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1 Introduction

The understanding of production technology is one of the basic interests of

agricultural economists. While the field of research and the related questions

are broad, technology remains an underlying element. Although the need

for production analysis can differ with the specific research question, empir-

ical evidence of technology and its development provides a reference to the

researcher.

Productivity is a fundamental aspect of technology and economic activity.

From a firm’s perspective, productivity is required for being profitable. From

an aggregate perspective, it ensures the efficient utilization of resources and

it is a driver of market competition. Färe et al. (2008, p.522) call it “one of

the most intuitive and familiar measures of performance at all levels ... [and

a] ... key economic indicator”.

Full potential of technology cannot be realized if production activities

are inefficient. The notion of technical efficiency (TE) implies that deviations

from standard assumptions of economic theory and the underlying technology

(“best practice”) are present in real world applications. Assessment of TE is

relevant because it is a precondition for productivity and economic efficiency.1

The corresponding model of production is supposed to provide a proper

representation of technology. Measurement of productivity change requires

panel data that is preferential to cross-sectional data because there is more

information on a single decision making unit (DMU). However, in the context

of efficiency analysis, an important issue of identification arises. Panel data

allow the isolation of time-invariant effects that capture individual character-

istics (specific to a single DMU) and that are not connected to TE. These

effects are assumed to be persistent while inefficiency can vary over time.

1Throughout the thesis, (technical) inefficiency is associated with a shortfall in physical
output. Here, the relevant output-oriented TE score corresponds to the measure of Debreu
who defined the “coefficient of resource utilization” (Debreu, 1951, p.285) to take values
between zero and one. A related measure is the reciprocal (output-oriented TE as measured
by Farrell (1957)) that indicates the potential expansion of output (with inputs fixed).

Interestingly, while inefficiency is a crucial issue in our applications, for Debreu (1951,
p.285) it is “...not, by its very nature, the main concern of the economist”. He rather
focuses on market failures, such as monopolistic power, causing economic shortfall to an
economy.
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This distinction is of relevance because its neglect can have consequences for

the magnitude and spread of TE scores. Accordingly, the potential improve-

ments may be overestimated if inefficiency is confounded with unobserved

heterogeneity.

This subject matters in the field of Stochastic Frontier Analysis (SFA),

a methodology frequently applied to agriculture (e.g. Battese (1992), Bravo-

Ureta et al. (2007)) and other sectors (e.g. Fried et al. (2008)). The majority of

studies do not distinguish between inefficiency and unobserved heterogeneity

but the number of alternative studies have increased since Greene (2005)

proposed a ‘true’ fixed effects SF model. However, Greene’s approach does

not provide a satisfying solution because the model’s error variance cannot

be estimated consistently. An innovation by Chen et al. (2014) solves this

problem and renders estimation of the fixed effects SF model possible.

This thesis comprises applications that are of interest in agricultural eco-

nomics. Besides agricultural production at the firm-level as well as at the

country-level, data of European meat firms is also analysed. The ultimate ob-

jective is to learn about (total factor) productivity and (technical) efficiency

and to better understand the developments in these sectors. The results can

also serve as a reference in the context of other studies addressing performance

at the industry-level (e.g. Timmer et al. (2012)) or those using production data

of the Food and Agriculture Organization. Furthermore, the discussion aims

at evaluating the role of unobserved heterogeneity in the applications. The

relevance or interpretation of individual effects and their consequences for TE

differ with the underlying framework.

The structure of the thesis is as follows. The next section presents an

overview of the studies. The first paper (Section 3) investigates productivity

change in European meat enterprises. Potential productivity spillovers within

the European meat chain are analysed in Section 4. Agricultural productiv-

ity on a global scale is the subject of the third paper laid out in Section 5.

Section 6 consolidates the key findings of the specific applications and criti-

cally discusses the underlying assumptions as well as the role of unobserved

heterogeneity. Appendix A provides a guide to the econometric methods and
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their recent implementation in computer software.
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2 Overview of research papers

Firm heterogeneity and divergent patterns of productivity change

in European slaughtering and meat processing companies

The European meat industry is highly export-oriented, and characterised by

dynamic firm growth as well as structural change. However, at an aggregate

level total factor productivity change (TFPC) seems to be modest. Although

relevant at all stages of the meat supply chain, efficiency and productivity

studies for slaughterhouses and meat processors are rarely found.

The most appropriate scale for gaining insights into the dynamics at this

stage of the supply chain is the firm level. However, the variables that describe

the production process can be highly aggregated, as it is the case with this

data set. The data are lacking additional information on firm characteristics.

Accordingly, an empirical challenge is caused by unobserved heterogeneity

that conflicts with the standard stochastic frontier (SF) model.

In view of this lack of information, we apply a SF model that allows to

distinguish technical inefficiency from individual fixed effects. The estima-

tion procedure is based on a novel approach that prevents results from being

affected by the incidental parameters problem. Besides the standard decom-

position of TFPC change, we propose a meaningful economic interpretation

of the estimated firm effects.

We find that the panel SF model outperforms the standard model. Our

results reveal that firms are working efficiently but their growth paths are

highly divergent. Since we consider the industry classification of the meat

firms, we can conclude that the productivity of firms engaged in slaughtering

tends to stagnate. Conversely, meat processing firms are progressing over the

observation period. Firms within this group can profit from higher levels of

basic productivity that we associate with the estimated effects.
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Productivity growth and potential intersectoral spillovers in the

European meat supply chain

Meat production in the European Union is not only characterised by the over-

all export orientation, but also by the increasing relevance of supply chains.

Stronger integration between firms and closer interactions between agricul-

ture and the meat industry are the consequences. Moreover, there are regions

in Europe that possess high livestock production or meat manufacturing, or

both.

The respective specialisations in production give rise to the investigation

of meat clusters and spillovers. Productivity spillovers possibly exist within as

well as between sectors of the meat supply chain. However, empirical evidence

is rare. Available studies mostly focus on small geographic areas and specific

products, respectively.

A more comprehensive analysis requires data on agriculture, the meat

industry as well as geographical information. Our data sets can provide in-

formation on production activities and regional relationships. The analysis

accounts for technical inefficiency that is distinguished from unobserved het-

erogeneity. We obtain firm-specific TFPC rates, and aggregate these rates

into group measures that take the economic relevance of the individuals into

account. The aggregated TFPC rates are used in a supply chain model in

order to investigate intersectoral productivity spillovers.

Our results show that the output of the livestock sector could be con-

siderably expanded. While there is progress in both sectors, the findings on

technical change in agriculture are ambiguous. The regional rates of produc-

tivity growth are similar, on average, but less dispersed in case of the meat

industry. We find indications for clustering within sectors, whereas the results

on intersectoral relationships are vague.

Global TFP change in agriculture: consistent frontier estimation

with country effects and time-varying inefficiency

Agriculture is associated with challenges of global reach, such as food security

or environmental protection. Accordingly, there is an area of conflict due to
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high expectations and opposing objectives. Anyway, growth in TFP is a key

aspect in meeting these challenges.

In this context, the notion of technical inefficiency is important because

its assessment allows to draw conclusions on unused production potentials.

However, the available country-level data are highly aggregated, and efficiency

studies do not account for country characteristics by default. Other studies

simply ignore inefficiency.

We investigate potential insights which might be due to the differentiation

between unobserved country characteristics and technical inefficiency. The

data which we analyse are specific because many countries as well as the input

variable feed are included. Because of data limitations, this input has been

predominantly neglected before. We decompose TFPC into three components

and check for their respective relevance in different geographical regions.

The consideration of feed in the world production frontier highlights that

TFPC is inevitably overestimated when inputs are neglected. Our results

suggest that the level and the variation of predicted TE scores are heavily af-

fected if the analysis accounts for individual effects. Accordingly, studies that

ignore these unobserved attributes must result in biased TE measures, and

will overestimate production potentials. We weight the results according to

the countries’ economic relevance and find TC to be the main source of TFPC.

However, the other components are important at a regional level as well. The

findings confirm increasing TFPC rates over time and indicate a positive re-

lationship between TC and R&D efforts in OECD countries. Databases on

agricultural R&D must be improved.
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3 Firm heterogeneity and divergent patterns

of productivity change in European slaugh-

tering and meat processing companies

Jonathan Holtkamp, Bernhard Brümmer

3.1 Introduction

The food industry is an important sector of total manufacturing in the Euro-

pean Union (EU) and the meat industry is one of the major segments within

the food industry. The meat industry became export-oriented as the EU

turned from a net importer to a net exporter of pork and poultry. Per capita

consumption is high but stagnant while there is an increasing demand in many

other regions of the world. Given this situation, efficiency and productivity

have implications for the industry as well as for the whole meat chain. For

meat firms, higher productivity enhances their competitiveness in the world

market. Agricultural suppliers depend on the demand of the industry. In

particular, those who are characterized by specialization in livestock farming

don’t have much flexibility to switch to other production alternatives.

Literature on the European meat industry usually addresses consumer

preferences, quality issues or strategic business aspects. Available efficiency

and productivity studies mostly focus on the agricultural sector in Europe

whereas corresponding studies for the meat industry use data from the United

States (Ball and Chambers (1982); Lambert (1994); Macdonald and Ollinger

(2005); Ollinger et al. (2005)). However, there are empirical results that indi-

cate poor development in Europe. A recent study of Spanish meat firms

(Kapelko et al., 2012) found negative growth in total factor productivity

(TFP) in that sector at large. Another report by USDA (Fuglie et al., 2011)

analysed TFP growth for the euro area and other developed countries over

the period 1980 to 2006. It showed that TFP growth has been far larger in

agriculture and total manufacturing than in food manufacturing.

Firm level data provides the most appropriate scale for gaining insights
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into the dynamics of the European meat industry. A corresponding analysis

may face challenges from firm heterogeneity that conflicts with the standard

stochastic frontier (SF) model. Potential firm heterogeneity arises from two

aspects. The first aspect refers directly to the structure of the industry and the

firms. Market concentration varies between countries as well as between sub-

sectors. Meat firms differ with regard to the range of products as well as their

internal organization, i.e. firms are (vertically) integrated in the respective

supply chain but to a different extent (Wijnands et al. (2008); Trienekens

et al. (2009)). The second aspect relates to our data. The data contain

almost no covariates that describe relevant firm characteristics and we are

not able to adequately determine corresponding differences between firms. In

view of this lack of information, we use a fixed effects approach to account

for unobserved heterogeneity.

Our study is innovative because data on European meat firms has hardly

been analysed in an efficiency and productivity context. We employ a recent

fixed effects model (Chen et al., 2014) where estimation is free of incidental

parameters. Furthermore, we seek to interpret the estimated firm effects in an

economically meaningful manner and explore their relationship to individual

productivity growth.

The structure of the paper is as follows. In the next two sections, we

introduce the econometric foundations and economic considerations regarding

the individual effects. We describe our data and specification in section 3.4

and present the empirical results in section 3.5. Based on these findings, we

draw our conclusions which are laid out in section 3.6.

3.2 Econometric foundations

Unobserved heterogeneity

Firms are assumed to be identical units in a basic framework of efficiency

analysis. This perspective conflicts with the intuition that there are usually

some systematic differences between firms. The consideration of heterogeneity

has induced several extensions of the standard SF model (see Greene (2008)

for a survey).
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This issue is particularly relevant if there is a missing variables problem,

i.e. firm heterogeneity is not reflected in the models variables because data

is aggregated and/or additional descriptive firm information is lacking. Con-

sequently, this kind of heterogeneity is said to be unobservable and can be

interpreted as unmeasured firm characteristics. Available panel data provide

additional information on each individual and enable the isolation of time-

invariant effects. Since many firm characteristics are presumably (quasi-)fixed

it is plausible to assume that these effects capture unobserved heterogeneity.

The respective specification of the SF model for panel data is given by:

yit = αi + β′xit + vit − uit (3.1)

On the left hand side, yit is a vector of the output of firm i (i=1,...,N ) in period

t (t=1,...,T ). On the right hand side, xit is a set of inputs that produce output

yit , and the vector β describes technology parameters to be estimated. The

well-known composed error term is given by εit = vit−uit, where vit represents

statistical noise and the non-negative component uit represents inefficiency. In

the frequently used normal-half normal model, the distributional assumptions

are vit ∼ N(0, σ2
v) and uit ∼ N+(0, σ2

u). Unobserved heterogeneity in terms

of time-invariant effects is captured by the vector (of incidental parameters)

αi, i.e. the number of individual intercepts is equal to the number of firms.

Replacing αi by a common intercept α yields the so called “pooled model”

where the panel structure of the data is irrelevant.

Regarding the model in (3.1), an identification problem arises because

it is essential to disentangle firm effects from the error component uit. An

additional challenge results from the specification of time-varying inefficiency.

A constant level of inefficiency would be unlikely to prevail over several years

for a number of reasons (e.g. because of learning).

Estimation of the model given in (3.1) proves to be a challenge. This

specification is known as the “’true’ fixed effects ” (TFE) model since Greene

(2005) proposed to simply include the dummies into the classical SF model.

The model is frequently applied but suffers from the incidental parameters

problem. Its likelihood function contains the firm effects and the number of
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parameters increases with the sample size. As a consequence, the estimated

error variance, and hence, the parameter σ2
u is inconsistent.

Alternative estimation strategies have been proposed. For example, an-

other MLE approach by Wang and Ho (2010) employs within-transformation.

This procedure is well-known in the panel data literature:

z̃it = zit − z̄i (3.2)

For each panel i and any corresponding variable (z ), the individual mean

(z̄i) is subtracted from the observed value in period t (zit). Accordingly, the

model can be represented by using deviations from means (z̃it). The resulting

formulation is free of the αi:

ỹit = β′x̃it + ṽit − ũit (3.3)

While this strategy eliminates the αi, it does not directly provide a solution

for the specification of time-varying inefficiency. For this purpose, Wang and

Ho (2010) use a scaling function, uit = u∗i × hit, and a multivariate normal

distribution for the noise component. With regard to the TFE specification,

this solution is a compromise because u∗i is a persistent component. An ad-

ditional cost of this approach lies in the need to have time-varying covariates

included in the scaling function hit.

Consistent fixed effects model

Consistent estimation of the fixed effects SF model given in equation (3.1) is

demonstrated by Chen et al. (2014). Their solution is also based on deviations

from means so that the transformed model looks like equation (3.3). The ap-

proach is characterized by the following features. First, within-transformation

removes the incidental parameters. Second, the relevant likelihood function

is derived from the T-1 deviations. This procedure achieves an implicit cor-

rection of the error variance2. Third, the model is based on a more general

2With regards to the degrees of freedom, the correction accounts for the N individuals:
df = NT −N −K = N(T − 1)−K .
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distributional theory that allows this approach to maintain the specification

of firm-specific and time-varying inefficiency uit.

The Closed Skew Normal (CSN) distribution is suitable in the SF context3.

The normal half-normal SF model has a skew normal distribution due to its

parameter λ. While the skew normal distribution is a generalization of the

normal distribution, it can be generalized itself by using the CSN distribution.

Accordingly, the distribution of the composed error may be written as:

εit ∼ CSN1,1(0, σ2,−λ
σ
, 0, 1) (3.4)

The density of a CSNp,q-distribution includes a p-dimensional pdf and a

q-dimensional cdf of a normal distribution. The five associated parame-

ters describe location, scale and skewness, as well as the mean vector and

covariance matrix in the cdf. With panel data, the T -dimensional vector

εi = (εi1, ..., εiT ) ′ is distributed as:

εi ∼ CSNT,T (0T , σ
2IT ,−

λ

σ
IT , 0T , IT ) (3.5)

where I is the identity matrix. This vector is partitioned into linear combina-

tions: its mean ε̄i and its first T-1 deviations ε̃∗i = (ε̃i1, ..., ε̃i,T−1)′. The latter

are used to derive the so called “within MLE”. The respective likelihood func-

tion includes the conventional SF parameters β, λ and σ2, and is not subject

to the incidental parameters problem. In order to assess technical efficiency,

the point estimator of Battese and Coelli (1988) can be used. Therefore, the

composed error has to be recovered:

εit = yit − ŷit = yit − β̂′xit − α̂i (3.6)

Here, the way α̂i is calculated is labelled as the mean-adjusted estimate by

Chen et al. (2014):

α̂Mi = ȳi − β̂′x̄i +

√
2

π
σ̂u (3.7)

3The CSN distribution is not only used by Chen et al. (2014). For example, see Brorsen
and Kim (2013) for a plain introduction to the CSN distribution in the SF context.
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3.3 Economic considerations

Interpretation of alpha

In efficiency analysis, the application of fixed effects models is primarily moti-

vated by solving the identification problem between unobserved heterogeneity

and inefficiency. Although the estimated firm effects comprise individual infor-

mation their economic interpretation is usually neglected. Firm heterogeneity

–as specified in this conceptual framework– captures unmeasured attributes

and constitutes an individual shift parameter. The latter might provide an

appropriate linkage to the actual level of productivity. All other things being

equal, a higher estimate for the fixed effect will be equivalent to a higher

productivity level. In this sense, the estimated α̂i reflects the “basic produc-

tivity” of firm i. It is not related to inefficiency but its magnitude presumably

has implications for change of total factor productivity.

Our reasoning is similar to the idea of convergence that is extensively

explored in the (productivity) literature. This concept focuses on initial pro-

ductivity levels. Convergence prevails if firms (or regions or countries) that

possess low initial productivity levels achieve higher growth rates than firms

that initially showed higher productivity levels, i.e. the former catch up. The

opposite phenomenon is called divergence. Potential reasons for convergence

are higher returns to capital, lower cost of technology adoption, lower insti-

tutional constraints and learning from the mistakes of competitors (Ruttan,

2001, p.16). Corresponding studies mostly focus on geographical and sectoral

contexts (e.g. Gutierrez (2000); Bernardini Papalia and Bertarelli (2009)) but

use micro-level data less frequently (e.g. Mugera et al. (2012)).

An analytical framework that does not account for firm heterogeneity in-

evitably yields a biased measure of initial TFP. Hence, the use of a fixed effects

approach has two advantages. Firstly, it accounts for unobserved heterogene-

ity and secondly, the estimated firm effects are interpretable as individual

basic productivity. The corresponding interpretation is analogous to the con-

vergence perspective but no additional measures are required.

The fixed effects assumption suggests correlation between the regressors

and αi where the direction is not clear. However, estimation is free of the αi s
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and the calculation of TFP change (TFPC) is based on changes. Conversely,

calculation of the αi s is based on (mean) levels of regressors. Thus, the fixed

effects assumption is unlikely to affect our interpretation. In our study, we

explore how the individual firm effect is related to productivity change.

3.4 Data and specification

Data

The study uses accounting data on slaughtering and meat processing com-

panies in Europe which are obtained from the Amadeus database (Bureau

van Dijk, 2011). The 398 firms in the sample are classified according to

their major production activities using NACE codes.4 This industry classifi-

cation distinguishes between slaughtering (NACE 1011), poultry slaughtering

(NACE 1012) and meat processing firms (NACE 1013). Eurostat (2008, p.21)

uses this scheme, accounting for activities that “share a common process for

producing goods or services, using similar technologies”. We use data with

NACE codes 1011 and 1013. Table 3.1 shows the composition of the sam-

ple that is observed over the period 2002 to 2009. Each firm has at least 50

employees and is observed for at least 4 years (on average for 6.5 years).

Table 3.1: Number of firms and observations according to country and clas-
sification.

Slaughtering Processing Sum
Country Firms Obs. Firms Obs. Firms Obs.

Austria 1 5 1 5
Belgium 6 44 9 70 15 114
Finland 2 12 10 71 12 83
France 47 330 41 247 88 577
Germany 4 19 25 118 29 137
Italy 24 171 47 322 71 493
Portugal 15 65 17 74 32 139
Spain 53 384 77 557 130 941
Sweden 8 52 12 80 20 132

Sum 160 1082 238 1539 398 2621

The companies are located in nine of the “old” member states of the

European Union (EU); the majority (75%) in France, Italy and Spain. Pro-

4Nomenclature statistique des activités économiques dans la Communauté européenne.
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cessing companies are more frequently observed than slaughtering firms. The

sample covers the most important countries that are major producers in the

European meat industry. However, Germany is represented sparsely and the

United Kingdom is missing. In the meat industry, medium-sized and large

firms (50-249 employees and more than 250 employees) generally account for

higher revenue shares than small firms. In 2008, Eurostat (2011) reported the

existence of roughly 1700 corresponding meat firms for the countries given in

Table 3.1. Therefore, the sample covers approximately a quarter of the firms

in the respective size categories.

Table 3.2 shows descriptive statistics of average firm data at constant 2002

prices.5 Output is measured in terms of revenue while the inputs are mea-

sured as labour costs, cost of materials and depreciation. Average revenue

is roughly 45 million euros per firm which seems to be a typical figure in

the industry since it is close to official statistics.6 The standard deviations

(given in parentheses) demonstrate that the scale of operations is widespread

among firms. Furthermore, there are differences according to industry classi-

fication. Slaughtering firms tend to be the larger units and have the higher

intensity of material. In contrast, processing firms are comparatively labour-

and capital-intensive. Revenue growth indicates expansion that is in line with

the observed development of meat production and exports.

The data set is relatively large but the variables are highly aggregated.

Additional information on firm characteristics which could be economically

relevant is scarce (e.g. output composition, firm organization).

Specification

The data set probably suffers from missing variables, and hence, it seems

reasonable to apply models which take unobserved effects into account. Ef-

ficiency analysis requires assumptions on the time path of inefficiency. Since

our panel has a maximum length of (T =) 8 years and we are interested in

5We use indices of industrial producer prices, agricultural output prices and labour costs
in manufacturing to deflate the data (Eurostat, 2011).

6Eurostat (2011) reports numbers of firms as well as sectoral revenue according to firm
size. A rough calculation gives a mean value of 50 million euros per firm (medium-sized
and large) for the nine countries (range 18-69 million euros at 2002 prices).
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Table 3.2: Descriptive statistics of firm-specific means.

Slaughtering Processing
(firms = 160) (firms = 238)

Revenue 52499 42114
(52792) (61463)

Labour costs 3668 4560
(3994) (6219)

Material costs 41780 25309
(42143) (37101)

Depreciation 736 1306
(760) (2384)

Note: values in thousands of euros; standard deviations in
parentheses.

analysing developments, the assumption of time-varying inefficiency is essen-

tial. Therefore, we do not use the FE model of Schmidt and Sickles (1984)

that allows only a very restrictive interpretation.7 In fact, we apply the two

models described in section 3.2 because the CFE model allows inefficiency to

vary over time. The pooled model does not account for firm effects but it is a

classical starting point in empirical analysis and may provide a reference for

assessing the potential heterogeneity bias.

Pooling of data and estimation of a common frontier are suitable if all

meat firms share the same technology. In our case, this approach would not

be appropriate because we have a priori information about main activities in

terms of industry classification. Furthermore, descriptive statistics indicate

differences in technology between groups. Since an LR test rejects pooling

all firms into one sample, we split the panel into two subsets (according to

NACE classification) and estimate a single group frontier for each subset.8

The preferred functional form is the translog specification. We test for

(and can reject) the Cobb-Douglas form for each of the two groups.9 To allow

for non-neutral technical change we include a time trend as an additional

7It could be used as a benchmark regarding the technology parameters. This was the
intention of Abdulai and Tietje (2007) who applied several models to a panel of dairy farms.

8H0 : Pooling all firms is appropriate. Reject with test statistic χ∗ = 454 >
χ2

((2−1)∗16;α=0.01) = 32

9H0 : Coefficients of square and cross terms = 0. Reject with test statistics χ∗ =
238; 162 > χ2

(10;α=0.01) = 23.2
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input. The resulting specification is:

ln yit = αi +
3∑
j=1

βj ln xjit +
1

2

3∑
j=1

3∑
l=1

βjl ln xjit ln xlit

+βt t+
1

2
βtt t

2 +
3∑
j=1

βtj ln xjit t+ vit − uit

(3.8)

where αi reduces to α0 in case of the cross-sectional model.

3.5 Results and discussion

Model selection

Since we use an effects framework in dealing with unobserved heterogeneity,

we have to decide whether to choose a random or fixed effects approach. If

there are correlations between individual effects and explanatory variables, a

random effects specification is not appropriate. At first, we estimate a translog

production function in the corresponding FGLS and LSDV specifications. In

order to test the respective null hypothesis10, we conduct a Hausman test.

As depicted in Table 3.3 the null hypothesis is rejected for each group, and

hence, a fixed effects approach is required.

Table 3.3: Model selection, Hausman tests and Vuong tests for each group.

CFE model Pooled model

Group Hausman ln L AIC ln L AIC Vuong

Slaughtering 51.25*** 1889 -3.46 1328 -2.42 6.5***

Processing 147.18*** 2301 -2.97 1590 -2.04 12.5***

Note: Critical values: Hausman χ2
14;α=0.01 = 29.1; Vuong Nα=0.01 = 2.3

In case of the CFE model, the values are based on the within-likelihood.

A more sophisticated model should possess an increased explanatory power.

Accordingly, the CFE model is expected to be superior to the pooled model.

Since the likelihood functions differ, it is not possible to use a standard LR test

in evaluating the models. We follow Lai and Huang (2010) in using a Vuong

test for the assessment of two competing models (model families) in the SF

10H0 : There is no correlation between unobserved effects and explanatory variables.
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framework. The model that shows the smaller value of AIC is chosen as the

baseline model and the null hypothesis states that both models are equivalent.

Rejection means that the baseline model is closer to the true data generating

process, i.e. it is superior to the alternative model. The LR based test statistic

of Vuong follows a standard normal distribution, i.e. T VLR ∼ N(0, 1). Results

are shown in Table 3.3. For each group, the CFE model shows the smaller

value of AIC and the null hypothesis of the Vuong test is rejected. Therefore,

we focus on the CFE model in our analysis.

Coefficients

Estimation results of the two group frontiers are shown in Table 3.4. Since

the variables are normalized at their respective sample means, the estimated

coefficients can be directly interpreted as output elasticities. The frontiers sat-

isfy monotonicity because these elasticities are positive and significant.11 The

estimated structure of production corresponds to the cost structure of meat

enterprises since material is the most important input, followed by labour

and capital. At the sample mean, the corresponding scale elasticity indicates

decreasing returns to scale for processors (0.93), whereas slaughtering firms

are close to constant returns to scale.12

The annual average rate of technical change differs drastically between

groups. In fact, there is no progress for slaughtering firms whereas meat

processors are progressing at a substantial rate that is slightly increasing over

time. In case of the meat industry, it seems plausible to expect technical

change that is factor-saving in labour because the industry tends to automate

processes and reduce manual labour. However, we do not find this result;

as technical change is virtually zero for the first group, the cross terms are

less relevant. The fact that technical change is almost neutral for processors

underlines differences in technology. Among other things, processing firms

are likely to need more comparatively skilled workers.

11The positive estimates of the square terms suggest that there could be problems with
respect to the usual regularity conditions.

12However, the hypothesis that the function exhibits constant returns to scale can be
rejected. H0 : β1 = β2 = β3 = 1; and βjl = βtj = 0 ∀ j, l; χ∗ = 36 > χ2

(4;α=0.01) = 13.3.
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Table 3.4: Estimation results of the CFE model.

Slaughtering Processing
Coeff. Std.error Coeff. Std.error

log labour cost 0.153 *** 0.010 0.173 *** 0.012
log material cost 0.823 *** 0.010 0.737 *** 0.011
log depreciation 0.021 *** 0.005 0.021 *** 0.007
time trend 0.000 0.001 0.022 *** 0.001
0.5× (log labour cost)2 0.079 *** 0.012 0.070 *** 0.013
0.5× (log material cost)2 0.169 *** 0.013 0.119 *** 0.017
0.5× (log depriciation)2 0.020 *** 0.004 0.027 *** 0.008
0.5× (time trend)2 0.000 0.000 0.002 ** 0.001
log labour cost×log material cost -0.089 *** 0.010 -0.037 *** 0.012
log labour cost×log depreciation 0.022 *** 0.008 -0.011 0.010
log material cost×log depreciation -0.046 *** 0.007 -0.048 *** 0.009
log labour cost×time trend 0.005 *** 0.001 0.003 * 0.002
log material cost×time trend -0.002 ** 0.001 -0.000 0.001
log depreciation×time trend -0.003 *** 0.001 -0.001 0.001
log σ2

u -5.743 *** 0.088 -5.580 *** 0.118
log σ2

v -8.109 *** 0.207 -6.832 *** 0.125

σu 0.057 0.061
σv 0.017 0.033
λ 3.263 1.870

Log likelihood (lnLW ) 1889 2301
AIC -3.46 -2.97
Observations 1082 1539

Note: estimation output of the pooled model is documented in the appendix.
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Technical efficiency

The descriptive statistics of technical efficiency (TE) scores are presented in

Table 3.5. Both groups operate at high levels of efficiency. The range of point

estimates are very similar suggesting that inefficiency is of less importance

in this industry. Comparing TE scores within groups but between models

we find that for slaughtering firms no inefficiency is present when using the

pooled model. The share of white noise is smaller under the panel model

that is able to identify some inefficiency. In the case of the processing firms,

the conclusion drawn from the two models is the same but the CFE model

indicates a slightly higher range of TE scores.

Table 3.5: Descriptive statistics of technical efficiency scores.

Slaughtering Processing

Pooled CFE Pooled CFE

Mean – 0.957 0.955 0.954

Std.dev – 0.026 0.015 0.024

Min – 0.72 0.79 0.71

Max – 1.00 0.98 0.99

Decomposition of productivity change

Analysis of TFPC and its components helps in the understanding of devel-

opments in European meat chains. Increasing productivity enhances com-

petitiveness of the export-oriented industry as it accompanies lower average

costs and higher profitability. The respective components characterize the na-

ture of TFPC and reveal sources for potential improvements. We decompose

TFPC into technical efficiency change (TEC), technical change (TC) and a

scale component (SC) according to formula (8.2.6) of Kumbhakar and Lovell

(2000, p.284).

Each component as well as TFPC is calculated as an index for every firm.

We take the geometric mean over all observations in year t to obtain an index

for each year. Results are shown in Table 3.6.

The estimates of TE possess moderate variances indicating a stable situa-
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tion. This result is reflected in the two indices of TEC that remain virtually

constant over the observation period. However, productivity is affected by

the divergent rates of TC as well as the different scale elasticities. The scale

elasticity of slaughtering firms is close to one so that the respective SC index

essentially does not change. As TEC index and TC index are also constant

the situation in this sub-sector appears to be static. In contrast, meat proces-

sors experience productivity growth that is driven by TC. Growth is slightly

decelerated by the SC due to decreasing returns to scale and increasing input

quantities.

Table 3.6: Decomposition of TFP change according to group frontiers.

Slaughtering Processing
Year TECi TCi SCi TFPCi TECi TCi SCi TFPCi

2002 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2003 0.995 1.001 0.999 0.995 1.007 1.017 0.998 1.022
2004 0.996 1.001 0.998 0.995 1.001 1.034 0.991 1.025
2005 1.004 1.002 0.998 1.003 0.998 1.050 0.990 1.037
2006 1.011 1.003 0.999 1.012 1.003 1.067 0.988 1.057
2007 0.997 1.004 0.998 0.998 1.008 1.081 0.990 1.078
2008 0.982 1.005 0.998 0.985 0.997 1.106 0.987 1.087
2009 1.000 1.006 1.000 1.003 0.991 1.132 0.986 1.106

Productivity change and basic productivity

In section 3.3, we argued that the fixed firm effects are interpretable as mea-

sures of basic productivity. In this section, we want to analyse how basic

productivity relates to individual productivity growth. We use Figure 3.1 to

visualize the corresponding (partial) perspective where the estimated α̂i s are

plotted on the horizontal axis. The vertical axis depicts the geometric mean

of the firm-individual TFPC index. This number gives the average progress

of each firm (in percentage terms) given its observation period Ti.

Figure 3.1 highlights the findings of the TFPC decomposition. It is more

specific because individual developments are visible. The slaughtering group

(left panel) is not able to keep up with the processing group (right panel).

There are some slaughterers that achieve progress but the observations are

scattered around zero. In the group of meat processors, more variation in
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TFPC indices as well as in estimated α̂i s is found. Almost all firms show

positive productivity growth but there are also a few firms that are on a

negative path.

The partial perspective of Figure 3.1 suggests that there is no interdepen-

dence of basic productivity and TFP growth in slaughtering. By contrast,

it suggests a positive relationship in the second group, i.e. there seems to be

divergence as higher α̂i s accompany higher TFPC indices. Additionally, an-

other interesting aspect appears from this simplified illustration. In the right

panel, the variance of productivity change tends to decrease as the level of α̂i

increases. This observation suggests that higher basic productivity could, in

a way, lead to stabilization of individual TFP growth.
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Note: Vertical axis: geometric mean of firm-specific TFP change index. Horizontal axis:
estimates of firm effects (basic productivity).

Figure 3.1: Individual mean of TFP change index and firm effects α̂i.

The partial relationship of basic productivity and TFPC index can change

if we control for additional factors. We use an OLS regression that includes

variables possibly related to productivity growth (Table 3.7). The respective

variables are firm size (measured in output quantity) and firm age as well as

country dummies and interactions.

There are some country effects in both groups pointing out differences

in TFPC. These country effects are the major source of variation for the

slaughtering group. Firm size tends to be positively related to productivity

change in slaughtering, but the coefficient is insignificant. In this group,

age has no effect and the coefficient of basic productivity is negative. The

situation is reversed in the case of the processing group. The coefficient of

basic productivity as well as age are positively related to TFPC whereas firm
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size has no effect. However, the benefits of basic productivity and age seem

limited to some extent as the squared term and cross-term suggest decreasing

effects.

Table 3.7: Results of OLS regression.

Slaughtering Processing
Coeff. Std.error Coeff. Std.error

constant -5.97** 2.88 constant 5.02 5.25
firm effect -7.48* 4.39 firm effect 14.82** 6.48
firm size 0.40 0.27 firm size 0.09 0.51
age 0.00 0.02 age 0.03** 0.02

firm effect2 -60.97*** 20.42
firm effect×age -0.29** 0.14

Belgium 3.75*** 0.80 Belgium 2.36** 0.95
Germany 4.28** 1.86 Germany -1.78** 0.83
Finland 5.35*** 1.64 Finland 3.20*** 0.90
France 3.51*** 0.63 Italy 1.19* 0.71
Italy 2.63*** 0.86 Sweden -3.78*** 0.81

Dep. var. (mean) -0.09 5.88
R-squared 0.25 0.33
Number of firms 160 238

Note: The dependent variable is the individual geometric mean of each firm’s TFP change index.
Country names indicate country dummies (with Spain as reference) where insignificant dummies are
omitted. White-corrected standard errors are used.

Discussion

Our results show that the two sub-sectors are characterized by both similar

and dissimilar attributes. The observed meat firms handle their production

technology confidently as they operate on a high and constant level of effi-

ciency. Hence, meat firms have to be very competitive within the industry

because inefficient units drop out quickly. The respective growth paths of

TFP are divergent because we find two directions. Slaughtering firms stick to

their productivity level, whereas the processing sector shows an active devel-

opment.

The production environment of the slaughtering industry is static due to

the absence of technical progress and inefficiency. This sub-sector is a pioneer

of industrial manufacturing and characterized by mature technology where

automation of processes has a long history (Perren, 2006). It seems that
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even firm size is no advantage in this situation. Accordingly, potentials for

improvement are likely to be restricted. Additional challenges arise not only

from the increasing importance of regulations including hygiene standards

(which apply to the food industry at large), but also from recent issues of

animal welfare.

The processing sector faces incentives and the potential of process innova-

tion driven by changing consumption patterns. Like other food items, meat

products are increasingly consumed as convenience food. Meat processing was

predominantly a business of small-scaled butcheries and private households

in the past. This activity has successively shifted to the industry level and

this development is likely to be a major reason for TC in that sub-sector.

Convenience food often includes poultry meat that is increasingly consumed.

This trend is possibly an additional factor that spurs the development of this

production activity. As vertical integration tends to be rather strong in the

poultry sector, organizational structures are likely to be important as well.

The measure of basic productivity that we derive directly from the individ-

ual effects is related to TFPC but its relevance differs between the sub-sectors.

In general, this measure captures attributes or surrounding conditions that

are not observable. However, higher levels of basic productivity will originate

from certain advantages or spillover effects. In case of the meat industry,

potential determinants include organizational structure (e.g. vertical integra-

tion), specialization (e.g. niches, delicacies) and a favourable environment (e.g.

intensive animal husbandry, industry clusters).

Our results show that meat processing firms benefit from higher levels of

basic productivity whereas it is rather irrelevant in slaughtering. For slaugh-

terers, the respective coefficient suggests a catch up effect at best. Given

their static situation, this interpretation is not very meaningful. Accordingly,

the potential of the slaughtering industry appears to be exhausted and hence

basic productivity is essentially of no advantage. Technology is presumably

rather homogeneous in this segment. A high number of standard operations

can be a potential explanation. Although standard operations prevail in any

industrial manufacturing, the respective complexity might be comparatively
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low in slaughtering.

The variance of estimated firm effects is an additional indication of similar

conditions within this sector and results in similar levels of basic productivity

(see Figure 3.1). In contrast, the variance of estimated firm effects is larger in

meat processing and suggests that the spread of unobserved covariates that

affect basic productivity is higher in this segment.

Processing firms are presumably more diverse in terms of their potential

to adjust organization and product design. Firm size is of minor relevance in

this context. In fact, within this group, the successful utilisation of potential

is reflected in higher basic productivity that in turn contributes to higher TFP

growth. Meat processing activities in particular facilitate the development of

specific products. Therefore, meat processors are able to gain experience and

develop skills which provide technical advances for those firms. Results show

that experience pays off as older firms tend to be more productive.

3.6 Conclusions

The meat industry is one of the major sectors of the European food industry.

However, applied studies considering efficiency and productivity of slaughter-

ing and meat processing companies are rarely found. We use firm level data

to gain insights on the dynamics at this stage of the meat supply chain. As

panel data are available but descriptive firm attributes are scarce, we take

unobserved heterogeneity into account.

In this framework, we apply the recent fixed effects SF model of Chen

et al. (2014). This model specification allows for unmeasured firm charac-

teristics and estimation is free of incidental parameters. We know about the

firms’ main specializations and correspondingly estimate two stochastic group

frontiers. In the observation period 2002 to 2009, inefficiency is a minor issue

in the meat industry because average scores of TE reach more than 0.95 in

each group. In fact, there is no change in TE but technical progress is the

most important driver of TFPC. While in the processing segment there are

positive growth rates of TC and TFPC (2.2% and 1.8% on average), firms in

the slaughtering segment remain in a static situation. Hence, growth paths
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of productivity differ considerably between production activities. This fact

illustrates that an average measure for the whole industry can be misleading.

Furthermore, we treat the estimated firm effects not only as ancillary param-

eters but explore their interpretation as measures of basic productivity. We

find that basic productivity and TFPC are positively related in the sub-sector

of meat processing.

Naturally, our study rests on assumptions that inevitably involve some

limitations. Production activities are distinguished by a priori information

that allows us to derive group frontiers. Although we account for unmeasured

attributes, the approach is restricted to such a degree as potential heterogene-

ity in structural parameters within the groups is ignored. This issue might

be less relevant in slaughtering where our results indicate that conditions

are rather homogeneous. However, we can expect that processing firms have

more production alternatives so that we find a more heterogeneous pattern

there. In general, we cannot exclude the possibility that additional activi-

ties performed on the sidelines influence the technology of an individual firm.

Considering these results and limitations, our study shows that the European

meat industry is a (technically) efficient sector. This finding is certainly re-

lated to a comparatively mature technology as well as to high intra-sectoral

competition.

Relevant insights are due to the consideration of sub-sectors. Analysing

the meat industry as a whole, productivity growth appears to be small or even

stagnant. In this regard, our results are similar to those of Fuglie et al. (2011)

or Kapelko et al. (2012). That perspective hides the divergent developments

that we find and that are consistent with observed trends in that industry.

Potential in conventional slaughtering is obviously exhausted whereas in the

processing segment there are prospects for development. This conclusion is

consistent with the concentration of enterprises in the European slaughtering

sector and increasing vertical integration (downstream), i.e. there are incen-

tives to engage in meat processing activities.

Our interpretation of basic productivity appears convincing in that we

find similar measures within the sub-sector of slaughtering where firms pre-
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sumably are rather replaceable. The differences within meat processing are

much larger, and it is plausible that unmeasured factors are more relevant

and can have positive effects on basic productivity and TFP growth (e.g.

specialization, marketing, spillover effects).

With regards to future research, the exploitation of available spatial infor-

mation would appear to be a promising approach for potential identification

of industrial clusters or spillover effects between agriculture and industry. An

approach that allows for more flexibility in technology parameters would be

another natural extension of our study.
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Appendix

Table 3.8: Estimation results of the Pooled SF model.

Slaughtering Processing
Coeff. Std.error Coeff. Std.error

constant 0.005 0.055 0.052 *** 0.009
log labour cost 0.144 *** 0.006 0.217 *** 0.006
log material cost 0.834 *** 0.005 0.693 *** 0.006
log depreciation 0.032 *** 0.005 0.101 *** 0.005
time trend -0.001 0.001 0.017 *** 0.001
0.5× (log labour cost)2 0.076 *** 0.014 0.105 *** 0.012
0.5× (log material cost)2 0.138 *** 0.010 0.116 *** 0.011
0.5× (log depriciation)2 0.028 *** 0.006 0.034 *** 0.007
0.5× (time trend)2 0.000 0.001 0.001 0.001
log labour cost×log material cost -0.100 *** 0.009 -0.114 *** 0.009
log labour cost×log depreciation 0.014 * 0.009 0.006 0.007
log material cost×log depreciation -0.044 *** 0.007 -0.024 *** 0.007
log labour cost×time trend 0.008 *** 0.002 0.007 *** 0.002
log material cost×time trend 0.000 0.002 0.002 0.002
log depreciation×time trend -0.005 ** 0.002 -0.006 *** 0.002
log σ2

u -15.402 *** 304.4 -5.653 *** 0.354
log σ2

v -5.292 *** 0.043 -5.091 *** 0.079

σu 0.000 0.059
σv 0.071 0.078
λ 0.006 0.755

Log likelihood 1328 2301
AIC -2.42 -2.97
Observations 1082 1539

28



4 Productivity growth and potential intersec-

toral spillovers in the European meat sup-

ply chain

Jonathan Holtkamp, Bernhard Brümmer

4.1 Introduction

The European Union (EU) is one of the major producers of meat in the world

and a net exporter of pork and poultry. The production processes are in-

creasingly characterised by supply chain features. However, there is much

heterogeneity in the structural characteristics of both livestock production

and the meat industry itself. For both sectors, regional clustering exists in

several European countries. In the case of agriculture, regions with a high live-

stock density are located in Northwest Germany, Belgium, Northwest France,

Eastern Spain and others. Clustering of meat firms prevails in regions like

Belgium, Northern France and Northern Italy (at least in terms of number of

firms, according to Eurostat (2014b)). Of course, there are overlaps, i.e. where

there is a high livestock density and a high concentration of meat processing

in the same region or in neighbouring regions.

Livestock production and meat processing are major sub-sectors within

their respective branches of agriculture and the food industry. Their produc-

tivity growth is relevant because they use a lot of their sector’s resources and

it is a driver of their development (e.g. with respect to structural change).

While the existence of clusters is obvious, it is less clear if there are related

spillovers that result in an increased productivity growth within these clusters.

This effect or similar consequences are found in the literature. For example,

a review of aspects of spatial dynamics in dairy production is provided by

Mosnier and Wieck (2010). Another recent study investigates the relevance

of spatial clustering in organic farming (Schmidtner et al., 2012). Some stud-

ies are more closely related to our approach, including Roe et al. (2002), Larue

et al. (2011) as well as Diez-Vial (2011).
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The economic relevance of clustering and potential positive spillovers be-

comes manifest in individual benefits at the firm-level and overall economic

gains due to productivity growth. However, the studies available typically

address a smaller geographical region; partially, considering only very spe-

cific products. Although there is no clear-cut approach for analysing such a

relationship, a broader perspective is desirable.

Our study evaluates growth in total factor productivity (TFP) and the

relevance of its components for livestock farming and the meat industry. As

efficiency change is a potential driver of TFP change (TFPC) we consider

technical efficiency (TE). In both sectors, unobserved heterogeneity is likely

to be an important aspect. We thus consider and distinguish farm (firm) ef-

fects from TE. We investigate potential spillovers at a larger scale, i.e. without

restriction on a single region. The analysis doesn’t only address the situation

within one sector but rather tries to consider intersectoral relationships be-

tween livestock production and meat processing.

As separate data sets are available, production technologies are repre-

sented by means of a stochastic distance function (agriculture) and a stochas-

tic production frontier (meat industry). We proceed as follows: Section 4.2

lays out the methods for modelling the production technologies, attributing

more attention to agriculture. The two data sets and the corresponding spec-

ifications are explained in Section 4.3. Section 4.4 comprises the concept of

chain productivity and the discussion of required aggregations. Results are

presented in Section 4.5. The last section sums up and critically discusses our

findings.

4.2 Model of agricultural production

Stochastic production frontier with farm effects

Production analysis of agricultural panel data should address inefficiency as

well as unobserved heterogeneity.13 The corresponding formulation of the

13Relevant aspects also apply to the meat industry. For the sake of brevity, this section
focuses on agricultural production.

30



stochastic production frontier is given by:

yit = αi + β′xit + vit − uit (4.1)

The dependent variable is output, y, that is produced by a set of inputs,

x. Their relationship is characterised by the technology parameters β (to

be estimated). Farms are indexed by i = (1, 2, ..., N) and time periods are

indexed by t = (1, 2, ..., T ). The time-invariant αi is an individual farm effect

and the two remaining components represent the composed error term vit −

uit = εit. These two components are assumed to be independent of each other

and their distributions are assumed to follow the normal-half normal model,

i.e. vit ∼ iidN(0, σ2
v) and uit ∼ iidN+(0, σ2

u).

Several strategies for the estimation of this model have been proposed,

starting with Greene (2005). The approach that is adopted here is a method-

ological extension by Chen et al. (2014). Their solution is based on the insight

that the distribution of the composed error is a special case of the closed skew

normal (CSN) distribution, i.e. εit ∼ CSN1,1(0, σ2,−λ
σ
, 0, 1). After within-

transformation is applied to equation (4.1), the properties of the CSN dis-

tribution allow to derive a (“within-”) likelihood function that is based only

on the transformed residuals. Therefore, the individual effects are eliminated

and the estimation involves only the “conventional” parameters β, σ2
v and σ2

u.

The effects are relevant after estimation because the prediction of TE scores

requires the calculation of ε that depends on the effects,14 given by:

α̂i = ȳi − β̂′x̄i +

√
2

π
σ̂u (4.2)

Estimation of multiple output production

Agricultural production is a typical example for a multiple output production.

The respective activities, even for very specialised livestock farms, are usually

connected to the use of land. Livestock production inevitably produces ma-

nure that is used as organic fertilizer. Consequently, a livestock farm is likely

14For a more thorough description, see appendix A.
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to possess at least some land area to dispose of its manure.15 Many farms

produce a portion of their feed input and/or field crops for sale.

The analysis includes farms that produce livestock as well as crops. The

empirical model has to take this structure into account. Hence, a distance

function approach is used. Following Kumbhakar and Lovell (2000, p.28ff)

the output-oriented distance function can be written as:

DO(x, y) = min

{
µ :

y

µ
∈ P (x)

}
(4.3)

where in this case, y represents the two kinds of output and x represents the

observed input variables. The value of the distance function lies in the unit

interval.16

Estimation of the distance function in the context of equation (4.1) re-

quires some modification. For an efficient observation, the distance function

can be expressed as (ignoring the noise component for now):

DO(x, y eu; β) = 1 = TE (4.4)

The inefficiency component enters this equation with a positive sign. Accord-

ingly, the (inefficient) observation y is scaled onto the frontier by means of eu

where the function value equals one.17 Because 1
TE

= eu it holds that:

− ln(TE) = ln(eu) = −ln(DO(x, y; β)) = u (4.5)

Adding a noise term, the stochastic distance function for an technical efficient

observation is:

1 = DO(x, y; β) exp(u− v) (4.6)

The above equations highlight that the value of the distance function is not

a dependent variable (as u is not observed prior to estimation). In order

to obtain an estimable model, we follow Brümmer et al. (2002) in using the

15Although manure can be sold, a farm usually requires some land to be classified as an
agricultural enterprise.

16Its value corresponds to the Debreu technical efficiency measure used here. The rela-
tionship −ln(DO(.)) = u holds irrespective of the TE definition.

17The underlying rationale is the distance function’s property of linear homogeneity.
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“ratio model”18, i.e. applying the normalisation by means of 1
ym

:

1

ym
= DO(x,

y

ym
; β) exp(u− v) (4.7)

By taking logarithms and multiplying by minus one, the expression takes the

form of a stochastic production frontier:

ln(ym) = −lnDO(x,
y

ym
; β) + v − u (4.8)

4.3 Data and specification

Data on agricultural production

This study uses data on European farms that are active in livestock produc-

tion. The data come from the Farm Accountancy Data Network (FADN)

(European Commission, 2010). This data set covers 14 countries19 and cov-

ers the period between 1995 and 2008. Most livestock farms are not fully

specialised. Data selection thus accounts for farms that produce livestock

output as well as crop output and that document input use in the respective

categories. The sample only includes farms (N=3674) that are observed for

several subsequent periods (on average 6.4 years) to ensure a sound though

unbalanced panel structure.

Farms are selected by activity. The type of farming can be distinguished

by means of a two-digit code. This sample comprises farms producing cattle

(type 42), pig and poultry (type 50) or both kinds of livestock (type 72). Ta-

ble 4.1 provides an overview of available variables that are given on a yearly

basis. Outputs are aggregate volumes of the respective livestock and crop

activities. These numbers as well as four of the input variables are mea-

sured in monetary terms.20 Inputs measured in physical terms are labour (in

hours worked), land (total utilised agricultural area) and livestock (in live-

18The issue of potential endogeneity is discussed in Brümmer et al. (2002) as well as in
Kumbhakar and Lovell (2000).

19Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Nether-
lands, Portugal, Spain, Sweden, United Kingdom.

20Deflation of monetary variables has been carried out using various price indices from
Eurostat.
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Table 4.1: Descriptive statistics on livestock farms.

mean std.dev min max
Livestock output 194,100 410,700 1.0 14,557,000
Crop output 20,095 35,872 1.7 1,177,200

Capital 31,886 38,300 0.8 999,260
Labour (hours) 4,208 3,635 160 114,660
Land (hectares) 58 62 0.1 842
Livestock (units) 246 467 0.9 28,675
Livestock cost 98,455 197,520 0.8 7,621,700
Crop cost 8,199 9,771 1.1 191,830
Other direct cost 23,562 46,745 3.4 2,315,400

Note: monetary values in euros.

stock units). Capital is composed of current costs of machinery and buildings

(e.g. small repairs, insurance) plus depreciation. Livestock costs include feed

and other livestock-related expenses. Crop cost summarise costs of seeds, fer-

tilizers, crop protection and other crop-related expenses. Direct cost include

energy (0.40 of total, on average), other direct inputs (0.36) and services

(0.24). The statistics confirm that livestock production is the most important

activity. Livestock output has a share of 0.89 at the median of the sample.

The variables’ standard deviations reveal distributions that are skewed to the

left. Some (minimum) values suggest extreme (low) input use. These values

can be correct or result from typos or documentation of approximated inputs.

It is not trivial to decide whether farms should be excluded based on these

statistics. As there is no clear guideline, no criterion is defined and the focus

is concentrated on the panel structure. Although statistics on (total) output

seem reasonable, the data set is probably subject to incomplete measurement

and hence accounting for unobserved heterogeneity is relevant.

Data on meat industry firms

This fact is even more important in case of the industry data (Bureau van Dijk,

2011). Production activities of meat firms are documented only by aggregate

output and three input variables. Output is measured as revenue and the

inputs are labour costs, material costs and depreciation. There is information

on activities by means of industry classification. These categories subdivide
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firms into slaughtering, poultry slaughtering and meat processing firms (a

related description is provided in Section 3.4). The firms are either medium-

sized or large, i.e. having at least 50 employees. Nine European countries

are covered by the data.21 The observation period includes the years 2002 to

2009.

Table 4.2: Descriptive statistics of meat firms.

mean std.dev min max
Revenue 44,827 54,914 1,604 548,020

Labour costs 4,157 5,298 38 63,268
Material costs 31,040 38,309 958 314,100
Depreciation 1,010 1,736 7 22,572

Note: values in thousands of euros. N = 473 firms are observed
over T = 6.5 years on average.

Specification

Information on firm activities can generally be used to define group frontiers.

This strategy is probably suitable in case of the meat industry. For agricul-

tural production, a clear categorisation is more difficult. Farms often produce

multiple outputs and are diversified, i.e. the range of activities is more dis-

persed in comparison to industrial enterprises. Furthermore, in these specific

data, there are some farms which change their classification between the years.

Pooling farms thus seems reasonable. In order to maintain comparability and

because the objective is to derive regional measures, the same approach is

applied to the meat firms.22

Agricultural production is represented by a multiple output multiple in-

put technology. Equation (4.9) describes the translog specification of produc-

tion:23

21Austria, Belgium, Finland, France, Germany, Italy, Portugal, Spain, Sweden.
22Splitting up firm data into group frontiers rather goes into the opposite direction.
23A random effects specification is rejected with (Hausman) test statistic χ∗ = 2520 >

χ2
54;α=0.01 = 81.

35



−ln y1it = αi + α1 ln
y2it

y1it

+
1

2
α11

(
ln
y2it

y1it

)2

+
7∑
j=1

βj ln xjit +
1

2

7∑
j=1

7∑
l=1

βjl ln xjit ln xlit

+
7∑
j=1

γ2k ln
y2it

y1it

ln xjit

+βt t+
1

2
βtt t

2 + δty2
y2it

y1it

t+
7∑
j=1

βtj ln xjit t− vit + uit

(4.9)

This is the log form of equation (4.7), whereas the actual estimation equa-

tion corresponds to (4.8), i.e. the expression is multiplied by minus one. The

two outputs are livestock output (y1) and crop output (y2). The inputs are

capital (x1), labour (x2), land (x3), livestock (x4), livestock cost (x5), crop

cost (x6) and other direct cost (x7). A time trend (t) is included to allow for

non-neutral shifts of the production frontier (technical change).

Industrial meat processing is also modelled by means of a translog speci-

fication including a time trend.24 However, there is only an aggregate output

(y) that is produced by three inputs j (1 = labour costs, 2 = material costs, 3

= depreciation). The formal expression corresponds to equation 3.8 in Section

3.4.

4.4 Model of meat chain productivity

Conceptual considerations

Supply chains increasingly shape meat production in Europe. Organisational

structures and clustering of related firms could lead to productivity spillovers

between firms or clusters within a sector but also between different sectors.

An empirical approach that aims to identify such relationships requires some

conceptual considerations. Furthermore, the options of deriving an approach

from our production analysis at the firm-level have to be explained.

24The Cobb-Douglas specification is rejected with test statistic χ∗ = 330 > χ2
(10;α=0.01) =

23.2. A random effects specification is rejected with (Hausman) test statistic χ∗ = 152 >
χ2

14;α=0.01 = 29.1.
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From a theoretical viewpoint, industry performance is likely to be a driver

of agricultural productivity. There are fewer but larger firms within the indus-

try and hence development of technology goes faster through the aggregate

sector. Industry capacity is more concentrated, i.e. it is the bottleneck from

primary production towards the retail level. Therefore, the essential charac-

teristics of the raw product are defined at the industry level (or indirectly by

retailers and consumer demand).25

The potential existence of spillover effects is not necessarily restricted to

geographical areas. Ideally, the analysis should focus on economic distance.

Information technology simplifies administrative procedures and the flow of

animals and materials is not bounded by borders. For meat firms, precise

localisation is possible by means of geographic coordinates. However, the

position of livestock farms is only documented at the regional level. The

analysis is thus restricted to the regional level.

Although the consideration of economic distance is more desirable there

are potential factors causing spillover effects that can be associated with phys-

ical distance. Concentration of firms can be due to natural conditions as well

as infrastructure (e.g. harbours) and related savings of transportation cost and

time. A sufficient number of specialised livestock farms can lead to the devel-

opment of specific agricultural consulting and extension services. Similarly,

the availability of specialised inputs such as feed, veterinary care, equipment

and loans can be enhanced. Even if many such inputs are transportable,

communication and personal relationships matter. Proximity simplifies com-

munication and exchange of experience. It possibly enables easier quality

control and visiting of production sites as well as quicker reaction to unex-

pected events. Visibility of competitors can promote overall motivation and a

favourable environment can encourage entrepreneurs to invest. The establish-

ment of local brands (e.g. protected geographical indication) can be another

driver of performance.

25Technological requirements are certainly relevant. There are other potential factors
such as origin or organic production.
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Productivity decomposition and regional aggregation

Growth of TFP is calculated from the estimated technology. Firm-specific

numbers are derived (within each of the two sectors) before aggregating the

results into regional measures.

Following Kumbhakar and Lovell (2000), the individual rate of TFPC is

calculated as:

TFPCit = [−(uit − ui,t−1)] +
∂ ln ŷmit
∂ t

+

[
(RTSit − 1)×

∑
j

(
εjit

RTSit

)
(ln xjit − ln xji,t−1)

]
(4.10)

where the output elasticity of input j is εjit = ∂ ln ŷmit

∂ ln xjit
and the measure of

returns to scale (RTS) is RTSit =
∑

j εjit . The rate of TFPC is the sum of

change in TE (TEC), technical change (TC) and a scale component (SC).26

Since a regional measure of performance is desired there is a need to ag-

gregate the firm-specific results. Färe and Zelenyuk (2003) refer to Farrell’s

idea of “structural efficiency of an industry” (Farrell, 1957) when discussing

the aggregation of TE scores over economic units. In essence, they conclude

that the aggregate measure should account for the relevance of the economic

unit via its scale of operation. They suggest weighting by output (in their

case, revenue) shares.

Furthermore, they show that there is no consistent method of aggregation

in case of multiple output production. This finding means that the results

and interpretation of the aggregate group technology can be ambiguous. Nev-

ertheless, they advocate a weighting scheme for the case of multiple outputs

that is independent of prices. A firm’s weight is given by the sum of its out-

put shares (observed firm output in total group output) normalised by the

number of activities (output categories). Zelenyuk (2006) refers to the same

scheme and provides an intertemporal extension of the aggregation approach

considering the Malmquist TFPC index.

Accordingly, in our case, it would be ideal to use firm-specific indices27

26Results are averaged over years t and t-1 to obtain the TC rate of year t. Output
elasticities and returns to scale are also averaged over two subsequent years.

27These are chained indices, i.e. the index (I ) of firm i in period t is given by Iit =
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and to weight these indices per period t on a regional basis (region r). For

productivity growth:

TFPCIrt =
∑
i

TFPCIrit ×
[

1

2

(
yr1it∑
i y

r
1it

+
yr2it∑
i y

r
2it

)]
(4.11)

The regional TFPC index (TFPI) is a weighted sum of the firm-specific in-

dices (firms located in that region) where the individual weight is constructed

as in Färe and Zelenyuk (2003). Weighting requires only the observed out-

puts in the respective period t which is desirable with respect to aggregation

properties. Regional TFPC from period s to period t can be calculated as:

TFPCr
s→t =

TFPCIrt
TFPCIrs

− 1 (4.12)

However, our data set is unbalanced. The firm-specific indices have no com-

mon base year and results from equation (4.11) are unfeasible. Furthermore,

it is desirable to consider single periods because spillovers require time to

pass through the chain. Unfortunately, the regional distribution of our ob-

servations differs over time, leading to different regional matchings. In order

to simplify the approach, a more pragmatic weighting is applied. Regional

TFPC is calculated as:

TFPCr =
∑
i

∑
t

TFPCr
it ×

[
1

2

(
yr1it∑

i

∑
t y

r
1it

+
yr2it∑

i

∑
t y

r
2it

)]
(4.13)

This measure comprises all periods in which a region is observed. Individual

TFPC rates are weighted according to the relevance of a firm (in terms of

output quantity). A firm’s weight is given by its output share in period t

relative to total regional output. In case of meat firms, a normalisation of

weights as in equation (4.13) is not required.

This scheme involves the decision on which outputs to choose, i.e. to choose

either output in period t or the average output of periods s and t. Zelenyuk

(2011, p.195) advocates to “rest on the weights in one of the periods” when

aggregating rates of single units into rates of higher-level units. Otherwise

Ii,t−1 × (1 + ait) where a is the growth rate.
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aggregation consistency will fail. Accordingly, we rest on output in period t

when using equation (4.13).

Specification supply chain model

We argue that the meat industry’s productivity growth is likely to be a driver

of agricultural TFPC. Furthermore, spillovers within agriculture are possible

and hence regional TFPC in agriculture is a function of industrial produc-

tivity and the productivity of neighbouring observations (as well as of other

unknown covariates).

The livestock farms and meat firms are located in R regions (r = 1,...z,...,

R) that are defined within the FADN framework, predominantly correspond-

ing to level 2 of the NUTS classification.28 Neighbourhood is considered by

means of a spatial weights matrix W (LeSage, 1999). This is a row-normalised

R× R matrix where non-zero elements indicate neighbourhood. In our case,

the neighbourhood structure is insensitive to the choice of Rook contiguity

(regions with a common side) versus Queen contiguity (regions sharing a com-

mon side or vertex).

The model structure corresponds to a so-called spatial Durbin model

(LeSage and Pace, 2009) that includes a spatial lag of the dependent vari-

able and a spatial lag of an explanatory variable. In fact, the spatial lag is a

weighted average of neighbouring observations where the weights are deter-

mined by neighbourhood structure. The relationship between regions r and

z is described by the respective element of the matrix W. For a single region,

using the aggregate measures derived above, the model can be written as:

TFPCr
agr = λ

R∑
z=1

Wrz TFPC
z
agr

+ θ
R∑
z=1

Wrz TFPC
z
ind + β TFPCr

ind + η + νr

(4.14)

According to equation (4.14), agricultural (agr) TFPC in a region is deter-

mined by agricultural TFPC of its neighbours (W TFPCagr) as well as in-

28Nomenclature des unités territoriales statistiques (Eurostat, 2014a).
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dustrial (ind) productivity growth of its neighbours (W TFPCind) and in its

own region. The parameter η is a common constant and νr is a random error

term distributed as νr ∼ N(0, σ2).

4.5 Results

Results for livestock production

The first part of this section focuses on the results of the agricultural distance

function. Results for meat firms are presented in the appendix and a more

detailed description of the industry technology is provided in Section 3.5.

The first order coefficients of the distance function are presented in Table

4.3. These point estimates can be interpreted as elasticities at the sample

mean because the variables are normalised at their respective means. The

crop output elasticity suggests this activity to be more important than live-

stock production. For livestock farms, this result seems implausible. However,

a closer look at the distribution of the elasticities puts the result into perspec-

tive.29

Table 4.3: Point estimates of agricultural frontier.

Coeff. t-value

Crop output -0.530 -81.2

Capital 0.064 6.2
Labour 0.043 2.9
Land 0.249 17.6
Livestock 0.030 2.5
Livestock cost 0.339 38.9
Crop cost 0.114 13.9
Other direct cost 0.048 4.6

Trend 0.008 5.7

RTS 0.887

Note: N = 3674, avg. T = 6.4. Inputs are
given in logarithms. The complete estimation
output of the distance function is documented
in the appendix, table 4.7.

29This result is partly caused by a large outlier in the normalised variable. The mean of
estimated elasticities is 0.33 with a standard deviation of 0.14. The standard deviation of
observed crop shares is 0.13 and the correlation with the estimated elasticities is 0.82.
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The first order coefficients are positive and have the expected signs (re-

versed for illustration). With given inputs, an increase of crop output ac-

companies decreasing livestock output. Signs related to the inputs are posi-

tive. The most important input is livestock cost which is consistent with the

main activity of farms. Land and crop cost are the next most relevant pro-

duction factors, whereas the remaining coefficients are of similar magnitude.

Accordingly, the structure of agricultural production seems to be plausibly

represented. The positive time trend indicates technical progress.

Predictions of TE scores reveal that there is a large scope for improvement

(Table 4.4). Output could be expanded by more than 20 percent, on average

(with input levels fixed). The notable standard deviation demonstrates that

performance differs a lot between farms. There is no remarkable difference

between farm types, only the standard deviation of TE for cattle farms is

slightly bigger than for the other farm types (0.09 versus 0.07).30

Table 4.4: Descriptive statistics of technical efficiency scores.

Mean Std.dev Min. Max.

0.82 0.08 0.25 0.98

Note: observations = 23,386.

As Figure 4.1 shows, average efficiency is changing over years. Weighting

of TE scores (analogous to equation (4.11) but for the full sample) highlights

the relevance of larger farms whose efficiency leads to a smoothing of the

overall average. Smaller farms tend to have lower and rather decreasing TE

scores.

The empirical model specification allows for the isolation of farm effects

that can contribute to the interpretation of results. Discrimination with re-

spect to farm type shows that the effects of cattle farms diverge from the

other types (Figure 4.2). These tend to be smaller in magnitude and are

more dispersed. When interpreting the farm effects as basic productivity (as

is suggested in Section 3.3) cattle farms are likely to be less productive and

30The differentiation of farm types can possibly expand the scope of interpretation. As
the classification can differ over years, the most frequent category (mode) for each farm is
applied.
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Figure 4.1: Technical efficiency over the observation period.

face more diverse surrounding conditions. Relating basic productivity (farm

effects) to the individual average TFPC index shows that there is some indi-

cation for a positive relationship.31
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Figure 4.2: Distributions of farm effects according to farm type (left panel)
and individual mean of TFP change index versus farm effects (right panel).

The individual average rate of TFPC can take extreme values (ranging

from -0.66 to 0.30) and the overall distribution tends towards a negative av-

erage rate (with a median of zero). However, the standard deviation is a

reasonable 0.06.

31A farm’s average TFPC index (depicted on the vertical axes) is the geometric mean
over the individual period (without base year, the average years are 5.4). Here, the standard
deviation is 18 percent (or 1.18 = 1.0632.7).
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Sectoral results

In order to gain insights into the dynamics of the two sectors, livestock farming

and meat industry, Table 4.5 presents the weighted decomposition of TFPC.

Both sectors experience productivity growth but the relevance of the sources

of the growth is different.

The meat industry is characterised by a high and virtually constant level

of TE (0.95 on average). Accordingly, the index of TEC is almost constant.

The same result is found for the index of scale-related changes, whereas TC is

the key driver of TFPC. These findings are related to the size of slaughtering

firms that tend to have the larger output and hence receive a higher weight

in the index. Slaughtering firms are close to constant returns to scale and the

development in this sub-sector is stagnant as is shown in Section A. Compar-

ing this result with the geometric index (see appendix) highlights that there

are (smaller) firms that experience higher technical progress.

Table 4.5: Productivity decomposition for agriculture and meat industry using
weighted indices.

Agriculture Meat industry

Year TECi TCi SCi TFPCi TECi TCi SCi TFPCi

1995 1.000 1.000 1.000 1.000

1996 0.973 1.052 1.007 1.032

1997 0.973 1.099 1.012 1.084

1998 0.958 1.140 1.020 1.115

1999 0.976 1.174 1.026 1.176

2000 0.988 1.199 1.030 1.220

2001 0.998 1.216 1.035 1.256

2002 0.988 1.224 1.038 1.255 1.000 1.000 1.000 1.000

2003 1.032 1.222 1.044 1.317 1.003 1.007 0.999 1.009

2004 1.067 1.213 1.046 1.354 1.002 1.014 0.998 1.014

2005 1.106 1.196 1.054 1.395 1.004 1.023 0.997 1.023

2006 1.145 1.172 1.058 1.421 1.012 1.032 0.997 1.040

2007 1.087 1.141 1.059 1.313 1.014 1.043 0.997 1.053

2008 1.119 1.102 1.060 1.308 1.004 1.055 0.996 1.053

2009 1.003 1.067 0.996 1.064

Note: the weighted indices are derived by first weighting the TFPC rates according to

years, and then, constructing a chained index for the full sample.

Conversely, in the case of agriculture, this comparison shows that larger
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farms dominate the development of productivity. The relevant TFPC com-

ponents for these farms are changes in efficiency and scale. The index of TC

shows a peak in the year 2002, and subsequently declines, suggesting technical

regress. There is no obvious explanation for this result. It is, though, one

reason for the positive aggregate TEC since observations come closer to the

downward shifting frontier.

The results clearly indicate spatial dependence within each of the two

sectors. Figure 4.3 depicts weighted aggregate productivity growth for 61

collectively observed regions, i.e. where livestock farms as well as meat firms

are observed. The TFPC rate of region r, on the horizontal axis, is plotted

against the rate of neighbouring regions z to R, on the vertical axis (spatial

lag). For both sectors, Moran’s I test statistic confirms spatial clustering.
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Figure 4.3: Regional clustering of TFPC in agriculture and meat industry.

The average regional rate is about one percent in agriculture as well as in

the meat industry (0.012 and 0.01, respectively). However, variation is much

larger in case of livestock production. There are numerous regions whose

values are close to zero or even negative, whereas there are virtually only

positive rates in the meat industry (except for two outliers).

Results of supply chain model

Next, the perspective is expanded to the potential intersectoral relationships

in productivity growth. The observed 61 regions have 3.7 neighbours on

average (ranging from 1 to 8). In Section 4.4, we argued that agricultural

TFPC is likely to be a function of the meat industry’s TFPC. Model A in

Table 4.6 corresponds to the proposed specification of the supply chain model.
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Table 4.6: Estimation results of the supply chain model.

Model A Model B Model C
Coeff. z-value Coeff. z-value Coeff. z-value

constant 0.01 1.37 -0.04 -1.40 0.06 1.41
W TFPCagr 0.33 2.48 0.32 2.47 0.30 2.31
W TFPCind -0.17 -0.24 -0.22 -0.35 -0.33 -0.57
TFPCind -0.12 -0.21 0.27 0.51 0.56 1.12

firm concentration -0.01 -2.20 -0.01 -3.42
employees per firm -0.01 -2.11 0.00 -0.89
share crop area -0.02 -3.34 -0.02 -3.30
livestock density 0.01 2.04 0.01 2.98

W firm concentr. 0.01 2.80
W livestock density -0.02 -3.04

log likelihood 129 137 144
AIC -248 -257 -265
pseudo R2 0.09 0.31 0.43
resid. autocor. rejected rejected rejected

Note: the dependent variable is the weighted regional average of TFPC in livestock pro-
duction. Notation W indicates spatially lagged variables. Variables (except for TFPC) are
in logarithms.

We find a positive spatial lag for agricultural TFPC, i.e. regions with

higher productivity growth in livestock production tend to have neighbours

who also have a high TFPC in this activity. This is the finding that is already

shown in Figure 4.3. There is no evidence for a connection to the industry’s

TFPC. The two coefficients representing industrial TFPC in the own region

and in neighbouring regions, respectively, are not significant.

The partial visualisation of the variables (Figure 4.4) reveals only scattered

patterns. In the centred graph, observations are divided into four groups. The

quadrants are obtained by using the respective sample means of agricultural

and industrial TFPC, respectively. This grouping is arbitrary to some extent

but can provide an idea of how the results are geographically distributed.

Regions with agricultural TFPC higher than average (marked with 5and

0) are predominantly located in Southern Europe and Eastern France. Cor-

responding observations for the meat industry (marked with + and 0) are

more scattered and located e.g. in Germany, Italy and Finland (see appendix

for the map). Low TFPC in livestock production as well as in meat process-

ing (marked with 1) is predominantly found in France. The graph at the

bottom of Figure 4.4 suggests a weak negative relationship between TFPC in
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agriculture and the neighbouring industry (as does Model A). However, this

is result is not significant.

The general result of Model A is stable when we control for four other

regional characteristics,32 as demonstrated in Model B. Firm concentration

refers to the regional density of food processing enterprises (local units per

total area). This variable is a kind of proxy for an industry structure dom-

inated by small firms. It is negatively correlated (-0.41) with the second

variable, employees per food firm. The two remaining agricultural character-

istics, share in crop production and livestock density (measured in livestock

units), relate to total agricultural area.

An LR test suggests to include the spatial lags of firm concentration and

livestock density. The resulting model is Model C. Regions with a higher share

in crop production show lower TFPC rates, which is plausible, since the focus

is on livestock production. The positive effect of agricultural clustering also

shows up in the coefficient of (own) livestock density. In this regard, the neg-

ative result for livestock density of neighbours is ambiguous. Similarly, there

is no clear pattern for the industry-related characteristics. The coefficient for

(own) firm concentration is negative, whereas it is positive for concentration

in neighbouring regions. In Model C, the parameter of industrial TFPC in

the own region, though insignificant, improves.

32The variables result from averages over the period 2000 to 2007 (Eurostat, 2014b).
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Figure 4.4: Intersectoral relationship of TFPC rates at regional level. Agri-
culture versus meat industry of own region (centre), and versus meat industry
of neighbouring regions (bottom).



4.6 Discussion

Livestock production

The efficiency analysis of livestock production suggests that there is much

unused potential within this sector. Large farms are the technological leaders

as demonstrated by the weighted statistics of TE. Cattle production is the

activity with the worst performance. Cattle farms tend to have a lower basic

productivity (as interpreted from the individual effects). In our sample, their

TFP growth is lower and more dispersed. These findings are consistent with

the characteristics of livestock production in Europe. The production of pig

and poultry is predominantly based on indoor housing of animals. This system

facilitates management and is rather associated with intensive production

activities. Conversely, the range of production systems is much broader in the

cattle segment, varying from low-intensity grassland systems to high-intensity

fattening. Furthermore, the feed conversion ratio is worse for cattle. Lower

productivity results in lower competitiveness. In this regard, our results on

the performance of cattle (livestock) production coincide with the EU’s trade

patterns. There is an excess supply of pig and poultry being exported, whereas

the EU is by now a net importer of beef.

The results suggest that unused potentials could be reduced (reduction of

technical inefficiency and improvements in TFP) by producing less cattle and

shifting livestock production to larger farms. However, there can be regions

where alternatives to grazing are limited and where non-market goods (land-

scape conservation) are produced by means of cattle husbandry. Naturally,

beef production is a by-product of the European dairy sector.

Higher basic productivity (farm effect) is positively related to farm size

(e.g. the correlation with log of livestock output is 0.70). Smaller farms are

less productive but there can be various reasons for staying in the sector.

Nevertheless, structural change is likely to be a driver of overall agricultural

TFPC.
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Sectoral results

The average regional TFPC rates don’t differ much between livestock pro-

duction and meat processing. While there is progress in both sectors, the

variation and characteristics of their development differ. The meat industry

is a rather steady branch where larger firms are less dynamic. There is a high

level of TE since there are no such exit barriers as in agriculture. Smaller firms

and processing enterprises profit from TC that is virtually the only source of

productivity growth.

Conversely, all TFPC components contribute to the agricultural develop-

ment. The interpretation of agricultural TC and TEC is ambiguous though.

Negative TC isn’t actually plausible. This result can be caused by restrictions

to farms (e.g. political measures or malfunctioning factor markets). Another

potential reason is an inappropriate deflation of the monetary variables, but

this is unlikely to be the only factor, given the observed magnitude. However,

the stable level of weighted TE scores results in an increase of the TFPC

index (effective TEC).

Supply chain model

Our analysis suggests that productivity spillovers within each of the sectors

are more likely than between the sectors. The negative result with regards to

the intersectoral spillovers can have several causes related to the model, data

or other factors.

The supply chain model uses regional averages over several periods. It

seems plausible that existing spillovers could be reflected in simple regional

measures, i.e. if average TFPC in the meat industry is high, it is also high in

livestock production. This approach disregards the fact that spillovers need

time to pass through the chain (from an unspecified period s to some period

t). Ideally, the model would include a lag of industrial TFPC but this not

applicable to our data.33

The measurement of the regional average TFPC rate has two additional

33Estimation of the supply chain model restricting the agricultural data to the years
2003 to 2008 doesn’t change the interpretation. Data of single years (2003 to 2008) doesn’t
provide additional insights.
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problems. Firstly, the actual situation can be misspecified because there are

too few observations representing a specific region. This issue applies to the

agricultural as well as to the industry data. The second problem relates to the

concept of the region as an aggregate economic unit. Our aggregation scheme

maybe performs badly. As pointed out by Färe and Zelenyuk (2003), there is

no consistent approach for multiple outputs. However, relevant dynamics are

probably not averaged out because this is prevented by using weights.34 The

issue of economic distance is not adequately addressed, though. In Section 4.4,

potential regional determinants are discussed but a region is not necessarily

an economic cluster. For example, the use of detailed trade (material) flows

should represent economic relationships much better.35 These flows (and their

relevance) are neither restricted to the own region nor to neighbouring regions.

In fact, the economic relationships can stretch across countries.
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Figure 4.5: Livestock density versus employees per food firm at the regional
level (left panel). Weighted farm effects versus weighted meat firm effect
(right panel).

Figure 4.5 highlights the mixed results that we find. There are some cases

where a very high regional livestock density accompanies higher agricultural

TFPC (e.g. Belgium, Catalonia, Lombardy). However, we also find a high

density and lower TFPC, as e.g. in Germany. The German industry structure

is characterised by larger food firms (“upper cloud” in the left panel) but

34The applied weights (using output in the same period) seem reasonable. Using weights
with averaged output results in regional measures that are more similar to the simple
(unweighted) means. Therefore, the applied regional measures seem appropriate since
the unweighted means should not be used. Estimation of the supply chain model using
alternative weights does not change its interpretation.

35Even more precise geographic information can be useful. The data on meat firm lo-
cations are exact. Estimation of a fixed effects spatial autoregressive model (as a translog
production function using distance-based weights) reveals spatial dependence among the
meat firms in our sample.
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this attribute doesn’t provide an advantage as indicated by the estimation

results.36

The positive coefficient of (own) livestock density and the coefficient of

(own) industrial TFPC that tends to be positive are eventually indications

for some intersectoral spillovers within single regions. However, this is not

clear from the supply chain model. The right panel of Figure 4.5 provides a

crossplot of the weighted regional farm effects and firm effects, respectively.

A kind of aggregated basic productivity could possibly indicate intersectoral

clusters by means of a positive relationship between farm effects and firm

effects. The highest effects in both sectors are found for regions in Northern

Italy as well as for La Rioja in Spain. As the overall pattern remains rather

vague, this perspective can also not provide much evidence for intersectoral

spillovers.

Besides the shortcomings of the supply chain model discussed above, the

underlying dynamics of spillover effects are probably too subtle for the aggre-

gate analysis. There are two related aspects. Firstly, the farms in the sample

might be “too diversified”, i.e. spillovers are maybe only relevant for the very

specialised livestock producers. Secondly, we have shown that slaughtering

firms tend to be less dynamic (see Section 3). However, these firms are the

link between agriculture and meat processing. The processors are more in-

novative but their productivity growth doesn’t necessarily spill over to the

farms. Furthermore, it is still possible that existing productivity spillovers at

the firm-level don’t translate to the regional level.
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Appendix

Table 4.7: Estimates of agricultural distance function.

Coefficient t-value
crop output 0.530 81.2
capital -0.064 -6.23
labour -0.043 -2.87
land -0.249 -17.6
livestock -0.030 -2.47
livestock cost -0.339 -38.9
crop cost -0.114 -13.9
direct cost -0.048 -4.61
trend -0.008 -5.73
0.5×crop output2 -0.125 -62.7
0.5×capital2 0.013 3.45
0.5×labour2 0.046 2.37
0.5×land2 -0.027 -3.36
0.5×livestock2 -0.003 -0.395
0.5×livestock cost2 0.066 25.4
0.5×crop cost2 0.021 5.65
0.5×direct cost2 0.022 3.86
0.5×trend2 -0.007 -27.2
crop output×capital -0.007 -2.06
crop output×labour 0.003 0.473
crop output×land 0.043 13.8
crop output×livestock -0.021 -5.15
crop output×livestock cost -0.008 -3.28
crop output×crop cost 0.010 3.51
crop output×direct cost -0.006 -1.62
crop output×trend 0.004 6.78
capital×labour -0.035 -3.78
capital×land 0.010 1.99
capital×livestock -0.008 -1.4
capital×livestock cost 0.001 0.302
capital×crop cost 0.000 0.087
capital×direct cost -0.001 -0.142
capital×trend 0.002 1.78
labour×land 0.018 1.88
labour×livestock -0.010 -0.999
labour×livestock cost 0.001 0.176
labour×crop cost -0.025 -3.34
labour×direct cost 0.020 2.09
labour×trend 0.012 7.61
land×livestock 0.009 1.41
land×livestock cost 0.009 2.25
land×crop cost -0.001 -0.219
land×direct cost -0.007 -1.5
land×trend -0.008 -9.36
livestock×livestock cost -0.022 -6.04
livestock×crop cost 0.003 0.568
livestock×direct cost -0.004 -0.717
livestock×trend 0.001 0.761
livestock cost×crop cost -0.012 -3.61
livestock cost×direct cost -0.024 -6.99
livestock cost×trend 0.001 1.72
crop cost×direct cost 0.009 2.03
crop cost×trend -0.001 -1.3
direct cost×trend -0.005 -4.47
ln σ2

v -3.746 -101
ln σ2

u -2.606 -69.3

Note: N = 3674, avg. T = 6.4. Inputs are given in loga-
rithms. Crop output is a normalised variable, y2y1 , where y1

is livestock output and y2 is crop output.



Table 4.8: Estimates of production frontier for meat industry.

Coefficient t-value
labour 0.184 23
material 0.756 99.8
capital 0.028 6.29
trend 0.011 19.2
0.5×labour2 0.073 7.88
0.5×material2 0.117 11.7
0.5×capital2 0.014 3.27
0.5×trend2 0.001 2.17
labour×material -0.061 -7.4
labour×captial 0.001 0.23
labour×trend 0.005 5.27
material×captial -0.033 -6.71
material×trend -0.008 -10.6
capital×trend 0.002 2.55
ln σ2

v -6.852 -73.2
ln σ2

u -5.601 -63.9

Note: N = 473, avg. T = 6.5. Inputs are given
in logarithms.

Table 4.9: Descriptive statistics of technical efficiency scores (meat industry).

Mean Std.dev Min. Max.

0.95 0.02 0.71 0.99

Note: observations = 3076.
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Table 4.10: Productivity decomposition for agriculture.

weighted mean geometric mean

Year TECi TCi SCi TFPCi TECi TCi SCi TFPCi

1995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1996 0.973 1.052 1.007 1.032 0.959 1.052 1.004 1.015

1997 0.973 1.099 1.012 1.084 0.961 1.098 1.008 1.066

1998 0.958 1.140 1.020 1.115 0.963 1.139 1.011 1.111

1999 0.976 1.174 1.026 1.176 0.977 1.172 1.015 1.164

2000 0.988 1.199 1.030 1.220 0.975 1.198 1.015 1.187

2001 0.998 1.216 1.035 1.256 0.920 1.215 1.017 1.139

2002 0.988 1.224 1.038 1.255 0.934 1.222 1.017 1.164

2003 1.032 1.222 1.044 1.317 0.959 1.218 1.022 1.196

2004 1.067 1.213 1.046 1.354 0.988 1.208 1.023 1.223

2005 1.106 1.196 1.054 1.395 1.013 1.190 1.024 1.237

2006 1.145 1.172 1.058 1.421 1.021 1.164 1.025 1.221

2007 1.087 1.141 1.059 1.313 0.926 1.130 1.025 1.072

2008 1.119 1.102 1.060 1.308 0.930 1.089 1.023 1.036

Note: the weighted indices are derived by first weighting the TFPC rates according to

years, and then, constructing a chained index for the full sample.

Table 4.11: Productivity decomposition for meat industry.

weighted mean geometric mean

Year TECi TCi SCi TFPCi TECi TCi SCi TFPCi

2002 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2003 1.003 1.007 0.999 1.009 1.004 1.008 0.999 1.011

2004 1.002 1.014 0.998 1.014 1.002 1.017 0.996 1.015

2005 1.004 1.023 0.997 1.023 1.002 1.028 0.996 1.025

2006 1.012 1.032 0.997 1.040 1.010 1.039 0.995 1.043

2007 1.014 1.043 0.997 1.053 1.011 1.052 0.994 1.055

2008 1.004 1.055 0.996 1.053 0.999 1.065 0.993 1.054

2009 1.003 1.067 0.996 1.064 1.000 1.080 0.994 1.070

Note: the weighted indices are derived by first weighting the TFPC rates according to

years, and then, constructing a chained index for the full sample.

57



Note: Sweden is divided into three FADN regions, i.e. within the four geographical regions
two have an idential code of identification.

Figure 4.6: Map of Sweden and Finland.

58



5 Global TFP change in agriculture: consis-

tent frontier estimation with country effects

and time-varying inefficiency

Jonathan Holtkamp, Bernhard Brümmer

5.1 Introduction

Agriculture is an important sector of many countries in the world. It is

supposed to meet a variety of challenges, i.e. provide solutions to food security,

poverty reduction, provision of natural resources or environmental protection.

The conflict of goals is unavoidable. However, productivity growth is one key

aspect of addressing these issues as it either increases output or renders input

savings possible.

The analysis of productivity growth at a global scale is restricted by data

availability. Furthermore, the commonly used data of the Food and Agricul-

ture Organization (FAO) are highly aggregated. There is no unambiguous

approach to model production technology and investigate change in total fac-

tor productivity (TFP) and its sources.

This paper aims at conclusions from the available data and the determi-

nation of important TFP change (TFPC) sources. These issues have often

been addressed in the literature. Table 5.1 depicts a small selection of studies

that analyse agricultural productivity using aggregated country-level data.

Table 5.1: Selection of productivity studies.

Authors Year Countries Period Data

Coelli and Rao (2005) 2005 93 1980-2000 FAO

Ludena et al. (2007) 2007 116 1961-2001 FAO

O’Donnell et al. (2008) 2008 97 1986-1990 FAO

Headey et al. (2010) 2010 88 1970-2001 FAO

Fuglie (2012) 2012 172 1961-2010 FAO

Mundlak et al. (2012) 2012 30 1972-2000 World Bank

Butzer et al. (2012) 2012 30 1970-2000 World Bank

Eberhardt and Teal (2013) 2013 128 1961-2002 FAO
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However, the topic is of persistent relevance and not all studies consider

the panel nature of the data or potential technical inefficiency. The paper

provides an update of TFPC sources using a specific data set which includes

many countries. We apply a novel specification of a panel Stochastic Frontier

(SF) model that allows for time-varying inefficiency as well as for the isolation

of individual country effects. The results that we present are weighted, in

order to account for the countries’ relevance in world agricultural production.

Furthermore, we aim at the evaluation of agricultural R&D efforts in the

context of TFP growth.

5.2 Estimation of the production frontier

The SF model (Aigner et al., 1977) is often used to model agricultural pro-

duction. The notion of an existing best practice technology is the underlying

rationale of this framework. Inefficient producers are those not operating on

the best practice frontier. Predictions of technical efficiency (TE) allow to

draw conclusions about potential improvements.

The standard (“pooled”) SF model disregards the structure of panel data,

i.e. the model interprets the data as a cross-section. Various extensions have

been proposed to utilise the gain of information associated with panel data.

However, the specification of time-varying inefficiency is challenging. Early

models provided only very restrictive patterns of efficiency change or assumed

persistent inefficiency. From an economic perspective, a constant level of

inefficiency is unlikely to prevail over a longer period. Producers would either

improve through learning or drop out of the market. Given a production

function with one output and multiple inputs, the SF model in fixed effects

panel notation can be written as:

yit = αi + β′xit + vit − uit (5.1)

Greene (2005) labelled this model as the “true” fixed effects SF model. The

notation implies observations on N individuals (i=1,2,...,N ) over T periods

(t=1,2,...,T ). A set of inputs x is transformed into output denoted by y. In-
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puts and output are usually provided in the form of the natural logarithm.

The functional relationship is described by the vector of technology parame-

ters β. Panel data allows for the isolation of individual (fixed) effects captured

in the N -dimensional vector α. The feature of the SF model is the composed

error term, commonly written as ε = v − u. For each observation, the com-

ponent vit is associated with white noise and assumed to be distributed as

vit ∼ N(0, σ2
v). Inefficiency is represented by uit that is a non-negative (one-

sided) error component. In case of the here applied normal half-normal SF

model, it is assumed to be distributed as uit ∼ N+(0, σ2
u). The model in

equation (5.1) is typically estimated by using the N dummy variables. This

approach implies one additional parameter to be estimated per additional in-

dividual, and hence it results in biased error variances (incidental parameters

problem).

A methodological extension is provided by Chen et al. (2014). They apply

within-transformation to equation (5.1). This firm-specific procedure is a well-

known strategy to eliminate the fixed effects.37 Then, the model is rewritten

in deviations from means:

ỹit = β′x̃it + ṽit − ũit (5.2)

While the transformation is straightforward, two other issues are more in-

volved. Firstly, the correction of the error variance. Secondly, estimation of

σ2
u from the transformed error term. The solution is based on the Closed Skew

Normal (CSN) distribution. The CSN distribution is a generalisation of the

(skew) normal distribution and it is thus applicable to the SF model, whose

composed error term has a skew normal distribution. In CSN-notation the

composed error is distributed as:

εit ∼ CSN1,1(0, σ2,−λ
σ
, 0, 1) (5.3)

The density of a CSNp,q-distribution includes a p-dimensional pdf and a q-

37The firm-specific mean of each variable is subtracted from the observation in period t
in order to obtain transformed values (e.g. for arbitrary z ): z̃it = zit − z̄i .
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dimensional cdf of a normal distribution. The basic SF specification considers

only the first two parameters of the distribution: the mean (parameter) and

the scale (parameter). Here, three additional parameters are explicitly re-

quired to formulate the likelihood function: those referring to the skewness

as well as to the mean vector and to covariance matrix in the cdf. With

panel data, there are T observations on each individual resulting in the vec-

tor εi = (εi1, ..., εiT ) ′. This vector is distributed as:

εi ∼ CSNT,T (0T , σ
2IT ,−

λ

σ
IT , 0T , IT ) (5.4)

where I is the identity matrix. The properties of CSN-distributed random

variables allow for partitioning εi into its mean ε̄i and into the vector of its

first T-1 deviations ε̃∗i = (ε̃i1, ..., ε̃i,T−1) ′. This T-1 vector is used to derive the

(“within”) likelihood function and ensures an implicit correction of the error

variance.38 Furthermore, the likelihood function is parameterised in terms of

β, σ2 = σ2
v + σ2

u and λ = σu/σv . This conventional parameterisation is free

of incidental parameters and allows for time-varying inefficiency.

Once the stochastic frontier is estimated, assessment of TE requires to

recover the composed error:

εit = yit − ŷit = yit − β̂′xit − α̂i (5.5)

Here, the way used to calculate α̂i is labelled as the mean-adjusted estimate

by Chen et al. (2014):

α̂Mi = ȳi − β̂′x̄i +

√
2

π
σ̂u (5.6)

Predictions of TE are obtained, according to Battese and Coelli (1988), as:

TEit = E(exp(−uit)|εit).
38The distribution of the T-1 vector is more involved, see Chen et al. (2014) for the de-

tails. With regards to the degrees of freedom, the correction accounts for the N individuals:
df = NT −N −K = N(T − 1)−K .
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5.3 Data and specification

Data and variable description

The agricultural production data are provided by the FAO. The data set used

here is prepared by Fuglie (2012) and available from the USDA (2014). It

covers 172 countries over the period 1961 to 2010, resulting in a balanced panel

with 8600 observations. However, data for the former USSR are missing from

1961 to 1964 (60 observations). The countries are sorted into nine regions

where the categorisation follows criteria of the FAO. Singapore is dropped

from the sample due to extreme values (50 observations). The composition

of the resulting data set is sketched in Table 5.2.

Table 5.2: Regions and corresponding observations; average land use.

Region Countries Observations Million hectares

South Africa 1 50 16

Sub-Saharan Africa 47 2350 140

Latin America 29 1450 159

North America 2 100 282

Asia 23 1150 744

Europe 26 1300 165

West Asia & North Africa 19 950 102

Oceania 9 450 90

Former USSR 15 690 276

Sum 171 8490 1975

The regional group sizes are very different, in particular, with respect

to the land area. North America is the most extreme region with only two

countries in this group, but it comprises a high share of the land area. This

example demonstrates that there are unfavourable imbalances between obser-

vations with respect to aggregation. The regions Asia, North America and

former USSR account for two third of the agricultural area. On average, the

sum of the agricultural area is 1975 million hectares. Given a global land area

of roughly 15000 million hectares, the share of the agricultural area is roughly

13 percent. This share has increased over the observation period. In 1961 the

agricultural area sums up to 1700 million hectares (11 percent) whereas the

sum is 2200 million hectares (15 percent) in 2010.
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The data set includes seven variables that allow to model production tech-

nology with a single output and multiple inputs. The input variable feed is

not available for all observations and was not included in the analysis of Fuglie

(2012). It is also neglected in most of the other studies using corresponding

data. Units of measurement and a short description of the variables are listed

in Table 5.3. Output is measured in monetary terms (constant prices) whereas

all other variables are measured in physical quantities. The variables are not

(all) original FAO numbers but are partially adjusted.

Table 5.3: Available variables and respective descriptions.

Variable Unit Description

Output 1000 $ including 189 commodities; measured in in-

ternational 2005 $

Land 1000 ha quality-adjusted rainfed cropland equivalents

Labour 1000 workers active adults in agriculture; estimates for

1961-1979

Livestock 1000 LSU measured in cattle equivalents (livestock

units)

Machinery no. of tractors stock of farm machinery; measured in 40-CV

tractor equivalents

Fertiliser 1000 kg measured in N-fertiliser equivalents

Feed 1000 Mcal animal feed from crop and crop processing

residues

Adjustments apply to land (management / production type), animal species,

machinery (size / power) and fertiliser (cost share of nutrients). These values

are supposed to be superior to the uncorrected aggregates. For more details,

see the article by Fuglie (2012) as well as the description within his data file.

Farm machinery are supposed to serve as a proxy for the capital input.

In the current data set, a refined version of the original variable is used.

However, it is the most contested variable of the FAO data in the literature

(for example, see Butzer et al. (2012) who declare this variable to be biased

and set up an own data set with different kinds of capital stock, but for only

30 countries).

Variable description in terms of absolute values is impractical due to the

country level aggregation. Figure 5.1 shows ratios of the form input quantity
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used to produce one unit of output (1000 dollars). A higher ratio indicates low

performance because more input is required (partial perspective). Further-

more, a high (low) ratio points out high (low) factor intensity in production.

The reciprocal of the ratio is a measure of average input productivity. Hence,

there are improvements in productivity if the ratio decreases over time. Since

the numbers presented in Figure 5.1 are averaged over regions, they can hide

opposing trends within a region.

Land and livestock productivity increase over the observation period. This

development is strong for the input land. At the beginning of the period

there is a bigger spread between regions than at the end, i.e. there has been

some convergence with respect to land productivity. For most of the other

variables the developments are mixed. The ratio of feed to output increases

virtually in all regions. This development highlights intensification in livestock

production which corresponds to increasing meat consumption at the global

level. Europe has the highest ratio in 2010 and is a large livestock producer

as well as net exporter in pork and poultry. The highest ratios of labour

to output are found for Asia and Sub-Saharan Africa. Asia has experienced

the highest increase in labour productivity. Sub-Saharan Africa shows the

lowest dynamics in all variables. This region is an illustrative example for

the different factor intensities. It is characterised by a high usage of labour

and livestock compared to the usage of fertiliser, machinery and feed. The

dissolution of the former USSR is quite obvious from the drop in fertiliser to

output around 1990. This region shows a spike in the land to output ratio

in the in the 1990s (also for machinery). A similar observation is described

by Swinnen et al. (2012) who find a U-shape pattern in productivity change

for this region. Europe and North America show opponent trends in the

machinery ratio. This pattern seems surprising as one would expect different

levels but similar trends. The developments of variables suggest gains in

productivity (land) as well as increasing intensification (feed). Differences

between regions are visible from the levels of the ratios.
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Specification

We estimate two production frontiers including an aggregate output and K

inputs. A time trend enters as an additional input. The preferred functional

form is the translog specification:39

ln yit = αi +
K∑
j=1

βj ln xjit +
1

2

K∑
j=1

K∑
l=1

βjl ln xjit ln xlit

+βt t+
1

2
βtt t

2 +
K∑
j=1

βtj ln xjit t+ vit − uit

(5.7)

The inputs are labour (x1), land (x2), machinery (x3), fertiliser (x4) and

livestock (x5). The inclusion of the input variable feed (x6) into the second

production frontier results in a loss of observations.40

39The Cobb-Douglas specification is rejected with test statistics χ∗ = 3074 >
χ2

(21;α=0.01) = 39 and χ∗ = 3409 > χ2
(28;α=0.01) = 48. The random effects speci-

fication is rejected with (Hausman) test statistics χ∗ = 355 > χ2
27;α=0.01 = 47 and

χ∗ = 207 > χ2
35α=0.01 = 57.

40Affected countries are: Congo, Equatorial Guinea, Somalia, Réunion, Puerto Rico,
French Guiana, Taiwan, Afghanistan, Bhutan, Bahrain, Iraq, Oman, Qatar, Papua New
Guinea. Furthermore, observations of the former USSR start from 1992, those of Djibouti
from 1979.
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5.4 Agricultural R&D and productivity

There is public investment in agricultural R&D because politics aim to ad-

dress challenges that are associated with agriculture. These investments are

supposed to generate new technological possibilities that in turn should result

in productivity gains. Other public efforts, such as education and agricultural

extension, rather aim at the full utilisation of the production potentials. There

are also private activities in agricultural R&D that are accordingly motivated

by private interests.

The activities in R&D will be most profitable if they are goal-oriented.

However, it is not trivial to trace back empirically how budget efforts translate

into higher rates of TFPC. Difficulties relate to the mechanism itself as well as

to its pattern over time. Furthermore, investments and outcomes in different

sectors (such as public and private) can interact.

There seems to be scientific consensus about the profitability of agricul-

tural R&D, as a meta-study by Alston et al. (2000) suggests. Mullen (2007)

claims that under certain assumptions positive marginal returns to the invest-

ments are possible. However, the mechanics are involved, as e.g. demonstrated

by Thirtle et al. (2008), for the case of the United Kingdom.

As we analyse agricultural TFPC and some of its components, our study

can possibly contribute to the empirical evidence. The comparison of our re-

sults with data on agricultural R&D could provide some insights into the re-

lationship of investment and TC (”new possibilities“) as well as TEC (“learn-

ing”), in the context of this specific data set. The scope of this analysis is

restricted to the potential productivity gains due to R&D and the identifica-

tion of the relevant TFPC components. The assessment of the profitability is

much more involved as it requires monetary evaluations and the estimation

of supply responses (Alston, 2010).

Data on agricultural R&D is scarce. As our analysis comprises many

countries we use three different data sources. The first data set was compiled

by Alston et al. (1999, p.61). It covers 22 OECD countries41 and provides

information on related public and private expenditure (measured in constant

41Organisation for Economic Co-operation and Development.
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Figure 5.2: Indices of public and private R&D expenditure in 22 OECD coun-
tries (1981=1.00; own construction using data by Alston et al. (1999)).

international dollars). The years covered are 1971 to 1993 (public) and 1981

to 1993 (private). Figure 5.2 depicts the corresponding indices. The annual

increase in public expenditure is 2.6 percent on average. The share-weighted

index suggests that countries with higher expenditure shares spent even more

on agricultural R&D (the weighted average rate is 0.03). Private expenditure

increases faster (the weighted average rate is 0.055), but in this case, the effort

is stronger in case of some smaller countries because the unweighted average

rate is about 7.8 percent.

The second data set is directly provided by the OECD (2014). It covers

the years 1981 to 2010 and comprises 33 countries of our data set (including

some non-OECD members). Although there is a differentiation of expenditure

according to sector (e.g. government, higher education), the series are very

fragmented.

Unfortunately, the same pattern applies to the third data source provided

by the Agricultural Science and Technology Indicators initiative (ASTI, 2014)

for the same period. There is a similar categorisation of spendings for 62

developing and transition countries that are included in our data. However,

the actual coverage over the years is much lower than the suggested 30 years.
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5.5 Results

Coefficients and TE scores

Table 5.4 presents the estimated point elasticities of the two models, without

and with the input variable feed. The estimates have the expected signs and

are significant. In the first model, the variables with the largest coefficients

are livestock, land and labour. The magnitude is lower for fertiliser that is a

more flexible input, whereas the others are rather stocks. Machinery shows

the lowest coefficient suggesting that the labour to capital ratio is high, i.e. if

machinery is interpreted as a proxy for capital, production tends to be rather

labour-intensive.

Table 5.4: Point estimates of production frontiers.

without feed with feed

Coeff. t-value Coeff. t-value

labour 0.196 17.5 0.198 16.3

land 0.372 19.5 0.321 16.8

machinery 0.062 11 0.035 6

fertiliser 0.129 26.7 0.109 20.5

livestock 0.399 32.9 0.265 19.3

feed 0.157 18.3

trend 0.011 8.4 0.009 26.4

RTS 1.158 1.085

mean TE 0.882 0.894

std.dev TE 0.057 0.051

countries 171 157

obs. 8490 7362

Note: inputs are given in logarithms. The complete

estimation outputs are documented in the appendix.

Consideration of feed as in the second model results in a decrease of vir-

tually all coefficients. The change is strong for livestock and land but the

relative change is especially strong for machinery. The findings for livestock

and feed seem intuitive as these variables are closely related. The coefficient

of feed shows a distinct magnitude. However, the scale elasticity still indicates

increasing returns to scale (IRS), but the value is less extreme than in the

first model.
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Another important aspect is related to the time trend. Its coefficient

suggests technical progress in both models. It drops, though, in the second

model where feed is included. This is a plausible finding since disregard of

inputs (input growth) can results in an overestimation of technical progress

(and TFPC, respectively). As the second model appears to be more reliable,

we base our analysis on this model.

Results point out the existence of inefficiencies. Predicted TE is 0.89 on

average with a standard deviation of 0.05. The density plots in Figure 5.3

highlight the relevance of considering the panel structure of the data. Disre-

gard of this structure (as immanent to the standard pooled SF model (dashed

lines)) results in an overestimation of inefficiency. This consequence applies

to the mean TE scores but, more importantly, also to their variances. Accord-

ingly, much of the variation that we can attribute to individual country-effects,

is soaked up into TE scores when treating the data as a cross-section.
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Figure 5.3: Densities of TE scores (left panel) and respective sample means
over the observation period (right panel).

Average TE scores and their development over time are depicted in the

right panel of Figure 5.3. The geometric means indicate that TE is chang-

ing within some countries. However, the overall average is rather stable when

weighting scores by output (for remarks on weighting, see description of equa-

tion 5.9). This is a plausible finding since country-level data does not change

quickly. The countries that dominate the overall technology at the world fron-

tier and the respective TE index, preserve the efficiency level. An exception

is the development from 1961 to the beginning of the 1970s that can eventu-
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ally provide an indication for some inconsistencies in the data. For example,

Coelli and Rao (2005) omitted this period because of missing data on labour;

Headey et al. (2010, p.4) do not trust in the variables and decide to use only

data “since 1970, to include only observations with the least error”.

The much bigger divergence of weighted and unweighted averages under

the pooled SF model is also a consequence of neglecting unobserved hetero-

geneity.

TFP change and components

The decomposition of TFP change follows Kumbhakar and Lovell (2000) and

allows to draw conclusions about the nature of productivity growth. The

three different sources are change in TE (TEC), technical change (TC) and a

scale component (SC). The rate of TFP change (TFPC) is calculated as:

TFPCit = [−(uit − uit−1)] +
∂ ln ŷit
∂ t

+

[
(RTSit − 1)×

∑
j

(
εjit

RTSit

)
(ln xjit − ln xjit−1)

]
(5.8)

The first term one the right hand side is TEC. The second term is TC that is

the partial derivative of the estimated production frontier with respect to the

time trend. The last term is the scale component that is supposed to provide

a positive average contribution due to the estimated IRS.42

The respective rates are used to calculate indices for each country. As

pointed out by Färe and Zelenyuk (2003) as well as Zelenyuk (2006) (geo-

metric) means can be inappropriate when presenting economic measures of

groups. In our case, the economic units are countries and the groups are

geographical regions. We account for the countries’ relevance in overall agri-

cultural production via their output shares. The index of region r in year t

is obtained as:

Indexrt =
∑
i

Indexrit ×
yrit∑
i y

r
it

(5.9)

where Index corresponds to either the TEC, TC, SC or TFPC index. The

42Individual results are averaged over years t and t-1 to obtain the TC rate of year t.
Individual output elasticities and RTS are also averaged over two subsequent years.
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group measure is a weighted average of the individual indices. The respective

weights are given by the share of country i ’s production in total regional

production in year t.

Results of the TFPC decomposition are presented in Table 5.5. There is

a distinct progress in TFP over the observation period. The TFPC index

shows a value of 1.79 in 2010 corresponding to an average growth rate of

1.2 percent. TEC does not contribute to TFPC as discussed on the basis

of weighted TE scores. The main driver of productivity growth is TC, but

scale-related contributions are also relevant. However, the three sources of

TFPC are of different relevance among regions as highlighted by the group

measures.

Table 5.5: Weighted indices of TFP change and its sources in 2010 (1961 =
1.00).

TECi TCi SCi TFPCi avg. TFPC

World 1.00 1.69 1.07 1.79 1.2%

South Africa 1.12 1.54 1.01 1.67 1.0%
Sub-Saharan Afria 0.98 1.24 1.11 1.30 0.5%
Latin America 1.00 1.52 1.07 1.59 1.0%
North America 0.93 2.11 1.00 1.93 1.4%
Asia 1.02 1.71 1.11 1.94 1.4%
Europe 0.97 1.70 0.99 1.61 1.0%
West Asia & North Africa 1.13 1.50 1.07 1.74 1.1%
Oceania 0.94 1.57 1.00 1.45 0.8%
USSR (1992=1.00) 0.99 1.32 0.98 1.26 1.3%

Notably, the growth paths of South Africa as well as West Asia & North

Africa are characterised by positive TEC. This contribution can be interpreted

as a catch-up of these countries’ (unobserved) group frontiers towards the

world frontier, i.e. there has been TC within these regions, increasing their

production possibilities. Conversely, negative TEC is found for Oceania and

North America, which is an unexpected result. North America is the region

with the highest TC index. Accordingly, the finding suggests that North

America cannot keep up with its own technological progress. While there is a

comparable pattern of TC among most of the groups, Sub-Saharan Africa is

lagging behind. This region thus shows the lowest progress. However, it can

profit from rather high scale-related changes, as can Asia, Latin America and
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West Asia & North Africa.

The highest indices of TFPC are found for North America and Asia. Since

these regions are important in terms of land area and correspondingly in out-

put, their growth pushes the weighed index of the world frontier. The results

from the geometric means are quite different (see appendix), highlighting di-

vergent developments in individual countries. The unweighted average TFPC

for the world frontier is only 0.5 percent.

The discussion on agricultural productivity and its growth often addresses

the magnitude and the historical pattern of its rate. The concern is about the

future path of productivity growth and the ability of the agricultural sector to

meet various challenges. A potential slowdown was rejected by Fuglie (2008)

as well as by Fuglie (2012), using this data but a growth accounting approach.

Our results confirm this notion as demonstrated by Table 5.6.

Table 5.6: Average rates of TFP change according to decades (in %).

60s 70s 80s 90s 00s

World 0.5 0.8 1.2 1.7 1.7

South Africa 0.4 1.2 1.1 0.9 1.9
Sub-Saharan Africa 0.2 -0.1 0.6 1.3 0.7
Latin America 0.2 0.2 1.1 1.4 1.7
North America 0.8 1.3 1.3 1.7 1.7
Asia 0.5 0.7 1.6 2.0 1.9
Europe 0.6 0.9 1.0 1.2 1.1
West Asia & North Africa 0.6 0.6 1.2 1.7 1.6
Oceania 0.4 1.0 0.5 1.4 0.5
USSR 0.8 1.6

All average growth rates are positive (with only one exception). North

America shows a very stable development, whereas Asia speeded up since the

1970s. The growth path of Latin America is also characterised by a sustained

increase in the TFPC rate. The finding of an increasing rate seems to be

a general tendency. The accumulation of knowledge stocks that generate

returns (like compounded interest), is a possible reason for this observation.

TFP change and R&D

Accordingly, R&D expenditure should have an effect on TFPC. We use the

data on 22 OECD countries that provide a complete series of agricultural
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R&D effort, and compare it with the derived TFPC results. Since the data

set is not large, we apply a very basic approach using three models with three

different lags (5, 10 and 15 years) to account for the (unknown) time that is

required for the diffusion of research outcomes. The R&D data is compared

to rates of TFPC, TC and TEC, using three models for each measure (Table

5.7).

Table 5.7: Regression of TFPC rates on lagged R&D expenditure for 22
OECD countries.

public expenditure

TFPC TC TEC
Coeff. t-value Coeff. t-value Coeff. t-value

constant -0.04 -0.09 0.21 5.98 -0.28 -0.66
lnR&Dt−5 0.20 2.36 0.17 22.96 0.04 0.47
adj.R2 0.01 0.51 0.00

constant 0.26 0.60 0.36 10.19 -0.11 -0.24
lnR&Dt−10 0.15 1.69 0.17 22.84 -0.01 -0.13
adj.R2 0.00 0.51 0.00

constant 0.34 0.81 0.51 14.30 -0.17 -0.40
lnR&Dt−15 0.15 1.77 0.17 22.46 0.00 -0.04
adj.R2 0.00 0.50 0.00

private expenditure

TFPC TC TEC
Coeff. t-value Coeff. t-value Coeff. t-value

constant 0.30 0.77 0.70 24.19 -0.43 -1.10
lnR&Dt−5 0.15 1.80 0.11 16.99 0.05 0.64
adj.R2 0.01 0.50 0.00

constant 0.64 1.72 0.84 28.32 -0.23 -0.60
lnR&Dt−10 0.08 0.97 0.11 16.30 -0.02 -0.18
adj.R2 0.00 0.48 0.00

constant 0.72 1.88 1.00 33.76 -0.31 -0.79
lnR&Dt−15 0.11 1.36 0.10 15.81 0.03 0.33
adj.R2 0.00 0.47 0.00

Note: public exp., 1971-1993, n=506. Private exp., 1981-1993, n=286.

We find no evidence for a relationship between R&D expenditure and

TEC. However, public as well as private spendings are positively related to TC

and TFPC. Technical progress drives the level of TFP with an increasing rate,

as was shown above and is also apparent from the estimated intercepts. While

this is a continuous process, TFPC rates in single years are rather affected

by TEC that is more volatile, but tends to be zero on average. Therefore,

the results for TFPC are less significant than for TC. R&D expenditure is

certainly an important factor for TC in OECD countries. Higher rates of TC

are associated with higher budget efforts. This relationship seems to be stable
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as suggested by the different lags.
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Figure 5.4: Average rates of TFPC and spendings on R&D in the government
sector (left panel) as well as in the sector of higher education (right panel), for
several OECD and transition countries (in %, 1981-2010; own construction
using data by OECD (2014)).

The time series of the other two data sets are fragmented, and for some

countries, there are only a few numbers available. Therefore, we calculate

average changes where possible, and compare these with the average TFPC

rates over the period 1981 to 2010. Most data are available for the sectors

government and higher education. There is no apparent pattern as indicated

by the data; even countries with no change in the budget show substantial

rates of TFPC. There are no other findings in case of TC or TEC.
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Figure 5.5: Average rates of TFPC and spendings on R&D in the government
sector (left panel) as well as in the sector of higher education (right panel), for
a set of developing and transition countries (in %, 1981-2010; own construction
using data by ASTI (2014)).

5.6 Discussion

This study uses data on global agricultural production that are regularly anal-

ysed (at least partially). Many challenges that are associated with agriculture
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are characterised by their international relevance (e.g. food security, climate

change). Hence, modelling of the world frontier is basically meaningful. We

use a specific data set that includes many countries as well as adjusted vari-

ables that are different from the original FAO numbers (Fuglie, 2012). The

estimated production frontier uses feed as an input variable that has been

neglected by other studies.

We find the consideration of feed to be important as it results in a de-

creasing rate of estimated TC (from 0.7 percent to 0.5 percent, on average),

and hence in a lower rate of TFPC. This is consistent with the concept of

TFP that considers all inputs in the production process. In fact, the data

are unlikely to be complete, but this finding stresses the potential relevance

of omitted variables.

The consideration of TE is straightforward in the context of the global

agricultural frontier because it allows for the assessment of unused potentials.

However, our results highlight that the standard SF model is an inappropriate

instrument for this purpose. The individual effects can apparently absorb a

lot of the unobserved country characteristics.

The reliability of the data is still problematic. Variables are partially esti-

mated, as e.g. labour. The documentation of country-level data can possibly

omit important variables, or even overestimate other inputs when recorded

several times at different stages in the production process. The precision of

variables such as labour or capital is not clear. There is certainly no correc-

tion for quality differences in the data when using the number of workers in

agriculture. Similarly, the machinery variable is most likely only an incom-

plete proxy for the capital input. Production can also be misspecified because

the aggregation of outputs is inappropriate. This relates to the correspond-

ing indices or the number of outputs considered. Important dynamics, e.g.

productivity gains in single outputs, can be averaged out. Furthermore, the

correct differentiation between outputs and inputs (e.g. livestock and feed) is

not assured.

With regards to the estimated technology parameters, the ratio of labour

to machinery (capital) is the most striking result. The coefficients apparently
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show an imbalance of these variables. Labour is probably overestimated since

the statistics assign too many people to be active in agriculture. Conversely,

the use of capital is likely to be underestimated. The frontier thus tends to

represent a labour-intensive production technology. This structure might not

fit the reality of many regions and is a possible explanation for the negative

TEC of North America, Oceania and Europe. Since North America is the

technological leader at the world frontier, it is rather implausible that the

country does not keep up with its own development.

The stable level of (weighted) TE at the world frontier implies that there

is a persistent level of inefficiency. Potential determinants at the country-level

are malfunctioning factor markets (also property rights, e.g. land rights) or

the structure of production, including education and subsistence agriculture.

However, these determinants can change, what is reflected in the TEC index

of certain regions. Structural change can also be inferred from increasing SC

indices. A main source of the overall persistent inefficiency is most likely

the weather. The model’s noise component cannot fully account for weather

effects. Other factors relate to environmental conditions including effects such

as land degradation (e.g. soil erosion, desertification).

We find increasing rates of productivity which is in line with literature

findings (e.g. Fuglie (2008), Fuglie (2012)). Although the real magnitude of

these rates is unknown, the relative distribution is likely to be robust. The

investigation of agricultural R&D expenditure in the context of agricultural

productivity requires more data. Related aspects are data quality as well

as comparability for international frameworks. How innovations diffuse into

the production process is subject to ongoing research. In their meta-study,

Alston et al. (2000) report lag lengths of more than 30 years and various

specifications for the lag structures.

In case of OECD countries, we find some evidence for a positive relation-

ship between R&D effort and TFP growth. However, these comparisons can-

not reveal potential spillovers between institutions (e.g. public and private

activities) or countries. Agricultural production in one country can profit

from research efforts in another country. We find that R&D expenditure is
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stronger related to TC. This is a plausible result because research is supposed

to provide the basis for new production possibilities. By contrast, TEC is

less related and can rather be associated with agricultural extension or simi-

lar activities. The corresponding resources are probably documented in other

budget plannings than the statistics on R&D. The use of average rates as for

the two data sets of OECD (2014) and ASTI (2014) is too simplistic.

Future research will require improved data on agricultural R&D. Re-

stricted access to technology is probably an relevant aspect. The panel SF

model provides a more reliable assessment of TE. To some extent, the model

can possibly account for restricted access to the overall technology via the

effects (similar to meta-technology-ratios). However, future research should

also address the time series properties of the data, as pointed out by Eber-

hardt and Teal (2013).
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Appendix

Table 5.8: List of countries.

Africa, developed

South Africa

Africa, Sub-Saharan

Central: Cameroon, Central African Republic, Congo, Congo DR, Equatorial

Guinea, Gabon, Sao Tome and Principe; Eastern: Burundi, Kenya, Rwanda, Sey-

chelles, Tanzania, Uganda; Horn: Djibouti, Ethiopia, Somalia, Sudan; Nigeria:

Nigeria; Sahel: Burkina Faso, Cape Verde, Chad, Gambia, Mali, Mauritania, Niger,

Senegal; Southern: Angola, Botswana, Comoros, Lesotho, Madagascar, Malawi,

Mauritius, Mozambique, Namibia, Réunion, Swaziland, Zambia, Zimbabwe; West-

ern: Benin, Côte d’Ivoire, Ghana, Guinea, Guinea-Bissau, Liberia, Sierra Leone,

Togo, Uganda;

Latin American countries

Caribbean: Bahamas, Cuba, Dominican Republic, Haiti, Jamaica, Lesser An-

tilles, Puerto Rico, Trinidad and Tobago; Central America: Belize, Costa Rica,

El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama; Andean: Bolivia,

Colombia, Ecuador, Peru, Venezuela; North East: Brazil, French Guiana, Suriname,

Guyana; Southern Cone: Argentina, Chile, Paraguay, Uruguay;

North America

Canada, United States

Asia

Developed: Japan, Korea-Republic, Taiwan; North East: China, Korea-DPR, Mon-

golia; South East: Brunei Darussalam, Cambodia, Indonesia, Laos, Malaysia,

Myanmar, Philippines, Thailand, Timor Leste, Vietnam; South: Afghanistan,

Bangladesh, Bhutan, India, Nepal, Pakistan, Sri Lanka;

Europe

Northwest: Austria, Belgium-Luxembourg, Denmark, Finland, France, Germany,

Iceland, Ireland, Netherlands, Norway, Sweden, Switzerland, United Kingdom;

Southern: Cyprus, Greece, Italy, Malta, Portugal, Spain; Transition: Albania, Bul-

garia, Czechslovakia-former, Hungary, Poland, Romania, Yugoslavia-former;

West Asia and North Africa

North Africa: Algeria, Egypt, Libya, Morocco, Tunisia; West Asia: Bahrain, Iran,

Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, Turkey,

United Arab Emirates, Yemen;

Oceania

Developed: Australia, New Zealand; Developing: Fiji, Micronesia, New Caledonia,

Papua New Guinea, Polynesia, Solomon Islands, Vanuatu;

Former USSR

Baltic: Estonia, Latvia, Lithuania; Central Asia and the Caucasus: Armenia, Azer-

baijan, Georgia, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan; East Europe:

Belarus, Kazakhstan, Moldova, Russian Federation, Ukraine;



Table 5.9: Production frontier with five inputs.

Coefficient t-value
labour 0.196 17.5
land 0.372 19.5
machinery 0.062 11
fertiliser 0.129 26.7
livestock 0.399 32.9
trend 0.011 38.4
0.5×labour2 0.030 4.38
0.5×land2 0.060 5.03
0.5×machinery2 0.003 1.54
0.5×fertiliser2 0.020 14.6
0.5×livestock2 0.148 18
0.5×trend2 0.000 18.1
labour×land 0.028 3.66
labour×machinery -0.002 -0.572
labour×fertiliser -0.016 -7.53
labour×livestock -0.041 -7.85
labour×trend -0.001 -7.11
land×machinery -0.013 -3.37
land×fertiliser 0.010 3.54
land×livestock -0.087 -11
land×trend 0.001 6.99
machinery×fertiliser 0.002 1.29
machinery×livestock 0.003 1.27
machinery×trend 0.001 8.03
fertiliser×livestock -0.010 -5.33
fertiliser×trend 0.001 8.45
livestock×trend -0.001 -4.27
ln σ2

v -4.685 -75.1
ln σ2

u -3.618 -52.6

Note: N = 171, avg. T = 49.7. Inputs are given
in logarithms.
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Table 5.10: Production frontier with six inputs.

Coefficient t-value
labour 0.198 16.3
land 0.321 16.8
machinery 0.035 6
fertiliser 0.109 20.5
livestock 0.265 19.3
feed 0.157 18.3
trend 0.009 26.4
0.5×labour2 0.028 3.89
0.5×land2 0.018 1.4
0.5×machinery2 0.004 1.71
0.5×fertiliser2 0.015 9.77
0.5×livestock2 0.132 14.2
0.5×feed2 0.019 5.13
0.5×trend2 0.000 13.1
labour×land 0.061 7.59
labour×machinery 0.003 0.826
labour×fertiliser -0.010 -4.33
labour×livestock -0.041 -7.13
labour×feed -0.024 -6.87
labour×trend 0.000 -1.91
land×machinery -0.011 -2.6
land×fertiliser 0.001 0.262
land×livestock -0.096 -10.7
land×feed 0.019 4.56
land×trend 0.001 5.48
machinery×fertiliser 0.002 1.44
machinery×livestock -0.003 -0.906
machinery×feed -0.005 -1.9
machinery×trend 0.000 2.39
fertiliser×livestock -0.002 -0.985
fertiliser×feed 0.002 1.39
fertiliser×trend 0.000 0.199
livestock×feed -0.003 -0.777
livestock×trend -0.001 -5.87
feed×trend 0.001 8.98
ln σ2

v -4.795 -63.5
ln σ2

u -3.853 -42

Note: N = 157, avg. T = 47. Inputs are given in
logarithms.
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Table 5.11: Weighted indices of TFP change and its sources in 2010 (1961 =
1.00).

TECi TCi SCi TFPCi avg. TFPC

World 1.00 1.69 1.07 1.79 1.2%

South Africa 1.12 1.54 1.01 1.67 1.0%
Sub-Saharan Afria 0.98 1.24 1.11 1.30 0.5%
Latin America 1.00 1.52 1.07 1.59 1.0%
North America 0.93 2.11 1.00 1.93 1.4%
Asia 1.02 1.71 1.11 1.94 1.4%
Europe 0.97 1.70 0.99 1.61 1.0%
West Asia & North Africa 1.13 1.50 1.07 1.74 1.1%
Oceania 0.94 1.57 1.00 1.45 0.8%
USSR (1992=1.00) 0.99 1.32 0.98 1.26 1.3%

Table 5.12: Geometric means of indices in 2010 (1961 = 1.00).

TECi TCi SCi TFPCi avg. TFPC

World 1.01 1.24 1.05 1.27 0.5%

South Africa 1.12 1.54 1.01 1.67 1.0%
Sub-Saharan Africa 1.00 1.05 1.09 1.10 0.2%
Latin America 1.04 1.21 1.05 1.29 0.5%
North America 0.96 2.02 1.00 1.90 1.3%
Asia 0.99 1.34 1.09 1.41 0.7%
Europe 0.98 1.53 0.99 1.46 0.8%
West Asia & North Africa 1.16 1.33 1.09 1.44 0.7%
Oceania 0.97 0.99 1.02 0.95 -0.1%
USSR (1992=1.00) 1.00 1.24 0.99 1.20 1.0%
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6 Discussion

The first part of this section briefly summarises the key findings of the applica-

tions. The focus is on the interpretation of the results and their compatibility

with the underlying assumptions, i.e. the robustness of estimated technical

efficiency (TE) scores and growth in TFP.

The second part addresses the relevance of unobserved heterogeneity in

the applications. It refers to the consequences of its consideration and the

corresponding economic interpretation, rather than to statistical evaluations.

A brief discussion aims at the scope of the interpretation as well as the need

for future research.

6.1 Findings on efficiency and productivity growth

Technical efficiency

The applications comprise firm-level data on meat firms and livestock farms

in Europe, as well as agricultural country-level data for many countries of

the world. In case of the meat industry, results indicate a very high level

of TE. The variation in predicted TE scores is low. The analysis suggests

that there are no firms that are unable to handle the respective technology.

Correspondingly, firms with a low performance are likely to drop quickly out

of competition. The small remaining inefficiencies can be due to some excess

capacities (e.g. machinery). However, these resources might be required in

order to maintain some flexibility.

Conversely, the average efficiency in livestock farming is much lower and

the variation in TE scores much higher. These divergencies can be associated

with a more heterogeneous structure in agricultural production, i.e. although

the analysis accounts for individual effects, the performance among farms

differs a lot. There are several plausible reasons for this situation. Factor

markets do not always work efficiently or are subject to restrictions (e.g. the

land market). Farmers might not quickly switch to alternative jobs. Further-

more, inefficient production can partly be compensated by subsidies.

If there are technical inefficiencies at the country-level, production cannot
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be fully efficient at the global scale. This is reflected in the FAO data analysed

in Section 5. However, the aggregated data shows relatively lower variation

in TE and a stable overall level at the sample mean (weighted TE scores).

This finding is reasonable since country data are naturally less dynamic and

most resources tend to be fixed. Countries that dominate the world frontier

define the overall technological possibilities. If these countries have control

over their technology, there should not be much dynamics in TE. The fact

that the remaining inefficiency tends to be persistent, is rather due to the

characteristics of agricultural production. For the aggregated data, natural

conditions, such as weather, are more likely to be relevant than knowledge or

malfunctioning markets. Probably, full potential of production is not utilised

because of these natural conditions that are not completely captured by the

noise component.

The model framework rests on assumptions about the distributions of

the error terms. While the assumption of the normally distributed noise

component is usually less contested, there are several alternative specifications

for the inefficiency component in case of cross-sectional data. In these models,

the basic interpretation of inefficiency tends to be robust, irrespective of the

selected distribution. In case of panel data, there are less alternatives for the

specification of the inefficiency distribution. The here applied model of Chen

et al. (2014) is based on the closed skew normal distribution, and is thus

restricted to the normal-half normal case.

However, as with cross-sectional data, panel data models relying on dif-

ferent inefficiency distributions should result in similar interpretations. The

more important aspect that is emphasised here, refers to the differentiation

between cross-sectional models and panel data models. The corresponding

results when using the same distributional assumption (half-normal) imply

different economic interpretations as will be pursued below.

Although the model specification allows for time-varying inefficiency, the

residuals are assumed to be independent between two periods. This assump-

tion disregards the notion of autocorrelation and the fact that “inefficiency”

can accompany rational economic behaviour. The model possibly ignores dy-
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namics such as intertemporal decisions associated with adjustment cost or

investments. For example, as pointed out in the case of meat firms, potential

excess capacities could be a meaningful requirement.

Since TE is assessed relative to a best practice frontier, this reference tech-

nology has to be a valid benchmark. The assumption of a common technology

that provides a comparable basis, is a strong one. Some related aspects are

mentioned in Section 6.2.

Productivity growth

Change in TE (TEC), technical change (TC) and a scale component (SC)

are the three sources that are assumed to determine the pattern of change in

total factor productivity (TFPC).

TEC is virtually irrelevant in case of the meat industry. As the corre-

sponding firms are working almost efficiently, there is not much scope for

changes. Conversely, this component is one of the productivity drivers of

livestock farms. Notably, larger farms are characterised by increasing TE.

However, the sector-wide contribution of TEC is related to the ambiguous

finding of negative TC. Increasing efficiency is also found in the context of

global agricultural production. This finding does not apply to the overall TE

at the world frontier. In fact, TEC is relevant in single countries or regions

where it can be associated with a catch-up to the world frontier. This effect

requires no inefficient production at the unobserved group (regional) frontier

because it can be interpreted as a shift of this group frontier towards the meta

(world) frontier.

Technical progress tends to be the main driver of TFPC in our appli-

cations. This finding is in line with the literature and theoretically plausi-

ble, since TC historically has been viewed as the only source of productivity

growth. However, we find some peculiarities related to the data as well as to

the interpretation. Negative TC is found for European livestock production.

Political measures or market events can cause some restrictions to agricultural

production. However, the magnitude is implausible. Furthermore, the inter-

pretation of a comprehensive deterioration of production possibilities seems
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to be beside the point. In the case of slaughtering firms, there is almost no

TC as well as no productivity growth. This finding highlights the relevance

of the differentiation between sub-sectors for the interpretation of results.

The SC is the minimal source of TFPC, which is understandable. The

overall scale of an enterprise tends to change at a slow rate. If there are

mergers that can be realised in the short term, the observed firms are likely

to drop from the data. We analyse large meat firms and find no evidence

of relevant scale changes. The industry is already higher concentrated and

less dynamic in comparison to agriculture where structural change is faster.

This conclusion also applies to the country-level. The SC and the underlying

structural changes are partially important for global TFPC, e.g. in case of the

regions Asia and Sub-Saharan Africa.

The applied decomposition of TFPC is one approach that can be con-

trasted with alternative concepts. We assume away any components other

than TEC, TC and SC. For example, the association of technical inefficiency

with malfunctioning factor markets implies the notion of allocative inefficiency

and corresponding changes.

Extensions of the productivity decomposition can address the mixtures

of outputs and inputs, as for example proposed by O’Donnell (2012). The

ignorance of such effects is mainly due to data limitations (not only in these

applications). We estimate a distance function for livestock farms that at least

accounts for two output categories. The respective results are more plausible

than those of the corresponding production function with respect to TE and

TFPC (both measures tend to be higher).

However, these concepts require the correct measurement of outputs and

inputs that is ultimately dependent on the data sources. We use proxies for

capital that should be represented by means of service flows from capital stock

into the production process. The construction of alternative measures usually

requires additional assumptions that must be justified. We assume that the

proxies are sufficient for modelling the capital input.

Related considerations apply to other variables that are measured in mon-

etary terms. An implicit correction for quality can be an advantage of these
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variables. However, the disadvantage is manifest in the choice of appropriate

indices for deflation. One aspect refers to the relevant categories of outputs

and inputs, i.e. the decision for a correct price index. The availability of

the respective index is another issue. Apparently, many databases can only

provide approximate information.43

With regards to productivity analysis, this issue is relevant for the mag-

nitude of the rates as well as for the composition of aggregate outputs. The

relative performance of firms might be unaffected. For example, the finding

of divergent growth paths in sub-sectors of the meat industry is robust to

deflation. In the case of global agricultural production, the aggregate output

can be biased due to an inappropriate construction of the variable. The nega-

tive TC that we find for livestock farms can, at least partially, be affected by

indices that do not represent all economic changes adequately (e.g. number

of countries, length of the period, introduction of the euro).

6.2 Consideration of unobserved heterogeneity

The standard Stochastic Frontier (SF) model of Aigner et al. (1977) is unable

to account for unobserved heterogeneity. However, the original objective of

efficiency analysis is to make inferences on inefficiency. Our applications sug-

gest that the panel model of Chen et al. (2014) should be a standard tool,

whenever panel data are available. This recommendation is not based on

the view that the model is the “true” one. It can provide valuable insights,

though, because economic interpretations derived from the standard (pooled)

model can be misleading. This section compares some results from the two

models, assuming a normal-half normal specification. The description does

not draw on statistical arguments but rather focuses on the interpretation of

the results.

43For example, Eurostat uses weights to account for the relevance of EU member states
when constructing producer price indices. On occasion, aggregated indices for very different
groups are identical, as in the case of the producer price index for meat products. In this
case, the index of the EU-15 is identical to the index of the EU-27.
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Coefficients

As expected, most coefficients differ when comparing the models. Figures

6.1 and 6.2 provide selected examples from the firm-level data of meat firms

and livestock farms. The changes of estimated elasticities can be drastic;

particularly, in case of some “suspect” variables. Capital is such a variable,

in general and in case of meat firms. The results suggest that the effect

of capital on output is overestimated in the pooled model, because larger

elasticities are positively related to the individual effects that are obtained

from the panel model. Correspondingly, there is an output response that is

rather caused by basic productivity than by capital. However, there are more

negative elasticities under the panel model. The respective estimate of labour

is apparently more efficient.

 0

 2

 4

 6

 8

 10

 12

 14

 16

-0.1 -0.05  0  0.05  0.1  0.15  0.2

Capital

Panel SF
Pooled SF

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

Labour

Panel SF
Pooled SF

Figure 6.1: Selected distributions of calculated elasticities for meat firms,
capital (left panel) and labour (right panel).

A drastic change is found for the elasticities of land in the context of the

distance function (livestock farms). Land and labour are special inputs in

agricultural production. Land is immobile by definition; labour is supposed

to be rather inflexible (in the short and medium term). As illustrated in the

left panel of Figure 6.2, monotonicity is violated for most of the observations

when using the pooled model. Conversely, the alternative estimator shows al-

most exclusively positive values (only 0.2 percent are negative). The positive

elasticities are required for consistency with economic theory, and are mean-

ingful in the case of land because it is an important input that can represent a

high cost share (in particular, for livestock farms with low land endowment).

For labour, the panel model suggests a much lower elasticity (but also
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Figure 6.2: Selected distributions of calculated elasticities for livestock farms,
land (left panel) and labour (right panel).

shows more negative elasticities). This is an intuitive result because the cost

share labour is rather low, due to structural change that results in a lower

labour-intensity in agricultural production.

In case of the panel model, the findings on estimated scale elasticities

would deserve further investigation in future research. Apparently, there is

a stronger trend to decreasing returns to scale for firm-level data, while for

country-level data, we find distinct increasing returns to scale. The individual

effects absorb production potential, i.e. there are unmeasured factors, result-

ing in output, that we attribute to basic productivity. Correspondingly, the

output elasticities of the inputs are lower. This is a possible interpretation at

the firm-level. However, there is no clear pattern in case of the country-level

data.

Technical efficiency

Different coefficients change the reference technology which has consequences

for the predicted inefficiencies. In general, TE scores are expected to increase

because the panel model decomposes the residual into one more component

(composed error plus individual effect). We find this result for agriculture at

the firm-level as well as at the country-level.

Table 6.1 presents the descriptive statistics of TE scores for the three

studies. The general trend is an increase in average efficiency and a decrease

in the respective variation. The changes are particularly strong for the data

on international agriculture.

The finding for the meat industry is different. There is virtually no change

92



for meat processors, but instead of an TE increase, only the panel model

suggests inefficiency in case of the slaughtering firms.

Table 6.1: Comparison of TE scores in the applications: pooled SF model and
panel SF model, with half-normal distribution of the inefficiency component.

Pooled SF Panel SF
mean std.dev mean std.dev correlation

Section 3

slaughtering – – 0.957 0.026
processing 0.955 0.015 0.954 0.024 0.57

Section 4

livestock farms 0.773 0.093 0.818 0.082 0.62

Section 5

South Africa 0.712 0.042 0.899 0.033 0.80
Sub-Sahara Africa 0.749 0.123 0.895 0.050 0.40
Latin America 0.818 0.066 0.892 0.055 0.50
North America 0.822 0.022 0.901 0.024 0.39
Asia 0.758 0.099 0.897 0.041 0.49
Europe 0.756 0.098 0.898 0.038 0.39
W. Asia & N. Africa 0.766 0.120 0.888 0.071 0.41
Oceania 0.808 0.122 0.887 0.065 0.41
Former USSR 0.745 0.067 0.898 0.039 0.46

In general, the results of the efficiency analysis indicate that inefficiency is

not an important problem in the meat industry. Furthermore, the potential

expansion of agricultural output can be considerably lower than suggested by

the standard model.

Individual effects and group technology

The individual effects represent a kind of heterogeneity that is said to be

unobservable. Accordingly, the interpretation of these effects must inevitably

remain speculative to some extent. In case of the country-level data, there is

definitely no straightforward interpretation. The consideration of unobserved

heterogeneity is very meaningful, though.

In case of the firm-level data, the individual effects provide additional

scope of interpretation when treated as basic productivity. Furthermore, their

distribution allows to assess the relevance of the spread in firm characteristics.

In our studies, slaughtering firms as well as pig and poultry producers show
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a lower variation, whereas it is higher for meat processing firms and cattle

farms. The conditions and products in the slaughtering business are clearly

defined. Similarly, pig and poultry are predominantly produced under well-

specified conditions. Accordingly, these enterprises can be interpreted as more

“homogeneous”, i.e. each unit tends to be rather replaceable. This is different

for meat processors because they can specialise or diversify their skills and

products. It is also different for cattle production because the range of breeds,

systems and surrounding conditions is larger than in the other segments.

However, these considerations can possibly cast doubt on the assumption

of a common technology. If the technology of these firms (or farms) is not

comparable, then their efficiency scores don’t provide any information value.

Such a strict view would consequently result in no analysis being conducted.

This lack of information is undesirable from an economic perspective, i.e. this

basic assumption is usually required.

The notion of technological heterogeneity remains important, though. Two

major aspects refer to this kind of heterogeneity: restricted access to the meta-

technology, and individually different technology parameters, e.g. as resulting

from varying input qualities. Other models will require additional informa-

tion or alternative assumptions. However, our results suggest that the effects

are able to capture a lot of the individual characteristics, that are in turn not

confounded with technical inefficiency. Moreover, factors, such as managerial

ability, are most likely better modelled using the fixed effects framework than

using flexible technology parameters.

A strict view on economic theory suggests that there should be no ineffi-

ciency in production. Accordingly, the analysis would address a non-existent

problem, i.e. it would be a “fruitless exercise” (Greene, 2008, p.100). The lit-

erature on efficiency analysis and our interpretation suggest that inefficiency

matters.

In our framework, inefficiency is assumed to vary over time. Theoreti-

cally, this assumption is absolutely required in panel data. The assumption

on time-invariant unobserved heterogeneity is a more “philosophical issue[s]”

(Chen et al., 2014, p.65). Since many unobserved characteristics are fixed
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for a certain period, this assumption should be acceptable for the firm-level

data (but it might be different for the long series of agricultural data). The

acceptance of persistent technical inefficiency within this framework (Colombi

et al., 2014), seems more problematic. Firms that show a constant level of

inefficiency are likely to drop out of competition. However, such a component

could provide indications of market failures or restricted access to technology.

Therefore, this approach should also be considered in future research.

Furthermore, from a methodological perspective, a more flexible param-

eterisation of the composed error term, in the context of the recent model,

is clearly desirable. Our results suggest that future research should also ad-

dress the consequences of variable aggregation in productivity analysis. The

necessity of improving (sectoral) data quality and comparability is another

important insight.
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A Stochastic Frontier Analysis using SFAMB

for Ox

Jonathan Holtkamp, Bernhard Brümmer

A.1 Introduction

SFAMB (Stochastic Frontier Analysis using ModelBase) is a package for

estimating stochastic frontier production (as well as cost, distance, and profit)

functions. This version includes different specifications for cross sectional

data as well as four models for panel data. SFAMB is a class written in Ox

(Doornik, 2009) and is used by writing programs that use an object of this

class.

The console versions of Ox are free for research and educational purposes.

Ox Console uses OxEdit to run programs. The commercial version of the

programming language, Ox Professional, uses the graphical user environ-

ment OxMetrics instead.

The structure of the paper is as follows44. In the next section, we briefly

introduce the available estimators and their corresponding econometric foun-

dations. Data organization and usage of the code are explained in Section

A.3. Section A.4 is a technical documentation of related member functions.

We present practical examples using real world data in Section A.5.

A.2 Stochastic frontier production function estimation

SFAMB provides frontier models of Aigner et al. (1977); and Meeusen and

van den Broeck (1977), respectively, with extensions; Schmidt and Sickles

(1984); Greene (2005); Wang and Ho (2010) as well as Chen et al. (2014).

The available estimators are:

There are several other software packages that incorporate (some of) the

estimators listed in Table A.1. LIMDEP (Econometric Software, Inc., 2014) and

Stata (StataCorp LP, 2014) are comprehensive commercial packages that im-

44Structure and format follow the documentation “Panel Data estimation using DPD for
Ox” (Doornik et al., 2012).
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SetMethod Ineff.distribution Example
SFA - cross section POOLED µ and/or σu hbest1.ox
Least squares with dummies LSDV hbest2.ox
SFA - with dummies TFE hbest2.ox
SFA - within-transformation WT µ or σ2

u hbest3.ox
SFA - consistent fixed effects CFE hbest2.ox

Table A.1: Available estimators.

plement frontier techniques in their standard distributions. In case of Stata,

there are additional third-party add-ons such as those of Wang (2012) or

Belotti et al. (2012).

Hughes (2008) has written two free packages called sfa hetmod, and

sfa mod, that can be used with gretl (Cottrell and Lucchetti, 2014). Both

include variations of the standard model where the first one allows for het-

eroscedasticity.

The recent package spfrontier (Pavlyuk, 2014) deals with (the specific

family of) spatial Stochastic Frontier models. It is implemented in R (R Core

Team, 2014) and allows for various specifications.

The first program to implement frontier techniques was Frontier (Coelli,

1996). Later, the original code was transferred to R by Coelli and Henningsen

(2013). This package provides extensions of the standard model, namely, the

so-called “error components specification” (Battese and Coelli, 1992) and the

more frequently used model of Battese and Coelli (1995). Its functionality is

augmented by some additional options (e.g., for calculating marginal effects).

Similarly, SFAMB offers specific member functions that can be extended

by the user. To date, it is the only package including the CFE model.

The Stochastic Frontier model

This section is intended as a short, concise introduction to Stochastic Fron-

tier Analysis (SFA) techniques. A more detailed introduction can be found

in Coelli et al. (2005). More advanced material is covered in Kumbhakar and

Lovell (2000). The basic problem in efficiency analysis lies in the estima-

tion of an unobservable frontier (production, distance or cost) function from

observable input and output data, together with price data when necessary.
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Standard estimation techniques like OLS are inappropriate in this setting

since they aim at the identification of average relationships, which are not in

the focus of an efficiency model.

The basic approach was simultaneously developed by Aigner et al. (1977),

and Meeusen and van den Broeck (1977). An exposition in terms of the

production function highlights its most important characteristics. The basic

production function model is given by:

yi = α + β>xi + vi − ui (A.1)

On the left hand side, yi is the output (or some transformation of the

output) of observation i (i=1...N ). On the right hand side, xi is a matrix

of inputs that produce output yi, and the vector β describes technology pa-

rameters to be estimated. The most commonly used transformation of the

variables is the natural logarithm. The crucial part of this formulation is the

composed error term given by εi = vi−ui , where vi represents statistical noise

and ui represents inefficiency. Estimation is possible by means of Maximum

Likelihood Estimation (MLE) where distributional assumptions concerning

the error components are required. The noise component is a conventional

two-sided error, distributed as vi ∼ N(0, σ2
v). The inefficiency component

is a non-negative disturbance that can be modelled using several distribu-

tions. However, the truncated normal and half normal distributions are most

frequently used and are implemented in SFAMB. Accordingly, the random

variable ui is distributed as ui ∼ N+(µ, σ2
u). If µ equals zero the model is

labelled as the normal-half normal SF model; normal-truncated normal SF

model otherwise.

The independence assumption for the inefficiency distribution in the basic

SFA model can be changed by introducing covariates into the distribution,

thereby accounting for differences in inefficiency between individuals. The

corresponding covariates are often labelled as Z-variables. These can be used

to model either the location parameter or scale parameter of the underlying

distribution or both, cf. Alvarez et al. (2006). An useful overview is given

by Lai and Huang (2010) who summarize and categorize several well-known
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models. A model describing µ by means of an exponential form is labelled as

the KGMHLBC model45, ui ∼ N+(µ exp(θ>zi), σ
2
u). If µ is set to zero and the

scale is modelled using an exponential form it is the RSCFG model46, ui ∼

N+(0, exp(2 δ>zi)). Combination leads to ui ∼ N+(µi = µ exp(θ>zi), σ
2
u,i =

exp(2 δ>zi)), labelled by Lai and Huang (2010) as a generalized exponential

mean model. Note: In SFAMB, the respective parameter modelled in the

POOLED model is (the natural logarithm of) σu,i, not σ2
u,i !

47

In addition to standard results, the estimation output of the POOLED model

provides three other results:

gamma is given by γ = σ2
u/σ

2 = σ2
u/(σ

2
v + σ2

u)

where (in case of the half-normal specification) σ2
u = 1

n

∑
i exp(2 δ

>zi).

VAR(u)/VAR(total) describes the “correct” variance decomposition of the

composed error (recall that given u is a one-sided disturbance, σ2
u is not

the variance var[u] of the one-sided error). The share of the variance of

u in the total variance of the composed error is given by var[u]/var[ε] =

[(π − 2)/π]σ2
u/[(π − 2)/π]σ2

u + σ2
v , cf. (Greene, 2008, p.118).

Test of one-sided err provides a likelihood ratio test statistic for the

presence of inefficiency, i.e., for the null hypothesis H0: γ=0. The criti-

cal value cannot be taken from a conventional χ2-table, see Kodde and

Palm (1986).

A point estimator of inefficiency is given by E(ui|εi), see Jondrow et al.

(1982). If the dependent variable is in logarithms, a more appropriate esti-

mator is the point estimator of technical efficiency TEi = E(exp(−ui)|εi), see

Battese and Coelli (1988).

45Kumbhakar et al. (1991); Huang and Liu (1994); Battese and Coelli (1995);
46Reifschneider and Stevenson (1991); Caudill et al. (1995);
47While σ2

u is often used, the original formulation of CFG involved σu.
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Unobserved heterogeneity

With panel data, additional information on each individual is available. Each

cross section i is observed over a certain period of time Ti (t=1...Ti):

yit = αi + β>xit + vit (A.2)

This formulation differs from equation (A.1) in that it involves time dimension

t, only one error component (two-sided) and an individual intercept αi. The

model is estimated by OLS, and hence, vit ∼ N(0, σ2
v). Its virtue lies in

the identification of the N time-invariant individual (“fixed”) effects. These

effects may capture unmeasured attributes, and hence, this approach is one

way to deal with (unobserved) heterogeneity. The model has different names

in the literature; one that is commonly used is “Least squares with dummy

variables” (LSDV). Instead of estimating all N dummies, the usual approach

is to employ a transformation: for each panel i, the respective variables (e.g.,

xit) are transformed by subtracting the individual mean (out of Ti) from

the observation in period t, i.e., x̃it = xit − x̄i. This procedure (within-

transformation) removes the individual effects (because α̃i = αi−αi = 0) and

estimation works only with deviations from means, i.e., with the transformed

variables. Estimates of the individual effects are calculated as:

α̂i = ȳi − β̂>x̄i (A.3)

Schmidt and Sickles (1984) use the model in a frontier context. They interpret

the individual with the highest intercept as 100% technically efficient. The

inefficiency of the remaining groups is assessed by ui = max(α̂)−α̂i; efficiency

estimates are time-invariant and are given by TEi = E(exp(−ui)). Estimation

output of the LSDV model differs from the other models to some extent:

sigma e describes σv that is the square root of the corrected estimate of the

error variance σ2
v = SSR

N(T−1)−K . This estimate is also used to compute

the standard errors.

AIC1 (all obs) is given by AIC1 = −2 lnL + 2 (K + 1); it uses the likeli-
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hood function lnL = −NT
2
ln(2π)− NT

2
ln(σ2)−

∑
i

∑
t ṽ

2
it

2σ2 with the uncor-

rected σ2 = SSR
NT

.

AIC2 uses a different formula for the criterion, AIC2 = ln(SSR
NT

) + (2 K+N
NT

);

that does not need the likelihood function and considers the number of

individuals in the penalty term.

Unobserved heterogeneity in SFA

Dummy variables - TFE model

The approach outlined above does not distinguish between inefficiency and

unobserved heterogeneity because there is no one-sided error component. The

respective (“true”) specification of the SF model for panel data is given by:

yit = αi + β>xit + vit − uit (A.4)

This model was proposed by Greene (2005) and is known as the “true fixed

effects” (TFE) frontier model. Estimation involves all N individual effects,

and hence, the model suffers from the incidental parameters problem. In

micro panels (T fixed), σ2 is inconsistent as the sample size increases.

The point estimators for inefficiency and technical efficiency are the same

as for the POOLED model. Output of the TFE model provides lambda, given by

λ = σu/σv .

Elimination of dummies - WT model

To overcome the incidental parameters problem Wang and Ho (2010) propose

an extension that is based on deviations from means48:

ỹit = β>x̃it + ṽit − ũit (A.5)

This within-transformation (WT) model is estimated by MLE. The transformed

noise component is distributed as multivariate normal, i.e., ṽit ∼ MN(0,Π).

However, simple transformation of the one-sided error component would result

in an unknown distribution. Therefore, time-varying inefficiency is specified

48In addition they demonstrate how the model can be estimated by first-differencing.
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as uit = u∗i × hit. The persistent part u∗i (inefficiency) is assumed to follow

a half-normal or truncated-normal distribution, i.e., u∗i ∼ N+(µ, σ2
u), where

µ is equal to zero in case of a half-normal distribution. The scaling function

hit = f(δ>zit) includes firm- and time-specific variables (zit) that might affect

the inefficiency distribution. The vector δ describes the corresponding param-

eters and the function takes an exponential form, i.e., f(δ>zit) = exp(δ>zit).

The use of within-transformation does not affect the component u∗i but the

function value of hit is transformed: ũit = u∗i × h̃it . Wang and Ho (2010)

present the conditional expectation of uit in their equation (30); efficiency

estimates are given by TEit = E(exp(−uit|ε̃it). Estimation output of the WT

model additionally provides:

lambda is given by λ = σu/σv ; where ln(σ2
u) = cu; truncated-normal: σ2

u =

exp(cu); half-normal: σ2
u = 1

NT

∑
i

∑
t exp(cu + δ>zit);

Although the individual effects are not directly estimated with the WT model,

they can be recovered, assuming that v̄i = 0:

α̂i = ȳi − β̂>x̄i + ūi (A.6)

Consistent estimation with time-varying inefficiency - CFE model

Consistent estimation of the fixed effects SF model given in equation (A.4) is

demonstrated by Chen et al. (2014). Their solution is also based on deviations

from means so that the transformed model looks like equation (A.5). How-

ever, the respective likelihood function is derived only from the first T-1 de-

viations, i.e., from ε̃∗i = (ε̃i1, ..., ε̃i,T−1)>. This procedure has two advantages.

First, within-transformation removes the incidental parameters. Second, an

implicit correction of the error variance is achieved by means of the first T-1

deviations.49 Wang and Ho (2010) use a multivariate normal distribution to

model vit but have to accept a persistent basic inefficiency component u∗i . The

current model is based on a more general distributional theory and allows for

firm-specific and time-varying inefficiency uit.

49With regards to the degrees of freedom, the correction accounts for the N individuals:
df = NT −N −K = N(T − 1)−K .
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The composed error, ε = v − u, has a skewed distribution (to the left)

due to the non-negativeness of u. Accordingly, the standard (half-normal)

SF model has a skew normal distribution, with skewness parameter λ and

density:

f(ε) =
2

σ
φ
( ε
σ

)
Φ
(
−λ ε

σ

)
(A.7)

While the skew normal distribution is a generalization of the normal distri-

bution, it can be generalized itself by using the closed skew normal (CSN)

distribution.50 The composed error has a CSN distribution; what is written

as:

εit ∼ CSN1,1(0, σ2,−λ
σ
, 0, 1) (A.8)

The density of a CSNp,q-distribution includes a p-dimensional pdf and a

q-dimensional cdf of a normal distribution. The five associated parame-

ters describe location, scale and skewness, as well as the mean vector and

covariance matrix in the cdf. With panel data, the T -dimensional vector

εi = (εi1, ..., εiT )> is distributed as:

εi ∼ CSNT,T (0T , σ
2IT ,−

λ

σ
IT , 0T , IT ) (A.9)

where I is the identity matrix. Chen et al. (2014) partition the vector εi into

linear combinations: its mean ε̄i and its first T-1 deviations ε̃∗i . The CSN

distribution is “closed under linear combinations”(p.10). The density and re-

spective log likelihood function for the model are derived from ε̃∗i . Accordingly,

the likelihood function is free of incidental parameters and the parameters to

be estimated are β, λ and σ2 –as in the basic SF model. ε̄i and ε̃∗i are not

independent, unless λ = 0. If λ = 0 the model is the fixed effects model with

normal error.

In order to obtain the inefficiency index, the composed error has to be

recovered:

εit = yit − ŷit = yit − β̂>xit − α̂i (A.10)

50Chen et al. (2014) explain how the SF model is related to the CSN distribution and
present the required properties of CSN distributed random variables. Another plain in-
troduction to the CSN distribution in the SF context is provided by Brorsen and Kim
(2013).
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There are two ways to calculate α̂i. The one used here is labelled as the

mean-adjusted estimate by Chen et al. (2014):

α̂Mi = ȳi − β̂>x̄i +

√
2

π
σ̂u (A.11)

The point estimators for inefficiency and technical efficiency are the same as

for the POOLED model. The output provides lambda, given by λ = σu/σv .

A.3 Data organisation and model formulation

Data organisation

Different data file formats can be read directly into a SFAMB object (.xls,

.dta,...), for details see the Ox manual (Doornik, 2009).

The data have to be organized in columns where the first row holds the

variable name. Each row refers to the same time period. Missing values are

also called NaN (Not a Number) in Ox. In case of panel data SFAMB needs

to recognize the structure of the data. In the data file specify the variable

names of the individuals and time periods. The data have to be stacked by

individual (i = 1, 2...N) and within individuals by time period (t = 1, 2...Ti).

The panel may be unbalanced.

Example:

id time y x1
31 1 298384 24145
31 2 333522 27725
31 3 378768 38115
37 1 62473 3401
37 2 212442 12529
37 3 295142 16734
101 1 150037 10752
101 2 158909 10418
101 3 172744 10671

Model formulation

The sequence of model formulation is sketched in Figure A.1.
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Figure A.1: Model formulation.

In each input file a new object is created. This object is an instance of

the SFAMB class and can use the functionality of the class. The function

Load loads the data file and creates the data base. You choose the model

type with SetMethod. Five estimators /arguments are available (see Section

A.2). In case of panel data, specify the panel structure using Ident. If the

original data are in levels you can use PrepData (or other functions of the

Modelbase or Database classes) for transformation. There are several types

of variables that can be selected according to the underlying model51. The

respective function is called Select and works with the variable names.

To formulate the frontier function:

• Use Select(Y VAR, {".",.,.}) to select the dependent variable.

• Use Select(X VAR, {".",.,.}) to select the independent variable(s).

To include variables that affect the distribution of the inefficiency compo-

nent:

• Use Select(U VAR, {".",.,.}) to select variables that shift the mean

of the distribution.

• Use Select(Z VAR, {".",.,.}) to select the variables that are hy-

pothesised as responsible for heteroscedasticity, i.e., those that affect

51In case of the panel models, a common constant is not identified. However, you can
leave "Constant" in the selection because it is ignored automatically.
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the scale parameter of the distribution.

SetTranslog can be used to choose the functional form of the frontier

function. In case of the translog specification, we recommend to normalize

the variables by the respective sample means. Estimation of the model is

executed via Estimate. For more details, see the documentation of member

functions in the next section.

A.4 Class member functions

These functions (user interface) together with the data members and several

other functions build up the SFAMB class. These other functions are not

listed here. The interested user may consult the package’s header file and

source code file. Note that the class derives from the Ox Modelbase class, and

hence, all underlying functions may be used52.

Ident Ident(const vID, const vPer);

No return values

Description

-Only panel data- Identifies the structure of the panel.

vID is a NT x 1 vector holding the identifier (integer) of the individual.

vPer is a NT x 1 vector holding the identifier (integer) of the time

period.

PrepData PrepData(const mSel, iNorm);

Return value

Returns logarithms of the specified variables, either normalized or not.

Description

This function expects your data in levels and can do two things: It takes

logarithms of your specified variables (if iNorm =0) or it normalizes your

data (by the sample mean if iNorm =1) before taking logarithms. The

transformed variable should receive a new name.

52In turn, the Modelbase class derives from the Database class. Accordingly, the corre-
sponding member functions are available in SFAMB.
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mSel is a NT x k matrix holding the respective Y- and X-variables.

iNorm is an integer: 0=no normalization; 1=normalization;

SetTranslog SetTranslog(const iTl);

No return values

Description

This function expects an integer to control the construction of additional

regressors from the selected X-variables.

• A value of zero indicates no further terms to be added, e.g., for a

log-linear model, this corresponds to the Cobb-Douglas form.

• A value of one indicates that all square and cross terms of all

independent variables should be constructed, e.g., for a log-linear

model, this corresponds to the full translog form.

• An integer value of k > 1 indicates that the square and cross terms

should be constructed for only the first k independent variables

(useful when the regressor matrix contains dummy variables).

SetConfidenceLevel SetConfidenceLevel(const alpha);

No return values

Description

-Only POOLED model- This function expects a double indicating the error

probability for the construction of confidence bounds (default 0.05).

TestGraphicAnalysis TestGraphicAnalysis();

No return values

Description

Only useful in conjunction with the free Ox package GnuDraw (Bos,

2014) that is an Ox interface to gnuplot (gnuplot, 2014). This function

draws two or three graphs, respectively: A histogram of the efficiency

point estimates and a boxplot of these estimates. In case of the POOLED

model: in addition, a sorted graph depicting the interval estimates for

technical efficiency at the specified significance.
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TE TE();

Return value

Returns point estimates of technical efficiency, NT x 1 vector.

Description

These predictions are given by the conditional expectation of exp(−u)

(MLE), see Section A.2 for details.

TEint TEint(const dAlpha);

Return value

Returns point estimates of technical efficiency as well as lower and upper

bounds.

Description

-Only POOLED model- This function expects a double indicating the error

probability for the construction of confidence bounds (default 0.05), for

details see Horrace and Schmidt (1996), for an application Brümmer

(2001). It returns a NT x 3 matrix structured as (point estimate-lower

bound-upper bound).

Ineff Ineff()

Return value

Returns point estimates of technical inefficiency, NT x 1 vector.

Description

These predictions are given by the conditional expectation of u (MLE),

see Section A.2 for details.

AiHat AiHat();

Return value

Returns the calculated individual effects α̂i, N x 1 vector.

Description

-Only panel data- These values can be obtained after estimation, see

Section A.2 for the respective formulas.

Elast Elast(const sXname);

Return value

Returns the calculated output elasticity as well as the respective t-value.
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Description

-Use with SetTranslog()- Only if a translog functional form is used.

The observation-specific output elasticity of input k is δ ln yi/δ ln xki .

sXname is the name of the corresponding input variable (string).

GetResults GetResults(const ampar, const ameff, const avfct, const

amv);

No return values

Description

-So far, only POOLED model- This function can be used to store the re-

sults of the estimation procedure for further use. All four arguments

should be addresses of variables.

mpar consists of a Npar X 3 matrix, where Npar is the number of

parameters in the model. The first column contains the coefficient

estimates, the second column the standard errors, and the last the

appropriate probabilities.

eff consists of a Nobs X 3 matrix, where Nobs is the number of total

observations. The first column holds the point estimate for techni-

cal efficiency, the second and third columns contain the upper and

lower bound of the (1-alpha) confidence interval.

fct Holds some likelihood function values (OLS and ML), as well as

some information on the correct variance decomposition of the

composed error term.

v Variance-Covariance-Matrix.

Different functions to extract data:

Return value

Different vectors or matrices.

Description

These functions can be used with convenient (Database) functions such

as Save, Renew or savemat.
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IDandPer(); is a NT x 2 matrix holding the number of the individual

(e.g., 1,1,1,2,...N,N) as well as the individual group size Ti. -Only

panel data-

GetLLFi(); returns the individual log-likelihood values. It is a NT x

1 vector for models POOLED and LSDV but a N x 1 vector for the

other models.

GetResiduals(); returns the (composed) residual of the respective

observation, NT x 1 vector.

GetTldata(); returns the corresponding vectors of Y, X, square and

cross terms of X. -Use with SetTranslog()-

GetMeans(); returns the means of Y- and X-variables, N x (k+1) ma-

trix. -Only panel data-

GetWithins(); returns the within-transformed Y- and X-variables,

NT x (k+1) matrix. -Only panel data-

SetStart SetStart(const vStart);

No return values

Description

This function expects a column vector of appropriate size containing

starting values for the maximum likelihood iteration53. If the function

is not called at all, OLS values are used in conjunction with a grid search

for the SFA specific parameters σu and λ.

SetPrintDetails SetPrintDetails(const bool);

No return values

Description

-Not for LSDV model- Prints starting values, warnings and elapsed time

if bool 6= 0.

DropGroupIf DropGroupIf(const mifr);

No return values

Description

53Corresponding to the technology parameters. In case of the TFE model, a vector of
zeros is used for the alphas.
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-Only panel data- Allows to exclude a whole individual from the sample

if the condition in one (single) period is met. Call after function Ident.

mifr is the condition that specifies the observation to be dropped, see

the general documentation of selectifr.

A.5 Examples

Example: hbest1.ox

The first example is a generalized exponential mean model (cf. Lai and Huang

(2010)) where ui ∼ N+(µi , σu,i = exp(δ>zi)). The original data are in levels

and are transformed using member function PrepData to accommodate the

translog functional form. The data are a subset of FAO/USDA data prepared

by Fuglie (2012) including the regions Sub-Saharan Africa and South Africa.

General usage and details of the Ox language are explained in Doornik and

Ooms (2006). The sample file hbest1.ox looks like follows. At the beginning

of every program some header files are linked in:

#include <oxstd.h>

#include <packages/gnudraw/gnudraw.h>

#import <packages/sfamb/sfamb>

The first so-called standard header file ensures that all standard library

functions can be used. The second line includes the header file of GnuDraw

(Bos, 2014), an Ox interface to gnuplot (gnuplot, 2014). If it is not installed or

you do not want to use this package, delete this line. However, graphics output

will then be disabled in the free Ox Console version (in the commercial

OxMetrics version, graphics would still be available). Alternatively, you

can comment it out via //:

//#include <packages/gnudraw/gnudraw.h>

The third line imports the (compiled) source code of the package (you may also

use #include <packages/sfamb/sfamb.ox>). Every Ox program is executed

by the main() function that contains the main loop of Ox.

main(){...

}
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The next steps outlined follow the structure of Figure A.1. A new object

of class Sfa has to be declared.

decl fob = new Sfa();

The data are loaded with a call to the member function Load. The argu-

ment of SetMethod chooses the respective estimator (see Table A.1). Here,

the model for cross-sectional data is specified. The function SetConstant

creates a constant (intercept).

fob.Load("USDAafrica.xls");

fob.SetMethod(POOLED);

fob.SetConstant();

Data are either used directly or prepared within the code. Here, the

output variable, five input variables and a time variable are transformed where

logarithms of the mean-normalized inputs (output) are taken.54 New names

are assigned to the prepared variables. These names are used for further

instructions. The function Info is useful here because it prints summary

statistics, thereby, allowing to check the transformed data. The program

always stops at an exit function (that is why it is commented out here).

decl inorm = 1;

fob.Renew(fob.PrepData(fob.GetVar("output"), inorm), "lny");

fob.Renew(fob.PrepData(fob.GetVar("labour"), inorm), "lnlab");

fob.Renew(fob.PrepData(fob.GetVar("land"), inorm), "lnland");

fob.Renew(fob.PrepData(fob.GetVar("machinery"), inorm), "lnmac");

fob.Renew(fob.PrepData(fob.GetVar("fertilizer"), inorm), "lnfert");

fob.Renew(fob.GetVar("time") - meanc(fob.GetVar("time")), "trend");

//fob.Info(); exit(1);

Selection of variables is carried out by Select where Y VAR is the selec-

tion of the dependent variable, X VAR is the selection of the regressors. The

function uses the new variable names defined above (if your data file already

includes transformed variables you would use the names from within the file).

The intercept ("Constant") is available because SetConstant is called above.

54Normalization of inputs (and output): ln
(
xjit

x̄j

)
; normalization of time trend: t− t̄ .

PrepData is a member function of this package (see Section A.4). Both of the other func-
tions are member functions of the Database class (see Doornik and Ooms (2006)).

xvii



Within the Select function there are arrays with three elements (variable

name, start lag, end lag). Here, the lags are set to zero. Note that there must

not be a comma before the closing curly brace of Select.

fob.Select(Y_VAR, {"lny", 0, 0});

fob.Select(X_VAR, {

"Constant", 0, 0,

"lnlab", 0, 0,

"lnland", 0, 0,

"lnmac", 0, 0,

"lnfert", 0, 0,

"trend", 0, 0

});

The above selections define the production frontier. Additional covari-

ates associated with the underlying inefficiency distribution can be introduced

(POOLED and WT model). Covariates used to model the location parameter of

the distribution are selected into U VAR. Here, only "Constant" is selected

meaning that µi 6= 0 but more variables can be added.

fob.Select(U_VAR, {

"Constant", 0, 0

});

Likewise, covariates intended to model the scale of the distribution are

selected into Z VAR, i.e., these variables parameterize σu,i (in case of the WT

model, it is σ2
u,i).

fob.Select(Z_VAR, {

"Constant", 0, 0,

"lnlab", 0, 0,

"lnland", 0, 0,

"lnmac", 0, 0,

"lnfert", 0, 0

});

The next three lines allow for different adjustments. SetSelSample is

required and can be used to choose a subset of the data (here: full sam-

ple). SetPrintSfa ensures that estimation output is printed. MaxControl is

an optional function that allows for documentation and adjustments of the

maximization procedure.
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fob.SetSelSample(-1, 1, -1, 1);

fob.SetPrintSfa(TRUE);

MaxControl(1000, 10, TRUE);

The functional form of the production frontier is chosen by SetTranslog

where the options are Cobb-Douglas or translog. Here, a translog form is

specified. Estimation of the model is invoked via Estimate.

fob.SetTranslog(1);

fob.Estimate();

A number of results can be obtained after estimation. In the SF context,

the efficiency scores (TEi) are of particular interest. Here, the point estimates

are extracted, together with the lower and upper bounds of a 95% confidence

band. The respective function is TEint. The function Ineff extracts the point

estimates of inefficiency, E(ui|εi). These results are labelled and appended to

the object using Renew. The original database together with the transformed

variables and results is saved to file via Save.

fob.Renew(fob.TEint(0.05), {"TE", "lower", "upper"});

fob.Renew(fob.Ineff(), {"jlms"});

fob.Save("out.xls");

There is a graphical functionality involving the package GnuDraw that al-

lows for a visual assessment of the efficiency scores. The function TestGraphicAnalysis

displays the graphics presented in Figure A.2. The setting of the confidence

band included can be changed with SetConfidenceLevel where an error

probability of 0.05 is the default.

fob.SetConfidenceLevel(0.05);

fob.TestGraphicAnalysis();

The output of this program looks like follows (omitting information on the

maximization procedure). Some general information:

Sfa package version 1.0, object created on 19-02-2014

Constructing Squares and Cross-Products...done.

-Pooled model-
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---- Sfa ----

The estimation sample is: 1 - 2400

The dependent variable is: lny

The dataset is: USDAafrica.xls

The transformed variables facilitate the interpretation of the estimated

coefficients of the translog functional form. Thus, the first order coefficients

listed below can be interpreted as output elasticities at the sample mean.

These estimates are positive (except for the machinery input whose estimate,

however, is not significant), and hence, meet the requirement of monotonicity.

The parameter associated with trend indicates the estimated average rate of

technical change per year.

Coefficient Std.Error robust-SE t-value t-prob

Constant 0.418511 0.01734 0.01604 26.1 0.000

lnlab 0.128542 0.01338 0.01105 11.6 0.000

lnland 0.747665 0.01552 0.01301 57.5 0.000

lnmac -0.0103591 0.009488 0.008851 -1.17 0.242

lnfert 0.0753081 0.006573 0.006243 12.1 0.000

trend 0.0104214 0.0007006 0.0006763 15.4 0.000

Further, the output shows the coefficients of the squared and cross terms

that can be used to calculate the individual output elasticities.

Coefficient Std.Error robust-SE t-value t-prob

.5*lnlab^2 -0.0555308 0.02432 0.02387 -2.33 0.020

.5*lnland^2 -0.170596 0.02547 0.02843 -6.00 0.000

.5*lnmac^2 -0.0152330 0.005151 0.004632 -3.29 0.001

.5*lnfert^2 0.0611979 0.003107 0.003063 20.0 0.000

.5*trend^2 0.000420185 6.481e-005 6.132e-005 6.85 0.000

lnlab*lnland 0.189014 0.02492 0.02557 7.39 0.000

lnlab*lnmac -0.125613 0.008138 0.007344 -17.1 0.000

lnlab*lnfert -0.0294984 0.006109 0.005248 -5.62 0.000

lnlab*trend -0.000443247 0.0007217 0.0006231 -0.711 0.477

lnland*lnmac 0.137893 0.008829 0.008381 16.5 0.000

lnland*lnfert -0.0633866 0.006748 0.006383 -9.93 0.000

lnland*trend -0.000495269 0.0007838 0.0007483 -0.662 0.508

lnmac*lnfert -0.0135746 0.002997 0.002857 -4.75 0.000

lnmac*trend 0.000810360 0.0002892 0.0002743 2.95 0.003

lnfert*trend 0.000898462 0.0002366 0.0002062 4.36 0.000

After the technology parameters, the estimates of σv and σu are listed in

form of their natural logarithms. The next line refers to the noise component.
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Coefficient Std.Error robust-SE t-value t-prob

ln{\sigma_v} -2.64680 0.1459 0.1361 -19.4 0.000

Since ln (σu) is parameterised using covariates there are several estimates

to look at. The order of coefficients corresponds to the specification ln (σu) =

δ0 +
∑4

l=1 δl×zl where l = 1(labour), 2(land), 3(machinery), 4(fertilizer); and

the z ’s are in logarithms. Higher use of zl is associated with a lower level of

inefficiency (or higher technical efficiency) if the estimated parameter has a

negative sign.

Coefficient Std.Error robust-SE t-value t-prob

Constant -1.04439 0.04104 0.04791 -21.8 0.000

lnlab 0.232693 0.04300 0.05044 4.61 0.000

lnland -0.146195 0.04176 0.05050 -2.90 0.004

lnmac -0.00976602 0.01491 0.01671 -0.584 0.559

lnfert -0.0149101 0.01372 0.01647 -0.905 0.365

Here, the inefficiency distribution is supposed to have a non-zero mean,

ui ∼ N+(µi = θ0, σ
2
u,i), i.e., it is a constant (θ0) common to all individuals.

Additional covariates can be introduced. The omission of U VAR in the model

specification leads to µi = 0, and hence, results in the normal half-normal

model. Note that, if specified, this output (here, the third Constant) is

always the last Constant term in the list.

Coefficient Std.Error robust-SE t-value t-prob

Constant 0.454143 0.02926 0.03249 14.0 0.000

Some additional information is provided, for details see Section A.2.

log-likelihood -458.928611

no. of observations 2400 no. of parameters 28

AIC.T 973.857222 AIC 0.405773842

mean(lny) -1.14273 var(lny) 2.98932

\gamma: 0.9618 VAR(u)/VAR(total) 0.9016

Test of one-sided err 172.93 mixed Chi^2 !!

Finally, the graph created by the function TestGraphicAnalysis is de-

picted in Figure A.2.
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Figure A.2: TE scores of the POOLED model.

Example: hbest2.ox

In this example, the CFE model of Chen et al. (2014) is specified using again

the data set USDAafrica.xls and a translog functional form. You can im-

mediately switch to the LSDV or TFE model, respectively, by changing the

argument of SetMethod. A large part of this example corresponds to the

code of the previous subsection. However, as panel data are involved here

some things are different.

#include <oxstd.h>

#include <packages/gnudraw/gnudraw.h>

#import <packages/sfamb/sfamb>

main(){

decl fob = new Sfa();

fob.Load("USDAafrica.xls");

fob.SetMethod(CFE);

fob.SetConstant();

CFE is the estimator selected. Here, the function SetConstant does not

create a constant because it is not required. However, this line can be kept

for convenience. The function Ident identifies the panel structure of the
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data. The required information includes the variable names of the individuals

("ID") and the period ("time").

fob.Ident(fob.GetVar("ID"), fob.GetVar("time"));

Data transformation and model specification correspond to the previous

example. Note that U VAR or Z VAR are not available here.

decl inorm = 1;

fob.Renew(fob.PrepData(fob.GetVar("output"), inorm), "lny");

fob.Renew(fob.PrepData(fob.GetVar("labour"), inorm), "lnlab");

fob.Renew(fob.PrepData(fob.GetVar("land"), inorm), "lnland");

fob.Renew(fob.PrepData(fob.GetVar("machinery"), inorm), "lnmac");

fob.Renew(fob.PrepData(fob.GetVar("fertilizer"), inorm), "lnfert");

fob.Renew(fob.GetVar("time") - meanc(fob.GetVar("time")), "trend");

fob.Select(Y_VAR, {"lny", 0, 0});

fob.Select(X_VAR, {

"Constant", 0, 0,

"lnlab", 0, 0,

"lnland", 0, 0,

"lnmac", 0, 0,

"lnfert", 0, 0,

"trend", 0, 0});

fob.SetSelSample(-1, 1, -1, 1);

fob.SetPrintSfa(TRUE);

MaxControl(1000,10,TRUE);

fob.SetTranslog(1);

fob.Estimate();

For this model, there is no calculation of confidence bounds involved. The

efficiency scores can be extracted as point estimates using function TE.

fob.Renew(fob.TE(),{"TE"});

fob.Renew(fob.Ineff(),{"jlms"});

fob.TestGraphicAnalysis();

xxiii



The output of this program looks like follows. Additional information on

the panel structure is printed.

Sfa package version 1.0, object created on 10-02-2014

#groups: #periods(max): avg.T-i:

48.000 50.000 50.000

Constructing Squares and Cross-Products...done.

-CFE model-

---- Sfa ----

The estimation sample is: 1 - 2400

The dependent variable is: lny

The dataset is: USDAafrica.xls

A common intercept is not identified, and hence, there is no Constant.

Coefficient Std.Error t-value t-prob

lnlab 0.00883654 0.03048 0.290 0.772

lnland 0.677192 0.02304 29.4 0.000

lnmac 0.106177 0.009083 11.7 0.000

lnfert 0.0837343 0.007086 11.8 0.000

trend 0.00920993 0.0006800 13.5 0.000

.5*lnlab^2 0.138565 0.02083 6.65 0.000

.5*lnland^2 0.177254 0.02047 8.66 0.000

.5*lnmac^2 0.0121082 0.003350 3.61 0.000

.5*lnfert^2 0.0245012 0.002852 8.59 0.000

.5*trend^2 0.000407978 3.744e-005 10.9 0.000

lnlab*lnland -0.138300 0.02024 -6.83 0.000

lnlab*lnmac -0.0247345 0.007611 -3.25 0.001

lnlab*lnfert 0.00218990 0.005678 0.386 0.700

lnlab*trend -0.000134440 0.0005109 -0.263 0.792

lnland*lnmac 0.0243333 0.008190 2.97 0.003

lnland*lnfert -0.0319551 0.006178 -5.17 0.000

lnland*trend 0.000212194 0.0004843 0.438 0.661

lnmac*lnfert 0.00379000 0.001959 1.93 0.053

lnmac*trend 0.000346355 0.0001844 1.88 0.060

lnfert*trend -0.000171510 0.0001308 -1.31 0.190

This model is restricted to the normal half-normal case. Here, the esti-

mates of (the natural logarithms of) σ2
v and σ2

u are given.

ln{\sigma_v^2} -4.94563 0.1464 -33.8 0.000

ln{\sigma_u^2} -3.44008 0.1125 -30.6 0.000
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log-likelihood 1476.81739

no. of observations 2400 no. of parameters 22

AIC.T -2909.63478 AIC -1.21234782

mean(lny) 7.55183e-018 var(lny) 0.127523

lambda 2.123

The function TestGraphicAnalysis is used to create the graph depicted

in Figure A.3.
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Figure A.3: TE scores of the CFE model.

Example: member functions SetTranslog and Elast

The member function SetTranslog allows for convenient specification of a

translog functional form. In the following, we refer to the current instance of

the class as fob. Suppose your selection of regressors looks like this:

fob.Select(X_VAR, {

"Constant", 0, 0,

"lnx1", 0, 0,

"lnx2", 0, 0,

"lnx3", 0, 0,

"trend", 0, 0});

The default specification is Cobb-Douglas, i.e., SetTranslog(0), changing

the argument to 1 invokes construction of the respective square and cross
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terms of X VAR. In general notation:

ln yi = β0 +
K∑
j=1

βj ln xji +
1

2

K∑
j=1

K∑
l=1

βjl ln xji ln xli (A.12)

If your selection includes dummies the variables should be ordered like this:

fob.Select(X_VAR, {

"Constant", 0, 0,

"lnx1", 0, 0,

"lnx2", 0, 0,

"lnx3", 0, 0,

"trend", 0, 0,

"dummy1", 0, 0,

"dummy2", 0, 0});

Specification of a translog form is then possible by means of SetTranslog(4)

because only the first four regressors are used ("Constant" is ignored auto-

matically).

After estimation the member function Elast can be used to calculate the

output elasticity (εji) of each input for each observation:

εji = βj +
K∑
l=1

βjl ln xli (A.13)

The following example illustrates one possible way the function may be

used. Here, results are plotted as histograms (see Figure A.4). Note that

indexing starts at 0 in Ox (Elast returns a NTx2 matrix but only the first

column is considered here).

decl vEps1 = fob.Elast("lnx1");

decl vEps2 = fob.Elast("lnx2");

decl vEps3 = fob.Elast("lnx3");

decl vEpst = fob.Elast("trend");

DrawDensity(0, vEps1[][0]’, {"eps1"}, 1, 1, 0, 0, 0, 0, 1, 0, 1);

DrawDensity(1, vEps2[][0]’, {"eps2"}, 1, 1, 0, 0, 0, 0, 1, 0, 1);

DrawDensity(2, vEps3[][0]’, {"eps3"}, 1, 1, 0, 0, 0, 0, 1, 0, 1);

DrawDensity(3, vEpst[][0]’, {"epst"}, 1, 1, 0, 0, 0, 0, 1, 0, 1);

ShowDrawWindow();
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Figure A.4: Histograms of calculated elasticities (by observation).

A.6 Future developments

The basic version of SFAMB dates back to the mid 1990’s where the capa-

bility was restricted to cross-sectional data. As it now allows for panel data

and the literature on SF methods is broad as well as still growing there is

scope for potential extensions. Some related possibilities are mentioned here.

In the model framework of Chen et al. (2014) there are two ways to calcu-

late the individual effects. As an alternative to equation (A.11) the individual

“between estimator of αi” can be used. It could be implemented as an op-

tional function, involving a second maximization. Its availability would allow

to compare results and check the consequences for TE scores.

While the current focus of panel methods is on fixed effects estimation, a

more comprehensive supplement might involve random effects models. The

most recent SF approach using the CSN distribution is presented by Colombi

et al. (2014). Its specification is similar to equation (A.4) but the time-

invariant part is further decomposed into two residuals (persistent inefficiency

and time-invariant unobserved heterogeneity). Greene (2014) introduces com-

putational simplifications and labels the model as the “Generalized True Ran-

dom Effects SF model”.
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Since version 7, Ox supports parallel programming (usage of multiple pro-

cessors). The implementation of parallel loops in the package could lead to a

substantial increase in computational speed.
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