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Chapter 1

Introduction

The brain is an amazing organ. It consist of billions of neurons, most of which have thousands
of connections from and to others. This complex entanglement of interacting units defines us as
individuals, determining how we sense the world and interact with it. Our brain governs our inner
world, modulating our emotions, our instincts, giving us dreams [1].

The field of neuroscience is very broad. Research can be focused from single molecules inside one
cell to systems of millions of interacting neurons. All those different scales are not independent of
each other, but have direct and reciprocal causal links. For example, mutations of a small molecule
like the amyloid precursor protein can lead to a system disease like Alzheimer [2], or conversely a
prolonged behavioral response to social stress can lead to the alteration of the number of serotonin
receptors in the membrane of the neurons [3]. This makes the brain a very complex system, such that
all types of approaches are necessary to understand it.

What is the role of a theoretical approach to neuroscience? What can be learned from the mathe-
matical models? Theoretical models have different abstraction levels. For a given phenomenon, the
model can be based on biophysical rules, illustrating the different processes in detail with many free
parameters. The goal of theory then is to reduce the system to a small number of key parameters that
play a fundamental role in the system and to understand their relation. On the other hand, a model
can be very abstract, proposing an equivalent simplified system with similar properties with only a
small number of parameters.

The behavior of the abstract model can nevertheless be linked to the original system and help to
better understand the phenomenon. Independent of the level of abstraction, all models are carica-
tures of reality, constructed upon some assumptions that link the theory to the biology [4]. The aim
of analyzing models of nature in general is to understand the fundamental principles of the under-
lying mechanisms in the observed phenomenon starting from those assumptions and to pose new
questions to deepen its understanding [5].

Theory has brought many insights in understanding different aspects of neuroscience [6]. Known
examples are the model for action potential initiation [7] or the formulation of activity dependent
learning rules for the interaction between the neurons [8]. Both models were later deepened exper-
imentally, elucidating the cellular and molecular basis of the phenomenon, for example in Neher et
al. [9] and [10] respectively. Visual neuroscience has also benefited from the theoretical approach
[11]. For example, the existence of pinwheels in the visual cortex was predicted in a model [12] and
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later confirmed experimentally [13, 14]. The role of correlation between the eyes and inhibition in the
cortex in determining the width of the ocular dominance columns was proposed theoretically [15, 16]
and later tested in the lab [17, 18]. Or as will be described further down in this thesis, the density of
pinwheels in the visual cortex was predicted in a self-organization model [19] and later confirmed
experimentally for different species [20].

This thesis deals with the phenomenon of pattern formation in the primary visual cortex of eutherian
mammals. I will use the self-organization model developed by Wolf [21, 22] as basis and build on
it to increase our understanding of the principles that lead to the formation of disordered layouts
of orientation preference, which are found in some mammalian species and can not be explained by
any existing dynamical model of neuronal pattern formation. Based on the results of the model I will
make some predictions on the spatial statistics and tuning dynamics of the disordered layout that
can be tested experimentally. I will also introduce an optimization model that can explain why some
species have ordered layouts and others don’t.

To put the phenomenon of disordered orientation layouts in context first a brief overview of the
visual system will be presented. Then ordered orientation preference layouts will be introduced,
followed by the description of the dynamical model proposed by Wolf [22] that can explain their for-
mation and statistical invariance across species. Afterwards, the phenomenon of disordered layouts
of orientation preference found in some species and the approaches taken so far to characterize and
explain their formation will be presented.

1.1 The visual pathway

The visual pathway is roughly invariant in all mammas, where the difference lies mostly in the num-
ber and type of neurons involved. In this chapter the pathway in primates is explained, which is
commonly used in the textbooks as a well characterized example [? ]. The visual pathway starts in
the retina in the back of the eyes, where photons excite the opsins of cones and rods starting a reac-
tion cascade that stops the influx of cations into the cell and leads to its hyperpolarization. The signal
is transmitted and combined in the retina through non-spiking neurons like the bipolar, horizontal
and amacrine cells. Retinal ganglion cells (RGC) sample selectively the changes in activity from a
population of those cells and transmit the information in the form of action potentials outside of the
retina through the optic nerve. In primates the three main types of RGCs are parasol, which sample
from rods and responds to movement and depth, midget, which sample from cones and encodes red
and green color and forms, and koniocellular, which encodes blue color. In reality the subtypes of
RGC are more abundant, with more than 20 types described in macaques.

After a cross over in the optic chiasm of around half of the fibers coming from the nasal side of the
retina, RGC connect roughly to the same number to neurons in the dorsal lateral geniculate nucleus
(dLGN) of the thalamus. Other targets of the optic nerve are several subcortical regions like the su-
perior colliculus or the pretectal nucleus which mediate reflexive eye movements and pupil dilation
respectively. In the dLGN there is a clear anatomical separation of cell bodies in six layers, where
fibers coming from ipsi and contra-lateral eye are in layers 2, 3, 5 and in layers 1, 4, 6 respectively.
Fibers coming from parasol RGC go to layers 1 and 2, fibers from midget RGC go to layers 3, 4,
5, 6, and fibers from koniocellular RGC connect in between the layers. The receptive fields in the
dLGN are similar to the ones of RGC: approximately circular symmetric with center-surround struc-
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Figure 1.1.1: The visual pathway. a) Light enters the eye and is converted into electrical signals in the retina.
The optic nerve have a relay in the dorsal lateral geniculate nucleus (LGN) and from there connect to neurons
in the primary visual cortex (V1). After that point the pathway splits in two. The dorsal stream, known as the
“Where Pathway”, encodes the movement and position of the stimuli. The ventral stream, known as the “What
Pathway”, encodes the shape of the objects. b) In the primary visual cortex the receptive fields of neurons are
organized topographically in a visuotopic map. Neighboring neurons encode neighboring locations in space.
Notice that the representation of the visual field is inverted in the cortex. c) Neurons in the primary visual
cortex are selective to the orientation of contours in their receptive field. Depending on the orientation of the
bar, the example neuron modulates its firing rate. Brought together the firing rate describes a tuning curve,
showing that the neuron has a preferred orientation of the stimuli in its receptive field.

ture, where ON cells fire the most when the center of the receptive field is activated by light and the
surround not, and OFF cells fire the most when the opposite happens.

After the synaptic relay in the thalamus the pathway continues through the optic radiation to the
posterior side of the neocortex in the Brodmann area 17, also called primary visual cortex, striate
cortex or V1. In primates the number of neurons in V1 is thousandfold higher than the number of
neurons in dLGN. The spatial organization of the optic fibers is maintained, generating a retinotopic
(a.k.a. visuotopic or topographic) organization of receptive fields in the cortex, as shown in figure
1.1.1b). This means that neighboring neurons encode neighboring positions in visual space. The
cortex in the left hemisphere responds to the right side of the visual field and the cortex in the right
hemisphere to the left visual field. The binocular region is split in the most temporal part of both
cortices. Both hemispheres are connected by fibers that run through the corpus callosum.

The primary visual cortex is often considered as the first stage of true visual processing. It is the first
instance in the visual pathway where neurons respond to stimuli coming from both eyes [23]. How-
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Figure 1.2.1: Orientation maps of different species have a common design. a) Orientation map of the gallago
(primate), ferret (carnivore) and tree shrew (scadentia) obtained with intrinsic signal imaging. The preferred
orientation of the neurons is color coded as shown. Modified from [20]. b) and c) The pinwheel density is
conserved in species with maps. b) To calculate the pinwheel density the spatial coordinates are normalized
by the local hypercolumn size. The pinwheel density is defined as the average number of pinwheels inside
an hypercolumn squared area. c) Average pinwheel density for different animals. The color of the pointers
correspond to the colors of the example maps in a). The pinwheel density approaches the natural constant π.
b) and c) modified from [27].

ever, the strength of the response varies between the eyes, with some neurons firing preferentially
to the left or the right eye. This property of the neurons is called ocular dominance. The shape of
the receptive fields changes in V1 compared to RGC and neurons in dLGN. It becomes elongated
with interchanging intervals of ON and OFF sub-regions. Therefore, neurons in V1 fire the most for a
high contrast visual contour or bars of the same orientation as the elongated regions in the receptive
field. This is illustrated in figure 1.1.1c). Depending of the orientation of the bar in the receptive field,
the example neuron modulates its firing rate. Brought together the firing rate defines a tuning curve
for orientation. This property of the neuron is called orientation preference. There is a distinction
between simple and complex neurons, where in simple neurons the position of the bar inside the
receptive field and not only its orientation modulates the firing rate and in complex cells the position
is not of great influence [23]. Other functional properties of neurons in V1 that are not the main focus
of this thesis are direction preference, spatial frequency tuning and color selectivity (see e.g. [24]).

The visual pathway continues in the extrastriate cortex in two streams. The first stream is known
as the “Where Pathway” and continues in the dorsal part of the brain involving areas like V5. This
stream has a direct connection to motor behavior and is associated with the location and motion of the
stimulus (see e.g. area MT [25]). The second steam is known as the “What Pathway” and continues in
the ventral part of the brain to the temporal cortex involving areas like V4. This stream is associated
with encoding the shape of the stimulus and plays a role in the recognition of objects (see e.g. area
IT [26]). As the visual pathway continues downstream through those streams the receptive fields
become larger and more complex.

1.2 Organized orientation preference layouts

In the previous section the orientation selectivity of the neurons in the primary visual cortex was
introduced. How does the orientation preference of neighboring neurons relate to each other? In



1.3 Models of orientation map formation 5

many species a columnar architecture is found, where the neurons in the same radial axis through
all the layers of the cortex share the same orientation preference. Parallel to the cortical surface the
orientation preference of the columns varies continuously and smoothly in space [23]. The transition
of preferred orientations exhibits singularities called pinwheels, where the orientation is radially ar-
ranged [12–14]. This kind of organized layout is referred to as orientation map and is found in cats
[14, 28], ferrets [29–31], sheep [32], squirrel monkey [33, 34], macaques [23, 35], owl monkey [36], gal-
lago [37], humans [38] and tree shrews [39]. Figure 1.2.1a) shows orientation maps for three different
species obtained with intrinsic signal imaging [40]. The preferred orientations of the populations
of neurons are labeled with colors. The orientation maps show a quasi-periodic arrangement with
a typical spacing between columns preferring the same orientation in the millimeter range. This
spacing can be defined as the linear size of an hypercolumn, which is defined as one set of columns
showing all orientation preferences.

The species having ordered maps belong to different animal orders widely separated in evolution
(primates, carnivores and scadentia), live in different ecological niches and span a large range of cor-
tex sizes and shapes. How similar are their orientation maps? To remove the variation in spatial
scales between species and inside each map, the unit of distance in the cortex can be renormalized
by using the average local hypercolumn size [20]. Once this is done, the different orientation maps
become statistically very similar. For example, as shown in figure 1.2.1b) and c), the mean number
of pinwheels inside an hypercolumn area, known as the pinwheel density, clusters around an in-
variant density of ∼ 3.1 for all species. As shown in [20], this invariant density is not a property of
any arbitrary quasi-periodic arrangement of orientations, as randomized maps have a significantly
higher density and many models predict distinct densities [41, 42]. Other pinwheel statistics like the
count fluctuations of the density for increasing area size or the distance to nearest neighbors are also
invariant, as shown in figure 1.3.1 d) to f), and are also different in randomized maps. This result
suggest that the map in all those species follows a specific single common design.

1.3 Models of orientation map formation

The emergence of functional organized patterns in the visual cortex is an intriguing phenomenon in
neuroscience. How do millions of neurons determine their preferred orientation and organize in the
map? Soon after the discovery of orientation preference Hubel and Wiesel proposed that the con-
nections between the neurons in the dLGN and the cortex necessary to shape the receptive fields are
determined innately [43]. Indeed the specific sampling of dLGN afferents plays a fundamental role
in the orientation selectivity [44] and a rough orientation map develops before visual experience [45].
On the other hand, this idea of a genetically predetermined network is not easy to reconcile with the
astronomical number of synapses that have to be specified and the high degree of plasticity that the
neurons exhibit in response to manipulations like binocular and monocular deprivation [23]. In fact,
closing both eyes but raising ferrets under natural illumination completely abolishes the formation
of orientation preference maps [29]. Another counterargument is the fact that the statistics of the lay-
out are so similar in evolutionary distant related species [20], meaning that the genetic instructions
had to be conserved in detail through millions of years of evolution. This leads to the idea that the
organization might be obtained dynamically by activity dependent self-organization mechanisms
[16, 22, 46–48].
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What are the principles of pattern formation in the cortex? What is required for an ordered map to de-
velop? Modeling the emergence of columnar patterns has been a challenging task in theoretical neu-
roscience since their discovery. A large number of models have been proposed with different levels
of abstraction (see [11, 49] for reviews of some models). In a detailed parameter rich approach, net-
works of a large number of neurons with feed-forward and lateral interactions with synaptic weights
following activity-dependent learning rules have been simulated [16, 47, 50–54]. In an intermediate
level of abstraction a simple optimization principle was proposed and the necessary dynamics that
lead to its minimization were derived [48, 55–61]. In some cases there was no direct energy functional
to optimize [62, 63], or the dynamics are substituted with annealing algorithms [64, 65]. The most
abstract approaches taken was to use the general principles of pattern forming media and combine
them with qualitative features of map formation to propose models for the development of feature
maps [21, 22, 41, 42, 66–72]. Intriguingly, it is this last, most abstract line of investigation that has led
to the quantitatively most accurate account.

In the next section the model developed by Wolf [22]is introduced. So far it is the only dynamical
model that can reproduce to an accuracy of a few percent the pinwheel statistics observed in the
experiments (see figure 1.2.1c)). The model that I will introduce to understand the formation of
interspersed patterns is a generalization of this model.

1.3.1 Definition of the order parameter model

There are many features in the visual pathway that might play a role in the formation of orientation
selectivity and its spatial organization in the cortex. For example, neurons in the cortex might be
optimized to match the statistics of the visual world; the specific layout of retinal ganglion cells in
the retina might bias the formation of orientation maps; correlations between neurons in the dLGN
can trigger the self-organization of oriented receptive fields in cortical neurons; etc. Also inside
the primary visual cortex there are many factors that can influence the details of the layout and
the selectivities of the neurons, like the anatomical boundaries of the visual area or the presence of
electrical synapses between neurons early in development. To make a model that includes all possible
factors that determine the organization in the cortex is not feasible; and it is not sure how much one
can learn from it due to the large number of unknown parameters it would contain. Instead, the
approach developed by Wolf [21, 22] and presented here starts from a different point of view: If
one knows the tuning of all neurons in the primary visual cortex at a given point in time t, can this
information be used to infer how the distribution of orientations will look like at a point t + ∆t later?
If the answer is yes, the nature of activity dependent refinement that acts on a given state depends
strongly on this state. Describing the tuning properties of a neuron i at position xi by a complex
number zi = Aie

i2θi , where θi encodes the preferred orientation and Ai the tuning selectivity [22, 66],
if one assumes that the answer to the previous question is affirmative, then an equation of the form

τz
∂z

∂t
= F̂ [z (·)]

exists. This type of order parameter model for visual cortex organization doesn’t try to explain
through which mechanism the neurons become orientation selective, since selectivity is assumed
as a basic property of the neurons. Instead it focuses on intra-cortical interactions and describes how
the tuning of one neuron is modified by the neurons with which it interacts. It is assumed that all



1.3 Models of orientation map formation 7

the other sub-cortical mechanisms that do play a role in the formation of the spatial layout of ori-
entations are maintained, e.g. there is no over-representation of a specific angle in visual space [73].
Furthermore, to find an equation for F̂ [z (·)] that captures all the biology of intra-cortical mechanisms
that shape the layout of orientation preferences is a very difficult task. For this a statistical physics
concept called universality suggest that this might not be necessary. It states that the properties of
many dynamical systems that fall into a wide class of models are independent of microscopic de-
tails. Therefore, many dynamical properties of such universality classes of systems can be learned by
analyzing one representative of the class. Particularly suitable from a technical point of view is the
simplest example. The approach taken by Wolf was to search the properties that F̂ [z (·)] must satisfy
to belong to the same class of dynamical models as the mechanisms shaping the organization in the
cortex, and use a representative equation for F̂ [z (·)] that can be treated analytically to learn about
the properties and constrains of the biological mechanisms.

The properties F̂ [z (·)] must satisfy are symmetry requirements that are assumed to exist in the dy-
namics of the visual cortex where all neurons are treated as equal units independent of their position
or orientation. First it imposes F̂ to be symmetric under translations T̂y

F̂
[
T̂yz(x)

]
= F̂ [z(x + y)] = T̂y F̂ [z(x)] (1.3.1)

and rotations R̂β

F̂
[
R̂βz(x)

]
= F̂

[
e2iβz

((
cos(β) −sin(β)
sin(β) cos(β)

)
x

)]
= R̂βF̂ [z(x)] (1.3.2)

This means that the spatial component of the interaction between the neurons can only be distance
dependent. Secondly, F̂ being independent of the orientation of the neuron imposes a phase shift
symmetry

F̂[eiϕz(x)] = eiϕ F̂[z(x)] (1.3.3)

This means that only terms of odd order in z can be included, such as F̂[z] = L̂[z] + N̂3[z] + N̂5[z] +
h.o.t, where N̂i[z] is the i’th order term. Finally, to maintain the values of z complex and have all
orientations represented in the solution, F̂ can be chosen symmetric under permutations

N̂3[z1, z2, z3] = N̂3[z2, z3, z1] (1.3.4)

Near the onset of pattern formation it is understood that it is sufficient to study the dynamics trun-
cated at the third order

F̂[z] = L̂[z] + N̂3[z]

Both linear L̂[z] and nonlinear N̂[z] part must each satisfy all the symmetry constrains. The choice
of the linear term L̂ determines the possible patterns that are stationary solutions to the system and
the nonlinear term N̂3 determines their stability. Following Wolf, in the next section first an example
equation will be presented which can generate quasi-periodic patterns of orientation selectivities as
found in the visual cortex of carnivores and primates. Then the requirements on the nonlinear term
to make those patterns that mimic biological observations stable will be analyzed.
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1.3.2 The linear and cubic functional

The symmetries of the system (equations 1.3.1 to 1.3.4) span a subspace of spatially ordered solutions
in the form of finite Fourier components called planforms

z =
n

∑
j=1

Aje
ik jx

where kj is the wavenumber of the planform and determines its periodicity. The linear term L̂[z] is
chosen such that the periodicity of those components is fixed at a determined wavenumber

∣∣kj

∣∣ = kc

L̂SH[z] = r z −
(
k2

c +∇2
)2

z (1.3.5)

This operator is known as the Swift-Hohenberg operator and is commonly used in pattern forma-
tion physics to describe a system exhibiting a supercritical symmetry break from the homogeneous
solution where a finite pattern periodicity kc emerges and other modes are suppressed [74, 75]. This
imposes a critical circle in Fourier space of size kc on which the wave-vectors of the planforms must
lie. Because of the permutation symmetry in equation 1.3.4 two anti-parallel modes are not simulta-
neously possible, avoiding solutions that become real [21]. For this reason, this type of solutions are
called essentially complex planforms (ECP). A large set of such solution takes the form

z =
n

∑
j=1

Aje
iljk jx (1.3.6)

where the n wave vectors are distributed equidistantly on the upper half of the critical circle kj =

kc

(
cos

(
jπ
n

)
, sin

(
jπ
n

))
and lj = ±1 determines if the mode is flipped to the lower half. Figure

1.3.1a) shows how the resulting pattern looks like with an increasing number of modes. With n = 1
the layout is a simple plane wave, and for increasing n the pattern becomes quasi-periodic and has
a higher similarity to the measured patterns in primates and carnivores. This resemblance is not just
qualitative, but also quantitative. In figure b) the pinwheel density (average number of pinwheels in
an hypercolumn square space) is plotted against the number of active modes, i.e the maps in figure
a). As the number of active modes increases, the density approaches the value of the natural constant
π, which is consistent with the quantitative density measured in galagos, ferrets, three shrews and
cats up to 2% [20, 27].

Next, the conditions on the nonlinear term N̂3[z] are found to make the high numbers of amplitudes
Aj of the modes stable. To check for the stability, amplitude equations can be used which describe
how the different modes interact with each other

Ai = r Ai −
n

∑
j=1

gij

∣∣Aj

∣∣2 Ai −
n

∑
j=1

fij Aj Aj− Ai−

were the coefficients gij = (1 − 1
2 δij)g(

∣∣αi − αj

∣∣) and fij = (1 − δij − δi− j) f (
∣∣αi − αj

∣∣) depend only on
the angle difference between the modes and the index j− denotes the mode that is anti-parallel to j.
With ECP as in equation 1.3.6 the last term drops out since anti-parallel modes are not present. The
corresponding stationary amplitudes for the planforms is
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Figure 1.3.1: Summary of the long-range interaction model. a) Appearance of the pattern with an increasing
number of complex planforms (ECP) on the critical circle. b) Average pinwheel density for an increasing num-
ber of active modes. The density approaches π, similar to the value found in experiments. c) Phase diagram
of the stability of an n-ECP solution depending on the regulation of the influence of the local and nonlocal
nonlinearities g and the range of the orientation selective interactions σ. For long-range selective interactions
pinwheel-rich maps are the solution of the model. d) to f) The model also replicates other common quantities
found in species with maps: d) Standard deviation of pinwheel densities measured in areas of increasing size,
e) frequency of distances between pinwheel nearest neighbors independent of their topological charge, f) fre-
quency of distances between nearest neighbors for pinwheels of same and opposite charge separately. In e)
and f) the distance is normalized by the local hypercolumn size.
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|Ai|2 = r
n

∑
j=1

(g−1)ij

The equation of g(α) can be obtained for a general nonlinear functional N̂3[z, z, z̄] using multiscale
expansion

g(α) = −e−ik0x
[

N3(e
ik0x, eih(α)x, e−ih(α)x) + N3(e

ih(α)x, eik0x, e−ih(α)x)
]

(1.3.7)

where k0 = kc(1, 0) and h(α) = kc(cos(α), sin(α)) [21]. As a consequence of symmetry and the
truncation at third order all solutions with the same number of modes n have the same energy and
stability properties, making it possible to use an example arrangement for h(α) to determine the
properties of the whole family. The stability of a ECP solution with n modes can be calculated by
inserting this in the equation above with a proposed nonlinear functional N̂3[z] . The functional
chosen by Wolf is a combination of local and nonlocal terms

N̂3[z] = (1 − g) |z(x)|2 z(x)− (2 − g)

ˆ

d2yKσ(x − y)

(
|z(y)|2 z(x) +

1

2
z̄(x)z2(y)

)

where for the shape of the nonlocal interactions a Gaussian kernel is used for simplicity

Kσ(x − y) =
1

2πσ2
e
− (x−y)2

2σ2

This function is obtained by including orientation selective interactions between the neurons and
expanding for low selectivity. This is similar to what will be used further down in this thesis. Only
the terms that have an impact on the stability of the modes are maintained (see supplementary online
material of [20]). The nonlinear part has to be negative to saturate the growth from the linear term,
where 0 ≤ g ≤ 2 regulates the influence of the local and nonlocal interaction. Inserting this N̂3[z] in
equation 1.3.7 leads to

g(α) = g + (2 − g)2 cosh(k2
c σ2 cos α)e−σ2k2

c

It depends on both g and the range of the nonlocal interactions σ. Figure 1.3.1c) shows the n-ECP
solutions that have minimal energy U = − 1

2 ∑
n
i,j(g

−1)ij for a combination of g and σ, where the last
is normalized by the size of an hypercolumn Λ that depends on the system size and kc. Long-range
orientation selective interactions have to be present to have a higher number of spatially complex
planforms as an optimal solution. This kinds of interactions are biologically plausible, since axons
connecting columns with the same orientation preference many hypercolumns away from each other
have been reported [39, 76–79]. Choosing the parameters g and σ in this regime makes quasi-periodic
maps the attractors of the system.

1.3.3 Success of the order parameter model

The approach proposed by Wolf is the first model for orientation preference map development that
shows analytically the existence and stability of quasi-periodic patterns that quantitatively resemble
the maps measured in the experiments. Figure 1.3.1d) to f) shows that not only the observed pinwheel
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density is reproduced, but that other quantitative values that are conserved between the species with
orientation maps also emerge from the results of the model [20]. In d) the conserved value is the
standard deviation of pinwheel densities measured in areas of increasing size in units of Λ2, in e) the
frequency of distances between pinwheel nearest neighbors independent of their topological charge,
and in f) the frequency of distances for pinwheels of same and opposite charge.

1.4 Disordered orientation preference layouts

That the orientation preferences are organized in space in some species comes as no surprise due to
the high level of order in the visual pathway. Citing Hubel and Wiesel [23] :

“It is indeed hard to contemplate the nightmare of interconnections that would have to
exist if the cells were distributed at random with respect to orientation.”

All the seminal studies on the visual cortex were performed in species with high visual acuity and
a pronounced vision driven behavior, like cats and monkey. Initially the visual system of rodents
was not deeply investigated because their visual acuity is very low, 1.2 cycles per degree (cpd) in
rat compared to 6 cpd in cats and 46.0 cpd in macaques [80]. Recently, advances in genetic tools for
rodents have converted them in ideal model organisms to investigate the function of V1, as specific
cells and neural circuits can be targeted, monitored and manipulated leaving the rest of the circuit
unperturbed [81]. Rodents can perform behavioral task that relies on vision with high accuracy [82],
such that the function of different network elements on the system level can be tested. Progressively
more attention has been given to the rodent visual cortex, and both similitudes and differences with
the standard model animals in visual science have been found.

Rodents lack a fovea in the retina, but the density of photoreceptor is higher in average than in
macaques [83]. This means that they rely on head movements to track visual stimuli [84], where in-
dependent eye movements maintain the overhead binocular field fixed [85]. They exhibit 22 anatom-
ically different subtypes of RGC [86], where almost half of them are motion selective [87]. A subtype
of RGC selective to approaching stimuli has also been found [88]. Since the position of the eyes in
rodents is lateral in the head, the binocular field of vision is much smaller than in primates and lies
mostly in the upper part of the visual field. Accordingly, only about 10% of the optic fibers do not
cross in the optic chiasm [89]. Downstream in the visual pathway, similar to primates, RGC in rodents
connect to a high variety of subcortical targets, like the inter-geniculate leaflet, the suprachiasmatic
nucleus, and the nuclei of the accessory optic tract [90]. In the dLGN, the receptive field of neurons
is mostly ON and OFF center surround, with a significant fraction of neurons tuned for the orienta-
tion and direction of the stimulus [91–94]. This kind of oriented receptive fields are not an exclusive
feature of rodents, since direction tuned neurons are also found in the dLGN of cat [95], rabbit [96]
and marmoset [97].

As shown in figure 1.4.1a), in the primary visual cortex of rodents neurons have a visuotopic orga-
nization in the macroscopic scale [98]. At neuronal level the scatter in the receptive field position is
large, with substantial receptive field sub-regions overlapping between neurons [101]. Although the
binocular field in visual space is small, the binocular region in the cortex covers almost one third of
the total V1 area [102]. The receptive fields of neurons in the cortex is remarkably similar in rodents
compared to other mammals. As figure 1.4.1b) shows, once the degree of visual acuity is normalized,
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Figure 1.4.1: Neurons in the rodent visual cortex can represent orientated contours in the visual field, but pre-
ferred orientations are disordered in space. a) Visuotopic organization of receptive fields in mouse V1 obtained
with intrinsic signal imaging. The color code in the cortex represents the position in the visual field as shown
above. Modified from [98]. b) Example receptive fields for neurons in the mouse (top row) and monkey (bot-
tom row). Notice that the scale bar in mouse is 20◦and in the monkey is 1◦. Although the visual acuity is almost
two orders of magnitude smaller in rodents, the shape of the receptive field is remarkably similar. Modified
from [99]. c) Spatial layout of orientation preferences in a rat obtained with 2-photon calcium imaging. The
preferred orientation is color coded. Although the neurons are tuned for orientation, an ordered orientation
map is not present. Modified from [100].

receptive fields share many similar properties [81]. A very detailed characterization of neurons in
mouse V1 was done in [103] and comparative review to other mammalian species is given in [80]. In
mice 75% of neurons are tuned for orientation, just slightly lower than in primates. The spatial fre-
quency is 0.04 cycles per degree (cpd), compared to 0.9 cpd in cat and 4 cpd in primate. The spatial
frequency bandwidth is 2.5 octaves, compared to 1.5 in cat and macaque. The median orientation
tuning half-width is 28◦- 29◦, while in cats it is 19◦- 24◦and in macaques 24◦. In all species the tuning
curve shows contrast invariance. Besides the decrease visual acuity, the largest differences in rodents
is in the high fraction of simple cells in layer 2/3 of the cortex, where 75% of the neurons are simple.
In contrast, in macaque most of the cells outside layer 4 are complex. A second difference is that the
percentage of direction tuned cells is lower in mice, with only 22% of cells having this property com-
pared to more than 66% in carnivores and around 50% in primates. Another remarkable difference
is that most inhibitory cells are unselective for orientation, while in cats the net inhibition a neuron
receives was shown to be tuned [104]. Despite those differences the results show that even with the
poor visual acuity, small eyes and a small V1 area, the primary visual cortex of mice has the ability
to process the contours of the visual stimuli.

The functional features of single neurons in rodents are similar to primates and carnivores. What
about their functional organization in space? Since the first recordings in mouse visual cortex it
was shown that the spatial organization is not present [102, 105, 106]. This is also the case for rats
[107, 108], hamsters [109], squirrels [110] and rabbits [111]. As shown in figure 1.4.1c), this lack of
organization was finally confirmed at cellular level with 2photon calcium imaging [100], where the
orientation of the neurons in labeled with colors. Due to the lack of a map in the tested rodents
and lagomorphs this functional arrangement is commonly referred to as “Salt and Pepper layout”.
Since this name implies a white noise random spatial distribution of orientation preferences and this
statistical property has not been measured experimentally, in this thesis the lack of organization will
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be referred to as “interspersed layouts”.

1.5 Previous approaches to understand the interspersed layout

How can the neurons in rodents and lagomorphs be tuned for orientation in the absence of an orien-
tation map? Or inversely, if neurons are tuned, why doesn’t an orientation map develop? Neurons
have a statistically higher probability of connecting with other neurons that are in their vicinity. In
ordered layouts this means that neurons with similar tuning are wired together, establishing a co-
herent population response to a given stimulus. In interspersed layouts this is not the case, as many
differently tuned neurons are close to each other. This difference lead to the idea that, although the
preferred orientations are disordered in space, the interaction between the neurons might be highly
specific, such that neurons with similar orientations are connected in disjoint sub-networks (reviewed
in [112]). This “selective sub-network hypothesis” is consistent with a number of connectivity stud-
ies:

• Song et al. showed using quadruple recordings in layer 5 of rats that there is an increased
representation compared to random of different three neuron connectivity motifs. They also
showed that the strength of the synaptic weights are concentrated among few connections and
that when a connection between two neurons is strong there is a higher chance of a reciprocal
strong connection [113].

• This result is expanded by the results of Yoshimura et al. [114]. They performed paired record-
ings of excitatory neurons in layer 2/3 in rats and evoked localized activity by photostimulation
in different regions of all layers. Using cross correlation analysis of the activity evoked by the
photostimulation they showed that if the tested neurons were connected together they shared
the same input from layer 4 and within layer 2/3. On the other hand, excitatory input from
layer 5 and inhibitory inputs from layer 2/3 and 4 were shared by all neurons.

• The functional properties of this non-random connectivity was tested by Ko et al. in mice
[115]. They used 2-photon calcium imaging to measure the orientation preference of neurons
in the cortex and then performed electrical recording in acute slices to quantify the connection
probabilities between the measured neurons. They found that neurons with similar preferred
orientation or responding similarly to naturalistic stimuli have twice the probability of being
connected.

• The question of how those sub-networks of orientation preference develop was addressed in-
dependently by Otsuki et al. [116] and Li et al. [117] . Both studies start from the finding that
clonally related neurons that migrate through the radial glial fibers from a progenitor cell in the
ventricular zone maintain a higher connection probability among them [118]. Using 2-photon
calcium imaging the studies find that sister neurons exhibit a tendency towards similar orien-
tation tuning with higher probability than random. The studies differ methodologically with
respect to the age of the animals and the implementation of a transgenic type of mouse to label
clonally related cells in the first and retroviral vector injection in the second, which might ex-
plain the quantitative difference in their finding. Li et al. also find that electrical gap junctions
between the sister cells are necessary to increase the probability of sharing the same orientation
tuning beyond chance level, as gap-junction blockers remove this effect.
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The “selective sub-networks hypothesis” tries to close the gap between maps and interspersed pat-
terns. Although the results of those studies are congruent with this theory, it is very clear that
connection-wise there are large differences between rodent and carnivore visual cortex, specially
in the selectivity of inhibitory interactions:

• As already found by Yoshimura et al. in [114] and supported by a later study by the same group
[119], adapting inhibitory cells connect to all pairs of measured neurons independent if the pair
is connected to each other or not.

• With respect to functional synaptic connectivity, Hofer et al. showed using the same approach
as Ko. et al that, distinct from excitatory neurons, inhibitory fast spiking PV positive neurons
connect and also receive connections densely from all cells independent of their orientation
preference [120].

• A similar approach to link function and connectivity of inhibitory cells was performed by Bock
et al. [121]. 2-photon calcium imaging was used to quantify the orientation preference of
the neurons and the underlying connectivity was reconstructed with large scale electron mi-
croscopy of thin sections. They also found that inhibitory neurons received convergent input
from excitatory neurons from a broad range of orientation preferences.

• In maps, the long-range interactions are orientation specific, clustering in columns of similar
orientation [39, 76, 78, 79, 122]. Using latex microsphere injections to trace the axons of neurons
Van Hooser et al. showed that in gray squirrels there is no clustering of long-range connections
[123], marking another difference in the wiring diagram of rodents.

The result of other studies question the degree of selectivity in the connections and the influence they
have on the tuning of neurons:

• Using the same methods as in the previous paper, Ko et al. showed that the preferential connec-
tion between excitatory neurons of the same orientation preference is not present at eye opening
but is acquired during development through activity-dependent plasticity mechanisms [124].

• Although neurons with similar orientation have a higher probability of being connected, this
doesn’t mean that the afferent inputs to one neuron come from cells with a restricted range
of orientation preferences. This issue was addressed by Jia et al. [125] using high speed 2-
photon imaging combined with electrophysiological recordings to detect sub-threshold calcium
hotspots in dendrites. The hotspots come from the corresponding input synapses and share the
same functional tuning as the connected cell. By matching the hotspots with the presented
visual stimuli the authors found that neurons receive inputs from cells of all kinds of preferred
orientations, and that the oriented inputs are interspersed in the dendrites of the neuron.

• The previous finding lead to a comment by Priebe et al. [126] stating that the results make the
rules of Hebbian plasticity appear unnecessary, since neurons in rodent visual cortex appar-
ently wire together if they fire together or not. That indeed there is a large degree of plasticity in
the rodent cortex, even without external manipulations like dark-rearing, was found by Wang
et al. [127]. They showed that when orientation selectivity is developed in binocular neurons
the orientation of the receptive fields of the left and right eye are not matched. Only through
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visual experience during maturation the matching of the binocular orientation preference is
achieved. This findings demonstrate that neurons change their preferred orientation during
development, meaning that the underlying orientation selective sub-networks would have to
change and integrate.

• Finally, the idea that specific interactions between the neurons are needed to maintain orien-
tation selectivity was refuted in a theoretical study by Hansel and Van Vreeswijk [128]. They
found that in a network model with weakly tuned input to a balanced recurrent random net-
work, neurons were well tuned and orientation selective. Selectivity is possible as untuned
components of the input to each neuron caused by the random connections are canceled by
inhibition.

The presented results don’t contradict the idea that preferential connections within sub-networks
exist, but make it very unlikely that rodent visual cortex exhibits an essentially identical neuronal
circuit as primates as carnivores. In addition, they question their relevance in the formation and
maintenance of the disordered orientation layout. A different approach is not to search similarities
between the two kinds of functional organizations, but treat them as two separate collective phenom-
ena with different properties. The main mechanisms of pattern formation in cortical networks might
be shared, but differences between the species might lead either to the formation of maps or inter-
spersed layouts. Indeed, the interspersed organization in rodents is not just observed in the primary
visual cortex:

• The classical example for columnar organization in rodents is the so called barrel cortex, where
the touch sensors of in the different facial whiskers are mapped to disjoint areas in the pri-
mary somatosensory cortex maintaining the relative positioning of the vibrissa [129]. But this
organization is equivalent to the retinotopy in the visual cortex. Comparable to orientation se-
lectivity in the visual cortex is the tuning for the movement direction of the vibrissa the neuron
is encoding. Although an earlier electrophysiology study by Andermann et al. [130] found evi-
dence of a vibrissa movement direction map in the barrel cortex of rats, using 2-photon calcium
imaging and sampling from a larger set of neurons Kerr et al. and Sato et al. independently
reported a high degree of disorder in the functional properties of the neurons [131, 132]. This
result was further corroborated by Kremer et al. [133]. They reported that the organization of
movement direction selective cells develops until long after the classical critical period and that
there is a large degree of disorder until adulthood. Only after pooling from different animals
and implementing strong spatial filters a map could be extracted.

• The primary auditory cortex is known to display a tonotopic organization, where there is a sys-
tematic progression between the represented frequencies [? ]. Using 2-photon calcium imag-
ing two independent studies in mice by Rotshild et al. [134] and Bandyopadhyay et al. [135]
showed that although a large scale tonotopy exists, there are high levels of heterogeneity in the
represented frequencies and the intensity tuning is not spatially organized at all. Sub-threshold
potential measurements show that although neighboring neurons share a common input they
can have very different functional responses. This type of scatter at the single neuron level is
also found in the retinotopy of rodent visual cortex, as described above [136].

What is the fundamental difference between the species that lead to the formation of orientation
maps or interspersed patterns? Although the visual pathway has many conserved features in all
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mammals, rodents and lagomorphs are different to other species in many aspects:

• Structurally, Hustler et al. found that the pyramidal cell layers in rodents are more than half as
small than in primates, even when controlled for brain size [137]. A study by Herculano-Houzel
et al. show that rodent brains vary in mass as a power function of the number of neurons with
exponent 1.5 while in primates it increases linearly [138]. This means that with equal size of
the brain rodents would have a smaller number of neurons with a less dense neuronal packing
compared to primates.

• Functionally there are also many differences. As discussed above, there is evidence that orien-
tation selectivity emerges earlier in the visual pathway of rodents and lagomorphs compared
to other species, where the percentage of orientation selective cells in the visual pathway be-
fore the visual cortex is higher [91]. In a study in mouse by Rochefort et al. it was found
that direction selectivity develops at eye opening even in dark reared animals, and only later
in development the number of orientation selective cells increases to become the most abun-
dant in the cortex [139]. In comparison the ferret needs visual experience to develop direction
selectivity [140].

A simple feature that distinguishes almost all studied rodents and lagomorphs from the well charac-
terized primates, carnivores and scadentia is the size of the visual cortex. The primary visual cortex
of the tested animals with interspersed layout might be too small to fit an organized orientation map.
Although this is a common argument in discussions, the real role of the area size for functional orga-
nization has never been characterized. A counterargument to a potential role of area size was given
by Van Hooser et al. [110]. They showed that the gray squirrel, a highly visual rodent with a visual
cortex size comparable to ferrets and a visual acuity comparable to tree shrews, lacks ordered ori-
entation maps. In chapter 5 of this thesis the role of V1 size in determining the organization of the
layout will be analyzed in a optimization model.

With the exception of the work by Hansel and Van Vreeswijk, all the mentioned approaches above
are experimental. What can theory teach us about the emergence of the different types of functional
organizations? Can a model explain why some animals develop a map and others not? Until now
there are only two theoretical models that can generate both ordered maps and interspersed layouts:

• Koulakov et al. implemented an optimization model to explore the functional organization a
pattern must have to minimize the wiring costs for a given connectivity function [64]. When
strict non-selective connections between the neurons are imposed, i.e. the neuron has to connect
with equal amounts of neurons for all orientations, interspersed patterns are the most cost
effective. With increasing selectivity, i.e. a higher number of connections with neurons with
similar orientation preference, the most cost effective layout becomes periodic.

• Paik et al. proposed a model based on the segregated roughly hexagonal mosaic formed by ON
and OFF RGCs in the retina [141, 142]. According to the model, when neurons in V1 sample
from the overlaid ON and OFF mosaics a Moiré interference pattern is generated. ON-OFF
dipoles emerge in the receptive field of cortical neurons, seeding their orientation preference
and forming an ordered periodic map. Depending on the relative orientation of the mosaics and
their size, the wavenumber of the pattern increases and it becomes qualitatively disorganized
due to the very short wavelength. Although very simple, many aspects of this model have been
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criticized. RGC mosaics in the retina don’t have the characteristics that model needs, lacking a
typical scale and long-range correlations [143]. The model predicts that this mechanism leaves
an hexagonal footprint in the map, but its existence is difficult to test experimentally [144] and
can also be generated by many self-organization models [41, 42].

It is important to underline that these two models are not dynamical. A structure in the intra-cortical
interactions or in the RGC positions is assumed and the pattern that satisfies the conditions is di-
rectly calculated. After 40 years of dynamical models for pattern formation none was ever reported
to exhibit a transition to interspersed patterns with a change of parameters. Determining whether
such a model exists could be very informative, because it might lead to a clarification of what is the
fundamental difference in the mechanism that leads to the formation of interspersed and ordered
patterns.

1.6 Overview of this work

In this thesis I will introduce a class of models and an optimization approach that can generate both
types of functional organization found in the primary visual cortex of mammals: ordered maps with
the invariant layout statistics found in primates and carnivores and interspersed arrangements. The
conditions on the intra-cortical interaction for the generation of interspersed layouts are analytically
calculated and confirmed in a biologically detailed model. The model is further expanded to include
representations to both eyes and to modulate the degree of plasticity during the critical period. The
generated interspersed pattern is characterized both structurally and dynamically and an optimiza-
tion theory is proposed modeling a V1 size dependent transition between the different layout types.
The thesis is organized as follows:

In the second chapter of the thesis the dynamical models for pattern formation are introduced. First
the model proposed by Wolf [21, 22] is generalized by describing all intra-cortical interactions as con-
volutions. It is shown numerically that depending on the parameters of the interaction kernels the
model can generate both types of layouts. The interspersed pattern is generated dynamically, and is
not a consequence of the randomness of the initial condition. With the adequate interaction param-
eters, starting the simulations from ordered maps or from an imposed iso-orientation domain lead
to the dynamical disorganization of the layout. Secondly, to understand the underlying principles
leading to interspersed patterns, the model is solved in a one dimensional cortex. It is shown that
ordered maps exist over wide regions of parameter space as stationary solutions. An analytical ex-
pression for their stability is calculated. The parameters of the interaction kernels are reduced using
experimental data and the predicted stability diagram of the map solutions are calculated. This leads
to the main result of the thesis: with strong local inhibition all ordered stationary solutions become
unstable, leading to the development of an interspersed pattern. The generality of this finding is
tested in a well established correlation-based model for pattern formation [53]. This model is chosen
because its assumptions are closely tied to biology. It is shown that the conclusions of the abstract
model apply also to this biologically detailed model, meaning that with strong inhibition the neurons
develop orientation selectivity but preferred orientations remain interspersed in space.

The third chapter of the thesis deals with an expansion of the model to include the tuning to binoc-
ular stimuli. The experimental results obtained by Wang et al. [127] discussed above about the
late matching of binocular receptive fields show that orientation preference is very plastic, which is



18 Chapter 1: Introduction

an argument for dynamical models like the one proposed, but poses questions of how the neurons
can specifically match their response while embedded in a disordered network. In this chapter first
inter-eye coupling terms are included in the model by examining if the resulting dynamics satisfy a
set of coupling symmetry conditions. Next the dynamical equations are solved for non-interacting
neurons to find the coupling parameter regime where the binocular orientation is matched after the
earlier emergence of orientation selectivity. Once this regime is found, strong inhibitory lateral inter-
action between the neurons are included and it is numerically shown that the interspersed pattern
emerges and is maintained while the neurons match their orientation preference. This shows that the
interspersed pattern can be understood as a fundamental consequence of strong inhibition and can
coexist with other mechanisms that increase the order of receptive field organization. This chapter
also describes how to include changes in the degree of plasticity found during the critical period in
the model. Numerical analyzes are used to predict the consequences in binocular matching in a PSD-
95 knock-out mutant, where the critical period is prolonged but the orientation selectivity is reduced.
The simulations predict that even with an extended critical period the degree of binocular orientation
matching is decreased.

In the fourth chapter the interspersed pattern obtained in the simulations are characterized in detail.
The first part deals with the dynamical characterization. It is shown that the disordered arrangement
is caused by the mutual repulsion of the optimal orientation for each neuron. This leads to frustration
and glassy dynamics, with a power law decrease in the rates of changes in the orientation of the neu-
rons. Next the energy landscape of solutions in the model is addressed. In the interspersed regime
the number of solutions is very large and the energy barriers between them are low, making the sys-
tem more susceptible to noise. This result is corroborated with numerical simulations of stochastic
differential equations. It is also shown in these simulations that freezing the dynamics of a fraction
of neurons in maps leads to a large decrease in the number of available states, radically decreasing
the ”diffusion” of preferred orientations in the presence of noise. In comparison, even after freezing
the dynamics of a large fraction of neurons in interspersed patterns, the number of available states
is still very high, such that the diffusion coefficient in noisy simulations remains essentially constant.
The second part of this chapter deals with the structural characterization of the interspersed pattern.
It is shown that the final layout is not random, but that the preferred orientations between the neigh-
boring neurons are negatively correlated. The magnitude of this correlation depends on the range of
the inhibitory interaction and the number of neurons in this range. As more neurons interact with
each other this correlation is decreased, making it a difficult prediction to test experimentally. On
the other hand, it is shown that random patterns with the same correlation structure are not solu-
tions in the system. Two different structural measures that are sensitive to phase randomization are
introduced, the discrepancy and the Swindale coverage. The first measures the homogeneity of the
disorder for any pattern interval. The second measures the homogeneity of the representation of the
pattern for any possible oriented stimulus in space. Interspersed patterns have a better discrepancy
and coverage compared to random layouts with and without negative correlations. Finally an stim-
ulus driven optimization model is presented showing that interspersed patterns have an optimal
stimulus coverage [145].

In the fifth chapter of the thesis the question of why some species have maps and others interspersed
patterns is approached from an optimization perspective. Since the size of the hypercolumn remains
roughly constant in all species with maps, an increase in the size of V1 leads to an increase in the
number of hypercolumns representing an area in visual space. The consequence of this is that with
increasing cortex size the difference in the coverage between interspersed patterns and ordered maps
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is reduced. On the other hand, following the results and considerations of Koulakov and Chklovskii
[64], the wiring costs of the different layouts are calculated for increasing cortex size assuming a
orientation selective interaction as found in mouse visual cortex [115]. Since specific wiring costs de-
pends only on the immediate vicinity of neurons and with constant hypercolumn size do not change
with cortex area, both costs remain roughly constant and are always lower for ordered maps. In an
optimization model that combines both coverage and wiring cost a transition between the different
layouts for increasing cortex size is predicted.

In the sixth chapter of the thesis the prediction of the lability of preferred orientations in the rodent
visual cortex is tested experimentally. In collaboration with the Max Planck Institute for Biological
Cybernetics in Tübingen, 2-photon calcium imaging of the evoked activity by visual stimulation in
the rat visual cortex is performed. The aim of the first part of the chapter is to search for a stimula-
tion and tuning curve estimation paradigm that lead to small confidence intervals of the estimated
orientation preference, such that significant changes in time of the preferred orientation of the neu-
rons can be detected. Two stimulation paradigms are tested: episodic stimulation, where drifting
high contrast gratings with different orientations are presented in discrete intervals, and continuous
stimulation, where the transition between the drifting orientation is obtained without interruption
by the rotation of the grating [146]. Three different estimation methods are compared: vector aver-
age, Levenberg–Marquardt and Bayesian inference [147]. The results show that within a stimulation
paradigm the difference in the estimated preferred orientation between the methods is not significant,
but that in Bayesian inference the confidence intervals are smaller and decrease faster in size with the
number of stimulus sets presented. The distribution of estimated orientations in episodic stimulation
was more reliable than with continuous stimulation, and is therefore chosen for the second part of
the chapter. There the data of a recording is divided in parts and the tuning curve is estimated in each
one of them. In accordance to the prediction of the model, this approach shows that the preferred
orientation of at least 20% of the neurons changes significantly during the experiment in less than
half and hour.

In the last chapter the results of the thesis and future directions for the study of interspersed patterns
are discussed.



Chapter 2

Understanding the formation of
interspersed layouts in visual cortical
networks

The approach proposed by Wolf [22] described in the introduction is the first model for orientation
preference map development that shows analytically the existence and stability of quasi-periodic pat-
terns that quantitatively resemble the maps measured in the experiments. On the other hand, when
the aim is to understand the formation of the interspersed arrangements of orientation preferences
from rodents and lagomorphs the model falls short. The analytical treatment of the model is based
on the imposition of a critical circle by the linear term, defining the periodicity of the pattern. The
nonlinear analysis then determines how to make many modes stable on this critical circle. In rodents
the preferred orientation of the neurons are disorganized in space, such that a general periodicity of
the pattern is not present. The linear functional can be changed to remove this constrain, but this also
means that the weakly nonlinear analysis used in the amplitude equations would have to be strongly
modified since the values of

∣∣kj

∣∣ are not bounded to be close to kc.

In this chapter the long-range interaction model is generalized such that disorganized layouts are
not excluded by construction but can form in principle. For this all intra-cortical interactions are
described as convolutions. As in the previous model the symmetries of the system span a subspace
of spatially ordered solutions, and using perturbation theory on a one dimensional cortex equations
for their stationarity and stability are derived for a general interaction shape. After describing a
family of intra-cortical interaction shapes that are congruent to experimental observations in rodents
with three free parameters, the derived equations are used to test the stability of different ordered
solutions. It is found that local strong inhibition makes all existing stationary solutions unstable,
such that the arrangement of orientations is disordered. The analytical results from the stability
analysis are tested by numerical simulations of the dynamical equation. The interspersed layout is
dynamically generated in the model, such that ordered initial conditions like maps are disordered in
time. At the end of this chapter the condition of strong inhibition in generating disordered patterns
is successfully tested in a biologically detailed model based on Hebbian competition in the LGN-V1
synapses [53].
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2.1 Generalization of the model

The generalized model splits from the previous approach after the symmetry conditions for F̂ are
stated. Here the lateral interactions between the neurons play a central role from the beginning of
the definitions

τz
∂zi

∂t
= F̂

[
z, wi,j

]

where wij weights the strength of the interaction between neuron i and j. Due to translation and ro-
tation symmetry the spatial component of the interaction between the neurons can only be distance
dependent. The interaction strength between the neurons wij is also a dynamical variable, represent-
ing the changes in synaptic connections. It approaches with time constant τw the value w∞

ij , which

depends on the position of the neurons xi and xj and their corresponding tuning zi and zj.

τw

∂wi,j

∂t
= w∞

i,j

(
xi − xj|zi, zj

)− wi,j(t)

A neuron i has to change its interactions wij to neighboring neurons in order to change its tuning.
Focusing on the timescale of orientation dynamics, one can assume that when there is a change
in orientation the needed changes in the interactions have already been made, such that τz ≫ τw.
Therefore, the interaction dynamics can be tied to the tuning dynamics by directly setting wi,j → w∞

i,j

and using

∂zi

∂t
= F̂

[
z, w∞

i,j

]
(2.1.1)

2.1.1 Dynamical equation

Instead of treating the linear and nonlinear part of equation 2.1.1 separately, in this approach an ex-
ample equation for F̂ that satisfies the symmetry conditions will be directly given. Remember that
this proposed equation, although based on them, is not meant to delineate the biological mecha-
nisms found in the brain, but to give an analytically tractable example of the same universal class of
functions sharing many dynamical properties with them. The equation to use is

τz
∂zi

∂t
= r̃ zi − zi|zi|2 +

1

N

N

∑
j

(
zj − zi

)
w∞

i,j

(
xi − xj|zi, zj

)
(2.1.2)

Notice that in this approach the index of individual neurons i is kept, since a continuous orientation
field z is not assumed. The first two terms show that, in the absence of intracortical interactions, with
r̃ > 0 the selectivity of the neurons increases and saturates at Ai =

√
r̃. This is represented in figure

2.1.1a), where the saturation of the color encodes the selectivity of the neuron. The third term shows
that the tuning of neuron i will be pulled toward the tuning of all neurons j in its vicinity depending
on the strength of interaction w∞

i,j between them, as represented in figure 2.1.1b), where the hue of the

color encodes the preferred orientation of the neuron. Only the third term can change the preferred
orientation of the neurons, such that the patterns that will be solutions to this equation will depend
on the choice of the interaction w∞

i,j.



22 Chapter 2: Understanding the formation of interspersed layouts in visual cortical networks

2.1.2 Describing the interactions

The interaction is split in two parts, one that only depends on the distance between the neurons and
a second that also scales with selectivity σz depending on the similarity of the tuning

w∞
i,j

(
xi − xj|zi, zj

)
= K

(
xi − xj

)
+ Kos

(
xi − xj

)
e
− |zj−zi|2

σ2
z (2.1.3)

For concreteness each interaction kernel is expressed as a sum of Gaussian functions, representing
excitation and inhibition

K(xi − xj) =
E

2πσ2 e
− (xi−xj)

2

2σ2 − I
2π̺2 e

− (xi−xj)
2

2̺2

Kos(xi − xj) =
Eos

2πσ2
os

e
− (xi−xj)

2

2σ2
os − Ios

2π̺2
os

e
− (xi−xj)

2

2̺2
os

E and σ are the strength and range of unselective excitation, and I and ̺ the strength and range
of unselective inhibition. The same parameters are present for the selective interaction. For the
analytical and numerical calculations the following approximation will be used: if the selectivity of
the selective interactions is of the same order as the selectivity of the neurons, σz ∼ O(z), one can use

Kos(xi − xj)e
− |zj−zi|2

σ2
z ≃ Kos(xi − xj)

(
1 − |zi − zj|2

σ2
z

)

Inserting this in the dynamical equation 2.1.2 and expanding leads to

τz
∂zi

∂t
= r̃ zi − zi|zi|2 +

1

N

N

∑
j

(
zj − zi

)
(

K(xi − xj) + Kos(xi − xj)

(
1 − |zi − zj|2

σ2
z

))

= r̃ zi −
(

1 +
K̃os(0)

σ2
z

)
zi|zi|2 +

1

N

N

∑
j

(
K
(
xi − xj

)
+ Kos

(
xi − xj

))
zj (2.1.4)

− 1

Nσ2
z

∑
j

(
Kos

(
xi − xj

) (
−z2

i zj − 2 |zi|2 zj + 2 zi |zj|2 + zi z2
j − zj |zj|2

))

where K̃os(0) is the Fourier transform of Kos evaluated at zero and all resulting constants multiplying
zi have been included in r̃ . If the unselective interaction K(xi − xj) has an unique maximum kc in

Fourier space, the linear part of this general equation has the same properties of the functional L̂[z] of
the original model in equation 1.3.5. In this case also a critical circle of size kc in the power spectrum
of the pattern is imposed, and the non-linear interactions defined by the orientation selective terms
will determine how many modes can coexist inside this circle. Therefore, for a specific choice of
parameters of the interaction kernels the general model can be mapped to the original model and
exactly the same amplitude equations are obtained by weakly nonlinear analysis, demonstrating an
identical set of solutions.



2.1 Generalization of the model 23

2.1.3 The model generates ordered and disordered layouts

Equation 2.1.4 can be solved numerically for different choices of the interaction parameters and the
layout that emerges from the system can be checked. The results are shown in figure 2.1.1c) to f). The
modeled system is composed of a grid of 128x128 equally spaced neurons with periodic boundary
conditions. The integration of the function was done using a 4th-5th order Runge-Kutta-Fehlberg
scheme where the error was kept below 0.01r̃, where r̃ = 0.1. The simulation time frame is defined
by τ = 1

r̃ , which is the time-scale of the initial emergence of orientation selectivity. All simulations are
done without adding noise to underline the role of the interaction on the dynamics pattern formation
(the effect of adding noise is shown in chapter 4). The figures show only a region of the simulated
pattern. It is important to stress that the results of the simulations remain valid for a large range of
parameters. Their exact relation to the emerging layout will be examined below.

In figure 2.1.1c) the initial condition are randomly orientation selective neurons with low selectivity
z = 1

100

√
r̃ξ1ei2ξ2 , where ξ1ǫU [0, 1] and ξ2ǫU [0, π] are are sequences of uniformly distributed random

numbers. The parameters of the interaction are chosen to resemble the model by Wolf. The uns-
elective kernel is a Mexican hat that imposes a fixed wavenumber to the solution. The size of the
simulated box is scaled to fit 10 hypercolumns Λ in the system, L = 10Λ. The orientation selective
interactions are long-ranged, as was shown to be required to have a stable pinwheel-rich solution.
The range of the later was scaled to be twice the size of an hypercolumn. Defining Λ = 2π, the
chosen parameters are

E = 4.50 σ = 1.08 I = 5.50 ̺ = 2.01 Eos = 0 Ios = 1 ̺os = 12.57

The profile of the interactions is depicted next to the initial condition, where unselective interactions
are filled with gray and orientation selective interactions are marked with a dashed line. The results
at 1τ and 100τ show that, given the long-range selective interactions, a quasi-periodic map emerges
as stable solution to the model. This shows that this generalization of the model can reproduce the
results from the original model.

In figure 2.1.1d) the same initial condition and scaling of the simulated box are used as in c). In the
rodent visual cortex only excitatory interactions are orientation selective, while inhibitory neurons
connect with their neighbors independent of their tuning [115]. Therefore Ios = 0 is set. There
are no long-range patchy connections in the rodent visual cortex, meaning that the selective and
unselective excitatory interactions have the same range [123]. This makes σos = σ. For the unselective
interaction the relative range of inhibition is decreased, incrementing the amount of local inhibition
and inverting the Mexican hat. The parameters used are

E = 4.50 σ = 1.70 I = 5.50 ̺ = 1.39 Eos = 0.06 σos = 1.39 Ios = 0

Using these conditions, the results in d) show that orientation selectivity increases in the system and
saturates, following a), but that no ordered arrangement of orientations emerges as solution. The
layout is disorganized and remains like this for simulations of 100τ and longer. This shows that for a
different choice of parameters the model can also generate interspersed patterns as found in rodents
and lagomorphs.

To show that the disordered layout is generated by the dynamics and is not a direct consequence
of the random initial condition, in figure 2.1.1e) the pattern in c) at 100τ with lowered selectivity is
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Figure 2.1.1: Explanation of the general model and simulation results. a) Neurons in the model increase and
saturate their selectivity, represented by the brightness of the color. b) Neurons interact through orientation
selective and unselective interactions with their neighbors, where orientation is labeled with colors. c) to f)
Simulation of the model for different interaction parameters. c) With Mexican hat shaped unselective interac-
tions and long-range orientation selective interactions the system develops from a random unselective state
into a quasi-periodic map of orientation preferences as in the long-range interaction model. e) With increased
local inhibition, selectivity develops in the neurons but the layout remains disorganized. e) Using the final
pattern in c) as initial condition shows that the disordered layout is obtained dynamically and is not a conse-
quence of the random initial conditions. f) The final layout of d) with an imposed column of equally tuned
neurons is used as initial condition. The ordered imposed by the orientation column is also disrupted by the
dynamics of the system.



2.2 Analytical solution of the model in 1D 25

used as initial condition. As the system develops, this organization is lost and a disordered pattern
emerges. A small resemblance to the initial condition can still be detected, but this is lowered for
longer simulations or totally removed with a very small amount of noise in the simulations (see
chapter 4).

To further show that the dynamics actively disorganize the system, in figure 2.1.1f) the layout of d) at
100τ is used with decreased selectivity as initial condition, where a column of equally tuned neurons
is imposed. Also in this case the system reorganizes into an interspersed pattern and the imposed
column is lost.

Taken together these results show that, depending on the choice of interaction parameters, this model
can generate both types of organizations found in nature. In the next section the role of the interac-
tion kernels in the formation of the different layouts will be analyzed further. For this purpose an
analytical treatment of the equation in a one dimensional cortex is performed, where the solutions
can be obtained and their stability analytically calculated. The conclusions of the one dimensional
model are directly applicable to two dimensional systems as shown in subsequent simulations.

2.2 Analytical solution of the model in 1D

The simulations presented in section 2.1.3 show that depending on the interaction parameters or-
dered maps or disordered arrangements of orientation preference are generated in the model. Is the
transition between the different layout types gradual or sharp? What are the essential conditions for
each layout type to emerge? In this section the stationarity of orientation patterns that are invariant
under the dynamics is analyzed. Then their stability and how it changes depending on the interaction
parameters is calculated. To be able to solve the equations analytically, the model will be examined
in a one dimension, where ordered patterns and disordered arrangements can still be identified. The
stability conditions developed here will be used in the next section to show an interaction parameter
regime where selectivity increases but none of the stationary patterns are stable, making a disordered
arrangement of orientation preference the only solution.

2.2.1 Stationary solutions

The symmetries of the system (equations 1.3.1 to 1.3.4) imply an invariant subspace of spatially or-
dered solutions of the form zi = A(t)eikxi , where k is the wavenumber of the pattern. This include
three different types of stationary solutions:

• Unselective state, with A = 0.

• Perfectly periodic state, with A > 0 and k 6= 0.

• Uniformly selective state, where A > 0 and k = 0.

For each solution the conditions on the interaction parameters for its existence will be calculated.
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Unselective state

It is easy to see that F̂[0] = 0, such that A = 0 is always a stationary solution independent of the
choice of interaction parameters. This represents the unselective state the neurons are during the
first moments of cortical development.

Perfectly periodic state

Inserting zi(t) = A(t)eikxi in equation 2.1.4 leads to

F̂[A(t)eikxi ] = r̃ A(t)eikxi +
1

N

N

∑
j

(
K
(

xi − xj

)
+ Kos

(
xi − xj

))
A(t)eikxj

−
(

1 +
K̃os(0)

σ2
z

)
A(t)eikxi |A(t)|2

−A(t)|A(t)|2
Nσ2

z
∑

j

(
Kos

(
xi − xj

) (
2 eikxi − 3 eikxj − eik(2xi−xj) + eik(2xj−xi)

))

Using the definition of the Fourier transform, the interaction term can be calculated as

1

N ∑
j

K
(
xi − xj

)
eikxj = eikxi K̃(k) (2.2.1)

where K̃(k) is the Fourier transform of K
(

xi − xj

)
. Using K̃(0) = 1

N ∑j K
(

xi − xj

)
leads to

F̂[A(t)eikxi ] = A(t)eikxi

[
r̃ + K̃(k) + K̃os(k)− |A(t)|2

(
1 +

1

σ2
z

(
3 K̃os(0) + K̃os(2k)− 4K̃os(k)

))]

For the pattern to be stationary, either A = 0 as in the unselective state, or

|Ak|2 =
r̃ + K̃(k) + K̃os(k)

1 + 1
σz

2

(
3 K̃os(0) + K̃os(2k)− 4 K̃os(k)

) (2.2.2)

The stationary selectivity depends on the choice of interaction kernels K and Kos and the wavenum-
ber of the pattern k. To ensure the existence of at least one stationary pattern with Ak > 0 for all
combination of interaction parameters, the bifurcation parameter r is introduced:

• If the denominator in equation 2.2.2 is positive, the numerator has to be positive and r̃ is defined
as

r̃ = r − max(K̃(k) + K̃os(k)) (2.2.3)
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• If the denominator in equation 2.2.2 is negative, the numerator has to be negative and r̃ is
defined as

r̃ = −r − min(K̃(k) + K̃os(k)) (2.2.4)

In both cases, when r ≤ 0 the only stationary solution is A = 0. When r > 0 this state is unstable
and symmetry is spontaneously broken and spatially periodic patterns become a stationary solution
to the dynamics.

Uniformly selective state

This is a special case of the previous stationary solution, where Ak for k = 0 in equation 2.2.2 is
positive. In this case all neurons are selective to the same orientation, as in the vertical axis of a
columnar organization. The selectivity of this uniform state is given by

|A|2 = r̃ + K̃(0) + K̃os(0)

2.2.2 Stability of stationary solutions

The stationary patterns have an uniform or progressively changing orientation preference with wave
number k. This means that the tuning of each neuron only depends on its position in space, zi →
z(xi). Therefore the limit N → ∞ can be taken to treat the cortex as a continuous system and calcu-
late the interactions as integrals. Having an exact expression for the selectivity A of the stationary
patterns allows us to calculate the dynamics of a perturbation δz upon them. In each case the interac-
tion parameters determine the eigenvalue of the perturbation. If the eigenvalue is positive, then the
pattern Akeikx will be unstable.

Unselective state

A small perturbation δz upon the stationary solution A = 0 is performed. The linearized dynamics
of the perturbation is given by the linear component of F̂[δz]

L̂0[δz] = r̃ δz +
1

N

N

∑
j

(
K
(

xi − xj

)
+ Kos

(
xi − xj

))
δz (2.2.5)

To check if ordered patterns emerge from the unselective state, the perturbation δzi = Aeikxi is in-
serted obtaining

L̂0[A(t)eikxi ] = A(t)eikxi

[
r̃ + K̃(k) + K̃os(k)

]
+O(δz3)

Therefore the growth rates of the perturbation λ(k) are obtained from the Fourier transform of the
linear component of F̂[z]
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λ(k) = r̃ + K̃(k) + K̃os(k) (2.2.6)

With the bifurcation parameter r > 0 in the definition of r̃ in equations 2.2.3 or 2.2.4, λ(k) allays
crosses the zero line and gets positive for at least one k, making the homogenous solution A = 0
unstable.

Perfectly periodic state

Examining the dynamics of a perturbation δz upon the stationary solution z = Akeikx with Ak > 0,
the linearized dynamics is

L̂k[δz(x, t)] = r̃δz +

ˆ

R

(K(x − y) + Kos(x − y)) δz(y, t)dy

−A2
k

(
2 +

4 K̃os(0)

σz
2

− 4 K̃os(k)

σz
2

)
δz(x, t)

−A2
k

(
1 +

K̃os(0)

σz
2

− 2 K̃os(k)

σz
2

+
K̃os(2k)

σz
2

)
e2ikxδz(x, t)

−A2
k

ˆ

R

Kos(x − y)

σz
2

(
−4 + 2 eik(x−y) + 2 e−ik(x−y)

)
δz(y, t)dy

−A2
k

ˆ

R

Kos(x − y)

σz
2

(
2eik(x+y) + e2iky − e2ikx

)
δz(y, t)dy +O(δz3) (2.2.7)

To find the eigenfunctions ψk of this spatially periodic integro-differential operator the Floquet-Bloch
theorem is used [75]. It states that the eigenfunctions have the same period of the operator up to a
phase shift Q. The Bloch phase Q plays the role of a perturbation parameter, labeling all possible
Eckhaus instabilities of a stationary pattern in one dimension. Following this, the eigenfunctions
have the form

ψQ
k (x, t) = a+(t)e

i(k+Q)x + a−(t)ei(k−Q)x

For a given Q, a+ and a− satisfy the following matrix equation

µ(k, Q)

(
a+(t)
a−(t)

)
= M2x2

(
a+(t)
a−(t)

)

Where µ are the eigenvalues of the operator, L̂k[ψ
Q
k ] = µ(k, Q)ψQ

k . Since this is an optimization
model the matrix M2x2 will be symmetric, such that all eigenvalues are real. The entries of the matrix

are found by inserting the eigenfunction ψQ
k (x, t) into equation 2.2.7 and separating terms propor-

tional to a+(t)ei(k+Q)x, a−(t)ei(k+Q)x, a+(t)ei(k−Q)x and a−(t)ei(k−Q)x. To make the calculations more
transparent, equation 2.2.7 is split by lines and treated separately

L̂k[·] = L̂1
k[·] + L̂2

k[·] + L̂3
k[·] + L̂4

k[·] + L̂5
k[·]
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L̂1
k[ψ
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))

dy

−A2
k

ˆ

R

Kos(x − y)

σz
2

(
−e2ikx

(
a+(t)e

i(−k−Q)y + a−(t)ei(−k+Q)y
))

dy

= −A2
k

(
2

K̃os(Q)

σz
2

+
K̃os(k + Q)

σz
2

− K̃os(k − Q)

σz
2

)
a−(t)ei(k+Q)x

−A2
k

(
2

K̃os(Q)

σz
2

+
K̃os(k − Q)

σz
2

− K̃os(k + Q)

σz
2

)
a+(t)e

i(k−Q)x

To shorten the notation when bringing terms together, Γ(k, Q), Υ+(k, Q) and Υ−(k, Q) are defined as

Γ(k, Q) = K̃os(0)− 2 K̃os(k) + 2 K̃os(Q) + K̃os(2k)− K̃os(k + Q)− K̃os(k − Q)

Υ±(k, Q) = 2 K̃os(0)− 2 K̃os(k) + K̃os(Q)− 2 K̃os(k ± Q) + K̃os(2k ± Q)

This way, the entries of the matrix are

M2x2 =


 λ(k + Q)− 2A2

k

(
1 + 1

σ2
z
Υ+(k, Q)

)
−A2

k

(
1 + 1

σ2
z
Γ(k, Q)

)

−A2
k

(
1 + 1

σ2
z
Γ(k, Q)

)
λ(k − Q)− 2A2

k

(
1 + 1

σ2
z
Υ−(k, Q)

)



The eigenvalues of M2x2 are

µ1,2(k, Q) =

(
λ(k + Q) + λ(k − Q)

2

)
− 2A2

k

(
1 − 1

2σ2
z

(Υ−(k, Q) + Υ+(k, Q))

)
(2.2.8)

±

√√√√
((

λ(k − Q)− λ(k + Q)

2

)
− A2

k

σ2
z

(Υ−(k, Q)− Υ+(k, Q))

)2

+

(
A2

k +
A2

k

σ2
z

Γ(k, Q)

)2

Equation 2.2.8 is an analytical expression for the stability of periodic stationary patterns. For a given
combination of interaction parameters in the kernels K and Kos, µ1,2(k, Q) gives the eigenvalues of
all possible perturbations Q on a pattern with wavenumber k. If µ is positive for any Q, then the
stationary pattern k is unstable. The eigenvalue with the positive root will be used since it gives
a higher number. In the following section it will be shown that for a special regime of K and Kos,
µ(k, Q) > 0 for at least one Q for every k. Since all organized patterns are unstable in that case, but
the non-selective state is also unstable, the result is a disorganized layout of orientation preferences.
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Uniformly selective state

The uniformly selective state is a special case of the periodic states, where k = 0. The stability of this
kind of patterns is calculated using equation 2.2.8 as µ(k = 0, Q).

2.3 The transition from order to disorder

In the previous section the conditions for the invariant solution z(x) = Aeikx to be stationary were
derived in a one dimensional cortex. The eigenvalues in equation 2.2.6 and in equation 2.2.8 define
conditions for their stability. The expressions hold for any choice of interaction parameters in K and
Kos. In this section the range of interaction parameters will be reduced and narrowed by including
recent experimental findings in the rodent visual cortex. The reduced parameters will be inserted in
the derived equations to calculate which patterns are stationary solutions and are stable under per-
turbations. An interaction regime will be shown where no stationary pattern is stable, demonstrating
that spatially periodic arrangements of orientation preferences will not form.

2.3.1 Simplifying interaction parameters

The interaction kernels in equation 2.1.3 have 9 parameters (E, σ, I, ̺, σz, Eos, σos, Ios, ̺os), describing
a large set of possible shapes. To describe a coherent rodent interaction kernel, the amount of param-
eters is reduced to three (S, W, g), where some of the original parameters are fixed and others have
been combined. To do so, as in the simulations in section 2.1.3, the following experimental findings
are used:

1. In the rodent visual cortex only excitatory interactions are orientation selective, while inhibitory
neurons connect with their neighbors independent of their tuning [115]. This means that Ios =
0.

2. There are no long-range orientation selective connections in the rodent visual cortex, meaning
that the selective and unselective excitatory interactions can be assumed to have the same range
[123]. This makes σos = σ.

Brought together this reduces the kernels in equation 2.1.3 to

K
(

xi − xj

)
= E√

2πσ
e
− (xi−xj)

2

2σ2 − I√
2π̺

e
− (xi−xj)

2

2̺2

Kos

(
xi − xj

)
=

Eos√
2πσ

e
− (xi−xj)

2

2σ2

Furthermore, since only the shape of the interaction is important and not the total magnitude, the
amount of parameters is reduced by combining them:

• The strength of excitation and inhibition will be controlled with a single parameter S ∈ [0, 1],
where S is the strength of excitation and (1 − S) the strength of inhibition. For S = 0 there is
only inhibition and for S = 1 only excitation.



32 Chapter 2: Understanding the formation of interspersed layouts in visual cortical networks

• Similarly, the range of the excitatory and inhibitory interactions is controlled with the parameter
W ∈ (0, 1), where Wσ is the range of excitation and (1 −W)σ the range of inhibition. σ defines
a typical interaction distance between neurons in the cortex and can be set to 1 without loss of
generality. For W <

1
2 the interaction will have a Mexican hat shape, while with W >

1
2 the

Mexican hat will be inverted.

• The total amount of excitation is split in the specific and unspecific interactions regulated by
the parameter g ∈ [0, 1]. g scales the selective interaction and (1 − g) the unselective.

The resulting interaction kernels are

K(xi − xj) =
(1 − g) S√

2πWσ
e
− (xi−xj)

2

2W2σ2 − 1 − S√
2π(1 − W)σ

e
− (xi−xj)

2

2(1−W)2σ2 (2.3.1)

Kos(xi − xj) =
gS√

2πWσ
e
− (xi−xj)

2

2W2σ2 (2.3.2)

In figure 2.3.1a) a graphical representation of the simplified kernel is given. Notice that the selectivity
of the interactions is regulated both by parameters σz and g. For a given S and W, the probability of
excitatory interaction P(θi − θj) is proportional to

P(θi − θj) ∝ (1 − g) + g e
− |zj−zi|2

σ2
z

Continuing with the assumption that the selectivity of the interactions is of the same order of the
selectivity of the tuning, σz ≃ O(z), the probability can be rewritten as

P(θi − θj) ∝ (1 − g) + g

(
1 − |zi − zj|2

σ2
z

)
= 1 − g

σ2
z

|zi − zj|2

Using σ2
z = |A|2 and z = Ae2iθ this simplifies to

P(θi − θj) ∝ 1 − g|e2iθi − e2iθj |2

The interaction probability has a cosine shape. When there is no difference in orientation between
both neurons P(0) ∝ 1. The lowest probability is with orthogonal orientations, P(π

2 ) ∝ 1 − 4g. This

sets an effective range for g where the expansion σz ≃ O(z) holds, g ∈ [0, 1
4 ]. Experimentally it was

reported that P(π
2 )/P(0) ≈ 0.5 [115], for which g = 1

8 . Figure 2.3.1b) gives a graphical representation
of the selectivity of excitation for increasing differences in orientation between the neurons.

Using those steps, the parameters describing the rodent interaction are S ∈ [0, 1], W ∈ (0, 1) and
g ∈ [0, 1

4 ]. With no orientation selective inhibition the denominator in the expression of the selectivity
in equation 2.2.2 is always positive, so the definition of r̃ as in equation 2.2.3 is used.
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Figure 2.3.1: Graphical explanation of the simplified interaction parameters. a) The parameters for the unse-
lective interaction (blue and red) are coupled with the parameters S and (1 − S) for the strength and W and
(1 − W) for the range of excitation and inhibition respectively. There is only orientation selective excitation
(yellow), which is linked to the unselective excitation with the parameter g and (1 − g). b) The effect on
the strength of excitation between neurons for increasing difference in orientation is depicted with different
choices of the parameter g. For g = 0 the excitatory interactions are independent of the orientation of the

neurons. For 0 < g ≤ 1
4 the interaction is stronger for neurons where the orientation is more similar.

2.3.2 Stationary solutions and their stability

The simplified interaction kernels in equations 2.3.1 and 2.3.2 have the advantage of being described
with only three bounded parameters. Therefore, for all possible combinations of S, W and g equation
2.2.2 can be used to find the patterns that are stationary and equations 2.2.6 and 2.2.8 to calculate
their stability comprehensively screening all exact solutions for all parameters combinations.

Unselective state

As stated before, A = 0 is always a stationary solution independent of the combination of parameters.
Using the definition of r̃ as in equation 2.2.3, λmax(k) = r > 0, so the unselective state is not stable
and the selectivity A will increase with time.

Perfectly periodic and uniformly selective state

The condition for z = Akeikx to be stationary is Ak > 0 in equation 2.2.2. Since there is no orientation
selective inhibition, this condition is fulfilled when λ(k) > 0 in equation 2.2.6. With the reduced
interaction kernels the expression for λ is independent of g

λ(k) = r̃ + Se−
1
2 k2W2 − (1 − S)e−

1
2 k2(1−W)2

(2.3.3)

The range of patterns k that make λ(k) > 0 depends on the choice of r in equation 2.2.3. The focus is
on the maximum of λ since it is always positive even with very small r. λ(k) has two extreme points

kI = 0 and kI I =

√√√√ log
(
(1−S)(1−W)2

SW2

)

1
2 − W

(2.3.4)

They exchange characteristics depending on the choice of S and W:
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Figure 2.3.2: Stability of stationary patterns. a) - c) The growth rate of the stationary pattern λ(k) is plotted for a
combination of interactions parameters belonging to a) type I, b) type II and c) type III. On top three examples
of the growth rate of a perturbation over the stationary pattern µ(k, Q) is plotted, with Q → 0 (dotted line),
with the maximum of µ for a given k: Qmax (short dashed line), and with Q → ∞ (long dashed line). The
patterns with wavenumber k where the growth rate of the instability is positive for any Q are unstable and are
marked with gray.

• Type I interaction: For (1−S)(1−W)2

SW2 ≤ 1 and S ≥ 1
2 , kI is the maximum and r̃ = r − (2S − 1).

With these parameters the uniformly selective state k = 0 is stationary.

• Type II interaction: For
(1−S)(1−W)2

SW2 > 1 and W <
1
2 , kI I is maximum and

r̃ = r −
(

S
(
(1−S)(1−W)2

SW2

) W2

−1+2W − (1 − S)
(
(1−S)(1−W)2

SW2

) (1−W)2

−1+2W

)
. Choosing S and W in this range

makes the perfectly periodic state stationary.

• Type III interaction: For S = 0 or for S ≤ 1
2 and W ≥ 1

2 , the single maximum at finite wave
number is lost and an infinite number of modes satisfy λ(k) > 0. In this case, even with small r,
there is a continuum of periodic patterns with arbitrary high wave numbers that are stationary.

In every interaction type the stability of the stationary patterns will be analyzed. An example of
this procedure for a limited number of perturbations is shown in figure 2.3.2a) to c). In every figure
the growth rate of an ordered solution λ(k) in equation 2.3.3 is plotted for different interaction pa-
rameters belonging to interaction type I, II and II respectively. The bifurcation parameter is r = 0.1.
Plotted on top of each curve are three examples of the growth rate of the perturbation µ(k) from
equation 2.2.8, with Q → 0 (dotted line), with the maximum of µ for a given k: Qmax (short dashed
line), and with Q → ∞ (long dashed line). In all examples, whenever µ(k) is positive for any given
Q the pattern z = Aeikx is unstable and is marked in the figures with gray. Using only this limited
number of instabilities Q in the example, with type I interaction in a) the stable pattern with fastest
growth is k = 0, with type II interaction in b) the stable pattern has a finite wavelength k > 0, and
with interaction type III in c) all ordered patterns are unstable. Having this in mind, next the different
interaction types will be treated separately showing that the results of this example are general for
the whole interaction parameters in each type. As stated, the focus is on the maximum of λ(k) in
equation 2.3.4, since it is always positive even with very small r.
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Type I interaction Inserting kI = 0 in equation 2.2.8 leads to Γ(0, Q) = Υ±(0, Q) = 0 and |A0|2 =
λ(0). The eigenvalue of the perturbation can be written as

µ(k = 0, Q) = λ(Q)− λ(0)

Since in interaction type I λ(0) is maximum, µ ≤ 0 for all Q, making the continuous pattern stable
in this regime. In this interaction regime the emerging patterns will always be a uniform orientation
preference.

Type II interaction For the interaction regime type II where there is a single maximum at kI I =√
log
(
(1−S)(1−W)2

SW2

)

1
2−W

the stability of the pattern z(x) = AikI I x can not be proved analytically with only

one equation as in type I. Here the focus is on three different perturbation types for the unselective
interaction case (g = 0), Q → 0, Qmax and Q → ∞. In all those cases the pattern with wavenumber kI I

will be shown to be stable. In the next section the stability of the map will be investigated numerically
for more Q and g 6= 0, showing that the results also holds for those cases.

Long wavelength perturbation Q → 0: Since many derivatives are involved in the next steps, the
following notation will be used

ψ(k) = Se−
1
2 k2W2

ξ(k) = (1 − S)e−
1
2 k2(1−W)2

Equation 2.2.8 will be expanded in Taylor series around zero, such that Q ≃ 0. Only even terms of Q
will be non-zero because of the symmetry of the system. Up to second order the terms are

µQ→0(k, Q) =
k2

2

((
W2ψ(k)− (1 −W)2ξ(k)

)2

A2
+
(

W4ψ(k) − (1 −W)4ξ(k)
))

Q2

−1

2

(
W2ψ(k)− (1 − W)2ξ(k)

)
Q2 +O(Q3)

Inserting the maximum kI I leads to

µQ→0(kI I , Q) = −SW2

(
(1 − S)(1 −W)2

SW2

) W2

−1+2W

log

(
(1 − S)(1 −W)2

SW2

)
Q2 +O(Q3)

This is smaller than zero for
(1−S)(1−W)2

SW2 > 1, which is part of the type II interaction. The pattern

z(x) = A(kI I)e
ikI I x is stable under this kind of perturbations.
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Finite wavelength perturbation Qmax: For the finite wavelength perturbation the extrema of the
eigenvalue µ with respect of Q will be found and their effect on the stationary pattern will be calcu-
lated

∂µ(k,Q)
∂Q =

(k + Q)

2

(
W2ψ(k + Q)− (1 − W)2ξ(k + Q)

)
(−1 + γ(k, Q))

+
(k − Q)

2

(
W2ψ(k − Q)− (1 − W)2ξ(k − Q)

)
(1 + γ(k, Q)) (2.3.5)

with

γ(k, Q) =
ψ(k − Q)− ξ(k − Q)− ψ(k + Q) + ξ(k + Q)√

(ψ(k − Q)− ξ(k − Q)− ψ(k + Q) + ξ(k + Q))2 + 4A4

To set equation 2.3.5 to zero, first notice that γ = ±1 only when A = 0, which is not a stationary
pattern. The derivative consists of two parts, where only the sign of Q is changed. µ is even, so
∂µ(k,Q)

∂Q is odd and the zeros will be symmetric. The zeros of the first term will be modified by the
zeros of the second term and the other way around. Since there is not an analytical expression that
sets both parts to zero simultaneously, the location of the maximum is approximated using only the
term that gives the positive zeros. Those are

Q1 = k Q2,3 = k ± kI I .

• Using the first extreme point Q1 = k leads to

µ (k = kI I , Q = kI I) = −r +
rI − rI I

2
+

√

r2 +

(
rI − rI I

2

)2

with rI = 2S − 1 and rI I = S
(
(1−S)(1−W)2

SW2

) W2

−1+2W − (1 − S)
(
(1−S)(1−W)2

SW2

) (1−W)2

−1+2W
. The growth rate

is negative for W <
1
2 since rI < rI I in this case. With W <

1
2 ,

(1−S)(1−W)2

SW2 > 1 to have a pattern
with real wave number k in equation 2.3.4. Since in interaction regime II this holds, the pattern
z(x) = A(kI I)e

ikI I x is stable under this perturbation.

• For the second extreme point, Q2 = k − kI I = 0 and there is no perturbation.

• For the third extreme point Q3 = k + kI I = 2kI I

µ (k = kI I , Q = 2kI I ) = −r + −rI I+ψ(3kI I)−ξ(3kI I)
2 +

√
r2 +

(
−rI I+ψ(3kI I)−ξ(3kI I)

2

)2

This expression is negative for W <
1
2 , so (1−S)(1−W)2

SW2 > 1, making the wave number kI I stable
with this interaction type II.
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Short wavelength perturbation Q → ∞ : Setting Q → ∞ for λ(k) > 0 leads to

µQ→∞(k) = (1 − S)e−
k2(1−W)2

2 − Se−
k2W2

2 .

Inserting kI I this gives the normalization constant,

rI I = S
(
(1−S)(1−W)2

SW2

) W2

−1+2W − (1 − S)
(
(1−S)(1−W)2

SW2

) (1−W)2

−1+2W
. If W <

1
2 then rI I < 0 , therefore the pattern

is stable under this kind of perturbations.

Type III interaction For the interaction regime where there is no single maximum a short wave-
length perturbation is used, Q → ∞. For λ(k) > 0, the growth rate of the perturbation can be written
as

µQ→∞(k) = (1 − S)e−
k2(1−W)2σ2

2 − Se−
k2W2σ2

2 − 2g

(
Se−

k2W2σ2

2 − Se−2k2W2σ2

)
(2.3.6)

The eigenvalue of the instability decrease exponentially with k. For S = 0 the growth rate is positive
for all k. For S > 0 the condition for instability µQ→∞(k) > 0 can be rewritten as

log

(
1 − S

S

)
> k2

(
1

2
− W

)
+ log

(
1 + 2g

(
1 − e−

3
2 k2W2

))
(2.3.7)

With g = 0, i.e. with no orientation specific connections, for S <
1
2 the left side hand is positive

(zero for S = 1
2 ) and for W >

1
2 the right hand side negative (zero for W = 1

2 ), satisfying the
condition of instability for all k in this interaction type. With g > 0, the second part of the right
hand side is zero at k = 0 and otherwise positive with maximum log(1.5) for large k and g = 1

4 .

This only modifies the stability when S ≃ 1
2 and W ≃ 1

2 for small k. In general, in this interaction
regime all patterns, although being stationary solutions, are not stable under perturbations. Even
with orientation selective interactions no ordered arrangement of neurons is possible in this regime,
so the continuum limit N → ∞ can not be used and the neurons have to be defined individually as
zi = Aie

i2θi .

2.3.3 Numerical confirmation of results

Busse balloons and phase diagram

Busse balloons Busse balloons, common in pattern formation physics, are a graphical way of rep-
resenting stability regions in the parameter space for different wavenumbers of the pattern. Since the
stability calculations are kept in the background and only the results are shown, they help to have a
clear idea of phase transitions that occurs in the model as parameters vary.

Using the defined interaction kernels in equation 2.3.1 and equation 2.3.2, one can test for different
combinations of the parameters r, S, W and g which organized patterns are stationary using λ(k)
in equation 2.2.6, and which of those are stable under perturbations using µ(k, Q) in equation 2.2.8.
Fixing the parameters of the interaction, the wave number k was increased stepwise from kmin to kmax

in steps ∆k. If a value ki was found such that λ(ki) > 0, then Q was varied from Qmin to Qmax in steps



38 Chapter 2: Understanding the formation of interspersed layouts in visual cortical networks

Figure 2.3.3: Numerical confirmation of the analytical results using the stability equations. a) - d) Busse balloons
showing the stable regions in the parameter space for different patterns with wavenumber k. Unstable patterns
are marked in red and stable in green. a) Role of the bifurcation parameter r in the emergence of selectivity
from the homogeneous state. b) Role of the strength of the interactions in the stability patterns. With high
S the continuous state k = 0 is stable, with lowered S the stable pattern is periodic with k > 0 and with
S = 0 all patterns are unstable. c) Role of the range of the interaction in the stability of the patterns. When

the Mexican hat with low W is inverted after W = 1
2 all patterns are unstable. d) Role of the selectivity of the

interactions. With increasing selectivity the stable region shifts towards higher wavenumber. e) Phase diagram

of the solutions of the model. The colors are set using g = 1
8 and overlaid are the phase transitions for g = 0

with dashed lines and for g = 1
4 with dotted lines. The analytical results are confirmed.

∆Q and the expression µ(ki, Q) was tested for its sign. If µ(ki, Qk) > 0 for a Qk, then the variation in
Q was interrupted, the wave number ki was determined as unstable, and the procedure started again
with k = ki + ∆k. To accelerate the procedure the key Q found analytically is used and µ(ki, Q) with
Q = {10−5, k − kmax, k, k + kmax, 105} is explicitly tested, where kmax is the maximum growing mode
of λ in the tested interaction type. The set of stable wave numbers ks for a specific combination of S,
W and g was thus defined as

ks = {kǫ[kmin , kmax] : λ(k) > 0 ∩ µ(k, Q) ≤ 0∀ Qǫ[Qmin, Qmax]} (2.3.8)

The equations were tested with kmin = 0, kmax = 10, Qmin = 0, Qmax = 30 and ∆k = ∆Q = 0.01.
Figure 2.3.3a) to d) shows the results of this procedure in Busse balloons for different combination of
parameters: a) S = 1

4 , W = 1
4 , g = 1

8 , b) r = 0.1, W = 1
4 , g = 1

8 , c) r = 0.1, S = 1
4 , g = 1

8 and d)

r = 0.1, S = 1
4 , W = 2

5 . The patterns that are a stationary solution to the equation are labeled with
red and green. Only the patterns labeled with green are stable under all tested perturbations Q.

In a) the role of the bifurcation parameter r is shown. Only when r > 0 symmetry is broken and
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organized patterns become solutions to the equation, but not all of those patterns are stable.

In b) the role of the strength of the interaction is illustrated. At the top of the figure excitation is
strong, with interaction type I. In this case the stable region surrounds the continuous solution k = 0,
where all neurons are tuned to the same orientation. With a decrease of S, the interaction switches to
type II, and the stable region is a periodic pattern with positive wavenumber k > 0. With S = 0 there
is only inhibition and the interaction is type III. The stability region shrinks and then fully disappears
as the parameter approaches this value. In this case all ordered solutions are unstable.

In c) the transition from order to disorder is further clarified. At the bottom part of the figure the
interaction has a Mexican hat shape, making it a interaction type II. As the border W = 1

2 is crossed,
local inhibition gets stronger and the Mexican hat is inverted, making it a interaction type III. As in
b), it can be seen that as this value is approached the stable regions shrinks and disappears. In the
upper part of the figure organized patterns exist that are stationary solutions to the equation, marked
in red, but all of them are unstable.

In d) the role of the orientation selective excitatory interactions is depicted. The stable region is only
slightly modified even with high g. The selectivity of the interactions only plays a significant role
close to the phase transitions for patterns with a high wavenumber k ≫ 0 or with low wavenumber
k ≃ 0.

Taken together the Busse balloons show that the results of the analytical calculation of the stabil-
ity of the stationary patterns are solid. When the interaction is of type III all organized layouts of
orientation preference that are stationary are not stable under perturbations.

Phase diagram The phase diagram summarizes the Busse balloons by summarizing the results for
all patterns k with a given combination of parameters (i.e moving horizontally in the diagram) into a
single label. In principle there are 4 possible outcomes:

• Only solutions with low k approximately 0 are stable (Uniform phase).

• The uniform pattern is unstable but at least one periodic pattern with k > 0 is stable (Map
phase).

• Uniform and periodic patterns are both stable (Coexistence phase).

• Both uniform and periodic patterns are unstable (Putative Interspersed phase).

As we saw above a coexistence phase is excluded in the model. For the phase diagram S, W and g,
the mode ki in ks with the maximum growth rate λ(ki) is used. If ki = 0, the point in phase space
was labeled as uniform phase. If k 6= 0 the point was labeled as map phase. If ks was an empty set,
the point was marked as interspersed phase. The limits used are kmin = 0, kmax = 15, Qmin = 0,
Qmax = 30 and ∆k = ∆Q = 0.01. S was varied from 0 to 1 and W from 0.01 to 0.99 in steps of 0.01.
Three different g were used, g = 0, g = 1

8 and g = 1
4 .

Figure 2.3.3e) shows the resulting phase diagram, where the interspersed phase is red, the map phase
is green and the uniform phase is blue. The phase coloring is done with g = 1

8 . The phase transition

for g = 0 is overlaid with dashed lines and for g = 1
4 with dotted lines. For g = 0 the phase

transition corresponds to the transition between the interaction types, as was shown analytically.
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Figure 2.3.4: Numerical confirmation of the analytical results simulating a one dimensional cortex. a) to d) For
given parameters the shape of the interaction is plotted left from the simulations. Unselective interactions are
filled with gray and selective interactions are dashed. The layout of the one dimensional cortex is plotted with
the position of the neuron in the x-axis and the corresponding preferred orientation in the y-axis. The initial
condition is either a random arrangement of orientation preferences with low selectivity or a periodic pattern
that is a stationary solution to the dynamics. In all simulations r = 0.1. e) Reproduction of the phase diagram
using the simulations. With the given parameters a random initial condition is used and the system develops
for t = 500τ. At the end of each simulation the wavenumber of the pattern is tested and the corresponding
phase is assigned.

With increasing g the general shape of the phases remains constant and the the only changes are
observable close to the map - interspersed phase transition:

• When S ≃ 1
2 and W ≃ 1

2 the interaction is mostly a single Gaussian that flips from positive to

negative as the value W = 1
2 is passed from below. With increasing selectivity of the excitatory

interaction g, part of this vanishing non-selective excitation is maintained, extending the map
phase into the interspersed phase.

• When S <
1
2 and W ≃ 1

2 the fastest growing mode has a high wavenumber k ≫ 0. At some
point, this mode goes to infinity and all patterns become unstable. As can be seen from the
Busse balloon of g in d), by increasing g neurons with a similar orientation get closer together,
shifting the stability regime towards higher k. Therefore, the transition to the interspersed
phase where instability kicks in starts earlier with increasing g, extending that phase into the
map phase.

The phase diagram also confirms the analytical results. It is based on the first steps of the analysis of
the orientation dynamics. The next test will directly start from the definition of the tuning dynamics
in equation 2.1.4 and will use it to simulate the emergence of selectivity in a set of model neurons.
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Simulation for a one dimensional grid of neurons

In a second numerical approach the dynamical equation 2.1.4 was solved in a grid of N = 512 equally
spaced neurons in a box of size L = 2πσ with periodic boundary conditions. The tuning of each
neuron was described by a complex number, zi = Aie

i2θi . The size of the box was set to prevent
the interaction of neurons with their copy in the next box. N was controlled to be high enough to
have at least 12 neurons interacting within the shortest interaction width min(W, (1 − W))σ. The
discretization restricts the possible wave numbers to −N

2 < k <
N
2 + 1 with kǫZ. The characteristic

time constant of the simulations τ was defined as the reciprocal of the fastest growth rate from the
homogeneous state λ(kmax) = r, where r = 0.1 was used. All zi were updated simultaneously in each
discrete time step using a 4th-5th order Runge-Kutta-Fehlberg method. The error was controlled to
be maintained below 0.01r. Periodic conditions were imposed by solving the convolutions of the grid
of neurons with the kernels K and Kos in Fourier space. The equation was solved without additive
noise.

In figure 2.3.4a) to d) the stability of different initial conditions for given interaction parameters is
assessed. In each figure the shape of the interaction kernels is schematized. The one dimensional sys-
tem is plotted with the position of the neuron in the x-axis and the orientation in the y-axis. The initial
conditions were either randomly distributed unselective tuning zi =

1
100

√
rξ1ei2ξ2 , where ξ1ǫU [0, 1]

and ξ2ǫU [0, π] are uniformly distributed random numbers; or a noisy pattern with wave number k,

zi = A(k)eikxi + ξ3

100 ei2πξ4 , where ξ3ǫN [0, 1] and ξ4ǫU [0, π] are Gaussian and uniformly distributed
random numbers respectively. The stability of the initial patterns with the used interaction param-
eters matches the one predicted by the theory in figure 2.3.3b) and c). In figure 2.3.4a) unselective
random initial conditions lead to an ordered pattern of wavenumber k = 4, which is part of the stable
region in the corresponding Busse balloon. In comparison, k = 6 is a stationary solution with those
parameters, but is not stable and decays into a pattern with k = 4. In 2.3.4b) parameters are chosen
to have a interaction type I. Therefore random initial conditions lead to a pattern where all neurons
share the same preferred orientation. In 2.3.4c), in the interspersed phase, the selectivity is increased
from the random initial conditions (not shown), but no ordered pattern emerges. If the system is
started from a pattern with k = 6, which is a stationary solution according to the analytic treatment,
the pattern decays into a disordered layout. Figure c) is the one dimensional parallel to the simula-
tions in figure 2.1.1d) and e), where orientation selectivity increases but ordered layouts decay. As
with the two dimensional examples, a small addition of noise or longer simulations reduces the re-
maining organization from the ordered initial condition. Finally, figure 2.3.4d) shows that inhibition
alone can already produce interspersed patterns, as can be seen in the Busse balloon in figure 2.3.3e).

In figure 2.3.4e) the phase diagram is reproduced with simulations. For this neurons with randomly
distributed unselective tuning were used as initial condition as in a) to d). The development was sim-
ulated for t = 500τ and the wave number of the final pattern was detected by finding the maximum
of the power spectrum kmax. To label the pattern as ordered, the maximum should have at least twice
the power of the second highest mode and P(kmax) ≥ 1√

N
∑k 6=kmax

P(k). If kmax = 0 the point was

marked in phase space as uniform. If kmax 6= 0 the point was marked as map phase. If no wave num-
ber was found that matched the described conditions, the point was labeled as interspersed. S was
varied from 0 to 1 and W from 0.01 to 0.99, both in steps of 0.01. The selectivity of the interaction was
set to g = 1

8 . Using different values leaves the resulting phase diagram unchanged since very high
values of k are indistinguishable to interspersed patterns and are labeled as such. The results shown
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essentially recover the analytical phase diagram in figure 2.3.3e), maintaining the same general shape
of the different phases and the transitions. The transition between the map and the uniform phase is
not smooth because in some cases both k = 0 and k = 1 are stable and randomly one of them emerges.
As mentioned the interspersed phase is larger compared to the analytical results since close to the
map transition the stable ordered patterns have a high k and are indistinguishable to interspersed
layouts with the labeling method used.

Taken together, these results show the validity of the analytical conclusions. From the simulations
one can learn that depending on the interaction parameters the solution changes from ordered to
disordered, but only from the analytical calculations one can understand that the reason for this is
the instability for all ordered solutions for strong short-range inhibition.

2.4 Main conclusions from the order-parameter model

The simulations of the dynamical equation in figure 2.1.1 show that the model can generate both
types of layouts found in nature: pinwheel-rich quasi-periodic maps as in primates and carnivores,
and disordered arrangements of orientation preference as in rodents and lagomorphs. In both cases
the emerging layout is stable for very long simulations. The shape of the interaction between the
neurons determines the type of layout that is generated.

From the original model proposed by Wolf is is known that long-range orientation-selective inter-
actions are necessary to make the a quantitatively realistic map solution stable. Otherwise the map
decays into a pattern with a lower amount of Fourier modes and pinwheel density deviating from ex-
perimental observations (see figure 1.3.1). The results of this analysis applies to all dynamical models
that satisfy the imposed symmetries in equations 1.3.1 to 1.3.4. In any dynamical model for pattern
formation that doesn’t include this type of interactions pinwheel-rich maps might emerge initially,
but they won’t be stable and for longer simulations the pattern will decay to a structurally simpler
solution. This is the case in the elastic net model, as was first found in [22] and analyzed in detail in
[60].

From the analytical treatment and simulations of the generalized model it can be seen that strong
short-range inhibition generates orientation selective neurons, which are arranged disordered in
space. The interspersed pattern that emerges is mostly determined by the unselective interactions,
where orientation selective interactions only play a significant role close to the ordered-disordered
phase transition. From the analytical equations in the one dimensional cortex one learns that the
reason for the generation of the disordered pattern is that, with strong local inhibition, all ordered
periodic arrangements that are by symmetry solutions of the model are unstable, leaving only disor-
dered arrangements as solution.

In this model it is shown that the same conditions lead to the generation of interspersed patterns of
orientation selective neurons that are disordered in the cortical plane. In the next section the con-
dition of strong intra-cortical inhibition will be implemented in a correlation based model for the
emergence of orientation selectivity, developed by Miller [53]. The model is less abstract and has a
direct biological interpretation of the dynamical mechanisms involved. In this model it is shown that
if the conditions to generate interspersed patterns are satisfied, the result will be orientation selective
neurons that are disordered in space. Strong inhibition was also applied in the elastic net model by
Keil in his doctoral thesis [145] by removing the continuity term representing excitatory lateral con-
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nections and allowing only interactions through normalizing soft-competition, which is inhibitory
by definition. The removal of excitation in this model also leads to the formation of interspersed pat-
terns. The next part of the thesis will give a brief look at this model when quantifying the properties
of the disordered solutions.

In three completely distinct models for orientation preference development with very dissimilar
levels of abstraction the increment of local inhibition is found to generate spatially disordered ar-
rangements of orientation selective neurons. Biologically there is evidence for the existence of strong
intra-cortical inhibition in rodents, where genetical tools have made it possible to separately analyze
the role of different types of neurons in cortical function. In rodents inhibitory neurons are densely
connected to the neurons in their surroundings [120, 148], cortical responses to visual stimuli are
dominated by synaptic inhibition in awake state [136], the activation of a cortical neuron suppresses
the activity of lateral vicinity [149], and the increase in excitation triggered by visual stimulation
is followed by strong inhibitory conductance a few milliseconds later [150]. On the other hand, in
species with orientation maps the new genetical tools are not available at present and knowledge
about the excitation/inhibition ratio is limited. The available evidence is discussed in the final chap-
ter and appears to be in line with the prediction of substantially stronger local excitation than found
in rodents.

2.5 Strong intracortical inhibition in a LGN correlation based model

From the order-parameter model it was found that strong local intra-cortical inhibition makes all
ordered patterns unstable and disorganized layouts of orientation preference emerge in the system.
The equations are very abstract, modeling the pattern formation describing only one parameter of
the neuron tuning curves. Orientation selectivity is assumed to be the only relevant property by
construction. Following the principles of universality, the dynamical results of this abstract approach
should hold for a larger set of more general models that satisfy the the same symmetry conditions,
even if the dynamics are more complicated and not analytically tractable. In this section the previous
results are tested in a well known model for the development of oriented receptive fields of simple
cells [53].

2.5.1 Introduction to the model

The model is based on biological assumptions and was the first to give a dynamical perspective to the
Hubel and Wiesel concept of orientation selectivity emerging from selective sampling of ON-center
and OFF-center afferents from the lateral geniculate nucleus (LGN). The principle of the model is
depicted in figure 2.5.1a) and is introduced as follows:

• The system is composed of a two dimensional layer of V1 neurons, labeled with Latin letters
(x, y, z), and a two dimensional layers of LGN neurons, labeled with Greek letters (α, β), where
for every index in LGN there is an On-center and an Off-center cell.

• The connections between LGN and V1 neurons SON(z, α) ≥ 0 and SOFF(z, α) ≥ 0 are dynamic
and changes through Hebbian mechanisms: Correlated activity of the common input leads
to a reinforcement of the synaptic weight of the connection at the expense of weakening other



44 Chapter 2: Understanding the formation of interspersed layouts in visual cortical networks

Figure 2.5.1: Implementation of strong inhibitory intra-cortical interactions in a correlation based model [53]. a)
Sketch of the modeled system, consisting of a 2D layer of V1 neurons (x, y, z) and a 2D layer of LGN neurons
(α, β), where for every index in LGN there is a pair of On and Off-center cells. Neurons in V1 interact though
space dependent intra-cortical interaction I(x − y) and the correlation of the activity of neurons in LGN is
given by CON−ON(α − β), CON−OFF(α − β) and COFF−OFF(α − β). The synaptic connections between LGN
and V1 neurons is labeled as SON(z, α) and SOFF(z, α), and is spatially limited by the spread of interactions
given by the arbor function A(z − α). Only the connections SON(z, α) and SOFF(z, α) are dynamic and change
through Hebbian mechanisms. b) - e) The interaction functions are plotted with the used parameters in the
simulation: b) Arbor function, c) LGN correlation, d) intra-cortical interaction with strong excitation (type I)
and e) intra-cortical interaction with strong inhibition (type II). f) - h) Show the simulation results. In each
figure the receptive fields of two example neighboring neurons is presented, where red marks an increase in
interaction with On cells and blue with Off cells. Below is the histogram of orientation selectivity indices (OSI)
in V1, where OSI is defined in equation 2.5.1. The functional layout of V1 is presented where colors represent
preferred orientations as marked in the label below. f) The initial condition of the simulations: Connections
between V1 and LGN are randomly assigned as SON/OFF(x − α) = (1 + ξ1)A(x − α) where ξ1ǫN [0, 0.2] are
normally distributed random numbers. g) - h) Results of simulations after 90% of the V1 - LGN connections
have saturated. In g) the interaction type I was used. Orientation selectivity emerges and the pattern is ordered
in space. In h) the interaction type II was used, and although orientation selectivity develops, the spatial
organization of orientation preferences is lost. The results therefore confirm the implications of strong intra-
cortical inhibition as derived in the order-parameter model.
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synapses. As an example, the interaction strength between x and α (SON(x, α)) is affected by the
correlated activity between α and β ( CON−ON(α− β) and CON−OFF(α− β) ), since β is connected
to y with weights SON(y, β) and SOFF(y, β), and y to z through intracortical interactions I(x− y).

• The range and strength of the interaction between neurons in LGN and V1 is limited by the
arbor function A(z − α). The arbor function and the intra-cortical interaction I(x − y) are not
dynamic and remain fixed during the simulations.

• With the constructed model, simple receptive fields will form in the neurons in V1 when the
On and Off afferents are spatially segregated. This is achieved through a positive correlation
between On-On and Off-Off cells, clustering strengthened synapses from similar type of LGN
cell together, but a negative correlation between On-Off cells to spatially separate the clusters.

The correlation functions in the LGN will determine the formation of receptive fields, but how the
preferred orientations are ordered in space will depend on the intracortical interactions I(x − y). It
is important to notice that all the interactions are only distance dependent, and that the dynamics
are the same for all neurons in V1 and LGN independent of their index or type. This means that the
model satisfies the symmetry conditions that are needed for the previous results to apply. First the
original results from Miller will be replicated, where a Mexican hat or a simple positive Gaussian
was used for I(x − y). Then strong local inhibition between the neurons in V1 will be implemented
to study whether the layout of the pattern changes to a disorganized pattern as predicted by the
order-parameter model.

2.5.2 The equations of the model

As formulated in the previous section, the strength of the interaction between LGN and V1 cells de-
pends on the correlated activity between LGN neurons and its propagation to V1. The unconstrained
learning rule for a synapse between an On-cell α in LGN and a neuron x in V1 is

d

dt |U
SON(x, α) = λ A(x − α)∑

y,β

I(x − y)
[

CON,ON(α − β)SON(y, β) + CON,OFF(α − β)SOFF(y, β)
]

The learning rule for an Off cell is the same with indices On and Off interchanged. λ sets the learning
rate and can be varied during the simulations. To include competition between different inputs to
a cortical neuron, the strengthening of a synapse to a neuron is combined with a weakening of all
other synapses. As in [53] subtractive normalization of the total connection strength will be used.
The constrained dynamics are then

d

dt
SON(x − α) =

d

dt |U
SON(x − α)− ǫ(x)A(x − α)

where

ǫ(x) =
1

2 ∑β A(x − β) ∑
β

[
d

dt |U
SON(x, β) +

d

dt |U
SOFF(x, β)

]
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The arbor function between neurons in LGN and V1 is constructed to mimic the physical overlap of
the spread of LGN axons and V1 dendrites. Defining Circ(rA , x) as a circle of radius rA centered at
the neuron x in V1 and Circ(cArA, α) a circle centered at the neuron α in LGN, the arbor function is
the overlap of both circles

A(x − α) = Circ(rA, x) ∩ Circ(cArA, α)

The correlation between neurons in LGN of the same type is defined to have a Mexican hat shape

CON,ON = COFF,OFF = e
− |x|2

σ2
c − 1

γ2
c

e
− |x|2

γ2
c σ2

c

The Mexican hat is a plausible function for the correlation because a stimulus in the photoreceptor
that excites the bright/dark center region of one cell will be part of the surround of neurons a short
distance apart. If the neuron is of the same center-surround class, the neighboring neuron will be
anti-correlated. For opposite cell types, the correlation is scaled by half and inverted

COFF,ON = −1

2
CON,ON

Finally two types of intra-cortical interactions are defined. Type I follows the steps of the original
paper, writing the interaction as a positive (excitatory) Gaussian

ItypeI(x − y) = e
− |x−y|2

σ2
I

Type II flips the strength of the interaction using a negative (inhibitory) Gaussian

ItypeII(x − y) = a(x − y) e
− |x−y|2

σ2
I , a(0) = 1, a(x 6= 0) = −1

At ∆x = 0 the interaction is set to 1 such that selectivity in the receptive field can emerge. Otherwise
the synapses between neurons in V1 and LGN are not strengthened. The value of I(0) plays the same
role as the bifurcation parameter r in the order-parameter model.

2.5.3 Simulation results

Following the procedure in [53], the equations were simulated in a system of 32x32 neurons in V1
and two 32x32 On and Off layers in LGN with periodic boundary conditions. The used parameters
of the interaction functions are rA = 13, cA = 0.5, σc = 2, γc = 3, and σI = 3. Figure 2.5.1b) shows
the arbor function, where distance is given in units of the separation between two nearest neighbors.
Figure 2.5.1c) shows the correlation between LGN neurons with this choice of parameters . Figure
2.5.1d) and e) show the intra-cortical interactions type I and type II respectively. λ was set such that
the standard deviation of the synaptic changes was 0.01 in every integration step, and was bounded
by λmin = 0.01. Connections that saturate at SON/OFF(x − α) = 0 or SON/OFF(x − α) = smax A(x − α)
with smax = 4 are frozen for the rest of the simulation. The equation is numerically solved with a
three step method until 90% of the connections have reached their maximum or minimum values.
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The initial conditions are depicted in figure 2.5.1f). The strength of the synapses is initialized with
SON/OFF(x − α) = (1 + ξ1)A(x − α) where ξ1ǫN [0, 0.2] are normally distributed random numbers.
The receptive field of a neuron x in V1 will be determined by the subtraction of its On and Off affer-
ents for every point α in LGN. In the figure the receptive field of two example neighboring neurons
is shown, where red marks a surplus of On input and blue of Off input. For such initial conditions,
the receptive fields also exhibit random fluctuations around zero. The preferred orientation of the
neurons in V1 is defined as the angle where the presentation of a rotated sine grating to the receptive
field gives the maximum response. Numerically this is obtained by calculating the two dimensional
Fourier transform of the receptive field, finding the mode k with highest power and extracting its

orientation, θ = 1
2 arctan(

ky

kx
). Since the receptive fields are random in the initial condition, the lay-

out of orientation preference is also random. Using the value of the maximum response R(θn) for
n orientations in the interval 0 to 180, independent of their spatial frequency (i.e. the magnitude of
the mode k), the orientation selectivity index (OSI) of the neuron is defined as the magnitude of the
vector sum of the response divided by the total response

OSI =

∣∣∏n
i=1 R(θn)ei2θn

∣∣
∑

n
i=1 R(θn)

(2.5.1)

The value of the OSI is bounded by [0, 1]. When the response is very strong to only one orientation
the value approaches 1, and when the magnitude of the response is independent of the angle θ the
value approaches 0. Because the receptive fields are linear and of finite size, the neuron response to
any given orientation is never zero. This means that the values of OSI that are obtained are not as
high as in biological tuning curves, even if the response has a perfect cosine shape. In figure 2.5.1f) a
histogram of the selectivities of the initial condition is given. The values are low with a peak close to
zero.

Figure 2.5.1g) shows the results of a simulation using the intra-cortical interaction of type I, i.e. with
strong lateral excitation. After 90% of the connections have saturated, receptive fields with segre-
gated On and Off inputs are generated. The receptive fields have an increase orientation selectivity,
as is shown in the OSI histogram. As mentioned high values of OSI are not reached, but the distri-
bution skews towards higher values compared to the initial condition. The preferred orientation of
the neurons also cluster in space, where neurons with a similar orientation are closer to each other
and with smooth transitions between the orientation of neighboring neurons. This replicates the re-
sults obtained by Miller. The resulting pattern does not exhibit all spatial characteristics observed in
species with maps that are reproduced by the order-parameter model but qualitatively reproduces
a spatially continuous organization disrupted by pinwheels. A complete analysis of the organized
pattern that emerge for this type of interaction is given in the original paper [53].

In figure 2.5.1h) the type II interaction is implemented, i.e. strong intra-cortical inhibition. According
to the results of the order-parameter model, this type of interaction should make ordered solutions
unstable, but orientation selectivity is still expected to emerge from the system. The two example
neighboring receptive fields show that the On and Off inputs are segregated and oriented in space,
although their orientation is very different. According to the OSI histogram the cortical neurons in-
crease their orientation selectivity, similar to the case of excitatory interaction (type I). But in contrast
to the results with excitatory interaction, the preferred orientations are disordered in space. With
this kind of interaction, the neurons develop orientation selectivity, but they are embedded in an
interspersed pattern.
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The results of the implementation of intra-cortical inhibition in this well established model for the
development of orientation selectivity demonstrate the generality of the conclusions drawn from the
order-parameter model. This confirms the theoretical expectation that simple idealized models that
are analytically tractable can help to understand the dynamical principles of other more detailed and
biologically realistic approaches.
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Model for binocular neurons

It was recently shown that in binocular neurons of mice the preferred orientations for stimuli pre-
sented to each eye are not matched at the onset of vision but become matched only later in develop-
ment after visual experience [127]. As shown in figure 3.0.1a, at P20-23 the difference in orientation
preference between the tuning of inputs from each eye is broad. By P31-P36 the difference has de-
creased and is maintained until adulthood in P60-P90. The matching of orientation agrees with the
overall characteristics of plasticity in the visual cortex, where dark rearing prologues the critical win-
dow for the matching and monocular deprivation impairs the matching of the tuning only during
the critical period. For normal cortical development these results showed for the first time how
activity-dependent mechanisms change the tuning of the neurons to improve response properties.

This finding poses new questions about the nature and dynamics of activity-dependent mechanisms.
Every neuron has two sources of input that have to be dynamically regulated to have both orienta-
tion preferences matched: The interactions from the LGN, that are eye specific, and the interactions
inside the cortex, where no evidence of input-eye specific connections has been reported. Internal
mechanism can make the neuron sample from LGN fibers to match the orientation of the receptive
field to both eyes, but the interactions with other neurons in the cortex can pull the matching apart
by making the neuron resemble the tuning of its intracortical inputs. This effect would be specially
strong in the case of interspersed orientation arrangements like in the rodent, where close-by neurons
can have a very dissimilar orientation preferences.

In this chapter order-parameter models are generalized to include separate tuning in each eye. The
tuning of each neuron zi is split into zi,l and zi,r, as shown in figure 3.0.1b, where colors represent the
preferred orientation. The tuning to each eye is independently coupled internally for every neuron.
Both tuning parameters of a neuron are modified depending on a combination the tuning parameters
of neighboring neurons through intra-cortical interactions. The shape of the intra-cortical interactions
to use are similar to those described for the monocular model. For simplicity only unselective inter-
actions will be included (see figure 3.0.1c). The derived model is abstract, but as long as the order-
parameter approach is appropriate, it will provide a complete list of possibilities for the matching
dynamics. Necessary conditions to reproduce the experimental results can then be used to identify a
class of candidate models that can be used to predict further features of matching dynamics.

In this part of the thesis first, in the absence of intracortical interaction, the internal inter-eye coupling
terms necessary to increase the matching between zi,l and zi,r after the emergence of selectivity are
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Figure 3.0.1: Binocular neurons in the developing visual cortex of mice match the orientation preference for
inputs from each eye through activity dependent mechanisms. a) Soon after eye opening in P20-P23 orientation
selectivity has developed in the binocular neurons, but the difference between the preferred orientation to
stimuli coming from each eye is broad. b) In animals in P32-P36 this binocular miss-match is reduced and most
neurons encode the same orientation for inputs of each eye. c) Only through visual experience the difference
between the tuning is narrowed, as in dark-reared (DR) and monocular deprived (MD) animals in P32-P36
the binocular mismatch is not reduced. Adapted from [127]. d) To expand the model to binocular neurons,
each tuning is split in two parts representing the left and the right eye. e) For every neuron in the system both
tuning curves interact through internal coupling terms, independent of the lateral connections. For simplicity
only unselective intra-cortical interactions are taken into account.

found. Then intracortical interactions that generate disordered arrangements (type III connectivity)
are included. It is numerically shown that the increase in order by eye matching and the decrease
of order by generating an interspersed orientation layout can be simultaneously achieved with the
same dynamical equation.

3.1 Construction of the model

The aim is to construct the dynamics for the development of the tuning of inputs from each eye

∂tzi,l = F̂l [zl , zr]

∂tzi,r = F̂r [zl , zr]

Following the steps of the monocular model, the dynamics of the total tuning of each neuron shouldn’t
depend on its position or orientation, imposing a translation symmetry with operator T̂y

F̂l

[
T̂yzl , T̂yzr

]
= F̂l [zl(x + y), zr(x + y)] = T̂y F̂l [zl , zr]
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a rotation symmetry with operator R̂β =

(
cos (β) −sin (β)
sin (β) cos (β)

)

F̂l

[
R̂βzl , R̂βzr

]
= R̂βF̂l [zl , zr]

and a phase shift symmetry

F̂l[e
iϕzl , eiϕzr] = eiϕ F̂l [zl , zr]

The same symmetries apply to F̂r. Furthermore, for each neuron, the dynamics shouldn’t depend on
which eye each tuning curve is representing, making the dynamics equivariant under eye inversion

F̂l [zl , zr] = F̂r [zr, zl ] (3.1.1)

Finally, if neuron zi is interacting with neuron zj, an eye inversion in neuron j, [zj,l , zj,r ] → [zj,r , zj,l ],
shouldn’t have an effect on the dynamics of neuron i. This imposes an eye inversion symmetry

F̂l

[
zi,l, zi,r, zj,l , zj,r

]
= F̂l

[
zi,l , zi,r, zj,r, zj,l

]
= F̂l

[
zi,r, zi,l, zj,l , zj,r

]

and similarly for F̂r. This last symmetry represents that the intra-cortical interactions are not selective
to the response of the neurons to the stimulation from the left or the right eye.

To search for coupling terms in the dynamical equation satisfying these constraints the most general
energy of the system is written down up to fourth order including only terms that are invariant under
the symmetries. As a reference, from the monocular model using ∂E

∂z̄ = − ∂z
∂t the energy is

E = −
N

∑
i=1

(
r|zi|2 + z̄i

1

N

N

∑
j=1

K(xi − xj)zj −
|zi|4

2

)

The energy of the binocular model will depend on the representation of each eye. For transparency
of the construction the energy will be split in intra-neuron coupling terms and inter-neuron coupling
terms.

For the intra-neuron coupling terms, up to fourth order, all the possible ways of combining the left
and right eye tuning in each neuron and obtain a phase shift invariant energy are

zi,l zi,r zi,l zi,l zi,l zi,r zi,l zi,l zi,r zi,r zi,l zi,r zi,r zi,r

zi,l zi,r zi,l zi,l zi,l zi,r zi,l zi,l zi,r zi,r zi,l zi,r zi,r zi,r

zi,l zi,l zi,r zi,r

Some of those terms have to be combined in order to satisfy the energy invariance under eye inver-
sion. Parametrizing with α, γ, δ and ǫ all the combination of terms, the most general intra-neuron
coupling energy up to fourth order is
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Eintra−neuron = −
N

∑
i=1

[
r
(
|zi,l| 2 + |zi,r| 2

)− 1

2

(
|zi,l | 4 + |zi,r| 4

)]

−α
N

∑
i=1

(zi,lzi,r + zi,rzi,l)

−γ
N

∑
i=1

(
zi,rzi,l |zi,l | 2 + zi,lzi,r |zi,r| 2 + zi,rzi,l |zi,l | 2 + zi,lzi,r |zi,r| 2

)

−δ
N

∑
i=1

(
|zi,l| 2 |zi,r| 2

)
,

−ǫ
N

∑
i=1

(
zi,l

2zi,r
2 + zi,r

2zi,l
2
)

For the inter-neuron coupling the quadratic terms of the energy that are invariant under phase-shift
are easy to enumerate

zi,l zj,l zi,l zj,r zi,r zj,l zi,r zj,r

zi,l zj,l zi,l zj,r zi,r zj,l zi,r zj,r

Terms maintaining simultaneous and independent eye inversion symmetry are joined and parametrized
with β

E
(2)
inter−neuron = −β

N

∑
i=1

(
(zi,r + zi,l)

1

N

N

∑
j=1

K(xi − xj)
(
zj,l + zj,r

)
+ c.c

)

Since the complex conjugate is obtained by changing the neuron index i ↔ j and this doesn’t modify
the energy, both terms are real and equivalent, such that one of them can be dropped.

Inter-neuron coupling terms of fourth order are more abundant. There are 82 ways of combining the
left and right tuning of neuron i and j and obtain a phase shift symmetric energy. Simultaneous and
independent eye inversion symmetry combines this permutations using 29 parameters, where some
of the terms are complex conjugates of each other and have to be joined to make the energy real.

Terms were neuron j has combinations of the left and right eye tuning (e.g. zj,lzj,r or zj,l

∣∣zj,r

∣∣2) are
not to be included because they lead to a cancellation of inter-neuron interactions with monocular
neurons, which is unlikely to happen in the cortex. Examples of possible fourth order terms are

−∑
N
i,,j=1 K(xi − xj)

(
(zi,r + zi,l)

(
zj,l

∣∣zj,l

∣∣2 + zj,r

∣∣zj,r

∣∣2
)
+ c.c

)

−∑
N
i,,j=1 K(xi − xj)

((
|zi,r|2 + |zi,l |2

) (∣∣zj,l

∣∣2 +
∣∣zj,r

∣∣2
))

−∑
N
i,,j=1 K(xi − xj)

((
z2

i,r + z2
i,l

) (
z2

j,l + z2
j,r

))

−∑
N
i,,j=1 K(xi − xj)

(
(zi,lzi,r + zi,lzi,r)

(∣∣zj,l

∣∣2 +
∣∣zj,r

∣∣2
))

In this study the focus is on the role of the intra-neuron interactions in matching the binocular tuning
of the neurons, such that only the quadratic inter-neuron energy term is used. The parameter β only
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scales the interaction kernel, such that without loss of generality it can be set to 1
2 to represent an

average of the tuning of neuron j. Taken together, the dynamics of the tuning for the right eye are

∂tzi,r = r zi,r − zi,r |zi,r| 2 +
1

N

N

∑
j=1

K(xi − xj)

(
zj,l + zj,r

2

)

+α zi,l + γ
(
2zi,l |zi,r| 2 + zi,l |zi,l| 2 + zi,l zi,r

2
)
+ δ zi,r |zi,l| 2 + ǫ zi,r zi,l

2 (3.1.2)

The equation for the left eye tuning is obtained by interchanging the indices r and l.

3.2 Stationary solutions and their stability

Next all inter-neuron interaction terms will be set to zero and the effect of the intra-neuron coupling
will be investigated. What are the conditions for the tuning of each eye to become matched? When
does the matching occur? Are there other attractor states? To answer these questions, the existence
and stability of different solutions to the equations will be analyzed. Since individual neurons are
considered the index i will be dropped. If [zr0, zl0] is a stationary solution to both equations, the linear
stability matrix of a general perturbation [zrp, zlp] is

∂t

(
zrp

zlp

)
= M1

(
zrp

zlp

)
+ M2

(
z̄rp

z̄lp

)

with

M1 =

(
r − 2 |zr0| 2 + 2γzl0 z̄r0 + 2γzr0 z̄l0 + δ |zl0| 2 α + 2γ

(
|zr0| 2 + |zl0| 2

)
+ δ zr0 z̄l0 + 2ǫzl0 z̄r0

α + 2γ
(
|zr0| 2 + |zl0| 2

)
+ δ zl0z̄r0 + 2ǫzr0 z̄l0 r − 2 |zl0| 2 + 2γzr0 z̄l0 + 2γzl0 z̄r0 + δ |zr0| 2

)

M2 =

( −z2
r0 + 2γzl0zr0 + ǫz2

l0 γz2
l0 + γz2

r0 + δzl0zr0

γz2
r0 + γz2

l0 + δzr0zl0 −z2
l0 + 2γzr0zl0 + ǫz2

r0

)

To obtain the growth rate of the perturbation the eigenvalues of M1 and M2 have to be found simul-
taneously. For this the system is represented using a 4x4 real matrix

∂t




zrp

zlp

z̄rp

z̄lp


 =

(
M1 M2

M̄2 M̄1

)



zrp

zlp

z̄rp

z̄lp


 (3.2.1)

The parameters α, γ, δ and ǫ determine the existence of a stationary solution [zr0, zl0]. To check for its
stability the values of the solution have to be inserted in M1 and M2 in equation 3.2.1 and the eigen-
values of the matrix calculated. The parameters α, γ, δ and ǫ will then determine if the eigenvalues
are negative or positive, meaning that the stationary solution is stable or unstable respectively.

The conditions for the existence and stability of the following solutions will be checked:
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• Unselective state, with both zr0 = zl0 = 0.

• Monocular orientation selective state, with zr0 = Aei2θr and zl0 = 0 (or vice versa).

• Binocular orientation selective state, with zr0 = Aei2θ and zl0 = Aei2(θ+φ) , where both selectiv-
ities are equal but the preferred orientations are potentially shifted by a phase φ.

3.2.1 Unselective state

Conditions for stationarity

The unselective state [zr0 = 0, zl0 = 0] always exists due to the symmetries of the system, indepen-
dent of the choice of parameters.

Conditions for stability

To calculate the stability of this stationary state [zr0 = 0, zl0 = 0] is inserted in equation 3.2.1 which
simplifies to

∂t

(
zrp

zlp

)
=

(
r α
α r

)(
zrp

zlp

)

The eigenvalues of the perturbation are

λ1 = r + α

λ2 = r − α

As in the monocular model, r is the bifurcation parameter, where for r > 0 symmetry is sponta-
neously broken independent of the value of α and orientation selectivity emerges at least for one eye.
If r < 0, the bifurcation is shifted to |r| < |α|.

3.2.2 Monocular orientation selective state

Conditions for stationarity

Now solutions will be checked where neurons are orientation selective to the input of one eye only,
[zr0 = zr, zl0 = 0]. Inserting this state in the tuning dynamics in equation 3.1.2 and its left eye
equivalent leads to

∂tzr =
(
r − |zr |2

)
zr

∂tzl =
(
α + γ|zr|2

)
zr
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Therefore, the conditions for this solution to be a stationary are |zr |2 = r and either α = γ = 0 or
r = − α

γ . For the model to produce monocular selective neurons either some intra-eye coupling terms
are not to be included, or they need to be balanced depending on the selectivity of the monocular
tuning. This requirement for parameter tuning would be relaxed if we allow the selectivities for the
“weak” eye to be non-zero but small, a case that we do not consider in the following for simplicity.

Conditions for stability

To calculate the stability of the monocular selective state [zr0 = zr, zl0 = 0] with |zr |2 = r, the state is
inserted in the dynamics for a general perturbation in equation 3.2.1. The eigenvalues of the pertur-
bation are

λ1,2 =
1

2

(
r(1 + δ − ǫ)±

√
(4γ2 + (1 + δ − ǫ)2) r2 + 4α (α + 2rγ)

)

λ3,4 =
1

2

(
r(−1 + δ + ǫ)±

√
(36γ2 + (3 + δ + ǫ)2) r2 + 4α (α + 6rγ)

)

• With the first choice of parameters for stationarity, α = γ = 0 the conditions to have all λ1,2,3,4 ≤
0 and therefore the solution stable are

δ − ǫ ≤ −1

δ + ǫ ≤ −1

This means that the stability of this solution requires nonzero coupling between the eyes. Fur-
thermore, since adding both conditions leads to δ ≤ 1, weak coupling makes the monocular
orientation selectivity unstable. The larger δ, the larger the range of ǫ where the solution is
stable.

• With the second choice of parameters, |zr |2 = r = − α
γ , the conditions to have all λ1,2,3,4 ≤ 0 are

δ − ǫ ≤ −1

−1 + δ + ǫ ±
√
(3 + δ + ǫ)2 + (4γ)2 ≤ 0

This is an extended case of the previous condition where at least 3 of the 4 parameters are
non-zero and strong coupling is necessary.

3.2.3 Binocular orientation selective state

Conditions for stationarity

The third solution to examine are neurons with equal selectivity Ar = Al in both eyes but potentially
different orientation preferences, [zr = Aei2θr , zl = Aei2θl ]. Furthermore, since the interest is mostly
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in the difference between the preferred orientations, the notation [zr = Aei2θ , zl = Aei2(θ+φ)] can
be used. Inserting this into the tuning dynamics in equation 3.1.2 and simplifying after making the
amplitude stationary, ∂A

∂t = 0 leads to

∂ti2θ = r + α ei2φ + |A|2
(
−1 + γ

(
3ei2φ + e−i2φ

)
+ δ + ǫ ei4φ

)

∂ti2(θ + φ) = r + α e−i2φ + |A|2
(
−1 + γ

(
3e−i2φ + ei2φ

)
+ δ + ǫ e−i4φ

)

For this solution to be stationary, both ∂ti2θ ≡ 0 and ∂ti2(θ + φ) ≡ 0. Each equation determines
the selectivity the neuron must have for this solution to be stationary for a given orientation θ and
orientation offset φ

|A|2 =
r + αei2φ

1 − γ
(
3ei2φ + e−i2φ

)
− δ − ǫei4φ

(3.2.2)

The conditions on the parameters are therefore that the right hand side of equation 3.2.2 is real and
positive.

Setting both dynamical equations to zero and subtracting them the conditions for the orientation
offset to be stationary are obtained

− α sin (2φ)− 2γ|A|2 sin (2φ)− ǫ|A|2 sin (4φ) = 0 (3.2.3)

With no restriction on the choice of interaction parameters, the orientation difference between the
neurons in the stationary state are

{
φ = 0, φ = ±π

2

}
. If the choice of parameters includes α = γ = 0,

the stationary orientation differences extend to
{

φ = 0, φ = ±π
2 , φ = ±π

4

}
. If all coupling parame-

ters are set to zero and r > 0, the binocular selective state is stable independent of the orientation
shift φ, since in this case the tuning curves are not coupled and the orientation offset is irrelevant.
Similarly, when only δ 6= 0 the binocular state is stable, but φ is marginal since it doesn’t play a role
in the orientation dynamics. Other solutions for φ with non-zero parameters are not possible since
the right hand side of equation 3.2.2 would not be real. An orientation offset φ = 0 means that the
tuning curves are matched, φ = ±π

2 means that the preferred orientation of inputs from each eye is
orthogonal, and φ = ±π

4 means oblique preferred orientations between the eyes.

Conditions for stability

To calculate the stability of binocular states with orientation offset φ and selectivity |A|2, the solution
[zr = Aei2θ , zl = Aei2(θ+φ)] is inserted in the general stability matrix in equation 3.2.1 and the condi-
tions on the parameters for the eigenvalues to be negative are calculated. Each case will be treated
separately.

• Orientation offset φ = 0

The stationary selectivity for this solution in equation 3.2.2 is |A|2 = r+α
1−4γ−δ−ǫ . The eigenvalues of

the perturbation matrix are
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λ1 = 0

λ2 = −2(r + α)

λ3 =
−2(r(1 + 2γ + δ + ǫ)− 2α(−1 + γ))

1 − 4γ − δ − ǫ

λ4 =
−2(2r(γ + ǫ) + α(1 − 2γ − δ + ǫ))

1 − 4γ − δ − ǫ

The first eigenvalue is zero because it represents a perturbation along the phase shift symmetry. It will
appear in the eigenvalues for all other orientation offsets. For the second eigenvalue to be negative,
the condition r + α > 0 is imposed. This also imposes that the denominator of the selectivity must be
positive, such that 1 − 4γ − δ − ǫ > 0. This simplifies the conditions for λ3,4 ≤ 0 to −r(1 + 2γ + δ +
ǫ) + 2α(−1 + γ) ≤ 0 and −2r(γ + ǫ)− α(1 − 2γ − δ + ǫ) ≤ 0.

• Orientation offset φ = ±π
2

The stationary selectivity in this case is |A|2 = r−α
1+4γ−δ−ǫ . The eigenvalues of the perturbation matrix

are

λ1 = 0

λ2 = −2(r − α)

λ3 = 2r − 4(r − α)(1 + γ)

1 + 4γ − δ − ǫ

λ4 =
2(2r(γ − ǫ) + α(1 + 2γ − δ + ǫ))

1 + 4γ − δ − ǫ

As with the previous case, to have the second eigenvalue negative the condition r − α > 0 is imposed
and therefore the denominator of the amplitude must also be positive, imposing 1 + 4γ − δ − ǫ > 0.
The other conditions to have negative eigenvalues simplify to r(2γ − (1 + δ + ǫ)) + 2α(1 + γ) ≤ 0
and 2r(γ − ǫ) + α(1 + 2γ − δ + ǫ) ≤ 0

• Orientation offset φ = ±π
4

For φ = ±π
4 to be a stationary solution the condition α = γ = 0 has to be satisfied. The selectivity of

the state by inserting in equation 3.2.2 is |A|2 = r
1−δ+ǫ . The eigenvalues of the perturbation are

λ1 = 0

λ2 = −2r

λ3 =
4rǫ

1 − δ + ǫ

λ4 =
r(−2 − δ + ǫ)

1 − δ + ǫ

Since the second eigenvalue imposes r > 0, the condition 1 − δ + ǫ > 0 must be satisfied to have
the selectivity positive. The other conditions to have negative eigenvalues simplify to ǫ ≤ 0 and
−δ + ǫ ≤ 2. Two conditions can be combined into −1 < −δ + ǫ ≤ 2.
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3.3 Single parameter conditions for late orientation preference matching

A model where the neurons develop orientation selectivity for both eyes with matched orientation
can be constructed with many combinations of parameters. In this work priority is given to simple
models with a small amount of parameters. Therefore, solutions on the axes of the model parameter
space will be calculated, i.e. only one non-zero parameter at the time will be used. For simplicity
r > 0 as in the monocular model will be assumed. For each solution the single parameter conditions
for stability are as follows:

• Unselective state:

· Never stable with r > 0

• Monocular orientation selective state:

· δ ≤ −1

• Binocular orientation selective state with φ = 0:

· α > 0

· 0 < γ <
1
4

· 1 < δ < 1 (φ is marginal, so φ = 0 is stable )

· 0 < ǫ < 1

• Binocular orientation selective state with φ = ±π
2 :

· α < 0

· − 1
4 < γ ≤ 0

· 1 < δ < 1 (φ is marginal, so φ = ±π
2 is stable )

· 0 < ǫ < 1

• Binocular orientation selective state with φ = ±π
4 :

· −1 < ǫ < 0

· 1 < δ < 1 (φ is marginal, so φ = ±π
4 is stable )

These results are summarized in figure 3.3.1a), where the change of the stable solution as each single
parameter is varied and the others are set to zero is plotted. The binocular selective state with ori-
entation offset φ = 0 can be achieved in models using every single parameter independently, but in
some of those cases the solution is shared with other stable offsets. The model with −1 < δ < 1 is
discarded because the offset φ is marginal. The model with 0 < ǫ < 1 is also discarded because the
stability is shared with the offset φ = ±π

2 . Finally, models with α > 0 have the coupling between the
tuning of each eye in the linear term, so although matched neurons are the only stable solution, this



3.4 Including spatial interaction 59

happens at the same time as orientation selectivity is developing. Since this contradicts the experi-
mental findings reported at the beginning of this part of the thesis, models with this parameter are
also discarded. Taken together, the only single parameter model for late orientation matching is

∂tzi,r = r zi,r − zi,r |zi,r | 2 + γ
(
2zi,l |zi,r | 2 + zi,l |zi,l | 2 + zi,l zi,r

2
)

with 0 < γ <
1

4

The validity of the previous results on the single parameter models are checked numerically. For
this the inter-neuron interactions are set to zero and equation 3.1.2 is numerically solved. Since for
individual neurons the dynamics in equation 3.1.2 is independent of their distribution in space, the
system is solved with a vector of 1024 sets of tuning pairs [zi,l , zi,r]. The bifurcation parameter is set to
r = 0.1 and the system is simulated for 100τ, where τ = 1

r sets the timescale for emergence from the
unselective state. The dynamical equation is integrated using a 4-5th order Runge-Kutta-Fehlberg
method, where the error of the integration is kept below 10−2r. The initial condition are neurons
with randomly distributed tuning zi,r = 1

100

√
rξ1ei2ξ2 and zi,l =

1
100

√
rξ3ei2ξ4 , where ξ1,3ǫU [0, 1] and

ξ2,4ǫU [0, π] are sequences of uniformly distributed random numbers. Figure 3.3.1b) show the results
of the simulation for different choices of interaction parameters. In each figure for different time
points of the simulation the mean selectivity of the tuning of each eye is plotted at the left and the
distribution of the absolute orientation offset is plotted at the right. The selectivity is normalized by
the maximum selectivity achieved by any tuning after 100τ.

The simulations validate the analytical results. As mentioned with α > 0 the matching occurs before
selectivity develops. For the monocular selective state with δ ≤ −1 the mean selectivity for each eye
is half of the maximum, meaning that approximately half of the neurons are tuned only to one eye.
This can be read from the mean absolute difference in selectivities of left and right tuning, which
reaches the maximum value. In this parameter regime the selectivity first increases in both tuning
curves, but then the coupling becomes strong and one of the selectivities is reduced to zero. These
results are representative examples; different values for the parameters can be chosen leading to the
same behavior as long as parameters are in the calculated ranges.

3.4 Including spatial interaction

Using the analytical and simulation results without intra-cortical interactions, equation 3.1.2 reduces
to

∂tzi,r = r zi,r +
1

N ∑
j

K(xi − xj)

(
zj,l + zj,r

2

)
− zi,r |zi,r| 2 + γ

(
2zi,l |zi,r| 2 + zi,l |zi,l | 2 + zi,l zi,r

2
)

The unselective interaction kernel defined in the monocular model will be used,

K(xi − xj) =
S√

2πWσ
e
− (xi−xj)

2

2W2σ2 − 1 − S√
2π(1 − W)σ

e
− (xi−xj)

2

2(1−W)2σ2

where S and 1 − S describe the strength of excitation and inhibition respectively and Wσ and (1 −
W)σ their range. Using this equation, the coexistence of eye matching and disordered layouts will
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Figure 3.3.1: Results of the binocular model without intra-cortical interactions. a) The analytical results for
single parameter models are presented graphically. As each parameter is individually varied and the rest is set
to zero different solutions become stable. The only parameter regime where late binocular selectivity matching

occurs and all other solutions are unstable is with 0 < γ <
1
4 , marked in red in the figure. b) Simulation of

a system of 1024 neurons with r = 0.1 and different choices of interaction parameters. For two time points
of the simulation the mean selectivity of the left eye and right eye tuning is plotted, where the selectivity is
normalized by the maximum selectivity achieved by the neurons in the simulation. For δ = −1.1 the mean
absolute difference between left and right eye tunings is also plotted. Next to it is a histogram of the fraction
of orientation offsets between the left and right eye tunings. The simulations validate the analytical results.
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be numerically investigated. A grid of 128x128 neurons is simulated in a box of length L = 2πσ
with periodic boundary conditions. The numerical integration method and initial conditions are the
same as in the simulations without intra-cortical interactions. Using the parameters r = 0.1, σ = 1,
S = 0.25, W = 0.75 and γ = 0.7 r the system is developed for 1000τ. The results are not significantly
modified with a different choice of S, W and γ as long as the interactions meet the requirements to
generate an interspersed pattern and 0 < γ <

1
4 to obtain late orientation matching.

Figure 3.4.1 shows the results of an example simulation. In figure a) the development of the selectivity
of the left eye tuning in gray and right eye tuning in black for one example neuron is shown. In both
tuning curves orientation selectivity emerges from the unselective state after 1τ and then saturates,
making it a binocular neuron. In figure b) the development of the orientation for the left and right
eye is plotted, where the initial orientation of the left neuron is defined as zero. Comparing both
figures a) and b) it can be observed that the matching of the preferred orientation for this neuron
happens only after the onset of selectivity. Figure c) shows the mean orientation difference between
the neurons of the system in time. It shows that the offset is only reduced once the selectivity has
developed. Taken together, figure a) to c) show that the late matching of the tuning curves also takes
place when intra-cortical interactions are present.

Figure 3.4.1d ) shows the orientation layout at three time points of the simulation. The tuning at the
left and right eye inputs are labeled with colors, where the preferred orientation is encoded with hue
and the selectivity with brightness. In the initial condition the neurons have a low selectivity and the
orientation for each eye is random. At 10τ the selectivity has increased, but the preferred orientations
remain different from each other. Only later in development the orientations are matched, but no
spatial order in the orientation layout emerges. This shows numerically that the matching of the
tuning for inputs to both eyes is not impaired by the presence of an interspersed pattern.

The detailed spatial structure of the interspersed pattern as seen in the monocular model doesn’t
change, but compared to it the dynamics are very different. Figure 3.4.1e) shows in red the average
absolute change of the orientation of neurons in the monocular model with respect to the initial
condition. Since the initial condition is already disordered, neurons only change their orientations
by a few degrees (see chapter 4). In the binocular model on the other hand, neurons have to change
their tuning much more because the preferred orientations have to be matched and the interspersed
pattern kept simultaneously. In the figure this translates into a much higher mean absolute change
in orientation, which starts after the onset of selectivity and approaches 22.5 degrees, which is the
mean shift the neurons have to undergo to match an average difference of 45 degrees between two
randomly drawn orientations.

That the interspersed pattern is maintained after such a high orientation change is an argument that
the layout is determined dynamically by activity dependent mechanisms and is not predefined by
genetic or structural cues [116, 117].

3.5 Predictions in a PSD-95 knock-out experiment

The model with parameters 0 < γ <
1
4 and β = 1 reproduces the experimental results described in

the introduction. Can the model also predict the outcome of a proposed experiment?

Postsynaptic density protein 95 (PSD-95) is the best characterized of the synaptic PDZ proteins [151].
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Figure 3.4.1: Results of the binocular model including intra-cortical interactions. a) and b) Plot of the selectivity
and the orientation preference for both eyes of one example neuron for r = 0.1, σ = 1, S = 0.25, W = 0.75
and γ = 0.7r. With that choice of eye-coupling parameters, the neuron is binocular with matching orientation
preference, and the matching occurs after the emergence of orientation selectivity. c) Orientation offset between
the tuning of each eye in the population. The value only decreases after the development of selectivity. d)
Spatial layout of binocular orientations. The tuning is encoded with colors, where the hue is the preferred
orientation and the brightness the selectivity. The orientations are matched after the onset of selectivity and
the disordered state is maintained. f) Mean absolute change of orientation of the network for the binocular and
monocular model. In the binocular case the neurons have a higher change of their preferred orientation since
the tuning for each eye has to be matched.

It determines the size and strength of excitatory synapses by organizing glutamate receptors and
its associated signaling proteins. Between many other functions, PSD-95 plays an important role in
synaptic plasticity. For example, it promotes spine formation and growth through interactions with
synaptic RAS GTPase-activating protein and promotes cell adhesion and development through in-
teractions with neuroligin. PSD-95 clusters the N-Methyl-D-aspartic acid (NMDA) receptor and is
responsible for its functional localization. An over-expression of PSD-95 in mice increases the magni-
tude of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptor associated ex-
citatory post-synaptic currents (EPSC), mimicking long term potentiation (LTP) by converting silent
synapses into functional. PSD-95 knock-out mice, on the other hand, have a reduced AMPA/NMDA
EPSC ratio, while the strength of inhibitory post-synaptic currents (IPSC) is maintained. In those
mutants the number of silent synapses (i.e. with decreased functional AMPA receptors) is increased
and maintained into adulthood [152].

It is shown that in PSD-95 knock-out mice the orientation selectivity of neurons doesn’t reach normal
levels [153]. Recent findings, on the other hand, show that in PSD-95 knock-out mice juvenile ocular
dominance plasticity is maintained into late adulthood [154]. That even with a prolonged critical
period the orientation selectivity of the neurons doesn’t fully mature is intriguing, specially because
it was shown that this period determines the temporal window where the orientation of the left and
right eye tunings are matched [127].
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The interplay between ocular dominance and orientation selectivity plasticity in those knock-out
mice is a good experimental set up to test the predictive power of the dynamical matching model.
What is the impact of the deletion of PSD-95 in the preferred orientation matching between the eyes?

3.5.1 Tuning of the model

To predict the degree of binocular orientation matching in a PSD-95 knock-out, first the model has to
be tuned to reproduce the behavior of the dynamics found in the experiments.

• Wild type levels of binocular matching

If the equations are solved without noise, the matching between the orientations will be perfect,
independent on the choice of parameters in the valid range. Experimentally there is a distribution
of binocular orientation mismatch even in late adulthood [127]. Therefore, noise in the simulation is
included, where the noise input to the left eye is correlated to the noise input to the right eye with
strength c.

∂tzi,r = F[zr, zl ] + c ση1(t) +
√

1 − c ση2(t)

∂tzi,l = F[zl , zr] +
√

1 − c ση1(t) + c ση2(t)

where η1 and η2 are Gaussian white noise with zero mean and noise intensity σ. A choice of param-
eters where the final distribution of orientation offset matches the experimental findings is

r = 0.1 c = 0.1 σ = 0.5 10−3 γ = 0.3 r

• Changes in the degree of plasticity in the critical period

In the model the dynamics are time independent. To include temporal changes in the speed of the
dynamics of each tuning curve, the time dependency is included in the time-constant τ

∂tzi,r =
1

τ(t)
F[zr , zl ]

∂tzi,l =
1

τ(t)
F[zl , zr]

Having a time dependent time-constant is inconvenient for the injection of noise in the equation.
Without further modification, as the time step is varied the noise statistics remain constant and the
diffusion coefficient doesn’t reflect the speed of the dynamics. A simple solution for this is to solve
the equation with constant time step and link the time in the simulation t in units of 1

r with the real
time T in days using

t =

ˆ t

0

1

τ(T)
dT (3.5.1)
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The smaller the time constant, the longer the equations have to be simulated to represent the same
time T. The inverse of the time-constant represents therefore the level of plasticity.

The variations in plasticity found in the critical period [17] is modeled as the difference of two expo-
nential functions

τ−1(T) = B + A
(

e−
T
F − e−

T
R

)

where B is the basal plasticity level, R the raise of plasticity and F the fall. The parameter A normal-
izes the level of plasticity to reach a maximum of 1

A =
1 − B

(
R
F

) R
F−R −

(
R
F

) F
F−R

For the wild type the parameters chosen are

R = 40 F = 70 B = 0.25

The resulting curve is plotted in green in figure 3.5.1a). The time T is discretized such that equation
3.5.1 becomes a cumulative sum, and the size of the time bins ∆T is tuned such that the dynamics of
the matching parallels the time course in the experiments. The value used is ∆T = 0.7. To emulate
the prolonged critical period for the PSD-95 knock-out, the parameters of the plasticity are changed
to

R = 15 F = 1000 B = 0.25

The resulting curve is platted in red in figure 3.5.1a).

• Decrease in the orientation selectivity in PSD-95 knock-out

The expression for the selectivity of neurons in the γ 6= 0 model is obtained from equation 3.2.2
|A|2 = r

1−4γ . The 1 in this equation comes from the cubic term zi,r |zi,r| 2 in the dynamical equation.

By scaling this term with the parameter q, the amplitude becomes |A|2 = r
q−4γ . An increase in q leads

to a decrease in the final selectivity of the neurons. For the wild-type simulations the value used is
q = 1 and for the knock out q = 2.

3.5.2 Numerical results

A two dimensional system of 128x128 neurons in a box of size L = 2πσ with periodic boundary
conditions was simulated using the modifications described and with lateral interactions given by
S = 0.3, W = 0.7 and g = 0. The initial conditions were neurons with random orientation preference
and low selectivity. The equation was solved using a stochastic Runge-Kutta method [155, 156]. The
results of the simulation are plotted in figure 3.5.1b) to f). Figure b) and c) show the development of
the left and right eye tuning for 2 neurons (light and dark colors) in the wild type (green) and knock-
out (red) simulations. Straight lines represent the left eye tuning, dotted lines the right eye. In both
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Figure 3.5.1: Predictions of the model in a PSD-95 knock-out experiment. a) Time course of the plasticity used
in wild type (green) and knock-out (red) simulations. In PSD-95 high levels of plasticity are maintained into
adulthood [154]. b)and c) Development of the orientation preference of the left and right eye tuning for two
example neurons in the simulations (dark and light color). Although the orientation offset is decreased, the
level of matching and the preferred orientation fluctuates. d) to f) Histogram of the orientation offset for
different time points of the simulation. d) At P20 the neurons are orientation selective (not shown) but the
level of matching is low. e) At P35 the wild type and knock-out have reached the maximum degree of matching
given by the noise levels, where the offset has a wider distribution in the knock-out. f) Even with a prolonged
period of high plasticity the levels of matching in the knock out are not increased.

cases the preferred orientations are brought together, but the level of matching and the preferred
orientation fluctuates in time. This fluctuation is larger in the knock-out example. In figures d) to
f) a histogram of the orientation offset between the eyes at different time points of the simulation
is plotted. The wild type is plotted in green and the knock-out in red. At P20, where selectivity
already developed (not shown), the offset between the neurons is large in both simulations. At P35
the matching between the orientation increases, but the spread of offsets is higher for the knock-out.
This difference is maintained into adulthood in P90, even if the levels of plasticity in the knock-out
simulations was increased in this period.

3.5.3 Discussion

The model predicts that in PSD-95 knock-out experiments the level of matching between the neurons
will decrease. That this is the result of the simulation is no surprise. In the model, the mechanism
that matches the orientation after the emergence of selectivity is non-linear, and therefore it is scaled
by the selectivity of the neurons. This means that a reduced selectivity decreases the strength of
the matching dynamics. With equal amount of noise, an impairment of the selectivity will therefore
represent a higher susceptibility to the fluctuations, decreasing the level of orientation matching.

There can be different interpretations if the knock-out experiments are performed and the results
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agree with the prediction of the model. Many interpretations would include a fundamental role of
PSD-95 in the biological mechanisms responsible for the binocular orientation matching. This model
shows that if PSD-95 affects the selectivity of the neurons, the degree of matching between the eyes
will also be affected, even if there is no direct causal link between the two.



Chapter 4

Functional implications of the
interspersed layout

In the previous part the necessary conditions for the development of interspersed layouts of orien-
tation preference were derived and successfully tested in a biologically inspired model of oriented
receptive field formation. Analytically it was concluded that, with strong local inhibition, both the
unselective state and ordered patterns are unstable solutions, making a disordered layout the only
possible outcome in development. In this part of the thesis the resulting pattern will be analyzed
numerically. The following questions will be answered:

• How are disordered patterns dynamically formed?

• What are the dynamical implications for a neuron embedded in an disordered network?

• Are all disordered layouts equivalent? Is there a spatial structure in the disorder?

• What is the functional benefit of having disordered layouts in the visual cortex?

This part of the thesis is split in two sections. In the first section the dynamical implications of the
interspersed layout are explained. It is shown that the developmental dynamics are similar to a glass
system, where frustration results in a power law decrease of changes in orientation and energy with
time (aging). It is also shown that the high number of disordered solutions has a strong dynamical
implication in the susceptibility of neurons to noise, where even small fluctuations will have a strong
effect on the stability of the preferred orientation of neurons. In the second section the spatial char-
acteristics of the interspersed pattern are examined in detail. It is shown that a negative correlation
in the tuning of the neurons develops, where neurons will tend to have an orientation preference as
different as possible from its nearest neighbors. This correlation as a determinant characteristic of
interspersed patterns is challenged by the two facts: i) it scales inversely with the number of neu-
rons inside the interaction range, and ii) random patterns with the same negative correlation show a
higher amount of change in development as the solutions achieved by the dynamics considered here.
Two alternative higher order characterizations are used that are sensitive to different patterns with
the same correlation. The fist one is the discrepancy of the layout, measuring the homogeneity of
the disorder for any possible pattern interval. The second one has a similar background but a direct
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biological interpretation: the Swindale coverage of the pattern. It measures the homogeneity of the
representation by the pattern of any given oriented visual input. Both the discrepancy and coverage
are improved in the dynamically generated interspersed patterns. The later result leads in chap-
ter 5 of the thesis to propose an evolutionary transition mechanism between maps and interspersed
layouts.

4.1 Dynamical characterization

From the analysis of the dynamical equations one can determine the stability of stationary solutions
by calculating the growth rate of a perturbation over them. But how the system develops towards
that solution is a non-equilibrium physics problem that can’t be solved with the mathematical tools
used in the previous part of the thesis. Instead, simulations of a developing pattern are implemented,
keeping track of the history of each neuron. Having this information one can calculate how much in
average each neuron changes its orientation over time and how the energy of the pattern is decreased.

Many of the simulations in this section were performed in a one dimensional system of 1024 neurons
without orientation selective interactions following the numerical methods described in section 2.3.3.
Selectivity in the interactions was not included since it was shown in the previous part not to be
crucial in the determination of the interspersed patterns. Also recent experimental findings [124]
show that the selective interaction between excitatory neurons in mouse visual cortex emerges only
later in development after visual experience. The results presented here are not strongly modified
when orientation selective interactions are used. Using this reduction, the dynamics in equation 2.1.4
simplifies to

∂zi

∂t
= r̃ zi +

1

N ∑
j

K(xi − xj)zj − zi |zi|2

The energy of a layout z in the system can be calculated using ∂E
∂z = − ∂z

∂t , obtaining

E = −r ∑
i

|zi|2 −
1

N ∑
i, j

ziK(xi − xj)zj + ∑
i

|zi|4 (4.1.1)

A one dimensional system was chosen because of the possibility to detect symmetrically equivalent
patterns. Two patterns are equivalent if a combination of a rotation Rβ, a translation Ty and phase

shift eiϕ makes both patterns equal. If how much a pattern changes in time is measured, a develop-
ment towards an equivalent pattern should be regarded as no change. The optimal phase shift ϕ that
minimizes the angular difference between the neurons in a pattern z and a pattern y is determined
by minimizing the following expression:

∑
i

∣∣∣zi − yie
iϕ
∣∣∣
2
= ∑

i

|zi|2 +∑
i

|yi|2 −∑
i

zi yie
−iϕ −∑

i

zi yie
iϕ

To minimize the angular difference the last two terms have to be maximized. For this we define

B = ∑
i

zi yi = |B| eiφ
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Figure 4.1.1: The development of the interspersed layout is analogous to a glass system where aging in the
dynamics takes place. Black curves: Simulation of the system following the dynamics in equation 2.1.4. Gray
curves: Monte Carlo approach where the selectivity is fixed and for one neuron at the time the orientation is set
that minimizes the energy. a) Mean absolute orientation difference of the system compared to the pattern at 1τ.
For Monte Carlo simulations the iterations are discrete and the comparison is done with the orientations of the
initial condition. b) Energy decrease in time / Monte Carlo iterations. c) Development of the mean selectivity

of the neurons. The one dimensional system is composed of 1024 with interaction parameters S = 1
4 , W = 3

4
and g = 0.

and insert in the last two terms, obtaining

∑
i

zi yie
−iϕ +∑

i

zi yie
iϕ = B e−iϕ + B eiϕ = |B|

(
e−i(ϕ−φ) + ei(ϕ−φ)

)
= 2 |B| cos(ϕ − φ)

The two terms are maximized with the phase shift

ϕ = φ = arg(∑
i

zi yi)

In a one dimensional system rotations do not exist and all possible translations with their correspond-
ing optimal orientation shift can be tested simultaneously using toeplitz matrices, making it possible
to find the least difference between two patterns very efficiently. Once again, running the simulations
in a two dimensional system doesn’t modify the results.

4.1.1 Glassy dynamics

Choosing the model parameters in the interspersed phase, S = 1
4 , W = 3

4 and g = 0, a network of
neurons with initially random orientations and low selectivity was simulated for t = 105τ. At the
end of the simulation the pattern is still disorganized and visually very similar to the initial condition.
The pattern at each measured point in the development was translated and phase shifted to minimize
the difference in orientation compared to the initial condition.

In figure 4.1.1a) the mean orientation change of the pattern for every time-point in development
compared to the time-point where selectivity emerges (t = 1τ) is plotted in black. With t < 1τ very
small absolute changes in zi can cause a large increase in arg (zi), so they are not plotted for clarity.
The magnitude of the change until t = 1τ is about 5◦. As comparison, the black curve in figure
4.1.1b) shows the decrease in the energy of the pattern in time. Both curves present two different
regimes in the tuning curve dynamics of the neurons: After t > 10τ neurons change their orientation
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with a lower slope than initially in development and the slope of the energy reduction is also highly
decreased. This transition can be explained looking at the plot of the average orientation selectivity
of the neurons over time in figure 4.1.1c). Although selectivity emerges at t = 1τ, it is not fully
developed until t = 10τ, where it saturates at the value A =

√
r. Therefore, the first dynamical

regime belongs to the development of the selectivity, where there is a large decrease in the energy as
the first and last terms in equation 4.1.1 cancel each other. This corresponds to a higher change in
the orientation of the neurons, representing a steeper slope plus the amount of change accumulated
before 1τ that is not plotted. The second dynamical regime belongs to a decrease of the energy only by

optimizing the arrangement of orientations in the system. With the saturated selectivity |A|2 =
√

r
the energy term that remains belongs only to the interaction between the orientations and can be
written as

Eint = − r

N ∑
i, j

K(xi − xj)e
i2(θj−θi)

Since the interaction K(xi − xj) needed to develop interspersed patterns the inhibition is locally

strong, to further decrease the energy the term 1
N ∑i, j e2i(∆θi, j) has to be minimized. This means that

every neuron i has to have the neurons j in its interaction range as dissimilar as possible to maximize
∆θi, j. But as all neurons try to do this simultaneously, the change in orientation in one neuron is frus-
trated by the change of the other neurons and the system gets trapped in a disordered state, making
every successful movement very slow. This phenomenon is well studied in spin glasses. They are
systems of magnetic spins with randomly assigned ferromagnetic and anti-ferromagnetic bonds. The
frustrated interactions between the spins in the system lead to a frustration of mutual changes in the
spin, leading to a large amount of meta-stable states. Spin glasses exhibit aging in the dynamics,
meaning that the time for the system to move from one meta-stable state to another depends on the
age of the glass. This aging effect on the timescale of the dynamics is also presented in the simula-
tions with strong inhibition, showing in plots a) and b) as a power law in both orientation change
and energy decrease.

To further investigate the role of multiple meta-stable solutions in the generation of interspersed
patterns, the achieved dynamics are compared with an algorithm in which for every iteration the
shift in the orientation of a single neuron is performed that minimizes the total energy of the pattern.
The algorithm is similar to the Metropolis Monte-Carlo scheme [157], where the picked neuron and
its assigned shift are randomly chosen and the probability of accepting the shift is proportional to the
change in energy of the system p(accept) ∝ max (1\exp(−∆E)). The used algorithm differs from the
standard scheme in three ways:

• The optimal shift for every neuron is analytically calculated.

• The shift that minimizes the total energy is chosen.

• All iterations are accepted.

Keeping the differences in mind the used algorithm will still be called Monte Carlo. In the algorithm
the same random orientations for the initial conditions are chosen, but the selectivity of the pattern

is set to |A|2 =
√

r from the beginning and only the orientations are modified. The optimal shift in
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orientation for every neuron can be calculated by introducing a phase shift eiϕ in one neuron zk and
minimizing the interaction term of the energy

Eint = − 1

N ∑
i, j

ziK(xi − xj)zj

= −zke−iϕ 1

N

(

∑
j 6=k

K(xk − xj)zj + K(0)zkeiϕ

)
− ∑

i 6=k

zi
1

N

(

∑
j 6=k

K(xi − xj)zj + K(xi − xk)zkeiϕ

)

Separating the values of the interaction energy that depend on ϕ leads to

Eint(ϕ) = − 1

N ∑
j 6=k

zkK(xj − xk)zje
−iϕ − 1

N ∑
j 6=k

zkK(xj − xk)zje
iϕ (4.1.2)

Defining

B =
1

N ∑
j 6=k

zkK(xj − xk)zj = |B| eiφ

and inserting in equation 4.1.2

Eint(ϕ) = −Be−iϕ − Beiϕ == − |B|
(

ei(ϕ−φ) + e−i(ϕ−φ)
)
= −2 |B| cos(ϕ − φ)

Therefore, the shift in the orientation of neuron zk that minimizes the energy of the pattern is

ϕ = φ = arg

(
1

N ∑
j 6=k

zkK(xj − xk)zj

)

Using this algorithm with interactions in the map phase leads to periodic patterns after a number of
iterations in the order of the number of neurons in the system. The results of applying this algorithm
in the interspersed phase are shown in gray in figure 4.1.1a) and b), where the x-axis marks the
number of iterations used. The energy in b) starts lower than in the dynamical simulations because
the selectivity of the neurons is set at its saturation value from the beginning. The mean change
of orientations and the decrease in energy start with very low values in the logarithmic plot since
in every iteration only the orientation of one neuron is shifted. As the scale of the logarithm is
increased the change in the values is accelerated, but it also enters a second regime where the number
of iterations needed to have an equal amount of change becomes a power law.

Using this algorithm it is shown that even when the neurons are manually moved to their energy
minima the amount of change and decrease in energy possible in every iteration slows down. This
result is in accordance with the idea that the optimal state of each neuron frustrates the optimal state
for the rest of the network.

4.1.2 Energy landscape

The developing disordered pattern behaves like a glass in the dynamics exhibiting signs of aging.
Similarly to spin glasses, this aging might be caused by the existence of a high number of meta-stable
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Figure 4.1.2: Multiple meta-stable states in the energy landscape of interspersed solutions. a) Explanation of the
approach: A path through the N-dimensional phase space is generated by interpolating between two solutions
of a one dimensional system. The path can be characterized by the mean angle difference to the initial pattern.
Samples in this path are used as initial condition for a simulation. If the sample sits in the basin of attraction
of one solution, it will converge to it during the simulation. Points belonging to the same basin of attraction
are color-coded. b) Energy landscape in the generated path (black line) with interactions that generate maps.
The energy barriers between the solutions are large, and the number of stable solutions is small. c) Energy
landscape in the generated path (upper line) with interactions that generate interspersed layouts. Every initial
condition sits in a different basin of attraction. There is a large number of solutions and the energy barriers
between them is small.

solutions where the dynamics gets trapped for increasing amounts of time. Here it will shown that
for interspersed patterns the number of symmetrically different solutions is very high. This makes
the energy barriers between the solutions very shallow, what will have a strong repercussion on how
susceptible neurons are to noise.

To show that the number of solutions in disordered patterns is high, a path through phase space
will be defined and simulations will be initiated from different sampling points in this path. Points
that are inside the influence of the same local energy minima will converge during the simulation.
As comparison the same method will be applied to a system with interactions that lead to ordered
solutions.

The procedure taken is explained more concretely in figure 4.1.2a). The path in phase space is ob-
tained by interpolating between two different results of the simulations. In the figure this is a pattern
with wavenumber +k and with −k. The interpolation of the selectivity and the orientation is done
separately to keep the selectivity of the neurons high. Distances in the path are measured as the
minimum angle difference between the two patterns. This is again the reason to use one dimensional
simulations, such that equivalent patterns can be detected. The color code implemented marks with
filled circles the results obtained in the simulations, where for every symmetrically nonequivalent
solution a different color is used. Colored open circles mark the initial conditions that after 100τ
converge to the patterns marked with the same color.

Figure 4.1.2b) shows the results of this approach in a system with map forming interactions, S = 1
4 ,

W = 1
4 and g = 0. The path in phase space measured in mean angle difference is plotted on the
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x-axis, while the y-axis marks the energy of the interpolated point. To have a smoother path the
interpolation was forced to pass through a meta-stable state where the power of the solutions is
distributed between the +k and −k modes, where for this choice of parameters |k| = 4. The figure
shows that for every interpolation away from the optimal solution with wavenumber +k or −k there
is an increase in the energy of the pattern, but that even with this energy differences initial conditions
close to the perfect periodic pattern develop back to the original state. The meta-stable state used
as middle point of the interpolations has its own stability range. Longer simulations show that this
intermediate state also decays back to a pattern with either +k or −k, but for illustration purposes
it is kept in the figure. This result shows that in the map phase the amount of solutions is low and
the energy barriers between them are large, such that a perturbation to a map solutions will decay in
time and the order will be reestablished.

Figure 4.1.2c) shows the same procedure for interactions that form interspersed patterns, S = 1
4 ,

W = 3
4 and g = 0. the extreme points of the interpolations are two disordered solutions obtained

from simulations with different random initial conditions. It can be seen that the energy increases be-
tween the different interpolated points, but the size of the difference is orders of magnitude smaller
than with interpolations in figure b). From the previous section it is known that the system contin-
ues developing even for very long time scales, such that the initial points of the interpolation also
decrease their energy after 100τ. Independent of this, the result show that none of the points in the
interpolation converge, but everyone of them sits in a region attracted by a different local minimum.
This behavior does not change for a larger number of samples in the interpolated path or for longer
simulations. The results show that in the interspersed case the number of solutions is very large and
that the energy barriers between them is low. Although switching between the different solutions
will never happen in deterministic development, the presence of noise will make the transition be-
tween the different basins very easy because of the low energy barriers and their closeness in phase
space.

In the next section these conclusions are tested by including noise in the system and measuring the
diffusion coefficient of motion of preferred orientations with time.

4.1.3 Lability of preferred orientations in the interspersed phase

The results on the number of solutions in the system depending on the interaction parameters and
their impact on the susceptibility to noise are tested in this section. Since the symmetrical equivalence
of the patterns is no longer tested, the simulations were performed in a two dimensional network of
128x128 neurons with selective interactions as described in section 2.1.3. The integration methods
was changed to a stochastic Runge-Kutta scheme with fixed time step [155, 156], where Gaussian
white noise was injected in every iteration. The time step was chosen as 0.01τ and the system is
simulated for 100τ. The initial conditions of the simulations were the final layout obtained in figure
2.1.1a) and b) in chapter 2. For two dimensional systems the number of solutions for the map case
increases, since instead of only two optimal wavenumbers +k and −k the solutions are distributed
on the critical circle of radius |kc|.
The results of the simulations are plotted in figure 4.1.3. Simulations in the map phase are plotted
in green and in the interspersed phase in red. Simulations are also performed without interactions
to have a comparison of the diffusion caused by noise in a system where neurons only dynamically

stabilize their selectivity to |A|2 = r. Those non-interaction simulations are plotted in gray.
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Figure 4.1.3: Neurons in the interspersed pattern are more susceptible to noise. a) Orientation change in time
of one neuron in a map (green) and in an interspersed layout (red). b) Mean square orientation difference of
the system. In gray the change in a system with no lateral interactions is shown for comparison. Each curve
is the mean of 10 simulations. c) Diffusion coefficient of the orientation for each interaction type, obtained by
calculating the initial slope in b). d) Diffusion coefficient for the map. Notice that the noise in the x-axis is two
orders of magnitude higher than in c). e) and f) Reduction of the diffusion coefficient as the orientation of a
fraction of the neurons is frozen, reducing the number of available states in a map (e) and in an interspersed
pattern (f). In interspersed patterns the number of available solutions is very high, such that freezing a fraction
of neurons doesn’t have a strong effect on the diffusion coefficient.

Figure 4.1.3a) shows the orientation over time of one example neuron in each simulation, where the
initial orientation is set to zero. The standard deviation of the Gaussian noise is 10−2r. The repre-
sented orientation by the neuron in the map is very stable (as long as the chosen neuron is not close to
a pinwheel, where selectivity falls and small changes have a stronger influence on the orientation). In
contrast, the orientation of the neuron in the interspersed simulation is changing drastically, passing
through many possible orientations in a small amount of time. In figure 4.1.3b) the mean absolute
change of orientation of the population in time is plotted, where every curve represents the mean of
10 simulations. With this amount of noise there is a steep increase in the change in the interspersed
case, followed by saturation towards 45◦due to the circular constrains of the orientation preference.
The neurons are not freely diffusing as if interactions were not present, as can be seen by comparing
the results with a non-interacting system in gray. The rise is much steeper and the saturation hap-
pens earlier in this case. In contrast, neurons in the map have a very stable representation during

the simulation. Figure 4.1.3c) shows the diffusion coefficient |∆Orientation|2
τ for different noise levels.

It is obtained by calculating the slope of the square increment of the mean change in orientation,
where only the initial time steps are used to avoid the influence of saturation. The coefficient in-
creases linearly with the amount of noise. The interspersed coefficient is approximately half of the
coefficient for the non-interacting simulations at all noise levels. The diffusion coefficient for the map
also increases with higher levels of noise, but the effect is only noticeable if the noise intensity is in-
creased by orders of magnitude. This is shown in figure 4.1.3d). Very high levels of noise in the map
overcome the effect of the linear interaction and the characteristic periodicity is lost.
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Taken together the results support the conclusions from the previous section. The neurons in the
disordered layouts are more sensitive to noise than in maps by far. The reason is that they have
many possible states that can be reached by the perturbation.

The accessibility to some of those states can be blocked by freezing the orientation of a neuron, as all
solutions where the neuron has a different orientation as the frozen one will no longer be available.
This should reduce the diffusion coefficient in the system. The result of freezing the orientation of a
fraction of neurons, while keeping the selectivity dynamical, are shown in figure 4.1.3e) and f) for the
map and the interspersed case respectively. In e) the strength of the noise is set at 0.5x10−1r. Freezing
a small fraction of the neurons strongly decreases the available states of the system, making the whole
pattern more robust to noise. In contrast in figure f), with the noise level set at 0.5x10−2r, the freezing
of a fraction of neurons also reduces the amount of available states, but they are so numerous that
the diffusion coefficient of the remaining neurons is only slightly influenced.

The decrease of the lability of neurons in the interspersed case, even with a large fraction of its ori-
entations frozen, further matches the image of the dynamics of a glass system with many possible
states. This last result could be tested experimentally. Some neurons might have a more robust tun-
ing due to mechanisms that are not included here, e.g. stronger connections to the LGN afferents.
In the map phase those neurons would work as an anchor point, such that neurons that don’t share
this property would still be very robust and the map structure would not change. On the other hand,
neurons in disordered layouts that are robust won’t have a strong influence on the stability of their
neighbors, even if they are directly connected. Experimentally this would be measured as a highly
varying orientation tuning of some neurons in rodent visual cortex, compared to much more per-
sistent orientation tuning in species with maps. An experimental approach aimed to detect those
neurons is presented in part VI of the thesis.

4.2 Spatial characterization

In the previous section it was found that in the interspersed case there are many disordered solutions
available to the system. But is any random arrangement of orientations a solution? From the analysis
of the interaction energy it is known that every neuron will maximize the orientation difference to the
neurons it is interaction with. Here the repercussion this has on the spatial structure of the pattern
will be analyzed.

4.2.1 Correlation

The simplest approach to detect spatial structure in a system is measuring the auto-correlation func-
tion. For one dimensional system it is calculated as

C(∆x) =
〈z(x)z(x + ∆x)〉x〈

|z(x)|2
〉

x

For two dimensional systems the radial correlation has the form
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Figure 4.2.1: The structure of the interspersed layout is not random. a) Correlation function between the neu-
rons. Neurons are negatively correlated for short distances. Independent of the choice of parameters, the
strength of the correlation is scaled by the number of neurons inside the range of inhibition, and the extend of
the correlation depends on the range of inhibition. b) Histogram of changes in orientation for 100τ for random
initial conditions in blue, the system after a long simulation in red, and a random pattern with the same corre-
lation function as the previous case in yellow. The correlation function doesn’t fully describe the solutions, as
random patterns with the same correlation have a higher change in time.

C(r) =
1

2π

ˆ

dφ C(r)

with

C(r) =
〈z(x)z̄(x + r)〉x

〈|z(x)|2〉x

When measuring the correlation in any one dimensional or two dimensional solution a common re-
sult is obtained. It is plotted in figure 4.2.1a). There is a negative correlation for close neurons. The
range of this correlations depends only on the range of the inhibitory interaction (1 − W)σ, with
no influence of the parameters S and g. The strength of the negative correlation depends on the
discretization of the system, where the value for nearest neighbors is 1.5 divided by the number of
neurons inside the (1 − W)σ range. The fact that the correlation scales with the number of neurons
inside this range agrees with the analogy of interspersed pattern with a glass: with increasing inter-
action range the more neurons interact with each other, the higher the frustration of the dynamics
will be. This means that the correlation is usually very low. For example, for a one dimensional

system of size L with 1000 neurons where
(1−W)σ

L = 0.2, the nearest neighbor correlation is 0.0075.
In the visual cortex the number of neurons interacting with each other is immense, such that if this
negative correlation is present it would be experimentally very difficult to detect.

The negative correlation is not the best spatial description of the final state, since random arrange-
ments of orientation with negative correlation are not solutions. This is presented in figure 4.2.1b).
There, a two dimensional system of 256x256 neurons with S = 1

4 , W = 3
4 and g = 1

8 was simulated
for 1000τ. The histogram shows the percentage of neurons that changed their orientation a certain
amount of degrees during the initial 100τ from the unselective random initial conditions (blue) and
the final 100τ of the simulations (red). A random arrangement of orientations with the same corre-
lation function as the final pattern was generated by randomizing its phases in Fourier space. The
generated pattern was used as initial condition for a simulation for 100τ and the histogram of the
changes in orientation obtained is plotted in yellow. The figure shows that the patterns with equal
correlation as the solutions obtained with the dynamics are not equally stationary. This means that
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Figure 4.2.2: In interspersed layouts the distribution of orientations is more homogeneous that in random pat-
terns. a) Explanation of the discrepancy measure in one dimensional patterns. For a specific length of the
sliding window, orientation sub-intervals of different lengths are tested for homogeneity by comparing the
fraction of elements represented in the sub-interval with the relative size of the interval. The maximum dif-
ference for all sub-intervals and position of the sliding window is defined as discrepancy. b) Discrepancy of
different patterns with increasing window length. Each curve is the mean of 100 simulations. Both axes are
logarithmic. The random initial condition is in blue, the solution after a long simulation is in red and a random
pattern with the same correlation function as the previous case is in yellow. A computer generated minimum
discrepancy arrangement (quasi-random) is plotted in gray for comparison. The discrepancy of the pattern ob-
tained in the dynamics is lower that the discrepancy of random sequences and for phase randomized solutions,
but higher than of computer generated quasi-random sequences.

the characteristic structure obtained goes beyond correlation, and that higher order statistics have to
be implemented.

4.2.2 Discrepancy

The discrepancy measures the homogeneity of a sequence of numbers. For a real sequence s1, s2, ..., sN

in the interval [A, B], the discrepancy is defined as

D(N) = supA≤C≤D≤A

(∣∣∣∣
{s1, s2, ...sN}

⋂
[C, D]

N
− C − D

A − B

∣∣∣∣
)

where [C, D] is a sub-interval of [A, B]. The discrepancy is low if the proportion of elements falling
in any sub-interval of the range [A, B] equals the proportion of the length of the sub-interval. In a
low discrepancy sequence, any sub-interval has approximately the same number of elements. It is
important to note that the order of the elements in the sequence is not important. Random sequences
that keep a low discrepancy as more elements are included are called quasi-random and are useful
for sampling methods like Monte Carlo integration of functions.

The discrepancy measure was adapted to analyze the homogeneity of the resulting disordered pat-
terns in one dimension. The simulations were performed in one dimension because for comparison a
quasi-random pattern like the Halton set can be directly generated using available algorithms. In fig-
ure 4.2.2a) the measure is graphically explained, where the example pattern plotted is a quasi-random
sequence. The discrepancy of the sequence of preferred orientations of the pattern {θ1, θ2, ...θN} in
the interval [0, π] was calculated. The interval is periodic, such that constrains on the sub-intervals
[C, D] are relaxed to

∣∣CD
∣∣ ≤ π. In the previous section it was found that the negative correlation is
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local, so the discrepancy should be more distinguishable from a random sequence for small regions
of the pattern where it is not overshadowed by the increasing number of samples. Therefore, the
discrepancy was measured for neurons in a sliding window of increasing size R [x0, xo + R], where
the periodic boundary conditions were taken into account in the sliding of the window by bounding
its initial point as

∣∣xo, xo + R
∣∣ ≤ L, where L is the system size. The maximum discrepancy for each

window size was used. With these changes, the definition of the discrepancy of a pattern of neurons
with orientation {θ1, θ2, ...θN} and position {x1, x2, ..., xN} in a window of size R is

D(R) = sup |xo,xo+R|≤L

(
sup |CD|≤π

(∣∣∣∣∣
{θi, θi+1, ...θj ∈ [xo, xo + R]}⋂[C, D]

j − 1
−
∣∣CD

∣∣
π

∣∣∣∣∣

))

The mean discrepancy as a function of window size of 100 patterns of 1024 neurons and interaction
parameters S = 1

4 , W = 3
4 and g = 1

8 is shown in figure 4.2.2b). The random initial condition is
plotted in blue, the pattern after 1000τ in red and a random pattern with equal correlation function
as the solution after 1000τ in yellow. The discrepancy of a quasi-random sequence is plotted in gray
for comparison. Both axes are logarithmic, such that straight lines correspond to power exponents.

The results show that the discrepancy of the solution is smaller than the discrepancy of the random
pattern for any window size. The discrepancy is also sensitive to patterns with the same correlation,
as the values increase in those arrangements. The discrepancy of a quasi-random solution is not
achieved, showing that discrepancy is not fully optimized during the dynamics. The discrepancy of
the final pattern has a change of slope when the size of the window is approximately twice the range
of inhibition. Before that point the slope of the curve is −0.60 and after −0.53. The slope for a quasi-
random sequence is −0.87 and for a random pattern −0.49. For small pattern lengths, the discrepancy
behaves more similar to homogeneously distributed sequences, and as more neurons are taken into
account, the behavior is more similar to random sequences. This again shows a spatial regime where
the homogeneity of the pattern is increased, which is a result of the interaction range between the
neurons. This effect is caused by the correlation structure in the pattern, as phase randomize solutions
also present a change of slope. It is important to keep in mind that the change in slope is only
apparent when the discrepancy of many patterns is averaged. Here it is shown that the final pattern
has an increase homogeneity of represented orientations. In the next section a similar measure will
be used with a biological interpretation.

4.2.3 Coverage

The homogeneity of the pattern is an interesting structural feature of the interspersed layout, but
its relevance in real cortical networks is difficult to interpret. The Swindale coverage of a pattern
describes how well the orientation layout can represent any kind of stimulus from a given ensemble
[158]. To implement this measure using the result of the simulations further assumptions on the
activation function of the neurons have to be used that are not necessary in the discrepancy measure,
which depends uniquely on the layout itself. On the other hand, the interpretation of the results is
easier.

The concept of the Swindale coverage is represented in figure 4.2.3a). A stimulus in position rx, ry in
visual space with orientation φ is presented to the pattern. The position of the stimulus is translated
to a position in cortical space, which as a first approximation assuming retinotopy will also be a
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Figure 4.2.3: In interspersed compared to random layouts the stimulus coverage is improved. a) Explanation
of the Swindale coverage measure. A stimulus of orientation φ and position rx , ry is presented to the layout,
evoking a response that depends on the tuning of the neurons and their distance to the stimulus. Homogeneity
of the total activity across stimulus parameters corresponds to a better coverage of the stimulus ensemble.
b) Swindale coverage over time for a map in green and an interspersed layout in red. At every point the
interspersed pattern is phase randomized and its coverage plotted in gray. Each curve is the mean of 10
simulations. Although it is not directly optimized in the simulations, the value of the coverage in interspersed
patterns decreases monotonically with time and is lower than phase randomized solutions. The simulation
parameters are the same as in figure 2.1.1.

scaled version of rx, ry. The activity of the neurons elicited by the stimulus depends on how far
they are from the center of the stimulation and on how different is the preferred orientation of the
neuron compared to the orientation of the stimulus. Depending on the position and orientation of
the stimulus, the total activity of the pattern will vary. If the elicited total activity is low for a specific
orientation, it means that the pattern does a bad job in representing it. Homogeneity of the total
activity across stimulus parameters corresponds to a better coverage of the stimulus ensemble, since
the pattern will be optimized to represent all possible stimuli. If A is the total activity elicited by a
stimulus S , the Swindale coverage is

C =

√
〈A2〉S
〈A〉S

(4.2.1)

Low values of C show that both the mean elicited activity is high, but that its variation in stimulus
space is low.

To use this measure of stimulus representation homogeneity, a function that describes the activity of
each neuron of the pattern depending on the orientation of stimulus has to be used. For this a Von
Misses function is chosen

Ω(θ − φ) =
eκ cos(2(θ−φ))

2π I0(κ)

where θ is the preferred orientation of the neuron, φ is the stimulus orientation and I0(κ) is the
modified Bessel function of first kind. The value of κ is π

8 as in [158]. The modification of the activity
depending on the distance to the center of the stimulus is given by the cortical point image Pc(∆x, ∆y),
defined with a Gaussian function

Pc(xi − rx, yi − ry) =
1

2πσ2
c

e−((xi−rx)
2+(yi−ry)

2)/2σ2
c
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where xi, yi is the location of neuron zi and rx, ry is the position of the center of the stimulus in
cortical space, where the magnification factor relating the retinotopical and visual space is set to one.
The range of the cortical point image σc is not straight forward to set. What is the typical scale of
the interspersed patterns in the simulation? For this the fact is used that the model can also generate
ordered map solutions, where the range of the cortical point image can be defined as a function of an
hypercolumn size. After choosing a Mexican hat in the linear term to fix the periodicity of the pattern
and obtain the column spacing, the Mexican hat is inverted to generate interspersed patterns but the
space dependent activation parameters are maintained. The range is thus defined as σc = 0.3Λ,
where Λ is the size of the hypercolumn in the map. The value of σc was varied from 0.2 − 0.5Λ

without obtaining marked differences. Taken together, the total activity of the map is given by

A(φ, rx, ry) =
1

N

N

∑
i=1

Ω (θi − φ) Pc(xi − rx, yi − ry)

The stimulus ensemble is composed of equally spaced orientations in the interval 0 < φ ≤ 180 cen-
tered at every neuron in the cortex. The results of using this activation functions are shown in figure
4.2.3b). The y-axis is the Swindale measure of coverage and the x-axis marks the development of the
value in time as the pattern develops. The initial conditions were neurons with random orientations
with low selectivity and the parameters to generate maps and interspersed patterns are the ones
described in section 2.1.3. The curves represent the mean result of 100 simulations. The Swindale
coverage for the map is plotted in green and of the interspersed pattern in red. At each time point
the interspersed pattern is phase randomized, the coverage calculated and plotted in gray.

When an ordered map is formed, the periodicity imposed by the linear term emerges after a very
small time scale. The Swindale coverage of these periodic random fields is worse than for random
orientations. Intuitively this can be understood as follows: In a map, neurons that represent the
same orientation are clustered and the transition of the preferred orientation between the clusters is
smooth. This means that neurons preferring two orthogonal orientations are far from each other. If a
stimulus is shown to a column preferring an orthogonal orientation the activity will be low, and the
activity of a column that is optimized for the presented orientation is damped by the distance. This
worsens the coverage of the pattern. When the selectivity of the map is fully developed at ∼ 10τ, the
effect of the nonlinear term is strongest, which determines the survival of the modes in the critical
circle. As time passes, the pattern reorganizes and unstable modes decay, increasing the homogeneity
of the pattern. A more homogenous pattern represents a more homogeneous representation, leading
to a decrease in the coverage measure, but the values of the initial conditions are not reached.

As interspersed patterns develop the homogeneity of the layout is increased as neurons mutually
repel their orientation preference. This means that neurons representing all possible orientations
are very close to each other. If any given stimulus is presented to the pattern, independent of its
position, there will always be a neuron close by that is optimized to this orientation, giving a low
coverage measure. Similar to the energy of the pattern as a function of time in figure 4.1.1b), this
effect is faster while the selectivity is still being developed, since big changes in the orientation can
be achieved with small absolute values of z. After this point the rearrangement of the orientations
continues, but with a smaller slope due to the frustration in the dynamics.

The effect of the correlation on the value of the coverage is much smaller than in the case of the
discrepancy, as the coverage of random and negative correlated random orientations is hardly dis-
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Figure 4.2.4: A model designed to increase the stimulus coverage leads to interspersed patterns [145]. a) Learn-

ing dynamics in the model: A stimulus S described by parameters sz = |sz|e2iφ and sr = (rx, ry) is presented
to the pattern, evoking activity in the neurons depending on their preferred orientation and the distance to
the stimulation site. Lateral interactions are included by normalizing the total activity of the pattern, leading
to soft competition between the neurons. Notice that neighboring neurons are co-activated. The activity of
each neuron leads to a plastic change in its representation to better match the stimulus parameters. In this
case the learning rate is exaggerated. The stimulus presentation is repeated for another set of parameters and
the tuning dynamics is described by averaging the changes for a large number of presentations. The energy
optimized in the model describes the homogeneity of the evoked activity and is called elastic net coverage. b)
Different initial conditions are used and the pattern after 500τ is plotted. The dynamics actively disorganize
the spatial structure of the orientations, leading to interspersed patterns. c) This disorganization is achieved by
a reduction of the elastic net coverage. The coverage measure is sensitive to solutions with equal correlation
structure, which are plotted in gray. All plots are modified from [145].

tinguishable in the first. It is important to note that the negative correlation is small and that the
range of the point spread image is larger than the range of the correlation, making its effect weak.
Similar to discrepancy, the effective range of the organization of orientations is larger than the range
of inhibition, such that the improvement in coverage goes beyond the correlation range.

Although the coverage is not explicitly optimized in the tuning dynamics, its monotonic decrease
suggests a functional consequence of the development of the pattern. A model where the coverage is
explicitly optimized was treated by Keil in his PhD thesis [145]. The approach is based on the elastic
net model of cortical map formation [55]. The procedure is explained in figure 4.2.4a). Based on
Hebbian learning rules, every represented stimulus by the neurons causes a plastic change in their
tuning towards the parameters of the stimulus

δzi = ε (sz − zi) e(xi, S, z(·))

The stimulus S is described by parameters sz = |sz|e2iφ and sr = (rx, ry), where φ denotes the ori-
entation of an activity pattern and sr its position. xi is the position of the neuron i and zi its tuning.
The parameter ε scales the strength of the modification caused by one pattern. The activity of the
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neurons is influenced by the similarity of the tuning to the presented pattern sz − zi, the distance to
the center of the stimulus sr − xi, and the activity of neighboring neurons. The last one is modeled by
soft competition, where the activity of each neuron is normalized by the total activity of the pattern

e(xi, S, z) =
e−(|sr−xi|2)/2σ2

e−(|sz−zi|2)/2σ2

1
N ∑

N
j e−(|sr−xj|2)/2σ2

e−(|sz−zj|2)/2σ2

This divisive normalization can be derived from detailed network models with recurrent inhibitory
interactions [159]. The influence of a stimulus to a neuron depends on the interaction range σ, which
in the model plays the role of the bifurcation parameter (see [145]). The tuning dynamics can be
converted to continuous by averaging a large number of stimulus presentations

∂zi

∂t
= 〈[sz − zi] e(xi, S, z)〉S

The dynamics of the pattern is obtained by ∂E
∂z = − ∂z

∂t from the energy

E = −σ2

〈
ln

(
1

N

N

∑
j

e−(|sz−zj|2+|sr−xi|2)/2σ2

)〉

S

In this model the energy is equivalent to the Swindale coverage, where the value is minimized when
the pattern equally represents the whole stimulus ensemble. Therefore, this dynamics optimizes the
coverage of the stimulus space. The model differs from the elastic net by not including an extra
continuity term in the energy, which imposes a smooth transition of orientations in the pattern.

As shown in figure 4.2.4b) the pattern that optimizes the coverage obtained in the simulations is
disordered. Other ordered arrangements used as initial conditions decay during learning, leading to
interspersed layouts. The details of the simulations are given in [145]. That the solution is disordered
can be inferred directly from the conclusions of the parameter model in the first part of this thesis,
since the model satisfies all the symmetry conditions and the soft competition between the neurons
is equivalent to strong local inhibition. The decrease of energy in the model, which is equivalent to
the coverage, is plotted in figure 4.2.4c). It is very similar to the decrease in the Swindale coverage for
interspersed patterns in figure 4.2.3b), although in the second the coverage is not directly optimized.

Taken together these results show that an improvement in coverage is an essential and robust feature
of the dynamical generation of interspersed patterns. Disordered layouts have a benefit compared
to maps that all possible stimuli are more homogeneously represented. It is important to note that
the coverage of the ordered map will depend on how many columns are spanned by the cortical
point image. The more neurons with different orientations are activated by the same stimulus, the
more homogenous the activation will be, improving the coverage of the pattern. In the next part of
the thesis this effect will be investigated in more depth and its potential role in driving a transition
between maps and interspersed patterns will be examined.



Chapter 5

Understanding evolutionary transitions
between the different layout types

In the first part of the thesis it was shown that the transition from dynamically generated orienta-
tion maps to interspersed patterns can be achieved by increasing the amount of intra-cortical inhi-
bition between the neurons. This result explains how some mammals can build maps and others
interspersed architectures using Hebbian rules. It, however, doesn’t answer the question why some
species evolved to have ordered maps and others not. Are there specific benefits of disordered lay-
outs and ordered maps? The fact that rodents have orientation tuned neurons but no maps shows
that the later are not essential for the generation and maintenance of orientation selectivity in the
cortex.

In this chapter of the thesis the role of the area size in determining the functional layout of the cortex
is investigated. A cost function depending only on structural features of the layout is constructed
combining stimulus coverage and wiring cost per neuron. Taking into account the fact that the size
of orientation hypercolumns in V1 is approximately constant for maps and brains of all sizes [27],
this cost-function predicts a transition from optimal layout as the cortex increases in size. This results
because in maps the coverage is largely improved by the addition of columns as the size of V1 is
expanded, while adding neurons to the interspersed pattern doesn’t have the same impact. On the
other hand, the vicinity of a neuron remains unperturbed by the addition of columns or neurons,
such that the wiring cost of selective connections between the neurons with similar orientations are
lower in maps than in interspersed patterns.

This work was done in collaboration with Wolfgang Keil. He wrote the first version of the code to
calculate the wiring cost per neuron following [64] and ran the preliminary simulations.

5.1 Area size and functional layout

The concept of using area size as determinant for the functional layout of the primary visual cortex
follows directly from looking at the species with and without maps that have been characterized so
far, as presented in figure 5.1.1. The plot shows for the different mammalian lineages some examples
of the species that have maps in green and the species that have an interspersed pattern in red.
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Figure 5.1.1: Area size and functional organization of the cortex in different mammalian lineages. In animals
displayed in green ordered orientation maps have been found. In red animals, the pattern of orientation is
interspersed. Gray animals haven’t been tested. Although there appears to be a clear separation between the
lineages and layout organization, this might also be a reflection of the fact that most glires species tested have
a smaller visual cortex than the primates and carnivores used. There is a small overlap in cortex size with
different layouts, but this can represent a broader transition region between the optimality of the layout types.
Data taken from [98, 161–170].

Species that haven’t been characterized are in gray. The x-axis marks the typical size of the visual
cortex in the different species. On the one hand the differentiation is clear between mammalian
lineages, as the rodents and lagomorphs tested don’t have maps and the primates, scadentia and
carnivores tested do. On the other hand this result is biased by the size of the cortex of the animals
classified. So far, in all the rodents and lagomorphs tested the cortex is smaller or of similar size as
the cortex of the tested species with maps. That cortex size needs to be considered as a potentially
critical factor is clear when considering the overall course of the mammalian evolution. During the
Cretaceous period from 148 to 65 millions of years ago, the common ancestor of all Eutheria weighed
between 6 and 245 gram [160]. This means that the size of its cortex was very small. Only after
the extinction of dinosaurs in the Cretaceous-Tertiary extinction event 65 millions of years ago the
competition for ecological space was presumably reduced and the mammals started to fill and create
large animal niches [160], leading to a growth of the cortex independently in the different mammalian
lineages [27]. Assuming that due to its size the common ancestor had the functional organization of
rodents, at some point it must have been evolutionarily favored in species with large cortices to
generate maps similar to the ones found today. Small species like the ones tested maintained the
original disordered pattern, while in larger species a change in the interaction between the neurons
allowed for the emergence of a self-organized ordered pattern.

To give this hypothesis a precise meaning and to understand conditions under which selection forces
might have driven such a transition this chapter will build an optimization theory. A plausible opti-
mization criterion will be identified that is minimal for disordered layouts for small sized brains and
for maps of large areas. The aim is not to prove that animals have this criterion optimized, but rather
to provide insight to the adaptations and selective forces that might have shaped the evolutionary
dynamics [5].

A connection of area size and the functional architecture can already be seen in species with ordered
layouts. In species with maps the size of the hypercolumn is approximately preserved in evolution.
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Figure 5.1.2a) shows that although tree shrews have a body weight more than ten times smaller than
cats, the typical size of the hypercolumn barely changes [27]. This supports the notion that the cortex
grows by adding columns rather than by increasing their size [171]. This also holds during develop-
ment. As the size of the cortex grows in cats, the size of ocular dominance columns remains constant
[172]. This effect has a repercussion on the coverage of the pattern, as explained in figure 5.1.2b).
It was previously shown in this thesis that patterns that maximize the coverage to the stimulus pa-
rameters are disordered. Coverage is also dynamically improved in those patterns even if it is not
explicitly required in the dynamical equation. But the difference in coverage compared to maps de-
pends on the size of the cortex. As the area increases, the number of hypercolumns representing the
same region of visual space also rises. With more columns representing the same input the coverage
to the stimulus parameters is improved. In interspersed patterns, on the other hand, the homogene-
ity of represented orientations for any interval of the visual cortex is already increased, such that
increasing the number of neurons doesn’t have a strong effect on the coverage.

Stimulus coverage favors the formation of interspersed patterns, but its relative advantage decreases
with area size. Therefore, a combination of coverage with other optimization criteria that reverse the
favoritism will naturally lead to a predicted transition from interspersed to map organization with
area size. One such criterion is the wiring cost per neuron that was previously proposed by [64]. The
authors analyzed the functional layout that minimizes the total wiring length between the neurons
when a specific orientation dependent connectivity function is assumed. If the number of afferents to
a neuron has to be equal for every orientation difference, the layout that minimizes the wiring costs
is disordered, as in that case all orientations are represented close to each other. On the other hand, if
the number of afferents to a neuron needs to be increased for inputs of same orientation tuning, the
solution that minimizes wire length are ordered patterns, as neurons with similar properties are close
to each other. It was recently shown that in the primary visual cortex of mice neurons with similar
orientation tuning have a higher connection probability [115]. Orientation selective interactions are
therefore present in both species with and without orientation maps, implying that the wiring costs
to maintain this connectivity are higher in interspersed patterns. While for coverage this difference
in the cost is reduced with increasing visual cortex area, the wire length per neuron remains constant.
This is because the functional composition of the vicinity of a neurons is not influenced by the size of
the cortex.

A tradeoff between coverage and wiring costs per neuron leads to a transition in the layout of the
primary visual cortex with V1 size. If the cortex is small, the optimal layout are interspersed patterns
because the coverage in maps is low and the benefit of lower wiring costs is outweighed. For large
cortices, the optimal layout are maps because the wiring costs to maintain orientation selective inter-
actions is low and the difference in coverage is only minimally reduced. In the next section this effect
will be studied in detail by constructing and calculating the cost function for both organizations as a
function of V1 area sizes.

5.2 Setting up the calculations

To check that the effect of the area size on the coverage and wiring cost follows the hypothesis pre-
sented, the layouts of different sizes have to be constructed following the rules described.

Ordered maps of increasing size are generated by defining the hypercolumn as (nΛ)
2 neurons and
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Figure 5.1.2: Functional layout with increasing cortex size. a) Typical hypercolumn size for different animals
compared to their body weight. Even with logarithmic increase in the size of the animals, and equivalently
their visual cortical area, the size of the hypercolumns changes little. b) With constant hypercolumn size
(squares), an increase in the size of the cortex leads to the involvement of more columns with different orien-
tations to represent the same area in visual space (circles). The vicinity of each neuron (asterisks) remains the
same independent on the size of the cortex. Figure a) is adapted from [27].

adding discretized number of columns L to the cortex. By setting the hypercolumn size to 1mm, L
determines the length of the system in mm. For a system of (L nΛ)

2 neurons, the map is generated
in Fourier space by assigning a nonzero value to 20 modes equally distributed in the critical circle of
size L, as shown in figure 1.3.1a). Reducing the number of modes leads to a more crystalline pattern
with lower Swindale coverage values as discussed in figure 4.2.3b). This has as effect the shift of the
transition towards ordered maps. As first approximation maps with a high number of modes, and
therefore pinwheel density close to π are used.

Interspersed patterns are generated by assigning random orientations to the system of (L nΛ)
2 neu-

rons. Previously in the thesis it was shown that interspersed patterns are not random. The optimized
homogeneity of orientations is local and depends on the interaction range between the neurons,
which doesn’t change with cortex size. Therefore, including the fine structure of the disordered lay-
out only shifts the transition between the layout types towards interspersed patterns, making random
orientations a good approximation in this qualitative model.

To measure the Swindale coverage of the layout C the definition in equation 4.2.1 is used. The size
of the point spread image is scaled with the cortex size as σc = p L nΛ, where p < 1. This is done
to increase the number of involved columns in representing a stimulus as the cortex gets larger. The
choice of p only determines the relative amount of neurons where activity is evoked by a stimulus,
such that its exact value only shifts the transition towards interspersed patterns for smaller choices.
The other parameters for the calculation of the Swindale coverage are the same as used in the previ-
ous part of the thesis.

To calculate the minimal wiring costs per neuron W the steps described in [64] are followed. First, a
discretized connection function between the neurons is imposed

CF(∆θ) = [Nα(b +
eκ cos(2∆θ)

eκ
)]

The connection function describes with how many neurons with orientation difference in the interval
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∆θ each neuron has to be connected with. Nα is a normalization factor to ensure that each neuron has
exactly α afferents and the square brackets represent rounding the result for each bin since only only
integer number of connections are possible. The parameter κ determines the shape of the interaction
function. Smaller κ makes the distribution broader, such that the number of imposed connections
to neurons for each orientation difference bin ∆θ is similar. Larger κ makes the distribution more
peaked. The constant b is chosen to ensure that every neuron has at least one afferent of every
orientation difference bin. For a fixed connectivity function, the minimal wire length to satisfy it is
calculated neuron by neuron by binning the orientation difference between its neighbors, looking for
the closest CF(∆θ) neurons for each orientation difference bin and summing the distances.

The parameters used in the calculations are nΛ = 20, p = 0.02, α = π( nΛ

4 )2, b = 0.12 and κ = 3.
The orientation difference in the connectivity function is divided into 15 bins. The area of the system
was varied from 101 to 103 dm2 The only parameters that are crucial for this approach are the ones
defining the connection function. This will be analyzed with more detail later in the text.

5.3 Results

For every cortex size and functional architecture 30 patterns were generated and their Swindale cov-
erage and minimal wiring cost per neuron calculated. The results are shown in figure 5.3.1a) and
b).

Figure 5.3.1a) shows the Swindale coverage of the interspersed pattern in red and for the map in
green as a function of area size. The points are the actual measurements and the line is a power fit
passing through them. The variation of the measured values for every area size is small, such that
the fit is a good representation of the data. For maps the equation used is Cmap(a) = 0.76 a−0.36 and
for interspersed patterns Cisp(a) = 0.27 a−0.50, where a is the area size. Although for both cases the
value of the coverage decreases with increasing size, the difference gets smaller the more columns
are involved in the representation. The results thus follow the predictions presented.

Figure 5.3.1b) shows the minimal wiring costs per neuron of the interspersed pattern in red and
for the map in green. In the case of the interspersed patterns the variation for the different sizes is
small. It is evident that the value is insensitive to a change in cortical area, such that the result can
be described with the constant Wisp(a) = 17.58. In the case of the map there is a high variation in
the measure obtained for every area size. Since the pattern is not crystalline, different realizations
have pronounced differences in the fine structure of the orientations, leading to the high variation of
the wiring costs for every neuron. A possible solution to make the measurements less variable is to
decrease the number of modes used to generate the maps or use the median wiring costs per neuron
instead of the mean. From the plot it is clear that the mean value of the wiring cost and the size
of the fluctuations are independent of the cortex size, such that it can be described by the constant
value Wmap(a) = 17.01. The results of the wiring costs show that, as predicted, the cost is larger for
interspersed patterns than for maps and constant with respect to cortex size.

Figure 5.3.1c) shows the result of joining both optimization parameters linearly in a combined cost
function

F = C + αW
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Figure 5.3.1: Swindale coverage and wiring costs for the different layout types of varying size. In all plots the
measurements for maps are displayed in green and for interspersed patterns in red. 30 realizations of each
pattern type and size are analyzed. a) Swindale coverage of the patterns. The coverage is improved with
the addition of neurons responding to the same stimulus for both layouts, but the difference is reduced with
increasing size. b) Minimal wiring costs per neuron for the patterns. Although there are big fluctuations for
the different realizations, the costs remain constant with increasing cortex size and are always lower for maps
than for interspersed patterns. c) Combined cost function where the wiring cost is weighted by the parameter

α. In the plot the fitted curves for the measurements are used. After 102dm2 there is a transition between
interspersed patterns being optimal to ordered maps being optimal. d) Optimal layout depending on area
size and the parameter α. For every choice of parameter α there is an area size where the optimal pattern is
switched.

In the example α = 0.2. The curves are drawn by using the fitted values of the measurements. As
predicted, for small sizes interspersed patterns are favored because of having a lower coverage that
overcomes the deficit caused by increased wiring cost. For larger sizes, this effect is reverted. With
this value of α the transition between maps and interspersed patterns happens at approximately
102dm2. A different choice of parameter α shifts the transition region. This is shown in figure 5.3.1d).
For every value of α there is a transition line marking the sizes where maps are optimal in green and
where interspersed is optimal in red.

Taken together, the results show that the optimality theory proposed in this part of the thesis can
produce a possible area size dependency on the type of the emerging layout in the cortex.

5.4 Discussion

The idea that the functional architecture in the visual cortex is shaped by the evolutionary drive to
optimize an unspecified cost function was already proposed by Hubel and Wiesel [23]. The model
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proposed here is simple and thus easy to understand. The aim of the model is not to give a precise
quantitative prediction for the exact critical size of V1, but to explicitly demonstrate the consistency
of a plausible evolutionary mechanisms that could drive the evolution of the cortical architecture.
The model shows a simple and plausible optimization principle that can explain the evolutionary
divergence of V1 functional organization.

On the one hand the coverage of the system and its dependency on cortex size is a very robust feature
that has only weak dependencies on the chosen parameters. This can already be inferred by the fact
that optimization models for coverage lead to interspersed patterns [145].

On the other hand, the wiring cost is just one of different conceivable cost components that may
favor a functional map architecture. Even if the variation between map realizations is removed,
the difference between the wiring costs for maps and interspersed patterns depends strongly on the
choice of parameters for the connection function. As was shown in the original paper [64], for maps
with increasing number of Fourier modes to be optimal the orientation selectivity of connections
between the neurons has to be very high. Intermediate values of κ making the connection function
cosine shaped lead to a stripe pattern as optimal solution. Although that kind of connectivity is more
approximate to the one found experimentally in adult animals [115], using it in this approach leads
to a decrease and then the inversion of the benefit in wiring costs for the different layouts, as neither
maps not interspersed patterns are optimal in this case.

It is thus important to emphasize that wiring cost was used in this study just as an representative
example that is conceptually simple. That this cost component leads to a change in optimal layout
as the difference in coverage is reduced, is not a specific feature of wiring optimization. Any other
optimization factor that favors maps over interspersed patterns and that is insensitive to area size
will lead to a qualitatively similar theory and transition. The previous chapters of this thesis in fact
suggest an alternative candidate. Also a selective value of the stability of the represented orientation
of neurons would favor a map architecture over an interspersed design. The wiring cost was used in
this study because it only relies on the structural properties of the layout and not its dynamics.

The view of area size as determinant for the functional layout has been questioned by the results from
gray squirrel V1 [110]. They are highly visual rodents with a primary visual cortex of approximately
the size of ferrets, but orientation maps are not developed. It is thus important to note that this result
doesn’t strongly refute the idea of area size as a critical factor influencing the functional organization.
The above results show that the exact boundary marking the transition between the different layout
types must be expected to be influenced by many factors. An example is the cellular composition
of the visual cortex, which shows many differences between lineages. In rodents an increase in the
number of neurons scales as a power law with area size, while in primates the scaling is linear [138].
This means that in an area with equal size the the total number of neurons is smaller in rodents
that in primates. Another example is the difference in pyramidal cell layer thickness between the
species [137]. The thickness is more than twice smaller in rodents compared to primates, suggesting a
different proportion of cortical volume dedicated to intra-cortical connections. Therefore, to critically
assess the area size hypothesis, it would be much more informative to examine species that are far
from the possible transition region. These include on the one hand rodents with large brains, like
the capybara with 300mm2 V1 size [164], and on the other hand primates with small brains, like the
mouse lemur with a V1 size of 10mm2 [173].



Chapter 6

Estimation of tuning curves in the rat
visual cortex

In chapter 4 interspersed patterns generated by simulations of the theory were analyzed. A robust
prediction of the dynamical theory for the generation of interspersed layouts was that the preferred
orientation of the neurons is very susceptible to noise. Even if the preferred orientation of some neu-
rons is frozen in time, the remaining neurons continue fluctuating with almost the same diffusion
coefficient as if every neuron behaved freely. The conclusion of the structural characterization was
that the spatial arrangement of orientation preferences is not random, but has a negative correlation
between nearest neighbors and an increase in the homogeneity of represented orientations (discrep-
ancy) and stimulus responses (coverage). This chapter presents and applies methods to test those
characteristic features in the visual cortex of rats.

How can these predictions be tested experimentally? The difference between the interspersed pat-
tern and a random arrangement is very subtle, such that a very accurate estimation of the preferred
orientation is needed. The estimation of preferred orientation, as any measurement, will inevitably
involve a certain degree of variability. To characterize the lability of the tuning properties of neurons
it is important to detect when changes actually occur and are not just a reflection of the uncertainty
of the estimation. Therefore, to analyze the primary visual cortex of the rat the tuning curve of the
neurons has to be estimated with a great precision and the confidence intervals of the fitted param-
eters have to be calculated to detect when changes are significant. Also, depending on the speed of
change, the minimal number of observations needed to estimate significant changes of the tuning
parameters in time needs to be determined.

In this chapter first the protocol of the 2-photon calcium imaging experiments in rat V1 is presented.
The effect of two stimulation paradigms (episodic and continuous stimulation) and three fitting
methods (vector average, Levenberg–Marquardt and Bayesian inference) on the estimation of the
preferred orientation is then analyzed. The results show that, within the same stimulation paradigm,
the orientation preference estimated with the different methods was very similar. The size of the
confidence intervals however varied between the methods, with the smallest achieved by Bayesian
inference. Therefore, from the estimation methods tested, Bayesian inference is the most statistically
optimal. On the other hand, when the two stimulation paradigms were compared and the fitting
methods maintained constant the preferred orientation and distribution of confidence interval sizes
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had a higher variation. This discrepancy indicates that the different stimulation methods have a
strong impact on the response of the neurons.

Next the effect of the recording time on the accuracy of orientation preference estimation is ad-
dressed. The results show that a estimation of the tuning curve with great accuracy is possible with a
relatively short presentation of the stimulus set. Interestingly, longer stimulation times do not lead to
the statistically expected reduction of the confidence interval. To disentangle this effect, the data of a
long recording from the rat V1 was split in equal parts and analyzed separately. Significant changes
of the tuning between the parts were detected. In accordance with the theory, the tuning of some
neurons was very variable, even if they were sharply tuned before and after the significant change in
orientation.

This chapter of the thesis is a collaborative project with Jason Kerr from the Network Imaging group
at the Max Planck Institute for Biological Cybernetics in Tübingen. The data acquisition and spike
detection from the calcium signals was performed by Vishnudev Ramachandra.

6.1 Experimental protocol and tuning curve estimation

Imaging protocol

Lister Hooded male rats (>140g, P40-P49) were anesthetized by intraperitoneal injection of urethane
(1.8g per Kg). The binocular region of the visual cortex was identified by performing intrinsic op-
tical imaging [40] on a 4X4mm area of thinned skull over the visual cortex [131]. A 2-3mm wide
craniotomy was opened over the binocular visual cortex and sealed with Agarose (1.2 % in Ringer
solution). Astrocytes were labeled with sulforhodamine 101 [174]. Neurons were bolus loaded by
pressure injection of calcium indicator Oregon Green BAPTA-1 AM from pipette of tip size 1 − 2 µm.
2-photon imaging was carried out using mode-locked Ti:sapphire laser (MaiTai, Spectra Physics)
at wavelength 920nm. Image acquisition was controlled using custom software. A CRT monitor
(IIyama MT9021T, 1280X1024 resolution) placed 48cm in front of the rat was used for visual stimula-
tion. Software for visual stimulation was written in Matlab with Psychophysics Toolbox extensions
[175–177]. All procedures were performed according to the animal welfare guidelines of the Max-
Planck-Society.

Stimulation paradigms

Two stimulation paradigms are used:

• The episodic stimulation consisted of a moving square-wave grating of size 0.05 cycles/degree
and drifting speed of 2 cycles/sec. Each grating was shown for 2 seconds with a inter-stimulus
interval of 2-3 seconds. The luminance during the stimulus and inter-stimulus interval was
30cd/m2. A single stimulation trial consisted of the presentation of the moving grating drifting
in 16 equally spaced directions in random order.

• In the continuous stimulation the square-wave grating of size 0.05 cycles/degree had two de-
grees of freedom: It drifted with speed 2 cycles/sec and rotated around the center of the screen
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with angular speed of 6deg/sec [146]. A single stimulation trial consisted of one 360◦rotation
of the grating.

Data analysis

Fast motion artifacts were corrected using the algorithm described in [178] and action potential
evoked calcium transients were detected as in [179]. The binned temporal resolution of the spike-
count was 0.1 seconds. The study focused on estimating orientation preference, such that the direc-
tion of the stimulus was divided modulo 180◦. For episodic stimulation the spikes recorded during
each 5 bins were added, representing one complete movement of the dark-light or light-dark edge of
the grating. For each neuron a stimulus-response vector was generated and was used to fit a tuning
curve with the three different methods discussed below. To obtain the confidence intervals of the
fitted parameters the bootstrap method was used [180]. In this approach the parameters are fitted
multiple times with stimulus-response pairs re-sampled with replacement from the measured data.
The 2.5 and 97.5 percentiles calculated from the samples are the bootstrap confidence intervals. For
the estimation of the tuning parameters for each sample three different methods were used:

• Vector averaging: The magnitude of each response is multiplied by an unit vector of angle
twice the orientation of the corresponding presented stimulation and the obtained value is then
averaged over all stimulus-response pairs. This procedure is most transparent for a cosine
tuning curve

TC(φ) = A0 + A cos(2(φ − θ))

Then the amplitude A corresponds to the absolute value of the vector average and the pre-
ferred orientation θ to half the argument of the vector average. The preferred orientation is
independent of the mean response A0. In the text this method will be abbreviated as VAV.

• Levenberg–Marquardt fitting [181]: This iterative method starts from an initial guess of the
tuning curve parameters and modifies them in order to minimize the sum of square errors
between the data and the predictions of the model. When the sum of squares of errors is large
the method acts similar to gradient-descent methods, where the parameters are updated in
the direction of the greatest reduction of the least squares objective. As the error is reduced
the method acts similar to Gauss-Newton method, where it is assumed that the least squares
function is locally quadratic and the parameters are updated to find the minimum. The tuning
curve to fit was a Von Mises function

TC(φ) = A eσ cos(2(φ−θ))

where A is the amplitude of the tuning curve and θ the preferred orientation. The parameter
σ regulates the width of the tuning curve; for constant A and θ, the larger σ the sharper and
higher the peak of the tuning curve will be. The initial guess for the parameters σ and θ were
respectively the magnitude and orientation of the vector average, and for the parameter A the
maximum average response for all stimulus orientations was taken. The fit was labeled as
successful when either the error, the gradient or the change in the parameters reached a value
smaller than 10−7 in an iteration. Unsuccessful estimates happened when 100 iterations were
completed without reaching a solution satisfying the requirements above or when the Jacobian
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matrix was numerically not invertible. Unsuccessful bootstrap samples where not considered
for the confidence interval. In the text this method will be abbreviated as LM.

• Bayesian inference [147]: This method evaluates for a set of k parameters the posterior prob-
ability of the tuning curve being consistent with the measured data given a prior assumption
about how the neuron response relates to the tuning curve (e.g. Poisson or Gaussian) and the
relation between the tuning parameters. This generates a k-dimensional probability field of
tuning curves. A Markov Chain Monte Carlo method [157] is used to make a random walk
in this parameter space to approximate the distribution of tuning curves in it and to find the
maximum posterior probability. The tuning curve to be fitted with this method was a circular
Gaussian function

TC(φ) = B + A
∞

∑
n=−∞

e
− (φ+180n−θ)2

2 σ2 (6.1.1)

where A is the amplitude, θ the preferred orientation and σ the width of the tuning curve. The
parameter B determines the magnitude of the minimum response of the tuning curve. The
relation of spikes to the tuning curve was chosen to be Poisson distributed, where the mean
of the distribution for a given orientation φ is the corresponding value of the tuning curve.
The posterior probability of the obtained tuning curve is divided by the posterior probability
of a constant tuning curve TC(φ) = c, a measure called Bayes factor. It measures how much
better the data is explained by the circular Gaussian than by a constant “tuning curve”. The
software for this method was first provided in [147]. Corrections to the circular statistics in the
calculation of the bootstrap confidence intervals and the possibility to modify the seed of the
random numbers in the program were added in this work and shared with the authors. In the
text this method will be abbreviated as BAY.

It is important to note that although the parameters A and σ of the different models represent the
same concept, they are not mathematically equivalent and can’t be directly compared. However,
direct comparison is possible for the preferred orientation of the tuning curve θ, which is equivalent
in all models and is our wanted read-out. Since the preferred orientation θ is estimated from different
tuning curve functions, the comparison on the size of the confidence interval has to be done with care.

6.2 Comparison of the stimulation and estimation methods

The activity of 86 neurons corresponding to four fields of view at different depths was recorded while
presenting 7 repetitions of one episodic stimulation trial followed by one continuous stimulation
trial. The results of estimating the orientation preference with the different methods is shown in
figure 6.2.1. Each point in the plots corresponds to the orientation preference as estimated by the
methods labeled in the x and y axes. The color of the axis represents the stimulation paradigm
used. Episodic stimulation is labeled with blue and continuous stimulation with orange. Even if
the orientation of the neurons are not on the diagonal for the pair of fitting methods, the difference
between the estimates can be unsignificant. In the plots, non-significant differences are labeled in
green and significant differences in red. The average absolute orientation difference in the estimated
orientation preferences is marked in the corner of each plot.
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Figure 6.2.1: Comparison of the estimated preferred orientation from episodic and continuous stimulation (blue
and orange borders respectively) using different estimation methods: vector averaging (VAV), Levenberg-
Marquardt fitting (LM) and Bayesian inference (BAY). The mean absolute orientation difference is displayed
for each comparison. Green markers represent that the difference in the estimated orientation is not significant
and red markers represent significant differences. Comparisons within one stimulation paradigm show that
the estimated orientation does not significantly differ with the different fitting methods. Cross-stimulation
comparisons are more variable, indicating that the response of the neurons is different depending on the
method used.
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Figure 6.2.2: Histogram of orientation confidence interval sizes for the different stimulation and estimation
methods. Blue bars correspond to Bayesian inference, green bars to Levenberg-Marquardt and red bars to
vector averaging. In a) episodic stimulation is used and in b) continuous stimulation. The highest number of
small confidence intervals is obtained when using Bayesian inference.

In figures a) to c) episodic stimulation is used. The estimated orientation is consistent across fitting
methods, specially between VAV and LM. This is to be expected because the LM method uses the re-
sults of the VAV as initial guess for the parameters. In figure d) to f) continuous stimulation is used.
The estimated orientation preference is also consistent across methods. The distribution of preferred
orientations is different as for the episodic stimulation, having a larger clustering around 0◦. This
will be analyzed further below. That the estimated orientations are different can be seen in figures
g) to i), where the orientations for the different stimulation paradigms using the same methods are
compared. The difference between the orientations is much larger, with many neurons having a sig-
nificant difference. Since the stimulation paradigms are different, not necessarily all the neurons will
have the same response for both of them. One neuron might be highly selective for a specific ori-
entation that is not presented in the episodic stimulation, resulting in a lower selectivity in the later.
Similarly, some cells might respond only to strong changes in the receptive field, and therefore since
in the continuous stimulation the presentation of the grating is not interrupted during the whole trial
those neurons will have a lower response than with episodic stimulation. With episodic stimulation
the neurons are strongly driven by the sub-cortical afferents, such that most fire at the onset of the
stimulus. In comparison, with continuous stimulation the initial high activity reaches equilibrium,
such that the activity elicited by recurrent networks is accentuated.

Independent of the cross-stimulus comparison, the results show that estimating the tuning curve
with methods of increasing complexity doesn’t lead to a significant difference in the orientation pref-
erence. How do the confidence intervals depend on the used method?

Figure 6.2.2 shows the histogram of confidence intervals for the different fitting methods; BAY in
blue, LM in green and VAV in red. Figure a) shows the results of episodic stimulation and figure b)
for continuous stimulation. In figure a) it is shown that to estimate confidence intervals below 20◦the
fitting method plays a role, where a higher number of small intervals is obtained with decreasing or-
der by BAY, LM and VAV. This difference might depend both on the complexity of the fitting method
or the number of parameters used to model the tuning curve. Preliminary analysis using a circular
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Figure 6.2.3: With continuous stimulation orientation preferences close to 0◦are more frequent compared to
episodic and have a smaller confidence interval. a) Size of the confidence intervals as a function of estimated
preferred orientation. b) Size of the confidence intervals as a function of the Bayes factor. Inset: Histogram
of estimated orientation preferences with confidence intervals below 30◦and Bayes factor below 100. In both
plots episodic stimulation is marked with blue and continuous stimulation with orange.

Gaussian with LM to have a direct comparison with BAY show that the number of parameters is not
the main cause of the reduction of the size of the confidence interval. This preliminary result depends
on the initial conditions of the parameters in LM, so it is possible that a better initial guess leads to
a higher match between the methods. In the BAY algorithm the random walk in parameter space
removes the impact of the initial guess.

The distribution of confidence interval sizes for LM and VAV behaves similar, with all sizes more
or less equally represented. On the other hand, in BAY there is a tendency to either estimate small
or large confidence intervals, with intermediate intervals under-represented. This shows that BAY is
more susceptible to bootstrap samples for neuron that are less orientation selective, doing a better job
in detecting them. Therefore BAY is not only theoretically optimal but also conservative in assigning
large confidence intervals to weakly tuned neurons.

For the continuous stimulation in figure b) the same conclusion about the efficiency of the methods in
estimating small confidence intervals apply. Interestingly, for BAY there is a large fraction of neurons
with a very narrow confidence interval. As mentioned before this could be caused in part by the
difference in response properties of the neurons to the different stimulation paradigms. On the other
hand, this effect might be caused in part by details of the stimulation paradigm that can be corrected.
A hint of the second is the over-representation of estimated orientations close to 0◦. This is analyzed
for the BAY approach in more detail in figure 6.2.3. In figure a) the size of the confidence intervals as
a function of the estimated orientation is plotted, where blue marks episodic and orange continuous
stimulation. As found before, for continuous stimulation there is a clustering of orientations close to
0◦, where many of them have a very small confidence interval. This is not the case of episodic stim-
ulation, with a more homogeneous distribution of orientations and confidence intervals. In figure b)
the confidence intervals as a function of the Bayes factor of the estimation is plotted. The Bayes factor
gives the ratio of the posterior probability of the data being described by a circular Gaussian versus
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being described by a constant function. For episodic stimulation in blue the expected behavior is
obtained; with higher Bayes factor the neurons are more likely orientation selective and have there-
fore a decreasing size of the confidence interval. For continuous stimulation in orange the overall
behavior is similar, but there is a larger amount of neurons having both a low Bayes factor and a low
confidence interval. The inset in the figure shows the distribution of estimated orientations for the
neurons having a Bayes factor lower than 100 and confidence intervals smaller than 30◦. The inset
shows that the majority of estimates having those conditions come from continuous stimulation and
that most of them have an orientation preference close to 0◦. What makes the horizontal orientation
special?

The over-representation of this orientation does not depend on the fitting method, as it is present with
the three algorithms used. One possible reason for this effect is that the rotating grating is drifting at
this orientation at the beginning of the stimulus, causing an increase in the response due to the onset
of the stimulus. A solution for this is to start the drifting of the grating at a random orientation in each
trial or to complete a 366◦turn and neglect the first recorded bins. A second possible cause is that the
calcium indicator used to detect activity in the neurons might have a weaker response in time due
to the continuous stimulation, making spike detection less accurate. This possibility has to be tested
by comparing electrophysiological recordings with the spikes obtained from the calcium imaging.
If this is found to be a problem, a solution is to make breaks during the continuous stimulation for
the signal to recover. Since those experiments and tests are yet not completed by the experimental
collaborators, the rest of this chapter uses data from episodic stimulation only.

Taken together the results show that small confidence intervals on the order of a few degrees can be
obtained with all estimation methods. In the next section the length of the recording necessary to
obtain small confidence intervals is analyzed.

6.3 Optimal stimulation time

The experiments in rats require the injection of a calcium indicator to the cortex. With time the signal
obtained by the indicator decays, defining a temporal window where the response of the neurons can
be recorded. Therefore, if a large number of neurons has to be characterized with high accuracy, the
time spent in recording every field of view has to be optimized. An appropriate way of characterizing
the effectivity of the recording is the size of the confidence intervals for the preferred orientation.
Theoretically, the longer the sampling, the smaller the confidence intervals will be with an expected
decrease proportional to the inverse square root of the sample size. In reality, correlated noise and
fluctuations in the response of the neurons will influence how accurately the preferred orientation
can be estimated. If orientation preference is not really stationary, the confidence interval size may
saturate or even increase for longer recording times.

In this section 78 neurons corresponding to 3 fields of view at different depths were recorded during
the presentation of 9 pairs of episodic and continuous stimulation trials. Progressively increasing
lengths of the response were used to fit a tuning curve as described above. Figure 6.3.1 shows the
result of this approach. Only the results for the episodic stimulation are shown. In each plot the
colors correspond to different lengths of the recording as labeled at the bottom of the figure. Each
plot shows the cumulative probability of finding neurons with a confidence interval size below a
certain value. For example, if the curve passes at [±30, 0.4] means that 40% of the neurons have a
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Figure 6.3.1: A small number of stimulus trials are necessary to have a good estimation of the preferred orien-
tation. Each plot shows the probability of finding neurons with a confidence interval below or equal a certain
size. The colors correspond to increasing numbers of stimulus trials presented. The estimation method used
from left to right was vector averaging, Levenberg-Marquardt and Bayesian inference. The insets correspond
to a magnification of the curves for small confidence intervals.

confidence interval size below or equal to ±30◦. The inset in the figures is a magnification of the
curves for small confidence intervals.

The results show that as the number of stimulation trials increases the orientation of the neurons is
estimated with smaller confidence intervals. After a few trials this improvement represents only a
few degrees. In VAV confidence intervals are quickly improved with more presented trials, while for
LM this only happens for longer stimulation time. The steepness of the curve is highest with BAY,
such that after 3 trials the number of neurons with a small confidence interval is larger than for LM
and VAV after 8 trials. Interestingly, with only 2 presentations with LM and VAV small confidence
intervals are not very common, and longer stimulation time is needed to increase their number. This
is not observed in BAY. There, the bi-modality described before is achieved with 4 trials.

Taken together, these results show that a small amount of presentations are sufficient to have a good
estimation of the preferred orientation of the neurons. Since the most precise estimation method is
BAY, it will be used in the rest of this chapter.

6.4 Non-stationarity of the preferred orientation

According to the simulations in chapter 4, interspersed patterns are predicted to be very susceptible
to noise-induced random drifts of preferred orientation. In this section the stability of the estimated
preferred orientation in the rat visual cortex is addressed. In the previous section it was shown that
long stimulation times are not necessary to have a good estimation of the orientation preference.
Therefore, the recoding of an experiment is split in parts and the tuning curve is estimated using
Bayesian inference independently for each. The question to answer is if the estimated orientation
changes significantly during the course of a recordings, which takes less than 30 minutes.
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Figure 6.4.1: The preferred orientation in some neurons is not stationary. The figures show the results of dividing
the episodic recording of one experiment in 3 parts with equal amount of time in a) and spikes in b) and
comparing the preferred orientations estimated with Bayesian inference. In the plot on the left the estimated
orientation in the different parts for one example neuron are shown. During the course of the experiment, the
neuron significantly changed its orientation. In the division in parts of the randomized data this change was
not present. Next to the example neuron are the fraction of significant orientation changes in the population
and an histogram of the size of the changes. Only comparisons where the estimated tuning had an OSI>0.5
before and after the change were considered (blue columns). Red columns represent the distribution when
the extra condition is imposed that the orientation of the neuron doesn’t change in any of the randomized
comparisons.
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For this analysis the recording of 102 neurons in 4 fields of view during the presentation of 8 sets
of episodic and continuous stimulation trials was used. This experiment was chosen because the
number of selective neurons was high. The recording of the episodic stimulation was split in 3 parts
in two different ways: i) with equal amount of recorded time and ii) with equal amount of spikes.
The first is used to analyze if a neuron changes its orientation in time and the second to control
if the change is caused by a decrease in firing rate during one of the parts leading to a different
estimation. It is important to keep in mind that this recorded time and spikes is the combination of
the 8 sets of episodic trials and explicitly neither includes the inter-stimulus-interval of the episodic
stimulation nor the data from the interleaved continuous stimulation. As a control the order of the
recording was randomized 10 times and the results were also divided in 3 parts as described above.
The goal of this is to remove the temporal structure of the recording and detect if the significant
change could have happened by chance because of fluctuations of the signal. The estimated preferred
orientations in each part were compared and only neurons where the selectivity of the tuning was
high in both compared parts were taken into account. The selectivity of the tuning was quantified
with the orientation selectivity index (OSI), that using the tuning curve estimated with Bayesian
inference in equation 6.1.1 can be defined as

OSI =
TC(θ)− TC(θ + 90◦)
TC(θ) + TC(θ + 90◦)

=
A

A + B

Only neurons with OSI>0.5 in both compared parts were used.

Figure 6.4.1 shows the result of this procedure for the data split in parts with equal amount of time in
a) and spikes in b). Left is the results of the same example neuron with both procedures, where the x-
axis marks the part the data is divided into and the y-axis is the corresponding estimated orientation
preference. The confidence interval of the estimated orientation are shown as error bars.

The plot in a) shows how the orientation is significantly different in the first part compared to the
second and the third, while the second and third are the same within the confidence intervals. From
the division in spikes in b) it can be seen that this change in orientation is not caused by a decrease
in spiking during one of the parts. In all the randomized samples (only one shown) this significant
change doesn’t occur, showing that the precise order of the spikes in the recording is necessary.

The results in the population of neurons are as follows: For the data divided in time, 91 neurons
were selective in at least one pair of compared parts and 21 neurons showed at least one significant
change of orientation in those comparisons. If the condition of stationarity in all randomized parts
is included, the number of neurons satisfying both conditions reduces to 64, out of which 9 neurons
undergo at least one significant change. For the data divided in spikes, 89 neurons were selective in
at least one pair of compared parts and 24 neurons showed at least one significant change. Including
the second condition, the number of neurons satisfying them reduces to 57, out of which 11 neurons
undergo at least one significant change. The plot in the middle in figure a) and b) summarizes this
results, showing the percentage of neurons that undergo zero, one or two significant changes during
the comparisons. The bar in blue only uses as requirement that the neuron has to be selective in both
compared parts and the red bar also requires the orientation to be stationary in the comparison of all
randomized parts. About 20% of all the neurons that satisfy this strong requirements changes their
preferred orientation at least once, either if the data is split in time or in spikes.

The plots in the right show the histogram of the distribution of sizes of the significant changes of
orientation in the compared parts. Although most changes are below 30◦, it is surprising that in



6.4 Non-stationarity of the preferred orientation 101

Figure 6.4.2: Stability and lability of the preferred orientation in a fraction of neurons. The data is split in three
parts with equal amount of recorded bins, presented in the top, middle and bottom rows. In all plots the circles
correspond to the mean firing rate from the recordings and the lines to the estimated circular Gaussian using
Bayesian inference. a) Example of a neuron with consistent orientation preference during all subdivisions. b)
Example of a neuron that exhibits significant changes between the first part and the rest of the subdivisions
(same neuron as in figure 6.4.1a)). c) Example of a neuron that has a drastic change in orientation preference
in the second part of the recording.

the course of the experiment some neurons can change their orientation almost by 90◦. Figure 6.4.2
shows the estimated tuning curves in each subdivision for three example neurons. The neuron in
6.4.2a) had a stable orientation preference, where only the orientation selectivity fluctuated in time.
This neuron is a representative of the majority of neurons recorded during the experiment.

Figure 6.4.2b) shows the same neuron used for the example in figure 6.4.1. The preferred orientation
in the first part of the recording was significantly different from the rest. The neuron developed a high
selectivity to an orientation for which it was initially not very responsive. With a mean orientation
shift of 28◦, this case represents the majority of neurons where a significant change in the orientation
preference can be detected. In figure 6.4.2c) a neuron is plotted that had a very high change in orien-
tation preference. In the first two parts of the experiment this neuron is not as selective as the other
examples. Even then, it can be appreciated that the response to the preferred orientation is silenced
during the second part of the experiment, leading to a drastic change in orientation preference. This
change is reversed in part 3 of the experiment.

The results show that the orientation preference of at least a fraction of neurons in the rat visual cortex
are not stationary, but that it can fluctuate during the course of an acute experiment. The combined
requirement of high selectivity and stationarity of the randomized recording is very strong test on
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the lability of the neurons. The idea here is to show that even with these conditions some neurons
are significantly changing their orientation.

6.5 Discussion

In this chapter it was shown that the preferred orientation including confidence intervals can be
estimated quite precisely in 2-photon calcium imaging experiments. The confidence intervals can
be very small, and a very long recording is not required to have a good estimation of the tuning
parameters. A combination of episodic stimulation and Bayesian inference of the tuning curve gave
the best results both in the number of neurons with small confidence intervals and the number of
stimulus presentations required to measure them. Continuous stimulation was found to induce a
bias in the estimated orientation of the neurons. Once this stimulation method is optimized, the
recording time might be further reduced and the confidence intervals made smaller. It was shown
that the orientation of some neurons was not static, but had significant changes during the course of
the experiment. These changes happened sparsely and at different moments of the recording, making
it unlikely that they are caused by eye movements or eye rotations in the anesthetized animal. These
preliminary results supports the predictions of the theory about the dynamics of preferred orientation
in an interspersed organization, where the orientation preference of the neurons is predicted to be
sensible to noise. Once the recording protocol is completely optimized to reduce recording time
without impairing the accuracy of the estimation, a large number of neurons can be recorded and the
spatial structure of the disordered pattern can be addressed. The use of 2-photon calcium imaging
is encouraged since in this method the individual neurons can be fully distinguished the eliminating
error sources coming from recording from two distinct neurons.

The significant changes of orientation preference in the relatively short time-frame poses many inter-
esting questions. What is the role of the continuous stimulation presented in-between the recordings
of the episodic stimulation? Are the orientations of the neurons also changing when no continu-
ous stimulation is shown? What would be the results of presenting naturalistic movies to the rat
in-between the episodic stimulation trials? It is expected that the changes in orientation preference
are caused by the activity of the surrounding neurons. It is therefore interesting to quantify how the
presented results vary with different stimulation types in-between the recordings.

Other question that arises is if those fluctuations in orientation are also found in neurons inside an
orientation map. Although it is possible that individual neurons change their orientation over time
without external manipulation, the overall order of the maps is known to be quite robust [182]. Fluc-
tuations would have to keep in the vicinity of the population surrounding the neurons such that
the pattern is not lost. The orientation preference of individual neurons in cats can be modified by
pairing the desired orientation with external manipulations of the firing of the neurons [98, 183]. It
can be addressed how long this modifications last under normal cortical activation (e.g. naturalistic
movies) and if the preferred orientation of the neurons returns to its initial value corresponding to
the column they belong to. Changing receptive field properties by imposing activity is also possible
in rats [184, 185], although a modification of the preferred orientation as in the previous experiments
hasn’t been performed. According to the theory and the results presented here, changing the pre-
ferred orientation of the neurons in rodents must be far easier than in animals with maps, with a
smaller strength and number of stimuli needed.
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The results show that the the majority of neurons have a robust orientation preference, at least with
the conditions used to distinguish when significant changes occurred. Is there any difference between
the neurons that are labile and the ones that are not? As described in [124], neurons responding to
similar visual features become preferentially connected as the cortex develops. This stronger connec-
tivity between like-to-like might reduce the variability of the orientation preference. The simulations
show that the fluctuations of the rest of the cortex is not impaired by having the orientation of some
neurons fixed in time.

The preliminary results described above are obtained from an experiment that was designed to as-
sess and optimize the accuracy of preferred orientation measure. Based on our preliminary findings
experiments are being planned to directly test the predictions of the model about the lability of neu-
rons. In those experiments only one stimulation method is used and the neurons are recorded for a
longer time. Also the possibility of eye movements is removed by fixing the eye of the anesthetized
rat during the experiment. To have longer recordings, the use of transgenic mice can be considered,
where the calcium indicator is genetically encoded and the time window for the recording is vastly
expanded. In this case the stability and changes of the tuning curves under normal visual experience
in-between the recordings can be addressed.



Chapter 7

Summary and discussion

In this thesis the class of dynamical models introduced by Wolf [20–22, 186], that is currently the
only modeling approach capable of generating orientation maps in quantitative agreement with the
geometry of maps found in primates and carnivores, was generalized to investigate conditions for
the emergence of disordered orientation preference layouts, as found in rodents and lagomorphs.
The predicted pattern is determined by the shape of the intra-cortical interactions. As in the previ-
ous model, ordered pinwheel-rich maps emerge as solution when the short-range interactions are
Mexican-hat-shaped and long-range orientation-selective interactions are present. In contrast, with
strong, local and unselective inhibition disordered arrangements are obtained. It is important to
emphasize that the dynamical model by itself has no intrinsic disorder, since neurons are densely
interacting with their neighbors and the tuning dynamics are exactly equivalent for all neurons. The
disorder in the system is obtained dynamically. As an emergent collective phenomenon even ordered
initial conditions become disordered in time. The role of strong inhibition in generating disordered
arrangements was confirmed by implementing it in a correlation model based on Hebbian competi-
tion in the LGN-V1 synapses [53]. With strong inhibition oriented receptive fields form in this model,
but their orientation is disordered in space.

The order-parameter model was further expanded to have two orientation preferences representing
the inputs from the two eyes. A complete parametrization of such models up to 4th order energy
terms is derived. The late binocular orientation matching after the emergence of orientation selectiv-
ity as found by Wang et al. [127] is only obtained in the model when specific intra-neuron nonlinear
coupling mechanisms are included. Interestingly, this mechanism that increases the order among
the neuronal inputs can coexist with the dynamical disorganization of the layout for different ob-
tained by the strong inhibitory inter-neuron interactions. This means that even with a high degree
of orientation change to match the orientation preference of both eyes the interspersed pattern is
still generated. By implementing this binocular model in simulations representing the development
of a PSD-95 knock-out it was shown that the abstract parameter model can be tuned to represent
experimental time and changes in tuning dynamics during the critical period. The results of this
implementation predict that the binocular matching in PSD-95 knock-out mice is impaired by the
decrease in selectivity of the neurons [153], even if the critical period is prolonged [154].

The interspersed layout that develops in the simulations, however, is not random. A negative cor-
relation between the nearest neighbors can be measured. This signature of dynamical generated
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disorder scales inversely with the number of neurons interacting with each other and is therefore
most likely small. It was found that random patterns with the same correlation function obtained by
the dynamics are themselves not solutions. The interspersed arrangement is further characterized
by higher order correlations. First, based only on the spatial arrangement of preferred orientations,
the obtained layout is shown to have reduced values of discrepancy, which measures deviations in
the homogeneity of the represented orientations for any subregion of the cortex. Secondly, based on
the functional properties of the neurons in such an organization, the interspersed pattern is shown
to have an improved stimulus coverage, which measures the homogeneity of the evoked cortical
response by the presentation of any possible stimulus. Both characteristics are improved in the ob-
tained patterns compared to ordered maps, random orientations and negatively correlated random
layouts. In agreement with the coverage result, in a stimulus driven optimization model based on
Hebbian learning of input representations it is shown that the layout that maximizes this quantity is
disordered.

The dynamics of a neuron in an ordered and disordered pattern is also different in the simulations.
In interspersed patterns the tuning of the neurons is more labile, such that small amounts of noise
can induce high variations in their orientation preference. In ordered maps this is not the case, since
the impact of the noise is balanced by the dynamical drive of the neurons to match the orientation of
their neighbors. This high lability of tuning parameters in neurons in interspersed patterns is very
persistent and even maintained if the orientation of a large fraction neurons is frozen in time. In
contradistinction, in maps this procedure leads to a drastic decrease in the changes in orientation of
the remaining neurons.

The theory developed explains the mechanism to dynamically generate and maintain interspersed
patterns of selectivities. It, however, does not answer the question when each of the two distinct
layouts is more advantageous for the organism. To answer this question, a simple optimization the-
ory was constructed and examined that predicts a transition between the two different layout types.
Contrary to the previous model, this optimization theory is not dynamical. Here a cost function
is constructed and layouts of the different types are tested to find which one minimizes this cost.
By varying the size of the model visual cortex using experimentally derived rules (i.e. essentially
constant hypercolumn-size in maps [20, 27]), the layout type with smaller cost switches from inter-
spersed to maps with increasing area size. The cost function is constructed as a tradeoff between
two factors: 1) stimulus coverage, which is improved in interspersed patterns compared to maps but
the difference decreases with increasing cortex size and 2) wiring costs per neuron, which is reduced
in maps compared to interspersed layouts and keeps constant with area size. Using this cost func-
tion, independent of how the different factors are weighted relative to each other, a size dependent
transition between the pattern with minimal cost is obtained.

Finally, the prediction of increased lability in interspersed patterns was tested experimentally in the
visual cortex of the rat using two-photon calcium imaging. Confidence intervals of the estimated
orientation preference of individual neurons are usually not calculated in the common literature.
Therefore, the first goal was to find a stimulus and estimation method that reduces the confidence
intervals, such that preferred orientation can be measured with maximal precision and the significant
changes in time can be detected even if they are small. Episodic stimulation and Bayesian inference of
the tuning curve [147] were found to be the best choice to achieve this goal: the estimated orientation
shows no significant difference with other conventional fitting methods but the confidence intervals
are smaller and could be obtained with fewer presentations of the stimulus. The results show that
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the confidence intervals of the preferred orientation can go down to a few degrees for some neurons,
even if estimated from calcium imaging data. In accordance to the predictions of the model, using
this fitting method in a recording subdivided in subsections it was found that in less than 30 minutes
at least 20% of the neurons showed significant changes in their orientation preference. The measured
shifts range from a few degrees up to an example of a perpendicular change in orientation preference.
It is important to keep in mind that the results presented here are preliminary, and experiments
explicitly designed to comprehensively test this prediction are being currently performed. In the
model the amount of change in orientation depends on the strength of the input noise, where with
no noise the dynamics slows down and change takes long. Following this it would be interesting
to measure experimentally how different noise levels, represented by the activity of the network the
neuron is embedded in, have a repercussion on its orientation lability.

The results of this thesis are obtained by the implementation of a large repertoire of mathemati-
cal models and techniques. The thesis starts with constructing an abstract order-parameter model,
examines it with analytical methods from nonlinear stability theory and extensive numerical simu-
lations, conclusions are confirmed with a correlation model based on Hebbian learning and finishes
with a functional optimization model. Although the order-parameter model is based on the long-
interaction model previously defined [21, 22], the analysis approach used here for the first time is
very different. While in the previous case weakly-nonlinear analysis was used to formulate the am-
plitude equations, in the generalized model perturbation theory on a one dimensional system is used.
This approach allows to derive an exact equation for the growth and stability of different ordered pat-
terns without the need to specify the interaction function between the neurons (the only condition
the interactions have to satisfy are the symmetries assumed in the model). The large set of param-
eters needed to describe the interaction function are reduced to 3 by using experimental results in
rodents and by combining parameters that lead to the same effective equations. This reduced num-
ber of parameters allows to test the stability equation analytically for all possible interaction kernels,
such that the conclusion that strong local inhibition makes all ordered patterns unstable is robust for
all interactions satisfying this condition. To further validate the results large scale simulations of a
system of interacting neurons were implemented to calculate the phase diagrams of the model by a
completely independent massively computational approach. There is a perfect match between the
simulations and the theoretical results up to the limits of the numerical discretization. The expan-
sion of the model to binocular neurons is constructed based solely on symmetry considerations of
the inter- and intra-neuron coupling dynamics. Using this a very high dimensional model space that
includes all possible interactions up to third order is reduced to 4 intra-neuron and 4 inter-neuron
coupling terms, allowing the derivation of an analytical expression for the emergence and stabil-
ity of different binocularity states. Once again, the results of the theory have a perfect match with
extensive simulations. From the mathematical side alone, these calculations reported substantially
extend the current state of the art and lay the foundation for future rigorous studies of architecture
and dynamics of rodent visual cortex.

The role of inhibition in pattern formation

An important prediction of this thesis is the role of inhibition in forming the interspersed layout type.
The notion that inhibition should shape the functional organization of the columnar cortex is well es-
tablished. In cats, inhibition was chronically enhanced or reduced during development by injection
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of diazepam or DMCM respectively. The response properties of the neurons did not change, but
respectively the size of the ocular dominance columns was locally increased or decreased [18]. The
results of this experiment show that inhibition modulates the competition between the neurons and
has an impact on their functional organization. Therefore, the prediction of the theory that strong
inhibition can completely disorganize the functional layout could be congruent to experimental find-
ings. But is inhibition indeed stronger in rodents than in primates and carnivores?

Quantifying inhibition and comparing it between different species is a difficult task. Independent of
the orientation preference layout, in all species around 20% of the neurons in the visual cortex are
inhibitory [187, 188], where most of the connections are local [189, 190]. The difference arises with the
high variability of inhibitory cell types [191], with variations even within the same animal order (e.g.
between mouse and rat [192]). This has led to efforts to agree on a common nomenclature to facili-
tate the scientific communication [193]. Another difficulty in comparing the results is variations in
the quantification depending on the method applied, which includes electron microscopy, histology,
electrophysiology and correlation analysis between others. Since genetic tools are more available in
rodents the different inhibitory neuron subtypes can be tested independently with good specificity.
Therefore, the body of quantitative results is much higher for interspersed patterns. The values ob-
tained in the different studies are nevertheless somewhat variable and all comparisons have to be
taken with a grain of salt. Keeping these caveats in mind, the available experimental data supports
the requirements of the model:

• In species with maps, most connections of excitatory neurons are to other excitatory neurons.
Using electron microscopy in macaques it was reported that 80% of interactions are between
pyramidal cells (PC) [194] and with the same method in cats that the inhibitory neurons repre-
sent only around 5% of the excitatory post-synaptic targets [195]. Furthermore, using biocytin
labeling in cat it was shown that the number of inhibitory boutons connecting to excitatory
neuron is 5 times lower than excitatory boutons [76].

• In contrast to this results, in animals with interspersed architecture excitatory neurons are
highly connected to inhibitory neurons. Electrophysiological recordings in rats show that the
connections between excitatory cells is sparse, with excitatory to inhibitory interactions 10 times
more abundant and mostly reciprocal [196]. Two-photon RuBi-Glutamate uncaging in genet-
ically labeled parvalbumin positive inhibitory neurons (PV) show that they interact with al-
most all PCs in its vicinity, with 71% of the connections extending to less than 200µm distance
[197]. Similar results are obtained in somatostatin expressing inhibitory cells (SOM) using a
two-photon photostimulation technique, showing that they connect to almost all PCs in their
vicinity with 50% of the connections of shorter range than 100µm [148]. PV-inhibitory neurons
are also strongly connected with each other, where 61% of them share electrical and 78% chemi-
cal coupling [198]. This strong inhibitory interaction is independent of the preferred orientation
of the PCs, as was suggested by electron microscopy in rats [121] and demonstrated with elec-
trical recordings in mouse [120]. It is also insensitive to different sub-networks of preferentially
coupled PCs [114, 148]. The probability of two pyramidal neurons to be directly connected
in rats is half as big as having a disynaptic connection with an inhibitory neuron in between
[199]. This connectivity pattern is similar in other functionally interspersed cortical areas. For
example in the barrel cortex, an excitatory neuron is connected to another excitatory neuron
with 17% probability, with a fast-spiking inhibitory cells with 58% and with a non-fast-spiking
inhibitory cell with 24% probability [200]. The functional consequence of this is that the activa-
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tion of one excitatory cell increases the recurrent inhibition in the network supralinearly [201],
leading to a strong lateral surround suppression in the corresponding cortical layer [149].

Taken together this shows that short-ranged inhibition is indeed stronger in rodents than in species
with maps. This fact has functional repercussions on the properties of neurons in the rodent cortex,
making them different from species with maps. One clear difference is in the orientation selectivity
of inhibitory neurons in both systems. In species with maps inhibitory neurons are sharply tuned
for orientation [104, 202, 203]. In contrast, in rodents most studies show that this is not the case [103,
120, 150, 204, 205] (but see [206]). The lack of orientation selectivity in inhibitory neurons was also
reported in rabbits [207]. Other studies report that SOM inhibitory neurons are tuned, but that the
response is 4 times weaker than PV inhibitory cells [208]. A weak tuning of inhibitory neurons was
found to reflect the local bias of preferred orientations of the excitatory cells it is connected to [204].
These observations led to the view that this difference in orientation selectivity between the species
arises from the columnar versus interspersed architecture the inhibitory neurons are embedded in.
The results obtained in this thesis support a different scenario where the causal link is reversed: Since
inhibitory neurons are densely connected to excitatory neurons an interspersed pattern emerges,
which is reflected on the selectivity of the inhibitory neurons.

Spatial characterization of the interspersed pattern

In chapter 4 it was shown that the interspersed pattern generated in the simulations is not random,
but has a negative correlation between nearest neighbors. In the simulations the measured correlation
is very weak, scaling inversely with the number of interacting neurons, such that any other mecha-
nism not included in the model that lead to an increase in similarity between the receptive fields of
neurons can easily overcome its effect. Is this property of the interspersed organization found in the
cortex? Experimental studies report a very weak but significant bias of close-by neurons to have a
similar orientation preference [100, 102], where the similarity of tuning extends up to 100µm [209]. A
similar bias was also reported in the spontaneous activity of the network, where its spatial correlation
is slightly higher than random up to 80µm [? ]. As mentioned above, this local bias might underlay
the weak orientation preference of the inhibitory neurons that sample from this population [204].
The reported positive correlation doesn’t contradict the model. The weak bias might be a remnant of
the clonally related neurons that tend to be connected by gap junctions, increasing the similarity of
their tuning properties [116, 117]. This gives a biased initial condition that is not incorporated in the
model. The same studies also report that this initial similarity in tuning is only maintained early in
development and is not present once gap junctions are removed. Similarly, the reported bias should
also decrease in time, as neurons dynamically disorganize their tuning properties. Another possible
cause is weak orientation selective neuropil contamination induced by some neurons in the LGN that
are tuned [91]. This could cause an artifact in the estimation of orientation preferences and falsely
lead to a weak local bias.

It is rather surprising that the local bias is very weak and only detectable with statistical methods
in spite of the amount of drive to the neurons to develop a similar tuning. In mouse the receptive
field size is 10◦- 14◦[103] and the cortical magnification factor 15µm/◦[98], meaning that the neu-
rons in those 100µm encode a highly overlapping position in visual space, but maintain a highly
disordered orientation preference layout. The origin of this local bias could be further understood
by analyzing if this averaged orientation of the population is maintained in different cortical depths



Chapter 7: Summary and discussion 109

and is therefore columnar, indicating that the radial projections in the cortex are causing this effect
[91]. For this approach it is necessary to determine the orientation preference of a population of neu-
rons in a volume of the cortex. The difficulty of such an experiment is in determining the z-axis in
the cortex, since it is not necessarily the same as the z-axis of the microscope images and the depth
achievable by the microscope doesn’t allow to reach clear anatomical cues. In collaboration with Ja-
son Kerr and Vishnudev Ramachandra from the Max Planck Institute for Biological Cybernetics in
Tübingen an algorithm was developed to extract the real z-axis in 2-photon calcium imaging in rats
by reconstructing the deep radial blood vessels in the cortex from histological slices and matching
the coordinates with the functionally imaged volume. With enough data analyzed the results of this
experiments will shed a light on causes of this local bias.

Dynamical characterization of the interspersed pattern

The tendency of the neurons to dynamically increase the orientation difference between them as
predicted by the model could be experimentally tested by artificially inducing the formation of an
substantial local bias for a similar orientation preference, as shown in the simulations in figure 2.1.1f).
This “column” or cluster of similar orientation could be implanted in the cortex by pairing the presen-
tation of the orientation with activity in the neurons by either intra-cortical stimulation or by shining
light on genetically encoded cation channels [210, 211]. According to the model the imposed order
should decrease in time as the column disorganizes. Another experimental test to the dynamical
nature of the interspersed layout comes from the binocular model. Binocular neurons show a high
degree of change in their tuning to match the orientation preference for inputs of each eye. Accord-
ing to the model the disordered pattern is dynamically maintained, such that monocular neurons
in their vicinity would also show a change in their preferred orientation during this process. These
experimental procedures test the qualitative prediction that the interspersed pattern is generated
dynamically, which is the most important characteristic of the model.

Another dynamical prediction of the model is that neurons in an interspersed architecture have more
labile tuning. That this is indeed the case was tested in chapter ?? in the visual cortex of the rat,
where a fraction of neurons presented significant changes of orientation preferences even over the
time course of an acute experiment of 30 minutes. As stated above this results are preliminary and
need to be further confirmed. That the orientation preference of neurons in the rodent cortex can
exhibit drastic changes over time has been reported. One example in the visual cortex of this is
the binocular matching of orientation preference after the emergence of selectivity [127], or in the
barrel cortex where neurons change their direction selectivity long after the classical critical period
to increase the degree of functional clustering [133]. In contrast to this, in species with maps the
layout of orientation preferences appears much more robust in time [212], where a reorganization
coherent with the map structure happens over longer time periods [172, 213] unless changes are
imposed externally, e.g. by pairing the response of the neurons to a given stimulus [210, 211]. The
mentioned changes in the tuning of rodents are obtained by measuring different animals of different
ages. To elucidate the changes in individual neurons over time chronic imaging experiments have
to be used, for example by genetically encoding a calcium sensor in neurons and opening a cranial
window for experiments with 2-photon scanning microscopy [214]. This experiments in mice show
that the synaptic boutons, and therefore the connection between the neurons, are highly volatile,
changing on the time-scale of days and months [215–217]. In some experiments the stability of the
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orientation tuning curve in time has been addressed [218, 219], showing that some neurons have a
robust preferred orientation over days. The fraction of neurons changing their preferred orientation
is not reported as the papers focus on the success of the imaging method. As discussed above, the
model predicts that the constancy of the preferred orientation in a fraction of neurons doesn’t have
a strong impact on the undergoing changes of the other neurons, such that in the experiments both
stable and labile tuning curves could be found.

Why would evolution favor a layout where the representation of the neurons is so variable? The
first problem that comes to mind is how this labile neurons can be decoded downstream in visual
processing. The fact is that it is not known how the information is processed downstream even in
species with robust representations and maps. On the positive side, this increased susceptibility to
change can support fast adaptation to changing statistics of the visual world. In behavioral exper-
iments where a visual stimulus was associated with a subsequent reward, after 3-7 task repetitions
neurons that initially encode the stimulus evolve the ability to also encode the timing of the reward
[220]. In rodents visual adaptation has a direct effect on the response of neurons in V1. For example,
in mouse the adaptation to a repeated presentation of a grating can be measured as an enhance re-
sponse evoked by the stimulus in the cortex [221]. Adaptation to repeated stimulation is also present
in monkeys, but the effect of the response in the cortex differs. For example in monkeys after visual
training of one orientation the neurons only slightly modify their tuning properties, and adaptation
is obtained mostly by contextual gain [222, 223].

Transition between the layout types

The optimization model presented in chapter 5 predicts a transition between the different layout
types for many examples of connection functions. As shown in the original paper [64], with increas-
ing sharpness of the connection selectivity the layout that minimizes the wiring cost changes from
disordered patterns to periodic maps. This means that if the connection selectivity is set to be co-
sine shaped as found in experiments [64, 115], the optimal pattern for wiring costs alone are ordered
stripes. In that case both interspersed and periodic maps are not optimal and the difference in wiring
cost is reduced, to the point that the benefits are flipped and the transition no longer occurs. The key
element of the present model is the area size dependent difference in coverage between the layouts,
and the role of the wiring cost is simply that of an area size independent cost component that is re-
duced in maps compared to interspersed patterns. In any other area size independent cost function
that associates benefits with the presence of maps the combined cost function will show the described
transition. Possible cost functions with this property could be a penalty for the dynamical lability of
the orientations or the enhanced redundancy between the neurons when a stimulus is presented. For
any such cost function it is important to keep in mind that the predicted transition is qualitatively
robust but quantitatively modifiable. As pointed out by Van Hooser et al. [110] there is an overlap of
V1 sizes having different orientation layouts: gray squirrel and ferret have a V1 area size of ∼80mm2

and 75-90mm2 respectively, and the first one doesn’t have orientation maps and the second one does.
To explain this discrepancy, a cost function would have to be constructed that contains other aspects
besides the V1 area. It could include for example the fact that the inverse magnification factor is
3.5-4◦/mm2 in the gray squirrel compared to 2.5◦/mm2 in ferret, such that with equal cortex size
the fraction activated by 1◦stimulus is smaller in the first compared to the second. In the model, to
calculate the coverage the fraction of the cortex activated by the stimulus is constant for both pat-
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terns. Including this difference would therefore induce a shift in the transition boundary even with
equal cortex size. Another example of a factor that could lead to different layouts with equal cortex
size is the neuronal density, which is smaller in rodents compared to carnivores [138]. This means
that although the gray squirrel and the ferret V1 have approximately the same size, the number of
neurons is smaller in the first. In the model to calculate the wiring costs the number of connection
a neuron has to have is the same for both patterns, and therefore would be even higher in rodents
if the neurons are further apart. These two examples show that once a cost function is constructed
with a higher degree of detail, this would shift the value of the predicted transition but not its pres-
ence. In the model a similar change results from modifying the relative strength of the factors in
the cost function. It was shown that independently of the chosen scaling a transition between the
layouts types always exists. Instead of focusing on the details of the model for animals of similar
cortex size, a better approach to critically test it would be to experimentally examine animals that
lay far from the transition boundary, i.e rodents with a large V1 and primates, carnivores or other
laurasiatherians with small V1. In the rodent order an animal fulfilling this property would be the
capybara or the agouti, with V1 sizes of 300mm2 and 280mm2 respectively [164, 224]. On the primate
side the test animal could be the mouse lemur with a V1 size of 10mm2 [173]. For the laurasiatherians
a very fascinating case is the etruscan shrew, with a V1 size of 0.3mm2 [168]. Although it belongs to a
mammalian clade where usually orientation maps are reported, the total V1 area is smaller than the
typical size of one hypercolumn. This model predicts an interspersed architecture in this species.

Independent of the details that can be added, the theory developed here for the first time makes it
transparent how cortex size could drive a transition between layout types. For understanding the
rodent condition this model enables us to explain why they lack orientation maps in a quantitatively
and precise way and identifies a possible functional advantage associated with its evolutionary emer-
gence or maintenance.
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