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”Nature uses only the longest threads to weave her patterns, so that each small piece
of her fabric reveals the organization of the entire tapestry.”

Richard. P. Feynman
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Abstract

The ability to quantify temporal information on the scale of hundreds of milliseconds is critical
towards the processing of complex sensory and motor patterns. However, the nature of neural
mechanisms for temporal information processing (at this scale) in the brain still remains largely
unknown. Furthermore, given that biological organisms are situated in a dynamic environment,
the processing of time-varying environmental stimuli is intricately related to the generation
of cognitive behaviors, and as such, an important element of learning and memory. In order
to model such temporal processing recurrent neural networks emerge as natural candidates
due to their inherent dynamics and fading memory of advent stimuli. As such, this thesis
investigates recurrent neural network (RNN) models driven by external stimuli as the basis of
time perception and temporal processing in the brain. Such processing lies in the short timescale
that is responsible for the generation of short-term memory-guided behaviors like complex motor
pattern processing and generation, motor prediction, time-delayed responses, and goal-directed
decision making. We present a novel self-adaptive RNN model and verify its ability to generate
such complex temporally dependent behaviors, juxtaposing it critically with current state of the
art non-adaptive or static RNN models.

Taking into consideration the brain’s ability to undergo changes at structural and functional
levels across a wide range of time spans, in this thesis, we make the primary hypothesis, that a
combination of neuronal plasticity and homeostatic mechanisms in conjunction with the innate
recurrent loops in the underlying neural circuitry gives rise to such temporally-guided actions.
Furthermore, unlike most previous studies of spatio-temporal processing in the brain, here we
follow a closed-loop approach. Such that, there is a tight coupling between the neural computa-
tions and the resultant behaviors, demonstrated on artificial robotic agents as the embodied self
of a biological organism. In the first part of the thesis, using a RNN model of rate-coded neurons
starting with random initialization of synaptic connections, we propose a learning rule based on
local active information storage (LAIS). This is measured at each spatiotemporal location of the
network, and used to adapt the individual neuronal decay rates or time constants with respect to
the incoming stimuli. This allows an adaptive timescale of the network according to changes in
timescales of inputs. We combine this, with a mathematically derived, generalized mutual infor-
mation driven intrinsic plasticity mechanism that can tune the non-linearity of network neurons.
This enables the network to maintain homeostasis as well as, maximize the flow of information
from input stimuli to neuronal outputs. These unsupervised local adaptations are then combined
with supervised synaptic plasticity in order to tune the otherwise fixed synaptic connections,
in a task dependent manner. The resultant plastic network, significantly outperforms previous
static models for complex temporal processing tasks in non-linear computing power, temporal
memory capacity, noise robustness as well as tuning towards near-critical dynamics. These are
displayed using a number of benchmark tests, delayed memory guided responses with a robotic
agent in real environment and complex motor pattern generation tasks. Furthermore, we also
demonstrate the ability of our adaptive network to generate clock like behaviors underlying
time perception in the brain. The model output matches the linear relationship of variance and
squared time interval as observed from experimental studies.
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In the second part of the thesis, we first demonstrate the application of our model on behav-
iorally relevant motor prediction tasks with a walking robot, implementing distributed internal
forward models using our adaptive network. Following this, we extend the previous super-
vised learning scheme, by implementing reward-based learning following the temporal-difference
paradigm, in order to adapt the synaptic connections in our network. The neuronal correlates
of this formulation is discussed from the point of view of the cortico-striatal circuitry, and a new
combined learning rule is presented. This leads to novel results demonstrating how the striatal
circuitry works in combination with the cerebellar circuitry in the brain, that lead to robust
goal-directed behaviors. Thus, we demonstrate the application of our adaptive network model
on the entire spectrum of temporal information processing, in the timescale of few hundred
milliseconds (complex motor processing) to minutes (delayed memory and decision making).
Overall, the results obtained in this thesis affirms our primary hypothesis that plasticity and
adaptation in recurrent networks allow complex temporal information processing, which other-
wise cannot be obtained with purely static networks. Furthermore, homeostatic plasticity and
neuronal timescale adaptations could be potential mechanisms by which the brain performs such
processing with remarkable ease.
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CHAPTER1
Introduction

”How can a three-pound mass of jelly that you can hold in your palm imagine angels,
contemplate the meaning of infinity, and even question its own place in the cosmos?
Especially awe inspiring is the fact that any single brain, including yours, is made up
of atoms that were forged in the hearts of countless, far-flung stars billions of years
ago. These particles drifted for eons and light-years until gravity and change brought
them together here, now. These atoms now form a conglomerate- your brain- that
can not only ponder the very stars that gave it birth but can also think about its
own ability to think and wonder about its own ability to wonder. With the arrival
of humans, it has been said, the universe has suddenly become conscious of itself.
This, truly, is the greatest mystery of all.”

Vilanayur. S. Ramachandran, The Tell-Tale Brain

Understanding the underlying mechanisms of learning and memory emerging from a complex
dynamical system like the biological brain and building intelligent systems inspired by such
mechanisms, serves as one of the greatest pursuits of modern scientific research. The ability
to learn and cognition are not merely the products of isolated neurons, but the properties that
emerge from the underlying dynamics of a complex network of neurons in the brain. Despite
considerable progress in neuroscience, computational sciences, and artificial intelligence, our
understanding of such processes in the brain or emulation of biological like intelligence remains
vastly constrained. The constantly changing nature of the environment we live in has resulted
in exquisite evolutionary manipulation of the nervous system, leading to the ability to process
and generate challenging spatial and temporal information. Imagine a scenario, where you are
driving down the highway and someone tells you, ’take the left turn at the next junction’. To
solve this seemingly simple statement the brain needs to perform a complex set of computations,
within inherent dependence on the temporal aspects of the statement and any subsequent events.
Not only you need to understand the meaning of the sentence and words such as, ’take’ and
’turn’, but also be able to hold this information temporarily till you reach the next junction and
can perform the corresponding behavior of turning ’left’. Such temporary storage of available
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1 Introduction

stimuli for the purpose of information processing, is referred to as working memory or temporal
memory.

As such, it is obvious that timing and memory are intricately related in the brain. This is inherent
in the brains ability to perform complex temporal information processing tasks like speech
processing, motor processing, music perception, decision making for goal-oriented behaviors,
working memory storage and processing, etc. Given that the brain is not static, but a highly
adaptive1 system, which processes can enable the initiation and execution of such temporal
memory guided behaviors from neural activity ? We make the hypothesis that a combination of
neural plasticity, homeostatic and adaptation mechanisms coupled with the presence of feedback
loops (recurrency) in the neural circuitry give rise to such actions. Based on this hypothesis,
the main focus of this thesis is to answer the question: How can we model such adaptation
for brain like temporal information processing that in turn lead to memory-guided behaviors ?.
The primary objective being not only to create a computational model of neural circuitry with
inherent storage and processing of time varying stimuli, but also to use the same model to
generate robust sensory-motor outputs and short-term memory guided behaviors in artificial
intelligent systems.

inputs

distributed computations

behaviors

       temporal stimuli

time

complex sensory-motor
output

environment

time

internal feed-back loops

neural networks in brain

external feed-back loops

Figure 1.1: Closed-loop approach to temporal information processing A constant barrage of time
varying stimuli perturb the resting state of the brain leading to non-trivial, non-linear, and
highly distributed computations in neuronal networks in the brain. Such computations also
occur over a wide distribution of timescales. With learning and adaptation, cognitive be-
haviors and complex sensory motor outputs, requiring robust processing of the temporal
information, can be obtained. Such behaviors typically lead to changes in the environmental
conditions, which in turn change the incoming stimuli to the brain networks, thus closing the
input-output loop.

Given that, biological organisms as well as any artificial agents2 are not isolated entities, but
reside in an external (outside the agent) environment; their behaviors lead to changes in environ-

1Adaptive here refers to the brains ability to change at a structural or functional level across a range of time
spans.

2Agent here refers to any artificial system, like a robot akin to some living being.
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1.1 Timescales in the Brain

mental conditions, which in turn leads to changes in the temporal stream of sensory information
that the brain receives. As such it is imperative that while modeling such information processing,
we consider a closed loop approach (see Fig. 1.1). Therefore, in this thesis, unlike most modeling
studies of spatio-temporal processing in the brain, we consider closed loop systems with a tight
coupling between brain-like network level computations and the relevant behaviors that can be
generated by such computations. We pragmatically demonstrate that by the consideration of
novel adaptive and plastic mechanisms, in recurrent networks (abstraction of cortical networks)
it is indeed possible to perform complex temporal information processing, that considerably
outperforms non-plastic networks. Furthermore, the same principles lead to robust temporal
memory guided behaviors (like motor pattern predictions and generation, goal-directed decision
making, delayed responses etc.). As such, this thesis makes novel contributions to the intersec-
tions of all three fields of neuroscience, computational sciences (machine learning) and artificial
intelligence (robotics).

In the following sections, we will now introduce in greater detail as well as provide the neces-
sary background to the various aspects of brain like temporal information processing and the
considerations made in this thesis towards it. Finally in the last section we provide an outline
with brief overview of the various chapters in the thesis.

1.1 Timescales in the Brain

In nature, animals are capable of efficiently encoding space and time required for the learning
and structuring of motor and cognitive actions. Specifically the mammalian brain processes
temporal information over time scales spanning 10 orders of magnitude: from the few microsec-
onds used for sound localization, to daily, monthly and yearly rhythms to sleep-wake, menstrual
and seasonal cycles (Buonomano et al., 2009). In between, on the scale of milliseconds to few
minutes, complex forms of sensory-motor processing leading to behaviors like speech recognition,
motor coordination, motor prediction, and decision making for goal-directed learning, takes place
(Ivry and Spencer, 2004),(Mauk and Buonomano, 2004),(Buhusi and Meck, 2005), (Buonomano,
2007). As such, we focus on this timescale of information processing and behaviors. Within this
timescale, a number of different brain areas have been implicated as the key machinery behind
the neural representation of time (Maniadakis et al., 2014). Among these, some of the most
relevant are cerebellar event timing (Ivry and Spencer, 2004); generalized magnitude processing
for time, space, and number in the right posterior parietal cortex (Bueti and Walsh, 2009),
(Oliveri et al., 2008); time integration for working memory in right prefrontal cortex (Lewis and
Miall, 2006),(Smith et al., 2003); coincidence detection in the fronto-striatal circuitry (Hinton
and Meck, 2004) and time cells in the hippocampus computing the relation of time and distance
(Kraus et al., 2013).

Such a wide spread participation of different brain regions for temporal information processing
clearly advocates the key role of temporal perception in the brain as well as the intricate re-
lationship of the different timescales that constitute the various cognitive aspects like decision
making, planing, action selection, memory and recall (Rao et al., 2001),(Taatgen et al., 2007).

3



1 Introduction

On a functional level, it is known that neuronal systems can adapt to the statistics of the envi-
ronment over these wide range of timescales (learning, memory and plasticity) (Tetzlaff et al.,
2012b), but the mechanisms for doing so are still largely unknown. Therefore, there seems to be
an essential relationship between processing of temporal information and how the brain deals
with the various timescales and generate relevant behaviors. In Fig. 1.2 we provide a succinct,
schematic overview of the different timescales of temporal perception in the brain and their
relationship to observed physiological processes, memory, behaviors and learning paradigms. In
this thesis we will primarily focus on the timescale of milliseconds to a few minutes and the
behaviors, memory and processes corresponding to this scale.

-610 -510 -410 -310 310 410 510 6100.01 0.1    1    10    100

1 ms 1 s 1 min 1 hr 1 d years
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Figure 1.2: Timescales in the brain and their relations to various brain processes, memory,
learning and behavior Animals can process temporal information over a wide range of
timescales. Each timescale from microseconds to days accounts also for sophisticated behav-
iors and their inherently related memory processes and learning paradigms. Specifically in
the range of few hundred milliseconds to few minutes is where the most complex temporal
information processing occurs, which is needed for non-trivial sensory-motor processing, pre-
diction, planning, as well as decision making purposes. Modified and extended from (Tetzlaff
et al., 2012a)

1.2 Short-term Memory Guided Behaviors

Complex behaviors like memory guidance (also called delayed responses) and goal directed action
planning involving temporal memory (short-term storage in the timescale of milliseconds to
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1.2 Short-term Memory Guided Behaviors

minutes) and learning can be observed not only in higher order mammals but also in insects.
For instance, cockroaches use their cercal filiform hairs (wind sensitive hairs) to elicit so called
”wind-evoked escape behavior” (Beer and Ritzmann, 1993); i.e., they turn and then run away
from a wind puff to their cerci generated by a lunging predator. This action perseveres slightly
longer than the stimulus itself. Once the action has been activated, it will be performed even if
the activating stimulus is removed to ensure safely escaping from the attack. Thus, this action
reflects not only a reactive response but also a simple memory-guided behavior (transiently
active internal drive) (Arkin, 1998). More complex examples can be found in mammals such
as the one observed in the behavior of cats (McVea and Pearson, 2006). They use temporal
memory of visual inputs in order to drive their front legs at the appropriate time to step over
or around obstacles in their path at a time the obstacle is already invisible. There is also
a unique form of predictive memory to guide the hind legs over obstacles that have already
been stepped over by the forelegs. This can also be regarded as some form of predictive or
forward modeling behavior (Kawato, 1999) which is a crucial aspect of temporal information
processing. This type of processing can also be seen to occur even in invertebrates, allowing
them to climb over large gaps almost twice the size of their body lengths (Blaesing and Cruse,
2004). Other sophisticated navigation and foraging studies with rodents have shown that they
not only use spatial memory with reward learning, to navigate mazes and find food (Tolman,
1932),(Tolman and Honzik, 1930), (Olton and Samuelson, 1976), but they can also develop
temporally structured behaviors, demonstrating some form of temporal memory to discriminate
between long and short time intervals (Gouvea et al., 2014).

As depicted in Fig. 1.2 such short-term memory guided behaviors are intricately related to
the brains ability to process time or time varying patterns of activity. Furthermore, in order
to understand such temporal processing, it is important to put it in a closed-loop perspective
(Fig. 1.1). As such, in this thesis we use network models with inherent time processing that
can lead to similar temporal memory guided behaviors, as evaluated on artificial agents as
abstractions of their biological counterparts (Arkin, 1998). Given that learning and memory
is ultimately a consequence of a highly plastic brain (Dudai, 2004),(Martin et al., 2000), it is
obvious that it should play a key role in the underlying temporal information processing. In the
next section, we broadly explore the various facets of neuronal plasticity and put it in perspective
of this thesis.
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1 Introduction

1.3 The Plastic Adaptive Brain

”The labor of a pianist [. . .] is inaccessible for the uneducated man as the acqui-
sition of new skill requires many years of mental and physical practice. In order to
fully understand this complex phenomenon it becomes necessary to admit, in addi-
tion to the reinforcement of pre-established organic pathways, the formation of new
pathways through ramification and progressive growth of the dendritic arborization
and the nervous terminals.”

Textura del Sistema Nervioso, Santiago R. Cajal (1904)

The inherently malleable and constantly adaptive nature of the nervous system was clearly
noted by Cajal (1904) when he predicted that with the acquisition of new skills the brain
changes via rapid reinforcements of pre-established organic pathways, which in turn lead to the
formation of new pathways (Pascual-Leone et al., 2005). Although Cajal specifically mentioned
neural pathways (synapses), recent experimental and theoretical studies have confirmed that
nearly every brain region demonstrates such remarkable and flexible reorganization. Widespread
structural and functional alterations occur by processes of modulation of strength of synaptic
connections between neurons (Abbott and Nelson, 2000), addition and deletion of connections
(Holtmaat and Svoboda, 2009), changes in the intrinsic excitability of single neurons (Zhang
and Linden, 2003), as well as, balancing homeostatic adaptation processes (Turrigiano and
Nelson, 2004). Furthermore, the seminal studies of Merzenich and Kaas (Merzenich et al.,
1983), (Merzenich et al., 1984) demonstrated that topographic reorganizations of cortical maps
can be realized in an experience-dependent manner through neural plasticity, thus, highlighting
the central role of brain plasticity in a lifelong learning process. Specifically, at the behavioral
level, such adaptive mechanisms in the brain provides it with the crucial ability to learn and
deal with environmental changes, capture and retain specific memories, process information
critical for speech and motor functionality, etc. In general, neural plasticity can be divided
into two broad types, namely (i) synaptic plasticity and (ii) homeostatic plasticity. As the
main motivation behind this thesis is not to understand the biophysical machinery behind such
plasticity mechanisms, but to use them as biological inspiration to adapt network models in
order to deal with time varying stimuli and the processing of temporal information; in the next
two subsections we briefly introduce the basic ideas of these two types of plasticity in the brain.

1.3.1 Synaptic Plasticity

Synaptic plasticity can be defined in simple terms as the process of strengthening or weakening
of synapses connecting different neurons, facilitating the transmission of electro-chemical signals
(Citri and Malenka, 2007). Specifically, it refers to the activity-dependent modification of the
strength or efficacy of synaptic transmission at pre-existing synapses, caused by the changes
in the amount of neurotransmitter molecules at the synapse, or by the fluctuation in conduc-
tion of post-synaptic receptors. Synaptic plasticity is thought to play key roles in the early
development of neural circuitry (termed as cell assemblies) (Hebb, 1949), (Dudai, 2004) and
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“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells 
such that A’s effeciency, as one of the cells firing B, is increased.”

                                                                           
D. O. Hebb, 1949

Figure 1.3: Hebb’s postulate and synaptic plasticity Schematic rendering of two biological neurons,
showing a synaptic connection.

experimental evidence suggests that impairments in synaptic plasticity mechanisms contribute
to several prominent neuropsychiatric disorders (Lau and Zukin, 2007). The encoding of exter-
nal and internal events as complex, spatio-temporal patterns of activity within large ensembles
of neurons is directly influenced by this type of plasticity of the pattern of synaptic weights
that connect individual neurons comprising such ensembles or neuronal circuits. This forms the
direct basis for the plasticity and memory hypothesis (Martin et al., 2000), (Martin and Morris,
2002), suggesting that activity-dependent changes in the strength of connections between neu-
rons plays the key role towards the mechanism by which new information is stored or memory
traces are encoded in the central nervous system.

The simplest theoretical foundations of such an idea was postulated by Donald Hebb, as early
as 1940, where in he proposed that associative memories are formed in the brain by a process
of synaptic modification that strengthens connections when presynaptic activity correlates with
postsynaptic firing (Hebb, 1949) (Fig. 1.3). This has been popularly termed as Hebbian plasticity
i.e. ’cells that fire together, wire together ’ (Carla Shatz, 1992). The first experimental validation
of Hebbian type of plasticity (showing an increase in synaptic efficacy) came from Bliss and Lomo
in 1973 (Bliss and Lomo, 1973), with the report of the phenomenon of long-term potentiation
(LTP). Subsequently in the year 1977, Lynch et al. (Lynch et al., 1977) found a reduction in
synaptic efficacy called long-term depression (LTD). Later it was also noted that both LTP and
LTD could be observed at the same synapse (Dudek and Bear, 1992). Unlike the basic Hebbian
formulation of correlations between neuron firing activity, an influence of temporal signal order
on plasticity was proposed by (Gerstner et al., 1996) and then experimentally validated by the
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Plasticity Rule Mathematical representation Learning Paradigm
Generalized Hebbian rule∗ ω̇ij = ηxixj Unsupervised Learning

Oja’s rule? ω̇ij = η(xixj − αx2
iωij) Unsupervised Learning

BCM rule? ω̇ij = η(xixj(xi − θi), Unsupervised Learning
θ̇i = τθ(x2

i − θi).

Gradient-descent rule
ω̇i = ηexi, Supervised Learning
e = d− y
y = φ(x, ω)

Reward-modulated Hebbian† ω̇i(t) = η
(
xi(t)ξi(t)

[
R(t)−

〈
R(t)

〉
t

])
Reinforcement Learning

Table 1.1: Simplified summary of Hebbian type rate-based synaptic plasticity rules and the
related learning paradigm Depending on the type of learning paradigm used, there can
be various formulations of the basic Hebb rule based on correlations between pre- and post-
synaptic neuron activity. ωij synaptic weight between neuron j and i; xi firing rate of neuron i;
t timestep; η � 1 learning rate ; θi threshold on post-synaptic activity; α positive constant; τ
timescale parameter; e learning error; d supervised desired output; y Output activity of neuron;
φ non-linear activation function; ξi(t) exploration signal; R(t) reward signal;

〈
.
〉
t

Mean activity
in time; ∗ the basic Hebbian plasticity rule is unstable in nature (unbounded growth due to
positive correlations); ? Oja’s and BCM rule are stable formulations of the standard Hebbian
rule. † the reward-modulated Hebbian learning rule has been adapted from (Legenstein et al.,
2010) and is a generic representation for reinforcement based learning. Various modifications
based on the temporal-difference error learning are also possible (Sutton, 1988),(O’Doherty
et al., 2003)
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findings of (Markram et al., 1997), (Magee and Johnston, 1997), (Levy and Steward, 1983),
(Bi and Poo, 1998). As such this type of plasticity has been termed as spike-timing dependent
plasticity (STDP).

In this thesis, we model synaptic plasticity based on the correlations between the firing rate
of the pre- and post-synaptic activity of the neuron, following the spirit of the basic Hebbian
conjecture without delving deep into molecular or biophysical details (Dayan and Abbott, 2003).
Furthermore depending on the type of learning paradigm, specific modifications of the original
Hebbian learning rule will be used (see Tab. 1.1). We will primarily consider supervised and
reinforcement learning in this thesis.

1.3.2 Homeostatic Plasticity

The word homeostasis or homeostatic stems from the Greek word homeo meaning ’unchanging’
and is a generic concept guaranteeing the ability of a system to reach the same internal state as
prior to the application of an external perturbation. In neuronal systems homeostatic plasticity
refers to the capacity of neurons and synapses to regulate their own excitability relative to the
network activity, usually in response to an imbalance or external disturbances. It can be seen
to balance the inherently unstable nature of purely Hebbian plasticity (correlations of pre- and
post-synaptic activity) by modulating the activity of the synapse (Davis, 2006) or the properties
of voltage-gated ion channels (Zhang and Linden, 2003). This regulates the total synaptic drive
to a neuron and/or maintain the long-term average firing rate of a neuron at a critical level and
therefore allows the stable operation of neuronal networks.

The two principle types of homeostatic mechanisms are namely synaptic scaling (SC) (Fig. 1.4
(a)) and intrinsic plasticity (IP)(see Fig. 1.4 (b)). SC is a mechanism that regulates the total
synaptic drive received by a neuron while maintaining the relative strength of synapses estab-
lished during learning (Turrigiano et al., 1998), (Turrigiano and Nelson, 2004). It has been found
in several brain areas including the neocortex (Turrigiano et al., 1998), Hippocampus (Burrone
et al., 2002) as well as at inhibitory synapses (Kilman et al., 2002). IP, on the other hand,
is a homeostatic mechanism leading to the persistent modification of a neuron’s excitability,
mediated by the properties of ion channels in the neuron’s membrane. It was noted that such
intrinsic changes in a neuron’s electrical properties, might function as part of the engram itself,
or as a related phenomenon such as a trigger for the consolidation or adaptive generalization of
memories (Zhang and Linden, 2003). Changes in neuronal excitability via IP lead to different
outputs for the same synaptic drive. Furthermore it was experimentally observed that IP tends
to reduce the intrinsic excitability of a neuron during long periods of stimulation and increase
excitability during activity deprivation (Desai et al., 1999), (Zhang and Linden, 2003), (van
Welie et al., 2004) (Fig. 1.5 (a) and (b)).

In our network models, we primarily consider intrinsic plasticity at single neurons level and see
its influence on homeostatic regulation as well as learning. Evidence that IP accompanies, and
may help mediate, learning has been obtained in both invertebrates (Drosophilia - (Daoudal and
Debanne, 2003), Aplysia - (Brembs et al., 2002) etc.) and mammals (Oh et al., 2003), (Saar
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Figure 1.4: Schematic representation of homeostatic mechanisms (a) Synaptic scaling : By scaling
the strength of all the neurons inputs up or down, the neuron’s property can be shifted up or
down its firing rate curve. This determines how fast the neuron fires for a given amount of
synaptic drive (b) Intrinsic plasticity: The regulation of intrinsic neuronal conductance can
modify the input/output curve of the neuron by shifting it left (fires more for a given synaptic
drive) or right (fires less). It can also lead to modifications of the slope of the curve leading
to different levels of non-linearity.

et al., 1998), (Brons and Woody, 1980), specially with associative conditioning experiments
(more details in (Zhang and Linden, 2003)). Furthermore along with its role in homeostasis, IP
has been implicated directly in the formation of memory engrams (Gandhi and Matzel, 2000).
From an information transmission perspective (Fig. 1.5 (c) and (d)), IP can be seen to allow a
neuron to exploit its full dynamic range of firing rates when coding for a given set of inputs and
achieving exponential firing rate distributions in cortical neurons (Stemmler and Koch, 1999).
It was also linked to information maximization and energy efficient coding at a single neuron
level (Vincent et al., 2005).

In this thesis, we model IP based on the same principles of information maximization (Triesch,
2007) for a recurrent network model which has shown to induce robust homeostatic effects on
network dynamics (Steil, 2007), (Schrauwen et al., 2008), as well as increased performance for in-
formation processing and memory (Verstraeten et al., 2007), (Dasgupta et al., 2012), (Dasgupta
et al., 2013a). Inspired by these approaches, in this thesis we take such an information-centric
view of IP, such that neurons are enabled to maximize information transfer between its input
and output, as well as matching the statistics of some optimal output distribution by modulating
their activation functions in an input-dependent manner (Fig. 1.5 (d)).
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(a)

(b)

(c)

(d)

Figure 1.5: Intrinsic plasticity (a)-(b) chronic activity blockade resulted in an increase in the firing
frequency and decrease of the spike threshold of pyramidal neurons. (a) Sample spike trains
evoked by a somatic current injection in neurons grown under control and activity deprived
conditions. (b) Initial instantaneous firing rate versus amplitude of current injection for
control and activity-deprived neurons. Changes in the intrinsic properties of the neuron result
in change in shape of the firing rate curve as a result of activity deprivation. Adapted from
(Desai et al., 1999). (c) An information centric view of IP holds that the intrinsic properties
of a neuron are tuned to produce the best match with whatever synaptic input it receives,
i.e. to maximize the mutual information between it’s input and output. This also directly
relates to the idea of information maximization (d) Learning an optimal firing rate response
curve assuming a mean firing rate of 30 Hz (model neuron in (Stemmler and Koch, 1999)).
Given an Gaussian input distribution, IP allows neurons to adjust their firing rate responses
in order to learn an optimal exponential output distribution. Adapted from (Stemmler and
Koch, 1999)).

1.4 Network Models: Temporal Information Processing with
Recurrent Neural Networks

In the previous section we broadly discussed plasticity in biological brains which forms the
basis of learning in living organisms. However the question of how do we model such learning?
still remains unclear. In order to answer this question, we take a connectionists approach.
Whereby we model the actual behavioral phenomenon as the emergent process or learning
outcome of the dynamics of interconnected networks of simple units (artificial neurons). This
type of network models have been termed as artificial neural networks where in, the fundamental
computational unit of such networks although called neurons, they only very broadly resemble
their biological counterparts. Here we typically consider artificial rate-coded neurons which
compute their output as a non-linear transformation (activation function) of the sum of weighted
inputs (incoming synaptic connections) it receives (Fig. 1.6 (a)).
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Figure 1.6: Pictorial representation of neural network models (a) An artificial rate coded neuron.
The output is calculated as a non-linear transformation (based on activation function φ) of the
weighted (synaptic strengths) sum of incoming inputs. (b) A typical (fully-connected) feed-
forward network as a directed acyclic graph. Due to the one directional flow of information,
typically there is limited fading memory of input stimuli and no internal memory of past
activity (c) A fully connected recurrent neural network. Due to feed-back loops in the networks
activity reverberates inside with a cyclic flow of information. This results in a broader fading
memory of inputs as well as inherent memory of previous networks states.

There are two broad classes of neural networks that have been used in the past for handling
time-varing input signals and solving specific temporal problems. These are namely feed-forward
networks (Fig. 1.6 (b)) and recurrent networks (Fig. 1.6 (c)). Due to the lack of reverberating
activity and a one directional flow of information in feed-forward networks, they have mostly
been used to process non-temporal problems. Only in some cases, specific adaptations allowed
feed-forward networks to incorporate in their structure an explicit representation of time (Elman
and Zipser, 1988). However such explicit representation is computationally expensive as well as
biologically unrealistic (Elman, 1990). Recurrent neural networks (RNN) on the other hand form
the natural candidates for temporal information processing, due to their inherently dynamic
nature and the existence of directed cycles inside the network, which allows reverberation of
activity. As such, throughout this thesis we will concentrate on this type of neural network
model. The first studies of RNNs started with the seminal works of Hopfield in 1982 and
1984 (Hopfield, 1982), (Hopfield, 1984), although Wilson and Cowan (Wilson and Cowan, 1972)
originally developed the recurrent network in a biological context, a few years earlier. Using a
RNN with a restricted topology of symmetric synapses, Hopfield demonstrated how to embed a
large number of stable attractors into the network by setting the strengths of synapses to specific
values. Trained with Hebbian plasticity this type of network could display auto-associative
memory properties. However it did not consider time-varying input stimuli to drive the network,
and it had very limited applicability to temporal problems. Despite the natural ability of RNNs
to encode time, a universal computing ability and the subsequent development of a number of
learning algorithms like Real-Time Recurrent Learning (Williams and Zipser, 1989), and Back-
Propagation Through Time (Rumelhart et al., 1988), (Werbos, 1990), their usage on complex
temporal problems remained restricted for a long period of time. This was largely due to the
difficulty in training (Bengio et al., 1994) these networks. Furthermore, although the short-term
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storage of information is critical towards the ability of the brain (or a recurrent network model)
to perform cognitive tasks like planning and decision making (Ganguli et al., 2008), previous
models considered that the neural substrate for such memory arose from persistent patterns
of neural activity, that were stabilized through reverberating positive feedback in the RNNs
(Mongillo et al., 2008), (Seung, 1996) or at the single cell (Loewenstein and Sompolinsky, 2003).
However, such simple attractor mechanisms are inherently incapable of remembering sequences
of past temporal inputs.

1.4.1 Reservoir Computing: Computing with Trajectories

Over the last decade, an alternative idea has tried to circumvent the training problem as well
as the temporal memory issue, by suggesting that an arbitrary recurrent network could store
information about recent input sequences in its transient dynamics, even if the network does
not formally possess information-bearing stable attractor states. This was simultaneously in-
troduced, both from a neurobiological perspective - Liquid state machines (Maass et al., 2002)
and a machine learning perspective - Echo state networks (Jaeger, 2001a), (Jaeger and Haas,
2004). In this setup, a randomly structured RNN is used as a high dimensional projection
space (‘reservoir’) that transforms any time varying input signal into a spatial representation.
Learning occurs only at the level of downstream readout networks, which can be trained to
instantaneously extract relevant functions of past inputs from the reservoir, in order to guide
future actions and solve spatio-temporal tasks. This type of RNN has been popularly termed
as ’Reservoir Computing’ (RC) (Lukoševičius and Jaeger, 2009). The basic idea of computation
in a RC is analogous to the surface of a liquid. Even though this surface has no attractors,
save the trivial one in which it is flat, transient ripples on the surface can nevertheless encode
information about past objects that were thrown in (Ganguli et al., 2008). This provides the
inherent property of fading memory (Jaeger, 2001b), (Boyd and Chua, 1985) crucial for tem-
poral information processing. At each time point, the reservoir network combines the incoming
stimuli with a volley of recurrent signals containing a memory trace of recent inputs.

In general, for a network with N neurons, the resulting activation vector at any discrete time t,
could be regarded as a point in a N-dimensional space or manifold. Over time, these points form
an unique pathway (in an input or context-dependent manner) through this high-dimensional
state space, also referred to as a ”neural trajectory”. The readout layer can then be trained,
using supervised learning techniques, to map different parts of this state space to some desired
outputs. As a result, this same concept has also been referred to as transient dynamics (Rabi-
novich et al., 2008) or computing with trajectories (Buonomano and Maass, 2009). This idea of
computing with neural trajectories is further exciting considering that, although there is some
evidence that in higher-order cortical areas simple fixed-point attractors play a part in working
memory (Goldman-Rakic, 1995),(Wang, 2001), few data suggest that they contribute to the
pattern recognition of complex time-varying stimuli. Thus, it is possible that in early cortical
areas discrimination of temporal signals could be extracted from such high dimensional neural
trajectories.
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Although this type of RNN is an abstract model in general, it shares a number of essential
similarities with biological neural circuits (Sussillo, 2014). A typical RC (Fig. 1.7) has the
following properties:

• There are a large number of non-linear units (neurons) interconnected inside the recurrent
layer.

• Strong feedback connections exist between the neurons. The non-linear activation func-
tions, coupled with strong feedbacks and a high dimensional state space often lead to
non-trivial dynamics.

• Fading memory. The system dynamics inherently contain information about the past of
the input stimuli.

• The individual units works together in parallel, and in a distributed manner to implement
complex computations.

Theoretically using the Stone-Weierstrass theorem (Stone, 1948), it can be proven that such
liquid or reservoir computing networks can behave like universal function approximators (Maass
et al., 2004), and can approximate any dynamical system under fairly mild and general assump-
tions (Funahashi and Nakamura, 1993). This coupled with its ability to inherently represent time
(Buonomano and Maass, 2009), makes such RNNs a suitable candidate for modeling of complex
spatio-temporal tasks. They can display arbitrarily complex dynamics, including regular stable
dynamics (Fig. 1.7 (c)), limit cycles (Fig. 1.7 (d)), as well as chaos (Fig. 1.7 (e)). Reservoir
networks have been previously successfully applied for chaotic time-series prediction and signal
correction (Jaeger and Haas, 2004), (Wyffels et al., 2008), (Wyffels and Schrauwen, 2010); speech
recognition (Triefenbach et al., 2010); robot learning (Hartland and Bredeche, 2007), (Kuwabara
et al., 2012); epileptic seizure detection (Buteneers et al., 2009), brain-machine interface appli-
cations (Sussillo et al., 2012) etc. Despite the apparent success in machine learning applications,
the application of reservoir networks to more complex temporal-processing tasks has been lim-
ited due to the large number of free parameters in the network, limited robustness to noise in
reservoir activity, effect of different non-linearities activation functions on the temporal memory
capacity, as well as a largely non-plastic, non-adaptive recurrent layer. Specifically, just simply
creating a reservoir at random is greatly unsatisfactory.

Although it seems obvious that, when addressing specific modeling tasks, a specific reservoir
design that is adapted to the task will lead to better results than a naive random creation,
adaptation in RC has been a difficult problem. Most studies of adaptation in reservoir networks
in order to deal with these problems has been restricted to evolutionary learning strategies
(Bush and Anderson, 2005), (Jiang et al., 2008), costly gradient decent methods (Jaeger et al.,
2007), specific topologies for recurrent layer (Jarvis et al., 2010), (Xue et al., 2007), or mostly by
careful empirical evaluations or manual design (Lukoševičius and Jaeger, 2009). In 2009, Sussillo
and Abbott (Sussillo and Abbott, 2009) introduced the ’FORCE’ learning algorithm which
allowed a generic reservoir network working in the chaotic domain to be trained for complex
time-series modeling tasks. In further extensions, they showed that using feedback from the
readout layer, it was possible to learn both recurrent as well as recurrent-to-readout weights
(Sussillo and Abbott, 2012). Although this allowed for some level of plasticity in the network,
no significant gain in performance was observed. More recently, Laje and Buonomano (Laje
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Figure 1.7: Reservoir Computing Recurrent Neural Network (a) A high dimensional recurrent
circuit as a dynamic, distributed computing framework. Incoming time varying input stimuli
project to the reservoir and influence the ongoing dynamics. The readout layer consists of
neurons which compute a weighted sum of network firing rates. Synaptic connections inside
the reservoir network and reservoir to readout connections can be optimized using supervised
error signals. (b) Reservoir neurons typically have saturating non-linear activation functions
allowing complex computation. (c) Subset of reservoir neuron activity showing stable regular
dynamics (d) period oscillatory dynamics and (e) irregular chaotic dynamics of reservoir
neurons. Different types of dynamics can exist inside the reservoir network, depending on the
type of optimization and strength of connections. Re-plotted based on Sussillo (2014).

and Buonomano, 2013) were able to achieve coexisting stable and chaotic trajectories in a rate-
based RNN model (Sussillo and Abbott, 2009) when the recurrent connections were tuned using a
supervised plasticity rule, called ’innate’ learning. Using the concept of dynamic attractors, they
demonstrated the ability of the network to deal with perturbations or noise. However, the model
still remains strictly computational with limited application to complex spatio-temporal tasks
(similar to the machine learning problems tested with non-adaptive reservoirs) or generating
memory-guided cognitive behaviors.

From the perspective of information processing in the brain, extension of RNNs with the prin-
ciples of self-organization is crucial as it constitutes the basic computational units in the cortex
(Douglas and Martin, 2004). As such it is imperative to understand the interaction of different
plasticity mechanisms in the brain and how they can lead to self-organization of recurrent net-
work models, as well as improve the performance of non-adaptive, static reservoir networks. In
the computational neuroscience community, only few attempts have been made in this direction
in a successful manner (Lazar et al., 2007), (Lazar et al., 2009), (Toutounji and Pipa, 2014)
showing a self-organized network via the interaction of plasticity and homeostatic mechanisms.
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However they have typically considered simplified binary neuron models with specific K-winner
take all network topology, as well as restricted the computation of the reservoir network as linear
classifiers without the requirements for cognitively relevant temporal processing. As such, there
exists a large gap between the results obtained from the computational neuroscience approaches
to RNN modeling as compared to the previously discussed machine learning based approaches
or models. In this thesis, we primarily bridge this gap by introducing novel homeostatic mecha-
nisms and adaptation of the RNN in an information-centric manner, which when coupled with
synaptic plasticity can not only achieve a biologically plausible, temporal information processing
model, but also provide superior performance in cognitively based spatio-temporal behaviors as
compared to the state of the art with non-plastic networks.

1.5 Outline of the Thesis

In the previous sections we provided an overview of the main hypothesis and goal of this thesis,
along with a generic review of some of the essential background of this study. We now very
briefly describe the contents of each chapter. This thesis, is organized in the following manner:

1. Chapter 2: Introduces the input-driven recurrent neural networks (reservoir networks) as
non-autonomous dynamical systems and proves that such reservoir networks can approx-
imate finite time trajectories of any arbitrary time-invariant non-autonomous dynamical
system. We then provide detailed theoretical background and mathematical description of
the self-adaptive reservoir network (SARN) introduced in this thesis. We introduce novel
information centric plasticity mechanisms, namely intrinsic plasticity and single neuron
timescale adaptation, along with supervised synaptic plasticity of network connections.
Details of the learning procedure is provided, along with a starting example of relatively
complex temporal processing task (having inherently two different timescales), in order
highlight the learning and adaptation mechanism in SARN as compared to previous static
models. The chapter ends with a short summary.

2. Chapter 3: In this chapter, we provide elaborate experimental results obtained by testing
SARN on various temporal information processing tasks relevant in the fast timescale of a
few milliseconds to minutes. The tasks were broadly classified as synthetic time series pro-
cessing (various standard benchmark tests), delay temporal memory and sequence learning
with artificial agents and complex motor pattern generation. We also clearly demonstrate
the ability of SARN to robustly encode both stable and chaotic attractors in the same
network which was hitherto not possible in static reservoir networks. Furthermore, the
effect of plasticity and adaptation on the reservoir dynamics is accessed using Lyapunov
stability analysis. The chapter ends with a discussion of the results in perspective of other
recent recurrent network models, as well as a brief discussion on the biological plausibility
of this model.

3. Chapter 4: In this chapter, we introduce self-adaptive reservoir based forward internal
models, that can be applied on walking robots, in order to make successful motor pre-
diction. We clearly demonstrate that using a closed loop approach, SARN based forward
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models outperform previous state of the art methods, and can generate complex locomotive
behaviors. The chapter ends with a short discussion of the results.

4. Chapter 5: In this chapter we extend the previous supervised learning setup of SARN to a
more generic reward learning scheme. Specifically we demonstrate the application of SARN
as a model of the basal-ganglia brain circuitry, which in combination with a correlation
learning based model of the cerebellum can lead to efficient goal-directed decision making.
We also introduce a novel reward modulated heterosynaptic plasicity rule that can lead to
such a combined learning. Furthermore, it is clearly demonstrated that SARN outperforms
traditional feed-forward neural network models for reward learning, specially in scenarios
with inherent dependence on memory of incoming stimuli. We end the chapter with a brief
discussion of the results

5. Chapter 6: Here we discuss the main contributions of this thesis along with some relevant
future outlook.
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CHAPTER2
Self-adaptive Reservoir Network for
Temporal Information Processing
(Methods)

”Henceforth space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an independent reality.”

—Hermann Minkowski (1906)

In this chapter the theoretical background and detailed description of our novel plastic reser-
voir based recurrent neural network model, called self-adaptive reservoir network (SARN) is
presented. In the first section we motivate the idea of computation with such networks from
a dynamical systems point of view and show that reservoir type RNN can model any non-
autonomous dynamical system to arbitrary degree of accuracy. We next introduce the SARN
architecture and present description of network dynamics. This is followed by the three levels
of plasticity and unsupervised adaptation introduced in this thesis, namely (i) individual neu-
ron time constant adaptation, (ii) intrinsic plasticity and (iii) supervised synaptic plasticity of
network connection weights. Finally, we demonstrate the learning mechanism and also evaluate
the performance of our adaptive reservoir network compared to static reservoirs by using an
artificial time series modeling task.

2.1 Computing with Input-driven Recurrent Neural Networks

The brain is a complex dynamical system with underlying temporally intricate dynamics which
is greatly difficult to unravel and comprehend (Siegelmann, 2010). Due to the dynamical prop-
erties of brain activity, recurrent neural networks (RNN) has been a natural choice to model
systems with brain like characteristics or understand the underlying principles of learning and
memory. As a result of the internal feedback loops, RNNs are natural dynamical systems, where
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2 Self-adaptive Reservoir Network for Temporal Information Processing (Methods)

the network state is dependent on its own previous history. Traditionally they have been mod-
eled as autonomous dynamical systems, which does not receive any external influence or has a
time invariant unchanging evolution in the presence of a constant input. However, much like the
brain, most natural systems are subject to time-dependent variations in their own features, as
well as being perturbed by temporally varying external forces (Bressler and Kelso, 2001), (Ra-
binovich et al., 2008). Mathematically these systems fall under the category of non-autonomous
dynamical systems or input-driven (time variant) systems (Manjunath and Jaeger, 2013), (Kloe-
den and Rasmussen, 2011). Therefore, to model brain like temporal information processing or
other naturally occurring non-autonomous systems, it is important to consider the influence of
time-varying inputs on RNNs. As such, here, we consider such input driven RNNs inspired by
the reservoir computing framework.

Before we introduce our reservoir based RNN, it is pertinent to answer the question, can such
a RNN indeed approximate arbitrary non-autonomous dynamical systems?. Previous work on
both discrete-time (Jin et al., 1995) and continuous time (Funahashi and Nakamura, 1993)
RNNs proved that they can behave as universal approximator for autonomous systems upto an
arbitrary degree of accuracy. However, they focused only on time invariant systems. Based on
the work of Nakamura and Nakagawa (2009) and Chow and Li (2000), here we show that a
generic class of input-driven RNN can also model the finite time trajectory of any time-variant
non-autonomous system. Moreover, reservoir networks form a special case of such input-driven
RNNs.

2.1.1 Modeling Arbitrary Non-Autonomous Dynamical Systems (proof)

In the following proof, we will show that a generic class of input-driven RNN, can model any
arbitrary non-autonomous (time variant) dynamical system upto some finite time trajectory, and
by corollary can also model any time variant system, without external inputs. Furthermore, the
specific model (reservoir networks) we consider in this thesis, form a special case of the general
input-driven RNN, and thus poses great computational capability for time-varying external
stimuli as well as dependence of their own time dependent properties, similar to biological
brains.

An input-driven RNN can be generally expressed in the following form:

ẋ(t) = −x(t)
τ

+ f(W1,x(t),W2,u(t)). (2.1)

where, x ∈ RN and u ∈ RK are the neural state and inputs vectors, W1 ∈ RN×N , W2 ∈ RK×N
are the recurrent and input weight matrices, respectively. τ is the individual neuron time
constant. For simplicity, here we consider τ to be fixed. f : RN × RK is a bound, smooth, and
increasing function of 1-Lipschitz type1. Typically, f(.) = tanh(.), such that: f(0) = 0, f ′(0) = 1
and f ′(z) > 0, zf ′′(z) ≤ 0.

1A function f(x) satisfies the Lipschitz condition of order k at x = 0, if |f(h) − f(0)| ≤ C|h|k for all |h| < ε,
where C and k are independent of h, C > 0 and there is a fixed upper bound for all k for which a finite C
exists.
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2.1 Computing with Input-driven Recurrent Neural Networks

Let y = (y1, y2, ...., yn)T be a point in an n-dimensional Euclidean space Rn. Then from Chow
and Li (2000) and Nakamura and Nakagawa (2009) we have the following lemma:

lemma 1 : Let X ⊂ Rn and U ⊂ RK be open sets, LX ⊂ X and LU ⊂ U be compact sets
and f : X × U → Rn be a continuous mapping of 1-Lipschitz type. Given a time invariant
autonomous dynamical system of the form

ẏ(t) = f(y(t),u), y(t) ∈ X,u ∈ U, t ∈ [0, T ] ∈ R (2.2)

with an initial state y(0) ∈ LX , then, for an arbitrary ε > 0, ∃N ∈ Z and an RNN of type
Eq. 2.1, which has an appropriate initial state x(0) and a small enough τ > 0 such that for any
input u : [0,+∞)→ LU . Then the following holds:

max
t∈[0,T ]

‖y− x‖ < ε, 0 < T <∞ (2.3)

where x ∈ RN is the internal neural state of the RNN from which outputs are obtained.

Hence, this lemma shows that a generic input-driven RNN of type Eq. 2.14 can model or ap-
proximate the finite time (0 < T ) trajectory of any time invariant autonomous system. We
can easily extend this lemma to obtain the following theorem, for time-variant non-autonomous
dynamical systems.

Theorem 1: Let X ⊂ Rn and U ⊂ RK be open sets, LX ⊂ X and LU ⊂ U be compact sets
and f : X × U × R → Rn be a continuous mapping of 1-Lipschitz type. Given a time variant
non-autonomous dynamical system of the form,

ẏ(t) = f(y(t),u(t), t), y(t) ∈ X,u(t) ∈ U, t ∈ [0 < T ] ∈ R (2.4)

with an initial state y(0) ∈ LX . Then, for an arbitrary ε > 0, ∃N ∈ Z and an RNN of type
Eq. 2.1, which has an appropriate initial state x(0) and a small enough τ > 0 such that for any
input u : [0,+∞)→ LU . Then the following holds:

max
t∈[0,T ]

‖y− z‖ < ε, 0 < T <∞ (2.5)

where z ∈ Rn are the internal neural state of the RNN from which outputs are obtained, and
x ∈ RN are all the remaining neural states of the network.

Proof : Consider, y̌(t) =
(

y(t)
t

)
∈ Rn+1, where y̌n+1(t) = t. Therefore, we can extend the

n-dimensional vector y(t) to a (n+ 1)-dimensional vector in y̌(t).

As a result, we can reformulate Eq. 2.4 into an equivalent time-invariant form similar to Eq. 2.2:

˙̌y(t) = f̌(y̌(t),u(t)), y̌(t) ∈ (X × R),u(t) ∈ U, (2.6)
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2 Self-adaptive Reservoir Network for Temporal Information Processing (Methods)

Here, f̌ : (S × R)× U → Rn+1 is also a 1-Lipschitz type continuous mapping. The initial state

is y̌(0) =
(

y(0)
0

)
. Therefore, when y(0) ∈ LX , y̌(0) ∈ LX × [0, T ]. This is a compact subset

of X × R. Hence, the reformulation in Eq. 2.6 satifies Lemma 1.

Hence we can say that for an arbitrary ε > 0, ∃N ∈ Z and an RNN of type Eq. 2.1, which has an
appropriate initial state x(0) and a small enough τ > 0 such that for any input u : [0,+∞)→ LU ,
the following holds:

max
t∈[0,T ]

‖y̌(t)− ž(t)‖ < ε, 0 < T <∞ (2.7)

Where ž ∈ Rn+1 are the neural states of (n + 1) units in the network from which outputs are
achieved and x ∈ RN−1. Let ž = (z, žn+1)T , then z ∈ Rn is the neural states of the first n units
of the RNN from which outputs are drawn. Hence, from the definition of Euclidean norm ‖.‖
we have

‖y(t)− z(t)‖2 + (y̌(t)− ˇzn+1)2 = ‖y̌(t)− ž(t)‖2. (2.8)

This implies,

max
t∈[0,T ]

‖y(t)− z(t)‖ < max
t∈[0,T ]

‖y̌(t)− ž(t)‖ < ε, 0 < T <∞ (2.9)

Hence, Theorem 1 is proved.

This shows that the RNN of type Eq. 2.1 with a size of N can approximate the finite time
trajectory of a time variant non-autonomous dynamical system, where the RNN internally uses
n units to provide outputs.

Input-driven RNN of the reservoir computing type (Sussillo, 2014),(Maass et al., 2002) as pre-
sented in this work, are a special case of the generic RNN in Eq. 2.1 such that,

f(W1,x(t),W2, u(t)) = W1σ(x(t)) + W2u(t). (2.10)

Here the function σ(.) is also a 1-Lipschitz type (typically tanh or sigmoid) having the same
properties as f(.). As such, this result shows that such input-driven RNNs form a powerful
system that can be used to generate complex time-varying patterns of activity. Considering, the
brain is a complex dynamical system, which in turn is stimulated by a multitude of temporal
signals, these RNN models can be used as an abstraction of the brains ability to compute with
such changing stimuli for robust temporal information processing.

2.2 Self-adaptive Reservoir Framework

In this section we formally introduce the self-adaptive recurrent neural network framework.
We start with the description of the recurrent network model followed by detailed explanation
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2.2 Self-adaptive Reservoir Framework

of the homeostatic plasticity and adaptation mechanisms introduced in this thesis, namely (i)
neuron timescale adaptation based on active information storage measure, and (ii) the self-
organized adaptation of reservoir neurons inspired by intrinsic plasticity and (iii) this is followed
by overview of the learning objective and training procedure for supervised synaptic plasticity
in the network, in order to perform different temporal information processing tasks from within
a supervised learning setup.

2.2.1 Network Model

The self-adaptive RNN model based on the reservoir computing framework is depicted in Fig. 2.1.
The basic setup can be divided into three layers: input, hidden or internal, and readout layers.
Internal layer consists of a large recurrent neural network driven by time-varying stimuli. These
driving signals are provided by the input layer. Due to the dynamic reservoir, the network
exhibits a wide repertoire of nonlinear activity. This is then combined into desired output
signals at the readout layer, using a suitable supervised training of the reservoir neuron to read-
output connectivity. The RNN dynamics can be formally defined by the following equations:

τiẋi(t) = −xi(t) + g
N∑
j=1

W rec
ij rj(t) +

K∑
j=1

W in
ij uj(t) +W fb

i z(t) +Bi, (2.11)

ri(t) = tanh(aixi(t) + bi), (2.12)

z(t) = [Wout]T r(t). (2.13)

The RNN model consists of N neurons, such that the membrane potential at the soma (at time t)
of the reservoir neurons, resulting from the incoming excitatory and inhibitory synaptic inputs,
is given by a N dimensional vector of neuron state activation’s, x(t) = x1(t), x2(t), ..., xN (t).
Here the RNN does not explicitly model action potentials, but describes neuronal firing rates,
where in, the continuous variable ri(t) is the instantaneous firing rate (N dimensional) of the
reservoir neurons and is calculated as a non-linear saturating function of the state activation
xi(t) (Eq. 2.12). The parameters ai and bi govern the slope of the firing rate curve and act as
a bias signal to the reservoir neurons, respectively. Tuning these parameters allows the non-
linearity to be shaped in terms of the input distribution. This mechanism forms the essence
of the intrinsic plasticity scheme explained in section 2.2.3. Each reservoir neuron i, receives
inputs from other neurons in the network with firing rates rj(t) via synaptic connections of
strength W rec

ij along with incoming stimuli from the K dimensional input uk(t) via synapses of
strength W in

ij . Each reservoir neuron also receives an auxiliary bias signal Bi. The parameter
g (Sompolinsky et al., 1988),(van Vreeswijk and Sompolinsky, 1996) acts as the scaling factor
for the recurrent connection weights allowing different dynamic regimes from stable (g < 1) to
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Figure 2.1: The self-adaptive reservoir network architecture The basic setup can be divided into
three layers. The first payer consists of input neurons that project time varying signals u(t)
with randomly assigned synaptic weights Win to the recurrent layer. The recurrent layer
consists of initially randomly connected neurons with synaptic weights Wrec. Each recurrent
layer neuron (also referred as reservoir neuron) undergoes intrinsic plasticity to adjust its
non-linearity based on the inputs, as well as autonomous adaptations of their individual time
constants. x(t) is the vector of all recurrent neuron states. Output from the recurrent layer
projects on to readout neurons (for simplicity only one readout neuron is considered here) with
synaptic weights Wout. Readout neuron firing rate is denoted by z(t). Feedback connections
(Wfb) if present are also randomly selected. Only the Wout and Wrec connections are plastic
and learned by supervised training.

highly irregular chaotic (g > 1), being present in the reservoir. Similar to the recent works from
(Sussillo and Abbott, 2009), the network is initialized with g such that the network exhibits
chaotic dynamics as spontaneous behavior before learning and maintains stable dynamics after
learning, with the help of plasticity and adaptation (sections 2.2.3 and 2.2.2). The neuronal time
constant is given by the parameter τi defined for each reservoir neuron, and helps to determine
the timescale of local neural dynamics. Although most previous models (Sussillo and Abbott,
2009),(Laje and Buonomano, 2013) have considered a fixed global time constant, in order to
adapt to the temporal structure (timescales) of incoming inputs local adaptation of neuronal
time constants forms a crucial link (Mozer, 1993), (Pearlmutter, 1995). As such we adapt this
parameter according to a novel local information dynamics rule (section 2.2.2). Based on finite
difference approximation of the RNN dynamics with a suitable time increment ∆t (see Eq. 2.14),
the ratio of ∆t/τi controls the speed of single neuron dynamics (can be imagined as neuron leak
term) and will be a value in [0, 1]. The output from the network is provided at the read-out
layer, in terms of a linear output of the network state z(t) 2. Although typically there can be
multiple output neurons connected to the recurrent layer, here we depict a single neuron for
simplicity. The output neuron receives inputs from the reservoir via the synaptic connections
of strength Wout and sends inputs back into the reservoir via synapses with strengths W fb

i . In
general, initially the input weights Win, recurrent weights Wrec and feedback weights Wfb are

2Depending on the learning task, it is also possible to use a non-linear saturating function like tanh to transform
the output signal, similar to Eq. 2.12
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2.2 Self-adaptive Reservoir Framework

chosen randomly. Unless otherwise stated, Win and Wfb are drawn from a uniform distribution
[−1, 1] while the recurrent weights Wrec are drawn from a normal distribution with zero mean
and standard deviation (s.d.) g2/

√
pcN . Here pc controls the probability of connections inside

the reservoir recurrent layer and is typically set between 10% to 50%.

In all computer simulations and experiments, the actual updating of xi(t) is calculated using
finite difference approximation of Eq. 2.11.

xi(t+ ∆t) =
(

1− ∆t
τi

)
xi(t) + ∆t

τi

(
g
N∑
j=1

W rec
ij rj(t) +

K∑
j=1

W in
ij uj(t) +W fb

i z(t) +Bi

)
, (2.14)

where ∆t is the increment of time.

2.2.2 Neuron Timescale Adaptation: Active Information Storage Rule

In our model of the reservoir RNN (Eq. 2.14), every neurons membrane potential (xi(t)) is
influenced not only by current synaptic inputs, but also by their previous state. As such, here,
the decay rate of each reservoir neuron’s membrane potential is governed by the local neuronal
time constant τi, analogous to the leak current of membrane potential in real neurons (Koch
et al., 1996). One might consider this decay rate to correspond to an integrating time window of
the neuron, in the sense that the decay rate indicates the degree to which the earlier history of
synaptic inputs affects the current state. When the τi value of a neuron is large, the activation of
the neuron changes slowly, because the internal state potential is strongly affected by the history
of the neurons potential. On the other hand, when the τi value of a neuron is small, the effect
of the history of the unit’s potential is also small, and thus it is possible for activation of the
neuron to change quickly. In other words, τi corresponding to each neuron i in the reservoir, acts
as a local memory term (Yamashita and Tani, 2008). Therefore, autonomous input dependent
adaptation of this quantity, can allow the neuron to robustly adjust its dynamics to slow or fast
(timescale) changing temporal patterns in the input stimuli.

In order to account for an adjustable neuronal decay rate (time constant) as a model of membrane
leak current and local neuron memory, it is important to be able to quantify the dynamics of dis-
tributed computation within the reservoir. However, given the complexity and non-autonomous
nature of such large recurrent networks, using traditional non-linear dynamics approaches for
this purpose is highly restrictive (Manjunath and Jaeger, 2013). As such we use a novel infor-
mation theoretic measure (see information theoretic preliminaries in appendix A.1) called input
driven active information storage, which allows us to quantify the local information dynamics
of storage inside such complex networks (Wibral et al., 2014b).

Active information storage (AIS) was originally introduced by (Lizier et al., 2012) in the
context and cellular automatas, and then subsequently extended to the framework of reservoir
computing (Dasgupta et al., 2012), (Dasgupta et al., 2013a). It is in principle based on the idea
of information storage, which can be defined as the information in an agent, process or variable’s
past that can be used to predict its future (Wibral et al., 2014a). Existing information theoretic
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quantities like, excess entropy (Crutchfield and Feldman, 2003) or predictive information (Bialek
et al., 2001) and statistical complexity (Crutchfield and Young, 1989), provides a measure of this
stored information. However it captures the total storage used or relevant in the future of the
process or agent. Since, we are dealing with neuronal networks driven by time-varying inputs,
the arbitrary future states of a given neuron is unknown and hence, the total storage that is
currently in use is more relevant. AIS helps to quantify precisely this information at each point
in time.
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Figure 2.2: Active information storage in reservoir neurons (a) Pictorial representation of active
information storage (AIS) calculated for a single neuron state x and its immediate future
state x′ (solid circle: present and next time step states of the neuron; dotted circle: previous
states of the same neuron). (b) Active information storage convergence: plot of estimated AIS
versus the history length k. (c) Plot of the change in local active information storage values
(unaveraged) for 100 neurons with baseline history length k = 1 versus k = 4. Typically as k
increases there is a change in the local estimations of AIS with some neurons showing much
higher values (Colormap represents the different neurons (1-100)).

Formally, AIS Ax is the average mutual information (I see information theoretic preliminaries in
appendix A.1) between the semi-infinite past of the network state x(k) and its immediate future
state x′ (see Fig. 2.2 (a)), rather than the whole future:

Ax = lim
k→∞

I(x(k);x′). (2.15)

Unfolded in time, the instantaneous AIS for a variable x is the local (or un-averaged) mutual
information between its semi-infinite past x(k)

t = {xt−k+1, ..., xt−1, xt} and its next state xt+1
at the time step t + 1 calculated for finite-k estimations. Hence, the local information storage
is defined for every spatio-temporal point within the recurrent network. The local unaveraged
information storage can take both positive as well as negative values, while the active (average)
information storage Ax(i, k) =

〈
ax(i, t, k)

〉
t

is always positive and bounded by the average infor-
mation capacity of a single neuron state. The local information storage for a reservoir neuron
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state xi is given by3:

ax(i, t+ 1) = lim
k→∞

I(x(k)
i,t ;xi,t+1) = lim

k→∞
log

(
P (x(k)

i,t , xi,t+1)

P (x(k)
i,t )P (xi,t+1)

)
. (2.16)

Recall that, biological networks as our model of the reservoir RNN are non-autonomous dynami-
cal systems which are driven by time varying inputs. Therefore if inputs are changing over time,
the local dynamics of the states of the reservoir neurons need to account for this in quantifying
information storage. As such the previous formulation in Eq. 2.16 is incomplete in the context
of input driven neural systems. Therefore, in order to correctly estimate AIS, one needs to
condition out the current input into the network (ut+1):

ax(i, t+ 1) = lim
k→∞

I(x(k)
i,t ;xi,t+1|ut+1),

= lim
k→∞

log
(

P (x(k)
i,t , xi,t+1|ut+1)

P (x(k)
i,t )P (xi,t+1|ut+1)

)
,

= lim
k→∞

log
(
p(xi,t+1|x(k)

i,t , ut+1

p(xi,t+1|ut+1)

)
.

(2.17)

where ax(i, t+ 1, k) represents finite-k estimates. Using a history length of k = 1 is the natural
starting choice for calculations of the estimates, however with increasing values of k → ∞,
the estimates tend towards the actual active information storage value, with a saturation point
reached for certain finite k-value. Beyond this point with an increase in k there is no significant
change in the finite-estimate of the information storage quantity (see Figs. 2.2 (b) and (c)).

The reservoir neuron time constants are dependent on a decay control parameter ρi as follows:

τi = κ

(
2

1 + ρi

)−m
. (2.18)

where, ρi ∈ {0, 1, 2, ..., 9} and κ,m are constants. Here we use κ = 1 and m = 1.8 such that
the resultant time constants are within biologically plausible limits (Fig. 2.3)(Koch et al., 1996),
(Rall, 1969).

In order to adapt the neuronal time constants τi the recurrent network is driven with the
incoming inputs, and using epochs(φ time window) with finite history length k ≥ 8, the active

3Here for mathematical convenience we represent xi(t) as xi,t.
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Figure 2.3: Neuronal timeconstant adaptation (a) plot of the range of τ values (1 − 100 ms) for a
single neuron, with different parameter values of ρ and m (y-axis in log scale). (b) Example of
timeconstant distribution from a reservoir of 300 neurons, (above) before adaptation (uniform
distribution, τ = 1) (below) after adaptation (long tailed).

information storage measure4 at each neuron adapts the decay control parameter ρi as follows :

ρi =
{
ρi − 1 if Ax(i, φ)−Ax(i, φ− 1) > ε
ρi + 1 if Ax(i, φ)−Ax(i, φ− 1) < ε, where, ε = 1

4 logN. (2.19)

After each epoch (trial), ρi and τi are adjusted and these values are used for the subsequent
epoch. This procedure is typically carried out as a pre-training phase where the reservoir RNN
is driven by the input signals divided into a number of training samples, over multiple trials.
Once all the training samples are exhausted, the pre-training of reservoir is completed and τi is
fixed. Given that the neuronal time constants not only act as local memory terms but as it can
be observed from Eq. 2.11 it also controls the over all reservoir time-scale. Thus, our adaptation
mechanism based on the change in information storage of each neuron in an input dependent
manner, leads to the reservoir speeding up or slowing down its dynamics and adjusting to the
timescales of the incoming input signals.

2.2.3 Homeostatic Plasticity: Information Theoretic Intrinsic Plasticity Rule

As discussed in the introductory chapter (section 1.3.2), homeostatic regulation by way of in-
trinsic plasticity is viewed as a mechanism for the biological neuron to autonomously modify its

4The information storage measure was implemented using modified versions of the Java based information
dynamics toolkit (Lizier, 2014). The toolkit was used as a wrapper class with Matlab.
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firing activity to match the input stimulus distribution (Turrigiano et al., 1994);(Desai et al.,
1999). From an information theoretic perspective, Stemmler and Koch (Stemmler and Koch,
1999) demonstrated that IP can allow a neuron to exploit its complete dynamic range of firing
rates while being driven by a given input, such that for Gaussian input distributions, IP could
lead to an optimal exponential output distribution for maximizing information transfer (see
Fig. 1.5 (c) and (d)). Furthermore, it is plausible that single neurons try to achieve this max-
imum information transmission while obeying constraints on its energy expenditures (Sharpee
et al., 2014). Based on this idea, IP can be formalized based on the following three principles
(Schrauwen et al., 2008):

• Information maximization: Maximum mutual information (see appendix A.1) between
the input entropy of a neuron and its firing rate entropy, i.e. the output of the neuron
contains as much information on the input as possible.
• Constrained output distribution: Neurons have a limited range of operation (firing

rate range of non-linearity type) with highly sparse firing patterns as well as limits on its
energy expenses.
• Adaptation of neurons intrinsic parameters: Biological neurons have been observed

to adjust their intrinsic excitability and maintain firing rate homeostasis without the need
to change individual synaptic connections (Zhang and Linden, 2003).

In (Triesch, 2007) a model of intrinsic plasticity based on changes to the neuronal non-linear
activation function was introduced. A gradient rule for direct minimization of the Kullback-
Leibler divergence between the neuronal current firing-rate distribution and maximum entropy
(fixed mean) exponential output distribution was motivated. Subsequently in (Schrauwen et al.,
2008) an IP rule for the hyperbolic tangent transfer function with a Gaussian output distribution
(fixed variance maximum entropy distribution) was derived. During testing the adapted reser-
voir dynamics, it was observed that for temporal tasks requiring linear responses the Gaussian
distribution performs well. However on non-linear tasks, the exponential distribution gave a
better performance. In this thesis, with the aim to obtain sparser output codes with increased
signal to noise ratio for stable temporal memory processing, we derive and implement a generic
learning rule for IP using the Weibull distribution as the target output distribution, for the
reservoir neurons.

The Weibull distribution is a 2-parameter continuous distribution, such that its shape and scale
parameters can be adapted to account for various shapes of the neuron activation function
(Eq. 2.12). The Weibull distribution has a high kurtosis number leading to sparser output
codes and can generalize between a wide range of cumulative distribution functions. Unlike the
previous models of fermi transfer functions (Triesch, 2007), (Steil, 2007), here we use the Weibull
distribution as the target output distribution and derive a generic stochastic learning rule for
tan-hyperbolic (tanh) neuronal non-linearity. This is primarily aimed at firing rate homeostasis
as well as optimal information flow between the input and output of each reservoir neuron.
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Figure 2.4: Example of generalized Weibull intrinsic plasticity for a single reservoir neuron
(left) A hyperbolic tangent neuron firing rate function with initial shape and bias parameters,
a = 1.0 and b = 0.0. Randomly selected input stimuli from a Gaussian distribution (zero
mean and standard deviation 0.5) result in neuron firing rate output from a broad Gaussian
distribution. (right) After intrinsic plasticity assuming an optimal Wiebull output distribution
(with parameters α = 1.0 and β = 0.15), the neuron firing rate curve shifts (learned mean
value of a = 1.5087 and b = −1.1366). As a result for the same input from a Gaussian
distribuition, the reservoir neuron output activity follow an maximal entropy Exponential like
distribution. The Weibull distribution allows flexible adjustment of the optimal distribution
shape by changing the parameters α and β accordingly.

Deriving the IP Rule for Neuron Activation Function Parameters:

The probability distribution of the two-parameter Weibull random variable r is given as follows:

fweib(r;β, α) = α

β

(
r

β

)α−1
e
−
(
r
β

)α
. (2.20)

The parameters α > 0 and β > 0 control the shape and scale of the distribution respectively.
Between α = 1 and α = 2, the Weibull distribution interpolates between the exponential dis-
tribution and the Rayleigh distribution. Specifically between α = 3 and α = 5, we obtain an
almost normal distribution. Due to this generalization capability it serves best to model the
actual firing rate distribution and also account for different types of neuron non-linearity. The
neuron firing rate parameters a and b of Eq. 2.12 can be calculated by minimizing the Kullbeck-
Leibler (K-L) divergence between the actual output distribution of the reservoir neurons activity
fr(r) and the desired distribution fweib(r) with a fixed mean firing rate β (Fig. 2.4).
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2.2 Self-adaptive Reservoir Framework

The KL-divergence between fr(r) and fweib(r) is given by:

D = DKL(fr(r), fweib(r)) =
∫
fr(r)log

(
fr(r)
fweib(r)

)
dr

=
∫
fr(r)log

 fr(r)
α
β

(
r
β

)α−1
e
−
(
r
β

)α
 dr

=
∫
fr(r)log(fr(r))dr − log

(
α

βα

)
− (α− 1)

∫
fr(r)log(r)dr + 1

βα

∫
fr(r)rαdr

=−H(r) + 1
βα
E(rα)− (α− 1)E(log(r))− log

(
α

βα

)
.

(2.21)

Here, H(r) is the firing rate entropy (self-information) of a reservoir neuron.

We know,

H(r) = −
∫
fr(r)log(fr(r))dr = E

[
log
(∂r
∂x

)]
− E[log(fx(x))]. (2.22)

Using Eq. 2.22 and the relation fr(r) = fx(x)
∂r
∂x

(from Eq. 2.12)5 for a single neuron with input
x and output r and representing the integrals in terms of the expectation (E) quantities, the
above relation can be simplified to (here C are constant terms):

D = −E
[
log

(
∂r

∂x

)]
+ E[log(fx(x))]

+ 1
βα
E(rα)− (α− 1)E(log(r)) + C.

(2.23)

Recall that the tanh non-linearity can be represented in the exponential form as follows:

r = tanh(ax+ b) = e2(ax+b) − 1
e2(ax+b) + 1

(2.24)

Thus, differentiating this w.r.t x, a and b and representing in terms of r we get the following set
of base equations:

∂r

∂x
= a(1− r2),

∂r

∂a
= x(1− r2),

∂r

∂b
= (1− r2)

(2.25)

5The activation are time dependent, however here we neglect the time variable for mathematical convenience.
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Using the partial derivatives from Eq. 2.25 and differentiating D w.r.t the parameter b yields:

∂D

∂b
= E

[
2r + α

βα
rα−1(1− r2)− (α− 1)r−1(1− r2)

]
= E

[
2r + r−1(1− r2)

(
α

βα
rα − α+ 1

)]
.

(2.26)

Similarly differentiating D w.r.t the parameter a results in:

∂D

∂a
= E

[
2rx+ xr−1(1− r2)( α

βα
rα − α+ 1)− 1

a

]
. (2.27)

From the above equations we get the following on-line learning rule with stochastic gradient
descent with learning rate η

∆b = −η
[
2r + r−1(1− r2)

(
α

βα
rα − α+ 1

)]
. (2.28)

∆a = η

a
+ x∆b (2.29)

Note: This relationship between the neuron parameter update rules (∆a and ∆b) is generic and
valid irrespective of the neuron non-linearity or target probability distribution.

In general this local IP rule tries to robustly adapt the internal dynamics of the reservoir in an
input driven and completely unsupervised manner. In contrast, the neural timescale adaptation
rule tries to modulate the neuronal time constants, effectively matching the timescales in the
incoming time varying stimuli. This is based on a quantification of the extent of influence that
the past activity of a neuron has on it’s activity in the immediate future. We therefore combine
IP learning with the neuron timescale adaptation rule in series. The time constant adaptation
is carried out after the intrinsic adaptation of the neuron non-linearity. This combination leads
to a single self-adaptive framework that controls the local memory of each neuron based on the
incoming input to the network, while preventing runway dynamics (homeostasis). In the next
section we will present the supervised plasticity mechanism to learn the reservoir to readout and
internal reservoir weights, in a task dependent manner.

2.2.4 Synaptic Plasticity: Supervised Learning and Weight Adaptation

Subsequent to the unsupervised autonomous adaptation of the reservoir neuron time constants
and non-linearity parameters based on the inputs to the network, the newly learned parameters
τi , ai and bi are fixed. The new network with the revised settings is now used to induce
supervised synaptic plasticity (learning of connection weights) at the reservoir to readout (Wout)
connections and the recurrent connections (Wrec) inside the reservoir.
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2.2 Self-adaptive Reservoir Framework

The primary objective of weight adaptation within the framework of supervised learning is that
the network learns to generate some target or desired signal d(t), that may be both a function
of time as well as the input to the network. The goal of supervised learning (see Tab. 1.1) is to
minimize the net error function E(T ) between the desired signal and the actual reservoir output
z(t), calculated over some sufficiently long time T :

E(T ) = 1
2

∫ T

0
e(t)2dt = 1

2

∫ T

0

[
z(t)− d(t)

]2
dt (2.30)

where, e(t) is the instantaneous error signal.

Using gradient descent learning , the readout and recurrent weights can be typically calculated by
minimizing this error with respect to W out

i and W rec
ij . However such an approach, based on the

traditional back propagation through time (BPTT) (Rumelhart et al., 1988) learning strategy
is inherently unstable and incapable of dealing with long temporal dependencies (Bengio et al.,
1994) arising in large recurrent networks. Therefore, here we learn these wights using an online
learning algorithm based on the recursive least squares (RLS) algorithm (Simon, 2002), which
was also recently formulated as the FORCE (first-order reduced and controlled error) (Sussillo
and Abbott, 2009) or FORCE-fair (Laje and Buonomano, 2013) learning setup.

Readout Weight Adaptation:

As the instantaneous error signal, e(t) = z(t)− d(t), using Eq. 2.13 this can be reformulated as:

e(t) =
∑
j

W out
j (t−∆t)rj(t)− d(t). (2.31)

Using the RLS algorithm and minimize the error e2, the readout weight (W out
j ) update is defined

by,

W out
i (t) = W out

i (t−∆t)− e(t)
∑
j

Pij(t)rj(t). (2.32)

where, the error e(t) is as defined in Eq. 2.31.

Here, P is a N × N square matrix proportional to the inverse of the correlation matrix of the
reservoir neuron firing rates vector r. P is initialized using the identity matrix I and a small
constant parameter δc as,

P(0) = I
δc

(2.33)

Here, P acts as the adaptive learning rate for Eq: 2.32, with the weight modifications automat-
ically slowing down as P decreases with time. This provides inherent stability and the learning
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algorithm converges to a solution. P is updated at each time point as,

P(t) = P(t−∆t)−
(

P(t−∆t)r(t)rT (t)p(t−∆t)
1 + rT (t)P(t−∆t)r(t)

)
. (2.34)

Recurrent Weight Adaptation:

The adaptation of the recurrent weights W rec
ij are carried out using the same supervised error

signal e(t) (Eq. 2.31). Based on the RLS formulation (Sussillo and Abbott, 2009), W rec
ij is

updated online as,

W rec
ij (t) = W rec

ij (t−∆t)− e(t)
∑

k∈A(i)
P ijk(t)rk(t). (2.35)

The notation A(i) represents the list of all neurons presynaptic to the neuron i. Using this
notation, unlike the single inverse correlation matrix P of all the reservoir neurons in Fig. 2.32,
Pi is a square matrix (one for each recurrent neuron i) with each dimension equal to the number
of neurons presynaptic to i (A(i)). This is now updated as follows:

P ijk(t) = P ijk(t−∆t)−
(∑

l∈A(i)
∑
m∈A(i) P

i
jl(t−∆t)rl(t)rm(t)P imk(t−∆t)

1 +
∑
l∈A(i)

∑
m∈A(i) rl(t)P ilm(t−∆t)rm(t)

)
. (2.36)

Since the error for each of the recurrently connected neurons is the same back-propagated error
from the readout neuron (e(t)), within this setup, we can learn the recurrent and readout weights
simultaneously.

Overall Training Procedure:

The learning of the internal parameters (IP and timescale adaptation) along with the modifica-
tion of synaptic weights are carried out using the following simple steps:

1. Initialization: The reservoir network is initialized with random parameterization. The
recurrent weights Wrec are chosen randomly from a Gaussian distribution with zero mean
and s.d. g/

√
pcN . g is typically set between 0.9 and 1.5 and scales the synaptic strength

accordingly. Pc defines the connection probability between reservoir neurons (10% to
50%). Win and Wfb are initialized randomly from an uniform distribution over [−1, 1].
All neurons are initialized with τ = 1, a = 1 and b = 0. The output weights Wout

are either initialized to zero or chosen from a Gaussian distribution with zero mean and
variance 1/N . Depending on the complexity of the temporal information processing task
the reservoir size N is selected from anywhere between 10 to 3000 neurons.
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2.3 Learning with Self-Adaptive Reservoir Network

2. Unsupervised adaptation: The network is driven with the given time varying input
signals and using a fixed number of epochs (adaptation trials) the IP and timescale adap-
tation procedure is carried out. After this the learned parameters τi, ai and bi are fixed
for all neurons.

3. Learning: After this pre-training or autonomous adaptation step, learning of the synaptic
connections inside the reservoir Wrec and reservoir to readout neuron Wout is carried out
in a supervised manner using the target signal d(t) or using a temporal difference error
based on reward learning strategy (see section 5). Learning is carried out in a number of
cycles, such that weights converge to a stable regime.

4. Testing: The learned network is now tested without any further modifications on new
unseen test input signals and checked for generalization capability on the same temporal
task.

2.3 Learning with Self-Adaptive Reservoir Network

In order to give an understanding of the learning and adaptation process on the ability of our
network model to perform temporal information processing, we now provide an example of a
relatively complex signal modeling task with inherently different timescales. Specifically we will
use our SARN model to learn a two-dimensional multiple frequency sinusoidal function of the
incoming inputs to the network. Typically such multiple sine problems has been very difficult
to learn for static reservoir models like the echo-state network (Jaeger, 2001a) or their spiking
neuron counterparts, liquid state machines (Maass et al., 2002). Therefore, we take this example
in order to display the learning behavior of our network and compare it to the performance of
an optimized static reservoir network (without any internal adaptation) (Jaeger et al., 2007).
Further elaborate results of temporal processing and memory guided behaviors will be provided
in chapter 3.

In this setup, the network was stimulated by a two dimensional input time series u1(t) and u2(t)
drawn from an uniform distribution in the closed interval [−1, 1]. The goal of the modeling task
was to learn the following function of the inputs:

f(u) = sin(ωπ(u2
1 + u2

2)) (2.37)

where, the parameter ω controls the frequency of the mapping. This was steadily increased in
value such that, ω ∈ {1, 2, 3, ...., 10}, and the network needs to learn all the 10 frequencies at
the same time.

The network was randomly initialized with default parameters as explained in the section 2.2.4.
It consisted of N = 100 neurons scaled with a factor g = 1.1, along with two input neurons
and ten output neurons (one for each frequency ω of sinusoidal signal). In order to carry out
IP adaptation the Weibull distribution was initialized with parameters α = 1.0 and β = 0.3.
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Figure 2.5: (a) Activities of five randomly selected reservoir neurons are shown. Above - reservoir activity
resembles a single slowly varying sine function. Below - after supervised learning, reservoir
activities display diverse signals with clearly two different embedded time scales of sine func-
tion(b) Change in length of the readout weight vector |Wout| during training (c) Plot of the
mean squared error (mse) of the network output after training, with respect to changing ω
values. The blue curve shows the performance of the current SARN model with both IP
and timescale adaptation; red curve shows SARN with only IP optimization and black curve
shows performance of the static un-adapted reservoir network.
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2.4 Summary

During the pre-training phase, using 300 epochs, IP and timescale adaptations were carried
out. After this the learned neuronal time constants and neuron non-linearity parameters were
kept fixed and synaptic modifications as per Eqs. 2.32 and 2.35 were carried out. As observed
in Fig. 2.5 (a) above , before learning the reservoir network showed regular single sinusoidal
activity. However after the network had been trained (Fig. 2.5 (b) below ) and adapted for
the task, the reservoir neurons now encoded two distinct timescales in their activity. A slowly
varying intermediate transient with fast changing signals at the two extremes is clearly observed
in the activity of the selected reservoir neurons. As a result the SARN model was able to almost
perfectly learn the desired output sine signals with ten different frequency components (Fig. 2.6
(a)).

In order to measure the stability of the learned behavior we calculate the length of the readout
weight vector |Wout| and plot the change in its value with time, in Fig. 2.5 (b). Large values
of |Wout| typically indicate that the solution found by a learning process involves cancellations
between large positive and negative contributions that tend to be unstable and sensitive to noise
(Sussillo and Abbott, 2009).

As observed, in this case, the overall magnitude of Wout remains relatively small. Furthermore,
during the training, although there is an initial increase in |Wout|. After some time period,
it reaches a stable region (plateau) indicative of the learning completion. The performance of
SARN model was measuring by calculating the mean squared error between the learned outputs
(zi(t)) and the actual desired output function (Eq. 2.37) for each value of ω.

Furthermore we tested the performance of a static reservoir model and a reservoir with only IP
for the same task. As observed in Fig. 2.5 (c) with an increase in the frequency the performance
drops significantly. However the SARN model clearly outperforms the static reservoir, where a
rapid deterioration of performance is observed for ω ≥ 2. Intrinsic plasticity can be seen to help
in the function approximation process however, only IP adaptation still leads to large errors
for higher frequency components; on the contrary with both IP and timescale adaptation the
error in the output is considerably reduced with negligible change in the MSE for 4 ≤ ω ≤
9. This can be attributed to the slow and fast dynamics needed to approximate the output
patterns, which is achieved by the combination of different neuronal time constants learned in
the timescale adaptation process. Figure 2.6 (b) and (c) shows the learned output (for two
frequency components) as compared to the desired signal. SARN can be seen to reproduce the
output near perfectly as compared to the irregular output from the static network. Thus using
this experiment, we demonstrate how the SARN model can be used to learn a basic temporal
processing task as well as the performance benefit obtained by the homeostatic IP and local
neuron memory (time constant) adaptations.

2.4 Summary

In this chapter, based on the framework of input-driven RNN, we presented the detailed descrip-
tion of the self-adaptive reservoir network (SARN). Using an information theoretic approach we
introduced novel learning rules for autonomous adaptation of reservoir neuron membrane time
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Figure 2.6: Multiple frequency sine modeling task with SARN (a) Comparison of learned output
from SARN as compared to the actual desired response. Output from all ten readout neurons
are plotted as a function of time and ω (ω encodes the frequency component of Eq. 2.37) (b)
Response of SARN outputs for ω = 3 and ω = 9. The reconstruction performance visibly
drops with the increase in frequency, however SARN is still able to model the correct response
with considerable accuracy as observed from the overlap of learned and target signals. (c)
Response of the static reservoir output neurons for the same frequency components. As
observed, the reconstruction accuracy is very poor with the output activity failing to learn
both the slow and fast components of the signal, even for small frequencies (ω = 3).
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2.4 Summary

constants, along with an online stochastic intrinsic plasticity (IP) rule to adapt neuron acti-
vation function parameters. The ability of RNN to perform brain like temporal information
processing, is contingent on the robust multiplexing of these time varying stimuli. Here we
consider that temporal multiplexing and adaptation to varying timescales of inputs can arise
through biologically plausible mechanisms of IP and local neuron memory modifications. We
introduced a novel input-driven active information storage rule that can be used to modify the
decay rates of individual reservoir neurons. This allows the neurons to locally quantify the
information dependence between their past and future states, given the context of the inputs
currently driving them. Since membrane time constant or decay can be viewed as local mem-
ory terms, this enable the reservoir neurons to adjust the memory of their dynamics or speed,
according to the timescales in the incoming input. In addition, we derive a generic IP rule
based on Weibull probability distribution that ensures maximum flow of information between
the input and output of each reservoir neurons and maintain homeostasis in the network. Fi-
nally we describe a supervised synaptic plasticity rule that can be used to learn the strength of
synaptic connections both, inside the reservoir as well as from the reservoir-to-readout neurons
in an online and stable manner. This learning mechanism and the increased performance of our
SARN model in comparison to optimized but static reservoir networks is clearly demonstrated
using the example of a multiple frequency two dimensional sine function generation task. In the
next chapter we will present detailed experimental results of using SARN within a closed loop
paradigm, by evaluating it on various complex temporal processing tasks, from synthetic time
series data to generating delay and sequence memory guided behaviors in artificial agents.
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CHAPTER3
Robust Temporal Information Processing
with Self-adaptive Reservoirs
(Experiments and Results)

”Time present and time past are both perhaps present in time future and time future
contained in time past.”

—T.S. Eliot

In the previous chapter we provided the necessary theoretical background and methodical details
of the self-adaptive reservoir network (SARN). Furthermore, it was also clearly demonstrated, us-
ing a preliminary multiple timescale sinusoidal modeling task, that SARN, based on the intrinsic
plasticity, reservoir neuron timescale adaptation and supervised synaptic plasticity, significantly
outperforms static, non-adaptive networks. In this chapter, we further elaborate on this result,
using experimental setups that reflect temporal information processing and memory guided be-
haviors of different degrees of complexity, in the timescale of few milliseconds to minutes. We
start with a number of standard benchmark, synthetic time series processing tasks and evaluate
the performance of SARN in comparison to its static reservoir counterparts. We also demon-
strate that, unlike current recurrent neural network models, SARN is able to encode both stable
and chaotic attractors in its dynamics and make robust predictions based on it, in an online
manner. Using Lyapunov stability analysis, we show that the plastic and adaptive mechanisms
in SARN lead to a more near critical network, as compared to previous RNN models that are
either highly chaotic or sub-critical, for the same network scaling parameter settings. This is
followed by delay temporal memory and timing based based experiments on an artificial walking
robot using SARN in a closed loop approach. Finally we demonstrate the use of SARN for a
complex motor processing task like handwriting generation (under perturbations for a multiple
degree of freedom robotic arm), and compare its performance to two of the most recent state of
the art static chaotic RNN (Sussillo and Abbott, 2009) and plastic (innate learning) RNN (Laje
and Buonomano, 2013).

41



3 Robust Temporal Information Processing with Self-adaptive Reservoirs (Experiments and Results)

3.1 Synthetic Time Series Processing

3.1.1 Benchmarking on Standard Datasets

The performance of our self-adaptive reservoir network in processing of complex time-varying
information, is evaluated using three standard benchmark time series data (Schrauwen et al.,
2008), (Jaeger, 2001a), (Jaeger, 2001b), (Jaeger and Haas, 2004), (Steil, 2007), (Rodan and Tino,
2011), covering a wide spectrum of temporal structure (multiplexed timescales), non-linearity
and memory. In all the cases, we compared the performance of SARN with that of an optimized
version a static reservoir network (i.e. without any internal unsupervised adaptation). In the
following sections we will now describe the experimental setup of the reservoir, followed by a
brief description of each task.

Experimental Setup

In all experiments in this section, the internal reservoir network weightsW rec were initially drawn
randomly from a normal distribution with zero mean and standard deviation (g2/

√
pcN). The

network size N was either fixed at 300 neurons or varied between 100− 400 neurons, initialized
with a connectivity of 20% i.e. pc = 0.2. The reservoir network was scaled using g = 1.2.
The input Win and feedback weights Wfb were drawn randomly from a uniform distribution
[−0.5, 0.5]. The reservoir neuron firing rate parameters were initialized with a = 1 and b = 0.
The learning rate of the stochastic gradient descent algorithm was fixed at η = 0.0001. Neuronal
time constants were initialized to τ = 1ms. Intrinsic plasticity and reservoir neuron timescale
adaptations were carried out in 100 epochs using overlapping time windows of 1000 time steps.
Subsequently the non-linearity parameters and time constants were fixed for the supervised
learning of reservoir recurrent and reservoir-to-readout weights.

Dynamics system modeling with 15th order NARMA

The dynamics of the nth order non-linear auto-regressive moving average (NARMA) is given by:

d(t+ 1) = 0.2d(t) + 0.004d(t)
n−1∑
i=0

d(t− i) + 1.5u(t− (n− 1))u(t) + 0.001 (3.1)

Here n = 15 for the 15th order modeling scenario and d(t) is the output of the system at time
’t’. u(t) acts as the input to the system at time ’t’, and is uniformly drawn from the interval
[0,0.5]. The task is to output d(t) based on u(t). In general this task is quite complex considering
that the current system output depends on both the current time step input as well as its own
previous n − 1 time steps history. Consequently, we use feedback connections (Wfb) from the
output neurons to the internal neurons with the reservoir network dynamics evolving according
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3.1 Synthetic Time Series Processing

to Eq. 2.14. Due to this inherent dependence on own previous history this task requires extended
temporal memory with the complexity increasing with higher orders of the system. The training,
and testing were carried out using 1000 and 3000 time steps respectively. The network setup
consisted of a single input neuron, feeding the input u(t) to the reservoir network and just one
output neuron trying to model the desired signal d(t).

Sante Fe laser data prediction

The Santa Fe laser data (Jaeger and Haas, 2004) is a cross-cut through periodic to chaotic
intensity pulsations of a Far-Infrared-Laser in a chaotic state. The chaotic pulsations more or
less follow the theoretical Lorenz model of a two level system (Huebner et al., 1989). The main
task is to predict the next laser activation d(t + 1), given the values up to time t (a small
fragment of the actual data is shown in Fig. 3.1). Due to the intermixing of periodic and chaotic
fluctuations, this data inherently contains multiple timescales making the prediction task quite
complex. The original dataset contained 10000 data points. Here the first 6000 were used for
training and then the learned network was tested with the remaining 4000 time steps of data.

Delayed n-bit parity task

The delayed n-bit parity task functions over input sequences t time steps long, and determines
for n bits, if τd + n→ τd time steps in the past are active. Here τd represents the delay period.
The input consists of a temporal signal u(t) drawn uniformly from the interval [-0.5,0.5]. Using
n = 3 bits, the desired output signal is calculated as the PARITY function:

d(t) = u(t− τd)⊕ u(t− τd − 1)⊕ u(t− τd − 2) (3.2)

with increasing values of time delay (τd), such that 0 ≤ τd ≤ 400. Here, ⊕ is the logical XOR
operation.

Since the parity function (XOR) is not linearly separable, this task is quite complex and requires
both the computational ability to perform a parity check, as well as the ability to recall long
spans of the input signal (fading memory). The network setup consisted of a single input neuron,
the internal reservoir network with 400 neurons and 400 readout neurons (each readout neuron
represent the 3-bit parity for each value of τd ∈ [0, 400] ).

Here, we evaluated the delayed short-term memory capacity (MCτd) of the network as the
amount of variance of the delayed input signal that is recoverable from the optimally trained
readout neurons for different time delays (τd). This measure was first introduced by (Jaeger,
2001a), and has been subsequently adopted as a standard measure of memory capacity for
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Figure 3.1: Santa Fe laser data prediction of periodic and chaotic fluctuations A fragment of
the actual laser data (blue) along with the SARN predicted output(red), showing the multiple
timescales present in the data. The inset shows a zoomed in view of a transition zone (between
500 to 700 time steps) from periodic oscillation to chaotic fluctuation. There is evidently a
drop in the prediction accuracy at the transition point, however with a fast recovery to the
original signal. Similar trends can be observed throughout the entire data.
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reservoir networks (Lukoševičius and Jaeger, 2009), (Ganguli et al., 2008). For a given input
signal delayed by τd time steps, the delayed memory capacity is given by:

MCτd = cov2(z(t− τd), d(t))
var(z(t))var(d(t)) (3.3)

where cov and var denote co-variance and variance operations, and z(t) and d(t) represent the
reservoir actual output signal and desired signal, respectively.

The total amount of memory present in the reservoir network can be quantified by summing
over all the time delays:

MC =
400∑
τd=0

MCτd (3.4)

The performance of both SARN and static reservoir networks in modeling or predicting the
desired signal d(t) in the cases of NARMA-15 and laser data, were evaluated using a normalized
mean squared error (nmse) between the desired signal d(t) and the actual network output z(t),

i.e. nmse =
( 〈

(d(t)−z(t))2
〉
t〈

(d(t)−
〈
z(t)
〉

)2
〉
t

)
.

Results

In Fig. 3.1, we plot a fragment of the Santa Fe laser data and the predicted output of the SARN
network. Visual inspection depicts that SARN was able to predict the chaotic fluctuations of
the data with significant accuracy. The abrupt changes in timescale of the data is apparent in
the Fig. 3.1 inset (between 500 to 700 time steps). Although there is evidently a relatively large
error at the transition point, the learned signal quickly settles down on the correct trajectory and
predicts the remaining data points with near perfect accuracy. In order to further quantify the
prediction performance of SARN, we tested the same task with increasing network size from N =
100 to N = 300 neurons and compared the performance with a static reservoir network. All the
parameters of the compared static reservoirs were set to their critical values (through empirical
parameter scanning), such that they operated at their optimal level of performance. As observed
in Fig. 3.3 (a), the SARN network leads to much smaller values of prediction error (nmse) and
an expected increase in performance with increasing network size. However, unlike the static
reservoir network, due to the internal adaptations in SARN there is no significant change in the
prediction error for N > 200 neurons, thus leading to a more stable and robust performance.
Given that the laser data contains multiple periodic and chaotic fluctuations overlapped in a
single time-series , it inherently has many timescales or frequency components (see Fig. 3.1 fast
and slow changing regions). As such, we hypothesize that the robust performance of SARN
as compared to the static network, in this case primarily arises due to the reservoir neuron
timescale (decay rate or timeconstant τ) adaptation mechanism. In order to investigate this

45



3 Robust Temporal Information Processing with Self-adaptive Reservoirs (Experiments and Results)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

Normalized Frequency  (×π rad/sample)

P
o
w

e
r 

(d
B

)

Power Spectrum Post Training 

 

 

actual

fixed 

adapted 

Figure 3.2: Power spectral density estimate of laser data after training. SARN wihtout reservoir
neuron timescale adaptation (variable decay rate τ) fails to match the intensity-frequency
relationship of the actual laser data. Due to the periodic to chaotic fluctuations, certain low
frequency components can be seen to have much higher power as compared to others. SARN
with adapted τ captures this relationship significantly well, leading to the low prediction error
and robust performance.

further, we carried out the same task with SARN keeping all parameters the same as above,
however now with a fixed τ for each reservoir neuron (essentially timescale adaptation was
switched off, however IP functions normally). To compare the performance of SARN with fixed
τ and SARN with adapted τ , we calculated the power spectrum density (PSD) of the predicted
outputs of each network and compared it to the PSD of the actual laser data. As observed in
the Fig. 3.2, as expected there exists multiple frequency components in the original signal, with
significant variations in the loudness (power). Clearly, PSD of output signal from SARN with
timescale adaptation matches that of the original signal near perfectly. However, for SARN
without timescale adaptation, the PSD of the predicted output is much louder on average for
lower frequencies, with a steady drop in power as the frequency increases. As such without the
adaptive τ , the reservoir output significantly failed to learn the different fast and slow temporal
(normalized frequency) aspects of the Laser data.

Similar trend as the performance with the laser data, is also visible in case of the NARMA-15
task ( Fig. 3.3 (b)). Once again the plastic and adaptive changes in SARN lead to a much
higher performance (low nmse values) while comparing same size static networks. Interestingly,
although SARN outperforms static reservoirs here, the change in performance is not as pro-
nounced as the laser data case, with considerable difference only in larger network sizes. This
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Figure 3.3: Comparision of learning performance and memory capacity of SARN and a static
RNN (reservoir) on the three benchmark tasks (a) Performance (mean nmse values)
of SARN as compared to a static reservoir network for the Santa Fe lazer prediction task
plotted as a function of the reservoir network size. Improvement in the nmse values can be
observed using SARN with increasing network size. (b) Mean nmse values plotted against
the network size for SARN and static reservoir for the NARMA-15 task. In both (a) and (b)
error bars indicate standard deviation accross 10 different trials. (c) Plot of normalized root
mean squared error (nrmse)on the delayed 3-bit parity task for increasing delay (τd) values,
comparing a 400 neuron SARN (in red) with a same size static network (in blue). SARN
retains a longer memory, robust upto long delay spans as indicated by the lower nmse values.
Grey shaded regions indicate the standard deviation of error values accross 10 trials. (d)
Comparrision of total memory capacity as calculated by equation 3.4 across all delays. SARN
acheives a high MC of 47.173±2.831, while the MC in static reservoir was considerably low at
30.362± 2.793, for the same size network. Previous methods could acheive such long memory
spans only in case of specifically designed network topologies (Boedecker et al., 2009).
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can be attributed to the timescale adaptation of single reservoir neurons, that enable SARN
to robustly encode the multiple timescales in laser data. In case of NARMA, the task mainly
required a high degree of non-linear computation capability, which can be achieved by the com-
bination of IP and a large network size allowing diverse reservoir signals to be present.

The delayed 3-bit parity task requires an inherently long fading memory of the incoming ran-
dom input signals in order to compute delayed versions of it. As such, we used this task in
order to compare the performance of our adaptive reservoir network with static reservoirs whose
parameters were optimized offline in a task specific manner. As observed from the normalized
root mean squared error (nrmse) curves (Fig. 3.3 (c)) for the parity values calculated for each
time delay (τd), the SARN significantly outperforms static networks, specially for long delay
times. Furthermore, due to the random initialization of the static network, it tends to have a
much higher standard deviation of error (grey areas) and consequently was less robust across all
trials. We further quantified the total memory capacity of each network across all time delays
(Eq. 3.4) from 10 different trials. The SARN achieved a particularly high mean memory capacity
of 47.173 with standard deviation 3.831, while the static reservoir network had a mean capacity
of 30.362 with standard deviation 2.793. As such with adaptation, for the same network size,
an increase by ≈ 22% in the net short-term memory capacity of the network was observed.
Previously, non-normal networks (e.g. a simple delay line network) have been shown to theoret-
ically allow extensive memory (Ganguli et al., 2008) which is arguably not possible for arbitrary
recurrent networks. However our self-adaptive reservoir network shows considerable increase in
the memory capacity (with a fixed network size of 400 neurons), which was previously shown to
improve only in case of specifically designed network topology (permutation matrices as internal
network weight configurations) (Boedecker et al., 2009). Overall these results clearly indicate
the increased performance of SARN for temporal information processing for both non-linear
computation power as well as dealing with relatively long time spans of input history.

3.1.2 Multiple Attractor Pattern Recognition

In the previous subsection, based on standard benchmark tests, we clearly demonstrated that
the plastic mechanisms in SARN lead to a considerable increase in performance as compared to
static reservoir networks. These time series processing tasks reflect in general, various degree
of complexity in terms of non-linear computation, multiple timescale adaptation and temporal
memory, needed for brain like temporal information processing. Here we will now investigate
further, the effect of the plastic adaptation mechanisms introduced in this thesis on the ability
of the reservoir network to transiently hold both stable and fragile time-varying patterns, and
be able to selectively recall or recognize them in an input driven manner.

In order to generate these patterns we make use of the well known Mackey-Glass non-linear time
delay differential equation, which can have complex dynamics including stable periodic to chaotic
attractors (Mackey et al., 1977). Unlike low dimensional dynamical systems, such as the Lorenz
equation (Lorenz, 1963) and the Rössler equation (Rossler, 1979), the Mackey-Glass equations
are infinite dimensional systems, wherein changes in its parameters lead to bifurcations in its
dynamics. These have been related to the complex dynamics observed in physiological processes
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in biological systems (Glass and Mackey, 1988) and as such forms an ideal setting for generating
multiple attractor patterns, to test the performance of SARN to robustly encode such complex
and temporally intricate dynamics.

The general form of the Mackey-Glass time delay equation is as follows:

ḋ(t) = βmd(t) + αmd(t− τm)
1 + d(t− τm) (3.5)

where, βm = −0.1 and αm = 0.2. Here the parameter τm defines the amount of time of delay in
the system and for τm > 16.8 it displays high dimensional chaotic attractors.

Here, using τm = 5 and τm = 9 we generated two stable periodic time series and, using τm = 17
and τm = 28 we generated two mildly chaotic and highly chaotic time series data, respectively.
These were then loaded into the reservoir network (both SARN and a static version of the net-
work as before) as four input patterns. In addition, four different context signals were provided
as additional inputs in a 1-of-4 encoding (given as brief 100 ms pulse input to the network), such
that, only one of the context signals were active at a time. The task was designed such that, once
the reservoir is loaded with both the stable and fragile (chaotic) patterns, depending on which
of the context signal is active, it needed to learn to generate the respective time series pattern
accurately for a certain period of time (i.e. learn the respective stable or chaotic attractor).
As pointed out recently in Jaeger (2014), as well as from previous attempts to model chaotic
time series data (Jaeger and Haas, 2004), it is known to be non-trivial in the first place to train
an RNN to stably generate any one of these patterns. However, here we loaded both stable
and unstable attractor patterns into the same reservoir, and learn to generate all in a context
dependent manner. As such, in order to learn this task , the network needs to be able to encode
both stable and chaotic attractors in its internal dynamics.

Here we used a network of size N = 1000 neurons with eight inputs (four time-varying patterns
and four context signals) and two readout neurons representing the generated pattern (z(t))
along with its time delayed version z(t − τm). The network was initialized using the same
parameters as introduced in the experimental setup in the previous subsection, however, here
we used an initial network scaling factor of g = 1.5, such that the network activity showed
spontaneous chaotic dynamics (Sompolinsky et al., 1988). Pre-training of the SARN network
was carried out using 50 epochs of four Mackey-Glass time varying patterns with the different
τm values. After this, the network non-linearity and time constant parameters were fixed and
plastic changes of the internal recurrent connections and reservoir-to-readout connections were
carried out. In the static reservoir case, no pre-training took place, and the randomly generated
network was directly trained using supervised learning. The original signal d(t) and its delayed
version d(t− τm) was used as the training signal during the learning process in all cases.

In Fig. 3.4 we plot the four different delay embedded versions of the Mackey-Glass patterns and
the outcome of training with the SARN and static reservoir network. As observed in Fig. 3.4
(b), the SARN network robustly learns to generate both, stable and chaotic attractors, visibly
similar to the original pattern as generated from Eq. 3.5, Fig. 3.4 (a). Depending on the current
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Figure 3.4: Time delay embedded plots of the different stable and chaotic Mackey-Glass
attractors learned by the self-adaptive reservoir network as compared to a static
reservoir (a) Original stable periodic attractors (τm = 5, 9) and high dimensional chaotic
attractors (τm = 17, 28) generated by Eq. 3.5. (b) Attractors learned by the SARN network.
Here ’x’ markes the starting point of the learned trajectory. Depending on the contextual
input, any one of these output are active at a time. Visual inspection shows that the learned
attractor pattern is satisfactorily close to the original pattern above. (c) Learned attactor
patterns for the static resservoir. The stable periodic attactors resemble the original patterns
to some degree, however the network seems to get stuck in a limit cycle for high τm values,
and is unable to learn the chaotic attractors.
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Figure 3.5: Performance comparrison between SARN and static reserovir for the multiple
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τm = 9. (below) chaotic attractor case τm = 28. (b) Mean absolute error between the gener-
ated patterns and the desired pattern for all four cases comparing SARN and static networks.
Bars indicate mean values accross 10 different trials and error bars indicate standard deviation
with 95% significance level.

context input the network generates one of these patterns as output z(t) and z(t− τm), starting
from the location ’x’ in the phase space. Given that the network consists of 1000 neurons, the
reservoir network dynamics are embedded in a 1000-dimensional state space. Depending on the
context input, the network dynamics follows a particular trajectory along this 1000-dimensional
space leading to the corresponding output trajectory (see subsection. 3.1.3 for input specific
Lyapunov exponent analysis). However, in comparison, the static reservoir is unable to generate
all the four patterns. Visual inspection of Fig. 3.4 (c), shows that the static network learns the
stable attractors to some degree of accuracy, however performs poorly in generating both the
chaotic attractors. Furthermore, from the observed pattern of the learned chaotic trajectory,
the network dynamics seems to be stuck in a limit cycle of the stable periodic attractor and the
context inputs are unable to push the dynamics towards the chaotic domain, and the outputs
continue to generate a periodic pattern. This is further illustrated in the time-series segment
shown in Fig. 3.5 (a), demonstrating the learned outputs for time delays τm = 9 (stable) and
τm = 28 (chaotic).

In order to further evaluate the performance of both the reservoir networks, we carried out ten
different trials with random weight initializations for both SARN and the static network, and
recorded the mean absolute error (MAE) between the reservoir output z(t) (Eq. 2.13) and the
desired Mackey-Glass output (d(t)) for the specific time delay (τm). As observed in Fig. 3.5 (b)
SARN outperformed the static reservoir in all the four patterns. In case of the stable attractors
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for τm = 5, SARN recorded a considerably low MAE of 0.0220± 0.0072 and for τm = 9 an MAE
of 0.0175 ± 0.0054 was observed. Here however, the static reservoir network performance was
also relatively good for these stable patterns with an MAE of 0.0507±0.0101 and 0.0601±0.0112
for the first and second delay times, respectively. However, there was a significant difference
in error for the chaotic patterns, with MAE of 0.0274 ± 0.0069 for SARN and an MAE of
0.2370±0.0483 for the static reservoir (τm = 17). The difference in error was even larger for the
highly chaotic pattern (τm = 28), with an MAE of 0.02550± 0.0080 for SARN and an MAE of
0.2589±0.05108 for the static network (showing a performance drop of ≈ 82% ). Thus although
the static networks were able to learn the periodic patterns well, they failed to learn both the
mildly and highly chaotic patterns. Clearly plasticity and adaptation mechanisms (combination
of IP and neuron timescale adaptation) in SARN, allow the existence of both stable and very
fragile attractors inside the reservoir dynamics such that the respective output can be generated
in a robust manner. The static network dynamics on the other hand seem to get entrained to a
stable domain resulting in periodic output patterns, even when the context input signals were
changed (note that both the networks showed chaotic internal activity in the absence of inputs
owing to the recurrent weights scaling with g = 1.5).

3.1.3 Near Critical Dynamics: Largest Lyapunov Exponent Analysis

In order to formally characterize the dynamics of the networks and also check the influence of the
context input signals on the underlying dynamics, we estimated the largest Lyapunov exponent
(LLE - λ) of the network trajectories before and after training for both the reservoirs. LLE
provides a measure of the rate of separation of two nearby points in the network state space
and provides a standard approach for determining if a dynamical system is chaotic (Laje and
Buonomano, 2013). Although traditionally LLE analysis is designed for the characterization of
autonomous dynamical systems (ergodic), previous work (Jaeger and Haas, 2004), (Rodan and
Tino, 2011), (Laje and Buonomano, 2013) has shown that it can be extended to input-driven
dynamical systems (recurrent neural networks of the reservoir type). We estimated the local LLE
λ (finite time estimation, see appendix A.2) using a procedure similar to the estimation of local
divergence rates of nearby trajectories from finite time series data as demonstrated in (Kantz,
1994), (Sprott and Sprott, 2003) and extended to RNNs in (Jaeger and Haas, 2004). If the
estimated value of λ is positive and greatly bigger than zero, it means that the perturbations
in the network are amplified (locally diverging trajectories) causing the network to be in a
supercritical or chaotic dynamical regime. If it is negative, then perturbations are attenuated
(locally contracting trajectories) causing network to be subcritical or highly stable dynamical
regime. However for a λ value equal or very close to zero the network exhibits critical dynamics
(marginal stability) and is said to be on the so called ”edge of chaos” (Legenstein and Maass,
2007b).

From the ten trials for the learning of the Mackey-Glass attractors, we got ten different networks
(N = 1000, g = 1.5), of both SARN and static type. For each of these ten networks, λ was
numerically estimated (Fig. 3.6) for the spontaneous (no external input) network dynamics, as
well as for the network trajectories elicited by each of the four contextual inputs (recall that

52



3.1 Synthetic Time Series Processing

0

0.2

0.4

0.6

L
a
rg

e
st

 L
y
a
p
u
n
o
v 

E
x
p
o
n
e
n
t 
(λ

)

no input input 1 input 2 input 3 input 4

pre-trained SARN

post-trained static

post-trained SARN

locally stable

chaotic

Figure 3.6: Largest Lyapunov exponent estimation before and after training for SARN com-
pared with static reservoirs Plot of mean LLE values as estimated across ten trials for
the ten different reservoir networks. The pre-trained SARN and static reservoirs both have
high positive λ value 0.6213 ± 0.0727 in the no input condition, displaying chaotic sponta-
neous network activity (here only SARN results is displayed as both networks are essentially
the same in the initialized state with N = 1000 and g = 1.5). Post training, all the four
context inputs induced locally stable trajectories in the static reservoir network, indicated by
the positive λ values very close to zero (input 1: 0.0138 ± 0.0064, input 2: 0.0155 ± 0.0073,
input 3: 0.0204 ± 0.0077, input 4: 0.0188 ± 0.0089). As such the network dynamics were
constrained in periodic stable activity, leading to the relatively good performance for generat-
ing stable Mackey-glass attractors, but very poor performance for the two chaotic attractors
(see Fig. 3.5 (a) and (b)). In the post-trained SARN, context input 1 and input 2 reasult in
very small positive, close to zero λ value, indicative of the induced network trajectories being
locally stable (input1 : 0.0160± 0.0072, input 2: 0.0214± 0.0077). However in this condition,
input3 and input 4 lead to diverging network trajectories as indicated by the significantly
positive values of λ (input 3: 0.2331 ± 0.0469, input 4: 0.3723 ± 0.0467). As a result post
training, the SARN network can be seen to encode both locally stable and diverging (chaotic)
trajectories in an input dependent manner. Here the error bars indicate standard deviation
of the estimated LLE values with 95% level of significance.
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Figure 3.7: Local Laypunov exponent of different reservoir networks, ploted against increas-
ing scaling parameter value post training or local adaptation. Here the three reser-
voir networks were randomly initialized with identical paramter settings. In case of the static
reservoir (green line), LLE was estimated for the spontaneous activity of the originally cre-
ated network. In case of innate trained (black line), after random initialization with each
scaling value g, supervised innate learning of recurrent connections were carried out and LLE
was estimated on the resultant trained network. For SARN, after each initialization, IP and
timescale adpatations were carried out. LLE was then estimated on the adapted network.
The blue dashed line shows the optimal value of g = 1.5 which resulted in SARN being at a
critical regime.

these inputs were 1-of-4 encoded such that, at a time, only one of the channels were active
and provided a brief 100 ms pulse signal). Prior to training, the reservoir networks initialized
with a scaling parameter of g = 1.5, demonstrated exponentially diverging trajectories (chaotic
dynamics) for the spontaneous activity indicated by the high positive mean LLE value. Both
SARN and static networks showed similar chaotic dynamics owing to the scaling factor g being
greater than one (Sompolinsky et al., 1988). However after training the network, the mean
λ across the static networks for all the four context inputs was a small positive value (not
significantly larger than zero), indicating locally stable dynamics. This clearly explains the
reason the static networks, although learned to generate the periodic Mackey-Glass patterns,
in the same network the other two inputs (with larger τm) failed to drive the readout neurons
to generate chaotic patterns. On the contrary, in case of the SARN networks, context input 1
and input 2 (mapping to stable output patterns) result in a significantly positive mean value
of λ, suggesting chaotic trajectories. As a result, SARN was able to learn to generate both
the mildly and highly chaotic Mackey-Glass patterns. These results show that, the adaptation
via intrinsic plasticity and neuronal timescales in SARN allows the network dynamics to be
modulated differently by the context inputs, allowing both stable as well as chaotic dynamics.

Recently in (Laje and Buonomano, 2013), a new supervised synaptic plasticity rule called ’innate
training’ for the reservoir recurrent connections (error gradient decent learning) was introduced,
that essentially uses the spontaneous activity (innate non-noisy) of the reservoir neurons as the
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target signal to adapt the recurrent weights in the presence of internal noise and external inputs.
They showed that using this method it was possible to enable the network dynamics to exhibit
both chaotic as well as locally stable trajectories. However our results here clearly demonstrate
that, even in the absence of such biologically implausible innate supervised plasticity, local
adaptations of neuron firing rate curve (IP) and neuronal time constants, in combination with
standard supervised synaptic plasticity (where the target signal is the desired output and not an
innate trajectory) was sufficient to demonstrate both stable and chaotic network dynamics, which
also significantly outperformed static reservoir networks. In order to quantify further, the impact
of our local adaptation mechanisms on the network dynamics, we estimated the local Lyapunov
exponents for three similarly initialized, same size (1000 neurons) reservoir networks, a static
version, an innate trained version (Laje and Buonomano, 2013) and SARN. In all cases we varied
the scaling parameter g (g � 1 - spontaneously sub-critical to g � 1 spontaneously chaotic) and
estimated Lyapunov exponents after training or local adaptation of the networks. As observed
in Fig. 3.7, with increasing values of the scaling parameter, the estimated Lyapunov exponent
also increases, indicative of gradually diverging dynamics. However, the largest increase in the
estimated Lypaunov exponent was observed for the static reservoir network, suggesting strongly
chaotic network dynamics when g > 1.0 (it should be noted that this is the spontaneous network
activity). In comparison the innate trained reservoir network demonstrated critical dynamics
at g = 1 (λ = 0) and then slowly increasing λ for g > 1. As a result the overall network still
remains locally stable or near critical for g close to one, enabling the network to still perform
well under the influence of large noise. However, in case of SARN, after adaptation, larger
values of the scaling parameter did not have a strong impact on the network dynamics with the
estimated λ value being very close to zero. This indicates that the overall network dynamics
largely remains close to the critical point or the so called edge of chaos with λ ≈ 0, leading
to the optimal levels of computation (Legenstein and Maass, 2007a) and information storage
and transfer (Boedecker et al., 2012) in SARN. As such the above results clearly demonstrate
that local adaptations in the reservoir network not only enable input dependent modulation of
network trajectories in different dynamic regimes, but overall, the spontaneous dynamics of the
adaptive plastic network is inherently closer to the critical limit (optimal scaling parameter in
the above example is indicated by the blue dashed line in Fig. 3.7, for g = 1.5).

3.1.4 Intermediate Summary

Using complex time-series processing tasks as abstraction of biological temporal information
processing (in the short timescale of milliseconds to seconds), in this section we clearly demon-
strated that with local unsupervised adaptation and plasticity, SARN significantly outperforms
its static counterparts. It not only enables robust non-linear computations but can also achieve
extended memory capacity for a similar sized network (without the need for specialized network
topology) (Boedecker et al., 2009). Real environmental time-varying stimuli is mostly composed
of multiple timescales. Often with fast and slowly varying components. Using the periodic to
chaotic fluctuations of the Santa-Fe real laser data, we showed that adaptation of individual
neuronal time constants can indeed enable reservoir networks to effectively deal with such mul-
tiple timescales or multiple frequency components of incoming signals. Although it has been
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traditionally difficult to train a single RNN to generate chaotic patterns for arbitrary periods
of length (Jaeger and Haas, 2004), here we showed for the first time, that with our adaptation
mechanisms SARN can learn to represent and generate both stable and chaotic attractors in
the same network. Furthermore, Lyapunov exponent analysis proved that post training, SARN
operates at the near critical regime or the edge of chaos, which has been shown to be optimal
for computation. It should be noted that this is in contrast to other existing self-organized
RNN models (Lazar et al., 2009), where in a combination of synaptic and homeostatic plasticity
mechanisms has been shown to lead to sub-critical dynamics. In the next sections we dive into
the workings of SARN even further from the perceptive of behaviorally more relevant temporal
processing scenarios in the timescale of seconds to minutes, like delay temporal memory, time
perception and complex motor processing.

3.2 Timing and Delay Temporal Memory

The ability to tell time is critical for the learning of ordered motor behaviors as well as the
underlying cognitive processes, in all living creatures. However the mechanisms by which bi-
ological brains tell time is still largely unknown. As such, in this section, initially, we show
that the underlying dynamics of SARN can be used naturally to generate clock like, timed re-
sponses. Furthermore, it also captures the experimentally observed variance signature of timed
responses, that typically follow generalized Weber’s law where the variance of specific responses
are linearly related to the square of the interval being timed (Buhusi and Meck, 2005). Unlike
previous models of RNNs, that have used specific mechanisms of short-term synaptic plasticity
(Buonomano, 2000) or supervised recurrent layer noise suppression techniques (Laje and Buono-
mano, 2013), in order to discriminate temporal stimuli, here we show that the local adaptation
mechanisms of SARN were sufficient to learn to respond at specific intervals of time while also
capturing the underlying Weber’s relationship. Finally, we demonstrate the ability of the same
network to robustly perform in delayed response tasks, that require temporary storage of time
varying input signals in order to make future decisions. This is applied in a closed loop embodied
bio-inspired walking robotic system thus highlighting the functional relevance of our model to
’understanding the brain by creating the brain’ (Kawato, 2008) approaches.

3.2.1 Learning to Tell Time: Responding at Specific Intervals

In order to characterize the ability of SARN to generate responses at specific intervals of time
we use the same general experimental setup as in the previous section 3.1, using a 1000 neuron
recurrent network, scaled with a factor of g = 1.5. In this case only a single input neuron was
connected to the recurrent layer that provided a brief 50 ms square pulse of high amplitude (2.5)
as input to the reservoir network. A single readout neuron was connected with the objective
of generating pulse output signal at different time intervals (100 ms to 1 sec). The desired
output signal was flat at all times with a small finite value except at a precise time intervals
when it pulses. The recurrent network state activity was governed as before by the standard
equation 2.14. In order to introduce additional variability and test the robustness of the network,
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Gaussian white noise with zero mean and standard deviation 0.001 was introduced inside the
network as the bias term Bi for each recurrent neuron. 20 test trials were carried out after
adaptation and supervised training of the network, in order to produce timed responses at
increasing intervals of time starting from 100 ms.

As observed in Fig. 3.8 (a), a brief input pulse of 50 ms was used to stimulate the reservoir
network, transiently. After this initial burst of input, the network receives no further external
stimuli. In this example, the network was required to pulse exactly after a 1 s or 1000 ms time
interval (given by the green signal). Since this is a continuous system, in between the initial
pulse and the final desired pulse, the network goes into spontaneous dynamics, as indicated by
the activity of few randomly selected recurrent layer neurons. Here we plot the signals from
multiple trials. Pre-training of the network to fix the reservoir neuron non-linearity and time
constant parameters were carried out initially using 50 epochs of noisy (standard deviation 0.01)
versions of the input pulse and varying the pulse duration between 50 − 150 ms. As indicated
by the middle plot in Fig. 3.8 (a), after training SARN, prior to any input pulse coming into
the reservoir, there is considerable trial-to-trial variability in the dynamics of the network,
with diverging trajectories. However, post training, on the arrival of the brief input pulse, the
individual recurrent neurons follow a single trajectory (still diverse between neurons owing to
the recurrency and different time constants in the network) with negligible variation in between
trials. At the same time, during the period when there is no input to the network, the readout
neurons activity is also considerably noisy and varies in between trials (as indicated by the red
signal in Fig. 3.8 (a) below). Post training, however, the readout neuron was able to successfully
learns to remain quiescent until the training delay period of 1 s and then produces an output
pulse, almost perfectly matching the desired signal. Unlike the previous examples using the
benchmark data-sets, in this case, since the input to the network is very brief in duration, in
order to generate outputs at significantly longer time intervals, it needs to effectively make use of
fading memory of incoming input stimuli. As such, here we see that SARN after training, clearly
learns to behave like a clock model, with the precisely timed output pulses reminiscent of ticks
at specific intervals by a mechanistic clock. Furthermore the stability of the clock like behavior
can be observed by taking the norm of the reservoir-to-readout synaptic strengths (|W out|). If
|W out| is large in value, then even small disturbances in the internal recurrent neural activity
will be greatly amplified in the readout activity leading to unstable behavior. As observed in
Fig. 3.8 (b), after training |W out| remains considerably small and without fluctuations after the
input pulse arrives into the network, resulting in stable output in the readout neurons at the
exact time interval.

We repeated the same procedure across 20 trials, however with a much larger noise (zero mean
with standard deviation 0.1), and for different time intervals, ranging from 100 ms to 1000 ms.
The large noise was used deliberately in order to quantify the variance (in milliseconds) of the
peak of SARN generated signal (timed pulse output) and the desired time interval of the pulse.
Experimental studies have shown that in a given task (involving timed responses), the variabil-
ity of timed responses are often well described by Weber’s law, i.e. there is a constant ratio
between the standard deviation of the response and the interval being timed (Buhusi and Meck,
2005). Specifically for motor timing involving temporal processing or timing in the timescale
of a few milliseconds to seconds, it has been established that the variability is well described
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Figure 3.8: Clock like behavior with SARN, learning to generate pulses at specific intervals
of time (a) A brief 50 ms pulse is provided as driving input to the reservoir network (blue).
The network is expected to learn to generate precisely timed response after 1000 ms, given
by a desired Gaussian pulse (in green). In between, the network recieves no further external
inputs. The middle plot shows activity of select reservoir neurons after adaptation and su-
pervised learning, across 20 trials. Prior to the arrival of the input pulse, network activity is
highly irregular with each neuron following randomly different trajectories in between trials.
After learning however there is little trial-to-trial variance in the trajectories of the individual
neurons. The bottom plot shows the learned output from the reservoir network across all
trials. The readout neuron activity is random prior to the arrival of the input pulse, but after
presentation of the input, it pulses precisely after a dely of 1000 ms or 1 s. (b) The plot of
the norm of reservoir-to-readout weights W out showing a small steady value after learning.
As a result the output remains stable even in the presence of high activivation values of reser-
voir neurons. Trials were carried out in the presence of Gaussian noise with zero mean and
standard deviation 0.01.
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3.2 Timing and Delay Temporal Memory

Figure 3.9: SARN matches experimentaly observed generalized Weber’s law of a liniear re-
lationship between peak time variance and square of the timed interval (a) Ex-
perimental data obtained from time perception (•) and production tasks (◦) from (Ivry and
Hazeltine, 1995) showing a linear relationship between the mean variances (σ2) and the square
of the duration timed (s2), capturing the generalized Weber’s law where the liniear relationsip
follows, σ2 = k2s2 + C. Where k is the slope of the line and C is the intercept on the y-axis
representing a time independent component of the variance. (b) SARN reproduces similar
liniear relationship (high regression coefficent of R ≈ 0.98) between square of the different
timed intervals from 0.1s to 1s and their mean variances. It was also able to capture the
underlying generalised Weber’s law with a non-zero Y-intercept demonstrating that it indeed
acts as a model for biological time perception within the timescale of milliseconds to seconds.
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by the generalized Weber’s law (GWL). Wherein, the variance of the response is linearly re-
lated to the square of the interval being timed, plus an additional variance term which is time
duration independent (Ivry and Hazeltine, 1995),(Hazeltine et al., 1997). This experimentally
observed variance signature of timed responses has thus been used as an important criterion to
evaluate different models of timing (Laje and Buonomano, 2013). Here, our SARN model when
tested with the different timed intervals, also captures well this underlying linear relation of the
generalized Weber’s law of timing. In figure 3.9 left, we plot the original experimental results
showing this linear relationship as obtained from two different interval timing tasks, namely time
production and time perception (Ivry and Hazeltine, 1995). As observed in figure 3.9 right, with
a noise level of 0.1 at each reservoir neuron, similar to the experimental results, we obtained a
linear fit (with a regression coeffecient of r > 0.95) for the square of the time responses with the
variance of the time of peak of the output signal. Furthermore, as expected from the GWL, the
slop did not intercept at zero, but at a finite positive value of variance, which provides in this
case the additional time independent term of the relationship. However, in this case changing
the amount of noise or training on very large time intervals (affecting the total timing capacity)
may lead to a non-linear relationship. Nevertheless, the adaptive mechanisms in SARN clearly
enable it to behave as a timing model (atleast in the short timescale of milliseconds to seconds),
that also fulfills the critical criteria of a linear increase in temporal variability with increase in
interval duration (squared) as observed in time perception by biological systems.

3.2.2 Delay Temporal Memory with Artificial Agents

In order to use a brief input stimuli to produced precisely times responses at specific intervals,
the reservoir network needs the ability to transiently hold a fading memory of the incoming
time-varying inputs. Thus a natural extension of such a clock like or timing mechanism is
towards delay temporal memory to guide specific behaviors of organisms. We use the term
delay temporal memory to describe the temporary storage of input or driving stimuli to the
network for finite delay periods. Here we demonstrate the temporal memory capacity of our
system, by employing a behaviorally relevant, variable delay temporal memory task of navigation
through a T-shaped maze. The experiments are carried out using a complex physical walking
robot AMOS-II Fig. 3.10. For this task we used a moderate reservoir size of N = 500 neurons.
This was fixed keeping in mind the extended delay memory required for the T-maze in the
real robot experiments. All other default parameters were initialized with values similar to the
experimental setup in the previous sections. The network consisted of 4 input neurons providing
sensory time-varying information to the reservoir and 2 readout neurons that controlled the left
and right turn motor neuron activity of the robot.

The primary objective of this task is to let the robot move from the starting position until the
end of the maze while making the correct turn at a recall zone (see Fig. 3.10 (c) and Fig. 3.11).
While walking along the corridor, the robot receives a brief cue signal (a bright light activation
for a short duration of time) either to their left or right side. This provides information to the
robot regarding the required turning behavior at the T-junction. On reaching the end of the
corridor the robot should make the correct turn corresponding to the side at which the signal
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Figure 3.10: (a) Biologically inspired six-legged walking machine AMOS II. (b) Leg structure of AMOS II
inspired from a cockroach leg (showing the three different leg joints). (c) The delay temporal
memory T-maze navigation setup showing short (∆1) and long time delays (∆2) for maze
A and B, respectively. Cue is given as a light signal either to the right or left of the robot,
indicating the corresponding turn at the recall zone (T-junction).

was given.
In order to demonstrate the generalization capability of the system to longer time delays, we
divided the task into two mazes (see Fig. 3.10 (c)) of different lengths. Maze B requires a
significantly longer temporal memory (larger delay between cue and recall) as compared to
maze A. This delay period is typically in the timescale of a few minutes. Here the robot had to
learn both the reactive behavioral task of turning at the T-junction as well as recall the cue signal
shown transiently at a much earlier point in time, to negotiate the correct turn. Specifically, here
one can imagine the cue signal providing the correct context information to the network based
on which one of the readout neurons need to be active at a precise time interval (length of maze).
Hence, in the absence of the recall signal, this is akin to the previous task of generating clock
like behaviors. The recall signal at the T-junction provides the necessary correlation signal to
decide when to turn, while the previous cue signal gave the information about in which direction
to turn. As such, here we can avoid the use of conventional methods like using landmarks to
identify the T-junction.

Description of the complex walking robot AMOS-II

AMOSII (successor to AMOS robot (Steingrube et al., 2010)) is a biologically inspired hardware
platform (Fig. 3.10) consisting of six identical legs. Each leg has three joints. The morphology of
these multi-jointed legs is modeled on the basis of a cockroach leg but with the tarsus segments
ignored. The body of AMOS II consists of two segments: a front segment where two forelegs are
installed and a central body segment where the two middle and the two hind legs are attached.
They are connected by one active backbone joint inspired by the invertebrate morphology of
the American cockroach’s trunk. This backbone joint is for up- and downward bending, which
allows it to climb over obstacles. All leg joints including the backbone joint are driven by digital
servomotors.
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The size of AMOS II is 30 cm wide, 40 cm long, 22 cm high. The weight of the fully equipped
robot (including 19 servomotors, all electronic components, sensors, and a mobile processor) is
approximately 4.5 kg. AMOSII has a total of 17 sensors. For the maze-navigation experiments
we only make use of the two light dependent resistor sensor (LDR1,2) on the left and right sides
of the front body part, and the front two ultrasonic sensors (US1,2). These act as the sensory
inputs to the reservoir network for the T-maze navigation task. We use a Multi-Servo IO-Board
(MBoard) installed inside the body to digitize all sensory input signals and to generate a pulse-
width-modulated signal to control servomotor position. The MBoard is connected to a personal
computer (PC) via an RS232 interface. Electrical power supply is provided by batteries: one 11.1
V lithium polymer 2,200 mAh for all servomotors, two 7.4 V lithium polymer for the electronic
board (MBoard) and for all sensors. For more information of AMOSII, please refer to Ren et al.
(2012) and Manoonpong et al. (2013b).

The experiment consisted of 3 parts. In the first part data-set acquisition was done using
human controlled navigation of AMOS-II through the maze and the sensor and steering signal
(see Figs. 3.11 (a) and (b)) readings were recorded. These act as the inputs and desired outputs
of the network respectively. 20 runs with different starting positions and for both left and right
turn cue were carried out. This was done for both small and long time delays between cue and
recall zone. This data was then used for the supervised learning and pre-training via IP and
AIS based time constant adaptation of the reservoir network. Finally online testing was carried
out with the trained steering signals being fed into the AMOS-II controller.

In this setup the longest maze B, had a delay time fifteen times larger than the longest interval
(1000ms) presented in the previous clock example, of the order of 1500 time steps (1 time step
≈ 100ms) between the cue and the recall (Fig. 3.11 (a)). Here, AMOS-II locomotion was driven
by modular neural locomotion control mechanism (see Fig. A.1 in appendix A.3) (Manoonpong
et al., 2013b), with the learned output from the reservoir network being used to steer the robot
in the left or right direction (it controls the VRN network in Fig. A.1). In Fig. 3.11 (a), we
plot the sensor signals, that act as the time-varying input stimuli to the reservoir. The onset
of LDR1 triggers the left turn cue, while the simultaneous onset of both the front ultrasonic
sensors US1,2 signals at the recall zone. A high-dimensional (on the 500 dimensional reservoir
state space) convolution of these signals reverberate as neural traces inside the reservoir network
(a subset of these diverse set of signals is plotted in Fig. 3.12 (b)). The local active information
storage (Eq. 2.17) used to modulate the time constants of individual neurons in SARN (Fig. 3.12
(a)) shows that the time of the two events of cue and recall are recognized as high information
content regions (500 time steps and 1500 time steps, respectively), while the reservoir neurons
have a relatively low local AIS value during the remaining time steps. As a result, due to the
mechanisms of timescale adaptation based on Eq. 2.19, the neuronal time constant or decay rate
τi gets modulated such that most neurons have a low decay rate (high local memory) at the time
of the left or right turn cue and then again at the end of the corridor (Fig. 3.11 (c)) when recall
signal gets triggered. During the remaining time steps, the reservoir neurons have a higher
decay rate (low local memory). As local neuronal decay rates or time constants act as their
local timescales and collectively control the timescale of the reservoir network (see Eq. 2.14);
this mechanism leads to a slowing down of the reservoir dynamics at high information content
regions (information storage) of cue and recall, and speeding up during the rest of the time.
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Figure 3.11: (a) Plots of the sensor signals from AMOSII recorded during the experiment, which act as
the four inputs to the reservoir network. The signals shown are from a single run where the
cue signal (light source) was applied to the left, while walking along the corridor (LDR1 �
LDR2). The two ultrasonic sensors become active at the same time when AMOS-II reaches
the T-junction (cue recall zone). (b) Plots the trained reservoir network outputs (Solid-line:
learned behavior; Dotted-line: desired behavior). Here the left steering signal is active (+1)
while the right steering signal is inactive (-1) and the robot makes a left turn (behavior
learned at the same time step of the activation of the US1 and US2 sensors indicating the
recall zone. (c) Pictorial representation of the T-shaped maze setup. While walking along
the long corridor, a cue in the form of a light signal is applied either to the left or right
side of AMOSII. The robot needs to recall this cue at the recall junction and execute the
corresponding turning behavior. The temporal delay between the time of presentation of
cue and the end of the corridor (T-junction) is the total memory span. This can vary with
different delay times for small and long mazes. The screenshots (right) from the experiment
show the actual behavior of the hexapod while walking along the corridor.
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Figure 3.12: (a) Plot of the Local active information storage values for a subset of 300 reservoir neurons
at different time steps (color coding corresponds to the local active information storage
values at different time steps). (b) Reservoir activations for a randomly selected subset of
the neurons. (c)Projection of the network activity on the first three principle componets.
Depending on the input signal the network follows distinct and separate trajectories through
the high-dimensional state space. These trajectories can be imagined as stable dynamic
attractors in the network. As such the readout neuron is able to discriminate between a left
and right turn by following a path along one of these trajectories. Here each dot represents
the value obtained from a given trial for a single maze, at each point in time.

Using the online supervised learning mechanisms, the reservoir network successfully learns the
correct turning behavior. In this case due to the previously applied left turn cue, only the left
steering signal is active, while the right steering signal remains dormant and the robot makes the
corresponding turn. It is important that the robot starts turning at the correct time in order to
prevent an early turn or crashing into the wall of the corridor. This was clearly achieved as seen
from the near perfect coincidence between the desired and the actual output signals (Fig. 3.11
(b)).

The reservoir outputs were post-processed to get rid of signal noise before being feed into the
modular neural controller of the robot. The robot was tested on both short maze A (short delay
time) and long maze B (significantly longer delay time) setups and the learning performance
(measured as percentage of successful turns) was averaged over 20 runs for both left and right
turn scenarios. As demonstrated in Fig 3.13 (a) and (b), in case of the shorter maze, SARN
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Figure 3.13: ((a) Performance on the large maze B task after 20 trials for static reservoir vs our self-
adaptive reservoir. Our network outperforms by an order of 10%. (b) Performance of the
robot in both mazes (Maze A shorter than Maze B) measured in terms of the percentage
of correct times the robot took the proper trajectory (Left/right turn at the T-junction) to
reach the end point. 5% noise is considered on all sensors.

achieved a performance of 92.25% (±2.88 standard deviation). A good generalization capability
for the longer maze B was also observed with the average performance of 78.75% (±3.11 standard
deviation), both for right turn. This was significantly larger than the performance obtained for a
static reservoir network (Antonelo et al., 2008) for a similar task. Without timescale adaptation,
in case of the static reservoir, AMOSII showed a wall following behavior with turning being
triggered prematurely and the output signals reconstructed without threshold crossing (less
than 1). It should be noted that in the absence of the recall signal, the task was similar
to the clock example, however with an extended delay period. Thus here we clearly show,
that not only SARN can generate timed responses, but can also produce robust short-term
(temporal) memory guided behaviors in complex artificial systems, while also outperforming
its static reservoir counterparts. The overall performance of SARN could be further enhanced
if additional sensors were made available to the robot, owing to the availability of additional
discriminatory input signals to the reservoir.

The effect of the time varying input signals to the reservoir dynamics was further accessed using
principle component analysis (PCA) of the reservoir network activity. Fig. 3.12 (c), plots the
projection of the 500 dimensional network activity onto the first three principle components
(here the first five principle components explained 98% of the variance in the activity) in order
to visualize the actual input dependent trajectory the network follows. Each point shows the
result of 10 different runs to calculate the PC’s. Depending on the input signal that is active
(LDR1 for left light sensor and LDR2 for right light sensor) the network dynamics follows two
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separate trajectories through the high dimensional space, which is robust across the different
trials. These trajectories act as dynamics attractors, that given the current inputs constrain
the network activity to follow a stable direction along its path. As a result, the the readout
neurons robustly learn the corresponding behavior of turning left or right. This in combination
with the previous results of timing behavior, proves that SARN can not only hold time-varying
inputs transiently in its activity to produce outputs at particular points in time, it uses inputs
as contextual information to learn separate high dimensional attractors (trajectories) through
its state space. Recent experimental studies have also demonstrated such context-dependent
processing by the recurrent dynamics in the pre-frontal cortex (Mante et al., 2013) In the next
section we will see how such context-dependent information and the network transient dynamics
can generate complex motor patterns which is also robust to external perturbations.

3.3 Complex Motor Pattern Processing

The generation and processing of complex motor patterns forms one of the essential outcomes
of robust temporal information processing in the brain, within the timescale of few milliseconds
to seconds. A number of recent experimental (Churchland et al., 2010) and theoretical studies
(Hennequin et al., 2014), have shown that the execution of limb movements involves complex
transient dynamics within populations of neurons in the motor cortex. As such, here we show
that our adaptive and plasticity mechanisms in SARN complements the inherent transient dy-
namics of the network, by successfully learning complex time dependent motor behaviors. This
is presented as a natural extension of the previous section, where in, we teach the reservoir net-
work to generate different handwritten patterns using high-dimensional temporary input stimuli
and contextual inputs, which is also stable to external perturbations or noise.

Specifically here we create an interval timing dependent handwriting generation task for a mul-
tiple joint robotic arm. A 3000 neuron SARN model was used in this case (Fig. 3.14 (a)). All
other parameters were initialized similar to the experimental setup in section 3.1.1. Handwriting
data for all the 26 letters of the English alphabet were collected using a human participant1.
Each letter in this case was represented by two time-varying signals that maps the letter onto
a 2-dimensional (x and y co-ordinates) surface. These provide 26× 2 dimensional inputs to the
network, and was presented as a brief stimuli of 210ms duration (Fig 3.14 (b)). The network
also received a fixed auxiliary bias of 0.8 as a constant input. Additional two context inputs
were given as a brief 100ms square pulse starting at 250 ms after the network was initialized.
This was encoded in a 1-of-2 scheme, such that at a time only one of the context signals was
active and the other remained zero. Two readout neurons were connected to the reservoir which
were trained to generate the x and y coordinate values (2-dimensional time-varying signal) of
the words ’memory’ and ’apple’, after a delay period of 150 ms from the time the context signal
ends (see color coding in Fig. 3.15 (a)). The learned x and y coordinates were then transformed
into joint angles of a multiple joint robotic arm using inverse kinematics, such that it learns

1Handwriting samples were taken from a single person, where the person was asked to write single letters (’a’
to ’z’). Data were obtained by the use of a pen tablet (Wacom Intuos3 A3 Wide DTP) with a size of 48.8 cm
ÃŮ 30.5 cm, resolution of 5080 lpi and a sampling rate of 200 Hz.
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Figure 3.14: Time interval based complex motor pattern generation with SARN(a) A 3000 rate
coded neuron SARN used for the complex motor pattern generation task. Inputs consisted
of 26 × 2 time series data of handwritten English alphabets, along with two context input
signals encoded in a 1-of-2 encoding scheme (one one active at a time). The active signal
was presented as a brief stimulus of 100 ms duration starting at 250 ms time point after
the network was initialized. The network also received a fixed auxiliary bias of amplitude
0.8. The readout layer consists of two neurons encoding the x and y trajectories for right
either the word ’memory’ - context 1 or the word ’apple’ - context 2. These x and y values
were converted into joint locations for a multiple joint KUKA robotic arm using inverse
kinematics (right figure). (b) The input trajectories for alphabets ’a’, ’m’ and ’z’ color coded
by the time of of activations. The right panel shows the x and y time series data for the word
’a’ that is the actual input to the reservoir. This was active for a maximum time interval of
210ms. After this period the network receives no time series input other than the constant
auxillary bias signal. Only at 250 ms time point one of the context signal was activated for
a brief duration signaling the readout neurons to learn to write one of the two words.
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to write the corresponding word. The task was designed such that the context signal-1 should
trigger the network to learn to generate the word ’memory’ starting at the precise time point of
500ms, while context signal-2 should trigger the network to learn to generate the word ’apple’
starting at the same precise point in time. Thus in order to successfully learn the task, the
networks needed to perform both interval timing as well as learning the exact spatio-temporal
pattern of activity (motor output) based on transiently active input signals.

After pre-training the network with IP and timescale adaptation based on the inputs, supervised
learning on both the desired output trajectories (2D signal for each word), SARN was able to
robustly learn to write both words, with remarkable accuracy starting at the precise time point of
500ms (see Fig. 3.15 (a)). PCA on the 3000 dimensional network state space showed that before
learning and adaptation, the reservoir dynamics followed a particular trajectory through the
high dimensional state space (Fig 3.15 (b) left). However after learning, the two context inputs
were able to elicit two distinctly separate trajectories (Fig 3.15 (b) right) through the network
space, thus enabling the readout neurons to generate the corresponding motor pattern or word.
Furthermore, in SARN, these trajectories are locally stable and act as dynamic attractors, such
that the network dynamics remain stable to external perturbations. This can be clearly seen
by perturbing the network activity after the readout neurons have already started generating
the desired trajectory. We perturbed the network using a 200ms pulse with considerably high
amplitude of 0.5, of an additional input connected to all the neurons in the recurrent layer of
the reservoir starting at 1500 ms time point (at the time of the letter ’e’ in the word ’memory’).
As observed in Fig. 3.16 (a) and (b), the external perturbation knocks the network out of its
original trajectory, however within a few milliseconds the network was able to recover to its
original trajectory (see 3.16 (b) zoomed plot) and continue generating the exact learned motor
pattern. This demonstrates the ability of SARN to encode locally stable dynamic attactors as
high dimensional trajectories through its network space.

Furthermore, clear separation of states or these trajectories can be observed for different context
inputs. Thus this provides a crucial link to the experimental evidence for context dependent
decision making in the cortex (Mante et al., 2013), as well as model for self-adaptive processes
in RNNs (simple abstraction of the cortex) that by way of stable transient dynamics can sus-
tain such complex motor behaviors. It should be noted that in a recent work from Laje and
Buonomano (2013), a similar handwriting generation task was demonstrated (however with sig-
nificantly less perturbation time 10ms and without a delayed input component), in order to
motivate the existence of locally stable channels in otherwise chaotic RNNs. They however used
a specifically created supervised learning rule that let reservoir neurons to learn their own innate
trajectories in order to generate such complex behavior. Here, we demonstrate that even in the
absence of any such specialized supervised mechanism, local adaptation of neuronal timescales
coupled with biologically realistic intrinsic plasticity mechanisms are sufficient to generate com-
plex motor patterns in a noise robust manner. We further quantified, the performance gained
by our self-adaptive model by comparing it to the state of the art static chaotic RNN (Sussillo,
2014) and the ’innate trained’ RNN model from Laje and Buonomano (2013). In all three cases,
the same network size of 3000 neurons were used, with their individual parameters optimized
for this particular task.
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Figure 3.15: SARN learns to generate the correct motor pattern depending on the context
input((a) Context dependent motor output generated by SARN color coded by the time
of each event. The black line shows the actual desired trajectory for each pattern (words),
(right) learned response of the KUKA robot arm for writing the word ’memory’(b) PCA on
the reservoir network activity (left) before learning and adaptation there is a fixed trajectory
through the high dimensional network space, (right) after learning and adaptation, different
context inputs results in distinctly separate trajecories. These act as dynamic attactors such
that the network dynamics start close to each other but follow different paths along each
trajectory depending on the current conext input. All trajecories are color coded by the
time of evolution as above. Separation between circular points shows the speed of movement
along each trajectory.

69



3 Robust Temporal Information Processing with Self-adaptive Reservoirs (Experiments and Results)

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.2

−0.1

0

0.1

0.2

 

500 1500 2500 3000 4500 5000
−0.5

0

0.5

−0.2

0

0.2

0

0.2

0.4

0.6

Time (ms)

1300 1500 1700 1900
−0.1

−0.05

0

0.05

0.1

Time (ms)

Perturbation 200 ms

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
im

e
 (

m
s
)

500 1500 2500 3000 4500 5000

500 1500 2500 3000 4500 5000

Original trajectory

Perturbed trajectory

(b)

(a)

Rapid compensation for perturbations

Figure 3.16: Stable motor pattern generation in the presence of external perturbations((a)
Learned response of the reserovir network for generating the word ’memory’ in the presence
of a brief perturbation of high amplitude. The color coding shows the time of each event.
The perturbation occurs at the time of the letter ’e’, however the network can quickly
compensate for the perturbation and return to the original trajectory. (b) The x and y
coordinates (2-dimension time series) of the desired motor pattern (dotted red line) and the
learned response in the presence of perturbation signal (solid black line). The zoomed in plot
shows that the perturbation knocks the reservoir output of the actual trajectory, however
it is able to quickly compensate for this and return to a stable path along the desired time
series. The bottom plot shows the brief 200 ms perturbation signal given at 1500 ms time
point. This was approximately at the time of the letter ’e’.
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Figure 3.17: Optimal performance with the SARN model under high noise condition((a) Al-
most optimal linear relationship (regression co-efficient R = 0.94) between the learned output
trajectory from SARN and the actual desired trajectory for the word ’memory’, calculated
over 50 trials with 5% noise in each reservoir neuron. (b) Considerable mismatch between
the learned trajectory and the desired trajectory in case of the static chaotic RNN model
(Sussillo and Abbott, 2009), (Jaeger and Haas, 2004). Significanlty low R = 0.75 (c) Learned
trajectory with innate trained RNN model (Laje and Buonomano, 2013) considerably closer
to the desired pattern (R = 0.83), however still worse as compared to SARN. Similar results
were also obtained for the other motor pattern (learning to write ’apple’).

In the presence of relatively high levels of noise (5% noise level), we carried out 50 trials to
learn the trajectories for both the words using each of the networks. Regression analysis on
the learned trajectories as compared to the actual handwritten patterns clearly demonstrate
the superior performance of SARN as compared to both static chaotic RNNs as well as the
recently introduced innate trained RNN (Fig. 3.17). SARN produced a near optimal linear
fit with a regression coefficient of R > 0.9 accross all the 50 trials. In comparison the static
network performs considerably poor with R = 0.75. Such behavior was expected based on our
previous results where in SARN consistently outperforms static networks, proving that local
adaptation and intrinsic plasticity mechanisms in combination with supervised synaptic plas-
ticity is crucial for optimal temporal information processing. However the results indicate that
supervised training of the reservoir neurons towards their innate trajectory as suggested by Laje
and Buonomano (2013) does improve the performance in terms of stability of the learned trajec-
tory and noise robustness (we found a regression coefficient of R = 0.83). However SARN with
timescale adaptation and IP still outperforms. This suggests that a balance between homeo-
static mechanisms and synaptic plasticity is an essential component of processing time varying
stimuli and also generation of complex motor patterns. Although specialized supervised mech-
anisms to learn reservoir recurrent connections can be designed, their singular implementation
still remains sub-optimal to a combination of homeostatic and synaptic plasticity, as present in
SARN.
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3.4 Discussion

3.4.1 Biological Relevance

The ability to precisely track and tell time is critical towards the learning of ordered motor
behaviors as well as the underlying cognitive process, in all living creatures. However, the
mechanism by which the brain performs robust temporal information processing is still not un-
derstood clearly. Although it is still debated whether dedicated or intrinsic mechanisms underlie
the timing process in the brain, some experimental and theoretical studies have validated the
concept of neural circuits being inherently capable of sensing time across time scales (Tetzlaff
et al., 2012a), (Buhusi and Meck, 2005). Large recurrent neural networks like these reservoir
systems could be considered as an abstraction of the mammalian cortex. Accordingly (Buono-
mano and Laje, 2010) suggested the concept of population clocks, where in time encoded in the
time varying patterns of activity of neuronal populations emerge from the internal dynamics of
the recurrent network. It is important to note that continuous input signals to these recurrent
networks or the brain, in general can contain many different time-scales. In order to account
for varying time-scales of input patterns to such networks, classically they have been setup in
an hierarchical arrangement with different pre-determined timescales for each layer of hierarchy
(Jaeger et al., 2007), (Yamashita and Tani, 2008). However monkey experiments (Bernacchia
et al., 2011) have shown that individual neurons can have different timescales of reward memory
correlated with the actual behavior. As such it is highly plausible that neurons in a single recur-
rent network can adjust or tune there individual time constants to account for a multi-timescale
input in contrast to a hierarchical arrangement with different fixed timescales.

In this work, using a single information theoretic framework we have been successful in adapting
the local neuron time constants via it’s leak, while at the same time prevent runaway dynamical
activity via the intrinsic plasticity mechanism. The combination of such homeostatic mechanisms
with supervised synaptic plasticity in the reservoir network were also seen to lead to near critical
dynamics, even when the network was initialized in the chaotic domain. Furthermore as observed
in Figs. 3.11 (a), 3.12 (a), high local active information storage regions in the network correspond
to significant events in time. According to the learning rule from equation 2.19, the individual
neuron leak rates (time constants) have been adjusted according to the change of their AIS
values with respect to a predefined threshold. In other words we were able to incorporate a self-
adapting non-uniform neuron decay rate in the network that can account for varying timescales
in the input stream as well as encode timing of events. As such in this work we not only present a
mechanism to achieve a self-adaptive reservoir that can achieve a high degree of delayed temporal
memory capacity, near critical dynamics and robustness to noise. From a biological perspective
we show that time is not only encoded in the internal recurrent dynamics but also single neurons
may adjust their time-constants in order to account for high relevance events in the input data.
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3.4 Discussion

3.4.2 Summary

In this chapter as continuation from chapter 2 we have presented and evaluated a self-adaptation
mechanism for the reservoir network that successfully combines an intrinsic plasticity rule using
a generic probability distribution (Weibull), with a reservoir neuron timeconstant (decay rate)
adjustment rule based on input-driven local active information storage measure. The neuronal
decay rates not only governs the degree of influence of local memory, but also collectively control
the speed or timescale of the reservoir network dynamics. Due to feedback connections in such
recurrent networks, chaotic or runaway activity had been previously observed in the works of
(Sompolinsky et al., 1988) and (Sussillo and Abbott, 2009). The intrinsic plasticity mechanism
ensures information maximization at each neurons output, while homeostatically regulating the
network activity and preventing runaway chaotic dynamics. In general, our mechanism allows
minimal parameter tuning, with two of the important network parameters decay-rates (τi),
shape and scaling properties of neurons transfer function adjusted on the fly, in an unsupervised
adaptive manner. In contrast, most static reservoirs pre-fix these parameter values or adapt
them based on output error gradients that do not take into account difference in timescales
of the input signal. Furthermore, by successfully combining the IP homeostatic rule, neuron
timescale adaptation and the supervised synaptic plasticity in the recurrent and readout layers
of the reservoir, we shed light on the importance of self-organized plasticity mechanisms in the
brain that contribute towards its temporal information processing capabilities. The evaluated
performance on the standard benchmark tasks and the complex multiple attractor learning
tasks demonstrates that our adaptation mechanism clearly outperforms static reservoirs, while
being able to modulate the reservoir dynamics in a input dependent manner. Moreover, we
demonstrate the application of our network to generate clock like behaviors and the control
of autonomous robotic agents through the maze navigation experiments, inherently requiring
precise timing and delay memory. Finally using the complex motor pattern generation task,
we demonstrated how dynamic attactors can be formed based on contextual inputs, that lead
to specific motor patterns in a noise robust manner. It has been widely accepted that timing
of events and memory guided behavior are intrinsically related. Specially for memory in the
shorter time-scale of seconds to minutes (working memory), the system needs the ability to
recognize important events in time. We achieve this in our network via the crucial combination
of generic intrinsic plasticity and a novel neuron timescale-adaption that allows the neurons to
speed up or slow down their dynamics based on the incoming input, while at the same time
encode highly relevant events using the active information storage measure. Overall based on
the methods from previous chapter and the in depth results obtained here, we motivate and
demonstrate SARN as an adaptive input-driven RNN that forms a general model of temporal
information processing in the brain, specifically in the timescale of few milliseconds to minutes.
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CHAPTER4
Reservoir-based Adaptive Forward
Internal Model for Complex Motor
Prediction

”It is far better to foresee even without certainty than not to foresee at all”.

—Henri Poincare, The Foundations of Science.

Motor prediction and planning is an integral outcome of robust temporal information processing
in the brain. Since sensory information is substantially delayed, it has been proposed that the
brain makes use of an internal forward model (Jordan and Rumelhart, 1992), (Wolpert et al.,
1995), that can integrate both sensory and motor feedback signals to make precise predictions of
current and upcoming body movements. Typically, forward model based timed motor responses
occur on a timescale of milliseconds to seconds, while interacting with complex non-static en-
vironmental conditions (eg. motor prediction during walking on flat terrains differ significantly
from predictions on irregular terrain). Therefore, such internal models not only require an intrin-
sic memory of recently issued motor commands, but also need the ability to adapt with changes
in time varying sensory feedback signals. With this perspective, in this chapter, we demonstrate
the ability of our self-adaptive RNN to work as internal forward models and generate complex
locomotive behaviors. Specifically, taking inspiration from motor behaviors and internal mod-
els, observed in invertebrates (Webb, 2004), we present a neural mechanism to combine motor
patterns generated by the central nervous system with our adaptive reservoir forward model
(Manoonpong et al., 2014). This is implemented on a biologically inspired insect-like walking
robot.
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4 Reservoir-based Adaptive Forward Internal Model for Complex Motor Prediction

4.1 Introduction

Walking animals show diverse locomotor skills to deal with a wide range of terrains and envi-
ronments. These involve intricate motor control mechanisms with internal prediction systems
and learning (Huston and Jayaraman, 2011), allowing them to effectively cross gaps (Blaesing
and Cruse, 2004), climb over obstacles (Watson et al., 2002), and even walk on uneven terrain
(Pearson and Franklin, 1984), (Cruse, 1976). These capabilities are realized by a combina-
tion of biomechanics of their body and neural mechanisms. The main components of the neural
mechanisms include central pattern generators (CPGs), internal forward models, and limb-reflex
control systems. The CPGs generate basic rhythmic motor patterns for locomotion, while the
reflex control employs direct sensory feedback (Pearson and Franklin, 1984). However, it is ar-
gued that biological systems need to be able to predict the sensory consequences of their actions
to be capable of rapid, robust, and adaptive behavior. As a result, similar to the observa-
tions in vertebrate brains (Kawato, 1999), insects can also employ internal forward models as a
mechanism to predicts their future (predictive feedbacks) state given the current state (sensory
feedback) and the control signals (efference copies), in order to shape the motor patterns for
adaptation (Webb, 2004).

In order to make such accurate predictions of future actions to satisfy changing environmental
demands, the internal forward models (Fig. 4.1) needs memory of previous sensory-motor in-
formation. However, given that, such motor control happens on a very fast timescale, keeping
track of temporal information is integral to such very short-term memory processes. Reservoir
based RNNs (Maass et al., 2002), (Sussillo and Abbott, 2012) with their intrinsic ability to
deal with temporal information and fading memory of sensory stimuli, thus provides the perfect
platform to model such internal predictive mechanisms. Therefore we design SARN (Dasgupta
et al., 2013a) (chapter 2) to act as the forward models that can work in conjunction with other
neural mechanisms for motor control and generate complex adaptive locomotion in an artificial
walking robotic system. Specifically, by exploiting the recurrent layer of our model it is possible
to achieve complex motor transformations at different walking gaits, which cannot be achieved
by currently existing simple forward models employed with walking robots (Manoonpong et al.,
2013b), (Dearden and Demiris, 2005), (Schröder-Schetelig et al., 2010).

We present for the first time a distributed forward model architecture using six SARN-based
forward models on a hexapod robot, each of which is for sensory prediction and state estimation
of each robot leg. The outputs of the models are compared with foot contact sensory signals
(feedback) and the differences between them are used for motor adaptation. This is integrated as
part of the neural mechanism framework consisting of 1) central pattern generator-based control
for generating basic rhythmic patterns and coordinated movements, 2) the reservoir forward
models and 3) searching and elevation control for adapting the movement of an individual leg
to deal with different environmental conditions.
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processing
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Figure 4.1: Schematic representation of a sensory-motor system with a forward model The
solid arrows indicate the loop by which a motor command is translated into motor output,
producing changes in the environment, which in turn causes changes in sensory input. This
acts as feedback to the motor system to process further. The forward model is an internal
loop that takes a copy of the motor command, and predicts the expected sensory input, which
can be compared with the current sensory input to modulate behavior. A classical example is
that moving our eyes causes the image on the retina to move, but we perceive a stable world
because the image movement is predictable from the eye movement command (Webb, 2004).

4.2 Neural Mechanisms for Complex Locomotion

The neural mechanisms (Fig. 4.2a) are developed based on a modular structure. The mechanisms
comprise i) central pattern generator (CPG)-based control, ii) reservoir-based adaptive forward
models, and iii) searching and elevation control. The CPG-based control and the searching and
elevation control have been discussed in detail in Manoonpong et al. (2013b), thus here we will
only provide a brief overview of these mechanisms, while the reservoir-based adaptive forward
models, which is the main topic of this chapter, will be presented in detail in the following
section.

The CPG-based control primarily generates a variety of rhythmic patterns and coordinates all
leg joints of a hexapod robot AMOSII (Fig. 4.2 (b)), thereby leading to a multitude of different
behavioral patterns and insect-like leg movements. The patterns include omnidirectional walk-
ing and insect-like gaits (Manoonpong et al., 2013b). All these patterns can be set manually
or autonomously driven by exteroceptive sensors, like a camera (Zenker et al., 2013), a laser
scanner (Kesper et al., 2013), or range sensors. While the CPG-based control provides versatile
autonomous behaviors, the searching and elevation control using the accumulated error signals
provided by the reservoir-based adaptive forward models adapts the movement of an individual
leg of the robot to deal with different environmental conditions.
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Figure 4.2: (a) The diagram of an artificial bio-inspired walking system consisting of the biomechanical
setup of the hexapod robot AMOSII (i.e., six 3-jointed legs, a segmented body structure with
one active backbone joint (BJ), actuators, and passive compliant components (Manoonpong
et al., 2013b)), sensors (i.e., proprioceptive and exteroceptive sensors), and neural mechanisms
(i,ii,iii). (b) Modular Robot Control Environment embedded in the LPZRobots toolkit. It is
used for developing a controller, testing it on the simulated hexapod robot, and transferring
it to the physical one. FC1, FC2, FC3, FC4, FC5, and FC6 are foot contact sensors installed
in the robot legs. Each leg has three joints: the thoraco-coxal (TC-) joint enables forward
and backward movements, the coxa-trochanteral (CTr-) joint enables elevation and depression
of the leg, and the femur-tibia (FTi-) joint enables extension and flexion of the tibia. The
morphology of these multi-jointed legs based on a cockroach leg (Zill et al., 2004). More
details on BJ control for climbing can be found in (Goldschmidt et al., 2014).

This CPG-based control (see appendix A.3) itself is designed as a modular neural network that
consists mainly of four elements:

1. CPG mechanism with neuromodulation for generating different rhythmic signals. Inspired
by biological findings, here the CPG circuit is designed as a two neuron fully connected
recurrent network (Pasemann et al., 2003), such that using external neuromodulatory
inputs different walking gates can be achieved.

2. CPG post-processing units (PCPG) for shaping CPG output signals.

3. Phase switching network (PSN) and velocity regulating networks (VRNs) for walking
directional control.

4. Motor neurons with delay lines (delay λ) for transmitting motor commands to all leg joints
of AMOSII. These delay lines are utilized to realize the inter-limb coordination, in which
they introduce phase differences between the transmitted signals to all leg joints. As a
result, the desired gait is achieved.

The searching and elevation reflex control consist of single recurrent neurons that received the
difference (instantaneous error) between the predicted forward model signal and the actual
sensory feedback. Due to the recurrency, this is accumulated over time. The accumulated error
can then be used to either extend specific leg joints in order to get better foothold (searching
reflex) during stance phase or elevated further to overcome obstacles during the swing phase
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4.3 Materials & Method

(see Fig. 4.7 in section 4.4.1). All neurons in the CPG-based control and the searching and
elevation control are modeled as discrete-time non-spiking neurons with tan-hyperbolic or piece-
wise linear activation functions (see (Manoonpong et al., 2013b) for details). They are updated
with a frequency of ≈ 27 Hz.

4.3 Materials & Method

4.3.1 Reservoir-based Distributed Adaptive Forward Models

Six identical adaptive forward models (RF1,2,3,...,6) are used here, one for each leg (Fig. 4.3(a)).
They serve for sensory prediction as well as state estimation. Specifically, each forward model
transforms an efference copy of the actual motor signal for one of leg joints (i.e., here the CTr-
motor signal1), into an expected or predicted sensory signal. This can be then compared with
the actual incoming sensory feedback signals (i.e., here the foot contact signal - Fig. 4.3 (b),
of each leg) and, based on the error, trigger the appropriate reflex (searching or elevation) and
modulate the behavior of the robot.

Each forward model is based on the self-adaptive reservoir network (SARN - as introduced in
chapters 2 and 3) (Dasgupta et al., 2013a) type. As exhibited in the previous chapter, due
to the dynamic reservoir and homeostatic adaptations, the network exhibits a wide repertoire
of nonlinear activity and long fading memory. This can be exploited for the motor signal
transformation and motor prediction needed in the current context.

Network Setup

Using a typical construction, each reservoir forward model consisted of three layers: input,
hidden (or internal), and readout layers (Fig. 4.3 (b)). The internal layer is constructed as a
random RNN with N internal neurons and a fixed randomly initialized synaptic connectivity
(in this setup we only modify the reservoir-to-readout neuron weights).

Here we use a discrete time version of the original SARN formulation (Eq. 2.14), such that using
∆t = 1, the discrete time state dynamics of each reservoir neuron is given by:

xi(t+ 1) =
(

1− 1
τi

)
xi(t) + 1

τi

g N∑
j=1

W rec
i,j rj(t) +W in

i,1u(t) +Bi

 , (4.1)

z(t) = Woutx(t), (4.2)
1We use the CTr-motor signal instead of the TC- and FTi-motor signals since this shows clear swing (off the

ground) and stance (on the ground) phases which can be simply matched to the foot contact signal.
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Figure 4.3: (a) Neural mechanisms implemented on the bio-inspired hexapod robot AMOSII. The yellow
circle (CPG) represents the neural locomotion control mechanism (see appendix. A.3). The
gray circles (RF1,2,3,...,6) represent the reservoir-based adaptive forward models. The green
circles (SE1,2,3,...,6) represent searching and elevation control modules. The orange circles
represent leg joints where TRi, CRi, FRi are TC-, CTr- and FTi-joints of the right front
leg (i = 1), right middle leg (i = 2), right hind leg (i = 3) and TLi, CLi, FLi are left front
leg (i = 1), left middle leg (i = 2), left hind leg (i = 3), respectively. BJ is a backbone
joint. The orange arrow lines indicate the motor signals which are converted to joint angles
for controlling motor positions. The black arrow lines indicate error signals. The green arrow
lines indicate signals for adapting joint movements to deal with different circumstances. b) An
example of the reservoir-based adaptive forward model. The dashed frame shows a zoomed
in view of a single reservoir neuron. In this setup, the input to each of the reservoir network
comes from the CTr- joint of the respective leg. The reservoir learns to produce the expected
foot contact signal for three different walking gaits (z1, z2, z3). The signals of the output
neurons are combined and compared to the actual foot contact sensory signal. The error from
the comparison is transmitted to an integrator unit. The unit accumulates the error over
time. The accumulated error is finally used to adapt joint movements through searching and
elevation control.

80



4.3 Materials & Method

where all the variables reflect the same quantities as introduced previously in chapter 2, sec-
tion 2.2.1, however no explicit feedback from the readout neurons is present.
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Figure 4.4: (a) Plot of the change in the mean squared error for the forward model task for one of the
front legs (R1) of the walking robot with respect to the scaling of the reservoir weight matrix
with different g. As observed, very small values in g have a negative impact on performance
compared with values closer to one being better. Interestingly, the performance did not change
significantly for g > 1.0 (chaotic domain). This is mainly due to homeostasis introduced by
intrinsic plasticity in the network. The optimal value of g = 0.95 selected for our experiments
is indicated with a dashed line. (b) Plot of the change in mean squared error with respect
to different reservoir sizes (N). g was fixed at the optimal value. Although increasing the
reservoir size in general tends to increase performance, a smaller size of N = 30 gave the
same level of performance as N = 100. According for computational efficiency, we set our
reservoir size to 30 neurons. Results were obtained from 10 trials with different parameter
initializations on the forward model task for a single leg and a fixed walking gait.

The input to the reservoir u(t), consisted of a single CTr-motor signal. This acts as an efference
copy of the post-processed CPG output. The readout layer consisted of three neurons, with their
activity being represented by the three-dimensional vector z(t). Although typically M < N
readout neurons can be connected to the reservoir, here we restricted it to three neurons, as
each readout here, learns the predictive signal for one of the following different walking gaits:
wave (z1), tetrapod (z2), and caterpillar (z3) gaits). The wave, tetrapod, and caterpillar gaits
are used for climbing over an obstacle, walking on uneven terrain, and crossing a large gap2,
respectively. Subsequent to the supervised training of the reservoir-to-readout connections Wout,
each readout neuron basically learns to generate the expected foot contact signal associated with
each gait. The decay rate for each reservoir neuron is given by 1

τi
, where τi is the individual

membrane timeconstant. The input-to-reservoir connections weights Win and internal recurrent
weights Wrec were drawn randomly from the uniform distribution [−0.1, 0.1] and a Gaussian

2These three gaits were empirically selected among 19 others. Previous studies show that wave and tetrapod
gaits are the most effective for climbing and walking on uneven terrains, respectively. While in this study
we observed that the caterpillar gait was the best one for crossing a gap. However, without any loss of
performance, more gaits can be applied easily by adding further output neurons.
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distribution of zero mean and variance 1
pN , respectively. In order to select the appropriate

reservoir size, empirical evaluations were carried out, such that a moderate network size of
N = 30 was selected, for which minimum prediction error was obtained at the output layer.
The recurrent weights were subsequently scaled by the factor of g = 0.95 (see Fig. 4.4). Each
reservoir neuron were updated with a frequency of ≈ 27 Hz using a tanh nonlinear activation
function, ri(xi) = tanh(aixi + bi). As described in Sections 2.2.2 and 2.2.3, intrinsic plasticity
and neuron timescale adaptation were carried out in order to learn the transfer function and
reservoir timeconstant parameters.

Here we used a slightly modified version of Eq. 2.32 based on the original recursive least squares
(RLS) algorithm (Jaeger and Haas, 2004),(Simon, 2002) in order to learn the output weights
Wout at each time step, while the training input u(t) is being fed into the reservoir. Wout are
calculated such that the overall error is minimized; thereby the network transforms the CTr-
motor signal to the expected foot contact signal correctly. We implement the RLS algorithm
using a fixed forgetting factor (λRLS < 1) as follows:

e(t)← d(t)−
3∑
j=1

zj(t), (4.3)

K(t)← ρ(t− 1)r(t)
λRLS + rT (t)ρ(t− 1)r(t) , (4.4)

P(t)← 1
λRLS

[
P(t− 1)−K(t)rT (t)ρ(t− 1)

]
, (4.5)

Wout(t)←Wout(t− 1) + K(t)e(t). (4.6)
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Parameter Symbol Value
Reservoir size N 30

Reservoir neuron noise Bi ∈ N (0, 0.001)
Neuron timeconstant (initialization) τi 1.0

RLS learning constant δc 10−4

Non-linearity shape initialization ai 1.0
Non-linearity scale initialization bi 0.0

RLS learning rate λRLS 0.99
Reservoir connection probability p 0.5

Scaling parameter g 0.95
Input weights Win ∈ U[−0.15, 0.15]

Reservoir weights Wrec ∈ N (0, 1/pN)

Table 4.1: The list of Reservoir network parameter settings

Here e(t) is the online error calculated from the difference between the desired output, d(t)
(i.e., here expected foot contact signal) and the summation of all generated reservoir readouts
(predicted output). K(t) is the RLS gain vector and P(t) the inverse correlation matrix of
reservoir neuron firing rate, updated at each time step. The reservoir to readput weights Wout

is initially set to zero. Exponential forgetting factor (λRLS) is set to a value less than one (here,
we use 0.99). The inverse correlation matrix P is initialized as P(0) = I/δc, where I is the unit
matrix and δc is a small constant (here, δc = 10−4). Details of all the fixed parameters and
initial settings for the reservoir based forward model networks are summarized in Table 4.1.

4.4 Results

4.4.1 Learning the Reservoir Forward Model (motor prediction)

In order to train the six forward models (RF1toRF6) in an online manner, one for each leg, we
let the simulated robot AMOSII walk under normal condition (i.e., walking on a flat terrain
with the three different gaits). Initially, we let the robot walk with a certain gait, and then
every 2500 time steps, the gait pattern was sequentially altered (this occurs by changing the
modulatory input to the CPG). As a result, the robot sequentially transitions from wave gait, to
tetrapod gait, to caterpillar gait repeatedly. Using this procedure, we let the robot walk for three
complete cycles (22500 time steps) and collected the corresponding CTr-motor signal and foot
contact sensor readings for all legs. Intrinsic plasticity and neuron time constant adaptations
were then carried out using 20 epochs of 1000 time steps overlapping time windows. After
this pre-training phase, all the reservoir neuron non-linearity parameters and individual time
constants (τi) were fixed.

Subsequent to the pre-training phase, normal training of the reservoir-to-readout weights Wout

was carried out using the online RLS learning algorithm with the same process of making the
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robot walk on a flat, regular terrain and sequential switching between the three gait patterns
every 2500 time steps. As such, at any given point in time only one of the readout neurons
(specific to the walking gait) are active. In this manner, synaptic weights projecting from
reservoir to the first readout neuron (y1) corresponding to the foot contact signal prediction
for the wave gait, and synaptic weights projecting to the second (y2) and third (y3) readout
neurons corresponding to the foot contact signal prediction of the tetrapod and caterpillar gaits,
are learned, respectively. In this experimental setup, as observed from Fig. 4.5 (a), (b) and
(c) the readout weights corresponding to each gait converges very quickly, in less than the trial
period of 2500 time steps. As a result, every time the CTr-motor signal changes due to walking
gait transformations, the RF associated with each leg learns to predict the expected foot contact
signal robustly. The training process was carried out only once under normal walking conditions.
This was subsequently used as the baseline in order to compare with the actual foot contact
signals (sensory feedback) while walking under the situations of crossing a gap, climbing, and
negotiating uneven terrains.

Fig. 4.6 shows an example of the forward model prediction (training) during the three different
gaits for the right front leg of AMOSII (R1). Visual inspection clearly demonstrates that accord-
ing to the corresponding efference copy of CTr-motor signal at a particular gait, the expected
foot contact (FC) signal is precisely predicted at each time point. Similarly, the foot contact
signals for the other legs are also predicted online, given the current context of CTr-signal (not
shown). Note that the FC signals of the other legs normally show slightly different periodic pat-
terns. Furthermore, there exists considerable lag between the expected stance phase according
to the motor signal and that observed from the FC signal (difference between dotted green lines
in Fig. 4.6). Due to the internal memory of the incoming motor signal in the reservoir, we
see that the output neurons can adapt to these time lags efficiently, even when the frequency
of the signal increases with a change in walking gaits. This was not possible in the previous
state of the art single recurrent neuron forward models (Manoonpong et al., 2013b). As such, a
simple square wave matching the timing of the motor signal efference copy was used, providing
a limited range of behavior, as well as being biologically unrealistic. However, here our reservoir
model can robustly learn the exact shape and timing of the FC signals.

During testing of the learned behavior, while AMOSII walks under different environmental
conditions and a specific gait, the output of each trained forward model (i.e., the predicted FC
signal, Fig. 4.7 (a)) is used to compare it to the actual incoming FC signal of the leg (Fig. 4.7
(b)). The difference (instantaneous error signal ∆) between them determines the walking state
where a positive value (+∆) indicates losing ground contact during the stance phase and a
negative value (−∆) indicates stepping on or hitting obstacles during the swing phase.

∆i(t) = RFi(t)− FCi(t). (4.7)

where i ∈ {1, 2, ..., 6} represents each leg of the robot.
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Figure 4.5: Reservoir-to-readout weight adaptation during online learning. (a) Changes of 30
weights projecting to the first readout neuron (z1) of the forward model of the right front leg
(R1) while walking with a wave gait. During this period, weights projecting to the second
(z2) and third (z3) output neurons remain unchanged (i.e., they are zero). (b) Changes of
the weights to z2 while walking with a tetrapod gait. During this period, the weights to z3
still remain unchanged and the weights to z1 converge to around zero. (c) Changes of the
weights to z3 while walking with a caterpillar gait. During this period, the weights to z1 and
z2 converge to around zero. At the end of each gait, all weights are stored such that they
will be used for locomotion in different environments. The grey areas represent transition
phases from one gait to another gait and the yellow areas represent convergence. The gait
diagrams are shown on the right. They are observed from the motor signals of the CTr-joints
(Fig. 4.6). White areas indicate ground contact or stance phase and grey areas refer to no
ground contact during swing phase. As frequency increases, some legs step in pairs (dashed
enclosures). Here convergence implies no siginificant change in the vector norm of the readout
weights.
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Figure 4.6: (a-c) The CTr-motor signal of the right front leg (R1) for wave, tetrapod, and caterpillar gaits,
respectively. This motor signal is basically the input of the forward model. (d-f) The foot
contact signal (force sensor signal under normal walking conditions) used as the target signal
of the reservoir network. (g-i) The predicted foot contact signal or the final output of the
forward model (RF output signal). The green shaded region indicates the time between swing
and stance phase for the CTr motor signal at the three walking gaits. As observed the actual
foot contact signal is considerably lagged in time compared to the motor signal. Effectively,
this lag decreases with an increase in the gait frequency. The single RF adaptively accounts
for these different delay times in order to accurately predict the expected foot contact signal.

Thus, we use the positive value for searching control (Fig. 4.7 (d) above). This is then accumu-
lated through a single recurrent neuron S with a linear transfer function and is always reset to
0.0 at the beginning of swing phase. Similarly, the negative value is used for elevation control
(Fig. 4.7 (d) below). The value is also accumulated through a recurrent neuron E with a linear
transfer function. These accumulated errors thus allow the robot leg to be either elevated (on
hitting an obstacle) or searching for a foothold during the swing and stance phase respectively
(see Manoonpong et al. (2013b) for more details of the searching and elevation control). As
depicted in Fig. 4.7 (a) and (b), while walking on a rough terrain (in this case with tetrapod
walking gait), the currently recorded sensory feedback or foot contact sensor reading differs con-
siderably from the reservoir predicted signal. As a result, there is a high accumulation of error
between each swing or stance phase (Fig. 4.7 (c)). This causes the corresponding reflex control
mechanism to kick in and the robot successfully navigates out of the rough terrain (after ≈ 4000
time steps). Once the robot moves into the flat terrain, the reservoir predicted foot contact
signal matches almost perfectly with the actual sensory feedback. As a result, the accumulated
error becomes zero and normal walking without any additional reflex mechanism can continue.
In the specific case of gap crossing, we use the accumulated error to control tilting of the back-
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bone joint (BJ) and shifting of the TC- and FTi-joints such that the legs are extended forward
continuously till the robot can find a foothold (see the experiments and results section below).
For climbing and walking on uneven terrain, it causes shifting of the CTr- and FTi-joints such
that the respective leg searches for a foothold. In addition to this leg joint control, reactive
backbone joint control using the additional ultrasonic sensory in front of the robot can also be
used to learn to lean up the BJ for climbing over obstacles (this has been previously successfully
applied in Goldschmidt et al. (2014)).
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Figure 4.7: Successfully navigating rough terrain with reservoir forward model (a) The reservoir
forward model predicted, expected foot contact signal. After a small initial transient the
reservoir output quickly converges to the expect signal for normal walking condition. (b)
The actual sensory feedback (foot contact signal) while walking on the rough surface (c)
Accumulated error calculated from the instantenous error (∆(t)). (d) The searching and
elevation reflex control. After 4000 time steps, the robot successfully overcomes the rough
terrain and continuous walking on a flat surface. As a result, there is zero accumulated error
since the predicted foot contact signal almost exactly matches the actual signal.
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4.4.2 Simulation Results

In order to assess the ability of the reservoir-based forward models to generate memory3 guided
behaviors in a neural closed-loop control system (see Fig. 4.2), we conducted simulation ex-
periments under different situations including crossing a gap, climbing over high obstacles, and
walking on uneven terrain (similar to the behaviors observed in real insects). In all cases, we used
the same learned forward model under normal walking conditions for a flat terrain (Section 4).

We now take the example of the gap crossing experiment in order to look in detail at the learning
outcome of the forward models. For gap crossing, we let AMOSII walk with a caterpillar gait
(see Fig. 4.5 (c), right), such that each left and right pair of legs moves simultaneously. As
shown in Fig. 4.8(1), at the beginning AMOSII walked forward straight towards the gap. In
this period, as it walks on the flat surface of the platform, it performed regular movements
similar to the training period under normal walking conditions (first platform) . Afterward, it
encountered a 15 cm gap (≈ 44% of body length - the maximum cross-able distance). In this
situation, during the subsequent stance phase its front legs loose ground contact (Figs. 4.8(d)
and (e)). As a result, the foot contact sensors from the front legs do not record any value.
However the reservoir forward model still predicts the expected foot contact signal causing a
positive instantaneous error (Eq. 4.7). This leading to a gradual ramping of the accumulated
error signal between each stance phase and swing phase, for the front legs (Fig. 4.8 (a)).

In order to activate the BJ and adapt the leg movements due to the error signals, we used the
maximum accumulated error value of the previous step (Fig. 4.8, (a) red line) and control the
BJ and leg movements in the subsequent step. In this manner, the BJ started to lean upwards
incrementally at around 1020 − 1170 time steps (Fig. 4.8(2)). Simultaneously, the TC- and
FTi-joint movements of the left and right front legs were also adapted accordingly. Due to a
predefined time-out period for tilting upwards, at around 1170 time steps (Fig. 4.8(3)), the back-
bone joint automatically moved downwards. Consequently, the front legs touched the ground of
the second platform at the middle of the stance phase; thereby, causing the accumulated error
signals to decrease. Due to another time-out period for tilting downwards at around 1200 time
steps (Fig. 4.8(4)), the BJ automatically moved to the normal position (−2 deg). Since now the
situation is similar to walking on flat terrain, the RF predicted foot contact signal matches the
one recorded by the foot sensors, with accumulated error dropping to zero. Thereafter, the TC-
and FTi-joints perform regular movements. At around 1300 time steps (Fig. 4.8(5)), the left and
right hind legs loose the ground contact, leading to body tilting. As a result, the movements
of the TC- and FTi-joints were slightly adapted allowing AMOSII to successfully cross the gap
and continue walking on the second platform (Fig. 4.8(6)).

Fig. 4.9 shows that the reservoir forward model in combination with the neural locomotion
control mechanisms, not only successfully generates gap crossing behavior of AMOSII (as shown
above), but also allows it to climb over single and multiple obstacles (eg. up a fleet of stairs),
as well as enables the robot to walk on uneven terrain. In all these cases, similar to we directly
used the accumulated errors for movement adaptation via the searching and elevation control

3Forward models for motor prediction need an internal fading memory of the motor aparatus, in order to adjust
for time delays between motor output signal and the actual sensory feedback (Kawato, 1999).
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Figure 4.8: Real-time data of walking and crossing a large gap using the forward model
prediction. (a) The accumulated error (black line) and the maximum accumulated error
value at the end of each stance phase (red line) of the right front leg (R1). The accumulated
error is reset to zero every swing phase. (b) The backbone joint (BJ) angle during walking
and gap crossing. The BJ stayed at a normal position (−2 deg) during normal walking. It
leant upwards and then bent downwards during gap crossing. (c-e) The TC-, CTr-, and FTi-
joint angles of R1 during walking and gap crossing. The joint adaptation was controlled by
the maximum accumulated error value of the previous step (red line). Below pictures show
snap shots of the locomotion of AMOSII during the experiment. Note that one time step is
≈ 0.037 s.
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Figure 4.9: Snap shots during climbing over a high obstacle, climbing up a fleet of stairs,
and walking on uneven terrain. (a) AMOSII walked with the wave gait and ap-
proached a 15 cm high obstacle (1). It detected the obstacle using its range sensors in-
stalled at its front part. The low-pass filtered range sensory signals control the BJ to tilt
upwards (2) and then back to its normal position (3). Due to the missing foot contact of
the front legs, the BJ moved downwards to ensure stability (4). During climbing, middle
and hind legs lowered downwards due to the occurrence of the accumulated errors, show-
ing leg extension, to support the body. Finally, it successfully surmounted the high obsta-
cle (5) (see video at http://manoonpong.com/ComplexLocomotion/S2.wmv). (b) AMOSII
climbed up a fleet of stairs (1-5) using the wave gait as well as the reactive BJ control.
The climbing behavior is also similar to the one described in the case (a) (see video at
http://manoonpong.com/ComplexLocomotion/S3.wmv). (c) AMOSII walked with the tetra-
pod gait. During traversing from the uneven terrain (1-4) to the even terrain (5), it adapted
its legs individually to deal with a change of terrain. That is, it depressed its leg and extended
its tibia to search for a foothold when losing a ground contact during the stance phase. Losing
ground contact information is detected by a significant change of the accumulated errors (see
video at http://manoonpong.com/ComplexLocomotion/S4.wmv).

mechanisms. For climbing, the reactive backbone joint control was also applied to the system
(see Goldschmidt et al. (2014) for more details) and a slow wave gait walking pattern (see Fig. 4.5
(a), right).

Experimentally the wave gait was found to be the most effective for climbing, which allows
AMOSII to overcome the highest climbable obstacle (i.e., 15 cm height which equals ≈ 86%
of its leg length) and to surmount a fleet of stairs. For walking on uneven terrain, a tetrapod
gait (see Fig. 4.5 (b), right) was used without the backbone joint control. This is the most
effective gait for walking on uneven terrain (see also (Manoonpong et al., 2013b)). Recall
that in all experiments the forward models basically generate the expected foot contact signals
(i.e., sensory prediction), which are compared to the actual incoming ones. Errors between the
expected and actual signals during locomotion serve as state estimation and are used to adapt the
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joint movements accordingly. It is important to note that, the best gait for each specific scenario
was experimentally determined and fixed. However, this could be easily extended with learning
mechanisms (see Steingrube et al. (2010)) to switch to the desired gait when the respective
behavioral scenarios are encountered, without any additional influence on the performance of
the reservoir forward models.
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Figure 4.10: Average time to succesfully overcome uneven terrains of different elasticity (hard,
moderate, highly elastic) (a) Average success time for reservoir-based forward model. (b)
Average success time for adaptive neuron forward model from (Manoonpong et al., 2013b).
Here the whiskers indicate one standard deviation above and below the mean value. Note
the difference in scale of the y-axis in both plots.

In order to evaluate the performance of our adaptive reservoir forward model in comparison to
the state of the art model recently presented in Manoonpong et al. (2013b) (single recurrent
neural with low-pass filter), we carried out simulation experiments with AMOSII walking on
different types of surfaces. Specifically, after training on a flat surface (under normal conditions)
we carried out 10 trials each with the robot walking on uneven terrains (laid with multiple
obstacles of height 8cm), having three different elastic properties4. The surfaces were divided
into hard (1.0), moderately elastic (5.0) and highly elastic (10.0). A tetrapod walking gait was
used in all three cases. Starting from a fixed position, we noted the total time taken by the
robot to successfully cross the uneven terrain region and move into a flat surface region. As
observed in Figs. 4.10 (a) and (b), the reservoir forward model enables the robot to traverse
the uneven region considerably faster as compared to the adaptive neuron forward model, in
all three scenarios. Both the models can be seen to overcome the hard surface much better

4Here the elasticity coefficients do not strictly represent Young’s modulus values. These were local parameter
setting defined in the simulation, with increasing values causing greater elasticity.
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as compared to the elastic ones. This was expected due to the changes in surface stiffness
resulting in additional forces on the robot legs. However, the reservoir model performance was
considerably more robust with a mean difference in success time of 1.86 mins for the hardest
surface and approx. 2 mins for the most elastic surface, cases. Given that the walking gait was
fixed, here the success time can be thought as an indicator of the robot’s energy efficiency. In
the absence of additional body mechanisms to deal with changing surface stiffness, the reservoir
based model outperforms the previous implementations of adaptive forward models by ≈ 25%
order of magnitude on average.

4.5 Discussion

In this study, we presented adaptive forward models using the self-adaptive reservoir network for
locomotion control. The model is implemented on each leg of a simulated bio-inspired hexapod
robot. It is trained online during walking on a flat terrain in order to transform an efference
copy (motor signal) into an expected foot contact signal (i.e., sensory prediction). Afterwards,
the learned model of each leg is used to estimate walking states by comparing the expected foot
contact signal with the actual incoming one. The difference between the expected and actual foot
contact signals is used to adapt the robot’s leg through elevation and searching control. Each
leg is adapted independently. This enables the robot to successfully walk on uneven terrains.
Moreover, using a backbone joint, the robot can also successfully cross a large gap and climb
over a high obstacle as well as up a fleet of stairs. In this approach, basic walking patterns are
generated by CPG-based control along with local leg reflex mechanisms that make use of the
reservoir prediction to adapt the robot’s behavior.

It is important to note that the usage of reservoir networks, as forward models here, provides
the crucial benefit of an inherent representation of time and fading memory (due to the internal
feedback loops and input dependent adaptations). Such memory of the time-varying motor
or sensory stimuli is required to overcome intrinsic time lags between expected sensory signals
and motor outputs (Wolpert et al., 1998), as well as in behavioral scenarios with considerable
dependence on the history of motor output (Lonini et al., 2009). This is very difficult in most
of the previous implementations of forward internal models using either simple single recurrent
neuron implementations (Manoonpong et al., 2013b), feed-forward multi-layered neural networks
(Schröder-Schetelig et al., 2010), or Bayesian network models (Dearden and Demiris, 2005),
(Sturm et al., 2008). Furthermore, in this case, online adaptation of only the reservoir-to-
readout weights (readout) makes such networks beneficial for simple and online learning.

The concept of forward models with efference copies in conjunction with neural control has
been suggested since the mid-20th century (Holst and Mittelstaedt, 1950), (Held, 1961) and
increasingly employed for biological investigations (Webb, 2004). This is because it can explain
mechanisms which biological systems use to predict the consequence of their action based on
sensory information, resulting in adaptive and robust behaviors in a closed-loop scenario. This
concept also forms a major motivation for robots inspired by biological systems. Within this
context, the work presented here, verifies that a combination of CPG-based neural control,
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adaptive reservoir forward models with efference copies, and searching and elevation control
can be used for generating complex locomotion and adaptive behaviors in an artificial walking
system. Additionally, although in this chapter we specifically focused on locomotive behaviors
for walking robots, (such) SARN based motor prediction systems can be easily generalized
to a number of other applications. Specifically for neuro-prosthetic (Ganguly and Carmena,
2009), sensor-driven orthotic control (Braun et al., 2014), (Lee and Lee, 2005) or brain-machine
interface devices (Golub et al., 2012), that require the learning of such predictive models using
highly non-stationary, temporal signals, applying SARN models can provide high performance
gains, as compared to the current static feed-forward neural network solutions.
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CHAPTER5
Neuromodulatory Combined Learning of
Goal-directed Behaviors with Reservoir
model of Basal Ganglia and Correlation
Learning model of Cerebellum

”A cat that once sat on a hot stove will never again sit on a hot stove. Or on a cold
one either”.

—Mark Twain.

In the previous chapters we have only considered synaptic plasticity in the form of supervised
learning of the reservoir network weights. However biological systems are largely motivated
by hedonistic returns. Typically this falls under the paradigm of reward-based learning, such
that future actions are dependent on some function of the environmental feedback (rewards
or punishments) and this guides the overall synaptic plasticity. Therefore, in this chapter, we
demonstrate the usage of the self-adaptive reservoir network (SARN) model from within such a
learning paradigm, where by, the reservoir synaptic connections can be modulated by external
rewards (without the need of any supervised teacher signal). Furthermore, with a significant
neuro-biological grounding, we motivate the possible neural correlate or brain structure (basal
ganglia) that implements such reward modulated reservoir networks and works in combination
with other brain areas (cerebellum), to guide goal-directed decision making. We also introduce a
novel neuromodulatory rule for such a combined learning. Therefore, here we will spend consid-
erable time exploring and motivating the underlying biological substrate of all these components.
The over all goal of this chapter being, not just to demonstrate the usage of the SARN model
from within a reward learning paradigm, but to demonstrate how such systems can be combined
with other unsupervised learning mechanisms in the brain (namely correlation learning in cere-
bellum), to guide the overall goal-directed decision making in the brain (this forms a crucial part
of temporal information processing in the timescale of few seconds to minutes, refer to Fig. 1.2).
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Goal-directed decision making forms one of the key manifestation of closed loop temporal in-
formation processing. In biological systems, this is broadly based on associations between
conditional and unconditional stimuli. This can be further classified as classical condition-
ing (correlation-based learning) and operant conditioning (reward-based learning). A number
of computational and experimental studies have well established the role of the basal ganglia in
reward-based learning, where as the cerebellum plays an important role in developing specific
conditioned responses. Although viewed as distinct learning systems, recent animal experiments
point towards their complementary role in behavioral learning, and also show the existence of
substantial two-way communication between these two brain structures. Based on this notion of
co-operative learning, here we hypothesize that the basal ganglia and cerebellar learning systems
work in parallel and interact with each other. We envision that such an interaction is influenced
by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the over-
all goal directed behavior. Based on a number of recent experimental and theoretical studies
showing high dimensional dynamics in the basal ganglia circuitry, here, we for the first time
use a SARN based actor-critic model of the basal ganglia and a feed-forward correlation-based
learning model of the cerebellum, whose learning outcomes can be combined (balanced) by a
novel RMHP rule. This is tested using simulated environments of increasing complexity with
a four-wheeled robot in a foraging task in both static and dynamic configurations. Although
modeled with a simplified level of biological abstraction, we clearly demonstrate that a SARN
based reward learning mechanism and correlation learning mechanism can be effectively com-
bined by our RMHP rule, leading to stabler and faster learning of goal-directed behaviors, in
comparison to the individual systems. Moreover, we also clearly demonstrate the need for such
adaptive reservoir models in order to deal with scenarios having memory dependence of past
sensory states or stimuli. In next few sections, we provide a computational model for adaptive
combination of the basal ganglia and cerebellum learning systems by way of neuromodulated
plasticity, that can lead to efficient goal-directed decision making in biological and bio-mimetic
organisms.

5.1 Introduction

Associative learning by way of conditioning, forms the main behavioral paradigm that drives
goal-directed decision making in biological organisms. Typically, this can be further classified
into two classes, namely, classical conditioning (or correlation-based learning) (Pavlov, 1927)
and operant conditioning (or reinforcement learning) (Skinner, 1938) . In general, classical
conditioning is driven by associations between an early occurring conditional stimulus (CS)
and a late occurring unconditional stimulus (US), which lead to conditioned responses (CR)
or unconditioned responses (UR) in the organism (Freeman and Steinmetz, 2011), (Clark and
Squire, 1998). The CS here acts as a predictor signal such that, after repeated pairing of
the two stimuli, the behavior of the organism is driven by the CR (adaptive reflex action)
at the occurrence of the predictive CS, much before the US arrives. The overall behavior is
guided on the sole basis of stimulus-response (S-R) associations or correlations, without any
explicit feedback in the form of rewards or punishments from the environment. In contrast
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Figure 5.1: (A) Pictorial representation of the anatomical reciprocal connections between the basal gan-
glia, thalamus and cerebellum. Green arrows depict the cortico-striatal reward learning
circuitry via the thalamus. Blue arrows depict the cortico-cerebellar recurrent loops for
classically conditioned reflexive behaviors. Adapted and modified from (Doya, 2000a) (B)
Combinatorial learning framework with parallel combination of ICO learning and actor-critic
reinforcement learning. Individual learning mechanisms adapt their weights independently
and then their final weighted outputs (Oico and Oac) are combined into Ocom using a reward
modulated heterosynaptic plasticity rule (dotted arrows represent plastic synapses). Ocom
controls the agent behavior (policy) while sensory feedback from the agent is sent back to
both the learning mechanisms in parallel.

to such classically conditioned reflexive behavior acquisition, operant conditioning provides an
organism with adaptive control over the environment with the help of explicit positive or negative
reinforcements (evaluative feedback) given for corresponding actions. Over sufficient time, this
enables the organism to respond with good behaviors, while avoiding bad or negative behaviors.
As such within the computational learning framework, this is usually termed reinforcement
learning (RL) (Sutton and Barto, 1998).

At a behavioral level, although the two conditioning paradigms of associative learning appear to
be distinct from each other, they seem to occur in combination as suggested from several animal
behavioral studies (Rescorla and Solomon, 1967), (Barnard, 2004), (Dayan and Balleine, 2002).
Behavioral studies with rabbits (Lovibond, 1983) demonstrate that the strength of operant re-
sponses can be influenced by simultaneous presentation of classically conditioned stimuli. This
was further elaborated upon in the behavior of fruit flies (Drosophila), where both classical and
operant conditioning predictors influence the behavior at the same time and in turn improve the
learned responses (Brembs and Heisenberg, 2000). On a neuronal level, this relates to the inter-
action between the reward modulated action selection at the basal ganglia and the correlation
based delay conditioning at the cerebellum. Although the classical notion has been to regard the
basal ganglia and the cerebellum to be primarily responsible for motor control, increasing evi-
dence points towards their role in non-motor specific cognitive tasks like goal-directed decision
making (Middleton and Strick, 1994),(Doya, 1999). Interestingly, recent experimental studies
(Bostan et al., 2010), (Neychev et al., 2008) show that the the basal ganglia and cerebellum not
only form multi-synaptic loops with the cerebral cortex, but, two-way communication between
the structures exist via the thalamus Fig. 5.1 A) along with substantial disynaptic projections to
the cerebellar cortex from the subthalamic nucleus (STN) of the basal ganglia and from the den-
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tate nucleus (cerebellar output stage) to the striatum (basal ganglia input stage) (Hoshi et al.,
2005). This suggests that the two structures are not separate performing distinct functional op-
erations (Doya, 2000a), but are linked together forming an integrated functional network. Such
integrated behavior is further illustrated in the timing and error prediction studies of (Dreher
and Grafman, 2002) showing that the activation of the cerebellum and basal ganglia are not
specific to switching attention, as previously believed, because both these regions were activated
during switching between tasks as well as during the simultaneous maintenance of two tasks.

Based on these compelling evidences we formulate the neural combined learning hypothesis,
which proposes that goal-directed decision making occurs with a parallel adaptive combina-
tion (balancing) of the two learning systems (Fig. 5.1 B) to guide the final action selection.
As evident from experimental studies (Haber and Calzavara, 2009), the thalamus potentially
plays a critical role in integrating the neural signals from the two sub-networks while having
the ability to modulate behavior through dopaminergic projections from the ventral tagmental
area (VTA)(Varela, 2014), (Garćıa-Cabezas et al., 2007). The motor thalamic (Mthal) relay
nuclei, specifically the VA-VL (ventral anterior and ventral lateral) regions receive projections
from the basal ganglia (inputs from the globas pallidus) as well as the cerebellum (inputs from
the dentate nucleus) (Jones et al., 1985), (Percheron et al., 1996). This can be further seg-
regated with the ventral anterior and the anterior region of the ventrolateral nucleus (VLa)
receiving major inputs from the globus pallidus internus (GPi), while the posterior region of the
ventrolateral nucleus (VLp) receives primary inputs from the cerebellum (Bosch-Bouju et al.,
2013). Recent studies using molecular markers were able to distinguish the VA and VL nuclei in
rats (Kuramoto et al., 2009), which had hitherto been difficult and were considered as a single
overlapping area as the VA-VL complex. Interestingly, despite apparent anatomical segregation
of information in the basal ganglia and cerebellar territories, similar ranges of firing rate and
movement related activity are observed in the Mthal neurons across all regions (Anderson and
Turner, 1991). Furthermore some experimental studies based on triple labeling techniques found
zones of overlapping projections, as well as interdigitating foci of pallidal and cerebellar labels,
particularly in border regions of the VLa (Sakai et al., 2000). In light of these evidences, it is
plausible that the basal ganglia and cerebellar circuitries not only form an integrated functional
network, but their individual outputs are combined together by a subset of the VLa neurons
which in turn project to the supplementary and pre-supplementary motor cortical areas (Akkal
et al., 2007) responsible for goal-directed movements. We envision that such a combined learning
mechanism may be driven by reward modulated heterosynaptic plasticity (neuromodulation by
way of dopaminergic projections) at the thalamus.

In this study, input correlation learning (ICO)in the form of a differential Hebbian learner (Porr
and Wörgötter, 2006), was implemented as an example of delay conditioning in the cerebellum,
while a self-adaptive reservoir network (Dasgupta et al., 2013a) (chapter 2) based continuous
actor-critic learner (Doya, 2000b) was implemented as an example of reward based conditioning
in the basal ganglia. Taking advantage of the individual learning mechanisms, the combined
framework can learn the appropriate goal-directed control policy for an agent1 in a fast and

1Agent here refers to any artificial or biological organism situated in a given environment.
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robust manner outperforming the singular implementation of the individual components.

Although there have been a number of studies which have applied the two different conditioning
concepts for studying self-organizing behavior in artificial agents and robots, they have mostly
been applied separately to generate specific goal-directed behaviors (Prescott et al., 2006), (Mo-
rimoto and Doya, 2001), (Hofstoetter et al., 2002), (Manoonpong et al., 2007), (Verschure and
Mintz, 2001). In our previous work (Manoonpong et al., 2013a) we motivated a combined
approach of the two learning concepts on a purely algorithmic level without any adaptive com-
bination between the two. To the best of our knowledge, in this paper we present for the first
time a biologically plausible approach to model an adaptive combination of the cerebellar and
basal ganglia learning systems, where they indirectly interact through sensory feedback . In
this manner they work as a single functional unit to guide the behavior of artificial agents.
Furhtermore, with the use of the reservoir model for basal-ganglia circuitry, we show that it
clearly outperforms earlier feed-forward models for reward learning, specifically in decision mak-
ing situations with dependence on memory of past sensory inputs. We test our neural combined
learning hypothesis within the framework of goal-directed decision making using a simulated
wheeled robot situated in environments of increasing complexity designed as part of static and
dynamic foraging tasks (Sul et al., 2011). Our results clearly show that the proposed mech-
anism enables the artificial agent to successfully learn the task in the different environments
with changing levels of interaction between the two learning systems. Although we take a sim-
plified approach of simulated robot based goal-directed learning, we believe our model covers
a reasonable level of biological abstraction that can help us understand better, the closed-loop
interactions between these two neural subsystems as evident from experimental studies, display
the use of reservoir based models from within the paradigm of reward learning (as opposite to
the standard supervised principles) and also provide a computational model of such combined
learning behavior which has hitherto been missing.

We now give a brief introduction to the neural substrates of the cerebellum and the basal
ganglia with regards to classical and operant conditioning. Using a broad high-level view of the
anatomical connections of these two brain structures, we motivate how goal-directed behavior is
influenced by the respective structures and their associated neuronal connections. The individual
computational models with implementation details of the two interacting learning systems are
then presented in the Materials and methods section followed by results and discussion.

5.1.1 Classical Conditioning in the Cerebellum

The role of the Cerebellum and its associated circuitry in the acquisition and retention of antic-
ipatory responses (sensory predictions) with Pavlovian delay conditioning has been well estab-
lished (Christian and Thompson, 2003), (Thompson and Steinmetz, 2009). Although most of
the classical conditioning studies are primarily based on eye-blink conditioning (Yeo and Hess-
low, 1998), recent experimental studies have established the essential role of the cerebellum in
learning and memory of goal-directed behavioral responses (Burguiere et al., 2010). In Fig.
5.2 A, a highly simplified control structure of the major cerebellar pathways and their relative
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function is indicated. The Inferior Olive relays the US signal to the cerebellar cortex through
the climbing fibers and then induces plasticity at the synaptic junctions of the mossy fibers car-
rying the CS information (Herreros and Verschure, 2013). Repeated CS-US pairings gradually
lead (through synaptic consolidation) to the acquisition of the CR with a drop in the firing
activity of the Purkinje cells (output from the cerebellar cortex). The cerebral cortex projects
to the lateral cerebellum via pontine nuclei relays (Proville et al., 2014), (Allen and Tsuka-
hara, 1974), (Lisberger and Thach, 2013) which in turn have projections back to the cerebral
cortex through relays in the thalamus (ventro-lateral nucleus), thus projecting the conditioned
responses from the cerebellum to the motor cortical areas (Sakai et al., 2000), (Stepniewska
et al., 1994). In essence, the cerebellar action modulates or controls the motor activity of the
animal which produces changes in its goal oriented behavior. The goal oriented behaviors can
typically involve both attraction towards or avoidance of specific actions (generally referred to
as adaptive reflexes) involving both sensory predictions and motor control, towards which the
cerebellum makes a major contribution. It is also important to note that although numerous
experimental and computational studies demonstrate the function of the Cerebellum in classical
conditioning or correlation learning (Kim and Thompson, 1997), (Woodruff-Pak and Disterhoft,
2008), a possible role of the Cerebellum towards supervised learning (SL) has also been widely
suggested (Kawato et al., 2011), (Doya, 1999). Typically within the paradigm of SL a training
or instructive signal acts as a reference towards which the output of a network (movements) is
compared, such that the error generated acts as the driver signal to induce plasticity within the
network in order to find the correct mapping between the sensory input stimuli and the desired
outputs (Knudsen, 1994). Using the classical conditioning paradigm, it has been suggested that
the instructive signal that supervises the learning is the input activity associated with the US.
As such, the SL model of the cerebellum considers that the climbing fibers from the inferior olive
provide the error signal (instructive activity) for the Purkinje cells. Coincident inputs from the
inferior olive and the granule cells lead to plasticity at the granule-to-Purkinje synapses (Doya,
2000a). Although there have been experimental studies to validate the SL description of the
cerebellum (Kitazawa et al., 1998), it has been largely directed towards considering the cere-
bellum as an internal model of the body and the environment (Kawato, 1999). Furthermore,
(Krupa et al., 1993) observed that even when the red nucleus (relay between motor cortex and
cerebellum) was inactivated learning proceeded with no CR being expressed. Thus, this demon-
strates that no error signal based on the behavior was needed for learning to occur. Instead,
the powerful climbing fiber activity evoked by the US, acting as a template, could cause the
connection strengths of sensory inputs that are consistently correlated with it to increase. Sub-
sequently, after sufficient repetition, the activity of these sensory inputs alone would drive the
UR pathway. As such, in this work we directly consider correlation learning as the basis of
classical conditioning in the cerebellum without taking into consideration SL mechanisms and
do not explicitly consider the US relay from the inferior olive as an error signal.

5.1.2 Reward learning in the Basal Ganglia

In contrast to the role of the cerebellum in classical conditioning, the basal ganglia and its as-
sociated circuitry possess the necessary anatomical features (neural substrates) required for a

100



5.1 Introduction

Figure 5.2: (A) Schema of the cerebellar controller with the reflexive pathways and anatomical projections
leading the acquisition of reflexive behaviors. CS - conditioned stimulus, US - unconditioned
stimuli, CR - conditioned response, UR - unconditioned response. (B) (right) Schematic
representation of the neural architecture of the basal ganglia circuitry showing the layout of
the various internal connections.(left) Shows the simplified circuit diagram with the main
components as modeling in this paper using the reservoir actor-critic framework. Cortex =
C, striatum = S, dopamine system = DA, reward = R, thalamus = T. Adapted and modified
from (Wörgötter and Porr, 2005).

reward-based learning mechanism (Schultz and Dickinson, 2000). In Fig. 5.2 B, we depict the
main anatomical connections of the cortical basal ganglia circuitry. It is comprised of the stria-
tum (consisting of most of the caudate and the putamen, and of the nucleus accumbens), the
internal (medial) and external (lateral) segments of the globus pallidus (GPi and GPe respec-
tively), the subthalamic nucleus (STN), the ventral tegmental area (VTA) and the substantia
nigra pars compacta (SNc) and pars reticulata (SNr). The input stage of the basal ganglia is
the striatum connected via direct cortical projections. Previous studies have not only recognized
the striatum as a critical structure in the learning of stimulus-response behaviors, but also es-
tablished it as the major location which projects to as well as receives efferent connections from
(via direct and indirect multi-synaptic pathways) the dopaminergic system (Joel and Weiner,
2000) (Kreitzer and Malenka, 2008). The processing of rewarding stimuli is primarily modu-
lated by the dopamine neurons (DA system in Fig. 5.2 B) of the VTA and SNc with numerous
experimental studies (Schultz and Dickinson, 2000) demonstrating, that changes in dopamine
neurons encode the prediction error in appetitive learning scenarios, and associative learning in
general (Puig and Mille, 2012). Fig. 5.2 B - right shows the idealized reciprocal architecture
of the striatal and dopaminergic circuitry. Here sensory stimuli arrive as input from the cortex
to the striatal network. Excitatory as well as inhibitory synapses project from the striatum
to the DA system which in turn uses the changes in the activity of DA neurons to modulate
the activity in the striatum. Such DA activity also acts as the neuromodulatory signal to the
thalamus which receives indirect connections from the striatum, via the GPi, SNr and VTA
(Varela, 2014). Computational modeling of such dopamine modulated reward learning behavior
is particularly well reflected by the Temporal Difference (TD) algorithm (Sutton, 1988), (Suri
and Schultz, 2001), as well as in the action selection based computational models of the basal
ganglia (Gurney et al., 2001), (Humphries et al., 2006). In the context of basal ganglia modeling,
Actor-Critic models (explained further in the next section) of TD learning (Houk et al., 1995),
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(Joel et al., 2002) have been extensively used. They create a functional separation between two
sub-networks of the critic (modeling striatal and dopaminergic activity) and the actor (modeling
striatal to motor thalamus projections). The TD learning rule uses the prediction error (TD
error) between two subsequent predictions of the net weighted sum of future rewards based on
current input and actions, to modulate critic weights via long-term synaptic plasticity. The same
prediction error signal (dopaminergic projections) is also used to modulate the synaptic weights
at the actor; output from which controls the the actions taken by the agent. Typically, here the
mechanism of action selection, can be regarded as the neuromodulation process occurring at the
striatum, which then reaches the motor thalamic regions via projections from the output stages
of the basal ganglia, namely GPi/GPe and SNr (Gurney et al., 2001) (Houk et al., 2007) (Fig.
5.2 B).

5.2 Material & Methods

5.2.1 Combinatorial Learning with Reward Modulated Heterosynaptic Plasticity

According to the neural combined learning hypothesis for successful goal-directed decision mak-
ing, the underlying neural machinery of animals combines basal ganglia and cerebellar learning
systems output, induced with a reward modulated balancing (neuromodulation) between the
two, at the thalamus to achieve net sensory-motor adaptation. Thus here we develop a system
for the parallel combination of the input correlation-based learner (ICO) and the reward-based
learner (actor-critic) as depicted in Fig. 5.1 B. The system works as a dual learner where the
individual learning mechanisms run in parallel to guide the behavior of the agent. Both systems
adapt their synaptic weights independently (as per their local synaptic modification rules) while
receiving the same sensory feedback from the agent (environmental stimuli) in parallel. The
final action that drives the agent is calculated as a weighted sum (Fig. 5.3 red circle) of the
individual learning components. This can be described as follows:

ocom(t) = ξicooico(t) + ξacoac(t) (5.1)

where, oico(t) and oac(t) are the t time step outputs of the input correlation-based learner and
the actor-critic reinforcement learner, respectively. ocom(t) represents the t time step combined
action. The key parameters here that govern the learning behavior are the synaptic weights of
the output neuron projection from the individual components, (ξico and ξac). These govern the
degree of influence of the two learning systems, on the net action of the agent. Previously, a
simple and straight forward approach was undertaken in (Manoonpong et al., 2013a), where an
equal contribution (ξico = ξac = 0.5) of ICO and actor-critic RL for controlling an agent was
considered. Although this can lead to successful solutions in certain goal-directed problems, it
is sub-optimal due to the lack of any adaptive balancing mechanism. Intuitively for associative
learning problems with immediate rewards the ICO system learns quickly as compared to distal
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Figure 5.3: Schematic wiring diagram of the combined learning neural circuit: It consists of the
reservoir actor-critic RL based on TD learning (left) and the input correlation learning (ICO)
(right) models. The critic here is reminiscent of the cortico striatal connections modulated by
dopaminergic neural activity (TD error). The actor represents the projections from the SNc,
VTA and STN on to the thalamus where actions selection occurs. The ICO learning system
is constructed in a manner similar to Fig. 5.1 C, with the inferior olive being represented
by the differential Hebbian (d/dt) system that uses the US reflex signal to modulate the
synaptic connections in the cerebellum. Explicit nucleo-olivary inhibitory connections were
not modeled here. The red circle represents the communication junction which act as the
integrator of the outputs from the two networks, being directly modulated by the reward
signal R to control the overall action of the agent. (further details in text).
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reward based goal-directed problems where, the ICO learner can provide guidance to the actor-
critic learner. In particular depending on the type of problem, the right balance between the
two learners needs to be achieved in an adaptive manner.
While there is evidence on the direct communication (Bostan et al., 2010) or combination of the
subcortical loops from the cerebellum and the basal ganglia (Houk et al., 2007), a computational
mechanism underlying this combination has not been presented, so far. Here we propose for the
first time, an adaptive combination mechanism of the two components, modeled in the form of a
reward modulated heterosynaptic plasticity (RMHP) rule, which learns the individual synaptic
weights (ξico and ξac) for the projections from these two components. It is plausible that such a
combination occurs at the VA-VL region of the motor thalamic nuclei which has both pallido-
thalamic (basal ganglia) and cerebello-thalamic projections (Sakai et al., 2000). Furthermore a
few previous experimental studies (Allen and Tsukahara, 1974), (Desiraju and Purpura, 1969)
suggested that the individual neurons of the VL (nearly 20%) integrate signals from the basal
ganglia and the cerebellum along with some weak cerebral inputs 2. Based on biological evi-
dence of dopaminergic projections at the thalamus from the basal ganglia circuit (Varela, 2014),
(Garćıa-Cabezas et al., 2007) as well as cerebellar projections to the thalamic ventro-latral nu-
cleus (Bosch-Bouju et al., 2013) (see Figure 42-7 in (Lisberger and Thach, 2013)) we consider
here that such dopaminergic projections act as the neuromodulatory signal and triggers the
heterosynaptic plasticity (Ishikawa et al., 2013). A large number of such heterosynaptic plastic-
ity mechanisms contribute towards a variety of neural processes involving associative learning
and development of neural circuits in general (Bailey et al., 2000) (Chistiakova and Volgushev,
2009). Although there is currently no direct experimental evidence of heterosynaptic plasticity
at thalamic nuclei, it is highly plausible that such interactions could occur on synaptic afferents
as observed in the amygdala and the hippocampus (Vitureira et al., 2012). Here, we use the in-
stantaneous reward signal as the modulatory input in order to induce heterosynaptic changes at
the thalamic junction. Similar approach have also been used in some previous theoretical models
of reward modulated plasticity (Legenstein et al., 2008), (Hoerzer et al., 2012). Although the
dopaminergic projections from the VTA to the Mthal are primarily believed to encode a reward
prediction error (RPE) signal (Schultz and Dickinson, 2000), there exists considerable diversity
in the VTA neuron types with a subset of these dopaminergic neurons directly responding to
rewards (Cohen et al., 2012). Similar variability has also been observed in the single DA neuron
recordings from memory guided sacadic tasks performed with primates (Takikawa et al., 2004).
This suggests that although most dopaminergic neurons respond to a reward predicting condi-
tional simuli, some may not strictly follow the canonical RPE coding (Cohen et al., 2012). It
is important to note that, within this model, it is equally possible to use the reward prediction
error (TD error, Eq. 5.10) and still learn the synaptic weights of the two components in a stable
manner, however with a negligibly slower weight convergence due to continuous weight changes
(see appendix A.4).

Based on this RMHP plasticity rule the ICO and actor-critic RL weights are learned at each

2It is also plausible that integration of activity arising in basal ganglia and cerebellum might take place in the
thalamus nuclei other than the VL-VA, since pallidal as well as cerebellar fibers are known histologically to
terminate not only in the VL-VA but also in other structures (Mehler, 1971)
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time step as follows :

∆ξico(t) = ηR(t)[oico(t)− ōico(t)]oac(t), (5.2)

∆ξac(t) = ηR(t)[oac(t)− ōac(t)]oico(t). (5.3)

Here R(t) is the current time step reward signal received by the agent, while ōico(t) and ōac(t)
denote the low-pass filtered version of the output from the ICO learner and the actor-critic
learner, respectively. They are calculated as:

ōico(t) = 0.9ōico(t− 1) + 0.1oico(t),

ōac(t) = 0.9ōac(t− 1) + 0.1oac(t).
(5.4)

The plasticity model used here is based on the assumption that the net policy performance
(agent’s behavior) is influenced by a single global neuromodulatory signal. This relates to the
dopaminergic projections to the ventra-lateral nucleus in the thalamus as well as connections
from the amygdala which can carry reward related signals that influence over all action selection.
The RMHP learning rule correlates three factors: 1) the reward signal, 2) the deviations of the
ICO and actor-critic learner outputs from their mean values, and 3) the actual ICO and actor-
critic outputs. The correlations are used to adjust their respective synaptic weights (ξico and ξac).
Intuitively here the heterosynaptic plasticity rule can be also viewed as a homeostatic mechanism
(Vitureira et al., 2012). Such that, the equation 2 tells the system to increase the ICO learners
weights (ξico) when the ICO output is coincident with the positive reward, while the third factor
(oac) tells the system to increase ξico more (or less) when the actor-critic learner weights (ξac)
are large (or small), and vice versa for equation 3. This ensures that overall the ratio of weight
change of the two learning components occurs at largely the same rate. Additionally in order
to prevent uncontrolled divergence in the learned weights, homeostatic synaptic normalization
is carried out specifically as follows:

ξico(t) = ξico(t)
ξico(t)+ξac(t) ,

ξac(t) = ξac(t)
ξico(t)+ξac(t) .

(5.5)

This ensures that the synaptic weights always add up to one and 0 < ξico, ξac < 1. In general
this plasticity rule occurs on a very slow time scale which is governed by the learning rate
parameter η. Typically convergence and stabilization of weights are achieved by setting η much
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Figure 5.4: Temporal difference actor-critic model of reward-based learning

smaller compared to the learning rate of the two individual learning systems (ICO and actor-
critic). To get a more detailed view of the implementation of the adaptive combinatorial learning
mechanism, interested readers should refer to Algorithm 1, in appendix A.4 for the detailed
algorithm.

5.2.2 Actor-critic Reservoir Model of Basal-ganglia Learning

TD learning (Sutton, 1988), (Suri and Schultz, 2001), in the framework of actor-critic rein-
forcement learning (Joel et al., 2002), (Wörgötter and Porr, 2005), is the most established
computational model of the basal ganglia. As explained in the previous section, the TD learn-
ing technique is particularly well suited for replicating or understanding how reward related
information is formed and transferred by the mid-brain dopaminergic activity.

The model consists of two sub-networks, namely, the adaptive critic and the actor (Fig. 5.4).
The critic is adaptive in the sense that it learns to predict the weighted sum of future re-
wards taking into account the current incoming time varying sensory stimuli and the actions
(behaviors) performed by the agent within a particular environment. The difference between
the predicted ”value” of sum of future rewards and the actual measure acts as the temporal
difference (TD) prediction error signal that provides an evaluative feedback (or reinforcement
signal) to drive the actor, as well as modulate the predictions by the critic. Eventually the actor
learns to perform the proper set of actions (policy3) that maximize the weighted sum of future
rewards as computed by the critic. The evaluative feedback (TD error signal) in general acts as
a measure of goodness of behavior that, overtime, lets the agent learn to anticipate reinforcing
events. Within this computational framework, the TD prediction error signal and learning at
the critic are analogous to the dopaminergic (DA) activity and the DA dependent long term
synaptic plasticity in the striatum (Fig. 5.2 B), while the remaining parts of striatal circuitry
can be envisioned as the actor which uses the TD modulated activity to generate actions, which

3In reinforcement learning, policy refers to the set of actions performed by an agent that maximizes it’s average
future reward.
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drives the agent’s behavior.

Based on the reservoir computing framework (Maass et al., 2002), (Jaeger and Haas, 2004), here
we demonstrate the use of the self-adaptive reservoir network (SARN) (Dasgupta et al., 2013a) as
the adaptive critic (cortico-striatal circuitry and the DA system) mechanism (Fig. 5.3 left below).
This is connected to a feed-forward neural network, serving the purpose of the part of striatum
that performs action selection (Gurney et al., 2001) and then relays it to the motor thalamus
via projections from the globus pallidus and substantia nigra. Given the ability of SARN to
inherently represent temporal information of incoming stimuli, this provides a novel framework
to model a continuous actor-critic reinforcement learning scheme, which is particularly suited for
goal-directed learning in continuous state-action problems, while at the same time maintaining a
reasonable level of biological abstraction (Fremaux et al., 2013). Here, the reservoir network can
be envisioned as analogous to the cortex and its inherent recurrent connectivity structure, and
the readout neurons serving as the striatum, with plastic projections from the recurrent layer, as
the modifiable cortico-striatal connections (Hinaut and Dominey, 2013). The reservoir network
is constructed as a generic network model of N recurrently connected neurons with high sparsity
(refer to Tab. A.1 in appendix A.4 for details) and fixed synaptic connectivity. The connections
within the recurrent layer are drawn randomly in order to generate a sparsely connected network
of inhibitory and excitatory synapses. A subset of the reservoir neurons receive input connections
(fixed synaptic strengths) as external driving signals and has an additional output layer of
neurons that learns to produce a desired response based on synaptic modification of weights
from the reservoir to output neurons. The input connections along with the large recurrently
connected reservoir network represents the main cortical microcircuit-to-striatum connections,
while the output layer neural activity can be envisioned as striatal neuronal responses.

In this case, the reservoir critic provides an input (sensory stimuli) driven dynamic network
with a large repertoire of signals that is used to predict the value function v (average sum of
future rewards). v(t) approximates the accumulated sum of the future rewards R(t) with a given
discount factor γ (0 ≤ γ < 1)4 as follows:

v(t) =
∞∑
i=1

γi−1R(t+ i). (5.6)

All the remaining components in the reservoir network is the same as presented before in chap-
ters 2 and 3. However now, rather than use a predefined supervised target signal to modulate
the reservoir-to-readout weights Wout, we make use of the TD error signal generated based on
reservoir predictions. Here, the membrane potential at the soma (at time t) of the reservoir
neurons, resulting from the incoming excitatory and inhibitory synaptic inputs, is given by the
N dimensional vector of neuron state activation’s, x(t) = x1(t), x2(t), ...., xN (t). The input to
the reservoir network, consisting of the agent’s states (sensory input stimuli from the cerebral

4The discount factor helps assigning decreasing value to rewards further away in the past as compared to the
current reward.
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cortex), is represented by the K dimensional vector u(t) = u1(t), u2(t), ..., uK(t). The recurrent
neural activity within the dynamic reservoir varies as a function of its previous state activation
and the current driving input stimuli. Recollect, that the recurrent network dynamics is given
by,

xi(t+ 1) = (1− ∆t
τi

)xi(t) + ∆t
τi

(
g
∑N
j=1W

rec
i,j rj(t) +

∑K
j=1W

in
i,juj(t) +Bi

)
, (5.7)

v̂(t) = z(t) = tanh(Woutr(t)), (5.8)

ri(t) = tanh(aixi(t) + bi). (5.9)

Where, all the parameters are the same as in the basic SARN model, with the exception of the
readout neuron activity v̂(t) = z(t). Here, instead of the a linear function, the readout neuron
output is also calculated with a tan hyperbolic non-linear transfer function.

Based on the TD learning principle, the primary goal of the reservoir critic is to predict v(t)
such that the TD error δ is minimized over time. At each time point t, δ is computed from the
current (v̂(t)) and previous (v̂(t − ∆t)) value function predictions (reservoir output), and the
current reward signal R(t), as follows:

δ(t) = R(t) + γv̂(t)− v̂(t−∆t). (5.10)

The readout weights Wout are calculated using the recursive least squares (RLS) formulation
(section 2.2.4, Eq. 2.32) at each time step, while the sensory stimuli u(t) are being fed into the
reservoir. Unlike the supervised learning formulation, here the error signal for weight modulation
was not calculated based on a target output, but Wout were adapted, such that the overall TD-
error (δ - here acts as the instantaneous error signal) is minimized. The readout weight update
is defined as:

Wout(t) = Wout(t−∆t)− δ(t)P(t)r(t) (5.11)

where, P is a N × N square matrix proportional to the inverse of the correlation matrix of
reservoir neuron firing rate vector r. As depicted in Eq. 2.33 and Eq. 2.34, it was initialized
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with a small constant parameter δc, and updated at each time point as,

P(t) = P(t−∆t)−
(

P(t−∆t)r(t)rT (t)p(t−∆t)
1 + rT (t)P(t−∆t)r(t)

)
. (5.12)

As introduced previously, (chapter 2) (Dasgupta et al., 2013a) generic intrinsic plasticity mech-
anism (Eq. 2.28 and Eq. 2.29) based on the Weibull distribution for unsupervised adaptation of
the reservoir neuron non-linearity using a stochastic decent algorithm to adapt the scale ai and
shape parameters bi of the reservoir neuron non-linearity was carried out as pre-training process.
This was coupled with the adaptation of individual neuron timeconstants τi (Eq. 2.19) based on
the incoming sensory state information. It is also important to note that one of the primary as-
sumptions of the basic TD learning rule is a Markovian one, which considers future sensory cues
and rewards depending only on the current sensory cue without any memory component. The
use of a reservoir critic (due to the inherent fading temporal memory) breaks this assumption.
As a result, such design principle extends our model to generic decision making problems with
short term dependence of immediate sensory stimuli on the preceding history of stimuli (agents
states) and reward (see Fig. 5.5 for a simulated example of local temporal memory in reservoir
neurons, elaborate examples can be seen in chapter 3). This was not possible in traditional
models of an adaptive critic based on feed-forward radial-basis function (RBF) networks (Doya,
2000a), and as such is another crucial contribution of the reward learning formulation of SARN.

The actor (Fig. 5.3 left above) is designed as a single stochastic neuron, such that for a one
dimensional action generation the output (Oac) is given as:

oac(t) = ε(t) +
K∑
i=1

wi(t)ui(t), (5.13)

where K denotes the dimension (total number) of sensory stimuli (u(t)) to the agent being
controlled. The parameter wi denotes the synaptic weights for the different sensory inputs
projecting to the actor neuron. Stochastic noise is added to the actor via ε(t), which is the
exploration quantity updated at every time step. This acts as a noise term, such that initially
exploration is high, and the agent needs to navigate the environment more if the expected
cumulative future reward v(t) is sub-optimal. However, as the agent learns to successfully
predict the maximum cumulative reward (value function) over time, and the net exploration is
decreased. As a result ε(t) gradually tends towards zero as the agent starts to learn the desired
behavior (correct policy). Using Gaussian white noise σ (zero mean and standard deviation
one) bounded by the minimum and maximum limits of the value function (vmin and vmax), the
exploration term is modulated as follows:

ε(t) = Ωσ(t) · min
[
0.5, max

(
0, vmax − v̂(t)
vmax − vmin

)]
. (5.14)

109



5 Neuromodulated Combined Learning and Reward-based Reservoir Models

Figure 5.5: Fading temporal memory in recurrent neurons of dynamic reservoir The recurrent
network (100 neurons) was driven by a brief 100 ms pulse and a fixed auxiliary input of
magnitude 0.3 (not shown here). Spontaneous dynamics then unfolds in the system based on
Eq. 5.7. The lower right panel plots the activity of 5 randomly selected recurrent neurons.
It can be clearly observed that the driving input signal clamps the activity of the network
at 200 ms however different neurons decay with varying timescale. As a result the network
exhibits considerable fading memory of the brief incoming input stimuli.

110



5.2 Material & Methods

Here, Ω is a constant scale factor selected empirically (see appendix for details). The actor
learns to produce the correct policy, by an online adaptation (Fig. 5.3 left above) of its synaptic
weights wi at each time step as follows:

∆wi(t) = τaδ(t)ui(t)ε(t), (5.15)

where τa is the learning rate such that 0 < τa < 1. Instead of using direct reward r(t) to update
the input to actor neuron synaptic weights, using the TD-error (i.e. error of an internal reward)
allows the agent to learn successful behavior, even in cases of delayed reward scenarios (reward
is not given uniformly for each time step but is delivered as a constant value after a set of actions
were performed to reach a specific goal). In general, once the agent learns the correct behavior,
the exploration term (ε(t)) should become zero, as a result of which no further weight change
(Eq. 5.15) occurs and oac(t) represents the desired action policy, without any additional noise
component.

5.2.3 Input Correlation Model of Cerebellar Learning

In order to model classical conditioning of adaptive motor reflexes5 in the cerebellum, we use a
model-free, correlation based, predictive control learning rule called input correlation learning
(ICO) (Porr and Wörgötter, 2006). ICO learning provides a fast and stable mechanism in order
to acquire and generate sensory predictions for adaptive responses based solely on the correla-
tions between incoming stimuli. The ICO learning rule (Fig. 5.3 Right) takes the form of an
unsupervised synaptic modification mechanism using the cross-correlation between the incoming
predictive input stimuli (predictive here means that the signals occur early) and a single reflex
signal (late occurring). As depicted in Fig. 5.3 right, cortical perceptual input in the form of
predictive signals (CS) represents the mossy fiber projections to the cerebellum microcircuit,
while the Climbing fiber projections from the inferior olive that modulates the synaptic weights
in the deep cerebellar nucleus are depicted in a simplified form with the differential region (d/dt).

The goal of the ICO mechanism is to behave as a forward model system (Porr and Wörgötter,
2006) that uses the sensory CS to predict the occurrence of the innate reflex signal (external
predefined feedback signaling unwanted scenarios), thus letting the agent to react in an antici-
patory manner to avoid the basic reflex altogether. Based on a differential Hebbian learning rule
(Kolodziejski et al., 2008) the synaptic weights in the ICO scheme are modified using heterosy-
naptic interactions of the incoming inputs, depending on their order of occurrence. In general,
the plastic synapses of the predictive inputs get strengthened if they precede the reflex signal
and are weakened if their order of occurrence is reversed. As a result, the ICO learning rule

5The reflex signal is typically a default response to an unwanted situation. This acts as the unconditional
stimulus occurring later in time, than the predictive conditional stimulus.
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drives the behavior depending on the timing of correlated neural signals. This can be formally
represented as,

oico(t) = ρ0x0(t) +
K∑
j=1

ρj(t)xj(t). (5.16)

Here, oico represents the output neuron activation of the ICO system driven by the superposi-
tion of the plastic K-dimensional predictive inputs xj(t) = x1(t), x2(t), ..., xK(t)6 (differentially
modified) and the fixed innate reflex signal x0(t). The synaptic strength of the reflex signal is
represented by ρ0 and is fixed to the constant value of 1.0 in order to signal innate response
to the agent. Using the cross-correlations between the input signals, our differential Hebbian
learning rule modifies synaptic connections as follows:

∆ρj(t) = µxj(t)
d

dt
x0(t). (5.17)

Here, µ defines the learning rate and is typically set to a small value to allow slow growth of
synaptic weights with convergence occurring once the reflex signal xo = 0 (Porr and Wörgötter,
2006). Thus ICO learning allows the agent to predict the primary reflex and successfully generate
early, adaptive actions. However no explicit feedback of goodness of behavior is provided to the
agent and thus only an anticipatory response can be learned without the explicit notion of how
well the action allows reaching a desired (rewarding) goal location. As depicted in Fig. 5.3, the
output from the ICO learner is directly fed into the RMHP unit envisioned to be part of the
ventro-lateral thalamic nucleus (Bosch-Bouju et al., 2013), (Akkal et al., 2007).

5.3 Results

In order to test the performance of our bio-inspired adaptive combinatorial learning mechanism,
and validate the interaction through sensory feedback, between reservoir model of reward learn-
ing (basal ganglia) and correlation-based learning (cerebellum) systems, we employ a simulated,
goal-directed decision making scenario of foraging behavior. This is carried out within a sim-
plified paradigm of a four-wheeled robot navigating an enclosed environment, with gradually
increasing task complexity.

6This x(t) is different from the neural state activation vector x(t) of equation 9.
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Figure 5.6: Simulated mobile robot system for goal-directed behavior task. (Top) The mobile
robot NIMM4 with different types of sensors. The relative orientation sensor µ is used as state
information for the robot. (Bottom) Variation of the relative orientation µG to the green
goal. the front left and right infrared sensors IR1 and IR2 are used to detect obstacles in
front of the robot. Direction control for the robot is maintained using the quantity Usteering
calculated by the individual learning components (ICO and actor-critic) and then fed to the
robot wheels to generate forward motion or steering behavior. Sensors DG and DB measure
straight line distance to the goal locations.

5.3.1 Robot model

The simulated wheeled robot NIMM4 (Fig. 5.6) consists of a simple body design with four wheels
whose collective degree of rotation controls the steering and the over all direction of motion. It is
provided with two front infrared sensors (IR1 and IR2) which can be used to detect obstacles to
its left or right side, respectively. Two relative orientation sensors (µG and µB) are also provided,
which can continuously measure the angle of deviation of the robot with respect to the green
(positive) and blue (negative) food sources. They are calibrated to take values in the interval
[−180o,180o] with the angle of deviation µG,B = 0o when the respective goal is directly in front
of the robot, µG,B is positive when the goal locations are to the right of the robot and negative
for the opposite case. In addition NIMM4 also consists of two relative position sensors (DG,B)
that can calculate it’s relative straight line distance to a goal, taking values in the interval [0, 1],
with the respective sensor reading tending to zero, as the robot gets closer to the goal location
and vice versa.

5.3.2 Experimental setup

The experimental setup (Fig. 5.7) consists of a bounded environment with two different food
sources (desired vs punishing) located at fixed positions. The primary task of the robot is to
navigate the environment such that, eventually, it should learn to steer towards the food source
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Figure 5.7: Three different scenarios for the goal-directed foraging task. (A) Environmental
setup without an obstacle case. Green and Blue objects represent the two food sources with
positive and negative rewards, respectively. The red dotted circle indicates the region where
the turning reflex response (from the ICO learner) kicks in. The robot is started from and
reset to the same position, with random orientation at the beginning of each trial episode.
(B) Environmental setup with an obstacle. In addition to the previous setup, a large obstacle
is place in the middle of the environment. The robot needs to learn to successfully avoid it
and reach the rewarding food source. Collisions with the obstacle (triggered by IR1 and IR2)
generate negative rewards (-1 signal) to the robot. (C) Environmental setup with dynamic
switching of the two objects. It is an extended version of the first scenario. After every 50
trials the reward zones are switched such that the robot has to dynamically adjust to the new
positively reinforced location (food) and learn a new trajectory from the starting location.
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that leads to positive reinforcements (green spherical ball in Figs. 5.7 A, B, and C) while avoid-
ing the goal location that provides negative reinforcements or punishments (blue spherical ball),
within a specific time interval. The main task is designed as a continuous state-action problem
with a distal reward setup (Reinforcement zone in Fig. 5.7), such that the robot starts at a
fixed spatial location with random initial orientation ([−60◦, 60◦]) and receives the positive or
negative reinforcement signal only within a radius of specific distance (DG,B = 0.2) from the
two goal locations. Within this boundary, for the green goal it receives a continuous reward of
+1 at every time step and a continuous punishment of -1 in case of the blue goal, respectively.
At other locations along the environment no reinforcement signal is given to the robot.

The experiments are further divided into three different scenarios of, foraging without an obstacle
(case I), with single obstacle (case II) and a dynamic foraging scenario (case III) demonstrating
different degrees of reward modulated adaptation between the two learning systems in different
environments. In all three basic scenarios, the robot can continuously sense its angle of deviation
to the two goals with µG,B always active. This acts as a Markov decision process (MDP)
(Sutton and Barto, 1998) such that, the next sensory state of the robot depends on the sensory
information for the current state of the robot and the action it performed, and is conditionally
independent of all the previous sensory states and actions. In order to test the influence of the
reservoir based model of critic, on tasks requiring memory of past sensory inputs, a variation of
case I was also carried out with the environment designed to be partially observable (Fig. 5.11).
Such that, the robot cannot sense its direction (angle of deviation µG,B inactive) to either of
the goals until it reaches half way distance to either of them, i.e. DG,B = 0.6. This makes
this scenario, a partially observable Markov decision problem (POMDP) (Spaan, 2012) that
requires memory of past sensory states and actions in order to calculate the next state and
take the appropriate action. In all cases, detecting the obstacle results in negative reinforcement
(continuous -1 signal) triggered by the front infrared sensors (IR1,2 > 1.0). Furthermore, hitting
the boundary wall in the arena results in a negative reinforcement signal (-1), with the robot
being reset to the original starting location. Although the robot is provided with relative distance
sensors, sensory stimuli (state information) is provided using only the angle of deviation sensors
and the infrared sensors. The reinforcement zone (distance of DG,B = 0.2) is also used as the
zone of reflex to trigger a reflex signal for the ICO learner. 50 runs were carried out for each
setup in all cases. Each run consisted of a maximum of 200 trials. The robot was reset if the
maximum simulation time of 15s was reached, or if it reaches one of the goal locations or if it
hits a boundary wall, which ever occurs earlier.

5.3.3 Cerebellar system: ICO learning setup

The cerebellar system in the form of ICO learning (Fig. 5.3 right) was setup as follows: µG,B
were used as predictive signals (CS). Two independent reflex signals (x0,B and x0,G, see Eq. 5.16)
were configured with one for blue food source and the other for the green food source (US). The
setup was designed following the principles of delayed conditioning experiments, where, an over-
lap between the CS and the US stimuli needs to exist in order for the learning to take place. The
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Figure 5.8: Simulation snapshots of the robot learning for the three cases taken at specific
epochs of time. (A) Snapshots of the learning behavior for the static foraging task without
obstacles. (B) Snapshots of the learning behavior for the static foraging task with a single
obstacle. (C) Snapshots of the learning behavior for the dynamic foraging task. Panel learned
1 - represents the learned behavior for the initial task of reaching the green goal. After 50
trials, the reward stimulus was changes and the new desired (positively reinforced) location
was the blue goal. Panel learned - 2 represents the learned behavior after dynamic switching
of reward signals. Please see electronic version for better resolution.
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reflex signal was designed (measured in terms of the relative orientation sensors of the robot)
to elicit a turn towards a specific goal once the robot comes within the reflex zone (inside the
dotted circle in Fig. 5.7 and Fig. 5.11 A). Irrespective of the kind of goal (desired or undesired)
the reflex signal drives the robot towards it with a turn proportional to the deviations defined by
µG,B i.e large deviations cause sharper turns. The green and the blue ball were placed such that
there was no overlap between the reflex areas, hence only one reflex signal per goal, got triggered
at a time. In other words, the goal of the ICO learner is simply to learn to steer towards a food
location without any knowledge of it’s worth. This is representative of an adaptive reflexive
behavior as observed in rodent foraging studies where in the behavior is guided without explicit
rewards, but just driven by conditioning between the CS-US stimuli, such that the robot or
animal learns to favor certain spots in the environments without any knowledge of their worth.
The weights of the ICO learner ρµG and ρµB (Eq. 5.16) with respect to the green and blue goals
were initialized to 0.0. If the positive derivative of the reflex signal becomes greater than a
predefined threshold, the weights change and otherwise they remain static, i.e a higher change
in ρµG in comparison to ρµB would mean that the robot gets drawn towards the green goal more.

5.3.4 Basal ganglia system: Reservoir Actor-critic setup

The basal ganglia system in the form of the self-adaptive reservoir based actor-critic learner
was setup such that, the inputs to the critic and actor networks (Fig. 5.3 left) consisted of the
two relative orientation sensor data µG and µB and the front left and right infrared sensors
(IR1 and IR2) of the robot (Fig. 5.6). Although the robot also contains relative distance
sensors, these were not used as state information inputs. This makes the task less trivial, such
that sufficient but not complete information was provided to the actor-critic RL network. The
reservoir network for the critic consisted of N = 100 neurons and one output neuron that
estimates the value function v(t) (Eq. 5.8). Reservoir input weights W in were drawn from an
uniform distribution [−0.5, 0.5] while the reservoir recurrent weights W rec were drawn from a
Gaussian distribution of mean 0 and standard deviation g2/N (see Eq. 5.7). Here g acts as the
scaling factor for W rec, and it was designed such that there is only 10% internal connectivity in
W rec with a scaling factor of 1.2. The reward signal R(t) (Eq. 5.10) was set to +1 when the
robot comes close (reflex/reinforcement zone) to the green ball and to -1 when it comes close
to the blue ball. A negative reward of -1 was also given for any collisions with the boundary
walls or obstacle. At all other locations within the environment, the robot receives no explicit
reward signal. Thus the setup is designed keeping a delayed reward scenario in mind, such that
earlier actions lead to a positive or negative reward, only when the robot enters the respective
reinforcement/reflex zone. The synaptic weights of the actor with respect to the two orientation
sensors (wµG and wµB ) were initialized to 0.0, while the weights with respect to the infrared
sensors (wIR1 and wIR2) were initialized to 0.5 (Eq. 5.13). After learning, a high value of wµG
and a low value of wµB would drive the robot towards the green goal location and away from the
blue goal. The weights of the infrared sensor inputs effectively control the turning behavior of
the robot when encountered with an obstacle (higher wIR1 - right turn, higher wIR2 - left turn).
The parameters of the adaptive combinatorial network are summarized in the appendix A.4.
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Figure 5.9: Synaptic weight change curves for the static foraging tasks without obstacle and
with single obstacle . (A) Change in the synaptic weights for actor-critic RL learner.
Here wµG

corresponds to the input weights of the orientation sensor towards the green goal
and wµB

corresponds to the input weights of the orientation sensor towards the blue goal.
(B) Change in the weights of the two infrared sensor inputs of the actor. wIR1 is the left
IR sensor weight, wIR2 is the right IR sensor weights. (C) Change in the synaptic weights
of the ICO learner. ρµG

is the CS stimulus weight for the orientation sensor towards green,
ρµB

the CS stimulus weight for the orientation sensor towards blue. (D) Learning curve of
the RMHP combined learning mechanism showing the change in the weights of the individual
components. ξico is weight of the ICO network output. ξac is weight of the actor-critic RL
network output. (E)-(H) Show the change in the weights corresponding to the single obstacle
static foraging task. In all the plots the grey shaded region marks the region of convergence
for the respective synaptic weights. Three different timescales exist in the system, with the
ICO learning being the fastest, actor-critic RL being intermediate and the adaptive combined
learning being the slowest (see text for more details.)
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5.3.5 Case I: Foraging without obstacle

In the simplest foraging scenario the robot was placed in an environment with two possible
food sources (green and blue) and without any obstacle in between (Fig. 5.7 A). In this case
the green food source provided positive reward while the blue food source provided negative
reward. The goal of the combined learning mechanism was to make the robot successfully steer
towards the desired food source. Fig. 5.8 A, shows simulation snapshots of the behavior of the
robot as it explores the environment. As observed from the trajectory of the robot, initially it
performed a lot of exploratory behavior and randomly moved around in the environment, but
eventually it learned to move solely towards the green goal. This can be further analyzed looking
at the development of the synaptic weights of the different learning components as depicted in
Fig. 5.9. As observed in Fig. 5.9 C, due to the simple correlation mechanism of the ICO learner
(cerebellar system), the ICO weights adapt relatively faster as compared to the actor. Due to
random explorations (Fig. 5.10 B) in the beginning, in the event of the blue goal being visited
more frequently, reflexive pull towards blue goal - ρµB is greater than towards the green goal
- ρµG . However, after sufficient explorations, as the robot starts reaching the green goal more
frequently, ρµG also starts developing. This is counteracted by the actor weights (basal ganglia
system), where in, there is a higher increase in wµG (orientation sensor input representing angle
of deviation from green goal) as compared to wµB (orientation sensor input representing angle
of deviation from blue goal). This is caused as result of the increased positive rewards received
from the green goal (Fig. 5.10 A) that causes the TD-error to modulate the actor weights (Eq.
5.15) accordingly. At the same time no significant change is seen in the infrared sensor input
weights (Fig. 5.9 B), due to the fact that in this scenario, the infrared sensors get triggered only
on collisions with the boundary wall and remain dormant otherwise. Recall that the infrared
sensor weights were initialized to 0.5.

Over time as the robot moves more towards the desired food source, the ICO weights also sta-
bilize with the reflex towards the green goal being much stronger. This also leads to a reduction
of the exploration noise (Fig. 5.10 B), and the actor weights eventually converge to a stable
value (Figs. 5.9 A and 5.9 B). Here, the slow RMHP rule performs a balancing act between
the two learning systems with initial higher weight of the actor-critic learner and then a switch
towards the ICO system, once the individual learning rules have converged. Fig. 5.9 C shows the
development of the value function (v(t)) at each trial, as estimated by the critic. As observed
initially the critic underestimates the total value due to high explorations and random navigation
in the environment. However as the different learning rules converge, the value function starts
to reflect the total accumulated reward with stabilization after 25 trials (each trials consisted of
approximately 1000 time steps).
This is also clearly observed from the change of the orientation sensor readings shown in Fig. 5.10
D. Although there is considerable change in the sensor readings initially, after learning, the ori-
entation sensor towards the green goal (µG) records positive angle, while the orientation from
the blue goal µB records considerably lower negative angles. This indicates that the robot
learns to move stably towards the positively rewarded food source and away from the oppositely
rewarded blue food source. Although this is the simplest foraging scenario, the development
of the RMHP weights ξico and ξac (Fig. 5.9 D) depicts the adaptive combination of the basal
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Figure 5.10: Temporal development of key parameters of the actor-critic RL network, in the
no obstacle foraging task. (A) Development of the reward signal (r) over time. Initially
the robot receives a mix of positive and negative rewards due to random explorations. Upon
successfully learning the task, the robot is steered towards the green goal every time, receiving
only positive rewards. (B) Development of the exploration noise (ε) for the actor. During
learning there is a high noise in the system (pink shaded region), which causes the the
synaptic weights of the actor to change continuously. Once the robot starts reaching the green
goal more often the TD error from the critic decreases leading to a decrease in exploration
noise (grey shaded region), which in turn causes the weights to stabilize (Fig. 5.8). (C)
Average estimated value (v) as predicted by the reservoir critic is plotted for each trial. The
maximum estimated value is reached after about 18 trials after which the exploration steadily
decreases and the value function prediction also reaches near convergence at 25 trials (1 trial
approximates 1000 time steps). The thick black line represents the average value calculated
over 50 runs of the experiment with standard deviation given by the shaded region. (D)
Plots of the two orientation sensor readings (in degrees) for the green (µG) and the blue (µB)
goals, averaged over 50 runs. During initial exploration the angle of the deviation of the
robot from the two goals changes randomly. However after convergence of the learning rules,
the orientation sensor readings stabilize with small positive angle of deviation towards the
green goal and large negative deviation from the blue goal. This shows that post learning,
the robot steers more towards the green goal and away from the blue goal. Here the thick
lines represent average values and the shaded regions represent standard deviation.

120



5.3 Results

gangliar and cerebellar learning systems for goal-directed behavior control. Here the cerebel-
lar system (namely ICO) acts as a fast adaptive reflex learner that guides and shapes the
behavior of the reward-based learning system. Although both the individual systems even-
tually converge to provide the correct weights towards the green goal, the higher strength of
the ICO component (ξico) leads to a good trajectory irrespective of the starting orientation
of the robot. This is further illustrated in the simulation video showing three different sce-
narios of only ICO, only actor-critic and the combined learning cases, see simulation video at
http://manoonpong.com/Nimm4/Video1NoObstacle.mp4.

Special Scenario Case I: Partially Observable

In order to test the performance of our reservoir model of actor-critic learning (basal ganglia) in
generic scenarios requiring temporal memory of past sensory states (input stimuli to critic and
actor), we modified the case I environment to be partially observable (Fig. 5.11 A) (Dasgupta
et al., 2013b). Specifically, starting from the same fixed location (with random orientations), the
robot was sensory deprived (unable to measure its angle of deviations from either of the goals)
until it reaches halfway to the goal locations. In other words, unlike the previous scenario, now
the robot could sense its orientation with respect to the two goals only within a certain range
(DG,B < 0.6) and not in every location in the environment. This makes the environment, in
classical terms, partially observable. As such, the future states and actions of the robot are
dependent on not only its immediately previous state, but also on the history of past states
(memory). Furthermore, keeping the ICO learning component fixed (cerebellum), we tested
both the previous scenario and the modified case I using our reservoir actor-critic model as well
as standard adaptive feedforward radial-basis function (RBF) networks (Manoonpong et al.,
2013a), (Morimoto and Doya, 1998). Here the RBF actor-critic network (see Manoonpong et al.
(2013a) for details) was constructed such that the critic network size varies between 15 to 100
hidden RBF units.

The actor-critic learner was setup as follows: The inputs to the critic and actor networks (Fig.
2) consisted of the two relative orientation sensor data φG and φB. The reservoir network for
the critic consisted of N = 100 neurons and one ouput neuron that estimates the value function
v(t) (Eq. (1)). Reservoir input weights Win were drawn from an uniform distribution [−0.5, 0.5]
while the reservoir recurrent weights Wsys were drawn from the uniform distribution [−1, 1].
Wsys was subsequently scaled to a spectral radius of 0.9 with only 10% internal connectivity.
The reward signal r(t) (Eq. (2)) was set to +1 when the robot comes close to the green ball and
to -1 when it comes close to the blue ball. A RBF feedforward network was used for comparison
with the reservoir based critic. The RBF critic size was varied from 16 to 100 hidden neurons.

The performance of the reservoir based critic as compared to the RBF critic (keeping all other
components of the combinatorial learning mechanism the same) is compared in Fig. 5.11 B, with
respect to the fully and the partially observable scenarios of the same task. As observed, the
reservoir based critic clearly outperforms the RBF critic. Moreover the difference in performance
is highly significant in the POMDP scenario, where the reservoir network outperforms the RBF
critic by a success rate greater than 50%. Temporal memory of incoming agent state information
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Figure 5.11: Performance comparison between a reservoir based critic and RBF based critic
for the fully observable and partialy observable cases (ICO and actor components
remained the same) . (A) Environmental setup for the partially observable case. The
robot can sense its relative orientation to the goals only when within the observable zone
(filled grey dotted circles). Reinforcement is received similar to the fully observable case. Due
to this sensory deprivation between the starting location and beginning of the observable
zone, the robot depends on its history of previous state information to guide its future
behavior, making the problem a POMDP. (B) Left - average learning time (trials) needed
to succesfully complete the task, calculated over 50 experiments (error bars indicate standard
deviation for 95 % confidence interval), Right - Success rate in percentage. Here ”success”
indicates the robots ability to correctly navigate to the green goal. (C) Estimation of the
value function v(t) using reservoir based critic. The v̂(t) estimate is plotted with respect to
local co-ordinates of the robot and an observer located directly opposite to the robot starting
position. Colormap indicates the changing v̂(t) values. The black ball indicates the starting
position of the robot with random orientation and the curvature of the plot is resultant of
the shape of view from the observer. (D) Estimation of value function v(t) for the same
task using the static RBF based critic.
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available to the reservoir critic is crucial for solving complex non-markovian decision making
problem, as compared to memoryless feedforward critic networks. Furthermore although both
the implementations have almost similar success rate for the fully observable case, the reservoir
based system converges to a solution (learned behavior of driving the robot to the green goal)
significantly faster (less than 50 trials), as observed in Fig. 5.11 B right. However, expectantly
the POMDP scenario takes longer time to learn the correct behavior, owing to the reduction
in the total sensory information available to the system. Upon successfully learning the task
the weights of the actor (Eq. 5.15) converge such that the robot gets pulled towards the desired
green goal. It should be noted that although linear stochastic actors were used in this setup,
the POMDP scenario is effectively solved due to the inherent trace of previous inputs in the
reservoir critic. In contrast the memoryless RBF critic system works on chance and hence learns
the POMDP task with less than 50% success rate. To elaborate this further, in Figs. 5.11 C
and D, we compare the performance of the reservoir based critic with a RBF critic network
in terms of the value function estimation curves for the same goal-directed behavior task (i.e.
case I without obstacles). It is clearly observed that the reservoir critic successfully enables the
mobile robot to learn to drive towards the green goal while avoiding the blue goal. Furthermore
unlike the RBF critic (Fig. 5.11 D), the value function curve in Figs. 5.11 C, displays a strong
gradient of the estimated value of v̂(t) with high positive values towards the correct goal (green
object). In contrast the memory less RBF critic estimates v̂(t) to values closer to zero in most
locations except for regions within the zone of reward. As a result our adaptive reservoir critic
learns the task faster as indicated by the fast convergence (time to success) in Fig. 5.11 B right.

Having established the efficiency of the reservoir network actor-critic model, in the next cases we
will only consider the fully observable case, and with changes in complexity of the environment,
evaluate the performance of the individual learning components and their combination with the
novel RMHP rule.

5.3.6 Case II: Foraging with single obstacle

In order to evaluate the efficacy of the two learning systems and their cooperative behavior, the
robot was now placed in a slightly modified environment (Fig 5.7 B). As in the previous case, the
robot still starts from a fixed location with initial random orientations. However, it now has to
overcome an obstacle placed directly in front (field of view), in order to reach the rewarding food
source (green goal). Collisions with the obstacle, during learning, resulted in negative rewards
(-1) triggered by the front left (IR1) and right (IR2) infrared sensors. This influenced the actor-
critic learner to modulate the actor weights via TD-error and generate turning behavior around
the obstacles. In parallel, the ICO system, still learns only a default reflexive behavior of getting
attracted towards either of the food sources by a magnitude proportional to its proximity to
them (same as case I), irrespective of the associated rewards. As observed from the simulation
snapshots in Fig 5.8 B, after initial random exploration, the robot learns the correct trajectory
to navigate around the obstacle and reach the green goal. From the synaptic weight development
curves for the actor neuron (Fig. 5.9 E) it is clearly observed that although initially there is a
competition between wµG and wµB , after sufficient exploration, as the robot gets more positive
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rewards by moving to the green food source, the wµG weight becomes larger in magnitude and
eventually stabilizes.
Concurrently in Fig. 5.9 F, it can be observed that unlike the previous case the left infrared
sensor input weight wIR1 gets considerably higher as compared to wIR2 . This is indicative of the
robot learning the correct behavior of turning right in order to avoid the obstacle and reach the
green goal. However interestingly, as opposed to the simple case (no obstacle) the ICO learner
tries to pull the robot more towards the blue goal, as seen from the weight development of ρµG
and ρµB in Fig. 5.9 G. This behavior can be attributed to the fact that, as the robot reaches
the blue object in the beginning, the fast ICO learner provides high weights for a reflexive pull
towards the blue as opposed to the green goal. As learning proceeds and the robot learns to move
towards the desired location (driven by the actor-critic system), the ρµG weight also increases,
however it still continues to favor the blue goal. As a result in order to learn the correct behavior
the combined learning systems needs to favor the actor-critic mechanism more as compared to
the naive reflexives from the ICO. This is clearly observed from the balancing between the two
as depicted in the ξico and ξac weights in Fig. 5.9 H. Following the stabilization of the individual
learning system weights, the combined learner provides much higher weighting of the actor-critic
RL system. Thus in this scenario, due to the added complexity of an obstacle, one sees that
the reward modulated plasticity (RMHP rule) learns to balance the two interacting learning
systems, such that the robot still performs the correct decisions overtime (see the simulation
video at, http://manoonpong.com/Nimm4/Video2SingleObstacleStatic.mp4).

5.3.7 Case III: Dynamic foraging (reversal learning)

A number of modeling as well as experimental studies of decision making (Sugrue et al., 2004)
have considered the behavioral effects of associative learning mechanisms on dynamic foraging
tasks as compared to static ones. Thus, in order to test the robustness of our learning model, we
changed the original setup (Fig. 5.7 C), such that, initially a positive reward (+1) is given for the
green object and a negative reward (-1) for the blue one. This enables the robot to learn moving
towards the green object while avoiding the blue object. However after every 50 trials the sign of
the rewards was switched such that now the blue object received positive reward, and the green
goal the opposite. As a result the learning system needs to quickly adapt to the new situation
and learn to navigate to the correct target. As observed in the Fig. 5.12 B, initially the robot
performs random explorations receiving a mixture of positive and negative rewards, however
after sufficient trials, the robot reaches a stable configuration (exploration drops to zero) and
receives positive rewards concurrently (Fig. 5.12 A). This corresponds to the previous case of
learning to move towards the green goal. As the rewards were switched, the robot then obtained
negative reward when it moved to the green object. As a consequence, the exploration gradually
increased again; thereby the robot also exhibited random movements. After successive trials, a
new stable configuration was reached with the exploration dropping to zero and now the robot
received more positive rewards, however for the other target (blue object). This is depicted with
more clarity, in the simulation snapshots in Fig. 5.8 C (beginning - random explorations, learn
1 - reaching green goal, learn 2 - reaching blue goal).
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Figure 5.12: Temporal development of the reward and exploration noise for the dynamic
foraging task. (A) Change in the reward signal (r) over time. Between 3× 104 time steps
and 5× 104 time steps the robot learns the initial task of reaching the green goal, receiving
positive rewards (+1), successively. However after 50 trials (approximately 5×104 to 5.5×104

time steps) the reward signals were changed, causing the robot to receive negative rewards
(-1) as it drives to the green goal. After around 10 × 104 time steps as the robot learns to
steer correctly towards the new desired location (blue goal), it successively receives positive
rewards. (B) Change in the exploration noise (ε) over time. There is random exploration
in the beginning of the task and after switching the reward signals (pink shaded regions),
followed by stabilization and decrease in exploratory noise once the robot learns the correct
behavior (gray shaded region). In both plots the thick dashed line (black) marks the point
of reward switch.
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In order to understand how the combined learning mechanism handles this dynamic switching,
in Fig. 5.13 we plot the synaptic weight developments of the different components.

Initially the robot behavior is shaped by the ICO weights (Fig. 5.13 B) which learn to steer the
robot to the desired location, such that the reflex towards green object (ρµG) is stronger than
that towards the blue object (ρµB ). Furthermore as the robot receives more positive rewards,
the basal ganglia system starts influencing it’s behavior by steadily increasing the actor weights
towards the green object (Fig. 5.13 A, wµG , wIR1 > wµB , wIR2). This eventually causes the
exploration noise (ε) to decrease to zero and the robot learns a stable trajectory towards the
desired food source. This corresponds to the initial stable region of the synaptic weights between
2X104 and 6X104 time steps in Figs. 5.13 A, B and C. Interestingly the adaptive RMHP rule tries
to balance the influence from the two learning systems with eventual higher weighting of the ICO
learner. This is similar to the behavior observed in the no obstacle static scenario (Fig. 5.9 D).
After 50 trials ( 5X104 time steps), the reward signs were inverted which causes the exploration
noise to increase. As a result the synaptic weights try to adapt once again and influence the
behavior of the robot,now towards the blue object. In this scenario although the actor weights
eventually converge to the correct configuration of wµB greater than wµG , the cerebellar reflexive
behavior remains biased towards the green object (previously learned stable trajectory). This
can be explained from the fact that the cerebellar or ICO learner has no knowledge of the type of
reinforcement received from the food sources, and just naively tries to attract the robot to a goal
when it is close enough (within the zone of reflex) to it. As a result of this behavior, the RMHP
rule tries to balance the contributions of both learning mechanisms, by increasing the strength
of the actor-critic RL component as compared to the ICO learner component (ξac > ξico). This
lets the robot, now learn the opposite behavior of stable navigation towards the blue food source,
causing the exploration noise to decrease once again. Thus through the adaptive combination
of the different learning systems, modulated by the RMHP mechanism, the robot was able to
deal with dynamic changes in environment and complete the foraging task successfully (see the
simulation video at, http://manoonpong.com/Nimm4/Video3Dynamic.mp4).

Furthermore as observed from the rate of success on the dynamic foraging task (Fig. 5.14 A),
the RMHP based adaptive combinatorial learning mechanism clearly outperforms the individual
systems (only ICO or only actor-critic RL). Here the rate of success was calculated as the
percentage of times the robot was able to successfully complete the first task of learning to reach
the green food source (green colored bars), and then after switching of the rewards signals, the
percentage of times it successfully reached the blue food source (blue colored bars). Furthermore
in order to test the influence of the RMHP rule, we tested the combined learning with both,
equal weightage to ICO and actor-critic systems as well as a plasticity induced weighting for the
two individual learning components. It was observed that although for the initial static case of
learning to reach the green goal the combined learning mechanism with equal weights works well,
the performance drops considerably, after the reward signals were switched, and re-adaptation
was required. Such a performance was also observed in our previous work (Manoonpong et al.,
2013a) using a simple combined learning model of feed-forward actor-critic (radial basis function)
and ICO learning. However in this work we show that the combination of a recurrent neural
network actor-critic with ICO learning, using the RMHP rule, was able to re-adapt the synaptic
weights and combine the two systems effectively. The learned behavior greatly outperforms the
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Figure 5.13: Synaptic weight change curves for the dynamic foraging task . (A) Change in the
synaptic weights for actor-critic RL learner. Here wµG

corresponds to the input weights of
the orientation sensor towards the green food source (spherical object) and wµB

corresponds
to the input weights of the orientation sensor towards the blue. (B) Change in the synaptic
weights of the ICO learner. ρµG

- the CS stimulus weight for the orientation sensor towards
green, ρµB

the CS stimulus weight for the orientation sensor towards blue. (C) Change in
the weights of the two infrared sensor inputs to the actor. wIR1 - left IR sensor weight, wIR2 -
right IR sensor weights. Modulation of the IR sensor weights initially and during the periods
7× 104 - 9× 104 time steps can be attributed to the high degree of exploration during this
time, where in the robot has considerable collisions with the boundary walls triggering these
sensors (see Fig. 5.10 C). (D) Learning curve of the RMHP combined learning mechanism
showing the change in the weights of the individual components. ξico - weight of the ICO
network output, ξac - weight of the actor-critic RL network output. Here the ICO weights
converge initially for the first part of the task, however fail to re-adapt upon change of
reward signals. This is counter balanced by the correct evolution of the actor weights. As a
result although initially the combinatorial learner places higher weight for the ICO network,
after task switch, due to change in reinforcements the actor-critic RL system receives higher
weights and drives the actual behavior of the robot. The inlaid plots show a magnified view
of the two synaptic weights between 9.5 × 104 - 10 × 104. The plots show that the weights
do not change in a fixed continuous manner, but increase/decrease in a step like formation
corresponding to the specific points of reward activation (Fig. 5.12 A). In all the plots the
grey shaded region mark the region of convergence for the respective synaptic weights, and
the thick dashed line (black) marks the point of reward switch. (see text for more details).
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Figure 5.14: Comparison of performance of RMHP modulated adaptive comninatorial learn-
ing system for the dynamic foraging task. (A) Percentage of success measured over
50 experiments. (B) Average learning time (trials needed to successfully complete the task,
calculated over 50 experiments (error bars indicate standard deviation with 98% confidence
intervals). In both cases the green bars represent the performance for the initial task of learn-
ing to reach the green goal, while blue bars represent the performance in the subsequent task
after dynamic switching of reward signals.
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previous case and shows a high success rate for both, the initial navigation to green goal location
and successively to the blue goal location, after switching of reinforcement signals.

In Fig. 5.14 B, we plot the average time taken to learn the first and second part of the dynamic
foraging task. The learning time was calculated as the number of trials required on successful
completion of the task (i.e successively reaching green or blue goal/food source location) averaged
over 50 runs of the experiment. The combined learning mechanism with RMHP, successfully
learns the task in less trials, as compared to the individual learning systems. However there
was a significant increase in the learning time after the switching of reward signals. This can
be attributed to the fact that after exploration goes to zero initially, a stable configuration is
reached, the robot needs to perform more random explorations in order to change the strength
of the synaptic connections considerably such that the opposite action of steering to the blue
goal can be learned. Furthermore, as expected from the relatively fast learning rate of the ICO
system, it was able to learn the tasks much quicker as compared to the actor-critic system,
however its individual performance was less reliable than the actor-critic system as observed
from the success rate (Fig. 5.14 A). Taken together, our model of RMHP induced combination
mechanism provides a much more stable and fast decision making system as compared to the
individual systems or a simple naive parallel combination of the two. At the same time the
reservoir based actor-critic model also clearly outperforms (both in terms of stability and speed
of learning), current state of the art feed-forward network models. Thus over all the neural
combined learning mechanism with a self-adaptive reservoir critic mechanism, enables robust
goal-directed learning with continuous time varying environmental stimuli.

5.4 Discussion

Numerous animal behavioral studies (Brembs and Heisenberg, 2000), (Lovibond, 1983), (Barnard,
2004) have pointed to an interactive role of classical and operant conditioning in guiding the
decision making process for goal-directed learning. Typically a number of these psychology
experiments reveal compelling evidence that both birds and mammals, can effectively learn to
perform sophisticated tasks when trained using a combination of these mechanisms (Staddon,
1983), (Pierce and Cheney, 2013), (Shettleworth, 2009). The feeding behavior of Aplysia have
also been used as model systems in order to compare classical and operant conditioning at the
cellular level (Baxter and Byrne, 2006) (Brembs et al., 2004) and also study how predictive
memory can be acquired by the neuronal correlates of the two learning paradigms (Brembs
et al., 2002).
In case of the mamalian brain recent experimental evidence (Bostan et al., 2010), (Neychev et al.,
2008) point towards the existence of direct communication and interactive combination between
the neural substrates of reward learning and delay conditioning learning systems, namely the
basal ganglia and the cerebellum. However the exact mechanism by which these two neural
systems interact is still largely unknown. Few experimental studies suggest that such a commu-
nication could exists via the thalamus (Sakai et al., 2000), through which reciprocal connections
from these two areas connect with the cortical areas in the brain (see Fig. 5.1) (Akkal et al.,
2007), (McFarland and Haber, 2002). As such, in this paper we make the hypothesis (neural
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combined learning) that such a combination is driven by a reward modulated heterosynaptic
plasticity (Legenstein et al., 2008), (Hoerzer et al., 2012), triggered by dopaminergic projections
(Varela, 2014), (Garćıa-Cabezas et al., 2007) existing at the thalamus that dynamically combines
the output from the two areas and drives the overall goal directed behavior of an organism. It is
important to note that, it is also possible that thalamic projections carrying basal-ganglia and
cerebellar inputs could eventually converge onto a single pyramidal cell via relay neurons at the
motor cortex. Furthermore, as the motor and frontal cortical regions together with the striatum,
have been observed to receive particularly dense dopaminergic projections from the mid brain
areas (VTA) (Hosp et al., 2011), it is plausible that the proposed neuromodulatory heterosy-
naptic plasticity could also occur directly at the cortex (Ni et al., 2014). We model the classical
delay conditioning paradigm observed in the cerebellum with the help of input correlation learn-
ing (Porr and Wörgötter, 2006), while reward based learning modulated by prediction errors, is
modeled using a temporal difference model of actor-critic learning. Using a simple robot model,
and three different scenarios of increasing complexity for a foraging task, we demonstrate that
the neural combinatorial learning mechanism can effectively and robustly enable the robot to
move towards a desired food source while learning to avoid a negatively rewarded, undesired
food source while being considerably robust to dynamic changes in the environmental setup.

Although there have been a few robot studies, trying to model basal ganglia behavior (Gurney
et al., 2004), (Prescott et al., 2006) and cerebellar learning for classical conditioning (Verschure
and Mintz, 2001), (Hofstoetter et al., 2002), to the best of our knowledge they have only been
applied individually. In this study, for the first time, we show how such a combined mechanism
can be implemented using a wheeled robot that leads to a more efficient decision making strategy.
Although designed with a simplified level of biological abstraction, our model sheds light towards
the way basal gangliar and cerebellar structures in the brain indirectly interact with each other
through sensory feedback and partake in the processing of temporal environmental information
in order to make decisions. Our model of the critic based on the self-adaptive reservoir network,
takes into account evidence of both Hebbian plasticity and non-Hebbian homeostatic plasticity
in the cortico-striatal synapses (Fino et al., 2005), as well as the strong reciprocal recurrent con-
nections in the cortex that provide input to the striatal system (this is analogous to the output
layer in our model) while being modulated by dopaminergic neural activity (TD-error). Static
reservoir models of the basal ganglia system have been previously implemented in the context
of learning language accusation (Hinaut and Dominey, 2013) or for modeling the experimen-
tally observed timescales of neural activity of domapinergic neurons (Bernacchia et al., 2011).
However, specifically in this work, the adaptive reservoir, not only provides a fading memory
of incoming sensory stimuli that can enable the robot to deal with partially observable state
space problems, but as demonstrated in the previous chapters (2 & 3), input dependent plastic
changes in the network parameters allow optimal temporal information processing. As a result
such a recurrently connected network clearly outperforms nonlinear feed-forward models of the
critic (Morimoto and Doya, 1998). Furthermore, our work with the reservoir based critic sheds
new insights in to how large recurrent networks can be trained in a non-supervised manner using
reward modulation and a simple recursive least squares algorithm, which has hitherto been a
difficult problem, with only few simple models existing that work on synthetic data (Hoerzer
et al., 2012) or require supervised components (Koprinkova-Hristova et al., 2010).
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5.4 Discussion

In the context of goal directed behavior, one may also draw similarity of the basic reflexive mech-
anism learned by the cerebellum (Yeo and Hesslow, 1998) to innate or intrinsic motivations in
biological organisms, in contrast to more extrinsic motivations (in the form of reinforcing eval-
uative feedbacks) provided by the striatal dopaminergic system of the basal ganglia (Boedecker
et al., 2013). Our hypothesis is that in order for an organism to make decisions in a dynamic
environment, where in, certain behaviors result in basic reflexes (based on CS - US conditioning)
while others lead to specific rewards or punishments, it needs a mechanism that can effectively
combine these, in order to accomplish the desired goal. Our neuromodulation scheme, namely,
the RMHP rule provides such an adaptive combination that guides the behavior of the robot
over time in order to achieve stable goal directed objectives. Particularly, our RMHP based
combined learning model provides evidence that cooperation between reinforcement learning
and correlation learning systems can enable agents to perform fast and stable reversal learning
(adaptation to dynamic changes in the environment). Such combination mechanisms could be
crucial in dealing with navigation scenarios involving contrasting or competing goals, with grad-
ual or sudden changes to environmental conditions. Furthermore, this could also point towards
possible adaptation or mal-adaptation between the basal ganglia and cerebellum in case of neu-
rological movement disorders like dystonia (Neychev et al., 2008) which typically involve both
these brain structures.

Over all our computational model based on the combinatorial learning hypothesis (Dasgupta
et al., 2014b) shows that indeed the learning systems of the basal ganglia and the cerebellum
can adaptively balance the output of each other in order to deal with changes in environment,
reward conditions, and dynamic modulation of pre-learned decisions. Although here we modeled
a novel reward modulation between the two systems, no direct feedback (interaction) between
the cerebellum and basal ganglia was provided. In the future we plan to include such direct
communication between the two in the form of inhibitory feedback, as evident from recent
experimental studies (Bostan et al., 2010). In its current form, we envision such an adaptive
combinatorial learning approach, coupled with the power of SARN to inherently encode time-
varying information, to have wide impact on bio-mimetic agents, in order to provide better
solutions of decision making problems in both static and dynamic situations, as well as show
how the neuromodulation of executive circuits in the brain can effectively balance output from
different areas. While our combined learning model verifies that the adaptive combination of the
learning systems of the basal ganglia and the cerebellum leads to effective goal-directed behavior
control in an artificial system, it would be interesting to further investigate this combination in
biological systems, particularly in terms of the specific, underlying neuronal correlates.
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CHAPTER6
Discussion and Outlook

”I know why there are so many people who love chopping wood. In this activity one imme-
diately sees the results”.

—Albert Einstein

Each previous chapter contained its own extensive ’Discussion’ section (see sections 3.4, 4.5
and 5.4) where we compared our methods to other approaches and on occasion, related them
to biological data. In this chapter we will, thus, only briefly summarize presented work by
highlighting the main findings and possible limitations, provide directions for future work and
conclude this thesis.

In this thesis we have focused on the topic of temporal information processing in the brain that
also leads to memory guided behaviors, using a closed-loop system approach. In this regard, we
showed that using an input-driven recurrent neural network model (as abstraction of abundant
recurrent neural circuitry in the brain) with novel, local, self-adaptive or plastic processes,
enables it to robustly perform such temporal processing. In the first part of the thesis, chapter
2, we introduced the concept of input driven recurrent networks (RNN) from the point of view of
non-autonomous dynamical systems. We demonstrated that a generic class of such RNN models
can be used to approximate to arbitrary levels of accuracy, any finite time trajectory of time-
varying dynamical system. Considering the brain receives a constant barrage of complex time-
varying stimuli and needs to compute with them, our model based on input-driven RNN forms an
ideal setup to investigate the underlying processes for such temporal processing. Furthermore,
our network model (also referred to as self-adaptive reservoir) forms a special case of this generic
class of RNN models. In this chapter, we introduced two novel forms of local adaptations at
the level of single neurons of the recurrent network. Firstly, an adaptation technique for the
modulation of neuronal timeconstants or decay rates was presented, based on a new information
theoretic measure called local active information storage. This allows each individual neurons
to adapt their timescale with respect to the timescales of input signals and their own history of
activity (local memory). Secondly, we derived a generalized intrinsic plasticity mechanism based
on an optimal Weibull output distribution, in order, to tune the parameters that control the
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6 Discussion and Outlook

shape and scale of individual neuron non-linearity inside the network. As a result, the network
was able to maintain homeostasis of neuronal activity, while at the same time allowing maximum
information flow between input and output of each neuron. Finally, we combined this with a
a supervised plasticity mechanism to adapt both the connection strengths inside the recurrent
network as well as the connections from the recurrent network to readout neurons, which were
trained for specific temporal tasks. Overall, this presents a novel self-adaptive reservoir model
(SARN) for which we demonstrated, significantly superior performance as compared to static
RNN models using an initial signal modeling task with inherently slow and fast timescales.

In chapter 3, we presented further elaborate experimental results demonstrating the superior
performance of SARN in three different time-series benchmark tests, involving both non-linear
computational power and temporal memory capacity. Furthermore, using delay embedded pat-
terns generated by the Mackey-Glass time series, it was shown that, unlike non-adaptive static
networks, SARN could learn to generate both stable as well as chaotic patterns. This occurs
naturally from its intrinsic dynamics, in an input dependent manner. Post-adaptation, the over
all network dynamics resides in a near critical region (edge of chaos), which leads to optimal
processing of temporal information in the network. Using a clock-like, time interval process-
ing task, we show that our network reproduces a linear increase in temporal variability with
increase in square of the interval duration. This correlation that has been widely observed in
experimental data (Ivry and Hazeltine, 1995), is well captured by our model, and as such, it
shows that local plasticity or adaptation mechanisms may indeed be responsible for time per-
ception in the brain (atleast, in the fast timescale of milliseconds to minutes). Of course, time
perception in the brain, does not occur in isolation, but is intricately related to forms of be-
havior and memory. Therefore, using a closed-loop system with a complex walking robot, we
demonstrated the application and superior performance of SARN on a delayed T-maze naviga-
tion task. Specifically, this required the maintenance of temporal stimuli (cue signals) and then
later recall these at the T-junction, after varying delay periods, in order to make corresponding
decisions. As such, this displayed SARN’s ability to, not only generate precisely timed outputs,
but also achieve extended memory of time-varying stimuli, that guides future behaviors. Finally,
we also demonstrated that our local adaptation mechanisms complement the inherent transient
dynamics of the network, by successfully learning a complex time dependent motor behavior like
handwriting generation. Briefly active input stimuli were successful in enabling stable dynamic
attractors (trajectories) in the high dimensional network state space, such that, motor patterns
can be generated even in the presence of relatively high levels of perturbations. These results
were compared with two state of the art RNN models, namely static chaotic RNN (Sussillo and
Abbott, 2009) and a more recent ’innate trained’ plastic RNN model (Laje and Buonomano,
2013), demonstrating SARN’s superior performance in both cases. In essence, our results clearly
indicate that homeostatic mechanisms like intrinsic plasticity and local neuronal timescale adap-
tations, can indeed enable robust learning of temporal patterns and memory guided behaviors,
in a biologically plausible manner.

Motor prediction and planning is largely dependent on robust temporal information processing
in the brain, especially in the milliseconds to seconds timescale. Furthermore due to the inherent
delays in sensory information, internal forward models (Wolpert et al., 1998) are believed to be
a mechanism by which the brain overcomes these delays and makes predictions of future motor
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signals. The modeling of such a predictive mechanism needs an intrinsic memory of recent
motor commands, and an ability to adapt with changing sensory feedback signals. As such,
in Chapter 4, we presented a novel neural mechanism to combine motor patterns generated
by the central nervous system of a bio-inspired walking robot with internal forward models,
based on our self-adaptive reservoir network. By designing SARN based forward models that
works for each leg of a hexapod robot, in a distributed architecture, we clearly demonstrate the
ability of our adaptive network to perform robust motor predictions. This enabled the walking
robot to generate complex locomotive behaviors like climbing over large obstacles, crossing gaps
and navigate uneven terrains. Furthermore, comparison with previous simple recurrent neuron
forward models (Manoonpong et al., 2013b) demonstrate that SARN enables the robot to learn
such predictive behaviors, in a much faster and stable manner. These results, highlight the robust
performance of SARN, as well as, show a crucial link between the effect of plasticity in recurrent
networks and the resulting adaptive behaviors. Moreover, unlike previous plastic RNN models
(Toutounji and Pipa, 2014), (Lazar et al., 2009), which have been mainly applied to synthetic
time-series modeling tasks; here, we demonstrate that the performance gained by SARN over
static RNN models in synthetic tasks, can be easily transferred to complex engineering problems.

Finally, in chapter 5 we extend the previously presented supervised learning setup of SARN, to
a more generic reward-based learning mechanism. This is crucial, since for biological systems,
evaluative feedbacks from the environment in the form of rewards or punishments form an im-
portant component for developing conditioned responses. In this regard, here we specifically
present a temporal-difference learning mechanism (Wörgötter and Porr, 2005) for adapting the
synaptic connections from the recurrent layer in SARN to the readout neurons, in order to, learn
some goal-directed behaviors. This is motivated as an abstract model of the basal-ganglia neural
circuitry. Furthermore, in line with recent experimental evidences for the cooperative role of the
striatal and cerebellar systems (Bostan et al., 2010), we show that, the reservoir reward learning
system in combination with a correlation learning based model of the cerebellum, can lead to
more efficient and stabler goal-directed decisions. We also introduced a novel biologically plausi-
ble, reward modulated heterosynaptic plasicity rule that can perform such a combined learning.
Furthermore, it is clearly demonstrated that SARN outperforms traditional feed-forward neural
network models for reward learning, specially in scenarios with inherent dependence on memory
of incoming time-varying stimuli. Overall, the results obtained in this chapter clearly motivate
the neurobiological grounding of our adaptive model from a realistic reward learning perspective,
that can work in conjunction with other unsupervised learning strategies in the brain.

Outlook and Future Work

Understanding temporal information processing and dynamics of memory underlying large re-
current neural networks is essential, since this could explain the relationship between such dy-
namics or processes, and the resultant timing mechanisms in the brain. As such, several recent
works have used artificial recurrent neural networks to model cortical functions like memory
and learning that could underlie the brains ability to tell time (Buonomano and Maass, 2009),
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(Buonomano and Laje, 2010). The model presented in this thesis, also follows a similar ap-
proach, arguing that temporal processing or timing is inherently generated by the dynamics of
large recurrently connected neurons (Dasgupta et al., 2014a). However, although some previous
models have been able to capture the results obtained from time perception based psychophysical
studies (Karmarkar and Buonomano, 2007), they have hitherto, not been applied for complex
temporal processing tasks, especially in realistic closed-loop scenarios. In this thesis, we bridge
this apparent gap of knowledge by introducing local adaptation and homeostatic plasticity in
the recurrent network. As a result, we demonstrate for the first time, that post adaptation,
initially random recurrent networks can be trained to generate complex temporal patterns and
long memory of incoming stimuli. Different inputs can result in distinct locally stable or chaotic
trajectories through the network space that is responsible for such robust temporal processing.
These can then be used to generate complex memory guided behaviors in artificial agents. Pre-
vious work on similar self-organized adaptation of RNNs with a combination of homeostatic
plasticity and synaptic plasticity, have either used simplistic binary neuron models with ap-
plications only on simple time-series data (Lazar et al., 2009), (Toutounji and Pipa, 2014), or
optimized the network based on specific type of neuron non-linearity (radial-basis function units)
(Lukoševicius, 2010). Furthermore, all such models have been formulated within a supervised
learning paradigm. As such, these models fail to explain the information processing ability in
the brain that lead to complex sensorimotor processing. In comparison, the SARN model pre-
sented in this thesis, shows that intrinsic plasticity and neuronal time constant modulation can
not only adapt the network in a self-organized manner, but also generate complex behaviors in
a biologically plausible way. This works not only in presence of specific teacher signals required
for supervised learning, but also in the presence of realistic reinforcements (rewards or punish-
ments) from the environment, based on instrumental conditioning in the brain. Moreover, the
combination of IP, and local active information storage, based neuron time constant adaptation
can be seen as a direct intervention at the algorithmic level of neural computation (Marr’s levels
of computation (Marr, 1982)). Such that, the level of information storage in the system can
be adjusted in order to affect the higher-level computational goal of enhanced performance, on
time processing tasks requiring large delay memory capacity.

However, it should be noted that an unrealistic aspect of our current model is the use of hyper-
bolic tangential neurons which can produce both positive and negative firing activity. Although
this works best for computational purposes, from a biological perspective this violates Dale’s
principle, according to which neurons can be either excitatory or inhibitory, but not of a mixed
type. This could be ameliorated by the use of more realistic sigmoidal neurons (activity ∈ [0, 1])
with separate excitatory and inhibitory types. As the intrinsic plasticity scheme presented in
this thesis is based on a generic Weibull distribution, this could easily be adjusted by appropri-
ately selecting the shape (α) and scale (β) parameters of the distribution, in order to account
for the sigmoidal non-linearity shape.

Although in our present model, local adaptations and plasticity mechanisms provide guided self-
organization (Prokopenko, 2009), leading to significant improvement to the temporal information
processing capability of RNNs, a number of open questions remains that can be addressed with
future work. Some of them being:
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• The reservoir models presented in here, demonstrate that complex (transient) dynamics
enables neural circuits to process a broad range of nonlinear, temporal problems. This
is largely based on the inherent stochasticity (randomness) of neural systems and local
adaptation processes that occur at a fast timescale of milliseconds to seconds (like the ones
presented in this thesis). However, it is known that slow synaptic plasticity mechanisms
(minutes to hours) in the brain adapt synaptic efficacies to form ordered structures - called
cell assemblies. These form strongly interconnected clusters of neurons that can encode
associative memories of previously experiences stimuli. Typically this type of dynamics is
characterized by persistent or steady state activity, and is in stark contrast to the transient
dynamics of randomly connected reservoir networks. Intriguingly, several experiments
show that both concepts coexist in the same neural circuits (Fujisawa et al., 2008), (Mante
et al., 2013). As such, this begs the question, how this coexistence of transient dynamics
and cell assemblies can emerge in one neural circuit? (Tetzlaff et al., 2014) and what
role does local adaptations and homeostatic plasticity play in this process? Extension
of the current model using a combination of Hebbian synaptic plasticity (instead of the
supervised learning presented here) along with the homeostatic plasticity mechanisms,
would be needed to address these questions.

• Here we extended the SARN model to work from within a reward learning paradigm.
Typically the synaptic connections from the reservoir or recurrent layer was learned using
a neuromodulatory signal based on the temporal difference error. Such a neuromodula-
tory, reward prediction error signal are believed to be encoded primarily by dopaminergic
neurons (Schultz and Dickinson, 2000). Experimental evidence suggests that dopaminergic
neuromodulatory signals, typically modulate synaptic plasticity in the brain, specifically in
the prefrontal cortex (Otani et al., 2003). Therefore, it is plausible that such modulation of
synaptic efficacies occurs within the recurrent layer of our model, so as to bring about task
specific representations. In future work, the interaction of such modulatory processes with
fast homeostatic and slow synaptic plasticity mechanisms within the dynamic reservoir
could be investigated.

• Finally, although here we specifically focused on the active information storage at single
neurons, in order to adapt their decay rates or time constants; neural activity in networks
is not only dependent on its own previous history but also the flow of information from
neighboring neurons. The use of measures like transfer entropy or Granger causality help
quantify such information. Therefore, it would be interesting to use both transfer and
storage measures to adapt neuronal decay rates. Such a combination could provide a
measure for the true modified information at a single neuron level as a result of changes
in the timescale of inputs.

Overall, the work presented in this thesis provides the crucial link between homeostatic mech-
anisms and local unsupervised adaptation processes in neuronal networks and their effect on
the networks ability to perform complex temporal information processing. This also forms a
novel self-adaptive framework for modeling time perception and related behaviors in the brain.
Furthermore, using a closed-loop approach, it clearly demonstrates how robust memory guided
behaviors can be generated from the resultant transient dynamics of such an adaptive network.
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This was hitherto not shown in static recurrent neural network models. As such, it lays the
foundation for future work, that can answer some of the critical questions raised above.

138



Bibliography

Abbott, L. F. and Nelson, S. B. (2000). Synaptic plasticity: Taming the beast. Nat. Neurosci.
(Suppl.), 3:1178–1183.

Akkal, D., Dum, R. P., and Strick, P. L. (2007). Supplementary motor area and presupplemen-
tary motor area: targets of basal ganglia and cerebellar output. The Journal of Neuroscience,
27(40):10659–10673.

Allen, G. and Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiological
Reviews, 54(4):957–1006.

Anderson, M. E. and Turner, R. S. (1991). Activity of neurons in cerebellar-receiving and
pallidal-receiving areas of the thalamus of the behaving monkey. Journal of Neurophysiology,
66(3):879–893.

Antonelo, E., Schrauwen, B., and Stroobandt, D. (2008). Mobile robot control in the road sign
problem using reservoir computing networks. In Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on, pages 911–916. IEEE.

Arkin, R. C. (1998). Behavior-based robotics. MIT press.

Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., and Kandel, E. R. (2000). Is
heterosynaptic modulation essential for stabilizing hebbian plasiticity and memory. Nature
Reviews Neuroscience, 1(1):11–20.

Barnard, C. J. (2004). Animal behaviour: mechanism, development, function and evolution.
Pearson Education.

Baxter, D. A. and Byrne, J. H. (2006). Feeding behavior of aplysia: a model system for compar-
ing cellular mechanisms of classical and operant conditioning. Learning & Memory, 13(6):669–
680.

Beer, R. D. and Ritzmann, R. E. (1993). Biological neural networks in invertebrate neuroethology
and robotics. Academic Pr.

139



Bibliography

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient
descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166.

Bernacchia, A., Seo, H., Lee, D., and Wang, X.-J. (2011). A reservoir of time constants for
memory traces in cortical neurons. Nature neuroscience, 14(3):366–372.

Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci.,
18(24):10464–10472.

Bialek, W., Nemenman, I., and Tishby, N. (2001). Complexity through nonextensivity. Physica
A: Statistical Mechanics and its Applications, 302(1):89–99.

Blaesing, B. and Cruse, H. (2004). Stick insect locomotion in a complex environment: climbing
over large gaps. Journal of experimental biology, 207(8):1273–1286.

Bliss, T. and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate
area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol.,
232:331–356.

Boedecker, J., Lampe, T., and Riedmiller, M. (2013). Modeling effects of intrinsic and extrinsic
rewards on the competition between striatal learning systems. Frontiers in psychology, 4.

Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M., and Asada, M. (2012). Information
processing in echo state networks at the edge of chaos. Theory in Biosciences, 131(3):205–
213.

Boedecker, J., Obst, O., Mayer, N. M., and Asada, M. (2009). Initialization and self-organized
optimization of recurrent neural network connectivity. HFSP journal, 3(5):340–349.

Bosch-Bouju, C., Hyland, B. I., and Parr-Brownlie, L. C. (2013). Motor thalamus integration of
cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian
conditions. Frontiers in computational neuroscience, 7.

Bostan, A. C., Dum, R. P., and Strick, P. L. (2010). The basal ganglia communicate with the
cerebellum. Proceedings of the National Academy of Sciences, 107(18):8452–8456.

Boyd, S. and Chua, L. O. (1985). Fading memory and the problem of approximating nonlinear
operators with volterra series. Circuits and Systems, IEEE Transactions on, 32(11):1150–
1161.

Braun, J. M., Wörgötter, F., and Manoonpong, P. (2014). Internal models support specific gaits
in orthotic devices. In Mobile Service Robotics, number 17 in Proceedings of the International
Conference on Climbing and Walking Robots, pages 539–546.

Brembs, B., Baxter, D. A., and Byrne, J. H. (2004). Extending in vitro conditioning in aplysia
to analyze operant and classical processes in the same preparation. Learning & memory,
11(4):412–420.

140



Bibliography

Brembs, B. and Heisenberg, M. (2000). The operant and the classical in conditioned orientation
of drosophila melanogaster at the flight simulator. Learning & Memory, 7(2):104–115.

Brembs, B., Lorenzetti, F. D., Reyes, F. D., Baxter, D. A., and Byrne, J. H. (2002). Operant
reward learning in aplysia: neuronal correlates and mechanisms. Science, 296(5573):1706–
1709.

Bressler, S. L. and Kelso, J. (2001). Cortical coordination dynamics and cognition. Trends in
cognitive sciences, 5(1):26–36.

Brons, J. F. and Woody, C. D. (1980). Long-term changes in excitability of cortical neurons
after pavlovian conditioning and extinction. J. Neurophysiol, 44(3):605–615.

Bueti, D. and Walsh, V. (2009). The parietal cortex and the representation of time, space,
number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological
Sciences, 364(1525):1831–1840.

Buhusi, C. V. and Meck, W. H. (2005). What makes us tick? functional and neural mechanisms
of interval timing. Nature Reviews Neuroscience, 6:755–765.

Buonomano, D. V. (2000). Decoding temporal information: a model based on short-term synap-
tic plasticity. The Journal of Neuroscience, 20(3):1129–1141.

Buonomano, D. V. (2007). The biology of time across different scales. Nature chemical biology,
3(10):594–597.

Buonomano, D. V., Bramen, J., and Khodadadifar, M. (2009). Influence of the interstimulus
interval on temporal processing and learning: testing the state-dependent network model.
Philosophical Transactions of the Royal Society B: Biological Sciences, 364:1865–1873.

Buonomano, D. V. and Laje, R. (2010). Population clocks: motor timing with neural dynamics.
Trends in cognitive sciences, 14(12):520–527.

Buonomano, D. V. and Maass, W. (2009). State-dependent computations: spatiotemporal
processing in cortical networks. Nat. Rev. Neurosci., 10:113–125.

Burguiere, E., Arabo, A., Jarlier, F., Zeeuw, C. I. D., and Rondi-Reig, L. (2010). Role of
the cerebellar cortex in conditioned goal-directed behavior. The Journal of Neuroscience,
30(40):13265–13271.

Burrone, J., O’Byrne, M., and Murthy, V. N. (2002). Multiple forms of synaptic plasticity
triggered by selective suppression of activity in individual neurons. Nature, 420:414–418.

Bush, K. and Anderson, C. (2005). Modeling reward functions for incomplete state representa-
tions via echo state networks. In Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE
International Joint Conference on, volume 5, pages 2995–3000. IEEE.

Buteneers, P., Schrauwen, B., Verstraeten, D., and Stroobandt, D. (2009). Real-time epileptic
seizure detection on intra-cranial rat data using reservoir computing. In Advances in neuro-
information processing, pages 56–63. Springer.

141



Bibliography

Carla Shatz, J. (1992). The developing brain. Sci. Am., 267:60–67.

Chistiakova, M. and Volgushev, M. (2009). Heterosynaptic plasticity in the neocortex. Experi-
mental brain research, 199(3-4):377–390.

Chow, T. W. and Li, X.-D. (2000). Modeling of continuous time dynamical systems with input
by recurrent neural networks. Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on, 47(4):575–578.

Christian, K. M. and Thompson, R. F. (2003). Neural substrates of eyeblink conditioning:
acquisition and retention. Learning & memory, 10(6):427–455.

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I., and Shenoy, K. V. (2010).
Cortical preparatory activity: representation of movement or first cog in a dynamical machine?
Neuron, 68(3):387–400.

Citri, A. and Malenka, R. C. (2007). Synaptic plasticity: multiple forms, functions, and mech-
anisms. Neuropsychopharmacology, 33(1):18–41.

Clark, R. E. and Squire, L. R. (1998). Classical conditioning and brain systems: The role of
awareness. Science, 280(5360):77–81.

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., and Uchida, N. (2012). Neuron-type-specific
signals for reward and punishment in the ventral tegmental area. Nature, 482(7383):85–88.

Cruse, H. (1976). The control of body position in the stick insect (carausius morosus), when
walking over uneven surfaces. Biological Cybernetics, 24(1):25–33.

Crutchfield, J. P. and Feldman, D. P. (2003). Regularities unseen, randomness observed: Levels
of entropy convergence. Chaos: An Interdisciplinary Journal of Nonlinear Science, 13(1):25–
54.

Crutchfield, J. P. and Young, K. (1989). Inferring statistical complexity. Physical Review Letters,
63(2):105.

Daoudal, G. and Debanne, D. (2003). Long-term plasticity of intrinsic excitability: learning
rules and mechanisms. Learning & Memory, 10(6):456–465.

Dasgupta, S., Manoonpong, P., and Wörgötter, F. (2014a). Reservoir of neurons with adap-
tive time constants: a hybrid model for robust motor-sensory temporal processing. BMC
Neuroscience, 15(Suppl 1):P9.

Dasgupta, S., Wörgötter, F., and Manoonpong, P. (2012). Information theoretic self-organised
adaptation in reservoirs for temporal memory tasks. In Engineering Applications of Neural
Networks, pages 31–40. Springer.

Dasgupta, S., Wörgötter, F., and Manoonpong, P. (2013a). Information dynamics based self-
adaptive reservoir for delay temporal memory tasks. Evolving Systems, 4(4):235–249.

142



Bibliography

Dasgupta, S., Wörgötter, F., and Manoonpong, P. (2014b). Neuromodulatory adaptive combi-
nation of correlation-based learning in cerebellum and reward-based learning in basal ganglia
for goal-directed behavior control. Frontiers in neural circuits, 8.

Dasgupta, S., Wörgötter, F., Morimoto, J., and Manoonpong, P. (2013b). Neural combinatorial
learning of goal-directed behavior with reservoir critic and reward modulated hebbian plas-
ticity. In Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on,
pages 993–1000.

Davis, G. W. (2006). Homeostatic control of neural activity: from phenomenology to molecular
design. Annu. Rev. Neurosci., 29:307–323.

Dayan, P. and Abbott, L. (2003). Theoretical neuroscience: computational and mathematical
modeling of neural systems. Journal of Cognitive Neuroscience, 15(1):154–155.

Dayan, P. and Balleine, B. W. (2002). Reward, motivation, and reinforcement learning. Neuron,
36(2):285–298.

Dearden, A. and Demiris, Y. (2005). Learning forward models for robots. In International Joint
Conference on Artificial Intelligence, volume 5, page 1440.

Desai, N. S., Rutherford, L. C., and Turrigiano, G. G. (1999). Plasticity in the intrinsic ex-
citability of cortical pyramidal neurons. Nat. Neurosci., 2(6):515–520.

Desiraju, T. and Purpura, D. (1969). Synaptic convergence of cerebellar and lenticular projec-
tions to thalamus. Brain Research, 15(2):544–547.

Douglas, R. J. and Martin, K. A. (2004). Neuronal circuits of the neocortex. Annu. Rev.
Neurosci., 27:419–451.

Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the
cerebral cortex? Neural networks, 12(7):961–974.

Doya, K. (2000a). Complementary roles of basal ganglia and cerebellum in learning and motor
control. Current opinion in neurobiology, 10(6):732–739.

Doya, K. (2000b). Reinforcement learning in continuous time and space. Neural computation,
12(1):219–245.

Dreher, J.-C. and Grafman, J. (2002). The roles of the cerebellum and basal ganglia in timing
and error prediction. European Journal of Neuroscience, 16(8):1609–1619.

Dudai, Y. (2004). The neurobiology of consolidation, or, how stable is the engram? Annu. Rev.
Psychol., 55:51–86.

Dudek, S. M. and Bear, M. F. (1992). Homosynaptic long-term depression in area CA1 of
hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci.
USA, 89:4363–4367.

143



Bibliography

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Elman, J. L. and Zipser, D. (1988). Learning the hidden structure of speech. The Journal of
the Acoustical Society of America, 83(4):1615–1626.

Fino, E., Glowinski, J., and Venance, L. (2005). Bidirectional activity-dependent plasticity at
corticostriatal synapses. The Journal of neuroscience, 25(49):11279–11287.

Freeman, J. H. and Steinmetz, A. B. (2011). Neural circuitry and plasticity mechanisms under-
lying delay eyeblink conditioning. Learning & Memory, 18(10):666–677.

Fremaux, N., Sprekeler, H., and Gerstner, W. (2013). Reinforcement learning using a continuous
time actor-critic framework with spiking neurons. PLoS computational biology, 9(4).

Fujisawa, S., Amarasingham, A., Harrison, M. T., and Buzsáki, G. (2008). Behavior-
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Appendix

A.1 Information Theoretic Measures

In this section we present a basic overview of information theoretic measures relevant to this
thesis. All the information theoretic measures used in this thesis (see chapter 2) were imple-
mented using modifications to the Java Information Dynamics Toolkit (Lizier, 2014) and used
as Java wrapper called from within Matlab and C++.

The fundamental quantity of information theory is the Shannon entropy, representing the
average uncertainty associated with the measurement x of a random variable X, calculated as:

H(X) = −
∑
x

p(x)log2p(x). (A.1)

The joint entropy of two random variables X and Y is a generalization to quantify the uncer-
tainty of their joint distribution:

H(X,Y ) = −
∑
x

∑
y

p(x, y)log2p(x, y). (A.2)

The conditional entropy of X given Y is the expected uncertainty that remains about x when
y is known:

H(X|Y ) = −
∑
x

∑
y

p(x, y)log2p(x|y). (A.3)

In general the previous quantities are related to each other as follows:

H(X,Y ) = H(X) +H(Y |X). (A.4)

The mutual information between X and Y measures the average reduction in uncertainty
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about x that results from learning the value of y, or vice versa:

I(X;Y ) =
∑
x

∑
y

p(x, y)log2
p(x|y)
p(x) ,

= H(X)−H(X|Y ).
(A.5)

The conditional mutual information between X and Y given Z is the mutual information
between X and Y when Z is known:

I(X;Y |Z) =
∑
x

∑
y

∑
z

p(x, y, z)log2
p(x|y, z)
p(x|z) ,

=
∑
x

∑
y

∑
z

p(x, y, z)log2
p(x, y, z)p(z)
p(x, z)p(y, z) ,

= H(X|Z)−H(X|Y, Z).

(A.6)

In all the above cases without taking the sum of x, y and z, and taking only the quantities
inside the log2 along with any sign in front of the equation, one can calculate the local entropy,
local conditional entropy and local mutual information for events xi and yi. This is the way we
calculate the local active information storage values in equation 2.17.

The Kullback-Leibler divergence (KL-divergence) is a non-symmetric measure that can be
used to compare (difference between) two probability distributions P and Q. In general the KL-
divergence of Q from P is the information lost when Q is used to approximate P . For discrete
probability distributions it can be calculated as:

DKL =
∑
i

pxlog
P (x)
Q(x) . (A.7)

Similarly, in case of continuous probability distributions, it can be computed as:

DKL =
∫ ∞
−∞

p(x)log p(x)
q(x) . (A.8)

The KL-divergence value is always positive and only equal to zero if the two probability distri-
butions are equal almost everywhere.

Here, in order to calculate the relevant measures for the continuous random variable xi of
the reservoir neuron activation states, we simply discretise the data using bins and apply the
above mentioned measures and the measures for local and average active information storage,
as introduced in section 2.2.2.
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A.2 Estimating Dynamics with Largest Lyapunov Exponent

It is possible to determine whether a dynamical system has ordered or chaotic dynamics by
looking at the average sensitivity to perturbations of its initial conditions (Kantz, 1994). If two
systems who are otherwise equal, are in the ordered phase, then small differences in the initial
conditions of these systems should eventually die out. However if they are in the chaotic state,
then these small differences will persist or get amplified in time. The exponential divergence of
two trajectories of a dynamical system in state space with very small initial separation, can be
measured using the Lyapunov (characteristic) exponent (LE). In general, a whole spectrum of
Lyapunov exponents are defined, however, the rate of divergence is dominated by the largest
Lyapunov exponent (LLE). Mathematically it can be defined as:

λ = lim
k→∞

1
n

ln
(
γn
γ0

)
. (A.9)

where, γ0 is the initial separation (distance) between the perturbed and the unperturbed tra-
jectory, and γn is the distance at time n. The largest Lyapunov exponent, λ < 0 in case of
ordered, sub-critical systems; λ > 0 in case of chaotic systems and λ ≈ 0 is the region where
phase transitions occur and is thus called the critical point or the so called ’edge of chaos’.

In the case of the reservoir networks, the recurrent layer neuron activity is basically a time series
data. As such, here we estimate LLE using a finite time estimation technique based on (Sprott
and Sprott, 2003). In order to estimate λ, we simulated two identical versions of the reservoir
network (static or SARN) for a period of 1000 time steps (∆t = 1.0). After this initial transient
the following procedure was followed:

1. A small perturbation is introduced in one of the units i of one network, leaving the other
intact. As a result there occurs a separation of the state of the perturbed network (x′)
from the state of the unperturbed network (x), by a distance γ0 (here we used an initial
separation of 10−12).

2. Simulation step: Advance the simulation by one time step (n) calculate the resulting
distance or separation (Euclidean norm) between the states as γn = ‖x(n)− x′(n)‖.

3. Normalization step: Reset the state of the perturbed network x′ to x(n)+(γ0/γn)(x′(n)−
x(n)), such that the two trajectories remain close in order to avoid numerical overflows.

4. Repeat steps 2 and 3 for 10000 times. The largest Lyapunov exponent for the trajectory
of each reservoir neuron is then calculated as the time average of the logarithm of the
distances along the trajectory, λi = 〈ln(γn/γ0)〉n.

Given, a reservoir of size N neurons. We calculate λi for each of the N neurons. Then the finite
estimate of the largest Lyapunov exponent for the network is obtained by averaging over all the
neurons, i.e. LLE (λ) = 〈λi〉i.
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A.3 Modular Neural Locomotion Control

FTi-joints CTr-joints TC-joints

efference copy

Rf1 Rf2 Rf3 Rf4 Rf5 Rf6

Forward
models

Figure A.1: Main wiring diagram of the neural locomotion control with central pattern gen-
erator Single CPG-based control applied to AMOSII for locomotion. CPG’s outputs are
projected to PCPG (CPG post processing unit) which translate them into ascending and
descending slopes, then these slops will be fed to the PSN (phase shift network) compo-
nent. The outputs of the PSN are projected to the F(R,L) and C(R,L) motor neurons (i.e
the FTi and CTr joints of the robot) through delay lines, as well as to the VRN (velocity
regulating network). The VRN’s outputs are projected to the T(R,L) motor neurons (TC
joints) through delay lines. The CT joint signals are then used as efference copies that feed
as input to each of the six reservoir forward models Rf1 to Rf6. Adapted and modified from
(Manoonpong et al., 2013b)
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A.4 Neuromodulatory combined learning (additional experimental
results)

Dopaminergic neurons are primarily believed to encode a reward prediction error (RPE) signal
(Schultz and Dickinson, 2000). Although, recent experimental evidences have shown that a
subset of the VTA dopaminergic neurons can directly encode the reward signal, most of them
still follow the canonical RPE coding (Cohen et al., 2012). In the context of the actor-critic
reservoir model of the basal ganglia, the temporal difference error (TD-error) is considered as the
prediction error signal output of the dopaminergic neurons (Suri and Schultz, 2001). As such,
in order to test the stability and efficiency of the reward modulated heterosynaptic (RMHP)
combined learning rule while using the TD-error (δ(t)) as the neuromodulatory signal at the
motor thalamic junction instead of the instantaneous reward signal R(t), we modified Eq. 5.2
and Eq. 5.3 as follows:

∆ξico(t) = ηδ(t)[oico(t)− ōico(t)]oac(t), (A.10)

∆ξac(t) = ηδ(t)[oac(t)− ōac(t)]oico(t). (A.11)

Here, the TD-error signal(δ(t)) is calculated as part of the reservoir critic network and updated
based on the current reward and the estimated sum of future rewards (v̂(t)) at every time time
step as follows:

δ(t) = R(t) + γv̂(t)− v̂(t− 1). (A.12)

We tested the performance of the modified learning rule on the foraging scenario with a single
obstacle (Chapter 5, Fig. 5.9 (B)) with no changes to the experimental setup. 20 runs were
carried out with the original RMHP rule (direct reward signal modulation) and the modified
RMPH rule (TD-error modulation). As observed in Fig. A.2 (A)), the robot was successfully
able to complete the task with only a single failure, achieving a performance rate of 95% in
both cases. Fig. A.2 (B), shows the average learning time needed to learn the task under
both conditions. The TD-error based learning rule took negligibly longer time to converge to
a solution (57 trials) in comparison to the instantaneous reward-based learning rule (54 trials).
This behavior can be attributed to the fact that, the TD-error signal is updated continuously
resulting in the ICO learner(ξico) and the actor-critic learner (ξac) weights changing all the time.
This is avoided in the direct reward based RMHP rule, since the reward signal R(t) is active
only within the positive or negative reward zone and zero otherwise. As a result, any initial
wrong estimates by the critic do not effect the combined learning weights, substantially.
Over all our results prove that the RMHP combined learning rule works stably with similar
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Figure A.2: Comparison of performance of RMHP modulated adaptive comninatorial learn-
ing system with direct reward (original) and TD-error modulation, in the single
obstacle foraging case. (A) Percentage of success measured over 20 experiments. (B)
Average learning time (trials needed to successfully complete the task, calculated over 20
experiments (error bars indicate standard deviation with 98% confidence intervals). In both
cases the grey bars represent the performance for task of learning to reach the green goal
with the original RMHP rule , while black bars represent the performance in the same task
using the TD-error modulated RMHP rule.

levels of performance, independent of the choice of the instantaneous reward or the temporal
difference error as the modulatory signal. However, in this work we have only tested goal-directed
decision making scenarios. In other learning scenarios like dynamic motion control (Morimoto
and Doya, 2001) there may be differences in performance for the two variants of the RMHP rule.
This would require further analysis under various environmental conditions and goes beyond the
scope of the current paper. In essence the current scheme of RMHP (in both variants of direct
reward and TD-error modulations) provides an effective and efficient mechanism to combine the
reward learning and correlation learning systems of the basal ganglia and the cerebellum brain
structures, respectively.
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Parameter description Value
Time constant of the reservoir critic (τ) 1s

Reservoir critic size (N - neurons) 100
Forgetting factor (γ) 0.98

Critic scaling factor (g) 1.2
Critic bias input (b) 0.001

Auto-correlation matrix constant (δc) 10−2

Exploration scale factor (Ω) 5
Maximum value function (vmax) 50
Minimum value function (vmin) -50

Learning rate of actor (τa) 0.005
Critic input weights (W in) fixed Uniform [-0.5,0.5]

Critic recurrent weights (W rec) fixed Normal (0, g2/
√
pcN)

Recurrent connection probability (pc) 0.1
Critic output weights (W out) plastic

Initialization of actor weights (wµG and wµB ) 0.0
Initialization of actor weights (wIR1 and wIR2) 0.5

Number of inputs (K) 4
Number of output 1

Table A.1: Parameters of the actor-critic reinforcement learning network

Parameter description Value
Strength of reflex signal (ρ0) 1.0

Learning rate (µ) 0.001
Initialization of input weights (ρµG and ρµB ) 0.0

Number of inputs (K) 2
Number of output 1

Table A.2: Parameters of the input correlation learning (ICO) network

Parameter description Value
Initialization of individual learner weights (ξico and ξac) 0.5

Learning rate (η) 0.0005

Table A.3: Parameters of the combinatorial learner (RMHP rule)

166



Algorithm 1 : Adaptive Neural combinatorial learning algorithm
1: Input:

• Actor-critic RL: input stimuli vector u1,2,3,4 = µG, µB , IR1, IR2

• ICO learning: input stimuli vector x1,2 = µG, µB

2: Initialization:

• ICO weights: ρµG , ρµB = 0.0; ρ0 = 1.0 (reflex signal strength)
• Actor weights: wµG , wµB = 0.0; wIR1 , wIR1 = 0.5

• RMHP combined learner weights: ξico, ξac = 0.5

• exploration noise ε: approximately normal distribution calculated as sum of ’n’ i.i.d r.v ∈ U(0,1)
3: Observe reflex signal x0 and the sensory signals x1,2(t) and u1,2,3,4(t)
4: while (i < max time steps) do
5: Execution:
• oico(t)← ρ0x0(t) +

∑K

j=1 ρj(t)xj(t)

• oac(t)← ε(t) +
∑K

i=1 wi(t)ui(t)

• ocom(t)← ξicooico(t) + ξacoac(t)

6: Perform action
7: Observe new sensory states x′(t), u′(t) and new reflex signal x′0(t)
8: Update the reward signal R(t) :

if robot is within the green reward zone (DG < 0.2) then
R(t) = +1

end if

if robot is within the blue reward zone (DB < 0.2) then
R(t) = −1

end if

if IR1 > 1.0 or IR2 > 1.0 then
R(t) = −1

end if

9: Update value prediction from critic:
• τ ẋ(t)← −x(t) + gWrecr(t) + Winu(t) + b

• v̂(t)← tanh(Woutr(t))

10: Update exploration noise: ε(t)← Ωσ(t) · min
[
0.5, max

(
0, vmax−v̂(t)

vmax−vmin

)]
11: Calculate temporal difference (prediction) error : δ(t)← R(t) + γv̂(t)− v̂(t− 1).
12: Update all synaptic weights:
• ICO weights : d

dt
ρj(t)← µxj(t) ddtx0(t)

• Critic weights: Wout(t)←Wout(t− 1) + δ(t)P(t)r(t)

• Actor weights: ∆wi(t)← τaδ(t)ui(t)ε(t)

• RMHP weights: ∆ξico(t)← ηR(t)(oico(t)− ōico(t))oac(t) ; ∆ξac(t)← ηR(t)(oac(t)− ōac(t))oico(t)

13: i = i+ 1
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