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Preface 

The present work has been undertaken within the framework of a research project founded 
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Simulation der Verwitterung ausgewählter Naturwerksteine und ihrer Interdependenzen mit 

historischen und neuzeitlichen Baumaterialien am Dom zu Köln“.  

 

The thesis incorporates the following publications and manuscripts: 

Graue B, Siegesmund S, Middendorf B (2011) Quality assessment of replacement stones for 

the Cologne Cathedral: mineralogical and petrophysical requirements. Environ. Earth Sci., 

63:1799–1822 (chapter four and five) 

Graue B, Siegesmund S, Middendorf B, Oyhantcabal P (2012) Requirements for 

replacement stones at the Cologne cathedral – a systematic approach to general criteria 

of compatibility. 12th Int. Congr. Deterioration and Conservation of Stone. Columbia 

University, New York City (chapter nine) 

Graue B, Siegesmund S, Simon K, Licha T, Oyhantcabal P, Middendorf B (2012) 

Environmental impact on stone decay: crust formation at the Cologne cathedral. 12th Int. 

Congr. Deterioration and Conservation of Stone. Columbia University, New York City 

(chapter eight) 

Graue B, Siegesmund S, Oyhantcabal P, Naumann R, Licha T, Simon K (2013) The effect of 

air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban and 

rural environments– a case study of the Cologne, Altenberg and Xanten cathedrals. 

Environ Earth Sci. DOI. 10.1007/s12665-012-2161-6 (chapter three, four, five and eight) 

Graue B, Siegesmund S, Schumacher T (2013) Steinverwitterung und Natursteinaustausch 

am Kölner Dom. In: Naturstein als Element der Kulturlandschaft. Siegesmund S, 

Snethlage R (eds.) (submitted) (chapter two and nine) 
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Abstract 

The present work deals with the deterioration of natural building stones as a function of 

mineralogical and petrophysical properties in different environmental and building-physical 

contexts. Taking Cologne cathedral as an example, the diversity of construction materials 

found in this monument and the resulting problems of the interference of these materials with 

each other in terms of their deterioration will be elucidated. Physical and chemical 

deterioration processes are empirically ascertained through laboratory testing and 

experiments, and are correlated to the specific petrophysical properties determined in the 

various stones. Decay phenomena observed in situ and the processes conected with these 

are investigated. To evaluate the different pollution impacts, the decay in three different 

environmental situations is examined: at industrial Cologne, at urban Xanten and at rural 

Altenberg. A major influence of air pollution on stone deterioration is ascertained for not only 

carbonate stone but also silicate stones. Taking the Drachenfels trachyte as an example, 

mineral composition, textural features, and petrophysical properties are correlated with the 

observed decay phenomena and the ascertained physical and chemical deterioration 

mechanisms in an overall context. These results lead to a model of deterioration of the 

Drachenfels trachyte. In regard to the replacement of natural building stones as a 

preservation measure for historic monuments, the gained insights from the analyses and 

laboratory experiments are discussed and existing general criteria for replacement stones 

are considered more differentiated. The various feedback mechanisms of the different 

building stones in respect of petrophysical characteristics and deterioration behavior are 

evaluated. Based on this assessment a selection system can be developed that, supports 

the evaluation of the compatibility of historical and modern replacement stones for historical 

buildings and contributes to the preservation of cultural monuments. 

 

During its 600-year history, over 50 different building stones have contributed to the 

construction of Cologne cathedral. The present work considers eight main building stones. 

The investigated “cathedral stones” are the Drachenfels trachyte, the Stenzelberg latite, the 

Obernkirchen and Schlaitdorf sandstones, the Krensheim Muschelkalk, the Londorf basalt 

lava as well as the Montemerlo trachyte and the Bozanov sandstone. A use of similar natural 

building stones is ascertained for the Xanten and Altenberg cathedrals. These three 

monuments built at the same time in the 13th century show the use of similar stones not only 

during the first phase of building, but also in their later construction and restoration. Chapter 

2 of the present work introduces these three monuments and the use of building stones in 

them. The question of appropriate replacement material has been around for long time, since 

the medieval used Drachenfels trachyte was no longer available for construction work in the 

19th century. 
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The environmental situations of the three cathedrals differ greatly: while Cologne cathedral is 

located in an industrial area, the urban environment at Xanten shows only minor industrial 

impacts, whereas Altenberg is located in a rural forested environment. Chapter 3 describes 

in more detail these differing environmental conditions. Furthermore, microclimatic 

measurements of moisture balance and temperature distribution within different building 

stones at Cologne cathedral are presented. Detectors are placed at different depths inside 

each building stone in situ oriented in different building expositions. These measurements 

will aid understanding of correlations and interactions of moisture and temperature 

distribution with observed decay phenomena and investigated deterioration processes.  

The building stones at the three monuments in different environmental conditions show 

similar decay patterns. The Cologne cathedral suffers severe stone deterioration, which 

endangers the structure of the building. The Drachenfels trachyte shows pronounced 

deterioration phenomena such as contour scaling, flaking and structural disintegration to 

crumbling and total fabric collapse. Other main building stones e.g. sandstones, carbonates, 

and volcanic rocks, show significant degradation as well. The different deterioration 

phenomena of the three buildings are illustrated in Chapter 4. At Xanten and Altenberg 

cathedrals similar deterioration phenomena are detected, but intensity of decay is 

significantly less pronounced. Deterioration processes in the different building stones are 

comparable. They are controlled by the mineralogical composition and texture of the stones, 

which in turn influence the petrophysical properties. This indicates that the intensity of decay 

at the three monuments varies with the different environmental situations. 

The petrophysical properties and specific characteristics of the eight investigated building 

stones of the Cologne cathedral are ascertained. In Chapter 5 petrographic and 

petrophysical characteristics are investigated as well as moisture, thermal and strength 

properties. These properties are correlated to each other in terms of their influence and 

dependence on each other. They are also discussed in respect of their influence on the 

typical deterioration phenomena of each stone. 

In Chapter 6 experiments and tests on physical weathering are described. The specific 

drying behavior of the eight “cathedral stones” is discussed, as well as their reactions in 

cyclic freeze-thaw and salt weathering tests. The test results are correlated to the specific 

properties of the eight stones and compared to the decay observed in situ. 

The results of chemical experiments are discussed in Chapter 7 are presented to aid 

understanding of stones’ reactions in chemical weathering. A general assessment is given of 

the stones’ resistivity against acidic attack, and their dissolution behavior in different 

leachants is also investigated. Possible chemical weathering reactions are discussed to 

elucidate how natural building stones behave under various environmental conditions. 
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After the ascertainment of extrinsic factors (building climatic and environmental conditions 

etc.) and intrinsic factors (such as petrophysical properties, mineral composition, textural 

features, etc.) in the various stones, as well as the empiric assessment of their physical and 

chemical deterioration behavior, the next consequential step was to investigate in situ the 

different, highly complex interacting weathering reactions and deterioration processes of a 

physical and chemical character. Chapter 8 presents these investigations in three different 

locations at Cologne, Xanten and Altenberg. The formation of black weathering crusts as the 

main indicator for pollution-related stone decay varies significantly between industrial, urban 

and rural environments. It can also be shown that gypsum crusts not only form on carbonate 

but as well on silicate stone. The crust formation on the Drachenfels trachyte is mainly 

controlled by extrinsic factors, and adjacent stone may contribute. A model of deterioration is 

developed for the Drachenfels trachyte illustrating the interactions and feedback mechanisms 

of stone characteristics as well as physical and chemical deterioration process in the context 

of pollution impact.  

The final chapter returns to the question of adequate replacement stones. On the 

background of the several investigations and the gained knowledge, possible interferences of 

different adjacent building stones are illustrated. The general requirements for replacement 

stones are summarized in terms of mineralogical, optical and petrophysical properties. The 

strong divergence of the ascertained parameters of the investigated stones (i.e. mineral 

composition, porosity, water absorption and saturation, drying characteristics, moisture and 

thermal dilatation, strength properties, etc.) shows, that the constraints for a replacement 

material make it almost impossible to find an ideal stone, if parameters are not differentiated 

stronger. Properties and characteristics are correlated and assessed in terms of their 

significance for material behavior and in view of the observed deterioration phenomena and 

processes. They are ranked as “material index” and “decay index”. The correlation of these 

rankings determines their relevance for replacement criteria: the imperative “key parameters” 

are indicated. These are the parameters the replacement stone should match; they should 

be met within the stated requirements for replacement stones. This evaluation leads to a 

systematic approach developing general criteria of compatibility in selecting replacement 

materials for historic monuments comprising more than one natural building stone material. It 

also supports the evaluation of the compatibility of historical and modern replacement stones 

within a building. 

The gained knowledge will aid to establish restoration and conservation concepts, especially 

in terms of evaluating material compatibilities and the respective selection of replacement 

materials; thus contributing to the development and implementation of preservation 

measures for historic stone monuments. 
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Zusammenfassung 

Die vorliegende Arbeit beschäftigt sich mit der Verwitterung von Naturwerkstein als Funktion 

von mineralogischen und petrophysikalischen Eigenschaften unter unterschiedlichen umwelt- 

und bauphysikalischen Bedingungen. Am Beispiel des Kölner Doms wird zum einen die 

große Anzahl an unterschiedlichen Baumaterialien, die in diesem Bauwerk angetroffen 

werden, vorgestellt. Darüber hinaus werden auch die daraus resultierenden Probleme von 

Interferenzen der verschiedenen Materialien untereinander in Hinblick auf ihre Verwitterung 

beleuchtet. Physikalische und chemische Verwitterungsprozesse werden anhand von 

Laborversuchen und Tests empirisch erfasst. Diese werden mit den festgestellten 

spezifischen petrophysikalischen Eigenschaften der unterschiedlichen Gesteine korreliert 

und im Zusammenhang mit den in situ festgestellten Verwitterungsphänomenen und –

prozessen diskutiert. Um die unterschiedlichen Einflüsse der Verwitterungs- und 

Umweltbelastungen zu evaluieren, wird die Natursteinverwitterung an drei Standorten – dem 

industriell geprägten Köln, Xanten mit einem städtischen Klima und im ländlichen Altenberg 

im Bergischen Land – vergleichend studiert. Hierbei zeigt sich der starke Einfluss der 

Luftverschmutzung auf die Natursteinverwitterung nicht nur für karbonatische sondern auch 

für silikatische Gesteine. Beispielhaft werden am Drachenfels Trachyt die 

Mineralkomposition, die Gefügeeigenschaften und die petrophysikalischen Eigenschaften 

des Gesteins im Gesamtzusammenhang miteinander korreliert und mit den festgestellten 

Schadensphänomenen und den ermittelten physikalischen und chemischen 

Verwitterungsprozessen abgeglichen. Aus diesen Erkenntnissen heraus wird ein Modell zur 

Verwitterung dieses Naturwerksteins entwickelt. In Hinblick auf Natursteinersatz als 

Erhaltungsmaßnahme für historische Kulturgüter aus Stein werden die 

Untersuchungsergebnisse, die Erkenntnisse aus den Laborversuchen und den Diskussionen 

zusammengeführt und bestehende grundsätzliche Anforderungen an ein Ersatzgestein 

weiter differenziert. Die verschiedenen Wechselwirkungsmechanismen der unterschiedlichen 

Naturwerksteine, die in einem Bauwerk verbaut sind, werden vor dem Hintergrund ihrer 

petrophysikalischen Charakteristika sowie ihres Verwitterungsverhaltens bewertet. Basierend 

auf dieser Beurteilung wird eine Auswahl-Systematik entwickelt, die die Evaluierung der 

Verträglichkeit von historischen und modernen Austauschgesteinen für historische Bauwerke 

unterstützt.  

 

Aufgrund seiner langen über 600 Jahre währenden Baugeschichte ist der Kölner Dom aus 

über 50 verschiedenen Bausteinen errichtet. Die vorliegende Arbeit bezieht sich dabei auf 

acht Haupt-Bausteine. Die untersuchten „Dom-Bausteine“ sind der Drachenfels Trachyt, der 

Stenzelberg Latit, der Obernkirchener und der Schlaitdorfer Sandstein, der Krensheimer 

Muschelkalk, die Londorfer Basaltlava sowie der Montemerlo Trachyt und der Bozanov 
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Sandstein. Eine Verwendung ähnlicher Naturwerksteine ist auch beim Xantener und beim 

Altenberger Dom festzustellen, die ebenfalls aus dem 13. Jahrhundert stammen. Für diese 

drei mittelalterlichen Bauwerke wurden nicht nur zu ihrer Entstehungszeit sondern auch in 

späteren Restaurierungs- und Wiederinstandsetzungsmaßnahmen ähnliche Bausteine 

verwendet. Kapitel 2 der vorliegenden Arbeit stellt die drei Kathedralen in ihrem 

bauhistorischen Kontext vor und zeigt die Verwendung der unterschiedlichen 

Naturwerksteine auf. Es erwies sich schon zu ihrer Erbauungszeit und auch zu Zeiten des 

Weiterbaus, dass die Frage nach einem adäquaten Ersatzgestein entscheidend war, seit der 

ursprünglich verwendete Drachenfels Trachyt ab dem 19. Jahrhundert für Weiterbau- und 

Instandsetzungsmaßnahmen nicht mehr zur Verfügung stand. 

Die Umweltbedingungen an den drei Standorten unterscheiden sich sehr stark: Der Kölner 

Dom ist in einem industriell geprägten Raum zu finden, das städtische Klima von Xanten 

zeigt geringe industrielle Prägung, während Altenberg in einer ländlichen waldreichen 

Gegend liegt. Diese drei unterschiedlichen Umweltbedingungen der Kathedralen werden in 

Kapitel 3 beleuchtet. Darüber hinaus, werden mikroklimatische Feuchtigkeits- und 

Temperatur-Messungen und die entsprechenden Verteilungen in verschiedenen Bausteinen 

des Kölner Doms vorgestellt. Sensoren wurden in situ platziert in unterschiedlichen Tiefen 

innerhalb der jeweiligen Bauwerksteine und in unterschiedlich exponierten Bereichen des 

Bauwerks. Diese Messungen sollen dazu beitragen, die Wechselwirkungen von 

Feuchtigkeits- und Temperatur-Verteilung in den Bauwerksgesteinen mit den festgestellten 

Schäden und untersuchten Verwitterungsprozessen zu korrelieren. 

Die Naturwerksteine an den drei Bauwerken in den unterschiedlichen Umweltbedingungen 

zeigen ähnliche Verwitterungsmuster. Am Kölner Dom ist eine sehr starke Naturstein-

Verwitterung festzustellen, die die statische Sicherheit von Gebäudeteilen mitunter 

gefährdet. Der Drachenfels Trachyt zeigt ausgeprägte Verwitterungsmerkmale, wie Schalen- 

und Schuppenbildung, strukturelle Entfestigung und Bröckelzerfall bis hin zum Totalverlust. 

Auch die anderen Bauwerksgesteine wie Sand- und Kalksteine sowie vulkanische Gesteine 

zeigen signifikante Verwitterung. Die unterschiedlichen Verwitterungsphänomene sind in 

Kapitel 4 dargestellt. Am Xantener und Altenberger Dom wurden ähnliche 

Verwitterungsmerkmale festgestellt, allerdings in viel geringerem Umfang und geringerer 

Intensität. Die Prozesse, die die Verwitterung begründen, sind vergleichbar. Diese werden 

von der mineralogischen Zusammensetzung und den Gefügeeigenschaften der jeweiligen 

Steine bestimmt, die wiederum die petrophysikalischen Eigenschaften beeinflussen. Dadurch 

wird deutlich, dass die unterschiedliche Intensitätsausprägung an den drei Bauwerken in den 

unterschiedlichen umweltklimatischen Bedingungen begründet liegt.  

Die Eigenschaften und gesteinsspezifischen Charakteristika der acht untersuchten „Dom-

Bausteine“ sind festgestellt worden. In Kapitel 5 werden ihre petrographischen und 
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petrophysikalischen Eigenschaften sowie ihr Feuchte- und Temperaturverhalten als auch 

ihre Festigkeitsparameter bestimmt. Diese Eigenschaften werden miteinander korreliert in 

Hinblick auf ihren wechselwirkenden Einfluss und ihre Abhängigkeiten untereinander und sie 

werden in Hinblick auf ihren Einfluss auf die typischen Verwitterungsphänomene der 

einzelnen Steine diskutiert. 

Kapitel 6 beschreibt Experimente und Tests zur physikalischen Verwitterung von 

Naturwerksteinen. Das Trocknungsverhalten der acht „Dom-Bausteine“ sowie ihr Verhalten 

bei zyklischer Frost-Tau-Belastung und Salzbelastung werden diskutiert. Die Test-

Ergebnisse werden mit den gesteinsspezifischen Eigenschaften korreliert und mit dem in situ 

beobachteten Verfall verglichen. 

Die Ergebnisse von verschiedenen chemischen Experimenten werden in Kapitel 7 diskutiert 

und sollen zum Verständnis von chemischen Verwitterungsreaktionen der unterschiedlichen 

Steine beitragen. Neben einer generellen Beurteilung ihrer Säureresistenz soll ihr 

Lösungsverhalten in unterschiedlichen Lösungen untersucht werden. Mögliche chemische 

Verwitterungsreaktionen werden diskutiert, um das Verhalten der Naturwerksteine in 

unterschiedlichen Umweltbedingungen zu beleuchten  

Nachdem die einzelnen extrinsischen Faktoren (u.a. Klima- und Umweltbedingungen) sowie 

die intrinsischen Faktoren der einzelnen Steine (petrophysikalische Eigenschaften und 

Mineralkomposition sowie Gefügeeigenschaften, etc.) erfasst und ihr physikalisches und 

chemisches Verwitterungsverhalten in Tests empirisch festgestellt wurde, werden in einem 

nächsten Schritt diese verschiedenen, sehr komplexen wechselwirkenden 

Verwitterungsreaktionen und –prozesse physikalischer und chemischer Art in situ untersucht. 

Kapitel 8 stellt die Untersuchungen an den verschiedenen Bauwerksteinen der drei 

unterschiedlichen Standorte des Kölner, Xantener und Altenberger Doms vor. Die Bildung 

schwarzer Verwitterungskrusten als Hauptindikator für die Natursteinverwitterung im 

Zusammenhang mit Luftverschmutzung variiert sehr stark in diesen drei unterschiedlichen – 

industriell geprägten, städtischen und ländlichen – Klimata. Darüber hinaus wird gezeigt, 

dass sich nicht nur auf Karbonatgesteinen schwarze Verwitterungskrusten bilden, sondern 

auch auf silikatischen Naturwerksteinen. Die Krustenbildung auf dem Drachenfels Trachyt ist 

hauptsächlich durch extrinsische Faktoren bestimmt, dabei können benachbarte Gesteine zu 

dieser Krustenbildung mit beitragen. Für den Drachenfels Trachyt wird ein 

Verwitterungsmodell entwickelt, das die Wechselwirkung der verschiedenen 

Rückkopplungsmechanismen physikalischer und chemischer Verwitterungsprozesse als 

Funktion intrinsischer und extrinsischer Faktoren darstellt. 

Im abschließenden Kapitel wird die anfangs gestellte Frage nach einem adäquaten 

Ersatzgestein aufgegriffen. Vor dem Hintergrund der unterschiedlichen durchgeführten 

Untersuchungen und daraus gewonnenen Erkenntnisse werden mögliche Wechselwirkungen 
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der unterschiedlichen miteinander verbauten Werksteine beleuchtet. Grundsätzliche 

Anforderungen an Ersatzgesteine umfassen mineralogische, optische und 

petrophysikalische Eigenschaften. Die starke Divergenz der festgestellten Steinparameter 

der verschiedenen untersuchten Gesteine (Mineralkomposition, Porosität, Wasseraufnahme 

und –sättigung, Trocknungsverhalten, Feuchte- und Temperaturdehnung, 

Festigkeitsparameter, etc.) zeigt, dass es anhand dieses Anforderungskataloges fast 

unmöglich ist, ein ideales Ersatzgestein zu finden, falls die Parameter nicht differenzierter 

betrachtet werden. Dazu wird die Summe der Eigenschaften und Charakteristika in Hinblick 

auf ihre Signifikanz für die Materialeigenschaften und das Materialverhalten auf der einen 

Seite sowie für die Ausprägung von Schadensphänomenen und ihr Verwitterungsverhalten 

auf der anderen Seite miteinander korreliert und bewertet. Anhand einer entsprechenden 

Punktevergabe werden ein „Material-interner Index“ und ein „Verwitterungs-Index“ erstellt. 

Aus diesen beiden Bewertungs-Skalen ergeben sich die „Schlüssel-Parameter“ des 

Originalgesteins, die bei einem Kompatibilitätsabgleich mit einem potenziellen 

Austauschgestein im Rahmen des genannten Anforderungskataloges übereinstimmen 

sollten. Diese systematische Herangehensweise der Evaluierung führt zu einer Entwicklung 

von allgemeinen Qualitätskriterien für die Kompatibilität zur Auswahl geeigneter 

Ersatzgesteine für historische Bauwerke, in denen mehr als ein Naturwerkstein verbaut ist. 

Sie trägt zur Beurteilung der Verträglichkeit von historischen und modernen 

Austauschmaterialien in einem Bauwerk bei. 

Die neu gewonnenen Erkenntnisse sollen also einen Beitrag leisten bei der Aufstellung von 

Sanierungs- und Konservierungskonzepten, im Besonderen bei der Evaluierung von 

Materialkompatibilitäten und der entsprechenden Auswahl von Ersatzgestein, und damit die 

Entwicklung und Umsetzung von qualitativ hochwertigen Erhaltungsstrategien für 

Baudenkmäler aus Naturwerkstein unterstützen.  
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1 General Introduction 

1.1 Aims of the thesis 

The cathedral of Cologne is one of the most outstanding monuments in Northern Europe 

and, with 6.5 million visitors per year, the most popular tourist attraction in Germany. Since 

1996 the largest gothic church has been honored as UNESCO world heritage site. Its unique 

construction history began in 1248 and extends over a period of over 600 years. Due to this 

very long building time, Cologne cathedral is built with over 50 different building stones. The 

Drachenfels trachyte from the quarries of the Siebengebirge has been mainly used as the 

natural building stone for construction in Cologne since the Roman period. The Rhine River 

provided an excellent means of transporting good stone material from quarries along the 

Rhine and its connecting rivers (Wolff 2004). In Figure 2.4, the lithological survey map 

illustrates that the issue of stone procurement was very important throughout the 

construction period of the cathedral. At the beginning of the 16th century, construction was 

halted and only recommenced at the beginning of the 19th century. At that time, the 

Drachenfels trachyte was no longer available. Initial renovations were carried out with latite 

from the “Stenzelberg” and a few other materials from the quarries of the Siebengebirge. In 

the middle of the 19th century, the second construction phase used sandstone from 

“Schlaitdorf”, in southern Germany. Later on, the “Obernkirchen” sandstone from Lower 

Saxony and from 1918 until the 1940s the “Krensheim Muschelkalk” were implemented. In 

the 1950s, the decay-resistant basalt lava from “Londorf” was used. The materials currently 

applied are trachyte from “Montemerlo” (Italy) for the replacement of the deteriorated 

Drachenfels trachyte, as well as Czech sandstone from “Bozanov”, which has been used to 

replace the weathered Schlaitdorf sandstone (Scheuren 2004; Schumacher 2004). 

The increasing deterioration of the building materials from the historic and more recent 

construction history has endangered the structure of the cathedral. The continuously present 

scaffolding at the cathedral indicates the constant need for stone preservation works. The 

issue of stone deterioration is as old as the monuments themselves. Through the 

examination of deterioration and research on the preservation of the Drachenfels trachyte, 

deterioration far beyond the usually expected extent was ascertained (Dombauhütte Köln 

2006). Apparently the type of adjacent natural building stones plays a key role. Already, in 

earlier times, a stronger deterioration of the trachyte was observed in context with carbonate 

stone (Kraus 1985a; Schumacher 2004; von Plehwe-Leisen et al. 2007). Wolff (1992) 

detected severe deterioration of the Schlaitdorf sandstone placed next to Londorf basalt lava. 

Negative interferences of the used stones and mortars are assumed. 
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Starting with the question of whether several natural building stones which are placed 

together in one building context will interfere with each other, the thesis pursues several 

objectives: 

(a) Petrographic and petrophysical characterization of the investigated “cathedral stones”. 

The petrophysical properties and characteristics of the eight building stones from the 

Cologne cathedral will be ascertained: mineral composition, density, porosity, pore size 

distribution, capillary water uptake, water uptake by adsorption, saturation degree, water 

vapor diffusion resistance, moisture and thermal dilatation, as well as strength 

properties. The ascertained properties will be correlated with each other and their 

influence on the decay of the stones will be deduced. 

(b) Outline of the physical and chemical deterioration processes in terms of the ascertained 

parameter in these stones. 

Laboratory tests and experiments on physical weathering will be conducted concerning 

the drying characteristics, freeze-thaw-weathering behavior and salt deterioration 

resistance of the “cathedral stones”. The chemical weathering behavior will be 

investigated through laboratory experiments with regard to the stones' acid resistivity 

and leachabilities. The correlation of the ascertained properties with one another and the 

observed decay phenomena, as well as the results of the laboratory tests, will help to 

understand deterioration processes within the stones investigated. 

(c) Detection of the impact of environmental pollution on the natural building stone 

deterioration. 

Black weathering crusts are usually seen as the main indicator of pollution-related stone 

decay (Henley 1967; Del Monte et al. 1981; Wolff 1986; Ausset et al. 1992; Derbez and 

Lefèvre 1996; Esbert et al. 1996; Charola and Ware 2002; Brimblecombe 2003; 

Sabbioni 2003, etc.). Crust formation on the stones at Cologne, Xanten and Altenberg 

cathedrals will be investigated in terms of the different industrial, urban and rural 

environments. Differences of crust formation on carbonate and silicate rocks and the 

different impact of air pollution at the three sites will be detected. 

(d) Understanding of deterioration processes in the Drachenfels trachyte. 

The Drachenfels trachyte is the natural building stone of the Rhineland region used 

since the Roman period (Berres 1996). This unique stone shows severe deterioration 

phenomena which endanger its cultural heritage. The present work will investigate the 

main factors, i.e., the parameters of the stone, controlling the deterioration of the 

trachyte, and elucidate deterioration processes. 
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(e) Assessment of possible interferences of the “cathedral stones”. 

The understanding of the different deterioration processes of the various stones and the 

interaction of the ascertained parameters within them will contribute to an assessment of 

the interferences of the cathedral stones. This will help in order to understand the 

observed negative interferences of the stones in the building context and contribute to 

preservation planning. 

(f) Development of a selection scheme for replacement stones. 

The long history of the search and usage of replacement materials at Cologne cathedral 

(Schumacher 2006) implies the need for appropriate replacement stones which are 

compatible not only with the original stone, which needs to be replaced, but also with all 

other natural building stones used in the building section. A system for the selection will 

be developed which comprises the multifactorial aspects of the stones' characteristics as 

well as their specific deterioration behavior. This will support the evaluation of the 

compatibility of historic and modern replacement stones within a building and help to 

assess preservation problems. The multifactorial system contributes to the selection of 

adequate replacement stones for historic monuments which comprise more than one 

natural building stone. 

 

In Central Europe in general, mortars are used for the construction of monuments. These 

play an important part in the deterioration of natural building stones. Mortars may function as 

a source of alkaline components and contribute to the formation of damaging salts (Grün 

1931; Wolff 1972; Arnold 1981, 1992; Bläuer-Böhm 2005; Kraus 2002; Kraus and Droll 2009; 

Schwiete et al. 1965). Furthermore, due to their different physical properties, e.g., strength, 

elasticity, density, water absorption, thermal and moisture dilatation, they might display 

divergent behavior from the stone materials and contribute to their decay, if not cause the 

deterioration of the natural building stones. This topic is subject to scrutiny and, in general, is 

discussed in the context of the interferences of construction materials. The present thesis 

deals with the deterioration and interferences as well as with the replacement of natural 

building stones; the comprehension of mortars in these assessments is essential, but is 

beyond the scope of this work. 

1.2 Deterioration of natural building stone 

Similar to the deterioration of stone in the natural environment, natural building stones 

deteriorate in the built environment well. The decay of building stones proceeds from an 

increasing loss of strength to the final collapse of the stone. Deterioration processes are 

influenced by both intrinsic and extrinsic factors. The first are the physical or chemical 

characteristics of the stone, such as mineral composition, textural features, petrographic and 
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petrophysical properties, surface area and defect densities of mineral grains. Extrinsic factors 

reflect environmental conditions external to the stone, such as climate, the impact of  

pollution, biological activity, building exposition, interferences with other construction 

materials (stones and mortars) and pore solution composition (White 2003). In general, 

deterioration processes are differentiated in chemical, physical and biological deterioration. 

These different deterioration processes interfere with – and in most cases they enhance – 

each other and are influenced by anthropogenic impact (Fig. 1.1). As an example, 

interferences might be the comminution of mineral grains through chemical weathering 

leading to pore space changes. This entails a different – mostly increased – water uptake, 

and thus an increase in physical deterioration. Damaging salts – which deteriorate the stone 

physically – are in many cases formed through the contribution of elements dissolved from 

the rock-forming minerals by chemical reactions; e.g., gypsum in the case of carbonate 

stone. Through the chemical decomposition of rock-forming minerals, the cohesion of the 

rock´s matrix decreases, thus leading to a loss of strength and thereby implying vulnerability 

for physical decay. On the other hand, physical deterioration processes, e.g., salt weathering 

or freeze-thaw cycles, can severely damage the stone’s structure and impair textural 

features. Thus, the physical impact may result in higher water and pollutant uptake, which 

again enhances chemical weathering. Physical weathering leading to mechanical 

decomposition of mineral grains serves as an essential precondition for chemical weathering. 

Due to the (partial) break down of the stone’s structure and minerals, access and the 

reaction surface are enlarged (White 2003). Biological weathering can be conceived of as a 

form of two-fold process. On the one hand, microorganisms – e.g., lichen, bacteria, fungi or 

algae – produce organic acids which serve as H+ donators, thus leading to chemical 

weathering (Wierzchos and Ascaso 1998; Adamo and Violante 2000; Dornieden and 

Gorbushina 2000; Jones et al. 2000; Pinna and Salvadori 2000). On the other hand, they 

may contribute to higher water importation into the stone due to their higher moisture 

content, thus implying physical deterioration processes (Wihr 1986). 

1.2.1 Physical deterioration  

In general, physical deterioration consists of physical changes of the stone’s structure, 

usually implied by mechanical stress or load exceeding the mechanical resistance of the 

stone (Snethlage 1984; Steiger et al. 2011). Deterioration phenomena are many-fold: from 

fissures and cracks to granular disintegration, flaking and scaling, to spalling, breakouts, 

crumbling and final fabric collapse. These may result from the poor design of building 

structures or the impact of higher levels of vegetation, when roots work their way through 

natural building stone. In addition, fire may cause severe mechanical damage on natural 

stone. Due to the fact, that stone in general is not a very good heat conductor, fire may lead 

to significant temperature gradients within the stone (Steiger et al. 2011). 



General Introduction 

5 

Several processes are addressed as physical deterioration processes: frost and salt 

weathering, and thermal as well as hydric and hygric dilatation. The main extrinsic factors 

causing these processes, are temperature and moisture changes and pollution impact; e.g., 

atmospheric gases and salts. These extrinsic factors often occur in combination; thus, 

processes interact and in most cases enhance each other – e.g., ice crystallization and salt 

deterioration, as well as salt crystallization processes and moisture changes (Steiger et al. 

2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Chemical, physical and biological deterioration affects 

natural building stone in interactive feedback mechanisms, being 

influenced overall by the pollution impact of the anthropogenic 

environment. 

 

Salt deterioration in natural stone has been a subject to research for a long time (Darwin 

1839). Salt weathering in natural stone occurs with the crystallization and/or hydration 

processes of salts contained in the pore solutions. These salts – and in particular the ionic 

entries – may derive from extrinsic sources transported with capillary water uptake or else 

water uptake by water vapor absorption as well as with gaseous phases (i.e. atmospheric 

gases). They may as well be the chemical reaction products of stone immanent components 

in an acidic attack, e.g., gypsum formation in carbonate-bearing stones. Crystallization 

processes are mainly controlled by the properties of the salt solution, the properties of the 

growing salts, climatic conditions and the properties of the natural building stone (Ruedrich 

and Siegesmund 2006). In general, salt crystallization takes place when the solution is 

oversaturated. In most cases, salt mixtures are found, which results in a change of 

crystallization properties from those of pure salt solutions (Steiger et al. 1998). Depending 

upon the salt solution composition, different mechanisms are discussed, which introduce 

stress on the stone´s microstructure leading to damage (Duttlinger and Knöfel 1993; Charola 
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2000; Doehne 2002; Ruedrich and Siegesmund 2006). Different models are described for 

the deterioration mechanisms of salt crystallization in porous materials. Correns and 

Steinborn (1939) introduced the model of the linear crystal growth pressure for crystal growth 

from super-saturation solutions. Calculations of crystal growth pressure are often based on 

very high ratios of the super-saturation of the salt solution (Winkler 1975; Snethlage 1984). 

Steiger (2005) calculated pressures exceeding the tensile strength of many natural building 

stones based on a low super-saturated NaCl solution. Another model for salt crystallization 

within the pore space, states the primarily crystallization of salt in larger pores (Wellmann 

and Wilson 1965, 1968; Putnis and Mauthe 2001). 

A second mechanism leading to salt damage in porous systems is due to the stress caused 

by the different hydration phases of the salts (Mortensen 1933; Duttlinger and Knöfel 1993). 

Hydration/dehydration reactions are very complex in the pore space of natural building 

stones and different hydration stages have been found (Duttlinger and Knöfel 1993; Charola 

and Weber 1992; Doehne 1994). Especially for salts with hydration phases, it remains a 

matter of dispute as to which process – crystallization or hydration – is responsible for the 

strong damage potential (Chatterji et al. 1979; Sperling and Cooke 1980). 

 

Frost weathering in natural stone is due to the stress, which is caused by the growth of ice 

crystals upon the freezing of the pore water content (Steiger et al. 2011). This is strongly 

correlated with the water uptake of the stone. Hirschwald (1912) detected a guide value of s 

< 0.9, indicating vulnerability to frost damage. This was based on the fact that water upon 

freezing, undergoes a volume increase of 9%. Thus, stones containing more than 91 vol. % 

of water by voluntary water uptake are assumed to be extremely susceptible to frost damage. 

Many stones show saturation degrees in that range, but not necessarily frost damage 

(Snethlage 1984), while others with a lower saturation degree do (Ruedrich and Siegesmund 

2006). Frost deterioration processes are strongly correlated to the pore size distribution. In 

smaller pores (r ≤ 0.1 µm), water freezes at lower temperatures (Stockhausen 1981). Thus, 

the crystallization of ice starts in the larger pores. With the high saturation of the stone and 

an inappropriate pore size distribution, frost deterioration presumably takes place. On the 

other hand, when a stone with a higher ratio of smaller pores is only saturated to a minor 

degree and temperature decreases slowly, the water from the smaller pores may diffuse into 

the bigger pores where there is enough space for expansion (Snethlage 1984). The model of 

volume expansion upon ice crystallization as the main deterioration mechanism is debated. 

Two other models are discussed as being responsible for salt deterioration. Linear crystal 

growth pressure (Scherer 1999) and capillary pressure (Everett 1961) are also seen as 

deterioration mechanisms upon ice crystallization. The “Everett-model” explains the 

aforementioned observations made by Snethlage (1984). However, Everett (1961) assumes 
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a much higher water supply from smaller to larger pores as being sufficient for crystallization 

pressure stress. Ruedrich and Siegesmund (2006) draw parallels to the approach of 

Wellmann and Wilson (1965) of salt crystallization with Everett’s model. Steiger (2005) 

detects super saturation as being the driving force for the capillary pressure model. 

 

At cyclic temperature changes, stone undergoes dimensional changes. Temperature 

increases and decreases will lead to volume expansion and, in reverse, contraction. An 

exception to this behavior is observed for marble, where contractions with heat impact can 

be observed (Siegesmund et al. 1999, 2000; Weiss et al. 2004). Although temperature 

changes are not very significant, repeated heating and cooling will result in the material 

fatigue of stones, which may finally lead to the degradation of the stone. This is especially so 

for the residual stress, which remains within the stone after cooling, and indicates decay 

potential. It will remain and accumulate over time (Steiger et al. 2011). The thermal dilatation 

of rocks is due to the thermal behavior and length changes of the rock-forming mineral 

grains. While most rock-forming minerals show expansion with heat in one direction, calcite 

shows an expansion in one direction and a contraction in the other (Steiger et al. 2011). 

Thus, marble is the most susceptible stone to thermal-induced weathering. Thermal cycling 

leads to the granular decohesion of the stone matrix due to the different thermal expansion 

coefficients of the rock-forming minerals (Bland and Rolls 1998). The deterioration 

phenomena described are sanding and, in the case of marble, the so-called “sugaring” 

(Kessler 1919; Franzini et al. 1983). Granite and especially marble slabs may show specific 

bowing (Siegesmund et al. 2008; Weiss et al. 2004).  

 

Moisture changes of the ambient condition lead to expansion processes within natural 

building stones and contribute to their deterioration (Weiss et al. 2004; Ruedrich et al. 2011). 

Ruedrich et al. (2011) use the term ‘moisture expansion’ for hygric swelling (when related to 

RH changes) and hydric swelling (when related to water immersion) (Delgado Rodrigues and 

Charola 1996), since these describe the conditional terms rather than the mechanisms 

related to the dilatation. The main processes attributed to moisture expansion are the 

swelling of clay minerals (Schuh 1987; De la Calle and Suquet 1988; Snethlage et al. 1995; 

Jimenez Gonzalez and Scherer 2004; Dixon and Weed 1989; Moore and Reynolds 1997) 

and the development of disjoining pressure (Derjaguin and Obukov 1936; Splittgerber 1976; 

Stockhausen 1981; Weimann 2001) during wet/dry cycles. The swelling mechanisms of clay 

minerals within a stone upon wetting are discussed in terms of intra-crystalline (i.e., 

crystalline) or inter-crystalline (i.e., osmotic) swelling (Heim 1990; Laird 2006). Crystalline 

swelling occurs in layered clay minerals due to a particular cation exchange or the hydration 

of the interlayer-cations of the clay mineral (Ruedrich et al. 2011). Osmotic swelling is 
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attributed to the high negative surface charge of clay minerals, whereby pore water is soaked 

between the clay minerals by osmosis. The process of the inter-crystalline adsorption of the 

water, which pushes the clay minerals apart, is known as “osmotic swelling” (Gründer 1980; 

Madsen and Müller-Vonmoos 1989). The osmotic swelling pressure is much lower than that 

resulting from the crystalline swelling of the clay minerals (Heim 1990). The different 

processes leading to the swelling of clay minerals within the built environment is described in 

detail by Ruedrich et al. (2011).  

The difference between the pressure within a water film between two surfaces and the 

pressure of the bulk water in the pore space of stones is seen as the disjoining pressure 

(Weinmann 2001). The adsorption of multi-molecular water layers on the mineral surface 

leads to the reduction of van der Waals energy thus leading to the repulsion of adjacent 

particles (Splittgerber 1976; Stockhausen 1981; Weimann 2001). The disjoining pressure is 

dependent upon the pore radius (Stockhausen 1981).  

In general, an increase of hygric swelling is observed in context with a decreasing average 

pore radius and an increasing microporosity within the stone as well as at ranges of 80 % RH 

(Ruedrich et al. 2011; Steiger et al. 2011).  

The several aspects of hygric expansion – capillary condensation in micropores, disjoining 

pressure, the development of water surface films and the behavior of bulk water in the range 

of pore sizes of 0.001–0.1 µm, etc. – are discussed as a matter of controversy (Ruedrich et 

al. 2011; Steiger et al. 2011). 

The wetting-drying cycles of natural building stone introduce stress on the stone matrix and 

contribute to the weakening of it from the long-term perspective. In the presence of 

electrolytes, e.g., salts or air pollutants, moisture expansion is enhanced and assumed to 

lead to residual strain (Snethlage et al. 1995). The deterioration phenomena ascribed to the 

length changes upon changes of humidity and the impact of water include scaling, flaking, 

exfoliation, craquelé patterns, fissures, cracks, spalling and differential erosion along fabric 

discontinuities, e.g., delamination (Rodriguez-Navarro et al. 1997; Sebastián et al. 2008; 

Ruedrich et al. 2011). 

 

In general, the different extrinsic factors, which provoke physical deterioration processes, are 

effective at the same time. As mentioned above, moisture expansion is enhanced by the 

presence of salts as is thermal dilatation (Winkler 1994; Snethlage and Wendler 1997). In the 

presence of moisture, deterioration through thermal changes is enhanced (Koch and 

Siegesmund 2004). Changes in frost weathering are discussed where salt electrolytes are 

involved (Ruedrich and Siegesmund 2006). 

Physical deterioration results in the degradation of the stone matrix and mineral bounds, 

which lead to a loss in the mechanical strength of the stone. Furthermore, the comminution 
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of the stone’s framework entails the enlargement of the reactive surface of the stone, i.e., the 

minerals liable to chemical weathering. 

1.2.2 Chemical deterioration 

In general, the impact of water, inorganic and organic acids as well as atmospheric gases 

(CO2 and O2) on rock-forming minerals is viewed as chemical weathering. Through the so 

called “carbonation weathering”, minerals are structurally changed or else dissolved 

completely (Press and Siever 2003). In comparison to the carbonation weathering of rocks 

and soils through CO2 respectively, HCO3
- diluted in water, the weathering within the built 

environment is accelerated by anthropogenic components. Through the combustion of fossil 

fuels, atmospheric gases such as SO2 and NOx components are released and enriched in the 

atmosphere. These react with rain water or the moisture content within the stones and form 

aggressive acids, which strongly contribute to the chemical weathering. This so called 

“Rauchgasverwitterung“ – or weathering due to the atmospheric acidity (Camuffo 1992) - 

displays a specific chemical attack in building stones in the form of hydrolysis (Herscovici 

1910; Kaiser 1910; Luckat 1984; Kraus 1988). Proton sources are the anthropogenic caused 

atmospheric gases, such as SOx and NOx, forming acids (White 2003). The annual H+ input 

from sulfuric and nitric/nitrate oxides in Germany is about 3.5 Kg/ha (Pleßow et al. 1997). 

Furthermore, particulate matter plays an important role in chemical deterioration behavior. 

Their function as catalysts or reaction nuclei is described (Charola and Ware 2002). Schäfer 

(1980) ascertained a four to eight times higher oxidation of SO2 to SO4 in urban areas in 

comparison with rural environments. In all these processes, water functions as a reactant as 

well as a transport medium for solutes and particles (Schlabach 2000). The pore space of the 

stone offers access for the chemical deterioration to the stone’s matrix and minerals. As 

mentioned before, when the pore space is enlarged through other weathering impacts, the 

reaction surface for chemical weathering increases. 

The different rock-forming minerals react differently to the weathering attack. Minerals 

containing iron, manganese or sulfur in lower oxidation states produce higher oxidation 

states of these through the oxygen of the water (Kraus 1988). Carbonate rocks, i.e., minerals 

such as calcite and dolomite, are prone to carbonation weathering as well as to 

“Rauchgasverwitterung”, and generally dissolve. Silicate minerals are less likely to  be 

affected by “Rauchgasverwitterung” (Kraus 1988). The effective acids of the atmospheric 

deposition are buffered by acidification and hydrolysis reactions of silicates which change the 

silicate structure (White 2003). The resistivity of the minerals against hydrolysis differs 

significantly. Olivine shows little resistance, while augite, hornblende, biotite and the various 

feldspars are more resistant, while muscovite and quartz are barely degrading (Fig. 1.2). 

Clay minerals are often formed as secondary products from the water containing silicon-

oxide-relicts (Kraus 1988). 



General Introduction 

10 

 

Chemical weathering of carbonate rocks 

The weathering of carbonate rocks is so-called solution decomposition. Carbonate 

components i.e. calcite and dolomite, dissolve and are transported in their ionic form. Typical 

secondary reaction products are not formed, as it is with silicates (Colman and Dethier 

1986). The solution of carbonate rocks in a CaCO3 – MgCO3-system is a stoichiometric 

solution (Wollast 1990). The presence of acidic components through the anthropogenic 

impact enhances the solution decomposition. Reaction (1) shows the dissolution of calcite 

within carbonic acid (Okrusch and Matthes 2009). 

 CaCO3 + H2 CO3  ⇌  2HCO3
- + Ca2+         (1) 

 

Chemical weathering of silicate rocks 

Silicate minerals mainly weather by hydrolysis reactions that consume reactant species – 

i.e., primary minerals and protons. Weathering products are formed – i.e., solute species and 

secondary minerals (White 2003). The main representative of the rock-forming minerals of 

silicate rocks is the feldspar group. Feldspars deteriorate to water-bearing minerals (clay 

minerals), which may lead to textural impairments within the stone’s structure (Press and 

Siever 2003). Reaction (2) shows the hydrolysis of albite (White 2003). 

2Na[AlSi3O8] + 2H+ + H2O  →  Al2[(OH)4/Si2O5] + 4SiO2 + 2Na+            (2) 

kaolinite 

Silicate weathering is commonly viewed as a ligand exchange process with the metal ions 

bonded in the mineral structure (Loughnan 1969; White 2003). 

 

Kaiser (1910a) reported the kaolinization of plagioclase in the matrix of Drachenfels trachyte 

by a hydrolysis reaction through the “Rauchgasverwitterung”. In the experiments conducted 

with a gas mixture of 10% vol. SO2, 10% vol. CO2 und 80% vol. air, the formation of 

thenardite (Na2SO4) and gypsum (CaSO4 • 2 H2O) was detected, indicating the release of 

sodium and calcium. 

The experiments performed by Correns and von Engelhardt (1938) showed that the K-

feldspar (adularia) does not dilute stoichiometrically. At the beginning, a higher potassium 

concentration rather than aluminum and silicon concentrations is detected. Potassium is 

released more easily from the outer zone of the mineral. This leads to the formation of a K–

depleted “residual layer” on the surface of the adularia. 



General Introduction 

11 

Chou and Wollast (1984) investigated the dissolution of albite in different pH. The detected 

concentrations of sodium, aluminum and silicon suggest the formation of a residual layer on 

the surface of the feldspar, enriched in Si and Al. 

Efes and Lühr (1975) deduce the concentration decrease of SiO2, CaO, Na2O and K2O to the 

dissolution for feldspars within the weathering horizons of the Drachenfels trachyte. 

 

Mineral weather resistivity 

The weather resistivity of rock-forming minerals is crucial in assessing the weather resistivity 

of natural stone in the anthropogenic environment. Goldich (1938) observed that the 

weathering sequence for common igneous rocks in the field was the reverse of Bowen’s 

reaction series, which ranked minerals in the order of crystallization from magma. 

 

increasing weather resistivity 

 

C
a
lc

it
e

 

O
liv

in
e
  

A
n
o
rt

h
it
e
  

A
u
g
it
e

 

P
y
ro

x
e

n
e
 

A
m

p
h
ib

o
le

 

A
lb

it
e

  

B
io

ti
te

 

O
rt

h
o
c
la

s
e

 

M
u
s
c
o
v
it
e

 

C
la

y
 m

in
e

ra
ls

 

Q
u
a
rt

z
 

Figure 1.2 Mineral weather resistivity (after Press and Siever 2003)  

 

At the lower end of the scale of weather resistivity is calcite, which shows dissolution in 

chemical weathering. Olivine shows little resistance, followed by anorthite and then Ca-

plagioclase. Weather resistivity increases with augite, pyroxene, hornblende, albite – the Na-

plagioclase – and biotite. The most weather resistant of the feldspars is the K-feldspar 

orthoclase. Muscovite and quartz are barely degrading (Fig. 1.2). For clay minerals, the scale 

of weather resistivity is not to define, since all conversion reactions are reversible. Clay 

mineral weathering takes place as a Me+ – H+ exchange towards montmorillonite and, if 

leaching is extensive, to kaolinite (Loughnan 1969, Snethlage 1984) 

 

Solute composition, fluid flux, and secondary reaction products 

In natural weathering, hydrolyses and other chemical reactions take place. These are mainly 

complexing or chelating reactions, especially in the presence of organics (White 2003). As 

mentioned earlier, weathering is influenced by intrinsic and extrinsic factors. In terms of 

mineral weathering rates, the solute composition has the most direct impact (White 2003). 

Chemical weathering is ultimately dependent upon the concentration of reactants complexing 

and detaching the oxygen-bonded metal species from the silicate structure (Casey and 

Ludwig 1995). Principally, these are hydrogen ions, but complexing agents such as organic 
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anions can also participate in these processes. In contrast, some solute species, such as 

aluminum and sodium ions, inhibit experimental weathering rates by interfering and 

competing with the ligand exchange processes (Oelkers and Schott 1995; Stillings et al. 

1996). 

Within the pore space of natural building stones, weathering rates are controlled by the 

mechanisms of moisture transport. For structurally complex minerals undergoing incongruent 

or stepwise weathering in the natural environment, the relative rates become highly 

dependent upon specific reaction pathways (White 2003). White et al. (2001) have coupled 

the weathering rates of granite with the development of secondary permeability. At an initial 

state of the weathering of fresh granite, the weathering rate of plagioclases is mainly 

controlled by the low permeability; thus only a little water is transported, which constraints the 

fluid flux. Thus, the mass of feldspar that can be dissolved is restricted before 

thermodynamic equilibrium. Under such conditions, weathering is limited by the availability of 

water and not by the kinetic rate of feldspar weathering. Over time, this transport-limited 

weathering will lead to a mass loss from the granite with increasing porosity. White (2003) 

estimates a porosity increase of ~ 50% due to the conversion of plagioclase into kaolinite. 

The increase of porosity produces higher pore-water flow – i.e., fluid fluxes – which 

accelerates saturation-limited weathering – “this coupled feedback accelerates plagioclase 

weathering, which gradually shifts from a transport limited to a kinetic limited reaction” (White 

2003, 157). The increasing porosity might be impaired by a certain decrease of permeability 

due to secondary mineral formation. The rate of K-feldspar weathering shows a comparable 

transition from transport to kinetic control, but at significant higher flux ratios due to its lower 

solubility rather than slightly slower reaction kinetics. Concurrent plagioclase dissolution 

enhances this effect by producing solutes, principally silicon, which further suppress K-

feldspar dissolution by increasing the saturation state (White 2003).  

Surface reactivity may also be decreased by secondary coatings, i.e., the occlusion by 

secondary clays and iron and aluminum oxides, the formation of depleted leached layers and 

the adsorption of organic compounds (Banfield and Barker 1994; Nugent et al. 1998).  

In general, clay minerals are the secondary reaction products of feldspar weathering. Very 

often, mixed-layer minerals are formed with layered structures of illite and montmorillonite 

with transition to pure swellable montmorillonite (Okrusch and Matthes 2009). 

1.2.3 Biological deterioration  

Although the impact of biological weathering is not investigated in this study, some general 

aspects of the influence of microorganisms need to be discussed. In general, the presence of 

microorganisms – such as algae, lichen, bacteria, and fungi – indicates higher humidity, 

which may enhance deterioration processes (Wihr 1986). Biological deterioration of 

microorganisms can be divided into biophysical and biochemical deterioration processes 
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(Adamo and Violante 2000; Dornieden and Gorbushina 2000; Pinna and Salvadori 2000; 

Wierzchos and Ascaso 1998). The extent of biological weathering is dependent on qualitative 

and quantitative distribution of microorganisms and their metabolic products. The different 

natural building stones constitute various substrates and provide different living conditions for 

the organisms (Knöfel 1979).  

The colonization of microorganisms results in the formation of alteration patinas on stone 

surfaces, e.g., on marble mainly consisting of calcium oxalate layers (Jones and Wilson 

1985), which are linked to biological weathering (Krumbein 1988; Warscheid et al. 1990). 

Microorganisms produce organic acids, which may function as acids as well as chelating 

agents (Jones et al. 2000). Besides the acidic solution of minerals, organic acids form metal 

organic complexes with cations dissolved from the crystal grid of the minerals. Due to these 

stable complexes, the metal ions remain diluted, whereas as ions they precipitate (Press and 

Siever 2003). This aspect may enhance the feldspar hydrolytic weathering of silicate rock in 

general.  

Another aspect of biological weathering is colonization with lithotrophic bacteria and fungi. 

These microorganisms oxidize inorganic substances (Fuchs 2006; Winkler 1975) and may 

directly support the formation of calcium sulfate dihydrate (Zappia et al. 1998). Out of the 

lithotrophic bacteria, nitrifying bacteria oxidize nitrous gases (NOx-components) to nitric acid, 

which again contributes to the deterioration of the stone material (Fuchs 2006). Sulfoxidant 

organisms are very often connected to crust formation and stone decay (Frediani et al. 1976; 

Barcellona-Vero and Montesila 1978). 

Pohl and Schneider 2005 mention a possible protecting effect of biofilms on carbonate rocks, 

which in some cases can also be linked to a preservation function on silicate rocks. 

These are only a few aspects of biological weathering or the influence of microorganisms. 

However, the above points clearly indicate the contribution of biological colonization to the 

deterioration of stone monuments and reveal the broadness and complexity of this topic, 

which needs further discussion. 

1.3 The impact of air pollution on stone decay 

The effect of air pollution on stone decay has been a subject in the field of stone deterioration 

for a long time (Kaiser 1910; Grün 1931; Kieslinger 1932; Winkler 1970; Luckat 1973b, 1984; 

listed in Charola and Ware 2002). The increasing pollution emission of our industrial society 

has considerably accelerated the process of weathering of building materials (for discussion 

see Siegesmund and Snethlage 2011). Generally, the assumption has been that acid-

forming sulfur compounds penetrate into the microstructure of the stone and then become 

neutralized depending upon the rocks’ composition. These become concentrated as sulfate-

rich salts (especially gypsum enrichment) and are responsible for the many damages 
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observable (e.g. Knetsch 1952, Kraus 1985a, Kraus 1985b, Kraus and Jasmund 1981). The 

main pollution-related deterioration processes are gypsum formation and carbonate 

dissolution (Sabbioni 2003). Most debated is the crust weathering of limestone as a result of 

the transformation of calcium carbonate into calcium sulfate, due to the impact of air pollutant 

concentration in the atmosphere and the deposition of anthropogenic sulfur (Henley 1967; 

Sabbioni 2003). Although SO2 concentrations have decreased over the last decades, 

degradation in connection with weathering crusts is still observed. Acid rain, as a result of the 

contamination of rain water with sulfur, nitrogen oxides and carbon oxides, affects stone 

material and corrodes rock-forming minerals (Martinez and Martinez 1991). Pollution has 

changed into a complex multi-pollutant situation with increasing particulate matter, enhancing 

the acidic impact in terms of dust deposition (Wolff 1986; Charola and Ware 2002; 

Brimblecombe 2003). The weathering crusts mainly consist of newly formed minerals, e.g., 

gypsum, with atmospheric particles embedded within. These can be grouped as porous 

carbonaceous particles (soot), smooth aluminosilicate particles, and metal particles mainly 

composed of iron (Del Monte et al. 1981; Esbert et al. 1996; Derbez and Lefèvre 1996). 

These atmospheric particles derive from different sources: fuel oil combustion of domestic 

heating and power plants, coal combustion and gas oil emission (Sabbioni 1995). Vehicle 

exhaust (Rodriguez-Navarro and Sebastian 1996) and biomass combustion (Ausset et al. 

1992) were also identified as sources.  

1.4 Stone deterioration at the Cologne cathedral 

Cologne cathedral is one of the most important cultural monuments of northern Europe and 

faces severe stone deterioration. The different building stones of the cathedral show a large 

variety of weathering phenomena. The Drachenfels trachyte, which was the building material 

of the medieval construction period, shows significant structural deterioration as well as 

massive formation of gypsum crusts. Cologne is a major city with approximately one million 

inhabitants. Urban mobile pollution sources, such as automobiles, trucks, railway etc., are 

the main contributors of air pollution in the city today. Although the emision levels have 

dropped in the last 30 years, dust pollution is still a major problem. The observed values of 

air pollution can be correlated with the increased number of chronic respiratory diseases 

(Wolf 2002). Török et al. (2011) investigated a series of samples from the Cologne cathedral 

which were collected at about 30 m above the ground from the external walls. Very high 

concentrations of lead (736 ppm) could be detected in dust samples collected from different 

areas. The lead also accumulates in the black crust, especially close to the limestone crust 

interface. This indicates that either the crust exhibits signals of past pollution levels or lead is 

being mobilized from the surface to deeper zones. Even though the SO2 content decreased 
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in the atmosphere, the situation in many industrial countries can be characterized as a “multi-

pollutant” setting (CO2, NOx, VOC (volatile organic compounds), dust, etc.). 

The formation of black weathering crusts on different building stones can be seen as a 

function of pollution impact. The building stones at Cologne cathedral show severe 

deterioration phenomena, especially the Drachenfels trachyte (Graue et al. 2011). Thin 

laminar and black framboidal crusts, which incorporate particles from the pollution fluxes, 

cover the building stones. Weathering crusts also form on the silicate stone and contribute to 

the degradation of the historic building material. On the Drachenfels trachyte, the crust 

formation is strongly correlated to the disintegration of the stone. Gypsum is not only found 

within the crusts but also in deeper zones of disintegrated stone material. The crusts tend to 

detach, and further structural deterioration follows. Contour scaling, flaking and exfoliation 

are characteristic decay features on the Drachenfels trachyte, leading to granular 

disintegration and crumbling. On the Obernkirchen sandstone and on the Stenzelberg latite, 

weathering crusts form in very thin scales, 2–3 mm thick, which tend to detach from the 

stone. The Schlaitdorf sandstone shows thick black weathering crusts, which are frequently 

accompanied by severe contour scaling several centimeters thick, as well as pronounced 

granular disintegration. On the Krensheim Muschelkalk, the crusts seem to temporarily 

stabilize the stone surface (see Siegesmund et al. 2007). On surfaces exposed to rain, 

solution phenomena can be observed, e.g., microkarst (Graue et al. 2011).  

Since 1820, when the construction work and first repair work resumed, the building stones of 

the Cologne cathedral and their deterioration behavior have been the subject of scientific 

scrutiny. Starting with the observation of an ongoing decay of the building’s structure, the aim 

of these investigations has always been the search for suitable replacement stone material. 

Since the middle of the 19th century, a number of investigations for suitable building materials 

for the Cologne cathedral existed. Von Lasaulx (1882) broached the subject of weathering 

resistance in the implementation of building stones. During the period under the supervision 

of master builder Hertel (1903 - 1927), a first systematic survey of the deterioration behavior 

of the building stones of the Cologne cathedral took place (Hertel 1927). Besides the works 

of Kaiser (1910; 1910a; 1910b), Hirschwald (1910; 1912) was substantially involved in the 

development of constructional investigations and the analyses of building stones. He also 

laid the foundation for geoscientific analyses in the preservation of cultural monuments. 

Grün (1931; 1933) showed that the condition of the different building stones at the Cologne 

cathedral varied widely (Grün 1931; 1933; Rathgen and Koch 1934). The mortars used were 

considered as a potential source for the deterioration and Grün (1931) explicitly addressed 

the environmental influences as deterioration factors. 

Beginning with Knetsch (1952) emphasis was placed on the geological and climatic context. 

The influence of air pollutants and especially of flue gas on the deterioration of natural 
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building stones was detected in a program in the 1970’s and potential preventive 

conservation treatments were tested (Luckat 1973a; 1974; 1975; 1977; 1984; Wolff  and 

Luckat 1973; Wolff 1986; Mirwald et al. 1988). Efes and Lühr (1976) accentuated the 

influence of environmental pollutants as a significant factor for the stone decay. Further 

studies dealt with the different deterioration processes in several natural building stones from 

the Cologne cathedral (Kraus 1980; 1985; 1985a; Kraus and Jasmund 1981; Mirwald et al. 

1987; Knacke-Loy 1988; 1989).  

1.5 Interferences of adjacent stones 

Kraus (1985a, b) and von Plehwe-Leisen et al. (2007) describe the negative interferences 

between the original building stone, the Drachenfels trachyte and the Krensheim 

Muschelkalk at Cologne cathedral. Stronger flaking and exfoliation are observed on the 

Drachenfels trachyte ashlars placed next to carbonate stone. Wolff (1992) reported on the 

negative interferences between the Schlaitdorf sandstone and Londorf basalt lava, which 

mainly deteriorates the sandstone and, with it, the neo-gothic building structure. These 

interactions of the different construction materials (stones and mortars) need to be 

investigated in terms of chemical and physical interferences in the context with specific 

building physical situations, climate and environmental conditions. The insights gained need 

to be considered in terms of assessments for preservation strategies (Garrecht 2005). They 

will contribute to the compilation of requirements for replacement stones. 

1.6 Cultural heritage preservation needs for adequate replacement stones 

The observations of severe stone deterioration as a function of pollution impact and the 

negative interferences between different natural building stones imply the question for 

heritage preservation and conservation needs. Besides conservation measures, the 

replacement of severely degraded building stones is important for the static safety of 

buildings. The selection of an appropriate replacement material is a crucial decision. The 

observed negative interactions of the Schlaitdorf sandstone and the Londorf basalt lava, as 

well as the Drachenfels trachyte and the Krensheim Muschelkalk, raise the question again as 

to which stone material with comparable mineralogical, physical and technical properties is 

suitable as a replacement material for the different stones used at Cologne cathedral. The 

preservation of the Cologne cathedral is determined by the appropriate choice of a 

replacement stone as well as the development of conservation treatments and materials. 

Potential solutions were drawn for the conservation of the Drachenfels trachyte 

(Dombauhütte Köln 2006; von Plehwe-Leisen et al. 2007). Until now, the discussion about 

the preservation and conservation of the stone materials used for the Cologne cathedral 

remains in progress.  
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1.7 History of the selection of replacement stones for the Drachenfels trachyte 

The regularly recurring search for a compatible replacement material at Cologne cathedral 

reveals the basic problem, namely that the question of stone procurement and preservation 

could not be solved, or if so then only temporarily. Since 1846, Schlaitdorf sandstone has 

been used. This stone was favored due to its good weathering resistivity, as observed Ulm 

minster and in Southern Germany. After a short period, this sandstone showed severe 

damage in Cologne cathedral. This indicates that the different climate and environment 

determine the deterioration behavior of the stone. In the climatic and environmental 

conditions of the industrialized area of Cologne, the sandstone showed severe damage very 

early on. Thus, it was no longer used and instead Obernkirchen sandstone was implemented 

from the 1890s onwards (Scheuren 2004; Schumacher 2004).  

Between 1918 and 1940, Krensheim Muschelkalk was en vogue; thus, it was used for 

Cologne cathedral. After WWII, the extremely weather-resistant Londorf basalt lava was 

solely used. This gray stone resembled well the dark weathered surface of the Drachenfels 

trachyte and the other stones in the Cologne cathedral. Since the 1980s, the goal was to use 

replacement materials, which are the main constituent of the respective building sections. 

The procurement faced severe, and partly insurmountable, difficulties. Currently, the search 

for replacement stones focuses on stones which are similar in their optical properties but 

which do not show the disadvantages of the original stone. Since 2001, Bozanov sandstone 

from the Czech Republic has been used for renovation work within the sandstones. Since 

2005, a trachyte from Italy, the Montemerlo trachyte, replaces the severely deteriorated 

Drachenfels trachyte (Scheuren 2004; Schumacher 2004).  

In the beginning, the choice of a replacement material was determined by economic aspects 

and optical properties. Since the middle of the 19th century, when the aspect of “weather 

resistivity” found its way into the search, stones that were expected to be highly weather 

resistant were focused upon. Nowadays, the selection mainly ensues based upon 

mineralogical and petrophysical comparability, as well as upon geologically allied formations 

and optical similarity (Schumacher 2004). A high accordance is objected to only with the 

stone this replaced. Possible negative interferences of the newly inserted material with other 

stones used in the building section in question are not considered so far. 

1.8 Requirements for replacement stones 

The preservation at Cologne cathedral is determined through the selection of an adequate 

replacement stone as well as upon the development of conservation measures. The project 

for the “conservation of the medieval Drachenfels trachyte”, from 2004 until 2006, showed 

new solution processes. In terms of stone exchange, the first choice for a replacement stone 
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would be the original stone material. This option is significantly restricted by the fact that the 

historic stones are not always available, as is the case for the Drachenfels trachyte. 

In the 19th century, economic aspects have been the determining factor for the selection of 

replacement stones. In the 20th century, optical properties and weather resistivity became 

more important. Nowadays, the selection of a replacement stones is more differentiated and 

the requirements are described in more detail. Intrinsic (mineralogical composition, textural 

features, and petrophysical properties) and extrinsic material parameters are distinguished. 

So far, these parameters are regarded in terms of the original stone as a basis, i.e., in the 

replacement material, these parameters are adjusted only to the material which ought to be 

replaced. In the literature, guidelines can be found indicating the boundary values of the 

single parameters (i.e., mineral composition, porosity, water absorption and saturation, 

drying characteristics, moisture and thermal dilatation, strength properties, etc.) (Snethlage 

2005). Optical and mineralogical criteria as well as petrophysical properties are also 

important. Besides these general criteria for replacement stones, it is substantial to ascertain 

which stones are available in a sufficiently large amount and in constant quality over longer 

periods of time. The just mentioned general criteria only refer to the one original stone, which 

ought to be replaced. In many historic buildings, a number of different stones are used, as is 

the case at Cologne cathedral. In this instance, it is essential that a replacement stone is not 

only comparable with the original stone - which is replaced – but is compatible with all other 

stones used in the masonry bond.  

At Cologne cathedral, the different building stones used show a diverse petrography and 

mineralogical composition as well as a broad variety of petrophysical properties. The 

comparison with valid guidelines reveals the broad spectrum of the materials used. The 

strong divergence of the ascertained parameters of the stones shows that the constraints for 

a replacement material make it almost impossible to find an ideal stone. It is important to 

evaluate the parameter and to determine those which specifically characterize the stone. At 

this point, the specific petrophysical properties as well as the typical deterioration behavior 

have to be included. 



The cathedrals – construction history of the Cologne, Xanten and Altenberg cathedrals 

19 

2 The cathedrals – construction history of the Cologne, Xanten and Altenberg 

cathedrals 

This study concerns both the utilization and deterioration of natural building stone employed 

in the construction of Cologne cathedral. Built during the middle ages at the same time as the 

Cologne cathedral, the cathedrals at Xanten and Altenberg reveal the use of comparative 

natural building stone not only at the time of their original construction but also during later 

building and restoration/conservation work. The following text considers correlations between 

these cathedrals and examines the stone used and the building histories, i.e. construction, 

reconstruction and repair work, for all three cathedrals. 

 

 

Figure 2.1 South elevation of the Cologne cathedral 

 

Cologne cathedral (Fig. 2.1) represents the archdiocese of Cologne. Its present day form 

stems from 1248 following the demolition and burning of parts of the original cathedral. 
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Already in 1164 there was a pressing need for the building of a new cathedral due to the 

donation of the relics of the Holy Three Kings combined with an increase to the number of 

pilgrims (Schock-Werner et al. 2011). The new building work was commenced in 1248 under 

the authority of the first master cathedral builder and mason "Meister Gerhard" (Wolff 2005), 

the building´s principal and the financier comprised the cathedral chapter (Beuckers 2005). 

The laying of the foundation stone by Archbishop Konrad von Hochstaden took place on the 

fifteenth of August of that year. 

 

 

Figure 2.2 Xanten cathedral from the South East (Schubert, Dombauhütte Xanten). 

 

Xanten cathedral (Fig. 2.2), which in 1263 succeeded various Carolingian and Ottoman-

Roman predecessors, is the gothic ecclesiastical building of the canonical foundations in 

Xanten that prevailed in the eighth century (Bader 1964). Having been begun by "Meister 

Jakobus" and with contributions from 1396 to circa 1406 by a "Meister Gerhard" of Cologne 

(Hilger 1995), the cathedral was finally completed after a three hundred year construction 

period in the sixteenth century (Bader 1949). The new gothic style, employed in the building 

of the Cologne cathedral, encountered in many other churches and cathedrals at that time 

with their five delineated spaces and column figures in the main choir, acted as a model for 

the building of the Xanten cathedral (Bader 1949). The gothic construction integrated the 

grand west front, which had only been built fifty years previously in the Staufer era. Though 

the architectural arrangements of Xanten cathedral´s southern portal exhibit a late gothic 

interpretation of Cologne cathedral´s "Petersportal", the chancel area in particular 

demonstrates distant architectural fundamentals (Hilger 1995). The financing of the collegiate 
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church was sourced through the assets of the chapter of canon and from the sale of letters of 

indulgence (Bader 1964). The laying of the foundation stone by Friedrich von Hochstaden, 

the provost of the Xanten canonical establishment, occurred in 1263. 

 

 

Figure 2.3 Altenberg cathedral, as seen from the East. (©Heidemarie Wolf, Odenthal)  

 

Begun a mere eleven years after the commencement of building work to the cathedral in 

Cologne, Altenberg cathedral (Fig. 2.3) is a Cistercian church that had financial contributions 

from the von Berg counts. Undoubtedly, this was a situation very agreeable for both parties. 

Through participation in the expansion of the cloister the noble sponsor could consolidate a 

territorial and political sphere of influence and profit from an increase in agronomic authority. 

Also the cloister embodies a suitable site for the interment for the representative of the 

sovereign powers. In turn the cloister enjoys protection as well as the security provided by 

the rich proceeds resulting from generous donations and profits generated through use of the 

cloister. The Altenberg cathedral´s master builder, having been employed at the Cologne 

building site, must have been extremely familiar with Cologne cathedral´s construction. The 

blueprints of the Cologne cathedral chancel as a basis for the chancel area at Altenberg 

were improved by reference to older differing calculations from Amiens and Beauvais. 

(Lepsky and Nußbaum 2005; Heydasch-Lehmann et al. 2008)  

 

The proximity in time between the start of the specific building projects of the three houses of 

god is remarkable. They reflect the enormous building activity of the twelfth and thirteenth 

centuries in the Rhine-Maas-region (Beukers 2005). Autonomous building projects were the 

result of the individual architectural arrangements, the different specific used formats of 
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natural stone ashlars at the three sites and the distinct building organizations as well as the 

specific standalone building consortiums comprising the Cathedral Chapter, Chapter of 

canon or Noble sponsorship (Graue et al. 2013b). 

Drachenfels trachyte was the singular building material employed at all three sites during the 

construction phase of the Middle Ages. This natural building stone had been popular since 

Roman times due to its balanced degree of strength, which would expect a good workability 

verses and a relative adequate resistance to weathering (Berres 1996; Scheuren 2004). 

 

Figure 2.4 Lithological map of the south elevation of the Cologne cathedral (Windscheid (2004) after Wolff 

and Luckat 1973) 

 

The construction of the Cologne cathedral began in 1248. The medieval part of the cathedral 

was built of Drachenfels trachyte from the nearby quarry at the Siebengebirge. The 

construction was halted at the beginning of the sixteenth century and then recommenced 

during the nineteenth at which time Drachenfels trachyte was no longer available. At the 

beginning of the nineteenth century efforts to obtain Drachenfels trachyte reached a 

conclusion in 1829 with the expropriation proceedings by the Prussian king Friedrich Wilhelm 

the third. As a reason was quoted the danger posed from uncontrolled rockslides. A much 

more important inducement would have been the desire to protect the middle age ruins at the 

Drachenfels, and the victory monument from 1814 commemorating the end of Napoleon´s 

reign, and also because Drachenfels had by this time become a tourist attraction of 
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international renown. This prohibition of further stone mining can be seen as one of the first 

measures of monument and landscape protection (Berres 1996 ; Scheuren 2004). 

In the 1820ies, when first repair works started and the construction of the cathedral resumed, 

local stone available from the Siebengebirge was the primary choice as a replacement 

material. Initial renovations were conducted using latite obtained from the “Stenzelberg” and 

a few supplementary materials from the quarries of the Siebengebirge. After a short period it 

was apparent, that the Stenzelberg latite was a very time intensive and therefore cost 

consuming building material and that other stones from the quarries at the Siebengebirge 

were of minor quality (Schumacher 2004). 

 

Table 2.1 Main construction phases and used building material 

at the Cologne, Xanten and Altenberg cathedrals. 

CONSTRUCTION PHASE BUILDING STONES 
 

Cologne cathedral 

First construction phase   
1248 – 1520/30 

Drachenfels trachyte,  
Weiben tuff 

Resumption of the work,  
first repair works 1820-30 

Wolkenburg latite Stenzelberg latite,  
Heilbronn sandstone 

Second construction phase 
>sandstone-period< 
1842 – 1860  

since 1864 

 
 

Schlaitdorf sandstone   

Obernkirchen sandstone  

Restoration works I 
>limestone period < 
1903 – 1945 

 

Krensheim Muschelkalk (1918 – 1940) 
Caen, Savonnières  

Restoration works II 
since 1952              
since 2001  
since 2005 

 

Londorf basalt lava  
Bozanov sandstone  
Montemerlo trachyte 

 

Xanten cathedral 

First construction phase   
1263 – 1529 

Drachenfels trachyte,  
Eifel-tuff 

First reconstruction phase 
1857 – 68 

Weiben tuff,  
Udelfangen sandstone 

Second reconstruction 
phase 
1947 – 1966 

Baumbergen sandstone, basalt, several limestone, 
Krensheim Muschelkalk 

 

Altenberg cathedral 

First construction phase   
1259 – 1400 

Drachenfels trachyte, tuff, graywacke 

First reconstruction phase 
1815 – 1847 

graywacke, Eifel-tuff, Eifel basalt lava 

Second reconstruction 
phase 
1894 – 1915 

graywacke, several sandstone, basalt lava, tuff, 
Stenzelberg latite, Krensheim Muschelkalk 

Restoration works 
1995 – 2006 

Krensheim Muschelkalk 

 

In the middle of the 19th century the second construction phase used sandstone from 

“Schlaitdorf” in southern Germany. Later with the establishment of the railway connection 

linking Cologne and Minden, it was possible to transport the “Obernkirchen” sandstone from 

Lower Saxony. The so called third construction phase, comprising restoration works, started 

in 1903 and lasted until WWII, during which time the “Krensheim Muschelkalk” was the 
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typical stone utilized. In the 1950’s, the decay resistant basalt lava from “Londorf” was used. 

At the present time, the trachyte from “Montemerlo” in Italy is being used to replace the 

deteriorated Drachenfels trachyte and a sandstone from “Bozanov” in the Czech Republic for 

the weathered Schlaitdorf sandstone (Fig. 2.4;Tab. 2.1) (Scheuren 2004; Schumacher 2004). 
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3 The cathedrals’ environments  

3.1 Industrial, urban and rural environment 

The three buildings are located in very different environmental settings (Fig. 3.1). Cologne 

cathedral (53 m above NN) is located in a metropolitan center with one million inhabitants 

next to the river Rhine. Xanten cathedral (22 m above NN) is the Catholic church of a small 

city on the Lower Rhine with 18,000 inhabitants and with smaller industrial effects (Arnhem, 

NL), while Altenberg cathedral (149 m above NN) is situated in a greenfield setting 

surrounded by forested mountains in the “Bergisches Land”. 

 

 

Figure 3.1 The cathedrals and their environmental settings: a. Cologne, b. Xanten, c. Altenberg. 

 

Middle Europe, belonging to the mid-latitudes, has a damp, cool temperate climate. The 

western German climate shows a maritime influence due to its geographical proximity to the 

North Sea and the Atlantic, and therefore the Gulf Stream has an impact through the West 

Wind Drift (Lauer and Bendix 2004). This geographic position provides mild winters and 

moderate summers. Temperature, relative humidity, and rainfall differ only a little at the three 

locations (Tab. 3.1). The mean annual temperature is 11.4°C in Cologne, 10.6°C in Xanten 

and 7.1°C in Altenberg. The warmest months are July and August; the coldest months are 

January and December, with temperatures around –10 to +30°C and relative humidity 

ranging between 65 and 95%. The relative humidity shows highest annual values of 90–95% 

in winter (November to February) and lowest annual values for April to August from 65 to 

75% (Tab. 3.1).  

 
Tab. 3.1: Climate and annual mean concentration of air pollutants for Cologne, 

Xanten and Altenberg, 1987-2012 (data compilation from LANUV 2010, WMO-UN 

2012) 

Parameter Cologne Xanten Altenberg 

Mean annual temperature 11.4 °C 10.6 °C 7.1 °C 

Mean daily temperature 
(min. /max.) 

-10.8 /29.9 °C -14.6 /29.0 °C -17.3 /27.4 

Annual precipitation 520-850 mm 490-890 mm 920-1690 mm 

Warmest/ coldest month July /Jan July /Dec July /Dec 
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The buildings are exposed to ubiquitous air pollutants of anthropogenic origin. These are 

mainly gaseous pollutants like SO2 and NOx. Concentrations of both of these have 

decreased over the last decades, causing an increase in precipitation pH (Fig. 3.2). The 

effect of particulate matter in the form of settling dust shows continuously steady values. SO2 

shows highest annual values in the winter months (December to March) and lowest annual 

values in August. 

 

 
Figure 3.2 (a) SO2 and PM10 fluxes of industrial (Cologne), urban (Xanten) and rural 

(Altenberg) locations versus pH precipitation (Waldhof), 1981–2010 (mean annual fluxes) 

(LANUV 2010; UBA 2011); (b-d) Mean annual fluxes from industrial, urban and rural 

environment: (b) NO2 from 1987 to 2010; (c) SO2 from 1987 to 2010; (d) PM10 from 2004 to 

2010. Data are based on measuring stations from LANUV (Landesamt für Umwelt, Natur und 

Verbraucherschutz Nordrhein-Westfalen). For Cologne the data were acquired from the 

LANUV station in Cologne-Rodenkirchen at a distance of 6 km from the cathedral. For Xanten 

local data were available from the LANUV station in Wesel at about 13 km distance from 

Xanten cathedral on the other side (east bank) of the river Rhine. For Altenberg the data of 

several LANUV stations were compared and the data of Netphen in the Rothaargebirge (70 

km east from Altenberg, also in a rural hilly and forested region) showed similar values. 

 

Data for the SO2-fluxes show a strong decrease over the past 30 years, with a similar impact 

for Cologne and Xanten and a lower influence in Altenberg. The particulate matter (PM10) 

has been monitored since 2003/2004 and shows the highest values for Xanten and the 

lowest for Altenberg. The relatively high values for Xanten in comparison to Cologne may be 

explained by a certain pollution impact from the bigger city of Arnhem, NL, from which 
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pollution fluxes are transported with west winds. Altenberg is also subject to west winds and 

therefore to a certain impact by the pollution fluxes of the industrial area of Cologne, 

Leverkusen and Düsseldorf. In general, the comparably low values for Altenberg reflect the 

arborous, rural surrounding area. The Cologne cathedral is located in the city center next to 

the main railway station, which has served as an active traffic interchange since the industrial 

era. Within the city of Cologne there are four power plants, and 15 kilometers south-west of 

Cologne is a larger coal-fired power plant. 

3.2 Material temperature and moisture balance in the building stones 

Apart from the assessment of the environmental situations, further data relevant to building 

climate will be acquired. Long-term measurements of temperature and humidity inside the 

different building stones at Cologne cathedral are conducted. Varying gradients of moisture 

content are detected within the different natural building stones in situ. Correlations of the 

material depth, the outdoor climate, and the exposition of the stone are obtained for the 

individual natural stones. The influence of exposition (the cardinal direction, the height, and 

the architectural structure of the building section in question) on the near-surface will be 

ascertained, as well as the building climate. Data on the moisture distribution and 

temperature within the stones will be collated with observed decay phenomena to help 

explain interactions of moisture, temperature, and deterioration processes. The impact of 

climate situation on the deterioration of the stones, and on possible interferences of the 

stones with each other, will also be discussed. 

3.2.1 Material and methods 

A number of publications discuss potential methods for measuring moisture in capillary-

porous materials in building construction (Altmann 1970; Vos 1970; Kaspar 1978; Berliner 

1980; Neue 1986; WTA 1992; Arendt 1993; Fischer 1993; Rachow-Seemann et al. 1995; 

Weber 1995; Kupfer 1997; Leschnik 1999; WTA 2004). The constraints within the planned 

measurements – easy handling, low cost, long-term and outdoor measurements of physically 

bound water in historical building stones in situ – determined the choice of the measuring 

method with capacitive sensors. The measurements should run over a long period of time 

and not be too labor-intensive. The sensors must be outdoor-proofed and of small size, since 

they are to be placed inside historical stones. Deterioration processes in natural building 

stones are water-driven. Thus, it is the measurement of physically bound water content that 

is of interest, rather than that of chemically bound water (WTA 2004). 

The capacitive method in this case delivers data of relative humidity (RH) from a hollow 

space within the pore space of the natural building stone. The measured values for 

temperature and RH are the parameters of the air in the porous system, which is in 
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equilibrium with the moisture content of the natural building stone. This is not necessarily the 

same humidity as at the same time and temperature in smaller pores of the stone, but 

relative measurements are achievable (Weber 1995). Regarding the hysteresis of the 

sorption isotherms (curve of the correlation of material moisture to the humidity of the air) the 

moisture content of the material can be deduced from the RH (Fischer 1993). These have to 

be calibrated with complementary laboratory testing. Further, the presence of electrolytes in 

the material has to be considered, because the attuned humidity equilibrium very much 

depends on the concentration of hygroscopic salts (Fischer 1993).  

At Cologne cathedral temperature and relative humidity were measured within four different 

building stones (Drachenfels trachyte, Obernkirchen and Schlaitdorf sandstone, Krensheim 

Muschelkalk) in four monitoring fields at similar height and facing the four cardinal directions 

(Fig. 3.3). 

 

Figure 3.3 Monitoring fields at Cologne cathedral (marked in blue). 

 

Temperature and RH were measured in the stones at different depths and at different 

distances to the adjacent stones or joints. Capacitive sensors of diameter 8 mm were placed 

in appropriately sized drill holes (see Weber 1995). Temperature and RH were taken within 

these spaces in the stones, sealed from the outside with silicon. Continuously high RH can 

cause condensation within these cavities, which may lead to errors in measurement. This 

error is inherent in the measurement technique and is caused by a break-up of electrical 

potential. The capacitive measurement of humidity detects changes in the voltage field, that 
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is, the change of capacity at the condenser, i.e., capacitor. In the case of moisture 

penetration over extended periods of time, the voltage field fails and therefore false data is 

collected (see Weber 1995). After drying, the device functions again and the measurement is 

continued automatically. The false data differ significantly from actual data in the range of 1–

100% RH , and correction during data processing is possible. If these irregularities occur 

more often, they may also impair the durability of the devices and lead to inaccuracies in 

long-term measurements. For the present period of measurement, this aspect was not 

relevant. 

A further problem was in relation to the hardware: when the first devices were installed, the 

cables were too short; adapters therefore had to be placed outside. This weakness in the 

installation led to the failure of the outdoor plugs and to sectional data dropout. 

3.2.2 In situ-measurements 

Monitoring field MF01 is located at the western façade oriented towards the North. Two 

sensors were placed in the Drachenfels trachyte and two in the Obernkirchen sandstone. 

One sensor in each stone was placed at a depth of 18 mm, the other at a depth of 32 mm. A 

surface temperature detector was fixed on the surfaces of each stone. One sensor, shielded 

from direct rain, was placed to measure outside humidity and temperature (Fig. 3.4 and 3.5). 

Measuring parameters are shown in Table A3.1 (see Appendix); a selection of the measured 

data is shown in Fig. 3.12. 
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Figure 3.4 Installation of the sensors in MF01 in 

Drachenfels trachyte and Obernkirchen 

sandstone 

Figure 3.5 Scheme of the installation of the sensors 

(KS) in MF01 in Drachenfels trachyte (DT) and 

Obernkirchen sandstone (OS) 
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Monitoring field MF02x is located at the northern façade oriented towards the North. Two 

sensors were placed in the Drachenfels trachyte and two in the Schlaitdorf sandstone. One 

sensor in each stone was placed at a depth of 23 mm, the other at a depth of 37 mm. A 

surface temperature detector was fixed on the surfaces of each stone. One sensor, shielded 

from direct rain, was placed to measure outside humidity and temperature (Figs. 3.6 and 

3.7). Measuring parameters are shown in Table A3.2 (see Appendix); a selection of 

measured data is shown in Fig. 3.13. 
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Figure 3.6 Installation of the sensors in MF02x 

in Drachenfels trachyte and Schlaitdorf 

sandstone 

Figure 3.7 Scheme of the installation of the sensors (KS) 

in MF02x in Drachenfels trachyte (DT) and Schlaitdorf 

sandstone (SS) 

 

Monitoring field MF04 is located at choir buttresses at the eastern façade oriented towards 

the South-East. Two sensors were placed in the Drachenfels trachyte and two in the 

Obernkirchen sandstone, and four more were placed in the Krensheim Muschelkalk. The 

sensors were all placed at a depth of 23 mm. The arrangement of the sensors followed the 

orientation of the stones in relation to each other. In this monitoring field Drachenfels trachyte 

(DT) is placed next to the Obenkirchen sandstone (OS). In the overlying row, the Krensheim 

Muschelkalk (KM) is placed (Figs. 3.8 and 3.9). Two pairs of sensors (KM–OS and KM–DT) 

were placed at two different distances to each other. Additionally, two pairs of sensors (OS–

DT) were placed at the same distances to each other, but at varying distance to the overlying 

Krensheimer Muschelkalk. The different distances of the sensors to each other not only mark 

the distance to the adjacent stone, but also the distance to the joints in between. A surface 
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temperature detector was fixed on the surfaces of each of the three stones. One sensor, 

shielded from direct rain, was placed to measure outside humidity and temperature (Figs. 3.8 

and 3.9). Measuring parameters are shown in Table A3.3 (see Appendix); a selection of 

measured data is shown in Fig. 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Installation of the 

sensors in MF04 in Drachenfels 

trachyte, Obernkirchen sandstone 

and Krensheim Muschelkalk 
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Figure 3.9 Scheme of the 
installation of the sensors (KS) in 
MF04 in Drachenfels trachyte (DT) 
and Obernkirchen sandstone (OS) 
and Krensheim Muschelkalk (KM)  

 

Monitoring field MF07 is located at the southern façade oriented towards the South. Two 

sensors were placed in the Drachenfels trachyte and two in the Obernkirchen sandstone. 

One sensor in each stone was placed at a depth of 18 mm, the other one at a depth of 30 

mm. A surface temperature detector was fixed on the surfaces of each stone. One sensor, 

shielded from direct rain, was placed to measure outside humidity and temperature (Figs. 

3.10 and 3.11). Measuring parameters are shown in Table A3.4 (see Appendix); a selection 

of measured data is shown in Fig. 3.15. 
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Figure 3.10 Installation of the 

sensors in MF07 in Drachenfels 

trachyte and Obernkirchen 

sandstone  
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Figure 3.11 Scheme of the 
installation of the sensors (KS) in 
MF07 in Drachenfels trachyte (DT) 
and Obernkirchen sandstone (OS) 
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3.2.3 Acquired data  

The following shows representative measurements.  
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Figure 3.12 (a-f) Temperature and relative humidity (RH) monitoring in the monitoring field MF01. (a, c, e) outside 

temperature and RH (blue), Drachenfels trachyte (DT) temperature and RH at a depth of 18 mm (green) and at a 

depth of 32 mm (yellow) as well as surface temperature (red): (a) July 2010; (c) January 2011; (e) November 2011; 

(b, d, f) outside temperature and RH (blue), Obernkirchen sandstone (OS) temperature and RH at a depth of 18 

mm (green) and at a depth of 32 mm (yellow) as well as surface temperature (red), (b) July 2010; (d) January 2011; 

(f) November 2011 
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MF02x (northern façade) 
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Figure 3.13 Temperature and relative humidity (RH) monitoring in the monitoring field MF02x. (a) outside 

temperature and RH (blue), Drachenfels trachyte (DT) temperature and RH at a depth of 23 mm (green) and at a 

depth of 37 mm (yellow) as well as surface temperature (red), November 2011; (b) outside temperature and RH 

(blue), Schlaitdorf sandstone (SS) temperature and RH at a depth of 23 mm (green) and at a depth of 37 mm 

(yellow) as well as surface temperature (red), November 2011 
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MF04 (eastern façade) 
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Figure 3.14 (a-i) (previous page) Temperature and relative humidity (RH) monitoring in the monitoring field MF04. 

(a, d, g) outside temperature and RH (blue), Drachenfels trachyte (DT) temperature and RH with little distance to 

Krensheim Muschelkalk (KM) (green) and with greater distance to KM (yellow) as well as surface temperature DT 

(red): (a) July 2010; (d) January 2011; (g) November 2011; (b, e, h) outside temperature and RH (blue), 

Obernkirchen sandstone (OS) temperature and RH with little distance to Krensheim Muschelkalk (KM) (green) and 

with greater distance to KM (yellow) as well as surface temperature OS (red), (b) July 2010; (e) January 2011; (h) 

November 2011; (c, f, i) outside temperature and RH (blue), Krensheim Muschelkalk (KM) temperature and RH 

with little distance to Drachenfels trachyte (DT) (green) and with greater distance to DT (yellow), Krensheim 

Muschelkalk (KM) temperature and RH with little distance to Obernkirchen sandstone (OS) (violet) and with greater 

distance to OS (black) as well as surface temperature KM (red), (c) July 2010; (f) January 2011; (i) November 2011 
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Figure 3.15 (a-f) Temperature and relative humidity (RH) monitoring in the monitoring field MF07. (a, c, e) outside 

temperature and RH (blue), Drachenfels trachyte (DT) temperature and RH at a depth of 18 mm (green) and at a 

depth of 30 mm (yellow) as well as surface temperature (red): (a) July 2010; (c) January 2011; (e) November 2011; 

(b, d, f) outside temperature and RH (blue), Obernkirchen sandstone (OS) temperature and RH at a depth of 18 

mm (green) and at a depth of 30 mm (yellow) as well as surface temperature (red), (b) July 2010; (d) January 2011; 

(f) November 2011 

 

a b 
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e f 
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3.3 Conclusions 

An influence of environmental climate on the temperature and humidity distribution in the 

different building stones was detected. The measurements taken show the moisture balance 

and temperature of the stones in comparison to each other. They show clear gradients of 

relative humidity (RH) and temperature in the ashlars of different stone materials at various 

depths at identical exposure areas. The correlation of these gradients to the outside 

conditions is depth-specific. Variations can be seen according to the exposition of the 

building section. Relative moisture distribution is detected by measurements of relative 

humidity and temperature. A conversion to absolute and material-relative moisture contents 

would be the next step of the evaluation, which needs further comparative “thermo 

gravimetric” analyses and laboratory testing (see Fischer 1993). 

 

The measured temperature values show only small variations between the outside and the 

material temperature inside the stone. The highest differences – of about 2°C – are observed 

for the northern façade (MF02) and the southern façade (MF07) in March/April 2011. The 

sensor in the Krensheim Muschelkalk oriented towards the East (MF04; sensor close to the 

adjacent Drachenfels trachyte – A-KS03) shows values with a constant degree of variance of 

about 3–4°C; this might be a question of a malfunctioning sensor. The almost uniform 

courses of the curves show slight retardations at temperature increases or decreases. In the 

cold winter months (October to March) the temperatures inside the stone are lower than the 

outside temperature. In the warmer summer months this is reversed – the temperature inside 

the stones is higher than the outside temperature. This is observable for the western façade 

(MF01), the northern façade (MF02x), and also on the eastern façade (MF04), though not as 

significantly. At the southern façade (MF07), the temperature inside the stones is higher 

throughout than the outside temperature. As expected, a clear trend of higher temperatures 

is observed for the southern façade (MF07; Fig. 3.15 e) in comparison to the northern 

(MF02x; Fig. 1.13 a), western (MF01; Fig. 3.13 e), and eastern sides (MF04; Fig, 3.14 g). 

This is paralleled by lower RH values, which correlate with temperature.  

 

In terms of the relative humidity, clear gradients are detectable. The deeper inside the stone 

the sensor is, the flatter – more amplitude-reduced – the course of the curve. This indicates a 

decreasing direct impact of the outside humidity on the inside moisture. This may reflect to a 

certain degree the hysteresis of the sorption isotherms (see Fischer 1993); much more than 

this, however, it indicates a separate “stone climate” (see Schuh 1988). 

 

At the western façade (MF01), where the sensor is placed deeper inside the stone, a 

tendency of higher relative humidity can be observed. The lower the outdoor RH, the 
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difference is higher. This indicates that an almost constant moisture content of 85–95% RH is 

established at a depth of 32 mm. This decreases in very warm summer months down to 70% 

RH. 

In the eastern-oriented measuring field (MF04), the sensors are all placed at the same depth 

inside the stones but at different distances to the joints or the adjacent stones. The RH 

curves of the sensors inside the ashlars are highly amplitude-reduced. In the winter months, 

RH in the Drachenfels trachyte is around 95–100%; in the Krensheim Muschelkalk, RH 

values range between 90–100%. In respect of several days with minus temperatures, frost 

action inside the stones can be assumed. In the warmer months (April to 

September/October), RH ranges are lower, at an average of around 80% with the lowest 

values around 70%. The stone climate differs very much from the outside climate. RH shows 

higher values than the outside humidity.  

It is noticeable that, in this monitoring field, the sensors in the Drachenfels trachyte show 

different values in correlation to the distance to the adjacent stone. It still has to be 

ascertained whether this is due to a certain moisture impact by the joints, or whether the 

relatively higher RH values of the Krensheimer Muschelkalk are responsible. Regarding the 

four sensors inside the Krensheim Muschelkalk, the two placed closer to the Drachenfels 

trachyte and Obernkirchen sandstone show lower RH values than the two sensors in the 

Krensheim Muschelkalk. A generally higher water balance inside the Krensheimer 

Muschelkalk can be concluded. From this, a feedback mechanism can be deduced of 

adjacent stones, leading to a higher moisture load into the stone with the originally lower 

water balance, i.e., a higher load from the Krensheimer Muschelkalk to the Drachenfels 

trachyte and from the Krensheim Muschelkalk to the Obernkirchen sandstone. 

On the northern façade (MF02x), only a small amount of data could be collected due to 

several problems with the installation of the sensors. The curves of the sensors inside the 

stone are amplitude-reduced and run in an average range of the outside humidity. The 

sensor at 37 mm depth reveals a tendency of higher RH in comparison to the sensor at 23 

mm depth. Similar observations can be made for MF07 at the southern façade with relatively 

higher temperatures and correspondingly lower RH values.  

As expected, a correlation of the stone climate to the cardinal direction can be seen. An 

amplitude-delayed behavior of RH inside the stones is observed. Furthermore, the 

measurements show a general tendency of continuously higher relative humidity at deeper 

sensors compared to those placed closer to the surface of the respective stone. Thirdly, in 

one and the same stone different RH values were measured according to distance to the 

joints or adjacent stones, indicating interference from the water balance and moisture 

contents of neighboring natural building stone ashlars.  
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Time- and amplitude-delayed behavior of humidity measurements in sandstone over the 

course of a day was first detected by Schuh (1988). The moisture content inside the 

sandstone (11 mm depth) shows less variance (low amplitude) than the outside and surface 

sensors. The humidity inside the stone is generally higher except in heavy rainfall, when 

outside humidity increases rapidly to high values (90–100% RH). Thus, Schuh 1988 refers to 

an individual “stone climate”. 

 

The collected data show tendencies of moisture balance inside different building stones. 

Different gradients of moisture content are ascertained in the different building stones – 

higher-resolution measurements would be a great help here. The reliability of the recorded 

data still has to be confirmed by further measurements; the choice of method also has to be 

evaluated. For example, the behavior of the sensors after a condensation event should be 

further investigated. Numerous publications exist concerning technical moisture-measuring in 

porous material for comparable single measurements (see above). However, technical 

requirements of devices, i.e., sensors and data collectors, need to be formulated to improve 

devices and installation, and thus reproducible measurements. The chosen method allows 

low-invasive long-term measurements. 
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4 Stone decay at the cathedrals 

4.1 Decay features of the “cathedral stones”  

At the cathedrals a large number of different stone materials was used (Tab. 2.1). At Cologne 

cathedral the increasing deterioration of the building materials from the historic and more 

recent construction history has endangered the building´s structure. Construction scaffolding, 

which is nowadays always present as a permanent installation indicates that preservation 

work is continuous at the Cologne cathedral. 

The increasing pollution emission of our industrial society has considerably accelerated the 

process of weathering of building materials. Generally, the assumption has been that acid-

forming sulfur compounds penetrate into the microstructure of the stone and then become 

neutralized depending upon the rocks’ composition. These become concentrated as sulfate-

rich salts (especially gypsum enrichment) and are responsible for the many damages 

observable (e.g. Knetsch 1952, Kraus 1985a, 1985b, Kraus and Jasmund 1981). Cologne is 

a major city with approximately one million inhabitants. Urban mobile pollution sources, such 

as automobiles, trucks, railway etc., are the main contributors of air pollution in the city today. 

Although the emission levels have dropped in the last 30 years, dust pollution is still a major 

problem. The observed values of air pollution can be correlated with the increased number of 

chronic respiratory diseases (Wolf 2002). Török et al. (2011) investigated a series of samples 

from the Cologne cathedral which were collected at about 30 m above the ground from the 

external walls. Very high concentrations of lead (736 ppm) could be detected in dust samples 

collected from different areas. The lead also accumulates in the black crust, especially close 

to the limestone-crust-interface. This indicates that either the crust exhibits signals of past 

pollution levels or lead is being mobilized from the surface to deeper zones. Even though the 

SO2 content decreased in the atmosphere, the situation in many industrial countries can be 

characterized as a “multi-pollutant” setting (CO2, NOx, VOC (volatile organic compounds), 

dust, etc.). 

 

The different building stones of the Cologne cathedral show a large variation of weathering 

phenomena. On two representative survey areas (Fig. 4.1 and 4.2), the building material and 

the deterioration phenomena have been mapped in accordance with the classification by 

Fitzner et al. (1995) and Siedel et al. 2011. Typical decay phenomena consisting of erosion, 

surface recession, scaling, structural disintegration, flaking and depositions are illustrated in 

Figures 4.3 and 4.4. The individual deterioration phenomena are assigned to the different 

building stones and described in detail. 

The detailed map of Figure 4.1 shows a section of the northern pillar of the North Tower, i.e. 

the medieval part built with Drachenfels trachyte and the modern construction phase from the 
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19th century, when Obernkirchen sandstone was employed. The amount of Drachenfels 

trachyte used in the mapped area is about 71%, Obernkirchen sandstone was used 

approximately 27% as well as a minor percentage (~2%) of Schlaitdorf sandstone (Fig. 4.1a). 

While the complete surfaces of all stones show a more or less distinctive deposition of dust 

and aerosols, microbiological growth can only be observed in the lower areas at the cornice. 

The localizations of the deterioration phenomena are shown in the map presented in Figure 

4.1. 

 

 
 

Figure 4.1 Map illustrating the northern pillar of the North Tower at the Cologne cathedral. (a) Stone distribution: 

71% Drachenfels trachyte (red), 27% Obernkirchen sandstone (beige), ~2% Schlaitdorf sandstone (yellow). 

Joints: mortar joints (brown), lead joints (light blue), slate plates (pink). (b) The main deterioration phenomena 

are: erosion (light blue), flaking (green), surface recession (orange), scaling (pink), cracks (red), breakouts (dark 

turquoise), crumbling (brown), weathered-out sanidines (dark blue), microbiological growth (dark red), gypsum 

crusts (light green) 
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The detailed map illustrated in Fig. 4.2 shows a section on the northern pillar of the flying 

buttresses of the choir, indicating that the major deterioration is on the Drachenfels trachyte. 

The building material and the deterioration phenomena – erosion, gypsum crusts, scaling, 

flaking, cracks and depositions – have been mapped, displaying their distribution within the 

selected wall area. 

  

 

Figure 4.2 Mapping of a flying buttress of the choir at Cologne cathedral: a. lithology: Drachenfels trachyte (red), 

Krensheim Muschelkalk (green), basalt lava (blue), joints (purple); b. structural deterioration: erosion (light blue), 

flaking (green), scaling (yellow), cracks (red); c. surface alteration: microbiological infestation (dark red), laminar 

crusts (orange), framboidal crusts (light green). 

 

The different building stones of the Cologne cathedral show a large variation of weathering 

phenomena. In particular, the Drachenfels trachyte shows severe deterioration. The main 

deterioration phenomena observable in the Drachenfels trachyte are erosion and surface 

recession (Fig. 4.3) coexisting with flaking (Fig. 4.3f), exfoliation and structural disintegration 

to crumbling (Fig. 4.3d) and the massive formation of gypsum crusts (Fig. 4.4a). Surface 

recession areas often display stronger further decay in terms of microcracks, crumbling to 

total collapse. Scaling is observable and very often shows a granular disintegrated zone on 

the reverse side whereas the original stone surface generally still exists (Fig. 4.3b). 

Formation of cracks and fissures may also propagate many centimeters in depth into the 

stone. The Drachenfels trachyte is characterized by large crystals of sanidines – up to 7 cm 

in length. These may cause a different weathering behavior between the matrix and the 

phenocrysts. In the mapped area the sanidines are weathered-out (Fig. 4.3g), but only in the 

areas of the cornices. The flow direction of the Drachenfels trachyte, which is indicated by 

the orientation of these large crystals of sanidine, has a certain impact onto the weathering 

behavior of the stone. In the Drachenfels trachyte the deterioration is more intense when the 
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flow fabric is parallel to the visible surface of the building stone (Fig. 4.3e), e.g. the preferred 

orientation of sanidines is surface parallel. Sanidine crystals and the groundmass matrix 

often show a different weathering behavior depending on the mounting direction of the 

building stone. The large crystals are either weathered-out or are protrudent due to the loss 

of the surrounding matrix. A third variation is the surface parallel weathering of components, 

matrix and phenocrysts (surface parallel oriented show a simultaneous surface recession. A 

number of breakouts can be observed in the Drachenfels trachyte, which are a result of the 

mechanical impact of bombing during WW II. Plehwe-Leisen et al. (2007) have reported that 

flaking and scaling is often observed. The flaking can occur in a very pronounced fashion, 

which eventually leads to structural disintegration and total fabric collapse. There are strong 

indications that the decay phenomenon in the Drachenfels trachyte is especially critical in the 

direct neighborhood of carbonate replacement stones (Kraus 1985a; Plehwe-Leisen et al. 

2007). In many places the decay starts from the joints, which is indicated by gypsum crusts, 

flaking, exfoliation and scaling (Fig. 4.5a). 

 

 

 

 

 

 

 

Figure 4.3 Deterioration 

phenomena: (a) overview: 

scaling and flaking of 

Drachenfels trachyte 

(center); scaling of 

Obernkirchen sandstone 

due to surface treatment 

(lower part); and 

Krensheim Muschelkalk 

(upper part); (b) 

Drachenfels trachyte: 

scaling; (c) Drachenfels 

trachyte: surface recession 

and structural 

disintegration (deteriorated 

pilaster strip); (d) 

Drachenfels trachyte: 

pronounced decay in form 

of microcracks, crumbling 

to total collapse; (e) 

Drachenfels trachyte: 

pronounced erosion due to 

the placement direction 

with surface planar 

sanidines; (f) Drachenfels 

trachyte: flaking; (g) 

Drachenfels trachyte: 

weathering out of sanidines 

 

On the Drachenfels trachyte the formation of thin laminar crusts as well as thick framboidal 

crusts is observed (Fig. 4.4). Black framboidal crusts tend to bulge out and detach from the 
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stone surface. The stone structure in the background of these crusts is strongly weakened 

and disintegrates in form of multiple flaking, exfoliations and further crumbling. Thin laminar 

crusts often built on structural intact stone surfaces but contour scaling is often accompanied. 

These surface parallel scales show a thickness of a few millimeters to 1-2 centimeters with 

the formation of a brittle disaggregated zone on the back. 

 

 

Figure 4.4 Weathering forms of Drachenfels trachyte. (a) framboidal weathering 

crust, showing bulging and flaking of the rock underneath; (b) weathering crust, 

bulging and flaking in decorated part; (c) erosion and flaking; (d) structural 

disintegration and crumbling to total fabric collapse. 

 

In general Obernkirchen sandstone is a very deterioration resistant stone material (Grimm 

1990). In the area of the north tower the main deterioration phenomenon is the deposition of 

dust, forming grayish to black crusts as well as the formation of gypsum crusts in posterior 

areas (Fig. 4.5b). At the Cologne cathedral in some areas the Obernkirchen sandstone was 

painted to color adjust the stone to the Krensheim Muschelkalk, which was used for 

reinstatement work in the 1930-ies. In connection with this paint layer a surface parallel 

scaling of very thin scales (thickness of 1 – 2 mm) can be observed (Fig. 4.3a). Further 

severe damage is visible along joints, where the sandstone shows breakouts due to spalling, 

especially on the decorative parts, e.g. pilaster strips (Fig. 4.5c). 
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Figure 4.5 Deterioration phenomena: (a) Drachenfels trachyte: deterioration starting from 

the joint; (b) Obernkirchen sandstone: black dirt and gypsum crusts; (c) Obernkirchen 

sandstone: break-outs due to spalling along joints; (d) Schlaitdorf sandstone: scaling, 

granular disintegration to sand and relief due to rounding and notching; (e) Stenzelberg 

latite: scaling; (f) Krensheim Muschelkalk: black gypsum crusts 

 

Schlaitdorf sandstone is a very problematic stone at the Cologne cathedral. Kraus (1985) 

and Grimm (1990) report that this stone characteristically disintegrates. The carbonate 

cement (app. 14 wt. %) causes the problem, whereby gypsum formation occurs that leads to 

massive scaling and flaking phenomena as well as granular disintegration. Moreover, 

another very typical deterioration phenomenon for the Schlaitdorf sandstone is rounding and 

notching together with granular disintegration (Fig. 4.5d). 

At present little is known about the deterioration behavior of the Montemerlo trachyte at the 

Cologne cathedral, since this stone has only been implemented in recent years. Very often 

intensive orange-brown discoloration of the Montemerlo trachyte can be observed when it is 

used as a replacement stone. These iron discolorations have a negative aesthetic effect, but 

no structural impact. However, Lazzarini et al. (2008) report exfoliation and flaking, 

powdering and alveolic weathering for the Montemerlo trachyte. 

Stenzelberg latite and Londorf basalt lava are very resistant against weathering. Due to the 

high porosity, the Londorf basalt lava is susceptible to microbiological action. The main 

deterioration phenomenon of Stenzelberg latite is a typical formation of scales with a 
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thickness of 2 – 3 mm (Fig. 4.5e). Furthermore Grimm (1990) observed exfoliation and 

contour-scaling, granular disintegration into grus as well as powder, and breakout of mafic 

mineral nests. 

Bozanov sandstone shows spalling along edges when mounted, which is problematic for 

masonry works. Přikryl et al. (2010) reported on granular disintegration, scaling, flaking, crust 

formation as well as blistering, fracturing, salt efflorescences and alveoli formation for the 

medium grained Bozanov sandstone. 

In principal the Krensheim Muschelkalk is a deterioration resistant stone. This carbonate 

building stone shows massive gypsum crust formations as a result of acid rain (Fig. 4.5f). 

This is visible in rain protected areas, while on surfaces exposed to rain, solution phenomena 

can be observed e.g. microkarst. In these situations the blocks express a surface roughness 

and it leads to a loss of shape or form in detailed and decorative figural areas. 

Joints are primarily filled with lime mortar, which often have inserted slate plates. These are 

randomly visible due to the weathered mortar. The present findings indicate that these slate 

plates are used to cover the entire contact surface of the building stones (Nußbaum and 

Lepsky 2010). The majority of the joints have been redone several times with modern 

mortars during the different restoration phases. 

The building stones are covered by black laminar and framboidal crusts. On the Drachenfels 

trachyte the crust formation is strongly correlated to the disintegration of the stone. The 

crusts tend to detach, and further structural deterioration follows. Contour scaling, flaking and 

exfoliation are characteristic decay features on the Drachenfels trachyte, leading to granular 

disintegration and crumbling (Fig. 4.4). On the Obernkirchen sandstone and on the 

Stenzelberg latite weathering crust form very thin scales, 2 – 3 mm thick, which tend to 

detach from the stone. The Schlaitdorf sandstone shows thick black weathering crusts which 

are regularly accompanied by severe contour scaling of several centimeter thicknesses and 

pronounced granular disintegration. On the Krensheim Muschelkalk the crusts seem to 

temporarily stabilize the stone surface (see Siegesmund et al. 2007).  On surfaces exposed 

to rain, solution phenomena can be observed, e.g. microkarst (Graue et al. 2011).  

4.2 Comparison of the decay at the three different locations 

At Xanten cathedral, the main deterioration phenomena of the Drachenfels trachyte are 

scaling and flaking, as well as crack formation. Surface deposition and black weathering 

crusts are found on many ashlars. These are mainly laminar crusts on intact stone surfaces 

and partially framboidal weathering crusts, which show detachment and disintegrated stone 

material underneath. In some places break-outs are observable, as well as exfoliation and 

stronger disintegration due to flaking (Dombauhütte Köln 2006). The severe crumbling to 

total fabric collapse, which is ascertained in Cologne cathedral, is not detected in Xanten. 
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Similarly to Cologne, Xanten also shows varying weathering behavior in sanidine 

phenocrysts, which can be seen as weathered-out or as protruding due to the loss of the 

matrix. Partially orange-red or brownish-orange discolorations can be seen. The latter are 

often seen in context with disintegrated stone. Very often these orange-red discolorations 

can be observed underneath black weathering crusts, but may also occur on the surface 

(Fig. 4.6 and b) (Dombauhütte Köln 2006).  

 

 

Figure 4.6 (a) Orange-red discoloration underneath a removed black weathering crust with intensive discoloration 

on the sanidine (Dombauhütte Köln 2006); (b) brownish-orange discoloration on the surface of the Drachenfels 

trachyte 

 

The tuff only shows a small amount of deterioration. Black weathering crusts can be seen as 

well as powdering surfaces in some spots; very rarely, crack formation and scaling is also 

detected. The sandstones (Baumberger and Udelfanger) are generally in good condition; 

only partially flaking and sanding surfaces can be observed, and occasionally significant 

crust formation is found, especially in protected areas. The limestone used shows microkarst 

phenomena. In the basalt lava no deterioration phenomena are detected. (Knapp and Dungs 

2004) 

 

At the Altenberg cathedral only a very little structural deterioration is observed in the 

Drachenfels trachyte. The main deterioration phenomena are scaling and flaking, which can 

only be found to a minor extent. Laminar crusts are often accompanied by microbiological 

contamination. In isolated spots, detachment of the crusts is detectable. Reddish 

discolorations on the Drachenfels trachyte do not occur in conjunction with structural 

impairment. Break-outs and cracks are not very distinct. Before the restoration measures 

started in the 1990s, several deterioration phenomena were surveyed (IBS 1990). The 

Stenzelberg latite showed scaling, but to a very small degree. The tuff showed the most 

significant deterioration compared to other stones used in the Altenberg cathedral. Black 

weathering crusts were detected, which were often detached and found in context with 
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granular disintegration, as well as scaling and flaking and occasionally crumbling. Greywacke 

ashlars showed delamination along geologically pre-existing joints, as well as sanding, 

surface recession and crumbling. In the limestone, crust formation and microkarst were 

detected to a minor degree. The different stones showed crust formation, sanding, exfoliation 

and break-outs. In the basalt lava no deterioration phenomena were detected. (IBS 1990) 

 

 

Figure 4.7 (a) Crumbling and total fabric collapse observed at Cologne cathedral; (b) scaling at Xanten 

cathedral; (c) flaking at Altenberg cathedral 

 

Comparing the three locations with each other, clear gradients are detected regarding the 

different kinds of damage and their intensity (Graue et al. 2013b). The strong deterioration of 

the Drachenfels trachyte, which is observed at the Cologne cathedral in the form of 

crumbling to complete fabric failure leading to static impairments, is not detected at the 

Xanten or the Altenberg cathedrals. At all three locations, scaling and flaking are ascertained 

as the main deterioration phenomena in the Drachenfels trachyte. These are not as 

significant at Xanten and Altenberg as they are at Cologne; the same is true of surface 

depositions and formation of black weathering crusts (Graue et al. 2013a). Black weathering 

crusts at Cologne cathedral are mostly manifested as thick framboidal crusts with 

disintegrated stone material underneath, or as laminar crusts on the surface of detached 
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scales. At Xanten cathedral, weathering crusts are most likely to occur as laminar crusts or 

surface deposition on mostly intact stone substrates. At Altenberg, laminar crusts can 

partially be observed. Very often these are accompanied by significant microbiological 

contamination.   
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5 The building stones of the Cologne cathedral 

5.1 Geology at the Cologne cathedral 

Of the investigated stones at the Cologne cathedral the oldest natural building stone in 

geological terms is the Krensheim Muschelkalk. It formed in the Middle Triassic period during 

the Upper Muschelkalk, when the region of the today´s Federal Republic of Germany was 

dominated by a broad inland sea. This fossil-rich carbonate stone was deposited in a warm-

marine milieu (Grimm 1990). The fine porous limestone comes from quarries at Grünsfeld-

Krensheim in Baden-Württemberg (Lukas 1990). 

When the Muschelkalk Sea withdrew from the Germanic Basin and the region became dry 

land, the sedimentation of the Schlaitdorf sandstone took place about 210-220 Ma ago 

during the Keuper (Upper Triassic). This sandstone, also called Stubensandstein, forms the 

highest layer of the Keuper-Schichtstufe along the river Baar (Renz et al. 2013). From 1842 

to 1868 this sandstone of the Middle Keuper (Gips- und Sandsteinkeuper) was purchased for 

the construction of Cologne cathedral from the Schönbuch quarries near Schlaitdorf in 

Baden-Württemberg (Grimm 1990; Schumacher 2004). Until today this coarse, mainly 

dolomitic-kaolinite cemented sandstone is quarried at Pliezhausen (Lukas 1990; notice: 

Lauster Steinbau, Stuttgart 2013). 

During the Jura epoch, the German Basin was divided into a Northern-German and 

Southern-German shallow sea due to the lifting of the Middle-German land bridge (Grimm 

1990). In the Lower Cretaceous the Lower Saxony Basin subsided and collected detritus 

from the Middle German land bridge. In shallow delta areas the Wealden-sandstones of the 

Lower Cretaceous were deposited in a brackisch-limnic environment (Grimm 1990). The 

well-known Obernkirchen sandstone belongs to this Wealden-sequence (Grimm 1990). With 

the completion of the Cologne – Minden railway in 1847 the possibility of an economic 

transport of this sandstone from quarries at the Bückeberge to Cologne was given 

(Schumacher 2004).  

The Bozanov sandstone is found in the northern part of the Intra-Sudeten Basin at the border 

of Poland and the Czech Republic. The center of the basin is filled with Upper Cretaceous 

marine sandstones, which transgressively lay on the Rotliegend and Variscan basement 

rocks of the Bohemian Massif (Lehr 2008). The sandstones are found from the Cenomanium 

up to the Santonium strata (Ehling 2007). The Bozanov quarry lies on the Polish-Czech 

border. In Poland, where this stone is quarried as well, it is known as Radkov sandstone 

(Graniteland 2013). During the Cenomanian transgression, i.e., at the time of the deposition 

of the Radkov-Bozanov sandstones significant tectonic movements took place. As a 

consequence, the transport of coarse-grained clastic material increased. The deposition of 

these coarse clastic fluviatile storm-sediments took place along fault zones. At steep, 
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tectonically controlled synclines, the sediments deposited in shelf environment along the 

coast line (Lehr 2008). The stone material shows significant inhomogeneities at outcrop 

scale (Ehling and Siedel 2011). Thus, the blocks for the replacement works at the Cologne 

cathedral have to be individually chosen. 

The Montemerlo trachyte comes from the Euganean hills in Northern Italy. The eruption that 

formed these hills started during the Eocene with basaltic magma. A later eruption phase 

during the Lower Oligocene is characterized by a series of complex magma compositions. 

Si-rich magmas solidified to form compact effusive domes or kryptodomes underneath 

sediment layers. The volcanic eruptions at the Oligocene took place in a sub-aqueous 

environment (Colombra s a). The trachytes of the Colli Euganei appear in closely neighbored 

domes and form a major part of the eruptive features (Koch 2006). The quarries at the Colli 

Euganei host important deposits of natural building stones, which have been used as early 

as in Roman times until today (Koch 2006). 

The Drachenfels trachyte, the Stenzelberg latite and the Londorf basalt lava are Neogene 

volcanic rocks mainly formed in the Miocene (Grimm 1990). Thus, the earliest used building 

stone at Cologne cathedral belongs to the youngest ones in geological terms.  

The first construction material of the Cologne cathedral was the Drachenfels trachyte from 

the nearby Siebengebirge. It formed during the Tertiary related to the so-called 

“mittelrheinischen Vulkanismus” also known as “Siebengebirgsvulkanismus” at 28 to 6 Ma 

BP. The basement of these rocks are well consolidated Devonian sediments, which are 

strongly overprinted by Variscian folding, subsequent erosion, and later on through bloc 

faulting and volcanism. At the beginning of the Tertiary, the “Rheinisches Schiefergebirge” 

lifted and at the same time the “Kölner Bucht” subsided. Because of this subsidence of the 

“Kölner Bucht” the North Sea ingressed as far as to the southern tip of the triangle shaped 

bay. The sediments of the Oligocene form the basement rocks of the volcanic strata. In the 

Miocene the North Sea gradually regressed to the North. The fracture zones related to the 

bloc faulting partly controlled the volcanic events. The Drachenfels was formed during the 

late Ologocene as a steep walled volcano with domed top (krypto-dome) underneath the 

overlaying tuff by the extrusion of viscous non-depleted magma. (Berres 1996)  

From the shape-preferred orientation of the large sanidine phenocrysts the formation as a 

krypto-dome can be deduced, which grew from inside underneath a tuff cover (Cloos und 

Cloos 1927). Later on, the uppermost layers of this tuff (80 m) were eroded (Berres 1996). 

Slightly younger than the Drachenfels trachyte is the Stenzelberg latite, which can be found 

partially as extrusive rocks transsecting in the trachyte. The Stenzelberg latite is a tertiary 

volcanic rocks belonging to the Miocene (24-5 Ma) (Berres 1996). The trachyte is assigned 

to a second eruption phase, whereas the latite is related to a third eruption phase (Grimm 

1990). 
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The outcrop area of the Londorf basalt lava is located at the western border of the 

Vogelsberg, which is with ca. 2,500 km2 one of the biggest continuous basalt region of 

Middle Europe. Strong tectonic movements during the late Oligocene, the uplift of the Central 

German Uplands associated with the formation of graben structures caused an intensive 

basaltic volcanism in the late Tertiary – mainly in the Miocene but as well until the Pliocene. 

Along the related fault zones magma could ascent and effuse. The Londorf basalt lava is a 

porous volcanic rock which is cropped until today. 

5.2 Petrography of the “cathedral stones” 

The Drachenfels trachyte is a light gray, partially pale yellowish or reddish, porous, 

porphyritic rock with phenocrysts of sanidine up to 7 cm in size (Fig. 5.1a) (Simper 1990). 

The fabric of the trachyte can be divided into three different elements: first, the above 

mentoned large phenocrysts of sanidine. Secondly, a micro- to cryptocrystalline groundmass 

consisting mainly of feldspar laths and xenomorphic quartz. Thirdly, altered volcanic glass 

fractions as interstitial material between the small feldspar laths of the groundmass form a 

mesostasis. These interstitial areas of recrystallized glass are strongly fractured with a high 

and distinct porosity (Fig. 5.2a). The large phenocrysts in the Drachenfels trachyte are 

embedded in a very fine groundmass with flow fabric. The sanidine phenocrysts show a 

preferred orientation, tracing the flow fabric. The small lath-shaped feldspars of plagioclase 

and sanidine and show a local flow fabric around the large idiomorphic sanidine crystals, with 

the result that several textural domains with shape-preferred orientation of the feldspar laths 

exist within the groundmass (Fig. 5.2b). The sanidine as well as the plagioclase phenocrysts 

show significant crack formation, which can be considered as a secondary porosity. This 

probably traces back to geological relaxation processes during the cooling (thermal 

contraction) of the volcanic rock.  

Grimm (1990) classifies the rock as quartz-trachyte. The Drachenfels trachyte mainly 

consists of sanidine (50 wt. %), plagioclase (24 wt. %) and quartz (13 wt. %). Other 

components are augite (5 wt. %) and biotite (5 wt. %) and common accessory minerals are 

ore (2 wt. %) and apatite, zircon and sphene (1 wt. %) (Vieten 1961; Koch 2006). The 

sanidine phenocrysts often show Carlsbad twins and growth zones. Biotite shows strong 

pleochroism and is often strongly altered. The micro- to cryptocrystalline groundmass (64%) 

mainly consists of feldspars and quartz (Simper 1990). Plagioclase phenocrysts (mean grain 

size is 0.8 mm) are observed as well. They show growth zoning and contain about 30 mol % 

anorthite (Ab70An30) (Kraus 1985a; Grimm 1990). Apatite and sphene often form large, 

idiomorphic crystals (Grimm 1990). The interstitial volcanic glass fractions are often 

recrystallized and altered to montmorillonite (Koch 2006) (Fig. 5.2c). Vieten (1961) detected 

1-5 wt. % montmorillonite in samples from different outcrops at the Drachenfels. Clay mineral 
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analyses with X-ray fluorescence and cation exchange capacity (Dohrmann and Kaufhold 

2009) reveal concentrations of 3–5 wt. % of montmorillonite within the Drachenfels trachyte. 

The clay minerals are not only found within the interstitial areas but in the entire pore space 

and as crystal coating. In places, calcite occurs in contiguity with Fe-oxides (Fig. 5.2d) 

indicating alteration processes. In some cavities pyrite and aggregates of pyrite-hematite 

(limonite?) can be found (Koch 2006).  

 

 

Figure 5.1 Cut sections of the investigated stones from Cologne cathedral (a) Drachenfels trachyte, (b) 

Montemerlo trachyte, (c) Stenzelberg latite, (d) Obernkirchen sandstone, (e) Schlaitdorf sandstone, (f) 

Bozanov sandstone, (g) Krensheim Muschelkalk and (h) Londorf basalt lava 
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Figure 5.2 (a) Secondary electron picture of Drachenfels trachyte – altered volcanic glass fractions in the 

interstitial areas are much fractured, showing a very distinct porosity; (b) the fluidal structure of the groundmass 

produces several textural domains with preferred orientation of the groundmass feldspar laths (marked with red 

lines) (crossed polars; image width 1.68 mm); (c) recrystallized and altered volcanic glass fractions in an 

unweathered rock sample, showing high interferences in crossed polars (marked with arrows; image width 0.42 

mm); (d) accumulation of calcite and Fe-oxides as a result of alteration processes (crossed polars; image width 

1.68 mm). 

 

The trachyte of Montemerlo shows an isotropic and homogenous fabric (Fig. 5.1b). In some 

cases, the rock exhibits a holocrystalline fabric with a weak parallel texture, where millimeter 

to centimeter large white feldspar crystals, black biotite and dark, prismatic amphiboles float 

in a gray, weakly yellow groundmass. Feldspar crystals can attain sizes ranging from 0.5 mm 

to 10 mm. Biotites are smaller than 2 mm. The composition was determined by Koch (2006) 

as follows: K-feldspar (53%), plagioclase (15%), quartz (8%), amphibole (8%), biotite (5%), 

pyrite (7%) and calcite (4%). The phenocrysts can constitute about 40% of the total rock. 

Accessory minerals are zircon, apatite and sphene. The groundmass is microcrystalline and 

mostly consists of anorthoclase, sanidine, plagioclase and seldom quartz. Plagioclase occurs 

as euhedral and subhedral, zoned and twinned phenocrysts up to 6 mm in size as well as in 

the groundmass. Alkali-feldspars are predominantly anorthoclase and seldom occur as 

sanidine. (Koch 2006) 
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The Stenzelberg latite is a medium gray, porphyritic, and in part porous quartz-latite (Fig. 

5.1c). The micro- to cryptocrystalline matrix (77%) is mainly composed of plagioclase and 

sanidine. Plagioclase, hornblende with individual grain sizes up to 10 cm, augite, and biotite 

occur as phenocrysts. Accessory minerals are apatite, sphene, zircon and ore minerals. The 

mafic minerals are often accumulated in clusters. (Grimm 1990) The normative mineral 

content is 39 % plagioclase, 37% sanidine, 9 % hornblende, 7 % quartz, 3 % ore minerals, 2 

% augite, 2 % biotite and 1 % apatite, zircon and sphene (Vieten 1961). Feldspar laths define 

the flow fabric. The Stenzelberg latite has a low porosity (8.5%), showing mainly intra- and 

minor inter-particle pores with heterogeneous pore sizes (Grimm 1990). 

The Obernkirchen sandstone is a medium-grained, moderately to well-sorted quartz arenite 

showing a white to orange color (Fig. 5.1d). The color is derived from iron oxide and 

hydroxide. The detrital fraction (maximum grain size 300 microns) is composed of 

monocrystalline quartz (98 %), muscovite, zircon, tourmaline, rutile and opaque minerals. 

Grains are rounded, spherical and rod-shaped with an aspect ratio up to four (Morales 

Demarco et al. 2007). Most of the grain contacts are concave-convex and sutured. The fabric 

is grain-supported. The matrix (ca. 5%) is composed of aggregates consisting of authigenic 

kaolinite showing the characteristic booklet structure. The cement consists of rare silica 

(probably syntaxial overgrowths) and iron oxide patches. Obernkirchen represents a pure 

quartz sandstone with a small amount of kaolinite (Dienemann and Burre 1929; Grimm 

1990). 

The Schlaitdorf sandstone is a whitish to yellowish coarse-grained, well-sorted often parallel, 

angular and cross-bedded rock (Fig. 5.1e). The detrital fraction (65%) is represented by 

quartz (72%), rock fragments (12%), feldspar (2%) and cement (14%). The feldspar is often 

more intensely weathered. The cement consists of coarse-grained dolomite, in parts silica 

and rarely illite and kaolinite, which show a dispersed distribution. The main accessories (< 

1%) are apatite, zircon, tourmaline and opaque minerals. Variegated marly clay is mostly 

accumulated in layers and occurs parallel to the bedding. Grain contacts are mainly along 

the long axes of the grains and they are often narrowly intergrown (Grimm1990). 

The Bozanov sandstone is a coarse- to medium-grained arkosic sandstone (Fig. 5.1f). It is 

only weakly cemented and shows a light gray to yellow color. Sporadically clay cement 

participates in grain cementation as a clay mineral seam or as a crack and gusset pore 

infilling (smectite). Many grains display an initial interlocking grain boundary with concave-

convex grain contacts. The mineralogical composition is given by quartz (79%), rock 

fragments (10%), feldspar (5%), clay minerals (smectite, kaolinite, around 5%) and 

accessories like biotite, zircon and opaque minerals. Very typical are cross-bedding, 

gradations and shell-shaped cavities and impressions. The feldspar content and its 
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decoration by hematite crystals are very characteristic features. The rock is poorly-sorted 

(Koch 2000; 2001; Přikryl et al. 2010). 

The Krensheim Muschelkalk is a light, brownish-grayish fine porous limestone consisting of 

shell fragments (Fig. 5.1g). It is classified as a grainstone according to Dunham (1962) or as 

a densely packed bio(micro)sparite after Folk (1962). Mussel- and brachiopod shells of 5-7 

mm sized are densely packed in a fine calcite matrix; pores are partially filled with calcite or 

often filled with residual material. The components are oriented parallel to the bedding, 

showing a moderate sorting. The composition consists of 75% biogenic components mainly 

with micritic rendering, 5% cement and 20% pores. The cement is sparitic and partially 

micro-sparitic. The pore space is characterized by gusset pores, particle solution pores and 

mould pores. The fabric is grain supported with mainly long and point contacts (Grimm 1990; 

Siegesmund et al. 2010). 

The Londorf basalt lava is a brownish to bluish gray basalt (Fig. 5.1h). Orange-brownish 

olivine crystals of 1-2 mm give the rock a weakly porphyritic appearance. The fabric is fine- to 

medium-grained and around the vesicles hyaloophitic. The rock is composed of plagioclase 

(47%), augite (26%), olivine (14%) and ore minerals (ilmenite and magnetite around 10%). 

Accessories of a cryptocrystalline nature (3 %) and partially glass (up to 50%) also occur. 

The rock is highly porous. Besides generally smaller pores, a less frequent pore type of up to 

6 mm in diameter is characteristic. The pores are often coated by light-gray bluish secondary 

zeolites. Inclusions of quartzite and claystone fragments up to 5 cm can be observed (Grimm 

1990; Steindlberger 2003). 

5.2.1 Density, porosity, pore size distribution 

Analyses were carried out to determine density, porosity and pore size distribution (PSD) on 

non-deteriorated samples from eight of the natural building stones used at the Cologne 

cathedral. Density was measured by buoyancy weighing on cubic samples (65 mm). The dry 

mass, the water saturation and the mass of the samples immersed in water were measured 

to obtain information concerning the porosity (DIN 52102). Furthermore, the pore size 

distribution was determined by using mercury intrusion porosimetry (MIP) on cylindrical 

samples (Ø 12.5 mm) (Brakel et al. 1981; Siegesmund and Dürrast 2011). 

The investigated stones show medium porosities from 11.8% (Montemerlo trachyte) to 

19.9% (Schlaitdorf sandstone), except the Stenzelberg latite, which belongs to low porosity 

stones with a porosity of 8.5% (Tab. 5.1). 

The stones investigated in this study have densities from 2.10 g/cm3 to 2.52 g/cm3 and can 

be grouped according to the density. The three sandstones have lower densities. Krensheim 

Muschelkalk and the trachytes have slightly higher densities. The highest density shows the 

basalt lava (2.52 g/cm3) (Tab. 5.1). 
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Figure 5.3 Pore size distribution of the investigated natural building stones (Ф = porosity) determined by 

means of mercury porosimetry. The red bar indicates the percentage of micro- and capillary pores. 
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Table 5.1 Bulk and matrix density, porosity, mean and mode pore radius, capillary water uptake, saturation coefficient, vapor diffusion resistance and sorption. 

Rock type 
Bulk 

density 
(g cm

-3
) 

Matrix 
density 
(g cm

-3
) 

Effective 
porosity 
(vol.-%) 

Mean pore 
radius 
(µm) 

Mode pore 
radius (µm) 

Capillary 
water 

uptake 
(w-value) 
(kg/m

2
√h) 

Saturation 
degree 

(S-value) 

Water vapor 
diffusion 

resistance (µ) 

Sorption at 
95% RH (wt-%)  

        Z X  

Drachenfels trachyte 2.33 2.64 11.92 0.414 1.334 0.55 0.74 37.38 17.91 1.88 

Montemerlo trachyte 2.35 2.66 11.76 0.108 0.211 0.99 0.71 40.49 31.82 1.11 

Stenzelberg latite 2.46 2.69 8.53 0.017 0.013 0.30 0.76 56.39 50.20 2.78 

Obernkirchen sandstone 2.16 2.65 18.58 0.821 3.350 1.26 0.64 15.89 14.95 0.72 

Schlaitdorf sandstone 2.10 2.63 19.91 2.891 33.497 6.68 0.64 20.56 16.93 0.38 

Bozanov sandstone 2.17 2.63 17.79 5.953 21.135 6.90 0.65 16.51 19.69 0.75 

Krensheim Muschelkalk 2.25 2.68 16.03 - 0.64 / 8.2 * 1.30 0.59 69.45 51.25 0.29 

Londorf basalt lava 2.52 2.92 13.13 - 0.0082 / 28 * 0.39 0.59 37.78 38.60 1.62 

* bimodal PSD 
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Analogous to the classification by Rüdrich and Siegesmund 2006 the pore size distributions 

(PSD) of the investigated stones – except of the Krensheim Muschelkalk and Londorf basalt 

bava – show a unimodal distribution. Schlaitdorf and Bozanov sandstones have a broader 

distribution of pores ranging from 0.0064 – 82 µm with a clear peak of pores at > 10 µm (Fig. 

5.3e & f). Obernkirchen sandstone has a narrower distribution (0.0064 – 64 µm) (Fig. 5.3d) 

and Drachenfels trachyte even closer (0.0082 – 28 µm) (Fig. 5.3a). Even stronger limited is 

the PSD of the Montemerlo trachyte from 0.0064 – 1 µm (Fig. 5.3b) and the Stenzelberg 

latite with a PSD from from 0.0064 – 0.28 µm (Fig. 5.3c) with a relatively narrowed pore radii 

maximum. Krensheim Muschelkalk and Londorf basalt lava show a bimodal PSD (Fig. 5.3g & 

h).  

Figure 5.4 shows the correlation of mean pore radius and porosity. In general it can be 

remarked, that with a higher porosity the mean pore radius is also high. An exception is the 

Obernkirchen sandstone, which has a high porosity of 18.6% and a relatively small mean 

pore radius of 0.82 µm. 

 

 
Figure 5.4 The investigated natural building stones show a tendency of higher porosity 

correlated to a higher mean pore radius 

5.3 Moisture properties 

5.3.1 Capillary water absorption 

Capillary water absorption was measured according to the standard EN 1925 on cubic 

samples (65 mm). The measurements were done in two directions parallel and perpendicular 

to the bedding of the stone. The w-value is the amount of water taken up per area by the 

stone with the square root of time (Wesche 1996). 
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The Drachenfels trachyte, Stenzelberg latite and Londorf basalt lava show low capillary water 

absorption values (w < 0.5 kg/m2√h). Montemerlo trachyte, Obernkirchen sandstone and 

Krensheim Muschelkalk have a medium value (1 – 1.5 kg/m2√h); Schlaitdorf and Bozanov 

sandstones show a high capillary water absorption value (6.5 - 7 kg/m2√h) (Snethlage 2005; 

Siegesmund and Dürrast 2011). The values are listed in Table 5.1. 

The Drachenfels and the Montemerlo trachyte show a mode pore radius – the pore radius 

corresponding to the region of the steepest slope (Aligizaki 2006) – in the range of 0.1 – 1 

µm (Fig. 5.3a & 5.3b; Tab. 5.1), which is the lower range of capillary active pores according 

to Klopfer (1985). These two rocks absorb water slowly with a low to medium w-value. The 

mode pore radius class of the Obernkirchen sandstone ranges from 1 - 6.4 µm, which is 

within the medium range of capillary active pore size (Fig. 5.3d; Tab. 5.1). This sandstone 

shows slow but continuous water suction with a medium w-value. The Schlaitdorf and 

Bozanov sandstones show mode pore sizes in the range of 10 – 100 µm (Fig. 5.3e & 5.3f; 

Tab. 2). These two rocks soak water rapidly and have a high w-value. Krensheim 

Muschelkalk has a bimodal distribution and two peaks at 0.64 µm and 8.2 µm (Fig. 5.3g; 

Tab. 5.1). Although 84% of the porosity belongs to the capillary active pores, the w-value is 

not high, because of the low connectivity of the pore space (Kraus 1985a). Stenzelberg latite 

and Londorf basalt lava show extremely slow water suction with low w-values. Ninety-five 

percent of the pores in the latite are micropores (< 0.1 µm) (Fig. 5.3c). Londorf basalt lava 

consists of about 34% micropores (Fig. 5.3h).  

Based on the measured data, the stones can be divided into three groups (Snethlage 2005): 

1) Stenzelberg latite, Londorf basalt lava and Drachenfels trachyte have low mean pore radii 

and low capillary water absorptions (w-values); 2) Montemerlo trachyte, Krensheim 

Muschelkalk and Obernkirchen sandstone have mean pore radii in the lower to medium 

range of capillary active pore sizes and medium capillary water absorptions; 3) Schlaitdorf 

and Bozanov sandstones with high mean pore radii have high  water absorbing coefficients 

(w-values). 

5.3.2 Water saturation coefficient  

The values for water uptake under vacuum and atmospheric pressure were also determined 

as well as the degree of saturation (s=Watm/Wvac). Porosity is equivalent to the water uptake 

under vacuum in vol.-% relative to the total volume of the rock. The saturation coefficient (s-

value) was measured according to the standard DIN 52103. It represents the ratio of the pore 

space, which fills up with water under normal atmospheric pressure conditions. The closer 

the water saturation coefficient comes to 1, the higher the proportion of pore spaces filled 

with water under atmospheric pressure. The values for the water saturation of the 

investigated stones range from 0.59 – 0.76 (Tab. 5.1). The Krensheim Muschelkalk and 

Londorf basalt lava show the lowest s-values. The Schlaitdorf, Obernkirchen and Bozanov 
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sandstones are in a medium range. The Drachenfels and Montemerlo trachytes as well as 

Stenzelberg latite are rocks with higher s-values. 

5.3.3 Sorption/ Desorption 

To measure the hygroscopic water adsorption, the equilibrated sample weight was measured 

with ascending and descending relative humidity in steps of 10% from 15% to 95% and 95% 

to 15% at 30°C on cylindrical samples (Ø 20 mm, 50 mm in length) according to the standard 

DIN 66138. At the hygroscopic level the water adsorption of a rock is regulated by the 

humidity of the air and it is separated into sorption (moisture adsorption) and desorption 

(moisture release). In the hygroscopic range of 0 to 95% relative humidity, moisture content 

of the rocks increases with rising humidity along so-called sorption isotherms. 

 

 
Figure 5.5 (a) The diagram shows the moisture content of the stones by moisture adsorption (sorption) at 95% 

relative humidity. (b) Equilibrium moisture sorption isotherms, showing a significant increase at relative humidity 

levels > 85% reflecting capillary condensation. Drachenfels trachyte (DT), Montemerlo trachyte (MT), Stenzelberg 

latite (SL), Obernkirchen sandstone (OS), Schlaitdorf sandstone (SS), Bozanov sandstone (BS), Krensheim 

Muschelkalk (KM) and Londorf basalt lava 

 

The highest mass increase (at 95% RH) is shown by the Stenzelberg latite with a value of 

2.78 wt. %, whereas the lowest value was determined for the Krensheim Muschelkalk (0.29 

wt. %) (Tab. 5.1; Fig. 5.5a). The Drachenfels trachyte and Londorf basalt lava also show a 

relatively high water adsorption, whereas the Montemerlo trachyte, Obernkirchen and 

Bozanov sandstones have a medium water adsorption. Schlaitdorf sandstone only shows a 

small mass increase. Stenzelberg latite, Londorf basalt lava and Drachenfels trachyte show a 

hysteresis in their sorption-desorption-behavior: The decrease of mass is less than the 

increase; indicating that the stone material dries slower with descending relative humidity 

and still contains a residue of moisture as a possible indication of capillary condensation (Fig. 

5.5b). Stenzelberg latite probably shows the effect of capillary condensation, whereas the 

Montemerlo trachyte and Londorf basalt lava may possibly show little effect as well. 
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5.3.4 Water vapor diffusion resistance 

The water vapor diffusion resistance is defined by the vapor diffusion resistance coefficient 

(µ-value). It was measured at 20°C by using the wet cup-method on disk-shaped stone 

samples (Ø 50 mm, 10 mm in thickness) according to the standard EN ISO 12572. The water 

vapor diffusion resistance value indicates to what extent the transport resistance of the water 

vapor is higher in rock than in air. With the help of the wet-cup method, the µ-value is 

determined at 50 and 95% relative humidity (RH). This range represents the central 

European climate.  

 

 

Figure 5.6 (a) Water vapor diffusion resistance (µ) of the investigated stones, perpendicular (z) and parallel (x) to 

the bedding of the stones; (b) average water vapor diffusion resistance in correlation with the percentage of 

micropores of the investigated stones. The diagrams indicate the diversity of the stone properties and show a 

correlation of higher water vapor diffusion resistance due to a higher amount of micropores. Drachenfels trachyte 

(DT), Montemerlo trachyte (MT), Stenzelberg latite (SL), Obernkirchen sandstone (OS), Schlaitdorf sandstone 

(SS), Bozanov sandstone (BS), Krensheim Muschelkalk (KM) and Londorf basalt lava 

 

Of the investigated stones the Krensheim Muschelkalk and Stenzelberg latite have a high 

resistance to water vapor diffusion. Drachenfels and Montemerlo trachyte as well as the 

basalt lava show a medium resistance, respectively. The sandstones have the highest 

permeability of the investigated stones (Tab. 5.1; Fig. 5.6a). The Drachenfels trachyte shows 

a remarkable directional dependence of water vapor diffusion resistance which could mainly 

be controlled by the flow fabric (Tab. 5.1). A higher resistance correlates with a higher 

amount of micropores (Fig. 5.6b): capillary condensation takes place in micropores, which 

holds back water due to solvent water diffusion. This leads to capillary suction (retention), 

which is much slower than water vapor diffusion (Snethlage 1984). Only the Krensheim 

Muschelkalk does not fit this correlation. 

5.3.5 Hydric and hygric dilatation 

The length and volume increase and decrease of rocks with changes of moisture is well-

known as hygric (in the range between 0% and 95% RH) and hydric (water saturated) 

expansion and contraction (Delgado Rodrigues and Charola 1996; Weiss et al. 2004; 

Ruedrich et al. 2010). Hydric dilatation is measured on cylindrical stone samples (Ø 20 mm, 
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50 mm in length) completely immersed in water. An overview of the hydric dilatation on the 

different stone materials is given in Table 5.2. In general, hydric dilatation is low. The highest 

dilatation is determined at the Montemerlo trachyte with a value of 0.316 mm/m 

perpendicular to the bedding. High hydric swelling was meassured in the Drachenfels 

trachyte, Stenzelberg latite and Londorf basalt lava. The Obernkirchen sandstone has 

medium hydric swelling, whereas the other two sandstones, Schlaitdorf and Bozanov 

sandstone have low hydric dilatation. The length change of the Krensheim Muschelkak is 

within the accuracy of measuring (Tab. 5.2).  

 

Table 5.2 Thermal expansion coefficient and hygric dilatation. 

Rock type Thermal dilatation coefficient (expansion)  Hydric dilatation 

 x-(10
-6

K
-1

) z-(10
-6

K
-1

) anisotropy (%)  x - (mm/m) z – (mm/m) 

Drachenfels trachyte 5.32 6.05 12.0  0.253 0.236 

Montemerlo trachyte 6.25 4.65 25.5  0.291 0.316 

Stenzelberg latite 9.41 7.36 21.7  0.196 0.230 

Obernkirchen sandstone 11.60 12.17 4.6  0.089 0.060 

Schlaitdorf sandstone 9.65 11.96 19.3  0.025 0.025 

Bozanov sandstone 8.78 8.65 1.5  0.027 0.013 

Krensheim Muschelkalk 4.75 6.82 30.3  0.000 0.005 

Londorf basalt lava 5.32 5.78 8.0  0.226 0.186 

 

Generally hydric dilatation is anisotropic in nature and values for anisotropy of about 50% are 

reported in the literature (Rüdrich et al. 2005). With respect to the rocks from the Cologne 

cathedral, only the Bozanov and Obernkirchen sandstones show a medium anisotropy. 

Furthermore, the expansion of the different stones is time dependent: Londorf basalt lava, 

Drachenfels trachyte, Bozanov and Schlaitdorf sandstones, have already reached over 50% 

of their maximum expansion perpendicular to the bedding in the first 30 minutes. Montemerlo 

trachyte attained 88% of the total expansion in that time. Obernkirchen sandstone already 

expanded to its whole extent after five minutes. Stenzelberg latite has only reached 13% in 

the first 30 minutes. This time dependence is ascribed to different pore space properties. 

Where stones with well interconnected pores and relatively high porosities show a fast 

expansion, stones with a less well interconnected pore space have a slower expansion 

(Rüdrich et al. 2005). 

Hygric dilatation processes occur with changes of the relative humidity. The measured hygric 

expansion differs from hydric expansion. Low hygric dilatation values are shown by the 

Schlaitdorf (0.063 mm/m) and the Bozanov (0.010 mm/m) sandstones. Moisture expansion in 

the Krensheim Muschelkalk is negligible (0.001 mm/m). Obernkirchen sandstone has a 

somewhat higher expansion result (0.065 mm/m). Stenzelberg latite shows high hygric 

expansion with dilatation in the z-direction (perpendicular to bedding) of 0.231 mm/m. The 
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Londorf basalt lava also has a high hygric expansion (0.185 mm/m). Hygric dilatation in the 

Montemerlo trachyte (0.142 mm/m) is slightly higher than that of the Drachenfels trachyte 

(0.110 mm/m). With increasing relative humidity a sharper increase of hygric expansion can 

be observed at around 80 - 85% relative humidity (Fig. 5.7). 

 

 

Figure 5.7 Hygric dilatation perpendicular to the bedding of the stones 

with relative humidity ranging of 15–95% 

5.4 Thermal Dilatation  

Thermal expansion was measured on cylindrical samples (Ø 15 mm, 50 mm in length) within 

five consecutive heating cycles from 20°C to 95°C. The length variation (resolution < 1 µm) 

was determined as a function of temperature and was measured in two directions: 

perpendicular (z-direction) and parallel (x-direction) to the bedding. The thermal expansion 

coefficient was calculated (α = Δl/l x ΔT) as well as the residual strain (εrs = Δlrt/l) after one 

heating cycle (Zeisig et al. 2002; Koch and Siegesmund 2001). Anisotropy was determined 

by the difference of the expansion coefficients in both directions. 

Drachenfels trachyte and Londorf basalt lava show low thermal expansion coefficients and 

only little anisotropy. Montemerlo trachyte and Krensheim Muschelkalk display low 

expansion values and pronounced anisotropy. Bozanov sandstone has a medium coefficient 

but no anisotropy. Stenzelberg latite has a medium thermal expansion coefficient and 

anisotropy of about 21%. Obernkirchen and Schlaitdorf sandstones show high thermal 

expansion coefficients, only the latter displays an anisotropy of about 19% (Tab. 5.2). No 

residual strain was observed for the investigated stones. 
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5.5 Mechanical properties 

5.5.1 Uniaxial compressive strength 

The uniaxial compressive strength was measured in two directions (z-direction: 

perpendicular and x-direction: parallel to the bedding of the rock) on planar cylindrical 

samples (Ø 50 mm, 50 mm in length; r/d = 1) according to the standard DIN EN 1926. Based 

on the scale3 effect the compressive strength ratio may differ up to 20% higher by measuring 

samples with r/d-ratio of 1 instead of r/d-ratio of 2 (Peschel 1983). The load was applied with 

a strain rate of 1000 N/s until failure. The compressive strength varies between 45.1 N/mm2 

and 126.4 N/mm2 (Tab. 5.3). The Stenzelberg latite has the highest compressive strength 

(126.4 N/mm2), while the strength values for the Krensheim Muschelkalk, Schlaitdorf and 

Bozanov sandstones are less than 50 N/mm2. Only the Stenzelberg latite belongs to the high 

strength rocks, while rocks with compressive strength values between 55 N/mm2 and 70 

N/mm2 belong to the low strength rocks, as there are the Drachenfels trachyte and Londorf 

basalt lava (Mosch 2008). Obernkirchen sandstone and Montemerlo trachyte display higher 

uniaxial compressive strength values. Except for the Obernkirchen sandstone and the 

Montemerlo trachyte a directional dependence of the compressive strength is less 

pronounced in the other samples (Tab. 5.3). 

 

Table 5.3 Uniaxial compressive strength, tensile strength and flexural strength of the investigated rocks in non-

weathered condition.  

Rock type 
Uniaxial compressive 

strength (N/mm
2
) 

 
Tensile strength 

(N/mm
2
) 

 
Flexural strength 

(N/mm
2
) 

 Z  X   Z  X   Z  X  

Drachenfels trachyte 65.54 66.59  3.087 3.674  5.999 6.100 

Montemerlo trachyte 75.53 84.75  3.439 3.680  6.725 8.195 

Stenzelberg latite 126.41 120.02  9.735 8.621  15.707 9.881 

Obernkirchen sandstone 86.72 76.29  4.594 4.669  7.992 6.825 

Schlaitdorf sandstone 47.59 51.44  3.256 3.343  6.492 5.733 

Bozanov sandstone 45.10 52.08  3.462 3.343  3.975 4.410 

Krensheim Muschelkalk 48.35 52.74  4.498 4.544  8.467 6.763 

Londorf basalt lava 63.10 72.18  5.099 5.921   12.567 12.749 

5.5.2 Flexural strength 

Flexural strength is an important mechanical property for natural building stones. Failures 

due to bending stress are more common than those caused by compressive or shear 

stresses. The flexural strength values are usually lower than the compressive strength values 

for a rock. Mosch (2008) mentions a correlation of 10 : 1 for the compressive to the flexural 

strength. Flexural strength (one point bending) was measured according to the standard DIN 

EN 12372 on oblong samples (150 mm, 40 mm, 25 mm) in two direction (perpendicular and 

parallel to the bedding of the rock). The flexural strength values of the investigated rocks 
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cover the range between 4.0 N/mm2 (Bozanov sandstone) and 15.7 N/mm2 (Stenzelberg 

latite) (Tab. 5.3). Londorf basalt lava has a high flexural strength, whereas the Schlaitdorf 

sandstone, the Drachenfels and Montemerlo trachytes show medium flexural strength 

values. The Obernkirchen sandstone and the Krensheim Muschelkalk display somewhat 

higher flexural strength values. The values are listed in Table 5.3. 

5.5.3 Tensile strength 

In order to obtain the values of the tensile strength, measurements were made using the 

Brazilian Test according to the standard DIN 22024. Investigations were performed on disk-

shaped specimens (Ø 40 mm, 20 mm in thickness). The load was applied with a strain rate 

of 30 N/s. Measurements were applied in two directions (perpendicular and parallel to the 

bedding of the rock). The tensile strength varies between 3.1 N/mm2 (Drachenfels trachyte) 

and 9.7 N/mm2 (Stenzelberg latite), depending on the sample and direction of load with 

respect to the rock fabric. Of the investigated stones Londorf basalt lava has a medium 

tensile strength. Obernkirchen, Schlaitdorf and Bozanov sandstones, Krensheim 

Muschelkalk and Montemerlo trachyte have a lower tensile strength (Tab. 5.3). Many rocks 

show the smallest tensile strength perpendicular to the bedding. In the case of the samples 

investigated, the heterogeneity may also play an important role in explaining the observed 

data (Tab. 5.3). However, the anisotropy of all the rocks is not very well pronounced.  

5.6 Deterioration phenomena and physical decay processes  

Due to its building history many different building stones were implemented at the Cologne 

cathedral, which show different deterioration behavior. These stones differ not only in their 

genesis, but also in their visual appearance, their mineralogical composition as well as in 

their porosity features and rock fabric, and therefore also in their petrophysical properties, 

which again determine the deterioration behavior. Furthermore, exposition, climatic situation, 

industrial-based pollution and building physics play a major role (for further discussions see 

Siegesmund and Snethlage 2011).  

A high porosity in connection with a high water uptake is considered as having a high 

damage potential. High water uptake values (w-value) combined with a high saturation 

coefficient (s-value) are the first indicators for a possible susceptibility to weathering, or in 

other words, pollutant transport, hygric and hydric expansion, frost damage and salt 

crystallization in the pore spaces, etc. Along with the capillary water uptake, an important role 

is also played by the sorption (water derived from the absorbed humidity) and desorption 

(water released in relation to the relative humidity). This determines, among others the drying 

behavior, which is influenced by the capillary transport, the water vapor diffusion and the 

critical moisture of the stone.  
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The capillary absorption capacity of a porous stone is defined by its water uptake coefficient 

(w-value). This is a process driven by the capillary forces that originate in the micro- and 

capillary pores (Klopfer 1985). Rocks with a high amount of capillary pores are expected to 

have a high w-value, which means they have the capacity to rapidly absorb water by 

capillary uptake in the pore spaces. Stones with low capillary absorption (suction) have a w-

value of < 0.5 kg/m2⋅√h, those with medium absorption range from 0.5 kg/m2 ⋅√h to 3.0 

kg/m2⋅√h and stones showing strong water suction have w-values > 3.0 kg/m2 √h (Snethlage 

2005). A w-value of > 3.0 kg/m2⋅√h suggests a sufficient uptake of water in the pore spaces 

to keep the stone moist for a long time and to mobilize any salts present. The importance of 

this parameter cannot be underestimated, since a strong absorption capacity simultaneously 

means that a high pollutant uptake and distribution occurs in the pore spaces. This is the 

reason why dense building stones will sometimes weather on the surface, whereas those 

with a good absorption capacity will deteriorate at depth. 

The water saturation coefficient (s-value) gives an approximate value for the frost resistance 

of natural building stones. Hirschwald (1912) proposed the following guideline values using 

the saturation coefficient: when s < 0.80 the rock is weathering and frost resistant; for values 

ranging between 0.80 and 0.90 it is uncertain and further investigations are necessary; and 

when s > 0.90 the rock is not frost resistant. Similar limitations are given by the standard DIN 

52103: a rock with s < 0.75 is considered weathering resistant and susceptible to weathering 

when s > 0.9. A s-value > 0.75 indicates that if the water supply is high enough, the pore 

space is filled with water to a higher degree and frost action could happen. 
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Figure 5.8 The investigated stones of the Cologne cathedral show a tendency 

towards a higher percentage of micropores correlated to a higher water 

adsorption due to capillary condensation. However, the ratio of micropores in the 

Drachenfels trachyte would suggest a lower sorption.  

 



The building stones of the Cologne cathedral 

69 

Sorption is the adsorptive addition of water from the air. This occurs under isothermic 

conditions in two steps: 1. Adsorption of molecular water films on the inner surface of the 

stone material, and 2. Capillary condensation in pores < 0.1 µm in size (Kraus 1985a). The 

pore size distribution gives a clue to the water uptake by adsorption: with an increasing 

amount of micropores the sorption increases as well due to capillary condensation, assuming 

the pore space communicates well (Fig. 5.8). 

Pore size distribution and porosity of a rock are responsible for water and moisture uptakes 

as well as water transport. Generally, pores are divided due to their size into different 

classes: micropores (< 0.1µm), capillary pores (0.1µm – 1mm) and macropores (>1mm) 

(Klopfer 1985). When capillary pores are present, water can be taken up and rises by 

capillary action. Fluid and capillary transport mechanisms are the main driving factor. On the 

other hand, micropores adsorptively accumulate water from the air at their inner surface 

(capillary condensation). Surface and solution diffusion are the main transport mechanisms 

(Siegesmund and Dürrast 2011). 

The drying of natural building stones is a function of the capillary transport, the water vapor 

diffusion and the critical moisture of the stone. According to Kraus (1985), when a water-

saturated rock dries, the relative rapidly absorbed water from precipitation is by comparison 

released at a slower rate. This lengthy process is due to the capillary absorbed water being 

released to a large extent by vapor diffusion. The first stage in the drying of a stone occurs 

over the rock surface, as an evaporation surface, provided that the capillary water is 

replenished from the deeper parts of the rock. When this capillary thread tears off (critical 

moisture), water vapor diffusion transport starts. Thus, low critical moisture indicates a faster 

drying natural stone. In this case, the capillary transport forces are much stronger. At a 

value less than the critical moisture, the significant determining factor for the drying process 

is the water vapor conductivity. When a stone has a high water vapor diffusion resistance, 

the water release becomes progressively slower. This can be correlated to the pore size 

distribution, whereby a high resistance can be expected as a result of a large proportion of 

micropores. Since the capillary water is condensed and bound, the evaporation of any water 

from the stone material is very difficult (Snethlage 1984). Furthermore the connectivity of the 

pore space plays a certain role. The process of drying in this second phase diminishes more 

and more, because the distances of water vapor diffusion transportation become greater 

until moisture reaches equilibrium with the surrounding air. Besides water vapor diffusion 

also surface and solution diffusion takes place (Kraus 1985a). Therefore the length of the 

first drying phase is mainly determined by the percentage of capillary active pores, besides 

external climatic factors, e.g. wind, temperature and insolation etc., which have major 

impact, the second phase is determined by water vapor diffusion properties; considering the 

general water uptake and saturation properties (w- and s-values) and the connectivity of the 
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pore space. Furthermore Kraus (1985a) mentions, that with a capillary active and well 

communicating pore system, water may even be transported further into deeper zones of 

the stone, although the active water supply already ended.  

Moisture expansion (hydric and hygric dilatation) describes the length or volume change, 

which most natural building stones undergo by wetting in correspondence to climatic factors 

of the environment. The processes responsible are not yet ultimately defined; the volume 

change may be attributed to the swelling of clay minerals as well as to disjoining pressure. 

This latter effect is relevant for all minerals, and significant moisture expansion is correlated 

to a large amount of micropores (< 0.1 µm) (Ruedrich et al. 2010). According to Ruedrich et 

al. (2005) hygric dilatation is essentially a reversible process, i.e. no residual strain is 

ascertained after reducing relative humidity back to the starting value. This only applies for 

demineralized water, which means by the presence of damaging salts in building stones, 

these processes might be affected remarkably. 

A number of deterioration phenomena can be traced back to the volume increase of natural 

building stones by moisture expansion, e.g. scaling, flaking and granular disintegration. In 

most cases, building stones show an irregular moisture distribution, whereby moisture 

gradients diverge leading to a build-up of strain and resulting decay. 

Rocks show volume changes due to changing moisture contents, as well they undergo 

length or volume changes due to changes of temperature. This process is determined by the 

individual properties of the mineral content and composition but also by the structure and the 

rock fabric of the natural building stone. The volume change does not necessarily increase 

linearly to the temperature, which means that the linear thermal expansion coefficient is often 

only valid for a certain temperature interval (Siegesmund and Dürrast 2011). The residual 

strain is of pronounced relevance in terms of deterioration resistance. A permanent length 

change of building stones after returning back to the initial temperature can be traced to 

microcracking and thus indicates potential decay (Ruedrich et al. 2011).  

Strength properties such as compressive, flexural and tensile strengths are rock parameters, 

which also limit the durability of dimension stones. Material failure occurs, when stresses 

induced by mechanical weathering processes exceed the strength of the material. In respect 

of frost and salt deterioration resistance, damage occurs when the stresses due to salt and 

ice crystallization exceed the tensile strength (Ruedrich et al. 2005). The strength properties 

correlate to the grain fabric cohesion. Important fabric parameters for the strength are the 

porosity, the pore size distribution, the grain size, the grain contacts, the type and state of 

cementation as well as a preferred grain boundary orientation. 
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Drachenfels trachyte has a medium porosity, a low capillary water uptake and a high s-value, 

which might suggest certain sensitivity to frost-related weathering. Luckat (1973a) 

demonstrated that the Drachenfels trachyte is especially sensitive to salt weathering 

processes. Flaking and scaling can be pronounced, especially in the direct neighborhood of 

carbonate replacement stones (Kraus 1985a; von Plehwe-Leisen et al. 2007). Flaking and 

scaling are often noticeable as a predecessor for further accelerated decay by fissures, 

cracks, crumbling and material loss.  

The water uptake by adsorption of the building stone is in a medium range, moisture 

expansion is relatively high, and with 84% the percentage of capillary active pores is quite 

high. In terms of drying of the Drachenfels trachyte, water vapor diffusion transport 

mechanisms already start at relatively high water content (> 3 wt-%) of the stone (Kraus 

1985a). In respect of its water vapor diffusion resistance a long drying time is observed, 

showing after 15 days no complete drying (Kraus 1985a). Furthermore, Kraus (1985a) 

mentioned, that building stones exposed to the natural environment experience a rewetting 

before they might dry out completely. While uniaxial compressive strength is in the medium 

range of the investigated stones, tensile and flexural strength are low. For the Drachenfels 

Trachyte a continuous high water content, and therefore sufficient water supply as “support” 

for deterioration mechanisms exists, which presumably are due to the high s-value, water 

uptake by adsorption, vapor diffusion resistance and retarded drying. Here different moisture 

gradients are assumed, whereby hydric dilatation has an effect to a certain extent. In the 

context of electrolytes i.e. ions dissolved from other carbonate stones nearby for example, 

salt deterioration processes might be enhanced in addition to pollution. The low strength 

values, especially for the tensile strength, indicate a modest resistance against weathering.  

Montemerlo trachyte has been used at the Cologne cathedral since 2005 and still does not 

exhibit any structural damage. However, Lazzarini et al. (2008) reported on exfoliation and 

flaking, powdering and alveolic weathering for the Montemerlo trachyte in Venice (Italy) 

mainly related to salt deterioration. The relatively low water uptake only allows a certain 

uptake of pollutants but porosity and pore size distribution assume a prolonged drying time. 

Therefore crystallization of salts can occur and due to the low tensile strength, damage is 

possible. 

The typical deterioration phenomenon of the Stenzelberg latite is a scaling of 2-3 mm thick 

scales (Fig. 4.5e). Stenzelberg latite may have a low capillary water uptake, but also a high 

water saturation (76%), which indicates a certain liability to frost-related decay. Sorption is 

slow, but shows high values and hysteresis, which implies a decelerated moisture release. 

The high percentage of micropores underlines the slow moisture uptake and also release. A 

further retardation and especially zoning of these processes is to be expected due to the 

technical surface treatment and the material compaction involved. Thereby gradients of 
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moisture, material consistency and strength are evolved, which could lead to surface parallel 

detached material layers of a few millimeter in thickness due to frost shattering. Hydric 

dilatation might have a certain but minor impact.  

Obernkirchen sandstone is mentioned as a building stone with a high resistance against 

weathering. It mainly shows superficial deterioration phenomena, which does not have a 

severe structural impact, except of the gypsum crusts (Fig. 4.5b). The formation of these 

crusts indicates a strong pollution imission at the Cologne cathedral in the past. Due to the 

application of a coat of paint, to color adjust to the Krensheim Muschelkalk, applied in the 

1930´s, surface parallel scaling of approximately 1-2 mm occurs. Spalling along edges near 

to joints (Fig. 4.5c) is presumably due to mechanical impact of strain, caused by the joint fill 

material. However, Morales Demarco et al. (2007) determined a strength loss due to water 

saturation of about 14% for the Obernkirchen sandstone.  

Schlaitdorf sandstone shows characteristic deterioration in the form of rounding and notching 

in context with scaling and granular disintegration to sand (Fig. 4.5d). Kraus (1985) describes 

the decay of Schlaitdorf sandstone due to loss of cementation through the formation of 

damaging salts, i.e. gypsum due to high SO2-immision. The Schlaitdorf sandstone has a high 

porosity and a high w-value, which determines the high water uptake. The formation of 

gypsum in the pores leads to accumulation of damaging salts and thereby to scaling and 

surface recession. Efes (1980) observed an increase of smaller pores near the surface and a 

reduction of water vapor diffusion up to 50%, leading to retarded moisture release. With a 

saturation coefficient of 0.64 the Schlaitdorf sandstone is not vulnerable to frost attack. Kraus 

1985a detected in the Schlaitdorf sandstone a second drying phase by water vapor diffusion, 

which starts at a water content of < 2 wt-%. During this drying phase by water vapor 

diffusion, a pronounced accumulation of not readily soluble gypsum salts exists in the pore 

space. 

At present the Bozanov sandstone shows little evidence of decay except spalling along the 

edges, which may occur during the mounting of the wettened building stones. This stone has 

only been implemented at the Cologne cathedral since 2001. Přikryl et al. (2010) have 

reported on sanding, scaling, flaking, crust formation, blistering, fracturing, salt efflorescence, 

alveoli formation for the medium-grained Bozanov sandstone. They detected a high amount 

of water soluble salts responsible for blistering, granular disintegration, scaling and flaking. 

Other weathering processes described are: cyclical wetting and drying, freeze-thaw cycles, a 

different thermal expansion of insulated stone surfaces and less heated interior areas of the 

stone. The petrophysical data of the present investigations support these observations. 

Although Bozanov sandstone does not have a very high water saturation degree, the 

capillary water uptake is high. Thus, water supply is high, promoting frost-related weathering 

as well as possible high loads of damaging salts leading to salt deterioration phenomena. 
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Since strength values are low, these decay processes may propagate to a vast extent. The 

thermal dilatation coefficient supports the assumption of structural deterioration due to 

different temperature gradients. 

Krensheim Muschelkalk and Londorf basalt lava are building stones with a high resistance 

against weathering. The main deterioration phenomenon of the Krensheim Muschelkalk at 

the Cologne cathedral is black surface crusts, which occur solely in rain protected areas (Fig. 

4.5f). Due to the decrease of SO2-emission over the last several years, this decay probably 

will regress as well (Siegesmund et al. 2007; Török et al. 2011). The accumulated pollution of 

the past certainly affects historical monuments in the present but also in the future. 

Krensheim Muschelkalk shows microkarst phenomena, which are typical for carbonate 

stones and are also related to an acidic environmental impact.  

Londorf basalt lava only is affected by pronounced microbiological growth, which is 

associated with a great number of large pores (Grimm 1990). 
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6 Aspects of physical weathering 

As described in the introduction, the deterioration of natural building stones is controlled by 

physical, chemical and biological processes. In the following chapter experiments and tests 

are described to determine the behavior of the building stones towards extrinsic physical 

impacts: namely, drying behavior, frost resistance and salt weathering sensitivity.  

The drying of a porous stone is very much dependent upon the extrinsic environmental 

conditions and is controlled by intrinsic properties, such as pore space characteristics as well 

as mineralogical composition. The drying behavior itself has an influence on the general 

weathering behavior of a stone because, in general, the deterioration processes of natural 

building stones are moisture correlated. Thus, the resistances to freeze-thaw cycles and 

cyclic salt load are also governed by the drying behavior of the porous material. Major 

physical deterioration processes are ascribed to salt and ice crystallizations in the pore 

spaces of natural building stones. The deterioration phenomena assigned to these physical 

damage processes are flaking, scaling, exfoliation and disintegration, as well as sanding and 

granular disintegration (Rüdrich et al. 2005). 

Salt-Weathering tests and freeze-thaw cycles comprise two laboratory experiments indicating 

the resistance of the un-weathered stone material towards the impact of salt and frost. 

6.1 Drying properties 

Generally, the process of the moisture release of porous materials is divided into two phases 

(Vos 1978; Snethlage 1984; Klopfer 1985; Kraus 1985a). The first phase displays a period of 

rapid drying and is dominated by the capillary transport of water from the inner sections of 

the stone towards the stone surface where moisture evaporates. This phase continues as 

long as the capillary water supply of liquid water towards the stone surface equals the 

surface evaporation rate. The evaporation rate correlates to the gradient of the water vapor 

partial pressure at the stone surface and the environment. Thus, this first phase 

predominantly depends upon the environmental conditions (temperature, relative humidity 

and air turbulences) (Kraus 1985a; Snethlage 1984). The point at which the material 

moisture content does not allow any further capillary transport to the surface is called the 

“critical moisture content” (Vos and Tammes 1968). Larger pores have a reduced capillary 

suction than smaller pores; thus, the capillary transport – the capillary thread – towards the 

stone surface is cut after a relatively short time (Klopfer 1974; Kraus 1985a). Franzen and 

Mirwald (2004) observed an increase in the drying rate in rough stones due to the enlarged 

evaporation surface.  

In the second drying phase, the release of moisture decelerates continuously and is 

dominated by water vapor transport and surface solution diffusion transport within the pore 
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space towards the surface of the stone. This phase mainly dependents on intrinsic 

parameters, such as water vapor diffusion transport – namely the resistance to it, the pore 

size distribution, the interconnectivity of the pores and the surface tension.  

These two main phases can be subdivided: the first phase is divided into two segments 

(Franzen and Mirwald 2004); the segment a shows a steep decrease in the drying rate. 

Franzen (2002) described it as a laboratory artifact. It may also resemble the first minutes of 

the drying of a natural building stone after a heavy rain fall. In segment b, the drying rate 

increases and the curve shows an almost linear progression, indicating a steady moisture 

release of the stone. On rough stones, the drying rate may even increase (Franzen and 

Mirwald 2004). Segment b is the period of drying ascribed to the capillary transport 

mechanisms from the inner areas of the stone towards the surface, when the water supply 

from inside balances the evaporation rate at the surface of the stone (Snethlage 1984; Kraus 

1985a; Poschlod 1990; Tournier et al. 2000; Franzen and Mirwald 2004). This ends when the 

critical moisture is reached (Vos 1978); the drying rate decreases significantly and the 

second main drying phase starts. Tournier et al. (2000) and Franzen and Mirwald (2004) 

divided this second phase into two sub-segments: the first is indicated by a sharper decrease 

of the drying rate, when drying is controlled by solution diffusion transport and water vapor 

diffusion transport. In the last segment, the curve tapers off along an asymptotic course, 

when vapor transport mechanisms are dominant. Drying ends when the moisture content in 

the stone is at equilibrium with the ambient air. 

For the present measurement of drying, i.e., the moisture release under atmospheric 

conditions, cubic samples (65 mm) of the investigated stones were water saturated 

(analogous DIN 52102:2006-02) and, afterwards, dried under laboratory conditions (drying 

over 6 sides, no air turbulences in a closed cabinet, 23°C, app. 80-85 % RH). The weight 

loss was measured continuously. 

 

The results of the drying tests of the eight investigated stones are shown in figure 6.1. For 

each sample, two curves are plotted: the continuous line displays the decrease of water 

content over time and the dashed line shows the drying rate, which is the first derivation of 

the weight loss in respect to time (Franzen 2002; Franzen and Mirwald 2004). 

The four stages of drying are shown in the curves of the investigated stones expect for 

Stenzelberg latite and the Londorf basalt lava (Fig. 6.1). With the curves of the latter, 

segment a can be discerned whereas the other segments of the drying process cannot be 

distinguished. Due to the high ratio of micropores in the Stenzelberg latite (95 %) and the 

lack of connectivity of the pore space in the Londorf basalt lava (Kraus 1985a), these stones 

are more characterized by vapor and solution diffusion transport mechanisms than by 

capillary transport mechanisms, as indicated by the low w-values (Tab. 5.1). 
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Figure 6.1 Drying curves of the investigated stones:  a Drachenfels trachyte; b Montemerlo trachyte; c 

Stenzelberg latite; d Obernkirchen sandstone; e Schlaitdorf sandstone; f Bozanov sandstone; g Krensheim 

Muschelkalk; h Londorf basalt lava. The continuous line displays the decrease of water content over time and the 

dashed line shows the drying rate (note log-scale in right y-axis). Drying phases 1 and 2 as well as the four 

segments a – d are shown. 
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The curves of the other six investigated stones clearly show the four different stages of 

drying (Fig. 6.1). In the Drachenfels trachyte, the end of the first drying phase is not as 

significant as in the other stones. Similar to the Montemerlo trachyte, the Drachenfels 

trachyte released about 50% of its water content at the point when water vapor transport 

controlled drying began (Fig. 6.1a and b). The Krensheim Muschelkalk lost about 60% of its 

water content by the end of the first drying phase (Fig. 6.1g). Comparing the three 

sandstones, the Obernkirchen released already app. 85%, the Schlaitdorf app. 75% and the 

Bozanov sandstone app. 70 % of its water content when the capillary supported drying 

ended (Fig. 6.1d-f). 

If the duration for the first drying phase of the investigated stones – i.e., until critical moisture 

content is reached – is compared with the data given in the literature, the present test shows 

longer durations. For the Drachenfels trachyte, 1.3 days; for the Montemerlo trachyte, 1.9 

days; for the Obernkirchen, 3 days; for the Schlaitdorf sandstone, 2.2 days; for the Bozanov 

sandstone, 1.7 days; and for the Krensheim Muschelkalk, 2 days were measured. Kraus 

(1985a) ascertained a first drying phase of 0.6 days for the Drachenfels trachyte; for the 

Schlaitdorf sandstone, 0.85 days, and for the Obernkirchen sandstone, 0.75 days. For the 

latter, Franzen (2002) measured 0.4 days until end of the first drying phase.  

These different durations are very much dependent upon the ambient conditions. As 

mentioned earlier, this first phase depends upon environmental conditions (temperature, 

relative humidity and air turbulences). The moisture release of Obernkirchner sandstone was 

tested at different environmental conditions (Snethlage 1984). At 20°C and 40% relative 

humidity, drying accelerates with the increasing velocity of wind: at a calm, the critical 

moisture content is reached after 10 h; with a wind velocity of 2 m/s after 4 h, and with a 4 

m/s velocity after 1 h. Snethlage (1984) also showed the correlation of the evaporation 

surface with the drying rate. For the Obernkirchner sandstone - as an example - it was 

shown that the drying over five sides of the stone sample almost doubled the drying rate in 

comparison with the drying over one side until critical moisture content was reached 

(Snethlage 1984). As shown, the various critical moisture contents are reached by different 

drying rates at different times, indicating that this material parameter is more dependent upon 

the surrounding conditions. Thus, for drying measurements the experimental conditions were 

sought to be monitored. In terms of the drying behavior of natural building stone in the built 

environment, the release of moisture is very sensitive to building-physical and microclimatic 

condition changes. 
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Figure 6.2 Drying was measured in a closed cabinet 

 

In the present experiment, the drying was measured in a closed cabinet (Fig. 6.2). Despite a 

relatively high temperature (23°C) and the drying over six sides of the cubic sample, the 

relative humidity was high (80-85%), indicating a low water vapor partial pressure gradient; 

thus, the evaporation rate was very low. 

The drying measurements show high residual moisture contents for the Stenzelberg latite 

(18.5%) and the Londorf basalt lava (13.2%), indicating that the stone does not dry 

completely. The residual water is available for potential moisture-related deterioration 

processes. The elevated residual water content can be ascribed to increased water vapor 

diffusion resistance due to the elevated ratio of the micropores of these stones and a lack of 

interconnectivity of the pore space. As mentioned before, the experimental conditions 

included a high RH; thus, the equilibrium water content at the end of the measured drying 

process is reflected. This correlates well to the ascertained data of the relatively high water 

adsorption of these four stones (Tab. 5.1). 

If the drying behavior of the two trachytes is compared and correlated with the petrophysical 

properties, the two stones show similar curves (Fig. 6.1a and b). The more linear course of 

the curve in segment b correlates well with the ascertained w-values (Tab. 5.1), indicating 

less capillary activity for the Drachenfels trachyte. 

The drying behavior of the three sandstones shows a pronounced first drying phase and a 

significant linear curve for segment b (Fig. 6.1c and d). The rough stone surface of the 

Schlaitdorf sandstone may contribute to a slightly elevated drying rate in this segment (Fig. 

6.1c). The saturation degree of the three stones is similar but the capillary water uptake is 
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much higher in the Schlaitdorf and Bozanov sandstone (Tab. 5.1), which is reflected in the 

linear course of the curve in segment b indicating the capillary activity. The fourth segment d 

of the drying process becomes very irregular, probably due to the smaller content of 

micropores within the stones and inconstant water vapor and surface solution diffusion 

transport mechanisms. 

The Krensheim Muschelkalk stays somewhat in the mid-field of the investigated stones. The 

four segments of the drying can clearly be divided. The knee at the point of critical moisture 

content is significant, indicating a steep decrease of moisture release from there onwards. 

This might be explained by a relatively good capillary transport in segment b – reflected by a 

medium w-value. Moreover, in segment c water release becomes increasingly hindered due 

to underrepresented water vapor transport mechanisms. This is reflected by the low sorption 

and high water vapor diffusion resistance (Tab. 5.1). 

Stenzelberg latite has a low capillary water uptake, a high ratio of micropores and a 

significant sorption together with high water vapor transport resistance. As the drying curve 

shows, the stone will stay moist at equilibrium with a residual content of almost a fifth of its 

adsorbed water. As mentioned before, water transport within this stone is almost exclusively 

controlled by water vapor transport mechanisms - the stone is not capable of releasing the 

capillary uptaken water by vapor transport.  

Similar drying behavior can be addressed with regard to the Londorf basalt lava. With a 

slightly higher porosity but a lower s-value, a similar w-value and a lower vapor resistance 

compared to the Stenzelberg latite (Tab. 5.1), in general, the water balance of this stone is at 

a very low level, which is reflected in its high weather resistance. 

The experiments show that the drying behavior is highly dependent upon the environmental 

conditions. It can also be seen that a high capillary water uptake is not necessarily the main 

factor controlling drying properties. Much more important are pore space properties - e.g., 

the ratio of micro-pores. 

6.2 Freeze–thaw weathering tests 

Frost weathering is discussed as one major physical deterioration process. During winter, 

most damage in natural building stones is ascribed to alternating freeze and thaw cycles. 

Ruedrich et al. (2011) report over 30 freeze–thaw cycles per year in Munich, which implies 

high impact rates. 

The formation of ice from a solution such as ice crystallization differs from that of pure water 

in terms of the freezing point. Ruedrich et al. (2011) ascertain that, due to a certain salt 

content and smaller pore sizes, the freezing point decreases. In smaller pores, the freezing 

takes place at increasingly lower temperatures, whereas in larger pores the water crystallizes 

at temperatures closer to 0°C. This leads to a heterogeneous freezing - i.e., crystallization in 
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the pore space. Furthermore, pore space properties - e.g. the pore shapes (Hirschwald 

1908) - and the interconnection of pores (Stockhausen 1981; Weiss 1992) are of major 

importance. 

Different mechanisms are held responsible for the stress resulting from ice crystallization in 

the pore space of the rock leading to the disintegration damage of the natural building stone. 

Hirschwald (1908) addressed the damage to the volumetric expansion of freezing water. 

Capillary (Everett 1961) and hydraulic pressure (Powers and Helmuth 1953; Setzer 1999) 

due to the redistribution of water molecules in the pore space and the linear growth pressure 

(Correns and Steinborn 1939; Steiger 2005) were discussed as the main processes leading 

to stress on the natural stone. The main precondition for the damage on the stone is that 

stress introduced by ice freezing exceeds the strength of the stone (Winkler 1968). 

 

On the eight investigated natural building stones, laboratory freeze–thaw tests were 

performed to verify the sensitivity of the rocks to freezing. Rock prisms with a dimension of 

40 x 40 x 160 mm were subjected to 35 freeze–thaw cycles. Four specimens for each rock-

type were tested. One cycle encompasses, firstly, the immersion of the samples in water at a 

temperature of 20°C for 2 h, followed by the storage of the samples at -20°C for 16 h in air. 

After every 5th cycle, the samples were dried to weight constancy at 60°C in a drying 

chamber. The material deterioration was examined by weight measurements and the 

measurements of the ultrasonic waves parallel to the long axis of the sample perpendicular 

to the bedding/foliation (Z-direction) (Rentsch and Krompholz 1961). With the latter, the 

compressive wave velocities (Vp) and the dynamic Young’s modulus (dE) are evaluated. 

The results of the loss of weight, the change of ultrasonic velocity (Vp) and Young’s modulus 

are shown in figure 6.3. 

For the Drachenfels trachyte, almost no changes of weight are observable (Fig. 6.3a-c). After 

35 cycles, only a 0.6% loss in weight was detectable. The samples exhibit only a very light 

decrease of the Vp and the Young’s modulus. The Vp was reduced from 3.2 to 3.0 km/s. The 

Young’s modulus decreased from 21.3 to 18.7 kN/mm2. No damage was observed in the 

sample, which correlates with the constant weight.  

The sample of the Montemerlo trachyte stays more or less unaffected during the freeze–thaw 

test (Fig. 6.3d-f). In terms of the elastic properties, only the Young’s modulus showed a slight 

decrease, from 15.7 to 13.3 kN/mm2. The Vp decreased from 2.6 to 2.4 km/s. No 

macroscopic damage occurred. 

The Obernkirchen sandstone samples show no loss of weight (Fig. 6.3g-i). The elastic 

properties showed variances of 3%. Macroscopic damage was not observed. 
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For the Schlaitdorf sandstone, no loss of weight is detected (Fig. 6.3j-l). For the elastic 

properties, a slight decrease is measured: the Young’s modulus reduced from 28.5 to 26.3 

kN/mm2; the Vp was reduced from 3.8 to 3.6 km/s. No macroscopic damage occurred. 

At to the sample of the Bozanov sandstone, no loss of weight was measured (Fig. 6.3m-o). 

The elastic properties showed a decrease of 2% for the Vp and 6% for the Young’s modulus. 

Macroscopic damage was not observed. 

The Krensheim Muschelkalk is the only stone sample of the tested stones that showed a 

slightly more pronounced change after 35 freeze-thaw cycles in terms of its elastic properties 

(Fig. 6.3p-r). The Vp decreased from 5.0 to 4.4 km/s. The Young’s modulus displayed a 

decrease from 45.7 to 36.1 kN/mm2. A loss of weight cannot be detected, which corresponds 

with the stable condition of the sample without any occurrence of damage. 

 

 

Figure 6.3 Freeze-thaw test: The graphs show the changes in the weight loss, the compressional wave velocities 

(Vp) and the dynamic Young’s modulus (dE) of the eight stones investigated 
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Figure 6.3 continued. Freeze-thaw test: The graphs show the changes in the weight loss, the compressional 

wave velocities (Vp) and the dynamic Young’s modulus (dE) of the eight stones investigated 

 

The samples of the Stenzelberg latite are more or less unaffected during the freeze test (Fig. 

6.3s-u). Weight loss is not detected and the elastic properties vary only between 2–5%. The 

Young’s modulus decreased from 39.4 to 37.7 kN/mm2. Damage in the sample cannot be 

detected. 

For the Londorf basalt lava, almost no changes of weight were observed (Fig. 6.3v-x). After 

35 cycles, only 0.4% loss in weight was detectable. The Vp showed an decrease of 2% and 

the Young’s modulus was reduced from 44.1 to 41.0 kN/mm2. No damage was observed in 

the sample. 

 

The detection of loss of weight and changes in elastic properties as well as macroscopic 

damage in the investigated stones indicate that for all of them there was a minor impact 

within 35 freezing-thaw cycles. Ruedrich et al. (2011) stated that only after more than 50 
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cycles is there a clear tendency where the deterioration develops to fabric collapse, or where 

only the elastic properties are slightly reduced. This could be one explanation of the minor 

changes among the stones. According to the radius freeze point relation of Stockhausen 

(1981), ice crystallization in the pore space would be expected for all of the investigated 

stones. In pores larger than 0.006 µm, water freezes at temperatures below –20°C.  

 

The Drachenfels trachyte has a very low capillary water uptake (Tab. 5.1). According to the 

radius freeze point relation of Stockhausen (1981), the water in the pores will freeze at 

almost the same temperature, from app. –1 to –5°C. Even though the strength properties are 

not very high due to the small amount of water uptaken and the short crystallization range, 

the stress induced by the freeze-thaw cycles will not lead to material failure. The reduction of 

the elastic properties may indicate that, in respect of long-term stress due to freeze-thaw 

cycles, the material cohesion might decrease, resulting in pore space changes - e.g., the 

opening of pore space - and thus different crystallization conditions. 

A similar scenario can be drawn for the Montemerlo trachyte, since its fabric is as 

inhomogeneous as that of the Drachenfels trachyte with a similar PSD but a slightly higher 

capillary water uptake (Fig. 5.4 and Tab. 5.1). The strength properties of the Montemerlo 

trachyte are higher than those of the Drachenfels trachyte (Tab. 5.3).  

The Obernkirchen sandstone has a low saturation coefficient (0.64), a unimodal PSD with no 

pore >0.006 µm (Fig. 5.4) and high strength properties. These values indicate a high 

resistance against frost weathering. 

Schaitdorf and Bozanov sandstone both have high capillary water uptake, but their saturation 

coefficients are similar to that of the Obernkirchner sandstone. Both stones show a wider 

distribution of their pore sizes with a higher number of larger pores. For both stones, a slight 

decrease of the elastic properties is ascertained, which might have a particular impact due to 

the strength properties, which are not very high (Tab. 5.3). 

The Krensheim Muschelkalk has a medium porosity and a medium capillary water uptake, a 

low saturation coefficient and a bimodal PSD with two peaks – at 0.64 and 8.2 µm. These 

petrophysical parameters are not expected to be sensitive to frost, but the detection of the 

elastic properties within the freeze-thaw weathering test show a clear decrease. Ruedrich et 

al. (2011) address these decohesion processes of the materials in relation to the temperature 

sensitivity of the calcite stone. They detected a pronounced residual strain for a Kuaker 

limestone after five dry and ten wet heating cycles (20–90°C). This grain displacement and 

loss of material cohesion is explained by the strong anisotropic dilatation behavior of the 

calcite single crystal. Similar behavior has been seen in marble (Siegesmund and Kirchner 

2003; Siegesmund et al. 2008; Siegesmund and Ruedrich 2008). 
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The Stenzelberg latite shows a low capillary water uptake, very narrow PSD with 95% 

micropores (<0.1 µm) and high strength properties. Within this stone, all the water freezes in 

a very short range of temperature in almost all the pores. Thus, only a very small quantity of 

water from smaller pores might function as a reservoir of water for further crystal growth in 

larger pores. The strength values indicate a resistance against stresses from ice 

crystallization. 

Londorf basalt lava has a very low capillary water uptake and low saturation coefficient, as 

well as high strength properties. This might assume any frost sensitivity. However, Young’s 

modulus is reduced, indicating the decohesion processes of the material. The PSD of the 

Londorfer basalt lava shows a bimodal distribution with two peaks – at 0.0082 and 28 µm. 

The numerousness of smaller pores between 0.006 and 0.028 µm might serve as a fluid 

reservoir for further crystallization processes in larger pores. 

 

 

Figure 6.4 The radius freeze point relation, following Stockhausen (1981)  

 

The test does not reveal a high frost sensitivity for the cathedral stones. However, the slight 

decreases of the elastic properties observed are noticeable and might indicate a long-term 

sustainability in relation to frost weathering. As discussed earlier, the relevance of laboratory 

tests for the weathering of natural building stones has to be relativized (Ruedrich et al. 2011; 

Siegesmund and Kirchner 2003). With regard to the environmental impact, it is not just the 

frequency of the freeze-thaw cycles that important. The frost intensity matters more: how 

long and to what extent do temperatures fall below 0°C. Most of any potential damage is 

assumed for a temperature range between –4 and –15°C (Walder and Hallet 1985). External 

temperatures causing these temperature ranges within natural building stones are not often 

reached in Central Europe (Ruedrich et al. 2011). Climate calculations impose a decrease of 

the frequency of freeze-thaw events for Central Europe (Grossi et al. 2007). 

As to ice crystallization in the pore space, water has to be abundant in the pores. Thus, the 

moisture content of the rocks is crucial for freeze-thaw events in situ. In the test, the samples 

are water saturated and supercooling took place in air. For building stones it is different in 
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most cases: since the building’s rain flow or melting snow, which happens above 0 °C, 

serves as source for the capillary water uptake (Ruedrich et al. 2011). However, material 

moisture measurements undertaken in four test fields at Cologne cathedral reveal 

temperatures within the different building stones of Drachenfels trachyte, Obernkirchen and 

Schlaitdorf sandstone as well as Krensheim Muschelkalk below –4 °C at a depth of 1.8 cm 

(chapter 3.2). This occurs with relatively regularity in December and February, when the 

moisture content of the stones is also high (70 to 95 % RH). At first sight, this seems to meet 

the conditions for a damage scenario involving freeze-thaw cycling. However, the parallel 

measurements of water vapor content show very little content (2.5 g/kg water in air), which 

resembles 3.85·10-7% vol. of water in the Drachenfels trachyte. This would imply that at 

these temperatures the water within the stone mainly occurs as a surface film. The water 

content, namely the water vapor content, is calculated from the measured data within a 

hollow space 8 mm in diameter, which stays at equilibrium with the humidity and temperature 

of the pore space of the stone, but does not display the same physical behavior (chapter 

3.2). Even at low temperatures, pores <0.1 µm are expected to be filled with water due to 

capillary condensation in these micropores at higher RH ranges (Siegesmund and Dürrast 

2011). Especially in the range of 85–95% RH, the detected mass increase through water 

vapor absorption is significant (Fig. 5.6) and correlates to the higher ratio of micropores 

within the stones (Fig. 5.9). At 95% RH and 30 °C, a mass increase of 1.88% wt. is detected 

for the Drachenfels trachyte. This resembles a volume increase of 4.38% vol. in the stone 

and an increase of 36.5% vol. with respect to the pore space. In correlation with the pore size 

distribution, pores ≤0.64 µm will be filled at 95% RH and 30 °C. In the Obernkirchen 

sandstone, 13% vol. of the pore space will be filled with water at 95% RH and 30 °C. This 

indicates a water saturation of pores ≤0.064 µm. For the Krensheim Muschelkalk, a mass 

increase of 0.29% wt. is detected at 95% RH and 30 °C, indicating that only a minor 

percentage (0.75% vol.) of pores >0.01 µm will be filled with water. Although the data 

measured at a temperature of 30 °C cannot be quantitatively correlated with the situation at 0 

°C - or even –4 °C - they indicate the impact of micropores and capillary condensation at 

higher RH. 

Correlating the pore size distributions of the investigated stones with the radius freeze point 

relation, following Stockhausen (1981) (Fig. 6.5 green line), at a temperature of –4 °C the 

pores with pore sizes <0.01 µm (on the left of the blue marking line) will not contribute to frost 

action if filled with water due to the lower deviation of the radius freeze point relation curve 

(Fig. 6.5). Pores with sizes >0.01 µm (on the right of the blue marking line) would have to be 

filled with water for frost action to take place. Regarding the collected data of the 

measurements and testing, it can be assumed that pores >0.1 µm are probably not filled with 

water or only to a minor percentage at a measured temperature of –4 °C and 70-95% RH. 
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Thus, in terms of frost damage, the critical range of pore sizes at –4 °C would be within the 

range of 0.01–0.1 µm.  

Regarding the pore size distributions of the eight investigated stones and the ratio of pores 

within the range of 0.01–0.1 µm, a certain susceptibility on the part of the Drachenfels and 

the Montemerlo trachyte, as well as the Stenzelberg latite, can be presumed (Fig. 6.5). As to 

the Stenzelberg latite, the observed deterioration phenomena of the formation of thin scales 

(2–3 mm of thickness) may be attributed to frost deterioration. 

In another case, with high water importation into the stone - e.g., heavy rain fall and 

subsequent rapidly falling temperatures - damage due to frost action can be imagined. 

Additionally, structurally disturbed material – where decohesion started – displays changed 

petrophysical properties which might promote frost weathering. In contrast to this, the 

freezing point gets reduced due to the salt content of the pore water, which is generally the 

case in building stones. 

This discussion elucidates once again the significance of the correlation of intrinsic properties 

- e.g., pore size distribution - and extrinsic properties - e.g., outside temperature and humidity 

as well as fluid water supply - in appraising deterioration processes. 
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Figure 6.5 correlation of the pore size distributions (PSD) and the radius freeze point relation after Stockhausen 

(1981) (green line) and the measured moisture and temperature conditions on site at Cologne cathedral indicating 

the ratios of pores, in which ice crystallization may occur (marked blue). 
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6.3 Salt-weathering tests 

The different models for salt deterioration mechanisms, the individual mechanisms of how 

salts crystallize from solutions and how salt crystallization causes stress in a porous system, 

have been outlined in the introduction. 

To assess the salt weathering sensitivity of the natural building stones investigated in this 

work, a salt-weathering test according to standard DIN EN 12370 was performed. Two cubic 

specimens (65 mm edge lengths) of each stone were salt loaded in succeeding cycles. Each 

cycle comprised a 4h period of imbibition in a sodium sulfate solution (10%), followed by a 16 

h drying period in a drying chamber at 60°C. After a cooling phase of 2 h, the samples were 

weight controlled.  

The resistance is evaluated by weight loss, visible changes and the macroscopic damage of 

the samples recorded after each cycle. The test is carried out until a 40% weight loss or until 

the complete breakdown of the samples; alternatively until 75 cycles. Sodium sulfate is a 

commonly occurring and extremely destructive masonry salt (Doehne 1994; Rodriguez-

Navarro et al. 2000); thus, this test exposes the samples to extreme stresses. Depending 

upon the ambient conditions (temperature and relative humidity), sodium sulfate occurs in 

several hydration phases. Two stable phases are known: the water free-phase thenardite 

(Na2SO4 (V)) and the hydrate phase mirabilite (Na2SO4 • 10H2O). Two other phases have 

been identified as well: the heptahydrate phase (Na2SO4 • 7H2O) and the meta-stable water-

free phase (Na2SO4 (III)) (Steiger 2009). The transition between these phases takes place at 

temperature and humidity ranges often found in buildings in Central Europe (Steiger et al. 

1998). The hydration from thenardite to mirabilite is associated with a volume increase of 

300% (Price and Brimblecombe 1994).  

Depending upon the temperature the phase transition occurs at different relative humidity, 

e.g. at 20 °C hydration from thenardite (Na2SO4 (V)) to mirabilite (Na2SO4 • 10H2O) takes 

place at 75% relative humidity. At the same temperature and slightly differing RH (71–72 %) 

the meta-stable triad water-free phase makes a transition to mirabilite and at a RH of ca. 82 

% the heptahydrate can be formed. This indicates that the RH ranges in which the different 

hydrate phases form are very narrow and may be traversed several times per day (Fig. 6.6). 
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Figure 6.6 Deliquescence humidities of the system Na2So4 – H2O, stable equilibrium: solid line; metastable 

equilibrium: dashed line (from Steiger 2009) 

 

Results of laboratory salt-weathering tests 

The different building stones investigated here show very different salt-weathering stabilities 

(Fig. 6.7). The Montemerlo trachyte, the Krensheim Muschelkalk and the Bozanov sandstone 

show little resistance to salt deterioration experiments. They lose 10 % of their weight after 

18 cycles, followed by the Drachenfels trachyte with 26 cycles (Fig. 6.7). The weight loss and 

weathering of the two Drachenfels trachyte specimens vary significantly. These four stones 

show a minor salt weathering stability. The Schlaitdorf is in the middle of the range. The 

Obernkirchen sandstone shows a strong divergence of its two samples: sample a stays 

unweathered until the end of the test (Fig. 6.7), whereas sample b loses 10% of its weight 

after just 18 cycles. The Stenzelberg latite and the Londorf basalt lava are more or less 

unaffected (Fig. 6.7). 
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Figure 6.7 Salt deterioration tests with sodium sulfate. The Montemerlo trachyte (MT) shows minimum salt 

weathering resistance. The Drachenfels trachyte (DT), Krensheim Muschelkalk (KM) and Bozanov sandstone 

(BS) also show little resistance. The Schlaitdorf sandstone (SS) presents a weight loss of 70% after 70 cycles. 

The Obernkirchen sandstone (OS) displays varying medium-to-high salt-weathering resistance. The Londorf 

basalt lava (LB) and the Stenzelberg latite show a minimum weight loss within this experiment. 

 

The forms of damage and material loss behavior of the stones are very distinct. The form of 

damage of the Drachenfels trachyte is unique and it very much resembles the crumbling 

observable in situ at Cologne cathedral. The disintegration does not start from the outer 

surface moving subsequently towards the “inner core” as is observable for the sandstones. 

The Drachenfels trachyte shows fissures and crack formation, leading to a fragmentation of 

the sample resulting in crumbling, disintegration and the spalling off of fragments, which in 

many cases still show the unaffected surface. The crack formation is not necessarily bound 

to the large phenocrysts; it runs through the matrix as well (Fig. 6.8). Efflorescence is not 

observed. 

The Montemerlo trachyte shows a very different form of damage. This rock sample 

subsequently weathers from the outer surface to the inside, leaving a flaking surface. Crack 

formation is not as pronounced as it is in the Drachenfels trachyte (Fig. 6.7). 
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The Krensheim Muschelkalk shows a somewhat visually comparable form of damage as that 

of the Montemerlo trachyte. The components are subsequently weathered. Efflorescence is 

not observed. 

 

 

Figure 6.8 Salt-weathering test: Deterioration in the 

Drachenfels trachyte sample showing fissures and 

crack formation alongside large phenocrysts and in the 

matrix as well. 

 

The three sandstones show similar damage progress: a granular sanding and disintegration 

from the surface towards the core of the sample. The Bozanov sandstone shows significantly 

more deterioration and its surface recession is not as regular as it is in the Schlaitdorf or the 

one sample of Obernkirchen sandstone. 

In the salt-weathering test, the Stenzelberg latite and the Londorf basalt lava lose less than 

10 % of their weight. The form of damage in the Stenzelberg latite resembles the phenomena 

observed in situ at Cologne cathedral: the detachment of scales of 1–2 mm thickness (Fig. 

6.7). The Londorf basalt lava shows crack formation and scaling (Fig. 6.7). These 

deterioration phenomena are not well known for this building stone, indicating the highly 

destructive power of the salt-weathering test. 

 

Discussion 

The salt-weathering test illustrates well the deterioration phenomena observed in situ. 

Especially for the Drachenfels trachyte, it is shown that this stone does not show even 

surface recession, instead showing crack formation and crumbling. As described earlier, the 

salt used in the test is a very destructive one; thus, pronounced damage with the samples is 

expected. In the deterioration samples from Cologne cathedral, gypsum is detected in the 

form of crusts on the stone surfaces as well as in the disintegrated zones of the stone 

material (Graue et al. 2013a). Even though gypsum is the least soluble of the soluble 

damage salts (Charola et al. 2007), it tends to accumulate and thus provoke severe damage 
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of the stone material (see chapter 8.5). Although the crystallization processes of these two 

salts vary significantly, the deterioration they cause can be compared. 

The Schlaitdorf sandstone shows a moderate resistance to salt deterioration. The main 

deterioration phenomena observed for this stone at the Cologne cathedral are formation of 

massive gypsum crusts, scaling and flaking, as well as granular disintegration, rounding and 

notching. In the deterioration samples of the Schlaitdorf sandstone from Cologne cathedral, 

Kraus (1985a) detected gypsum concentrations of up to 23.2 wt. %. The formation of gypsum 

is due to the acidic environmental attack on the carbonate cement of the stone (app. 14 wt. 

%). To these high concentrations of damaging salts, the Schlaitdorf sandstone is able to 

oppose a certain resistance, but with recurring wetting and drying cycles due to the climate 

impact the stone deteriorates significantly. 

Obernkirchen sandstone, Londorf basalt lava and Stenzelberg latite can be generally 

addressed as being salt-weathering resistant natural building stones. However, the scaling 

observable on the Stenzelberg latite can to be seen in context with salt deterioration 

processes. 

The low resistances of Montemerlo trachyte, Bozanov sandstone and Krensheim 

Muschelkalk are significant. For the Montemerlo trachyte, salt-weathering sensitivity is 

reported for Venice, Italy (Lazzarini et al. 2008). Přikryl et al. (2010) report severe 

deterioration due to the salt-weathering of the Bozanov sandstone at the Charles Bridge in 

Prague. As to the Krensheim Muschelkalk, a general weathering resistance is assigned. If at 

all, solution-weathering and microkarst phenomena are mentioned (Grimm 1990). 

 

The salt-weathering behavior of natural building stones is dependent upon their fabric 

properties and petrophysical parameters. Crucial parameters include the pore space 

properties, such as effective porosity, pore size distribution, pore shape and pore 

interconnectivity (Ruedrich and Siegesmund 2006). The mineral composition, the rock fabric, 

drying properties and the tensile strength of the stone are important parameters as well for 

the determination of salt-weathering processes. 

For sandstones, a high porosity together with a high capillary water uptake and low tensile 

strength are held as being primarily responsible for salt decay. In terms of the distribution of 

pore sizes, a wider range of pore sizes with a higher ratio of micropores and even bimodal 

PSD are held as being responsible in promoting salt deterioration. For sandstones, in 

general, slow drying is correlated with scaling deterioration and faster drying to granular 

disintegration (Ruedrich and Siegesmund 2006). 

 

If the petrophysical properties of the investigated stones are correlated with the observed 

damage within the test, then for the Stenzelberg latite and the Londorf basalt lava a high 



Aspects of physical weathering 

94 

resistibility is ascertained due to low porosity, a low capillary water uptake and the high 

tensile strength of these stones. The scaling of the Stenzelberg latite has to be seen with its 

drying properties and high critical moisture as being due to the large content of the 

micropores, leading to a zone of maximum moisture, where salts precipitate and cause the 

disintegration of the stone material (Kraus 1985a; Ruedrich and Siegesmund 2006; 

Snethlage and Wendler 1997). 

Obernkirchen sandstone is not affected very much by the salt test. This stone has a low w-

value, high strength properties and a narrow range of pore sizes, as well as good grain 

contacts and good drying properties. 

Schlaitdorf sandstone and Bozanov sandstone have high porosities, high capillary water 

uptake and a wide range of pore sizes, which are clearly more pronounced with regard to 

larger pores. Their tensile strength is similar; drying behavior in the Bozanov sandstone is 

slightly retarded. These characteristics would lead us to expect an almost similar salt-

weathering resistibility, but the test results show a significantly higher sensitivity for the 

Bozanov sandstone. This might be due to the longer drying duration in conjunction with the 

clay mineral content. Besides the salt weathering processes caused by salt crystallization in 

the pore space, the swelling of clay minerals has to be considered as well, which becomes 

significantly intensified by the presence of salts. 

The higher salt weathering sensitivity of the Montemerlo trachyte in comparison to the 

Drachenfels trachyte may be explained by the slightly higher capillary activity and higher 

water vapor diffusion resistance, due to the higher number of pores with pore sizes < 0.01 

µm. The higher salt uptake and retarded drying might promote better salt crystal growth, and 

thus have a greater impact upon salt deterioration. 
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7 Aspects of chemical weathering  

Laboratory tests of the chemical weathering of the investigated natural building 

stones  

The chemical weathering of natural building stones described at the outset is mainly due to 

an acidic attack through atmospheric gases (SOx- und NOx-) dissolved and oxidized in 

rainwater forming anorganic acids. As well contribute water and organic acids to the 

deterioration of building stones. The different natural building stones react through the 

corrosion of their rock-forming minerals (e.g., silicate stones) or their dilution/solution (e.g., 

carbonate stones), which eventually leads to the formation of harmful substances (e.g. salts). 

The following data were available for the evaluation of the chemical resistance of the 

different stones against acidic attack and the behavior of the stones in varying pH to estimate 

chemical deterioration process of the eight investigated stones in an anthropogenic 

environment. Data come from acid buffering capacity tests and leaching experiments. 

7.1 Acid buffering capacity  

To evaluate the acid sensibility of the various stones, acid capacity buffering tests were 

conducted. The prepared stone material was titrated with hydrochloric acid (HCl – 0.01mol/l, 

and 1 mol/l for Krensheim Muschelkalk) until steady pH 4 was achieved. The ion equivalent 

detects the quantity of acid-soluble ions in the different stones at pH 4. 

7.1.1 Material and methods 

Suspensions were prepared with a 1 g powder fraction of the various stones and 25 ml of 

distilled water. Hydrochloric acid (HCl) was successively added to the stone suspensions 

until pH 4 was established. The concentration of added HCl 0.01mol/l was evaluated 

potentiometrically. The concentrations correlated with the different stones, indicated by the 

titration curves of the stone suspensions (Fig. 7.1). The concentration of the added HCl 

solution (mol) gives a rate for the acid buffering capacity (Table 7.1; Fig. 7.2). 

7.1.2 Results 

The highest buffering capacity showed the carbonate rock. A high capacity was shown by the 

Schlaitdorf sandstone as well. The four volcanic rocks (Drachenfels and Montemerlo 

trachyte, Stenzelberg latite and Londorf basalt lava) had comparable values, whereas in the 

two sandstones (Bozanov and Obernkirchen sandstone) the lowest acid buffering capacities 

were detected (Table 7.1; Fig. 7.2).  
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Figure 7.1 Titration curves of the eight investigated stones with HCl. 

Please note the logarithmic scale of the x-axis as well. 

7.1.3 Discussion 

Due to the high calcite content of the Krensheim Muschelkalk it is expected that it buffers a 

high concentration of added HCl over a long period of time. A similar behavior was 

ascertained for the Schlaitdorf Sandstein with a carbonate cement (appr. 14 %). The 

extremely high acid buffering capacity of the Krensheim Muschelkalk indicates that this stone 

shows the highest vulnerability to acidic attack since it will dissolve. In general, the acidic 

environmental impact is caused to a large extent by sulfuric components. Thus, limestone 

generally forms gypsum crusts as a result of transformation from CaCO3 into CaSO4 · 2 H2O 

(see chapter 8.3.1). Törok et al. (2006) observed the protective role of weathering crusts for 

the limestone, at least to a certain extent. 

The Schlaitdorf sandstone shows a long buffering capacity as well due to its carbonate 

cement. This indicates a high vulnerability to chemical environmental acidic impacts. These 

results correlate strongly with the observed damage of the exposed building stones. The 

Schlaitdorf sandstone deteriorates and forms gypsum. To a large part the decay of the 

Schlaitdorf sandstone is due to the loss of cementation through the formation of damaging 

salts, i.e., gypsum due to high SO2-immision (Kraus 1985a). 

For silicate rocks, it can generally be noted that the feldspars – here, mainly plagioclases – 

and certain accessory components show a reduced acid resistance compared to quartz 

(Loughnan 1969). The lowest buffering capacity was shown by the Obernkirchen sandstone. 

This stone is a quartz-arenite with 95-98 % monocline quartz. Thus, it contains only a few 

compounds, that are affected by acidic impacts and so it indicates a high chemical resistivity. 

In addition, the Bozanov sandstone shows a relatively low buffering capacity. The slightly 

higher capacity is due to the higher content of stone fragments and feldspars in comparison 

with the Obernkirchen sandstone.  
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Table 7.1 Quantity in ml of added hydrochloric 

acid (0.01 mol/l) and the corresponding ion-

equivalent until pH 4 is reached 

0,01 M HCl 

(ml)

equivalent HCl 

(mol)

KM 2,050.00 2.05 • 10
-2

SS 75.00 7.5 • 10
-4

OS 1.00 1.0 • 10
-5

BS 2.70 2.7 • 10
-5

DT 6.30 6.3 • 10
-5

MT 4.20 4.2 • 10
-5

SL 7.00 7.0 • 10
-5

LB 7.50 7.5 • 10-5
 

 

 

 

 
Figure 7.2 Ion equivalent of the acid buffering capacity of 1 g 

stone powder of the investigated stones in HCl (please note 

the logarithmic scale of the y-axis); KM = Krensheim 

Muschelkalk, SS = Schlaitdorf sandstone, OS = Obernkirchen 

sandstone, BS = Bozanov sandstone, DT = Drachenfels 

trachyte, MT = Montemerlo trachyte, SL = Stenzelberg latite, 

LB = Londorf basalt lava 

 

Compared to these two sandstones, the volcanic rocks show a higher acid buffering capacity 

due to their broad mineral composition. In the Drachenfels trachyte plagioclase (24 %) and to 

a lesser degree, the biotite (5 %), sanidine (50 %), apatite (< 1 %), and accessory calcite 

might also contribute to the acid buffering. The Montemerlo trachyte contains calcite (4 %), 

which is highly soluble, but in addition plagioclase (15 %), biotite (5 %) and amphibole (8 %) 

might be dissolved and buffer the acid impact. To a lesser extent, the contents of sanidine 

(53 %) might be involved. For the Stenzelberg latite a corrosion of plagioclase (39 %) and 

hornblende (9 %) is expected as well as for biotite (2 %) and sanidine (37 %). In the Londorf 

basalt lava olivine (14 %) and plagioclase (47 %) are attacked by the acid impact. 

7.2 Leaching with methane-sulfonic-acid at pH 4 

In a second experiment, the powdered stone fractions were leached in methane-sulfonic-acid 

(MSA). The various concentrations of the MSA were at ion-equivalent concentrations as the 

applied HCl to achieve pH 4. Leached fractions were then qualitatively and quantitatively 

analyzed. 

7.2.1 Material and methods 

A powdered fraction (1 g) of each stone was dispersed in 25 ml of ion-equivalent 

concentrations of MSA as a leachant at pH 4 over 24 hours (see Tab. A7.0 in the appendix). 

The pH was controlled after 24 hours. Afterwards, anions and cations in the eluates were 

measured by ion chromatography analyses. Major cations were analyzed on a DIONEX 320 

using electrochemically suppressed conductivity detection with ion separation achieved on a 
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CS16 column using methane sulfonic acid as an eluent. The major anions were analyzed on 

a DIONEX 500 using electrochemically suppressed conductivity detection with ion separation 

achieved on an AS11-HC column using potassium hydroxide as eluent. The calibration 

ranges were the following: chloride: 1–20 mg/l; sulfate: 20–200 mg/l; nitrate: 1–40 mg/l; 

ammonium: 0.5–20 mg/l; sodium/potassium/magnesium: 2–20 mg/l; lithium: 0.25–2.5 mg/l. 

The aluminum was analyzed with ICP-OES on an Optima 3300 DV.  

7.2.2 Results 

The experiment shows a much higher concentration of leached cations in comparison with 

anions. In what follows, the cation yields of aluminium, sodium, potassium, magnesium and 

calcium are discussed. The concentrations of the leached fractions from Krensheim 

Muschelkalk (MK), Schlaitdorf sandstone (SS), Obernkirchen sandstone (OS), Bozanov 

sandstone (BS), Drachenfels trachyte (DT), Montemerlo trachyte (MT), Stenzelberg latite 

(SL), and Londorf basalt lava (LB) in MSA pH4 over 24 hours differed significantly (Tab. 7.2; 

Fig. 7.3).  

 
Figure 7.3 Concentrations (g/kg) of the leached fractions relative to the solid material from the investigated 

stones in MSA at pH 4 (please note the logarithmic scale of the y-axes) (a) from Krensheim Muschelkalk; (b) from 

Schlaitdorf sandstone (SS), Obernkirchen sandstone (OS), Bozanov sandstone (BS); (c) from Drachenfels 

trachyte (DT), Montemerlo trachyte (MT), Stenzelberg latite (SL), and Londorf basalt lava (LB) 

 

 

 

 

Table 7.2 Concentration of the leached fractions 

Al Na K Mg Ca TOTAL

g/kg g/kg g/kg g/kg g/kg g/kg

KM 2.60 0.20 0.05 1.68 385.99 390.53

SS 14.37 0.13 0.12 4.90 8.94 28.45

OS 2.09 0.04 0.09 0.02 0.07 2.32

BS 0.86 0.03 0.14 0.10 0.28 1.41

DT 0.29 0.22 0.29 0.09 0.80 1.68

MT 0.22 0.18 0.14 0.16 0.41 1.11

SL 2.49 0.28 0.24 0.30 1.47 4.77

LB 3.48 0.17 0.08 0.70 1.42 5.85   
Figure 7.4 Concentration (g/kg) of the total leached 

fractions from the investigated stones in MSA at pH 4 

(please note the logarithmic scale of the y-axis) 

 

In correlating the concentration of the leached fractions to the element concentration in the 

host rock (Tab. 7.3) the proportion (percentages of the total content) of the elements 
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leachable by MSA at pH 4 from the powdered stone fractions are given (White 2003). These 

percentages indicate the “leachability” of the element from the natural building stone in the 

specific leachant (Tab. 7.4; Fig. 7.5) (Snäll and Lilijefors 2000). The complete data set of the 

XRF analyses of the host rocks are found in the appendix (A.5.1). 

 

Table 7.3 Element concentration in the host rock (XRF analysis) 

Al Na K Mg Ca TOTAL

g/kg g/kg g/kg g/kg g/kg g/kg

KM 8.04 5.19 0.42 2.71 373.43 389.80

SS 25.83 0.52 0.83 5.25 9.36 41.79

OS 20.69 5.93 1.41 0.30 0.21 28.56

BS 22.97 2.45 13.45 0.54 0.64 40.05

DT 92.41 32.94 46.32 4.70 17.15 193.52

MT 96.32 38.50 39.27 6.63 15.15 195.88

SL 96.85 30.94 33.62 8.86 35.38 205.65

LB 75.95 24.48 10.96 49.45 58.82 219.66  

 

Table 7.4 Leachability (% of total wt. %) of Al, Na, K, 

Mg, Ca from the investigated stones in MSA pH4  

Al Na K Mg Ca

% % % % %

KM 32,4 3,9 12,9 61,9 100,0

SS 55,6 24,5 14,8 93,3 95,4

OS 10,1 0,7 6,7 6,5 33,7

BS 3,7 1,2 1,1 17,7 43,6

DT 0,3 0,7 0,6 2,0 4,6

MT 0,2 0,5 0,4 2,4 2,7

SL 2,6 0,9 0,7 3,3 4,1

LB 4,6 0,7 0,7 1,4 2,4  

 

 

 
Figure 7.5 Leachability (% of total wt. %) of Al, Na, K, Mg, 

and Ca from the different building stones in MSA at pH 4 

(KM: Krensheim Muschelkalk; SS: Schlaitdorf sandstone; 

OS: Obernkirchen sandstone; BS: Bozanov sandstone; 

DT: Drachenfels trachyte; MT: Montemerlo trachyte; SL: 

Stenzelberg latite; LB: Londorf basalt lava) 

7.2.3 Discussion 

The diagram in figure 7.1 shows that the eluates of the stones maintain a relatively high pH 

for a certain duration, then the pH increases significantly. This is reflected by the 

concentrations of cations diluted (Tab. 7.3). The quality and the quantity of the leached 

fractions are correlated with the mineral composition of the different stones (Tab. 7.4; Fig. 

7.5). Thus, the content of the different minerals of the various stones is discussed in terms of 

the minerals’ weather resistance – namely, their acid resistivity – analogous to Goldich 

(1938). An attempt is made to qualitatively and semi-quantitatively correlate the leached 

fractions with the various minerals of each natural building stone. 

In the Drachenfels trachyte plagioclase (24 wt. %), apatite (< 1 wt. %), biotite (5 wt. %), and 

sanidine (50 wt. %) are found (Vieten 1961; Koch 2006; see chapter 5.2), which show a 
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certain solubility. Partially found calcite – in the Drachenfels trachyte an alteration product of 

anorthite content in the plagioclases (Ab70/An30) (Grimm 1990) – dissolves in acid solution. 

The content of clay minerals – up to 5 % montmorillonite (Vieten 1961; Dohrmann 2013) – 

has to be taken into account in terms of mineral weathering. Sphene (< 1 wt. %), quartz (13 

wt. %) and augite (5 wt. %) as well as accessory ore minerals (2 wt. %) and zircon (1 wt. %) 

(Vieten 1961; Koch 2006) are more weather resistance minerals and show lower solubility.  

The calcite – although an accessory component – weathers easily and releases calcium. In 

comparing the weather resistance of plagioclases and orthoclases, the latter show a much 

higher resistivity. Out of the plagioclases, the calcium-rich anorthite shows higher solubility 

than the sodium-rich albite (White and Brantley 1995; Brantley 2003). The cations released 

from these rock-forming minerals are Ca2+, Na+ and K+ ions (Tab. 7.2). Apatite is soluble in 

the common acids (HCl, HNO3, H2SO4) (Strübel and Zimmer 1991). This mineral possibly 

releases calcium ions due to the acidic impact. Potassium is released from the interlayer of 

biotite under deterioration impact (Loughnan 1969; Steiger et al. 2011). The loss of 

potassium from biotite correlates progressively with increasing weathering intensity (White 

2003). The Kali-feldspar sanidine releases potassium-ions. This occurs in significantly lower 

ratios in relation to plagioclases (Loughnan 1969). The weathering of montmorillonite to 

kaolinite is associated with the release of magnesium ions (Altschuler et al. 1963; 

Heydemann 1966). Biotite releases magnesium as well (Steiger et al. 2011). 

In the Drachenfels trachyte, the leached calcium and sodium fractions can be attributed to 

the dissolution of calcite and the corrosion of plagioclases and apatite. The released 

potassium can be correlated with a certain biotite and sanidine solution. The magnesium 

content in the eluate may derive from montmorillonite and biotite weathering. The release of 

the aluminum is due to the corrosion of the silicates in general (White 2003). 

The concentration of leached calcium and magnesium fractions relative to the concentration 

in the untreated Drachenfels trachyte is significantly higher than the concentration of sodium, 

potassium, and aluminum (Fig. 7.5), assuming a preferred plagioclase and clay mineral 

weathering. The relatively high calcium concentration is not just ascribed to the solution of 

the calcite content in the host rock. Thus, it may be attributed to the vast cryptocrystalline 

matrix with a major ratio of plagioclases with an anorthite content of 30 mol % (Kraus 1985a). 

During the process of the chemical weathering of plagioclase phenocrysts with calcic cores 

surrounded by more sodic rims, the plagioclase cores weather more rapidly, producing a 

preferential release of solute calcium relative to sodium (Clayton 1986). This process of an 

incongruent dissolution has been invoked to explain the excess solute calcium to sodium 

ratios relative to what would be expected from the bulk plagioclase stoichiometry (Stauffer 

1990; White 2003). 
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In the Montemerlo trachyte 4 wt. % of calcite is found, which solutes readily in its ions in pH 

4. Besides plagioclase (15 wt. %) and amphibole (8 wt. %), biotite (5 wt. %) and sanidine (wt. 

53 %) are found in the Montemerlo trachyte (Koch 2006).  

Although the concentration of calcite is relatively low in the Montermerlo trachyte compared 

with the other rock-forming minerals (Tab. 7.2; Fig. 7.3c), its solubility is very high and in pH 

4 it will be completely dissolved, thereby providing calcium. As described for the Drachenfels 

trachyte, the leached calcium, sodium and potassium fractions on the one hand derive from 

the solution of the feldspars. On the other hand, biotite provides a certain amount of 

potassium and the amphibole group contributes to a minor grade to the concentration of all 

five leached fractions. Again, the released aluminium can be ascribed to silicate corrosion in 

general. Noticeable in the Montemerlo trachyte is the high concentration of leached 

magnesium. This may be ascribed to a certain biotite solution as well as to the weathering of 

the clay mineral content. Koch (2006) mentioned relatively high clay mineral concentrations 

in the Montemerlo trachyte.  

The Stenzelberg latite contains a high ratio of plagioclase (39 wt. %) besides hornblende (9 

wt. %), biotite (2 wt. %) and sanidine (37 wt. %). Calcium, magnesium and aluminium show 

significant leachabilities in this stone (Tab. 7.4; Fig. 7.5). The released calcium ions can be 

partially attributed to the corrosion of the plagioclase, as well as to the hornblende and – to a 

lesser degree – to the apatite. The leached magnesium and aluminum fractions might rather 

be ascribed to the hornblende and the biotite solution, rather than to the corrosion of other 

rock-forming minerals in the Stenzelberg latite.  

In the Londorf basalt lava olivine (14 wt. %) and plagioclases (47 wt. %) can be addressed as 

contributing to the leached fractions of aluminium, calcium and magnesium ions (Tab. 7.2; 

Fig. 7.3c). The acid resistivity of olivine is relatively low (Strübel and Zimmer 1991) and the 

release of magnesium is expected (Loughnan 1969). Grimm (1990) and Steindlberger (2003) 

describe accessories of a cryptocrystalline nature (3 wt. %) and partially glass (up to 50%). 

The components might contribute to the relatively high leachabilities of aluminium, calcium 

and magnesium.  

The leachabilities of the ions in the Krensheim Muschelkalk clearly indicate the 

decomposition of the carbonate rock (Tab. 7.4). The content of calcium is released 

completely. The minor content of other leached fractions show high leachabilities as well due 

to the complete dissolution of the rock. 

The Schlaitdorf sandstone is characterized by a high content of dolomite, partially illite and 

kaolinite, cement of 14 wt. % (Grimm 1990). The quartz content (72 wt. %) is barely affected 

by the solution. Rock fragments (12 wt. %) and feldspar (2 wt. %) might contribute to the 

concentration of the leached fractions. The high yields of diluted calcium, magnesium and 

aluminum can be ascribed to the cement of the rock (Tab. 7.2; Fig. 7.3b). 
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The Obernkirchen sandstone represents pure quartz sandstone with a small amount of 

kaolinite within its matrix (5 wt. %) (Dienemann and Burre 1929; Grimm 1990). A significant 

concentration of aluminium can be detected in comparison with the other leached elements. 

This can be addressed to the kaolinite degradation, since quartz is barely affected. 

The Bozanov sandstone is composed of quartz (79 wt. %), rock fragments (10 wt. %), 

feldspar (5 wt. %), and clay minerals (smectite, kaolinite; around 5 wt. %), besides 

accessories (Koch 2000; 2001; Přikryl et al. 2010). Relatively higher concentrations of 

aluminium and calcium are leached (Tab. 7.2; Fig. 7.3b). The aluminium concentration is 

probably leached from kaolinite decomposition. For the sedimentation of the Bozanov 

sandstone, a fast transport of coarse-grained clastic material is reported (Lehr 2008). Thus, 

rock fragments are constituent of the sandstone and are very inhomogeneous. The yield of 

calcium, potassium and magnesium may be attributed to the weathering of these rock 

fragments, feldspars and the clay minerals as well. 

7.3 Leaching experiments 

The deterioration attack on natural building stone in an anthropogenic environment is many-

fold. Through the extrinsic factors of dry and wet deposition of air pollutants and atmospheric 

gases as well as the impact of microbiological contamination and moisture import into the 

porous material through rain and humidity, solutions in the pore space of natural building 

stones are formed, which show varying compositions, concentrations and pH values. Natural 

building stones deteriorate chemically due to a corrosion of their rock-forming minerals 

through these pore solutions (Loughnan 1969; Kraus 1985; Colman and Dethier 1986; 

Pielow 1997; Schlösser 1991). The solubility of rock-forming minerals is very much pH-

dependent (McBride 1994; White 2003). The chemical breakdown of silicate minerals 

proceeds through the solution or partial solution of some of the constituent cations of the 

mineral (Loughnan 1969; Holdren and Speyer 1986).  

In the following experiment, the reaction of the investigated building stones to the impact of 

different pH solutions was considered. Two different grain size fractions (coarse and fine 

sample fractions) from the various stones at different pHs over various periods of time were 

tested. The pH values of the eluates and leached fractions were detected. The Krensheim 

Muschelkalk – being a carbonate rock – was excluded from these leaching experiments. 

7.3.1 Material and methods 

The fine sample fraction of the investigated stones (Tab. 7.5) is a fine powder of the stones; 

the coarse fraction has grain sizes of 4–10 mm (Fig. 7.6a and b). The leachants were 

demineralized water, a Kolthoff-buffer at pH 3.4, a Palitzsch-buffer at pH 7 and pH 8.4, and a 
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saturated gypsum solution (Tab. 7.6). The preparation of the leachants is described in the 

appendix (Tab. A7.1). 

 

Table 7.5: Investigated stones  Table 7.6: Leachants 

DT  Drachenfels trachyte  

MT Montemerlo trachyte 

SL  Stenzelberg latite  

OS  Obernkirchen sandstone  

SS  Schlaitdorf sandstone  

BS  Bozanov sandstone  

LB  Londorf basalt lava  

1 Demineralized water 

2 pH 3,4 (analogous Kolthoff ) 

3 pH 7,0 (analogous Palitzsch) 

4 pH 8,4 (analogous Palitzsch) 

5 saturated gypsum solution 

 

sample SS was not eluted in pH 3.4 

 

 

 

Figure 7.6 (a) coarse sample fraction (4–10 mm) (b) fine sample fraction (stone powder) 

 

From the fine sample fraction about 3 g of material, and from the coarse fraction about 9 g 

(mass was checked individually) were eluted in 25 ml of the different leachants. Samples 

were continuously tempered in a water bath (35°C) and agitated daily. After the various 

leaching periods, the pH was measured. From the eluates of the three consecutive one-week 

leaching periods of charge 1 (Ch1Wo1, Ch1Wo2, Ch1Wo3), and from the first four-week 

leaching period of charge 2 (Ch2Wo4), leached fractions were analyzed ion 

chromatographically (see 7.2 Materials and methods).  

 

Table 7.7 Leaching periods: charge 1: three consecutive one-week leaching periods; charge: two 

consecutive four weeks periods; charge 3: one twelve-week leaching period 

charge 3

week 1 week 2 week 3 week 4 week 8 week 12

Ch1Wo1 Ch1Wo2 Ch1Wo3 Ch2Wo4 Ch2Wo8 Ch3Wo12

charge 1 charge 2

 

 

The leaching periods were divided in three charges: charge 1 consists of three consecutive 

one-week periods, where the eluates were charged from one and the same stone fraction; at 

charge 2, the eluates were changed after a four-week period until eight weeks in total had 

passed; charge 3 was left sitting over the complete twelve-week leaching period (Tab. 7.7). 
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7.3.2 Detection of pH changes  

The complete data for the detected pH values is in the appendix (Tab. A7.2) The 

measurements show a strong increase in all the leachants. In the pH 3.4, the values rise to 

pH 6.5 (Obernkirchen sandstone) and to pH 8.0 (Stenzelberg latite and Londorf basalt lava) 

in the first week (Fig. 7.7). This indicates that the cations are readily soluble and that the 

buffer is not sufficient to maintain a steady pH. At the various new fillings the increase of pH 

values was less significant. In the consecutive one-week leaching periods, the pH continous 

to increase (except for the Obernkirchen sandstone), but not as much. Comparing the one-

week with the twelve-week leaching period, the increase of the pH during the longer leaching 

period is more significant for the sandstones (Fig. 7.8). For the Stenzelberg latite and the 

Londorf basalt lava, slightly lower values are detected (Fig. 7.8). 

 

 
Figure 7.7  The pH values of the eluates of charge 1 of 

three consecutive one-week leaching periods in leachant 

pH 3.4; fine sample fraction of the investigated stones 

Figure 7.8 The pH values of the eluates comparing 

the one-week with the twelve-week leaching period 

in leachant pH 3.4; fine sample fraction of the 

investigated stones 

7.3.3 Leached fractions  

Schlaitdorf sandstone 

The concentrations (g/kg) of the individual leached fractions from the Schlaitdorf sandstone 

(fine and coarse grain sizes) in the different leachants (demineralized water, pH 7, pH 8, and 

saturated gypsum solution) are shown in figure 7.9; and figure A7.1 as well as in table A7.3 

in the appendix. The leachabilities of the individual leached fractions (% of wt. %) from the 

Schlaitdorf sandstone (fine and coarse grain sizes) in the different leachants (demineralized 

water, pH 7, pH 8, and saturated gypsum solution) are shown in table A7.4 in the appendix. 

Due to a measuring error, data for the third one-week elution period (Ch1Wo3) in pH 7 is 

missing. 
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Figure 7.9 Concentrations (g/kg) and leachabilities (% of wt. %) of the leached elements from the fine 

sample fraction from the Schlaitdorf sandstone (please note the different scales). 
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Comparing the concentrations of the leached fractions from the fine sample fractions from 

the Schlaitdorf sandstone in the different leachants, calcium is the most leached fraction 

except in pH 8, in which sodium shows the highest concentrations. (Fig. 7.9 a,c,e,g,I). 

Comparing the leachabilities of the different fractions in the various leachants, sodium and 

potassium show high leachabilities in demineralized water, pH 7 and pH 8 (Fig. 7.9 b, d, f). In 

the saturated gypsum solution the calcium fraction shows a significantly higher leachability 

(Fig. 7.9 h; Tab. A7.4 in the appendix). In the saturated gypsum solution highest 

concentrations of leached fractions are detectable (Fig. 7.9 g). In the other three leachants, 

the concentration of the total leached fractions differs insignificantly (Fig. 7.9 a, c, e). In 

general, the calcium fraction shows highest concentrations as well the highest leachability 

from the Schlaitdorf sandstone (Fig. 7.9 i and j). 

The high sodium concentration in pH 8 as well as the high calcium concentrations in the 

saturated gypsum solution might indicate cation exchange processes. In the buffers of pH 

3.4, pH 7 and pH 8.4 borax (Na2B4O7·10 H2O) is contained (see buffer preparation in the 

appendix Tab. A7.1). Here the sodium ions, and in the gypsum solution the calcium ions, of 

the salts might be replaced by cations leached from the Schlaitdorf sandstone. This 

assumption is underlined by the higher yield of calcium ions in the four week elution period 

(Ch2Wo4) in comparison with the first one-week elution period (Ch1Wo1) (Fig. 7.9 g). Cation 

exchange is a time dependent process. Thus, over longer leaching periods more ions can be 

exchanged. 

However, the high yields of calcium associated as a total with high leachability indicate the 

major impact of the dissolution of the carbonate cement in the Schlaitdorf sandstone. 

As expected, the concentrations of the leached fractions are much lower in the coarse 

sample fractions from Schlaitdorf sandstone compared with the fine sample fractions due to 

the smaller reactive surfaces of the former (Tab. 7.8a). Noticeable are the relatively high 

sodium concentrations as well as the leachabilities in demineralized water, pH 7 and pH 8 

(Fig. A7.1 a, c, e in the appendix). Higher concentrations as well as higher leachabilities 

would have been expected for the calcium and also for the magnesium fraction. These two 

derive from the dolomite cement of the stone, which is relatively soluble in the fine as well as 

in the coarse sample fractions. High element yields in the coarse sample fractions are 

assumed to come from smaller grain sizes in the natural stone. The high yields of sodium 

might be explained by a cation exchange process with borax. This readily soluble salt forms 

other salts with magnesium and calcium (boracite and colemanite) which show lower 

solubility compared with borax. Thus, magnesium as well as calcium ions from the dolomite 

cement, are “caught” by the BO3
 3- anion and sodium is released. Noticeable as well is the 

high concentration of calcium in the saturated gypsum solution. A possible explanation could 

be cation exchange processes.  
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leached concentrations leachabilities

fine coarse fine coarse

SS SS

Na 0,06 0,02 Na 11,02 3,62

K 0,03 0,01 K 4,18 1,01

Mg 0,05 0,01 Mg 1,05 0,26

Ca 0,10 0,02 Ca 1,06 0,18

SS 0,25 0,05 4,5 SS 4,33 1,26 3,4

DT DT

Na 0,07 0,01 Na 0,20 0,03

K 0,08 0,03 K 0,17 0,06

Mg 0,01 0,00 Mg 0,22 0,04

Ca 0,10 0,03 Ca 0,59 0,17

DT 0,25 0,07 3,7 DT 0,29 0,08 3,9

MT MT

Na 0,03 0,00 Na 0,15 0,01

K 0,02 0,01 K 0,08 0,01

Mg 0,03 0,03 Mg 0,24 0,13

Ca 0,13 0,05 Ca 0,20 0,21

MT 0,21 0,09 2,3 MT 0,17 0,09 1,8

OS OS

Na 0,02 0,01 Na 0,03 0,03

K 0,00 0,00 K 1,68 0,43

Mg 0,00 0,00 Mg 0,34 0,05

Ca 0,03 0,01 Ca 0,33 0,28

OS 0,05 0,02 3,4 OS 0,59 0,20 3,0

BS BS

Na -0,01 -0,01 Na -0,27 -0,38

K 0,03 0,00 K 0,20 0,01

Mg 0,00 0,00 Mg 0,35 0,03

Ca 0,00 0,00 Ca 0,45 0,02

BS 0,02 -0,01 -3,0 BS 0,18 -0,08 -2,2

SL SL

Na 0,09 0,03 Na 0,29 0,08

K 0,04 0,00 K 0,11 0,02

Mg 0,01 0,00 Mg 0,09 0,02

Ca 0,02 0,01 Ca 0,06 0,02

SL 0,16 0,04 4,0 SL 0,14 0,04 3,8

LB LB

Na 0,05 0,00 Na 0,22 0,00

K 0,01 0,00 K 0,12 0,01

Mg 0,03 0,00 Mg 0,07 0,01

Ca 0,05 0,01 Ca 0,08 0,02

LB 0,15 0,02 9,6 LB 0,12 0,01 12,7  

Table 7.8 (a) Average concentrations (g/kg) and total concentrations (g/kg) of leached elements from the fine and 

coarse sample fractions from the different stones in demineralized water, pH 3.4, pH 7 and pH 8.4; (b) average 

leachabilities (% of wt. %) and total leachabilities (% of wt. %) of leached elements from the fine and coarse 

sample fractions from the different stones in demineralized water, pH 3.4, pH 7 and pH 8.4 
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Drachenfels trachyte 

The concentrations (g/kg) of the individual leached fractions from the Drachenfels trachyte 

(fine and coarse grain sizes) in the different leachants (demineralized water, pH 3.4, pH 7, 

pH 8, and saturated gypsum solution) and the respective totals are shown in figure 7.10; and 

figure A7.2 and table A7.5 in the appendix. The leachabilities of the individual leached 

fractions (% of wt. %) from the Drachenfels trachyte (fine and coarse grain sizes) in the 

different leachants (demineralized water, pH 3.4, pH 7, pH 8, and saturated gypsum solution) 

are shown in table A7.6 in the appendix.  

Comparing the concentrations of the leached fractions from the fine sample fractions from 

the Drachenfels trachyte, a continuous decrease can be observed for consecutive elution 

periods (Ch1Wo1 to Ch1Wo3) (Fig. 7.10 a, c, e, g, i). Sodium and potassium fractions show 

relatively regular values of around 0.1 to 0.2 g/kg in all the leachants (Fig .7.10 a, c, e, g, i). 

Calcium shows higher concentrations in the pH 3.4 leachant (Fig. 7.10 c). The highest 

concentrations of leached fractions are given in the pH 3.4 leachant (Fig. 7.10 c). The total 

concentration of leached fractions is about double compared to the other leachants. The 

highest yields in concentration in total are given by sodium and potassium (Fig. 7.10 k). The 

highest leachability in total as the percentage of leached fractions relative to the element 

concentration in the host rock gives magnesium (Fig. 7.10 l). In the demineralized water 

sodium shows the highest leachability (Fig. 7.10 b). In the other leachants (pH 3.4, pH 7, and 

pH 8), calcium shows the highest leachability (Fig. 7.10 d, f, h). In the saturated gypsum 

solution a decrease of calcium concentration is detected (Fig. 7.10 i). The highest leachability 

in the saturated gypsum solution shows magnesium (Fig. 7.10 j). The highest concentrations 

of leached fractions are detectable in the pH 3.4 leachant with calcium being the main 

supplier (Fig. 7.10 c). In the coarse sample fractions from the Drachenfels trachyte, the 

concentrations of leached fractions and leachabilities are much lower compared to the fine 

sample fractions (Fig. A.7.2 in the appendix). The overall relative tendencies are comparable, 

except for slightly higher concentrations of the calcium fraction in the demineralized water, 

pH 3.4 and pH 8 for the longer elution period of four weeks (Ch2Wo4) (Fig. A.7.2 a, c, g in 

the appendix).  
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Figure 7.10 Concentrations (g/kg) and leachabilities (% of wt. %) of the leached 

elements from the fine sample fraction from the Drachenfels trachyte (please note the 

different scales). 
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The data shows a more or less steady release of sodium and potassium, with very regular 

values in all the leachants in terms of concentration and leachability. This might be  attributed 

to the corrosion of the high plagioclase and sanidine content in the cryptocrystalline matrix of 

the host rock. As for acidic impact, higher calcium yields are found in terms of concentration 

as well as in terms of leachability. This indicates a higher acid sensitivity of the minerals. The 

calcium content may derive from the weathering of the anorthite content in the plagioclases, 

from the minor content of apatite and from the accessory calcite. The higher leachabilities – 

but low concentrations – in the demineralized water, pH 7 and pH 8 in the fine sample 

fraction, as well as the slightly higher concentrations in the coarse sample fraction over 

longer elution periods may indicate calcite content. This mineral shows higher solubility than 

the silicate minerals; thus, higher leachability is detected. Since calcite is ascertained in the 

Drachenfels trachyte only in minor concentrations, only small quantities of leached calcium 

are achieved. The high magnesium leachability and the reduced calcium concentration in the 

saturated gypsum solution may indicate a cation exchange process from the clay mineral 

content in the Drachenfels trachyte. 

Montemerlo trachyte 

The concentrations (g/kg) of the individual leached fractions from the Montemerlo trachyte 

(fine and coarse grain sizes) in the different leachants (demineralized water, pH 3.4, pH 7, 

pH 8, and saturated gypsum solution) and the respective totals are shown in figure 7.11; and 

figure A7.3 as well as inn table A7.7 in the appendix. The leachabilities of the individual 

leached fractions (% of wt. %) from the Montemerlo trachyte (fine and coarse grain sizes) in 

the different leachants (demineralized water, pH 3.4, pH 7, pH 8, and saturated gypsum 

solution) are shown in table A7.8 in the appendix.  

Comparing the concentrations of the leached fractions from the fine sample fractions from 

the Montemerlo trachyte, a continuous decrease can be observed for consecutive elution 

periods (Ch1Wo1 to Ch1Wo3) (Fig. 7.11 a, c, e, g, i). The sodium fraction shows the highest 

values, except for in the saturated gypsum solution (Fig. 7.11 i). The calcium concentration is 

pronounced in the pH 3.4 leachant (Fig. 7.11 c). The highest concentrations of leached 

fractions are given in the pH 3.4 leachant (Fig. 7.11 c). The Magnesium concentration in pH 

3.4 is noticeable, as it is in the saturated gypsum solution (Fig. 7.11 c and i).  
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Figure 7.11 Concentrations (g/kg) and leachabilities (% of wt. %) of the leached 

elements from the fine sample fraction from the Montemerlo trachyte (please note the 

different scales). 
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The highest yields in concentration in total are given by sodium and magnesium (Fig. 7.11 k). 

The leachability for magnesium is always relatively high (Fig. 7.11 d, f, h, j); thus, the total for 

the magnesium is significant (Fig. 7.11 l). In the saturated gypsum solution, a decrease of 

calcium concentration is detected as being associated with a strong increase in magnesium 

concentration (Fig. 7.11 i). The highest leachability in the saturated gypsum solution shows 

magnesium (Fig. 7.11 j). 

Comparing the different total yields of leached fractions, the highest values are detected for 

the pH 3.4 leachant with all four elements being the major supplier (Fig. 7.11 c).  

In the coarse sample fractions from the Montemerlo trachyte, the concentrations of leached 

fractions and leachabilities are much lower compared with the fine sample fractions (Fig. 

A7.3 in the appendix). Noticeable are the high calcium yields in the demineralized water and 

pH 3.4, as well as in pH 8 (Fig. A7.3 a, c, g in the appendix).  

Compared with the Drachenfels trachyte, the leached concentrations have a higher variance 

in the Montemerlo trachyte. The potassium concentration is significantly lower in the 

Montemerlo trachyte. A part of the leached sodium, potassium and calcium fractions might 

derive from the feldspar corrosion. The relatively high calcium yields especially in the coarse 

sample fraction of the Montemerlo trachyte can be attributed to the calcite content in the host 

rock. The potassium and the pronounced magnesium concentrations and leachabilities, 

which are significant in the pH 3.4 leachant from the fine grained sample as well as in the 

demineralized water, pH 3.4 and pH 8 leachants from the coarse grained sample, indicate a 

biotite and a certain clay mineral weathering. The high magnesium concentrations 

associated with a strong decrease in concentration of calcium in the saturated gypsum 

solution may indicate cation exchange processes from the clay minerals contained in the 

Montemerlo trachyte. 

Obernkirchen and Bozanov sandstone 

The concentrations (g/kg) of the individual leached fractions from the Obernkirchen 

sandstone (fine and coarse grain sizes) in the different leachants (demineralized water, pH 

3.4, pH 7, pH 8, and saturated gypsum solution) and the respective totals are shown in figure 

7.12; and figure A7.4 as well as inn table A7.9 in the appendix. The leachabilities of the 

individual leached fractions (% of wt. %) from the Obernkirchen sandstone (fine and coarse 

grain sizes) in the different leachants (demineralized water, pH 3.4, pH 7, pH 8, and 

saturated gypsum solution) are shown in table A7.10 in the appendix.  
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Figure 7.12 Concentrations (g/kg) and leachabilities (% of wt. %) of the leached 

elements from the fine sample fraction from the Obernkirchen sandstone (please note 

the different scales). 
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The concentrations (g/kg) of the individual leached fractions from the Bozanov sandstone 

(fine and coarse grain sizes) in the different leachants (demineralized water, pH 3.4, pH 7, 

pH 8, and saturated gypsum solution) and the respective totals are shown in figure 7.13; and 

figure A7.5 as well as inn table A7.11 in the appendix. The leachabilities of the individual 

leached fractions (% of wt. %) from the Obernkirchen sandstone (fine and coarse grain sizes) 

in the different leachants (demineralized water, pH 3.4, pH 7, pH 8, and saturated gypsum 

solution) are shown in table A7.12 in the appendix.  

Comparing the concentrations of the leached fractions from the fine sample fractions from 

the Obernkirchen and Bozanov sandstones, a continuous decrease can be observed for 

consecutive elution period (Ch1Wo1 to Ch1Wo3). Obernkirchen and Bozanov sandstone 

show comparable concentrations of leached fractions from their fine grained samples, with 

potassium showing the highest yields (Fig. 7.12 and 7.13). In the saturated gypsum solution 

the concentrations of magnesium and potassium are higher from the Bozanov sandstone 

than from the Obernkirchen sandstone. This is associated with a significant decrease in 

calcium, indicating cation exchange processes.  

The leachabilities of the various elements from the two sandstones differ: in the 

Obernkirchen sandstone, potassium shows significantly higher leachability. Although the 

concentrations are very small, this is easily understandable since the leachability reflects the 

percentage of leached fraction relative to the initial element content in the host rock. The 

leached potassium fraction may originate from accessory muscovite components. From the 

Bozanov sandstone, similar concentrations of potassium are leached, but the leachability is 

less. This indicates that the Obernkirchen sandstone is a pure arenite sandstone with minor 

amounts of other minerals, whereas for the Bozanov sandstone rock fragments and feldspar 

components as well as a certain clay mineral content are reported (Koch 2006; Přikryl et al. 

2010). 

Comparing the fine sample fraction from Obernkirchen sandstone with the coarse sample 

fraction, leached concentrations are about three times higher in the fine grained sample 

(Tab. 7.8a). Looking at the total concentration of leached elements from the Bozanov 

sandstone the difference seems to be within the measurement accuracy (Tab. 7.8a). If the 

single leachants are regarded, it is obvious that the yield from the fine sample fraction is 

much higher than that from the coarse sample fraction. The strong depletion of sodium in pH 

8 (Tab. A7.5g in the appendix) changes the value of the total. .  
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Figure 7.13 Concentrations (g/kg) and leachabilities (% of wt. %) of the leached elements 

from the fine sample fraction from the Obernkirchen sandstone (please note the different 

scales). 
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7.3.4 Discussion 

Comparing the pH values from the first to the third one-week leaching periods of charge 1 

(Fig. 7.7), a decrease is obvious. This is reflected by the total concentration of leached 

elements from the various stones (see Fig. 7.10–7.13 diagram c).  

The concentrations of the leached elements differ from leachant to leachant, but a tendency 

for a primary leached fraction can be observed for each stone: from the Schlaitdorf 

sandstone this is calcium; from the Drachenfels trachyte, potassium; from the Montemerlo 

trachyte, the highest yields are given by sodium and magnesium; from the Obernkirchen 

sandstone, the highest concentrations of potassium are detected; from the Bozanov 

sandstone, potassium and magnesium; from Stenzelberg latite, the highest yields are found 

for sodium; and from Londorf basalt lava, this is magnesium and sodium. The highest yields 

are generally found in the pH 3.4 leachant. 

The negative values found for the calcium fraction in the saturated gypsum solution seems to 

be confusing at first sight. They can be explained by cation exchange processes. In rocks 

containing clay minerals, the cation exchange should preferably take place with the clay 

mineral content of the various host rocks; e.g., Drachenfels and Montemerlo trachyte as well 

as Bozanov sandstone. Thus, they may function as a sort of indicator for the clay mineral 

content. In the Stenzelberg latite and in the Londorf basalt lava, where strong decreases in 

calcium and significantly higher concentrations of magnesium are found (Tab. A7.13–A716 in 

the appendix), this might involve tracing back to the hornblende and the olivine weathering. 

This points to how the cation exchange process with the calcium ions from gypsum cannot 

be ascribed to a specific mineral. In saturated gypsum solution, an only slightly increased 

solubility of K-feldspar is detected in comparison with demineralized water (Snethlage 1984). 

Therefore, a minor impact is deduced on the feldspar dissolution by gypsum within the pore 

space of sandstones. 

7.4 Leaching processes in natural building stone 

Snäll and Lilijefors (2000) conducted leaching experiments on different rock-forming minerals 

in different strong acidic solutions. They determined the leachability of the element as the 

proportions (percentages of the total content) of elements soluble by the leachant. For the 

various elements, varying leachabilities were detected depending upon the type of leachant, 

leachant concentration, leaching time, temperature, grain size and mineralogical composition 

of the sample, as well as the experimental conditions.  

Looking at the leachability of the elements from a rock rather than from a separated mineral, 

several points have to be considered. First, natural building stone is a highly 

inhomogeneous, porous material composed of various rock-forming minerals. The 

leachability of the elements from the various minerals depends upon different aspects; e.g., 
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the mineralogy and the chemical composition of the mineral. The solubility of the mineral is 

dependent upon its grain size, indicating the major importance of textural features within the 

natural stone itself. In addition, the characteristics of the pore space in terms of the means of 

transport and accessibility are crucial. The pore space contains pore fillings and other 

artifacts, which are relatively ready-soluble in general. Thus, the experiments described are 

an approximation towards the leachability of different natural building stones in comparison 

with one another. However, from these experiments tendencies and conclusions can be 

drawn in terms of the correlation of leachability, grain size, and leachant. The interaction of 

several chemical reactions in correspondence with the different leachants and their specific 

implications for some of the rock-forming minerals is highlighted. 

7.4.1 Correlation of leachability, grain size and leachant 

A higher leachability indicates a more ready release of the element from the respective 

minerals in the host rock. Thus, the mineral can be addressed as less weather resistant and 

more easily degradable. Meanwhile, low leachabilities show that the element is barely 

leached from the respective mineral in the host rock. Thus, the mineral shows higher weather 

resistance and corrodes less. With smaller grain sizes of the mineral within the host rock, the 

leachability increases due to the higher reaction surface.  

The high leachability of an element from a coarse sample fraction from natural stone may 

indicate the leachability from a mineral with a low weather resistance and/or a large reaction 

surface, whereas a low leachability of the same element from a coarse sample fraction from 

the stone may indicate a higher weather resistance of the mineral or a larger mineral grain 

size. Thus, a physical comminution of the stone sample – i.e., the mineral grain – would yield 

higher leachabilities. 

 

 

Figure 7.14 (a) Leachability (% of wt. %) from the fine sample fraction from the Drachenfels trachyte; (b) 

leachability (% of wt. %) from the coarse sample fraction from the Drachenfels trachyte 

 

With reagrd to the different grain size samples of the various rocks used in the experiment 

just mentioned; in general, the higher leachabilities of elements are reached in the finer 

sample fractions. As an example, the high leachability of calcium from the coarse sample 
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fraction from the Drachenfels trachyte may indicate a certain leached concentration of ready-

soluble calcite (Fig. 7.14a). Additionally, the high amount of plagioclases (Ab70An30) in the 

cryptocrystalline groundmass displays a large reaction surface for calcium to be leached. In 

the fine sample fraction, the leachabilities of the other elements converge somewhat on the 

leachability of calcium. This indicates a comminution of minerals, which originally show lower 

leachabilities within the texture of the host rock. 

7.4.2 Dependency upon the leachant 

In comparing the test for acid buffering capacity, the leaching experiment with MSA, and the 

leaching in demineralized water, the concentrations of leached fractions differ very much 

depending uoon the leachant. If the total concentration of leached elements in demineralized 

water from the fine sample fraction from the investigated stones of one and four weeks (Fig. 

7.15) is compared to that with MSA over 24 hours (Fig. 7.4) and with the ion equivalent of the 

acid buffering capacity with HCl (Fig. 7.2) strong divergences are noticeable. 

 

 

Figure 7.15 Total concentrations (g/kg) of the leached elements from the fine sample fraction from the 

investigated stones in demineralized water (a) after a one-week leaching period; (b) after a four-week leaching 

period 
 

The acid buffering capacity shows high capacities for Krensheim Muschelkalk and Schlaitdorf 

sandstone, a medium capacity for the volcanic rocks and the lowest for the Obernkirchen 

arenite sandstone. This is reflected by a close proximity within the leaching in demineralized 

water (Fig. 7.15). The results of the leaching in MSA show very different results: Montemerlo 

trachyte is the least leachable, whereas Stenzelberg latite and Londorf basalt lava yield high 

concentrations of leached elements (Fig. 7.4). The determinative factor for the overall results 

in the MSA seems to be the high concentrations of leached aluminium from Obernkirchen 

sandstone, Stenzelberg latite and Londorf basalt lava (Tab. 7.2). These results are 

comparable, are only to a certain extent, with the results from the leaching in demineralized 

water, since from the latter the aluminum was not analyzed. However, HCl can be expected 

to release all possible cations in terms of a protolysis, as well the aluminum ions. Thus, the 

results of total concentrations and the acid buffering capacity should be comparable. 

However, the question arises as to where, through the leachant MSA, a specific selectivity in 
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terms of aluminum leaching exits; e.g. chelating etc. This not necessarily be related to the 

feldspar solution, but it may affect kaolinite (5 % in the Obernkirchen sandstone) and 

hornblende (9 % in the Stenzelberg latite). As to the Londorf basalt lava, the total of 

aluminum arrives from the plagioclases. In summary, it confirms the assessment of Snäll and 

Lilijefors (2000), namely that leachability is very much dependent upon the leachant. 

Kraus (1983) conducted leaching experiments on cubic samples (20 x 20 x 5–10 mm) of 

Schlaitdorf and Obernkirchen sandstone, Drachenfels trachyte, Londorf basalt lava and 

Krensheim Muschelkalk in sulfuric and sulfurous acid, tartaric acid, demineralized water, and 

a solution of calcium hydroxide and sulfuric acid. A correlation was observed for the loss of 

weight of the samples with the pH of the leachant, the carbonate concentration and pore size 

distribution, all indicating higher weight losses at lower pH, higher carbonate content and 

larger pore sizes. In the cubic samples, textural changes were detected. The change in water 

uptake could not be correlated with the aforementioned context of weight loss. Thus, a 

number of different chemical reactions are assumed, leading to a diversity of reaction 

products and changes in the pore space of the sample. The pH values detected in the 

experiments from Kraus (1983) show similarities with the pH values in the experiments 

described within (Tab.7.9). This might indicate a typical pH value specific for the various 

stones that is thus controlled by the chemical composition of the stones (Kraus 1983). 

 

Table 7.9: The pH values in different leachants from the experiments conducted by Kraus 

(1983) and in the aforementioned experiments 

 SS OS DT LB 

H2O pH 6 ° 7.5 7.2 6.8 6.8 

H2O pH 6 * 7.9 6.9 7.2 6.9 

H2SO4 pH 4 °  7.5 7.3 6.6 6.8 

Kolthoff-buffer pH 3.4 * X 7.1 7.3 7.0 

Ca(OH)2/H2SO4 solution 

pH 8.5 ° 
7.6 7.5 6.9 7.0 

saturated gypsum sol. 

pH 4.8 * 
7.3 6.0 7.1 6.6 

° Kraus (1983); * coarse sample fraction Ch3Wo12 

 

Comparing the totals of the leached calcium fractions from both experiments, similarities 

cannot be found (Tab. 7.10). This again indicates the dependencies ascertained by Snäll and 

Lilijefors (2000). Moreover, Kraus (1983) detected a significantly increased weight loss of the 

Drachenfels trachyte and the Londorf basalt lava in the tartaric acid leachant. This resembles 

the high solubility of feldspars in strongly chelating organic acids (Huang and Keller 1970), 

which might also be assumed for the leaching results in the pH 3.4 leachant of the 

experiments containing succinic acid mentioned earlier.  
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Table 7.10: Concentrations of leached calcium in different leachants from the experiments conducted 

by Kraus (1983) and in the aforementioned experiments 

  SS OS DT LB 

H2O pH 6 ° g/kg 1.7•10
-3

 8.8•10
-4

 1.9•10
-4

 4.2•10
-4

 

H2O pH 6 * g/kg 0.03 n.d. 0.02 0.01 

H2SO4 pH 4 °  g/kg 1.85•10
-3

 1.31•10
-3

 3.80•10
-4

 6.57•10
-4

 

Kolthoff-buffer pH 3.4 * g/kg X n.d. 0,04 0.02 

Ca(OH)2/H2SO4 solution 

pH 8.5 ° 
g/kg 1.68•10

-3
 1.62•10

-3
 3.33•10

-4
 6.31•10

-4
 

saturated gypsum sol. 

pH 4.8 * 
g/kg 1.5 - 0.01 - 0.12 - 0.27  

° after Kraus (1983); * coarse sample fraction Ch1Wo1 

7.4.3 Interaction of weathering reactions 

In the conducted experiments, several chemical reactions are apparent. In HCl, the main 

interaction with the minerals is protolysis. Additionally, HCl is a strong acid (pKs-value: –6). 

Affected by protolysis are all those rock-forming minerals analogous to Goldich (1938). 

With MSA as a leachant, protolysis is probably the main reaction with the minerals. As an 

organic acid, MSA displays a relatively strong acidity of pKs –0.6 (Brownstein and Stillman 

1959) to –1.9 (Paul et al. 1970). Since MSA is an organic acid and displays a sufficient 

electron density (min. one free pair of electrons), it may function as a complex-ligand (Rozas 

and Weaver 1996). The formation of chelates is very much pH-dependent. 

Feldspar corrosion proceeds as the incongruent dissolution of the feldspars in a proteolyse 

reaction where alkali and earth alkali cations are leached and replaced by H+ (Correns 1962; 

Loughnan 1969; Chou and Wollast 1984; White and Brantley 1995; White 2003). At a certain 

state of equilibrium an aluminum hydroxide layer forms on the mineral surface, acting as a 

protective layer (Chou and Wollast 1984). This layer has a certain stability in realtion to 

neutral pH values. At higher or lower pH, feldspar corrosion proceeds. In the presence of 

organic acids, this sensitive equilibrium might be disturbed by the chelating effects of the 

organic acid on the aluminum ion. Thus, the “protective layer” might be affected and feldspar 

corrosion thereby enhanced (McBride 1994).  

Within the Kolthoff-buffer at pH 3.4 and the Palitzsch-buffers at pH 7 and pH 8.4 – both 

containing organic acids and readily soluble salts – further reactions might be possible. For 

the Schlaitdorf sandstone, a cation exchange with borax and salt formation is considered.  

A stronger, noticeable cation exchange process is seen in the saturated gypsum solution. 

The calcium ions from the gypsum interact with the clay minerals contained in some of the 

stones, as well as with hornblende, olivine and – possibly – biotite. Potassium and 

magnesium ions from the interlayer of these minerals are presumably exchanged by calcium 
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ions. This would explain the higher potassium and magnesium yields paired with a strong 

decrease in calcium. These reciprocal concentrations could advert to a particular clay 

mineral content within the stone. This would only be qualitatively indicated, since 

concentrations of leached elements might be controlled by the other aforementioned 

reactions as well. 

As to the very complex situation of these elutes with various leachants – which show several 

possible weathering reactions – and the inhomogeneous natural building stones, the single 

reactions cannot be determined quantitatively. However, some mineral specific-reactions can 

be deduced.  

7.4.4 Comparison of experimental and natural weathering rates  

Weathering rates are dependent on a number of factors that can be classified as either 

intrinsic or extrinsic to a specific mineral (White and Brantley 2003). Intrinsic properties are 

physical or chemical characteristics, such as mineral composition, surface area and defect 

densities. Extrinsic features reflect environmental conditions external to the silicate phase 

that impact chemical weathering, such as solution composition, climate and biological 

activity. These processes are dependent upon external environmental conditions that are 

difficult to recreate fully under laboratory simulations. Out of these factors, solute 

compositions have the most direct impact on mineral weathering rates (White 2003).  

In natural environments, changes in acidic impact are not directly reflected by weathering 

rates. This indicates that, besides hydrolysis (hydrolytic cleavage and ion exchange with 

hydrogen ions), other processes sometime overcome the expected results for natural 

weathering (White 2003). In general, the experimental rates of silicate dissolution decrease 

as solutions approach thermodynamic equilibrium (Burch et al. 1993, Taylor et al. 2000). 

White (1995) found that the apparent thermodynamic supersaturation of silicate minerals in 

the “natural environment” (soil pore waters) resulted from excessive values for the total 

dissolved aluminum. In reality, much of this aluminum is complexed with dissolved organics 

in shallow soils and does not contribute to the thermodynamic saturation state of silicate 

minerals. This indicates that, natural weathering rates are much stronger than experimental 

ones due to the complexing of aluminum hindering the supersaturation (White 2003). 

As mentioned in chapter 1, weathering rates in the natural environment are significantly 

dependent upon fluid flux or water transport mechanisms controlling the saturation of pore 

solutions. The experimental data shows, that under neutral to acidic pH conditions, the rates 

of sodic plagioclase and K-feldspar dissolution were essentially the same (Blum and Stillings 

1995). However, K-feldspar is commonly much more resistant to weathering than is 

plagioclase during natural weathering (Nesbitt et al., 1997). White (2003) detected a 

pronounced kaolinization of plagioclase. In contrast to that, “K-feldspar in the immediate 

proximity of plagioclase grains remains pristine and unaffected by weathering“ (White 2003, 
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156). This is explained by their different thermodynamic saturation states, where the pore 

water is saturated with K-feldspar but undersaturated with more soluble plagioclase. 

7.4.5 Conclusion 

The experiments reflect relatively well the many-faceted situation of the impact of 

environmental deterioration, where different leachants affect natural building stone. Thus, 

several weathering reaction are expected which may enhance or hinder one another. 

Protolysis is not the only aspect operating as the major chemical reaction taking place in 

mineral corrosion. Chelating effects and cation exchange processes are expected to affect 

rock-forming minerals as well. White 2003 states that the interpretation of rock weathering 

based on solute concentrations is complicated by the fact that individual solute species (i.e., 

Na, K, Ca, Mg) are commonly produced by more than one weathering reaction. A spread 

sheet approach (Garrels and Mackenzie 1967) is usually incorporated to calculate mineral 

masses, which commonly generates non-unique results that require independent 

confirmation of the actual weathering reactions (Parkhurst and Plummer 1993). 

Furthermore, secondary reaction products may influence weathering reactions: “weathering 

acts on mineral surfaces by decreasing the overall surface free energy by selectively 

dissolving more soluble components and attacking structural defects and dislocations” (White 

2003, 154). Weathering rates may decrease with continued weathering due to a decrease of 

overall surface free energy and due to secondary coatings (i.e., the occlusion by secondary 

clays and iron and aluminium oxides), the formation of depleted leached layers and the 

adsorption of organic compounds (Banfield and Barker 1994; Nugent et al. 1998). 

The different tested grain sizes of the samples elucidate the impact of physical weathering on 

chemical deterioration processes. The mineral comminution through physical weathering 

leads to smaller mineral grain sizes ad, thus, larger reactive surface and overall surface free 

energy, which potentiate chemical weathering. Additionally, physical deterioration processes 

texturally modify the fabric of the stone and change the pore space properties thus, creating 

new passages and pathways for chemical reaction fluids. On the other hand, through mineral 

weathering and the formation of deterioration layers of secondary weathering products, the 

cohesion of the mineral compound is weakened. This textural impairment promotes physical 

weathering. 

The experiments elucidate fluid–mineral interactions. They illustrate possible reaction 

mechanisms and the deterioration processes of chemical weathering. The experimental 

studies are correlated with results in the literature and the weathering processes are related 

to reaction mechanisms, helping with the understanding of how natural building stone 

weathering will behave under various environmental conditions. As to any future work, the 

various components of rain water detected, causing the chemical deterioration of natural 

building stones and the composition of the resulting pore fluids might be detected, and their 
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leaching effects on the stones as well as on their single rock-forming minerals might be 

investigated separately. Here, different sample fractions – including cubic samples – might 

be compared. 
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8 The effect of air pollution on stone decay  

As outlined in the introduction, the deterioration of natural building stone can be described by 

physical, chemical and biological deterioration processes. Through the experiments and tests 

described in chapter 6 and 7 several relevant physical and chemical processes could be 

specified. Even more, it is apparent that natural stone decay is distinctively complex and 

entails multi-factorial dependences and causalities. The interaction of environmental pollution 

impact and building stone decay is to be covered in the following chapter. 

Severe stone deterioration is evident at the Cologne cathedral. In particular, the 

“Drachenfels” trachyte, which was the building material of the medieval construction period, 

shows significant structural deterioration as well as massive formation of gypsum crusts. 

In the following, crust formation on limestone, sandstone and volcanic rock from the Cologne 

cathedral, as well as from the Xanten and Altenberg cathedrals are investigated. These three 

buildings, showing varying degrees of deterioration, are located in different areas and 

exposed to varying industrial, urban, and rural pollution. Thin laminar and black framboidal 

crusts form on calcareous as well as silicate stone. The lack of a significant intrinsic calcium 

and sulfur source for the formation of the gypsum crusts on the Drachenfels trachyte 

indicates major extrinsic environmental impact: a sufficient offer of SOx from pollutant fluxes 

as well as external calcium sources (e.g., pollution, mortars, and neighboring calcite stones). 

Chemical analyses reveal strong gypsum enrichment within the crusts as well as higher 

concentrations of lead and other pollutants (arsenic, antimony, bismuth, tin, etc.), which 

generally can be linked to traffic and industry. The formation of weathering crusts in an 

industrial environment is clearly distinguishable from that in rural areas. Scanning electron 

microscopy observations confirm that the total amount of pollution is less at the Altenberg 

cathedral than at the Cologne and Xanten cathedrals. XRF analyses show that the formation 

of gypsum occurs in lower amounts at Altenberg. This correlates well with the measured SO2 

content and the intensity of the decay at the different locations. Furthermore, the different 

types of crusts, e.g., framboidal and laminar crusts can be differentiated and assigned to the 

different locations. The black weathering crusts on the silicate Drachenfels trachyte 

contribute to the degradation of the historic building material. They enhance mechanical 

moisture-related deterioration processes and the decay by chemical corrosion of rock-

forming minerals. Although SO2 concentrations in air have shown a strong decrease over the 

past 30 years, degradation in connection with weathering crusts is still observed. This 

indicates that not only contemporary or recent emissions, but also past pollutant 

concentrations have to be considered.  

The formation of black weathering crusts as a function of pollution on different building 

stones in three different environmental settings is discussed. Crust formation on the 

Drachenfels trachyte, a volcanic rock, in the Cologne Cathedral as well as in the Xanten and 
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Altenberg Cathedrals, is investigated and compared to crust formation on limestone. Data 

are compared to those from other sites, including monuments in Hungary, confirming the 

weathering gradient of natural building stones from a rural to an urban environment. 

The cathedrals in Cologne, Xanten, and Altenberg are three major gothic buildings of the 

Rhineland region, built during the thirteenth and fourteenth centuries using the same 

construction materials. Construction started in Cologne in 1248, in Xanten in 1263, and in 

Altenberg in 1259. The main construction material of the medieval building period was 

Drachenfels trachyte from the quarries of the “Siebengebirge”. Later restoration and 

reconstruction phases mainly in the nineteenth century employed similar building materials at 

all three monuments: “Stenzelberg” latite, “Obernkichen” and “Schlaitdorf” sandstone, and 

“Krensheim Muschelkalk” as well as “Londorf” basalt lava. Mortars employed were lime 

mortars in the medieval period, in the nineteenth century customary cement mortars were in 

use. (see chapter 2) 

The building stones show severe deterioration phenomena, especially the Drachenfels 

trachyte (Graue et al. 2011). Thin laminar and black framboidal crusts, which incorporate 

particles from the pollution fluxes, cover the building stones. Weathering crusts also form on 

the silicate stone and contribute to the degradation of the historic building material. On the 

Drachenfels trachyte, the crust formation is strongly correlated to the disintegration of the 

stone. Gypsum is not only found within the crusts but also in deeper zones of disintegrated 

stone material. The crusts tend to detach, and further structural deterioration follows. Contour 

scaling, flaking and exfoliation are characteristic decay features on the Drachenfels trachyte, 

leading to granular disintegration and crumbling. On the Obernkirchen sandstone and on the 

Stenzelberg latite, weathering crusts form in very thin scales, 2–3 mm thick, which tend to 

detach from the stone. The Schlaitdorf sandstone shows thick black weathering crusts, which 

are frequently accompanied by severe contour scaling several centimeters thick, as well as 

pronounced granular disintegration. On the Krensheim Muschelkalk, the crusts seem to 

temporarily stabilize the stone surface (see Siegesmund et al. 2007). On surfaces exposed 

to rain, solution phenomena can be observed, e.g., microkarst (Graue et al. 2011).  

The present investigation aims to access the problem of stone deterioration due to 

weathering crusts related to atmospheric pollution. Mineralogical and geochemical methods 

are combined: optical microscopy, X-ray diffraction (XRD) and fluorescence (XRF), as well 

as scanning electron microscopy (SEM), coupled with energy-dispersive X-ray spectroscopy 

(SEM-EDX) and wavelength dispersive microprobe analyses (WDS). Furthermore, laser 

ablation inductively coupled plasma mass spectrometry (La-ICP-MS) and inductively coupled 

plasma optical emission spectrometry (ICP-OES), as well as ion chromatography analyses 

with spectroscopy (IC), are used to address the issue. Polycyclic aromatic hydrocarbons 
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(PAH) are determined by microwave-accelerated extraction and subsequent gas 

chromatography with mass spectrometric detection (MAE-GC-MS).  

8.1 Material and methods 

To understand the context of building stone diversity and the different deterioration features, 

a sample field at Cologne cathedral was mapped, analogous to the system developed by 

Fitzner et al. (1995) (Fig. 4.1 and 4.2). Samples from crusts and dust as well as unweathered 

and weathered rock samples were collected from the Cologne, Xanten and Altenberg 

cathedrals from the different building stones (Drachenfels trachyte, Obernkirchen sandstone, 

Krensheim Muschelkalk). The index of analyzed samples is found in Tab. A8.1 in the 

appendix. 

Sample preparation and sample analyses were performed on the different sample types 

using overlapping techniques in mineralogical and geochemical analyses whenever possible. 

Thin sections perpendicular to the exposed surface of the rock were prepared and textural 

analysis of thin sections was performed by polarizing microscopy. The chemical data 

presented focus on the C, Na, Mg, Si, S, K, Ca, Al, Ti, Mn, Fe, Zn, As, Sb, Pb, and Bi 

contents of the host rocks and crusts.  

The chemical composition was obtained by X-ray fluorescence spectroscopy. Major element 

oxides and the trace elements Ba, Cr, Ga, Nb, Ni, Rb, Sr, V, Y, Zn and Zr were analyzed by 

XRF on 105 °C-dried samples, prepared as fused disks of lithium tetraborate-metaborate 

(FLUXANA FX-X65, sample-to-flux ratio 1:6). A PANalytical Axios Advanced wavelength-

dispersive spectrometer and matrix correction programs were used to calculate 

concentrations. H2O
+ and CO2 were determined using a Vario EL III (Elementar 

Analysensysteme GmbH, Hanau/Germany). An ELTRA CS 2000 (ELTRA GmbH Neuss) is 

used for measuring sulfur.  

The mineralogical composition of the samples (black crusts and dust) was determined by X-

ray diffraction (XRD). Powder X-ray patterns were obtained using a PANalytical Empyrean 

powder diffractometer with Cu Kα radiation, automatic divergent and antiscatter slits, and a 

PIXcel3D detector. The diffraction data were recorded from 5° to 85° 2θ via a continuous scan 

with a step-size of 0.013 and a scan time of 60 s per step. The generator settings were 40 kV 

and 40 mA. The Rietveld algorithm BGMN was used for quantitative analysis (Bergmann et 

al. 1998). 

LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) analyses were 

performed on thin slices of the samples. The laser used was a Compex 110 Excimer (ArF 

193 nm) by Lambda Physic (Goettingen, Germany), a GeoLas optical bench by MikroLas 

(Goettingen, Germany), a small volume sample chamber, an ablation pit with a diameter of 

120 µm, a 10 Hz repetition rate for the laser pulses and about 3 J/cm2 available energy. The 
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mass spectrometer was a Perkin Elmer DRC II (Siex, Canada). Calibration was done using 

NBS610 (NIST, USA), internal Standard 43Ca, dwell time 10 ms/isotope, 0.925 s per sweep, 

and a total of 250 sweeps giving a total measurement time of 3:50 min. Measured isotopes 

were: Li7, Na23, Mg24, Mg25, Al27, Si29, P31, S34, Cl35, K39, Ca43, Sc45, Ti47, Ti49, 

V51, Cr53, Mn55, Fe57, Co59, Ni60, Cu63, Cu65, Zn66, Ga71, Ge73, As75, Rb85, Sr88, 

Y89, Zr90, Nb93, Mo9. 

To visualize the microfabric of the crust and the host rock, and to detect elemental-

mineralogical composition of samples, SEM-EDX techniques were applied on thin sections 

as well as on small fragment samples (LEO GEMINI SEM 1530 and LEO 1455 Gemini, as 

well as AMRAY 1630). EDX-analyses were performed on a Quantra 200F (Fei) with a field 

emission cathode with an initial voltage of 20 kV (Department of Crystallography, 

Geoscience Center University of Goettingen, Germany).  

Wavelength dispersive microprobe analyses were performed with a JEOL JXA 8900 RL 

instrument (Department of Geochemistry, Geoscience Center University of Goettingen, 

Germany). For quantitative measurements, 15 kV acceleration voltage, 15 nA beam current 

on the Faraday cup, a defocused beam of 3.5 µm and counting times between 15 s on the 

peak for Na, Mg, Al, Si, K, Ca and Fe and 30 s for P, S, Ti and Ba were chosen. Data 

processing was done with the CITZAF routine in the JEOL software, which is based on the 

Φ(ρZ) correction method (Armstrong 1991, 1995). The following standards were used for the 

analysis: Albite for Na, MgO (synthetic) for Mg, anorthite for Al, wollastonite for Si and Ca, 

sanidine for K, apatite for P, baryte for S, TiO2 (synthetic) for Ti, rhodonite for Mn, hematite 

for Fe and celsiane for Ba. Detection limits are calculated from the error propagation of the 

two measurements of the background signals of each X-ray line and are given as a 2-sigma 

value. The element distribution of Mg, Al, K, Ca, Fe (WDS) and S, Si (EDS) was mapped 

using an acceleration voltage of 15 kV and beam current of 30 nA. The acquisition time was 

set to 50 ms per step. The scan grid was spaced at 0.5 µm per step, covering in total 400 x 

400 steps. Simultaneous acquisition of the backscatter signal in composition mode was 

performed. 

For PAH analysis the pulverized rock samples (1g) were weighted into Teflon vessels, 

internal standards (acenaphthen D 10, phenanthren D 10, pyren D 10, chrysen D 12, perylen 

D 12, and bBenzo(g,h,i)perylen D 12) and 5 mL iso hexane/ acetone (3:1 v:v) were added 

and subsequently extracted on a MARS XPRESS microwave system at 130 °C for 20 min. 

After cooling, the supernatant was removed and transferred into purging vials. After the 

addition of 500 µL toluene, it was purged in a gentle stream of nitrogen until dry. The remains 

were re-dissolved into 500 µL toluene, transferred into autosampler vials and centrifuged at 

5000 rpm for 10 min. They were then immediately analyzed on a GC-MS (Agilent 7890A, 

5975E). Separation of the analytes was achieved using a Varian VF5-ms column 
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(30x250x0.25) and a steady temperature gradient of 6 °/min up to a final temperature of 325 

°C. Data were recorded in single ion monitoring mode (quantifier in parenthesis) with a dwell 

time of at least 50 ms per amu for the following analytes: acenaphthylen (152), fluorene 

(166), phenanthrene (178), anthracenene (178), pyrene (202), 7H-benzo-fluorene (216), 

cyclopenta(c,d)-pyrene (226), benzo(a)anthracene (228), chrysene (228), 5-methyl-chrysene 

(242), benzo(b,j,k) fluoranthene (252), benzo(a)pyrene (276), indeno(1,2,3-cd)-pyren (278), 

dibenzo(a,h)-anthracene (276), benzo(g,h,i)-perylene (302), dibenzo(a,l)-pyrene (302), 

dibenzo(a,e)-pyrene (302), dibenzo(a,i)-pyrene (302), dibenzo(a,h)-pyrene (302). Quality was 

assured by simultaneous monitoring, scanning 50 350 amu. The method quantitation limit 

was 1 µg/kg. 

8.2 Black weathering crusts on the natural building stones  

8.2.1  Crust classification 

The deposition of airborne particulates and the formation of crusts can be observed on 

surfaces over the entirety of Cologne Cathedral. These surface deterioration features appear 

in different manifestations, from patina-like grayish black surface depositions and soiling to 

thin black laminar crusts and thick framboidal or cauliflower-like black crusts. Especially with 

framboidal crusts, surface detachment and loss as well as further disintegration is observed 

(Fig. 8.1a). These cauliflower-like weathering crusts vary extremely in thickness from 2 to 15 

and even 30 millimeters (Török et al. 2011). Their specific morphology also describes them 

as dendritic (Török et al. 2011), globular (Bonazza et al. 2007), ropey (Antill and Viles 1999) 

or framboidal (Török 2003, 2008). They display globular or rosette-like formations of gypsum 

crystals. Calcareous and also quartz particles cover the stone surface, and organic as well 

as inorganic particles from the pollution fluxes are incorporated into the crusts. Framboidal 

crusts generally build up in sheltered to moderately exposed areas as well as in cavities on 

vertical stone surfaces. They are often observed at different sites and for different building 

stones (Amoroso and Fassina 1983; Camuffo 1995; Sabbioni 1995; Bonazza et al. 2004, 

2007b). 

Thin laminar black crusts trace the stone surface and may cover complete sections of the 

building’s structure, not necessarily preferring protected sites (Fig. 8.1b). This kind of crust 

does not change the morphology of the stone surface (Fitzner et al. 1995) and seems to 

have very strong bonds with the stone surface (Török et al. 2011; Siegesmund et al. 2007). 

Scaling is often observed with laminar crusts.  
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Figure 8.1 a. Cauliflower-like or framboidal crust on Drachenfels trachyte contributing to the disintegration of the 

stone and leading to flaking and material loss; b. laminar crust on Drachenfels trachyte tracing the stone surface, 

where working traces are still visible.  

 

Other investigated building stones of Cologne cathedral also show crust formation. On the 

Schlaitdorf sandstone, massive gypsum crusts build up due to the carbonate cement (app. 

14%) leading to characteristic disintegration in the form of scaling, flaking and granular 

disintegration into sand (Lukas 1990). The main deterioration phenomenon of Stenzelberg 

latite is a typical formation of scales with a thickness of 2–3 mm (Graue et al. 2011). 

Obernkirchen sandstone has a high weather resistance, but shows black crusts and the 

formation of gypsum crusts in posterior and sheltered areas. Krensheim Muschelkalk as a 

carbonate building stone shows massive gypsum crust formations. This is visible in rain-

protected areas, while on surfaces exposed to rain, solution phenomena can be observed 

e.g., microkarst. Unlike the Drachenfels trachyte, the limestone shows no structural 

disintegration with crust formation. At first it has almost a consolidating or inhibiting function.  

In order to describe the variations of the different building stones and the specific 

deterioration features, a representative survey area has been mapped in accordance with the 

classification by Fitzner et al. (1995) (Fig. 4.1 and 4.2). The building material and the 

deterioration phenomena – erosion, gypsum crusts, scaling, flaking, cracks and depositions – 

have been mapped, displaying their distribution within the selected wall area. 

If the three cathedrals from the industrial (Cologne), urban (Xanten) and rural (Altenberg) 

locations are compared, they show clear differences in terms of deterioration gradients and 

crust formation. While Altenberg cathedral shows only very little stone deterioration, in 

Xanten and especially in Cologne the decay is significant. At Cologne cathedral, severe 

damage can be observed entailing static disturbances. At all three cathedrals, scaling and 

flaking are the main deterioration features, though the observed effect is less at Xanten and 

Altenberg. As the mapping shows (Fig. 4.2), scaling and flaking are mainly concentrated in 

the Drachenfels trachyte. At Xanten und Altenberg cathedrals, the deterioration is often 

located in superficial areas of the building stones of Drachenfels trachyte, reaching only 

several centimeters in depth. Here it seldom reaches such a significant depth where the 
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structural disintegration comprises crumbling and total fabric collapse, as seen at Cologne 

Cathedral. The same can be ascertained for the intensity of surface soiling and weathering 

crusts. At Cologne Cathedral weathering crusts on building stones become apparent, 

whether as dark brownish-black surfaces of a mostly already detached stone surface or as 

framboidal crusts with a disintegrated stone matrix underneath (see Fig. 8.1). In Xanten, 

weathering crusts are more to be addressed as thin laminar crusts or soiling on a mostly 

structurally intact original building stone surface. The current condition of Altenberg cathedral 

reflects the extensive restoration and repair works carried out since the 1990s. Nevertheless, 

previous investigations only detected black weathering crusts to a minor degree (IBS 1990). 

8.2.2 Mineralogy and fabric of black weathering crusts  

Microscopic observation reveals high porosity of the framboidal crusts (Fig. 8.2a) and very 

small (10–50 μm) and evenly spread acicular gypsum crystals (Fig. 8.2b). Cavities within the 

crystals cause the high porosity of the crust. The crust contains a significant amount of 

widely spread organic matter (black opaque particles). The crust formation on the 

Drachenfels trachyte is characterized by a thin, dense black layer on the surface of the host 

rock (10–20 μm), mainly consisting of organic material or carbonaceous particles (containing 

elemental and organic carbon) (Saiz-Jimenez 1993; Turpin and Huntzicker 1995), which may 

function as a catalyst for the formation of gypsum (Amoroso and Fassina 1983; Rodriguez-

Navarro and Sebastian 1996; Ausset et al. 1992). On this surface layer, a porous framboidal 

crust builds with finely distributed gypsum crystals and crystal aggregates, together with 

quartz and feldspar particles (<0.1 mm) (Fig. 8.2d). The brownish tanning derives from iron-

oxides/hydroxides (Do 2000). Framboidal black crusts on Drachenfels trachyte can be 

described as a porous mixture of gypsum, organic compounds, iron oxides, quartz, and 

feldspar particles. A large number of siliceous as well as carbonaceous fly ash particles are 

commonly embedded in such crusts and high ratios of Fe-rich particles are detected. In the 

limestone samples the fly ash particles are firmly incorporated into the gypsum crust, 

surrounded by gypsum crystals and overgrown with sub-micron size gypsum crystals (Török 

et al. 2011). However, although fly ash particles are found embedded in the trachyte 

structure in the samples of Drachenfels trachyte, their incorporation into the crust is not as 

strongly wedded to the growth of gypsum crystals as is the case in the crust on limestone.  
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Figure 8.2 Black weathering crusts on Drachenfels trachyte: a. framboidal crust (transmitted light) black 

interface layer, very porous poly-mineral composition with heterogeneous particle size; b. framboidal crust – 

same detail as Fig. 7a (crossed polars); c. laminar crust on Drachenfels trachyte, very thin opaque surface 

layer (crossed polars); d. thick framboidal crust with a black interface layer and surface parallel cracks in the 

host rock (crossed polars). 

 

SEM-EDX analyses of the crust surface reveal a high gypsum concentration for framboidal 

crusts (Fig. 8.3a–d), whereas on laminar crusts a composition mainly of silicate and organic 

components is detected (Fig. 8.3e–f). The thin opaque black layer on the surface of the host 

rock marks the boundary of the stone, on which the crust forms. In some places, this defined 

line is distorted, which may be attributed to the structural disintegration of the stone material 

underneath. Surface parallel cracks are often observed in the host rock beneath the crust. 

These cracks not only run along grain boundaries, but also characteristically cut through 

larger grains and minerals (Fig. 8.2d). This structural degradation of the host rock finally 

leads to the detachment of the crust, including the upper superficial region of the host rock. 

The width of this detached zone is not limited to the crust but reaches into the host rock to a 

depth of 3–10 mm. The host rock shows further structural disintegration in the form of 

multiple flaking and exfoliation (Fig. 4.4).  
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Figure 8.3 Surface detections of black weathering crusts on Drachenfels trachyte: a. SEM picture (SE detection) of 

the outer surface of a framboidal crust; b. EDX spectrum of the outer surface of a framboidal crust; c. EDX map 

(calcium) of the outer surface of a framboidal crust; d. EDX map (sulfur) of the outer surface of a framboidal crust; 

e. SEM picture (SE detection) of the outer surface of a laminar crust; f. EDX spectrum of the outer surface of a 

laminar crust. 

 

 

Laminar crusts are very thin (5–15 μm, where bulging occurs up to 50 μm) and have a dense 

composition of mainly organic compounds with parts of gypsum, iron oxides, quartz and 

feldspar particles (Fig. 8.2c). As observed with framboidal crusts, the host rock beneath 

laminar crusts also shows surface parallel cracking, with a lower quantity and latitude of the 

cracks. With laminar crusts, the structural disintegration of the stone is often manifested in 

the form of scales of 0.5–1.5 cm thickness.  
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8.2.3 Geochemical characterization  

The results of the XRF analyses show a significant relative depletion of SiO2 (2–15 %) and of 

Al2O3 (2–19 %) in the crust samples in respect to the host rock (Tab.8.1). Also, K2O shows 

an average decrease of 10–22 % and Na2O of 0.5–19 %. The mean enrichment of Fe2O3 for 

the samples from Altenberg is 12 %, for the Xanten samples 16 %, and for the Cologne 

samples 11 %. The enormous increase of P2O5 concentration is striking, which is three times 

higher for the Cologne samples. An enrichment of CaO within the crust is clearly noticeable 

for the samples from Cologne (factor 2.8) and from Xanten (factor 1.7). The average CaO-

enrichment in the Altenberg samples is within the measurement accuracy. The increase in 

SO3, the sulfur concentration, shows a similar tendency: the Cologne samples show an 

enrichment of sulfur with factor 139, the Xanten samples with factor 65 and the Altenberg 

samples with factor 7. The depletion of the oxides associated with silicate phases (SiO2, 

Al2O3, Na2O, K2O) correlates with the increase in SO3. 

 

Table 8.1 Main element composition of samples (data set of XRF analyses in wt. %) 

sample No. sample SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 H2O CO2 SO3 ∑

host rock n = 5 64.31 0.72 16.97 3.49 0.11 0.85 2.43 4.56 5.22 0.18 0.92 0.22 0.04 99.9

Altenberg n = 3 63.17 0.77 16.68 3.92 0.09 0.63 2.41 4.58 4.69 0.19 1.56 1.21 0.30 100.2

Cologne n = 10 54.45 0.65 13.79 3.86 0.09 0.68 6.72 3.71 4.05 0.51 0.92 0.92 5.90 100.3

Xanten n = 5 59.80 0.71 15.12 4.06 0.14 0.74 4.24 4.24 4.39 0.22 0.99 0.54 2.77 99.8
 

 

In crusts on limestone, where the substrate consists almost entirely of CaCO3, a depletion of 

CaO and an enrichment of SiO2 as well as aluminum and iron in the crust are detected 

(Török et al. 2011). The contrary is found for crusts on silicate stones: a relative depletion of 

oxides associated with silicate phases and an enrichment of CaO in the crust along with an 

enormous increase in sulfur, indicating high gypsum enrichment in the crust. The average 

sulfur concentrations normalized to the host rock correlate to gypsum contents for Altenberg 

(0.6 wt. %), Xanten (5.9 wt. %) and Cologne (12.6 wt. %). The sulfur concentration found in 

crust samples on limestone – investigated by Török et al. (2011) – correlates to an average 

gypsum amount of 22 wt. % in respect to the host rock. Gypsum concentrations in samples 

from marble and limestone from different sites range from 10.3 wt. % (Torfs and van Grieken 

1997) to 23.3 wt. % (Fassina 1988) (Tab. 8.2).  

 

Table 8.2 Concentrations of sulfur (wt. %) (calculated from SO4
2−

 content of soluble salts) detected in the black 

crusts on stone masonry from different urban sites in Europe 

S 
(wt. %) 

13.8 14.6 – 23.3 10.5 – 16.2 10.3 – 13.4 13.2 – 20.3 

Investigated 
sites 

Rome, Italy Venice, Italy 
Northern and 
central Italy 

Mediterranean 
coast 

Eleusis, Greece 

 
Brocco et al. 

1988 
Fassina 1988 

Sabbioni & 
Zappia 1992a 

and 1992b 

Torfs & Van 
Grieken 1997 

Moropoulou et 
al. 1998 
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The data show a clear discrimination of framboidal and laminar crusts (Tab. 8.3). A stronger 

depletion for SiO2, Al2O3 and Na2O, as well as for K2O, is detectable. The increase of CaO 

and SO3 concentrations from laminar to framboidal crusts is significant. 

 

Table 8.3 Enrichment factors of main elements in laminar and framboidal crust samples from Altenberg, Xanten 

and Cologne relative to the host rock 

sample No. sample SiO2 Al2O3 Fe2O3 CaO Na2O K2O P2O5 SO3

laminar crusts

Altenberg 3 0.98 0.98 1.12 0.99 1.01 0.90 1.05 7.05

Xanten 5 0.99 0.96 1.19 1.03 1.02 0.90 1.25 1.41

Cologne 8 0.98 0.95 1.18 1.38 0.98 0.90 1.21 10.57

framboidal crusts

Xanten 1 0.71 0.66 1.02 4.46 0.61 0.63 1.05 319.6

Cologne 2 0.33 0.27 0.81 8.33 0.16 0.29 9.55 651.8  
 

The calculated content of gypsum in the analyzed samples of framboidal crusts from 

Cologne is about 60 wt. %, and in the samples of framboidal crusts from Xanten about 29 wt. 

%. However, the samples of laminar crusts show a quite similar low gypsum concentration 

for the three locations: Altenberg, 0.55 wt. % Xanten, 0.04 wt. % Cologne, 0.88 wt. %. In 

terms of the mineralogical determination by the Rietveld method, the gypsum concentrations 

of the laminar crust samples are below the detection limit for gypsum by XRD, but the 

framboidal crust samples clearly indicate gypsum content (Tab. 8.4; Fig. 8.4). 

 

Table 8.4 Main mineral phases of black crust and host rock (xxx: major, xx: medium, x: minor) (see 

sample description in Tab. A8.1 in Appendix) 

sample code cathedral Quartz Sanidine Plagioclase Pyroxen Biotite Gypsum 

DT-03  - x xxx xxx x x

AL-02 Altenberg xx xxx xxx xx x

AL-03 Altenberg xx xxx xxx x x

CL-06 Cologne xx xxx xxx x x

CL-08 Cologne xx xxx xxx x x

CL-07 Cologne xx xxx xxx x x

CF-09 Cologne x xxx xxx x x x

XF-06 Xanten x xxx xxx x x

XL-05 Xanten x xxx xxx xx x  

The enrichment of CO2 in the samples for Altenberg (factor 5.6), Cologne (factor 4.2) and 

Xanten (factor 2.5) (Tab. 8.1) indicates a certain amount of carbonaceous fly ash particles in 

the investigated material as well as a partition of organic material, especially for the 

investigated samples from Altenberg. This again illustrates the importance of settling dust 

and particles in terms of weathering crust formation. 
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Figure 8.4 CaO versus SO3 

content indicates the part of 

gypsum at the sample. The 

higher the amount of SO3, 

the higher the gypsum 

content of the sample. The 

molar ratio of calcium versus 

sulfur in gypsum 

(CaSO4•2H2O) is 1:1 (black 

line). The samples are above 

this molar ratio (Ca/S or 

CaO/SO3 respectively), 

suggesting that the total 

sulfur in the samples is 

present as gypsum. The 

CaO content can be 

assigned to gypsum as well 

as to the rock-forming 

minerals (e.g., plagioclases). 

An enrichment of calcite 

(CaCO3) cannot be 

correlated (see also Tab. 

8.4). 

 

8.2.4 Microscale chemical investigation  

LA-ICP-MS analyses show clear trends in terms of major and trace element distribution in 

the black crusts and the host rock. The microscale chemical investigation also reveals little 

change in oxides associated with the silicate phases. An enrichment of sulfur, lead, 

antimony, bismuth and arsenic in black weathering crusts developed on Drachenfels trachyte 

is detected (Fig. 8.5). The crusts of the Cologne cathedral show an average concentration of 

1,849 ppm Pb and those of Xanten 1,944 ppm Pb, while the crusts of Altenberg only show 

890 ppm Pb – which corresponds to enrichment factors of 105, 110 and 50 in respect to the 

host rock (Tab. 8.5; Fig. 8.5).  
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Figure 8.5 LA-ICP-MS analyses along a profile perpendicular to the surface on a thin cut of a black 

weathering crust (Drachenfels trachyte; Cologne cathedral): a. concentration profiles of S, Pb, Sb, Bi 

and As; b. microscopic picture of the ablated line; c. S/Si, Ca/Si and Pb/Si ratios (and normalized Si 

content) plotted against the length of the line. 

 

Table 8.5 Mean values for S, Ca, Pb, Sb, Bi, and As in the host rock and in the crust from the Altenberg, Cologne, 

and Xanten samples 

sample 

No.
value

increase 

factor
value

increase 

factor
value

increase 

factor
value

increase 

factor
value

increase 

factor
value

increase 

factor

n ppm % ppm ppm ppm ppm

host rock n = 1 215 1 18 0 0 2

Altenberg n = 1 5044 23 2 2 890 50 12 37 1 48 28 16

Cologne n = 2 6313 29 3 3 1849 105 37 114 3 145 367 205

Xanten n = 4 40785 190 5 4 1944 110 16 48 3 117 50 28

sulfur (S) lead (Pb) antimony (Sb) bismuth (Bi) arsenic (As)calcium (Ca)
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The samples from the three locations are clearly distinguishable. Comparing industrial, urban 

and rural samples, the data show high concentrations of heavy metals (e.g., Pb, and Bi), As 

and Si in black crust samples collected from the industrial and urban sites (Cologne and 

Xanten). The samples from the rural area (Altenberg) contain significantly lower 

concentrations of heavy metals (Tab. 8.5). This clearly indicates a very strong pollution 

impact for the Cologne and Xanten samples, since the content of these elements is due to an 

intense impact of combustion emissions (Fig. 8.6). 

 

 

Figure 8.6 Distribution of sulfur (S), lead (Pb), antimony 

(Sb), bismuth (Bi) and arsenic (As) in black weathering 

crusts developed on Drachenfels trachyte normalized to 

earth crust values (blk) in a. Altenberg, b. Cologne, and c. 

Xanten. LA-ICP-MS analyses, perpendicular to the 

sample surface (concentrations are in ppm), showing an 

enrichment of S, Pb, Sb, Bi, and As in the crust. 

 

 

 

 

 

 

 

Table 8.6 Concentrations (ppm) of lead (Pb) detected in 

the black crusts on stone masonry from different urban 

sites in Europe 

location lead (Pb) stone substrate

Pb (ppm)

Cologne 1,849 trachyte

Xanten 1,944 trachyte

Halle, GER * 2,000 limestone

Budapest * 1,000 limestone

Milan ° 883 marble and limestone

Venice ° 123 marble and limestone

Rome ° 532 marble and limestone

Bologna ° 427 marble and limestone

Eleusis ° 300 marble and limestone

Brussels ° 516 sandstone and calcarenite

Bologna ° 160 sandstone and calcarenite

Granada ° 40 sandstone and calcarenite
 

*Török et al . 2011, ° after Sabbiono 21003 

 

 

In view of decreasing SO2 fluxes, the ban on leaded petrol, and emission regulations, the 

high concentrations of heavy metals as anthropogenic combustion tracers in the samples 

from Cologne result not only from recent air pollution but show the long history of industrial 
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development at this location. The high lead concentrations in the Xanten samples can be 

traced back to the strong impact of the industrial area of Arnhem (NL) over a long period of 

time. 

The weathering crusts show high enrichment of the detected elements, whereas within the 

first 100–300 μm of the surface of the host rock a general decrease is detectable (Fig. 8.5). 

An accumulation can be observed in cracks and small cavities of the host rock (Fig. 8.5). 

This correlates well with the phenomenon observed by Török et al. (2011) that in the porous 

zone below the crust an increase of Pb is observed, which marks the accumulation of lead 

not only within the crust but in the pores, too. The enrichment in the cracks demonstrates 

that pollutants are not only superficially fixed to the crust, but also penetrate deeper into the 

stone and accumulate in structurally altered zones. 

The plots of the S/Si, Ca/Si and Pb/Si ratios show a sharp increase in the crust, indicating a 

high enrichment of Pb and S, as well as of Ca, in the crust (Fig. 8.5). The major atmospheric 

impact is indicated by the enormous enrichment of heavy metals, which, as anthropogenic 

combustion tracers, clearly refer to an atmospheric source. This is reaffirmed by the content 

of siliceous and carbonaceous fly ash particles in the crust.  

If Pb concentrations are compared on an international scale, similar concentrations are found 

for Cologne, Xanten and Halle (Tab. 8.6). Values from these sites, as well as from Budapest, 

Milan, Rome, and Brussels, can be related to higher combustion emission impacts for 

example from domestic heating, power plants, coal combustion and vehicle exhausts 

(Sabbioni 2003). 

8.2.5 The polycyclic aromatic hydrocarbon fingerprint 

Microscopic analyses reveal particulate matter is abundant on the stones’ surfaces and in the 

weathering crusts (Lefèvre and Ausset 2003). The detection of the polycyclic aromatic 

hydrocarbon (PAH) compounds reveals the organic fingerprint of the particulates of the 

settling dust. PAH as compounds indicative of air pollution are detected in selected samples 

of black weathering crusts, scales and disaggregated material, as well as from dust. PAH 

mainly arise from the incomplete combustion of fossil fuels, organic matter or wood. The 

detected concentrations are referred to the values of the host rock. The range of the detected 

21 PAH compounds are from acenaphthylene (m/z 152) to dibenzo(ah)-pyrene (m/z 302). 

The total concentrations of the PAH compounds varies from 62 μg/kg OS (laminar crust from 

Xanten cathedral) to 13,525 μg/kg OS (dust sample from Cologne cathedral) (Tab. 9). The 

high-end values belong to samples from Cologne cathedral and are typical for samples from 

an industrial area. The PAH concentrations of the samples from Xanten and Altenberg are in 

a close range (Tab. 8.7). A clear relationship can be drawn between PAH concentration and 

sample type. If the Cologne samples are compared to each other, samples of dust, 

framboidal weathering crusts and strongly deteriorated stone material (scale and 
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disaggregated stone) generally show higher PAH concentrations (1,362– 13,525 μg/kg OS); 

samples of laminar crusts and slightly weathered stone show lower values (247–482 μg/kg 

OS).  

 

Table 8.7 PAH and SO4
2−

 concentrations of samples from Altenberg, Cologne and Xanten, as well as Hungary 

and the city centers of Budapest and Halle 

PAH total SO4

µg/kg OS mg/kg

DT-01 Drachenfels trachyte host rock 179.12 299.92

AL-02 Drachenfels trachyte laminar crust 82.11 5,092.30

AL-03 Drachenfels trachyte laminar crust 669.13 2,995.47

AF-04 Krensheimer Muschelkalk framboidal crust 226.89 43,364.10

CL-06 Drachenfels trachyte laminar crust 481.54 1,497.74

CL-07 Drachenfels trachyte laminar crust 3,872.46 3,295.02

CD-07 Drachenfels trachyte disaggregated material behind scale 5,121.95 6,590.04

CL-08 Drachenfels trachyte laminar crust 246.65 898.64

CD-08 Drachenfels trachyte disaggregated material behind scale 1,362.24 6,290.49

CF-11 Krensheimer Muschelkalk host rock 5,004.50 165,368.64

CS-01 Obernkirchner Sandstein dust surface deposition 13,525.07

XL-05 Drachenfels trachyte laminar crust 420.47 599.09

XL-07 Drachenfels trachyte laminar crust 62.25 33,549.29

descriptionstonesample code

 

 

 

Figure 8.7 PAH versus SO4
2−

 concentrations of studied samples. The data set shows distinct fields with different 

origin of samples, indicating the difference in composition of dust, black weathering crusts and host rock. 

 

When data from Török et al. (2011) are included, the higher PAH concentrations are in dust 

samples and from framboidal crusts from Cologne, Budapest and Halle (Fig. 8.7; red ellipse). 

This group of samples also shows high SO4
2- concentrations. A second group of low PAH but 

higher SO4
2-concentrations (Fig. 8.7; black ellipse) contains mainly laminar crusts from rural 

areas in Hungary as well as from Xanten and Altenberg, besides four samples from 
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Hungarian host rock. Except for one sample from Xanten (Drachenfels trachyte), these crust 

and host rock samples derive from limestone. A third group is formed by deterioration 

samples from Cologne cathedral on Drachenfels trachyte (Fig. 8.7; green ellipse). These 

samples show certain enrichment in SO4
2-, but a stronger increase of PAH. A fourth group 

with low SO4
2- and moderate PAH concentrations (Fig. 8.7; blue ellipse) contains a host rock 

sample of Drachenfels trachyte, and further consists of samples of light weathered stone and 

laminar crusts from Cologne, Altenberg and Naumburg, as well as rural areas in Hungary. 

8.3 Discussion 

8.3.1  Crust formation on Drachenfels trachyte in comparison to limestone 

As the investigations and mapping show, gypsum crusts not only build on calcareous stones 

but also on silicate stones. In comparison to black weathering crusts on limestone, the crusts 

on the silicate Drachenfels trachyte are lower in gypsum content (223 g/kg on average on 

limestone, 126 g/kg on average on Drachenfels trachyte – relative to the corresponding host 

rock). Also, framboidal crusts are less frequent than laminar crusts on Drachenfels trachyte 

than on limestone. This is easily explained by the calcium source for the gypsum. The 

limestone displays a vast source of calcium ions for the formation of gypsum crusts, as a 

matter of transformation from CaCO3 into CaSO4 • 2 H2O. The Drachenfels trachyte, 

however, has an original concentration of 2.43 wt. % CaO, which is mainly contained in 

silicate minerals and is not easily available for the formation of gypsum.  

For crusts on limestone, a significant difference in chemical composition between host rock 

and crust is reported (Török et al. 2011). This is not the case for black weathering crusts on 

Drachenfels trachyte, where the crusts show a similar chemical composition to the host rock, 

with a depletion of oxides associated with silicate phases and enrichment in Ca and S. The 

morphology and composition of the crusts’ surfaces on limestone and on silicate trachyte 

differ significantly. Török et al. (2011) found a surface composition of primarily gypsum 

crystals as well as calcite. They found idiomorphic rosette-like gypsum crystals in samples 

from industrial environments, and slightly dissolved gypsum crystals commonly associated 

with calcite in samples from rural places in Hungary and Germany. The crusts on the silicate 

trachyte showed higher content of siliceous compounds and organic matter and smaller 

content of gypsum compared to crusts on limestone. At Cologne cathedral the crust 

formation on limestone shows a very dense crust without any transitional zone, whereas the 

black crusts on the Drachenfels trachyte are a very porous poly-mineral composition with 

heterogeneous particle size.   
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8.3.2  Sulfur and calcium sources  

The crust samples on Drachenfels trachyte have a higher sulfur as well as higher calcium 

content in correlation to the fresh stone (enrichment factor for S: 7–139; enrichment factor for 

Ca: 1–3). The chemical analyses reveal very low calcium (1.74 wt. %) and sulfur (<0.02 wt. 

%) concentration in the Drachenfels trachyte (Tab. 8.1). This indicates that, for both sulfur 

and calcium, external sources are responsible for the crust formation.  

Sulfur derives from anthropogenic pollution impact and imports via wet and dry deposition. 

The most important sulfur sources are SO2 deposition from air and SO4
2− from rainwater 

(Neumann et al. 1993). Torfs and Van Grieken (1997) mention that gypsum formation is 

more likely related to SO2, which is the airborne sulfur, indicating the major impact of dust 

and dry deposition. This correlates to the investigation by Furlan and Girardet (1983), who 

state that, especially in highly polluted areas, the impact of dry deposition is far more 

important than wet deposition as a source of building stone decay. Laboratory analyses of 

sulfate-rich fog water confirmed that 60 h after a main fog event, gypsum crystals were 

formed (Del Monte and Rossi 1997). This indicates that the SO4
2− import from rainwater and 

fog, as well as the dry deposition of SO2 in the context of corresponding humidity (e.g., fog, 

condensation), function as sulfur sources for the gypsum formation. 

The calcium import comes from aerosol deposition and leaching products from mortars (e.g., 

joint mortar) (Snethlage and Wendler 1997; Kraus 1980; Hughes et al. 1998) as well as from 

adjacent calcareous stones. 

The role of particulate matter in the form of dry and wet deposition, and their contribution to 

the formation of black weathering crusts, has already been discussed (Amoroso and Fassina 

1983; Bonazza et al. 2004 and 2005; Del Monte and Vittori 1985; Del Monte et al. 2001; 

Fassina et al. 2002; Lefèvre and Ausset 2002; Moropoulou et al. 1998; Smith et al. 1988; 

Trudgill et al. 2001; Viles 1994; Thornbush and Viles 2004). The dry deposition of airborne 

particles also includes calcium-rich aerosols, which therefore play their part in calcium import 

(Charola and Ware 2002). The total suspended particulate matter (TSP) is to be 

differentiated into PM10 and PM2.5 not only based on size, but also to differences in source, 

amount of emission, and physical and chemical behavior (Kainka et al. 1997). The 

composition of PM10 is generally dominated by large soot agglomerates, particles from tire 

abrasion and geogenic clay minerals and silica particles. In industrial areas it may also 

contain slag, xenomorphic silica, salts, and gypsum and metallic particles. The coarse PM10 

fraction from clean air regions contains particles mostly of biogenic and geogenic origin, but 

also clay minerals and quartz. Typical components from combustion are soot conglomerates 

(sometimes with ball-like morphology) charcoal, fly ash particles of different sizes, 

xenomorphic silicates and sulfates including gypsum. The finer PM2.5 fraction contains 

single soot particles or small soot agglomerates and fly ash particles (small balls). The latter 
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are amorphous silica material with a high content of heavy metals. The fine PM2.5 fraction 

from clean air regions contains silicates and a few soot particles. The amount of PM2.5 can 

be smaller than PM10 in clean air regions. Geogenic particles, for example silicates, derive 

from mechanical abrasion and are found mostly in coarse fractions (PM10). The particulate 

air pollution caused by traffic is highly concentrated in the fine fraction (PM2.5), which is 

detected in all areas, and also in clean air regions (Kainka et al. 1997). Thus, in industrialized 

areas, generally higher PM concentrations are measured with high contents of soot, charcoal 

and particles from tire abrasion as well as slag and salts, e.g., gypsum and metallic particles. 

In general, a higher ratio of particulate air pollution is found, which is caused by traffic and 

contains large amounts of heavy metals. In clean air regions, however, particulate matter is 

dominated by biogenic and geogenic components, as well as clay minerals, silicates (e.g., 

quartz), and a few soot particles, with an overall lower ratio of particulate air pollution caused 

by traffic. 

Calcareous and sulfur compounds are constituents of weathering crusts and they participate 

in their formation in different ways. Dust and soot particles – especially when containing 

hygroscopic salts – can serve as condensation nuclei for droplets and thus provide sufficient 

moisture for further reactions (Charola and Ware 2002; Moroni and Poli 2000). Higher 

content of metallic compounds in the PM of industrial environments and higher concentration 

of carbonaceous particles enhance the SO4
2− formation on stone surfaces (Charola and 

Ware 2002; Zappia et al. 1998). Metals are mentioned to act as catalysts for the oxidation of 

SO2 into SO4
2-. Soot particles containing heavy metals and metallic components of the 

particulate matter, e.g., abrasion material from tires, may function as reaction catalysts for 

the formation of calcium sulfate dihydrate, thus contributing to gypsum crust formation and 

stone decay. The experimental studies by Zappia et al. (1998) indicate two different reaction 

mechanisms for the formation of calcium sulfate dihydrate: an intermediate state of 

hemihydrate calcium sulfite or a direct formation of calcium sulfate dihydrate. The latter is 

linked to the presence of efficient catalysts, e.g., metallic compounds and strong oxidants. 

Even though SO2 concentrations have been higher in the past and their effect on rock 

weathering might have been more significant than today, the SO2 concentrations today still 

have an effect on the stone deterioration, especially in the context of increasing particulate 

matter. The NOx concentration of the air pollution plays a specific role. On the one hand, NO2 

can function as an oxidant and increase the reaction rates of the sulfation processes 

significantly (Johansson et al. 1988). On the other hand, NOx gases can be oxidized by 

lithotrophic bacteria to nitric acid, thus contributing to stone decay (Fuchs 2006). 

The different incorporation of particulates, e.g., fly ash particles, into the gypsum crusts on 

limestone or on Drachenfels trachyte clearly indicates a very different formation process of 

the black weathering crusts. The limestone itself delivers the calcium component for the 



The effect of air pollution on stone decay 

144 

transformation of calcite into gypsum as an intense crystal growth takes place, where 

extrinsic particles, e.g., fly ash particles, are firmly incorporated. On the Drachenfels trachyte, 

a siliceous rock, calcium components are transported from external sources, as are other 

particles, e.g., fly ash particles. As the crust builds, it forms as a more or less loose and 

porous mixture of the different particles delivered by the pollution fluxes.  

Already Grün (1931) considered the mortars used as a potential source for the deterioration. 

Wolff (1972) addressed the formation of gypsum crusts on Obernkirchen sandstone – 

sandstone with very little calcium content – to leaching alkaline components of the joint 

mortars. Mortars with latently hydraulic binders, e.g., puzzolana and diatomeous earth, or 

cement components are commonly known for their capability to release water-soluble forms 

of sodium, potassium, calcium and magnesium components (Arnold 1981, 1992; Bläuer-

Böhm 2005; Kraus 2002; Kraus and Droll 2009; Schwiete et al. 1965). At Cologne cathedral, 

it can be observed that in many places the decay on the Drachenfels trachyte starts from the 

joints, which is indicated by gypsum crusts, flaking and scaling (Graue et al. 2011).  

Besides alkaline mortars, neighboring calcareous stones, especially limestone, are also 

considered as a possibly contributing calcium source. As surface roughness evaluations on 

several calcareous stones show, a continuous increase of roughness is detectable, indicating 

the solution of the calcite stone (Grimm and Völkl 1983). The erosion is very much 

dependent on the exposition. Higher deterioration correlated roughness is detectable on the 

weather-exposed side within a factor of 1.5 in correlation to the protected side. Grimm and 

Völkl (1983) measured 0.002–0.005 mm/year material loss on the weather-exposed side for 

the investigated stones. On the Krensheim Muschelkalk at Cologne cathedral a surface 

roughness is observable (Fig. 8.8a). The calculated rate of diluted calcium ions from one 

square meter of Krensheim Muschelkalk with a matrix density of 2.72 g/cm3 (Lukas 1990), a 

calcium concentration of 37.14 wt. % and an average thickness of material loss due to 

corrosion of 0.0035 mm/year is about 9.52 g/sq m · year Krensheim Muschelkalk, and thus 

3.54 g/sq m · year Ca. This would correlate to 12 g/sq m · year CaSO4 or 15.2 g/sq m · year 

gypsum (CaSO4·2H2O). The possibly diluted calcium ions are probably not transferred into 

gypsum at a 1:1 ratio. The higher share is probably lost as dust in air turbulences. 

The acid buffering capacity of eight tested natural building stones was measured by titration 

with hydrochloric acid and the resulting solute ions buffering the acid at pH 4 were detected. 

As expected, the experiments on the eight tested stones revealed similar amounts for 

volcanic stones and sandstones. The carbonate rich sandstone (Schlaitdorf sandstone) 

buffers a volume of HCl, which is 12 times higher. The limestone (Krensheim Muschelkalk) 

shows an acid binding capacity enlarged by factor 320 (Fig. 8.8b). On the one hand these 

experiments indicate a higher liability for crust formation of stone with higher acid buffering 

capacity. On the other hand they reflect that, upon an acidic impact, the limestone also 



The effect of air pollution on stone decay 

145 

readily solutes and provides calcium ions, which therefore may be transported to other 

stones and contribute to the formation of gypsum crusts (Fig. 8.9). 

 

 
Figure 8.8 (a) Weathered surface of Krensheim Muschelkalk showing surface roughness; (b) tests on the acid 

binding capacity showing the extent of material solution. 

 

In terms of a stone-immanent calcium source, it must firstly be considered that Drachenfels 

trachyte as host rock has a low calcium concentration, which is mainly associated with 

feldspars as rock-forming minerals, e.g., plagioclases. The decrease of the alkali metals 

within the crust (K2O: 10–28 %; Na2O: 0.5–27 %) indicates certain feldspar corrosion. 

However, the much higher calcium concentration of the investigated crusts in respect to the 

host rock indicates an external source for calcium and a stone-immanent calcium source is of 

minor impact. 

8.3.3  Interferences of adjacent stones  

Already Kraus (1985a, b), Mirwald et al. (1988) and von Plehwe-Leisen et al. (2007) noted 

that there are strong indications that the decay of the Drachenfels trachyte is especially 

critical when it is placed adjacent to carbonate stones. Investigations on site reveal that crust 

formation on Drachenfels trachyte can be enhanced by neighboring limestone, depending on 

the exposition of the affected section of the wall (Fig. 8.9. Krensheim Muschelkalk exposed 

to an acidic environment solutes into its ion compounds. Rainwater leaches the rock 

components of the limestone. This calcium ion loaded water runs off and is directly 

transported to the building stones in the flow direction. It is absorbed by the Drachenfels 

trachyte and accumulates in the cavities. Additionally, these cavities are a preferred location 

for the deposition of pollutants – on the one hand due to the rock’s surface character and 

secondly due to the better adsorption of airborne particles onto humid surfaces (Charola and 

Ware 2002). Due to the environmental impact of sulfuric pollutants, salt, e.g., gypsum, 

formation takes place. As illustrated in Fig. 8.9, the affected wall section has to be in the 

relevant flow direction. Water transport and input have to be in a relation allowing enough 

ions to be dissolved and transported. At the same time, the appropriate amount of water has 

to guarantee the formation and precipitation of salts. This means that interferences are 



The effect of air pollution on stone decay 

146 

strongly dependent on the exposition of the wall section concerned and the placement of 

adjacent stones in relation to each other. However, neighboring calcareous stones do not 

play an initial role in the formation of crusts, but may contribute if extrinsic factors such as 

environmental impact, exposition, and localization are already present. 

The Drachenfels trachyte not only shows enhanced crust formation and stronger decay in 

cavities, but also along joints. These deterioration features can be ascribed to the dissolution 

of alkaline components of the mortars as well as to a perturbation of the flow of water. 

The dissolution of the carbonate rock and the impact of alkaline components increase the pH 

of the floating solutions. The Drachenfels trachyte, with an SiO2 content of >63% due to the 

quartz concentration (13 %) and the high abundance of feldspars, can be referred to as an 

acid silicate rock. If the described alkaline waters come into contact with the Drachenfels 

trachyte, a stronger deterioration of the volcanic rock takes place, because of the increased 

solution of quartz and feldspars in the alkaline milieu. 

 

Figure 8.9 Wall section at Cologne cathedral. Upper left stone: Krensheim Muschelkalk 

(KM); upper right and lower layer stones: Drachenfels trachyte (DT). The left side of the 

lower Drachenfels trachyte is in the flow direction of ion-loaded water from the limestone, 

which enhances the crust formation and decay. Also, a stronger deterioration of the 

Drachenfels trachyte is observed close to the joints, where alkaline leaching products of the 

mortar might have a certain impact. The massive erosion on the left side of the lower 

layered Drachenfels trachyte correlates with the coverage of the top Krensheim 

Muschelkalk. 

 

Furthermore, a higher pH together with the calcite particles increases the oxidation rate for 

SO4
2− from SO2 (Charola and Ware 2002; Zappia et al. 1998). Wiese et al. (2012) 

ascertained that, for the deposition velocity of SO2 on silicate stone, the relative humidity is 

not as relevant as the buffering capacity available for the dissolution reaction of SO2. The 

solubility of SO2 strongly decreases with decreasing pH. Therefore, a rise of pH through the 
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impact of calcite adjacent stones may enhance SO2 deposition velocity and contribute to the 

sulfation process. If the aforementioned extrinsic factors are present, these aspects 

contribute to a stronger crust formation on the Drachenfels trachyte.  

Continuous in situ measurements of temperature and humidity inside the different stone 

materials indicate higher water content for the Krensheim Muschelkalk than for the 

Drachenfels trachyte at a depth of 32 mm (Fig. 8.10a). It can be seen that the data logger in 

the Drachenfels trachyte with little distance to the Krensheim Muschelkalk shows higher 

values of relative humidity than the data logger in the center of the ashlar (Fig. 8.10b). These 

observations may indicate on the one hand a higher water import through the joints, where 

the alkaline mortar sits. On the other hand, the Krensheim Muschelkalk might serve as a 

long-term source of water for the Drachenfels trachyte. In both cases the Drachenfels 

trachyte is provided with ion-loaded water over an extended period of time where this stone 

would not have absorbed either as much water or as high a volume of alkaline components. 

Even though no direct water flow over the surface of the stone is provided, a potential import 

of alkaline components arises, raising the pH and delivering ions for the formation of 

damaging salts.   

 

 

Figure 8.10 (a) In situ measurements of temperature and relative humidity (rH) at Cologne cathedral, August 

2011: outside temperature (blue), outside rH (red), data logger 1 rH (purple), data logger 2 rH (green), data logger 

3 rH (yellow); (b) scheme of sensors: data logger 1 is placed in the Krensheim Muschelkalk (KM), data logger 2 is 

placed in the Drachenfels trachyte (DT) with little distance to Krensheim Muschelkalk (KM) and the joint, and data 

logger 3 is placed centered in the Drachenfels trachyte (DT). 

8.3.4  Exposition and crust formation  

Besides the question of material import as a factor for crust formation, another vital point is 

the surface character and exposition of the building stone. Laminar crusts are observed on 

vertical and smooth stone surfaces. Black framboidal crusts build in sheltered areas and 

show significant formation in cavities on even stone surfaces as well. In sheltered areas the 

dry deposition of particulate matter is stronger than on unprotected surfaces. A higher 

pollutant concentration and higher moisture are expected, leading to significant acidity 
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(Charola and Ware 2002). Due to relevant air turbulences in sheltered areas the transport 

mechanisms provoke an accumulation of airborne particles. These particles are then firmly 

deposited and are not washed off by direct rain water. The necessary moisture for the crust 

formation is provided by higher relative humidity, especially in the case of fog or dew 

(Amoroso ad Fassina 1983; Del Monte and Rossi 1997), as well as by indirect water input 

(Kraus 1985a). Furthermore, these protected zones stay moist for longer, further contributing 

to adhesion conditions appropriate for the deposition of particles. The deposition of particles 

provides nucleation sites for the growth of gypsum crystals (Charola and Ware 2002; 

Sabbioni 2003), which develop better in sheltered, protected zones where evaporation is 

retarded. The morphology of these framboidal crusts provides a larger reaction surface, not 

only for intensive particulate deposition but also for the condensation of fog and dew or high 

relative humidity in general. This clearly indicates that the growth of framboidal crusts is an 

exponential reaction. 

 

 
Figure 8.11 (a) Gypsum (marked by arrows) is enriched in the crust as well as in the cracks (SEM); (b) rosette-

shaped gypsum crystals on the reverse of a scale (SEM); (c) structurally disturbed zones where no gypsum is 

detected, indicating corrosion of feldspar grains (SEM); (d) fine-grained birefringent secondary minerals (marked 

by arrow) formed along the cleavage surfaces of sanidine phenocryst. 
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8.4 Correlation of crust formation and stone decay 

The investigation shows that crust formation is strongly correlated to the structural 

disintegration of the Drachenfels trachyte. Depth-specific samples and analyses reveal a 

gypsum distribution which is coherent with the detected decay phenomena. Microscopic, 

SEM and EDX analyses clearly indicate that gypsum enrichment is not only found within the 

crust but also in deeper zones of the disintegrated stone material. In deteriorated areas 

gypsum accumulates in cracks (Fig. 8.11a) and on the backside of the detached scales, 

where significant gypsum formation is observed (Fig. 8.11b). The disaggregated stone 

material underneath the scale is the zone where salts, e.g., gypsum, mainly precipitate and 

the highest concentrations are found (Fig. 8.12a). In deeper zones of the stone, sulfur 

decreases as the stone material becomes unaffected by environmental impact and salt 

migration, as the analyses of drill cores reveal (Fig. 8.12a). 

 

 
 

Figure 8.12 (a) SO3 distribution in a depth profile of Drachenfels trachyte (SO3 concentrations of depth specific 

samples) indicating a zone where salts (e.g., gypsum) preferably precipitate (sample index see Table A8.1 in the 

appendix); (b) anions and cations from water extractions of deteriorated stone material (IC-analysis) indicating 

high salt concentrations in the disaggregated material on the reverse of scales as well as in other deteriorated 

material. 

 

Dependent on the moisture distribution in the building stone, a zone of maximum moisture 

defines. In this zone, salts preferably accumulate and precipitate, causing structural 

disintegration and leading to a zone of disruption (Snethlage and Wendler 1997). Gypsum 

has a comparably low solubility and shows little migration; therefore, it tends to accumulate in 

the pore space (Charola et al. 2007). Higher moisture conditions, e.g., retarded drying due to 

pore clogging through gypsum or crust formation, allow for an increased solubility and 

migration of the less soluble gypsum (Charola et al. 2007). A small amount of the saturated 

gypsum in the pore space is diluted again. If the diluted gypsum recrystallizes in fissures or 

interstitial areas at grain contacts, the stress induced by the growth of gypsum crystals may 

cause the disintegration of the fabric (Charola et al. 2007). Furthermore, calcium sulfate 
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solutions tend to supersaturate and may provide for the generation of high crystallization 

pressures (Steiger 2005).  

Salt analyses confirm the on-site observations and SEM analyses. Gypsum is found in the 

water extractions from scale samples, and the enrichment of Ca and SO4
2− is significantly 

higher in the disaggregated zone and the backside of the scales (Fig. 8.12b). In the samples 

of flaking and crumbling, high concentrations of Ca and SO4
2− are detected as well (Fig. 

8.12b). This indicates that even though the gypsum content in the crusts themselves is not 

as high as in the crusts built on limestone, gypsum clearly contributes to the damage process 

of flaking, scaling and crumbling to total fabric collapse of the Drachenfels trachyte. 

 

 

Figure 8.13 K2O 

depletion and H2O 

increase in deterioration 

samples indicating the 

formation of 

phyllosilicates (sample 

index see Table A8.1 in 

the appendix). 

 

 

 

Structurally disturbed zones, where no gypsum is found, are detected as well (Fig. 8.11c). 

This suggests that preexisting fabric and especially mineral in-homogeneities are disrupted 

due to a chemical and mechanical deterioration impact. Microscopic analyses not only show 

the displacement of separate grains but also detect the opening of cleavage surfaces in 

minerals and their disruption (Fig. 8.11d). Leaching experiments on the Drachenfels trachyte 

in different pH solutions show the dilution of alkali and alkaline earth metals (Na, K, Mg, Ca), 

indicating feldspar breakdown. The chemical analyses show a decrease of K2O (14 %) and 

an enrichment of H2O (22 %) in the depth-specific samples, indicating clay mineral, e.g., 

kaolinite, formation from the alteration of feldspars and volcanic glass fractions (Fig. 8.13). 

SEM analyses detect high porosity of the aforementioned altered volcanic glass fractions of 

the mesostasis (Fig. 8.14). Due to the high capillarity of the altered glass fractions, caused by 

the distinct porosity of their very fine recrystallized grain structure, these interstitial fillings are 

very sensitive to penetrating pore water. Vieten 1961 and Koch 2006 attribute a certain 

content of montmorillonite to these recrystallized glass fractions. Microprobe analyses 

identify the areas of altered glass fractions through higher magnesium concentrations (Fig. 
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8.15a and b). If sections of un-weathered stone material (Fig. 8.15a and b) are compared to 

altered material (Fig. 8.15c and d), the interstitial area of the fabric, where the glass fraction 

is originally located, seems to be replaced by secondary gypsum formation (Fig. 8.15c and 

d).  

 

Figure 8.14 The very fine recrystallized grain structure of the altered volcanic glass fractions in 

the interstitial area of the Drachenfels trachyte show high and distinct porosity and alteration to 

montmorillonite (microprobe backscattered electron image in composition mode). 

 

These observations lead to a model for the deterioration of the Drachenfels trachyte. 

Primarily through a certain water uptake, ion-loaded water reaches the pore space of the 

Drachenfels trachyte. Mechanical and chemical deterioration processes of the rock-forming 

minerals take place: moisture dilatation provokes a grain displacement. Snethlage et al. 

(1996) ascertained a three- to four-fold higher hydric expansion induced by a saturated 

gypsum solution compared to dilatation with pure water. Mineral grains corrode and 

decompose along inherent weak points, e.g., cleavage planes as predetermined breaking 

points. These processes enlarge the pore space, giving rise to water impact and import of 

pollutants. Due to the higher concentration of pollutants in the pore water and a decrease of 

pH, the chemical corrosion of the rock-forming minerals increases, resulting in the further 

comminution of the mineral grains and the disintegration of the fabric (Fig. 8.11c). With 

increasing moisture supply, the fractions of altered volcanic glass in the aforementioned 

mesostasis become more affected. The montmorillonite concentrated in these areas causes 

significant stress onto the surrounding grains due to its strong swelling behavior. Due to the 

forming of new pathways through changes of pore space and the high capillarity of the 

interstitial areas of recrystallized volcanic glass, the ion-loaded water penetrates into the 
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interstitial areas and gypsum accumulates. Gypsum gets confined and accumulates in these 

delimited areas. The continuous crystal growth provided by the transport from the 

supersaturated gypsum solution, high crystallization pressures are generated (Steiger 2003). 

The swelling and shrinking behavior of the montmorillonite, which is found abundant in the 

Drachenfels trachyte, further contributes to degradation and mechanical deterioration 

processes. As leaching experiment showed, cation exchange processes of gypsum and clay 

minerals take place intensifying deterioration processes. 

 

 

Figure 8.15 Microprobe mapping (a) Backscattered electron image in composition mode of unweathered 

Drachenfels trachyte, arrows marking areas of volcanic glass fractions altered to montmorillonite; (b) magnesium 

mapping of the same area as Fig. 8.15a, the yellow-orange-red areas indicating higher magnesium concentration 

of the altered volcanic glass fractions (montmorillonite); (c) backscattered electron image in composition mode of 

weathered Drachenfels trachyte, arrows marking areas of pore spaces filled with gypsum –the altered glass 

fractions are originally located in these interstitial areas, but are now replaced through secondary gypsum 

formation; (d) sulfur mapping of the same area as Fig. 8.15c, the yellow-orange-red areas marking higher sulfur 

concentration as an indication of gypsum 
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Through the corrosion of the rock-forming minerals, the degradation of the altered volcanic 

glass fractions, and the swelling of the clay minerals, porosity changes and salt solutions are 

given new pathways. With repetitive wetting and drying cycles, different zones of moisture 

and evaporation form and the ion content of the pore water increases. Salts precipitate, 

produce and manifest the displacement of the grains; hence the structural disintegration. The 

interaction of these decay mechanisms is characterized by their coupled feedback 

mechanism, e.g., moisture dilatation is much more significant in the presence of salts, 

leading to structural degradation (Snethlage et al. 1996; Snethlage and Wendler 1997). 

Whereas dilatation processes have been seen to be reversible in salt-free systems, they 

become intensified and irreversible in salt-containing systems. Due to constantly repeating 

dilatation and contraction processes caused by moisture, temperature, clay minerals, and 

ionic species (salts), grains are permanently displaced relative to each other. The 

deterioration processes are interactive, leading to proceeding decay phenomena from 

surface parallel formation, e.g., scaling and flaking, to non-directional manifestations such as 

crumbling. Surface deterioration may start with crust formation, as well as contour scaling 

and the detachment of these scales. The weathered surface may then progress into flaking 

and crumbling, resulting in total fabric collapse.  

 

 

Figure 8.16 (a) Deterioration model of the Drachenfels trachyte: The unweathered trachyte has a 

porphyric texture with feldspar phenocrysts tracing the flow direction. The small lath-shaped 

feldspars of the groundmass show a local flow fabric around the larger crystals forming interstitial 

areas. In these interstitial areas volcanic glass is detected, which is partially altered to 

montmorillonite (marked with red arrows).  
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Figure 8.16 (b) Deterioration model of the Drachenfels trachyte: The import of water and pollutants 

leads to the corrosion of the feldspars due to the acidic impact. Mineral grains corrode and 

decompose along inherent weak points, e.g. cleavage planes (lower right picture). This results in 

the comminution of the mineral grains and the enlargement of the pore space (upper right picture).   

 

 

 
Figure 8.16 (c) Deterioration model of the Drachenfels trachyte: Gypsum crusts form on the 

surface of the stone due of the import of sulfuric and calcium components. Underneath these thick 

framboidal crusts water retain longer leading to a more pronounced solution of the gypsum. The 

salt migrates into deeper zones of the stone fabric and accumulates (upper right picture). Again, the 

higher water content enhances the chemical corrosion of the rock-forming minerals. The lower right 

picture shows an interstitial area of volcanic glas altered to montmorillonite. 
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Figure 8.16 (d) Deterioration model of the Drachenfels trachyte: The several processes lead to the 

disintegration of the fabric and the formation of new pathways. Ion-loaded water penetrates into the 

interstitial areas, where gypsum gets confined and accumulates in these delimited areas. The 

swellable montmorillonite expands at water impact and enhances the dilatation processes leading 

to significant grain displacement. Severe crack formation and crumbling of the stone matrix takes 

place.  

8.5 The clay mineral content in the Drachenfels trachyte 

The significant deterioration behavior of the Drachenfels trachyte in the form of a total fabric 

collapse leads to assumptions about strong deterioration mechanisms once water reaches 

sensitive areas. Moisture dilatation processes are attributed to the presence in micropores 

and the resulting disjoining pressure as well as to the swelling of clay minerals (Ruedrich et 

al. 2011).  

Mineralogical investigations focused upon the content of swellable clay minerals in the 

Drachenfels trachyte were carried out. The clay mineral composition was determined by X-

ray diffraction (XRD) on the grain size fraction of <2 µm (Fig. 8.16). A second XRF analysis 

was conducted after the ethylene glycol solvation of the fine grain size fraction (Fig. 8.17). In 

addition, the cation exchange capacity (CEC) – an indicator for the presence of expansive 

clay minerals – was determined on bulk samples. The CEC measurements employed the 

cupric-triethylene-tetramine method (Dohrmann and Kaufhold 2009, modified following Meier 

and Kahr 1999). 

 

In figure 8.17 the results of the XRF are shown, clearly indicating the content of 

montmorillonite as shown by the peaks.  
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Figure 8.17 Powder XRD of the < 2 µm fraction prepared. The smectite is clearly identified as 

montmorillonite based on the peak at 1.5 Å. Even in the clay fraction feldspars are present (Dohrmann 

2013) 

 

 

 
      d-scale A° 

 

Figure 8.18 XRD of the < 2 µm fraction prepared as oriented slides. 

Black=air-dry, blue=ethylene glycol solvated (EG). Montmorillonite is 

clearly identified as the major clay mineral of the clay fraction 

(Dohrmann 2013)  

A° 
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The second X-ray analysis after the ethylene glycol solvation indicates swellable clay 

minerals (Fig. 8.18). Smectite is detected, the group to which montmorillonite belongs. 

Noticeable is the content of K-feldspar, which is still detected in this very fine powdered 

fraction (<2 µm). The cation exchange capacity (CEC) proved 4 meq/100g. This indicates a 

montmorillonit concentration of 3 – 5 wt. % in the Drachenfels trachyte, at an assumed CEC 

of 100 ± 30 meq/100g for the pure montmorillinite (Dohrmann 2013). 

The analyses detected a concentration of 3 – 5 wt. % of montmorillonite in the Drachenfels 

trachyte. This swellable clay mineral belonging to the smectite group is abundant in the pore 

space of the rock and notably found in the enclosed interstitial areas between feldspar grains 

(Fig. 8.19). 

 

 

Abb. 8.19 SEM-images of swellable montmorillonite (marked with arrows) (a) enclosed in the interstitial areas 

between the feldspar grains (secondary electron picture) (b) nestling in small fractures of Na-K-feldspar 

(backscattered electron image) 

 

Montmorillonite is an alteration product of volcanic glasses. These volcanic glasses are 

abundant in the rock, indicating the fast cooling process of the Drachenfels trachyte when 

extruded as a krypto-dome. Through relaxation processes during the cooling of the magmas, 

the Kali-feldspars and the plagioclases show significant crack formation. These fissures may 

provide sufficient pathways for fluids for the alteration of the metastable glass fractions.  

Smectite shows the highest CEC of all clay minerals with 70 – 120 meq/100g (Lagaly 1993). 

A high exchange capacity correlates with a significant swelling behavior. With water impact 

and especially at impregnation with ion loaded pore waters, these clay minerals show 

extensive swelling behavior and contribute to the deterioration of the natural stone. 

8.6 Conclusions  

Investigations on the crust formation on Drachenfels trachyte clearly identify the impact of 

pollution. The elevated contents of S, Ca, As, Pb, Sb, Bi and As in the crusts result from the 

impact of anthropogenic pollution mainly deriving from combustion. The analyses show an 

enrichment of sulfur associated with the higher abundance of gypsum. The lack of an 
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important intrinsic source for calcium and sulfur in Drachenfels trachyte for the formation of 

gypsum crusts demonstrates the major environmental impact of pollution as a source. 

Although SO2 in air has shown a strong decrease in concentration over the past 30 years, 

the pollutants are still present in the building stones and degradation in context with 

weathering crusts is still observed. This indicates that not only recent emission but also the 

pollutant concentrations of the past have to be considered, and that the impact of particulate 

matter in the form of settling dust plays an important role today. 

In addition, the formation of gypsum crusts can be enhanced by interferences between 

different building materials, e.g., mortars and adjacent stones (e.g., limestone). Furthermore, 

the surface character and exposition of the relevant building stones pose a crucial question 

for the formation of the weathering crusts, promoting or hindering the deposition of settling 

dust, as well as the formation processes coupled to corresponding moisture supply. 

If gypsum formation is compared using the data obtained from the three different cathedrals, 

the data from XRF analyses are consistent with the observations under the SEM. Gypsum 

formation on samples from Cologne shows a high accumulation of large, occasionally 

rosette-like, gypsum crystals. In comparison, gypsum crystals in Xanten are smaller and less 

abundant. In the samples from Altenberg, the gypsum crystals are even finer grained and 

normally only present in the form of a salt efflorescence (Fig. 8.20). These observations 

correlate well to the environmental SO2 concentrations and the intensity of the decay at the 

different locations. The trace element distribution in the crusts from industrial areas shows 

increasing values for lead and other heavy metals, which generally can be linked as typical 

pollutants to traffic and industry. 

 

 
Figure 8.20 SEM picture of gypsum formation on samples (a) from Cologne, showing an accumulation of large 

gypsum crystals; (b) from Altenberg, displaying gypsum crystals of smaller grain size and number. 

 

Although crust formation on the Drachenfels trachyte is not as significant as on limestone, 

black crust formation on the silicate stone more strongly correlates with structural 

degradation (Graue et al. 2012b). The formation of gypsum crusts and salt deterioration play 

an essential part in the structural disintegration of the Drachenfels trachyte. The chemical 

corrosion of the rock-forming minerals, the further alteration of volcanic glass fractions, and 
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the swelling of clay minerals, i.e. montmorillonite, also contribute to the disintegration, 

besides mechanical decay processes. Mechanical deterioration processes (e.g., frost 

weathering, moisture dilatation) in a feedback mechanism with chemical corrosion of rock-

forming minerals, degradation due to salt deterioration and swell-able clay minerals lead to 

an exponential disintegration of the rock fabric to total material collapse. The environmental 

impact in terms of pollutant import as well as climatic factors plays a key role.  

A model for the deterioration of the Drachenfels trachyte is therefore concluded: gypsum 

crusts enhance moisture-related deterioration processes by hindering drying. Moisture and 

temperature cycles as well as varying moisture distribution promote the enrichment of 

gypsum in characteristic zones. Moisture dilatation is enhanced by the presence of gypsum 

salts. The acidic impact of anthropogenic pollution, e.g., the SO2 and NOx concentrations in 

the atmosphere and the import of pollutants, leads to chemical weathering in the form of the 

alteration of feldspars and volcanic glass fractions, and enhances the stress caused by the 

swelling pressure of the montmorillonite. This is shown by the structural degradation and 

corrosion of the minerals and the increase of H2O concentration. These chemical and 

physico-mechanical decay processes open the pore space through mineral comminution and 

grain displacement. The fabric becomes structurally impaired and the pore space is altered; 

thus, water and pollutant import increases. Through these newly opened pathways, gypsum, 

which usually scarcely migrates, reaches the interstitial areas of high capillarity. In these 

confined areas the crystallization of gypsum possibly generates high crystallization 

pressures. The stress already induced onto these regions by the swelling and shrinking of 

montmorillonite intensifies due to the enhanced cation exchange from gypsum towards the 

clay mineral.  

The sum of these factors leads to stress and fabric decomposition as well as the degradation 

of the rock-forming minerals; hence the deterioration of the stone in the form of scaling, 

flaking and crumbling.  

Regarding these deterioration mechanisms as solitary processes, not a single one is 

distinctively significant or could be addressed as the key mechanism for the deterioration of 

Drachenfels trachyte. However, their feedback interaction and their permanent repetition in 

continuous cycles lead to a material fatigue which finally results in the collapse of the 

material.  
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9 Multifactorial selection system for replacement stones 

9.1 Introduction 

The investigations ascertain a great variety of mineralogical und petrophysical properties, 

which characterize the different “cathedral stones”. Significantly different behavior in varying 

chemical milieu, i.e. acidic attack, and in the anthropogenic pollution environment is 

ascertained for the building materials. The individual stones show typical deterioration 

phenomena (see chapter four), which are controlled by specific deterioration processes (see 

chapters six and seven). For the building context in the monument, where the stones are 

placed together, compatibility of the used stones with each other is crucial. In a building 

environment several interferences of the stones with each other may occur; e.g. leached 

calcium ions from the Krensheim Muschelkalk may contribute to the formation of gypsum 

crusts on the silicate Drachenfels trachyte. Variances of water balance within the stones can 

be observed, where a stone with originally lower water content shows increased water 

balance through the impact of an adjacent stone with generally higher water content (see 

chapter 8.4.3).  

At weather exposed building sections, an increased water import might occur into the higher 

absorptive stone enhanced by neighboring less absorptive ashlars. As an example, when the 

Stenzelberg latite or the Londorf basalt lava are adjacent to the Drachenfels trachyte or other 

stones with higher water uptake, an increased water absorption of the latter might be 

considered. In case of heavy rainfall water will only be absorbed to low degrees by the latite 

or the basalt lava and rain will mainly run off. Thus, the increased water supply for the higher 

absorptive stone, e.g. Drachenfels trachyte, might yield higher water concentrations in this 

stone. 

In the building environment context the moisture distribution within the building´s structure is 

of high relevance for the deterioration of natural building stones, since decay processes are 

moisture related (Snethlage 1985). A huge water exchange in the microstructure of the stone 

is generally correlated with a huge rise of pollutants, which not only supports a decay 

potential for salt and frost deterioration, but provides the necessary elements for chemical 

deterioration. Thus, moisture properties of the stones are of major interest. As an example, if 

the capillary water absorption of the Bozanov and Schlaitdorf sandstones is compared to that 

of the Obernkirchen sandstone, the first two coarse grained sandstones show much higher 

values (Tab. 5.1). In terms of drying behavior the Bozanov and Schlaitdorf sandstones 

release about 70–75 % of their water content within two days at 80% RH and 23 °C. The 

Obernkirchen sandstone, however releases about 60 % of its water content within two days, 

even though it is capable of releasing most of its water content via capillary transport (Fig. 

6.1). If these three stones are compared to each other, Bozanov and Schlaitdorf sandstones 
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have a higher leveled water balance through their general high absorption. Obernkirchen 

sandstone shows relatively lower, but stable absolute water content. Thus, this sandstone 

stays more balanced when moist, while the Bozanov and Schlaitdorf sandstones might show 

strong changing moisture distributions and undergo several wetting-drying cycles. This again 

has a major impact on several deterioration processes, i.e. salt deterioration, which becomes 

significantly intensified at continual wetting-drying cycles. Additionally, in the Schlaitdorf 

sandstone a high sensitivity to chemical, i.e. acidic attack is observed due to its dolomite 

cement (see Fig. 7.2; 7.4; 7.14). Due to the environmental pollution impact the sandstone 

tends to form gypsum within its pore space (Kraus 1985a). For the Obernkirchen as well as 

the Bozanov sandstone very little sensitivity to chemical, i.e. acidic attack is observed (see 

Fig. 7.2; 7.4; 7.14). Thus, a primary weather resistivity can be noted. This becomes 

diminished in the Bozanov sandstone, when damaging salts from the ambiance are 

adsorbed. Then the high capillary water uptake and the ascertained drying behavior of the 

Bozanov sandstone may evoke strong damage. If the originally weather resistant 

Obernkirchen sandstone is neighbored to these stones, negative interferences might be 

conceivable. Through the high water supply of the Bozanov and Schlaitdorf sandstones 

moisture as well as damaging salts might be transferred to a certain degree. 

The observations and investigations contribute to a better understanding of the deterioration 

processes in situ. Furthermore, they may support the planning of preservation strategies for 

cultural heritage. The knowledge of deterioration processes taking place is prerequisite for 

the conception of adequate conservation proposals – preventive conservation, conservation 

treatments and the development of methods and materials. The main target is the 

stabilization of the stones´ condition and the minimization of the progressing stone decay 

(E.C.C.O. 2002). At Cologne cathedral the primary objective is the preservation of the 

medieval Drachenfels trachyte as well as the other historic building stone ashlars through 

conservation measures. In many cases the replacement of historic stone material is crucial 

for the building´s static safety. In general, it is aimed to use the same stone material as the 

historic one, which needs to be replaced. Since 1829 this has been impossible for the 

Drachenfels trachyte. Thus, this medieval construction material is found in masonry bonds 

with many other building stones at Cologne cathedral.  

At the beginning the selection of replacement stones was determined by economic aspects 

and optic properties. Since the middle of the 19th century the deterioration resistivity of the 

stones became more important. Nowadays, the selection of appropriate replacement 

material ensues mineralogical and petrophysical comparability and geological similarity as 

well as optic properties. At this point it becomes crucial, that not only the comparability of the 

replacement stones with the original stone is given, but the compatibility with all other stones 

in the masonry bond as well. General requirements for replacement stones are optical, 
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textural (coarse, medium, or fine grained) as well as mineralogical properties, where a high 

similarity is demanded. At the same time a weather resistant material shall be chosen. In 

literature, general requirements for replacement stones are given in terms of their 

petrophysical properties (Snethlage 2005). Porosity, pore size distribution and capillary water 

uptake as well as water transport characteristics and strength properties ought to be in the 

same range as the original and the replacement stone. If several different natural building 

stones are placed in one building section, it is highly improbable to find a replacement stone, 

which is comparable in all its petrophysical parameters with those of all other adjacent 

stones. Thus, it is important to assess the mentioned parameters in regard to their 

significance for the characterization of the original stone. This has to be done in terms of the 

petrophysical characteristics, that specify the stone, and in respect to the typical deterioration 

behavior of the original stone as well. The assessments will score the parameters leading to 

the most important ones: these key-parameters of the original stone shall then be compatible 

with the replacement stone. The key-parameters are to be collated with those of the other 

stones in the masonry bond to achieve compatibility with each other (Graue et al. 2012a). 

9.2 General requirements for replacement stones  

At the Cologne cathedral exists a material mix of sandstones and carbonates as well as 

volcanic rocks. This diversity of material on one building is an exception and a great 

challenge. Owing to the long building history and the continuous repair works, Drachenfels 

trachyte is found in masonry bonds together with Obernkirchen sandstone, Krensheim 

Muschelkalk, Stenzelberg latite, and Londorf basalt lava. Due to current restoration works, 

Montemerlo trachyte is integrated into the masonry bond. Occasionally the Schlaitdorf 

sandstone is also found together with the mediaeval Drachenfels trachyte. This indicates, 

that a potential replacement stone for Drachenfels trachyte has to be compatible with all 

other stone materials, i.e. its basic properties have to go with all the other stone materials. 

Bozanov sandstone is used as a replacement material for the Schlaitdorf sandstone. 

To assess the compatibility of weathered and fresh stones, Snethlage (2005) suggests that 

the properties of a replacement stone should be in a similar range as the original stone. The 

mineralogical composition and the optical appearance are important criteria for replacement 

stones. Furthermore, it is necessary to determine the porosity, the pore size distribution, the 

capillary water uptake, water uptake by water vapor adsorption, the degree of saturation, the 

water vapor diffusion value and the strengths as well as the Young´s modulus of elasticity 

(E-modulus). Many of the parameters required according to Snethlage (2005) are 

determined in the present study (see chapter five).  
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Mineralogy 

In terms of the mineralogical phase composition the implemented stones at the Cologne 

cathedral cover a wide range. Since the different building stones (sandstones, carbonates, 

and volcanic rocks) exist together in the masonry bonds, it is not possible to find the 

particular replacement material of the same mineralogical classification. Therefore it is of 

major importance, that the petrophysical data, especially porosity and moisture behavior are 

compatible. 

 

Optical properties 

In general, all building stones of the Cologne cathedral show gray to black surfaces when 

weathered or are originally grayish-black, except for the Krensheim Muschelkalk in rain-

washed areas. Quarry-fresh stones show varying optical appearances. Stenzelberg latite and 

Londorf basalt lava are both dark gray stones. Drachenfels trachyte and Krensheim 

Muschelkalk are originally light grayish to beige stones. While the weathered Drachenfels 

trachyte at the Cologne cathedral shows black surface crusts, the carbonate rock also forms 

black gypsum crusts in rain-protected wet areas. However, where the stone is washed, the 

light beige-gray color may even bleach somewhat. Schlaitdorf and Obernkirchen sandstones 

originally show similar light beige to yellow and orange color, but weather differently. While 

the Obernkirchen sandstone develops a grayish black surface layer, the Schlaitdorf 

sandstone forms dark brown gypsum crusts, but also tends to show some greenish 

microbiological growth. Besides the color matching, also structural features i.e. grain sizes 

are critical for the optical properties. The employed sandstones have different appearances 

in respect of their grain sizes. The Obernkirchen sandstone is a fine-grained sandstone, 

while Schlaitdorf sandstone is coarse-grained. The current replacement stone for the 

Schlaitdorf sandstone is the coarse-grained sandstone from Bozanov. The Bozanov 

sandstone, weathers slower and only minor formation of dark crusts can be anticipated, 

since high pollution impact has changed since the 1970/80´s. Moreover, the Bozanov is free 

of carbonate minerals, and is therefore less sensitive to the formation of gypsum crusts.  

Today´s replacement material for Drachenfels trachyte, the Italian trachyte from Montemerlo, 

has a similar trachytic matrix, but is slightly more brownish in color intensity. From an 

aesthetical point of view, the stone is visually well compatible with the slightly weathered 

Drachenfels trachyte. However, in areas where the medieval building stone is weathered and 

shows intense black crusts, the newly inserted Italian trachyte stands out quite significantly. 

Even stronger is the difference of weathered Schlaitdorf to Bozanov sandstone. To cope with 

the situation of these different appearances, the Obernkirchen sandstone and Drachenfels 

trachyte were painted in the beginning of the 20th century to color adjust to the light gray 

Krensheim Muschelkalk (Schumacher 2004). The latest discussion on matching optical 
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properties is whether to apply an “aqua sporka” onto the new stones or to clean the old 

weathered stones.  

 

Petrophysical criteria 

In terms of porosity, all investigated stones except the Stenzelberg latite belong to a medium 

porosity class (Snethlage 2005; Siegesmund and Dürrast 2011). Moreover, both the 

trachytes and Londorf basalt lava are in the lower range of medium porosity (see also Stück 

et al. 2008).  

In regard to the pore size classes clear distinctions are registered. Figure 5.3 shows that the 

stones from the Cologne cathedral diverge in terms of their pore size distribution. The 

Drachenfels trachyte, Schlaitdorf, Obernkirchen and Bozanov sandstones as well as the 

Krensheim Muschelkalk have 83.3 – 89.6 % capillary active pores. Londorf basalt lava and 

Montemerlo trachyte show 65.8% and 62.8% capillary pores. Stenzelberg latite is the other 

extreme with 95.4% micropores and only 4.6% capillary pores. Due to its high percentage of 

micropores Stenzelberg latite probably shows the effect of capillary condensation. 

Montemerlo trachyte and Londorf basalt lava might possibly show little effect as well. 

Comparing the pore size distribution of the Drachenfels trachyte and the other stones used 

at the Cologne cathedral, it is obvious that the Drachenfels trachyte does not have a close 

match (Fig. 5.3). The Obernkirchen sandstone has a wider distribution than the Drachenfels 

trachyte with 67.6% of pores > 1 µm, whereas the Drachenfels trachyte only has 35.1% of 

that range. Stenzelberg latite and Montemerlo trachyte have relatively high percentages of 

micropores. Londorf basalt lava and Krensheim Muschelkalk have an even but very 

unsorted pore size distribution from 0.0064 to 64 µm, respectively 0.0064 to 82 µm. The 

Londorf basalt lava has 65.8% capillary pores, whereas the Krensheim Muschelkalk shows 

85.0%. Only the Schlaitdorf and Bozanov sandstones may be grouped as „heavy soakers“ – 

stones with a high water absorption – with 83.3 % and 89.6% capillary active pores and 

47.8%, respectively 68.7% pores > 10 µm. 

 

Snethlage (2005) suggests using a replacement stone with a low to medium water suction 

value when replacing damaged parts, which originally consisted of stones with higher water 

suction value.  

All the w-values of the samples are in the range from 0.3 kg/m2⋅√h to 6.9 kg/m2⋅√h (Tab. 

5.1). The original building stone, the Drachenfels trachyte, shows a w-value of 0.6 kg/m2⋅√h. 

The Schlaitdorf and Bozanov sandstones can be classified as belonging to the group of 

strongly absorbing stones. Montemerlo, Obernkirchen and Krensheim, however, are 

medium absorbing stones. The maximum water content attainable by capillary water uptake 

was not determined, since it does not play an essential role in nature. In general, the 
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penetration depth of rain is smaller than the thickness of building components. The stones 

used in the cathedral and the evaluated replacement stones show a strong divergence when 

considering the capillary water uptake, and thus do not meet the necessary suitability 

requirements (Fig. 9.1). 

The s-value is a factor for the determination of the frost resistance of natural building stones. 

The degrees of saturation (s-value) of the investigated stones are between 0.59 and 0.76 

(Tab. 5.1). According to the limit value of s < 0.75 (DIN 52103) only the Stenzelberg latite 

has a higher water saturation coefficient (Fig. 9.1). 

 

 

Figure 9.1 Capillary water uptake (w-value) and saturation degree (s-value) of 

the stones from the Cologne cathedral show much divergence. If the proposed 

requirements on these two parameters are set in comparison to the Drachenfels 

trachyte (marked area), only the Londorf basalt lava shows appropriate s- and w-

values 

 

The water uptake by adsorption plays an important role in the deterioration of natural 

building stones due to the central European climate. The Stenzelberg latite has a very high 

water uptake by adsorption, whereas Drachenfels and Montemerlo trachyte as well as the 

Londorf basalt lava have a medium water uptake by adsorption. The three sandstones and 

the Krensheim Muschelkalk absorb water only by a small degree due to their pore size 

distribution and the lack of a well communicating pore space. Moreover, salt contamination 

e.g. due to pollution and deterioration may cause significant increases of the water uptake 

by adsorption in exposed building stones (Kraus 1985a). 

Until now, no guidelines are available to evaluate the water uptake by adsorption in respect 

of replacement materials. Analogous to the guideline for the capillary water uptake, water 

uptake by adsorption of the replacement stone should be the same or less as the original 

stone. Thus, only Stenzelberg latite does not fit into this scheme (Tab. 5.1 and Fig. 9.2). 



Multifactorial selection system for replacement stones 

167 

0

10

20

30

40

50

60

70

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0

w
a

te
r 

v
a

p
o

r 
d
if
fu

s
io

n
 r

e
s
is

ta
n

c
e

 µ
-v

a
lu

e
 

mass increase by water vapor absorption (wt. %) at 95% RH

Drachenfels trachyte Stenzelberg latite

Schlaitdorfer sandstone Obernkirchner sandstone

Krensheimer Muschelkalk Londorfer basalt lava

Bozanov sandstone Montemerlo trachyte

 
Figure 9.2  Diagram showing the sorption and water vapor diffusion resistance of the 

investigated stones. Setting the proposed requirements in correlation to the 

Drachenfels trachyte (marked area), shows that for one parameter e.g. sorption, all 

building stones except the Stenzelberg latite might be suitable. A second parameter, 

the water vapor diffusion, shows the insufficient compatibility of the different stones 

 

Since water is a driving factor for deterioration, drying processes and their length play an 

important role for the decay resistance. Kraus (1985) ascertained drying durations for 

Schlaitdorf sandstone of 11 days, for the Krensheim Muschelkalk and Obernkirchen 

sandstone of 13 days and for the Drachenfels trachyte and the Londorf basalt lava longer 

than 15 days. Krensheim Muschelkalk shows moderate drying despite a high water vapor 

diffusion resistance (Kraus 1985a). The latter is determined by the low connectivity of the 

pores. With respect to drying, Kraus (1985) determined that salt-contamination as well as 

dirt depositions on the stone surfaces decelerate the drying process.  As a requirement for 

replacement stones, these should dry in a moderate period of time. The newly inserted 

stone should not stay humid longer than the neighboring original one, thereby not 

functioning as water supply. 

The investigated stones from the Cologne cathedral show a broad distribution in terms of 

water vapor diffusion resistance. Following the outline of a maximum divergence of 10% for 

the water vapor diffusion value (Snethlage 2005), it becomes obvious that the building 

stones at the Cologne cathedral are not compatible with each other (Tab. 5.1; Fig. 5.6a & 

9.2). 

Moisture and thermal expansion are volume changes of natural building stones induced by 

extrinsic factors (exposition, climatic situation, and building physics). A critical hydric swelling 

is observed at the Montemerlo and the Drachenfels trachyte as well as the Stenzelberg latite 

and the Londorf basalt lava. On the building stones from the Cologne cathedral it can be 
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observed, that with increasing amount of micropores hygric swelling increases as well (Fig. 

9.3a), which indicates, that the main driving factor for moisture related length changes could 

be caused by disjoining pressure in small pores (Wangler and Scherer 2008). Furthermore, a 

smaller mean pore radius can be correlated to a higher hydric dilatation. The stones from the 

Cologne cathedral with a high capillary water uptake do not necessarily show high hydric 

dilatation, however high sorption values can be correlated to higher hygric and hydric 

expansion, indicating a damage potential; as it may be interpreted for the Stenzelberg latite, 

Londorf basalt lava, Montemerlo and Drachenfels trachyte (Fig. 9.3b). 

 

 
Figure 9.3 (a) The building stones from the Cologne cathedral show that a higher percentage of micropores 

indicates stronger hygric dilatation, which again might be due to disjoining pressure in small pores. (b) Higher 

water sorption values can be correlated to higher hydric dilatation, indicating a potential damage source for 

Drachenfels trachyte, Stenzelberg latite, Londorf basalt lava and Montemerlo trachyte 

 

For both moisture and thermal dilatation, lower expansion should be the aim for the 

replacement stones being employed. Since the investigated stones show no residual strain in 

terms of thermal dilatation this is of minor importance. 

In respect of strength properties the following evaluation of the investigated stones is based 

on the proposed criterion of 80 – 120% of the strength value of the original building stone 

(Snethlage 2005). In respect of the uniaxial compressive strength only the Londorf basalt 

lava would be compatible in terms of the strength values with the Drachenfels trachyte (Fig. 

9.4a). A compatible flexural strength to the Drachenfels trachyte is shown by the Montemerlo 

trachyte and Schlaitdorf sandstone (Fig. 9.4b). Assuming that 80 – 120% of the tensile 

strength of the original building stone would be suitable, the Drachenfels and Montemerlo 

trachytes as well as Schlaitdorf and Bozanov sandstones are of one comparable range (Fig. 

9.4c).  

If the limitations are extended to 70 – 130%, for uniaxial compressive strength, all 

investigated stones except the Stenzelberg latite will be suitable. For flexural strength the 

Obernkirchen sandstone could be added. In terms of tensile strength it would be the same 

grouping as at 80-120% limitation (Fig. 9.4). 
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Figure 9.4 Diagrams showing the strength values of the investigated stones from the Cologne cathedral (a) uniaxial 

compressive strength, (b) flexural strength and (c) tensile strength. Each have the proposed constraint of 80-120% 

of the original strength value (Snethlage 2005) in correlation to the Drachenfels trachyte (dark blue marked area), 

and widened limitations of 70-130% (light blue marked area) 

 

One aspect contributing to the evaluation of the deterioration and interferences of the 

different stones is missing within the discussion of the present work. Thermal conductivity 

and head storage capacity are two parameters which influence water balances within natural 

building stones (e.g., drying properties). Thermal properties are characterized by the thermal 

conductivity, the temperature conductivity and the specific heat (Siegesmund and Dürrast 

2011). Although, head storage capacity will probably be similar in the investigated stones, a 

higher porosity is correlated with a lower thermal conductivity. Furthermore, the mineralogical 

composition, rock fabric features, pressure and temperature, as well as the type and degree 

of fluid saturation, determine the in situ thermal conductivity of rocks (Siegesmund and 

Dürrast 2011). Temperature distribution measurements were carried out on site (chapter 

3.2). Laboratory data was detected but was not available for data progressing, at least thus 

far; the inclusion of this data remains outstanding. 

9.3 Recognition and measurement of parameters 

The different building stones employed at Cologne cathedral show a diverse petrography and 

mineralogical composition as well as a broad variety of petrophysical properties. The 

comparison with valid guidelines reveals the broad spectrum of the used materials. The 

strong divergence of the ascertained parameters of the stones (i. e mineral composition, 

porosity, water absorption and saturation, drying characteristics, moisture and thermal 
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dilatation, strength properties, etc.) shows, that the constraints for replacement materials 

make it almost impossible to find an ideal stone, if parameters are not differentiated.  

Afore described requirements for replacement stones weight the parameters equally. As 

shown, it is difficult to find a stone material, which displays all required parameters within the 

limit values. At the same time it is not sufficient to restrict the selective parameters only to 

optical and geological-mineralogical aspects.  

Within the present systematic approach for the determination of criteria for replacement 

stones the parameters are recognized and measured by a multi-factorial assessment 

analysis following four working steps: A. assessment; B. ranking; C. correlation; D. matching.  

Step A: Firstly the ascertained parameters of the stone in question are assessed in terms of 

their relevance to each other for material characterization and secondly in respect of their 

significance to each other for the deterioration behavior of the natural building stone.  

Step B: The single valuations – “material index” and “decay index” – are compiled and the 

parameters are ranked.  

Step C: The correlation of the two rankings (material relevance and deterioration 

significance) indicates the imperative “key parameters”, which determine the relevant criteria 

for the selection of an appropriate replacement stone. These key parameters should be met 

within afore stated requirements for a replacement stone.  

Step D: The key parameters of the “original” stone and the potential replacement stones are 

matched. 

9.3.1 Assessment and ranking 

As an example the multi-factorial analysis is shown for the Drachenfels trachyte. Fabric and 

pore space parameters, mineralogical and petrophysical properties are correlated in terms of 

their significance to each other for material characteristics and behavior as well as in respect 

to their influence on decay processes. 

The Drachenfels trachyte has a porphyritic fabric with a strong magmatic foliation. Large 

phenocrysts of sanidine are embedded with preferred orientation in a matrix with strongly 

aligned microcrystalline feldspar laths. The fabric can be divided in three structural 

components: the large phenocrysts, secondly the microcrystalline matrix, composed mainly 

of feldspar and third a mesostasis consisting mainly of recrystallized interstitial volcanic 

glass, which in many places is altered to montmorillonite.  

In contrast to the relatively high porosity of 12 % and the high ratio of capillary active pores 

(84 %), the stone shows a low capillary water uptake (0.55 kg/m2√h). This may indicate a 

lack of connectivity of the pore space. The water uptake by adsorption and the saturation 

degree measured are high, analogous to the values of Snethlage 2005. Larger mineral 

grains show a lot of cracks and breakages, which are to be considered as part of the pore 

space. The Drachenfels trachyte shows medium water vapor diffusion resistance and drying 
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is retarded. Kraus 1985a reports that within 15 days the tested stone samples still contain 

rest moisture. This water has to be released via water vapor diffusion. The strength 

properties of the stone are medium to low: low compressive strength, medium flexural 

strength, very low tensile strength. Moisture dilatation is high compared to the other eight 

investigated stones, thermal dilatation is little.  

The Drachenfels trachyte is very inhomogeneous not only in respect of grain sizes but also in 

terms of the mineralogical composition of the structural components (phenocrysts, matrix and 

mesostasis) and their specific properties. Phenocrysts and matrix consist of chemically fairly 

stable components in comparison to the mesostasis. The recrystallized glass in the 

mesostasis is liable to chemical decay impact and the fractions already altered to 

montmorillonite enhance deterioration processes due to the swelling properties of these clay 

minerals. Even though capillary water uptake is low, the high porosity, saturation degree, and 

water adsorption as well as the retarded drying suggest a susceptibility to moisture related 

processes. These parameters, which are significant for the Drachenfels trachyte, indicate 

that wetting-drying cycles are not very pronounced, but the stone stays humid over long 

periods of time. This involves a significant capacity for adsorption and transportation of 

pollutants and guarantees sufficient water supply for the degradation processes. In these 

terms, direct mechanical material reaction, e.g. moisture dilatation, can be considered minor, 

but pollution impact and salt weathering become more important in terms of initializing and 

accelerating deterioration processes. 

For the assessment, at first a “material index” and second a “decay index” are generated. 

Based on these two indexes the parameters are ranked. In a matrix analogous to Visser and 

Mirwald 1998, the afore described fabric and pore space parameters as well as the 

petrophysical properties of the Drachenfels trachyte are evaluated from 0 to 3 (rating 

numbers) in terms of their significance to each other for the material behavior (Fig. 9.5). The 

higher their significance to each other is, the higher their rating number becomes. Through 

This assignemnet is an approach of a numeric estimatoion of the correlationens, which does 

not compensate the discussion in individual cases. With this numeric assignment of the 

correlationen a tabular overview is obtained.  

This material-intern correlation points out the significance of distinct parameters in respect to 

the characteristic properties of this stone, e.g. the water uptake strongly correlates with 

porosity and PSD (rating number 3), whereas thermal dilatation is not interrelated to moisture 

properties (rating number 0). The digit sum of these rating numbers of one parameter is the 

degree of the material-intern correlation of the parameters, the “material index” of each 

parameter. This is shown by the lower left side of the matrix. In the upper right part of the 

matrix the parameters are correlated to each other in terms of their significance for the 

deterioration processes, again from 0 to 3, giving the “decay index” for each parameter.  
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rank

material-

intern 

index

parameter parameter
decay 

index
rank

1 39 pore size distribution matrix 39 1

2 39 porosity pore size distribution 37 2

3 35 matrix porosity 33 3

4 28 mesostasis critical mineral content 32 4

5 27 drying mesostasis 32 5

6 27 capillary water uptake capillary water uptake 32 6

7 27 sorptive water uptake moisture expansion 31 7

8 27 moisture expansion sorptive water uptake 30 8

9 26 critical mineral content saturation degree 29 9

10 26 saturation degree drying 26 10

11 24 flexural strength components 25 11

12 24 tensile strength water vapor diffusion 23 12

13 24 compresive strength flexural strength 21 13

14 22 components tensile strength 19 14

15 21 water vapor diffusion compresive strength 19 15

16 11 thermal dilatation thermal dilatation 14 16

material-intern correlation decay significance
 

Figure 9.6 Ranking of fabric, mineral and petrophysical parameters of the Drachenfels trachyte in terms 

of their significance for material behavior and deterioration, indicating eight “key parameters” for 

replacement criteria. 

 

The ranking of the material parameters shows, that in the case of the Drachenfels trachyte 

mainly fabric parameters, characterized by the specific features of the matrix and 

mesostasis, and pore space properties such as PSD and porosity as well as moisture 

properties, e.g. drying and capillary and water uptake by adsorption, determine the behavior 

of the stone (Fig. 9.6). In respect to the decay of the stone mainly fabric and pore space 

parameters as well as moisture properties control the deterioration processes. The aspect of 

critical mineral content in terms of clay mineral concentration becomes more pronounced. 

Strength and thermal properties are of minor impact (Fig. 9.6). 

9.3.2 Correlation and matching  

The rankings are correlated and show the “key parameters” for the selection of an 

appropriate replacement material. The ranking of the parameters in terms of material 

behavior and deterioration impact (Fig. 9.6) and their correlation, indicate the relevance for 

replacement criteria of potential building stones. The material behavior of the Drachenfels 

trachyte is determined by fabric and pore space parameters as well as moisture properties 

especially pore size distribution, porosity and matrix. In terms of deterioration besides the 

mentioned parameters also critical mineral content, i.e. clay mineral content, mesostasis, and 

capillary as well as water uptake by adsorption and moisture dilatation become more 
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pronounced. These eight parameters characterize the Drachenfels trachyte and are 

significant for the behavior of the stone in terms of extrinsic impact and decay. These are the 

key parameters a replacement stone for the Drachenfels trachyte should match and they 

should be within the mentioned limit values (see chapter 9.2). 

The last step of recognition & measurement is to match the key parameters with those of the 

planned or historic replacement stone. In terms of restoration and conservation any import of 

potentially harmful substances by a new material, e.g. critical mineral components in a 

replacement stone has to be avoided. Furthermore, the optical properties of the replacement 

stone should be similar to the original material considering aging and patination. In respect to 

petrophysical criteria, the replacement stone for the Drachenfels trachyte should have a 

comparable PSD and porosity. A stone with a homogeneous matrix, well cemented without 

possible inherited “weak spots” and without critical mineral content would be preferable. 

Moisture dilatation should not be pronounced and water uptake – capillary as well as by 

vapor adsorption – should be low. Generally the s-value should be less than 0.75. Although 

strength and thermal properties play a minor role in deterioration processes in the 

Drachenfels trachyte, the replacement stone should be in a range of 80-120% of the strength 

values (Snethlage 2005) and thermal dilatation should be less than the original stone. 

For the matching those stones are of interest, which are placed in a masonry bond together 

with other stones, i.e. adjacent to other natural building stones. Within the present example 

of the Drachenfels trachyte at Cologne cathedral, these would be the Obernkirchen 

sandstone and the Krensheim Muschelkalk as well as Londorf basalt lava and Schlaitdorf 

sandstone. In many areas at the towers and the choir of Cologne cathedral the Drachenfels 

trachyte is employed in masonry bonds together with the Obernkirchen sandstone and the 

Krensheim Muschelkalk (Fig. 4.1 and 4.2).  

In geological terms these three stones belong to different classes. The Obernkirchen 

sandstone with a concentration of 98 % monocrystalline quartz is a very deterioration 

resistant quartz arenite (Graue et al. 2011), thus implying no harmful components for 

adjacent stones. Comparing their patination, both stones tend to show a grey surface of 

similar brightness. Porosity of the Obernkirchen sandstone (18.6 %) is higher than that of 

Drachenfels trachyte (11.9 %). The Obernkirchen sandstone shows fewer micropores (Fig. 

5.3) and thus is not as sensitive to water absorption, higher water vapor diffusion resistance 

and moisture dilatation (Tab. 5.1 and Tab. 5.2; Fig. 9.2 and 9.3). Capillary water uptake is 

slightly raised in the Obernkirchen sandstone (1.26 kg/m2√h) but the saturation coefficient 

(0.64) is significantly lower than in the Drachenfels trachyte (Fig. 9.1). Drying is less retarded 

in the Obernkirchen sandstone than in the Drachenfels trachyte (Kraus 1985a; Fig. 6.1). 

Uniaxial compressive strength of the Obernkirchen sandstone is within the mentioned 

constraints (Snethlage 2005) of 80-120 %, flexural strength (122 %) and tensile strength (132 
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%) are slightly higher (Fig. 9.4). Thermal dilatation is pronounced in the Obernkirchen 

sandstone, but without any residual strain (Tab. 5.2). In respect to the key parameters of the 

Drachenfels trachyte for a replacement stone, the Obernkirchen sandstone shows a 

relatively good matching (Fig. 9.7).  

The Krensheim Muschelkalk itself is a relatively weathering resistant natural building stone. 

In rain protected areas it tends to form massive gypsum crusts (Graue et al. 2013a) (Fig. 

4.5f). In these areas the stone surface is black next to very white microkarst weathered 

surface areas. Thus, patination differs from that at the Drachenfels trachyte. Due to acid rain 

dissolution of the carbonate rock ion loaded waters may be transported from the Krensheim 

Muschelkalk to the silicate Drachenfels trachyte providing ions for salt formation and 

decreasing the pH, thus contributing to stronger decay of the Drachenfels trachyte (Graue et 

al. 2013a; see chapter 8.4.3). Porosity of the Krensheim Muschelkalk (16 %) is higher than 

that of the Drachenfels trachyte (11.9 %). The ratio of micropores is the same at the 

Krensheim Muschelkalk and the Drachenfels trachyte (Fig. 5.3). Krensheim Muschelkalk 

shows a medium capillary water uptake (1.3 kg/m2√h), very low water absorption (Fig. 9.2) 

and a low saturation coefficient (0.59) (Fig. 9.1). Water vapor diffusion resistance in the 

Krensheim Muschelkalk is high (Fig. 9.2) but drying is less retarded than in the Drachenfels 

trachyte (Kraus 1985a; Fig. 6.1). Moisture and thermal dilatation of the Krensheim 

Muschelkalk is neglectable (Tab. 5.2 and 9.3). Uniaxial compressive strength of the 

Krensheim Muschelkalk is less (69 %) than the mentioned constraints (Snethlage 2005) of 

80-120 %, flexural strength (145 %) and tensile strength (129 %) are higher (Fig. 9.4). The 

matching of the key parameters of the Drachenfels trachyte with the parameters of the 

Krensheim Muschelkalk indicates a partly compliance in terms of constraints (Fig. 09.7). The 

aspect of calcium ion transport from the Krensheim Muschelkalk at an building exposition for 

sufficient water impact and a higher moisture import from the Krensheim Muschelkalk to the 

Drachenfels trachyte (see chapter 8.4.3) must be seen critical. 

The current replacement stone for the Drachenfels trachyte at Cologne cathedral is the 

Montemerlo trachyte from Italy. If the two stones are compared in respect of the mentioned 

constraints, it is to ascertain that the mineralogical composition and optical properties match 

almost perfectly. The porosity of both is similar (Tab. 5.1); the pore size distribution shows a 

higher ratio of micropores in the Montemerlo trachyte (37%). In the Drachenfels trachyte the 

ratio of micro to capillary pores is 16:84 (Graue et al. 2011). Moisture dilatation is slightly 

pronounced (Tab. 5.2); capillary water uptake is higher but water absorption and saturation 

coefficients are lower (Tab. 5.1). In terms of strength properties the Montemerlo trachyte is a 

slightly stronger stone, on average 112%, which is in the range of constraints. Thermal 

dilatation of the Montemerlo trachyte is comparable to the Drachenfels stone (Tab. 5.2), as 

well is drying (Fig. 6.1). 
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DT key parameter OS KM MT

matrix  +  +  + 

pore size distribution  +  +  - 

porosity  -  -  + 

critical mineral content  +  -  - 

meso stasis  +  -  + 

capillary water uptake  -  -  - 

moisture expansion  +  +  - 

sorptive water uptake  +  +  + 

positive counts 6 of 8 4 of 8 4 of 8
 

Figure 9.7 Matching of the key parameters of the Drachenfels trachyte (DT) with 

those of Obernkirchen sandstone (OS), Krensheim Muschelkalk (KM) and 

Montemerlo trachyte (MT) within the mentioned constraints. 

 

In general, the parameters of the Drachenfels and Montemerlo trachyte are in a close 

comparability to the key parameters of the Drachenfels trachyte. The higher ratio of 

micropores, the higher capillary water uptake and the slightly pronounced moisture dilatation 

can be critical. In resemblance to the observation by Lazzarini et al. (2008), the Montemerlo 

trachyte shows little resistance to salt deterioration experiments. It was the first of the eight 

investigated stones losing 50% of its weight after 19 cycles; Drachenfels trachyte is the 

second after 30 cycles (Fig. 6.7). However, Koch (2006) reported of possible clay mineral 

content. This would explain the higher moisture dilatation and the high cation exchange 

capacity observed in the leaching tests (Fig. 7.11i and j). These aspects might not 

necessarily imply a negative influence on the deterioration behavior of the Drachenfels 

trachyte, but should be looked at in terms of the deterioration behavior of the Montemerlo 

trachyte. 

9.4 Multivariate statistics 

The correlation of the fabric and pore space parameters, mineralogical and petrophysical 

properties with respect to their relevance for material characteristics and their influence on 

the decay processes in the stone is based on the collected data acquired by the previously 

described investigations and tests. The assignment of scores may be subject to discussion in 

one or another way. For achieving a higher degree of objectivity a multivariate statistical 

approach based on dimension reduction can be considered. Potential methods comprise 

correspondence analysis (Blasius 2001; Greenacre 1984), factor analysis (Weber 1974), 

multidimensional scaling (Mathar 1997) and multiple regression (Bosch 1998; Backhaus 

2008). The objective is to reduce dimensions by compressing relevant information into fewer 

interpretable signals incorporating dependence structures among the variables and the data 

visualization by means of various types of diagrams (Fried 2013). 
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Factor analysis is based on the decomposition of a range of correlated characteristics by 

detecting structures and correlations, and the ascription of observed correlations into simpler 

unobserved variables, the combination of features or the so-called factors. As a statistical 

method it is based on correlation calculation and a number of test procedures. As a 

multivariate method it refers to a range of correlated characteristics, which is not determined 

by a single variable, but is captured through a group of m variables, which are recorded for n 

individuals in a representative sample. The values of one of the m variables (for n 

individuals) as well as the values of all m variables can be visualized as vectors. The 

distribution of the vectors and the correlation of the vector components are important for the 

interpretation, unlike single components, which are compared within the n individuals (which 

is common for univariate approaches). The quantitative character of the m variables is 

crucial for the calculations behind factor analysis. Qualitative variables have to be classified 

into a binary variable for further processing (Weber 1974). In statistics a representative 

sample of relevant data for a large number of n individuals is required. Some authors, such 

as Horst (1965), suggest that the number of individuals n has to be the three times the 

number of variables m (n ≥ 3 m). 

Regarding the multifactorial selection system developed within this work, several aspects 

would have to be re-assessed for applying the previously mentioned statistical methods. At 

this point two of them should be mentioned: 

 Some of the variables are not quantifiable and they cannot be coded binary. Thus, linear 

relations, on whom the factor analysis is based, are not applicable. 

 The range of correlated characteristics “compatibility” does not solely refer to one kind of 

stone material, but is the alignment of the range of correlated characteristics of 

“sensitivity” for several stones. Thus, individuals are not similar and in terms of factor 

analysis they are not equitable. 

 

These aspects lead to consider (multiple) correspondence analysis as the possible 

multivariate statistical method (Blasius 2001; Greenacre 1984). Within this approach the 

variables would be evaluated by the cross-tabulated frequencies for each stone. This could 

include (grouped) quantitative and qualitative variables.  

The application of a multivariate statistical approach based on dimension reduction would 

contribute to a substantial assessment of the stones’ sensitivities and compatibilities. A 

common challenge in statistical applications is the data acquisition. Besides uncertainties of 

measured data, which can be minimized by increasing number of measured individuals, high 

amounts of data have to be available. 



Multifactorial selection system for replacement stones 

178 

9.5 Development of a classification scheme for the selection of replacement stones 

The different building stones employed at Cologne cathedral show a diverse petrography and 

mineralogical composition as well as a broad variety of petrophysical properties. To 

understand possible interactive deterioration processes it is important to determine the basic 

petrophysical data and assess their significance to each other. 

For the Drachenfels trachyte as an example the specific parameters are assessed in terms of 

their significance for material behavior and in view of the observed deterioration phenomena 

and processes. They are ranked as “material index” and as “decay index”. These rankings 

are correlated indicating the imperative key parameters the replacement stone should match. 

These chosen parameters should be met within the stated requirements for replacement 

stones. 

This systematic multi-factorial analysis for the determination of specific material parameters 

for the selection of an appropriate replacement stone is ment to contribute to the 

reproductibility and the sustainability. The developed classification scheme contributes to the 

evaluation of the compatibility of historic and modern replacement stones and helps to 

assess preservation problems for historical monuments, which comprise more than one 

natural building stone material. The classification scheme could also be adapted to assess 

possibly critical parameters of the different stones in a masonry bond indicating “weak spots” 

of potential interferences. 

Although the basic requirement catalog is enlarged by the evaluation and assessment of the 

parameters, the selection of an appropriate replacement material is still difficult. It is shown 

that not only material specific parameters are to be correlated. The comparability of the 

deterioration behavior of the several stones has to be comprised as well. Naturally, it is not 

possible to equate sensitivities of used stones, but deterioration sensibilities of potential 

replacement stones could be estimated and possible amplifying feedback mechanisms 

avoided. The fact shown by the historic examples that the selection of replacement stones is 

not restricted to petrographical identical stones further supports a successful choice. It shall 

be emphasized that the optical similarity of the stones is crucial for the preservation of a 

coherent overall view of the monument or building section. Top priority is to diminish further 

deterioration progress. 
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10 General conclusions 

The preservation of cultural heritage as materialized witnesses of the history of mankind is 

assigned to society as a whole. Science is able to contribute to a better perception and 

understanding of this material and cultural patrimony through knowledge acquisition among 

the diverse aspects interweaving cultural heritage. The engagement of humanities and 

natural science once again shows the multifaceted character of this assignment. The present 

thesis focuses on the objective of contributing to a better understanding of stone 

deterioration as a function of material diversity built in an anthropogenic environment.  

Stone procurement and stone preservation have together comprised a crucial question since 

the beginning of building. In the work present, this is distinctively shown for the cathedrals of 

Cologne, Xanten and Altenberg, all of which serves as examples for many other historic 

monuments. At the same time, the recurrent preservation measures indicate that the problem 

of stone deterioration is as old as the buildings themselves. The deterioration of stone is a 

feedback mechanism of the material itself and the environment in terms of physical, chemical 

and biological processes. The environment constitutes of the proximity within the building’s 

structure and orientation, as well as the further ambience of the building’s location in an 

industrial, urban or rural environment. For the three cathedrals investigated, three different 

environments are discerned. Their ambient climatic conditions do not differ significantly, but 

in terms of pollutant impact, strong divergences are ascertained. Cologne and Xanten show 

high fluxes of SO2 and particulate matter, whereas Altenberg shows low values, similar to a 

clean air region.  

Furthermore, measurements for building-physical data assessment were conducted. The 

measurements of temperature and relative humidity within several building stones in different 

building sections at Cologne cathedral determine a clear correlation with cardinal directions. 

In comparison with the outside climate, each individual climate within the stones has been 

detected. The various sensors placed at a deeper position inside the stones show generally 

higher values of relative humidity than those sensors positioned closer to the surface of the 

stones. This correlates well with numerous models for deterioration processes; e.g., scaling, 

where a zone of maximum moisture is defined within the stone at which salts preferably 

accumulate leading to a zone of disintegration and disruption. In the case of different 

adjacent natural building stones, the relative humidity measured in one stone correlates with 

the humidity values of the neighboring stone. In the proximity areas towards the adjacent 

stone with a higher water balance, the stone with originally lower humidity values shows 

increased moisture content. Thus, this may point to possible interferences on the part of 

different building materials and contribute to the understanding of observed deterioration 

phenomena. 
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For the eight investigated “cathedral stones”, the Drachenfels trachyte, the Stenzelberg latite, 

the Obernkirchen and Schlaitdorf sandstones, the Krensheim Muschelkalk, and the Londorf 

basalt lava as well as the Montemerlo trachyte and the Bozanov sandstone, typical 

deterioration phenomena were ascertained. In particular, the medieval Drachenfels trachyte 

shows severe deterioration in the form of scaling, flaking, crack formation and crumbling to 

total fabric collapse. If the Drachenfels trachyte is placed adjacent to carbonate stone, i.e., 

Krensheim Muschelkalk, an increased susceptibility to these decay phenomena can be 

noticed. The other stones investigated exhibit decay as well – most notably, crust formation 

is detected not only on the limestone but in the silicate stones as well. If the decay at the 

three locations of the cathedrals in the different industrial, urban and rural environmental 

situations is compared, a clear decreasing gradient of deterioration can be noticed from a 

higher to a decreased level of pollution impact, respectively. At all three cathedrals, the 

Drachenfels trachyte shows scaling and flaking, which are the typical deterioration 

phenomena of this stone and are due to its mineral compositional and textural features as 

well its petrophysical properties. The intensity of decay varies significantly from the industrial 

to rural environment, indicating a strong pollution impact on the decay of the stones. 

To understand the deterioration behavior of the stones and possible interactive deterioration 

processes, it is important to determine the basic petrophysical data. The different building 

stones employed at Cologne cathedral show a diverse petrography and mineralogical 

composition, as well as a broad variety of petrophysical properties. The various ascertained 

parameters are correlated with the deterioration processes and the observed decay 

phenomena. Interactive processes are elucidated and possible decay scenarios are 

described. Moisture properties, which in turn are determined by petrophysical features, 

become the center of focus in terms of any evaluation of stone compatibility. A huge water 

exchange in the microstructure of the stone is generally correlated to a huge rise of 

pollutants, which not only supports the decay potential for salt and frost deterioration, but 

also provides the necessary elements for chemical deterioration. 

The experimental assessment of the drying property, freeze-thaw resistivity and salt-

weathering resistance of the “cathedral stones” all contribute to an understanding of the 

different physical deterioration processes of the stones. As expected, the drying properties of 

the eight investigated stones differ significantly, as does the salt-weathering resistivity. Here, 

the two trachyte stones – Montemerlo and Drachenfels – show the lowest resistance. 

Chemical tests and experiments allow an empirical approach to be taken towards the 

chemical deterioration processes within the natural building stones investigated. Their 

general resistivity against acidic impact, e.g., from an industrial pollution environment, is 

detected. Furthermore, the solution in different leachants illustrates the different chemical 

weathering reactions taking place as regards the environment-related deterioration of the 
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stones. It is shown that the leachability of the various elements from the different stones 

differs significantly and is not just dependent upon the mineral composition of the individual 

stones or the weather resistivity of the rock-forming minerals. Leachability also depends 

upon the solute’s composition and concentration, the reaction time and temperature, as well 

as mineral grain sizes and textural features. The experiments elucidate the many-faceted 

situation of environmental deterioration, whereby several concurrently weathering reactions 

and products enhance or hinder each other. 

After the assessment of the different environmental situations at the three cathedrals and the 

ascertainment of the specific deterioration phenomena of the individual stones, and following 

from the empirical investigations of their material characteristics and behavior in terms of the 

impact of extrinsic factors – e.g., temperature, moisture, mechanical load, salts, the impact of 

chemicals – the next consequential step was the investigation and comparison of the 

pollution-related deterioration of the various stones in situ in the context of the buildings 

themselves at the three different locations. 

Black weathering crusts are ascertained as an indicator for pollution-related stone 

deterioration. The investigation of this deterioration phenomenon discriminates between 

types of weathering crusts: laminar crusts tracing the surface and thick framboidal crusts, 

often associated with the disintegration of the stone material underneath. As element 

composition analyses show, these crusts mainly consist of gypsum. This is to be attributed to 

the high SO2 immission of the anthropogenic pollution’s impact, whereas the declining SO2 

concentrations in the air indicate that the impact of past pollution, which is still detectable 

within the stones, has to be considered as well. The formation of these gypsum crusts is not 

restricted to carbonate stone but can be observed on silicate stone as well, indicating the 

major extrinsic environmental impact in the form of atmospheric gases as well as particulate 

matter. Furthermore, the detection of increasing concentrations of heavy metals within the 

crusts indicates a strong correlation to anthropogenic combustion pollution from fossil fuels. It 

is shown that the form of the manifestation of the crusts differs significantly within the three 

locations. Crystal growth sizes are clearly distinguished, from larger crystals in samples from 

the Cologne cathedral to almost more or less minor salt efflorescence in the samples from 

the Altenberg cathedral. Especially in the industrial environment at Cologne, crust formation 

and the related structural deterioration is massive while, in the rural environment at 

Altenberg, crust formation is not very significant – thus correlated stone deterioration is less.  

Furthermore, it is shown that the formation of gypsum crusts can be enhanced by 

interferences between different building materials, e.g., mortars and adjacent stones (i.e., 

carbonate stone). The surface character and exposition of the relevant building stones pose 

a crucial question for the formation of the weathering crusts – the promotion or hindrance of 

the deposition of settling dust, as well the formation processes, are coupled with the 
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corresponding moisture supply. In addition, the onsite measurements of moisture and 

temperature distribution illustrate the possible feedback mechanisms of adjacent stones in 

terms of their water balance, leading to higher water importation into stones, which originally 

yield lower water content. 

The sum of the investigations and observations made within the present work leads to a 

model for the deterioration of the Drachenfels trachyte. Through the environmental impact, a 

certain mineral corrosion of feldspar grains – especially from the cryptocrystalline matrix – 

takes place, leading to mineral grain comminution and the opening of new path-ways. As a 

result of the extrinsic import of calcite and sulfur components, gypsum crystal growth and the 

formation of weathering crusts are detected. The crusts in turn enhance moisture-related 

deterioration processes by hindering the drying of the stone. This higher moisture content 

has many-faceted consequences. The effect on the mesostasis of altered volcanic glass 

fractions becomes significantly intensified; through the high capillarity of these interstitial 

fillings, water import and moisture dilatation increase significantly in these areas delimitated 

by surrounding feldspar crystals. The dilatation processes of the swell-able clay mineral 

montmorillonite – which is found within these areas as well as in the entire pore space of the 

Drachenfels trachyte – cause severe structural impairment, leading to an enlargement of 

secondary porosity. Due to this increased pore space in the stone and the higher moisture 

content within, the solubility of gypsum and the migration into sensitive zones are increased, 

leading to higher salt accumulation and intensified salt deterioration. In addition, moisture 

dilatation processes and the swelling of clay minerals become irreversible due to the ionic 

import through gypsum. The interaction of these feedback deterioration mechanisms leads to 

continuously advancing corrosion and the delocalization of mineral grains. Thus, the 

increasing disintegration of the stone material and crumbling further advances, finally 

resulting in total fabric collapse. 

Regarding stone decay as a function of the material mix in an environmental-climatic and 

building-physical context, it is seen that the petrophysical and mechanical properties of the 

stones are highly relevant. Besides water uptake, strength properties and thermal behavior, 

the freeze-thaw-cycle stability and the salt deterioration resistivity are important as well. 

Through the mechanical degradation of the stone’s framework and the mineral compound 

structure, the reaction surface for chemical weathering reactions is enlarged. The chemical 

weather resistivity of the natural building stones is determined by the mineral composition 

and mineral weather resistivity, as well as the textural features of the stones, depending 

upon the environmental pollution’s impact and the building’s physics (e.g., the exposure of 

the building section). The investigations described within the thesis indicate possible decay 

scenarios and the incompatibilities of different stones to each other. For the conservation and 
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preservation of natural building stone, it is important to understand these deterioration 

processes and to control and counteract them. 

The preservation of historic monuments is informed by the choice of adequate construction 

materials. This holds for the origination of the building and for later renovation works as well 

– thus, it holds for the right choice of compatible replacement material. Within the literature, 

guidelines are given for the selection of adequate replacement stones, concerning their 

mineralogical composition, optical features and petrophysical properties. These general 

criteria are to be referred to with the original stone, which needs to be replaced. In many 

historic buildings, a number of different stones are used. Thus, a replacement stone must not 

only to be comparable to the original stone – which is replaced – but must also be compatible 

with all the other stones used within the masonry bond. At Cologne cathedral, the different 

building stones display a diverse petrography and mineralogical composition, as well as a 

broad variety of petrophysical properties. The comparison with valid guidelines reveals that 

the constraints given by the general criteria for replacement materials make it almost 

impossible to find an ideal stone. To support the selection of an adequate replacement 

material, the parameters are recognized and measured in a four-step process of 

assessment, ranking, correlation and matching in terms of a multi-factorial assessment 

analysis. This comprises the assessment of the ascertained petrophysical parameter 

according to a two-fold aspect: first, in terms of their relevance to each other for material 

characterization and, secondly, in respect of their significance to each other for the 

deterioration behavior of the natural building stone. The single valuations – material index 

and decay index – rank the parameters. The rankings are correlated and the key parameters 

are indicated by the highest scores. These key parameters are the relevant criteria for the 

selection of an appropriate replacement stone and should be met by the before mentioned 

requirements for replacement stones. Finally, the key parameters of the “original” stone and 

the potential replacement stone are matched along with the other stones in the masonry 

bond. This selection scheme can be used as an assessment tool for the selection of 

appropriate replacement material for buildings comprising more than one natural building 

stone. Moreover, it can be used for the evaluation of the possible deterioration interferences 

of different building stones placed in one building section and their decay phenomena. Thus, 

it contributes to the understanding of stone decay in a built environment and serves as a 

preservation measures for cultural heritage monuments 

Cologne cathedral is an outstanding monument and a most challenging field of research. The 

insights gained by the present work seek to contribute to the assessment of stone 

preservation at Cologne cathedral and to also support the handling of essential preservation 

needs for any cultural heritage monument, especially those comprised of different building 

materials. 
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11 Outlook 

The studies and methological approaches presented in this work offer starting points for 

future research of the following aspects: 

 The water balance of natural building stones within a building's context determines to a 

great extent, the deterioration of the stone. The methodic development, a technical 

approach and the evaluation of acquired data for long-term and outside measurements of 

material moisture and temperature distribution within natural building stones in situ offers 

a comprehensive field of work.  

 The development of standard laboratory tests for the chemical weathering of natural 

building stones represents a broad subject for scientific research. The aspect relating to 

NOx immission needs further to be elucidated.  

 Computer simulated numeric modeling of the acquired data would constitute a further 

important point of work, contributing to the evaluation and assessment of deterioration 

behavior and the interdependencies of different building materials.  

 An underlying statistical view and thus concretization of the systematic approach for the 

selection of replacement stones opens an interdisciplinary field of work. The data 

reduction would support its use as an evaluation and prognosis tool for cultural heritage 

tasks. 
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Table A3.1 Measuring parameters of the sensors in MF01. 

Messstelle Klimasensor Messbereich Seriennummer Kennwerte

M1 KS01 DT - Bohrlochtiefe: 1,8 cm T09070-146 Temp., Feuchte, Taupunkt, Mischung

M2 KS02 OS - Bohrlochtiefe: 1,8 cm T09070-147 Temp., Feuchte, Taupunkt, Mischung

M3 KS03 DT - Bohrlochtiefe: 3,2 cm T09070-148 Temp., Feuchte, Taupunkt, Mischung

M4 KS04 OS - Bohrlochtiefe: 3,2 cm T09070-149 Temp., Feuchte, Taupunkt, Mischung

M5 KS05 DT - OF NiCr Oberflächentemperatur

M6 KS06 OS - OF NiCr Oberflächentemperatur

M7 KS07 Außenfühler T09070-150 Temp., Feuchte, Taupunkt, Mischung  

 

Table A3.2 Measuring parameters of the sensors in MF02x. 

Messstelle Klimasensor Messbereich Seriennummer Kennwerte

M1 KS01 SS - Bohrlochtiefe: 3,7 cm 11030012 Temp., Feuchte, Taupunkt, Mischung

M2 KS02 DT - Bohrlochtiefe: 3,7 cm 11030018 Temp., Feuchte, Taupunkt, Mischung

M3 KS03 SS - Bohrlochtiefe: 2,3 cm 11010008 Temp., Feuchte, Taupunkt, Mischung

M4 KS04 DT - Bohrlochtiefe: 2,3 cm 11030015 Temp., Feuchte, Taupunkt, Mischung

M5 KS05 SS - OF NiCr Oberflächentemperatur

M6 KS06 DT - OF NiCr Oberflächentemperatur

M7 KS07 Außenfühler 11030013 Temp., Feuchte, Taupunkt, Mischung  

 

Table A3.3 Measuring parameters of the sensors in MF04. 

Gerät A Seriennummer: T09070148

Messstelle Klimasensor Messbereich Seriennummer Kennwerte Bohrlochtiefe

M1 KS01 DT - entfernt KM-OS T09070-138 Temp., Feuchte, Taupunkt, Mischung 3,2 cm

M2 KS02 DT - näher KM-OS T09070-139 Temp., Feuchte, Taupunkt, Mischung 3,2 cm

M3 KS03 KM - nah an DT T09070-140 Temp., Feuchte, Taupunkt, Mischung 3,2 cm

M4 KS04 KM - entfernt von DT T09070-141 Temp., Feuchte, Taupunkt, Mischung 3,2 cm

M5 KS09 KM - OF NiCr Oberflächentemperatur  --

M6 KS11 DT - OF NiCr Oberflächentemperatur  --

Gerät B Seriennummer: T09070150

Messstelle Klimasensor Messbereich Seriennummer Kennwerte

M1 KS05 OS - entfernt KM-DT T09070-142 Temp., Feuchte, Taupunkt, Mischung 3,2 cm

M2 KS06 OS - näher KM-DT T09070-143 Temp., Feuchte, Taupunkt, Mischung 3,2 cm

M3 KS07 KM - nah an OS-DT T09070-144 Temp., Feuchte, Taupunkt, Mischung 3,2 cm

M4 KS08 KM - entfernt von OS-DT T09070-145 Temp., Feuchte, Taupunkt, Mischung 3,2 cm

M5 KS10 OS - OF NiCr Oberflächentemperatur  --

M6 KS12 Außenfühler T09070-151 Temp., Feuchte, Taupunkt, Mischung  --  

 

Table A3.4 Measuring parameters of the sensors in MF07. 

Messstelle Klimasensor Messbereich Seriennummer Kennwerte

M1 KS01 DT - Bohrlochtiefe: 1,8 cm T09070-152 Temp., Feuchte, Taupunkt, Mischung

M2 KS02 DT - Bohrlochtiefe: 3,0 cm T09070-153 Temp., Feuchte, Taupunkt, Mischung

M3 KS03 DT - OF NiCr Oberflächentemperatur

M4 KS04 OS - Bohrlochtiefe: 1,8 cm T09070-154 Temp., Feuchte, Taupunkt, Mischung

M5 KS05 OS - Bohrlochtiefe: 3,0 cm T09070-155 Temp., Feuchte, Taupunkt, Mischung

M6 KS06 OS - OF NiCr Oberflächentemperatur

M7 KS07 Außenfühler T09070-156 Temp., Feuchte, Taupunkt, Mischung  
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Table A.5.1 XRF analyses of the investigated stones 
 

 

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 H2O CO2 sum

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) % % %

Krensheim Muschelkalk 0.70 0.01 1.52 0.19 0.05 0.45 52.25 0.70 0.05 0.08 0.40 43.28 99.68

Schlaitdorf sandstone 88.66 0.03 4.88 0.12 0.01 0.87 1.31 0.07 0.10 0.02 1.36 2.45 99.88

Obernkirchen sandstone 92.63 0.57 3.91 0.11 0.01 0.05 0.03 0.80 0.17 0.03 1.12 0.15 99.57

Bozanov sandstone 92.56 0.03 4.34 0.09 0.01 0.09 0.09 0.33 1.62 0.01 0.55 0.08 99.79

Drachenfels trachyte 63.66 0.66 17.46 3.23 0.11 0.78 2.40 4.44 5.58 0.17 0.76 0.12 99.36

Montemerlo trachyte 61.71 0.82 18.20 4.30 0.09 1.10 2.12 5.19 4.73 0.43 0.85 0.09 99.63

Stenzelberg latite 56.12 1.85 18.30 6.78 0.10 1.47 4.95 4.17 4.05 0.46 1.11 0.13 99.48

Londorf basalt lava 49.54 2.57 14.35 10.62 0.15 8.20 8.23 3.30 1.32 0.35 0.93 0.17 99.72
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Table A.7.0 Concentrations of MSA solutions 
 

Stone 
MSA  

(0.01 mol/l) 
MSA  

(1 mol/l) 
demin. 
aqua 

pH  
after 24 h 

 ml ml ml  

Drachenfels trachyte 6.5  18.5 4.76 

Montemerlo trachyte 4.2  20.8 5.11 

Krensheim Muschelkalk 1  19.0 6.0 6.9 

Krensheim Muschelkalk 2  19.5 5.5 2.28 

Bozanov sandstone 2.8  22.2 4.18 

Schlaitdorf sandstone  0.9 24.1 4.07 

Londorf basalt lava 15.0  10.0 3.87 

Stenzelberg latite 12.0  13.0 4.03 

Obernkirchen sandstone  1.5  23.5 4.32 

 
 

 

Table A7.1 Preparation of leachents 

Buffer solution pH 3.4 analogous Kolthoff, concentration: 1/50 

Parent solution A: 19.1 g borax Na2B4O7*10H2O in 1000ml (eq. 0,05m) 

Parent solution B: 5.9 g succinic acid C4H6O4 

37.44 ml solution B + 2.56 ml solution A, filled up with demin. water to 2000 ml 

Buffer solution  pH 7,0 analogous Palitzsch, concentration: 1/50 

Parent solution A: 19.1 g borax Na2B4O7*10H2O in 1000ml (eq. 0,05m) 

Parent solution B: 0.2 mol/l boric acid, 12.368 g H3BO3 diluted in 1000ml demin. water  

37.64 ml solution B + 2.36ml solution A, filled up with demin. water to 2000 ml 

Buffer solution pH 8.4 analogous Palitzsch, concentration: 1/50 

Parent solution A: 19.1 g borax Na2B4O7*10H2O in 1000ml (eq. 0,05m) 

Parent solution B: 0.2 mol/l boric acid, 12.368 g H3BO3 diluted in 1000ml demin. water  

22.08 ml solution B + 17.92 ml solution A, filled up with demin. water to 2000 ml 

Saturated gypsum solution CaSO4*2H2O 

Gypsum powder is steeped in demin. water for several days. Supernatant is decanted, sediment is 

rinsed two times with diluted sulfuric acid pH 3 (3 drops/100 ml). Then two times rinsed with demin. 

water, with sedimentation time in between. Afterwards dried at 40 °C several days, clear supernatant 

removed: oversaturated gypsum solution is yielded. 
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Table A7.2 Data of the detected pH values (a) fine sample fraction; (b) coarse sample fraction 

a
Fine sample fraction mean value of 3 measurements

stone material leachant Ch1Wo1 Ch1Wo2 Ch1Wo3 Ch2Wo4 Ch2Wo8 Ch3Wo12

Schlaitdorfer sandstone demin water 8.55 8.18 7.94 7.41 7.79 7.83

SS pH 7.0 8.39 8.27 7.06 8.06 8.22 8.05

SS pH 8.4 8.66 8.60 8.37 8.34 8.48 8.10

SS oversat. gypsum sol. 7.85 7.80 8.55 7.47 7.67 7.88

Obernkirchner sandstone demin water 6.98 7.22 7.41 7.34 7.23 7.35

OS pH 3.4 6.53 6.79 6.53 7.17 6.67 7.23

OS pH 7.0 6.79 7.08 7.13 7.25 7.23 7.62

OS pH 8.4 7.77 8.16 8.35 7.49 7.77 7.48

OS oversat. gypsum sol. 6.21 6.31 6.86 7.02 6.27 6.41

Bozanov sandstone demin water 7.12 7.04 7.36 7.11 7.48 7.32

BS pH 3.4 6.83 6.08 5.71 7.04 7.08 7.38

BS pH 7.0 6.99 7.05 7.37 6.92 7.20 7.28

BS pH 8.4 7.71 8.25 8.37 7.53 8.20 7.61

BS oversat. gypsum sol. 6.28 6.03 6.84 6.48 6.31 6.17

Drachenfels trachyte demin water 8.98 8.63 8.36 7.25 7.35 7.37

DT pH 3.4 7.32 6.26 5.23 7.24 6.74 7.69

DT pH 7.0 8.30 8.19 7.81 7.85 8.11 8.10

DT pH 8.4 8.73 8.57 8.56 8.53 8.49 8.20

DT oversat. gypsum sol. 7.88 7.71 7.43 7.40 7.12 7.11

Montemerlo trachyte demin water 8.17 8.37 8.12 6.93 7.58 7.78

MT pH 3.4 7.65 6.56 5.94 7.53 7.34 7.87

MT pH 7.0 8.26 7.93 7.70 6.84 7.78 7.88

MT pH 8.4 8.58 8.44 8.43 8.22 8.20 7.80

MT oversat. gypsum sol. 7.57 7.07 7.14 7.33 7.10 7.20

Stenzelberg latite demin water 8.28 7.88 7.45 7.74 7.58 8.05

SL pH 3.4 7.99 7.06 6.81 7.68 7.60 8.12

SL pH 7.0 8.01 7.31 7.21 7.61 7.35 7.71

SL pH 8.4 8.55 8.20 8.35 7.78 7.54 7.90

SL oversat. gypsum sol. 7.59 7.15 6.78 7.47 6.98 7.49

Londorfer basalt lava demin water 9.01 8.62 7.76 7.69 7.95 7.95

LB pH 3.4 8.03 7.14 6.19 7.69 7.60 8.19

LB pH 7.0 8.44 7.94 7.86 8.07 7.89 8.10

LB pH 8.4 8.77 8.53 8.48 8.51 8.33 8.09

LB oversat. gypsum sol. 8.13 7.57 7.67 7.74 7.43 7.78  
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b
Coarse sample fraction mean value of 3 measurements

stone material leachant Ch1Wo1 Ch1Wo2 Ch1Wo3 Ch2Wo4 Ch2Wo8 Ch3Wo12

Schlaitdorfer sandstone demin water 8.18 8.13 6.96 7.48 7.52 7.90

SS pH 7.0 8.18 8.09 7.75 8.17 8.17 7.99

SS pH 8.4 8.57 8.56 8.23 8.22 8.44 8.13

SS oversat. gypsum sol. 7.68 7.58 8.49 6.69 6.98 7.32

Obernkirchner sandstone demin water 6.96 6.59 6.97 7.23 6.66 6.91

OS pH 3.4 6.88 6.65 6.79 7.40 7.01 7.05

OS pH 7.0 6.92 6.90 6.60 7.24 6.67 6.79

OS pH 8.4 7.55 7.85 7.89 7.42 7.17 7.19

OS oversat. gypsum sol. 6.19 5.88 6.25 6.38 5.62 5.97

Bozanov sandstone demin water 7.79 7.67 7.09 7.01 7.59 7.04

BS pH 3.4 6.68 6.79 6.87 6.76 7.44 7.14

BS pH 7.0 6.27 6.72 6.90 6.84 7.05 6.69

BS pH 8.4 6.88 6.84 7.47 6.96 7.08 6.77

BS oversat. gypsum sol. 4.40 4.72 4.72 4.63 4.48 4.48

Drachenfels trachyte demin water 7.01 7.13 7.35 7.48 6.70 7.19

DT pH 3.4 7.18 6.98 6.87 7.79 6.99 7.26

DT pH 7.0 8.01 7.78 7.82 7.79 7.15 7.47

DT pH 8.4 8.10 8.22 8.22 7.71 7.44 7.47

DT oversat. gypsum sol. 7.44 7.26 7.09 7.43 6.68 7.11

Montemerlo trachyte demin water 7.49 7.38 6.60 7.61 7.42 6.90

MT pH 3.4 7.71 7.38 7.05 7.49 7.04 7.32

MT pH 7.0 7.19 6.99 7.15 6.94 6.92 7.48

MT pH 8.4 7.55 7.64 7.70 7.06 7.13 7.15

MT oversat. gypsum sol. 7.30 7.00 7.43 6.83 6.41 6.77

Stenzelberg latite demin water 6.80 6.82 6.91 7.20 7.10 6.88

SL pH 3.4 6.66 6.49 6.90 7.15 6.53 6.82

SL pH 7.0 6.94 6.84 7.20 7.17 6.54 6.51

SL pH 8.4 7.62 7.98 8.02 7.44 7.01 6.97

SL oversat. gypsum sol. 6.43 6.06 5.96 6.86 6.05 6.39

Londorfer basalt lava demin water 7.04 6.64 6.68 7.23 6.63 6.91

LB pH 3.4 7.10 6.67 6.84 7.42 6.71 7.03

LB pH 7.0 7.37 6.98 6.87 7.53 6.92 6.99

LB pH 8.4 7.95 7.79 8.05 7.64 7.35 7.52

LB oversat. gypsum sol. 7.07 6.13 6.45 6.59 6.25 6.62

blank demin water 5.74 6.52 5.73 5.75 6.13 6.04

BP pH 3.4 3.66 3.69 3.60 3.65 3.86 3.90

BP pH 7.0 7.88 6.97 6.77 6.81 6.80 6.46

BP pH 8.4 8.35 8.27 8.28 7.76 8.23 7.73

BP oversat. gypsum sol. 5.74 4.92 6.05 4.85 4.91 4.82  
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Table A7.3 Concentrations of leached fractions (g/kg) from the Schlaitdorf sandstone (fine and coarse grain size) 

 
SS SS

fine fraction coarse fraction

leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na g/kg 0,03 0,04 0,18 -0,11 0,14 Na g/kg 0,04 0,03 0,08 -0,04 0,11

K g/kg 0,05 0,05 0,05 0,07 0,23 K g/kg 0,02 0,02 0,02 0,03 0,09

Mg g/kg 0,05 0,08 0,05 0,15 0,33 Mg g/kg 0,02 0,02 0,02 0,07 0,13

Ca g/kg 0,10 0,12 0,09 4,06 4,37 Ca g/kg 0,03 0,03 0,01 1,51 1,59

TOTAL g/kg 0,23 0,30 0,38 4,17 5,07 TOTAL g/kg 0,10 0,11 0,14 1,57 1,92

Na g/kg 0,01 0,00 0,14 -0,13 0,02 Na g/kg 0,00 0,00 0,05 -0,05 0,00

K g/kg 0,02 0,02 0,02 0,02 0,08 K g/kg 0,01 0,01 0,01 0,01 0,03

Mg g/kg 0,03 0,07 0,05 0,04 0,18 Mg g/kg 0,01 0,02 0,02 0,02 0,06

Ca g/kg 0,12 0,12 0,08 4,12 4,45 Ca g/kg 0,01 0,03 0,01 1,61 1,66

TOTAL g/kg 0,18 0,21 0,30 4,05 4,73 TOTAL g/kg 0,03 0,06 0,09 1,58 1,75

Na g/kg 0,00 Na g/kg 0,00

K g/kg 0,01 K g/kg 0,00

Mg g/kg 0,03 Mg g/kg 0,01

Ca g/kg 0,06 Ca g/kg 0,01

TOTAL g/kg 0,10 TOTAL g/kg 0,03

Na g/kg 0,04 0,05 0,18 -0,11 0,16 Na g/kg 0,01 0,01 0,01 0,00 0,02

K g/kg 0,06 0,06 0,05 0,07 0,23 K g/kg 0,00 0,00 0,00 0,00 0,01

Mg g/kg 0,08 0,10 0,06 0,17 0,41 Mg g/kg 0,01 0,01 0,01 0,01 0,03

Ca g/kg 0,13 0,14 0,10 5,43 5,81 Ca g/kg 0,01 0,02 0,01 0,01 0,05

TOTAL g/kg 0,32 0,34 0,40 5,56 6,62 TOTAL g/kg 0,02 0,04 0,03 0,02 0,11

concentration of leached element (g/kg) concentration of leached element (g/kg)
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Table A7.4 Leachabilities of the individual fractions (% of wt. %) from the Schlaitdorf sandstone (fine and coarse 

grain size) 

 
SS SS

fine fraction coars fraction

host rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL
host rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na 0,05 6,65 8,30 34,18 -21,45 27,67 Na 0,05 6,84 5,60 16,19 -6,99 21,65

K 0,08 6,26 6,59 6,44 8,32 27,62 K 0,08 2,29 2,36 2,58 3,53 10,77

Mg 0,52 0,95 1,47 1,04 2,91 6,37 Mg 0,52 0,36 0,46 0,36 1,31 2,49

Ca 0,94 1,04 1,32 0,98 43,31 46,65 Ca 0,94 0,29 0,37 0,16 16,11 16,93

TOTAL 1,60 1,46 1,87 2,36 26,10 31,80 TOTAL 1,60 0,63 0,67 0,87 9,84 12,01

Na 0,05 1,28 0,84 27,44 -25,58 3,97 Na 0,05 0,72 0,55 9,39 -9,86 0,80

K 0,08 2,49 2,20 2,63 2,17 9,49 K 0,08 0,83 0,82 1,19 0,80 3,64

Mg 0,52 0,50 1,30 0,93 0,79 3,52 Mg 0,52 0,19 0,38 0,30 0,32 1,19

Ca 0,94 1,30 1,24 0,90 44,05 47,48 Ca 0,94 0,09 0,31 0,13 17,18 17,70

TOTAL 1,60 1,10 1,29 1,86 25,38 29,64 TOTAL 1,60 0,18 0,36 0,54 9,90 10,99

Na 0,05 0,19 Na 0,05 0,05

K 0,08 1,28 K 0,08 0,43

Mg 0,52 0,57 Mg 0,52 0,19

Ca 0,94 0,65 Ca 0,94 0,12

TOTAL 1,60 0,64 TOTAL 1,60 0,16

Na 0,05 8,50 8,95 35,51 -21,42 31,54 Na 0,05 1,20 1,37 1,37 -0,76 3,18

K 0,08 6,65 6,73 6,35 8,28 28,00 K 0,08 0,19 0,24 0,25 0,19 0,87

Mg 0,52 1,59 1,83 1,22 3,25 7,90 Mg 0,52 0,11 0,20 0,15 0,14 0,59

Ca 0,94 1,44 1,54 1,06 58,04 62,08 Ca 0,94 0,10 0,20 0,15 0,13 0,58

TOTAL 1,60 1,99 2,15 2,51 34,85 41,50 TOTAL 1,60 0,14 0,24 0,19 0,11 0,69
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Table A7.5 Concentrations of leached fractions (g/kg) from the Drachenfels trachyte (fine and coarse grain size) 

 
DT DT

fine fraction coarse fraction

leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na g/kg 0,11 0,13 0,12 0,06 0,13 0,55 Na g/kg 0,02 0,03 0,03 0,00 0,03 0,10

K g/kg 0,07 0,13 0,10 0,10 0,19 0,60 K g/kg 0,02 0,04 0,04 0,03 0,09 0,22

Mg g/kg 0,00 0,03 0,01 0,01 0,07 0,13 Mg g/kg 0,00 0,00 0,00 0,00 0,03 0,03

Ca g/kg 0,03 0,29 0,12 0,09 -0,28 0,24 Ca g/kg 0,02 0,04 0,05 0,02 -0,12 0,01

TOTAL g/kg 0,21 0,58 0,35 0,26 0,12 1,52 TOTAL g/kg 0,06 0,11 0,12 0,05 0,03 0,36

Na g/kg 0,03 0,04 0,03 0,00 0,02 0,11 Na g/kg 0,01 0,01 0,01 0,00 0,00 0,01

K g/kg 0,05 0,08 0,06 0,06 0,07 0,32 K g/kg 0,01 0,03 0,03 0,02 0,05 0,13

Mg g/kg 0,00 0,02 0,01 0,01 0,02 0,06 Mg g/kg 0,00 0,00 0,00 0,00 0,01 0,01

Ca g/kg 0,00 0,17 0,11 0,09 -0,04 0,35 Ca g/kg -0,01 0,02 0,03 0,01 0,02 0,08

TOTAL g/kg 0,09 0,30 0,21 0,16 0,08 0,84 TOTAL g/kg 0,01 0,06 0,07 0,02 0,08 0,24

Na g/kg 0,01 0,02 0,01 0,01 0,01 0,06 Na g/kg 0,00 0,00 0,00 0,00 0,00 0,00

K g/kg 0,03 0,05 0,03 0,03 0,03 0,18 K g/kg 0,01 0,02 0,02 0,01 0,03 0,09

Mg g/kg 0,00 0,02 0,00 0,00 0,01 0,03 Mg g/kg 0,00 0,00 0,00 0,00 0,01 0,01

Ca g/kg 0,04 0,12 0,03 0,04 -0,01 0,21 Ca g/kg 0,00 0,02 0,02 0,00 0,00 0,05

TOTAL g/kg 0,08 0,20 0,08 0,08 0,04 0,48 TOTAL g/kg 0,02 0,05 0,05 0,01 0,03 0,15

Na g/kg 0,12 0,13 0,13 0,11 0,15 0,64 Na g/kg 0,02 0,03 0,03 0,02 0,03 0,12

K g/kg 0,09 0,13 0,10 0,10 0,19 0,61 K g/kg 0,05 0,05 0,04 0,04 0,09 0,26

Mg g/kg 0,00 0,03 0,01 0,01 0,07 0,12 Mg g/kg 0,00 0,00 0,00 0,00 0,02 0,04

Ca g/kg 0,06 0,26 0,11 0,07 -0,48 0,01 Ca g/kg 0,08 0,07 0,03 0,05 -0,10 0,14

TOTAL g/kg 0,27 0,55 0,35 0,28 -0,07 1,38 TOTAL g/kg 0,15 0,15 0,10 0,12 0,04 0,56
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Table A7.6 Leachabilities of the individual fractions (% of wt. %) from the Drachenfels trachyte (fine and coarse 

grain size) 

 
DT DT

fine fraction coars fraction

host rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL
host rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na 3,29 0,33 0,40 0,36 0,18 0,41 1,67 Na 3,29 0,06 0,08 0,08 0,00 0,09 0,30

K 4,63 0,16 0,29 0,22 0,22 0,41 1,30 K 4,63 0,05 0,08 0,08 0,05 0,20 0,47

Mg 0,47 0,05 0,63 0,25 0,18 1,57 2,68 Mg 0,47 0,02 0,05 0,05 0,02 0,59 0,74

Ca 1,72 0,17 1,66 0,70 0,50 -1,63 1,41 Ca 1,72 0,09 0,23 0,30 0,12 -0,69 0,04

TOTAL 10,11 0,21 0,57 0,35 0,26 0,12 1,50 TOTAL 10,11 0,06 0,10 0,12 0,05 0,03 0,36

Na 3,29 0,09 0,11 0,08 -0,01 0,07 0,34 Na 3,29 0,02 0,02 0,02 -0,01 0,01 0,04

K 4,63 0,11 0,17 0,12 0,14 0,15 0,69 K 4,63 0,03 0,06 0,06 0,04 0,10 0,29

Mg 0,47 0,03 0,40 0,21 0,17 0,49 1,29 Mg 0,47 0,00 0,03 0,03 0,01 0,25 0,32

Ca 1,72 0,03 0,99 0,66 0,55 -0,21 2,01 Ca 1,72 -0,04 0,13 0,19 0,04 0,12 0,45

TOTAL 10,11 0,09 0,30 0,20 0,16 0,08 0,83 TOTAL 10,11 0,01 0,06 0,07 0,02 0,08 0,24

Na 3,29 0,04 0,05 0,04 0,03 0,04 0,19 Na 3,29 0,01 0,01 0,01 -0,01 0,00 0,01

K 4,63 0,07 0,11 0,06 0,07 0,07 0,39 K 4,63 0,03 0,05 0,04 0,03 0,05 0,20

Mg 0,47 0,04 0,33 0,08 0,07 0,20 0,72 Mg 0,47 0,01 0,03 0,04 0,01 0,12 0,21

Ca 1,72 0,21 0,67 0,20 0,21 -0,08 1,20 Ca 1,72 0,01 0,12 0,14 0,02 -0,01 0,28

TOTAL 10,11 0,08 0,20 0,08 0,08 0,04 0,48 TOTAL 10,11 0,02 0,04 0,05 0,01 0,03 0,15

Na 3,29 0,35 0,41 0,39 0,32 0,46 1,94 Na 3,29 0,07 0,08 0,08 0,06 0,09 0,38

K 4,63 0,19 0,29 0,22 0,21 0,40 1,31 K 4,63 0,11 0,10 0,08 0,09 0,20 0,57

Mg 0,47 0,10 0,54 0,23 0,18 1,57 2,61 Mg 0,47 0,08 0,08 0,04 0,07 0,50 0,77

Ca 1,72 0,34 1,49 0,63 0,42 -2,82 0,06 Ca 1,72 0,45 0,43 0,20 0,32 -0,58 0,81

TOTAL 10,11 0,27 0,54 0,34 0,28 -0,07 1,36 TOTAL 10,11 0,15 0,15 0,10 0,12 0,04 0,56
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Table A7.7 Concentrations of leached fractions (g/kg) from the Montemerlo trachyte (fine and coarse grain size) 

 
MT MT

fine fraction coarse fraction

leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na g/kg 0,08 0,11 0,09 0,06 0,11 0,46 Na g/kg 0,01 0,02 0,01 0,00 0,01 0,04

K g/kg 0,03 0,05 0,03 0,04 0,08 0,24 K g/kg 0,01 0,01 0,01 0,01 0,01 0,04

Mg g/kg 0,01 0,05 0,02 0,01 0,19 0,27 Mg g/kg 0,02 0,03 0,01 0,02 0,10 0,16

Ca g/kg 0,01 0,10 0,03 0,02 -0,34 -0,19 Ca g/kg 0,07 0,10 0,01 0,06 -0,16 0,09

TOTAL g/kg 0,12 0,31 0,17 0,14 0,04 0,79 TOTAL g/kg 0,11 0,15 0,03 0,08 -0,04 0,33

Na g/kg 0,02 0,03 0,02 0,01 0,03 0,12 Na g/kg 0,00 0,00 0,00 -0,01 0,00 0,00

K g/kg 0,02 0,04 0,02 0,03 0,03 0,13 K g/kg 0,00 0,00 0,00 0,00 0,01 0,02

Mg g/kg 0,00 0,03 0,01 0,00 0,05 0,10 Mg g/kg 0,00 0,01 0,00 0,01 0,03 0,06

Ca g/kg 0,02 0,07 0,01 0,01 -0,32 -0,21 Ca g/kg 0,00 0,05 0,00 0,03 -0,06 0,01

TOTAL g/kg 0,06 0,18 0,06 0,05 -0,21 0,14 TOTAL g/kg 0,01 0,06 0,01 0,03 -0,02 0,09

Na g/kg 0,01 0,02 0,01 0,01 0,01 0,06 Na g/kg 0,01 0,00 0,00 0,00 0,00 0,01

K g/kg 0,01 0,03 0,01 0,02 0,02 0,09 K g/kg 0,00 0,00 0,00 0,00 0,00 0,01

Mg g/kg 0,00 0,03 0,00 0,00 0,02 0,05 Mg g/kg 0,00 0,01 0,00 0,00 0,01 0,02

Ca g/kg 0,00 0,06 0,01 0,00 -0,03 0,04 Ca g/kg 0,01 0,03 0,00 0,01 -0,01 0,04

TOTAL g/kg 0,03 0,13 0,04 0,03 0,02 0,25 TOTAL g/kg 0,03 0,04 0,01 0,01 0,00 0,08

Na g/kg 0,10 0,11 0,10 0,10 0,14 0,55 Na g/kg 0,01 0,01 0,01 0,01 0,02 0,06

K g/kg 0,04 0,05 0,04 0,04 0,09 0,26 K g/kg 0,01 0,00 0,00 0,01 0,01 0,03

Mg g/kg 0,01 0,04 0,02 0,02 0,20 0,29 Mg g/kg 0,02 0,01 0,01 0,01 0,10 0,14

Ca g/kg 0,02 0,07 0,04 0,02 -0,47 -0,32 Ca g/kg 0,08 0,02 0,02 0,02 -0,20 -0,07

TOTAL g/kg 0,17 0,27 0,20 0,18 -0,05 0,78 TOTAL g/kg 0,12 0,04 0,04 0,03 -0,07 0,16

concentration of leached element (g/kg) concentration of leached element (g/kg)
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Table A7.8 Leachabilities of the individual fractions (% of wt. %) from the Montemerlo trachyte (fine and coarse 

grain size) 

 
MT MT

fine fraction coars fraction

host 

rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

host 

rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na 3,85 0,21 0,29 0,24 0,16 0,29 1,20 Na 3,85 0,03 0,04 0,02 -0,01 0,03 0,11

K 3,93 0,07 0,14 0,09 0,11 0,20 0,60 K 3,93 0,02 0,02 0,01 0,02 0,03 0,10

Mg 0,66 0,08 0,72 0,28 0,20 2,86 4,14 Mg 0,66 0,31 0,38 0,08 0,24 1,46 2,47

Ca 1,52 0,08 0,63 0,19 0,13 -2,26 -1,24 Ca 1,52 0,47 0,65 0,09 0,39 -1,03 0,58

TOTAL 9,96 0,13 0,31 0,17 0,14 0,04 0,79 TOTAL 9,96 0,11 0,15 0,03 0,08 -0,04 0,34

Na 3,85 0,06 0,08 0,06 0,03 0,07 0,30 Na 3,85 0,00 0,01 0,00 -0,02 0,00 -0,01

K 3,93 0,04 0,09 0,05 0,07 0,09 0,34 K 3,93 0,01 0,01 0,01 0,01 0,01 0,05

Mg 0,66 0,01 0,52 0,11 0,05 0,79 1,49 Mg 0,66 0,06 0,17 0,02 0,10 0,50 0,85

Ca 1,52 0,14 0,49 0,08 0,04 -2,11 -1,36 Ca 1,52 0,01 0,32 0,02 0,17 -0,42 0,09

TOTAL 9,96 0,06 0,18 0,06 0,05 -0,21 0,14 TOTAL 9,96 0,01 0,07 0,01 0,03 -0,02 0,09

Na 3,85 0,03 0,04 0,03 0,01 0,03 0,15 Na 3,85 0,04 0,00 0,00 -0,01 0,00 0,03

K 3,93 0,04 0,07 0,04 0,04 0,05 0,24 K 3,93 0,01 0,01 0,01 0,01 0,01 0,03

Mg 0,66 0,03 0,41 0,06 0,01 0,28 0,79 Mg 0,66 0,04 0,10 0,01 0,03 0,18 0,36

Ca 1,52 0,02 0,39 0,04 0,02 -0,20 0,27 Ca 1,52 0,06 0,20 0,01 0,05 -0,08 0,24

TOTAL 9,96 0,03 0,13 0,04 0,03 0,02 0,25 TOTAL 9,96 0,03 0,04 0,01 0,01 0,00 0,08

Na 3,85 0,25 0,29 0,27 0,26 0,37 1,43 Na 3,85 0,03 0,03 0,03 0,01 0,05 0,15

K 3,93 0,09 0,13 0,11 0,11 0,22 0,65 K 3,93 0,01 0,01 0,01 0,02 0,03 0,09

Mg 0,66 0,19 0,59 0,33 0,24 3,02 4,36 Mg 0,66 0,33 0,08 0,10 0,08 1,54 2,12

Ca 1,52 0,14 0,48 0,24 0,16 -3,12 -2,10 Ca 1,52 0,55 0,10 0,12 0,11 -1,34 -0,46

TOTAL 9,96 0,17 0,27 0,20 0,18 -0,05 0,78 TOTAL 9,96 0,12 0,04 0,04 0,03 -0,07 0,16

Leachability (% of wt. %) Leachability (% of wt. %)
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Table A7.9 Concentrations of leached fractions (g/kg) from the Obernkirchen sandstone (fine and coarse grain 

size) 

 

OS OS
fine fraction coarse fraction

leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na g/kg 0,01 0,01 0,01 -0,05 0,01 -0,01 Na g/kg 0,01 0,01 0,00 -0,01 0,00 0,01

K g/kg 0,04 0,05 0,03 0,01 0,07 0,21 K g/kg 0,01 0,01 0,01 0,01 0,01 0,05

Mg g/kg 0,00 0,01 0,00 0,00 0,01 0,02 Mg g/kg 0,00 0,00 0,00 0,00 0,01 0,01

Ca g/kg 0,01 0,02 0,00 0,00 -0,08 -0,04 Ca g/kg 0,00 0,00 0,00 0,00 -0,01 -0,01

TOTAL g/kg 0,06 0,10 0,05 -0,03 0,01 0,18 TOTAL g/kg 0,02 0,02 0,01 0,00 0,01 0,07

Na g/kg 0,00 0,00 0,00 -0,01 0,00 -0,01 Na g/kg 0,00 0,00 0,00 -0,01 0,00 0,00

K g/kg 0,02 0,02 0,01 0,01 0,02 0,08 K g/kg 0,00 0,01 0,00 0,00 0,01 0,02

Mg g/kg 0,00 0,00 0,00 0,00 0,00 0,00 Mg g/kg 0,00 0,00 0,00 0,00 0,00 0,00

Ca g/kg -0,04 0,01 0,00 0,00 0,04 0,01 Ca g/kg 0,00 0,01 0,00 0,00 -0,01 0,00

TOTAL g/kg -0,03 0,04 0,02 0,01 0,05 0,08 TOTAL g/kg 0,00 0,01 0,01 0,00 0,00 0,02

Na g/kg 0,00 0,00 0,00 0,00 0,00 0,00 Na g/kg 0,00 0,00 0,00 0,00 0,00 0,00

K g/kg 0,01 0,01 0,01 0,01 0,02 0,06 K g/kg 0,00 0,00 0,00 0,00 0,00 0,01

Mg g/kg 0,00 0,00 0,00 0,00 0,00 0,00 Mg g/kg 0,00 0,00 0,00 0,00 0,00 0,00

Ca g/kg 0,00 0,00 0,00 0,00 -0,02 -0,01 Ca g/kg 0,00 0,00 0,00 0,00 0,13 0,13

TOTAL g/kg 0,01 0,02 0,01 0,01 0,01 0,05 TOTAL g/kg 0,00 0,00 0,00 0,00 0,13 0,13

Na g/kg 0,01 0,02 0,01 0,00 0,02 0,06 Na g/kg 0,01 0,01 0,01 0,00 0,00 0,03

K g/kg 0,04 0,04 0,04 0,02 0,07 0,21 K g/kg 0,01 0,01 0,01 0,00 0,00 0,04

Mg g/kg 0,00 0,00 0,00 0,00 0,01 0,01 Mg g/kg 0,00 0,00 0,00 0,00 0,01 0,01

Ca g/kg 0,00 0,00 0,00 0,00 -0,20 -0,19 Ca g/kg 0,00 0,00 0,00 0,00 -0,01 -0,01

TOTAL g/kg 0,05 0,06 0,05 0,02 -0,10 0,09 TOTAL g/kg 0,02 0,02 0,02 0,01 0,00 0,06
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Table A7.10 Leachabilities of the individual fractions (% of wt. %) from the Obernkirchen sandstone (fine and 

coarse grain size) 

 

OS OS
fine fraction coars fraction

host 

rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

host 

rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na 0,59 0,15 0,24 0,21 -0,85 0,15 -0,10 Na 0,59 0,09 0,15 0,07 -0,15 0,04 0,20

K 0,14 2,62 3,88 2,46 1,05 4,72 14,74 K 0,14 0,92 1,03 0,47 0,39 0,86 3,67

Mg 0,03 0,37 2,14 0,27 0,00 4,21 7,00 Mg 0,03 0,09 0,09 0,09 0,09 2,31 2,67

Ca 0,02 4,30 11,48 0,98 0,40 -35,78 -18,61 Ca 0,02 0,50 0,32 0,19 0,27 -4,11 -2,82

TOTAL 0,79 0,72 1,27 0,64 -0,44 0,14 2,33 TOTAL 0,79 0,25 0,31 0,15 -0,03 0,16 0,83

Na 0,59 0,00 0,05 0,03 -0,13 -0,08 -0,12 Na 0,59 0,01 0,02 0,01 -0,13 0,02 -0,07

K 0,14 1,20 1,28 1,03 0,87 1,07 5,46 K 0,14 0,34 0,37 0,19 0,20 0,42 1,53

Mg 0,03 -0,42 1,19 0,27 0,00 0,34 1,39 Mg 0,03 -0,04 0,11 0,09 0,09 0,23 0,47

Ca 0,02 -20,46 4,84 0,38 0,40 17,33 2,50 Ca 0,02 -0,10 2,39 0,77 0,18 -2,99 0,24

TOTAL 0,79 -0,36 0,45 0,23 0,07 0,62 1,01 TOTAL 0,79 0,06 0,15 0,07 -0,06 0,02 0,24

Na 0,59 0,00 0,02 0,03 -0,01 -0,01 0,03 Na 0,59 -0,01 0,01 0,00 -0,05 0,00 -0,05

K 0,14 0,69 0,61 0,51 0,50 1,70 4,01 K 0,14 0,18 0,23 0,11 0,10 0,05 0,66

Mg 0,03 0,00 0,49 0,14 0,00 0,15 0,77 Mg 0,03 0,00 0,00 0,00 0,00 0,06 0,06

Ca 0,02 -0,36 1,94 0,31 0,22 -8,12 -6,01 Ca 0,02 -0,15 -0,14 0,06 0,07 58,80 58,65

TOTAL 0,79 0,11 0,19 0,13 0,09 0,08 0,61 TOTAL 0,79 0,02 0,04 0,02 -0,02 1,62 1,69

Na 0,59 0,17 0,27 0,24 0,04 0,27 0,99 Na 0,59 0,11 0,13 0,15 0,03 0,08 0,50

K 0,14 2,80 3,17 2,68 1,45 4,71 14,82 K 0,14 0,78 0,64 0,70 0,29 0,25 2,66

Mg 0,03 0,27 0,12 0,28 0,26 4,00 4,94 Mg 0,03 0,09 0,01 0,09 0,09 2,31 2,58

Ca 0,02 0,12 0,71 0,04 0,04 -91,35 -90,44 Ca 0,02 0,01 0,01 0,01 0,01 -5,33 -5,28

TOTAL 0,79 0,64 0,80 0,68 0,30 -1,29 1,13 TOTAL 0,79 0,23 0,21 0,24 0,08 0,05 0,81
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Table A7.11 Concentrations of leached fractions (g/kg) from the Bozanov sandstone (fine and coarse grain size) 

 
BS BS

fine fraction coarse fraction

leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na g/kg 0.01 0.01 0.00 -0.07 0.00 -0.05 Na g/kg 0.00 0.01 0.00 -0.05 0.00 -0.04

K g/kg 0.03 0.06 0.03 0.01 0.11 0.25 K g/kg 0.00 0.01 0.00 0.00 0.01 0.02

Mg g/kg 0.00 0.01 0.00 0.00 0.09 0.10 Mg g/kg 0.00 0.00 0.00 0.00 0.04 0.04

Ca g/kg 0.00 0.03 0.00 0.00 -0.27 -0.24 Ca g/kg 0.00 0.00 0.00 0.00 -0.11 -0.10

TOTAL g/kg 0.05 0.11 0.03 -0.06 -0.07 0.06 TOTAL g/kg 0.01 0.02 0.00 -0.05 -0.06 -0.08

Na g/kg 0.00 0.00 0.00 -0.03 0.00 -0.03 Na g/kg 0.00 0.00 0.00 -0.04 0.00 -0.05

K g/kg 0.02 0.03 0.02 0.01 0.03 0.11 K g/kg 0.00 0.00 0.00 0.00 0.00 0.01

Mg g/kg 0.00 0.01 0.00 0.00 0.01 0.02 Mg g/kg 0.00 0.00 0.00 0.00 0.01 0.01

Ca g/kg -0.02 0.02 0.00 0.00 -0.02 -0.02 Ca g/kg -0.01 0.00 0.00 0.00 0.01 0.00

TOTAL g/kg 0.00 0.07 0.02 -0.01 0.02 0.08 TOTAL g/kg -0.01 0.00 0.00 -0.04 0.02 -0.03

Na g/kg 0.00 0.00 0.00 -0.01 0.00 0.00 Na g/kg 0.00 0.00 0.00 -0.03 0.00 -0.03

K g/kg 0.02 0.02 0.01 0.01 0.01 0.07 K g/kg 0.00 0.00 0.00 0.00 0.00 0.00

Mg g/kg 0.00 0.01 0.00 0.00 0.00 0.01 Mg g/kg 0.00 0.00 0.00 0.00 0.00 0.00

Ca g/kg 0.00 0.01 0.00 0.00 0.06 0.07 Ca g/kg 0.00 0.00 0.00 0.00 0.03 0.03

TOTAL g/kg 0.02 0.04 0.01 0.01 0.07 0.15 TOTAL g/kg 0.00 0.00 0.00 -0.03 0.04 0.01

Na g/kg 0.00 0.00 0.00 -0.03 0.01 -0.01 Na g/kg 0.00 0.00 0.00 -0.03 0.00 -0.03

K g/kg 0.04 0.05 0.03 0.02 0.11 0.26 K g/kg 0.00 0.00 0.00 0.00 0.01 0.02

Mg g/kg 0.00 0.00 0.00 0.00 0.08 0.09 Mg g/kg 0.00 0.00 0.00 0.00 0.04 0.04

Ca g/kg 0.00 0.00 0.00 0.00 -0.46 -0.45 Ca g/kg 0.00 0.00 0.00 0.00 -0.10 -0.10

TOTAL g/kg 0.05 0.06 0.04 -0.01 -0.25 -0.12 TOTAL g/kg 0.00 0.00 0.00 -0.03 -0.05 -0.08

concentration of leached element (g/kg) concentration of leached element (g/kg)
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Table A7.12 Leachabilities of the individual fractions (% of wt. %) from the Bozanov sandstone (fine and coarse 

grain size) 

 
BS BS

fine fraction coars fraction

host rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL
host rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na 0.24 0.33 0.27 0.16 -3.02 0.12 -2.13 Na 0.24 0.10 0.24 0.03 -2.01 0.09 -1.56

K 1.34 0.26 0.48 0.21 0.10 0.81 1.86 K 1.34 0.02 0.04 0.02 0.00 0.09 0.17

Mg 0.05 0.20 2.16 0.13 0.13 16.52 19.14 Mg 0.05 0.07 0.19 0.05 0.00 7.06 7.37

Ca 0.06 0.27 4.15 0.18 0.11 -42.10 -37.39 Ca 0.06 0.68 0.66 0.12 0.00 -17.29 -15.83

TOTAL 1.71 0.27 0.64 0.20 -0.35 -0.40 0.36 TOTAL 1.71 0.06 0.10 0.03 -0.29 -0.35 -0.45

Na 0.24 0.00 0.10 -0.02 -1.20 -0.13 -1.26 Na 0.24 0.00 -0.02 -0.13 -1.78 -0.06 -1.98

K 1.34 0.14 0.26 0.12 0.10 0.23 0.85 K 1.34 0.01 0.01 0.00 0.00 0.02 0.05

Mg 0.05 -0.21 1.23 0.13 0.13 2.17 3.45 Mg 0.05 -0.06 0.00 0.00 0.00 1.49 1.43

Ca 0.06 -3.40 3.45 0.11 0.11 -3.37 -3.10 Ca 0.06 -1.27 -0.01 0.04 0.04 1.49 0.29

TOTAL 1.71 -0.03 0.39 0.10 -0.08 0.11 0.48 TOTAL 1.71 -0.04 0.01 -0.01 -0.25 0.11 -0.19

Na 0.24 0.00 0.03 0.02 -0.22 0.00 -0.17 Na 0.24 0.00 -0.03 -0.13 -1.11 0.00 -1.27

K 1.34 0.12 0.16 0.08 0.08 0.09 0.53 K 1.34 0.00 0.01 0.00 0.00 0.01 0.02

Mg 0.05 0.00 1.01 0.06 0.00 0.50 1.57 Mg 0.05 0.00 0.02 0.00 0.00 0.39 0.42

Ca 0.06 -0.08 1.82 0.11 0.08 9.19 11.13 Ca 0.06 -0.05 -0.01 0.02 0.05 5.15 5.17

TOTAL 1.71 0.10 0.23 0.07 0.03 0.43 0.86 TOTAL 1.71 0.00 0.00 -0.02 -0.16 0.21 0.04

Na 0.24 0.15 0.20 0.16 -1.22 0.47 -0.24 Na 0.24 0.02 -0.07 0.01 -1.28 0.13 -1.18

K 1.34 0.30 0.39 0.24 0.14 0.84 1.91 K 1.34 0.01 0.01 0.01 0.00 0.08 0.12

Mg 0.05 0.19 0.12 0.15 0.15 15.10 15.72 Mg 0.05 0.05 0.00 0.05 0.05 6.92 7.07

Ca 0.06 0.07 0.16 0.01 0.01 -70.79 -70.53 Ca 0.06 0.00 0.00 0.00 0.00 -15.63 -15.61

TOTAL 1.71 0.27 0.34 0.22 -0.06 -1.46 -0.69 TOTAL 1.71 0.02 0.00 0.02 -0.18 -0.29 -0.44
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Table A7.13 Concentrations of leached fractions (g/kg) from the Stenzelberg latite (fine and coarse grain size) 

 
SL SL

fine fraction coarse fraction

leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na g/kg 0.13 0.18 0.16 0.08 0.20 0.75 Na g/kg 0.05 0.05 0.06 0.02 0.07 0.26

K g/kg 0.03 0.07 0.05 0.04 0.12 0.31 K g/kg 0.01 0.01 0.01 0.01 0.03 0.07

Mg g/kg 0.00 0.03 0.01 0.00 0.19 0.23 Mg g/kg 0.00 0.00 0.00 0.00 0.10 0.11

Ca g/kg 0.01 0.09 0.03 0.01 -0.74 -0.60 Ca g/kg 0.02 0.02 0.01 0.01 -0.23 -0.17

TOTAL g/kg 0.17 0.36 0.24 0.13 -0.23 0.68 TOTAL g/kg 0.08 0.08 0.08 0.04 -0.03 0.26

Na g/kg 0.03 0.05 0.05 0.01 0.04 0.18 Na g/kg 0.01 0.01 0.01 -0.01 0.01 0.01

K g/kg 0.02 0.04 0.03 0.02 0.06 0.17 K g/kg 0.00 0.00 0.00 0.00 0.02 0.03

Mg g/kg 0.00 0.01 0.00 0.00 0.07 0.09 Mg g/kg 0.00 0.00 0.00 0.00 0.05 0.05

Ca g/kg -0.04 0.04 0.01 0.00 -0.27 -0.26 Ca g/kg 0.00 0.00 0.00 0.00 -0.06 -0.06

TOTAL g/kg 0.01 0.14 0.09 0.04 -0.10 0.18 TOTAL g/kg 0.00 0.01 0.01 -0.01 0.01 0.03

Na g/kg 0.03 0.02 0.03 0.00 0.02 0.11 Na g/kg 0.00 0.01 0.00 -0.01 0.00 0.01

K g/kg 0.02 0.03 0.02 0.02 0.03 0.12 K g/kg 0.00 0.00 0.00 0.00 0.01 0.02

Mg g/kg 0.00 0.01 0.01 0.00 0.03 0.05 Mg g/kg 0.00 0.00 0.00 0.00 0.03 0.03

Ca g/kg 0.01 0.03 0.01 0.00 -0.01 0.04 Ca g/kg 0.00 0.00 0.00 0.00 -0.02 -0.02

TOTAL g/kg 0.07 0.09 0.07 0.02 0.08 0.32 TOTAL g/kg 0.01 0.01 0.01 -0.01 0.01 0.03

Na g/kg 0.17 0.19 0.18 0.14 0.22 0.90 Na g/kg 0.05 0.06 0.05 0.05 0.08 0.29

K g/kg 0.05 0.07 0.06 0.05 0.14 0.36 K g/kg 0.01 0.01 0.01 0.01 0.03 0.07

Mg g/kg 0.01 0.02 0.01 0.01 0.20 0.26 Mg g/kg 0.01 0.01 0.00 0.01 0.11 0.13

Ca g/kg 0.02 0.07 0.04 0.02 -0.65 -0.50 Ca g/kg 0.02 0.02 0.01 0.02 -0.28 -0.21

TOTAL g/kg 0.25 0.35 0.28 0.23 -0.09 1.01 TOTAL g/kg 0.09 0.10 0.07 0.09 -0.06 0.29

C
h

1
W

o
3

C
h

1
W

o
3

C
h

2
W

o
4

C
h

2
W

o
4

concentration of leached element (g/kg) concentration of leached element (g/kg)

C
h

1
W

o
1

C
h

1
W

o
1

C
h

1
W

o
2

C
h

1
W

o
2

 
 

 

Table A7.14 Leachabilities of the individual fractions (% of wt. %) from the Stenzelberg latite (fine and coarse 

grain size) 

 
SL SL

fine fraction coars fraction

host rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL
host rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na 3.09 0.42 0.59 0.51 0.27 0.64 2.42 Na 3.09 0.17 0.17 0.18 0.07 0.23 0.83

K 3.36 0.10 0.20 0.14 0.12 0.37 0.92 K 3.36 0.03 0.03 0.03 0.03 0.09 0.20

Mg 0.89 0.04 0.31 0.10 0.04 2.10 2.59 Mg 0.89 0.04 0.05 0.03 0.03 1.14 1.29

Ca 3.54 0.03 0.25 0.07 0.03 -2.08 -1.70 Ca 3.54 0.05 0.05 0.04 0.03 -0.66 -0.49

TOTAL 10.88 0.16 0.33 0.22 0.12 -0.21 0.63 TOTAL 10.88 0.08 0.08 0.08 0.04 -0.03 0.24

Na 3.09 0.11 0.16 0.16 0.02 0.14 0.59 Na 3.09 0.02 0.03 0.02 -0.05 0.02 0.05

K 3.36 0.05 0.11 0.09 0.07 0.18 0.49 K 3.36 0.00 0.01 0.01 0.01 0.05 0.08

Mg 0.89 -0.01 0.15 0.05 0.01 0.79 0.99 Mg 0.89 -0.01 0.00 0.00 0.00 0.57 0.56

Ca 3.54 -0.11 0.12 0.03 0.01 -0.77 -0.73 Ca 3.54 -0.01 0.00 0.00 0.00 -0.17 -0.18

TOTAL 10.88 0.01 0.13 0.09 0.03 -0.09 0.17 TOTAL 10.88 0.00 0.01 0.01 -0.01 0.01 0.03

Na 3.09 0.11 0.07 0.10 0.02 0.07 0.37 Na 3.09 0.02 0.02 0.01 -0.03 0.01 0.02

K 3.36 0.07 0.08 0.07 0.05 0.09 0.36 K 3.36 0.00 0.01 0.00 0.01 0.03 0.05

Mg 0.89 0.04 0.11 0.07 0.00 0.37 0.59 Mg 0.89 0.00 0.00 0.00 0.00 0.30 0.30

Ca 3.54 0.02 0.08 0.03 0.01 -0.03 0.10 Ca 3.54 0.00 0.00 0.00 0.00 -0.07 -0.07

TOTAL 10.88 0.06 0.08 0.07 0.02 0.07 0.30 TOTAL 10.88 0.01 0.01 0.01 -0.01 0.01 0.02

Na 3.09 0.54 0.62 0.57 0.46 0.72 2.91 Na 3.09 0.18 0.20 0.16 0.16 0.25 0.95

K 3.36 0.15 0.20 0.16 0.15 0.40 1.07 K 3.36 0.03 0.03 0.02 0.04 0.10 0.22

Mg 0.89 0.11 0.24 0.15 0.11 2.28 2.88 Mg 0.89 0.06 0.06 0.03 0.07 1.26 1.47

Ca 3.54 0.07 0.19 0.11 0.07 -1.85 -1.42 Ca 3.54 0.05 0.06 0.02 0.07 -0.80 -0.60

TOTAL 10.88 0.23 0.32 0.26 0.21 -0.09 0.93 TOTAL 10.88 0.08 0.09 0.06 0.08 -0.05 0.26
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Table A7.15 Concentrations of leached fractions (g/kg) from the Londorf basalt lava (fine and coarse grain size) 

 
LB LB

fine fraction coarse fraction

leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL leachants
 aq. 

demin.
 pH 3,4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na g/kg 0.07 0.10 0.09 0.04 0.11 0.41 Na g/kg 0.00 0.01 0.00 -0.02 0.01 0.00

K g/kg 0.01 0.02 0.02 0.02 0.04 0.11 K g/kg 0.00 0.00 0.00 0.00 0.01 0.01

Mg g/kg 0.01 0.08 0.04 0.03 0.27 0.42 Mg g/kg 0.00 0.01 0.01 0.01 0.16 0.19

Ca g/kg 0.02 0.14 0.06 0.04 -0.53 -0.28 Ca g/kg 0.01 0.02 0.01 0.01 -0.27 -0.22

TOTAL g/kg 0.11 0.34 0.20 0.12 -0.11 0.66 TOTAL g/kg 0.02 0.04 0.02 0.00 -0.10 -0.01

Na g/kg 0.03 0.03 0.02 0.01 0.02 0.12 Na g/kg 0.00 0.00 0.00 -0.01 0.00 -0.01

K g/kg 0.01 0.01 0.01 0.01 0.02 0.06 K g/kg 0.00 0.00 0.00 0.00 0.01 0.01

Mg g/kg 0.00 0.07 0.02 0.01 0.08 0.19 Mg g/kg 0.00 0.01 0.00 0.00 0.07 0.08

Ca g/kg -0.04 0.10 0.03 0.02 -0.14 -0.03 Ca g/kg 0.00 0.01 0.00 0.00 -0.10 -0.08

TOTAL g/kg 0.00 0.21 0.09 0.06 -0.02 0.34 TOTAL g/kg 0.00 0.02 0.01 -0.01 -0.03 0.00

Na g/kg 0.02 0.02 0.02 0.01 0.01 0.07 Na g/kg 0.00 0.00 0.00 -0.01 0.00 0.00

K g/kg 0.01 0.01 0.01 0.01 0.01 0.04 K g/kg 0.00 0.00 0.00 0.00 0.00 0.01

Mg g/kg 0.01 0.06 0.01 0.00 0.04 0.12 Mg g/kg 0.00 0.00 0.00 0.00 0.03 0.04

Ca g/kg 0.01 0.09 0.02 0.01 -0.17 -0.04 Ca g/kg 0.00 0.01 0.00 0.00 -0.04 -0.03

TOTAL g/kg 0.05 0.18 0.05 0.04 -0.11 0.20 TOTAL g/kg 0.00 0.02 0.01 0.00 -0.01 0.01

Na g/kg 0.10 0.11 0.11 0.08 0.13 0.53 Na g/kg 0.01 0.01 0.01 0.00 0.01 0.03

K g/kg 0.01 0.02 0.02 0.02 0.04 0.11 K g/kg 0.00 0.00 0.00 0.00 0.01 0.02

Mg g/kg 0.02 0.09 0.04 0.03 0.26 0.44 Mg g/kg 0.01 0.01 0.01 0.01 0.17 0.20

Ca g/kg 0.02 0.13 0.06 0.04 -0.70 -0.44 Ca g/kg 0.01 0.02 0.01 0.01 -0.27 -0.22

TOTAL g/kg 0.15 0.36 0.23 0.16 -0.27 0.64 TOTAL g/kg 0.02 0.04 0.03 0.02 -0.08 0.02
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Table A7.16 Leachabilities of the individual fractions (% of wt. %) from the Londorf basalt lava (fine and coarse 

grain size) 

 
LB LB

fine fraction coars fraction

host rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL
host rock     

(wt. %)

 aq. 

demin.
 pH 3.4  pH 7  pH 8

oversat. 

gypsum 

sol.

TOTAL

Na 2.45 0.29 0.40 0.36 0.16 0.46 1.67 Na 2.45 0.01 0.02 0.02 -0.08 0.03 0.01

K 1.10 0.10 0.19 0.15 0.17 0.35 0.96 K 1.10 0.01 0.02 0.01 0.02 0.08 0.14

Mg 4.94 0.01 0.16 0.07 0.05 0.55 0.85 Mg 4.94 0.01 0.02 0.01 0.02 0.33 0.39

Ca 5.88 0.04 0.23 0.10 0.06 -0.90 -0.47 Ca 5.88 0.02 0.04 0.02 0.02 -0.47 -0.37

TOTAL 14.37 0.08 0.24 0.14 0.08 -0.08 0.46 TOTAL 14.37 0.01 0.03 0.01 0.00 -0.07 -0.01

Na 2.45 0.11 0.13 0.10 0.06 0.08 0.47 Na 2.45 0.00 0.01 0.00 -0.05 0.00 -0.04

K 1.10 0.07 0.13 0.09 0.12 0.16 0.57 K 1.10 0.01 0.01 0.01 0.01 0.05 0.09

Mg 4.94 0.00 0.14 0.05 0.02 0.16 0.38 Mg 4.94 0.00 0.01 0.00 0.00 0.14 0.16

Ca 5.88 -0.06 0.17 0.05 0.03 -0.23 -0.04 Ca 5.88 0.00 0.02 0.01 0.01 -0.17 -0.14

TOTAL 14.37 0.00 0.15 0.06 0.04 -0.01 0.24 TOTAL 14.37 0.00 0.02 0.01 0.00 -0.02 0.00

Na 2.45 0.06 0.07 0.07 0.06 0.05 0.30 Na 2.45 0.00 0.00 0.01 -0.02 0.00 -0.01

K 1.10 0.06 0.11 0.06 0.07 0.07 0.38 K 1.10 0.01 0.01 0.01 0.01 0.03 0.07

Mg 4.94 0.02 0.12 0.03 0.01 0.07 0.25 Mg 4.94 0.00 0.01 0.00 0.00 0.06 0.08

Ca 5.88 0.02 0.15 0.03 0.02 -0.29 -0.07 Ca 5.88 0.00 0.01 0.00 0.00 -0.07 -0.05

TOTAL 14.37 0.03 0.12 0.04 0.03 -0.08 0.14 TOTAL 14.37 0.00 0.01 0.00 0.00 -0.01 0.01

Na 2.45 0.40 0.45 0.45 0.34 0.53 2.18 Na 2.45 0.03 0.03 0.03 -0.02 0.05 0.12

K 1.10 0.13 0.20 0.16 0.15 0.33 0.97 K 1.10 0.01 0.02 0.02 0.01 0.08 0.14

Mg 4.94 0.03 0.19 0.08 0.05 0.53 0.88 Mg 4.94 0.01 0.02 0.02 0.01 0.34 0.40

Ca 5.88 0.04 0.23 0.11 0.07 -1.19 -0.75 Ca 5.88 0.02 0.03 0.02 0.02 -0.46 -0.37

TOTAL 14.37 0.11 0.25 0.16 0.11 -0.19 0.44 TOTAL 14.37 0.02 0.03 0.02 0.01 -0.06 0.02
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Figure A7.1 Leachabilities of the individual leached fractions (% of wt. %) from the Schlaitdorf 

sandstone (coarse grain size) (please note the different scales). 
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Figure A7.2 Leachabilities of the individual leached fractions (% of wt. %) from the 

Drachenfels trachyte (coarse grain size) (please note the different scales). 
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Figure A7.3 Leachabilities of the individual leached fractions (% of wt. %) from the 

Montemerlo trachyte (coarse grain size) (please note the different scales). 
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Figure A7.4 Leachabilities of the individual leached fractions (% of wt. %) from the 

Obernkirchen sandstone (coarse grain size) (please note the different scales). 
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Figure A7.5 Leachabilities of the individual leached fractions (% of wt. %) from the 

Bozanov sandstone (coarse grain size) (please note the different scales). 

 

a b 

c d 

e f 

g h 

i j 

Ch1Wo1 Ch1Wo2 Ch1Wo3 Ch2Wo4  
l k 



Appendix 

218 

Table A8.1 Index of analyzed samples  

sample code cathedral stone descripton

DT-1  - Drachenfels trachyte host rock

DT-2  - Drachenfels trachyte host rock

DT-3  - Drachenfels trachyte host rock

DT-4  - Drachenfels trachyte host rock

DT-5  - Drachenfels trachyte host rock

AL-01 Altenberg Drachenfels trachyte laminar crust

AL-02 Altenberg Drachenfels trachyte laminar crust

AL-03 Altenberg Drachenfels trachyte laminar crust

AF-04 Altenberg Krensheimer Muschelkalk framboidal crust

CL-01 Cologne Drachenfels trachyte laminar crust

CL-02 Cologne Drachenfels trachyte laminar crust

CL-03 Cologne Drachenfels trachyte laminar crust

CL-04 Cologne Drachenfels trachyte laminar crust

CL-05 Cologne Drachenfels trachyte laminar crust

CL-06 Cologne Drachenfels trachyte laminar crust

CL-07 Cologne Drachenfels trachyte laminar crust

CL-08 Cologne Drachenfels trachyte laminar crust

CF-09 Cologne Drachenfels trachyte framboidal crust

CF-10 Cologne Drachenfels trachyte framboidal crust

CF-11 Cologne Krensheimer Muschelkalk framboidal crust

XL-01 Xanten Drachenfels trachyte laminar crust

XL-02 Xanten Drachenfels trachyte laminar crust

XL-03 Xanten Drachenfels trachyte laminar crust

XL-04 Xanten Drachenfels trachyte laminar crust

XL-05 Xanten Drachenfels trachyte laminar crust

XF-06 Xanten Drachenfels trachyte framboidal crust

CD-1a Cologne Drachenfels trachyte scale (0.5 mm thickness)

CD-1b Cologne Drachenfels trachyte drill core behind scale (0-10 mm)

CD-1c Cologne Drachenfels trachyte drill core behind scale (11-31 mm)

CD-2a Cologne Drachenfels trachyte scale (1 mm thickness)

CD-2b Cologne Drachenfels trachyte disaggregated material behind scale

CD-2c Cologne Drachenfels trachyte decay material from flaking

CD-2d Cologne Drachenfels trachyte drill core behind scale (0-10 mm)

CD-2e Cologne Drachenfels trachyte decay material crumbled area

CD-2f Cologne Drachenfels trachyte drill core behind scale (11-31 mm)

CD-07 Cologne Drachenfels trachyte disaggregated material behind scale

CD-08 Cologne Drachenfels trachyte disaggregated material behind scale

CS-01 Cologne Obernkirchner Sandstein dust surface deposition  
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