e

(5.1)

This is a recurrence relation [116].
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With 7,, = C,,,R,, and rearranging the terms,

Co \'" Djo R,
At At At
—|/n —I =" y/n _ T/"y/n
mt G P T G T
At At At
B — ) VA mp— S
( CmD/20' Tm) Vm+ Cm E

At
CmD/QJ

Defining ag = 1 —
as:

%f and By = C%—i[ E, the recurrence relation can be re-written
Vit = agVp, + Bo. (5.2)
Assuming the initial voltage of the cell is zero V.2 = 0, this expands to the series:

Vi =gV + Bo = Bo

V2 = apfo + Bo

Vn?;, = ap (aofo + Bo) + fo = aéﬁo + apBo + Bo
V=

n—1
n k
Ve =Y afb.
k=0

The n solution of this relation is bounded for || < 1, which implies that

—-1< —At — At <1
= Tm CpPle T
At At

o< = <
2s Tm  CmPfl2e — 0
At At
<=4 T <
0= T + CyPl2oc — 2

For biological parameters the expression in the middle is always positive so,

2
AtSL—l.

Tm CmD/Qo'

Some typical values are C,,=1nF/cm?, 6=10mS/cm, D = 10pm, R,=1mS/cm?. A
typical time restriction for the Fuler forward method would be 100 nanoseconds

2 x 145
cm

~ 0.1us,

S
2x107=
1x10—3cm

+1m5’

cm?

showing the strictness of the time step requirement for the recurrence to converge.
The term C,,P/20 is a time constant related to the cell time constant Eq. (3.7). In
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the numerical experiments the relation of this value to the convergence behavior can
be observed in Figure 5.3. For biological cells this value is small relative to 7,,. As
CyP/20 < 7, then one can approximate this criterion by:

CnD

o

At < (5.3)

For the Crank-Nicolson method the time stepping expression is,

v 2 (oYt Lo L))

C,\\'2 Db 2 Dis) R,
Expanding,
At At At 1A
ot —yn g T — yrrt V- At
m m O T CubPle ™ CDle ™ T

Which reorganized is

At N At A\ At
(1+ )v _(1 o Tm)v o b

This provides the restriction ‘1 b e 14 =2 ‘ < 1, equivalent to

Cm D/
] At < At At <14 At
CmD/U - Tm CmD/a - OmD/o'

Adding —1 + CLE,/G to each expression, results in the constrain

At At
—2< —— < 22—
CP/a
for which —C,,P/c < 27, is always true. The Crank-Nicolson imposes the time step

restriction,
At < 27,,. (5.4)

The influence of A was however still unknown. This required a simplified mesh that
could be used to relate the h term to the voltage solution. The next section presents
this simplification of the solution domain.

5.4 Regular discretization of the space/membrane equations

A more accurate description of the stability restrictions of the space/membrane equa-
tions required considering the spatial parameter h. A simplified expression of the finite
element form of the problem was necessary to ease the analysis. The finite element
discretization was constructed for a regular two dimensional triangulation of typical
element length h (Figure 5.4). This discretization is shown now.
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Figure 5.3: Stability restriction for the space independent recurrence relation. The
doted horizontal line represents the time step limit as imposed by the space independent,
infinite membrane approximation At < 27.,.

Figure 5.4: Section of a regular 2D triangulation used to estimate the relation between
the maximum time step At and the minimum space step h. The dashed horizontal line
represents the membrane. Triangles above the membrane are named from right to left
as T1,T5 and Tj.
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Beginning with the finite element form of Poisson’s equation (4.7):

aZ@k/Vvk-VvideLZ[gn/uj [vi]iedS:/svidV
kg y r Q

for an exterior interface node j in I' with corresponding spatial test function v' in Q. —
v in Q. NT, assuming no current source or boundary condition touches the membrane,
and using the assumption u' = 1! one has

oy Pk / Vok - VildV + Jg'n/vids = 0. (5.5)
k Q r
The membrane current can be extracted as
. Ok [ Vok - VoldV
JER Jo V" VodV._ Sy (5.6)
- fF vidS S

Introducing the abbreviated terms Sy and S; for the sum in the numerator and the
integral in the denominator respectively. For the following analyses, the membrane
current term needs to be expressed in terms of the membrane voltage V,,,. This can be
achieved by partially reducing the integral term Sy to membrane voltage values. For
the triangles 77,7, and T3 of the regular mesh of Figure 5.4 this term is

So = / D RV VoldV + / D RV VildV + / > RV VoldV
T k T k T3 k
Expanding the sums
Sy = / (@HIVOH + PP 4 $IVY) - VildV

T

+/ (@PH VP + ®PVP 4 $IV) - VoldV
T

+ / (PPVP + IV 4+ IV - VoldV
T3

and replacing with the simple “hat” test function derivatives:

S = [@a[h @0 flew [} o)) | ]av
@y olse—p fleolo )| ]av
#f@ o F1eer (=4 o]swi[h )| B v

!This is a common assumption in implementations of the Neumann boundary condition. Although the
membrane current term is not strictly a Neumann condition, it has the same form. This assumption was also
made in Eq. 4.1a of Ying and Henriquez paper [37].
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Factorizing
oitl P or P P i~ 23
Sy = /<— % hz)dv+/(—ﬁ+h2)dv+/(—ﬁ— 02 + h2>dV
T T» T3

The ® and h terms are coefficients in the finite element method so the volumes in
two-dimensions are the areas

oit! <I>J (I)P oY P il 29

h? B h? h?
Areas for the regular grid are |T}| = |T3| = |T3| = 1mply1ng
Pitt P LAY or P! .
So = (— — -+ — —— = P
o= (TR ) T T )
1_. 1._. .
= ——@T P -~ 4 207
2 2 *

The term S; in (5.6) is

h h
S = /des—/deS+/deS—§ §:h.

Ls

The extracellular membrane current in the regular finite element discretization is then

. 1, 1 -
b= _% (5@6—1 + 5@l ol - 2@;) : (5.7)

and a similar procedure leads to the intracellular expression

. 1 1 .
I = _% (Z@J AR 2@1) . (5.8)

Subtracting this two

28 = —% (—%qﬂ;—l ;qﬂﬁl Y + 2] + %ije‘l + %qﬂ;l + P — 2c1>i€>

and considering that the membrane voltage is VJ, = ® — &}
~ o 1 1 1 1. . 1 1 .
B,o= —— (07— ol — 4 )4~ 4 oIt P P ).
m h ( 4 2 4 (2 2 K3 + + 4 e + 4 € + 2 (&

An expression for I, depending on V,,, is

J :_f j_l -1 _ 1 j+1 lq)q 1(1)1)
Bo= =% (V- Uit - U - e, (5.9
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5.5 Space dependent recurrence relation criterion

An approach combining the recurrence relation analysis and the discrete current expres-
sion (5.9) was used to obtain a first approximation to the stability criterion depending
on h. This approximation ignores the influence of neighboring non-membrane nodes
which are lumped in a constant term K (V;7J, ®g_r). The von Neumann analysis will
consider the effect of the neighboring membrane nodes V173 and see Section 5.7 for a dis-
cussion regarding the ®o_r terms. Dropping the spatial index, the membrane current
is then
o
I, = —EVm + K. (5.10)
The forward Euler (4.24) expression combined with (5.10) is

At
Vatt = Vo + (I, - I
m m + Om ( m zon)
At o | %
— n —_ _ _\/n K _ _m
Vit g~ K- )
< At o At) At

1- ——— —

Chnh 7y

As in (5.2) the series converges for the range

Vin+ —K
+ c

-1 < 1-0--=<1

—2

IN
|
I
I
|

o

and the stability criterion is

or approximately

At < Q%h (5.11)
This stability criterion for the experiments in Figure 5.2 is shown in Figure 5.5. The
parameter is not really different from the cell time constant 3.7 differing only in the 2
coefficient and diameter. This points to a time restriction given now not by the cell
diameter but from the size of the solution mesh element.
As will be seen next the Crank-Nicolson method remains as At < 27,,. The time
iteration expression is
Vn-‘rl _ Vn_{_ﬁ <1 (In+1+[n) _ >
m m Cm 2 m m won
INNVAN s K o K V)
Vm+om( on/m Ty T m T Rm)

At o\ a1 At o At _,, At
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Figure 5.5: Stability restriction for the space dependent recurrence relation. The doted
line represents the time step limit as imposed by the space dependent approximation
At < 28mp,

1— At o_ At
For the series to converge |—2¢m—m | < ] g0
1+mﬁ
At o At o At - At o
2C,, h — 2C, h 1y — 2C,, h
Adding —1 + 2%—;% to the expression,
At Ato
P e )
- 7,  C,h
Two constrains result. One is
JAN? At o
T — Cnh
h
_Cm_ S Tm
o
which is always true, and
At < 27,

which is identical to (5.4) and h independent.

5.6 von Neumann stability analysis

The von Neumann stability analysis shows a more conclusive stability restriction that
includes the influence of the neighboring membrane potential terms. For the forward
Euler case, from (4.24) and (5.9)

. . At /. .
L A ()
- At o : 1_. 1 . 1 1 1 _.
— J,n - - J,l’l__ _]71,11__ J+1,n__ ‘q,l'l — p,n - J,n
yin g Om( . (vm Vi 1V SR ) Vi )
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Expanding and factorizing again

At 1 At o
j,n+1 _ j,n
i ( Co R th> Vi
Atol Atol_ . At ol
L e el C AR 5.12
Cnhd ™ Cnhd ™ thQ( &) ( )
Or in a lighter notation
Vi = —a v+ S v 4 (519
At 1 oAt At ol
= e — T (pAn _ Py
« Cm Rm’ /8 th7 w th2( 3 e )

The standard ansatz of the von Neumann stability analysis [104] can now be used:
Vj,n — ei’yjh
i .
With j, n the space and time indexes, i the imaginary unit, and ~ a variable wave
number.

Again the influence of the potential terms in v is disregarded. See Section 5.7 for a
discussion on this topic. Replacing in 5.12

Vimtl (1—a-p) eiih é (eiv(j—l)h + eiv(j+1)h> + 1
m 4 Y
expanding the exponential term, using the identity e *7" + ¢37* = 2 cosvh and factor-

izing

yiatl <1 —a—fB+ gcosvh) e 4o
= &M 4y,

with £ symbolizing the von Neumann amplification factor. The amplification factor can
be converted to the more convenient square sine form

& = 1—a—6+écosvh

2
h
= 1—04—6—}—%(1—25111272)
6 h

= l—-a—= Bsm27
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Expanding the above expression,

Vi =&V + 0

=V +0) +¢ =8V + &Y+
V3=¢(EVo+ &+ 9) + 9 =8V + Y+ &+
VE=E(EV2+ )+ + )+ =EVE+ Y+ P+ &b+

p—1
Vh =&Vt €y

1=0
If p — oo the solution is bounded only for |£] < 1

h
1< 1—a—§—ﬁsin2%§1
h
-2 < —a—g—ﬁsnfé <0
h
0 < a+§+5sin”—§2

The term in the middle is always positive so

s 27h

a+ — —1—58111 < 2

5 =

Taking max (sm ) = 1 and replacing a and [ back

At 1 3Ato
at L 280
C,, R QC'h_
A(l 30)
S 427 < g
Cmn \R -
2
At <

1 3 _o
R T 200
As before C,h/o < R,,C,, so the condition can be approximated by
4C,h

30

At < (5.14)

This stability criterion is h' dependent and differs from (5.11) only in the numeric
coefficient. These two criteria are compared in Figure 5.6 for the experiments in Figure
5.2.

The restriction on the time-step is again laxer in the Crank-Nicolson scheme. In-
serting (5.9) in the scheme (4.25) expands to

1 + é Vyi{n+1 . é (Vrjnfl,n+1 + Vgl+1,n+1) — 1— é —a V#{n +
2 8 2
B

e
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Figure 5.6: Stability restriction on the space dependent von Neumann analysis com-
pared to the recurrence analysis. The doted line represents the time step limit as
imposed by the space dependent approximations At < Q%"h and At < 403—:’3

The amplification factor is

Adding —1 + g (% + sin? Wz—h) to the inequality —1 < oy < 1 gives

1 . ,vh
_8(= M) <a<o
ﬁ(2+sm 2>_a_

a and (8 are always positive so the left inequality is always true. The right part estab-
lishes again that the stability limits are set by membrane time constant 7,,, = R,,C),
and are h independent:

At < 27y,

5.7 Discussion

The previous analyses showed stability under strict requirements for the Euler method
(approaching the cell time constant) and more relaxed requirements for the Crank-
Nicolson. The Crank-Nicolson scheme is not unconditionally stable (e.g. as in the
diffusion equation) but its stability is only restricted by the millisecond long, membrane
time constant. This shows the robustness of the method allowing simulations with
relatively large time steps. As in typical simulations, faster dynamics such as those
from ion channels are involved, a time step of 27,, is more that enough for practical
cases.

It is important to discuss the dropping of the spatial potential terms in the previous
approximations (Sections 5.5 and 5.6). The potential is an unknown of the solution and
the spread of instability to these points might affect the overall result. Treatment of
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points outside the membrane is however not simple as the von Neumann ansatz would
have to be extended to a 2D spatial form. This analysis was not performed. Given that
the restriction terms 5.11 and 5.14 only differ by coefficients, it is tempting to believe
that adding the potential points would only affect the coefficient of the restriction term.
It is clear that numerically, for at least the 2D simulation, the stability term only differs
by coefficient from the analytical results (see for instance Figure 5.6). The order of the
stability restriction should not be larger than 1 for 2D and, as will be shown next, this
seems also to be true for the 3D case.

The variations of the stability trace in the 3D experiments with respect to the
analytical estimate can be explained by a change in coefficient and by the statistical
nature of the meshing algorithm. Reducing the variability of the 3D mesh shows a clear
h! stability restriction. This can be seen in Figure 5.7 where a regularly, meshed cubic
cell was simulated. The stability trace did not match alternative h? or h?® criteria.

In the regular case there is not statistical variation of the mesh size. In irregular
meshes such as those of Figure 5.1 the approximation of the criterion (Figure 5.6) is
not as precise as in Figure 5.7. Compliance to an h parameter given to a discretization
algorithm is not exact in irregular meshes, as different meshing algorithms have to
sacrifice minimal length to increase accuracy of the representation. The triangles or
tetrahedra actually follow a distribution, and for the particular discretization tool used
(GMSH, Section 6.3), the meshing distribution seems to be particularly worst in 3D.

The tetrahedral volume distribution of the 3D mesh in Figure 5.1 is shown in Figure
5.8. In this case the meshing algorithm was given a parameter h = 1 to discretize the
sphere. The volume of a regular tetrahedron of side h = 1 is given by

V2
12
which is the point where the distribution centers. Still, other smaller volumes are seen
showing that the h parameter is not consistent.

An additional clue pointing to an h' dependence in the 3D case is found in the
voltage dependent, current term (5.9). The h term in this expression is the one carried
over to the stability restriction and its order can be inferred for a 3D discretization.
The h term in Eq. (5.9) results from the area and line integrals of Eq. (5.6) and the
Laplacian. In an irregular three-dimensional mesh with a typical element of volume
Vol and a typical membrane element of area Areat the current term should depend
on Vol /a2 areat. Approximating the volume by h® and the area by h? leaves a !/n term
as in the 2D case. These operations also keep the physical units consistent.

Vol = ~=h? =0.12

5.8 Summary

This chapter validated the numerical strategy presented in Chapter 4 through stability
analysis. Validating of a PDE solution requires demonstrating stability, consistency and
convergence but from the Lax-Ritchtmyer theorem stability and consistency directly
imply convergence. The methods of Chapter 4 are known to be consistent and stability
under the time step restrictions presented here is achievable. Showing stability for the
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numerical approach was complicated by the discontinuity of the cell membrane. While
the main time evolution domain in continuous cases (e.g. the diffusion equation) is
the entire solution space in the space/membrane equations this happens only on the
membrane. The stability analysis was approximated analytically and comparisons were
made to the numerical case.

The numerical experiments mostly matched the analytical approximation and the
coefficient variations to the stability trace were partially explained. In conclusion the
following factors contribute to the analytical and numerical difference:

e Mesh variability.
e Use or not of the voltage terms in the A dependent approach.
e Frrors introduced by over simplification of the finite element discretization.

Regardless of these differences it is highly likely that the time step restriction is h'
dependent for the 2D and 3D cases.

It should be mentioned that the Crank-Nicolson, the preferred method, did not show
any dependence on h. Stability dependence on the spatial mesh parameter h appeared
in the Euler but not in the Crank-Nicolson restriction. Numerous other experiments
(e.g. in Chapter 7) corroborate this robustness.



6 Numerical method implementation: the
CHASTE-Membrane tool

6.1 Introduction

A result of this work was the construction of a computer tool for the simulation of
arbitrarily shaped cells and their intra- and extra-cellular space. The tool, which took
the name CHASTE-Membrane! is based in the biophysical fundamentals presented in
Chapter 2 and the numerical methods presented in Chapter 4. To my knowledge, a
complete open solver for the space/membrane equations did not exist before. CHASTE-
Membrane is now freely available to the scientific community?. This chapter presents
key details about the design and construction of the tool.

6.1.1 State of the art

Numerous research and engineering applications require the solution of partial differ-
ential equations (PDEs) over non-analytically tractable domains. In these cases the
PDEs need to be solved with computer programs such as finite element method (FEM)
solvers. FEM solvers are not trivial programs and in general cannot be written as
simple MATLAB scripts. For the treatment of potentially large problems, these pro-
grams require simultaneously to be efficient, to support parallelization, to be simple to
use, and to be flexible upon parameter and equation changes. High performance also
requires advanced system languages such as C or C++.

For these and other reasons the construction of such tools is expensive and many
laboratories opt for buying or using generic FEM packages. Multiple computing envi-
ronments solving general FEM problems exist. Two representative commercial solvers
are COMSOL [118] and ANSYS [119]. Free alternatives to these are FreeFem++ [120]
and FEniCS [121].

These packages are designed for the analysis of generic physical problems and in
many cases the basic equations they provide can be crafted to solve more specific
problems. However many physical problems cannot be covered by generically available

!CHASTE stands for “Cancer, Heart and Soft-Tissue Environment” and is an open source project mainly
developed at the Computational Biology Group of Oxford University [117]. CHASTE-Membrane is now a
sub-module of CHASTE that allows simulation of cell membranes. This functionality was not available in
CHASTE before. More details about this environment are provided in this chapter.

2The CHASTE-Membrane source code was released under a GNU-LGPL open source license and can be
downloaded from Oxford’s Computational Biology Group website http://www.cs.ox.ac.uk/chaste

97
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FEM packages. An example of this is simulation of the heart electrophysiology [98|
which has special conditions as the overlapping bidomain and non-standard operator
splitting requirements. These specialized functions are rarely available in generic FEM
solvers and in many cases, customized solvers have to be written. Fortunately for
heart researchers several free packages exist. Example software for the solution of the
bidomain equations are CARP [122], Continuity [123]|, CHASTE [117], among others
[54].

The picture for the solution of the space/membrane equations is not as positive.
Before CHASTE-Membrane, no commercial or open source packages existed for the
solution of these equations. Although attempts had been made to solve these with
crafted commercial solvers [35, 39, 52|, they present numerical restrictions (see Chapter
4) and required expensive software licenses. For the reasons explained in chapters 2 and
4 the set of space/membrane equations differs from the classic Poisson’s or the diffusion
equation and present a strong discontinuity on the membrane.

Other closed-source approaches exist around Xylouris, Ying and colleagues [53, 38,
37]. After collaborating with Xylouris and co-workers partial access was granted to
their tool [38, 53|. However the lack of documentation, lack of standard mesh formats,
and the fundamental numerical issues of their code (e.g. use of a Newton solver) lead to
abandonment of this effort after two years of work. Although attempted, an agreement
to use the code of Henriquez and co-workers [37] was not reached. After evaluation of
the existing tools, ranging from commercial, to open source, and even considering cable
solvers it was determined that a new solver had to be written.

6.1.2 Chapter structure

This chapter presents the most relevant details about the construction of the space/mem-
brane equation software solver. The design constrains and requirements established at
the beginning of the project are presented in the next section. After this, its base
components are described. The design structure and an overview of the solver internals
is presented in Section 6.4. In the last part of the chapter the description of how the
software requirements were satisfied appears. A view of the capabilities of the tool with
example solutions and resulting performance extends to the manuscript in Chapter 7.
A user guide and a programming manual for the tool appears in appendix Chapter B.

6.2 Software requirements

Pre-analysis of the functional requirements is one key step for the production of good
quality computer software. A software requirement is a property the software must
exhibit to solve a problem in the real world [124]. During the requirement analysis
the software operational characteristics should be specified, its interfacing with other
system components established, and the constrains the software must meet listed [125].

The core design objectives for the software tool were clear since the beginning of
the project: to understand better the response of three-dimensional neurons and, to
model these neurons in their respective three-dimensional conductive space. As a re-
search project, the requirements were always oriented towards simulation of the more
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realistically possible electrical cell models, including the recent advances in knowledge
about the electrical functioning of the neuron and neuronal stimulation. More specific
requirements appeared after understanding better the physical problem and other re-
quirements appeared after interaction with related tools (e.g. NEURON and bidomain
solvers) and attempts to solve the problem with existing code (i.e. code used with
collaborators at the beginning of the project [38, 89]). General requirements such as
good performance and ability to run in computer clusters architectures were obvious
since the beginning. After two years of the project, and several failed attempts to use
other tools the core requirements were set. Listed in order of importance these were:

1. Flexibility: The tool should be flexible enough to allow representing neuronal
cells in different three-dimensional geometric configurations. Typical use cases
were:

(a) Simulating the response of neurons under extracellular fields of varying spatial
and temporal characteristics

(b) Simulation of the extracellular potentials produced by the cell’s own activity
(c) Simulation of complex boundary conditions such as glass surfaces

(d) Heterogeneous conductivities

2. Flexible ion channel types: The tool should support more than the classic
Hodgkin-Huxley channel model allowing tens of heterogeneously distributed chan-
nels such as those of Gold et al. [40]. Typical use cases were:

(a) Modeling of the axon initial segment

(b) Modeling of non-standard ionic gating schemes

3. Multiple cells: The tool should allow simulation of tens of cells in simultaneous
activity. Typical use cases were:

(a) Filtering effects of other cell membranes in the extracellular potential signal
(b) Simulation of the generation of the local field potential

(c¢) Simulation of ephaptic interaction i.e. the interaction of cells via extracellular
potentials only

4. Speed: Simulation of electro-physiological and neurological relevant events in the
order of hundreds milliseconds to seconds had to be possible. Typical use cases
were:

(a) Simulation of seconds long spike trains

(b) Simulation of synchronized activity between neurons

5. Geometrical expressiveness: The tool should allow representing neurons with
process diameters in the sub-micron scale and even finer details. Use cases were:
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(a) Simulation of the thin end of dendrites
(b) Simulation of spines

(c) Simulation of the tight space between cells (around hundred nanometers)

6. Documentation: The tool and its source code should be properly documented
and it should be usable by non programmer users. A user manual should be
provided.

7. Parallelism: the tool must run in computer clusters and scale properly.

8. Open source: the tool should be based in free, open source libraries and formats
for the representation of meshes, visualization and in general for its supporting
infrastructure. The tool should also be open source and free itself.

These requirements guided the construction of the tool. Requirements 1 and 2 were
the most relevant scientifically. The main goal of the tool was representing stimulation
of cells but implementing the reduced set of Maxwell’s equations allowed this. Around
the middle of the project it was decided that no other tool in the market could provide
these functionalities. Given the nature of the work, a doctoral thesis, it was decided
that the the tool itself was going the be one of the main results.

Construction of a FEM tool is however not an easy programming task for a single
programmer. Commercial and free FEM solvers are usually developed over many years
and by tens of programmers. Careful design decisions had to be made for completion
of the task. The use of open source tools was at the center of this (Requirement 8).
Following the “don’t reinvent the wheel” principles enough information had to be learned
about the right base libraries. This will be presented in the next section.

Requirements 3 to 5 were more mathematically oriented. Enough had to be learned
from FEM and in general numerical techniques to speed up the solution. This required
a thorough review of the literature and existing methods and lead to the numerical
improvements presented in Chapter 4. The availability of heart simulators provided
a big boost in this area as at least a comparable system of equations existed. The
specific details of the space/membrane equations however required great dedication
and a large portion of the development time was spent on this. An open source heart
tool (CHASTE) was used as the starting point for construction of the solver.

Requirement 6 can be considered standard in good software practices. A large por-
tion of software tools developed in academic and scientific environments are simply
“abandoned” after completion of the project. Proper documentation ensures other re-
searchers can use it an extend it in the future3. Requirement 7 was fundamental for
the solution of large system and is a must of any modern simulation software.

6.3 Supporting infrastructure

Finite element method solvers are large pieces of software that cannot possibly be
built from scratch. The use of open source and free tools (requirement 8) was a key

3An interesting discussion about this issue is presented by Pitt-Francis and co-workers [126].
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requirement given the limited budget of the project. Fortunately for the scientific
community, a large number of good quality open tools exists for the construction of
larger, research specific problem solvers. CHASTE-Membrane sits at the top of the
open source environment CHASTE (Cancer, Heart and Soft-Tissue Environment [117]).
The similarities of the CHASTE project with this thesis project were enough to consider
it as the basic building block of the tool. As a heart electrophysiology solver, CHASTE
already provided the ionic channel ordinary differential equation (ODE) solvers and the
PDE solvers that are required for the space/membrane equations. Although these are
connected in a different way, the main components of CHASTE were reusable enough.
The representation of the membrane had to be implemented in CHASTE.

The software infrastructure in which CHASTE-Membrane sits is presented in the
architectural Figure 6.1. This diagram presents from bottom to top the stack of main
software components and the interfaces. To the sides, auxiliary tools that facilitate
simulation and processing of results are also shown. The tools developed during this
thesis are presented in light-red. CHASTE itself sits on top of a compendium of other
open source libraries. The key components in this stack are:

e GMSH: GMSH (G-Mesh) is a three-dimensional finite element mesh generator.
GMSH is used to convert a geometric CAD description in two actual meshes of
triangles or tetrahedra. GMSH is not a standard CHASTE tool and a script was
provided to convert GMSH output files to CHASTE files. See also figure 6.2 and
appendix Chapter B.

e CellML: The Cell Modeling Language is a standard description language for
storing and exchanging computer-based mathematical models. CellML grants
access to a public library of ion channel kinetics defined in its standard structure.

e PETSc/MPI: PETSc (Portable, Extensible Toolkit for Scientific Computation)
is a software library for the parallel solution of partial differential equations in the
form of linear algebraic problems [103]. PETSc is based on MPI (Message Pass-
ing Interface) which supports the communication in parallel computers. PETSc
supports the efficient representation of large matrices in sparse format.

¢ uBLAST/BOOST: uBLAST (micro Basic Linear Algebra Subprograms) is a
C-++ class library for the representation and operations with dense or sparse
matrices. In CHASTE, uBLAST is used for the handling of small matrices or
vectors (typically four elements). BOOST is a set of general C++ libraries that
provide utilities such as configuration management.

e XSD/Xerces: Libraries for the parsing of eXtended Markup Language (XML)
files and XML Schema files. This is used by CHASTE for reading of configuration
files.

e Tetgen/Triangle: Libraries for the processing of mesh description files in the
Tetgen (3D) and Triangle (2D) formats.

e Paraview/VTK: Paraview is the main tool used for visualization of the results
produced by CHASTE and CHASTE-Membrane. VTK (Visualization Toolkit) is
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Figure 6.1: The software architecture of CHASTE-Membrane. The tools developed
during this thesis are presented in light-red.

a set of libraries for the management of visualization meshes with multiple floating
point and vector values associated to their nodes. VTK is at the core of Paraview.

e HDF5: HDF5 (Hierarchical Data Format version 5) is a toolbox and file format
for the management of extremely large and complex data collections. HDF5 is the
format in which CHASTE and CHASTE-Membrane data output is stored. HDF5
guarantees efficiency on the accessing of this data.

CHASTE itself provides documentation about its connection to these components and
the compiling toolbox Scons is described elsewhere 4. NEURON and Python are de-

scribed elsewhere [115, 127].

6.4 Software design

For the design of the software standard UML (Unified Modeling Language, [128]) dia-
grams were used. The use of UML in the context of the CHASTE environment allowed
to visualize the relation between components and correctly interface the new function-
alities offered by CHASTE-Membrane. These design diagrams are provided for future

“http://www.scons.org/
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reference in the appendix Chapter D. Diagrams A.1 and A.2 represent the object ori-
ented inheritance relations of the objects constructed in CHASTE-Membrane with the
core objects of CHASTE. The solving sequence, that is, the way in which objects inter-
communicate during the solving procedure are presented in the appendix diagrams A.3
to A.5. These diagrams were fundamental for the development of the C++ implemen-
tation. The UML diagrams for CHASTE are available in its documentation®.

6.5 Results and performance

CHASTE-Membrane version 1.0 was developed during 21 months. Version 1.0 was con-
sidered a mature software ready to be used by others and with the required supporting
information. The tool has been already offered to other developers in the community.
In its current form some of the tested features the tool offers are:

e Representation of a few cells with shapes from simple real cell reconstructions such
as in Figure 1.3

e Stimulation with homogeneous and point source fields

e Heterogeneous ion channels and passive properties for every mesh triangle defining
the membrane

e Mixed boundary conditions (time dependent Dirichlet or Neumann)
e Anisotropic conductivities in the intra- and extracellular space

e Other neurons and various types of cells can be added (e.g. glia) anywhere in the
extracellular volume space

e Minimum mesh elements of approximately 200 nm

The manuscript in Chapter 7 presents these features at work. Most of the software re-
quirements established in the design phase have been satisfied. Satisfaction of Require-
ment 1 and requirement 2 are shown in action in Section 3.5 of Chapter 7. Completion
of Requirement 3 is shown in Section 3.4 of Chapter 7. Completion of Requirement 4 is
shown in Section 3.1-3.2 of Chapter 7. Compliance of Requirement 5 is shown in Sec-
tion 3.2-3.5 of the same chapter. Documentation (Requirement 6) is provided by this
thesis work and the document on appendix Chapter B. A typical simulation with the
CHASTE-Membrane tool follows the procedures shown in the pipeline of Figure 6.2.
The tool is open source and publicly available agreeing with Requirement 8. Parallel
execution (Requirement 7) is supported and the simulation in Section 3.4 and 3.5 of
Chapter 7 were run in multi-core computers. Still better mesh partitions are required.
This will be discussed in Chapter 8.

Shttp://www.cs.ox.ac.uk/chaste/documentation.html
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Figure 6.2: A typical simulation pipeline. Flow is described in Chapter B.

6.6 Summary

In this chapter the implementation of the space/membrane equations was presented.
This set of equations required a specialized tool that was not available in the free or
commercial software market. Finite element method solvers are not simple programs
and their implementation should not be taken lightly. The tool had to satisfy a number
of design requirements that guided its development. The use of open source tools and
the release of the software solver itself as an open package was beneficial for development
and will hopefully be so for the neuroscience community. Modern software design
techniques such as UML were used in the development process. The heart bidomain
solver CHASTE was used as the base sub-component of the solver. CHASTE provided
many functionalities that were required in the solution of the main set of equations but
others were missing and had to be implemented. The core software requirements were
met. The execution of simulations with CHASTE-Membrane has good performance
but improvements are possible as it will be discussed in Chapter 8.



7 Fast simulation of electrical activity
at cell membranes, interacting with
self-generated and externally imposed
electric fields

The following chapter consists of a manuscript submitted on July 23, 2012 to the IOP
Journal of Neural Engineering!. This manuscript represents a results chapter in the
overall thesis work. The manuscript was submitted under an Open Access policy that
grants their authors and their institutions to reproduce the article?. The manuscript
compares the method proposed to previous approaches (e.g. the cable equation). All
the text and tables in the manuscript were written by Andres Agudelo-Toro (AAT)
and revised by Andreas Neef (AN). All the numerical experiments on the article were
performed by AAT. All the Figures of the article were created by AAT and revised by
AN.

!By the time this thesis document was revised (November 2013) a more refined version of this manuscript
has been accepted and published by the same journal in the April 2013 edition as: A. Agudelo-Toro, A. Neef:
“Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated
and externally imposed electric fields”. J. Neural Eng. 10 026019, 2013. The draft of the manuscript presented
in this dissertation in October 2012 has been preserved.

2http://iopscience.iop.org/info/page/openaccess

105



Fast Simulation of Electrical Activity at Cell Membranes, Interacting with

Self-generated and Externally Imposed Electric Fields

Andres Agudelo-Toro!»?

and Andreas Neef 123

July 20, 2012

!'Max Planck Institute for Dynamics and Self-Organization,
Gottingen, Germany. 2Bernstein Focus Neurotechnology,
Gottingen, Germany. 3University Medicine Goéttingen,
Germany.

Abstract

The electric activity of neurons creates extracellular poten-
tials. Recent findings show that these endogenous fields act
back onto the neurons, contributing to synchronization of
population activity. The influence of this endogenous fields
is also relevant for understanding therapeutic approaches
such as transcranial direct current stimulation, transcranial
magnetic stimulation and deep brain stimulation. The mu-
tual interaction between fields and membrane currents is not
captured by today’s concepts of cellular electrophysiology, as
those concepts are based on isolated membranes in an infi-
nite, isopotential extracellular space. Even the direct influ-
ence of fields is not correctly represented by the commonly
used activating function. While a reduced set of Maxwell’s
equations can be used to couple membrane currents to extra-
and intracellular potentials, this approach is rarely taken,
most likely because adequate computational tools are miss-
ing. We present a computational method that implements
this set of equations. It allows simulation of cells under re-
alistic conditions: sub-micron cell morphology, various ion
channel properties and distributions and a conductive, non-
homogeneous space. By introducing an implicit solver, nu-
merical stability is attained even with large time-steps that
are limited only by the time development of the membrane
potentials. This allows simulation times of tens of minutes
instead of weeks, even for complex problems. The extracel-
lular fields are accurately represented, including secondary
fields, which originate at inhomogeneities of the extracellu-
lar space and can reach several millivolts. We present a set
of instructive examples that show how this method can be
used to obtain reference solutions for problems, which might
not be accurately captured by the traditional methods.

1 Introduction

Extracellular potentials (EP) influence the activity of neu-
rons. Neuronal activity itself, synaptic currents, sub-
threshold oscillations and action currents sum-up over neu-
ronal populations and continuously change local poten-
tials. Recent findings contribute to the mounting evidence
that these endogenous EPs talk back to neurons and in-
fluence synchronization of firing patterns in wvitro and in
vivo [1, 2, 3]. Moreover, in therapy and diagnostics, strong,

super-threshold fields are used in the form of electroconvul-
sive therapy, transcranial magnetic stimulation or deep brain
stimulation to activate large populations of neurons [4, 5, 6].
Recently, techniques that utilize weaker, sub-threshold fields
such as direct current stimulation or alternating current
stimulation have been developed [7, 8]. These were reported
to influence motor cortex excitability and higher functions
like motor learning or memory [9, 10, 11].

Although a number of modeling tools have been in-
troduced to study the interaction of EPs and neurons
[12, 13, 14, 15, 16, 17], new research tools are required to
more accurately model this relation. In some applications it
is enough to calculate the EP waveform from a given num-
ber of neuronal sources [18], or to simply study the unidirec-
tional effects of EPs [19, 20, 21]. However, for key applica-
tions such as understanding of how local potentials facilitate
synchronization of cell ensembles, or to model simultaneous
stimulation and recording in complex geometrical set-ups
(e.g. multi unit arrays and novel brain-machine interfaces
[22, 23, 24, 25]), it is important to understand both direc-
tions of the neuron-EP interplay [26, 17].

When the “forward” effect, i.e. the creation of EPs by
neuronal activity, is of interest, EPs are calculated with the
line-source approximation [14]: the membrane currents are
computed for each linear segment of a one-dimensional com-
partmental neuron model. These currents are then used to
calculate the EP according to standard volume conductor
theory [26, 27, 28]. This approach does not consider the
feed-back from EPs in the neuron and its applicability is
limited to locations farther than 1pm away from the active
membrane [14]. Interactions between adjacent cells within
sub-micrometer distance, and the effect of clustering of ion
channels cannot be treated. Furthermore, volume conduc-
tor theory assumes the extracellular medium to be homoge-
neous and isotropic. This ignores the strong secondary fields
caused by the inhomogeneities of tissue [29], which give rise
to the so called “virtual electrodes”, and that can dominate
the effects of EPs on excitable tissue [30].

To simulate the “feed-back” effect, i.e. the changes in the
cell caused by EPs, similar principles are connected in a
different sequence. The EPs are computed from external
current sources while assuming homogeneity and isotropy,
hence ignoring the possibility of virtual electrodes. Neurons
are then represented by a concatenation of one-dimensional
cables and the effect of the EP is included by means of the
activating function [12] as an additional source term in the
cable equation [31]. In finite cables, this effect is calculated
by projecting the extracellular field on to the axis of the
cables, and the stimulation itself is emulated by current in-
jection in the ends [32, 33, 34, 35].

The activating function is an approximation whose utility



has been questioned [36, 37]. As it simply acts as an ad-
ditional source term in the cable equation, its applicability
is also limited to particular geometries. A simple illustra-
tion of the problem is its inability to properly represent a
spherical cell body inside a homogeneous field. To compute
the effect, the sphere has to be approximated by cylindrical
sections. When the field is directed perpendicular to the
cylinders’ axes, this does not exert any influence on the cell
body (see Fig. 5). The simulated effect of the EP on this
symmetric structure erroneously depends on the cosine of
the polar angle of the field direction.

A correct solution of the forward and feed-back problem in
the neuron-EP interaction requires a complete spatial repre-
sentation of the neuronal membrane and its relation to the
intra and extra-cellular potentials. This comprises a self-
consistent solution of the Laplace equation governing the
potential, and the non-linear equations that determine the
voltage-dependent membrane currents (i.e. the sources of
the potential changes). The solution to the Laplace equa-
tion for arbitrary geometries can be achieved with finite
difference (FDM), boundary element (BEM), finite volume
(FVM), or finite element methods (FEM). A numerical time
iteration scheme then has to be selected to model the evo-
lution of the potentials.

FEM and related methods have been used to model stim-
ulation of arbitrarily shaped cells for studies of the effects
of electroporation, as well as to model simple neuronal ge-
ometries [13, 15, 38, 17, 39]. These approaches have how-
ever failed to provide a widely available tool that can fully
model the neuron-EP bidirectional interaction. The de-
ficiencies can be summarized in three aspects: computa-
tional limitations to represent detailed geometries, lack of
efficient time evolution schemes, and the use of closed and
commercial numerical solvers. FDM approaches such as
that described in [38] represent geometries in meshes with
a fixed-grid spacing determined by the smallest feature in
the domain. Due to the very large number of elements,
the computation time of these simulations is impractically
long for realistic, sub-micrometer morphological features.
BEM approaches [40, 41], although more computationally
efficient, cannot represent spatially heterogeneous conduc-
tivities. FEM and FVM have been employed in other cases
[13, 15, 16, 17, 42, 39], but these systems have been limited
to unrealistic spatial scales [16, 42], restrictive time evolu-
tion schemes [13, 15, 16, 42, 39], two dimensions [15], and
the absence of ion channels [13, 15, 16, 39]. The use of closed
source [15, 16, 42] and commercial software [13, 17, 39] is a
common feature among all these works, hindering its appli-
cability and replicability in other scientific studies.

In this work, we present a numerical method for the
treatment of heterogeneous, three-dimensional, intra- and
extracellular spaces separated by membranes with voltage-
dependent conductances. To permit efficient simulation of
detailed geometries, two main strategies are used: first, the
equations governing the time evolution of the electric po-
tential in space were separated from the non-linear equa-
tions that treat the membrane currents. This follows the
ideas of heart bidomain solvers [43] and a previous approach
[15]. Second, an implicit time iteration scheme based on the
Crank-Nicolson (CN) method is introduced. This scheme al-
lows simulation time-steps orders of magnitude larger than
the Euler scheme, without causing numerical instabilities.
The use of this implicit method also grants applicability of

2 METHODS

adaptive time step schemes, which can further shorten com-
putation times by one to two orders of magnitude.It enables
simulations that run over physiologically relevant times (tens
to hundreds of milliseconds), represent the detailed, sub-
micrometer cell morphology and include ion channels with
arbitrary voltage-dependent gating schemes.

The importance of computationally efficient methods is
emphasized if the details of neuronal geometries are consid-
ered, e.g. in fine distal dendrites, or the sub-micrometer
distances between cells. In the 2D simulations of Ying and
Henriquez [15] for instance, the explicit Euler method was
used. The explicit Euler method requires extremely fine
time steps for micrometer geometries, limiting the physi-
ological times that can be simulated. These requirements
become more stringent as the geometry is extended to 3D,
and the complexity of the spatial domain increases. Besides
the realistic, true sub-micron distances fundamental for the
study of cell-to-cell interaction, times beyond a few millisec-
onds are crucial for the study of neuronal synchronization
and more complex stimulation protocols. To our knowledge,
such simulations have not been performed, most likely be-
cause of the large computation time involved.

The finite element method presented here has been im-
plemented in an open source software we named CHASTE-
Membrane. It can represent stimulation, recording and
feedback between extracellular fields and membrane volt-
age at realistic spatial and temporal scales. In the next
sections we introduce the physical model and provide some
essential details of the solving procedure. Treating stan-
dard geometries, we demonstrate that the numerical so-
lutions with the method converge to the analytical solu-
tions. We present stability conditions for the numerical
scheme chosen, describing the time step limits for a given
spatial discretization. Finally, we point out that the pre-
sented approach can treat problems that are only inade-
quately captured by the cable equation, activating func-
tion and line source approximations. This suggests a use of
CHASTE-Membrane as a reference to test and correct the
solutions obtained by the widely used cable equation solvers
such as NEURON and GENESIS. By working through a
set of instructive examples, we demonstrate the importance
of simulating neurons with realistic time and space scales.
The toolbox is available under the project CHASTE [44]
(http://www.cs.ox.ac.uk/chaste).

2 Methods

2.1 Description of the model

The model represents the electrical activity of a biological
cell inside a conductive medium (Fig. 1(A)). Space is segre-
gated into an extracellular domain €2, and possibly multiple
intracellular domains Q; (2 = Q. U Q;). The domains do
not overlap (. N Q; = 0) and are each characterized by
space dependent conductivity tensors o, and o;. Unit nor-
mal vectors at domain boundaries point outward and are de-
noted n. ;. Intra- and extracellular domains are separated
by membranes I', assumed of zero thickness. Membranes
accumulate charge due to capacitance, and can harbor volt-
age dependent ion channels. The voltage channels can fol-
low non-linear differential equations, for instance Hodgkin-
Huxley-like kinetics.

For neural electric phenomena, a few simplifications in
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Figure 1: Schematic of the solution domain (SD) and example bound-
ary conditions (BC). (A) The SD is divided in intra (£2;) and extracellu-
lar () regions, separated by a membrane (I'). The exterior boundary
is represented by 02 and unit boundary normals for both domains are
represented by n. ;. (Note the extracellular boundary normal points
to the interior of the cell). (B) Example of a 2D model with mixed
boundary conditions (BC). The model and simulation tool allow time
dependent mixed Neumann and Dirichlet conditions. In this case, Neu-
mann zero flux BC are used at the top and bottom boundaries, while
a Dirichlet zero BC used on the right represents a ground electrode.
Stimulation can be driven by a time dependent current density on the
left boundary. An elongated cell is present in the center of the domain.
The flux and ground create extracellular (®.) and intracellular (®;)
potential gradients. (C) Corresponding potential for the stimulus gra-
dient along the dashed line in (B) after 2 ps of stimulation (|E| = 104
mV/cm, o = 0; = 10 mS/cm).

Maxwell’s equations are possible. Typical spatial and tem-
poral dimensions of neural current fluxes, together with the
dielectric and magnetic parameters of biological media ren-
der the feedback from the induced magnetic field onto the
electric field negligible. Electromagnetic waves do not play
an important role in the scales observed. Water is highly po-
larizable, and this combined with the typical conductance of
biological tissue, imply that any free, unbalanced charge is
balanced within fractions of a nanosecond. This is faster
than the scale at which the electric processes of interest un-
fold.

These two relations justify the use of the quasi-static ap-
proximation of the Maxwell’s equations. In this approxima-
tion the charge density in aqueous media is assumed to be
zero [45, 46]. This however does not exclude the possibility
of current volume density sources, and they are allowed in
the extra- and intra-cellular space (pe ;). In the quasi-static
approximation, the Poisson’s equation governs the extra-
and intra-cellular potentials @ ;:

=V - 0e () VO, (z,t) = pe (z,t) in Q (1)

(2)
In the absence of current sources, this simplifies to Laplace’s
equation,

-V 0 (2) VP, (z,t) = p; (z,t) in Q;.

-V 06V<I>e =-V- oiV<I>i =0.
On the exterior boundary 02, Dirichlet, Neumann or a
mixture of both boundary conditions (BC) can be applied
(Fig. 1(B,C)):

O, =Pp (z,t) on IQp (3)

(4)
If a grounding Dirichlet boundary is specified the solution is
unique. When only Neumann BCs are specified, the problem
is solvable up to an arbitrary constant if the total current
through the boundary is conserved.

Membrane voltage is defined for any given point on the
membrane as the potential difference for the same point in
intra- and extracellular space:

0.VP. -n, = Iy (z,t) on Iy.

Vin = ®; () — @ (z) on T. (5)

Extracellular and intracellular current towards I' is con-
tinuous for any small volume intersecting it, and is denoted
by the membrane current I,,:

Im =1 - aeV<1>e = —1n;- aiV<I>i on I (6)

As current reaches one patch of membrane, it can either
trigger the same amount of current being released in the
opposite side, or cross it through ionic flux. Total membrane
current corresponds to the exchange of capacitive current
plus the sum of transmembrane ionic currents (;o,):

Vv,
I = Co g Y
with C;,, the membrane capacitance per unit area. Ionic cur-
rents ;o (Vin, 1) can be determined by non-linear ordinary
differential equations depending on the membrane voltage

and a vector of gating variables ur at every node of I':

du
— =1 (V,,,ur).
gt ~ L (Vm:ur)
A simple passive membrane current can also is used:
V
Iion = ﬁa
with R,, a constant membrane resistance. Unless specified,
most of the simulations in the results section will use this
type of current. The main variables and parameters of the
model are summarized in the appendix Table S.1.

Iiona

2.2 Space discretization

To solve the complete space and membrane problem, the
equations governing the potentials in the intra- and extra-
cellular domains and the equations governing the time devel-
opment of the membrane currents are solved alternatingly.
Egs. (1), (2), and (6) with BC (3) and (4) are solved for
a fixed moment in time with a fixed V,,, using the FEM. A
complete discretization and proof of existence of the solution
for this spatial problem was presented by Lamichhane and
Wohlmuth [47]. A brief summary of the FEM discretization
is shown next.

At any given moment, the membrane voltage V,, is as-
sumed fixed and the system of partial differential equations
is solved for variables I,,, and ®.; (® when the domain is
indifferent). The classic weak FEM formulation is obtained
by multiplying equations (1) and (2) by test functions v, v;,
integrating and applying Green’s first identity:

/UEV<I>S~Vvedx—/Imved5: / INveds—i—/pevedx,

Qe T 0N Qe
(8)

/UiV®i~Vvidx+/Imvids = /pividx. (9)
Qi r Q;
In Eq. (9) the assumption that no cell is open to the exterior
boundary is made. The interface condition on I' is compa-
rable to a Neumann condition, with the difference that in
this model, I,, is an unknown, sub-dimensional function on
membrane space. The condition (5) is expressed in the weak

form as,
/(@i — &) uds = /Vmuds,

r r

(10)



with v a test function also restricted to membrane space.
Eq. (10) can be understood as a special Dirichlet BC where
the values must comply with a fixed potential difference V,,.
The complete system of spatial equations is formed by (10)
and the sum of Egs. (8) and (9):

/aV(IJ.Vvdx—l—/Im [v],;ds = / INvds+/pvdx.

Q T N Q
(11)

Here, o, ®, v represent the corresponding symbol in any of
the non overlapping domains Q. ;. In (11) the operator| ]i’e
changes the sign of the operand according to the face I" that
is being evaluated (integration is performed in the intracel-
lular and extracellular face of T').

The matrix form of the problem is obtained by choosing
a set of piecewise linear basis functions {v' v?,... vV}
for each of the Ng nodes in a triangulation Q" and
{ut,u?, ..., u™r} for each of the Nr nodes in a triangulation
I'". The result is a system of M = Ngq + Nr equations,

/avq>-widx+/1m [ui]eidSZ/pvidx i=1,.., Ng,
Q T Q
(12)

/uj (@], ;ds = /uijds j=1,..,Nr.

T r
(13)

The Neumann term fBQN Invds was dropped but can be
added in any future step.

Let be ®% I} and V! the approximations of values
P (xk), I, (mJ) and V,, (ml) at triangulation nodes z* € Q",
#i € TP and 2! € T". The continuous functions can
then replaced by ® ~ % @k, I, ~ S I, and
Vi = YN0 V14!, and the gradient by V& ~ Y02, dkTok,

Equations (12), (13) for a given i and a given j are now:

JZ@k/VUk'VviderZIﬂn/uj [vi]ieds = /pvidx,
PEEFA j

r Q
(14)

Z@k/uj [vk]ieds = ZV,I,L/ulujds. (15)
k1 ’ ! r

Left hand entries of the matrix linear system form can

be defined then as A* = o [, Vo* - Voldx and BY =

Jpu! [v'],  ds. Right hand vector entries can be defined as

fi= [, pvidx and G = [ u'uds. The system of equations,

Y ookAk+ N1 B = f (16)
k J
doekpk =Y "V a6, (17)
k 1

can be written in matrix form as,

o] Lev.

Matrix equation (18) has to be solved to obtain the potential
® and membrane current I,, at any time step.

A B

] =b.  (18)

2 METHODS

Although the Laplacian A matrix is positive definite, in
general the matrix M is symmetric but indefinite. In [47] a
factorization procedure is presented which can produce an
equivalent positive definite system after elimination of vector
I, through static condensation. In that form, the Conju-
gate Gradient (CG) method can be used to solve the linear
system. This form was used for the explicit Euler solver
presented in the next sections. Although the details of the
factorization in [47] will not be presented in this paper, we
will still motivate the expression for I,,, as it is required for
stability analysis. This expression can be readily extracted
from Eq. (18),

BI, =f— A®.

Due to symmetry between the membrane current expression
and the voltage potential expressions (note that the I,,, part
of (16) and the ® part of (17) produce the same matrix
B), and a special node re-organization (nodes that touch
the interface are moved to the bottom of the matrix), a left
pseudo-inverse matrix W7 can be constructed for B such
that,

L,=WT(f-A®). (19)

This expression depends only on ®. Replaced back into
Eq. (18), a linear system exclusively in terms of ® can be
obtained.

2.3 Time discretization

Equation (7) is solved for a discrete time step after solution
of Egs. (1), (2), and (6) with the procedure specified in
section 2.2. At each time step, the discrete space equations
(11), (10) are solved for a fixed voltage vector V,,. The
resulting I,,, is used together with the vector of ionic currents
per node I;,,(V%,) to find the next membrane voltage. The
time iteration can be either explicit with the Euler method
or in a implicit Crank-Nicolson (CN). The explicit scheme

is easily obtainable with the previous values:

At
V?pjl = V;ln + Ci (Irvln - I?on)

(20)
The new V7! is then ready to be used again to solve the
spatial equations.

The Euler scheme is however limited (see section 3) and
an implicit CN was implemented. The CN scheme requires
the next membrane current value I%:

- I?on) .

I'F! is an unknown future value of I,, an might prompt
for an additional numerical strategy (e.g. a Newton solver).
Still, through careful re-arrangement of the terms the same
linear solver used to find ® can be employed. Defining ¢ =

At n __ \n At (1yn _ Tn e
so and g" = V2 4 &L (3In — I ) one obtains:

verl —vo o At (1 (I +1) (21)

Cm \2

V;lj'l = cIf,j‘l +g".

Combining the time iteration with the linear system as a
vector in the advanced time step Mu**t! = b**! results in:

Il

A B
BT 0

‘I’n+1 f
e e



2.4 Computer Setup

After matrix manipulation and C = —cG the new linear
system is,
A B Pnt! f
Er R Y B

For solution of (22), the system was factorized to elimi-
nate I, as was done with system (18). However after the
same factorization procedure, [47] the left hand side is non-
symmetric (due to matrix C). The Generalized Minimal
Residual Method was used instead of CG in this case.

Contrary to the Euler method, any solution to (22) de-
pends on the previous I,, (implicit in g"). This makes the
method particularly weak at initialization and fast changing
exterior stimuli. A better solution can be obtained by pre-

1
calculating I 2 ina predictor-corrector scheme. This will
be referred as the Euler-Crank-Nicholson (ECN) method
(see also Fig. 3(E,F)).

2.4 Computer Setup

The software solver was written in C++ code, linked to the
GNU-LGPL library “Cancer, Heart and Soft-Tissue Envi-
ronment” (CHASTE). CHASTE is being actively developed
by the Computational Biology Group at the Oxford Com-
puting Laboratory [44]. This framework provides function-
alities for the solution of PDEs and ODEs for the heart
and other tissues but does not provide cell membrane rep-
resentations. To include the concept of insulating mem-
branes, various additions to the CHASTE package were
added using standard object oriented programming tech-
niques. These extended CHASTE’s bidomain [48] and ion
channel functionalities, implementing the model presented
in section 2. In its current version, CHASTE Membrane has
been in development for 21 months and can be obtained for
free on http://www.cs.ox.ac.uk/chaste/download.html un-
der the “Bolt-on Projects” section.

Two and three dimensional meshes were generated with
the GNU-GPL tool Gmsh [49]. The neuron reconstruction
presented in section 3 used NEURON’s [50] Python’s inter-
face to parse the 1D geometry and Gmsh to generate the
mesh. Custom written Python code was used for demarca-
tion of the cell membranes and post-processing. Extra and
intracellular spaces are effectively independent meshes that
only share node positions at the interfaces. Example meshes
are provided in the software toolbox. Paraview (Kitware
Inc.) was used for visualization and sampled extraction of
potentials over space. All simulations, except the example
in Figure 8, were executed in a single processing core of an
Intel® Core 2 Quad 2.83 GHz CPU, in a desktop computer
with 4GB RAM.

3 Results

3.1 Convergence, stability and computa-

tion time

The solution scheme, introduced in the previous section,
consist of two separate procedures: one solves (18) find-
ing the electric potential in 2, and the current reaching the
membrane I,,,, under boundary conditions on 02 and I'; the
other, adds up the membrane currents that result from the
electric potential and ion fluxes, updating the membrane
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Figure 2: Convergence tests were performed for a 2D circular cell in-
side a 100 mV/cm extracellular potential gradient (d = 15 pm, o;
=5 mS/cm, g = 20 mS/cm, Ry, = 103 Qxcm?, Cp, = 1 pF/cm?,
Dirichlet BC ®p = —100z on 99) (A) Example of two of the spatial
discretizations (h = 4 and 2 pm). (B) Comparison to the analytic
solution at stationary state (dotted line) of the numerical solution for
each h along the mesh’s z axis (dashed horizontal line in (A)). The
solution converges as displayed in the top right inset. The bottom
middle inset presents the NRMSD to the analytical solution as the el-
ement size decreases. Neumann boundary conditions provide similar
convergence rates (not displayed). The size of Q was 300x300 pm.
(C) Boundary effects. Closer results to the infinite space analytical
solution can be obtained with larger boundaries. The influence of a
short squared 90x90 pm domain can be compared to a 300x300 pm
one. A good choice of domain size has to be balanced with the number
of mesh nodes. The cell membrane voltage can be noticeably affected
with boundaries distances of 1 to 2 times the cell diameter (NRMSD
2.96 % for 90 ym and 0.69 % for 300 pm).



voltage V,,. The new V,, represents an updated boundary
condition on I'. Given stationary boundary conditions, if
V. over I' corresponds to a steady state value, the electric
potential will correspond to the steady state distribution of
potential in €. In this stationary case the implementation
of the spatial solver (Eq. (18)) can be tested, independent
of time evolution (Egs. (20), (21)).

Making use of this principle, it was assessed how the dis-
cretization of space influences the precision of the solution.
For sufficiently fine spacing, the numerical solution should
eventually converge towards the analytical. One of the cases
where the analytical solution is known is a 2D circular cell
stimulated by a homogeneous field turned on at time ¢=0
(see supplementary material). Figure 2(A,B) shows simula-
tions for such a cell with diameter d=15 pm. The numerical
precision was judged by comparison of a numerical (¢,,) and
an analytic solution (¢, ), quantified by the normalized root
mean square deviation (Figure2(B), lower inset):

NRSMD = \/zﬁzl(%,i—%,i)Z/n/(%WM_%mm)_

As the typical grid spacing h went from 8 pm to 0.5 pm, the
magnitude of the computed electric potential approached
the analytic solution (Figs. 2(A,B)).

The analytic solution assumes an infinite extracellular
space, so the analytical and numerical results disagreed in
the proximity of the domain boundaries 0€2. The influence
of the boundary on the solution at the cell’s surface is 2.96%
for a distance to the boundary of 30pm. At the distance of
nine d the error drops to negligible 0.69%.

After confirming the accuracy of the first part of the nu-
merical scheme, convergence was tested for the time devel-
opment of the potential and membrane voltage as the time
step was reduced. First, a configuration similar to that of
figure 2 was used (Figure 3(A,B)). The extracellular field,
imposed by Dirichlet boundary conditions, was turned on
at t=0. For a mesh with a typical spacing of h~=1 pm, the
numerical solution comes very close to the analytical after
the transition phase. This is equivalent to the observation
of Figure 2. However, the initial phase of the V,, build-up
is not captured properly (Figure 3(A)).

To achieve an accurate representation of the membrane
voltage development it is necessary to reduce the time step.
The numerical solution converges to the analytic solution as
the time step is reduced first to 5 ns and then to 0.5 ns (Figs.
3(A, B)). Because a smaller time step also allows for finer
grid spacing, the grid was improved moderately. This had
no influence on the convergence (data not shown). It was
found empirically, that the machine time per mesh node and
per simulation time step (MTNT) was largely independent
of the specific problem or the dimension. For the Euler
forward solver used for Figure 3 (A) and (B), the MTNT
amounts to 80 to 90 ps.

A similar MTNT (120 ps) was found for the next example,
a 1 pm thin and 80 pm long cable under an axial field. The
grid was generated with an intended grid spacing of 0.5 pm.
A time step as small as 2 ns was necessary to achieve a stable
solution. Due to the different morphology, the typical time
of the V,,, build up is much larger than in the previous case.
To compute a 300 ms time-course, the simulation took 26 h
(explicit Euler method). With many hours of computation
time for a single 80 um long cable, a timely treatment of
realistic problems would not be possible with this approach.
Using our insight into the different stability conditions for
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the Euler and Crank-Nicolson solvers (supplementary ma-
terial) the later was implemented to benefit from the fact
that the Crank-Nicolson solver tolerates orders of magni-
tude longer time steps keeping numerical stability (Figure
3(D) CN 100 ns and CN 1us). CN and Euler solvers reach
comparable precision when compared to a similar solution
with the cable equation in perfectly conducting extracellular
space [12] (Figure 3(D), dotted line). A combination of the
computational steps that are used in the Euler and Crank-
Nicolson approaches allows to compensate the short-comings
(Sec. 2) of the Crank-Nicolson alone. The resulting Euler-
Crank-Nicolson solution is precise, even at times when the
stimuli change, and allows for large time steps that would
lead to numerical instability with the explicit Euler method
alone (Figure 3(E), ECN 100 ns). The instability of the ex-
plicit Euler method can be seen in the diverging zigzag lines
in Figure 3(E,F) (Euler 100 ns).

Stability of the explicit Euler scheme requires time steps
in the order of hC,, /o, where C,, /o is typically ~10 ns/pm.
This means that the a morphology with details in the 100
nm range demand 1 ns time steps (supplementary material).
The implicit Crank-Nicolson scheme, on the other hand, is
unconditionally stable for realistic parameters and can, the-
oretically, tolerate time-steps close to the membrane time
constant. Convergence results for the different methods can
be seen in the supplementary Table S.2.

3.2 Representing neuron details

With the application of the Crank-Nicolson solver to FEM
problems with individual domains and insulating mem-
branes, it seemed possible to treat realistic geometries and
time scales within computation times of hours. This was
put to a more rigorous test by the simulation of a 600 pm
long and only 0.5 nm thick axon-like fiber under stimulation
by a strong field (1000 V/m). Cable endings are especially
interesting for the effects of neuron stimulation, because, un-
der spatially homogeneous conditions, endings are the places
where the largest depolarization occurs [31, 51]. The exact
shape of the endings and the influence of this shape on the
magnitude of the induced depolarization has not been stud-
ied.

To show the potential of our approach to represent fine
details in the morphology and analyze their effect, three dif-
ferent meshes, representing differently shaped presynaptic
boutons were created (Fig. 4(A)). To show the implica-
tions of a wide bouton for both phases: the very rapid, ini-
tial depolarization and the later equilibration of membrane
currents, a simulation time of 8 ms was chosen. With a
typical mesh spacing h=0.25um (imposed by the cable ra-
dius), the explicit Euler method required a time step of 4
ns to avoid divergence due to numerical instability. Even
with adaptive meshes, that represent finer details only at
the tip of the cable, the computation time with the Euler
forward method was 8 weeks for the cable without an ex-
tended presynaptic bouton (Fig. 4(B)). When compared to
the cable equation solution for the infinitely thin cable, the
numerical solution displayed a small difference in the steady
state membrane potential. This is likely an effect of the
finite diameter. Overall, the NRSMD was 1%. The same
precision was obtained more than 230 times faster, when
the Euler-Crank-Nicolson solver was used with a time step
of 1 ps, demonstrating the importance of this approach (Fig.
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Figure 3: Convergence and stability of the time dependent solutions.
(A) The layout is similar to Fig. 2 (d = 10 ym, E = 1 x 10*mV /cm,
Q : 400 x 400 pm, initial Vi, (,0) = 0, same parameters). The time
development of V,, is computed more and more precisely for smaller
time steps {(Euler method). The text shows simulation duration and
Vin error. (B) Section of the meshes used on A. Typical mesh spacing
h = {1,0.5,0.25} ym. (C) 3D mesh representing a short cable-like
cell (ce = o = 10mS/em, h = 0.5pm, membrane properties as in
2). (D) Numerical solutions with different solvers and time steps. The
computation time can be drastically reduced using the Crank-Nicolson
(CN) approach. As a reference, the solution of the cable equation is
shown. (E and F) A simulation similar to that in A. (E) The CN
method alone has shortcomings when the exterior stimulus varies (e.g.
step at t=0). This is caused by the dependency of the method on
previously estimated membrane currents (I,,). Addition of one regular
Euler step (ECN method) previous to the CN calculation, solves this
problem. (F) The initial current I, is unknown and assumed zero on
the CN method, consequently the first field calculations have a large
error. The ECN method reaches a far better solution. Using the same
time step, the Euler method alone does not lead to a stable solution.

4(B)).

To resolve the influence of the bouton shape on the depo-
larization in the initial phase, the time step of 1 ps was too
large. For this purpose use of adaptive time steps is more
appropriate. In this way, the fast response at the beginning
of the simulation and the slow response at steady state can
be captured. With this approach computation times can
be reduced further (Fig. 4(C, D)). For this example, the
points at which the time steps were switched had been cho-
sen manually, guided by the magnitude of the membrane
currents I,,,. This approach is motivated by the fact that
the change in the potential depends on I,, in Eq. (21). For
large membrane currents, the time steps have to be chosen
short in order to capture the rapid changes in the potential.
This scheme can be extended into an automatically adapting
time step: the values of I,,, are available during the compu-
tation, as equation (19) is solved. Depending on the recent
I, values, the next time step can be chosen.

The different bouton shapes influence the membrane po-
tential V,,, and the extracellular potential. The presence of
a synaptic bouton increases the membrane depolarization
during the initial phase, reflecting the rapid redistribution
of charge in the bouton compartment. In the steady state,
after several milliseconds, the larger surface of the bouton
leads to a larger ionic current. This diminishes the depo-
larization, but increases the extracellular potentials (Fig.
4(E)). The reduced polarization of larger boutons could be
used to selectively activate those boutons in a preparation
that has smaller synaptic endings.

3.3 Deficiencies of the cylinder segmenta-
tion

The vast majority of studies of neuronal dynamics is based
on calculations that approximate the cell morphology by
cylindrical sections. The membrane potential in each sec-
tion develops then according to the cable equation. This
approximation is very powerful and its application domi-
nates the picture of electrical processes in excitable cells that
we have today. Even the values for a basic parameter such
as the cytosolic conductivity (o;) are obtained by matching
measured voltage differences with voltage differences pre-
dicted from cable models [52]. The approximation of neu-
rons as concatenations of cylindrical cables breaks down on
the micrometer scale, for instance when fine structures such
as synaptic boutons or dendritic spines deviate from axial
symmetry. While attempts can be made to account for the
presence of extra membrane in the spines (by adjusting the
surface capacitance and conductance obtaining valid expres-
sions for the average voltage across a longer segment), on the
microscopic scale only a right representation of the morpho-
logical details can give correct simulations of the membrane
voltages in these small compartments.

Even larger problems arise, when the relevant physical
processes do not evolve within the axial/radial coordinates
of the cable segments. To describe the interaction between
a cylindrical segment and the extracellular field, only the
field’s component perpendicular to the cylinders faces is used
to compute the cable equation [32]. This works well, as long
as the approximation of a very thin cable is appropriate,
however it completely fails for spherical structures like cell
bodies (Figure 5). The key problem is the fact that only
the area of the cylinder’s faces determines the magnitude of
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Figure 4: Stimulation of cables with differently shaped bouton endings.
(A) Meshes representing three variations (I, II, IIT) on 600 um cables
(0e=10 mS/cm,Q : 720pmx30pm diameter cylinder, not displayed,
o;=5mS/cm, Ry, = 103Qxcm?, h=0.25 ym). (B) Response at point p
for geometry Ito a 1000 V/m field. At 4 ns time steps the Euler method
required 58 days. When larger times steps were used, the solution
diverged (not shown). With ECN a 1lus time-step could be used and
computation time dropped to hours. The related analytical solution
of the cable equation (CEq) is displayed for comparison. The 1mV
difference in steady state reflects the finite area of the cable caps, that is
ignored in the CEq. Larger cap areas tend to lower the voltage (as seen
in C). NRMSD are comparable for Euler and ECN. (C) Response at p
for geometries I, II and III, computed with an adaptive scheme. The
switching of time-steps further reduced simulation time while resolving
the waveform of the initial response (inset). Changes in the time-step
are denoted by changes in the line styles. Simulation times are given
and the NRMSD to the analytical solution is given in parenthesis.
(D) Log-Log plot of the membrane currents I, (p) from C. The five
part adaptive schedule (At) was chosen qualitatively from variations
in current slope. (E) Cross-section of the extracellular potential at
steady state (¢>6ms) after subtraction of the stimulus potential. After
deactivation of the capacitive current, the ionic current distorts the
extracellular potential especially when there is a bouton.
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Figure 5: Deficiencies of the cylinder segmentation and the cable equa-
tion (CEq) for extended structures such as the soma. (A) A spherical
body (SB) can only be represented as a collection of cylinders in the
CEq. Under a homogeneous electric field E, stimulation of each cylin-
der corresponds to simultaneous and opposite current injections in the
two cylinder ends. This injection is proportional to the projection of
the field along the cylinder’s axis. As the SB is rotated (0° to 90°), the
projection of the electric field vanishes despite the symmetry of the
underlying problem. (B) Even at 0°, the CEq is inaccurate represent-
ing stimulation of a SB. Upper traces correspond to the analytical [53]
and numerical membrane voltage response of the 3D SB calculated with
the tool (d=15pm, R, =10%3Qxcm?, C, =1pF /cm?, go=0;,=10mS/cm,
|E| = 10*mV/cm, Vi, measured at the right most point). The CEq
does not represent the cylinder faces so their extra resistance and ca-
pacitance are not accounted for.

the stimulus, while the area of the cylinders side determines
the capacitance and conductance of the membrane. Face
area and side area cannot at the same time match the effec-
tive areas of the sphere. This causes a erroneous result for
the effect of extracellular stimulation of a cell body, even in
the case that the field is oriented along the cylinders’ axes
(approximate 30% error in 5 (B), 0°). When the orienta-
tion is changed, the approximation breaks down completely
(Figure 5 (A,B)). This is a fundamental problem of the ap-
proximation by cylindrical segments and can only be solved
when the membrane surface itself determines the orientation
of the electric fluxes and not the axis of a segment.

3.4 Modeling multiple cells

In the brain, neurons are not surrounded by empty, infinitely
conductive space. Neurons and supporting cells are densely
packed so that only about 20% of the brain volume repre-
sent extracellular space [55]. Determining the influence of
other cell bodies in the potential signal of the neuron is key
to understand the shape of extracellularly recorded action
potentials and in general, of local potentials. Collections
of cells surrounding a neuron represent resistance and ca-
pacitance that has to be accounted for. The effect of this
distribution in the extracellular space is still debated [56].

The tool presented in this work can be used to model
collections of passive and active cells at close distances, re-
solving the extracellular potential during their activity. To
illustrate the importance of representing other cell bodies, a
model of a tight packing of 2D cells under stimulation was
implemented (Fig. 6).

Under a homogeneous electric field, a collection of cells in
this configuration behaves essentially as a series of capaci-
tors and resistors fed by a constant voltage source. When
the voltage is turned on, current flows freely from one end
of the circuit to the other and the potential decays in the
resistors (extra and intra-cellular spaces). As charge builds
up in the capacitors (the cell membranes), the current flow
decreases and the membrane voltage increases. At steady
state, the potential difference across the entire equivalent
“circuit” is determined by the first and last membranes along
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Figure 6: Tight cell packing strongly influences the effect of extracel-
lular stimulation. (A) The two-dimensional cell arrangement studied.
In the single-cell case, only the central cell (d=20pm) existed. In the
cell-packing case, it was surrounded by 4 rings of closely packed cells.
Parameters used o.=0;=10mS/cm, R;=103Qxcm?, Cp,=1pF/cm?
all. (B) Detail of the mesh at inter-cell gaps. The inter-cellular space
(gray mesh) was finely detailed to improve accuracy of the solution
(h=150nm). Simulation duration for 10 ps was 19.6 min. (C) Under
stimulation with a homogeneous electric field (1000 V/m) the mem-
brane voltage develops very different for the the single- and the cell-
packing case. The voltage response at the central cell is greatly reduced
by the shielding. In addition, the time course of the response exhibits
a combination of the primary cell time constant (200ns, [54]) and the
membrane time constant (1ms). A maximum is reached around 200ps
(8.4 mV) but the final steady state is reached only after t~4ms (broken
abscissa, simulated with larger time-steps). (D) The potential ® — P g,
at t=1ms, along the horizontal axis of panel A. Subtraction of the pri-
mary field @, i.e. the 1000V /m gradient, reveals the large secondary
field outside the cell cluster and between cells. Shaded areas represent
the intracellular space. (E) Potential color map at t=1 ms. Effects
from the flow of currents at the gaps can be observed together with
the distortions of up to 30 mV at the exterior of the ring.

the field direction. If the various capacitors and resistors
have similar properties, the potential drops are distributed
more or less equally across them (6(D)). The main effect is
that the membrane voltage of the cell targeted for stimula-
tion is lower, compared to that of a isolated cell (Fig. 6(C)).
For neuro-stimulation techniques such as the transcranial
magnetic stimulation, that aims at supra-threshold activa-
tion of the cell and utilizes rapidly rising, strong stimuli as
in this example, the shadowing effect and its consequences
(e.g. secondary fields caused by the inhomogeneities of tis-
sue [29]) can determine success or failure of stimulation. The
formation of local secondary fields as visible in the potential
gradients along the gaps between cells is not represented by
the “far-field” approach of the line-source method.

The case presented in Fig. 6 is equivalent to the transver-
sal stimulation of a bundle of “infinitely” long cells in 3D. In
cable-equation solvers, such as NEURON, transversal stim-
ulation exerts no effect on the membrane voltage, just as
shown in Figure 5. As the finite element method does not
impose any symmetry assumptions, it can represent the dis-
tortions of the extracellular potential caused by even more
local obstructions, like a single small spherical cell body next
to an active cell. The example in Fig. 7 demonstrates the
influence of neighboring cells on the extracellular potentials
during an action potential. The slightly larger sphere in
the center represents a neuronal soma, that would receive a
depolarizing current during the initial phase of an action po-
tential. In reality that would be the lateral current originat-
ing at the axon initial segment. This typically depolarizes
the soma at a rate of up to 400 V/s. In the simulation, the
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Figure 7: The extracellular action potential and effects of a nearby cell.
(A) 3D geometry of the virtual experiment. A spherical cell (d=20pm)
was located in the center of a 100 x 100 x 100pm cubic domain,
0e=10mS/cm. A second smaller cell (d=14pm) was placed 1.5um next
to it. The smaller cell had passive properties (Rn,=103Qxcm?, Cp,=1
pF/cm?,0;=10mS/cm, resting potential zero), while the larger cell was
set to emit an extracellular action potential with typical amplitudes
and a waveform taken from the results of Fig. 8. (B) The spatial fall-
off of extracellular potential for a d=20 pum cell as a function of the
membrane current density J and distance. The potential formula used
was: @ (r) = 4°J/ao.r. Typical current densities on the soma at the
peak of sodium influx are around -200 to -800 pA/cm? (theoretical es-
timate [26, 27] and recordings performed by AN). With c.=10 mS/cm
this accounts for a potential near the membrane of ~50pV. (C) Ex-
tracellular potential at point p and ¢ during 8ms. The inset compares
the potential at point p with the intracellular potential at the center
of the small cell (s). (D) Potential along axes I, IT at the peak of the
extracellular potential (t=4.9ms). Axis I pierces the small cell. The
portion of the small cell’s membrane closer to the large cell has its own
voltage and distorts the extracellular space potential.

current is supplied by an injection inside the cell with a cur-
rent that varies over time, mimicking a real action potential
current shape. Note this also illustrates the possibility to
stimulate by current injection at arbitrary locations, which
is a feature that would give the user the possibility to more
precisely model stimulation via a pipette. When the wave-
form of the resulting extracellular potentials between the
active and the passive cell is compared to the extracellular
potential at the opposite site, the amplifying influence of the
adjacent membrane can be seen (Fig. 7(A,C)). At the peak
amplitude, the potential is amplified by 8 nV. (Fig. 7(D)).
This difference is determined by the nearby cell, whose own
response and membrane voltage (Fig. 7(C), inset) distorts
the potential in this region. Amplitudes of tens of microvolts
can be typical of extracellular action potential recordings at
the given conductivity (Fig. 7(B)). With realistic comple-
mentary shapes of neighboring cells, the magnitude of the
amplification would be much larger. The 8 nV effect on the
potential is well resolved by the method although its mag-
nitude is much smaller than the typical membrane voltage
(tens of mV).

3.5 Realistic setups

Comprehending effects of EPs and in general of the electrical
functions of the cell requires realistic geometries and a realis-
tic distribution of voltage dependent channels. Construction
of new stimulation and recording devices [22, 23, 24, 25] such
as those required to advance nerve- and brain-computer in-
terfaces demand modeling environments that can model this
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heterogeneity. Simulation methods able to model biological
tissue and artificial materials more realistically will be fun-
damental to lower development and experimentation costs.

To demonstrate the capabilities of the method to repre-
sent realistic setups, in Fig. 8, simulation of a cultured neu-
ron equipped with voltage gated ion channels, on top of a
glass coverslip is presented. This preparation is interest-
ing for the development of multi-unit micro electrode arrays
[57, 17]. In [17], a similar setup was presented, consisting
of a 3D ball and a stick neuron with distributed voltage de-
pendent channels. A commercial software tool was used in
this work and the details of the numerical implementation
were not accessible.

The morphology presented in Figure 8, was generated
from parts of the reconstruction of cell D151 from [27] (see
methods). The bottom of the cell was flattened representing
the interface with the glass, at a distance of 0.8 ym. The
complete mesh consisted of 21732 nodes and 86716 tetrahe-
dra in a domain of dimensions 340x200x60 pm. An adap-
tive mesh was used, with refinements near and inside the
cell of down to 300 nm. A heterogeneous distribution of
sodium and potassium voltage dependent channels was set
along the cell. The sodium conductances for the dendrite,
soma/hillock, initial segment, and the rest of the axon were
respectively 10, 20, 120, 20 mS/cm?. The potassium con-
ductances, for the same sections, were 10, 20, 30 and 20
mS/cm?. Mammal kinetics at 23° were used |58].

The simulation of 8 ms of activity in this setup with the
reference software required only 45 min on a single proces-
sor core (see methods). The solver was configured to use the
ECN method with a fixed time-step of 80 ps. A larger, 100
ms simulation was executed with the same parameters (Fig.
8(F)), requiring 6h 27min. Computation time could be re-
duced to 4h 16min when the computation was distributed to
two processors in parallel, and to 3h 21min in four proces-
sors. However the mesh was not optimally partitioned (see
discussion). A video of this simulation is provided on-line
as supplementary material.

4 Discussion

Our quantitative understanding of electrophysiology is
based on the concepts of the Hodgkin-Huxley model and
the cable equation. This concepts describe the behavior of
isolated cells inside an isopotential space. Extracellular po-
tentials can be added to this picture following the concept
of the activating function [12], however there are fundamen-
tal limitations to the validity of this approach for structures
that are not thin, such as somata (5). The intrinsic feedback
between endogenous extracellular fields and cellular activity
is never captured by the traditional approaches, as always
only one direction, e.g. membrane currents to potentials, is
captured. When the physical problem is formulated in a way
that takes the interaction between currents and fields into
account, this results in partial differential equations with
non-linear boundary conditions. While a few simulations
have been published that addressed this problem, they fo-
cused on either stimulation of cells by extracellular fields
(passive membrane: [59], two dimensions: [15]) or on the de-
tection of endogenous fields by planar electrodes [17]. More-
over, proprietary software was used. To our knowledge no
finite element software is openly available, which would pro-

4 DISCUSSION

vide a self-consistent picture of the mutual feedback between
currents and potentials.

The presented numerical method allows detailed simula-
tions of the electric activity of excitable cells and their inter-
action with extracellular potentials. Membranes are explic-
itly modeled. They can have arbitrary shapes on realistic
sub-micrometer scales and contain voltage dependent con-
ductances. The extracellular space is an integral part of the
mathematical structure. Therefore the interplay between
membrane potential, membrane currents and extracellular
fields is intrinsic to the simulations, and not imposed by ad-
ditional boundary conditions. The method is able to solve
problems with mixed boundary conditions, represent geo-
metric details, and allows relatively long simulated times
in much shorter computation times than previously pos-
sible. The code of a reference implementation, CHASTE
Membrane, is released as open source, and builds upon the
open source initiative CHASTE [44]. Along with CHASTE,
other modern, mainstream high performance and parallel,
open computing libraries are used, including PETSc (Ar-
gonne National Lab.), MPI (Message Passing Interface stan-
dard), HDF5 (NCSA and others), VTK (Kitware Inc.) and
CellML (Europe’s Virtual Physiological Human Project).
The use of open and well supported libraries ensures their
continued development and optimization. CellML grants
access to a public library of ion channel kinetics definitions
and eases the implementation of new ion channel models
(http://www.cellml.org/).

Numerical precision and convergence of the method were
demonstrated using analytically tractable problems. The
basic stability criterion turned out to be linearly related
to the typical grid spacing h , unlike the h? dependence
found for the heat equation, propagation of action poten-
tials [60, 34] and bidomain models of electric activity in the
heart [43]. The linear dependence on h is a consequence
of the separation of the time and space equations and the
dimensionality of the problem: only the component of po-
tential gradients that is oriented perpendicular to the mem-
brane contributes to the membrane current I,,,. This direc-
tionality is also the reason why the linear relation between
the typical grid spacing h and the largest allowed time step
also holds for three dimensions. Replacing the Euler forward
solver of CHASTE by the implicit and numerically more sta-
ble Crank-Nicholson solver, it was possible to increase the
simulation time step and thereby reduce computation time
by orders of magnitude. For the Crank-Nicolson solver, the
time step can approach the membrane time constant, while
for the Euler forward solver the much shorter cell time con-
stant was limiting [54]. This finding is fundamental for long
time simulations where the main observed phenomena lie
mainly in the membrane time constant regime. To reduce
computation time further, adaptive time steps and adaptive
meshing were used, to reduce the number of time steps and
nodes, without compromising precision at structural details
and rapid temporal changes.

In the software implementation, standard finite element
techniques were employed to solve the numerical problem.
Interaction with the cells is possible via boundary condi-
tions, that allow for instance to fix the voltage at a mem-
brane element or the current, that flows into the membrane.
This is comparable to the voltage clamp and current clamp
point processes that are available for user interaction in cable
equation simulation tools such as NEURON or GENESIS.
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Figure 8: Potentials in and around a cultured neuron firing action potentials (AP). (A) The morphology of the simulated neuron is derived
from an actual reconstruction (see text). Color/grayscale indicate the membrane potential V;,, and extracellular potential ®. at the bottom of
the dish in a snapshot just after initiation of the AP (¢=4.72ms, vertical line in B-D, At=40ps). The cell was stimulated by injection of 100pA
into the soma beginning at t—0.3 ms. The AP started in the axon initial segment (approx. 20 pm away from the soma) which has a higher
concentration of sodium and potassium channels (see text). Due to the low axon diameter (0.67 pm) the absolute current at the axon initial
segment is not larger than the somatic current. However, the large lateral current flowing to the soma causes a large extracellular potential
(grayscale, see detail in inset). (B) Time trace of an intracellular recording with a “virtual pipette” located at the end of the axon hillock
(marked as B in the main figure). Note that inserting a pipette in this point would be extremely challenging in a real preparation. (C) Time
trace of the extracellular potential just outside the axon hillock. The negative peak of the potential corresponds to the peak of extracellular
current flowing on to the membrane during sodium influx. (D) Extracellular potential as it would have been picked up by a surface electrode
to the left of the soma (gray circle, marked as D). The larger components of this signal are the stimulus pulse (starting at t = 0.3 ms) and
potassium activation at the soma and dendrite (t = 5.2 ms). (E) Extracellular potential along the line between markers D and C (t = 4.72 ms).
(F) 100 ms of activity during current injection (84 ms, same parameters). This computation took 6 hours and 27 minutes with a time-step
At=100ps.
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Going beyond the possibilities of those tools (NEU-
RON/GENESIS), the finite element approach allows the im-
plementation of other physical elements important for neu-
ral recording and stimulation, including extraneous elements
such as glass pipettes or recording electrodes. Heteroge-
neous distribution or properties of ion channels can be im-
plemented on a triangle by triangle basis, without imposing
a radial symmetry. These are important features, necessary
to understand for instance the heterogeneity of the shapes
of extracellularly recorded action potentials [57, 61]. But
the most powerful feature that this software offers over the
capabilities of cable equation solvers, is the explicit defini-
tion of extracellular space. This allows a direct examination
of effects like ephaptic coupling not only on large scales but
also for directly opposing membranes, conductivity hetero-
geneities and anisotropies in the extracellular space, when
the assumptions of the line source approach break down.

Despite the large improvements with respect to time step
and computation time, finite element simulations do not
have the potential to fully replace tools such as NEURON or
GENESIS for problems, that are insensitive to the limited
conductance of extracellular space, the detailed geometry of
dendrites or the heterogeneity of ion channel densities. But,
with mounting evidence for the synchronization of action po-
tentials by extracellular potentials [3, 2, 1] and the progress
in neuro-stimulation techniques, many questions arise that
cannot be comprehensively addressed under the assumptions
of the cable equation. In this area, the presented method can
enhance the understanding of neural activity, stimulation of
neurons, and recording from neurons.

The examples presented here were intended to demon-
strate possible applications and give an idea of the computa-
tion times involved. They focused on the effects of crammed
extracellular space and the interaction between extracellu-
lar fields and neuronal activity on realistic spatial scales and
with realistic parameters. Numerous other problems can be
addressed by simulations with this method. Starting with
small geometries as a study of depolarization of spines of
different morphology, all the way to very large systems like
the cross-talk of local field potentials and electrical activity
of hundreds of tightly packed cells.

Several steps have already been taken to shorten the com-
putation time further. We proposed to use the magnitude
of the membrane currents as the criterion to automatically
chose appropriate time steps. The structures of the software
code already allows this run-time alteration of the time-step.
Simulation of intrinsic neuronal activity will greatly bene-
fit from this adaptation scheme and the use of the Crank-
Nicolson solver because currents and electric fields change
on timescales much larger than the cell time constant, which
is important mostly for the rapid fields imposed by neuro-
stimulation methods.

This method was built from the beginning with paral-
lelism in mind and the software framework supports dis-
tributed solution of linear systems and distributed meshes.
Initial tests have been performed and the most important as-
pect now is the development of better partition algorithms
for the main mesh. It has to be automatically determined
whether it is preferred to partition a given cell membrane
or rather to keep as much of possible of the cell in a given
parallel machine. The greatest benefits from parallelization
will obviously come from distribution of large meshes as the
time evolution of the problem is tightly coupled.
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Supplementary Material

Stability of the Numerical Scheme

The explicit Euler form of the problem, although easily im-
plementable, is only conditionally stable. As presented in
section 2.3, a Crank-Nicolson (CN) scheme can be adapted
to the solving algorithm providing excellent results (Fig. 3
and 4). In this section, the strict stability requirements for
the Euler scheme and the more flexible CN requirements are
shown.

Stability analysis for the general discretized version of the
problem (Eqs. (14),(15),(20) and (21)) is complex for two
reasons: first, the piecewise nature of the problem resulting
from the membrane, and second, the separation of the space
and time equations in two steps. This results in a situation,
where actually the difference between potentials, the mem-
brane voltage, is the relevant parameter on the membrane
while in the classic stability analysis of the diffusion equa-
tion it is the potential itself. The membrane is the place
where local source terms, the membrane currents, are much
more likely to cause instabilities than is the solution of the
Laplace or Poisson equation. Therefore we restrict our study
to this area and neglect possible variations in potentials of
the non-membrane nodes.

The problem was analyzed for a regular 2D triangulation
of typical element length h (Fig. S.1(A)). At the membrane
interface, an expression for I,,, can be obtained and replaced
in (20) and (21). Beginning with (14), for a membrane node
2!, assuming no external current sources, and v = 1 one
has,

UZ(I)k/Vvk-ijdx+I£n/ [vjheds:o. (23)
ko0 r

Note that w! = 1 is a common assumption in FEM imple-
mentations of the Neumann BC. This assumption was also
used in the membrane test functions of the computer solver.
The membrane current at node ! can be calculated from
either the extracellular or intracellular potentials. With the
adjacent extracellular nodes, this value is:

o _sz Pk [, Vo - Voldx
m — [ vids ’

(24)

In the two dimensional triangulation (Fig. S.1(A)), expan-
sion and integration with the classic “hat” test functions in
(24), produces for the extra- and intracellular part:

. R D

I, = % <2<I>Je A - A @5) ;o (29)
, S DI

I = % (2@; - §<I>Ji‘1 - 5(1)1-*1 — i)?) . (26)

Subtracting (26) from (25) and employing the definition of
membrane voltage Vj, = ®! — &I one obtains:

JE — _g

1 1. 1 1
. ; (Vgl R V- ngjl — 0%+ ¢g>(27)

4™ 2 2

As mentioned above at this point the fluctuations of the
exterior values @}, ®P around the “true” values are ignored.
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Figure S.1: Time step restrictions depending on the typical element size
h for 2D and 3D meshes with the basic Euler scheme. (A) Notation
for a section of the regular 2D triangulation used to find the stability
conditions. The dashed horizontal line represents the membrane and
the gray area the intracellular space. Index j goes along an “infinite”
membrane while p and q are the nearest extra and intracellular nodes
to node j. (B) Experimental numerical results showing the critical time
step for a 16pm cubic cell under a homogeneous electric field as the
mesh typical element decreases. The field was oriented normal to one
of the faces, parameters are identical to the ones used in Fig. 5. Above
the solid line the numerical solution was unstable. The cell was defined
by regular tetrahedrons of different heights h={8,4,2,1} pm. The dot-
ted lines represent the time step stability restriction approximation for
a regular grid (30) and alternatively, how an order h? and h3 depen-
dence would look like. Stability in 3D shows a clear h dependence. (C)
Numerical results showing the critical time step for the simulation of a
d=20pm and a d=1pm circular cells as the typical element decreases.
Parameters were identical to Fig. 5. The cells meshes consisted of
irregular triangles generated with Gmsh’s MeshAdapt algorithm. Dot-
ted lines represent the time-step limit approximation for a regular grid
(Eq. (30)). Stability in 2D also shows a clear h dependence. (D)
Same than (C) but for three 3D spherical cells with diameters 20pm,
5nm and 1pm. The cells were formed by irregular tetrahedrons gener-
ated with Gmsh’s Delaunay 3D algorithm. Although the parameter h
was conserved for the majority of tetrahedrons, statistical analysis of
showed some of them had much shorter edges than the value specified
by the h parameter. This explains the variations of the the 20 and 5
pm traces. Depending on the tools used for meshing, the quality of the
mesh in 3D is more critical for stability.
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In this case the standard ansatz of the von Neumann sta-
bility analysis can be used: a linear combination of periodic
solutions of the form,
Vin = gretnih, (28)
With j, n the space and time indexes, i the imaginary
unit, and v a variable wave number. The starting condition
for V,, is on average zero. This implies potentials in the
extra- and intracellular region of a region of membrane are
on average the same. For simplicity we choose this value
to be zero. Under this conditions potentials are allowed to
fluctuate but only at larger scales than the fluctuations of
Vin- Inserting (27) in the Euler scheme (20) and using a
passive membrane resistance produces:

virth = (1-a-pB)Vir+ g (Vi-tm 4 viihey(29)
_ A1 o
T CuRn T Cuh
Replacing (28) in (29) leads to the amplification factor:
§E:1—o¢—é— 81112@

Stability is obtained under the condition |£g| < 1, which is
true for

2
A —F—55—
RnCrm ' 2Cmh
In cell biology it is usual that C,,h/0c < R,,C,, so the

condition can be approximated by:

4C,h
R

This was tested in numerical experiments in 2D and 3D (Fig-
ure S.1(B,C,D)). The factor 4/3 is not exact as we dropped
the contribution of the exterior values ®{, . Their influ-
ence should be on the order of the other potential-difference
terms in 27 so that the result presented here is of the correct
order.

The restriction on the time-step is laxer in the Crank-
Nicolson scheme. Inserting (27) in the CN scheme (21) ex-
pands to:

At < (30)

I} —_— B 1 .
1 M V_],n+ — (i n+1 VJ+1,11+1
ﬁ j,n B ji—1,n j+1,n
( 5 o)Vt + g (Vi b viite)
Use of (28) produces the amplification factor:
l—g(%+sin272—h) -«

1+§(§+sm2%)

on =

Adding —1 + g (% + sin? ”g—h) to the inequality: —1 <
Eon <1, gives:

1 h
—B<2+sin2ry2> <a<?2

a and [ are always positive so the left inequality is always
true. The right part establishes that the stability limits
are set by the millisecond scale membrane time constant
T = R, Cin:

At < 27,,

REFERENCES

Name Definition Unit Order

D, ; Extrac./Intrac. potential mV 10%-10*

Vin Membrane voltage mV 10t-102

I, Current towards the membrane pA/cm? 10t-10*
Lion Trans-membrane ionic current pA/cm?2 10t
Oe,i Extrac./Intrac. conductivity mS/cm 10t
Cm Membrane specific capacitance pF/cm?2 10°

Ry, Membrane specific resistance Qcm? 10%-10*
d Cell diameter cm 1073

Electric field mV/ecm | 10°—10%

Table S.1: List of the main variables and constants of the model, units
used, and rough orders of magnitude.

At h Method Duration NRMSD

1 pm Eul. 5.78 s 4.40 %

50 ns 1 pm CN 11.17 s 6.04 %
1 pm ECN 11.88 s 0.29 %

0.5 pm Eul. 228.57 s 0.31 %

5 ns 0.5 pm CN 591.67 s 0.68 %
0.5 pm ECN 610.22 s 0.15 %

0.25 pm Eul. 11053.0 s 0.05 %

0.5 ns 0.25 pm CN 24414.1 s 0.08 %
0.25 pm ECN 26267.7 s 0.12 %

Table S.2: Complete results with the three methods (Euler, Crank-
Nicolson (CN) and Euler-Crank-Nicolson (ECN)) for the convergence
experiment in Fig. 3(A,B) with the reference software. The table
shows the time step used, the typical element size (h), the method,
computation duration in seconds, and the normalized root mean square
deviation to the analytic solution. The extra duration of the CN is
explained by the extra restriction imposed to the solver to satisfy values
of T, Although ECN solves two linear systems at each time-step,
the durations are similar compared to CN. This is explained by the
second solution of the linear system using the potential calculated in
the first solution as the initial guess in the generalized minimal residual
method.

2D Cell Analytic Solution

The analytic solution for the homogeneous stimulus of a 2D
cell was used to compute the reference solution in Figures
2 and3. The solution is known from [54, 15]. Potentials for
a circular cell of diameter d under a homogeneous step field
FE starting at t = 0 are,

D, (r,0,t) = —a(t) Ercosfr <d/2

d2
O, (r,0,t) = —Ercosf —b(t) - E4—0059 r>d/2
r

t
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8 Discussion and Outlook

In this work a numerical method and a software package to treat the electrical activity
of three-dimensional neurons and their extracellular space were presented. Modern
neuroscience requires new tools that explicitly consider the extracellular space and the
potentials on it. The tool described has been analytically and numerically validated and
has already provided insight into the activity of the cell during extracellular stimulation.
This section summarizes the main results from this work, discusses their contribution
and proposes future work.

Our quantitative understanding of electrophysiology is based on the concepts of the
Hodgkin-Huxley model and the cable equation [3]. These concepts describe the behav-
ior of isolated cells inside an homogeneous isopotential space. Extracellular potentials
can be added to this picture with the activating function [34] or the line source ap-
proximation [36]. However there are fundamental limitations to the validity of these
approaches for example on structures that are not thin, such as the soma (Chapter 7
Figure 5). The intrinsic feedback between endogenous extracellular fields and cellular
activity is never captured by these traditional approaches, as always only one direction,
e.g. membrane currents to potentials, is captured. When the physical problem is for-
mulated to take the interaction between currents and fields into account (Chapter 2)
partial differential equations (PDE) emerge (Section 2.5). While a few modeling works
have offered alternatives to treat these equations, these have been limited to unreal-
istic spatial scales |38, 53|, restrictive time evolution schemes [35, 37, 38, 53, 52|, two
dimensions [37], and the absence of ion channels [35, 37, 38, 52|.

8.1 The solution method

A new numerical method for the treatment of these equations was presented. The
method allows detailed simulations of the electric activity of excitable cells and their
interaction with extracellular potentials. Membranes in interaction with the potentials
are explicitly modeled (Chapter 2). These membranes can have arbitrary shapes on
realistic sub-micrometer scales (Chapter 7,3.3,3.5) and contain voltage dependent con-
ductances (Section 2.7.1 and Chapter 7). The extracellular space is an integral part of
the mathematical structure of this method (Section 2.4). The method is able to solve
problems with mixed boundary conditions, represent geometric details, and allows rela-
tively long simulated times in much shorter computation times than previously possible
(Chapter 7, Sections 3.1-3.5).

Construction of the numerical method required understanding the electrodynamic
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principles behind neuronal activity. This work started with a review of the fundamen-
tals behind the neuronal electric problem in Chapter 2. The quasi-static approximation
and the volume conductor were presented in Section2.3 and 2.4. The equations that
describe the general electrical activity of a three-dimensional neuron: the space/mem-
brane equations (S/M), were presented in a single framework in Section 2.5. In Chapter
3 analytical solutions to these equations were given.

In Chapter 4 a discretization procedure based on the separation of the spatial an
time domain in the S/M equations was presented. This solution strategy extended from
the quasi-static approximation and was detailed in Section 4.3. The closest treatment
of this problem was the work of Ying and Henriquez [37] but their description of the
solution was not detailed and their numerical integration scheme was limited (Section
5.6). The separation of the spatial and time domain, facilitate the numerical solution
proposed in the same chapter. At the end of Chapter 4 two numerical integration
schemes: the forward Euler and the Crank-Nicolson (CN) method were introduced in
sections 4.5 and 4.5.2. Although the CN method is implicit and adds an unknown, it
was shown that the separation of space and time allowed its implementation in a simple
matrix structure snot different from the Euler method.

In Chapter 5 the discretization scheme was validated. Numerical stability of the
method was approached using analytically tractable problems. The basic stability cri-
terion turned out to be linearly related to the typical grid spacing h. From the theoret-
ical point of view this result was unexpected. An h? dependence exists in the diffusion
equation|104], the propagation of action potential [47, 129]| and the heart bidomain
[54]. Tt is believed that this linear dependence on h is a consequence of the separation
of the time and space equations and the dimensionality of the problem: only the compo-
nent of potential gradients that is oriented perpendicular to the membrane contributes
to the membrane current I,,,. However further work needs to be done to assert this
claim. From the numerical solution point of view an h dependence reduces restrictions
in the meshing schemes. Experimentally it was shown that this linear term extended
to three-dimensions.

Stability analysis also allowed to demonstrate the superiority of the CN scheme over
the forward Euler Method in chapter Chapter 5. Replacing the FEuler forward solver
by the implicit and numerically more stable CN solver, it was possible to increase the
simulation time steps and thereby reduce computation time by orders of magnitude.
For the CN solver the time step can approach the membrane time constant while for
the Euler, the much shorter cell time constant primes (Section 5.6). This finding is
fundamental for long time simulations where the main observed phenomena lie mainly
in the membrane time constant regime. The CN solver has been used in other solutions
of the cable equation [107].

The CN method is however known for its spurious oscillations [12]. Those oscillations
have been observed in the solution of the membrane current [,, during simulation.
Although these oscillations compensate and reduce the error, to obtain more reliable
extracellular potential values, improvements should be done. Backward Euler methods
have been used in cable solvers but its accuracy is lower than that of the CN’s [115]. A
more robust alternative can be found in adaptive time step and higher order methods
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such as the ones provided by CVODE [130]. These have proven successful in cable
simulators.

The presented method has further limitations. The dependence of the CN stability
in the passive membrane time constant is determined by the ionic current term. Ex-
perimental results with active channels have shown that fast dynamics such as the ones
from sodium demand for shorter time steps. The relation between the active dynamics
and the CN solution scheme should be studied. Alternatives exist. Heart bidomain
solvers for example, integrate the ionic currents with time steps shorter than the ones
used for the spatial solution[131]. Whether this alternative is applicable to the S/M
solvers should be determined. The use of adaptive time steps for the treatment of ionic
currents combined with Hines method (Section 4.6) is the alternative taken by cable
solvers.

8.2 The software implementation

The solver of the S/M equations presented in this work was named CHASTE-Membrane
(CM). Previous solvers for the S/M equations used closed source [37, 38, 53] and com-
mercial software [35, 39, 52]. CM was released as an open source to the scientific
community and builds upon the open source initiative CHASTE [117]. Along with
CHASTE, other modern, mainstream high performance and parallel, open computing
libraries were used, including PETSc (Argonne National Lab.), MPI (Message Pass-
ing Interface standard), HDF5 (NCSA and others), VTK (Kitware Inc.) and CellML
(Europe’s Virtual Physiological Human Project). The use of open and well supported
libraries ensures their continued development and optimization. CellML! grants access
to a public library of ion channel kinetic definitions and eases the implementation of
new ion channel models.

Standard object oriented programming techniques were used during the develop-
ment of the tool. The use these techniques is an important software practice as other
developers can more easily access the code. Finite element solvers are complex software
pieces that have to deal with a variety of discretization formats and platforms while
offering high performance and an accessible user interface. The fact that CHASTE
used object oriented techniques was one of the principal reasons for its choice and this
facilitated enormously the development process (Chapter 6).

CHASTE-Membrane version 1.0 was developed during 21 months and at the moment
can produce results with very high performance. The CN was fundamental for this
achievement as it allowed to run simulations in minutes that otherwise would have
taken weeks with the Euler (Chapter 7, Section 3.3). With CM it is now possible to
model multiple cells and these cells can alter their activity through the extracellular
space (Chapter 7, Section 3.4). In Chapter 7 Section 3.5 it was verified that realistic
setups can be modeled. In the examples presented in Chapter 7 possible applications
were presented. The examples focused on the effects of crammed extracellular space
and the interaction between extracellular fields and neuronal activity on realistic spatial
scales and with realistic parameters. Numerous other problems can be addressed by

"http:/ /www.cellml.org/
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CM. Starting with small geometries as the ones needed to study depolarization of spines,
all the way to very large systems like the cross-talk of local field potentials and electrical
activity of hundreds of tightly packed cells. With these characteristics, the tool is ready
to study ephaptic interaction [10, 9, §|.

Going beyond the possibilities of cable tools (e.g. NEURON/[12] or GENESIS|107]),
the finite element approach in CM allows the implementation of other physical elements
important for neural recording and stimulation. These include extraneous elements such
as glass pipettes or recording electrodes. Heterogeneous distribution or properties of
ion channels can be implemented on a triangle by triangle basis, without imposing a
radial symmetry. These are important features, necessary to understand for instance,
the heterogeneity of extracellularly recorded action potentials [132, 133]. The most
powerful feature of CM over cable equation solvers is the explicit definition of the
extracellular space. This allows a direct examination of effects like ephaptic coupling,
not only on large scales but also for directly opposing membranes. This also allows
studying the effect of heterogeneous conductivity and anisotropies, which is where the
line source approach breaks down.

Despite the large improvements with respect to time step and computation time,
finite element simulations do not have the potential to fully replace tools such as NEU-
RON or GENESIS. This is particularly true for problems that are insensitive to the
limited conductance of the extracellular space or the detailed geometry of dendrites.
Still, with mounting evidence for the synchronization of action potentials by extra-
cellular potentials [10, 9, 8] and the progress in neuro-stimulation techniques, many
questions arise that cannot be comprehensively addressed under the assumptions of the
cable equation. In this area, the presented method can enhance the understanding of
neural activity, stimulation, and recording of neurons.

8.2.1 Further improvement of the tool

Several steps have already been taken to shorten the computation time further. In
Chapter 7, Section 3.3 a possible adaptive time stepping strategy was proposed using
the membrane currents as the adaptive criterion. The software structure of CM already
allows this run-time alteration of the time step. Simulation of intrinsic neuronal ac-
tivity will greatly benefit from adaptive schemes combined with the CN solver because
currents and electric fields change on timescales much larger than the cell time constant.

This method was built from the beginning with parallelism in mind and the software
framework supports the distributed solution of the linear system and distributed meshes.
Initial tests have been performed and the most important aspect now is the development
of better partition algorithms for the main mesh. The partitioning algorithm should
determine whether to partition a given cell membrane (see as an example Figure 8.1)
or to keep as much of possible of the cell in a given parallel machine. The greatest
benefits from parallelization will obviously come from distribution of large meshes as
time evolution in the S/M problem is tightly coupled.
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Figure 8.1: Example of a mesh in which the cell (black circle) was partitioned through.
Colors represent different partitions of the mesh. Alternatively, the cell could have been
assigned to a color single region. What would be the best strategy for parallelization?
Is communication within the parallel nodes significantly increased when they share a
cell?
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A Neuron electrophysiology parameters

This chapter provides a summary and comparison of basic neuronal modeling param-
eters obtained from the literature. For the summary, experimental and theoretical
studies were used. The chapter also provides example values and orders of magnitude
of some typical variables in neural electrophysiology. For the non trained in physics or
electrophysiology this summary provides a useful additional guide to this work. Note
that in the chapter the terms resistivity and resistance, which are usually mixed up in
neuroscience works, are treated as two separate concepts. An excellent guide on the
naming of these parameters and in general to theoretical electrophysiology is provided
by Plonsey and Barr’s book [47].

A.1 Summary of passive parameters

Tables A.1 and A.2 list values for the classic specific intracellular (R;) and extracellular
(R.) resistivity, specific membrane resistance (R,,) and specific membrane capacitance
(Cy) and values of the time and length constants (see also Section 2.6.1). Figure
A.1 illustrates the relation between the length constant and intracellular resistivity,
membrane resistance and diameter. It is well known that the intracellular resistivity
is on the order of 100 €2 - cm. For three typical intracellular resistivities (50,100,200
Q- cm) and two diameters 1 and 10 pm, the length constant is shown.

A.2 Summary of active parameters
Table A.3 compares the channel conductive densities in five influential neurophysiology

studies. The values in the last column where used in Chapter 7 for the 3D neuronal
model.
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NEURON ELECTROPHYSIOLOGY PARAMETERS

Passive parameters

Dayan and Abbot [67] 100 10k
NEURON default [115] 35.4 1000 1
Rottem et al. dendrite [73] 83.53 5000 1
Rottem et al. axon [73] 5.09 300 1
Meyer et al. (dendrite, hippoc. culture)[134] 300 40k 1
Bronzino [135] 50-400 1000-5000 1-2
Mclntyre et al. Dend [46] 300 350 1
Axon (myelinated) [46] 70 350 2
Ranck [136] 233-357
Nunez (CSF) [62] 64.1
Bedard et al. [33] 64.1 HH 1
Mainen and Sejnowski [137] 150 30k, HH 0.75
Myelinated [137] 50 (ax. nodes) 0.02
Gold et al. (R. of 260-200) [40] 70 640,260,290 15000 1
Tuch et al. (CSF, 1.54-1.79 S/m) [138] 55.9 or 64.9
Jefferys [139] <200
Monai et al. [74] 200 20 30k 1.5
Ying and Henriquez [37] 200 50 1000 1
Tuckwell (10pm dend., cat spinal) [69] 70 2500 2
Plonsey and Barr [140] 200 30 1480 1
Thurbon et al. [141] 52-484 Tk-66k 1
Spruston et al. [142] 200-400
Oltedal et al. [143] 130 24k 1.1
Major et al. (rat CA3 pyramidal, slices) [144] 170-340 120k-200k 0.7-0.8
Trevelyan and Jack (rat pyram. visual, 36°)[145] 140-170 40k 0.78-0.94
Rapp et al. (guineapig, purkinje, soma) [146] 250 500 1.5-2
Rapp et al. (purkinje, dendrite) [146] 250 100k 1.5-2
Hille [147] 1000-5000
CHASTE-Membrane default 100 100 1000 1

Table A.1: Literature review of passive neuronal parameters.
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’ Study ‘ M.A. ‘ U.A. Dendrite
E. Moses /A. Rotem (2008, ax: 1um, de: 5um) [73] 384um/300ps 865num/5ms
E. Moses (2012, ax: 1lum, de: 5pm) (Person. comm.) 400pm/100ps 850pum/1ms
Tuckwell [69] (cat spinal) 1000pm/5ms
Tuckwell [148] (theoretical, mamm, ax: 13um) 2.5mm/ 350pm/
Thurbon et al. [141] (rat CAl,apical) 1060pm(+/-400) /7-66ms
Thurbon et al. [141] (rat CA1,basal) 510nm(+/-260)/7-66ms
Spruston et al. [142] /28-66ms
Oltedal et al. (rod bipolar cells, ax:0.7pm, de:5pm, *) [143] 572nm/24ms 1.52mm/24ms
Sircar [149] (1pm axon?) 3mm/ 500pm/
Major et al. (rat CA3 pyramidal, slices, 10pm, *) [144] 3.96mm/
Major et al. (rat CA3 pyr., slices, 1pm,*) [144] 1.25mm/
Rapp et al. (guineapig, purkinje, dendrite, *) [146] 1.58mm/50ms
Meyer et al. (dendrite, hippoc. culture) [134] 580pm/
Nowak and Bullier (Rm 1000-5000 ohm*cm2, R;=150, *) [150] 129-289pm/~200ps
Theoretical estimate (see figure A.1. R; approx. 150) <1000pm

Table A.2: Literature summary of the length/time constants for myelinated axons
(MA), unmyelinated axons (UA) and dendrites. An (*) indicates that the values were
not explicitly given in the paper but were calculated from the main paper result.
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Figure A.1: Membrane resistance vs. length constant for three different values of
intracellular resistivity (50, 100, 200 Ohm*cm) and two different diameters (1 and 10
pm). At about 150 Ohm*cm the length time constant of unmyelinated axons should
be lower than 1mm for realistic membrane resitances.
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Table A.3: Channel densities in neurophysiology studies. The “3D models” column

APPENDIX A. NEURON ELECTROPHYSIOLOGY PARAMETERS
| [151] | [152] | [137] | [153] | [154] | 3D Models
Sodium (mS/cm?2)
Reversal pot. (mV) 60 50
Dendrite 4.5 2 2 2-10 2 10
Soma 4.5 80 (10-90 tested) 75-80 | 50 20
Hillock 4.5-500 400 3K 800 20
AIS 500 800 (30-27K tested) 3K 800 700 120
Axon (after AIS/rest) ? - 50 20
Internodal 8 - 2 -
Node 250 3K 500 -
Potassium (mS/cm?2) Kvl Kv Kv
Reversal pot. (mV) -85 -90
Dendrite 10 20 0.01 - 0.3 10
Soma 10 40 20 8 10 20
Hillock 10-200 200 80 20
AIS 200 100 (100-3K tested) | 200 80 200 30
Axon (after AIS/rest) ? - - 40 20
Internodal 10 - -
Node - - -
Passive
Resistivity (ohm*cm) 100 150 150 150 80 100
Resistance (ohm*cm?) 15K 50K 30K | 30K | 15K 20K
Capacitance (uF/cm?) 0.9 1 0.75 | 0.75 1 1
R,, internod (ohm*cm?) 2.5M - 45K
R,, node (ohm*cm?) 50 50
Cyn, node (uF/cm?) 0.02 0.02 | 0.04 | 0.17

refers to the parameters used in Chapter 7.
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’ Parameter \ Dendrite \ Axon ‘
Diameter (um) 5 1
Length (um) 200 1000
A (pm) 865 384
T (ms) 5 0.3
Axial spec. resist. (£2-cm) 83.53 5.09
Memb. spec. resist. (2-cm?) [ 5000 300

Table A.4: Rotem and Moses [73| cell parameters. A typical specific membrane capac-
itance of C,, = 1% was used in the paper.

A.3 Example: calculating the cable equation parameters

This section provides an example on calculating the membrane specific resistance (R,,),
the axial specific resistivity (R;), the membrane specific passive conductance (gpq.s) and
the specific membrane capacitance (C,,) from the time and length constants. On Section
2.6.1 only the equivalent terms r,,, r; and ¢,, were used but often, the expression of the
cable parameters in the former terms is required for tools like NEURON. The example
values are presented together with the results in Table A .4.

For the dendrite 7 = r,,¢,, = R,,C,, and the membrane specific resistance should
be,
0.005[s]

i
S = 5000[Q2cm?).
Cp, ~ 0.000001 [L] [fdem’]

cm

R, =

For tools like NEURON R,, = gpﬁ and then gpqs = 0.0002 [-25].

For the axon,

T 0.0003]s]
Rm = — = o
Cr 0.000001 [ L]

= 300[Qem?].

Then gpqs = 0.00333 [25] .

cm?
Axial specific resistivity can be obtained from the definition of the cable equation

membrane resistance 1, = Ifr—’; and axial resistivity r; = fjjg (see Section 2.6.1), were d
is the cable diameter. The length constant is defined as A =, /== then,
dR,,
A= ¢|——
4R;’
and
dR,,
R; = D2
For the dendrite,
0.0005 5000 [Qcm?
R = lem] X S000[Sdem7] g ca1) (02em)

4 x 0.00748225 [em?]
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For the axon,
~0.0001 [em] x 300 [Qem?]

©T 4% 0.00147456 [em?]

= 5.08626 [Q2cm)] .

It might be of interest to have the membrane resistance r,, = i—’; for the dendrite,

5000 [Qem?]

= = 3.1831 x 10° [Qem] = 3.1831 x 10* [Qm] .
"m = 5 0.0005 [em] x 107 [Sdem] X 107 {0

For the axon,

300 [Qcm?]

"= = 9.5493 x 10° [Qem] = 9.5493 x 10° [Qm)] .
T % 0.0001 [em] X 107 [Sdem) X 107 {€m]

The dendrite membrane capacitance ¢, = wdC,, is

F
e = 7 % 0.0005 [cm] x 1 {’“‘—} = 0.0015708 [

cm?

uE

F
] = 1.5708 x 1077 [—} .
cm

m

The axon membrane capacitance ¢, = wdC,, is

F F F
Cm = % 0.0001 [em] x 1 [M—Q] = 0.00031416 [“_] = 3.1416 x 108 [_} )

cm cm m

A.4 Example: calculating activating function injected current

For a finite cable under a homogenous field the activating function corresponds to two
current injections at the end of the cables (Section 2.7.4.1). For the cable with sealed
end conditions [45] the injected current term corresponds not to the second, but the

first derivative of the potential,
1

_Es = [s

T
An example value of this current injection is now shown and verified with the results
of Rotem and Moses [73]. Numerically, the threshold values of the spatially constant
electric field required to depolarize the membrane by 30mV are 458% for a dendrite

and 280L for the axon [73|. The equivalent currents are for the dendrite,

_ 4[]
4.2542 x 1010 [£]

S

= 10.7658 [nA]

where the cable axial resistance is found for the dendrite as,

4R; 4 x 83.5310 [Qcm] . { Q } 0 {Q]
P = = =4.2542 x 10° | —| =4.2542 x 10" | —
" wd? T X 2.5 X 10_7 [CmQ] x cm x m

This implies that a current injection of +10.77nA and a current injection of -10.77nA
at each end of a dendrite is equivalent to the dendrite being under a 458V /m field.
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For the axon this is

280 [¥]
= m — 4.3236 [nA],
6.47603 x 1010 [2] nA
with
4R; 4 x 5.08626 |2 Q Q
p— A 4508626 8em] o rogqg8 [S2] 2 647608 x 100 [£2].
7d?> 7w x1x 1078 [em?] cm m

A.5 Permittivity of the membrane

In this section an estimate of the membrane permittivity er is found. The capacitance
of a pair of parallel plates of area A is given by the expression

EEOA
Cmy =
d

where ¢ is the material permittivity and gy = 8.854 x 10712£ = 8.854 x 10710 L =
8.854 x 10_4% is the permittivity of the empty space. Membrane thickness is estimated
to be around d = 5nm = 5 x 10~ "cm:

Cm _ E€0
A d

uF 8.854 x 107*LE uF

1 = an — 1770.8——

cm? c 5x 10 "ecm =X cm?

e=5.6472 x 1074

()*7@
cm

er =€gg =0 x 1

A.6 Typical fields inside the membrane

For a 5nm thick membrane, a typical voltage difference of 50mV produces an incredibly
large field,

50 x 1073V V

X Y 1k 107,

5 x 1079m m
This value coincides with [155] p. 141. With current technologies a transcranial mag-
netic stimulation field induces maximum 1 x 103%. Inside the membrane’s by-layer, the
influence on the magnetically induced field is minimal compared to the internal field.
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A.7 Typical current densities

The following is a compilation of typical current values in electrophysiology simulations
and experiments. These values were used to validate the results during this work and
provide a better idea of what magnitudes are found in the real world. These are:

e In a single compartment simulation (L=20, R=10) with the typical NEURON
configuration, hh mechanism, and after a 0.5nA stimulation for 100ps, an action
potential produces currents with a peak of +0.25 mA /cm2 for the capacitive cur-

rent, -0.75 mA /cm2 for the sodium current and 0.8 mA /cm2 for the potassium
current. Noting that ImA/cm2 = 0.01 nA/pm2 = 1000 pA/cm?2.

e [36] talks about peaks of 0.2 to 0.5 nA/pm2 equivalent to 20000 to 50000 pA /cm2
(going out of the soma and axon hilloc).

e On p.160 [155] shows membrane currents of about 200 to 700 pA/cm2 (0.002 to
0.007 nA /cm2) for a squid at 18 deg. (This does not imply this current leaves the
cell)

e [155] also shows conductivities of 10 mS/cm2. At 10 mV this gives current densities
of 100 pA/cm.

e The typical micro-pipette injection current is InA. Assuming a tip area of 1 to 5
nm2 this gives a current density of 1 to 0.2 nA /pm2 = 100000 to 20000 pA /cm?2.

e The Axon Guide [156] says regarding the patch clamp: “the currents measured are
very small, on the order of picoamperes in single-channel recording and usually
up to several nano-amperes in whole-cell recording”.

e [33] reports a total membrane current output of 400 nA peak for a 105um radius
spherical “source” during an action potential. That gives a surface density of 400 /
(4 * pi*(0.0105°2)) = 288716.45 nA /cm2 = 288.72 pA /em2 = 0.002887 nA /pm?2.

e [40| reports total membrane currents of 5nA at the 10pm soma during AP, for
a spherical source this implies a current density of 5 / (4 * pi * (0.001°2)) =
397887.36 nA/cm2 = 400 pA/cm2 = 0.004 nA /pm2 (considering the soma a 20x5
npm cylinder the amount is 800 pA /cm?2).

e [9] reports extracellular electric fields of 2mV /mm, at a typical conductivity of 5 to
10 mS/cm, this gives 20*5 to 20*10 mV /cm*mS/cm = 100 to 200 pA /cm2 = 0.001
to 0.002 nA /um2. The 2mV /mm value of the paper was measured experimentally.

e 3D simulations of a 20pm diameter cell producing a Hodgkin-Huxley action po-
tential produce current peak outputs of only 0.035 pA/cm2. Capacitor and ionic
currents have peaks of 300 to 800 pA/cm2.
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A.8 Electrophysiology Conventions

The following is a compilation of electrophysiology conventions. As in the previous
section this helped providing an initial validation of the results obtained numerically.
They are:

e The sign conventions for current are: outward transmembrane current is positive;
axial current flow into a compartment is positive; positive injected current drives
the voltage in a positive direction [12].

e Transmembrane potential V,, is the potential inside of the cell minus the potential
outside.

e By convention, membrane current is defined as positive when positive ions leave
the cell.

e By convention, membrane current is defined as negative when positive ions enter
the cell.

e The resting potential of most cells is negative. If a positive current flows into the
passive cell V,,, becomes less negative.

e Depolarization (as in an action potential with sodium ions) is caused by an inward
positive current.

e The potential of the extracellular fluid is defined to be zero (far from the cell).
When a neuron is inactive, the excess internal negative charge causes the potential
inside the cell to be negative.

e The resting potential is an equilibrium point at which the flow of ions into the cell
matches that going out of the cell (in the passive case that is the voltage dependent
passive leak current versus a constant “dummy” current set to correspond to the
resting potential).

e Positive inward electrode current (i.e. “injecting current”) increases the positive
charge inside and the membrane voltage becomes more positive. This is however
a negative current (imagine a free flow of current through a sealed hole in the
membrane). To keep the electrode current value positive (I.) it is given by con-
vention the opposite sign of the ionic current in the equation: I,, = I;,, +1.— I, or
I.=1,—I,,+1.. In NEURON for example, setting a positive IClamp amplitude,
depolarizes a passive cell. See also Dayan and Abbott [67] section 6.3: “The Cable
Equation”.
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B CHASTE-Membrane Guide

The following is the user’s and programmer’s guide to the tool presented in Chapter 6:
CHASTE-Membrane.
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CHASTE MEMBRANE 1.0 DEVELOPER AND USER GUIDE

vV 1.1 31.7.2013

V 1.0 14.6.2012

Welcome to ChasteMembrane. ChasteMembrane is a Finite Element simulation tool to
model the electric properties of cell membranes in a conductive space.
ChasteMembrane was developed for neuron modeling but, provided the right
geometry and membrane conductances, other types of cells could be simulated. A
description of the methods used in ChasteMembrane is available in [1].

ChasteMembrane is open source and is released under the same license terms as
Chaste (GNU LGPL 2.1 or superior). Contributions from the user community are
encouraged.

ChasteMembrane is based on Chaste (Cancer, Heart and Soft Tissue Environment),

and a working, compiled version of it is required. ChasteMembrane uses the same
C++ coding structure, and building tools used in Chaste. Chaste is extensively

documented and can be obtained at http://www.cs.ox.ac.uk/chaste

ChasteMembrane provides a C++ library to describe your own cell membrane
simulations. Medium knowledge of C++ with templates programming is required.
Chaste development centers around a unit test approach. Every functionality
implemented is complemented by automated test routines. Test routines are run
periodically to alert the developer if something has broken in the code. It is
recommended to follow this approach when using Chaste and ChasteMembrane. Test
routines also provide an excellent guide to new developers, describing
individual use of the different software components. Examples of the main
functionalities of ChasteMembrane are exemplified as "tests". These tests are
available in the projects/membrane/test folder and its usage will be described
in this guide.

A basic standalone application of ChasteMembrane is also provided with this
distribution. See "RUNNING SIMULATIONS WITH THE EXECUTABLE" for a description.

INSTALLATION

Follow this items closely to install ChasteMembrane. Upon any problem, help for
Chaste and ChasteMembrane can be obtained at the Chaste mailing list: chaste-
users@maillist.ox.ac.uk. ChasteMembrane is known to work in Linux Ubuntu 11.10
(x86_64, manually installed, not using the Ubuntu package manager), and OpenSuSE
11.4 (x86_64, manually installed). Other operating systems have not been tested,
but it should in principle work for any other system where Chaste can be
compiled.

1) Obtain Chaste from http://www.cs.ox.ac.uk/chaste/download.html.
ChasteMembrane depends exclusively on Chaste release 2.0 (On the downloads
section chaste_release_2_0.tgz, file size 60.94MB). Trying an older or newer
versions will fail.

2) Extract ChasteMembrane in Chaste's root directory. The projects/ folder
should be merged with Chaste's own. Inside the projects/membrane/ directory,
this file, the default configuration files, mesh handling tools, the main source
code and the stand alone ChasteMembrane application can be found.

3) Set up Chaste 2.0 but **read first** the following sub-points specific to
ChasteMembrane. There is an excellent guide for each Chaste version in the file



docs/INSTALLATION.txt of Chaste's root folder. ChasteMembrane has not been
tested with other compiler or system different from gcc or Linux. ChasteMembrane
depends only on the "heart" and core packages so it is not required to build the
entire set of Chaste libraries. The sub-points are:

- Before this make sure your Linux system has the gcc, g++ compiler,
libncurses5-dev, and mesa development packages installed
(libglil-mesa-dev, libglul-mesa-dev, libxext-dev, libx11-dev).

Without this packages you can get some weird building errors when trying
to compile mpich, petsc, vtk or the ChasteMembrane examples.

- When setting up the file python/hostconfig/default.py (used
to point to your own libraries e.g. petsc, boost), the VTK library has
to be enabled and available for compilation. Set wuse_vtk = True. VTK
is the default output format of ChasteMembrane. Compiling VTK requires
the OpenGL development libraries. For Linux the packages libgll-mesa-dev,
libglu-mesa-dev, libxt-dev and their dependencies have to be installed.

- VTIK requires CMake to be installed. It is recommend not to compile cmake,
but to use the CMake from the Linux distribution your are using.
Versions 2.6.2, 2.8.3 and 2.8.7 of CMake have been used successfully to
generate the VTK make files.

- The recommended VTK version 5.2.1 has a bug in the VTK/Utilities/vtktiff
folder. This folder should not have read only files, change this with
the command: chmod u+w VTK/Utilities/vtktiff/*

- The boost program_options library is used by ChasteMembrane. Add
this to the "other libraries" line in default.py:
other_libraries = ['boost_serialization', ..., 'metis’',
'boost_program_options']
Make sure your boost installation contains the boost program_options
library.

- Make sure you use the mpich version recommended for gcc > 4.3
recommended in the installation instructions provided in Chaste. Also
ignore the errors when installing mpich ("iostream.h no such file or
directory")

- Instead of petsc-2.3.3 use petsc-3.0.0-pl2. For an unknown reason
tests run with petsc-2.3.3 failed (Ubuntu 11.10 x86_64 machine).

- Boost 1.34.1 produces compilation errors. Apparently version 1.34.1
is too old for recent versions of gcc. Boost 1.40.0 (boost_1_40_0.tar.gz)
has been used without issues. The tool boost-jam-3.1.17-1-1inuxx86.tgz
can be used but in some 64 bit architectures it might need to be compiled
again from the Sourceforge source.

- Ignore the hdf5 testing errors such as "***** 164 FAILURES! *****
Command exited with non-zero status 1"

- Many systems have a default installation of the MPI library. It is
recommended to build and use the one suggested in the installation
document. Other implementations of MPI had not been tested.

- Aside from the previous notes, use strictly the libraries suggested
for Chaste release 2.0 in the installation document. As this is an old
version of Chaste some of the source libraries described in the
installation instructions are no longer available in the same URLs.
Search for the same versions in Google.

- As with any other heavily dependent packages, building Chaste



might be a complex process. Ask the mailing list upon any doubt!

4) Follow chaste guides to compile and run the monodomain problem test. Make
first sure the right environment variables have been set. Chaste installation
recommends running the automated tests for the entire heart package. This is
preferred as it can tell everything was set up properly. Still, a single test
such as heart/test/monodomain/TestMonodomainProblem.hpp would be enough to check
all dependencies of ChasteMembrane are met. This is a quick way to jump to
ChasteMembrane own tests. Before compiling the monodomain example, the following
changes in the Python scripts are needed:

- In Linux install the following packages required for compilation of
Chaste examples: zliblg-dev

- Remove the file python/hostconfig/ubuntu.py from the source code folder.
This file is broken and it is not required for this type of installation.

- Edit the file python/hostconfig/default.py and comment the line
#chaste_libs_path = '/home/scratch/chaste-1libs/"
and add the line:
chaste_libs_path = os.environ['CHASTE_LIBS']+'/'

- Remove the petsc_2_2 path and petsc_2_3_path variables also in
default.py by commenting the lines:
#petsc_2_2 path = ''
#petsc_2_3_path = chaste_libs_path+'petsc-2.3.3-p15/"
#os.path.join(petsc_2_3_path, 'externalpackages/f2cblaslapack/linux-gnu'),
and adding the lines:
petsc_3_0_path = chaste_libs_path+'petsc-3.0.0-p12/'

- In defaults.py change the other_includepaths variable commenting out
#chaste_libs_path+'boost/include/boost-1_34_1"',
and adding
chaste_libs_path+'boost/include’,

- If you haven't done so, add the boost program options library required
by ChasteMembrane:
other_libraries = ['boost_serialization', 'xerces-c', ...,
'boost_program_options']
and set:
use_vtk = True

- In gcc versions 4.6 or superior there might be issues with the default
Chaste build flags. The following change should be made to
python\BuildTypes.py in line 51:
self._cc_flags = ['-Wall', '-Wno-error=unused-but-set-variable',

'-fpermissive', '-include unistd.h']
to avoid compilation errors.

Compiling and running the test requires the command:
scons test_suite=heart/test/monodomain/TestMonodomainProblem.hpp

Compilation might take some minutes. At the end of the test, the final message
will say that 1 of the 17 tests has failed
(TestMonodomainProblemCreates3DGeometry), ignore this. Also ignore any HDF5
error messages.

5) After running the TestMonodomainProblem test, everything should be ready to
run ChasteMembrane tests. Tests should always be run from the Chaste root
folder. Start by running:



scons test_suite=projects/membrane/test/TestCell2D.hpp

And then:
scons test_suite=projects/membrane/test/TestCell3D.hpp

A message of "Passed" should appear after each test. To run all basic tests use:
scons projects/membrane

OUTPUT

ChasteMembrane produces its output as a set of data files. This files are
located in Chaste's default output folders. By default this is the system's
/tmp/username folder. Read Chaste's installation guide to change the default
location.

The following output files are produced by ChasteMembrane in the test output
root folder:

defaults.txt: a copy of the default configuration used in the current version.

*.conf: a copy of the configuration used and the command line parameters
for a specific simulation (see also the "CONFIGURATION" section).

The following files are produced by ChasteMembrane in the test output folder:

*.dat: files containing the PETSc binary matrices and vectors used
by the linear solver. (This files are for debugging purposes and
will not be produced in future versions.)

*.h5: An HDF5 file with the potentials at each node and each time-step.
It follows Chaste's default monodomain potential output format.

*_membrane.h5: An HDF5 file with the voltages on the membrane at each node
and each time-step. It also follows Chaste's default monodomain
potential output format. The values correspond to membrane
nodes only.

currents.txt: A text file with the voltage and currents for a specific point
of the membrane (see also the "CONFIGURATION" section).

The following files are produced in the folder "vtk_output" inside the test
output folder:

cha.vtu: A VTK visualization file with n variables, where each variable is
the potential at each "printing" time step. This file can be
converted to sequential vtu files with the tool:
./projects/membrane/tools/cha2vtu.py
This script requires the python-vtk package.
Call this script without parameters for help information.

The rest of files in the output are produced by Chaste. A membrane *.vtu file is
not yet produced but will be in future versions.

RUNNING OTHER TEST PROGRAMS

The test programs provided with the tool exemplify basic functionalities. These
are located in the projects/membrane/tests folder:



TestCell2D.hpp: A simple test with a diameter 20 um circular cell in a
400x400um domain. The cell is stimulated with a homogeneous
electric field. A similar example was presented in the
convergence tests of [1]. Run as:
scons test_suite=projects/membrane/test/TestCell2D.hpp

TestCell3D.hpp: A simple test with a diameter 15 um spherical cell in an
80x80um domain. The cell is stimulated with a homogeneous
electric field. This corresponds to the spherical body
presented in the results section of [1]. Run as:
scons test_suite=projects/membrane/test/TestCell3D.hpp

TestCable3D.hpp: An 80 um long, 1um diameter cable in a 100x10x10um domain.
The cable is stimulated with a homogeneous field. This
corresponds to the short cable presented in the convergence
section of [1]. Run as:
scons test_suite=projects/membrane/test/TestCable3D.hpp

TestTimeDependentBC.hpp: Example of time dependent boundary conditions.
In this version time dependent conditions can only be set
through C++ code. It uses the same mesh used in
TestCell3D.hpp. Run as:
scons test_suite=projects/membrane/test/TestTimeDependentBC.hpp

TestMultiStimuli.hpp: Shows how to set up more than two point source stimuli.
Point source stimuli require calculating the node's
surrounding volume and this is also shown. Run as:
scons test_suite=projects/membrane/test/TestMultiStimuli.hpp

TestMembraneCurrent3D.hpp: Simple example of how to inject current inside a
cell and obtain the membrane current values. Run as:
scons test_suite=projects/membrane/test/TestMembraneCurrent3D.hpp

TestTwoCells3D.hpp: Reproduces the simulation of two nearby 3D cell
bodies presented in [1]. It shows the use of heterogeneous
membrane properties (different for each cell) and time dependent
current point sources. Run as:
scons test_suite=projects/membrane/test/TestTwoCells3D.hpp

TestNeuronOnDish2D.hpp: Corresponds to the realistic cell simulation of [1].
It exemplifies the use of ionic kinetics, heterogeneous
membrane properties along a cell, and heterogeneous
boundary conditions over mesh boundary regions. Run as:
scons test_suite=projects/membrane/test/TestNeuronOnDish2D.hpp

The configuration files in projects/membrane/tests/data for each of the test
show the parameters used in each simulation. See the CONFIGURATION section for a
description of the parameters.

CONFIGURATION

Apart from the default configuration method (Chaste's XML file), ChasteMembrane
1.0 brings a separate configuration system. ChasteMembrane can be configured
with command line parameters and/or a INI like *.conf file. The simpler
PARAMETER=VALUE format was preferred by using the Boost::program_options
library. Note this configuration method was found to be limited and other
formats could be used in future releases (namely JSON or XML itself).

Some configuration parameters are specified in both ChasteMembrane and Chaste.
Configurations in the *.conf file have priority over Chastes's *.xml file. A
specific Chaste *.xml file can be specified with the CHASTE_CONFIG variable in



the *.conf file. By the default, the file:
projects/membrane/ChasteMembrabeDefault.xml is used.

Configuration through command line can be provided with the syntax

- -PARAMETER=VALUE or --PARAMETER VALUE. Any parameter set in the command line
has priority over the *.conf file. If the same parameter is specified in both
the command line and the *.conf file the latter will be ignored. Ideally, the
only configuration parameter passed through command line should be:
--CONFIG=file.conf. This file can provide all remaining settings (e.g. the mesh
file to be used). This is however not restrictive and other values can be passed
to quickly test different experimental settings (Example: --CONFIG=file.conf
--DURAT=1.0).

Default parameter values are specified in the MembraneConfig class. If a *.conf
file is not provided, ChasteMembrane will use the file:
projects/membrane/ChasteMembrabeDefault.conf

This runs a basic 2D simulation similar to TestCell2D.hpp. A user configuration
file can either be provided in the command line or through C++ code with the
call:

MembraneConfig::Instance()->SetParametersFile("...");

Note the object MembraneConfig::Instance() should not be used to manually set
parameters.

See the test example codes presented in "RUNNING OTHER TEST PROGRAMS" for usage
of the MembraneConfig class.

The 1list of default configuration values and a description for each parameter is
provided in the file projects/membrane/default.txt.

Setting the following environment variables is recommended:

export CHASTE_LIBS=/home/user/chaste

export CHASTE_SRC=/home/user/chaste

export PATH=$CHASTE_LIBS/bin:$CHASTE_SRC/projects/membrane/tools:$PATH

export LD_LIBRARY_PATH=$CHASTE_LIBS/petsc-3.0.0-p12/1ib/1linux-gnu:
$CHASTE_LIBS/rdf/1ib:$CHASTE_LIBS/boost/1lib:
$CHASTE_LIBS/xerces/1ib:$CHASTE_SRC/1ib

export PYTHONPATH=$CHASTE_LIBS/python

export CHASTE_TEST_OUTPUT=/home/user/chaste-out

Change /home/user/chaste for the directory were you built Chaste and
ChasteMembrane.

BUILING YOUR OWN TEST PROGRAMS

ChasteMembrane can be used as a stand alone executable or as a C++ library. The
executable can be used to quickly run simulations parametrized in the command
line or a configuration file. To access more powerful features, C++ must be
used. This extended features include: setting heterogeneous channels, writing
custom channel kinetics, and using heterogeneous and time dependent boundary
conditions. Use of heterogeneities is exemplified in the test examples. Example
channel implementations are available in the
projects/membrane/src/odes/ionicmodels directory and in Chaste's
heart/src/odes/ionicmodels.

To create your own simulation it is recommended to use one of the example test
programs as a template. ChasteMembrane uses the coding structure of Chaste. All
the documentation and functionalities of Chaste are available to the programmer
of new ChasteMembrane simulations.



To build them, test programs should be located in the projects/membrane/test/

directory. The name of your test functions should always start with Test*. See
Chaste and cxxtest documentation for more information. To build your own test

use:

scons compile_only=1 test_suite=projects/membrane/test/TestYourClass.hpp

To build and run the test use:

scons test_suite=projects/membrane/test/TestYourClass.hpp

In this form, alternative command line parameters cannot be added. Command line
parameters can be passed by executing the test binary directly:

./projects/membrane/build/debug/TestYourClassRunner [Command line parameters]

MESH GENERATION

ChasteNeuron uses tetgen/triangle mesh format exclusively. Besides the regular
tetgen/triangle mesh files, special files should be provided to describe the
interfaces (membranes) in the mesh. A Python tool to produce this files is
provided in: projects/membrane/tools/msh2tetgen.py. This tool takes as input a
Gmsh *.msh file and produces the corresponding tetgen/triangle files. Gmsh is a
widely used open source and free CAD/meshing engine that can be obtained at
http://geuz.org/gmsh/

For information about usage of msh2tetgen.py call:
./projects/membrane/tools/msh2tetgen.py -h

For a description of the format of the Gmsh mesh see:
projects/membrane/tools/gmshint.py

Examples of Gmsh *.geo files and their corresponding *.msh and tetgen/triangle
files are available in projects/membrane/test/data

RUNNING SIMULATIONS WITH THE EXECUTABLE

The executable (.projects/membrane/apps/src/ChasteMembrane) can run
ChasteMembrane simulations if they are described in a configuration file or
through command line. For example:

./projects/membrane/apps/src/ChasteMembrane --CONFIG=file.conf

wWith configuration files, any mesh can be simulated with Dirichlet boundary
conditions and one or two point source currents. Any property available through
the configuration interface can be used. See "CONFIGURATION" for all the
possible parameters.

To use it, the executable has to be built first. First build Chaste main binary
shared libraries with:

scons chaste_libs=1 exe=1 compile_only=1 apps

These libraries have to be added to the LD_LIBRARY_PATH environment variable of
chaste as (in a single line):

export LD_LIBRARY_PATH=$CHASTE_LIBS/petsc-3.0.0-p12/1ib/linux-gnu:
$CHASTE_LIBS/rdf/1ib:$CHASTE_LIBS/boost/1ib:$CHASTE_LIBS/xerces/1lib:
$CHASTE_SRC/1ib



This will build Chaste's shared libraries. A helper script is provided to build
the ChasteMembrane executable. From the Chaste root folder call:

./projects/membrane/apps/src/build_chaste_membrane.sh

This script depends on scons and the same Chaste environment variables used for
building tests. After completion, the executable can be used as specified above.

NOTES FOR VERSION 1.0

Version 1.0 could be considered a prototype and many features that would be
considered "User friendly" have not been added. Still, all functionalities can
be accessed by using ChasteMembrane as a C++ library. Future releases will
improve the use of ChasteMembrane as a standalone application. Suggestions and
patches by the community are also welcomed. Important notes are:

- Using configuration files only two source currents can be set. More currents
can be added with C++ code. See projects/membrane/test/TestMultiStimuli2D.hpp
for an example. Stimulus currents should be given to the solver as volume
sources (uA/cm3). This requires calculating the area or volume surrounding the
point source. This is described in the example.

- For the source current 1 (SRC1_FILE) the time values of the *.csv file are
ignored. Also, the number of values should match the simulation steps.

- Only an initial membrane voltage for all cell is supported via configuration
parameters. This can be changed through C++ routines. Gmesh mesh regions can be
used to specify this values.

- In this version, simulations can be run in parallel as long as all the
membrane nodes are assigned to an individual processing core. For this, all the
nodes touching the membrane should be sequential and at the end of the node list
(this is the default ordering produced by msh2tetgen.py). With Chaste's default
partition scheme, this means that the number of nodes touching the membrane
should be less than N/n, N the number of nodes, and n the number of processors.
Support for partitioned membranes will be added in the next immediate release of
ChasteMembrane.

KNOWN ISSUES

- CGG 4.6 brings the compiler option "-Wno-error=unused-but-set-variable" and
this is enabled by the options -Wall -Werror (at least in Ubuntu 11.10, GCC
4.6.1). You might need to modify the file python/BuildTypes.py disabling this
flag:

self._cc_flags = ['-Wall', '-Werror','-Wno-error=unused-but-set-variable']

- The file *.int.msh produced by msh2tetgen.py displays the two edges (inner
interfaces) corresponding to the physical groups 4 and 5. This is because gmsh
consider elemental geometry IDs are always associated to a single physical
group. However, as the internal interface is duplicated in the conversion
process they share the same element id's. This is just a visualization problem
and does not affect the resulting meshes.

REFERENCES

[1] Andres Agudelo-Toro, Andreas Neef. Computationally efficient simulation of
electrical activity at cell membranes interacting with self-generated and
externally imposed electric fields. 2013 J. Neural Eng. 10 026019.
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C Applications of the space/membrane
solution: transcranial magnetic stim-
ulation

C.1 Introduction

The human brain lives inside a protective shell that screens it from outside intervention.
Non-invasive neurological stimulation treatments are ideal as they relieve from unnec-
essary trauma and pain. Transcranial Magnetic Stimulation (TMS) overcomes this by
inducing an electric fields in a small area of the cortex using focused magnetic pulses.
The magnetic pulses are delivered with a current coil over the skull and not touching
the patient’s head. TMS has great potential for the treatment of neuro-psychiatric dis-
orders [157| for example as a replacement for electroconvulsive therapy [13, 158|. As a
research tool, TMS has been used in neuroscience research to induce localized “virtual
lesions” [159, 160, 161] allowing to probe brain specific regions by disruption of function.

The technology for transcranial magnetic stimulation has basically remained un-
changed from its origins in the late 80’s [14]. Previous developments have aimed at
a higher pulse repetition rate [162] and at a larger penetration range [163]. How-
ever a main characteristic of TMS is the strong directionality of the applied field
[164, 165, 166, 167, 168, 169]. Optimal stimulation is achieved when the external field
is aligned with the cell processes. Neurons in the targeted brain area seem to be excited
only if the induced electric field is aligned with their axons [73]. Determining which ori-
entation of the coil is optimal is then crucial for effective stimulation. Still, the optimal
coil orientation may not be found if stimulation of the targeted brain region does not
lead to a direct reaction (e.g. muscle movement). This is for instance the case for the
dorsolateral prefrontal areas that are targeted in depression. Therefore a device that
ameliorates the directional sensitivity and enables a more efficient mode of applying
TMS is a clear goal for development of coils.

The “dense cloverleaf” coil configuration, devised by Rotem et al. [170] is similar
to currently available coils but produces a rotating electric field. A rotating field can
mitigate the directional sensitivity by scanning all the possible processes angles in a
short time. The cloverleaf coil consists of two “figure of eight” coils shaped near the
hotspot to maximize the field strength. Each figure of eight is connected to an inde-
pendent power source. The two figure of eight coils are positioned on the same plane
and perpendicular to each other so that at the hotspot, their resulting electric fields
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Figure A.1: Rotating cloverleaf coil in action. The induced electric field is displayed on
top while the magnitude over time is displayed in the bottom.
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Table A.1: Convergence of the field magnitude.

are perpendicular. The quasi-sinusoidal pulses of the pairs are separated by a phase
of 90 degrees. The resulting electric field at the hotspot completes % of a circle during
one combined pulse (Figure A.1). The rest of the characteristics of the electric field, in
terms of strength, focus and decay on the Z-axis are similar to that of the conventional
TMS coils.

This chapter presents numerical simulations that helped validate the design and
effectiveness of the dense cloverleaf coil. In collaboration with A. Rotem and E. Moses
I developed models of the coil and the induced field and tested them in artificial axons.
The cable version of the space/membrane equations combined with the extension of the
quasi-static approximation to allow magnetic induction (Eq. (2.57)) was used for this
simulations. A custom made coil simulator had to be build to calculate the induced
electric field %. In the next sections this coil model tool and the results obtained for
validation this specific coil design are presented. The effects of the coil stimulating a
model axon are then shown.

C.2 The dense cloverleaf coil model

C.2.1 Numerical tool

The electric field induced by the dense cloverleaf coil was numerically estimated with
a custom written C program. The numerical model was constructed to reproduce the
exact geometry of the physical coil and in general any coil shape. The model calculated
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Figure A.2: Difference between different solutions with increasingly smaller length dif-
ferential.

the stimulus electric vector field (Eq. (2.57))

OA (r,t
E, (I’,t) = _%

for a given three-dimensional coordinate r. The vector potential field A can be written
for a spatially homogeneous coil current I (¢) in a wire piece dl as the path integral

_ Mo dl
Art) =7 1(1) A (C.1)

with ry a vector pointing to the differential unit of the cable and r the vector at the

point of interest (see also Figure A.2(A)). The electric field can then be described by
the expression

CO0A(D) N OI() / dl
Bt === =~ ot Jor—n (©-2)

Equation (C.2) was calculated numerically for arbitrary wires. To validate the numerical
results, an analytical solution of (C.1) was compared to the numerical for an identical
geometry. For a single loop of current centered at the origin, the field produced is
cylindrically symmetric and the vector potential can be calculated for a single Cartesian
plane. In spherical coordinates, a vector pointing out of the XZ plane has its single
component described by the ¢ coordinate. The expression for A is [72]

Ia [? cos ¢'
Ay(r,0) = st /0 ( ’ 1/2 d¢’

dm a? +r? — 2arsinf cos ¢')
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Figure A.3: Spline reconstruction of the coil. (A) Spline (green) identifies the borders
of the coil. (B-C) the final reconstructed spline of the coil.

With a the loop radius and the rest of the notation as in Figure A.2(A). This in
turn can be solved in terms of the complete elliptic integrals K (m) and E (m) [171]

e 4la (2= m)K(m) - 2B(m)
Ag(r,0) = AT (a2 4 72 — 2ar sin 9)1/2 ( m )

with m

4ar sin

T @2 2arsind
Comparison to the numerical results is presented in Figure A.2(B-C). The numerical
solution converges for the loop of current.
Additional tests were performed for a coil with the clover leaf shape of Figure A.2(D).
With reduced elements it was verified that the solutions did not diverge. The difference
between solutions was calculated with

dl

d_ 2

0% X [F B

4 = max F4—0 Z N
1 =1

for F; the field magnitude calculated at points ¢ separated 1mm along the x axis 1
cm far from the coil. The length differential dl was halved for every comparison. The
results are shown in Figure A.2(E-G) and Table A.1.

C.2.2 Coil reconstruction

To represent the geometry in the computer, a high resolution image of the coil was
obtained with a regular office scanner. The image was used to manually match a 3rd
order polynomial Catmull-Rom spline [172] describing the exterior wire loop in the XY
plane (Figure A.3(A)). The exterior loop of each leaf was then copied and rescaled to
match 9 wire loops forming a complete coil (Figure A.3(B-C)). The complete set of
loops was then copied five times, creating 6 layers in Z, representing the coil height.
For numerical integration each spline describing a complete wire loop was subdivided
in Imm linear sections.
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Figure A.4: (A) complex vs. simple coil. (B-C) The field produced by the coils in the
plane. (D-E) The field produced by the coils in Z.

The inclusion of each of the cable lops in the simulation, and not just representing
the coil as a single wire, improves the accuracy of the field estimate. This is particularly
true within the first 2-4 centimeters below the coil ([173] and Figure A.4). The design
of the dense cloverleaf is optimal compared to circular and wedged coils. The smooth
central region maximizes the induced field strength as shown in Figure A.5. The current
is assumed homogeneous along the cables so expression (C.2) can be separated in a time
dependent and a time independent part. For the dense cloverleaf, as each pair of leaves
is feed by an independent current source the field was only calculated once for each pair
and scaled over time. The rotating field simulation was presented in Figure A.1.

C.3 Simulation of axonal excitation

C.3.1 Passive axon

In order to check the efficacy of the dense cloverleaf the electric field induced was used
to drive an artificial axon. At the coil hotspot, the magnitude of the rotating field varies
over time and over its angle. The projection of the field along an axon at any given
orientation should be large and long enough to produce depolarization. For this the coil
model tool and the one-dimensional cable solver tool presented in appendix Chapter E
were used. The axon was simulated as single passive unmyelinated cable of length 1mm
and diameter 1pm. The length constant of the cable was A = 384 pm and the time
constant was 7 = 300 ps, as justified by a previous study [73]|. It was assumed the axon
lied in the hotspot of the coil around 3cm below the coil center. The axon was short
enough so that the spatial variation of the electric field could be ignored. The axon was
divided in 101 segments and a fixed time step of 2 ps was used during the simulations.
It was determined that a 30mV depolarization was needed to produce stimulation.
The results of this simulations are presented in Figure A.6. The axon was set along
the X axis so that only the projection F, (¢) of the electric field was effective. The
amplitude of the input current to the coil was then tuned in a binary search procedure
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Figure A.5: Comparison of several coil shapes (A). (B) The horizontal and vertical
components of the currents. (C) Time evolution of the magnitude of the induced field.
(D-E) Field magnitudes at peak stimulus for the dashed lines in (A).

to find the electric field magnitude at which the axon was depolarized by 30 mV at any
point along it. This electric field value was then chosen as the electric field threshold
and plotted. The coil was then rotated in 30 degrees intervals and the same procedure
repeated. The plot in A.6 shows the normalized effective induced current (proportional
to the field) and the membrane voltage response at the right tip of the axon for each
angle. Note that at zero degrees the coil had the same orientation that in Fig. A.1 but
the current of the vertical coil (solid trace) was inverted. The coil is effective for all
angles presenting threshold fields that change by less than 50%.

C.3.2 Active axon

An identical test was performed but active properties were given to the axon. The
voltage dependent sodium conductances were taken from the first model of Baranauskas
and Martina [174] and the potassium and leak conductances of Migliore et al. [175].
The total sodium conductance was increased from 65 mS/cm2 in Baranauskas and
Martina to 120 mS/cm2. The threshold surpassing criteria was then generation of an
action potential. The thresholds for this case are presented in Figure A.7. Although
the threshold increases compared to the passive cable, the field strength remains within
300 to 400 V /m.
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Figure A.6: The cloverleaf coil alleviates the orientation dependence of magnetic stim-
ulation in a passive axon.
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Figure A.7: The cloverleaf coil alleviates the orientation dependence of magnetic stim-
ulation in an active axon.



D UML Design diagrams

The following figures present the UML (Unified Modeling Language, [128|) diagrams
created during the development of CHASTE-Membrane. The use of UML allowed to
visualize the relation between components and correctly interface the new functional-
ities with CHASTE. Diagrams A.1 and A.2 represent the object oriented inheritance
relations of the objects constructed in CHASTE-Membrane in relation with the core
objects of CHASTE. The solving sequence is presented in diagrams A.3 to A.5. These
diagrams are key to understand the C+-+ implementation.
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Figure A.1: General inheritance dependence of CHASTE-Membrane objects (light red)
and CHASTE objects (white).
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Figure A.2: Object inheritance dependence for the matrix assembly and solving objects
of CHASTE-Membrane (light red) and CHASTE (white).
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Figure A.3: Object sequential communication of CHASTE-Membrane objects (light
red) and CHASTE objects (white) during the main program execution.
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sd solve_loop J
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Figure A.4: Object sequential communication of CHASTE-Membrane objects (light
red) and CHASTE objects (white) during the main solution loop.
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Figure A.5: Object sequential communication of CHASTE-Membrane objects (light
red) and CHASTE objects (white) during the matrix assembly loop.



E 1D Cable Utility

This chapter provides a guide for the cable simulation tool used to compare the nu-
merical results of CHASTE-Membrane to the results of the cable equation. The tool
implements the principles presented in Section 2.7.4.1. The tool was used for the anal-
ysis of Figures 3 and 4 of Chapter 7 and for the cable simulations of Chapter C.
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NRNSIM or NeuRoN SIMulation is a Python tool that facilitates the execution of
simulations with the Neuron environment (http://www.neuron.yale.edu). NRNSIM
uses Neuron's Python interface to provide access to Neuron. NRNSIM however
facilitates the simulation of neurons by providing easy to use Python objects.
NRNSIM is designed to extend Neuron with Python easily. NRNSIM provides one
example application and this is for the simulation of the extracellular
stimulation of neurons. This application can be configured with semi-arbitrary
descriptions of electric fields changing in space and time and it will configure
Neuron in such a way, that the current neuron geometry will respond as if it was
inside this field. The electric fields and the type of Neuron mechanism for
representation of the field in Neuron can be chosen as a Python object. At the
moment, stimulation with Neuron IClamps and the 'extracellular' mechanism can be
configured.

TOOL COMPONENTS

NRNSIM is composed by a collection of Python scripts. In the current version
these scripts are:

-nsrun.py: This is the initialization script. This should be executed for
every simulation. In this version the script should be manually
edited to load the respective 'application' scripts. This script
should always call nrnsim.py.

-nrnsim.py: The main script. This contains the basic functions most
'application' script should call, such as those to initialize
Neuron and to set the default time parameters. The main
functions are:

-settime(newdt, newtmax): Set time parameters in milliseconds.
-nrngeom(name): Load the Neuron geometry given (.hoc file)
-nrninit(): Prepare Neuron for simulation

-updatemech(): Should be called if the Neuron mechanisms changed
-sim(): initiates the Neuron simulation.

-section.py: Provides classes to wrap Neuron sections and section list

providing a cleaner interface to obtain information about

their parameters. The main functions are:

-Section.points(): returns a pair of 3D points with the start
and end of a neuron section.

-Section.segments(): Retrieve all the pt3d defined segments in an
array where each row is a point and a diameter.

-Section.dx(): Calculate the spatial differential of the section
using the Neuron parameters of length and number of segments.



-Section.setpoints(p®,pl): Change the section initial and
end coordinates.

-Section.ra(): Obtain the section's axial resistance in Ohm/m.

-Section.rm(): Obtain the section's membrane resistance in
Ohm*cm.

-Section.Ra(val): Set or get section's axial resistance in
Ohm*cm.

-Section.Rm(val): Set or get section's membrane resistance in
Ohm*cmA2.,

-smech.py: Implements the NEURON calls of different methods for extra and
some intracellular stimulation. Supported methods as Python
objects are:

-ActivatingFunction: Implements the activation function [1] as a
pair of stimulating IClamp objects in the two tips of each
section. Current values are calculated as in [2,3].

-ExtracellularMechanism: Uses Neuron's extracellular mechanism
to set the extracellular potential for a set of sections. Each
Neuron section is divided in segments. For every segment on
every section, a potential value over time must be provided.

-CurrentClamp: A simple to use wrapper for Neuron's IClamp
mechanism.

-fields.py: Provides objects for signals and fields. A signal is a variable
depending on time. A field is a 3d variable depending on time
defined for a set of points. Classes provided are:

-StepSignal: Given a time vector and a start and end generates
a time series in a vector that resembles a step function.

-BipolarSignal: A square bipolar function where a start,
switching time and end time should be provided.

-CosSignal: A cosine signal with and amplitude, period, start
of the signal and end of the signal.

-RLCSignal: Emulates the electric field induced by the inductor
in a Resistor, Inductor, Capacitor circuit. It emulates the
electric field produced by a transcranial magnetic stimulation
coil.

-Field: A general class to represent a field. Field objects can
take as input a signal object to scale them over time.

-HomogField: produces a spatially homogeneous field but variable
in time field for a given time changing signal.

EXAMPLE APPLICATIONS

One example application script is provided with NRNSIM:

-multi.py: Simulates multiple types of 1D neural geometries, under



geometrical transformations and multiple stimulation methods.
The file multi.py can be used as a template for other
applications. multi.py provides a graphical user interface to
change the magnitude of and duration of the stimulation field.
On execution of nsrun.py, parameters can be given in the
command line to load an specific hoc file and an extra Python
script. This script can modify the default amplitude, duration,
orientation of the field and timesteps.

TOOL USAGE

NRNSIM requires that Neuron is installed with Python support and that Neuron is
visible to the Python interpreter, this is explained in
http://www.neuron.yale.edu/neuron/download

For execution the regular Python interpreter can be used but IPython is
recommended. To run the default multi.py application with IPython < 0.11 use the
command:

ipython -pylab -i -c '%run -i nsrun.py file'

Where file is the root name of a set of files:

file.hoc: a Neuron geometry. Cell parameters can also be set.
file.ses: a Neuron session file.
file.py: a configuration file with the stimulation parameters.

file.cin.hoc: alternatively, a file with hoc's init() function. This
can be used to set arbitrary initial potentials
for different cells.

IPython 0.11 and superior changed the interaction of IPython with QT gui (which
is required by the tool). To use IPython then using a separate kernel is
recommended to do this call instead:

ipython console --pylab qt -i -c "%run -i nsrun.py file"
alternatively simple IPython can be used (no kernel mode) calling:
ipython -i -c "%run -i nsrun.py file"

but in this case IPython's plotting routines cannot be used.
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F Coil Simulation Tool

The following guide covers the numerical simulation tool used to calculate the fields
produced by realistic transcranial magnetic stimulation coils in Chapter C.

167



COIL TOOL USER GUIDE

0.3 12.2.2010
0.2 14.8.2009
0.1 27.2.2009

< <<

Coil Tool is a numerical integrator for calculating the electric field induced
by coils, typically those used in transcranial magnetic stimulation. The tool
can calculate the electric field over a range of evenly spaced coordinates in
three-dimensions. The field is calculated from a linear piecewise description of
the coil. The tool is written in the C language but can be accessed from Python
via dynamic link library wrappers.

TOOL INTERNALS

The tool is divided in two basic modules: a module that produces coil geometries
(coilgen) and a module that calculates the electric field via the magnetic
vector potential (mvp). The tool implements equation (4) in the paper of Salinas
et al [1] in the form:

E(r) = - (mu®/4*PI)*dI/dt*integral(dl/(r - ro))
The calculation is time independent and assumes the current time derivative is
always dI/dt = 1. The results should be properly scaled by this value and over

time.

The coil should be described in *.csv file as a list of consecutive points Xx,y,z
in meters. Point n to point n+1 describe the dl n element.

The output is a list of x,y,z,Ex,Ey,Ez values describing
the result of the main integral integral for each of the points in meters
specified in the solution range.

THE COILGEN MODULE

The coilgen module can be used to produce four types of parametrized coils or to
load coils specified with *.csv files in other tools. Any coil for which the
electric field is calculated must be loaded in memory first by the coilgen tool
and then passed to the mvp module to produce the final calculation. The set of
predefined and parametrized coil tools are:

* Circular coil: A single circular coil. The radius of the coil should be
specified and the length of the differential dl.

* Spiral coil: The coil internal and external radii, the number of loops and
the
length differential.

* Water drop coil: A coil shaped like a water drop, with a sharp angle at one
end

and a curve at the other end. For this coil the number of
loops,

the radius of the curved end, the length from the center to the

sharp end, the angle of the sharp end and the length
differential

should be specified.

* Fourier coil: A spiral coil shaped like a petal that uses the three first



sin/cos terms of a Fourier series to produce the form. The

Fourier coefficients should be specified, together with the
number of loops, a radius increase differential, the outer

radius and the length differential.

The details of the parameters can be seen in the corresponding source code
files: circular_coil.c, spiral_coil.c, waterdrop_coil.c and fourier_coil.c.

The coil routines always generate a single leaf of a TMS coil. For more
complicated geometries (e.g. figure of eight coils) coil groups should be used.
Coil groups simply create duplicates of coil objects and generates complex
configurations of them, providing several layers for the coil or pairs of them.
The four types of configurations supported are:

*coil_group_1: single coil leaf but with several z layers

*coil group_2_x: two leafs with z layers in the x axis

*coil_group_2_y: two leafs with z layers in the y axis

*coil _group_4: four leafs with z layers in the x and y axis

Coil coordinates in coil groups are always transformed so that the hotspot of
the coil is in the 0,0,0 coordinate.

Description of the parameters for this functions can be seen in: coilgenmodule.c
Although C code can be used to build or load the coil, the Python interface 1is
recommended. To use the coilgen module the shared libraries should be first
build in Linux using the script build.bash and then in Python:

import imp
coilgen = imp.load_dynamic('coilgen','./libcoilgen.so"')

where ./libcoilgen.so should be replaced with the path where the shared library
was built. After this coil objects can be used simply by calling the respective
function, for example:

ccoilimm = coilgen.circular(0.04,0.0.001)

builds a circular coil of radius 4cm with length differentials of 1mm.

A coil group must then be created by calling for example:

ccoilimmg = coilgen.coil_group_1(ccoillmm)

Example for usage of all the coil types is given in the files *_analysis.py
where * is any of the coil types. Usage of the *.csv loading of coils is shown
in idepclover_analysis.py. The function coilgen.load_coil(filename) should be

used for this.

THE MVP MODULE

The mvp module calculates the electric field and takes as input a coil group and
a 3D cubic domain of solution. The main function to be called is

calculate_coil_field(cg, x1,xh,yl,yh,zl,zh,dx, file)

The parameters are:



*cg: the coil group

*x1,xh: the low and high x range for the domain.

*yl,yh: the low and high y range for the domain.

*z1,zh: the low and high z range for the domain.

*file: the name of the *.csv file where the output will be put.

The C specification of this function can be seen in the file mvpmodule.c.

As with the coilgen module, the mvp module can be used from python. To use the
coilgen module the shared libraries should be first build in Linux using the

script build.bash and then in Python:

import imp
mvp = imp.load_dynamic('mvp','./libmvp.so')

where ./libmvp.so should be replaced with the path where the shared library was
built. After the fields can be calculated simply by calling for example:

mvp.calculate_coil_field(ccoilimmg, -0.05,0.05,-0.05,0.05,0.01,0.01,0.001,
'../../data/coilfields/cEimm.csv"')

which will use the 1mm circular coil group to calculate the electric field in a
10x10x2 cm cube.

Usage of the mvp module is shown for example in idepclover_analysis.py and in
convergence_analysis.py.

REFERENCES
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G Solution Algorithms

This appendix presents an algorithm form of the numerical solution methods presented
in Chapter 4. These algorithms provide an accessible summary of the methods im-
plemented in the tool of Chapter 6. The algorithms are functional and conveniently
written in the Python scripting language [127].
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Algorithm G.1 Euler method and the Wohlmuth-Krause symmetric system reduction.

def euler_wohlmuth_sym(A,B,G,N,W,f,Vm,time,dt,Cm,gl,obs,slv=cg):
mnann
This code reflects the CHASTE-Membrane implementation.
Implements the forward Euler method and the symmetric system
reduction solver from Wohlmuth and Krause 2001: Multigrid methods
based on the unconstrained product space arising from mortar finite

element discretizations.
niumnn

VmOut = np.zeros_like(time)
ImOut = np.zeros_like(time)
IionOut = np.zeros_like(time)
Im = Iion = np.zeros_like (Vm)

= Nx*xA

= AxW

-2.0xP*xW - Q

A+ P + P.T + 2.0xN*P.T

H oo 9"
1]

for i in range(len(time)-1):
VmOut [i] = Vm[obs]

IionOut[i] = Iion[obs]
g = G*Vm
r = f + Nxf + Rxg

phi = slv (T, r)

Im = W.T*xf - Q.T*xphi

Iion = gl*xVm

Vm = Vm + (dt/Cm)*(Im - Iion)
ImOut[i] = Im[obs]

VmOut [i+1] Vm[obs]
ImOut[i+1] = Im[obs]
IionOut [i+1] = Iion[obs]

return VmOut, ImOut, IionOut, phi, Im
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Algorithm G.2 Crank-Nicolson method and the Wohlmuth-Krause asymmetric sys-
tem reduction.

def crank_nicolson_wohlmuth_asym(A,B,G,H,f,Vm,Im,time,dt,Cm,gl,obs,slv=gmres):
mninn
This code reflects the CHASTE-Membrane implementation.
Implements the Crank-Nicolson method and the asymmetric system
reduction from Wohlmuth and Krause 2001: Multigrid methods based
on the unconstrained product space arising from mortar finite

element discretizations.
mnmnn

VmOut = np.zeros_like(time)
ImOut = np.zeros_like(time)
IionOut = np.zeros_like(time)
Iion = np.zeros_like (Vm)

0.5%(dt/Cm)

= Bx*H

= W - h*H.T*G*H
= GxH

= -Hx*A

Ap = A + W.T - PxA

=- = R v B =

for i in range(len(time)-1):
VmOut [i] = Vm[obs]
ImOut[i] = Im[obs]
IionOut[i] = Iion[obs]

Iion = gl*xVm

g = Vm + (dt/Cm)*(0.5*xIm - Iion)
fp = £ - Pxf + Q.Txg

phi = slv(Ap, £fp)

Im = H*f + R*phi

Vm = h*Im + g

VmOut [i+1] = Vm[obs]
ImOut[i+1] = Im[obs]
IionOut[i+1] = Iion[obs]

return VmOut, ImOut, IionOut, phi, Im
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Algorithm G.3 Crank-Nicolson method with an intermediate Euler step and the
Wohlmuth-Krause asymmetric system reduction.

def euler_crank_nicolson_wohlmuth_asym(A,B,G,H,f,Vm,time,dt,Cm,gl,obs,slv=gmres):
mninn
This code reflects the CHASTE-Membrane implementation.
Implements the Crank-Nicolson method with an intermediate
Euler step and the asymmetric system reduction from Wohlmuth
and Krause 2001: Multigrid methods based on the wunconstrained

product space arising from mortar finite element discretizations.
m"inn

VmOut = np.zeros_like(time)
ImOut = np.zeros_like(time)
IionOut = np.zeros_like(time)
Im = Iion = np.zeros_like (Vm)
c = 0.5%(dt/Cm)

W = Bx*H

P =W - cxH.T*xGx*H

Q = GxH

R = -HxA

Ap = A + W.T - Px*A
App = A + W.T - WxA

for i in range(len(time)-1):
VmOut [i] = Vm[obs]
IionOut[i] = Iion[obs]

Iion = gl*xVm

g = Vm - (dt/Cm)*Iion
fpp = £ - Wxf + Q.T*Vm
phi slv (App, £fpp)

Im = Hxf + R*phi

g =g + c*xIm

ImOut[i] = Im[obs]

fp = £ - Pxf + Q.Tx*g
phi = slv(Ap, £fp)

Im Hxf + Rxphi

Vm cxIm + g

VmOut [i+1] = Vm[obs]
ImOut [i+1] = Im[obs]
IionOut[i+1] = Iion[obs]

return VmQOut, ImOut, IionOut, phi, Im
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