
Myoelectric Signal Processing for Prosthesis
Control

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen

Doktorgrades

�Doctor rerum naturalium"

der Georg-August-Universität Göttingen

vorgelegt von

David Hofmann

aus Vipiteno, Italien

Göttingen 2013



Prof. Dr. Florentin Wörgötter (Referent)
Drittes Physikalisches Institut, Georg-August Universität Göttingen

Prof. Dr. Dario Farina (Referent)
Department of Neurorehabilitation Engineering, University Medical Center Göttingen

Prof. Dr. Marc Timme
Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization,
Göttingen

2



Acknowledgements

I thank J. Michael Herrmann for giving me the possibility to work at this great institute
and supervising my work. I am grateful for your support that reliably grew exponentially
as deadlines were approaching and for many interesting and stimulating intellectual
conversations beyond the actual work.

I would like to thank Theo Geisel for his e�ort to create such an excellent and creative
environment at his department for Nonlinear Dynamics. There is no doubt: This is a
very special place.

I am grateful to my thesis committee, Florentin Wörgötter, Dario Farina and Marc
Timme for guiding my work and sincere support whenever I needed it. Additionally, I
would like to thank Hansjörg Scherberger for joining my thesis examination board.

I thank also Fred Wolf who gave me the opportunity to work on another interesting
topic besides machine learning and hand prosthesis. You taught me very valuable prin-
ciples about the scienti�c method in those few but intense interactions. At this point I
would also like to thank Andreas Neef who proved to be an invaluable supervisor and
colleague at the same time.

I thank Yorck Beensen for his valuable support for just about every computer-related
issue I had. I fear no administrator I will encounter in my future path will ever reach
your level. At this point I would also like to thank Denny Fliegner who was always
forthcoming in answering questions and who keeps the computing equipment at such a
high standard clearly facilitating each ones work.

Many thanks to Ayse Bolik who accomplishes virtually every bureaucratic issue in less
than a minute - your competence and helpfulness are invaluable. Additional thanks to
you and also Regina Wunderlich and Viktoria Novak for your great support with every
organizational e�orts, especially the organization of the summer school for computational
neuroscience.

I very much want to thank Mirko for being a great o�ce mate and friend throughout
the years! Uncountably many times you kept my mood up, you stimulated interesting
political discussions and it is you who kept my Italian alive in Göttingen. I could not
have had more luck than this, sharing with you the entire - busy and intense - PhD time.

I also very much thank Wolfgang who started o� being my Jazz piano hero, later
became my climbing partner - many moments we shared at the wall, many moments
of mutual trust and dedication to overcome our own limits - and invaluable friend.
Göttingen was better with you!

Finally I thank my mother for her constant support throughout my life and her brave
heart that lets her only son go wherever his way takes him.

3



Contents

1 Introduction 6

1.1 Historical notes on electromyography . . . . . . . . . . . . . . . . . . . . 6
1.2 Myoelectric signals and their use in medicine . . . . . . . . . . . . . . . . 7

1.2.1 Myoelectric signals . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Measuring the myoelectric signals . . . . . . . . . . . . . . . . . . 9
1.2.3 Myoelectric signals for medical applications . . . . . . . . . . . . 12
1.2.4 Further applications of myoelectric signals . . . . . . . . . . . . . 13

1.3 Myoelectric prosthesis control . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Amplitude estimation of myoelectric signals 17

2.1 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.1 Methods for nonstationary signal analysis . . . . . . . . . . . . . 20

2.2 Statistical properties of myoelectric signals . . . . . . . . . . . . . . . . . 22
2.2.1 Probability density function . . . . . . . . . . . . . . . . . . . . . 22

2.2.1.1 Is the distribution closer to a Gaussian or a Laplacian? . 24
2.2.1.2 Mixture model . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Skewness of myoelectric signals . . . . . . . . . . . . . . . . . . . 25
2.3 Bayesian �ltering and state space models . . . . . . . . . . . . . . . . . . 29

2.3.1 Bayes �lter with Fokker-Planck evolution step . . . . . . . . . . . 31
2.3.1.1 Conjugate prior . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1.2 Parameter optimization . . . . . . . . . . . . . . . . . . 36

2.3.2 Results of Bayes-Fokker-Planck �ltering . . . . . . . . . . . . . . 37
2.3.2.1 Arti�cial data . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2.2 Comparison to state of the art amplitude estimation . . 39
2.3.2.3 Filtering at several contraction force levels . . . . . . . . 43

3 Machine learning approach 45

3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Scheme of pattern recognition approach . . . . . . . . . . . . . . . . . . . 46

3.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.4 Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4



Contents

3.2.5 General set-up for classi�cation in this thesis . . . . . . . . . . . . 49
3.2.6 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Spatial �ltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Data-independent �lter . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1.1 Results of spatial �ltering with data-independent �lters . 52
3.3.2 Data-dependent �lter . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2.1 Principal component analysis . . . . . . . . . . . . . . . 56
3.3.2.2 Independent component analysis . . . . . . . . . . . . . 57
3.3.2.3 Second order blind identi�cation . . . . . . . . . . . . . 58
3.3.2.4 Common spatial patterns . . . . . . . . . . . . . . . . . 58
3.3.2.5 Results of spatial �ltering with data-dependent �lters . . 59

3.4 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Wrapper methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1.1 Deterministic search heuristics . . . . . . . . . . . . . . 65
3.4.1.2 Stochastic search heuristics . . . . . . . . . . . . . . . . 66

3.4.2 Filter methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.3 Embedded methods . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.3.1 AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3.2 Random forests . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.4 Comparing performances of feature selection algorithms . . . . . . 67
3.4.4.1 Comparing search strategies . . . . . . . . . . . . . . . . 67
3.4.4.2 Comparing information-theoretic objective functions . . 69
3.4.4.3 Comparison of feature-selection methods . . . . . . . . . 69

3.4.5 Placement of electrodes . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Discussion 75

4.1 Probability density function . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Amplitude estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Pattern recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Spatial �ltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Information Theory 79

A.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5



1 Introduction

Understanding the control of the complex human biomechanical machine is a great
challenge; not only from an academic and intellectual perspective, but also because of
its potential to provide insights which may help clinicians to improve the quality of
treatment of motor disorders. Besides the application of myoelectric signals for the
control of prosthesis which we pursue in this work and will introduce in section �1.3,
there is a manifold of other medical and also non-medical applications.

Recently, advanced multifunction upper limb prostheses received a lot of public media
attention often hyped as �the mind-controlled arti�cial hands� [3]. Advanced signal pro-
cessing of the electromyographic signal and innovative surgical procedures, such as the
targeted muscle reinnervation, are the driving forces behind these achievements. How-
ever, the idea of myoelectric prostheses is more than half a century old and, nonetheless,
and despite the enthusiasm of some public presentations of arti�cial devices, there still
exist considerable challenges before these developments can be bene�cial to the general
amputee population [83].

and extend an advanced approach to amplitude estimation which is a central feature
used extensively in clinical and non-clinical applications of myoelectric signal processing.
Furthermore, we study several issues related to the pattern recognition approach to
myoelectric prostheses control. We investigate spatial �lters to alleviate two central
problems of the standard pattern classi�cation approach: the performance-delay trade-
o� and the non-stationarity of the signal during dynamic contractions. Furthermore, we
study algorithms for electrode selection in order to address two questions: how many
electrodes can be added, and still provide an improvement in control accuracy and where
should these channels be positioned to obtain good control accuracies.

1.1 Historical notes on electromyography

The pioneers of electromyography are known to be Luigi (Aloysius) Galvani �De Viribus
Electricitatis in Motu Musculari Commentarius� (1792), Alexander von Humboldt �Ver-
suche über die gereizte Muskel und Nervenfaser� (1797) and Guillaume Duchenne (de
Boulogne) �De l'électrolisation localisée� (1872). Today, Galvani is considered the oldest
source in electromyography but original documents indicate that contemporary scien-
tists were working on the problem of muscular function already in the late 17th century

6



1.2 Myoelectric signals and their use in medicine

(see [35] for a systematic review1).
In 1849, six decades after Galvani had documented the �nding that electric currents

could initiate muscle contractions, DuBois-Reymond discovered that it was also possible
to record electrical activity during a voluntary muscle contraction. DuBois-Reymond's
achievement was an example of scienti�c intransigence. He devised a surface electrode
which consisted of a wire attached to a paper immersed in a jar of saline solution. When
the �ngers were immersed in the saline solution and the arms and hand were contracted,
the de�ection on the galvanometer was minute (approximately 2° to 3°). Realizing that
the impedance of the skin reduces the current that drives the galvanometer, he induced
blisters in each forearm, removed the skin and placed the open wounds in contact with the
saline solution of the electrode. Upon contraction he now measured a sizable de�ection
(65°) on his galvanometer. He repeated the contraction three times for each arm and
always obtained a similar result. To remove doubt, he repeated the whole experiment
several weeks later, after the original wounds had healed and obtained again the same
results. [4]
Later, in 1890, Marey made the �rst recording of electrical muscle activity and in-

troduced the term electromyography [35]. In 1922, Gasser and Erlanger used a cathode
ray oscilloscope in place of a galvanometer, which was up to then the standard method
to show the electrical signals from muscles. This feat won them the Nobel Prize in
1944 [38].
However, because of the stochastic nature of the myoelectric signal only rough infor-

mation could be obtained from its observation at that early days mainly due to the insuf-
�ciency of the measurement apparatus. Only in the 1960s the quality and availability of
electronics apparatus eventually reached a level that enabled anatomists, kinesiologists,
and orthopedic surgeons to make increasing use of electromyography.[38]

1.2 Myoelectric signals and their use in medicine

1.2.1 Myoelectric signals

Myoelectric signals are a side e�ect of muscle activity. When active, muscle cell's mem-
brane potential changes similar to neurons when they generate an action potential.
Hence, the membrane potential change stems from a change in intra-cellular vs. extra-
cellular ion concentration mediated by ion currents driven by a gradient of the electro-
chemical potential [116, 57]. The ions pass the cell membrane through voltage-gated

1We wish to note that there are some inconsistencies among the relevant literature not resolved in [35]
concerning the contribution by Francesco Redi, who was perhaps the �rst scientist to document
electricity produced by muscles. His studies of electric ray-�sh made him deduce that the specialized
electric organ was essentially a modi�ed tissue of ordinary muscle [135, pp. 47-51]. However, di�erent
authors [4, 133] cite an apparent document of F. Redi from 1666 which according to [35] is not to be
found. The document referring to the aforementioned �nding is from 1671 [135] as cited in [157, 38]
and is freely available from Google Books.
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1 Introduction

ion channels resulting in a membrane voltage change. This in turn leads to additional
openings of channels and, hence, is a self-reinforcing process which is followed by self-
inhibition mediated by voltage dependent inactivation of these ion channels. On the
whole, this mechanism produces the well known all-or-none ��ring� event [86].
The depolarization that initiates this event is generated by the α-motor neuron that

controls the activity of that muscle cell and is initiated by the in�ux of calcium ions at
the so called motor end-plate which is a big chemical synapse of the muscle cell. The
α-motor neuron together with all muscle cells that it innervates form a small functional
group called a motor unit (MU). Each muscle �ber is normally innervated by only one
motor neuron in only one place, usually near its midpoint. The motor end-plate carries
enough vesicles �lled with the neurotransmitter acetylcholine to assure a reliable2 action
potential (AP) transmission from neuron to muscle �bers. Under normal conditions, a
motor neuron AP elicits an AP in each of its innervated muscle �bers. Hence, muscle
�bers belonging to the same unit �re synchronously and the resulting action potential
waveform is usually called a motor unit action potential (MUAP). Their �bers are
scattered over a substantial part of the muscle and the extracellular action potential
shape of a muscle cell is biphasic so the resulting shape of a muscular unit action potential
will necessarily dependent on the place of the measurement site.
Motor neurons have their cell body located in the spinal cord and all motor neurons

innervating the same muscle form a motor nucleus which is extending over one to four
spinal cord segments3. As motor units are of di�erent sizes (larger motor neurons inner-
vate also more muscle cells) and given that larger α-motor neurons need a higher total
current to make them �re, the order of recruitment of motor units is naturally set and
normally called the Henneman's size principle. [86]
The central nervous system controls the force generated by a muscle through the

number of recruited MUs and the modulation of the �ring rate of the motor neuron
pool [48]. A single AP of a motor neuron results in a small twitch of the muscle cells it
innervates. If the �ring rate increases, the twitches will start to merge into each other
and the average force produced by the motor unit will steadily increase. However, as
the �ring rate is progressively increased, the twitches will get closer to tetanus, at which
point no further force can be produced by the muscle. Hence, the relationship between
stimulation frequency and force for single motor units is nonlinear [19].
We have seen that muscle cells belonging to the same MU �re synchronously. Syn-

chronicity of several MUs in turn depends on the neural control of motor neuron pools
as well as feedback from muscle spindles [41]. Muscle spindles are sensory neurons in the
muscle that project on the α-motor neurons and change their �ring rate according to ex-
ternal load on the respective muscles. This way a homeostatic feedback circuit is formed
between spine and muscle to stabilize contractions. A certain degree of synchronicity of

2This is in contrast to chemical synapses in the cortex where synapses are known to be unreliable and,
hence, often seen as major noise source [86]

3The human spinal cord is made up of 31 spinal segments which are de�ned by bilateral pairs of nerve
roots (note that they are not equivalent to vertebral segments) [86].
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1.2 Myoelectric signals and their use in medicine

Property Numbers

Number of muscle �bers within the
brachioradialis

> 129200 [48]

Number of α-motor neurons innervating the
brachioradialis

315− 350 [48]

Number of muscle �bers innervated by an
α-motor neuron

25− 2000 [48]

Size of a muscle �ber (diameter/length) 50− 100 µm/2− 6 cm [86]
Muscle cell action potential propagation velocity 3− 5 m/s [86]
Firing rate of α-motor neurons 5− 30 Hz [41]

Table 1.1: Some numbers about muscles. These are meant to give an idea about the
order of quantities. Naturally, number of muscle �bers and α-motor neuron
are highly dependent on the volume of the muscle (densities of these quantities
could not be found in the literature research) therefore numbers for a speci�c
lower arm muscle, the Brachioradialis, is given.

MUs results in larger force levels while too synchronous �ring gives rise to tremor [41].
However, the synchronous behavior of the many MUs results in small (in the microvolts)
but still measurable electrical signal at the skin surface, i.e. the electromyogram (EMG)
and, as we may conclude, is correlated to some degree [51] with the muscle force.

1.2.2 Measuring the myoelectric signals

We can consider the skin as the boundary between two media, a conductive layered non-
homogeneous and anisotropic semispace (skin, subcutaneous tissue, and muscle) that
contains sources of electric �eld, and an insulating semispace (air). The sources of electric
�eld (ion currents) generate a two-dimensional potential distribution on the surface of
the skin. The potential is de�ned with respect to a reference point at a su�cient distance
from the sources so that it is not in�uenced by them. The ideal condition for measuring
this potential distribution is to have a point electrode connected to an in�nite input
impedance voltmeter measuring the voltage with respect to a remote reference where
the potential is zero.

The departure from the idealized scenario is manifold: The electrode is a two dimen-
sional metal object that forces the area of contact to be equipotential and therefore
modi�es the skin potential distribution in its neighborhood, the skin-electrode contact
has a frequency and current dependent impedance, and the voltmeter (ampli�er) has a
�nite input impedance. In addition, other sources of potential contribute to the read-
ing. Among these are DC and noise voltages generated at the skin electrode interface,
the capacitively coupled power line voltage, cable motion artifacts and other electrical
phenomena unrelated to EMG. [108]
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(a) Extension

(b) Flexion

M. extensor
digiti minimi
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digitorum
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ventral

(c) Hand open

M. flexor digitorum 
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M. flexor digitorum 
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ul
na
r

ra
di
al

ventral

(d) Hand close

Figure 1.1: Hand and wrist movement with its responsible muscles. Cross section at one
third (proximal) of the lower limb. (adapted from [137])
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1.2 Myoelectric signals and their use in medicine

(e) Pronation

(f) Supination

(g) Abduction

(h) Adduction

Figure 1.0: Hand and wrist movement with its responsible muscles. Cross section at one
third (proximal) of the lower limb. (adapted from [137])
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1 Introduction

In order to reduce or remove some noise sources, the following provisions can be taken.
Active electrodes, i.e. electrodes with a di�erential ampli�er, are recommended as they
almost completely eliminate cable motion artifacts [34]. The power-line noise is removed
by a band stop �lter with the respective frequency. Additionally the signal is band-
pass �ltered with cuto� frequencies at 5-20 Hz and 500 Hz to extract the frequency
range which is seen to be the relevant band for EMG [108]. Silver or silver-chloride
electrodes are suggested as when in contact with skin they are known to form an almost
resistive impedance in the EMG frequency range, while other metals present capacitive
components that introduce additional �ltering [108]. Conductive gel may be applied in
order to reduce the impedance between skin and electrode [34]. After attenuation of the
unwanted motion artifacts and power-line interference, the signal is treated as though it
were free of artifacts, although an additive background noise remains [108, 34].

1.2.3 Myoelectric signals for medical applications

The topic of this thesis is powered prostheses control using myoelectric signals. This
is one important medical application of myoelectric signals which will be discussed in
section �1.3 and with the focus on pattern recognition approaches in chapter 3 of this
thesis. A strongly related topic to prostheses control is orthoses control. While a pros-
thesis replaces a body part, an orthosis is an arti�cial device that aids or supports the
movement of a weak or injured body part. Orthosis control e�orts are often approached
with neuromuscular modeling. However, neuromuscular models can be high dimen-
sional and ill-posed [93]. Then measurements with motion capturing techniques do not
su�ce for obtaining reliable parameter values and it follows that electromyographic mea-
surements as estimates of muscle forces are essential for the purpose of neuromuscular
modeling [93]. These models then are employed for rehabilitation purposes, for instance
by the analysis of walking patterns [82] or by controlling robots (ex. powered orthoses)
whose purpose it is to assist treatments in physiotherapy [140].
Myoelectric signals are also used in the diagnosis of chronic pain (ex. muscle induced

headache or back pain) [39]. Besides this so called trigger points are investigated with
EMG. These trigger points, when active, are known to be responsible for muscle pain.
EMG measurements can help locate them (as spontaneous muscle activity is increased
in an active trigger point) and hence facilitate their treatment [37].
Furthermore, it is known from myoelectric studies that psychological disease, as for

example depression, have as a psychosomatic symptom an elevated muscle tension [37].
Besides trying to quantitatively classify psychosomatic disease through myoelectric mea-
surements, these �ndings also lead to the attempt to treat depression with the aid of
acoustic and other forms of biofeedback based on EMG (see [155] as cited in [37]). And
�nally, myoelectric signal (MES) are also employed for the study of Parkinson disease
as described in [151].
All these applications make use of the myoelectric signal amplitude estimates. We

devote chapter 2 to the study and comparison of techniques for amplitude estimation
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1.3 Myoelectric prosthesis control

MES hoping that the results might be bene�cial not only to prosthesis control but also
to other applications.

1.2.4 Further applications of myoelectric signals

Additional examples of application were one wishes reliable control based on myoelectric
signals are brie�y discussed in what follows. In 1990, Knapp and Lusted designed a
computer system to acquire myoelectric signals, perform feature extraction on these
signals, and then map the desired features to MIDI commands in real-time. They called
this system Biomuse and state that it can be used as a �biocontroller� to augment
normal musical instrument performance or as a direct human-computer interface for
musical composition and performance [94].

More recently, virtual environments get more attention and MES are among those
signals taken into consideration for controlling objects in the virtual environments [139].
By advances that allow the detection of single �nger movements from myoelectric signals
telemanipulation [134, 139] becomes a further possible application or even the control
of computer games [120]. Finally, scientists have shown that MES can be used for
augmenting speech recognition [20].

1.3 Myoelectric prosthesis control

Its history starts with Reinhold Reiter in Germany in 1945 who applied for a patent de-
scribing the concept to employ electromyographic signals for controlling prostheses [4].
This was still at the time where ampli�ers where based on cathode ray tubes and the
silver-silver chloride electrode was not available. Indeed it was only in the 1960s, when
a group of Russian engineers led by Kobrinsky revealed the design of a hand prosthesis
controlled by myoelectric signals detected from the forearm muscles [4]. This demon-
stration excited the engineering and rehabilitation community and hence became the
�rst landmark in the �eld.

However, despite the many e�orts taken since this landmark in myoelectric prosthesis
control, the current state of the art only scrapes through the criteria for clinical relevance.
Already in 1973 Childress states in a review article on clinical signi�cance of powered
limb prostheses [23]:

�In its fullest sense the clinical use of a limb prosthesis means that it can be pre-
scribed for a patient, purchased for or by the patient, and �tted to the patient;
and that training and maintenance may be provided in its use. A prosthesis
is not clinically signi�cant until all these requirements may be satis�ed. The
clinic is the �nal testing area for a prosthesis. If it is not usable by patients, it
is of little value no matter how technologically marvelous or ingenious it may
be.�

13



1 Introduction

Figure 1.1: Conventional control schemes (adapted from [108]). Left: two-state ampli-
tude controller. Right: three-state amplitude controller.

Even though conventional myoelectric prostheses meet these criteria, its functionality
is not high and many amputees thus prefer a cosmetic non-powered prosthesis over a
MES controlled powered prostheses as limb replacement. Indeed, whether or not an
arti�cial limb is an acceptable replacement for a human limb depends especially upon
the expectations of the a�ected individual, their motivation to incorporate this device
into their lifestyle, and the functionality of the device. Clearly, these issues are not
mutually exclusive: a potential user will be more motivated to learn how to use a highly
functional device controllable in an intuitive way.

In conventional myoelectric control schemes a function is activated by comparing the
EMG amplitude to a threshold and di�erent functions are controlled by the same tech-
nique applied to multiple recording sites. Two control schemes based on this threshold
approach are employed for prosthesis control (see �gure 1.1). Both of these approaches
are inherently limited. A two-state amplitude controller needs two independent signal
sites per degree of freedom. Depending on the level of amputation there might simply
not be many muscles and hence signal sites available. And even in the most convenient
case where all arm muscles are still intact it is clear that hand and wrist contractions
are controlled by muscles in a synergistic rather than independent way (confront �g-
ure 1.1). Probably an amputee could learn to use the muscles independently but this
would result in a lengthy physiotherapeutical training period. Another approach besides
using more independent signal sites is to switch sequentially through degrees of freedom
to be controlled by the same two signal sites by crossing the two thresholds S1 and S2
simultaneously (co-contraction regime in the left scheme in �gure 1.1). This way one
degree of freedom can be controlled at a time, however, it is clear that increasing the
number of states quickly makes the control of the prosthesis cumbersome.

To reduce the number of channels needed per degree of freedom from two to one the
three-state amplitude controller was proposed. For the threshold approach this is the
limit of controllable functions possible per channel [125]. However, even if the three-state
controller increases the functionality it has the drawback being non-intuitive because a
contraction level above the �rst threshold will provoke the controller to exert a certain
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1.3 Myoelectric prosthesis control

function and to achieve the antagonistic function the contraction force level must be
increased in order to cross the second threshold S2. This is a controlling style for which
the amputee needs to do additional training which will become tedious if multiple degrees
of freedom should be controlled simultaneously.

Figure 1.2: Otto Bock Michelangelo hand,
providing four degrees of free-
dom of the wrist and hand[83].

With the advent of machine learning
algorithms, most notably the perceptron
in 1958 [136], an alternative approach be-
came slowly appealing to the community
of myoelectric prosthesis control. Namely
the pattern recognition or machine learn-
ing approach which is intimately related
to the mathematics �eld known as statis-
tical learning theory [60]. This was and
still is seen a promising approach that is
not su�ering from the drawbacks of the
amplitude threshold controller and, hence,
might lead to increased functionality and
an intuitive control. However, yet there is
no myoelectric prosthesis based on a pat-
tern recognition system that passed clinical tests. This stands very much in contrast
to the apparent academic achievements. Interestingly, myoelectric controllers based on
a big variety of pattern classi�cation systems have appeared in the literature since the
1990s and have provided high performances (>90% classi�cation accuracy) in o�-line
and on-line tests. This dichotomy between academic research and clinical application
may require a general paradigm shift as proposed by Jiang, et al. [83]. The authors advo-
cate the necessity of closing the loop, i.e. developing feedback systems from the arti�cial
limb to its user for instance by cutaneous electrical stimulation, and by extending sensor
types beyond myoelectric electrodes, hence, develop multi-modal prostheses. These are
long term projects that can certainly bene�t from the further development of the pattern
recognition approach (whether it being classi�cation or regression approaches).

Let us turn back to the more immediate issues faced with pattern recognition ap-
proaches that inhibit the transfer of apparently high performance in academic research
to clinical application. The problems are easily understood in view of the hypothesis
the pattern recognition approach relies on, namely the myoelectric signals contain pat-
terns which are speci�c for muscle contractions responsible for the respective intentional
limb postures or motions. The major drawback is the dependency of classi�cation per-
formance on what is generally subsumed with the termed �signal non-stationarities�.
Indeed, pattern recognition systems after training, i.e. modeling the statistics of the sig-
nals, usually demands stationarity of the signal distribution. However, several in�uences
listed in the following cause changes of these statistics, i.e. signal patterns, and lead thus
to a signi�cant performance de�ciency. The most important issues are recognized to be:
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1 Introduction

� transient regime between static contractions [103, 71]

� electrode shifts [68]

� impedance changes due to changes in skin conditions (e.g. sweat)

� muscle fatigue

� upper arm position [58]

The latter is important for transradial prostheses because the position of the upper
arm a�ects the control signals at the lower arm, hence, patterns for the same hand
contraction may be di�erent, because for the control of an arm posture, weight must
be borne against gravity. Therefore, muscle activation necessarily varies for di�erent
positions even though the same contraction is performed.
A general and straight-forward way to deal with these signal non-stationarities is to

measure signals for the respective condition and include them into the training data of
the pattern recognition system in the hope that the learning algorithm adapts to these
deviations from the patterns in the canonical case [68, 103, 71]. While with canonical
case we refer to the EMG during an isotonic contraction which is used by most studies.
Indeed this seems to be the major cause for the dichotomy between high performances
in terms of classi�cation accuracy and the fact that yet there is no prosthesis based on
pattern recognition systems in clinical use.

1.4 Thesis overview

Myoelectric signals are stochastic in nature and, hence, statistical methods appear as
the appropriate tools for the processing of these signals. In this way it becomes pos-
sible to extract the features that are indicative for clinical studies or relevant for the
control of electric devices such as prostheses. In this thesis we, therefore, start with
probabilistic modeling of myoelectric signals in section �2.2. We introduce a mixture
distribution that is interesting for an analytical formulation of a crucial step of the sig-
nal processing algorithm. We then proceed in section �2.3 with the �rst of three main
contributions of this thesis, namely, an advanced amplitude estimation technique termed
Bayes-Fokker-Planck �lter. After introducing the general pattern recognition approach
to prosthesis control, we focus on �ltering and feature selection which form two impor-
tant sub-problems within that framework. More speci�cally, these are the analysis and
comparison of spatial �lters with respect to the improvement of the classi�cation accu-
racy in section �3.3 and feature selection methods for the purpose of electrode selection
in section �3.4. We conclude by summarizing and discussing our �ndings in chapter 4.
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2 Amplitude estimation of

myoelectric signals

We have seen that myoelectric signals are fast varying signals even when the muscle
tension does not vary. Hence, if not preprocessed, they are not suited as a control signal
for any device that needs to be controlled in a deterministic fashion as, for example, an
arti�cial limb.

A suggestive way to smoothen a fast changing signal is to apply a low-pass �lter.
Indeed, what the large majority[80, 97, 98, 72, 73, 101, 55, 123, 42, 32, 143, 26, 29,
28, 34, 52, 99, 130, 87, 88] of studies dealing with amplitude estimation do is exactly
this. The hope is that the resulting signal can be used for reliable control. Reliability
is usually quanti�ed by signal-to-noise ratio (SNR) of the amplitude estimate. This
gives an index of how discriminable di�erent amplitude levels are which correspond to
di�erent contraction forces.

Another branch of studies tightly related to amplitude estimation are those dealing
with force or torque estimation from the myoelectric signal [123, 42, 129, 146, 145,
138, 144, 147]. Here, quality of the estimate is given in terms of root mean square
error (RMSE) [138], correlation coe�cient r [129] or coe�cient of variation r2 [138] as a
target value, namely force or torque, is measured. Indeed, EMG amplitude estimation
is the most common experimental means to estimate muscle forces and the neural drive
to a muscle (see [80, 109, 153, 141] as referenced by [88]), despite its known unreliability,
and eloquently stated [42]:

�One of the most frustrating, or appealing (depending on your perspective), as-
pects of the surface EMG signal is that when recti�ed and su�ciently smoothed,
its amplitude is qualitatively related to the amount of torque (or force) measured
about a joint, but more often than not, an accurate quantitative relationship is
elusive.�

Also as an estimate for the neural drive to a muscle the amplitude seems a poor
measure due to amplitude cancellation as reviewed in [51]. Nevertheless, it is successfully
used as a control signal as will be discussed in this thesis.

In the following we will overview the most important studies that treat the temporal
�ltering problem.
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2 Amplitude estimation of myoelectric signals

2.1 Literature overview

In myoelectric signal processing most approaches to amplitude estimation are synony-
mous to standard deviation estimation and di�er mostly in the kinds of preprocessing
and number of electrodes used. The generally accepted (see table 2.1) phenomenological
model on which those procedures are based is formally stated as

s(t) = σ(F (t)) · (H ∗ η)(t). (2.1)

The idea is that the myoelectric signal s(t) depends on σ(F (t)) which is the force de-
pendent amplitude that is to be estimated [72]. Technically this amplitude is the scale
of a stochastic process η(t) that is �ltered by a time independent �lter H. Let us brie�y
discuss assumptions about those quantities:

� η(t) is an uncorrelated standard normal distributed stochastic process η(t) ∼
N (0, 1), 〈η(t+ τ)η(t)〉 = δ(τ) [72, 34]. The assumption of Gaussianity of the
process is justi�ed by the application of the central limit theorem to the superpo-
sition of many (see table 1.1) muscle �ber action potentials [72]. In 1999, however,
Clancy and Hogan have shown that �the experimentally observed densities fall in
between the theoretic Gaussian or Laplacian densities� [33]. Hence, the functional
form of the probability density from which η(t) is drawn is still unclear. We will
analyze and discuss the probability distribution of myoelectric signals in detail in
chapter 2.2. Note that in our discussion as well as in [33] the signal is assumed to
be stationary, i.e. isotonic contractions are performed.

� H is a time independent �lter function accounting for the e�ects of tissue layers
and electrode properties as well as intrinsic �ring rate limitations of MUs. Filtering
limits the frequency band of the stochastic process and thus a�ects the estimation
error [11]. To avoid this and, hence, improve the amplitude estimation, the sig-
nal is whitened by estimating the inverse of the �lter function, H−1, from data.
This requires a calibration step that may sometimes be impractical but leads to
improvements of σ estimation in terms of SNR [72, 30, 31].

� σ(F (t)), the scale of the stochastic process, is a time homogeneous (memoryless)
function depending on the force F (t). The dependence on F (t) is usually modeled
by some nonlinear function [72, 55, 19] but the e�orts to quantify this relation-
ship are not reliable [42]. Some authors [138, 72] interpret σ as the neural drive
to the muscle. More recently it was shown (see [87, 40, 51]) that due to ampli-
tude cancellation the amplitude estimation necessarily deviates from the neural
drive as given by the extraction of motor unit action potential trains (MUAPTs).
Indeed amplitude cancellation is at least in part responsible for the infeasibility
of force and torque estimation [87, 88, 51]. However, these facts still allow the
estimated σ to be used as a control signal for proportional and classi�er based
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2.1 Literature overview

control as discussed below. But before we come to that, we turn our discussion
towards the statistical estimation problem and review some alternative approaches
to amplitude estimation.

Given this phenomenological model probably the most straight forward approach to
estimate σ is to deconvolve the signal s with the inverse �lter H−1 and then estimate
the variable of interest by for example the maximum likelihood estimator. For the
standard deviation of a Gaussian process this is given by the ensemble average of N
repetitions of the stochastic process

σ̂(t) =

√√√√ 1

N

N∑
i=1

(xi(t)− µ(t))2. (2.2)

xi(t) denotes the N times repeated stochastic process, σ̂(t) is the estimation of the true
σ(t) (for the sake of simplicity we omit from now on the dependence on F (t)) and µ(t)
is the mean of the process. In the case of myoelectric signals µ(t) = 0 [72].
Indeed, an identical repetition in terms of probability distribution of the myoelectric

signal of dynamic contractions is unlikely to be achieved or at least very di�cult and
in any case very tedious as N should be large for a good estimation. However, during
an isotonic contraction we assume the process to be stationary [31, 28, 55, 72]. Thus
we may exchange the ensemble average in (2.2) by a time average and avoid the N
repetitions. Further, we discretize time given that the measurement procedure samples
the signal at some sampling rate r. We get

σ̂ =

√√√√ 1

T · r

T ·r∑
i=1

s2
i (2.3)

where T denotes the time window length for which the estimation is computed. This
is the root mean square (RMS) of the signal and is only an estimator of the standard
deviation if above considerations of zero mean and stationarity are valid. Importantly,
for short enough time windows T stationarity of the signal is often assumed and hence the
estimator (2.3) will give a good approximation to σ even for non-isotonic contractions.
From this equation we can learn two aspects of amplitude estimation:

1. Estimation of σ is equivalent to temporal �ltering the process with a degree equal
to T · r.

2. The quality (in terms of precision, i.e. inverse of variance) of our estimation will
depend on the time window T and on the sampling rate r.

Thus for nonstationary signals a trade-o� between estimation variance (T short) and
violation of stationarity assumption (T long) will limit our estimation accuracy and put
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2 Amplitude estimation of myoelectric signals

constraints on the choice of T . The time window length was investigated for instance
by [26] and resulted in an adaptive �lter. However, according to simulation studies by
Keenan and Valero-Cuevas [88], the necessary time window length for a good estimation
is additionally increased by amplitude cancellations due to the summation of MUAP
waveforms.
A further, quite interesting �nding was presented in 2004 by Potvin and Brown [129]:

force estimation is substantially improved if up to 99% of EMG signal power is removed
before estimating the amplitude. The authors use a high pass �lter with cut-o� fre-
quencies of up to 440 Hz which very much contrasts the widely established view that
the relevant frequency window lies between 20 and 500 Hz. In support of this �nding,
Staudenmann et al. [145] demonstrate that principal components with intermediate, not
those with the largest eigenvalues give the best results for force estimation.
Potvin and Brown point out [129] that high pass �ltering is related to whitening be-

cause both procedures �atten the power spectrum. Indeed, the major part of myoelectric
signal's power lies between 20 and 500 Hz with peaks around 70 to 100 Hz and decaying
towards 500 Hz [100]. Hence, all peaks in the power spectrum are attenuated by a high-
pass �lter leaving only 1% of the original signal power. Thus also high pass �ltering
�attens the power spectrum and removes temporal correlations to a certain extent.
Another explanation for why high pass �ltering improves force estimation is that

amplitude cancellations are more dominant for low frequencies as stated by Keenan and
Valero-Cuevas [88].

2.1.1 Methods for nonstationary signal analysis

As discussed earlier the classical approach for amplitude estimation is in general not
suited for nonstationary signals. Clancy proposed an adaptive �ltering procedure to
dynamically adapt the time window length which improves the estimation [29]. Apart
from this, two studies applied a Kalman �lter to myoelectric signals [64, 49]. Kalman
�ltering is a method for nonstationary signal tracking that we will discuss in more detail
in chapter 2.3. However, we wish to point out two aspects of those approaches. In the
study by Graupe and Cline[64] even though a Kalman �lter was used it was put on top
of an auto-regressive moving average (ARMA) model which demands stationarity of the
signal. Hence, the proposed method is properly applicable only to stationary signals.
The most recent approach to nonstationary MES amplitude estimation was presented by
Terrence Sanger in 2007 [138]. He proposed a speci�c Bayesian �lter that we are going to
study in detail in 2.3 and apply to our data. He compared the Bayes �lter to the optimal
linear �lter as well as low-pass �lters with cut-o� frequencies of 0.1, 1 and 5 Hz and it
turned out that the Bayes �lter with a Laplace likelihood performed 3 times better, in
terms of SNR, than the 1 Hz low-pass �lter which was the best among the linear �lters
tested. The method is thus ideally suited for the purpose of myoelectric control and
discrimination of di�erent force levels. However, before we discuss this algorithm we
investigate the probability distribution of MES in detail.
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Table 2.1: Amplitude estimation publication overview.
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2 Amplitude estimation of myoelectric signals

2.2 Statistical properties of myoelectric signals

Myoelectric signals are in general non-stationary[64] noisy signals. Noise sources are
intrinsic (di�erent tissue layers between muscle and electrode) and extrinsic (measure-
ment device). Some authors claim noise to be additive[64], while others argue it to be
multiplicative[98, 72, 49]. Given the assumption that myoelectric signals are a sum of
action potentials from many independent1 muscle cells one would naively conclude that
the resulting distribution is Gaussian due to the central limit theorem. This is what
frequently is being assumed. However, di�erent evidence in the literature does not allow
a decisive conclusion on this matter yet, as we will review next.
Milner-Brown and Stein [109] reported that the distribution of the MES from isotonic

contractions of the �rst dorsal interosseus muscle was more sharply peaked near zero
than a Gaussian distribution. Recordings at higher force levels tended to appear less
peaked than those at lower force levels. Parker et al. [124], using �ne wire electrodes
inserted into biceps muscles, graphically compared the MES probability density to a
Gaussian density during light and moderate contraction levels. They concluded that
the MES is reasonably modeled as a Gaussian random process. Hunter et al. [78] using
surface electrodes on the biceps muscles, graphically compared the MES probability
density to a Gaussian density. Isotonic contractions were conducted at 30% MVC. They
found that the density function departed considerably from the shape of a Gaussian,
being more sharply peaked near zero. Bilodeau et al. [12] examined contractions of
the biceps muscles. Both constant-force (20%, 40%, 60%, 80% MVC) and slowly-force-
varying contractions were studied. Using a Shapiro-Wilk test, they generally found
that MES present a non-Gaussian distribution, being more peaked than a Gaussian
distribution. Higher force levels tended to give rise to slightly more Gaussian distributed
signals. Finally, Clancy and Hogan [33] propose the symmetric Laplace distribution as
an alternative model to the Gaussian. They conclude that the MES distribution lies �in
between� the two proposed models.
In the following chapter we study the measured probability distribution in detail and

point out that not only the peak of the distribution departs from that of a Gaussian but
also its tails and additionally MES often have a strong skewness from which we conclude
that neither a Gaussian nor the symmetric Laplace distribution as studied in [33] can
be an adequate model given their symmetry.

2.2.1 Probability density function

The probability density function of a continuous stochastic variable fully characterizes
its properties. If it is given we may derive Bayes optimal classi�ers, information theoretic
properties can be expressed by the moments of the probability density function and thus

1It is not clear, however, to what extent the independence assumption holds true. For example muscle
�bers belonging to the same α-motor neuron have a common drive, muscle spindle activity increases
synchronicity between α-motor neuron, etc. (see discussion in 1.2).
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2.2 Statistical properties of myoelectric signals

estimation is more robust and not prone to the curse-of-dimensionality [13]. This serves
as motivation to study the probability density function of surface myoelectric signals.
To date, only a few studies have investigated this fundamental question and mostly

assume the signals to follow a Gaussian density function [107, 72]. However, Clancy and
Hogan showed that the signals density lies between a Gaussian and a Laplace probability
density function [33]. In what follows we will brie�y remind the functional forms of the
two distributions.
The Gaussian probability density function for a single dimension is

p(x) =
1√
2πσ

exp−(x− µ)2

2σ2
(2.4)

where σ is the standard deviation and µ the mean of the distribution. The multivariate
Gaussian probability density for d dimensions is

p(~x) =
1

(2π)
d
2 |Σ| 12

exp−1

2
(~x− ~µ)T Σ−1 (~x− ~µ) (2.5)

where Σ is the covariance matrix and ~µ the d-dimensional mean. The functional form
of the Laplace density is as follows. For the one dimensional case we have

p(x) =
1

2s
exp−|x− θ|

s
(2.6)

where θ ∈ (−∞,∞) and s > 0 are location and scale parameter, respectively. Estimators
for these parameters are given by the �rst and second moment:

θ =
1

N

N∑
i=1

xi (2.7)

which is the mean. The variance instead is [96]

2s2 =
1

N

N∑
i=1

(xi − θ)2. (2.8)

The multivariate Laplace density for d dimensions in turn is

p(~x|Σ) =
2

(2π)
d
2 |Σ| 12

exp

(
~xTΣ−1~x

2

) v
2

Kv

(√
2~xTΣ−1~x

)
(2.9)

where ν = (2−d)/2 andKν(·) denotes the modi�ed Bessel function of the third kind [96].
Further details about the Laplace distribution can be found in [96].
We compare the three models by computing the Kulback-Leibler divergence [36]

DKL (pm||ph) = Epm

(
log

(
pm

ph

))
. (2.10)
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2 Amplitude estimation of myoelectric signals

The DKL of two probability distributions is zero i� they are equal and positive otherwise.
Because of this property the KL divergence is used to measure �closeness�2 of probability
distributions.

2.2.1.1 Is the distribution closer to a Gaussian or a Laplacian?

We �nd a clear trend towards Gaussianity for session 2 in table 2.2 when contraction
strength is increased. This �nding is in agreement with [114] where the authors compute
the negentropy of MES which is a measure of non-Gaussianity and �nd it to decrease
as contraction force is increased. However, we do not �nd the same trend for session 1.
This deviation could come from the fact that no feedback of contraction force was given
to the subject. It had to rely on its subjective perception of force level.
Among contractions there is no clear pattern of whether they are rather Gaussian

or Laplacian. We conclude that surface electromyogram (sEMG) are neither clearly
Gaussian nor Laplacian which is in agreement with [33].

Session 1
contraction 20% MVC 40% MVC 60% MVC all levels

hand open 96 125 126 91.80%
hand close 122 121 118 95.5%
�exion 95 103 109 81.22%

extension 113 103 101 83.86%
pronation 116 94 103 82.8%
supination 95 39 82 57.14%
abduction 107 96 104 81.22%
adduction 114 118 121 93.39%

all contractions 85.12% 79.27% 85.71%
Session 2

hand open 50 83 112 64.81%
hand close 32 53 101 49.21%
�exion 35 93 101 60.58%

extension 60 40 75 46.30%
pronation 64 98 106 70.90%
supination 98 104 114 83.60%
abduction 94 91 87 71.96%
adduction 75 108 116 79.10%

all contractions 50.4% 66.47% 80.56%

Table 2.2: Gauss or Laplace? Both tables are based on recordings with the same exper-
imental protocol and setup from the same subject but on di�erent days.

2Note that the KL divergence is not symmetric in its arguments and, hence, is no metric.
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2.2 Statistical properties of myoelectric signals

2.2.1.2 Mixture model

Besides computing a Laplacian and a Gaussian probability density function we �t a
mixture model of the two in order to test the hypothesis that the sEMG follows a
distribution �between� Gauss and Laplace [33]. Means are set to zero µ = θ = 0 and
thus we have

p(x|σ, s, η) = ηp(x|σ) + (1− η)p(x|s). (2.11)

with η being the mixture weight. Fitting this probability density model is achieved by
maximizing the likelihood via expectation maximization (EM) [13].

As to be expected, we �nd the mixture model to give the best match in terms of
KL divergence. However, there are between 30 and 60 exceptions out of 1008 (number
of electrodes times number of contractions) where the KL divergence is smaller for the
Laplace model than for the mixture model. This is due to the EM algorithm stuck in a
local minimum. However, we do not intend to correct this as those signals are few and
all of them are weak and hence very likely irrelevant for any further investigation.

Even though the mixture model �ts the distribution of some signals quite well there
are still many signals that have an asymmetric probability distribution (see for example
�gure 2.2) which cannot be �t by it as both, Gauss and Laplace, distributions are
symmetric. Asymmetricity can be quanti�ed by the third moment, also termed skewness.

We observe that the tails of the skewed distributions follow a Gaussian on one side
while on the respective other side a Laplacian. Unfortunately we do not know of a
distribution model that captures this speci�c variability that we encounter in our mea-
surements.

While the mixture model describes the peak of the MES it still cannot capture the
skewness of the distribution. However, for those signals that have a symmetric dis-
tribution the mixture model presents a very good �t to the MES distribution (see for
example probability density plots for contractions hand open, wrist �exion, pronation
and supination in �gure 2.1 and �gure 2.2).

2.2.2 Skewness of myoelectric signals

To quantify the deviation from symmetricity seen in some signals by visual inspection
of �gure 2.2, we compute the skewness of the myoelectric signals. We then plot the
skewness onto the electrode array grid as color plot in �gure 2.3 and compare it to
the standard deviation of the signal that quanti�es the signal strength. This is done to
investigate whether signal strength is correlated to skewness of the signal which for some
contractions seems to be true as for example wrist extension and hand open but not for
others as for example adduction. However, the overall correlation coe�cient between
skewness and standard deviation is 0.23, hence the correlation is weak.
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Figure 2.1: Probability density functions of all contractions of 60% MVC for channel 70.

26



2.2 Statistical properties of myoelectric signals

−1 −0.5 0 0.5 1

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

hand open

potential [mV]

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Data

Gauss

Laplace

Mixture Model

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

hand close

potential [mV]

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

−1.5 −1 −0.5 0 0.5 1 1.5
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

wrist flexion

potential [mV]

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

−1 −0.5 0 0.5 1
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

wrist extension

potential [mV]

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

−1 −0.5 0 0.5 1
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

pronation

potential [mV]

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

 

 

−1 −0.5 0 0.5 1
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

supination

potential [mV]

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

 

−0.5 0 0.5
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

abduction

potential [mV]

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

 

−1 −0.5 0 0.5 1
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

adduction

potential [mV]

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Figure 2.2: Semi-log plot of probability density functions of electrode 70. Blue crosses
mark the empirical distribution, solid lines are probability density function
�ts: Gaussian (green line), Lapalce (red line) and mixture model (cyan line).
Static contractions at 60% MVC. 27
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2.3 Bayesian �ltering and state space models

2.3 Bayesian �ltering and state space models

Myoelectric signals are nonstationary whenever the contraction that is performed is
dynamic or the force level is changing or the muscle is fatiguing. For most of the
times an action is performed there will be nonstationary transients before the intended
grip is achieved. The implication is that dealing with nonstationarity of the signal is
unavoidable. However, as we see from table 2.1, only two studies dealt with MES in the
nonstationary regime when investigating amplitude estimation. Indeed this situation
holds true for most studies within the �eld of myoelectric prosthesis control based on
pattern recognition systems as well.
However, now we present �ltering methods designed for nonstationary inverse prob-

lems [85]. When inferring the force or the amplitude given the myoelectric signals, we
have to deal with a genuine inverse problem. If the signal was stationary we could sim-
ply average over several measurements but given that force and amplitude may change
in time we have to deal with a nonstationary inverse problem. A general approach to
this kind of problems will be presented in the following which will give us a common
framework to some of the previously presented studies, namely those employing Kalman
�lters [64, 49] as well as the Bayesian �lter presented in [138].
We now describe the formal framework for Bayesian �ltering for discrete time stochas-

tic processes. Let {Xk}∞k=0 and {Yk}∞k=1 be two stochastic processes. The random vector
Xk ∈ Rnk is called the state vector and represents the quantity that we are primarily
interested in. The vector Yk ∈ Rmk represents the measurement. We refer to it as the
observation at the kth time instant. The relation between stochastic events of the two
processes shall obey the scheme

X0 → X1 → X2 → . . .→ Xk → . . .

↓ ↓ ↓
Y1 Y2 Yk

which is an illustration of the following postulates for our stochastic processes:

1. The process {Xk}∞k=0 is a Markov process, that is,

p(xk+1|xk, . . . , x0) = p(xk+1|xk). (2.12)

2. The process {Yk}∞k=1 is a Markov process with respect to the history of {Xk}, that
is,

p(yk|xk, . . . , x0) = p(yk|xk). (2.13)

3. The process {Xk}∞k=0 is connected to past observations {Yk} only through its own
history, that is,
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2 Amplitude estimation of myoelectric signals

p(xk+1|xk, yk, . . . , y1) = p(xk+1|xk). (2.14)

If the stochastic processes {Xk}∞k=0 and {Yk}∞k=1 satisfy conditions 1 to 3 then we call this
pair an evolution-observation model [85]. To completely specify such a model we need
the probability distribution of the initial state X0, a discrete or continuous time model
for the evolution of the (hidden) system state as well as a model for the measurement
process. Indeed, the Kalman �lter de�nes the simplest class of evolution-observation
models, namely linear maps for hidden state evolution and measurement process with
the stochasticity of evolution and measurement process is modeled by additive Gaussian
noise [85]. However, in order to apply Bayesian �ltering it is enough to model the
respective probability distributions, namely the Markov transition kernels p(xk+1|xk)
(which can vary in time) and the likelihood p(yk|xk).
In general we are interested in the estimation of the hidden state xk from previously

measured data Dk = {y1, y2, . . . , yk}, i.e. we look for p(xk|Dk). Given the Markov as-
sumption we �nd this probability distribution by a two-step procedure going sequentially
through all data points from 1 to k:

time evolution updating:

p(xk+1|Dk) =

ˆ
p(xk+1|xk)p(xk|Dk)dxk (2.15)

observation updating:

p(xk+1|Dk+1) =
p(yk+1|xk+1)p(xk+1|Dk)

p(yk+1|Dk)
(2.16)

In order to evaluate the integral in equation (2.15) one often needs to resort to Monte
Carlo sampling methods. The samples drawn to evaluate the marginalized probability
distribution p(xk+1|Dk) for the evolution state are called particles. This is where the
term particle �lter stems from and is a usual approach when no model of the hidden
dynamics but only probability distributions are given, or the models are nonlinear and
not linearizable. In case of a nonlinear model that is linearizable the linearized version
is called an extended Kalman �lter.

In the following we discuss another type of evolution-observation model as proposed
in [138]. This gives a Bayesian �lter where the dynamics of the hidden state are de�ned
by a stochastic di�erential equation resulting in a nonlinear model that is not di�eren-
tiable and hence not linearizable. However, Sanger proposed a Fokker Planck equation
to model the time evolution updating step, hence no Monte Carlo sampling is needed to
estimate p(xk+1|Dk) (note also that this is therefore no particle �lter).
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2.3 Bayesian �ltering and state space models

2.3.1 Bayes �lter with Fokker-Planck evolution step

The Bayesian �lter model that we will study in detail in this thesis was proposed for
amplitude estimation of myoelectric signals by T. Sanger in 2007 [138]. Here the hidden
state dynamics have a time continuous description modeled by the stochastic di�erential
equation

dσ = DdW + (U − σ)dNλ. (2.17)

The hidden state variable is σ, the standard deviation of the myoelectric signal (see
also discussion in 2.1), D is the �di�usion constant� of the Wiener process dW (i.e. the
di�erential of a Brownian motion), U is a stochastic variable with uniform distribu-
tion between 0 and σMVC, with σMVC being the maximum of the standard deviation as
measured during a maximum value contraction. U determines the jump size of the ran-
domly occurring jumps modeled by a di�erential of a Poissonian counting process dNλ

with rate λ. From this stochastic dynamics Sanger derived, under some approximations,
the following Fokker-Planck equation

∂p(σ, t)

∂t
=
D2

2

∂2p(σ, t)

∂σ2
+ λ(

1

σMVC

− p(σ, t)) (2.18)

which de�nes the evolution of the probability distribution of the hidden state, analo-
gous to the Markov transition probability p(xk+1|xk) in the Bayesian �lter framework
described above.

We introduced two minor changes into equation (2.18) with respect to [138], �rst we
corrected3 the factor of the �rst summand on the right hand side, the di�usion part,
and second we introduced σMVC instead of demanding σ to stay contained within [0, 1].
However, the �rst change does not a�ect the performance of the algorithm given that
D is simply a parameter that is to be optimized and has (to the current understanding)
no speci�c physiological interpretation that could be tested quantitatively. Given the
discrete nature of our data (measurements at a certain sampling rate) we discretize the
Fokker-Planck equation and get

pt+∆t(σ) = pt(σ) + ∆t

(
D2

2

∂2pt(σ)

∂σ2
+ λ

(
1

σMVC

− pt(σ)

))
. (2.19)

Finally the Bayes-Fokker-Planck �ltering algorithm is

3Indeed, as D is a parameter that will be optimized anyway the performance of the algorithm will
not be a�ected by this mistake. This is true also for some other small mistakes in formulas in the
original publication [138] which we corrected here.
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2 Amplitude estimation of myoelectric signals

Start with �at prior p0(σ) = σMVC

m
and then do for each time step, i.e. each observation

st>0

� time evolution updating: Discretizing the second derivative of equation (2.19)
we obtain

pt+∆t(σ) = pt(σ)+∆t

(
D2

2

(pt(σ + ∆σ)− 2pt(σ) + pt(σ −∆σ))

∆σ2
+ λ

(
1

σMVC

− pt(σ)

))
(2.20)

� observation updating

pt(σ|Dt) =
p(st|σ)pt(σ|Dt−∆t)

p(st|Dt−∆t)
. (2.21)

� the maximum of the posterior σt = argmax
σ

pt(σ|Dt) gives the hidden state value,

i.e. the myoelectric signal amplitude.

As model for the likelihood p(st|σ) we will compare Gauss and Laplace distributions
(see also 2.2). For the prior pt(σ|Dt−∆t) we use a histogram withm bins set it to be �at at
t = 0 as proposed by Sanger [138], i.e. p0(σ) = σMVC

m
and the evidence p(st|Dt−∆t) is not

evaluated or modeled explicitly but at each update the posterior pt(σ|Dt) is normalized
with some constant Ct such that 1

Ct

´
p(st|σ)pt(σ|Dt−∆t)dσ = 1. With this the algorithm

is fully set and we may now look for optimal values for the parameters D and λ. The
additional parameter m of the histogram prior �xes the resolution of the amplitude
estimation within the interval (0, σMVC]. We decided to �x m = 100 which accounts for
a high enough resolution for our purposes.

2.3.1.1 Conjugate prior

We will now extend the approach proposed in [138] by replacing the histogram prior
with the so called conjugate prior distribution. Before we point out the advantages of
doing so, we introduce the necessary basics.

Two distributions are conjugate if they belong to the same family of distributions.
In Bayesian theory a prior is called conjugate if it belongs to the same family as the
posterior. More speci�cally this means that the prior does not change its functional
form when the Bayes formula is applied w.r.t. a speci�c likelihood distribution [102].

Practically, the conjugate prior for the variance of a Gaussian likelihood as well as of
a Laplace likelihood with known mean (in our case µ = 0 as stated earlier) is the same,
namely the inverse gamma distribution [118]

p(σ2|α, β) =
βα

Γ(α)

(
σ2
)−α−1

exp
(
−β/σ2

)
(2.22)
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2.3 Bayesian �ltering and state space models

with a shape parameter α > 0 and a scale parameter β > 0. Γ(·) is the gamma func-
tion [16]. For convenience we change notation for the variance σ2, for the remainder
of this chapter we use v := σ2. Later we will need the �rst two moments of distribu-
tion (2.22), which are

E(v) =
βΓ (α− 1)

Γ (α)
=

β

α− 1
(2.23)

E(v2) =
β2Γ (α− 2)

Γ (α)
=

β2

(α− 1)(α− 2)
(2.24)

where we have used the following property of the gamma function Γ(x+1) = xΓ(x) [16].
Note that the gamma function Γ(x) requires x > 0 hence the second moment requires
α > 2.
Note that using equation (2.22) as prior distribution will reduce the amount of pa-

rameters of the prior from m− 1 to only two. Furthermore, due to the conjugacy we get
simple closed form expressions of these two parameters for the observation update (2.21)

α̌t = αt +
1

2
(2.25)

β̌t = βt +
s2
t

2
(2.26)

α̌t and β̌t are the parameters of the posterior at time t having observed the signal st.
Equation (2.22) has a support of (0,∞) while above we de�ned the support to be

(0, σMVC], naturally limited by the �nite amount of motor unit action potentials that can
be �red at an instance in time. However, for the following derivation we set σMVC =∞.
Given the exponential decay of the inverse Gamma distribution we do not expect this
approximation to a�ect the �lter performance signi�cantly. Furthermore, the Fokker-
Planck equation equation (2.18) was originally de�ned for the probability density of the
standard deviation σ rather than the variance v. Hence we either change the prior (2.22)
to p(σ|α, β) or we rede�ne the Fokker-Planck equation in terms of the variance v. We
decide to do the latter because this way we keep all equations as before and only need to
reinterpret the result of the �lter, i.e. we get the variance (from which we may compute
the standard deviation σ =

√
v). Taking these two changes into account we rewrite

equation (2.19) to

p(v|αt+∆t, βt+∆t) = p(v|αt, βt) + ∆t

(
D2

2

∂2p(v|αt, βt)
∂v2

− λp(v|αt, βt)
)
. (2.27)

Our aim is to �nd a closed form expression for the parameters also for the evolution
updating. For this we need to �nd two equations of the parameters αt+1 and βt+1 in
dependence of these parameters at the previous time step αt and βt. We �nd these
by computing the �rst and second moment of the propagated probability distribution
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2 Amplitude estimation of myoelectric signals

p(v|αt+∆t, βt+∆t). For notational convenience we rewrite p(v|αt+∆t, βt+∆t) =: pt+∆t(v)
and p(v|αt, βt) =: pt(v).
The �rst moment is given by

Ept+∆t
(v) =

∞̂

0

vpt+∆t(v)dv

= (1− λ∆t)Ept(v) +
D2∆t

2

([
v
∂pt(v)

∂v

]∞
0

− [pt(v)]∞0

)
= (1− λ∆t)Ept(v) +

D2∆t

2

([(
βt
v
− 1− αt

)
pt(v)

]∞
0

− [pt(v)]∞0

)
= (1− λ∆t)Ept(v)

= (1− λ∆t)
βt

αt − 1
(2.28)

where in the last step we used equation (2.23). The second moment is

Ept+∆t
(v2) =

∞̂

0

v2pt+∆t(v)dv

= (1− λ∆t)Ept(v
2) +

D2∆t

2

[v2∂pt(v)

∂v

]∞
0

− 2

∞̂

0

v
∂pt(v)

∂v
dv


= (1− λ∆t)Ept(v

2) +
D2∆t

2
([(βt − v − αtv) pt(v)]∞0 − 2[vpt(v)]∞0 + 2)

= (1− λ∆t)Ept(v
2) +D2∆t

=
β2
t (1− λ∆t)

(αt − 1)(αt − 2)
+D2∆t (2.29)

where we used equation (2.23) and equation (2.24) in the last step. Assuming that
the propagated distribution pt+∆t(v) is to a good approximation an inverse Gamma
distribution, given a high sampling rate of 2048 and λ and D to be very small (see also
2.3.1.2), we can identify the parameters α and β via the two moments as follows

βt+∆t

αt+∆t − 1
= (1− λ∆t)

βt
αt − 1

(2.30)

βt+∆t =
(1− λ∆t)βt
αt − 1

(αt+∆t − 1) (2.31)

and

β2
t+∆t

(αt+∆t − 2)(αt+∆t − 1)
=

β2
t (1− λ∆t)

(αt − 1)(αt − 2)
+D2∆t

β2
t+∆t =

(
β2
t (1− λ∆t)

(αt − 1)(αt − 2)
+D2∆t

)
(αt+∆t − 2)(αt+∆t − 1)(2.32)
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squaring equation (2.31) and equating with equation (2.32) we get

(1− λ∆t)2β2
t

(αt − 1)2
(αt+∆t − 1) =

(
β2
t (1− λ∆t)

(αt − 1)(αt − 2)
+D2∆t

)
(αt+∆t − 2)

(αt+∆t − 1)

(αt+∆t − 2)
=

αt − 1

(αt − 2)(1− λ∆t)
+
D2∆t(αt − 1)2

(1− λ∆t)2β2
t︸ ︷︷ ︸

:=ζt

αt+∆t =
2ζt − 1

ζt − 1
(2.33)

and plugging this into equation (2.31) gives

βt+∆t =
(1− λ∆t)βt
αt − 1

(
2ζt − 1

ζt − 1
− 1

)
(2.34)

=
(1− λ∆t)βtζt

(αt − 1)(ζt − 1)
(2.35)

Finally we get the following form for the evolution-observation algorithm
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Start with prior parameters α0 = 2.1 (α > 2) and β0 = 0.1. For t > 0 the update steps
are as follows

� time evolution updating

αt+∆t =
2ζt − 1

ζt − 1
(2.36)

βt+∆t =
(1− λ∆t)βtζt

(αt − 1)(ζt − 1)
(2.37)

with

ζ =
αt − 1

(αt − 2)(1− λ∆t)
+
D2∆t(αt − 1)2

(1− λ∆t)2β2
t

(2.38)

� observation updating

α̌t = αt +
1

2
(2.39)

β̌t = βt +
s2
t

2
(2.40)

� the maximum or mode of the posterior

vmax =
β̌t

α̌t + 1
(2.41)

gives the hidden state value estimate, the variance of the myoelectric signal. Taking
the square root gives the amplitude estimate, i.e. σmax =

√
vmax.

Due to time constraints a thorough quality assessment can only be given for the orig-
inal version of the Bayes-Fokker-Planck �ltering algorithm in this thesis. The same
assessment for the extension of this algorithm by the introduction of a conjugate prior
will be topic of future e�orts. However, we wish to note that the derivation presented
above is a �rst step in the direction of extending the Bayes-Fokker-Planck �ltering al-
gorithm to multiple dimensions. We plan to achieve this by introducing the inverse
Wishart distribution which is the multi dimensional version of the inverse Gamma dis-
tribution [118].

2.3.1.2 Parameter optimization

In order to �nd the optimal parameters D and λ for the evolution update step (2.20) we
compute the mean signal-to-noise ratio over all 126 electrode signals and all eight con-
tractions as well as ten repetitions of each contraction. The contractions are performed
at 60% MVC and we take 4 seconds of each signal during which the contraction is held
static and signal stationarity can be assumed (which is necessary to compute the SNR).
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2.3 Bayesian �ltering and state space models

We �nd a regime of high SNR and set λ = 10−30 and D = 10−15 for the following
evaluations. Note that even smaller λ or D do not improve the SNR substantially. Given
the very small parameter values one could erroneously infer that they could be set to 0.
While this would certainly lead to a very high SNR, it would be due to the �lter not
following the signal but, instead, after a brief initiation domination of the prior over the
likelihood would occur and the maximum aposteriori will not change anymore resulting
in a constant output signal.
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Figure 2.4: Color plot to the right: mean SNR over 10080 signals (126 electrodes, 8
classes and 10 repetitions) for the Bayes �lter with a Gaussian likelihood in
dependence on the two parameters D and λ. Graphs on the left: comparison
of mean SNR for two di�erent likelihoods. Blue curves correspond to marked
area in color plot, i.e. graphs for D are produced with λ = 10−30 and graphs
for λ are produced with D = 10−15.

2.3.2 Results of Bayes-Fokker-Planck �ltering

In the following we estimate the standard deviation of an arti�cially produced stochas-
tic process with the Bayes-Fokker-Planck �ltering method and compare it to a RMS
estimation which, in this case, is the maximum likelihood estimator. We quantify the
estimation quality by the RMSE. Afterward we compare Bayes-Fokker-Planck �ltering
to the state of the art �ltering method [34, 52] using toolbox and data set provided
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online by E.A. Clancy [27]. Finally we present �ltering results of our own recordings of
a dynamically varying contraction.

2.3.2.1 Arti�cial data

Before we �lter real myoelectric signals we test the algorithm on a arti�cial signal. We
produce the stochastic process which constitutes our arti�cial signal as follows. First
a time series is produced by drawing from a standard normal distribution N (0, 1) over
5000 seconds at a sampling frequency of 2048. This time series is then bandpass �ltered
with a Butterworth �lter of order 7 and cut-o� frequencies at 10Hz and 500Hz to restrict
the frequency band to the one of a typical MES (the signal is normalized after �ltering
to have variance of 1 again). The amplitude, i.e. standard deviation, of the signal is
drawn from a uniform distribution between 0 and 1.5 each time a jump occurs. Inter
jump intervals are drawn from an exponential distribution with mean 500.

For the amplitude estimation quality, quanti�ed by RMSE, we �nd 0.011 for the Bayes
�lter with a Gaussian likelihood while 0.041 for RMS with T = 250ms and 0.061 for
T = 100ms. Hence the Bayes estimator is four to six fold better than RMS across
reasonable (in terms of feasibility in prosthetic control application [54]) time window
lengths.
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Figure 2.5: Performance comparison of RMS and Bayes �lter on arti�cial MES. The
arti�cial signal a) is a stochastic process resembling some characteristics of
a MES, see text for a detailed description of how it is produced. b) and
d) are the RMS of the arti�cial signal with 100ms and 250ms time window
length, respectively, and 50% window overlap. c) is the Bayes �ltered signal
with a Gaussian likelihood model where D = 10−16 and λ = 10−30.

2.3.2.2 Comparison to state of the art amplitude estimation

In the following we compare the Bayes-Fokker-Planck �lter with the state of the art
�ltering techniques [34] implemented in a toolbox provided by Clancy [27]. The my-
oelectric signal that is �ltered is provided as part of the toolbox. We use the default
parameter values of the toolbox assuming them to be optimized for this signal. We also
compare the results to RMS amplitude estimation with di�erent time window lengths
and window overlaps.

As can be seen in �gure 2.5 b) the amplitude estimation left and right of the peak is
more �at as compared to c), d), e) and f). This comes from the whitening procedure
that is applied by the amplitude estimation as proposed in [29]. Whitening of the signal
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2 Amplitude estimation of myoelectric signals

clearly also improves the performance of the Bayes-Fokker-Planck (BFP) algorithm as
can be appreciated in �gure 2.5 i) and j).

Moreover, we �nd that the Laplace likelihood gives a smoother estimate than a Gaus-
sian likelihood, a feature that is certainly desirable for an amplitude estimation algo-
rithm.
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Figure 2.5: a) raw MES, inset is its spectral density that reveals a clear 60Hz (and its
harmonics) power line noise. b) is the result produced by the toolbox pro-
vided by Clancy [27] using as �amplitude detector� the RMS, noise rejection
and whitening all with default parameter values. c) to f) is the result of
computing the RMS with di�erent time window lengths and window over-
laps. In g) and h) we �nd the result of �ltering the raw signal with the
Bayes-Fokker-Planck algorithm with two di�erent likelihoods and σMVC = 2,
while in i) and j) we additionally whitened the same way it was whitened
for b).
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2.3.2.3 Filtering at several contraction force levels

Here we test the performance of BFP on own data recordings. The myoelectric time
series was measured while the subject was asked to perform contractions according to
the following protocol: 4-8 seconds 20% MVC, 10-14 seconds 40% MVC, 16-20 seconds
60% MVC, 21-27 seconds ramp contraction from 0%-100% MVC, three short contrac-
tions of 20%, 40% and 60% MVC, respectively.
Furthermore, computing the SNR of all recordings where their mean amplitude is

larger than 0.2 mV4 during 60% MVC static contraction we �nd 7.4 ± 1.7 for BFP
�ltering with a Laplace likelihood and 6.8± 2.0 using a Gaussian likelihood. RMS with
a time window of 200 ms gives in turn a mean SNR of 1.7± 0.3. Additionally, the best
SNR achieved by RMS processing with a time window of 200 ms is 2.2 as compared to
2.8 which is the weakest SNR after BFP �ltering with a Laplace likelihood.
We conclude that the BFP algorithm shows very good results on arti�cial data as well

as o�-line data recordings. Whether compared to standard root mean square amplitude
estimation or more advanced estimation techniques, the BFP shows better performances
in terms of signal-to-noise ratio. Also in terms of computational complexity the algo-
rithm keeps up with other approaches tested, hence, BFP might be a very valuable
choice for myoelectric applications where amplitude estimation is of importance.

4SNR for low amplitude signals BFP �ltering gets extraordinary high (> 25). However, these signals
are usually not relevant for application as they contain only a weak contribution of myoelectric
signals.
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Figure 2.6: Comparison between RMS with a time window of T = 100ms and an overlap
of 50% between windows and Bayes-Fokker-Planck �ltering of the signal of
electrode 1 during a hand close contraction. See text for explanation of the
protocol. a) Gaussian likelihood function, b) Laplace likelihood function.
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3 Machine learning approach

3.1 Basics

Generally, machine learning can be de�ned as follows [110]:�
�

�
�

We say that a machine learns with respect to a particular task T, performance
metric P, and type of experience E, if the machine reliably improves its P at
T following E.

The �eld of machine learning is usually [13, 22] divided into three main sub�elds of
research, namely:

Supervised learning where the task T is to infer a target or dependent variable y
given a vector of features or independent variables ~x1. If y is discrete, T is called a
classi�cation task, if y is continuous it is called a regression task (note that we stick
to the usual notation where y is one-dimensional, however, y may be a vector). The
performance metric P is usually called loss, risk or error function and quanti�es the
deviation of the estimated ŷ from the true y. The experience E is normally a set
of pairs {yi, ~xi}. However, more recently approaches drew interest of the machine
learning community where unlabeled data, i.e. data where no target value y is
given, is used to improve the performance of a genuinely supervised learning task.
These kind of approaches are therefore called semi-supervised learning.

Unsupervised learning where T is to extract statistical structure from (unlabeled)
data. Examples are the task of �nding clusters in the data as for instance through
K-means clustering [105, 13] and mixture models [60] or we wish to �nd the inde-
pendent sources signals as in independent component analysis (ICA) [79]. Depend-

ing on the speci�c task, P may be the likelihood of the data p({~xi}|~θ) telling how
likely it is that the observed data is drawn from an assumed model distribution at
a speci�c point ~θ in parameter space. Another example for P is the entropy H(X)
quantifying independence as in the maximum information ICA algorithm [6, 7].

1Note that the terminology target/features is mainly used in the machine learning community, whereas
in the statistical learning community more often the terminology dependent/independent variables
is used. Additional confusion may be produced by the slightly di�erent use of the term features in
the myoelectric pattern recognition community: there a feature denotes usually a function of the
raw MES as for example the RMS, hence di�erent features are di�erent functions rather than the
di�erent input dimensions to the pattern recognition system.
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3 Machine learning approach

Reinforcement learning where the general setting is quite di�erent. Here the learning
machine is an agent that can act in an environment and gets rewards or punish-
ments from the environment. The task T is to shape its perception-action policy
such that it maximizes the obtained reward and/or minimize punishment, both
given by numerical values. The performance metric P is the reward or punish-
ment for a certain action given a speci�c state of environment and agent. E are
pairs of action and reward [150]. However, we shall not be concerned with this
category of machine learning algorithms in what follows.

Supervised and unsupervised learning can be seen as sub�elds of the mathematical
�eld of statistical learning [60, 154]. In this thesis we will deal with the application
of supervised and unsupervised learning techniques. While the problem at hand is
genuinely a supervised learning problem, we will also employ unsupervised learning
techniques for preprocessing the data in order to improve the performance achieved by
the supervised learning algorithm.
A supervised learning algorithm �nds a function, often called hypothesis,

ŷ = hθ(~x)

out of a family of functions parameterized by θ, which maps ~x onto ŷ where ideally ŷ = y.
The (locally) optimal parameters θ∗ is optimal w.r.t. the performance measure P given
some data D = {yi, ~xi}. This optimization procedure is called training. However, if
a function family has a high VC dimension [154], which is to say a high complexity,
overtraining also called over�tting is likely to happen. Over�tting means a considerable
drop in performance for out-of-set samples (i.e. previously unseen data). One speaks
also of poor generalization ability of the hypothesis hθ∗ in such a situation [154]. A
simple method called cross-validation allows to detect over�tting and thus compare the
generalization ability of various models (families of functions). The idea is illustrated
in �gure 3.1.

3.2 Scheme of pattern recognition approach

3.2.1 Preprocessing

This step may consist of �ltering in the spatial or temporal domain or both. In this work
we dedicate an extensive study about spatial �lters. Given the high density electrode
array measurements we have a convenient setting for thoroughly studying the e�ect of
spatial �lters on classi�cation accuracy. Chapter 3.3 will be dedicated to this topic.
Additionally temporal �ltering may improve classi�cation accuracy. We have studied

in 2.3 a temporal �ltering method for non-stationary myoelectric signals. This may be
applied for problems related to amplitude estimation, such as force or torque estimation
but it can equally well be used as preprocessing for pattern recognition approaches.
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3.2 Scheme of pattern recognition approach

Figure 3.1: In its simples setting, model selection via cross-validation generally involves
two data sets: a training set that is used for parameter estimation, and a
validation set that is used for model selection [148]. The validation set pro-
vides a means of comparing the generalization ability of various models and
detecting over�tting: if the performance on the validation set is signi�cantly
poorer than the performance on the training set, the model exhibits over�t-
ting. If many models are compared with the validation set, the performance
of the best selected model on the validation set is an optimistic estimate of
the prediction performance on new data; in a sense, learning is then per-
formed on the validation set. A third set called test set, distinct from the
training and validation set, is then needed to assess the �nal performance of
the model (adapted from [137]).
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Please note that in this case terminology might get fuzzy. Sometimes temporal or
spatial �ltering might be called feature extraction. For example when we estimate the
standard deviation, which is a common feature for myoelectric signal used pattern recog-
nition approaches, by the BFP �lter. The same ambiguity is also found for ICA algo-
rithms such as information maximization [6] which might be seen as producing spatial
�lters for preprocessing or as feature extraction algorithm [7]. However one prefers to
categorize these procedures will not limit the generality of our results or change our
understanding, therefore we leave it as a matter of taste to the reader.

3.2.2 Features

In the �eld of machine learning a feature simply means an input dimension to a su-
pervised learning algorithm. For unsupervised learning algorithm the term feature is
sometimes used in relation to the statistical structure the algorithm extracts from the
data but a precise de�nition is not established in the �eld of machine learning.

In the �eld of myoelectric pattern recognition the term feature mostly refers to a
function of the measured signal as opposed to the raw signals themselves. A popular
set of features used in myoelectric pattern recognition approaches is the mean absolute
value, zero crossing, slope sign change and waveform length, commonly known as the
Hudgins feature set [77].2 Instead of the mean absolute value the root mean square is
often calculated. Indeed, the latter is a very common feature for pattern recognition
of myoelectric signals and also, as we have seen earlier, used to estimate the EMG
amplitude. However, many features were tested for classi�cation improvement. An
early comparative study �nds EMG histogram to be the best feature for a pattern
classi�cation approach [159]. In [14] 19 features were compared and evaluated about
noise tolerance and computational complexity besides classi�cation performance. The
authors found that wavelet coe�cients and cepstrum coe�cients performed best. Apart
from the features compared in these studies, investigations were also done on using
higher order statistics as skewness and kurtosis [114] for classi�cation. The authors
showed that kurtosis together with variance lead to good results while skewness leads to
poor performances.

Despite the many features tested, features relating to the EMG energy as mean ab-
solute value and root mean square are still the most widely spread. In our pattern
recognition system we use only the root mean square to keep our approach simple and
the results comparable.

Normally, the calculation of a feature takes a set of data samples de�ned by a time
window. When computing the root mean square longer time windows lead to improve-
ments in classi�cation accuracy but at the same time increase the controller delay of a
hand prosthesis. A standard time window for RMS calculation is around 200 ms [45, 67].

2In the original paper Hudgins, et al. [77] used also the slope of the mean absolute value, but this is,
however, often not considered part of the classical feature set [45, 67].
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Investigations on the maximal controller delay have shown that it should not exceed 300
ms [54, 45]. However, in this thesis we investigate the e�ect of time window length for
feature calculation on classi�cation performance extensively.

3.2.3 Feature selection

Feature selection can be a means to deal with situations where the amount of features,
i.e. dimensions, outnumbers the amount of data points [117, 66]. In some cases feature
selection is superior to regularization to avoid over�tting (even though regularization
will result in close to 0 coe�cients for irrelevant features) [117]. Additionally feature
selection can be applied to reduce the computational load of processing a large amount
of features.

In this study, however, we do not have to deal with these issues, instead we use feature
selection to address the question about electrode positioning and the minimum number
of electrodes needed to achieve a high enough performance. A detailed discussion and
results are presented in 3.4.

To prevent confusion about terminology we wish to emphasize that feature selection
refers to the selection of input dimensions in accordance with the machine learning
de�nition of features. It is not concerned, however, with the selection of good features
according to the terminology within the myoelectric signal community where a feature
refers to a function of the raw signals. Indeed the only feature we use throughout our
investigations is the RMS.

3.2.4 Classi�cation

Many classi�ers have been investigated and compared within the myoelectric signal
community. Multi layer perceptron [77, 25], linear discriminant analysis [45, 24, 67],
support vector machines [119, 104], Gaussian mixture model [76] and hidden Markov
models [21] to name a few.

However, the most popular due to its simplicity and good performance is linear dis-
criminant analysis (LDA) which is the Bayes optimal classi�er given the signals are
distributed according to a Gaussian with equal covariance matrix for all classes.

3.2.5 General set-up for classi�cation in this thesis

For the sake of convenience we wish to de�ne here the standard classi�cation scheme
that is used if not explicitly stated otherwise.

Feature is root mean square, channel selection is sequential forward selection and the
classi�er is linear discriminant analysis. All these methods are simple standard methods
used in the �eld and provide thus a good base to compare our results to other studies.
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Furthermore, the data that we use (if not stated otherwise) is measured during static
contractions of 60% maximum value contraction (MVC). And we always perform a 10-
fold cross-validation to prevent over�tting.
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3.2.6 Experimental setup

Figure 3.2: High density electrode array
positions on the upper fore-
arm [67].

The results of this thesis are based on
measurements taken with two high den-
sity electrode arrays wrapped around the
upper forearm as depicted in �gure 3.2.
Each array consists of 64 Ag/AgCl elec-
trodes with 8 mm inter-electrode distance.
Conductive gel is applied to improve signal
quality. We removed the power-line inter-
ference with a 45-55 Hz band stop (2nd or-
der Butterworth), additionally the signals
were �ltered with a high pass whose cut-
o� is at 500 Hz (4th order Butterworth)
and a low pass with cut-o� frequency at
20 Hz (4th order Butterworth).

We investigate three able bodied sub-
jects who perform repeatedly the follow-
ing contraction procedure: 0.5 second con-
traction onset followed by 3 seconds of
static contraction and then 0.5 second con-
traction o�set. This pattern is repeated
for 20%, 40% and 60% MVC with 2 sec-
onds of rest in between. The same tem-
poral procedure is performed for the eight
di�erent static contractions listed and il-
lustrated in �gure 1.1, namely hand open, hand close, wrist �exion, extension, supina-
tion, pronation, abduction, and adduction.

3.3 Spatial �ltering

Spatial high-pass �lter have been successfully applied to surface myoelectric signals for
the investigation of single motor unit activities [43, 50, 53, 121, 122]. Spatial �lter-
ing also improves MES force estimation as shown by Staudenmann et al. [145]. They
showed that �ltering based on principal component analysis (PCA) outperforms all data-
independent �lters tested, among those the Laplace �lter. Furthermore, they �nd that
using monopolar signals (i.e. un�ltered) results in better amplitude estimations than
after applying a bipolar �lter. More recently it was shown that spatial �ltering also
improves classi�cation accuracy of upper limb contractions. Huang, et al.[75] investi-
gated the classi�cation of 15 di�erent upper limp contractions following targeted muscle
reinnervation with 128 monopolar electrodes. They used 11 di�erent data-independent
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spatial �lters and found that double di�erential �lter performed best if 12 channels are
used for classi�cation. Channels were selected by sequential forward selection (see 3.4 for
explanation of the algorithm). Another study conducted by Hahne, et al.[67] recorded
96 monopolar MES using high density electrode arrays and �ltered the signal using the
data-dependent, supervised �lter common spatial patterns (CSP). The authors showed
that the resulting signals were superior in terms of discriminability by LDA to signals
resulting from a longitudinal bipolar spatial �lter and the computation of the Hudgins
feature set.
They have shown that principal component analysis improves force estimation [145]

and outperforms a Laplace spatial �lter as well as what they call �optimally aligned mul-
tiple bipolar directions� which is the high density electrode array chunked into diagonal
bipolar channels. Interestingly they also �nd that conventional bipolar con�guration is
worse then monopolar.
ICA has found application in EMG analysis for the extraction of action potentials

of muscular units from surface myoelectric signals [113, 61], the detection of muscle
fatigue [149], and the identi�cation of the activity of individual muscles [112]. Further-
more, it was applied to improve classi�cation accuracy of a pattern recognition system
for myoelectric signal classi�cation [111].

3.3.1 Data-independent �lter
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Figure 3.3: Filter masks for data-
independent �lters.

Data-independent �lters are a set of pre-
de�ned �lter masks as shown in �gure 3.3.
We use the one proposed in [75] to be able
to compare results.
Each �lter mask is convolved with the

electrode array where boundary condi-
tions are set such that longitudinally we
pad with zeros while transversally chan-
nels that are con�ning from the other elec-
trode array are taken, hence we assume no
boundary in this direction which is reason-
able given that the entire arm is wrapped
by two electrode arrays.

3.3.1.1 Results of spatial

�ltering with data-independent �lters

In comparison the bipolar longitudinal �l-
ter mask performed best. Hence, we will
compare data-dependent �lters only with
this data-independent �lter mask.
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Figure 3.4: Comparison of bipolar �lter masks with un�ltered classi�cation accuracy.
Upper graphs: Accuracy over time window length, classi�cation is done with
the two best channels. Lower graphs: Accuracy over number of channels,
time window is set to 20 ms. Left is static regime only while right �gures
result from including the dynamic regime.
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Figure 3.5: Comparison of double di�erential �lter masks with un�ltered classi�cation
accuracy. Upper graphs: Accuracy over time window length, classi�cation
is done with the two best channels. Lower graphs: Accuracy over number
of channels, time window is set to 20 ms. Left is static regime only while
right �gures result from including the dynamic regime.
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Figure 3.6: Comparison of several data-independent �lter masks with un�ltered classi�-
cation accuracy. Upper graphs: Accuracy over time window length, classi-
�cation is done with the two best channels. Lower graphs: Accuracy over
number of channels, time window is set to 20 ms. Left is static regime only
while right �gures result from including the dynamic regime.
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3.3.2 Data-dependent �lter

In the sequel we present brie�y the di�erent algorithms that were used for data driven
spatial �ltering.

3.3.2.1 Principal component analysis

Principal component analysis a classical technique in statistical data analysis and is
counted to the family of unsupervised learning algorithms [60]. It is commonly used for
dimensionality reduction, lossy data compression, feature extraction and data visualiza-
tion [84].
PCA was �rst introduced by Karl Pearson in 1901 [126]. By drawing a conceptual

analogy to principal axes in mechanics, he aimed at extending the regression analysis
where only the dependent variable is assumed to be stochastic while the dependent
variables are not to the situation where both are stochastic. He approached the prob-
lem by minimizing the mean squared distance between data points and their projection
onto the principal axes. Later in 1933, PCA was reinvented by Hotelling [74] which is
why it is sometimes also called the Hotelling transform. He used a di�erent approach
leading to the same algorithm; he de�ned an orthogonal projection of the data onto
a lower dimensional linear space, known as the principal subspace, such that the vari-
ance of the projected data is maximized. Hotelling himself named it the methods of
principal components [74]. Furthermore, PCA is sometimes also called Karhunen-Loève
transform which is the empirical version of the Karhunen-Loève theorem [84] which is
a representation of a stochastic process as an in�nite linear combination of orthogonal
functions.
In short, PCA an orthogonal linear transformation where the �rst basis vector (eigen-

vector of the covariance matrix with largest eigenvalue) points in the direction of highest
variance and all the following are orthogonal to the former basis vectors and point in
the direction of . Given that the resulting principal components (eigenvectors) are or-
thogonal and given that the method is based on the covariance, the projected signals
are decorrelated, whitened and in case of probability distribution that are completely
characterized by the �rst and second moment, as for instance the Gauss and symmetric
Laplace distributions, removing pairwise correlations makes signals independent. some-
where, probably in Bishop or ICA stated what the assumptions for PCA are.
In the �eld of myoelectric signal analysis PCA was used for data visualization in

human gait investigation [156], to study motor unit discharge rates [115], to improve force
estimation [145, 144] and, �nally, PCA was used to reduce feature space dimensionality
while keeping classi�cation accuracy high [92, 47, 46] and improving the delay-accuracy
trade-o� [69, 25].

3.3.2.1.1 Algorithm implementation details For PCA calculation we use the imple-
mentation of the Statistics Toolbox of MATLAB.
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3.3.2.2 Independent component analysis

ICA is another unsupervised machine learning approach to �nd a linear transformation
such that the resulting features are statistically independent. Other than PCA this holds
true also for higher order dependencies. A classical example to explain the concept of
ICA is the so called cocktail party problem. A person attending a cocktail party perceives
a superposition of voices and other acoustic signals. To follow a discussion within such
a noisy environment this person needs to be able to process the superposition such that
it extracts the relevant signal, i.e. the voice of the discussion partner3. This is what is
called the independent component, namely the signal stemming from a source which is
statistically independent from the other sources contributing to the superimposed signal.
More formally we would like to �nd the K independent source signals {si}Ki=1 from N
observations. We write these in a matrix S with dimensions K ×N and assume linear
mixing by A of dimensions M ×K and the observations of the mixing of independent
sources is denoted by X and is of dimensions M ×N . Hence,

X = AS. (3.1)

An ICA algorithms aim is to estimate W ∼= A−1 based on the data matrix X where
equality would be the ideal case.
There are several di�erent algorithms for the estimation of the unmixing matrixW . In

this work we use two very well known algorithms, namely, the information maximization
approach to ICA [6, 2] and the FastICA algorithm [79]. While the former is using as
objective function the entropy of the estimated independent components and, hence,
takes into account all moments of the probability distribution, the latter is based on
extremizing the kurtosis of the estimated independent components. This means that
in a strict sense it can be only an approximation to the estimation of independent
components unless it is assured that no higher order dependencies are present. However,
FastICA is computationally much more e�cient [79] than gradient descent (including the
natural gradient descent [2]) algorithm used for the information maximization approach,
hence the name. However, the idea to maximize or minimize the kurtosis is based
on the assumption that the marginal distribution of the independent sources are non-
Gaussian [79]. If we assume the independent sources to be the muscles, then non-
Gaussianity seems a valid assumption given that not even their superimposed activity
(cross-talk) as measured by the surface electrodes results in a Gaussian distribution.
Nevertheless, in what follows we present a blind source separation technique that allows
signals to be Gaussian and exploits instead their temporal structure.

3.3.2.2.1 Algorithm implementation details Our implementation of the InfoMax
algorithm is based on [7]. The number of sweeps is 30. Initially the learning rate is set

3The cocktail party is a nice metaphor to explain the problem with which ICA algorithms deal. How-
ever, how a brain actually solves this problem may be entirely unrelated to current ICA algorithms
and is a prevailing topic of scienti�c research [160].
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to γ = 10−5, after 25 sweeps it is reduced to γ = 10−6 for the remaining 5 sweeps. The
weight matrix is initialized to the identity matrix.
We use the implementation of FastICA as provided online by [63]. We kept the rec-

ommended default values, i.e. a cubic non-linearity, unit step size, and no stabilization.
To control convergence ε = 10−4 and the maximum number of iterations is 1000. The
weight matrix is initialized by random values uniformly distributed between 0 and 1.

3.3.2.3 Second order blind identi�cation

The algorithm for second order blind identi�cation (SOBI) was �rst proposed in [152]
and further extended in [8, 9]. In this approach the independent sources are assumed to
have a Gaussian distribution with some auto-correlation function di�erent from the Dirac
delta, i.e. they have temporal structure. The original algorithm termed AMUSE [152]
is based on the idea to use a time-lagged covariance matrix to estimate the unmixing
matrixW [79]. The extensions include several time lagged covariance matrices [8, 9] and
show an improved performance as well as a reduced dependence on the speci�c choice
of the time lag τ .

3.3.2.3.1 Algorithm implementation details We use the implementation of SOBI
based on multiple time-lagged covariance matrices as provided online [10] and leave the
default value as proposed by the authors for the number of estimated covariance matrices
at 100.

3.3.2.4 Common spatial patterns

CSP is a supervised extension of PCA �rst proposed for the study of electroencephalo-
gram (EEG) [95]. The CSP algorithm computes spatial �lters that maximize the ratio of
the variance of the data conditioned on one class to the variance of the data conditioned
on the other class. In this way, spatial �lters can be designed to extract those components
of the data that di�er maximally (in terms of the variance) between conditions [95].
The two class CSP algorithm then solves the optimization problem

~w∗ = argmax
~w∈RN

(
~wTΣ1 ~w

~wTΣ2 ~w

)
(3.2)

with Σ1 and Σ2 being the covariance matrices of the signals ~x collected during class 1
and class 2, respectively. N is the dimensionality of the signal space. The solution can
be obtained by solving the generalized eigenvalue problem

Σ1 ~w = λΣ2 ~w (3.3)

where λ is the eigenvalue to the eigenvector ~w. Preprocessing is then usually done by
combining all eigenvectors of equation (3.3) to form the �lter matrix W .
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There are three common approaches to extend the two class algorithm to many classes:
one-vs-one (OvO), one-vs-rest (OvR), and joint block diagonalization [65, 67]. OvO is
a simple straight forward extension where one computes all NC(NC − 1)/2 pairwise
combinations of classes. OvR in turn is de�ned by the following objective function

~wc
∗ = argmax

~wc∈RN

 ~wTΣc ~w

~wT
(∑

i 6=c Σi

)
~w

 (3.4)

In the denominator we sum over all covariance matrices that are conditioned on classes
not being the currently chosen class c. Hence, this will give us a �lter matrix W ∈
RN×L·NC .
Hahne, et al. [67] show that the performance di�erence between OvO and OvR is

statistically not signi�cant while both methods show a slightly better mean performance
than the joint block diagonalization algorithm. Interestingly, in [65] the authors prove
analytically that the joint block diagonalization algorithm is equivalent to (unsupervised)
ICA.

3.3.2.4.1 Algorithm implementation details For our investigation we implement the
OvR algorithm and take for each class 30 eigenvectors, i.e. �lters or components having
the largest eigenvalues. Thus we get 30 · 8 = 240 spatial �lters.

3.3.2.5 Results of spatial �ltering with data-dependent �lters

Di�erence between the two ICA algorithms is negligible. However, given that we need one
algorithm to compare to the other �lters we take ICA based on information maximization
as its mean performance is sometimes slightly better as can be seen in �gure 3.7.

3.4 Feature selection

Feature selection is used in this thesis to address the following questions: 1.) �How many
channels can be added, and still provide an improvement in control accuracy?�. This
question was asked by Parker, et al. in [108, Chapter 18]. Yet no systematical study
was performed to address this question. 2.) What are �good� positions for electrode
placement? Clearly, the location where the electrode is put on the forearm in�uences
classi�cation accuracy as the signal amplitude drops quickly with the distance from a
muscle. To address this question and to propose a standardization for sensor placements
to improve reproducibility of sEMG studies, the European concerted action SENIAM
(surface EMG for a non-invasive assessment of muscles) addressed the issue of sensor
placement [70]. Their suggestion is to place electrodes on the muscle belly but not above
the innervation zone (sometimes also called motor point). Signals above the innervation
zone are �not typical� for the muscle, since small electrode displacements result in large
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Figure 3.7: Comparison of ICA algorithms with un�ltered classi�cation accuracy. Up-
per graphs: Accuracy over time window length, classi�cation is done with
the three best channels. Lower graphs: Accuracy over number of channels,
time window is set to 20 ms. Left is static regime only while right �gures
result from including the dynamic regime.
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Figure 3.8: Comparison of classi�cation performance employing data driven spatial �l-
ters and longitudinal bipolar with the un�ltered case. Upper graphs: Ac-
curacy over time window length, classi�cation is done with the three best
channels. Lower graphs: Accuracy over number of channels, time window
is set to 20 ms. Left is static regime only while right �gures result from
including the dynamic regime.
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(a) Static regime only.

(b) Static and dynamic regime.

Figure 3.9: Direct comparison of CSP and SOBI for signals measured during static con-
traction (a) and signals measured static contraction and dynamic contraction
onset and o�set (b). Color plots of di�erence of classi�cation accuracies af-
ter �ltering with CSP and SOBI. Positive (red) values mean CSP �ltering
is better while negative (blue) values mean SOBI �ltering results in a better
classi�cation performance.
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Figure 3.10: Excerpt of comparison between CSP and SOBI �gure 3.9. We plot here col-
umn �ve and row �ve of the color plots in �gure 3.9. Circles mean columns
of the color plots above (�xed time window T = 50 ms), i.e. the respec-
tive x-axis is �Number of Channels� and crosses the rows (�xed number of
channels k = 5), i.e. the x-axis here is �Time Window�. Blue marks static
regime only while red marks results from static and dynamic regime.
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signal amplitude variations. Sensors should preferably be placed in the middle between
muscle end zone (tendons) and innervation zone and away from other muscles to avoid
cross-talk [70].
As we measure with two high density electrode arrays surrounding the entire forearm

we pick up signal from all places mentioned, i.e. muscle belly, innervation zone, close
to tendons and some electrodes' position is between muscles, hence, crass-talk will be
strong in those channels. In order to assess which position is a �good� position and
answer question 2.) we will employ feature selection algorithms to select a subset k out
of the 126 signals. Furthermore, by varying k and assessing classi�cation accuracy as
standard o�ine measure of control accuracy we can address question 1.).
In principle, to �nd the best electrode set is an NP complete [62] problem therefore

we have to resort on heuristics. An exhaustive search would amount to evaluate 2126

channel combinations. Even if we restrict the number of channels, i.e. we look for

the best subset of k channels we would have to evaluate

(
126
k

)
which grows quickly

with k. As we do not know in advance which heuristic is suited best to our problem,
we perform a comparative study and test feature selection algorithms from each of the
three algorithm categories: �lters, wrappers and embedded methods [66].
In the following we give a quick overview of feature selection and electrode positioning

performed within the EMG community. Kendell et al. [89] investigate electrode pair
selection and positioning based on signal power and frequency characteristics. The goal
in their study is to �nd a good electrode placement for use in clinical rehabilitation,
hence their objective is not to improve pattern recognition accuracy. Their approach
takes into consideration two aspects of the signal: the amplitude should be high and the
mean and median power spectral frequency should be small. A large amplitude provides
a good signal-to-noise ratio and the latter index gives an electrode positioning far from
the innervation zone (IZ) which is known to lead to poor signals [70].
Hargrove et al. [69] apply sequential backward selection after a high dimensional fea-

ture space is produced by PCA preprocessing. The aim is to reduce dimensionality for
saving computation time while keeping a good level of classi�cation accuracy. Pulliam
et al. [132] apply a sequential forward selection to select the best muscles for optimizing
the performance of a time delayed arti�cial neural network for the control of a tran-
shumeral prosthesis4. Sequential forward selection was also applied in [114] to �nd the
best features for classi�cation among 19 auto-cumulants of order two, three and four.
Next we present present brie�y the di�erent feature selection methods whose perfor-

mance we will compare. Please note that despite the fact that electrodes, channels and
features have di�erent meaning in general it is correct to use these terms interchange-
ably in what follows as the selection of features, i.e. input dimensions to our classi�er, is
identical to select speci�c electrodes which is again identical to a given signal channel as

4Although one might argue that given only 7 features (in this case each feature corresponds to a muscle
due to speci�c electrode placements) the best choice would be an exhaustive search evaluating all
128 possibilities.
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each channel is the root mean square of a monopolar electrode signal. However, in gen-
eral a channel can be di�erent from an electrode as in the case of blind source separation
techniques where a channel denotes a source, i.e. a weighted sum of electrode signals.
There is no clear de�nition of a channel in the myoelectric community and it shall not
be of our concern in this study to provide one. Features is an even more general term as
it stands for the input dimensions to a classi�er which can be any function of the raw
signal as measured from an electrode.
We categorize the feature selection approaches into wrapper methods, which are search

strategies that have as objective function the classi�cation accuracy of the classi�er that
is employed for classi�cation afterwards, that is, these search strategies optimize the
quantity that is our general assessment quantity for good electrode positions. In con-
trast to this, �lter methods by de�nition have an objective function di�erent from the
classi�cation accuracy. We will study information theoretic quantities as objective func-
tion. However, the �nal assessment of the quality of selected channels still remains the
classi�cation accuracy of the LDA classi�er. Embedded methods in turn are classi�ers
where the feature selection is intrinsically part of the algorithm. In our case random
forests [15] and AdaBoost [60]. The selection of channels done by those algorithms are
then again assessed in terms of classi�cation accuracy of an LDA.
Apart from this general categorization we have to di�erentiate between two concep-

tually distinct search heuristics within the wrapper methods, namely deterministic and
stochastic selection methods as is seen next.

3.4.1 Wrapper methods

3.4.1.1 Deterministic search heuristics

3.4.1.1.1 Sequential forward selection. Together with backward selection (also called
backward extraction) this approach is the simplest possible. The best feature subset S
according to this algorithm is selected sequentially by �rst evaluating for each feature
alone the classi�cation accuracy and taking the one with the highest score. Next all
pairs are evaluated with the one selected and those remaining and then the best pair is
chosen to be S. This procedure is iterated until S has a cardinality of k, the prede�ned
subset of best features size.

3.4.1.1.2 Sequential forward �oating selection. It is known, however, that sequen-
tial forward selection (SFS) has the de�ciency of getting easily stuck in local minima. In
the feature selection context, this is also called the �nesting e�ect� [66, Chap. 4]. This
de�ciency is overcome by many di�erent extensions of the SFS heuristic [66, Chap. 4].
Here we will test the extension called sequential forward �oating selection (SFFS) which
was �rst proposed in [131].5 It is parameter free, simple and it was shown empirically
to produce good results [66].

5Please note that there was an error in the original article, a correct version can be found here [66]
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The general idea is to not only perform a forward selection but also a backward
extraction if the resulting feature set provides a better performance then the feature set
with the same cardinality tested before. In such a case forward selection would proceed
with a di�erent (better) set of features as would be by only forward selecting features.

3.4.1.2 Stochastic search heuristics

3.4.1.2.1 Particle swarm optimization. The particle swarm optimization (PSO) al-
gorithm was �rst proposed in [90]. Since then many di�erent variations of the original
idea were proposed [128]. However, the nowadays most widely spread version of PSO,
the so called canonical PSO [128], is the choice for our study.
PSO consists of a swarm of particles, each particle is a distinct subset of selected

channels with cardinality k for which the accuracy is evaluated. The idea is that these
particles explore the landscape de�ned by the objective function to �nd the optimum.

3.4.1.2.2 Discrete particle swarm optimization. Given that our problem is discrete
in its nature (the search space is discrete, actually binary: either a feature is selected or
not) we use the adapted version of discrete PSO [91] proposed for feature selection in [1].
As the authors have shown this PSO algorithm outperforms also simulated annealing.
Note: in the review [128], formula (6) is wrong. The logistic function is a function of
the velocity not the position of the particle, confront [91].

3.4.2 Filter methods

Filter approaches to feature selection are based on objective functions other than the
objective function of the learning algorithm. Here we compare four di�erent information
theoretic objective functions:

� mutual information feature selection (mifs) [5]

Jmifs(Xk) = I(Xk;Y )− β
∑
Xj∈S

I(Xk;Xj) (3.5)

� maximum relevance minimum redundancy (mrmr) [127]

Jmrmr(Xk) = I(Xk;Y )− 1

|S|
∑
j∈S

I(Xk;Xj) (3.6)

� joint mutual information (jmi) [158]

Jjmi(Xk) =
∑
j∈S

I(XkXj;Y ) (3.7)
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� conditional mutual information maximization (cmim) [56]

Jcmim(Xk) = min
Xj∈S

I(Xk;Y |Xj) (3.8)

All these objective functions can be derived as approximations to the maximum of
the conditional likelihood L(y|~x, θ) of the labels y given a feature vector ~x and some
parameters θ, as is elegantly proved in [18]. For an explanation of the information theo-
retic quantities please refer to A. The estimation of the information theoretic quantities
is based on histogram estimations and β = 1 in equation (3.5) as proposed in [18].
While the equations above de�ne the objective functions, the selection algorithm is

deliberately chosen to be the simplest one, namely sequential forward selection.
According to [17, 18] the best performance is given by Jjmi. In 3.4.4.2 a comparison of

these objective functions in terms of classi�cation accuracy within our standard pattern
recognition setting (which is de�ned earlier) can be found.

3.4.3 Embedded methods

3.4.3.1 AdaBoost

AdaBoost6 is a well studied ensemble classi�er �rst proposed in [59] that relies on the
concept of boosting. The motivation for boosting is a procedure that combines the
outputs of many �weak� classi�ers to produce a powerful �committee�. The weak classi�er
used here is a classi�cation and regression tree [60], one is trained for each feature.
Features are then selected by the weights that the AdaBoost algorithm gives the single
classi�ers and in that sense the individual features.

3.4.3.2 Random forests

Random forests is another example of an ensemble classi�er [15]. Also here feature
selection is intrinsic to the algorithm and therefore counts to embedded methods [66,
Chap. 5]. The selection is performed by an internal variable importance estimate which
gives a natural ranking for the features on which a random forest is grown [15]. We refer
the reader to the original publication for details about the ranking measure [15]. Here
we used the implementation of random forests as can be found in [81]. There are two
parameters to be set: The number of trees we set to 500 and the number of features per
tree is set to one third of the total number of features.

3.4.4 Comparing performances of feature selection algorithms

3.4.4.1 Comparing search strategies

Which search strategy �nds the best channels? Here we compare the two deterministic
with the two stochastic search or optimization methods presented in 3.4.1. As can be

6Sometimes also called AdaBoost.M1 [60]
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seen from �gure 3.11, the superiority of SFFS over SFS for myoelectric channel selection
is very small. The algorithms are most of the times equal in performance, sometimes
SFFS is slightly better (less than 1%) and only for a time window of 10 ms SFFS proves
to improve performance more than 2% over SFS.

Comparing PSO with discrete particle swarm optimization (DPSO) in �gure 3.12
shows that the performance is virtually the same: Sometimes PSO and other times
DPSO performs slightly better (di�erence in accuracy < 1%) while most of the times
their performance is equal. However, as DPSO is suited better to our problem due to
its discrete nature we choose this algorithm for the general comparison in 3.4.4.3.
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Figure 3.11: Di�erence of classi�cation accuracy as realized by the deterministic search
strategies SFS and SFFS. Negative (blue) values denote SFFS found the
better channels while positive (red) values denote that SFS found the better
channels.
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Figure 3.12: Di�erence of classi�cation accuracy as realized by the probabilistic search
strategies PSO and DPSO. Negative (blue) values denote DPSO found
the better channels while positive (red) values denote that PSO found the
better channels.

3.4.4.2 Comparing information-theoretic objective functions

Which information theoretic objective function gives the best result for the �lter methods
(see 3.4.2)? We compare the objective functions de�ned by the equations (3.5), (3.6),
(3.7) and (3.8). The search strategy is SFS and accuracy is computed by the standard
classi�er scheme as de�ned earlier based on the respective selections.
We �nd that jmi gives the best results. Interestingly, this is in accordance with

tests on other data sets [18]. Second best objective function is cmim. This objective
function outperforms jmi only a few times by less than 2% as can be seen in graph d) of
�gure 3.13. The mrmr and mifs perform poorly in comparison to the other two especially
for a channel number smaller than nine.

3.4.4.3 Comparison of feature-selection methods

3.4.5 Placement of electrodes

We will now turn to the question of which electrode positions provide good performances
in terms of classi�cation accuracy.
In order to approach the question whether speci�c electrode positions provide good

performance quality or whether there are rather good areas for electrode positioning,
we select a set of electrodes and perform an exhaustive search of the positions in their
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Figure 3.13: Quality of channel selection by �lter methods using information theoretic
objective functions.
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Figure 3.14: Comparison of di�erent feature selection algorithms for di�erent time win-
dow lengths as indicated by the arrows from the color plot, a) 100 ms, b)
200 ms and c) is for a time window of 10 ms. Color plot shows the trade-o�
between number of channels and time window length when channel selection
is performed by the best algorithm, SFFS.

71



3 Machine learning approach

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Time Window [ms]

N
u
m

b
e
r 

o
f 
C

h
a
n
n
e
ls

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Time Window [ms]

N
u
m

b
e
r 

o
f 
C

h
a
n
n
e
ls

200
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05JMI vs. SFFS DPSO vs. SFFSa) b)
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neighborhood. Considering only neighbors along rows and columns of the electrode
grid, the maximal number of possible electrode con�gurations that need be tested are 5k

where k is the number of preselected electrodes. Note that electrodes positioned at the
top or bottom (long) array edges lack, respectively, the upper or lower neighbor, while
electrodes positioned at the lateral (short) edges of the electrode array are assigned
neighboring electrodes from the respective other end of the respective other array.
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Figure 3.17: Histograms of classi�cation accuracy when classifying with all possible com-
binations of the neighborhood and k = 5 selected channels. (a) selection
performed by SFFS, (b) selection performed by DPSO. In both situations
T = 50 ms which is one of the cases where their performance is equal (see
�gure 3.15), namely, 96.6%.
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4.1 Probability density function

The probability density is the central quantity of stochastic approaches to data analysis.
With knowledge of the probability density function from which a data set is drawn,
one can in principle derive a Bayes optimal classi�er or �nd parameter-based estimates
of information-theoretic quantities, which is especially important in the case of high
dimensional data.

It is often assumed that myoelectric signal statistics follow a Gaussian distribution,
however, some investigators found that the distribution of myoelectric signals is stronger
peaked than predicted by a Gaussian probability density function [109, 78, 12, 33].
Clancy and Hogan [33] proposed the Laplace distribution as an alternative statistical
description of MES. They concluded that the true distribution lies �in between� [33] a
Gaussian and a Laplace distribution.

We further investigated the functional form of the probability distribution and found
that many of the 126 available signals at each measurement are clearly asymmetric, as
can be seen by visual inspection as well as quanti�ed by the third moment of the prob-
ability distribution, known as skewness. However, the Gaussian as well as the proposed
Laplace distribution are symmetric and hence cannot provide a correct description of
myoelectric signals. Furthermore, for those signals with a small skewness, i.e. with a
symmetric distribution, we found deviations from a Gaussian. These deviations occurred
not only at the peak of the distribution but also at its tails. The tails often show a linear
rather than a quadratic decay as implied by the Gaussian model, which becomes obvious
when plotted in a semi-logarithmic plot. Hence the behavior is closer to a Laplace dis-
tribution. Still, the �t of this distribution to the data is not adequate when estimating
the parameters of the Laplace density. We, therefore, proposed a mixture model of a
Gaussian and a Laplace random variable with mixture parameters obtained by the best
�t in terms of KL-distance. This mixture then captures the peak as well as the tails of
the distribution which can also be appreciated by visual inspection.

In the following we are discussing a symmetric mixture distribution, although this may
not explain part of the myoelectric signal statistics. A more complex model could be
based on a generalized asymmetric form of the Laplace distribution [96] or be obtained
by considering the positive and the negative signals separately. We have chosen not to
follow this path because of the possibility of an analytical treatment of Bayes classi�ers
and Bayesian �ltering does not seem to be feasible for a more complex form of the model
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distribution.

4.2 Amplitude estimation

Amplitude estimation is of general importance for clinical applications of electromyo-
grams. The maximum likelihood estimator of the myoelectric signal amplitude depends
on the likelihood model, i.e. on the probability density function that supposedly un-
derlies the given data set. For a centered Gaussian distribution the RMS provides a
su�cient statistics, while for a Laplace distribution the mean absolute value (MAV) can
be used, as discussed in [33]. These authors found that the signal-to-noise ratio for MAV
amplitude estimation is 2.0%-6.5% higher than RMS estimation [33].
In order to improve the signal-to-noise ratio we studied an advanced amplitude esti-

mation technique from the family of Bayesian �lters proposed in [138]. We showed that
the Bayes �lter produces a 4.3-fold better signal-to-noise ratio when a Laplace likelihood
function is chosen as compared to RMS estimation with a 200 ms smoothing window.
Furthermore, when applied to arti�cial data the Bayesian �lter produces a four-fold
smaller root mean square error than the RMS with a time window of 250 ms. Using
longer time windows the estimation with RMS will improve but also increases the delay
of estimation of transient signals, which, depending on the speci�c application, might
not be tolerable. In application to prosthetic control, for instance, delays should not
exceed 300 ms as longer controller delays are perceivable by the user [54, 45].
We conclude that o�-line tests show very promising results of the algorithm for en-

hancement of proportional and simultaneous control of multiple degrees of freedom of a
powered prosthesis. Nevertheless, the �nal quality assessment in a real time on-line test
is still in process and must be completed before it can be implemented as part of the
control algorithm of a myoelectrically controlled prosthesis.
Finally, we extended the original Bayes �lter proposed in [138] by introducing an

inverse Gamma distribution as model for the prior. In doing so and by the approximation
of σMVC → ∞, we derived explicit equations that describe parameters updates of the
inverse Gamma distribution for the evolution and observation update. The performance
improvement for this extension may be marginal. However, it is a �rst step towards
a multi-dimensional Bayes-Fokker-Planck �lter which can be realized by replacing the
inverse Gamma distribution by its multi-dimensional counterpart that is known as the
inverse Wishart distribution [118].

4.3 Pattern recognition

4.3.1 Spatial �ltering

Spatial �ltering improves muscular unit action potential extraction [106] and also the
classi�cation accuracy of pattern recognition systems [75, 67]. In a pioneering study
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Huang et al. [75] found that of a set of di�erent data independent spatial �lters the double
di�erential gave the best result for classi�cation improvement. However, we compared
the proposed data independent �lters and found that the simple bipolar �lter performed
best if aligned with muscle �bers. This �nding is important because it gives additional
justi�cation to the widely spread use of bipolar electrodes in clinical applications [108,
chapter 5]. Furthermore it suggests that a bipolar �lter aligned with the muscle �bers
is a good reference to evaluate performances of other spatial �lters.
Next we included several data driven �lters in our comparative study and found that

CSP performed best, thus supporting the �ndings of Hahne, et al. [67]. However, de-
spite the many studies on using pattern recognition systems for myoelectric control,
many of them (e.g. [67, 75]) ignore the dynamic regime at the transition from one con-
traction to the other. Including this regime is known to reduce classi�cation accuracy
considerably [103, 44, 71]. However, high usability requires the controller to produce a
robust classi�cation also during dynamic contractions. When we include the dynamic
signal regime, we �nd that another algorithm, SOBI, outperforms all other approaches
and gives an improvement with respect to CSP by about 1-3% for time window lengths
longer than 10 ms and more than four channels.
The improvement in performance of SOBI when the dynamic regime is included is

explained by the algorithm's strategy to do source separation. It is based on time-
lagged covariance matrices and so exploits the temporal structure of the data that is not
present in the static regime. Moreover, we should add that CSP is supervised while SOBI
is unsupervised. This makes SOBI applicable in situations where data is not segmented
into classes, as is the case in, for example, regression approaches.
In general, we �nd that spatial �ltering makes the algorithm less susceptible to the

trade-o� between accuracy and delay as the performance improvement is considerable
for short time windows.

4.3.2 Feature selection

In general the question of how many channels can be added and still provide an improve-
ment of control accuracy [108] is dependent on the speci�c pattern recognition system,
the number and type of classes, on the channel positions and the measurement hardware.
Our setup consists of two high-density electrode arrays and, hence, our spatial sampling
frequency is high and, therefore, we do not need to worry about channel positions. In-
deed, we picked a subset of best (w.r.t. a speci�c algorithm) electrodes out of the 126
available electrodes and thus gain information about �good� electrode positions.
Finding the best subset of 126 electrodes is an NP-hard optimization problem such

that an exhaustive search becomes di�cult. Therefore, it is preferable to use heuristics
instead to �nd or approximate the optimal solution. Given that we cannot decide a
priori which algorithm is suited best to our speci�c subset selection problem, we need
to compare di�erent algorithms and �nd that SFFS gives the best performance. This
approach counts to the wrapper methods because the objective function is the classi�ca-
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tion accuracy of an LDA classi�er, and, hence, its selection will depend on the classi�er
used. To get classi�er independent results we approach the subset selection problem
with �lter methods based on information-theoretic objective functions. From the four
we tested the joint mutual information proved to be the best yielding results comparable
to SFFS while being computationally much more e�cient.
Turning back to our original question about how many channels can be added until

performance is saturated (i.e. classi�cation accuracy > 99.9%) we sequentially increase
the number of channels and vary the time window length of RMS calculation. We �nd
that �ve channels su�ce when a time window of 200 ms is used which is a common choice
in other studies. However, if we instead prefer a shorter time window and still intend
to obtain a comparable classi�cation performance, we have to employ more channels. It
seems, however, unlikely to reduce the time window below an interval of 50 ms where a
practically relevant performance can still be achieved with 13 channels
For seven out of the eight situations considered here, three out of �ve electrodes are

selected from the array that is �xed on the dorsal side of the upper forearm, i.e. above
the extensor muscle group. Furthermore, we notice that most of the times electrodes
selected on array one belong to the left half of the array, close to the ulna (elbow bone)
and, hence, covering activity from extensor capri ulnaris, extensor digiti minimi, extensor
digitorum and extensor carpi radialis brevis. The electrodes that are selected from the
other array are located on its left and right part leaving the middle of the array empty.
They are placed over the �exor carpi ulnaris and the �exor carpi radialis.
Finally, we addressed the question whether good positions for electrodes are single

hot spots or larger areas. Performing an exhaustive search of the neighborhood of �ve
preselected electrodes, we found that for the SFFS selection, accuracies can drop by
about 10% when choosing direct neighbors while for an electrode con�guration selected
by DPSO most of the con�gurations (close to 60%) fall into a range of about ±0.5%
deviation from the accuracy that was produced by the original selection. However, also
here we �nd a noticeable fraction of electrodes that cause a drop of the accuracy by about
5%. Hence, we conclude that there are areas which enhance robustness with respect to
shifts of the electrode position, while in general position shifts can lead to signi�cant
performance losses.
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A.1 Basic concepts

While the term information (content) of myoelectric signals tends to get used in a
colloquial way, in this thesis the term information will always denote Shannon informa-
tion [142] which is quanti�able by the entropy

H(X) = −
NE∑
i=1

P (X = xi) log2 (P (X = xi)) (A.1)

X is a discrete stochastic variable with realizations xi ∈ A, where A (often called the
alphabet) is the set of possible events. The cardinality of A is denoted by NE = |A|.
The basis of the logarithm de�nes the units in which information is measured. We will
set it to 2 and thus quantify the information in bits. For a continuous stochastic variable
with a probability density p(x) the analogous quantity is called di�erential entropy [36]

h(x) = −
ˆ

Ω

p(x) log2 (p(x)) dx (A.2)

where Ω is the support of the probability distribution p(x).
Entropy quanti�es information, namely the expected information that we obtain by

observing the outcome of a stochastic variable, or, analogously, the expected uncertainty
about the outcome before the observation.
Before we turn to our speci�c setting we need to de�ne two further quantities: The

conditional entropy H(Y |X) and the mutual information I(X, Y ) [36]. The conditional
entropy is de�ned by

H(Y |X) = EP (X,Y ) (log2 (P (y|x))) . (A.3)

It describes the expected uncertainty left about the outcome of Y given that we know
the outcome of X. The conditional di�erential entropy is de�ned analogously.
Mutual information tells us how much information can be expected from the outcome

of one stochastic variable about another. It is de�ned as

I(X, Y ) = EP (X,Y )

(
log2

(
P (X, Y )

P (X)P (Y )

))
. (A.4)

Note that the mutual information I(X, Y ) = DKL (P (X, Y )||P (X)P (Y )) can be ex-
pressed using the Kullback-Leibler divergence DKL(p||q), see equation (2.10). As can
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be seen from equation (A.4) I(X, Y ) is zero i� the stochastic variables are independent
which implies that the joint distribution factorizes, and it is symmetric in its arguments.
Furthermore, the mutual information can be expressed in terms of entropies

I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (A.5)

Given that the conditional entropy is smaller or in case of independence equal to the
marginal entropy and from the equality of the latter two entropy sums we can deduce
that I(X, Y ) ≤ min (H(X), H(Y )). Equality is exactly the case if one variable fully
determines the other one (with lower entropy).
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