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Abstract 1

3. Abstract 

The versatility of intracellular calcium as a second messenger is evident by its 

ability to mediate such opposing events as neuronal cell growth and apoptosis. One 

leading hypothesis is that calcium regulates such divergent signaling pathways 

through the use of functional calcium microdomains. In this thesis, the architectural 

organization of calcium microdomains is expanded to include accessory proteins 

which significantly affect the kinetics of calcium signaling. Chromogranin B (CGB) is a 

calcium binding protein found in secretory granules and the lumen of the 

endoplasmic reticulum (ER). CGB buffers calcium, and binds to and amplifies the 

activity of the inositol 1,4,5 trisphosphate receptor (InsP3R). Previous studies have 

identified two conserved domains in CGB: an N-terminal domain (N-CGB) and a C-

terminal domain (C-CGB). N-CGB binds to the third intraluminal loop of the InsP3R 

and presumably inhibits binding of full-length CGB. This displacement of full-length 

CGB decreases InsP3R-dependent calcium release, thus altering normal calcium 

signaling patterns. Here, the role of N-CGB in this process is further characterized, 

and the heretofore unknown role of C-CGB is identified. Expression of either full-

length CGB or C-CGB in cells results in a significant increase in calcium transients. In 

addition, the calcium signal initiation site in neuronally differentiated PC12 and 

SHSY5Y cells is affected by C-CGB expression, or altered CGB expression patterns. 

During the course of these studies, we also found that N-CGB is necessary and 

sufficient to induce vesicle formation during de novo secretory vesicle biogenesis. 

Our results strongly suggest that CGB is a part of the InsP3R calcium microdomain, 

which has numerous regulatory roles, and that CGB plays a critical role in modulating 

InsP3R-dependent calcium signaling. In fact, dysregulation of CGB has been 

implicated in the literature in many neurological diseases, consistent with our findings 

concerning the functional effects of CGB on signal initiation and calcium kinetics in 

neuronally differentiated cells. Thus, we hypothesize that CGB may be a good 

candidate for modulating the pathophysiological changes associated with certain 

neurological diseases. In support of this, we found significant CGB upregulation in 

the affected brain regions of experimental autoimmune encephalitis (EAE) mice, a 

mouse model for multiple sclerosis. These results suggest a role for functional CGB-

InsP3R calcium microdomains in disease modifying cellular responses. 
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4. Introduction and Context 

4.1 Inositol 1,4,5 trisphosphate receptors and their binding partners 

Intracellular calcium is present in all cell types, where it serves as a versatile 

second messenger with pleiotropic functions. In most neuronal cells, elevations in 

intracellular calcium levels are mediated by activation of inositol 1,4,5 trisphosphate 

receptor (InsP3R) by inositol 1,4,5 trisphosphate (InsP3), which leads to calcium 

release from intracellular calcium stores. The InsP3 pathway begins with activation of 

phospholipase C (PLC), which mostly occurs via G-protein coupled receptors 

(GPCRs) or receptor tyrosine kinases, which in turn are activated by various stimuli, 

including neurotransmitter release, growth factors, light or hormones, etc. PLC 

hydrolyzes a membrane bound phosphoinositide lipid precursor, phosphatidylinositol 

4,5-bisphosphate, to InsP3 and diacylglycerol (DAG). InsP3 then diffuses through the 

cytosol and mediates InsP3R channel gating; while DAG activates protein kinase C 

(PKC), leading to downstream phosphorylation of various proteins (Berridge 1993, 

Foskett et al. 2007). 

The InsP3 superfamily of receptors consists of three isoforms (InsP3RI, II and 

III) which have >65% sequence similarity, but differ markedly in their biophysical and 

functional properties, including:  affinity for InsP3; signaling response magnitude; and 

modulation by accessory proteins (Bezprozvanny 2005, Hagar and Ehrlich 2000, 

Miyakawa et al. 1999). In neuronal cells, InsP3RI is the predominant isoform, and has 

been previously linked to signal initiation and calcium oscillations of intracellular 

calcium levels. In contrast, InsP3RIII has been proposed to serve as a gatekeeper for 

high magnitude calcium surges, and is mainly located in the soma of neurons 

(Johenning et al. 2002).  

The InsP3Rs contain six transmembrane spanning domains with four 

intraluminal loops, and are localized close to intracellular calcium stores, at the ER 

membrane and nuclear envelope, but also in the Golgi apparatus and secretory 

vesicles. Structurally, the InsP3Rs consist of three separate functional domains: 1) a 

relatively long N-terminal domain, which contains the ligand binding domain and is 

located in the cytosol; 2) a C-terminal domain which is important for channel 

formation and channel gating; and 3) a modulatory domain which plays important 
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roles in channel modulation and coupling (Foskett et al. 2007, Furuichi et al. 1989, 

Mikoshiba et al. 1994). 

Three-dimensional structures of InsP3R were solved in 2002, revealing two 

apparent conformations:  a windmill-like structure, and a mushroom-like structure. 

The transition between these two conformations is believed to be mediated by 

changes in local calcium concentrations (Hamada et al. 2002); while the function of 

InsP3Rs can also be modulated by phosphorylation (Vanderheyden et al. 2009). In 

addition to the above, InsP3R function can be regulated by association with specific 

molecules on the cytosolic portion of InsP3R channel (which contains more than 85% 

of the total InsP3R channel mass). Although less common, InsP3R channel 

modulation from the intraluminal side has also been reported, and is associated with 

a stronger response (Choe and Ehrlich 2006, Jiang et al. 2002). 

Many proteins have been identified which associate with the N-terminal 

cytosolic portion of InsP3R channels: modulating signaling, trafficking, clustering and 

other InsP3R functions. For example, plasma membrane-associated proteins such as 

Rack-I, RhoA-TRPC1, Na/K-ATPase, TRPC3 and Homer have been shown to 

directly interact with the InsP3R (Kiselyov et al. 1998, Mehta et al. 2003, Patterson et 

al. 2004, Tu et al. 1998, Yuan et al. 2005). Homer, associates with several other 

proteins, including ryanodine receptor type I (RyRI), NMDA receptors and shank, 

forming InsP3R signaling microdomains which are sometimes referred to as macro 

signal complexes (Feng et al. 2002, Tu et al. 1998, Tu et al. 1999, Worley et al. 

2007). InsP3R also mediates interactions with cytoskeletal proteins, such as talin, 

actin, vinculin, 4.1N, myosin II and ankyrin, resulting in even more complex 

interaction networks (Bourguignon and Jin 1995, Sugiyama et al. 2000, Walker et al. 

2002, Zhang S et al. 2003). Actin and 4.1N appear to be responsible for regulation of 

lateral diffusion of the InsP3RI in the ER membrane, and thus may play important 

roles in spatiotemporal regulation of intracellular calcium signaling (Mikoshiba 2007, 

Zhang S et al. 2003). 

Most known InsP3R accessory proteins interact with the N-terminal cytosolic 

portion of the InsP3R channel, including:  IRBIT, bcl-2, CARP, calmodulin, 

cytochrome c, NCS1, GAPDH, CIB1, Cdc2, DANGER, CaBP1 and many others 

(Ando et al. 2006, Boehning et al. 2003, Erin and Billingsley 2004, Hirota et al. 2003, 

Kasri et al. 2004, Malathi et al. 2005, Patel et al. 1997, Patterson et al. 2005, van 
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Rossum et al. 2006, Schlecker et al. 2006, White et al. 2006). In fact, only a few 

proteins are known to interact with the InsP3R luminal side (i.e. from the inside of the 

ER), such as:  Chromogranin A and B (CGA/ CGB), ERp44, calnexin and junctuate 

(Choe et al. 2004, Higo et al. 2005, Joseph et al. 1999, Thrower et al. 2002, Thrower 

et al. 2003, Treves et al. 2004). However, of all InsP3R interacting proteins,  

chromogranin B  (CGB) is the most potent co-activator of InsP3R channels identified 

to date:  addition of CGB to the luminal side of InsP3R channels incorporated in 

planar lipid bilayers results in an approximately 10-fold increase in open probability 

(Thrower et al. 2003). Considering the strict regulation of intracellular calcium 

concentrations in cells, this InsP3R channel response may have dramatic 

consequences, as will be discussed in the following chapters of this thesis. 

Physiologically, InsP3R channels have been shown to play important roles in 

learning, memory, synaptic plasticity and neurite formation (Rizzuto and Pozzan 

2006). Studies using InsP3RI knockout mice have revealed the importance of InsP3R 

channel function for both long-term potentiation (LTP) and long-term depression 

(LTD), which are models of activity-dependent and long-term structural and functional 

changes in neurons (Gartner et al. 2006, Miyata et al. 2000, Taufiq et al. 2005, 

Yoshioka et al. 2010). 
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4.2 Chromogranins 

The granin family consists of 9 proteins, of which chromogranin A (CGA) and 

chromogranin B (CGB) are the best studied to date. Other members of the granin 

family include secretogranin II (also referred to as chromogranin C), secretogranins 

IV-VII, and pro-SAAS. Although first classified as satellite proteins in hormone-storing 

organelles, granins have since been found in many different tissue types, and their 

function and overall importance is particularly evident in neurons and secretory cells, 

such as chromaffin cells (Bartolomucci et al. 2010, Taupenot et al. 2003). Because 

CGA and, especially, CGB are directly involved in the experiments conducted for this 

thesis, coverage of other granins in the following sections of this thesis will be 

minimal.  

The CGB gene is located on human chromosome 20, mouse chromosome 2 

and rat chromosome 3. The CGB gene product was initially identified in a rat 

pheochromocytoma cell line (PC12 cells) as a satellite protein in hormone storing 

organelles. CGB proteins contain between 626 and 657 amino acids (aa), depending 

on the species or post-translational modifications, with a molecular weight of 

approximately 76kDa.  In addition, CGB contains a disulfide-bonded loop, and can be 

modified by n- and o-glycosylation, as well as phosphorylation and sulforylation. 

Chemically, CGB has an unusually high content of acidic amino acids (24%) and 

proline, with an isoelectric point between 5.1 and 5.2 (Benedum et al. 1987, Helle 

2004, Taupenot et al. 2003). 

Structurally, five exons in the CGB gene encode five structural domains in the 

CGB protein. Comparison of CGA with CGB reveals high amino acid sequence 

similarity in the N- and C-terminal ends of the proteins in humans as well as in other 

species. The N-terminus of both CGA and CGB is encoded by exon three, while the 

C-terminus is encoded by exon five in CGB and exon eight in CGA. Overall, both 

proteins contain only two cysteine residues, which are both located in the 

homologous N-terminus of CGA and CGB. Sequence identity between CGA and 

CGB is >54% in the N-terminal region, and >44% in the C-terminal region: most 

differences are conservative amino acid changes. The two cysteine residues in the 

N-terminus of CGA and CGB are disulfide bonded, forming a highly conserved 20 aa 

loop structure. The intervening regions between the N- and C-termini of CGA and 
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CGB have low sequence similarity, and make up >85% of the protein (Benedum et 

al. 1987, Helle 2004). 

Functionally, CGB has been shown to be a low-affinity, high-capacity calcium 

binding protein (Gorr et al. 1989), which binds approximately 90 mol of Ca2+ per mol, 

with a dissociation constant (kd) of 1,5 to 3,1 mM (Yoo 2010). It was further shown 

that CGB induces secretory granule biogenesis – even in non-secretory cells - and 

that this granulogenic effect is over 50% greater than that of CGA; whereas down-

regulation of CGA or CGB results in a markedly reduced number of secretory 

vesicles in PC12 cells (Huh et al. 2005). Interestingly, CGB has also been found in 

the nucleus, where it regulates gene transcription, including for genes encoding 

transcription factors (Yoo et al. 2002). Very recently, insulin secretion in CGB-knock-

out mice was examined: although CGB-knock-out mice have more immature insulin 

granules and a loss of rapid insulin secretion phase, CGB does not seem to be 

required for the formation of functional insulin granules. However, despite the results 

from these CGB-knock-out mice studies, the controversy over whether or not 

chromogranins physiologically induce granule formation remained unsolved 

(Obermuller et al. 2010). 

Chromogranins also play a role in releasing hormones from hormone storing 

organelles, where they are cleaved into various bioactive peptides upon release into 

the extracellular space. Several of these CGB-derived peptides inhibit microbial or 

fungal growth. Although normally they only circulate at low nanomolar concentrations 

in human blood, the concentrations of some of these CGB-derived peptides can be 

magnitudes higher in patients with neuronal, neuroendocrine or endocrine tumors. In 

fact, bloodstream concentrations of some CGB-derived peptides can be reliably used 

as biomarkers, and are predictive of tumor mass. Once released into the extracellular 

space, chromogranins are cleaved by endopeptidases, such as the prohormone 

convertase I and II.  However, the degree of processing is highly tissue dependent, 

and is highest in the nervous system (Gill et al. 1991, Helle 2004, Li et al. 1999, 

Lovisetti-Scamihorn et al. 1999, Taupenot et al. 2003). 

Recently, both CGB and CGA were shown to associate with the luminal side 

of the InsP3R in a pH-dependent manner. Specifically, at pH of 5,5 (the pH observed 

in secretory vesicles) both CGA and CGB associate with the InsP3R; however, when 

the pH is raised to 7,5 (the pH found in the ER lumen) CGA totally dissociates from 
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the InsP3R, but CGB only partially dissociates. Interestingly, CGA and CGB 

spontaneously form CGA/CGB heterodimers at pH 7.5 and CGA2/CGB2 

heterotetramers at pH 5,5. In planar lipid bilayer experiments, purified InsP3RI was 

incorporated into lipid bilayers to measure the effects of chromogranin addition on 

InsP3R channel function. At a fixed concentration of InsP3 and calcium on the cis 

side, the mean channel open time increased from 3,1 ± 0,3 ms to 217,4 ± 0,3 ms and 

the open probability of the channel increased from 5,0 ± 1,0 % to 80,0 ± 9,0 % upon 

addition of CGB to the cis side at a pH of 5,5.  However, at pH 7,5, the mean open 

time increased from 4,8 ± 0,6 ms to 122,5 ± 0,7 ms, and the open probability 

increased from 4,0 ± 1,0 % to 40,0 ± 2,0 %. In addition, the values obtained at pH 7,5 

were essentially identical for CGA/CGB heterodimers as for CGB alone (Thrower et 

al. 2003).  

It was later discovered that the interaction between CGB and CGA and the 

InsP3Rs is mediated through the N-terminal portion of both chromogranin proteins, 

which share – as mentioned above – high sequence similarity in this region. 

Specifically, the N-terminal portions of both CGB and CGA bind to the L3-2 

intraluminal loop of the InsP3RI. Moreover, the intraluminal loop L3-2 of the InsP3R is 

conserved between the three isoforms of InsP3Rs, suggesting that all three isoforms 

are capable of binding CGB and CGA (Kang et al. 2007). It was previously believed 

that the N-terminal portion of CGA or CGB is sufficient to elicit the functional effects 

of full-length chromogranins on InsP3R channels; however, expression of the N-

terminal portion of CGB in PC12 cells resulted in inhibition of intracellular calcium 

signaling. These results led to a new hypothesis, that the observed inhibition of 

calcium signaling is due to the fact that the N-terminal portion of CGB inhibits binding 

of full-length CGB to the InsP3R, and thus inhibits the activating effects of CGB on 

the InsP3R channel. It was further shown that addition of the N-terminal fragment of 

CGB in planar lipid bilayer experiments markedly reduced InsP3R channel openings 

when added to the trans side of the bilayer, at fixed concentrations of calcium, InsP3 

and CGA/CGB heteromers (Choe et al. 2004). 

More recently, expression of the N-terminal fragment of CGB in neuronally 

differentiated PC12 cells was found to disrupt the interaction between CGB and 

InsP3RI, resulting in major changes in calcium kinetics and signal initiation sites. 

However, to fully appreciate the meaning of these elegant experiments, the 
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distribution of CGB, InsP3Rs and various other proteins and channels involved in 

calcium signaling must be taken into account. In neuronally differentiated PC12 cells, 

CGB is mainly located in growth cones and neuritic branching points. InsP3RI was 

found to be homogeneously expressed throughout the cell; whereas staining for the 

InsP3RIII was confined to the cytosol and InsP3RII was not detected. The ER was 

found to form an extended structure throughout the entire neuron, and no 

concentration gradient could be detected (Johenning et al. 2002). Calcium ATPases, 

such as those present in the SR (SERCAII) and plasma membrane (PCMCA1), 

which extrude calcium from the cytoplasm, were also evenly distributed (Jacob et al. 

2005). Because carbachol was used to induce Ca2+ release by InsP3R, the 

distribution of muscarinic acetylcholine receptor (mAChR) - and especially PLC 

coupled subtypes M1 and M2 - was also investigated. Although immunoreactivity of 

mAChR subtypes M1 and M2 could be detected along the neuritic plasma membrane, 

the majority of clusters were associated with plasma membrane lining the soma. 

Thus, when stimulated with carbachol, the highest InsP3 concentrations should be 

generated in the soma, and the calcium signal initiation site should be located there. 

Surprisingly – depending on the concentration of carbachol – calcium waves were 

found to begin in 95% of the neurites with a delay of the first somatic signal of 1,7 ± 

0,5 sec for 500 µM carbachol, and 3,4 ± 0,6 sec for 50 µM carbachol. After a series 

of experiments, it was proposed that this temporal delay between the first neuritic and 

somatic signal could be due to a lowering of the activation threshold in the 

neurite/growth cone for InsP3 mediated initiation and propagation of calcium signals 

(Jacob et al. 2005, Johenning et al. 2002).  

Although focal gradients of InsP3 could account for the above described 

phenomenon, most clusters of mAChRs could be detected along the somatic plasma 

membrane. To further investigate, a mathematical model was constructed using a 

Virtual Cell Programming Platform, and simulations showed that the concentration of 

InsP3 inside a neuron should exceed the required threshold within 1 sec. Based on 

these results, focal gradients of InsP3 cannot explain the observed temporal 

differences, since this threshold was reached faster than the measured temporal 

delay between the first neuritic and somatic signal. Consequently, the observed 

temporal delay must be due to other factors downstream of InsP3 production. 

Because chromogranins have been shown to enhance the effect on InsP3RI (under 

conditions of low InsP3 concentrations) in the above described planer lipid bilayer 
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experiments, it was assumed that CGB expression in neurites and growth cones 

could explain the observed effects (Johenning et al. 2002).  

To test if the spatiotemporal patterns of Ca2+ transients can be effectively 

predicted by taking into account the accessory proteins that modify InsP3R function, 

additional experiments were conducted in PC12 and cultured hippocampal neurons. 

In cultured hippocampal neurons, the above described ON and OFF mechanisms of 

calcium signaling were found to be mainly distributed as in PC12 cells, but with a 

notable difference:  CGB staining was only detected in the soma, extending into the 

proximal dendrite, with no detectable immunostaining in distal neurites. In PC12 cells, 

the calcium signal was found to initiate in growth cones and neuritic branching points, 

the compartment of PC12 cells with the highest concentration of CBG. Therefore, if 

this mechanism really depends on CGB subcellular localization, the calcium signal 

initiation site in cultured hippocampal neurons should coincide with regions of highest 

CGB concentrations in the soma and proximal dendrite. Using confocal microscopy 

and calcium-sensitive flurophores, it was shown that this hypothesis holds true in 

cultured hippocampal cells: the onset of calcium signaling could be detected in both 

soma (38% of the time) and proximal dendrites (62% of the time). Furthermore, 

expression of the N-terminal portion of CGB in neuronally differentiated PC12 cells 

shifted the calcium signal initiation site from growth cones/neurites to the soma, with 

a delay of 0,78 ± 0,28 sec. Thus, expression of the N-terminal fragment of CGB 

appears to not only reverse the calcium signal initiation site from growth cones to the 

soma, but also markedly decreases the amplitude and flux rate of calcium transients. 

The mechanism proposed to explain these observed results was disruption of the 

CGB – InsP3R interaction by the N-terminal fragment of CGB, which was previously 

shown to bind to the L3-2 intraluminal loop of the InsP3R (Jacob et al. 2005).  

In summary, CGB was shown to significantly increase the mean open time and 

open probability of InsP3RI, when added to the trans side of planar lipid bilayer 

experiments ex vivo (Thrower et al. 2003). Furthermore, in neuronally differentiated 

PC12 cells, as well as cultured hippocampal neurons, the calcium signal initiation site 

was shown to coincide with the subcellular compartment of the cell with the highest 

concentration of CGB (Jacob et al. 2005). Moreover, CGB was experimentally shown 

to bind to the L3-2 intraluminal loop of the InsP3R via the CGB N-terminal region 

(Kang et al. 2007). In addition, transfection of an interfering polypeptide disrupts this 
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interaction, resulting in a significantly decreased magnitude of calcium response and 

flux rate, and a shift (in the case of PC12 cells) of the calcium signal initiation site 

from growth cones to the soma (Choe et al. 2004, Jacob et al. 2005). 
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4.3 Calcium microdomains 

Because numerous critical processes, such as muscular contractions, cell 

proliferation and gene transcription are primarily or secondarily calcium-dependent, 

the concentration of intracellular calcium is closely regulated (Foskett 2010, 

Mikoshiba 2007). In addition to synergistic events, opposing events, such as 

apoptosis and neuronal development and growth are mediated by calcium. For quite 

some time, the spatial organization of calcium channels has been regarded as 

sufficient to explain even these opposing functions (Berridge 1998). However, this 

theory has several problems:  for example, the mere distribution of calcium channels 

yields different calcium signaling patterns in different cell types. In addition, although 

factors modifying InsP3R response were looked at, neither the concentration of 

calcium itself nor the concentration of InsP3 can sufficiently explain observed 

experimental effects.  

For example, dendritic spines are only connected to parent dendrites through 

a very thin neck, and the term “calcium microdomain” has been applied to explain the 

locally restricted calcium elevations that occur once a spine becomes activated. The 

architecture of dendritic spines and narrow neck were proposed to enable a local 

InsP3 gradient to develop and restrict the release of intracellular calcium from ER 

stacks inside the spine. However, not all dendritic spines are connected to the parent 

dendrite through a narrow neck. In fact, some spines look like mushrooms, with much 

wider connecting necks, and stubby spines that are just protuberances of the plasma 

membrane (Nimchinsky et al. 2002). Moreover, aspiny dendrites were later 

discovered in neocortical interneurons, fully functional spines which produce highly 

localized calcium elevations without architectural barriers (Goldberg et al. 2003, 

Soler-Llavina and Sabatini 2006). In a series of elegant experiments, InsP3 was 

uncaged in a single dendritic spine, revealing that InsP3 could even diffuse through 

the very narrow neck of a dendritic spine and activate neighboring spines (Finch and 

Augustine 1998). Based on these results, the cytosol should be even more effective 

at producing highly localized calcium surges, with a calcium diffusion rate of 10-50 

µM2/s (Allbritton et al. 1992), mediated by calcium binding proteins such as 

calmodulin, parvalbumin and many others (Schmidt et al. 2003). Experimental data 

show that less than 1% of the calcium that enters a dendritic spine will diffuse into the 

dendritic shaft (Sabatini et al. 2002). 
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Cell type specific interactions between the InsP3R and accessory proteins 

might answer questions as to how calcium can accomplish its diverse functions. As 

mentioned above for neuronally differentiated PC12 cells, CGB and the InsP3R form 

a complex where CGB greatly enhances the open probability and mean open time of 

the InsP3R channel (Thrower et al. 2003). Because CGB is heterogeneously 

distributed within the cell, with the highest concentration found in growth cones, CGB 

is an ideal candidate for explaining how a rise in InsP3 can have different 

consequences even within the same cell. Additional information on accessory 

proteins that bind and alter InsP3R function was given in the previous chapters.  

However, interestingly, further research revealed that even more complex 

interactions might be involved. For example, M1 muscarinic- (M1AChR) and B2 

bradykinin- (B2R) receptors are both G-protein coupled receptors involved in PLC 

mediated production of InsP3 in non-excitable cells (Felder 1995, Lee and Rhee 

1995). However, in excitable neuronal cells, only B2Rs (and not – or at least to a 

much lesser extent – M1AChRs) lead to subsequent InsP3R mediated calcium 

release (Bofill-Cardona et al. 2000, Cruzblanca et al. 1998, del Rio et al. 1999). A 

membrane arrangement that effectively couples B2R and InsP3R so that the InsP3 

production site is in close contact with the usage site, was proposed to explain these 

observed effects. Incubation of sympathetic ganglions cells with an inhibitor of actin 

filament polymerization, followed by addition of the cell-permeant toxin cytochalasin 

D, disrupted the assumed coupling of B2R and InsP3R (Delmas et al. 2002). Such 

B2R and InsP3R coupling has been described previously as an actin bridge, 

functionally coupling InsP3R with the plasma membrane in liver cells (Rossier et al. 

1991). However, other proteins were identified as well, most notably homer, which 

tethers mGlurRs with the InsP3R (Tu et al. 1998).  

Long before these experiments were conducted, research has shown that 

some parts of the ER are in very close contact with the plasma membrane. These 

regions were called subsurface cisternae, and were further classified into three types, 

based on their distance from the plasma membrane, which ranges from 20 nm to 80 

nm (Berridge 1998). 

Based on these results and observations, different, and sometimes conflicting, 

theories have been proposed to explain the functional relevance of these primary or 

secondary principles. In fact, to date, no generally accepted theory appears to exist in 
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the scientific community. Therefore, the following paragraph expresses the author’s 

viewpoint, and citations are used only to underline single observations and results, 

and do not imply acceptance of the corresponding theory. 

If ER-localized InsP3Rs are also tethered to the plasma membrane through 

cytoskeletal elements (or whatever elements are involved in the generation of 

subsurface cisternae), then these complexes basically resemble an architectural 

barrier, similar to that seen in dendritic spines, which are only connected to the 

parent dendrite by narrow necks. Although these narrow necks may be of functional 

importance in some instances, they cannot explain the existence of highly localized 

calcium elevations. The existence of calcium microdomains consisting of InsP3R 

coupled to B2Rs, or mGluRs, in the plasma membrane does not seem possible if one 

takes into account results from the following:  caged- InsP3 experiments within cells 

(Finch and Augustine 1998, Miyata et al. 2000); InsP3 diffusion characteristics 

modeled by a computerized cell programming platform (Johenning et al. 2002); and 

other experiments and principles mentioned previously in this thesis. Thus, it is the 

author’s own viewpoint that the mere architectural barrier model is not sufficient to 

explain calcium microdomains, but that they must exist for a reason. Therefore, I 

believe that we have only scraped the tip of the iceberg with respect to our 

knowledge of the architectural organization of calcium microdomains. Although single 

pieces of the puzzle have been discovered, such as actin bridges coupling B2R and 

InsP3R (Rossier et al. 1991) and InsP3R tethering to mGluRs in the plasma 

membrane (Tu et al. 1998), we have to perceive these part of a bigger picture, rather 

than looking at them as single independent principles. Instead of focusing on single 

events or processes, we have to look how these primary principles are combined. 

Homer, for instance, is a scaffolding protein that tethers mGlurR1 and InsP3R in many 

neuronal cells (Tu et al. 1998). To date, several Homer isoforms have been identified, 

and all have been shown to bind to the InsP3R via an N-terminal ENA/VASP 

homology domain (EVH1).  Moreover, a coiled-coil domain in the C-terminal region 

allows Homer isoforms to oligomerize, forming a meshwork of InsP3R and mGlurR1,5 

(Fagni et al. 2002, Kato et al. 1998, Xiao et al. 2000). To add further levels of 

complexity, the N-terminal domain of Homer also interacts with the PSD-95 complex 

protein Shank, alpha-adrenergic receptor and TRP channels: Homer can even bind 

to RyRs via a proline-rich sequence (Feng et al. 2002, Tu et al. 1999, Xiao et al. 

2000). In fact, each of these proteins or receptors bind to other scaffolding proteins 
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and cytoskeletal elements, leading to a meshwork of proteins, receptors, scaffolding 

proteins and cytoskeletal elements. The result is a mosaic of calcium microdomains 

that become enmeshed into a calcium microdomain complex, and subsequently, play 

a role in determining calcium kinetics. Phenomena such as calcium-induced calcium 

release (CICR) (Berridge 1998) depend on such architectural organizations of 

calcium channels. In addition, once calcium is released, calcium kinetics can be 

altered by the nearby receptor organization, via CIRC, or even calcium-induced 

inhibition of channel activity. Combined, these mechanisms could result in calcium 

elevations in only a subcompartment of a cell. However, such complex calcium 

release channel organizations cannot explain the onset, or signal initiation of calcium 

signals, since they only exert their modulatory effects once calcium release has 

already been initiated.  

Calcium signal initiation is therefore highly likely to depend on the above 

mentioned accessory proteins, which bind to calcium release channels and modify 

calcium kinetics. In the previously mentioned experiments involving PC12 and 

primary hippocampal cells, calcium signals were found to be initiated in the cellular 

compartment where CGB expression was greatest:  in the case of PC12 cells in 

growth cones, and in the case of primary hippocampal cells in the soma or proximal 

dendrites (Jacob et al. 2005, Johenning et al. 2002). The impact of RyRs (another 

ER-localized calcium release channel) on calcium signal initiation is very likely to be 

of little significance, since RyRs are activated at calcium concentrations over 1 µM, 

and therefore only begin to modify or magnify local calcium concentrations after 

initiation by InsP3R (Bootman et al. 2001). Furthermore, in the model discussed 

previously, where B2Rs are linked to InsP3Rs, calmodulin (CaM) was shown to be an 

important regulator. In fact, CaM has been previously shown to be important for 

calcium-dependent inactivation of the InsP3RI (Adkins et al. 2000, Michikawa et al. 

1999). In the above mentioned experiments, a CaM mutant with reduced or abolished 

calcium binding properties was expressed, which contained four point mutations in 

the EF hand motif.  Expression of this CaM mutant changed overall calcium kinetics, 

resulting in increased peak amplitudes and, more importantly, in a prolonged duration 

of calcium transients. This effect was attributed to the significantly decreased calcium 

inactivation rate by the CaM mutant. CaM was proposed by the authors to act as a 

low-pass filter of InsP3 responses, such that InsP3 production must be fast enough 

and also great enough to overcome the inhibitory effects of CaM on the InsP3R 
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channel (Delmas et al. 2002, Delmas and Brown 2002). As a buffer (but not as an 

amplifier), CaM is unlikely to be a top candidate for regulation of calcium initiation 

sites; however, in cells where CaM is heterogeneously distributed, CaM-dependent 

effects might well influence the calcium signal initiation site. 



 
Role of chromogranin B in neurodegeneration 16

6.4 Role of chromogranin B in neurodegeneration 

Neurodegeneration is a term used for the progressive loss of neuronal 

function, which is attributed to multiple mechanisms, ranging from structural or 

molecular changes to neuronal cell death. To date, the relationship between CGB 

and neurodegenerative or neuroinflammatory diseases has only been qualitatively 

established. However, due to the variety of disease states where CGB is either up- 

down- or dysregulated, it can be expected that CGB is either directly or indirectly 

involved in molecular neurodegenerative or neuroimflammatory pathways. 

For example, in brain tissues from individuals with Alzheimer’s disease, 

decreased expression of CGB was measured in layers II, III and V of the entorhinal 

cortex, the inner molecular layers of the dentate gyrus, the CA1 area and the 

subiculum (Marksteiner et al. 2000). In addition, experimental results from individuals 

with Parkinson’s disease showed increased CGB expression levels in Lewy bodies 

and axonal swellings. CGB levels in cerebrospinal fluid were likewise significantly 

increased (Eder et al. 1998, Yasuhara et al. 1994). Moreover, in amyotrophic lateral 

sclerosis (which leads to fatal degeneration of motor neurons), affected neurons 

showed superoxide dismutase 1-immunopositive (SOD1) aggregates containing CGA 

and CGB (Schrott-Fischer et al. 2009).  Furthermore, the existence of a CGB mutant 

variant was identified which affects approximately 10% of all ALS patients (Gros-

Louis et al. 2009). CGA and CGB also presumably determine the secretion of mutant 

SOD1 proteins in individuals with ALS, which are potentially involved in inducing 

neuronal cell death (Urushitani et al. 2006). 

In individuals with schizophrenia, CGB expression was found be to decreased 

in mossy fibers, hilar interneurons and in CA4 and CA3 regions of the hippocampus 

(Nowakowski et al. 2002). CGB levels in cerebrospinal fluid were likewise found to be 

significantly decreased in chronic schizophrenia patients (Landen et al. 1999, Zhang 

B et al. 2002). 

Interestingly, a peptide derived from amino acids 441-493 of CGB was shown 

to be decreased in the cerebrospinal fluid of patients with multiple sclerosis (MS) 

(Mattsson et al. 2007). This CGB-derived peptide was previously shown to be 

decreased in frontotemporal dementia as well (Ruetschi et al. 2005). However, this 

potential biomarker was not found to correlate significantly with the MS disability 
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status scale, or any other rating scale or disease characteristics, such as onset age 

or disease duration (Mattsson et al. 2007). 
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4.5 Secretory vesicle biogenesis mediated by chromogranins 

Two members of the granin family were previously shown to induce secretory 

vesicle biogenesis: expression of either CGA or CGB in non-secretory cells was 

shown to be sufficient to induce vesicle formation (Beuret et al. 2004, Huh et al. 

2003, Kim et al. 2001). Furthermore, down-regulation of either CGA or CGB in 

neuroendocrine cells was found to lead to a significant reduction (or even 

abolishment) of secretory vesicle biogenesis (Huh et al. 2003, Kim et al. 2001). 

Although both CGA and CGB have been shown to induce vesicle biogenesis, the 

potency of the two granins in vesicle biogenesis appears to differ:  CGB expression is 

associated with up to 60% more vesicles per cell than CGA expression (Huh et al. 

2003). In addition to CGB’s very important role in calcium signaling, where it binds 

between 50-93 mol of Ca2+, in secretory vesicles binding of ATP and catecholamins 

is also accomplished by CGB (Helle et al. 1990, Phillips 1982, Winkler and Westhead 

1980). 

Recently, CGA or CGB knock-out mice have become available, and secretory 

vesicle biogenesis and vesicle sorting in these mice was thus intensively studied.  A 

common observation from these experiments was that when CGA is knocked out, 

CGB is upregulated in compensation; similarly, when CGB is knocked out, CGA is 

upregulated (Machado et al. 2010). However, this compensatory mechanism does 

not appear to be universally valid, since some tissue types do not display significant 

overexpression of one granin if the other is absent. For example, in pancreatic islets 

of CGB knock-out mice, compensation of CGA or other members of the granin family 

was found to occur at a lower extent than in other tissues. Consequently, the lack of 

CGB in these cells may lead to pathophysiology. Here, for example, the secretion of 

fewer and more immature granules, coupled with the loss of the initial rapid phase of 

insulin secretion, is associated with a state of glucose intolerance, similar to the 

characteristic effects of human type II diabetes mellitus (Obermuller et al. 2010). In 

these experiments, as well as in experiments conducted with CGA- or CGB knock-

out mice by other groups, these in vitro results concerning secretory vesicle 

biogenesis have caused a controversy surrounding the role and importance of CGA 

and CGB in vivo. 
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5. Materials and Methods 

 

5.1 Antibodies 

 

The following antibodies were used for immunocytochemistry: CGB, BD 

Biosciences, San Jose, CA, 1:250 or Santa Cruz Biotechnology, Santa Cruz, CA, 

1:200; c-myc, Santa Cruz Biotechnology, Santa Cruz, CA, 1:200; calnexin, Stressgen 

Bioreagents, Ann Arbor, MI, 1:200; InsP3R type I, affinity purified from rabbit 

polyclonal antiserum directed against the 19 C-terminal residues of mouse InsP3R 

type I, custom made (Research Genetics, Huntsville, AL), 1:300; Alexa Fluor Dyes, 

Carlsbad, CA, 1:500 to 1:1000.  

 

The following antibodies were used for Western blotting: CGB, QED 

Biosciences, San Diego, CA, 1:100; anti-rabbit antibodies, Bio-Rad Laboratories, 

Hercules, CA, 1:50,000. ß-Actin, Abcam, Cambridge, MA, 1:10,000. 

The following antibodies were used in the preparation of brain slices: CGB, BD 

Biosciences, San Jose, CA, 1:250; calnexin, Stressgen Bioreagents, Ann Arbor, MI 

1:200; Alexa Fluor Dyes, Carlsbad, CA. 

 

5.2 Plasmids 

 

Murine full-length CGB was kindly provided by Makoto Urushitani (Faculty of 

Medicine, Laval University, Canada). The N-deficient, and C-deficient fragments of 

CGB were truncated from full-length CGB. The N-terminal peptide 

(IIEVLSNALSKSSAPPITPE), C-terminal peptide (ELENLAAMDLELQKIAEKFSQRG), 

and a scrambled peptide containing the same amino acids as the C-terminal 

fragment (RLQSALNQDEGEIMALKFLEKAE), were generated by annealing 

complementary pairs of oligonucleotides corresponding to these peptides (IDT DNA) 

in vitro and cloning them into the pShooter-pCMV/Myc/ER vector (Invitrogen, 

Carlsbad, CA).   
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5.3 Cell culture 

 

NIH3T3 cells were grown in DMEM high glucose (4.5g/l) supplemented with 

10% fetal bovine serum, penicillin and streptomycin. PC12 cells were grown in 

DMEM high glucose (4.5g/l) supplemented with 10% heat-inactivated horse serum, 

5% heat-inactivated fetal bovine serum, penicillin and streptomycin. SHSY5Y cells 

were grown in 44% Eagle’s minimum essential medium, 44% Ham’s F12 medium, 

10% fetal bovine serum, 1% non-essential amino acids (100x), penicillin and 

streptomycin. Cells were cultured in 5% CO2 at 37°C. All reagents were obtained 

from Gibco/Invitrogen, Grand Island, NY. 

 

5.4 Transfection 

 

NIH3T3, SHSY5Y and PC12 cells were transfected using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA) with full-length, N-deficient, C-deficient, N-terminal, C-

terminal, or C-terminal scrambled CGB. To confirm expression, cells were co-

transfected with DsRed2 at a ratio of target cDNA to fluorescent protein vector of at 

least 3:1. NIH3T3 cells were plated in Lab-TeK II 8-well chambers (Nunc/Thermo 

Fisher Scientific, Rochester, NY); SHSY5Y in 6-well plates (BD Biosciences, Franklin 

Lakes, NY) on poly-L-lysine coated coverslips (Sigma-Aldrich, St. Louis, MO); and 

PC12 on collagen I coated coverslips (BD Biosciences, Bedford, MA). Cells were 

used 48h after transfection.  

 

5.5 Neuronal differentiation 

 

Neuronal cells were differentiated 48h after transfection in antibiotic-free 

media. Neuronal differentiation of PC12 cells was induced by supplementing growth 

media with 100 ng/ml nerve growth factor (mNGF 7S, Alomone Laboratories, Israel) 

for 7 days. SHSY5Y cells were neuronally differentiated by supplementing growth 

media with 25 ng/ml recombinant human nerve growth factor (ßNGF, Alomone 

Laboratories, Israel) and 10 µM all-trans retinoic acid (RA) (Sigma-Aldrich, St. Louis, 

MO) for 8 days. Growth media was changed every other day.  
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5.6 Western blot analysis 

 

Cells were lysed with M-PER (Thermo Fisher Scientific, Waltham, MA) and 

centrifuged at 10,000xg at 4°C. Protein concentrations were determined using the 

BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA). Equal amounts of 

protein were loaded onto Tris-HCl SDS-PAGE gels (Bio-Rad/Life Science, Hercules, 

CA) and transferred to PVDF membranes. Membranes were blocked with 5% milk 

and 0.1% Tween-20 in PBS for 1 hour, followed by incubation with antibodies diluted 

in blocking buffer. Visualization was performed by chemiluminescence (Amersham, 

Freiburg, Germany). 

 

5.7 Light microscopy 

 

An Olympus BX60 microscope with a magnification of 100x was used to obtain 

light microscopy images of transfected NIH3T3 cells with the above described 

fragments. 

 

5.8 Immunocytochemistry 

 

Cells were fixed in 3.5% paraformaldehyde, permeabilized with 0.1% Triton X, 

quenched with 0.1 % sodium borohydride in PBS, and blocked in 1% bovine serum 

albumin and 10% goat serum. Cells were incubated with primary antibody overnight 

and with secondary antibodies for 1 hour. Coverslips were mounted with ProLong 

Antifade (Molecular Probes/Invitrogen, Eugene, OR). A confocal 510 LSM 

microscope (Zeiss, Oberkochen, Germany) was used to visualize the cells. 

 

5.9 Fura-2 AM calcium imaging and data analysis 

 

Transfected NIH3T3 were loaded with 10 µM fura 2-AM (Molecular Probes-

Invitrogen, Carlsbad, CA) in a calcium-containing imaging buffer (145mM NaCl/ 5mM 

KCl/ 2.6mM MgCl2/ 2.6mM CaCl2/ 10mM Hepes/ 5.6 mM glucose, pH 7.4) at 37°C for 

30min. 
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Ratiometric Ca2+ imaging in calcium-free imaging buffer containing (145mM 

NaCl/ 5mM KCl/ 3.6mM MgCl2/ 1mM EGTA/ 10mM Hepes/ 5.6mM glucose, pH 7.4) 

was performed on a Zeiss Axiovert 100 microscope (Zeiss, Oberkochen, Germany). 

Intracellular Ca2+ concentrations ([Ca2+]i) were derived from background-subtracted 

F340/F380 fluorescent ratios (R) after in situ calibration using [Ca2+]i (nM)  =  Kd  x  ß x  

(R -Rmin)/(Rmax - R), where Kd is the dissociation constant of fura 2 for Ca2+ at 37°C 

(225 nM), Rmin and Rmax were experimentally determined, and ß was the fluorescence 

ratio of the emission intensity excited by 380 nm for Ca2+-free compared with Ca2+-

saturating imaging buffer. Nonviable cells were identified using the 

sarco(endo)plasmatic calcium ATPase inhibitor thapsigargin (Calbiochem/EMD 

Biosciences, La Jolla, CA), and were excluded from analysis. The co-transfection 

marker DsRed2 was visualized before each experiment, and only cells expressing 

DsRed2 were considered for analysis. 

 

Released Ca2+ (peak and total) was calculated by subtracting baseline Ca2+of 

each individual cell and plotted vs. time. Total Ca2+ release (area under the curve) 

was calculated using the program SigmaPlot (Systat Software, San Jose, CA), and 

resting Ca2+ was determined by averaging the baseline Ca2+ of each individual cell 

over a period of at least 40s in Microsoft Excel (Microsoft, Redmond, WA).  

 

5.10 Fluo-4 AM calcium imaging and data analysis 

 

Transfected PC12 or SHSY5Y cells were loaded in calcium-containing 

imaging buffer (1.25mM CaCl2/ 20mM Hepes/ 4.7mM KCl/ 1.2mM KH2PO4/ 1.0mM 

MgSO4/ 130mM NaCl, pH 7.4) at 37°C with 10 µM fluo-4 AM (Molecular 

Probes/Invitrogen, Carlsbad, CA) in 20% Pluronic F127 (Sigma-Aldrich, St. Louis, 

MO) in DMSO for 30 min at 37°C.  Cells were incubated for 15 minutes to allow time 

for de-esterfication in dye-free extracellular solution. The resulting coverslips were 

mounted at the bottom of an open, custom-made superfusion chamber onto the 

stage of a Zeiss LSM 510 NLO confocal microscope. Images were acquired at 4Hz 

for signal initiation experiments and 2 Hz for calcium kinetic experiments. Calcium-

free imaging solution containing 20mM Hepes/ 4.7mM KCl/ 1.2mM KH2PO4/ 2.3mM 

MgSO4/ 130mM NaCl/ 1mM EGTA, pH 7.4 at 37°C was used for all experiments and 

for the dilution of agonists. 
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For calcium signaling, cells were excited at 488 nm and the appropriate 

emission filters were used. Increases in [Ca2+]i were expressed as a ratio of the 

fluorescence intensity of the calcium imaging dye fluo-4 over baseline fluorescence 

(F/F0) and were corrected for background fluorescence Fb ((F-Fb)/(F0-Fb)). The self-

ratio method (F/F0) was used because it is independent of factors such as dye 

concentration, excitation intensity and detector efficiency. However, intracellular 

calcium concentrations can be underestimated when large changes occur; therefore 

the magnitude of the calcium signal reported could be underestimated. PC12 and 

SHSY5Y cells were divided into different regions of interest (ROI) of the same size 

from the growth cone down to the soma. The onset of the neuritic/growth cone and 

somatic signal was determined as the time point at which F/F0 first reached (and 

remained) at a level 10% above the interval between F0 and Fmax. Nonviable cells, 

defined as cells that failed to respond to the sarco(endo)plasmatic calcium ATPase 

inhibitor thapsigargin, were excluded from the analysis. Before each experiment, the 

co-transfection marker DsRed2 was visualized and only cells expressing DsRed2 

were taken for analysis. 

 

5.11 Experimental autoimmune encephalomyelitis mice 

 

All animal research was performed in compliance with policies and guidelines 

of Yale University’s Institutional Animal Care and Use Committee (IACUC). 

 

EAE was induced in female C57BL/6 mice (6 week old, Charles River 

Laboratory, Massachusetts, USA) by subcutaneous injection with 200 μg myelin 

oligodendrocyte glycoprotein (MOG35–55; MEVGWYRSPFSRVVHLYRNGK, Keck 

Facility, Yale University, CT), dissolved in an emulsion of 100 μl of complete Freund’s 

adjuvant containing 0.5 mg of heat killed Mycobacterium tuberculosis (Difco 

Laboratories, Detroit, MI) and 100 μl of phosphate buffered saline (PBS).  200 ng of 

Pertussis toxin (List Biological Laboratories, Campbell, CA) was dissolved in PBS 

and injected intraperitoneally on the day of immunization and 48 h later. Scoring of 

EAE was determined as follows: 0 - no deficit, 1 - tail paralysis; 2 - unilateral hind 

limb weakness; 3 - incomplete bilateral hind limb paralysis and/or partial forelimb 

weakness; 4 - complete hind limb paralysis and partial forelimb weakness; 5 -

moribund state or death.  
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5.12 Brain slices 

 

Brains from C57BL/6 mice were collected 15 to 25 days after induction of 

EAE, postfixed overnight in 4% paraformaldehyde and frozen. Coronary sections 

were cut at 40 μm (Leica, Nussloch, Germany) and placed in pH 7.4 phosphate 

buffer (PB). Immunohistochemistry was performed on sections floating in PB at room 

temperature. Between each procedure, slices were washed 3x in PB for 5–10 min 

each. Sections were treated with 1% peroxide, permeabilized using 0.3% Triton X-

100 and blocked with 5% normal goat serum (Gibco/Invitrogen, Grand Island, NY). 

Sections were then incubated with antibodies directed against CGB and calnexin for 

24 h at 4°C. Following incubation with primary antibodies, sections were incubated 

with secondary antibodies for 1 h at room temperature, mounted on slides and 

visualized by a LSM 510 Zeiss confocal microscope. 

 

5.13 Data analysis and statistical analysis 

 

To determine total calcium release, SigmaPlot was used to calculate the area 

under the curve, and SigmaStat (Systat Software, San Jose, CA) was used for 

statistical analysis. Western blots were analyzed with Un-Scan-It Gel Software (Silk 

Scientific, Orem, UT). Raw imaging data were processed using Workbench 5 imaging 

software (Indec BioSystems, Santa Clara, CA) for fura-2 experiments and LSM 

Imaging Software (Zeiss, Oberkochen, Germany) for fluo-4 experiments. Statistical 

analysis was performed using the t-test for two group comparisons, or one-way 

ANOVA (Holm-Sidak method) for multiple group comparisons. One-way ANOVA 

(Student-Newman-Keuls method) was used for EAE and vesicle biogenesis 

experiments. Unless otherwise noted, a p value of ≤ 0.05 was considered to be 

statistically significant. 
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6. Interpretation and causal analysis of published results 

 

6.1 Expression of CGB fragments in NIH3T3 cells 

 

In order to study the effects of CGB on intracellular calcium signaling, the 

following CGB fragments were constructed and subcloned into either pcDNA or 

pShooter mammalian expression vectors:  CGB full length (CGB); the conserved  N-

terminal domain of CGB (20aa) (N-CGB); the conserved C-terminal of CGB (23aa) 

(C-CGB); an N-terminal deficient form of CGB (N-Def-CGB); a C-terminal deficient 

form of CGB (C-Def-CGB); and a scrambled peptide containing the 23 amino acids of 

C-CGB in random order (C-SP) (figure 01A). The resulting CGB constructs were 

expressed in non-excitable NIH3T3 cells, a mouse fibroblast cell line lacking 

endogenous expression of CGB. Expression of individual pcDNA-CGB constructs 

was confirmed by Western blot analysis using an antibody directed against CGB:  

CGB, N-Def-CGB and C-Def-CGB could be detected after transfection of NIH3T3 

cells. An empty pcDNA vector was used as a negative control in Western blots, and 

samples derived from empty vector transfected cells did not show up on the blot; 

similarly, no endogenous CGB could be detected from samples derived from NIH3T3 

cells alone. ß-actin was used as a gel loading control. The smaller CGB fragments 

were coupled to a c-myc motif by subcloning into a pShooter expression vector for 

detection in Western blot experiments. Wild type NIH3T3 cells and cells transfected 

with empty pShooter vector were used as negative controls (figure 01B). In order to 

test if deletion of either the N- or C-terminal region of CGB (i.e. N-Def-CGB or C-Def-

CGB) removes a sorting or retention motif necessary for retaining CGB inside the 

ER, we used indirect immunofluorescence studies to pinpoint the expression 

localization of all CGB fragments. For these experiments, calnexin was used as an 

ER marker protein and overlap of the expressed CGB fragment with calnexin was 

regarded as a positive signal consistent with expression and retention inside the ER. 

CGB, N-Def-CGB and C-Def-CGB were visualized using an antibody directed against 

CGB; whereas the N-CGB, C-CGB and C-SP fragments were visualized using an 

antibody directed against the c-myc motif. To ensure expression inside the ER for N-

CGB, C-CGB and C-SP, these fragments were coupled to KDEL, an ER-retention 

motif. All constructs showed significant overlap with the ER marker protein, calnexin, 

consistent with ER retention (figure 01C). 
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Fig. 01. Expression of CGB fragments in NIH3T3 cells.  

(A) Diagram of CGB constructs: CGB full-length (CGB), the conserved N-terminal of CGB 

(20aa) (N-CGB), the conserved C-terminal of CGB (23aa) (C-CGB), an N-terminal deficient 

form of CGB (N-Def-CGB), and a C-terminal deficient form of CGB (C-Def-CGB).  (B) CGB 

fragments were expressed in non-excitable NIH3T3 cells, a mouse fibroblast cell line, and 

subjected to Western blotting. The empty pcDNA vector and empty pShooter vector were 

used as negative controls. No endogenous expression of CGB in NIH3T3 cells could be 

detected. The smaller C-CGB, N-CGB and C-SP fragments were coupled to a c-myc motif 
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and visualized with an antibody directed against the c-myc motif. ß-actin was used as a 

loading control. (C) CGB fragments co-localized with the ER-marker protein calnexin, as 

visualized by immunocytochemistry. Because removal of the N- or C-termini of CGB could 

have deleted an ER sorting or ER retention motif, immunocytochemistry was used to 

examine intraluminal ER expression of CGB or CGB fragments, intraluminal ER expression 

of CGB or CGB fragments was observed, as visualized by overlap with the ER-Protein 

calnexin. The smaller C-CGB, N-CGB and C-SP fragments were coupled to a KDEL ER-

retention motif and intraluminal retention was visualized using an antibody directed against 

the c-myc motif.  
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6.2 Effects of the expression of CGB and CGB fragments on 

calcium signaling in NIH3T3 cells 

 

Because full-length CGB is itself a potent calcium-binding protein, we initially 

measured the effects of CGB expression on resting intracellular (cytosolic) calcium 

levels and ER calcium concentrations in NIH3T3 cells (which lack endogenous CGB).  

Calcium imaging experiments were conducted on NIH3T3 cells transfected with full-

length CGB using the quantitative calcium-sensitive dye fura2-AM:  resting 

intracellular calcium levels were found to be unchanged, with an approximate calcium 

concentration of 90 nM. The ER calcium concentration in these cells, defined as 

thapsigargin releasable calcium, was also unchanged, as determined using the 

sarco(endo)plasmatic reticulum calcium ATPase inhibitor thapsigargin. Similarly, all 

other CGB fragments had no significant effects on resting calcium levels, or ER 

calcium concentrations (table 01). 

 

In order to investigate the effects of CGB fragment expression on calcium 

release, NIH3T3 cells were stimulated using a very low agonist concentration of 1 µM 

ATP. Under these conditions, peak calcium release was markedly increased by 55%:  

from 154.4 ± 8.1 nM in the control group to 239.5 ± 33.7 nM in cells transfected with 

CGB. Peak calcium release in all other treatments groups was not significantly 

different when compared to the control group. At 1 µM ATP, the duration of calcium 

elevation over resting levels was increased by 121%:  from 27.8 ± 1.5 sec in the 

control group to 61.5 ± 6.8 sec in cells transfected with CGB. CGB also appears to 

increase the sensitivity of the InsP3R to ATP, since the percentage of cells 

responding to 1µM of agonist concentration increased from 35 to 53% upon CGB 

expression. In terms of total calcium release, CGB transfected cells were found to 

release 7.2 times more calcium at very low agonist concentrations, nearly reaching 

the in vitro determined activity rates previously measured in planar lipid bilayers 

(Thrower et al. 2003). All other CGB fragments failed to induce a significant effect at 

very low agonist concentrations (figure 02B, table 01). 

 

Interestingly, at medium agonist concentrations (5 µM ATP), both C-CGB and 

full-length CGB appear to effect intracellular calcium release kinetics. In fact, at 5 µM 

ATP, C-CGB expression was found to increase peak calcium release by 33%, versus 



 
Effects of the expression of CGB and CGB fragments on calcium signaling in NIH3T3 cells 29

an increase of 28% by full-length CGB: from 299.6 ± 12.7 nM in the control group to 

399.7 ± 32.3 nM in the C-CGB group, vs. 384 ± 32.3 nM in the CGB group. In 

addition, although the duration of calcium release was not significantly altered, a 

trend toward prolonged calcium release was observed for both the CGB and C-CGB 

groups. In terms of total calcium release, the C-CGB group released 46% more 

calcium than the control group, while the CGB group released 53% more calcium. All 

other CGB fragments failed to induce a statistical significant effect at 5µM ATP 

(figure 02C, table 01). A representative trace and visualized and processed raw 

calcium imaging data are shown in figure 02A and 03. 

 

When cells were stimulated with high agonist concentration (30µM ATP), peak 

calcium release levels were not significantly altered, most likely due to saturation of 

measurable response signals. However, the duration of calcium release was found to 

be increased in the C-CGB group by 23%: from 77.4 ± 1.6 sec in the control group to 

95.3 ± 4 sec in the C-CGB group. Consequently, total calcium release in the C-CGB 

group increased by 32% vs. the control group (table 01). 
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Fig 02. Expression of CGB and C-CGB in NIH3T3 cells increases calcium signal 

duration, peak calcium release and total calcium release.  

(A) Representative trace of processed calcium imaging data after stimulation of NIH3T3 cells 

with 5 µM ATP (corresponding to graphical data in panel C and raw imaging data in Fig. 03). 

Baseline calcium was subtracted individually from each cell. (B) Peak calcium release in 

CGB transfected NIH3T3 cells at low agonist concentrations. Stimulation of cells with a very 

low agonist concentration (1 µM ATP) led to a 55% increase in peak calcium release, from 

154.4 ± 8.1 nM in the control group to 239.5 ± 33.7 nM in cells transfected with CGB. CGB 

transfected cells also released 7.2-fold more total calcium at very low agonist concentrations, 

nearly reaching in vitro activity rates determined in planar lipid bilayers (Thrower et al. 2003). 

For additional data see table 01. (C) Peak calcium release in CGB and C-CGB transfected 

NIH3T3 cells at medium agonist concentrations. At a medium agonist concentration of 5 µM 

ATP, peak calcium release increased in both CGB and C-CGB expressing cells, from 299.6 ± 

12.7 nM in the control group to 399.7 ± 32.3 nM in the C-CGB group and 384 ± 32.3 nM in 

the CGB group. The C-CGB group released 46% more total calcium and the CGB group 

released 53% more calcium vs. controls. For additional data see table 01. 

 

 
 
Fig. 03. Raw imaging data from ratiometric Fura-2AM calcium imaging experiments. 

Peak calcium concentrations are shown on a visual scale, ranging from low (coded by the 

color blue) to high (coded by the color white), after stimulation of NIH3T3 cells with 5 µM 
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ATP.  Note that to confirm expression, cells were co-transfected with DsRed2 at a ratio of 

target cDNA to fluorescent protein vector of at least 3:1. Only DsRed2 positive cells were 

considered for analysis. Thus, not all visible cells have been successfully transfected with the 

target cDNA. 

In summary, at very low agonist concentrations, only full-length CGB was 

found to be effective at increasing peak calcium release, the duration of calcium 

release and total calcium release. At medium agonist concentrations (5 µM ATP), 

both C-CGB and CGB appear to be equally efficient at increasing peak calcium 

release and total calcium release; whereas at high agonist concentrations (30µM 

ATP), only C-CGB was efficient at increasing the duration of calcium release and 

total calcium release (table 01). 

 

Interestingly, the N-terminal CGB (N-CGB) alone failed to have any effect on 

calcium release kinetics, and NIH3T3 cells do not contain endogenous CGB that 

could be displaced by N-CGB from the InsP3R binding site. In addition, N-CGB 

fragments with truncated C-terminal ends produced calcium kinetics which were 

similar to the control group.  Notably, although the C-terminal region of CGB (C-CGB) 

had no effect on calcium kinetics at very low agonist concentrations, it was as 

effective as CGB at medium agonist concentrations, and the only effective CGB 

fragment at saturating agonist concentration. The lack of effect by C-CGB at low 

agonist concentrations could possibly be explained by a lowered binding affinity for 

InsP3R due to the lack of the N-terminal InsP3R binding domain.  Together, these 

results strongly support our hypothesis that the C-terminus of CGB contains region(s) 

which are critical for CGB-mediated effects on calcium kinetics. 
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6.3 Effects of CGB and the C-terminal CGB fragment on calcium 

signaling and signal initiation in neuronally differentiated PC12 

cells 

 

Previous experiments have shown that CGB is predominantly localized to 

growth cones and neuritic branching points in neuronally differentiated PC12 cells 

(Jacob et al. 2005). In these experiments, the calcium signal initiation site coincided 

with the growth cone, the area with the highest concentration of CGB (Johenning et 

al. 2002). Moreover, the interaction of CGB with the InsP3R in the growth cone could 

be disrupted by expressing a fragment from the N-terminal binding domain of CGB, 

leading to a shift of the calcium signal initiation site to the soma (Choe et al. 2004, 

Jacob et al. 2005). The following experiments were designed to confirm whether the 

calcium signal initiation site always coincides with the area of highest CGB 

expression, and to test the measured effects of CGB and C-CGB in non-excitable 

NIH3T3 cells in a cell model of excitable and neuronally differentiated PC12 cells. 

Previous experiments used carbachol as an agonist. However, in the present study, 

we used bradykinin as an agonist, since one of our aims was to determine if the 

calcium microdomain consisting of CGB and InsP3RI is agonist-independent, and if 

the effects of CGB on InsP3RI-mediated calcium kinetics are similar regardless of 

primary stimulus.  

 

Overexpression of CGB in neuronally differentiated PC12 cells that contain 

endogenous CGB significantly altered the CGB distribution pattern. As expected, in 

untransfected, neuronally differentiated PC12 cells, we detected the highest amounts 

of CGB expression in growth cones and neuritic branching points; while CGB 

expression levels in the soma were minimal. However, interestingly, overexpression 

of CGB altered this pattern, such that CGB expression levels were distributed 

between the growth cone and the soma, with a trend toward higher CGB expression 

in the soma. In fact, taking absolute CGB expression levels into account, most of the 

expressed CGB was now located in the soma. In contrast, expression of C-CGB in 

neuronally differentiated PC12 cells resulted in a more even expression distribution 

between the growth cone and the soma (figure 04-A). 
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Stimulation of untransfected neuronally differentiated PC12 cells, or cells 

transfected with scrambled CGB peptide (C-SP), with 2 µM bradykinin resulted in an 

initial calcium signal at the growth cone, followed by a calcium signal response in the 

soma (after a 2.26 ± 0.43 sec delay). The measured delay was consistent with 

previously published values obtained using carbachol instead of bradykinin as an 

extracellular agonist.  Interestingly, in CGB overexpressing cells, which contain the 

highest concentration of CBG in the soma, the calcium signal initiated first in the 

soma, followed after a delay of 1.24 ± 0.85 seconds by a response in the growth 

cone. In C-CGB expressing cells, the neuritic and somatic calcium initiation signals 

were detected simultaneously (± 0.99 sec) (figure 04-B, table 02). 

 

Peak calcium release was significantly increased in both full-length CGB and 

C-CGB transfected PC12 cells, with a 6-fold increase in peak calcium release in the 

CGB overexpressing group, and a 5-fold increase in the C-CGB group (figure 04-B, 

table 02). 
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Fig. 04. The magnitude of calcium release is increased and calcium signal initiation 

sites are altered upon expression of C-CGB, or overexpression of CGB, in neuronally 

differentiated PC12 cells.  

(A) In untransfected neuronally differentiated PC12 cells, endogenous CGB expression is 

localized to growth cones and neuritic branch points; whereas expression levels in the soma 

are minimal. Overexpression of CGB resulted in CGB expression throughout the cell. After 

taking absolute CGB expression levels into account, most of the expressed CGB appears to 

be located in the soma. Expression of C-CGB led to more evenly distributed CGB expression 

levels between growth cones and the soma. (B) Left panel: Peak calcium release was 

significantly increased upon expression of either C-CGB fragments (5-fold) or overexpression 

of CGB (6-fold). For additional data see table 02. Right panel: Bradykinin stimulation of 

neuronally differentiated PC12 cells transfected with scrambled C-CGB (as a control) 

resulted in calcium signal initiation first appearing in growth cones, followed by a response in 

the soma after a delay of 2.26 ± 0.43 seconds. In CGB overexpressing cells, with the highest 

amount of CBG in the soma, the calcium signal first initiated in the soma, followed by a 

response in the growth cone after a delay of 1.24 ± 0.85 seconds. In C-CGB expressing 

cells, the first neuritic and somatic signals were detected simultaneously, ± 0.99 sec. For 

additional data see table 02. 

 

The above described results represent further evidence that a calcium microdomain 

consisting of InsP3R and CGB (or C-CGB) defines the calcium signal initiation site, 

and that neuronal calcium kinetics, and therefore all calcium-dependent neuronal cell 

functions, can be modified by alterations in the distribution and/or expression levels 

of CGB or C-CGB (an endopeptidase cleavage product of full-length CGB). 

Furthermore, we demonstrated that this InsP3R-CGB calcium microdomain is not 

agonist specific. In fact, because both rapid (mAChR stimulation with carbachol) and 

slow (B2R stimulation with bradykinin) InsP3 production produce similar results, the 

identical latency time recorded from the first neuritic calcium signal to the first somatic 

signal must rely on mechanisms downstream of InsP3 production.  This assertion is 

supported by both a previously published virtual cell mathematical model (see section 

4.2) and published results from other experiments in neuronally differentiated PC12 

cells using caged-InsP3 (see section 4.3) (Johenning et al. 2002). Furthermore, the 

present results strongly suggest that this function of full-length CGB in neuronally 

differentiated PC12 cells depends only on the 23 amino acid long C-terminal 

fragment of CGB (C-CGB).  
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                     ∆ magnitude [AU]                      signal initiation [seconds] 

   2 µM  ∆t [soma‐neurite] (s) 

Control  0.41 ± 0.01  2.26 ± 0.43 

CGB  2.48 ± 0.43 *** 1.24 ± 0.85 ** 
C‐CGB  2.12 ± 0.17 ** 0.0014 ± 0.60 * 

 

Table 02. Effects of C-CGB expression and CGB overexpression in neuronally 

differentiated PC12 cells. 

PC12 cells were transfected with the CGB fragments described in the Materials and Methods 

section (or see figure 01A), and neuronally differentiated for at least 7 days. Neuronal 

differentiation was induced by incubating the cells in nerve growth factor. Calcium imaging 

experiments were conducted on a Zeiss NLO confocal microscope, by loading the cells with 

a calcium-sensitive imaging dye, fluo-4 AM. Expression of CGB or CGB-fragments was 

confirmed by co-transfecting cells with at least 3-fold lower amount of fluorescent DsRed2 

protein. Cells were stimulated with 2 µM of the B2R agonist bradykinin, and signal initiation 

sites and calcium kinetics were monitored. Results for peak calcium release and signal 

initiation sites are shown in the corresponding columns. Stated values are the result of at 

least 4 different and independent experiments per treatment group. Statistically significant 

values are shown in bold and stated as follows: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. 
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6.4 Effects of CGB and C- and N-terminal CGB fragments on 

calcium signaling and signal initiation in neuronally differentiated 

SHSY5Y cells 

 

Neuronally differentiated PC12 cells are a peripheral ganglion cell line, which 

was originally isolated from a rat pheochromocytoma.  PC12 cells are a well-

respected and frequently-used model for studying neuronal processes in non-primary 

cells, because their excitability and signal transduction properties are similar to 

primary neurons (Appell and Barefoot 1989, Greene and Tischler 1976, Koizumi et al. 

1999, Shafer and Atchison 1991). However, PC12 cells also have certain limitations:  

in some cases, results obtained in PC12 cells cannot be replicated in primary 

neuronal cells, or using extremely difficult to obtain primary human neuronal cells.  

Therefore, in an attempt to support and extend our findings, we performed additional 

experiments using human SHSY5Y neuroblastoma cells. To enable more direct 

comparison, SHSY5Y cells were neuronally differentiated using retinoic acid and 

recombinant human nerve growth factor. Successful neuronal differentiation was 

confirmed by observation of morphological extensions or neuritis, as well as 

upregulation of CGB expression, which has been shown to increase with neuronal 

activity. In the present study, CGB expression in neuronally differentiated SHSY5Y 

cells was indeed upregulated 8-fold vs. controls during the differentiation process, as 

confirmed by Western blotting (figure 5A + figure 5B + figure 5E).  

 

As a prerequisite for the above described SHSY5Y experiments, we confirmed 

that InsP3RI, the predominant calcium release channel in neuronal cells, is in fact 

equally distributed throughout the cell and its extensions. Thus, any possible 

observed shift in calcium signal initiation site cannot be explained by “hotspots” of 

InsP3R channels. No significant differences were observed for resting calcium levels 

in neuronally differentiated SHSY5Y cells expressing CGB or the various CGB 

fragments.  In addition, no changes in the level of ER calcium stores were found, 

both in terms of peak and total calcium release, as measured using the 

sarco(endo)plasmic reticulum calcium ATPase inhibitor, thapsigargin (figure 5C + 

figure 5D). 
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Fig. 05. Neuronally differentiated SHSY5Y cells have elevated CGB levels, but 

expression of CGB or CGB fragments does not alter resting calcium levels. 

(A),(B) Neuronal differentiation of a human neuroblastoma cell line (SHSY5Y cells) by 

retinoic acid and recombinant human nerve growth factor was successful as indicated by the 

development of neurite extensions (A) and Western blotting showing increased  CGB levels 

upon neuronal differentiation (B). (C), (D) Expression of CGB fragments or overexpression of 

CGB in neuronally differentiated SHSY5Y cells does not change resting calcium levels (C), 
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or alter ER calcium levels, defined as thapsigargin-releasable calcium (D). (E) Western blot 

showing increased CGB levels after treatment with retinoic acid and recombinant human 

nerve growth factor to induce neuronal differentiation.  

 

In neuronally differentiated SHSY5Y cells stimulated with 15µM of carbachol 

(an mAChR agonist), the peak calcium response was found to be 93% higher in 

CGB-expressing cells, and 98% higher in C-CGB expressing cells versus the control 

group. Peak calcium concentrations nearly doubled, increasing from 0.9 ± 0.09 AU 

for control cells to 1.8 ±  0.1 AU for CGB and 1.8 ±  0.1 AU for C-CGB cells.  

Consistent with our results from PC12 cells, N-CGB expression was associated with 

a decrease in peak calcium release of approximately 47%, corresponding to a peak 

calcium release of only 0.4 ± 0.05 AU (figure 6B, table 03). C-CGB expressing 

neuronally differentiated SHSY5Y cells responded 68% longer than control cells, 

corresponding to an increase in calcium signal response time from 99.24 ± 7.53 sec 

in the control group to 167.01 ± 12.1 seconds in cells expressing C-CGB (figure 6C, 

table 02). In addition, InsP3RI sensitivity increased from 59% responding cells in the 

control group to 80% responding cells in the CGB expressing group; while in the case 

of C-CGB expression, InsP3RI sensitivity was measured to be as high as 86% 

responding cells. In contrast, N-CGB expression actually resulted in an 8% decrease 

in responding cells (table 03). 

 

Under the conditions used in our experiments, growth cones in the neuronally 

differentiated SHSY5Y cells appeared to be significantly more sensitive to InsP3-

mediated calcium release than the soma. Accordingly, the first calcium signal in 

SHSY5Y growth cones was detectable 17.18 ± 5.33 seconds before the first somatic 

calcium signal was observed. Interestingly, CGB expression decreased this delay to 

2.62 ± 2.22 seconds. In addition, C-CGB expression resulted in a shift of the calcium 

initiation site: the first somatic signal was detected 1 ± 2.16 seconds before the first 

neuritic signal (figure 6C, table 03). Statistically interpreted the somatic and neuritic 

signals occurred at the same time with a trend towards occurring first in the soma. 
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Fig. 06. Expression of C-CGB in neuronally differentiated SHSY5Y cells alters the 

calcium signal initiation site, and is associated with increased peak calcium release 

and signal duration.  

(A) Representative trace of processed calcium imaging data. Neuronally differentiated 

SHSY5Y cells transfected with the different CGB fragments were stimulated with 15µM 

carbachol. Baseline calcium was subtracted from each cell individually. (A), (B) Peak calcium 

responses in CGB and C-CGB expressing neuronally differentiated SHSY5Y cells. Peak 

calcium response was 93% higher in CGB expressing cells, and 98% higher in C-CGB 

expressing cells versus the control group. Peak calcium concentrations nearly doubled, 

increasing from 0.9 ±  0.09 AU for control cells to 1.8 ±  0.1 AU for CGB and 1.8 ±  0.1 AU for 

C-CGB.  N-CGB expression led to a 47% decrease in released peak calcium, corresponding 

to a peak calcium release of only 0.4 ± 0.05 AU. (C) Calcium signal durations in C-CGB 

expressing cells versus controls. C-CGB cells respond 68% longer than control cells, 

corresponding to an increase in calcium signal duration from 99.24 ± 7.53 sec in the control 

group to 167.01 ± 12.1 sec in cells expressing C-CGB. (D) Calcium signal initiation site 

analysis. An initial calcium signal was detected in the growth cones of SHSY5Y cells 17.18 ± 

5.33 sec before the first somatic response was observed. CGB expression decreased this 

delay to 2.62 ± 2.22 sec. Also, C-CGB expression resulted in a shift of the calcium initiation 

site: the first somatic signal was now detectable 1 ± 2.16 sec before the first neuritic signal. 

For additional data see table 03. 
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In the above described experiments on neuronally differentiated SHSY5Y 

cells, we acquired further information about how our proposed calcium microdomain 

consisting of InsP3RI and CGB, C-CGB or N-CGB, could alter intracellular calcium 

kinetics, leading to a shift in the location of calcium signal initiation sites. CGB and C-

CGB were found to induce major changes in calcium kinetics, and C-CGB altered the 

latendy between the first somatic and neuritic calcium signals resulting in a statistical 

trend for shifting the calcium signal initiation site from the growth cone to the soma; 

whereas N-CGB diminished the interaction between InsP3RI and endogenous CGB, 

resulting in diminished calcium transients. It is possible that if one of these key 

players becomes dysregulated, the observed CGB-mediated effects could alter 

normal cellular function. Moreover, since the observed changes in calcium kinetics 

may result in cellular dysfunction, CGB could theoretically be a target for the 

treatment of neurological diseases, or could theoretically be altered in order to 

compensate for cellular responses to neurological diseases.  In any case, our results 

also serve to reiterate how calcium as a second messenger is capable of performing 

a variety of functions, from neuronal outgrowth and gene transcription to apoptosis. 

 

   ∆ magnitude [AU]  duration [seconds]  response rate [percentage] resting calcium [AU]  signal initiation [seconds]

   15 µM  15µM  15µM ∆t [soma‐neurite] (s)

Control  0.9 ±  0.09  99 ±  7.5  59 41 ±  1 17.2 ± 5.3

CGB  1.8 ±  0.17***  107 ±  7.8  80 36 ±  0.9 2.6 ± 2.2*

C‐CGB  1.8 ±  0.10***  167 ±  12.1***  86 38 ±  0.7 ‐ 1 ± 2.1*

N‐CGB  0.4 ±  0.05*  125 ±  17.4  51 43 ± 0.7   

 

Table 03. Effects of CGB and CGB fragment expression in neuronally differentiated 

SHSY5Y cells. 

Human neuroblastoma SHSY5Y cells were transfected with CGB or CGB fragments as 

described in the Materials and Methods section (or see figure 1A), and neuronally 

differentiated for at least 8 days by incubation with retinoic acid and recombinant human 

nerve growth factor. Calcium imaging experiments were conducted on a Zeiss NLO confocal 

microscope, by loading cells with a calcium-sensitive imaging dye, fluo-4 AM. Expression of 

CGB or CGB-fragments were confirmed by co-transfecting cells with at least 3-fold less 

fluorescent DsRed2 protein. Cells were stimulated with 15 µM carbachol, an mAChR agonist, 

and calcium signal initiation sites and calcium kinetics were monitored. Results for peak 

calcium release, duration of the calcium response, response rate, total calcium release, 

resting calcium and the signal initiation sites are shown in the corresponding columns. Stated 
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values are the result of at least 4 different and independent experiments per treatment group. 

Statistically significant values are shown in bold and stated as follows: * ≤ 0.01, ** ≤ 0.001, 

*** ≤ 0.0001. 
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6.5 Effects of the expression of CGB and CGB fragments on 

secretory granule biogenesis 

 

As previously mentioned, CGB was shown to induce secretory vesicle 

biogenesis. However, experiments conducted in CGB knock-out mice have called 

into question the in vitro secretory vesicle biogenesis results for CGA and CGB, 

leading to a controversy surrounding the role and importance of CGA and CGB for 

this process in vivo (Obermuller et al. 2010). 

 

Fig. 07. Expression of CGB and C-Def-CGB induces de novo secretory granule 

biogenesis. 

Images of CGB, C-Def CGB and N-Def-CGB expressing NIH3T3 cells were recorded at 100x 

using a light microscope. Only C-Def-CGB and CGB expression induced de novo secretory 

vesicle biogenesis. 

In our experiments, the region of CGB critical for secretory vesicle biogenesis 

was found to be located in the N-terminal region. As observed by light microscopy, 

control wild type NIH3T3 cells showed no indication of cytoplasmic secretory vesicle 

formation. However, as shown previously, expression of CGB resulted in a significant 

increase the number of cytoplasmic secretory vesicles. The same effect was 

observed following C-Def-CGB expression, in which the C-terminal region of CGB 

was deleted; therefore, no calcium kinetics modifying effects could be assumed. 

Thus, interestingly, secretory vesicle biogenesis does not seem to require the 

changes in calcium kinetics associated with CGB expression. Consistently, 

expression of N-Def-CGB led to no microscopically observable secretory vesicles. 

Taken together, these results indicate that the N-terminal domain of CGB is essential 

for secretory vesicle biogenesis. To further quantify the level of de novo secretory 

vesicle biogenesis mediated by CGB, we transfected NIH3T3 cells with CGB, C-Def-

CGB, N-Def-CGB, N-CGB or C-SP (for control purposes). After expression, we 
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visualized CGB (or the transfected CGB fragments) and beta-COP as a secretory 

vesicle marker.  Expression of CGB, C-Def-CGB or N-CGB in NIH3T3 cells resulted 

in de novo secretory vesicle biogenesis, whereas N-Def-CGB and C-SP did not 

induce secretory vesicle formation. Based on these results, fragments of CGB 

containing the N-terminal binding region, or even just the N-terminal region of CGB, 

appear to be sufficient for inducing de novo secretory vesicle biogenesis (figure 07, 

figure 08). 
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Fig. 08. N-CGB is required for secretory vesicle biogenesis.  

CGB fragments were expressed in NIH3T3 cells and stained for CGB or c-myc (green), and 

secretory vesicles (beta-COP, red). (A) CGB, (B) N-CGB, (C) C-Def-CGB, (D) N-Def-CGB, 

(E) C-SP (scrambled C-CGB). (F) After secretory vesicle quantification, N-CGB, CGB, C-Def-

CGB were found to induce vesicle biogenesis. N-Def-CGB did not increase secretory vesicle 
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biogenesis over control cells (C-SP). Data are mean  SEM; * = p value of ≤ 0.05, ** = p 

value of ≤ 0.03, *** = p value of ≤ 0.01. 

 

Our results partly address the above mentioned controversy, since the 

conserved N-terminal of CGB shares a high-level of amino acid sequence similarity 

with CGA, and has been shown to be sufficient for induction of secretory vesicle 

biogenesis. When either CGA or CGB is knocked out, upregulation of the other 

chromogranin rescues secretory vesicle biogenesis, partly compensating for the loss 

of the other chromogranin. In fact, even minimal concentrations of the common N-

terminal domain appear to be sufficient to induce secretory vesicle biogenesis. 
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6.6 Regulation of CGB in an autoimmune encephalomyelitis (EAE) 

mouse model for multiple sclerosis and summarized results 

As outlined above, CGB is dysregulated in many neurological diseases, and is 

thus presumably involved in offsetting or adjusting the pathophysiological changes 

associated with a particular disease. Although most major neurological disease 

states have been found to be associated with CGB dysregulation, multiple sclerosis 

(MS) is a neurological disorder that has not yet been linked with CGB.  

The available evidence in the literature only points to a peptide derived from 

CGB that is decreased in cerebrospinal fluid (CSF) in individuals diagnosed with MS 

(Mattsson et al. 2007). Although MS is characterized by various aspects, the reason 

why we chose MS as a study model was that, in theory, the demyelination caused by 

MS, and the resulting disruption of signal transduction, might be at least partially 

offset by increased expression of CGB, or expression of CGB in different cellular 

compartments. In particular, CGB might in particular aid in calcium-dependent gene 

transcription, neuronal outgrowth and downstream neuronal signal transduction. 

 

In order to test our hypothesis, we used autoimmune encephalitis mice (EAE), 

a mouse model of MS, and looked at CGB expression in homogenates of different 

brain regions taken from these mice. In fact, interestingly, CGB expression was found 

to be upregulated in all of the brain regions examined. EAE mice are classified 

according to disease severity, which is scored depending on motor skills. These 

scores were found to be proportional to the degree of CGB upregulation in the 

cerebellum. Overall, CGB was measured to be upregulated 11-fold in cerebellum 

homogenates of mice with a disease severity score of 2 versus healthy control mice. 

Moreover, in samples collected from mice with a disease severity score of 2,5, 

upregulation of CGB increased 32-times; while a disease severity score of 3 was 

associated with a 91-fold CGB increase versus controls. In fact, the amount of CGB 

expressed in cerebellum homogenates was statistically significantly altered between 

mice with different severity scores, making it possible to use CGB levels as a post 

mortem biomarker for disease severity score. However, although CGB expression 

levels in the spinal cord, cerebral cortex and frontal cortex were significantly 

upregulated, no statistically significant correlation was found between CGB levels 

and disease severity groups (figure 09). 
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Fig. 09. Upregulation of CGB in different brain region homogenates in EAE mice, a 

mouse model for multiple sclerosis. 

Autoimmune encephalitis was induced by subcutaneous injection of myelin oligodendrocyte 

glycoprotein and treated mice were classified according to a disease severity score, 

depending on their motor skills (see Materials and Methods). Brain homogenates from the 

cerebellum, spinal cord, cerebral cortex and frontal cortex were obtained and used for 

quantitative Western blot analysis with a CGB antibody. (A) Western blot from cerebellum 

homogenates of 6 healthy control mice and 11 EAE mice, Gapdh was used as a gel loading 

control. (B) Anti-CGB Western blot results from cerebellum homogenates. Very little intact 

CGB was detected in healthy control mice. CGB expression levels in mice with a disease 

severity score of 2 were upregulated 11-fold; while mice classified with a score of 2.5 showed 

32-fold higher CGB expression levels; and mice with a score of 3 displayed a 92-fold 

increase in CGB expression. These results illustrate the functional importance of CGB in the 

pathogenesis of autoimmune encephalitis. Differences in CGB expression between disease 

severity groups were statistically significant, making it possible to use CGB expression in 

cerebellum homogenates as a post mortem biomarker for disease severity. (C) Western blot 

results from spinal cord homogenates. Mice classified with a disease severity score of 2 

showed an 11-fold upregulation of CGB, similar to results found in the cerebellum. In mice 
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classified with a score of 2.5, CGB was upregulated 21-fold; while in mice classified with a 

score of 3, CGB was upregulated 23-fold. 

In order to test if the CGB upregulation observed in brain region homogenates 

is due to upregulation of CGB in neurons, and not glia cells or other neuronal cells, 

we used CGB stained cryosections; confirming CGB expression in the neurons 

(figure 10). 

 

Fig. 10. Upregulation of CGB expression in EAE brain region homogenates is localized 

to neurons. 

(A) Very little (or negligible) CGB could be detected in brain slices taken from the frontal 

cortex of healthy control mice. For panel 1, high amounts of anti-CGB-antibody were used, 

resulting in either non-specific staining, or neuritic binding of the CGB-antibody. Calnexin 

was used to visualize the neuronal cells in the imaged area. (B) In EAE mice, high levels of 

CGB expression was localized to the intraluminal region of the ER, as shown by the overlap 

with the ER marker protein calnexin. These results illustrate the functional importance of 

CGB in EAE pathogenesis in mice. 

 

In summary, CGB has been previously shown to be involved in calcium 

signaling, via interaction with the InsP3R at the luminal side of the ER. In addition, 

two potentially important regions of CGB have been identified, the N-terminal domain 
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and the C-terminal domain. In this thesis, we identified distinct roles for the N- and C-

terminal domains of CGB, and showed their crucial importance in calcium kinetics as 

part of an InsP3RI-CGB calcium microdomain. We further clarified the role of CGB in 

the maintenance and modulation of calcium signaling, as well as in secretory vesicle 

biogenesis.  

 

In addition, we found that the 23aa long C-terminal domain is crucial for 

inducing InsP3R calcium release. Furthermore, we characterized the role of CGB and 

found that expression of the 20 aa long N-terminal domain is sufficient to induce de 

novo secretory vesicle biogenesis. N-CGB was also found to play a role as a 

competitive inhibitor of full-length CGB. When full-length CGB is present, the N-

terminus competes with full-length CGB for its binding site on the InsP3R, thereby 

decreasing calcium release. On the other hand, in cells lacking CGB, competition 

between full-length CGB and N-terminal CGB does not occur, resulting in unaltered 

calcium release.  

 

Expression of CGB or CGB-derived fragments in neuronally differentiated 

PC12 or human SHSY5Y cells, was found to be associated with significantly altered 

signal initiation sites, illustrating the power of a calcium microdomain consisting of the 

InsP3RI and CGB or CGB-derived fragments.  

 

Based on the findings presented in this thesis, we developed a hypothesis that 

CGB may be an important modulator in neurological disease. We attempted to test 

this for MS, a neurological disease where demyelination might lead to problems that 

could be partially offset by higher CGB expression. Consistent with this hypothesis, 

we found a statistically significant upregulation of CGB in brain regions of EAE mice, 

a mouse model for MS. 
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76 kDa  spinal cord  cerebellum cerebral cortex frontal cortex  hippocampus

           

Control  1.0  ± 0.4  0.1 ± 0.05 0.3 ± 0.3 0.6 ± 0.5  0.07 ± 0.04

EAE 2  11.7 ± 5.5*  1.5 ± 1.0 1.5 ± 0.9 3.2 ± 1.6  1.5 ± 0.9

EAE 2.5  22.7 ± 2.8***  4.4 ± 1.1* 2.1 ± 1.1 3.7 ± 1.0*  4.7 ± 3.0

EAE 3  24.9 ± 3.1***  12.3 ± 1.4*** 4.3 ± 1.1* 7.7 ± 2.5**  1.1 ± 0.8

           

105 kDa  spinal cord  cerebellum cerebral cortex frontal cortex  hippocampus

           

Control  0.3 ± 0.1   0.07 ± 0.02 0.06 ± 0.04 0.2 ± 0.1  0.05 ± 0.01

EAE 2  5.8 ± 2.7*  0.6 ± 0.3 0.4 ± 0.2 2.5 ± 1.0  1.0 ± 0.4

EAE 2.5  10.5 ± 1.7***  2.4 ± 0.8* 0.8 ± 0.4 2.7 ± 0.7  2.8 ± 2.2

EAE 3  11.3 ± 1.9***  5.9 ± 1.0*** 1.4 ± 0.4* 4.3 ± 1.4**  3.1 ± 0.7

 

Table 04. Chromogranin concentrations determined by western blotting in different 

brain regions of EAE mice. 

Autoimmune encephalitis was induced by subcutaneous injection of myelin oligodendrocyte 

glycoprotein, and affected mice were classified to a disease severity score depending on 

their motor skills (see Materials and Methods). Brain homogenates of the cerebellum, spinal 

cord, cerebral cortex, frontal cortex and hippocampus were obtained and used for 

quantitative Western blot analysis using an anti-CGB antibody. Note that CGB bands were 

detected at 76 and 105 kDa. Usually CGB runs at 76 kDa in sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE); however, post-translational modifications 

such as phosphorylation, sulforylation and glycosylation could result in a modified CGB 

which migrates at 105 kDa. Stated values are the result of at least 3 different and 

independent experiments per treatment group. Statistically significant values (vs. control 

group) are shown in bold and stated as follows: * ≤ 0.05, **≤ 0.01, *** ≤ 0.001. 
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