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LCD Liquid crystal display 
LESTR Leukocyte-derived seven transmembrane domain receptor 
LMP Latent membrane protein 

M  Molar 
mA Milliampere 
mAbs Monoclonal antibodies 
MAP Mitogen-activated protein 
MCF Mean channel of fluorescence 
Mdm2 Mouse double minute 2 homolog 
MEK Mitogen-activated protein kinase kinase 
MES 2-(N-morpholino)ethanesulfonic acid 
Met Methionine 
mg Milligram 
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Raf Proto oncogene serine/threonine protein kinase 
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TBS Tris-buffered saline 
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G protein-coupled receptors which mediate a large variety of different cellular effects have always 

been a field of significant interest for pharmaceutical research. Since it was shown that the 

chemokine receptors CXCR4 and CCR5 act as essential co-receptors for HIV-1 entry the interest in 

understanding the regulation of cell surface expression of these specific GPCR increased even more. 

The receptor expression at the cell surface is regulated by different mechanisms such as 

agonist-induced receptor endocytosis and subsequent receptor recycling, whereas boths effects are 

more or less distinct for different receptors. During recent years it was also shown that constitutive 

receptor endocytosis plays a prominent role in the circulation of receptors. Previous methods for the 

analysis of receptor cycling which used receptor-specific antibodies were not sensitive enough and 

lacked the potential to monitor constitutive receptor endocytosis in quantitative terms. 

In this work an antibody-independent method based on specific biotinylation of an acceptor peptide 

(AP) by the enzyme biotin ligase A was established. Exemplified by the quantification of the 

ligand-induced internalization and recycling of CXCR4 and CCR5 the robustness and high sensivity of 

the assay was demonstrated. Furthermore, the assay was not influenced by receptors which were 

freshly translocated to the cell surface without prior ligand binding. As an additional feature the 

assay provided the possibility for a detailed quantification of constitutive receptor endocytosis. In 

order to detect all receptors within a cell regardless of whether they had previously been expressed 

at the cell surface AP-specific monoclonal antibodies were generated which can be used for double 

immunofluorescence microscopy. These antibodies allow discriminations of biotinylated and non 

biotinylated receptors or detection of transmembrane proteins lacking high specific antibodies. 

β-Arrestin 2 is a multivalent adaptor protein involved in receptor signaling as well as endocytosis 

which binds to various intracellular proteins. Recent reports challenged the classical concept of GPCR 

signaling via heterotrimeric G proteins and postulated a higher relevance of receptor 

homodimerization or binding of β-arrestins to the receptor. To circumvent G protein activation after 

ligand binding a chemical-induced dimerization system consisting of three components was used. 

Either a FKBP12 (DmrA) or FRB (DmrC) domain was fused to the C-terminus of CXCR4/CCR5 and 

β-arrestin 2. Treatment of Rec-DmrA/βArr-DmrC cell lines with AP21967 led to dose- and 

time-dependent recruitment of β-arrestin 2 to the receptor in the absence of ligand stimulation. 

AP21967-induced translocation of β-arrestin 2 to the receptor significantly decreased ligand-induced 

G protein-mediated calcium release. In cell lines without βArr-DmrC expression no alterations were 

obtained. AP21967-binding also provoked a ligand-independent internalization of CXCR4/CCR5 which 

was on a comparable level as ligand-induced internalization. Interestingly, the AP21967-induced 

recruitment of β-arrestin 2 to the receptor was sufficient to mimic the specific, ligand-induced 

intracellular receptor distribution of either CXCR4 or CCR5. Whereas AP21967 treatment led to a 

β-arrestin 2 receptor desensitization and internalization it was not sufficient to mediate receptor 

signaling via the MAP kinases ERK 1/2. AP20187-induced receptor homodimerization had no 

detectable effect on either receptor desensitization or the phsophorylation level of ERK 1/2. 

However AP20187 pretreament led to an enhanced ligand-induced internalization in Rec-DmrA cell 

lines. In summary, the results obtained within this work contribute to a more detailed understanding 

of β-arrestin-mediated functions during chemokine receptor trafficking and demonstrated the 

applicability of a highly sensitive, biotin-based detection system for the analysis of trafficking of 

transmembrane proteins. 



2 Introduction 

2 

2 Introduction 

2.1 G protein-coupled receptors 
Transmembrane receptors may be viewed as a link between an organism and its environment as 

they relay signals from the external to intracellular parts of the body. G protein coupled receptors 

form the largest group of transmembrane receptors with more than 800 members identified to date 

(Bjarnadóttir et al., 2006). With its seven transmembrane domains, including three internal and three 

external loops, GPCRs can bind to a nearly endless variety of ligands such as hormones, 

neurotransmitters, chemokines, calcium ions or even odors and light (Pin, 2000). According to 

current phylogenetic analysis the GPCR family can be divided into five main families, e.g. glutamate, 

rhodopsin, adhesion, frizzled, and secretin receptors (GRAFS classification). The rhodopsin group of 

GPCR is by far the largest group and is divided into four subgroups (Schiöth & Fredriksson, 2005; 

Bjarnadóttir et al., 2006). GPCRs are expressed on a multitude of different tissue cells which is, 

besides their ligand variety, the main reason for their significance for several physiological processes 

including regulation of immune responses, senses for taste and smell and the behavior during stress 

situations (Lefkowitz, 2013). GPCR mutations and increased expression levels are responsible for 

several disorders especially in the field of endocrine diseases (Vassart & Costagliola, 2011). Errors of 

GPCR trafficking can lead to cardiac diseases or chronic heart failure and also play an important role 

during tumor development and metastasis (Dorsam & Gutkind, 2007; Salazar et al., 2007). These 

facts taken together are the reason why GPCRs are by far the most important drug targets. Approx. 

40 % of the currently prescribed drugs target GPCR (Filmore, 2004). Due to their variety and the high 

amount of orphan GPCRs without known ligand the pharmacological relevance of GPCRs is 

undoubted and a field of ongoing interest (Tang et al., 2012). 

2.2 Chemokine receptors and their representatives CXCR4 and CCR5 
Chemokine receptors are a subfamily of GPCRs which are activated by binding of chemotactic 

cytokines, also known as chemokines (Allen et al., 2007). Currently the structure and function of 

more than 20 typical or atypical chemokine receptors and approx. 50 chemokines is known (Schall & 

Proudfoot, 2011). Chemokine receptors are expressed on various cell types in different tissues and 

exhibit a high signaling variety, since most chemokine receptors bind more than one chemokine 

ligand in a non exclusive manner (Rollins, 1997). Chemokines are 8 - 14 kDa peptides and contain a 

variable number of highly conserved cysteins residues (Zlotnik et al., 2006). According to the 

assembly of their N-terminal cystein residues chemokines are divided into 4 groups (C, CC, CXC, CX3C) 

with the two main groups CC chemokines and CXC chemokines. In CC chemokines both cysteins are 

adjacent, whereas a variable amino acid separates them in CXC chemokines. This system is used for 

the classification of either chemokines (L) or chemokine receptors (R). Thus, CCL5 is a CC chemokine 

and binds to the CC chemokine receptor CCR5 (Charo & Ransohoff, 2006; Zlotnik et al., 2006). At the 

same time CCL5 also binds to CCR1 and CCR3, while CCR5 binds CCL3 and CCL4 as well (Pakianathan 

et al., 1997; Blanpain et al., 1999). This illustrates the non-exclusive, promiscuous pairing of 

chemokine ligands and receptors. 

The biological significance of chemokine signaling is diverse but can be most likely summarized as a 

cell homing system. Sequestered chemokines are responsible for generating a chemokine gradient 

which can be utilized by chemokine receptor expressing cells for cell migration into distinct niches 

within and outside of immune organs. According to this principle cells of the immune system can be 

directed to an inflammatory site and initiate host defense (Murdoch & Finn, 2000). The chemokine 
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homing system also plays an important role during ontogeny of the hematopoietic system and is 

critical for correct cardiac development (Juarez & Bendall, 2004; Agarwal et al., 2010). Chemokines 

are also responsible for the development, maintenance and the correct structure of secondary 

lymphoid organs (Randall et al., 2009; Schall & Proudfoot, 2011). On the other hand, alterations in  

chemokines and their receptors are responsible for several disorders such as rheumatoid arthritis 

and multiple sclerosis (CCR1 and CCR2), asthma (CCR3), COPD (CXCR1 and CXCR2) and 

atherosclerosis (CX3CR1) (Charo & Ransohoff, 2006). Chemokine receptors CXCR4 and CCR5 act as 

essential CD4-dependent coreceptors for cellular entry of HIV-1 strains (Alkhatib, 2010). Both 

receptors are of significant interest for the pharmacological industry as a potential target to block 

HIV infection by blocking the coupling between HIV and CXCR4/CCR5 (Kuritzkes, 2010). 

 

CXCR4, also known as leukocyte-derived seven- transmembrane domain receptor (LESTR) or fusin, 

was originally characterized as an orphan receptor which is highly expressed on leucocytes with 

unknown biological significance (Loetscher et al., 1994). Shortly afterwards it was revealed that 

CXCR4 is the main viral receptor for “T-tropic” HIV strains (Feng et al., 1996). Until now the only 

known CXCR4 ligand is stroma cell-derived factor 1 (SDF-1), also known as CXCL12 (Bleul et al., 1996). 

CXCL 12 is a highly conserved chemokine with six splicing variants, each exhibiting slightly different 

biological functions (Yu et al., 2006; Alkhatib, 2010). Among these CXCL12α is the dominant isoform 

which undergoes rapid degradation in the bloodstream (Janowski, 2009). Besides its crucial role for 

controlling attraction and activity of leukocytes during immune responses, CXCR4 is also responsible 

for the embryonic development of the hematopoietic and nervous system (Zou et al., 1998; Contento 

et al., 2008; Li & Ransohoff, 2009). CXCR4 is also expressed on various cancer cells and is relevant for 

cell proliferation and the direction of metastatic cells into organs with high local CXCL12 production, 

which makes the CXCR4/CXCL12 axis an interesting target for cancer therapy (Peled et al., 2012; 

Peled & Tavor, 2013; Wald et al., 2013). The importance of CXCR4 and its corresponding ligand is 

underlined by the fact that gene deletion of either the receptor or the ligand is embryonic lethal and 

is responsible for defects during the development of the vascular and the central nervous system 

(Ma et al., 1998; Tachibana et al., 1998; Zou et al., 1998; Takabatake et al., 2009). Deletion of the 

CXCL12 gene results in defective B and myeloid cell development and deformities of the 

cardiovascular and neuronal system (Nagasawa et al., 1996; Alkhatib, 2010). 

Because of its role in diverse signaling pathways CXCR4 activation is strictly regulated. After CXCL12 

binding, C-terminal receptor motifs containing serine and threonine residues are rapidly 

phosphorylated. This leads to desensitization and subsequent internalization of the activated 

receptor (Haribabu et al., 1997; Signoret et al., 1997; Orsini et al., 1999). CXCR4 truncation mutations 

which do not contain specific C-terminal serine/threonine motifs exhibit desensitization defects and 

impaired receptor internalization (Haribabu et al., 1997). For a prolonged receptor down regulation 

upon CXCL12 activation CXCR4 is internalized. In general, internalized GPCRs are either recycled back 

to the cell surface or degraded (Marchese et al., 2003). Although it was demonstrated that part of 

internalized CXCR4 recycle back to the cell surface, the main fraction of CXCR4 receptors are 

degraded (Marchese & Benovic, 2001; Marchese et al., 2003; Zhang et al., 2004). The sorting process 

which mediates most of the internalized receptor population into degradative lysosomes is mediated 

by the ubiquitin ligase AIP4, which ubiquitinates the CXCR4 receptor at one of three lysine residues at 

positions 317, 325 and 329 of the C-terminal region (Marchese & Benovic, 2001; Marchese et al., 

2003). 

Although all these details about CXCR4 trafficking are already known several structural aspects of 

CXCR4 remained unclear until the first crystal structures of CXCR4 were revealed (Wu et al., 2011). 
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Besides detailed analysis of orientation and length of the different segments of the receptor (intra- 

and extracellular loops, C- and N-terminus) data from the crystallographic analysis confirm the 

concept of receptor homo- and heterodimerization. Regarding receptor homodimerization the 

crystallographic images determine specific contact sites, which are present in all found homodimers 

of CXCR4 and which appear to be crucial for receptor homodimerization (Wu et al., 2011). Binding of 

specific ant-/agonists to one of the homodimerized receptors induces minimal changes of the 

receptor conformation which lead to either a positive or negative cooperative effect (Wu et al., 

2011). Tranfering this concept to CXCR4 heterodimerization with CCR2 and CCR5, whereby both 

dimers show a negative cooperative effect, this observation is potentially of significant interest to the 

pharmaceutical industry (Sohy et al., 2007; Sohy et al., 2009; Wu et al., 2011). Regarding the binding 

of CXCL12 dimers to either monomeric or dimeric CXCR4 receptors electrostatic analysis show that 

ligand and receptor interact in various stoichiometric variants which show a highly dynamic  

fluctuation (Wu et al., 2011). This steady change in the stoichiometry between receptor and ligand is 

interesting since it was postulated that monomeric and oligomeric ligands can trigger different 

cellular reactions (Paavola et al., 1998; Appay et al., 1999; Czaplewski et al., 1999; Veldkamp et al., 

2009). 

So far only one clinical syndrome is known which is related to CXCR4 dysfunction and impaired 

receptor internalization. Warts, hypogammaglobulinemia, infections and myelokathexis syndrome 

(WHIM) is the result of a frameshift mutation in the CXCR4 gene causing a truncated receptor with a 

defect in receptor desensitization and internalization. This genetic defect leads to prolonged receptor 

signaling (Hernandez et al., 2003; Gulino et al., 2004; Balabanian et al., 2005). 

 

With its seven transmembrane domains including three internal and external loops CCR5 is another 

typical representative for GPCRs (Figure 1). In contrast to CXCR4, the CCR5 receptor forms an internal 

N-terminal disulfide bond and is palmitoylated at its C-terminus (Oppermann, 2004). In the beginning 

it was assumed that CCR5 can be activated by three different agonists CCL3, CCL4 and CCL5, which 

are till today the only full agonists for CCR5 (Murphy & Tiffany, 1996; Alkhatib, 2010). Later on, more 

agonists with different binding affinities and activation potentials were discovered, including CCL7 

which acts as a natural receptor antagonist (Blanpain et al., 1999). 

Recently, the crystal structure of CCR5 in a complex with the HIV entry inhibitor Maraviroc was 

described (Tan et al., 2013).  Besides a high similarity to the structure of CXCR4 the most prominent 

difference is the deeper and larger binding site for receptor antagonists like Maraviroc (Tan et al., 

2013). Interestingly, the deeper binding pocket for CCR5 antagonists does not lead to masking of the 

ligand binding pocket by  the N-terminus and the second extracellular loop as it is the case for CXCR4 

after antagonist binding (Tan et al., 2013). Furthermore it was determined that two recognition sites 

are crucial for ligand binding. The second site is blocked for chemokine interactions by Maraviroc 

binding which explains its inhibiting effect of Maraviroc (Tan et al., 2013). So far Maraviroc was 

described as an inverse agonist which stabilizes the receptor in an inactive state (Garcia-Perez et al., 

2011). This model is confirmed by crystallographic analysis since Maraviroc binding occupies residues 

which are crucial for the change into an active receptor form. Additionally Maraviroc binding leads to 

a more dense packaging of the α helices precluding ligand binding to CCR5 (Tan et al., 2013). 

 

In contrast to CXCR4, CCR5 expression is closely linked to tissues and cell lines involved in immune 

reactions (Oppermann, 2004). CCR5 is mainly expressed on macrophages, T lymphocytes and 

dendritic cells mediating their activation and migration during an inflammatory response (Longden et 

al., 2008). CCR5 is also expressed on microglia cells and plays a role in microglia recruitment and 



2 Introduction 

5 

activation during brain development and after severe brain injuries (Cowell et al., 2006). Studies with 

CCR5-deficient mice reveal an enhanced susceptibility for parasite and influenca A infections, thus 

underlining the crucial role of CCR5 during immune response. ( Mack et al., 2001). On the other hand, 

CCR5 deletion leads to enhanced lymphocyte infiltration into the lamia propria of the colon and an 

increased tolerance towards lipopolysaccharide induced immune responses (Zhou et al., 1998; 

Andres et al., 2000). 

CCR5 also undergoes rapid phosphorylation of C-terminal serine residues after ligand activation 

(Oppermann et al., 1999; Pollok-Kopp et al., 2003). Mutations or truncations of these serine residues 

or the palmitoylation sites result in impaired desensitization and internalization of the receptor (Kraft 

et al., 2001). Receptor phosphorylation in combination with β-arrestin binding to a DRY motif located 

in the second internal loop initiates clathrin-mediated internalization of CCR5 into early endosomes 

(Pollok-Kopp et al., 2003; Lagane et al., 2005; Drake et al., 2006). In contrast to CXCR4, CCR5 rapidly 

recycles back to the cell surface via recycling endosomes after it was internalized (Mueller & Strange, 

Figure 1: Two dimensional amino acid structure of the human chemokine receptor CCR5 
Schematic overview of the alignment of amino acids of CCR5 and their orientation in the extracellular space (top), the 

cell membrane (grey) and intracellular space (bottom). The receptor consists of seven hydrophobic transmembrane 

domains forming three internal and three external loops. In the extracellular space the receptor establishes a 

disulfide bond between two cysteine residues located on the aminoterminus and the third extracellular loop, whereas 

the C-terminus is palmitoylated at three distinct cystein residues which function as a membrane anchor. Amino acids 

which are crucial for receptor function are shown filled. Figure taken from Oppermann 2004. 
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2004). Receptor recycling is mediated, in part, by a postsynaptic density 95/discs large/zona 

occludens (PDZ) interacting sequence located in the C-terminal tip of CCR5 (Delhaye et al., 2007). The 

PDZ domain can be utilized for protein-protein interactions which are crucial for endosomal sorting 

of CCR5 in recycling endosomes (Alkhatib, 2010). Recycled receptors which are displayed at the cell 

surface are not inevitably detached from the activating agonist, although endosomes are 

progressively acidified which facilitates dissociation of the ligand-receptor complex (Schaeffer et al., 

2004). Instead ligand-occupied receptors rapidly reinternalize until the ligand detaches or the 

receptor is degraded (Signoret et al. 2000).  

Besides their involvement in disorders of the immune system CXCR4 and CCR5 also play a key role as 

coreceptors for HIV-1 infections (Cilliers et al., 2003). The HIV fusion is initiated by activation of the 

virus envelope glycoprotein gp120 by CD4 binding and subsequent binding to CXCR4 or CCR5 which 

triggers gp41 to mediate the fusion with the cell membrane. So far several entry inhibitors targeting 

either CXCR4 or CCR5 have been developed, among them Maraviroc, Viroviroc or AMD3100 (Hendrix 

et al., 2004; Westby & van der Ryst, 2005). Most of these therapeutics are receptor antagonists 

which bind to the receptor and thus inhibit HIV-1 binding without activating cellular signaling 

(Kuritzkes, 2010). Individuals homozygous for a 32 base pair deletion in the CCR5 gene are essentially 

protected against HIV-1 infections (Samson et al., 1996). The base pair deletion leads to the 

expression of a truncated form of CCR5 which is retained within the ER and not transported to the 

plasma membrane where it may assist signaling and cell surface regulation (Venkatesan et al., 2001). 

Approx. 5 to 14 % of the European population exhibit this gene defect which results in functional 

CCR5 deficiency (Sabeti et al., 2005). Since these individuals do not suffer from any noticeable 

immunodeficiency pharmacological blockade of CCR5 appears a safe strategy with limited site effects 

(Barmania & Pepper, 2013). 

2.3 Classical model of G protein-coupled receptor signaling and cell 

surface regulation 
The classical model of G protein signaling is based on ligand-induced activation of GPCR as described 

in Figure 2 (Woehler & Ponimaskin, 2009). Ligand binding to the receptor leads to a conformational 

rearrangement of the three dimensional protein fold of the receptor which allows the receptor to 

bind and activate different downstream effector proteins (Hoffmann et al., 2008). It is assumed that 

binding of different ant-/agonists leads to different receptor conformations which trigger different 

signaling pathways, respectively (Baker & Hill, 2007). 

The classical model of monomeric receptors interacting with monomeric ligands is more and more 

replaced by the concept of receptor homo- and heterodimerization (Terrillon & Bouvier, 2004b; 

Milligan, 2013). Until now it is not fully understood whether receptor dimerization occurs during 

receptor biosynthesis or is induced by binding of monomeric or dimeric receptor ligands (Milligan, 

2004). Also it is highly debated whether receptor dimers and monomers assume different functions 

during cell signaling and trafficking (Gurevich & Gurevich, 2009). So far the results indicate that 

receptor dimerization may serve either as a desensitization mechanism or has the potential to 

activate dimerized receptors via a positive allosteric effect as it’s the case for the GABAB1R and 

GABAB2R receptor (Robbins et al., 2001; Gurevich & Gurevich, 2009). Desensitization is achieved by 

co-internalization of dimerized receptors or a direct reduction of the signaling efficiency after 

receptor dimerization as described for the neurotensin receptor (Hüttenrauch et al., 2005; Gurevich 

& Gurevich, 2009). For the pharmalogical aspect this mutual influence of receptors can be of greater 

importance since targeting of one receptor may have a direct influence on a second receptor 

(Milligan, 2004). Dimeric receptors do also play a keyrole in the heterozygous form of the 
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CXCR4-related WHIM syndrome. The mutated receptor coexpressed with a WT receptor leads to an 

overall enhanced signaling accompanied by a defect in desensitization and internalization 

(Balabanian et al., 2005; Lagane et al., 2008). Regarding CCR5 it was postulated that ligand-induced 

receptor dimerization directly triggers the JAK/STAT signaling pathway (Mellado et al., 2001a). Both 

results underline once again the importance and the potential of receptor dimerization. Despite all 

these findings the functional significance of receptor dimerization remains still unclear especially 

since it was reported that several GPCRs can modulate signaling in a strictly monomeric form 

(Whorton et al., 2007; Kuszak et al., 2009).  Therefore, a system to mimic receptor homodimerization 

would be desireable to analyze the consequence of receptor homodimerization in the absence of 

previous ligand activation. 

General signal transduction of activated GPCRs is mediated by heterotrimeric G proteins consisting of 

an α- and a βγ-subunit. Currently four different families containing several members of α-subunits 

are discriminated (GαS, Gαi/o, Gαq/11, Gα12/13). Each Gα-subunit mediates the activation and/or 

regulation of different cellular pathways, thus contributing to a high variety of potential cellular 

responses after GPCR activation (Milligan & Kostenis, 2006). Five β- and twelve γ-subunits are 

Figure 2: Desensitization, internalization and recycling of GPCRs 
Receptor activation is mediated by binding of a receptor agonist (e.g hormone; H), which induces a conformational 

change of the receptor. The conformational change promotes binding of a heterotrimeric G protein, consisting of an α- 

and βγ-subunit, to the intracellular interface of the receptor. Exchange of the bound GDP at the α-subunit for GTP leads 

to dissociation of the heterotrimeric complex into α- and βγ-subunits each activating distinct signaling pathways. 

Recruited GRKs phosphorylate serine and threonine residues in the receptor C-terminus to allow binding of β-arrestins. 

β-Arrestin binding inhibits rebinding of reassembled G-proteins by steric hindrance which leads to termination of 

G protein-mediated signaling by G protein effectors (E). Receptor internalization is initiated by binding of proteins of 

the endocytic machinery (AP2 and clathrin) to β-arrestin. Clathrin coated pits containing receptor ligand complexes are 

closed by dynamin and sequestered into the cytoplasm. Once internalized, class A receptors dissociate from β-arrestin 

and are sorted into acidified vesicles. Acidification facilitates ligand dissociation whereas the receptor is 

dephosphorylated by GPCR-specific protein phosphatases such as PP2A. Subsequently the receptor rapidly recycles 

back to the cell membrane. Class B receptors show a prolonged binding to β-arrestins and are either sorted for 

degradation by ubiquitination catalyzed by a β-arrestin bound ubiquitin ligase (e.g. Mdm2) or slowly recycled back to 

the cell membrane. Figure modified from Luttrell & Lefkowitz 2002. 
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described, extending the possible combinations for heterotrimeric G proteins and their potential 

signaling capacity even more (Milligan & Kostenis, 2006). Although it is known that the 

ligand-induced conformational change of the receptor promotes binding of the heterotrimeric 

G proteins it is still not fully understood how the binding between receptor and G proteins is 

achieved (Wettschureck & Offermanns, 2005). After activation of the receptor the G protein complex 

binds to C-terminal residues, whereby the receptor acts as a guanine nucleotide exchange factor 

(GEF) facilitating an exchange of the α bound GDP to GTP (Ritter & Hall, 2009). GTP binding leads to a 

dissociation of the heterotrimeric complex into α and βγ-subunit and dissociation of the subunits 

from the receptor to influence various mediators of downstream signaling such as ion channels, 

adenylyl cyclase, phosphodiesterase and phospholipase C (Exton, 1996; Sunahara et al., 1996; 

Yamada et al., 1998). G protein signaling is terminated by the GTPase function of the α-subunit which 

catalyzes the hydrolysis of GTP to GDP (Wettschureck & Offermanns, 2005). In its GDP-bound state 

the α-subunit can reattach to the βγ-subunit and is available for newly activated receptors (Cabrera-

Vera, 2003). 

Due to their ability to activate several different signaling pathways GPCR desensitization is a highly 

regulated process involving protein kinases (PKA and PKC) and GPCR kinases/β-arrestins, respectively 

(Luttrell & Lefkowitz, 2002; Drake et al., 2006). Both protein kinases can be activated by second 

messengers which emerge during GPCR activated signaling cascades (Newton, 1995; Das et al., 

2007). PKA is activated by binding to cAMP which is generated by the Gα-activated enzyme adenylate 

cyclase (Neumann et al., 2014). On the other hand PKC activation is mediated by a signaling cascade 

triggered by the βγ subunit which activates phospholipase C which cleaves the 

protein phosphatidylinositol 4,5-biphosphate (PIP2) into the second messengers inositol (1,4,5) 

trisphosphate (IP3) and diacylglycerol (DAG). PKC is either activated directly by binding of DAG or by 

the IP3 triggered release of calcium ions from internal storages (Falkenburger et al., 2013). Activated 

protein kinases phosphorylate serine and threonine residues in the receptor C-terminus which leads 

to a direct impairment of G protein binding in the absence of β-arrestin binding (Luttrell & Lefkowitz, 

2002). Since activated protein kinases have the potential to phosphorylate more than one receptor 

this form of desensitization is more general (heterologous desensitization) (Chuang et al., 1996). On 

the other hand GPCR kinases specifically phosphorylate serine and threonine residues of GPCRs but 

in contrast to protein kinases they are not activated by second messengers. Instead they 

phosphorylate preferentially residues of agonist-occupied GPCRs (Luttrell & Lefkowitz, 2002). GRK 

phosphorylation leads to the recruitment and binding of β-arrestin to the activated receptor which 

results in a specific desensitization of one receptor (homolougus desensitization).  Binding of 

β-arrestin to the phosphorylated receptor is sufficient to block rebinding of G proteins by steric 

hindrance (Luttrell & Lefkowitz, 2002). In addition β-arrestins act as scaffolding proteins for various 

proteins including the β2-subunit of AP2 which mediates endocytosis of the activated receptor via 

clathrin-coated pits (Goodman et al., 1996; Laporte et al., 1999; Marchese, 2014). 

Once receptors are internalized and transported to early endosomes they are sorted either for 

receptor degradation or recycle back to the cell surface (Marchese et al., 2003). A factor which 

determines the fate of internalized receptors is the duration of β-arrestin binding to the receptor, 

which differs between class A (short arrestin binding) and class B (prolonged arrestin binding) GPCRs 

(Drake et al., 2006). β-Arrestin interacts with ubiquitin ligases which catalyze ubiquitination of the 

receptor at distinct motifs as described for CXCR4 (Marchese & Benovic, 2001; Marchese et al., 

2003). Subsequent to ubiquitination the receptor is directed into lysosomes for proteosomal 

degradation (Marchese & Benovic, 2001). On the other hand, GPCRs such as CCR5 are sorted into 

recycling endosomes for rapid relocation back to the cell membrane (Mueller et al., 2002;  Marchese, 
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2014). Responsible for the sorting into recycling endosomes are distinct motifs of the receptors such 

as the PDZ motif of CCR5 (Delhaye et al., 2007). During their passage through recycling endosomes 

ligand detachment is facilitated by acidification of the endosomal milieu. In parallel the receptor is 

subsequently dephosphorylated by protein phosphatases to be available for restimulation at the cell 

surface (Luttrell & Lefkowitz, 2002).  

Over the last years the most common method to analyze receptor trafficking was receptor specific 

staining with fluorochrome-labeled antibodies combined with flow cytometry or 

immunofluorescence microscopy (Anselmo et al., 2014). Less commonly applied methods include the 

counting of radioactivity during a radioligand uptake assay or antibody feeding where bound 

receptors are co-internalized with the receptor (Arancibia-Cárcamo et al. 2006; Sorkin & Duex 2010). 

However all these methods have several limitations regarding their sensitivity. So far it was assumed 

that receptor internalization is a process which requires ligand activation. During the recent years 

studies revealed that GPCRs can undergo constitutive endocytosis without previous ligand binding 

(Scarselli & Donaldson, 2009; Uwada et al., 2014). This effect can not be detected with the described 

methods since it is masked by translocation of newly synthesized and recycled receptors to the cell 

surface. The same problem occurs when receptor recycling after ligand-induced internalization is 

measured. The net recycling rate of a specific receptor population can not be quantified since 

classical methods can not discriminate between receptors which remain on the cell surface after 

ligand treatment and those receptors which already recycled back or are newly synthesized and 

translocated to the cell membrane. In order to determine the net and constitutive internalization 

rate of a receptor it would be useful to establish a system which is able to tag and track a specific 

receptor population through the whole internalization and recycling process.  

2.4 The multivalent adaptor protein β-arrestin and its role for cell 

signaling 
Arrestins belong to a small protein family with four different representatives (arrestin 1 to 4) which 

play a crucial role for the mediation and regulation of GPCR signaling (Lefkowitz & Shenoy 2005; 

Moore et al. 2007). Table 1 gives an overview on the arrestin nomenclature, including commonly 

used alias names and the cellular expression of each arrestin subtype. 

 Long time before the relevance of β-arrestins for cell signaling was known, visual arrestin (arrestin 1) 

was discovered in the retina (Wacker et al., 1977). Later on it was found that visual arrestin binds to 

rhodospin after its activation, which leads to an “arresting effect” of G protein-mediated effects 

(Zuckerman & Cheasty, 1986). Similarities in the structure and function of rhodopsin, β2-adrenergic 

receptor and associated proteins led to the discovery of the two non-visual arrestins arrestin 2 and 3 

(also known as β-arrestin 1 and 2), which interact with ubiquitously expressed GPCRs to regulate the 

signaling of those receptors (Lohse et al., 1990; Attramadal et al., 1992). The fourth member arrestin 

4 is preferentially expressed in retinal cones and was discovered by homology cloning (Craft, 1995). 

Through the rest of the work we used the alias nomenclature. 



2 Introduction 

10 

For the interaction between GPCR and arrestin two requirements must be complied. First, the 

receptor must be present in its active form, which is achieved by ligand binding and subsequent 

conformational change of the receptor (Hoffmann et al., 2008). The second requirement is the 

GRK-mediated phosphorylation of residues in the C-terminus and at times the third intracellular loop 

of the receptor. Under these conditions all four arrestin variants can interact with GPCRs (Gurevich, 

2014). Due to their different cellular expression and different receptor specificity, a large variety of 

arrestin-mediated effects is ensured (Gurevich, 2014). Of both requirements the phosphorylation 

pattern which is necessary for arrestin activation is far better understood. Studies with (visual) 

Arrestin 1 showed that single phosphorylations at the receptor C-terminus are not sufficient for 

Arrestin binding. Double phosphorylation can promote a weak binding of Arrestin, whereas 

phosphorylation of three different phosphorylation sites leads to full arrestin binding including a 

conformational change (Kraft et al., 2001; Vishnivetskiy et al., 2007). These requirements seem less 

strict regarding the binding of β-arrestin 1/2 (arrestin 2/3), where phosphorylation of a serine cluster 

appears more important for receptor binding (Krasel et al., 2008). 

Recently crystallographic analysis of β-arrestin 1 could demonstrate the structural differences 

between its active and inactive form (Figure 3) (Arun Shukla et al., 2013). The conformational change 

is triggered by a two step recognition system. A phosphate sensor detects phosphorylated residues in 

the receptor C-terminus, whereas a second sensor in β-arrestin recognizes ligand-induced changes in 

the receptor core (Gurevich & Gurevich, 2006; Shukla et al., 2014). If both requirements are met 

β-arrestin 1 changes towards its active form which involves several structural changes. The most 

prominent one is a 20° twist of the C- and N-terminus relative to each other (Shukla et al., 2013). In 

addition to this twist the N-terminus and other protein loops (finger-, middle- and lariat-loop) 

undergo further structural changes which are crucial for β-arrestin 1 activation (Shukla et al., 2013). 

All loops are highly flexible and change their orientation after receptor binding, whereas the finger 

loop seems to be most important for the discrimination between active and inactive GPCRs due to its 

direct interaction with the receptor core (Shukla et al., 2013; Shukla et al., 2014). 

 

Table 1: Arrestin nomenclature and expression 
Besides the systematic names (arrestin 1 to 4) several alias names were established 

over the years. Its immunogenicity and high expression level in photoreceptor cells 

are responsible for the alternative names S-antigen (soluble antigen) and visual 

arrestin for arrestin 1. Due to its ability to inhibit signaling of the β2-adrenergic 

receptor in several tissue cells arrestin 2 was initially named β-arrestin 1. The higher 

homology of arrestin 3 to β-arrestin 1 than to arrestin 1 was the reason for the 

alternative name β-arrestin 2. Arrestin 4 was termed X arrestin or cone arrestin 

because of the gene location on the X chromosome and its preferred expression in 

retinal cones. Data taken from Gurevich 2014. 

Nomenclature Alias Expression 

Arrestin 1 S-antigen, visual Arrestin Retinal rods, pineal gland 
Arrestin 2 β-Arrestin 1, Ubiquitous 
Arrestin 3 β-Arrestin 2 Ubiquitous 
Arrestin  4 X-Arrestin, cone arrestin Retinal cones 
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While it was presumed that all GPCRs are phosphorylated equally after ligand binding, recent reports 

show that the GRK-mediated receptor phosphorylation is dependent on specific ligands which trigger 

the process and the GRK downstream of the receptor (Gurevich, 2014). For systematic reasons, 

GPCRs were divided into class A and B regarding their phosphorylation pattern (Oakley et al., 2000). 

Class A receptors are proposed to bind β-arrestin 2 with higher affinity than β-arrestin 1, whereas 

class B receptors bind both β-arrestins with an equal preference (Oakley et al., 2000). Furthermore 

the duration of arrestin binding differs in both receptor classes. Whereas class A receptors show a 

short arrestin binding, class B receptors show a prolonged binding to arrestin (Luttrell & Lefkowitz, 

2002). Among the early described effects of arrestins was the inhibition of G protein-mediated 

signaling in the visual system (Wilden et al., 1986). Thereby arrestin 1 causes the best possible 

adaptation to photonic activation of rhodopsin by sensitive regulation of G protein-mediated 

signaling through binding to the phosphorylated receptor (Arshavsky et al., 2002). Thereby binding of 

Figure 3: Three dimensional structure of the active and inactive conformational state of β-arrestin 1 
Three dimensional structure of β-arrestin 1 in its inactive (light blue) and active state (gold). a) Topview of β-arrestin 1 

aligned on the N domains. Upon activation a 20° rotation (black rotation axis) and shift of the N- and C-terminus (dark 

blue) relative to the each other  is visible. b) Lateral view of the rotation process for the C-terminal domain around the 

rotation axis (black dot). c) Topview of an inactive β-arrestin 1 without binding to phosphorylated receptor resdues. 

Important regions are highlighted. d) Topview of an activated β-arrestin 1 bound to phosphorylated receptor residues 

(V2 vasopressin- receptor-derived phosphopeptide V2Rpp; green; phosphorylated residues are shown as stick models). 

Modified from Shukla et al. 2013..  
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arrestin blocks rebinding of reassembled G proteins by steric hindrance, which subsequently leads to 

a disruption of G protein-mediated signaling (Lefkowitz, 1998). This principle can be transferred to 

β-arrestin 1/2 and their interaction with GPCRs in non visual tissues (Sibley et al., 1987). 

 After discovery of the desensitization effect of arrestins additional studies revealed a contribution of 

β-arrestins to the ligand-induced receptor internalization (Goodman et al., 1996). This effect 

appeared to be limited to β-arrestin 1/2 and was the first significant difference in comparison to 

visual arrestins which lacked this ability (Goodman et al., 1996). After binding to GRK-phosphorylated 

receptors β-arrestin couples the whole complex to β2-adaptin, a subunit of AP2, and mediates 

transfer of activated receptors into clathrin coated pits from where they are internalized into early 

endosomes (Kang et al., 2013). Afterwards internalized receptors are sorted for recycling or 

degradation (Marchese et al., 2003). Thereby differentiation into class A and B receptors as 

introduced before may play an important role since class B receptors show prolonged binding to 

β-arrestin compared to class A receptors (Luttrell & Lefkowitz, 2002). This prolonged binding may be 

crucial for ubiquitination of internalized receptors, since it was demonstrated that β-arrestin also 

interacts with several E3 ubiquitin ligases such as Mdm2 (Shenoy et al., 2001). 

 According to this model, β-arrestin plays a more prominent role for the regulation of GPCR signaling 

than previously expected. β-Arrestin-mediated internalization leads on the one side to receptor 

degradation but on the other side also promotes dephosphorylation of internalized receptors and 

subsequent recycling back to the cell surface for repeated rounds of signaling (Gurevich, 2014). This 

model indicates that β-arrestin binding is not restricted to activated receptors but also acts as 

adaptor protein which couples receptors to several other proteins which are relevant for GPCR 

trafficking (Ma & Pei, 2007). 

Among the proteins which use β-arrestin as a scaffold protein are proteins which are involved in 

distinct signaling pathways like c-Src or the MAP kinases ERK 1/2 and p38 (Lefkowitz & Shenoy 2005; 

Shenoy et al. 2006). Activation of these signaling proteins is mechanistically closely related to 

clathrin-mediated receptor internalization (Luttrell et al., 2001). During recent years a model has 

evolved according to which GPCR signaling is segmented into three distinct signaling waves. The first 

waves occurs after ligand activation of the receptor at the cell membrane, the second wave 

correlates with β-arrestin binding and the third is triggerd by GPCRs which are internalized via 

endosomes  (Lohse & Calebiro, 2013). The β-Arrestin-mediated signaling wave leads among other 

effects to the phosphorylation of ERK 1/2, which is organized in a complex with the kinases Raf and 

MEK (Chang et al., 2003). Thereby Raf and MEK consecutively catalyze the phosphorylation of ERK 

1/2, which itself is responsible for the phosphorylation of several membrane proteins (Gurevich, 

2014). Furthermore, activated ERK can translocate into the nucleus where it promotes the 

transcription of a distinct DNA subset (Pearson et al., 2001). ERK 1/2 as well as Raf, prefer binding to 

the membrane-bound form of β-arrestin, which indicates that β-arrestin-mediated signaling is closely 

linked to G protein activation after ligand stimulation (Coffa et al., 2011; Coffa et al., 2012). These 

findings formed the basis for a revised model of “biased” GPCR signaling (Figure 4) (Drake et al., 

2008).  

Biased GPCR signaling refers to the principle that biased ligands or receptors promote specific modes 

of signal transduction, respectively (Rajagopal et al., 2010; Reiteret al., 2012; Rajagopal et al., 2013). 

It is assumed that binding of biased ligands stabilize slightly different receptor conformations which 

lead to either a G protein-biased or β-arrestin-biased receptor response (Rajagopal et al., 2013). 

Furthermore it is assumed that the variety of receptor conformations provoke a specific 

phosphorylation pattern (“bar code”) which is mediated by different GRKs and in turn allows 

different proteins to interact with the C-terminus of the receptor (Reiter et al., 2012). Apart from 
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biased ligands the existence of biased receptors is also proposed within this model. Here, binding of 

an unbiased ligand promotes signaling via preferred signaling pathways (Rajagopal et al., 2010). 

Currently the concept of biased signaling is a field of intense research since the possibility of 

activating specific pathways within a cell by using distinct ligands is potentially of high interest to the 

pharmaceutical industry (Bosier & Hermans, 2014). Although the importance of arrestin-mediated 

effects and biased signaling is more and more revealed it is still not fully understood which of the 

known arrestin-mediated effects are supported by G protein activated pathways, since arrestin 

binding to the receptor is inevitably coupled to G protein activation (Miller & Lefkowitz, 2001). 

Therefor a clear discrimination between arrestin- and G protein-mediated effects would be 

desireable. One possibility to achieve a separation of both effects would be an inducible system 

which directly recruits arrestin to the receptor without previous ligand binding.  

Figure 4: Biased signaling either mediated by biased ligands or biased receptors 
In a balanced system (a) ligand-binding leads to activation of both G protein and β-arrestin effects, followed by 

β-arrestin mediated desensitization and internalization of the receptor. If a biased ligand binds to an unbiased receptor 

(b) signaling is preferentially mediated by either G proteins (G protein-biased ligand; light blue) or β-arrestins 

(β-arrestin-biased ligand; purple). Alternatively, binding of an unbiased ligand to a biased receptor (c) also results in 

biased signaling (purple: arrestin-biased; light blue: G protein-biased). Figure modified from Rajagopal et al. 2010. 
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2.5 Analysis of protein protein interactions by chemical induced 

dimerization 
Since the understanding of biological processes constantly progresses it becomes more and more 

important to understand and comprehend biological consequences of interactions of different 

partners on protein or DNA level (Brent, 2004). The significance of protein protein interactions is in 

many cases not well understood, although these interactions directly influence the phenotype of an 

organism (Fegan et al., 2010). The possibility to induce protein protein interactions or to block them 

in a targeted manner is a useful tool for the analysis of different cellular functions. During recent 

years chemical-induced dimerization (CID) of proteins has evolved as one of the favored methods for 

the investigation of protein interactions (Fegan et al., 2010). In this approach two proteins or 

functional domains thereof are attached to the protein of interest and are brought in close proximity 

by addition of a dimerizing agent (DeRose et al., 2013). Depending on the symmetry of the dimerizer 

two identical proteins (symmetric dimerizer) can be brought together as a homodimer or two 

different proteins are brought together as a heterodimer (asymmetric dimerizer) (Figure 5). 

In the first example of chemical-induced dimerization of proteins described in the literature the 

immunsuppresive drug FK506 was used to reversibly homodimerize the FK506 binding protein 

(FKBP12) (Spencer et al., 1993). Furthermore, it was demonstrated that fusion of FKBP12 to the 

ζ chain of the T cell receptor was sufficient to activate endogenous signaling pathways when 

dimerization was triggered by FK1012 (Spencer et al., 1993). Since this pioneering study several other 

dimerization systems have been established which follow more or less the same principle. One of the 

recently most used systems is the FKBP12-FRB system as marketed by the company Clontech (Figure 

6). Besides binding to known dimerizing agents such as FK1012, FKBP12 can also bind to the 

immunosuppressant rapamycin. In this combination and not in an unbound state the complex can 

interact with FKBP12-rapamycin associated protein (FRAP) also known as mammalian target of 

rapamycin (mTOR) (Banaszynski et al., 2005). Problematic is the size (289 kDa) of mTOR which will 

quite likely interfere with biological functions of the protein of interest when present as a mTOR 

fusion protein (Fegan et al., 2010). However, the site of binding to rapamycin could be narrowed 

down to a specific rapamaycin binding domain (FRB) of only 90 amino acids (11 kDa) (Chen et al., 

1995). The complex consisting of FKBP12, FRB and rapamycin is, in principle, suitable as a dimerizing 

system since both domains bind tightly to rapamycin (Banaszynski et al., 2005). However, rapamycin 

will interact with endogenous mTOR in addition to fusion proteins, thus initiating unwanted cellular 

effects (Ballou & Lin, 2008). Rapamycin analogs (rapalogs) were designed which specifically bind to a 

slightly modified version of the FRB domain, but not to endogenous mTOR, with nanomolar affinity 

(Clackson, 1998; Bayle et al., 2006). Dimerizing systems which consist of the three components 

Figure 5: Principle of homo-.and heterodimerization 
After entering the cell a symmetric dimerizer (e.g. 

AP20187; top) binds to two identical proteins/ 

protein domains (DmrA; green) inducing a 

homodimerization where both proteins are located 

in close proximity to each other. If an asymmetric 

dimerizer (e.g. AP21967; bottom) is used two 

different proteins/ protein domains (DmrA; green 

and DmrC; red) are recruited to each other. Figure 

modified from Clontech Laboratories 2008. 
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FKBP12, FRB and AP21967 are commercially available and are used for interaction analysis between 

the vasopressin receptors V1a and V2 and β-arrestin 2 in the absence of ligand binding (Terrillon & 

Bouvier, 2004a). Since the dimer system is universally useable it was also used for several other 

studies including including protein protein interactions studies of the axon survival factor Nmnat2, 

specific SUMOylation of  the transcription factor STAT1, induced cell apoptosis after induced 

dimerization of  the Epstein-Barr virus latent membrane protein 1 (LMP1) with caspase-8 or the 

AP21967-induced targeting of the GABAB2 receptor to the cell membrane (Hatzivassiliou et al., 2005; 

Zimnik et al., 2009; Comps-Agrar et al., 2012; Milde et al., 2013). 

2.6 Aims of this work 
One of the aims of this work was to refine an antibody-independent, biotin acceptor peptide (AP) 

based internalization and recycling assay to make the assay applicable for the analysis of a large 

variety of transmembrane proteins. Thereby the assay should be more sensitive than conventional 

antibody-based detection systems and should not interfere with constitutive endocytosis and 

translocation of newly synthesized proteins to the cell surface. In addition, the assay should be 

capable to tag a specific protein population for the quantification of constitutive endocytosis and also 

to discriminate between ligand-stimulated receptors and new receptors during immunofluorescence 

microcopy. The established assay should be used to quantify ligand-dependent and -independent 

internalization and recycling of the chemokine receptors CXCR4, CCR5 and CXCR4-CCR5CT using flow 

cytometry. Furthermore the intracellular localization of biotinylated and newly expressed receptors, 

after ligand-stimulation, should be described. Therefore a combination of the biotin-based detection 

system and a newly created anti-AP antibody, which can be used for the detection of the whole 

receptor population, was used. 

Furthermore it was the aim to establish an AP21967/AP20187 inducible dimerization system for the 

translocation of β-arrestin 2 to the chemokine receptors CXCR4/CCR5 or a homodimerization of 

those receptors. In contrast to the classical model of GPCR signaling the translocation of β-arrestin to 

the receptor should be ligand-indepdendent to allow discrimination between G protein-mediated 

Figure 6: Heterodimerization system consisting of an DmrA/C domain and an A/C heterodimerizer 
Both Dmr domains A (green; FKBP12) and C (red; FRB) are fused to the C-terminus of proteins of interest (purple and 

light blue). Addition of the heterodimerizer AP21967 leads to the translocation of both proteins into close proximity 

which potentially triggers downstream cellular effects. Figure modified from Clontech Laboratories 2008.  
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effects and β-arrestin 2-mediated effects. Cellular consequence of β-arrestin 2 translocation to the 

receptor should be determined by analyzing the capacity of β-arrestin 2 to dampen ligand-induced 

and G protein-mediated calcium release. Furthermore, the question should be addressed whether 

β-arrestin binding is sufficient to induce ligand-independent receptor internalization. In case that 

β-arrestin is capable to induce receptor internalization ligand- and AP21967-triggered receptor 

internalization should be compared using flow cytometry and immunofluorescence microscopy. 

Finally, the signaling potential of β-arrestin was analyzed by monitoring the phosphorylation level of 

the MAP kinases ERK 1/2. Regarding receptor homodimerization the aim was to comprehend 

different hypotheses which postulated a crucial role of receptor homodimerization for the initiation 

of downstream signaling. 

 



3 Materials and Methods 

17 

3 Materials and Methods 

3.1 Materials 

3.1.1 Laboratory equipment 
Table 2: Laboratory equipment 

Name Type Company 

Autoclave Fedegari Autoclavi Spa Technomara (Fernwald, GER) 
Blotting device Pierce Fast Semi Dry  

Blotter 
Thermo Scientific 
(Waltham, USA) 

Centrifuges 5415D  
5417R 
Multifuge 3 S-R Heraeus 
Megafuge 1.0 R 

Eppendorf (Hamburg, GER) 
Eppendorf 
Schütt (Göttingen, GER) 
Schütt 

Chemilux imager ChemoCam Intas (Göttingen, GER) 
Cooling units Gastro line (4°C) 

Comfort (-20°C) 
VIP series (-86°C) 

Liebherr (Ochsenhausen, GER) 
Liebherr 
Sanyo (München, GER) 

Counting chamber Neubauer Improved Brand (Wertheim, GER) 
Electrophoresis device Agagel Maxi 

SE600 
Biometra (Göttingen, GER) 
Hoefer (San Francisco, USA) 

Electroporation device Gene pulser II with capacity 
extender 

Bio-Rad (Hercules, USA) 

Flow Cytometer FACSCalibur 
 
LSR II 

Becton Dickinson 
(San Francisco, USA) 
Becton Dickinson 

Homogenizer Homogenizer Satorius (Göttingen, GER) 
Ice machine Ziegra Ice maker Ziegra (Hannover, GER) 
Incubator HERAcell 150 Heraeus 

T6060 Heraeus Unitron 
Thermo Scientific 
Thermo Scientific 

Magnetic stirrer Combimag Reo IKA (Staufen, GER) 
Microscope Confocal microscope 

TCS SP2 
Axiovert 40 

Leica Microsystems 
(Heidelberg, GER) 
Carl Zeiss (Jena, GER) 

PCR cycler Mastercycler epGradient Eppendorf 
pH meter pH Level 1 Inolab (Weilheim, GER) 
Photometer Biophotometer 

ThermalPrinter Typ DPU-414 
Nanodrop 2000c 
Microplate Reader 
Powerwave 340 

Eppendorf 
Eppendorf 
Thermo Scientific 
Biotek (Winooski, USA) 

Pipettes Pipetboy accu 
Reference (10 – 1000 µl) 
Research (10 – 1000 µl) 

Integra (Fernwald, GER) 
Eppendorf 
Eppendorf 

Power supply ECPS 2000/300 
EPS 301 

Pfizer (New York, USA) 
Amersham (Uppsala, Swe) 

Scale M-Prove Type ED 153  
M-Prove Type AZ124 

Satorius 
Satorius 

Shaker Vortex Genie 2 
 
Celloshaker Variospeed 

Scientific Industries 
(New York, USA) 
Schütt 
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Duomax 1030 
Polymax 1040 
GFL 3005 

Heidolph (Schwabach, GER) 
Heidolph 
GFL (Burgwedel, GER) 

Syringe Microliter  
Syringes (50 µl, 100 µl) 

Hamilton 

Thermomixer Thermomixer compact 
Thermomixer comfort 

Eppendorf 
Eppendorf 

Ultracentrifuge Beckman Optima LE-80K  
 
Ultracentrifuge 
Rotor Model SW50.1 
Rotor Model SW65 Ti 

Beckman Coulter 
(Pasadena, USA) 
 
Beckman Coulter 
Beckman Coulter 

Ultrasonic probe UW 2070 Bandelin electronics 
(Berlin, GER) 

UV transilluminator GelImager 
Digital graphik printer UP-D890 

Intas 
Sony (Minato, Japan) 

Water bath W13 
W6 

Schütt 
Schütt 

Water purification system Milli-Q Satorius 
Work bench CleanAir DLF BSS4 

Typ HeraSafe KS 12 
Schrader (Göttingen, GER) 
Thermo Scientific 

3.1.2 Chemicals and reagents 
Table 3: List of chemicals and reagents 

Name  

4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid 

Roth (Karlsruhe, GER) 

A/A Homodimerizer (AP20187) Clontech (Mountain View, USA) 
A/C Heterodimerizer (AP21967) Clontech 
Acrylamide, 2x Serva Electrophoresis (Heidelberg, GER) /Roth 
Adenosine 5‘ triphosphate dipotassium salt 
dihydrate  

Sigma Aldrich (Taufkirchen, GER) 

Agar-Agar Roth 
AMD3100 octahydrochloride hydrate Sigma Aldrich 
Ammonium chloride Roth 
Ammonium persulfate Roth 
Ampicillin sodium salt   Roth 
Bicine Sigma Aldrich 
Biotin Sigma Aldrich 
Biotin-X-NHS Calbiochem (Darmstadt, GER) 
Bromphenol blue Roth 
Calcium chloride Roth 
Complete mini protease inhibitor cocktail Roche 
Desoxynucleotides solution mix Sigma Aldrich/Roth 
Dimethyl sulfoxide Roth 
Disodium hydrogen phosphate Roth 
Ethanol Sigma Aldrich 
Ethidium bromide Roth 
Ethylenediaminetetraacetic acid Roth 
FACSflow Becton Dickinson 
Fetal calf serum GE Healthcare (Fairfield, USA) 
G418 sulfate Calbiochem 
Gelatin Becton Dickinson 
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Glycerol Roth 
Glycine Roth 
H.A.T. supplement 50X Life technologies (Carlsbad, USA) 
HEPES Roth 
H.T. supplement 50X Life technologies 
Human Interleukin 6 Roche (Basel, CH) 
Igepal Sigma Aldrich 
Isopropanol Roth 
KLH Thermo Scientific 
L-Glutamic acid potassium salt monohydrate Sigma Aldrich 
Luminol sodium salt Sigma Aldrich 
Magnesium chloride Roth 
Magnesiumacetate tetrahydrate Sigma Aldrich 
Methanol Roth 
Mowiol 4-88 reagent   Calbiochem 
N,N’-Methylenbisacrylamid 2X Serva Electrophoresis/Roth 
Ni-NTA agarose Qiagen (Venlo, NL) 
Paraformaldehyde Sigma Aldrich 
P-coumaric acid Sigma Aldrich 
Phenol-chloroform-isoamyl alcohol Biomol (Hamburg, GER) 
Phenylmethansulfonylfluorid Sigma Aldrich/Applichem (Darmstadt, GER) 
Phorbol-12-myristate-13-acetate Calbiochem 
Pierce fast semi-dry transfer buffer, 10x Thermo Scientific 
Piperazine-N,N′-bis(2-ethanesulfonic acid) Sigma Aldrich 
Poly-L-lysine solution Sigma Aldrich 
Potassium chloride Roth 
Saponin KN Biomedicals (Aurora, USA) 
Sodium azide Roth 
Sodium chloride Roth 
Sodium dihydrogen phosphate Roth 
Sodium dodecyl sulfate Roth 
Succinimidyl-4-(N-
maleimidomethyl)cyclohexane-1 carboxylate  

Sigma Aldrich/Thermo Scientific 

Sucrose Sigma Aldrich 
TAK779 Merck (Darmstadt, GER) 
Tetramethylethylenediamine Roth 
TiterMax Gold adjuvant Sigma Aldrich 
Tris Roth 
Trypan blue Roth 
Trypsin solution, 10x Biochrom (Berlin, GER) 
Tryptone Roth 
Tween 20 Roth 
Ultrapure agarose Invitrogen (Carlsbad, USA) 
Yeast extract   Roth 
β-Mercaptoethanol Merck  
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3.1.3 Disposable items 
Table 4: List of disposable items 

Name Type Company 

Bioreactor miniPERM classic Sarstedt (Nümbrecht, GER) 
Cell culture flask 250 and 550 ml Greiner Bio-One 

(Frickenhausen, GER) 
Cell culture plate 96-well plate, flat-, v-bottom, 

tissue culture 
24-well plate, tissue culture 
6-well plate, tissue culture 
Round 10 cm, 14 cm 

Greiner Bio-One/Sarstedt 
 
Greiner Bio-One/Sarstedt 
Greiner Bio-One/Sarstedt 
Greiner Bio-One 

Cell scraper 99002 TPP (Trasadingen, CH) 
Centrifuge tubes Ultra Clear 14x95 mm 

Ultra Clear SW65 13x51 mm 
Falcon tubes 15 and 50 ml 

Beckman Coulter 
 
Greiner Bio-One 

Columns PD-10 GE Healthcare 
Cryo tubes 121789 Greiner Bio-One 
Cuvettes Uvette 220-1600 nm Eppendorf 
Dialysis tube Servapor MWCO 12 – 14000 

16 and 29 mm diameter 
Serva Electrophoresis 

Electroporation cuvette 0,4 cm Bio-Rad 
Flow cytometry tube Polystyrene tube, 5 ml  Sarstedt 
Nitrocellulose membrane Whatman Protran 

BA 83 0.2 µm 
GE Healthcare 

Pasteur capillary pipettes 747715 Brand 
PCR tubes 0,2 ml Sarstedt 
Pipette tips 1 – 1000 µl Greiner Bio-One 
Safe-lock tubes 0,5 – 2 ml Greiner Bio-One/Sarstedt 
Slide and cover slip 76 x 26 mm Thermo Scientific 
Sterile filters Pore size (0,25 µm) Satorius 
Syringes 1 – 50 ml Becton Dickinson 
Western blotting filter paper MN 440 B Macherey & Nagel 

(Düren, GER) 

3.1.4 Kits 

 Macherey & Nagel NucleoBond PC 500 

 Macherey & Nagel NucleoSpin Plasmid 

 Macherey & Nagel NucleoSpin Gel and PCR Clean-up 

 Thermo Scientific Rapid DNA Ligation Kit 

 R&D Systems Human Phospho-MAPK Array Kit 

3.1.5 DNA and protein markers 

As molecular weight standard for agarose gels the GeneRuler 1 kb Plus DNA Ladder was used. 

The molecular weight standard for SDS protein gels was the Pierce Prestained Protein Molecular 

Weight Marker. Both markers were obtained from Thermo Scientific. 
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3.1.6 Peptides and enzymes 
Table 5: List of peptides and enzymes 

Name Company 

AccuTaq DNA polymerase Sigma Aldrich 
Antartic phosphatase New England Biolabs (Frankfurt Main, GER) 
AP-biotin-peptide Synthesized by JPT (Berlin, GER) 
AP-peptide Synthesized by JPT 
AvrII New England Biolabs 
BamHI-HF New England Biolabs 
EcoRV-HF New England Biolabs 
HindIII-HF New England Biolabs 
KpnI-HF New England Biolabs 
MluI New England Biolabs 
NotI-HF New England Biolabs 
Phusion DNA polymerase New England Biolabs  
RedTaq DNA polymerase Sigma Aldrich 
ScaI-HF New England Biolabs 
SpeI New England Biolabs 
Taq DNA polymerase New England Biolabs 
XbaI New England Biolabs 

3.1.7 Antibodies 

3.1.7.1 Primary antibodies 
Table 6: List of primary antibodies 

Antigen Source Clone Working 
concentration 

Application Company 

Anti-AP epitope TAG Rabbit Polyclonal 1:100 FACS USBiological 
(Swampscott, USA) 

Anti-GRK2/3 Mouse C5/1 5 µg/ml WB RG Oppermann 
Anti-HA Rat 3F10 100 ng/ml WB Roche 
Anti-HA (biotin) Rat 3F10 100 ng/ml 

700 ng/ml 
WB 
IF 

Roche 

Anti-human-CCR5 
(unconjucated, FITC, 
PE) 

Mouse T21/8 10 µg/ml 
5 µg/ml 
1:10/1:40 

WB 
IF 
FACS 

Biolegend (San 
Diego, USA) / 
Santa Cruz (Dallas, 
USA) / 
RG Oppermann 

Anti-human-CXCR4 
(unconjucated, FITC, 
PE) 

Mouse 12G5 5 µg/ml 
1:10 

IF 
FACS 

R&D Systems 
(Minneapolis, USA) 

Anti-mTOR (human 
FRB domain) [DmrC] 

Rabbit Polyclonal 1:2000 WB Enzo Life Science 
(Farmingdale, USA) 

Anti-p44/p42 MAPk Rabbit 137F5 1:1000 WB Cell Signalling 
Anti-pan-cadherin Mouse CH-19 1:20 WB Santa Cruz 
Anti-phospho-p44/p42 
MAPK 

Rabbit D13.14.4E 1:2000 WB Cell Signalling 

Anti-rat-β-arrestin 1/2 
(unconjugated, biotin) 

Mouse 21B1 5 µg/ml WB RG Oppermann 

Anti-β-Actin Rabbit 13E5 1:1000 WB Cell Signalling 
(Cambridge, UK) 

Anti-β-arrestin2 Mouse H-9 1:200 WB Santa Cruz 
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3.1.7.2 Secondary antibodies 
Table 7: List of secondary antibodies and conjugates 

Antigen Source Working concentration Application Company 

Anti-mouse IgG (FITC) Goat 1:40 
1:100 
1:1000 

FACS 
IF 
ELISA 

Dako 
(Glostrup, DK) / 
Jackson Immunoresearch 
(West Grove, USA) 

Anti-mouse IgG (HRP) Rabbit 1:1000 WB Dako 
Anti-Rabbit IgG (HRP) Swine 1:1000 WB Dako 
Anti-Rabbit IgG (HRP) Goat 1:10000 WB Jackson Immunoresearch 
Anti-Rat IgG (HRP) Goat 1:10000 WB Jackson Immunoresearch 
Streptavidin  50 µg/ml ELISA Jackson Immunoresearch 
Streptavidin (Alexa647)  2 µg/ml IF Jackson Immunoresarch 
Streptavidin (HRP)  1:1000 

1:1000 
WB 
ELISA 

Jackson Immunoresearch 

Streptavidin (PE)  1:40 FACS Jackson Immunoresearch 

3.1.8 Plasmids 
Table 8: List of plasmids 

Name Size 
(bp) 

Resistance Insert Source 

pEF1/Myc-HisA 6165 Ampicillin/Geneticin CXCR4-CCR5CT, CCR5, 
CXCR4, 
CCR5-DmrA, CXCR4-
DmrA 

Invitrogen 

pHet-1 5329 Ampicillin Rat β-Arrestin 2 Clontech 
pHet-Nuc1 5410 Ampicillin CCR5, CXCR4 Clontech 
pMaxKS-IE 4400 Kanamycine Gqi5, Gqo5 N. Engels (Immunology, 

Göttingen) 

 

3.1.9 Oligonucleotides 

All oligonucleotides were synthesized from the company IBA (Göttingen, GER). 
Table 9: List of oligonucleotides 

Name Sequence (5’ to 3’) Purpose 

CXCR4-CCR5 NotI rev TGTCTGAACCCCATCCTCTATGCCTTTGTCGGGGAGAAGTT
CAGAAACTACCTCTTAGTCTTCTTCCAAAAGCACATTGCCA
AACGCTTCTGCAAATGCTGTTCTATTTTCCAGCAAGAGGCT
CCCGAGCGAGCAAGCTCAGTTTACACCCGATCCACTGGGG
AGCAGGAAATATCTGTGGGCTTGTGAGCGGCCGCCCGGC
G 

Cloning of a 
CXCR4-CCR5CT 
chimera in 
pEF1/Myc-HisA 

EcoRI-AP-CXCR4 
forward 

CGGGCGGAATTCATGGGCCTGAACGACATCTTCGAGGCCC
AGAAGATCGAGTGGCACGAGGAGGGGATCAGTATATACA
CT 

Cloning of a 
CXCR4-CCR5CT 
chimera in 
pEF1/ 
Myc-HisA 

Gq forward BamHI CCGCGCGGATCCATGACTCTGGAGTCCATCATGG Cloning of 
Gq-protein in 
pMaxKS-IE 

Gq forward + HA BamHI CCGCGCGGATCCATGTACCCATACGATGTTCCAGATTACGC
TACTCTGGAGTCCATCATGG 

Cloning of 
Gq-protein in 
pMaxKS-IE 
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Gqi reverse NotI GCCGCGGCGGCCGCTCAGAAGAGGCCACAGTCCTTAAG Cloning of 
Gqi-protein in 
pMaxKS-IE 

Gqo reverse NotI GCCGCGGCGGCCGCTTAGTACAAGCCACAGCCCTTCAG Cloning of 
Gqo-protein in 
pMaxKS-IE 

BamHI-CCR5 for CCGCGCGGATCCATGGATTATCAAGTGTCAAGTCCA Cloning of a 
CCR5-DmrA in 
pEF1/Myc-HisA 

beta-Arrestin2-SpeI rev CGGCGCACTAGTGCAGAACTGGTCATCACAGTC Cloning of 
β-Arrestin2 in 
pHet-1 

CCR5-SpeI rev CGGCGCACTAGTCAAGCCCACAGATATTTCCTGCTC Cloning of CCR5 
in pHet-Nuc1 

CXCR4-SpeI rev CGGCGCACTAGTGCTGGAGTGAAAACTTGAAGACTC Cloning of 
CXCR4 in 
pHet-Nuc1 

KpnI-CXCR4 for CCGCGCGGTACCATGGAGGGGATCAGTATATACACT Cloning of 
CXCR4-DmrA in 
pEF1/Myc-HisA 

NotI-DmrA rev GCGGCGCGCGGCCGCTCATTCCAGTTTTAGAAGCTCCAC Cloning of a 
recetpro-DmrA 
in 
pEF1/Myc-HisA 

XbaI-betaArrestin2 for CCGCGCTCTAGAATGGGTGAAAAACCCGGGACC Cloning of 
β-Arrestin2 in 
pHet-1 

XbaI-CCR5 for CCGCGCTCTAGAATGGATTATCAAGTGTCAAGTCCA Cloning of CCR5 
in pHet-Nuc1 

XbaI-CXCR4 for CCGCGCTCTAGAATGGAGGGGATCAGTATATAC Cloning of 
CXCR4 in 
pHet-Nuc1 

BGH rev TAGAAGGCACAGTCGAGG Sequencing 
T7 for TAATACGACTCACTATAGGG Sequencing 
UTR for GGATCTTGGTGGCGTGAAACTC Sequencing 

3.1.10 Antibiotics 
Table 10: List of antibiotics 

Name Concentration 
[µg/ml] 

Ampicillin 100 
Kanamycin 50 
Geneticin 600 
Penicillin/Streptomycin 100 
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3.1.11 Buffers and solutions 

3.1.11.1.1 Molecular biology 

50 mM Phosphate buffer 

 24.6 mM 3.5 g MW = 141.96 Na2HPO4 

 25.4 mM 3.5 g MW = 137.99 NaH2PO4 * H2O 

 150.0 mM 3.5 g MW = 58.44 NaCl 

ad. 1000 ml ddH2O 

pH 6.8 

 

3 M Sodium acetate 

 3.0 M 20.4 g MW = 136.08 TRIS 

ad. 50 ml ddH2O 

 

TAE-buffer, 50x 

 2.0 M 242.0 g MW = 121.14 TRIS 

 1.0 M 57.1 ml MW = 60.05 Glacial acetic acid 

 0.05 M 18.6 g MW = 372.24 EDTA dipotassium salt * 2 H2O 

ad. 1000 ml ddH2O 

pH 8.2 – 8.4 

Before usage the 50x TAE-buffer was diluted with ddH2O to 1x TAE-buffer. 

3.1.11.1.2 Cell culture 

2,5 M CaCl2 

 2.5 M 18.38 g MW = 147.02 CaCl2 * 2 H2O 

ad. 50 ml ddH2O 

Store at 4°C or -20°C 

 

Freezing-medium 

   45.0 ml   FCS 

   5.0 ml   DMSO 

Storage at 4°C 

 

10 % glycerol (v/v) 

   10.0 ml   Glycerol 100% 

   90.0 ml   Autoclaved PBS solution, 1x 

 

Sterile-filtered; Storage at rt 

 

2x HBS solution 

 280.0 mM 2.8 ml   NaCl (2.0 M) 

 50.0 mM 2.0 ml   HEPES (0.5 M) 

 0.15 mM 30.0 µl   Na2HPO4 (1.0 M) 

ad. 20 ml ddH2O 

pH 7.1 (important); Storage at rt 
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0,5 M HEPES 

 0.5 M 6.0 g MW = 238.3 HEPES 

ad. 50 ml ddH2O 

Autoclave 121°C for 20 minutes; Store at 4°C 

 

2 M NaCl 

 2.0 M 5.8 g MW = 58.44 NaCl 

ad. 50 ml ddH2O 

Autoclave 121°C for 20 minutes; Store at 4°C 

 

1  M Na2HPO4 

 1.0 M 1.8 g MW = 178.01 Na2HPO4 * 2 H2O 

ad. 10 ml ddH2O 

Autoclave 121°C for 20 minutes; Store at 4°C 

PBS stock solution, 10x 

 0.4 M 323.2 g MW = 358.14 Na2HPO4 * 12 H2O 

 0.1 M 48.0 ml MW = 137.99 NaH2PO4 * H2O 

ad. 2500 ml ddH2O 

pH 7.2 – 7.4 

 

PBS solution, 1x 

 0.1 M 7.2 g MW = 58.44 NaCl 

   18.0 ml   PBS stock solution, 10x 

ad. 1000 ml ddH2O 

pH 7.3 

Autoclave at 121°C for 20 minutes; Storage at 4°C 

 

0,5 % Trypan blue-solution 

 5.7 mM 0.5 g MW = 872.88 Trypan blue 

ad. 100 ml PBS solution, 1x 

Boil to dissolve Trypan blue completely 

 

Trypsin-EDTA solution 

   100.0 ml   Trypsin-EDTA (0,05%/0,02%) 

   400.0 ml   Autoclaved ddH2O 

Storage at 4°C 
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3.1.11.1.3 Protein biology 

Acryl bisacrylamide solution 

 4.1 M 58.4 g MW = 71.10 2x , Acrylamide 

 0.05 M 1.6 g MW = 154.20 2x, N,N‘-methylene-bisacrylamide 

ad. 200 ml ddH2O 

 

2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 

 2.0 mM 1.1 g MW = 514.62 ABTS 

 50.0 mM 6.9 g MW = 137.99 NaH2PO4 *  H2O 

 100.0 mM 13.61 g MW = 136.08 Natriumacetat * 3 H2O 

ad. 1000 ml ddH2O 

pH 4.2; store in aliquots at -20°C 

 

Biomix A 

 0.5 M 8.2 g MW = 163.17 Bicine 

ad. 200 ml ddH2O 

pH 8.3; Storage at 4°C 

 

Biomix B 

 100.0 mM 1.0 g MW = 507.18 ATP 

 100.0 mM 280.0 mg MW = 142.39 Magnesium acetate 

 0.5 mM 24.0 mg MW = 244.31 D-Biotin 

ad. 20 ml ddH2O 

Storage at -20°C 

 

BM-medium 

   0.1 g   BSA 

   0.5 ml   Hepes buffer (1 M) 

ad. 50 ml RPMI 1640 or DMEM medium 

pH 7.4 

 

Coating-buffer 

   170.0 ml   Solution A ELISA 

   80.0 ml   Solution B ELISA 

ad. 1000 ml ddH2O 

pH 10.6 

 

Coomassie blue staining solution 

 1.2 mM 1.0 g MW = 825.97 Coomassie R250 

 1.2 M 70.0 ml MW = 60.05 Glacial acetic acid 

 8.0 M 250.0 ml MW = 32.04 Methanol 

ad. 1000 ml ddH2O 
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Coomassie destaining solution 

 1.1 M 125.0 g MW = 60.05 Glacial acetic acid 

 12.0 M 750.0 ml MW = 32.04 Methanol 

ad. 2000 ml ddH2O 

 

Cytochalasin B 

 0.5 mM 1.0 mg MW = 479.60 Cytochalasin B 

ad. 1 ml DMSO 

 

EM-medium 

   0.1 g   BSA 

   0.5 ml   MES buffer (1 M) 

ad. 50 ml RPMI 1640 or DMEM medium 

pH 2.4 

 

Facs-buffer 

   490.0 ml   PBS solution, 1x 

   2.5 ml   NaN3 (20 %) 

   7.5 ml   FCS 

Store at 4°C 

 

1 M Glycerol buffer 

 1.0 M 2.7 g MW = 92.09 Glycerol 

ad. 500 ml ddH2O 

 

HAG-CM buffer 

 20.0 mM 2.8 g MW = 238.30 HEPES 

 125.0 mM 3.7 g MW = 58.44 NaCl 

 5.0 mM 0.2 g MW = 74.56 KCl 

 1.0 mM 74.0 mg MW = 147.02 CaCl2 * 2 H2O 

 1.0 mM 101.0 mg MW = 203.30 MgCl2 *  6H2O 

 0.5 mM 45.0 mg MW = 180.15 Glucose 

ad. 500 ml ddH2O 

pH 7.4 with NaOH; Store at 4°C 

 

HEPES-buffer 

 1.0 M 11.9 g MW = 238.30 HEPES 

ad. 50 ml ddH2O 

pH 7.0 

Storage at RT in the dark 

 

HRP blocking solution 

   1.0 µl   NaN3 (20%) 

   10.0 ml    H2O2 (35%) 

ad. 1000 ml TBST 
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Indo-1-AM solution 

 1.0 mM 50.0 µg MW = 1009.9 Indo-1-AM 

ad. 50 µl H2O-free DMSO 

Storage at rt 

 

Indo-1-AM pluronic acid F127 mix 

   0.7 µl   Indo-1-AM (1 mM) 

   2.1 µl   Pluronic-acid F127 (5%)  

 

Krebs-Ringer solution 

 140.0 mM 4.1 g MW = 58.40 NaCl 

 4.0 mM 150.0 mg MW = 74.56 KCl 

 1.0 mM 100.0 mg MW = 203.30 MgCl2 * 6 H2O 

 1.0 mM 0.9 g MW = 180.16 D-Glucose 

 10.0 mM 1.2 g MW = 238.30 Hepes 

 1.0 mM 74.0 mg MW = 147.02 CaCl2 * 2 H2O 

ad. 500 ml ddH2O 

pH 7.4; Storage at -4°C 

 

Laemmli buffer, 10 x 

 1.9 M 864.0 g MW = 75.07 Glycine 

 35.0 mM 60.0 g MW = 288.40 SDS 

 0.3 M 180.0 g MW = 121.14 TRIS 

ad. 6000 ml ddH2O 

 

Lysis buffer (NP40 Igepal) 

 50.0 mM 25.0 ml MW = 121.14 TRIS pH 7.0 (1 M) 

 150.0 mM 4.4 g MW = 58.44 NaCl 

 5.0 mM 12.5 ml MW = 372.24 EDTA dipotassium salt * 3 H2O pH 8.0 (0.2 M) 

 1.0 % 5.0 ml   Igepal 

 17.0 mM 25.0 ml MW = 288.4 SDS (10 %) 

ad. 500 ml ddH2O 

 

Membrane buffer 

 10.0 mM 1.5 g MW = 302.37 PIPES 

 100.0 mM 3.7 g MW = 74.55 KCl 

 3.0 mM 90.0 mg MW = 58.44 NaCl 

 3.5 mM 360.0 mg MW = 203.3 MgCl2 * 6 H2O 

ad. 500 ml ddH2O 

pH 7.0 

 

MES-buffer 

 1.0 M 10.7 g MW = 213.25 MES * H2O 

ad. 50 ml ddH2O 

Storage at rt in the dark 
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Mounting medium (with antifading reagent) 

   2.4 g   Mowiol 4-88 

 3.2 M 6.0 g MW = 92.09 Glycerol 

   6 ml   ddH2O 

 0.1 M 12.0 ml MW = 121.14 0,2 M TRIS pH 8.5 

Mowiol and glycerol are mixed and stirred for 1 hour at rt. The ddH2O is added and the mixture 

stirred for additional 2 hours at rt. Tris buffer is added and the solution is incubated up to 2 hours at 

50°C in the water bath under occasional stirring. To remove non dissolved mowiol the mixture is 

centrifuged at 5000 x g for 15 minutes. The aliquots are stored in 1.5 ml tubes at -20°C. 

 

NH4Cl solution 

 50.0 mM 1.3 g MW = 53.49 NH4Cl 

ad. 500 ml ddH2O 

Sterile filtered 

 

NiNTA binding buffer 

 10.0 mM 0.3 g MW = 68.08 Imidazol 

 300.0 mM 8.7 g MW = 58.44 NaCl 

 50.0 mM 3.5 g MW = 137.99 NaH2PO4 * H2O 

ad. 500 ml ddH2O 

pH 8.0 

 

NiNTA clearing buffer 

 3.5 M 20.0 ml MW = 68.05 Glacial acetic acid 

 6.0 M 57.3 g MW = 95.53 Guanidium chloride 

ad. 100 ml ddH2O 

pH 8.0 

 

NiNTA elution buffer 

 250.0 mM 8.5 g MW = 68.08 Imidazol 

 300.0 mM 8.7 g MW = 58.44 NaCl 

 50.0 mM 3.5 g MW = 137.99 NaH2PO4 * H2O 

ad. 500 ml ddH2O 

pH 8.0 

 

NiNTA washing buffer 

 20.0 mM 0.7 g MW = 68.08 Imidazol 

 300.0 mM 8.7 g MW = 58.44 NaCl 

 50.0 mM 3.5 g MW = 137.99 NaH2PO4 * H2O 

ad. 500 ml ddH2O 

pH 8.0 

 

4 Nitrophenyl N-acetyl-β-D-glucosaminide (NAGA substrate) 

 8.0 mM 27.4 mg MW = 342.30 NAGA substrate 

ad. 10 ml Sodium acetate buffer 

Warm up to completely dissolve the NAGA substrate; storage at 4°C  
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PBS-Tween 

   0.5 ml   Tween 20 

ad. 1000 ml PBS solution, 1x 

 

Saponin-Gelatine solution 

 0.1 % 0.1 g   Saponin 

 0.2 % 0.2 g   Gelatin 

ad. 100 ml PBS 

Heat up for total dissolution of gelatin. Has to be prepared fresh before each staining. 

 

Separation gel buffer 

 1.5 M 90.9 g MW = 121.14 TRIS 

ad. 500 ml ddH2O 

pH 8.8 

 

Sodium acetate buffer 

 40.0 mM 46.1 g MW = 136.08 Sodium acetate * 3 H2O 

ad. 500 ml ddH2O 

pH 4.5 with HCl 

 

Solution A (ECL) 

 1.4 mM 250.0 mg MW = 177.16 Luminol 

ad. 1000 ml TRIS (0,1 M) 

pH 8.6; storage at 4°C 

 

Solution A ELISA 

 0.2 M 10.99 g MW = 105.99 Na2CO3 

ad. 500 ml ddH2O 

 

Solution B (ECL) 

 3.4 mM 55.0 mg MW = 164.16 Para-coumaric-acid 

ad. 50 ml DMSO 

Storage at rt without incidence of light 

 

Solution B ELISA 

 0.2 M 8.4 g MW = 84.01 NaHCO3 

ad. 500 ml ddH2O 

 

Stacking gel buffer 

 0.5 M 30.3 g MW = 121.14 TRIS 

ad. 500 ml ddH2O 

pH 6.8 
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Stripping solution 

 70.0 mM 20.0 g MW = 288.4 SDS 

 3.9 mM 62.5 ml MW = 121.14 TRIS pH 6.7 (62.5 mM) 

 100.0 mM 7.0 ml MW = 78.12 β-mercaptoethanol (freshly added) 

ad. 1000 ml ddH2O 

 

TBS, 10x solution 

 1.4 M 80.0 g MW = 58.44 NaCl 

 0.2 M 24.0 g MW = 121.14 TRIS 

ad. 1000 ml ddH2O 

pH 7.6 

 

TBST solution, 1x 

   100.0 ml   TBS, 10x solution 

   1.0 ml   Tween 20 

ad. 1000 ml ddH2O 

 

Treatment buffer, 2x 

   12.5 ml   Stacking gel buffer 

   20.0 ml   SDS (10 %) 

   10.0 ml   Glycerol (100 %) 

   5.0 ml   Bromphenol blue (10 mg/ml) 

 

Treatment buffer with β-mercaptoethanol, 1x 

   450.0 µl   Treatment buffer, 2x 

   450.0 µl   ddH2O 

   100.0 µl   β-mercaptoethanol 

 

TRIS-buffer with potassiumglutamate 

 10.0 mM 1.2 g MW = 121.14 TRIS 

 30.0 mM 6.1 g MW = 203.23 L-glutamic acid potassium salt monohydrate 

ad. 1000 ml ddH2O 

pH 8.0 with HCl 

 

3.1.12 Cell lines 

3.1.12.1 Prokaryotic cell lines 
Table 11: List of prokaryotic cell lines 

Name Genotype Company 

E. coli BL21 
(DE3) 

fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS 
λ DE3 = λ sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5 

New England 
Biolabs 

E.coli 
Top10F- 

F´{lacIq, Tn10(TetR)} mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 
ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 
nupG 

Invitrogen 
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3.1.12.2 Eukaryotic cell lines 

Cell line were established in collaboration with C. Schläger (RBL CCR5-AP), S. Tjaden (RBL CXCR4-AP) 

and S. Henze (HEK CXCR4-/CCR5-DmrA with β-Arrestin 2-DmrC). 
Table 12: List of eukaryotic cell lines 

Name Purpose Source 

X63.Ag8.653 Fusion with spleen cells from 
immunized mice 

Own laboratory 

HEK293 Expression of receptor-DmrA 
alone and receptor-DmrA in 
combination with rat  
β-Arrestin 2 

German collection of  
microorganisms and cell 
cultures (Braunschweig, GER) 

HEK293T Transient expression of diverse 
constructs 

Own laboratory 

RBL-2H3 Expression of AP-tagged CCR5, 
CXCR4 and CXCR4-CCR5CT 
chimera 

Own laboratory 

3.1.13 Cell culture media  

3.1.13.1 LB-medium 

LB-medum 

10 g Tryptone 

5 g Yeast extract 

5 g NaCl 

1 l ddH2O 

7,0 pH 

The medium was autoclaved at 121°C for 20 minutes and antibiotics added after the medium has 

cooled down. For agar-plates 15 g agar was added. After the medium was autoclaved it was placed 

on a magnetic-stirrer to cool down faster. Antibiotics were added and the medium was poured into 

petri dishs. 

3.1.13.2 Media for mammalian cell culture 
Table 13: List of media for mammalian cell culture 

Name Ingredients Supplements 
(if needed) 

Company 

DMEM Glutamin 
4.5 g/l Glucose 
3,7 g / NaHCO3 

5% or 10% FCS 
Pen/Strep 
Geneticin 

Merck/Invitrogen 

RPMI 1640 Glutamin 
2,0 g / NaHCO3 

5% or 10% FCS 
Pen/Strep 
Geneticin 

Merck/Invitrogen 
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3.1.14 Software 
Table 14: List of software 

Name Purpose Author/Company 

Adobe Photoshop CS 5 Image processing Adobe (San Jose, USA) 
CellQuestPro Recoding of flow cytometry data Becton Dickinson 

 
Clone Manager 
Professional 8 

DNA analysis Sci-Ed (Cary, USA) 

FlowJo 7.6.5 Flow cytometry data analysis Treestar (Ashland, USA) 
GENtle Primer design and DNA analysis Markus Manske (GER) 
ImageJ Quantification and data analysis of 

digital images 
National Institutes of Health 
(USA) 

Leica microscope 
software 

Immunofluorescence images Leica Microsystems  

Mendeley Bibliography Mendeley (New York, USA) 
Paint.net 3.5 Image processing Rick Brewster (USA) 
PhotoFiltre 6.4 Image processing Antonio Da Cruz (FR) 
Sigma Plot 8 and 12 Statistical data analysis and graph design Systat Software (San Jose, 

USA)  
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3.2 Methods 

3.2.1 Molecular biology 

3.2.1.1 Agarose gel electrophoresis 

To separate DNA-fragments according to their size agarose-gel-electrophoresis was performed. 

Agarose (0,7 to 2 % w/v) was resuspendend in 1x TAE buffer and to visualize the DNA-fragments 

0,5 µg/ml ethidium-bromide was added directly into the buffer. This solution was poured on to a tray 

and an appropriate comb was inserted. At rt the agarose polymerized after approx. 30 min and was 

transferred into a gel-chamber. The chamber was filled with 1x TAE-buffer and the samples were 

loaded onto the gel. If necessary the samples were mixed with loading-dye (6x). The electrophoresis 

was performed at 120 V, 220 mA for approx. 60 min. Afterwards the gel was taken from the tray and 

the DNA could be visualized with UV-light. 

3.2.1.2 Polymerase chain reaction 

DNA amplification was done via polymerase chain reaction. Because of their proofreading ability 

these reactions were catalyzed by Phusion DNA-polymerase. A PCR reaction catalyzed by Phusion 

DNA-polymerase contained the following: 

 

10 µl HF Phusion Buffer, 5x 

1 µl dNTP mix (10 mM) 

2.5 µl forward primer (0.05 µM) 

2.5 µl reverse primer (0.05 µM) 

x µl DNA template (5 to 15 ng/µl) 

0.5 µl Phusion DNA-polymerase 

ad. to 50 µl ddH2O 

 

The reaction mix was filled into a 0.5 ml PCR cup and put into a PCR-cycler which was running the 

following program: 

 

Lid 100°C  
Initial denaturation 98°C 30 sec 
Denaturation 98°C 10 sec 
Annealing 59°C 30 sec 
Extension 72°C 30 sec/kb 
Final extension 72°C 5 min 
Hold 10°C  
   
To check the success of the PCR a sample of the reaction was mixed with loading-dye, loaded on a 

1.5 % agarose gel and separated by electrophoresis (3.2.1.1). The PCR was successful if a DNA signal 

with the expected size was visible. 

3.2.1.3 Purification of DNA fragments from PCR 

The amplified DNA-fragments were purified directly from the PCR reaction using the NucleoSpin Gel 

and PCR Clean-up kit from Macherey & Nagel. The purification was done following the 

manufacturer’s guideline. At the end of the purification the DNA was dissolved in approx. 30 µl 

ddH2O. 

approx. 30 cycles 
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3.2.1.4 Digestion and dephosphorylation of DNA 

For site-directed ligation of DNA and vector restriction digestion was done. Digestion with restriction 

enzymes creates DNA fragments with a phosphate-group on one and an OH-group on the other side. 

1 µg DNA was digested for 1 to 3 hours at 37°C following the manufacturer’s guidelines for 

buffer-conditions and enzyme concentration.  To check if the digestion was successful digested and 

undigested DNA was loaded on an agarose gel and separated by electrophoresis. If DNA is cut with 

only one restriction enzyme the chance for the DNA to religate is high. To prevent DNA-religation 1 µl 

alkaline phosphatase was added to the digestion mix and incubated for additional 1 h. Purification 

was done using the NucleoSpin Gel and PCR Clean-up kit from Macherey & Nagel (3.2.1.3). 

3.2.1.5 Ligation of DNA fragments 

For DNA replication in E. coli and expression of the gene in a mammalian cell line it is necessary to 

ligate the DNA of the gene with a suitable vector. Vector-DNA and DNA-fragment were mixed at a 

molar ratio of 1:3. The ligation reaction was catalyzed by T4-ligase up to 3 hours at rt in a total 

volume of 20 µl under buffer conditions following the guidelines of the manufacturer. To check the 

religation-rate of the vector a second reaction mix without the insert-DNA was prepared. 10 µl of the 

reaction mix was used for the transformation of competent E. coli Top10F- cells. 

3.2.1.6 Heat-shock transformation of chemo-competent E.coli  

For protein expression (E.coli BL21 (DE3)) or plasmid-replication (E. coli Top10F-) plasmid-DNA was 

transformed into the appropriate E.coli strain. To this end competent E.coli were thawed on ice and 

mixed with 10 µl of ligation mix or 2 µg plasmid-DNA. Cells were gently mixed by vortexing and 

chilled for 20 min on ice. The following heat-shock was performed at 42°C for 90 sec in a 

thermomixer. Afterwards the cells were incubated on ice for additional 2 min and resuspendend in 

500 µl LB-medium (without antibiotics) and incubated for 60 min at 37°C in a thermomixer. 50 and 

100 µl of the cell suspension was directly plated on LB-agar plates with the appropriate antibiotic. 

The rest of the cell-suspension was centrifuged at 1400 x g, resuspendend in 200 µl LB-medium and 

plated on LB-agar plates as well. The plates were incubated at 37°C overnight. 

3.2.1.7 Colony-PCR of transformed E.coli 

To check whether the transformed plasmid is expressed grown colonies were taken to perfom colony 

PCR. Colonies were picked from the agar-plate with a pipette-tip and transferred to a LB-agar 

master-plate, which was incubated at least for 8 hours at 37°C. The rest of the cell material was 

resuspendend in 50 µl ddH2O and incubated at 95°C for 5 minutes. The PCR reaction was catalyzed by 

TAQ DNA-polymerase. The corresponding reaction mix consisted of the following: 

 

2.5 µl RedTaq Buffer, 10x 

0.5 µl dNTP mix (10 mM) 

1.25 µl forward primer (0.05 µM) 

1.25 µl reverse primer (0.05 µM) 

10 µl DNA suspension 

1.25 µl Phusion DNA-polymerase 

7.25  µl ddH2O 

∑ 25 µl 
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The PCR-cycler program for TAQ DNA-polymerase was: 

 

Lid 100°C  
Initial denaturation 94°C 1 min 
Denaturation 94°C 1 min 
Annealing 59°C 2 min 
Extension 72°C 1 min/kb 
Final extension 72°C 5 Min 
Hold 10 °C  
 

At the end of the cycler program 10 µl of the PCR-mix was loaded directly on a 1.5 % agarose gel 

(3.2.1.1). After electrophoresis the positive clones could be identified by a DNA-signal with an 

expected size. 

The positive clones were inoculated in 6 ml LB-medium with antibiotics and cultured overnight at 

37°C and 200 rpm. On the following day the plasmid-DNA was purified and digested with the same 

enzymes which were used to prepare vector-DNA and insert-DNA for ligation.  

3.2.1.8 Plasmid purification from E. coli cultures 

E. coli Top10F- cells were transformed with the plasmid of interest and cultured in LB-medium with 

antibiotics overnight at 37°C and 200 rpm. For long-term storage 800 µl cells suspension and 200 µl 

glycerol (99 %) was mixed and stored at -80°C. DNA purification from E.coli was done using 

commercial kits (NucleoBond PC 500 and NucleoSpin plasmid) according to the manufacturer’s 

guidelines. The purified DNA was resolved in 30-50 µl ddH2O (NuceloSpin) or 200 – 300 µl ddH2O 

(NucleoBond) and the DNA content was measured photometrically.  

3.2.1.9 Phenol-Chloroform extraction and ethanol precipitation of DNA 

To remove buffer components and proteins from DNA a mixture of 

phenol-chloroform-isoamylalkohol (25:24:1 (v/v)) was added to the DNA and the sample was 

centrifuged for 15 seconds at 12600 x g. The upper phase was transferred into a new 1.5 ml tube. 

For DNA extraction 3 M sodium acetate was added in the same volume as the sample. 96 % 

pre-cooled ethanol was added (2.5 volumes of the starting sample volume) and the sample was 

incubated for 20 minutes on ice. Subsequently the sample was centrifuged for 5 min at 12600 x g at 

4°C, the supernatant was removed and the pellet washed with 1 ml of 70 % ethanol. Ethanol was 

removed and the DNA air dried. The purified DNA was resolved in approx. 30 µl ddH2O and stored at 

-20°C.  

3.2.1.10 DNA sequencing 

Sequencing of plasmid-DNA was done by SeqLab (Göttingen, GER). To this end, 80 ng/µl DNA was 

mixed with 30 pmol of the sequencing-primer and adjusted to a total volume of 15 µl with ddH2O. 

 

 

 

 

 

approx. 30 cycles 
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3.3 Cell culture and functional assays 

3.3.1 Culture conditions 

All cell lines were incubated in a water-saturated atmosphere with 5 % CO2 at 37°C. Rat basophilic 

leukemia (RBL) cells were cultured in RPMI 1640 medium supplemented with 10 % heat inactivated 

FCS and 100 µg/ml mixture of penicillin/streptomycin. For the selection of transfected cells 

600 µg/ml geneticin was added. To thin out the cells they were washed with PBS and subsequently 

trypsinized with trypsin-EDTA for up to 25 minutes. All other cell lines (Ag8, peritoneal macrophages, 

hybridoma cells) were kept in RPMI 1640 medium without geneticin. 

Human embryonic kidney cells (HEK293) cells were incubated in DMEM medium supplemented with 

the same ingredients as the RPMI 1640 medium. For cell selection a concentration of 1200 µg/ml 

geneticin was used. For maintenance cultures the concentration was lowered to 600 µg/ml. For the 

detachment of HEK293 cells the cells were washed gently with PBS and trypsinized with trypsin-EDTA 

for 2 minutes. 

Centrifugation of all cell lines was done at 270 x g at rt for 5 minutes. All working steps which were 

relevant for cell culturing were done under sterile conditions with sterile solutions and sterile 

equipment. 

3.3.2 Freezing and thawing of cells 

For cell-storage cells were washed with PBS, trypsinized and centrifuged for 5 minutes at 270 x g at 

rt. The supernatant was decanted and the cell-pellet was gently resuspend in freezing-medium. 

Afterwards the cell-suspension was transferred into pre-cooled 2 ml cryo-tubes and stored at -80°C. 

For long term storage the cells were frozen in liquid nitrogen. Cell thawing was done in a water bath 

at 37°C.  The cryo-tube was removed from the water bath after nearly the whole cell-suspension was 

molten and transferred into 10 ml of cell-culture medium. The cells were centrifuged at 270 x g for 

5 minutes at rt and the supernatant was removed. The cell pellet was gently resuspended in cell 

culture medium and seeded in new culture dishes.  

3.3.3 Cell counting 

Adherent cells were washed with PBS, trypsinized and centrifuged at 270 x g for 5 minutes at rt. 

Afterwards the cell pellet was resuspended in a suitable volume of cell culture medium. 10 µl of the 

cell-suspension was mixed with 90 µl of 0.5 % trypan blue-solution and pipetted onto a Neubauer 

counting chamber.  

3.3.4 Cell transfection 

3.3.4.1 Transfection of RBL-cells using electroporation 

To express foreign DNA in a cell line it is necessary to clone the DNA into a suitable expression vector. 

For our purpose we cloned the receptor DNA into the expression vector pEF1/Myc-HisA which 

contained a geneticin resistance cassette for the selection of positively transfected cells. The plasmid 

was linearised with the restriction enzyme ScaI (3.2.1.4) and extracted with phenol/chloroform 

(3.2.1.9 ). The cells were washed with PBS, trypsinized and 1 * 107 cells were resuspended in 250 µl 

PBS. 18 µg of the linearised expression vector was pipetted into a pre-cooled electroporation 

cuvette. The cell suspension was added, gently mixed with DNA and incubated for 10 minutes on ice. 

The electroporation was done at 960 µF and 260 V at rt. After the electroporation the cells were 

again cooled on ice for 10 minutes. Afterwards the cell suspension was transferred into 10 ml of 

culture medium and centrifuged at 270 x g for 5 minutes at rt. The supernatant was decanted and 

the cell pellet was resuspended in 1 ml of culture medium. The 1 ml cell suspension was added to 
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36 ml of culture medium and distributed in 0.5 ml aliquots on 24 well culture plates. To select the 

positively transfected cells the culture medium was exchanged for culture medium with 600 µg/ml 

geneticin. Visible colonies were transferred into 96 well plates and the expression level of receptors 

at the cell surface was checked using flow-cytometry (3.3.6.1). 

3.3.4.2 Co-transfection of HEK293-cells using calcium-phosphate 

HEK293 cells are susceptible for transfection by calcium-phosphate precipitates. The DNA is enclosed 

in the calcium-phosphate precipitates and is taken up by the cells over the cell membrane. The 

pEF1/Myc-HisA vector which contained the receptor-DmrA DNA was linearized using the restriction 

enzyme ScaI. β-Arrestin 2 –DmrC was cloned into pHet1 which was linearized with MluI 3.2.1.4). Both 

plasmids were purified using phenol/chloroform extraction (3.2.1.9). 

One day before the transfection 6 * 105 were seeded on multiple 10 cm culture dishes. 4 hours 

before the cells were transfected the medium was exchanged with DMEM medium from Invitrogen. 

5 µg DNA from each construct was added to 50 µl 2.5 M CaCl2 and with ddH2O adjusted to a final 

volume of 500 µl. Afterwards 500 µl of 2x HBS-solution was added dropwise with additional snapping 

of the tube. Immediately afterwards the mixture was added to the cells. 24 hours post transfection 

the medium was removed and 900 µl of pre-warmed 10 % glycerol (v/v) was added to the cells and 

removed shortly afterwards. For selection purposes 1200 µg/ml genetecin was added to the 

medium. Effect of cell selection was visible after 14 days. Further treatment of positive cell clones 

was identical to RBL-cells. 

The calcium-phosphate transfection method could also be used for transient transfections. In 

contrast to the stable transfection the transient transfection of cells is not permanent and the 

transfected plasmids must not be linearized. For the transient transfection 3 * 105 cells were seeded 

in a well of a 6 well plate one day before transfection. For the transfection 3.3 µg DNA was added to 

16.6 µl 2.5 M CaCl2 and adjusted with ddH2O to a final volume of 166 µl. Afterwards 166 µl 2x 

HBS-solution was added dropwise. The remainder of the transfection protocol was identical to the 

stable transfection. 

3.3.4.3 Subcloning of positively selected cell-clones 

To ensure that the positively selected cell clones did not contain any contaminants the cells were 

subcloned. Cells were adjusted to 1.3 * 104 cells per ml and were diluted threefold (260/62/20 cells 

per ml) in a total medium volume of 25 ml. One drop of this cell-suspension was added to 100 µl 

medium per well of a 96 well plate resulting in a minimal cellular concentration of 0.8 cells per well. 

Separately grown colonies were analyzed using flow-cytometry (3.3.6.1).  

3.3.5 Functional assays 

3.3.5.1 Ca2+-mobilization assay  

To measure the cytosolic Ca2+-shift after cellular stimulation the membrane permeable dye 

Indo-1-AM was used. In the presence of Ca2+ the emission spectrum changed (475 to 400 nm), which 

was used to detect the intracellular calcium mobilization. Cells were adjusted to 1.5 * 106 and 

resuspended in 700 µl RPMI 1640 medium with 5 % FCS. 1 µM Indo-1-AM mixed with pluronic-acid 

F127 (0.015 % v/v) was carefully added to the cell suspension (25’/30°C/350 rpm) in darkened tubes. 

700 µl of RPMI 1640 medium with 10 % FCS was added (10’/30°C/350 rpm). Cells were washed and 

resuspended in Krebs-Ringer-solution. The 400 nm/475 nm ratio was recorded for 25 seconds by 

flow cytometry and resulting data were normalized. 
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3.3.5.2 N-acetyl-β-D-glucosaminidase (NAGA) release 

To test the functional integrity of receptors expressed by RBL cells the ligand-induced and 

G protein-mediated NAGA release from transfected cells was measured. RBL cells are myeloid cells 

which contain NAGA within prestored vesicles. 

RBL cells were adjusted to 4 * 106 cells in 1 ml HAG-CM buffer containing 0.25 % BSA and 5 µl 100 % 

cytochalasin (w/v) and were incubated for 20 minutes at 37°C. In parallel, 10 µl of 1 % triton-X (v/v) 

was added to 90 µl of the cell suspension and incubated for 4 minutes at 37°C to obtain maximal cell 

lysis (positive control). The sample was centrifuged (3200 x g/ 5’ at 4°C) and the cell-free supernatant 

was used for calibration purposes with samples diluted 1:2 ratio in HAG-CM buffer. The ligand 

(0.5 - 250 nM) in 10 µl HAG-CM buffer was added to 90 µl of cell-suspension and incubated at 37°C 

for 4 minutes and centrifuged (3200 x g/5’ at 4°C). Supernatant (25 µl) of the triton lysate and of the 

ligand-stimulated cells were incubated (2 hours/37°C) in a microtiter plate with 125 µl of 

4 Nitrophenyl N-acetyl-β-D-glucosaminide. The reaction was stopped by adding 50 µl of 1 M 

glycerol-buffer and the optical density at 450 nm was determined in a plate photometer. The 

standard curve was used to calculate the NAGA release (% of total cellular NAGA content). 

3.3.5.3 Phosphorylation/activation of ERK1/2 MAP-kinases after ligand and 

AP21967/AP20187 stimulation 

6 * 105 HEK293-cells were seeded onto lysine-coated 6 well plates and cultivated overnight in 

FCS-free DMEM medium containing 0.02 % BSA. The next day cells were incubated (60’/37°C) in fresh 

DMEM medium without serum. After cellular stimulation the plates were chilled on ice and were 

detached with treatment buffer and lysed (5’/95°C/sonication). The lysates were used for 

immunoblotting (3.5.2) with anti-phospho-ERK1/2 detection antibodies. As a loading control the 

immunoblot was reprobed using anti-pan-ERK1/2-antibody. 

A similar protocol was followed to probe a diverse range of signaling pathways using human 

phospho-MAPK array kit from R&D system. Cells were prepared as described and the kit was used 

following the manufacturer’s guidelines. 

3.3.5.4 Quantification and visualization of internalization- and recycling processes of 

CXCR4- and CCR5-receptors 

In the presence or absence of receptor agonists and antagonists the expression of CXCR4- and 

CCR5-receptors on the cell surface is a subject of constant changes. These changes can be either 

detected by biotin-streptavidin (3.6) or direct receptor staining. If necessary, the cells were 

biotinylated (3.6) and adjusted to 6 * 106 cells. The cells were resuspended in 2 ml BM medium and 

stimulated with receptor-agonist/-antagonist or AP21967/AP20187 (30’/37°C). To measure the 

recycling rate of the receptor the samples were acid washed to remove the ligand and resuspended 

in ligand-free BM medium (30’/37°C). Through the whole process samples were taken, washed with 

EM-, BM-medium and FACS-buffer and transferred into wells of a 96 well plate (4°C). Quantification 

was performed by flow cytometry (3.3.6.1). The percentage of expressed receptors on the cell 

surface was calculated on the base of unstimulated control cells. For the visualization of internalized 

receptors immunfluorescence microscopy (3.3.6.2) was done. The procedure was identical to the 

quantification with the exception that all steps were done with adherent cells.  
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3.3.6 Fluorescence-based assays 

3.3.6.1 Flow-cytometry 

To detect the amount of CXCR4 and CCR5 on the cell surface the cells were stained with 

fluorophor-labeled antibodies or streptavidin. Cells were adjusted to a defined cell density of cells 

per ml. The staining was done in a 96-well plate (60’/4°C/dark). In between the cells were washed 

with FACS-buffer. The samples were resuspended in FACS-buffer and transferred into tubes. For the 

calibration of the flow cytometer non labeled cells were used. Routinely, 10,000 cells were measured 

per sample. 

3.3.6.2 Immunfluorescence miscroscopy 

Prior to the staining 1 * 105 cells were seeded on sterile round cover slips, which were placed in 

24 well plates (overnight at 37°C). If necessary the cells were biotinylated (3.6) and stimulated with 

the corresponding ligand or AP21967/AP20187. Cells were fixed with paraformaldehyd (PFA) 

(20’/37°C) and quenched with a 50 mM NH4Cl solution (30’/37°C). To permeabilize the cell 

membrane, the cells were incubated with a gelatin-saponin solution (15’/37°C). For the staining the 

primary antibody was added (60’/on ice) followed by the detection antibody or streptavidin (60’/on 

ice/dark). Between all steps the samples were washed either with sterile PBS or gelatin-saponin 

solution. The cover slips were sealed with mounting medium and placed on a microscope slide and 

subsequently dried (overnight/rt/dark). Cells were analyzed by confocal laser microscopy using a 

63x1.3 objective and the oil immersion technique. 

3.4 Generation of a monoclonal antibody against the acceptor-peptide (AP) 
Monoclonal antibodies were generated according to the Köhler-Milstein-protocol with modifications 

described elsewhere in (Peters & Baumgarten, 1992). 

3.4.1 Preparation of a KLH-peptide conjugate for immunization 

The AP-peptide sequence was taken from the biotin carboxyl carrier protein, a subunit of the 

acetyl-CoA carboxylase (Beckett et al., 1999). Furthermore, it has been determined that a minimal 

length of approx. 15 amino acids is crucial for a successful biotinylation reaction (Chen et al., 2005). 

For the immunization of mice an AP-peptide with an aminohexanoic acid (Ahx) spacer and an 

additional c-terminal cysteine residue for conjugation purposes was generated by JPT. Because of the 

short sequence of the peptide the immunogenicity is very low. To increase the immunogenicity the 

peptide was coupled to a pre activated form of the keyhole limpet hemocyanin (KLH-NHS). In 

combination with the c-terminal cysteine residue of the AP-peptide the KLH could easily coupled to 

the peptide without using a crosslinking reagent. 

We resuspended 2 mg of KLH and 2 mg of the AP-peptide into 200 µl of 50 mM phosphate-buffer. 

Both solutions were mixed and incubated for 2 hours at rt in an overhead-stirrer. To saturate 

remaining reactive amino- and SH-groups 50 µl of 2 % (w/v) cysteine-phosphate-buffer solution was 

added and incubated for an additional hour under same conditions. Afterwards the suspension was 

dialyzed against PBS overnight to remove uncoupled AP-peptide. The coupling efficiency was tested 

by ELISA (3.5.3). 
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Table 15: Time schedule for mice immunization 

Day Step KLH-AP [µg] 

1 Priming 50 
30 1st refreshment 50 
60 2nd refreshment 50 
90 3rd refreshment 50 

120 1st boost 50 
121 2nd boost 75 
122 3rd boost 100 

 

Prior to immunization of mice 350 µl of the AP-KLH 

peptide was mixed with 350 µl of the adjuvant 

TiterMax by sonication. The resulting water-oil 

emulsion was used for the immunization and 

guaranteed a slow release of the AP-KLH antigen to 

the organism. To increase the number of antibody 

producing B-cells and their specificity immunization 

with 50 µg AP-KLH peptide with adjuvant was 

injected at 3 monthly intervals into a skin fold. 3 days 

before cell-fusion the successive boosting injections 

were made with an increasing amount of antigen 

(Table 15) in the absence of adjuvant.  

3.4.2 Fusion of splenocytes with Ag8 cells and identification of positive hybridoma 

cell-clones 

To guarantee optimal growth-conditions for the freshly fused cells (hybridoma-cells) a few days 

before the cell-fusion mouse peritoneal-macrophages (feeder-cells) were seeded in 96-well plates. 

The macrophages produced both the cytokine IL-6 and several other growth factors. They also 

remove cell debris from non fused cells. For the feeder-cell preparation a Balb/c mouse was killed, 

the abdomen opened and flushed with PBS. The resulting cell-suspension was given into 400 ml of 

RPMI 1640 medium and distributed on 96 well plates. 

 

For the cell-fusion an immunized mice was killed and the abdomen opened. The spleen was removed 

and transferred into a petri-dish with 10 ml RPMI 1640 medium. The spleen was finely chopped and 

extensively flushed with medium. To allow bigger spleen-parts to settle down the suspension stood 

still for a couple of minutes. In the meantime Ag8 cells were counted and adjusted to 1 * 108 cells per 

20 ml medium. The spleen supernatant was given to the Ag8 cell suspension and centrifuged at rt 

and 200 x g for 5 minutes. The supernatant was removed and 100 % PEG-medium (w/v) and PBS was 

added (Table 16).  
Table 16: Pipetting scheme for PEG-medium and PBS during cell-fusion 

Step Volume Duration 

1   0.25 ml PEG-medium 10 seconds 
2   1.5 ml PEG-medium 1 minute 
3   1 ml PBS 30 seconds 
4   3 ml PBS 30 seconds 
5 16 ml PBS 1 minute 

 

Afterwards the suspension was centrifuged for 5 minutes at 300 x g and RT and allowed to stand still 

for 5 minutes. Then the supernatant was removed and the pellet resuspended in 450 ml RPMI 

1640 medium with 1x HAT supplemented. The HAT was required to inhibit the growth of non- and 

self-fused Ag8-cells. The cell suspension was evenly distributed on the previously prepared 

feeder-cell plates. After undesired fusion products died because of the HAT selection, the medium 

was supplemented with 1x HT to allow the cells to adapt to medium conditions in the absence of 

aminopterin. 

To identify wells with colonies which produce AP-specific antibodies ELISA assays were done. The 

plates were coated with AP-peptide and 100 µl of the supernatant of each well was directly applied 

for the detection. Colonies from positive wells were separated and again checked by ELISA. To ensure 
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homogenecity of the resulting hybridomas the positively identified cell-colonies were subcloned. To 

this end cells were aspirated, transferred into 6 ml medium and diluted in 3 dilution steps to obtain a 

wiede range of concentrations. Cells were seeded onto feeder-plates and the antibody of single 

grown colonies was again checked for its antigen-specificity. If necessary the subcloning step was 

repeated several fold. Positive cell-clones were cultivated in flasks with IL-6 medium (0.1 ng/ml) and 

the antibody-containing supernatant was used for further experiments. 

3.5 Protein analysis 

3.5.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

By SDS-PAGE charged proteins are separated according to their molecular weight. The separation-gel 

was mixed according to Table 17 and poured between two glass-plates separated by spacers and 

fixed with clamps. Acrylamide was covered with a thin layer of isopropanol. After polymerization the 

isopropanol was decanted, a stacking-gel was poured on top and a comb was inserted. After the 

polymerization of the stacking gel the whole gel was attached to an electrophoresis chamber and 

filled with 1x Laemmli buffer. The samples were incubated (5’/95°C) with treatment buffer and were 

loaded together with a prestained molecular weight marker onto the gel using a glass syringe. 

Electrophoresis was performed at 70 V for 15 minutes and was increased to 120 V and a constant 

current of 300 mA. To visualize the separated proteins the gels were either stained with coomassie 

dye or further processed by immunoblotting (3.5.2). 

 

3.5.2 Immunoblot (Western Blotting) 

Proteins previously separated by SDS gel electrophoresis (3.5.1) were transferred to nitrocellulose 

membranes where they are accessible for detecting antibodies. Four filter-papers and the 

nitrocellulose-membrane were soaked in semi-dry transfer buffer. Two filter-papers were placed on 

the anode and the SDS gel was placed on top followed by the nitrocellulose membrane and two 

additional filter-papers. The stack was turned on the back thereby orientating the gel towards the 

anode. Air bubbles were removed by rolling a pipette over the stack. The protein transfer was 

performed for 60 minutes at 200 mA and 25 V, at maximum. 

Free binding sites on the nitrocellulose membrane were blocked (60’/rt) with 1-5 % BSA-TBST and 

immunostaining was performed by incubation with primary antibodies overnight at 4°C, followed by 

secondary detecting antibodies in 0.5 % BSA-TBST for at least 60 minutes. In between, the membrane 

was extensively washed 3-times with TBST. Antigens of interest were detected by adding ECL 

reagents (4 ml solution A + 0.4 ml solution B + 1.2 µl H2O2, 35 %) and the result was documented with 

a LCD camera. 

 

 

Table 17: 10 % SDS gel 

Separation gel Reagent Stacking gel 

10.0 ml Acryl bisacrylamide solution 1.3 ml 
7.5 ml Separation gel buffer  

 Stacking gel buffer 2.5 ml 
0.3 ml 10 % SDS (w/v) 0.1 ml 

12.0 ml ddH2O 6.1 ml 
5.0 mg Ammonium persulfate 2.5 mg 

20.0 µl TEMED 10.0 µl 
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For re-probing of immunoblots membranes were incubated (30’/rt) with a HRP-blocking solution 

which inactivated the enzymatic activity of HRP. Alternatively, antibodies were removed from the 

nitrocellulose membrane by incubation (30’/56°C/shaking) with stripping buffer. In both cases 

membranes were afterwards washed extensively with TBST followed by 1-5 % BSA-TBST blockade. 

3.5.3 Enzyme-linked immunoabsorbent assay (ELISA) 

ELISA assays were used to quantify various proteins of interest. For an indirect ELISA the antigen was 

used for coating (1 – 5 µg/µl) and detected by antibody-containing solutions (e.g. hybridoma 

supernatans). For a direct ELISA a capture antibody was used for coating and a solution containing 

the corresponding antigen was added afterwards. In both cases the supernatant was discarded and 

exchanged with a HRP coupled reporter-antibody (or conjugate) (1 hour/rt/wet chamber). Between 

all steps the plate was thoroughly washed with PBST. For the evaluation the HRP substrate ABTS with 

0.44 % 3.5 % H2O2 was added. The optical density of the supernatant was measured at 405 and 

490 nm wavelength in a plate photometer. 

3.5.4 Purification of membrane fractions from whole cell extracts using 

ultracentrifugation 

For membrane purification cell lysates were ultracentrifuged on a sucrose gradient. 

Prior to the purification cells were seeded and incubated on cell culture plates till they reached 

confluency. Cells were treated with AP21967 or ligand and the reaction was stopped by transferring 

culture plates on ice. Membrane buffer was added and the cells scraped from the culture plate. The 

cells were dounce homogenized and sonicated (20’’/50 % amplitude). The sucrose gradient (50 %; 

35 %; 20 %) was prepared in centrifugation tubes and cell lysates were loaded on top. Samples were 

centrifuged at 217000 x g (2 hours/4°C). The membrane phase (50 %/35 % interphase) was aspirated 

and centrifuged again at 248000 x g (15’/4°C). The pellet was resuspended in 50 µl of lysis buffer and 

probed by immunoblotting (3.5.2). 

3.5.5 Expression and purification of biotin ligase A from E. coli BL21 (DE3)  

E.coli BL21 (DE3) bacteria were transformed with plasmid BirA-pET 21a (3.2.1.6) which was kindly 

provided by Alice Ting (Massachusetts Institute of Technology, Cambridge, USA). Single colonies were 

picked and transferred into LB-medium with ampicillin (16 hours/37°C/200 rpm). The starter culture 

was used to inoculate the culture for protein expression. OD600nm was measured to determine the 

optimal time point to induce the protein expression with 1 M IPTG (3 hours/25°C/200 rpm). The 

samples were centrifuged, the supernatant decanted and stored overnight at -80°C. The pellets were 

resuspended in NiNTA binding buffer and lysed by sonication (60’’). In the meantime NiNTA agarose 

was washed with binding buffer and loaded with the supernatant of the lysed cells (60’/4°C/stirring). 

The mixture was poured into a PD10 column, which was emptied by gravity flow. The agarose was 

washed with NiNTA washing buffer and eluted with elution buffer. The flow through was collected 

separately. Samples were taken and probed by SDS gel electrophoresis which was subsequently dyed 

with coomassie blue to check the purification efficiency. In parallel, the OD280nm of the eluate 

fractions was measured and fractions with a high protein yield were pooled and dialyzed against TRIS 

buffer with 30 mM potassium glutamate. The OD280nm of the dialyzed samples was measured and was 

used for calculation of the BirA concentration. 
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3.6 Enzymatic and biochemical biotinylation of the acceptor peptide (AP) 
The enzyme biotin ligase A (BirA) catalyzes a reaction which fuses biotin to a lysine residue of the 

AP-peptide. This reaction can be used to tag a specific protein-population (Howarth & Ting, 2009). 

For the biotinylation 2 * 106 cells were mixed with a 3 µM BirA solution (20 µl biomix A and B 

adjusted to 200 µl with TRIS-potassiumglutamate buffer) (30’/30°C/350 rpm). The biotinylation 

reaction can be carried out with adherent and detached cells. After biotinylation the cells were 

stained with streptavidin or used for other assays (e.g. internalization assay (3.3.5.4) or 

immunofluorescence (3.3.6.2)). 

Besides the enzymatic biotinylation a chemical biotinylation with biotin-XNHS was also performed. 

The XNHS-group reacted with all surface-expressed proteins. To this end a 0.1 % biotin-XNHS solution 

was pipetted to cell suspension (5’/rt) in PBS (pH 8.0). 
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Table 18: MCF and EC50/Emax values of receptor-expressing RBL-cells 
RBL cells were transfected with the plasmid pEF1/Myc-HisA –CXCR4, -CCR5 or 

CXCR4-CCR5CT using electroporation and stable cell lines were generated (CXCR4 #4/13; 

CCR5 #5/11; CXCR4-CCR5CT #7/15). Receptor expression levels were determined by flow 

using anti-receptor antibodies or YC8 anti-AP antibodies (60’/4°C/dark). Unstained cells 

were used for the calibration. The MCF–value was calculated from three independent 

measurements. Functional integrity of the transfected receptors was checked by NAGA 

release after stimulation with 250 nM ligand (CCL5; CXCL12). For the calculation of the 

EC50 and Emax values standard-curves with triton lysed cells were created. EC50 and Emax 

represent the mean-value of 3 independent experiments. 

RBL cell line 
MCF NAGA-release 

anti CCR5 anti CXCR4 anti AP EC50 [nM] Emax [%] 

CCR5 1310 n.a. 670 32 20 

CXCR4 na. 4550 735 2 17 

CXCR4-CCR5CT n.a. 6433 344 29 20 

WT 9 26 7 n.a. n.a. 

 

4 Results 

4.1 Biotin Ligase A-catalyzed biotinylation of an acceptor peptide – a new 

tool for internalization and recycling studies 
Classical internalization studies are most often based on receptor-specific antibodies which are used 

to measure receptor depletion from the cell surface by flow cytometry or immunofluorescence. This 

methodological approach is limited since it does not allow to discriminate between receptors which 

still remain on the cell-surface after ligand stimulation and those receptors which either recycle back 

from internal stores or translocate to the cell surface during receptor biogenesis. Another 

disadvantage of anti-receptor antibody-based assays is the lack of comparability of the results when 

internalization/recycling of two or more receptors is being analyzed. Both limitations can be 

overcome using AP-tagged receptors and anti-AP antibodies. With the specific biotinylation of the AP 

via BirA biotin ligase a whole receptor population at the cell surface can be specifically tagged for 

further internalization/recycling studies and analyzed separate from internal receptor stores. 

Monoclonal anti-AP antibodies provide the possibility to compare the results of different receptors 

and allow to discriminate between biotinylated and non-biotinylated membrane proteins. 

4.1.1 Generation of RBL cell-lines which stably express CXCR4-, CCR5- and CXCR4-CCR5 

chimeric-receptors with an N-terminal acceptor peptide  

To investigate the internalization and recycling processes of distinct receptor populations RBL-cells 

were stably tranfected with AP-tagged versions of CXCR4, CCR5 and CXCR4-CCR5CT. To this end the 

DNA was ligated into the expression vector pEF1/Myc-HisA and transfected into cells by 

electroporation. Transfected cells were selected with geneticin. Prior to flow cytometry the cells 

were stained with anti-receptor antibodies to check the expression levels of the receptors. The cell 

lines with the highest mean channel of fluorescence (MCF) were subcloned at least once in order to 

ensure homogenous cell populations. Expression of the AP-tag was tested separately with an anti-AP 

antibody. The MCF values in Table 18 demonstrate that both the receptor and the AP-TAG are 

expressed in a sufficient manner. To exclude clonal artefacts two cell lines with high receptor 

expression were used 

for all subsequent 

experiments (data not 

shown). 

The functional 

integrity of the AP-

tagged receptors was 

tested with 

NAGA-release assays 

after ligand 

stimulation. RBL-cells 

are myeloid cells 

which release in a 

G-protein-dependent 

reaction prestored 

NAGA. The calculated 
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EC50-values are within the range of 2 to 32 nM which corresponds to values obtained with 

non-modified receptors. This result indicates that the N-terminal AP-tag does not interfere with 

ligand binding and receptor signaling in all these cell lines. 

4.1.2 Generation of an AP-tag-specific antibody which enables detection of  biotinylated 

or non-biotinylated forms 

Apart from the biotin-streptavidin detection system a universal method for the detection of 

biotinylated receptors is desirable. Monoclonal in contrast to polyclonal antibody preparations offer 

the advantage of defined antigen specificity and unlimited supply. 

For the generation of monoclonal anti-AP antibodies BALB/c mice were immunized with an emulsion 

of an AP-KLH peptide and the adjuvant TiterMax. To obtain high specific anti-AP antibodies the mice 

were immunized every four weeks with 50 µg of AP-KLH over a period of five months. To immortalize 

the antibody producing B-lymphocytes the cells were fused with the myeloma cell-line Ag8. For the 

subsequent cell selection the medium was supplemented with 1x hypoxanthine aminopterin 

thymidine (HAT) to eliminate non-fused Ag8 cells. To detect hybridomas which produce anti-AP 

antibodies the supernatant of the different cell clones were tested by ELISA. Positive clones were 

subcloned and again tested for binding to the AP-peptide using flow cytometry and 

immunofluorescence microscopy. The isotype of resulting monoclonal antibodies from hybridoma 

supernatants was determined by ELISA. Three hybridoma clones (E7A: IgG1/κ; R8G IgG1/κ; YC8 

IgG2a/κ) were selected for mass production. To this end hybridoma clones were expanded and 

cultivated in cell culture flasks. The supernatants were periodically harvested and stored at -20°C. 

4.1.2.1 Mutual interference of ligand and YC8 antibody-binding to AP-tagged receptors 

We tested whether ligand-binding to the receptor interferes with YC8 binding to the AP-tagged 

receptor. To this end, cells were stimulated with ligand (10’/on ice) prior to cell staining. In order to 

confirm the epitope specificity of YC8 the antibody was pre-absorbed with an excess (1 µg/µl) of 

AP-peptide (30’/rt) before cell staining. 

The results as obtained by flow cytometry are shown in Figure 7. Preabsorption of YC8 with 

AP-peptide fully abrogated staining of the cells (top panel, violet graph). In contrast, pretreatment 

with AP-peptide did not affect the binding of anti-receptor antibodies (bottom panel, orange graph). 

Prior ligand stimulation had neither an effect on the binding of YC8 nor of anti-receptor antibodies 

(yellow and green graph). These results show that YC8 specifically binds an epitope on the 

AP-peptide and ligand binding to the receptor does not interfere antibody binding. Therefore, YC8 

staining may be used for the faithful detection of membrane-bound or intracellular receptors in their 

native or ligand-activated state.  

http://en.wikipedia.org/wiki/Aminopterin
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4.1.2.2 Binding of YC8 to a synthetic acceptor peptide and its modulation by peptide 

biotinylation and streptavidin binding 

The binding of YC8 antibodies to AP-tagged receptors may not only be impaired by ligand binding 

(4.1.2.1), but also by modifications of the AP tag through biotin in combination with streptavidin. 

Elimination of YC8 binding after streptavidin binding may allow to discriminate between previously 

biotinylated and newly synthesized receptors. To check if the binding of biotin in combination with 

streptavidin interferes with YC8 binding, ELISA assays with synthetic non-/biotinylated AP-peptide 

was performed. Prior to the addition of hybridoma supernatant the peptide was incubated in the 

presence of streptavidin. Figure 8 shows that biotinylated AP-peptide, which was treated with 

streptavidin was bound by anti-AP antibodies as efficient as compared to peptides which were not 

pretreated with streptavidin. Binding affinity of anti-AP antibodies was not affected by peptide 

biotinylation alone, as well. The potential of streptavidin to prevent binding to the biotinylated form 

of the AP-peptide is evident from the reduced signal of streptavidin-HRP after streptavidin 

pretreatment. In summary the results show that antibody binding to the AP tag is not affected by 

biotinylation or streptavidin binding. Overall, YC8 was found to bind to the AP tag with highest 

affinity among all anti-AP antibodies tested and was therefore chosen in all subsequent experiments. 

Figure 7: Binding of the YC8 anti-AP antibodies and anti-receptor antibodies to CXCR4/CCR5 after pre-
incubation with AP-peptide or ligand (flow cytometry) 
RBL-CXCR4 (right) or –CCR5 (left) cells were stained (60’/4°C) with 10 µg YC8 (upper panels) or 1.5 µg 

PE-labeled anti-receptor antibody (anti CXCR4 12G5, anti-CCR5 T21/8) (lower panels) after preabsorbation 

of antibodies with 15 µg AP-peptide (30 ‘/rt) or pretreatment of receptor-bearing cells with 50 nM ligand 

(CCL5/CXCL12) (10’/4°C). Receptor-bound YC8 was detected with FITC-labeled anti-mouse IgG antibodies. 

RBL-2H3 cells served as negative control. Per sample 10.000 cells were measured. The diagrams show the 

mean channel of fluorescence in relation to the cell count. 



4 Results 

48 

 

4.1.3 Biotin ligase A – a tool for specific biotinylation-of membrane proteins 

A large variety of different labeling methods for membrane proteins have been devised, but all those 

methods have certain limitations. These limitations result either from the large size of the labeling 

protein which may alter structural and functional properties of the labeled protein (Marks et al., 

2004) or the tendency to produce a high signal background (Marks & Nolan, 2006). 

To avoid these potential problems we used the enzyme biotin-ligase A, from E.coli to specifically 

biotinylate a lysine residue in a 15 amino acid long acceptor peptide (Chen et al., 2005) which was 

added to the CXCR4/CCR5 aminoterminus. 

4.1.3.1 Purification of biotin ligase from E. coli lysates by nickel chelate chromatography  

We purified BirA biotin ligase from E.coli BL21 (DE3) which were transformed with BirA-pET 21a. 

Transformed E.coli were cultivated in a liquid LB culture and the BirA expression was induced with 

0.1 mM IPTG during the linear growth phase of the bacteria. BirA was purified from cell lysates using 

a NiNTA agarose column and increasing concentrations of imidazole were used for washing and 

elution of the protein. The success of BirA purification was monitored by a Coomassie-stained SDS gel 

(Figure 9). BirA runs at the expected MW of 36 kDa (lane E1 – E3). The overall purity of the eluted 

BirA biotin ligase preparation regularly exceeded 95 %. 

 

 

Figure 8: Binding of anti-AP antibodies to the AP peptide and its modulation by 
peptide biotinylation and streptavidin binding 
5 µg/ml AP- or AP-biotin-peptide and an AP-unrelated peptide was directly coated 

to wells of an ELISA plate. AP-biotin peptide was pretreated with 0 or 50 µg/ml 

streptavidin (5’/rt). Supernatant of hybridoma cells was added (60’/rt). HRP 

labeled anti-mouse IgG antibody or streptavidin-HRP was used for detection. 

Results were obtained photometrically. Bars represent the ΔOD405nm/490nm from 

two independent experiments (mean +/- s.d.). 
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4.1.3.2 Time and temperature-dependent biotinylation of a synthetic AP by BirA biotin 

ligase 

To determine optimal reaction conditions and in order to ensure constant quality of different BirA 

preparations we established an in-vitro assay for the biotinylation of synthetic AP peptide by purified 

BirA in an ELISA format. This assay allowed detailed kinetic and temperature analyses of the 

biotinylation reaction. AP peptide was coated to wells of a 96-well-plate and biotinylated with 3 µM 

BirA (3.6) for different time intervals and temperatures. The binding of streptavidin-HRP was 

measured by adding a chromogenic substrate and substrate turnover was determined at OD405nM 

(Figure 10). The most efficient biotinylation was observed by incubation at 37°C or 25°C and this 

reaction was completed after 30 minutes. The reaction proceeds much slower and less efficient at 

4°C. In summary, the results indicate that optimal biotinylation can be achieved at 25°C or 37°C after 

30 minutes of incubation. 

 

 

 

 

 

 

 

 

Figure 9: Affinity purification of biotin ligase A from E.coli lysates with NiNTA-agarose 
E. coli BL21 (DE3) were transformed with 250 ng of the plasmid BirA-pET 21a. Bacteria from a single colony 

were expanded and transferred into liquid LB medium. The BirA expression was induced with 0.1 mM IPTG 

in the linear growth phase (3 hours/25°C/200 rpm). For lysis bacteria were harvested, frozen 

(overnight/-80°C) and sonicated (60``/50 % amplitude). Purification of BirA was achieved using NiNTA 

agarose and increasing concentrations of imidazole for washing (20 mM) and elution (250 mM). Samples 

were loaded onto a SDS gel which was stained with Coomassie blue. (M = marker; UC = uninduced control; 

IC = IPTG-induced control; L = lysate; FT = flow through; W1 = wash step 1; E1-E4 = elution step 1 to 4) 
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4.1.4 Constitutive internalization of CXCR4 ,CCR5  and chimeric receptors and it’s 

modulation by receptor agonists and antagonists 

Chemokine receptors undergo a constant ligand-independent or constitutive internalization. To 

measure the kinetics of constitutive receptor internalization cells were biotinylated (3.6) and 

incubated in BM medium in the absence of any stimulants for up to four hours at 37°C. Cells were 

then stained with YC8 anti-AP (dashed lines) or streptavidin (straight lines) and analyzed by flow 

cytometry (Figure 11). The percentage of receptor expression on the cell surface as compared to cells 

at time point 0 was calculated. Using linear regression analysis the depletion of biotinylated or of YC8 

(anti-AP) binding sites of receptors from the cell surface per hour was calculated. Biotinylated CXCR4 

receptors in their wildtype confirmation and as CXCR4-CCR5CT chimeras underwent spontaneous 

internalization from the cell surface with exactly the same kinetics (12.1 % per hour), and CCR5 

internalization proceeded only slightly faster (13.7 % per hour). In contrast YC8 anti-AP staining did 

not reveal significant alterations in cell surface expression of any of these receptors. 

In summary constitutive internalization of CXCR4 and CCR5 was described in quantitative terms for 

the first time in-vivo using biotinylated receptors. Since all three receptors were internalized with 

identical kinetics, this may suggest passive receptor uptake by membrane flow rather than a 

receptor-driven mechanism.  
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Figure 10: Time and temperature dependent biotinylation of the AP peptide by 
BirA 
AP-peptide (8 µg/ml) was coated to wells of a 96-well microtiter plate and 

biotinylated by 3 µM BirA solution for 0 – 40 minutes at 10°C, 25°C or 37°C. 

Reactions were stopped by washing and transfer on ice and streptavidin-HRP was 

added. After incubation with a chromogenic substrate the absorbance was 

measured photometrically at OD405nm. Results represent mean +/- s.d. of at least 

three indendent experiments. 
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Figure 11: Constitutive receptor internalization in the absence of receptor agonists 
Cells were biotinylated and incubated in BM medium up to four hours at 37°C. Cells were stained with YC8 anti-AP (dashed 

lines) or streptavidin (straight lines) and analyzed by flow cytometry. Results represent the mean value +/- s.d. of three 

independent experiments. 

4.1.5 Modulation of CCR5 internalization by receptor ant-/agonists 

Apart from the classical CCR5 agonist CCL5 a modified version of this ligand (Met-CCL5) with an 

additional aminoterminal methionine was reported to act as a neutral antagonist, and the synthetic 

CCR5 antagonist TAK779 even exerts inverse agonism. 

To determine the effect of these three CCR5 ligands which together represent a wide spectrum of 

receptor ant-/agonism on CCR5 cell surface expression we employed the new internalization method 

on CCR5-expressing cells which were incubated with TAK779 (circle), Met-CCL5 (triangle down) and 

CCL5 (triangle up) up to four hours at 37°C (Figure 12). Untreated cells served as a control (squares). 

Treatment with TAK779 significantly retarded internalization (10.9 % per hour) as compared to 

untreated cells (13.7 % per hour) while Met-CCL5 treatment enhanced receptor internalization 

(15.6 % per hour). This indicated that Met-CCL5 acts as a partial antagonist for CCR5 with regard to 

receptor internalization. Compared to CCL5-induced receptor internalization (9.3 % per minute 

during the initial phase of ligand-driven CCR5 internalization) this value still represents a slow form of 

CCR5 internalization. Using the more sensitive method for the qualitative analysis of receptor 

internalization we could show, that an inverse agonist (TAK779) further slows down receptor uptake 

from the cell surface as compared to constitutive internalization in the absence of ligand. Met-CCL5 

turned out to exhibit partial agonistic activity with regard to receptor internalization. 
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4.1.6 Ligand-induced internalization and receptor recycling 

Detailed quantification of ligand-induced receptor internalization and recycling was done by flow 

cytometry using biotinylated and YC8 anti-AP stained cells. To exclude the influence of rapid 

re-internalization during recycling phase cells were additionally treated with receptor antagonist. 

Distribution of internalized and recycled receptors was determined by immunofluorescence 

microscopy.  

4.1.6.1 Quantification of ligand-driven internalization and recycling of biotinylated and 

anti-AP stained receptors 

To compare the classical antibody-based and the newly established biotin-based assay during ligand 

driven receptor internalization and subsequent recycling cells were biotinylated with BirA and 

incubated in ligand containing BM medium for 30 minutes at 37°C degrees. Ligand was then removed 

by acid wash and cells were transferred into new BM medium to allow receptors to reaccumulate at 

the cell surface during the recycling phase. All samples were stained with YC8 anti-AP or streptavidin 

in parallel and analyzed by flow cytometry. The percentage of receptors remaining on the cell surface 

was calculated on the basis of untreated cells. The internalization and recycling of three different 

chemokine receptors in their biotinylated or non-biotinylated forms was analyzed (Figure 13). 

CCR5 receptors undergo rapid CCL5-induced internalization (approx. 40 %) within the first five 

minutes after ligand stimulation. CXCL12-stimulated CXCR4 is internalized as efficient as 

agonist-activated CCR5, but with slower kinetics. During the recycling phase approx. 20 % of the 

internalized CCR5 return to the cell surface, and approx. 30 % of internalized CXCR4 are recycled, as 

determined by YC8 anti-AP staining. 

Staining of biotinylated receptors with streptavidin gives the same results as obtained by YC8 anti-AP 

staining during the internalization phase. In contrast, whereas the classical antibody-based method 

indicates significant CXCR4 and CCR5 recycling back to the cell surface after ligand removal, 

Figure 12: Influence of receptor ant-/agonists on the consitutive internalization of CCR5 
Cells were biotinylated and incubated in BM medium with or without ant-/agonists (CCL5 0.05 µM; Met-CCL5 0.15 

µM; TAK779 3 µM) up to four hours at 37°C. Cells were stained with streptavidin and analyzed by flow cytometry. 

Results represent the mean value +/- s.d. of three independent experiments. 
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biotinylated receptors do not reaccumulate at the cell surface. Although this result also applies to 

CXCR4-CCR5CT receptors the receptor internalization is significantly reduced (approx. 20 %) in 

comparison to CXCR4 and CCR5 receptors. 

Results obtained by the classical antibody-based and the biotin-based methods coincide during the 

ligand-induced internalization phase, thus, validating the new method. However, in contrast to AP 

staining no significant recycling of biotinylated receptors was observed in these experiments. This 

discrepancy could be explained by specific intracellular retention of internalized/biotinylated 

receptors or rapid re-internalization of recycled receptors. At the same time the increase of the 

anti-AP YC8 signal may be explained by translocation of newly synthesized receptors from internal 

stores to the plasma membrane. 

 

 
 

 

 

 

Figure 13: Ligand-induced internalization and recycling of CXCR4, CCR5 and CXCR4-CCR5CT 
Cells were biotinylated and incubated in BM medium with 125 nM ligand (CCL5/CXCL12) for 30 minutes at 37°C. Ligand was 

removed by acid wash and the cells transferred into fresh BM medium during the subsequent recycling phase (30’/37°C). 

Cells were stained with YC8 (dashed line) or streptavidin (straight line) and analyzed by flow cytometry. Each curve shows 

the mean percentage (+/- s.d.) of expressed receptor on the cell surface normalized to the MCF value of untreated cells and 

is representative for three independent experiments. 



4 Results 

54 

4.1.6.2 Effects of the receptor antagonists TAK779 and AMD3100 on the recycling-rate 

after ligand-induced receptor-internalization 

To test the hypothesis that the lack of receptor recycling after ligand-induced internalization (4.1.6.1) 

was due to instant re-internalization of ligand-receptor complexes we repeated the experiments in a 

modified manner by adding high affinity receptor antagonists during the recycling phase. Excess of 

antagonists dissociates ligands from their receptors. Biotinylated cells were stimulated with the 

corresponding ligand (30’/37°C) followed by acid wash with EM medium. Cells were transferred into 

fresh BM medium in the presence or absence of antagonists (30 µM AMD3100, 3 µM TAK779) 

(30’/37°C), stained with YC8 (grey bars) or streptavidin (black bars) and analyzed by flow cytometry 

(Figure 14). The percentage of receptor recycling (% of Δ (MCF0’ – MCF30’)) is shown. 

In the presence of CCR5 antagonist TAK779 the recycling rate of biotinylated CCR5 receptors is 

significantly enhanced compared to untreated CCR5 receptors. This result was confirmed by YC8 

anti-AP staining, which also showed an increased recycling rate of TAK779-treated CCR5 receptors 

(black and grey bars left). This result suggests that agonist-activated CCR5 rapidly re-internalize once 

they recycle back to the surface, unless the ligand dissociates in the presence of an excess of TAK779. 

The same effect was observed with CXCR4 (black and grey bars, right), although to a lower degree. 

Experiments where recycling of biotinylated receptors was monitored in the presence of antagonists 

revealed a significant difference in the recycling characteristics of CCR5 vs. CXCR4 (black bars, left vs. 

right): whereas CCR5 significantly recycled back to the cell surface CXCR4 is retained within the cell. 

Differences in the apparent recycling of biotinylated (black bars) and anti-AP antibody detected 

receptors (grey bars) is explained at least in part by translocation of newly synthesized receptors 

from intracellular stores to the plasma membrane during the recycling phase of the experiment. 

These results show that the biotin/streptavidin method is well suited for the quantitative analysis of 

the recycling rate of different transmembrane proteins as exemplified by CXCR4 and CCR5. 
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Figure 14: Recycling of CXCR4- and CCR5-receptors in the presence of receptor 
antagonists 
RBL-CXCR4 (right) or –CCR5 cells (left) were biotinylated and stimulated with the 

corresponding ligand (CCL5/CXCL12) for 30 minutes at 37°C. Ligand was removed by 

acid wash. Cells were transferred into fresh medium containing 0 or 30 µM AMD3100 

or 3 µM TAK779 for 30 minutes at 37°C. Cells were analyzed by flow cytometry after 

staining with YC8 (grey) or streptavidin (black) (60’/4°C/dark). Receptor recycling was 

calculated as percentage of the difference between cell surface expression of the 

receptor at time points 0 and 30 minutes Results represent mean +/- s.d. of at least 

three independent experiments. n.s., not significant; **, p < 0.001). 

 

4.1.6.3 Intracellular localization of biotinylated and anti-AP stained CCR5 during receptor 

internalization and recycling 

To visualize the intracellular distribution of CCR5 after ligand-induced internalization and recycling 

(4.1.6.1) CCR5-expressing RBL cells were seeded on glass cover slips and biotinylated (3.6). Cells were 

stimulated with 125 nM CCL5 which was removed after 30 minutes by acid wash. After further 

30 minutes incubation in the presence of 3 µM TAK779 cells were fixed with PFA and permeabilized 

with saponin. CCR5 receptors were stained with YC8 (green) with or without pre incubation with 

AP-peptide or streptavidin-Alexa 647 (red) (Figure 15). The samples were analyzed by laser confocal 

microscopy with two different excitation wavelengths. The resulting overlays are shown in the 

bottom lane of Figure 15. 

Unstimulated cells (Figure 15 left panels) show a ring like fluorescence of biotinylated and 

non-biotinylated receptors at the cell surface. Preincubation of YC8 with an excess of AP peptide 

eliminates all signals, thus proving specificity of this staining (right panel). The overlay confirms that 

the signal for biotinylated and non-biotinylated receptors fully overlap except for the YC8-stained 

receptors within cytoplasmic vesicles. After 30 minutes of CCL5 stimulation biotinylated and anti-AP 

detected CCR5 disappear from the cell surface and accumulate in endosomal vesicles. Biotinylated 

receptors (red) which are also stained by anti-AP YC8 antibodies (green) are specifically concentrated 
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Figure 15: Double immunofluoresence staining of RBL-CCR5 cells  during the internalization and 
recycling process 
CCR5 expressing cells were seeded on lysine-coated glass cover slips and receptors were 

biotinylated. 125 nm CCL5 was used for stimulation (30’/37°C) and then removed by acid wash 

with EM medium. Cells were transferred into fresh BM medium with 3 µM TAK779 during the 

recycling phase (30’/37°C). Cells were fixed with 3 % PFA (15’/37°C) and permeabilized with 0.1 % 

saponin (15’/37°C). 5 µg/ml YC8 antibody (top lane) (with or without preincubation with 2mg /ml 

of the AP-peptide) and streptavidin-Alexa647 (middle lane) (2µg/ml) was used for staining (60’/on 

ice/dark). Samples were fixed with mounting medium and analyzed by confocal laser scanning 

microscopy. Scale bar 10 µM 

in the perinuclear region, whereas additional receptor-containing vesicles are detected by anti-AP 

staining with a more dispersed distribution throughout the cytoplasm. 30 minutes after acid wash 

(biotinylated) receptors are no longer detected in the perinuclear region but, to some extent, recycle 

back to the cell surface. 

Immunofluorescence confirms the results as obtained by flow cytometry (4.1.6.1) and further 

demonstrates that in-vivo receptor biotinylation is advantageous when distinct receptor populations 

are studied during agonist-induced internalization and recycling. 
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4.2 Chemical-induced receptor homodimerization and β-Arrestin2 

translocation in the absence of ligand binding 
To establish an experimental system which allows ligand-independent translocation of β-arrestin 2 to 

CXCR4 or CCR5 we fused the FKBP12 domain (DmrA) to the C-terminus of both receptors. The DNA 

sequence of this domain was provided by the vector pHet-Nuc1 and transferred to the receptor-DNA 

by ligation with the vector. In parallel the C-terminus of β-arrestin 2 was modified with the FRB 

domain (DmrC) by ligation with the vector pHet1. For expression in HEK293 cells the receptor-DmrA 

DNA was subcloned in the vector pEF1/Myc-His A, whereas pHet1 containing β-Arrestin 2 was 

directly used for transfection. The creation of stable cell lines and the establishment of the 

AP21976-induced system were done in collaboration with S. Henze (Henze, 2013). 

4.2.1 Cloning strategy for the modification of CXCR4-, CCR5-receptor and β-arrestin2 

with Dmr-domains 

To provide cDNA of the Dmr domains for the modification of the receptor (CXCR4, CCR5) or 

β-arrestin 2 cDNA the DNA was ligated into the vector system pHet1 (DmrC) or pHet-Nuc1 (DmrA). 

pHet1 could be used directly for cells transfection, whereas pHet1-Nuc1 contained a nucleus location 

sequence. To allow a cytoplasmatic expression of the β-arrestin 2-DmrC peptide the cDNA was 

ligated with the mammalian expression vector pEF1/Myc His A which also provided a geneticin 

resistance cassette (Figure 16). DNA was sequenced to exclude potential mismatches. Finally the 

plasmids were used for the generation of stable cell lines which either express receptor-DmrA alone 

or in combination with β-arrestin 2-DmrC. 



4 Results 

58 

Figure 16: Cloning strategy for the generation of β-arrestin 2 and CXCR4/CCR5 DmrA/C fusion constructs 
β-Arrestin 2 and receptor-DNA was amplified by PCR using primers which introduces additional restriction sites for the 

digestion with XbaI and SpeI. The vectors pHet1 and pHet-Nuc1 were single digested with XbaI and dephosphorylated 

using antartic phosphatase. The ligation between the DNA was catalyzed by T4 ligase. For the subcloning of the 

receptor-DmrA DNA into pEF1/Myc His A the pHET-Nuc1 plasmid was digested using KpnI/NotI respectively XbaI/NotI. 

pEF1/Myc His A was digested using identical enzymes. For the transfection into HEK293 cells pHet1 was linearized with 

MluI, pEF1/Myc HisA with ScaI. Selection of positive transfectants was enabled by the geneticin resistance, which was 

provided by pEF1/Myc His A. The expression of the modified proteins was controlled either by a CMV- (pHet1) or an 

EF1-α-promotor (pEF1/Myc His A). 

  

4.2.2 Stable co-expression of DmrA-modified chemokine-receptors and 

β-arrestin2-DmrC in HEK293 cells 

HEK293 cells were transfected with either a combination of CXCR4- or CCR5-DmrA and 

β-Arrestin 2 -DmrC or receptor-DmrA alone in order to obtain a cell population with stable 

expression of the transfected proteins. The pEF1/Myc His A plasmid containing receptor-DmrA or 

pHet1 containing β-arrestin 2-DmrC were linearized (4.2.1) and transfected into HEK293 cells using 

the calcium phosphate precipitation method (3.3.4.2). Positively transfected cells were selected by 

DMEM medium supplemented with geneticin. The receptor-DmrA expression level on the 

transfectants was tested by flow cytometry with T21/8 and immunoblotting using R22 (both 

anti-CCR5 antibodies). To check for correct modification of β-arrestin 2 with a C-terminal DmrC 

domain, HEK293 cells were transiently transfected with β-arrestin 2-DmrC and the cell lysates were 

probed by immunoblotting with anti β-Arrestin 1/2 antibodies. Overall 2 cell clones for each cell line 

were selected from approx. 200 initial clones. 
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4.2.2.1 Surface expression of DmrA-modified CXCR4- and CCR5-receptorsom HEK293 

transfectants 

Figure 17 shows the fluorescence distribution of cells transfected with receptor-DmrA DNA 

constructs with or without β-2rrestin 2-DmrC DNA constructs together with a negative control. Cells 

were stained with anti.receptor-antibodies for flow cytometry. The figure shows that the MCF of the 

Rec-DmrA cell lines (CXCR4 773; CCR5 1986) and Rec-DmrA/ βArr-DmrC (CXCR4 285; CCR5 770) was 

significantly higher than in HEK293 WT cells (anti-CXCR4 22.9; anti-CCR5 10.5). During experimental 

series the receptor expression levels were regularly controlled to ensure that indentical experimental 

conditions were maintained. 

 

4.2.2.2 Structural integrity of a Dmr-A modified CCR5-receptors 

The structural integrity of the DmrA modified CCR5 fusion protein was tested by analyzing the 

molecular weight shift as compared to native CCR5 by immunoblotting (Figure 18). Non-transfected 

RBL- and HEK293-cells were used as controls. The non-modified receptor expressed by RBL cells was 

detected by R22 anti-CCR5 antibodies in form of two prominent bands at approx. 40 kDa. The 

modified receptor shows a distinct band at approx. 50 kDa. The molecular weight shift of 10 kDa 

corresponds to the size of the 11 kDa DmrA domain (Chen et al., 1995). 

Figure 17: Expression of CXCR4- or CCR5-DmrA on transfected HEK293 cell lines 
HEK293 CXCR4-DmrA cells with or without β-Arrestin 2-DmrC (left panel) or HEK293 CCR5-DmrA cells with or 

without β-Arrestin2-DmrC (right panel) were stained (60’/4°C) with PE-labeled 12G5 (anti-CXCR4) or T21/8 

(anti-CCR5) and analyzed by flow cytometry. HEK293 WT cells were used as negative control. 
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4.2.2.3 Molecular weight shift of β-arrestin2-DmrC in comparison to native β-arrestin2 

After the expression and the functional integrity of the DmrA-modified receptors was proven 

(4.2.2/4.2.2.2) we next tested the expression of β-arrestin 2-DmrC in transiently transfected HEK293 

cells by immunoblotting with anti-arrestin antibodies (21B1) (Figure 19). The native β-Arr 2 shows a 

distinct band at approx. 60 kDa, which is slightly higher than calculated value of 48 kDa. All cells 

which were transfected with the DmrC modified version of β-Arr 2 show a prominent band at approx. 

80 kDa. Even if the difference is bigger than the calculated size of the DmrC domain (11 kDa) (Vilella-

Bach, 1999) we could thereby show that β-arrestin 2-DmrC is expressed and the shift in molecular 

weight indicates the DmrC modification. 

Figure 18: Expression of native vs. DmrA-modfied CCR5 in membrane fractions of HEK293 or RBL cells 
The membrane fraction of lysed HEK293 cells expressing CCR5-DmrA/β-Arrestin 2-DmrC was purified by 

ultracentrifugation over a sucrose gradient and probed by immunoblotting with anti-CCR5 (R22) antibodies. 

RBL-CCR5 lysate was taken as a reference, RBL and HEK293 cell lysates served as negative controls. The arrows 

indicate the position of modified or non modified CCR5 receptors. (Experimental procedure was done in 

collaboration with S. Henze) 



4 Results 

61 

 

4.2.3 Ligand independent AP21967-mediated translocation of β-arrestin2 to the plasma 

membrane 

After generating HEK cell lines which co express receptors modified with a DmrA domain together 

with β-arrestin 2-DmrC we tested whether the cell-permeable and heterodimerizing reagent 

AP21967 indeed induces translocation of β-arrestin 2-DmrC to the DmrA modified receptors at the 

plasma membrane. To this end, we determined β-arrestin 2 translocation to the membrane fraction 

in cellular lysates by immunoblotting, as well as by immunofluorescence microscopy.  

4.2.3.1 AP21967 leads to membrane translocation of β-Arrestin 2 in CXCR4-/CCR5-DmrA 

cell lines in a dose-dependent manner 

According to information provided by the manufacturer (Clontech), heterodimerization of 

DmrA/DmrC-containing fusion proteins may be induced by treatment with 0.1 to 500 nM AP21967 

for 30 minutes (up to 12 hours). To test whether the fusion proteins are indeed functional and in 

order to determine the optimal heterodimerizing effect, translocation of β-arrestin 2 to the cell 

membrane was determined by immunoblotting of membrane fractions from cell lysates. The results 

from the corresponding immunoblot are shown in Figure 20 where β-arrestin 2-DmrC is detected by 

anti-HA antibodies. The cytosolic fractions of CXCR4- or CCR5-expressing cells (right) show no 

significant alterations in the amount of β-arrestin 2. In contrast, β-arrestin 2 in the membrane 

fraction (left) is clearly increased after treatment with 0.1 or 1 µM P21967 for 60 minutes. The 

second prominent band in the membrane fraction (approx. 55 kDa) appears only in membrane- or 

cytosolic fractions after ultracentrifugation (compare Figure 24) not in untreated cell lysates 

(compare Figure 19). So far the origin remains unclear. The molecular weight would indicate 

Figure 19: Expression of native vs. DmrC modified β-arrestin 2 in lysates of transiently transfected 
HEK293 cells 
Hek293 cells were transiently transfected with Rec-DmrA and βArr-DmrC. Untransfected HEK293 cells 

were used as negative control. Staining was done with anti-arrestin antibodies (21B1), whereas 

native βArr was used as a reference. 
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Figure 20: β-Arrestin 2-DmrC recruitment to the membrane after treatment with different doses of AP21967 
(immunoblot) 
Stable co transfected HEK293 cells (Rec-DmrA/βArr DmrC) were treated with two different concentrations of 

AP21967 (0.1 and 1 µM), lysed and centrifuged over a sucrose gradient to purify the membrane fraction (3.5.4). 

Untreated cells were used as a negative control. The samples from the membrane (left) respectively cytosol 

phase (right) were loaded onto a SDS gel (3.5.1) which was subsequently used for immuno blotting (3.5.2) with 

anti-HA antibody (3F10) detection antibody. Cadherin in combination with an anti-pan-cadherin antibody was 

used to guarantee an equivalent protein loading. For the blots a prestained molecular weight marker was used 

and both were evaluated with a lcd camera. 

β-arrestin 2 without Dmr domain (48 kDa). The same blot was re-probed with an anti-pan-cadherin 

antibody to ensure equal loading in all lanes. Cadherins are ubiquitously expressed transmembrane 

proteins which specifically reside in the plasma membrane fractions of HEK cells. 

The effect of β-arrestin 2 translocation after AP21967 treatment was also shown by 

immunofluorescence microscopy (3.3.6.2). To this end, CCR5-DmrA/β-Arrestin 2-DmrC cells were 

treated with 0 (NC) up to 1 µM (60’) with AP21967. β-arrestin 2 was detected by anti-HA biotin in 

combination with streptavidin-Alexa 647 (red emission). Figure 21 shows a representative selection 

of the microscopic images from three different experiments. While β-arrestin 2 is homogeneously 

spread in the cytoplasm of untreated cells, the β-arrestin 2 distribution changes at AP21967 

concentration of 100 nM and above (A, bottom lane). At those concentration levels of AP21967 a 

part of β-arrestin 2 translocates to the plasma membrane, whereas the rest remains spread in the 

cytoplasm. In order to validate these minor changes in the cellular distribution of β-arrestin 2, we 

applied quantitative image analysis (ImageJ®). Cross sections of individual cells (n = 7), which were 

treated with 0 or 316 nM AP21967 were defined and the corresponding immunofluorescence 

intensity was calculated. The cell diameter was normalized to 100 units and background fluorescence 

was defined as 1.0. In the AP-treated cells (B, red graph) fluorescence intensity in the inner and outer 

area, which corresponds to the plasma membrane was significantly more enhanced as compared to 

untreated cells. Yet the cells still showed high cytoplasmic β-arrestin 2 expression levels in both 

untreated and stimulated cells. These results correspond to the findings by imunnoblotting that 

cytoplasmic β-arrestin 2 levels do not significantly change upon AP21967-induced heterodimerization 

(Figure 20, right). These results show, that upon AP21967 treatment only a minor fraction of 
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overexpressed β-arrestins translocate to the plasma membrane, while the majority of these proteins 

remain cytosolic. 

In summary the immunoblots and immunofluorescence microscopy confirm that low concentrations 

(0.1 – 1 µM) of AP2167 are sufficient to induce hetero-dimerization of DmrA and DmrC-containing 

fusion proteins as demonstrated by translocation of β-arrestin 2 to the cell membrane. 
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Figure 21: β-Arrestin 2-DmrC recruitment to the plasma membrane after treatment with 0 to 1000 nM AP21967 
(immunofluorescence) 
A) Stable co-transfected HEK293 cells (CCR5-DmrA/β-Arrestin 2-DmrC) were incubated with DMEM medium containing 0 

to 1000 nM AP21967 (1 hour/37°C). The samples were prepared for immunofluorescence microscopy using the detection 

antibody anti-HA (3F10) in combination with streptavidin-Alexa 647 and evaluated with confocal laser microscopy. Scale 

bar 10 µm. B) Quantitative image analysis of CCR5-DmrA/ β-Arrestin 2-DmrC cells (n = 7) which were treated with 0 or 

316 nM AP21967. Cross sections of treated (red) and untreated (black) cells were determined and the relative 

fluorescence intensity (+/- s.d.) was calculated by ImageJ® setting the background fluorescence to 1.0 The cellular 

diameters were normalized to 100 units.  
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4.2.3.2 Kinetics of membrane translocation of β-Arrestin 2-DmrC 

To test the kinetic of the translocation stably co transfected HEK293 cells were stimulated with 

500 nM AP21967 for 0 to 240 minutes and the membrane fractions were purified by 

ultracentrifugation of cellular lysates (3.5.4). β-arrestin in membrane and cytosolic fractions were 

detected by 3F10 antibodies(Figure 22). In the membrane fractions of CXCR4- (left) and CCR5 cells 

(right) the amount of β-arrestin 2-DmrC (left) increases over time and reaches maximal levels after 

2 hours of treatment. As we previously observed in the dose-response experiments (4.2.3.1) 

translocation of β-arrestin 2 to the plasma membrane fraction does not noticeably alter cytosolic 

β-arrestin levels. Reprobing with anti-pan-cadherin antibodies confirms equal protein load in all lanes 

of the SDS gel. 

To confirm these results by immunofluorescence microscopy CCR5 cells were treated with 0.5 µM 

AP21967 for 0 to 240 minutes and stained with biotin coupled anti-HA antibody (3F10) in 

combination with streptavidin-alexa 647. Cells were analyzed by confocal microscopy. A 

representative compilation of images is shown in Figure 23. In unstimulated cells β-arrestin 2 is 

homogeneously distributed throughout the cells, whereas upon stimulation it is targeted towards the 

cell membrane in a time-dependent manner. A maximum of β-arrestin 2-DmrC translocation is visible 

after 60 minutes of AP21967 treatment. 

 

  

Figure 22: Kinetic of AP21967 induced β-Arrestin 2-DmrC translocation to the cell membrane (immunoblot) 
Stable co transfected HEK293 cells (CXCR4-(left)/CCR5-DmrA (right) with β-Arrestin 2-DmrC) were treated with 500 nm 

AP21967 for different durations. The membrane fraction (left side) was separated from the cytsosl fraction (right side) 

with ultra centrifugation over a sucrose gradient (3.5.4). The samples were loaded onto an SDS gel (3.5.1) which was 

subsequently used for an immunoblot (3.5.2) with an anti-HA detection antibody (3F10). To guarantee a constant 

protein amount in all samples the blot was also probed with an anti-pan-cadherin antibody. For weight comparison a 

prestained molcecular weight marker was used. The blot was evaluated using an lcd camera. 
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Figure 23: Kinetics of AP21967-induced β-arrestin 2-DmrC translocation towards the cell membrane (immunofluorescence) 
Stable cotransfected CCR5-DmrA/β-arrestin-DmrC HEK293 cells were incubated for 0 to 240 minutes with DMEM medium containing 0.5 µM AP21967. Cells were stained with biotin coupled 

anti-HA antibody (3F10) and streptavidin-alexa 647 and images were taken with a confocal laser microscope. Representative images of n = 3 experiments are shown. Scale bar 10 µm. 
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4.2.3.3 Ligand- vs. AP21967-stimulated β-Arrestin 2 translocation to the membrane 

The previous experiments showed that β-arrestin 2-DmrC is translocated to the receptor after 

AP21967 stimulation in a dose- (4.2.3.1) and time-dependent (4.2.3.2) manner. This time we 

compared the ligand-induced (physiological) recruitment of β-arrestin 2 with the AP21967-induced 

(chemical) translocation to CCR5 at the plasma membrane. Because HEK293 cells exhibit no suitable 

repertoire of G proteins and GRKs for signal transduction induced by CXCR4/CCR5 (Atwood et al., 

2011) we transiently transfected CCR5-DmrA/β-arrestin 2-DmrC cells with a modified version of a 

Gαq-protein (Gqo5) and/or GRK2. The Gαq-subunit is capable to interact with phospholipase C, which 

leads to a detectable calcium influx (Dorsam & Gutkind, 2007). To increase the binding specificity of 

Gαq for CCR5 the last five amino acids were exchange to amino acids of the widely spread Golf-peptide 

(Gqo5) which shows a high binding capacity to a variety of different GPCR’s.(Robertson et al., 1988). 

GRK2 is required for receptor phosphorylation after ligand binding, which is crucial for receptor 

desensitization and β-arrestin binding (Ribas et al., 2007). 

Cells were either stimulated with CCL5 or AP21967 and membrane or cytosolic fractions were 

purified by ultracentrifugation (3.5.4) and probed by immunoblotting with anti-HA (3F10), 

anti-pan-cadherin and anti-GRK2/3 (C5/1) antibodies (Figure 24). Since both β-arrestin 2-DmrC and 

Gqo5 contain HA-tags both constructs could be detected by 3F10 anti-HA antibodies and could be 

differentiated by their different molecular weight (59 vs. 42 kDa; arrows). The blot also shows that if 

HEK293 cells were complemented with Gqo5 and GRK2 that the ligand-induced translocation of 

β-arrestin 2 to the plasma membrane is comparable to the AP21967-induced translocation (left; last 

two lanes). Under non optimal conditions the ligand induced β-arrestin 2 translocation is decreased 

(lanes three and four). As already observed (4.2.3.1 and 4.2.3.2) the amount of cytosolic β-arrestin 2 

remains unaltered (right). Reprobing with anti-pan-cadherin confirms an equal protein amount in all 

Figure 24: Comparision of ligand- and AP21967-induced β-Arrestin 2 translocation to the plasma membrane in 
stably transfected HEK293 CCR5-DmrA cells with Gqo and GRK2 co-transfection 
Stably co-transfected CCR5-DmrA/β-Arrestin 2-DmrC cells were transiently transfected with pMaxKS-IE/Gqo and 

pcDNAI/GRK2. Cells were either stimulated with CCL5 (30’/125 nM) or AP21967 (60’/500 nM) and membrane 

fractions were purified by ultracentrifugation. Samples were probed by immunoblotting with anti-HA (3F10), 

anti-pan-cadherin or anti-GRK2/3 (C5/1) antibodies. 
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samples. In summary this experiment shows that the extent of β-arrestin 2-DmrC recruitment to the 

plasma membrane after AP21967 stimulation is comparable to the ligand-induced translocation of 

β-arrestin 2 in HEK293 cells with an optimal complement of functional G proteins and GRKs. Thus, 

AP21967 (chemical)-induced β-arrestin 2 translocation can be expected to cause biological effects in 

a similar manner as after ligand stimulation. 

4.2.4 Functional consequences of chemical-induced β-Arrestin 2 translocation in the 

absence of ligand binding 

Previous experiments showed that AP21967 is capable of recruiting β-Arrestin 2-DmrC to the cell 

membrane in a dose- (4.2.3.1) and time-dependent manner (4.2.3.2). To study potential 

consequences of membrane recruitment of β-Arrestin 2 in the absence of ligand binding and in a 

fully G protein-independent manner we performed CXCR4/CCR5 receptor desensitization, 

endocytosis and signaling experiments. 

4.2.4.1 β-Arrestin 2 translocation leads to desensitization of ligand-induced calcium-

mobilization 

We asked whether the AP21967-induced recruitment of β-Arrestin 2-DmrC to the plasma membrane 

mimics the effect of β-Arrestin 2-mediated receptor desensitization after ligand binding. To this end, 

cells which stably express Rec-DmrA or Rec-DmrA /βArr-DmrC were transiently transfected with Gαq 

variants and incubated with AP21967 prior to the calcium measurement. 

4.2.4.1.1 Expression of Gαq-proteins in stable co transfected HEK293 cells using a bicistronic 

vector system  

To provide HEK293 cells with the optimal repertoire of Gαq-proteins for G protein-mediated effects 

after ligand stimulation HEK293 WT and stably cotransfected cells (Rec-DmrA/βArr-DmrC) were 

additionally transfected with two variants of the Gαq-subunit (Gqi/Gqo) (4.2.3.3). For the expression in 

HEK293 cells the Gα-subunits were ligated into the bicistronic expression vector pMaxKS-IE (3.2.1), 

which allows identification of positively transfected cells through GFP in flow cytometry. In 

comparison to the control cells positive transfected cells show 40 % green fluorescence (Figure 25, A, 

left). For subsequent calcium measurements online GFP positive cells were used (Figure 25, A, right). 

Expression of the Gαq-subunits, which contain a HA-TAG aswell, was tested by immunoblotting (3.5.2) 

(Figure 25, B). Gαq-subunits were expressed either in HEK293 WT, which was used as controls to 

ensure expression of Gαq-subunits and β-Arrestin 2 (Figure 25, B left) or in stably cotransfected cells 

(Figure 25, B right). The results showed that both GFP and Gαq-subunits are sufficiently expressed in 

transtly transfected HEK cells. Because of the better expression of Gqo in comparison to Gqi5 this 

subunit was used in subsequent experiments. 
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4.2.4.1.2 Effect of Gαq supplementation on ligand induced calcium-mobilization in transiently 

transfected cells 

To test whether supplementation with Gqo5 induced a more robust calcium response upon ligand 

stimulation CXCR4-/CCR5-DmrA cells were transiently transfected (3.3.4.2) with the pMaxKS-IE/ Gqo5 

plasmid. The calcium release after CCL5- or CXCL12-stimulation was measured using flow cytometry 

and GFP positive cells were gated as illustrated in Figure 25, A. For both cell lines the GFP negative 

cells (red) show a lower calcium release than cells which coexpress Gqo5 (blue) (Figure 26). This result 

indicates that Gqo5 supplemented HEK293 cells have a more robust calcium release in comparison to 

untransfected cells. 

 

Figure 25: Expression of Gαq variants (Gqo5/Gqi5) in HEK293 and stably cotransfected Rec-DmrA/βArr-DmrC  
cells using a bicistronic vector system 
The Gαq-variants Gqo5/Gqi5 were ligated with the bicistronic expression vector pMaxKS-IE and transiently 

transfected into HEK293 WT and stably cotransfected Rec-DmrA/βArr-DmrC cells. A: The expression of GFP 

was checked by flow cytometry (left) and used for selection of a GFP-gate. Only GFP-positive cells were used 

in subsequent calcium measurements (right). B: Cell lysates were probed by immunoblotting with anti-HA 

detection antibodies. As a control, cells were additionally transfected with β-Arrestin 2-DmrC or the untagged 

versions of Gqo5/Gqi5. The blot was re probed with anti-actin antibodies (13E5). 
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4.2.4.1.3 Attenuation of ligand-induced calcium mobilization by forced 

arrestin/receptor-complex formation 

We asked whether the AP21967-induced translocation of β-arrestin 2-DmrC to the receptor at the 

plasma membrane can interfere with G protein coupling to these receptors in a manner similar to 

normal ligand-induced β-arrestin recruitment and, thus, mimic receptor desensitization. Since Gqo5 

further enhances the ligand-induced calcium response (4.2.4.1.2) cells were transiently transfected 

with Gqo5 and incubated with or without AP21967 for one hour prior to ligand stimulation. Cells 

which express only CXCR4- or CCR5-DmrA in the absence of β-arrestin 2-DmrC and, thus, lack the 

appropriate fusion partner show exactly the same calcium response upon ligand stimulation, 

regardless of whether cells were pretreated with AP21967 or not (Figure 27, right). 

Figure 26: Ligand-induced calcium mobilization in CXCR4- or CCR5- cell lines which coexpress Gqo5 

Stably cotransfected HEK293 cells (Rec-DmrA/βArr-DmrC) were transiently transfected with Gqo5 and loaded with 

Indo-1-AM. The intracellular calcium mobilization was determined by flow cytometry in GFP-positive (blue) or 

GFP-negative (red) cells. After baseline recording cells were stimulated with 125 nM CCL5 or CXCL12. The graph 

shows the ratio of two emmission rates of Indo-1-AM (405/530 nm).Values were normalized to the mean value of 

the baseline.  

Figure 27: Alterations of the calcium signal in CXCR4- CCR5- cell lines after AP21967 pretreatment 
Stably transfected Rec-DmrA (right) and cotransfected Rec-DmrA/βArr-DmrC (left) cells were transiently 

transfected with Gqo5, and pretreated with (red) or without (blue) 500 nM AP21967 for one hour and loaded 

with Indo-1-AM. Calcium release was measured by flow cytometry. The graph shows the ratio of two emmission 

rates of Indo-1-AM (405/530 nm).Values were normalized to the mean value of the baseline. 
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 However, in those cells which coexpressed β-arrestin 2-DmrC the ligand-induced calcium signal was 

completely abrogated upon pretreatment with AP21967 (Figure 27, left). This result shows that 

AP21967-induced β-arrestin 2 translocation to these receptors interferes with G protein-mediated 

signaling and thus fully mimics β-arrestin-mediated receptor desensitization after ligand stimulation. 

4.2.4.2 AP21967- vs. ligand-induced receptor internalization 

4.2.4.2.1 Kinetics of receptor internalization as determined by flow cytometry 

To analyze if the recruitment of β-arrestin 2 to the receptor on its own and in the absence of ligand 

stimulation is sufficient to induce receptor internalization stably transfected cell lines, which express 

either CXCR4-DmrA (Figure 28, top) or CCR5 (bottom) alone (Rec; open symbols) or together with 

βArr-DmrC (RecArr; filled symbols) were stimulated with ligand (CCL5/CXCL12) or AP21967. Cell 

surface expression of the receptors was evaluated by flow cytometry and loss of cell surface 

expression was interpreted as receptor internalization. Treatment with AP21967 leads to a receptor 

internalization on a comparable level to ligand-induced internalization. Ap21967 treatment of 

CCR5-DmrA/βArr-DmrC cells leads to stronger internalization compared to ligand-stimulated cells, 

whereas in CXCR4-DmrA/βArr-DmrC cells the opposite was the case. Rec-DmrA cell lines which lack 

the interaction partner βArr-DmrC show no distinct receptor internalization upon AP21967 

treatment. Ligand-stimulated cells reach the maximal level of internalization faster compared to 

AP21967-treated cells, which indicates a delayed internalization reaction after AP21967 treatment. 

Furthermore β-arrestin overexpression in Rec-DmrA/βArr-DmrC cells lead to a significant 

enhancement of receptor internalization after ligand stimulation in comparison to Rec-DmrA cells.  

In summary we could show that AP21967 treatment leads to a delayed receptor internalization 

which is on a comparable level as ligand-induced internalization. Furthermore we could prove that 

the internalization was triggerd by βArr-DmrC translocation to the receptor, because receptor 

internalization was not observed in cell lines lacking βArr-DmrC. Also we could show that the 

β-arrestin overexpression leads to an increased receptor internalization after ligand stimulation. 
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Figure 28: Ligand- and AP21967-induced receptor internalization in stably transfected Rec-DmrA/βArr-DmrC or 
Rec-DmrA cells 
CXCR4- (top) or CCR5-DmrA (bottom) cells with (RecArr) or without β-arrestin 2-DmrC (Rec) were stimulated with 

125 nM CCL5/CXCL12 or 500 nM AP21967 for 0-4 hours at 37°C and stained with anti-receptor antibodies 

(anti-CXCR4 12G5; anti-CCR5 T21/8) (1 hour/4°C). The MCF was determined by flow cytometry, non-stained cells 

were used for background control. The graphs show the mean percentage (+/- s.d.) of receptor expressed on the 

cell surface as compared to the MCF value of untreated cells. 
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4.2.4.2.2 Kinetics of AP21967-induced receptor internalization as determined by 

immunofluorescence  

In order to validate these results (4.2.4.2.1) by an independent method and to more precisely 

determine the intracellular localization of internalized CXCR4 and CCR5, respectively, stably 

cotransfected HEK293 cells were incubated (0 – 240’) with 500 nM AP21967 and subsequently 

stained with anti-receptor antibodies (anti-CXCR4 12G5; anti-CCR5 T21/8) and FITC labeled detection 

antibodies. Figure 29 shows a representative selection of images which were obtained by confocal 

laser scanning microscopy. Untreated CXCR4- cells (left panels) show a distinct membrane 

fluorescence and additional intracellular fluorescence. Upon prolonged treatment the membrane 

fluorescence is progressively reduced, whereas the intracellular fluorescence increases and is 

distributed in the cytoplasm after four hours (Figure 29). While loss of membrane fluorescence is also 

observed in AP21967-treated CCR5 cells (Figure 30) interestingly, the internalized CCR5 receptors are 

sequestered into a different intracellular localization, which appears peri-nuclear, as compared to the 

more homogenously, distributed CXCR4 receptors (Figure 29). Thus, the immunofluorescence 

experiments confirm the results from flow cytometry and in addition demonstrate that AP21967 

treatment leads to accumulation of the two receptors in distinct intracellular compartments.  
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Figure 29: Kinetics of AP21967-induced receptor internalization in CXCR4-DmrA/β-Arrestin 2-DmrC cells (immunofluorescence) 
CXCR4-DmrA/β-arrestin 2-DmrC cells were treated with 500 nM AP21967 for 0-240 minutes at 37°C and stained with anti-CXCR4 antibody (12G5) in combination with a FITC labeled anti-mouse 

IgG antibody (green). The samples were analyzed by confocal laser microscope. Scale bar 10 µm. 
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Figure 30: Kinetics of AP21967-induced receptor internalization in CCR5-DmrA/β-Arrestin 2-DmrC cells (immunofluorescence) 
CCR5-DmrA/β-arrestin 2-DmrC cells were treated with 500 nM AP21967 for 0-240 minutes at 37°C and stained with anti-CCR5 antibody (T21/8) in combination with a FITC labeled anti-mouse 

IgG antibody (green). The samples were analyzed by confocal laser microscope. Scale bar 10 µm. 

 



4 Results 

76 

4.2.4.2.3 Intracellular localization of receptors/β-arrestin following ligand- or 

AP21967-treatment  

In previous experiments we demonstrated that AP21967 induced β-arrestin 2 translocation to the 

membrane (4.2.3) and internalization of CXCR4 and CCR5 receptors (Figure 29 and Figure 30) with 

slightly slower kinetics, albeit into distinct intracellular compartments. AP21967 treatment mimics 

important aspects of β-arrestin 2 biological functions under physiological conditions, e.g. after ligand 

stimulation To test whether β-arrestin 2 and receptors form stable complexes which together are 

sequestered from the plasma membrane or rapidly dissociate we treated HEK293 with AP21967 or 

stimulated RBL cells with ligand, costained them with anti-receptor- (green) and anti-HA-antibodies 

(red) and analyzed the slides with a confocal laser microscope (3.3.6.2). A representative selection of 

images is depicted in Figure 31. Both untreated CXCR4/CCR5 cells show a distinct membrane 

fluorescence of both receptors, while β-arrestin 2 is homogenously expressed in the cytoplasm 

(0 min). After 30 minutes of AP21967 treatment the intracellular vesicle formation is enhanced 

(30 min), which goes hand in hand with the reduction of membrane-located receptor. The overlay 

shows that β-arrestin 2 is localized in close proximity to the receptors. After 240 minutes the majority 

of all receptors are internalized (240 min). In contrast, β-arrestin does not follow CCR5 into the 

perinuclear region but remains homogenously expressed within the cytoplasm. Thus, intracellular 

trafficking of CCR5 (and CXCR4) appears to proceed independent of β-arrestin complex formation, 

once receptor internalization has been triggered. The dissociation between receptors and β-arrestin 

localization was more prominent in CCR5-expressing cells, where the receptors accumulate in the 

perinuclear region, while CXCR4 remain near the plasma membrane. These findings resemble the 

intracellular distribution of CCR5 or CXCR4 In ligand-stimulated RBL-cells (lower panels). 
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Figure 31:Ligand- vs. AP21967-induced internalization 
HEK293 cells (CXCR4-(top left) or CCR5-DmrA (top right) which co-express β-arrestin 2-DmrC were treated with 500 nM AP21967 for 0.5 or 4 hours at 37°C. 

RBL-CXCR4 or-CCR5 cells were stimulated with 0 or 50 nM CCL5 or CXCL12 for 30 minutes at 37°C. Cells were prepared for immunofluorescence microscopy and 

stained with anti-receptor antibody (anti-CXCR4 12G5; anti-CCR5 T21/8) (green) and anti-HA antibody (3F10) (red). Slides were analyzed by confocal laser scanning 

microcopy. Scale bar 10 µm. 
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4.2.4.3 AP21967- vs. ligand-induced MAP kinase activation 

We next asked whether AP21967-induced recruitment of β-arrestin 2-DmrC to the plasma 

membrane is sufficient to activate downstream signaling pathways as exemplified by the activation 

of p42/p44 MAP kinases. To this end we performed immunoblot experiments with 

phosphosite-specific mAbs. PMA- or CCL5-treated cells served as positive control. The intensity of all 

bands was determined by quantitative image analysis and results were normalized to the results 

obtained after PMA stimulation. 

4.2.4.3.1 Ligand- and AP21967-induced MAP kinase activation: effect of PTX 

To test the ability of β-arrestin 2-DmrC to activate p42/p44 MAPK HEK CCR5-DmrA cells with or 

without β-arrestin 2–DmrC were additionally pre-treated with PTX prior to AP21967/CCL5 

stimulation (Figure 32). Both cell lines show p42/p44 MAPK activation after CCL5 stimulation. The 

levels of phosphorylated p42/p44 MAPK are higher in cells which co-express β-arrestin 2-DmrC, 

compared to cells which lack β-arrestin overexpression- Pre-incubation with the Gαi-inhibitor PTX 

abolishes the ligand-induced MAP p42/p44 phosphorylation in both cell lines. AP21967 treatment 

does not noticeably affect p42/p44 as compared to untreated cells nor does PTX pretreatment show 

any effect.  

4.2.4.3.2 Ligand- and AP21967-induced MAP kinase activation: effect of co-expressed 

β-arrestin 2-DmrC 

To test whether lack of p42/p44 phosphorylation is due to a wrong time frame of cellular 

stimulation, CCR5-DmrA cells with or without β-arrestin 2-DmrC and HEK293 WT cells (black) were 

stimulated with CCL5 or AP21967 for 5 or 30 minutes (Figure 33). Untreated cells were used as a 

negative, PMA treated cells were used as a positive control. As previously shown (4.2.4.3.1) 

5 minutes of stimulation with CCL5 leads to a p42/p44 phosphorylation in both transfected cell lines 

which decreases after 30 minutes. Ap21967 treatment does not induce significant MAPK activation 

at 5 or 30 minutes stimulation.  

Figure 32: AP21967- vs. ligand-induced activation of p42/p44 MAPK; inhibition by PTX pretreatment 
HEK CCR5-DmrA cells with (grey bars) or without (black bars) β-arrestin 2 –DmrC were cultivated in serum free 

DMEM medium (16 hours/37°C), pretreated with 0 or 0.2 µM PTX (16 hours/37°C) and stimulated with 50 nM CCL5 

or 500 nM AP21967 (AP; 5’ /37°C). Stimulation with 200 nM PMA (30’/37°C) served as a positive control. 

Phosphorylation of p42/p44 MAPK was detected with anti-phospho-p42/p44 antibodies (D13.14.E) in combination 

with HRP-coupled detection antibodies. The blot was analyzed by chemiluminescence. Blots were stripped and 

reprobed with anti-pan-p42/p44 antibodies (137F5). Quantification was done by scanning the signal intensity with 

ImageJ®. The results were normalized to the PMA-treated samples (100 %). The results represent the mean values 

+/- s.d. of three independent experiments. 
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4.2.4.3.3 Activation of p42/p44-MAPK at different time points after ligand- and AP21967-

treatment 

Since p42/p44 MAP kinases are only transiently activated upon CCL5 stimulation, we performed a 

more detailed kinetic study. CCR5-DmrA cells with (bottom) or without (top) β-arrestin 2-DmrC 

overexpression were stimulated with AP21967 or CCL5 for different time intervals up to 60 minutes. 

PMA or untreated cells were used as controls. The immunoblot (Figure 34) shows that in 

CCL5-stimulated cells p42/p44 MAPK are clearly phosphorylated after 2 minutes and this level is 

maintained for up to 15 minutes. The signal is lost after 30 and 60 minutes. AP21967 treatment 

shows at no time point a phosphorylation above background level. 

Figure 33: Kinetic of AP21967 vs. ligand induced activation of p42/p44 MAPK and their inhibition with PTX 
(immunoblot) 
HEK CCR5-DmrA cells with (dark grey bars) or without (light grey bars) β-Arrestin 2 –DmrC or HEK293 WT cells (black 

bars) were cultivated in serum free DMEM medium (16 hours/37°C) and treated with AP21967 (AP) or CCL5 (5’ or 

30’/37°C). Staining, evaluation and quantifications were carried out as described in Figure 33. The bars represent the 

mean values +/- s.d. of at least three independent experiments. Shown is a representative immunoblot. 

 

Figure 34: Detailed kinetics of AP21967- or ligand- induced activation of p42/p44 MAPK 
HEK CCR5-DmrA cells with (bottom images) or without β-Arrestin 2 –DmrC (top images) co-expression were treated 

with 50 nM CCL5 or 500 nM AP21967 for different time intervals up to 60 minutes at 37°C. Probing of the 

immunoblot with anti-phosphor p42/p44 (top) or anti-pan p42/p44 (bottom) was done according to the legend from 

figure Figure 32. The images are representative of three independent experiments. 
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4.2.4.3.4 Activation of p42/p44-MAPK after incubation with different concentrations of 

AP21967 

Since activation maybe inhibited with too high concentrations of a hetero-dimerizing linker we also 

tested for MAPK activation at a wider range of AP21967 concentrations. To this end we treated 

CCR5-DmrA/βArr-DmrC cells with different concentrations of AP21967 (31.6-1000 nM). PMA and 

untreated cells were used as controls (Figure 35). At no concentration did we observe a 

detectable p42/p44 phosphorylation. 

4.2.5 Functional consequences of AP20187-induced receptor homodimerization 

In a separate set of experiments functional consequences of chemical-induced CXCR4 or CCR5 

homodimerization was investigated, since previous studies had suggested that ligand stimulation is 

followed by oligomerization of these receptors and subsequent cellular stimulation (Mellado et al., 

2001a). We therefore treated HEK cells which expressed Rec-DmrA in the absence of βArr-DmrC with 

a different linker reagent, AP20187, which simultaneously binds to two adjacent DmrA domains and 

thereby induces their homodimerization. 

4.2.5.1 Effect of AP20187 treatment on ligand-induced calcium-mobilization in Rec-DmrA 

cells 

In these experiments we asked whether AP20187 on its own stimulates calcium release, or whether 

AP20187 pretreatment alters subsequent calcium response in Rec-DmrA cells. To this end HEK293 

cells which stable express Rec-DmrA were transiently transfected with Gqo5 and pre treated with 0 or 

0.1 µM AP20187. Cells were then stimulated with ligand and the intracellular calcium-mobilization 

was monitored as described in 4.2.4.1.2 (Figure 36). In both cell lines the ligand-induced calcium 

release was identical regardless of whether cells were pre treated with AP20187 (red) or not (blue). 

Stimulation with AP20187 did not lead to any calcium release on its own (data not shown). 

Figure 35: Dose response of AP21967-induced p42/p44 MAPK activation 
HEK CCR5-DmrA/ β-Arr-DmrC cells were treated with 0-1000 nM AP21967 for 5 minutes at 37°C. The immunoblot 

was probed with anti-phospho p42/p44 (top) or anti-pan p42/p44 (bottom) antibodies and developed as described in 

the legend of Figure 32. The images are representative of three independent experiments. 
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4.2.5.2 Effect of AP20187 on receptor internalization in Rec-DmrA/βArr-DmrC or 

Rec-DmrA cells 

We pretreated Rec-DmrA/βArr-DmrC or Rec-DmrA expressing cells with 0 or 1 µM Ap20187. Cells 

were then stimulated with ligand (CCL5/CXCL12). The effect on receptor internalization from the cell 

surface was evaluated using flow cytometry as described before. While AP20187 treatment alone 

does not affect cell surface expression of CXCR4 or CCR5, pretreatment with AP20187 significantly 

(p < 0.001) enhances subsequent ligand-induced receptor internalization. This effect was 

reproducibly seen with both CCR5-expressing cells, regardless of whether they co-expressed 

β-arrestin or not. Moreover, β-arrestin coexpression significantly (p < 0.001) enhanced CCR5 

internalization (Figure 37, left). In summary the results suggested that receptors in a homodimerized 

state are internalized more efficiently as compared to receptor monomers. 

Figure 36: Influence of AP20187 on the ligand induced calcium release in stable tranfected HEK293 cells 
(transient transfection of Gqo5) 
HEK293 cells which were stable transfected with Rec-DmrA and transiently with Gqo5 were pre incubated with 0 

or 100 nM of AP20187 for 60 minutes at 37°C and stimulated with 100 nM AP20187 or 50 nM ligand. Calcium 

measurement was done as described in the legend of Figure 27. The graphs show a represantative results out of 

three independent measurements. 
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4.2.5.3  Effect of AP20187 treatment on p42/p44-MAPK  phosphorylation in Rec-DmrA 

cells 

To test if AP20187 treatment affects p42/p44 MAPK phosphorylation we used the experimental 

setup described in 4.2.4.3.1. Receptor-DmrA (CXCR4 [dark grey]/CCR5 [light grey]) or HEK293 WT 

(black) cells were cultivated in serum free DMEM medium and stimulated either with ligand 

(CCL5/CXL12) or AP20187. The resulting immunoblot is shown in Figure 38. Whereas ligand 

stimulation leads to p42/p44 phosphorylation in receptor expressing cells, neither CXCR4- nor 

CCR5-expressing cells show any changes in p42/p44 phosphorylation after AP20187 treatment. 

Figure 37: Effect of AP20187 pretreatment on ligand-induced receptor 
internalization 
Stably transfected HEK293 cells (CXCR4-DmrA [right]/CCR5-DmrA [left]) were 

pretreated with 100 nM AP20187 (dark grey bars) (60’/37°C) or remained 

untreated. Cells were stimulated with 50 nM ligand (CCL5/CXCL12) or 100 nM 

AP20187 (30’/37°C), and receptor expression on the cell surface was monitored by 

flow cytometry using receptor-specific antibodies (anti-CXCR4 12G5; anti-CCR5 

T21/8). The percentage of receptor internalization as compared to non-stimulated 

cells is shown (mean values +/- s.d. of three independent experiments). *, p < 0.01; 

** p < 0.001. 
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4.2.5.4 Dose-response and kinetic of AP20187 induced p42/p44-MAPK phosphorylation 

We also tested different concentrations (Figure 39 bottom) of AP20187 and time intervals of 

stimulation (Figure 39 top) (4.2.4.3.1) on p42/p44 phosphorylation levels. Modification of time 

intervals or concentrations did not result in any detectable changes in p42/p44 MAP kinase 

activation. 

 

 

 

Figure 38: AP20187- vs. ligand-induced activation of p42/p44 MAPK in HEK Rec-DmrA cells 
Stably transfected HEK293 cells (CXCR4-/CCR5-DmrA) (light or dark grey) or HEK293 WT cells (black) were cultivated 

in serum free DMEM medium (16 hours/37°C) and stimulated (5’/37°C) with 50 nM ligand (CXCL12/CCL5) or 100 nM 

AP20187. Phosphorylation of the p42/p44 MAPK was detected with anti-phospho-p42/p44 antibodies. The blot was 

reprobed using an anti-pan p42/p44 antibody. Evaluation and quantification was done as described in the legend of 

Figure 32 (mean values +/- s.d. of three independent experiments). 

Figure 39: Detailed kinetic and dose response of AP20187 induced p42/p44 MAPK activation 
HEK293 CCR5-DmrA cells were treated with 0 – 1000 nM AP20187 for 5 minutes at 37°C (bottom) or 100 nM AP20187 

for 0 – 60 minutes (top). p42/p44 phosphorylation levels were analyzed as described in legend of Figure 32 

(representative for three independent experiments). 
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4.2.6 Effect of AP21967 and AP20187 on the activation of different MAP kinases 

To detect whether other MAP kinases apart from p42/p44 might be affected by AP21967- or 

AP20187-treatment, we stimulated CCR5-DmrA/βArr-DmrC or CCR5-DmrA cells with both reagents 

for 60 minutes and checked the phosphorylation levels of various kinases in cellular lysates by the 

MAPK array kit from R&D systems (RnDsystems, 2013). The experiment was performed according to 

the manufacturer’s guideline. The nitrocellulose membrane was incubated with a cocktail of different 

phosphor-specific antibodies (legend to Figure 40) and with HRP-labeled secondary antibodies. 

Overall, no significant changes in MAP kinase activation were observed apart from the positive 

control. 

 

Figure 40: Effect of AP21967- or AP20187-treatment on the phosphorylation status of different MAP kinases in 
stably transfected HEK293 cells 
Cells were cultivated with serum free DMEM medium (16 hours/37°C) and handled as described in the 

manufacturer’s guideline. A: negative control, B: positive control (200 nM PMA/30’), C: AP21967 (500 nM/ 60’), D: 

AP20187 (100 nM/60’). Positions of different MAP kinases on the array (1. p38α, 2. HSp27, 3. Akt1, 4. p38β, 5. JNK1, 

6. Akt2, 7. p38δ, 8. JNK2, 9. Akt3, 10. p38γ, 11. JNK3, 12. Akt pan, 13. p53, 14. JNK pan, 15. Crep, 16. p70S6 kinase, 

17. MKK3, 18. ERK1, 19. RSK1, 20. MKK6, 21. ERK2, 22. RSK2, 23. MSK2, 24. GSK-3α/β, 25. PBS, 26. TOR, 27. GSK-3β). 
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5 Discussion 
The ant-/agonist-induced internalization of the chemokine receptor and HIV co-receptor CCR5 in the 

context of receptor phosphorylation has been studied in detail (Olbrich et al., 1999; Kraft et al., 

2001). Furthermore, β-arrestin plays a key role during internalization of CCR5 homo- or 

hetero-oligomers (Hüttenrauch et al., 2005). The present study adds to these previous investigations 

the finding that binding of β-arrestin to the receptor alone and in the absence of ligand-induced 

phosphorylation and conformational changes of the receptor was sufficient to induce its 

internalization. In contrast, β-arrestin translocation to the receptor at the plasma membrane or 

receptor homodimerization did not result in signaling through MAP kinases. 

A separate but related part of this thesis deals with a novel method which allowed to tag and 

analyzes trafficking of distinct populations of transmembrane proteins. Exemplified by CXCR4 and 

CCR5, we used the system to quantify constitutive receptor endocytosis and its modulation by 

receptor ant-/agonists. Furthermore, we used the system to quantify the net recycling rate after 

ligand-induced internalization and visualized differences in the intracellular localization of 

internalized and prestored receptors. 

5.1 A biotin-based detection system for the analysis of transmembrane 

protein trafficking exemplified by internalization and recycling studies 

on CXCR 4 and CCR5 
G protein coupled receptors are involved in the signal transduction of various biological stimuli. A 

complex network for the regulation of GPRC expression at the cellular surface is essential to maintain 

its proper function. Once expressed on the cell surface, receptors undergo a constant fluctuation 

induced by constitutive endocytosis and translocation of newly synthesized receptors to the cell 

membrane. Constitutive endocytosis is mediated by clathrin-dependent or –independent pathways 

in the absence of receptor agonists (Scarselli & Donaldson, 2009; Uwada et al., 2014). To counteract 

the depletion of receptors from the cell membrane, receptors are sequestered and transported back 

to the membrane (Drake et al., 2006). This equilibrium can be modulated by treatment with receptor 

agonists. Ligand-receptor complexes undergo rapid internalization mostly mediated by the AP2 

adapter complex and clathrin (Signoret et al., 1998). Whereas most of CCR5 is delivered to recycling 

endosomes to reaccumulate at the cell surface after ligand removal, internalized CXCR4 is mostly 

sorted for lysosomal degradation by ubiquitination (Signoret et al. 2000; Marchese et al. 2003). This 

discrepancy in their recycling characteristics between CXCR4 and CCR5 despite their high molecular 

homology on a structural and functional level signifies them as good model receptors for the 

investigation of GPCR trafficking in general. 

 

During the years several methods have been established to analyze GPCR trafficking. Among these, 

fluorochrome-labeled anti-receptor antibodies in combination with flow cytometry are by far the 

most commonly applied methods (Anselmo et al., 2014). After internalization is triggered by receptor 

agonists, cells are stained with anti-receptor antibodies and analyzed by flow cytometry. This method 

allows the quantification of internalized/recycled receptors as compared to unstimulated cells (Mack 

et al., 1998; Mueller et al., 2002). Furthermore, this method is used to determine the intracellular 

localization of internalized receptors within the cells by immunofluorecence microscopy (Kershaw et 

al., 2009). Double immunofluorescence microscopy using dyes which accumulate in specific 

intracellular compartments (e.g. Lysotracker) allow an even more exact localization of internalized 
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receptors (Signoret et al. 2000). Further but less commonly applied methods for the analysis of GPRC 

trafficking are the quantification of radioactivity during a radioligand uptake assay or antibody 

feeding. In antibody feeding experiments fluorochrome-labeled anti-receptor antibodies are 

co-internalized and detected by flow cytometry or immunofluorescence microscopy (Arancibia-

Cárcamo et al. 2006; Sorkin & Duex 2010). 

When antibodies are being used for receptor detection it is necessary to ensure that antibody 

binding does not induce receptor internalization on its own or interfere with ligand binding (Signoret 

& Marsh, 2000). It is not recommended to use labeled chemokine ligands alternatively since most of 

them are not receptor specific and fluorochrome labeling may alter their binding affinity (Blanpain et 

al., 1999; Kershaw et al., 2009). 

The methods introduced so far are sufficient to detect rapid changes in receptor expression levels 

e.g. after ligand stimulation, but they are not applicable to study constitutive receptor internalization 

in the absence of receptor ligand. In this case the internalization process would be masked by parallel 

processes such as receptors recycling or translocation of newly synthesized receptors to the plasma 

membrane. To address this problem we adapted a method for the site-specific labeling of membrane 

proteins originally described by Alice Ting to establish an assay for the analysis of chemokine 

receptor trafficking (Howarth & Ting, 2009). This method may be generally used for studies of other 

cell surface proteins, as well. The method is based on a 15 amino acid AP-peptide which is 

enzymatically biotinylated by BirA biotin ligase (Schatz, 1993). In contrast to chemical biotinylation 

with biotin-XNHS this reaction is highly specific and does not require subsequent cleavage of 

remaining proteins (Cao et al., 1998; Schläger, 2007). 

As described before, the overall expression level of receptors at the cell surface is affected by 

different receptor cycling mechanisms (constitutive endocytosis, receptor recycling, translocation of 

new receptors) altogether. For that reason, results which are obtained by flow cytometry using 

anti-receptor antibodies represent the gross internalization/recycling of the receptor. In contrast, 

specific receptor biotinylation offers the possibility to quantifiy the net internalization and recycling 

of a distinct receptor population. Therefore, biotinylated cells were stimulated with receptor agonists 

and receptor expression was measured with fluorochrome-labeled streptavidin by flow cytometry. 

The results are not affected by constitutive cycling receptors or translocation of newly sequestered 

receptors to the plasma membrane. Besides quantification of constitutive and ligand-induced 

internalization by flow cytometry the method was also suitable to track internalization and recycling 

of a distinct receptor population without unwanted background signals from prestored receptors, 

using immunofluorescence microscopy. 

In order to detect the whole receptor population expressed within a given cell we generated a 

monoclonal antibody (YC8) which specifically bound to the AP-peptide and was not affected by prior 

ligand binding. YC8 binding was not altered by biotinylation or binding of streptavidin, which made 

YC8 the perfect tool for double immunofluorescence analysis. At the same time it would have been 

useful to generate another antibody where AP-binding is negatively affected by 

biotinylation/streptavidin-binding since this would have allowed to quantify the translocation rate of 

newly synthesized receptors. YC8 may be useful in further studies on the regulation of other 

AP-tagged transmembrane proteins which still lack specific antibodies (Fredriksson et al., 2003; Tang 

et al., 2012). 

 

We utilized the biotin/streptavidin system to quantify constitutive internalization of CXCR4 and CCR5. 

Without agonist induction CXCR4 was internalized from the cell surface at a constant rate of 12.1 % 

cell surface expressed receptors per hour. Compared to 13.7 % internalization per hour in 
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CCR5-expressing cells both endocytosis rates were at a comparable level. Classical antibody staining 

with YC8 did not reveal any changes of receptor expression due to signal overlap of recycled 

receptors together with those receptors which were freshly expressed on the cell surface. Previous 

studies on constitutive endocytosis of transmembrane proteins were done using 

immunofluorescence or immunoblot images or by flow cytometry using anti-receptor antibodies. 

Results from these studies (approx. 59 % internalization after 45 minutes for CXCR4 or approx. 60 % 

after 1 hour for the prostate-specific membrane antigene) clearly differ from our own results (Liu et 

al., 1998; Zhang et al., 2004). Recent studies on the constitutive internalization of a serotonin 

transporter protein using a biotin-based detection system obtained results of 10.8 % internalization 

per hour, which were more in line with our results (Rahbek-Clemmensen et al., 2014). Especially the 

discrepancy between the reported constitutive internalization rates of CXCR4, which were obtained 

by flow cytometry using anti-receptor antibodies, is conspicuous since we observed comparable 

internalization rates for CXCR4, but in presence of receptor agonist. 

Apart from reliable methods for their quantification other functional aspects of constitutive 

endocytosis have been a topic of recent studies. Mutations of the C-terminal domain of CXCR4 

revealed that constitutive and ligand-dependent internalization is modulated by different C-terminal 

sequence motifs (Marchese & Benovic, 2001; Futahashi et al., 2007). Furthermore, it is assumed that 

constitutive receptor internalization is part of the regulatory system regarding the accessibility of 

chemokines (Coggins et al., 2014). Whereas binding of CXCL12 to CXCR4 induces typical chemokine 

receptor mediated cell signaling, CXCR7 is utilized as a decoy receptor for the removal of the same 

ligand CXCL12 by constitutive endocytosis and subsequent degradation, in the absence of activation 

of signaling pathways (Busillo & Benovic, 2007; Naumann et al., 2010; Marchese, 2014). To increase 

efficiency of ligand removal the binding affinity of CXCL12 to CXCR7 is enhanced (Luker et al., 2011). 

A comparable system was observed for the Duffy antigen receptor D6 and CCR5, where D6 functions 

as a signaling-incompetent decoy receptor for the chemokine ligand CCL3 (Galliera et al., 2004; 

Weber et al., 2004). 

Despite these facts the detailed mechanisms of constitutive internalization are not fully understood, 

yet. Besides clathrin-mediated internalization it becomes more and more evident that 

clathrin-independent mechanisms play also an important role (Mueller et al., 2002; Zhang et al., 

2004; Scarselli & Donaldson, 2009; Uwada et al., 2014). In this context our system is well suited to 

detect potential alterations of constitutive internalization of CXCR4 and CCR5 after inhibiting the 

clathrin uptake system. 

Furthermore, it is still a matter of debate whether constitutive receptor internalization is merely a 

consequence of normal turnover of the plasma membrane in a passive manner or whether it is 

attributed to an equilibrium between an active and inactive form of the receptor where the 

subpopulation of active receptors have the potential to undergo constitutive internalization 

(Shinitzky, 1984; Lagane et al., 2005). Our results which showed an almost identical internalization 

rate of approx. 13% per hour for both CXCR4 and CCR5 favor the hypothesis of a strictly passive 

receptor uptake mechanism. To address this question in detail we incubated CCR5 cells with an 

excess of the inverse receptor antagonist TAK779 and the partial antagonist Met-CCL5 (Baba et al., 

1999; Longden et al., 2008). In parallel we tested modulation triggered by the receptor agonist CCL5. 

TAK779 treatment inhibited constitutive internalization by 2.8 % (10.9 % per hour with TAK779 vs. 

13.7 % without TAK779). Partial antagonist Met-CCL5 accelerated the internalization process (15.6 % 

per hour) but not as much as the full agonist CCL5 did (9.3 % per minute). The results obtained with 

TAK779 are in conflict with the hypothesis of passive receptor internalization triggered by membrane 

fluidity, since binding of an inverse antagonist should not influence the internalization rate. Instead, 
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the result favors the hypothesis of basal receptor activity of a receptor subpopulation which triggers 

constitutive internalization. Binding of the inverse receptor antagonist TAK779 partially inhibits this 

activity, which then results in reduced internalization. 

Previous studies assumed partial antagonism of Met-CCL5 (Olbrich et al., 1999; Longden et al., 2008). 

However, the detection methods applied were not sensitive enough to reveal minor effects on 

receptor activities, whereas our results with the improved internalization assay now clearly show the 

partial antagonism of Met-CCL5 regarding receptor internalization. Studies in CHO cells provide a 

possible explanation for the agonistic behavior of Met-CCL5. It is hypothesized that an endogenous 

aminopeptidase is responsible for the cleavage of the N-terminal methionine retransforming 

Met-CCL5 into the full agonist form CCL5, which results in receptor internalization (Longden et al., 

2008). It should also be of interest whether well established CCR5 entry inhibitors in HIV therapy 

such as maraviroc or vicriviroc affect constitutive receptor internalization, since therapeutics which 

induce a faster receptor removal from the cell surface without triggering cell signaling should be 

preferred, because of the depletion of potential viral entry ports (Westby & van der Ryst, 2005). 

 

In contrast to constitutive GPCR internalization, which came into focus only during recent years, 

ligand-induced receptor internalization has been studied in detail for more than two decades. In 

order to quantify ligand-induced internalization and subsequent recycling of CXCR4 and CCR5 we 

stimulated cells with adequate ligand concentrations. The results obtained with anti-AP antibodies 

demonstrated receptor internalization of approx. 50 % after 30 minutes for both receptors. 

Streptavidin staining of BirA-biotinylated receptors showed the same result, thus confirming the 

validity of the new method. Even though CXCR4 and CCR5 showed an equal internalization rate in 

quantitative terms, their intracellular processing differs once they have entered the cell. After ligand 

stimulation primary vesicles, generated by clathrin-dependent or –independent processes, are fused 

with early endosomes, which catalyze ligand release under mild acidic conditions(Hanyaloglu & von 

Zastrow, 2008). At this stage the internalized receptors are sorted into two different cycling 

pathways (Borroni et al., 2010). CCR5 is preferentially transferred into recycling endosomes and 

accumulates in the perinuclear area of the cells (Signoret et al. 2000; Pollok-Kopp et al. 2003). From 

the recycling endosomes CCR5 rapidly recycles back to the cell surface resulting in receptor 

resensitization (Oppermann, 2004). In contrast, CXCR4 undergoes early ubiquitination after 

ligand-binding, and this directs CXCR4 into late endosomes/lysosomes where the receptor is 

degraded (Marchese & Benovic, 2001; Marchese et al., 2003). Later studies demonstrated that part 

of CXCR4 receptors are also directed into recycling endosomes depending on the duration of ligand 

stimulation (Zhang et al., 2004). These findings highlight CXCR4 and CCR5 as interesting model 

proteins for the study of receptor recycling. 

In our studies with anti-AP staining approx. 30 % of CXCR4 and 20 % of CCR5 expression was 

restored, indicating a higher recycling rate for CXCR4 than for CCR5. The problem of those classical 

antibody-based methods is that during the recycling phase the results can be obscured by newly 

synthesized receptors which are translocated to the plasma membrane from internal stores. We 

used the biotin system to specifically detect the recycling of those receptors which were internalized 

after ligand stimulation. For those receptor populations no recycling was detected. The apparent lack 

of recycling in this receptor population could be due to restoration of cell surface expression of the 

receptor by de novo receptor synthesis or by translocation of prestored receptors to the plasma 

membrane (Geminder et al., 2001; Scott, 2011). Furthermore, it is known that recycled CCR5 

receptors can rapidly reinternalize during prolonged agonist stimulation (Signoret et al. 2000). To 

prevent receptor reinternalization we added receptor antagonists during the recycling phase to 
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facilitate dissociation of bound agonist and furthermore inhibit agonist-binding. TAK779-treated and 

biotinylated CCR5 cells showed a significantly enhanced recycling rate as compared to untreated cells 

and this finding was confirmed by anti-AP staining. These results indicated that rapid 

reinternalization of recycled receptors was responsible for the lack of recycling. CXCR4 cells showed 

an identical behavior, yet to a lower degree. When biotinylated CXCR4 and CCR5 receptors were 

compared, they revealed a significant difference regarding their recycling behavior. Whereas CCR5 

receptor recycled back to the plasma membrane, CXCR4 was retained within the cell. These findings 

correspond to data in the literature underlining that CXCR4 can indeed partially recycle back to the 

cell surface. Furthermore, the data emphasized the high relevance of receptor reinternalization after 

ligand stimulation. Differences between biotinylated and anti-AP stained receptors could be partially 

attributed to the translocation of prestored receptors from internal stores to the plasma membrane 

during the recycling phase. Overall these results showed that sensitivity of the biotin detection 

system was well suited to reveal and quantify minor differences in the recycling rate of 

transmembrane proteins. 

The combination of receptor biotinylation and anti-AP staining was also applicable for the analysis of 

the intracellular distribution of internalized receptors via immunofluorescence microscopy. 

Unstimulated cells showed a bright ring fluorescence at the cell surface. Signals from anti-AP and 

streptavidin completely overlapped except for a small intracellular CCR5 population within the 

cytoplasm, which was only detected by anti-AP staining. According to localization studies with CCR5 

in blood cells this intracellular signal probably represented prestored receptors in the secretory 

apparatus of golgi and ER (Achour et al., 2009; Scott, 2011). After 30 minutes of ligand stimulation 

the fluorescence at the cell surface disappeared and receptors accumulated in the perinuclear area 

of the cell. The overlay of both fluorescence signals indicated a higher concentration of biotinylated 

receptors in the perinuclear region, whereas additional receptor-containing vesicles showed a more 

disperse distribution. At this stage the highly concentrated vesicles most likely represented 

internalized CCR5 receptors which were located in transferin-positive recycling endosomes which 

were targeted for recycling back to the cell surface (Signoret et al. 2000). The more disperse 

distributed vesicles were presumably identical to prestored receptors in unstimulated cells. 

30 minutes after ligand removal and TAK779 treatment biotinylated receptors were no longer 

present in the perinuclear region but, to some extent, recycled back to the cell surface. Anti-AP 

stained receptors showed a clear restoration of the ring fluorescence at the plasma membrane 

without significant reduction of the intracellular signal, which indicated a restoration of receptor cell 

surface expression from intracellular pools in combination with new receptor biosynthesis going on 

in parallel. Overall these morphological findings coincided with the results obtained by flow 

cytometry and data from the literature. Additionally, they revealed a significant contribution of 

receptor translocation for the reconstitution of receptor expression on the cell surface after ligand 

stimulation. 

 

Since the internalization and recycling characteristics of many GPCR are determined by sequence 

motifs which are contained within their carboxyl terminus, we decided to create a CXCR4-CCR5CT 

chimeric receptor by substituting the entire C-terminus of CXCR4 with the equivalent sequence of 

CCR5 (X4 Δ(305-352);I R5 (306-352)) (Signoret et al., 1998; Lagane et al., 2005). We thereby 

addressed whether we could reconstruct the typical recycling behavior and the intracellular 

distribution of CCR5 by transferring its C-terminal region to CXCR4. A reverse approach with the 

substitution of the C-terminus of CCR5 for the C-terminal region of CXCR4 fails because of improper 
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protein folding which results in low cell surface expression of the chimeric receptor (Venkatesan et 

al., 2001). 

The chimeric receptor was expressed at sufficient expression levels and was functionally intact as 

demonstrated by ligand-induced N-acetyl-β-D-glucosaminidase release. Compared to CXCR4 WT the 

EC50-value of enzyme release was slightly shifted to higher values (2 nM vs. 29 nM), whereas the 

Emax-value was unaffected.  

In the absence of agonist the receptor showed a constant internalization rate of 12.1 % per hour, 

which was identical to the constitutive internalization rate of CXCR4 WT. It was reported that a 

S(E/D)S motif at position 344 to 346 in the C-terminal region of CXCR4 is crucial for constitutive 

endocytosis (Futahashi et al., 2007). Due to the substitution with the C-terminal region of CCR5 the 

motif was changed to GEQ. The high similarity to the original motif (glutamic acid flanked by two 

neutral amino acids) may explain why constitutive internalization of the chimeric receptor was very 

similar as compared to CXCR4 WT. 

After stimulation with saturating concentrations of CXCL12, both AP-stained and biotinylated 

CXCR4-CCR5CT receptors showed restricted receptor internalization compared to CXCR4 WT, which 

may be attributed to the lower efficacy of CXCR4-CCR5CT. Other studies demonstrated that besides 

the S(E/D)S motif, which is crucial for constitutive internalization, several other residues on CXCR4 

are crucial for the ligand-dependent receptor internalization (Futahashi et al., 2007). Mutation of 

some of these motifs may contribute to the diminished ligand-induced receptor internalization. The 

intracellular distribution, visualized by immunofluorescence microscopy, resembled internalized 

CXCR4 WT receptors. Furthermore it was reported that a C-terminal motif of CXCR4 is crucial for 

ubiquitination and sorting for the degradative pathway (Marchese & Benovic, 2001). According to 

our results other areas which were not located in the receptor C-terminus were at least as important 

as the C-terminal motif for lysosomal sorting. 

The recycling rate of approx. 20 % was on a comparable level to WT receptors. This result underlined 

the hypothesis that restoration of membrane expressed receptors, measured by anti-AP staining, 

after ligand stimulation was attributed to a passive transport of receptors from the cytoplasm to the 

cell surface. In accordance to CXCR4 and CCR5 biotinylated and non antagonist-treated receptors 

showed no recycling. To ensure that this result was not affected by rapid reinternalization, as 

demonstrated for CXCR4 and CCR5, these experiments should be repeated in presence of receptor 

antagonist. 

 

In summary, we demonstrated that the specific biotinylation of BirA biotin ligase could be utilized for 

in vivo studies of different transmembrane proteins. Exemplified by CXCR4, CCR5 and a 

corresponding chimera we quantified the constitutive endocytosis rate in the absence of receptor 

antagonist for the first time in a reliable manner. Furthermore, we demonstrated that the classical 

antibody-based detection system was not fully suitable for the quantification of receptor recycling 

after ligand stimulation, since the results could be altered by translocation of cytoplasmatic receptors 

and rapid receptor reinternalization. Additionally, we determined the intracellular location of 

internalized receptors after ligand treatment, which was in close proximity to prestored receptors 

but still separated in a compartment of high density. 
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5.2 Cellular response on ligand-independent translocation of β-arrestin 2 

to the receptor and the role of receptor homodimerization for receptor 

trafficking 
Chemokine receptors including CXCR4 and CCR5, belong to the family of seven-transmembrane 

receptors also known as G protein-coupled receptors (GPCRs).The classical model of GPCR signaling is 

based on the interactions between heterotrimeric G proteins after agonist-mediated activation of 

the receptor (Janetopoulos, Jin, & Devreotes, 2001). The interaction is accompanied by G protein 

activation and a subsequent dissociation into α and βγ-subunit, each activating different signaling 

pathways. Among other effects this results in intracellular calcium mobilization (Gilman & Casey, 

1988) and MAP kinase activation (Goldsmith & Dhanasekaran, 2007). Regulation of GPCR signaling is 

achieved by various mechanisms which involve phosphorylation of the C-terminal receptor region. 

One of the main desensitization mechanisms is GRK (G protein-coupled receptor kinase) -mediated 

receptor phosphorylation followed by binding of β-arrestin proteins which inhibit rebinding of 

G proteins by steric hindrance (Lefkowitz, 1998). β-Arrestin binding also mediates receptor 

endocytosis via clathrin coated pits, followed by translocation of the receptor complex into distinct 

intracellular compartments (Laporte et al., 1999). In this context it was shown that β-arrestin also 

mediates the ubiquitination of some receptors and this is crucial for their internalization (Pickart, 

2001; Shenoy et al., 2001). Findings which suggested that β-arrestin is responsible for the G-protein-

independent activation of signaling proteins (Luttrell, 1999) created the base for the hypothesis of 

β-arrestin-mediated signaling (Lefkowitz & Shenoy, 2005; Shukla et al., 2012). An overview of the 

major β-arrestin functions during GPCR signaling is shown in Figure 41. In order to clearly dissect the 

role of β-arrestin for signaling and trafficking of CXCR4 and CCR5 in the absence of ligand binding we 

utilized a chemical-induced heterodimerization system which consisted of three components. The 

FK506-binding protein (FKBP12), the FKBP rapamycin-binding domain from the protein mTOR (FRB) 

and the AP21967 rapamycin analog (rapalog) (Chen et al., 1995; Bayle et al., 2006; Leone et al., 2006; 

Edwards & Wandless, 2007). In order to use the non-immunosuppressive rapalog AP21967, which 

can not bind native WT FRB, a mutated version of FRB was used (ARIAD, 2002; Clontech Laboratories, 

2008). By fusing FKBP12 (DmrA) and FRB (DmrC) either to the C-terminus of CXCR4/CCR5 or 

β-arrestin 2 we achieved a ligand- and G protein-independent translocation of β-arrestin 2 to the 

receptor after treatment with AP21967. In contrast to PTX-based inhibition of G proteins, which 

leads to inhibition of both β-arrestin- and G protein-dependent signaling altogether (Denis et al., 

2012), this method allowed a clear discrimination between β-arrestin- and G protein-mediated 

signaling. 
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Figure 41: Overview of β-arrestin-mediated effects during GPCR signaling and trafficking 
a) In the classical model of GPCR signaling receptor activation is induced by agonist binding, which leads to a 

conformational change of the receptor. The conformational change allows binding and activation of heterotrimeric 

G proteins which subsequently dissociate into α and βγ subunit and these mediate G protein dependent downstream 

signaling. C-terminal serine/threonine residues of the receptor are phosphorylated by GRKs and facilitate β-arrestin 

binding. Binding of β-arrestin to the receptor inhibits rebinding of G proteins thus resulting in receptor desensitization. 

c) Besides desensitization, β-arrestin acts as a scaffold protein for various proteins which are crucial for receptor 

internalization (AP2) and ubiquitination (Mdm2 and Nedd4). Furthermore, β-arrestin interacts with Tyr kinases such as 

ERK or c-Src which are involved in G protein independent signaling. Figure modified from Shukla et al. 2012.  
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To guarantee the stable expression of modified proteins cells were tested by flow cytometry and 

immunoblotting. The size shift (approx. 11 kDa) compared to WT proteins demonstrated the positive 

modification of both receptors and β-arrestin with the corresponding Dmr domains. Treatment of 

these cells with AP21967 led to accumulation of β-arrestin 2 in the plasma membrane fractions as 

demonstrated by sucrose gradient centrifugation of cell lysates and subsequent immunoblotting. The 

resulting immunoblot showed the size represented by the fusion protein (approx. 55 kDa) and a 

second band of approx. 48 kDa which was only visible in ultracentrifuged samples. The size 

corresponded to the molecular weight of unmodified β-arrestin 2. It remains at presence unclear 

whether ultracentrifugation promoted dissociation of the Dmr domain or if endogenous arrestin is 

concentrated in the membrane fraction of the sucrose gradient. 

Translocation of β-arrestin 2 to the cell membrane was concentration- and time-dependent and 

reached an optimal level after 2 hours of treatment with 0.1 µM AP21967. Cytosolic fractions 

showed no alterations in β-arrestin 2 expression compared to untreated cells which suggested that 

β-arrestin-DmrC is expressed in large excess as compared to receptor-DmrA fusion partners at the 

plasma membrane. This would lead to an imbalance between arrestin and receptor resulting in a lack 

of potential binding partners for the AP21967/βArr-DmrC complex. 

The result of time- and dose-dependent β-arrestin translocation to the cell membrane after AP21967 

treatment was independently confirmed by immunofluorescence microscopy. With increasing 

AP21967 concentration and time the homogenously distributed arrestin was translocated from the 

cytoplasm to the cell membrane as visualized by increasing membrane fluorescence. Quantitative 

analysis after image processing revealed that the relative fluorescence in the cell membrane area of 

AP21967-treated cells was significantly higher as compared to untreated cells. However, significant 

fluorescence remained in the cytoplasmic area and this result underlined once again that only a 

minor portion of the transfected βArr-DmrC translocated to the cell membrane, whereas the rest of 

the protein remained cytosolic. 

 

In the past it was hypothesized that upon GPCR-binding, activated β-arrestin undergoes a 

conformational change allowing β-arrestin to act as a scaffolding protein for interacting 

proteins(Gurevich & Gurevich, 2004). It was assumed that ß-arrestins exist in an inactive state and 

are transformed into an active form after binding to the phosphorylated residues of the GPCR 

(Gurevich & Benovics, 1993). This model was challenged by studies showing that β-arrestin even in 

its inactive state interacts and subsequently activates the MAP kinase JNK3 (Song et al., 2006). In 

contrast, activation of ERK 1/2 depends on the binding to previously activated arrestins (Coffa et al., 

2011). It is still not understood which β-arrestin-mediated cellular functions require the transition of 

β-arrestins from an inactive to an active state after binding to a phosphorylated GPCR. We utilized 

the AP21967 dimer system to test whether translocation of an inactive form of β-arrestin to the 

receptor alone is sufficient for receptor desensitization, receptor internalization and β-arrestin-

mediated signaling. 

In order to test the ability of β-arrestin 2 to dampen ligand-induced calcium release we 

supertransfected stably transfected Rec-DmrA and Rec-DmrA/βArr-DmrC cells with a bicistronic 

vector carrying a chimeric version of Gαqo. Cellular expression of a Gαq-subunit enabled the 

PLC-mediated calcium release from the ER in a cellular background which lacks the appropriate 

G proteins (Ku et al., 1995). Additionally, the GFP marker allowed selecting for positively transfected 

cells by gating on GFP fluorescence during flow cytometry. After ligand stimulation we observed an 

increased calcium response in GFP-expressing cells which is attributed to the expression of Gαq since 
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HEK293 cells do not provide the optimal G protein repertoire to transduce chemokine receptor 

signals into those cells (Atwood et al., 2011). 

To test the potential of β-arrestin to attenuate ligand-induced calcium release Rec-DmrA and 

Rec-DmrA/βArr-DmrC cells were preincubated with AP21967 prior to ligand stimulation. Only in 

Rec-DmrA/βArr-DmrC expressing cells AP21967-induced translocation of β-arrestin-DmrC fully 

blocked the subsequent ligand-induced calcium response. This result confirmed the classical model 

of β-arrestin binding to the activated GPCR which results in desensitization by steric hindrance of 

G protein binding (Shukla et al., 2012). Binding to phosphorylated residues of the GPCR and an 

activation-induced conformational change was not necessary for the desensitizing effect of 

β-arrestin. One may argue that the desensitizing effect of AP21967 treatment could simply be due to 

receptor internalization and depletion of ligand binding sites from the cell surface. However, since 

stably transfected HEK cells expressed receptors in large excess, even reduction by 80 % would not 

have impaired the signaling capacity of theses cell noticeably. 

 

Apart from desensitization, GPCR signaling is also down-regulated by ligand-induced receptor 

internalization (Pierce et al., 2002). After β-arrestin binding to phosphorylated receptors β-arrestin 

interacts with the vesicle-forming protein clathrin and the β2-subunit of the adaptor protein AP2, 

which mediates receptor internalization via early endosomes (Kim & Benovic 2002; Kang et al. 2013). 

β-Arrestin 2 activation via binding to phosphorylated receptors was previously reported to be crucial 

for receptor internalization via AP2 (Gurevich & Gurevich, 2014). Here we tested whether β-arrestin 

2 translocation to the receptor is sufficient to induce receptor internalization in the absence of ligand 

stimulation. 

In Rec-DmrA/βArr-DmrC expressing cell lines AP21967 treatment induced CXCR4 and CCR5 

internalization to a comparable degree as ligand-induced internalization. Cell lines expressing only 

Rec-DmrA in the absence of βArr-DmrC did not undergo AP21967-induced receptor internalization. 

Additionally in these cells receptors were less efficiently internalized after ligand-stimulation as 

compared to β-arrestin 2 overexpressing cells. This underlined the importance of β-arrestin during 

the internalization process. The internalization kinetics in AP21967 treated cells was delayed 

compared to ligand-stimulated cells. This result was not unexpected since chemical-induced 

translocation of β-arrestin 2 to the cell membrane was not detectable prior to 30 minutes of 

AP21967 treatment. These results clearly showed that transition into an activated conformation was 

not necessary for β-arrestin-mediated receptor internalization, which stands in a direct contrast to 

previous reports postulating that binding to the phosphorylated receptor and subsequent 

conformational changes are crucial for the β-arrestin binding to β2-adaptin and clathrin heavy chain 

(Kim & Benovic 2002).  

The results obtained by flow cytometry were confirmed by immunofluorescence microscopy of 

AP21967-treated cells. With increasing time the membrane expression of CXCR4 was progressively 

reduced, whereas the intracellular fluorescence increased. In ligand-stimulated CCR5-expressing cells 

internalized receptors are located primarily in recycling endosomes in the perinuclear area, whereas 

CXCR4 show a diffuse redistribution in form of small intracellular vesicles representing lysosomes 

(Orsini et al. 1999; Signoret et al. 2000; Marchese & Benovic 2001). Interestingly, AP21967 treament 

mimicked the same intracellular distribution of internalized CXCR4 and CCR5 receptors as induced by 

their natural ligands CCL5 and CXCL12. This can may be explained with the arrestin-mediated 

ubiquitination of CXCR4 by the unbiquitin ligase AIP4, which targets the internalized receptor 

towards the proteosomal degradation machinery (Marchese et al., 2003; Kommaddi & Shenoy, 

2013). In parallel, truncation mutants of the C-terminal domain of CCR5 led to the identification of 
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four amino acids which are crucial for receptor recycling independent of the phosphorylation status 

of the receptor (Delhaye et al., 2007). These results taken together suggest that ligand-induced and 

GRK-catalyzed receptor phosphorylation is not essential for receptor targeting towards either 

recycling or degradation. Instead it seems likely that the information for distinct receptor trafficking 

is encoded in the C-terminal region of either CXCR4 or CCR5 in form of either recycling or 

ubiquitination motifs which can be triggered or utilized by arrestin-related proteins. Activation of 

these motifs causes the activated receptors to follow a predetermined route back to the cell surface 

for restimulation or into proteasomes for degradation. 

We also checked by immunofluorescence whether β-arrestin binds to the internalized receptor or 

whether this complex dissociates during receptor trafficking. Immunofluorescence microscopy in 

Rec-DmrA/βArr-DmrC expressing cells revealed that in both cell lines β-arrestin is recruited to the 

receptor following AP21967 treatment, evident by brighter membrane fluorescence, but did not 

follow the sequestered receptor during intracellular trafficking. Studies regarding the binding affinity 

of β-arrestin towards phosphorylated receptor residues demonstrate that β-arrestin is cointernalized 

with receptors such as AT1AR, V2R or NK1R, which express Ser and Thr clusters in the C-terminal 

region (class B GPCR) (Oakley et al., 2000; Oakley et al.,, 2001). It is assumed that accumulation of 

negatively charged phospho-serine and –threonine residues causes high affinity binding of β-arrestin 

to these receptors and thereby stabilizes complexes between these two proteins. Receptors with 

only single Ser and Thr residues (class A GPCR) are also internalized by β-arrestin-mediated AP2 

binding, but β-arrestin quickly detaches from the receptor due to the lack of tight binding to 

phosphorylated residues (Marchese et al., 2010). Since receptors are not phosphorylated during 

AP21967 treatment an additional binding between receptor and β-arrestin apart from Dmr-mediated 

binding could not be expected. Thus, binding of β-arrestin followed by fast detachment induced by 

the lack of phosphorylated residues is likely. 

 

Besides its role during receptor desensitization and internalization β-arrestin can also act as a signal 

transducer for G protein independent signaling. According to the traditional model of 

G protein-mediated ERK activation inactive ERK exists in a signal complex together with Raf and MEK 

(Chang et al., 2003; Eishingdrelo & Kongsamut, 2013). Raf activates the downstream protein kinase 

MEK by phosphorylation which facilitates ERK activation (Chang et al., 2003). Studies with AT1AR 

demonstrate that β-arrestin acts as a scaffold protein for this signal complex and that prolonged 

binding of all three partners to β-arrestin results in enhanced ERK phosphorylation (Luttrell et al., 

2001). This finding supported an alternative model of G protein independent but β-arrestin-mediated 

signaling. Cells expressing either a mutated form of the β2AR receptor, which does not bind 

G proteins, or were treated with the Gα inhibitor PTX still mounted a detectable ERK response 

(Shenoy et al., 2006). Due to the fact that PTX treatment does not inhibit all G proteins and receptor 

mutations may also affect other cell functions we checked for β-arrestin-mediated ERK activation in 

the absence of ligand stimulation utilizing the AP21967 dimer system (Mangmool & Kurose, 2011). 

CCR5-DmA/βArr-DmrC or CCR5-DmrA expressing cells were treated either with CCL5 or AP21967 and 

checked for phosphorylated ERK 1/2 by immunoblotting. In both cell lines ERK phosphorylation was 

detected after five minutes of CCL5 stimulation, which was abolished by PTX pretreatment. This 

effect was more prominent in cells lacking arrestin overexpression. A possible explanation might be a 

disturbed ratio between β-arrestin and other ERK-activating proteins such as Raf and MEK. Since it 

was reported that β-arrestin, Raf and MEK form a complex even in an inactive state it is possible that 

arrestin overexpression led to a lack of binding partners to form a functional ERK-activating complex 

(Chang et al., 2003; Eishingdrelo & Kongsamut, 2013). Although we observed a CCL5-induced ERK 
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phosphorylation, AP21067 treatment on its own did not result in ERK phosphorylation. Since 

β-arrestin-mediated ERK phosphorylation proceeds with slower kinetics we tested additional (later) 

time points with no success (Sudha K Shenoy et al., 2006). 

A possible explanation for the absent ERK phosphorylation is lack of receptor phosphorylation which 

is necessary for β-arrestin activation. Previous studies on β-arrestin-mediated ERK activation were 

done using receptor mutants which cannot bind to G proteins after ligand activation but are still 

phosphorylated by GRKs resulting in subsequent β-arrestin activation. Therefore our result indicated 

that the conformational change of β-arrestin, after its activation, is crucial for the 

β-arrestin-mediated ERK activation. Further studies confirm a weak binding of ERK to inactive β-

arrestin which is strengthened after arrestin activation (Gurevich & Gurevich, 2004). The 

conformational change of β-arrestin after its activation makes it a better substrate for MEK 

phosphorylation, which results in higher ERK phosphorylation (Coffa et al., 2011). 

To address the question whether the defect in ERK phosphorylation is attributed to the lack of 

β-arrestin activation it would be interesting to test whether translocation of a constitutively active 

β-arrestin variant to the receptor induces a robust ERK phosphorylation (Gray et al., 2003). Such a 

constitutive β-arrestin with enhanced receptor binding in the absence of ligand-induced 

phosphorylation is available in form of the β-arrestin-1 R169E mutant with disrupted polar core 

(Penn et al., 2001). Furthermore, it should be studied whether AP21967 treatment and the resulting 

β-arrestin translocation to the receptor induces JNK3 phosphorylation as it was reported that JNK3 

binds to β-arrestin even in its inactive form (Miller et al., 2001; Gurevich & Gurevich, 2004). We 

already gained a rough overview of the phosphorylation status of many players of different signal 

pathways, including JNK3, using a commercial phospho-kinase array. However, neither ligand nor 

AP21967 treatment led to significant changes of the phosphorylation status of the tested proteins. A 

detailed analysis of the phosphorylation status of JNK3 after AP21967 treatment remains to be 

studied. 

Another recent concept of β-arrestin-mediated signaling relates to the concept of biased signaling. 

According to this concept binding of biased receptor ant-/agonists stabilize a particular receptor 

conformation which favours the activation of either G protein or β-arrestin-mediated signaling 

pathways (Reiter et al., 2012). Since β-arrestin is a multifunctional adaptor protein which interacts 

with various proteins, including protein kinases, it can be seen as a central regulator of cell signaling 

and trafficking (Xiao et al., 2007). It was reported that the β-blocker carvedilol, a weak β-arrestin 

biased agonist which binds to β1 and β2 adrenergic receptors, mediates transactivation of the 

epidermal growth factor receptor and G protein independent ERK phosphorylation, which is assumed 

to contribute to cardioprotection (Noma et al., 2007; Wisler et al., 2007; Reiter et al., 2012). In 

parallel it was reported that binding of the non biased ligand isoproterenol to the same receptors 

causes cardiotoxicity (Bristow, 2000; Lohse et al., 2003). This form of biased signaling was explained 

by phosphorylation of the receptor C-terminus by different GRKs. Carvedilol induces phosphorylation 

only at GRK6 specific sites, whereas isoproterenol cause phosphorylation at both GRK2 and GRK6 

sites (Wisler et al., 2014). Furthermore it was demonstrated that these different phosphorylation 

patterns are required for either receptor desensitization and internalization (GRK2/3) or β-arrestin 

mediated ERK activation (GRK5/6) (Kara et al., 2006; Zidar et al., 2009). Transferring these results to 

our own findings it would be interesting to see whether overexpression of GRK6 leads to partial ERK 

activation after AP21967 treatment, thus mimicking a form of β-arrestin biased signaling. 

The model of biased signaling has interesting implications for the cell surface regulation of HIV co 

receptors CXCR4 and CCR5. Our results showed that β-arrestin mediates receptor desensitization and 

internalization, but did not result in noticeable cellular signaling. The results suggest that 
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β-arrestin-biased ligands for CXCR4 and CCR5 may induce receptor internalization and thereby 

removal of HIV entry ports from the cell surface without activating detrimental cellular responses. 

 

The classical concept of chemokine-induced receptor activation consists of monomeric chemokines 

binding to monomeric receptors which subsequently induces a cellular response (Rajarathnam et al., 

1994). During recent years this concept was more and more challenged due to accumulation of 

studies which demonstrate that GPCRs indeed form hetero- or homo-dimers or even multimers 

(Milligan & Bouvier, 2005; Pin et al., 2007; Ferré et al., 2010). The constitutive dimerization of GPCRs, 

especially class C GPCRs, is meanwhile well accepted (Kniazeff et al., 2011). Although GPCRs exist in a 

large variety to interact with all possible kinds of ligands the model of receptor dimerization 

increases the number of potential interaction partners even more following the principle of 

allosterism (Breitwieser, 2004). Allosteric interactions describe the process where binding of a 

compound to a different site than the active binding site induces a conformational or activity change, 

respectively (Ferré et al., 2014). GABAB receptors in a dimeric complex, where the agonists binds 

specifically at the GABAB1R, signal via G proteins related to the GABAB2R (Robbins et al., 2001). 

Nonetheless the model of monomeric receptor signaling is still valid, because it was demonstrated 

that several GPCRs are able to activate G proteins effectively in a strictly monomeric form (Whorton 

et al., 2007; Kuszak et al., 2009). Currently it is still a matter of debate whether ligand-binding affects 

receptor dimerization. Early reports postulated that CXCL12 binding to CXCR4 forces the receptor 

into a homodimeric form were challenged by results showing that the constitutive CXCR4 dimer is 

totally unaffected by CXCL12 (Babcock et. al., 2003; Milligan, 2004). Analysis of CCR5 dimers also 

were reported to influence ligand binding (Babcock et al., 2003; Milligan, 2004). A research group 

which postulated a ligand-induced homodimerization of CCR2, CXCR4 and CCR5 additionally 

hypothesized the subsequent activation of the JAK/STAT pathway as a consequence of this 

dimerization(Mellado et al. 2001b). According to these authors the homodimerization induces a JAK-

dependent receptor phosphorylation of the receptor leading to a recruitment of STAT proteins to the 

receptor followed by their activation (Mellado et al. 2001a). This concept would imply that ligand-

induced receptor homodimerization would facilitate G protein independent JAK/STAT activation 

followed by STAT-induced gene expression (Mellado et al. 2001b). 

To test the hypothesis that receptor homodimerization can induce G protein independent receptor 

signaling we utilized the Dmr system in combination with the dimerizing agent AP20187. Hereby the 

DmrA domains of two receptors were bound by AP20187 which brought two receptors in close 

proximity, thus mimicking ligand-induced receptor homodimerization. We incubated Rec-DmrA 

expressing cells with AP20187 and tested for cellular responses. In contrast to previous studies 

receptor homodimerization induced by AP20187 was neither sufficient to induce calcium release nor 

to mediate ERK phosphorylation. Receptor homodimerization did not lead to receptor internalization 

on its own. We observed significantly enhanced ligand-induced receptor internalization after 

pretreatment with AP20187. This effect was present in CXCR4- and CCR5-expressing cell lines. The 

internalization rate was overall higher in β-arrestin overexpressing cell lines, underlining once again 

the crucial role of arrestin for receptor internalization. 

Even though it had been reported that receptors may be preferentially expressed as dimers or forced 

into a dimeric state by agonist binding, the relevance for receptor trafficking and internalization is 

poorly understood (Milligan, 2004; Terrillon & Bouvier, 2004b). Although we did not analyzed 

JAK/STAT activation after receptor homodimerization our results showed that receptor 

homodimerization is not sufficient to promote calcium release or ERK activation. However we did 
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observe an increased ligand-induced uptake of receptor homodimers by the endocytic machinery 

indicating a potential preference for dimeric structures compared to monomers. 

It should be noted, that we did not positively demonstrate that AP20187 indeed induced 

CXCR4/CCR5 homodimerization. This could be experimentally addressed using FRET or BRET 

technology (Angers et al., 2000; Kraft et al., 2001; Floyd et al., 2003).  

 

In summary, our results underscore the versatility of β-arrestin during chemokine receptor 

trafficking. β-arrestin provided fast receptor desensitization after recruitment to the receptor 

C-terminus, without being activated through previous binding to phosphorylated residues. 

Additionally, arrestin binding was sufficient to induce G protein independent receptor internalization, 

which was on a comparable level to ligand-induced internalization. Furthermore, the intracellular 

distribution of receptors after β-arrestin-induced internalization mimics the distribution pattern after 

ligand-induced internalization. These results suggest that C-terminal receptor motifs and arrestin 

associated proteins are at least partially responsible for the different intracellular fates of receptors. 

Whereas β-arrestin played a key role for receptor desensitization and internalization it did not 

mediate ERK 1/2 phosphorylation. Receptor homodimerization was not sufficient to activate cell 

signaling on its own, but it enhanced ligand-induced receptor internalization. 

5.3 Conclusion and Outlook 
The results obtained in this work contribute to the understanding of GPCR trafficking in many ways. 

We established an improved method for the analysis of constitutive and ligand-induced receptor 

internalization which is generally applicable to the study of many transmembrane proteins. It allows 

studying receptor internalization/recycling with enhanced sensitivity even in cases where 

receptor-specific antibodies are lacking. Exemplified by CXCR4 and CCR5 receptors we quantified the 

rate of constitutive internalization and its modification by different ant-/agonists. A useful 

complement for this system would be the creation of a biotin/streptavidin affected antibody to 

provide the possibility to quantify the net recycling rate of internalized receptors. 

The AP21967- or AP20187-inducible dimerization system revealed the importance of β-arrestin 2 

especially for receptor internalization and determination of the intracellular fate of internalized 

receptors. Regarding the ability to mediate ERK 1/2 phosphorylation it would be interesting to study 

whether translocation of a constitutively active arrestin variant to the receptor would have the 

potential to mediate ERK 1/2 phosphorylation. GRK overexpression may also provide the possibility 

to activate translocated β-arrestin, which may result in activation of MAP kinases. Since it was 

reported that MAP kinases such as JNK3 are activated by β-arrestin even in its inactive form analysis 

of the phosphorylation state of JNK3 after AP21967-induced β-arrestin 2 translocation to the 

receptor would be interesting. Furthermore, a comparison of β-arrestin 1/2 isoform-mediated effects 

would be interesting, since it was reported that β-arrestin 1 and 2 influence receptor trafficking in a 

divergent manner. 
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