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“Nothing in the history of life is more constant than change.” 

(Charles Darwin, English Natural Scientist, 1809–1882) 
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Introduction 

Over the past centuries human impact has led to environmental changes at global 

scale, and especially within the last few decades the world has been changing at an 

increasing rate (Sala et al. 2000, Susan 2007). Most of these megatrends, such as 

rising CO2 concentrations and temperatures in the atmosphere and oceans as well 

as rising sea level and increasing climatic variability are linked to and further 

amplified by increasing human populations (Susan 2007), which is expected to hit the 

nine billion benchmark before the 2050s (Lee 2011, Barnosky et al. 2012). Also the 

demand of increasing economic wealth and increasing use of energy from fossil and 

non-fossil fuels (Tilman et al. 2009), especially of developing countries contributes to 

steeply rising greenhouse gas emissions (Ehrlich et al. 2012). Biodiversity is known 

to be sensitive to these megatrends, including atmospheric CO2, climate, vegetation, 

nitrogen deposition, biotic exchange and land use change, therefore this will lead to 

further declines and change in biodiversity (Sala et al. 2000). 

To cope with increasing food demands for a growing world population, agriculturally 

used areas are being expanded and agricultural utilization on existing areas is 

intensified to maximize crop production (Tscharntke et al. 2012). In order to improve 

yields, increasing amounts of fertilizer are applied and where possible the utilization 

frequency is increased (Vickery et al. 2001). Grasslands cover over two thirds of the 

agriculturally used area in the world, and over one third of the agriculturally used area 

in Europe (FAOSTAT 2013). Consequently, grasslands are of great economical 

importance for fodder production, livestock breeding and in recent years for 

bioenergy (Gelfand et al. 2013). However, since grasslands can harbour up to 70 

plant species per 20 m² (Herben and Huber-Sannwald 2002), these highly diverse 

biomes are also of great importance for conserving biodiversity, maintaining 

ecosystem functioning as well as providing space for recreation (Schmid 2010). 

Agricultural intensification is a threat to biodiversity. Fertilizer application was shown 

to decrease plant diversity and to shift plant community composition towards highly 

productive and competitive grasses (Smart et al. 2006, Wesche et al. 2012). Nitrogen 

fertilizer can also affect nutrient cycling in grasslands, such as N mineralization and 

nitrification, as well as increasing soil nitrate and ammonium concentrations (Mueller 

et al. 2013).  
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Studies have linked emissions of greenhouse gases, such as N2O (nitrous oxide), to 

grassland management (Li et al. 2013) or animal production systems (Clough et al. 

2013). Lower cutting frequencies of one or two cuts per year may maintain high 

species diversity by preventing succession (Balmer and Erhardt 2000), when no 

fertilizers are applied. In contrast, higher cutting frequencies have been shown to 

lead to a decline in species richness (Zechmeister et al. 2003). The application of 

pesticides in order to reduce herbivorous invertebrates, plant disease or unwanted 

plant species was also shown to affect plant diversity and higher tropic guilds (Wilson 

et al. 1999, Blake et al. 2011). 

Many higher trophic levels, such as herbivorous invertebrates, are highly specialized 

in their feeding and habitat requirements. Diverse plant communities are therefore of 

great importance host plants to maintain species diversity at higher trophic levels. 

Decreasing diversity in intensively agriculturally managed areas is shown to lead to 

cascading effects on invertebrate species (Tylianakis et al. 2008, Kleijn et al. 2009), 

where only generalists can maintain stable populations (McKinney and Lockwood 

1999). Ecosystem functions are also influenced by agricultural management. 

Fertilizer application can decrease recharge of groundwater (Rose et al. 2012a), 

increase nitrous oxide emissions (Clayton et al. 1997) and even lead to declines in 

ecosystem productivity on longer time scales (Isbell et al. 2013). High plant 

biodiversity has been shown to play an important role to sustain multiple ecosystem 

services in grasslands, such as productivity, invasion resistance or stress tolerance 

(Zavaleta et al. 2010). 

Herbivorous invertebrates can strongly affect plant biomass production and species 

composition in grasslands (Curry 1994, Scherber et al. 2003, del-Val and Crawley 

2004, Scheidel and Bruelheide 2005, Scherber et al. 2006). Invertebrates, such as 

grasshoppers and snails, are often the dominant invertebrate herbivores in temperate 

agricultural grassland ecosystems (Stein et al. 2010) and have been shown to affect 

several components within an ecosystem (Belovsky and Slade 2000). Herbivores can 

enhance plant diversity through feeding directly on competitively dominant plant 

species and therefore indirectly affecting plant competition (Olff and Ritchie 1998). 

Herbivores can be expected to influence nutrient cycling and plant species 

composition under diverse management regimes and plant functional group 

combinations (Belovsky and Slade 2000, Allan and Crawley 2011). 
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However, combined with nutrient enrichment, herbivory may even further accelerate 

nutrient cycling. This results in an increase of components of the nitrogen flux, since 

nitrogen cycling in the soil is related to many important ecosystem functions, such as 

biodiversity, productivity (Oelmann et al. 2011) or water balance (Rose et al. 2012a). 

Plant functional group removal experiments using herbicides (e.g. to promote forbs 

versus graminoids for conservation) have demonstrated a positive effect of forb 

species enhancement on invertebrates (Blake et al. 2011). We expect that a removal 

experiment better reflects the effects of herbivory and varying regimes of grassland 

management on nitrogen flux, than a sown diversity gradient (Diaz et al. 2003). 

But still the interactions between land use change, agricultural intensification, 

declines in biodiversity and changes in species composition represent one of the 

largest uncertainties in projections of future biodiversity change (Sala et al. 2000). 

Most experiments to date have relied on artificially sown gradients in plant diversity 

(e.g. “Jena-Experiment” (Roscher et al. 2004), “Cedar Creek” (Tilman et al. 2012). 

Other long-term grassland experiments (e.g. “Rengen Grassland Experiment”) have 

studied the effects of fertilizer application and cutting frequency (Pavlů et al. 2011), 

but have not experimentally manipulated the composition of established grasslands. 

In particular, the effects of functional group manipulation in combination with 

experimentally increased herbivore pressure in mature grassland and its 

consequences for ecosystem processes are largely unexplored. There is still too little 

knowledge about the direct and indirect impacts of agricultural intensification, further 

loss of species diversity and shifts in plant functional group composition on trophic 

interactions and ecosystem processes in grasslands. It is also important to better 

understand how nitrogen cycling and N2O emissions respond to invertebrate 

herbivores in combination with agricultural management and shifts in plant functional 

group composition and plant diversity.  

With this thesis, I aimed to further investigate the direct and indirect effects and 

interactions between cutting, fertilizing, herbivory, nutrient cycling, productivity and 

shifts in plant composition and diversity. Twelve treatment combinations were 

therefore created by independently combining two cutting frequencies, two fertilizer 

application levels and three different sward types via manipulation of functional 

groups, also installing mesocosms on the experimental plots. 
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Study Design & Site 

This studies for this thesis were performed between 2010 and 2013 as part of the 

"GrassMan"-Experiment (Petersen et al. 2012) near the towns of Neuhaus (Solling) 

and Silberborn in the Solling Mountains, which are situated in Northern Germany 

(51°440 N, 9°320 E, 490 m a.s.l.). The study site was documented by the 

experimental farm of the University at Relliehausen as extensively managed 

permanent grassland. 

The vegetation prior to the start of the experiment was a nutrient poor, moderately 

wet Lolio-Cynosuretum grassland with high abundances of Agrostis capillaris (L.), 

Festuca rubra (L.) and Rumex acetosa (L.), Veronica chamaedrys (L.) and 

Ranunculus repens (L.) (Petersen et al. 2012). Mean annual precipitation is 1028 mm 

and mean annual temperature is 6.9 °C (Deutscher Wetterdienst, 1961–1990, station 

Holzminden-Silberborn, 440 m above sea level). In 2010, the year in which data for 

this study were collected, mean annual temperature was 8.0 °C and annual 

precipitation was 1110 mm. The dominant soil type in experimental area is a shallow 

(40–60 cm), stony Haplic Cambisol, developed on sediments of loess on the Middle 

Bunter (Triassic sandstone) formation with a loamy silt texture (Keuter et al. 2012). 

The experiment was established in 2008 on permanent, formerly extensively 

cattle-grazed grassland and laid out as a three-factorial latin rectangle (Clewer and 

Scarisbrick 2001) with the following factors (Fig. 1.1): (i) plant functional group 

removal (3 levels) using herbicides, (ii) fertilizer application (2 levels) and (iii) cutting 

frequency (2 levels), resulting in 12 treatment combinations. To study the direct and 

indirect interactions within the system, in 2010 we additionally installed two in-field 

lysimeter mesocosms per plot. In 2011, both lysimeters were covered with a cage 

and one lysimeter populated with herbivores, whereas the other was the control. 

To manipulate plant functional group presence, we applied (i) a combination of the 

forb-specific herbicides Fluroxypyr (Starane; Dow AgroSciences, Munich, Germany; 

3 L ha-1) and Mecoprop-P (Duplosan; KV, Du Pont de Nemours, Neu-Isenburg, 

Germany; 3 L ha-1) or (ii) the graminoid-specific herbicide Select 240 EC (Stähler Int., 

Stade, Germany; 0.5 L ha-1), resulting in three levels of plant diversity: i) forb reduced 

(=graminoid rich), ii) graminoid reduced (=forb rich) and iii) control. 
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Herbicides were applied once in June 2008 (“pulse” experiment sensu Bender et al. 

(1984)). In 2009 and 2010, plots were treated with N-fertilizer (Calcium ammonium 

nitrate N27: 13.5% NH4
-N, 13.5% NO3

-N, 4% MgO, 6% Ca) at two equal doses (2 x 

90 kg N ha−1) in April and May/June; in addition, NPK-fertilized plots received 30 kg P 

per ha and 100 kg K per ha in early June (Thomaskali®, 8% P2O5, 15% K2O, 20% 

CaO). On control plots we did not apply NPK-fertilizer. Figure 1.1 depicts the study 

design. 

 

 

Figure 1.1: Experimental design of the Grassman Experiment, showing the Latin rectangle with 12 treatments in 

6 replications. GRA- = graminoid reduced plots (=forb enhanced); FORB- =forb reduced (=graminoid enhanced); 
CON = Control (no herbicide application). The grey area around and between the plots is mown monthly. Plot size 
15 m x 15 m, space between plots 3 m, between blocks 5 m. 

 

Plots were mown either once (in July) or three times a year (May, July, September) 

using a Haldrup® forage combine harvester (Inotec Engineering GmbH, Ilshofen, 

Germany) at a cutting height of 7 cm. The resulting 12 treatment combinations 

(equalling one block of the latin rectangle; Fig. 1.1) were arranged at random and 

replicated six times, resulting in 72 plots. Each plot was a square of 15 m side length 

and surrounded by at least 3 m of regularly mown area between the plots of a block 

and 5 m between two blocks. 
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This mowing was done every two to 

three weeks during the growing season 

using a rotor mowing machine 

(Fig. 1.2), to avoid input of large 

amounts of plant seeds into the plots in 

late summer and to impede invertebrate 

to move easily between plots. 

 

 

Note that plant functional groups were not entirely removed but strongly reduced in 

abundance, with slow recovery after herbicide application. However, even three 

years after herbicide application, all herbicide treatments significantly affected several 

vegetation parameters, such as compressed sward height, biomass, functional group 

composition and plant species richness (Table 1.1). For more details on the 

experimental design, setup and treatment effects on vegetation see Petersen et al. 

(2012) and Rose et al. (2012a, 2012b). 

 

Figure 1.3: The GrassMan Experiment from above in 2010 (© L. Rose). 

 

 

Figure 1.2: Mowing of the space between plots and 

blocks. 
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Assessment of vegetation parameters 

To investigate the effects of our treatments on plant diversity, productivity and the 

relationship between diversity and productivity, which is the focus of chapter 2, we 

conducted vegetation surveys (Fig. 1.4) twice a year 

(beginning of May and end of August). We recorded 

species number and identity for each plot and 

estimating yield shares of each species, as well as 

functional groups’ shares (grasses, herbs and 

legumes) according to Klapp & Stählin (1936) in two 3 

m x 3 m quadrats per plot. The total species pool 

consisted of 73 species that were found over the 

whole growing season at the site. The mean overall 

species richness per plot was 25.3 species across all 

study years, disregarding the differences in 

management system or sward type (for more detailed Information see chapter 2). 

 

Slug sampling 

To assess the treatment effects on diversity and abundance of slugs, we used a 

cover board technique (Oggier et al. 1998, Severns 2005) by placing a 50 cm x 

41.5 cm wooden board (Masonite with a 

thickness of 0.4 cm) in the middle of 

each plot (Fig. 1.5). While this sampling 

method excludes the subterranean 

component of slug populations 

(Hawkins et al. 1998) or small species 

(McCoy and Nudds 1997), it has been 

proven to be a reliable measure of slug 

activity, abundance and species 

richness on the soil surface (Suominen 

et al. 2003). 

Figure 1.5: Wooden board for slug sampling in the field, 
covered with a plant pot as weight. 

Figure 1.4: Performing vegetation 

surveys in the GrassMan Experiment 
(Tatiana From). 
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Since slugs prefer rather humid soil conditions (Ondina et al. 2004, Willis et al. 2008), 

sampling was performed in two cool and wet periods in early May and late 

September 2010. In each sampling period, wooden boards were left undisturbed for 

four weeks, allowing slugs to seek shelter over an extensive time period. At the end 

of both sampling periods, we collected all slugs found within five minutes of intensive 

search in the dead vegetation and the upper soil (first 2-3 cm topsoil) and transferred 

them into ethanol (70% w/v) for later enumeration and identification (for more 

information see chapter 3). 

 

Leafhopper sampling 

To sample leafhoppers, in order to assess their responses to our experimental 

treatments, we used two methods. 

i) Sweep netting: We used a sweep net 

(Fig. 1.6; Heavy Duty Sweep Net, 

7215HS, BioQuip, diameter: 38 cm), 

walking a circular transect with a 

diameter of 8 m around the centre of 

each plot (30 sweeps each) in dry 

weather on two occasions (at the 

beginning of July and at the end of 

August 2010). Transects were approximately 20 m long, and there was a 

distance of at least 4 m to the edge of each plot. 

 

ii) Pan Traps: We sampled leafhoppers by 

placing two transparent pan traps 

(Fig. 1.7), containing an ethylene glycol / 

water mixture (1:3) with 1 m distance to 

one another close to the centre of each 

plot. Pan traps were about 5 cm above 

vegetation height and were active for 

one week in five time intervals in 2010 (end of June, mid-July, early 

August, mid-August, end of August).   

Figure 1.6: Sweep netting in July 2010. 

Figure 1.7: Pan trap in the field. 
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The specimens caught with both methods were transferred individually into ethanol 

(70 % vol.) and identified to species level in the laboratory using Biedermann and 

Niedringhaus (2004) and Kunz et al. (2011). One species with woody host plants was 

excluded, as we assumed that it had been swept off its host tree by wind and was not 

a true member of the grassland fauna. Species whose larvae used herbs or grasses 

as host plants and only the imagines fed on trees were included in the analysis. 

For female specimens of several genera identification to species level is not possible 

(e.g. Psammotettix) (Biedermann and Niedringhaus 2004, Kunz et al. 2011). Thus, if 

male specimens were present, female specimens were assumed to belong to the 

same species. If not, they were only identified to genus level. If males of more than 

one species of a genus were present, the number of females was assumed to mirror 

that of males (for more information see chapter 4). 

Lysimeters 

Lysimeters (Fig. 1.8) were made from transparent Plexiglas cylinders (height 30 cm, 

inside diameter 14.6 cm, wall thickness 0.3 cm). A transparent material was selected 

in order to control if the soil core was free from cracks, holes or large stones.  

 

Figure 1.8: Lysimeter as installed in the field. Left picture shows a lysimeter with a cage for the herbivores; 

middle picture shows lysimeter bottom; right picture shows lysimeter with the wide neck bottle to collect 

leak water. 
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To install lysimeters, a sharpened, tightly fitting metal ring was fixed to the bottom 

and a metal cap on the head end of the plastic cylinder to avoid damage of the 

Plexiglas whilst driving it into the soil using a hammer. 

After extracting the cylinder and the intact soil core, a baseplate with a culvert 

(diameter 1.6 cm) was fixed to the bottom of the lysimeter using a light curing 

adhesive (© Acrifix 192) (Fig. 1.9). To collect the drainage water, a Plexiglas tube 

(length 10 cm) was connected to the culvert in the baseplate (Fig. 1.8 & 1.9). To 

ensure effective drainage of drainage water the baseplate was covered with 100 

fiberglass wicks (diameter 0.1 cm) (Fig. 1.8, middle), which channeled the water from 

the lysimeter through the culvert into a PE-bottle placed underneath (Fig. 1.8, right). 

The hole where the lysimeter was extracted from was stabilized using a PVC-cylinder 

(height 50 cm, inside diameter 15.5 cm) as permanent cladding, also to protect the 

lysimeter and allow frequent weighing and sampling of the soil water (PVC pipe 

shown in Fig. 1.9, left). To give the soil core time to regenerate after the disturbance, 

the lysimeters were installed one year prior to the start of the herbivory experiment in 

August and September 2010. 

 

Figure 1.9: Installation of lysimeters, Right: The plexiglas cylinder of the lysimeter is stabilized using a PVC pipe 

whilst driving it into the ground. Left: fixing of the base plate to the lysimeter after the soil core is extracted from 

the ground. 
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Cages on top of the aboveground part of each 

lysimeter were made of gauze of 1.5 mm mesh 

size, which were sewn to fit tightly to the lysimeter 

and additionally fixed using a zip tie (Fig. 1.8, left). 

The whole gauze cage was stabilized using a 

bamboo stick with a length of 45 cm, which was 

pushed 5 cm into the ground for to prevent the 

structure from moving in heavy wind and rain. 

At the end of the experiment (02nd September 

2011), we determined several parameters, such as 

above-ground biomass, plant composition and yield 

proportions, impact of herbivory, N-cycle 

measurements and N2O gas fluxes (for more 

information see chapter 5). 

 Figure 1.10: Lysimeter in the field, 

covered with a gauze cage. 
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Study Organisms 

Slugs 

In chapter 3 we focus on the effects of our treatments on slugs (Mollusca: 

Gastropoda), which are a major component of the invertebrate community. With our 

approach, we found slugs of three species, Arion distinctus (MABILLE, 1868), 

Deroceras reticulatum (O. F. MÜLLER, 1774) and Arion lusitanicus (MOQUIN-

TANDON, 1855). Slugs, such as D. reticulatum are considered important crop pests 

in agriculture, causing severe damage, e.g. in oilseed rape fields (Frank 1998). Slugs 

prefer humid and high-biomass habitats (Rathcke 1985, Ondina et al. 2004). D. 

reticulatum was also shown to shift community composition towards graminoids, due 

to its preference for forbs (Allan and Crawley 2011) and nitrogen-rich plants such as 

Trifolium spp., whereas graminoids such as Dactylis glomerata (L.) are mostly 

avoided (Cottam 1986). Additionally exclusion experiments (Curry 1994, Scherber et 

al. 2003, del-Val and Crawley 2004, Scheidel and Bruelheide 2005, Scherber et al. 

2006) have shown that slugs can strongly affect plant biomass production and 

species composition in grasslands. Compared to other grassland invertebrates, slugs 

have low mobility, which makes them a good study organism on the rather small 

experimental plots of 225 m².  

 

Figure 1.11: Slug (D. reticulatum) on a leaf of Rumex acetosa within the GrassMan experiment. 



INTRODUCTION   CHAPTER 1 

20 

Leafhoppers 

In chapter 4 we study the treatment effects on leafhoppers, planthoppers and 

froghoppers (Auchenorrhyncha), a highly species-rich plant-sucking insect group that 

has been shown to be strongly influenced by management regime, vegetation 

structure and plant species composition (Nickel 2003, Biedermann et al. 2005). 

Leafhoppers play an important role both as herbivores and as prey for higher trophic 

levels. Their rapid reaction to changes in management regime makes leafhoppers 

very appropriate for ecological studies, despite most species being highly mobile 

(Waloff 1973, Nickel 2003). 

Many leafhopper species are shown to have highly specialized feeding preferences 

(Nickel and Hildebrandt 2003) and most of the species found within our study site 

preferably feed on graminoids (see Table 1.1). 

 

 

Figure 1.12: The three most abundant leafhopper species within the GrassMan experiment. Left: Arthaldeus 
pascuellus; middle: Philaenus spumarius; right: Streptanus sordidus (© pictures by Gernot Kunz). 
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Table 1.1: Species list of the Auchenorrhyncha within the GrassMan experiment with food preferences 

according to Nickel and Remane (2002) and their abundance. 

species feeding preference abundance 

Acanthodelphax spinosa graminoids 14 

Anoscopus flavostriata graminoids 11 

Anoscopus serratulae graminoids 5 

Anoscopus spec. graminoids 10 

Aphrodes makarovi forbs 8 

Aphrophora alni forbs 4 

Arthaldeus pascuellus graminoids 4414 

Balclutha punctata graminoids 54 

Cicadella viridis graminoids 8 

Cicadula persimilis graminoids 128 

Colobotettix morbillosus forbs 1 

Conomelus anceps graminoids 83 

Cosmotetix costalis graminoids 1 

Criomorphus albomarginatus graminoids 1 

Deltocephalus pulicaris graminoids 162 

Elymana sulphurella graminoids 6 

Errastunus ocellaris graminoids 5 

Eupteryx aurata forbs 2 

Eupteryx vittata forbs 1 

Evacanthus interruptus forbs 1 

Javesella dubia graminoids 58 

Javesella pellucida graminoids 29 

Kosswigianella exigua  graminoids 1 

Macrosteles viridigriseus graminoids 174 

Macustus grisescens graminoids 1 

Megadelphax sordidula graminoids 1 

Megophtalamus scanicus forbs 34 

Mirabella albifrons graminoids 1 

Neophilaenus lineatus graminoids 24 

Philaenus spumarius forbs 698 

Psammotettix confinis graminoids 49 

Stenocranus minutus graminoids 4 

Stiroma bicarinata graminoids 1 

Streptanus sordidus graminoids 492 

Xanthodelphax stramineus graminoids 5 

Zyginidia scutellaris graminoids 6 
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Research objectives & chapter outline 

In the studies presented in this thesis, I show the effects of different combinations of 

two cutting frequencies, two levels of fertilizer application, and three levels herbicide 

induced changes in functional group composition (grass reduced, forb reduced; no 

herbicides) on plants and herbivorous invertebrates.  

The effects of these treatments on plant composition, diversity, productivity and the 

relationship between diversity and productivity is the focus of chapter 2. Further we 

investigate how these treatment effects on the vegetation influences the diversity and 

abundance of the next trophic guild, namely herbivorous invertebrates such as slugs 

(chapter 3) and leafhoppers (chapter 4).  

Also I examine how ecosystem processes, such as nutrient cycling (chapter 5) are 

influenced by experimentally increased herbivore activity, which is especially 

interesting in the context of agricultural intensification and deterministic plant species 

loss. 

 

The main hypotheses were: 

I. Reduction of graminoids due to functional group manipulation enhances 

species richness, whereas reduction of forbs will decrease plant diversity 

(chapter 2 – 5). 

 

II. Plant species diversity is correlated with productivity (chapter 2). 

 

III. Productivity will increase with higher cutting frequency and fertilizer 

application, whereas plant diversity will decrease with fertilizer application 

(chapter 2 – 5).  

 

IV. Feeding damage on leave of Rumex acetosa is affected by abundance of 

invertebrate herbivores and management regime (chapter 3).  
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V. Diversity and abundance of herbivorous invertebrates are positively affected 

by plant species diversity (chapter 3 & 4). 

 

VI. Due to feeding preferences, diversity and abundance of herbivorous 

invertebrates, such as slugs or leafhoppers, are affected by changes in 

plant functional group composition (chapter 3 & 4). 

 

VII. Higher cutting frequency has negative effects on diversity and abundance of 

herbivorous invertebrates (chapter 3 & 4). 

 

VIII. Fertilizer application has positive effects on abundance of herbivorous 

invertebrates but negative effects on their diversity (chapter 3 & 4). 

 

IX. Feeding intensities and preferences of different herbivore species may affect 

plant competition and therefore result in differences in plant species 

richness and composition (chapter 5). 

 

X. Herbivory and fertilizer application accelerate nutrient cycling (chapter 5). 
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 Abstract 

Recent studies in the field of biodiversity and ecosystem functioning in temperate 

grassland systems reported a variety of results regarding the nature of the 

relationship between diversity and productivity. Findings supporting the positive 

effects of species diversity on productivity came mostly from experimental 

communities. Studies in natural and semi-natural grassland communities, on the 

contrary, often reported weak or even no relationship between the two variables. 

These studies were, however, criticized for not including productive sites, confounded 

site and diversity effects, as well as low control of external factors. We present the 

results of a 5-year biodiversity experiment in a semi- natural grassland with a more 

than one-hundred-year-old history of extensive agricultural use. We managed to 

create three different sward types via removal of functional groups and a gradient of 

management intensity resulting from a combination of two cutting frequencies and 

nutrient input. In our study, overall species richness had no significant effect on the 

above-ground biomass production across the five study years. Sward type diversity 

had significant effects on the above-ground biomass production only in the 

experimental year with extremely dry weather conditions in the summer months before 

the peak standing crop, when control plots had larger yields than dicot- and monocot-

reduced. While management intensification caused an increase in above-ground 

biomass production, changes in species numbers were not dramatic over the whole 

investigation period with increasing cutting frequency promoting establishing of more 

species. In our study existing species composition of the semi-natural grassland was 

highly resilient and four years after the removal of functional groups it regained a 

composition of grasses, herbs and legumes showing almost no differences among 

the sward types with larger shares of grasses being typical of fertilized plots and 

larger shares of herbs typical of frequent cutting. Shares of legumes were 

suppressed by fertilization, but were found in almost all plots by the end of the 

experimental period. We suggest that under appropriate agricultural management a 

semi-natural grassland might have a high potential for forage production without 

significant species losses and the need of being converted to arable land or reseeding 

it with diverse species mixtures. 
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Introduction 

A lot of grassland communities in Central Europe are nowadays characterized by a 

species-poor composition of mowing-tolerant, N-demanding competitive grasses 

and a decline of early-flowering species, especially insect-pollinated herbs 

(Wesche et al. 2012). Multifunctionality of grasslands, however, depends on the 

plant species diversity (Hector and Bagchi 2007, Zavaleta et al. 2010) and 

promotes stability across levels of ecosystem organization (Isbell et al. 2009, 

Proulx et al. 2010, Yang et al. 2011). But farmers and ecologists often have 

different views on the role of biodiversity for grassland production (Wrage et al. 

2011) leading to a controversy concerning research priorities between the two 

groups. The need for agricultural production in Europe is still high, be it the primary 

source of forage for livestock or for bioenergy purposes. Species-rich grasslands 

are not perceived as an attractive source for agricultural production by farmers, but 

they are of focal interest for nature conservation and there have been attempts to 

restore diverse grasslands all over Europe, however, not all attempts were 

successful (Critchley et al. 2004, Hodgson et al. 2005). 

Due to this increasing interest in grassland biodiversity and the scarcity of land 

resources for agricultural production, two main strategies emerged: intensification of 

the use of diverse grassland or diversification of the existing species composition. 

The former may comprise grassland diversity, while the latter requires knowledge 

about the relationship between diversity and biomass production. Correspondingly, 

many studies addressed the problem of species losses and ecosystem functioning, 

as well as the nature of the relationship between diversity and biomass 

production (Chapin et al. 2000, Sala et al. 2000). 

A large number of studies was conducted in order to examine the ecosystem 

functioning and the impacts of species losses on it. Biodiversity studies have often 

concentrated on the relationship between species diversity and productivity (Hector 

et al. 1999, Tilman et al. 2001, Roscher et al. 2005), but most of these studies took 

place in experimental grasslands sown with diverse species mixtures (Sanderson et 

al. 2004).  

Such studies (Tilman et al. 2001, Roscher et al. 2005, Reich et al. 2012) found 

mostly strong positive effects of species diversity on biomass production, which in 

long- running studies were also reported over time (Cardinale et al. 2007, Tilman et 
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al. 2012). These results, however, were criticized for unnatural species abundances 

and artificial conditions, leading to the difficulty of scaling up or generalizing those 

findings (among others Loreau et al. (2001) Wilsey and Polley (2004)). 

Observational studies, conducted in natural and semi-natural grasslands, often 

reported weak or no relationship between species diversity and productivity (Huston 

et al. 2000, Adler et al. 2011, Assaf et al. 2011), but were considered to have a 

number of weaknesses, such as no defined biodiversity levels, confounded sites 

and diversity effects (Kahmen et al. 2005, Jiang et al. 2009) or low control of 

external factors (Diaz et al. 2003). Therefore, later generations of biodiversity 

studies, known as removal experiments, simulated the losses of certain species 

and functional groups and examined induced ecosystem responses emphasizing 

that these responses differ between natural and semi- natural grassland 

communities on the one hand and synthetic communities on the other (Wardle et 

al. 1999, Symstad and Tilman 2001, McLaren and Turkington 2010, Petersen et 

al. 2012). 

Inconsistency of the findings from experimental and observational studies, as well 

as the challenges of transferring the results from synthetic communities to natural 

ecosystems and the need for long- term and large-scale studies have been on the 

agenda of many research projects as diversity loss was considered by many authors 

to be underestimated in synthetic communities compared to natural and semi-natural 

grassland systems (Diaz et al. 2003, Tylianakis et al. 2008). Thus, many scientists 

considered that research should focus on how biodiversity changes and biodiversity 

loss affect functioning of „real-world“ ecosystems (among others Schmid & Hector 

(2004), Zavaleta & Hulvey (2004), Naeem et al.(2012)). 

We present the results of a biodiversity experiment in an old semi-natural grassland 

in central Germany. By establishing a management gradient and creating three 

different sward types via removal of functional groups, we induced a change likely 

to affect ecosystem processes and functions.  

Thus, we could investigate not only the effect of the removal itself, but the 

functioning of the native species composition of this grassland ecosystem under 

disturbance resembling common levels of moderate intensification of grassland 

management and associated changes in yield production. 

Along with the herbicide treatment, we created a management gradient resulting in 

four management systems presented by a combination of fertilization and cutting 
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frequency. The total of twelve established experimental treatments thus 

represented the combination of the three main experimental factors and matched 

common agricultural practices in Europe. We investigated the relationship 

between species diversity and productivity, as well as the changes in above-ground 

biomass production and vegetation diversity under management intensification. 
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Material and Methods 

 

a. Study site 

The study site is situated at the experimental farm of the University of 

Goettingen in the Solling uplands, Germany (51°44´53´´ N, 9°32´42´´ E, 490 m 

a.s.l.). Before establishing of the experiment, the site was used in common farm 

management as pasture or for hay cutting. The mean annual temperature is 6.9 °C, 

mean annual precipitation 1100 mm (German Weather Service: DWD 1960-1990). 

The vegetation composition is characteristic of a nutrient-poor montane mesic-moist 

Lolio- Cynosuretum community with high shares of Festuca rubra and Agrostis 

capillaris. The soil is a haplic Cambisol with pH H2O values of 5.2 - 5.6. 

 

b. Experimental design 

In total, 72 plots, 15x15 m each, arranged in a Latin rectangle design consisting of 

six blocks and six rows, were set up in 2008 and resulted from the combination of 

the three experimental factors and their 6-times replication. The main experimental 

factors were sward type, fertilization, and cutting frequency. A change in sward 

diversity was achieved by the application of herbicides on July 31st 2008 to reduce 

the shares of grasses in the monocot-reduced (-Mon) sward (active component 

Clethodim (0.5 l ha-1): Select 240 EC, Stähler Int., Stade, Germany; 0.5 l ha-1) and 

the share of herbs in the dicot-reduced (-Dic) sward (active components were 

Fluoroxypyr + Triclopyr and Mecoprop-P (3 l ha-1)). One third of the plots were left 

untreated (control sward). Fertilization (180-100-30 kg NPK ha-1 year-1 (NPK)) and 

cutting frequency (plots cut once a year (1x) and 3 times a year (3x) were two 

further management factors. As N fertilizer, we used calcium ammonium nitrate N27 

(half of it applied in the beginning of April and half in the beginning of June), as P&K 

fertilizer Thomaskali® (8% P2O5, 15% K2O, 20% CaO) in 2008-2009 and „PK 

fertilizer“ (12% P2O5, 24% K2O, 6% S, 21% CaO) in 2010-2012. Plots cut three 

times a year were harvested in the middle of May, middle of July, and late 

September.  

Plots cut once a year were harvested at July harvest. Harvesting of the plots was 

done using a Haldrup® forage harvester by cutting of two stripes, each 1.5 m wide 
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and 15 m long, on each plot, which was found to be a representative measurement 

technique for the plot size of 225 m² and established as the standard measure of 

above-ground biomass production at the set-up of the experiment. 

 

c. Vegetation surveys 

Before the start of the experiment, the vegetation community was characterized and 

the minimum species area determined for defining the optimal vegetation survey 

size. Vegetation surveys were subsequently conducted twice a year in the 

beginning of May and in the end of August by recording species number and 

identity for each plot and estimating yield shares of each species, as well as 

functional groups’ shares (grasses, herbs and legumes) according to Klapp & 

Stählin (1936) in two 3 m x 3 m vegetation survey areas and 1 m x 1 m quadrates 

per plot. The total species pool consisted of 73 species that were found over the 

whole vegetation period at the site. The mean overall species richness per plot was 

25.3 species across all study years disregarding the differences in management 

system or sward type. Shannon evenness was calculated as J´ = H´/log e (n) and is 

hereafter referred to as evenness (where H´ is the Shannon diversity index (log e) 

and n is the number of species found on the corresponding plot). 

 

d. Data analyses 

Turboveg for Windows 2.91d (Alterra, Wageningen) was used for processing 

vegetation data and calculating diversity indices (Shannon diversity, Shannon 

evenness, Simpson diversity). Statistical analysis of the data was performed using 

the R software, Version 2.14.0 (2012) with a significance level of α ≤ 0.05. The 

climate data was implemented in the models as year effects. We used linear and 

linear mixed effect models (Pinheiro et al. 2010) to explore the effects of the 

three main treatment factors on the relationship between species richness and 

productivity, as well as further diversity indices.  

The best fitting adequate minimum models including the significant predictive 

variables were selected by comparison of the Akaike Information Criteria (AIC) 

following the principle of marginality implying not deleting non-significant effects in 

presence of higher-order interactions of the corresponding factors. We used the 

maximum likelihood method to update the models and recalculated the final models 

with REML as we had spatial factors included as random effects. Residuals of the 
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models were inspected for normality of distribution and homogeneity of variance in 

groups of according factors. Adjustments for non-linearity were performed if 

needed. If the models’ residuals were heterogeneous, the variance was adjusted 

with the varIdent structure for the corresponding factor. We used the autocorrelation 

function in the models for the dataset from the whole investigation period to account 

for temporal variation of the data. Models were simplified using an updated AICc 

procedure for small data-sets (Scherber 2011). Means (for grasses and herbs) and 

medians (for legumes) in the dicot-reduced and monocot-reduced swards were 

compared to the shares of corresponding functional groups in the control sward 

based on the linear models with block and row included as spatial factors using linear 

contrasts with the sward type as explanatory variable. 
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Results 

 

Overall species richness increased by the end of the experimental study period 

(from 23 species on average up to 25.7 species on average per plot) (Fig. 2.1). We 

successfully achieved the expected change in sward composition by the year 

following the herbicide treatment (Petersen et al. 2012). Compared to the set-up 

year, there were slightly higher numbers of species (on average 1.4 species more) 

in monocot-reduced plots than in the control sward and 1.6 species less in dicot-

reduced plots than in control plots in 2009. 

 

Figure 2.13: Change in overall species numbers over time in 100-year-old grassland. Lines show predicted 

values from minimal adequate mixed effects models corrected for temporal autocorrelation and variance 

heterogeneity. Abbreviations of treatments are combinations of the following factors: Mon- = monocot- reduced 

sward, Dic- = dicot-reduced sward, Con = control sward. 1x = plots cut once a year, 3x = plots cut three times a 

year; NPK = fertilized plots. 
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In the last vegetation period (2012), recorded maximum species loss compared to 

the initial year was 3 species while the maximum number of species gained was 10 

species per plot. Changes in species numbers were affected by the experimental 

year (p<0.0001) and cutting frequency (p<0.05) and the interactions of year and the 

following factors: sward type (p<0.0001), cutting frequency (p<0.001), as well as 

fertilization (p<0.01). 

 

Figure 2.2: Consecutive species losses of overall species richness in the three sward types (based on 

differences in species presence-absence data for consecutive years). 

 

Species losses in all of the three sward types did not exceed 4 species per plot 

(Fig. 2.2). Along with the losses of species in swards that were treated with 

herbicides to manipulate the functional groups abundances, there was a natural 

dynamic of species present and absent in the control sward as well (Fig. 2.2 & 2.3). 

In the year 2011, there was a significant effect of sward type on the number of 

species gained with higher number of species found in dicot-reduced plots (3.7 on 

average) while the effects of herbicide application were weakening (Fig. 2.3). 

Regarding the effects of management intensification on species richness, in some 

of the years the change in species number and number of species gained 

compared to the previous year was found to be positively affected by cutting 
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frequency (p<0.05), whereas fertilization was not significant unless in combination 

with the experimental year (p<0.01) with a trend in decreasing species numbers in 

fertilized compared to non-fertilized plots.  

In the year 2010, the change in species number, compared to the year 2009 was not 

affected by any of the main experimental factors, except for the combination of 

fertilization and cutting frequency (p<0.02), with on average less than one species 

change over all management systems. In the fourth year after the set-up of the 

experiment, plots cut three times and not fertilized had on average 2.8 species more 

than control plots cut once a year and not fertilized (p<0.01). 

 

 

Figure 2.3: Consecutive species gains of overall species richness in the three sward types (based on differences 

in species presence-absence data for corresponding years). 

 

Species evenness was found to be significantly affected by all experimental factors 

and their influence varied across the years (p<0.0001) (Figure 2.4), sward types 

(p<0.0001), cutting frequencies (p<0.0001) and fertilization levels (p<0.05). In the 

year following the herbicide application species evenness across all treatments was 

smaller compared to that of the initial species composition (p<0.001). 
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In the two years following the herbicide application, species evenness was 

significantly different among the three sward types (p<0.0001 in 2009; p<0.001 in 

2010): in the control sward, species evenness was 10% higher than in the dicot-

reduced sward while the highest evenness was found in the monocot-reduced 

sward (J´=0.78) in 2009. When the removal treatment effects were weakening in the 

year 2011 (Table 2.1), there were no significant differences found in the species 

evenness among the three swards (p=0.45) (Fig. 2.4, a).  

Fertilization tended to have a slightly significant effect on species evenness in the 

year 2009 (p=0.07) (Fig. 2.4, b) and was found to affected species evenness in the 

year 2011 when the average species evenness in fertilized plots was 5% lower 

compared to non-fertilized plots (p<0.001).  

Cutting frequency had significant effects on species evenness in all of the 

experimental years following the set-up year: in plots cut three times a year it was 

3% (2009, p<0.05) to 7% (p<0.0001 in 2010 and p<0.0001 in 2011) and 8% (2012, 

p<0.0001) higher compared to the plots cut once a year (Figure 2.4, b). 
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a)  

 

b)  

Figure 2.4: Change in species evenness in three sward types (a) (n=18, average of vegetation surveys from May 

and September) and management systems (b) (n=24, average of vegetation surveys from May and September) in 

corresponding experimental years. Sward types are abbreviated here as following: Con stands for control sward, 

Dic- for dicot-reduced sward, Mon- for monocot-reduced swards. 

 

The herbicide effects on sward composition lasted up to three years after the 

removal treatment (Table 2.1 & Fig. 2.5) whereas in the last two experimental years 

we found that the functional group composition did not differ significantly between 

the sward types and came close to the initial composition of the set-up year (73% 

grasses, 25% herbs and 1-2% legumes in 2012 versus 75.5% grasses, 21.7% 

herbs and 2.8% legumes, mean overall shares across all plots for corresponding 

year, for each group respectively). 
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Table 2.1: Means (medians for legumes) and standard deviations (median deviations) for biomass shares (%) of 

grasses, herbs and legumes in corresponding sward types. Asterisks indicate significant differences from the 

control sward with the following significance values: . p<0.05, * p<0.01, ** p<0.001, *** p<0.0001. 

 Functional 

group 

Control 

sward 

-Dic sward -Mon sward 

2008 Grasses 74.8±4.8 75.6±6.6 76.2±4.5 

 Herbs 

 

Legumes 

22.4±.6 

 

2.8±2.8 

21.6±4.5 

 

2.8±0.2 

21.2±4.2 

 

2.6±1.9 
2009 Grasses 69.9±7.1 90.6±4.1 

*** 

43.6±7.7 *** 

 Herbs 26.3±6.9 9.3±4.0 *** 49.6±6.4 *** 

 

 

2010 

Legumes 

 

Grasses 

3.8±2.7 

 

65.7±7.8 

0.1±0.1 *** 

 

78.0±8.1 

*** 

6.8±3.6 *** 

 

49.3±8.6 *** 
 Herbs 32.8±7.0 21.8±7.7 

*** 

48.7±7.9 *** 

 

 

2011 

Legumes 

 

Grasses 

1.5±1.9 

 

71.7±9.9 

0.2±0.7 *** 

 

75.0±10.7 . 

2.0±3.1 *** 

 

68.1±11.6 * 
 Herbs 26.9±9.0 25.3±9.7 29.9±10.1 . 

 Legumes 1.4±1.6 0.5±1.0 ** 2±2.4 

2012 Grasses 

 

Herbs 

73.1±8.8 

 

25.3±8.6 

71.8±10.4 

 

28.0±9.9 

72.2±9.7 

 

25.9±9.1 
 Legumes 1.6±1.2 0.6±0.9 ** 1.9±1.9 

 

While in the first year after the removal treatment the shares of grasses, herbs and 

legumes were significantly different from those of the initial composition (Table 2.1), 

in the second year after herbicide application (2010) in the dicot-reduced sward type 

herbs gained about 12% compared to the shares in 2009 at the expense of the 

average shares of grasses, which were reduced by 12% compared to the year 2009 

as well (Fig. 2.5, a, b and c). Fertilization and cutting frequency had significant 

effects on the shares of grasses, herbs and legumes regarding the whole 

experimental period. Fertilization generally increased shares of grasses by 4.9% 

compared to unfertilized plots (p<0.0001) and reduced the shares of herbs by 

3.8% on average compared to unfertilized plots (p<0.0001). Increasing cutting 

frequency promoted larger shares of herbs compared to the plots cut once a year by 

2% on average (p<0.0001) and decreased shares of grasses by 3.7% (p<0.001). 

There were on average 1% less legumes in the fertilized than unfertilized plots 

(p<0.0001) and 1.6% more legumes on plots cut three times a year compared to 

the plots cut once a year (p<0.0001). 
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a)   

b)  

c)  

Figure 2.5: Change in shares of functional groups (grasses (a), herbs (b) and legumes (c)) in corresponding 

management systems over the five experimental years. 

 

Biomass production over the whole investigation period was not affected by overall 

species richness, except for a marginal effect of the interaction between species 

richness and sward type (p<0.1). There was only a trend of a significant correlation 

found between the above-ground biomass production and the Shannon diversity 
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index (p=0.05). Species evenness was slightly positively correlated with productivity 

(p<0.001), except for the year 2011 when the relationship between species 

evenness and productivity was significantly negative (p<0.05). In presence of other 

experimental factors, however, species evenness was only marginally related to 

above-ground biomass production (p=0.1). 

 

The main factors determining the above-ground biomass production were fertilization 

and cutting frequency, as well as the combination of both factors. Increasing the 

fertilizer input and cutting frequency, we found an increase in biomass production 

(Table 2.2) irrespective of the sward types. Sward type was only a significant 

determinant of above-ground biomass production in the year 2010, when the summer 

conditions before the cutting event in July were characterized by particularly warm 

temperatures and scarce amounts of precipitation. 

 

Table 2.2: Percent variance in above-ground biomass production explained for the experimental years 2009-2012 

based on linear models with block and row as spatial factors. Asterisks indicated significant levels as following: 

*p<0.01, **p<0.001, ***p<0.0001. 

Experimental factors 2009 2010 2011 2012 

Block 1.67 3.96 ** 1.36 1.45* 

Row 2.73 5.0 ** 1.9 1.9* 

Sward type 0.19 2.34 ** 0.16 0.19 

Fertilization 58.47 *** 34.92 *** 81.26*** 41.89*** 

Cutting frequency 10.35*** 24.71 *** 1.34* 26.35*** 

Fertilization:Cutting frequency 8.62 *** 16.96 *** 4.09*** 22.02*** 

Residuals 17.96 12.11 11.24 6.2 

 

Intensification of management had significant effects on the biomass production with 

the plots cut three times a year and fertilized having the highest dry matter yields in 

all of the experimental years following the set-up of the experiment (Fig. 2.6). In 

2009 and 2011, we also found that the biomass yields of plots cut once a year and 

fertilized were significantly higher than in 2010 and 2012. 
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Figure 2.6: Overall dry-matter yields (average of 24 plots) in four management systems (1xno, 1xNPK, 3xno, 

3xNPK) over the whole experimental period. 
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Discussion 

In the present study, we investigated the effects of diversity and management 

on above-ground biomass production in a semi-natural temperate grassland. We 

found that changes in sward composition associated with functional groups removal 

lasted for three years and affected the shares of grasses, herbs and legumes, as 

well as species evenness, while dynamics of species richness varied across the 

sward types and years. Overall species richness was not directly associated with an 

increase or loss of productivity regarding the whole experimental period while 

species evenness had a slight correlation with above-ground biomass production, 

direction and degree of which varied across the years. The primary determinants of 

an increase in biomass production were fertilization and cutting frequency with the 

highest dry matter yields characteristic for intensively managed plots. Sward type 

had a significant effect on above-ground biomass production only in the year with 

extremely dry summer conditions. After five years of establishing the experiment, 

the change in species numbers across the management systems of this grassland 

was not dramatic, with even a slightly higher number of species in most of the plots 

compared to the initial investigation year. 

 

a. Changes in plant species richness 

Given the site characteristics, the experimental design represented the most typical 

management strategies in common temperate agriculturally-used grasslands. It was 

previously found that the major agricultural changes have occurred in the second 

half of the twentieth century and were diminishing after the 1990 (de Snoo et al. 

2012, Wesche et al. 2012). We assume that the species composition of this semi-

natural grassland was highly adapted to the local environmental factors at the set-

up of the experiment and the changes mediated by the removal of functional 

groups, fertilization and cutting frequency could successfully reflect the dynamic of 

species changes in temperate grasslands under corresponding management 

intensification.  

While the dynamics of species gains and losses varied across all experimental 

years, the average species numbers recorded in the fifth year were higher than at 

the set-up of the experiment. 
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Depending on the state of the plant community and levels of nutrient input, it was 

found by some authors that fertilization can reduce the species number (Lepš 

2004), but it may also have no significant effect on the species number and 

composition (Pavlů et al. 2012). While the overall species number fluctuated 

across the experimental years, some of the species that disappeared initially after 

the removal treatment were found again in the year 2011 as the herbicide effects 

were weakening. We also found the number of species to fluctuate slightly across 

the years in the control plots as well. In the study by Marini et al. (2007) both field 

management and soil fertility were along with topography the main determinants of 

vascular species richness. We suggest that the long history of use of this grassland 

for hay cutting and pasture was the primary determinant of the present species 

composition and the site conditions apparently allowed for the higher levels of 

above-ground biomass production than at the set-up year of the experiment (about 

420 g/m² on average across all plots at the harvest in the end of June) without 

significant changes in species numbers. While in short-term synthetic communities 

biomass production may be affected by initial species abundances (Jiang et al. 

2009) it seems that in real-world grasslands the natural variation of species 

dynamics is also important for above-ground biomass production. We conclude that 

at our study site changes in overall species numbers were not dramatic after five 

experimental years and fluctuations in species composition seem normal. 

 

b. Changes in sward composition: functional groups shares and species 

evenness 

Along with the changes in species numbers, the removal treatment proved to be 

successful regarding the shares of the three functional groups (for detailed 

description of the results see Petersen et al. 2012). While the immediate effects 

of removal of dicot- and monocot- species on the shares of grasses and herbs 

were significant, three years after herbicide application the changes in sward 

composition were weakening and disappeared by the fourth year.  

Nevertheless, we found significantly larger shares of grasses in fertilized plots and 

significantly larger shares of herbs in plots cut three times even in the last 

observation period, suggesting that along with high natural resilience of this 

grassland‘s species composition, management matters for the sward diversity. 
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It was previously found that the productivity of plots within natural vegetation was 

related more to the relative composition of species (evenness) than to the number 

of species, with predominantly negative relationships between the two variables 

(Laird et al. 2003, Mulder et al. 2004). In our study, there was a significantly positive 

correlation between species evenness and productivity found, but the degree and 

the direction of this correlation varied across the years while the effects of the main 

experimental factors (fertilization, cutting frequency and sward type) had various 

effects on species evenness as well. We suggest that when a positive relationship 

was found between species evenness and productivity (e.g. in the years 2010 and 

2012), the sward composition at our site became more even, productive species 

took advantage of an increased nutrient input, but not at the expense of limiting 

growth of the less-dominant species. It seems that in this grassland coexistence of 

the characteristic matrix of large productive grasses (Dactylis glomerata, Lolium 

perenne) and shorter sub-dominant grasses (Agrostis capillaris, Festuca rubra) and 

herbs (Veronica chamaedrys, Ranunculus repens) was possible also under 

increased fertilization levels. It was previously shown that species composition 

might be highly variable and changes according to the environmental conditions 

while species richness stays within narrow limits (Brown et al. 2001). Interestingly, 

in our study the species composition of most plots did not differ significantly after 

five years compared to the initial composition suggesting that this grassland 

remained rather stable concerning the species richness reaction on mid-term 

(multivariate analysis of the vegetation composition performed with Canoco (ter 

Braak and Smilauer 2002) revealed a short gradient of the variation of vegetation 

relevés in the dataset for the whole investigation period, data not shown). 

c. Diversity-productivity relationship in a real-world grassland 

Our results suggest that the absence of a direct effect of species richness on above-

ground biomass production regarding the whole investigation time-period is the 

result of multiple direct and indirect effects of fertilization, sward composition and 

cutting frequency. In the year 2010, however, the sward diversity had an effect on 

the biomass production, and it might be due to combination of still pronounced 

differences in the sward diversity and better nitrogen use efficiency in the control 

sward (as shown by Keuter et al. 2012). Laird et al. (2003) considered that the 

absence of a relationship between diversity and productivity in an old field might 

have been due to competitive dominance causing deterministic structuring of the 
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vegetation composition. Jiang et al. (2009) compared the findings from synthetic 

and natural communities and suggested that reduction in diversity in a natural 

community does not necessarily result in the reduced presence of productive species, 

thus a negative effect of reduced diversity on productivity may not apply. We could 

not find any consistent effects of diversity on productivity across the experimental 

years. While dominant species are the most important factors in determining 

ecosystem processes and properties (Grime 1998, Mokany et al. 2008) , it 

seems that their contribution to the above-ground biomass production did not cause 

a reduction of the numbers of less-dominant species in this grassland and the 

effects of species richness on productivity were therefore not significant. 

In line with the results reported by Assaf et al. (2011) who found that species 

richness poorly explained productivity in managed grasslands, we found that 

species number had no direct effects on the above-ground biomass production only 

and that sward diversity had a positive effect on biomass production in the year 

2010 when the control swards had higher dry-matter yields compared to the further 

two sward types. Keuter et al. (2012) found in the year 2010 a better N-use 

efficiency in the control sward plots which may have improved biomass production 

under the exceptionally dry summer months. Bernhardt-Römermann et al. (2011) 

investigated the effects of climate, species and functional diversity on the biomass 

yields in temperate environments and found that the importance of each factor 

depended on the nutrient status and management frequency of the system.  

In our study, fertilization and cutting frequency were the determining factors of 

productivity. We suppose that in the dry summer period 2010 the not disturbed 

shares of grasses, herbs and legumes in the control sward composition might have 

compensated in terms of yield production for the reduced effects of fertilizer under 

drought conditions. 

d. Need for more biodiversity experiments in real-world grasslands? 

On the one hand, the needs for agricultural production in Europe are still growing 

and large areas of temperate grasslands are needed as the primary source of 

forage for cattle and other grazing animals, which drives the attention to maximizing 

their production potential. Such grasslands, however, are mostly represented by 

relatively species-poor mixtures sown on highly fertilized arable land. On the other 

hand, species-rich grasslands often receive a special status of high biodiversity 

value and are not used for agricultural practices anymore.  
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Changes in species diversity do not only directly influence the ecosystem processes 

but have also direct links to ecosystem services, resilience of the ecosystem and 

resistance to disturbance (Chapin et al. 2000).  

Managing for improved biodiversity and for conservation is particularly challenging 

in agriculturally used areas (Hopkins and Holz 2006). And while experimental 

grasslands can on the one hand sometimes offer more insights into the functioning 

of the ecosystems (e.g. Spehn et al. (Spehn et al. 2000) who reported that in 

experimental grassland communities mixtures perform better than monocultures 

suggesting complementary resources use), effects of realistic species losses can 

be studies better in removal experiments (Diaz et al. 2003, Jiang et al. 2009).  

Therefore, it is particularly important to study the patterns of diversity effects on 

ecosystem functioning in the real-world ecosystems. 

 

 

e. Implications for agricultural land use 

Our results suggest that with proper management strategies, providing sufficient 

resources for the least-productive species, it is possible to maintain high 

productivity without losing plant species. Increasing cutting frequency, for instance, 

promoted species gains over the years compared to the plots cut only once a year 

in our study. Previous work has indicated that extensification might not be an 

adequate measure to increase grassland diversity (Schmid 2002).  

The studied grassland ecosystem was quite resilient and after disturbance bounced 

back to the original state of its long- term well-tried functional group composition 

while an increase of above-ground biomass production was mainly achieved by an 

appropriate management without a trade-off of losing diversity. Weigelt et al. 

(2009), as well as Tilman et al. (2012) found recently that the use of diverse 

mixtures might be more effective in increasing grassland productivity of some crops 

than fertilization and may provide better ecosystem services. We found that at least 

on a mid-term basis it was possible to improve productivity of an old grassland and 

even gain new species through management adapted to the site conditions without 

the need of reseeding it with diverse species mixtures. The high nature value of this 

really long-term grassland system might thus be even higher, especially regarding 

its capacity for carbon storage, for example, provided the soil is not disturbed by 

plowing activities. 
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Abstract 

 

Current studies on trophic interactions in biodiversity experiments have largely relied 

on artificially sown gradients in plant diversity, but removal experiments with their 

more natural plant community composition are more realistic.  

Slugs are a major part of the invertebrate herbivore community, with some species 

being common pests in agriculture. We therefore investigated how strongly slugs are 

influenced by grassland management, plant biodiversity and composition.  

Here we analysed the effects of cutting frequency, fertilizer application and plant 

functional group composition on slug densities and their contribution to herbivory on 

Rumex acetosa in a removal experiment within a >100-year old grassland in 

Northern Germany.  

The experiment was laid out as a latin rectangle with full factorial combinations of (i) 

plant functional group removal (3 levels) using herbicides, (ii) fertilizer application (2 

levels) and (iii) cutting frequency (2 levels). The resulting 12 treatment combinations 

were replicated 6 times, resulting in 72 plots.  

We collected a total of 1020 individuals belonging to three species Arion distinctus 

(60.4% of individuals), Deroceras reticulatum (34.7%) and Arion lusitanicus (4.9%) 

using a cover board technique and additionally measured herbivore damage to 

R. acetosa.  

We found the highest slug abundance on plots with a low cutting frequency and high 

food resource availability (increased cover of forbs and taller vegetation). 

 Fertilizer application had no significant effect on slug abundance, but caused higher 

herbivore damage to on R. acetosa, possibly as a result of increased tissue quality. 

The negative effect of higher cutting frequency on slug abundance was lowest in 

control plots with their naturally developed graminoid-forb communities (cutting 

reduced slug density by 6% in the control vs. 29% in herbicide plots). Our 

experiments therefore support the idea that more natural plant species compositions 

reduce the impact of disturbances (e.g. through cutting or grazing) on invertebrates. 

 

Keywords: biodiversity experiment, management intensity, mollusc, gastropod, 

mowing, invertebrate 
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Introduction 

 

In temperate agricultural grassland ecosystems, invertebrates are often the dominant 

herbivores (Stein et al., 2010) and slugs (Mollusca: Gastropoda) are a major 

component of this invertebrate community. In addition, many slug species (e.g. 

Deroceras reticulatum (O. F. MÜLLER, 1774) or Arion lusitanicus (MOQUIN-TANDON, 

1855)) are considered important crop pests in agriculture, causing severe damage, 

e.g. in oilseed rape fields (Frank, 1998b). D. reticulatum can shift community 

composition towards graminoids, due to its preference for forbs (Allan and Crawley, 

2011) and nitrogen-rich plants such as Trifolium spp., whereas graminoids such as 

Dactylis glomerata (L.) are mostly avoided (Cottam, 1986). Exclusion experiments 

(Curry, 1994; del-Val and Crawley, 2004; Scheidel and Bruelheide, 2005; Scherber et 

al., 2003; Scherber et al., 2006) have shown that slugs can strongly affect plant 

biomass production and species composition in grasslands. Plant functional group 

removal experiments using herbicides (e.g. to promote forbs versus graminoids for 

conservation) have often demonstrated a positive effect of forb species enhancement 

on invertebrates (Blake et al., 2011).  

However, little is known about the combined effects of plant functional group 

composition and grassland management on slug densities. In particular, the effects 

of functional group removal in mature grassland are largely unexplored. Most 

experiments to date have relied on artificially sown gradients in plant diversity (e.g. 

“Jena-Experiment” (Roscher et al., 2004), Cedar Creek (Tilman et al., 2012), while  

other long-term grassland experiments (e.g. Rengen Grassland Experiment) have 

only studied the effects of fertilizer application and cutting frequency (Pavlů et al., 

2011), but have not experimentally manipulated composition. 

Here, we present results from a large-scale grassland management and plant 

functional group removal experiment (“GrassMan” experiment; (Petersen et al., 

2012)), where a control was compared to either forb or graminoid reduced plant 

communities (both induced by application of specific herbicides). In addition, cutting 

frequency and nutrient availability were experimentally manipulated. 

 

http://de.wikipedia.org/wiki/Otto_Friedrich_M%C3%BCller
http://de.wikipedia.org/wiki/Alfred_Moquin-Tandon
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We hypothesize that: 

I. Slug abundance is higher in forb- than graminoid-dominated plant communities, due 

to the greater availability of preferentially consumed herbaceous plants (Briner 

and Frank, 1998). 

II. Slug abundance is decreased under three-cut  in comparison to one-cut 

management, because cutting reduces standing plant biomass and slugs prefer 

humid and high-biomass habitats (Ondina et al., 2004; Rathcke, 1985). 

III. The negative effects of cutting frequency on slug abundance are lower in more 

natural plant communities (control plots), because the plant community and slugs 

are well suited to the local conditions more resilient to disturbance (Tscharntke 

and Greiler, 1995). 
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Material and Methods 

 

Site description 

This study was performed in 2010 as part of the "GrassMan"-Experiment (Petersen 

et al., 2012) near the town of Neuhaus (Solling) in the Solling Mountains, which are 

situated in Northern Germany (51°440 N, 9°320 E, 490 m a.s.l.).  

The vegetation prior to the start of the experiment was a nutrient poor, moderately 

wet Lolio-Cynosuretum grassland with high abundances of Agrostis capillaris (L.), 

Festuca rubra (L.) and Rumex acetosa (L.), Veronica chamaedrys (L.) and 

Ranunculus repens (L.) (Petersen et al., 2012). Mean annual precipitation is 1028 

mm and mean annual temperature is 6.9 °C (Deutscher Wetterdienst, 1961–1990, 

station Holzminden-Silberborn, 440 m above sea level). In 2010, the year of the 

study, mean annual temperature was 8.0 °C and annual precipitation was 1110 mm. 

The dominant soil type in experimental area is a shallow (40–60 cm), stony Haplic 

Cambisol, developed on sediments of loess on the Middle Bunter (Triassic 

sandstone) formation with a loamy silt texture (Keuter et al., 2012). 

The experiment was established in 2008 on permanent, formerly extensively cattle-

grazed grassland and laid out as a three-factorial latin rectangle (Clewer and 

Scarisbrick, 2001) with the following factors (Fig. 3.1): (i) plant functional group 

removal (3 levels) using herbicides, (ii) fertilizer application (2 levels) and (iii) cutting 

frequency (2 levels), resulting in 12 treatment combinations.  
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Fig.3.1: Experimental design of the Grassman Experiment, showing the Latin rectangle with 12 treatments in 6 

replications. GRA- = graminoid reduced plots (=forb enhanced); FORB- =forb reduced (=graminoid enhanced); 
CON = Control (no herbicide application). The grey area around and between the plots is mown monthly. Plot size 
15 m x 15 m, space between plots 3 m, between blocks 5 m. 

 

To manipulate plant functional group presence, we applied (i) a combination of the 

forb-specific herbicides Fluroxypyr (Starane; Dow AgroSciences, Munich, Germany; 

3 L ha-1) and Mecoprop-P (Duplosan; KV, Du Pont de Nemours, Neu-Isenburg, 

Germany; 3 L ha-1) or (ii) the graminoid-specific herbicide Select 240 EC (Stähler Int., 

Stade, Germany; 0.5 L ha-1), resulting in three levels of plant diversity: i) forb reduced 

(=graminoid rich), ii) graminoid reduced (=forb rich) and iii) control. Herbicides were 

applied once in June 2008 (“pulse” experiment sensu Bender et al. (1984)). In 2009 

and 2010, plots were treated with N-fertilizer (Calcium ammonium nitrate N27: 13.5% 

NH4-N, 13.5% NO3-N, 4% MgO, 6% Ca) at two equal doses (2 x 90 kg N ha−1) in 

April and May/June; in addition, NPK-fertilized plots received 30 kg P per ha and 100 

kg K per ha in early June (Thomaskali®, 8% P2O5, 15% K2O, 20% CaO). On control 

plots we did not apply NPK-fertilizer. Plots were mown either once (in July) or three 

times a year (May, July, September) using a Haldrup® forage combine harvester 

(Inotec Engineering GmbH, Ilshofen, Germany) at a cutting height of 7 cm. The 

resulting 12 treatment combinations (equalling one block of the latin rectangle; 

Fig. 3.1) were arranged at random and replicated six times, resulting in 72 plots.  

Each plot was a quadrat of 15 m side length and surrounded by at least 3 m of 

regularly mown area between the plots of a block and 5 m between two blocks. 
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Note that plant functional groups were not entirely removed but strongly reduced in 

abundance, with slow recovery after herbicide application. However, even three 

years after herbicide application, all herbicide treatments significantly affected 

several vegetation parameters, such as compressed sward height, biomass, 

functional group composition and plant species richness (Table 3.1). For more details 

on the experimental design, setup and treatment effects on vegetation see Petersen 

et al. (2012) and Rose et al. (2012a; 2012b). 

 

Slug sampling 

Slugs were sampled using a cover board technique (Oggier et al., 1998; Severns, 

2005) by placing a 50 cm x 41.5 cm wooden board (Masonite with a thickness of 

0.4 cm) in the middle of each plot. While this sampling method excludes the 

subterranean component of slug populations (Hawkins et al., 1998) or small species 

(McCoy and Nudds, 1997), it has been proven to be a reliable measure of slug 

activity, abundance and species richness on the soil surface (Suominen et al., 2003). 

Since slugs prefer rather humid soil conditions (Ondina et al., 2004; Willis et al., 

2008), sampling was performed in two cool and wet periods in early May and late 

September 2010. In each sampling period, wooden boards were left undisturbed for 

four weeks, allowing molluscs to seek shelter over an extensive time period.  

Summer drought prevented us from sampling between May and September. At the 

end of both sampling periods, we collected all molluscs found within five minutes of 

intensive search in the dead vegetation and the upper soil (first 2-3 cm topsoil) and 

transferred them into ethanol (70% w/v) for later enumeration and identification. 

We collected slugs only within one vegetation season, since slug abundance shows 

large inter-annual variation (Choi et al., 2004; Fabian et al., 2012), especially due to 

the diminishing effect of the sward composition treatment from 2011 to 2012. 

Since we assumed slugs to have a large contribution to herbivory, we also 

measured rates of herbivory on R. acetosa, which was the locally most abundant forb 

species with an average 11.8 % cover, on all 72 plots. We collected 20 leaves within 

the inner ~150m² of the plot, each of a different plant with at least 50 cm distance to 

each other. All leaves were placed on an A4 sheet of paper and photographed from 

1 m distance using a Canon PowerShot A620 (Canon Inc., Tokyo, Japan).  
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Images were processed using the software LAMINA (Bylesjo et al., 2008) to measure 

the amount of leaf area damaged by invertebrate herbivores for each leaf.  

We measured the average total area of damage, separately for leaf edges and leaf 

centre, since we expected slugs to have a large contribution to herbivore damage. 

We also recorded the number of cavities per leaf and calculated the percentage of 

the total leaf area damaged by herbivores. 

 

Assessment of vegetation parameters 

Because our treatments have the potential to  affect vegetation structure (and 

support different mollusc densities), we additionally measured a series of vegetation 

parameters:  

(i) we conducted vegetation surveys on two quadrats, each of 9 m² size, to record the 

percentage cover and proportional yield of each species (Klapp and Stählin, 1936) 

twice a year (in May before the first harvest and in August) in each  plot.  

Plant species richness, functional group composition and presence-absence data of 

the functional groups (graminoids, legumes and other forbs) were derived from these 

data.  

(ii) Plant aboveground biomass (AGB) was estimated as follows: First, fresh weight of 

two 1.50 × 15 m strips per plot was measured using the harvester´s built-in scale.  

To determine the water content of this sample, we took four subsamples that were 

homogenized, weighed, dried for 48h at 65°C and weighed again. We then multiplied 

fresh weight by water content to arrive at the total aboveground dry biomass (t ha-1) 

for every plot. Proportional biomass of grasses and herbs (%) was determined by 

multiplying AGB with proportional yield values (derived as described above).  

Harvest was performed on all plots once a year in the end of June and additionally 

for the 3-cut treatment in mid-May and mid-September (Petersen et al., 2012). 

(iii) Compressed sward height (cm) was measured using a rising plate meter 

constructed by Castle (1976) and the average value of 25 measures per plot was 

calculated. This was performed every 2-3 weeks, resulting in eleven time points 

across 2010.  
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(iv) We also measured soil moisture content (%) between early April and late 

September 2010 every 2-3 weeks, resulting in data for 10 time points. Soil moisture 

was expressed as gravimetric water content, determined by weight loss due to drying 

homogenized soil samples from the field at 105 °C for 24 hours. 

 

Statistical Analysis 

We used the software package “R” (version 2.10.1) (R-Development-Core-Team, 

2010) for data analysis. Two types of statistical models were fitted using generalized 

linear models (GLM); (Crawley, 2007) for both slug abundance and herbivory 

measures on R. acetosa: 

(i) To analyze treatment effects, we fitted a model (hereafter referred to as design 

model) containing only row- and column effects (fitted as factors), sward 

composition (factor with three levels), cutting frequency and nutrient input. 

(ii) To analyze effects of additional covariates (see below), we fitted a model 

hereafter referred to as the covariate model (Scherber et al., 2010), not 

containing treatment variables. 

The covariate model was fitted using row- and column effects, plant diversity, 

harvested aboveground biomass (AGB), functional group biomasses, functional 

group presence-absence data, soil water content, compressed sward height and 

either herbivory measures or slug abundance, with up to 3-way-interactions. For 

count data, we used quasipoisson GLMs, for proportion data GLMs with a logit link 

were used (Warton and Hui, 2010) and continuous variables were log-transformed to 

account for overdispersion. 

For each model a maximum model containing all possible terms was manually 

simplified into model subsets and we compared model subsets using F-tests, until a 

minimal adequate model that only contained significant effects was attained. 

To allow at least a rough comparison of fit between models (unfortunately, AIC is not 

defined for quasipoisson models), we provide pseudo-R2 (hereafter pR²) values 

based on Heinzl (2003). Our comparisons showed that the fit of the minimum 

adequate slug abundance design model (pR²= 0.22) was approximately twice as 

good as the fit of the covariate model (pR²= 0.08).  
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Significance of terms was assessed in two ways:  

(i) each parameter estimate from linear models was compared to zero using 

marginal t tests (e.g. Table 3.2); and  

(ii) term in the models were additionally tested by sequential addition to a null 

model (sequential analysis of deviance tables); the corresponding F- and P 

values are given in the main text. 
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Results 

 

Treatment effects on vegetation 

Plant species richness (per 18 m²) was highest in forb-rich sward treatments with 

26.8 (±0.51 SE) species (Table 3.1). On plots that were mown three times a year we 

found 27.4 (±0.75 SE) species. Plant species richness was lowest with 23.8 (±0.47 

SE) species in graminoid-dominated plots, especially when mown three times (see 

also Table 3.1). Our analyses showed that plant species richness was mainly driven 

by forbs, because the average number of graminoid species (all between 11.08 

(±0.29 SE) and 11.50 (±0.26 SE) species) was not measurably affected by the 

treatments. Fertilizer application reduced plant species richness slightly. Further 

details on treatment effects on vegetation can be found in Petersen et al. (2012) and 

Rose et al. (2012a; 2012b). 
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Table 3.1: Effects of cutting frequency and sward composition on vegetation and slug abundance (± 1SE). The columns show plant species r ichness (per 18m²),                   

total biomass (t ha
-1

), grass and forb biomass (%), compressed sward height (cm) and slug abundance (number per plot). (SE= standard error; 1x = cut once a year;                

3x = three cuts per year). 

 

 

No. Of plant 
species 

(±SE) 

Total dry 
matter 

biomass [t 
ha-1] (±SE) 

No. of Forb 
Species 

(±SE) 

Forb 
biomass [%] 

(±SE) 

No. of grass 
species 
(±SE) 

Grass 
biomass [%] 

(±SE) 

Compressed 
sward height 

(±SE) Slugs (±SE) 

graminoid-rich 23.75 (±0.47) 5.23 (±0.50) 11.75 (±0.37) 22.83 (±1.69) 11.25 (±0.28) 76.98 (±1.73) 10.17 (±0.37)  09.67 (±1.05) 

gr.-rich - 1 x 23.83 (±0.56) 3.86 (±0.36) 12.00 (±0.43) 21.43 (±2.44) 11.33 (±0.38) 78.64 (±2.41) 11.40 (±0.40) 11.33 (±1.16) 

gr.-rich - 3 x 23.67 (±0.79) 6.60 (±0.77) 11.50 (±0.61) 24.23 (±2.36) 11.17 (±0.44) 75.33 (±2.50)   8.93 (±0.38)  08.00 (±1.65) 

         control 25.33 (±0.41) 6.13 (±0.54) 13.00 (±0.35) 35.07 (±1.50) 11.13 (±0.22) 64.38 (±1.49) 10.54 (±0.42) 15.17 (±1.65) 

control - 1 x 24.75 (±0.45) 4.66 (±0.29) 12.50 (±0.44) 35.18 (±2.58) 11.08 (±0.29) 64.60 (±2.57) 12.13 (±0.42) 15.67 (±2.71) 

control - 3 x 25.92 (±0.66) 7.60 (±0.87) 13.50 (±0.53) 34.97 (±1.67) 11.17 (±0.34) 64.16 (±1.63)   8.96 (±0.35) 14.67 (±2.01) 

         forb-rich 26.75 (±0.51) 5.46 (±0.47) 13.96 (±0.44) 55.35 (±1.96) 11.38 (±0.21) 43.80 (±1.97) 10.27 (±0.41) 17.67 (±1.32) 

forb-rich  - 1 x 26.08 (±0.67) 3.91 (±0.16) 13.67 (±0.63) 54.83 (±2.54) 11.25 (±0.33) 45.07 (±2.51) 11.90 (±0.31) 20.67 (±1.80) 

forb-rich  - 3 x 27.42 (±0.75) 7.02 (±0.69) 14.25 (±0.62) 55.87 (±3.10) 11.50 (±0.26) 42.53 (±3.10)  08.65 (±0.34) 14.67 (±1.56) 
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Treatment effects on slug abundance 

We found a total slug abundance of 1020 individuals collected over two sampling 

periods and belonging to three species that were all members of the Arionidae 

family. The most abundant species was A. distinctus (MABILLE, 1868), making up 

60.4 % of the collected individuals, followed by D. reticulatum (O. F. MÜLLER, 

1774) with 34.7 %, while A. lusitanicus (MOQUIN-TANDON, 1855) the lowest 

abundance (4.9%). In spring, we mainly found juvenile individuals. Whereas 

mollusc species richness or single species abundance were not significantly 

affected by the experimental treatments, we found strong and significant main 

effects of treatments on total mollusc abundance.  

 

Fig. 3.2: Effect of grassland cutting frequency and plant functional group composition on slug abundance 

[0.20 m
-2

]. The box plot shows the smallest and largest observations (dashed line), inner quartile range 

(rectangle) and median (point). Slug abundance showed significant responses of plant composition 

(p=0.001) and cutting frequency (p=0.027). N=72. 
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Table 3.2: Treatment effects on slug abundance. The table shows parameter estimates (log scale) from a 

minimal adequate quasipoisson GLM fitted using successive difference contrasts. The Intercept is the 

overall mean. Bold estimates (effect sizes) with 1 SE indicate significant effects at p < 0.05. 

 

 

Estimate ±SE t p 

Intercept 2.612 ±0.06 46.49 <0.001 

sward; 

     forbs vs. control 0.152 ±0.12 1.24 0.220 

     graminoids vs. forbs   -0.603 ±0.14 -4.28 <0.001 

cutting; 

     3x vs. 1x -0.244 ±0.11 -2.25 0.028 

 

 

Cutting frequency (F1,71=5.08; P=0.023) and plant functional group composition 

(F2,71=10.00; P<0.001) strongly influenced mollusc abundance in our agricultural 

grassland (Fig. 3.2; Tab. 3.1; Tab. 3.2). Slug abundance was significantly higher 

in forb-rich plots (Fig. 3.2) but was negatively influenced by higher cutting 

frequency; in plots with (altered) higher forb- or graminoid proportion due to 

herbicide application, frequent cutting reduced slug abundance by ~29 %. In the 

frequently cut control plots we found slug abundance only a little lower (6.4 %) 

(Fig. 3.2). When tested individually, biomass (Tab. 1) of forbs was positively and 

biomass of graminoids was negatively, correlated to slug abundance and these 

factors explain more than ten percent of the model deviance. 
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Fig. 3.3: Effect of compressed sward height [cm] on slug abundance [0.20 m
-2

]. Slug abundance is 

positively correlated with compressed sward height (R²=0.110; p=0.005). N = 72. The fitted line represents 

the GLM (y = exp (1.73±0.33 – 0.09±0.03 * sward height (cm)) + ε). 

 

After simplification of the covariate model, only compressed sward height 

showed a significantly positive relationship with slug abundance (Fig. 3.3). 

 

Treatment effects on herbivory 

We found an average herbivory of 0.320 % (±0.03 SE) of the leaf area of 

R. acetosa and an average of 1.131 (±0.04 SE) cavities per leaf.  

Our design models showed that there was a significant positive effect of fertilizer 

application on rates of herbivore damage and the number of cavities. 
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Fig. 3.4: Effect of fertilizer application (p=0.005; N = 72) on herbivore damage [%] of Rumex acetosa. The 

box plot shows the inner 75 % of the data (whiskers), inter quartile range (rectangle) and median (point). 

 

On plots without fertilizer application an average herbivore damage of 0.25 % 

(±0.03 SE) and 0.86 (±0.06 SE) cavities per leaf was recorded, whereas 1.40 

(±0.11 SE) cavities per leaf were according for of 0.39 % (±0.04 SE) herbivore 

damage on NPK-fertilized plots (Fig. 3.4). All other explanatory variables were 

not significant and removed during model simplification. The covariate models for 

herbivory showed no significant effect of slug abundance on herbivory rates on 

R. acetosa. 
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Discussion 

 

Several studies have examined the effects of slugs on grassland vegetation, e.g. 

plant composition, germination, seedling survival and biomass production (Allan 

and Crawley, 2011; del-Val and Crawley, 2004; Hulme, 1996) or the effects of 

grassland biodiversity, plant functional group composition, management or 

vegetation structure on invertebrates (Haddad et al., 2001; Woodcock and 

Pywell, 2010). Our study is the first which investigates the effects of cutting 

frequency, nutrient availability and plant functional group composition on slug 

densities. 

We found that slug abundance was significantly affected by both plant functional 

group composition and cutting frequency. Reduced grassland management 

intensity (e.g. lower cutting frequency) and increased food resource availability 

(increased cover of forbs and taller vegetation) resulted in a higher abundance of 

slugs. In addition, the negative effect of cutting on slug abundance was lowest in 

control plots with their naturally developed graminoid-forb communities. 

Increasing proportions of forbs resulted in higher slug abundance, confirming our 

first hypothesis. It is likely that the slugs were more abundant in forb-dominated 

plots because of the higher nutritional quality of forb-rich grasslands and the 

preferential consumption of forbs when given a choice (Briner and Frank, 1998; 

Pallant, 1969, 1972; Peters et al., 2000; Rathcke, 1985).  

The intermediate forb to graminoid ratio in the control plots after cutting may be a 

suitable habitat for slugs as it could still provide enough shelter due to the higher 

re-growth capability of graminoids (Tscharntke and Greiler, 1995) whilst also 

containing high quality and quantity of forbs and annual plants, which are a 

preferred food source, e.g. for A. lusitanicus (Briner and Frank, 1998).  

Higher plant diversity, which was highest in forb-rich plots of our experiment (see 

also Petersen (2012)), provides a more attractive habitat for slugs, possibly via  

the higher variety of food sources or a more complex vegetation structure (Dedov 

et al., 2006). Compared to the lower slug abundance in less plant species rich 

plots, it gives evidence that decreasing plant biodiversity not only threatens the 

persistence of generalist insect herbivores (Unsicker et al., 2010), but also of 

slugs.  
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Three cuts had a consistently negative effect on mollusc abundance in 

comparison to one cut management. This lower abundance has several potential 

causes:  

(i) many slugs are likely to have been killed and removed directly during the 

process of cutting and/or due to soil compaction by a heavy machine, which has 

also been shown to decrease invertebrate populations (Ferguson et al., 1988; 

Hitchmough, 2003; Humbert et al., 2010).  

(ii) Sward height is positively correlated with soil moisture (Gross et al., 2008) 

and due to the obvious effect of cutting on  vegetation height and standing 

biomass, it leads to a lack of food and shelter availability as well as a drier soil 

surface and altered temperature pattern. All this affects habitat attractiveness for 

slugs and therefore slug abundance (Willis et al., 2008).  

(iii) The removal of biomass and nutrients through harvesting, and the loss of 

plant species, which are less tolerant to frequent cutting (Valkó et al., 2012), 

negatively affects slug density. Hence, frequent cutting of field margins or 

grassland sites close to crop fields could be used as a management strategy to 

reduce slug herbivory on arable crops. Fertilizer application had no direct effect 

on slugs in this temperate grassland, but indirect effects of fertilizer application 

may still occur, e.g. due to the effect of fertilizer application on vegetation 

density, height and soil moisture (Rose et al., 2012a). 

 

The control plots of our study did not receive any herbicide application and were 

therefore less disturbed and had a more natural plant composition, which 

developed over a long time of pasture farming. In this more natural plant 

composition slug abundance showed either a higher tolerance to disturbance or 

a higher capacity to re-organize after disturbance. Unfortunately our sampling 

design did not allow detailed investigation of the mechanisms behind this effect. 

We found support to our third hypothesis, that slug communities in manipulated 

ecosystems (e.g. with a disturbed or altered plant community structure) are less 

tolerant of disturbance (e.g. grazing or mowing) than those in more natural 

habitats. This is similar to the results of Dedov et al. (2006), who also found slug 

abundance to be highest in diverse, naturally assembled plant communities.  

Such results give rise to the question of whether experiments containing 

artificially assembled communities, such as the Jena- (Roscher et al., 2004) or 
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the Cedar Creek Experiments (Tilman, 1996), might show a lower tolerance and 

resilience to disturbance, independent of their plant biodiversity.  

Thus, data from experiments with sown and artificial plant communities may be 

more biased than that taken from experiments containing naturally assembled 

communities (Diaz et al., 2003). We expect that in naturally assembled 

communities the less disturbed communities should show smaller changes of 

invertebrate communities in response to further disturbance. 

As our study organisms were mobile and allowed to move freely between 

experimental plots, we caution against interpreting our results as reflecting 

population changes. Rather, our results may indicate local preferences for 

microhabitats (shelter, humidity) in a large superpopulation colonizing the whole 

field. 

Since we found no effects of slug abundance on herbivory of R. acetosa (L.), 

despite strong differences in slug abundance between the plots, we assume that 

other herbivores than slugs may have accounted for most of the herbivory on this 

plant species. Slugs generally play a minor role as a pest in managed 

grasslands, which is in line with the finding of Frank (1998a), who found the 

same for slugs in winter wheat fields adjacent to wild flower strips. Thus, the 

higher rate of herbivory damage on R. acetosa on nutrient-enriched plots may be 

due to an increase in plant palatability (Tscharntke and Greiler, 1995) and/or a 

higher abundance and activity of other herbivores not accounted for in this study. 

Our study is the first to investigate the effects of cutting frequency, nutrient 

availability and plant functional group composition in a removal experiment and 

the first to find that there are higher numbers of slugs in less manipulated or 

more natural plots. This raises the question whether this is also true for other 

invertebrates, which may have potential implications for pest management 

practice. 

In conclusion, our experimental approach with plant functional group removal 

revealed positive effects of forb richness on plant diversity and slug density, 

which is also suggested by other studies on grassland invertebrates (Scherber et 

al., 2010; Wardle et al., 1999). Our experiment indicates that populations of 

invertebrates will increase in abundance not only where there is greater plant 

species richness (Tilman, 1996), but also in more natural plant communities. 
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Abstract 

Plant biodiversity can affect trophic interactions in many ways, including direct 

bottom-up effects on insects, but is negatively affected by agricultural intensification. 

Grassland intensification promotes plant productivity, resulting in changes in plant 

community composition, and impacts on higher trophic levels. Here, we use a novel 

grassland management experiment combining variation in cutting and fertilization 

with a manipulation of plant functional group composition (independent of 

management effects) to disentangle the direct and indirect effects of agricultural 

management on insect herbivore diversity and abundance. We used leafhoppers as 

model organisms as they are a key insect taxon in grasslands and react rapidly to 

management changes. 

Leafhoppers were sampled between May and September 2010 using standardized 

sweep netting and pan traps. 

Our results show that plant diversity, functional group composition and management 

regime in grasslands affect leafhopper species richness and abundance. Higher 

cutting frequencies directly led to decreasing leafhopper species richness, 

presumably due to the higher disturbance frequency and the reduction in food-

resource heterogeneity. In contrast, fertilizer application had only a small indirect 

negative effect via enhanced aboveground plant biomass, reduced plant diversity 

and changed functional group composition. The manipulated increase in grass cover 

had contrasting direct and indirect effects on leafhopper species richness: directly 

increasing leafhopper species richness, but negatively affecting plant diversity, which 

in turn was positively related to leafhopper species richness. In conclusion, insect 

diversity is driven in complex direct and indirect ways by grassland management 

including changes in functional group composition. 

We therefore show that besides food resource heterogeneity in the form of plant 

diversity, the availability of preferred food sources and the frequency of disturbance 

are also important direct and indirect drivers of leafhopper species richness, but 

interactions between these are complex. 
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Introduction 

 
Grasslands, such as permanent meadows and pastures, cover about 37 % of the 

agricultural area in Europe (FAOSTAT 2013) and harbour much of Europe’s overall 

biodiversity (WallisDeVries, Poschlod & Willems 2002). Many plant and animal 

species are restricted to this habitat type (Isselstein, Jeangros & Pavlu 2005). 

However, agricultural intensification and land-use change have caused major losses 

in grassland biodiversity (Sala et al. 2000). Large amounts of fertilizer are applied in 

grassland to increase yield (Galloway et al. 2004), and allow to be earlier and more 

frequently cuttings in the growing season. Additionally, herbicides are used, from 

time to time, to suppress unwanted plant species (Isselstein et al. 2005). These 

management practices greatly affect both plant biomass and composition. Plant 

species that are adapted to low nutrient levels and low cutting frequencies are 

replaced by more competitive, faster-growing species (Smart et al. 2006; Wesche et 

al. 2012), thereby altering the invertebrate communities of the grassland as well 

(Attwood et al. 2008). Frequent cutting disturbs the vegetation structure, removes 

food resources and kills many animals (Isselstein, Jeangros & Pavlu 2005; Humbert, 

Ghazoul & Walter 2009; Humbert et al. 2010; Everwand, Scherber & Tscharntke 

2013). 

Here, we present results from a novel grassland management and plant functional 

group manipulation experiment (GrassMan, Plate 4.1) (Petersen et al. 2012), 

combining experimental variation in cutting frequency (two levels, one cut or three 

cuts) and fertilizer application (two levels, fertilized or unfertilized) with a plant 

functional group manipulation treatment (three levels), testing the enhancement of 

grasses or herbs independent of management changes. We focus on insect 

responses to plant species composition and management intensity. The resulting 12 

treatment combinations were replicated six times, resulting in 72 plots laid out 

experimentally as a Latin rectangle (Everwand, Scherber & Tscharntke 2013).  

Other studies on trophic interactions in biodiversity experiments have largely relied 

on artificially sown gradients in plant diversity (Scherber et al. 2006; Scherber et al. 

2010a). To achieve more realistic results, we performed this study in an old 

grassland and only changed the relative importance of grasses and forbs (Diaz et al. 

2003). 
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Plate 4.1: Aereial picture of the GrassMan Experiment, taken in 2009 by L. Rose. 

We chose leafhoppers, planthoppers and froghoppers (Auchenorrhyncha, hereafter 

referred to as leafhoppers), as model organisms as they are a highly diverse plant-

sucking insect group that has been shown to be strongly influenced by management 

regime, productivity, vegetation structure and plant species composition (Nickel 

2003; Biedermann et al. 2005).  

Leafhoppers play an important role both as herbivores and as prey for higher trophic 

levels. Their rapid reaction to changes in management regime makes them highly 

appropriate for ecological studies such as the one presented here (Biedermann et al. 

2005). Nevertheless, they have rarely been studied in this context (but see Hollier et 

al. 2005). 

We hypothesize that  

 

(i) Leafhopper abundance and diversity decrease with cutting frequency, as 

cutting acts as a mechanical disturbance 

 

(ii) Leafhopper abundance and diversity increase with fertilizer application, as this 

enhances quantity and nutritional quality of available food resources.  

 

(iii) Leafhopper abundance and diversity increase under experimental 

enhancement of graminoid cover, because many species feed preferably on 

graminoids. 
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Material and Methods 

 
Description of study site 

This study was performed in 2010 as part of the "GrassMan"-Experiment (Petersen 

et al. 2012) near Neuhaus (Solling) in the Solling Mountains in Northern Germany 

(51°440 N, 9°320 E, 490 m a.s.l.).  

Prior to the start of the experiment the study site was a nutrient poor, moderately wet 

Lolio-Cynosuretum grassland with high abundances of Agrostis capillaris (L.), 

Festuca rubra (L.), Rumex acetosa (L.), Veronica chamaedrys (L.) and Ranunculus 

repens (L.) (Petersen et al. 2012).  

Mean annual precipitation is 1028 mm and mean annual temperature is 6.9°C 

(Deutscher Wetterdienst, 1961–1990, station Holzminden-Silberborn, 440 m a.s.l.). In 

2010, the year of the study, mean annual temperature was 8.0 °C and annual 

precipitation was 1110 mm. The dominant soil type in the experimental area is a 

shallow (40–60 cm), stony Haplic Cambisol, developed on sediments of loess on the 

Middle Bunter (Triassic sandstone) formation with a loamy silt texture (Keuter et al. 

2012). 

 

Study design 

The experiment was established in 2008 in a permanent, formerly extensively used, 

cattle-grazed grassland. It was laid out as a three-factorial Latin rectangle (Clewer & 

Scarisbrick 2001) with the following factors (Fig. 4.S1 Appendix): (i) plant functional 

group manipulation (three levels) using herbicides, (ii) fertilizer application (two 

levels) and (iii) cutting frequency (two levels), resulting in twelve treatment 

combinations.  

To manipulate plant functional group presence, we applied (i) a combination of the 

forb-specific herbicides Fluroxypyr (Starane; Dow AgroSciences, Munich, Germany; 

3 L ha-1) and Mecoprop-P (Duplosan; KV, Du Pont de Nemours, Neu-Isenburg, 

Germany; 3 L ha-1) or (ii) the graminoid-specific herbicide Select 240 EC (Stähler Int., 

Stade, Germany; 0.5 L ha-1), resulting in three levels of plant diversity: (i) forb-

reduced (=graminoid-rich), (ii) graminoid-reduced (=forb-rich) and (iii) control. 

Herbicides were applied once in June 2008 (a “pulse” experiment sensu Bender et al. 

1984).  
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In 2009 and 2010, plots were fertilized with N (Calcium ammonium nitrate N27: 

13.5% NH4-N, 13.5% NO3-N, 4% MgO, 6% Ca) at two equal doses (2 x 90 kg ha−1) in 

April and May/June; in addition, fertilized plots received 30 kg P ha−1 and 100 kg K 

ha−1 in early June (Thomaskali®, 8% P2O5, 15% K2O, 20% CaO).  

Control plots were not fertilized. Plots were cut either once (in July) or three times a 

year (May, July, September) using a Haldrup® forage combine harvester (INOTEC 

Engineering GmbH, Ilshofen, Germany) at a cutting height of 7 cm. The resulting 

twelve treatment combinations (equalling one block of the Latin rectangle; see 

Everwand et al. 2013, Fig. 4.1) were arranged randomly and replicated six times, 

resulting in 72 plots. Each plot was a 15 x 15 m square surrounded by at least 3 m of 

frequently cut grass between plots, and 5 m between blocks. 

Plant functional groups were not entirely removed, but target plant species were 

strongly reduced in abundance. Plant functional groups slowly recovered following 

herbicide application, but all FG manipulation treatments significantly affected 

vegetation parameters, such as compressed vegetation height, harvested biomass, 

functional group composition and plant species richness. More details on the 

experimental design, setup and treatment effects on vegetation can be found in 

Petersen et al. (2012 & 2013) and Rose et al. (2012a & 2012b) . 

 

Leafhopper sampling 

Leafhoppers were sampled using two methods: i) by sweep netting (Heavy Duty 

Sweep Net, 7215HS, BioQuip, diameter: 38 cm), while walking a circular transect 

with a diameter of 8 m around the centre of each plot (30 sweeps each), in dry 

weather on two occasions (at the beginning of July and at the end of August 2010). 

Transects length was approximately 20 m, and there was a distance of at least 4 m 

to the edge of each plot. In addition, ii) we sampled leafhoppers by placing two 

transparent pan traps, containing an ethylene glycol / water mixture (1:3), 1 m apart, 

near to the centre of each plot. Pan traps were about 5 cm above vegetation height 

and were active for one week in five time intervals in 2010 (end of June, mid-July, 

early August, mid-August, end of August). 

 

The specimens caught with both methods were transferred into ethanol (70 % vol.) 

separately and identified to species level in the laboratory using Biedermann & 

Niedringhaus (2004) and Kunz et al. (2011).  
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One species with woody host plants was excluded, as we assumed that it had been 

swept off its host tree by wind and was not a true member of the grassland fauna. 

Species whose larvae used herbs or grasses as host plants and only the imagines 

fed on trees were included in the analysis.  

For female specimens of several genera identification to species level is not possible 

(e.g. Psammotettix) (Biedermann & Niedringhaus 2004; Kunz, Nickel & Niedringhaus 

2011). Thus, if male specimens were present, female specimens were assumed to 

belong to the same species. If not, they were only identified to genus level. If males 

of more than one species of a genus were present, the proportion of females was 

assumed to mirror that of males.  

 

We found no interaction effects of the two sampling methods with the management 

variables (cutting frequency, fertilizer application) on leafhopper species richness 

(see Fig. 4.S2; Appendix). In addition, vegetation height (a proxy for vegetation 

density) did not affect the number of leafhoppers caught by sweep netting. 

We therefore pooled the data of both methods, which allowed us to cover the 

growing season of 2010 from early May until late September. For all diversity 

assessments, we used species richness, Shannon’s diversity index (H’) or its 

numbers equivalent (eH’) (Jost 2006). 

 

Assessment of vegetation parameters 

Because our treatments are likely to have affected plant productivity and vegetation 

structure, possibly indirectly affecting leafhopper species richness, we additionally 

measured a series of vegetation parameters:  

(i) We conducted vegetation surveys on two quadrates, each of 1 m² size, twice (in 

May before the first harvest and also again in August) on each plot. We recorded the 

percentage of cover, proportional yield of each species (Klapp & Stählin 1936), plant 

species richness, functional group composition and presence-absence data of the 

functional groups (graminoids and forbs).  

(ii) Plant aboveground biomass (AGB) was estimated as follows: First, during 

harvest, fresh weight of two 1.50 × 15 m strips per plot was measured using the 

harvester’s built-in scale.  

To determine the water content of this sample, we took four subsamples that were 

homogenized, weighed, dried for 48 h at 65 °C and subsequently weighed again.  
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We then multiplied fresh weight by water content to obtain the total aboveground dry 

biomass (t ha-1) for every plot.  

(iii) Proportions of graminoids and forbs (%) were determined from the vegetation 

surveys (derived as described above). Harvest was performed on all plots once a 

year in the end of June and additionally in mid-May and mid-September for the 3-cut 

treatment (Petersen et al. 2012). 

(iv) Compressed sward height (cm) was measured using a rising plate meter 

according to Castle (1976) and the average value of 25 measures per plot was 

calculated. This was performed every 2-3 weeks, resulting in eleven time points 

throughout the growing season of 2010. 

 

Statistical Analysis 

Data were analysed using the statistical software package R (version 2.15.2) (R-

Development-Core-Team 2012). In addition, we performed structural equation 

modelling using AMOS 20.0 (SPSS, Inc.). Treatment effects on vegetation and 

leafhoppers were assessed using generalized linear models (GLMs; (Crawley 2007)).  

Models contained row- and column effects (fitted as factors, column was nested 

within block), sward composition (factor with three levels), cutting frequency and 

nutrient input (two levels each) with up to two-way-interactions. For abundance data 

we used quasipoisson GLMs, for proportion data LMs with a logit link (Warton & Hui 

2010; Scherber et al. 2013) and for exp(H’) we used GLMs with Gamma errors and an 

inverse link. Corresponding alternative models (e.g. quasipoisson or Gamma with log 

link) had higher residual deviance and were therefore not considered.  

Continuous response variables (e.g. biomass or vegetation height) were log-

transformed and analyzed using GLMs with an identity link. For each response 

variable in turn, maximal models containing all possible terms were manually 

simplified into models containing fewer explanatory variables. We compared the 

resulting nested models using F-tests (and Chi² for quasipoisson models), until a 

minimal adequate model that only contained significant effects was obtained.  

Significance of terms was assessed in two ways: (i) each parameter estimate from 

linear models was compared to zero using marginal t-tests (e.g. Table 4.2); and (ii) 

terms in the models were additionally tested by sequential addition to a null model 

(sequential analysis of deviance tables). 
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In addition to traditional GLM-based analyses, we employed structural equation 

models (SEMs), allowing us to test more complex hypotheses on indirect effects of 

treatments, plant productivity and plant diversity on leafhoppers (Bollen 1989; Shipley 

2000; Scherber et al. 2010b).  

SEMs are particularly well suited for experimental contexts, i.e. where some 

variables are deliberately manipulated experimentally (Grace 2006). Furthermore, 

SEMs "can be used to develop accurate and meaningful final multiple regression 

models when collinearities among explanatory variables are thought to be present" 

(Graham 2003), which was clearly the case for the vegetation properties measured 

here. 

SEMs contained all three treatment variables, as well as latent variables (Bollen 

1989) for plant productivity and plant diversity. For the SEMs we specified our design 

variables as numeric variables as follows:  

 

Fertilizer treatment:  

no fertilizer = 0; NPK-fertilizer application = 1 

 

Cutting frequency:  

one cut/year = 0; three cuts/year = 1 

 

Functional group manipulation: 

FG graminoid-reduced = -1; FG control = 0; FG forb-reduced = 1 

 

The sorting of FG manipulation was according to its effect on plant diversity and 

proportion of graminoids (see Fig. 4.1). Plant productivity had two indicator variables: 

harvested aboveground biomass in July (AGB, t ha-1), and average compressed 

sward height. Plant diversity had the indicator variables "forbs" and "graminoids"; 

since only four legumes species (Lotus corniculatus, L. pedunculatus, Trifolium 

repens, Lathyrus pratensis) were present in a very low cover on 61 plots only, and 

none of the leafhopper species found had been categorized as preferentially feeding 

on legumes, we did not take legumes into account separately for the SEMs. 

Leafhopper abundance and species richness were take separately (instead of (eH`) 

Shannon diversity) for the SEM to identify effects of design variables and vegetation 

parameters on leafhoppers. 
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Results 

 
Treatment effects on vegetation 

We found 61 plant species, 22 graminoids and 39 forbs (including four legumes). 

Plant Shannon diversity was positively affected by higher cutting frequency (three 

times/year) (F1,72 = 23.06; P < 0.001). In addition, a forb-enriched sward was 

achieved by monocot specific herbicide application (F1,72 = 16.34; P < 0.001). As 

shown in Fig. 4.1a and Table 4.1, plant Shannon diversity (numbers equivalent, eH’) 

was highest in unfertilized, forb-rich plots with three cuts (9.61 ± 0.35) and lowest in 

fertilized, graminoid-rich plots with one cut (5.28 ± 0.45).  

 

Fig. 4.14: Bar plots showing how (a) FG manipulation treatment and fertilizer application shift the functional group 

composition and (b) the effects of cutting frequency and FG manipulation on the numbers equivalent of plant 
Shannon diversity (e

H´
). (c) shows the negative relationship between plant Shannon diversity and the proportion of 

graminoids (Spearman's rho = -0.70; p < 0.001). The regression line represents a linear model (lm; F1,72 = 69.43; 
P<0.001). 
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Fertilizer application had no significant direct effect on plant Shannon diversity. Plant 

Shannon diversity was strongly negatively correlated with the proportion of 

graminoids (Spearman's rho = -0.70; p < 0.001, Fig. 4.1b, Tab. 4.1), suggesting that 

plant diversity was mainly driven by the proportion of forbs.  

 

The effects of proportion of graminoids (%; equals inverse proportion to forbs) 

increased with fertilizer application (t1,72 = 4.89; P < 0.001) and herbicide induced 

reduction of forbs (= graminoid-rich: t1,72 = 4.39; P = 0.014). Proportion of graminoids 

decreased with application of graminoid-specific herbicides (= forb-rich: t1,72 = -4.71; 

P = 0.071).  

 

The proportion of graminoids was highest in fertilized, graminoid-rich plots with one 

cut (86.67 ± 2.35 t ha-1) and lowest in unfertilized, forb-rich plots with three cuts 

(46.33 ± 5.07 t ha-1). Fig. 4.1c shows how experimental reduction of functional groups 

and fertilizing alters plant Shannon diversity. The positive effect of fertilization on the 

proportion of graminoids was even higher under FG reduction of forbs (see also 

Everwand et al. 2013). 

 

Table 4.3: Effects of experimental treatments on vegetation parameters (mean ± 1 SE). 

functional 

group 

 

cutting 

frequency 

 

fertilizer 

application 

 

compr. veg. 

height [cm] 

mean (± SE) 

plant Shannon 

diversity 

mean (± SE) 

proportion 

grass [%] 

mean (± SE) 

N 

 

control 1x no 10.89 (± 0.29) 6.90 (± 0.68) 68.52 (± 2.75) 6 

forb-rich 1x no 11.07 (± 0.23) 7.97 (± 0.56) 50.28 (± 2.78) 6 

graminoid-rich 1x no 10.27 (± 0.11) 5.74 (± 0.48) 75.60 (± 3.82) 6 

control 3x no 7.87 (± 0.13) 9.44 (± 0.55) 59.32 (± 4.79) 6 

forb-rich 3x no 7.58 (± 0.12) 9.61 (± 0.35) 46.33 (± 5.07) 6 

graminoid-rich 3x no 7.79 (± 0.13) 7.57 (± 0.56) 69.27 (± 2.84) 6 

control 1x NPK 13.36 (± 0.27) 7.65 (± 0.73) 67.95 (± 5.07) 6 

forb-rich 1x NPK 12.72 (± 0.32) 7.81 (± 0.61) 60.72 (± 5.29) 6 

graminoid-rich 1x NPK 12.54 (± 0.42) 5.28 (± 0.45) 86.67 (± 2.35) 6 

control 3x NPK 10.05 (± 0.19) 8.10 (± 0.61) 72.52 (± 3.49) 6 

forb rich 3x NPK 9.72 (± 0.15) 8.68 (± 0.54) 61.55 (± 3.15) 6 

graminoid-rich 3x NPK 10.08 (± 0.31) 7.17 (± 0.87) 84.02 (± 3.01) 6 
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Treatment effects on leafhoppers 

In total, we caught 6497 adult leafhopper specimens from 36 species. Twenty eight 

species (86.5 % of the total abundance) were graminoid-feeders, and eight species 

were forb-feeders (Nickel & Remane 2002). The four most common species were 

Arthaldeus pascuellus (FALL.) with 67.9 % of total abundance, Philaenus spumarius 

(10.7 %), Streptanus sordidus (7.6 %) and Macrosteles viridigriseus (2.7 %). 

  

Fig. 4.5: a) Bar plot showing the effects of FG manipulation and cutting frequency on the numbers equivalent of 

Shannon diversity of leafhoppers (e
H´

). The scatter-plot b) shows the positive relationship between leafhopper 
species richness [species per plot] and proportion of graminoids [%] (Spearman's rho = 0.35; p = 0.003). The 
regression line represents a linear model (lm; F1,72 = 6.56; P = 0.013). 

 

 

 

 

Table 4.4: Effects of experimental treatments on leafhopper Shannon diversity, abundance and  

    species richness (mean ±1SE). 

Herbicide 
Cutting 

frequency 

Leafhopper 

Shannon diversity  

Leafhopper 

abundance 

 

Leafhopper 

species richness  
N 

Control 1x 4.02 (± 0.38) 72.58 (± 7.33) 9.58 (± 0.83) 12 

forb-rich 1x 3.19 (± 0.15) 60.75 (± 8.69) 7.08 (± 0.34) 12 

graminoid-rich 1x 3.69 (± 0.27) 87.00 (± 10.67) 9.67 (± 0.38) 12 

Control 3x 3.06 (± 0.26) 110.58 (± 9.03) 9.42 (± 0.71) 12 

forb-rich 3x 2.64 (± 0.18) 80.00 (± 9.81) 7.00 (± 0.41) 12 

graminoid-rich 3x 2.58 (± 0.14) 130.50 (± 19.31) 8.75 (± 0.80) 12 
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Leafhopper Shannon diversity was highest in the most natural and least disturbed 

plots (one cut, no herbicide) with an average of 4.02 (± 0.38) species per plot (Fig. 

4.2a). A consistently negative effect of three cuts/year (F1,72 = 33.03; P < 0.001) and 

of FG manipulation (F2,72 = 5.76; P = 0.005; Fig. 4.1, Table 4.2) was observed. 

Fertilizer application had no direct effect on leafhopper Shannon diversity. The 

proportion of graminoids [%] had a positive overall effect on leafhopper species 

richness (F1,72 = 6.56; P = 0.013; Fig. 4.2b). 

 

Table 4.5: Sequential F tests of terms in GLM models for the response variables exp Shannon plants, exp 

Shannon Leafhoppers and proportion of graminoids (%). 

  

Plant Shannon 

diversity (eH´)  

Leafhopper Shannon 

diversity (eH´)  % graminoids 

 Df F Pr (>F)  F Pr (>F)  F Pr (>F) 

Block 5,71 4.70 0.001  4.47 0.002  - - 

FG manipulation 2,71 16.34 <0.001  5.76 0.005  40.87 <0.001 

cutting frequency 1,71 23.06 <0.001  33.03 <0.001  - - 

fertilizer application 1,71 - -  - -  24.53 <0.001 

block:column 6,71 - -  3.27 0.008  - - 

 

Direct and indirect treatment effects on vegetation 

The structural equation models (Fig. 4.3) show that an increasing proportion of 

graminoids, due to FG manipulation, reduced plant diversity (standardized path 

coefficient ß = -0.61). Plant diversity (latent variable) was mainly driven by forb 

diversity (ß = 0.71). Fertilizer application and cutting frequency jointly influenced the 

latent variable "plant productivity": fertilization increased plant biomass and height, 

while cutting reduced both. Finally, higher plant productivity negatively influenced 

plant diversity (ß = -0.2). Notably, alternative pathways, e.g. arrows from plant 

diversity to plant productivity, were not supported by our data. 
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Direct and indirect effects of treatments and vegetation on leafhoppers 

Our structural equation models indicate that there were both direct and indirect 

effects of treatments on leafhopper abundance and species richness.  

Plant functional group manipulation was the most important direct driver of 

leafhopper species richness (ß = 0.53): In forb-rich communities, leafhopper species 

richness was lowest, while it was highest in grass-rich communities. In contrast, a 

higher percentage of grasses affected plant diversity negatively, while the number of 

plant species (latent variable "plant diversity") had a positive effect on leafhopper 

species richness (ß = 0.62, see Fig. 4.3). Cutting frequency had a negative effect on 

leafhopper species richness (ß = -0.42), whereas fertilizer application exhibited no 

effect on leafhopper species richness. Finally, leafhopper species richness was 

strongly related to leafhopper abundance (ß = 0.66). 

 

In addition to these direct effects, the treatments had indirect effects on leafhopper 

abundance and species richness. This was mediated by changes in plant productivity 

and plant diversity. An inspection of the standardized total effects (Table 4.4) shows 

that FG manipulation was the most important driver of leafhopper species richness 

(total effect ε = 0.379). In addition, the latent variable "plant diversity" positively 

affected leafhopper species richness (ε = 0.249). 

 

Table 4.6: Standardized total effects (ε), combining indirect and direct effects.  

   *=P<0.05; **=P<0.01; ***=P<0.001 

 fertilizer 
application 

cutting 
frequency 

FG 
manipulation 

plant 
productivity 

plant 
species 
richness 

leafhopper 
abundance 

plant productivity 0.587 *** -0.793 ***     

plant species richness -0.117 0.158 -0.613 *** -0.200   

leafhopper abundance 0.067 0.368 *** 0.348 *** 0.113 -0.568 **  

leafhopper diversity -0.029 -0.080 * 0.379 * -0.050 0.249 0.659 ** 
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Fig. 4.6: Indirect and direct treatment effects on leafhoppers. The graph shows the minimal adequate structural 

equation model with N = 72, X² = 18.7, P = 0.664, 22 degrees of freedom and a root mean squared error of 
approximation of 0.00 (90 % confidence interval, [0, 0.081]). Rectangles represent observed variables (organism 
abundance and diversity = species richness), ellipses represent latent variables. Solid (dashed) arrows indicate 
positive (negative) relationships among variables. Numbers next to arrows and boxes are standardized path 
coefficients. Design variables were specified as numeric variables. Fertilizer application: no fertilizer = 0; NPK-
fertilizer = 1; cutting frequency; one cut/year = 0; three cuts/year = 1; and Graminoid enhancement: graminoid-
reduced = -1; control = 0; forb-reduced = 1.  
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Discussion 

 
The combination of management measures such as cutting and fertilizer application, 

with the manipulation of functional group composition and their interactions, led to 

contrasting sward types ranging from nutrient poor, forb-dominated plots harbouring 

a greater diversity of plants to highly productive, graminoid-dominated plots with 

lower plant diversity. This had both direct and indirect effects on leafhopper species 

richness and abundance. Leafhopper species richness profited directly from both a 

higher cover of graminoids (due to herbicide-induced reduction of forbs) and from a 

lower cutting frequency. However, an indirect (negative) effect on leafhopper species 

richness was caused by the higher proportion of graminoids due to forb reduction 

and management intensification, which both had a negative impact on plant diversity. 

 

The finding that plant diversity had a negative effect on leafhopper abundance in our 

study can be explained by the preference for grasses of the most abundant 

leafhoppers such as Arthaldeus pascuellus (Nickel & Remane 2002). Plant diversity 

was driven by forbs, whereas productivity was driven by graminoids, which benefit 

from fertilizer application. Therefore, fertilizer application led to lower plant diversity 

but higher amounts of harvestable aboveground biomass.  

The grassland in the experimental field site has been used for cattle grazing and hay 

making for at least a century. We therefore also expect the leafhopper community to 

be adapted to the long-term managed the grass-dominated vegetation, which may 

have led to the selection of the dominant species in the pool associated with grasses 

(Nickel & Remane 2002). 

 

The increase in plant Shannon diversity (eH´) with graminoid reduction, the decrease 

in plant Shannon diversity with forb reduction, as well as the strong decrease in plant 

Shannon diversity with increasing proportion of graminoids, highlights the impact of 

the functional group manipulation on plant diversity and composition and the strong 

contribution of forbs to plant species richness. Some graminoid species, such as 

Agrostis capillaris, Festuca rubra and Dactylis glomerata, play a dominant role in 

productivity in our study, resulting in a negative species richness–biomass 

relationship (Rose & Leuschner 2012). 
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The higher frequency of three cuts per year had a positive effect on plant diversity, 

confirming that cutting can increase plant species diversity due to removal of 

nutrients from the soil (Oomes & Mooi 1981). But we expect that a moderate 

frequency of two cuts per year would improve plant species richness in our 

experimental field site even more, because the disturbance rate is lower but removal 

of nutrients is still high (Zechmeister et al. 2003). This nutrient limitation only occurs 

when no fertilizer is applied and the harvested AGB is removed. Such grasslands 

were shown to harbour a higher species number and proportion of forbs (Fischer & 

Wipf 2002). This is in line with our finding of a higher number of plant species (mainly 

driven by forbs) under the regime of three cuts/year. 

 

When fertilizer is applied, many herbs cannot efficiently use higher nitrogen inputs 

(Zechmeister et al. 2003) and are out-competed by more competitive species 

(Chapin 1980), which are mainly graminoids (Pearce & van der Wal 2002). However, 

disturbance events such as mowing create niches for weaker competitors 

(MacDougall et al. 2013). 

 

Similar to Morris (1981), we observed a negative direct effect of higher cutting 

frequency on leafhopper species richness, but a positive effect on leafhopper 

abundance. However, we did not observe any significant direct responses of 

leafhopper species richness, abundance or Shannon diversity (eH´) to fertilizer 

application, which are often described in literature (e.g. Nickel & Achtziger 1999). 

 

As the path diagram indicates, fertilizer application had a weak indirect negative 

effect on leafhoppers, mediated by the strong increase in aboveground primary 

production and its negative association with plant species diversity. 

 

NPK fertilizer application generally results in a strong increase in aboveground 

biomass production (Harpole & Tilman 2007) along with an increase in the proportion 

of graminoids (MacDougall et al. 2013) and a decrease in plant species diversity 

(Pan et al. 2011). This is due to higher tolerance of the dominant graminoid species 

(Dactylis glomerata, Festuca rubra) to high cutting frequencies and their faster re-

growth capacity after cutting, especially under fertilizer application (Leuschner, Gebel 

& Rose 2013). 
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Many generalist leafhoppers can benefit from the improved performance of some 

graminoids under more frequent cutting, as the opposing effect of cutting frequency 

on leafhopper abundance (positive) and leafhopper species richness (negative) in the 

path diagram shows. Some very abundant species (e.g. Arthaldeus pascuellus, 

Streptanus sordidus, Deltocephalus pulicaris), which are generalists on graminoids 

(Nickel & Remane 2002), show a clear preference for areas cut three times per year. 

 

The negative direct effect of higher cutting frequency on Shannon diversity (eH´) and 

species richness of leafhoppers indicates that the majority of leafhopper species 

found within our study site showed a clear preference for plots cut only once a year, 

which is in line with findings of other studies (Morris & Lakhani 1979; Nickel & 

Achtziger 1999). This preference of leafhoppers for plots cut only once a year (Morris 

& Lakhani 1979; Nickel & Achtziger 1999) is also supported by our finding of a 

negative impact of higher cutting frequency on vegetation height and biomass.  

This shows that reduced disturbance rate results in larger amounts of food resources 

and shelter due to higher vegetation and aboveground biomass. Higher vegetation 

and aboveground biomass were shown by Kőrösi et al. (2011) to have a positive 

effect on leafhopper abundance and species richness, we expect the same to apply 

here, since lower vegetation height and biomass on plots cut three times per year 

also implies a lower amount of available food resources and therefore directly results 

in lower leafhopper species richness. 

 

The strong positive direct effect of the herbicide-induced increase of graminoids on 

leafhopper species richness can be explained by the preference for graminoids 

displayed by most leafhopper species found in our study (see Table 4.S4, Appendix) 

which is in accordance with other studies (Nickel & Hildebrandt 2003). 

 

Higher plant diversity also leads to more diverse leafhopper communities 

(Biedermann et al. 2005), which, in our study, is owed to less common but more 

specialized species (e.g. Acanthodelphax spinosa, Cicadula persimilis, Conomelus 

anceps). 

The herbicide treatment was applied only once in 2008, nevertheless, this 

manipulation of plant functional group composition was efficient, since plant diversity 
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and functional group composition were clearly affected even three years after the 

treatment. 

Although most leafhopper species are mobile (Waloff 1973; Nickel 2003) and our 

plots were small, the differences in management and plant functional group 

composition caused species sorting even on a small scale, which has also been 

found to be the case for highly mobile bees and wasps (Ebeling et al. 2012). 

 

Our experimental manipulation of established grassland shows very strong design 

effects on vegetation, therefore we expect the direct and indirect effects of 

management regime and vegetation parameters on leafhoppers to be even stronger 

in larger and unconnected areas. We also show the preferences of leafhoppers for 

certain microhabitats within a defined community. 

 

To gain a deeper understanding of the interactions behind the design effects (cutting 

frequency, fertilizer application and FG manipulation), we included vegetation 

parameters, such as vegetation height, harvested peak biomass and plant species 

richness (for forbs and graminoids separately) in our path analysis. 

 

The strong direct negative effect of higher cutting frequency and the positive direct 

effect of higher proportion of graminoids (due to FG manipulation) on leafhopper 

species richness (and also Shannon diversity (eH´)) has several causes: 

 

(i) Plant diversity was greater with herbicide-induced reduction of graminoids, higher 

cutting frequency and without application of NPK-fertilizer, since it was mainly driven 

by forbs. But species richness of graminoids, which are the preferred food source for 

the majority of the leafhopper species caught (Nickel & Remane 2002) did not 

increase. Therefore a higher proportion of graminoids indirectly reduced leafhopper 

species richness via its negative effect on plant diversity, but also had a direct 

positive effect due to greater availability of the preferred food source. 

(ii) Cutting is a disturbance event and reduces food resource heterogeneity. The 

higher its frequency, the higher the direct impact on leafhoppers, since many 

leafhoppers are killed and removed during the process of harvesting (Humbert et al. 
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2010). This is comparable to the negative effects of cutting on slug abundance within 

the same experiment (Everwand, Scherber & Tscharntke 2013). 

 

(iii) The lower vegetation height and biomass on plots cut three times/year also 

implies a lower amount of available food resources and therefore results in lower 

leafhopper species richness. 

 

The proportion of graminoids increased with fertilizer application and also with 

application of forb-specific herbicides. This increased proportion of graminoids 

explains the negative effect of vegetation biomass and height on plant diversity, 

indicated by the path diagram and demonstrates how a continuously managed 

agricultural system results in a high-yield but low-diversity system. This can go along 

with less resilience towards sudden perturbation, microclimatic change and invasions 

(MacDougall et al. (2013). 
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Overall Conclusion 

 
Due to direct and indirect interactions, the combination of the management regimes 

(cutting frequency and fertilizer application) with the manipulation of functional group 

composition leads to contrasting sward types. 

Leafhopper species richness profited indirectly from nutrient-poor, forb-dominated 

plots, since these harbour a greater diversity of plants and therefore greater food-

resource heterogeneity. On the other hand, leafhopper species richness profited 

directly from higher graminoid cover in highly productive plots with lower plant 

diversity, due to a greater availability of graminoids as a preferred food source for 

many leafhopper species. 

With our novel approach of combining variation in cutting and fertilization with a 

manipulation of plant functional group composition (independent of management 

effects), we were able to disentangle the complexity of direct and indirect effects 

within this established, moderately species rich and continuously managed grassland 

based on the example of the easily accessible group of leafhoppers.  

We gain a deep insight into the effects of grassland management on plant diversity, 

productivity and functional group composition and the trophic links and feedbacks on 

leafhopper species richness and abundance. Furthermore, we show that apart from 

food resource heterogeneity represented by plant diversity, the availability of 

preferred food sources and the frequency of disturbance are important drivers of 

leafhopper species richness, but interactions between them are highly complex. 
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Supplementary Material 

Study design 

 

Fig. 4.S1: Experimental design of the Grassman Experiment, showing the Latin rectangle of 12 treatments in 6 

replications. Gra- = graminoid reduced plots (=forb enhanced); Forb- =forb reduced (=graminoid enhanced); Con 

= Control (no herbicide application). The grey area around and between the plots is mown monthly. Plot size 15 m 

x 15 m, space between plots 3 m, between blocks 5 m. 
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Comparison of sampling methods 

Figure 4.S2 and Table 4.S1 show that sampling method had no interaction effect with 

the management variable (cutting frequency and fertilizer application). 

 

a) b)  

c)  

Figure 4.S2: Comparison of the two different sampling methods in combination with functional group 

manipulation and cutting frequency. (a) leafhopper species richness; (b) leafhopper Shannon diversity (e
H´

); (c) 

leafhopper abundance. 
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Table 4.S1: F and p-values of glm’s testing for significant effects of sampling method in combination with design 

treatments. 

 Sampling FG  Cutting Sampling : 

FG  

F (p) F (p) F (p) F (p) 

Leafhopper species richness 197.37 (<0.001) 7.68 (<0.001) n.s. n.s. 

Leafhopper Shannon diversity 

(eH´) 

55.43 (<0.001) 6.95 (0.001) n.s. n.s. 

Leafhopper abundance 342.06 (<0.001) 2.08 (0.125) 10.21 (0.001) 6.38 (0.002) 

 

Table 4.S2: ANOVA-table: Leafhopper species richness vs. Design 

  Df Deviance Resid.Df Resid.Dev F Pr(>F) 

NULL 71.000 19.347     

as.factor(block) 5.000 2.722 66.000 16.625 3.788 0.005 

FG manipulation 2.000 1.505 64.000 15.120 5.237 0.008 

cutting frequency 1.000 4.284 63.000 10.836 29.813 <0.001 

as.factor(block):col 6.000 2.571 57.000 8.265 2.982 0.013 

 

 

Table 4.S3: ANOVA-table: Leafhopper abundance vs. Design 

  Df Deviance Resid.DF Resid.Dev F Pr(>F) 

NULL 71 1542.32     

as.factor(row) 5 202.67 66 1339.65 4.8742 <0.001 

as.factor(block) 5 419.38 61 920.28 10.0861 <0.001 

FG manipulation 2 194.39 59 725.89 11.6877 <0.001 

cutting frequency 1 236.7 58 489.19 28.4631 <0.001 
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Table 4.S4: Species list of the Auchenorrhyncha within the GrassMan experiment with food preferences 

according to Nickel & Remane (2002) and their abundance.
 

Species feeding preferences Abundance 

Acanthodelphax spinosa graminoids 14 

Anoscopus flavostriata graminoids 11 

Anoscopus serratulae graminoids 5 

Anoscopus spec. graminoids 10 

Aphrodes makarovi forbs 8 

Aphrophora alni forbs 4 

Arthaldeus pascuellus graminoids 4414 

Balclutha punctata graminoids 54 

Cicadella viridis graminoids 8 

Cicadula persimilis graminoids 128 

Colobotettix morbillosus forbs 1 

Conomelus anceps graminoids 83 

Cosmotetix costalis graminoids 1 

Criomorphus albomarginatus graminoids 1 

Deltocephalus pulicaris graminoids 162 

Elymana sulphurella graminoids 6 

Errastunus ocellaris graminoids 5 

Eupteryx aurata forbs 2 

Eupteryx vittata forbs 1 

Evacanthus interruptus forbs 1 

Javesella dubia graminoids 58 

Javesella pellucida graminoids 29 

Kosswigianella exigua  graminoids 1 

Macrosteles viridigriseus graminoids 174 

Macustus grisescens graminoids 1 

Megadelphax sordidula graminoids 1 

Megophtalamus scanicus forbs 34 

Mirabella albifrons graminoids 1 

Neophilaenus lineatus graminoids 24 

Philaenus spumarius forbs 698 

Psammotettix confinis graminoids 49 

Stenocranus minutus graminoids 4 

Stiroma bicarinata graminoids 1 

Streptanus sordidus graminoids 492 

Xanthodelphax stramineus graminoids 5 

Zyginidia scutellaris graminoids 6 
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Leafhopper feeding preferences 

Most of the leafhopper species (28 out of 36) preferred grass as food source. The 

Shannon diversity of “grass specialists” leafhoppers was lower under three cuts/year 

(T1,57= -3.34; P=0,001) and with herbicide altered plant composition (forb rich: T1,57=-

3.25; P=0.002, graminoid rich: T1,57=2.33; P=0.023). We found no design effects on 

forb preferring leafhoppers. 

   

Fig. 4.S3: Box plot showing the effects of herbicide application and cutting frequency on Shannon diversity of 

grass specialist leafhopper.  
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Table 4.S5: Mean and standard error of leafhopper responses to experimental design (treatments) 

Sward Utilization 

Leafhopper 

Shannon diversity 

mean (±SE) 

Leafhopper 

abundance 

mean (±SE) 

Grass specialist 

Shannon diversity 

mean (±SE) 

N 

Control 1x 4.02 (±0.38) 72.58 (±7.33) 3.1 (±0.33) 12 

forb rich 1x 3.19 (±0.15) 60.75 (±8.69) 2.42 (±0.17) 12 

graminoid rich 1x 3.69 (±0.27) 87 (±10.67) 2.98 (±0.22) 12 

Control 3x 3.06 (±0.26) 110.58 (±9.03) 2.58 (±0.19) 12 

forb rich 3x 2.64 (±0.18) 80 (±9.81) 2.13 (±0.12) 12 

graminoid rich 3x 2.58 (±0.14) 130.5 (±19.31) 2.38 (±0.1) 12 
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Abstract 

Land-use change is one of the most important causes of biodiversity loss. In 

grassland ecosystems, management intensification such as higher cutting frequency 

and fertilizer application may considerably change plant species richness, plant 

functional-group composition, and associated ecosystem processes. How different 

practices of grassland intensification interact with each other in their effects on 

ecosystem processes, including invertebrate herbivory-driven nutrient cycling is not 

fully understood. We expect that fertilization and cutting affect herbivory-driven 

nutrient cycling, above- and belowground, in a complex way. We tested this with a 

functional-group manipulation experiment (using herbicides) the hypothesis that 

increasing grass cover (independent of grassland management) reduces plant 

species richness, increases biomass response to fertilization and enhances 

herbivory-driven nutrient cycling. On an approximately 100 years old grassland, we 

installed mesocosms in 2010 in the N=72 plots of the Grassman Experiment, differing 

in fertilization, cutting frequency and plant functional group composition. About one 

year after the installation of the lysimeters, we induced a strong herbivory pulse over 

a two-week period using invertebrate herbivores. 

We found that the experimental enhancement of grass shares reduced plant 

diversity, while herbivory and fertilization had opposing effects on grass cover. 

Furthermore, fertilization and cutting regime as well as herbivory affected plant 

productivity and nitrogen fluxes stronger than plant functional-group manipulation. A 

structural equation model suggested that litter production by herbivory increased with 

C:N ratio (presumably due to compensatory feeding) and caused higher nitrate 

release, which was also higher in fertilized plots. Herbivore-induced nutrient 

acceleration differed from mineral nutrient applications in N2O emissions. In addition, 

soil nitrate content increased under invertebrate herbivory, especially on fertilized 

grassland plots. 

By combining several management components, which are known from global 

change scenarios to become increasingly important in the future, we found multiple 

drivers to play a role in controlling the complex interactions driving nutrient cycling 

with invertebrate herbivory increasing the potential of nitrate and nitrous oxide 

release.  
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Introduction 

Declining biodiversity is a common effect of increasing agricultural management, 

especially in European grasslands (WallisDeVries et al. 2002). Permanent meadows 

and pastures cover about 37 % of the agriculturally used area in Europe (FAOSTAT 

2013) and harbor to a large extent the biodiversity of Europe. In order to increase 

productivity to meet increasing demands for food, fodder and bio-energy, grassland 

management has been intensified, e.g., by increased fertilizer use, higher cutting 

frequencies and the use of herbicides (Isselstein et al. 2005). 

In temperate ecosystems, many plant and animal species are restricted to grassland 

habitats (Isselstein et al. 2005), but due to agricultural intensification and land-use 

change biodiversity in grasslands is under threat (Sala et al. 2000). For example, 

plant species that are adapted only to low nitrogen levels are replaced by more 

competitive, faster-growing species (Smart et al. 2006, Wesche et al. 2012). 

Frequent cutting, which acts like a selective kind of herbivory (Crawley 1989), is 

beneficial for small, vegetative spreading and early flowering plants. This results in 

an altered plant composition and vegetation structure, and in a direct removal of food 

resources for invertebrate herbivores (Isselstein et al. 2005, Everwand et al. 2013). 

Invertebrates, such as grasshoppers and snails, are often the dominant invertebrate 

herbivores in temperate agricultural grassland ecosystems (Stein et al. 2010) and 

have been shown to affect several components within an ecosystem (Belovsky and 

Slade 2000).  

Herbivores may enhance plant diversity due to feeding directly on competitively 

dominant plant species and therefore indirectly affect plant competition (Olff and 

Ritchie 1998). Differences in the feeding intensities and preferences of invertebrate 

herbivores may affect plant competition and therefore result in differences in plant 

species richness and composition (Allan and Crawley 2011). 

Herbivores are expected to influence nitrogen cycling and plant species composition 

under diverse management regimes and plant functional group combinations 

(Belovsky and Slade 2000, Allan and Crawley 2011).  
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Invertebrate herbivores may strongly affect nitrogen cycling in terrestrial systems and 

generally tend to accelerate it and may correlate with feeding intensity and 

abundance of herbivores (Seastedt and Crossley 1984, Lovett and Ruesink 1995). 

This herbivore induced acceleration of nitrogen cycling can also increase productivity 

of plants, which are avoided by herbivores due to an release of competition and more 

available nutrients (Belovsky 2000). 

Fast decomposing herbivore excrements may provide nutrients even on a rather 

short time scale of two weeks, if these nutrients are less available beforehand 

(Belovsky and Slade 2000).  

Dominant but preferred food plants are better competitors when nutrients are more 

available, because food quality is better and herbivores feed less (Berner et al. 

2005). However, combined with herbivory, fertilizer application may further 

accentuate nitrogen cycling, resulting in an increase of components of the nitrogen 

flux, such as nitrous oxide (N2O) emission. 

Nitrogen cycling in the soil is related to many important ecosystem functions such as 

biodiversity, productivity (Oelmann et al. 2011) or water balance (Rose et al. 2012a). 

Application of nitrogen fertilizer affects the nitrogen cycling in grasslands including 

the N mineralization and nitrification (Keuter et al. 2012). There are also studies, 

linking emissions of greenhouse gases such as N2O, to grassland management (Li et 

al. 2013) or animal production systems (Clough et al. 2013). 

However, little is known about how nitrogen cycling and N2O emissions respond to 

invertebrate herbivores in combination with agricultural management and shifts in 

plant functional group composition as well as plant diversity. 

Many studies on trophic interactions in biodiversity experiments have largely relied 

on artificially sown gradients of plant diversity (Roscher et al. 2004, Scherber et al. 

2006, Scherber et al. 2010a, Tilman et al. 2012) or have only investigated the effects 

of fertilizer application and cutting frequency (Pavlů et al. 2011). Exclusion 

experiments (Curry 1994, Scherber et al. 2003, del-Val and Crawley 2004, Scheidel 

and Bruelheide 2005, Scherber et al. 2006) have shown invertebrates to strongly 

affect plant biomass production and species composition in grasslands.  



HERBIVORY AND MANAGEMENT AFFECT NUTRIENT CYCLING                                CHAPTER 5 

119 

However, it is not yet well understood and not studied so far, within one experiment, 

how herbivory-driven nitrogen cycling interacts with grassland management when 

fertilization, cutting and functional-group composition are simultaneously 

manipulated. 

We used a plant functional group manipulation experiment (Diaz et al. 2003) to better 

understand the effects of invertebrate herbivory on plant community composition and 

nutrient cycling. Using herbicides, we suppressed either dicots or monocots to test 

the idea that independently of grassland management practices, an increasing 

graminoid cover reduces plant species richness, increases biomass response to 

fertilization and enhances herbivory-driven nutrient cycling. A removal or 

manipulation experiment should better reflect the real-world effects of herbivory on 

nitrogen flux, caused by changes in grassland management than a functional-group 

composition treatment based on sown gradients (Diaz et al. 2003). 

To disentangle the direct and indirect interactions within the system, we conducted 

our study using in-field lysimeter mesocosms, testing the following hypotheses: 

 

1) Responses of plant community and nitrogen cycling become more complex 

with increasing number of interacting drivers (management, functional group 

manipulation, herbivory). 

2) Herbicide induced reduction of graminoid cover enhances forb cover and 

thereby plant diversity and nitrogen cycling. 

3) Fertilizer application and cutting frequency negatively affect plant diversity and 

nitrogen cycling due to changes in disturbance regimes and nutrient 

availability with increasing management intensity. 

4) Invertebrate herbivory negatively affects graminoid cover and accelerates 

nitrogen cycling due to litter and excrement input. 
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Material and Methods 

Description of the study site 

The study site of the "GrassMan"-Experiment (Petersen et al. 2012) is situated near 

Neuhaus (Solling) in the Solling Mountains of Northern Germany (51°440 N, 9°320 E, 

490 m a.s.l.). Prior to the start of the experiment in 2008 the site was a nutrient poor, 

moderately wet Lolio-Cynosuretum grassland with high abundances of the grasses 

Agrostis capillaris (L.) and Festuca rubra (L.) and of the herbs Rumex acetosa (L.), 

Veronica chamaedrys (L.) and Ranunculus repens (L.) (Petersen et al. 2012). Mean 

annual precipitation is 1031 mm and mean annual temperature is 6.9°C (Deutscher 

Wetterdienst, 1961–1990, station Holzminden-Silberborn, 440 m a.s.l.). In the year of 

the study (2011), mean annual temperature was 8.9 °C and annual precipitation was 

725 mm. The dominant soil type in the experimental area is a shallow (40-60 cm), 

stony Haplic Cambisol with a loamy silt texture, developed in loess sediments 

covering the Middle Buntsandstein formation (Triassic sandstone) (Keuter et al. 

2012). 

 

Study design 

The experiment was established in 2008 on a permanent, formerly extensively cattle-

grazed grassland and laid out as a three-factorial Latin rectangle (Clewer and 

Scarisbrick 2001) with the following factors: (i) plant functional group manipulation (3 

levels) using herbicides, (ii) fertilizer application (2 levels) and (iii) cutting frequency 

(2 levels), resulting in twelve treatment combinations. To manipulate plant functional 

group presence, we applied (a) a combination of the forb-specific herbicides 

Fluroxypyr (Starane; Dow AgroSciences, Munich, Germany; 3 L ha-1) and Mecoprop-

P (Duplosan; KV, Du Pont de Nemours, Neu-Isenburg, Germany; 3 L ha-1) or  (b) the 

graminoid-specific herbicide Select 240 EC (Stähler Int., Stade, Germany; 0.5 L ha-1), 

or finally (iii) no herbicide. These combinations resulted in three levels of plant 

diversity: i) forb reduced (=graminoid enhanced), ii) graminoid reduced (=forb 

enhanced) and iii) control. Herbicides were applied once at the beginning of the 

experiment in June 2008 (“pulse” experiment sensu Bender et al. (1984).  
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This manipulation of the functional groups did not result in enlarging of bare ground 

patches. The unaffected plants occupied the space of the plants targeted with the 

herbicide very, maintaining a dense vegetation cover. 

From 2009 onwards, plots were fertilized as follows: N fertilizer (Calcium ammonium 

nitrate N27: 13.5% NH4-N, 13.5% NO3-N, 4% MgO, 6% Ca) was applied at two equal 

doses (2 x 90 kg ha-1) in April and May/June. In addition, fertilized plots received P 

(30 kg ha-1) and K (100 kg ha-1) in early June (Thomaskali®, 8% P2O5, 15% K2O, 

20% CaO). Control plots of the fertilizer treatment were not fertilized. Plots were cut 

at a height of 7 cm either once (in July) or three times a year (May, July, September) 

using a Haldrup® forage combine harvester (INOTEC Engineering GmbH, Ilshofen, 

Germany). The resulting twelve treatment combinations (equalling one block of the 

Latin rectangle; Everwand et al. 2013) were arranged randomly and replicated six 

times, resulting in 72 quadratic plots with 15 m side length. 

Plant functional groups were not entirely removed but strongly reduced in 

abundance, with slow recovery after herbicide application. However, even three 

years after functional group manipulation, all functional group manipulation 

treatments significantly affected several vegetation parameters, such as compressed 

vegetation height, biomass, functional group composition and plant species richness 

on the small lysimeter scale, but not on plot level (Keuter et al. under review).  

More details on the experimental design, setup and treatment effects on vegetation 

can be found in Petersen et al. (Petersen et al. 2012, Petersen et al. 2013) and Rose 

et al. (Rose et al. 2012a, Rose et al. 2012b). 

 

Lysimeters 

The lysimeters were installed one year prior to the start of the herbivory experiment 

in August and September 2010 to give the soil core time to regenerate after the 

disturbance. Lysimeters were made from transparent Plexiglas cylinders (height 30 

cm, inside diameter 14.6 cm, wall thickness 0.3 cm). A transparent material was 

selected in order to control if the soil core was free from cracks, holes or large 

stones. To install lysimeters, a sharpened, tightly fitting metal ring was fixed on the 

bottom of the cylinder.  
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A metal cap was fixed on the head end of the plastic cylinder to avoid damage of the 

Plexiglas whilst driving it into the soil using a hammer. After extracting the cylinder 

and the intact soil core, an exactly fitting baseplate with a culvert (diameter 1.6 cm) 

was fixed to the bottom of the lysimeter using a light curing adhesive (Acrifix©192). To 

collect the drainage water, a Plexiglas tube (length 10 cm) was connected to the 

culvert in the baseplate. To ensure an effective drainage of drainage water, the 

baseplate was covered with 70 fiberglass wicks (diameter 0.1 cm), which channeled 

the water from the lysimeter through the culvert into a PE-bottle placed underneath. 

The hole where the lysimeter was extracted from was stabilized using a PVC-cylinder 

(height 50 cm, inside diameter 15.5 cm) as permanent cladding, also to protect the 

lysimeter and allow frequent weighing and sampling of the drainage water. 

 

Cages 

Cages around the above-ground part of each lysimeter were made of gauze of 

1.5 mm mesh size, which were sewed to fit tightly to the lysimeter and additionally 

fixed using a zip tie. The whole gauze cage was stabilized and protect from heavy 

wind using a bamboo stick with a length of 45 cm, which was pushed into the ground 

for 15 cm.  

 

Herbivores 

We selected a combination of mainly forb-feeding (Helix pomatia.) and mainly 

graminoid-feeding (Chorthippus albomarginatus) herbivores to ensure an equal level 

of herbivory, independent of plant community composition. Both species are common 

in central European grasslands, but H. pomatia doesn’t inhabit the experimental 

area. Feeding preferences of these herbivores can be found in Pollard (1975) and 

Gardiner et al. (2002). All individuals of H. pomatia were of the same age, size and 

weight. They were delivered by a specialized snail breeder (Thüringer 

Weinbergschnecken-zucht, www.weinbergschnecken-thueringen.de) one week 

before start of the herbivory treatment to give the animals time to adapt to the new 

food composition. Individuals were starved for 24 hours prior to the start of the 

treatment. 
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We used grasshopper females as these consume more than males (Franzke et al. 

2010). One week before the start of the herbivory treatment, we caught grasshoppers 

of the species C. albomarginatus from another part of the experimental field site 

using sweep nets. 

Between the two lysimeters per plot were randomly assigned the control and 

herbivory treatment and applied four grasshoppers and one snail per herbivory 

lysimeter. During the experiment, we replaced dead individuals to maintain a 

constant and consistent feeding pressure on the vegetation.  

After two weeks, lysimeters were removed. At first, we performed all non-destructive 

measurements, e.g. vegetation surveys, plant height, weight of the lysimeter, gas- 

and H2O fluxes as well as photographs for cover and vegetation structure analysis. 

Then we cut the above-ground vegetation and the soil core was removed from the 

inner plastic cylinder. The top 0-5 cm and the top 5-10 cm of the soil core were 

prepared for further analyses. One quarter of each depth was used to determine the 

root biomass. The remaining three quarters of each depth were homogenized and 

used for further soil analyses at. 

 

Measurements taken 

a. Plant composition and yield proportions 

Vegetation surveys in each lysimeter were done before and after the herbivore 

treatment. In each survey, we recorded all plant species present, percentage cover 

and percentage litter (dead plant material). Furthermore, we determined the 

proportional yield of each species as well as for graminoids and forbs using the 

method of Klapp and Stählin (1936). From these visual estimates we assessed plant 

species richness (measured as number of plant species per lysimeter) and functional 

group composition (expressed as percentage of single plant species and functional 

groups). 

 

b. Above-ground biomass (AGB) 

At the end of the experiment, we cut the vegetation of each lysimeter at ground level. 

In order to determine fresh weight, dry weight and AGB water content, each sample 
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was first weighed using special accuracy weighing machine and then oven-dried for 

48 h at 60°C using a drying oven and then re-weighed. AGB water content was 

calculated as follows: 

 

 

c. N-cycle measurements 

Oven-dried plant samples from the second cut (mid-July) of 2010 were milled and 

analyzed for carbon (C) and nitrogen (N) concentration using a CNS elemental 

analyser (Elementar Vario El, Hanau, Germany). Afterwards, the C/N ratio was 

determined. Net N mineralization rates were measured using the buried bag method.  

Directly after the herbivory treatment, two soil samples (of each lysimeter) were taken 

from the Ah soil horizon (0-5 cm). One sample was extracted directly in the field in 

150 ml 0.5 M l-1 K2SO4. The K2SO4 – extracted samples were immediately brought to 

the laboratory, shaken for one hour and filtered through K2SO4-prewashed filter 

papers (4 m nominal pore size). Filtered samples were stored in a freezer until 

analysis. NH4
+ and NO3

- were measured using continuous flow injection colorimetry 

(Skalar, Cenco Instruments, Breda, The Netherlands). The second sample was 

transferred to an air-permeable plastic bag, incubated for ten days, and extracted as 

described above.  

NH4
+ and NO3

- was calculated using the Berthelot reaction method (Skalar Method 

155-000)  or the copper-cadmium reduction method (Method 461-000), respectively 

(Hart et al. 1994). For the determination of the gravimetric soil moisture content, each 

sample was weighed, dried at 105°C for 24 hours and weighed again. Net N 

mineralization rates [mg/m²/d] were calculated from the difference between soil 

mineral N contents before and after incubation and with the incubation time for each 

sample. Net nitrification [mg/m²/d] was determined as difference between NO3
- 

contents before and after the incubation for each sample (Hart et al. 1994, Keuter et 

al. 2012).  
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d. N2O gas fluxes 

N2O fluxes were determined using the closed chamber method. PVC chamber hoods 

fitted with an air sample port were installed on each lysimeter. Sampling was 

conducted three days before and one day after the herbivory treatment. Gas samples 

were taken in evacuated 100 ml gas containers with teflon-coated stopcocks at 0, 15, 

30 and 45 minutes after chamber closure. N2O concentrations in gas samples were 

analyzed using a gas chromatograph (GC 6000, Carlo Erba Instruments/Thermo 

Fisher Scientific, Milan, Italy) equipped with an electron capture detector and an 

auto-sampler system (Loftfield et al. 1997).  

Gas concentrations were calculated by comparing integrated peak areas of samples 

with three standard gases (353, 1005, and 1592 ppb N2O; Deuste Steiniger GmbH, 

Mühlhausen, Germany). N2O fluxes were calculated by the linear increase of N2O 

concentration versus time for each chamber with the ideal gas law, corrected with air 

temperature, chamber volume and air pressure (Ruser et al. 1998). 

 

e. Statistical Analysis 

Data were analysed using the statistical software package “R” (version 2.15.2) (R-

Development-Core-Team 2012). Treatment effects on vegetation and ecosystem 

processes were assessed using linear mixed effect models (LMEs), using plot as a 

random effect to avoid pseudoreplication (one herbivory and one control lysimeter 

per plot) (Pinheiro and Bates 2000). Proportion data were logit-transformed prior to 

analysis. Models contained plant functional group composition (factor with three 

levels), herbivory, cutting frequency and fertilizer application (two levels each) with up 

to two-way-interactions. To account for heteroscedasticity, we tested the varPower 

variance structure and varIdent variance structure (Zuur et al. 2009) for all design 

variables (herbivory, fertilizer application, functional group composition, cutting 

frequency, row, column and block) and compared the resulting models using AICc 

(Scherber et al. 2010b).  

 

R-code: 

model=lme(response~(sward+utilization+nutrients+herbivory)^2,random=~1|plot,data=data) 
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For each response variable in turn, the best maximal model containing the optimal 

combination of random-effects structure and variance functions was then 

automatically simplified (using maximum likelihood-based estimation) into models 

containing fewer explanatory variables. The models were subsequently compared 

using AICc, until a minimal adequate model  containing only significant effects was 

obtained using REML estimation (Zuur et al. 2009). The significance of the effects 

was tested using ANOVA. Differences in degrees of freedom between some 

treatment combinations are due to broken lysimeters, resulting in a final sample size 

of 142 lysimeters. 

To compare the effects of herbivory on the nitrogen cycle in lysimeters with and 

without herbivory, we employed path analyses in addition to traditional LME-based 

analyses, using a multi-group structural equation model. This structural equation 

model (SEM) allowed us to test more complex hypotheses of indirect effects of 

herbivory and fertilizer application on nitrogen cycling (Bollen 1989, Shipley 2000, 

Scherber et al. 2010b). SEMs are particularly well suited in experimental contexts, 

i.e. where some variables are manipulated experimentally (Grace 2006).  

Further, SEMs "can be used to develop accurate and meaningful final multiple 

regression models when collinearities among explanatory variables are thought to be 

present" (Graham 2003). For example, this was clearly the case for Nitrogen-flux 

measures in a study of Scherber et al.(2010a). In the present study, structural 

equation models contained only fertilizer application as management treatment 

variable. Functional group manipulation had no significant effect on the measured 

nitrogen cycle components. Cutting frequency showed a negative impact only on N2O 

flux rate but had also no significant effects on other parts of the measured nitrogen 

cycle components.  For this reason, we excluded these variables from the path 

analysis. Herbivory was used as a grouping variable in the multi-group analysis. 

Models were fitted using maximum likelihood, and model fit was assessed using Chi² 

tests and the confidence interval of the residual mean square error of approximation 

(RMSEA). 
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Results 

a. Treatment effects on functional group composition on lysimeters 

Application of NPK-fertilizer in combination with functional group-manipulation (FG-

manipulation) (Fertilizer:FG-manipulation interaction: F2,65=4.20; p=0.019) led to the 

highest proportion of graminoids with up to 92.25 ±3.73% in forb-reduced plots 

(Fig. 5.1).  Moreover, the much higher proportion of graminoids under herbivory in 

fertilized plots compared to unfertilized ones after herbivory visualized the interaction 

effect of herbivore pressure and NPK-fertilizer on proportion of graminoids 

(Fertilizer:Herbivory interaction: F1,69=22.72; p<0.001). The proportion of graminoids 

in unfertilized plots with herbivory was as low as to 8.83 ±5.01 % of the AGB. But 

generally, herbivory reduced the proportion of graminoids (Herbivory main effect: 

F1,69=21.55; p<0.001), as the lower proportion of graminoids under herbivory showed 

(Fig. 5.1).  

 

 

Fig. 5.7: Graminoid and forb proportions of the lysimeters in relation to functional group manipulation, fertilizer 

application and herbivory. Dark grey = graminoids; light grey = forbs (including legumes). 
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The proportion of both graminoids and forbs was affected by functional group 

manipulation (Fig 5.1; FG main effect: F2,65=4.39; p=0.016); with significantly fewer 

forbs in forb-reduced plots. Furthermore, NPK-fertilizer application had a positive 

effect on the proportion of graminoids (Fertilizer main effect: F1,65=64.30; p<0.001). 

 

b. Treatment effects on plant species diversity on lysimeters 

Plant species richness in lysimeters prior to the herbivore treatment was significantly 

affected by all three design treatments (fertilization, cutting, FG-manipulation). We 

found a higher plant species richness under three cuts per year (Fig. 5.2a; Cutting: 

F1,66=11.18; p=0.001). In contrast to this, NPK-fertilizer application resulted in lower 

plant diversity (Fig. 5.2b; Fertilizer: F1,66=35.38; p<0.001). 

Functional group manipulation had a strong effect on plant diversity (FG main 

effect:F2,66=5.48; p=0.006).  For example, the plant diversity was low in graminoids-

reduced plots (Fig. 5.2c). 
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a)  b)  

c)  

 

Fig. 5.8: Plant species richness on the lysimeters in combination with the management treatments cutting 

frequency (a) and fertilizer application (b) before herbivory. The bargraph (c) shows the effects of functional group 

(FG) manipulation on plant species richness. Forb rich (dark grey) = reduction of graminoids; control (light grey) = 

no FG manipulation; graminoid rich (white) = reduction of forbs. 
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a) b)  

c) d)  

e)  

Fig. 5.9: Effects of experimental treatments on plant species richness after herbivory. a) Effects of herbivory in 

combination with fertilizer application: control (left) = no herbivores; herbivory (right) = high herbivore pressure; 

blue = no fertilizer; green = NPK fertilizer application. b) Effects of fertilizer application; c) Effects of herbivory; d) 

Cutting frequency e) Effects of functional group manipulation: forb-rich (= reduction of graminoids); control sward 

(= no FG manipulation); graminoid-rich (= reduction of forbs). 
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After two weeks of herbivory, we found a significant two-way interaction between 

herbivory and NPK-fertilizer application (Herbivory:Fertilizer interaction: F1,69=10.42; 

p=0.002).  Plant species richness was slightly higher with fertilizer application and 

herbivory (Fig 5.3a).  

When considered separately, both NPK-fertilizer application (Fig. 5.3b; Fertilizer main 

effect: F1,66=13.14; p<0.001) and herbivory (Fig. 5.3c; Herbivory main effect: 

F1,69=11.45; p=0.001) had a negative effect on plant species richness.  

Three cuts per year (Fig. 5.3d) had a positive effect on plant species richness 

(Cutting main effect: F1,66=7.51; p=0.008). The effect of functional group manipulation 

on plant species richness (FG main effect: F2,66=3.92; p=0.025) was also still visible 

and significant after herbivory, with higher plant species richness in forb-rich plots 

and lower plant species richness in graminoid-rich plots (Fig. 5.3e). 

 

c. Treatment effects on above-ground biomass (AGB) 

Total AGB: After herbivory, the harvested dry weight of total AGB in lysimeters 

(Fig. 5.4a) was significantly higher in fertilized plots (Fertilizer main effect: F1,68=9.30; 

p=0.003). Both, increased cutting frequency (Cutting main effect:F1,68=5.73; p=0.019) 

and herbivory (Herbivory main effect:F1,70=15.80; p<0.001), resulted in lower AGB in 

the lysimeters. When forb and graminoid biomass were considered separately, the 

impact of herbivores became apparent (Fig. 5.1 & 5.4). 

 

Graminoid AGB: There was a significant two-way interaction between NPK-

fertilizer and herbivory on harvested above-ground biomass of graminoids 

(Fertilizer:Herbivory interaction: F1,69=5.66; p=0.020), which resulted in a stronger 

impact of herbivory in unfertilized plots (Fig. 5.4b). AGB of graminoids increased 

under NPK-fertilizer application (Fertilizer main effect: F1,68=46.10; p<0.001) and 

strongly decreased with herbivory (Herbivory main effect: F1,69=50.25; p<0.001). In 

addition, AGB of graminoids was generally lower under three cuts/year than under 

one cut/year (Cutting main effect: F1,68=6.41; p=0.014). 
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Forb AGB: We also found a significant two-way interaction between NPK-fertilizer 

and herbivory on harvested above-ground biomass of forbs (Fertilizer:Herbivory 

interaction: F1,69=28.49; p<0.001). Forb biomass (as well as proportion; see Fig. 5.1) 

was enhanced by herbivory, but only in unfertilized plots (Fig. 5.4c). Fertilizer 

application itself had a negative effect on forb biomass (Fertilizer main effect: 

F1,69=26.71; p<0.001). 

In contrast to graminoids, forb biomass (Fig. 5.4c) increased in response to herbivory 

(Herbivory main effect: F1,69=4.51; p=0.037). Cutting frequency had no significant 

effect on forb biomass. 

a) b)  

c)  

Fig. 5.10: Treatment effects (herbivory, fertilizer application, cutting frequency) on dry weight [g / lysimeter] of 

above-ground biomass (AGB) of a) total AGB, b) graminoid AGB and c) forb AGB. NPK (green) = NPK fertilizer 

application; no (blue) = no fertilizer. 
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The proportion of litter [%] in the total AGB showed a significant interaction effect 

between herbivory and fertilizer application (Herbivory:Fertilizer interaction: 

F1,69=9.80; p=0.003). This becomes apparent with the lower proportion of litter (due 

to herbivore activity) in fertilized plots (Fig. 5.5a). 

 

a) b)  

Fig. 5.11: a) Effects of fertilizer application and herbivory on proportion of litter on AGB [%]. Green (control) = no 

herbivores; blue = herbivory. b) Effects of fertilizer application on above-ground biomass C:N ratio. 

 

As a main effect, herbivory led to a higher amount of litter (Herbivory main effect: 

F1,69=89.99; p<0.001), whereas NPK-fertilizer input resulted in a lower amount of litter 

(Fertilizer main effect: F1,69=11.43; p=0.001).  

The above-ground biomass C:N ratio (Fig. 5.5b) showed a strong decrease with 

NPK-fertilizer application (Fertilizer main effect: F1,69=353.16; p<0.001). 

Table 5.1 visualizes the different treatment effects on several vegetation parameters 

and measured components of the nitrogen cycle. 

 



 

 

Table 5.7: Overview of significant treatment effects on vegetation parameters and measured variables after herbivory (mean ±1 SE). Prop. = proportion [%]; SR = species richness; 

spec. = species; lysi. = lysimeter; herb. = herbivory; AGB = above-ground biomass dry weight [g / lysimeter]; Net N min. rate = Net N mineralisation rate.  

  Herbivory Functional group manipulation     cutting frequency fertilizer application 

 units control herbivory control forb rich gram. rich once thrice no NPK 

Prop. graminoids % 00.71 ±0.03 00.49 ±0.05 00.53 ±0.05 00.60 ±0.05 00.67 ±0.06 00.64 ±0.04 00.57 ±0.04 00.40 ±0.04 00.79 ±0.03 

Prop. forbs % 00.29 ±0.03 00.50 ±0.05 00.47 ±0.05 00.40 ±0.05 00.33 ±0.06 00.36 ±0.04 00.43 ±0.04 00.59 ±0.04 00.21 ±0.03 

Plant SR before herb. spec./lysi. 04.18 ±0.20 04.28 ±0.18 04.54 ±0.24 04.50 ±0.24 03.67 ±0.20 03.81 ±0.18 04.64 ±0.19 04.97 ±0.18 03.51 ±0.15 

Plant SR after herb. spec./lysi. 03.83 ±0.18 03.07 ±0.16 03.52 ±0.24 03.78 ±0.22 03.06 ±0.18 03.14 ±0.16 03.75 ±0.18 03.94 ±0.18 02.97 ±0.15 

AGB total after herb. g/lysi. 07.86 ±0.33 06.57 ±0.26 07.15 ±0.39 07.34 ±0.36 07.18 ±0.38 07.77 ±0.32 06.68 ±0.28 06.51 ±0.26 07.91 ±0.32 

AGB graminoids g/lysi. 05.86 ±0.42 03.65 ±0.41 04.27 ±0.51 04.83 ±0.50 05.16 ±0.57 05.41 ±0.46 04.12 ±0.38 03.00 ±0.38 06.46 ±0.38 

AGB forbs after herb. g/lysi. 01.89 ±0.21 02.87 ±0.29 02.76 ±0.31 02.41 ±0.28 01.99 ±0.34 02.33 ±0.28 02.44 ±0.23 03.39 ±0.26 01.40 ±0.20 

Prop. plant litter % 07.69 ±0.91 37.38 ±3.21 22.77 ±3.58 17.39 ±2.84 27.23 ±4.14 24.03 ±3.05 21.08 ±2.85 27.90 ±3.25 17.32 ±2.49 

AGB C:N ratio ratio 26.53 ±0.68 26.53 ±0.68 27.25 ±0.83 25.89 ±0.74 26.42 ±0.90 26.29 ±0.68 26.76 ±0.68 31.79 ±0.32 21.42 ±0.21 

Net nitrification rate mg/m²/d 26.44 ±3.19 34.95 ±2.93 27.59 ±3.54 28.78 ±2.42 35.65 ±4.86 31.15 ±3.18 30.26 ±3.02 20.29 ±2.52 40.81 ±3.13 

Net N min. rate mg/m²/d 29.53 ±4.04 41.55 ±4.87 31.77 ±6.35 35.31 ±4.33 39.54 ±5.69 36.66 ±4.72 34.46 ±4.35 26.07 ±3.78 44.76 ±4.91 

NO3 content mg/kg 04.81 ±1.94 04.44 ±2.10 06.76 ±2.99 01.54 ±0.89 05.15 ±2.63 05.99 ±2.49 03.35 ±1.47 00.04 ±0.02 10.76 ±3.13 

N2O flux µg / m² / h 24.95 ±8.69 60.21 ±12.37 40.04 ±16.65 45.11 ±13.29 42.70 ±9.14 63.18 ±13.57 22.56 ±6.75 29.19 ±10.78 55.60 ±10.78 
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Treatment effects on components of the nitrogen cycle 

There was a significant two-way interaction between NPK-fertilizer and herbivory 

on Net nitrification rate [mg/m²/d], with increasing nitrification rates in unfertilized 

plots as a result (Fig. 5.6a; Herbivory:Fertilizer interaction: F1,69=16.34; p<0.001). 

Under NPK fertilization, the nitrification rate was generally higher than on 

unfertilized plots (Fertilizer main effect: F1,69=36.86; p<0.001) and not significantly 

affected by herbivory alone. 

Net N mineralization [mg/m²/d] showed a very similar pattern: an interaction 

effect of herbivory and NPK-fertilizer application (Herbivory:Fertilizer interaction: 

F1,69=9.54; p=0.003) and a significant effect of fertilizer application on 

mineralization rate (Fertilizer main effect: F1,69=17.42; p<0.001) (Fig. 5.6b). 

 

a) b)  

Fig. 5.12: Effects of herbivory and NPK-fertilizer application on a) Net – nitrification rate [mg/m²/d]; and b) 

Net N-mineralization rate [mg/m²/d]. NPK (green) = NPK fertilizer application; no (blue) = no fertilizer. 

 

N2O flux rates [µg / m² / h] after herbivory) increased under herbivory (Herbivory: 

F1,70=5.69; p=0.020), but were slightly decreased by three cuts/year in 

comparison to one cut/year (Cutting: F1,69=7.56; p=0.008) (Fig. 5.7a). 

Extractable NO3 [mg /kg] in the soil increased with NPK fertilization (Fertilizer: 

F1,69=21.49; p<0.001) (Fig. 5.7b). 
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a)   b)  

Fig. 5.13: a) Herbivory effects on nitrous oxide (N2O) = flux rate (µg/m²/h); b) Fertilizer effect on the amount 

of nitrate (NO3; mg/kg) in the soil 

 

d. Structural equation model (SEM) analysis of experimental 

treatments on components of the nitrogen cycle 

Our minimal adequate structural equation model (SEM) of nitrogen cycle 

components was well supported by our data (N=71, χ²=11.25, p=0.508, 12 DF, 

root mean squared error of approximation of 0.00 (90% confidence interval, [0, 

0.082]; Fig. 5.8). The model showed that both fertilizer application and herbivory 

positively affected the nitrogen flux, but through different pathways. The left 

pathway in Fig. 5.8 represents the nitrogen flux in control lysimeters without 

herbivory, the right pathway shows nitrogen flux in lysimeters with herbivores.  

Fertilizer application, as a categorical exogenous variable, was the strongest and 

most important management treatment and a direct driver of nitrogen cycling. 

The above-ground biomass C:N ratio was strongly negatively influenced by 

fertilizer application (standardized path coefficient (coef.) = -0.92), due to the 

higher nitrogen content of the plant material.  

Within herbivory treatments, plant litter input ([%] of AGB) into the system was 

used as a measure for plant material eaten by herbivores. This value/ it was 

strongly positively correlated with the AGB C:N ratio (+0.33). The corresponding 

path coefficient in the control lysimeters (left pathway) was not significant. 
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Under herbivory, proportional litter input into the system was higher (Fig. 5.5a). 

Furthermore, it was a driver for the nitrate amount (NO3, mg/kg) (coef. = +0.20). 

In contrast to this, NH4 (mg/kg) was only weakly positive influenced (NH4, mg/kg) 

(coef. = +0.10). In unfertilized plots, litter had a greater impact on ammonium 

(coef. = +0.19) compared to nitrate (coef. = +0.09), but litter input was very low 

(Fig. 5.5a). 

In these plots, ammonium strongly drove nitrate content (+0.28) and both nitrate 

and ammonium were driven by fertilizer application (coefs.: NH4=+0.12; 

NO3=+0.35). In addition, ammonium (coef. = +0.15) as well as nitrate content 

(coef. = +0.16) positively affected nitrous oxide (N2O) flux rate [µg/m²/h], showing 

strongest influence of fertilizer application on this part of the nitrogen cycle. 

Within herbivory treatments, the effect of fertilizer application on ammonium 

(coef. = -0.06), the effect of ammonium on nitrate (coef. = -0.02) and the effect of 

ammonium on nitrous oxide (coef. = +0.12) were not significant and bypassed by 

the strong impact of herbivory induced litter input on nitrate (coef. = +0.20).  

Nitrate content under herbivory was also strongly influenced by fertilizer 

application (+0.42) and a much stronger driver of the nitrous oxide flux (+0.34) 

compared to control plots. 
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Fig. 5.14: Multi-group structural equation model of the nitrogen cycle for comparison of the effects of 

lysimeters with and without herbivory, including fertilizer application as the most important driver of the 

nitrogen cycle. Filled arrows indicate the strong and significant correlations (p ≤ 0.1) within the nitrogen flux, 

while dashed arrows show quantitative weaker pathways (p ≥ 0.1). Litter (org.N) = proportion of dead 

above-ground plant material [%]; Ammonium (NH4) = amount of NH4 (mg/kg) in the soil; Nitrate (NO3) = 

amount of NO3 (mg/kg) in the soil; Nitrous oxide (N2O) = Flux rate (µg/m²/h). Numbers next to arrows are 

standardized total effects. N=71, χ²=11.25, p=0.508, 12 degrees of freedom and a root mean squared error 

of approximation of 0.00 (90% confidence interval, [0, 0.082]).  
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Discussion 

This study allowed us to disentangle complex above-ground and below-ground 

effects and interactions within a grassland ecosystem, using full factorial 

manipulations of agricultural management and functional groups as well as 

experimental herbivore pressure. Both above-ground vegetation and below-

ground measures of the nitrogen flux were significantly and interactively 

influenced by the factors manipulated. 

 

FG manipulation effects on plant community on lysimeters 

Contrary to our expectations (e.g., Tilman (2012)), plant FG manipulation had no 

effect on the measured response variables, except for changes in FG 

composition and reduced plant species richness in graminoid-rich plots. When 

dominant graminoids were reduced initially, the proportion of forbs increased. 

This supports the idea that an increase in the death rate of dominant and 

established plants (mainly graminoids) enhances the competitiveness of forbs, 

which drive the biodiversity especially in nutrient poor grasslands (Pearce and 

van der Wal 2002). This is especially true in an agriculturally managed system 

such as the GrassMan site (Everwand et al. 2013, Petersen et al. 2013). 

 

Management effects on plant community on lysimeters 

In this study, effects of agricultural management (fertilizer application, cutting) 

were among the strongest effects observed. Fertilizer application increased the 

total biomass as well as the proportion and biomass of graminoid AGB, but 

reduced forb biomass. Additionally, fertilizer application had a negative effect on 

plant species richness. We therefore found fertilizing to cause a competitive 

advantage for graminoids. A lower availability of nutrients has been shown to 

increase the proportion of forbs, whereas nitrogen application often results in 

increasing proportions of graminoids (Pearce and van der Wal 2002).  

These patterns support similar findings of nutrient addition experiments in 

grasslands, e.g. the “Rengen-Grassland-Experiment” (Hejcman et al. 2007), the 
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“Jena-Experiment” (Roscher et al. 2004) or Cedar Creek (Tilman et al. 1997) and 

others (Gough et al. 2000, Jacquemyn et al. 2003, Klimek et al. 2007).  

Recent research has also shown that this can result in a loss of species in higher 

trophic guilds such as leafhoppers (Everwand et al., in prep.). 

The positive effect of moderate cutting frequency on plant species richness 

(Hansson and Fogelfors 2000, Fischer and Wipf 2002) might be due to a removal 

of nutrients from the system due to frequent cutting. This can, especially without 

additional fertilizer inputs, improve plant species richness (Bakker et al. 2002, 

Fischer and Wipf 2002). 

 

Management effects on nitrogen cycling 

It is known that the rates of nutrient mineralization from organic matter are slow 

in low-nutrient ecosystems (Hobbie 1992, Keuter et al. 2012). Our study supports 

these findings by showing low net nitrification, net N mineralization, N2O flux rate 

and low amounts of NO3 in unfertilized plots. In addition, fertilizer application 

accelerated the nutrient cycling. 

 

Management effects on herbivores 

Fertilizer input resulted in better food quality for grasshoppers due to lower AGB 

C:N ratio, indicating that better food quality may decrease the amount of biomass 

eaten by herbivores (Joern and Behmer 1998, Ebeling et al. 2013). Especially 

grasshoppers are known to counterbalance nitrogen shortage in the available 

food sources by compensatory feeding (Berner et al. 2005). Furthermore, they 

show preferences for fertilized vegetation in the field, even if cutting frequency is 

high (Hudewenz et al. 2012). Fertilizer application also increased the proportion 

and amount of graminoids as the preferred food source for the more active 

grasshoppers (Gardiner et al. 2002), which may also be a cause for lower litter 

input. 
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Herbivory effects on plant community 

Two weeks of herbivory reduced plant species richness, mainly due to a strong 

reduction of graminoids probably by grasshoppers (Gardiner et al. 2002). This 

led to the total disappearance of the above-ground parts of all graminoids in 

some lysimeters. It is a common effect of intense herbivore pressure, that 

preferred food sources are fully exploited by herbivores (Turley et al. 2013). The 

increase of higher forb biomass also showed the feeding preference of 

grasshoppers for graminoids.  

In addition, this selective feeding of the herbivores was beneficial for the avoided 

forbs (Bernays and Chapman 1970), because damaged graminoid plants did not 

grow or survive as good as unconsumed forb plants (Belovsky 2000). We 

expected the low damage on forbs (and therefore a competitive advantage) due 

to the rather low observed activity of the snails caused by dry weather conditions 

during the herbivore treatment in August 2011. Helix pomatia is known to require 

warm and calcium rich, but moist soils (Pollard 1975). 

Our approach covers the effects measured directly after a feeding period of two 

weeks. Many plants, especially graminoids, show a high regrowth capacity in 

response to herbivory (Turley et al. 2013), which is also enhanced by fertilizing 

effects of herbivore excrement and plant litter (Belovsky and Slade 2000). 

Therefore, we assume that this short term effect of herbivory on plant species 

richness and AGB might not be observed on a longer time scale. 

 

Herbivory effects on nitrogen cycling 

As expected, herbivory led to a higher amount of plant litter. This strongly 

correlates with the amount of herbivore excrements and herbivory mediated 

increases of root exudates (Bardgett et al. 1998). Due to the faster 

decomposition of herbivore faeces and the fast belowground plant responses 

(e.g., exudation) (Bardgett et al. 1998) in comparison to plant litter decomposition 

(McNaughton et al. 1988), we assume grasshopper faeces to account for strong 

effects of plant litter in our SEM. 
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In addition, the reduced plant AGB because of herbivory will lead to a reduced 

nitrogen uptake by plants under herbivory and which in turn can affect the 

amount of available forms of nitrogen within the ecosystem (Vitousek et al. 

2002). These effects of herbivores clearly accelerated nutrient cycling, 

presumably due to the increasing nitrogen input (e.g., litter, excrement and 

exudates) into the system (McNaughton et al. 1988, Bardgett et al. 1998, 

Belovsky and Slade 2000). Consequently, this may account for the increased 

amount of N2O emissions with herbivory. 

As we did not measure the exact amount of faeces or root exudates, further 

investigation is required to identify the exact contribution of plant litter, herbivore 

faeces and root exudation on the herbivore induced acceleration of nutrient 

cycling. 

 

Interactions of FG manipulation and herbivory on plant community 

Responses of plant communities and nitrogen cycling become more complex 

with the increasing number of interacting drivers. The interactions of FG 

manipulation and fertilization caused changes in FG composition may be an 

additive effect of increasing proportion of graminoids with fertilizing (e.g. Pearce 

and van der Wal 2002) and herbicide induced competitive advantages with 

reduction of the forbs. 

 

Interactions of management and herbivory on plant community 

The increase in proportion and biomass of forbs in lysimeters of unfertilized plots 

supports the idea that selective insect feeding is able to increase the death rate 

of established plants, which grow in dense stands and release forbs from inter- 

or intraspecific competition (Crawley 1989, Belovsky and Slade 2000, Gardiner 

et al. 2002). The simultaneous acceleration of nutrient cycling due to the input of 

faeces litter increase nitrogen availability for the avoided forbs (Bernays and 

Chapman 1970). 
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In the present study, fertilizer application and invertebrate herbivory were the 

strongest drivers of plant community composition and nitrogen cycling. With our 

study we were able to disentangle these complex interactions. When there was 

no nutrient limitation for the primary producing plants due to NPK fertilizer input, 

resulting in higher AGB (Schmitz 1993), there was no shortage of available food 

for herbivores and the proportion of graminoids was consequently only slightly 

reduced compared to the unfertilized treatment. These results support the idea 

that grasshoppers can counterbalance nitrogen shortage in the available food 

sources by compensatory feeding and by the capability of selective feeding 

among graminoids of contrasting nutritional quality when given a choice 

(Raubenheimer and Simpson 2003, Berner et al. 2005). With higher availability 

of better quality AGB (Joern and Behmer 1998) due to fertilizer application, less 

AGB was consumed. This resulted in a lower risk for plants to be completely 

consumed by herbivores above-ground and explaining the lower proportion of 

litter due to herbivory on fertilized plots. This might also account for the stronger 

negative short term effect of herbivory on plant species richness and AGB of 

graminoids in unfertilized plots. 

The acceleration of net nitrification and net N mineralization rates with herbivory 

in unfertilized plots may have several causes: (i) the excrements of the 

herbivores contribute to cycling of nitrogen in natural systems (Belovsky and 

Slade 2000); (ii) grasshopper herbivory increases rhizodeposition (Paterson 

2003) and/or root exudates in particular (Holland et al. 1996); (iii) higher plant 

litter input also enhances nutrient cycling (Belovsky and Slade 2000). The 

already high net nitrification and net-N-mineralization rates under NPK 

fertilization support the herbivore induced acceleration of nutrient availability, 

since these were previously of low availability. 

Summarizing, our SEM shows that both fertilizer application and herbivory 

positively affect components of the nitrogen cycle, but through different 

pathways. Fertilizer application accelerated the nitrogen fluxes due to greater 

availability of ammonium and nitrate, both main components of our N-fertilizer.  

Since grasshoppers can be of high abundance under natural conditions and 

cause more feeding damage on intensively managed grasslands (Hudewenz et 
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al. 2012), we worry that emissions of N2O, a very strong greenhouse gas (Lashof 

and Ahuja 1990), can further increase and therefore contribute to global warming 

due to an additive effect of fertilizer application and invertebrate herbivory. 

Therefore, long term studies of the combined effects of invertebrate herbivory in 

combination with an intensifying management of grasslands on greenhouse 

gasses, such as N2O, are needed. 

 

Experimental Design 

Our study could be criticized for its short duration of the herbivory treatment, 

which lasted just about two weeks. However, we note that the lysimeters had 

been installed about one year prior to the start of the herbivory treatment. Every 

lysimeter was exposed to management for a period of more than one year. The 

herbivory treatment was applied for a shorter time period, as cages covered only 

a small area and consumption by herbivores was fast. But by conducting this 

mesocosm experiment in natural grassland, we take the inevitable trade-off 

between realism of field studies and precision of laboratory experiments into 

account (Morin 1998). 

In addition, our plant functional group manipulation treatments were efficient, as 

plant diversity was still affected even three years after applying herbicides. 

However, our study does not allow us to assess the longer term effects of 

herbivory on plant community structure or productivity. But since the herbivore 

load applied in this study was comparatively high, the resulting below-ground 

effects were strong, providing insights into multiple ecosystem responses to 

herbivory under different management regimes and differing plant functional 

group compositions. 

 

Comparison with other studies 

Many biodiversity experiments using sown gradients in plant diversity have 

yielded important insights on trophic interactions (Roscher et al. 2004, Scherber 

et al. 2006, Scherber et al. 2010a, Tilman et al. 2012), while others have only 
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studied the effects of fertilizer application and cutting frequency (Pavlů et al. 

2011). Exclusion experiments (Curry 1994, Scherber et al. 2003, del-Val and 

Crawley 2004, Scheidel and Bruelheide 2005, Scherber et al. 2006) have shown 

invertebrates to strongly affect plant biomass production and species 

composition in grasslands. Herbivore feeding activity changes with nutrient 

availability and above-ground plant biomass (Hudewenz et al. 2012) and also 

affects nutrient cycling via litter and excrement input into grasslands (Belovsky 

and Slade 2000). But studies relating herbivory, management and deterministic 

biodiversity loss to ecosystem processes such as nutrient cycling were lacking 

until now. We therefore expect our FG manipulation experiment (see e.g. Diaz et 

al. 2003 or Fry et al. 2013) in approximately 100-year old grassland and 

independently manipulated management intensity, plant functional group 

composition and herbivore presence may more directly resemble deterministic 

extinction scenarios and better reflect real world scenarios. 
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Overall Conclusions 

The effects of our experimental treatments (herbivore pressure, cutting 

frequency, NPK-fertilizer application and functional group manipulation) on 

several vegetation parameters and the measured components of the nitrogen 

cycle clearly show that management and herbivores affect productivity and 

nitrogen fluxes in highly complex ways; in general, management and herbivory 

had much stronger effects than the manipulation of plant functional group 

composition. Functional group manipulation had significant effects on the 

functional group composition and plant species richness before and after the 

herbivory treatment, but had no effect on further processes, such as AGB 

production or the components of the nitrogen cycle. Differences in plant species 

diversity and composition had only weak effects, probably masked by the strong 

effects of herbivores and grassland management.  

Fertilizer application appeared to be the strongest driver of the nitrogen flux rates 

in our system and also led to lower herbivore- induced litter input.  

Herbivory can short-cut the nitrogen cycling by increasing amounts of litter, 

excrement and root exudates, consequently positively affecting soil nitrogen 

contents (NH4, NO3) and flux rates (mineralization, nitrification, N2O). In addition 

to the strong effect of fertilizer application on the nitrogen cycle, N2O emissions 

may also increase under strong herbivory in fertilized grasslands, at least on a 

short timescale. 
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Supplementary material 

 

Figure S15: Gauze covered lysimeter without herbivores (left) in comparison to lysimeter with 

herbivores (right) after two weeks of herbivory. On the right picture Helix pomatia and Chorthippus 

albomarginatus are visible. 

 

 

Figure S16: Sweep netting to catch grasshoppers for the lysimeters.
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General Discussion 

With the results presented in this thesis, I show that intensified agricultural 

management of grassland as well as experimental shifts in plant functional group 

composition directly and indirectly affect plants, invertebrates and ecosystem 

processes in a highly complex manner (Fig. 6.1).  

The studies included in this thesis allowed us to disentangle these complex above- 

and belowground effects and interactions within a grassland ecosystem, using full 

factorial manipulations of agricultural management, functional group manipulation 

(reduction of either graminoids or forbs) and experimental herbivore pressure. 

Herbivores (Fig. 6.1; arrows 3, 5, 7, 9), as well as above-ground vegetation (Fig. 6.1; 

arrows 1, 4, 6, 8) and below-ground measures of the nitrogen flux (Fig. 6.1; arrows 2, 

11, 12) were significantly, and interactively, influenced by the factors manipulated. 

 

 

Figure 6.17: Simplified illustration of the interactions and effects investigated in this thesis. 

 

The combination of management measures, such as cutting and fertilizer application, 

with the manipulation of functional group composition, and the interactions between 

them, led to contrasting sward types.  
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These ranged from nutrient-poor, forb-dominated plots harbouring a greater diversity 

of plants, to highly productive, graminoid-dominated plots with lower plant diversity. 

Moreover, invertebrate herbivores were influenced by the resulting contrasting sward 

types, and intense herbivore pressure in turn influenced the vegetation (Fig. 6.1; 

arrow 10) and nutrient cycling (Fig. 6.1; arrow 12). 

In the following, the main results and research objectives addressed in this thesis are 

discussed: 

I. Reduction of grasses due to functional group manipulation enhances plant 

species richness, whereas reduction of forbs will decrease plant diversity 

(chapter 2 - 5). 

We found that changes in sward composition associated with functional group 

manipulation lasted for three years and affected the proportions of grasses, herbs and 

legumes, as well as species evenness, while dynamics of species richness varied 

across the sward types and years. Plant species richness was significantly reduced 

in graminoid rich plots. Therefore the higher plant diversity in graminoid reduced plots 

supports the idea that an increase in the death rate of dominant and established 

plants (mainly grasses) increases competitiveness of forbs, which in turn drives 

biodiversity especially in nutrient poor grasslands (Pearce and van der Wal 2002). 

 

II. Plant species diversity is correlated with productivity (chapter 2). 

Prior to the start of the experiment in 2008 the site was a nutrient-poor, moderately 

wet Lolio-Cynosuretum grassland with high abundances of the grasses Agrostis 

capillaris (L.) and Festuca rubra (L.) and the herbs Rumex acetosa (L.), Veronica 

chamaedrys (L.) and Ranunculus repens (L.) (Petersen et al. 2012). We did not find 

any consistent effects of diversity on productivity across the experimental years and 

our results suggest that the absence of a direct effect of species richness on above-

ground biomass production over the whole investigation time-period is the result of 

multiple direct and indirect effects of fertilization, sward composition and cutting 

frequency. We assume the short plant-species-richness-gradient may have 

prevented us from detecting significant biodiversity effects, since there were neither 

very species poor plots ("monocultures") nor very species rich ones, such as the 60-

species mix in the Jena Experiment (Roscher et al. 2004).  



SYTHESIS  CHAPTER 6 

158 

Laird et al. (2003) considered that the absence of a relationship between diversity 

and productivity in an old field might have been due to competitive dominance 

causing deterministic structuring of the vegetation composition. 

While dominant species are the most important factors in determining ecosystem 

processes and properties (Grime 1998, Mokany et al. 2008), it seems that their 

contribution to the above-ground biomass production did not cause a reduction in the 

numbers of less-dominant species in this grassland and the effects of species 

richness on productivity were therefore not significant.  

In short-term synthetic communities biomass production may be affected by initial 

species abundances (Jiang et al. 2009), but it seems that in real-world grasslands 

the natural variation of species dynamics is also important for above-ground biomass 

production. For future studies where plant composition and diversity are manipulated 

using herbicides, it might be an interesting approach to include a treatment with 

repeated herbicide applications to achieve a stronger and long-term gradient in plant 

diversity to further investigate the diversity–productivity relationship. 

 

III. Productivity will increase with higher cutting frequency and fertilizer 

application, whereas plant diversity will decrease with fertilizer application 

(chapter 2 – 5). 

The primary determinants of an increase in biomass production were fertilization and 

cutting frequency, with the highest dry matter yields characteristic for intensively 

managed plots. Fertilizer application increased the total biomass production as well 

as the proportion and biomass of graminoid AGB, but reduced forb biomass. 

Additionally fertilizer application had a negative effect on plant species richness. We 

therefore found fertilizing to cause a competitive advantage for graminoids. A lower 

availability of nutrients has been shown to increase the proportion of forbs, whereas 

nitrogen application often results in increasing proportions of graminoids (Pearce and 

van der Wal 2002). Depending on the state of the plant community and levels of 

nutrient input, it has been found, by some authors, that fertilization can reduce the 

species number (Lepš 2004), but it may also have no significant effect on the species 

number and composition (Pavlů et al. 2012).  

It was also observed within the “Park Grass Experiment” that the dominance shifts 

between different species under different levels of nutrient limitation under long term 
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nutrient addition (Tilman 1982) and that productivity has a negative effect upon 

species richness (Silvertown et al. 2006). 

These patterns support similar findings from nutrient addition experiments in 

grasslands, e.g. the “Rengen-Grassland-Experiment” (Hejcman et al. 2007), the 

“Jena-Experiment” (Roscher et al. 2004) or Cedar Creek (Tilman et al. 1997) and 

several others (Gough et al. 2000, Jacquemyn et al. 2003, Klimek et al. 2007). The 

positive effect of moderate cutting frequency on plant species richness (Hansson and 

Fogelfors 2000, Fischer and Wipf 2002) might be due to a removal of nutrients from 

the system due to frequent cutting. This can, especially without additional fertilizer 

inputs, improve plant species richness (Bakker et al. 2002, Fischer and Wipf 2002). 

 

IV. Feeding damage on leaves of Rumex acetosa is affected by abundance of 

invertebrate herbivores and management regime (chapter 3).  

We found no effects of slug abundance on herbivory of R. acetosa (L.), despite 

strong differences in slug abundance between the plots. Therefore we assume that 

other herbivores, other than slugs, may have been responsible for most of the 

herbivory on this plant species. Slugs generally play a minor role as a pest in 

managed grasslands, which is in line with the finding of Frank (1998), who found the 

same for slugs in winter wheat fields adjacent to wild flower strips. Thus, the higher 

rate of herbivory damage on R. acetosa on nutrient-enriched plots may be due to an 

increase in plant palatability (Tscharntke and Greiler 1995) and/or a higher 

abundance and activity of other herbivores not accounted for in this study. 

 

V. Diversity and abundance of herbivorous invertebrates are positively affected 

by plant species diversity (chapter 3 & 4). 

Higher plant diversity – as found in the forb-rich plots of our experiment (see also 

Petersen (2012)) – provides a more attractive habitat for slugs, possibly via the 

higher variety of food sources or a more complex vegetation structure (Dedov et al. 

2006). Compared to the lower slug abundance in less plant species rich plots, it gives 

evidence that decreasing plant biodiversity not only threatens the persistence of 

generalist insect herbivores (Unsicker et al. 2010), but also of slugs. 
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Similar to Biedermann et al. (2005), we found that higher plant diversity also leads to 

more diverse leafhopper communities, which in our study was owed to less common, 

but more specialized, species. Plant diversity was higher with herbicide-induced 

reduction of graminoids, higher cutting frequency and without application of 

NPK-fertilizer, since it was mainly driven by forbs. But diversity of graminoids, which 

are the preferred food source for the majority of the leafhopper species collected 

(Nickel and Remane 2002) did not increase. Therefore a higher proportion of 

graminoids indirectly reduced leafhopper diversity via its negative effect on plant 

diversity. The finding that plant diversity negatively affected leafhopper abundance in 

our study supports this idea and can be explained with the preference for grasses of 

the most abundant leafhoppers like Arthaldeus pascuellus (Nickel and Remane 

2002), whereas plant diversity was mainly driven by forbs. Overall, invertebrates 

showed an obvious response to changes in plant functional group composition, but 

we assume the effect to be stronger with a stronger gradient in plant diversity, which 

could be achieved for future experiments e.g., due to repeated herbicide application 

in an additional treatment. 

 

VI. Due to feeding preferences, diversity and abundance of herbivorous 

invertebrates, such as slugs or leafhoppers, are affected by changes in 

plant functional group composition (chapter 3 & 4). 

We used leafhoppers and slugs as model organisms, since these are a major part of 

the invertebrate herbivore community, with some species being common pests in 

agriculture and grasslands and many respond rapidly to changes in plant 

composition, diversity and management. We found slug abundance, as well as 

leafhopper diversity, to be significantly affected by plant functional group composition. 

It is likely that slugs were more abundant in forb-dominated plots because of the 

higher nutritional quality of forb-rich grasslands and the preferential consumption of 

forbs when the choice was available (Pallant 1969, 1972, Rathcke 1985, Briner and 

Frank 1998, Peters et al. 2000).  

The intermediate forb to graminoid ratio in the control plots, after cutting, may be 

more suitable for slugs as it could still provide enough shelter due to the higher re-

growth capability of graminoids (Tscharntke and Greiler 1995) whilst also containing 

high quality and quantity of forbs and annual plants, which are a preferred food 



SYTHESIS  CHAPTER 6 

161 

source, e.g. for A. lusitanicus (Briner and Frank 1998). In addition, the negative effect 

of cutting on slug abundance was lowest in control plots with their naturally 

developed graminoid-forb communities. In this, more-natural plant composition, slug 

abundance showed either a higher tolerance to disturbance or a higher capacity to 

re-organize after disturbance. Unfortunately our sampling design did not allow 

detailed investigation of the mechanisms behind this effect.  

But this finding supports the idea that slug communities in manipulated ecosystems 

(e.g. with a disturbed or altered plant community structure) are less tolerant of 

disturbance (e.g. grazing or mowing) than those in more natural habitats. This is 

similar to the results of Dedov et al. (2006), who also found slug abundance to be 

highest in diverse, naturally assembled plant communities. The finding that there are 

higher numbers of slugs in less manipulated, or more-natural plots, raises the 

question of whether this is also true for other invertebrates, which could indeed have 

potential implications for pest management practice. We also found a strong positive 

direct effect of herbicide-induced increase of graminoids on leafhopper diversity, 

which can also be explained by their feeding preference.  

Most of the leafhopper species we found were shown to have a preference for 

graminoids (Nickel and Remane 2002). This increase of leafhopper diversity with 

higher availability of the preferred food source is in accordance with other studies 

(Nickel and Hildebrandt 2003). Overall, invertebrates showed a strong response to 

changes in plant functional group composition. 

 

VII. Higher cutting frequency has negative effects on diversity and abundance of 

herbivorous invertebrates (chapter 3 & 4). 

Three cuts had a consistently negative effect on slug abundance in comparison to 

the one-cut management. This lower abundance has several potential causes: (i) 

many slugs are likely to have been killed and removed directly during the process of 

cutting or due to soil compaction by a heavy machine, which has also been shown to 

decrease invertebrate populations (Ferguson et al. 1988, Hitchmough 2003, Humbert 

et al. 2010). (ii) Sward height is positively correlated with soil moisture (Gross et al. 

2008) and due to the obvious effect of cutting on vegetation height and standing 

biomass, it leads to a lack of food and shelter availability as well as a drier soil 

surface and altered temperature pattern.  
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For leafhoppers we observed a negative direct effect of higher cutting frequency on 

species richness (similar to Morris (1981)), but a positive effect on abundance. The 

negative direct effect of higher cutting frequency on species diversity of leafhoppers 

indicates that the majority of leafhopper species found within our study site showed a 

clear preference for plots cut only once a year, which is in line with findings of other 

studies (Morris and Lakhani 1979, Nickel and Achtziger 1999). This preference of 

leafhoppers for plots cut only once a year (Morris and Lakhani 1979, Nickel and 

Achtziger 1999) is also supported by the negative impact of higher cutting frequency 

on vegetation height and biomass. This shows that lower disturbance results in larger 

amounts of food resources and shelter due to higher vegetation and aboveground 

biomass. Cutting is a disturbance and reduces food resource heterogeneity, and the 

higher the frequency, the higher the direct impact on leafhoppers, since many 

leafhoppers may be killed and removed during the process of harvesting (Humbert et 

al. 2010). This is comparable to the negative effects of cutting on slug abundance 

within the same experiment (Everwand et al. 2013). Many generalist leafhoppers can 

benefit from the better performance of some graminoids under more frequent cutting, 

as the opposing effect of cutting frequency on leafhopper abundance (positive) and 

leafhopper diversity (negative) in the path diagram shows. Some very abundant 

species (e.g. Arthaldeus pascuellus, Streptanus sordidus, Deltocephalus pulicaris), 

which are generalists on graminoids (Nickel and Remane 2002), show a clear 

preference for areas cut three times per year. 

 

VIII. Fertilizer application has positive effects on abundance of herbivorous 

invertebrates but negative effects on their diversity (chapter 3 & 4). 

In contrast to our expectations, and findings of other studies (Davidson and Potter 

1995, Nickel and Achtziger 1999), we did not observe any significant direct 

responses of fertilizer application on leafhoppers or slugs in this temperate grassland. 

But we assume that indirect effects of fertilizer application may still occur, e.g. due to 

the effect of fertilizer application on food quality (Ebeling et al. 2013), vegetation 

density, height and soil moisture (Rose et al. 2012). 
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IX. Feeding intensities and preferences of different herbivore species may affect 

plant competition and therefore result in differences in plant species 

richness and composition (chapter 5) 

In chapter 5 we show that two weeks of herbivory reduced plant species richness, 

mainly due to a strong reduction of graminoids, probably by grasshoppers (Gardiner 

et al. 2002), which led to the total disappearance of the above-ground parts of all 

graminoids in some lysimeters. It is a common effect of intense herbivore pressure, 

that preferred food sources are fully exploited by herbivores (Turley et al. 2013). The 

observed increase of forb biomass also shows the feeding preference of 

grasshoppers for graminoids. This selective feeding of the herbivores was also 

beneficial for the avoided forbs (Bernays and Chapman 1970), because damaged 

graminoid plants did not grow or survive as well as unconsumed forb plants 

(Belovsky 2000). We expect the low damage on forbs (and therefore a competitive 

advantage) to be due to the rather low observed activity of the snails due to dry 

weather conditions during the herbivore treatment in August 2011. H. pomatia is 

known to require warm and calcium rich, but moist soils (Pollard 1975). 

Our approach covers the effects measured directly after a feeding period of two 

weeks. Many plants, especially graminoids, show a high regrowth capacity in 

response to herbivory (Turley et al. 2013), also enhanced due to fertilizing effects of 

herbivore excrement and plant litter (Belovsky and Slade 2000). Therefore, we 

assume that this short term effect of herbivory on plant species richness and AGB 

might not be observed on a longer time scale. 

 

X. Herbivory and fertilizer application accelerate nutrient cycling (chapter 5). 

As expected, we found that herbivory increased the amount of plant litter, which has 

been shown to strongly correlate with the amount of herbivore excrements and 

herbivory-mediated increases of root exudates (Bardgett et al. 1998). Due to the 

faster decomposition of herbivore faeces and the fast belowground plant responses 

(e.g. exudation) (Bardgett et al. 1998) in comparison to plant litter decomposition 

(McNaughton et al. 1988), therefore we assume herbivore faeces to account for a 

strong effect of plant litter in lysimeter study. In addition, the reduced plant AGB due 

to herbivory, may lead to a reduced nitrogen uptake by plants under herbivory, which 
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in turn can affect the amount of available forms of nitrogen within the ecosystem 

(Vitousek et al. 2002). Consequently, this may account for the increased amount of 

N2O emissions with herbivory. Responses of plant communities and nitrogen cycling 

become more complex with increasing number of interacting drivers, but fertilizer 

application and invertebrate herbivory were the strongest drivers of plant community 

composition and nitrogen cycling.  With our study we were able to disentangle these 

complex interactions. When there was no nutrient limitation for the primary producing 

plants, due to NPK fertilizer input – resulting in higher AGB (Schmitz 1993) – there 

was no shortage of available food for herbivores and the proportion of graminoids 

was consequently only slightly reduced compared to the unfertilized treatment.  

Our results support that grasshoppers can counterbalance nitrogen shortages in the 

available food sources by compensatory feeding and the capability of selective 

feeding among graminoids of contrasting nutritional quality when a choice is available 

(Raubenheimer and Simpson 2003, Berner et al. 2005).  

Also, with higher availability of better quality AGB (Joern and Behmer 1998), due to 

fertilizer application, less AGB was consumed, resulting in a lower risk for plant 

species to be completely consumed by herbivores aboveground and explaining the 

lower proportion of litter due to herbivory on fertilized plots. This might also account 

for the stronger negative short-term effect of herbivory on plant species richness and 

AGB of graminoids in unfertilized plots.  

The acceleration of net nitrification and net-N-mineralization rates with herbivory in 

unfertilized plots may be have several causes: (i) the excrement of the herbivores 

contribute to cycling of nitrogen in natural systems (Belovsky and Slade 2000); (ii) 

grasshopper herbivory increases rhizodeposition (Paterson 2003) and/or root 

exudates in particular (Holland et al. 1996); (iii) higher plant litter input also enhances 

nutrient cycling (Belovsky and Slade 2000). The already high net nitrification and net-

N-mineralization rates under NPK fertilization underpin the herbivore-induced 

acceleration of nutrient availability, since these were previously of low availability. 

 

Summarizing, we have shown that both fertilizer application and herbivory positively 

affect components of the nitrogen cycle, but through different pathways. Fertilizer 

application accelerated the nitrogen fluxes due to greater availability of ammonium 

and nitrate, both main components of our N-fertilizer.  



SYTHESIS  CHAPTER 6 

165 

Since grasshoppers are more abundant under normal conditions and cause more 

feeding damage on intensively managed grasslands (Hudewenz et al. 2012), we 

worry that emissions of N2O, a very strong greenhouse gas (Lashof and Ahuja 1990), 

can further increase and therefore contribute to global warming due to an additive 

effect of fertilizer application and invertebrate herbivory. Therefore long term studies 

of the combined effects of invertebrate herbivory in combination with an intensifying 

management of grasslands on greenhouse gasses, such as N2O, are needed. 

 



SYTHESIS  CHAPTER 6 

166 

General conclusions 

Overall, grassland management, plant functional-group composition and 

invertebrate herbivory directly and indirectly drive plant productivity, diversity, 

composition and nutrient cycling. The responses of plants and invertebrates, as well 

as nitrogen cycling, become more complex with increasing number of interacting 

drivers.  

Our results suggest that with elaborate management strategies, providing sufficient 

resources for the least-productive species, it is possible to maintain high productivity 

without losing plant species. 

We revealed positive effects of forb richness on plant diversity and slug density and 

indicate that populations of invertebrates will increase in abundance not only where 

there is greater plant species richness but also in more-natural plant communities. 

Leafhopper diversity profited indirectly from nutrient-poor, forb-dominated plots, since 

these harbour a greater diversity of plants and therefore greater food-resource 

heterogeneity. On the other hand, leafhopper diversity profited directly from higher 

graminoid cover in highly productive plots with lower plant diversity, due to a greater 

availability of graminoids as a preferred food source for many leafhopper species. 

We clearly show that management and herbivory had much stronger effects than the 

manipulation of plant functional-group composition and show fertilizer application to 

be the strongest driver of the nitrogen flux rates in our system. Herbivory can short-

cut the nitrogen cycling by increasing amounts of litter, excrement and root exudates, 

consequently, positively affecting soil nitrogen contents (NH4, NO3) and flux rates 

(mineralization, nitrification, N2O). In addition to the strong effect of fertilizer 

application on the nitrogen cycle, emissions of N2O – a very potent greenhouse gas – 

can also increase under intense herbivory in fertilized grasslands, at least on a short 

timescale. This leads us to concerns, that these N2O emissions can further increase 

and therefore contribute to global warming due to an additive effect of fertilizer 

application and invertebrate herbivory.  
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Summary 

Within the last few centuries the rapid growth of the human population, along with 

increasing economic development, has caused increasing demands for agricultural 

products such as food and fuel. This has led to an extension of agricultural areas, 

and the intensification of existing agricultural areas to maximize crop production, 

therewith increasing pressures on ecosystems around the world. Agricultural 

intensification, with high inputs of fertilizer and increasing cutting regimes, leads to a 

decline in plant species richness, lower stability to climatic extremes, such as drought 

or high rainfalls, resulting in a threat to biodiversity on higher trophic levels and 

important ecosystem processes.  

In this thesis we analyse the direct and indirect effects of different levels of 

agricultural management intensity and functional group composition within the 

Grassland Management Experiment (GrassMan) near the towns of Neuhaus (Solling) 

and Silberborn in the Solling Mountains, which are situated in Northern Germany. We 

created twelve treatment combinations by independently combining two cutting 

frequencies, two levels of fertilizer application and three different sward types via 

manipulation of functional groups. We further investigate the effects of plant diversity, 

cutting, and fertilizer application on grassland productivity, herbivorous invertebrates 

and nutrient cycling, as well as the impact of herbivory on the overall system. The 

main focus of this thesis lies in exploring the impact of these agricultural 

management practices and declines in species diversity as well as shifts in functional 

group composition on plant-insect interactions, such as invertebrate herbivore 

pressure on plant-performance and its feedbacks on nutrient cycling. 

In chapter two, we show that overall species-richness had no significant effect on the 

above-ground biomass production across the five study years. In addition, sward-

type diversity had significant effects on the above-ground biomass production only in 

the experimental year with extremely dry weather conditions for the summer months 

before the peak standing crop, when control plots had higher yields than the forb- 

and graminoid-reduced treatments. While management intensification caused an 

increase in above-ground biomass production, changes in species numbers were not 

dramatic over the whole investigation period, with increasing cutting frequency 

promoting the establishment of more species.  
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In our study, existing species composition of the semi-natural grassland was highly 

resilient. Four years after the manipulation of functional groups, we recorded a 

composition of grasses, herbs and legumes showing almost no differences between 

the sward types, with larger shares of grasses being typical of fertilized plots and 

larger shares of herbs typical of frequent cutting. Shares of legumes were 

suppressed by fertilization, but were found in almost all plots by the end of the 

experimental period. 

In chapter three we show the strong effects of grassland management, plant diversity 

and composition on slug abundance, which was highest in plots with a low cutting 

frequency and high food resource availability (increased forb cover and taller 

vegetation). Higher cutting frequency decreased slug abundance, but with lower 

impact in control plots, with their naturally developed graminoid-forb communities, 

giving evidence that more-natural plant species compositions can reduce the impact 

of disturbances (e.g. through cutting or grazing) on invertebrates. 

In chapter four, our results show that plant diversity, functional group composition 

and management regime affect leafhopper species richness and abundance. Higher 

cutting frequencies directly led to decreased leafhopper diversity, whereas fertilizer 

application only had a small indirect negative effect via its opposing trends on above-

ground plant biomass, diversity and composition. Leafhopper diversity profited from 

graminoid-rich swards as well as from higher plant diversity, which itself was 

mediated by functional group manipulation and agricultural management. 

In chapter five we show that additional herbivore pressure interacts with our initial 

experimental treatments (cutting frequency, NPK-fertilizer application and functional 

group manipulation) and affects several vegetation parameters as well as the 

nitrogen cycle. We found that management and herbivores affect productivity and 

nitrogen fluxes and show stronger effects than the manipulation of plant functional 

group composition.  

In general, we show that grassland management, plant functional group composition 

and invertebrate herbivory directly and indirectly drive plant productivity, diversity, 

composition and nutrient cycling. The responses of plant and invertebrate 

communities, as well as nitrogen cycling, become more complex with increasing 

number of interacting drivers.  
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Our results suggest that with proper management strategies, providing sufficient 

resources for the least-productive species, it is possible to maintain high productivity 

while maintaining high diversity. We revealed positive effects of forb richness on 

plant diversity and slug density, indicating that populations of invertebrates will 

increase in abundance not only where there is greater plant species richness but 

also in more-natural plant communities. Leafhopper diversity profited indirectly in 

nutrient-poor, forb-dominated plots, since these harbour a greater diversity of plants 

and therefore greater food-resource heterogeneity. On the other hand, leafhopper 

diversity profited directly from higher graminoid cover in highly productive plots with 

lower plant diversity, due to a greater availability of graminoids as a preferred food 

source for many leafhopper species. We show that management and herbivory had 

much stronger effects than the manipulation of plant functional group composition. 

Fertilizer application was the strongest driver of the nitrogen flux rates in our system. 

Herbivory, however, can short-cut the nitrogen cycling by increasing amounts of 

litter, excrement and root exudates, consequently positively affecting soil nitrogen 

contents (NH4, NO3) and flux rates (mineralization, nitrification, N2O). In addition to 

the strong effect of fertilizer application on the nitrogen cycle, emissions of N2O, a 

very important greenhouse gas, can also increase under intense herbivory in 

fertilized grasslands, at least on a short timescale. This leads us to concerns that 

these N2O emissions can further increase, and therefore contribute to global 

warming, due to an additive effect of fertilizer application and invertebrate herbivory.  
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Zusammenfassung 

Die Nachfrage nach Agrarprodukten ist im Laufe der letzten Jahrhunderte durch die 

wachsende Weltbevölkerung in Kombination mit einem  zunehmenden Pro-Kopf-

Bedarf stark gestiegen. Weltweit steigt der Druck auf Ökosysteme durch Ausweitung 

und Nutzungsintensivierung landwirtschaftlich genutzter Flächen Auf intensiv 

genutzten Grasflächen führt der hohe Einsatz von Düngemitteln und häufiger Mahd 

zu einem Verlust der Pflanzendiversität. Dies bedingt eine geringere Stabilität des 

Ökosystems gegenüber Wetterextremen wie Trockenheit oder massiven 

Regenfällen, was wiederum eine Gefahr für die biologische Vielfalt auf höheren 

trophischen Ebenen (u.a. invertebrate Herbivore) und wichtige Ökosystem-Prozesse 

darstellt. 

In dieser Arbeit werden die direkten und indirekten Auswirkungen verschiedenen 

Bewirtschaftungsintensitäten in Kombination mit manipulierter 

Vegetationszusammensetzung innerhalb eines Grasland Management Experimentes 

(GrassMan) in der Nähe der Norddeutschen Städte Neuhaus und Silberborn im 

Solling untersucht. Zwei Mahdfrequenzen (1x; 3x), zwei Düngungsintensitäten (keine 

Düngung; NPK Düngung) und drei unterschiedlich manipulierte Grasnarben (Gräser 

reduziert, Kräuter reduziert & nicht manipuliert)  ergaben zwölf verschiedene 

Behandlungskombinationen, welche jeweils sechs Mal repliziert wurden. Auf den 

daraus resultierenden 72 Parzellen (jeweils 15 m mal 15 m) wurden die 

Auswirkungen von Pflanzendiversität, Mahdhäufigkeit und Düngung auf die 

Produktivität, den Stickstoffhaushalt, trophische Interaktionen und deren 

Wechselwirkungen im Grasland untersucht. Der Schwerpunkt dieser Arbeit liegt 

darauf, die Auswirkungen landwirtschaftlicher Intensivierung, reduzierter Artenvielfalt 

sowie Verschiebungen in der Zusammensetzung der Grasnarbe auf Pflanze-Insekt-

Interaktionen zu untersuchen. 

Im zweiten Kapitel wird gezeigt, dass über den Versuchszeitraum die 

Pflanzenbiodiversität keinen signifikanten Einfluss auf die oberirdische Biomasse-

Produktion hatte. Die Grasnarbenzusammensetzung hatte lediglich große 

Auswirkungen auf die oberirdische Biomasse-Produktion, wenn in einem Jahr noch 

vor dem Erreichen der maximalen oberirdischen Biomasse extrem trockene 

Witterung auftrat. In solchen Jahren produzierten Parzellen mit natürlicher 



ZUSAMMENFASSUNG   

176 

Artenzusammensetzung größere Erträge als manipulierte Flächen. Während eine 

höhere Bewirtschaftungsintensität zu einem Anstieg der oberirdischen Biomasse 

führte, war keine signifikante Veränderung der Pflanzenartenzahl über den 

Untersuchungszeitraum zu verzeichnen. Höhere Mahdfrequenz führte dagegen zu 

einer erhöhten Pflanzenartenanzahl im Vergleich zu der am Beginn der Experimente. 

Die bestehende Artenzusammensetzung in dem naturnahen Grünland (ohne 

Manipulation), war sehr robust und vier Jahre nach dem Manipulieren zeigten die 

verschiedenen Grasnarben fast keine Unterschiede mehr in der Zusammensetzung 

von Gräsern, Kräutern und Leguminosen. Ein größerer Anteil von Gräsern war 

typisch für gedüngte Parzellen und größere Anteile von Kräutern waren eine typische 

Folge von häufigerem Mähen. Durch Düngung wurde der Anteil von Leguminosen 

reduziert, allerdings wurden auch zum Ende des Experimentes noch in fast allen 

Parzellen Leguminosen gefunden. 

In Kapitel drei werden die starken Auswirkungen der landwirtschaftlichen 

Intensivierung sowie Pflanzendiversität und Artenzusammensetzung auf die 

Abundanz von Nacktschnecken gezeigt. Die Schneckenabundanz war höher auf den 

Parzellen mit einer niedrigen Mahdhäufigkeit und hoher Verfügbarkeit von 

bevorzugten Nahrungsressourcen. Die Abnahme der Schneckenabundanz  durch 

eine höhere Mahdfrequenz war in den Parzellen mit natürlicher Vegetation am 

geringsten. Dies könnte ein Beleg dafür sein, dass sich Störungen auf Invertebrate 

(z. B. durch Mahd oder Beweidung) in natürlicherer Vegetation weniger stark 

auswirken. In Kapitel vier werden die Einflüsse von Pflanzenbiodiversität, 

Zusammensetzung der funktionellen Gruppen und der Nutzungsintensität auf 

Zikaden untersucht. Eine häufigere Mahd bedingte eine niedrigere Artenzahl an 

Zikaden. Düngung hatte nur indirekt - aufgrund von gegenläufigen Effekten auf die 

oberirdische Biomasse, Diversität und Zusammensetzung der Vegetation - einen 

marginal negativen Effekt auf die Zikadendiversität. Zikadendiversität profitierte von 

einer von Gras dominierten Vegetation, sowie von einer höheren Pflanzendiversität, 

welche ihrerseits durch Manipulation der Grasnarbe und das Grasland-Management 

beeinflusst wurde. In Kapitel fünf wird gezeigt, dass erhöhter Herbivoriedruck mit den 

anderen experimentellen Behandlungen (Mahdhäufigkeit, Düngung und Manipulation 

der funktionellen Gruppen) interagiert und mehrere Vegetationsparameter und einige 

Komponenten des Stickstoffkreislaufs beeinflusst. Es stellte sich heraus, dass sowohl 
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Grasland-Management als auch invertebrate Herbivoren die Produktivität und den 

Stickstoffhaushalt beeinflussen und einen stärkeren Einfluss haben als die 

Vegetationszusammensetzung.  

Insgesamt wird mit dieser Versuchsreihe deutlich gemacht, dass Grasland-

Management, Manipulation der Vegetationszusammensetzung und experimentell 

erhöhte Herbivorie einen direkten und indirekten Einfluss auf Produktivität, 

Zusammensetzung und Biodiversität der Vegetation sowie den Stickstoffhaushalt 

haben. Die Interaktionen zwischen Vegetation, Herbivoren und dem 

Stickstoffkreislauf werden mit zunehmender Anzahl wechselwirkender Faktoren 

zunehmend komplexer. Die Ergebnisse deuten darauf hin, dass eine Erhöhung der 

Produktivität ohne Pflanzenartenverlust durch eine ausgereifte Management-

Strategie ermöglicht wird. 

Schlussfolgerung 

Zusammenfassend wird in dieser Arbeit gezeigt, dass die Manipulation zu Gunsten 

krautiger Pflanzen einen positiven Effekt auf die gesamte Pflanzendiversität sowie 

auf die Abundanz von Schnecken hat. Außerdem kann nicht nur eine höhere 

Pflanzendiversität, sondern auch natürlichere Pflanzengesellschaften zu höheren 

Populationen von Invertebraten führen. Zikadendiversität profitiert von verschiedenen 

Faktoren – zum Einen indirekt von einer höheren Pflanzendiversität auf 

nährstoffarmen, krautdominierten Flächen, da diese eine größere Vielfalt and 

Nahrungsressourcen für spezialisierte Arten bieten. Ebenso war die Zikadendiversität 

positiv von einem höheren Grasanteil an der Vegetation auf gedüngten Flächen mit 

niedrigerer Pflanzenbiodiversität beeinflusst, da Gräser die bevorzugte 

Nahrungsquelle für viele der gefundenen Zikadenarten mit einem eher 

generalistischen Nahrungsspektrum waren. Grasland-Management und Herbivorie 

haben insgesamt einen wesentlich stärkeren Einfluss auf den Stickstoffhaushalt als 

die Manipulation der Vegetationszusammensetzung, wobei Düngung der stärkste 

Faktor ist. Herbivore können den Stickstoffkreislauf durch einen höheren Eintrag von 

totem Pflanzenmaterial, Wurzelexsudaten und durch Ausscheidungen 

beschleunigen. Dieser Eintrag von Nährstoffen hat folglich positiven Einfluss auf den 

Bodenstickstoffgehalt (NH4, NO3) und auf Stickstoffflussraten (Mineralisierung, 

Nitrifikation, N2O).  
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Neben dem starken Einfluss von Düngung auf den Stickstoffkreislauf können die 

Emissionen von N2O, einem wichtigen Treibhausgas, auch innerhalb eines kurzen 

Zeitraums durch starke Herbivorie zunehmen. Somit könnte ein steigender 

Nährstoffeintrag durch Düngung in Kombination mit erhöhter Herbivorie zu einer 

Erhöhung von N2O-Emissionen im Grasland führen. Dieser additive Effekt könnte 

dann zur globalen Erwärmung beitragen. 
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