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Chapter 1  Introduction 

 

1.1 Overview 

 

Tropical forests cover 7% of the land area on earth (Myers et al., 2000); however, 

despite their comparatively small area, they supply a disproportionately plentiful 

amount of products and services to humankind, including watershed control, timber, 

medicine, and food (Bonan, 2008; Corlet, 2011). In developing countries, tropical 

rainforests provide a large amount of benefits for indigenous people in the form of  

timber and non-timber products, energy, shelter, and livelihood (Menzies, 2002; Carter, 

2005). Tropical forests are also invaluable in protecting fertile soil, producing rain in the 

tropics, and increasing overall production (FAO, 1997); in addition, they make up the 

largest pool of terrestrial biomass carbon stock and account for more than half of the 

planet’s terrestrial biodiversity and one-third of the terrestrial net primary production 

(Dirzo and Raven, 2003; Bonan, 2008; Lewis et al., 2009; Beer et al., 2010; Pan et al., 

2011). Nevertheless, tropical forests have gradually changed over the past decades 

owing to anthropogenic and large-scale natural disturbances (e.g., hurricanes, fires, 

and landslides). Because of the essential role tropical forests play in biodiversity and 

the global carbon cycle, it is increasingly necessary to understand their dynamics. 

 

Forest models play a crucial role in forest management and as such are an essential 

key to developing long-term strategies for management and ensuring resource 

sustainability. They assist forest managers in planning forests, evaluating silvicultural 

options for sustainable timber yield, and reducing damage. Many diverse forest models 

have been developed by researchers in order to account for uneven- and even-aged 

trees and stand tables; each model has its own unique technique to accommodate 

specific locations and tree species. Forest models are produced by a combination of 

several models, e.g., diameter or basal area increment, recruitment, and mortality; 

furthermore, they are developed by different techniques. For example, Vanclay (1988) 

used non-linear regression techniques to present a growth model for uneven-aged 

monospecific stands of Cypress Pine. The model is implemented as a cohort model 

comprising stand basal area increment, diameter increment, mortality, and 

regeneration. He also described techniques for modeling tropical forest growth (1995). 

Additionally, Palahi et al. (2002) developed stand density, stand basal area, and 
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volume models by using a non-linear three-stage least square technique as the 

estimation procedure to predict the stand growth and yield of Scots pine stands in 

Northeast Spain.  

 

According to Monserud (2003), there are six different kinds of forest vegetation 

simulation models: (1) forest growth and yield models, (2) ecological gap models, (3) 

ecological compartment models, (4) process/mechanistic models, (5) vegetation 

distribution models, and (6) hybrid models. Of these, forest growth and yield models 

are the oldest and most expansive class; as such, they are the most widely used in 

forest management. The most significant benefits of those models are their ability to 

provide an efficient way to forecast resources and predict tree/stand characteristics in 

detail. This detail regarding stand structure, species composition, and silvicultural 

treatment response makes this kind of model well suited for examining alternative 

methods for compatible forest management. Growth and yield models describe forest 

dynamics, including regeneration, tree growth, recruitment, mortality, reproduction, and 

associated changes in the stand (Oliver and Larsen, 1996); Vanclay (1994) defined 

forest growth models as abstractions of the natural dynamics of a forest stand. Most 

forest dynamic models are split into three components: diameter increment, 

recruitment, and mortality. 

 

The setting up and re-measurement of permanent sample plots are essential 

prerequisites for the investigation of tropical forest diversity and ecological processes 

(Phillips et al., 1998). Most of the existing knowledge on tropical forest structures and 

dynamics relies on observations of permanent plots (Phillips et al., 2008), and many 

ecological studies analyze population changes using census information obtained while 

counting and recounting a defined plot and examining survivors, losses and gains 

(Sheil and May, 1996). 

 

These days, modeling diameter increment, recruitment, and mortality in natural forests 

within the tropics is a subject that has been widely developed. Despite the significant 

progress made, there has been relatively little study illustrating the growth model of 

tree species in tropical forests, especially in the tropical forests of Southeast Asia. The 

purpose of this study is thus twofold: first, to provide a description of the changes in the 

forest structure and tree species diversity over time, and second, to provide the first 
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analysis of stand dynamics, including diameter increment, recruitment, and mortality, in 

tropical rainforests of Vietnam. To get a better understanding of the dynamics of 

tropical Vietnamese rainforests, we used a data set from 12 one-hectare permanent 

sample plots with high species diversity in four provinces. Compared with temperate 

forests, any modeling of tropical forests faces three main difficulties: (1) the richness of 

the tree species, (2) the lack of data on tree ages, and (3) the lack of long-term 

measurement of data on forest structure. We therefore classified tree species into two 

groups based on an importance value index (IVI). The IVI was calculated by adding up 

the three important traits of an individual species: tree density, how often a species 

appears in the subplots, and the density of stock expressed as basal area (Ribeiro et 

al., 2008). As a result, the IVI provides a summary of all three indicators of ecosystem 

importance.   

 

Stand structure is an essential variable affecting wildlife habitat, and as such it plays an 

important role in forest zonation. In this study, stand structures were described through 

the relative frequency distributions of diameter and total height, the number of tree 

species per diameter class, and the relationship between height and diameter; these 

are the fundamental attributes of a forest structure. Diverse probability density 

functions have been utilized to depict the diameter distributions of forest stands (Bailey 

and Dell, 1973; Maltamo et al., 2000), e.g, Gamma, Log-normal, and Weibull 

distributions, the latter of which is one of the most flexible distributions for fitting tree 

diameter distributions (Bullock and Burkhart, 2005; Commes and Allen, 2007), 

especially in the range of tropical forests (Muller-Landau et al., 2006). In regard to tree 

species diversity, we used diversity indices, diversity profiles, and species-area 

relations to evaluate and compare species diversity across four provinces.  

 

Diameter increment is a meaningful tree growth component and primarily related to 

initial tree size, some indices of competition, and site productivity potential, usually in 

allometric models, such as Ey = 0 x
1 = exp(0 + 1 lnx) in the simplest case using only 

one regressor x. This form can easily be extended by additional additive regressors in 

the exponential function. Linear mixed effects model is a newer statistical methodology 

for fitting increment data. The linear mixed effects models not only have the ability to 

incorporate both fixed and random effects containing multiple levels (Pinheiro and 

Bates, 2000), but also allow variability to be parsed into these hierarchical levels. In this 
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study, this approach was used to predict diameter increment of important tree species 

occurring in three or four provinces by accounting for random variation of regression 

parameters between plots and between provinces. 

 

For tree species, the recruitment of new individuals and the death of old ones are 

important processes in population dynamics. On the one hand, recruitment is 

commonly defined as a process by which young trees are added to forest stands, 

whereas in silviculture, recruitment is recognized as the process by which saplings or 

young trees overgrow a certain threshold diameter (Lexerød and Eid 2005). In our 

study, recruitment trees are defined as the number of trees exceeding a diameter 

threshold of 6 cm between the two inventories. Recruitment is one of the key process 

for forest management, as it denotes different processes in the stands (e.g., changes in 

structure and composition) which may in turn demonstrate the adequacy of past forest 

management or suggest options for structural maintenance in forest stands (Klopcic 

and Boncina, 2012).  

 

On the other hand, tree mortality constitutes another major element of forest dynamics. 

The death of a tree lessens density and influences the social position of the remaining 

trees, which then defines the diameter increment, potential regeneration, and the 

probability of mortality for the residual trees. Even though the mortality model occupies 

a defining role in stand structure and dynamics, it still remains one of the least 

understood components of growth models (Lutz and Halpern, 2006). To model 

recruitment and mortality, two approaches were applied: generalized linear models for 

count data (Poisson, Quasi-Poisson, and Negative Binomial models), and generalized 

linear mixed effects models (Negative Binomial mixed effects model). 

 

 

1.2 Objectives of the study 

 

The following objectives were addressed: 

(1)  To describe the changes in forest structure and tree species diversity 

over a 7- and 8-year period, 

(2)  To build diameter increment models for natural tropical forests, and 

(3)  To construct recruitment and mortality models.  
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1.3 Structure of the dissertation  

 

This dissertation is broken up into six chapters. Following this introduction, the second 

chapter presents the four study sites and data collection. Chapter 3 discusses changes 

in the forest structure and tree species diversity over time; the following two chapters 

deal with modeling diameter increment, and recruitment and mortality, respectively. 

The sixth and final chapter sums up the previous chapters’ findings with a general 

conclusion. 
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Chapter 2 Research area and data collection 

 

2.1 Overview of forests in Vietnam 

 

Vietnam is situated along the eastern coast of the Indochina Peninsula in Southeast 

Asia-an S-shaped territory of 331,000 km2 that extends 1650 kilometers from north to 

south (Figure 2.1). Vietnam can be divided into three types of topographic categories: 

mountainous areas, central highlands and plateaus, and low lying deltas and coastal 

plains (Queiroz et al., 2013) with three-quarters of Vietnam constituting sloping hills 

and mountainous lands. Several decades ago, most of the country was covered by 

diverse primary forests until an intense period of rapid deforestation, land-use changes, 

illegal logging, over-exploitation of non-timber forest products, and weak protected area 

management dealt the Vietnamese landscape a severe blow. In addition, war, timber 

exploitation, fire, and conversion to agriculture have damaged more than half of the 

forest area in Vietnam (Mittelman, 2001).  

 

The total forest cover has however risen over the past two decades. In 1990, the 

percentage of forest cover was only 27% (US forest service, 2011) as compared with 

39.9% in 2012. This increase in forest cover may have been the result of the expansion 

of forestry plantations and regenerative forests. Vietnam has forest area of 13.86 

million hectares (ha), consisting of 10.42 million ha of natural forests (75.18%) and 3.44 

ha of plantations (24.82%) (Report of Vietnam Ministry of Agriculture and Rural 

Development, 2012). 

 

Forests in Vietnam are classified according to one of three functions: production, 

protection, and special-use, as defined by the 1991 Forest Protection and Development 

Law. Production forests, as the name implies, supply timber and non-timber forest 

products. Protection forests are intended to protect ecosystem services, minimize the 

impact of extreme events, such as contribute to the avoidance of environmental 

degradation, and restrict the collection of non-timber forest products. Unlike production 

or protection forests, special-use forests are so designated to the goals of nature 

conservation, the protection of historical and cultural relics, and environmental 

protection. In 2012, Vietnam had approximately 6.96 million ha of production forests 

(50.22%), 4.68 million ha of protection forests (33.77%), and 2.22 million ha of special-
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use forests (16.02%). The areas (ha) of forest types categorized according to their 

objectives are illustrated in Table 2.1. 

 

Table 2.1  Forest types in Vietnam, 2012  

 

Forest types Total 

Forest classification 

Special-use Protection Production 

Total area 13,862,043 2,021,995 4,675,404 6,964,415 

I. Natural forest 10,423,844 1,940,309 4,023,040 4,415,855 

1. Timber forest 8,491,520 1,521,400 3,243,939 3,695,039 

2. Bamboo forest 521,304 52,494 140,557 324,473 

3. Mixed forest 648,423 134,293 213,693 295,406 

4. Mangrove forest 58,227 13,986 40,595 2,976 

5. Rocky mountain forest 704,370 217,687 384,255 97,960 

II. Plantation 3,438,200 81,686 652,364 2,548,561 

1. Plantation with forest stock 1,873,659 55,768 399,416 1,350,233 

2. Plantation without forest stock 1,135,997 18,238 162,319 886,869 

3. Bamboo and dendrocalamus 81,287 185 5,567 74,914 

4. Other tree plantations 348,256 7,495 85,072 236,544 

Source: Vietnam Ministry of Agriculture and Rural Development (MARD), 2012 

 

Vietnam is ranked 16th among the world’s most biodiversity-rich countries (Queiroz et 

al., 2013), possessing 11,373 plant species which in turn belong to 2,524 genera, 378 

families, and 7 major plant groups (Nguyen, 1997). These days, however, Vietnam has 

become a crucial contributor to the loss of regional and global biodiversity as a result of 

three main issues: an illegal endangered species trade, a wood processing industry, 

and the consumption of plant products from threatened species. For the Vietnamese 

people, the forests support not only economic returns, but also important social and,  
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cultural benefits, and environmental services. The urgent issues of today therefore 

include the assessment of changing forest dynamics over time and the management 

and use of the forest resources that have to fulfill the demands of current and future 

generations. 

 

 

2.2 General information about the study area  

 

Measurements were taken in a tropical rainforest, in four different provinces of 

Vietnam: Ha Tinh Province, Thua Thien Hue Province, Binh Dinh Province, and Khanh 

Hoa Province. There were three plots in each of the four provinces; the locations of 

both provinces and the plots within them are demonstrated in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Location of the four study sites and 12 sample plots 

 

 

  

Research plots 
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2.2.1 Study area 1: Ha Tinh 

 

Ha Tinh is one of the six North Central coastal provinces, it has a total area of over 

6,000 km2 and occupies about 1.8% of the total area of Vietnam. The geographic 

coordinates are between 17053'50'' to 18045'40'' north and, 105005'50'' to 106o30'20'' 

east.  

 

Located in the Truong Son Bac range, Ha Tinh has three adjacent natural geographic 

zones: a high mountainous zone, a hilly, mountainous zone, and coastal plains. As a 

coastal province of the internal tropic, Ha Tinh has a monsoon tropical climate. The 

average annual temperature is around 23.50C – 24.50C; the high temperatures can 

reach over 400C, in some places climbing to 42.60C in April, May, and June. The 

temperature bottoms out around 70C, and the relative humidity is approximately 75%-

92%. Here, the cold season lasts for six months (October – March) and the hot season 

lasts for the six months from April to September. The average annual rainfall is 2,300 – 

3,000 mm, with a rainy season lasting from April/May to November/December. The 

major natural catastrophes to take place in Ha Tinh are storms, dry, hot westerly winds, 

droughts, and heavy rains and flash floods. 

 

Ha Tinh has about 300,000 ha of forest land, of which dense forest makes up 66%; this 

includes natural forests (164,978 ha), production forests (100,000 ha), and protection 

forests (63,000 ha) (Nguyen, 2009). 

 

 

2.2.2 Study area 2: Thua Thien Hue 

 

Thua Thien Hue is situated on the narrow tip of the northern part of central Vietnam, 

one of the eight ecological regions of the whole country. The province’s geographical 

location is 16018' to 16033' north and 10709' to 108018' east. 

 

Thua Thien Hue consists of numerous types of topography, including mountains, hills, 

plains, lagoons, and the sea; of these mountains and hills account for 70% of the 

natural area. 
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Thua Thien Hue falls also under tropical monsoon climate and has two seasons per 

year: the rainy season and the dry season. The rainy season usually lasts from 

September to March. During this season, rainfall is very high, and there are low 

temperatures with high humidity. The climate of Thua Thien Hue is most likely to be 

affected by monsoons coming from the west, and east and tropical low pressures from 

the north. As a result, most of Thua Thien Hue’s annual storms and 70% of the region’s 

annual rainfall occur during the rainy season. The dry season lasts from April to 

September and sees high temperatures and long-lasting heat.  

 

The temperature can reach 390C – 400C, particularly during spells of the southwest 

(Laos) monsoon. The average annual temperature is generally from 240C – 280C, with 

a recorded annual precipitation of 3,400 mm that is irregularly distributed. The relative 

humidity averages between 85.6% and 88.3%. 

 

Thua Thien Hue has a natural area of 505,399 ha, 58,997 ha (11.67%) of which is 

utilized as agricultural land, and 224,530 ha (44.22%) of which is forested, 196,81 ha 

(38.95%) of the land go unused. The natural forests in Thua Thien Hue account for 

176,420 ha (78.6%), 48,092 ha (21.4%) are a forest plantation (Hoang, 2012). 

 

 

2.2.3 Study area 3: Binh Dinh 

 

Binh Dinh is located along the South Central Coast of Vietnam between the 

coordinates 14°27' to 14°42'10'' north and 108°27' to 108°55'4'' east. The province is 

distinguished by a humid, tropical monsoon climate and that divides it into two distinct 

seasons: the rainy season (August – December) and the dry season (January – July). 

The annual average temperature varies from 25.70C to 27.40C and the relative humidity 

is about 79%. The average rainfall is between 1,751 mm and 2,400 mm. As tropical 

storms often make landfall in the region, typhoons can generally be counted on in 

September and November.  

 

The total land area of Binh Dinh is 603,960 ha, which is broken up into 249,310 ha of 

forest land, 136,350 ha of agricultural land, 62,87 ha of non-agricultural land, and 

155,430 ha of unused land (Le, 2012).  
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A hot and humid climate, along with rainfall, diversified topography, and soil ensure that 

vegetation in Binh Dinh is abundant in genera and species; 66 classes, 175 orders, and 

1,848 species can be found here (Le, 2012). 

 

 

2.2.4 Study area 4: Khanh Hoa 

 

Khanh Hoa is a coastal province in the southern portion of Central Coast Vietnam; its  

geographical coordinates are 11042’50" to 12052’15" north and 108040’33" to 

109027’55" east. 

 

Khanh Hoa is marked by both a tropical monsoon climate and an oceanic climate. The 

mean temperature ranges from 26.4°C to 27.6°C, and, as in the other provinces in 

question, there is a rainy season and a dry season. The rainy season here is short, 

lasting from September to mid-December and peaking in October and November. The 

average annual rainfall is between 1,200 mm and 1,800 mm with humidity at around 

75.2 % - 83.4 %. The dry season begins in January and ends in August. Khanh Hoa is 

rarely affected by large or prolonged storms like the other provinces. 

 

Khanh Hoa covers an area of 519,700 ha, with natural forest making up 155,800 ha 

(29.98%); of this natural forest, 64.8% is production forest, 34% is protection forest, 

and 1.2% is special-use forest. Agricultural land constitutes 74,900 ha (14.41%), and a 

remaining 289 ha belongs to other land types, including vegetable, industrial plant 

crops, and agro-forestry. 

 

 

2.3 Establishment and measurement of the plots 

 

2.3.1 Establishment and description of the research plots  

 

As mentioned in section 2.1, tropical rainforests often suffer under the pressure of 

exploitation. Timber and non-timber forest products may be exploited beyond the 

forest’s ability to regenerate, and deforestation or changes in other economic land-
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uses, like shifting agriculture and tree crops, may reduce the quality of land resources, 

and the amount of forest area. In order to sustainably manage tropical forests and 

understand the processes that drive those changes, field measurements are 

necessitated (Picard et al., 2010). Permanent sample plots (PSPs) are commonly 

utilized to investigate vegetation changes (Vanclay, 1991; Priyadi et al., 2006). From 

trees measured over time, models of survival, recruitment, mortality, and growth can be 

estimated from PSP data (Picard et al., 2010). To these ends, the Forest Inventory and 

Planning Institute (FIPI) of Vietnam established a network of permanent plots. In 1991, 

FIPI began setting up a program for monitoring forest resources with the goal of (i) 

taking inventory of forest resources all over the country, (ii) assessing changes in those 

resources, and (iii) constructing strategies and, plans in order to reasonably use and 

protect the forests. 

 

The data collections and measurements in each plot include: 

 

- Plot location and administrational plot information: commune, district, province; 

day, month, and year of inventory; the name of person(s) collecting the data; the 

topographical map series; the coordinates (latitude, longitude). 

 

- Site description: Elevation, slope, aspect, factors affecting the forests (drought, fire 

damage, disease), soil type. 

 

- Vegetation cover: forest type, shrubs, vines, lianas, non-vascular vegetation (ferns, 

mosses, etc.), canopy cover (%). 

 

- Biological information: local cultural and socio-economic information (human 

population, ethnic group, human activities) close to the plots; fauna (birds, reptiles). 

 

- Tree data: Measurement and assessment of tree species, tree diameter at 1.3 m 

above ground, (DBH) of all live trees having DBH ≥ 6 cm over bark, total tree 

height in odd subplots,  status of each tree (alive, dead, felled), regeneration on 

smaller subplots. 
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This program was completed in four stages: stage 1 from 1991 to 1995, stage 2 from 

1996 to 2000, stage 3 from 2001 to 2005, and stage 4 from 2006 to 2010. The results 

of each stage helped the authorities make an important decision regarding setting up 

projects for developing the forestry sector. The information and data set from the first 

stage developed a programme 327 in 1992, which was formed to re-green bare lands 

and, degraded hills, and allocate five million hectares of a reforestation project. The 

second stage provided information leading the government to adjust and implement 

several forestry policies for establishing plantation forest areas. From the third and the 

fourth stages, detailed information on forest quality, quantity, and dynamics in relation 

to social and economic activities aided the government in building a scientific base for 

suggesting the use, protection, and development strategies for forest resources across 

the country.  

 

The data from previous inventories were analyzed in order to determine species 

associations, calculate mean diameters, diameter distribution, basal area and volume 

increment (unpublished), assess changes in natural regeneration following each 

species or dominant species groups, and to evaluate tendencies of forest rehabilitation 

and development. 

 

In this research, 12 PSPs in four provinces were selected from the network of PSPs, 

data from 2005 inherited, and re-measurement of these plots was done by the author in 

2012, 2013. General plot imformation is reported in Table 2.2. 
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Table 2.2 Provinces, plots and their location coordinates, altitude and slope 

 

Province Plot Latitude Longitude 
Altitude 

(m) 

Slope 

(degree) 

Ha Tinh 

1 18020'58.62'' N 105020'23.25'' E 400 25 

2 18020'52.13'' N 105020'16.43'' E 360 20 

3 18020'44.01'' N 105020'7.89'' E 380 18 

Thua 

Thien Hue 

4 1607'48.44'' N 107025'46.75'' E 680 25 

5 1607'41.68'' N 107025'39.95'' E 640 20 

6 1607'33.65'' N 107025'31.44'' E 660 20 

Binh Dinh 

7 14°8'47.45'' N 108°54'2.24'' E 420 16 

8 14°8'40.94'' N 108°54'2.30'' E 460 20 

9 14°8'35.96'' N 108°53'50.68'' E 440 18 

Khanh 

Hoa 

10 12039’53.76 N 10904’38.65" E 300 15 

11 12039’48.89" N 10904’40.35" E 270 18 

12 12039’43.99" N 10904’37.07" E 270 15 

 

The plots in Ha Tinh were situated in Huong Quang commune, Vu Quang district and 

belong to the Vu Quang National Park. The dominant tree species included Vatica 

odorata, Hydnocarpus annamensis, Syzygium jambos and Lithocarpus annamensis. 

Other generally found features were shrubs (e.g., Ardisia lindleyana) and lianas (e.g., 

Dryopteris filix-mas). In Thua Thien Hue, PSPs were established in A Roang 

commune, A Luoi district. These plots were characterized by the presence of several 

dominant trees, including Syzygium wightianum, Syzygium zeylancium, Syzygium 

wightianum, and Ormosia pinnata; the dominant shrubs were Thyrocarpus sampsonii 

and Melastoma saigonense. In Binh Dinh, PSPs were located on Cat Son commune, 

Phu Cat district; prevalent trees included Parashorea chinensis Wang Hsie, Hopea 

pierei, Dipterocarpus alatus, Archidendron balansae, Intsia bijuga, Quercus dealbatus, 

and Syzygium wightianum; among the frequently found shrubs were Ixora coccinea 

and, Casearia balansae. The plots in Khanh Hoa were set up on Ninh Son commune, 

Ninh Hoa district, and consisted mainly of Enicosanthellum sp., Diospyros sylvatica, 

Saraca dives, Syzygium wightianum, and Machilus bonii H.Lec; the main shrub was 

Acanthus ebracteatus. 

 

The 12 plots belong to lowland evergreen rain forests (Figure 2.2). In the past, these 

PSPs were disturbed by war and logged for timber and non-timber forest products; 

however, the plots in Ha Tinh are currently listed as a special-use forest; those in Thua 
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Thien Hue, Binh Dinh, and Khanh Hoa are protection forests in which human activities 

are limited to preserve forest resources and diversity.  

 

Each plot has a square shape (100 m x 100 m2) and is divided into twenty five 20 m x 

20 m quadrats (Figure 2.3). It was aligned according to a magnetic-north direction and 

has four major corner posts made of a mixture of cement and sand. All trees equal to 

or larger than 6 cm diameter at breast height (DBH ≥ 6 cm) were identified by species 

and permanently marked using a white metal tag (Figure 2.4). 

  

 

Figure 2.2  Tropical rainforests, plot 2 in Thua Thien Hue (left) and plot 1 in Khanh 
  Hoa (right) 
 

 

 

Figure 2.3  Quadrats numbering scheme  

100 m  

20 m 

20 m 

100 m  



 

19 

 

  

 

Figure 2.4  Major corner posts, and permanently marked trees 

 

 

2.3.2 Measurement on the plots 

 

a) Field methods in 2005 

 

On each plot, data were taken as listed above. Particularly, all trees in the plot with a 

diameter at breast height from 6 cm (DBH ≥ 6 cm) were marked and, identified by 

species; their diameter was measured at 1.3 m from the ground. Trees with multiple 

stems above the ground were recorded as a single tree. Total tree height was 

measured at all trees in the 13 odd quadrats only. The data within the plot were 

assigned to their 20 m x 20 m quadrat. 

 

b) Field methods in 2012 and 2013 

 

Measurements were repeated on all 12 plots, either in 2012 (plot 1, plot 2 in Ha Tinh; 

plot 1, plot 3 in Thua Thien Hue; plot 1, plot 2 in Binh Dinh; plot 1, plot 2 in Khanh Hoa) 

or in 2013 (plot 3 in Ha Tinh, plot 2 in Thua Thien Hue, plot 3 in Binh Dinh, plot 3 in 

Khanh Hoa). The total tree heights in 2012 and 2013 were measured from 10 randomly 

selected trees on each of the 13 odd quadrats. Standing dead trees and recruited trees 

(i.e., trees that reached a diameter ≥ 6 cm between the two measurements) were also 
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recorded. Recruitment trees were marked by adding letters to the number of the 

nearest already marked trees (1a, 1b, 2a, 3a, etc.).  

 

Additionally, the trees’ stories in these forests were recorded, thus collecting the 

sociological position of each tree following the guidelines of Schomaker et al. (2007). 

All trees were classified into three stories according to their crown position - the relative 

position of an individual crown in relation to the overstory canopy zone. Trees belong to 

the superstory if their live crown top is twice the height of the top of the overstory 

canopy zone. Trees with live crown tops above the midline of the overstory canopy 

zone are classified as overstory. The understory consists of trees with crown tops at or 

below the midline of the overstory canopy zone.  

 

The coordinates of trees on the plot allow several types of competition indexes to be 

calculated, including overtopping basal area, and overtopping diameter (Alder and 

Synnott, 1992). Because of the immense working time for measuring single tree 

coordinates, only one of the three plots in each province was randomly selected to 

have its tree coordinates recorded (plot 2 in Ha Tinh, plot 3 in Thua Thien Hue, plot 2 in 

Binh Dinh, plot 1 in Khanh Hoa). To this end, each 20 x 20-m quadrat in the selected 

plot was quartered to form four 10m x 10m subquadrats (Figure 2.5), resulting in 100 

subquadrats per plot. The relative coordinates (x, y) of each individual tree were 

recorded by measuring the distance of each tree to the westernmost and southernmost 

boundaries of the subquadrat and later converted into Cartesian coordinates within the 

entire plot (Figure 2.5).  
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Figure 2.5   Creating a scheme for the subquadrats and mapping the coordinates of 
a reference tree k (xk,yk). 
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Chapter 3 Changes in forest structure and tree species diversity after seven 

and eight years in tropical rainforests of Vietnam 

 

3.1 Forest structure 

 

3.1.1 Introduction 

 

Within the scientific literature, this type of evergreen forest is most often referred to as 

Tropischer Regenwald (tropical rain forest), the term first being used by the German 

naturalist A.F.W. Schimper in his classic work Plant Geography (Richards, 1996). In 

terms of vertical and horizontal structures, tropical rain forests are the most complex 

ecosystems. Geographically, tropical rain forests are currently found in Southeast Asia, 

Central and South America, and Central and West Africa (Richards, 1996; Whitemore, 

1998), with Southeast Asia containing the second largest tropical rain forest with an 

area of 2.5 million km2 (Whitemore, 1998). 

 

Tropical forests play a crucial role in three respects regarding the well-being of 

mankind. Environmentally, they are important in reducing soil erosion, maintaining soil 

moisture (Lalfakawma, 2010), and regulating local and global climate (Yeshitela, 2008). 

Socially, millions of people who are living in or around tropical forests depend on them 

for the many forest products and environmental services gained (Naughton-Treves and 

Weber, 2001). Economically, they possess a main source of energy in the form of fuel 

wood, wood, and traditional medicines; they also provide timber and non-timber forest 

products. It is therefore essential to understand the structures and species diversity of 

tropical forests in order to find a way to maintain, protect, and develop those 

ecosystems. However, the majority of forests in developing countries lack inventory 

data; consequently, the stand structures of those forests are often insufficient for 

management. In this study, the forest structures of tropical Vietnamese rainforests 

were analyzed in terms of relative frequency distributions and height-diameter 

relationships.  

 

The frequency distributions of the diameter and total height of trees in a specific stand 

are good criteria for both describing the horizontal and vertical structures of the stand 

and providing basic information for forest resource management. In addition, foresters 
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often describe height-diameter regressions to predict a total tree height based on the 

observed diameter at breast height (DBH) (Fang and Bailey, 1998). Curtis (1967) 

pointed out that accurate height-DBH models are usually needed to estimate tree or 

stand volume when using one-entry volume tables or a standard volume table. 

Numerous studies report the height and diameter relationships for different species and 

forest regions, but only few of those are related to tropical forests; information 

regarding their performance is consequently limited (Fang and Bailey, 1998; 

Feldpausch et al., 2011). Moreover, the measurement of total tree height in tropical 

rainforests is time-consuming and expensive; an alternative to a blanket height 

measurement for all trees is the application of a height-diameter model. 

 

 

3.1.2 Data analysis 

 

3.1.2.1 Basic descriptive statistics 

 

In the course of this research, the following statistics were calculated: the number of 

stems per hectare, mean, standard deviation, minimum and maximum DBH, and height 

per plot. 

 

 

3.1.2.2 Stand structures 

 

a) Frequency distributions 

 

In the present study, the Lognormal distribution (two parameters), Gamma (two 

parameters), and Weibull function (three parameters) were used to model relative 

frequency distributions of the DBH, total tree height, and the number of tree species 

per DBH class. 

 

b) Relationship between height and diameter 

 

In order to find the most appropriate equation for each height-diameter relationships, 

three plots in each province were combined into one large plot for each of the two 
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measurement periods; in total, the data collected from the resulting eight large plots 

were used to estimate the parameters of each model. The selection of the regression 

model is based on the model’s coefficient of the determination (R2). The equation fitting 

best was used to describe height-DBH relations in subsequent analyses of different 

stratified height-diameter relationships. 

 

The eight equations that were used to estimate the relationship between height and 

DBH in the two measurement campaigns taken in 2005 and 2012/2013 are as follows: 

 

Parabolic         (3.1) 

Michailov function       (3.2) 

Prodan (1965), Curtis (1967) (modified)    (3.3) 

Avery and Burkhart, 2002       (3.4) 

Curtis (1967), Alexandros and Burkhart (1992)    (3.5) 

Fang and Bailey (1998)      (3.6) 

Fang and Bailey (1998)     

           (3.7) 

Chapman – Richards      (3.8) 

 

where: 

 

 H is total tree height, 

 D is diameter at breast height, 

 Dmin is the minimum diameter at breast height, 

 a, b, c are regression coefficients, 

 e is basis of the natural logarithm, and 

 ln is the natural logarithm. 

 

There are many species found in these forest stands, to develop a height-DBH relation, 

tree species were categorized into two groups and three stories based on a species 

importance value index and the relative position of an individual crown in relation to the 

overstory canopy zone, respectively. We examined the height curves of the two 
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groups, three stories, and the two groups in each story using the data from the three 

combined plots in each province. 

 

- Importance value index (IVI) 

 

The decision to use IVI arose from the belief that the impact of a species on the forest 

stand as a whole would be better approximated by using the IVI rather than the density 

or basal area alone because the IVI for a species is a composite of three ecological 

parameters (density, frequency and basal area), which measure different 

characteristics of a species in its habitat. Density and frequency of a species measure 

the distribution of a species within the population, whereas basal area measures the 

area occupied by the stems of trees. 

 

The height curves were individually fitted to two groups defined by higher (IVI ≥ 5%) 

and lower IVI (IVI < 5%). For the three combined plots in each location, the IVI was 

calculated as the sum of the percentage values of the relative density, relative 

frequency, and relative dominance (Cottam and Curtis, 1956). 

 

where:  

 

    (3.9) 

  (3.10) 

    (3.11) 

        (3.12) 

 

The IVI varies from 0% to 300%; the larger the importance value, the more important a 

species is within that particular community. 

 

- Story 

 

The discussion on the existence and measurement of stories (the words layer, tier, 

stratum and canopy are also used (Richards, 1952)) in tropical rainforests becomes to 

one of the oldest and most controversial concepts. One of the first methods used to 
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evaluate them is profile diagrams. This method was used and developed by Richards 

(1952) and Whitmore (1975). Over time, studies about canopy stratification have 

utilized different methodologies following the different purposes. In this study, all trees 

in each plot were classified into three stories according to their crown position: 

superstory, overstory, and understory following Schomaker et al. (2007).  

 

 

3.1.3   Results 

 

3.1.3.1  Changes in descriptive statistics 

 

In total, 10,300 stems were counted in the second inventory (2012/2013), which was 

556 stems less than in 2005. Three variables (mean DBH, mean total tree height, and 

max DBH) increased in the 7 and 8-year interval (2005-2012/2013) (Table 3.1). The 

mean DBH ranged from 16.01 cm to 20.89 cm in 2005 and between 17.73 cm and 

23.46 cm in 2012/2013; the max DBH came from plot 3 in Thua Thien Hue and plots 1 

and 2 in Binh Dinh.  

 

The highest tree densities were counted in Thua Thien Hue and Binh Dinh, whereas 

the lowest was observed in Ha Tinh. The number of dead trees in Thua Thien Hue and 

Binh Dinh was much higher than in Ha Tinh and Khanh Hoa. The number of stems in 

plots 1 and 3 in Thua Thien Hue and plot 1 in Khanh Hoa increased from a respective 

1,086, 1,284, and 837 individuals in 2005 to 1,105, 1,353, and 849 stems in 2012 

(Table 3.1), respectively. There was however a decrease in the total number of 

individuals in the other nine plots, in spite of the addition of recruitment trees. The total 

number of recruits and dead trees over a period of seven/eight years in four provinces 

was 759 and 1,323 individuals, respectively. 
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Table 3.1 Descriptive statistics for the diameter at breast height and total tree height from four provinces in 2005 and 2012/2013. 

 

Province Plot Variable 

n (no. stems) Mean 
Standard 

deviation 
Min Max 

No. 

recruits 

No. 

dead 

trees 
2005 

2012/ 

2013 
2005 

2012/

2013 
2005 

2012/

2013 
2005 

2102/

2013 
2005 

2012/

2013 

Ha Tinh 

1 
DBH 437 428 20.89 23.46 11.54 11.64 6.00 6.00 72.00 75.00 

13 21 
H 206 122 15.30 16.02 5.05 3.89 5.00 6.60 27.00 26.40 

2 
DBH 421 361 20.56 22.62 11.86 10.27 6.00 7.00 80.00 82.00 

9 69 
H 219 127 14.68 15.41 5.17 3.99 3.00 6.80 27.00 25.30 

3 
DBH 457 408 19.04 22.28 12.44 11.49 6.00 7.00 83.00 78.00 

17 66 
H 232 122 11.07 15.45 4.49 5.08 2.00 6.10 26.00 28.20 

Thua 

Thien 

Hue 

1 
DBH 1,086 1,105 17.08 18.55 12.29 12.17 6.00 6.00 86.00 89.00 

169 154 
H 570 130 13.42 15.20 4.87 4.69 5.00 6.20 29.50 27.80 

2 
DBH 929 906 18.24 21.83 12.91 12.18 6.00 7.00 92.00 93.00 

51 77 
H 517 130 12.50 16.94 4.92 5.46 4.00 8.90 32.00 31.20 

3 
DBH 1,284 1,353 16.28 17.73 11.32 11.63 6.00 6.00 104.00 

109.0

0 260 190 

H 687 130 12.31 13.48 4.90 3.81 4.00 6.60 28.50 23.80 



 

30 

 

Table 3.1 (continued) 

 

Province Plot Variable 

n (no. stems) Mean 
Standard 

deviation 
Min Max 

No. 

recruits 

No. 

dead 

trees 
2005 

2012/ 

2013 
2005 

2012/

2013 
2005 

2012/

2013 
2005 

2102/

2013 
2005 

2012/

2013 

Binh 

Dinh 

1 
DBH 1,372 1,190 16.01 19.23 9.26 9.33 6.00 6.00 94.00 92.00 

39 221 
H 677 130 12.52 14.98 3.64 3.97 5.20 7.00 24.80 25.60 

2 
DBH 1,151 999 16.68 19.99 12.08 11.76 6.00 6.00 100.00 

103.0

0 32 184 

H 573 130 11.92 13.79 3.91 3.72 4.80 6.80 29.00 23.80 

3 
DBH 989 934 18.21 21.54 11.27 10.74 6.00 7.00 100.00 

102.0

0 41 96 

H 471 130 13.96 14.27 4.26 3.92 6.00 6.40 27.80 25.30 

Khanh 

Hoa 

1 
DBH 837 849 17.45 20.19 12.33 12.26 6.00 7.00 78.00 81.00 

47 35 
H 411 130 11.03 12.66 4.09 3.04 4.60 7.20 24.00 22.80 

2 
DBH 864 836 17.70 20.00 9.74 9.67 6.00 7.00 65.00 68.00 

53 82 
H 414 130 11.28 12.73 3.77 2.91 4.00 6.50 23.60 20.20 

3 
DBH 1,029 931 17.38 21.15 10.02 9.71 6.00 7.00 72.00 74.00 

28 128 
H 532 130 10.33 14.83 3.68 4.64 2.80 6.40 23.00 28.90 

Total (4 prov.)  10,856 10,300  759 1,323 
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3.1.3.2  Changes in the relative frequency distributions  

 

a) Changes in the distributions of diameter relative frequency 

 

Figure 3.1 indicates the difference in the relative frequency distributions of the diameter 

between two measurements. In the first survey (2005), the majority of stems were 

concentrated in the 9 or 15-cm DBH class (which accounted for 30%-45%  of the 

number of stems in one hectare), while in the second survey (2012/2013), the number 

of individuals in the 15-cm DBH class consisted of 30% -50% of the total number of 

stems per plot. 

 

There was virtually no difference in the relative frequency distributions of the DBH 

across the four locations; those distributions were all skewed to the left of the graph, 

with the total number of stems dramatically declining with the ascending DBH classes, 

suggesting that small-size trees dominate the stand (which in turn indicates good 

regeneration). In addition, Ha Tinh and Khanh Hoa were lacking large stems (over 81-

cm DBH). Trees with a DBH greater than 100 cm were only found in Thua Thien Hue 

plot 3 and Binh Dinh plots 1and 2. No typical DBH distribution type could be seen for 

dead and recruitment trees in 2012/2013. 
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Ha Tinh plot 1 

 

Ha Tinh plot 2 

 
Ha Tinh plot 1 

 

Ha Tinh plot 2 

 
Ha Tinh plot 3 

 

Thua Thien Hue plot 1 
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Thua Thien Hue plot 2 

 

Thua Thien Hue plot 3 

 
Binh Dinh plot 1 

 

Binh Dinh plot 2 

 
 Binh Dinh plot 3  

 

Khanh Hoa plot 1 
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Khanh Hoa plot 2 

 

Khanh Hoa plot 3 

 
 

Figure 3.1   Relative frequency distributions of diameter for 12 plots in two years 
(2005 and 2012/2013) fitted by Weibull-, Log-normal, and Gamma 
distributions. The white columns and solid line represent the empirical 
and theoretical distributions in 2005; the grey columns and dashed line 
represent the empirical and theoretical distributions in 2012/2013. 

 

b) Changes in the number of species per DBH class  

 

Figure 3.2 illustrates the number of tree species per DBH class. The number of 

observed species varied significantly among the four sites; in two surveys, Thua Thien 

Hue and Binh Dinh had more species per DBH class than did Ha Tinh and Khanh Hoa. 

In Binh Dinh, there were approximately 70 species in the 10-cm DBH class, whereas in 

Thua Thien Hue there were a little less than 60 species in the 6-cm (2005) or 14-cm 

DBH (2012/2013) classes. 

 

As with the distributions of the DBH, all plots generally reflected a skewed distribution 

in which a smaller number of trees was associated with a larger diameter; the largest 

DBH class, in Thua Thien Hue plot 3 and Binh Dinh plots 2 and 3, had only one tree 

species.  
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Ha Tinh plot 1 
 

Ha Tinh plot 2 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ha Tinh plot 3 
 
 
 
 
 
 
 
 
 
 
 

Thua  Thien Hue plot 1 
 

Thua Thien Hue plot 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thua Thien Hue plot 3 
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Binh Dinh plot 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Binh Dinh plot 2 
 

Binh Dinh plot 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Khanh Hoa plot 1 
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Khanh Hoa plot 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Khanh Hoa plot 3 
 

 
 

Figure 3.2  Frequency distributions of the number of tree species per DBH class for 
eight plots in two years (2005 and 2012/2013) as fitted by a Weibull 
distribution. The white columns and solid line represent the empirical 
and theoretical distributions in 2005; the grey columns and dashed line 
represent the empirical and theoretical distributions in 2012/2013. 

 

c) Changes in height relative frequency distributions 

 

The shape of the relative frequency distribution of height in Figure 3.3 expresses a 

sharp alteration between 2005 and 2012/2013 on several plots, where unimodality is 

obvious in the height distributions of the latter rather than the bimodality in the height 

distributions of the former. 

 

In 2005, a bimodality is clearly demonstrated in the height distributions of Ha Tinh and 

Thua Thien Hue, first peaking at 8 m (Thua Thien Hue plot 3, 25% of stems) or 10 m 

(Ha Tinh and Thua Thien Hue plot 1, 15%-25% of stems) and then again at 18 m 

(about 15% of stems). In Binh Dinh, the largest number of stems was found at a height 

of 12 m which represented up to 25% stems in one hectare; in Khanh Hoa, this number  

varied between 20% (in the 10-m height of plot 2) and 25% (in the 8-m height of plot 1). 

In 2012, the largest proportion of trees stood at a height of 12 m (Ha Tinh plot 1, Khanh 

Hoa plot 1 with about 35% of the trees in one hectare), 14 m (30%-35% of Ha Tinh, 
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Thua Thien Hue, Binh Dinh plot 2, and Khanh Hoa plot 2) or 16 m (30% of Binh Dinh 

plot 1). 

 

On the whole, the height relative frequency distributions were skewed to the left of 

graph, indicating that the plots had many young trees.  

 

Ha Tinh plot 1 

 

Ha Tinh plot 2 

 

Ha Tinh plot 3 

 

Thua Thien Hue plot 1 
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Thua Thien Hue plot 2 

 

Thua Thien Hue plot 3 

 

Binh Dinh plot 1 

 

Binh Dinh plot 2 

 

Binh Dinh plot 3 

 

Khanh Hoa plot 1 
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Khanh Hoa plot 2 

 

Khanh Hoa plot 3 

 
 

Figure 3.3  Relative frequency distributions of height for 12 plots in two years (2005 
and 2012/2013) as fitted by Weibull-, Log-normal, and Gamma 
distributions. The white columns and solid line represent the empirical 
and theoretical distributions in 2005; the grey columns and dashed line 
represent the empirical and theoretical distributions in 2012/2013. 

 

 

3.1.3.3  Relationship between height and diameter – changes and stratified 

models 

 

a) Comparison of models in 2005 and 2012/2013 

 

Table 3.2 provides details about the models on the province level, their estimated 

parameters, and the coefficient of determination values (R2); a model with a greater R2 

value is the best. Of the eight equations used for modeling height and diameter 

relations, the Chapman-Richards function performed most ideally regarding R2 for five 

of the eight large plots, and it was therefore selected to present height-DBH relations 

for the natural forests. R2 in Chapman-Richards varied between 0.506 and 0.672 in 

2005 and 0.748 and 0.874 in 2012/2013, explaining at least 50.6% of the toal variation 

in tree height. 

 



 

41 

 

Table 3.2 Parameter estimates and R2 values for height-diameter models fitted with data for four provinces from 2005 and 2012/2013. 
The best models are in bold. 

 

Province Equation 

2005 2012/2013 

n 
Parameters 

R2 n 
Parameters 

R2 

a b c a b c 

Ha Tinh 

3.1 

657 

2.32 0.77 -0.01 0.61 

371 

2.61 0.67 -0.01 0.876 

3.2 25.48 12.03  0.62 29.35 15.54  0.875 

3.3 0.78 0.62  0.58 0.72 0.64  0.886 

3.4 21.61 -120.69  0.56 23.67 -165.89  0.745 

3.5 -9.03 18.38  0.61 -13.88 21.92  0.862 

3.6 18.53 -3.09  0.46 19.91 -3.85  0.603 

3.7 5.31 17.09 0.06 0.62 6.13 26.55 0.03 0.848 

3.8 21.812 0.07 1.37 0.62 33.63 0.02 0.85 0.874 

Thua Thien 

Hue 

3.1 

1774 

4.27 0.64 -0.01 0.66 

390 

4.07 0.59 
-

0.003 
0.850 

3.2 23.71 9.83  0.67 29.11 14.66  0.849 

3.3 1.03 0.55  0.63 0.91 0.59  0.865 

3.4 20.71 -97.72  0.60 21.90 -117.44  0.602 

3.5 -6.23 16.53  0.67 -10.97 20.12  0.810 

3.6 18.19 -2.77  0.52 18.99 -2.82  0.467 

3.7 7.20 16.82 0.05 0.66 7.33 31.49 0.02 0.779 

3.8 24.40 0.04 0.82 0.67 51.48 0.01 0.66 0.847 
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Table 3.2  (continued) 
 

Province Equation 

2005 2012/2013 

n 
Parameters 

R2 n 
Parameters 

R2 

a b c a b c 

Binh Dinh 

3.1 

1721 

6.27 0.45 
-

0.003 
0.45 

390 

3.25 0.65 -0.01 0.801 

3.2 20.61 8.56  0.50 26.12 13.65  0.809 

3.3 1.30 0.44  0.46 0.96 0.56  0.779 

3.4 18.91 -84.52  0.43 23.31 -167.07  0.771 

3.5 -3.20 13.49  0.50 -10.08 18.71  0.802 

3.6 16.81 -2.70  0.36 20.16 -4.17  0.669 

3.7 8.27 14.92 0.04 0.48 
-

480.23 
506.04 0.02 0.809 

3.8 25.10 0.02 0.55 0.51 23.34 0.05 1.12 0.810 

Khanh Hoa 

3.1 

1357 

4.99 0.39 
-

0.002 
0.53 

390 

4.34 0.56 
-

0.004 
0.745 

3.2 18.25 9.62  0.70 23.24 11.65  0.747 

3.3 1.05 0.47  0.46 1.04 0.52  0.742 

3.4 16.62 -79.59  0.43 20.88 -125.60  0.686 

3.5 -4.02 12.50  0.52 -7.49 16.50  0.748 

3.6 14.86 -2.97  0.38 18.39 -3.60  0.603 

3.7 7.06 17.83 0.02 0.53 6.87 17.18 0.04 0.735 

3.8 41.08 0.004 0.49 0.53 25.17 0.03 0.73 0.748 
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When using the Chapman-Richards model to compare the height curves from two 

surveys (2005 and 2012/2013) the variation of observed heights around height curves 

in 2012/2013 was much lower in all provinces than in 2005, as is clearly demonstrated 

in Figure 3.4. This is particularly visible in Ha Tinh plot 2, Thua Thien Hue plot 1, and 

Binh Dinh plot 2.  

 

Ha Tinh plot 1 

 

Ha Tinh plot 2 

 

Ha Tinh plot 3 

 

Thua Thien Hue plot 1 
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Thua Thien Hue plot 2 

 

Thua Thien Hue plot 3 

 

Binh Dinh plot 1 

 

Binh Dinh plot 2 

 

Binh Dinh plot 3 

 

Khanh Hoa plot 1 
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Khanh Hoa plot 2 

 

Khanh Hoa plot 3 

 
 

Figure 3.4   Height-DBH relationships within 12 sample plots as according to the 
Chapman-Richards function for observed heights (circles) and estimated 
height curves (dashed line) in 2005; observed heights (triangles) and 
estimated height curves (solid line) in 2012/2013. 

 

b) Stratified height – diameter functions 

 

Because of the insufficient precision of height measurement in 2005, height-DBH 

relations for important/less important species, stories, important/less important species 

per story were finally determined using only the data from the second inventory. 

 

- Height – DBH relations for tree species with IVI < 5% and IVI ≥ 5% 

 

17 tree species with IVI ≥ 5% were important species in Ha Tinh and accounted for 

66.53% of the total number of trees and 188.52% of the total IVI (300%). In Thua Thien 

Hue, there were 24 species that represented 68.29% of the total number of trees and 

187.36% total of IVI; in Binh Dinh, 17 of the 125 total species were important and made 

up 60.62% of the total number of trees and 173.24% of the total IVI. 12 important 

species in Khanh Hoa accounted for 81.82% and 224.05% of the total stems and IVI, 

respectively. Interestingly, Syzygium wightianum was the only important tree species 

that appeared in all four locations. 
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Ha Tinh  

 

Thua Thien Hue 

 

Binh Dinh 

 

Khanh Hoa 

 
 

Figure 3.5  The height-DBH curves for the observed heights (circles) and estimated 
heights of important tree species (solid line), as well as the observed 
heights (triangles) and estimated heights of less important tree species 
(dashed line), in 2012/2013. 

 

The R2 of the Chapman-Richards model varied from 0.786 to 0.873 for trees with an IVI 

≥ 5% and 0.548 to 0.891 for trees with an IVI < 5%. From Figure 3.5, it is clear that the 

height curves of the important tree species were only slightly above those of the less 

important species, with the exceptions of Ha Tinh and Binh Dinh. In Thua Thien Hue, 

Binh Dinh, and Khanh Hoa, the difference in height curves between the important and 

less important species appear to grow with an increasing DBH. 
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- Height – DBH relations of all tree species per story 

 

The R2 values of the Chapman-Richards function ranged from 0.569 to 0.857 for the 

understory and 0.613 to 0.829 for the overstory. For the superstory, because there are 

not many trees, the number of observations varies from 43 (Binh Dinh) to 61 (Thua 

Thien Hue), the R2 values are smaller than those of under- and overstories and, varied 

between 0.289 and 0.681. 

 

In Figure 3.6, for all species, it becomes apparent that the overstory had the highest 

number of observations and, as expected, the height curves of the superstory trees 

were clearly separated from those of over- and understories. The gaps between height 

curves of the under- and overstories were negligible for the smaller DBH classes. 
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Ha Tinh 

 

Thua Thien Hue 

 

Binh Dinh 

 

Khanh Hoa 

 
 

Figure 3.6  Height-DBH relations for three stories: the superstory (red), the overstory 
(blue), and the understory (violet) in four locations 2012/2013. 

 

- Height – DBH relations of tree species with IVI ≥ 5% and IVI < 5% in 

each story 

 

The shape and trend of the height curves for the important/less important tree species 

in each story are similar to the overarching height curves of all the species within all 

stories (Figure 3.6).  
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Although we could clearly distinguish between the superstory and the over- and 

understories, the over- and understories were again not so easily distinguishable 

(Figure 3.7).  

 

Important species (Ha Tinh) 

 

Less important species (Ha Tinh) 

 

Important species (Thua Thien Hue) 

 

Less important species (Thua Thien Hue) 
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Important species (Binh Dinh) 

 

Less important species (Binh Dinh) 

 

Important species (Khanh Hoa) 

 

Less important species (Khanh Hoa) 

 

 

Figure 3.7  Height-DBH relationships for important and less important species in 
three stories: the superstorey (red), the overstorey (blue), and the 
understorey (violet) in four provinces 2012/2013. 
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3.2 Tree species diversity 

 

3.2.1 Introduction  

 

Species diversity, species richness, and biodiversity are widely used terms in ecology 

and natural resource management. Despite the frequent usage of these terms, 

ecologists have found species diversity difficult to define and measure which may in 

fact reflect the possibility that it is a “non-concept” (Hurlbert, 1971). In general, the 

species diversity of a community is made up of two components: species richness (or 

the number of species present) and the evenness, species equitability, or abundance 

of each species (Pielou, 1966; Patil and Rao, 1994). Hamilton (2005) reports that there 

have been two approaches to measuring species diversity: the first involves 

constructing mathematical indices broadly known as diversity indices, and the second 

requires comparing observed patterns of species abundance to theoretical species 

abundance models. Species diversity indices take two aspects of the community into 

account: species richness and evenness (Hamilton, 2005). In this study, species 

richness, the Shannon-Wiener, Simpson indices, and the diversity profile are computed 

to evaluate and compare the diversity of the tree species in the four study sites. 

 

The species-area relationship is another crucial tool available in the study of species 

diversity, conservation biology and landscape ecology (Palmer and White, 1994; 

Lomolino, 2000). When plotting the number of tree species against sampling size, the 

curve was originally intended to describe the increase in the number of species found 

as the size of the sampling area increased (Tjörve, 2003). This curve is one of the 

oldest, most well-proven patterns in ecology (Tjörve, 2003) and is more suitable for the 

assessment of diversity than is merely counting the number of species (Lepě & Stursa, 

1989). It allows to determine the minimum area that is necessary to document all the 

species present within a given contiguous region (Barkman, 1989; Gadow and Ying, 

2007). 

 

 

3.2.2 Data analysis 

 

3.2.2.1 Diversity indices 

javascript:uml(%22oe%22,0)
javascript:uml(%22oe%22,0)
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The following indices are defined in accordance with Gove, Patil, Swindel and Taillie 

(1994, Chapter 12). 

 

- Species count (∆SC) 

  

     (3.13) 

 

- Simpson diversity index (for an infinite community) (∆Si)   

 

  (3.14) 

 

- Shannon-Wiener diversity index (∆Sh)  

 

 (3.15) 

 

where:   

 

 
 is the abundance of  the i -th species, 

 ni  is the number of individuals of species i, 

 N   is the total number of all individuals, and 

 s  is the number of species. 

 

 

3.2.2.2  Diversity profiles 

 

Diversity profiles have been used to assess tree species diversity in uneven-aged 

forest stands. Patil and Taillie (1979, 1982) discuss two kinds of rarity measures, the 

dichotomous type and the rank type, which lead to two different diversity profiles. 

Examined more closely, these types are defined as follows: 

 

- Dichotomous type: 
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  (3.16) 

 

where for  = -1, ∆-1 is the species count, for  = 0, ∆0 is the Shannon-Wiener index and 

for  = 1, ∆1 is the Simpson index. 

 

- Rank type: 

 

The intrinsic diversity profile of a community is given by the pairs (Tj): 

 

  j = 1, …., s-1  (3.17) 

 

where: Ts = 0 and T0 = 1. Species rarity relies only on its rank, because πi
# is the i-th 

component in the ranked relative abundance vector π# = (π#
1,…, π#

s) with π#
1 ≥ π#

2 … 

≥ π#
s. Tj is called the right tail-sum of the ranked relative abundance vector π#. 

If community C’ is intrinsically more diverse than community C, in short C’ C, then 

the -profiles preserve that ordering; the reverse is not true. However, ordered Tj-

profiles, i.e. without intersections, are equivalent to intrinsic diversity ordering. 

 

 

3.2.2.3  Species-area relations 

 

Species-area relations show the increase of a species richness as observed within an  

increasing area. In each plot examined, area size increased from subplot 1 (400 m2) to  

subplot 25 (10000 m2). 

 

A diverse assortment of functions has been suggested as models for species-area 

relations; the following three functions were selected:  

 

Exponential curve (Gleason 1922, 1925):    (3.18) 

Power curve (Arrhenius 1921):                     (3.19) 

Logistic curve (Archibald 1949):     (3.20) 
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where:              

  

s is the number of species, 

A is the area, and 

B, C, and Z are parameters. 

 

 

3.2.3  Results 

 

3.2.3.1  Diversity indices 

 

a) Changes in species richness as indicated by species count, Shannon-

Wiener, and Simpson indices 

 

The four sites differed drastically in their diversity (Table 3.3). In the years after the first 

census, the total species count and number of families in the four locations reduced 

over time from 295 species and 68 families in 2005 to 288 species and 67 families in 

2012/2013. The most striking trend was a decline in almost all diversity indices, with 

the exceptions of plot 3 in Thua Thien Hue and plot 1 in Khanh Hoa, where the number 

of occurring tree species rose. The appearance of five new species in plot 3 of Thua 

Thien Hue (Actinodaphne pilosa, Aglaia tomentosa, Artocarpus rigidus, Litsea vang H., 

and Peltophorum pterocarpum) and one (Alstonia scholaris) in plot 1 of Khanh Hoa 

brought the total species count from 80 and 46 in 2005 to 85 and 47, respectively, in 

2012.   

 

The province totals show a decrease in the species counts of Ha Tinh, Binh Dinh, and 

Khanh Hoa but an increase in Thua Thien Hue. The number of families also declined, 

with the exception of Khanh Hoa, where that number remained unchanged. 

 

 

 

 

 

 



 

55 

 

Table 3.3 Diversity indices of 12 plots in four provinces. 
 

Province 

Plot 
Species 

count (SC) 

Number of 

families 

Shannon-

Wiener index 

Sh 

Simpson 

index Si 

 2005 
2012/

2013 
2005 

2012/ 

2013 
2005 

2012/ 

2013 
2005 

2012/ 

2013 

Ha Tinh 

1 60 58 29 28 

1.685 1.645 0.964 0.961 
2 66 56 30 29 

3 81 74 34 32 

Total  113 104 39 37 

Thua 

Thien 

Hue 

1 79 79 41 40 

1.698 1.691 0.972 0.970 
2 86 86 40 40 

3 80 85 41 40 

Total 106 108 46 45 

Binh Dinh 

1 94 90 44 43 

1.704 1.693 0.964 0.961 
2 96 91 39 39 

3 102 101 42 41 

Total 131 125 50 48 

Khanh 

Hoa 

1 46 47 32 33 

1.261 1.252 0.901 0.899 
2 59 58 39 39 

3 54 52 35 34 

Total 83 82 45 45 

Total (four 

provinces) 
295 288 68 67  

 

The Shannon-Wiener and Simpson indices declined between the two measurements in 

all provinces. These indices were substantially higher in Binh Dinh and Thua Thien Hue 

than in Ha Tinh and Khanh Hoa; in addition, there was some contradiction between 

Thua Thien Hue and Binh Dinh during the two periods, namely that SC, Sh (Binh Dinh) 

> SC, Sh (Thua Thien Hue), but Si (Binh Dinh) < Si (Thua Thien Hue). Inversely, 

there is a consistent ordering of all three indices in comparison with Khanh Hoa: ∆ (Ha 

Tinh, Thua Thien Hue, Binh Dinh) > ∆ (Khanh Hoa). This inconsistency is an interesting 

point when comparing stands and can be explained as a lack of intrinsic diversity 

ordering among the stands being assessed.  
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b) Changes in family composition 

 

A total of 295 species from 68 families were recorded in 2005. Seven to eight years 

after the initial survey, the species count decreased by seven and the family count by 

one (Table 3.3). Among the four different locations, Binh Dinh had the largest species 

and family count on two occasions (2005 and 2012/2013). Interestingly enough, there 

was a regional family (Lamiaceae) in Ha Tinh. There were likewise three, two, and four 

families that respectively appeared only in Thua Thien Hue (Myrsinaceae, 

Oxalidaceae, Podocarpaceae), Binh Dinh (Oxalidaceae, Podocarpaceae), and Khanh 

Hoa (Cupressaceae, Lythraceae, Rhamnaceae, Zingiberaceae). 

 

Lauraceae, Clusiaceae, and Ulmaceae were the dominant families in Ha Tinh, whereas 

Myrtaceae, Lauraceae, and Sapindaceae constituted the dominant families in Thua 

Thien Hue. In Binh Dinh, the dominant families were Dipterocarpaceae, Myrtaceae, 

and Fagaceae, in contrast with Khanh Hoa, where the dominant families were 

Annanoceae, Myrtaceae, and Ebenaceae. 

 

26 out of 68 families occurred at the four sites in 2005, among them Annonaceae, 

Apocynaceae, Bignoniaceae, Burseraceae, Caesalpiniaceae, and Clusiaceae. In the 

second measurement, this number was reduced to 25 out of 67 families as a result of 

the loss of Tiliaceae in Ha Tinh. 

 

 

3.2.3.2 Diversity profile  

 

a) Changes in dichotomous type 

 

The values of the diversity profiles for the four sites in 2005 and 2012/2013 changed 

slightly (Figure 3.8). On the one hand, Thua Thien Hue’s diversity profile crossed 

Binh Dinh’s profile at β = -0.1 in both 2005 and 2012, explaining why the rankings of 

both the SC and Sh of the two provinces differ from that of the Si. On the other hand, 

Figure 3.8 clearly evidences reduction in Ha Tinh and Binh Dinh’s total species count, 

from a respective 113/131 species to 104/125. 
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2005 

 

2012/2013 

 
 

Figure 3.8  The profiles for four provinces in 2005 and 2012/2013 
 

Species 

count 
Shannon Simpson 

Species 

count 

Shannon Simpson 
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b) Rank type 

 

There was little difference between 2005 and 2012/2013 in the Tj-profiles (Figure 3.9). 

In both 2005 and 2012/2013, Thua Thien Hue’s profile is above Binh Dinh’s for j from 1 

to 14; for j larger or equal to 15, Thua Thien Hue’s profiles were below Binh Dinh’s. The 

profile of Ha Tinh also intersects those of the latter. Consequently, there is no intrinsic 

diversity ordering between these three sites. The final conclusion was that the plots in 

Thua Thien Hue, Binh Dinh and Ha Tinh are intrinsically more diverse than those of 

Khanh Hoa. 
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2005 

 

2012/2013 

 

 

Figure 3.9  Right tail-sum Tj-profiles for the four provinces in 2005 and 2012/2013 
 

 

3.2.3.3  Species-area relations 

 

Of the three equations used (Exponential, Power, and Logistic), the species-area data 

was best fitted by the Power function with an R2 varying from 0.93 to 0.99 (2005) and  
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0.86 to 0.99 (2012/2013). 

 

2005 

 

2012, 2013 

 

 

Figure 3.10  Species-area curves fitted by the Power function for 12 plots from four 
provinces in the years 2005 and 2012/2013 
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Figure 3.10 demonstrates two obvious changes in the 12 curves between 2005 and 

2012/2013: first, three of the five lowest estimated curves, namely of Ha Tinh plots 1 

and 2 and Khanh Hoa plot 2 became closer; second, the rank between Thua Thien 

Hue plot 2 and Binh Dinh plot 2 changed. In 2012 and 2013, 12 species-area curves 

are clearly classified into two groups, where group 1 consists of Ha Tinh plot 3, Binh 

Dinh, and Thua Thien Hue, group 2 is made up of Ha Tinh plots 1 and 2 and Khanh 

Hoa. In the graph of the second inventory, the most interesting point was that because 

of the disappearance of five species (Bischofia javanica Bl., Craibiodendro 

scleranthum, Cratoxylon formosum, Elaeocarpus grandifloras, and Ficus racemosa) in 

Binh Dinh plot 2, the plot’s estimated curve was brought down to below that of Thua 

Thien Hue plot 2, despite the fact that the number of tree species in the latter was 

lower than that of the former. In similar fashion - and due to the death of two species in 

Ha Tinh plot 1 (Armesiondendron chinense and Microcos paniculata), 10 species in 

plot 2 (Actinodaphne pilosa, Annona squamosa, Aphanamixis polystachya, Baccaurea 

sapida, Croton tiglium, Cryptocarya annamensis, Machilus platycarpa, Michelia 

mediocris, Oroxylum indicum, and Pavieasia annamensis), and one species in Khanh 

Hoa plot 2 (Lithocarpus ducampii), Ha Tinh plots 1 and 2 and Khanh Hoa plot 2 

became closer than in 2005. In addition, the largest number of species per hectare in 

Binh Dinh plot 3 was 102 in 2005 and 101 in 2013, whereas only 46 (2005) and 47 

(2012) species were found in Khanh Hoa plot 1, the result of the high densities of 

Syzygium wightianum, Diospyros sylvatica, and Enicosanthellum sp. 

 

As was expected for all sample plots, the number of tree species continuously 

increased with increasing the area size. The species-area curves for the four locations 

did not reach their asymptote at the one hectare plot size, which means that one could 

expect to record new tree species if the sample area would be further increased 

beyond 10,000 m2.  

 

 

3.3  Conclusion 

 

3.3.1  Forest structures 
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Data from the two surveys reveal relatively stable ecological conditions, with only minor 

fluctuations evident in density, diversity indices, and diversity profile. 

 

A total of 12 plots were surveyed and all stems ≥ 6 cm DBH were measured. 

Altogether, 10,856 (in 2005) and 10,300 (in 2012/2013) live stems ≥ 6 cm DBH were 

encountered, representing a respective 295/288 species in 68/67 families.  

 

We examined the horizontal and vertical stand structural characteristics of tropical 

rainforests in Vietnam based on the relative frequency distributions of the DBH, the 

number of species per DBH class, the total tree height, and height-DBH relations. The 

distributions denote that stands are developing or expanding, and regeneration in the 

forest is present.  

 

In regard to height-DBH relations, the Chapman-Richards model performed mostly 

better than other models. There were relatively little differences between height-DBH 

relationships of the two groups (IVI ≥ 5% and IVI < 5%) over large ranges of diameters. 

Only in Thua Thien Hue and Khanh Hoa the height curves of the important species 

were above those of the less important species, mainly for the larger diameters. 

Between the three different stories, particularly between super- and overstory, height 

curves varied more. Summarizing the results of stratified height curve modelling, one 

can conclude that individual height curves for stories, at least for the superstory and the 

pooled over- and understory, lead to higher precision of tree height estimation, but 

important and less important tree species may be pooled without remarkable loss in 

precision. 

 

 

3.3.2  Tree species diversity 

 

Tree species diversity in the present study varies greatly from place to place, which 

may be mainly accounted for by taking variation in biogeography, habitat, and 

disturbance into consideration (Whitmore, 1998). Differences in terrain, gradient, and 

slope direction can cause the changes to the soil, water, and microclimate, which in 

turn are reflected in the varying adaptability of the assorted species. 
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While diversity indices have been commonly used in ecological research, they remain 

problematic in that different indices may rank communities inconsistently (Liu et al., 

2007). This issue can be mediated by the use of diversity profile methods, the output of 

which is a diversity profile in graphical form for each stand being compared. In the 

present study, we found that diversity profile methods (e.g., dichotomous type, rank 

type) provided a more stringent test of diversity ordering than did diversity indices; as 

such, we recommend diversity profiles as the method of preference when comparing 

tree species diversity among forest stands. In our case, when arranging the intrinsic 

diversity ordering, the conclusion was that intrinsic diversity of plots in Thua Thien Hue, 

Binh Dinh and Ha Tinh is larger than that of the Khanh Hoa plots. 

 

In our study, the total number of species increased in tandem with the area, which can 

be explained via the influence of environmental heterogeneity on the species-area 

relationship. Scheiner et al. (2000) stated that as area increases, more types of 

environments are likely to be encountered. If species are non-uniformly distributed with 

regard to environments, then the number of tree species encountered will increase with 

area. In this case, the species-area curve will reach an asymptote only if the number of 

environments reaches an asymptote at some spatial scale. 
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Chapter 4 Diameter increment 

 

4.1  Data analysis  

 

4.1.1  Local growth equations  

 

a) Response variable  

 

Based on the available literature on growth models for mixed tropical forests (e.g. 

Vanclay, 1994), there are several types of functions that can be used for modelling 

diameter increment including empirical equations, theoretical functions and probabilistic 

functions. Growth can be modelled by using either diameter or basal area. Some 

modelers prefer using basal area to diameter because basal area provides higher 

values of coefficient of determination (R2) (Bella, 1971). However, the precision of 

diameter increment equations is demonstrated to be the same as those of basal area 

increment (West,1980; Wykoff, 1990). 

 

It is convenient to model diameter increment directly. Periodic annual diameter 

increment was used as a dependent variable, because 8 of the 12 plots were 

remeasured in 2012 and the 4 others in 2013. It was calculated as: 

  

    (4.1) 

 

where : 

  

ADI is periodic annual diameter increment (cm) 

DBH1 and t1 are diameter at breast height and time at the end of the growth 

period, respectively 

DBH0 and t0 are are diameter at breast height and time at the beginning of the 

growth period, respectively 

 

b) Explanatory variables 
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Diameter increment models generally contain site quality, silvicultural treatment, tree 

size, species and competition indicies (Wykoff, 1990).  

 

With natural tropical rainforest stands, some variables such as age, top height and site 

quality (comprising soil, precipitation and temperature) are usually not available. In 

addition, these plots are permanent plots and no treatment was recorded between two 

measurements. Consequently, site quality and silvicultural treatment variables were 

excluded in the growth equation.  

 

Some studies, for instance Zhao (2003), pointed out that tree size (initial diameter at 

breast height (DBH)) could be a better independent variable for growth models in 

mixed species stands than tree age. Initial diameter has been commonly utilized in 

modeling individual tree growth in previous researches, namely Wykoff (1990), Vanclay 

(1995), Monserud et al. (1996), and Lessard et al. (2001). Furthermore, some authors 

used both DBH and squared DBH in the growth equations, such as Monserud and 

Sterba (1996), whereas some others applied log(DBH) and DBH2 (Wykoff, 1990; Hann 

et al., 2006). Zhao (2003) developed diameter increment models with DBH, DBH2 and  

the reciprocal diameter (DBH-1).  

 

There are a huge number of tree species in natural tropical rainforests. Several species 

appear more frequently, some occur with only low frequency (Zhao, 2003). Moreover, 

some may have similar growth rates, and some may have definitely different growing 

patterns. For that reason, species might be aggregated into some groups to reduce the 

number of growth models and to avoid the need for adding data for species with 

insufficient number of observations. Several ways to group species in mixed-species 

forest stands have been suggested using ecophysiological groups (Swaine and 

Whitmore, 1988; Chai and LeMay, 1993), commercial groups (Lahoreau et al., 2002), 

dynamic process groups (Gourlet-Fleury et al., 2005) or statistical methodologies 

(Meldahl et al., 1985; Vanclay, 1991; Finegan, B., et al, 1999; Philips et al., 2002; 

Zhao, 2006). Every method has two sides, both advantages and disadvantages. Since 

there was no obvious and reasonable grouping, when we clustered individual species’ 

growth models for our study, simply the importance value index (IVI) was used to 

determine a group of most important species. Species importance value index was 

computed as the average of relative density, relative frequency and relative 
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dominance. That means the IVI for a tree species covers three ecological parameters – 

density, frequency and basal area (Giliba et al., 2011; Razavi et al., 2012). 

Ecologically, density and frequency determine the distribution and frequency patterns 

of a species within the population whereas basal area measures the area captured by 

the stems of trees (Giliba et al., 2011). Important tree species having IVI ≥ 5% in 

pooled data from three plots in each province were utilized to model periodic annual 

diameter increment.  

 

The competitive interactions among tree species makes the tropical forests become a 

very complex ecosystem. The first interaction is intra-specific (competition among trees 

of the same species) and the second one is inter-specific (competition among trees of 

different species) (Weiskittel et al., 2011). One of the first approaches to solve the 

interaction among tree species is distance-dependent.  

 

Distance-dependent competition indices were used in numerous research works (Zhao, 

2003). However, with tropical forests, this distance-dependent competition index 

necessitates time-consuming measurement of tree coordinates. In this situation, stand 

basal area or subplot basal area become an ideal measure in crowded forest stands, 

because it combines both tree size and density (Weiskittel et al., 2011), the density 

itself is not a sufficient indicator of competition (Zeide, 2005). According to Zhao 

(2003), stand basal area and basal area percentage of species were good competition 

indices.  

 

The competition among trees of the same species also can be characterized by one-

sided and two-sided competition (Zhao, 2003; Pukkala, 2013). In two-sided 

competition, stand basal area has been commonly used (Cao, 2000; Hann and Hanus, 

2002; Zhao, 2006; Pukkala, 2013).  

 

One-sided competition is expressed by the basal area in larger trees (Lessard et al., 

2001; Sterba et al., 2002) because it is an absolute measurement, easy to calculate 

and often well correlated with growth (Weiskittel et al., 2011). Vanclay (1991) also 

showed that overtopping basal area (the basal area of stems the diameter of which is 

greater than that of the subject tree) could become a useful predictor for diameter 

increment in tropical forests.   
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In this study, there were four plots having coordinates of each tree, therefore, an R 

code was applied to calculate overtopping basal area and overtopping diameter 

corresponding to circular plots with a 2 m, 5 m, 7 m and 10 m radius around the subject 

tree. 

 

With individual species, all important species and others in each province, the 

backward elimination method was used to provide an initial screening of the 

independent variables when a large number of variables exists. This is one of several 

computer-based iterative variable-selection procedures. It starts by developing a full 

model containing all the candidate variables. Then, based on coefficient significance 

= 0.05, at each step the variable with highest p-value greater than 0.05 is removed 

from the model, and another regression model is developed with the remaining 

independent variables. The backward elimination continues until all independent 

variables remaining in the model have p-values less than 0.05. The advantage of 

backward elimination is that the decision maker has the opportunity to look at all the 

predictors in the model before removing the variables that are insignificant. 

 

A typical function is usually used to model diameter increment comprising size, 

competition and site (Wykoff, 1990). However, as mentioned previously, site quality is 

unavailable. Therefore, the periodic annual diameter increment model was built as 

follows: 

 

 (4.2) 

 

where: 

  

lnADIk is the logarithm of periodic annual diameter increment for the kth tree;  

 0, 1, 2  are the intercept and slopes;  

tree size presents the logarithm of diameter at breast height in 2005 for the kth 

tree (lnDBH2005k); 

competition indices expresses the log-transformation of subplot basal area, 

stand basal area, ratio of basal area of kth tree to subplot basal area, 

overtopping basal area and overtopping diameter; 

 k is the residual, k ~ N(0,2).   
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The ordinary least squares estimation was applied to fit the growth model by using 

Statistica 10.0.  

 

 

4.1.2  Comparing models based on rounded and unrounded diameters 

 

Diameter measurements at breast height on eight plots in 2005 and 2012 were 

rounded to the next integer value on the cm-scale, however, on four plots of four 

locations in 2013 they were unrounded. Before using the pooled data of these two data 

sets with rounded data, the raw data (rounded at two digits after decimal point) and the 

rounded data (to an integer) should be compared to assess effects of rounding on the 

resulting models. Species showing the largest differences between the two intercepts 

and between the two slopes in the growth model (4.3) were selected, and then their 

scatter-plots with confidence bands were evaluated. 8-year diameter increment was 

used in that comparison, because the data set came exclusively from the measurement 

campaign in 2013. 

 

     (4.3) 

 

where: 

 

lnDIk is the logarithm of 8-year diameter increment for the kth tree, and 8-year 

diameter increment was calculated by the formula 

  

     (4.4) 

 

DBH2005k and DBH2013k are diameter of the kth tree in 2005 and 2013, 

respectively; 

 tree size was defined in 4.1.1. 
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4.1.3  Variability of growth models among plots and provinces for 

selected species  

 

Since one important species occurred on all plots in four locations, and three others 

appeared on all plots in three provinces, a model using plot and province as random 

effects was used in order to study the between plot and between province variation of 

diameter increment. 

 

a) Linear mixed effects model approach 

 

Linear mixed effects models include fixed effects and random effects. Similar to many 

other types of models, they represent a relationship between a dependent variable and 

some of the covariates that have been measured or observed together with the 

dependent (Bates, 2010). To illustrate, the fixed effects interpret the relations among 

response and explanatory variables, whereas random effects can explain variation 

associated with a sampling unit (Lhotka and Leowenstein, 2011). The “effects” in the 

random - effects term are related to the individual experimental units sampled from the 

population (Pinheiro and Bates, 2004) on one or several levels. They introduce 

correlations between measurement units from a higher level unit into the model, for 

example correlations between diameter increment of trees from the same sample plot, 

and can be attached to different model parameters. 

 

Linear mixed effects models with random intercepts, random intercepts and random 

slopes, and nested random effects were evaluated. There were three plots in each 

province, thus, plots within province were considered as a nested random effect. 

Nested random effects allow for different intercepts and slopes at the level of plots 

within provinces. 

 

b) Model fitting 

 

To evaluate whether linear mixed effects models improved model fit, a pure fixed-

effects model based on the least squares method was compared with different mixed 

effects models. The models were compared by using fit criteria following the Akaike 
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Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The model 

with the lowest AIC and BIC was preferred (Pinheiro and Bates, 2000). 

 

Nine linear mixed effects models were employed in this chapter as follows: 

 

     (4.5) 

     (4.6) 

     (4.7) 

     (4.8) 

    (4.9) 

    (4.10) 

   (4.11) 

   (4.12) 

  (4.13) 

 

where:    

 

lnADIjk, lnADIik, lnADIijk presents the logarithm of periodic annual diameter 

increment for the kth tree from the jth plot, the kth tree from the ith province, and 

the kth tree from the jth plot within the ith province;  

i, jij represent the random effect variables of ith province,  jth plot and jth plot 

within ith province, respectively. i ~ N(0,
province), j ~ N(0,

 plot), and ij ~ 

N(0,
plot within province); 

jk, ik, ijk account for residual errors. jk ~ N(0,
), ik ~ N(0,

), ijk ~ N(0,
). 

 

Maximum likelihood (ML) estimation was used to produce fit statistics when comparing 

different linear mixed effects models. Finally, the restricted maximum likelihood (REML) 

estimation is used to fit parameter estimates and variance components for the 

preferred model, because such variance estimates are unbiased (Pinheiro and Bates, 

2000). 
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The linear mixed effects models were fitted in R utilizing functions from both “nlme” and 

“lme4” packages (Bates, 2010). 

 

 

4.2  Results 

 

4.2.1  Local periodic annual diameter increment 

 

Based on the backward selection procedure, non-significant predictor variables were 

dropped from the growth model (4.2). With the 8 plots remeasured in 2012, the 

explanatory variables consisted of the logarithm of initial diameter (lnDBH2005) as tree 

size, and three competition indices (log-transformation of the subplot basal area, stand 

basal area and ratio of basal area of kth tree to subplot basal area). With the four other 

plots, where coordinates of each tree in the plot were available, log-transformation of 

the overtopping basal area and overtopping diameter were also examined. When fitting 

different forms of growth equations, the competition indices did not represent obvious 

trends in most cases. Specifically, they were sometimes positive, sometimes negative 

and mostly non-significant in the growth model, whereas a clear negative effect was 

expected. For example, a negative parameter for basal area of larger trees implied that 

an increase in competition leads to a reduction in the diameter increment.  

 

Because of the indistinct and often nonsignificant competition effects, the function of 

the periodic annual diameter increment resulted in the reduced model (4.14), consisting 

of only one (mostly significant) predictor.   

 

     (4.14) 

 

where:    

 

 lnADIk is the logarithm of periodic annual diameter increment for the kth tree; 

 0, 1 are the intercept and the slope;  

 k is the residual, k ~ N(0,2).  
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10,291 individuals on 12 plots in four locations belonged to 291 species, of which 52 

species had an IVI equal or greater than 5%. The total number of trees of those 

important species was 6,588. In Ha Tinh, 17 out of 104 species were important species 

according to our definition, in Thua Thien Hue, Binh Dinh and Khanh Hoa 21 of 105, 17 

of 127, and 12 of 81, respectively, were important species. A summary of descriptive 

statistics including number of observaions (n), mean, standard deviation (Std.Dev.), 

minimum (Min), and maximum (Max) of periodic annual diameter increment and 

diameter for important species in all provinces are given in table 4.1. 

 

Table 4.1 Summary of descriptive statistics for important tree species on 12 plots 
in four provinces. Diameter statistics are from 2005. 

 

Province Plot n 

Periodic annual 

diameter increment 

(cm/ha/year) 

Diameter (cm) 

Mean SD Min Max Mean SD Min Max 

Ha Tinh 

1 318 0.42 0.09 0.14 0.71 20.50 10.12 6.00 64.00 

2 256 0.44 0.05 0.29 0.57 20.03 10.24 6.00 80.00 

3 194 0.48 0.15 0.25 1.38 19.12 12.49 6.00 76.00 

  768 0.44 0.10 0.14 1.38 20.00 10.80 6.00 80.00 

Thua 

Thien 

Hue 

4 646 0.47 0.07 0.29 0.71 17.03 12.47 6.00 82.00 

5 510 0.56 0.15 0.13 1.38 17.58 12.52 6.00 90.00 

6 805 0.53 0.12 0.00 1.14 15.60 10.33 6.00 100.00 

  1961 0.52 0.12 0.00 1.38 16.58 11.68 6.00 100.00 

Binh 

Dinh 

7 714 0.51 0.11 0.29 1.00 16.02 9.74 6.00 88.00 

8 600 0.54 0.15 0.29 1.00 17.96 13.73 6.00 100.00 

9 513 0.46 0.11 0.13 0.75 18.88 11.43 6.00 88.00 

  1827 0.51 0.13 0.13 1.00 17.46 11.70 6.00 100.00 

Khanh 

Hoa 

10 661 0.47 0.09 0.14 0.86 17.78 12.64 6.00 78.00 

11 622 0.46 0.10 0.29 1.86 17.47 9.73 6.00 65.00 

12 750 0.51 0.13 0.13 1.00 17.49 9.97 6.00 72.00 

  2032 0.48 0.11 0.13 1.86 17.58 10.84 6.00 78.00 
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For the plots, the density ranged from 194 trees (plot 3) to 805 trees (plot 6) per ha 

(Table 4.1), the mean periodic annual diameter increment (and standard deviation) 

varied from 0.42 (0.09) cm/year (plot 1) to 0.56 (0.15) cm/year (plot 5), and the mean 

diameters were 15.60 (10.33) cm (plot 6) to 20.50 (10.12) cm (plot 1). On the province 

level, these statistics ranged from 768 trees (Ha Tinh) to 2032 trees (Khanh Hoa) per 

ha, 0.44 (0.10) cm/year (Ha Tinh) to 0.52 (0.12) cm/year (Thua Thien Hue) and 16.58 

(11.68) cm (Thua Thien Hue) to 20.00 (10.80) cm (Ha Tinh), respectively. 

 

Each important species, all important species and all others in each province were 

fitted by the final equation (4.14). The summary of the intercept and slope parameters, 

related p-value and standard error of estimate from the pooled data in each province 

are listed in table 4.2 (graphs in the appendix). 

 

Table 4.2 Number of trees, intercept, 0, and slope, 1, including p-values, and 
standard error of estimate from equation (4.14) for important species, all 
important species, and all others in four provinces. Nonsignificant 

lnDBH2005 and positive 1 shaded. 
 

Province Species n 0 p-value 1 p-value sres 

Ha Tinh 

Gironniera subaequalis 115 -0.572 0.000 -0.104 0.022 0.220 

Vatica odorata 88 -0.459 0.000 -0.117 0.008 0.197 

Calophyllum calaba 99 -0.358 0.033 -0.170 0.003 0.261 

Nephelium melliferum 58 -0.450 0.006 -0.134 0.014 0.195 

Knema cortiosa 58 -0.774 0.002 -0.018 0.840 0.258 

Alangium ridleyi 45 -0.386 0.172 -0.153 0.098 0.260 

Syzygium wightianum 38 -1.160 0.000 0.118 0.056 0.156 

Hydnocarpus ilicifolia 40 -1.065 0.003 0.075 0.534 0.222 

Lithocarpus annamensis 24 -0.447 0.018 -0.125 0.031 0.145 

Wrightia annamensis 30 -0.391 0.023 -0.158 0.010 0.151 

Marcaranga denticulata 41 -0.684 0.008 -0.026 0.801 0.213 

Syzygium jambos 26 -1.353 0.002 0.179 0.207 0.265 

Cryptocarya lenticellata 29 -0.683 0.001 -0.049 0.458 0.146 

Hydnocarpus 

annamensis 
22 -0.124 0.596 -0.238 0.006 0.184 

Cinnamomum 

obtusifolium A. Chev 
18 -0.656 0.221 -0.056 0.742 0.196 
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Table 4.2  (continued) 

 

Province Species n 0 p-value 1 p-value sres 

Ha Tinh 

Engelhardtia 

roxburghiana Wall 
10 -0.154 0.704 -0.252 0.047 0.198 

Diospyros sylvatica 25 -0.446 0.254 -0.132 0.399 0.224 

All important species 768 -0.510 0.000 -0.115 0.000 0.219 

All others species 390 -0.306 0.000 -0.186 0.000 0.236 

Thua 

Thien 

Hue 

Canarium album 169 -0.264 0.002 -0.160 0.000 0.251 

Syzygium zeylancium 173 -0.130 0.140 -0.198 0.000 0.235 

Syzygium wightianum 173 -0.281 0.002 -0.155 0.000 0.193 

Symplocos poilanei 136 -0.572 0.000 -0.037 0.382 0.210 

Gyrocarpus americanus 72 0.129 0.569 -0.277 0.000 0.319 

Gironniera subaequalis 117 -0.596 0.000 -0.022 0.674 0.215 

Ormosia pinnata 107 -0.372 0.001 -0.122 0.003 0.211 

Syzygium chanlos 99 -0.383 0.000 -0.110 0.008 0.192 

Shorea roxburghii 76 -0.108 0.562 -0.207 0.001 0.310 

Machilus platycarpa 101 -0.385 0.000 -0.121 0.003 0.190 

Cassine glauca 90 -0.409 0.001 -0.112 0.022 0.199 

Cinnamomum 

parthenoxylum 
68 -0.366 0.006 -0.103 0.034 0.225 

Eurycoma longifolia 90 -0.906 0.000 0.112 0.155 0.188 

Engelhardtia 

roxburghiana Wall 
44 -0.310 0.193 -0.120 0.109 0.274 

Polyalthia nemoralis DC 71 -0.720 0.000 0.056 0.521 0.205 

Adina cordifolia 68 -0.386 0.028 -0.099 0.137 0.197 

Polyalthia cerasoides 81 -0.610 0.002 -0.036 0.685 0.189 

Knema tonkinensis 72 -0.435 0.007 -0.095 0.137 0.193 

Paranephelium spirei 57 -0.013 0.955 -0.251 0.003 0.319 

Lithocarpus ducampii 

Hickel et A.camus 
37 -0.484 0.005 -0.065 0.220 0.192 

 

Cinnamomum 

cambodianum 
59 -0.549 0.002 -0.058 0.372 0.207 

All important species 1960 -0.349 0.000 -0.127 0.000 0.227 

All others 916 -0.099 0.021 -0.214 0.000 0.263 

 



 

78 

 

Table 4.2  (continued) 

 

Province Species n 0 p-value 1 p-value sres 

Binh 

Dinh 

Parashorea chinensis 

Wang Hsie 
424 -0.269 0.000 -0.159 0.000 0.273 

Syzygium zeylanicum 166 -0.641 0.000 -0.022 0.535 0.231 

Diospyros sylvatica 140 -0.182 0.118 -0.212 0.000 0.230 

Hopea pierei 139 -0.478 0.000 -0.086 0.085 0.246 

Scaphium macropodum 111 -0.353 0.004 -0.150 0.001 0.223 

Quercus dealbatus 86 -0.275 0.114 -0.163 0.009 0.261 

Syzygium wightianum 106 -0.405 0.013 -0.097 0.120 0.220 

Lithocarpus ducampii 

Hickel et A.camus 
82 0.052 0.701 -0.278 0.000 0.229 

Nephelium melliferum 84 -0.233 0.080 -0.183 0.000 0.216 

Ilex rotunda Thunb 80 -1.024 0.000 0.124 0.103 0.249 

Hydnocarpus 

althemintica 
90 -0.698 0.000 -0.004 0.952 0.193 

Intsia bijuga 35 -0.270 0.262 -0.169 0.017 0.274 

Dillenia scabrella Roxb 51 -0.218 0.384 -0.186 0.026 0.329 

Machilus bonii H.Lec 68 -0.860 0.000 0.082 0.219 0.218 

Melanorrhoea laccifera 52 0.028 0.859 -0.261 0.000 0.227 

Gironniera subaequalis 67 -0.359 0.049 -0.146 0.042 0.204 

Artocarpus rigidus 46 0.313 0.195 -0.372 0.000 0.267 

All important species 1827 -0.333 0.000 -0.141 0.000 0.249 

All others 1177 -0.289 0.000 -0.157 0.000 0.240 

Khanh 

Hoa 

Syzygium wightianum 433 -0.573 0.000 -0.071 0.000 0.203 

Diospyros sylvatica 435 -0.489 0.000 -0.100 0.000 0.205 

Enicosanthellum sp. 390 -0.321 0.000 -0.152 0.000 0.223 

Saraca dives 201 -0.053 0.574 -0.251 0.000 0.244 

Nephelium melliferum 99 -0.454 0.000 -0.110 0.010 0.212 

Machilus bonii H.Lec 106 -0.497 0.001 0.100 0.054 0.229 

Polyalthia nemoralis DC 76 -0.556 0.000 -0.073 0.036 0.169 

Cinnamomum 

obtusifolium A. Chev. 
72 -0.612 0.000 -0.053 0.316 0.191 

Ormosia balansae Drake 69 -0.370 0.002 -0.139 0.002 0.185 

Aphanamixis polystachya 55 -0.065 0.773 -0.254 0.004 0.292 

Rhamnus crenatus Sieb 54 -0.970 0.000 0.077 0.076 0.149 

Lucua mamona Gaerten 42 -0.409 0.025 -0.130 0.044 0.210 

All important species 2032 -0.434 0.000 -0.117 0.000 0.215 

All others 447 -0.422 0.000 -0.117 0.000 0.192 
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The slope parameter 1 of almost all individual important species, all important species 

and all others in each province had the expected sign – a negative regression 

coefficient (Table 4.2), suggesting the periodic annual diameter increment decreases 

with increasing tree diameter (Figure 4.1). However, the slope parameter was not 

significant for 28 of 67 individual important species, and none of the positive slope 

parameters was significant. Zero slope, which might be assumed for species having 

non-significant slopes, means that the periodic annual diameter increment of these 

species is constant over the entire range of diameters from 6 cm to 100 cm, and a 

simple growth model lnADIk = 0 + k or, equivalently, ADIk = exp(0 + k) holds. 
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Figure 4.1  Periodic annual diameter increment of the most important tree species 
from each province. The black dots are observed values. The dashed 
line is the curve of an individual important species, the dotted line is the 
mean curve of all important species in that province, and the solid line is 
the mean curve of all other species in that province. 
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Figure 4.1 depicts the periodic annual diameter increments of an individual important 

tree species per province as examples, together with its increment model and with the 

models for all important species and all others in that province. All of them have 

negative slope parameters, and the according functions decreased with increasing tree 

size. The diameter increment did not reach a peak at a small diameter.  

 

 

4.2.2  Comparing models based on rounded and unrounded diameters 

 

In 4.2.1 we found that the simple linear regression model (4.14) is the most appropriate 

one for local regression of annual diameter increment on the diameter in 2005. There, 

we used the rounded diameter data on all plots in all provinces. In order to justify that, 

we assessed the accuracy of models based on the rounded data, by using scatter plots 

with confidence bands of the simple linear regression model (4.3) of both unrounded 

and rounded data. Because the real and rounded data came only from the plots 

measured in 2013, 8-year diameter increment was used instead of annual increment.  

After fitting individual species in each province, four species having the largest 

differences between estimated intercepts (0) and slopes (1) were chosen exemplarily 

(Table 4.3). 

 

Table 4.3 Intercept and the slope from unrounded and rounded data of four 
species in four provinces 

 

Province Species n 

Unrounded values Rounded values 

0 1 sres 0 1 sres 

Ha Tinh 
Chinsocheton 

paniculatus 
9 2.750 -0.496 0.208 2.643 -0.469 0.244 

Thua 

Thien Hue 

Symplocos 

poilanei 
37  1.924 -0.161 0.179 2.001 -0.191 0.218 

Binh Dinh 

Garcinia 

oblongifolia 

Champ 

13 3.047 -0.309 0.192 2.039 -0.277 0.174 

Khanh 

Hoa 
Saraca dives 148 2.481 -0.612 0.215 2.871 -0.546 0.230 
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It is worth noting that the differences of the intercepts, slopes and the standard error of 

estimates between empirical and rounded data were negligible. 95% confidence bands 

of the fitted lines visualize the uncertainty of the intercept and slope in Figure 4.2 and 

revealed that there was no significant difference between regression lines of the two 

approaches. Therefore, we will work with the rounded data also in the following 

analyses.  
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Garcinia oblongifolia Champ (Binh Dinh plot 3)
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Saraca dives (Khanh Hoa plot 3)
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Figure 4.2  Comparing models for diameter increment (cm) between unrounded 
(left) and rounded (right) diameter values for individual species. The 
black dots are observed values. The solid line indicates regression 
model (4.14) fitted to an individual important species and its 95% 
confidence bands (the dashed lines). 
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4.2.3 Linear mixed effects models  

 

In order to analyze the variation among growth models of the four provinces, we 

selected important tree species which occurred in all or at least in three provinces. 

Syzygium wightianum was the sole important species that occurred on all plots in all 

locations, whereas there were three others appearing in three different provinces 

including Diospyros sylvatica, Gironniera subaequalis and Nephelium melliferum.  

 

Because of unreasonable and mostly non-significant trends of the competition effects, 

the simple linear mixed effects models from equations (4.5) to (4.13) were used, which 

only use lnDBH2005 as a covariate. 

 

The comparison of model fit statistics (AIC, BIC, logLikelihood) using generalized least 

squares and nine linear mixed effects models as well as the pure fixed effect model 

(4.14) is given in Table 4.4. The results showed that the linear mixed effects model 

substantially improved model fit for the four tree species S. wightianum,  D. sylvatica, 

G. subaequalis and N. melliferum compared to the simple (fixed effects) linear 

regression (4.14) proving that there is significant variation of growth functions among 

the plots. 
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Table 4.4 A comparison of AIC, BIC, and log-likelihood between the fixed effects model and the mixed effects models. 
 

Species n Model Model specification df AIC BIC logLik Test L.Ratio p-value 

S. 

wightianum 
750 

1 Fixed effects model (FM) 3 -245.62 -231.76 125.81 1 vs 5 100.61 < .0001 

2 FM + plot intercept 4 -305.41 -286.93 156.71 2 vs 5 38.81 3.73e-09 *** 

3 FM + plot slope 4 -294.93 -276.45 151.47 3 vs 5 49.30 1.98e-11 *** 

4 FM + prov. slope 4 -262.65 -244.17 135.33 4 vs 5 81.57 < 2.2e-16*** 

5 FM + plot intercept + plot 

slope 

6 -340.23 -312.51 176.11    

6 FM + plots within prov. 

intercept 

5 -304.12 -281.02 157.06 6 vs 5 38.11 6.69e-10 *** 

7 FM + plots within prov. slope 5 -293.47 -270.37 151.73 7 vs 5 48.76 2.89e-12*** 

8 FM + plots within prov. 

intercept + plot slope 

6 -311.02 -283.30 161.51 8 vs 5 29.21 < 2.2e-16 *** 

  
9 FM + plots within prov. slope 

+ plot intercept 

6 -311.02 -283.30 161.51 9 vs 5 29.21 < 2.2e-16 *** 

  

10 FM + plots within prov. 

intercept + plots within prov. 

slope 

9 -335.23 -312.50 176.11 10 vs 5 1.11 0.7739 
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Table 4.4  (continued) 

 

Species n Model Model specification df AIC BIC logLik Test L.Ratio p-value 

  1 Fixed effects model (FM) 3 -163.28 -150.09 84.64 1 vs 5 54.08 < .0001 

  2 FM + plot intercept 4 -174.72 -157.13 91.36 2 vs 5 40.65 1.49e-09*** 

  3 FM + plot slope 4 -169.86 -152.27 88.93 3 vs 5 45.50 1.32e-10*** 

  4 FM + prov. slope 4 -161.28 -143.69 84.64 4 vs 5 54.08 1.81e-12*** 

  
5 FM + plot intercept + plot 

slope 

6 -211.36 -184.98 111.68    

D. sylvatica 600 

6 FM + plots within prov. 

intercept 

5 -172.72 -150.73 91.36 6 vs 5 40.65 1.82e-10*** 

7 FM + plots within prov. slope 5 -167.86 -145.88 88.93 7 vs 5 45.50 1.32e-10*** 

8 FM + plots within prov. 

intercept + plot slope 

6 -186.83 -160.44 99.41 8 vs 5 24.54 < 2.2e-16*** 

9 FM + plots within prov. slope 

+ plot intercept 

6 -186.83 -160.44 99.41 9 vs 5 24.54 < 2.2e-16*** 

10 FM + plots within prov. 

intercept + plots within prov. 

slope 

9 -205.36 -165.79 111.68 10 vs 5 0 1 
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Table 4.4  (continued) 

 

Species n Model Model specification df AIC BIC logLik Test L.Ratio p-value 

G. 

subaequalis 
299 

1 Fixed effects model (FM) 3 -48.80 -37.70 27.40 1 vs 5 51.55 < .0001 

2 FM + plot intercept 4 -76.73 -61.92 42.36 2 vs 5 21.62 2.02e-05*** 

3 FM + plot slope 4 -73.22 -58.42 40.61 3 vs 5 25.13 3.49e-06*** 

4 FM + prov. slope 4 -64.34 -49.54 36.17 4 vs 5 34.01 4.12e-08*** 

5 FM + plot intercept + plot 

slope 

6 -94.35 -72.15 53.17    

6 FM + plots within prov. 

intercept 

5 -75.19 -56.69 42.60 6 vs 5 21.16 4.23e-06*** 

7 FM + plots within prov. slope 5 -71.73 -53.23 40.87 7 vs 5 24.62 7.00e-07*** 

8 FM + plots within prov. 

intercept + plot slope 

6 -73.19 -50.99 42.60 8 vs 5 21.16 < 2.2e-16*** 

9 FM + plots within prov. slope 

+ plot intercept 

6 -73.23 -51.02 42.61 9 vs 5 21.12 < 2.2e-16*** 

10 FM + plots within prov. 

intercept + plots within prov. 

slope 

9 -91.67 -58.36 54.83 10 vs 5 3.32 0.3451 

 



 

87 

 

Table 4.4  (continued) 

 

Species n Model Model specification df AIC BIC logLik Test L.Ratio p-value 

N. 

melliferum 
241 

1 Fixed effects model (FM) 3 -68.83 -58.38 37.42 1 vs 5 9.17 0.0271 

2 FM + plot intercept 4 -66.83 -52.89 37.42 2 vs 5 9.17 0.0102* 

3 FM + plot slope 4 -66.83 -52.89 37.42 3 vs 5 9.17 0.0102* 

4 FM + prov. slope 4 -67.00 -53.06 37.50 4 vs 5 9.00 0.0111* 

5 FM + plot intercept + plot 

slope 

6 -72.00 -51.10 42.00    

6 FM + plots within prov. 

intercept 

5 -65.09 -47.66 37.54 6 vs 5 8.92 0.0028** 

7 FM + plots within prov. slope 5 -65.00 -47.58 37.50 7 vs 5 9.00 0.0027** 

8 FM + plots within prov. 

intercept + plot slope 

6 -63.09 -42.18 37.54 8 vs 5 8.92 < 2.2e-16*** 

9 FM + plots within prov. slope 

+ plot intercept 

6 -63.00 -42.09 37.50 9 vs 5 9.00 < 2.2e-16*** 

10 FM + plots within prov. 

intercept + plots within prov. 

slope 

9 -66.90 -35.54 42.45 10 vs 5 0.89 0.8268 
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Model 1: Fixed effects model using equation (4.14); model 2: equation (4.5) with the plots designated as random intercepts; model 3: 

equation (4.6) with the plots designated as random slopes; model 4: equation (4.7) with the provinces designated as random slopes;  

model 5: equation (4.8) with the plots designated as random intercepts and slopes; model 6: equation (4.9) with the plots within a province 

designated as nested random intercepts; model 7: equation (4.10) with the plots within a province designated as nested random slopes; 

model 8: equation (4.11) with the plots within a province designated as nested random intercepts and plots designated as random slopes; 

model 9: equation (4.12) with the plots within a province designated as nested random slopes and plots designated as random intercepts; 

model 10: equation (4.13) with the plots within a province designated as nested random intercepts and slopes. 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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For three of the four species considered (S. wightianum, D. sylvatica, and G. 

subaequalis), all nine types of linear mixed effects models had usually (except model 4 

for D. sylvatica) lower AIC and BIC values than the fixed effects model (Table 4.4). 

Only for N. melliferum, only the mixed effects model with plots as random effects on 

intercepts and slopes (model 5) had a slightly lower AIC value compared with the fixed 

effects model. Thus, the best model in terms of AIC for all four species was, model 5. 

The BIC also led to model 5 as the best one, with the only exception N. melliferum, 

where the BIC of the fixed effects model was lowest. Moreover, there was no 

significant difference (p-value > 0.05) between model 5 and model 10, the most 

complex mixed effects model, for all four important species. Therefore, model 5 was 

selected as the final, most appropriate model for these species because it was simpler. 

The main result of this analysis is that it is unnecessary to include a province effect into 

the model if only plot effects on intercept and slope are considered. Thus the variation 

among plots is very large compared to the variation among provinces, despite the small 

distances between plots within a province and the comparably large distances between 

the provinces (Figure 4.3).  

 

Model coefficients of the linear mixed effects model (model 5) by species are presented 

in Table 4.5. 

 

Table 4.5 Parameter estimates based on REML estimation for the periodic annual 
diameter increment by species 

 

Species 

Parameters (Fixed effects) Variance components  

0 

Std. 

error 
1 

Standard 

error 


ran-in 


ran-

slo 



variation 

explained 

by the plot 

S. 

wightianum 
-0.549 0.138 -0.065 0.049 0.175 0.021 0.034 85.09 

D. sylvatica -0.449 0.151 -0.111 0.055 0.144 0.018 0.039 80.79 

G. 

subaequalis 
-0.419 0.199 -0.124 0.067 0.299 0.033 0.037 90.02 

N. 

melliferum 
-0.266 0.169 -0.179 0.058 0.199 0.023 0.039 85.12 
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


ran-in is the variance component for the random intercepts, and 

ran-slo the variance component 

for the random slopes at the plot level, 
is the residual variance. The variation explained by 

the plot was calculated as the ratio of variances for random effects to the sum of the variances 

for random effects and residuals. 

 

After fitting the mixed effects model (Table 4.5), the fixed effect parameter (1) was 

significant (p < 0.05) for D. sylvatica and N. melliferum and non-significant (p > 0.05) 

for S. wightianum and G. subaequalis. The sign of parameter 1 was mostly negative, 

reflecting the decrease in ADI with increasing diameter (Figure 4.3). The plot 

accounted for a large amount of unexplained variation in ADI for the four species, 

ranging from 85.09% to 90.02% (Table 4.5). Four examples of the mixed model fit are 

depicted in Figure 4.4. 
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S. wightianum 

 

D. sylvatica 

 

G. subaequalis 

 

N. melliferum 

 

 

Figure 4.3  Periodic annual diameter increment for the four important species in 
each plot. The blue curve denotes the fixed effects, and the other 
colours show the mixed effects models for each plot. 
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S. wightianum 

 

D. sylvatica 

 

G. subaequalis 

 

N. melliferum 

 

 

Figure 4.4  Periodic annual diameter increment for the four important species in four 
selected plots. The black dots are observed data on the plot. The blue, 
and other colour curves indicate the fixed effects, and the mixed effects 
models, respectively. 
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4.3  Discussion  

 

Diameter growth models are one of the most basic and crucial components of forest 

growth models. They allow to describe the state of a tree at a future time and to 

estimate growth of an average tree of a given size (Bueno-López and Bevilacqua, 

2013). Modeling the growth of tropical rainforest stands remains a difficult task because 

of the variety of interacting factors and the lack of suitable data. This study represents 

the first set of models for diameter increment of lowland evergreen rainforests in 

Vietnam. In this chapter, modeling the periodic annual diameter increment for individual 

important tree species was employed. The explanatory variable logarithm of initial 

diameter (lnDBH2005) had mostly an effect on diameter growth. The present study 

addressed a minor part of growth modeling for natural forests. It was found that (i) our 

attempt to use competition indices in the growth model remained unsuccessful, (ii) the 

rounded diameters were precise enough to model diameter increment and (iii) the use 

of linear mixed effects model for selected important species occurring on almost all 

plots was an improvement of the growth model and signified a first effort to evaluate 

microsite (plot) and large scale (province) effects for tropical rain forests in Vietnam.  

 

 

4.3.1  Model structure 

 

The total number of important species on 12 plots in four provinces was 52 species, 

and 6,588 trees. 17 important species were in Ha Tinh, whereas in Thua Thien Hue, 

Binh Dinh, and Khanh Hoa were 21, 17, and 12 important species, respectively. We 

found that the equation of the periodic annual diameter increment (4.14) comprising 

only one predictor, lnDBH2005, to be a significant regression model for about 47.1% to 

75% important species in each province. With the remaining important species, a 

simple, namely constant growth model ADIk = exp(0 + k) was sufficient. The most 

frequently negative logarithmic relationship between initial diameter (DBH2005) and the 

periodic annual diameter increment (ADI) implies that data are from stands, where the 

maximum growth rates occur for trees of lower diameter classes. This contrasts to a 

finding of Adame et al. (2014), who worked on plots in Puerto Rican secondary tropical 

forests, where a positive logarithmic relation between diameter and diameter growth 

was found. He explained that by young stand ages where trees have not reached yet 
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the maximum growth rate. These results were contrary to the findings for North 

Queensland rainforests in a study of Vanclay (1989), where tree diameter increment 

got its maximum at a younger age and then decreased slowly, as also observed in 

most cases of our study.  

 

On the reduced data set of one plot per province we had also studied the influence of 

competition indices in the growth model, such as stand or subplot basal area, 

overtopping diameter, and overtopping basal area. For instance, stand basal area 

accounts for competition among reference trees and their neighbours, and overtopping 

basal area is considered as an indicator of the relative competitive position of a subject 

tree among its neighbours having greater diameter in a plot due to their one-sided 

competition for light (Wykoff, 1990). These competition indices mostly turned out to be 

non-significant in our study, whereas they were often found to be significant predictors 

of diameter increment in other tropical and subtropical rainforests (Vanclay, 1995; 

Kariuki, 2005, Adame et al., 2014).  

 

Site variables, such as elevation, aspect, precipitation, and soil fertility class were not 

included into the growth model, because they were either unavailable or did not vary 

enough between the three plots in a province, although they have been shown to affect 

stand-level growth responses in other studies (Kariuki, 2005). Other variables, such as 

moisture stress, saturated soil, and reduced solar radiation, can be effective at 

explaining variation in diameter increment; Puerto Rican forest trees are an illustration 

(Weaver, 1979). On the other hand, Adame et al. (2014) pointed out that the 

relationship between diameter increment and site characteristics (including 

precipitation, elevation, aspect, and soil fertility class) was insignificant. Similarly, 

Gourlet-Fleury and Houllier (2000), working in a lowland evergreen rain forest in 

French Guiana, showed that their attempt to include site information by the use of soil 

and topographical data in a diameter increment model was unsuccessful. 

 

 

4.3.2  Comparing models based upon rounded and unrounded diameters 

 

It is a frequent practice in tropical rain forests to round original data to integer values. 

This was also done in the 2005 inventory used in this study, as well as in the 2012 
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inventory carried out on two of the three plots in each province. Statistical analysis 

results indicated that the negligible difference between the real and rounded data 

cannot produce misleading models of diameter increment. Consequently, we felt free to 

round also the data collected in 2013 on only one plot in each province, which were of 

higher precision than those of 2012 and 2005, to an integer to get a consistent data set 

for modelling purposes. 

 

  

4.3.3  Linear mixed effects model 

 

Linear mixed effects models with plots as random effects on intercepts and slopes 

(equation 4.8) were chosen for the four important species S. wightianum, G. 

subaequelis, D. sylvatica, and N. melliferum, which occurred in at least three of the four 

provinces. As expected, the linear mixed effects model could in almost all cases 

account for random variation in intercepts and slopes of the periodic annual diameter 

increment models for four ubiquitous important species. Through the mixed effects 

model, the spatial correlation among trees on the same plot could be considered by 

fitting random effects for plot-to-plot variation (Pukkala et al., 2009). The explained 

variance by the random plot effects varied from 85.09% to 90.02%. These results are 

consistent with other studies modeling diameter, or basal area increment using the 

mixed effects model, which also found that the random effects associated with the 

sampling unit (for instance, plot) improved model fit (Pukkala et al., 2009; Pokharel and 

Dech, 2012; Adame et al., 2014). The variation of the plot-level random effects is 

possibly related to the effects of both microsite and individual genetic variability 

(Pokharel and Dech, 2012). Furthermore, sources of unexplained variation possibly 

arose from a pure error which no model can explain (Draper and Smith, 1998), and 

failure to include variables that affect tree growth in the model such as more 

appropriate competition indices or environmental factors which were not attempted to 

be measured in the inventory data. Because the plots in each province are 

neighbouring plots, located on the same commune, they are very close to each other. 

Moreover, climate data are typically assembled at the nearest meteorological station to 

the plot, therefore, environmental variation does not differ remarkably from plot to plot. 

The large variation in annual diameter increment may be explained, at least partially, 
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by the fact that height of DBH measurement (1.3 m) was not marked on sample plot 

trees. 

 

The limitations of the present findings are notable. Perfectly, species groups of similar 

growth dynamics should be based on growth rate, growth pattern and regeneration 

strategy (Vanclay, 1989), or on the dynamic process strategy (based upon recruitment, 

growth and mortality) (Gourlet-Fleury et al., 2005). However, tree species grouping was 

tackled here only by using IVI, because we did not find other clear and reasonable 

species groupings by clustering growth model parameters. Therefore, we developed 

growth models for each individual important tree species, as well as for that entire 

group and for the other “non-important” species.  

 

The IVI was characterized by three important traits of a particular tree species. Relative 

abundance illustrates density of identified tree species, while relative dominance 

means density of stock expressed as basal area, and relative frequency expresses on 

how many subplots a species occurs (Ribeiro et al., 2008). Therefore, the IVI supports 

a summary of all three indicators of ecosystem importance.  

 

Overall, in future investigations, more research is needed to establish a more objective 

and quantitative site quality evaluation for tropical rainforests. 

 

The current findings are the first endeavor to model diameter increment of the 

individual important tree species of natural forests in Vietnam, which can be further 

improved in the future as additional data become available. Considering random plot 

effects turned out to be a necessary modelling requirement for single tree growth 

models based, as usual, on trees from sample plots having non-negligibly correlated 

tree characteristics. Further attempts are necessary to improve measurement 

precision. 
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Chapter 5 Recruitment and mortality models 

 

5.1  Recruitment models 

 

5.1.1  Introduction   

 

Recruitment trees were collected on subplot-level on each plot. They were defined as 

the trees reaching a diameter at breast height of 6 cm between two measurements. To 

date, there are two types of recruitment models: static and dynamic (Vanclay, 1994). 

The former approach takes stand conditions into little account, and therefore predicts a 

fairly constant amount of recruits, leading to an average of the long-term expectation 

under “typical” conditions. The latter approach takes stand conditions into greater 

account; consequently, it predicts recruitment as a function of stand density, 

composition, and other parameters.  

 

According to Vanclay (1994), one of the difficult tasks in modeling recruitment is the 

large amount of variability in regeneration rates among species, spatially over stand, 

and over time. The recruitment data demonstrate the fact that during any period, 

regeneration may or may not occur. This characteristic (none/some recruitment) 

becomes especially obvious when individual species or species groups with many zero 

observations are modeled. Such data are generally modeled using a two-stage 

approach: (1) estimation of the occurrence probability and (2) prediction of the quantity 

of recruits per year. In the first step, logistic regression is used to estimate the 

probability that recruits would appear, with the presence or absence of new trees as 

realizations of the dependent variable. In the second step, a conditional function is 

developed to predict the amount of recruits. The conditional function is normally 

estimated with ordinary linear or multiple linear regression. This method was widely 

applied to predict recruitment in several forest types (Vanclay, 1992; Schweiger and 

Sterba, 1997; Lexerød, 2005; Adame, 2010). Often, recruitment data consist of many 

zeros. Fortin and Deblois (2007), for instance, demonstrated that fitting a traditional 

Poisson distribution to this type of data can underestimate the occurrence of zeros or 

overestimate the occurrence of larger counts. One way to solve this issue is utilizing a 

method similar to conditional functions. Fortin and Deblois (2007) predicted tree 

recruitment with zero-inflated models, and Zhang et al. (2012) applied negative 
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binomial mixture models (zero-inflated negative binomial, and Hurdle negative binomial 

models) to predict tree recruitments of Chinese pine trees (Pinus tabulaeformis). 

 

However, due to the low number of plots compared to the large number of species the 

purpose of this research is not to tackle the recruitment of each single species, but 

rather, to concentrate on predicting tree recruitment of particular species groups: 

across all tree species, all locally (province) important tree species, and important 

species spread over provinces. Two approaches were used here, generalized linear 

models (Poisson, Quasi-Poisson and Negative Binomial models), and generalized 

linear mixed effects models (Negative Binomial mixed model), the latter to take random 

plot effects into account. In the former approach these plot effects are considered by an 

overdispersion parameter. In the present study, we did not use zero-inflated models 

because of two reasons: (1) A zero-inflated model assumes that the zero observations 

have to come from two different sources, namely “structural” and “sampling” (Hu et al., 

2011). The sampling zeros are assumed to occur by chance, while structural zeros are 

observed due to some specific structure in the data. (2) Zero-inflated models are 

recommended if the overdispersion parameter is larger than 15 or 20 (Zuur et al., 

2009), what was not the case with the data of the 12 sample plots under study. 

 

 

5.1.2  Independent variables 

 

The variables included in the models were selected based on the published literature. 

Vanclay (1992) used explanatory variables such as stand basal area, treatment 

response, site quality, and soil parent material in his recruitment model. Lexerød (2005) 

used information about location (altitude, latitude), site conditions (site index, 

vegetation types), and stand characteristics (mean diameter, stand basal area, number 

of trees, dominant height, and proportion of total basal area for the species group) in 

his model. Stand variables such as age, dominant height, density, basal area, 

arithmetic mean diameter, altitude, slope, and relative spacing were utilized in Zhang et 

al’s  recruitment model (2012).  

 

In our case, the data on 300 subplots from 12 plots were used to fit the recruitment 

model. The response variable was the number of recruits per subplot. Explanatory 
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variables were measured at the beginning of the period, including arithmetic mean 

diameter of the subplot (DBH), subplot and plot basal area (BALsubplot, BALstand), subplot 

density (the number of trees on each subplot) (N), and provinces as a categorical 

variable (provincecode). The full models were simplified by sequentially removing non-

significant variables to get the adequate function (Crawley, 2007). Site quality and 

environmental variables were not available.  

 

 

5.1.3  Generalized linear model (GLM) 

 

The standard linear model is not able to tackle non-normal responses (e.g., counts or 

proportions) for several reasons: 1) the errors will not follow a normal distribution, 2) a 

large number of zeros is difficult to address in transformations, 3) the variance of the 

response varies with the mean, and 4) the linear model could lead to the prediction of 

negative counts (Crawley, 2007) or of proportions outside the unit interval. This 

encourages improvement in generalized linear models, leading to a solution for a wide 

range of data with different types of explained variables (Faraway, 2006). The GLM 

consists of two components, the response variable and the link function. The former 

should come from one of the exponential family distributions (e.g., Binomial, Poisson, 

Gamma, Negative Binomial), while the latter defines how the mean of the dependent 

variable and the linear combination of the explanatory variables are connected 

(Faraway, 2006).  

 

- Overdispersion 

 

Overdispersion means the true variance exceeds the variance given by the model 

(Cox, 1983). According to Hilbe (2011), overdispersion can arise as a result of eight 

potential issues: the model is missing a required predictor; the model may have one or 

more outliers; the model needs one or more interaction terms; one or more 

independent variables may not be measured on the most accurate scale; a continuous 

covariate has a non-linear effect; the model is mis-specified (e.g., it has an incorrect 

link function); there is zero-inflation; the data has an inherent dependency structure. 

These issues can be handled via several methods, the most common of which for 

count data is using a Quasi-Poisson approach, i.e. a dispersion parameter ϕ is included 
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in the model, or a Negative Binomial distribution (O’Hara and Kotze, 2010) for the 

count data.  

 

In this study, a Poisson GLM (log link) was used to detect overdispersion. The reason 

for using the Poisson model here is that the response variable (the number of recruits) 

is count data. When we found evidence of overdispersion in the data, we refitted the 

model with a Quasi-GLM and a generalized Negative Binomial model.  

 

In the Poisson model, the variance equaled ϕ, with mean and dispersion parameter 

ϕ. The following formula (Zuur et al., 2009) was used in the calculation:  

 

     (5.1)  

 

where D is the residual deviance and n – p is degrees of freedom. n is the number of 

observations, and p is the number of regression parameters (intercept and slopes) in 

the model. 

 

If ϕ equals 1, there is no overdispersion and we have the Poisson GLM; if ϕ is larger 

than 1, this is evidence for the suggestion of overdispersion (Zuur et al., 2009) and we 

have the Quasi-Poisson GLM. In the Negative Binomial model NB(i, k), the mean and 

variance of the counts are  and + 2/k, respectively. The procedure for selecting 

Poisson, Quasi-Poisson, and Negative Binomial models followed Zuur et al. (2009). All 

hypothesis testing was performed at the  = 0.05 significance level. 

 

- Model selection in Quasi-Poisson 

 

In the Quasi-Poisson model, the AIC cannot be calculated, because the likelihood is 

not defined. Therefore, backward or forward selections were not used. Here, the 

analysis of deviance approach to compare two nested models (a full model and a 

nested model) was applied. The non-significant variables at  = 5% were withheld from 

the model, which was then refitted with the remaining terms to see whether there were 

still any non-significant variables. The process must be repeated if some of the 

independent variables are still insignificant.  
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- Model selection in Poisson and Negative Binomial 

 

An advantage of the Poisson and Negative Binomial models over the Quasi-Poisson is 

that for the former two the AIC can be computed. An automatic backward selection 

procedure based upon AIC was therefore applied in order to find the most relevant 

explanatory variables.  

 

With Nrei meaning the number of recruits in the ith subplot, the logarithmic link between 

the mean of Nrei and the predictors in the full model is: 

 

  (5.2) 

 

or    

 

  (5.3) 

 

where: 

 

x1i to x4i are independent variables of the ith subplot (DBH, BALsubplot, BALstand, N) 

and αk is the effect of province k (k = 1, 2, 3), αk = 0 for Ha Tinh; 

  0 to 4 and the αk are the parameters to be estimated. 

log(timei) is an offset factor. The offset is a covariate in the linear predictor 

whose coefficient is not estimated but assumed to be equal to one. The 

measurements from the second research period were collected in 2012 and 

2013. Therefore, the time must be taken into account in this analysis, time = 7 

for plots 1, 2, 4, 6, 7, 8, 10, 11, and time = 8 for plots 3, 5, 9, 12. 

 

To estimate the regression parameters of the GLM, a maximum likelihood estimation 

was used (Zuur et al., 2013). 

 

 

5.1.4  Results of the GLM 

 

Descriptive statistics of the number of trees, their arithmetic mean diameter, the stand 
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basal area, the number of recruits, and the number of species among the recruits are 

reported in Table 5.1. 

 

The data set comprised 759 recruits of 116 different tree species (for all tree species), 

and 526 recruits of 46 species (for all important species) in a total of 12 plots.  The 

number of recruits (all species, all important species) per plot ranged from (9, 9) to 

(260, 180) with the number of recruitment species from (7, 7) to (53, 21). 

 

Table 5.1 Descriptive statistics of variables for recruitment modelling.  
 

Province Plot 
No. 

trees 

Mean 

DBH 

(cm) 

Stand 

basal 

area 

(m2/ha) 

All tree species 
All important tree 

species 

No. 

recruits 

No. 

species 

No. 

recruits 

No. 

species 

Ha Tinh 

1 416 20.95 18.65 13 7 13 7 

2 352 19.95 13.84 9 3 9 3 

3 391 19.05 15.54 17 11 10 6 

Total     39 14 32 9 

Thua 

Thien 

Hue 

4 932 17.35 33.04 169 42 119 19 

5 855 18.20 33.50 51 17 33 12 

6 1092 16.53 34.72 260 53 180 21 

Total     480 61 332 21 

Binh 

Dinh 

7 1151 16.05 31.01 39 20 27 9 

8 967 16.62 31.72 32 18 15 8 

9 893 18.34 32.44 41 24 19 8 

Total     112 43 61 13 

Khanh 

Hoa 

10 800 17.53 28.95 47 14 40 9 

11 782 17.52 24.46 53 15 38 8 

12 901 17.47 28.73 28 11 23 7 

Toal     128 25 101 11 

Total (4 prov.)    759 116 526 46 
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The final GLM after backward selection for the two species groups was  

 

    (5.4) 

 

The observed variance to mean ratio of all tree species and all important tree species 

were 2.24 and 1.94, respectively, providing evidence for overdispersion. Therefore, the 

data were refitted with Quasi-Poisson and Negative Binomial models yielding the 

Quasi-Poisson GLM 

 

    (5.5) 

 

 and the same Negative Binomial GLM 

 

     (5.6) 

 

The estimated parameters, standard errors, and the p-values of Poisson, Quasi-

Poisson, and Negative Binomial models are given in Table 5.2. Stem number N was no 

longer significant with the Quasi-Poisson and Negative Binomial models and was 

skipped. The deviance of the Negative Binomial GLM was smaller than that of the 

Quasi-Poisson GLM (Table 5.2), and its AIC smaller than that of the Poisson model. 

Therefore, the most appropriate model was the Negative Binomial. 

 

Similarly, a Negative Binomial GLM was also the final model for three important 

species appearing on all plots in three or four locations Syzygium wightianum: 

 

       (5.7) 

for Diospyros sylvatica 

       (5.8) 

 and for Nephelium melliferum: 

 

     (5.9)  
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Table 5.2 Generalized linear models (Poisson, Quasi-Poisson, and Negative Binomial) for recruitment trees  
(0.0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05). 

 

Objects Variables 
Param-

eters 

Poisson Quasi-Poisson Negative Binomial 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

All tree 

species 

Intercept 0 -1.9173 0.3337 
9.17e-09 

*** 
-1.5827 0.4561 0.0006*** -1.8590 0.4232 1.12e-05 *** 

DBH 1 -0.0444 0.0141 0.0016** -0.0545 0.0202 0.0075 ** -0.0399 0.0197 0.0427 * 

N 2 0.0091 0.0035 0.0099** - - - - - - 

Thua 

Thien Hue  

αk 

2.2037 0.1854 < 2e-16 *** 2.4012 0.2528 < 2e-16 *** 2.4386 0.2059 < 2e-16 *** 

Binh Dinh 0.7103 0.2056 0.0006*** 0.9172 0.2832 0.0013** 0.9526 0.2241 2.13e-05 *** 

Khanh 

Hoa 
0.9142 0.1939 

2.43e-06 

*** 
1.0524 0.2801 0.0002*** 1.0949 0.2212 7.45e-07 *** 

AIC  1254.5 NA 1101.8 

Deviance  658.64 665.25 314.28 
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Table 5.2  (continued) 
 

Objects Variables 
Param-

eters 

Poisson Quasi-Poisson Negative Binomial 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

All 

important  

tree 

species 

Intercept 0 -2.0636 0.3836 
7.46e-08 

*** 
-1.7377 0.4784 0.0003 *** -1.9217 0.4695 4.25e-05 *** 

DBH 1 -0.0473 0.0164 0.0039 ** -0.0569 0.0216 0.0089 ** -0.0469 0.0220 0.0333 * 

N 2 0.0092 0.0043 0.0304 * - - - - - - 

Thua 

Thien Hue  

αk 

2.0257 0.2099 < 2e-16 *** 2.2286 0.2569 2.8e-16 *** 2.2557 0.2260 < 2e-16 *** 

Binh Dinh 0.2917 0.2429 0.2297 0.5044 0.3035 0.0976 . 0.5217 0.2563 0.0418 * 

Khanh 

Hoa 
0.8669 0.2173 

6.63e-05 

*** 
1.0094 0.2843 0.0004*** 1.0365 0.2433 2.04e-05 *** 

AIC  1055.8 NA 951.73 

Deviance  569.17 573.82 303.55 
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Table 5.2  (continued) 
 

Objects Variables 
Param-

eters 

Poisson Quasi-Poisson Negative Binomial 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

S. 

wightianu

m 

Intercept 0 -4.7000 0.4472 < 2e-16 *** -4.7000 0.5315 < 2e-16 *** -4.6987 0.4665 < 2e-16 *** 

Thua 

Thien Hue  

αk 

2.5340 0.4646 
4.95e-08 

*** 
2.5340 0.5522 

6.61e-06 

*** 
2.5497 0.5011 3.62e-07 *** 

Binh Dinh 2.80e-13 0.6325 1.0000 2.80e-13 0.7517 1.0000 -0.0022 0.6600 0.9973 

Khanh 

Hoa 
1.3350 0.5026 0.0079*** 1.3350 0.5974 0.0262 *** 1.3402 0.5365 0.0125* 

AIC  391.67 NA 372.16 

Deviance  253.54 253.54 162.97 

D. 

sylvatica 

Intercept 0 -4.1900 0.2000 < 2e-16 *** -4.1897 0.2151 < 2e-16 *** -4.1865 0.2155 < 2e-16 *** 

AIC  167.01 NA 167.32 

Deviance  119.17 119.17 93.07 

N. 

melliferu

m 

Intercept 0 -8.6250 1.4764 5.16e-09*** -8.6250 1.4278 6.44e-09*** -8.9650 1.5841 1.52e-08*** 

DBH 1 0.1127 0.0512 0.0276* 0.1127 0.0495 0.0237* 0.1286 0.0571 0.0243* 

Binh Dinh 

αk 

2.4430 1.0773 0.0233* 2.4430 1.0418 0.0199* 2.4829 1.0980 0.0237* 

Khanh 

Hoa 
2.7572 1.0390 0.0080** 2.7572 1.0048   0.0066** 2.8119 1.0553   0.0077** 

AIC  140.72 NA 141.76 

Deviance  92.88 92.88 76.62 
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As mentioned above, for dealing with different time intervals of each plot in each 

province, adding an offset variable (as log(time)) for the model. To avoid plotting two 

lines in each location, we calculate the annual number of recruits per province. Thus, 

the explicit models for all species per province (with k = 2.007) are:  

 

Ha Tinh:    

     (5.10) 

Thua Thien Hue:  

   (5.11) 

Binh Dinh:  

    (5.12) 

Khanh Hoa:   

    (5.13) 

 

for all important species (with k = 1.746): 

 

Ha Tinh: 

     (5.14) 

Thua Thien Hue: 

    (5.15) 

Binh Dinh: 

    (5.16) 

Khanh Hoa: 

    (5.17) 

 

for S. wightianum (k = 0.745): 

 

Ha Tinh: 

        (5.18) 

Thua Thien Hue: 

      (5.19) 
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Binh Dinh: 

      (5.20) 

Khanh Hoa: 

      (5.21) 

 

for D. sylvatica (k = 0.678)  

 

        (5.22) 

 

and for N. melliferum (k = 1.058): 

 

Ha Tinh:  

     (5.23) 

Binh Dinh: 

    (5.24) 

Khanh Hoa: 

    (5.25) 

 

From the Negative Binomial model output, the DBH significantly influenced the log 

number of recruits across all species and all important species (Table 5.2). The relation 

between the DBH and log tree recruitment was negative, that means the greater the 

DBH, the smaller the log number and also the number of recruitment trees. In contrast, 

for N. melliferum, the number of recruits increased with rising the DBH. 

 

The province effect was also significant. The lowest intercept (-1.86 for all species and 

-1.92 for all important species) and therefore the lowest recruitment number for all tree 

diameters, was found in Ha Tinh, the reference province, the highest in Thua Thien 

Hue (+2.44 larger for all species and +2.26 for all important species). Binh Dinh and 

Khanh Hoa differed only little but still significantly from Ha Tinh in both species groups. 

Similar to the two groups, for S. wightianum, the highest number of recruits was 

recorded in Thua Thien Hue, whereas for N. melliferum, this number was largest in 

Khanh Hoa. 
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Figure 5.1 indicates the expected number of recruits per year across the range of the 

DBH in all four locations. For D. sylvatica and S. wightianum a more appropriate model 

was found considering random plot effects (see Figure 5.2). 
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S. wightianum 
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N. melliferum 
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Figure 5.1  The annual number of recruits from the Negative Binomial GLM (lines), 
and observed data (dots) of the two groups, S. wightianum, D. sylvatica, 
and N. melliferum. 

 

 

5.1.5  Generalized linear mixed model (GLMM) 

 

Generalized linear mixed models are an extension of a GLM in which the linear 

predictor contains random effects in addition to the fixed effects. The random effects 

can account for the correlation between observations from the same plot in a province. 

In this study, a random plot effect was added to the intercept, the slope, or both 

intercept and slope of each model. We found the Negative Binomial GLM was better 

than the Poisson GLM (section 5.1.4), thus, we continue to analyze a Negative 

Binomial GLMM with the penalized quasi-likelihood method. In other words, the 

analysis of the GLMM regarding the number of recruitment trees was again based on a 

Negative Binomial structure and a log link function.  

 

The parameter estimations for the GLMM in this chapter were fitted with glmmPQL in 

“MASS” package available from the open source statistical software R.  
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5.1.6  Results of the GLMM 

 

After adding random-plot effects to the intercept, the fixed province effect or the slope 

of DBH, the effect of DBH was no longer significant in both species groups. Therefore, 

only the following GLMMs (i: subplot, j: plot, b: random effects) 

 

    (5.26) 

    (5.27) 

    (5.28) 

 

were finally compared with the fixed effects model (5.6). Models (5.27) and (5.28) did 

not differ, because models with random effects on the province intercepts 0 + αk can 

not be improved by an additional random intercept on the global intercept 0. 

 

For S. wightianum occurring on all plots in four locations, the fixed effects model (6.7) 

was used in comparison with the three mixed models (5.26), (5.27), and (5.28), 

whereas D. sylvatica appearing on all plots in three provinces, the fixed effects model 

(5.8) was compared to one mixed effects model (5.29):  

 

      (5.29) 

 

and for Nephelium melliferum, the fixed effects model (5.9) was compared with the 

following mixed effects models: 

 

   (5.30) 

 (5.31) 

  (5.32) 

 (5.33) 

  (5.34) 
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Again, models (5.33) and (5.34) are equivalent. To assess goodness of fit of the data in 

the GLM and GLMM models, Pearson’s 2 was used (see table 5.3). 

 

Table 5.3 A comparison of Pearson’s 2 between the fixed effects model (FM) and 
the mixed effects models for the recruits of all species, all important 
species, and three important species appearing in three and four 
locations. Best models are highlighted. 

 

Objects n Equation Model specification 

Pearson’s 2 

Negative 

Binomial 

GLMM 

All tree 

species 
300 

5.6 Fixed effects model (GLM) 280.62 

5.26 FM + plot intercept 290.37 

5.27 
FM + plot intercept + plot 

slope (provincecode) 
295.12 

5.28 
FM + plot slope 

(provincecode) 
294.56 

All important 

tree species 
300 

5.6 Fixed effects model (GLM) 263.04 

5.26 FM + plot intercept 290.81 

5.27 
FM + plot intercept + plot 

slope (provincecode) 
295.03 

5.28 
FM + plot slope 

(provincecode) 
295.03 

S. wightianum 300 

5.7 Fixed effects model (GLM) 297.93 

5.26 FM + plot intercept 295.57 

5.27 
FM + plot intercept + plot 

slope (provincecode)  
297.73 

5.28 
FM + plot slope 

(provincecode) 
297.73 

D. sylvatica 225 
5.8 Fixed effects model (GLM) 222.28 

5.29 FM + plot intercept 218.43 
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Table 5.3  (continued) 
 

Objects n Equation Model specification 

Pearson’s 2 

Negative 

Binomial 

GLMM 

N. melliferum 

 
225 

5.9 Fixed effects model (GLM) 185.20 

5.30 FM + plot intercept 222.94 

5.31 
FM + plot intercept + plot 

slope (DBH) 
222.75 

5.32 FM + plot slope (DBH) 223.39 

5.33 
FM + plot intercept + plot 

slope (provincecode) 
223.16 

5.34 
FM + plot slope 

(provincecode) 
223.16 

  

The model with the minimum Pearson’s 2 values was selected as the best model. The 

Negative Binomial GLMM did not provide a substantially better fit on the basis of 

Pearson 2 than the Negative Binomial GLM, with the exception of two species 

occurring in three and four locations (D. sylvatica and S. wightianum). Consequently, 

the fixed effects GLM was selected to predict the number of recruits across all species, 

all important species (Equation 5.6), and N. melliferum (Equation 5.9), because it had 

the smallest Pearson Chi-squares.  

 

For S. wightianum and D. sylvatica, where neither the GLM nor the GLMMs include any 

covariate, the mixed effects model with the random plot effects on the intercept 

(Equation 5.26 and 5.29, respectively) was chosen.  

 

Table 5.4 lists the parameter estimates, standard deviation errors, and the p-values for 

the Negative Binomial GLMM of two important species (D. sylvatica and S. wightianum) 

occurring in three and four locations. The log number of recruits of S. wightianum in 

Binh Dinh and Khanh Hoa was not significantly different from that in Ha Tinh, while this 
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number in Thua Thien Hue was significantly more than that in Ha Tinh. The parameter 

estimates are close to those of the GLM (Table 5.2 or (5.18) to (5.21)).  

 

For D. sylvatica, there was no difference in the number of recruits in three provinces 

Thua Thien Hue, Binh Dinh, and Khanh Hoa.  

 

The random plot effects on the intercept in the Negative Binomial GLMM contributed 

from 14.69% to 65.92% to the total unexplained variation (Table 5.4), and the 

overdispersion parameters were closer to 1, reflecting that the overdispersion observed 

with Negative Binomial GLM was removed here by considering random plot effects. 
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Table 5.4 Parameter estimates for the Negative Binomial GLMM for recruitment trees of S. wightianum and D. sylvatica 
 

Objects Equation 

Fixed effects 
Variance 

components 

variation 

explained 

by random 

effects 

Overdispersion 

parameter 

Variables 
Parameter 

estimates 
Std.error Pr(>|z|) 


ran-in 

res 

S. 

wightianum 
5.26 

Intercept 0 -4.7072 0.5069 0.0000 

0.1579 0.9166 14.69 1.0019 

Thua Thien 

Hue 
αk 

2.4613 0.5860   0.0030 

Binh Dinh -0.0137 0.7179 0.9853 

Khanh Hoa 1.3237 0.6139 0.0631 

D. 

sylvatica 

5.29 
Intercept 0 -4.5817 0.4287 0.0000 1.2020 0.6213 65.92 0.9795 
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Figure 5.2  The annual number of recruits from the Negative Binomial GLMM (lines), 
and observed data (dots) for S. wightianum and D. sylvatica. 
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5.2  Mortality models 

 

5.2.1  Introduction 

 

Natural mortality of trees is a crucial process that determines forest dynamics (Rüger et 

al., 2011). When a tree dies, the reduced competition benefits the trees near the dead 

tree, positively affecting their growth (Yang et al, 2003); in addition, gaps created by 

dead canopy trees are later filled by new trees (Oliver and Larson, 1996). McCarthy 

(2001) notes that these gap dynamics are crucial determinants of the structure and 

composition of a forest stand. For these reasons, the mortality process should be 

considered in stand simulation models. However, modeling mortality is difficult due to 

the stochastic nature of mortality events; standing death may be caused by intrinsic 

senescence (Carey et al., 1994) or extrinsic factors such as disease, insects, fungi, and 

wind. In previous studies, several statistical methods have been utilized to develop 

mortality models, including the logistic regression model (Monserud and Sterba, 1999), 

the two-step approach (Eid and Tuhus, 2001; Álvarez González et al., 2004; Diéguez-

Aranda et al., 2005), the three-step approach (Fridman and Stahl, 2001; Meng et al., 

2003), and neural networks (Hasenauer et al., 2001). 

 

Using the approach from recruitment modelling to develop a mortality model, the 

Poisson GLM, Quasi-Poisson GLM, Negative Binomial GLM, and the Negative 

Binomial GLMM were employed to model mortality for all species, all important 

species, and the important species that occurred in three or four provinces. The 

dependent variable was the number of dead trees, which are the standing trees that 

died between the two occasions at which measurements were taken. 

 

 

5.2.2  Results of the GLM 

 

A total of 1323 dead trees belonging to 189 species were counted at the four locations. 

The number of dead trees for all species and all important species counted per plot 

ranged from 21 to 221 and from 10 to 133 respectively. This was in correspondence 

with the number of species, which was respectively, from 17 to 58 and from 8 to 21 

(Table 5.5). 
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Table 5.5 Descriptive statistics of the mortality data used for the model 
development.  

 

Province Plot 
No. 

trees 

Mean 

DBH 

(cm) 

Stand 

basal 

area 

(m2/ha) 

All tree species 
All important 

tree species 

No. 

dead 

trees 

No. 

species 

No. 

dead 

trees 

No. 

species 

Ha Tinh 

1 416 20.95 18.65 21 17 10 8 

2 352 19.95 13.84 69 33 33 9 

3 391 19.05 15.54 66 37 25 9 

Total     156 66 68 14 

Thua 

Thien 

Hue 

4 932 17.35 33.04 154 44 109 21 

5 855 18.20 33.50 77 41 45 19 

6 1092 16.53 34.72 190 54 133 21 

Total     421 73 287 21 

Binh 

Dinh 

7 1151 16.05 31.01 221 57 130 17 

8 967 16.62 31.72 184 58 108 17 

9 893 18.34 32.44 96 43 47 12 

Total     501 86 285 17 

Khanh 

Hoa 

10 800 17.53 28.95 35 18 25 9 

11 782 17.52 24.46 82 27 59 9 

12 901 17.47 28.73 128 27 99 11 

Toal     245 42 183 11 

Total (4 prov.)    1323 189 823 49 

 

The fitted Poisson GLM model for two species groups supported evidence for 

overdispersion through the ratio of deviance to degrees of freedom larger than 1 (2.79 

and 2.38, respectively). Thus, we refitted the data to correct the standard errors using 

Quasi-Poisson and Negative Binomial GLMs.  
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The estimated parameters, standard errors, and the p-values of Poisson, Quasi-

Poisson, and Negative Binomial models are represented in Table 5.6. The deviance 

across all species and all important species was the lowest when analyzed with a 

Negative Binomial GLM. The analysis of the data set for the mortality model was quite 

similar to the recruitment model, leading us to conclude that the Negative Binomial 

model was preferrable over the Poisson and Quasi-Poisson models. The Negative 

Binomial GLM is given as follows: 

 

For all species: 

 

   (5.35) 

 

and for all important species:  

 

   (5.36) 

 

In the same way, the Negative Binomial GLM was the selected model for three 

important species (Syzygium wightianum, Diospyros sylvatica and Nephelium 

melliferum) spread over three or four provinces: 

 

- S. wightianum 

 

   (5.37) 

 

- D. sylvatica 

 

      (5.38) 

 

-  N. melliferum 

 

      (5.39) 
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Table 5.6 GLM (Poisson, Quasi-Poisson, Negative Binomial) results for standing dead trees (0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05). 
 

Objects Variables 
Para-

meters 

Poisson Quasi-Poisson Negative Binomial 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

All tree 

species 

Intercept 0 0.9764 0.4022 0.0152* 0.3103 0.6151 0.614253 0.4251 0.5371 0.4287 

DBH 1 -0.0306 0.0099 0.0019 ** - - - - - - 

BALstand 2 -0.0969 0.0219 
1.02e-05 

*** 
-0.0999 0.0385 0.010019 * -0.1082 0.0334 0.0012 ** 

N 3 -0.0075 0.0026 0.0046 ** - - - - - - 

Thua 

Thien 

Hue  

αk 

2.8502 0.4129 
5.10e-12 

*** 
2.7961 0.7211 

0.000130 

*** 
2.9610 0.6191 

1.73e-06 

*** 

Binh Dinh 2.8215 0.3706 
2.68e-14 

*** 
2.7672 0.6445 2.39e-05 *** 2.9166 0.5530 

1.33e-07 

*** 

Khanh 

Hoa 
1.6269 0.2747 

3.19e-09 

*** 
1.6007 0.4773 

0.000901 

*** 
1.7165 0.4112 

2.99e-05 

*** 

AIC  1684.3 NA 1457.9 

Deviance  816.81 831.72 322.56 
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Table 5.6  (continued) 
 

Objects Variables 
Para-

meters 

Poisson Quasi-Poisson Negative Binomial 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

All 

important  

tree 

species 

Intercept 0 -0.1060 0.5117 0.8359 -1.2507 0.4223 0.0033 ** 0.1144 0.7463 0.8782 

DBH 1 -0.0433 0.0122 0.0004 *** -0.0429 0.0195 0.0280 * -0.0396 0.0181 0.0287 * 

BALstand 2 -0.0718 0.0277 0.0095 ** - - - -0.0910 0.0405 0.0245 * 

Thua 

Thien 

Hue  

αk 

2.6382 0.5164 
3.24e-07 

*** 
1.3537 0.2194 2.24e-09 *** 3.0239 0.7500 

5.53e-05 

*** 

Binh Dinh 2.4632 0.4632 
1.05e-07 

*** 
1.3239 0.2214 6.41e-09 *** 2.7783 0.6715 

3.51e-05 

*** 

Khanh 

Hoa 
1.7083 0.3477 

8.98e-07 

*** 
0.8861 0.2333 0.0002 *** 1.9593 0.5015 

9.33e-05 

*** 

AIC  1389.9 NA 1233.6 

Deviance  700.32 706.97 319.22 
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Table 5.6  (continued) 
 

Objects Variables 
Para-

meters 

Poisson Quasi-Poisson Negative Binomial 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

S. 

wightianum 

Intercept 0 -2.3011 1.1804 0.0512. -2.3011 1.2261 0.0615. -2.2846 1.1985 0.0566. 

BALstand 1 -0.1859 0.0671 0.0059** -0.1859 0.0697 0.0081** -0.1869 0.0684 0.0063** 

Thua 

Thien 

Hue  
αk 

5.4731 1.3714 6.58e-05*** 5.4731 1.4245 0.0002*** 5.4926 1.3941 
8.15e-

05*** 

Binh Dinh 4.7208 1.2624 0.0002*** 4.7208 1.3112 0.0004*** 4.7376 1.2822 0.0002*** 

Khanh 

Hoa 
4.7277 0.9623 8.96e-07*** 4.7277 0.9995 3.48e-06*** 4.7409 0.9767 

1.21e-

06*** 

AIC  375.95 NA 377.85 

Deviance  216.95 216.95 210.84 

D. 

sylvatica 

Intercept 0 -6.5974 1.0108 6.72e-11*** -6.310 1.129 6.69e-08*** -6.3090 1.010 
4.12e-

10*** 

BALsubplot 1 0.4233 0.2044 0.0384* - - - - - - 

Binh Dinh 

αk 

2.8643 1.0300 0.0054** 3.135 1.153 0.0071** 3.1370 1.040 0.0026** 

Khanh 

Hoa 
2.9082 1.0296 0.0047** 3.135 1.153 0.0071** 3.1280 1.041 0.0027** 

AIC  235.37 NA 231.26 

Deviance  152.10 155.85 106.08 
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Table 5.6  (continued) 
 

Objects Variables 
Para-

meters 

Poisson Quasi-Poisson Negative Binomial 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

Parameter 

estimates 

Std-

error 
Pr(>|z|) 

N. 

melliferum 

Intercept 0 -4.1127 0.1925 < 2e-16*** -4.1127 0.2121 < 2e-16*** -4.1101 0.2067 < 2e-16*** 

AIC  176.37 NA 176.36 

Deviance  124.77 124.77 98.79 
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The annual number of dead trees can be estimated using the Negative Binomial GLM 

for all species per province (with k = 2.487): 

 

Ha Tinh:    

    (5.40) 

Thua Thien Hue:  

  (5.41) 

Binh Dinh:  

  (5.42) 

Khanh Hoa:  

  (5.43) 

 

for all important species (with k = 1.993): 

 

Ha Tinh:   

 (5.44) 

Thua Thien Hue:  

 

(5.45) 

Binh Dinh:   

 

 (5.46) 

Khanh Hoa:   

  

           (5.47) 

 

for S. wightianum (k = 13.786): 

 

Ha Tinh: 

   (5.48) 

Thua Thien Hue: 
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 (5.49) 

Binh Dinh: 

   (5.50) 

Khanh Hoa: 

   (5.51) 

 

for D. sylvatica (k = 0.667): 

 

Ha Tinh: 

        (5.52) 

Binh Dinh: 

      (5.53) 

Khanh Hoa: 

      (5.54) 

 

and for N. melliferum (k = 0.772): 

 

       (5.55) 

 

The coefficient of BALstand was always negative (all species, all important species, and 

S. wightianum) denoting that the number of dead trees declined as the stand basal 

area became larger, or 0 (i.e. nonsignificant) for the other two species (Table 5.6). 

Similarly, the number of dead trees of all important species decreased with an 

increasing DBH, indicating a higher number of dead trees among small, as opposed to 

larger trees. This number should rise in age-related senescence as the tree becomes 

older; however, the data in our model did not demonstate this relationship. The number 

of dead trees for the two groups and S. wightianum was found to be the highest in 

Thua Thien Hue in comparison with Ha Tinh, Binh Dinh, and Khanh Hoa. Similarly, D. 

sylvatica, which appeared in three locations, had a much larger number of dead trees 

in Binh Dinh and Khanh Hoa than in Ha Tinh. 
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N. melliferum 
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Figure 5.3  The number of dead trees per year from the final Negative Binomial 
GLM (lines), and real data (dots) of the two groups, S. wightianum, D. 
sylvatica, and N. melliferum. 
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5.2.3  Results of the GLMM 

 

The significant negative effects of the DBH (for the dead trees of all important species) 

and BALstand (for the dead trees of two species groups) as predicted by the Negative 

Binomial GLM became insignificant under the Negative Binomial GLMM, leading to 

removal of those variables from the model. Thus, for all species and all important 

species, the respective fixed effects models (5.35) and (5.36), were compared to the 

following mixed effects models: 

 

     (5.56) 

   (5.57) 

    (5.58) 

 

For S. wightianum, the fixed effects model (5.37) was compared to four mixed effects 

models: 

 

  (5.59) 

  (5.60) 

 (5.61) 

  (5.62) 

 

while for D. sylvatica, the fixed effects model (5.38), along with candidate mixed effects 

models (5.56), (5.57), and (5.58) were assessed, and for N. melliferum, the fixed 

effects model (5.39) was compared to only one mixed effects model (5.63): 

 

      (5.63) 

 

Pearson’s 2 values of fixed and mixed models for predicting the number of dead trees 

across all species, all important species, one important species (S. wightianum) 
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occurring in four, and two others (D. sylvatica, N. melliferum) found in three locations 

are presented in Table 5.7.     

 

Table 5.7 A comparison of Pearson’s 2 values between the fixed effects model 
and the mixed effects models. Selected models are bolded. 

 

Objects n Equation Model specification 

Pearson’s 2 

Negative 

Binomial 

GLMM 

All tree 

species 
300 

5.35 
Fixed effects model 

(GLM) 
330.35 

5.56 FM + plot intercept 289.50 

5.57 
FM + plot intercept + plot 

slope (provincecode) 
289.55 

5.58 
FM + plot slope 

(provincecode) 
289.55 

All important 

tree species 
300 

5.36 
Fixed effects model 

(GLM) 
324.64 

5.56 FM + plot intercept 289.59 

5.57 
FM + plot intercept + plot 

slope (provincecode) 
289.68 

5.58 
FM + plot slope 

(provincecode) 
289.68 

S. 

wightianum  
300 

5.37 
Fixed effects model 

(GLM) 
312.14 

5.59 FM + plot intercept 300.00 

5.60 FM + plot slope (BALstand) 300.00 

5.61 
FM + plot intercept + plot 

slope (provincecode) 
298.13 

5.62 
FM + plot slope 

(provincecode) 
298.13 
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Table 5.7  (continued) 
 

Objects n Equation Model specification 

Pearson’s 2 

Negative 

Binomial 

GLMM 

D. sylvatica 225 

5.38 
Fixed effects model 

(GLM) 
216.80 

5.56 FM + plot intercept 225.00 

5.57 
FM + plot intercept + plot 

slope (provincecode) 
224.99 

5.58 
FM + plot slope 

(provincecode) 
224.99 

N. melliferum 225 
5.39 

Fixed effects model 

(GLM) 
235.47 

5.63 FM + plot intercept 223.50 

 

Table 5.7 presents a comparison of selected models based on Pearson’s 2 values. 

Here, we see that the Pearson’s 2 statistic for the fixed model is significantly larger 

than that of mixed effects model, with the exception of one important species appearing 

in three places (D. sylvatica); a different conclusion to the one regarding the 

recruitment model in section 5.1.6 can be drawn. The Negative Binomial GLMM 

performed better than the Negative Binomial GLM. In similar fashion to the recruitment 

model, the mixed models with random intercept/random slope (provincecode) was not 

different from the mixed models with random slope (provincecode) effects. Therefore, 

the mixed model with a random slope was chosen for S. wightianum for it was simpler, 

while the mixed model with random intercept was selected as the equation for the 

direct prediction of dead trees across each of the two species groups, and for N. 

melliferum, because it had the smallest Pearson’s 2 value (Table 5.7). For D. 

sylvatica, the fixed model using only the provincecode as a predictor (Equation 5.38) 

was used. 
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The summary statistics for the parameter estimations, standard deviation errors, and 

the p-values for the Negative Binomial GLMM are reported in Table 5.8. In general, for 

the two species groups, the number of dead trees in Thua Thien Hue and Binh Dinh 

was much greater than that in Ha Tinh, with the single exception of Khanh Hoa, where 

there was no significant difference when compared with Ha Tinh (p > 0.05). For S. 

wightianum, in Thua Thien Hue, Binh Dinh, and Khanh Hoa were significantly higher 

numbers of mortality in comparison with Ha Tinh.  

 

For N. melliferum, there was no difference in the number of both recruits and dead 

trees in three provinces Ha Tinh, Binh Dinh, and Khanh Hoa.  

 

The variance component of the random plot effects in Table 5.8 was rather small (from 

7.22% to 25.77%); however, the random effect demonstrated evidence of unexplained 

variation at the plot level and provided a suitable adjustment for dispersion (the 

overdispersion parameter was more or less 1).  
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Table 5.8 Parameter estimates for the Negative Binomial GLMM across all species, all important species, and important species 
occurring in four or three provinces  

 

Objects Equation 

Fixed effects Variance components variation 

explained 

by the plot 

Overdispersion 

parameter Variables Parameters 
Parameter 

estimates 

Std-

error 
Pr(>|z|) 

ran-in 


ran-

slop 


res 

All species 5.56 

Intercept 0 -1.3576 0.2586 0.0000 

0.1661 - 0.8138 16.95 0.9814 

Thua 

Thien 

Hue  
αk 

1.0295 0.3600 0.0212 

Binh Dinh 1.2125 0.3595 0.0097 

Khanh 

Hoa 
0.4374 0.3627 0.2623 

All 

important 

species 

5.56 

Intercept 0 -2.1680 0.3048 0.0000 

0.2200 - 0.7779 22.04 0.9817 

Thua 

Thien 

Hue  
αk 

1.4325 0.4192 0.0091 

Binh Dinh 1.4350 0.4191 0.0090 

Khanh 

Hoa 
0.9419 0.4218 0.0560 
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Table 5.8  (continued)  

 

Objects Equation 

Fixed effects Variance components variation 

explained 

by the plot 

Overdispersion 

parameter Variables Parameters 
Parameter 

estimates 

Std-

error 
Pr(>|z|) 

ran-in 


ran-

slop 


res 

S. 

wightianum 
5.62 

Intercept 0 -2.5911 1.2212 0.0347 

- 0.3476 1.0013 25.77 1.0141 

BALstand 1 -0.1670 0.0696 0.0475 

Thua 

Thien 

Hue  
αk 

5.1282 1.4038 0.0084 

Binh Dinh 4.2865 1.3349 0.0152 

Khanh 

Hoa 
4.5158 0.9926 0.0026 

N. 

melliferum 
5.63 Intercept 0 -4.1223 0.2257 0.0000 0.0762 - 0.9793 7.22 1.0022 
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N. melliferum 
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Figure 5.4  The annual number of dead trees from the Negative Binomial GLMM 
(lines), and observed data (dots) for the two species groups, S. 
wightianum, and N. melliferum. 

 

 

5.3  Discussion  

 

In recruitment and mortality modeling, the explained variable is a count and its 

distribution is usually characterized by a large number of zeros; a standard Poisson 

distribution is consequently inaccurate. To overcome this obstacle, we applied both 

generalized linear and generalized linear mixed models to analyze the recruitment and 

mortality models in this study. First, after fitting the GLM, we found that the Negative 

Binomial GLM was the best model to predict the number of recruitment and dead trees 

across all species, all important species, and important species occurring in three or 

four provinces. Given the analysis of the count data (i.e., the number of recruitment and 

dead trees), a log link was recommended; the Negative Binomial GLM was most 

suitable for this data. This finding coincides with Affleck’s (2006) conclusion that 

Negative Binomial regression can be used for the analysis of stand-level mortality in 

Virginia and North Carolina. Moreover, the Negative Binomial model comprises a 

second parameter (known as the dispersion parameter), which is used to 

accommodate Poisson overdispersion. The DBH was additionally found to be the most 

significant explanatory variable in expressing the relationship between recruitment and 
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tree size, and had a negative effect on the number of recruits; in comparison, the stand 

basal area (BALstand) was the most significant negative contribution to the mortality 

model. We realized that the mean numbers of recruits and dead trees were different in 

the four different locations. Interestingly, both the number of recruits and dead trees in 

Thua Thien Hue were the highest, while in Ha Tinh these were the lowest in two cases 

(all species and all important species) (Figure 5.1, 5.3). Second, after fitting the 

Negative Binomial GLMM, we can conclude that it can handle overdispersion via a 

random effect.   

 

 

5.3.1  Recruitment model 

 

The final Negative Binomial GLM predicting the number of recruits included both the 

DBH as continuous and provinces (provincecode) as categorical variables. From the 

fixed factor provincecode, our model represented a difference in the number of recruits 

among the four provinces. The model indicated a negative effect of the DBH on the 

number of recruits; similar results were reported by Zhang et al. (2012), Lexerød (2005) 

(using the basal area mean diameter), and Klopcic et al. (2012) (using the quadratic 

diameter).  

 

In the present study, the number of recruits declined dramatically for smaller trees and 

more slowly for larger trees. In uneven-aged forest stands, a high mean stand diameter 

often reveals a lower light availability which may be particularly low in the understory 

where young trees could potentially be recruited. A larger mean stand diameter thus 

usually results in a lower number of recruitment trees (Klopcic et al., 2012). 

Furthermore, the subplot and the stand basal area, important stand characteristics, 

were not significant in our model. This finding is contrary to previous studies such as 

Vanclay (1992), Lexerød (2005), Fortin and DeBlois (2007), Timilsina (2010), Klopcic et 

al. (2012), and Zhang (2012), where stand basal area or its log transformation were 

significant. Another insignificant predictor in the present model was the number of trees 

per subplot, while the stand density was significant in Lexerød (2005), Timilsina (2010), 

and Zhang’s (2012) respective models.  

 



 

143 

 

There are several possible reasons for this model’s poor performance. First, our 

sample was rather small; it only contained 300 subplots (each covering 400 m2) from 

12 one-hectare plots in four locations. In comparison, there were 217 permanent 

sample plots with a measurement history of up to 40 years in Vanclay’s 1992 study; 

Lexerød (2005) likewise used a dataset from circular permanent plots (100 m2) with 

permanent plots covering a forested area of Norway in a 3 km x 3 km grid. In similar 

fashion, Zhang et al.’s 2012 study consisted of 132 square plots (0.067 hectare each) 

obtained between 1986 and 2001 with a 5-year re-measurement interval.  

 

The lack of information on site conditions may also have played an important role in the 

model’s poor performance, as site index had a significant effect on the number of 

Norway spruce recruits in Lexerød’s study (2005); in Vanclay’s (1992) case, site quality 

was statistically significant for modeling recruitment in a tropical rain forest.  

 

 

5.3.2  Mortality model 

 

The Negative Binomial regression for the mortality model expressed in this chapter 

used variables BALstand and provinceocde for all species, and DBH, BALstand and 

provincecode for all important species as predictors in predicting mortality. The DBH 

had a negative sign, resulting in the high mortality of small diameter trees and 

suggesting that suppressed trees are more likely to be eliminated from stand level 

competition (Adame et al., 2010); the negative DBH coefficient also indicated that 

stand mortality is more likely in forest stands with many small trees as compared to 

those with larger trees (Juknys et al., 2006). This result was supported by Zhang et al. 

(2014) who likewise found that stand mortality was negatively associated with a stand 

arithmetic mean diameter among Chinese pines (Pinus tabulaeformis).  

 

The stand basal area was suggested as a measure of two-sided competition that can 

take into account both the vertical competition for light and the horizontal competition 

for rooting space, water, and nutrients (Yang et al., 2003). This indicator is a good 

measure of stand crowding because it accounts for both tree size and density. Trees in 

a stand with a larger basal area will experience more competition than those in another 

stand with a smaller stand basal area (Yang et al., 2003). The number of dead trees 
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should grow along with the increase in the stand basal area as a result of competition 

pressure. In this study, however, the negative coefficient of the stand basal area 

demonstrated that with an increasing stand basal area, the number of dead trees 

decreased. This may imply that inter-specific competition does not cause tree mortality 

for these stands. Another study from Bravo et al. (2001) found that stand basal area 

was an insignificant predictor of Douglas-fir mortality across a range of stands.  

 

 

5.3.3  Assessing the Negative Binomial GLMM 

 

Plot level random effects on recruitment and mortality models can address some of the 

unexplained variation in these processes due to unobserved plot level variables, which 

included topography, soil, microclimate, nutrients, and moisture (Ma et al., 2013). 

 

For this study, overdispersion becomes an issue as a result of the huge number of zero 

counts. Because it can affect the regression parameters, overdispersion is dealt with 

here by using a generalized linear mixed model, treating a plot factor as a random 

effect and integrating the evoked overdispersion by this factor into the model. The 

Negative Binomial GLMM therefore appeared to be a suitable model due to its ability to 

capture overdispersion and within-plot correlation. This analysis illustrates that 

appropriate statistical models are effective in tackling the challenge of modeling 

recruitment and the association of dead trees with data that has a high frequency of 

zero captures. 

 

In short, studies of the recruitment and mortality processes in forest stands, especially 

in tropical forests, are still rare. In this chapter, we have constructed generalized linear 

models (Quasi-Poisson, Negative Binomial regressions) and a generalized linear mixed 

model (Negative Binomial mixed model) to analyze the recruitment and mortality 

models. These models have both advantages and disadvantages. On the one hand, 

we were able to use the Negative Binomial GLM and the Negative Binomial GLMM to 

improve our recruitment and mortality models; on the other hand, we did not have 

enough data to separate it into two parts, one part to fit model and the other to validate 

it. We understand that validating the model with independent data is important, and this 

will be implemented in the future research.  
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Chapter 6 Conclusions 

 

Studies of forest dynamics concentrate on those changes in the forest structure and 

composition over time which are primarily driven by three processes: growth, 

recruitment, and mortality. For this reason, stand dynamics studies frequently utilize 

data from permanent plots that record the fate of individual trees. 

 

This study has aimed to describe changes occurring in the forest structure and tree 

species diversity over time and construct growth models in order to support the 

sustainable management of natural tropical forests in Vietnam. The models were 

developed using data from trees ≥ 6 cm DBH from 12 one-hectare permanent plots in 

four provinces. There are three model components: diameter increment, recruitment, 

and mortality. 

 

For tropical forests with high tree species diversity, the development of the growth, 

recruitment, and mortality models necessitates a suitable grouping of tree species. In 

the present study, we used the importance value index (IVI) to group tree species; the 

IVI was computed by adding up three crucial traits of a particular species, namely, its 

relative density, relative frequency, and relative dominance. There are two species 

groups following our definition: important species (IVI ≥ 5%) and less important tree 

species (IVI < 5%). This classification seems reasonable and can be utilized in the 

prediction of diameter increment, recruitment, and mortality. Additional models were 

developed for species which occurred in at least three of the four provinces to compare 

variation among plots and provinces. 

 

In the third chapter, changes in the forest structure and tree species diversity over time 

were assessed. During a seven- and eight-year period, the stands demonstrated fairly 

stable ecological conditions. There were some slight variations in density, diversity 

indices, diversity profiles, and species-area relations, but these results indicated that 

those stands are developing and regeneration in the forests is present. In the years 

after the first census, the most noticeable trend was a decrease in almost all diversity 

indices, with the exceptions of plot 3 in Thua Thien Hue and plot 1 in Khanh Hoa, 

where the number of occurring tree species rose thanks to the occurrence of five new 

species in Thua Thien Hue plot 3 (Actinodaphne pilosa, Aglaia tomentosa, Artocarpus 
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rigidus, Litsea vang H., and Peltophorum pterocarpum) and one (Alstonia scholaris) in 

Khanh Hoa plot 1. For the ten other plots, the species richness was declined due to the 

disappearance of species, more precisely the loss of two species in Ha Tinh plot 1 

(Armesiondendron chinense and Microcos paniculata), 10 species in plot 2 

(Actinodaphne pilosa, Annona squamosa, Aphanamixis polystachya, Baccaurea 

sapida, Croton tiglium, Cryptocarya annamensis, Machilus platycarpa, Michelia 

mediocris, Oroxylum indicum, and Pavieasia annamensis), five species in Binh Dinh 

plot 2 (Bischofia javanica Bl., Craibiodendro scleranthum, Cratoxylon formosum, 

Elaeocarpus grandifloras, and Ficus racemosa), and one species in Khanh Hoa plot 2 

(Lithocarpus ducampii).  

 

Owing to the appearance and the disappearance of tree species, the estimated 

species-area curves in 12 plots changed between 2005 and 2012/2013: first, three of 

the five lowest estimated curves, namely of Ha Tinh plots 1 and 2 and Khanh Hoa plot 

2 became closer; second, the rank between Thua Thien Hue plot 2 and Binh Dinh plot 

2 changed. In the second inventory, 12 species-area curves are obviously classified 

into two groups, where group 1 contains Ha Tinh plot 3, Binh Dinh, and Thua Thien 

Hue, group 2 includes Ha Tinh plots 1 and 2 and Khanh Hoa. Moreover, the total 

number of species strictly increased with increasing area, which can be explained by 

the influence of environmental heterogeneity on the species-area relationship. The 

species-area curves for the 12 plots did not reach their asymptote at the one hectare 

plot size, which means that one could expect to record new tree species if the sample 

area would be further increased beyond 10,000 m2. In this case, the species-area 

curve will reach an asymptote only if the number of environments reaches an 

asymptote at some spatial scale. 

 

Tree species diversity varied considerably from province to province. The largest 

number of species per hectare was recorded in Binh Dinh plot 3 with 102 in 2005 and 

101 in 2013, while only 46 (2005) and 47 (2012) species were found in Khanh Hoa plot 

1. We used diversity indices and rank type diversity profiles to assess and compare the 

tree species diversity between four locations; we recommend using the latter because 

of their more stringent testing of diversity ordering. In our study, the conclusion was 

that intrinsic diversity of plots in Thua Thien Hue, Binh Dinh and Ha Tinh is larger than 

that of the Khanh Hoa plots. 
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In regard to the height-diameter relationship, the Chapman-Richards equation was for 

most of the plots more suitable than the seven remaining equations. The height curves 

stratified by three stories confirm a higher accuracy in tree height estimation, however 

the height curves of both important and less important tree species can be pooled 

without a notable loss in precision.   

 

The analysis of tree diameter increment in tropical forests of Vietnam was presented in 

Chapter 4. Using remeasured tree data from all species in each province, the results 

indicated that the independent variable initial diameter ln(DBH2005) mostly influenced 

the annual diameter increment ADI. As potential explanatory variables we used the 

logarithm of initial diameter as tree size, and three competition indices (log-

transformation of the subplot basal area, stand basal area, and ratio of basal area of kth 

tree to subplot basal area) from the eight plots remeasured in 2012. On the four other 

plots, where coordinates of each tree in the plot were available, log-transformation of 

the overtopping basal area and overtopping diameter were also analyzed. When fitting 

different forms of growth equations, the competition indices did not show clear trends in 

most cases: they were sometimes positive, sometimes negative, and mostly non-

significant in the growth model, whereas an obvious negative effect was expected, e.g, 

a negative parameter for basal area of larger trees implied that an increase in 

competition leads to a reduction in the diameter increment. Due to the unclear and 

most often insignificant competition indices, the final function of the periodic annual 

diameter increment consisted of only one (mostly significant) predictor lnADIk = 0+ 

1lnDBH2005k + k. The slope parameter of almost all individual important species, all 

important species and all others in each province had the expected sign – a negative 

regression coefficient, suggesting that the periodic annual diameter increment declines 

with increasing tree diameter. However, the slope parameter was significant for only 39 

of the 67 individual important species; for the other species with insignificant slopes, 

the periodic annual diameter increment can be assumed to remain at least 

approximately constant from 6 cm to 100 cm DBH, and the simple growth model ADIk = 

exp(0 + k) holds.  

 

Another noteworthy point in this chapter was that the minor difference between the real 

(rounded at two digits after decimal point) and rounded data (to an integer) cannot 
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produce misleading models of diameter increment, thus, we felt free to round the data 

collected in 2013 on only one plot in each province to an integer to get a consistent 

data set for modelling purposes.  

 

For the four important species S. wightianum, G. subaequelis, D. sylvatica, and N. 

melliferum, which appeared in at least three of the four locations, as expected, the 

linear mixed effects model significantly improved model fit compared to the fixed effects 

linear regression. Although the small distances between plots within a province and the 

comparably large distances between the provinces, the variation among plots is very 

large compared to the variation among provinces. Therefore, the linear mixed effects 

models with plots as random effects on intercepts and slopes were selected and they 

could in almost all cases account for random variation in the periodic annual diameter 

increment. On account of mostly insignificant trends of the competition indices, the 

simple linear mixed effects models were used, which only use ln(DBH2005) as a 

covariate, however, through the mixed effects model, the spatial correlation between 

trees on the same plot, the sources of unexplained variation (e.g., pure error), and 

unobserved variables (e.g. other environmental data) could be explained via the fitting 

of random effects for plot-to-plot variation. The variance explained by the random plot 

effects varied from 85.09% to 90.02%.  

 

The results of Chapter 5 suggest that we successfully developed the recruitment and 

mortality models by using both generalized linear and generalized linear mixed models 

for count data to address the problem of overdispersion. Five explanatory variables, 

including arithmetic mean diameter of the subplot, subplot and plot basal area, subplot 

density, and provinces as a categorical variable were examined. With the generalized 

linear model, we found that the Negative Binomial GLM was the most appropriate 

model for predicting the number of recruitment and dead trees across all species, all 

important species, and important species which appeared in three or four locations (S. 

wightianum, D. sylvatica, and S. wightianum). The diameter was found to be the most 

significant explanatory variable in expressing the relationship between recruitment and 

tree size, and had a negative effect on the number of recruits; in comparison, the stand 

basal area was the most significant negative contribution to the mortality model. From 

using the provinces as a grouping variable, we realized that the mean numbers of 

recruits and dead trees were different in the four different locations, namely both the 
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number of recruits and dead trees in Thua Thien Hue were the highest, while in Ha 

Tinh these were the lowest in two cases (all species and all important species). 

 

With the generalized linear mixed model, the Negative Binomial GLMM solves 

overdispersion by treating a plot as a random effect. The GLMM with the random plot 

effects on the intercept was only chosen to predict the number of recruits for S. 

wightianum and D. sylvatica, where neither the GLM nor the GLMMs include any 

significant explanatory variable. The random plot effects on the intercept in the model 

contributed from 14.69% to 65.92% to the total unexplained variation. For the mortality 

model, in similar fashion to the recruitment model, the Negative Binomial GLMM with a 

random slope was selected for S. wightianum, while the mixed model with random 

intercept was selected for the direct prediction of dead trees across each of the two 

species groups, and for N. melliferum. The variance component of the random plot 

effects was from 7.22% to 25.77%, it demonstrated evidence of intra-plot correlation 

and provided a suitable adjustment for dispersion.  
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Appendice 

 

Appendix I 

Species ranking by their Importance value index (IVI) (trees DBH ≥ 6 cm) of pooled 

plots in four provinces 

 

Appendix I    Ha Tinh 

 

Species 
Abundance 

(n/3ha) 
Dominance 

(m2) 
Frequency 

(%) 
IVI  
(%) 

Gironniera subaequalis 115 7.57 68 28.8 

Vatica odorata 93 4.87 61 21.8 

Calophyllum calaba 105 5.12 47 21.8 

Nephelium melliferum 59 3.43 43 14.8 

Knema cortiosa 58 1.76 49 12.6 

Alangium ridleyi 48 2.74 35 11.9 

Syzygium wightianum 42 1.47 33 9.2 

Hydnocarpus ilicifolia 40 1.45 31 8.8 

Lithocarpus annamensis 24 2.28 28 8.5 

Wrightia annamensis 33 1.38 27 7.7 

Marcaranga denticulata 46 0.78 21 7.2 

Syzygium jambos 30 0.98 31 7.1 

Cryptocarya lenticellata 29 0.88 32 7.0 

Hydnocarpus annamensis 22 1.28 17 5.7 

Cinnamomum obtusifolium A. Chev 18 0.93 23 5.3 

Engelhardtia roxburghiana Wall 10 2.01 11 5.2 

Diospyros sylvatica 25 0.51 23 5.2 

Canarium nigrum Engler 14 1.20 15 4.6 

Endospermum chinense 12 1.16 15 4.4 

Aphanamixis polystachya 9 1.27 12 4.0 

Symplocos sumuntia 16 0.33 20 3.8 

Ormosia balansae Drake 14 0.51 17 3.7 

Cinnamomum parthenoxylum 13 0.62 13 3.4 

Canarium album 12 0.82 11 3.4 

Archidendron clypearia 14 0.44 15 3.3 

Canarium bengalense 8 0.74 11 2.9 

Garcinia oliveri 9 0.44 11 2.5 

Quercus dealbatus 8 0.72 7 2.5 

Glenniea philippinensis 11 0.38 8 2.3 

Manglietia conifera 11 0.35 8 2.3 

Chinsocheton paniculatus 9 0.52 5 2.1 
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Elaeocarpus griffithii 8 0.32 9 2.1 

Helicia cochinchinensis 10 0.19 9 2.1 

Polyalthia lauii 9 0.31 8 2.0 

Erythrophleum fordii 9 0.29 8 2.0 

Alphonsea gaudichaudiana 8 0.18 11 2.0 

Lithocarpus ducampii Hickel et A.camus 4 0.68 5 2.0 

Litsea verticillata 7 0.40 5 1.8 

Quercus platycalyx Hickel et camus 7 0.31 7 1.8 

Cryptocarya chingii 8 0.42 4 1.8 

Archidendro eberhardtii 7 0.29 7 1.7 

Manglietia dandyi 6 0.24 7 1.6 

Lindera caudata 7 0.18 7 1.5 

Machilus odoratissima 4 0.40 5 1.5 

Engelhardtia serrata 4 0.46 4 1.5 

Actinodaphne obovata 5 0.24 7 1.5 

Castanopsis carlesii 5 0.22 7 1.4 

Prunus arborea 4 0.30 5 1.4 

Aglaia tomentosa 4 0.38 4 1.3 

Ficus oligodon 5 0.23 5 1.3 

Manglietia balansae 4 0.28 5 1.3 

Symplocos cochinchinensis 5 0.14 7 1.3 

Machilus platycarpa 3 0.47 3 1.3 

Litsea mollifolia 4 0.23 5 1.2 

Ficus racemosa 5 0.07 7 1.2 

Antidesma ghasembilla 5 0.13 5 1.2 

Annona squamosa 4 0.24 4 1.1 

Orthosiphon stamineus Benth 5 0.18 4 1.1 

Baccaurea sapida 4 0.14 5 1.1 

Litsea cubeba 4 0.12 5 1.1 

Machilus bonii H.Lec 4 0.09 5 1.0 

Castanopsis indica 2 0.35 3 1.0 

Ficus drupacea 4 0.07 5 1.0 

Antheroporum  pierrei Gagnep 4 0.16 3 0.9 

Styrax annamensis Guill 3 0.11 4 0.8 

Litsea glutinosa 3 0.11 4 0.8 

Actinodaphne ferruginea 1 0.35 1 0.8 

Calophyllum touranense 3 0.17 3 0.8 

Symplocos poilanei 2 0.20 3 0.8 

Cryptocarya annamensis 3 0.04 4 0.7 

Coffea dewevrei 2 0.15 3 0.7 

Peltophorum pterocarpum 2 0.13 3 0.6 

Cinnamomum camphora 2 0.13 3 0.6 

Archidendron balansae 2 0.11 3 0.6 
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Artocarpus tonkinensis 2 0.08 3 0.6 

Croton tiglium 2 0.06 3 0.5 

Firmiana simplex 2 0.05 3 0.5 

Rauvolfia vietnamnensis 2 0.05 3 0.5 

Senna siamea 2 0.05 3 0.5 

Eurya ciliata 2 0.04 3 0.5 

Beilschmiedia percoriacea 2 0.04 3 0.5 

Ormosia hoaense 1 0.17 1 0.5 

Schefflera heptaphylla 2 0.09 1 0.5 

Madhuca pasquieri 1 0.13 1 0.4 

Clausena dunniana 2 0.06 1 0.4 

Diospyros apiculata 2 0.06 1 0.4 

Parashorea spirei 1 0.10 1 0.4 

Litsea cambodiana 1 0.08 1 0.3 

Calophyllum soulatti 1 0.07 1 0.3 

Alangium chinense 1 0.06 1 0.3 

Bombax malabarica 1 0.06 1 0.3 

Garcinia cowa 1 0.04 1 0.3 

Armesiondendron chinense 1 0.03 1 0.3 

Ilex cymosa 1 0.03 1 0.3 

Symplocos anomala 1 0.03 1 0.3 

Saurauia napaulensis 1 0.03 1 0.3 

Cinnamomum micranthum 1 0.02 1 0.3 

Sapium discolor 1 0.02 1 0.3 

Trevesia palmata 1 0.02 1 0.3 

Cinnamomum ovatum 1 0.02 1 0.2 

Illicium verum 1 0.02 1 0.2 

Cratoxylon formosum 1 0.02 1 0.2 

Microdesmis caseariaefolia 1 0.01 1 0.2 

Syzygium zeylanicum (L.) DC. 1 0.01 1 0.2 

Sum 1,198 60.71 
 

300 
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Appendix I (Continued)  Thua Thien Hue 

 

Species 
Abundance 

(n/3ha) 
Dominance 

(m2) 
Frequency 

(%) 
IVI  
(%) 

Canarium album 202 13.06 81 19.1 

Syzygium zeylancium 212 12.10 85 18.9 

Syzygium wightianum 236 4.99 97 14.8 

Symplocos poilanei 151 4.19 73 10.7 

Gyrocarpus americanus 75 6.96 57 9.8 

Gironniera subaequalis 148 2.66 81 9.8 

Ormosia pinnata 113 4.15 57 8.9 

Syzygium chanlos 113 3.72 57 8.5 

Shorea roxburghii 80 5.25 53 8.5 

Machilus platycarpa 107 3.26 63 8.2 

Cassine glauca 96 2.43 71 7.6 

Cinnamomum parthenoxylum 84 3.17 55 7.2 

Eurycoma longifolia 108 1.43 57 6.7 

Engelhardtia roxburghiana Wall 51 3.91 48 6.4 

Polyalthia nemoralis DC 101 1.22 60 6.4 

Adina cordifolia 75 1.96 65 6.4 

Polyalthia cerasoides 96 1.16 60 6.2 

Knema tonkinensis 80 1.66 60 6.1 

Paranephelium spirei 60 3.02 48 6.0 

Lithocarpus ducampii Hickel et A.camus 42 3.57 41 5.6 

Cinnamomum cambodianum 64 1.68 49 5.2 

Nephelium melliferum 55 1.49 51 4.9 

Schefflera heptaphylla 57 1.42 47 4.7 

Xerospermum noronhiana 46 2.11 40 4.6 

Glycosmis citrifolia Willd Lindl 47 1.88 43 4.6 

Stereospermum colais 30 3.10 27 4.3 

Diospyros sylvatica 42 1.44 43 4.1 

Castanopsis indica 38 2.10 33 4.1 

Cratoxylum pruniflorum 38 1.61 33 3.7 

Polyalthia thorelii (Pierre) Fin. & Gagn 31 1.50 35 3.5 

Elaeocarpus griffithii 37 0.97 33 3.2 

Ormosia balansae Drake 22 1.52 24 2.8 

Dipterocarpus retusus 11 2.55 13 2.8 

Armesiondendron chinense 30 0.84 28 2.7 

Prunus arborea 22 1.25 23 2.5 

Aglaia spectabilis 32 0.73 21 2.4 

Actinodaphne obovata 8 2.16 11 2.3 

Saurauia napaulensis 21 1.00 21 2.3 

Knema pierrei 22 0.61 27 2.2 
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Litsea verticillata 20 0.90 21 2.2 

Michelia mediocris 22 0.95 19 2.1 

Endospermum chinense 12 1.37 13 1.9 

Pavieasia annamensis 16 0.80 17 1.8 

Hopea siamensis 16 0.65 19 1.7 

Malus doumeri 12 1.09 13 1.7 

Madhuca pasquieri 16 0.83 15 1.7 

Aphanamixis polystachya 21 0.28 20 1.7 

Diospyros apiculata 22 0.28 17 1.6 

Canarium bengalense 15 0.78 13 1.6 

Alangium ridleyi 14 0.82 12 1.5 

Koilodepas longifolium 16 0.31 17 1.4 

Sterculia lanceolata 16 0.30 15 1.3 

Canthium dicoccum 14 0.19 16 1.2 

Microcos paniculata 12 0.26 16 1.2 

Actinodaphne pilosa 9 0.68 8 1.1 

Archidendron clypearia 10 0.33 13 1.1 

Castanopsis carlesii 9 0.73 7 1.1 

Cinnamomum ovatum 13 0.49 8 1.1 

Litsea glutinosa 9 0.54 9 1.1 

Cinnamomum obtusifolium A. Chev 10 0.27 13 1.1 

Mangifera minitifolia 9 0.37 11 1.0 

Erythrophleum fordii 4 0.87 5 1.0 

Castanopsis crassifolia 7 0.50 9 1.0 

Chisocheton paniculatus 10 0.30 11 1.0 

Wrightia annamensis 11 0.28 9 0.9 

Saraca indica 6 0.49 8 0.9 

Aglaia tomentosa 7 0.49 7 0.9 

Glenniea philippinensis 3 0.82 3 0.8 

Litsea vang H. 9 0.04 12 0.8 

Artocarpus tonkinensis 8 0.11 11 0.8 

Antheroporum pierrei Gagnep 6 0.31 8 0.7 

Microdesmis caseariaefolia 6 0.17 8 0.6 

Breynia fruticosa 6 0.13 8 0.6 

Gonocaryum maclurei 6 0.09 7 0.5 

Tarrietia javanica 5 0.17 5 0.5 

Quercus platycalyx Hickel et camus 4 0.21 5 0.5 

Canarium nigrum Engler 5 0.16 5 0.5 

Schima wallichii 3 0.33 3 0.4 

Garcinia oliveri 5 0.17 4 0.4 

Aidia oxyodonta 5 0.09 5 0.4 

Homalocladium platycladum 4 0.12 5 0.4 

Dipterocarpus alatus 2 0.32 3 0.4 
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Rauvolfia reflexa 4 0.07 5 0.4 

Quercus incana 3 0.07 4 0.3 

Sapium discolor 1 0.27 1 0.3 

Mangifera indica 2 0.10 3 0.2 

Lantana camara 2 0.09 3 0.2 

Vitex canescens 2 0.08 3 0.2 

Ulmus lancifolia 2 0.06 3 0.2 

Dillenia turbinata 2 0.04 3 0.2 

Barringtonia fusicarpa 2 0.03 3 0.2 

Machilus leptophylla 2 0.03 3 0.2 

Muntingia calabura 2 0.03 3 0.2 

Alstonia scholaris 2 0.02 3 0.2 

Artocarpus rigidus 2 0.01 3 0.2 

Baccaurea sapida 1 0.10 1 0.2 

Ligustrum lucidum 1 0.05 1 0.1 

Clausena lansium 1 0.04 1 0.1 

Trema orientalis 1 0.04 1 0.1 

Archidendro eberhardtii 1 0.03 1 0.1 

Elaecocarpus lanceifolius 1 0.02 1 0.1 

Melanorrhoea laccifera 1 0.02 1 0.1 

Calophyllum touranense 1 0.02 1 0.1 

Diospyros decandra 1 0.02 1 0.1 

Xanthophyllum annamense 1 0.02 1 0.1 

Strobilanthes acrocephalus 1 0.01 1 0.1 

Syzygium jambos 1 0.01 1 0.1 

Peltophorum pterocarpum 1 0.00 1 0.1 

Sum 3,359 134.47 
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Appendix I (Continued)  Binh Dinh 

 

Species 
Abundance 

(n/3ha) 
Dominance 

(m2) 
Frequency 

(%) 
IVI  
(%) 

Parashorea chinensis Wang Hsie 439 24.61 96 37.8 

Syzygium zeylanicum 166 6.53 75 13.9 

Diospyros sylvatica 146 5.10 65 11.7 

Hopea pierei 144 4.22 67 11.0 

Scaphium macropodum 117 4.02 79 10.6 

Quercus dealbatus 88 3.74 65 8.8 

Syzygium wightianum 111 2.87 64 8.8 

Lithocarpus ducampii Hickel et A.camus 82 4.45 53 8.6 

Nephelium melliferum 91 3.08 59 8.1 

Ilex rotunda Thunb 82 4.10 47 8.0 

Hydnocarpus althemintica 93 1.87 69 7.7 

Intsia bijuga 35 5.82 27 6.9 

Dillenia scabrella Roxb 53 3.85 39 6.5 

Machilus bonii H.Lec 70 2.08 56 6.5 

Melanorrhoea laccifera 55 3.06 47 6.3 

Gironniera subaequalis 71 1.60 56 6.1 

Artocarpus rigidus 49 2.65 47 5.8 

Artocarpus styracifolius 49 1.56 33 4.3 

Osmanthus matsumuranus 41 1.63 33 4.1 

Polyalthia nemoralis DC 45 0.91 41 4.1 

Dipterocarpus alatus 56 1.63 20 4.0 

Garcinia oliveri 34 1.71 32 3.9 

Garcinia oblongifolia Champ 24 2.19 27 3.7 

Vatica odorata 31 1.03 32 3.3 

Pterospermum heterophyllum Hance 31 1.26 27 3.2 

Adina cordifolia 34 0.95 29 3.2 

Schefflera octophylla 27 1.07 31 3.1 

Picrasma javanica 33 0.68 32 3.1 

Helicia cochinchinensis 28 1.01 29 3.1 

Clethra delavayi 26 1.31 24 3.0 

Adina pilulifra 32 0.91 23 2.8 

Symplocos cochinchinensis 29 0.78 25 2.7 

Wringtia annamensis Eberh. Et Dub 46 0.79 13 2.7 

Xylopia vielana 30 0.52 28 2.7 

Canarium album 24 0.72 28 2.6 

Enicosanthellum sp. 27 0.66 24 2.5 

Vitex trifoliata 24 0.97 19 2.4 

Symplocos anomala 22 0.53 25 2.3 

Symplocos sp 24 0.40 24 2.2 
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Litsea laucilimba 22 0.51 23 2.2 

Aidia oxyodonta 21 0.38 23 2.0 

Microcos paniculata 18 0.64 17 1.9 

Aglaia gigantea Pellegrin 12 1.24 11 1.9 

Elaeocarpus apiculatus 19 0.69 13 1.8 

Tarrietia javanica 12 0.89 15 1.8 

Machilus ichangensis 13 0.72 13 1.6 

Dialium cochinchinensis 11 0.72 12 1.5 

Pholidota argusa 14 0.59 12 1.5 

Schima superba 13 0.50 13 1.4 

Calophyllum poilanei 14 0.29 16 1.4 

Elaeocarpus griffithii Mast 15 0.62 9 1.4 

Chaetocarpus castanocarpus 13 0.26 16 1.4 

Litsea vang H.Lec 11 0.53 11 1.3 

Cassine glauca 11 0.41 12 1.2 

Dacryodes dungii Dai 9 0.57 11 1.2 

Aglaia sp. 9 0.56 11 1.2 

Styrax annamensis Guill 11 0.31 13 1.2 

Nephelium chryseum 10 0.39 12 1.2 

Lithocarpus silvicolarum 8 0.60 9 1.2 

Phoebe lanceolata 13 0.36 9 1.1 

Néphelium cuspidatum 6 0.61 7 1.0 

Artocarpus nitidus var lingnanensis 8 0.33 9 0.9 

Artocarpus lakoocha 9 0.36 8 0.9 

Ormosia balansae Drake 9 0.23 9 0.9 

Sinosideroxylon wightianum Aubr 7 0.30 9 0.9 

Shorea roxburghii 9 0.30 7 0.8 

Choerospondias axillaris 8 0.24 8 0.8 

Diospyros maritima 6 0.35 7 0.8 

Archidendron balansae 7 0.14 9 0.8 

Knema cortiosa 7 0.14 9 0.8 

Endospermum sinense 5 0.43 5 0.7 

Eugenia chanlos 7 0.17 8 0.7 

Knema globularia 6 0.16 8 0.7 

Aphanamixis polystachya 7 0.17 7 0.7 

Ormosia pinnata 7 0.25 5 0.7 

Horsfieldia amygdalina 6 0.17 7 0.6 

Pygeum arboreum 5 0.20 7 0.6 

Pachylarnax praecalva 6 0.19 5 0.6 

Cinamomum botusifolium 5 0.15 7 0.6 

Canarium nigrum Engler 6 0.18 5 0.6 

Elaeocarpus stipularis 5 0.36 3 0.6 

Pentapanax fragrans 4 0.18 5 0.5 
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Alangium ridley king 4 0.15 4 0.4 

Cinnadenia paniculata 3 0.26 3 0.4 

Cinnamomum obtusifolium A. Chev 4 0.06 5 0.4 

Lindera balansae H.Lec 4 0.14 4 0.4 

Litsea verticillata Hance 4 0.21 3 0.4 

Cryptocarya metcalfiana 3 0.13 4 0.4 

Siphonodon celastrineum Griff 2 0.23 3 0.4 

Artocarpus tonkinensis 3 0.10 4 0.4 

Ailanthus malabarica DC 4 0.05 4 0.4 

Aucuba eriobotryaefolia 3 0.08 4 0.3 

Lithocarpus fissus Champ. ex benth 3 0.07 4 0.3 

Craibiodendro scleranthum 3 0.15 3 0.3 

Litsea sebifera 3 0.06 4 0.3 

Gonocaryum maclurei 4 0.08 3 0.3 

Afzelia xylocarpa 1 0.25 1 0.3 

Ternstroemia japonica Thunb 2 0.12 3 0.3 

Quercus platycalyx Hickel et camus 2 0.07 3 0.2 

Phoebe cuneata BI 2 0.04 3 0.2 

Dillenia heterosepala 2 0.04 3 0.2 

Baccaurea sapida 2 0.03 3 0.2 

Cryptocarya impressa 2 0.03 3 0.2 

Antheroporum  pierrei Gagnep 2 0.03 3 0.2 

Alstonia scholaris 2 0.02 3 0.2 

Paralbizia lucida Benth 1 0.11 1 0.2 

Artocarpus heterophyllus 1 0.09 1 0.2 

Acer decandrum Merr 1 0.08 1 0.2 

Pelthophorum tonkinensis A.Chev 1 0.07 1 0.1 

Ailanthus triphysa 2 0.01 1 0.1 

Dracontomelon mangiferum BI 1 0.05 1 0.1 

Wrightia tomentosa 1 0.05 1 0.1 

Artocarpus nitidus 1 0.03 1 0.1 

Phoebe kunstheri 1 0.03 1 0.1 

Podocarpus fleuryi Hickel 1 0.03 1 0.1 

Phoebe cuneata 1 0.03 1 0.1 

Averrhoa carrambola 1 0.02 1 0.1 

Aglaia argentea Blume 1 0.02 1 0.1 

Ficus hispida 1 0.02 1 0.1 

Anthocephalus indicus A.Rich 1 0.02 1 0.1 

Knema pierei Warb 1 0.02 1 0.1 

Litsea oblongata 1 0.02 1 0.1 

Elaeocarpus grandiflorus 1 0.02 1 0.1 

Rapanea neriifolia Mez 1 0.01 1 0.1 

Zanthoxylum avicenniae 1 0.01 1 0.1 
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Madhuca pasquieri H.Lec 1 0.01 1 0.1 

Alphonsea monogyna 1 0.01 1 0.1 

Averrhoa carambola 1 0.01 1 0.1 

Sum 3,121 127.38 
 

300 
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Appendix I (Continued)  Khanh Hoa 

Species 
Abundance 

(n/3ha) 
Dominance 

(m2) 
Frequency 

(%) 
IVI  
(%) 

Syzygium wightianum 454 20.48 100 44.3 

Diospyros sylvatica 450 19.50 96 42.9 

Enicosanthellum sp. 422 16.70 87 38.5 

Saraca dives 208 8.96 65 21.5 

Nephelium melliferum 112 4.62 67 13.9 

Machilus bonii H.Lec 110 4.15 72 13.8 

Polyalthia nemoralis DC 80 4.21 44 10.5 

Cinnamomum obtusifolium A. Chev. 73 2.65 52 9.4 

Ormosia balansae Drake 71 2.95 37 8.4 

Aphanamixis polystachya 57 1.99 45 7.7 

Rhamnus crenatus Sieb 55 2.27 33 6.9 

Lucua mamona Gaerten 46 2.00 33 6.3 

Symplocos laurina Wall 31 1.20 29 4.7 

Symplocos cochinchinensis 34 1.02 29 4.6 

Artocarpus tonkinensis 23 1.29 23 3.9 

Aucuba eriobotryaefolia 22 1.11 21 3.6 

Pterospermum heterophyllum Hance 21 0.57 27 3.5 

Knema globularia 27 0.82 20 3.4 

Gonocaryum maclurei 21 0.84 20 3.2 

Gironniera subaequalis 18 0.89 20 3.1 

Machilus odoratissima Nees 22 0.59 21 3.1 

Vitex trifoliata 17 0.97 19 3.1 

Sterospermum annamense A.Chev 18 0.49 21 2.9 

Alstonia linearifolia 19 0.74 17 2.8 

Garcinia oblongifolia Champ 14 0.69 17 2.6 

Alstonia scholaris 14 0.50 17 2.4 

Aidia oxyodonta 15 0.51 16 2.3 

Spondias pinnata 11 0.69 12 2.0 

Dialium cochinchinensis 9 0.34 11 1.5 

Siphonodon celastrineum Griff 9 0.25 11 1.4 

Engelhardta chrysolepis Hance 7 0.29 8 1.2 

Litsea laucilimba 8 0.36 7 1.2 

Quercus dealbatus 9 0.24 7 1.1 

Baccaurea sapida 7 0.19 8 1.1 

Canarium album 6 0.11 8 1.0 

Aglaia gigantea Pellegrin 5 0.26 7 1.0 

Diospyros erientha champ 6 0.14 7 0.9 

Chaetocarpus castanocarpus 4 0.40 4 0.8 

Ceiba pentandra 4 0.21 5 0.8 

Elaeocarpus griffithii Wight A.Gray 6 0.21 4 0.7 
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Choerospondias axillaris 3 0.20 4 0.6 

Mangifera minitifolia 3 0.14 4 0.6 

Dillenia blanchardi Pierre 3 0.11 4 0.5 

Ternstroemia japonica Thunb 3 0.10 4 0.5 

Colona poilanei 3 0.18 3 0.5 

Pelthophorum tonkinensis A.Chev 3 0.04 4 0.5 

Clethra delavayi 2 0.12 3 0.4 

Sindora tonkinensis 2 0.09 3 0.4 

Craibiodendro scleranthum 2 0.08 3 0.4 

Alstonia longifolia 2 0.08 3 0.4 

Amesiodendron chinense 2 0.08 3 0.4 

Pholidota argusa 2 0.07 3 0.4 

Phoebe cuneata BI 2 0.05 3 0.3 

Gleditsia fera Merr 2 0.04 3 0.3 

Paeonia lactiflora 2 0.04 3 0.3 

Endospermum chinense 2 0.03 3 0.3 

Lagertroemia calyculata Kurz 2 0.03 3 0.3 

Spondias dulcis Forst 2 0.02 3 0.3 

Acronychia pedunculata 2 0.02 3 0.3 

Garcinia gaudichaudii 1 0.13 1 0.3 

Manglietia fordiana 2 0.08 1 0.3 

Adenanthera microsperma 1 0.10 1 0.2 

Artocarpus rigidus 1 0.10 1 0.2 

Helicia cochinchinensis 1 0.09 1 0.2 

Juniperus chinensis 1 0.09 1 0.2 

Schefflera octophylla Lour 1 0.07 1 0.2 

Symplocos sp 1 0.07 1 0.2 

Pranus triflora 1 0.06 1 0.2 

Cassia siamea Lank 1 0.05 1 0.2 

Elaeocarpus griffithii Mast 1 0.03 1 0.2 

Knema cortiosa 1 0.03 1 0.2 

Syzygium zeylanicum 1 0.02 1 0.2 

Alseodaphne tonkinensis 1 0.02 1 0.2 

Ficus vasculos 1 0.02 1 0.2 

Pachylarnax praecalva 1 0.02 1 0.2 

Bridelia balanse Tutch 1 0.02 1 0.2 

Calophyllum touranense 1 0.02 1 0.2 

Glenniea philippinensis 1 0.02 1 0.2 

Symplocos anomala 1 0.02 1 0.2 

Ailanthus malabarica DC 1 0.01 1 0.2 

Callophyllum inophyllum Linn 1 0.01 1 0.2 

Litsea glutinosa 1 0.01 1 0.2 

Sum 2,613 109.00 
 

300 
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Appendix II 

 

Periodic annual diameter increment of the six most important tree species from each 

province (the parameter estimates were shown in Table 4.2). The black dots are 

observed values. The dashed line is the curve of an individual important species, the 

dotted line is the mean curve of all important species in that province, and the solid line 

is the mean curve of all other species in that province. 
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Appendix II    Ha Tinh 
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Calophyllum calaba

0 10 20 30 40 50 60 70 80 90 100

DBH2005 (cm)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

A
D

I (
c

m
)

 
Nephelium melliferum
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Alangium ridleyi
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Appendix II (Continued)  Thua Thien Hue 

Syzygium zeylancium
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Syzygium wightianum
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Symplocos poilanei
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Gyrocarpus americanus
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Gironniera subaequalis
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Ormosia pinnata
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Appendix II (Continued)  Binh Dinh 

Syzygium zeylanicum
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Diospyros sylvatica
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Hopea pierei 
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Scaphium macropodum
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Quercus dealbatus
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Lithocarpus ducampii  Hickel et A.camus
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Appendix II (Continued)  Khanh Hoa 

Diospyros sylvatica
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Enicosanthellum sp.
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Saraca dives 
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Nephelium melliferum
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Machilus bonii H.Lec
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Polyalthia nemoralis DC
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