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	 Summary

Summary
Tropical countries contribute substantially to global agricultural production, but the majority 

of farmers are small-scale subsistence farmers. Their comparably low agricultural productivity is 

coupled with major yield gaps. Agricultural expansion and the intensive use of agro-chemicals are 

the major cause for the destruction of tropical habitats and biodiversity loss and pose a threat to 

ecosystem services. However, many tropical small-holder farmers rely on ecosystem services like 

insect pollination or natural pest control, which may play an indispensable role in closing yield 

gaps. In addition, losses from pollination deficits or pest pressure are usually mitigated by the use 

of managed pollinators or pesticides that in turn can be harmful to ecosystem services provided by 

wild insects.

We aim to shed light on the relative importance of pollination services, common management 

practices and their interaction. We evaluated the benefits from pollination services for cucumber 

(Cucumis sativus) production and how wild bees (the main cucumber pollinators in the region) 

are influenced by management on four different spatial scales. We furthermore assessed income 

loss due to dis-services from seed predating ants in order to suggest management measures that 

may reduce yield gaps. Our work comprises experimental field studies on small-scale vegetable 

production in homegardens in tropical central Sulawesi, Indonesia and a review on pollination 

services to highlight existing information and to close information gaps on pollinations services for 

crops.

In the first study (chapter 2) we tested how different management practices (insect 

pollination, weed control, fertilization and herbivore control) affect cucumber fruit set and yield 

and how these variables influence each other. We found that insect pollination, fertilization and 

weed control increased crop fruit set and yield in an additive way. However, fertilization and weed 

control alone could not compensate for pollination loss, which was the most important driver and 

accounted for 75 % of the yield. We found an interaction between the weed control and pollination 

treatment in which weed control strongly influenced insect-pollinated plants but not wind and 

self-pollinated plants. This indicates that weed control contributes to closing yield gaps, but only in 

addition to insect pollination. In contrast, insecticides to control herbivores did not influence yield. 

We recommend shifting the focus from common management practices towards more sustainable 

management to enhance pollination services and stress the importance for policy driven regulations 

of reduced and better targeted pesticide application in tropical agroecosystems.

In the second study (chapter 3), we evaluated variables from three spatial scales to better 



2

	 Summary

understand bee communities indispensable for cucumber production. We further assessed if the 

response to these scale predictors depends on pollinator body size and sociality. Yield increased 

significantly with increasing number of flower-visiting bee individuals (mainly composed of wild 

solitary bees which translates into a net income decline of 47% if half of the bees would be lost. 

For optimized bee management, farmers need to consider four spatial scales. On the garden scale 

(1), the homegarden-wide percentage of flower cover predicted pollinator attraction best, if, on the 

adjacent-habitat scale (2), a higher percentage of homegardens (at least 20%, best 50% in a 200m 

radius) surrounded the study garden. In addition, the landscape scale (3), distance to the rainforest 

(up to 2.2 km) had also a significant effect on total bee flower visitor. This effect was dominated 

by small bees which increased closer to the forest. We conclude that farmers need to adjust bee 

management accordingly to reduce major yield gaps. High percentages of crops and non-crop 

plants flowering inside the homegarden can attract pollinators from adjacent source habitats that 

are mainly homegardens as well.

In the third study (chapter 4), we aimed to assess the effect of seed predation by ants on sown 

seeds of four crop species (C. sativus, Daucus carota, Capsicum frutescens and Solanum melongena) 

and the resulting impact on the net income of small-scale farmers. Furthermore, we tested if ant 

seed predation differs with or without insecticide and herbicide applications. We found that ant 

seed predation was high for all crops (42.0 %, 49.4 %, 48.0 % and 50.6 % for C. sativus, D. 

carota, C. frutescens and S. melongena, respectively), potentially reducing farmers’ net income by 

half. Application of insecticides and herbicides did not influence ant seed predation or total ant 

abundance, but influenced ant species-specific abundances positively or negatively. Despite ant 

species-specific responses to insecticide and herbicide applications, we found consistently high seed 

predation rates across all gardens. We conclude that high seed predation is caused by high overall 

ant abundance mediated through functional redundancy of ant species. We recommend more 

environmentally friendly and sustainable practices such as overseeding or seedling production in 

nurseries to reduce chemical pest control. 

In the fourth study (chapter 5), we reviewed pollination services and their importance to 

crops focusing on another understudied geographical region - the Neotropics - to get an overview 

of the main pollinator taxa and the dependence on pollination services of crops. In addition, 

we summarized pollination research methodologies and discuss pollination relevant farm and 

landscape management, as well as socio-economic drivers affecting pollination services. We have 

shown that pollination services by wild pollinators are important for crop production. However, 

knowledge gaps exist in terms of the quantity, quality and stability of crop production provided by 
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animal pollinators. It is also critical to understand how multiple socioeconomic drivers influence 

the selection of particular management systems and, thus, the environmental services delivered. 

In conclusion, pollination services are of major importance for closing yield gaps in tropical 

small-scale agriculture, such as homegardens. Although common management practices such as 

the use of agro-chemicals influence yield, they do not compensate yield gaps due to pollinator 

loss or ant seed predation. The enhancement of pollination services should be considered as well 

as the reduction of pesticide use in the majority of tropical agroecosystems. Farmers should adapt 

environmentally friendly and more sustainable practices adjusted to bee management considering 

four spatial scales to reduce major yield gaps.
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Chapter 1

General Introduction
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Tropical agriculture, yield gaps and ecosystem services

Tropical ecosystems are threatened by large-scale land-use change (Achard et al. 2002; Laurance 

2007), especially by expansion of agriculture (Tilman et al. 2002; Gibbs et al. 2010; Dobrovolski 

et al. 2011), leading to deforestation, biodiversity decline and environmental pollution. Demand 

for agricultural products and, thus, expansion of agricultural land still increases due to a growing 

human population and an increase in living standards and consumption (Godfray et al. 2010). 

Tropical countries experience highest growth rates making these areas even more prone to 

environmental destruction (Kastner et al. 2012; United Nations 2013). At the same time tropical 

ecosystems contain more than half of the world’s biodiversity hotspots (Myers 2003) and are crucial 

for global biodiversity and ecosystem services (Grimes et al. 1994). Ecosystem services provided 

to people comprise provisioning (such as food, crops, genetic resources, water), regulating (such 

as climate regulation, pest control, animal pollination), cultural (such as spiritual and recreational 

experiences), and supporting (such as nutrient cycling and seed dispersal) services. Many of these 

services are currently under threat, including services important for agriculture such as crop 

pollination (Assessment Millennium Ecosystem 2005). In large parts of the tropics agriculture 

is dominated by small-scale farmers lacking access to modern technologies (Masters et al. 2013; 

Sayer & Cassman 2013), often producing inefficiently resulting in large gaps between actual and 

potential farm yields (Mueller et al. 2012; Carberry et al. 2013). These small-scale farms are most 

susceptible to environmental degradation as they rely most on functioning ecosystem services (Díaz 

et al. 2006). One solution to meet future demands for agricultural products would be to reduce 

yield gaps by increasing productivity (Bruinsma 2009). This can be achieved either by conventional 

intensification with known negative effects on the environment (Brittain & Potts 2011; Tscharntke 

et al. 2012) or, alternatively, by environmentally friendly management relying more on ecosystem 

services, such as natural pest control or pollination (Fig. 1, Foley et al. 2011; Bommarco, Kleijn 

& Potts 2012). Past studies have shown that it is possible to achieve high yields without losing 

biodiversity or ecosystem services (Perfecto et al. 2007; Perfecto & Vandermeer 2010; Clough et al. 

2011), but this needs effective planning and regulation of agriculture. Farm management practices 

and ecosystem services can limit crop production and, thus, factors contributing to yield gaps need 

to be identified. Management practices as well as ecosystem services and dis-services need to be 

evaluated starting from the seed to farmers net income. 
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Fig. 1: Theoretical concept of yield gaps. Maximum potential represent the yields that 
potentially can be achieved by farmers within the given climatic and geographic conditions. 
Common management practices in the tropics lead to lower yield than potentially achievable 
and, thus, high yield gaps. These practices represent yields at the current state of ecosystem 
services (ES). By losing ES, famers risk even higher yield gaps. By promoting ES such as 
animal pollination farmers may reduce these gaps. To achieve maximum yields, farmers may 
have to combine several management practices including ecosystem services and conventional 
methods, but this needs adjusted research.

Ecosystem services and dis-services by insects in tropical agro-ecosystems

One ecosystem service of high commercial and social importance for agriculture is pollination 

by animals (Klein et al. 2007; Gallai et al. 2009; Winfree, Gross & Kremen 2011). About 75 

% of the world’s leading food crops depend on animal pollination, with bees being the main 

pollinators (Klein et al. 2007). The value to global food crop production by animal pollination has 

been estimated to be €153 billion. This corresponds to 9.5% of the total agricultural production 

(Gallai et al. 2009). Crop yield and quality are positively related and more stable with higher 

pollinator visitation rate and diversity (Hoehn et al. 2008; e.g., Garibaldi et al. 2011). However, 

pollinators are declining worldwide (Potts et al. 2010; Bommarco, Kleijn & Potts 2012), mainly 

due to habitat loss and fragmentation, pesticides, and diseases (Potts et al. 2010; Schweiger et al. 

2010). This may endanger the services pollinators provide (Aizen & Harder 2009). Despite research 

increasingly focuses on pollination services, knowledge gaps still exist (summarized in Mayer et al. 

2011). For example, information on the importance of pollination services in relation to common 

management practices, as well as how pollinator communities in turn are affected by landscape and 

farm management is scarce at various scales (Ghazoul 2007; Potts et al. 2010). In addition, even less 

attention has been paid to the pollination of tropical crops (Roubik 1995). However, as the tropics 

are most prone to environmental destruction – information on pollination services in the tropics 
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can be of great impact for effective conservation strategies to ensure that yield gaps are minimized.

Not only the decline of ecosystem services such as crop pollination, but also the emergence 

of dis-services like pest pressure contribute to yield gaps. Pest pressure in tropics can be high often 

leading to intensive use of agrochemicals (Wanger, Rauf & Schwarze 2010). Especially in the tropics, 

ants are important for ecosystem services in agricultural landscapes (Eubanks 2001; Perfecto et al. 

2007) as on the one hand they provide pest control (Armbrecht & Gallego 2007; Philpott, Perfecto 

& Vandermeer 2008). On the other hand they exert dis-services since they can transmit diseases 

(Wielgoss et al. 2014), protecting aphid pest from predators (Davidson et al. 2003), or consume 

crop seeds (Litsinger 2009). In the tropics, ants are among the most important seed predators 

(Albert, Escudero & Iriondo 2005; Hulme & Kollmann 2005; Vander Wall 2005), which can have 

substantial impact on farmer’s income. Farmers often counteract predation of newly sown seeds with 

insecticides such as imidacloprid (a neonicotinoid) and carbofuran (a carbamate) (Munkvold 2009; 

Almeida 2010), risking the pollution of the environment and the poisoning of non-target species. 

However, sown-seed predation by ants has rarely been studied, especially in tropical countries. 

Bees visiting cucumber flowers (A: Nomia sp.; C: Apis sp. ©Florian Lauer) and ants approaching 
crop seeds (B: Solenopsis geminata; D: Anoplolepis gracilipes).

A B

C D
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Study region and experimental design

Study region

The main experiment was conducted in homegardens in the Napu valley (Lore Utara) in Central 

Sulawesi, Indonesia (Fig. 2). The valley consists of a mosaic of natural forest and small-scale 

agriculture bordering the Lore Lindu National Park. Most inhabitants are farmers of paddy rice, 

cacao and vegetables (Van Rheenen et al. 2004). The climate is mild and rather constant throughout 

the year (annual temperature of 24.0±0.16 °C (mean ± SD) and monthly rainfall of 143.7±22.7 mm 

(mean ± SD), 1100 – 1200 m a.s.l), providing optimal conditions for vegetable production year-

round. Vegetable production is increasing to cover the demand of local markets in the neighboring 

cities (Weber et al. 2007). 

A 
C 

   

Fig. 2: Map of the study area. A: Indonesia with the island of Sulawesi; B: Sulawesi with the 
study area located in Central Suawesi; C Map of the northern part of the Napu Vally with the 
study gardens and villages.

In the Napu valley, most households have traditional gardens next to their houses. Tropical 

homegardens have a long history (Soemarwoto & Conway 1992; Kumar & Nair 2004), and 

are generally complex, species-rich agroforestry systems with multi-layered vegetation structures 

harboring a large diversity of both cultivated and wild plant species as well as providing refuge for 

animals (e.g., Michon & Mary 1994; Albuquerque, Andrade & Caballero 2005; Kehlenbeck 2007; 

Mohri et al. 2013). They can be considered as a model for a sustainable agricultural system, in 

which they play an important role for subsistence production, but are also of economic importance, 

and fulfill cultural and social functions (Kumar & Nair 2004; Kehlenbeck, Arifin & Maass 2007; 
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Mohri et al. 2013). Homegardens in the study area are highly diverse agroforestry systems with 

mostly multi-layered vegetation structures ranging from open ground to grasses, shrubs and 

trees (Kehlenbeck 2007). However, herbicides and insecticides are already used, but mostly by 

migrant farmers (Kehlenbeck 2007). Information about persistence of pollinator populations in 

homegarden-dominated landscapes large enough to sustain crop yield is scarce (Webb & Kabir 

2009; Mohri et al. 2013).

     A: a homegarden near the forest edge, B: a small-scale cucumber garden.
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Design of the main experiment

For the first three studies we established an experiment in a full-factorial split plot design (Fig. 

3) within homegardens that differed in distance to the rainforest (0-2500m). We selected 15 

homegardens (only 13 were used for the first two studies) were we chose an area of 300 m2 which 

was divided into eight subplots of 3 x 6 m in which we planted our study crops. We applied the 

following treatments to determine the individual and combined effects of different management 

variables (treatments) on crop yield in an experimental split plot design: (1) weed control (weekly 

herbicide application and manual weeding) versus no weed control, (2) fertilization (weekly fertilizer 

application) versus no fertilization, (3) and herbivore control (weekly insecticide application) 

versus no herbivore control. This resulted in eight subplots each treated with a different treatment 

combination. Each of these treatments was further subdivided into  (4) self- and wind pollination 

(with exclusion cages) versus supplementary (open) insect pollination. 

weed control no weed control 

no herbivore control 
+ 

he
rb

iv
or

e 
co

nt
ro

l 
no

 h
er

bi
vo

re
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on
tr

ol
 

+ herbivore control 

+ fertilizer 

+ fertilizer + fertilizer 

+ fertilizer - fertilizer - fertilizer 

- fertilizer - fertilizer 

Fertilizer Fertilizer 

Fertilizer Fertilizer 

Fig. 3: Experimental split plot design of treatment applications. The area of 300 m2 in each 
garden was split three times into half with first weed and no weed control, then herbivore and 
no herbivore control, and with fertilization or without fertilization on each half resulting in 
eight subplots. One half of the cucumber plants was left for insect pollination and the other 
half was caged to exclude insects during flowering.
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Research aims

In this thesis we give a broad perspective of bee pollination services and dis-services by ants in 

relation to common management practices of small-scale vegetable production and determine the 

drivers of yield gaps to provide adequate management recommendations. This thesis comprises 

three experimental studies on pollination services (chapter 2+3) and ant- seed predation (chapter 4) 

in Central Sulawesi, Indonesia. The last chapter is a literature review on crop pollination services in 

another tropical region – the Neotropics.

In chapter 2 our aim was to study the relative importance of pollination services compared 

and in interaction with other common management practices and how direct and interactions 

effects contributes to closing yield gaps. We experimentally tested how pollination (insect versus 

wind and self- pollination) interacts with weed control, fertilization as well as herbivore control 

and how this influences fruit set and yield of cucumber (Cucumis sativus) and net revenues of local 

smallholder farmers. 

In chapter 3 we studied the overall benefits of crop pollination by bees for small-scale 

cucumber production in homegardens. We further assessed how bees (total bee abundances, bee 

sociality and body size) in turn are influenced by management practices on three different spatial 

scales: garden (homegarden-wide percentage of flower cover), adjacent-habitat (percentage of 

adjacent homegarden) and landscape scale (forest distance). 

In chapter 4 we aimed to assess the relevance of ants in the predation of newly sown 

seeds of four crop species: cucumber, carrot (Daucus carota), chili (Capsicum frutescens), and 

eggplant (Solanum melongena) and the resulting impact on the net income of Indonesian farmers. 

Furthermore, we were interested in how seed predation and ant communities are influenced by 

common management practices such as herbicides and insecticide application also along a forest 

distance gradient. 

In chapter 5 I contributed to a review on pollination services for crops. We aimed to 

summarize pollination services for another tropical hotspot area – the Neotropics. For this we 

reviewed literature on pollinator groups and on crops depending on pollination. We further 

summarized the main methods to evaluate pollination services and discuss management options 

for enhanced pollination services. 
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General conclusion

In our studies we focused on traditional tropical homegardens which are important not only 

for food production of small-scale farmers, but also for wildlife, offering refuge habitat to many 

species. In many tropical countries like in Indonesia, demand for food production, and especially 

vegetables, is rising and farmers aim to increase production. However, they often lack knowledge 

about how to manage their farming system sustainably. Recently, traditional management is more 

and more replaced by an increasing use of external resources such as pesticides and fertilizers. These 

now common management practices are often not well adapted and may lead to negative impacts 

on the environment. Farmers are not aware of the benefits or necessity of including ecosystem 

services into their management practices. Overall ecosystem services and dis-services influence 

plant production, and common management can be improved to close yield gaps. In our studies 

we could show that pollination services by animal pollinators are important for crop production 

in the Neotropics in general and with a regional focus for cucumber production in Indonesian 

homegardens. Solving the challenge of closing yield gaps and environmental protection through 

the conservation of pollinators is one of the key challenges for smallholder farmers in the tropics, 

since most of their crops need efficient pollination. The common management of fertilization and 

weed control was also important for production, but only in addition to insect pollination. The 

often applied herbivore control through insecticides had no effect on fruit set or yield and was 

inefficient and little targeted. Farmers can mitigate crop yield losses in homegardens related to 

pollination deficits by adapted bee management on multiple spatial scales. In addition, common 

management practices could also not affect ant seed predation, which had the high rate of 50 % 

of the seeds of all crops. In conclusion, more holistic approaches integrating interactions among 

different management practices and spatial scales that are tailored to the regional context are needed 

to mitigate crop yield gaps and to sustain a viable future of agriculture. It is important to consider 

a broader perspective on sustainable management to improve or even start with conservation 

strategies that maintain ecosystem services, especially pollination services, for the future. 
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Abstract

1. Pollination can be an essential but often neglected ecosystem service to mitigate crop yield gaps. 

Pollination services are usually studied in isolation, and their relative role and possible interactions 

with other factors, such as major management practices, is little understood.

2. We tested how pollination (insect vs. wind- and self-pollination) interacts with weed 

control, fertilization and insect herbivore control and how these factors as well as flower-visiting 

bees influence fruit set and yield of cucumber Cucumis sativus L. in 13 traditional Indonesian home 

gardens.

3. Although insect pollination, fertilization and weed control additively increased crop 

yield, fertilization and weed control alone could not compensate for pollination loss. Pollination 

individually accounted for 75% of the yield and was, hence, the most important driver of yield. In 

contrast, herbivore control through insecticides at commonly applied levels did not increase yield.

4. Yield strongly increased with higher number of flower-visiting bee individuals, while the 

number of bee individuals in turn was not influenced by weed control, fertilization or herbivore 

control, but increased with higher number of cucumber flowers.

5. Synthesis and applications. Although multiple management practices influence yield, 

they cannot compensate yield gaps from pollinator loss in cucumber smallholder production in 

Indonesia. Our results also show that the widespread use of insecticides without considering the 

impacts on pest reduction is uneconomical. Here, reducing insecticides caused no income loss and, 

at the same time, reduces potential risks to important pollinators, which needs to be acknowledged 

by policy-driven regulations for pesticide application in tropical agroecosystems. Our results stress 

the importance of enhancing bee populations to facilitate pollination services. Bee management 

practices, such as sustaining additional food resources for pollinators, need to be established.

Keywords: herbivore control, home garden, Indonesia, nutrients, pollination services, weed control, 

wild bees
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Introduction

Animal pollination can increase fruit and seed production in 75% of the major crops produced 

globally (Klein et al. 2007). Pollination services from both honeybees and wild pollinators are 

declining in some countries mainly through habitat destruction, diseases and the use of pesticides 

(Potts et al. 2010; Gonzalez-Varo et al. 2013; Vanbergen & Initiative 2013). In particular, the 

importance of wild pollinators for crop pollination (Garibaldi et al. 2013) coupled with ongoing 

destruction of habitats for these pollinators (Bommarco et al. 2010) raises concern about how food 

security is affected (Tscharntke et al. 2012). In developing countries, the gap between actual farm 

yields and potential yields is often high and agricultural productivity low (De Vries, Rabbinge & 

Groot 1997; Tilman et al. 2002; Mueller et al. 2012). In Indonesia, increasing human population 

growth and a shift towards more vegetable consumption has led to a rapidly growing demand for 

fresh vegetables (Kuswardhani, Soni & Shivakoti 2013), but production levels are low (Natawidjaja 

et al. 2007). To reduce yield gaps, Indonesian small-scale farmers often use pesticides excessively 

due to limited legal regulations (e.g. Wanger, Rauf & Schwarze 2010), which is likely to affect the 

availability of pollination services (e.g. Gill, Ramos-Rodriguez & Raine 2012; Henry et al. 2012; 

Whitehorn et al. 2012). Pollination and common management practices such as fertilization, and 

controlling for weeds or herbivory, can positively or negatively contribute to yield gaps (Fig. S1, 

Supporting information, Bommarco, Kleijn & Potts 2013). Pollination services, however, do not 

act in isolation, but might be influenced by these management practices (Bos et al. 2007; Andersson, 

Rundl€of & Smith 2012). While the individual effects of these practices are well studied (e.g. Oerke 

2006; Wissuwa, Mazzola & Picard 2009), their combined effects (i.e. compensatory, competitive, 

synergistically or additively) on crop yield are largely unknown. Agricultural intensification building 

on high chemical inputs involves high potential risk due to pollinator reduction. The importance of 

pollination for crop production necessitates farmers choose environmentally friendly intensification 

of their agricultural systems (Bommarco, Kleijn & Potts 2013). However, recommendations aimed 

exclusively at pollinator enhancement are unrealistic because other management practices such 

as weed and herbivore control are also relevant (e.g. Bos et al. 2007). In this context, the relative 

importance and interaction of pollination services and other management practices are particularly 

important to identify strategies reducing existing yield gaps and facilitating environmentally friendly 

management (Bommarco, Kleijn & Potts 2013). 

Here, we experimentally tested how interactions between pollination and other management 
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variables such as fertilization, weed and herbivore control influences yield of cucumber and net 

revenues of local smallholder farmers.

Methods

Study area and crop species

The study was conducted in the northern end of the valley of Lore Utara (Napu), Central Sulawesi, 

Indonesia at the border of the Lore Lindu National Park. The mild tropical climate [annual 

temperature of 240±016 °C (mean±SD) and monthly rainfall of 1437±227 mm (mean ±SD)] 

results from an elevation of 1100–1200 m a.s.l. and provides optimal growing conditions for 

vegetables like cucumber. The study area is embedded in paddy rice fields and cacao and small-

scale vegetable plantations (Van Rheenen et al. 2004). Vegetable production became increasingly 

attractive with an increasing human population in the study area (Weber et al. 2007) and a general 

shift towards vegetable consumption from an increase in living standards (Natawidjaja et al. 2007). 

Home gardens in our study area are highly diverse (size ranges from 240 to 2400 m2) and are used 

for subsistence and cash income (Kehlenbeck & Maass 2006). Cucumber Cucumis sativus L. is 

a self-compatible monoecious annual herb, depending on pollination by insects for up to 90% 

(McGregor 1976). Cucumbers are planted in small plantations or home gardens for subsidence 

and income to supply the markets in neighbouring cities. In Indonesia, cucumbers are amongst 

the top-10 vegetable commodities of the country and, hence, of significant economic importance 

(Natawidjaja et al. 2007). 

Selection of gardens and experimental design

We selected 13 home gardens as study sites with a respective minimum and maximum distance of 

500–4000 m. In each home garden, we chose an area of 300 m2 and divided it into eight plots of 

3 x 6 m. Before the experiment, weeds were removed manually and bed rows of 40 cm height, 1 

m width and 10 m length were prepared. Prior to planting, we standardized soil conditions among 

the plots: 10 L of soil for each plant individual of each garden was removed, mixed with the soil 

from the other gardens and returned to provide similar soil conditions across the treatments and 

gardens for promoting similar seedling growth. Cucumber seeds (hybrid ‘Natanz’) were obtained 

from a local market. In each plot, we sowed 14 plant individuals in July 2010 by placing the seeds 

in the prepared mixed soil on the bed rows at distances of 50 cm between the plants. We fertilized 

[‘ZA’; ingredients: ammonium (21%), sulphate (24%)] and treated all seedlings with an insecticide 
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(‘Pounce 20EC;’ ingredient: Permethrin 2004 g L-1), and then weeded all sites in the beginning of 

the study to provide equal conditions for the survival of seedlings. We also supported cucumber 

vines with reed sticks and pruned them to one single central stem and two side stems.

We applied the following treatments to determine the individual and combined effects of 

different management variables (treatments) on crop yield in an experimental split-plot design: 

(i) weed control vs. no weed control, (ii) fertilization vs. no fertilization, (iii) herbivore control 

vs. no herbivore control. Each of these treatments were further combined with (iv) wind- and 

selfpollination vs. (open) insect pollination.

For all these treatments, we defined a priori the expected outcome of the treatment, which was 

positively (i.e. insect pollination, weed control, fertilization and herbivore control) or negatively (i.e. 

wind- and self-pollination only, no weed control, no fertilization and no herbivore control). Each 

of the 13 sites (blocks) was halved with each half treated by one treatment combination, starting 

with the weed treatment; followed by the herbivory treatment; and fertilization treatment (plots) 

(Fig. S2, Supporting information). This resulted in eight plots per site each treated with a different 

treatment combination. In each plot, pollinators had free access to seven plants (subplot) and 

were excluded from seven other plants by caging the whole plants during the 2–3 week flowering 

period with plastic mesh (mesh size: 1 x 1 mm). However, due to strong and continuous rainfall 

during our experiments only three to seven plants per treatment combination (subplot) survived. 

Cages were controlled every second day for pollinators and plants with defect cages (pollinators 

inside) excluded from the analysis. By contrasting, the open vs. the caged flowers, we assessed the 

contribution of insect pollination to fruit production. We applied a herbicide (‘Noxon’; ingredient; 

paraquat-dichlorid 297 g L -1) and manual weeding to control weeds, fertilizer (‘ZA’) for fertilization 

and an insecticide (‘Tetrin’; ingredient: theta-cypermethrin 30 g L-1) to control insect herbivores 

weekly during the whole experiment, following common local management practices. We chose 

these insecticides and herbicides because they are most commonly used in vegetable gardens of the 

study area. We established 2-m drainage buffers between the plots and only sprayed when wind 

speed was low to avoid pesticide and fertilizer drifts between treatments.

Fruit set, yield and farmers revenues

For each plant, we counted the total number of male and female flowers. Each flower was marked 

at the basis to avoid double counting. We quantified the number of fruits produced per plant, 

individual fruit weight, as well as fruits aborted during the ripening process. All ripe fruits (turning 

yellow indicates maturity) were harvested and weighted. We calculated fruit set as the ratio of the 
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mean number of harvested fruits and the mean number of female flowers per subplot. Yield was 

calculated by multiplying the mean number of harvested fruits by the mean fruit weight for each 

plant and per subplot. Seeds from 10 randomly chosen fruits across plants of each subplot were 

counted. 

We calculated net income for cucumber production based on information from two 

standardized questionnaires and experimental data on yield, for a standard area of 300 m². We 

determined the predicted yield per plant based on the experimental results of the different treatments 

(with or without insect pollination, with or without weed control, with or without fertilization and 

with or without herbivore control). From the questionnaires (n = 30 home garden owners), we 

gathered information on operational costs for cucumber production (yield per land area, and cost 

for land preparation, agro-chemicals and labour; Appendix S1, Supporting information; Motzke 

et al. 2013). For each management variable, we calculated the expected operational costs (costs for 

external inputs and labour). We subtracted these operational costs from the total income calculated 

for each management variable.

Pollinator observations and herbivory measurements

The number of individuals and species of flower-visiting insects was assessed during a 5-min 

observation period of three random flowers per subplot, repeated three times on three different days 

from 9 am until 2 pm within the flowering period. Insects were identified in the field and caught for 

further identification in the laboratory (Michener 2000; reference collection at the Conservation 

and Landscape Ecology group, University Freiburg, Germany; reference collection, Agroecology, 

University G€ottingen, Germany) or by experts (Stephan Risch, Leverkusen; Volker Lohrmann, 

Berlin).

We estimated the percentage leaf damage (visible damage of leaf tissue from chewing or 

leaf mining) of eight individual leaves (four new leaves from the top and four old leaves from 

the bottom of the plant) of each of two plant individuals per treatment combination to assess 

overall herbivory. In addition, we counted the insect species on two plants of two separate days 

per treatment combination. Insect species were identified in the field to morphospecies, and only 

herbivorous insects were selected for the analysis.

Statistical analyses

We used linear mixed-effects (LME, NLME package in R; Pinheiro et al. 2007) models and 

generalized linear mixed-effects models (GLMM, LME4 package in R; Bates et al. 2013) for 
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binary response to test the effect of the four treatments (explanatory variables: pollination, weed, 

fertilization and herbivory) on the yield response variables. Yield variables were the mean number 

of fruits, fruit set (mean number of fruits divided by the mean number of flowers, binary variable), 

mean fruit weight, yield (mean number of fruits multiplied by the mean fruit weight), proportion 

of fruits with/without seeds (binary variable coded as ‘yes’ or ‘no’ seeds) and mean number of seeds 

per subplot. We also included the treatment variables as nested random factors in all models to 

reflect the split-plot design (site/weeds/herbivory/fertilization;  for full description see Appendix 

S2, Supporting information). The difference between the expected optimal treatment combination 

(insect pollination, fertilization, weed control and herbivore control) and the respective negative 

treatment is the yield gap related to each treatment. Best models were selected by Akaike Information 

Criterion (AICc) and QAICc based stepwise model selections (R-scripts on URL: http://wwwuser.

gwdg.de/~ scherb1/statistics.html). We tested the effects of the treatments as well as the number 

of cucumber flowers (male and female) on number of bee individuals (response variable) for the 

insect-pollinated treatments with LME. As bee species richness and  number of bee individuals 

were correlated (Pearson’s correlation, r2 = 0.83), we present only the results for the number of 

bee individuals. We tested the effect of number of bee individuals and the treatment variables 

(explanatory variables) on fruit set with GLMM and on mean weight, mean number of fruits 

and yield with LME. We included number of bee individuals and number of cucumber flowers 

(explanatory variables; not correlated: Pearson’s correlation, r2 = 013) in one model to test for their 

combined effects on yield (response). In addition, for the herbivore insect effects, we included the 

number of herbivorous species and individuals first as response variables to test for the effect of the 

treatments, and then as explanatory variables with fruit set and yield as response variables. We used 

the statistics software R, version 2.15.2, for all analyses (R Development Core Team 2013).

Results

Response of yield variables and economic returns per treatment 

Fruit set and yield were best explained by the model incorporating the four treatment variables 

(pollination, weeds, fertilization and herbivory) and the interaction between pollination and weeds 

(Table S1, Supporting information). The optimal treatment combination (insect pollination + 

weed control + fertilization + herbivore control) received highest fruit set and yield (Fig. 1a,b). 

Figure 1a and Table S2 (Supporting information) show the effects of the treatments on fruit set. The 

95% confidence intervals of all treatments except herbivory did not overlap with the control line, 
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showing that these treatments significantly reduced fruit set (pollination: χ2 = 1071.92, d.f. = 6, P < 

0.0001; weeds: χ2 = 7.2, d.f. = 7, P = 0.0073; fertilization: χ2 = 4.78, d.f. = 8, P = 0.0288; herbivory: 

χ2= 0.43, d.f. = 9, P = 0.5097; Fig. 1a, Table S2, Supporting information). The strongest negative 

effect on fruit set was caused by the exclusion of insect pollinators (wind- and self-pollination 

treatment; 86% reduction compared to control), followed by no weed control (20% reduction) and 

a marginal effect of no fertilization (10% reduction; Table S2, Supporting information, Fig. 1a).
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Fig. 1. Effects of single and interacting treatments on fruit set (a) and yield (b) cucumber 
plants, based on the predicted values of the best model. Yield is calculated for total weight (kg) 
harvested from 10 cucumber plants. The reference line (horizontal black line) represents the 
reference, that is the expected optimal treatment combination (insect pollination, fertilization, 
weed control and herbivore control). Dots with error bars (95% confidence intervals) indicate 
the respective negative treatment (wind- and self- pollination, without fertilization, no weed 
control and no herbivore control). The right part of each graph shows the interaction between 
the weed and pollination treatments (dark (green) dots refers to no weed control and light 
(yellow) for weed control). The treatment is significantly different to the expected optimal 
treatment combination when the error bars do not overlap the reference line.

Herbivore control did not significantly reduce fruit set (4% reduction). In addition, we found 

that without the control of weeds, fruit set was significantly reduced in the insect, but not wind- 

and self-pollination treatments (pollination* weeds: χ2= 6.8, d.f. = 10, P = 0.0092). We found 

the same, but more pronounced pattern for yield (pollination: F = 124.74, d.f. = 73, P < 0.0001; 

weeds: F = 16.71,  d.f. = 12, P = 0.0015; fertilization: F = 9.02, d.f. = 51, P = 0.0041; herbivory: F 

= 3.80, d.f. = 51, P = 0.063; pollination* weeds: F = 13.06, d.f. = 73, P = 0.0006, Fig 1b, Table S2, 

Supporting information). The wind- and selfpollination treatment significantly reduced yield (yield 

gap of 75% compared to with insect pollination), as well as the no weed control (yield gap of 45%) 
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and no fertilization treatments (yield gap of 18%). Yield was not influenced when herbivores were 

not controlled (13% yield gap). Again, the interaction between weeds and pollinations showed that 

the control of weeds had only an effect in combination with the insect pollination treatment. 

The effects of the four treatments on the number of fruits followed the same pattern as 

for fruit set and yield (Table S2, Supporting information). In contrast, mean fruit weight was 

significantly higher (but number of fruits much lower) for the wind- and self-pollination treatments 

compared to insect pollination (pollination: F = 15.87, d.f. = 63,  P = 0.0002; Table S2, Supporting 

information). Fruits resulting from wind- and self-pollination contained no seeds or very low 

number of seeds [mean number of seeds for wind- and self-pollination: 21.4 (SD ± 53.2)] compared 

to insect pollination (214.4 (SD ± 68.8), χ2= 79.35, d.f. = 6, P < 0.0001). The control of weeds 

or herbivores reduced the number of seeds after insect pollination (weeds: F = 5.96, d.f. = 12, P = 

0.0311; herbivory: F = 8.69, d.f. = 25, P = 0.0068, Table S2, Supporting information). 

Depending on the type of management farmers can overcome yield gaps. Net income 

(initial income minus operational cost) from a common small-scale cucumber plantation (300 m2) 

was highest when insect pollinators had access to the cucumber flowers, with weed control and 

fertilization (Fig. 2). Application of insecticides to reduce herbivory had no effect on net income 

(Fig. 2). The operational costs exceeded the net income when pollinators were excluded, resulting 

in a deficit for farmers.
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Fig. 2. Economic calculation of net income from cucumber production to local farmers. 
Shown are the income differences between each treatment and the control. The reference is 
the horizontal line set as the expected optimal treatment (insect pollination, weed control, 
fertilization and herbivore control) included in the farm management.
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The effects of flower-visiting insects, herbivorous insects and leaf damage on fruit 

set and yield

In total, we found 37 insect species (780 individuals) visiting the cucumber flowers. The main 

flower visitors were bees of the families Apidae and Halictidae (Hymenoptera)comprising 964% of 

all individuals found on flowers (23 species and 753 individuals; Table S3, Supporting information). 

The other flower visitor taxa were wasps (six individuals), flies (13 individuals), butterflies and 

moths (eight individuals; Table S3, Supporting information). 

Bees had a significant influence on cucumber production. In case of the (open) insect-

pollinated plants, only the number of bee individuals and weed control significantly contributed 

to increase yield (bee individuals: F = 39.16, d.f. = 47, P < 0.0001; weeds: F = 40.60, d.f. = 12, P 

< 0.0001, Fig. 3, Table S4, Supporting information). This was reflected not only in an increase in 

fruit set (χ2 = 9.08, d.f. = 5, P = 0.0026) and mean number of fruits per subplot (F = 31.03, d.f. = 

48, P < 0.0001) with increasing number of bee individuals, but also in an increase in mean fruit 

weight (F = 11.56, d.f. = 42, P = 0.0015, Table S4, Supporting information). The management 

ariables had no significant influence on the number of bee individuals, as the NULL model was 

the best-fitted model. But mean number of cucumber flowers per subplot significantly influenced 

the number of bee individuals (F = 23.32, d.f. = 50, P < 0.0001). The number of bee individuals 

interacted with the number of cucumber flowers (bee individuals*cucumber flowers: F = 12.88, 
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Fig. 3: Effects of the treatments ‘no fertilization’, ‘number of bee individuals’, ‘no 
herbivore control’ and ‘no weed control’, respectively, on yield, based on the predicted 
values of the best model. Graph explanation as in Fig. 1.
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d.f. = 46, P < 0.0001, Fig. 4, Table S4, Supporting information), ith numbers of bee individuals 

significantly increasing yield for low to medium numbers of cucumber flowers (5–15), but not 

for high numbers of cucumber flowers (>20). We found 23 herbivorous insect species including 

aphids, spider mites, grasshoppers, sap-sucking true bugs, caterpillars and leaf beetles. The number 

of herbivorous species was reduced when pollinators were excluded (F = 13.96, d.f. = 83, P < 

0.0001), but not influenced by the use of insecticides. Surprisingly, an increasing number of 

herbivorous species was positively and significantly related to yield (F = 6.84, d.f. = 72, P = 0.0109, 

Table S5, Supporting information). Percentage leaf damage was not influenced by the herbivore 

control treatment (insecticide), but was significantly higher without weed control (weeds: F = 6.27, 

d.f. = 11, P = 0.0293, Table S5, Supporting information). Percentage leaf damage had no influence 

on yield (F = 0.25, d.f. = 71, P = 0.6166; Table S5, Supporting information).
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Fig. 4. Effect of the interaction between number of observed bee individuals and number of 
cucumber flowers on yield, based on the predicted values of the best-fitted model.

Discussion

We found that insect pollination was the most important driver for cucumber production in 

Indonesia. The loss of pollinators reduced yield by 75% compared to the potential maximum. 

Controlling weeds (yield gap 45%) and fertilization (yield gap 18%) further increased yield in 

addition to pollination services. In contrast, these treatments alone or in combination could 

not compensate for pollination deficits and yield without insect pollination decreased below the 
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level of economical profitability (Fig. 2). This is in line with Bommarco, Kleijn & Potts (2013) 

conceptualizing that yield is highest when the conditions are optimal for all yield-affecting ecosystem 

services or management practices and that the yield gap is driven by the least-optimal variable, in 

our case insect pollination. Provided that insect pollinators are present, weed control becomes the 

next limiting variable followed then by fertilization. As insecticide application did not influence 

herbivorous species, leaf damage or yield, we conclude that the excessive use of insecticides as 

applied in our study according to common practices is inefficient and little targeted for cucumber 

production in our study area. 

Effective management variables for fruit set and yield

Exclusion of insect visitors strongly reduced fruit set and yield. The few fruits produced in the 

wind- and self-pollination treatment might have been developed after autonomous self-pollination 

(Gingras, Gingras & De Oliveira 1999), transfer of pollen by wind or by insects inside the 

exclusion cages such as small leaf beetles or ants. These fruits were heavier, but overall yield was 

below economically profitable level. However, wind- and self-pollinated fruits rarely contained 

seeds indicating that the heavier fruits resulted from allocation of resources to the few single fruits 

and not from better pollination quality (i.e. higher pollen transfer). Other studies found similar 

results and also assumed that higher fruit size in only wind- and self-pollinated plants is caused 

by resource allocation (e.g. Jauker et al. 2012; Klein et al. 2014). The importance of pollination is 

further supported by the positive relationship of the number of flower-visiting bee individuals and 

yield. We found an increased number of fruits but also increased fruit weight with higher number 

of bee individuals, which might be due to better pollination quality. Insect pollination is known 

to increase fruit size and weight in some crops (e.g. Klatt et al. 2014; Klein et al. 2014). Number 

of flower-visiting bees was not influenced by weeds, fertilization or herbivory, but by number 

of cucumber flowers – that is resource availability. This suggests that farmers can enhance crop 

pollination, and thus cucumber production, by increasing cucumber flower resources. However, 

above a certain level of numbers of flowers, yield is highly independent of how many bees visit the 

flowers. This could be due to a high availability of pollen and, thus, better chances of successful 

pollen transfer even with low numbers of bees. This suggests that both high numbers of flowers and 

of bees are important to increase yield. However, as we only assessed the influence on bees in small-

scale home gardens, research including also larger spatial scales (e.g. Veddeler, Klein & Tscharntke 

2006), considering different flower resources and habitat availability (Kohler et al. 2008; Ricketts et 

al. 2008) and changes from polycultures to large monocultures is urgently required.
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Weeds compete with crops, which is especially problematic in tropical areas where high 

temperatures and rainfall can increase weed growth (Oerke 2006). Removal of weeds substantially 

increased yield compared to no weeding, the latter reducing yield by 45% to unprofitable levels 

(Fig. 2). Without weed control, cucumber plants produced fewer flowers and fruits, and fruit weight 

was reduced. This may be due to competition effects for resources like light, nutrients and space or 

allelopathy (Belz 2007). All these factors can lead to reduced plant growth and reduced flower and 

fruit production (Zimdahl 1993). We applied herbicide in order to replicate the local management 

techniques; however, the herbicide applications close to the plants damaged leaves or even killed the 

crop (I. Motzke, personal observation). As this herbicide is commonly used in the study area but 

not targeted to the crop, additional manual weeding was necessary. 

The negative effect of missing weed control was more dominant in insect-pollinated plants 

but negligible for only wind- and self-pollinated plants. This interaction indicates that weed control 

cannot compensate pollination deficits, as yield reduction was only driven by the lack of insect 

pollinators, but rather contributes to increasing yields in addition to insect pollination. 

Flowering weeds might be expected to either distract bees from visiting cucumber flowers 

(Free 1993) or attract additional bees (Carvalheiro et al. 2011). However, we found no effect of 

weeds on the number of visiting bees. The interaction might be due to the reduced female flower 

production when the plant is competing with weeds, which in turn influenced the number of 

flower-visiting bees attracted and therefore yield in general (Fig. 4). In addition, without insect 

pollinators, only very few fruits were produced and therefore only limited amount of resources were 

used, which might have not been affected by the competition with weeds. 

Fertilization increases resources for plants and thus, crop production (Jones et al. 2013). 

We found a positive effect of fertilization on crop yield, but this effect could not compensate the 

negative effects of either weed competition or pollinator loss. In cacao and almond, fertilization 

could not compensate for yield loss caused by pollination deficits (Groeneveld et al. 2010; Klein 

et al. 2014). Similar results were found in coffee and alfalfa where pollination services were more 

important than fertilization (Shebl et al. 2009; Boreux et al. 2013). In some wild plants, reproductive 

success was found to be limited by both outcross pollen and available nutrients (Caruso, Remington 

& Ostergren 2005; Shi et al. 2010). Nutrient input can enhance weed growth and thus weed 

competition for crop plants (Di Tomaso 1995); however, we found no interaction between fertilizer 

and weed control.
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Ineffective management variable for fruit set and yield 

Herbivory by insects is one of the major problems in tropical crop production (Rao, Singh & 

Day 2000). Management often includes the intensive application of insecticides, which often 

differs from instructions of pesticide manuals in Indonesia (I. Motzke, personal observation). We 

applied the insecticide according to local management practices. Even intensive spraying once a 

week did not influence fruit set or yield, number of herbivorous insect species or herbivory in 

general. This suggests that the insecticide applications were ineffective or not targeted enough. 

The lower number of herbivorous insect species with pollinator exclusion might be due to the 

pollinator exclusion cages hindering access of herbivores as well. Pest abundances were generally 

low in our home garden plots, which may be because natural enemies are generally more abundant 

in heterogeneous habitats (e.g. Thies & Tscharntke 1999; Bianchi, Booij & Tscharntke 2006), and 

therefore, pests were efficiently the small size of the sprayed areas promoted invasion of pest species 

from neighbouring subplots. Pollination was not influenced by insecticide application; however, 

we sprayed only on a small scale so visitors could have passed freely between the subplots. Our goal 

was not to test the effects of the insecticide on bees, which have mainly sublethal impacts such as 

changing the behaviour, or reducing growth rate (Gill, Ramos-Rodriguez & Raine 2012; Henry et 

al. 2012; Whitehorn et al. 2012). Other studies that manipulated herbivory found that increased 

pollination compensated for herbivory (Strauss & Murch 2004). The combination of enhanced 

pollination and herbivore control can lead to higher yield than either pollination or pest control 

alone (Lundin et al. 2013). In contrast to the study by Lundin et al. (2013), enhanced pollination 

did not alter the ability of the plants to compensate for manipulated herbivory in other studies (e.g. 

Barber, Adler & Bernardo 2011; Barber et al. 2012). While we only looked at above-ground insect 

herbivory, other studies found that increased root herbivory can have a strong effect on cucumber 

performance (Barber, Adler & Bernardo 2011). Natural pest control can also influence yield, but 

interactions with pollinators should be considered (e.g. Lundin et al. 2013).

Conclusions and management recommendations

Our results highlight the importance of pollination services to mitigate yield gaps in cucumber, an 

important vegetable crop in the tropics where small-scale farmers rely on wild insect pollinators. 

As Indonesian home gardens support high numbers of pollinator-dependent crop species (see 

Kehlenbeck & Maass 2006), this pattern should be of major importance for the yield in smallholder 

gardens. However, pollination services should not be considered in isolation as they are influenced 
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by multiple management variables. Pest control is one aspect that must be adequately considered in 

farmer’s management decisions. Reducing the competition of the crop with weeds and fertilization 

can double farmers income and are important farm management aspects. Our study plant is highly 

pollinator-dependent and the reported relationship of management practices and pollination 

services may be different for crops that are less-dependent on insect pollination. Similar studies 

for crops that have low to medium dependence on pollinators are urgently needed. Interestingly, 

insecticide applications were not effective in our study and education of farmers on how to use 

insecticides more targeted and sensible (e.g. Integrated Pest Management; Metcalf & Luckmann 

1994) is urgently needed as well as more stringent regulations and enforcement. Our results make 

clear how important bees are for home garden cucumber production. Sustainable recommendations 

for pollinator management, tailored to the regional context, need to be identified.
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Supporting information 

Supplementary Figure S1: Schematic picture of the management variables. 

Fig. S1: Schematic picture of the most important management variables influencing cucumber 
yields. Factors can act additively, complementary or compensatory.
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Supplementary Figure S2: Experimental split-plot design. 
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Fig. S1: Experimental split plot design of treatment applications. The area of 300 m2 in each 
garden was split three times into half with first weed and no weed control, then herbivore and 
no herbivore control, and with fertilization or without fertilization on each half resulting in 
eight plots. There half of the cucumber plants were left for insect pollination and half were 
caged to exclude insect pollinators during flowering.
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Appendix A1: Calculation of net income

We calculated net income based on predicted yield per plant based on the experimental 

results and information from two standardized questionnaires for a standard area of 300 m² (see 

also Motzke et al. 2013). On a 300 m2 area, we assume 800 cucumber plants which were multiplied 

by the respective predicted yield for each treatment (with or without insect pollination, with or 

without weed control, with or without fertilization, and with or without herbivore control). From 

the questionnaires (n= 30) conducted in 2010 we gathered information on operational costs for 

cucumber production costs and market prices for cucumber (3,000 IDR per kg). For fertilizer 

and insecticide costs, we calculated a value on a per-individual plant basis, because fertilizer and 

insecticides are commonly applied to individual plants by hand. Costs for herbicides were calculated 

per area. Labor costs (for weeding, pesticide spraying and harvest) were calculated based on the time 

that a farmer has to spend on the plantation and the expected salary for work elsewhere. Operational 

costs included cost for fertilizer (70,000 Indonesian Rupiah (IDR)), insecticide (50,000 IDR), 

herbicide (40,000 IDR), land preparation (300,000 IDR), and labor for weeding (8 hours, 45,600 

IDR), spraying (4 hours, 22,800 IDR), fertilization (1/2 hour, 2,850 IDR), and harvest (3 hours, 

51,300 IDR) adjusted respectively to the different treatments to calculate the expected operational 

costs for each management variable. The operational costs were then subtracted from the income. 

Income was calculated by multiplying the predicted yield (in kg) per plant times the number of 

plants possible per 300m2 area (800) and the market price per kg (3,000 IDR). Values were then 

given in US$ from 2010 and calculated from Indonesian Rupiah (1000 IDR = 0.113 US$).

References:

Motzke, I., Tscharntke, T., Sodhi, N.S., Klein, A.M. & Wanger, T.C. (2013) Ant seed predation, 

pesticide applications and farmers’ income from tropical multi-cropping gardens. Agricultural 

and Forest Entomology, 15, 245-254.
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Appendix A2: detailed statistical analysis

For each plant, we measured the following yield variables: number of flowers, number of 

fruits, fruit set (number of fruits divided by the number of flowers), fruit weight, yield (number of 

fruits multiplied by the mean fruit weight), and number of seeds per fruit. These yield variables were 

used as response and were averaged by taking the mean of all plants within each subplot so that the 

subplot was the unit of (nested) replication. As fruits resulting from wind and self-pollination often 

contained no seeds, we used a binary variable to look at the proportion of fruits with/without seeds 

coded as fruits either containing seeds (“yes”) or without seeds (“no”) for the analysis. Due to strong 

and continuous rainfall during our experiments not all seven plants per treatment combination 

(subplot) survived, but mean number of plants per subplot were 5.7 (± 1.3). However, the mean 

number of plants did not differ markedly across treatments (mean number of plants with: 5.9 

(±1.2) and without: 5.5. (±1.4) weed control, with: 5.8 (±1.3) and without: 5.6 (±1.4) herbivore 

control, with: 5.8 (±1.3) and without 5.5 (±1.4) fertilization, and with: 5.6 (± 1.4) and without: 

5.8 (± 1.2) insect pollination. We included the binary (coded as “yes” and “no”) treatment variables 

pollination, weeds, fertilization, and herbivory as fixed factors and random factors. In the models 

we always compared the negative (wind and self-pollination, no weed control, no fertilization, 

and no herbivore control) to the positive treatment combination (insect pollination, fertilization, 

weed control, and herbivore control), which was the expected optimal treatment combination. 

The difference between the optimal treatment combination and the relative negative treatment is 

the yield gap related to each treatment. In all models the smaller experimental units (subplots), 

were nested within the larger entire garden plot (site). Thus, the treatment fertilization (smallest 

level) was nested within herbivory, weeds and plot, which was included as random effect (site/

weeds/herbivory/fertilizer) to account for the split plot design. We used linear mixed-effects models 

(function lme, package “nlme” in R) for all analyses except for fruit set (binomial response) where 

we applied generalized linear mixed-effects models (function lmer, package “lme4” in R). We 

transformed response variables if necessary to meet assumptions of normality and homogeneity 

of variance. The response variable yield was square root transformed and number of fruits log 

transformed. We back-transformed all variables for visualization. 
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Appendix Table S1: Results for the model selection.

Table S1: Results for the model selection for predicting fruit set and yield including all predictor 
variables. Shown are the best models (∆AICc=2), the NULL model, and FULL model for each 
response variable

Explanatory variables LL K AICc ∆AICc wi
Fruit set (FS)
poll + weeds + herb+ ferti + weed*poll -462.4 10 946.1 0.0 0.50
poll + weeds + herb + ferti + weed*poll -461.4 11 946.4 0.3 0.50
        + poll*ferti
FS ~ (poll + weeds + herb + ferti)^2 -460.1 15 953.2 7.1 0.00
NULL -1005.7 5 2021.7 1075.6 0.00
Yield
Yield ~ poll + weeds + herb + ferti + 
weeds*poll

-527.3 11 1078.2 0 0.96

Yield ~ poll + weeds + herb + ferti + 
weeds*poll  

-616.2 12 1258.4 1.3 0.30

            + weeds*herb
Yield ~ (poll + weeds + herb + ferti)^2 -524.6 16 1084.5 6.3 0.04
NULL -590.2 6 1192.8 114.6 0.00
Abbreviations: fixed factors: poll= pollination, herb= herbivory, weed= weeds, ferti= fertilization, *= 
interaction, ^2 = all combinations of two way interactions. Parameter: LL= maximised log-likelihood; K 
= the number of estimated parameters; AICc = Akaike information criterion adjusted for small sample 
size; ∆AICc = difference between AICc and the lowest AICc value; wi = AICc weights
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Appendix Table S2: Treatment effects on cucumber yield variables.

Table S2: Parameter estimates of the LME analysis for the effects of wind and self-pollination, 
weed control, fertilization, and herbivory on (a) fruit set, (b) yield, (c) mean fruit weight, (d) 
mean number of fruits, and (e) mean number of seeds. The models included nested random 
effects (site/weeds/herbivory/fertilization) for the split-plot design. The intercept represents the 
expected optimal treatment combination (insect pollination, fertilization, weed control and 
herbivore control). Included are the results from the best model resulting AICc and QAICc 
model selection. Response variables and significances (significance level P<0.05) are in bold.

response 
variable 

explanatory variables +/- estimate ±SE z P

(a) fruit set intercept -1.21 0.13 -9.24 <0.0001
wind and self- pollination - -2.19 0.10 -22.45 <0.0001
no weed control - -0.29 0.08 -3.77 0.0002
no herbivore control -0.05 0.07 -0.70 0.4846
no fertilization - -0.14 0.06 -2.19 0.0288
weeds * pollination 0.36 0.14 2.61 0.0092

response 
variable

explanatory variables +/- estimate ±SE t P

(b) yield intercept 32.15 1.79 17.92 <0.0001
wind and self- pollination - -15.94 1.33 -11.97 <0.0001
no weed control - -7.02 1.22 -5.77 0.0001
no herbivore control -1.47 0.91 -1.60 0.1218
no fertilization - -2.42 0.91 -2.65 0.0110
weeds * pollination 8.10 1.87 4.33 0.0001

(c) mean fruit 
weight

intercept 374.19 25.72 14.55 <0.0001
wind and self-pollination + 45.63 20.69 2.21 0.0311
no weed control -38.87 18.37 -2.12 0.0559
no herbivore control -23.71 14.25 -1.66 0.1087
no fertilization -10.20 14.23 -0.72 0.4770
weeds * pollination 28.15 29.06 0.97 0.3364

(d) mean 
number of 
fruits (log)

intercept 1.33 0.08 17.32 <0.0001
wind and self-pollination - -0.82 0.06 -12.79 <0.0001
no weed control - -0.34 0.07 -5.03 0.0003
no herbivore control -0.07 0.04 -1.74 0.0937
no fertilization - -0.14 0.04 -3.16 0.0027
weeds * pollination 0.34 0.09 3.84 0.0003

(e) mean 
number of 
seeds

intercept 245.81 13.41 18.33 <0.0001
no weed control - -26.04 10.84 -2.40 0.0334
no herbivore control - -32.06 10.82 -2.96 0.0066
no fertilization -4.98 10.82 -0.46 0.6478

Abbreviation: *= interaction, SE= standard error, +/-= direction of effect
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Supplementary Table S3: List of insects found on cucumber flowers

Bee species individuals Butterfly species individuals
Megachile aterrima Smith 1 Lepidoptera sp.2 5
Amegilla sp.2 3 Lepidoptera sp.3 2
Amegilla sp.1 111 Lepidoptera sp.4 1
Apis cerana Fabricius 36 Wasp species
Apis dorsata binghami Cockerell 3 Polistes stigma (Fabricius) 2
Lipotriches philippinensis (Cockerell) 2 Rhynchium sp.1 3
Ceratina cognata Smith 63 Camsomeriella sp.7 1
Ceratina rugifrons Smith 45 Fly species
Ceratina sp.1  15 Syrphidae sp.1 1
Ceyalictus sp.1 1 Syrphidae sp.2 1
Lasioglossum halictoides (Smith) 32 Syrphidae sp.3 1
Lasioglossum vagans (Smith) 49 Syrphidae sp.4 1
Nomia formosa Smith 8 Syrphidae sp.5 3
Nomia fulvata (Fabricius) 268 Tachinidae sp.1 1
Geniotrigona incisa (Sakagami and Inoue) 5 Miridae sp.1 3
Gnathonomia thoracica Smith 14 Fannidae sp.1 2
Homalictus vechti Pauly 4
Patellapis celebensis (Blüthgen) 5
Ceratina unimaculata Smith 2
Tetragonula sp.1 2
Thyreus nitidulus (Fabricius) 3
Xylocopa aestuans (Linnaeus) 69
Xylocopa dejeanii Lepeletier 12
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Appendix Table S4: Effects of treatments on bees and of bees on fruit set and yield.

Effect of the treatments and  number of bee flower visitors on (a) fruit set, (b) yield, (c) 
number of fruits, and (d) mean fruit weight. Effects of number of cucumber flowers on (e) 
the number of bee flower visitors and effects of number of cucumber flowers and the number 
of bee flower visitors on (f ) yield. The models included nested random effects (site/weeds/
herbivory/fertilization) for the split-plot design. Included are the results from the best model 
resulting AICc and QAICc model selection. Response variables and significances (significance 
level P<0.05) are in bold.

response 
variable

explanatory variables +/- estimate ±SE z P

(a) fruit set intercept -1.39 0.15 -9.17 <0.0001
bee individuals + 0.03 0.01 2.79 0.0054
no weed control - -0.29 0.08 -3.45 0.0006

response variable explanatory variables +/- estimate ±SE t P
(b) yield (sqrt) intercept 25.99 2.61 9.96 <0.0001

bee individuals + 0.56 0.23 2.44 0.0184
no weed control - -11.64 2.30 -5.06 0.0003
bee individuals*weeds 0.52 0.27 1.94 0.0583

(c) number of  
fruits (log)

intercept 2.40 0.35 6.92 <0.0001
bee individuals + 0.06 0.03 2.02 0.0485
no weed control - -1.39 0.30 -4.69 0.0005
no fertilization - -0.32 0.15 -2.09 0.0416
bee individuals*weeds 0.06 0.03 1.89 0.0655

(d) mean fruit 
weight

intercept 301.69 27.27 11.06 <0.0001
bee individuals + 6.10 1.86 3.27 0.0021
no fertilization 20.35 18.83 1.08 0.2859
no weed control -11.37 19.45 -0.58 0.5696
fertilization*weeds -49.11 26.81 -1.83 0.0741

(e) bee 
individuals (sqrt)

intercept 1.00 0.22 4.62 <0.0001
number flowers + 0.05 0.01 4.83 <0.0001

(f ) yield (sqrt) intercept 3.36 2.70 1.24 0.2205
bee individuals + 1.69 0.35 4.83 <0.0001
number flowers + 1.28 0.17 7.59 <0.0001
bee individuals*number flowers -0.07 0.02 -3.59 0.0008

Abbreviation: *= interaction, SE= standard error, +/-= direction of effect
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Appendix Table S5: Effects of herbivory variables 

Effects of (a) percentage leaf damage and (c) number of herbivorous species on yield. Effects 
of management variables on (b) percentage leaf damage and (d) herbivorous species. The 
models included nested random effects (site/weeds/herbivory/fertilization) for the split-plot 
design. Included are the results from the best model resulting AICc model selection. Response 
variables and significances (significance level P<0.05) are in bold.

response 
variable 

explanatory variables +/- estimate ±SE t P

(a) yield 
(sqrt)

intercept 21.22 1.69 12.58 <0.0001
%leaf damage -0.10 0.20 -0.50 0.6166

(b) % leaf 
damage 
(logit)

intercept -3.57 0.30 -12.10 <0.0001
wind- and self-pollination -0.29 0.15 -1.92 0.0577
no fertilization -0.28 0.15 -1.88 0.0670
no weed control + -0.71 0.28 -2.50 0.0293

(c) yield 
(sqrt)

intercept 18.73 1.77 10.58 <0.0001
herbivorouse species + 0.18 0.07 2.61 0.0109

(d) 
herbivorouse 
species 

intercept 2.78 0.17 16.66 <0.0001
wind- and self-pollination - -0.57 0.15 -3.74 0.0003

Abbreviation: SE= standard error, +/-= direction of effect
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Abstract

Pollinators act on different spatial scales but still little is known how the combination of bee 

management from farm to landscape scales contribute to crop pollination and yield-gap reduction. 

We analyse factors on three spatial scales driving bee abundance and their effects on cucumber 

production in homegardens. Further, we test for differences in the bee responses in respect to 

functional traits.

Yield increased significantly with increasing number of flower-visiting bees, with solitary bees 

being the most abundant visitors. Bee loss of 50% translated into a 47% income decline.  

Bees were affected on multiple spatial scales. On the (1) homegarden scale, the percentage 

of homegarden flower cover best predicted pollinator attraction, if, on the (2) adjacent-habitat 

scale (200m radius), a higher percentage of homegardens (at least 20%) surrounded the study 

homegarden. On the (3) landscape scale (0-2200m), bees increased significantly closer to the forest, 

driven by small bees. Homegardens with 50% flower cover, surrounded by 50% homegardens and 

<100m from the forest generated an at least nine-fold higher income compared to homegardens 

with low flower cover (15%) and being isolated from the forest (>1500m). 

Farmers therefore need to adjust bee management on three spatial scales to reduce crop yield 

gaps. 

Keywords: adjacent-habitat, bee pollination, Cucumis sativus, flower cover, Indonesia, net income 
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Introduction

Insect pollinators provide an important service for crop production (Klein et al. 2007); however 

this service is at risk (Aizen et al. 2008) due to declining bee populations in many parts of the world 

(Ricketts 2004; Potts et al. 2007; Gonzalez-Varo et al. 2013). Especially in tropical areas, where 

farmers depend mostly on wild, non-managed, bees (Hoehn et al. 2008; Klein et al. 2003a), land-

use change impacts on wild pollinators and pollination services are not well understood. Research 

aiming to disentangle drivers of diversity and flower visitation of wild bees on the landscape and 

local scale is required (Tscharntke et al. 2005, 2012). 

Wild bees can be influenced by multiple determinants on the landscape scale through i) 

isolation from natural habitat (landscape scale) and ii) availability of quality habitat in the direct 

neighbourhood (adjacent-habitat scale), and on the local farm or homegarden scale through iii) 

local management practices and availability of alternative flower resources (Kremen et al. 2007; 

Carvalheiro et al. 2011; Kennedy et al. 2013). 

The isolation from natural habitat negatively affects bee visitation, richness and stability that 

usually decrease with increasing distance from the nearest forest habitat (Klein et al. 2003a; Ricketts 

et al. 2008; Carvalheiro et al. 2010; Garibaldi et al. 2011). However, not all bee species are equally 

affected by forest distance (Greenleaf and Kremen 2006). For example, small bees might respond 

to landscapes at finer scales than large bees (Greenleaf et al. 2007; Klein et al. 2008; Benjamin et 

al. 2014). The amount of natural or semi-natural habitat adjacent to the crops can influence the 

available species pool (Tscharntke et al. 2012) and might be even more important than distance 

to natural habitat (Schüepp et al. 2014). Natural or semi-natural habitat provides key food and 

nesting resources for wild bees (Tscharntke et al. 2005; Kremen et al. 2007), while homegardens 

can act as both sink and source habitat for bees depending on the amount of food and nesting 

resources offered (Goulson 2003; Smith et al. 2006; Cussans et al. 2010; Samnegård et al. 2011). 

On a smaller scale, farm management can have a great influence on wild bees and pollination 

services mostly in interaction with landscape factors (e.g., Rundlöf et al. 2008; Williams and Kremen 

2007; Concepcion et al. 2012), but being sometimes more important than landscape effects (Jha 

and Vandermeer 2009; Kennedy et al. 2013). Pollinator populations can be attracted through high 

flower resources of both crop and non-crop flowers on the farm or in the homegarden (e.g., Kim et 

al. 2006; Holzschuh et al. 2008; Batáry et al. 2011).

So far, most studies have separately looked at either the landscape (e.g., Ricketts et al. 2008; 

Krishnan et al. 2012) or farm scale (e.g., Kremen et al. 2002, 2004), when effects on pollinators 
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were studied. In addition, few studies have included the relation of pollinator visitation to fruit set 

and yield, which is the final ecosystem service providing direct benefits to farmers (e.g., Holzschuh 

et al. 2007; Rundlöf et al. 2008). Patterns of bee-flower-yield interactions are usually complex and 

most habitat and landscape variables do not act separately but are influenced by each other (Brittain 

et al. 2010; Andersson et al. 2013; Schüepp et al. 2014). Further, differences between regions 

(Kennedy et al. 2013) and pollinator guilds (Greenleaf and Kremen 2006; Rundlöf et al. 2008) 

play a role. Scale-dependency may change between solitary and social bees (e.g., Klein et al. 2003b) 

and with body size (e.g., Klein et al. 2008). Disentangling the interacting effects on different spatial 

scales in direct relation to crop yield is necessary to provide better cost-benefit analyses of landscape 

and farm management practices (e.g., Greenleaf and Kremen 2006; Carvalheiro et al. 2010; Boreux 

et al. 2013; Schüepp et al. 2014). 

Here, we aim to disentangle the interactive effects of bee management on multiple spatial 

scales (Fig. 1). Specifically, we determine how homegarden, adjacent-habitat and landscape scale 

management influences the number of wild bee individuals visiting cucumber flowers and their 

effects on yield of small-scale farmers. We assess the role of the amount of adjacent homegardens 

as managed habitat for pollinators (in addition to forest as natural habitat), with bee population 

responses hypothesized to depend on bee sociality and body size. 

Methods

Study area and crop system

Our study was conducted in Lore Utara (Napu valley), Central Sulawesi, Indonesia. The valley is 

located between Palu city and Poso regency at an elevation of 1100-1200m a.s.l. with mean annual 

temperatures of 24.0±0.16 °C. The area comprises a mosaic of villages with species-rich traditional 

homegardens embedded in rice paddies, vegetable gardens, and cacao agroforests directly bordering 

the tropical rainforest of the Lore Lindu National Park. Due to high human immigration and a 

growing human population, illegal deforestation and pollution from pesticide use are increasingly 

important issues for the environment (Maertens et al. 2002; Kehlenbeck 2007). The area is well 

known for their diverse traditional homegardens (Kehlenbeck and Maas 2006), which provide 

heterogeneous habitats (with blooming patches, fallows, woody plants and undisturbed soils; 

Kehlenbeck 2007), offering food and nesting resources for bees as well as a (general) refuge from 

pollution and land conversion. Cucumbers (Cucumis sativus, L.) are of major importance both 
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for self-consumption and a source of income (Natawidjaja et al. 2007). Cucumbers have male 

and female flowers and depend on animal pollination (Free 1993; McGregor 1976). The time 

of flowering in one homegarden is between two to three weeks per total growing period (2-2.5 

months). 

The experimental design including pollinator observation and landscape 

characterization 

We selected 13 homegardens along a gradient of forest distance ranging from 5 to 2200m. The sites 

where chosen to be in an area of 4000m radius with a minimum distance of 500m between the sites 

(see Fig. S1 in electronic supplementary material).

In each homegarden, we planted cucumber plants in a split plot design of eight subplots of 7 

plants each in an area of 300m2. Plant survival was recorded resulting due to strong and continuous 

rainfall in 3-7 plants per subplot. In each subplot we applied different combinations of commonly 

used fertilizers, herbicides (combined with manual weeding) and insecticides to test the effect of 

management practices on cucumber plants (see Motzke et al. 2014 for details). We accounted for 

treatment effects in the statistical models (see below). We counted the male and female flowers and 

the fruits of each plant and measured the weight of each fruit. Yield was calculated as the product 

of mean fruit weight per plant and the number of fruits per plant.

In each subplot we observed insect flower visitors on 3 days between 9 and 12 am for a 5 

min interval each. The observed insects were caught after the observation and identified in the field 

or laboratory (Michener 2000; reference collections at the Conservation and Landscape Ecology 

Group, University of Freiburg, Germany and the Agroecology group, University of Göttingen, 

Germany) and by experts (Stephan Risch, Leverkusen). As body size classification of bees we used 

the inter-tegular span (large>2mm, small≤2.0mm; Cane 1987, Table S2). Bees were classified as 

social bees (species from the genus Apis, Geniotrigona and Tetragonula) or mainly solitary bees 

(including bees from the family Halictidae where some varying forms of social behaviour do occur, 

e.g., Wcislo et al. 1993, but information on sociality are lacking for almost all of the observed 

species; Table S2).

Area of the flower cover per homegarden was estimated once as the mean cover of flowering 

plants in five 2x2 meter points of each homegarden. To characterize the landscape adjacent to the 

study homegarden, we visually estimated the area of homegarden in a 200-meter radius around 

the study homegardens. Distance to the forest was measured with a GPS (Garmin Oregon 550t, 

Garmin International Inc.) to determine the nearest point of the forest margin.
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Statistical analyses

We used variables on three spatial scales that may be important for bee management. On the finest 

scale (homegarden scale) we selected the percentage of flower cover per homegarden (hereafter 

referred to as % flower cover) because it should provide resources attracting bees (Garibaldi et al. 

2011). On the second scale (adjacent-habitat scale), we selected the percentage of homegarden area 

(hereafter referred to as % homegarden area) in a 200m radius surrounding the studied homegarden 

as a measure of potential nesting and flower resources available for bees (Samnegård et al. 2011). 

On the third and largest scale (landscape scale), we included the distance to the rainforest (0-

2200m; hereafter referred to as forest distance) as measure of habitat isolation in the analysis. The 

variable forest distance was log-transformed as the relationship between forest distance and the 

response variable was non-linear. The variables % homegarden area and forest distance correlated 

(Pearson’s correlation: r2=0.56), but the variance inflation factor (VIF=2.3) was below the value 

recommended (VIF<3) to reduce the chance of collinearity (Zuur et al. 2010). All other variables 

showed no correlation (Table S1).

We used the number of bee individuals and not bee species richness as response variable in our 

models, because the two variables were highly correlated (Pearson’s correlation, t=15.24, d.f.=101, 

P<0.0001, r2=0.75, Fig. S2). We chose the number of bee individuals (sum of 3 observations) as the 

more robust variable as we cannot make unambiguous conclusions on the role of species richness 

in this study. For the effect of bee individuals (sqrt-transformed) on yield we used a linear mixed-

effects (LME, “nlme” package; Pinheiro et al. 2009) models including the number of cucumber 

flowers as a covariate and the split plot treatments (garden/ weed control/ fertilization) nested as 

random effects as required for a split plot analysis (for more detail see Motzke et al. 2014). We 

tested the effect of scale variables (% flower cover, % homegarden area, and forest distance) on 

the overall number of bee individuals, only solitary bee individuals, and only small or only large 

bee individuals (response variables, sqrt-transformed) also with LME. The explanatory variables 

were standardised by subtracting the mean and dividing it by two times the standard deviation to 

compare model estimates (Gelman 2008).

We used Akaike’s information criterion (AICc, corrected for small sample size) stepwise 

model selection to determine the best-fitted model (R-script on URL: http://wwwuser.gwdg.

de/~cscherb1/statistics.html). 

For the net income calculations, we predicted the number of bee individuals for low and 

high values across the three scale variables (10% and 50% flower cover, 10% and 50% homegarden 
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area, and 40m and 1500m forest distance), resulting in eight possible predicted numbers of bee 

individuals. We then used these estimated number of bee individuals to predict yield (see model 

above) and net income. The latter was calculated based on a 300m² area (with 800 cucumber 

plants) and the market price per kg (0.34 $) per one cucumber growing period. Values are given in 

US$ with the exchange rate of 0.113 US$ per 1,000 Indonesian Rupiah. We subtracted operational 

costs (total 65.83 $) for fertilizer, insecticide, herbicide, land preparation, and labour (Motzke et 

al. 2014). 

All analyses were performed in R, version 2.15.2 (R Development Core Team 2013).

(5.65$), herbicide (4.52$), land preparation (33.90$), and labor (weeding, spraying, and 

harvest; 13.85$).  All analyses were performed in R, version 2.15.2 (R Development Core Team 

2013).

distance [m]

1. homegarden scale: 
% flower cover / homegarden

2. adjacent-habitat scale: 
% homegarden area 
(in 200m radius)

3. landscape scale: 
forest distance
(0-2200 m)

= non-crop 
   flower cover

= homegarden

= forest

Fig. 1 Schematic figure of the three spatial scales assessed in this study. Spatial scales increase 
from the homegarden, to the adjacent-habitat, and to landscape scale. .
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Results

Pollinator community

During our observations we found 37 insect species (n=780) including mainly bees of the families 

Apidae and Halictidae (n=753) comprising 96.4% of all individuals (23 species, Table S2). The 

most abundant bee group were solitary bees (92%) with Nomia fulvata (Fabricius), Amegilla sp.1, 

and Xylocopa aestuans (Linnaeus) as the most abundant species (36%, 15%, and 13% of all bees, 

respectively). We found five social bee species (8%) with Apis cerana Fabricius being the main social 

bee species (60% of social bee individuals) visiting cucumber flowers. 

Correlating bees and yield

Yield increased significantly with increasing number of flower-visiting bee individuals (F=39.38, 

d.f.=48, P <0.0001, Fig. 2). Yield is predicted to increase by 59% when visits doubled from 7 to 

14 bees per plant and 5min observation period (0.66 kg to 1.1 kg per plant). This also means that 

losing 50% of bees translates into a net income decline of 47%. 

Effects on bees on three spatial scales 

The best model explaining the number of bee individuals included the variables % flower cover, % 

homegarden area, forest distance, and the interaction of flower cover * homegarden area (Table 1). 

On the first (smallest) and second spatial scale (garden and adjacent-habitat scale) % flower cover 

(>40%) had a significant greater effect on the number of bee individuals when the % homegarden 

area was also higher (>20%; Fig. 3(b)). The interaction had the highest estimate value and, thus, the 

strongest influence of all variables on number bee individuals. In addition, homegardens with close 

proximity to the forest (~50% reduction in the first 100 m) had significantly higher numbers of bee 

individuals visiting the flowers, following a logarithmic relationship (Fig. 3(a), Table 1). 

Net income was predicted to increase with higher numbers of bee flower visitors, which 

can be achieved with increased % of flower cover, but only if the homegarden was surrounded by 

homegardens and/or was located close to the forest (Table 2). Thus, highest income due to highest 

number of bee individuals was predicted in a setting with 50% adjacent homegarden area, close 

(50m) to the forest and a high flower cover (50%). This can result in a maximum income of about 

180 $ compared to an income below 20 $ with only low flower cover (15%) and further (>1500m) 

away from the forest (Table 2). 
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Figure 3: Relationship of number of bee individuals and the three scale variables included in 
the best model. The black line displays the predicted values from the model and the dashed 
lines 95% confidence intervals. Statistical significance is represented by asterisk symbols for 
P-values below 0.05 (*). (a): The effect of number of forest distance (log scale) on number 
of bee individuals. Observed number of bee individuals is shown as dots. (b): Effect of the 
interaction of % flower cover and the % homegarden area on the number bee individuals.

Table 1: Parameter estimates of the LME analysis for the effects of % flower cover per 
homegarden, % homegarden area, and forest distance on (a) number of bee individuals, (b) 

Fig. 2 Significant relationship (P <0.0001) of yield (kg harvested per cucumber (Cucumis 
sativus L.) plant) and number of bee individuals visiting the flowers. The black line displays 
the predicted values from the model and the dashed lines 95% confidence intervals. Original 
values are shown as dots. Statistical significance is represented by asterisk symbols for P-values 
below 0.0001 ***)



56

	 Chapter 3

number of solitary bee individuals, (c) number of small bee individuals, and (d) number of 
large bee individuals visiting the cucumber flowers. The models included nested random effects 
(site/weeds/herbivory/fertilization) for the split-plot design. Included are the results from the 
best model resulting step AICc model selection. 

response 
variables

explanatory variables estimate ±SE t P

(a) all bees intercept 2.49 0.13 19.37 <0.001
% flower cover 0.88 0.40 2.18 0.061
% homegarden 1.63 0.40 4.02 0.004
forest distance -1.00 0.41 -2.45 0.040
% flower cover*% homegarden 2.23 0.84 2.64 0.030

AICc full/minimal: 316.0/311.6
(b) solitary bees intercept 2.38 0.13 17.89 <0.001

% flower cover 1.45 0.42 3.44 0.009
% homegarden 0.84 0.42 2.02 0.078
forest distance -1.08 0.42 -2.56 0.034
% flower cover*% homegarden 1.83 0.88 2.09 0.070

AICc full/minimal: 315.6/311.1
(c) small bees intercept 1.99 0.13 14.91 <0.001

% homegarden 0.91 0.44 2.08 0.068
% flower cover 0.86 0.29 2.93 0.017
forest distance -0.99 0.43 -2.28 0.049

AICc full/minimal: 302.2/298.4
(d) large bees intercept 1.15 0.15 7.62 <0.001

% flower cover -0.51 0.33 -1.58 0.148
% homegarden 0.93 0.48 1.94 0.084
% flower cover*% homegarden 2.24 0.97 2.31 0.047

AICc full/minimal: 227.3/222.2
Abbreviation: *= interaction, SE= standard error, +/-= direction of effect, full = the AICc of the full 
model (including all explanatory variables and two-way interactions), minimal= the AICc of the best 
model resulting AICc model selection

Bee traits such as body size and sociality

Social vs solitary bees

Yield also significantly increased when we included only the number of solitary bee individuals 

in the analysis (t=8.19, d.f.=48, P<0.001), but not the number of social bee individuals (t=1.22, 

d.f.=48, P=0.228).

Solitary bee individuals were influenced by similar patterns as all bee individuals. However, 

only forest distance significantly reduced the number of solitary bee individuals (Table 1). We 

cannot draw clear conclusions on the social bees, because social bees visited the cucumber flowers 
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only sporadically (6% of all individuals) with A. cerana clustered in one homegarden during our 

observations, and applying statistical models resulted in low power of the analysis with the NULL 

model being the best model. 

Bee body size

Small bees (n=525 observations) differed from large bees with respect to the management variables. 

The best model for small bees included the variables forest distance, % flower cover, and % 

homegarden area, but small bees increased significantly only with increasing proximity to the forest 

and increasing % flower cover (Table 1). Large bees (n=198 observations) followed the same pattern 

as all bees and were influenced by the interaction of flower cover * homegarden area (Table 1). 

However, forest distance was not important for large bees (Table 1).

Table 2: Predicted net income (in US$ and % relative to the mean income) of small-scale 
cucumber (Cucumis sativus L.) production in different settings of high (50%) and low (15%) 
adjacent homegarden area, distance of near (5m) and far (1500m) from to forest), and high 
(50%) and low (15%) homegarden flower cover.

near the forest (50m) far from the forest (1.5km)
% homegarden area

 low (15%) high (50%) low (15%) high (50%)
flower cover low 
(15%) 62.00$ SE±22.6$ 18.10$ SE±21.2$ 30.33$ SE±21.6$ 17.96$ SE±21.2$

flower cover high 
(50%) 80.45$ SE±23.5$ 180.02$ SE±32.3$ 40.02$ SE±21.9$ 98.81$ SE±24.5$

Discussion

We show for the first time the importance of tropical bee management including the role of diverse 

homegardens across three spatial scales to provide adequate pollination services in small-scale 

vegetable production. This has important implications for smallholder farming practises to ensure 

pollination services for their crops. Cucumber production directly depends on bee pollination 

risking a nine-fold decline in income with pollinator loss. Bee management is complex and acts 

from the local habitat to the landscape scale. Flower resources in the homegarden attracted bees from 

natural habitat (rainforest) and adjacent, flower-rich homegardens. These habitats, thus, provided 

source population of pollinators spilling over across ecosystems, depending on the landscape setting 
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as well as the species’ response traits. 

The most important variable determining the number of bee individuals was increasing the 

% flower cover (homegarden scale), but only if there were more than 20% homegardens in the 

adjacent landscape. 

This situation also translated into increased net income for farmers via increased bee flower 

visitors and thus pollination services. Studies from temperate regions showed that wild bees were 

strongest influenced by natural or semi-natural habitat on similar spatial scales (Holzschuh et al. 

2008; Smith et al. 2013). Flowers provide resources and can attract bees into the homegarden from 

the surrounding homegardens (e.g., Pereira-Peixoto et al. 2014). Our finding that floral resources 

determine wild bee individuals confirms patterns found in other studies (e.g., Veddeler et al. 2006; 

Carvalheiro et al. 2010). However, number of flowering plant individuals had no influence on 

cucumber flower visitors in Midwest US, but percentage semi-natural habitat (Smith et al. 2013). 

The amount and quality of the adjacent landscape matrix as habitat providing the source pool of 

species is often important but changes with region (Mandelik et al. 2012). Homegardens are highly 

heterogeneous habitats with a diversity of plant species providing not only flower but also nesting 

resources with trees and fallow areas (Kehlenbeck and Maas 2006) and may contribute to overall 

landscape heterogeneity. In our case, homegardens acted as important source habitats sustaining 

bee populations in adjacent homegardens, which were attracted by crop and non-crop flowers. 

Without homegardens the species pool and population size of bees in the surrounding area was 

small, providing few pollinators for crop pollination. 

Increased availability of flowering plants can differentially influence the abundance of different 

bee functional groups (e.g., Klein et al. 2008; Jha and Vandermeer 2009). Solitary bees were the 

most important pollinators, whereas the honeybee A. cerana was rarely found on cucumber flowers. 

Wild solitary bees appeared to benefit from the homegardens through an increased flower cover 

providing food resources and a heterogeneous habitat with trees and open ground as nesting sites 

and refuges (e.g., Kim et al. 2006). This is in line with previous studies in tropical agricultural 

systems where the number of solitary bee individuals increased with higher flower cover (e.g., Klein 

et al. 2003a; Carvalheiro et al. 2010).

However, wild bee communities can also respond to larger spatial scales (e.g., Kremen et al. 

2014), which highlights the importance of landscape-wide studies. In addition to flower resources, 

forest distance had the second most important impact on the number of bee individuals visiting the 

cucumber flowers. Cucumber production in a homegarden with high % flower cover and located in 

a distance of less than 100m from the forest border translated into the highest yields and net income 
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for farmers. This is in line with findings that bees decrease with forest distance (reviewed in Ricketts 

et al. 2008; Garibaldi et al. 2011), whereas other did not find a connection to forest distance (e.g., 

Donaldson et al. 2002; Brosi et al. 2008). The relationship was logarithmic, meaning that the first 

100m from the forest were most important with half of the bees dropping out. This effect was 

driven by the smallest bees being most sensible to forest loss, due to their smaller foraging range 

and forest dependant life history (e.g., the stingless bees of the tribe Meliponini, Michener 2000; 

Roubik 2002). In contrast, large bees have wider foraging ranges and often nest in woody structures 

of houses (Michener 2000), and are, hence, influenced by local rather than landscape effects.

Conclusion

Closing yield gaps through the conservation of pollinators are key challenges for smallholder 

farmers in the tropics, as most of their crops need efficient pollination. Homegardens are often 

highly diverse man-made habitats, offering heterogeneous nesting and floral resources. Farmers can 

mitigate crop yield losses in homegardens coming from declines in pollination services by adapted 

bee management. In contrast to common believe, solitary, not social bees were the most important 

group for crop pollination. Given the interaction of farm and landscape scale variables relevant for 

bee management, there is no “one solution fits all” bee management. In homegardens with higher 

local flower cover and surrounded by other homegardens or close to natural forest, farmers can 

attract more bees to their crops and, thus, increase pollination services. In other words, farms must 

be managed according to the amount of natural or quality habitat available, because the on-garden 

amount of flowers is only efficient to attract high bee numbers if the adjacent landscape provides 

enough habitats acting as pollinator source. 

Furthermore, bee guilds respond differently to anthropogenic change, so crop-specific 

pollinator requirements as well as bee trait-specific requirements must be understood to design 

efficient conservation plans. If small bees provide important services, crops should not be 

separated from pollinator source habitats such as forests. In conclusion, sustaining species-rich 

bee communities with multiple traits need multiple scale approaches. Our work highlights the 

complexity of the links between bee communities and agricultural practices at different spatial 

scales to sustain maximum crop yields. 
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Online Supplementary Material Table S1 Correlation matrix of the plant, habitat and landscape 
explanatory variables: Significant correlations at P<0.05 are shown in bold.

% flower cover % homegarden area
% homegarden area -0.2

Forest distance 0.08 0.75
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Fig. S1: Map of the study area and distribution of study gardens in the Napu valley
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Supplementary table S2
Online Supplementary Material Table S2: Bee species and number of individuals visiting 
cucumber flowers with their respective body size and sociality.

Bee species individuals body size sociality
Nomia fulvata (Fabricius) 268 medium solitary
Amegilla sp.1 111 large solitary
Xylocopa aestuans (Linnaeus) 69 large solitary
Ceratina cognata Smith 63 small solitary
Lasioglossum vagans (Smith) 49 small unknown
Ceratina rugifrons Smith 45 small solitary
Apis cerana Fabricius 36 small social
Lasioglossum halictoides (Smith) 32 small unknown
Ceratina sp.1 15 small solitary
Gnathonomia thoracica Smith 14 small solitary
Xylocopa dejeanii Lepeletier 12 large solitary
Nomia formosa Smith 8 small solitary
Geniotrigona incisa (Sakagami and Inoue) 5 small social
Patellapis celebensis (Blüthgen) 5 small unknown
Homalictus vechti Pauly 4 small unknown
Amegilla sp.2 3 large solitary
Apis dorsata binghami Cockerell 3 large social
Thyreus nitidulus (Fabricius) 3 small solitary
Lipotriches philippinensis (Cockerell) 2 small solitary
Ceratina unimaculata Smith 2 small solitary
Tetragonula sp. 2 small social
Megachile aterrima Smith 1 small solitary
Ceyalictus sp. 1 small unknown
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Supplementary Figure S2

Fig.S2: Correlation of number of bee individuals and number of bee species (Pearson’s 
correlation, t=15.24, d.f.=101, P<0.0001, r=0.83)
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Abstract

Tropical small-holder farmers rely on sustainable food production. Crop seed predation by ants can 

cause substantial yield loss and result in high pesticide use. We conducted field experiments and 

questionnaire-based surveys aiming to assess the effect of sown-seed predation on four crop species 

(Cucumis sativus, Daucus carota, Capsicum frutescens and Solanum melongena) in 15 vegetable 

gardens and the resulting impact on the net income of Indonesian farmers. Furthermore, we tested 

a commonly applied insecticide and herbicide for seed, seedling and plant protection aiming to 

understand their effect on ant seed predation. We found that the mean percentage of seeds removed 

per garden was 42.0%, 49.4%, 48.0% and 50.6% for C. sativus, D. carota, C. frutescens and S. 

melongena, respectively, halving the farmers’ income after considering initial and operational costs. 

Insecticide and herbicide treatments did not affect seed predation success or overall ant abundance, 

although they had positive and negative effects on ant species-specific abundance. High overall ant 

abundance caused high seed predation rate in all gardens as a result of a functional redundancy of 

ant species, which compensated for pesticide-related species loss. Environmentally-friendly and 

more sustainable practices such as overseeding or seedling production in nurseries could substitute 

for these inefficient approaches of chemical pest control, although this requires further research.

Keywords: Agroecosystem, functional redundancy, herbicide, Indonesia, insecticide, invasive ants, 

local economies, Sulawesi, vegetable gardens
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Introduction

Rapid human population growth is paralleled by an increasing demand for nutritious food (Hobbs, 

2007; Dias, 2010) with a major focus on poor tropical countries (Bawa et al. 2004; Foleyet al. 

2005, 2011). For food and income security, crop seeds are highly valuable assets to farmers because 

seed quality and survival are directly related to crop yield (e.g. the global vegetable seed market was 

US$3.5 billion in 2008; Monsanto, 2010). The loss of newly-sown seeds to seed predators poses 

high costs and can greatly decrease income as a result of crop losses. 

In the tropics, ants are among the most important seed predators (Hulme & Kollmann, 

2004; Albert et al. 2005; ander Wall et al. 2005). Although tropical smallholders play an important 

role for food production (Perfecto & Vandermeer, 2010), our knowledge on seed predation comes 

either from ild plant species, from predation on crops at harvest or weed seeds. The few studies 

assessing sown-seed predation mainly focus on crop species in temperate regions. For example, 

a study from the U.S.A. shows that the fire ant Solenopsis invicta (Buren) causes up to 20–30% 

soybean yield loss as a result of the destruction of seeds (Adams et al. 1983). In Australia, ants can 

cause up to 40–90% seed losses on sown pastures (Johns & Greenup, 1976; Kelman et al. 2002). 

Yield losses of newly-sown crop seeds caused by harvester ants in semi-arid cereal fields of Spain 

were insignificant (0.2% of yield losses; Baraibar et al. 2011). In the laboratory, 

 damaged or removed up to 95% of seeds of various crop species (e.g. soybean, corn, sorghum 

and wheat; Drees et al. 1991; Ready & Vinson, 1995; Morrison et al. 1997). We are aware of only 

one non-manipulative study in the tropics on dryland rice in the Philippines, where seed loss from 

various insects, including ants (e.g. Solenopsis geminata Fabricius), was up to 71% (Litsinger et al. 

2009). The effect of seed predation by ants can therefore be substantial. 

To protect crop seeds against soil-born herbivores and ants, insecticides such as imidacloprid 

(neonicotinoid) and carbofuran (carbamate) have long been commercially applied (Munkvold, 

2009; de Almeida et al. 2010). Herbicides are also frequently applied before sowing to control early 

weed pressure, although they could also affect arthropods by altering food resources, microclimates 

and shelter (Chiverton & Sotherton, 1991; Edwards, 1991; Ewald & Aebischer, 2000; Yardim 

& Edwards, 2002; Pereira et al. 2005). Although negative effects of pesticides (insecticides and 

herbicides) on the environment including biotic interactions and human health have been 

demonstrated (Kesavachandran et al. 2009; Brittain et al. 2010; Daam & Van den Brink, 2010), 

the effect on tropical biotic interactions has received little attention. 

Based on an experimental approach, questionnaire-based surveys and Bayesian regression 



71

	 Chapter 4

modelling, we investigated for the first time the effects of pesticides on vegetable seed predation 

and farmers’ income in Sulawesi, Indonesia. We first tested insecticide and herbicide application 

on seed predation by ants on four crops in Indonesian small-scale gardens. In addition, we assessed 

the ant communities in our gardens with a focus on dominant seed-eating species. We also tested 

the effect of natural forests (i.e. as refugium habitat for many ant species) on ant species richness 

and abundance and seed predation. We then calculated the importance of seed predation for net 

income of local farmers including initial and operational costs. In the present study, we tested 

the hypotheses: (i) sown-seed predation by ants highly affects our focal crop species; (ii) the use 

of herbicides and insecticides can remedy ant seed predation; and (iii) ant seed predation has a 

measurable negative impact on the income of local farmers.

Materials and methods 

Study area 

The study was conducted in the Napu Valley, Central Sulawesi (Indonesia) at the eastern margin 

of the Lore Lindu National Park (1100–1200ma.s.l.; see Supporting information, Fig. S1). The 

region has no pronounced seasonality with a mean±SD annual temperature of 24.0±0.16 ◦C and 

a mean±SD monthly rainfall of 143.7±22.7 mm, providing optimal conditions for farming year-

round. Most inhabitants are farmers of paddy rice, cacao and vegetables (Van Rheenen et al. 2004). 

The landscape is a mosaic of natural forest and small-scale agriculture with intensive pesticide 

applications (Wanger et al. 2010). Multicropping is common for small-scale farming of our study 

area. 

Plot setting and treatments 

We selected 15 multi-copping vegetable gardens with a distance >1 km between the gardens (to ensure 

statistical independence) and an isolation gradient from natural forest (0–2500 m) to investigate 

the effects of natural forest on seed predators and predation rates. In each garden, we planted four 

crop species (cucumber Cucumis sativus L., carrot Daucus carota L., chili pepper Capsicum frutescens 

L. and eggplant Solanum melongena L.) over 6 months, starting in July 2010. Plants were sown by 

placing the seeds on the newly-prepared bed rows (height 40 cm, width 1m, length 10m) at distances 

of 50, 70 and 80 cm between each plant for cucumber, eggplant and chili, respectively. Carrots were 

sown by scattering the seeds by hand evenly over the beds.We divided each garden (size 300m2) 

into four equally sized plots and applied four pesticide treatments: insecticide (α-cypermethrin 



72

	 Chapter 4

30 g/L and permethrin 20.04 g/L) spraying; herbicide (paraquat-dichlorid 297 g/L) spraying; the 

combination of insecticide and herbicide (combi) spraying; and no pesticide application (control). 

Starting in July 2010, we applied the pesticide treatments weekly in accordance with common 

local management practices. We chose these products because they are the most commonly used in 

vegetable gardens of the study region to protect seeds, seedlings and the grown plants. The active 

ingredients of both pesticides were classified as moderately hazardous (class II) by the World Health 

Organization (WHO) (2009). We established 2-m drainage buffers between plots in each garden 

to avoid pesticide drifts between treatments. 

Seed predation experiment 

We only referred to seed predation if a seed was: (i) removed from the experiment or (ii) heavily 

damaged such that germination in our experimental gardens was unlikely. Our seed sources 

(commercial C. sativus, S. melongenaand C. frutescens seeds and locally produced D. carota seeds), 

plot preparation and sowing methods were the same as those used in local farm management 

practices. Because most commercial seeds have an insecticide coating, we tested the effect of the 

coating on seed predation rate in a pilot study. After baiting each of five seed chambers (see below) in 

one garden with five seeds per crop species, we found no differences between the mean±SE number 

of seeds removed or damaged by ants of coated (2.8±1.3) versus uncoated (3.2±1.3) seeds. For a 

realistic set-up, we used coated seeds in our experiments. Twelve hours prior to the experiment, 

S. melongenaand C. frutescens seeds were placed in water to enhance germination (this is common 

practice by the local farmers). We used small plastic containers (hereafter ‘seed chambers’) to observe 

ant seed predation. Before placing five seeds of each crop species directly onto the soil surface 

(common practice), a fine mesh (1 mm) had been placed 2 cm under the soil (to avoid seed removal 

by soil organisms). We then placed a plastic container (diameter 4 cm) with its bottom removed on 

top of the seeds. Four holes (width 0.5 cm) (one on each side of the seed chamber) were cut in for 

ant access and to exclude other seed predators (e.g. rats or mice) and minimize disturbance by rain 

and wind. We monitored the seed chambers for a 3-h period on 3 days prior to the experiment to 

assess whether only ants enter the seed chambers.

In total, we monitored seed predation for C. sativus, S. melongena, D. carota and C. frutescens 

with two replicates for each of the four treatments (10 seeds per crop and per garden). We checked the 

number of seeds removed or damaged in each seed chamber daily over a 1-week period in October 

2010. Any reduction in seed number was attributed to seed-predating ants (Fig. 1) because we did 

not observe other animals entering the seed chambers during the pilot study and the experiment.
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Ant species richness and abundance 

To assess ant diversity and abundance for all treatments, we used standard-size plates with tuna 

baits and 70% sugar solution. Tuna baits are frequently used to assess ant communities (V´ele et 

al. 2009; Wielgoss et al. 2010) because tuna contains lipids that are attractive to omnivorous ants 

(Marshall et al. 1979; Skidmore & Heithaus, 1988). After 15, 30, 45 and 60min, we recorded the 

abundance of all ant species occurring at the baits on two plates in each plot (a total of eight plates 

per garden; Wielgoss et al. 2010; Wanger et al. 2011). We repeated the sampling twice in October 

and December 2010 before and after the seed predation experiment.

Costs of seed predation 

We estimated net income generated from all crops with data from two standardized questionnaires 

and experimental data on crop yield, seed and crop prices, and operational expenses for a 300-m2 

garden (common size of a vegetable garden in Sulawesi; see Supporting information S1 and S2 and 

Table S1). 

We derived the replicated measure of seed predation from all 15 study gardens. Income 

generated from one plant individual was calculated as the mean yield per plant species multiplied 

by the price per kg. We used the price at the time of the experiment as the set price, although we 

also included the 1- year price variations of 2010. We calculated the net income by subtracting 

operational costs for fertilizer, pesticides and labour costs (i.e. the time spent working and not being 

Figure 1 (a) Solenopsis geminata removing an Solanum melongena seed from the experimental 
seed chamber; (b) Anoplolepis gracilipes feeding on a Cucumis sativus seed.



74

	 Chapter 4

able to work elsewhere) from the income generated from one single plant individual for all target 

crop species. As total net income, we started with the initial expenses (land preparation, seed cost 

and pesticides) and then added the value for each surviving plant individual in 300m2. We assumed 

0% and 100% seed predation corresponding to a respective plant survival of 100% and 0%. This 

is a conservative assumption because data to include germination success or yield loss from other 

factors such as unexpected pest outbreaks or changing climatic conditions are not available.

Statistical analysis

We used Bayesian regression modelling to measure the strength of treatments on seed predation 

with the numbers of seeds removed or damaged (after 1week per crop and plot) being the response 

variable. For the initial model structure (full model), we included garden (site) as a random effect 

to account for plot-dependent differences. Treatment (treat) as a fixed effect was nested within 

garden to account for plots in individual gardens and distance (dist ) to forest as the second fixed 

effect. After initial multi-model inference (Anderson, 2007) for the best fixed and random effects 

modelling structure, we excluded dist as fixed effect from the final model. We also used Bayesian 

regression modelling to assess the effect of forest isolation on seed predation and ant species richness 

and abundance (dist ; classified in three categories; 0–100; >100–1000; >1000–2500m with five 

replicates each). We used Bayesian regression modelling to measure the individual and additive 

effects of treatments on ant abundance of the three most abundant species: the invasive yellow crazy 

ant Anoplolepis gracilipes Smith, Tapinoma spp., the invasive fire ant S. geminata, and ant species 

richness (spr) of seedpredating ants. After multi-model inference, the final model structure was the 

same as above with site as random effect and the fixed effect treat (nested within site). The fixed 

effect dist was excluded from the final model. To test whether we found the same proportion of seed-

predating ants across our treatment plots, we calculated the proportion of species and individuals 

known to prey on seeds in each plot as the number of seed-predating species or individuals divided 

by the total number of species per plot. With a Kruskal–Wallis test, we tested differences in the 

percentage of seed eating-ant species and abundance (dependent variables) for the four treatments 

(response variable). 

We performed all analyses in r, version 2.12.1 (R Development Core Team, 2010) with the 

package r2winbugs (Sturtz et al. 2005) and winbugs, version 1.4.3 (Lynn et al. 2000) for Bayesian 

analysis.
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Results

Effect of pesticides or distance to forest on seed predation

We did not find an effect of the pesticide treatments on seed predation in any of the four crops tested 

[the credibility intervals (error bars) for any estimated parameter mean of the pesticide treatments 

did overlap the zero reference line] (Fig. 2). Distance to forest and, hence, garden location in the 

landscape, also had no effect on seed predation (credibility intervals overlap the zero reference line; 

see Supporting information, Fig. S2).

Pesticide effects on ant species richness and abundance

We found a total of 18 different ant species of which over 60% are known to prey on seeds (see 

Supporting information, Table S2). Although none of the species is strictly granivorous, S. geminata 

was described as omnivorous and granivorous.The most abundant ant species that removed or preyed 

on seeds, were the invasive fire ant S. geminata, invasive yellow crazy ant A. gracilipes and Tapinoma 

Figure 2 Pesticide treatment effects on seed predation of the four target crop species. The 
credibility intervals of the treatment overlap with zero, which means that the pesticide treatment 
had no effect on seed predation. C, control; I, insecticides; H, herbicides; HI, insecticide and 
herbicide combi treatment 
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sp (present on 10, eight and 13 gardens with mean±SE abundances/recruitment of 116.3±11.8, 

81.9±12.3 and 63.5±7.1, respectively). The abundance of these species differed across the gardens 

and plots; for example, S. geminata and A. gracilipes occurred only on three gardens at the same time 

and only in one garden at the same treatment plot and time (see Supporting information, Table 

S3), although they were the dominant species in the overall samples. However, total species and 

individual abundances of all ant species known to consume seeds were equally distributed across 

the plots and at least one of the abundant species was present in all gardens (percentage species: 

Kruskal–Wallis χ2 = 7.993, d.f. = 5, P = 0.157; percentage abundances: Kruskal–Wallis χ2 = 35.234, 

d.f. = 29, P = 0.197; Fig. 3). 

The three most common species responded differently to the pesticide treatments. We found 

an effect if the credibility intervals in Fig. 4 did not overlap with zero. Only the combi treatment 

had a negative (decreasing) effect on A. gracilipes abundance (Fig. 4). For Tapinoma sp., abundances 

were high for the control and the herbicide treatment and decreased in the insecticide and combi 

treatment (Fig. 4). By contrast, no effect of treatments could be found for S. geminata or for 

total species richness (Fig. 4). Distance to forest had no effect on the three most abundant ant 

species or on species richness because all credibility intervals do overlap with zero (see Supporting 

information, Fig. S2).

Figure 3 Abundances of different ant species found on the bait plates across all gardens. 
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Impact of seed predation on net income

The mean±SE percentage of seeds removed or damaged by ants across treatments for all gardens was 

42.0±0.37%, 49.4±0.26%, 48.0±0.31% and 50.6±0.32% for C. sativus, S. melongena, C. frutescens 

and D. carota, respectively. In conjunction with our questionnaire-based survey in the study area, 

we found that crop investment of farmers is only worthwhile if the net income is more than a 

‘twice the invested expenses’ threshold to cover expenses for the current and assure funds for the 

next season. The results of our seed predation experiment suggest that seed predation reduces net 

income below the threshold for D. carota and S. melongenaand leaves it only slightly above it for 

C. frutescens and C. sativus (Fig. 5). Except for S. melongena, prices varied strongly. Hence, a 

combination of low prices and seed loss caused by ants will gain monetary losses for all four studied 

crop species in our study area.

Figure 4 Pesticide treatment effects on the different ant species. C, control; I, insecticides; H, 
herbicides; HI, insecticide and herbicide combi treatment.. 
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Discussion

Agricultural production, especially that of annual and biannual crop species, depends on crop seed 

survival because seed loss directly translates into yield loss of an entire plant. Our experimental 

study is the first to quantify the effects of seed predation by ants of multiple crop species in a 

tropical agroecosystem. 

In a review on harvester ants in natural systems, total annual seed removal was found to be 

between 10% and 100% depending on the plant species (MacMahon et al. 2000). Our results 

showing seed predation ranges of between 42% and 51% are lower compared with one other 

non-manipulative study on rice loss (Litsinger et al. 2009) and higher compared with studies from 

temperate regions (soybean production in the U.S.A.; Adams et al. 1983; cereal fields in Spain; 

Baraibar et al. 2011). At present, it is important to note that a comparison between studies and 

Figure 5 Ant seed predation impact on farmers’ net income (gross income minus production 
expenses). At zero seed predation, the farmer’s income equals income minus initial expenses and 
operational costs. The regression line shows the real net income at the time of the experiment. 
The highlighted area shows the range in prices that farmers received for their yield in 2010 
(note that there was no price variation for Solanum melongena). The dashed horizontal line 
represents the threshold at which twice the farmer’s expenses are compensated for the current 
and the next growing season (i.e. paying for field preparation and new seeds). Vertical lines 
indicate the seed predation rate identified in this study. Growing time given in month (from 
sowing until harvest) is given in parentheses after the crop species name. 
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across climate zones is difficult because experimental studies from the tropics and studies with a 

focus on sown-seed predation by ants are extremely limited. 

Pesticide management: a strategy to control seed predation?

Pesticides are increasingly and routinely applied by local farmers to overcome yield loss as a result of 

pest and weed pressure. Our experiments to test the impact of pesticide management strategies to 

control ant seed predation showed no effect. However, we found that the same pesticide treatment 

showed contrasting effects for different ant species and either reduced or increased abundances of 

some ant species, whereas overall seed-predating ant species richness, abundance and seed-predation 

rates remained the same.

For the small ant species Tapinoma sp., the insecticide treatment appears to be effective. 

However, for the two invasive species S. geminata and A. gracilipes, we found no clear effect. S. 

geminata showed no significant effect for any treatment. The decrease in the combi treatment of 

A. gracilipes but no reaction to the herbicide or insecticide treatment might also be a result of 

interactions between the ant species. The presence and absence of S. geminata might influence A. 

gracilipes and vice versa. In general, interspecific interactions are important for determining the 

structure of communities (Chase & Leibold, 2003; Arnan et al. 2011) because they can affect the 

behaviour of species, as well as alter the dominance relationships in the community (Andersen, 2000; 

Parr, 2008; Segev & Ziv, 2012). Usually, there are one or more dominant species that influence 

the ant communities and, thus, ecological processes, either by direct behavioral interactions such 

as territoriality or aggressiveness, or through exploitation of resources (by numerically dominant 

species; Davidson, 1998; Parr & Gibb, 2010). 

The two invasive species S. geminata and A. gracilipes are the most dominant ground-foraging 

species in our study sites. Both species are known for interspecific aggression, as well as being fast 

recruiting and occurring in high numbers. Although we did not explicitly assess the interaction 

between different species and the effect of competition on ant community structure, the low co-

occurrence of the three species at the baits suggests that the species tend to avoid encounters with 

each other. Of these species, at least the two invasive species are ecologically equivalent species, 

providing the same functions to the ecosystem through a similar diet and foraging system. Because 

we never found the same species on the same plot without an effect on seed predation rate, it is 

likely that one species compensates for the functional role as seed predators of other species. We 

conclude that functional redundancy, where multiple species contribute to seed predation (Wohl 

et al. 2004) caused overall high seed predation rates without any measurable effects of the applied 
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pesticide treatments.

The location of our plots within the landscape did not affect ant communities or seed 

predation, which is likely to be a result of the dominance of invasive species present on all plots. 

As is characteristic for invasive species, the two most dominant ant species S. geminata and A. 

gracilipes are known to favour open and disturbed habitats, such as forest edges or agricultural 

crops (Morrison, 1996; Perfecto & Vandermeer, 1996). They can travel large distances or reach 

these areas via human transport. As a result of their omnivorous diet (characteristic for invasive 

species), fast recruitment and high abundances, they usually dominate and possibly alter the ant 

communities where they occur and, thus, they have no effect of the forest edge because alternative 

habitats for native species could be found. 

One caveat of the present study may be an underestimation of ant species richness as a 

result of the sampling method; ants may have food preferences different from tuna or sugar baits. 

In addition, dominant species can monopolize food baits, thereby suppressing other species from 

suitable food sources. Seed predation, pesticides and farm income. Moreover, not all seed-eating 

species remove or damage seeds with the same intensity. However, our well established baiting 

ethod was previously shown to be effective for documenting ant communities (Wielgoss et al. 2010; 

Wanger et al. 2011) and we found all of the seed eating ant species on the tuna baits (see Supporting 

information, Table S2). The dominance of invasive ants in our gardens is common for disturbed 

tropical areas. Invasive ants have been found to remove and predate on seeds and can thus change 

the seed assemblage merely as a result of high numbers (Rodriguez-Cabal et al. 2012).

General effects of pesticides on ants

Although pesticide effects on ants in agroecosystems vary greatly depending on the type of pesticide 

and the species considered (Wilson et al. 1999; Pereira et al. 2005; Greenslade et al. 2010), several 

studies have reported a lack of response in ants to sprayed chemicals (Wang et al. 2000; Michereff- 

Filho et al. 2002; Matlock & de la Cruz, 2003; Kwon et al. 2005). Others have found a significant 

reduction of ant diversity and abundances in agroecosystems treated with pesticides (Perfecto, 1990; 

Matlock & de la Cruz, 2003; Pereira et al. 2005) or herbicides (Sonoda et al. 2011). Insecticides 

do not affect all ant species equally (Michereff-Filho et al. 2002; Badji et al. 2006) or lead to the 

dominance of a small number of ant species (Perfecto, 1990; Roth et al. 1994; Perfecto & Snelling, 

1995; Baraibar et al. 2011). Together with the results reported in the present study, this strongly 

suggests that the application of pesticides to reduce harvester ant populations is not an effective 

management practice. Spraying insecticides targets only those worker ants on the soil surface 
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and not the queen and, hence, the survival and growth of the colony (Cerdan, 1989). Ineffective 

pesticide application not only has implications for seed protection, but also suggests that, if invasive 

ant species are not controlled by pesticides, there are implications for crop production because these 

ants might act as a pests directly on crops (e.g. protecting sap-sucking insects; Behera et al. 2001) 

by culling parasitized Homoptera (Ness & Bronstein, 2004) or by introducing diseases (Clough et 

al. 2010; Wielgoss et al. 2012).

In Indonesia, pesticides are extremely frequently applied with almost no control standards 

(e.g. the WHO categorized 44% of the active ingredients in pesticides currently applied in Indonesia 

as extremely, highly or moderately hazardous; Kishi et al. 1995) posing significant threats to health 

and the environment (Lacher & Goldstein, 1997; Kwok et al. 2007; Noegrohati et al. 2008; 

Kesavachandran et al. 2009; Daam & Van den Brink, 2010). Therefore, pesticides either have to 

be applied more target specific in integrated pest management programmes (Food and Agriculture 

Organization, 1979) or entirely replaced by environmentally friendly and more sustainable practices. 

Our conclusions are based on the use of pesticides for seed predation reduction, although other 

benefits from these treatments (e.g. the use of herbicide to control weed pressure) were not included 

in the present study. 

Impact of seed predation on income of local farmers

Our results showed that the net income of farmers was just above or below the double investment 

threshold at which the farmers’ expenses are compensated for both the current and the next growing 

season. Low crop prices will cause net incomes to drop below the necessary investment threshold. 

Moreover, seed predation varied between crop species with a different pay off. Presumably because 

ants often prefer smaller over larger seeds (Ready & Vinson, 1995), large C. sativus seeds were 

slightly less affected by seed predation than the other seed species tested. Because C. sativus is a 

fast-yielding crop, it can generate income at a fast rate. On the other hand, the market price of C. 

sativus is far below that of strongly affected C. frutescens (C. sativus 0.22–0.45 US$/kg; C. frutescens 

1.30–11.65 US$/kg; I. Motzke, personal communication; Chatterjee, 2011). Depending on the 

sensitivity of the crops to pests, crop prices and price fluctuations, farmers need to decide on what 

crop species to grow and the associated management practices. By growing more than one crop 

species at the same time (multi-cropping agriculture), farmers can buffer changes in crop prices and 

pests.
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Seed protection and management recommendations

Other possible pest control practices in addition to the use of pesticides may be: (i) targeted chemical 

seed protection; (ii) seed burial; (iii) nursery stations; and (iv) over-seeding to increase seed survival. 

Although we found that seed coating and spraying of insecticides was not effective in avoiding seed 

predation by ants, farmers in our study area often use additional strong toxic chemicals to protect 

seeds such as the most commonly used insecticide, carbofuran (highly hazardous WHO Class Ib; 

WHO, 2009), which is applied directly onto the seeds. It is, however, forbidden in most western 

countries (e.g. the European Union and Canada; in the U.S.A., it is only used on crops not grown 

for human consumption) because of its high toxicity to humans and nontarget fauna, and high 

persistence in the environment (Sánchez-Moreno et al. 2009).

A more sustainable seed protection practice than currently recommended is to reduce ant 

seed predation by covering the seeds with soil (Carroll & Risch, 1983; Nilson & Hjältén, 2003). 

However, S. geminata was found to remove seeds even at a depth of 7.5 cm (Chang & Ota, 1976; 

Trabanino et al. 1989). Another practice that is feasible for C. frutescens and S. melongena may be 

to pre-grow the plants in seedbeds and then transplant them to the fields (Basedow et al. 2005). 

However, this method is more labour intensive and farmers also need to invest in inputs because the 

seeds and seedlings also require protection from ants in the nursery. Special precaution for human 

and livestock is necessary if nurseries are near the homestead and chemicals such as carbofuran are 

used for seed protection. Other less harmful (e.g. organic) insecticides should be used/developed to 

mitigate risks for human health. In addition, the method is unsuitable for C. sativus and D. carota 

seeds because these crops are better sown directly into the field (I. Motzke, personal communication). 

Overseeding is an effective method in agricultural areas with a high seed predation risk to 

overcome seed loss, where farmers sow at least double the amount of seeds to increase germination 

success (Litsinger et al. 2003). This practice is environmentally friendly because it preserves 

biocontrol services by native predatory ant species (Armbrecht & Philpott, 2006; Wanger et al. 

2011) and one additional package of seeds costs $0.50 (this is less than the amount for a packet of 

cigarettes; I. Motzke, personal communication with farmers) more than an additional package of 

stronger insecticides (e.g. carbofuran). Overseeding was also recommended to overcome seed loss in 

rice in the Philippines (Litsinger et al. 2009). In natural ecosystems, overseeding is a process where 

some plant species react with mast seeding to enhance the amount of germinating seeds (Kelly 

& Sork, 2002). However, this effect might be limited by increased worker recruitment by ants if 

farmers apply overseeding at high and frequent intervals, and thus might diminish the effect of 
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providing many seeds at once. Hence, overseeding as a biodiversity-friendly pest control possibility 

needs further research.

Although we report the strong effects of seed predation on crop yield and income with potential 

management implications, this topic is worthy of additional research. Future studies should focus 

on the ecology of the seed-predating ant species involved; test management recommendations such 

as overseeding; and conduct ecotoxicological studies on ant sensitivity to pesticide application.
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Supporting information 

File S1 - Net income and cost calculation of seed predation 

We calculated net income from all crop species cucumber (Cucumis sativus), carrot (Daucus 

carota), chili pepper (Capsicum frutescens) and eggplant (Solanum melongena); hereafter “crops”) 

based on two standardized questionnaires and experimental data (Motzke unpublished) on yield, 

prices and farm expenses for an area of 300 m². The questionnaire (n= 30) included questions about 

plant species use, yield (kg and/or pieces harvested per land area), expenses and operational costs 

(i.e., cost for land preparation, pesticides and fertilizer application and costs), as well as net revenues 

(sales prices and income) of the crop species (Questionnaire S2 for the questions relevant for this 

study). 

The experimental data include number of fruits and weight of fruits per plant species of 60 

cucumber and eggplant individuals each. According to the local management practices, we treated 

the crop plants with fertilizer, insecticides and herbicides every week. We compared the values on 

crop yield from our experimental data to the information on crop yield from the questionnaires to 

derive a standard measure for the calculation of net income (Table S1). Yield data on carrot and 

chili, as well as prices for expenses, were estimated from the interviews and according to common 

farm practice for an area of 300 m² 

For each plant individual, we calculated income from mean yield per plant (i.e. average 

number of fruits and fruit weight per plant) and prices per kg. We subtracted operational costs (i.e. 

recurring expenses for farmers) according to the percentage of plant individuals successfully grown 

(% of seed predation). We also include operational costs for fertilizer, pesticides and labor costs. For 

fertilizer and pesticide costs, we calculated a value on a per-individual plant basis, because fertilizer 

and pesticides are commonly applied to individual plants by hand. Labor costs (for weeding, 

pesticide spraying and harvest) were calculated based on the time that a farmer has to spend on the 

plantation and the expected salary for work elsewhere. 
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As a conservative measure, we assumed a linear relationship between the percentage of seeds 

removed and net income. This is because each removed seed results in a loss of an entire plant 

decreasing total net income. To calculate net income, we added a linearly increasing value for the 

number of plant individuals grown on an area of 300m2. We started with the initial costs (land 

preparation, seeds, and herbicides) and subtracted the corresponding operational costs. 

Compensatory plant growth responses (i.e. increased plant size and yield if fewer plant 

individuals are grown) are not included, because we assumed that farmers grow plant individuals 

in optimal distances.

Supplementary Figure 1

Figure S1. Location of our study area in Southeast Asia (A); Sulawesi (B); Study area (C) 
(modified from Wanger et al. 2011); Gardens with distance to forest classified in three 
categories; black: 0-100; grey: >100-1000; light gray: >1000-2500 m (D)
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File S2 – Socio-economic questionnaire

Presented are only questions important for this study from two standardized questionnaires 

conducted with the garden owners in 2010. Some questions, like on information about harvest, 

were re-formulated for the second questionnaire.

1. Questionnaire

1)	 Make a list of the most important sources of income / principal in your household in the 

past year.
Sequence 

sources of 

income

The main work this 

year

Code 1

Type of contract 

Code 2

Days worked 

in one week?

Total salary 

(IDR/day / 

month)

Total 

salary 

(IDR/

year)
…….. ………. ………. ………. ……….
…….. ………. ………. ………. ……….
…….. ………. ………. ………. ……….
…….. ………. ………. ………. ……….
…….. ………. ………. ………. ……….

Code 1: 1=Self-employed in agriculture 	 8=Student; 2=Self-employed in non-farm enterprise; 
3=Official; 4=Casual worker; 5=Salaried worker in agriculture; 6=Salaried worker in non-agriculture; 
8= student; 9= unemployed to look for work; 10=retired; 11= cannot work, disability
Code 2: 1=daily wage; 2=per week/monthly; 3=contract; 4=no contract or salary; 5= total revenue/ 
harvest; 6=other………………

2)	 Current possession of land (land owned at present) 

Please fill out for each parcel of land owned.
Code

of
plot

Description 
Area
(ares)

Type
of agricul-
tural land

Current land 
use (1.,2.,3. 

crop) 
Code 2

If 3 or 4 
(coffee/co-
coa) age in 

years

Quality 

of soil 

Code 4

Agro-
forestry? 
1=Yes, 
2=No

Distance 
field-house 
in walking 
minutes

1 …….. ………. ………. ………. ………. ………. ……….
2 …….. ………. ………. ………. ………. ………. ……….
3 …….. ………. ………. ………. ………. ………. ……….
4 …….. ………. ………. ………. ………. ………. ……….
5 …….. ………. ………. ………. ………. ………. ……….

Code 1:1=Homegarden; 2=Rice field with simple irrigation; 3= Rice field with semi-technical 
irrigation; 4= Rice field with technical irrigation; 5=dry fields in the valley; 6=upland dry 
fields; 7=Garden in the forest; 8=Non-agricultural land; 9=Primary forest
Code 2: 1=Rice field; 2=Maize; 3=Cocoa; 4=Coffee; 5=Peanuts; 6=Bananas; 7=Garden in 
the forest; 7=Coconuts; 8=Cassava; 10=Beans; 11=Other vegies; 12=Avocados; 13=Pasture; 
14=Bushes/Fallow; 15=Secondary forest; 16=Don’t know; 17=Others (write): .............
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Code 3: 1=Local variety; 2=Improved variety; 3=Recycled seeds
Code 4: 1=Fertile soils; 2=Medium-fertile soils; 3=Less-fertile soils

3) Plot information

Note for enumerator: the next questions refer only to the last crop harvested (annual crops) and to 

the last twelve months for all perennial crops respectively. 

Code
of

plot

Month of 
planting

Quantity 
harvested

Unit Code 2 How was 
the yield? 
Code 3

Cost for land 
preparation

Value received 
(IDR)

1 …….. ………. ………. ………. ………. ……….
2 …….. ………. ………. ………. ………. ……….
3 …….. ………. ………. ………. ………. ……….
4 …….. ………. ………. ………. ………. ……….
5 …….. ………. ………. ………. ………. ……….

Code 1: 1=Good; 2=Average; 3=Below average
Code 2: 1=Kilograms; 2=Liters; 3=Bundles; 4=Pieces; 5=Tandan; 6=Container

4) Plot-specific output and input data 

The input use refers to the time before the last harvest (annuals) and to the last twelve months for 

all perennials respectively

Code
of

plot

Chemical fertiliser use Do you apply organic 
fertiliser / mulch?

Costs for irrigation

Type Code 1 Quantity 
bags

IDR per bag 1=yes 2=no IDR

1 …….. ………. ………. ………. ……….
2 …….. ………. ………. ………. ……….
3 …….. ………. ………. ………. ……….
4 …….. ………. ………. ………. ……….
5 …….. ………. ………. ………. ……….

Code 1: 1= Urea; 2= Triple super phosphate; 3= ZA; 4= other …………..
Code 2: 1= KCL; 2= NPK; 3= other……….....
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5) Did you use any pesticide during the last five years (2005 – 2010) ?
Code

of
plot

Type of pes-
ticide

Costs for 
pesticides

Amount of 
pesticide

Transport/ 
processing 

costs 

Labour costs: 
paid

soil conserva-
tionmeasures 

(terracing, shad-
ing trees)? 

IDR IDR IDR 1=yes  2=no
1 …….. ………. ………. ………. ………. ……….
2 …….. ………. ………. ………. ………. ……….
3 …….. ………. ………. ………. ………. ……….
4 …….. ………. ………. ………. ………. ……….
5 …….. ………. ………. ………. ………. ……….

2. Questionnaire

Special focus on certain crop species:

6) Have you been growing the following crops in your garden: 
Crop species Yes [ ] No [ ] How many hec-

tare or are
Month of 
planting

Month of 
harvest

Carrot Yes [ ] No [ ] 
Carrot for seed production Yes [ ] No [ ] 

Cucumber Yes [ ] No [ ] 
Eggplant Yes [ ] No [ ] 

Chili Yes [ ] No [ ] 
Watermelon Yes [ ] No [ ] 

Pumpkin Yes [ ] No [ ] 
Coffee Yes [ ] No [ ] 
Coffee Yes [ ] No [ ] 

7) Input cost and income for the following crops:
Crop species  Amount 

harvested 
(Unit Code 

1)

How was the 
previous har-
vest Code 2

Total cost for 
land preparation

Income received
IDR

(IDR)
Carrot for seed production

Cucumber
Eggplant

Chili
Watermelon

Pumpkin
Coffee

Code 1: 1=Kilograms; 2=Liters;  3=Bundles; 4=Pieces; 5=Container; 6=bags

Code 2: 1=Good; 2=Average; 3=Below average; 4 = no yield
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8) What kind of work do you do in your garden throughout the year?
Work Frequency Last per-

forming
Person work-

ing
Plant species/

Products
Time needed

Hoeing
Sowing/planting

Fertilizing
Spraying
Weeding

Cutting trees
Harvesting

Other

9) If seeds of modern varieties would be available, would you like to replace your local varieties with 

the modern ones? Yes [ ] No [ ]

 Why and which species first?

List:  species:				    why:

………………………………………………………………………………………..

………………………………………………………………………………………..

……………………………………………………………………………………….

………………………………………………………………………………………...
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Supplementary Figure S2

Figure S2. Effect of “distance to forest” on a) seed predation; and b) ant abundance and total 
ant richness. Distance to forest is in categories of 1: 0-60m; 2: 100-350m; 3: 1000-2500m
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Supplementary table S2

Table S2: List of occurrence of A. gracilipes and S. geminata on all gardens and plots for the 
two sampling sessions.

Sampling session 1 Sampling session 2
Garden Plots A. gracilipes S. geminata A. gracilipes S. geminata 

1 1 0 0 0 x
1 2 0 x 0 x
1 3 0 0 0 x
1 4 0 x 0 x
2 1 0 x 0 x
2 2 0 x 0 x
2 3 0 0 0 x
2 4 0 x 0 x
3 1 0 x 0 x
3 2 0 x 0 x
3 3 0 x 0 x
3 4 0 x 0 x
4 1 x 0 x 0
4 2 x 0 0 0
4 3 0 0 x 0
4 4 0 0 x 0
5 1 0 0 0 0
5 2 0 0 0 0
5 3 0 0 0 0
5 4 0 0 0 0
6 1 0 x 0 x
6 2 0 x 0 x
6 3 0 x 0 x
6 4 0 x 0 x
7 1 0 0 0 x
7 2 0 0 0 x
7 3 0 0 x 0
7 4 0 0 0 x
8 1 0 0 x 0
8 2 0 0 0 0
8 3 0 0 0 0
8 4 0 0 0 0
9 1 0 0 0 x
9 2 0 0 0 x
9 3 0 0 0 x
9 4 x 0 0 x
10 1 x 0 0 x
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Sampling session 1 Sampling session 2
Garden Plots A. gracilipes S. geminata A. gracilipes S. geminata 

10 2 0 x x 0
10 3 0 0 0 x
10 4 0 x 0 x
11 1 0 0 0 x
11 2 0 0 0 x
11 3 0 0 0 x
11 4 0 0 0 x
12 1 0 0 0 0
12 2 0 0 0 0
12 3 0 0 0 0
12 4 0 0 0 0
13 1 x 0 x 0
13 2 0 0 0 0
13 3 0 0 x 0
13 4 0 0 0 0
14 1 0 x x x
14 2 0 x x 0
14 3 0 x x x
14 4 0 x 0 x
15 1 x 0 0 0
15 2 x 0 x 0
15 3 0 0 x 0
15 4 x 0 x 0
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Introduction

The Neotropics, with its large expanses of rainforests, forests and woodland savannas, includes some 

of the most diverse places on Earth (Kricher, 1999; Myers et al, 2000). A large proportion of plant 

and animal species in Neotropical communities are unique, including several pollinator species, 

which provide essential services to human welfare. In general, pollinators are known to enhance the 

sexual reproduction of the majority of angiosperms (Kearns et al, 1998) and can be important for 

the production of many crop species (McGregor, 1976; Klein et al, 2007; Aizen et al, 2009a). There 

is a wide array of arthropod and vertebrate pollinator species in the Neotropics, although we know 

little about their natural history and contribution to pollination (Kevan and Imperatriz-Fonseca, 

2002; Freitas et al, 2009). 

This chapter reviews studies on pollination services in the Neotropics, with an emphasis on 

crop pollination. We briefly describe the main taxa involved in pollination, followed by a list of the 

main crops grown in the Neotropics and a description of how many they rely on biotic pollination. 

Because methods vary across studies, key methodologies to determine pollination services are 

summarized. Finally, we discuss management options to improve pollination services at the farm 

and landscape scale, and socio-economic drivers affecting pollination.

Major Pollinator Taxa

Pollination by animals plays a vital role for plant reproduction in the tropics, where it is estimated 

that more than 98 per cent of plants are animal pollinated (Bawa, 1990). However, in general, 

information on pollinator communities and the diversity of taxonomic guilds in the Neotropics 

is incomplete (Freitas et al, 2009). In this section we give examples of the major pollinator taxa in 

comparison to other regions. 

Similar to the Old World, bees play a major role in pollination of Neotropical plants (Roubik, 

1995). Around 5000 bee species are thought to occur in the Neotropics, including 391 eusocial 

stingless bee species (Meliponini), an important pollinating bee taxa (Slaa et al, 2006). The invasive 

Africanized honey bee, Apis mellifera scutellata Lepeletier, is widespread throughout the Neotropics. 

Although presumed to compete with native bees, evidence is still controversial (Roubik, 2009). 

Other important invertebrate pollinators are wasps (Hymenoptera), beetles (Coleoptera), moths 

and butterflies (Lepidoptera) and flies (Diptera).

Pollinators in the Neotropics seem to be as diverse as in other tropical areas (Roubik, 1995); 

but species composition and identity are highly distinct. For example, in South America, coffee 
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(Coffea arabica L.) is predominately visited by the non-native Africanized honey bee, but also by 

a high diversity of stingless bees (Klein et al, 2008a). In contrast, coffee-visiting bee species in 

Southeast Asia include the native eastern honey bee (Apis cerana Fabricius), the giant honey bee (A. 

dorsata Fabricius), the honey bee (A. nigrocincta Smith), a close relative of the eastern honey bee, 

few stingless bee species, and a high diversity of solitary species (Klein et al, 2008a; Klein, 2009). 

Among vertebrate pollinators, birds, especially hummingbirds, followed by bats play the most 

important role for many wild flowers in the Neotropics. There are more than 300 hummingbird 

species confined to the Neotropics (Bawa, 1990). In agricultural systems, hummingbirds visit papaya 

(Carica papaya L.) and banana (Musa sp.) flowers (Free, 1993); but their role in crop pollination is 

not well documented. In other areas of the world, sunbirds (Palaeotropical and Pacific), sugarbirds 

(South Africa) and honeyeaters (Australasia) fill the ecological niche of hummingbirds in the 

Neotropics (Roubik, 1995; Ortega-Olivencia et al, 2005). Nectar-feeding bats are the second most 

widespread vertebrate pollinators in Neotropical rainforests, especially for many wild trees and 

epiphytes, but also for locally important crops (see Box 5.1).

Biotic Pollination and Crop Production

Biotic pollination is important for many crop species in the Neotropics. Altogether 44 crops and 4 

commodities (method as in Klein et al, 2007) represent 99 per cent (98 and 1 per cent, respectively) 

of the total crop production in the Neotropics in 2007 (FAOSTAT, 2009). Of these, 29 (70 per 

cent) crops increase their seed or fruit production in the presence of animal pollination. In the 

following discussion we highlight the leading animal-pollinated crops in terms of cultivation area, 

and give further examples of highly pollinator-dependent crops.

The most important pollinator-dependent crops exotic to the Neotropics are coffee, coconut, 

citrus, mango, and soybean (Table 1; see Box 2 for details on coffee pollination; FAOSTAT, 

2009). For example, soybean is the second most cultivated crop in the Neotropics. Primarily 

self-compatible, flower-visiting insects, such as honey bees, have been shown to increase soybean 

production, measured in kilograms per hectare (kg ha1), between 38 and 58 per cent for some 

varieties in Brazil (Chiari et al, 2005,  2008). Given the importance of this crop, more research on 

its pollination system across countries and varieties is urgently needed. The most important native 

Neotropical crops dependent totally or to certain degrees on insect pollination are cocoa, common 

bean, guava and cashew (see Table 1). Cocoa, for example, is generally highly selfincompatible 

and depends heavily on insect pollination, although a few self-compatible varieties exist (Falque 

et al, 1996). Tiny midges of the Ceratopogonidae and Cecidomyiidae families are predominantly 
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BOX 1 BAT POLLINATION IN THE NEOTROPICS
   Bat pollination is restricted to the tropics and subtropics; plant-visiting bat species do not occur in 
temperate regions (Koopman, 1981; Fleming and Muchhala, 2008). Bats adapted to a nectarivorous 
diet occur in two distantly related families: the Phyllostomidae in the Neotropics and teropodidae in 
the Palaeotropics. Of these, bat species of the sub-family Glossophaginae are the most morphologically 
and ecologically specialized; they possess elongated snouts, highly extensible tongues and the ability to 
hover in front of flowers like hummingbirds (Helversen, 1993; Winter and Helversen, 2003).
   In the Neotropics, nectar bats are known to pollinate flowers from 360 species of plants in 159 
genera from 44 families (Geiselman et al, 2002; Fleming et al, 2009). The majority of these are trees 
and epiphytes, including many conspicuous members of local ecosystems, such as canopy-emergent 
Bombacaeae trees in rainforests and large columnar cacti (e.g. saguaro, organ pipe cacti) in arid regions. 
Although numerically a relatively small proportion of total angiosperm diversity, bat-pollinated plant 
species cannot be serviced as effectively by other pollinator taxa because specialized floral adaptations are 
required to attract, fit and reward bats: hiropterophilous flowers typically are physically robust and well 
exposed beyond the foliage, have wide bell-shaped flowers or a ‘brush’ morphology, open nocturnally, 
and produce a strong odour and copious nectar (Helversen, 1993; Muchhala, 2007; Fleming et al, 
2009). Although such adaptations require large investments in floral structures compared to other 
pollination systems, bats provide two important advantages as pollinators. First, they can carry large 
amounts of pollen in their hairs (Law and Lean, 1999; Muchhala and Thomson, 2010). Second, 
they can disperse this pollen over extremely long distances. For instance, paternity analyses reveal 
that pollen was transferred up to 18km between individuals of the bat-pollinated kapok tree (Ceiba 
pentandra) (Dick et al, 2008). Such long-distance pollen dispersal improves gene flow, as evidenced 
in low genetic subdivision for bat-pollinated plant species (Roesel et al, 1996; Hamrick et al, 2002).
   A number of bat-pollinated plants in the Neotropics provide economically important products. 
The kapok tree, which is pantropical and bat pollinated throughout its range (Elmqvist et al, 1992; 
Gribel et al, 1999; Nathan et al, 2005), produces silky fibres which are used in bedding and cushion 
materials. Many bat-pollinated cacti throughout the Americas produce edible fruits that are sold in 
local and international markets, often as jellies or jams (Anderson, 2001). Bat-pollinated dragon-fruit 
and other fruits of the cactus genus Hylocereus are now cultivated worldwide, both as food and as 
ornamental plants (Valiente-Banuet et al, 2007). Fruits of Stenocereus griseus (Haw.) Buxb. are harvested 
by indigenous communities, which also use the cacti for construction materials and as living fences 
(Nassar et al, 1997; Villalobos et al, 2007). The seed set of agaves, from which the well-known liquor 
tequila is derived, drops to less than 5 per cent in the absence of bat pollinators (Howell and Roth, 
1981; Molina-Freaner and Eguiarte, 2003). Finally, many ornamental plants rely on bat pollination, 
such as Cobaea scandens Cav. and C. trianae Hemsl. (Polemoniaceae) (Vogel, 1969).

Figure 1 Anoura geoffroyi Gray, 1838 pollinating Cleome anamola Kunth (left) and the ornamental 
Cobaea trianae Hemsl. (right)  Source: N. Muchhala
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responsible for pollination of the cocoa varieties that depend on insect pollination (Entwistle, 1972; 

Young, 1994). The cashew nut, native to Brazil, has both bisexual and male flowers on the same 

plant. This crop is frequently cultivated in the Neotropics (Roubik, 1995; Kevan and Imperatriz-

Fonseca, 2002) and has two main pollinating species: the honey bee (Apis mellifera L.) and the 

native oil bee (Centris tarsata Smith) (Freitas and Paxton, 1998).

Many crops that depend on animal pollination are of high economic importance at a more 

local, country- or state-wide scale. For some of these crops, such as Brazil nut, melon, passion fruit, 

pumpkin, squash, vanilla and watermelon, animal pollination was found to be essential (Klein et 

al, 2007). Furthermore, a high number of crops depend partly (to certain degrees or under certain 

conditions) on animal pollination, such as agaves, annatto (or achiote), avocado, chayote, chilli 

pepper, common bean, dragon fruit, eggplant, guayule, jojoba, mesquite, papaya, peanut, pepper, 

pimento, rubber, quinine, sisal, soursop (or guanábana), star apple (or caimito), sunflower, tobacco 

and tomato (Roubik, 1995). Here we highlight two locally important native crops: passion fruit 

and avocado. Passion fruit (Passiflora edulis Sims) is cultivated throughout the Neotropics and has 

self-incompatible, large hermaphroditic flowers. It is mainly pollinated by large carpenter bees of 

the genus Xylocopa, as other frequent flower-visiting species are too small to touch the stigma during 

nectar and pollen collection (e.g. Benevides et al, 2009). Wind pollination is ineffective because 

pollen is heavy and sticky. Another important native crop is avocado (Persea americana Mill.), a 

variable and poorly understood species with respect to its pollination system. Avocado varieties 

vary between self-compatible to self-incompatible; but crosspollination through bees, bats, flies 

and wasps improves fruit production (Roubik, 1995). The flower is bisexual and opens twice; it 

functions as a female during the first opening, and functions usually as a male and releases pollen on 

the following day upon the second opening. Commercially grown avocado plantations are therefore 

planted with two complementary flowering groups to ensure the spatio-temporal availability of 

female and male openings for adequate pollination (Delaplane and Mayer, 2000).

In summary, 70 per cent of the leading crops in the Neotropics depend to some degree 

on animal pollination. This number is similar to that estimated for the global scale (74 per cent) 

(Klein et al, 2007), and also similar to tropical regions, in general (70 per cent: Roubik, 1995), 

to Argentina (74 per cent: Chacoff et al, 2010), Mexico (85 per cent: Ashworth et al, 2009) and 

the European Union (84 per cent: Williams, 1994). The latter two studies include many crops of 

minor importance in terms of production and total cultivated area, whereas the other calculations 

include major crops only. In general, however, few studies have evaluated pollination services in 

the Neotropics (Freitas et al, 2009); consequently, we know little about the pollinator relevance for 
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Table 5.1 Pollinator dependence of the most cultivated crops in the Neotropics
Species Crop Pollinator 

depend-
ence*

Cultivated area
(ha) (%)

Zea mays Maize none 26,314,959 24.6
Glycine max, G. soja Soybean modest 24,124,332 22.6
Saccharum officinarum Sugar cane none 9,825,691 9.2
Phaseolus sp., P. vulgaris , P. lunatus, 
P. angularis , P. aureus, P. mungo, P. 
coccineus, P. calcaratus, P. aconitifolius, P. 
acutifolius

Bean dry like Kidney 
bean, Haricot bean, Lima 
bean, Azuki bean, Mungo 
bean, String bean

little 6,457,637 6

Coffea arabica, C. canephora  (syn. Coffea 
robusta), C. liberica

Coffee modest 5,667,250 5.3

Oryza sp. (mainly O. sativa ) Rice, Paddy none 5,262,464 4.9
Triticum sp. (mainly T. aestivum, T. 
durum, T. spelta)

Wheat none 3,236,071 3

Sorghum guineense, S. vulgare, S. dura Sorghum none 3,155,116 3
Manihot esculenta  (syn. M. utilissima, M. 
palmata)

Cassava only 
breeding

2,791,040 2.6

Musa sapientum, M. cavendishii, M. 
nana, M. paradisiaca

Banana, Plantain only 
breeding

2,128,586 2

Gossypium hirsutum, G. barbadense, G. 
arboreum, G. herbaceum

Cotton modest 1,735,189 1.6

Theobroma cacao Cocoa essential 1,490,461 1.4
Citrus trifoliata Orange little 1,442,261 1.4
Anacardium occidentale Cashew nut, Cashew-

apple
high 1,354,993 1.3

Cocos nucifera Coconut modest 672,713 0.6
Hordeum disticum, H. hexasticum, H. 
vulgare

Barley none 667,234 0.6

Elaeis guineensis Oil palm little 611,211 0.6
Nicotiana tabacum Tobacco only sowing 545,856 0.5
Mangifera indica, Garcinia mangostana, 
Psidium spp.

Mango, Mangostan, 
Guava

high 458,435 0.4

Notes: Harvested area data given for each crop are extracted from the FAO dataset for the year 2007 
(FAOSTAT, 2009). Argentina, Chile and Uruguay were excluded; but examples from these countries are 
discussed in the chapter when appropriate (e.g. Chacoff and Aizen, 2006). Listed crops accounted for 
93 per cent of the total cultivated land in the Neotropics in 2007. Pollinator dependence data obtained 
from Klein et al (2007). Pollinator dependence: none = yield not dependent on animal pollination; little 
= yield reduction > 0 but < 10 per cent without pollinators; modest = 10–40 per cent reduction; high = 
40–90 per cent reduction; essential = reduction >90 per cent; only breeding = pollinators increase seed 
production for breeding (in commercial farming, the plants are propagated from vegetative organs and 
the vegetative parts are harvested); only sowing = pollinators increase seed production to produce the 
vegetative parts that are harvested. 
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many widely cultivated crops or about the variability of pollinator requirements among varieties.

Determination of Crop Pollination Services

Pollination can be important for agricultural and non-domesticated plants; however, the actual 

impact of these services is difficult to estimate. To better understand pollination services, it is 

important not only to measure the interaction between a pollinator and a certain crop or plant 

species, but to identify biophysical and socio-economic drivers in an interdisciplinary approach (see 

Figure 3; Bayon and Jenkins, 2010).

Pollinators can provide direct benefits by increasing the amount and interannual stability 

of crop yield quantity (kg of product ha1) and quality (e.g. fruit size, shape, weight), and indirect 

effects such as maintaining plant and animal biodiversity and their associated benefits for human 

welfare. These services can be promoted by either pollinator abundance or diversity (Hoehn et al, 

2008; Klein, 2009; Klein et al, 2009; Vergara and Badano, 2009). We would like to note that some 

flower visitations may be a disservice to crops, as has been demonstrated for flowers in the wild. 

This can occur in the form of nectar or pollen robbery where a ‘pollinator species’ takes nectar or 

pollen without pollinating the plant (Irwin et al, 2001; Thomson, 2003; Hargreaves et al, 2009). 

However, we have found no studies showing that the exclusion of flower visitors has positive effects 

on crop pollination. The exclusion of wild visitors commonly reduces or does not significantly 

affect pollination services (Klein et al, 2007).

Many studies have measured pollinator abundance, pollinator richness/diversity, flower 

visitation rates, pollen deposition, pollen tube growth, and/or seed/fruit set (Klein et al, 2007). 

Fewer studies, however, have determined direct production variables (e.g. yield quality or quantity) 

at a farm (plot) scale. These calculations are also relevant at the socio-economic scale where decisions 

on land use are made (see the section on ‘Socio-economic drivers affecting pollination services’) 

(Ghazoul, 2007; Klein et al, 2008b; Veddeler et al, 2008). When estimating pollination services, 

the following processes and methods should be considered:

•	 Biotic pollination can be evaluated by comparing crop yield of pollinator exclusion (only 

self  abiotic pollination) and free pollination (self  abiotic  biotic pollination) treatments 

(e.g. Klein, 2009; Vergara and Badano, 2009).

•	 Abiotic pollination can be estimated by comparing an abiotic plus biotic pollination 

exclosure treatment with a pollinator exclosure treatment.

•	 Self-pollination: by preventing any outcross pollen from reaching the flower (abiotic plus 
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BOX 2 POLLINATORS AND COFFEE PRODUCTION IN THE NEOTROPICS
Coffee is one of the most important cash crops in the Neotropics. It is traded at the global market and 
accounts for nearly 5.7 million hectares of land in 2007 (see Table 1). For many years, coffee has been the 
second leading export product of developing countries (ICO, 2009), providing income and employment 
for millions of people.
Since the 1950s, many studies have shown that pollinators promote coffee yield (production per plant 
or hectare) by increasing fruit set and/or berry weight (see reviews by Free, 1993; Klein et al, 2007). 
Pollinators have also been shown to reduce the frequency of ‘peaberries’ – that is, small misshapen seeds 
(Free, 1993; Ricketts et al, 2004). The magnitude of the positive effects on yield can vary greatly, between 
10 and 40 per cent among studies using different methodologies and environmental conditions (see 
Table 1) (Klein et al, 2007). Studies finding positive effects on coffee yield include those performed at 
the plant scale (therefore not biased by resource allocation patterns within the plant) (Free, 1993) and 
those performed for more than one year (Ricketts et al, 2004). Positive effects of pollinators on both 
seed number and weight have also been found simultaneously, without the confounding effects of seed 
number versus size compensation (Ricketts et al, 2004). In most studies, the honey bee was found to be 
the most frequent visitor to coffee flowers, followed by stingless bees, and some semi-social and solitary 
bee species (see the previous section on ‘Major pollinator taxa’).

Research addressing the effects of habitat and landscape scale on coffee pollination began only during 
the last decade. They include studies in Panama (Roubik, 2002a), Venezuela (Manrique and Thimann, 
2002), Costa Rica (Ricketts, 2004), Brazil (De Marco and Coelho, 2004), Ecuador (Veddeler et al, 2006) 
and Mexico (Vergara and Badano, 2009). These studies considered variables such as distance between 
coffee plants and adjacent forests or cultivation variables such as shade versus sun coffee. All studies found 
more bee species, higher visitation frequency, higher fruit set and/or higher berry weight on coffee plants 
bordering forests.

Other studies highlighted the monetary value of coffee pollination services, such as Roubik (2002b) 
in Panama; Ricketts et al (2004) in Costa Rica, and Benitez et al (2006), Olschewski et al (2006) 
and Veddeler et al (2008) in Ecuador. For example, the extrapolation of data gained from pollination 
experiments in Costa Rica estimated that the value of pollination services for two forest fragments (46ha 
and 111ha) in a single farm (480ha) was US$60,000 annually (Ricketts et al, 2004). Veddeler et al 
(2008) calculated that a fourfold increase in bee density would translate to an 800 per cent increase in 
net revenues for coffee farms in Ecuador. Certainly, wild habitats are providing important pollination 
services for this crop.

Figure 5.2 Coffee production in Manabi, coastal Ecuador: From left toright are the Africanized honey 
bee, Apis mellifera scutellata (Lepeletier), foraging on coffee flowers; ripe coffee berries at harvest; 
traditional harvest with mules Source: D. Veddeler (bee and berries); A. M. Klein (traditional harvest)
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biotic pollination exclosure), the degree of self-pollination can be evaluated.

•	 Pollen limitation: pollen addition (hand pollination) and control treatments are useful to 

understand the degree of pollen limitation (see review by Wesselingh, 2007).

•	 Self-incompatibility: the addition of pollen from the same individual versus addition from 

other individuals (out-crossing) can be used to quantify the degree of self-incompatibility.

Other considerations when studying the above processes are:

•	 Natural history and field censuses: knowledge on pollinators’ natural history and censuses 

of flower visitation helps to understand plant–pollinator interactions and to identify 

key pollinator species and their requirements (e.g. for habitat) ( Kevan and Imperatriz-

Fonseca, 2002).

•	 Number of replicates: the estimation of the number of (independent) replicates needed 

given an expected variability and a required precision is critical for obtaining useful 

information from experiments.

•	 Relevant production variables: from an applied perspective, it is important to measure 

the quantity and quality of yield, and the spatial and temporal stability in both variables 

(Ghazoul, 2007; Klein et al, 2008b).

•	 Spatial and temporal scale: when possible, treatments should be applied to plots, which 

are usually the scale of interest when measuring pollination services (or sometimes entire 

plants). Special attention should be given to perennial plants, in which plant resource 

allocation strategies can involve years (e.g. high allocation to vegetative growth during 

one year, but higher allocation for reproduction in the following year). Therefore, 

experiments should ideally be followed during the whole plant productive cycle and over 

consecutive years.

•	 Variability in pollen and pollinator limitation: the impact of pollen limitation on crop 

production may vary greatly depending on other environmental factors such as resource 

availability (water, nutrients and radiation), abiotic conditions (e.g. frosts) and pests (Bos 

et al, 2007; Ghazoul, 2007; Klein et al, 2008b). Pollen limitation may also vary with 

crop variety, and the magnitude of pollinators’ exclusion effects may greatly depend on 

the resident pollinator community. Studies over multiple seasons and years are useful 

to account for periodic weather perturbations and temporal variation in pollinator 

communities (Klein, 2009).
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•	 Socio-economic assessments: it is important to understand the value of pollination services 

for different aspects of a society (e.g. cultural and economic; see the section on ‘Socio-

economic drivers affecting pollination services’).

Depending on the focus, other measurements and treatments can be included. Examples are 

the exclusion of vertebrate but not invertebrate pollinators to understand their interactions and 

relative contribution to pollination, or the study of niche complementarity among invertebrate 

pollinator species (Hoehn et al, 2008). Here, we emphasize methods to quantify the degree of 

overall pollination and pollinator limitation on crop production at a farm (plot) scale.

Management to Improve Pollination Services at the Landscape and Farm Scale

In the previous sections we described how lack of animal pollination can limit the yield of certain 

crops. There is also evidence that wild pollinator species are decreasing locally (Ricketts et al, 2008) 

and regionally (Biesmeijer et al, 2006; Brown and Paxton, 2009; Freitas et al, 2009) due to land-

use changes and the application of agrochemicals, among other factors. A recent review suggested 

that the effects of habitat loss on flower visitation rates should be higher in the tropics compared 

to temperate zones (Ricketts et al, 2008). Therefore, it is increasingly important to understand 

the drivers affecting pollinator abundance and diversity for adequate pollinator management and 

conservation. Management for wild pollinators usually implies decisions at the landscape and farm 

level to provide floral resources, breeding areas and nesting habitats within the flying range of 

pollinators (Kevan and Imperatriz- Fonseca, 2002; Kremen, 2008).

Landscape and habitat management

Pollination services can vary widely depending on the quantity, quality and spatial arrangements of 

habitat types in the landscape. Because flying has energy costs and many pollinators have fixed nest 

sites, pollinators prefer flower visits close to their habitat. Recently, Ricketts et al (2008) reviewed 

23 studies representing 16 crops on 5 continents to evaluate the effects of distance from natural or 

semi-natural habitats on pollination services. They found that visitation rates by wild pollinators 

and pollinator richness decreased exponentially with distance from natural habitat, reaching half of 

its maximum at 0.6km and 1.5km, respectively. However, they found no evidence of effects on fruit 

and seed set, although such effects were only measured by half of the studies and most of them did 

not measure the size, quality or stability of yield (see the previous section on ‘Determination of crop 
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pollination services’). Among the reviewed studies, only four were performed in the Neotropics. 

Decreases in native visitation rates with distance from natural habitat was observed for highland 

coffee in Costa Rica (Ricketts, 2004; Ricketts et al, 2004) and grapefruit in northwestern Argentina 

(Chacoff and Aizen, 2006); but no effect was found for passion fruit in eastern Brazil (Ricketts et 

al, 2008) or for oil palm in southern Costa Rica (Mayfield, 2005; Ricketts et al, 2008). Overall, 

these studies suggest that the conservation of natural habitats close to agriculture can be important 

to enhance wild pollinator diversity and flowervisiting frequency, although the effects of habitat 

conservation on pollination services needs to be further evaluated. Moreover, most of these studies 

use either distance or proportional area of natural habitat as the landscape variable; future studies 

should also consider the effects of the spatial arrangement of habitat patches in terms of distance, 

number, size and quality (Olschewski et al, 2010).

The magnitude of positive effects from natural habitat proximity can vary greatly among 

pollinator species. It is proposed that species with high dispersal abilities will be less affected by 

habitat degradation at relatively short distances. For example, a review concerning tropical crops 

found that small cavity-nesting bees and generalist beetles required natural forest near their foraging 

areas, whereas insects with large body sizes explored larger areas and were therefore less sensitive 

to isolation from forest (Klein et al, 2008a). Overall, taking into account the biology of species 

and considering different spatial scales will improve our understanding of the effects that land-use 

change has on habitat quality for pollinator species (Steffan-Dewenter et al, 2002; Tscharntke et al, 

2005).

Habitat quality involves the abundance of appropriate floral resources, nesting places and the 

possibility to escape from natural enemies and diseases. Managing habitat quality requires detailed 

knowledge of the species’ natural history. When the habitat is highly degraded, active management 

may be required (e.g. sowing or transplanting native species as well as constructing suitable habitat).

A matrix of agricultural and natural patches can be beneficial to pollinators because of a higher 

diversity of resources (Tscharntke et al, 2005; Winfree et al, 2007, 2008). Enhanced diversity and 

abundance of pollinators in these complex landscapes may also provide services to a wider spectrum 

of crops (Kremen, 2008). Pollination services should be greater when agricultural field sizes are 

smaller because of greater habitat complexity within the flying range of pollinators. Unfortunately, 

there is a trend towards increasing field size and homogenization of agricultural landscapes in the 

Neotropics and many other regions (Tscharntke et al, 2005; Aizen et al, 2009b). These landscape 

variables also interact with decisions at the farm scale because crop management influences the 

quality of habitat for wild pollinators.
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Farm and pollination management

There are several agricultural practices that can improve the visitation of wild pollinators to flowers, 

such as small-scale farming, polycultures, sowing of diverse flower resources in edge habitats (e.g. 

field boundaries) and reduced use of agrochemicals (Tscharntke et al, 2005, Brosi et al, 2008). In 

general, farming practices that increase habitat diversity (and, thus, pollinator diversity) should 

promote pollination services because of:

•	 species complementarity, when species use different resource parts or promote positive 

intra-guild interactions;

•	 sampling effects, when higher biodiversity increases the probability of including species 

that provide important services; and

•	 redundancy, when different species provide a similar pollination service in highly diverse 

habitats, which is important for reorganization after disturbance (insurance hypothesis) 

(see reviews by Tscharntke et al, 2005; Klein et al, 2009).

For example, rustic shade coffee managed under native forest in Veracruz (Mexico) showed 

higher pollinator diversity and fruit production than less diverse sun coffee systems where native 

forest was removed (Vergara and Badano, 2009).

Although several thousand species contribute to pollination, only a few are managed. Examples 

include stingless bees as pollinators for tomatoes in Mexico (Cauich et al, 2004) and Brazil (Del 

Sarto et al, 2005) greenhouse production, and also for other crops such as cucumber and sweet 

pepper in the Neotropics (see reviews by Cortopassi-Laurino et al, 2006; Slaa et al, 2006). However, 

most managed pollinators are honey bees (Kevan and Imperatriz- Fonseca, 2002). This reliance on 

a single pollinator species seriously threatens the stability of pollination services. Indeed, higher 

incidence of pests and diseases in the US decreased the number of managed honey bee colonies 

during the past years, and raised several problems for the pollination of important crops such as 

almond in California (Oldroyd, 2007). In the Neotropics, for example, there has been an increase 

in the reproductive ability of the mite Varroa destructor Anderson & Truemann in the widely spread 

Africanized honey bee in southern Brazil (Carneiro et al, 2007). Furthermore, Apis mellifera L. is 

not the most efficient pollinator species for many crops (Freitas and Paxton, 1998; Greenleaf and 

Kremen, 2006). The temporal and spatial stability, as well as the rate of pollination services, can 

be improved by pollinator diversity (Greenleaf and Kremen, 2006; Klein, 2009; Klein et al, 2009).

Hand pollination is a difficult and laborious task that is currently performed only in expensive 

crops under intensive farming. This is the case for vanilla (Vanilla planifolia L.), an orchid native to 
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Mexico and a highly pollinator- dependent crop species (Davis, 1983; Klein et al, 2007). In general, 

species with large flowers are easier to hand pollinate than species with small flowers. However, 

pollinators provide not only quantity of pollen, but also pollen quality (e.g. cross-pollination) and 

special techniques of pollen transfer (e.g. vibration). Performing such tasks by hand at the proper 

production scale is both challenging and expensive.

For many pollinator-dependent crops, there are some varieties that are non-dependent so that 

farmers have the choice to choose varieties that do not need pollinators. However, despite genetic 

engineering and crop breeding advances, many of the most important crop species depend on 

pollinating animals (see Table 1) (Klein et al, 2007).

Socio-Economic Drivers Affecting Pollination Services

Land-use decisions affecting pollination services are made at the household or farm scale in response 

to several environmental and socio-economic variables (see Figure 3) (Lambin et al, 2001). Crop 

production often depends on environmental drivers such as resource availability (e.g. water and 

radiation), abiotic conditions (e.g. temperature), incidence of pests and weeds, and pollination 

services (see Figure 3). Several socio-economic drivers interact with environmental variables to 

affect land-use decisions, such as markets, demography, technology, institutional settings and 

public policy. This section briefly describes the socio-economic drivers of farmers’ decision-making 

that influence the landscape and habitat management of pollination services (see previous section).

Relevant socio-economic drivers of land-use decisions are established markets, and the 

participation in trade. Besides income generation, participating in trade might have further 

advantages, such as access to credit, information, technology and urban centres. However, the 

importance of markets for small-scale producers depends on the type of land use considered, such 

as production of food (subsistence) versus cash crops (Cronon, 1985; Burgi and Turner, 2002; 

Black et al, 2003; Guhl, 2008). Supply and demand determine the market price and, thus, the 

profitability of crop species. The structure and functioning of markets allows us to understand 

how small-scale agricultural systems are connected to trade and market relationships. In general, 

pollinator-dependent crops achieve higher market prices (Gallai et al, 2009), thereby generating 

incentives to increase their production. However, a lack of pollinators might hinder the producers 

from doing so, and might force them to switch to less attractive non-pollination dependent crops.

Small-scale farmers’ land-use decisions are often based on a comparison of net revenues. They 

depend on the product price, the quantity of the harvest and on the production costs. A case study in 
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coastal Ecuador included these factors and assessed the impact of forest areas providing bee habitats 

and thereby enhancing pollination services for adjacent coffee production. It was shown that the 

impact on net revenues was significantly positive (Olschewski et al, 2006). However, alternative 

crops such as maize were more attractive from an economic point of view in that landowners had a 

strong incentive to convert forests into cropland. As a consequence, payments for single ecosystem 

services such as pollination are hardly sufficient to preserve bee habitats. Payment schemes should 

comprise further forest ecosystem services (e.g. carbon sequestration, soil and water conservation) 

in order to be effective.

Demography and other social criteria, such as gender, age and education, are common 

elements that influence land-use strategies (Mazvimavi and Twomlow, 2009). Institutional aspects 

such as landownership and tenure rights might be another powerful determinant (Wunder, 2000; 

Burgi and Turner, 2002; Black et al, 2003) – for example, owners are supposed to make different 

production decisions than tenants. Furthermore, it is important to consider underlying cultural 

beliefs and social perceptions of different land-use types (Nyerges and Green, 2000). Taking these 

into account might help to explain why families in the Neotropics often maintain small-scale 

farming despite modest income-generating opportunities. 

Further important drivers of land-use change are agricultural knowledge and available 

technology (Angelsen and Kaimowitz, 1999; Burgi and Turner, 2002; Anastasopoulou et al, 

2009). Among others, the inclusion of machinery may promote the cultivation of larger and more 

homogeneous fields. Additionally, the development of new crop varieties may affect pollination 

requirements and pollination service rewards. Little knowledge or experience on cultivation practices 

for a particular crop may also induce farmers to avoid the cultivation of that specific crop. Finally, 

public policies are crucial because they can establish incentives and recommendations regarding the 

adoption of specific land-use systems through their influence on several other drivers mentioned 

above (Burgi and Turner, 2002; Di Falco and Perrings, 2006; Anastasopoulou et al, 2009).

The variety of socio-economic drivers and their interactions show that simple explanations 

hardly provide adequate understanding of land-use change (Lambin et al, 2001). Various human 

and environmental conditions lead to specific land-use decisions, and policy recommendations 

aiming at habitat or landscape conservation should take these interactions into account.
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Conclusions

We have shown that pollination services by wild pollinators are important for crop production in 

the Neotropics. However, our knowledge of the services that pollinators provide in terms of the 

amount, quality and stability of crop production is still deficient. It is also critical to understand how 

multiple socioeconomic drivers influence the selection of particular management systems and, thus, 

the environmental services delivered. Land-use decisions based on short-term revenue calculations 

can lead to unsustainable results. Despite the high potential of social benefits, sometimes the net 

revenues obtained from pollination services through the preservation of a natural habitat are lower 

than other uses of that land, such as deforestation and crop cultivation. Future evaluations should 

also consider ecosystem services other than pollination and their interactions to reliably estimate the 

ecological and social benefits of conserving natural habitats. It is important to determine the value 

(monetary and non-monetary) of these services in order to raise awareness of ecosystem services 

when making decisions on particular land-use systems, and to support the design of appropriate 

conservation policies that benefit farmers and their environment.

Figure 3 Socio-economic and environmental drivers of land-use decisions and crop productivity 
Note: See explanations in the chapter. Source: chapter authors
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