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Danksagung

Ich danke Peter Kopietz für die Anregung zu dieser Arbeit sowie deren sehr en-
gagierte Betreuung. Die enge Zusammenarbeit mit ihm sowie seine unkomplizierte
und motivierende Art haben für ein stets hervorragendes Arbeitsklima gesorgt.
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Contents

1 Introduction 6

2 Dephasing in disordered conductors 8

2.1 Basic concepts and definitions . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Connection between dephasing and weak localization . . . . . . . . . 10

2.3 Weak localization in the presence of external dephasing fields . . . . . 18

2.4 The dephasing time to first order in the screened interaction . . . . . 27

3 Eikonal approach to dephasing in disordered conductors 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 The Cooperon in a fluctuating scalar potential: Eikonal expansion . . 37

3.3 Dephasing due to Nyquist noise in arbitrary dimensions . . . . . . . . 40

3.3.1 The Debye-Waller factor . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 The dephasing rate in infinite systems . . . . . . . . . . . . . 46

3.3.3 The dephasing rate in finite systems . . . . . . . . . . . . . . 53

3.3.4 How first order perturbation theory is reproduced from the
Eikonal approximation . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Dephasing due to external electric fields . . . . . . . . . . . . . . . . 57

3.4.1 Uniform electric field . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Dephasing due to longitudinal electric fields with finite wave-
length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 The Diffuson in the presence of Nyquist noise . . . . . . . . . . . . . 68

3.5.1 Infinite systems . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.2 Finite systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4



4 Non-linear response in mesoscopic metal rings 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 The quadratic response function: What is wrong with the Green’s
function approach? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Adiabatic switching on . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Comparison with sudden switching on . . . . . . . . . . . . . 87

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.1 The static limit of the response function . . . . . . . . . . . . 94

4.4.2 The response function for finite frequencies ε > 0 . . . . . . . 98

4.4.3 Influence of the boundary conditions in transverse directions . 102

4.4.4 The linear in time contribution to the current . . . . . . . . . 105

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Persistent currents and electron-electron interactions 110

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 First order RPA corrections to the persistent current . . . . . . . . . 112

5.3 The long wave-length contribution to the Fock current . . . . . . . . 115

6 Summary 121

A How higher order response functions can be calculated within the
Matsubara technique 123

A.1 The real time response function . . . . . . . . . . . . . . . . . . . . . 123

A.2 The Matsubara response function . . . . . . . . . . . . . . . . . . . . 127

B Fluctuation-dissipation theorem 131



Chapter 1

Introduction

Due to the technical progress in low temperature and nano-scale physics there is
by now a large number of experiments which clearly reveal quantum mechanical
interference effects in the electronic properties of metals and semiconductors. Weak
localization, persistent currents, and universal conductance fluctuations are well
known examples where the quantum nature of the electrons becomes important
for their dynamics even in samples that are many orders of magnitude lager than
atomic scales. At higher temperatures such systems can usually be described by the
semiclassical Drude-Sommerfeld picture which only treats the electrons statistics
quantum mechanical but assumes a classical motion. Since at lower temperatures
the above mentioned effects occur as corrections to the classical results, there must
be some temperature dependent parameter that measures the importance of inter-
ference effects in solid state physics. For this purpose the phase-coherence length
Lϕ is introduced. In a phenomenological picture Lϕ is interpreted as the distance
an electron typically moves, before all information about its initial phase is lost.
Closely related to Lϕ is the phase coherence time τϕ which is just the average time
an electron needs to travel the distance Lϕ. The length scale Lϕ defines a new
class of physical systems, so called mesoscopic systems. ’Mesoscopic’ denotes an
intermediate size which is much lager than atomic dimensions but smaller than
’macroscopic’. Such a sample is large enough to be described by the statistical con-
cepts of condensed matter physics, but its typical extension L is smaller than Lϕ.
Electrons can propagate coherently through the entire probe and thus become sen-
sitive to the geometry of the sample and the precise distribution of impurities. E.g.
the persistent current in mesoscopic metal rings manifests the strong dependence
on boundary conditions while universal conductance fluctuations demonstrate the
sensitivity to the disorder configuration. Whether a system is mesoscopic or not
strongly depends, like Lϕ itself, on the temperature. In metals one experimentally
finds phase coherence lengths of up to Lϕ ∼ 10µm at temperatures T ≈ 10mK. Due
to the efforts to continuously decrease the size of semiconductor devices in computer
technology, mesoscopic physics becomes of increasing practical importance.
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This work is organized as follows: Chapter 2 gives an introduction to the basic
concepts of dephasing in disordered metallic systems. The close connection between
τϕ and the weak localization correction to the conductivity is outlined and the theo-
retical tools to derive the dephasing time are provided. To emphasize the difficulties
which arise in a perturbative calculation of τϕ, some well known results of first order
perturbation theory in the screened electron-electron interaction are rederived.

In chapter 3 a novel approach to calculate the dephasing time in disordered con-
ductors is presented. The applied method has, compared to earlier calculations,
the advantage that it does not require to introduce any cutoffs and is thus free of
ambiguities. It is applied to study the influence of electron-electron interactions
in a semiclassical limit as well as dephasing due to external fields. For the first
case a single formula is given that allows to calculate the frequency as well as the
temperature dependence of τϕ for macroscopic and mesoscopic systems in arbitrary
dimensions. Regarding external fields, the influence of a finite wave-length q0 is
investigated and a new effect is found. The finding is in agreement with so far unex-
plained experimental data. Last but not least the Diffuson propagator is examined
in the presence of dephasing fields. Chapter 3 is an extension of the work published
in Ref. [1] and includes details of the calculations as well as previously unpublished
results.

The first part of chapter 4 is a detailed version of Ref. [2] while in the second
part new numerical results are presented. This chapter is devoted to non-equilibrium
effects in mesoscopic metal rings. The response to a time dependent external field is
explicitly studied and consequences of the discrete energy spectrum in finite systems
are discussed. It is shown, that the standard Green’s function approach can not be
applied in this case. All findings were extensively tested numerically for a tight-
binding model. Also the influence of the underlying statistical ensemble (canonical
or grand canonical), which is known to be important in equilibrium, is investigated.

Since there is a close relation between non-linear response and electron-electron
interactions, the latter are reconsidered in chapter 5. The experimentally observed
persistent current is still not satisfactory understood. A common believe is, that
the Coulomb interaction of the electrons is responsible for the discrepancy between
theory and experiment. Theoretical attempts to include this effects to first order in
the screened interaction could yet not solve this problem. Furthermore there was still
one regime which had not been investigated previously since it is difficult to access
within the standard diagrammatic approach. This is the long wave-length Fock
contribution to the current. A simple way to circumvent the apparent difficulties
is presented and this gap can be closed. In compact form the findings of chapter 5
have been published in Ref. [3].



Chapter 2

Dephasing in disordered
conductors

2.1 Basic concepts and definitions

There are by now many review articles and books giving extensive introductions to
the fundamental concept of phase-coherence and dephasing in many-particle systems
[4,5,7,6]. Therefore here only a brief summary will be given. Throughout this work
the Planck constant ~ and the Boltzmann constant kB are set equal to unity; ~ = 1,
kB = 1. In the following, the dimension d will always be the effective dimension
regarding diffusion. Two cases must be distinguished: True d-dimensional samples
characterized by the d-dimensional density of states νd and a volume V = Ld, and
quasi d-dimensional systems, where the density of states is still the three dimensional
one. In the latter case the volume is assumed to be of the form V = Lda3−d with L
much longer than the mean free path l, while a is of the order of l. Diffusion can
only take place on distances much longer than l and thus the probe is d-dimensional
from the diffusive point of view. Unless explicitly stated differently, all following
calculations are valid for true as well as for quasi d-dimensional systems, if in the
latter case the convention νd = ν3a

3−d is used. The average level spacing at the
Fermi energy is connected to the d-dimensional density of states via ∆ = 1/(νdL

d).

The phase-coherence length is introduced in a quasiparticle picture and describes
the average distance an electron travels before all information about its initial phase
is lost [5, 8, 9]. A pedagogical review about dephasing and quantum transport in
disordered systems has recently been given by Zwerger [4]. The investigated systems
are disordered metals where l is much longer than the Fermi wave-length. Expressed
through the Fermi momentum kF this means kF l� 1. Such samples are usually well
described by the semiclassical Drude-Sommerfeld model [4, 10] where it is assumed
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that the electrons move classically between instantaneous collisions. Following Zwer-
ger the probability amplitude for an electron to propagate from a point r to r′ at
fixed energy ε is in the semiclassical limit given by

K(r→ r′, ε) ≈
∑
α

Aαe
iSα . (2.1)

The sum extends over all classical paths α with the corresponding classical actions
Sα. Gaussian fluctuations around the trajectories α are integrated out, leading to
the prefactors Aα. The probability for an electron to propagate from r to r′ is given
by the absolute square of K. Thus the probability for a particle to return to its
starting point is

|K(r→ r, ε)|2 ≈
∑
α,β

AαA
∗
βe

iSα−iSβ , (2.2)

and the sum now runs over all closed trajectories. Obviously for α = β the phase
factors cancel. The system is said to be invariant under ’time-reversal’, if a sudden
reversion of the electrons momentum would cause the particle to traverses backwards
along the trajectory it came from. E.g. in the presence of an external magnetic field
this is not the case. Now if time-reversal symmetry is given, there is another con-
tribution with zero phase-difference, namely if the trajectory β is the time-reversed
of α, i.e. β is just α traversed in opposite direction. This will be denoted by β = α̃.
Since the phase-difference between two different paths α and β will generally be
large, the sum over different trajectories will average out. Only the two classes
of trajectories with equal phases, i.e. α = β and β = α̃ will yield non-vanishing
contributions after summing over all possible classical paths. In a purely classical
description the term with β = α̃ would be absent and thus the quantum mechanical
return probability is twice the classical probability. In any realistic many particle
system there will be processes which destroy the time-reversal invariance. Inelas-
tic electron-electron or electron-phonon scattering and interactions with external
electromagnetic fields are the most important examples. These effects suppress the
coherence between closed trajectories α and their time-reversed counterpart α̃. This
suppression will increase with increasing circumference Lα of α. At a certain value
of Lα, there will be no more interference between α and α̃ and this value is called
the phase-coherence length Lϕ of the system. One may alternatively think of a
ring-geometry and define Lϕ as the maximum circumference of the ring, for which
quantum effects due to the coherent propagation of the electrons around the ring
can be observed. The phase coherence time is correspondingly defined as the typical
time the particle needs to travel the distance Lϕ. In strongly disordered systems the
particles motion is diffusive and τϕ is connected to Lϕ via

1

τϕ
=

D

L2
ϕ

. (2.3)



Here D = v2
F τel/d is the classical diffusion coefficient in d dimensions for systems

with Fermi-velocity vF and elastic mean free time of flight τel. From the fact that also
elastic interactions, e.g. with magnetic fields, can affect the phase coherence time
it is clear, that 1/τϕ is not the same as the inelastic quasiparticle level-broadening
γqp. At low temperatures γqp is governed by the inelastic electron-electron scattering
rate 1/τee. If the elastic and inelastic mechanisms are independent, 1/τϕ is just the
sum of both relaxation rates, 1/τϕ = γqp + γdeph, where γdeph contains all elastic
dephasing contributions.

The phase coherence length allows a new distinction of solid state samples. In
macroscopic systems Lϕ is much smaller than the extension of the probe in any
direction. Such systems are insensitive to changes in the boundary conditions. In
contrast, so called mesoscopic systems are characterized by the condition that their
typical extension L is smaller than Lϕ. In such probes coherence effects on the
electronic transport in metals become extremely important. The probably most
natural systems for studying such quantum effects are thin, quasi one-dimensional
rings with circumference L < Lϕ which are pierced by a Aharonov-Bohm flux Φ.
By now there are lots of experiments and even more theoretical works dealing with
such samples. Nevertheless, most of their fundamental features, like e.g. persistent
currents, are yet not fully understood. In mesoscopic systems another important
energy scale is introduced, the so called Thouless energy Ec = D/L2. In units of
~ = 1 this is the energy scale associated with the average time a particle needs to
diffuse through the sample of length L. The Thouless energy thus gives a measure
for the sensitivity to changes in the boundary conditions of the system. In the
Aharonov-Bohm ring geometry such changes can be realized through the external
flux Φ. The condition Lϕ > L for the system to be mesoscopic can now be written
as 1/τϕ < Ec. Together with the average level-spacing at the Fermi energy, ∆,
there are thus three energy scales which define a finite system: 1/τϕ, Ec and ∆.
In a diffusive metallic system their values must be much smaller than the elastic
momentum relaxation rate 1/τel which itself must satisfy 1/τel � εF , where εF
is the Fermi energy. Two different physical situations have to be distinguished
when dealing with mesoscopic systems: First the ’continuous’ spectrum case with
1/τϕ > ∆, where the dephasing rate exceeds the average level spacing, and second
the ’discrete’ spectrum limit with 1/τϕ < ∆. It will turn out, that the behavior of
the probe can be completely different in either case.

2.2 Connection between dephasing and weak lo-

calization

The phase coherence time was introduced in the previous section using a single-
or, more generally, quasiparticle picture, which is useful to give a physical intuition



for the quantities τϕ and Lϕ. In an interacting many-particle system it is however
difficult to think of the phase of a single electron as a meaningful object and defi-
nitely such a thing can not be measured directly. Therefore one has to look for an
observable quantity, which can directly be related to τϕ in the quasiparticle picture.
Such an observable can be found in the theory of weak localization. It was already
mentioned that without any dephasing the quantum mechanical return probability
is twice as large as the classical one, due to “coherent backscattering”. This leads
to an enhancement of the resistivity above the classical Drude result and is known
as “weak localization”. Now all processes that break the time-reversal invariance
and therefore lead to a finite dephasing time tend to suppress the return probability
and decreases the resistivity towards its classical value. By measuring the weak
localization correction to the conductivity one can hence gain information about τϕ.

To be more specific, consider a system of non-interacting electrons in an transver-
sal external electric driving-field Edri which is derived from a vector-potential Adri

as

Edri(r, t) = −1

c

∂Adri(r, t)

∂t
. (2.4)

The corresponding single particle Hamiltonian is

Ĥ(t) =
∑
j

{
1

2m
[P̂j +

e

c
Adri(R̂j, t)]

2 + U(R̂j)

}
. (2.5)

Here P̂j = −i∇Rj
and R̂j are the canonical momentum operator and the position

operator of the j-th particle. The sum in Eq.(2.5) extends over all electrons in
the system. U(R̂j) is the static disorder potential, −e the electron charge, m its
mass and c the velocity of light. The standard way to treat disorder is to assume a
delta-correlated distribution with zero mean. Denoting averaging over disorder by
an over-bar, this means

U(r) = 0 ; U(r)U(r′) = γ̃Vδ(r− r′) . (2.6)

V is the volume of the system and the factor γ̃ can in first order Born-approximation
be related to the average level-spacing at the Fermi energy and the elastic mean free
time of flight [11,28]:

γ̃ =
∆

2πτel
. (2.7)

The Hamiltonian can be rewritten as the sum of a time-independent contribution
Ĥ0 and a time-dependent perturbation Ĥ1(t), i.e. Ĥ(t) = Ĥ0 + Ĥ1(t) with

Ĥ0 =
∑
j

{
P̂2
j

2m
+ U(R̂j)

}
, (2.8)



Ĥ1(t) =
e

2mc

∑
j

[P̂jAdri(R̂j, t) + Adri(R̂j, t)P̂j] +
e2

2mc2

∑
j

A2
dri(R̂j, t) . (2.9)

In the following it will be more convenient to work in second quantization. The
creation- and annihilation operators for a particle in momentum-state q are denoted
by Ψ̂†q and Ψ̂q. Correspondingly Ψ̂†(r) = 1√

V

∑
q e
−iq·xΨ̂†q and Ψ̂(r) = 1√

V

∑
q e

iq·xΨ̂q

create or annihilate electrons in position-state r. In this representation the above
equations read

Ĥ0 =
∑

q

q2

2m
Ψ̂†qΨ̂q +

∫
drU(r)Ψ̂†(r)Ψ̂(r) (2.10)

and

Ĥ1(t) = −1

c

∫
drAdri(r, t)̂jpara(x) +

e2

2mc2

∫
drA2

dri(r, t)Ψ̂
†(r)Ψ̂(r) . (2.11)

In linear order the vector-potential Adri couples to the paramagnetic current oper-
ator

ĵpara(r) =
(−e)
2m

[−iΨ̂†(r)∇Ψ̂(r) + (i∇Ψ̂†(r))Ψ̂(r)] . (2.12)

The total current operator is the sum of the paramagnetic and the diamagnetic part,
ĵ(r, t) = ĵpara(r) + ĵdia(r, t), with

ĵdia(r, t) = − e2

mc
Adri(r, t)Ψ̂

†(r)Ψ̂(r) . (2.13)

All the above operators are in the Schrödinger representation. The current j(r, t) =
〈̂jH(r, t)〉 is just the expectation-value 〈· · ·〉 = (1/Z0)Sp[exp(−βĤ0) · · · ] of the
current-operator in the Heisenberg representation (indicated by H) over the initial
thermal state of the system. Here the definitions β := 1/T and Z0 = Sp[exp(−βĤ0)]
were introduced. For explicit calculations it is often more convenient to work in the
momentum-frequency representation. From Eqs.(2.11) and (2.12) one gets

Ĥ1(t) =
e

2mcV
∑
q,q′

Adri(q− q′, t) · [q + q′]Ψ̂†qΨ̂q′ +O(A2
dri) , (2.14)

jpara(Q, t) = − e

2m

∑
k

(Q + 2k)〈Ψ̂†Q+kΨ̂k〉 . (2.15)

Adri(q, ω) =
∫
drdte−i(q·r−ωt)Adri(r, t) and j(Q, ω) =

∫
drdte−i(Q·r−ωt)j(r, t) are the

Fourier transforms of the vector potential and current density. The conductivity
tensor is defined as

ji(r, t) =
∑
j

∫
dr′dt′σi,j(r, r

′, t− t′)Edri,j(r′, t′) . (2.16)



Here i and j denote the Cartesian components of the vectors. It is assumed, that
after averaging over disorder the system is spatially homogeneous and isotropic
so that the conductivity tensor is symmetric and of the form σi,j(r, r

′, t − t′) =
δi,jσ(r− r′, t − t′). Since Eq.(2.16) now becomes a convolution, it is convenient to
go over to the wave-vector and frequency representation:

j(Q, ω) = σ(Q, ω)Edri(Q, ω) , (2.17)

with Edri(Q, ω) = iω
c
Adri(Q, ω). To obtain the weak localization correction to the

conductivity for the system described by the Hamiltonian (2.5) the current j has to
be calculated to linear order in the external field Edri. This is most conveniently
done by using either the Keldysh or the Matsubara technique (see Appendix A).
Here only a spatially constant field with Q = 0 will be considered and to simplify
the notation this variable is suppressed in the following, j(ω) := j(Q = 0, ω). (Note
that j(ω) is V × the spatially averaged current density.) Using the notation of
App.A, the time dependent perturbation is to first order in Adri given by

Vq,q′(ω) =
e

2mcV
Adri(q− q′, ω) · [q + q′] . (2.18)

(Compare with Eq.(2.14)). From the first order contribution

jpara(ω) = − e

m

∑
k

k g(1)(ω) , (2.19)

with g(1)(ω) given in Eq.(A.15) one obtains

jpara(ω) = − e2

2m2Vc
∑

k

k
1

2i

∑
q,q′

(Adri(q
′ − q, ω) · [q + q′])×∫ ∞

−∞

dε

2π
Sp[σ1G

0
k,q(ε+ ω)G0

q′,k(ε)] . (2.20)

To obtain the average conductivity Eq.(2.20) has to be averaged over disorder. This
procedure restores translational invariance, so that after averaging only terms with
q = q′ survive. Expressing the vector potential through the electric field yields the
following equation for the paramagnetic part of the conductivity tensor:

(σpara)i,j(ω) =
e2

2ωm2V
∑
k,q

kiqj

∫ ∞
−∞

dε

2π
Sp[σ1G

0
k,q(ε+ ω)G0

q,k(ε)] . (2.21)

Using σi,j(ω) = δi,jσ(ω) one can express σ(ω) as σ(ω) = 1/d
∑d

i=1 σii and thus

σpara(ω) =
e2

2ωdm2V
∑
k,q

k · q
∫ ∞
−∞

dε

2π
Sp[σ1G

0
k,q(ε+ ω)G0

q,k(ε)] . (2.22)



Now evaluating the trace making use of Eq.(A.10) and adding the diamagnetic
contribution finally yields

σ(ω) =
e2

2ωdm2V
∑
k,q

k · q
∫ ∞
−∞

dε

2π

{
h(ε)G0,R

k,q (ω + ε)[G0,R
q,k (ε)− G0,A

q,k (ε)]

+h(ω + ε)[G0,R
k,q (ω + ε)− G0,A

k,q (ω + ε)]G0,A
q,k (ε)

}
− e2n

iωm
. (2.23)

Here n = 〈Ψ̂†(r)Ψ̂(r)〉 = N/V is the average particle density. The notation is chosen
as in Appendix A, i.e. h(ε) = tanh(εβ/2). Disorder averaging is performed using
standard diagrammatic perturbation theory [11, 12]. The diamagnetic part which
diverges as 1/ω is canceled by the contribution from the G0,AG0,A and G0,RG0,R

terms [12]. Calculating the single-particle Green’s function in Born approximation
yields [11]

G0,R/A
k,p (ω) =: δk,pG0

R/A

k (ω) = δk,p
1

ω − ξk ± i
2τel

, (2.24)

where ξk = k2/2m − µ and µ is the chemical potential. Simply factorising the av-
erages in Eq.(2.23) and using the above equation reproduces the well known Drude
result for the conductivity [12]. The quantum mechanical weak localization correc-
tion arises from correlations between retarded and advanced functions. The reason
that there exist a large contribution from such disorder-correlation is of course the
possible coherence between a trajectory and its time-reversed counterpart. Diagram-
matically this is the famous Cooperon or weak localization (WL) correction to the
conductivity shown in Fig.2.1. In d ≤ 2 this diagram gives the leading correction to
the classical Drude result. It is evaluated using the standard Feynman rules which
yield

σWL(ω) =
e2

2ωdm2V
∑
k,q

k · q
∫ ∞
−∞

dε

2π
[h(ω + ε)− h(ε)]G0

R

k (ω + ε)G0
R

q (ω + ε)×

G0
A

k (ε)G0
A

q (ε)Cni(k + q;ω) . (2.25)

Since in disordered metals the electron motion is diffusive, the dominant contribution
to the conductivity comes from the range with momenta |k| � 1/l, where l is the
elastic mean free path, and frequencies |ω| � 1/τel. In this limit the ladder diagrams
defining the non-interacting Cooperon in Fig.2.1(b) can be evaluated, resulting in
[13]

Cni(k;ω) =
∆

2πτ 2
el

1

Dk2 − iω
. (2.26)

Substituting Eq.(2.26) into Eq.(2.25) the k + q = 0 mode obviously gives a divergent
WL-correction in the limit ω → 0. To cure this singularity for free particles, non-
perturbative methods have to be employed. Performing a supersymmetric σ-model
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R
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A

Figure 2.1: Diagrammatic representation of the weak localization correction to the
conductivity. a: Conductivity bubble with a single Cooperon (shaded box). Directed
lines symbolize averaged Green’s functions as defined in Eq.(2.24) and the wiggled
lines ending in a filled triangle represent current-vertices. b: Bethe-Salpeter equa-
tion for the non-interacting Cooperon Cni. The thin dashed lines denote disorder
scattering.

calculation Efetov has shown [14], that a cutoff ∆/π has to be introduced in the
denominator of the Cooperon. Since the average level spacing ∆ scales to zero for
V → ∞ this is a finite size effect. In the following we will thus use the expression

Cni(k;ω) =
∆

2πτ 2
el

1

Dk2 − iω + ∆
π

(2.27)

instead of Eq.(2.26) for the non-interacting Cooperon. The Cooperon gives a dom-
inant contribution for small momenta |k + q| < 1/l and frequencies |ω| � 1/τel.
Since the averaged Green’s functions are dominated by momenta of the order
kF � 1/l, one can approximate q ' −k in their arguments and in the scalar product
in Eq.(2.25). For frequencies |ω| � 1/τel the frequency dependence of the Green’s
functions can also be neglected compared to the cutoff 1/τel. This yields

σWL(ω) = − e2

2ωdm2V
∑

q

|q|2
∫ ∞
−∞

dε

2π
[h(ω + ε)− h(ε)]|G0

R

q (0)|4
∑

k

Cni(k;ω) .

(2.28)

Now since G0
q(0) is dominated by momenta |q| ' kF the approximation |q|2 ' k2

F

is made. The q sum is evaluated assuming a constant, disorder independent density
of states νd(ε) in the vicinity of the Fermi energy,

νd(ε) =
1

Ld

∑
α

δ(ε− εα + µ) ≈ νd(0) ≈ 1

Ld

∑
q

δ(ξq) . (2.29)



εα are the exact eigenvalues for a given realization of disorder. In the last approxi-
mation νd(0) =: νd is replaced by its value in the absence of disorder. νd = 1/(Ld∆)
is the average density of states at the Fermi energy. 1 One can then rewrite the
q-sum Eq.(2.28) as∑

q

|G0
R

q (0)|4 =

∫ ∞
−∞

dξ
∑

q

δ(ξq − ξ)
1

(ξ2 + 1
(2τel)2 )2

≈ 1

∆

∫ ∞
−∞

dξ
1

(ξ2 + 1
(2τel)2 )2

.

(2.30)

Solving the ε and ξ integral in Eq.(2.28) and (2.30) respectively finally yields

σWL(ω) = − σd
πνd

1

Ld

∑
|k|<1/l

2πτ 2
el

∆
Cni(k;ω) . (2.31)

σd is the classical Drude conductivity in d dimensions, which is related to the den-
sity of states via the Einstein relation σd = e2νdD. In Eq.(2.31) the factor 1/V is
replaced by 1/Ld, since in quasi d-dimensional samples with V = a3−aLd the ballistic
transverse modes with |k| > 1/l have to be integrated out, yielding a factor a3−d.
The Cooperon is sometimes defined without the prefactor ∆/(2πτ 2

el) since it cancels
in the expression for σWL. However, evaluating the ladder diagrams of Fig.2.1(b)
leads to this factor and for diagrammatic calculations it is therefore easier to use
the Cooperon as defined in Eq.(2.27). This form of the Cooperon is commonly used
in mesoscopic physics. In the limit V → 0 the average level spacing vanishes, so
that for macroscopic systems the definition (2.26) is usually multiplied by a factor
V , replacing ∆ by 1/νd. Which definition to use is a matter of convenience and the
rescaled form will also be introduced later on. In the limit V → ∞ (i.e. ∆ → 0)
where the k-sum is replaced by an integral according to 1/Ld

∑
k →

∫
dk/(2π)d,

the WL-correction is still divergent in d ≤ 2. Physical arguments are used to handle
this problem. In realistic systems the electrons are not completely free particles.
There will always be interactions which lead to dephasing. All processes that break
the time-reversal invariance suppress coherent backscattering and thus WL. On a
phenomenological level this can be modeled by simply introducing an additional de-
phasing cutoff 1/τϕ into the Cooperon propagator. This is just the inverse dephasing
time that was already introduced in the semiclassical path-integral description. In
other words, one assumes, that in an interacting system the Cooperon has the form

C(k;ω) =
∆

2πτ 2
el

1

Dk2 − iω + 1
τϕ

. (2.32)

1According to the Fermi liquid theory only quasiparticles with energy close to the Fermi energy
contribute to the electronic transport and thus only a small part of the spectrum where νd(ε) is
approximately constant should contribute to σWL(ω). However, in a free electron gas the levels
are strongly correlated over the whole spectrum [16] and the truncation can only be justified by
physical arguments.



The WL-correction for such systems is obtained by simply replacing Cni in Eq.(2.31)
by C. Transforming back to the time-variable t,

σWL(t) = −Θ(t)
σd
πνd

1

Ld

∑
|k|<1/l

e
−(Dk2+ 1

τϕ
)t
, (2.33)

one sees, that τϕ is the time-scale that cuts off the time dependence of the WL-
correction. This is equivalent to the semiclassical argument, that diffusive paths
which are longer than Lϕ =

√
Dτϕ do not contribute to coherent backscattering.

Since an external magnetic field B directly affects the electrons phase, the WL-
correction is also very sensitive to such fields. Detailed derivations of σWL(B) can
be found in the literature [17, 5, 4]. Experimentally the DC (ω = 0) conductivity is
measured as a function of B and fit to the theoretical curve for σWL(B) by adjusting
the value of τϕ [18,19,45]. The obtained agreement between experiment and theory
is striking and the phase coherence time can be obtained with a high accuracy. From
such a measurement it is however a priory not clear, which effects led to the observed
dephasing. Under realistic conditions there are various phenomena that contribute
to τϕ. The most important ones are electron-electron and electron-phonon inter-
actions, magnetic impurities (i.e. isolated ions with permanent magnetic moment),
and external electromagnetic radiation. To calculate the dephasing time one has
to include dephasing effects on a microscopic level, e.g. add an external fluctuating
field to the Hamiltonian (2.5). One then calculates the weak localization correc-
tion and extracts τϕ from comparison with Eq.(2.33). In the following dephasing
due to electron-electron interactions with small energy transfer and due to external
time dependent electric fields will be investigated. Making use of the fluctuation-
dissipation theorem, both effects can be treated on equal footing [20]. To proceed
further one thus needs an equation for the WL-correction in the presence of external
dephasing fields. A detailed derivation is presented in the next section.



2.3 Weak localization in the presence of external

dephasing fields

In this section a well known equation first obtained by Altshuler et al. [8] for the weak
localization correction in the presence of dephasing fields will be rederived. Since two
versions of this equation, which differ by a factor of two, appear in the literature [15]
a detailed derivation is presented here2. The physical system considered here is a
disordered metallic conductor in the presence of an external driving field Edri(r, t) =
−(1/c)∂tAdri(r, t) and an additional fluctuating longitudinal electric field E which
is assumed to be so weak, that it leaves the electrons trajectories unchanged but
only affects their phases. Introducing a scalar potential V (r, t) := (−e)φ(r, t) which
is related to E via E(r, t) = −∇rφ(r, t), the Hamiltonian of the system takes the
form

Ĥ(t) =
∑
i

{
1

2m
[P̂i +

e

c
Adri(R̂i, t)]

2 + U(R̂i) + V (R̂i, t)

}
. (2.34)

In order to calculate the response to the driving field, the part containing Adri

is separated off. This is just the term Ĥ1(t) given in Eq.(2.11). The remaining
part is then the sum of the time-independent part Ĥ0 (see Eq.(2.10)) and the time-
dependent field V̂ (t),

Ĥ0,V (t) = Ĥ0 + V̂ (t) ,

=
∑

q

q2

2m
Ψ̂†qΨ̂q +

∫
dr[U(r) + V (r, t)]Ψ̂†(r)Ψ̂(r) , (2.35)

Ĥ1(t) =
e

2mcV
∑
q,q′

Adri(q− q′, ω) · [q + q′]Ψ̂†qΨ̂q′ +O(A2
dri) , (2.36)

and the total Hamiltonian is

Ĥ(t) = Ĥ0,V (t) + Ĥ1(t) . (2.37)

Note that now H1 and H0,V are time-dependent. To derive an expression for the cur-
rent in the presence of fluctuating external fields it is convenient to use the Keldysh
technique. Using Eq.(A.3) for the paramagnetic current density and Eq.(2.14) for
the time-dependent perturbation Ĥ1(t) it is straightforward to obtain the current
to linear order in Adri from the general expression Eq.(A.15). One gets

δjpara(t) =
i

cV

( e

2m

)2 ∑
q,p,p′

∫ ∞
−∞

dt1q [Adri(p− p′, t1) · (p + p′)]
[
GRq,p(t, t1)GKp′,q(t1, t)

+GKq,p(t, t1)GAp′,q(t1, t)
]
. (2.38)

2In a footnote Eiler [15] pointed out that there is a factor of two missing in the equation for the
Cooperon in an external field derived by Altshuler, Aronov and Khmelnitskii [8]. As will be shown
Eiler’s criticism is indeed correct. Unfortunately, Eiler’s paper has not received much attention.
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Figure 2.2: Diagrammatic representation of Eq.(2.38). The thick lines are the full
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Now GR/A are the full Green’s functions according to the time-dependent Hamilto-
nian Ĥ0,V (t). A diagrammatic representation of this equation is shown in Fig.2.2.
From the Dyson equation (A.9) for the Green’s function in matrix form one obtains
the corresponding equations for the components:

GR/Ak,k′ (t, t
′) = G0,R/A

k,k′ (t, t′) +
∑
q,q′

∫ ∞
−∞

dt1G0,R/A
k,q (t, t1)Vq,q′(t1)GR/Aq′,k′(t1, t

′) , (2.39)

and

GKk,k′(t, t′) = G0,K
k,k′(t, t

′) +
∑
q,q′

∫ ∞
−∞

dt1

[
G0,R

k,q (t, t1)Vq,q′(t1)GKq′,k′(t1, t′)

+G0,K
k,q (t, t1)Vq,q′(t1)GAq′,k′(t1, t′)

]
. (2.40)

The G0 are the Green’s functions for a system described by the time-independent
Hamiltonian Ĥ0. They do not contain the fluctuating external field V (r, t) but still
the static disorder potential U(r). These equations can now be used to calculate
the current in the presence of an external field. As an example Fig.2.3 shows all
diagrams that are obtained from the first diagram in Fig.2.2 if GR is expanded to
first, and GK to second order in the field. The equilibrium function G0,K is related
to the corresponding retarded and advanced function via Eq.(A.10). Translating
the diagrams into frequency-space is easily done, using the standard Feynman rules.
If the external field V is time-independent, frequency is conserved at each field-
vertex. As a result, in this case all electron-lines on one side of the conductivity
bubble (where the upper side belongs to GR and the lower one to GK) have the
same frequency. Using Eq.(A.10) one sees, that now only the terms G0,RG0,RG0,R and
G0,AG0,AG0,A contribute to the expansion of GK . All other terms cancel. This must of
course be the case, since in equilibrium Eq.(A.10) can directly be applied to GK . The
situation under investigation is a time-dependent field, which affects the electrons
phase, but is too weak to drive them out of equilibrium, i.e. it leaves the distribution
function unchanged. In this case it is justified to retain the analytic equilibrium
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Figure 2.3: Diagrams obtained by expanding GR to first, and GK to second order
in the potential V . The thin lines are the equilibrium Green’s functions G0 for the
Hamiltonian H0. Thin wiggled lines represent the field V (t).

structure consisting of only retarded or only advanced functions on each side of the
bubble. Without the external field V (t) the weak localization correction is given
by the single Cooperon diagram shown in Fig.2.1. To take dephasing effects that
are not caused by V (t) into account, e.g. electron-phonon interactions or magnetic
impurities, a cutoff Γ0 is introduced on a phenomenological level and Cni is replaced
by C0, with

C0(Q; ε) =
∆

2πτ 2
el

1

DQ2 − iε+ Γ0

. (2.41)

Since the disorder is static, the Cooperon C0 conserves the frequency on each elec-
tron line. In the presence of a fluctuating field, this will no longer be the case. The
Bethe-Salpeter equation for the Cooperon has to be generalized, to include inter-
actions with V (t). Diagrammatically this is done by attaching interaction lines to
the electron propagators in Fig.2.1(b). This leads to the generalized Bethe-Salpeter
equation for the Cooperon which is shown in Fig.2.4. Here the interaction is only
included to first order in each electron propagator. Still infinite orders in the in-
teraction are summed up due to the self consistency contained in the diagrammatic
equation 2.4. The corresponding integral-equation is
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C̃(Q,Q′;ω1, ω
′
1, ω2, ω

′
2) = V(2π)2δQ,Q′δ(ω1 − ω′1)δ(ω2 − ω′2)C0(Q;ω1 − ω2)

+
1

V
∑
q,p

∫ ∞
−∞

dω̃

2π

[
C0(Q;ω1 − ω2)G0

R

q+Q(ω1)Vp(ω̃)G0
R

q+Q−p(ω1 − ω̃)G0
A

q (ω2)×

C̃(Q− p,Q′;ω1 − ω̃, ω′1, ω2, ω
′
2) + C0(Q;ω1 − ω2)G0

R

q+Q(ω1)Vp(ω̃)×

G0
A

−q(ω2)G0
A

−q−p(ω2 − ω̃)C̃(Q− p,Q′;ω1, ω
′
1, ω2 − ω̃, ω′2)

]
. (2.42)

Here V is the volume which for quasi d-dimensional systems is assumed to be of
the form V = Lda3−d and in true d-dimensions reduces to V = Ld. To treat both
situations on equal footing, a factor a2δk2,0δk3,0 for the quasi one-dimensional case
and aδk3,0 for quasi two dimensions is implicitly assumed with each momentum k
appearing in the argument of a Cooperon (ki are the Cartesian components of k
which represents either Q,Q′ or Q− p). This just states that there is no diffusion
in the transverse channels and d is the effective dimension regarding diffusion. The
impurity-averaged Green’s functions are given by

G0
R/A

k (ω) =
1

ω − ( k2

2m
− µ) ± i

2τel

. (2.43)

The Cooperon is dominated by frequencies much smaller than 1/τel and momenta
smaller than 1/l. Therefore the frequency-dependence of the Green’s functions can
be neglected and one can set Q ≈ 0,Q−p ≈ 0 in the argument of Green’s functions.
Within these approximations the sum over momenta q can be evaluated. Again the



approximations in Eq.(2.29) and (2.30) are used:

∑
q

[G0
R

q (0)]2G0
A

q (0) ≈ 1

∆

∫ ∞
−∞

dξ
1

(−ξ + i
2τel

)2(−ξ − i
2τel

)
= −2πiτ 2

el

∆
. (2.44)

The q-sum in the second term in braces in Eq.(2.42) is just the complex conjugate
of Eq.(2.44). Keeping in mind, that the diffusive approximation is only valid on
distances much lager than l, the ballistic modes of the p-sum appearing in the
quasi d-dimensional case can also be integrated out. This merely replaces the three
dimensional potential Vp by an effective d-dimensional one and the factor 1/V by
1/Ld. Since there is now no explicit dependence on transverse modes anymore, the
implicit dependence due to the factors a3−dδki,0 can also be dropped and all momenta
are treated as truely d-dimensional in the following. From Eq.(2.42) one obtains

C̃(Q,Q′;ω1, ω
′
1, ω2, ω

′
2) = Ld(2π)2δQ,Q′δ(ω1 − ω′1)δ(ω2 − ω′2)C0(Q;ω1 − ω2)

− 1

Ld
2πiτ 2

el

∆

∑
p

′
∫ ∞
−∞

dω̃

2π

[
C0(Q;ω1 − ω2)Vp(ω̃)C̃(Q− p,Q′;ω1 − ω̃, ω′1, ω2, ω

′
2)

− C0(Q;ω1 − ω2)Vp(ω̃)C̃(Q− p,Q′;ω1, ω
′
1, ω2 − ω̃, ω′2)

]
. (2.45)

Q,Q′ and p are now d-dimensional vectors. The prime on the p-sum indicates,
that all transverse modes are integrated out and the summation is restricted to
diffusive modes. ∆ is the average level-spacing at the Fermi energy, connected to
the d-dimensional density of states νd by ∆ = 1/(νdL

d). In the quasi d-dimensional
case νd is related to the three dimensional density of states via νd = ν3a

3−d. Since
C0 depends only on a single frequency, the full Cooperon C̃ can depend only on the
difference between the incoming frequencies (see Fig.2.4),

ε := ω1 − ω2 , (2.46)

the difference between the outgoing frequencies,

ε′ := ω′1 − ω′2 , (2.47)

and the total frequency transfered to the field,

ω := ω1 + ω2 − (ω′1 + ω′2) . (2.48)

Physically this just states that the Cooperon is unaffected if all frequencies are
shifted by the same amount. Using this fact and defining

C̃(Q,Q′;ω1, ω
′
1, ω2, ω

′
2) =: C(Q,Q′;ω1 − ω2, ω

′
1 − ω′2, ω1 + ω2 − (ω′1 + ω′2)) , (2.49)



Eq.(2.45) becomes

C(Q,Q′; ε, ε′, ω) = Ld(2π)2δQ,Q′δ(
ω + ε− ε′

2
)δ(

ω − ε+ ε′

2
)C0(Q; ε)

− 1

Ld
2πiτ 2

el

∆

∑
p

′
∫ ∞
−∞

dω̃

2π
[C0(Q; ε)Vp(ω̃)C(Q− p,Q′; ε− ω̃, ε′, ω − ω̃)

− C0(Q; ε)Vp(ω̃)C(Q− p,Q′; ε+ ω̃, ε′, ω − ω̃)] . (2.50)

Note that ω1−ω′1 = (1/2)(ω+ ε− ε′) and ω2−ω′2 = (1/2)(ω− ε+ ε′) which are just
the arguments of the δ-functions. Now the explicit form of C0 given in Eq.(2.41) is
inserted and the whole Eq.(2.50) is multiplied by DQ2−iε+Γ0. Fourier transforming
the resulting expression to space-time coordinates according to

C(r, r′; t, t′, t0) =
1

L2d

∑
Q,Q′

∫ ∞
−∞

dεdε′dω

(2π)3
C(Q,Q′; ε, ε′, ω)ei(Q·r−Q′·r′)e−i(tε−t

′ε′+t0ω) ,

(2.51)

finally leads to the partial-differential equation for the Cooperon in an longitudinal
external field:(

DP̂2
r + ∂t + Γ0

)
C(r, r′; t, t′, t0) = 2

∆

2πτ 2
el

δ(r− r′)δ(t− t′)

−i [V (r, t0 + t)− V (r, t0 − t)] C(r, r′; t, t′, t0) , (2.52)

where P̂r is the momentum operator. It is important to note the factor 2 from the
transformation of the δ-functions,

1

2π

∫ ∞
−∞

dεdε′dω δ

(
ω + ε− ε′

2

)
δ

(
ω − ε+ ε′

2

)
e−i(tε−t

′ε′+t0ω)

=
2

2π

∫ ∞
−∞

dεdε′dω δ

(
ω + ε

2
− ε′

)
δ

(
ω − ε

2
+ ε′

)
e−i(tε−2t′ε′+t0ω)

=
2

2π

∫ ∞
−∞

dεe−i(t−t
′)ε = 2δ(t− t′) . (2.53)

Due to this factor the Cooperon without external field V is connected to the Fourier-
transformed of C0(Q, ε) by

C0(r, r′; t, t′, t0) = 2C0(r− r′; t− t′) , (2.54)

where C0(r, r′; t, t′, t0) is obtained from Eq.(2.52) by setting V = 0 and

C0(r; t) =
1

L

∑
Q

∫ ∞
−∞

dε

2π
C0(Q; ε)ei(Q·r−tε) . (2.55)



Note that the Cooperon with four time-variables,

C̃(r, r′; t1, t
′
1, t2, t

′
2) =

∫ ∞
−∞

dω1dω
′
1dω2dω

′
2

(2π)4
C̃(r, r′;ω1, ω

′
1, ω2, ω

′
2)e−i(ω1t1−ω′1t′1+ω2t2−ω′2t′2) ,

is now given by

C̃(r, r′; t1, t
′
1, t2, t

′
2) =

1

2
δ(t1 + t2 − t′1 − t′2)C(r, r′;

t1 − t2
2

,
t′1 − t′2

2
,
t1 + t2

2
) . (2.56)

It is convenient to introduce the rescaled Cooperon

C(r, r′; t, t′, t0) :=
2πτ 2

el

2∆
C(r, r′; t, t′, t0) . (2.57)

Eq.(2.52) now reads(
DP̂2

r + ∂t + Γ0

)
C(r, r′; t, t′, t0) = δ(r− r′)δ(t− t′)

−i [V (r, t0 + t)− V (r, t0 − t)] C(r, r′; t, t′, t0) , (2.58)

and the Cooperon without external field is normalized so that

C0(r, r′; t, t′, t0) =
1

Ld

∑
Q

∫ ∞
−∞

dε

2π
C0(Q; ε)ei[Q(r−r′)−ε(t−t′)] = C0(r− r′; t− t′) ,

(2.59)

with

C0(Q; ε) =
1

DQ2 − iε+ Γ0

. (2.60)

In order to get rid of the factor 2 appearing in Eq.(2.54) the Cooperon without
external field C0 had to be rescaled in a different way than C in Eq.(2.57), i.e. C0 =
(2πτ 2

el/∆)C0. It is emphasized that with the above normalization of the Cooperon
(which seems to be quite natural) the time argument of the potentials in Eq.(2.58)
is t0± t. Note that in Ref. [8] the Cooperon has been normalized differently, and the
times t0± t in the arguments of the potentials of Eq.(2.58) are replaced by t0± t/2.
Although this apparent printing error in Ref. [8] has been pointed out by Eiler [15]
many years ago, it continues to appear in the recent literature [23,24,25].

Eq.(2.58) for the Cooperon can now be used to calculate the weak localiza-
tion correction to the conductivity, or the current respectively, in the presence of a
fluctuating external field. The diagrammatic representation for the WL-correction
to the current is shown in Fig.2.5. Translating these diagrams to an analyti-



k q

ω ω
ε

ε+ω

p
’

’

’’ε ε+ω

ω

qp+q

p

’ε

k

k

ω
ε−ω

+

R

A
ε−ω

R

A

R R

A A
ε

(K)

’

’
(K) ’k

p+q

Figure 2.5: The weak localization correction to the current in the presence of a fluc-
tuating external field V (t). The dark box is the interacting Cooperon as diagrammat-
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cal expression yields for the spatially averaged (up to a factor 1/V) component
jWL(ω) := jWL(Q = 0, ω)

δjWL(ω) =
i

cV2

( e

2m

)2 ∑
k,p,q

∫ ∞
−∞

dεdε′dω′

(2π)3
[h(ε′ + ω′)− h(ε′)] {k [2Adri(q, ω

′) · p]×

G0
R

k (ε)G0
A

k (ε− ω)G0
R

p+q(ε′ + ω′)G0
A

p (ε′)×
C(k + p + q,k + p; ε′ + ω′ − ε+ ω, ε− ε′, ω′ − ω)} , (2.61)

with h(ε) := tanh(βε/2). The Cooperon is dominated by frequencies much smaller
than the elastic cutoff 1/τel in the Green’s functions and the frequency dependence
of the later can thus be neglected. Similarly the total momenta k + p + q and k + p
in Eq.(2.61) are restricted to values smaller than 1/l. Since the large contributions
to the Green’s functions come from momenta in the vicinity of the Fermi momentum
one can set k ' −(p + q), k ' −p in their arguments. For an spatially homogeneous
driving field Adri(Q = 0, ω) =: Adri(ω) Eq.(2.61) now reduces to

δjWL(ω) = − 2

V2

( e

2m

)2∑
k,p

∫ ∞
−∞

dεdε′dω′

(2π)3ω′
[h(ε′ + ω′)− h(ε′)]

{
k [Edri(ω

′) · k]×

(
G0

R

kG0
A

k

)2

C(p,p;ω + ω′ − ε, ε, ω′ − ω)
}
. (2.62)

The vector potential Adri was expressed through the electric field and G0
R/A

k are ab-

breviations for G0
R/A

k (ω = 0). Integration- and summation-variables where changed
according to k + p→ p and ε − ε′ → ε. Since only the spatially averaged current
is considered and a spatially homogeneous (on average) system is presumed, j must
be parallel to Edri. Eq.(2.62) can then be written as

δjWL(ω) = − 2

V2d

( e

2m

)2∑
k,p

∫ ∞
−∞

dεdε′dω′

(2π)3ω′
[h(ε′ + ω′)− h(ε′)]

{
|k|2Edri(ω

′)×

(
G0

R

kG0
A

k

)2

C(p,p;ω + ω′ − ε, ε, ω′ − ω)
}
. (2.63)



The Green’s functions yield dominant contributions for |k| ' kF and therefore |k|2
can be replaced by k2

F . Assuming a constant average level-spacing ∆ in the vicinity
of the Fermi energy, the k-sum can now be carried out:∑

k

k2
F

(
G0

R

kG0
A

k

)2

' k2
F

4πτ 3
el

∆
. (2.64)

The ε′-integration can be done as well,∫ ∞
−∞

dε′[h(ε′ + ω′)− h(ε′)] = 2ω′ . (2.65)

Inserting these results into Eq.(2.63) yields

δjWL(ω) = − 8k2
F τ

3
el

∆L2dd

( e

2m

)2∑
p

′
∫ ∞
−∞

dεdω′

(2π)2
Edri(ω

′)×

C(p,p;ω + ω′ − ε, ε, ω′ − ω) . (2.66)

Transverse modes have again been integrated out, and the summation is restricted to
the diffusive regime. Since the system is translational invariant after averaging over
disorder, the Cooperon depends on the difference of its space-variables; C(r, r′) =
C(r− r′); or equivalently in momentum space C(p,p′) = Ldδp,p′C(p). Fourier-
transforming to space and time variables finally results in

δjWL(ω) = −2e2D

π

πτ 2
el

∆

∫ ∞
−∞

dtdt′Edri(t
′)C(r, r; t,−t,−t− t′)eiω(2t+t′) . (2.67)

Using the Einstein relation σd = e2νdD, the rescaled Cooperon C defined in Eq.(2.57)
and substituting 2t→ t one arrives at

δjWL(ω) = − σd
πνd

∫ ∞
−∞

dtdt′Edri(t
′)C(r, r;

t

2
,− t

2
,−(

t

2
+ t′))eiω(t+t′) . (2.68)

This expression will be used to derive the dephasing time due to electron-electron
interactions with small energy transfer in a non-perturbative way. To clarify the
connection to standard perturbation theory in the two-particle Coulomb interaction
and the role of the fluctuation-dissipation theorem, a calculation of τϕ to first order
in the Random-Phase-Approximation is given in the next section. This method
strongly depends on the cutoff Γ0 which makes the result a priori uncontrolled in
the physically interesting limit Γ0 → 0.



2.4 The dephasing time to first order in the

screened interaction

The system under consideration is an ensemble of interacting, spinless electrons in
a static disorder potential and a spatially constant external driving field Edri(t) =
−(1/c)∂tAdri(t). The Hamiltonian describing this system is

Ĥ = Ĥ0 + Ĥ1(t) + Ĥ2 , (2.69)

where Ĥ0 and Ĥ1 are given in Eq.(2.10) and Eq.(2.14). The interaction is described
by

Ĥ2 =
1

2

∫
drdr′f(r− r′)Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r) . (2.70)

f(r) is the bare Coulomb potential

f(r) =
e2

|r|
. (2.71)

To derive interaction corrections to the conductivity, it is convenient to use the
equilibrium Matsubara technique. This can be done, since conductivity is a linear
response function and the fluctuation-dissipation theorem gives the connection be-
tween the imaginary- and real-time quantities. In Appendix A it is shown, that
for non-interacting electrons an equivalent relation exists for response functions of
arbitrary order. Here the notations of App.A will be used. The imaginary time
paramagnetic current is defined in Eq.(A.24). The auxiliary field will, relating
to the potential Adri, now be named Ãdri and it satisfies the boundary condition
Ãdri(τ) = Ãdri(τ − nβ) for any integer n. The time-evolution operator Û describes
the evolution due to Ãdri(τ) and the interaction Ĥ2:

Û(β, 0) = T̂ exp

[
−
∫ β

0

dτ ′[Ĥ1,D(τ ′) + Ĥ2,D(τ ′)]

]
. (2.72)

The first order (in the auxiliary field) contribution to the spatially averaged current
j(τ) = j(Q = 0, τ) is

δjpara(τ) =
e2

2m2Vcd

∫ β

0

dτ ′Ãdri(τ
′)
∑
k,q

q · k〈T̂ Ũ(β, 0)Ψ̂†k(τ ′)Ψ̂k(τ ′)Ψ̂†q(τ)Ψ̂q(τ)〉con0 .

(2.73)

The reduced time-evolution operator Ũ describes the evolution due to the electron-
electron interaction,

Ũ(β, 0) = T̂ exp

[
−
∫ β

0

dτ ′Ĥ2,D(τ ′)

]
. (2.74)



When calculating the correlator in Eq.(2.73), only totally connected diagrams
must be kept, as indicated by the index con. The expectation value 〈· · ·〉0 =

(1/Z0)Sp[e−βĤ0 · · · ] is taken with respect to the non-interacting Hamiltonian Ĥ0 and
the system is assumed to be spatially homogeneous on average. The perturbation
theory in the interaction is done using the standard diagrammatic technique [11]. To
take screening of the bare Coulomb interaction into account, the expansion is done
in the Random-Phase-Approximation potential fRPA(q, iω) instead of the (Fourier
transformed of the) bare interaction fq. Diagrammatically the RPA-interaction is
depicted in Fig.2.6. In the disordered system considered here, the electronic motion
is diffusive. Consequently the density-density correlation function has a diffusion
pole, which in the diagrammatic language is produced by the Diffuson D0 in the
polarization-bubble. The Dyson equation for the Diffuson is shown in Fig.2.6(b). It
is obtained from the Cooperon by reversing one electron line. Since particle-number
conservation always requires a diffusive pole in the density-density correlation func-
tion, independent of the interactions in the system, no cutoff similar to 1/τϕ enters
the Diffuson [13]. D0, as it is introduced here, describes a classical diffusion process
and therefore a quantum mechanical quantity like the dephasing time τϕ does not ap-
pear. (In different context, e.g. in calculating Universal Conductance Fluctuations,
’Diffusons’ appear as formal tools in diagrammatic perturbation theory and are not
directly related to a physical diffusion process. Such ’Diffusons’ are indeed affected
by dephasing effects as will be discussed in Sec.(3.5)). In the model of disorder con-
sidered here, the current-current correlation function that defines the WL-correction
to the spatially averaged (Q = 0 mode) conductivity is, for symmetry reasons, not
renormalized by Diffusons. This is due to the δ-potential approximation for the
disorder scattering centers which only give rise to s-wave scattering. In this case
the momentum relaxation time τel is equal to the transport time entering the Drude
conductivity. For extended scatterers, where contributions from higher angular mo-
menta become important, Diffuson corrections are needed in the current-current
correlation function to obtain the correct transport time [21]. In the Matsubara
formulation one obtains the following expressions for the disorder-averaged Green’s
function (see Eq.(2.43)) and the Diffuson D0:

G0
k(iω) =

1

iω − ( k2

2m
− µ) + i

2τel
sgn(ω)

, (2.75)

D0(Q, iω) =
∆

2πτ 2
el

1

DQ2 + |ω|
. (2.76)

Analytically the diagrams in Fig.2.6 can be summed in a geometric series, yield-
ing

fRPA
q (iω) =

fq

1− fqΠ0(q, iω)
=:

fq

ε(q, iω)
, (2.77)
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Figure 2.6: Diagrammatic definition of the effective RPA interaction. Thick wiggled
lines represent fRPA(q, iω) while thin wiggled ones stand for the bare interaction
fq. The electron-lines here are the disorder averaged Green’s functions G0 defined
in Eq.(2.75). The crossed, shaded box is the Diffuson D0. Disorder scattering is
symbolized by dashed lines.

where the dielectric function ε(q, iω) was introduced. The irreducible polarization-
function Π0(q, iω) is given by the sum of the two polarization-bubbles in Fig.2.6. In
the low frequency (ω � 1/τel), long wavelength (|q| < 1/l) limit one obtains

Π0(q, iω) = −νd
Dq2

Dq2 + |ω|
. (2.78)

fq is the Fourier-transformed of the bare interaction f(r) and depends on the di-
mension of the system. In d = 3 it is given by

fq =
4πe2

q2
for d = 3 . (2.79)

In lower dimensions one gets [20]

fq =
2πe2

|q|
for d = 2 , (2.80)

fq = e2 ln

(
1

q2a2

)
for d = 1 , (2.81)

where a is the samples transverse extension and the one dimensional result is valid
for q < 1/a. From Eq.(2.78) one obtains for the dielectric function in the diffusive
regime

ε(q, ω) = 1 + fqνd
Dq2

Dq2 − iω
. (2.82)

Figure 2.7 shows all diagrams that are obtained by expanding the current in
Eq.(2.73) to first order in fRPA. Diagrams a) − c) are Fock-type and d) − f) are
Hartree-type contributions. Even though fRPA is a disorder-averaged quantity, the
electron-lines G0 are still non-averaged propagators, depending on the special real-
ization of the random potential U . The non-trivial problem now is to perform the



a) b) c)
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Figure 2.7: All diagrams for the current to first order in fRPA. Thin wiggled lines
denote current-vertices and thick ones the effective interaction fRPA. The electron-
lines are, in contrast to Fig.2.6, the non-averaged Green’s functions G0 that still
contain the disorder exactly.

disorder average of the diagrams in Fig.2.7. Explicit calculations have first been done
by Altshuler et al. in Ref. [20]. In the following only the main results will be briefly
summarized as far as they are needed in the context of this work. The main focus
is to show the connection between dephasing due to Nyquist noise, as discussed in
section (3.3) and the diagrammatic perturbation theory in the screened interaction.
Regarding the Hartree (or direct) contributions, it was found in Ref. [20], that after
averaging all diagrams of type d) and e) that have disorder-lines (e.g. Cooperons)
connecting the upper and lower electron-line of the bubble, cancel with the disorder
average of diagram f). In other words, only diagrams where both electron propaga-
tors are averaged separately give non-vanishing Hartree contributions. This means,
that the direct interaction has no effect on the correlations between time-reversed
trajectories (or the upper and lower electron-line in the diagrammatic language) and
can therefore not contribute to dephasing. The components entering the Hartree di-
agrams are the averaged non-interacting single particle Green’s function G0 and the
disorder average of the single-bubble diagram shown in Fig.2.8. The same diagrams

kk’

Figure 2.8: Electron-propagator that enters the disorder averaged Hartree contribu-
tion to the current. Averaging is indicated by the over-bar.

occur in the calculation of the average one-electron density of states

νd(ω) = − 2

πV
∑

q

ImGq(iω)iω→ω+i0 . (2.83)



G is the disorder averaged total Green’s function including electron-electron inter-
actions. The conductivity is related to the density of states at the Fermi energy
(νd := νd(εF )) via the Einstein relation σd = e2νdD. The only effect of the Hartree
interaction on the conductivity thus comes form a renormalization of νd. In con-
clusion the diagrams d) − f) of Fig.2.7 do not contribute to dephasing. They can
therefore be neglected in the following. From Eq.(2.73) and the diagrams a) − d)
one easily finds the Fock contribution to the conductivity:

σFockpara (ε) =
e2

iεm2V2d

∑
k,q

∑
p,p′

k · q 1

β2

{∑
ω1,ω2

[

fRPA
p−p′(iω2 − iω1)Gq,p(iε̃+ iω2)Gk,p′(iω1)Gp′,q(iω2)Gp,k(iε̃+ iω1)

+ fRPA
p−p′(iω1 − iω2)Gq,p(iω1)Gp,p′(iω2)Gp′,k(iω1)Gk,q(iω1 − iε̃)

+ fRPA
p−p′(iω1 − iω2)Gq,p(iω1)Gp,p′(iω2)Gp′,k(iω1)Gk,q(iω1 + iε̃)

]}
iε̃→ε+i0

. (2.84)

iε̃ is a Bosonic Matsubara frequency, all other ones are Fermionic. The Matsubara
Green’s function G(iω) coincides with the analytic continuation of the retarded
function GR(iω) for positive ω and with GA(iω) for ω < 0 (see Eqs.(A.35), (A.36)
which are also valid for G(iω)). Thus the frequency sums in Eq.(2.84) produce
various different products of retarded and advanced functions which have to be
averaged over disorder separately. This very technical procedure, which affords much
experience in diagrammatic perturbation theory, is described in detail by Aleiner
et al. in Ref. [32]. Also a physical interpretation of the different terms occuring is
given in that article. However, if one is only interested in pure dephasing effects,
the problem greatly simplifies. In this case only interactions with small frequency-
transfer ε ∼ 1/τϕ, which are so weak that the classical motion of the electrons
remains unchanged, are considered. Such nearly elastic scattering thus only effects
the electrons phase and is therefore called a “pure” dephasing effect here. Of course
inelastic scattering with energy-transfer ε� 1/τϕ, besides its impact on the density
of states and the electron dynamics, also destroys the phase-information. This
separation into ’dephasing’ and ’interaction’ contributions is analogous to what is
done in deriving Eq.(2.67) for the current in the presence of a fluctuating external
field. There also only dephasing effects are explicitly treated, and the cutoff Γ0

is introduced to take account of electron-electron interactions with large energy
transfer as well as all other possible sources of dephasing. It is therefore assumed,
that the field-vertices do not change the analytic structure of the Green’s functions.
After each interaction retarded propagators remain retarded and advanced ones stay
advanced. In order to describe such dephasing effects due to the intrinsic electron



electron interaction, thus only the following terms have to be kept:

σdephpara(ε) =
e2

iεm2V2d

∑
k,q

∑
p,p′

k · q 1

β2

[
∑

(−ε̃<ω1<0)

∑
(−ε̃<ω2<0)

fRPA
p−p′(iω2 − iω1)Gq,p(iε̃+ iω2)Gk,p′(iω1)Gp′,q(iω2)Gp,k(iε̃+ iω1)

+
∑

(0<ω1<ε̃)

∑
(0<ω2<ε̃)

fRPA
p−p′(iω1 − iω2)Gq,p(iω1)Gp,p′(iω2)Gp′,k(iω1)Gk,q(iω1 − iε̃)

+
∑

(−ε̃<ω1<0)

∑
(−ε̃<ω2<0)

fRPA
p−p′(iω1 − iω2)Gq,p(iω1)Gp,p′(iω2)Gp′,k(iω1)Gk,q(iω1 + iε̃)

]
iε̃→ε+i0

.

(2.85)

The frequencies are limited so that all electron-lines on one side of the bubble (“up-
per” or “lower”) are either all retarded or all advanced. The analytic structure of
the Green’s functions does not change over the range of summation, but that of
fRPA does, depending on whether ω1 is smaller or greater than ω2. The frequency
sums can be evaluated by contour-integration. After a straightforward calculation
one obtains

σdephpara(ε) =
e2

iεm2V2d

∑
k,q

∑
p,p′

k · q
∫ ∞
−∞

dωdω′

{
[f(ω′)− f(ω′ − ε)]×

[f(ω + ω′)fRPA,A
p−p′ (ω)− f(ω + ω′ − ε)fRPA,R

p−p′ (ω)] + n(ω)[f(ω′)− f(ω′ − ε)]×

[fRPA,A
p−p′ (ω)− fRPA,R

p−p′ (ω)]

}{
GRq,p(ω + ω′)GAk,p′(ω′ − ε)GAp′,q(ω + ω′ − ε)GRp,k(ω)

+ GRq,p(ω′)GRp,p′(ω + ω′)GRp′,k(ω′)GAk,q(ω′ − ε)

+ GAq,p(ω′ − ε)GAp,p′(ω + ω′ − ε)GAp′,k(ω′ − ε)GRk,q(ω′)

}
. (2.86)

The retarded and advanced RPA-propagators are obtained form the correspond-
ing Matsubara expression by the usual continuations, fRPA,R/A(ω) = fRPA(iω̃ →
ω ± i0). The complex function fRPA(z) has a branch cut along the real axis.
n(ω) = 1/(exp(βω) − 1) is the Bose function and f(ω) = 1/(exp(βω) + 1) the
Fermi function. Eq.(2.86) now has to be averaged over disorder. The dominant
contributions according to Ref. [32] are shown in Fig.2.9.

These crossed Cooperon diagrams generate a maximal number of Cooperon poles.
Evaluating this diagrams gives the leading dephasing contribution to the weak lo-



a) b)

c) d)

Figure 2.9: Diagrams contributing to σWL in first order in the screened interaction.
Shaded boxes represent the non-interacting Cooperon C0. Filled triangles indicate
current-vertices and the RPA-propagator is symbolized by thick wiggled lines. The
upper electron line is retarded, the lower advanced. Diagrams (c) and (d) are vertex
corrections.

calization correction:

σdephpara(ε) =
e2D

2π2iεV2

∑
k,q

∫ ∞
−∞

dω
{

[ε+ ω][n(ε+ ω)− n(ω)]fRPA,A
k (ω)

−[ε− ω][n(ω − ε)− n(ω)]fRPA,R
k (ω)

}
{2C0(q, ε+ ω)C0(q, ε− ω)C0(q− k, ε)

−C2
0(q, ε)C0(q− k, ε+ ω)− C2

0(q, ε)C0(q− k, ε− ω)
}
. (2.87)

This is the first order RPA correction to the WL-result due to electron-electron in-
teractions with small frequency transfer. The Bose functions restrict the range of
integration to frequencies ω ≤ max(T, ε). In this regime the effect of the Coulomb
interaction can be described by a fluctuating random field, so called Nyquist noise,
which is produced by the motion of the electrons in the system. This will be de-
scribed in detail in the next chapter. The contribution to dephasing from the fre-
quency regime ω ≤ max(T, ε) is therefore called Nyquist noise contribution and
denoted by 1/τnn. Since different dephasing mechanisms are assumed to be inde-
pendent, the total dephasing rate is 1/τϕ = Γ0 +1/τnn and Γ0 contains all dephasing
effects other than Nyquist noise. If Γ0 � 1/τnn, which can be achieved by applying
an external magnetic field, Eq.(2.32) can be expanded in powers of 1/(Γ0τnn). To
first order this yields

σWL(ε) = − σd
πνd

1

V
∑
|q|<1/l

[
C0(q, ε)− 1

τnn
C2

0(q, ε)

]
, (2.88)

where C0 is defined in Eq.(2.60). To extract 1/τnn from Eq.(2.87), this equation is



rewritten as

σdephpara(ε) =
e2D

2π2iεV2

∑
q

C0(q, ε)
∑

k

∫ ∞
−∞

dω
{

[ε+ ω][n(ε+ ω)− n(ω)]fRPA,A
k (ω)

−[ε− ω][n(ω − ε)− n(ω)]fRPA,R
k (ω)

}{
2C0(q + k, ε+ ω)C0(q + k, ε− ω)C−1

0 (q, ε)

−C0(q− k, ε+ ω)− C0(q− k, ε− ω)} . (2.89)

Using σd/νd = e2D and comparing Eq.(2.88) and Eq.(2.89) one obtains the following
expression for 1/τnn to first order RPA:

1

τnn(ε)
= lim

q→0

1

2πiεV
∑

k

∫ ∞
−∞

dω
{

[ε+ ω][n(ε+ ω)− n(ω)]fRPA,A
k (ω)

−[ε− ω][n(ω − ε)− n(ω)]fRPA,R
k (ω)

}{
2C0(q + k, ε+ ω)C0(q + k, ε− ω)C−1

0 (q, ε)

−C0(q− k, ε+ ω)− C0(q− k, ε− ω)} . (2.90)

Inserting the explicit form of C0, this equation can be reduced to

1

τnn(ε)
= − 1

πiεV
∑

k

∫ ∞
−∞

dω
{

[ε+ ω][n(ε+ ω)− n(ω)]fRPA,A
k (ω)

−[ε− ω][n(ω − ε)− n(ω)]fRPA,R
k (ω)

}
×

Dk2

(Dk2 − iε− iω + Γ0)(Dk2 − iε+ iω + Γ0)
. (2.91)

Eq.(2.91) can be solved in the limiting cases T � ε and T � ε. For T � ε the
function n(ω±ε) is expanded to first order in ε. The derivative of the Bose function
is

dn

dω
= − β

4 sinh2
(
βω
2

) . (2.92)

To evaluate the ω-integral, the approximation

β

sinh2
(
βω
2

) ≈ 4

βω2
Θ

(
|ω| − 1

β

)
(2.93)

is made. Here Θ(x) is the usual step function. This yields (1/β = T )

1

τnn(T )
=

2T

πV
∑

k

∫ T

−T
dω

Im[fRPA,A
k (ω)]

ω

Dk2

(Dk2 − iω + Γ0)(Dk2 + iω + Γ0)
. (2.94)

In metals, where the screening is strong and the electrons motion is diffusive the
essential contribution comes from momenta |k| ∼

√
ε/D with ε � 1/τel. One can

then approximate

fRPA,A
k (ω) ≈ Dk2 + iω

νdDk2
, (2.95)



and consequently

1

τnn(T )
=

2T

πνdV
∑

k

∫ T

−T
dω

1

(Dk2 − iω + Γ0)(Dk2 + iω + Γ0)
. (2.96)

For macroscopic samples with continuous spectrum the above expression can be
calculated by replacing (1/V)

∑
k →

∫
dk/(2π)d. In the limit T � Γ0 one obtains

1

τnn(T )
∝


T

ν1
√
DΓ0

for d = 1

T
2πν2D

ln
(
T
Γ0

)
for d = 2

T 3/2
√

2π2ν3D3/2 for d = 3 .

(2.97)

A priori these results are only valid if Γ0 � 1/τnn.

Eq.(2.91) can also be used to obtain the frequency-dependence of 1/τnn in the
limit ε� T and ε� Γ0. In this case Eq.(2.91) reduces to

1

τnn(ε)
= − 2

πiεV
Re
∑

k

∫ 0

−ε
dω

(ε+ ω)fRPA,A
k (ω)Dk2

(Dk2 − iε− iω)(Dk2 − iε+ iω)
. (2.98)

Here the real part was taken, since only this quantity can be physically interpreted
as a damping-time. Solving the integrals for macroscopic systems yields

1

τnn(ε)
∝ 1

νd

( ε
D

) d
2
. (2.99)

Now the condition Γ0 � 1/τnn for the validity of the first order expansion is replaced
by ε � 1/τnn. Using 1/νd = ∆Ld, Ec = D/L2 and Eq.(2.99) this means ε1−d/2 �
∆/E

d/2
c . Since Ec � ∆ this condition is always satisfied in d = 2. For d = 1 one

obtains the restriction ε � ∆(∆/Ec) and in three dimensions ε � Ec(Ec/∆)2. In
the next chapter the above results will be reproduced by means of a non-perturbative
Eikonal ansatz.



Chapter 3

Eikonal approach to dephasing in
disordered conductors

3.1 Introduction

Parts of the content of this chapter have already been published in Ref. [1]. In
addition to details of the calculations new results for the the frequency dependence
of 1/τϕ are presented. Furthermore the method derived in [1] is applied to study
the Diffuson in the presence of external fields.

In a seminal paper, Altshuler, Aronov and Khmelnitskii [22, 8] developed an el-
egant, semiclassical method for calculating the dephasing rate due to Nyquist noise
1/τnn in disordered conductors at low temperatures. Using the equivalence between
electron-electron interactions with small energy transfers and fluctuating internal
electromagnetic fields, Altshuler et al. [8] obtained 1/τnn by first solving the differ-
ential equation for the Cooperon in a fixed electromagnetic field, and then averaging
the result over different realizations of this field. The probability distribution for this
averaging is constrained by the fluctuation-dissipation theorem. A similar strategy
has recently been used by several authors to study Coulomb interactions in disor-
dered metals [7, 23, 24, 25]. In all these works the solution of the equation for the
Cooperon in a given electromagnetic field is represented as a Feynman path integral.
After averaging over the electromagnetic field the evaluation of the path integral can
be mapped onto the problem of solving a single-particle Schrödinger equation for
a quantum particle in a certain effective potential. Altshuler et al. also found an
exact expression for the WL-correction in the presence of an spatially homogeneous,
time-dependent electric field [22]. From this result the dephasing contribution 1/τAC
due to such a field was derived.
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In this chapter it will be shown that there exists an alternative method of solving
the differential equation for the Cooperon in an external field. The method is based
on an Eikonal expansion, which has been developed many years ago to calculate the
single-particle Green’s function of quantum field theories in fixed background fields
[26,27,28]. One advantage of the Eikonal method is that it seems to be technically
less complicated than the method used in Ref. [8], and the results can directly be
compared with diagrammatic perturbation theory (see Sec.2.4). Furthermore it is
free of any divergences for small momenta and frequencies, so that no additional
cutoffs have to be introduced.

The rest of this chapter is organized as follows: In Sec.3.2 the Eikonal method is
introduced. It provides an iteration procedure which formally solves the differential
equations for the Cooperon and the Diffuson exactly. In practice, this procedure has
to be truncated to obtain approximate solutions which still contain infinite orders
in the external potential. This is outlined in Sec.3.3 and 3.4 where results for the
Cooperon in a fluctuating random potential (Nyquist noise) and in an externally
applied microwave field are derived. The dephasing time is extracted form these
results via the weak localization correction to the conductivity. Finally in Sec.3.5
the Eikonal method is applied to study the Diffuson in an external field. The
influence of Nyquist noise on the Diffuson has also recently been studied by means
of the path-integral technique [24,33].

3.2 The Cooperon in a fluctuating scalar poten-

tial: Eikonal expansion

As shown in Sec.2.3, Eq.(2.58), in a classical fluctuating scalar potential V (r, t) the
Cooperon satisfies[
∂t +DP̂2

r + Γ0 + i[V (r, t0 + t)− V (r, t0 − t)]
]
C(r, r′; t, t′, t0) = δ(r− r′)δ(t− t′) ,

(3.1)

where P̂r = −i∇r is the momentum operator, and the phenomenological dephasing
rate Γ0 is due to processes that are not explicitly treated in this work, such as inelas-
tic electron-phonon scattering. The potential V (r, t) is related to the longitudinal
electric field via

E(r, t) = −∇rφ(r, t) , V (r, t) = (−e)φ(r, t) , (3.2)

where −e is the charge of the electron.

Formally Eq.(3.1) looks like the differential equation for the imaginary-time
single-particle Green’s function of an electron in a fluctuating external potential

Vt0(r, t) := i[V (r, t0 + t)− V (r, t0 − t)] . (3.3)



The real time version of this problem has been discussed extensively in the quantum
field theory literature [26, 27]. Now a slight modification of the eikonal method
developed by E. S. Fradkin [27] (see also Ref. [28]) is used to solve Eq.(3.1) without
going through a path integral representation [8, 23, 24]. As a first step, a mixed
representation is introduced, defining

C(r, r′; t, t′, t0) =

∫
dk

(2π)d

∫
dω

2π
ei[k·(r−r′)−ω(t−t′)]C(k, ω; r, t) . (3.4)

It is understood that C(k, ω; r, t) depends parametrically on t0. From Eq.(3.1) one
then obtains [

∂t − iω +D(P̂r + k)2 + Γ0 + Vt0(r, t)
]
C(k, ω; r, t) = 1 . (3.5)

Now the ansatz

C(k, ω; r, t) =

∫ ∞
0

dτe−τ(Γ0+Dk2−iω)Y (k, τ ; r, t) (3.6)

is made. It is easy to see that this ansatz solves Eq.(3.5) if the auxiliary function
Y (k, τ ; r, t) satisfies[

∂τ + ∂t +D(P̂2
r + 2k · P̂r) + Vt0(r, t)

]
Y (k, τ ; r, t) = 0 , (3.7)

with boundary condition Y (k, 0; r, t) = 1. Setting now

Y (k, τ ; r, t) = e−F (k,τ ;r,t) , (3.8)

one obtains the eikonal equation[
∂τ + ∂t +D(P̂2

r + 2k · P̂r)
]
F (k, τ ; r, t) =

Vt0(r, t) +D
[
P̂rF (k, τ ; r, t)

]2

, (3.9)

with boundary condition

F (k, 0; r, t) = 0 . (3.10)

Following Ref. [27] the solution of Eq.(3.9) is expanded in powers of the potential
Vt0 ,

F (k, τ ; r, t) =
∞∑
n=1

Fn(k, τ ; r, t) , (3.11)

where Fn involves by definition n powers of Vt0 . It is easy to show that[
∂τ + ∂t +D(P̂2

r + 2k · P̂r)
]
Fn(k, τ ; r, t) = Vn(k, τ ; r, t) , (3.12)



where V1(k, τ ; r, t) ≡ Vt0(r, t), and for n ≥ 2

Vn(k, τ ; r, t) = D

n−1∑
n′=1

[
P̂rFn′(k, τ ; r, t)

]
·
[
P̂rFn−n′(k, τ ; r, t)

]
. (3.13)

In particular,

V2(k, τ ; r, t) = D
[
P̂rF1(k, τ ; r, t)

]2

. (3.14)

The solution of Eq.(3.12) with the correct boundary condition is

Fn(k, τ ; r, t) =

∫ τ

0

dτ ′e−(τ−τ ′)[∂t+D(P̂2
r+2k·P̂r)]Vn(k, τ ′; r, t) . (3.15)

The first term is explicitly

F1(k, τ ; r, t) =

∫
dq

(2π)d
dω

2π
ei(q·r−ωt)Vt0(q, ω)f1(k, τ ; q, ω) , (3.16)

where

f1(k, τ ; q, ω) =
1− e−[D(q2+2k·q)−iω]τ

D(q2 + 2k · q)− iω
, (3.17)

and Vt0(q, ω) is the Fourier transform of the potential Vt0(r, t). Note that according
to Eq.(3.3)

Vt0(q, ω) = i[e−iωt0V (q, ω)− eiωt0V (q,−ω)] , (3.18)

where

V (q, ω) =

∫
dr

∫ ∞
−∞

dte−i(q·r−ωt)V (r, t) . (3.19)

For the quadratic term one obtains

F2(k, τ ; r, t) =

∫
dq1

(2π)d
dω1

2π

∫
dq2

(2π)d
dω2

2π
ei[(q1+q2)·r−(ω1+ω2)]tVt0(q1, ω1)Vt0(q2, ω2)

×f2(k, τ ; q1, ω1,q2, ω2) , (3.20)

with

f2(k, τ ; q1, ω1,q2, ω2) = (Dq1 · q2)
e−[D((q1+q2)2+2k·(q1+q2))−i(ω1+ω2)]τ

[D(q2
1 + 2k · q1)− iω1] [D(q2

2 + 2k · q2)− iω2]

×

{
e[D((q1+q2)2+2k·(q1+q2))−i(ω1+ω2)]τ − 1

D((q1 + q2)2 + 2k · (q1 + q2))− i(ω1 + ω2)
+
e2Dq1·q2τ − 1

2Dq1 · q2

− e[D(q2
1+2k·q1+2q1·q2)−iω1]τ − 1

D(q2
1 + 2k · q1 + 2q1 · q2)− iω1

− e[D(q2
2+2k·q2+2q2·q1)−iω2]τ − 1

D(q2
2 + 2k · q2 + 2q2 · q1)− iω2

}
.(3.21)



Substituting the solution of Eq.(3.9) into Eqs.(3.8),(3.6), the ω-integration in
Eq.(3.4) can be performed exactly, and gives rise to a factor of δ(τ − t + t′). The
τ -integration in Eq.(3.6) becomes then trivial and yields the step function Θ(t− t′).
Eventually one obtains the following expression for the solution of Eq.(3.1),

C(r, r′; t, t′, t0) =

∫
dk

(2π)d
eik·(r−r′)C0(k, t− t′)e−F (k,t−t′;r,t) , (3.22)

where C0(k, t) is the non-interacting Cooperon in the momentum-time domain, i.e.

C0(k, t) = Θ(t)e−(Γ0+Dk2)t . (3.23)

Eqs.(3.22),(3.23) together with Eqs.(3.9),(3.10) complete the formal solution of
Eq.(3.1).

3.3 Dephasing due to Nyquist noise in arbitrary

dimensions

To identify the dephasing rate 1/τϕ in terms of a physical observable, one usually cal-
culates the weak localization correction to the conductivity [32]. The corresponding
correction to the current is given in Eq.(2.68). To obtain the conductivity, Eq.(2.68)
is expressed in terms of the Fourier components of Edri(t) =

∫
dε′

2π
Edri(ε

′)e−iε
′t. This

yields

δjWL(ε) =

∫
dε′

2π
δσWL(ε, ε′)Edri(ε

′) , (3.24)

with

δσWL(ε, ε′) = − σd
πνd

∫ ∞
−∞

dtei
ε+ε′

2
t

∫ ∞
−∞

dt0e
i(ε−ε′)t0C(r, r;

t

2
,− t

2
, t0) . (3.25)

δσWL(ε, ε′) is the generalized weak-localization correction to the conductivity in the
presence of external dephasing fields. The dephasing time is defined as the time
scale that cuts off the t-integration in Eq.(3.25). This will be discussed in detail
when performing the explicit calculations below. So far the nature of the potential
V (r, t) in Eq.(3.1) was not specified. If one assumes that it describes equilibrium
fluctuations due to electron-electron interactions (Nyquist noise) [8], one may use
Eq.(3.1) to calculate the dephasing rate in disordered metals due to electron-electron
interactions with small momentum transfers. Such a calculation has first been per-
formed in the pioneering paper by Altshuler, Aronov and Khmelnitskii [8]. The
dephasing time in disordered systems has lately attracted great interest again, since
new measurements indicate, that 1/τϕ saturates at low temperatures [19]. In these



experiments great care has been taken to rule out unwanted effects like magnetic
impurities or heating and it has been proposed, that the observed saturation is due
to intrinsic interaction effects [19]. This contradicts the conventional theory [8]
which predicts, that 1/τϕ vanishes as some power of temperature, depending on the
dimensionality of the system under investigation. An attempt to explain the ex-
perimentally observed saturation due to electron-electron interactions [38] has been
heavyly criticized [32, 43, 25]. It has been argued, that the measured effect is not
of intrinsic nature but rather due to external microwave-radiation, which is unin-
tentionally coupled to the system. New experiments, in which the effect of external
electro-magnetic radiation is directly investigated [44] do not support this claim.
Another attempt to explain the saturation in the framework of the “conventional”
theory takes into account the possible dynamics of the impurities which are usually
assumed to be static scattering centers [37]. Still there is no general agreement about
the mechanism that is responsible for the experimentally obtained behavior of the
dephasing time [39]. While in Ref. [38] the electron-electron interaction is treated
quantum mechanically from the beginning, Ref. [8] deals only with the classical fluc-
tuations of the background field. Quantum mechanics is brought in by introducing a
high frequency cutoff to take into account the Pauli principle. The main statement
of Ref. [38] is, that this cutoff procedure is not correct and the Pauli principle does
not affect the dephasing time.

In this section both, the results of Ref. [8] and Ref. [38] which, within the Eikonal
formalism only differ in the high frequency cutoff, will be rederived. Since in this
work the external field is treated classically, this cutoff has to be introduced by hand
into the calculations presented here and a proper justification of the chosen value can
not be given within this framework. However, the aim of this section is not to enter
the debate about zero temperature dephasing, but rather to point out important
differences between the two results. Especially the role of vertex corrections becomes
very clear in the Eikonal expansion. It turns out, that vertex corrections are essential
to obtain the conventional result [8,32,43] but play no role for the zero temperature
term [38]. Some consequences from this fact are outlined which indicate, that the
restriction to first order perturbation theory in Ref. [43] is probably not responsible
for the discrepancy to the non-perturbative calculation in Ref. [38]. Moreover, the
dephasing rate for arbitrary dimension d, treating d as a continuous parameter, will
be calculated. In this way one sees that the logarithmic corrections in d = 2 are
accompanied with large numerical prefactors for 0 < |d − 2| � 1, which diverge as
|d− 2|−1 for d→ 2.

To obtain the Cooperon of the interacting system, one first solves Eq.(3.1) for a
fixed realization of the field, and then averages the solution over all realizations of
the field, with the correlator given by the fluctuation-dissipation theorem [8], which
implies (see App.B)

〈V (q, ω)V (q′, ω′)〉nn = (2π)d+1δ(q + q′)δ(ω + ω′)g(q, ω) , (3.26)



where

g(q, ω) = − coth(
ω

2T
)Im

[
fq

ε(q, ω)

]
. (3.27)

〈· · · 〉nn denotes averaging over the Nyquist noise probability distribution. Here fq

is the Fourier transform of the bare Coulomb interaction, and ε(q, ω) is the disor-
der averaged dielectric function of the system. In the diffusive regime it is given
by Eq.(2.82). Recall, that in the derivation of Eq.(3.1) the electromagnetic field is
treated as a classical field [25]. The fluctuation-dissipation theorem can thus not
be applied for arbitrarily large frequencies ω. The question arises, at which max-
imal frequency ωc the ω-integrations have to be cut off to be consistent with the
classical approximation. According to Altshuler et al. [8] ωc should be chosen as
ωc = max{T, ε}, where T is the temperature and ε is the frequency of an external
measuring field Edri(ε), to explicitly take into account the Pauli principle. The in-
tuitive argument behind this is the following: According to Fermi’s golden rule of
quantum mechanics, an external field of frequency ω can only cause transitions be-
tween states with energy difference ±ω. Now one is interested in transitions caused
by the fluctuating field of the background electrons. If one assumes, that this field
can cause transitions with energy ω > T , then there must be some background par-
ticles with such energy. But since the whole system is in equilibrium at temperature
T , the probability to find such particles is exponentially small. In non-linear order
the time-dependent driving field Edri(ε) with ε > 0 will in principle also contribute
to dephasing [56,57]. The total dephasing time consists in this case of an ’external’
contribution from Edri, and an ’intrinsic’ contribution from electron-electron inter-
actions. Which effect dominates depends on the amplitude and frequency of the
external field [57]. (This point will be discussed in Chapter 4, where the non-linear
response of a mesoscopic metal ring to a time-dependent external flux is studied.)
First only the intrinsic contribution due to Nyquist Noise is investigated. For ε > T
the external frequency replaces the temperature as the relevant energy scale. As al-
ready mentioned, the results of Golubev and Zaikin [38] contradict the above choice
for ωc. The method used in Ref. [38] takes into account the full quantum mechanical
character of the interaction, but is formally related to the derivation presented here
in that sense, that the effect of the electron-electron interaction is mapped onto a
fluctuating external field due to a Hubbard-Stratonovich transformation. It will be
demonstrated further below, that the result of Ref. [38, 39] can be obtained from
the Eikonal approximation, if one chooses ωc as the inverse of the elastic lifetime
τel, i.e. ωc = 1/τel, which is the frequency that limits the validity of the diffusive
approximation. Within this approximation g(q, ω) is given by (see Eq.(2.82))

g(q, ω) ≈ coth(
ω

2T
)

ω

νdDq2
for ω <

1

τel
and |q| < 1

l
. (3.28)

Because the momentum integrals in the following analysis will be infrared and ul-
traviolet convergent, the frequency dependence in the denominator of g(p, ω) was



neglected and no further cutoffs for the q-integrations are needed in this calculation.
Note that Altshuler et al. [8] have to introduce some ad hoc (but physically moti-
vated) ultraviolet cutoff for momentum integrations in order to calculate dephasing
due to Nyquist noise in d ≥ 2. The Eikonal approach is free of such ambiguities.
Applying Eq.(3.26) to the potential Vt0(q, ω) which enters the differential equation
for the Cooperon, one obtains from Eq.(3.3)

〈Vt0(q, ω)Vt0(q′, ω′)〉nn = −2(2π)d+1δ(q + q′)

× [δ(ω + ω′)− δ(ω − ω′)] g(q, ω) . (3.29)

Thus the correlator of Vt0(q, ω) is independent of the time t0. This implies, that after
averaging the Cooperon is independent of t0 as well. It is important to note, that
Eq.(3.29) consists of a difference of two terms. In Sec.3.3.4 the result from first order
perturbation theory (see Chap.2.4) will be rederived from the Eikonal expansion.
There it becomes clear, that the first term in Eq.(3.29) ∼ δ(ω + ω′) describes self-
energy corrections (see Fig.2.9(a,b)), while the second one ∼ δ(ω−ω′) is responsible
for vertex corrections (see Fig.2.9(c,d)). The Cooperon of the interacting many-body
system is denoted by C(r, r′, t, t′), i.e.

C(r, r′, t, t′) = 〈C(r, r′; t, t′, t0)〉nn . (3.30)

Now, after averaging over the external field Eq.(3.24) obviously reduces to

δjWL(ε) = δσWL(ε)Edri(ε) , (3.31)

with

δσWL(ε) = − σd
πνd

∫ ∞
−∞

dtC(r, r,
t

2
,− t

2
)eiεt . (3.32)

If Eq.(3.22) is averaged over a suitable probability distribution of the field and
one assumes that averaging restores spatial translational invariance, then the average
of the Eikonal factor in Eq.(3.22) must be independent of r, so that one obtains for
the Cooperon in the momentum-time domain

C(k, t, t′) = C0(k, t− t′)e−W (k,t−t′;t) , (3.33)

with C(r, r′, t, t′) =
∫

dk
(2π)d

eik(r−r′)C(k, t, t′) and

W (k, t− t′; t) = − ln〈e−F (k,t−t′;r,t)〉nn . (3.34)

Note that according to Eq.(3.32) the weak-localization correction to the conductivity
can be written as

δσWL(ε)

σd
= − 1

πνd

∫ ∞
τel

dt

∫
dk

(2π)d
e−(Γ0+Dk2−iε)t−Γ(k,t) , (3.35)



where

Γ(k, t) = W (k, t; t/2) = − ln〈e−F (k,t;r,t/2)〉nn . (3.36)

The lower cutoff 1/τel in the time integration is introduced, since the Cooperon
is only defined in the diffusive regime with t > τel. Without interactions Γ(k, t)
vanishes and the time integral in Eq.(3.35) is cut off by Γ0. Now if Γ(k, t) would have
a k independent contribution linear in t; i.e. if one could write Γ(k = 0, t) = Γ1t; the
correction to Γ0 due to Nyquist noise would obviously be given by Γ1. Generally the
time-scale that cuts off the t-integration is determined by the k independent part
Γ(k = 0, t) and in the following the k-dependence will therefore not be considered.
However, a priori it is not clear whether Γ(k = 0, t) grows linearly in t or not. In
fact, it will be shown shortly that for long-range Coulomb interactions in d ≤ 2 this
is not the case.

3.3.1 The Debye-Waller factor

So far no approximation has been made. Of course, the function F (k, τ ; r, t) cannot
be calculated exactly, and one has to use the iterative procedure outlined above and
expand F in powers of the potential Vt0 . To first order in the screened Coulomb
interaction, it is sufficient to truncate the expansion of F at the second order, F ≈
F1 + F2. To include all second order contributions in the exponential factor, one
performs the cumulant expansion

〈e−F 〉nn ≈ e−〈F 〉nn+ 1
2
〈(F−〈F 〉nn)2〉nn . (3.37)

In this approximation the function Γ(k, t) defined in Eq.(3.36) is given by

Γ(k, t) = Γ1(k, t) + Γ2(k, t) , (3.38)

Γ1(k, t) = −1

2
〈F 2

1 (k, t; r, t/2)〉nn , (3.39)

Γ2(k, t) = 〈F2(k, t; r, t/2)〉nn . (3.40)

Here it was made use of 〈Vt0(q, ω)〉nn = 0. The averaging is now easily performed
with the help of the fluctuation-dissipation theorem (3.26), which leads to the cor-
relator of the potential Vt0(q, ω) as given in Eq.(3.29). Introducing for simplicity
the notation

Ek(q) = D(q2 + 2k · q) , (3.41)



one obtains

Γ1(k, t) = −1

2
〈F 2

1 (k, t; r, t/2)〉nn

=

∫
dq

(2π)d

∫ ∞
−∞

dω

2π
g(q, ω)

{
1− e−(Ek(q)−iω)t

Ek(q)− iω
1− e−(Ek(−q)+iω)t

Ek(−q) + iω

−e−iωt1− e
−(Ek(q)−iω)t

Ek(q)− iω
1− e−(Ek(−q)−iω)t

Ek(−q)− iω

}
, (3.42)

Γ2(k, t) = 〈F2(k, t; r, t/2)〉nn

= 2

∫
dq

(2π)d

∫ ∞
−∞

dω

2π
g(q, ω)Dq2

{
1

[Ek(q)− iω][Ek(−q) + iω]

[
t

+
1− e−2Dq2t

2Dq2
− 1− e−(Ek(q)−iω)t

Ek(q)− iω
− 1− e−(Ek(−q)+iω)t

Ek(−q) + iω

]

− 1

[Ek(q)− iω][Ek(−q)− iω]

[
sin(ωt)

ω
+ eiωt

[
1− e−2Dq2t

2Dq2

−1− e−(Ek(q)+iω)t

Ek(q) + iω
− 1− e−(Ek(−q)+iω)t

Ek(−q) + iω

]]}
. (3.43)

Adding Γ1 and Γ2 the single terms can be grouped together. Exploiting the free-
dom to change the integration variables according to q→ −q and ω → −ω and
performing some algebraic manipulations, Γ(k, t) can be written in the compact
form

Γ(k, t) = 2Re

∫
dq

(2π)d

∫ ∞
−∞

dω

2π
g(q, ω)

[
t

Ek(q)− iω

+
e−(Ek(q)−iω)t − 1

(Ek(q)− iω)2
− e−Ek(q)t − e−iωt

iω(Ek(q)− iω)

]
. (3.44)

It is important to note, that the first two terms in this equation arise from the
contribution ∼ δ(ω + ω′) in Eq.(3.29), while the last term comes from the part ∼
δ(ω−ω′). It was already mentioned, that these are just the contributions due to self-
energy and vertex corrections respectively, which will become clear from comparison
with first order perturbation theory (and will be shown in Sec. 3.3.4). As discussed
above, for obtaining the interaction corrections to the dephasing rate it is sufficient
to set k = 0 in Eqs.(3.44). Introducing the notation Γ(t) := Γ(k = 0, t) one gets

Γ(t) =
4

νd

∫
dq

(2π)d

∫ ωc

0

dω

2π
coth(

ω

2T
)
ω

Dq2

[
Dq2

(Dq2)2 + ω2

(
t− sin(ωt)

ω

)
+

+Re
e−(Dq2−iω)t − 1

(Dq2 − iω)2
− e−Dq2t − cos(ωt)

(Dq2)2 + ω2

]
, (3.45)



where g(q, ω) was inserted according to Eq.(3.28). Eq.(3.45) was derived for macro-
scopic systems since all momentum sums where replaced by integrals; 1

Ld

∑
k →∫

dk
(2π)d

. Here it is summed over diffusive modes only. However, the derivation also
holds for mesoscopic systems if only the integrals are replaced by discrete sum. This
yields the more general expression

Γ(t) =
4

νd

1

Ld

∑
q6=0

∫ ωc

0

dω

2π
coth(

ω

2T
)
ω

Dq2

[
Dq2

(Dq2)2 + ω2

(
t− sin(ωt)

ω

)
+

+Re
e−(Dq2−iω)t − 1

(Dq2 − iω)2
− e−Dq2t − cos(ωt)

(Dq2)2 + ω2

]
. (3.46)

The q = 0 mode is excluded, since the system is assumed to be over all charge
neutral [40], [30]. Capacitance effects, involving the zeroth Fourier component of
the Coulomb potential, are not considered here. Eq.(3.46), Eq.(3.45) respectively,
presents a compact expression, which is free of any divergences and allows to cal-
culate the dephasing time τϕ for various physical situations from the condition
Γ0 + Γ(τϕ) = 1. In the following τϕ will be calculated in infinite and finite sys-
tems for T � ε as well as for ε � T . Choosing ωc = max{T, ε} and ωcτϕ � 1,
all results of the conventional theory [8], [40], [30] are reproduced. For ε � T the
dephasing time in arbitrary dimensions is obtained. Assuming ωc = 1/τel reproduces
the result recently obtained in Ref. [38] for d = 1. First the case of an infinite system
is considered.

3.3.2 The dephasing rate in infinite systems

a) T � ε

For T � ε the approximation ε ≈ 0 is made in Eq.(3.45). To reproduce the con-
ventional results [8], one has to choose ωc = T , thus taking into account only the
classical Nyquist noise fluctuations. The corresponding contribution to the dephas-
ing time is denoted by τnn. Since the frequency integration is now restricted to ω < T
one can approximate coth(ω/(2T )) ≈ 2T/ω and investigate the asymptotic behavior
for Tτnn � 1. Going over to d-dimensional spherical coordinates and substituting
x := Dp2t and y := ωt in Eq.(3.45) one arrives at

Γ(t) =
4TKdt

2− d
2

2πνdD
d
2

∫ ∞
0

dx

∫ Tt

0

dy x
d
2
−1

[
1

x2 + y2

(
1− sin y

y

)
+Re

1

x

(
e−(x−iy) − 1

(x− iy)2
− e−x − eiy

x2 + y2

)]
. (3.47)

Kd = 2πd/2/[(2π)dΓ(d/2)] (here Γ(x) is the Gamma function) is the surface of the
d-dimensional unit sphere divided by (2π)d, i.e. K1 = 1/π, K2 = 1/(2π) and



K3 = 1/(2π2). In d < 2 both integrals exist for Tt → ∞ and can be calculated
exactly in this limit. The result is

Γ(t) = Cd
Tt2−

d
2

νdD
d
2

for d < 2 and Tt� 1 , (3.48)

where the constant Cd is given by

Cd =
23−d

π
d
2 (2− d)(4− d)

. (3.49)

Obviously Cd diverges for d→ 2. Because in d < 2 the function Γ(t) grows for large
t faster than linear, the term Γ0t in Eq.(3.35) is negligible in this case. The total
dephasing rate 1/τϕ is dominated by 1/τnn which may then be defined by

Γ(τnn) = 1 . (3.50)

This yields

1

τnn
=

(
CdT

νdD
d
2

) 2
4−d

for d < 2 . (3.51)

In two dimensions the first term in the braces in Eq.(3.47) diverges logarithmi-
cally for Tt → ∞, while the remaining term exists in this limit. The asymptotic
behavior for Tt� 1 is thus given by

Γ(t) =
4TK2t

2πν2D

∫ ∞
0

dx

∫ Tt

0

dy
1

x2 + y2

(
1− sin y

y

)
=

4TK2t

2πν2D

∫ Tt

0

dy
π

2y

(
1− sin y

y

)
≈ Tt

2πν2D
ln(Tt) (3.52)

Due to the logarithmic correction the term Γ0t in Eq.(3.35) is still negligible, so that
the total dephasing rate in d = 2 is still given by 1/τϕ ≈ 1/τnn and can be obtained
from Eq.(3.50), which leads to the self-consistency condition

1

τnn
=

T

2πν2D
ln(Tτnn) . (3.53)

Iterating this equation one obtains

1

τnn
=

T

2πν2D
[ln(2πν2D) +O(ln ln(2πν2D))] , (3.54)

in agreement with Ref. [8]. Note that in a good metal the parameter 2πν2D = kF l =
2εF τel (εF is the Fermi energy) is large compared with unity (taking the spin into
account, one has ν2 = m/π in a truely two dimensional sample).



It is easy to see that in d > 2 the long-time behavior of the Debye-Waller factor
Γ(t) is dominated by the term linear in t on the right hand side of Eq.(3.45), i.e.

Γ(t) ≈ 4t

∫
dq

(2π)d

∫ T

0

dω

2π

g(q, ω)Dq2

[Dq2 − iω][Dq2 + iω]
. (3.55)

Because in d > 2 this integral exists, the contribution from Coulomb interactions
with small momentum transfers to the dephasing rate is simply obtained by writing
Γ(t) = t/τnn. Hence,

1

τnn
=

∫
dq

(2π)d

∫ T

−T
dωg(q, ω)S(q, ω) , (3.56)

where S(q, ω) is the dynamic structure factor of the diffusing electrons in the regime
|ω| <∼ T ,

S(q, ω) =
1

π

Dq2

(Dq2)2 + ω2
. (3.57)

Note that for |ω| <∼ T the detailed balance factor e−ω/T in the dynamic structure fac-
tor can be replaced by unity. Eq.(3.56) agrees with the expression for the dephasing
rate given in a recent paper by Imry et al. [37] (see also Ref. [5]). It should be kept
in mind, however, that Eq.(3.56) is only valid as long as the integral does not exhibit
any infrared divergence. For equilibrium Nyquist noise with correlator g(q, ω) given
in Eq.(3.27) the integral diverges for d ≤ 2. In d = 2 the integral depends in addition
logarithmically on the upper cutoff tT , which leads to the logarithmic correction in
Eq.(3.52). On the other hand, the full expression for Γ(t) given in Eq.(3.45) is free
of infrared divergences, so that this equation is more general than the semiclassical
expression (3.56).

The dephasing rate in d > 2 is now easily calculated. Evaluating the integral in
Eq.(3.56) yields

1

τnn
= C̃d

T
d
2

νdD
d
2

, (3.58)

where

C̃d =
Kd

(d
2
− 1) sin(πd/4)

, (3.59)

and the total dephasing rate in d > 2 is given by 1/τϕ = Γ0 + 1/τnn. C̃d diverges
for d → 2, just as Cd, indicating logarithmic corrections in d = 2. Assuming that
Γ0 is dominated by electron-electron interactions with large momentum transfers,
simple dimensional analysis [8, 34] implies Γ0 ∝ T d/2, so that in d = 3 both terms
in Eq.(3.58) have the same order of magnitude. However, the contribution from



electron-electron interactions with small momentum transfers becomes more and
more important as one approaches d→ 2, and eventually dominates for d ≤ 2.

So far it was shown, that the conventional results for the dephasing time are
correctly reproduced by the Eikonal approximation. To obtain these results it was
crucial to choose the frequency cutoff as ωc = T . In Ref. [32] τnn was derived in
first order perturbation theory in the screened interaction and under the condition
τnnΓ0 � 1 with the results given in Eq.(2.97). It is emphasized that these pertur-
bative expansions are only valid if Γ0 � 1/τnn. In contrast to that, the Eikonal
result is free of any singularities even in the limit Γ0 → 0, where the perturbative
results for d = 1 and d = 2 of Eq.(2.97) are divergent. Nevertheless it is easy to see
that these equations reproduce the results derived above, if Γ0 is self-consistently
replaced by 1/τnn. Thus the validity of the procedure used in Ref. [32], which is a
priori perturbative in the parameter 1/(Γ0τnn), holds even beyond this perturbative
regime. For d = 1 this has already been proven in Ref. [25].

Recently Golubev and Zaikin [39] have used a path integral formalism to calculate
a function f(t), which is defined analogous to the function Γ(t). In d = 1 the authors
found a linear in time but temperature independent contribution to f(t), which is
equivalent to a constant dephasing time at T = 0. Moreover several sub-dominant
contributions to the conventional result given in Eq.(3.48) were derived. The result
of Ref. [39] can be reproduced within the Eikonal-approximation if one chooses ωc =
1/τel. To obtain the leading behavior, the approximations coth[ω/(2T )] ≈ 2T/ω for
|ω| ≤ 2T and coth[ω/(2T )] ≈ 1 for |ω| ≥ 2T are made. In order to compare the
results with the ones of Ref. [38] the dimension d = 1 is investigated. Since in this
case the integral in Eq.(3.47) does not depend on the cutoff T , the region |ω| ≤ 2T
simply yields the result given in Eq.(3.51): Γ(t) ∼ Tt3/2/(ν1

√
D). The remaining

contribution from the region |ω| ≥ 2T is denoted by ∆Γ(t).

In the limit Tt � 1 the oscillating terms can be neglected. Integrating the
second term in Eq.(3.45) by parts one arrives at

∆Γ(t) ≈ 4

ν1

∫ ∞
−∞

dp

2π

{
1

Dp2

[
(2T )2

(Dp2)2 + (2T )2
− (1/τel)

2

(Dp2)2 + (1/τel)2

]
+

∫ 1/τel

2T

dω

2π

[
ωt

(Dp2)2 + ω2
+

ω(1− e−Dp2t)

Dp2((Dp2)2 + ω2)

]}
. (3.60)

The last term is estimated by approximating 1 − e−Dp2t ≈ Dp2t for Dp2t < 1 and
1− e−Dp2t ≈ 1 for Dp2t > 1. Evaluating the integrals yields

∆Γ(t) ≈ 1

ν1

√
Dπ2

[√
2πt(

1
√
τel
−
√

2T ) + 4 ln(
1

2Tτel
)
√
t

+
π

2

1√
T

+O(
1

T
√
t
)

]
for Tt� 1 . (3.61)
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Figure 3.1: Bethe-Salpeter equation for the Cooperon without Vertex corrections.
The non-interacting Cooperon Cni is defined in Fig.2.1(b) and Eq.(2.26). The in-
teraction block Σ does not contain Coulomb lines connecting the upper and lower
propagator. As a consequence, the frequency is conserved at each electron line.

The prefactor can be expressed as 1/(ν1

√
Dπ2) =

√
De2/(σ1π

2). Comparing this
result with Eq.(30) of Ref. [38] (the term∼ t3/2 comes of course from the contribution
|ω| < 2T ), one sees, that the dominant term, which is linear in t and independent of
temperature T , is exactly reproduced. This term would obviously lead to a constant
dephasing time 1/τϕ at T = 0. The sub-leading terms are obtained within factors
of order unity, due to the approximations made here. It is important to point out,
that the term linear in t arises from self-energy corrections. Thus vertex corrections
are unimportant to obtain the leading contribution from ω > 2T . On the other
hand, without vertex corrections infinite orders of interaction corrections to the
Cooperon can be easily resummed [30,29]. In this case the Bethe-Salpeter equation
for the Cooperon Cwv (wv: without vertex corrections) takes the form shown in
Fig.3.1. All interactions are contained in the interaction block Σ. Neglecting vertex
corrections means, that there are no Coulomb lines connecting the upper to the
lower propagator. For example to first order in the RPA the diagrams shown in
Figs.2.9(c),(d) are neglected, while Figs.2.9(a),(b) are included. Since the disorder
is static, frequency is now conserved on each electron line. After averaging over
disorder, the total momentum is conserved and the Cooperon depends only on the
sum of the incoming momenta and the difference of the corresponding frequencies.
Translating the diagrammatic expression for the Bethe-Salpeter equation in Fig.3.1
to an analytical equation yields

Cwv(Q, ω) = Cni(Q, ω) + Cni(Q, ω)Σ(Q, ω)Cwv(Q, ω) , (3.62)

where Σ(Q, ω) is the interaction block, which has been evaluated to first order in
the RPA in Refs. [30, 29, 31]. Eq.(3.62) is easily solved. Using the explicit form of
the non-interacting Cooperon Cni (see Eq.(2.27)) in the limit V → ∞ one arrives



at1

Cwv(Q, ω) =
∆

2πτ 2
el

1

DQ2 − iω − ∆
2πτ2

el
Σ(Q, ω)

. (3.63)

The corresponding dephasing rate for the Cooperon without vertex corrections is
thus connected to the interaction block Σ via

1

τwv
= − ∆

2πτ 2
el

Σ(0, 0) . (3.64)

Note, that by solving the self-consistent Bethe-Salpeter equation one sums in-
finite orders in the interaction, even though the self-energy Σ is only calcu-
lated to finite order. Since Cwv(Q, ω) =

∫
dteiωtCwv(Q, t) with Cwv(Q, t) =

Θ(t)(∆/(2πτ 2
el))e

−(DQ2+1/τwv)t it is clear, that −Σ(0, 0) yields an exponential damp-
ing for the Fourier transformed Cooperon Cwv(Q, t). To first order in the RPA
Σ(0, 0) has been calculated by Fukuyama and Abrahams [29] and was rederived
in Refs. [30, 31]. These calculations are fully quantum mechanical, since electron-
electron interactions are included on a microscopic level and one expands in powers
of the effective two-particle interaction. No mapping onto fluctuating external fields
is needed. One finds [29,30]

1

τwv
= −2

∫
dqdω

(2π)d+1
Im

(
fq

ε(q, ω)

)[
coth

( ω
2T

)
− tanh

( ω
2T

)] Dq2

(Dq2)2 + ω2
.

(3.65)

For ω < T the contribution from tanh can be neglected and one obtains the term
from Eq.(3.44) which is linear in time. In contrast to Eq.(3.44), the equation for
1/τwv is divergent for small frequencies. To cure this singularity, 1/τwv is inserted
self-consistently into the Diffuson propagator in Eq.(3.65). For the dephasing rate
due to Nyquist noise 1/τnn the validity of such a procedure has been proven in this
section. It will be seen in Sec.3.5, that 1/τwv coincides with the cutoff in the so
called UCF-Diffuson. By applying the Eikonal method to the Diffuson it is shown
in Sec.3.5, that the self-consistency procedure outlined above is also valid in that
case. The most important insight gained from Eq.(3.65) is however, that the coth is
canceled by tanh for frequencies larger than the temperature, ω > T . The range of
integration is thus indeed limited to ω < T . It is emphasized, that one has summed
infinite orders in the interaction and the cancellation occurs in every order. The
central statement of Golubev and Zaikin is thus, that the second term containing

1Here the mesoscopic definition of the Cooperon is used which is normalized using the level
spacing ∆ instead of the density of states νd. For macroscopic systems usually the latter normal-
ization is used, since it has a finite thermodynamic limit [67]. In order not to introduce further
notations, the mesoscopic definition is kept and only the cutoff ∆/π in the denominator of Cni is
scaled to zero.



tanh instead of coth, even though it appears in the same way as ∆Γ(t), i.e. in the
exponent, does not contribute to dephasing.

In the opposite limit Tt� 1 one finds that the dominant contribution to ∆Γ(t)
comes from the frequency-regime 1/t ≤ ω ≤ 1/τel where the oscillating terms can
again be neglected. Thus the result for Tt � 1 is obtained from Eq.(3.61) by
replacing 2T by 1/t. For 1/t� 1/τel this yields

∆Γ(t) ≈ 1

ν1

√
Dπ2

[√
2π
√
τel
t+ 4

√
t

(
ln(

t√
2τel

) +O(1)

)]
for Tt� 1 , (3.66)

in agreement with Ref. [38].

b) ε� T

For energies ε much greater than the temperature T it is justified to set T = 0
and consequently coth(ω/(2T )) = 1. The classical Nyquist noise contribution to
the dephasing time is obtained by choosing ωc = ε. Now 1/τnn will be evaluated
from Eq.(3.45) in the limit ετnn � 1. Again introducing the dimensionless variables
x := Dq2t and y := ωt, one obtains

Γ(t) =
2Kdt

1−d/2

2πνdDd/2

∫ ∞
0

dx

∫ εt

0

dyxd/2−1y

[
1

x2 + y2

(
1− sin y

y

)
+

1

x(x2 + y2)

(
cos y

[
e−x

x2 − y2

x2 + y2
+ 1

]
− x2 − y2

x2 + y2
− e−x − 2xye−x sin y

x2 + y2

)]
. (3.67)

The numerical constant Kd is the same as in Eq.(3.47). Since τnn is determined
from the condition Γ(τnn) = 1 only in the leading asymptotic behavior for εt � 1
is of interest. The integrals are evaluated by approximating e−x ≈ 1 − x for x < 1
and e−x ≈ 0 for x > 1. The dominant contribution for εt� 1 comes from the first
term in the square braces in Eq.(3.67):

Γ(t) ≈ 2Kdt
1−d/2

2πνdDd/2

∫ ∞
0

dx

∫ εt

0

dy
xd/2−1y

x2 + y2

(
1− sin y

y

)
. (3.68)

Calculating the integrals one arrives at

Γ(t) ≈ Cdε
d/2

νdDd/2
t (3.69)

with C1 =
√

2/π, C2 = 1/(4π) and C3 = 1/(6π2). The dephasing rate for T = 0 and
ετnn � 1 is thus given by

1

τnn
=
Cd
νd

( ε
D

) d
2
. (3.70)



Formally this result resembles the inelastic quasiparticle damping due to electron-
electron scattering 1/τee(ξα) ∼ ν−1

d (εα/D)d/2 [20]. Here ξα is the quasiparticle en-
ergy. (Note that for finite frequencies ε > 0 the external field Edri will in general also
yield a contribution 1/τAC to the total dephasing rate 1/τϕ = 1/τAC + 1/τnn.) The
result for three dimensions can be obtained from the corresponding dephasing rate
at ε = 0 and Tτnn � 1 by simply replacing T by ε. For d < 3 such a procedure fails.
The reason for this is quite clear from looking at the formulas obtained in first order
perturbation theory in the screened interaction given in Eq.(2.97). These equations
where derived in the limit Γ0 � 1/τnn but, as already mentioned, τnn can still be
obtained for Γ0 → 0 if Γ0 is self-consistently replaced by 1/τnn. Now it is clear,
that for T = 0 and ε� 1 both energy-scales T and Γ0 must be replaced by ε times
factors of order unity. (Note that in three dimensions the result is independent of
Γ0). This immediately yields the frequency dependence as given in Eq.(3.70). The
same results were obtained from directly performing the perturbative calculations
for finite ε and T = 0, see Eq.(2.99).

3.3.3 The dephasing rate in finite systems

For finite systems, two new energy scales enter the problem. First the average level
spacing ∆ and second the Thouless energy Ec = D/L2. The results of the previous
section were derived for infinite systems and are valid as long as the spectrum is
effectively ’continuous’ and the Thouless energy is smaller than the dephasing rate
1/τϕ. In the problem considered here, the spectrum can be viewed as ’continuous’
if the dephasing rate is lager than the level spacing, 1/τϕ > ∆. This condition is
different from that for a continuous one particle energy spectrum, γqp > ∆, where
γ−1
qp is the inelastic (quasi-) particle life time. As already mentioned in Sec.2.1,

this single particle time which is caused by inelastic processes is not the same as
the dephasing time τϕ to which also elastic processes like interactions with external
magnetic fields do contribute. In the absence of any inelastic processes (i.e. if the
one-particle spectrum is truely discrete) the Cooperon is still a well defined object,
if the finite size cutoff ∆/π is introduced (see Eq.(2.27)). To obtain this result,
non-perturbative methods are necessary [14]. It is thus clear, that one can not de-
rive a dephasing time 1/τϕ < ∆ from any calculation that performs a perturbative
diagrammatic disorder averaging in terms of Cooperons. If one assumes, that at low
temperatures the total dephasing rate is governed by the Nyquist noise contribution
1/τϕ ≈ 1/τnn, Eq.(3.70) yields a simple condition for which frequencies ε the spec-
trum is ’continuous’. For quasi d-dimensional systems with volume V = Lda3−d the
level-spacing ∆ is connected to νd via νd = νa3−d = a3−d/(∆V ) = 1/(∆Ld). Here
ν = ν3. The condition for a continuous spectrum now reads

∆Ld
( ε
D

) d
2
> ∆ ⇒ εd >

(
D

L2

)d
= Ed

c . (3.71)



Thus in all dimensions the spectrum is continuous at T = 0 as long as ε > Ec,
i.e. for frequencies lager than the Thouless energy. For smaller frequencies the
spectrum becomes discrete. In this regime other methods like the Random-Matrix-
Theory may have to be used to study disordered systems [30]. Eq.(3.71) was derived
choosing the high frequency cutoff ωc = ε. Obviously the cutoff ωc = 1/τel obtained
by Golubev and Zaikin in Ref. [38] would yield a frequency independent dephasing
rate. In this case 1/τϕ will always be dominated by the zero-temperature value and
thus it would follow that 1/τϕ > ∆ independent of ε.

Mesoscopic systems are characterized by the condition 1/τϕ < Ec. In the fol-
lowing it is assumed, that the total dephasing rate is of the order 1/τnn and only
quasi d-dimensional samples will be considered. As already mentioned, in this case
Eq.(3.46) must be used to calculate the dephasing rate. Assuming periodic boundary
conditions, the allowed momenta are given by the Cartesian coordinates pi = 2πni/L
with i = 1, · · · , d. The dephasing rate is not sensitive to the choice of boundary
conditions and different conditions will only lead to multiplicative factors of order
unity [30]. Therefore for simplicity periodic boundary conditions are chosen. Since
the q = 0 mode is excluded from the sum in Eq.(3.46), the factor Dq2 can not be
smaller than the Thouless energy Ec = D/L2, i.e. Dp2 ≥ Ec. One is only inter-
ested in Γ(t = τnn) and thus for ∆ < 1/τnn � Ec the exponentially damped terms
∼ e−Dp2t in Eq.(3.46) can be safely ignored. Now Γ(t) simplifies to

Γ(t) =
4

νd

1

Ld

∑
q6=0

∫ ωc

0

dω

2π
coth(

ω

2T
)
ω

Dq2

[
Dq2

(Dq2)2 + ω2

(
t− sin(ωt)

ω

)
+

− (Dq2)2 − ω2

[(Dq2)2 + ω2]2
+

cos(ωt)

(Dq2)2 + ω2

]
. (3.72)

The dominant contribution comes from the term which is linear in t. This implies,
that in finite systems vertex corrections can be neglected in calculating τnn. From
Γ(τnn) = 1 one thus obtains

1

τnn
=

4

νd

1

Ld

∑
q6=0

∫ ωc

0

dω

2π
coth(

ω

2T
)

ω

(Dq2)2 + ω2
. (3.73)

For Tτnn � 1, ε = 0 and ωc = T this yields

1

τnn
=

4T

πνd

1

Ld

∑
q6=0

1

Dq2
arctan

T

Dq2
, (3.74)

and for T = 0, ετnn � 1 with ωc = ε

1

τnn
=

1

πνd

1

Ld

∑
q6=0

ln

(
1 +

[
ε

Dq2

]2
)
. (3.75)



These expressions have first been derived by means of a path-integral technique in
Refs. [30,40]. Eq.(3.75) is precisely the expression derived from a phenomenological
phase-uncertainty concept for the inverse quasiparticle dephasing time in Ref. [40].
In that work ε is introduced as the quasiparticle energy and not as an external
frequency. Formally it enters on the same level as a cutoff for the frequency integra-
tion. However, the relation between the dephasing time 1/τϕ, which is defined (and
experimentally measured) as the cutoff in the weak localization correction and a
single particle energy does not become quite clear. For ε > Ec the sum in Eq.(3.75)
can be transformed to an integral an the bulk result, derived in the previous sec-
tion, is recovered. In this case the spectrum has been shown to be continuous. For
ε < Ec the system is effectively zero-dimensional with a discrete spectrum. As out-
lined above, since a non-perturbative calculation yields a finite size cutoff ∆/π for
the Cooperon [14], one can not expect the above formalism to yield correct results
in the limit 1/τnn < ∆. If nonetheless Eq.(3.75) is extrapolated to ε < Ec, the
logarithm can be expanded to first order and one finds [40]

1

τnn
∼ ∆

(
ε

Ec

)2

. (3.76)

Blanter [30] has pointed out, that this result is a priori uncontrolled and the Ran-
dom Matrix Theory should be applied to study dephasing in systems with discrete
spectrum. Using this technique he surprisingly obtained the same result as given in
Eq.(3.76). The reason for this equivalence remains unclear [30].

At finite temperature and zero frequency the result for d = 1 is [30]

1

τnn
∼ T

(kFa)2

L

l
, (3.77)

where kF is the Fermi-momentum and l is the elastic mean free path. In this case
the dephasing rate is lager than ∆ as long as T > l2/(L2τel).

3.3.4 How first order perturbation theory is reproduced
from the Eikonal approximation

In Ref. [32] the effect of electron-electron interactions on the conductivity was stud-
ied in first order perturbation theory in the screened interaction. The result for
the dephasing correction to weak localization is easily reproduced from the Eikonal
approximation by expanding Eq.(3.35) to first order in the correlator g(p, ω). This
is equivalent to expanding exp(−Γ(k, t)) to first order; exp(−Γ(k, t)) ≈ 1− Γ(k, t).
Using Eq.(3.44), one obtains the corresponding first order correction to the conduc-



tivity at ε = 0:

σ
(1)
WL =

2σd
πνd

Re

∫
dk

(2π)2

∫
dq

(2π)d

∫ ∞
−∞

dω

2π
g(q, ω)

∫ ∞
0

dte−(Γ0+Dk2)t

[
t

Ek(q)− iω

+
e−(Ek(q)−iω)t − 1

(Ek(q)− iω)2
− e−Ek(q)t − e−iωt

iω(Ek(q)− iω)

]
. (3.78)

The integration over the time t can be easily performed, resulting in

σ
(1)
WL =

2σd
πνd

Re

∫
dk

(2π)2

∫
dq

(2π)d

∫ ∞
−∞

dω

2π
g(q, ω)

[
1

(Ek(q)− iω)(Dk2 + Γ0)2

+
1

(Ek(q)− iω)2

(
1

Ek(p) +Dk2 − iω + Γ0

− 1

Dk2 + Γ0

)
− 1

iω(Ek(q)− iω)

(
1

Ek(p) +Dk2 + Γ0

− 1

Dk2 + iω + Γ0

)]
=

2σd
πνd

Re

∫
dk

(2π)2

∫
dq

(2π)d

∫ ∞
−∞

dω

2π
g(q, ω)

[
1

(Ek(q)− iω)(Dk2 + Γ0)
×(

1

Dk2 + Γ0

− 1

Ek(p) +Dk2 − iω + Γ0

)
+

1

iω(Ek(p) +Dk2 + Γ0)(Dk2 + iω + Γ0)

]
=

2σd
πνd

∫
dk

(2π)2

∫
dq

(2π)d

∫ ∞
−∞

dω

2π
g(q, ω)

[
1

(Dk2 + Γ0)2(Ek(p) +Dk2 − iω + Γ0)

− 1

(Ek(p) +Dk2 + Γ0)|Dk2 − iω + Γ0|2

]
. (3.79)

Now the definition for g(q, ω) is inserted and ωc = T is chosen. Approximating
coth(ω/(2T )) ≈ 2T/ω for ω < T and using Ek(q) + Dk2 = D(q + k)2 one finally
arrives at

σ
(1)
WL =

4Tσd
πν2

d

∫
dk

(2π)2

∫
dq

(2π)d

∫ T

−T

dω

2π

1

Dq2

[
1

(Dk2 + Γ0)2(D(k + p)2 − iω + Γ0)

− 1

(D(k + p)2 + Γ0)|Dk2 − iω + Γ0|2

]
. (3.80)

This is just the result first obtained in Ref. [32] within diagrammatic perturbation
theory. The details of the perturbative calculation were given in Sec.2.4. Using
Eq.(2.92) and the approximation of Eq.(2.93) it is easy to see, that the general
expression given in Eq.(2.87) reduces to Eq.(3.80) in the limit ω → 0. Now the first
term in Eq.(3.80) arises from the first two terms in Eq.(3.78), while the second term
in Eq.(3.80) is solely due to the third term of Eq.(3.78). In the diagrammatic theory
this term comes from diagrams (c) and (d) in Fig.2.9, i.e. from vertex corrections.



Recalling, that in the derivation this term was generated form the contribution
∼ δ(ω − ω′) (see remarks after Eq.(3.44)), it is now clear, that this part of the
correlator in Eq.(3.29) indeed generates vertex corrections. The diagrams in Fig.2.9
are obtained by iterating the Bethe-Salpeter equation in Fig.2.4 to second order in
the external field and connecting the potential lines. This connecting of external
lines to a single interaction line is the diagrammatic equivalent of the averaging
procedure described by Eq.(3.30) and Eq.(3.29). The part of the correlator ∼ δ(ω+
ω′) ’connects’ potential lines coupling to the same electron line, i.e. generates self-
energy diagrams, while δ(ω − ω′) ’connects’ lines from different Green’s functions
and thus generates vertex corrections.

3.4 Dephasing due to external electric fields

In this section it is assumed that the electrons are exposed to a classical potential
of the form

V (r, t) = V0 sin(q0 · r− ω0t) , (3.81)

where the wave-vector q0 and the frequency ω0 are fixed. According to Eq.(3.2) the
corresponding longitudinal electric field is

E(r, t) = E0 cos(q0 · r− ω0t) , E0 = q0V0/e . (3.82)

For finite q0 the electric field leads to a modulation of the charge density ρ(r, t) =
1

4π
∇ · E(r, t),

ρ(r, t) = ρ0 sin(q0 · r− ω0t) , (3.83)

ρ0 = −q0 · E0

4π
= −q

2
0V0

4πe
. (3.84)

It is emphasized that E(r, t) is the total screened potential, which is the sum of
the external potential and the induced potential. Of course, the Maxwell equation
inside a metal contains a dissipative term, so that the field inside the metal is
not given by a simple propagating wave [41]. In general one expects that the field
distribution inside the metal depends on the boundary conditions and on the precise
manner in which the microwaves are coupled into the system. Such a calculation
is beyond the scope of this work. However, if the spatial variation of the field
is sufficiently slow (i.e. q0 is sufficiently small) the field inside the metal can still
be approximated by a plane wave. To estimate the upper limit for q0 where this
approximation is correct, it is assumed that the external potential applied to the
electrons is V ext(r, t) = V ext

0 sin(q0 · r− ω0t). The total potential is then

V (r, t) = V ext
0 Im

[
ε−1(q0, ω0)ei(q0·r−ω0t)

]
, (3.85)



where the longitudinal electric function in the diffusive regime is given in Eq.(2.82).
Screening can be ignored in the regime where ε(q0, ω0) can be approximated by
unity. From Eq.(2.82) it is easy to see that in d = 1 this is the case when

q0 �
√
ω0

D
, (3.86)

while in d = 2 the external field is effectively not screened if

q0 �
ω0

2πe2ν2D
. (3.87)

The semiclassical approximation requires q0 < 1/l and |ω0| < 1/τel so that in metals
with 2πe2ν2 > 1/l the above inequalities Eqs.(3.86), (3.87) for q0 are more restric-
tive. It is assumed that they are satisfied and the potential V (r, t) is indeed given
by Eq.(3.81). If one takes the limit q0 → 0 keeping E0 finite, a time-dependent
but spatially constant electric field is obtained. Then there is no charge density
fluctuation. This case has been solved exactly by Altshuler, Aronov, and Khmel-
nitskii [22], and it will be shown that the Eikonal method reproduces their exact
solution. Moreover, also the case of finite q0, which has not been discussed previ-
ously, will be investigated. It is found that in this case there exists a parameter
regime where the dephasing rate is proportional to the square root of the power
absorbed by the sample, in agreement with the experiment [42].

In the presence of an external space- and time-dependent field the longitudinal
conductivity tensor is not diagonal in frequency space, and the weak localization
correction is given by Eq.(3.25). In the absence of fluctuating fields the Cooperon
does not depend on t0, so that Eq.(3.25) reduces to

δσWL(ε, ε′) = 2πδ(ε− ε′)δσWL(ε) , (3.88)

where δσWL(ε) is given in Eq.(3.32). For a static driving field Edri(ε
′) = 2πδ(ε′)Edri

Eq.(3.24) now yields

δjWL(ε) = δσWL(ε, 0)Edri = 2πδ(ε)δσWL(ε)Edri . (3.89)

Consequently the static conductivity is in this case defined as

δσWL := lim
ε→0

δσWL(ε) (3.90)

To obtain an expression, which in the presence of fluctuating non-equilibrium fields
is analog to δσWL, one uses the definition given in Eq.(3.90) together with

2πδ(ε)δσWL(ε) = δσWL(ε, 0) . (3.91)

The resulting expression for the static conductivity can be written as

δσWL = − σd
πνd

∫ ∞
τel

dt lim
T0→∞

1

2T0

∫ T0

−T0

dt0C(r, r;
t

2
,− t

2
, t0) . (3.92)



To see this, the δ-function is represented as

2πδ(ε) = lim
T0→∞

∫ T0

−T0

dτeiετ . (3.93)

This expression is inserted into Eqs.(3.91),(3.25) and the limit ε→ 0 is taken before
T0 → ∞. Following Ref. [22], Eq.(3.92) will be used to define the dephasing rate
due to non-equilibrium fields.

3.4.1 Uniform electric field

Taking in Eq.(3.81) the limit q0 → 0 keeping E0 = q0V0/e constant, one obtains the
spatially constant electric field, E(t) = E0 cos(ω0t). As already mentioned, this case
has been solved exactly by Altshuler et al. [22], who worked in a gauge where the
electric field is represented in terms of a vector potential. In contrast, the Eikonal
approach represents the electric field in terms of a scalar potential. Of course, the
same result for physical observables should be obtained in any gauge. It will now be
shown how to recover the dephasing rate calculated in Ref. [22] within the Eikonal
method.

From Eq.(3.81) one easily obtains the Fourier coefficients V (q, ω) of the potential
V . Inserting the result into the expression for Vt0(q, ω) given in Eq.(3.18) yields

Vt0(q, ω) =
V0

2
(2π)d+1 [δ(ω − ω0)− δ(ω + ω0)]

×
[
e−iω0t0δ(q− q0) + eiω0t0δ(q + q0)

]
. (3.94)

Substituting this expression into Eqs.(3.16),(3.20), performing the integrations, and
finally taking the limit q0 → 0 keeping E0 = q0V0/e constant one obtains for the
first order term in the Eikonal expansion

F1(k, t; t/2) = 2Dk · p(t)t sin(ω0t0) , (3.95)

where

p(t) =
2eE0

ω0

[
cos(ω0t/2)− 2

sin(ω0t/2)

ω0t

]
. (3.96)

The term quadratic in the field is

F2(t; t/2) = 4
D(eE0)2t

ω2
0

[
1 +

1

2
cos(ω0t)−

3

2

sin(ω0t)

ω0t

]
sin2(ω0t0) . (3.97)

Because F1 is independent of r, and F2 is independent of k and r these labels where
omitted. By construction, the higher order terms Fn, n ≥ 3 involve more than two
gradients, which give rise to at least an additional power of q0. It follows that for



q0 → 0 the Eikonal expansion truncates at the second order. Hence in this limit the
exact Eikonal factor F in Eq.(3.22) is simply given by

F (k, t; t/2) = 2Dk · p(t)t sin(ω0t0) + F2(t; t/2) . (3.98)

The Cooperon at coinciding space points is thus given by

C(r, r;
t

2
,− t

2
, t0) = Θ(t)

∫
dk

(2π)d
e−(Γ0+Dk2)te−F (k,t;t/2)

=
Θ(t)

(4πDt)d/2
e−Γ0t−Γ(t,t0) , (3.99)

with

Γ(t, t0) = −Dp2(t)t sin2(ω0t0) + F2(t; t/2) . (3.100)

Using Eqs.(3.96) and (3.97) one obtains

Γ(t, t0) = αf(ω0t)[1− cos(2ω0t0)] , (3.101)

where the dimensionless parameter α is

α =
D(eE0)2

ω3
0

, (3.102)

and

f(x) = x+ sin(x)− 8

x
sin2

(x
2

)
. (3.103)

To identify the dephasing rate 1/τAC due to the time-dependent electric field the ob-
servable δσWL defined in Eq.(3.92) is calculated. The t0-integration can be expressed
in terms of the Bessel-function I0(z),

lim
T0→∞

1

2T0

∫ T0

−T0

dt0e
αf cos(2ω0t0)

=
1

π

∫ π

0

dϕeαf cosϕ = I0(αf) . (3.104)

Introducing the dimensionless integration variable x = ω0t and defining

γ = Γ0/ω0 (3.105)

the final result can be written as

δσWL = − σd
πνd

ω
d
2
−1

0

(4πD)d/2

∫ ∞
ω0τel

dx

xd/2
e−αf(x)−γxI0(αf(x)) . (3.106)



Apart from a different prefactor this expression agrees with Eq.(5) of Ref. [22]. (Note
that the α defined here is only half as large as the parameter α introduced in Ref. [22],
and the integration variable used here is twice as large as the corresponding x in
Ref. [22]. The origin for these factors of two lies in the fact that in equation (3.1) for
the Cooperon the external potential enters with the time-arguments t0 ± t, and not
with t0± t/2, as incorrectly assumed in Ref. [22], see also Ref. [15].) In the absence
of microwaves, i.e. for α = 0, the term e−γx is needed to enforce convergence of the
integral (3.106) in d ≤ 2. On the other hand, for finite α the integral is finite even
if one sets γ = 0. For α� 1 and γ � 1 the integral is cut off at x� 1, so that one
may approximate f(x) ≈ x. The characteristic cutoff energy can then be identified
with the dephasing rate due to the microwave field. In the regime γ � α � 1 one
obtains

1

τAC
= ω0α =

D(eE0)2

ω2
0

. (3.107)

On the other hand, for α� 1 the x-integration is cut off at x� 1, so that one may
approximate f(x) by its leading term for small x, which is given by f(x) ≈ x5

3×5!
=

x5

360
. The dephasing rate is then

1

τAC
= ω0

( α

360

)1/5

≈ 3.2ω
2/5
0 [D(eE0)2]1/5 . (3.108)

This expression is valid in the regime

α� max{1, 360γ5} , (3.109)

where 1/τAC � Γ0. The explicit results for the correction δσWL to the conductivity
in d = 1 and d = 2 are given in Ref. [22].

For a comparison with experiments [42, 44] it is useful to rewrite the above
expressions in terms of the microwave-power P coupled into the sample, which can
be estimated as [43,44]

P =
(E0L)2

2Rtot

. (3.110)

Here L is the effective sample length including the leads, and Rtot is the total resis-
tance. The dimensionless parameter α in Eq.(3.102) can then be written as

α =
Ec
ω0

2e2RtotP

ω2
0

, (3.111)

where Ec = D/L2 is the Thouless energy. For γ � α � 1 the dephasing rate can
be written as

1

τAC
= Ec

2e2RtotP

ω2
0

, (3.112)



and for α� max{1, 360γ5} Eq.(3.108) predicts

1

τAC
= 3.2E1/5

c ω
2/5
0 [2e2RtotP ]1/5 . (3.113)

According to Eqs.(3.111)–(3.113) for sufficiently small microwave power P the de-
phasing rate should grow linear with P , and eventually cross over to a P 1/5 law.
Furthermore, in the linear regime 1/τAC should decrease as 1/ω2

0 as the frequency
increases. This is not what has been observed in the experiment by Wang and
Lindelof [42]. As pointed out by these authors, at smaller frequencies 1/τAC is
proportional to P 1/2. Furthermore, the data shown in Fig.3 of Ref. [42] indicate
that at constant microwave power 1/τAC ∝ ω−1

0 . In the following section a simple
explanation of these experimental facts shall be proposed.

3.4.2 Dephasing due to longitudinal electric fields with fi-
nite wave-length

In the previous section the limit q0 → 0 was taken, which is justified if the wave-
length λ = 2π/q0 of the microwave is much larger than the size L of the sample. A
precise estimate of q0 is difficult, since it depends on the shape of the experimental
set up, the dispersion relation of microwaves in the sample and the way the mi-
crowaves are coupled to the probe. However, it is not unreasonable to assume, that
the wavelength will be of the order of the samples extension, i.e. that the dimen-
sionless parameter q0L is of the order of unity. It is therefore important to know the
corrections to the results of Sec.3.4.1 for finite q0L. Now the leading correction to
the dephasing rate due to longitudinal fluctuating electric microwave fields for small
but finite q0L in the limit of weak microwave power will be calculated.

Substituting the Fourier representation (3.94) of the microwave potential into
Eq.(3.16), performing the integrations, and expanding the resulting expression to
first order in q0, one obtains

F1(k, t; r, t/2) = 2Dk · p(t)t [sin(ω0t0)− (q0 · r) cos(ω0t0)]

+ iβg(ω0t) cos(ω0t0)
[
1− 2D(q̂0 · k)2t

]
+ O(E0q

2
0) . (3.114)

Here

g(x) = x cos
(x

2

)
− 2 sin

(x
2

)
, (3.115)

the dimensionless parameter β is given by

β =
2DeE0q0

ω2
0

, (3.116)



and q̂0 = q0/q0 is a unit vector in the direction of q0. Note that β can be expressed
in terms of the microwave power P (see Eq.(3.110)) and the Thouless energy Ec as
follows,

β = 2q0L
Ec
ω0

√
2e2RtotP

ω0

. (3.117)

From Eq.(3.15) one sees, that F2 is connected to F1 by

F2(k, τ ; r, t) = −
∫ τ

0

dτ ′e(DP̂2
r+2Dk·P̂r+∂t)(τ ′−τ)D

[
P̂rF1(k, τ ′; r, t)

]2

. (3.118)

Inserting Eq.(3.114) yields

F2(k, t; r, t/2) = 4D(eE0)2ω−3
0 u(ω0t) sin2(ω0t0)

+ O(E2
0q0) , (3.119)

with

u(x) = x+
x

2
cos(x)− 3

2
sin(x) . (3.120)

Ignoring corrections of order E0q
2
0 and E2

0q0 to the Eikonal factor F , one obtains for
the Cooperon at coinciding space points

C(r, r;
t

2
,− t

2
, t0) =

Θ(t)

(4πDt)d/2
e−Γ0t−Γ(t,t0) e−iβg(ω0t) cos(ω0t0)√

1− 2iβg(ω0t) cos(ω0t0)
. (3.121)

Here Γ(t, t0) is the contribution to the dephasing rate for microwaves with infinite
wavelength (see Eq.(3.101)), and the last factor in Eq.(3.121) is the leading correc-
tion for finite q0. Using Eq.(3.92) and (3.100) and introducing again the dimen-
sionless integration variable x = ω0t, one finally obtains for the weak localization
correction to the static conductivity

δσWL = − σd
πνd

ω
d
2
−1

0

(4πD)d/2
Gd(α, β, γ) , (3.122)

where the dimensionless real function Gd(α, β, γ) is given by

Gd(α, β, γ) =
1

π

∫ ∞
ω0τel

dx

xd/2
e−αf(x)−γx

∫ π

0

dϕ
eαf(x) cos(2ϕ)−iβg(x) cosϕ√

1− 2iβg(x) cosϕ
. (3.123)

If one sets β = 0 from Eq.(3.122) the result (3.106) for q0 = 0 is recovered. In
general the relevant long-time cutoff in Eq.(3.122) depends on the relative order of
magnitude of the three dimensionless parameters α, β, and γ. Keeping in mind that
α ∝ E2

0 and β ∝ q0E0, and assuming that at low temperatures the phenomenological



parameter γ is negligible, it is clear that for sufficiently weak microwave power the
relevant cutoff scale is set by the parameter β. Note that according to Eqs.(3.102)
and (3.116)

β

α
=

2q0ω0

eE0

=
2q0Lω0√
2e2RtotP

. (3.124)

Hence, for sufficiently small microwave power P the ratio β/α becomes always larger
than unity. In this regime it is justified to set α = γ = 0 in Eq.(3.122), so that one
needs to calculate

Gd(β) =
1

π

∫ ∞
ω0τel

dx

xd/2

∫ π

0

dϕ
e−iβg(x) cosϕ√

1− 2iβg(x) cosϕ
. (3.125)

Note that Gd(0) = ∞ in d ≤ 2, which is due to the slow decay of the integral for
large x. On the other hand, for any finite β the x-integration is cut off, so that
the integral exists. As in Sec.3.4.1 the energy scale where the integration is cut off
is identified with the dephasing rate. The standard weak localization correction is
obtained from Eq.(3.122) by setting α = β = 0 and identifying 1/τϕ = ω0γ = Γ0.
To leading order this yields the well known result

δσWL = − σd
πνd

ω
d
2
−1

0

(4πD)d/2

∫ ∞
ω0τel

dx

xd/2
e−γx ≈ − σd

πνd

ω
d
2
−1

0

(4πD)d/2

∫ ω0τϕ

ω0τel

dx

xd/2
. (3.126)

The x-integration is effectively cut off at xc(β = 0) = ω0τϕ. In the presence of
fluctuating external fields with parameters β � α, γ, the integral in Eq.(3.125) will
be effectively cut off at xc(β) � xc(0). Consequently the dephasing time due to
microwave radiation τAC is in this case defined as τAC = xc(β)/ω0. For βg(x) � 1
the integrand in Eq.(3.125) behaves like 1/xd/2. The integrand starts to oscillate at
|βg(x)| ≈ 1. To obtain an order of magnitude estimate for xc one may thus derive
this value from the condition |βg(xc)| ≈ 1. For β � 1 this yields

1

τAC
∝ ω0β =

2DeE0q0

ω0

= 2q0LEc

√
2e2RtotP

ω0

. (3.127)

On the other hand, for β � 1 the x-integration is cut off at small x. In this case
one may approximate g(x) ≈ −x3

12
and obtains

1

τAC
∝ ω0β

1/3 = (2q0L)1/3E1/3
c ω

1/3
0 [2e2RtotP ]1/6 . (3.128)

To numerically test the above estimates, the function

G̃d(β, x0) :=
1

π

∫ x0

ω0τel

dx

xd/2

∫ π

0

dϕ
e−iβg(x) cosϕ√

1− 2iβg(x) cosϕ
. (3.129)
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Figure 3.2: ln(ω0τAC) as function of ln(β) in d = 2 for 0.001 ≤ β ≤ 0.01. The
lower cutoff is ω0τel = 0.01. Here τAC is identified as τAC = xc/ω0, where xc is the
smallest value for x0 with |(1/G̃d(β, x0))[G̃d(β, x0)− ln(x0/(ω0τel))]| > 0.01.

is introduced. Due to the rapid oscillation of the integrand for large x a con-
trolled computation of the limit x0 →∞ is rather difficult. Numerical evaluation of
G̃d(β, x0) as a function of x0 shows, that the dominant contribution to the integrals
comes indeed from the region where the integrand can be well approximated by
1/xd/2. In accordance with Eq.(3.126) one can thus extract τAC from the maximal
value of x0 for which the condition

G̃d(β, x0) ≈
∫ x0

ω0τel

dx

xd/2
(3.130)

is still satisfied. Here only the results for d = 2 will be presented, where condition
(3.130) reads

G̃d(β, x0) ≈ ln

(
x0

ω0τel

)
, (3.131)

and xc = ω0τAC was determined as that value of x0, where G̃d(β, x0) deviates from
ln(x0/(ω0τel)) by more than one percent. The lower cutoff in Eq.(3.129) was chosen
as ωτel = 0.01. From Eqs.(3.127),(3.128) it is expected that ln(ω0τAC) = − ln(β)
for β � 1 and ln(ω0τAC) = −(1/3) ln(β) for β � 1. The corresponding numerical
results are shown in Fig.3.2 and(3.3). They are in good agreement with the analytical
estimates. Hence, for sufficiently small P the dephasing rate 1/τAC is proportional
to P 1/2. Moreover, in this regime ω0/τAC should be independent of ω0 as long as
the dispersion of the longitudinal density wave (i.e. the dependence of q0 on ω0) can
be neglected. Note that the condition β � α � γ where 1/τAC should exhibit a
P 1/2-dependence can also be written as

Dq2
0 �

ω0

V0

Γ0 � Γ0 . (3.132)
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Figure 3.3: ln(ω0τAC) as function of ln(β) in d = 2 for 100 ≤ β ≤ 1000. The lower
cutoff is ω0τel = 0.01. τAC is identified as in Fig.3.2.

Thus, for finite Γ0 the value of q0 must be sufficiently large to observe the P 1/2-law.
Keeping in mind that according to the conventional point of view [32, 43, 22] the
intrinsic dephasing rate Γ0 should vanish for T → 0, it is concluded that at suffi-
ciently low temperatures and small V0 Eq.(3.132) can be satisfied for experimentally
relevant wave-vectors q0. Note that according to Ref. [43] the observed saturation
of the dephasing time, which is typically of the order of a few nanoseconds, is due
to some external noise. If this is correct, then the experimentally observed sat-
uration value of the dephasing rate should not be identified with Γ0. The same
arguments apply for the condition |V0| � Γ0 that follows from Eq.(3.132) together
with Eqs.(3.86),(3.87). For low enough temperatures this inequality should always
be satisfied. (Newest experimental data [45] indicate Γ0 → 0 for T → 0 in narrow
Ag wires. These probes therefore seem to be suiting to test the findings of this
section.) In conclusion, in the limit T → 0, the only relevant restriction following
from Eq.(3.132) should be ω0 � V0.

The results for the dephasing time due to external microwave radiation and
the assumptions made to obtain them can be summarized as follows: First of all
it is assumed that the microwave field inside the metal can be approximated by
a propagating wave with wave-vector q0, frequency ω0 and amplitude E0. It was
argued that this approximation is valid in a regime, where the dielectric function
of the bulk system can be replaced by unity, which is possible if q0 �

√
ω0/D in

d = 1, and q0 � ω0/(2πe
2ν2D) in d = 2. The semiclassical diffusive approximation

which was made for the electrons dynamics is of course only valid for sufficiently
small wave-vectors and frequencies. In particular, this sets an upper limit for the
microwave frequency, namely ω0 � 1/τel. If these restrictions are satisfied, the
dephasing rate due to microwaves is (for simplicity Γ0 is set equal to zero and thus
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γ = 0)

1

τAC
∝


ω

2/5
0 P 1/5 for |V0| � ω0 and D(eE0)2 � ω2

0 ,

ω−2
0 P for |V0| � ω0 and D(eE0)2 � ω2

0 ,

(q0ω0)1/3P 1/6 for |V0| � ω0 and D|eE0|q0 � ω2
0 ,

q0ω
−1
0

√
P for |V0| � ω0 and D|eE0|q0 � ω2

0 ,

(3.133)

with P ∝ E2
0 .

Some time ago Wang and Lindelof [42] have measured 1/τAC as a function of
P in magnesium films. Their data from Ref.[7(a)] are reproduced in Fig.3.4. At
ω0/2π = 0.66GHz the prediction ω0/τAC ∝ P 1/2 is in good agreement with the
experiment. Although the data at ω0/2π = 3.61GHz cannot be fit by a straight line
through the origin, the data roughly scale as 1/τAC ∝ ω−1

0 for fixed and small P .
One should keep in mind, however, that in the experiments [42] the precise value of
the microwave power coupled into the system was not measured, and the power axis
for the two sets of data was rescaled differently. Further evidence for the P 1/2-law
can be found in Fig.19 of Ref.[7(b)].

Recent measurements of 1/τAC by Webb et al. [46] suggest a P 1/5-law for large P
in a limited range of frequencies. The calculation presented here show that the P 1/5-
law should hold as long as α� max{β, 1}, while for β � max{α, 1} the prediction



1/τAC ∝ β1/3 ∝ P 1/6 is made. Keeping in mind that α/β ∝ ω−1
0 a crossover from a

P 1/5- via a P 1/6- to a P 1/2-behavior is predicted as the frequency is increased. The
data shown in Fig.6 of Ref. [46] are consistent with the existence of such a crossover.

3.5 The Diffuson in the presence of Nyquist noise

In the previous chapters the Eikonal-expansion has been developed to study the
Cooperon in an external field. The same formalism can be applied to the Diffuson.
The Bethe-Salpeter equation for the Diffuson is obtained from Fig.2.4 by reversing
the direction of the lower electron line. The calculations thus are the same as for
the Cooperon, except the frequencies ω2 and ω′2 are interchanged. This simply leads
to interchanging the times t and t0 in the partial-differential equation in space-time
coordinates and the result for the Diffuson, rescaled in the same way as the Cooperon
in Eq.(2.57), is (

DP̂2
r + ∂t

)
D(r, r′; t, t′, t0) = δ(r− r′)δ(t− t′)

−i [V (r, t+ t0)− V (r, t− t0)]D(r, r′; t, t′, t0) . (3.134)

The cutoff Γ0 does not enter the equation for the Diffuson, since the non-interacting
Diffuson D0 must have a diffusive pole (see Eq.(2.76) and the discussion preceding
it). The diffusive nature of the electron dynamics should not be changed by inter-
actions and thus no “dephasing” cutoff should be induced by the potential V . To
see that Eq.(3.134) satisfies this condition, consider the linear change in the particle
density δn due to a scalar potential Vdri. In Sec.2.3 the correction to the current due
to a vector potential Adri was studied. The leading semiclassical contribution was
obtained from evaluating the Cooperon diagram in Fig.2.5. As already mentioned,
Diffusons do not contribute to the spatially averaged (Q = 0) current-current cor-
relation function for symmetry reasons (in the model of disorder considered here).
For the density-density correlation function this is not the case and the classical
diffusive contribution is shown in Fig.3.5. Formally the diagrams are obtained from
Fig.2.5 by replacing the current vertices by density vertices and the Cooperon by a
Diffuson. The important difference arises in the frequency dependence of the Dif-
fuson compared to the Cooperon. As noted above, the differential equation for the
Diffuson is obtained from that for the Cooperon by interchanging the frequencies
ω2 and ω′2 in Fig.2.4. Comparing with Eqs.(2.46)-(2.48) one sees, that the Diffuson
depends on the differences between the incoming and outgoing frequencies

ε = ω1 − ω′2 , (3.135)

ε′ = ω′1 − ω2 , (3.136)
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and the difference of the frequency transfered to the external field in the upper and
lower electron line

ω = ω1 − ω′1 − (ω2 − ω′2) . (3.137)

The diagrams in Fig.3.5 thus give a contribution (for brevity all momentum depen-
dence is suppressed, since it is of no importance for the following considerations)

δn(ω) ∼
∫ ∞
−∞

dεdε′dω′[h(ε′ + ω′)− h(ε′)]D(ω, ω′, 2ε− 2ε′ − ω − ω′)Vdri(ω′) ,

(3.138)

where h(ε) = tanh(εβ/2). The frequency dependence of the averaged Green’s func-
tions is again neglected because only frequencies much smaller than 1/τel are of
interest. It is instructive to compare this expression with the weak localization cor-
rection to the current given in Eq.(2.62). In contrast to the Cooperon diagram, the
integration variable ε in Eq.(3.138) appears only at one position, namely the third
argument of the Diffuson. Thus by changing this integration variable, Eq.(3.138)
can be written as

δn(ω) ∼ 1

2

∫ ∞
−∞

dεdε′dω′[h(ε′ + ω′)− h(ε′)]D(ω, ω′, ε)Vdri(ω
′) . (3.139)

Now ∫ ∞
−∞

dε

2π
D(ω, ω′, ε) = D(ω, ω′, t0 = 0) (3.140)

is just the Fourier transformation back to the time variable t0 at point t0 = 0. From
the differential equation (3.134) it follows immediately, that for t0 = 0 both contri-
butions from the potential V (t±t0) cancel and thus the Diffuson is unaffected by the
interaction. Since fluctuating external fields are related to electron-electron interac-
tions by the fluctuation-dissipation theorem, such interactions can not lead to any
cutoff in the diffusion propagator. Recall however, that Eq.(3.134) only describes



“dephasing” effects due to weak fields with small frequency transfer that leave the
classical motion of the electrons unaffected. In general electron-electron interactions
will lead to a renormalization of the diffusion constant D but will not regulize the
diffusive pole. The Diffuson appearing in the density-density correlation function
is unaffected by dephasing fields, since the two terms containing the field exactly
cancel. After averaging over the field by means of the fluctuation-dissipation theo-
rem this means, that the sum of all diagrams containing the two-particle interaction
vanishes. If a class of diagrams is left out, a finite interaction correction remains.
This is the case for the so called UCF-Diffuson appearing in the theory of univer-
sal conductance fluctuations [4, 30]. There vertex corrections are left out, since the
disorder average is performed over non self-averaging, physically independent sys-
tems and not over a macroscopic sample using an ergodicity hypothesis. But even
if all classes of diagrams are kept, the cancellation of the field terms only occurs
for the special frequency dependence of the Diffuson in the polarization bubble. If
Diffusons appear with a different frequency dependence, they are indeed influenced
by dephasing effects [33, 24, 47]. The diffusion pole is then cut off by a dephasing
rate 1/τD(t0) which now explicitly depends on t0. In the following 1/τD(t0) will be
derived by means of the Eikonal method. The solution of Eq.(3.134) for the Diffuson
is formally identical to that for the Cooperon derived in Sec.3.2 if the potential Vt0
defined in Eq.(3.3) is replaced by

Vt0(r, t) = i[V (r, t+ t0)− V (r, t− t0)] . (3.141)

Making this replacement, one can use the result obtained in Sec.3.2 for arbitrary
external fields. The important difference arises in the Nyquist noise correlator for
the Fourier-transformed field Vt0(q, ω) = 2 sin(ωt0)V (q, ω). For the Diffuson this
correlator is not independent of the time t0 and is given by

〈Vt0(q, ω)Vt0(q′, ω′)〉nn = −2(2π)d+1g(q, ω)[1− cos(2ωt0)]δ(ω + ω′)δ(q + q′) .
(3.142)

Comparing this with Eq.(3.29) one notes, that there is no term ∼ δ(ω − ω′) and
vertex corrections are now described by the term ∼ cos(2ωt0). The self-energy
terms in both equations are still identical. The correlator g(q, ω) is, as before,
g(q, ω) = −fq coth( ω

2T
)Imε−1(q, ω). For the Cooperon the ω-dependence of the

dielectric function has been neglected since no divergences occured for small q and
ω. Here one has to take it into account, to ensure convergence of the integrals.
Including the frequency dependence leads to different expressions for the correlator
g(q, ω), depending on the dimension d (see Eqs.(2.79) - (2.81)). The calculations
will be restricted to d = 2 where

g(q, ω) = coth(
ω

2T
)

2πe2ωDκ2

(Dκ2q)2 + ω2
(3.143)

and κ2 = 2πe2ν2 is the inverse screening-length in two dimensions. Again one has to
keep in mind, that due to the classical description of the external field all frequencies
have to be restricted to ω < ωc.



3.5.1 Infinite systems

Using the results and notations of Sec. 3.2 one obtains

〈D(r, r′; t, t′, t0)〉nn = Θ(t− t′)
∫

dk

(2π)d
eik·(r−r′)e−Dk2(t−t′)〈e−F (k,t−t′;r,t;t0)〉nn

=: Θ(t− t′)
∫

dk

(2π)d
eik·(r−r′)e−Dk2(t−t′)e−Γ(k,t,t′,t0) . (3.144)

The function Γ(k, t, t′, t0) now of course also depends on t0 and up to second order
in the external potential one gets Γ(k, t, t′, t0) = Γ1(k, t, t′, t0) + Γ2(k, t, t′, t0) with

Γ1(k, t, t′, t0) =

∫
dqdω

(2π)d+1
g(q, ω)[1− cos(2ωt0)]

1− e−(Ek(q)−iω)(t−t′)

Ek(q)− iω

× 1− e−(Ek(−q)+iω)(t−t′)

Ek(−q) + iω
, (3.145)

Γ2(k, t, t′, t0) =

∫
dqdω

(2π)d+1
g(q, ω)[1− cos(2ωt0)]

2Dq2

(Ek(q)− iω)(Ek(−q) + iω)

×

[
(t− t′)− 1− e−(Ek(−q)+iω)(t−t′)

Ek(−q) + iω
− 1− e−(Ek(q)−iω)(t−t′)

Ek(q)− iω
+

1− e−2Dq2(t−t′)

2Dq2

]
.

(3.146)

Obviously the averaged Diffuson 〈D(r, r′; t, t′, t0)〉nn depends only on t0 and the time
and position differences t− t′; r− r′. Therefore the definitions D̃(r− r′, t− t′, t0) :=
〈D(r, r′; t, t′, t0)〉nn and Γ(k, t − t′, t0) := Γ(k, t, t′, t0) are introduced. According to
Eq.(3.144) D̃(r, t, t0) is represented as

D̃(r, t, t0) = Θ(t)

∫
dk

(2π)d
eik·re−Dk2te−Γ(k,t,t0) . (3.147)

The time-scale τD that cuts of the divergence of D̃(r, t, t0) for large times t is deter-
mined by the k = 0 mode of Γ(k, t, t0) and one defines, analogous to the dephasing
time for the Cooperon: Γ(k = 0, τD, t0) = 1. In contrast to the Cooperon case,
no physical observable quantity like the weak localization correction is looked at to
define τD. Therefore the frequency ε does not enter here, but τD also depends on t0,
i.e. the decay rate of the Diffuson is not simply characterized by a single time scale,
but rater by τD and t0 [24,47]. With the notation Γ(t, t0) := Γ(k = 0, t, t0) one gets

Γ(t, t0) = 2Re

∫
dqdω

(2π)d+1
g(q, ω)[1− cos(2ωt0)]

×

[
Dq2t

(Dq2)2 + ω2
+
e−(Dq2−iω)t − 1

(Dq2 − iω)2

]
. (3.148)



Comparing this expression with the corresponding result for the Cooperon,
Eq.(3.44), one finds that the terms in braces are just the first two terms in Eq.(3.44).
Recall that this is nothing but the contribution from the self-energy corrections. Ob-
viously both equations are the same if the vertex parts, i.e. cos(2ωt0) in Eq.(3.148)
and the third term in braces in Eq.(3.44) are dropped. This statement is already
clear from comparing the two correlators in Eq.(3.29) and Eq.(3.142). Thus the
interaction corrections to the Diffuson are different from that for the Cooperon only
due to vertex corrections. Now Γ(t, t0) will be calculated in d = 2 with ωc = T .
Using Eq.(3.143) and substituting x := Dq2t and y := ωt one arrives at

Γ(t, t0) =
Te2κ2t

2

π
Re

∫ ∞
0

dx

∫ Tt

−Tt
dy

1− cos(2yt0/t)

Dκ2
2tx+ y2

×
[
e−(x−iy) − 1

(x− iy)2
+

x

x2 + y2

]
. (3.149)

The frequency-dependence of g(q, ω) is needed to cut off the divergence for q → 0
(i.e. x→ 0). To isolate this singular contribution, Eq.(3.149) is rewritten as

Γ(t, t0) = 2
Te2κ2t

2

π
Re

∫ ∞
0

dx

∫ Tt

0

dy
1− cos(2yt0/t)

Dκ2
2tx+ y2

×
[
e−(x−iy) − eiy

(x− iy)2
+

eiy − 1

(x− iy)2
+

x

x2 + y2

]
. (3.150)

Only in the second term in braces the frequency-dependence of g(q, ω) is needed to
ensure convergence for x → 0. Thus it may be neglected in the other terms and
1/(Dκ2

2tx+y2) is replaced by 1/(Dκ2
2tx) to evaluate their contributions. Introducing

the abbreviation b := Dκ2
2t, this leads to the following integrals:

I1 :=

∫ ∞
0

dx

∫ Tt

−Tt
dy

1− cos(2yt0/t)

bx+ y2

e−(x−iy) − eiy

(x− iy)2

≈
∫ ∞

0

dx

∫ ∞
−∞

dy
1− cos(2yt0/t)

bx

e−(x−iy) − eiy

(x− iy)2

=
2π

b
(
2t0
t
− 1)Θ(

2t0
t
− 1)

∫ ∞
0

dxe−x(2t0/t−1) e
−x − 1

x
, (3.151)

I2 :=

∫ ∞
0

dx

∫ Tt

0

dy
1− cos(2yt0/t)

bx+ y2

x

x2 + y2

≈
∫ ∞

0

dx

∫ Tt

−Tt
dy

1− cos(2yt0/t)

b

1

x2 + y2
=

∫ Tt

0

dy
1− cos(2yt0/t)

b

π

2y
, (3.152)



and

I3 :=

∫ ∞
0

dx

∫ Tt

0

dy
1− cos(2yt0/t)

bx+ y2

eiy − 1

(x− iy)2

=

∫ Tt

0

dy(1− cos(2yt0/t))(e
iy − 1)

[
−
ib− π

2
b+ y − ib ln( b

y
)

iy2(ib+ y)2

]

≈
∫ Tt

0

dy(1− cos(2yt0/t))(e
iy − 1)

y − π
2
b− ib ln( b

y
)

iy2b2
, (3.153)

where Dκ2
2 � T was used to obtain the last line. Inserting these results into

Eq.(3.150) yields

Γ(t, t0) =
Te2κ2t

2

π
Re

{
2

∫ Tt

0

dy(1− cos(2yt0/t))

[
π

2by

+
eiy − 1

iy2b2

(
y − π

2
b− ib ln(

b

y
)

)]
+ I1

}

=
Te2κ2t

2

π

{
2

∫ Tt

0

dy(1− cos(2yt0/t))

[
π

2by

(
1− sin(y)

y

)
+

sin(y)

b2y

−cos(y)− 1

by2
ln(

b

y
)

]
+ I1

}
. (3.154)

For Dκ2
2 � T one finally gets

Γ(t, t0) =
2Te2κ2t

2

π

{∫ Tt

0

dy(1− cos(2yt0/t))
π

2b

[
1

y

(
1− sin(y)

y

)
− 2

π

cos(y)− 1

y2
ln(

b

y
)

]
+
I1

2

}
. (3.155)

Γ(t, t0) can be evaluated in the three limiting cases t0 � t, 1/T � t0 � t and
t0 � 1/T . For t0 � t the term I1 is of order unity and can be neglected. Since it is
zero in the other cases, I1 does not contribute. For t0 � t the strongly oscillating
vertex-corrections term cos(2yt0/t) gives a negligible contribution and thus

Γ(t, t0) =
Tt

2πDν2

∫ Tt

0

dy

[(
1

y
− sin(y)

y2

)
− 2

π

cos(y)− 1

y2
ln(

b

y
)

]
≈ Tt

2πDν2

[∫ Tt

0

dy
1− cos(y)

y
− 2

π

∫ ∞
0

dy
cos(y)− 1

y2
ln(

b

y
)

]
. (3.156)

Integrating the last term by parts and neglecting terms of order unity yields

Γ(t, t0) =
Tt

2πDν2

[∫ Tt

0

dy
1− cos(y)

y
+

2

π
ln(b)

∫ ∞
0

dy
sin(y)

y

]
≈ Tt

2πDν2

[∫ Tt

1

dy
1

y
+ ln(b)

]
=

Tt

2πDν2

ln(TDκ2
2t

2) for t0 � t . (3.157)



In the case 1/T � t0 � t dominant contributions come from the region y > 1 and
one can neglect the terms with sin(y)/y and cos(y)/y2:

Γ(t, t0) =
Tt

2πDν2

∫ Tt

0

dy[1− cos(2yt0/t)]

[
1

y
+

2

πy2
ln(

b

y
)

]
. (3.158)

Substituting z := 2yt0/t the second term becomes of the form as the one in
Eq.(3.156) and is evaluated in the same way, resulting in

Γ(t, t0) =
Tt

2πDν2

[∫ Tt

0

dy
1− cos(2yt0/t)

y
+

2

π

2t0
t

ln(b
2t0
t

)

∫ ∞
0

dz
sin(z)

z

]
≈ Tt

2πDν2

[
ln(2Tt0) +

2t0
t

ln(2Dκ2
2t0)

]
≈ Tt

2πDν2

ln(2Tt0) for 1/T � t0 � t .

(3.159)

Finally for t0 � 1/T the function cos(2yt0/t) is expanded to first order, leading to

Γ(t, t0) =
Tt

2πDν2

∫ Tt

0

dy2y2

(
t0
t

)2(
1

y
− sin(y)

y2
− 2

π

cos(y)− 1

y2
ln(

b

y
)

)
≈ T 3t20t

2πDν2

for t0 � 1/T . (3.160)

Now the cutoff 1/τD for the Diffuson is determined by the condition Γ(τD, t0) = 1.
This yields

1

τD
=

T

2πDν2

ln(TDκ2
2τ

2
D) for t0 � t (3.161)

and to leading order

1

τD
≈ T

2πDν2

ln

[
Dκ2

2

T
(2πDν2)2

]
for t0 � t . (3.162)

Correspondingly

1

τD
=

T

2πDν2

ln(2Tt0) for 1/T � t0 � t , (3.163)

1

τD
=

T 3t20
2πDν2

for t0 � 1/T . (3.164)

The above results have previously been derived within a path-integral approach
[24, 33]. Obviously the cutoff 1/τD vanishes for t0 → 0. As explained in the in-
troduction to this section, this just demonstrates the fact that the diffusive pole in
the polarization function is unaffected by interactions, which is a consequence of



particle-number conservation [13]. On the other hand, for t0 → ∞ vertex correc-
tions become unimportant and one obtains the UCF-Diffuson that appears in the
theory of universal conductance fluctuations [30]. Even though vertex-corrections
become unimportant for large times t0, the vertex-term ∼ cos(2yt0/t) is needed to
ensure that the two-dimensional integral in Eq.(3.150) exists and is independent of
the order of integration. If only the linear in time contribution in Eq.(3.148) is kept
and vertex-corrections are ignored, i.e.

Γ(t, t0)→ Γ̃(t) = 2Re

∫
dqdω

(2π)d+1
g(q, ω)

Dq2t

(Dq2)2 + ω2
, (3.165)

and the corresponding cutoff 1/τ̃D is determined by Γ̃(τ̃D) = 1 one obtains

1

τ̃D
= 2Re

∫
dqdω

(2π)d+1
g(q, ω)

Dq2

(Dq2)2 + ω2
. (3.166)

This is just the equation obtained in Refs. [29, 30] within a diagrammatic pertur-
bation theory. Since the integral diverges at ω = 0 the cutoff 1/τ̃D is substituted
self-consistently into the diffusion propagator in the integrand, Dq2 → Dq2 + 1/τ̃D.
This procedure produces exactly the same result as the Eikonal expansion for t0 � t,
which is given in Eq.(3.162).

3.5.2 Finite systems

For mesoscopic systems the momentum integral in Eq.(3.148) is replaced by a
sum and the q = 0 mode is excluded (see the discussion regarding Eq.(3.46)). At
τDEc � 1 the exponentially damped term can again be neglected and consequently
Eq.(3.148) becomes

Γ(t, t0) = 2Re
1

Ld

∑
q6=0

∫ ∞
−∞

dω

2π
g(q, ω)[1− cos(2ωt0)]

[
Dq2t

(Dq2)2 + ω2
− 1

(Dq2 − iω)2

]
.

(3.167)

Now, since the q = 0 mode does not contribute, one faces no convergence problems
for small momenta and therefore the frequency dependence in the denominator of
g(q, ω) may be neglected, i.e. one can use the approximation given in Eq.(3.28),
which was already used for the Cooperon.

In the limit t0 →∞ the vertex part ∼ cos(2ωt0) vanishes. It was shown in Sec.
3.3.3 that in mesoscopic systems vertex corrections also do not contribute to τnn and
thus in such systems τD (at t0 →∞) coincides with the dephasing time (at ε→ 0):

1

τD
=

1

τnn
for t0 →∞ and

1

τD
� Ec . (3.168)



In the opposite limit t0T � 1 one can expand cos(2ωt0) to first order and obtains

Γ(t, t0) =
8T

νd
Re

1

Ld

∑
q6=0

∫ T

0

dω

2π

1

Dq2
2ω2t20

[
Dq2t

(Dq2)2 + ω2
− 1

(Dq2 − iω)2

]
.(3.169)

Here again coth(ω/(2T )) was approximated by 2T/ω for ω < T . Under the condi-
tions τDEc � 1 and TτD � 1 one obtains to leading order

Γ(t, t0) =
8Tt20t

πνd

1

Ld

∑
q6=0

[
T −Dq2 arctan(

T

Dq2
)

]
. (3.170)

The dominant contribution to this sum comes from the regime Dq2 < T . The sum
is thus estimated by

Γ(t, t0) =
8Tt20t

πνd

1

Ld

|q|<
√
T/D∑

q6=0

T (3.171)

Since it is assumed that T � Ec the volume in momentum-space that is summed
over is large in comparison to (2π/L)d, i.e.

√
T/D � 1/L. Thus the number of

states with |q| <
√
T/D is approximated by the volume of the d-dimensional sphere

with radius
√
T/D divided by (2π/L)d. This yields

Γ(t, t0) ∼ T 2t20t

νd

[
T

Ec

] d
2

. (3.172)

Using the definition Γ(τD, t0) = 1 one finally arrives at

1

τD
∼ T 2t20

νd

[
T

Ec

] d
2

for Ec � T � 1

t0
. (3.173)



Chapter 4

Non-linear response in mesoscopic
metal rings

4.1 Introduction

A common method to gain information about physical systems is to measure the
response to an external perturbation, e.g. a time-dependent field. To compare the
experimental results with theoretical predictions one thus needs to derive a response
function that describes the change of the measured quantity with respect to the
applied field. Such a function can be derived by expanding the observable in powers
of the perturbation (see Appendix A). Explicit evaluation of higher order terms
usually becomes quite cumbersome but if the external field is not too strong, it
is often sufficient to study the linear response. In mesoscopic systems however,
nonlinear effects become much more important. Even if an external field is too
weak to change the classical motion of the electrons in the sample, it still affects
their phase. Since in mesoscopic samples electrons can propagate coherently through
the whole probe, such systems are extremely sensitive to phase changes. Non-
linear effects in mesoscopic Aharonov-Bohm rings were first studied by Kravtsov
and collaborators in Refs. [56,57]. The external perturbation is in this case a time-
dependent magnetic flux φ(t) that has a static component φ and a part that oscillates
with frequency ε,

φ(t) = φ+ φε sin(εt) . (4.1)

By Faraday’s law of induction, the oscillating part generates a time-dependent elec-
tric field directed along the circumference of the ring, E(t) = Eε cos(εt), with am-
plitude

eLEε = 2πε
φε
φ0

. (4.2)
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Here L is the circumference of the ring and φ0 is the flux quantum. One would like
to know the induced current around the ring. In the limit ε→ 0 this is just the usual
persistent current [49, 6]. The linear response to the time-dependent component of
the flux has been studied by several authors [51, 52, 53, 54]. In Refs. [51, 52, 53] the
kinetic equation for an electron gas that is coupled to an external reservoir via a
relaxation rate γrel was examined. It was found, that the conductivity does depend
critically on the statistical ensemble (canonical or grand-canonical) and on whether
γrel is smaller or lager than the level-spacing ∆.

For frequencies in the range between 108 and 1013 Hz, which for experimen-
tally relevant rings [50, 55] corresponds to ∆ � ε � τ−1

el nonlinear effects become
important as well. The ring geometry leads to strong interference effects in the
electronic transport and thus such systems are sensitive to dephasing effects that
are induced by the external field. In Sec.3.4 the dephasing due to microwave ra-
diation was studied for bulk systems by solving the differential equation for the
Cooperon in a time-dependent external field. For spatially homogeneous fields, an
exact solution is possible. The situation investigated here is slightly different, since
no additional microwave radiation is present, but the fluctuating dephasing field is
the external driving field itself. As noticed by Kravtsov et al. [57, 56], the induced
current is still governed by the Cooperon and described by an expression similar
to Eq.(2.68). Since the current-Cooperon relation is already linear in the field, it
is clear, that the current is nonlinear in Eε, if the Cooperon depends on this field
as well. Aronov and Kravtsov (AK) derived an ’exact’ solution for this problem in
Ref. [57]. In this context ’exact’ means, that the partial differential equation for the
Cooperon in the external field was solved exactly. However, the current-Cooperon
relation is of course an approximation which is obtained from the standard disorder
perturbation theory. AK realized different physical regimes, depending on the rel-
ative order of magnitude of the quantities Eε, frequency ε and intrinsic dephasing
rate 1/τint (i.e. the dephasing that is not caused by the external field). Among
others, there exists a ’perturbative’ regime, where the Cooperon can be expanded
to first order in the field, which is equivalent to calculating the current to second
order in Eε. According to Ref. [57] this expansion is possible as long as the field
induced dephasing rate 1/τAC ∼ (e2E2

ωε
2D)1/5 (compare Eq.(3.108)) is smaller than

max[1/τint, ε/(2π)]. The quadratic response has first been calculated by Kravtsov
and Yudson [56] (KY), who found that in second order the time-dependent field
induces (among other terms that oscillate) a time-independent non-equilibrium cur-

rent I
(2)
0 . Calculating the disorder average of this current perturbatively, KY found

that it has the peculiar property that for frequencies exceeding the Thouless energy
Ec the average of I

(2)
0 does not vanish exponentially, but only as ε−2. This is in

disagreement with the intuitive expectation that the external frequency ε leads to
a similar exponential suppression of this mesoscopic non-equilibrium current as a
dephasing rate in the case of the equilibrium persistent current [58, 59]. The same
current-Cooperon relation that was the starting point of the calculations by KY was



used in Sec.3.3.3 to derive the dephasing rate due to Nyquist noise (electron-electron
interactions) in the presence of an external driving field Edri with frequency ε. It
was outlined that this procedure is only controlled for frequencies ε > Ec since oth-
erwise the dephasing rate becomes smaller than ∆. The work by Kravtsov et al. was
motivated by the close connection between non-linear response and electron-electron
interactions (a point that will be discussed in more detail in Chap.(5)). Thus if a
formalism fails to describe interaction effects for frequencies ε < Ec, one can not
expect it to yield correct response functions in this frequency range. Indeed, it will
be explicitly demonstrated below, that in the discrete spectrum limit the quadratic
response is completely different from the prediction of the diagrammatic disorder
averaging. In fact, in this chapter it will be shown that the term considered by KY
is then not constant, but grows linearly in time, a result which can be understood
simply in terms of Fermi’s golden rule of time-dependent perturbation theory. All
calculations will be performed for a non-interacting electron gas. Since there are no
inelastic processes in this system, the energy spectrum is truely discrete. The use
of such a simplified model is justified by the Fermi liquid theory which describes
the excitation spectrum of an interacting system by quasiparticles with excitation
energy ξα and lifetime γ−1

qp (ξα). From this point of view the condition γqp(ξα) < ∆
rather than 1/τϕ(ε) < ∆ should define the energy scale which limits the validity of
the following considerations. For low enough temperatures (T → 0) γqp is dominated
by inelastic electron-electron scattering [20], γqp ≈ 1/τee ∼ ν−1

d (ξα/D)d/2. Since the
energy dependence is identical to that of 1/τnn (see Eq.(3.70)) the inelastic level
broadening will be smaller than ∆ for ξα < Ec. It is well known, that the canonical
thermodynamic equilibrium current for non-interacting electrons is governed by an
energy interval of size Ec around the Fermi energy [59, 75]. It seems therefore rea-
sonable to assume, that for frequencies ε < Ec the response function should also be
determined by this part of the spectrum. This assumption will be verified numer-
ically in Sec.4.4. In conclusion, the results derived in this chapter should be valid
at low temperatures for external frequencies ε < Ec. The discrete spectrum limit
becomes of increasing experimental relevance, since due to the progress in nano-scale
technology the size of the investigated rings is continuously decreased and therewith
the Thouless energy of the systems is increased [48].

It is important to point out the difference between the current considered here
and the direct current due to the usual photovoltaic effect. It is well known [60] that
irradiation of a medium without an inversion center by an alternating electric field
can give rise to a direct current (photovoltaic effect). The lack of inversion symmetry
can be due to impurities and defects in a finite sample. For mesoscopic junctions the
photovoltaic direct current has been studied in Ref. [61]. In this case the average
current vanishes, because disorder averaging restores the inversion symmetry. In the
case studied here, however, the direct current induced in a mesoscopic ring threaded
by a magnetic flux is calculated. Because the magnetic flux breaks the time-reversal
symmetry, the direct current considered here has a finite disorder average. Thus,



the physical origin of a mesoscopic non-equilibrium current discussed in this work
is quite different from Ref. [61].

4.2 The quadratic response function: What is

wrong with the Green’s function approach?

The system considered here consists of non-interacting disordered electrons of mass
m confined to a thin ring and threaded by the time-dependent magnetic flux given
in Eq.(4.1). In the absence of the oscillating flux (i.e. for φε = 0 in Eq.(4.1)) the
Hamiltonian is given by

Ĥ0 =
∑

p

p2(ϕ)

2m
Ψ̂†pΨ̂p +

∫
dr U(r)Ψ̂†(r)Ψ̂(r) , (4.3)

with p(ϕ) = p+(2π/L)ϕ ex, where ex is the unit vector in x-direction and ϕ = φ/φ0.
As usual, the coordinate along the circumference is called the x-direction, and the
ring geometry is modeled by periodic boundary conditions in that direction. The cor-
responding component of the wave vector is thus quantized by px = (2π/L)nx with
integer numbers nx. Suppose that Ĥ0 is diagonalized for the given realization of the
disorder. The time-independent part of the Hamiltonian is then Ĥ0 =

∑
α εαĉ

†
αĉα,

where εα are the exact electronic eigenenergies for fixed disorder, which are labeled
by appropriate quantum numbers α. The operators ĉ†α create electrons in the cor-
responding eigenstates |α〉. If now the time-dependent part of the field is switched
on, the Hamiltonian becomes Ĥ = Ĥ0 + V̂ (t), with

V̂ (t) = 2π
mL
δϕ(t)

∑
α,β〈α|P̂x(ϕ)|β〉ĉ†αĉβ + 1

2m

(
2π
L
δϕ(t)

)2∑
α ĉ
†
αĉα . (4.4)

Here δϕ(t) = (φε/φ0) sin(εt), and P̂x(ϕ) = −id/dx + (2π/L)ϕ is the x-component
of the one-particle momentum operator. V̂ is diagonal in momentum space with
matrix elements

〈p|V̂ (t)|p′〉 = δp,p′

[
2π

mL
δϕ(t)px(ϕ) +

1

2m

(
2π

L
δϕ(t)

)2
]
, (4.5)

where px(ϕ) is the x-component of p(ϕ). The spatially averaged current around
the ring is given by I(t) = (a2/V)jx(k = 0, t), where a2 is the cross section of the
ring and jx is the x-component of the current density. From Eqs.(A.3),(A.11) one
obtains the paramagnetic contribution

Ipara(t) = − e

mL

∑
q

qx(ϕ)gq,q(t) . (4.6)



Using the result for the n-th order contribution to g (see Eq.(A.17)) yields up to
second order in V a paramagnetic current Ipara(t) = Ipara,1 + Ipara,2 +O(V 3) with

Ipara,1(t) =− e

mL

∑
q,p

qx(ϕ)

∫
dω1

2π
e−iω1tVp,p(ω1)K(1)(ω1)

Ipara,2(t) =− e

mL

∑
q,p,k

qx(ϕ)

∫
dω1dω2

(2π)2
e−i(ω1+ω2)tVp,p(ω1)Vk,k(ω2)K(2)(ω1, ω2) .

(4.7)

The second order in the time dependent perturbation δϕ(t) is thus given by I(2)(t) =

I
(2)
para,1 + I

(2)
para,2 and

I
(2)
para,1(t) =− e

mL

∑
q,p

qx(ϕ)

∫
dω1

2π
e−iω1t

1

2m

(
2π

L

)2

δϕ2
ω1
K(1)(ω1)

I
(2)
para,2(t) =− e

mL

∑
q,p,k

qx(ϕ)px(ϕ)kx(ϕ)

∫
dω1dω2

(2π)2
e−i(ω1+ω2)t

(
2π

mL

)2

ϕω1ϕω2K(2)(ω1, ω2) ,

(4.8)

where δϕω is the Fourier transform of δϕ(t), i.e. the time-dependent part of the flux
(4.1) in units of the flux quantum, and δϕ2

ω is the Fourier transform of [δϕ(t)]2. K(1)

and K(2) are obtained from the general expression in Eq.(A.18),

K(1)(ω1) =
1

2i

∫ ∞
−∞

dε

2π
Sp[σ1G

0
q,p(ε+ ω1)G0

p,q(ε)] ,

K(2)(ω1, ω2) =
1

2i

∫ ∞
−∞

dε

2π
Sp[σ1G

0
q,k(ε+ ω1 + ω2)G0

k,p(ε+ ω1)G0
p,q(ε)] . (4.9)

Evaluating the trace and utilizing Eq.(A.10) yields the response functions in terms of
retarded and advanced momentum-space Green’s functions. This representation is
convenient for diagrammatic calculations, where one effectively assumes a continuous
spectrum. For isolated finite systems in the absence of any inelastic processes (like
the one considered here), this procedure overlooks some difficulties arising from the
discrete nature of the energy spectrum. To see this, one represents the response
functions in the exact eigenstates of the unperturbed system by using

GR/Ap,q (ω) =
∑
α

〈p|α〉〈α|q〉
ω − εα ± i0

. (4.10)

With the formal identity Im(ω − εα + i0)−1 = −πδ(ω − εα) one arrives at

I
(2)
para,1(t) = −e

2

(
2π

mL

)2 ∫ ∞
−∞

dω1

2π
e−iω1tδϕ2

ω1

∑
αβ

〈α|P̂x(ϕ)|β〉〈α|β〉 f(εβ)− f(εα)

εβ − εα + ω1 + i0
.

(4.11)



Here f(εα) = 〈ĉ†αĉα〉 is the occupation number, which in a grand-canonical ensem-
ble is the Fermi function. In deriving Eq.(4.11) it was made use of qx(ϕ)〈α|q〉 =
〈α|P̂x(ϕ)|q〉 and

∑
q |q〉〈q| = 1. Eq.(4.11) contains one current vertex and one den-

sity vertex. Due to the orthogonality of eigenstates 〈α|β〉 = δα,β the integrand van-

ishes identically. The second order diamagnetic current I
(2)
dia which wasn’t addressed

so far, has a similar structure as I
(2)
para,1. It also contains only one current vertex and

one density vertex and vanishes exactly just like I
(2)
para,1 [54]. The only remaining

contribution to the total second order current I(2)(t) = I
(2)
para,1 + I

(2)
para,2 + I

(2)
dia thus

comes from I
(2)
para,2 and contains three current vertices. A straightforward evaluation

of the second order response kernel K(2) finally yields

I(2)(t) =
(−e)(2π)2

(mL)3

∫ ∞
−∞

dω1dω2δϕω1δϕω2K
(2)(ω1, ω2)e−i(ω1+ω2)t , (4.12)

with

K(2)(ω1, ω2) =
∑
αβγ

Pαβγ
εγ − εα + ω1 + ω2 + i0

×
[

f(εγ)− f(εβ)

εγ − εβ + ω2 + i0
− f(εβ)− f(εα)

εβ − εα + ω1 + i0

]
, (4.13)

where Pαβγ is defined as

Pαβγ = 〈α|P̂x(ϕ)|β〉〈β|P̂x(ϕ)|γ〉〈γ|P̂x(ϕ)|α〉 . (4.14)

In contrast to K(2) the matrix elements Pαβγ are now included in the definition of
the response function K(2). This result is valid for a grand canonical as well as for
a canonical ensemble. In the latter case the chemical potential µ is a function of
flux and disorder. Thus formally there is no difference in the response functions for
the two ensembles. The actual discrepancy due to the condition of a fixed particle
number on the one side and fixed µ on the other is however hard to estimate. It is
emphasized, that Eq.(4.13) is the only non-vanishing contribution to the total second
order response function, including all diamagnetic and paramagnetic terms [54].
Keeping in mind that the time-dependent part of the flux (4.1) corresponds to

δϕω′ =
φε

2iφ0

[δ(ω′ + ε)− δ(ω′ − ε)] , (4.15)

it is clear that in this case Eq.(4.12) contains not only oscillating terms, but also a
time-independent contribution,

I
(2)
0 = Aε

[
K(2)(ε,−ε) +K(2)(−ε, ε)

]
, (4.16)



where

Aε =
(−e)(2πφε)2

4(Lm)3φ2
0

, (4.17)

and

K(2)(ε,−ε) =
∑
αβγ

Pαβγ
εγ − εα + i0

[
f(εγ)− f(εβ)

εγ − εβ − ε+ i0
− f(εβ)− f(εα)

εβ − εα + ε+ i0

]
. (4.18)

Defining retarded and advanced Green’s functions,

GRα (ω) =
1

ω − εα + i0
, GAα (ω) =

1

ω − εα − i0
, (4.19)

Eq.(4.18) can also be written as

K(2)(ε,−ε) = − 1

2πi

∑
αβγ

Pαβγ

{∫ ∞
−∞

dωf(ω + ε)
[
GRα (ω + ε)GRβ (ω)GRγ (ω + ε)

− GAα (ω + ε)GAβ (ω)GAγ (ω + ε)
]
−
∫ ∞
−∞

dω[f(ω + ε)− f(ω)]

×
[
GRα (ω + ε)GAβ (ω)GAγ (ω + ε)− GRα (ω + ε)GRβ (ω)GAγ (ω + ε)

]}
. (4.20)

The structure of the Green’s functions agrees with the one given by KY in Ref. [62].
Note, however, that these authors work in a different gauge: they represent the
electric field by a scalar potential, so that their expressions contain only a single
current vertex. The introduction of Green’s function is useful for calculating disorder
averages. It is common wisdom that for the calculation of the disorder average of
Eq.(4.20) the terms involving products of only retarded or only advanced Green’s
functions can be neglected1. In this approximation a perturbative calculation of the
disorder average of Eq.(4.20) has been given by KY [56], with the result that the
associated time-independent part of the non-equilibrium current is proportional to
ε−2 for frequencies larger than the Thouless energy. As explained in Sec.4.1, for
frequencies ε < Ec the perturbative expansion can not be expected to be valid. In
fact, it will turn out, that the physical behavior is completely different for systems
with discrete spectrum.

To demonstrate the breakdown of the diagrammatic perturbation theory in the
discrete spectrum limit, it is now shown that an exact evaluation of the disorder
average of Eq.(4.20) should actually yield an infinite result. One should therefore

1Note, however, that in a canonical ensemble the chemical potential fluctuates, so that disor-
der averages involving only retarded or only advanced Green’s functions can also generate large
contributions to response functions, see Ref. [54].



reconsider the exact spectral representation (4.18) of the response function. Using
the formal identity

1

x+ i0
= ℘

1

x
− iπδ(x) , (4.21)

where ℘ denotes the Cauchy principal part, one can rewrite Eq.(4.18) as

K(2)(ε,−ε) = K(2)
℘ (ε,−ε) +K

(2)
δδ (ε,−ε) , (4.22)

with

K(2)
℘ (ε,−ε) = 2

∑
αβγ

RePαβγ
εγ − εα

℘
f(εγ)− f(εβ)

εγ − εβ − ε
, (4.23)

K
(2)
δδ (ε,−ε) = −2π2

∑
αβγ

RePαβγ[f(εγ)− f(εβ)]δ(εγ − εα)δ(εγ − εβ − ε) . (4.24)

The terms with α = γ in Eqs. (4.23) and (4.24) yield the following contributions,

K
(2)
℘,diag(ε,−ε) = ℘

∑
αβ

Pαβα
∂

∂εα

f(εα)− f(εβ)

εα − εβ − ε

= ℘
∑
αβ

Pαβα

[
∂
∂εα

f(εα)

εα − εβ − ε
− f(εα)− f(εβ)

(εα − εβ − ε)2

]
, (4.25)

K
(2)
δδ,diag(ε,−ε) = −2π2δ(0)

∑
αβ

RePαβα[f(εα)− f(εβ)]δ(εα − εβ − ε) . (4.26)

The right-hand side of Eq.(4.26) is proportional to the infinite factor δ(0). Hence,

the term K
(2)
δδ (ε,−ε) must also be infinite. Because the singular prefactor δ(0) in

Eq.(4.26) does not depend on the disorder, this singularity survives disorder aver-
aging. Keeping in mind that Eq.(4.20) is mathematically equivalent with Eq.(4.18),

it is concluded that a correct evaluation of the disorder average K(2)(ε,−ε) must
yield an infinite result2. Unfortunately, in an approximate evaluation of Eq.(4.20)
by means of the usual diagrammatic methods this δ-function singularity is artifi-
cially smoothed out, and one obtains a finite result [56]. The singular contribu-
tion in Eq.(4.26) arises for finite frequencies ε > 0. On the other hand, the limit
limω1,ω2→0 K

(2)(ω1, ω2) exists and is related to the flux-derivative of the persistent
current [54].

2The same type of singularity occurs if one calculates the disorder average of the square of the
density of states, ν2

d(ε) = 1
L2d

∑
αβ δ(ε− εα)δ(ε− εβ). The contribution from the terms with α = β

is proportional to δ(0) = ∞. Yet, perturbative averaging with the help of the impurity diagram
technique produces a finite result.



4.3 Adiabatic switching on

The infinite term (4.26) is clearly unphysical. This term is closely related to the
infinitesimal imaginary parts i0 that have been added to the real frequencies in the
spectral representation (4.18) for the response function K(2)(ε,−ε). As emphasized
by KY [62], the infinitesimal imaginary parts are a consequence of the fact that the
response function must be causal when the time-dependent part of the Hamiltonian
is adiabatically switched on. The ”adiabatic switching on” of the time-dependent
perturbation will now be examined more carefully. Following the usual recipe [63],
the Hamiltonian Ĥ0 + V̂ (t) is replaced by Ĥ0 + V̂η(t), where V̂η(t) = exp(ηt)V̂ (t).
The limit η → 0 is then taken at the end of the calculation of physical quantities.
For large enough times t the physical result should be independent of the switching
on procedure. Indeed, in Sec.4.3.1 it is shown by explicit calculation that sudden
switching on produces the same result for the long-time response as adiabatic switch-
ing on. However, in the latter case one still has to be careful to take the limit η → 0
only after the physical quantity of interest has been calculated. It is now shown
that the singularity in Eq.(4.26) has been artificially generated by taking the limit
η → 0 at an intermediate step of the calculation.

By direct expansion of the time evolution operator in the interaction represen-
tation to second order in the time-dependent perturbation, one obtains the current
for adiabatic switching on at finite η. Formally the additional factor exp(ηt) merely
shifts the frequencies according to ωj → ωj + iη (j = 1, 2), which leads to

I(2)
η (t) =

(−e)(2π)2

(mL)3

∫ ∞
−∞

dω1dω2δϕω1δϕω2K
(2)
ηt (ω1, ω2)e−i(ω1+ω2)t , (4.27)

with

K
(2)
ηt (ω1, ω2) = e2ηt

∑
αβγ

Pαβγ
εγ − εα + ω1 + ω2 + 2iη

×
[

f(εγ)− f(εβ)

εγ − εβ + ω2 + iη
− f(εβ)− f(εα)

εβ − εα + ω1 + iη

]
. (4.28)

Comparing Eq.(4.28) with Eq.(4.13), one sees that the former is multiplied by an
extra factor of e2ηt. If one directly takes the limit η → 0, this factor is replaced
by unity. This is the limiting procedure adopted in the usual Green’s function
approach, where one takes first the limit η → 0 in Eq.(4.28) and then inserts the
resulting expression into Eq.(4.27). In this case Eqs.(4.16) and (4.18) are recovered,
which lead to the divergence in Eq.(4.26). It is now shown that this unphysical
divergence does not appear if the limit η → 0 is taken after the physical current has
been calculated. Substituting Eq.(4.28) into Eq.(4.27) one obtains

I(2)
η (t) = Aε

[
K

(2)
ηt (ε,−ε) +K

(2)
ηt (−ε, ε)

+K
(2)
ηt (ε, ε)e−2iεt +K

(2)
ηt (−ε,−ε)e2iεt

]
. (4.29)



In analogy with Eq.(4.22), K
(2)
ηt (ε,−ε) is expressed in terms of products of real and

imaginary parts

K
(2)
ηt (ε,−ε) = K

(2)
ηt,℘(ε,−ε) +K

(2)
ηt,δδ(ε,−ε) , (4.30)

with

K
(2)
ηt,℘(ε,−ε) = 2e2ηt

∑
αβγ

RePαβγ[f(εγ)− f(εβ)]

×
[

εγ − εα
(εγ − εα)2 + (2η)2

εγ − εβ − ε
(εγ − εβ − ε)2 + η2

]
, (4.31)

K
(2)
ηt,δδ(ε,−ε) = −2e2ηt

∑
αβγ

RePαβγ[f(εγ)− f(εβ)]

×
[

2η

(εγ − εα)2 + (2η)2

η

(εγ − εβ − ε)2 + η2

]
. (4.32)

From Eq.(4.31) it is now obvious that K
(2)
ηt,℘ does not have any contributions from

the terms α = γ. The finite contribution in Eq.(4.25) is thus an artefact of taking
the limit η → 0 before calculating any physical quantities. Now the term (4.32) is
closer investigated. By directly taking the limit η → 0 using

lim
η→0

η

ε2 + η2
= πδ(ε) , (4.33)

the infinite result (4.26) is recovered. However, the structure of the η-dependent
part of Eq.(4.32) is familiar from the derivation of Fermi’s golden rule of elementary
quantum mechanics. As discussed for example in the classic textbook by Baym [63],
terms with this structure should be interpreted as a rate, i.e. as a contribution to
the current that grows linearly in time. It is therefore clear that after taking the
derivative of Eq.(4.32) with respect to t one obtains a finite result when performing
the limit η → 0. A simple calculation yields

lim
η→0

d

dt
K

(2)
ηt,δδ(ε,−ε) = −2 lim

η→0

∑
αβ

Pαβα
[f(εα)− f(εβ)]η

(εα − εβ − ε)2 + η2

= −2π
∑
αβ

Pαβα[f(εα)− f(εβ)]δ(εα − εβ − ε) . (4.34)

Because this expression contains only a single δ-function, after averaging over disor-
der it becomes a smooth function of ε. Since the above derivation relies on Fermi’s
golden rule, it is valid for times t < 1/∆ [63]. Together with the condition 1/τee < ∆
for a discrete spectrum it follows, that the linear time dependence of the current
should be observable on time scales t < ∆−1 < τee. In conclusion, to quadratic order



in the field the non-equilibrium current induced by the time-dependent flux (4.1)
has the following three contributions,

I(2)(t) ≡ lim
η→0

I(2)
η (t) = I

(2)
th + t

dI
(2)
kin

dt
+ I(2)

osc(t) , (4.35)

where the time-independent part is given by

I
(2)
th = Aε lim

η→0

[
K

(2)
ηt,℘(ε,−ε) +K

(2)
ηt,℘(−ε, ε)

]
= 2Aε

∑
αβγ,α 6=γ

RePαβγ
εγ − εα

℘

[
f(εγ)− f(εβ)

εγ − εβ − ε
+ (ε→ −ε)

]
. (4.36)

The coefficient of the term linear in time is

dI
(2)
kin

dt
= Aε lim

η→0

[ d
dt
K

(2)
ηt,δδ(ε,−ε) +

d

dt
K

(2)
ηt,δδ(−ε, ε)

]
= −2πAε

∑
αβ

Pαβα[f(εα)− f(εβ)] [δ(εα − εβ − ε) + (ε→ −ε)] , (4.37)

and the oscillating part is

I(2)
osc(t) = −Aε lim

η→0

[
K

(2)
ηt (ε, ε)e−2iεt +K

(2)
ηt (−ε,−ε)e2iεt

]
. (4.38)

Thus, a time-dependent electric field with frequency ε induces in quadratic order
three fundamentally different currents. (a) A time-independent contribution I

(2)
th .

(b) A contribution tdI
(2)
kin/dt which increases linearly in time; this term can be un-

derstood in terms of the usual golden rule of time-dependent perturbation theory.
(c) Finally, there is also a time-dependent contribution I

(2)
osc oscillating with frequency

2ε. When this term is averaged over a time-interval larger than ε−1, its contribution
to the current is negligible small.

From the above analysis it is clear that the contribution that is proportional
to t cannot be calculated within the usual Green’s function machinery, because in
this approach the limit η → 0 is taken at an intermediate step of the calculation,
causing an unphysical divergence. To further support the correctness of the limiting
procedure adopted here it is shown in the next section that Eqs.(4.35)–(4.37) can
also be re-derived if the perturbation is suddenly (instead of adiabatically) switched
on.

4.3.1 Comparison with sudden switching on

To confirm that the ”switching on procedure” outlined in Sec.4.3 yields the correct
physical results, a harmonic perturbation that is suddenly turned on at time t = 0
is considered for comparison:

φ(t) = φ+ φεΘ(t) sin(εt) , (4.39)



where Θ(t) is the step function. In the long time limit the physical behavior should
be independent of the switching on procedure. The paramagnetic current is evalu-
ated from the general expression

Ipara = − e

mL

∑
q

qx(ϕ)〈Ψ̂†H,q(t)Ψ̂H,q(t)〉 . (4.40)

Changing from Heisenberg to Dirac picture and from momentum to energy repre-
sentation Eq.(4.40) becomes

Ipara = − e

mL

∑
αβ

Pαβ〈Û †D(t)ĉ†D,α(t)ĉD,β(t)ÛD(t)〉 , (4.41)

where Pαβ = 〈α|P̂x(ϕ)|β〉 and the time-evolution operator is given by

ÛD(t) =
∞∑
n=0

(−i)n

n!

∫ t

−∞
dt1 · · ·

∫ t

−∞
dtn T̂ [V̂D(t1) · · · V̂D(tn)] . (4.42)

V̂D(t) is the Dirac picture of the external perturbation given in Eq.(4.4). The index
D will be suppressed in the following. To first order in δϕ(t) = (φ/φ0)Θ(t) sin(εt)
one obtains

I(1)
para(t) = − ei

mL

∫ t

0

dt1
2π

mL
δϕ(t1)

∑
αβγδ

PαβPγδ[〈ĉ†α(t1)ĉβ(t1)ĉ†γ(t)ĉδ(t)〉

− 〈ĉ†γ(t)ĉδ(t)ĉ†α(t1)ĉβ(t1)〉] . (4.43)

Since H0 =
∑

α εαĉ
†
αĉα the time dependence of the operators is trivial:

ĉ†α(t1) = eiεαt1 ĉα ; ĉβ(t1) = e−iεβt1 ĉβ . (4.44)

Decomposing the expectation values by the Wick theorem and using 〈ĉ†αĉβ〉 =
δα,βf(εα) as well as ĉ†αĉβ + ĉβ ĉ

†
α = δα,β finally yields

I(1)
para(t) = − 2πie

(mL)2

∫ t

0

dt1δϕ(t1)
∑
αβ

|Pαβ|2ei(εα−εβ)(t1−t)[f(εα)− f(εβ)] . (4.45)

Obviously there is no contribution from the diagonal term with α = β. Now the
explicit form of δϕ(t) can be inserted:

I(1)
para(t) = − πe

(mL)2

φε
φ0

∫ t

0

dt1(eiεt − e−iεt)
∑

αβ;α 6=β

|Pαβ|2ei(εα−εβ)(t1−t)[f(εα)− f(εβ)]

= − πe

i(mL)2

φε
φ0

∑
αβ;α 6=β

|Pαβ|2[f(εα)− f(εβ)]

[
eiεt − e−i(εα−εβ)t

εα − εβ + ε

− e−iεt − e−i(εα−εβ)t

εα − εβ − ε

]
. (4.46)



After averaging over a time interval t & ε−1 this current vanishes.

The second order in φε is more interesting. Since the calculation is not more
difficult than for the linear response but much more lengthy, here only the result is
stated:

I(2)
para(t) = 2AεRe

∑
αβγ

Pαβγ[f(εβ)− f(εα)]

{
e2iεt − ei(εγ−εα)t

(εα − εγ + 2ε)(εα − εβ + ε)

− 1− ei(εγ−εα)t

(εα − εγ)(εα − εβ − ε)
+

2ε

(εα − εβ)2 − ε2

[
ei(εβ−εα+ε)t − ei(εγ−εα)t

εβ − εγ + ε

]

+ (ε→ −ε)

}
. (4.47)

The diagonal term α = γ is

I
(2)
diag(t) = 4Aε

∑
αβ

Pαβα[f(εα)− f(εβ)]

[
sin2(εt)

(εα − εβ)2 − ε2

−
sin2

( εβ−εα+ε

2
t
)

+ sin2
( εβ−εα−ε

2
t
)

(εα − εβ)2 − ε2
+
[sin

( εβ−εα+ε

2
t
)

εβ − εα + ε

]2

+
[sin

( εβ−εα−ε
2

t
)

εβ − εα − ε

]2
]
.

(4.48)

The last two terms can be interpreted in the same way as is done in Fermi’s golden
rule [63] by using the identity[

sin
(

∆ε
2
t
)

∆ε

]2

→ π

2
tδ(∆ε) for t→∞ . (4.49)

It is now easy to see that for large times I
(2)
diag(t) yields exactly the same linear in

time contribution as given in Eq.(4.37). The terms with no explicit time dependence
in Eq.(4.47), i.e.

I
(2)
0 = −2AεRe

∑
αβγ

Pαβγ[f(εβ)− f(εα)]

[
1

(εα − εγ)(εα − εβ − ε)
+ (ε→ −ε)

]
,

(4.50)

can be identified with I
(2)
th in Eq.(4.36).

4.4 Numerical results

Due to the restrictions α 6= γ in Eq.(4.36) and α = γ in Eq.(4.37) these terms can
not be studied within the framework of the usual diagrammatic Green’s function



technique. Since there are no standard methods to treat such equations, looking
for an controlled analytical approximation seem rather complicated. To evaluate
Eqs.(4.36),(4.37) one in principle has to calculate all eigenenergies εα, eigenstates
|α〉 and matrix elements Pαβγ as a functional of the disorder distribution. Such a
procedure can of course always be performed for a suitably sized computer model.
To perform computer simulations, the system is mapped onto a tight-binding model.
Making use of the standard Peierls substitution, the static component of the external
flux enters as a phase to the matrix element for hopping along the circumference of
the ring. This direction is chosen as the x-axis, while the y- and z-axis correspond to
the transverse directions. The unperturbed, static part of the Hamiltonian becomes

Ĥ0 = −εh
∑

r

∑
δr

eiΦδr|r〉〈r + δr|+
∑

r

Ur|r〉〈r| . (4.51)

Here δr represents the basis vectors of a lattice cell, which for a cubic lattice with
lattice distance a means δr = ±aei, i = x, y, z, and ei are normalized basis vectors
with ||ei|| = 1. The number of lattice points in each direction will be denoted Ni.
εh is the hopping matrix element and Ur the on-site disorder potential which is
assumed to be uniformly distributed between −w/2 and w/2. The phase acquired
by the electron in each hopping is given by Φδr as

Φδr =

{
±2πϕ

Nx
for δr = ±aex ,

0 else ,
(4.52)

and ϕ = φ/φ0 is the flux in units of the flux quantum φ0. To calculate the current to
quadratic order in the field, one needs the matrix elements of the velocity operator
P̂x/m. From ∂Ĥ/∂ϕ = (2π/L)P̂x/m, where L = Lx = aNx, the velocity operator
in the tight-binding limit is obtained as

P̂x
m

= −iaεh
∑

r

(
e

2πiϕ
Nx |r〉〈r + aex| − e−

2πiϕ
Nx |r〉〈r− aex|

)
. (4.53)

In the following the hopping matrix element and the lattice spacing are set equal to
unity, εh = 1, a = 1. Now by diagonalizing the Hamiltonian (4.51) for different values
of ϕ and different realizations of disorder, Eq.(4.37) and (4.36) can be numerically
calculated. To obtain the eigenvalues and eigenvectors, the Lanczos algorithm, which
is especially suited for sparse matrices with non degenerate spectrum is used [74]. In
disordered systems the energy levels repel each other, so that no multiple eigenvalues
occur. In a canonical ensemble, where the particle number is fixed, the chemical
potential µ is a functional of disorder and flux ϕ. The analytical calculations by KY
were performed for a grand canonical ensemble, assuming for convenience periodic
boundary conditions in y- and z-direction. Numerically one can also study the
influence of the boundary conditions and the statistical ensemble.



It is convenient to write the contributions of Eq.(4.31) and (4.32) to the current

as I
(2)
ηt,℘ =: Aεm

3e2ηtGη,℘(ε, ϕ) with

Gη,℘(ε, ϕ) =
e−2ηt

m3

[
K

(2)
ηt,℘(ε,−ε) +K

(2)
ηt,℘(−ε, ε)

]
, (4.54)

and I
(2)
ηt,δδ =: Aεm

3e2ηtGη,δδ(ε, ϕ) with

Gη,δδ(ε, ϕ) =
e−2ηt

m3

[
K

(2)
ηt,δδ(ε,−ε) +K

(2)
ηt,δδ(−ε, ε)

]
. (4.55)

The factor 1/m3 is defined into the function G, since numerically matrix elements of
the velocity operator P̂ /m are evaluated, rather than directly those of P̂ . Ac-

cording to the analysis in the previous section, I
(2)
ηt,℘ should have a finite limit

I
(2)
th = limη→0 I

(2)
ηt,℘ while I

(2)
ηt,δδ should diverge for η → 0 and ε > 0. These find-

ings will now be tested for the computer model. In the zero temperature limit
T → 0 the occupation number function f(εα) reduces to Θ(µ− εα), restricting the
range of summation. This yields

Gη,℘(ε, ϕ) = 2
Ntot∑
α=1

Ntot∑
β=N+1

N∑
γ=1

Re
Pαβγ
m3

[
εγ − εα

(εγ − εα)2 + (2η)2
+

εβ − εα
(εβ − εα)2 + (2η)2

]
×[

εγ − εβ − ε
(εγ − εβ − ε)2 + η2

+
εγ − εβ + ε

(εγ − εβ + ε)2 + η2

]
, (4.56)

and

Gη,δδ(ε, ϕ) = −2
Ntot∑
α=1

Ntot∑
β=N+1

N∑
γ=1

Re
Pαβγ
m3

[
2η

(εγ − εα)2 + (2η)2
+

2η

(εβ − εα)2 + (2η)2

]
×[

η

(εγ − εβ − ε)2 + η2
+

η

(εγ − εβ + ε)2 + η2

]
.

(4.57)

Ntot is the total number of states in the system. In the tight-binding model this
is equivalent to the number of lattice points, Ntot = NxNyNz. N = N(µ) is the
number of occupied states with energy smaller than the chemical potential N(µ) =∑

α Θ(µ − εα). In a grand canonical ensemble this number of course also depends

on disorder and flux. From the symmetry properties 〈α(−ϕ)|P̂x(−ϕ)|β(−ϕ)〉 =
−〈β(ϕ)|P̂x(ϕ)|α(ϕ)〉 and εα(−ϕ) = εα(ϕ) it follows directly, that

Gη,℘/δδ(ε, ϕ) = −Gη,℘/δδ(ε,−ϕ) . (4.58)

To see this, one has to analyze the symmetry of RePαβγ = RePαβPβγPγα with

Pαβ(ϕ) = 〈α|P̂x(ϕ)|β〉. Representing the complex number Pαβ as the prod-
uct of absolute value and phase, Pαβ(ϕ) = |Pαβ(ϕ)| exp[iξαβ(ϕ)], it follows from



Pαβ(−ϕ) = −P ∗αβ(ϕ) (∗ denotes the complex conjugate) that ξαβ(−ϕ) = π− ξαβ(ϕ)
and |Pαβ(−ϕ)| = |Pαβ(ϕ)|. Thus

Re[Pαβ(ϕ)Pβγ(ϕ)Pγα(ϕ)] = |Pαβ(ϕ)Pβγ(ϕ)Pγα(ϕ)| cos[ξαβ(ϕ) + ξβγ(ϕ) + ξγα(ϕ)]

= |Pαβ(−ϕ)Pβγ(−ϕ)Pγα(−ϕ)| cos[3π − ξαβ(−ϕ)− ξβγ(−ϕ)− ξγα(−ϕ)]

= −Re[Pαβ(−ϕ)Pβγ(−ϕ)Pγα(−ϕ)] . (4.59)

This proofs Eq.(4.58). And since Gη is necessarily periodic in ϕ with period 1 one
has

Gη,℘/δδ(ε, ϕ+
1

2
) = Gη,℘/δδ(ε, ϕ−

1

2
) = −Gη,℘/δδ(ε,

1

2
− ϕ) . (4.60)

Hence Gη is symmetric to ϕ = 1/2 and it is sufficient to calculate it for flux val-
ues between 0 and 1/2 (this symmetry was also verified numerically). Fig.4.1 shows
Gη,℘(ε, ϕ) as a function of flux ϕ for different values of ε and η. The calculations were
performed for a grand canonical 10 × 3 × 3 lattice with µ = 0, w = 5 and periodic
boundary conditions in y- and z-direction. This system has already been studied in
Ref. [75] and was found to be diffusive. The band-width of the tight-binding model
without disorder reaches from −6 to 6 in the dimensionless numerical units. Disor-
der smoothens the density of states but leaves the band-width unaffected. For the
numerical calculations only the part of the energy spectrum with an approximately
constant density of states ρ(ε) ≈ ∆−1 was used, since this is the assumption under-
lying all theoretical calculations. The importance of this assumption for numerical
calculations has been pointed out in Ref. [16]. For the 10 × 3 × 3 system ρ(ε) was
found to be approximately constant for |ε| ≤ 2. If not explicitly stated differently,
the following numerical results where obtained using this part of the spectrum. For
decreasing η the number of samples averaged over has to be drastically increased in
order to obtain smooth curves. The data for η = 10−4 shows considerable statistical
fluctuations even after averaging over 20.000 realizations, but the rather smooth
curve for η = 10−2 is still a good fit for these data-points. The numerical results
thus confirm the existence of a finite limit I

(2)
th = limη→0 I

(2)
ηt,℘. In contrast Fig.4.2

clearly indicates, that no such limit exists for Gη,δδ(ε, ϕ) with ε > 0. The function
grows ∼ 1/η for finite ε. This behavior is also expected from the exact analysis in
the previous section. The interesting feature both plots (Figs.4.1,4.2) have in com-
mon is the obvious phase halving in the ϕ-periodicity (note that ϕ ranges from 0 to
1/2). A periodicity with ϕ/2 indicates, that the disorder average is dominated by
correlations between time-reversed path (Cooperons in the diagrammatic language).
The qualitative picture is the same for a canonical ensemble. Again Gη,δδ(ε, ϕ) di-
verges for η → 0 and ε > 0. On the other hand, for ε = 0 there exists a finite limit
limη→0 Gη,δδ(0, ϕ). This has to be the case, since in the limit ε→ 0, η → 0 the total
response function

Gη(ε, ϕ) := Gη,℘(ε, ϕ) +Gη,δδ(ε, ϕ) (4.61)

is related to the flux derivative of the persistent current.
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Figure 4.2: Gη,δδ(ε, ϕ) for the same parameters as in Fig.4.1.



4.4.1 The static limit of the response function

The response to a static flux φ(t)→ φ+ φ0δϕ is obtained from Eq.(4.12) by setting
δϕω = δϕ δ(ω), which yields

I
(2)
static =

1

2

(−e)8π2

(mL)3
K(2)(0, 0)(δϕ)2 . (4.62)

The problem is now time independent and the question arises, how I
(2)
static is related to

the equilibrium persistent current I(ϕ+δϕ). To compare both quantities, I(ϕ+δϕ)
is expanded in powers of δϕ:

I(ϕ+ δϕ) = I(ϕ) +

(
∂I(ϕ)

∂ϕ

)
δϕ+

1

2

(
∂2I(ϕ)

∂ϕ2

)
(δϕ)2 + · · · . (4.63)

As has been shown by Fricke and Kopietz [54], in a canonical ensemble up to second
order in δϕ the results from the dynamic response function (in the static limit) and
the equilibrium expansion are identical. This means(

∂2I(ϕ)

∂ϕ2

)
N

=
(−e)8π2

(mL)3
K(2)(0, 0) , (4.64)

where the index N states, that the particle number is held constant. Equivalently
the linear response function K(1)(ε) with

I(1)(t) =
2πe

(mL)2

∫ ∞
−∞

dω1δϕω1K
(1)(ω1)e−iω1t (4.65)

is connected to the first flux-derivative of I(ϕ) via(
∂I(ϕ)

∂ϕ

)
N

=
2π2e

(mL)2
K(1)(0) . (4.66)

The canonical persistent current can be calculated by an expansion in the flux
and disorder dependent chemical potential µ({U}, ϕ) ≈ 〈µ〉ϕ + δµ [59]. I(ϕ) can

then be expressed through the variance of the particle number fluctuation (δN)2

in a grand canonical ensemble with chemical potential 〈µ〉ϕ (the over-bar denotes
disorder averaging and 〈· · ·〉ϕ averaging over flux ϕ, see [75] for a detailed derivation):

I(ϕ) =
(−e)∆

4π

∂

∂ϕ
[δN(ϕ)]2 . (4.67)

Altshuler and Shklovskii [64] have diagrammatically calculated the particle number
fluctuations [δN(ϕ,E)]2 in an energy interval E around the Fermi energy. Their



findings have been verified numerically in Refs. [16,75]. Presuming a constant den-
sity of states, [δN(ϕ,E)]2 becomes independent of E for E & Ec and can be written
as [75]

∂

∂ϕ
[δN(ϕ)]2 = − 8

π

∞∑
j=1

e−j
√

Γ0/Ec sin(4πjϕ) = − 4

π

sin(4πϕ)

cosh(
√

Γ0/Ec)− cos(4πϕ)
,

(4.68)

where [δN(ϕ)]2 = [δN(ϕ,E)]2 for E & Ec. Γ0 is the cutoff entering the Cooperon
Cni which for a finite system of free electrons is given by Γ0 = ∆/π. The canonical
persistent current is completely determined by an energy interval of size Ec. From
the numerical results in Ref. [75] Ec can be identified for the tight-binding model
as that value of E, where [δN(ϕ,E)]2 becomes constant. For the 10× 3× 3 system
with w = 5 the Thouless energy was found to be Ec ≈ 1. The cutoff Γ0 might still
be different from ∆/π in the tight-binding model and thus Γ0/Ec is considered as a
fit-parameter. From Eqs.(4.68) and(4.67) one obtains(

∂2I

∂ϕ2

)
N

=
(−e)∆

4π

∂3

∂ϕ3
(δN)2 (4.69)

with

∂3

∂ϕ3
(δN)2 = 64π

[
3

sin(4πϕ) cos(4πϕ)

[α− cos(4πϕ)]2
− 2

sin3(4πϕ)

[α− cos(4πϕ)]3
+

sin(4πϕ)

α− cos(4πϕ)

]
,

(4.70)

where α = cosh(
√

Γ0/Ec). Now, inserting limη→0 Gη(0, ϕ) = (2/m3)K(2)(0, 0) in
Eq.(4.64) yields (

∂2I(ϕ)

∂ϕ2

)
N

=
(−e)4π2

L3
Gη(0, ϕ) with η � ∆ , (4.71)

and

Gη(0, ϕ) =
∆L3

2(2π)3

∂3

∂ϕ3
(δN)2 with η � ∆ , (4.72)

which is valid, since Gη(0, ϕ) becomes independent of η for η � ∆. This relation can

now be tested numerically. From fitting numerical data for [δN ]2 to the theoretical
prediction in Eq.(4.68) the parameter Γ̃0 := Γ0/Ec was found to be Γ̃0 = 2.1 [75].
At first sight, this seems to contradict the condition ∆ < Ec underlying the dia-
grammatic calculation. Since all theoretical predictions could be fit within excellent
accuracy, it was argued in Ref. [75], that this discrepancy must be addressed to the
difference between the two models (the tight-binding model on the numerical side,
and the free electron gas model for the diagrammatic calculations) but one is indeed
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Figure 4.3: The zero frequency limit Gη(0, ϕ) for the 10×3×3 system with periodic
boundary conditions, w = 5 and η = 10−4. The theoretical curve is the Altshuler-
Shklovskii result for B = 0.09 and Γ̃0 = 2.1 (canonical) or Γ̃0 = 4 (grand canonical).

describing the same physical situation in both cases. The average density of states
for the tight-binding model was numerically found to be ∆−1 = 11.5. The factor in
Eq.(4.72) is thus B := ∆L3/(2(2π)3) ≈ 0.18. Figure 4.3 shows the numerical result
for a canonical ensemble with fixed particle number N = 19 (corresponding to a flux
and disorder averaged chemical potential µ = 0) and for a grand canonical one with
µ = 0. Again only that part of the spectrum with |εα| ≤ 2 was considered. The best
fit to the canonical data is obtained for Γ̃ = 2.1 and B = 0.09. Thus B is a factor
2 smaller than expected from the above estimate. However, as already stated, one
can not expect, that all energy scales can be mapped one to one to the tight-binding
model. The numerical data is therefore in good agreement with the theoretical
predictions of Refs. [64, 54]. To make sure, that the apparent agreement between
numerical results and theory is not just a matter of coincidence, the zero frequency
limit of the linear response function K(1)(ε, ϕ) introduced in Eq.(4.65) was calcu-
lated as well. The explicit form of K(1)(ε, ϕ) is given by the sum of the diamagnetic

and paramagnetic contribution K(1)(ε, ϕ) = K
(1)
para(ε, ϕ)−N(µ, ϕ) with [54]

K(1)
para(ε, ϕ) = lim

η→0

∑
αβ

|Pαβ|2
f(εβ)− f(εα)

εα − εβ − ε− iη
. (4.73)

The sum on the right hand side becomes independent of η for η � ∆ so that
Eq.(4.73) can be easily evaluated numerically. From Eq.(4.66) and (4.67) it follows,



that

1

m2
K(1)
para(0, ϕ) = − ∆L2

2(2π)2

∂2

∂ϕ2
(δN)2 +N(µ, ϕ) , (4.74)

with

∂2

∂ϕ2
(δN)2 = −16

[
cos(2πϕ)

cosh(
√

Γ̃0)− cos(4πϕ)
− sin2(4πϕ)

[cosh(
√

Γ̃0)− cos(4πϕ)]2

]
. (4.75)

Comparing the prefactor A := −∆L2/[2(2π)2] with B := ∆L3/(2(2π)3) yields
A = −(2π/L)B. From B = 0.09 and L = 10 one would thus expect A = −0.057.
According to Eqs.(4.74),(4.75) the flux average of K(1)(0, ϕ) vanishes and thus the

flux independent part of K
(1)
para(ε, ϕ) should be canceled by the diamagnetic term

−N(µ, ϕ). Numerically an exact cancellation is hard to observe since the particle
number sensitively depends on the density of states, which in the computer sim-
ulations is only approximately constant (and not fixed like it is assumed in the
analytical calculations). The flux dependence of the average grand canonical parti-

cle number was found to be negligible compared to that of K
(1)
para(0, ϕ). In order to

compare the obtained data with the theoretical prediction, N(µ, ϕ) in Eq.(4.74) is

replaced by the (numerical) flux-average of Nav = 〈K(1)
para(0, ϕ)〉ϕ. Overall the nu-

merical paramagnetic linear response function for the 10× 3× 3 system with w = 5
is expected to be given by

1

m2
K(1)
para(0, ϕ) = −0.057

∂2

∂ϕ2
(δN)2 +Nav . (4.76)

Fig.4.4 shows a comparison between the actual numerical data for 1
m2K

(1)
para(0, ϕ) and

the prediction from Eq.(4.76). The values for the parameter Γ̃0 are those obtained
from the fit to the quadratic response function K(2) (see Fig.4.3). Recalling that
all fit parameters, except for the flux independent shift Nav, were determined a
priori, the obtained agreement is convincing. As expected, in a canonical ensemble
the static limit of the first and second order response function agrees with the
corresponding flux-derivative of the persistent current, which is again well described
by the Altshuler-Shklovskii result. The 10×3×3 system with w = 5 seem therefore
well suited to study diffusive metallic Aharonov-Bohm rings. As was already noted,
the response functions are formally identical for a grand canonical and canonical
ensemble if in the latter case the chemical potential µ(U,ϕ) is interpreted as a
function of disorder and flux. In contrast, the flux derivative of the persistent
current differs in the two cases by terms containing the derivative of the occupation
function f (which vanish in the canonical case) [54]. The grand canonical persistent
current in the diffusive regime is known to be exponentially small [65], while the
canonical one is described by Eqs.(4.67) and (4.68). Thus the zero frequency limit
of the response function at fixed µ can not be identified with derivatives of the
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Figure 4.4: The zero frequency limit (1/m2)K
(1)
para(0, ϕ) of the paramagnetic linear

response function for the 10×3×3 system with periodic boundary conditions, w = 5
and η = 10−4. The theoretical curve is the prediction from Eq.(4.76) with Γ̃0 = 2.1
(canonical) or Γ̃0 = 4 (grand canonical). The long-dashed line is the average grand
canonical particle number N(µ, ϕ).

grand canonical thermodynamic equilibrium current. Analytically it is still hard
to estimate the effect of a fluctuating chemical potential µ(U,ϕ) compared to a
fixed on. Therefore the response function was studied numerically for both cases.
It is interesting to notice, that no qualitative difference between the canonical and
grand canonical ensemble is found. Numerically the response functions for the two
ensembles differ significantly only at the edges of the plotted interval. Indeed, the
grand canonical curve can be fit with the same value for the prefactors A and B
but a different parameter Γ̃0, namely Γ̃0 = 4. This indicates, that only the effective
ratio Γ0/Ec changes with the ensemble. The average density of states at the Fermi
energy ∆ and the size L are independent of the statistical ensemble and therefore
A and B remain unaffected.

4.4.2 The response function for finite frequencies ε > 0

Next the case ε > 0 is investigated. Before calculating the time-independent contri-
bution I

(2)
th numerically, it is instructive to look at the canonical persistent current

defined in Eq.(4.67). From the numerical estimate B = 0.09 =: (∆effL
3)/(2(2π)3) it

follows, that the effective level spacing is approximately half the tight-binding level



spacing ∆eff ≈ ∆/2 ≈ 1/23. Replacing ∆ in Eq.(4.67) by ∆eff and using Eq.(4.68)
yields a persistent current for the 10× 3× 3 system of order

I(ϕ)

(−e)
= −∆eff

π2

sin(4πϕ)

cosh(
√

Γ̃0)− cos(4πϕ)
≈ −4.4× 10−3 sin(4πϕ)

cosh(
√

2.1)− cos(4πϕ)
,

(4.77)

where again Γ̃0 = 2.1 was used. This function is plotted in Fig.4.5. I(ϕ)/(−e) is
negative for small ϕ and thus the current is paramagnetic in the zero field limit.
Experimentally the current was found to be diamagnetic [55] for a relatively small
ensemble of only 30 rings. It was argued, that this number might be too small to
yield a properly averaged current [66] so that this point is still controversial. In the
original experiment by Levy et al. [50] on 107 copper rings the sign of the current

was not measured. On the other hand, the time-independent non-linear current I
(2)
0
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Figure 4.5: Canonical persistent current I in units of the electron charge −e for the
10× 3× 3 system as derived from Eq.(4.77).

calculated by KY is diamagnetic (for spinless electrons, in the presence of spin-orbit
scattering the sign might reverse [66]) and of the same order of magnitude as the
experimentally measured current for an ensemble of rings [56, 66]. It has therefore
recently been argued, that the observed current is not an equilibrium quantity but
rather a noise induced non-linear effect [66]. Now, what happens in the discrete
spectrum limit? In order to compare the numerical result with that obtained by KY,
a grand canonical ensemble with periodic boundary conditions in y and z direction
is used. Fig.4.6 shows Gη,℘(ε, ϕ) as a function of ϕ for different frequencies ε. It
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Figure 4.6: Gη,℘(ε, ϕ) for a grand canonical 10 × 3 × 3 system with µ = 0, w = 5
and η = 10−2, periodic boundary conditions.

was assumed in the introduction to this chapter, that for frequencies ε < Ec the
response function should be completely determined by an energy interval of order
Ec, centered around the Fermi energy. In the zero frequency limit this is obviously
the case due to the relation to the flux-derivatives of the persistent current. For
ε > 0 this assumption can be verified numerically. Therefore the calculations were
redone with the energy spectrum restricted to3 |εα| < Ec ≈ 1. The result is shown
in Fig.4.7. Compared to that for |εα| < 2 in Fig.4.6, there is, as expected, no
significant dependence on the size of the energy interval. In both cases Gη,℘(ε, ϕ)
shows a similar behavior. The most interesting observation is, that the function
changes qualitatively as soon as ε & ∆ ≈ 0.09. The strong anharmonicity in the
flux-dependence vanishes in this frequency regime. A further increase of ε eventually
changes the sign of Gη,℘(ε, ϕ). From I

(2)
ηt,℘ = Aεm

3eηtGη,℘(ε, ϕ) it follows that

I
(2)
th

(−e)
= lim

η→0

I
(2)
ηt,℘

(−e)
=
π2

L3

(
φε
φ0

)2

Gη̃,℘(ε, ϕ) with η̃ � ∆ . (4.78)

The function Gη,℘(ε, ϕ) becomes independent of η for η � ∆ and thus the limit
limη→0 Gη,℘(ε, ϕ) can be replaced by Gη̃,℘(ε, ϕ) with an arbitrary η̃ � ∆. For

ε > ∆ the current I
(2)
th thus has the same sign as the persistent current I(ϕ). With

3For reminder: Ec ≈ 1 is the numerically estimated value from comparison with results for
[δN(ϕ,E)]2.
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Figure 4.7: Gη,℘(ε, ϕ) for the same parameters as in Fig.4.6, but the energy spectrum
restricted to |εα| < 1 ≈ Ec. All other plots were obtained for |εα| < 2.

L = 10 one gets π2/L3 ≈ 1/100. Using φε/φ0 ≈ 1 as an upper bound for φε
one obtains a current I

(2)
th that is maximally one order of magnitude lager than

I(ϕ) in Fig.4.5. Obviously I
(2)
ηt,℘ does not yield a diamagnetic current for ε > ∆.

The question arising is, whether such a contribution can be identified within the
numerical simulations. The calculation by KY is based on the assumption of a
continuous spectrum. Formally η enters the denominator of the response function
like the imaginary part of the single particle energies εα (see Eq.(4.28)). From this
point of view η may be interpreted as an inelastic level broadening and the spectrum
is effectively continuous for η & ∆. According to KY the time independent second
order contribution to the current is given by [56]

I
(2)
0,KY

(−e)
= 8πEc

(
φε
φ0

)2
sin(4πϕ)

cosh(
√

Γ̃0)− cos(4πϕ)
. (4.79)

The flux dependence is thus the same as for the persistent current (see Eq.(4.77))
but the sign is opposite. Now if η is viewed as some intrinsic level broadening, the
factor e2ηt from the switching on procedure may be dropped and one defines the
time independent current I

(2)
0,η := Aεm

3Gη(ε, ϕ) which can be compared with I
(2)
0,KY .

The function Gη(ε, ϕ) defined in Eq.(4.61) is evaluated numerically and is compared



with the KY prediction

GKY
η (ε, ϕ) =

8L3EKY
c

π

sin(4πϕ)

cosh(
√

Γ̃0)− cos(4πϕ)
. (4.80)

which is defined via I
(2)
0,KY := Aεm

3GKY
η (ε, ϕ). Here the Thouless energy Ec has been

replaced by EKY
c which is considered as a numerical fit parameter. The value for

Γ̃0 has already been fixed for the zero-frequency limit (here Γ̃0 = 4). Fig.4.8 shows
Gη(ε, ϕ) for η = 0.1 & ∆ and different values of ε. In the considered frequency inter-
val the function varies indeed only weakly with ε and the sign and flux dependence
are in agreement with the KY result. The order of magnitude can not be confirmed.
In order to fit Gη(ε, ϕ) to GKY

η (ε, ϕ), one has to choose EKY
c ≈ 10−3 in Eq.(4.80)

which is two orders of magnitude smaller than ∆ and even three orders smaller than
the previous estimate Ec ≈ 1. Such a huge discrepancy can hardly be addressed to
numerical factors arising in the tight-binding model. Replacing Ec by EKY

c ≈ 10−3

in Eq.(4.79) and comparing the corresponding current with the persistent current in
Eq.(4.77) it is seen, that both have the same order of magnitude. (Again φε/φ0 ≈ 1
is used as an upper bound.) Gη was also numerically investigated for η < ∆. It was
found, that for frequencies 0.4 . ε . 0.7 the sign and flux dependence of the total
non-linear response function Gη can still be described by the KY result. However,

Gη,δδ and therewith the amplitude of the current I
(2)
0,η grows like 1/η. As pointed

out in the previous section, this is the result of an incorrect limiting procedure. For
η & ∆ where the spectrum can be considered as effectively continuous, the numeri-

cally calculated current I
(2)
0,η is about three orders of magnitude smaller than the KY

prediction I
(2)
0,KY if one uses Ec ≈ 1 as an realistic estimate for the Thouless energy

in the 10× 3× 3 system.

So far the finite frequency response was studied for a grand canonical ensemble
with periodic boundary conditions. KY implicitly assume that the response function
does not depend on the statistical ensemble since their calculations where performed
at fixed µ while in experiments N is kept constant on each ring. In the zero frequency
limit ε → 0 both cases have already been compared in Fig.4.3 and no qualitative
difference was found. The corresponding plot for ε > 0 is shown in Fig.4.9. The
difference between the grand canonical and canonical curves is marginal. For fi-
nite frequencies the non linear response function Gη,℘(ε, ϕ) seems to be completely
insensitive to the underlying statistical ensemble.

4.4.3 Influence of the boundary conditions in transverse di-
rections

There is yet another effect to be studied: In experiments not only the particle number
on each ring is constant but also the electrons motion in the transverse direction
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Figure 4.8: Gη(ε, ϕ) for η = 0.1. The theoretical curve is the Kravtsov-Yudson result
with Γ̃0 = 4.0 and EKY

c = 10−3 ≈ 10−2∆ ≈ 10−3Ec. Again the estimate Ec ≈ 1 is
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is bounded by the surface of the ring. For the theoretical calculations periodic
boundary conditions in y and z direction are used and it is implicitly assumed,
that the response function is insensitive to the choice of boundary conditions as
well. In a large enough sample with 1/kF � a ∼ l (where a is the thickness
of the ring) this seems to be a reasonable assumption. A numerical justification
for the equilibrium persistent current problem has been given in Ref. [75]. It was
found, that the current, numerically calculated form Eq.(4.67) with fixed boundary
conditions, is in excellent agreement with the theoretical prediction by Altshuler and
Shklovskii who used periodic conditions. The computational effort to calculate Gη,℘

is unfortunately much higher than for (δN)2 in the persistent current problem. To
obtain the matrix elements Pαβγ not only the eigenvalues but also the eigenvectors
are needed. This for itself drastically increases the necessary computing time and the
summation over the three variables α, β, γ makes things even worse. The computer
program’s run-time increases rapidly with growing system size. Already the time
needed by the Lanczos procedure to calculate the eigenvalues and eigenvectors grows
∼ N2

tot and on top of that the decreasing level spacing together with the condition
η � ∆ strongly increases the number of averagings which are necessary to obtain
smooth curves. Most of the simulations where therefore done on the relatively small
10 × 3 × 3 system. In such a small sample with only 3 lattice sites in y and z
direction a change in the boundary conditions still leads to relatively large energy
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Figure 4.9: Comparison of Gη,℘(ε, ϕ) for the canonical (ca) and grand canonical
(gc) 10 × 3 × 3 ensemble with periodic boundary conditions, w = 5 and η = 10−2.
Dotted lines are the results for fixed particle number N = 19, corresponding to µ = 0.
Dashed lines where obtained for fixed chemical potential µ = 0.

shifts. In the canonical ensemble with N = 19 for example, changing from periodic
to fixed boundaries shifts the flux- and disorder average of the chemical potential
from µperi = 0.0 to µfix = −0.3. Comparing this energy scale with the strong ε
dependence on a similar scale shown in Fig.4.6, one can not expect the system to
be completely insensitive to its boundaries. Fig.4.10 shows Gη,℘(ε, ϕ) calculated
for fixed boundary conditions. In order to compare the canonical with the grand
canonical result, in the latter case the chemical potential was shifted to µ = −0.3 as
well. For small frequencies ε ≤ ∆ the results are in qualitative agreement with those
in Figs.4.3 and 4.9. Also the change of sign is observed for ε > ∆ though the curve
for ε = 0.3 shows no phase halving. This is addressed to the strong ε dependence
in the plotted region and the relatively large change in the chemical potential. The
function Gη,δδ with finite, fixed η shows a much weaker ε dependence and one can
therefore expect it to be less sensitive to boundary conditions. Fig.4.11 shows the
corresponding data for the grand canonical ensemble with average particle number
N = 19. Indeed, it is seen that the qualitative behavior of Gη,δδ does not change
in terms of the boundaries. Only the amplitude of the oscillations is moderately
rescaled. The more important insight from Fig.4.10 is, that the response function
is again independent of the statistical ensemble. The only notable difference occurs
at ε = 0 for ϕ in the vicinity of 0 or 1/2 respectively. As in Fig.4.3 this difference is
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only quantitative and may be explained by a different effective parameter Γ̃0.

4.4.4 The linear in time contribution to the current

Next the linear in time contribution dI
(2)
kin/dt is investigated. For numerical calcula-

tions it is rewritten as dI
(2)
kin/dt =: Aεm

3 limη→0 Gη,kin(ε, ϕ) with

Gη,kin(ε, ϕ) = −2η
∑
αβ

Pαβα
m3

[
f(εα)− f(εβ)

(εα − εβ − ε)2 + η2
+

f(εα)− f(εβ)

(εα − εβ + ε)2 + η2

]
, (4.81)

and in the limit T → 0 one gets

Gη,kin(ε, ϕ) = −2
∑
εα≤µ

∑
εβ>µ

|Pαβ|2

m2

(
Pαα
m
− Pββ

m

)(
η

(εα − εβ + ε)2 + η2

+
η

(εα − εβ − ε)2 + η2

)
. (4.82)
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As expected it is found numerically, that Gη,kin(ε, ϕ) becomes independent of η for

η � ∆. The current I
(2)
kin is thus related to Gη,kin(ε, ϕ) via

dI
(2)
kin

dt
=

(−e)π2

L3

(
φε
φ0

)2

Gη,kin(ε, ϕ) with η � ∆ . (4.83)

Keeping in mind, that the golden rule result is only valid for times t < 1/∆, one

can estimate the maximal contribution I
(2)
kin,max to the total current as

I
(2)
kin,max

(−e)
≈ π2

∆L3
Gη,kin(ε, ϕ) . (4.84)

Fig.4.12 shows numerical results for Gη,kin(ε, ϕ) in a grand canonical ensemble. Ob-
viously Gη,kin(ε, ϕ) gives rise to a diamagnetic current, i.e. the sign is opposite to
that of the persistent current (see Fig.4.5). For the 10 × 3 × 3 system the factor
in Eq.(4.84) is given by π2/(∆L3) ≈ 1/10. Comparing Fig.4.12 to I(ϕ) in Fig.4.5

one thus finds a maximal linear in time current I
(2)
kin,max that is about two orders of

magnitude lager than the corresponding canonical persistent current. The data for
the canonical ensemble is shown in Fig.4.13. Obviously the result is again not sen-
sitive to the underlying statistical ensemble. The flux periodicity with period 1/2
indicates, that Gη,kin(ε, ϕ) is governed by the diffusive dynamics of the electrons
with strong correlations between time-reversed trajectories.
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Figure 4.12: Gη,kin(ε, ϕ) for a grand canonical 10 × 3 × 3 system with periodic
boundary conditions, µ = 0, w = 5 and η = 10−2.

4.5 Conclusions

In this chapter it was demonstrated, that the calculation of the second order response
function contains some subtleties that are overlooked in the usual diagrammatic
Green’s function approach. An exact treatment shows the existence of a contribu-
tion I

(2)
kin(t) to the current, that increases linearly with time. From the well-known

derivation of Fermi’s golden rule [63] it is clear that this result is only valid in an
intermediate time interval which requires t < 1/∆. In particular, the calculation
of the long-time behavior of the non-equilibrium current requires non-perturbative
methods. For a continuous spectrum infinite orders in the external field can be
treated by solving the partial differential equation for the Cooperon [57]. In the dis-
crete spectrum limit the inclusion of higher order terms remains an open problem.
One should keep in mind that the calculation presented here has been performed for
non-interacting electrons in a random potential, so that the results are valid as long
as the spectrum of the system is discrete in the sense that the single-particle level
broadening γqp ≈ 1/τee (for low temperatures) is smaller than ∆. In the zero temper-
ature limit 1/τee depends only on the quasiparticle energy ξα. It was shown that for
external frequencies ε < Ec the response function is then completely determined by
the discrete part of the spectrum. However, as soon as the spectrum has a discrete
part, the Green’s function approach is not controlled anymore, since the low energy
single particle excitations can not be described correctly. Of course experiments
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Figure 4.13: Gη,kin(ε, ϕ) for a canonical 10 × 3 × 3 system with periodic boundary
conditions, N = 19, µ = 0, w = 5 and η = 10−2.

are not performed at zero temperature and all levels will have a finite broadening.
To estimate the temperature, where the spectrum becomes discrete, one can use
the (continuous-spectrum-) result [20] 1/τee(T ) = ∆(T/Ec)

d/2. Thus the spectrum
will become discrete for T < Ec. The experiment by Mohanty et al. [55] was per-
formed on gold rings with diameter 2.6µm and Thouless energy Ec ≈ 7.3mK down
to temperatures T = 5.5mK. Thus even for such relatively large rings the discrete
spectrum limit may be reached. For smaller samples of size nano-meters [48] one
can not expect a continuous spectrum any more.

It is important to point out that the linear time-dependence of the current is a
consequence of the discrete spectrum, and is not related to the adiabatic switching on
procedure in Eq.(4.28). Sudden switching on yields the same linear time-dependence
of the current.

In Ref. [55] the average level spacing was ∆ = 19µK. In such systems the linear in

time contribution I
(2)
kin(t) should be observable for times t . 10−6s. For smaller rings

this scale will be even shorter. It is therefore doubtful, that I
(2)
kin is experimentally

accessible. From this point of view the time independent contribution I
(2)
th is more

interesting. The presented numerical data indicates, that for frequencies ε > ∆
there should be a time independent paramagnetic contribution which is comparable
in size to the equilibrium persistent current. For small enough samples with discrete
spectrum this should in principle be measurable.



Another important conclusion that can be drawn from the numerical results is
the insensitivity of the second order response function to the statistical ensemble.
This finding becomes especially interesting in the context of electron-electron inter-
actions. As was pointed out by KY [56], there exists a close connection between
this interaction and the non-linear susceptibility. Now the fact that the response
function does not depend on whether one works in a canonical or grand canonical
ensemble indicates, that effects from electron-electron interactions will not either.
This point will be reconsidered and discussed more detailed in the next chapter,
where interaction contributions to the persistent current are examined.



Chapter 5

Persistent currents and
electron-electron interactions

5.1 Introduction

In the previous chapter the dynamic response of a mesoscopic metal ring to an time-
dependent external flux was studied. The electrons were treated as non-interacting,
which is a standard model for disordered electronic systems. One assumes, that
Coulomb interaction can be modeled by effective parameters of the system, like
e.g. the effective mass or the dephasing time. For example the weak localization
correction to the conductivity was calculated for a model of free electrons, and, as
mentioned in Chap.2.1, can be fit to experimental results within excellent accuracy.
It is therefore natural to first try to explain electronic property of metals in the
framework of an independent particle approximation. For mesoscopic metal rings
the situation seems to be more complicated. Due to the coherent propagation of
electrons around the ring such systems are very sensitive to all effects that influence
the particles phase. One consequence of this is the non-linear susceptibility in re-
sponse to a time-dependent electric field [57,56] that was investigated in Chapter 4.
In Chap.3.3 electron-electron interactions were investigated by considering the re-
sponse to a fluctuating field that is caused by the diffusive motion of the background
electrons. A strong non-linear susceptibility therefore also indicates the importance
of electron-electron interactions in such systems [56]1. Indeed, the probably most
popular coherence effect in mesoscopic systems, the persistent current, can not be
satisfactory explained in a free electron approximation. The seminal experiment by
Levy et al. [50] revealed that in the diffusive regime the average current is more than
two orders of magnitude lager than the theoretically predicted current from non-
interacting electrons [59]. Therefore it seems inevitable to invoke electron-electron

1A relation between external fields and interactions can be formulated generally in a path-
integral description and is in this context known as Hubbard-Stratonovich transformation [36].
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interactions to explain the experiment [50]. This was first attempted by Ambegaokar
and Eckern (AE) [67], who calculated perturbatively the correction to the average
current to first order in the screened Coulomb interaction. They found an average
current proportional to λcbevF l/L

2, where λcb is a dimensionless measure for some
suitably averaged strength of the Coulomb interaction at short wavelengths, vF is
the Fermi velocity, l is the elastic mean free path, and L is the circumference of
the ring. The precise value of λcb is difficult to estimate, because it is dominated
by the non-universal short-wavelength part of the Coulomb interaction. Using [68]
λcb ≈ 0.06, the theoretical current is still a factor of 5 too small to explain the
experiment.

The thermodynamic persistent current can be directly calculated in equilibrium
from the flux-derivation of the free energy F (N, φ) or the grand canonical poten-
tial Ω(µ, φ), depending on the statistical ensemble. The grand canonical persistent
current

I = −c∂Ω(µ, φ)

∂φ
, (5.1)

(c is the velocity of light) is usually easier to calculate, since the standard methods
of many particle theory presume this ensemble. However, in experiments [50] the
rings are isolated and thus have a fixed particle number, which corresponds to a
canonical ensemble. In this case the chemical potential µ becomes a functional of
disorder and flux, µ → µ({U}, ϕ). For non-interacting electrons one can obtain
an approximation for the canonical current by expanding µ to lowest order in the
flux [59] (see Eq.(4.67)). The grand canonical current was found to be exponentially
small [65]. According to AE [67] this strong ensemble dependence does not apply
to interaction effects. AE calculated the first order RPA correction to the current
for a grand canonical ensemble and claim that the result is independent of the
statistical ensemble. If this is true, one would also expect the susceptibility to be
ensemble-independent. And indeed, this is just what was found from the numerical
simulations in Chap.4.4. The following calculations will therefore be performed for a
grand canonical ensemble. It is also assumed, that the energy spectrum is continuous
and the standard diagrammatic disorder averaging can be applied. According to
the estimate in Chap.4.5 the results should thus at least be valid at temperatures
T & EC .

The classical (Hartree) contribution to the persistent current has been studied
non-perturbatively by Kopietz in Ref. [69]. It was found, that the long range nature
of the Coulomb interaction strongly enhances the Hartree contribution. Numerical
results presented in Ref. [70] support this finding.

There is still another interaction contribution that has so far been payed no
attention to, namely the long wave-length part of the Fock current. To close this gap,
the exchange (Fock) contribution to the average current will be re-examined in this
chapter. It is well known [20] that for disordered metals singular vertex corrections



involving so-called Diffusons strongly enhance the effective exchange interaction at
small wave-vectors |q| <∼ 2π/l. This effect has been ignored by AE [67], who focused
on the short-wavelength part of the interaction. The possible relevance of these
diffusive vertex corrections for persistent currents has been pointed out some time
ago by Béal-Monod and Montambaux [72]. However, they also demonstrated that
there exists an overall cancellation of the leading infrared singularities. Up until now
a quantitative calculation of the persistent current due to exchange interactions with
small momentum transfers has not been performed. Here a simple solution of this
problem shall be presented.

5.2 First order RPA corrections to the persistent

current

The considered system is described by the Hamiltonian Ĥ = Ĥ0+Ĥ2. (The notation
is chosen in analogy to Chap.2.4.) Ĥ0 contains disorder and the static flux φ through
the center of the ring and was already introduced in Eq.(4.3),

Ĥ0 =
∑

p

p2(ϕ)

2m
Ψ̂†pΨ̂p +

∫
drU(r)Ψ̂†(r)Ψ̂(r) . (5.2)

Ĥ2 describes the electron-electron interaction and is given in Eq.(2.70) as

Ĥ2 =
1

2

∫
drdr′f(r− r′)Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r) . (5.3)

In Ref. [3] the first order RPA correction to the persistent current was derived by
means of a path integral approach. Since so far no path integrals appeared in this
work, an alternative derivation using standard diagrammatic expansions is presented
here. The grand canonical potential is related to the corresponding statistical oper-
ator via

e−βΩ = Sp[e−β(Ĥ−µN̂)] =: Z , (5.4)

where N̂ is the particle number operator. For non-interacting electrons the analogous
equation reads

e−βΩ0 = Sp[e−β(Ĥ0−µN̂)] =: Z0 . (5.5)

From Z/Z0 = e−β(Ω−Ω0) and Eq.(5.1) one thus obtains

I =
c

β

∂

∂φ
ln

(
Z

Z0

)
+ I0 . (5.6)



I0 = −c(∂Ω0/∂φ) is the persistent current for non-interacting electrons. ln(Z/Z0)
can be evaluated exploiting the linked-cluster-theorem which states [21]

ln

(
Z

Z0

)
= ln

(
〈Û(β, 0)〉0

)
=
∞∑
n=0

(−1)n

n!

∫ β

0

dτ1 · · · dτn〈T̂ [Ĥ2,D(τ1) · · · Ĥ2,D(τn)]〉con0 .

(5.7)

Here the imaginary time Matsubara technique is used and the expectation values
are calculated for non-interacting electrons with respect to H0. The time-evolution
operator is given by

Û(β, 0) = T̂ exp

[
−
∫ β

0

dτĤ2,D(τ)

]
, (5.8)

where T̂ is the time ordering operator and the index D denotes the Dirac picture:

ÂD(τ) = eĤ0τ Âe−Ĥ0τ (5.9)

for an arbitrary operator Â. When expanding the expectation value 〈· · ·〉con0 in
Eq.(5.7) by means of the Wick theorem, only connected diagrams are kept, as indi-
cated by con. The Matsubara Green’s function Gk,k′(τ − τ ′) is defined in Eq.(A.23)
(in equilibrium it depends on the time-difference). For non-interacting electrons

the function G(0)
k,k′(τ − τ ′) is defined analogously, but the expectation value is now

calculated with respect to Ĥ0, 〈· · ·〉 → 〈· · ·〉0. Expanding Eq.(5.7) to first order in
the interaction Ĥ2 yields

ln

(
Z

Z0

)(1)

= − 1

β

∑
ω1,ω2

1

2V
∑

q,k,k′

fq

[
G(0)

k+q,k(iω1)G(0)
k′−q,k′(iω2)

−G(0)
k+q,k′(iω1)G(0)

k′−q,k(iω2)
]
. (5.10)

Diagrammatically this is the contribution from the diagrams (a) and (b) in Fig.5.1.
The first term is the Hartree contribution 5.1(a), and the second one corresponds
to the Fock diagram 5.1(b). It will now be shown, that higher order contributions
can be resummed, which effectively replaces the bare interaction fq in Fig.5.1(a,b)
by the RPA interaction defined in Fig.2.6 (see also Fig.B.1 in App.B). Consider
first the Hartree contribution. Higher order terms are produced by simply adding
additional ’polarization bubbles’ between the two end bubbles. As an example the
third order diagram is shown in Fig.5.1(c). The end bubbles can be identified with
the Fourier transformed of the non-interacting particle density,

n0(q) =
1

β

∑
ω

∑
k

G(0)
k+q,k(iω) , (5.11)



a) c)

d)

b)

Figure 5.1: Contributions to the expansion of ln(Z/Z0) in powers of the interaction.
Diagram a): first order Hartree term. Diagram b): first order Fock term. Diagrams
c) and d) are the corresponding contributions to third order in fq.

and the ’inner’ polarization bubbles have the form Π0(q,q′, iω̃ = 0) with

Π0(q,q′, iω̃) =
1

β

∑
ω

1

V
∑
k,k′

G(0)
k+q,k′(iω + iω̃)G(0)

k′−q′,k(iω) , (5.12)

where iω are Fermionic and iω̃ Bosonic Matsubara frequencies. To sum up all
RPA-diagrams for the Hartree current, one needs to know the multiplicity of the
diagrams. For the n-th order there are

(
n
2

)
possibilities to choose the vertices for the

’end’ bubbles. Since every single interaction vertex consists of two particle creators
and two annihilators, there are overall four possible ways to close these bubbles.
Now that the two ends are fixed, one can successively attach the remaining vertices
to e.g. the left bubble, till the right bubble is reached. The open end of the left
vertex can be connected in two different ways to each of the remaining n−2 vertices.
After the next vertex is linked, the new open end can again be paired with n − 3
vertices, and so forth. Thus altogether, for n ≥ 3 there are

4

(
n

2

)
2(n− 2)2(n− 3) · · · 2(n− (n− 1)) = 2n−1n! (5.13)

possible pairings. From Eq.(5.7) and the definition of Ĥ2 in Eq.(5.3) one obtains a
factor 1/(n!2n) for the n-th order contribution to ln(Z/Z0). Multiplying this factor
with the multiplicity of the corresponding diagram simply yields 1/2 for each order
in fq. The result still has to be averaged over disorder. To lowest order in the
small parameter 1/(kF l) (where kF is the Fermi wave vector) disorder correlations
between different bubbles are neglected and they are averaged independently. Note
that after averaging the polarization is diagonal in wave vector space, Π0(q,q′, iω̃) =
δq,q′Π0(q, iω̃). The over-line denotes disorder averaging. It is then easy to see, that



the series for the ’inner’ bubbles can be summed in exactly the same way as the
equation for the effective RPA interaction fRPA given in Eq.(2.77). Overall one
obtains for the Hartree contribution to ln(Z/Z0):

ln

(
Z

Z0

)
H

= − β

2V
∑

q

fRPA
q n0(q) n0(−q) , (5.14)

with fRPA
q := fRPA

q (iω̃ = 0). To obtain the multiplicity of the Fock diagrams one can
use the same counting scheme as in the Hartree case. However, each vertex is now
connected to two other ones and there are no ’end’ bubbles. Thus each diagram is
counted n times this way, because one can generate the same diagram, independent
of which of the n vertices is chosen to be the ’left end’. The multiplicity of the Fock
diagrams is therefore just the Hartree multiplicity divided by n. Each Fock term in
the expansion of ln(Z/Z0) thus obtains a factor 1/(2n) instead of the 1/2 for the
Hartree terms. Averaging over disorder hence yields

ln

(
Z

Z0

)(n)

F

=
1

2n

∑
iω̃

∑
q

[
fqΠ0(q, iω̃)

]n
. (5.15)

This structure is familiar form the power series of − ln(1− x) and the terms can be
summed to

ln

(
Z

Z0

)
F

= −1

2

∑
iω̃

∑
q

ln
[
1− fqΠ0(q, iω̃)

]
. (5.16)

Inserting the above results into Eq.(5.6) one obtains I = I0 + IH + IF , where I0

is the non-interacting persistent current, and

IH = − c
2

∂

∂φ

1

V
∑

q

fRPA
q n0(q) n0(−q) , (5.17)

IF = − c
2

∑
q

1

β

∑
ω̃

fRPA
q (iω̃)

∂

∂φ
Π0(q, iω̃) . (5.18)

The effective interaction is connected to the bare one by fRPA = (1 − f−1Π0)−1

(see Eq.(2.77)), which is just the factor obtained by differentiating the logarithm
in Eq.(5.16). Note that the Hartree contribution IH involves only the static part
fRPA

q ≡ fRPA
q (0) of the screened interaction.

5.3 The long wave-length contribution to the

Fock current

Now the average Fock current IF in the diffusive regime will be more closely exam-
ined. To evaluate IF one needs to know the flux-derivative of the average polariza-



a b c d

Figure 5.2: Diagrams contributing to ∂Π0(q, iω̃)/∂φ. Retaining only (a) reproduces
the result of AE. The plain shaded box represent the Cooperon, the solid lines are
average non-interacting Green’s functions, and the small wavy lines denote density
vertices. (b) Vertex correction with two additional Diffusons (represented by shaded
stripes with a cross). For small q and ω̃ this diagram is much larger than (a).
However, to leading order in (kF l)

−1 (b) is canceled by (c) and (d). Here the dashed
lines denote the impurity average UqU−q.

tion ∂Π0(q, iω)/∂φ. AE [67] have approximated the leading flux dependence of the
polarization by retaining only diagram (a) in Fig.5.2. This yields

Π0,AE(q, iω̃) =
1

β

∑
ω

1

V
∑
k,p

G0
p(iω + iω̃)G0

p−q(iω)C0(k, iω̃)

× G0
k−p+q(iω + iω̃)G0

k−p(iω) . (5.19)

The Cooperon is dominated by small momenta |k| � 1/l, so that the k dependence
of the Green’s functions can be neglected:

Π0,AE(q, iω̃) ≈ 1

β

∑
ω

1

V
∑

p

G0
p(iω + iω̃)G0

p−q(iω)G0
p−q(iω + iω̃)G0

p(iω)

×
∑

k

′
C0(k, iω̃) . (5.20)

The prime indicates, that the k-sum is restricted to |k| < 1/l. Inserting Eq.(5.20)
into Eq.(5.18) leads to

IF,AE =
−c
2

∂

∂φ

1

V
∑
q,p

1

β2

∑
ω̃,ω

fRPA
q (iω̃)G0

p(iω + iω̃)G0
p−q(iω)G0

p−q(iω + iω̃)G0
p(iω)

×
∑

k

′
C0(k, iω̃) . (5.21)



This is the Fock contribution evaluated by AE2

For |q| � kF and |ω̃|τel � 1 the polarization given in Eq.(5.20) can be evaluated,
yielding

∂

∂φ
Π0(q, iω̃)AE = ν|ω̃|τel

∂

∂φ
gWL(iω̃, φ) . (5.22)

gWL(iω̃, φ) is the well known weak-localization correction to the dimensionless av-
erage conductivity σ(iω̃) in units of the corresponding Drude conductivity σ0,

σ(iω̃) = σ0[1 + gWL(iω̃, φ)] , (5.23)

gWL(iω̃, φ) = −2∆

π

∑
Q

′ 1

DQ2 + |ω̃|+ 1/τϕ
. (5.24)

Here the x-component of Q is quantized according to Qx = 2π
L

(n+ 2φ/φ0).

Clearly, the approximation (5.22) cannot be correct for |q|l � 1, because then
the density vertices in Fig.5.2(a) can be dressed by singular Diffuson corrections, as
shown in Figs.5.2(b)–(d). As a consequence, this regime requires a special treatment.
This has already been noticed by Béal-Monod and Montambaux [72]. Unfortunately,
the sum of diagrams (b)–(d) in Fig.5.2 cancels to leading order in (kF l)

−1 [72], so
that at the first sight it seems that the calculation of the leading non-vanishing
behavior of ∂Π0(q, iω̃)/∂φ requires rather complicated mathematical manipulations.
However, there is a simple way to avoid this technical complication: As shown in
Ref. [71], current conservation implies that for small wave-vectors and frequencies
the polarization is of the form

Π0(q, iω̃) = ν
D̃(iω̃)q2

D̃(iω̃)q2 + |ω̃|
, (5.25)

where D̃(iω̃) is the generalized frequency-dependent diffusion coefficient, which is
related to the frequency-dependent average conductivity σ(iω̃) via [71]

D̃(iω̃)

D
=
σ(iω̃)

σ0

. (5.26)

Combining Eq.(5.26) with Eqs.(5.23) and (5.24), it is concluded that

∂

∂φ
D̃(iω̃) =

∂

∂φ
D[1 + gWL(iω̃, φ)] = D

∂

∂φ
gWL(iω̃, φ) . (5.27)

2see Eq.6 in Ref. [67]. AE have normalized the Cooperon using the three dimensional density
of states ν3 = 1/(∆V) instead of ∆, which gives rise to an extra factor 1/V in their notation.



From Eqs.(5.25) and (5.27) it is now obvious that the flux-dependence of the average
polarization can be expressed in terms of the weak localization correction (5.24) to
the dynamic conductivity. A straightforward calculation yields (ν = ν3)

∂

∂φ
Π0(q, iω̃) = ν

[
∂
∂φ
D̃(iω̃)q2

D̃(iω̃)q2 + |ω̃|
−
D̃(iω̃)q2 ∂

∂φ
D̃(iω̃)q2

(D̃(iω̃)q2 + |ω̃|)2

]

= ν
|ω̃|Dq2

(Dq2[1 + gWL(iω̃, φ)] + |ω̃|)2

∂

∂φ
gWL(iω̃, φ) . (5.28)

This expression, which is one of the main results of this chapter, is valid for systems
with continuous spectrum (1/τϕ > ∆) in the semiclassical regime |q| <∼ 2π/l and
|ω̃| <∼ τ−1

el . Note that for |q|l = O(1) Eq.(5.28) smoothly matches the short wave-
length result (5.22). In fact, using D = vF l/3, it is seen that for |gWL| � 1 both
expressions are identical at |q|l =

√
3. On the other hand, in the regime |q|l � 1

the long-wavelength result Eq.(5.28) is a factor of (ql)−2 larger than Eq.(5.22).

To see whether this infrared enhancement is sufficient to lead to a significant ex-
change contribution to the persistent current, Eq.(5.28) is substituted into Eq.(5.18).
This way one obtains

I
long

F = − c
2
T
∑
ω̃

∑
q

′ fq
∂
∂φ

Π0(q, iω̃)

1 + fqΠ0(q, iω̃)

≈ − c
2
T
∑
n

∑
q

′ |ω̃|
(Dq2[1 + gWL(iω̃, φ)] + |ω̃|)

∂
∂φ
gWL(iω̃, φ)

(1 + gWL(iω̃, φ))
, (5.29)

for the long-wavelength Fock contribution to the average current. The second line in
Eq.(5.29)is valid in the experimentally relevant limit |fqΠ0(q, iω̃)| � 1. Note that
the current (5.29) increases with the strength of the disorder, because the (negative)
weak-localization correction gWL in the denominator of Eq.(5.29) becomes more and
more important with increasing disorder, thus reducing the screening. Of course,
the above calculation is only controlled for |gWL| � 1, so that from now on this
correction will be ignored. For simplicity it is assumed that the ring is sufficiently
thin, such that only the motion along the circumference is diffusive. In this case
the q-sum in the square brace of Eq.(5.29) can be replaced by a one-dimensional
integral, which for L� l is independent of the ultraviolet cutoff.

I
long

F = − c
2
T
∑
ω̃

∑
q

′ |ω̃|
Dq2 + |ω̃|

∂

∂φ
gWL(iω̃, φ)

≈ − c
2
T
∑
ω̃

L

2π

∫ ∞
−∞

dq
|ω̃|

Dq2 + |ω̃|
∂

∂φ
gWL(iω̃, φ) . (5.30)



One obtains

I
long

F = − c
4
T
∑
ω̃

[
|ω̃|L2

D

]1/2
∂

∂φ
gWL(iω̃, φ) . (5.31)

The dimensionless weak-localization correction is evaluated for a thin ring by de-
composing it into a Fourier series.

gWL(iω̃, φ) ≈ −2∆

π

∑
Qx

′ 1

DQ2
x + |ω̃|+ 1/τϕ

≈ −2∆

π

∞∑
n=−∞

1

4π2Ec(n+ 2φ/φ0)2 + |ω̃|+ 1/τϕ

=: −2∆

π

[
P0

2
+
∞∑
j=1

Pj cos(4πjφ/φ0)

]
. (5.32)

Here the restriction |Q| < 1/l was dropped, since the sum falls of fast enough. The
Fourier components Pj are given by

Pj =
4

φ0

∫ φ0/2

0

dφ
∞∑

n=−∞

cos(4πjφ/φ0)

4π2Ec(n+ 2φ/φ0)2 + |ω̃|+ 1/τϕ

= 2

∫ ∞
−∞

dξ
cos(2πjξ)

4π2Ecξ2 + |ω̃|+ 1/τϕ
=

e−j
√
|ω̃|+1/τϕ

Ec

√
Ec
√
|ω̃|+ 1/τϕ

. (5.33)

Since Ec = D/L2 � ∆ the current I
long

F in Eq.(5.31) is dominated by frequencies
|ω̃| � ∆ and one can thus neglect 1/τϕ in Eq.(5.33) without violating the condition
1/τϕ > ∆. The current is thus given by

I
long

F = − c
4

2∆

π
T
∑
ω̃

[
|ω̃|
Ec

]1/2 ∞∑
j=1

4πj

φ0

e−j
√
|ω̃|/Ec√
|ω̃|Ec

sin(4πjφ/φ0) . (5.34)

For T → 0 the summation over the Matsubara frequencies can be performed exactly
by replacing T

∑
ω̃ → 1/(2π)

∫
dω̃:

I
long

F = − c∆

πφ0Ec

∫ ∞
−∞

dω̃
∞∑
j=1

je−j
√
|ω̃|/Ec sin(4πjφ/φ0) . (5.35)

Evaluating the ω̃-integral results in∫ ∞
−∞

dω̃e−j
√
|ω̃|/Ec =

4Ec
j2

, (5.36)



and one arrives at

I
long

F = −4c∆

πφ0

∞∑
j=1

1

j
sin(4πjφ/φ0) . (5.37)

Inserting the explicit form of the three dimensional level spacing ∆ = π2/(VmkF )
and the flux quantum φ0 = 2πc/e, the long-wavelength Fock contribution to the
current can finally be expressed as

I
long

F = −evF
L

π

(kFa)2
f(φ) , (5.38)

where a is the transverse thickness of the ring, and

f(φ) =
2

π

∞∑
j=1

sin(4πjφ/φ0)

j

= 1− 4φ/φ0 , for 0 < φ/φ0 < 1/2 . (5.39)

Comparing I
long

F with the the non-interacting current at constant particle number
[58, 59] given in Eqs.(4.67),(4.68) one surprisingly finds, that both have the same
order of magnitude. In the experimentally relevant parameter regime [50], this
current is smaller than the current due to the short wavelength part of the Coulomb
interaction calculated by AE [67].

In summary, a quantitative calculation of the long-wavelength exchange contri-
bution to the average persistent current in mesoscopic metal rings was presented.
The current has the same order of magnitude as the non-interacting persistent cur-
rent I(ϕ) at constant particle number. Also the leading weak localization correction
to the average polarization Π0(q, ω̃) was calculated in the regime |q| <∼ 2π/l and
∆ <∼ |ω̃| � τ−1

el , effectively taking singular Diffuson corrections to the density ver-
tices into account.



Chapter 6

Summary

The first part of this work (Chapter 2 and 3) was devoted to dephasing effects in
disordered metallic conductors. In accordance with experiments, the dephasing rate
1/τϕ was extracted from the weak localization correction to the conductivity and
therewith from the cutoff in the Cooperon propagator. A novel Eikonal approach was
introduced. This method provides a general formalism to calculate the Cooperon and
the Diffuson in the presence of dephasing fields. It is non-perturbative since infinite
orders in the field are included. An explicit formula describing both propagators
for arbitrary external fields was derived. This result was then applied to investigate
two important sources of dephasing: Nyquist noise (1/τnn) and external microwave
radiation (1/τAC). In the first case, dephasing is caused by the diffusive motion of
the background electrons in the sample and the fluctuation-dissipation theorem was
used to obtain the correlator of the corresponding random electric field. This way the
frequency- and temperature-dependence of 1/τnn(T, ε) is determined unambiguously
without the need of any further cutoffs. By rederiving the conventional results for the
temperature dependence [22,8,32], the physically motivated cutoff procedure used in
earlier works could thus be justified a posteriori. The frequency dependence of 1/τnn
was calculated for macroscopic and mesoscopic systems in dimensions d ≤ 2. These
results have apparently not been derived previously. Dephasing due to external
microwave radiation has previously only been studied for spatially constant fields
[22]. The Eikonal approximation allows also to investigate dephasing-fields with
finite wave-length q0 that induce density fluctuations in the metallic sample. It was
shown, that there exists a parameter regime, where 1/τAC is indeed dominated by the
spatial variation of the external radiation and the result is qualitatively different from
the case q0 = 0. The theoretical predictions are in agreement with experimental data
from Refs. [42, 46]. Without further effort the Eikonal method can also be applied
to calculate the cutoff 1/τD in the Diffuson. This was outlined in the last section of
Chapter 3. Known results for 1/τD in infinite systems are conveniently reproduced
and new results for mesoscopic samples are obtained. The Eikonal formalism can in
principle be applied to all kinds of fluctuating longitudinal fields. Recently dephasing
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due to 1/f -noise has been studied within the semiclassical path-integral approach
[37]. Here again a phenomenological cutoff has to be introduced and it should be
possible to circumvent this ambiguities within the Eikonal approach.

In the remaining chapters (Chapter 4 and 5) the non-linear response of meso-
scopic metal rings and the closely related problem of electron-electron interactions
was examined. Motivated by the experimental progress to decrease the size of
probes, the response of systems with discrete energy spectrum to a time dependent
field is analyzed. The usual Green’s function approach yields a time independent
current that is induced by the oscillating field in second order. It has recently been
argued, that it is such a current, generated by external noise, rather than a true
equilibrium current that is measured in the persistent current experiments [66]. By
exact manipulations the corresponding second order response kernel was shown to
contain an infinite term. This divergence is caused by an incorrect treatment of the
switching on procedure. Since diagrammatic averaging still produces a finite value,
it can not be applied in the discrete spectrum limit. By simply applying Fermi’s
golden rule it is outlined, that after a correct treatment the seemingly divergent
term gives rise to an induced current that grows linearly in time, even though the
external driving field oscillates with frequency ε. This result is however only valid
on a short times scale t < ∆−1. Beside this, there still is a time-independent contri-
bution Ith to the current. Careful numerical simulations revealed that this current
has the same sign as the canonical equilibrium current for non-interacting electrons
but, depending on the oscillating external flux, may be lager by one order of magni-
tude. Using a simple estimate, the spectrum is predicted to become continuous for
temperatures below the Thouless energy Ec. In the persistent current experiment by
Mohanty et al. [55] the temperature was still of order Ec and it is not clear whether
the spectrum has a discrete part or not. For smaller rings of nano-meter size [48] Ith
should in principle be measurable. As expected it turned out, that the second order
response function is independent of the underlying statistical ensemble. Due to the
close relation between non-linear response and electron-electron interactions [36,56]
this is in agreement with the assumption that interaction corrections to the canon-
ical persistent current I(ϕ) can be calculated for a fixed chemical potential [67].
This idea was revisited in the last chapter, where a simple way to calculate the long
wave-length Fock contribution to the persistent current was presented. Quantitative
results for this regime have not been derived previously. It turned out, that exchange
interactions can not explain the experimentally measured current. This justifies the
assumption made in Refs. [69, 75] where it was argued, that the Fock current can
be neglected while the classical (Hartree) contribution to the persistent current is
strongly enhanced due to the long-range nature of the bare Coulomb interaction.



Appendix A

How higher order response
functions can be calculated within
the Matsubara technique

The system considered here consists of non-interacting electrons in an external, time
dependent potential V (r, t). It is described by the Hamiltonian

Ĥ = Ĥ0 + Ĥ1(t) . (A.1)

The time independent one-particle Hamiltonian Ĥ0 contains all static potentials, e.g.
disorder. In the following, an index ’0’ will denote equilibrium-quantities determined
by Ĥ0. The time-dependent potential is given by

Ĥ1(t) :=
∑
q,q′

Vq,q′(t)Ψ̂
†
qΨ̂q′ (A.2)

and Vq,q′(t) = 〈q|Ĥ1(t)|q′〉 = 1
VVq−q′(t) is the Fourier-transform of the potential

V (r, t). It is assumed, that the external field has been switched on adiabatically. Ψ̂†q
and Ψ̂q are the creation- and annihilation operators for a particle in momentum-state
q.

A.1 The real time response function

To calculate real-time response functions to arbitrary order in V it is convenient to
use the Keldysh-technique. To be more concrete, consider these two examples: The
paramagnetic contribution to the current and the particle-density. In momentum-

123



time representation they can be expressed as

jpara(k, t) = − e

2m

∑
q

(k + 2q)〈Ψ̂†H,k+q(t)Ψ̂H,q(t)〉

= − e

2m

∑
q

(k + 2q)
1

i
G<q,k+q(t, t) , (A.3)

n(k, t) =
∑

q

〈Ψ̂†H,k+q(t)Ψ̂H,q(t)〉 =
∑

q

1

i
G<q,k+q(t, t) . (A.4)

The index H denotes time-evolution in the Heisenberg picture. The Green’s func-
tions are defined by

G<k,k′(t, t′) = i〈Ψ̂†H,k′(t
′)Ψ̂H,k(t)〉 ; G>k,k′(t, t′) = −i〈Ψ̂H,k(t)Ψ̂†H,k′(t

′)〉 (A.5)

and

GKk,k′(t, t′) = G<k,k′(t, t′) + G>k,k′(t, t′) . (A.6)

For equal times t = t′ one can rewrite GK as

GKk,k′(t, t) = 2G<k,k′(t, t) +
(
G>k,k′(t, t)− G<k,k′(t, t)

)
= 2G<k,k′(t, t)− i

(
〈Ψ̂H,k(t)Ψ̂†H,k′(t)〉+ 〈Ψ̂†H,k′(t)Ψ̂H,k(t)〉

)
= 2G<k,k′(t, t)− i〈U

†
H(t)[Ψ̂kΨ̂†k′ + Ψ̂†k′Ψ̂k]UH(t)〉

= 2G<k,k′(t, t)− iδk,k′ . (A.7)

Thus all time-dependent non-equilibrium properties of the quantities in
Eqs.(A.3),(A.4) are entirely determined by the Keldysh component GK of the Green’s
function. Calculating e.g. the current or density response functions is therefore
equivalent to calculating the response function for GK(t, t).

In the Keldysh formulation the Green’s function is represented as a matrix

G =

(
GR GK
0 GA

)
. (A.8)

GR and GA are the retarded and advanced Green’s function. For non-interacting
particles in an external field V (r, t) the Green’s function can be expressed through
the Dyson equation

Gk,k′(t, t
′) = G0

k,k′ +
∑
q,q′

∫ ∞
−∞

dt1G
0
k,q(t, t1)Vq,q′(t1)Gq′,k′(t1, t

′) . (A.9)



Here G0 is the Green’s function without external field. In equilibrium the Green’s
function depends only on the time-difference G0(t, t′) = G0(t− t′) and the Keldysh
component is related to the retarded and advanced functions via

G0,K(ω) =

∫ ∞
−∞

dteiωtG0,K(t) = tanh(
ωβ

2
)[G0,R(ω)− G0,A(ω)] , (A.10)

with β = 1/T . Since the response to the perturbation Ĥ1(t) is determined by the
Keldysh component at equal times, the function (note the factor 2 in Eq.(A.7) )

gk,k′(t) :=
1

2i
GKk,k′(t, t) (A.11)

is defined. Its Fourier transform is given by (momentum-variables are suppressed)

g(ω) =

∫ ∞
−∞

dteiωtg(t) =
1

2i

∫ ∞
−∞

dε

2π
GK(ε, ε− ω)

=
1

2i

∫ ∞
−∞

dε

2π
Sp[σ1G(ε, ε− ω)] , (A.12)

where

σ1 =

(
0 1
1 0

)
. (A.13)

The Fourier transformation for two time-variables is defined as

GK(ω, ω′) =

∫ ∞
−∞

dtdt′ei(ωt−ω
′t′)GK(t, t′) . (A.14)

Diagrammatic representations for the first and n-th order contribution to g(ω) are

ω

ω
ω

ε

εε+ω

ε+ω

ω
ω

n-th Orderfirst Order

ω−(ω+...+ω  )
n-11

n-1

1

Figure A.1: Diagrams for the first and n-th Order contribution to g(ω). Thin wiggled
lines symbolize the external field. The thick wiggled line is the ω-vertex. Solid lines
represent G0.

shown in Fig.A.1. In the following momentum-variables are suppressed and it has



to be kept in mind, that it is summed over all internal momenta. The first order
contribution is then given by

g(1)(ω) =
1

2i
V (ω)

∫ ∞
−∞

dε

2π
Sp[σ1G

0(ε+ ω)G0(ε)] . (A.15)

Correspondingly the n-th order contribution is

g(n)(ω) =
1

2i

∫ ∞
−∞

dω1 · · · dωn−1

(2π)n−1

(
V (ω1) · · ·V (ωn−1)V (ω − (ω1 + · · ·+ ωn−1))×∫ ∞

−∞

dε

2π
Sp[σ1G

0(ε+ ω)G0(ε+ ω1 + · · ·+ ωn−1) · · ·G0(ε+ ω1)G0(ε)]

)
.

(A.16)

By rewriting this expression as

g(n)(ω) =:

∫ ∞
−∞

dω1 · · · dωn−1

(2π)n−1

[
V (ω1) · · ·V (ωn−1)V (ω − (ω1 + · · ·+ ωn−1))×

K(n)(ω1, · · · , ωn−1, ω − (ω1 + · · ·+ ωn−1))
]
,

(A.17)

one introduces the response function

K(n)(ω1, · · · , ωn−1, ωn) :=
1

2i

∫ ∞
−∞

dε

2π
Sp[σ1G

0(ε+ ω1 + · · ·+ ωn)×

G0(ε+ ω1 + · · ·+ ωn−1) · · ·G0(ε+ ω1)G0(ε)] . (A.18)

To finally express the response function through retarded and advanced functions
one has to evaluate the matrix-products and use Eq.(A.10). It is convenient to use
the abbreviations

G0 := G0(ε) ; Gi := G0(ε+ · · ·+ ωi) (A.19)

and

h0 := tanh

(
εβ

2

)
; hi := tanh

(
(ε+ · · ·+ ωi)β

2

)
. (A.20)

Consider the matrix-product of three Green’s functions:

G2G1G0 =

(
GR2 GR1 GR2 GK1 + GK2 GA1

0 GA2 GA1

)(
GR0 GK0
0 GA0

)
=

(
GR2 GR1 GR0 GR2 GR1 GK0 + [GR2 GK1 + GK2 GA1 ]GA0

0 GA2 GA1 GA0

)
. (A.21)



The generalization to products of n matrices Gn · · ·G0 is straightforward. The
Keldysh component is given by the sum of all different products with just one factor
GKi where there are only retarded functions left of GKi and only advanced right of
it. For the n-th order response function one obtains

K(n)(ω1, · · · , ωn−1, ωn) =
1

2i

∫ ∞
−∞

dε

2π

(
h0GRn · · · GR1 [GR0 − GA0 ] +

h1GRn · · · GR2 [GR1 − GA1 ]GA0 + · · ·+ hn[GRn − GAn ]GAn−1 · · · GA0
)
. (A.22)

It will now be demonstrated, how this response function can be obtained within
the imaginary-time Matsubara technique.

A.2 The Matsubara response function

The Matsubara Green’s function is defined as

Gk,k′(τ, τ
′) := −〈T̂ Ψ̂H,k(τ)Ψ̂†H,k′(τ

′)〉 , (A.23)

where T̂ is the time-ordering-operator, and for equal times operators are ordered
so, that generators stand left of annihilators. The Matsubara function itself is
defined only for systems in equilibrium and thus only depends on the (imaginary-)
time-difference τ − τ ′. Here it will for the moment be treated formally like a non-
equilibrium quantity analogous to the Keldysh function. The following steps are
purely formal and can not be given any direct physical meaning. First the examples
given in Eqs.(A.3),(A.4) are reconsidered and analogous expressions in imaginary
time are written down.

jpara(k, τ) = − e

2m

∑
q

(k + 2q)〈Ψ̂†H,k+q(τ)Ψ̂H,q(τ)〉

= − e

2m

∑
q

(k + 2q)Gq,k+q(τ, τ) , (A.24)

n(k, τ) =
∑

q

〈Ψ̂†H,k+q(τ)Ψ̂H,q(τ)〉 =
∑

q

Gq,k+q(τ, τ) . (A.25)

Now an auxiliary quantity Ṽq,q′(τ) which fulfills Bosonic Matsubara boundary-
conditions is introduced:

Ṽq,q′(τ − nβ) = Ṽq,q′(τ) , (A.26)



for any integer number n. Even though this quantity is not the analytic continuation
of any physical potential, it will formally be treated like an external field and one
defines the operator

Ĥ1(τ) :=
∑
q,q′

Ṽq,q′(τ)Ψ̂†qΨ̂q′ . (A.27)

The time-evolution operator is also defined similar to the equilibrium situation,

Û(β, 0) = T̂ exp

[
−
∫ β

0

dτĤ1,D(τ)

]
, (A.28)

and the index D stands for Dirac-picture:

Ĥ1,D(τ) = eĤ0τĤ1(τ)e−Ĥ0τ . (A.29)

The Green’s function can be evaluated using the usual Feynman rules for the Mat-
subara technique:

Gk,k′(τ, τ
′) = −〈T̂ Û(β, 0)Ψ̂D,k(τ)Ψ̂†D,k′(τ

′)〉con0 . (A.30)

Now the expectation value is calculated with respect to Ĥ0, as indicated by the index
0, and con means, that only connected diagrams are taken into account. To describe
the response of the system, analogous to the Keldysh situation the quantities

g̃k,k′(τ) = Gk,k′(τ, τ) (A.31)

and

g̃k,k′(iω̃) =

∫ β

0

dτeiω̃τ g̃k,k′(τ) (A.32)

are defined. Here ω̃ = (2πn)/β are Bosonic Matsubara frequencies. In the following
Bosonic frequencies, in contrast to Fermionic ones, will always be marked by a
’tilde’. Momentum-variables will now again be suppressed and summation over
internal momenta will be assumed implicitly. The diagrams contributing to g̃(iω̃)
are equal to thous shown in Fig.A.1 but with the real frequencies replaced by the
corresponding Matsubara frequencies. The n-th order contribution is given by

g̃(n)(iω̃) =
1

(β)n−1

∑
ω̃1···ω̃n−1

Ṽ (iω̃1) · · · Ṽ (iω̃n−1)Ṽ (iω̃ − i(ω̃1 + · · ·+ ω̃n−1))×

1

β

∑
ε

G0(iε)G0(iε+ iω̃1) · · · G0(iε+ · · ·+ iω̃n−1)G0(iε+ iω̃)

=:
1

(β)n−1

∑
ω̃1···ω̃n−1

Ṽ (iω̃1) · · · Ṽ (iω̃n−1)Ṽ (iω̃ − i(ω̃1 + · · ·+ ω̃n−1))×

K̃(n)(iω̃1, · · · , iω̃n−1, iω̃ − i(ω̃1 + · · ·+ ω̃n−1)) , (A.33)



and the Matsubara response function is defined as

K̃(n)(iω̃1, · · · , iω̃n−1, iω̃n) :=
1

β

∑
ε

G0(iε)G0(iε+ iω̃1)×

· · · G0(iε+ · · ·+ iω̃n−1)G0(iε+ iω̃1 + · · ·+ iω̃n) . (A.34)

For positive frequencies ω > 0 the equilibrium Matsubara function is equal to the
analytic continuation of the retarded function, and for ω < 0 to the continuation of
the advanced function:

G0(iω) = G0,R(iω) for ω > 0 (A.35)

G0(iω) = G0,A(iω) for ω < 0 . (A.36)

With the abbreviations

G̃R/A0 (z) := G0,R/A(z) ; G̃R/Ai (z) := G0,R/A(z + iω̃1 · · ·+ iω̃i) (A.37)

and the choice ω̃i > 0 Eq.(A.34) can be written as

K̃(n)(iω̃1, · · · , iω̃n) =
1

β

[∑
ε>0

G̃R0 (iε) · · · G̃Rn (iε) +
∑

0>ε>−ω̃1

G̃A0 (iε)G̃R1 (iε) · · · G̃Rn (iε) +

∑
−ω̃1>ε>−(ω̃1+ω̃2)

G̃A0 (iε)G̃A1 (iε)G̃R2 (iε) · · · G̃Rn (iε) + · · ·+
∑

−(ω̃1+···+ω̃n)>ε

G̃A0 (iε) · · · G̃An (iε)

]
.

(A.38)

The frequency sums are evaluated by contour-integration:

1

β

∑
ε>0

G̃R0 (iε) · · · G̃Rn (iε) = − 1

2πi

∫ ∞
−∞

dεf(ε)G̃R0 (ε) · · · G̃Rn (ε) (A.39)

and

1

β

∑
0>ε>−ω̃1

G̃A0 (iε)G̃R1 (iε) · · · G̃Rn (iε) = − 1

2πi

[
−
∫ ∞
−∞

dεf(ε)G̃A0 (ε)G̃R1 (ε) · · · G̃Rn (ε)

+

∫ ∞
−∞

dεf(ε)G̃A0 (ε− iω̃1)G̃R1 (ε− iω̃1) · · · G̃Rn (ε− iω̃1)

]
. (A.40)

f(ε) = 1/(exp(βε) + 1) is the Fermi function. The analytic continuation to the real
axis according to iω̃n → ωn + i0 results in

1

β

∑
ε>0

G̃R0 (iε) · · · G̃Rn (iε) +
1

β

∑
0>ε>−ω̃1

G̃A0 (iε)G̃R1 (iε) · · · G̃Rn (iε)

→ − 1

2πi

∫ ∞
−∞

dε

[
f(ε)[GR0 − GA0 ]GR1 · · · GRn + f(ε+ ω1)GA0 GR1 · · · GRn

]
, (A.41)



with the abbreviations defined in Eq.(A.19). Similarly all remaining terms are eval-
uated and one obtains the analytically continued response function

K̃(n)(ω1, · · · , ωn) = −1

i

∫ ∞
−∞

dε

2π

[
f(ε)[GR0 − GA0 ]GR1 · · · GRn + f(ε+ ω1)GA0 [GR1 −

GA1 ]GR2 · · · GRn + · · ·+ f(ε+ ω1 + · · ·+ ωn)GA0 · · · GAn−1[GRn − GAn ]

]
.

(A.42)

Now f(ε) is connected to h(ε) := tanh(εβ/2) via

f(ε) =
1− h(ε)

2
, (A.43)

and since integrals over products of only retarded or only advanced Green’s functions
vanish, one finally arrives at

K̃(n)(ω1, · · · , ωn) =
1

2i

∫ ∞
−∞

dε

2π

[
h1[GR0 − GA0 ]GR1 · · · GRn + h2GA0 [GR1 − GA1 ]GR2 · · · GRn

+ · · ·+ hnGA0 · · · GAn−1[GRn − GAn ]

]
. (A.44)

This is just the same result as obtained within the real-time Keldysh technique in
Eq.(A.22).



Appendix B

Fluctuation-dissipation theorem

In Chap.2.3 the differential equation for the Cooperon in a time-dependent external
field V (r, t) was derived. This equation is used in Chap.3.3 to obtain the dephasing
time due to Nyquist noise. In this case it is assumed, that the fluctuating field is
generated by the diffusive motion of the background electrons. Since the electrons
are neither ’external’ (i.e. they have to satisfy the Pauli principle) nor classical, this
procedure is quite subtle and part of the origin for the recent controversy about zero
temperature dephasing [38, 32, 43, 25]. To be free of any ambiguities and physically
motivated cutoffs one must in principle treat electron-electron interactions quantum
mechanically from the beginning. The derivation of an equation for the Cooperon
in the presence of quantum fields is still an open problem. In the following the steps
leading to the semiclassical Nyquist noise result will be outlined. Since the whole
system is in thermodynamic equilibrium, the total electric scalar potential generated
by the Coulomb charge of the electrons must be time independent. After averaging
over disorder translational invariance is restored and thus due to charge neutrality
the average scalar potential cancels with the potential Vat from the fixed positive
background charge of the atoms in the system1. Quantum mechanically the scalar
potential generated by the electrons is described by the observable

V̂ (r, t) =

∫
dr′f(r′ − r)n̂H(r′, t) . (B.1)

n̂H(r′, t) = Ψ̂†H(r′, t)Ψ̂H(r′, t) is the density-operator in the Heisenberg represen-
tation. The disorder average of the quantum-statistical expectation value 〈· · ·〉 =

Sp[e−βĤ · · · ]/Sp[e−βĤ ] is thus given by 〈V̂ (r, t)〉 = −Vat. In momentum-frequency
space one obtains

V̂p(ω) =

∫
drdtV̂ (r, t)e−i(p·r−ωt) = fpn̂p(ω) , (B.2)

1Here a jellium model is presumed where the positive background charge is uniformly distributed
in space.
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where fp is for different dimensions given in Eqs.(2.79) - (2.81) and n̂p =∫
dre−ip·rn̂(r) is the Fourier transform of n̂(r). Assuming a Gaussian probability

distribution, the Fourier transform of the random Nyquist noise field V (p, ω) will
now be defined through its first and second moment. The first moment vanishes
and the second moment is defined as the diffusive limit (|p| < 1/l and |ω| < 1/τel)
of the averaged correlator for V̂p(ω). Since the correlation function is an observable
quantity, it must be expressed through an hermitian operator. The canonical way
to do this, is to use the symmetric product [76] (1/2)[V̂p(ω)V̂p′(ω

′) + V̂p′(ω
′)V̂p(ω)]

which meets the hermiticity condition. Consequently one defines V (p, ω) and the
Nyquist noise probability distribution via

〈V (p, ω)〉nn := 0 , (B.3)

〈V (p, ω)V (p′, ω′)〉nn :=
1

2
〈V̂p(ω)V̂p′(ω′) + V̂p′(ω′)V̂p(ω)〉 − 〈Vp(ω)〉 〈Vp′(ω′)〉 ,

(B.4)

where momenta and frequencies are limited to |p|, |p′| < 1/l and |ω|, |ω′| < 1/τel.
Averaging over the Nyquist noise distribution is denoted by 〈· · ·〉nn. From transla-
tional invariance in space and time it follows, that

1

2
〈V̂p(ω)V̂p′(ω′) + V̂p′(ω′)V̂p(ω)〉 = Vδp,p′2πδ(ω − ω′)f 2

p

i

2
PK(p, ω) (B.5)

where the Keldysh component of the two-particle Green’s function PK is introduced
in analogy to the one-particle function GK in Eq.(A.6),

PK(p, ω) := −i
∫
drdte−i(p·r−ωt)〈n̂(r, t)n̂(0, 0) + n̂(0, 0)n̂(r, t)〉 . (B.6)

The retarded and advanced functions are defined as

PR(p, ω) := −i
∫
drdte−i(p·r−ωt)Θ(t)〈n̂(r, t)n̂(0, 0)− n̂(0, 0)n̂(r, t)〉 , (B.7)

PA(p, ω) := i

∫
drdte−i(p·r−ωt)Θ(−t)〈n̂(r, t)n̂(0, 0)− n̂(0, 0)n̂(r, t)〉 . (B.8)

For the single-particle functions the relation between the different components is
given by Eq.(A.10). The corresponding connection in the two-particle case is

PK(p, ω) = coth

(
ωβ

2

)[
PR(p, ω)− PA(p, ω)

]
= 2i coth

(
ωβ

2

)
Im PR(p, ω) .

(B.9)

Inserting this in Eq.(B.5) yields

1

2
〈V̂p(ω)V̂p′(ω′) + V̂p′(ω′)V̂p(ω)〉 = −Vδp,p′2πδ(ω − ω′)f 2

p coth

(
ωβ

2

)
Im PR(p, ω) .

(B.10)



The retarded Green’s function PR can be obtained from the Matsubara function

P(p, iω̃) = −
∫ β

0

dτ

∫
dre−i(p·r−ω̃τ)〈T̂ n̂(r, τ)n̂(0, 0)〉 , (B.11)

by the usual continuation iω̃ → ω + i0. Using Wick’s theorem, the expectation
value can be decomposed in totally connected diagrams and a product of the average
particle numbers,

〈T̂ n̂(r, τ)n̂(0, 0)〉 = 〈T̂ n̂(r, τ)n̂(0, 0)〉con + 〈T̂ n̂(r, τ)〉〈T̂ n̂(0, 0)〉 . (B.12)

Only the connected diagrams contribute to the Nyquist noise correlator defined in
Eq.(B.4) since the second term is canceled by the subtracted averages in Eq.(B.4).
But the connected diagrams just yield the usual polarization Π(p, iω̃) of the system,

Π(p, iω̃) = −
∫ β

0

dτ

∫
dre−i(p·r−ω̃τ)〈T̂ n̂(r, τ)n̂(0, 0)〉con . (B.13)

Looking at Eq.(B.10) one thus has to evaluate the function

f ∗p(iω̃) := ImfpΠ(p, iω̃)fp = Im[fq + fpΠ(p, iω̃)fp] . (B.14)

Diagrammatically f ∗p(iω̃) is depicted in Fig.B.1. The total polarization Π can be

= +

Figure B.1: Diagrammatic expression for the effective interaction. The thick wiggled
line represents fRPA(q, ω) while thin wiggled ones stand for the bare interaction fq.
The shaded bubble is the disorder averaged total polarization Π(p, iω̃).

decomposed into a series of diagrams containing only the irreducible polarization Π0

as shown in Fig.2.6 (a) for diffusive systems. Obviously the function f ∗ is nothing
but the imaginary part of the effective RPA-interaction fRPA(p, ω) = fq/ε(q, ω) and
from Eq.(B.10) together with the definition (B.4) one obtains

〈V (p, ω)V (p′, ω′)〉nn = −Vδp,p′2πδ(ω − ω′) coth

(
ωβ

2

)
Im fRPA(p, ω) . (B.15)

Using the approximation for the classical diffusive limit with |p| < 1/l and |ω| <
1/τel given in Eq.(2.95), finally yields

〈V (p, ω)V (p′, ω′)〉nn = Vδp,p′2πδ(ω − ω′) coth

(
ωβ

2

)
ω

νdDp2
. (B.16)
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