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Abstract

This thesis is concerned with pointwise conjugate representations
of finite groups and their rings of polynomial invariants. In particu-
lar, it will be shown that these rings are isomorphic as modules over
the Steenrod algebra P∗ if and only if the group representations are
pointwise conjugate.

1



Contents

1 Introduction 3
1.1 Representation theory . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Polynomial invariants of groups . . . . . . . . . . . . . . . . . 6

2 Pointwise Conjugacy 9

3 Finding Examples 14
3.1 Conformal groups . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Rings of Polynomial Invariants 21
4.1 The Dickson algebra . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 The Steenrod algebra . . . . . . . . . . . . . . . . . . . . . . 21

5 Modules over P∗ 23

6 Cohomology 29
6.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Polynomial tensor exterior algebras . . . . . . . . . . . . . . . 31

7 Modular Representations 33
7.1 Pointwise conjugacy . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 The image of the transfer: two examples . . . . . . . . . . . . 35

A Appendix: Small Conformal Groups 38

2



1 Introduction

The origins of this thesis lie in a paper by John Martino and Stuart Priddy,
Stable Homotopy Classification of BGˆ

p [16] from 1995. In it, they give a
necessary and sufficient condition for the p-completions BGˆ

p and BG′ˆ
p of the

classifying spaces of two groups G and G′ to be stably homotopy equivalent.
For a finite group G, its classifying space BG is an Eilenberg-MacLane space
K(G, 1) and thus G determines BG up to homotopy equivalence. This is
however no longer true for stable homotopy equivalence: that is, ΣkBG �
ΣkBG′ for large k need not imply that G ∼= G′. As

BG �
∨
p||G|

BGˆ
p,

stably, where BGˆ
p is the p-completion of BG, they examined the question

as to when two such p-completions for different groups are stably homotopy
equivalent.

This turned out to involve the idea of pointwise conjugacy, the situation
where there is a set bijection between two subgoups of a group, such that
corresponding elements are conjugate in the larger group. This is clearly a
generalisation of the notion of conjugate subgroups. Larry Smith noticed
the connection with invariant theory, and suggested the project of treating
this idea in an invariant theory context. Thus the beginning of the thesis
was to translate some of the results of the paper [16] into a non homotopy-
theoretic language and find proofs independent of the deep homotopy theory
machinery used there. This is done in Section 2.

Any study of stable homotopy theory involves the Steenrod algebra Ap,
the algebra of all natural stable transformations of the mod p cohomology
functor. The Steenrod algebra originally entered invariant theory via topol-
ogy, as invariant rings occur naturally as the cohomology rings of certain
spaces (see Section 6). It is a powerful tool in the study of invariants, see for
example [22].

In characteristic p �= 2 the invariant rings occurring as cohomology rings
are naturally graded with generators in degree 2. Thus the Bockstein opera-
tor in the Steenrod algebra is identically zero on these polynomial invariant
rings, as it increases degrees by 1. In this context, I follow Larry Smith in
denoting the Steenrod algebra without Bockstein as P∗, and defining it in
terms of generators and relations of operators on a polynomial ring F[V ],
independently of topology.

The utility of P∗ in invariant theory lies in the fact that the invariant
ring F[V ]G of a finite group G has the structure of an unstable algebra over
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P∗, it is a module over P∗ which satisfies the so-called unstability conditions
(see Section 4). Thus elements of P∗ take invariants to invariants, and can
be used to manufacture new invariants from old. The existence of this P∗-
module and -algebra structure of course raises the question as to whether it
is restricted, or determined, by the group G, and it is this question which
the thesis treats. In particular, in the central Section 5 it is shown that two
invariant rings F[V ]H and F[V ]K of finite groups H and K are isomorphic as
unstable modules over P∗ if and only if H and K are pointwise conjugate in
GL(n, F), and isomorphic as unstable algebras over P∗ if and only if H and
K are conjugate in GL(n, F).

The topological Steenrod algebra is used only in Section 6, where appli-
cations to topology are given, namely examples of non homotopy-equivalent
topological spaces with the same Ap-module structure.

The structure of the thesis is as follows. Apart from Sections 6 and 7,
we treat almost exclusively the non-modular case, that is, when the charac-
teristic of the field does not divide the order of the group. Sections 1.1 and
1.2 briefly treat the invariant theory and representation theory needed in the
sequel. Section 2 introduces the definition of pointwise conjugacy, giving a
number of equivalent conditions which are used in an essential way in the rest
of the thesis. Section 3 treats the question as to precisely when this situation
arises, showing that pointwise conjugacy is in some sense equivalent to the
condition of conformality for groups, an old term denoting that two groups
have the same number of elements of each order. Some examples are given,
and various group theory results are quoted which guarantee an infinite (and
fairly ‘common’) supply of pairs of pointwise conjugate representations.

In Section 4 the Steenrod algebra and the Dickson algebra, a particular
invariant ring, are defined. Applications to invariant rings make their first
appearance in Section 5, where it is shown that, in the non-modular case,
pointwise conjugacy is equivalent to the invariant rings being isomorphic as
modules over P∗. Section 6 gives a topological interpretation and examples,
and Section 7 examines the modular case: that is, when the characteristic
of the field divides the order of the group. As is often the case in invariant
theory and representation theory, the nice results in the non-modular case
are then no longer true.

I would like to thank the many colleagues and friends who supported me
in various ways during work on this thesis, in particular my supervisor Larry
Smith for always being full of ideas and suggestions for further work – much
more than I could do credit to! And Miriam Seibold, thanks to whom I came
to Göttingen in the first place.
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1.1 Representation theory

Let ρ : G −→ GL(n, F) be a representation of a finite group G. The G action
on V = Fn can be extended to an action of the group algebra FG, defined to
be F-linear combinations of elements of G, via(∑

g∈G
λgg

)
(v) =

∑
g∈G

λgg(v).

This makes V into an FG-module, and conversely any finite dimensional FG-
module induces a representation of G by restriction to the group elements.
Thus representations of G and FG-modules are equivalent terms, and will
be used interchangeably in the sequel. All modules referred to will be left
modules, unless explicitly stated otherwise.

The character of the representation is a function χ : G −→ F, given
by χ(g) =trace(ρ(g)). Suppose that the characteristic of F does not divide
the order of G. This is called the non-modular case. Then the character
determines the representation up to conjugacy in GL(n, F), provided that F is
sufficiently large, i.e. contains roots of unity for all divisors of |G|. If however
char(F) = p and p| |G| , then the situation is more complicated. Brauer ([6])
found a way to define a character in C , starting from a representation in
F. This Brauer character has many of the properties of the non-modular
case, in particular we shall use the fact that if V is a projective FG-module,
the Brauer character characterises the representation up to conjugacy in
GL(n, F) (see [3] or [21]).

Let H be a subgroup of G. Given a representation σ : H −→ GL(n, F)
and corresponding FH-module V, we define the induced representation on G
to be the FG-module

FG ⊗FH V,

denoted IndGH(σ). Equivalently, the induced representation can expressed as
the G-module

IndGH =
⊕
r∈R

rV

where R is a set of left coset representatives of H in G. Let χ be the character
of σ. If char(F) - |H| , the character χGH of the induced representation can be
expressed in terms of χ: to wit

χGH(g) =
1

|H|
∑
x∈G,

x−1gx∈H

χ(x−1gx).

For details, see [10] Chapter 10.
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1.2 Polynomial invariants of groups

Invariant theory in this paper denotes the study of invariants of polynomial
rings under the action of a (finite) group. Let F be a field, and let V =
Fn be an n-dimensional vector space over F. A subgroup G < GL(n, F)
operates on V ∗, the dual space to V , as follows: for g ∈ G and f ∈ V ∗, let
(gf)(v) := f(g−1v) for each v ∈ V . Let F[V ] be the F-algebra of polynomial
functions on V , which may be defined as the symmetric algebra on V ∗. Thus
if {x1, . . . , xn} is an F-basis for V ∗ = HomF(V

∗, F), then

F[V ] = F[x1 , . . . , xn] = F ⊕ V ∗ ⊕ S2(V ∗)⊕ S3(V ∗)⊕ · · · .

Here Sk(V ∗) denotes the k-th symmetric power of V ∗, i.e. the set of
homogeneous polynomials of degree k in x1, . . . , xn. F[V ] is naturally graded
by giving each xi degree 1 (or degree 2 in certain cases if we are doing
topology), and the action of G on V ∗ extends multiplicatively to a degree-
preserving action on F[V ]. The ring of invariants F[V ]G is defined as

F[V ]G = {f ∈ F[V ] : gf = f ∀g ∈ G}.

More generally, we are interested in the invariants of a faithful linear
representation of a group ρ : G ↪→ GL(n, F). Identifying G with its image
in GL(n, F), we may talk of the ring of invariants of G when it is clear
from the context which faithful representation is implied. Apart from in the
last section, we shall be concerned almost exclusively with the case where
char(F) - |G| .

There are one or two classical theorems which I shall make use of in this
paper, the first of which was historically very important, providing part of
the motivation for the beginnings of modern commutative algebra:

Theorem(Hilbert, Noether) F[V ]G is finitely generated as an F-algebra,
and F[V ] is an integral extension of F[V ]G.

Proof. Every element x ∈ F[V ] is a root of the monic polynomial∏
g∈G

(X − gx) ∈ F[V ]G[X].

If A is the subalgebra of F[V ]G generated by the coefficients of the polynomi-
als satisfied by the algebra generators of F[V ], then the tower A ⊆ F[V ]G ⊆
F[V ] sandwiches F[V ]G between two noetherian rings, with F[V ] integral over
A. Thus F[V ] is finitely generated as an A-module. F[V ]G is a submodule,
hence also finitely generated over A, and thus over F.
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The action of G on F[V ] can be extended to an action on the field of
fractions F(V ) of F[V ]:

g(f1/f2) := g(f1)/g(f2).

We denote the subfield of elements fixed under this action by F(V )G.

Proposition F(V ) is a Galois extension of F(V )G with Galois group
G. The field F(V )G is the field of fractions of F[V ]G, and F[V ]G is integrally
closed in F(V )G.

Proof. G acts as field automorphisms of F(V ), so the first statement
is clear. It is also clear that FF (F[V ]G) ⊆ F(V )G. Any element of F(V )G

can be written as f1/f2 where f2 ∈ F[V ]G, by multiplying numerator and
denominator by the distinct images of the numerator under the G-action.
Then f1 must also be G-invariant, giving the other inclusion.

Any f ∈ F(V )G integral over F[V ]G is also integral over F[V ]. As F[V ]
is integrally closed over F(V ), it follows that f ∈ F[V ], and hence that
f ∈ F[V ]G.

The Poincaré series for the algebra F[V ]G is a way of encoding the vector
space dimensions of the homogeneous components F[V ]Gk : it is defined by

P (F[V ]G, t) :=

∞∑
k=0

dimF(F[V ]Gk )t
k.

A first indication that pointwise conjugacy might have implications for in-
variant rings is given by the theorem of Molien (see e.g. [22]):

Theorem (Molien) Let ρ : G ↪→ GL(n, F) be a representation of a
finite group G over a field F of characteristic zero. Then the Poincaré series
of the ring of invariants is given by

P (F[V ]G, t) =
1

|G|
∑
g∈G

1

det (1− ρ(g)−1t).

The result is also true in positive characteristic p for p - |G|. In this case
one must use a ‘Brauer Lift’, lifting the eigenvalues to characteristic zero and
defining trace and determinant by addition and multiplication.

Suppose that the elements of two groups H , K can be paired off so that
for two representations ρ : H ↪→ GL(n, F) and σ : K ↪→ GL(n, F) corre-
sponding elements h, k have images ρ(h) and σ(k) which are conjugate in
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GL(n, F); in other words, that ρ(H) and σ(K) are pointwise conjugate in
GL(n, F). (Pointwise conjugacy will be properly defined in the next Section).
Then Molien’s Theorem implies that P (F[V ]H , t) = P (F[V ]K , t), as the de-
terminants of (1 − At) and (1 − Bt) are equal if A and B are conjugate
matrices.

Thus pointwise conjugate representations of groups evidently have in-
variant rings which are related in some way, in particular having the same
structure as graded vector spaces. The rest of the thesis examines this in
more detail.
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2 Pointwise Conjugacy

In this section we introduce the basic notation and present the first main
theorem.

Definition Let ρ : H ↪→ GL(n, F) and σ : K ↪→ GL(n, F) be faithful
representations of finite groups over the field F. We say ρ and σ are point-
wise conjugate or pc if there is a set bijection γ : H −→ K such that, for
all h ∈ H, ρ(h) is conjugate to σ(γ(h)) in GL(n, F).

More generally, consider the following

Definition Let G be a finite group and H,K < G subgroups. We say
H and K are pointwise conjugate in G, or simply pointwise conjugate
if G is clear from context, if there is a bijection between them such that
corresponding elements are conjugate in G.

Clearly, as ρ and σ are faithful representations, when we identify the
groups H and K with their images in GL(n, F) the definitions coincide.

The following easy observation is often useful:

Lemma 1 H,K < G are pointwise conjugate if and only if |H∩C| = |K∩C|
for every conjugacy class C in G.

For the next theorem, we need a preparatory Lemma:

Lemma 2 Let S be the F-vector subspace of the group algebra F(G) consist-
ing of those

∑
g∈G λgg which satisfy the following condition:

∑
g∈C λg = 0

for every conjugacy class C in G. Let [F(G), F(G)] be the vector subspace of
F(G) spanned by all commutators of elements of G. Then S = [F(G), F(G)].

Proof. It is clear that S is in fact a subspace. Suppose x, y ∈ G. Then
the commutator

xy − yx = xy − x−1(xy)x

= 1(xy) + (−1)(xy)x,
(where gx := x−1gx ), which is in S. Thus every commutator is in S, hence
the subspace generated by commutators is contained in S. Next, suppose
{gx1, . . . , gxr} is a conjugacy class in G, and w =

∑
λig

xi with
∑

λi = 0.
Then w =

∑
λi(g

xi − g) =
∑

λi(hixi − xihi), where hi = x−1
i g, is a linear

combination of commutators and so in [F(G), F (G)]. But every element of S
can be written as a sum of such w, and we are finished.
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Theorem 3 Let G be a finite group and H,K < G subgroups such that
|H| · |K| ∈ F× (i.e. the characteristic of the field does not divide the orders
of H or K). Then the following conditions are equivalent:

(a) H,K < G are pointwise conjugate

(b) IndGH(1H)
∼= IndGK(1K) as F(G)-modules

(c) the idempotents

eH =
1

|H|
∑
h∈H

h

eK =
1

|K|
∑
k∈K

k

are conjugate in the group ring F(G).

Furthermore for char(F) �= 2, the following are also equivalent to the
above:

(d) there are elements ζ and ξ in F(G) such that: eH = ζeKξeH and eK =
ξeHζeK

(e) eH − eK ∈ [F(G), F (G)] , where [F(G), F(G)] denotes the vector space
generated by all commutators in F(G).

Proof. (a) ⇔ (b) : We claim that the F(G)-modules IndGH(1H) and
IndGK(1K) have the same (Brauer) character (see [21] Chapter 18), where
1H is the trivial F(H)-module, 1K the trivial F(K)-module. Let χGH be the
character of IndGH(1H), χ1H

that of 1H , and similarly for χGK , χ1K
. For g ∈ G,

with conjugacy class (g) in G, the following calculation

χGH(g) =
1

|H|
∑

x∈G,x−1gx∈H
χ1H

(x−1gx)

=
1

|H|
∑

x∈G,x−1gx∈H
1

=
1

|H| |(g) ∩H| · |CG(g)|

=
1

|K| |(g) ∩K| · |CG(g)| (*)

= χGK(g)
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where CG(g) denotes the centraliser of g in G, shows that χGH(g) = χGK(g)
if and only if 1

|H| |(g) ∩ H| = 1
|K| |(g) ∩ K|. This holds for all g ∈ G if H is

pointwise conjugate to K by Lemma 1. Conversely, if χGH(g) = χGK(g), then

|G|
|H| =χGH(id) = χGK(id) =

|G|
|K| ,

so |H| = |K| and thus |(g) ∩H| = |(g) ∩K|, so H is pointwise conjugate to
K in G by Lemma 1. Note that even in the characteristic p case, the Brauer
character is defined over a finite extension of Q , thus the equalities are not
just modulo p.

Observe that 1H ∼= 〈eH〉, the F(H)-submodule of F(H) generated by the
element eH . It follows that

IndGH(1H) = F(G) ⊗F(H) 〈eH〉 ∼= F(G) · eH , (†)
and similarly for K, so the F(G)-modules are projective (being direct sum-
mands of F(G)). Projective modules are isomorphic if and only if they have
the same Brauer character ([21] or [3] Cor. 5.3.6), and we are done.

(b) ⇒ (c) : Let e, f be idempotents in F(G). We shall show that
F(G) · e ∼= F(G) · f as F(G)-modules implies that e is conjugate to f . Using
the isomorphism (†) above, applying this to eH, eK completes the proof.

Let φ′ : F(G) · e −→ F(G) · f be the given isomorphism. Then
(1 − e)(1 − e) = 1 − 2e + e2 = 1 − e, so (1 − e) is also an idempotent and
there are direct sum decompositions

F(G) = F(G) · e ⊕ F(G) · (1− e)

F(G) = F(G) · f ⊕ F(G) · (1− f)

Let us first deal with the case when F(G) is semisimple. Then F(G) · e ∼=
F(G) · f implies that

F(G) · (1− e) ∼= F(G)

F(G) · e
∼= F(G)

F(G) · f
∼= F(G) · (1− f),

as F(G)/F(G) · e and F(G)/F (G) · f are uniquely determined by their com-
position factors.

In the case when F(G) is not semisimple, it has a non-zero radical R, and
F(G)/R is semisimple. Let reduction modulo R be denoted by bars. Then
F(G) · e = F(G) · e, and the argument above tells us that F(G) · (1− e) ∼=
F(G) · (1− f). From [10] Thm 6.8, ‘lifting idempotents’, it follows that the
lifts must be isomorphic, and so

F(G) · (1− e) ∼= F(G) · (1− f),
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also in this case. Call the induced isomorphism φ′′ : F(G) · (1 − e) −→
F(G) · (1− f).

Define a map φ : F(G) −→ F(G) by φ(a) = φ′(ae) + φ′′(a(1− e)). Then
φ|F(G)·e = φ′ and φ|F(G)·(1−e) = φ′′, so φ is an isomorphism being so on each
of the direct summands.

F(G) ∼= F(G) · e ⊕ F(G) · (1− e)

F(G)

φ ? ∼= F(G) · f
φ́ ?

⊕ F(G) · (1− f)

φ́ ?

Consider the identity element 1 ∈ F(G), and let φ(1) = ζ . For all a ∈ F(G)
we have φ(a) = φ(a · 1) = a · φ(1) = a · ζ , as φ is a F(G)-homomorphism.
Since φ is also surjective, there exists b ∈ F(G) such that 1 = φ(b) = b · ζ ,
hence ζ is invertible.

Finally, in F(G) = F(G) · f ⊕ F(G) · (1− f), we have

f + (1− f) = ζ−1 · 1 · ζ
= ζ−1(e+ (1− e))ζ

= ζ−1eζ + ζ−1(1− e)ζ.

But eζ = φ(e), so ζ−1eζ ∈ F(G) ·f , and similarly ζ−1(1−e)ζ ∈ F(G) ·(1−f).
Taking components gives f = ζ−1eζ as required. As noted, this yields (b)⇒
(c).

(c) ⇒ (b) : Suppose eH = aeKa
−1. Define a map ψ : F(G) · eH −→

F(G) · eK by ψ(xeH) = xeHa = xa−1eK . Clearly, this is a left F(G)-module
homomorphism, as it is simply right multiplication by an element of F(G).
Surjectivity is immediate: given yeK ∈ F(G)·eK , ψ(yaeH) = yaa−1eK = yeK .
Injectivity is equally easy: ψ(xeH) = ψ(yeH)⇔ xeHa = yeHa⇔ xeH = yeH,
as a is invertible in F(G). Thus F(G) · eH ∼= F(G) · eK . As noted above,

IndGH(1H)
∼= F(G) ⊗F(H) 〈eH〉 ∼= F(G) · eH

and similarly for eK . So

IndGH(1H)
∼= F(G) · eH ∼= F(G) · eK ∼= IndGK(1K)

as required.
(c) ⇒ (d) : Suppose eH = a−1eKa. Then eH = a−1eKaeH , as eH is an

idempotent. Similarly, we have eK = aeKa
−1eH , and with a−1 = ζ and a = ξ

we are done.
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(d)⇒ (e) : eH − eK = (ζeK)(ξeH)− (ξeH)(ζeH) is a linear combination
of commutators. (ζ , ξ, eH and eK are sums of elements of G, and addition
is associative over the group operation).

(e) ⇒ (a) : eH − eK ∈ [F(G), F(G)] = S, by Lemma 2. Consider the
coefficient of id in this sum: 1/|H| − 1/|K|. The identity is a complete
conjugacy class, so 1/|H| − 1/|K| = 0 by our characterisation of S. Thus
|H| = |K|. Elements s of S can be written as s =

∑
a,d∈G λab(ab−ba). Setting

x = ab, y = a, we have

s =
∑
x,y∈G

λxy(x− y−1xy). (**)

Consider s = |H|(eH − eK) ∈ S. Then

s =
∑
h∈H

h−
∑
k∈K

k.

Comparing this expression to (**), we see that for each h ∈ H, there is a
conjugate y−1

h hyh as summand in s with coefficient −1 for some yh ∈ G.
Assuming we are not in characteristic 2, this element must be in the second
sum; i.e. y−1

h hyh = k for some k ∈ K. But this holds for each element of
H, and similarly with signs swapped for each element of K, so H and K are
pointwise conjugate as required.
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3 Finding Examples

3.1 Conformal groups

This is all very well. However, the construction can only be of interest if
examples actually exist. How can we find some? Clearly, for two groups
to be pointwise conjugate in a parent group it is necessary that they have
the same number of elements of a given order, as conjugate elements have
the same order. In fact in the case of linear representations this is in the
following sense also sufficient:

Proposition 4 For two finite groups H and K and any field F the fol-
lowing are equivalent:

(a) H has the same number of elements of order n as K for each n,

(b) the regular representations of H and K over the field F are pointwise
conjugate,

(c) there exist faithful representations of H and K which are pointwise
conjugate.

Proof. (c) ⇒ (a) as noted above, and (b) ⇒ (c) is clear.
(a) ⇒ (b): In the regular representation reg(H), elements of H act as

permutations, and reg(H) is a subgroup of Sm, expressed as the group of
permutation matrices in GL(m, F). (m = |H|). Suppose h ∈ H has order n.
Let R be a set of right coset representatives for < h >, the cyclic subgroup
generated by h. Then each repeated left multiplication by h on an element
r ∈ R gives a cycle cr of length n

r �→ hr �→ · · · �→ hn−1r �→ r.

Each element h ∈ H appears exactly once in a cycle in {cr}r∈R, so we see
that h, as a permutation, has cycle shape |H|/n cycles each of length n.

The same holds for any element k of order n in K. But in Sm, two
elements are conjugate if and only if they have the same cycle shape. So
reg(h) ∼ reg(k) in Sm < GL(m, F), where ∼ denotes conjugacy. As H and
K have the same number of elements of order n for each n, it follows that
the regular representation of H is pointwise conjugate to that of K in Sm,
and thus in GL(m, F).

Two non-isomorphic groups are said to be conformal if they have the
same number of elements of each order. Such group pairs have been studied,
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and to some extent classified. We are interested in finite conformal groups. In
particular, it is easy to see by the Structure Theorem for abelian groups that
no two non-isomorphic abelian groups can be conformal. However, almost
all abelian groups are conformal to at least one non-abelian group; more
precisely, an abelian group is conformal to some other group if and only if

1. for p an odd prime, at least one of its Sylow p-subgroups is non-cyclic
of order > p2, or

2. if its Sylow 2-subgroups is of order > p3 and not elementary abelian

( [17] pages 107-109 ). For a given natural number n = pa11 . . . par
r , n odd

or squarefree, R. Scapellato [19] has determined exactly when there exist
conformal pairs of groups of order n. Say n ∈ C if this is the case.

For n odd,

a) some ai > 2 implies n ∈ C; if no ai > 2, then

b) n �∈ C if and only if for all pi, pj, pk, (pk|pi−1, pj−1)⇒ (pi = pj and p2
i -

n.

For n squarefree, n ∈ C if and only if there exist pi, pj, pk, with pk �= 2,
such that pk|pi − 1 and pk|pj − 1.

For p-groups, we have ( [8] p. 53):
Let p be a prime number. If H , K are groups of order ps and neither has

an element of order p2, then H is conformal with K.
In view of Proposition 4, these results guarantee an infinite supply of

groups with pointwise conjugate representations. In the Appendix there is
a table of groups of order up to 190, showing how many conformal pairs,
triples etc of each order there are.

Having found pointwise conjugate representations of two groups (e.g.
their regular representations), one can often reduce the dimension of the
representations using the following Lemma:

Lemma 5 Let ρ(H), σ(K) < GL(n, F) be pointwise conjugate representa-
tions of the finite groups H, K over a field F of characteristic not dividing
|H| = |K|, which is sufficiently large (i.e. which contains a primitive r-th
root of unity, where r is the least common multiple of the orders of the ele-
ments of the groups). Let the representations ρ and σ be reducible, ρ =

⊕
i ρi,
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σ =
⊕

j σj with ρ1, . . . , ρs and σ1, . . . , σs (not necessarily all of the) represen-
tations of degree one, which take the same value on corresponding elements
of H and K. Then the representations⊕

i	=1...s

ρi(H) and
⊕
j 	=1...s

σj(K)

are also pointwise conjugate.

Proof. As F is sufficiently large, by Maschke’s Theorem we can find a
basis of Fn such that for each h ∈ H and corresponding k ∈ K, ρ(h) := P
and σ(k) := Q have the form

P =

(
λ 0
0 P ′

)
, Q =

(
λ 0
0 Q′

)
where λ is ρ1(h) = σ1(k).We know that P and Q are conjugate, and claim

that P ′ and Q′ are also. Consider the Jordan normal form of the matrices,
with the diagonal entry corresponding to the eigenvalue λ in the top left
corner. As the matrices are conjugate, they have the same normal form.
Thus P ′ and Q′ also have the same normal form, and are thus conjugate as
claimed.

P ′ and Q′ also have an eigenvalue ρ2(h) = σ2(k) in common, so repeating
the argument s times completes the proof.

3.2 Examples

The smallest non-isomorphic pairs of groups to satisfy the conditions of
Proposition 4 are of order 16, where there are 3 sets of conformal groups,
two sets of which consist of three groups. For example, C4 × C4 := H and
Q8 ×C2 := K have pc representations, where Q8 is the quaternion group of
order 8, and Cn the cyclic group of order n. Q8×C2 has 2 irreducible repre-
sentations of degree 2, the rest being of degree 1. C4×C4 is abelian, so all its
irreducible representations are of degree 1. Examining these representations,
we find that Proposition 4 and Lemma 5 imply that the 12-dimensional (faith-
ful) representation of K obtained from its regular representation by ‘leaving
out’ four of the 1-dimensional irreducible summands is pointwise conjugate
to some 12-dimensional representation of H .

The next smallest example is due to Stuart Priddy:
Example: For this example, define K := C3×C3×C3, a direct product of

3 cyclic groups of order 3; and H := {upper triangular matrices in GL(3, F3)
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with 1’s on the diagonal}.

H =


1 ∗ ∗
0 1 ∗
0 0 1

 ∈ GL(3, F3)


H and K both have order 27, but are not isomorphic, as K is abelian and
H is not.

Consider the regular representations reg(H), reg(K) < GL(33, F2) of H
and K over the field F2 . Every non-identity element of H and K has order 3,
and Proposition 4 implies that these representations are pointwise conjugate.
Adjoining a primitive third root of unity, ω, to the field does not change this,
so we can take F to be sufficiently large.

This example generalises immediately to Cp×Cp×Cp and
{(

1 ∗ ∗
0 1 ∗
0 0 1

)
∈ GL(3, Fp)

}
.

These groups have p3 elements, which act as p2 disjoint p-cycles in Sp3, and
are thus pc. Similarly we do not have to take GL(p3, F2); any finite field of
characteristic �= p works just as well.

Going back to the case p = 3, we can say more. As the situation is non-
modular and the field F is large enough with respect to H and K, we know
(Brauer) that the character and representation theories for these groups are
‘the same’ over F as over C . This means that if we identify ω with a primitive
third root of unity Ω say in C , then the lifts of representations decompose
the same as in characteristic p.

In fact, we know exactly how the regular representations of H and K
decompose (see e.g. [12], p.298):

reg(K) ∼=
3⊕

i,j,k=1

ρi,j,k, reg(H) ∼=
3⊕

l,m=1

σl,m
⊕

3µ1

⊕
3µ2,

where ρi,j,k i, j, k = 1 . . . 3 and σl,m, l,m = 1 . . . 3 are one-dimensional repre-
sentations. If we write elements of K as triples (a1, a2, a3), with am ∈ Z/3Z,
then we can take

ρi,j,k(a1, a2, a3) = Ωia1+ja2+ka3 (mod 3).

What about the σj ? Matrix multiplication gives1 a b
0 1 c
0 0 1

 ·
1 x y
0 1 z
0 0 1

 =

1 a+ x b+ y + az
0 1 c+ z
0 0 1


so we can express H as the set of triples (a, b, c), with entries in Z/3Z and
composition rule (a, b, c) · (x, y, z) = (a + x, b + y + az, c + z). With this
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notation it is easy to see that the 9 one-dimensional representations are
σr,s(a, b, c) = Ωra+sc.

Comparing this with the values of ρi,j,k and using Lemma 5 we see that,
renumbering so that {ρ1 . . . ρ9} = {ρi,1,k : i, k = 1 . . . 3}, and {ρ10 . . . ρ27} =
{ρi,j,k : j �= 1}, the following matrix representations are also pointwise con-
jugate:

rep(k) =


ρ10(k) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 ρ27(k)


for k ∈ K and

rep′(h) =



µ1(h) 0 · · · · · · 0

0 µ1(h) 0
...

... 0 µ1(h)
. . .

. . . µ2(h)
. . .

...
...

. . . µ2(h) 0
0 · · · · · · 0 µ2(h)


for h ∈ H . Thus we obtain an explicit example of two pointwise conjugate
representations of non-isomorphic groups.

How can we find more examples? A useful tool, in the non-modular case,
is the character table:

Proposition 6 Let ρ : H ↪→ GL(n, F), σ : K ↪→ GL(n, F) be (faithful)
representations of the finite groups H and K over the field F, sufficiently
large and of characteristic not dividing |H|, |K|. Let {Ci} and {Dj} be the
conjugacy classes of elements of H respectively K, and suppose there is a
bijection {Ci} −→ {Dj}, where Ck �→ Dk, and

1) |Ck| = |Dk|,
2) χρ(Ck) = χσ(Dk), with χ denoting (Brauer) character,

3) for x ∈ Ck, y ∈ Dk, ord(x) = ord(y), and this order is either prime,
or in the case n = 2, odd.

Then the representations are pointwise conjugate. Furthermore, if H = K,
condition (3) need only hold for those Ck �= Dk.
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In fact {Ci} and {Dj} do not actually have to be conjugacy classes; any
sets of elements of the same order on which the characters are constant will
do - for example single group elements.

Proof. Over F, every matrix ρ(h) (or σ(k)) is diagonalisable, with di-
agonal entries ord(h)-th roots of unity whose sum gives the character of h.
Suppose that {ωi} are those for ρ(x), {νj} those for σ(y) with x and y as in
(3). Then from (2),

n∑
i=1

ωi = χρ(x) = χσ(y) =

n∑
j=1

νj. (∗)

If there is a renumbering such that ωk = νk for all k, then ρ(x) is conjugate
to σ(y) in GL(n, F), as a permutation of basis is a conjugacy operation:

A ∼

ω1

. . .

ωn

 ∼

ωi1
. . .

ωin

 ∼ B ⇒ A ∼ B.

When is there such a renumbering?
i) Take the case ord(x) = ord(y) = p, prime. Let ζ be a primitive p-th

root; each ωi and νj is a p-th root of unity, and is thus some power (between
0 and p − 1) of ζ . So we can rewrite equation (*) as follows, noting that
1 + ζ + · · ·+ ζp−1 = 0:

n∑
i=1

ωi =

p−1∑
k=0

akζ
k,

n∑
j=1

νj =

p−1∑
k=0

bkζ
k,

⇒
p−1∑
k=0

akζ
k =

p−1∑
k=0

bkζ
k

⇒
p−1∑
k=0

(ak − bk)ζ
k = 0

⇒
p−1∑
k=0

(ak − bk)ζ
k − (ap−1 − bp−1)(1 + ζ + · · ·+ ζp−1) = 0

⇒
p−2∑
k=0

((ak − bk)− (ap−1 − bp−1))ζ
k = 0

⇒ (ak − bk)− (ap−1 − bp−1) = 0, ∀ k

as the minimum polynomial of ζ is 1+x+· · ·+xp−1, which has degree p−1.
So (ak−bk) = (ap−1−bp−1) = r, say, for each k. However,

∑
k ak = n =

∑
k bk,
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so
∑

k(ak − bk) = (p− 1)r = 0, and r = 0. So ak = bk ∀k, and {ωi} = {νj}
as required.

ii) Take the case n = 2 and ord(x) = ord(y) is odd. Then ω is an
ord(x)-th root of unity⇒−ω is not. Lifting the characters to C , the equality
of χρ(x) = ω1 + ω2 and χσ(y) = ν1 + ν2 gives us the following picture:

�
ω1
��@ω2

@R ⇒ {ω1, ω2} = {ν1, ν2}.@ν1
@R�

ν2
��

Examples:
The 2-dimensional irreducible representations of D2p over C are pc;

the 2-dimensional irreducible representations of SL(2, F3) over C are pc;
the 3-dimensional irreducible representations of A5 over C are pc; and so on.
(see e.g. [12] for a collection of character tables of small groups).
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4 Rings of Polynomial Invariants

In the sequel, we shall apply the group-theoretical results of the last sections
to invariant theory. For this, we need to introduce two important algebras
which are specific to the characteristic p case. A brief general introduction to
polynomial invariants is given in Section 1.2 at the beginning of the paper.

4.1 The Dickson algebra

The Dickson algebra D∗(n) is the invariant ring F[V ]GL(n,F) , where F is a
finite field. Note that, for a finite field F, GL(n, F) is a finite group. As
p divides the order of this group we are in the modular case. D∗(n) is in
fact a polynomial subalgebra of F[V ], generated by elements denoted by
dn,n−1, . . . , dn,0 and called the Dickson polynomials (see [11]). It is clear that
D∗(n) ⊂ F[V ]G for any subgroup G < GL(n, F), as any polynomial invariant
under all of GL(n, F) is certainly invariant under a subgroup. It follows
further from Galois theory that FF (D∗(n)) ⊂ FF (F[V ]G) is in fact a finite
extension of fields, where FF– denotes field of fractions, and that F[V ]G is a
finitely generated D∗(n)-module with respect to polynomial multiplication.
See [22] for more details.

4.2 The Steenrod algebra

Let F be the finite field with q = pν elements and define

P (ζ) : F[V ] −→ F[V ][[ζ ]]

via

(a) P (ζ) is F-linear,

(b) P (ζ)(v) = v + vqζ for v ∈ V ∗,

(c) P (ζ)(f · g) = P (ζ)(f) · P (ζ)(g) for f, g ∈ F[V ],

(d) P (ζ)(1) = 1.

Giving ζ degree (1− q), P (ζ) is a graded ring homomorphism of degree
zero. If we define P i by requiring

P (ζ)(f) =

∞∑
i=1

P i(f)ζ i
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then each P i is an F-linear map F[V ] −→ F[V ].
The operations P i are called the Steenrod reduced power operations over

F. (For q = 2, the P i are denoted Sqi, and are called the Steenrod squaring
operations). We define the Steenrod algebra, denoted P∗, to be the sub-
algebra of the graded algebra of endomorphisms of the functor V �→ F[V ]
generated by the Steenrod operations. Note that the subalgebra is not free:
the operations satisfy various relations such as the identity

P 1P 1 = 2P 2.

A graded algebra which is also a module over P∗ is said to be an unstable
algebra if it satisfies the unstability conditions:

P i(u) =

{
uq if deg(u) = i
0 if deg(u) < i.

We are also interested in certain elements of P∗ which act as derivations
and are denoted P∆i. They are defined inductively by:

P∆1 := P 1,

P∆i := [P∆i−1, P qi−1

], i ≥ 2

where [−,−] denotes commutator.
For an unstable algebra A over P∗, define ∆(A) to be the A-module of

endomorphisms of A generated by {P∆i | i = 0, 1, . . .}, where P∆0(a) :=
deg(a)a. Suppose1 that D∗(n) ≤ A ≤ F[V ]. Then ∆(A) is finitely generated
over A by {P∆0, . . . , P∆n−1}, and the relation

(−1)ndn,0P∆0 + · · ·+ (−1)dn,n−1P
∆n−1 + P∆n = 0 (∆)

is minimal with respect to the P∆i appearing in it: that is, any other linear
dependance in ∆(A) involves P∆i with i larger than n, or is a multiple of ∆.
We can give ∆(A) a P∗-module structure by linearly extending the definition

P i(aP∆j) := P i(a)P∆j

(see [18] Chapter 1).
If a finite group G acts on F[V ] via a linear representation, then the G-

action commutes with the Steenrod operations. Thus F[V ]G is mapped into
itself by the Steenrod algebra, and is in fact an unstable algebra over P∗. See
for example [22] Chapter 10 for a more complete treatment of the subject.

1Note that n = dimF(V ), so D∗(n) ≤ A ≤ F[V ] are finite extensions.
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5 Modules over P∗
In this section we prove the central results, namely that, in the non-modular
case, two invariant rings are isomorphic as modules over P∗ if and only if the
corresponding groups are pointwise conjugate in GL(n, F). As preparation,
we need a couple of Lemmas:

Lemma 7 Suppose that F[V ]H
φ−→ F[V ]K is an isomorphism of unstable

P∗-algebras. Then φ(d) is scalar multiplication by an element λ of F for all
d ∈ D∗(n).

Proof. There is an obvious extension of φ to
∼
φ : ∆(F[V ]H) −→ ∆(F[V ]K)

via

∼
φ
(∑

fiP
∆i

)
=
∑

φ(fi)P
∆i.

This is a P∗-module isomorphism, as φ is. Thus

−P∆n =
∼
φ(−P∆n)

=
∼
φ((−1)ndn,0P∆0 + · · ·+ (−1)dn,n−1P

∆n−1)

= (−1)nφ(dn,0)P∆0 + · · ·+ (−1)φ(dn,n−1)P
∆n−1

and the uniqueness of ∆ implies φ(dn,i) = λdn,i for all i, for a fixed λ ∈ F.
As D∗(n) is generated as an algebra by the dn,i, the claim follows.

For two subgroups H and K of GL(n, F), consider their rings of invari-
ants F[V ]H , F[V ]K . If FF (−) denotes the field of fractions functor, then
FF (F[V ]) = F(V ) is a Galois extension of the field FF (F[V ]H) = F(V )H

with Galois group H , and similarly for K (see [22]).

Proposition 8 Let F be a finite field of characteristic p, and let V = Fn

be an n-dimensional vector space over F. Suppose that for the subgroups H,
K < GL(n, F) there is an algebra isomorphism φ : F[V ]H ∼= F[V ]K fixing
D∗(n). Then H is conjugate to K in GL(n, F).

Proof. We can extend φ to an isomorphism of field extensions F(V )H ∼=
F(V )K of FF (D∗(n)) . The result now follows from the next lemma, taking
D = FF (D∗(n)), K = F (V ):
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Lemma 9 Suppose there is a lattice of field extensions

K

� �

F1 F2

� �

D

such that K is a finite Galois extension of each of the other three fields. Sup-
pose there is a field isomorphism σ : F1 −→ F2 fixing D . Then Gal(K /F1) is
conjugate to Gal(K /F2) in Gal(K /D ).

Proof. Let Gal(K /Fi) = Gi for each i. K is a finite Galois extension of D ,
so there is a primitive element α ∈ K such that K = D (α) = D [α]. Since D is
contained in Fi for i = 1, 2 it follows that K =Fi(α) = Fi[α] for each i. Thus
every element a of K can be written as a polynomial in α with coefficients in
F1, a =

∑|G1|
j=0 ajα

j, aj ∈ F1 for all j. We extend σ to a K -automorphism via

σ : a =
∑

ajα
j �→

∑
σ(aj)α

j,

calling this map σ also by abuse of notation. (This is a K−automorphism
as |G1| = [K /F1 ] = [K /F2 ] = |G2| by the tower law). As σ fixes D , it is an
element of Gal(K /D ). Then G1 is conjugate to G2 via the map

g1 �→ σ−1g1σ

for all g1 ∈ G1, which has inverse g2 �→ σg2σ
−1.

It follows from Lemma 7 that a P∗-algebra isomorphism automatically
fulfills the condition of Proposition 8, taking if necessary a scalar multiple
so that the λ ∈ F occurring in the proof of 8 is 1. Thus the unstable P∗-
algebra structure of F[V ]G determines the representation of the group G, up
to conjugate representations.

Suppose that we have two groups, G1 and G2 say, with the property that
F[V ]G1 ∼= F[V ]G2 as modules over D∗(n) and over P∗. One might then expect
this to imply F[V ]G1 ∼= F[V ]G2 as graded algebras, and thus there to be an
isomorphism of groups, as D∗(n) is ‘large’ in F[V ]Gi , and the P∗-module
structure is restrictive, determining the q-th powers; in other words that the
structure of F[V ]G over D∗(n) and P∗ determines the group representation.
Surprisingly, this is not true, even in the non-modular case:
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Proposition 10 Let F be a finite field of characteristic p, and let V = Fn

be an n-dimensional vector space over F. Suppose H, K < GL(n, F) are
pointwise conjugate subgroups such that p - |H|, |K|. Then

F[V ]H ∼= F[V ]K

as modules over D∗(n) and over P∗.

Proof. Note that we are in the non-modular case, where the image of
the transfer map is surjective (see e.g. [22] Chapter 2, [14]). In other words,

F[V ]H = eHF[V ] and F[V ]K = eKF[V ]

From part (c) of Theorem 3 we know that there is some element a of F(GL(n, F ))
such that eH = a−1eKa, i.e. aeH = eKa. Define

φ : F[V ]H −→ F[V ]K

by y �−→ ay. We claim this is the required D∗(n)- and P∗-module isomor-
phism.

First, if y ∈ F[V ]H , then y = eHx for some x ∈ F[V ]. Thus

φ(y) = ay = aeHx = eKax ∈ eKF[V ] = F[V ]K .

Now suppose d ∈ D∗(n). d commutes with every element of GL(n, F), so it
also commutes with a, a linear combination of such elements. So

φ(dy) = ady = day = dφ(y).

Furthermore φ is clearly additive, so it is a D∗(n)-module homomorphism.
Elements of P∗ commute with a just as the elements of D∗(n); replace d ∈
D∗(n) with d ∈ P∗ and it follows that φ is also a P∗-module homomorphism.
Finally φ is invertible via z �−→ a−1z, so it is in fact an isomorphism.

Thus if we have two groups which are pointwise conjugate but not iso-
morphic, then their invariant rings are isomorphic as modules over P∗ and
D∗(n), but not as algebras over D∗(n). Furthermore, the converse is also
true:

Theorem 11 Let F be a field of characteristic p, and let V = Fn be an n-
dimensional vector space over F. Let H, K < GL(n, F) be subgroups such
that p - |H|, |K|. Suppose that F[V ]K is isomorphic to F[V ]H as P∗-modules.
Then K is pointwise conjugate to H.
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Proof. Consider the direct sum decomposition of F[V ]:

F[V ] ∼= eH · F[V ]⊕ (1− eH) · F[V ], (#)

where eH = 1
|H|
∑

h∈H h is the group idempotent defined in Section 2. This
is a direct sum of unstable P∗-modules, as the Steenrod operations commute
with elements of the group ring F(H). Furthermore,

eH · F[V ] = F[V ]H

as noted in the proof of Theorem 3, so if φ : F[V ]H −→ F[V ]K is the module
isomorphism, φ maps eH ·F[V ] to eK ·F[V ] where eK is the group idempotent
for K. F[V ] is an injective object in the category U ′ of unstable modules
over P∗ (see [13]), and the Krull-Schmidt-Azumaya Theorem ([4] Theorem
3, p.22) states that an injective object in a locally noetherian category is
a unique direct sum of (injective) indecomposibles, that is, of objects not
expressible as a non-trivial direct sum. The category U ′ is locally noetherian
([20] Theorem 1.8.1), so

F[V ] ∼=
⊕
E∈I

E⊕aE

where I is a set of isomorphism class representatives of indecomposible injec-
tive P∗-modules, and the aE are cardinals. As F[V ] is finite dimensional in
each degree, each aE is in fact an integer, so the isomorphism φ : eH · F[V ] ∼=
eK ·F[V ] and the decomposition (#) imply that (1−eH)·F[V ] ∼= (1−eK)·F[V ].
Call this map φ′, and let χ : F[V ] −→ F[V ] be the isomorphism induced by
the sum of φ and φ′ on the direct summands of F[V ]. Thus χ is invertible,
χ|F[V ]H = φ, and χ−1|F[V ]K = φ−1.

An endomorphism of unstable P∗-algebras from F[V ] to itself is deter-
mined by its behaviour in degree 1. At this degree, any map is the dual to
a linear map V −→ V, so the map End(V ) −→ EndK′(F[V ]), α �−→ α∗ is a
bijection, where K′ denotes the category of unstable algebras over P∗. Note
that End(V ) = Mn(F), the multiplicative semi-group of n× n matrices over
F.

Theorem 6.4 in the paper [13] and the remark above show that there are
natural equivalences

EndU ′(F[V ]) ∼= F[EndK′ (F[V ])] ∼= F[End(V )].

Thus we can consider χ ∈ EndU ′(F[V ]) as an element of the semi-group
ring F[Mn(F)], acting on F[V ] naturally. Let β = eKχ − χeH , which is
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also in EndU ′(F[V ]). We shall calculate the value of β on each of the direct
summands in the decomposition (#), thus giving its value on F[V ].

Suppose x ∈ eHF[V ], i.e. x = eHy for some y ∈ F[V ]. Then

βx = (eKχ− χeH)eHy

= eKχeHy − χeHeHy

= χeHy − χeHy

= 0,

as e2
H = eH, and χeHy ∈ F[V ]K is fixed by eK (recall that χ|F[V ]H = φ :

F[V ]H −→ F[V ]K).
For the other summand, let x ∈ (1 − eH)F[V ], x = (1 − eH)y for some

y ∈ F[V ]. Then

βx = (eKχ− χeH)(1− eH)y

= eKχ(1− eH)y − χeH(1− eH)y

= eK(1− eK)z − 0 for some z ∈ F[V ],

= 0,

as eH(1 − eH) = 0 = eK(1 − eK), and χ|(1−eH)F[V ] : (1 − eH)F[V ] −→ (1 −
eK)F[V ]. Thus β ≡ 0 on each summand, hence on the whole of F[V ]. As β
corresponds to the zero map in EndU ′(F[V ]), it must correspond to the zero
map in F[End(V )] = F[Mn(F)]. So as a formula in F[Mn(F)],

β = eKχ− χeH = 0,

so eKχ = χeH , and χ−1eKχ = eH .
The claim of the Theorem now follows either from the following Lemma,

or by returning to the proof of Theorem 3. Examining the proof of
(c) =⇒ (b), we see that it is not necessary for eH and eK to be conjugate
in F[GL(n, F )]; it is sufficient for them to be conjugate in F[Mn(F)], as the
map ψ : F(G) · eH −→ F(G) · eK given by ψ(xeH) = xeHχ = xχ−1eK is a
left F(G)-module isomorphism for χ ∈ F[Mn(F)] as long as χ−1eKχ = eH .
Thus part (b) of Theorem 3 holds, and H and K are pointwise conjugate in
GL(n, F) as claimed.

Thus two invariant rings are isomorphic as modules over P∗ precisely
when the corresponding groups are pointwise conjugate in GL(n, F).

Note that the last step in the above proof gives a special case of the
following Lemma, due to Larry Smith, which I cannot resist including:
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Lemma 12 Suppose two elements α, β ∈ F[GL(n, F)] are conjugate in F[Mn(F)].
Then they are conjugate in F[GL(n, F)].

Proof. Consider the map η : Mn(F) → GL(n, F) given by

η(M) =

{
M if M ∈ GL(n, F)
0 otherwise.

This is in fact a homomorphism of semi-groups, as if M is not invertible nei-
ther are MN or NM for any matrix N. We shall call the ring homomorphism
induced on the semi-group algebras η also, by abuse of notation.

η : F[Mn(F)] → F[GL(n, F)].

Suppose that for χ ∈ F[Mn(F)],

χαχ−1 = β.

Then applying η,

η(χ)η(α)η(χ)−1 = η(β).

But η(α) = α, η(β) = β, and η(χ) ∈ F[GL(n, F )], so

η(χ)αη(χ)−1 = β

shows that α and β are conjugate in F[GL(n, F)] as claimed.
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6 Cohomology

In this section we shall give general constructions of topological spaces which
have cohomology rings isomorphic as modules over the topological Steenrod
algebraAp, but not as algebras over Ap. In order to do this, we shall apply the
results of the previous sections to cohomology rings which have the structure
of rings of invariants.

Note that the results mostly stated here for Ap also hold for it’s natural
extension Aq, where q is a power of p. See [5] for details.

6.1 Examples

Let G
ρ
↪→ GL(n, Fp) be a faithful representation of the finite group G over

the field Fp = Z/p, whereby p - |G|. We want to lift ρ to a representation
of G over the p-adic integers Zp. We shall proceed step by step, lifting ρ to
GL(n, Fpr ) for successive values of r.

For a group H let BH denote the classifying space of H. B− is a functor,

so applying it to our representation we get BG
Bρ
↪→ BGL(n, Fp). Consider the

following lifting problem:

BGL(n, F/p2)

�
�
�
�
�

?f
�

BG ⊂ Bρ- BGL(n, Fp)

Bπ

?

where Bπ is the map induced from π : GL(n,Z/p2) −→ GL(n, Fp), re-
duction mod p. The kernel of π is a finite p-group K, and the map Bπ
is a fibration with fibre BK. According to obstruction theory, there is a
lift f if and only if a series of elements in H i(BG; πi−1(BK)) vanish. As

πj(BK) =

{
K if k = 1
0 otherwise,

the only obstruction can be in H2(BG;K).

From the cohomology of groups, we know that H∗(BG;K) = H∗(G;K)
is annihilated by |G|. On the other hand, K is a finite p-group, so some
power of p annihilates H∗(BG;K) for ∗ > 0. As (p, |G|) = 1 it follows that
H2(BG;K) = 0, and there is no obstruction. Consider the map f induces
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on fundamental groups:

GL(n, F/p2)

�
�
�
�
�

f∗
�

G ⊂ ρ- GL(n, Fp)

π

?

This shows that f∗ := ρ2 lifts ρ to GL(n,Z/p2).
We can repeat this argument inductively; suppose given ρk : G ↪→

GL(n,Z/pk) lifting ρ. The map πk : GL(n,Z/pk+1) −→ GL(n,Z/pk) has
as kernel a finite p-group, and the rest of the steps are carried out exactly as
above, lifting ρk to ρk+1 : G ↪→ GL(n,Z/pk+1).

Taking the limit of this construction, we obtain a lift of ρ into the p-adic
integers ρ∞ : G ↪→ GL(n,Zp) as required.

From [9] we know that

H∗(K(Znp , 2); Fp) = Fp [x1, · · · , xn]
where K(Znp , 2) denotes the Eilenberg-MacLane space, and Fp [x1, · · · , xn]
is the Fp-algebra of polynomials in generators xi of degree 2. Identifying G
with its image in GL(n,Zp) we have an action of G on Znp , hence on K(Znp , 2),
which passes to its cohomology ring. This action is natural, and so coincides
with our usual action of G on the polynomial ring, except for the doubling
of degrees. Following Clark and Ewing, define

X = X(G, p, n) := K(Znp , 2)×G EG,

where EG is the total space of a universal bundle for G.

Proposition 13 [9] If p does not divide the order of G, H∗(X; Fp) is the
subalgebra of invariants of H∗(K(Znp , 2); Fp) under the action of G. In other
words, H∗(X; Fp) ∼= Fp [x1, · · · , xn]G.

Equally, we can easily extend this result to Fq , where q = ps, as

H∗(K(Znp , 2); Fq ) = Fq ⊗Fp H∗(K(Znp , 2); Fp)

= Fq ⊗Fp Fp [x1, · · · , xn]
= Fq [x1, · · · , xn],

and from [2] p.95

Fq ⊗Fp Fp [V ]G ∼= Fq [V ]G.
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Thus for pointwise conjugate representations of groupsG1, G2 inGL(n, Fq ),
the topological spaces X1 = X(G1, p, n) and X2 = X(G2, p, n) have Fq -
cohomology rings which are isomorphic as modules over Ap. If G1 � G2,
their invariant rings are not isomorphic as algebras over Ap, so the cohomol-
ogy of X1 and X2 are not the same.

6.2 Polynomial tensor exterior algebras

Let F be a Galois field of characteristic p, and consider the n-dimensional
vector space V = Fn as an additive group. Then the (topological) classifying
space BV has mod p cohomology ring H∗(BV ) ∼= F[V ]⊗Λ(V ) , where F[V ]
is the polynomial ring defined above (with algebra generators x1, . . . , xn in
degree 2 dual to a basis of V ) and Λ(V ) is an exterior algebra on generators
dx1, . . . , dxn in degree 1. (See [7]). ConsideringH, K ⊂ GL(n, F) = Aut(V ),
we obtain F[V ]H and F[V ]K as subalgebras of F[V ] ⊂ H∗(BV ), and H and
K act naturally on H∗(BV ), the action commuting with that of Aq. We can
extend Proposition 10 to this case:

Corollary 14 Let F be a finite field of characteristic p, with q = ps elements,
and let V = Fn be an n-dimensional vector space over F. Suppose H, K <
GL(n, F) are pointwise conjugate subgroups such that p - |H|, |K|. Then

H∗(BV )H ∼= H∗(BV )K

as modules over Aq.
Proof. In the same way as for F[V ]H , the image of the transfer is sur-

jective for (F[V ]⊗ Λ(V ))H , i.e.

(F[V ]⊗ Λ(V ))H ∼= eH · (F[V ]⊗ Λ(V )).

The map φ : F[V ]H → F[V ]K defined in the proof of 10 by y �−→ ay where
a−1eKa = eH extends to a map φ′ : (F[V ]⊗Λ(V ))H → (F[V ]⊗Λ(V ))K , and
the rest of the proof is identical.

From [15] and its extension [5] H∗(BV ) is an injective object in the cat-
egory U of unstable modules over Aq, and in the paper [1] it is shown that

EndU(H∗(BV )) ∼= F[EndK(H∗(BV ))] ∼= F[End(V )],

where K denotes the category of unstable algebras over Aq. The Krull-
Schmitt-Azumaya Theorem also holds in U ([20] Thm. 3.11.7), so we can
recycle the proof of Theorem 11 to get a ‘topological’ version:
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Corollary 15 Let F be a field of characteristic p, and let V = Fn be an
n-dimensional vector space over F. Let H, K < GL(n, F) be subgroups such
that p - |H|, |K|. Suppose that H∗(BV )K is isomorphic to H∗(BV )H as
Aq-modules. Then K is pointwise conjugate to H.

Using the following Theorem, number III.10.4 in [7], we can construct
pairs of classifying spaces which are not homotopy equivalent, but which have
mod p cohomology rings isomorphic as modules over the Steenrod algebra:

Theorem 16 [7] Let G be an arbitrary group, M a G-module and K a sub-
group of finite index such that (G : K) is invertible in M. Then res∗, the
map in cohomology induced by the restriction map, maps H∗(G;M) isomor-
phically onto the G-invariants of H∗(K;M). In particular, if K is a normal
subgroup,

res∗ : H∗(G;M) ∼= H∗(K;M)G/K .

Let K be the abelian group Fnp , and Gi be a subgroup of GL(n, Fp),

acting on the vector space M = Fnp = V naturally with p - |Gi| . Let G̃i

be the semidirect product of K and Gi. Then H∗(K; Fp) ∼= Fp [V ] ⊗ Λ[V ],

a polynomial tensor exterior algebra, and H∗(K; Fp)
G̃i/K ∼= H∗(K; Fp)

Gi ∼=
(Fp [V ]⊗ Λ[V ])Gi. Thus taking the classifying space BG̃i, we have

H∗(BG̃i; Fp) ∼= H∗(G̃i; Fp)

∼= H∗(K; Fp)
Gi

∼= (Fp [V ]⊗ Λ[V ])Gi .

As mentioned above, it is clear that (Fp [V ]⊗Λ[V ])Gi = eGi
·(Fp [V ]⊗Λ[V ])

where eGi
= 1

|Gi|
∑

g∈Gi
g, precisely as in the polynomial case. (In fact, res∗

acts on H∗(G̃i;M) as
∑

g∈Gi
g). Thus Corollary 14 implies that, given two

pointwise conjugate groups G1, G2 < GL(n, Fq ), the topological spaces BG̃1

and BG̃2 constructed above have cohomology rings isomorphic as modules
over Ap. If they were isomorphic as algebras over Ap, then the subalgebras
(Fq [V ] ⊗ 1)Gi ∼= Fq [V ]Gi would be isomorphic as algebras, as an Ap-algebra
map preserves the natural gradings of Fq [V ] and Λ[V ]. Then 8 would imply
that G1 is conjugate to G2 in GL(n, Fq ), as the Ap action on the polynomial
invariant ring is the same as that ofP∗. Thus choosing G1 not conjugate toG2

produces spaces BG̃1 and BG̃2 which have mod p cohomology not isomorphic
as algebras over Ap, (and which are hence not homotopy equivalent).
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7 Modular Representations

7.1 Pointwise conjugacy

Let us finally turn to a more difficult situation, namely that when the char-
acteristic of the field over which the representations are defined divides the
order of the group. Let H be a finite group, and F a field of characteristic
p �= 0 such that p| |H| (usually F will be taken to be a finite field). Let
ρ : H ↪→ GL(n, F) be a faithful representation, and let us identify H with its
image in GL(n, F). This is called the modular case, and much of the machin-
ery we used in the non-modular case can no longer be applied. In particular,
the elements eH ∈ F(H) introduced in Section 2 can no longer be defined,
for:

eH :=
1

|H|
∑
h∈H

h

is not allowed, as |H| = 0 in F. The transfer map TrH : F[V ] −→ F[V ]H

defined by

TrH(x) :=
∑
h∈H

hx

is no longer surjective - in fact it never hits a power of one of the Dick-
son polynomials (see [14]). It is also however never identically zero (see [22]
Lemma 11.5.2 and [14]), so it is natural to ask whether there is at least a con-
nection between the images of the transfer for pointwise conjugate modular
representations of groups, analog to that in the non-modular situation.

Let us thus examine the element ẽH ∈ F(H) defined by

ẽH :=
∑
h∈H

h,

as the image of the transfer is ẽH · F[V ] ⊂ F[V ]H . Unlike eH , ẽH is not an
idempotent; in fact ẽH · ẽH = 0! How much of Theorem 3 can be translated
into this context?

Unfortunately, almost nothing. Recall the five conditions, equivalent in
the non-modular case with char(F) �= 2, expressed for ẽH and ẽK :

(a) H,K < G are pointwise conjugate,

(b) IndGH(1H)
∼= IndGK(1K) as F(G)-modules,
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(c) the idempotents ẽH =
∑

h∈H h, ẽK =
∑

k∈K k are conjugate in the
group ring F(G),

(d) there are elements ζ and ξ in F(G) such that: ẽH = ζẽKξẽH and
ẽK = ξẽHζẽK ,

(e) ẽH − ẽK ∈ [F(G), F(G)] , where [F(G), F (G)] denotes the vector space
generated by all commutators in F(G).

Condition (e) is still equivalent to condition (a), as an easy modification of
the proof in Chapter 1 shows:

Proof. (a)=⇒(e): As H and K are pointwise conjugate, for each h ∈ H
there is a gh ∈ G and k ∈ K with

k = ghhg
−1
h .

Thus

ẽH − ẽK =
∑
h∈H

h−
∑
k∈K

k =
∑
h∈H

(h− ghhg
−1
h ),

which is clearly in the vector subspace S defined in Lemma 2, which is equal
to [F(G), F(G)].

(e)=⇒(a): Effectively the identical proof as in the non-modular case.

Condition (d) can immediately be seen never to hold, independently of
the other conditions: for suppose there exist ζ and ξ in F(G) such that
ẽH = ζẽKξẽH and ẽK = ξẽHζẽK . Then

0 = ζẽK ẽK = (ζẽK)ẽK = (ζẽK)ξẽHζẽK = (ζẽKξẽH)ζẽK = ẽHζẽK ,

so ξẽHζẽK = ξ0 = 0 �= ẽK , a contradiction.
Suppose that (a) holds. Then there is a counterexample to (b) for a pair

of conformal groups in [10] p.255.
Finally consider condition (c), the most relevant, as it was the key to

the important results in Section 5. Suppose that (c) does follow from (a).
Examining the proof of Proposition 10, we see that it would then imply that
ẽH ·F[V ] is isomorphic to ẽK ·F[V ] as modules over P∗. This is not in general
true, as the counterexample in the next section shows.
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7.2 The image of the transfer: two examples

Let F be a field of characteristic 3. Define H to be the subgroup of GL(3, F)
generated by the matrices

A =

 1 0 0
0 1 1
0 0 1

 , B =

 1 0 1
0 1 0
0 0 1

 .

These have order 3 and commute, soH is isomorphic to C3×C3, the direct
product of two cyclic groups of order 3. Let 〈A〉 be the subgroup generated
by A, and Tr〈A〉 the transfer map of this subgroup. H acts on F[x, y, z], which
has an additive F−basis consisting of monomials xaybzc with a, b, c ∈ Z. The
image of such a monomial under Tr〈A〉 is as follows:

Tr〈A〉(xaybzc) =
2∑
i=0

Ai(xaybzc)

=
2∑
i=0

Ai(x)aAi(y)bAi(z)c

= xaybzc + xa(y + z)bzc + xa(y − z)bzc

= xazc(yb + (y + z)b + (y − z)b)

= xazc

(
3yb +

∑
i=0,...,b−1: b−i even

2

(
b

i

)
yizb−i

)

= −xazc
( ∑
i=0,...,b−1: b−i even

(
b

i

)
yizb−i

)
as char(F) =3, and when b− i is odd, the terms containing zb−i and (−z)b−i
cancel each other out. When b = 0 or 1, this is 0; when b = 2, the im-
age is −xazc(z2), so the ideal of F[x, y, z]〈A〉 generated by z2 is contained in
im(Tr〈A〉), as for any group G TrG is an F[V ]G-module homomorphism.

As b−i is always nonzero and even in the expression above, we see that z2

divides Tr〈A〉(xaybzc) for any monomial; thus im(Tr〈A〉) = (z2), the principal
ideal of F[x, y, z]〈A〉 generated by z2. It is easy to calculate the invariant ring
of 〈A〉: to wit

F[x, y, z]〈A〉 = F[x, y(y2 − z2), z].

Recall that the transfer can also be defined relative to a subgroup: TrGK :
F[V ]K −→ F[V ]G, for K < G, via

TrGK(f) :=
∑
g∈G/K

g(f),
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where g runs over a set of representatives for left cosets of K in G. Thus
Tr〈A〉 = Tr

〈A〉
id in this terminology, and further

TrG(f) = TrGK · TrK(f)
for all f ∈ F[V ]. Applying this to our group H it follows that

im(TrH) = TrH〈A〉(im(Tr〈A〉)).

Now im(Tr〈A〉) = (z2) and {id, B, B2} is a set of coset representatives, so
any element of im(TrH) is a linear combination of elements of the form

TrHA (x
aybzcz2) =

2∑
j=0

Bj(xaybzc+2)

= ybzc+2
2∑
j=0

Bj(x)a as y, z ∈ F[V ]H ,

= ybzc+2(xa + (x+ z)a + (x− z)a)

= −ybzc+2

( ∑
i=0,...,a−1: a−i even

(
a

i

)
xiza−i

)

by the same calculation as above; thus im(TrH) ⊆ (z4), the principal ideal
in F[V ]H generated by z4. In fact,

TrH(x2y2) = TrH〈A〉 · Tr〈A〉(x2y2) = TrH〈A〉(x
2z2) = z4,

so im(TrH) = 〈z4〉 . It is known that F[V ]H = F[x3 − xz2, y3 − yz2, z] (see
[22] Chap. 8), so we see that im(TrH) is very thin in F[V ]H .

Let K be the subgroup of GL(n, F) generated by the matrices

T =

 1 0 0
0 1 0
0 1 1

 , U =

 1 0 0
0 1 0
1 0 1

 .

As 1 0 0
0 0 1
0 1 0

 1 0 0
0 1 0
0 ±1 1

 1 0 0
0 0 1
0 1 0

−1

=

 1 0 0
0 1 ±1
0 0 1

 ,

 0 0 1
0 1 0
1 0 0

 1 0 0
0 1 0
±1 0 1

 0 0 1
0 1 0
1 0 0

−1

=

 1 0 ±1
0 1 0
0 0 1

 ,
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we see that H and K are pointwise conjugate in GL(n, F). However, the
invariant ring of F[V ]K = F[x, y, f ], where f =

∏
g∈K gz is a polynomial of

degree 9 ([22] Chap. 8), so F[V ]K � F[V ]H even as graded Z-modules. What
about the images of the transfer?

Using brute force, we calculate the image of a monomial under the transfer
for K:

TrK(xaybzc) =
∑
g∈K

g(xaybzc)

= xayb
2∑
i=0

g(z)c as x, y ∈ F[V ]K

= xayb(zc + (z + y)c + (z − y)c + (z + x)c + (z − x)c +

(z + x+ y)c + (z + x− y)c + (z − x+ y)c + (z − x− y)c).

Substituting for c (using a computer algebra programme!), we find that this
polynomial is zero mod 3 for all c < 8, and equal to

xayb(x6y2 + x4y4 + x2y4)

for c = 8. Thus im(TrK) contains no elements of degree less than 8, and
im(TrK) � im(TrH) even as graded Z-modules2. This example can be
(fairly) easily generalised to larger characteristic, giving a family of counter-
examples to (c) in Section 7.1.

The moral of all this is that pointwise conjugacy, like so many things, is
only well behaved in the non-modular case.

2Note that these calculations correct some mistakes in [22] Chapter 11.
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A Appendix: Small Conformal Groups

This is a small table giving all conformal groups of order less than 192,
leaving out 128 as there are too many. On the verical axis is indicated the
order of the groups, on the horizontal how many pairs, triples and so forth
of conformal groups there are. Thanks to the computer algebra programme
GAP:

|G| \n-tuples n = 2 3 4 5 6 7 8 9 10 Total
|G| = 16 1 2 8

27 2 4
32 2 3 4 1 1 41
48 5 3 1 23
54 3 1 9
64 4 5 3 2 2 1 1 2 2† 252
72 1 2
80 8 3 1 29
81 2 1 1 12
96 18 7 10 2 2 2 1 1 2 170
100 1 2
108 11 2 25
112 4 3 1 21
125 2 4
128 * * * * * * * * * *
135 2 4
144 26 9 4 99
147 1 2
160 20 7 11 3 2 2 1 1 2 183
162 9 3 1 1 1 43
176 4 3 1 21
189 4 1 11

† There are also two 14-tuples, and one each of n-tuples for n = 11, 12, 13, 16, 17, 20
and 25 of groups of order 64.

38



For comparison, here is a list of the number of non-isomorphic groups of
orders up to 190 (leaving out primes):

Order Number
4 2
6 2
8 5
9 2
10 2
12 5
14 2
16 14
18 5
20 5
21 2
22 2
24 15
25 2
26 2
27 5
28 4
30 4
32 51
34 2
36 14
38 2
39 2
40 14
42 6
44 4
45 2
46 2
48 52
49 2
50 5

Order Number
52 5
54 15
55 2
56 13
57 2
58 2
60 13
62 2
63 4
64 267
66 4
68 5
70 4
72 50
74 2
75 3
76 4
78 6
80 52
81 15
82 2
84 15
86 2
88 12
90 10
92 4
93 2
94 2
96 231
98 5
99 2

Order Number
100 16
102 4
104 14
105 2
106 2
108 45
110 6
111 2
112 43
114 6
116 5
117 4
118 2
120 47
121 2
122 2
124 4
125 5
126 16
128 2328
129 2
130 4
132 10
134 2
135 5
136 15
138 4
140 11
142 2
144 197
146 2

Order Number
147 6
148 5
150 13
152 12
153 2
154 4
155 2
156 18
158 2
160 238
162 55
164 5
165 2
166 2
168 57
169 2
170 4
171 5
172 4
174 4
175 2
176 42
178 2
180 37
182 4
183 2
184 12
186 6
188 4
189 13
190 4

Note e.g. that for groups of order p3, p prime, 4 of the 5 non-isomorphic
groups are pairwise conformal. The exception is of course Cp3.
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