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“The fact is that no species has ever had such wholesale control over 

everything on earth, living or dead, as we now have. That lays upon us, whether we 

like it or not, an awesome responsibility. In our hands now lies not only our own 

future, but that of all other living creatures with whom we share the earth.” 

 

                                                          

David Attenborough, Life on Earth  
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SUMMARY 

Agricultural landscapes account for approximately 40% of global terrestrial area and this 

proportion tends to grow due to the increasing demand for fuel, food and other agricultural 

products. For successful crop production in the future, it is crucial to preserve the ecosystem 

services performed by biodiversity in these areas. Understanding how land use and landscape 

composition affect species distribution and ecosystem functions is key to achieve this objective. 

 Organisms respond to habitat heterogeneity at different spatial scales, which needs to be 

considered in landscape studies. The temporal scale can also be meaningful, given that 

agricultural landscapes are highly dynamic environments and the frequent changes in land cover 

may affect ecological processes.  

In this thesis we study local and landscape effects on plant-insect interactions, local 

diversity and community structure in changing landscapes. We focus on two landscape 

components that potentially influence insect communities and interactions: semi-natural 

habitats and oilseed rape fields (Brassica napus L.). Semi-natural habitats are stable environments 

that provide food and nesting resources constantly. Oilseed rape is a mass flowering crop that 

offers huge amounts of food resources in a short period of time.  

We sampled landscapes using a grid design replicated in space and time. This multiscale 

approach allowed us to investigate: 

 

(1) How different sampling designs can affect the estimate of biodiversity patterns. 

(2) How the effect of landscape composition on a herbivore-parasitoid trophic 

interaction changes with time 

(3) How landscape composition affects spatial community similarity at the landscape 

scale.  

Chapter 1 introduces the topics covered in this thesis.  

Chapter 2 shows how sampling whole landscapes can improve biodiversity estimates. 

Our aim was to determine how the predictability and stability of these estimates are affected by 

restricting sampling to only one habitat or to only few sampling points per area. We found that 

sampling organisms at a small spatial scale can influence the results of ecological studies when 

they use resources at large scales. Our results show that (i) the number of samples per study 

area affects the precision of parameter estimation and (ii) the selection of just one habitat type 
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for sampling may generate biased estimates of species richness. Moreover, we observed that the 

spatial scale of best predictions of the species richness of organisms, which is the landscape 

sector experienced by organisms, changes with the sampled habitat type. We conclude that 

estimates obtained by sampling limited to one habitat type or with few replicates per area will 

often not be representative of the landscape-wide population or community. Therefore, caution 

should be taken when generalizing too widely from such restricted studies. 

In Chapter 3, we apply multi-level generalized path analysis to understand how the 

dynamics of agricultural landscapes affects the tritrophic interaction between pollen beetles 

(Brassicogethes aeneus F), their host plant oilseed rape and their parasitoids. We investigate how the 

effect of landscape composition (percentage of oilseed rape fields and non-crop areas) on 

herbivore and parasitoid abundance depends on the temporal scale of observation and whether 

system dynamics showed interannual carry-over effects. We found that the effect of oilseed rape 

fields on beetle abundance changed with time from negative to positive. Parasitism had a 

negative effect on the number of pollen beetles, but only in areas with a low proportion of 

oilseed rape. Interestingly, our path analysis revealed that landscape composition affected 

herbivore abundance one or two years later, mediated by changes in parasitism. These results 

indicate an interannual carry-over effect on plant-herbivore-parasitoid interactions, as the 

insects are affected by landscape composition and top-down effects in previous years. 

In Chapter 4, we study the effect of landscape composition on spatial community 

turnover of pollinators. We compared solitary bee and hoverfly communities, both of which 

provide important pollination services, yet often show contrasting responses to landscape 

context. Our grid design allowed us to sample whole landscapes and provided insights on the 

exchange of individuals between habitats. While the proportion of oilseed rape did not explain 

spatial community turnover for either taxon, the flowering period influenced the effect of semi-

natural habitats, which promoted the homogenization of bee communities during oilseed rape 

flowering and of hoverfly communities after flowering. The transience of the effect indicates 

that this pattern was caused by increased movement of individuals between habitats. This spatial 

homogenization of the community can be important to stabilize pollination in crop fields and to 

promote community resilience after disturbances, which is of socio-economic importance in 

agricultural landscapes. 

In summary, the different habitat types that compose heterogeneous agricultural mosaic 

landscapes can play different roles for tritrophic interactions and the structure of insect 

communities. Larger proportions of semi-natural habitats may increase stability of pollination 
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and biological control by benefiting solitary bees, hoverflies and parasitoids. Mass flowering 

crops can influence insect communities and population densities, affecting ecosystem services 

both positively and negatively. This effect may be temporary, limited by the flowering period, or 

may extend to the following years, particularly for specialized insects, such as the pollen beetle 

and its parasitoids. This diversity of effects from different landscape components can be best 

investigated when all habitat types are sampled. Results originating from only one habitat type 

cannot be extrapolated to the whole landscape. In conclusion, landscape planning should take 

into consideration the movement of organisms between habitat types and through time in order 

to guarantee conservation of ecosystem services and crop yield.  
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INTRODUCTION 

Agricultural areas cover a large fraction of the Earth’s surface and provide essential 

resources to human existence and quality of life (Tilman et al. 2002; Martin et al. 2012). 

However, recent agricultural practices that have greatly increased global food supply have had 

unintended, detrimental impacts on biodiversity and trophic interactions, affecting ecosystem 

services and highlighting the need for more sustainable methods (Sala et al. 2000; Tilman et al. 

2002; Fahrig 2003). However, the development of such methods depends on the definition of 

the relevant temporal and spatial scales affecting organisms and their interactions.  

Agricultural landscapes 

Landscape-scale management holds great potential for increasing the sustainability of 

agriculture (Tilman et al. 2002), given that the distinct habitat types that constitute agricultural 

landscapes can affect biodiversity and ecosystem services differently. Nearby semi-natural areas 

can provide nesting and overwintering sites for insects that pollinate crops and contribute to 

efficient control of many pests (Thies et al. 2003; Ricketts et al. 2008; Garibaldi et al. 2011). Such 

areas offer spatiotemporal stability of resource availability, but at low concentrations (Gladbach 

et al. 2010; Tscharntke et al. 2012). In contrast, cropland areas are ephemeral as habitat structure 

lasts only one season and is destroyed during harvest and/or from soil manipulation (Wissinger 

1997). Nevertheless, crop fields may provide temporary resources in much higher 

concentrations than semi-natural habitats, what can also be beneficial to functionally important 

insects (Westphal et al. 2003; Westphal et al. 2009). Especially mass flowering entomophilous 

crops, such as oilseed rape (Brassica napus L.), are valuable foraging habitats and positively affect 

the abundance of bumblebees (Westphal et al. 2003; Westphal et al. 2009), solitary bees (Le Féon 

et al. 2013) and hoverflies (Hänke et al. 2014). Oilseed rape is a highly subsidized biofuel crop 

and the increasing demand for the oil produced with its seeds has been followed by an increase 

in production (Fig 1) and in acreage (Alford 2003; Carré and Pouzet 2014) and a consequent 

growth of pest populations (Hokkanen 2000).  

Sampling in agricultural landscapes 

Even though agricultural landscapes account for 40% of the global terrestrial land use, 

only 12.5% of the ecological studies are performed in these areas (Foley et al. 2005; Martin et al. 

2012). In contrast, although protected areas comprise only 13% of the Earth’s surface, 63% of 

the studies are situated in these environments (Jenkins and Joppa 2009; Martin et al. 2012). Even 

when studies are carried out in agricultural landscapes, they focus on protected fragments 
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situated within these landscapes (Martin et 

al. 2012). This prevalence of studies 

performed in relatively pristine shows a 

bias for traditional ecological research 

away from human activity areas and 

indicates that ecologists still perceive 

humans as an exogenous, perturbing force 

(Collins et al. 2000; Fazey et al. 2005; 

Metzger et al. 2010). However, the 

productive agriculture areas have 

particularly high biodiversity potential 

(Altieri 1999). The view of cropland as inhospitable matrix has not been confirmed and high 

species richness can often be found in this environment (Fahrig et al. 2011; Mendenhall et al. 

2014). Nonetheless, the rapid growth of the human population puts increasing pressure on 

these environments, endangering communities in croplands. Therefore, it is crucial to recognize 

the importance of biodiversity in these areas and to understand how the hospitality of the 

world’s agricultural lands can be maintained (Tscharntke et al. 2005; Fahrig et al. 2011; 

Mendenhall et al. 2014) 

In this thesis a grid design was used with the objective of sampling all habitat types, 

including all available crop fields and semi-natural habitats. The uniform distribution of samples 

ensured that the number of samples coming from each habitat type was proportional to the area 

occupied by the habitat in the landscape. This design allowed the assessment of the importance 

of different habitat types for insects at landscape scale and their movement throughout the 

landscape. It was also possible to include different scales in each study.  

Scale dependence 

Given that agricultural landscapes are heterogeneous in space and time, both spatial and 

temporal scales can affect community structure and trophic interactions. In fact, virtually all 

ecological patterns and processes are sensitive to scale (Wiens 2002; Sandel et al. 2009). As space 

and time change, interactions between organisms and the environment change, often in 

complex ways (Wiens 2002). Different organisms perceive and respond to landscape structure 

at different scales (Wiens et al. 1993) and the scale of the observation defines which subset of 

ecological patterns, processes, and relationships we perceive. 
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When resources are patchily distributed across space, an organism may consider a part 

of its habitat unsuitable, as the density of resource is too low, whereas in other parts resource 

availability is sufficiently high (Van de Koppel et al. 2006). Both the observational window of an 

organism and the area that it covers searching for resources are limited and will define the 

spatial range along which it will exploit the environment (Milne 1992; Van de Koppel et al. 

2006). The spatial range is different for each species within a landscape and this, in turn, causes 

community structure to depend on a complex interplay between large- and local-scale processes 

(Menge and Olson 1990). This divergence in ranges can also influence the effect of landscape 

composition on trophic interactions, given that organisms at different trophic levels respond to 

environmental factors at different scales (Holt 1996; Van de Koppel et al. 2006). For example, 

while plants are affected by the microhabitat, herbivore populations are wider-ranging, but 

confined to the local community, and predators must be mobile enough to switch between 

patches of prey (Holt 1996). Consequently, the net interaction between two or more species 

may depend on the area over which it is measured (Sandel et al. 2009). In this sense, it is 

essential to include spatial scale explicitly in ecological studies in order to define at which scale 

ecological systems operate, i.e. which is the most efficient scale for management (Wiens et al. 

2002). 

While space has a crucial influence on ecological patterns, time also has a decisive role. 

In patchy environments, the temporal scale (i.e. patch duration) can even be a more important 

determinant of population size than the spatial scale (i.e. patch size) (Fahrig 1992). The relevant 

temporal scale affecting organisms and their interactions is also characteristic for each species 

(Fortin et al. 2002) and can be dependent on the life-cycle, longevity (Robertson and Kaufmann 

1998) or metabolism rate (Fortin et al. 2002). Therefore, considering a larger time period can 

affect our assessment of community composition as a species which is dominant at one point in 

time may become unimportant at the next (Kremen et al. 2002; Gagic et al. 2012). Trophic 

interactions have also been shown to vary with time due to changes in community structure 

(Bell et al. 2002; Gagic et al. 2012) or in the surrounding environment (Thies et al. 2008). 

Pollinator richness and community similarity 

Wild plants and crops are highly dependent on pollination provided by wild animals 

(Kearns et al. 1998; Klein et al. 2007), given that managed honey bees cannot replace the 

contributions of diverse native insect communities for a wide variety of plants (Kremen et al. 

2002; Garibaldi et al. 2013). In fact, richness of pollinator species has been shown to increase 

both visitation rates by wild insects and fruit set, independent of honey bee visitation (Garibaldi 
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et al. 2013). It is therefore of critical importance to understand the determinants of pollinator 

richness throughout the landscape in order to maintain viable pollinator communities in 

farmlands (Öckinger and Smith 2007). 

Most studies focus almost exclusively on the effect of landscape context on pollinator 

species richness, rather than on community composition, which can change substantially, often 

resulting in a decline of more sensible species (Laurance et al. 2000; Carré et al. 2009; Tscharntke 

et al. 2012). Even with the reduction in area of high-quality habitats, landscape-wide species 

richness can remain constant due to increased beta-diversity among patches (Tscharntke et al. 

2002). Nonetheless, this numerical compensation might conceal changes in community 

composition and the prevalence of common taxa (Carré et al. 2009). In this sense, community 

similarity can be a more appropriate diversity measure, given that it can better assess changes in 

community composition (Dormann et al. 2007). 

Landscape composition can be expected to influence community similarity, as 

alterations in the size, connectivity and shape of high quality habitats can cause losses of 

specialist and rare species or disrupt the exchange of organisms between local communities, 

reducing spatial similarity (Tscharntke and Brandl 2004; Vandvik and Birks 2004; Dormann et 

al. 2007). The exchange of pollinators between habitat types has important consequences both 

for plants and for the pollinators themselves. For insects that nest in semi-natural habitats, the 

access to resources available in the cropland, such as those offered by mass flowering crops, 

may have positive effects on population size (Westphal et al. 2003; Westphal et al. 2009). For 

plants, higher pollinator species richness can increase visitation rates and guarantee stability of 

pollination services (Garibaldi et al 2011). Thus, increasing the movement of pollinators towards 

cropland can positively affect yield of animal pollinated crops, which account for 35% of the 

global food production and contribute vital micronutrients and dietary variety (Klein et al. 2007; 

Eilers et al. 2011; Vanbergen 2013). 

Ecosystem services and trophic interactions 

Biological control of pests in arable fields is an important ecosystem service (Thies et al. 

2011) as most potential pests are not controlled by pesticides but natural enemies (Schmidt et al. 

2003; Tscharntke et al. 2005). Parasitoids are one of the key agents for biological control 

(Schmidt et al. 2003; Thies et al. 2005; Gagic et al. 2012), and jointly with their hosts and 

associated host plants, comprehend over half of all known species of multicellular organisms 

(Hawkins 2005). Therefore, understanding how landscape composition can affect host-
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parasitoid abundance is of crucial importance to preserve ecosystem services and stability in the 

future. 

As a model system, I studied the tritrophic interaction involving the pollen beetles 

(Brassicogethes aeneus F.), their host plant oilseed rape, and their parasitoids (Tersilochus heterocerus 

Thomson; Phradis interstitialis Thomson and P. morionellus Holmgr.). The pollen beetle was 

chosen as focal organism because this is one of the numerically most abundant insect 

herbivores in Central Germany (Ryszkowski et al. 2001). The pollen beetles feed on pollen from 

a variety of flowers, but are dependent on crucifers (Brassicaceae), such as the oilseed rape, for 

reproduction. The parasitoids feed on nectar and are also highly specialized, laying eggs 

exclusively on pollen beetle larvae (Nilsson 2003; Gladbach et al. 2010). Pollen beetles and 

parasitoids have an univoltine life-cycle (Box 1), what indicates that the population emerging in 

spring was born in the previous year.  

It has been shown that landscape composition affects pollen beetle abundance 

(Valantin-Morison et al. 2007; Zaller et al. 2008a; Rusch et al. 2013) and parasitism rates (Thies 

and Tscharntke 1999; Thies et al. 2003; Gladbach et al. 2010; Rusch et al. 2011), mainly at large 

scales. However, even though both spatial and temporal scales are important to understand 

trophic interactions and population dynamics (Kareiva 1990; Fahrig 1992; Pickett and 

Cadenasso 1995; Roland and Taylor 1997; Thies et al. 2005), most studies have focused only on 

the effect of spatial scale and one habitat type. 
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BOX 1. Life-cycle of  pollen beetles and parasitoids 

 

The details of the life cycles of beetles and parasitoids according to the season are presented (Fig 
B1). 

 

Pollen beetles 

The pollen beetle (Brassicogethes aeneus 

F.) emerges in early spring, after 

overwintering in the soil of field 

margins or woodlands, and feeds on 

pollen of various species of plants 

before migrating into oilseed rape 

fields (Nilsson 1988; Williams 2010). 

They arrive in the fields during bud 

stage and will feed on pollen by 

chewing into the buds, where they will 

also oviposit (Nilsson 1988; Ekbom 

and Borg 1996). The larvae feed on 

pollen and will eventually drop to the 

soil to pupate. The development from 

egg to adult takes about one month 

(Williams 2010). The newly emerged 

pollen beetles will feed on the pollen of different flowers, since the flowering of oilseed rape 

fields will have ended (Hokkanen 2000). Adults of the first generation die after egg laying and, in 

late summer, the new generation of beetles seeks overwintering sites and will only reproduce in 

the following year (Nilsson 1988; Williams 2010). ). The main damage caused by pollen beetles 

happens during the bud stage, since feeding and oviposition cause bud abscission, what can 

reduce yield (Zaller et al. 2008b; Williams 2010). 

 

Parasitoids 

During the larval stage, pollen beetles might be attacked by specialized parasitoids. The three 

most common species are Tersilochus heterocerus (Thomson), Phradis interstitialis (Thomson) and 

Phradis morionellus (Holmgren). The parasitoid egg is laid inside the pollen beetle larvae and will 

hatch once these drop to the soil to pupate. In the soil, the parasitoid larva completes its feeding 

and pupates. Parasitoids overwinter as diapausing adults in the soil of the oilseed rape fields and 

emerge in the following spring (Jourdheuil 1960; Nilsson 2003). 
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METHODS 

The research was conducted in 10 landscapes (Fig 2) in the surroundings of Göttingen 

(51° 32′ N, 9° 56′ E) in Central Germany. The region is dominated by intensive agriculture 

interspersed with semi-natural non-crop areas like meadows, calcareous grasslands and 

woodlands (Steffan-Dewenter et al. 2002). The sampling landscapes were approximately 1km x 

1km wide (mean area± SD= 0.93± 0.23km2) and represented gradients of percent area 

occupied by oilseed rape fields and semi-natural habitats. Semi-natural areas were extensively 

managed areas including forest margins, calcareous grasslands, pastures and meadows. In each 

landscape, sampling was performed following a 5x5 grid. The grid was laid out over the 

landscapes in such a way to always include forest margins and grasslands as well as crop fields, 

while excluding cities or villages.  

 

 

Fig 2. Locations of the ten sampling landscapes in the surroundings of Göttingen in Central Germany. 

Images from Google Earth 

 

At each of these 25 points per landscape, yellow pan traps filled with salt water and a 

drop of detergent were placed. The traps were made of 500 ml plastic bowls with the inside 

sprayed with an UV-reflecting paint. Traps were placed at vegetation height (Fig 3a) and 

exposed for three days in each of four periods: May 2011 and 2012 (during oilseed rape 

flowering- Fig 3b) and June 2011 and 2012 (after oilseed rape flowering- Fig 3c). Considering 

that 30 pan traps were damaged, there was a total of 970 samples. All samples from the pan 
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traps were sorted, pollen beetles were counted (Fig 4) and bees and hoverflies were separated 

and sent to specialists for identification. 

 

 

Fig 3. Examples of pan traps placed (a) at semi-natural habitats, (b) at oilseed rape fields during 

flowering (c) and after flowering. Photos by Christoph Scherber and Tatiane Beduschi. 

 

Additionally, in May 2011 (at peak oilseed rape flowering), the flowers of five oilseed 

rape plants were collected in each grid point located in an oilseed rape field (N= 58). Wild 

flowers in non-crop areas were also inspected, but no pollen beetle larva was found outside 

oilseed rape flowers. All larvae located within the sampled flowers were counted and, in each 

sample, 20 individuals were dissected in order to determine the parasitism rate. In the grid 

points where no larvae were present, the parasitism rate was defined as zero.  

Satellite-based image classification was 

used to measure proportions of oilseed rape 

fields and non-crop areas, which include 

meadows, pastures and forests. Percentage of 

non-crop area has been shown to be a robust 

criterion for the quantification of habitat 

complexity as it tends to be closely correlated 

with other landscape metrics such as habitat 

diversity (Thies and Tscharntke 1999). These 

measurements were done for the years of 

2010, 2011 and 2012 and for all study areas. 

While proportion of oilseed rape fields changed greatly through time, due to crop rotation, 

proportion of non-crop area did not change in the studied years. Satellite imagery was provided 

by RapidEye™ and image classification was performed using ENVI EX® and ESRI® 

ArcMap™10. 
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RESEARCH OBJECTIVES 

In this thesis I study local and landscape effects on plant-insect interactions, local 

diversity and community structure in changing landscapes. The aim was to answer the following 

questions: 

(1) How do different sampling designs can affect the estimate of biodiversity 

patterns? 

(2) How does the effect of landscape composition on a herbivore-parasitoid trophic 

interaction change with time? 

(3) How does landscape composition affect spatial community similarity of 

pollinators at the landscape scale? 

CHAPTER OUTLINE 

Chapter 2 focuses on the first question. More specifically, it assesses: (i) how the 

number of sample points per area affects the outcome of models; (ii) how the number of 

sampled habitats and habitat types influences the model estimates; (iii) how the scale (i.e. radius 

of landscape sector) best predicting bee diversity is affected by sampling habitat. To achieve this 

goal, a subset of bee samples collected only in one habitat type (semi-natural habitats or oilseed 

rape fields) was compared with samples of different sizes placed systematically in the landscape, 

comprising a variety of habitat types. 

Chapter 3 addresses the second question using as a model system the interaction 

between pollen beetles, their host plant (oilseed rape) and their parasitoids. I investigated: (i) if 

the parasitism rate is more strongly affected by host plant abundance (proportion of oilseed 

rape) in the previous or in the current year; (ii) whether the effect of different landscape 

components on herbivore abundance changes over time; (iii) if beetle abundance is driven by 

carry-over effects that span multiple years. To study these complex relationships through time a 

multilevel generalized path analysis was applied. 

Chapter 4 focuses on the third question. I compared solitary bees and hoverflies, which 

show contrasting responses to landscape structure due to distinct resource requirements and 

dispersal abilities (i.e. foraging ranges). The following hypotheses were tested: (i) spatial 

community turnover within landscapes is affected by landscape context, i.e. proportion of semi-

natural habitats and/or of oilseed rape fields, due to altered species exchange between local 

communities; (ii) hoverfly communities are generally more homogeneously distributed 

throughout the landscape and are, therefore, less affected by landscape context than solitary 
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bees; (iii) spatial community turnover is driven by the proportion of oilseed rape flowering, 

which is most influential during the flowering period. Semi-natural habitats and other crop 

fields have a more relevant role for bees and hoverflies after blooming. 

Chapter 5 offers a summary of the results obtained in each study and conclusions 

emerging from all of them taken together.    
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ABSTRACT 

An appropriate sampling design for biodiversity estimates holds crucial importance in 

ecological studies, given that sampling biases can yield incorrect estimates and lead to erroneous 

inferences. Although most species use resources at larger spatial scales and across habitat types, 

thereby linking habitats on a landscape scale, ecological studies tend to be performed only in 

one type of habitat. This may result in biased biodiversity estimates due to a non-probabilistic 

design, with potential sampling units having a null or unknown chance of being selected. Our 

aim was to determine how restricting sampling to only one habitat type, number of sampling 

points per area and spatial scale considered affect the predictability and stability of biodiversity 

estimates.  

In this study, we focused on bee species richness in agricultural landscapes and analyzed 

how consideration of (i) all managed and semi-natural habitat types and (ii) landscape 

composition at different spatial scales contributes to reliable estimates. We compared bee 

richness predictions based on samples collected only in one habitat type (semi-natural habitats 

or oilseed rape fields) with samples placed systematically throughout the landscape, covering all 

available habitat types. Fifty variations of each subset were created to obtain a wide range of 

possible estimates. 

Our results show that limiting the sampling to one habitat type led to biased estimates 

of the landscape-wide bee species richness, even when the number of samples was increased in 

this habitat. The spatial scale of best predictions, i.e. the landscape sector experienced by the 

bees, was also dependent on sampling habitat. Species richness was overestimated when 

sampling was limited to semi-natural habitats and underestimated in oilseed rape fields. In 

addition, sample size was influential, with estimate precision improving when number of 

samples increased.  

In conclusion, sampling organisms at a small spatial scale when they use resources at 

large scales can negatively affect the results of ecological studies. First, the spatial scale to be 

considered depends on the landscape-wide resource use, which is species or group specific. 

Second, limiting the sampling to one habitat type can lead to wrong decisions about the value of 

the target habitat for conservation, resulting in spurious projections or unreliable species 

distribution models. Third, increasing the number of sampling units improved precision. We 

suggest that biodiversity studies increase the range of sampling area to the landscape level to 

include all habitats that provide potential resources. 
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INTRODUCTION 

Sampling procedures can affect results of community and population ecology studies 

(Kenkel et al. 1990). Sampling biases can, for example, reveal incorrect patterns of species 

distribution and community structure (Kodric-Brown and Brown 1993). Studies aiming to relate 

local and landscape contexts to population and community processes face particular sampling 

challenges due to the difficulties in scaling up from small to large scales (Scherber et al. 2012). 

Frequently used approaches consist of sampling only one or a few locations within a landscape 

and relating it to local or landscape contexts (e.g. Steffan-Dewenter et al. 2002; Chust et al. 2003; 

Tscharntke et al. 2005; Concepción et al. 2008; Tscharntke et al. 2012). However, this method 

can prove inadequate if it aims to extrapolate the sampling results from one point or habitat to 

the whole landscape, not considering the spatial heterogeneity inherent within the landscape 

(Edmunds and Bruno 1996). This aspect holds great importance, especially considering that 

many parts of the world are now a patchwork of land uses and ecosystems extending from 

“natural” to “intensively managed” gradients (Hobbs et al. 2006). Even though natural protected 

areas are important in terms of preserving biodiversity, the landscape beyond their boundaries 

also have ecological value, providing resources and migration routes for many populations of 

endangered species (Willis et al. 2012) 

In spite of this ecological potential of non-protected areas, ecological studies tend to be 

situated in sites under some form of legal protection, despite such areas representing less than 

15% of Earth’s ice-free land (Jenkins and Joppa 2009; Martin et al. 2012). Additionally, only 

12.5% of study sites have been described as agricultural/rangeland, whereas these kind of 

habitats account for 40% of global terrestrial area (Martin et al. 2012). 

This kind of selective sampling can cause a number of problems. In a non-probabilistic 

sampling design, within which some sampling units within the sampling frame have unknown 

or no chance of being selected, the resulting estimates can be biased and might produce 

erroneous inferences (Lemeshow and Levy 1999; Yoccoz et al. 2001). In order to ensure 

reliability, a sampling design should yield parameter estimates that are both unbiased (i.e. mean 

value of estimates equal to the target population value) and precise (i.e. small variability) 

(Lemeshow and Levy 1999). In a probabilistic design, whereby all sampling units have a known 

or equal chance of being selected, it is possible to obtain unbiased estimates of the mean and 

variance (Lemeshow and Levy 1999). Therefore, if the population or community of interest 

does not exclusively occur in protected or natural areas, but also disperses into the matrix (e.g. 

Law et al. 1999; Brotons et al. 2003; Haynes et al. 2007), sampling units should be located in all 

habitat types within the landscape, given that the scale of the sampling frame should coincide 
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with the distribution pattern of the target population (Särndal et al. 1992). This is particularly 

true for highly fragmented areas where the matrix also offers resources, as is the case in 

agricultural landscapes (Dunning et al. 1992; Norton et al. 2000). 

Accordingly, a large body of literature recommends sampling procedures including 

larger scales, in order to encompass a wider range of spatial heterogeneity (e.g. Levin 1992; 

Norton et al. 2000; Whittaker et al. 2001; Yoccoz et al. 2001). This would allow a more complete 

assessment of spatial and temporal variation in the biological responses to environmental 

factors. Additionally, it would help to avoid truncated gradients that occur when part of the 

range of the biological or of the environmental variable is not included in the sampling frame 

(Albert et al. 2010). This is important given that truncated gradients can lead to inaccurate 

statistical inference and, consequently, to false ecological interpretation (Thuiller et al. 2004).  

Despite the importance of sampling design being widely recognized, no published 

studies reveal how the selection of the sampling habitat combined with the number of sampling 

points per area of interest can affect the stability of results of ecological studies. Traditionally, 

researchers will choose one location or habitat in a landscape to sample, in a method hereafter 

termed as the “habitat-selection method”. As an alternative, we suggest a design where samples 

are placed randomly or regularly throughout the landscape. This way, habitats will be sampled in 

a similar proportion to the area that they occupy in the landscape. This sampling method will be 

henceforth called the “landscape-grid method”, since in this paper we used a regular sampling 

approach. Our aim is to investigate how these sampling aspects can influence the conclusions 

reached by ecologists. We use a comprehensive dataset collected in 10 replicated landscapes, 

with each comprising 25 sampling points, to test the following hypotheses: 

(1) the number of sample points per area will affect the outcome of models 

(2) the diversity of sampled habitat types will influence the model estimates  

(3) the scale (i.e. radius of landscape sector) best predicting bee diversity will be affected 

by sampling habitat  

More specifically, we compare a subset of bee samples collected only in one habitat type 

(semi-natural habitats or oilseed rape fields) with samples of different sizes placed systematically 

in the landscape, comprising a variety of habitat types. Finally, we discuss the implications of 

using a reduced sampling design. Proportion of oilseed rape was chosen as a determinant of bee 

species richness, given that this landscape feature is known to have the strongest effect on bee 

diversity (e.g. Diekötter et al. 2010; Holzschuh et al. 2011; Westphal et al. 2003), while proportion 

of semi-natural habitats is not a limiting factor (Westphal et al. 2003). 



Chapter 2 

33 
 

METHODS 

Data compilation 

The study was performed in 10 landscapes in the surroundings of Göttingen (51° 32′ N, 

9° 56′ E) in Central Germany in 2011. The landscapes were approximately 1km x 1km wide 

(mean area± SD= 0.93± 0.23km2) and represented gradients of percent area occupied by 

oilseed rape fields and semi-natural habitats, which were not correlated. Sampling was 

performed in a 5x5 grid, which was laid out over the landscapes in such a way to always include 

forest margins and grasslands (semi-natural habitats) as well as crop fields, while excluding cities 

or villages.  

Yellow pan traps filled with water were placed in each cell of the grid and exposed for 

three days in June 2011 (after oilseed rape flowering), because the highest bee abundance and 

species richness can be observed during this month (Holzschuh et al. 2011).  

As three pan traps were damaged, we had 247 samples overall. All wild bees were sent 

to specialists for identification. Sampling habitats included oilseed rape fields, cereal fields and 

semi-natural habitats, which comprised grasslands and forest margins Satellite-based image 

classification was used to measure the proportion of oilseed rape at six different scales. These 

scales were represented by 6 nested circles with the following radii: 0- 100m, 100- 250m, 250- 

500m, 500- 750m, 750- 1000m and 1000- 1500m, using ESRI® ArcMap™10. Satellite imagery 

was provided by RapidEye™. 

Data resampling  

In order to compare the landscape-grid method with the habitat-selection method, we 

took two subsets of our data that included samples collected only in semi-natural habitats (five 

points per landscape; total= 50) or only in oilseed rape fields (mean points per landscape± SD= 

6.2± 5.65; total= 56). These habitats were chosen as they represent two extremes. The semi-

natural habitats are protected areas and tend to be preferred for ecological studies. The oilseed 

rape fields represent very homogeneous agricultural areas. In each landscape, one point within 

the chosen habitat was sampled, creating a new dataset (N= 10) that was subsequently analyzed 

(see section Statistical Analyses). This procedure was repeated 50 times per subset (semi-natural 

habitats and oilseed rape fields) to obtain a wide range of possible results, resulting in two sets 

of model results, one for semi-natural habitats and one for oilseed rape fields, each containing 

50 outcomes.  
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To determine how the number of samples per landscape affects the results, we 

randomly sampled 5, 10, 15 and 20 points per landscape from the full dataset (N= 247), with 

each of the new datasets subsequently analyzed (N= 50, 100, 150 and 200, respectively). This 

was also repeated 50 times for each subset of number of points, resulting in four sets of model 

results each with 50 outcomes. 

Overall, we created the following three datasets that were used for statistical analysis: 

(1) all data points collected only in semi-natural habitats;  

(2) all data points collected only in oilseed rape fields; and  

(3) all data points collected following a regular grid approach.  

A summary of the resampling methods can be seen in Table 1. The selection of points 

for the new datasets was always repeated 50 times, with each of these new datasets analyzed 

accordingly. The complete datasets were also analyzed to detect the effect of sampling only one 

kind of habitat several times per landscape. Moreover, these full datasets were also used to 

create species accumulation curves for each of the datasets, with the objective of determining 

how sampling affects estimates of species richness. 

 

Table 1. Summary of sampling habitat and number of sampling points considered for resampling and 

analyses. New dataset refers to the six groups of 50 datasets created by resampling. Complete dataset 

indicates all points sampled within the mentioned habitat(s). Sampling area indicates each one of the 10 

landscapes where sampling was performed. 

Sampling habitat 
Number of sampling points in the 
new datasets (per sampling area) 

Number of sampling points 
in the complete datasets 

All habitats 5, 10, 15 or 20 247 

Oilseed rape fields 1 56 

Semi-natural habitats 1 50 

Statistical Analyses 

We determined the relevant spatial scale(s) using linear models fit by generalized least 

squares (GLS) as these models allow the explicit incorporation of spatial autocorrelation by 

fitting a variance-covariance matrix (Dormann et al. 2007). This model type also allowed us to 

perform automatic model simplification, which would not be possible with other models that 

also account for spatial autocorrelation. The response variable was bee species richness. This 

variable was log transformed (ln (y+1)) as the response variable was log-normally distributed. 

The initial explanatory variables were the proportions of the area occupied by oilseed rape 

within the six aforementioned scales.  
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All models were simplified by stepwise deletion of terms from maximal models until 

Akaike’s Information Criterion (AIC) reached a minimum. According to this method, all 

parameters remaining after model simplification had relevant explanatory power (Crawley 

2013). When more than one point per landscape was sampled, we defined a spherical 

correlation structure using the coordinates of the sampling points and the landscapes as a 

grouping variable to account for spatial autocorrelation. To avoid differences emerging from 

variable statistical methods, we applied GLS models even when only one point per landscape 

was considered. All analyses were performed using R 2.15.1 (R Core Team 2012). GLS models 

were implemented using the function gls from the “nlme” package 3.1-104 (Pinheiro et al. 

2012). Stepwise model simplification was performed using the stepAIC function from the 

“MASS” package (Venables and Ripley 2002), corrected for small sample sizes (i.e. employing 

AICc rather than AIC; Burnham and Anderson 2002). 

The species accumulation curves were constructed using the specaccum function from 

the “vegan” package 2.0-7 (Oksanen et al. 2013). Sites were added at random, with 500 

permutations performed. 

 RESULTS 

Overall, we collected 76 bee species, excluding Apis mellifera (Linnaeus, 1758). Thirty per 

cent of the species (n=23) were not found in semi-natural habitats and 55% (n=42) were not 

found in oilseed rape fields. There was also great variability observed among sampled points 

within each landscape (Fig 1). When only one point per landscape was sampled, often no scale 

(i.e. radius of landscape sector) was selected as relevant (72% of the times for semi-natural 

habitats and 56% for oilseed rape fields; Fig 2a) or found to be significant (80% and 60% of the 

times for semi-natural habitats oilseed rape fields, respectively; Fig 2b). Additionally, no clear 

pattern identifying a preferred radius was recognized. However, with an increasing number of 

points sampled in a landscape, it was possible to detect a growing precision, with the 750-

1000m scale chosen as relevant and significant in the majority of the models (Fig 2a and b). 

When 20 points per landscape were sampled, this scale was statistically significant in 94% of the 

50 models performed (Fig 2b). 
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Fig 1. Examples of grid-based sampling showing pollinator richness in study areas. Circles represent the 

location of samples and size of circles is proportional to the number of species found in each sampling 

point. Figures show the landscape around the villages of Hohengandern (UTM coordinates- 32U 

565842.636mE, 5690886.797mN) and Espol (32U 555000.087mE, 5728428.317mN). 

 

Fig 2. Summary of the outcomes of the generalized least square models. (a) Proportion of times a scale 

was kept in the model after stepwise selection. (b) Proportion of significant results for each scale 

(p<0.05). “All” represents sampling throughout the landscape. “Semi-natural” and “Oilseed rape” 

represent one point sampled in each of the mentioned habitats. 
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When the whole ensemble of points collected in oilseed rape fields was analyzed in a 

single model, only the 1000-1500m radius remained in the final model after stepwise selection 

(Table 2). This means that this is the only scale that can explain the data. The model performed 

using the semi-natural full dataset selected the same scale as the model that included all 247 

systematically sampled points (750-1000m). Nonetheless, the estimate from this full semi-

natural habitat model was very different from the one resulting from the landscape-grid method 

(Table 2; Fig. 3). In the semi-natural habitat model, none of the points sampled presented a 

proportion of oilseed rape greater than 0.3 and only a few exceeded 0.2. This constitutes a 

truncated oilseed rape gradient, which means that part of the range of the environmental 

variable was not included in the sampling frame (Albert et al. 2010). As a result, the expected 

number of bee species in the missing range was clearly underestimated in the outcome of the 

model, when compared to the landscape-grid method. 

 

Table 2. Scales kept in the model by stepwise selection, parameter estimates, standard error of the mean 

of three generalised least squares models performed on the complete datasets of points collected in 

semi-natural habitats, oilseed rape fields and following a grid throughout the landscape. Asterisks 

represent significant results (p<0.05). 

 

Sampling habitat Relevant scale Estimates SEM N 

All habitats 750- 1000m -1.72* 0.46 247 

Oilseed rape fields 1000- 1500m -2.31* 0.93 56 

Semi-natural habitats 750- 1000m -4.07* 1.55 50 

 

The estimates of bee richness in relation to percentage of oilseed rape fields, when 

considering only one point per landscape, were very variable, independent of the sampling 

habitat selected, and fluctuated from negative to positive values (Fig 4). Furthermore, we found 

a gradual increase in the precision of the estimates and reduction in bias with a growing number 

of points included in the sampling, as a larger proportion of the models approached the 

estimate of the complete model including all 247 points sampled (Fig 4).  

Additionally, the species accumulation curves showed that sampling preferentially in one 

habitat type can result in different estimates of species richness, depending on the chosen 

environment (Fig 5). If only semi-natural habitats were sampled, more species were collected 

per sample in comparison to the landscape-grid method. On the other hand, when samples 

were collected only in oilseed rape fields, the curve grew less steeply.  
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Fig 3. Relationships between bee species richness (log transformed) and proportion of area occupied by 

oilseed rape within a buffer area ranging from 750 to 1000m distance from the sampling point. Data 

points constituting the full dataset are generally represented by black circles. Yellow and green filled 

circles represent samples from oilseed rape fields and semi-natural habitats, respectively. Lines represent 

the predicted estimates from the generalized least squares models. 

DISCUSSION 

Our study shows that number of samples per area and sampling habitat affect the 

estimation of the landscape–wide bee species richness. First, we found that limiting sampling to 

only one point per landscape can be problematic, given that individual points are subject to 

local stochasticity. Estimates depended on the sampling points chosen, as a consequence of the 

great variation found among possible sampling points in the landscape. Moreover, all of the 

considered radii had equal chances of explaining the data (Fig 3), thus reinforcing the great 

variability of possible outcomes when only one point per landscape is sampled. This 

unaccounted randomness could reflect the cause of the lack of consensus in some issues in 

ecology. For example, several studies have focused on the effect of proportion of oilseed rape 

fields in the landscape on pollen beetles Brassicogethes aeneus (Fabricius, 1775), a pest of oilseed 

rape, reaching very different conclusions. Rusch et al. (2011) did not find an effect, while 

Valantin-Morison, Meynard and Dore (2007) observed a positive correlation and Zaller et al. 

(2008) found a negative correlation between proportion of oilseed rape and pollen beetle 

abundance. 
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Fig 4. Relationships between bee species richness (log transformed) and proportion of area occupied by 

oilseed rape within a buffer area ranging from 750 to 1000m distance from the sampling point. Yellow, 

green and blue lines show the predictions made by generalized least squares models for all the data 

points collected in oilseed rape fields, semi-natural habitats and following a grid throughout the 

landscape, respectively, as seen on Fig 3. Each grey line represents the outcome of a generalized least 

squares model performed in each of 50 datasets created according to the following rules:  1 point per 

area sampled in semi-natural habitats (top left); 1 point per area sampled in oilseed rape fields (top 

centre); 5 random points per landscape (top right); 10 random points per landscape (bottom left); 15 

random points per landscape (bottom centre) and 20 random points per landscape (bottom right). 
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Fig 5. Smoothed average bee species accumulation curve produced by 500 random reorderings. Buffer 

around lines represent confidence intervals. Yellow, green and red lines represent data collected in 

oilseed rape fields, semi-natural habitats and using systematic sampling, respectively. 

 

Our results show that limiting the sampling to one habitat type can lead to biased 

estimates which cannot be extrapolated to the whole landscape. This was observed even when 

the number of samples in that habitat was increased. This can happen, as was the case with the 

semi-natural habitat samples, because ecological studies often do not encompass the full range 

of possible environmental conditions. These incomplete gradients cause misestimations to 

occur, generating unpredictable effects on the species’ response curves, independent of the data 

distribution (Mohler 1983). Additionally, using data collected in one habitat to predict species 

richness at the landscape scale might yield spurious projections or unreliable species distribution 

models. This would result from the inaccurate estimated curves, given that they are incomplete 

descriptions of the responses of species to environmental predictors (Thuiller et al. 2004). 

Edwards et al. (2006) compared how predictions based on a probabilistic vs. a non-probabilistic 

sampling design reflect the real pattern of lichen species distribution, and found that a 

systematic grid sampling produces more realistic results than a purposive, non-random sampling 

strategy.  

Moreover, an incomplete sampling, that does not capture the whole community, can 

also lead to incorrect decisions about conservation. For example, Kodric-Brown and Brown 
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(1993) repeated a study by Glover (1989) on fish species in Australian desert springs, correcting 

known biases due to incomplete sampling in the first study. The subsequent study showed that 

the conservation goals established by the paper by Glover (1989) were incorrect as the species 

initially identified as the most endangered was actually common and, therefore, protection 

efforts should focus on two other species that proved to be the least frequent. 

Another important result of our study is that the species accumulation curve was 

overestimated when sampling was restricted to semi-natural habitats and underestimated when 

focused only on oilseed rape fields. Comparable results have been found in vegetation studies 

(Diekmann, Kühne and Isermann 2007; Michalcova et al. 2011), when preferential sampling 

resulted in higher diversity and more rare species than random sampling. This means that 

estimates of species richness that extrapolate from non-random samples via accumulation 

curves will also give unreliable predictions of landscape-wide diversity.  

Sample size also proved to be an influential aspect, with estimate precision improving 

when the number of samples increased. The importance of increasing sample size has already 

been pointed out by Hirzel and Guisan (2002), while Albert et al. (2010) argued that sampling 

design and not sample size is the most relevant factor influencing parameter estimation. 

Additionally, it has been shown that both configuration and number of sampling points affect 

beta-diversity estimates, which results in incorrect diversity partitioning estimates (Marsh and 

Ewers 2013). And even though the present study focuses on alpha diversity, we could also 

observe that both sample size and sampling design play a significant role, influencing precision 

and bias, respectively. Therefore, it is advisable to sample the study areas multiple times to 

reduce uncertainty around the estimates. Nonetheless, this procedure can generate spatial 

autocorrelation in the residuals. But these can be dealt with using a variety of statistical methods 

(see Dormann et al. 2007). 

Finally, we found that the spatial scale determining species richness also changes with 

sampling habitat. This indicates that the processes affecting diversity actually operate at 

different scales according to habitat type. For example, the radius best predicting species 

richness in oilseed rape fields was larger than in semi-natural habitats, what indicates that the 

landscape-scale dilution effects take place at larger scales as bees spillover to farther areas. This 

shows that studies that sample only one habitat are valuable to determine how diversity relates 

to environmental variables or how it increases with area within that habitat type. Nonetheless, it 

should remain clear that the results will possibly not reflect the response of the whole 

community if the organisms use resources at larger scales. 
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CONCLUSIONS 

We demonstrated that sampling design can affect the predictability of landscape-wide 

biodiversity estimates. Our results showed that number of samples per study area affected the 

precision of parameter estimation and the preferential selection of habitats for sampling 

generated biased estimates of parameter and species richness. Parameter estimates obtained by 

sampling in only one habitat type might be relevant when the researcher aims to understand 

biological responses within the boundaries of the habitat. However, they hardly represent the 

response of the whole community to the landscape context, since organisms are usually not 

limited to one habitat type. Caution should be stressed in terms of generalizing too widely from 

studies performed in a single habitat type. For studies attempting to understand how organisms 

respond to landscape components, we suggest that the range of the sampling area, variety of 

sampling habitats and the number of sampling units should be increased to obtain more realistic 

results.  
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ABSTRACT 

In patchy environments, such as agricultural landscapes, both spatial and temporal scales 

of habitat heterogeneity can affect population dynamics and trophic interactions. As a result of 

crop rotation, landscapes and local resource availability may change dramatically within and 

between years.  

We used a tritrophic interaction constituted by pollen beetles, their host plant oilseed rape 

(OSR), and their parasitoids, as a model system to investigate how the effect of landscape 

composition on insect abundance changes with time and whether system dynamics showed 

carry-over effects of previous years. We employ path analysis models that allow us to study 

whole networks of hypotheses rather than univariate cause-effect relationships.  

We exposed pan traps in a 5x5 grid design within 10 landscapes in June 2011 (after OSR 

flowering) and May 2012 (at peak OSR flowering). Additionally, we assessed parasitism rates of 

pollen beetle larvae in May 2011 and measured changes in landscape composition. 

The effect of OSR proportion on beetle abundance changed with time from negative 

(during flowering) to positive (after flowering). Parasitism had a negative effect on the number 

of newly emerged pollen beetles, but only in landscapes with a low proportion of OSR. 

Interestingly, our path analysis showed that landscape composition affected herbivore 

abundance one or two years later, mediated by changes in parasitism.  

Our results suggest that plant-herbivore-parasitoid interactions in dynamic agricultural 

landscapes can show interannual carry-over effects, as they are affected by landscape 

composition and top-down effects in previous years.  

 

 

 

 

 

 

 

 



Chapter 3 

49 
 

INTRODUCTION 

Agricultural landscapes are characterized by fast changes in composition as a result of 

crop rotations (Wissinger 1997; Thies et al 2005). From an insect herbivore perspective, the 

availability of suitable host plants may change drastically even within the course of a year 

(Wissinger 1997).  

Effects of landscape context on a given insect herbivore or whole insect communities 

have been often studied using landscape sectors around individual sampling locations based on 

sampling only one season (Steffan-Dewenter et al 2002; Chust et al 2003; Tscharntke et al 2005; 

Concépcion et al 2008; but see Thies and Tscharntke 2008). While these studies have yielded a 

wealth of insights, they have not evaluated the complex relationships through time and space, 

but rather focused on only of them. 

Both spatial and temporal scales are important to understand trophic interactions and 

population dynamics (Kareiva et al 1990; Fahrig 1992; Pickett and Cadenasso 1995; Roland and 

Taylor 1997; Thies et al 2005). Patterns of distribution and abundance of a species might be 

different when viewed broadly in time and space instead of at a fine scale over a short time 

period (Wiens et al 1985). Nonetheless, most studies have focused only on the effect of spatial 

scale and one habitat type. Therefore, in this study, we performed a comprehensive analysis 

which included a larger temporal scale, replicated in 1x1-km landscape grids. This allowed us to 

assess a possible carry-over effect, where past years’ landscape composition remains influential 

through long-lasting, interannual effects on insect abundance. Carry-over effects have been 

observed for soil microorganisms and precipitation (Kardol et al 2007; Reichmann et al 2013), 

as well as for landscape components that affected the abundance and species richness of solitary 

bees in the following year (Le Féon et al 2013). 

In Central Europe, cropped land is dominated by cereals such as wheat and barley; 

increasingly, other crops such as maize and oilseed rape are grown. Locally, root crops such as 

sugar beet are widespread (Eurostat 2013). In addition, most landscapes contain up to 40 

percent forest and 10 percent semi-natural habitats such as extensively managed grassland (Keil 

et al 2010). While amounts of forest and grassland remain relatively stable, cropped land is 

characterized by strong internal changes in crop identity over time (Rand et al 2006). Many 

groups of insects, such as pollinators, herbivores or parasitoids, may change in abundance in 

response to changes in crop composition. In particular, mass-flowering crops such as oilseed 

rape have been shown to strongly shape insect abundance (Westphal et al 2003; Holzschuh et al 

2011). 
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Oilseed rape (Brassica napus L.) is a highly subsidized crop and the increasing demand for 

the oil produced with its seeds has been followed by an increase in acreage (Alford 2003; BMBF 

2012) and a growth of pest populations (Hokkanen 2000). Many pests attack oilseed rape fields, 

but the pollen beetle (Meligethes aeneus F.) is the one that causes the most pronounced negative 

impacts on oilseed rape flowers (Zaller et al 2008a) and also requires the most control measures 

(Williams 2010). Due to the different feeding phases, the great capacity of dispersal (Fritzsche 

1957) and the possibility of parasitism, pollen beetle abundance can be affected by different 

landscape components, mainly at large scales (Thies et al 2003; Zaller et al 2008a; Rusch et al 

2013a).  

Nevertheless, it is still not clear how these components, especially the proportion of 

oilseed rape, influence beetle abundance. It has remained uncertain if the percent oilseed rape in 

a landscape is negatively (Zaller et al 2008a), positively (Valantin-Morison et al 2007) or 

neutrally (Thies et al 2003; Rusch et al 2013a) related to pollen beetle abundance. The 

discrepancies in the results may arise from unknown differences among the study regions 

(Rusch et al 2013a), but they could also represent the result of the temporal dynamics in the 

relationship between pollen beetles, their parasitoids and oilseed rape. 

Parasitism rate has been shown to be influenced by soil tillage, insecticide use and 

landscape composition (Nilsson 1985; Thies and Tscharntke 1999; Ulber et al 2010). While the 

positive effect of proportion of non-crop has been shown (Thies and Tscharntke 1999; Thies et 

al 2003; Rusch et al 2011), the role of oilseed rape fields in the surrounding areas is still unclear. 

Evidence published so far indicates that the proportion of this crop in the previous year could 

be an important determinant (Thies et al 2008; Rusch et al 2011). However, this possibility has 

never been directly tested, since the studies considered either the difference in percentage of 

oilseed rape between years (Thies et al 2008) or the proportion of previous year oilseed rape 

fields with conventional soil tillage (Rusch et al 2011). 

Even though previous studies have investigated how landscape features influence pollen 

beetle abundance and parasitism, to our knowledge, no study so far has examined the effects on 

the whole trophic interaction at once. While multiple regression approaches allow deep insights, 

they may fail in complex interacting systems (Grace et al 2014). Here, we employ generalized 

multilevel path analysis (Shipley 2000) to study changes in herbivore abundance over time and 

how it is affected by parasitism in changing landscapes. We used a grid-based sampling 

approach (following Scherber et al 2012) in 10 replicated landscapes and aimed to answer the 

following questions: 
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(1) Is parasitism rate more strongly affected by host plant abundance (proportion of 

oilseed rape) in the previous or in the current year? 

(2) Can we observe a change in the effect of different landscape components on 

herbivore abundance between the two study years? 

(3) Is beetle abundance driven by carry-over effects that span over one or two years? 

METHODS 

Study system 

We used pollen beetle (M. aeneus) as a model system because this is one of the numerically 

most abundant insect herbivores in Central Germany (Ryszkowski et al 2001). Moreover, 

previous studies have suggested the existence of an interannual effect on this tritrophic 

interaction (e.g. Thies et al 2008; Rusch et al 2011). The pollen beetle emerges in early spring, 

after overwintering in the soil of field margins or woodlands, and feeds on pollen of various 

species of plants before migrating into oilseed rape fields (Nilsson 1988; Williams 2010). They 

arrive in the fields during bud stage and will feed on pollen by chewing into the buds, where 

they also oviposit (Nilsson 1988; Cook et al 2004). The main damage caused by pollen beetles 

happens during the bud stage, since feeding and oviposition cause bud abscission and may 

reduce yield (Zaller et al 2008b; Williams 2010). The larvae feed on pollen and eventually drop 

to the soil to pupate. The development from egg to adult takes about one month (Cook et al 

2004; Williams 2010). The newly emerged pollen beetles feed on the pollen of different flowers 

when spring oilseed rape is not available, since the flowering of winter oilseed rape fields will 

have ended (Hokkanen 2000). Adults of the first generation die after egg laying and, in late 

summer, the new generation of beetles seek overwintering sites and will only reproduce in the 

following year (Nilsson 1988, Williams 2010). During the larval stage, pollen beetles are 

susceptible to attack by specialized parasitoids. The three most common species are Tersilochus 

heterocerus (Thomson), Phradis interstitialis (Thomson) and Phradis morionellus (Holmgren). The 

parasitoid egg is laid inside the pollen beetle larvae and hatch once these drop to the soil to 

pupate (Ulber et al 2010). In the soil, the parasitoid larva completes its feeding and pupates. 

Parasitoids overwinter as diapausing adults in the soil of the oilseed rape fields and emerge in 

the following spring (Jourdheuil 1960; Nilsson 2003).  

Sampling procedures 

Sampling was performed in 2011 and 2012 in 10 landscapes in the surroundings of 

Göttingen (51o32’N, 9o56’E) in Central Germany. The region mainly consists of cropped land 
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interspersed with semi-natural non-crop areas like meadows, calcareous grasslands and 

woodlands. Landscapes were approximately 1km x 1km wide (mean area± SD= 0.93± 0.23km2) 

and represented gradients of proportion of winter oilseed rape and non-crop area. Yellow pan 

traps (150mm x 60mm, 750 ml) were placed at vegetation height throughout each landscape 

following a 5 x 5 grid and exposed for three days in June 2011 (after oilseed rape flowering) and 

May 2012 (at peak oilseed rape flowering) in order to collect pollen beetles and their parasitoids. 

The sampling grid was laid out over the landscapes in such a way to always include forest 

margins and grasslands (non-crop areas) as well as crop fields, while excluding cities or villages. 

The number of points located in each habitat type and an example of a sampling landscape can 

be found in the supplementary material (Table A1 and Fig A1, respectively). Overall, 250 pan 

traps were exposed per sampling round. Given that some traps were damaged or vandalized, 

and that a pan trap could only be included in the model when it was present in both years, the 

final number of samples was 237 per round. The beetles collected when oilseed rape fields were 

no longer flowering represent mainly the new generation of beetles of 2011 (Williams et al 

2007). These beetles were still in their larval stage during oilseed rape blooming and, therefore, 

could have been attacked by parasitoids. The beetles collected in May 2012 were mature adults 

that had emerged in the previous year and had overwintered, possibly in nearby forest margins.  

In May 2011 (at peak oilseed rape flowering), the flowers of five oilseed rape plants were 

collected in each grid point located in an oilseed rape field (N= 58) to estimate parasitism rates. 

Wild flowers in non-crop areas were also inspected, but no pollen beetle larva was found 

outside oilseed rape flowers. All larvae located within the sampled flowers were counted and, in 

each sample, 20 individuals were dissected in order to determine the parasitism rate. In the grid 

points where no larvae were present, the parasitism rate was defined as zero.  

Landscape parameters 

We used satellite-based image classification to measure proportions of oilseed rape fields 

and non-crop areas, which include meadows, pastures and forests. Percentage of non-crop area 

has been shown to be a robust criterion for the quantification of habitat complexity as it tends 

to be closely correlated with other landscape metrics such as habitat diversity (Thies and 

Tscharntke 1999). These measurements were done for the years of 2010, 2011 and 2012 and for 

all study areas using the software ArcGis 10.1 (ESRI Redlands, CA, USA). While proportion of 

oilseed rape fields changed greatly through time, due to crop rotation, proportion of non-crop 

area did not change in the studied years. Only winter oilseed rape is considered, given that no 

spring oilseed rape fields were observed in the study areas or in the surroundings. 
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According to the literature, pollen beetle abundance and parasitism are affected by 

landscape components at larger scales, ranging from 750m (Thies et al 2003) to 1250m or larger 

(Zaller et al 2008). For this reason, we defined a radius of 1000m around each of the 237 

sampling points. This value is a mean between the distances reported in the literature and 

presented a low correlation between explanatory variables (i.e. proportion of oilseed rape and 

non-crop area, Supplementary Material Table A3). 

Data analyses 

 To evaluate how landscape features and parasitism rates affect pollen beetle abundance 

over time, we used generalized multilevel path analysis (Shipley 2009). In contrast to classical 

structural equation modelling, this approach can accommodate nonlinear relationships and non-

normal error distributions. Additionally, it is possible to take into account the hierarchical 

structure of the data, which would, otherwise, violate the assumption of independence among 

observations. 

The model we tested proposes that landscape components affect pollen beetle 

abundance differently through time both directly and indirectly, through parasitism (Fig 1).  

Fig 1. Conceptual structural equation model illustrating hypothesized effects of landscape components 

on pollen beetle abundance and parasitism through time. “OSR” indicates proportion of area occupied 

by oilseed rape fields and “Non-crop” the proportion of non-crop area in the surroundings, both within 

a 1000m buffer from each sampling point. “Local” represents the sampling habitat: non-crop areas 

(Non-crop), oilseed rape fields (OSR) or other crop fields (Other). Time steps are represented by “t”. 

t0= 2010; t1= 2011; t2= 2012; t1.1= May 2011; t1.2= June 2011. 
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We hypothesized that parasitism rates in 2011 were affected by proportion of oilseed rape 

fields in 2010 and 2011 as well as proportion of non-crop area within the 1000m buffer. 

Moreover, pollen beetle abundance in June 2011 would be determined by parasitism rates in the 

same year, along with proportion of oilseed rape and non-crop area. These landscape 

components could also influence pollen beetle abundance in 2012, together with the habitat 

where each yellow pan trap was located (local scale) and pollen beetle abundance from the 

previous year. Based on the path diagram constructed following these hypotheses, we generated 

all possible independence claims, i.e. directional separations (Supplementary Material Table A4). 

A directional separation (d-sep) comprises a pair of variables that, according to a given path 

model, are expected to be statistically independent upon conditioning on some other set of 

variables (Shipley 2000). In order to test the full causal hypothesis represented by the path 

diagram, we performed a simultaneous test of all four independence claims. That was done by 

combining the null probabilities of each independence test according to: 

C=-2 ∑ ln(𝑝𝑖)
𝑘
𝑖=1  

where k is the number of d-sep tests and pi are the p-values obtained in each d-sep test. 

Model fit was evaluated by comparing C to a χ2 distribution with 2k degrees of freedom. 

The model path coefficients were estimated by fitting generalized mixed models with 

random intercepts for each sampling landscape. Binomial and Poisson error distributions were 

used when the response variable was parasitism rate and pollen beetle abundance, respectively. 

In order to account for overdispersion in the beetle abundance data, we added an observation-

level random effect (Elston et al 2001). When used as an explanatory variable, pollen beetle 

abundance was log transformed to reduce the influence of outliers and to match the log link 

applied in generalized mixed models. Independence claims were tested in the same way. 

Interactions were kept in the model when they were both significant (p<0.05) and provided an 

improvement in Akaike’s Information Criterion (AIC) higher than 3 (Burnham and Anderson 

2002). Residuals were tested for spatial autocorrelation using Moran's Autocorrelation 

Coefficient (Bivand et al 2008). However, after the inclusion of a random intercept for each 

landscape, there was no remaining spatial pattern in the residuals. The conditional R-squared 

was calculated following Nakagawa and Schielzeth (2013). In order to increase clarity, we did 

not include the correlations between exogenous variables in the model shown in the results 

section. Those can be seen in the supplementary material (Fig A2) and do not influence the 

relationships presented in Fig 2. 
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To establish the determinants of parasitoid abundance in May 2012 (at peak flowering), 

we fit a linear mixed-effects model. The response variable was log transformed to reduce the 

influence of outliers and to achieve appropriate distribution of the residuals. The initial 

explanatory variables were percentage of oilseed rape in 2011 and 2012, percentage of non-crop 

area around the sampling point and the type of crop (habitat) present in the sampling location 

in 2011 and 2012. The inclusion of habitat type, while not necessary to answer the proposed 

question, was important to guarantee the accuracy of the results. The use of attractive yellow 

pan traps may cause values to be higher in semi-natural habitats and cereal fields during oilseed 

rape flowering. Therefore, not accounting for the difference between habitat types could have 

masked the effect of landscape components. The model was simplified to achieve the smallest 

possible Akaike’s Information Criteria (AIC) using forward and backward stepwise selection 

procedures. According to this method, all parameters remaining after model simplification had 

relevant explanatory power (Crawley 2013). 

All statistical analyses were conducted with R 3.0.2 (R Core Team 2013). To fit the 

parasitoid abundance model we used the package “nlme” (Pinheiro et al 2013). The hierarchical 

models were fit using the package “lme4” 1.0-6 (Bates et al 2014). The package “spdep” 0.5-71 

(Bivand 2014) was used to calculate the Moran’s I. The package “effects” (Fox 2003) was used 

to create interaction graphs. 

RESULTS 

Data summary 

Percentage of oilseed rape ranged from 0-26% in 2010, 0-45% in 2011 and 0-35% in 

2012. Proportion of non-crop area remained almost constant within each area throughout the 

years varying from 0-73%. Mean pollen beetle abundance per trap was 1180 (SD=±2565; min= 

2; max= 33006) in June 2011, and 62.81 (SD=±142; min= 0; max= 1418) in May 2012 (more 

details can be found in the Supplementary Material Table S3). Mean parasitism rate was 2% 

(SD=±10%; min= 0%; max= 70%). In May 2012, we collected 501 parasitoids, of which 95.8% 

were T. heterocerus, followed by P. interstitialis (2.8%), P. morionellus (0.8%) and Diospilus capito 

(0.6%). Since only 7 parasitoids were collected in June 2011, these data were not analyzed.  
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Path analyses 

Effects on parasitism- During oilseed rape flowering (2011) 

Even though some paths were not significant, the hypothesized model was well 

supported by the data (chi-square= 6.01; df= 8; p= 0.64). Proportion of oilseed rape in the 

previous year (p<0.001) and proportion of non-crop area (p<0.01) was positively related to 

parasitism rates, while oilseed rape in the same year had no significant effect (p= 0.54) (Fig 2).  

 

Fig 2. Multilevel path analysis showing effects of different landscapes components on pollen beetle 

abundance and parasitism through time. “OSR” indicates proportion of area occupied by oilseed rape 

fields within a 1000m circle. “Non-crop” represents the proportion of non-crop area in the same circle. 

“Habitat” specifies the local land use where sampling was performed: non-crop areas (Non-crop), 

oilseed rape fields (OSR) or other crop fields (Other). This model was well supported (chi-square= 

10.82, df= 12, p= 0.54). Path coefficients are unstandardized partial regression coefficients obtained 

from generalized mixed models. Path coefficients explaining parasitism rate are “logit” transformed. All 

other coefficients are “log” transformed.  Arrows ending in other arrows represent interactions. 

Numbers before semicolons are the model intercepts. Dotted arrows represent non-significant 

relationships (p< 0.05). † denotes marginal significance (p<0.1). Time steps are represented by “t”. t0= 

2010; t1= 2011; t2= 2012; t1.1= May 2011; t1.2= June 2011. 
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Effects on newly emerged pollen beetle- After oilseed rape flowering (2011) 

Even though parasitism rate and proportion of oilseed rape had marginally significant 

effects on newly emerged pollen beetle abundance in June 2011 (p= 0.06 and p= 0.09, 

respectively), only their interaction was significant (p< 0.01). This indicates that parasitism only 

influenced pollen beetle abundance negatively in landscapes with lower proportions of oilseed 

rape (Fig 3). Once these proportions were higher, pollen beetle abundance increased with 

parasitism rate. Proportion of non-crop area did not significantly affect the number of pollen 

beetles (p= 0.40).  

Fig 3. . Effect of the interaction between parasitism rate and proportion of oilseed rape in 2011 on the 

abundance of newly emerged pollen beetles. From left to right, graphs show low, intermediate and high 

percentage of oilseed rape within a 1000m radius. Gray-shaded areas represent 95% confidence intervals. 

 

Effects on overwintered pollen beetle- During oilseed rape flowering (2012) 

Abundance of newly emerged pollen beetles , in turn, positively affected the number of 

beetles found in the next year during oilseed rape blooming (p<0.001). Furthermore, this 

number was negatively affected by proportion of non-crop area (p<0.05) and a strong trend 

suggested a negative relationship between abundance of overwintered beetles in 2012 and 

oilseed rape proportion. The sampling habitat influenced the amount of beetles per trap (oilseed 

rape fields p<0.05; non-crop area p<0.05; other fields p<0.001). In the habitats named “other” 

(i.e. cereal and beet fields) significantly more beetles were collected in comparison to oilseed 

rape fields and non-crop area, which presented similar numbers. 
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Parasitoid abundance 

The only remaining parameters in the parasitoid model were the sampling habitats from 

2011 and 2012, which means that only these parameters had explanatory power. It was possible 

to observe that significantly more parasitoids were sampled in former oilseed rape fields, 

occupied in 2012 by other crops (Fig 4; p<0.05). Some parasitoids were also collected in oilseed 

rape fields, that had been other crops in the year before, but almost no parasitoids were 

sampled in non-crop areas. 

Fig 4. Parasitoid abundance at oilseed rape peak flowering according to the kind of habitat found in the 

sampling location in the current (right) and in the previous year (left). “OSR” and “Other” represent 

oilseed rape and other crops (i.e. cereal and beet fields), respectively. Asterisks (*) denote significant 

differences. 

DISCUSSION 

Our results show that the effect of oilseed rape fields and non-crop areas on pollen beetle 

abundance changed with time. Furthermore, the landscape composition had interannual 

consequences, constituting a carry-over effect. 

Landscape components and parasitism rate 

The strong positive effect of proportion of oilseed rape in the previous year (2010) on 

parasitism rates in the following year (2011) had not been directly observed so far. It has been 

shown that proportion of non-ploughed oilseed rape fields from the previous year can be an 

important determinant of parasitism rate (Rusch et al 2013a) but, although all the fields in our 
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study site were ploughed, this parameter still had the greatest effect. This is probably due to the 

fact that parasitoids of pollen beetles overwinter in oilseed rape fields (Jourdheuil 1960). The 

positive relationship between non-crop area and parasitism rate concurs with the literature 

(Thies and Tscharntke 1999; Thies et al 2003; Rusch et al 2011). The lack of ploughing in these 

environments may enable parasitoid populations to build up over years (Nilsson 1985; Thies et 

al 2003). Likewise, these areas might provide alternative hosts or additional nectar resources 

(Frenzel and Brandl 1998; Wratten and Van Emden 1995). This supplementary food supply 

could facilitate the migration from hibernation sites to oilseed rape fields, given that, after 

hatching, the parasitoids are very limited in energy (Nilsson 2003; Rusch et al 2013b). 

Moreover, it is important to notice that parasitism rates were generally low, as was 

parasitoid abundance in 2011. This is possibly a consequence of the use of insecticides that year, 

which was intensified due to the high abundance of pollen beetles. It has been reported that 

insecticides can reduce parasitoid abundance by approximately 50% and, therefore greatly affect 

parasitism rates (Ulber et al 2010). 

Effects of parasitism rate and oilseed rape on newly emerged pollen beetles 

Even though proportion of oilseed rape in 2011 did not affect parasitism rate, it did 

influence its efficiency. Parasitism rates only had a negative effect on subsequent abundance of 

newly emerged pollen beetles (2011) when the current proportion of oilseed rape in the 

landscape was low. Once the prevalence of this crop increased, pollen beetle abundance was 

positively related to parasitism rates. Similar results were reported by Gladbach et al (2010), who 

found a positive relationship between pollen beetle larval abundance and parasitism rate and 

there are two reasons why it could be happening.  The first is that parasitoids follow olfactory 

and visual cues coming from oilseed rape fields and are specially attracted by plants infested 

with pollen beetle (Williams et al 2007; Jönsson and Anderson 2007) and the second is that the 

probability of a female encountering a host larva can increase with host density (Williams and 

Cook 2010). Our study indicates that proportions of oilseed rape play a more important role in 

increasing pollen beetle offspring than parasitism in reducing it. This is possibly because a 

higher abundance of host plants can reduce intraspecific competition among pollen beetle 

larvae (Hokkanen 2000), accounting for the higher number of newly emerged pollen beetles in 

areas with higher proportions of oilseed rape. 

Landscape components and overwintered pollen beetles 

Conversely, during blooming the relationship between the proportion of oilseed rape in 

the current year and overwintered pollen beetles (2012) was negative. Even though oilseed rape 
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fields attract pollen beetles (e.g. Williams et al 2007, Williams and Cook 2010) it seems that, 

during flowering, the local pest pool, formed by the beetles that overwintered within the 

landscape, is an important limiting factor of pollen beetle abundance. The strong dilution trend 

caused by oilseed rape area also indicates that in spite of the potential of large oilseed rape areas 

to attract overwintered beetles from other landscapes, the populations were not large enough to 

exploit fully the short-term increase in flower resources. The negative influence of non-crop 

habitats on abundance of overwintered beetles could also represent a weaker dilution effect, as 

they would also spillover to these areas. Pollen beetles respond not only to volatiles emitted by 

oilseed rape but also to the odour of several plant species, including rye (Secale cereale L.) (Ruther 

and Thiemann 1997), and are often found in wild flowers (Ahmed et al 2013; Honěk et al 2013). 

Additionally, almost the same number of overwintered beetles (2012) was collected in oilseed 

rape and in non-crop areas, and even more were found in other crops. Given the attractiveness 

of the yellow pan traps, these results do not represent local abundance of pollen beetles, but 

provide evidence that these herbivores will spillover from oilseed rape fields to surrounding 

habitats when a stimulus is provided. These results contrast with those of Gladbach et al (2010) 

who found spillover from oilseed rape onto wild cruciferous plants only for parasitoids, but not 

pollen beetles. Possibly, this difference arises from the fact that in their study, only larvae 

sampled after flowering were considered and not adults. Once the oilseed flowers have faded, 

the number of adults and larvae can be uncorrelated, since many of the adults are newly 

emerged and unable to reproduce and most of the larvae will have already dropped to the soil to 

pupate (Williams et al 2007; Williams 2010).  

Overall, our study indicates that percentage of oilseed rape in the landscape can be an 

important driver of pollen beetle abundance. This is in line with a series of other studies 

(Valantin-Morison 2007; Zaller et al 2008a), but in contrast to Rusch et al 2013a, in which 

proportion of oilseed rape fields was considered to be much less relevant than non-crop area. In 

their study, sampling took place while oilseed rape fields were in the bud stage, when pollen 

beetles are still emerging from overwintering sites (i.e. non-crop area) and can still be largely 

influenced by the proportion of these sites. In our study, sampling was performed only during 

and after flowering.  

Carry-over effects of landscape components 

Our results showed an interannual carry-over effect of landscape components. For 

example, percentage of oilseed rape in 2010 affected overwintered pollen beetle abundance in 

2012 by increasing parasitism rates in 2011 and, consequently, reducing the new generation of 
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that year. These new beetles then partly comprised the pollen beetle population in the following 

year.  

Given that agricultural landscapes are prevalent in Central Europe (Keil et al 2010), this 

kind of carry-over effect from landscape components could commonly influence insect 

populations that benefit from farming areas. Recent history of land use has been shown to 

affect solitary bee diversity and abundance (Le Féon et al 2013), as the inclusion of grasslands in 

crop rotation promoted a durable benefit to the bee community. Long lasting effects of 

landscape components can possibly also be observed in other pest populations, such as aphids, 

which are affected by processes acting at landscape scale (Thies et al 2005).  

The scale at which these effects can be observed will probably depend on the mobility of 

the organism and on landscape configuration. For example, in more compartmented regions, 

covered by large semi-natural habitats in one part and cropped land in the other, regional scale 

migrations of the mobile pollen beetles can occur (Rusch et al 2013a). This would increase the 

spatial scale of the interannual carry-over effects or possibly overthrow them. 

Recommendations for landscape managers 

We propose that breaking off oilseed rape cultivation in a large area for one year, as 

suggested by Ekbom (2010), would be a more efficient strategy to control pollen beetles than 

keeping oilseed rape area constant (Zaller et al. 2008b, Frank et al 2010). Avoiding dramatic 

fluctuations in oilseed rape area would probably enable the beetle population to build up 

through time, while the approach proposed by Ekbom (2010) could dramatically reduce the 

number of new generation beetles. Given that parasitoids would also be negatively affected, it is 

recommendable to create “parasitoid conservation” areas containing a less preferred host plant 

species, such as white mustard. With this setting, pollen beetles would be allowed to lay eggs 

and parasitoids could reproduce. Ideally, such areas would be placed near to fields expected to 

have overwintering parasitoids. 

CONCLUSIONS 

We found that the effect of oilseed rape on pollen beetle abundance changed with time. It 

was negative during flowering on overwintered beetles and positive after flowering on new 

generation beetles. Additionally, it was possible to observe a carry-over effect of oilseed rape, 

given that the proportion of this crop in 2010 indirectly affected the abundance of overwintered 

pollen beetles in 2012. This effect was mediated by changes in parasitism rates, which then 

affected the abundance of newly emerged pollen beetles. Carry-over effects of landscape 
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components could affect other insect populations in agricultural areas, but further studies are 

necessary to define how prevalent these effects are in other landscapes and organisms. Our 

study showed that parasitoid-host interactions and the host’s population dynamics can be much 

more complex in the annually changing cropped land landscapes than usually thought. 

Generalized multilevel path analysis can be an important tool to study such cascading effects, 

given that this approach allows the analyses of networks of causal processes, while bivariate 

analyses are limited to simpler models (Grace et al 2014). 
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SUPPLEMENTARY MATERIAL 

 

Table A1. Number of sampling points per habitat type in each study year. 
 

Habitat 2011 2012 

Semi-natural habitats 78 72 

Oilseed rape fields 58 35 

Other 109 130 

Total 245 237 

 

 

Table A2. Mean number of pollen beetles per habitat type per year. Standard deviations are shown inside 

brackets. 
 

Habitat After flowering (2011) During flowering (2012) 

Semi-natural habitats 1597.44 (4353.11) 17.70 (31.83) 

Oilseed rape fields 1643.29 (1537.64) 7.28 (7.68) 

Other 664.57 (730.49) 102.75 (181.88) 

 

 

Table A3. Pearson’s correlation coefficients (below diagonal), variances (diagonal, bold type) and 

covariances (above diagonal).  

 

Variable PB 2011 PB 2012 Parasitism 
OSR 

(2010) 

OSR 

(2011) 

OSR 

(2012) 
Non-crop 

PB 2011 2.223 0.441 0.033 -0.017 0.019 -0.027 0.054 

PB 2012 0.174* 2.880 0.021 -0.011 0.060 -0.015 -0.085 

Parasitism 0.227* 0.126 0.010 0.000 0.000 -0.001 0.002 

OSR (2010) -0.173* -0.099 0.042 0.004 -0.002 0.000 -0.0018 

OSR (2011) 0.143* 0.404* 0.017* -0.389 0.007 -0.001 -0.003 

OSR (2012) -0.259* -0.132* -0.133* 0.055 -0.080 0.004 -0.002 

Non-crop 0.260* -0.360* 0.125 -0.199* -0.240* -0.220* 0.019 

 OSR- proportion of oilseed rape within a 1000m radius around each sampling point in 2010, 2011 and 

2012. Non-crop- proportion of non-crop area in the same radius. PB- pollen beetle abundance (log 

transformed) in 2011 and 2012. Parasitism- parasitism rates in May 2011. 

Asterisks (*) indicate significant results (p<0.05). 
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Table A4. Directional separation test (d-sep) of conditional independence implied by our conceptual 

model (Fig.1).  
 

D-sep claim of independence Model formula p value 

(X2; X6)|{X5, X8, X7, X3, X1, X4} X6~ X2* X3+ X8+ X7+ X1+ X5+ X4 0.37 

(X3; X6)|{X5, X8, X7, X4} X6~ X3+ X7+ X8+ X5+ X4 0.59 

(X1; X6)|{X5, X8, X7, X4} X6~ X1+ X7+ X8+ X5+ X4 0.79 

(X1; X5)|{X2, X3, X4} X5~ X1+ X2* X3+ X4 0.28 

(X3; X8)|{ø} X8~X3 0.22 

(X1; X3)|{ø} X3~X1 0.42 

X1 = proportion of rape in a 1000m buffer in 2010, X2 = parasitism rate in May 2011, X3 = proportion 

of rape in a 1000m buffer in 2011, X4 = proportion of non-crop area in a 1000m buffer, X5 = 

abundance of pollen beetles in June 2011, X6= abundance of pollen beetles in May 2012, X7= sampling 

habitat, X8= proportion of rape in a 1000m buffer in 2012.  

‘Model formula’ refers to the associated mixed model regression for each d-sep claim using the glmer or 

the lme function in R; the grouping variable, fitted as random intercept, are the 10 sampling areas.  

The variables in bold are those whose partial regression coefficients should be zero (p> 0.05). 

 

 

Fig A1. Example of a sampling landscape (Lengden; 51o30’14”.00 N, 10o01’22’.42 O). White areas 

represent settlements. 
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Fig A2. Complement of the multilevel path analysis showing the relationship between exogenous 

variables. Relationships not shown were not significant and are included in the independence tests. 

Analyses were performed following Shipley (2003). “OSR” indicates proportion of area occupied by 

oilseed rape fields and “Non-crop” the proportion of non-crop area in the surroundings, both within a 

1000m buffer from each sampling point. “Local” represents the sampling habitat: non-crop areas (Non-

crop), oilseed rape fields (OSR) or other crop fields (Other). The indicators “t0”, “t1” and “t2” represent 

three different years, while “t1.1” and “t1.2” denote two different periods from the same year (“t1”). 

 

 

 

 

 

 

 

 

 

Shipley, B. (2003) Testing recursive path models with correlated errors using d-separation. Structural 

Equation Modeling, 10(2), 214-221. 
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R SCRIPT 

library(lme4) 

library(nlme) 

 

###### Independence tests 

 

fit1<- glmer(pb.2012~log(pb.2011+1)+ local.habitat.2012+ 

prop.OSR.2012+ prop.OSR.2010+ prop.OSR.2011* parasitratio+ 

prop.SNH+(1|area)+(1|Unit), family=poisson,data=semdata, 

na.action=na.omit) 

 

fit2<- glmer(pb.2012~log(pb.2011+1)+ prop.OSR.2012+ 

local.habitat.2012+ prop.OSR.2011+ prop.SNH+ (1|area)+ (1|Unit), 

family=poisson, data=semdata, na.action=na.omit) 

 

fit3<- glmer(pb.2012~log(pb.2011+1)+ prop.OSR.2012+ 

local.habitat.2012+ prop.SNH+ prop.OSR.2010+ (1|area)+ (1|Unit), 

family=poisson, data=semdata, na.action=na.omit) 

 

fit4<- glmer(pb.2011~ parasitratio* prop.OSR.2011 + prop.SNH+ 

prop.OSR.2010+ (1|area)+(1|Unit),family=poisson, data=semdata, 

na.action=na.omit) 

 

fit5<- lme(prop_rape_1000m~rape1000_prop_10, random=~1|area, 

data=semdata, na.action=na.omit) 

 

fit6<- lme(prop_rape_1000m_12~prop_rape_1000m, random=~1|area, 

data=semdata, na.action=na.omit) 

 

summary(fit1) 

summary(fit2) 

summary(fit3) 

summary(fit4) 

summary(fit5) 

summary(fit6) 

 

fisherC<- -2*(log(0.37)+log(0.59)+log(0.79)+log(0.28)+ log(0.42)+ 

log(0.22)) 

1-pchisq (fisherC,12) 
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###### Model fits 

 

parasitism<- glmer(cbind(parasit,not_parasit)~ prop.OSR.2010+ 

prop.SNH+ prop.OSR.2011+(1|area), data=semdata, family=binomial) 

pollen.beetle.2011<- lme(log(pb.2011+1)~ prop.SNH+ 

parasitratio*prop.OSR.2011, random=~1|area, data=semdata, 

na.action=na.omit) 

pollen.beetle.2012<- glmer(pb.2012~ log(pb.2011+1)+ 

local.habitat.2012+ prop.SNH+ prop.OSR.2012+(1|area)+(1|Unit), 

data=semdata, family=poisson, na.action=na.omit) 

 

###### Relationship between exogenous variables 

 

OSR2010.SNH<- lme(prop.OSR.2011~ prop.SNH, random=~1|area, 

data=semdata, na.action=na.omit)  

OSR2011.SNH<- lme(prop.OSR.2011~ prop.SNH, random=~1|area, 

data=semdata, na.action=na.omit)  

OSR2010.SNH<- lme(prop.OSR.2010~ prop.SNH, random=~1|area, 

data=semdata, na.action=na.omit)  

OSR2012.OSR2010<- lme(prop.OSR.2012~ prop.OSR.2010, random=~1|area, 

data=semdata, na.action=na.omit) 

 

###### Variables 

 

prop.OSR.2010= proportion of oilseed rape within a circle of 1000m 

around each sampling point in 2010 

prop.OSR.2011= proportion of oilseed rape within a circle of 1000m 

around each sampling point in 2011 

prop.OSR.2012= proportion of oilseed rape within a circle of 1000m 

around each sampling point in 2012 

prop.SNH= proportion of semi-natural habitats within a circle of 

1000m around each sampling point 

parasitratio= proportion of parasitized larvae 

parasit= number of parasitized larvae 

not_parasit= number of not parasitized larvae 

local.habitat.2012= sampling habitat in 2012 (semi-natural habitats, 

oilseed rape fields or other crop fields) 

pb.2011= number of pollen beetles in each trap in 2011 

pb.2012= number of pollen beetles in each trap in 2012 

area= each of the 10 sampling landscapes 
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ABSTRACT 

Community similarity and small-scale species sorting in agricultural landscapes, 

composed of a mosaic of cropland and grassland patches can be expected to change with 

habitat type and distance to habitats providing resources. Although landscape context has been 

shown to influence community structure, studies so far neglected potential spatial changes in 

community composition of functional groups. In this study, we assessed how spatial turnover 

of pollinator communities is influenced by landscape context in agricultural areas. 

We compared solitary bees and hoverflies, both of which are important pollinator 

groups, yet often show contrasting responses to landscape context. We sampled whole 

landscapes and assessed how the relationship between community dissimilarity and spatial 

distance is affected by the proportion of mass flowering crops (oilseed rape, OSR), providing 

large amounts of floral resources during blooming, and semi-natural habitats (SNH), supplying 

resources more continuously over the season. While the proportion of OSR did not explain 

spatial community turnover for either taxon, SNH had a homogenizing effect on bee 

communities during OSR flowering and on hoverfly communities after flowering. The 

transience of the effect indicates that this pattern was caused by exchange of individuals 

between habitats. Larger proportions of SNH could facilitate the movement between foraging 

and oviposition habitats, thus contributing to increase similarity among local assemblages. 

Community homogenization and reduction of species turnover are often described as 

detrimental. However, increased spillover of pollinators between habitats can expand the access 

to resources that are continuously available over the season and may ensure more predictable 

pollination service. 
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INTRODUCTION 

Agricultural landscapes comprise 40% of the global land’s surface (Martin et al. 2012; 

Foley et al. 2005), which makes the maintenance of biological diversity in such landscapes 

crucial for sustaining biodiversity worldwide (Tscharntke et al. 2005; Fahrig et al. 2011). There is 

a rich literature investigating how agricultural intensification may affect biodiversity, and many 

of these studies consider the effect of landscape context on species richness. However, this 

measure of diversity does not consider community composition, which can change substantially, 

often resulting in a decline of more sensible species (Laurance et al. 2000; Carré et al. 2009; 

Tscharntke et al. 2012). Additionally, the few studies that assess the relationship between 

agricultural intensification and community structure at landscape scale ignore spatial distance 

between communities or regard it as an inconvenient variable that should be removed from the 

analyses (Liebhold and Gurevitch 2002; Soininen et al. 2007). Spatial dispersal processes have 

been shown to be an important factor structuring communities and should be explicitly 

included in the analyses (Cottenie 2005). This is especially relevant in agricultural landscapes, 

which are unstable environments characterized by heterogeneous habitat patches and fast 

changes in composition due to harvest and crop rotation (Wissinger 1997; Thies et al. 2005; 

Thies et al. 2008). Therefore, communities in such landscapes are formed by assemblages that 

occupy highly dynamic habitats, which cause species to be strongly affected by traits associated 

to spatial dynamics such as dispersal (Harrison and Taylor 1997; Leibold et al. 2004). This 

happens because organisms move between natural habitats, which offer spatiotemporal stability 

of resource availability, and temporary crop habitats containing larger concentrations of their 

required resources (Tscharntke et al. 2012). Cross-habitat spillover depends on the dispersal 

ability of the species and tends to be restricted for organisms with limited dispersal (Tscharntke 

and Brandl 2004; Tscharntke et al. 2012). 

We compared solitary bees and hoverflies, which show contrasting responses to 

landscape structure due to distinct resource requirements and dispersal abilities (i.e. foraging 

ranges) (Gathmann and Tscharntke 2002; Steffan-Dewenter et al. 2002; Holzschuh et al. 2008). 

Solitary bees have a small foraging range, given that they have to commute between nesting and 

feeding sites in order to collect pollen for their offspring, and hence require nesting and 

foraging habitats to be near (Gathmann and Tscharntke 2002; Steffan-Dewenter et al. 2002). 

Hoverflies, on the other hand, have no need to return to the oviposition sites and may disperse 

over longer distances (Jauker et al. 2009; Raymond et al. 2013). Additionally, hoverflies are often 

more generalist than bees with respect to floral resources (Biesmeijer et al. 2006), and most of 
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their larval prey is found in arable fields (Meyer et al. 2009), which causes this taxon to be less 

disturbed by agricultural intensification or to even benefit from it. Thus, even though bees are 

more efficient pollinators (Jauker et al. 2012), hoverflies may play a significant role in sustaining 

pollination services in agricultural areas unsuitable for specialized or less mobile bee species 

(Jauker et al. 2009; Hänke et al. 2014). 

Increasing pollinator diversity throughout the landscape is important to increase 

temporal and spatial stability of pollination (McCann 2000; Garibaldi et al. 2011). Pollinator 

populations are known to be highly variable across space and time (Williams et al. 2001), and a 

diverse set of species can guarantee pollination for crops and wild plants (Kremen et al. 2002). 

Higher pollinator species richness can also increases fruit set, meet the pollination requirements 

of a greater number of crops and provide insurance in the event of shortages of any individual 

species (Kremen et al. 2002; Garibaldi et al. 2013). 

In this study, we use a grid-based sampling approach to sample pollinating insects in 

whole landscapes and assess how landscape context affects landscape-wide spatial community 

turnover. Sampling pollinators in different habitat types nested in the same species pool allows 

us to investigate the drivers of community dissimilarity between local assemblages. In particular, 

we investigate two habitat types that potentially shape pollinator abundance and diversity: Semi-

natural habitats and mass flowering crops. Semi-natural habitats such as grasslands managed 

with low intensity provide continuous food and nesting resources over the season (Steffan-

Dewenter et al. 2002). Further, we assess the potential effects of locally abundant mass-

flowering crops (oilseed rape) and study potential effects of temporary pollinator dilution in 

nearby areas (Holzschuh et al. 2011). 

We test the following hypotheses: 

(1) Spatial community turnover within landscapes is affected by landscape context, i.e. 

proportion of semi-natural habitats and/or of oilseed rape fields, due to altered species 

exchange between local communities (Fig. 1). 

(2) Hoverfly communities are generally more homogeneously distributed throughout the 

landscape and are, therefore, less affected by landscape context than solitary bees. 

(3) During the flowering period, spatial community turnover is driven by the proportion 

of oilseed rape fields. Semi-natural habitats and other crop fields have a more relevant role for 

bees and hoverflies after blooming. 
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Fig 1. Example of the hypothesized effect of proportion of semi-natural habitats on spatial turnover 

between local assemblages of bees. It shows how the exchange of individuals among habitat types could 

reflect on the relationships between distance and community dissimilarity index. One correlation 

coefficient was obtained per site in each round and year (n=40) and these values were used as response 

variables in the spatial community turnover models. (a) represents a landscape with low proportion of 

semi-natural habitats (meadows, pastures or forest margins). In this scenario, bees with low or 

intermediate dispersal abilities (central place foragers) are limited to semi-natural habitats or their 

surroundings and cannot explore resources in the farther end of the landscape, which are only accessible 

to bees with larger foraging ranges. This would generate a higher correlation coefficient for the 

community dissimilarity-distance relationship. (b) represents a landscape with high proportion of semi-

natural habitats. In this case, there are more resources in arable fields within foraging distance and bees 

with low or intermediate dispersal abilities can be present in a larger proportion of the landscape. This 

would generate a smaller correlation coefficient for the community dissimilarity-distance relationship. 
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METHODS 

Sampling procedures 

The study was conducted in the surroundings of Göttingen (51° 32′ N, 9° 56′ E) in 

Central Germany. The region is dominated by intensive agriculture interspersed with semi-

natural non-crop areas like meadows, calcareous grasslands and woodlands (Steffan-Dewenter 

et al. 2002). The sampling landscapes were approximately 1km x 1km wide (mean area± SD= 

0.93± 0.23km2) and represented gradients of percent area occupied by oilseed rape fields and 

semi-natural habitats (for more details on the gradients see Supplementary Material Table A3).  

In each landscape, we sampled according to a 5x5 grid, following the approach suggested by 

Scherber et al. (2012). The grid was laid out over the landscapes in such a way to always include 

forest margins and grasslands (semi-natural habitats) as well as crop fields, while excluding cities 

or villages.  

At each of these 25 points per landscape, we sampled pollinators with yellow pan traps, 

filled with water and placed at vegetation height. Traps were exposed for three days in four 

periods: May 2011 and 2012 (during oilseed rape flowering) and June 2011 and 2012 (after 

oilseed rape flowering).  

Out of 1000 samples (10 landscapes × 25 traps × 4 sampling periods), 29 resulted from 

damaged traps and thus had to be omitted from the analyses. All wild bees and hoverflies were 

determined to species level by specialists. Sampling habitats included oilseed rape fields, semi-

natural habitats (grasslands or forest margins), and other crop fields (mainly cereal, corn and 

sugar beet fields). Satellite-based image classification was used to measure the proportion 

covered by oilseed rape fields, semi-natural habitats and other fields for each landscape and year 

separately. Satellite imagery was provided by RapidEye™ and image classification was performed 

using ENVI EX® and ESRI® ArcMap™10. 

Community similarity and spatial distance  

To quantify the dissimilarity-by-distance relationship for each landscape, we first 

calculated a matrix of pairwise community dissimilarities between sampling points for each 

landscape and sampling period separately. There is a great variety of community similarity 

measures, which vary in the degree of importance on presence/absence, relative abundance and 

the inclusion vs. exclusion of joint absences (Anderson et al. 2011). Here, we used Bray–Curtis 

dissimilarity which includes both species composition and relative abundance. This makes sense 

as not only the species richness, but also the relative abundance of pollinators can be affected 
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by landscape composition. Nonetheless, alternative dissimilarity measures strongly correlated 

with the Bray-Curtis index (Chao r=0.95 and Raup Crick r=0.92). Spatial distance was 

calculated for each pair of sampling points using Euclidean dissimilarities. To assess the within-

site spatial community turnover, we tested the relationship between the Bray-Curtis dissimilarity 

and Euclidean distance at the plot level. This was done using a Mantel test with Spearman’s 

rank correlation coefficient.  This allowed us to measure how the difference in species 

composition between two points is related to their distance to each other. This was done for 

each site in each sampling period. The more dissimilar species composition become with 

distance between sampling points, the more heterogeneous the sites are, since species may be 

concentrating in patches (Fig. 1). Therefore, the correlation coefficients obtained in the Mantel 

tests could be used as a measure of heterogeneity between local assemblages within landscapes.  

Statistical analyses 

Statistical analyses were done on two spatial scales: (1) on a large scale, to test the effect 

of landscape components on the correlation coefficients of the dissimilarity-distance 

relationship, we performed linear mixed-effects models with Gaussian error distribution. The 

response variable was the correlation coefficient of the dissimilarity-distance relationship and 

the explanatory variables were year (as a categorical variable), proportion of oilseed rape fields 

as well as proportion of semi-natural habitats in each landscape. We also included a random 

intercept for each sampling landscape. Since we expected the communities to react differently 

to the landscape variables during and after oilseed rape flowering (high availability versus no 

availability of mass flowering ressources), we performed two different models: one for samples 

collected in during oilseed rape flowering (May 2011 and 2012), and another for samples 

collected after oilseed rape flowering (in June 2011 and 2012). Model selection was done using 

backward stepwise selection in order to achieve the lowest possible Akaike’s Information 

Criterion (AIC) (Crawley 2013), corrected for small sample sizes (i.e. employing AICc rather 

than AIC, Burnham and Anderson 2002).  

(2) On a smaller scale, to compare local (i.e. per trap) species richness between habitats, 

we applied generalized linear mixed-effects models with Poisson error distribution, which is 

adequate for count data. The response variable was the number of species in each plot and the 

explanatory variables were year and the habitat type where sampling was performed (semi-

natural habitat, oilseed rape field or other crop fields). A random intercept for each sampling 

landscape was used and different models were performed for during and after oilseed rape 

flowering. Maximal models were simplified in a manual stepwise backward selection on the 
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basis of AIC values. Variables were kept in the model when they provided a decrease in ΔAIC 

of more than 3 (Burnham and Anderson 2002). 

All statistical analyses were conducted with R 3.0.2 (R Core Team 2013). Models were fit 

using the packages nlme (large spatial scale; Pinheiro et al. 2013) and lme4 (small spatial scale; 

Bates et al. 2014). Residual spatial autocorrelation was assessed for both small and large scale 

models using Moran's Autocorrelation Coefficient (Bivand et al. 2008) and the package spdep 

0.5-71 (Bivand 2014), but no remaining spatial pattern was found. Stepwise selection was 

performed using the stepAIC function from the MASS package (Venables and Ripley 2002), 

corrected for small sample sizes (i.e. employing AICc rather than AIC; Burnham and Anderson 

2002).  

RESULTS 

Data summary 

We collected a total of 3526 hoverfly individuals representing 67 species, as well as 93 

bee species with 5241 individuals. Species lists are available in the supplementary material 

(Appendix 1, Tables A1 and A2). In both years, most individuals were collected after oilseed 

rape flowering (79% of the bees and 96% of the hoverflies).  

 

 

Table 1. Results of the generalized linear mixed models relating species richness at plot level (local) and 

habitat type. Effect of year is shown when decreased model AIC by at least 3. Model coefficients and the 

respective standard error of the mean (between brackets) are given. Intercepts were removed from the 

models in order to obtain the mean value of species richness per habitat type. Values were exponentially 

back transformed. Habitat types are: semi-natural habitats (SNH), oilseed rape fields (OSR) and other 

crop fields (Other). 

Period Taxon SNH OSR Other Year 

During flowering 
Bees 1.75 (1.09) 0.86 (1.12) 1.34 (1.09) - 

Hoverflies 0.44 (1.24) 0.06 (1.61) 0.17 (1.28) -1.03 (0.15) 

      

After flowering 
Bees 2.29 (1.09) 1.73 (1.11) 2.53 (1.10) -0.16 (0.04) 

Hoverflies 2.69 (1.06) 3.56 (1.08) 3.97 (1.07) -2.04 (0.17) 
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Table 2. Total number of species sampled in each habitat type during and after flowering (mean 

between years). “Overall” denotes the number of species sampled in each habitat type when all four 

sampling periods were pooled. Habitat types are: semi-natural habitats (SNH), oilseed rape fields (OSR) 

and other crop fields (Other). 

Period Taxon SNH OSR Other 

During flowering 
Bees 35 16 30 

Hoverflies 12 2.5 9 
     

After flowering 
Bees 32 15 35 

Hoverflies 22 16 25 
     

Overall 
Bees 73 38 69 

Hoverflies 46 28 44 

 

Species richness (Local scale) 

While total hoverfly species richness at local scale was always higher on “other” fields 

such as cereals, corn and sugar beet (Table 1, Fig. 2), bee species richness was higher in semi-

natural habitats during oilseed rape flowering and in “other” crop fields afterwards (Table 1, 

Fig. 2). When both sampling periods were pooled, more species were found in semi-natural 

habitats than in crop fields, both for bees and hoverflies (Table 2). Generally, more insects were 

collected in the first year than in the second. This difference was less important for bees than 

hoverflies, but year was always present in the final models.  

 

 
 

Fig 2. Mean bee and hoverfly number of species observed in each plot during and after oilseed rape 

flowering in semi-natural habitats (SNH), oilseed rape fields (OSR) and other crop fields (Other). Values 

were obtained from a generalized linear mixed model with “sampling landscape” as a random intercept. 

Error bars represent 95% confidence intervals. 

 



Chapter 4 

82 
 

Heterogeneity between local assemblages (Landscape scale) 

As hoverflies were not sufficiently abundant during oilseed rape flowering, community 

similarity could not be calculated for most landscapes. Therefore, we only estimated the effect 

of landscape composition on the spatial community turnover for hoverflies after flowering. 

The mantel correlation coefficient decreased with increasing proportion of semi-natural 

habitat (Fig. 3, Table 3). This indicates that spatial distance between traps explained differences 

in community similarity well at low but not at high landscape level amounts of semi-natural 

habitat. That was the case for bees during oilseed rape flowering (Fig. 3) and for hoverflies after 

flowering (Fig. 3). Proportion of oilseed rape could not explain the observed patterns at any 

time and for either taxon (Table 3). Year was only an important for hoverflies after flowering 

(Table 3). 

Nonetheless, it was possible that the effect of semi-natural habitats would have arisen 

from a “sampling artifact”. This means that, in landscapes with a higher proportion of semi-

natural habitats, more samples would belong to this same habitat and this would decrease 

dissimilarity between local assemblages, since we would more often be comparing the same 

habitat type. To eliminate the possibility of this sampling artifact we performed the same 

analysis with a limited number of samples from semi-natural per landscape. Notwithstanding, 

this did not change the observed patterns (for more details see Supplementary Material, Section 

“Effect of number of samples in semi-natural habitats”, Figs. A1 and A2).  

 

Table 3. Results of the linear mixed models relating spatial community turnover to year (2011 or 2012), 

proportion of oilseed rape (OSR) and proportion of semi-natural habitats (SNH) within each sampling 

landscape. Intercepts, model coefficients and the respective standard error of the mean (between 

brackets) are given. Values not shown (-) were not present in the final model (after backwards stepwise 

selection). Results for hoverflies during flowering were not available (n.a.) due to their low abundance in 

this period. All values were transformed (104) to improve clarity. 

Period Taxon Intercept OSR SNH Year 

During flowering 
Bees 2.21 (0.64) - 5.2 (2.15) - 

Hoverflies n.a. n.a. n.a. n.a. 

      

After flowering 
Bees - - - - 

Hoverflies 2.51 (0.98) - -6.84 (3.10) 2.09 (0.62) 
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Fig 3. Effects of the proportion of semi-natural habitats within landscapes on correlation coefficients 

for solitary bees (left and center) and hoverflies (right) obtained in linear mixed-effects models. Spatial 

turnover denotes the Mantel correlation coefficient between a Bray-Curtis dissimilarity matrix for the 

species at plot level with a dissimilarity matrix based on Euclidean distances between sampling plots (i.e. 

traps). Higher correlation coefficients represent higher spatial community dissimilarities. Each point 

depicts one landscape in one year (2011 or 2012). Results are shown for the period during oilseed rape 

(OSR) flowering (left) and after oilseed rape flowering (center and right).  

 

DISCUSSION 

Our results show that the landscape wide proportion of semi-natural habitats can 

influence spatial community turnover between local assemblages in two key pollinator groups: 

solitary bees and hoverflies. Even though the proportion of oilseed rape fields did not 

homogenize community composition, its flowering stage (during vs after blooming) determined 

the effect of semi-natural habitats on community similarity.  

Heterogeneity between local assemblages 

Semi-natural habitats had a homogenizing effect on species composition of bees, as they 

decreased the spatial turnover between sampling points. However, this was only the case during 

oilseed rape flowering. This pattern can be explained by the strong attractiveness of oilseed rape 

to pollinators (Holzschuh et al. 2011). The great offer of pollen and nectar can be an important 

resource and bumblebees may disperse large distance to exploit it (Westphal et al. 2003). Solitary 

bees, on the other hand, are strongly constrained by their nesting requirements (Westrich 1996) 

and disperse only short distances for foraging (Gathmann and Tscharntke 2002; Steffan-

Dewenter et al. 2002). Nonetheless, solitary bees have been shown to spillover to flowering 
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oilseed rape fields once the distance was small enough (Holzschuh et al. 2011; Kovács-

Hostyánszki et al. 2013). This indicates that higher proportions of semi-natural habitat could 

increase the probability of oilseed rape fields within their foraging range, increasing resource 

availability for solitary bees. The lack of a relevant effect of semi-natural areas after flowering 

supports this idea, since bees would no longer have a stimulus to spillover to the crop area and 

community turnover would depend mainly on distance between sampling points and habitat 

type. 

The extremely low abundance of hoverflies during oilseed rape flowering did not allow 

us to investigate the effect of landscape context on the spatial community dissimilarity in this 

period. However, previous studies have shown that oilseed rape can also cause landscape-wide 

dilution of hoverfly populations (Hänke et al. 2014), so it is probable that such effect had also 

occurred here. The low number of hoverflies in May can be connected to their main emergence 

in late summer in comparison to bees, which are mostly already active in spring (vanVeen 2004, 

Hänke et al. 2014). 

In contrary to our expectations, semi-natural habitats strongly affected hoverfly spatial 

community turnover after oilseed rape flowering. Species richness was higher in crop fields, 

which is in line with the literature as hoverflies profit from abundant larval prey in arable fields 

(Meyer et al. 2009) and their richness can even increase with distance to semi-natural habitats 

(Jauker et al. 2009). In this sense, increasing proportion of arable area would be expected to 

show a stronger concentration effect. Nonetheless, even though most hoverfly communities are 

typically dominated by aphidophagous species (Frank 1999; Hänke et al. 2009; Meyer et al. 2009), 

semi-natural habitats may offer more stable resources and may be essential to other guilds, such 

as xylophagous, phytophagous or coprophagous species (Meyer et al. 2009). Additionally, adult 

hoverflies of all feeding guilds depend on nectar for high-energy flight and pollen for egg 

maturation (Haslett 1989). Therefore, large semi-natural areas may decrease spatial community 

turnover in two ways. First, they increase the habitat size and, consequently, the spatial 

distribution of hoverfly species that depend on these areas for feeding and reproduction. 

Second, they may also offer flower resources to generalists that spillover from arable fields. The 

proximity between foraging and oviposition sites could increase the spillover between habitats 

and decrease spatial turnover of local communities. In fact, although local diversity was lower in 

semi-natural areas, overall more species were sampled in these habitats than in crop fields. This 

suggests both a higher number of unique species and a considerable overlap with the other 

habitats.  
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The increased spillover of bees and syrphids between semi-natural habitats and arable 

fields can be unfavorable for native plant species when pollinators are diverted and, as a 

consequence, seed set is reduced (Holzschuh et al. 2011). But mass flowering crops within the 

foraging range can be advantageous to bees, especially when flowering takes place in early 

spring, when wild flowers are still rare in semi-natural habitats (Westphal et al. 2009; Herrmann 

et al. 2007). Moreover, the spillover of pollinators from arable fields to semi-natural areas, as 

could be the case for hoverflies, can increase the fitness of native plants, given that high 

richness of pollinator species increases fruit set (Garibaldi et al. 2013). Isolation from semi-

natural habitats has been shown to reduce both stability and mean levels of flower-visitor 

richness, visitation rates and fruit-set in crop areas (Garibaldi et al. 2011). Likewise, decreases in 

evenness and dependence on few species for pollination can be especially detrimental to 

stability in seed yield (Bommarco et al. 2012). Generally, movements of species between habitats 

in a landscape can be positive, enabling them to perform functions across space and time and 

possibly guaranteeing resilience (Sristava and Vellend 2005; Tscharntke et al. 2012). This 

capacity to recover functions after disturbance is especially important in agricultural areas, 

which are characterized by regular changes due to harvest and crop rotation (Wissinger 1997).   

Species richness 

The higher species richness of bees and hoverflies observed in arable fields other than 

oilseed rape may be counter intuitive, but concurs with other studies that found higher local 

diversity of butterflies (DeVries et al. 1997; DeVries and Walla 1999) and bees and wasps (Klein 

et al. 2002; Tylianakis et al. 2005) in more disturbed areas when compared to semi-natural 

habitats. In accordance to Tylianakis et al. (2005), this pattern did not always translate into an 

overall (i.e. all sampling rounds pooled) higher landscape-wide diversity in such habitat types. 

This could be a consequence of the diversity of crop types or of different management 

approaches among fields. These results reinforce the idea that managed land cannot be seen as a 

barren matrix, deprived of biodiversity. Extensively managed crop fields (Kovács-Hostyánszki 

et al. 2011) and field margins (Meek et al. 2002) may enable high species richness at local and 

landscape scale. 

CONCLUSIONS 

Several studies have shown that agricultural intensification can promote homogenization 

of local communities (e.g. Flohre et al. 2011; Dormann et al. 2007; Hendrickx et al. 2007; 

Ekroos et al. 2010). However, these studies usually take into account only species composition 
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per habitat type and do not consider differences in the distribution of species throughout the 

landscape, characterized by many habitat types. Our spatially explicit approach allowed us to 

demonstrate that semi-natural habitats can greatly contribute to enhance distance-induced 

similarity between communities, at least temporarily. It is well known that sites close to each 

other tend to be more similar (Fortin and Dale 2005). However, community dissimilarity 

between distant points can be reduced through increased dispersal of individuals (Stephens and 

Wiens 2004). Larger proportions of semi-natural habitats could foster movements throughout 

the landscape, thereby generating the observed community homogenization. Such exchanges of 

individuals between habitats can be important to stabilize pollination services over time, 

buffering against declines in any individual species, and, consequently, increase the predictability 

of ecosystem services such as crop yield. Moreover, increasing percentages of semi-natural 

habitats should promote community resilience after disturbances coming from agricultural 

management.  

ACKNOWLEDGMENTS 

We are indebted to the Landesamt für Geoinformation und Landentwicklung 

Niedersachsen for providing information on land-use and to the farmers for allowing us to 

perform this study on their fields. We are grateful to Dr. Petr Bogusch, Frank Creutzburg, 

Dieter Doczkal and Wolfgang Adaschkiewitz for species identification. We thank RapidEye for 

providing satellite imagery (RESA 464). Funding was provided by the Deutsche 

Forschungsgemeinschaft (DFG) within the frame of the Research Training Group 1644 

"Scaling Problems in Statistics". 

REFERENCES 

Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, 

N. J., Cornell, H. V., Comita, L. S., Kendi, F. D., Harrison, S. P., Kraft, N. J. B., Stegen, J. C., 

Swenson, N. G. (2011) Navigating the multiple meanings of β diversity: a roadmap for the 

practicing ecologist. Ecology letters, 14(1), 19-28. 

Biesmeijer, J. C., Roberts, S. P. M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., 

Schaffers, A. P., Potts, S. G., Kleukers, R., Thomas, C. D., Settele, J. and Kunin, W. E. (2006) 

Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. 

Science, 313(5785), 351-354. 

Bivand, R. S., Pebesma, E. J., and Gómez-Rubio, V. (2008) Applied spatial data analysis with R. 

New York: Springer.  



Chapter 4 

87 
 

Bivand, R. (2014) spdep: Spatial dependence: weighting schemes, statistics and models. R 

package version 0.5-71 

Bommarco, R., Marini, L., and Vaissière, B. E. (2012) Insect pollination enhances seed yield, 

quality, and market value in oilseed rape. Oecologia, 169(4), 1025-1032. 

Burnham, K. P., and Anderson, D. R. (2002) Model selection and multimodel inference: a practical 

information-theoretic approach. Springer.  

Carré, G., Roche, P., Chifflet, R., Morison, N., Bommarco, R., Harrison-Cripps, J., Krewenka, 

K., Potts, S. G., Roberts, S. P. M., Rodeta, G., Settele, J., Steffan-Dewenter, I., Szentgyörgy, H., 

Tscheulin, T., Westphal, C., Woyciechowski, M. and Vaissière, B. E. (2009) Landscape context 

and habitat type as drivers of bee diversity in European annual crops. Agriculture, ecosystems 

and environment, 133(1), 40-47. 

Cottenie, K. (2005) Integrating environmental and spatial processes in ecological community 

dynamics. Ecology letters, 8(11), 1175-1182. 

Crawley MJ (2013) The R book. John Wiley and Sons, West Sussex 

DeVries, P. J., Murray, D., and Lande, R. (1997) Species diversity in vertical, horizontal, and 

temporal dimensions of a fruit‐feeding butterfly community in an Ecuadorian rainforest. 

Biological journal of the Linnean Society, 62(3), 343-364. 

Devries, P. J., Walla, T. R., and Greeney, H. F. (1999) Species diversity in spatial and temporal 

dimensions of fruit‐feeding butterflies from two Ecuadorian rainforests. Biological Journal of 

the Linnean Society, 68(3), 333-353. 

Dormann, C. F., Schweiger, O., Augenstein, I., Bailey, D., Billeter, R., De Blust, G., DeFilippi, 

R., Frenzel, M., Hendrickx, F., Herzog, F., Klotz, S., Liira, J., Maelfait, J. P., Schmidt, T., 

Speelmans, M., Van Wingerden, W. K. R. E.  and Zobel, M. (2007) Effects of landscape 

structure and land‐use intensity on similarity of plant and animal communities. Global Ecology 

and Biogeography, 16(6), 774-787. 

Ekroos, J., Heliölä, J., and Kuussaari, M. (2010) Homogenization of lepidopteran communities 

in intensively cultivated agricultural landscapes. Journal of Applied Ecology, 47(2), 459-467. 

Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, 

G. M. and Martin, J. L. (2011) Functional landscape heterogeneity and animal biodiversity in 

agricultural landscapes. Ecology letters, 14(2), 101-112. 

Flohre, A., Fischer, C., Aavik, T., Bengtsson, J., Berendse, F., Bommarco, R., Ceryngier, P., 

Clement, L. W., Dennis, C., Eggers, S., Emmerson, M., Geiger, F., Guerrero, I., Hawro, V., 

http://www.esajournals.org/doi/abs/10.1890/10-0645.1#aff5


Chapter 4 

88 
 

Inchausti, P., Liira, J., Morales, M. B., Oñate, J. J., Pärt, T., Weisser W. W., Winqvist, C., Thies, 

C., and Tscharntke, T. (2011) Agricultural intensification and biodiversity partitioning in 

European landscapes comparing plants, carabids, and birds. Ecological Applications, 21(5), 

1772-1781. 

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., 

Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., 

Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K. 

(2005) Global consequences of land use. Science, 309(5734), 570-574. 

Fortin, M. J., and Dale, M. R. T. (Eds.). (2005) Spatial analysis: a guide for ecologists. 

Cambridge University Press. 

Frank, T. (1999) Density of adult hoverflies (Dipt., Syrphidae) in sown weed strips and adjacent 

fields. Journal of Applied Entomology, 123(6), 351-355. 

Garibaldi, L. A., Steffan‐Dewenter, I., Kremen, C., Morales, J. M., Bommarco, R., Cunningham, 

S. A., Carvalheiro, L. G., Chacoff, N. P., Dudenhöffer, J. H., Greenleaf, S. S., Holzschuh, A., 

Isaacs, R., Krewenka, K., Mandelik, Y., Mayfield, M. M., Morandin, L. A., Potts, S. G., Ricketts, 

T. H., Szentgyörgyi, H., Viana, B. F., Westphal, C., Winfree, R. and Klein, A. M. (2011) Stability 

of pollination services decreases with isolation from natural areas despite honey bee visits. 

Ecology Letters, 14(10), 1062-1072. 

Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, 

S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O.,  Bartomeus, I.,  Benjamin F., 

Boreux, V., Cariveau, D., Chacoff, N. P., Dudenhöffer, J. H., Freitas, B. M., Ghazoul, J., 

Greenleaf, S., Hipólito, J., Holzschuh, A., Howlett, B., Isaacs, R., Javorek, S. K., Kennedy, C. 

M., Krewenka, K. M., Krishnan, S., Mandelik, Y., Mayfield, M. M., Motzke, I., Munyuli, T., 

Nault, B. A., Otieno, M., Petersen, J., Pisanty, G., Potts, S. G., Rader, R., Ricketts, T. H., 

Rundlöf, M., Seymour, C. L., Schüepp, C., Szentgyörgyi, H., Taki, H., Tscharntke, T., Vergara, 

C. H., Viana, B. F., Wanger, T. C., Westphal, C., Williams, N. and Klein, A. M. (2013) Wild 

pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339(6127), 

1608-1611. 

Gathmann, A., and Tscharntke, T. (2002) Foraging ranges of solitary bees. Journal of Animal 

Ecology, 71(5), 757-764. 

Haenke, S., Scheid, B., Schaefer, M., Tscharntke, T., and Thies, C. (2009) Increasing syrphid fly 

diversity and density in sown flower strips within simple vs. complex landscapes. Journal of 

Applied Ecology, 46(5), 1106-1114. 



Chapter 4 

89 
 

Haenke, S., Kovács‐Hostyánszki, A., Fründ, J., Batáry, P., Jauker, B., Tscharntke, T., and 

Holzschuh, A. (2014) Landscape configuration of crops and hedgerows drives local syrphid fly 

abundance. Journal of Applied Ecology. 

Harrison, S., and Taylor, A. D. (1997) Empirical evidence for metapopulation dynamics. 

Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego, California, USA, 

27-42. 

Haslett, J. R. (1989) Adult feeding by holometabolous insects: pollen and nectar as 

complementary nutrient sources for Rhingia campestris (Diptera: Syrphidae). Oecologia, 81(3), 

361-363. 

Hendrickx, F., Maelfait, J. P., Van Wingerden, W., Schweiger, O., Speelmans, M., Aviron, S., 

Augenstein, I., Billeter, R., Bailey, D., Bukacek, R., Burel, F., Diekötter, T., Dirksen, J., Herzog, 

F., Liira, J., Roubalova, M., Vandomme, V. and Bugter, R. O. B. (2007) How landscape 

structure, land‐use intensity and habitat diversity affect components of total arthropod diversity 

in agricultural landscapes. Journal of Applied Ecology, 44(2), 340-351. 

Herrmann, F., Westphal, C., Moritz, R. F., and Steffan‐Dewenter, I. (2007) Genetic diversity 

and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) 

in agricultural landscapes. Molecular Ecology, 16(6), 1167-1178. 

Holzschuh, A., Steffan‐Dewenter, I., and Tscharntke, T. (2008) Agricultural landscapes with 

organic crops support higher pollinator diversity. Oikos, 117(3), 354-361. 

Holzschuh, A., Dormann, C. F., Tscharntke, T., and Steffan-Dewenter, I. (2011) Expansion of 

mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. 

Proceedings of the Royal Society B: Biological Sciences, 278(1723), 3444-3451. 

Jauker, F., Diekötter, T., Schwarzbach, F., and Wolters, V. (2009) Pollinator dispersal in an 

agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and 

distance from main habitat. Landscape Ecology, 24(4), 547-555. 

Jauker, F., Bondarenko, B., Becker, H. C., and Steffan‐Dewenter, I. (2012) Pollination efficiency 

of wild bees and hoverflies provided to oilseed rape. Agricultural and Forest Entomology, 14(1), 

81-87. 

Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., 

and Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. 

Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303-313. 



Chapter 4 

90 
 

Kremen, C., Williams, N. M., and Thorp, R. W. (2002) Crop pollination from native bees at risk 

from agricultural intensification. Proceedings of the National Academy of Sciences, 99(26), 

16812-16816. 

Kovács‐Hostyánszki, A., Batáry, P., and Báldi, A. (2011) Local and landscape effects on bee 

communities of Hungarian winter cereal fields. Agricultural and forest entomology, 13(1), 59-

66. 

Kovács-Hostyánszki, A., Haenke, S., Batáry, P., Jauker, B., Báldi, A., Tscharntke, T., and 

Holzschuh, A. (2013) Contrasting effects of mass-flowering crops on bee pollination of hedge 

plants at different spatial and temporal scales. Ecological Applications, 23(8), 1938-1946. 

Laurance, W. F., Delamonica, P., Laurance, S. G., Vasconcelos, H. L. and Lovejoy, T. E. (2000) 

Conservation—rainforest fragmentation kills big trees. Nature 404, 836. 

Le Féon, V., Burel, F., Chifflet, R., Henry, M., Ricroch, A., Vaissière, B. E., and Baudry, J. 

(2013) Solitary bee abundance and species richness in dynamic agricultural landscapes. 

Agriculture, Ecosystems and Environment, 166, 94-101. 

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, 

R. D., Shurin, J. B., Law, R., Tilman, D., Loreau M., and Gonzalez, A. (2004) The 

metacommunity concept: a framework for multi‐scale community ecology. Ecology letters, 7(7), 

601-613. 

Liebhold, A. M., and Gurevitch, J. (2002) Integrating the statistical analysis of spatial data in 

ecology. Ecography, 25(5), 553-557. 

Martin, L. J., Blossey, B., and Ellis, E. (2012) Mapping where ecologists work: biases in the 

global distribution of terrestrial ecological observations. Frontiers in Ecology and the 

Environment, 10(4), 195-201. 

McCann, K. S. (2000) The diversity–stability debate. Nature, 405(6783), 228-233. 

Meek, B., Loxton, D., Sparks, T., Pywell, R., Pickett, H., and Nowakowski, M. (2002) The effect 

of arable field margin composition on invertebrate biodiversity. Biological Conservation, 106(2), 

259-271. 

Meyer, B., Jauker, F., and Steffan-Dewenter, I. (2009) Contrasting resource-dependent 

responses of hoverfly richness and density to landscape structure. Basic and Applied Ecology, 

10(2), 178-186. 

Pinheiro J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team (2013) nlme: Linear and 

Nonlinear Mixed Effects Models. R package version 3.1-113 



Chapter 4 

91 
 

Raymond, L., Plantegenest, M., and Vialatte, A. (2013) Migration and dispersal may drive to 

high genetic variation and significant genetic mixing: the case of two agriculturally important, 

continental hoverflies (Episyrphus balteatus and Sphaerophoria scripta). Molecular ecology, 22(21), 

5329-5339. 

R Core Team (2013) R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna 

Scherber, C., Lavandero, B., Meyer, K. M., Perovic, D., Visser, U., Wiegand, K.,  Tscharntke, T. 

(2012) Scale effects in biodiversity and biological control: methods and statistical analysis – In: 

Biodiversity and insect pests: key issues for sustainable management (pp. 137-153). John Wiley & Sons. 

Soininen, J., McDonald, R., and Hillebrand, H. (2007) The distance decay of similarity in 

ecological communities. Ecography, 30(1), 3-12. 

Srivastava, D. S., and Vellend, M. (2005) Biodiversity-ecosystem function research: is it relevant 

to conservation?. Annual Review of Ecology, Evolution, and Systematics, 267-294. 

Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C., and Tscharntke, T. (2002) Scale-

dependent effects of landscape context on three pollinator guilds. Ecology, 83(5), 1421-1432. 

Stephens, P. R., and Wiens, J. J. (2004) Convergence, divergence, and homogenization in the 

ecological structure of emydid turtle communities: the effects of phylogeny and dispersal. The 

American Naturalist, 164(2), 244-254. 

Thies, C., Roschewitz, I., and Tscharntke, T. (2005) The landscape context of cereal aphid–

parasitoid interactions. Proceedings of the Royal Society B: Biological Sciences, 272(1559), 203-

210. 

Thies, C., Steffan-Dewenter, I., and Tscharntke, T. (2008) Interannual landscape changes 

influence plant–herbivore–parasitoid interactions. Agriculture, ecosystems and environment, 

125(1), 266-268. 

Tscharntke, T., and Brandl, R. (2004) Plant-insect interactions in fragmented landscapes. 

Annual Reviews in Entomology, 49(1), 405-430. 

Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. and Thies, C. (2005) Landscape 

perspectives on agricultural intensification and biodiversity—ecosystem service management. 

Ecology Letters 8, 857–874. 

Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batary, P., Bengtsson, 

J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., 

Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., Lindenmayer, D., Scherber, 



Chapter 4 

92 
 

C., Sodhi, N., Steffan-Dewenter, I., Thies, C., van der Putten, H. M. and Westphal, C. (2012) 

Landscape moderation of biodiversity patterns and processes‐eight hypotheses. Biological 

Reviews, 87(3), 661-685. 

Tylianakis, J. M., Klein, A. M., and Tscharntke, T. (2005) Spatiotemporal variation in the 

diversity of Hymenoptera across a tropical habitat gradient. Ecology, 86(12), 3296-3302. 

Van Veen, M. P. (2004) Hoverflies of Northwest Europe: identification keys to the Syrphidae. 

Koninkliijke Nederlandse Natuurhistorische Verenigiing. 

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S, 4th edn. Springer, 

New York. 

Westphal, C., Steffan‐Dewenter, I., and Tscharntke, T. (2003) Mass flowering crops enhance 

pollinator densities at a landscape scale. Ecology Letters, 6(11), 961-965. 

Westphal, C., Steffan‐Dewenter, I., and Tscharntke, T. (2009) Mass flowering oilseed rape 

improves early colony growth but not sexual reproduction of bumblebees. Journal of Applied 

Ecology, 46(1), 187-193. 

Westrich, P. (1996) Habitat requirements of central European bees and the problems of partial 

habitats. In Linnean Society Symposium Series (Vol. 18, pp. 1-16). Academic Press Limited. 

Williams, N. M., Minckley, R. L., and Silveira, F. A. (2001) Variation in native bee faunas and its 

implications for detecting community changes. Conservation Ecology, 5(1), 7. 

Wissinger, S. A. (1997) Cyclic colonization in predictably ephemeral habitats: a template for 

biological control in annual crop systems. Biological Control, 10(1), 4-15. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

93 
 

APPENDIX 

Table A1. Bee species list and abundance per habitat type. SNH= semi-natural habitats. OSR= oilseed 

rape fields. Other= other crop fields. 

Family Genus Species Author SNH OSR Other 

Andrenidae Andrena agilissima (Scopoli, 1770) 1 1 0 

Andrenidae Andrena angustior (Kirby, 1802) 7 0 7 

Andrenidae Andrena apicata Smith, 1847 0 0 1 

Andrenidae Andrena bicolor Fabricius, 1775 13 1 5 

Andrenidae Andrena carantonica Pérez, 1902 5 1 8 

Andrenidae Andrena chrysosceles (Kirby, 1802) 7 3 14 

Andrenidae Andrena cineraria (Linnaeus, 1758) 4 3 3 

Andrenidae Andrena combinata (Christ, 1791) 0 1 0 

Andrenidae Andrena congruens Schmiedeknecht, 1884 0 0 1 

Andrenidae Andrena dorsata (Kirby, 1802) 0 0 2 

Andrenidae Andrena falsifica Perkins, 1915 2 0 2 

Andrenidae Andrena flavipes Panzer, 1799 26 27 96 

Andrenidae Andrena florea Fabricius, 1793 1 0 0 

Andrenidae Andrena fucata Smith, 1847 7 1 8 

Andrenidae Andrena fulva (Müller, 1766) 8 5 9 

Andrenidae Andrena fulvago (Christ, 1791) 2 0 3 

Andrenidae Andrena gravida Imhoff, 1832 0 1 1 

Andrenidae Andrena haemorrhoa (Fabricius, 1781) 17 17 43 

Andrenidae Andrena helvola (Linnaeus, 1758) 16 1 18 

Andrenidae Andrena humilis Imhoff, 1832 2 0 1 

Andrenidae Andrena labialis (Kirby, 1802) 1 0 1 

Andrenidae Andrena labiata Fabricius, 1781 0 0 1 

Andrenidae Andrena lapponica Zetterstedt, 1838 2 0 1 

Andrenidae Andrena minutula (Kirby, 1802) 16 2 6 

Andrenidae Andrena minutuloides Perkins, 1914 3 0 2 

Andrenidae Andrena mitis Schmiedeknecht, 1883 1 0 1 

Andrenidae Andrena nigroaenea (Kirby, 1802) 136 87 347 

Andrenidae Andrena nitida (Müller, 1776) 14 3 17 

Andrenidae Andrena praecox (Scopoli, 1763) 1 0 1 

Andrenidae Andrena proxima (Kirby, 1802) 4 0 1 

Andrenidae Andrena semilaevis Pérez, 1903 0 0 1 

Andrenidae Andrena strohmella Stoeckhert, 1928 2 0 5 

Andrenidae Andrena subopaca Nylander, 1848 7 1 5 

Andrenidae Andrena susterai cf. Alfken, 1914 1 0 0 

Andrenidae Andrena synadelpha Perkins, 1914 0 0 1 

Andrenidae Andrena vaga Panzer, 1799 2 1 2 

Andrenidae Andrena varians (Kirby, 1802) 13 7 14 

Andrenidae Andrena ventralis Imhoff, 1832 1 0 0 

Andrenidae Andrena wilkella (Kirby, 1802) 2 0 0 

Apidae Eucera nigrescens Pérez 1879 0 0 1 
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Colletidae Hylaeus angustatus (Schenck, 1861) 2 0 1 

Colletidae Hylaeus annularis (Kirby, 1802) 8 0 6 

Colletidae Hylaeus communis Nylander, 1852 15 0 4 

Colletidae Hylaeus confusus Nylander, 1853 23 0 4 

Colletidae Hylaeus gredleri Förster, 1871 3 0 0 

Colletidae Hylaeus hyalinatus Smith, 1842 1 0 1 

Colletidae Hylaeus leptocephalus (Morawitz, 1870) 1 0 0 

Colletidae Hylaeus punctatus (Brullé, 1832) 1 0 0 

Colletidae Hylaeus styriacus Förster, 1871 2 0 0 

Halictidae Halictus confusus Smith, 1853 0 1 1 

Halictidae Halictus rubicundus (Christ, 1791) 0 1 9 

Halictidae Halictus scabiosae (Rossi, 1790) 0 1 0 

Halictidae Halictus simplex Blüthgen, 1923 1 1 0 

Halictidae Halictus tumulorum (Linnaeus, 1758) 73 7 55 

Halictidae Halictus quadricinctus (Fabricius, 1776) 0 0 1 

Halictidae Halictus sexcinctus (Fabricius, 1775) 2 0 1 

Halictidae Lasioglossum calceatum (Scopoli, 1763) 25 27 99 

Halictidae Lasioglossum fratellum (Pérez, 1903) 1 0 0 

Halictidae Lasioglossum fulvicorne (Kirby, 1802) 8 7 15 

Halictidae Lasioglossum laticeps (Schenck, 1868) 24 5 54 

Halictidae Lasioglossum lativentre (Schenck, 1853) 3 1 1 

Halictidae Lasioglossum leucopus (Kirby, 1802) 2 2 5 

Halictidae Lasioglossum leucozonium (Schrank, 1781) 12 3 5 

Halictidae Lasioglossum lineare (Schenck, 1868) 0 0 1 

Halictidae Lasioglossum malachurum (Kirby, 1802) 4 4 11 

Halictidae Lasioglossum minutulum (Schenck, 1853) 0 0 1 

Halictidae Lasioglossum morio (Fabricius, 1793) 159 16 242 

Halictidae Lasioglossum parvulum (Schenck, 1853) 0 0 5 

Halictidae Lasioglossum pauxillum (Schenck, 1853) 801 270 1797 

Halictidae Lasioglossum punctatissimum (Schenck, 1853) 0 1 1 

Halictidae Lasioglossum pygmaeum (Schenck, 1853) 1 0 1 

Halictidae Lasioglossum villosulum (Kirby, 1802) 21 1 11 

Halictidae Lasioglossum xanthopus (Kirby, 1802) 2 1 8 

Halictidae Lasioglossum albipes (Fabricius, 1781) 1 0 1 

Halictidae Lasioglossum rufitarse (Zetterstedt, 1838) 4 0 1 

Megachilidae Anthidium byssinum (Panzer, 1798) 1 0 0 

Megachilidae Megachile centuncularis (Linnaeus, 1758) 2 0 1 

Megachilidae Megachile lagopoda (Linnaeus, 1761) 1 0 0 

Megachilidae Megachile versicolor Smith, 1844 0 0 1 

Megachilidae Megachile willughbiella (Kirby, 1802) 0 0 1 

Megachilidae Osmia aurulenta (Panzer, 1799) 1 0 0 

Megachilidae Osmia bicolor (Schrank, 1781) 70 8 51 

Megachilidae Osmia brevicornis (Fabricius, 1798) 1 0 0 

Megachilidae Osmia caerulescens (Linnaeus, 1758) 1 0 0 

Megachilidae Osmia campanularum (Kirby, 1802) 3 0 0 

Megachilidae Osmia florisomnis (Linnaeus, 1758) 14 0 2 



Chapter 4 

95 
 

Megachilidae Osmia leaiana (Kirby, 1802) 5 1 0 

Megachilidae Osmia claviventris Thomson, 1872 2 0 0 

Megachilidae Osmia rapunculi (Lepeletier, 1841) 2 0 0 

Megachilidae Osmia bicornis (Linnaeus, 1758) 21 4 8 

Megachilidae Osmia spinulosa (Kirby, 1802) 4 0 0 

Megachilidae Osmia truncorum (Linnaeus, 1758) 0 0 1 

Melittidae Macropis fulvipes (Fabricius, 1804) 1 0 0 
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Table A2. Hoverfly (Syrphidae) species list and abundance per habitat type. SNH= semi-natural 

habitats. OSR= oilseed rape fields. Other= other crop fields. 

Genus Species Author SNH OSR Other 

Brachypalpoides lentus (Meigen,  1822) 1 0 0 

Brachypalpus valgus (Panzer,  1798) 1 0 0 

Cheilosia sp 
 

2 0 1 

Cheilosia albitarsis (Meigen,  1822) 7 0 0 

Cheilosia bergenstammi Becker,  1894 1 0 0 

Cheilosia flavipes (Panzer,  1798) 1 0 0 

Cheilosia pagana (Meigen,  1822) 1 0 0 

Cheilosia ranunculi  Doczkal,  2000 5 0 3 

Cheilosia vernalis (Fallen,  1817) 2 2 5 

Chrysotoxum bicinctum (Linnaeus ,1758) 5 1 2 

Chrysotoxum verralli Collin,  1940 2 1 1 

Dasysyrphus albostriatus (Fallen,  1817) 1 0 0 

Dasysyrphus lenensis Bagatshanova,  1980 1 0 0 

Dasysyrphus venustus (Meigen,  1822) 2 0 0 

Episyrphus balteatus (DeGeer,  1776) 249 215 1003 

Eristalis arbustorum (Linnaeus, 1758) 0 5 1 

Eristalis nemorum (Linnaeus,  1758) 1 5 4 

Eristalis tenax (Linnaeus, 1758) 1 14 7 

Eumerus amoenus Loew,  1848 0 0 1 

Eumerus ornatus Meigen,  1822 2 0 0 

Eumerus strigatus (Fallen,  1817) 0 0 1 

Eupeodes sp 
 

0 1 0 

Eupeodes corollae (Fabricius,  1794) 63 112 378 

Eupeodes lapponicus (Zetterstedt, 1838) 3 1 7 

Eupeodes latifasciatus (Macquart,  1829) 0 0 2 

Eupeodes luniger (Meigen,  1822) 1 0 4 

Ferdinandea cuprea (Scopoli,  1763) 1 0 0 

Helophilus hybridus Loew,  1846 0 0 1 

Helophilus pendulus (Linnaeus ,1758) 0 1 0 

Helophilus trivittatus (Fabricius,  1805) 0 0 2 

Heringia sp 
 

0 1 1 

Lejogaster metallina (Fabricius,  1781) 0 0 1 

Melanogaster nuda (Macquart,  1829) 0 1 2 

Melanostoma mellinum (Linnaeus ,1758) 23 14 68 

Melanostoma scalare (Fabricius,  1794) 0 0 3 

Meliscaeva auricollis (Meigen,  1822) 4 0 0 

Merodon equestris (Fabricius,  1794) 2 1 1 

Myathropa florea (Linnaeus ,1758) 3 1 0 

Neoascia meticulosa (Scopoli,  1763) 1 0 0 

Neoascia obliqua Coe,  1940 0 0 1 

Neoascia podagrica (Fabricius,  1775) 1 0 4 

Parasyrphus annulatus (Zetterstedt,  1838) 2 0 0 
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Pipiza quadrimaculata (Panzer,  1804) 3 0 0 

Pipizella sp 
 

4 0 3 

Pipizella viduata (Linnaeus ,1758) 54 1 17 

Pipizella virens (Fabricius,  1805) 1 0 0 

Platycheirus sp 
 

0 0 2 

Platycheirus albimanus (Fabricius,  1781) 15 0 10 

Platycheirus peltatus (Meigen,  1822) 0 1 1 

Rhingia campestris Meigen,  1822 3 4 0 

Scaeva dignota (Rondani,  1857) 19 22 36 

Scaeva pyrastri (Linnaeus ,1758) 3 20 29 

Scaeva selenitica (Meigen,  1822) 10 6 24 

Sphaerophoria sp 
 

24 10 86 

Sphaerophoria interrupta group (Fabricius,  1805) 0 0 2 

Sphaerophoria scripta (Linnaeus ,1758) 14 22 84 

Syritta pipiens (Linnaeus ,1758) 0 0 3 

Syrphus ribesii (Linnaeus ,1758) 14 17 17 

Syrphus torvus Osten-Sacken,  1875 82 91 117 

Syrphus vitripennis Meigen,  1822 116 57 161 

Temnostoma bombylans (Fabricius,  1805) 0 0 1 

Trichopsomyia joratensis Goeldlin,  1997 1 0 0 

Tropidia scita (Harris,  1780) 2 0 2 

Xanthogramma pedissequum (Harris, 1776) 0 0 3 

Xylota segnis (Linnaeus ,1758) 11 1 23 
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SUPPLEMENTARY MATERIAL  

Gradients of landscape composition 

Table A3. Proportion of area covered by semi-natural habitats (meadows, pastures and forest margins; 

SNH) and oilseed rape fields (OSR). Minimum, maximum and mean values are shown. Values of OSR 

are given for 2011 and 2012. Semi-natural areas remained constant in both study years. 

Habitat Minimum Maximum Mean 

SNH 0.13 0.43 0.27 

OSR (2011) 0 0.67 0.21 

OSR (2012) 0 0.34 0.16 

 

Effect of number of samples in semi-natural habitats 

We tested whether the effect of semi-natural habitats on homogeneity between 

communities was only a sampling effect, i.e. if it was only resulting of the same habitat type 

being sampled more often in areas with larger proportions of semi-natural habitats. This was 

done by limiting the number of samples from semi-natural habitats to five per site (Fig A1). In 

one year, two out of 10 sites only had four samples collected in semi-natural habitats, given that 

one pan trap per site was damaged. 

 

Fig A1. Examples of how the number of samples from semi-natural habitats per site was standardized. 

Each plot is represented by one sampling point. 
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The results described in the article did not change substantially (Fig A2). This means 

that the inclusion of proportion of semi-natural habitats as an explanatory variable decreased 

AICc values in both bees and hoverflies models. Proportion of oilseed rape fields was not 

related to the response variables. 

 

 

Fig A2. Effects of the proportion of semi-natural habitats within landscapes on correlation coefficients 

for solitary bees (during flowering) and hoverflies (after flowering), obtained in linear mixed-effects 

models. Spatial turnover denotes the Mantel correlation coefficient between a Bray-Curtis dissimilarity 

matrix for the species at plot level with a dissimilarity matrix based on Euclidean distances between 

sampling plots (i.e. traps). Each point represents one landscape in one year (2011 or 2012). 
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CONCLUSIONS 

The first study demonstrated that sampling design can affect the predictability of 

landscape-wide biodiversity estimates. Our results showed that number of samples per study 

area affected the precision of parameter estimation and that sampling only one habitat type 

generated biased estimates of parameter and species richness. These results show that, when 

organisms that use resources at landscape scale are sampled only at local scales, the obtained 

estimates will probably not represent the response of the whole community to the landscape 

context.   

The second study revealed the existence of interannual carry-over effects of landscape 

composition on pollen beetle and parasitoid abundance. The proportion of oilseed rape in 2010 

indirectly affected the abundance of pollen beetles in 2012. This effect was mediated by changes 

in parasitism rates, which then affected the abundance of newly emerged pollen beetles. 

Moreover, the effect of oilseed rape area on pollen beetle changed with time. It was negative 

during oilseed rape flowering, when the population was mainly composed by overwintered 

beetles, and positive after flowering, when newly emerged beetles were the majority. Our 

analyses showed that parasitoid-host interactions and the host’s population dynamics can be 

much more complex in the annually changing cropland landscapes than usually thought. 

The third study determined that larger proportion of semi-natural habitats promote the 

homogenization of insect communities. This effect was observed for bees during oilseed rape 

flowering and for hoverflies after flowering. The proportion of this mass flowering crop had no 

effect. This decrease in dissimilarity between local assemblages was a consequence of increased 

exchange of individuals between habitat types. Larger proportions of semi-natural habitats 

could foster movements throughout the landscape, thereby generating the observed community 

homogenization. Such exchanges of individuals between habitats can be important to stabilize 

pollination services over time and promote community resilience after disturbances coming 

from agricultural management.  

In summary, the different habitat types that compose heterogeneous agricultural mosaic 

landscapes can play different roles for trophic interactions and the structure of insect 

communities. Larger proportions of semi-natural habitats may increase stability of pollination 

and biological control by benefiting solitary bees, hoverflies and parasitoids. Mass flowering 

crops can influence insect communities and population densities, affecting ecosystem services 

both positively and negatively. This effect may be temporary, limited by the flowering period, or 
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may extend to the following years, particularly for specialized insects, such as the pollen beetle 

and its parasitoids. This diversity of effects from different landscape components can be best 

investigated when all habitat types are sampled. Results originating from only one habitat type 

cannot be extrapolated to the whole landscape.  

In conclusion, landscape planning should take into consideration the movement of 

organisms between habitat types and through time in order to guarantee conservation of 

ecosystem services and crop yield. This can only be done if ecological studies also widen their 

scope in space and time, to account for the dispersal of organisms and the different life cycle 

stages.  
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