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ABSTRACT 
Axonal damage, often followed by axonal degeneration, is the main cause of 

persisting disabilities in multiple sclerosis (MS) patients and already occurs in early 

stages of the disease. Disease progression is in addition characterized by degenerative 

processes such as oligodendroglial death, demyelination and axonal damage/ 

degeneration, which seem at least in part uncoupled from inflammation. It has been 

demonstrated that axonal damage is most pronounced in early actively demyelinating MS 

lesions. Furthermore, demyelinated axons show a higher vulnerability than properly 

myelinated axons. Thus, remyelination and the formation of new nodes of Ranvier seem 

to be neuroprotective. Hence, in the present study I investigated the temporal and 

functional relation between myelin protein expression and acute axonal damage during 

remyelination in remyelinating/ remyelinated MS lesions and in the cuprizone mouse 

model. Furthermore, I used this model to assess the therapeutic potential of the ion 

channel blockers 4-aminopyridine (4-AP) and amiloride with regard to protection from 

axonal damage.  

C57Bl/6 mice were treated for six weeks with the copper chelator cuprizone 

(0.25% in normal chow) which leads to demyelination of the brain, especially of the 

corpus callosum. After discontinuation of the cuprizone diet, remyelination occurs within a 

few days and is completed after several weeks during which the brains were harvested 

and analyzed. The pathology in the corpus callosum was analyzed by histopathology, 

quantitative PCR and electron microscopy. The corpus callosum of mice was rapidly 

remyelinated during the first week of cuprizone free diet. Furthermore, a reconstitution of 

the density of oligodendrocytes, which was comparable to untreated mice, was 

accomplished one week after cuprizone withdrawal. Microgliosis was significantly 

diminished already after two days of remyelination and declines even further thereafter, 

while astrogliosis persisted during remyelination. Furthermore, mice exhibited a 

continuous decrease of acutely damaged axons during remyelination. Remarkably, acute 

axonal damage that was directly associated with complete or partial myelination was 

observed by confocal microscopy. Over time the quantity of myelinated axonal spheroids 

increased significantly, which, given the strong regenerative processes observed, 

suggests that remyelination may occur randomly and independent of axonal functionality. 

Furthermore, myelinated acutely damaged axons were also seen in early remyelinating 

MS lesions. These results suggest that remyelination may occur independent of axonal 

transport disturbances in MS, however, this hypothesis has still to be substantiated in 

future studies. 
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To investigate the influence of voltage-gated potassium (KV) channel and acid 

sensing ion channel (ASIC) inhibition on acute axonal damage during early remyelination, 

mice were treated either with 4-AP or with amiloride during demyelination and 

remyelination.  Despite an increased microgliosis induced by these ion channel inhibitors 

acute axonal damage was comparable to PBS-treated controls. However, administration 

of 4-aminopyridine during remyelination resulted in increased numbers of 

oligodendrocytes. Thus, administration of 4-aminopyridine during remyelination may have 

beneficial effects on oligodendrocytes. The inefficacy of 4-aminopyridine and amiloride to 

decrease the acute axonal damage during remyelination might be a consequence of the 

strong regenerative processes observed during remyelination. To evaluate the axon-

protective capacity of ion channel inhibition during demyelination, mice were treated with 

4-aminopyridine or amiloride during acute cuprizone-induced demyelination. Both ion 

channel inhibitors did not significantly modify acute axonal damage, the numbers of 

oligodendrocytes and the demyelination in the corpus callosum of mice during cuprizone 

ingestion. These findings revealed that the inhibition of KV channels or ASICs did not 

significantly modify the extent of acute axonal damage during cuprizone treatment and 

during remyelination. 
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1 INTRODUCTION 

1.1 Multiple sclerosis 
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous 

system (CNS) including brain and spinal cord which is characterized by focal 

demyelinating lesions with partial axon preservation and glial scar formation. Despite 

partial preservation of axons axonal damage and degeneration nevertheless occur, 

resulting in chronic disabilities in early to middle adulthood of MS patients. The disease 

was identified as an entity by Jean Martin Charcot in 1868, who described multiple 

sclerosis as a focal inflammatory demyelinating disease of the white matter. However 

recent work on MS pathology has elucidated the important role of pathological changes in 

the normal-appearing white matter (NAWM) and grey matter of MS patients. The 

pathology is not restricted to focal lesion sites, but affects the entire CNS. Especially 

during the early disease phases in MS, demyelination can be partially reversed by 

spontaneous remyelination, which occurs erratically and insufficiently in MS patients 

(Kutzelnigg and Lassmann, 2014).   

1.1.1 Clinical characteristics of multiple sclerosis 
The clinical course of multiple sclerosis varies highly between patients and is thus 

difficult to predict. The clinical symptoms can be numerous and include numbness, 

tingling, weakness, vision loss, gait impairment, ataxia, imbalance or bladder dysfunction. 

In addition, approximately half of the MS patients report that they suffer from fatigue, a 

symptom which is difficult to measure clinically. The disease course is either continuous 

with symptoms accumulating over time (progressive MS) or consists of volatile attacks 

(relapsing-remitting MS). Multiple sclerosis can be differentiated into three main 

subtypes: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and 

primary progressive MS (PPMS) (Gelfand, 2014;Kremenchutzky et al., 2006;Lublin and 

Reingold, 1996).  

The relapsing-remitting form is the most common form of MS and affects 80-90% 

of patients during the first years of the disease. The attacks evolve over hours to days 

and persist for several days to weeks before remitting. The patients are otherwise stable, 

but tend to experience fatigue or heat sensitivity. Patients with RRMS often develop a 

secondary progressive disease course (80% within 20 years) which is characterized by 

insidious neurologic worsening and accumulating disability that is not related to discrete 

attacks. However the progression from RRMS to SPMS appears as a continuum which 

sometimes occurs on the background of relapses (Gelfand, 2014;Kremenchutzky et al., 

2006;Lublin and Reingold, 1996).  



 1 Introduction 

2 
 

10-20% of patients are diagnosed with PPMS, i.e. they never experience a relapse 

and show continuous neurologic worsening and accumulating disability from the onset of 

symptoms on (Gelfand, 2014).  

The initial stage of the clinical disease is designated as clinically isolated 

syndrome (CIS), which is the first clinically apparent demyelinating attack. Here, the 

diagnosis of MS is not possible on the basis of the currently established diagnostic 

criteria, the so-called "McDonald criteria". These diagnostic criteria focus on clinical and 

radiologic evidence of the dissemination of MS lesions in time and space (McDonald et 

al., 2001;Polman et al., 2011). Nevertheless, the majority (75-82%) of the patients with 

CIS develop MS (Gelfand, 2014).   

1.1.2 Treatment of multiple sclerosis 
Preventive or curative therapies are thus far not available as the etiology of MS is 

still unknown. Nevertheless several factors could be identified which make the 

development of disease more probable: 1) the presence of susceptibility genes (HLA-

DRB1, HLA-DRB2, HLA-DQB2; SNPs in receptors of the cytokines IL2RA, IL7RA and 

membrane proteins CD58 or CTLA-4) 2) the fact that the prevalence is substantially 

increased in family members of MS patients 3) the presence of infectious agents (EBV, 

HHV-6) and 4) environmental factors (vitamin D3 deficiency) (Goodin, 2014b). 

However, several medications have been established to treat MS patients 

according to the clinical presentation. These can be subdivided into four main therapeutic 

aims: 1) to limit the severity and duration of an acute attack, 2) to reduce the biological 

activity of MS (= disease-modifying therapy [DMT]; e.g. Glatiramer acetate, IFNβ, 

dimethyl fumarate, fingolimod, teriflunomide, alemtuzumab, natalizumab, mitoxantrone), 

3) to improve or eliminate the various clinical symptoms (e.g. bladder dysfunction, 

spasticity, fatigue), 4) to promote the protection from, and the repair of, damage caused 

by the inflammatory process. None of the drugs available belong unequivocally in the 

fourth category, although DMTs appear sometimes to be neuroprotective or 

neuroreparative (Goodin, 2014a). Glatiramer acetate, for example, induced secretion of 

BDNF by T cells, which was shown to be neuroprotective in EAE (Linker et al., 2010). 

Another drug, which is potentially capable of indirect and direct neuroprotection, is 

dimethyl fumarate, which exhibits neuroprotective function by upregulating the expression 

of Nrf2 and thereby increasing cellular anti-oxidative mechanisms (Melzer and Meuth, 

2014).  

4-Aminopyridine (Fampridine), a voltage-gated potassium channel inhibitor, is a 

medication used for symptomatic treatment (group 3) of MS patients and was originally 

described for the treatment of fatigue (Toosy et al., 2014). The synaptic transmission is 
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potentiated and the skeletal muscle tension is increased by administration of the drug at 

clinical doses. Although the results of the clinical trials are controversial, some studies 

showed that walking ability in MS patients improved up to 25%. The drug is well 

tolerated, but has potential side effects: paresthesias, dizziness, lightheadedness, 

insomnia, anxiety, asthenia, nausea, headache and tremor. Especially at high doses of 4-

aminopyridine epileptic seizures may occur (Toosy et al., 2014).  

Amiloride, an acid-sensing ion channel inhibitor, was recently described to be 

neuroprotective in a small cohort of 14 MS patients with PPMS (Arun et al., 2013). The 

rates of brain atrophy and tissue damage were compared during pre-treatment and 

amiloride administration. Significant beneficial effects during amiloride treatment were 

observed on the basis of MRI. However this study lacks pathological specificity of 

neuroprotection in MS patients (Arun et al., 2013). The drug is well tolerated and 

approved for treatment of hypertension and congestive heart failure (Friese et al., 2007) 

and might be a good candidate for tissue protection and repair (group 4).     

1.1.2.1 The mechanisms of action of 4-aminopyridine and amiloride 
 4-Aminopyridine inhibits fast voltage-gated potassium channels in excitable 

tissues and non-excitable cells (Hayes, 2004). Potassium channels of axons are mainly 

covered by a myelin sheath in healthy conditions. Demyelination of axons causes the 

exposure of ion channels to the environment, which results in membrane 

hyperpolarization. The threshold for successful axon potential propagation is thereby 

increased. Furthermore, the loss of anchoring proteins leads to diffusion of potassium 

channels in the membrane. These changes cause abnormal potassium outward currents 

associated with slow action potential conduction, conduction failure or changes in the 

axon's capacity to discharge repetitively (Bittner and Meuth, 2013). 4-Aminopyridine is 

able to restore the conduction in focally demyelinated axons (Hayes, 2004). Furthermore 

administration of 4-aminopyridine increases calcium influx at presynaptic terminals, which 

enables an enhancement of neuronal or neuromuscular transmission in myelinated axons 

(Hayes, 2004). 

Amiloride is an inhibitor of acid-sensing ion channels (ASICs) which are proton-

gated ion channels and belonging to a subgroup of the degenerin-epithelial channel 

family of cation channels. These channels can flux Na+ and Ca2+ ions and consist of six 

isoforms: ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. The predominant 

functional ion channel subunit in the CNS is ASIC1a (Bittner and Meuth, 2013;Friese et 

al., 2007;Vergo et al., 2011). CNS inflammation results in release of nitric oxide (NO) and 

free oxygen radicals by inflammatory cells such as activated microglia and macrophages, 

which leads to mitochondrial damage with subsequent energy failure and tissue acidosis. 
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The emerging tissue acidosis activates the ASICs and Na+ and Ca2+ ions accumulate 

intracellularly. The increased intracellular concentration of Ca2+ ions leads to an 

activation of secondary injury cascades such as proteases and thereby to axonal 

degeneration (Bittner and Meuth, 2013). The ASIC inhibitor amiloride was reported to 

protect the CNS against demyelination and axonal damage (Arun et al., 2013;Bittner and 

Meuth, 2013;Friese et al., 2007;Vergo et al., 2011). 

1.1.3 Pathogenesis of multiple sclerosis 
Animal models with experimental autoimmune encephalomyelitis (EAE) are 

considered to display central features of MS pathogenesis. The findings in these models 

suggest that MS is a predominantly T cell-mediated autoimmune disease and develops 

after activation of autoreactive CD4+ and CD8+ T lymphocytes. The activation of T cells 

results in an inflammatory demyelination of the CNS (Huseby et al., 2001;Schluesener 

and Wekerle, 1985;Sedgwick and Mason, 1986). The activated T cells were able to cross 

the blood-brain-barrier (BBB) and enter the CNS (Hickey et al., 1991), where they 

appeared to compromise BBB integrity and target one or more myelin antigens (Westland 

et al., 1999). In addition to T cells, B cells were reported to play a role in the 

pathogenesis of MS. T and B cells of MS patients, which were reactive to myelin, showed 

a memory or activated phenotype and were able to activate CD4+ T cells (Lovett-Racke 

et al., 1998;Scholz et al., 1998). 

1.1.4 Pathology of multiple sclerosis 
The hallmarks of MS pathology are focal demyelinated plaques with partial axonal 

preservation and reactive glial scar formation in the white and grey matter of the CNS. 

Furthermore diffuse damage is present throughout the NAWM and grey matter, which is 

associated with increasing global brain atrophy during disease progression. These 

characteristics are valid for all MS patients, but their relative contribution to the global 

pathology varies between patients and the clinical subtypes of MS (Kutzelnigg and 

Lassmann, 2014).  

Demyelinated plaques are distributed randomly throughout the CNS with 

preferences for periventricular and subcortical white matter, optic nerves, the cerebellar 

white matter, the pons and medulla, and the spinal cord, the latter most frequently in the 

cervical portions (Kutzelnigg and Lassmann, 2014). Demyelination is the most important 

diagnostic criterion for classifying a MS lesion and was reported to be associated with 

axonal injury and reactive astrogliosis (Ferguson et al., 1997;Kutzelnigg and Lassmann, 

2014;Trapp et al., 1998).  



 1 Introduction 

5 
 

Axonal injury or damage leads to irreversible axonal loss and may accumulate 

over time. As a consequence chronic disabilities may evolve (Bjartmar and Trapp, 2001). 

Especially in chronic MS lesions is axonal loss pervasive but highly variable. Axonal 

damage might result in axonal transection and thereby provoke Wallerian degeneration 

(Dziedzic et al., 2010). The distal part of the axon that is separated from its cell body 

degenerates anterogradely, a phenomenon which is known as Wallerian degeneration. 

This degenerating process was reported to be a major component of axonal pathology in 

MS lesions and the surrounding periplaque white matter (Dziedzic et al., 2010). Although 

axonal damage is associated with sites of demyelination and inflammation, it occurs also 

independently of demyelination and is assumed to be caused by both white and grey 

matter pathological changes (Kutzelnigg and Lassmann, 2014). 

The activity of MS lesions can be classified by myelin degradation products in 

macrophages/ microglia and macrophage activation (Brück et al., 1995). The degradation 

of minor myelin proteins such as MOG and CNPase takes a few days, while the major 

myelin degradation products remain for six to ten days. Macrophages with lipid 

degradation products persist in lesions for several months.  

In early active lesions the macrophages contained myelin degradation products 

that were stained with LFB and were immunoreactive with all major myelin proteins 

including CNPase and MOG.  

Late active lesions showed more advanced myelin degradation with myelin debris 

stained with LFB and immunoreactive for MBP and PLP, but not MOG and CNPase. A 

lesion with macrophages containing empty or PAS-positive vacuoles was referred to as 

an inactive demyelinated lesion.  

Early remyelinating plaques in which the process of remyelination is ongoing, 

exhibited not only an inflammatory infiltrate but also clusters of axons surrounded by a 

thin myelin sheath. Late remyelinated plaques (shadow plaques) revealed only few 

macrophages, axons with thin myelin sheaths and astrogliosis (Brück et al., 1995). Once 

lesions exhibits an inactive lesion center, they are described as chronic lesions 

(Kutzelnigg and Lassmann, 2014).  

1.2 Cuprizone mouse model 
Several animal models are available for investigation of pathological mechanisms 

in the CNS which partially mimic the pathology found in MS. The most common model to 

evaluate autoinflammatory disease mechanisms is experimental autoimmune 

encephalomyelitis (EAE). This autoimmunity is usually induced by injection of a peptide 

or protein naturally located in the CNS. The resulting autoimmunity causes 

demyelination, inflammation and tissue damage in the CNS, preferentially in the spinal 
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cord. However, the remyelination is difficult to assess in this model since demyelination 

and remyelination occur concurrently and an area of incomplete demyelination cannot be 

easily distinguished from an area of remyelination (Gudi et al., 2014;Matsushima and 

Morell, 2001;Skripuletz et al., 2011). Thus, animal models of toxic demyelination such as 

the cuprizone mouse model are used which exhibited a synchronous and anatomically 

reproducible course of de- and remyelination (Matsushima and Morell, 2001;Skripuletz et 

al., 2011).  

The neurotoxin cuprizone was established in the 1960s for different species 

(Carlton, 1967) and was used at high concentrations to induce scrapie-like spongiform 

encephalopathy in rats, mice, guinea pigs and hamsters (Carlton, 1967;Carlton, 1969). 

High dosages of cuprizone (e.g. 0.5%) resulted in giant hepatic mitochondria in mice and 

were very toxic when administered early during development (Flatmark et al., 

1980;Kesterson and Carlton, 1972;Suzuki, 1969). Mice treated with high dosage of 

cuprizone showed brain edema, demyelination, astrogliosis and hydrocephalus (Pattison 

and Jebbett, 1971a;Pattison and Jebbett, 1971b). 

Mice fed with 0.2 to 0.25% cuprizone showed consistent demyelination of the 

corpus callosum and cortex after five to six weeks of treatment (Hiremath et al., 

1998;Skripuletz et al., 2011). The extent of demyelination is dependent on the mouse 

strain and brain region analyzed (Hiremath et al., 1998;Jurevics et al., 2002;Lindner et 

al., 2008;Taylor et al., 2009;Taylor et al., 2010). The first pathological alteration that can 

be assessed is oligodendroglial apoptosis after two days of cuprizone administration, 

which reaches a maximum after 10 to 21 days of cuprizone treatment (Buschmann et al., 

2012;Hesse et al., 2010). The loss of oligodendrocytes leads to subsequent microgliosis, 

astrogliosis, demyelination and axonal damage in the following four to five weeks of 

cuprizone ingestion (Hiremath et al., 1998;Lindner et al., 2009). It was demonstrated that 

this model is devoid of any significant adaptive immune response as Rag1-/- mice lacking 

T and B cells were indistinguishable from wildtype mice (Hiremath et al., 

2008;Matsushima and Morell, 2001). Moreover, the blood-brain-barrier (BBB) remained 

intact in the cuprizone model (Bakker and Ludwin, 1987;Kondo et al., 1987;McMahon et 

al., 2002).  

Although the exact mechanism of cuprizone-induced oligodendroglial apoptosis is 

not yet understood, a recent study demonstrated that cuprizone is selectively toxic for 

mature oligodendrocytes and not for neurons, astrocytes or microglia in vitro (Benardais 

et al., 2013). It is suggested that the copper chelator cuprizone induces copper 

deficiency, which may cause the toxic effects. However, the administration of copper 
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during cuprizone treatment did not reduce the toxic effects induced by cuprizone (Carlton, 

1967).    

After the cuprizone diet is discontinued, remyelination occurs within a few days 

and is completed approximately one to four weeks after cuprizone diet cessation, 

depending on the concentration of cuprizone used in the diet, the treatment period and 

the region analyzed (Blakemore, 1973;Lindner et al., 2009;Matsushima and Morell, 

2001;Skripuletz et al., 2011).   

Thus, the well characterized cuprizone model with a distinct sequence of 

pathological changes including demyelination and remyelination is an appropriate model 

to investigate axonal damage in relation to remyelination.   

1.3 Aims 
Acute axonal damage is observed during demyelination and is also detectable in 

remyelinating or remyelinated MS lesions. Remyelination is accompanied by ion channel 

redistribution and elevated mitochondria content. These factors might be able to influence 

the viability of axons.  

Therefore, the first aim of the project was to investigate the temporal and 

functional relation of early remyelination and acute axonal damage. To analyze the 

relationship between these processes the well characterized cuprizone mouse model was 

used. To verify the relevance of the results for MS, remyelinating MS lesions were 

examined.  

The potassium channel inhibitor 4-aminopyridine and the acid sensing ion channel 

inhibitor amiloride were shown to be beneficial in EAE. Thus, in the second part of my 

work, the capability of these ion channel inhibitors to preserve the integrity of axons 

during demyelination and remyelination was evaluated in the cuprizone mouse model.  
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2 MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Chemicals/ reagents 

chemicals/ reagents provider 

4-aminopyridine Sigma-Aldrich, Germany 

Acetic acid (100% solution) Merck, Millipore, Germany 

Amiloride Sigma-Aldrich, Germany 

ARALDITE Hardener HY 964 Serva Electrophoresis GmbH, Germany 

ARALDITE® Accelerator DY 964 Serva Electrophoresis GmbH, Germany 

Azure II, powder Merck, Millipore, Germany 

Borax (di-sodium tetraborate 

decahydrate) 

Merck, Millipore, Germany 

BSA (bovine serum albumine) Serva Electrophoresis GmbH, Germany 

Citric acid monohydrate Merck, Millipore, Germany  

Cuprizone 

(bis(cyclohexanone)oxaldihydrazone)  

Sigma-Aldrich, Germany 

CuSO4 Sigma-Aldrich, Germany 

DAB (3,3'-diaminobenzidine) Sigma-Aldrich, Germany 

DAPI (4',6-diamidino-2-phenylindole) Molecular Probes, life technologies, 

Germany 

DePex mounting medium Serva Electrophoresis GmbH, Germany 

Dako Fluorescent Mounting Medium Dako Deutschland GmbH, Germany 

EDTA (ethylenediaminetetraacetic acid) Merck KGaA, Germany 

Ethanol, 96% Merck, Millipore, Germany 

FCS (fetal calf serum) Biochrom AG, Germany 

Formalin (37% solution, free from acid) Merck, Millipore, Germany 

Glutaraldehyde (25% aqueous solution) Merck KGaA, Germany 



 2 Materials and Methods 

9 
 

 

chemicals/ reagents provider 

Ground mouse chow (complete feed for 

rat & mice maintenance, ground) 

Ssniff Spezialdiäten GmbH, Germany 

H2O2 (30% solution) Merck, Millipore, Germany 

HCl (25%, 1mol/ l, 0.1mol/ l) Merck, Millipore, Germany 

Horse serum  Sigma-Aldrich, Germany 

Isoflurane Abbvie, Germany 

Isopentane  Sigma-Aldrich, Germany 

Isopropyl alcohol (99,5% solution) Merck, Millipore, Germany 

LFB (Luxol fast blue) Sigma-Aldrich, Germany 

Lithium carbonate Merck KGaA, Germany 

Mayer's hemalum solution Merck, Millipore, Germany 

Methylene blue Merck, Millipore, Germany 

NaOH Merck, Millipore, Germany 

NaOH (1mol/ l, 0,1mol/ l) Merck KGaA, Germany 

NaCl Merck KGaA, Germany 

Osmium tetroxide  Carl Roth, Germany 

Paraffin (Paraplast Plus) McCormick Scientific, Leica, Germany 

PBS (Dulbecco's PBS, 10x powder) Applichem, Germany 

Periodic acid Merck KGaA, Germany 

PFA (paraformaldehyde) Sigma-Aldrich, Germany 

Propylenoxide Serva Electrophoresis GmbH, Germany 

Qiazol Lysis Reagent  Quiagen, Germany 

Random Hexamers  Invitrogen, life technologies, Germany 

Renlam M-1 Serva Electrophoresis GmbH, Germany 

Sucrose Sigma-Aldrich, Germany 
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chemicals/ reagents provider 

TissueTek O.C.T. Compound Sakura, Netherlands 

Triton X 100 MP Biomedicals, Germany 

Trizma base Sigma-Aldrich, Germany 

Uranyl acetate Merck KGaA, Germany 

Xylol Merck, Millipore, Germany 

 

2.1.2 Enzymes/ proteins 

Enzymes/ proteins provider 

ExtrAvidin-Peroxidase (0.01% solution) Sigma-Aldrich, Germany 

Trypsin (2.5%) Sigma-Aldrich, Germany 

Trypsin-EDTA (0,05%) Gibco, life technologies, Germany 

 

2.1.3 Kits 

Kits provider 

qPCR Core Kit  Eurogentic, Germany 

RNeasy Mini Kit  Quiagen, Germany 

TaqMan MicroRNA Reverse 

Transcription Kit 

Applied Biosystems, life technologies, 

Germany 

 

2.1.4 Equipment/ Instruments 

Equipment/ Instruments Provider 

Camera for fluorescence microscope 

XM10 

Olympus, Germany 

Camera for light microscope DP71 Olympus, Germany 

Excelsior AS tissue processor Thermo Scientific, USA 
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Equipment/ Instruments Provider 

Fluorescence microscope BX51 Olympus, Germany 

Glass microscope slides (Superfrost 

Plus) 

Thermo Scientific, USA 

iQ5 Optical System Software Bio-Rad, Germany 

iQ5 Real-Time PCR Detection System Bio-Rad, Germany 

Laser scanning confocal microscope 

FluoView FV1000 

Olympus, Germany 

Light microscope BX41 Olympus, Germany 

Microtome SM2000R Leica, Germany 

Microwave NN E201 WM Panasonic, Germany & Austria 

Motorized inverted microscope IX81 Olympus, Germany 

Ocular counting grid, WHSZ 10X-H Olympus, Germany 

Research Cryostat CM3050 Leica, Germany 

 

2.1.5 Software 

Software Provider 

GraphPad Prism 5.01 GraphPad, USA 

FV10-ASW 4.0 viewer Olympus, Germany 

FV10-ASW 4.0 (software of the Laser 

scanning confocal microscope FluoView 

FV1000) 

Olympus, Germany 

cellSens Dimension 1.7 Olympus, Germany 
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2.1.6 Tissue from MS patients analyzed  

Case-number age sex MS lesion 

B1149/ 06-5 38 w Early remyelinating, early active 

B899/ 09K-2 41 w Early remyelinating, early active 

B1024/ 09K 41 m Early remyelinating, early active 

B515/ 10K-2 31 m Early remyelinating, early active 

 

Case-number age sex MS lesion 

A53/ 06-9 50 w Chronic inactive 

A2/ 10-30 47 w Chronic inactive 

A136/ 09-2 45 w Chronic inactive (lesion 1) 

A136/ 09-2 45 w Chronic inactive (lesion 2) 

A50/ 90-X1B 68 m Chronic inactive 

A53/ 06-12 50 w Chronic inactive 

    

A279/ 81-2 44 w Remyelinated (Shadow plaque) 

A215/ 90-1b 56 m Remyelinated (Shadow plaque) 

A50/ 90-X1B 68 m Remyelinated (Shadow plaque) 

A53/ 06-12 50 w Remyelinated (Shadow plaque) 

A82/ 08-1 66 m Remyelinated (Shadow plaque) 

2.2 Methods 

2.2.1 Mice 
For all in vivo experiments seven to eight week old male C57BL/6J mice were 

purchased by Charles River (Sulzfeld, Germany). Up to six animals were housed together 

on a 12/ 12h light/ dark cycle and had access to food and water ad libitum. For adaptation 

to the new environment all in vivo experiments started one week after the arrival of the 

mice.  
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2.2.2 Cuprizone mouse model 
Seven to eight week old male C57BL/6J mice were fed for four to six weeks with 

the cupper chelator cuprizone (0.25% in normal chow) to induce demyelination in the 

brain. After cuprizone withdrawal mice were fed with normal diet to analyze 

remyelination. At several time points during de- and remyelination brains of mice were 

harvested and processed for analysis by histochemistry, quantitative PCR or electron 

microscopy. Untreated mice were used as an appropriate control.  

To investigate the role or influence of 4-aminopyridine or amiloride during de- and 

remyelination mice were treated either with 100µg 4-aminopyridine (twice a day, s.c.) or 

with 200µg amiloride (once a day, i.p.). For analysis of ion channel inhibition during 

remyelination, mice were treated either with the unspecific voltage-gated potassium 

channel inhibitor 4-aminopyridine (twice a day, 100µg/ mouse), the acid sensing ion 

channel (ASIC) inhibitor amiloride (once a day, 200µg/ mouse) or vehicle (phosphate 

buffered saline, PBS) after six weeks of cuprizone challenge. In another approach 4-

aminopyridine was administered a few days preceding cuprizone withdrawal, to achieve 

higher levels of the drug at the onset of remyelination. For analysis of ion channel 

inhibition during demyelination, mice received cuprizone diet for three weeks and the ion 

channel inhibitors 4-aminopyridine and amiloride were administered during the following 

three weeks of cuprizone challenge.  

2.2.3 Histology 
Mice were anesthetized with an overdose of 14% chloral hydrate solution in 

bidistilled water and transcardially perfused with PBS followed by 4% paraformaldehyde 

(PFA) solution in PBS. Heads were further fixed in the same buffer for another two days 

and then embedded in paraffin. For embedding paraffin the brains of mice were washed 

with PBS after fixation with 4% PFA solution and cut into 2-3mm coronal slices. For this 

purpose the slices were dehydrated by a series of isopropanol/ xylol and then transferred 

into paraffin by an automatic embedding machine (Excelsior AS tissue processor). For 

histological evaluation 1µm sections (0.5mm from bregma line according to the mouse 

brain atlas by G. Paxinos and K.B.J. Franklin, Academic Press, 1997) were cut by a 

microtome and mounted onto glass slides. The sections were then deparaffinized (1h at 

60°C, 4 times for 10min in xylol) followed by rehydration (5min in: xylol/ Isopropanol, 2 

times 100% Isopropanol, 90% Isopropanol, 70% Isopropanol and 50% Isopropanol). After 

washing the sections in distilled water histochemistry or immunohistochemistry was 

performed. The sections were rehydrated by using the xylol/ Isopropanol series in a 

reversed order and mounted with DePex mounting medium.  
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For frozen sections mice were perfused as described above. Brains were collected 

directly after perfusion and stayed at 4°C for 2h in a 4% PFA solution. For preservation of 

the tissue during the freezing process the brains were incubated in 20% sucrose solution 

until sunk to the bottom (approximately after 24h). The tissue was embedded in 

TissueTek on cork slides and frozen in isopentane which was cooled down by liquid 

nitrogen. The embedded tissue was cut into 6-7µm sections by a cryostat. The sections 

were desiccated at room temperature and washed once in PBS. Afterwards all 

histochemical or immunohistochemical procedures were performed as usual.  

2.2.3.1 Luxol fast blue-periodic acid Schiff (LFB-PAS) staining 
LFB-PAS staining was used to stain myelin to determine the demyelinated areas 

(KLUVER and BARRERA, 1953). Sections were rehydrated to 90% isopropanol, 

transferred into LFB working solution (0.1% LFB (w/ v) and 0.5% acetic acid in Ethanol) 

and incubated at 60°C over night. The solution was changed to 90% isopropanol and the 

staining was differentiated until only the myelin remains in dark blue by a series of 0.05% 

lithium carbonate, 70% isopropanol and distilled water. The sections were incubated for 5 

min in 1% periodic acid and 5 min in tap water. After washing the slides thoroughly with 

distilled water the sections were transferred into Schiff’s reagent for 20 min and washed 

again 5min with tap water. The slides were incubated for 2 min in Mayers hemalum 

solution (1:1 in bidistilled water) to stain the nuclei of cells, washed in distilled water, 

differentiated with HCl-Isopropanol (70% Isopropyl alcohol, 0.25% HCl), and washed for 

10 min with tap water.  

2.2.3.2 Immunohistochemistry and fluorescence immunohistochemistry 
Primary antibodies utilized were against APP (amyloid precursor protein; acute 

axonal damage), Mac3 (activated microglia), GFAP (glial fibrilliary acidic protein; 

activated astrocytes), Olig2 (oligodendrocyte transcription factor 2; mature 

oligodendrocytes and oligodendrocyte progenitors), NogoA (neurite outgrowth inhibitor A, 

mature oligodendrocytes) and p25 (mature oligodendrocytes). Biotinylated secondary 

antibodies, peroxidase conjugated avidin and DAB were used for immunohistochemistry. 

Fluorescence labeled secondary antibodies were used for fluorescence 

immunohistochemistry. 

The tissue was fixed with PFA to preserve the morphology which leads to a 

masking of some antibody epitopes. Thus, for some immunhistochemical stainings the 

retrieval of epitopes is needed.  For the retrieval of epitopes the sections were heated in 

a microwave either in 10mM citrate buffer (pH 6.0) or in Tris-EDTA buffer (10mM Tris, 

1mM EDTA, pH 9.0) 5 times for 3 min, 3 times for 5-7 min or 2 times for 10 min. After 
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each heating cycle evaporated solution was replaced either by buffer or bidistilled water. 

After this procedure the sections had to cool down at room temperature for approximately 

30 min and were then washed with distilled water. Endogenous peroxidase was blocked 

by incubating the slides in 3% H2O2 in PBS for 20 min at 4°C and subsequently washing 

the slides with PBS. To minimize unspecific antibody binding the sections were incubated 

in blocking buffer (see Table 1) for 20 min in a wet chamber. The blocking buffer was also 

used for dilution and incubation with primary and secondary antibodies (see Table 1 and 

Table 2) as well as for the incubation with peroxidase conjugated avidin (ExtrAvidin-

Peroxidase). The sections were incubated with primary antibodies over night at 4°C and 

washed afterwards three times with PBS. The sections were then incubated with the 

secondary antibodies for 1h at room temperature and washed three times with PBS. For 

fluorescence double immunohistochemistry, the sections were incubated consecutively 

with the primary and secondary antibodies and washed with PBS three times between the 

incubations. DAPI (1:10,000) was applied onto the slides to stain the nuclei for 10-15min 

at room temperature. The slides were then washed three times with PBS and once in 

bidistilled water and were mounted with Dako Fluorescence Mounting Medium.  

 

Table 1: List of primary antibodies for immunhistochemistry and fluorescence 
immunohistochemistry 

Antigen Identification of Host Dilution 
Antigen 
retrieval 

Blocking 
buffer 

Provider 

APP 
acute axonal 

damage 

Ms/ 

mc 
1 : 2,000 Citrat 

10% FCS/ 

PBS 

Chemicon/ 

MAB348 

Caspr paranode 
Rbb/ 

pc 
1 : 1,000   

10% HS/ 

1% BSA/ 

PBS 

abcam/ 

ab34151 

CNP-
ase 

myelin protein 
Ms/ 

mc 
1 : 200 Citrat 

10% FCS/ 

PBS 

Covance/ 

SMI-91R 

GFAP activated astrocyte 
Ms/ 

mc 
1 : 1,000   

10% FCS/ 

PBS 

DAKO/ REF 

Z0334 

Mac3 
[M3/84] 

activated microglia 
Rat/ 

pc 
1 : 200 Citrat 

10% FCS/ 

PBS 

BD 

Pharmingen/ 

553322 

MBP myelin protein 
Rbb/ 

pc 
1 : 2,000   

10% FCS/ 

PBS 

DAKO/ REF 

A0623 
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Table 1 continued 

Antigen Identification of Host Dilution 
Antigen 
retrieval 

Blocking 
buffer 

Provider 

MOG myelin protein 
Rat/ 

pc 
1 : 1,000 Citrat 

10% FCS/ 

PBS 

Gift from D. 

Merkler 

NogoA 
11C7 

mature 

oligodendrocyte 

Ms/ 

mc 
1 : 5,000 Citrat 

10% FCS/ 

PBS 

Gift from 

M.Schwab, 

Zürich 

(Oertle et al. 

2003) 

Olig2 
OPCs and mature 

oligodendrocyte 

Rbb/ 

pc 
1 : 300 

Tris-

EDTA 

10% FCS/ 

PBS 
IBL/ 18953 

P25 
[EPR33
16] 

mature 

oligodendrocyte 

Rbb/ 

pc 
1 : 100 

Tris-

EDTA 

10% 

NGS/ 

PBS 

abcam/ 

ab92305 

PLP 
clone 
plpc1 

myelin  
Ms/ 

mc 
1 : 500 Citrat 

10% FCS/ 

PBS 

ABD 

Serotec/ 

MCA 839G 

 

 

For conventional immunohistochemistry, slides were incubated with peroxidase 

conjugated avidin for 1h at room temperature, washed three times with PBS and 

incubated in a DAB working solution (0.05% DAB (w/ v) and 0.012% H2O2) for 1-30min. 

Oxidization of DAB by peroxidase lead to a brown or dark brown labeling at sites of 

antibody binding. The conventional immunohistochemistry on human sections was 

amplified by incubation of the slides for 15-20min in CuSO4 working solution (2% CuSO4, 

0.8% NaCl). 

 

Table 2: List of secondary antibodies for immunhistochemistry and 
fluorescence immunohistochemistry 

Antibody Modification Host Dilution Provider 

anti-mouse IgG biotinylated sheep 1:200 GE Healthcare/ RPN1001 

anti-mouse IgG 
Cy3 

conjugated 
goat 1:200 

Jackson ImmunoResearch/ 

115-165-146 
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Table 2 continued 

Antibody Modification Host Dilution Provider 

anti-rabbit IgG biotinylated goat 1:200 
Jackson ImmunoResearch/ 

111-065-144 

anti-rabbit IgG 
 Alexa 488 

conjugated 
goat 1:200 

Molecular Probes®, life 

technologies/ A11034 

anti-rat IgG biotinylated goat 1:200 GE Healthcare/ RPN1005 

anti-rat IgG biotinylated goat 1:1,000 
DCS Innovative diagnostic 

system/ REF RS000C01 

 

2.2.4 Electron microscopy 
Remaining myelin sheaths and new myelin sheaths cannot be distinguished by 

staining of myelin (LFB-PAS) or immunohistochemistry for myelin proteins (e.g. MBP, 

MOG) in mice. Therefore the brains of mice were analyzed by electron microscopy. Mice 

were anaesthetized with a lethal dose of 14% chloral hydrate, were perfused with PBS 

and subsequently by perfusion with 100ml KS-fixative (4% PFA and 2.5% Glutaraldehyde 

in PBS) per mouse for approximately 1h. The brains were collected immediately after 

perfusion and were incubated overnight at 4°C in KS-fixative. The brains were cut into 2-

3mm slices and a distinct region from the corpora callosa (0.5mm from bregma line 

according to the mouse brain atlas by G. Paxinos and K.B.J. Franklin, Academic Press, 

1997) was collected and transferred into 3% Glutaraldehyde solution in PBS and were 

incubated in this solution at 4°C for at least seven days post-fixation. From these pieces 

of the corpus callosum 1mm thick para-sagittal slices were cut, processed through 

osmium tetraoxide, dehydrated and embedded in synthetic resin. To determine 

alterations in demyelination and tissue damage of the corpus callosum semi- and 

ultrathin sections (300nm) were generated. The semithin section were stained with 

Richardson’s stain (RICHARDSON et al., 1960) and evaluated by light microscopy while 

the ultrathin sections were analyzed by electron microscopy. 

2.2.5 Morphometry and data aquisition 
The level of demyelination of the corpus callosum after cuprizone treatment was 

assessed in LFB-PAS stained sections by a semi quantitative score: no demyelination 

(0), 0-33% demyelination (1), 33%-66% demyelination (2) and more than 66% 

demyelination (3). APP+ spheroids and the number of glial cells (Mac3+, GFAP+, Olig2+ or 

NogoA+ cells) were determined for the corpus callosum by counting spheroids and cells 
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at 400x with an ocular counting grid. To evaluate acute axonal damage in the context of 

early remyelination, fluorescence double immunohistochemistry (APP with MBP, APP 

with Caspr or APP with GFAP) was analyzed by confocal microscopy. Therefore 20-30 

randomly selected visual fields which had at least one APP+ spheroid were measured per 

corpus callosum at 200x with 9% zoom or 400x with 7% zoom. The degree of association 

–no, partially or complete- of APP with MBP, APP with Caspr or APP with GFAP was 

assessed by a qualitative evaluation using the software FV10-ASW 4.0 viewer. The data 

were calculated as per cent of all measured APP+ spheroids per corpus callosum.  

Autopsy and biopsy tissue specimens of brains of MS patients, which exhibited 

early remyelinating early active, chronic inactive or remyelinated lesions, were analyzed. 

The different types of MS lesions were determined by Dr. Andreas Junker and Prof. Dr. 

Christine Stadelmann-Nessler according to criteria described elsewhere (Brück et al., 

1994;Brück et al., 1995;Kutzelnigg et al., 2005;Lassmann, 2011;Lucchinetti et al., 

2000;Schuh et al., 2014). 

 The acute axonal damage in the context of early remyelination was evaluated in 

early remyelinating early active MS lesions by fluorescence double 

immunohistochemistry (APP with MBP) and confocal microscopy. For qualitative 

analysis, 10 randomly selected visual fields were evaluated. 

To assess the axon protection in remyelinated MS lesions (shadow plaques) the 

acute axonal damage was determined in shadow plaques and chronic inactive MS 

lesions by counting spheroids at 400x with an ocular counting grid. 

2.2.6 Quantification of cytokines 
The level of cytokine expression in the corpora callosa was determined by 

quantitative PCR. Therefore mice were perfused with PBS, the brains removed and 

immediately cut into 2-3 mm coronal slices. The brain slices used to analyze cytokine 

expression were taken accordingly to the brain slices used for histological analysis. The 

brain slices were shortly freezed in an aluminum chamber on liquid nitrogen and corpora 

callosa were immediately excised and used for RNA isolation.   

2.2.6.1 Isolation of RNA 
Isolation of RNA was performed with Qiazol Lysis Reagent and RNeasy Mini Kit 

according to the manufacturer’s instructions.  

2.2.6.2 Generation of cDNA 
Isolated RNA was transcribed to cDNA with TaqMan MicroRNA Reverse 

Transcription Kit and Random Hexamers. The reactions were performed according to the 
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manufacturer’s instructions with a few modifications. Briefly, one reaction consisted of 

300ng of isolated RNA, 1xRT buffer, 4mM dNTPs, 10µM Random Hexamers, 1U/µl 

RNase Inhibitor and 2.5U/µl MultiScribe Reverse Transcriptase. The reverse transcription 

reactions run on Eppendorf Thermocycler as listed below. 

25°C 10min annealing 

37°C 120min reverse transcription 

85°C 5sec inactivation of reverse transcriptase 

2.2.6.3 Quantitative PCR 
The cDNA from the RT reaction was diluted to a concentration of 3ng/µl to apply 

12ng of cDNA in the qPCR reaction which was performed with qPCR Core Kit and 

TaqMan Expression Assays according to the manufacturers’ instructions. The qPCR run 

according to the following protocol: 

95°C 10min  
pre-denaturation/ activation of the Taq 

polymerase 

95°C 15sec 
40 cycles 

denaturation 

60°C 1min annealing and elongation 

 

Table 3: List of TaqMan Expression Assays 

Gene symbol Gene name Provider 

GapDH 
glyceraldehyde-3-phosphate 

dehydrogenase 

Applied Biosystems, life 

technologies/ Mm99999915_g1 

IL-6 interleukin 6 
Applied Biosystems, life 

technologies/ Mm00446190_m1 

TGFβ transforming growth factor, beta 1 
Applied Biosystems, life 

technologies/ Mm01178820_m1 

TNFα tumor necrosis factor alpha 
Applied Biosystems, life 

technologies/ Mm00443258_m1 

2.2.7 Statistical analysis 
Statistics were calculated using the GraphPad Prism5.01 software. The 

Kolmogorov–Smirnov test was carried out to test the data for normal distribution. To 

compare more than two groups, data were analyzed by one-way ANOVA for parametric 

values (Bonferroni’s Multiple Comparison test). For analysis of non parametric values the 
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Kruskal-Wallis test was used (Dunn’s Multiple Comparison test). For comparison of two 

groups the unpaired t test was used for parametric values and the Mann-Whitney test 

was used for non parametric values. Data are displayed as mean, mean ± SEM or as 

median and a P-value of <0.05 was considered as statistically significant. 
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3 RESULTS 

3.1 Investigation of acute axonal damage during early remyelination in 
the cuprizone mouse model and in MS lesions 

3.1.1 Efficient regeneration of the corpus callosum after cuprizone diet 
cessation 

To investigate axonal damage during demyelination and remyelination without 

significant contribution of the peripheral immune system the cuprizone mouse model was 

used. Mice were analyzed after six weeks of cuprizone-induced demyelination and after 

three weeks of recovery after cuprizone withdrawal. To examine the biological processes 

during early remyelination the brains of mice were isolated two to seven days after 

cuprizone withdrawal. For analysis of these processes at later time points of 

remyelination the brains of mice were isolated after two and three weeks of remyelination 

(Fig. 1A). 

 
Figure 1: Design of the cuprizone experiment to investigate the acute axonal 
damage during early remyelination. 
Seven to eight week old male C57BL/6J mice were fed for six weeks with a 0.25% 
cuprizone diet to induce demyelination in the brain. After cuprizone withdrawal the brain 
started to remyelinate. To study early remyelination brains were isolated from day two to 
seven after cuprizone withdrawal. Brains were isolated after two and three weeks of 
remyelination to study later time points of remyelination (A). Myelin was stained with LFB-
PAS. The majority of the corpus callosum was demyelinated after cuprizone treatment 
(C) compared to untreated mice (B).  The medial part of the corpus callosum was 
preferentially remyelinated after one week of recovery (D). The corpus callosum was 
almost completely remyelinated three weeks after cuprizone withdrawal (E). 
(magnification: 20x; scale bar = 1mm) 
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After six weeks of cuprizone treatment the corpus callosum was fully 

demyelinated. Remyelination started early after cuprizone diet cessation and was almost 

completed after three weeks (Fig. 1B-E). 

 
Figure 2: Remyelination as a regenerative process started within a few days 
after cuprizone withdrawal. 
Representative images of medial corpus callosum of control mice (A, E, I, M, Q), mice 
after cuprizone challenge for six weeks (B, F, J, N, R) and mice four (C, G, K, O, S) or 
seven (D, H, L, P, T) days after cuprizone withdrawal. The LFB-PAS staining (A, B, C, D) 
indicated an almost complete demyelination of the corpus callosum after six weeks of 
cuprizone treatment. The remyelination was apparent at day four of remyelination. These 
results were also obtained by immunohistochemistry for the myelin proteins: PLP (E, F, 
G, H), MBP (I, J, K, L), MOG (M, N, O, P) and CNPase (Q, R, S, T).  The 
immunoreactivity with the myelin proteins revealed a sequential myelin protein 
expression during remyelination: 1. CNP, 2. MBP, 3. MOG, 4. PLP. (magnification: 400x; 
scale bar = 50µm) 



 3 Results 

23 
 

To determine the time course of remyelination the content of myelin was analyzed 

by histochemistry (LFB-PAS) and immunohistochemistry (PLP, MBP, MOG, CNPase). 

The evaluation of myelin content by LFB-PAS and myelin protein expression by 

immunohistochemistry revealed an almost complete demyelination of the corpus 

callosum after six weeks of cuprizone treatment (Fig. 1C; Fig. 2B, F, J, N, R). 

Remyelination was apparent after four days of remyelination (Fig. 2C, G, K, O, S). After 

one week of remyelination a major proportion of the corpus callosum was remyelinated 

(Fig. 2D, H, L, P, T). A sequential myelin protein expression was observed with the 

following sequence of myelin protein expression: 1) CNPase, 2) MBP, 3) MOG, and 4) 

PLP. The immunoreactivity for PLP was comparable to the LFB staining. The semi 

quantitative analysis of myelin content revealed a rapid decrease of the demyelinated 

area during the first week of recovery. The remyelination was decelerated afterwards, but 

was almost complete after three weeks of recovery (Fig. 3). 

 
Figure 3: Semi quantitative analysis of myelin revealed rapid remyelination but 
sequential myelin protein expression of the corpus callosum, which started with 
CNP, followed by MBP, MOG, and PLP. 
The demyelinated area in corpus callosum of mice was reduced during remyelination as 
judged by semi quantitative evaluation of LFB-PAS staining and myelin protein 
immunohistochemistry (PLP, MBP, MOG, CNPase). The demyelinated area was 
significantly reduced after four to seven days (mean ± SEM; n = 5-17; Kruskal Wallis test, 
Dunn's multiple comparison test; *p<0.05; **p<0.01). 

To assess the regenerative status of the brain after cuprizone challenge more 

precisely, oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes were 

investigated by immunohistochemistry for Olig2 and NogoA, respectively. Although the 

mice had been treated continuously for six weeks with cuprizone, numerous 

oligodendrocyte precursor cells (Olig2+, high expression) were present (Fig. 4B). 

However, only a few mature oligodendrocytes (NogoA+) were identified after cuprizone 
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treatment (Fig. 4F). The corpus callosum of cuprizone-treated mice exhibited a 

considerable increase of Olig2+ and NogoA+ oligodendrocytes four days after cuprizone 

withdrawal (Fig. 4C, G). The number of oligodendrocytes and their labeling intensity of 

Olig2 and NogoA were comparable to control mice after one week of recovery (Fig. 4A, 

D, E, H).  

 
Figure 4: Numerous oligodendrocyte precursor cells were observed after six 
weeks of cuprizone-induced demyelination. 
The number of Olig2+ oligodendrocytes was diminished in cuprizone-treated mice (B) 
compared to untreated mice (A). Numerous oligodendrocyte precursor cells, which 
expressed Olig2 at high levels (arrowheads), were observed after six weeks at the end of 
the cuprizone challenge (B). A few mature NogoA+ oligodendrocytes were apparent after 
cuprizone challenge (F) compared to control (E). After four days of recovery increased 
numbers of Olig2+ (C) and NogoA+ (G) oligodendrocytes were detected. The expression 
of Olig2 was downregulated by oligodendrocytes seven days after cuprizone withdrawal 
as judged by decreased labeling intensity, indicating their differentiation (D). The 
differentiation of oligodendrocytes seemed to be almost completed after one week of 
remyelination (H). Representative images of medial corpus callosum were taken at 400x 
original magnification (scale bar = 50µm).  

 

The finding of increasing numbers of Olig2+ and NogoA+ oligodendrocytes 

supported the impression of a rapid regenerative process during the first week after 

cuprizone withdrawal. The repopulation of the corpus callosum with oligodendrocytes as 

well as oligodendrocyte differentiation seemed to be accomplished during the first week 

of remyelination (Fig. 5A, B). 
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Figure 5: The number of OPCs and mature oligodendrocytes seemed to be re-
established after one week of recovery. 
The number of Olig2+ oligodendrocytes was significantly decreased after cuprizone-
induced demyelination and increased significantly within three days of remyelination. 
After the first three days of recovery the number of Olig2+ cells remained unchanged (A) 
(mean; n = 5-17; Kruskal Wallis test, Dunn's multiple comparison test; *p<0.05; 
***p<0.001). Corpus callosum of mice treated with cuprizone for six weeks exhibited 
diminished numbers of mature NogoA+ oligodendrocytes. The number of NogoA+ 
oligodendrocytes increased during the first week of remyelination. After one week of 
remyelination the number of mature oligodendrocytes remained relatively stable (B) 
(mean; n = 5-17; Kruskal Wallis test, Dunn's multiple comparison test; *p<0.05; 
***p<0.001). 

3.1.2 Acute axonal damage was detectable during early and late 
remyelination 

To investigate the relationship between early and late remyelination and acute 

axonal damage, Immunohistochemistry for APP, a marker for acute axonal damage, was 

performed. APP is undetectable in healthy axons, but accumulates in injured axons with 

disturbed anterograde axonal transport. Accumulation of APP in axons can be observed 

a few hours to four weeks after the damaging insult (Bramlett et al., 1997;McKenzie et al., 

1996;Otsuka et al., 1991;Pierce et al., 1996). 

APP immunohistochemistry revealed axonal spheroids after six weeks of 

cuprizone treatment (309.1 APP+ spheroids/ mm²) and during early (229.5 APP+ 

spheroids/ mm²) and late (129.2 APP+ spheroids/ mm²) stages of remyelination (Fig. 6A-

G). The number of APP+ spheroids decreased gradually during remyelination, and APP+ 

spheroids were still present after three weeks of recovery (129.5 APP+ spheroids/ mm²). 

APP+ spheroids decreased significantly after six days (153.0 APP+ spheroids/ mm²) of 

remyelination compared to six weeks of demyelination (309.1 APP+ spheroids/ mm²). 

Furthermore, a high variability in the density of APP+ spheroids was observed between 

the animals (Fig. 6G). 



 3 Results 

26 
 

 
Figure 6: Acute axonal damage was detected during early and late 
remyelination. 
Acute axonal damage (APP+ spheroids) was observed after cuprizone-induced 
demyelination in the medial (A) and lateral (B) corpus callosum and was decreased after 
two days of recovery (C, D). APP+ spheroids were still seen after seven days of 
remyelination (E, F). The density of APP+ spheroids decreased continuously during 
remyelination (G) (median; n = 5-17; Kruskal Wallis test, Dunn's multiple comparison test; 
*p<0.05; ***p<0.001). Representative images of medial (A, C, E) and lateral (B, D, F) 
corpus callosum of cuprizone-treated mice (A, B) and of mice after two (C, D), and seven 
(E, F) days of remyelination were taken at 400x original magnification (scale bar = 50µm). 

3.1.3 Microgliosis was declining during remyelination while astrogliosis 
sustained over time 

Microgliosis and astrogliosis were determined after cuprizone-induced 

demyelination and during remyelination to elucidate their relation to acute axonal damage 

by immunhistochemical staining for Mac3 and GFAP, respectively. Many activated 

microglia (975.9 ± 56.5 cells/ mm²) as well as reactive astrocytes (629.3 ± 27.4 cells/ 

mm²) were present after six weeks of cuprizone treatment (Fig. 7A, E, I, J). The number 

of Mac3+ cells was significantly diminished after two days of remyelination (Fig. 7F, J) 

and further declined during remyelination (Fig. 7G, H, J). Mac3+ cells were almost absent 

after three weeks of recovery (26.76 ± 9.9 cells/ mm²) (Fig. 7J). The 

immunohistochemistry for GFAP displayed the opposite situation with many reactive 

astrocytes (478.0 - 610.3 cells/ mm²) during remyelination, which was similar to six weeks 

of cuprizone treatment (629.3 ± 27.4 reactive astrocytes/ mm²) (Fig. 7A-D, I). 
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Figure 7: Microgliosis was declining during remyelination while astrogliosis 
sustained over time. 
The numbers of reactive astrocytes (GFAP+ cells) were constant during early 
remyelination (A-D, I) (mean; n = 5-17; Kruskal Wallis test, Dunn's multiple comparison 
test; ***p<0.001). The number of activated/ Mac3+ microglia declined during early 
remyelination (F-H) in comparison to six weeks of demyelination (E). Microglial cells were 
activated after demyelination. The number of activated microglia was already significantly 
reduced two days after cuprizone withdrawal and almost absent after three weeks of 
remyelination (J) (mean; n = 5-17; one-way ANOVA, Bonferroni's multiple comparison 
test; ***p<0.001). Representative images of medial corpus callosum of cuprizone-treated 
mice (A, E) and of mice after two (B, F), four (C, G) and seven (D, H) days of 
remyelination were taken at 400x original magnification. Immunohistochemistry was 
performed for GFAP (A-D), and Mac3 (E-H) (scale bar = 50µm). 

3.1.4 Expression of TGFβ and TNFα was upregulated during demyelination 
and remyelination 

Inflammatory cytokines might be secreted by microglia and/ or astrocytes and 

could thereby modify axonal injury in the cuprizone mouse model. Therefore, the 

expression of the inflammatory cytokines TGFβ, TNFα and IL-6 was assessed with qPCR 

from freshly isolated corpus callosum of cuprizone-treated mice. 
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Figure 8: Expression of TGFβ and TNFα was upregulated during demyelination 
and remyelination. 
The expression of IL-6, TGFβ and TNFα during de- and remyelination was analyzed in 
the cuprizone mouse model by qPCR. The ΔCT values (CT housekeeping gene (Gapdh) 
- CT gene of interest) were normalized to the lowest value measured. The housekeeping 
gene was constantly expressed in all samples (A-C). TGFβ was significantly upregulated 
by cuprizone treatment and was not significantly modified after withdrawal of cuprizone 
(A) (mean ± SEM; n = 4-5; Kruskal Wallis test, Dunn's multiple comparison test; 
**p<0.01). TNFα was upregulated during cuprizone treatment which did not change after 
cuprizone withdrawal (B). No significant regulation of IL-6 was observed (C). 

Expression of TGFβ was significantly upregulated after four weeks of cuprizone 

ingestion and was not significantly reduced during remyelination. TNFα was upregulated 

after four weeks and continuously expressed during demyelination and remyelination. 

The expression of IL-6 was not significantly modified during de- and remyelination (Fig. 

8A-C). 

  



 3 Results 

29 
 

3.1.5 The percentage of myelinated damaged axons increased during 
remyelination 

To investigate the association of the myelin sheath with axonal spheroids a 

comprehensive confocal microscopy investigation was performed. The double 

immunostaining of APP and MBP revealed three subpopulations of APP+ spheroids in the 

corpus callosum of cuprizone-treated mice (Fig. 9A-E): un- or demyelinated spheroids 

(mean: 68.2%), partially myelinated spheroids (mean: 25.1%) and myelinated spheroids 

(mean: 6.7%). The partially myelinated subpopulation of APP+ spheroids remained almost 

unchanged after the first week of remyelination (mean: 27.8%), whereas the 

subpopulation of un- or demyelinated APP+ spheroids decreased (mean: 47.2%). 

Remarkably, the percentage of myelinated APP+ spheroids increased significantly after 

one week of recovery (mean: 25%). 

 

Figure 9: The percentage of myelinated damaged axons increased during 
remyelination. 
The relation of axonal damage and remyelination was evaluated in detail by double 
immunohistochemistry for APP and MBP. APP+ axonal spheroids found in the corpus 
callosum of mice after demyelination and during remyelination could be divided into three 
different subpopulations: un- or demyelinated, partially myelinated and myelinated APP+ 
spheroids. APP+ spheroids were analyzed in 20-30 randomly selected visual fields with at 
least one APP+ spheroid (~50 spheroids) in the corpus callosum of mice by confocal 
microscopy (A-C). Spheroids partially or completely wrapped with myelin were found in 
the corpus callosum of mice after demyelination. After one week of remyelination the 
number of myelinated APP+ spheroids increased significantly. Panel E shows the 
myelinated spheroids after six weeks of cuprizone ingestion and after one week of 
remyelination in more detail. Each dot represents the percentage of myelinated APP+ 
spheroids in the corpus callosum of an individual mouse. (D, E) (mean ± SEM; n = 3-7; 
unpaired t test; ***p<0.001). Representative images of the subpopulations of APP+ 
spheroids were taken by confocal microscopy at 400x original magnification with 7% 
zoom (scale bar = 15µm). 
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3.1.6 The corpus callosum exhibited large demyelinated areas without 
intact myelin sheaths after cuprizone challenge 

To assess whether the myelinated APP+ spheroids could originate from myelinated 

damaged axons, ultrathin sagittal sections from corpus callosum of control and 

cuprizone-treated mice were analyzed by electron microscopy. The electron micrographs 

revealed large areas of demyelination after six weeks of cuprizone ingestion (Fig. 10B) 

compared to control (Fig. 10A). Furthermore, remyelinated axons and axons with 

increased mitochondrial content of damaged axons were found in the corpus callosum of 

cuprizone-treated mice (Fig. 10B-C). 

 
Figure 10: Electron microscopic analysis revealed disrupted myelin sheaths and 
increased mitochondrial content of damaged axons. 
The corpus callosum of control mice (A) and mice after cuprizone treatment (B, C) were 
analyzed by electron microscopy. The ultrastructural analysis revealed large areas of 
demyelination (B). Remyelinated axons (B) and myelinated axons with increased 
mitochondrial content of damaged axons were observed (C). Representative images of 
the medial corpus callosum of mice were shown (A-C) (scale bar = 1µm). 

3.1.7 (Re)myelinated damaged axons were observed in early remyelinating 
early active MS lesions 

Biopsy tissue of four MS patients was evaluated to determine whether myelinated 

APP+ spheroids were present in early remyelinating early active MS lesions. The cases 

exhibited typical characteristics of MS lesions: focal inflammation, demyelination and 

tissue damage with preserved axons and oligodendrocytes. The lesions exhibited a 

contiguous demyelinating area with ongoing early remyelination. Early remyelination was 

determined by evaluation of the LFB-PAS staining and the immunoreactivity for myelin 

proteins PLP, CNPase and MBP (Fig. 11B-F). Furthermore the NogoA 

immunohistochemistry revealed the presence of oligodendrocytes (Fig. 11G). For 

investigation of the specimens, which were double labeled for APP and MBP, ten 

randomly selected visual fields with at least one APP+ spheroid were analyzed by 

confocal microscopy, which showed many myelinated APP+ spheroids in all investigated 

cases (Fig. 11A).  
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Figure 11: Myelinated APP+ spheroids were observed in early remyelinating early 
active MS lesions. 
Representative confocal image of myelinated APP+ spheroids (arrows) in an early active 
MS lesion is shown in A (magnification = 400x + 7% zoom). The depicted MS lesion was 
an early active remyelinating lesion with Pattern II characteristics according to criteria 
described by Lucchinetti et al., 2000. The lesion border showed active demyelination 
while the lesion center revealed thin myelin sheaths characteristic for remyelination. This 
was also supported by many visible NogoA+ mature oligodendrocytes (B-D, F, G). 
Numerous APP+ spheroids were apparent in the lesion (E). Representative and 
descriptive images (B-G) of the depicted MS lesion were taken at 200x original 
magnification (scale bar = 100µm). 

3.1.8 Late remyelinated MS lesions exhibited less acutely damaged axons 
than chronic inactive MS lesions 

The extent of acute axonal damage (APP) in chronic inactive and late 

remyelinated MS lesions (so called shadow plaques) was evaluated to assess whether 

remyelination was beneficial for axonal health in the long term. The chronic inactive MS 
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lesions without signs of myelination showed significantly more ongoing acute axonal 

damage than remyelinated MS lesions (Fig. 12). 

 
 

 
Figure 12: Late remyelinated MS lesions exhibited less APP+ spheroids than 
chronic inactive MS lesions. 
Acute axonal damage was evaluated by APP immunohistochemistry of six chronic 
inactive and five late remyelinated MS lesions (shadow plaques). Chronic inactive lesions 
revealed more APP+ spheroids than remyelinated lesions (mean ± SEM; n = 5-6; Mann 
Whitney test; *p<0.05). 

 

3.1.9 Colocalization of the paranodal protein Caspr with APP+ spheroids in 
the cuprizone mouse model 

Sections from mice after cuprizone withdrawal were double immunostained for 

Caspr, a paranodal protein, and APP to investigate whether remyelination and the 

formation of new nodes of Ranvier might have an impact on axonal vulnerability during 

remyelination. Caspr colocalized with 60-75% of APP+ spheroids in the corpus callosum 

of mice after cuprizone diet cessation and was present as vesicle-like structures as 

evaluated by confocal microscopy (Fig. 13A, B). 
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Figure 13: The paranodal protein Caspr was colocalized with APP+ spheroids in 
the cuprizone mouse model. 
The association of Caspr with acute axonal damage was analyzed by double 
immunohistochemistry for APP and Caspr. APP+ spheroids were analyzed in 30 randomly 
selected visual fields with at least one APP+ spheroid (~50 spheroids) in the corpus 
callosum of mice by confocal microscopy (A, B). Approximately 60-75% of the APP+ 
spheroids assessed were colocalized with the paranodal protein Caspr during early 
remyelination (A, B) (mean ± SEM; n = 3). Representative confocal image was taken at 
400x original magnification with 7% zoom (A) (scale bar = 15µm). 

 

3.1.10 Cell processes of reactive astrocytes were found in the proximity of 
damaged axons 

To further characterize the acute axonal damage in our model, sections from mice 

after cuprizone withdrawal were double immunostained for APP and GFAP and 

investigated by confocal microscopy. APP+ spheroids were surrounded with the cell 

processes of reactive astrocytes in up to 80% of all APP+ spheroids assessed during 

early remyelination (Fig. 14A, B). 
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Figure 14: APP+ spheroids were surrounded by cell processes of reactive 
astrocytes in the cuprizone mouse model. 
Immunoreactivity for GFAP showed that cell processes of reactive astrocytes were in the 
close proximity to APP+ spheroids in up to 80% of all APP+ spheroids assessed (A, B) 
(mean ± SEM; n = 3). APP+ spheroids were analyzed in 30 randomly selected visual 
fields with at least one APP+ spheroid (~50 spheroids) in the corpus callosum of mice by 
confocal microscopy (A, B). Representative confocal image was taken at 400x original 
magnification with 7% zoom (A) (scale bar = 15µm). 

3.2 Effects of ion channel inhibition on acute axonal damage during 
demyelination and remyelination 

The current study showed an accumulation of Caspr at sites of acute axonal injury, 

which might occur as a result of increased formation of nodes of Ranvier. Therefore to 

analyze the role of ion channels and to assess whether the ion channel redistribution 

during remyelination has an impact on axonal preservation ion channel inhibitors were 

administered during remyelination. After six weeks of cuprizone challenge mice were 

treated either with the unspecific KV channel inhibitor 4-aminopyridine (twice a day, 

100µg/ mouse, s.c.), the ASIC inhibitor amiloride (once a day, 200µg/ mouse, i.p.) or 

vehicle (PBS s.c. or i.p.) (Fig. 15A). In another approach 4-aminopyridine was 

administered a few days preceding cuprizone withdrawal, to achieve higher levels of the 
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drug at the onset of remyelination (Fig. 15B). The corpus callosum (CC) was divided into 

the medial and lateral parts for histological evaluation, because of the regional 

heterogeneity of the cuprizone-induced demyelination (Fig. 15C). 

 
Figure 15: Design of the cuprizone experiments to investigate the effects of ion 
channel inhibition on acute axonal damage during remyelination. 
Seven to eight week old male C57BL/6J mice were fed for six weeks with a 0.25% 
cuprizone diet to induce demyelination. The unspecific KV channel inhibitor 4-
aminopyridine, the ASIC inhibitor amiloride or PBS were administered for two weeks 
during remyelination. After four, seven or 14 days brains of mice were harvested and 
analyzed by histology (Exp. 1) (A). In a second approach 4-aminopyridine was applied 
during the last days of cuprizone treatment. Brains were harvested and analyzed at day 
38 and 40 of cuprizone treatment and at day three, seven, 14 or 21 of remyelination 
(Exp. 2) (B). The medial and lateral parts of the corpus callosum were analyzed 
separately as indicated (C). 
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3.2.1 Acute axonal damage was not influenced by KV channel inhibition 
during remyelination. 

The inhibition of potassium channels might reduce the energy demand, i.e. ATP 

consumption, of demyelinated axons, which is necessary to maintain the ion 

homeostasis, and might thereby preserve the axonal integrity and reduce the axonal 

damage. To assess whether potassium channel inhibition by 4-aminopyridine could 

reduce the acute axonal damage, specimens of mice after cuprizone withdrawal were 

 
Figure 16: KV channel inhibition did not influence the acute axonal damage 
during remyelination. 
The number of APP+ spheroids in the medial (A, C) and in the lateral (B, D) corpus 
callosum of 4-aminopyridine-treated mice was comparable to the acute axonal damage in 
the corpus callosum of PBS-treated mice during remyelination in both experimental 
setups (Exp. 1: A, B) (Exp. 2: C, D) (mean ± SEM; n = 5-11). 
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immunostained for APP and evaluated. The acute axonal damage in the corpus 

callosum of 4-aminopyridine-treated animals was comparable to vehicle-treated animals 

(Exp. 1) (Fig. 16A, B). Acute axonal damage in the corpus callosum was also not 

influenced by 4-aminopyridine treatment started during the last days of cuprizone 

ingestion (Exp. 2) (Fig. 16C, D). 

 

3.2.2 KV channel inhibition did not reduce significantly the percentage of 
myelinated damaged axons 

The axonal damage in relation to remyelination was assessed in 4-aminopyridine-

treated mice by immunostaining for APP and MBP to investigate whether the inhibition of 

voltage-gated potassium channels could influence the percentage of the myelinated 

spheroids (Exp.1). The 4-aminopyridine-treated group showed no significant reduction of 

the percentage of myelinated APP+ spheroids after one week of recovery. Additionally, 

there was no difference between the two groups after two weeks of remyelination 

(Fig.17). 

 
Figure 17: Mice treated with 4-aminopyridine exhibited no significant difference 
in the percentage of myelinated APP+ spheroids compared to control. 
After one week of recovery the percentage of myelinated APP+ spheroids was not 
significantly different in the corpus callosum of 4-aminopyridine-treated mice compared to 
vehicle-treated mice (mean ± SEM; n = 6; unpaired t test, p = 0.2287). Images of 20-30 
randomly selected visual fields with at least one APP+ spheroid (~50 spheroids/ corpus 
callosum) were analyzed by confocal microscopy. (400x original magnification with 7% 
zoom). 
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3.2.3 The number of reactive astrocytes was not influenced by KV channel 
inhibition 

Numbers of reactive astrocytes (GFAP+ astrocytes) were evaluated after one and 

two weeks of recovery (Exp.1) to determine whether reactive astrocytes were modified by 

potassium channel inhibition. The sections of 4-aminopyridine-treated animals exhibited 

the same density of reactive astrocytes as the vehicle-treated animals. Furthermore, the 

medial and lateral parts of the corpus callosum showed a constant and similar level of 

astrogliosis over time in both groups (Fig. 18). 

 

 

 
Figure 18: No difference in the number of reactive astrocytes by KV channel 
inhibition during remyelination. 
The density of GFAP+ astrocytes in the medial (A) as well as in the lateral (B) corpus 
callosum of 4-aminopyridine-treated mice was comparable to the astrogliosis in the 
corpus callosum of PBS-treated mice during early and late remyelination (mean ± SEM; n 
= 9-11). 

 

3.2.4 Microgliosis was increased during remyelination by KV channel 
inhibition 

To examine whether diminished microgliosis could be associated with a reduced 

number of myelinated APP+ spheroids, the number of activated Mac3+ microglia was 

evaluated after one and two weeks of remyelination (Exp.1). Mice-treated with 4-

aminopyridine showed an increase of Mac3+ microglial cells in the medial and lateral 

corpus callosum during remyelination (Fig. 19). 
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Figure 19: Microgliosis was increased by KV channel inhibition during 
remyelination. 
The number of activated microglia (Mac3+) was increased in the medial (B, E) and lateral 
(D, F) corpus callosum of 4-aminopyridine-treated mice compared to the medial (A, E) 
and lateral (C, F) corpus callosum of PBS-treated animals (mean ± SEM; n = 9-11; 
Kruskal Wallis test, Dunn's multiple comparison test; *p<0.05). Representative images of 
the medial and lateral corpus callosum at day 14 of remyelination were taken at 400x 
original magnification (scale bar = 50µm). 

 

3.2.5 The number of oligodendrocytes was accelerated in the medial 
corpus callosum by KV channel inhibition during remyelination. 

To evaluate the effect of potassium channel inhibition on oligodendrocytes in the 

cuprizone mouse model (Exp.1), the densities of Olig2+ and NogoA+ oligodendrocytes 

were determined. The lateral corpus callosum revealed similar numbers of Olig2+ and 

NogoA+ oligodendrocytes during remyelination in both groups (Fig. 20F, H). In contrast, 

the numbers of the oligodendrocytes in the medial corpus callosum were increased after 

14 days of remyelination by 4-aminopyridine administration (Fig. 20A-E, G). 
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Figure 20: The number of oligodendrocytes was accelerated in the medial corpus 
callosum by KV channel inhibition during remyelination. 
The medial corpus callosum of 4-aminopyridine-treated animals (B, D, E, G) showed 
more Olig2+ and NogoA+ oligodendrocytes than the medial corpus callosum of control 
animals (A, C, E, G) (mean ± SEM; n = 9-11; one-way ANOVA, Bonferroni's multiple 
comparison test; *p<0.05). The lateral corpus callosum of 4-aminopyridine-treated 
animals was comparable to the lateral corpus callosum of control animals (F, H). 
Representative images of the medial corpus callosum were taken at 400x original 
magnification (A, B = Olig2) (C, D = NogoA) (scale bar = 50µm). 
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3.2.6 ASIC inhibition did not modify acute axonal damage or astrogliosis, 
but modified microgliosis 

The ASIC inhibitor amiloride was administered during remyelination to test whether 

this ion channel inhibitor was able to improve axonal preservation in the cuprizone mouse 

model during remyelination (Exp.1). Application of the ASIC inhibitor amiloride during 

remyelination did neither have an effect on acute axonal damage nor on astrogliosis (Fig. 

21A-D).  

 
Figure 21: ASIC inhibition did neither modify acute axonal damage nor 
astrogliosis. 
The numbers of APP+ spheroids and reactive GFAP+ astrocytes were determined in the 
medial (A, C) and lateral (B, D) corpus callosum of amiloride (Am) and PBS-treated mice. 
The evaluation of acute axonal damage (A, B) and astrogliosis (C, D) revealed no 
difference between the two groups (mean ± SEM; n = 3-5). 
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However, ASIC channel inhibition appeared to modify the extent of microgliosis in 

the medial corpus callosum two weeks after cuprizone diet cessation (p = 0.0635) (Fig. 

22). 

 

 
Figure 22: ASIC inhibition exhibited a tendency to accelerate the extent of 
microgliosis. 
Activated microglia (Mac3+ cells) were determined in the medial (A) and lateral (B) corpus 
callosum of amiloride (Am) and PBS-treated mice. Mice treated with amiloride appeared 
to accelerate the extent of microgliosis in the medial corpus callosum two weeks after 
cuprizone withdrawal (mean ± SEM; n = 3-5; Mann Whitney test; p = 0.0635). 

 

3.2.7 The number of oligodendrocytes was not influenced by ASIC 
inhibition 

The inhibition of voltage-gated potassium channels resulted in increased numbers 

of oligodendrocytes two weeks after cuprizone diet cessation. Therefore other ion 

channel inhibitors such as amiloride might have the capability to modify the density of 

oligodendrocytes. Immunohistochemistry for Olig2 and p25 (mature oligodendrocytes) of 

amiloride and PBS-treated mice were evaluated (Exp.1). The numbers of Olig2+ 

oligodendrocytes and p25+ mature oligodendrocytes were comparable between the 

amiloride and the vehicle-treated mice during remyelination (Fig. 23). 
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Figure 23: The number of oligodendrocytes was not influenced by ASIC 
inhibition. 
The immunoreactivity for Olig2 (A, B) and p25 (C, D) revealed no difference of the 
number of oligodendrocytes in the corpus callosum of amiloride and PBS-treated animals 
(mean ± SEM; n = 3-5). 

3.2.8 Inhibition of KV channels did not alter the demyelinated area of the 
corpus callosum in the cuprizone mouse model 

The results regarding ion channel inhibition during remyelination revealed an 

increased number of oligodendrocytes, while the numbers of APP+ spheroids were similar 

between mice treated with ion channel inhibitors and those treated with vehicle. The 

potential to modify the acute axonal damage and the numbers of oligodendrocytes was 

therefore determined during cuprizone-induced demyelination. After mice received 

cuprizone diet for three weeks, the ion channel inhibitors 4-aminopyridine and amiloride 

were administered during the following three weeks of cuprizone challenge. The acute 

axonal damage (Fig. 24) and the number of oligodendrocytes (Fig. 25) in the corpus 

callosum of 4-aminopyridine and amiloride-treated mice were not significantly different 

from controls. Mice treated with 4-aminopyridine or amiloride showed comparable 

demyelination of the corpus callosum at week six (Fig. 26). 
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Figure 24: Acute axonal damage of 4-aminopyridine-treated and amiloride-
treated mice was not significantly different compared to vehicle-treated mice 
during demyelination. 
The numbers of APP+ spheroids in medial (A) and lateral (B) corpus callosum of mice 
treated with inhibitors were not significantly different to the vehicle-treated groups (mean 
± SEM; n = 7-10). 

 

 
Figure 25: The numbers of oligodendrocytes were not significantly altered in 
inhibitor-treated mice compared to vehicle-treated mice during demyelination. 
The number of Olig2+ oligodendrocytes remained unaltered in medial (A) and lateral (B) 
corpus callosum of mice treated with 4-aminopyridine and mice treated with amiloride in 
comparison to controls (mean ± SEM; n = 7-10). 
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Figure 26: Mice treated with 4-aminopyridine or amiloride showed no difference 
in demyelination in comparison to vehicle-treated mice. 
LFB-PAS staining of medial (A) and lateral (B) corpus callosum revealed a similar 
demyelinated area in the corpus callosum of 4-aminopyridine-treated and amiloride-
treated animals, when compared to control. (mean ± SEM; n = 7-10). 
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4 DISCUSSION 
Multiple sclerosis lesions are characterized by focal inflammation, demyelination 

and axonal damage. Demyelination, which could occur due to CNS inflammation or injury 

of oligodendrocytes, leads to disturbed impulse conduction in the demyelinated axons 

and to modification of protein composition such as ion channels in the axonal membrane. 

The re-expression and redistribution of ion channels may restore the conduction across 

the demyelinated axonal segments. This modification of the nodal and paranodal protein 

clusters is partially reconstituted and comparable to normal myelinated axons by 

remyelination, which is considered as a mechanism of CNS repair and axonal protection 

(Irvine and Blakemore, 2006;Irvine and Blakemore, 2008;Lubetzki and Stankoff, 

2014;Smith, 2006). 

However K. J. Smith raises the question that remyelination may transiently render 

axons vulnerable to degeneration before long-term protection is achieved (Smith, 2006). 

Several findings in the past, which assessed a possible mechanism of axonal damage, 

evoke this question. It was shown that NO is a prominent component in inflammatory MS 

lesions (Smith and Lassmann, 2002) and a potent inhibitor of mitochondrial metabolism 

and ATP production (Brown and Borutaite, 2002). Axons consume ATP to reconstitute 

the intraaxonal ion concentrations after depolarization of the axonal membrane (Smith, 

2006). Especially the Na+/ K+ ATPase require ATP to remove the sodium ions that enter 

the axon during impulse activity. When the energy demand of an axon exceeds the 

energy supply due to inhibited mitochondrial metabolism and ATP production, the 

function of Na+/ K+ ATPase will be inadequate and axons will become loaded with sodium 

ions. As a consequence the Na+/ Ca2+ exchanger, which is situated in the axonal 

membrane, operates in reverse, so that calcium ions are imported into the axon. The 

increased intraaxonal concentration of intraaxonal calcium ions can cause axonal 

degeneration by activation of degrading enzymes (Smith, 2006). This mechanism of 

axonal degeneration was approved by in vitro studies, which showed axonal 

degeneration by NO exposure (Smith et al., 2001) and axonal protection by NO exposure 

and sodium channel inhibition (Kapoor et al., 2003). Furthermore, reports of sodium 

channel inhibition in the inflammatory demyelinating animal model EAE demonstrated an 

axon-protective capacity of sodium channel blocking agents (Bechtold et al., 

2004;Bechtold et al., 2005;Bechtold et al., 2006;Lo et al., 2003). However for long-term 

protection of axons the structural repair of demyelinated axons by remyelination 

appeared to be necessary (Smith, 2006). Remyelination can restore nodes of Ranvier, 

which appear to have a normal pattern of molecular constituents, and secure conduction. 

In addition to the protective function of remyelination, early remyelination may render 
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axons vulnerable to degeneration, before the mature nodal configuration is achieved 

(Smith, 2006). Smith  speculated that during remyelination the sodium channels, that 

were distributed along the demyelinated axolemma, may be ‘swept’ ahead of the 

advancing glial plasmalemma as oligodendrocytes encircle the demyelinated axons and 

then extend to establish their new territories along the axons (Smith, 2006). Therefore at 

the edges of two adjacent oligodendrocytes that remyelinate the same axon, two focal 

aggregations of sodium channels may approach each other and build regions of 

particularly high sodium channel concentration, which may cause rapid accumulation of 

intraaxonal sodium ions (Smith, 2006). The proposed mechanism may be also relevant 

for other ion channels such as voltage-gated potassium channels, which are similarly 

redistributed by demyelination as sodium channels (Lubetzki and Stankoff, 2014). 

Especially the exposure of the voltage-gated potassium channels that are normally 

hidden behind the myelin sheath in the axonal membrane may result in dysregulated 

potassium ion homeostasis. Although the pattern of these channels is reconstituted in the 

axonal membrane by remyelination, an inhibition of these channels may have similar 

beneficial effects on demyelinated axons as the inhibition of sodium channels. 

Furthermore the acidic milieu caused by tissue inflammation activates acid sensing ion 

channels (ASICs) in the axonal membrane. ASICs can flux Na+ and Ca2+ ions and 

thereby may further increase intraaxonal concentration of these ions, which then 

contribute to axonal degeneration (Friese et al., 2007;Schattling et al., 2014;Vergo et al., 

2011).   

Hence, one aim of my thesis was to explore the relation of early remyelination and 

axonal damage in MS and an animal model of MS, while a second aim was to assess the 

axon-protective capacity of two ion channel inhibitors, i.e. the potassium channel inhibitor 

4-aminopyridine and the ASIC inhibitor amiloride, in an animal model of MS. 

4.1 Acute axonal damage in relation to early remyelination 

4.1.1 Efficient regeneration of the corpus callosum after cuprizone diet 
cessation 

Demyelination of the corpus callosum was induced by cuprizone treatment for six 

weeks. After cuprizone withdrawal, the demyelinated area was rapidly remyelinated 

within a few days and almost absent after three weeks of remyelination. A sequential 

expression of myelin proteins was observed with CNPase as the first re-expressed myelin 

protein, followed by MBP and MOG, and PLP as the last re-expressed myelin protein. 
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4.1.1.1 The cuprizone mouse model to study remyelination 
The cuprizone mouse model is a well characterized model to study demyelination 

and remyelination in mice. However, the obtained demyelination and the remyelination 

are dependent on the dosage of cuprizone, the mouse strain, the gender and age of mice 

as well as the brain region analyzed and the treatment period (Hiremath et al., 

1998;Jurevics et al., 2002;Lindner et al., 2008;Taylor et al., 2009;Taylor et al., 2010). For 

example, Lindner and colleagues used 0.2-0.3% cuprizone diet for 6 weeks and 

described a sequential myelin protein expression during remyelination after 0.3% 

cuprizone diet. The earliest time point they examined was four days after cuprizone 

withdrawal. By evaluating myelin protein expression by immunohistochemistry they 

observed a rapid increase in myelin protein expression after four days of remyelination. 

Although they analyzed sections of a different coronal area of the corpus callosum as it 

was investigated in my work, the LFB staining and myelin protein immunohistochemistry 

revealed a comparable pattern of sequential remyelination. Therefore my results are in 

line with the literature and proved the consistency of the cuprizone mouse model for 

studies on remyelination. 

4.1.1.2 Oligodendrocytes in the cuprizone mouse model 
Remyelination is dependent on the presence of oligodendrocytes. In the cuprizone 

model many oligodendrocyte precursor cells were present after six weeks of cuprizone 

treatment. However the number of mature oligodendrocytes was diminished after 

cuprizone challenge. During the first three days of remyelination I observed an increase 

in the number of oligodendrocyte lineage cells (Olig2+). After three days Olig2+ 

oligodendrocytes remained relatively constant, whereas the number of NogoA+ mature 

oligodendrocytes increased. This finding implies that oligodendrocyte proliferation is 

shifted to oligodendrocyte differentiation after three days of remyelination in the 

cuprizone model. Thus oligodendrocyte proliferation and differentiation seemed to be 

accomplished after one week of recovery, which is in line with the evidence of efficient 

remyelination. 

It was reported that oligodendrocytes exhibit signs of apoptosis after two days of 

cuprizone intoxication and their number starts to diminish after a few days of cuprizone 

ingestion (Buschmann et al., 2012;Hesse et al., 2010;Matsushima and Morell, 2001). 

However, Mason and colleagues could demonstrate that the number of oligodendrocytes 

increases and that remyelination occurs during a continued exposure to cuprizone 

(Mason et al., 2000a;Mason et al., 2001a). Thus the presence of few NogoA+ 

oligodendrocytes and myelin sheaths in the LFB staining after six weeks of cuprizone 
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treatment suggest that the regeneration and thereby the remyelination of the corpus 

callosum started during cuprizone treatment, which is in line with the literature. 

4.1.2 Acute axonal damage in the cuprizone mouse model 

4.1.2.1 Acute axonal damage detectable in the corpus callosum after six 
weeks of cuprizone treatment 

After cuprizone challenge the corpus callosum of mice exhibited acutely damaged 

axons, which were presented as APP+ axonal spheroids. APP accumulates at sites of 

axonal injury, because of a collapse or reduction of the axonal transport caused by 

axonal injury or damage (Kamal et al., 2000;Koo et al., 1990).  

Axonal transport is very important to supply axons and their synapses with 

proteins, lipids and mitochondria and to remove recycled or misfolded proteins for 

prevention of the build-up of toxic aggregates (Millecamps and Julien, 2013). Varies 

cargoes are transported along microtubules either in anterograde (i.e. towards the axon 

synapse) or retrograde direction (i.e. towards the neuronal cell body). The transport 

consists of movements in a saltatory fashion: transported cargoes exhibit periods of rapid 

movements, pauses and directional switches. APP undergoes anterograde axonal 

transport and the immunoreactivity for APP identifies axonal transport disturbances, 

which are an indication for axonal damage and may or may not be reversible (Dziedzic et 

al., 2010;Trapp et al., 1998).  

Remarkably, the temporal sequence of axonal swelling and destruction as a 

consequence of axonal damage and the reversibility of axonal damage were recently 

demonstrated in EAE by in vivo imaging (Nikic et al., 2011). EAE was induced in 

transgenic mice (Thy1-GFP-S and Thy1-CFP-S), which had a subset of medium-to-large 

caliber axons fluorescently labeled. The recorded axons showed a specific sequence of 

focal axonal degeneration: 1) prior to disruption, axonal swellings occurred along the 

axon at one or more discrete sites, 2) the initial disruption of an axon often occurred at 

putative nodes of Ranvier. The axonal disruption was shown to start synchronously to 

both sites. Terminal bulbs were formed on the proximal and distal axon stumps, when the 

fragmentation halted. Some of the recorded swollen axons recovered spontaneously. 

Microglia/ macrophages were determined as the initiators of axonal damage by producing 

ROS (reactive oxygen species) and RNS (reactive nitrogen species). Nikic and coworkers 

further demonstrated that the oxidative damage of mitochondria, which caused a 

dysfunction of these organelles, occurred simultaneously with axonal damage (Nikic et 

al., 2011). In addition they showed axonal damage of myelinated axons, which suggest 

that demyelination might not be a necessary prerequisite for axonal damage in EAE. An 
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elevated mitochondrial content in demyelinated axons was described for the focal 

lysolecithin-induced demyelinating/ remyelinating animal model (Zambonin et al., 2011), 

but the pathological mechanisms in the cuprizone model are different from the 

autoimmune EAE based on activated encephalitic T cells. In contrast to EAE the first 

pathological evidence in the cuprizone model is oligodendroglial apoptosis, which is 

followed by demyelination, microgliosis, astrogliosis and axonal damage (Buschmann et 

al., 2012;Lindner et al., 2009). Because of the different pathological hallmarks, the 

mechanisms of axonal pathology could be different in the cuprizone model. However 

histopathological evaluation by APP immunohistochemistry exhibited also swollen or 

transected axons in this model. 

The axonal damage observed in the cuprizone-treated mice could be either a 

result of a direct toxic effect on the axons or a secondary effect of tissue injury such as 

oligodendrogliopathy, demyelination and microglial activation. It is reported for the 

cuprizone mouse model that axonal damage and degeneration occur (Mason et al., 

2001a;Stidworthy et al., 2003), although cuprizone seemed to have no direct toxic effect 

on axons (Irvine and Blakemore, 2006). Irvine and Blakemore compared the number of 

damaged axons (SMI-32+, non-phosphorylated neurofilament) in the corpus callosum of 

Swiss and C57BL/6 mice, which were treated with high or low doses of cuprizone (Irvine 

and Blakemore, 2006). The Swiss mice were treated with approximately two times higher 

dose of cuprizone, but exhibited less axonal spheroids than the C57BL/6 mice. In the 

same study they compared the axonal damage in young and old C57BL/6 mice. Old mice 

showed increased axonal damage compared to young mice, but the old Swiss mice 

treated with high dose of cuprizone exhibited less axonal spheroids compared to old 

C57BL/6 mice. The authors concluded that the dosage of cuprizone was most likely not 

directly toxic for axons (Irvine and Blakemore, 2006). However the study was performed 

with small groups of mice and in different strains. In addition to this in vivo study showed 

cuprizone no direct toxic effect on neuronal viability in vitro (Benardais et al., 2013). In 

this study a neuronal cell line was used, which exhibit no formation of axons. Thus, it has 

not been absolutely clarified whether cuprizone has a direct toxic effect on axons.  

4.1.2.2 Acute axonal damage decreased during remyelination 
The number of the axonal spheroids observed in the present work decreased 

continuously during remyelination. Remyelination seemed to be neuroprotective, while 

the cuprizone-induced demyelination appeared to be harmful to axons (Irvine and 

Blakemore, 2006;Irvine and Blakemore, 2008). In 2008 Irvine and Blakemore studied the 

potential of remyelination to protect axons. The oligodendrocyte progenitor cells were 

depleted by X-irradiation in the cuprizone model, which resulted in remyelination failure. 
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X-irradiated, cuprizone-treated mice exhibited more axonal damage (SMI-32+, non-

phosphorylated neurofilament) and axonal loss in comparison to non-irradiated, 

cuprizone-treated mice after cuprizone withdrawal. The remyelinating capacity of the X-

irradiated brain was restored by transplantation of GFP+ embryonic neurospheres, which 

differentiate mainly into oligodendrocytes. The transplantation of the embryonic 

neurospheres into the brain of X-irradiated, cuprizone-treated mice resulted in increased 

axonal survival and decreased axonal damage. These results suggested an axon-

protective role of remyelination in the cuprizone mouse model.  

Most of the investigators, who explored mechanisms of demyelination, 

remyelination and axonal damage in the cuprizone mouse model, used time intervals of 

weeks or months (Gudi et al., 2009;Hiremath et al., 1998;Lindner et al., 2008;Lindner et 

al., 2009;Manrique-Hoyos et al., 2012;Skripuletz et al., 2013;Stidworthy et al., 2003). In 

this study the time intervals of days enabled a detailed analysis of the early remyelination 

and axonal damage in mice. Acute axonal damage decreased continuously during 

recovery presumably due to rapid and efficient oligodendrocyte differentiation and 

remyelination. However, acute axonal damage (~ 9 APP+ spheroids/ mm²) was shown to 

still occur after long term remyelination (28 weeks) (Manrique-Hoyos et al., 2012). The 

axonal damage, which was evaluated after one (163.3 APP+ spheroids/ mm²) or three 

(129.2 APP+ spheroids/ mm²) weeks of remyelination in the present work, was much 

higher than the axonal damage observed in the study of Manrique-Hoyos and colleagues. 

Therefore, the majority of the axonal damage probably occurred during cuprizone 

treatment and was still detectable during remyelination. 

Damaged or transected axons could be detected by immunohistochemistry for 

APP a few hours after injury (McKenzie et al., 1996;Otsuka et al., 1991), but could be 

also observed two to four weeks after the injuring insult (Bramlett et al., 1997;Pierce et 

al., 1996). APP as a marker was established for various disorders of the CNS including 

multiple sclerosis (Bitsch et al., 2000;Kornek et al., 2000;Kuhlmann et al., 2002). Hence 

the measured acute axonal damage is likely a result of the demyelination induced by 

cuprizone treatment and continues to be detected during remyelination. 

4.1.3 Decreased activated microglia and sustained reactive astrocytes 
during remyelination in the cuprizone mouse model 

The corpus callosum of mice treated for six weeks with cuprizone showed many 

activated microglia and reactive astrocytes. The number of reactive astrocytes remained 

relatively constant during remyelination in contrast to the expeditious decrease of 

activated microglial cells. Furthermore a localization of cell processes of reactive 

astrocytes with acutely damaged axons was observed during remyelination. 
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Several studies reported activation of microglia and increased numbers of reactive 

astrocytes induced by cuprizone ingestion (Gudi et al., 2009;Hiremath et al., 

1998;Lindner et al., 2009;Mason et al., 2004). However, the number of activated 

microglia decreased after cuprizone diet cessation (Lindner et al., 2009;Mason et al., 

2004;Matsushima and Morell, 2001;Remington et al., 2007), while astrogliosis remained 

unaltered during recovery (Hibbits et al., 2012;Skripuletz et al., 2011).  

4.1.3.1 Activated microglia during remyelination  
Microglia are the resident macrophages of the CNS and can migrate throughout 

the parenchyma upon activation (Benarroch, 2013;Hanisch and Kettenmann, 

2007;Kettenmann et al., 2011;Kettenmann et al., 2013). In a healthy environment the 

microglial cell appears ramified and is known as the "resting" microglia. The resting 

microglia show a small soma with fine cellular processes. These cells are evenly 

distributed and each cell seems to occupy a defined territory. However, they are not 

quiescent, but rather constantly scanning their environment with their motile processes to 

survey the tissue (Kettenmann et al., 2013). Once a threat to the CNS has been detected, 

they change their morphology from ramified to amoeboid, which is also considered as 

activated microglia. These amoeboid microglial cells can migrate towards the site of 

pathological alteration, proliferate and phagocytose. This "activation" of microglial cells is 

rather a change in activities than activation per se, because of the beneficial role of 

resting microglia in CNS remodeling and repair as well as synaptic plasticity. In fact, 

dependent on the environmental factors (e.g. inflammation, tissue damage) activated 

microglia exhibit different functions, which are not necessarily detrimental (Benarroch, 

2013;Hanisch and Kettenmann, 2007;Kettenmann et al., 2011;Kettenmann et al., 2013). 

In the NAWM of MS patients, for example, isolated microglia appeared to be activated, 

but did not respond to inflammatory stimuli (Melief et al., 2013). Microglia were isolated 

from post-mortem brain and their appearance evaluated by FACS analysis. The 

microglial cells exhibited increased size, granularity and CD45 expression, but 

unresponsiveness to LPS in vitro (Melief et al., 2013). Furthermore the microglial 

activation goes not only in one direction: activated microglia and peripheral macrophages 

can integrate into the CNS parenchyma and acquire a microglia phenotype (Benarroch, 

2013;Hanisch and Kettenmann, 2007;Kettenmann et al., 2011;Kettenmann et al., 2013). 

The role of microglial cells in the cuprizone model was investigated by Remington 

and colleagues in 2007 (Remington et al., 2007). Cells were isolated from the corpus 

callosum of cuprizone-treated mice during demyelination and after remyelination and 

were evaluated by FACS analysis. The microglial cells and macrophages were both 

CD11b positive, but could be distinguished by CD45 expression. Microglia exhibited low 
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expression of CD45, whereas macrophages showed high expression of CD45. During 

cuprizone-induced demyelination the microglia became activated and migrated to the 

corpus callosum, in which they further proliferated. In the fifth week of cuprizone 

challenge the microglial/ macrophage response was maximal. But the macrophages 

constituted only 0.5 % of the CD11b positive cells. Therefore the macrophage response 

in the cuprizone model resembled rather the macrophage response seen after axonal 

injury than the massive macrophage infiltration seen in MOG-EAE (Remington et al., 

2007). Furthermore at the time of maximum response approximately ~30% of the 

responding microglia were immigrants from the periphery (Remington et al., 2007), 

although blood brain barrier remains intact in the cuprizone model (Bakker and Ludwin, 

1987;Kondo et al., 1987;McMahon et al., 2002). Remington and colleagues used bone 

marrow chimeras, which were whole-body irradiated previous to bone marrow 

transplantation, to investigate the engraftment of peripheral monocytes into the CNS. The 

engraftment of peripheral monocytes exhibiting a microglial phenotype was reported to 

occur only due to preconditioning of the brain such as irradiation (Mildner et al., 2007). 

Thus, the increased numbers of activated microglia in the demyelinating mouse brain 

originated from local proliferation of microglia. In  another approach microglia exhibited 

mainly a phagocytic activity during demyelination and remyelination, which was 

accompanied by an upregulation of IGF1 and FGF2 (Voss et al., 2012). Especially the 

upregulation of the growth factors and the phagocytic activity suggested a regenerative 

role of microglia in the cuprizone model. In addition to these comprehensive studies of 

microglia, the number of activated microglia was histopathologically determined in the 

cuprizone model using either Mac3 or RCA-1 as a marker (Gudi et al., 2009;Hiremath et 

al., 1998;Lindner et al., 2009;Mason et al., 2004;Voss et al., 2012). The maximum of the 

density of activated microglial cells emerged between four to six weeks of cuprizone 

treatment in these studies. The different maximum of the numbers of activated microglial 

cells might be caused by the different regions analyzed or the different markers that were 

used. However in the studies, which included analysis of remyelination, a prominent 

decrease of activated microglial cells was observed either during the end of cuprizone 

treatment or during remyelination (Gudi et al., 2009;Lindner et al., 2009;Mason et al., 

2004;Remington et al., 2007;Voss et al., 2012). It was reported that activated microglial 

cells coincided with oligodendrocyte apoptosis (Mason et al., 2004) and axonal damage 

in the cuprizone model (Lindner et al., 2009). However several studies demonstrated a 

beneficial role of activated microglia, reactive astrocytes and their released cytokines on 

oligodendrocyte differentiation and remyelination in the cuprizone model (Arnett et al., 

2001;Diemel et al., 2003;Hinks and Franklin, 1999;Mason et al., 2001b;McKinnon et al., 



 4 Discussion 

55 
 

1993;Patel et al., 2010). It was shown that cytokines such as IL1β, TNFα, CXCL12 and 

TGFβ promote oligodendrocyte differentiation and remyelination in the cuprizone model. 

Therefore, the microglia detected during remyelination, which appeared to be activated, 

are most likely rather promoting CNS repair than CNS damage. Moreover the prominent 

reduction in the number of activated microglial cells during remyelination suggests CNS 

regeneration. 

4.1.3.2 Reactive astrocytes during remyelination 
Astrocytes tile the entire CNS and have important functions within the CNS: 

involvement in synaptic transmission and energy metabolism, regulation of neurogenesis, 

maintenance of the blood-brain-barrier, and control of blood flow (Gudi et al., 

2014;Sofroniew and Vinters, 2010). Reactive astrogliosis occurs due to CNS injury and 

disease, which is accompanied by various cellular changes including upregulation of 

GFAP (Sofroniew, 2009;Sofroniew and Vinters, 2010). It is not a single uniform process 

or an all-or-none response. The process of reactive astrogliosis is finely and continuously 

graded progressive changes in gene expression and cellular changes. The extent of 

astrogliosis depends on the severity of the triggering insult. Mild and moderate forms of 

reactive astrogliosis exhibit the potential of resolution with normal-appearing astrocytes 

afterwards, when the triggering insult disappeared. In contrast severe forms of reactive 

astrogliosis in response to overt tissue damage and inflammation build a glial scar with 

overlapping astrocytic cell processes that incorporate newly proliferated cells (Sofroniew, 

2009;Sofroniew and Vinters, 2010).  

The role of reactive astrocytes in demyelinating diseases is controversially 

discussed (Brück et al., 2012;Colombo et al., 2012;Gudi et al., 2011;Lee et al., 

2012;Patel et al., 2010;Skripuletz et al., 2013;Stadelmann et al., 2002). Reactive 

astrocytes were shown to have detrimental effects in EAE and induce neurodegeneration 

in vitro (Colombo et al., 2012). However several reports demonstrated the beneficial 

impact of astrocytes in the cuprizone mouse model with regard to remyelination (Gudi et 

al., 2011;Patel et al., 2010;Skripuletz et al., 2013). The number of reactive astrocytes 

was shown to increase after three weeks of cuprizone-induced demyelination (Gudi et al., 

2009;Hiremath et al., 1998) and to persist during remyelination (Hibbits et al., 

2012;Skripuletz et al., 2011). However, depletion of astrocytes in the cuprizone mouse 

model resulted in decreased microglial activation and impaired microglial recruitment, 

which caused a delay in clearance of myelin debris (Skripuletz et al., 2013). Although the 

demyelination seemed to be prevented, the remaining myelin appeared loose and frayed. 

The depletion of astrocytes did not impede oligodendrocyte apoptosis and axonal 

damage. Furthermore the proliferation of oligodendrocyte progenitors and the 
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remyelination were decelerated, while diminished numbers of oligodendrocytes were 

observed (Skripuletz et al., 2013). In addition, the expression of various cytokines and 

growth factors was described to be upregulated in reactive astrocytes during 

remyelination (Gudi et al., 2011;Patel et al., 2010;Skripuletz et al., 2013). Some of these 

factors such as CXCL10, CXCL12, TGFβ, TNFα, IGF1 and CNTF suggest a beneficial 

role of reactive astrocytes during remyelination. These factors were shown to promote 

the recruitment of microglia or oligodendrocyte differentiation. Thereby clearance of 

myelin and remyelination were facilitated in the cuprizone mouse model (Gudi et al., 

2011;Patel et al., 2010;Skripuletz et al., 2013). The persisting reactive astrogliosis 

observed during remyelination in the current study was moderate to severe, but without 

any scar formation and in line with the literature (Hibbits et al., 2012;Skripuletz et al., 

2011). Furthermore the efficient remyelinating process demonstrated in this work 

together with the evidence from the recent literature (Gudi et al., 2011;Patel et al., 

2010;Skripuletz et al., 2013) suggests a beneficial function of reactive astrocytes in 

remyelination. Thus astrocytes seem to promote CNS repair. In addition to their role in 

remyelination it was shown that astrocytic processes envelop synapses and are in close 

contact to axons at the nodes of Ranvier (Sofroniew and Vinters, 2010). The cell 

processes of reactive astrocytes might be attracted by acutely damaged axons and 

suggests that the astrocytes might have an impact on axonal damage, which has to be 

further clarified in future studies. 

4.1.4 Expression of TGFβ and TNFα was upregulated during demyelination 
and remyelination 

The expression of TGFβ and TNFα was upregulated during demyelination and 

remyelination. In contrast to TNFα, the expression of TGFβ decreased after one week of 

remyelination. Furthermore the expression level of IL6 might be reduced in the cuprizone 

mouse model. These results are in line with the literature (Arnett et al., 2001;Biancotti et 

al., 2008;Gudi et al., 2011;Krauthausen et al., 2014). 

Expression levels of many cytokines and chemokines, e.g. IL-1β, TGFβ, TNFα, IL-

6, CXCL10, CCL2 and CCL3, were shown to be regulated in the cuprizone mouse model 

(Arnett et al., 2001;Biancotti et al., 2008;Buschmann et al., 2012;Gudi et al., 

2011;Krauthausen et al., 2014;Mason et al., 2000b;Mason et al., 2001b;Voss et al., 

2012). Many cytokines are multipotent factors that can be beneficial for some cells and 

detrimental for others. The inflammatory cytokine TNFα, for example, can induce 

apoptosis and also promote cell proliferation dependent on the target cell and its 

receptors (Caminero et al., 2011;Mc et al., 2011). Several scientists showed alleviation of 

EAE by treatment with anti-TNFα antibodies (Korner et al., 1997;Ruddle et al., 
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1990;Selmaj et al., 1991;Suvannavejh et al., 2000), but in clinical trials using antibodies 

against TNFα MS patients showed an exacerbation of the disease (1999;van Oosten et 

al., 1996). In line with the clinical trials Arnett and colleagues demonstrated that TNFα 

promotes oligodendrocyte progenitor proliferation and remyelination in the cuprizone 

mouse model (Arnett et al., 2001).  A promoting impact on oligodendrocyte proliferation 

and remyelination was also reported for TGFβ (Diemel et al., 2003;Hinks and Franklin, 

1999;McKinnon et al., 1993). For this reason the increased expression levels of TGFβ 

and TNFα measured in the cuprizone model might implement regenerative rather than 

degenerative processes during remyelination. 

4.1.5 The subpopulation of myelinated damaged axons increased during 
remyelination   

A considerable number of myelinated axonal spheroids were observed after 

cuprizone treatment. In addition, a significant increase of myelinated spheroids could be 

determined after one week of remyelination.    

Axonal spheroids, which were ensheathed with myelin, were observed after long 

term remyelination in the cuprizone mouse model (Manrique-Hoyos et al., 2012). 

Manrique-Hoyos and coworkers further showed myelinated axonal spheroids in chronic 

remyelinated MS lesions. In line with their findings the immunhistochemical study of 

axonal spheroids revealed that 25% of the spheroids appeared myelinated after 

successful remyelination. The temporal relation of axonal spheroids and early 

remyelination suggests that axons could be remyelinated independent of any transport 

disturbance. This hypothesis is further supported by the work on chronically demyelinated 

axons (Foote and Blakemore, 2005a;Mason et al., 2004). It was demonstrated that 

chronic demyelinated axons can still be remyelinated, which appeared to be rather 

dependent on oligodendrocytes and environmental factors than on the chronically 

demyelinated axons themselves. Moreover a functional axonal transport does not seem 

to be a necessary precondition for the proper establishment of an impeccable myelin 

sheath. 

4.1.6 Contiguous large demyelinated areas without intact myelin sheaths 
in the corpus callosum after cuprizone challenge 

The electron microscopic analysis of the corpus callosum of cuprizone-treated 

mice revealed large demyelinated areas with a few altered, but still myelinated axons, 

which appeared to contain increased numbers of mitochondria. These findings are in line 

with the literature (Crawford et al., 2009;Dikranian et al., 2008;Stidworthy et al., 2003) 

and possibly reflect axons with transport disturbance. Remyelinated axons were present 
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after six weeks of cuprizone treatment, which suggests remyelination during cuprizone 

treatment and is in line with the literature (Mason et al., 2000a;Mason et al., 2001a). 

4.1.7 (Re)myelinated damaged axons were also present in early 
remyelinating early active MS lesions 

Myelinated damaged axons were noticed by Trapp and colleagues in active MS 

lesions (Trapp et al., 1998), but whether myelinated damaged axons could be found in 

early remyelinating, early active MS lesions was unknown. Here in all four investigated 

cases myelinated axonal spheroids were observed. The spheroids were located within a 

contiguous demyelinating area with ongoing early remyelination. This observation 

suggests that remyelination in MS might occur similarly to the mechanism described for 

the cuprizone model. But this hypothesis has to be proved by further investigation of early 

active demyelinating lesions with no sign for remyelination versus early active 

demyelinating lesions with ongoing early remyelination. Another intriguing issue is that 

the cuprizone model is a toxic model not involving important T lymphocyte infiltration, 

primarily to investigate mechanisms of remyelination. Some mechanisms of remyelination 

in MS might resemble those identified in the cuprizone model. However the focal 

inflammation in MS could influence the process of remyelination and the occurrence of 

axonal damage. Inflammation, for example, was shown to support remyelination in 

another animal model (Foote and Blakemore, 2005b). Hence, more MS lesions have to 

be analyzed to determine the relevance of the proposed mechanism of remyelination of 

axons showing a disturbance of axonal transport in MS. 

4.1.8 Remyelinated MS lesions exhibited less acute damaged axons than 
chronic inactive MS lesions 

Remyelination is considered as a regenerative process, which is capable of 

protecting axons after demyelinating events (Irvine and Blakemore, 2008;Kornek et al., 

2000;Kuhlmann et al., 2002;Murray et al., 2001). The axon-protective capability of 

remyelination was demonstrated in these studies by investigation of MS related animal 

models and chronic MS lesions. Restoration of neurological function or reduction of 

axonal damage could be an indication of axon protection. Murray and colleagues, for 

example, reported in a viral animal model of MS a partial restoration of neurological 

functions coinciding with spontaneous remyelination (Murray et al., 2001). In addition to 

that, a decrease of axonal damage due to remyelination was shown in the cuprizone 

mouse model by Irvine and Blakemore (Irvine and Blakemore, 2008). Furthermore 

remyelination is beneficial for axonal health in MS lesions in the long-term as shown by 

Kornek et al. and Kuhlmann et al. (Kornek et al., 2000;Kuhlmann et al., 2002). Here, the 
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evaluated remyelinated MS lesions exhibited less acutely damaged axons than chronic 

inactive lesions, which is in line with the literature (Kornek et al., 2000;Kuhlmann et al., 

2002). This finding therefore proves the axon-protective capability of remyelination in 

multiple sclerosis. 

4.1.9 Colocalization of the paranodal protein Caspr with APP+ spheroids in 
the cuprizone mouse model 

The current study showed an accumulation of Caspr, a paranodal protein, at sites 

of acute axonal injury, which was reported previously for sodium channels, calcium 

channels and sodium calcium exchanger in MS and EAE (Craner et al., 2004a;Craner et 

al., 2004b;Herrero-Herranz et al., 2008;Kornek et al., 2001). The immunohistochemistry 

for Caspr revealed diffuse and vesicle-like distribution of Caspr in axonal spheroids. 

Paranodal (e.g Caspr) and nodal proteins (e.g. NaV channels) are arranged in 

multiprotein complexes, which are clustered into distinct domains at the nodes of Ranvier 

by myelin formation. The assembly of the paranodal complex is initiated by the interaction 

of neurofascin 155 in glia to a complex of contactin and contactin associated protein 

(Caspr) in axons. The complex is then stabilized by a specialized axonal cytoskeleton, 

which consists of several proteins such as ankyrin B and α/βII spectrin (Sherman and 

Brophy, 2005;Simons and Trajkovic, 2006). It was shown by Eisenbach et.al. that Caspr 

expression and localization occur in a specified sequence (Eisenbach et al., 2009). The 

sequence, which was shown in a myelinating cell culture model, consisted of four steps 

during myelination: First, Caspr was weakly and uniformly expressed in the absence of 

oligodendrocytes; second, clustering of Caspr at sites of initial contact of 

oligodendrocytes and axons; third, membrane expression of Caspr was increased in 

axonal segments ensheathed with myelin; and fourth, Caspr was excluded from 

internodes and accumulated at paranodes as myelination proceeded. These processes 

could be applied for myelination in development, because of the embryonal and neonatal 

cell culture system. Therefore, these mechanisms can not necessarily be applied to the 

demyelinating and remyelinating situation. However, Zoupi and colleagues illustrated the 

alterations of paranodal and nodal protein distribution in EAE and the cuprizone model 

(Zoupi et al., 2013). Cuprizone-induced demyelination strongly affected the paranodal 

protein clustering, which was accompanied by a reduced nodal density and the 

appearance of elongated nodes. In addition immunoreactivity for Caspr was reduced, 

diffused or completely absent. However the protein complexes reappeared after 

remyelination in the cuprizone model. Furthermore a study in 2003 revealed a similar 

diffused or reduced expression pattern of Caspr in chronic MS lesions (Wolswijk and 

Balesar, 2003). These data together with the observation of colocalization of Caspr and 
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ion channels at sites of acute axonal injury suggest two possible hypotheses: 1) axons 

might be more vulnerable due to new myelin formation, 2) the deposition of Caspr at sites 

of axonal injury might be a consequence of disturbed axonal transport. The findings of 

the present study support the second suggestion, because of the observed vesicle-like 

immunoreactivity for Caspr, which was not restricted to the axonal surface. Therefore 

intraaxonal accumulation of Caspr might be a marker for axonal damage, but this issue 

has to be investigated in more detail in future studies.  

4.1.10 Conclusion 
In the first part of my thesis I focused initially on the CNS pathology in the 

cuprizone model, in particular in the corpus callosum of mice after cuprizone treatment 

and after cuprizone diet cessation, to investigate the relation of remyelination and axonal 

damage. The pathology of the cuprizone-treated mice revealed regenerative processes 

such as remyelination after cuprizone withdrawal. The remyelination of the CNS 

appeared as follows: few mature oligodendrocytes were present after six weeks of 

cuprizone challenge and the oligodendrocyte proliferation and differentiation were 

accomplished after one week of recovery accompanied by an efficient remyelination. 

Furthermore, the prominent decrease of activated microglia two days after cuprizone 

withdrawal points also to CNS regeneration and repair. The continuous reduction of 

acutely damaged axons during remyelination is in line with these findings. Although 

reactive astrocytes persists in this model the upregulated cytokines are described to be 

beneficial for remyelination in the cuprizone model. To unravel the relation of acute 

axonal damage and remyelination in more detail a comprehensive analysis by confocal 

microscopy was performed. The analysis by confocal microscopy revealed three 

subpopulation of axonal spheroids: un-/ or demyelinated, partially myelinated and 

myelinated spheroids. The number of myelinated axonal spheroids increased significantly 

after one week of remyelination in spite of a decrease of the total number of axonal 

spheroids and strong regenerative processes. The obtained data implicate that most of 

the spheroids detected during remyelination in the model are a sign of damaged axons 

which sustained damage during the demyelinating period before. This would imply that 

those damaged axons are capable of gaining a new myelin sheath – a finding with far 

reaching consequences. A functional axonal transport is not a necessary precondition for 

the proper establishment of an impeccable myelin sheath. This finding shifts the common 

understanding of remyelination as an axon-protective mechanism towards an active role 

in preserving axon integrity. Remyelination and the direct long-segment contact of the 

oligodendrocyte with the damaged axon might act as a kind of patch which assists the 

axonal regenerative process. Moreover these findings suggest that remyelination may 
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occur randomly without the perfect molecular match between an oligodendrocyte and an 

axon.  

 Besides the animal model of cuprizone-induced de- and remyelination, the 

content of remyelination and axonal damage was also investigated in MS lesions. For 

this, human brain biopsy tissue samples were taken from the archived material at the 

Department of Neuropathology of the University Medical Center Göttingen.  

Myelinated spheroids were also observed in early remyelinating, early active MS 

lesions, which implies probably similar mechanisms of remyelination in MS. However, the 

cuprizone mouse model is a mechanistic model and not disease-related. Hence, the 

detailed investigation in MS lesions may result in another mechanism of remyelination. 

4.2 Ion channel blockage during demyelinating and remyelinating 
processes in the CNS  

4.2.1 Axonal pathology during demyelination and remyelination in mice 
treated with ion channel inhibitors-potentially beneficial? 

APP, as a marker for acute axonal damage, colocalizes often with voltage-gated 

sodium channels and sodium calcium exchanger (Craner et al., 2004a;Craner et al., 

2004b;Herrero-Herranz et al., 2008). Additionally, the distribution of nodal and paranodal 

proteins is modified by demyelination as well as remyelination (Coman et al., 

2006;Craner et al., 2004b;Dupree et al., 2004). It is discussed whether the redistribution 

of nodal and paranodal proteins and the resulting dysregulation of the ion homeostasis 

makes axons more vulnerable (Black et al., 2006;Black et al., 2007;Craner et al., 

2004b;Smith, 2006;Smith, 2007). Furthermore, studies demonstrated an amelioration of 

EAE by the ion channel inhibitors 4-aminopyridine and amiloride (Friese et al., 

2007;Gobel et al., 2013;Vergo et al., 2011). However the inhibition of voltage-gated 

potassium channels with 4-aminopyridine and the acid sensing ion channels with 

amiloride revealed no protective effect on acutely damaged axons during demyelination 

and remyelination in the present study. Furthermore the administration of 4-

aminopyridine preceding remyelination did not show any protective effect on acutely 

damaged axons. For this reason the failure to protect from axonal transport disturbance 

cannot be explained. 

 In general two pathogenic models were proposed for MS: the 'outside-in model' 

and the 'inside-out model' (Witte et al., 2014). In the first model the immune cells from the 

periphery and activated microglia attack myelin and oligodendrocytes, which results in 

axonal damage as a bystander effect and, later on, as a consequence of the loss of 

myelin trophic support. On the other hand inflammatory processes may occur secondarily 

to a primary cytodegenerative process in resident CNS cells (e.g. oligodendrocytes and 
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neurons/ axons) or alterations in the myelin-axon interaction. There is evidence for both 

scenarios in the literature. In both models a mitochondrial dysfunction is proposed to be 

the major reason for axonal damage and degeneration. Pathological alterations of 

mitochondria were detected in EAE and MS (Witte et al., 2014). ROS and RNS produced 

by macrophages and activated microglia were most likely one important reason for 

mitochondrial dysfunction during active lesion formation (Nikic et al., 2011;Witte et al., 

2014). Remarkably, the detoxification of ROS reversed mitochondrial dysfunction and 

rescued axons from axon degeneration in EAE (Nikic et al., 2011;Witte et al., 2014). Most 

axons survived the inflammatory attack in progressive MS cases and became chronically 

demyelinated (Witte et al., 2014). Some of these axons degenerated and showed 

mitochondrial pathology, while over half of the demyelinated axons appeared to be intact 

with uninjured mitochondria. Anyhow these mitochondria exhibited enlarged size and 

respiratory chain enzyme activity (Mahad et al., 2009). Furthermore motile mitochondria 

were reported to be transported with greater speed in retrograde and anterograde 

direction upon demyelination in vitro (Kiryu-Seo et al., 2010). The increased 

mitochondrial content in axons might be adaptive or compensatory mechanism to 

demyelination. Once the energy demand is outreaching the capacity of energy supply by 

mitochondria, the increased mitochondrial content is not enough to protect an axon 

against damage and degeneration (Trapp and Stys, 2009). Especially the redistribution 

and increased expression of voltage-gated sodium channels might be a risk factor for 

demyelinated axons. These channels could result in an increased intracellular Na+ 

concentration, which in turn causes a high energy demand to remove the excess of Na+ 

by the Na+/K+ ATPase from the axon. An insufficient mitochondrial energy supply would 

lead to the reversal of intraaxonal Na+ of the Na+/ Ca2+ exchanger by the excess of 

intraaxonal Na+ and thereby to an increase of the intraaxonal Ca2+ concentration. The 

elevated Ca2+ concentration will eventually trigger deleterious events, which would result 

in further destabilization of the axon accompanied by ROS production and axon 

degeneration (Witte et al., 2014). The recent literature regarding ion channel inhibitors 

investigated in EAE (Friese et al., 2007;Gobel et al., 2013;Vergo et al., 2011) might 

indicate therefore an axon-protective potential of ion channel inhibitors for demyelinated 

axons. However the reports showed controversial results, i.e. it seems that some 

blockers have the capability to reduce the axonal pathology (Friese et al., 2007;Vergo et 

al., 2011), while others only improve the motility of mice with EAE (Gobel et al., 2013). 

The inhibitors analyzed in the present work appeared to have no impact on axonal 

preservation in the cuprizone mouse model. These data suggest that ion channel 

inhibition might not be efficient enough to prevent axonal pathology in every pathological 
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context. Furthermore, the ion channel inhibition did not modify the proportion of 

myelinated damaged axons. 

4.2.2 Increased numbers of microglial cells during remyelination by ion 
channel inhibition, but unaltered reactive astrogliosis 

The number of microglial cells was increased due to ion channel inhibition, 

whereas the number of astrocytes remained unaltered.  

Recently the expression of several ion channels on microglia and astrocytes was 

discovered to be upregulated in MS and EAE (Schattling et al., 2014). The function of the 

ion channels on astrocytes (NaV1.5, P2X7) is speculated to be beneficial for regulating 

ion homeostasis, but awaits further investigation in MS and its animal models. 

Furthermore two ion channels (NaV1.5, N-type Ca2+ α1B subunit) were reported to be 

upregulated in microglia in EAE and MS. The inhibition or the genetic ablation resulted in 

reduced inflammatory infiltrates in EAE accompanied by reduced cytokine production, 

phagocytic activity and cell migration (Schattling et al., 2014). Despite this regulation of 

ion channels in astrocytes and microglia in MS and EAE, it is unknown whether these 

cells are influenced by the ion channel inhibitors 4-aminopyridine and amiloride. The 

increase in the number of activated microglial cells observed points to an effect of the 

inhibitors on these cells. In contrast, the inhibitors seemed to have no effect on 

astrocytes. For this reason further analysis of the effects on these cell types is necessary 

to verify the potential impact of these ion channel inhibitors. 

4.2.3 Demyelination and remyelination in the cuprizone mouse model-
beneficial effects by ion channel inhibition 

The inhibition of voltage-gated potassium channels during remyelination revealed 

an increase in oligodendrocyte cell number. Furthermore, the demyelination was not 

significantly modified by KV channel inhibition.  

It was shown by Bacia et al (Bacia et al., 2004) that 4-aminopyridine decreased 

the number of oligodendrocytes during remyelination. However they used a high dosage 

of cuprizone (0.4%), which might cause a sophistication of the results obtained by a 

higher cuprizone challenge for oligodendrocytes. But in addition to that it is reported that 

oligodendrocytes express several voltage-gated potassium channels (Herrero-Herranz et 

al., 2007;Schmidt et al., 1999;Tiwari-Woodruff et al., 2006). Some channels were shown 

to be important for oligodendrocyte differentiation (Herrero-Herranz et al., 2007;Tiwari-

Woodruff et al., 2006). Interestingly the ion channel KV1.4 was reported to be expressed 

in oligodendrocyte precursor cells and to be absent in the healthy CNS (Herrero-Herranz 

et al., 2007). After induction of EAE the ion channel was re-expressed in proliferating 
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oligodendrocytes, which co-expressed CNPase and were actively remyelinating naked 

axons (Herrero-Herranz et al., 2007). Therefore the increased numbers of OPCs and 

mature oligodendrocytes during remyelination might demonstrate a potential of ion 

channel inhibitors to regulate oligodendrocyte maturation.  

4.2.4 Conclusion 
In the second part of my thesis I evaluated the potential of 4-aminopyridine, a 

potassium channel inhibitor, and amiloride, an acid sensing ion channel inhibitor, to 

reduce the axonal damage and thereby preserving the axonal integrity during 

demyelination and remyelination. The CNS pathology of mice, treated with 4-

aminopyridine or amiloride, was analyzed during cuprizone-induced demyelination and 

during remyelination after diet cessation. There was no evidence of reduction of the 

axonal damage by 4-aminopyridine administration. In contrast, the inhibition of potassium 

channels seemed to enhance microglial activation after remyelination, which may be 

more relevant in other animal models with a higher impact of inflammatory cells. 

Administration of 4-AP during remyelination leads to an increased number of 

oligodendrocytes after two weeks of recovery. Furthermore, demyelination was not 

modified by 4-aminopyridine administration during cuprizone treatment.  

Amiloride administration showed a trend to increase microglial activation, but did 

not alter axonal damage or other pathological parameters.  

In conclusion, these results suggest that neither 4-aminopyridine nor amiloride 

could change the axonal damage in the cuprizone model. However, the increased 

numbers of oligodendrocytes in the corpus callosum of 4-AP-treated mice after 

remyelination point to a protective and regenerative effect. This study provides evidence 

for ion channels as a potential target to promote remyelination.  
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5 SUMMARY AND CONCLUSIONS 
Axonal damage and degeneration are pervasive in the CNS of MS patients and 

cause persisting disabilities. The formation of new nodes of Ranvier is discussed in the 

literature as a potential factor that renders axons more vulnerable to axonal damage and 

degeneration in addition to demyelination, inflammation and oligodendroglial death. One 

mechanism that might contribute to the pronounced vulnerability of axons to axonal 

damage and degeneration during early remyelination is ion channel redistribution and re-

expression in demyelinated axons which develop a new myelin sheath.  

In my thesis I could show in the cuprizone mouse model that early remyelination 

did not render axons more vulnerable to axonal damage. Remarkably, the findings of this 

study implicate that remyelination of demyelinated axons may occur independently of 

functional axonal transport. 

Furthermore, the pharmacologic inhibition of KV channels or ASICs did not modify 

the extent of axonal damage in the cuprizone model. Therefore the redistribution of KV 

channels or the activation of ASICs during remyelination may not play an important role 

in rendering axons more vulnerable to axonal damage. 

In conclusion, my work contributes to the elucidation of the mechanisms that are 

important for axonal preservation and remyelination. Findings in the literature point to a 

distinct expression of proteins in the axonal membrane to achieve successful 

remyelination (Charles et al., 2002). However, the findings of my thesis demonstrate that 

axons with axonal transport disturbances can be remyelinated. Reports on 

oligodendroglial differentiation suggest that a differentiation block of oligodendrocytes 

contributes to impaired remyelination (Kuhlmann et al., 2008). On the basis of these 

findings and those in the literature, one may conclude that remyelination is dependent on 

several factors, one of which is distinct expression patterns of membrane proteins. 

Remyelination may not only restore saltatory conduction, but also actively assists in 

preserving axonal integrity. 
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