Systematics and biogeography of selected genera in Lejeuneaceae subfamily Lejeuneoideae

Dissertation for the award of the degree "Doctor rerum naturalium" (Dr.rer.nat.) of the Georg-August-Universität Göttingen

within the doctoral program Biology of the Georg-August-Universität Göttingen

submitted by Shanshan Dong

from Xi'an, China

Göttingen, August 2013

Thesis Committee

Prof. Dr. Jochen Heinrichs, LMU Department für Biologie, München University

PD. Dr. Alexander R. Schmidt, Courant Research Centre 'Geobiology', Georg-August-Universität Göttingen

Members of the Examination Board

Reviewer: Prof. Dr. Jochen Heinrichs, LMU Department für Biologie, München University

Second Reviewer: PD. Dr. Alexander R. Schmidt, Courant Research Centre (Geobiology), Georg-August-Universität Göttingen

Further members of the Examination Board:

Prof. Dr. Elvira Hörandl, Systematic Botany, Georg-August-Universität Göttingen

Prof. Dr. Hermann Behling, Department of Palynology and Climate Dynamics, Georg-August-Universität Göttingen

Prof. Dr. Holger Kreft, Free Floater Research Group - Biodiversity, Macroecology, and Conservation Biogeography, Georg-August-Universität Göttingen

Prof. Dr. Markus Hauck, Plant Ecology and Ecosystem Research, Georg-August-Universität Göttingen

Date of the oral examination: <u>18:20, November 6th, 2013</u>

Contents

Abstract1
Extended Summary
1. General Introduction3
2. Liverworts 4
3. Lejeuneaceae7
4. Molecular Studies 8
4.1. Diplasiolejeunea 10
4.2. <i>Lejeunea</i> 11
4.3. <i>Mi</i> crolejeunea
4.4. <i>Myriocolea</i>
4.5. Sphaerolejeunea 14
4.6. Bromeliophila 15
5. Discussion
5.1. Biogeography 17
5.2. Cryptic speciation
5.3. Taxa relocation19
5.4. Future Prospects 20
6. References
Appendix 1
Tramps, narrow endemics and morphologically cryptic species in the epiphyllous
liverwort <i>Diplasiolejeunea</i>
Appendix 283
Molecular phylogeny of the leafy liverwort Lejeunea (Porellales): Evidence for a

Neotropical origin, uneven distribution of sexual systems and insufficient taxonomy 83
Appendix 3141
Size doesn't matter - recircumscription of Microlejeunea (Lejeuneaceae, Porellales)
based on molecular and morphological evidence141
Appendix 4 175
Molecular study of Myriocolea: A 150-year old mystery solved: Transfer of the rheophytic
endemic liverwort Myriocolea irrorata to Colura 175
Appendix 5197
Sphaerolejeunea (Lejeuneaceae, Porellales) is a synonym of Lejeunea
Appendix 6 215
The Bromeliaceae tank dweller Bromeliophila (Lejeuneaceae, Porellales) is a member of
the Cyclolejeunea-Prionolejeunea clade215
Acknowledgments 240
Curriculum vitae

Abstract

Lejeuneaceae represent the most species-rich epiphytic lineage of leafy liverworts with approximately 1000 species in 68 currently accepted genera. This subcosmopolitan family has its centre of diversity in the humid tropics and constitutes an important component of cryptogamic. especially epiphytic diversity. Lejeuneaceae are characterized by incubous leaves divided into a large dorsal lobe and a small ventral, usually 1-3 toothed lobule which is broadly attached to the lobe along a keel, a hyaline papilla situated near the lobule apex, beaked perianths within each one archegonium, and the occasional occurrence of ocelli. Morphological and molecular studies resolved the family in two subfamilies and four main lineages. However, the systematic position of many taxa and their delimitations are still subject to controversy. To clarify these issues, my study focused on several critical genera using three molecular markers (cp rbcL and trnL-F, nrITS) and a dense taxonomic sampling. Phylogenetic analyses resolved the relationships within Diplasiolejeunea and Lejeunea, and clarified the systematic positions of Microlejeunea, Harpalejeunea, Myriocolea, Sphaerolejeunea, and Bromeliophila.

A molecular phylogenetic study of Diplasiolejeunea points to extensive morphological homoplasy but allows to assign three main clades to subgenera. The phylogeny supports a deep split into a Neotropical and a Paleotropical clade, the latter structured into Australasian, Asian and Afromadagascan lineages. The Neotropical clade is further subdivided into two geographically and ecologically separated lineages, the epiphytic subgenus Physolejeunea and the epiphyllous lowland montane subgenus Diplasiolejeunea. This strong correlation between ecological traits and geographical distribution range could indicate the rise of the Andes' influence in stimulating the diversification of *Physolejeunea*, perhaps by providing new habitats. A few Diplasiolejeunea species have intercontinental ranges. Range formation of Cenozoic Diplasiolejeunea is obviously a result of rare long distance dispersal, frequent short distance dispersal, extinction, recolonization, and niche conservatism.

Lejeunea is one of the largest genera of Lejeuneaceae. My molecular studies resolved Lejeunea in two robust lineages, corresponding to L. subg. Lejeunea and L. subg. Crossotolejeunea. Neotropical accessions dominate early diverging lineages of both main clades of *Lejeunea*. This pattern suggests an origin in the Neotropics followed by several colonizations from the Neotropics into the Paleotropics and vice versa. Most Afromadagascan clades are related to Asian clades. Several temperate Lejeunea radiations were detected. 82 of the 91 investigated Lejeunea species could be identified to species level. 54 species were represented by multiple accessions, of these, 25 paraor polyphyletic, 29 monophyletic. L. subg. Lejeunea shows a tendency of monoecy whereas L. subg. Crossotolejeunea shows a tendency of dioecy. Some dioecious as well as some monoecious species have disjunct ranges. Using molecular and morphological evidence, Harpalejeunea fischeri, H. filicuspis, H. latitans and Pluvianthus squarrosus were transferred to Microlejeunea. Two monotypic genera, rheophytic Myriocolea and epiphyllous Sphaerolejeunea were transferred to Colura and Lejeunea respectively. Our studies also confirmed the monophyly of Bromeliophila and provided evidence for a sister relationship of Bromeliophila and Prionolejeunea; this clade is in turn sister to Cyclolejeunea. Despite an extensive morphological overlap, Bromeliophila is not closely related to *Lejeunea*.

Extended Summary

This dissertation is about the molecular phylogenetic studies of several critical genera within family Lejeuneaceae. In **Extended Summary** chapter, section 1 to section 3 introduces Lejeuneaceae and reviews the state of research that has been done on this family. Section 4 reviews the molecular studies that I have done on this family. Section 5 summarizes results from all my studies and discusses possibilities for future work. The **Appendix** chapter includes all the publications during my studies on Lejeuneaceae.

1. General Introduction

Extant Viridiplantae includes two divisions, Chlorophyta and Streptophyta, the latter encompasses all embryophytes and a paraphyletic assemblage of Charophycean algae. The evolution and diversification of land plants from a group of Charophycean algae about 470-500 million years ago (Wodniok *et al.*, 2011) was a major event in the earth's history, which lead to the terrestrial ecosystem today. Instead of morphologically most complex *Charales* (Karol *et al.*, 2001; Qiu, 2008; Qiu *et al.*, 2006), recent studies resolved the unicellular and filamentous conjugating green algae *Zygnematales* (Timme *et al.*, 2012; Turmel *et al.*, 2007; Wodniok *et al.*, 2011) or a clade containing *Coleochaetales* and *Zygnematales* (Laurin-Lemay *et al.*, 2012; Turmel *et al.*, 2002; Turmel *et al.*, 2011) as the sister group of land plants.

Bryophytes are a collective term for liverworts, mosses, and hornworts and represent the earliest divergences of land plants. Although the precise divergent order of these early lineages has been the subject of debate (Garbary et al., 1993; Goremykin and Hellwig, 2005; Groth-Malonek and Knoop, 2005; Kelch et al., 2004; Nishiyama et al., 2004; Renzaglia et al., 2000), multiple lines of evidence suggest that three bryophyte clades form a paraphyletic grade at the base of embryophytes with liverworts resolved as the earliest divergence and mosses as sister to horworts and polysporangiophytes. Alternative topologies resolving the hornworts as sister to mosses plus polysporangiophytes are less well supported (Chang and Graham, 2011; Qiu, 2008; Qiu et al., 2006). The hypothesis behind this scenario is the pressure towards sporophytes' growing increasing autonomy as the major evolutionary drive, i.e., development of shoot

apical meristem, photosynthetic activity, water conducting tissue, and longevity (Ligrone *et al.*, 2012). The three bryophyte clades share a haploid dominant life cycle with unbranched sporophytes growing attached to the gametophytes. Sporophyte development in liverworts depends only on embryonic formative cell division and expansion. Moss sporophytes are mainly developed by a transient basal meristem which, however, acquires indeterminate activity in hornworts and polysporangiophytes (Kato and Akiyama, 2005; Ligrone *et al.*, 2012). Recent functional analysis reveals that KNOX1 genes are regulators of sporophytic (diploid) meristematic genes (Sakakibara *et al.*, 2008; Sano *et al.*, 2005; Singer and Ashton, 2007). KNOX2 genes are regulators maintaining diploid differentiation by suppression of the gametophytic development program (Sakakibara *et al.*, 2013). Reorganization and duplication of KNOX1/KNOX2 could help to establish the multi-cellule diploid generation.

2. Liverworts

Spore and tubular remains with apparent liverwort affinities date back to the Ordovician (ca. 470 Ma) (Wellman *et al.*, 2003). The earliest macrofossil assigned to liverworts is the Lower Devonian (407–411 Ma) *Riccardiothallus devonicus* (Guo *et al.*, 2012), which was recently added to the two other Devonian liverworts, *Metzgeriothallus sharonae* (385-392Ma) (Hernick *et al.*, 2008) and *Pallaviciniites devonicus* (Hueber) R.M.Schust. (Oostendorp, 1987). Different from other bryophytes, liverwort sporophytes mature within its gametophyte confines and lack differentiations of stomata, columella or meristematic tissue. Based on gametophyte growth forms, liverworts are traditionally subdivided into two main groups, the Marchantioids (complex thalloid liverworts) and the Jungermannioids (simple thalloid and leafy liverworts). Current estimates are close to 7500 liverwort species (Von Konrat *et al.*, 2010) in 376 genera and 74 families (Crandall-Stotler and Stotler, 2000), of which at least 85% are leafy Jungermannioids (Schuster, 1984).

During the past decade, molecular studies have greatly improved our understanding of liverwort phylogeny (Crandall-Stotler *et al.*, 2009; Crandall-Stotler *et al.*, 2005; Davis, 2004; Forrest and Crandall-Stotler, 2005; He-Nygren *et al.*, 2006; Heinrichs *et al.*, 2005a; Knoop, 2010; Lewis *et al.*, 1997; Vilnet *et al.*, 2009; Wahrmund *et al.*, 2008). Based on

the 18S rRNA gene. Capesius (1995) and Capesius and Bopp (1997) proposed that liverworts are polyphyletic. A 24 cp-rbcL dataset (Lewis et al., 1997) also tended to support this hypothesis albeit with weak support. However, subsequent comprehensive studies (Beckert et al., 1999; Duff and Nickrent, 1999; Nishiyama and Kato, 1999; Samigullin et al., 1998) with dense sampling and multiple genes unanimously supported the monophyly of liverworts. Stech and Frey (2001) divided liverworts into four classes: Jungermanniopsida, Marchantiopsida, Treubiopsida and Blasiopsida, based on trnL-F sequences. Heinrichs et al. (2005a), He-Nygren et al. (2006), and Forrest et al. (2006) revealed similar patterns but adopted three classes, Haplomitriopsida, Marchantiopsida and Jungermanniopsida. Meanwhile, the systematic positions of many liverwort groups have been clarified by molecular studies. Forrest and Crandall-Stotler (2004) and Crandall-Stotler et al. (2005) resolved a paraphyletic Metzgeriidae and pointed to extensive morphological homoplasy within this subclass. Wheeler (2000) supported the monophyly of subclass Marchantiidae encompassing three orders: Marchantiales, Sphaerocarpales, Monocleales, Boisselier-Dubayle et al. (2002) further pointed out that Sphaerocarpales and Monocleales are nested within Marchantiales. Their study on Marchantiidae indicated high degree of incongruence between molecular and morphological evidence, supporting a trend of morphological reduction in Marchantiidae in molecular and combined trees. Long (2006) proposed four new higher taxa for complex thalloid liverworts: families Dumortieraceae and Neohodgsoniaceae, orders Neohodgsoniales and Lunulariales. Schill et al. (2010) divided Mannia into the subgenera Mannia and Neesiella, and synonymized Asterella subg. Graciles with Mannia subg. Neesiella. Rubasinghe et al. (2011) resolved Cleveaceae in four lineages, corresponding to Sauteria, Peltolepis, Clevea and a narrowly defined Athalamia. So far, leafy liverworts were most intensively studied. Many familial and genus level molecular phylogenies have been produced, e.g., Adelanthaceae (Feldberg et al., 2010), Bryopteris (Hartmann et al., 2006), Frullania (Heinrichs et al., 2012a; Hentschel et al., 2009), Herbertus (Feldberg and Heinrichs, 2006), Lejeuneaceae (Sukkharak et al., 2011; Wilson et al., 2004; Wilson et al., 2007a), Lepidoziaceae (Cooper et al., 2012a; Cooper et al., 2011), Jubula (Pätsch et al., 2010), Leptoscyphus (Devos and Vanderpoorten, 2009), Lophozia (Vilnet et al., 2008), Plagiochila (Heinrichs et al., 2006), Porella (Hentschel et al., 2007b), Ptilidium (Kreier et al., 2010), and Scapania (Heinrichs et al.,

2012c).

Divergence time estimates suggest a Late Ordovician origin of Marchantiophyta, a separation of Haplomitriopsida from the remainder of liverworts in the Early Devonian, a split of Jungermanniopsida and Marchantiopsida in the Late Devonian, and a separation of Metzgeriidae and Jungermanniidae in the Late Carboniferous (Heinrichs et al., 2007). Leafy Jungermanniidae split into Porellales and Jungermanniales in the Early-Middle Permian but many extant genera and families date back only to the Cretaceous and Early Cenozoic. Other dating studies (Cooper et al., 2012b; Hartmann et al., 2006; Wilson et al., 2007b) also support that much of the family level diversity of liverworts was established in the Cretaceous, and much of the genus level diversity in the Cenozoic. Extensive diversification of leafy lineages within the Cenozoic might relate to changes in forest composition. The prosperity of angiosperm-dominated forests and increased forest complexity might provide various new niches for liverwort lineages to diversify (Cooper et al., 2012b; Heinrichs et al., 2007). Based on family level analysis of embryophyte divergence times, Fiz-Palacios et al. (2011) proposed that ferns and mosses radiated in the shadow of angiosperms while for liverworts and gymnosperms such patterns were not detected. However, Cooper et al. (2012b) doubted this "slowdown" in liverwort diversification patterns because a family level sampling often results in oversampling of deep nodes and strongly biased inferences towards downturns (Cusimano and Renner, 2010).

Liverworts are a group of simple plants with conserved morphological characters and long evolutionary history (Heinrichs *et al.*, 2007; Magill, 2010; Shaw *et al.*, 2011), which is often related to evolutionary stasis and lack of genetic potential (Frahm, 2000 & 2004; Pfeiffer, 2000). Geographic patterns within this lineage are thus sometimes attributed to ancient geological events (Devos and Vanderpoorten, 2009; Schaumann *et al.*, 2003; Stech and Frey, 2004). However, patterns on the first sight congruent with ancient vicariance scenarios may in fact conceal a complex mixture of relictual distributions and more recent speciation and dispersal events (Devos and Vanderpoorten, 2009). Recent molecular dating brings back dispersal hypotheses (Hartmann *et al.*, 2006; Heinrichs *et al.*, 2009) or invokes more complex scenarios for putative Gondwanan disjunctions including Laurasian migration (Davis *et al.*, 2002; Weeks *et al.*, 2005). The spores of

many widespread bryophyte species can withstand long periods of desiccation, high levels of UV radiation, and temperature extremes (van Zanten, 1978; Van Zanten and Pócs, 1981). Local and regional dispersal appears to be quite effective in many species, at least in those that regularly produce spores or propagules (Snall et al., 2004; Zartman et al., 2006; Zartman and Nascimento, 2006). Many studies also indicate bryophyte dispersal is sufficient even at continental scales to genetically homogenize plants (Cronberg, 2002; Grundmann et al., 2007; Van der Velde and Bijlsma, 2003; Vanderpoorten et al., 2008). In general, morphologically circumscribed bryophyte species usually have wider distribution ranges than vascular plants (Shaw, 2001). Intercontinental distribution ranges have been proposed for many liverwort species. These hypotheses have partly been confirmed by molecular data, e.g., for Frullania arecae and F. ericoides (Hentschel et al., 2009), F. tamarisci (Heinrichs et al., 2010), Herbertus juniperoideus (Feldberg et al., 2007), Metzgeria pubescens (Fuselier et al., 2011), Plagiochila boryana (Heinrichs et al., 2005b), P. corrugata (Heinrichs et al., 2004), Porella cordaeana (Heinrichs et al., 2011) and Porella swartziana (Hentschel et al., 2007b), as well as Scapania nemorea, S. paludosa, S. subalpina and S. undulata (Heinrichs et al., 2012c).

3. Lejeuneaceae

Leafy Jungermanniidae split in two orders assigned to as Porellales and Jungermanniales (Heinrichs *et al.*, 2005a). Jungermanniales contain mainly terrestrial species characterized by often diffusely distributed rhizoids, lateral and ventral branching, unicellular spores and frequent presence of mycorrhiza-like mutualisms. Porellales contain mainly epiphytic species and are characterized by lack of ventral branching and mycorrhiza-like mutualisms, rhizoids in bundles, frequent occurrence of endosporous protonemata, incubous foliation and the development of watersacs (Gradstein *et al.*, 2001; Heinrichs *et al.*, 2005a; Schuster, 1980).

Lejeuneaceae represents the most species-rich epiphytic family of liverworts with some 1000 species in 68 currently accepted genera (Gradstein, 2013). This family has its centre of diversity in the humid tropics and constitutes an important component of

cryptogamic, especially epiphytic diversity (Gradstein, 1997; Gradstein *et al.*, 2006). Studies show that up to 70% of liverwort species of tropical lowland forests belong to Lejeuneaceae (Cornelissen and Ter Steege, 1989; Zartman, 2003). This family is characterized by incubous leaves divided into a large dorsal lobe and a small ventral, usually 1-3 toothed lobule which is broadly attached to the lobe along a keel, a hyaline papilla situated near the lobule apex, beaked perianths within each one archegonium, and the occasional occurrence of ocelli.

Spruce (1884) accepted only two genera in Lejeuneaceae, the monospecific genus Myriocolea and the speciose genus Lejeunea which he classified in 39 subgenera. Subsequent authors classified Lejeuneaceae into two artificial groups, "Holostipae" and "Schizostipae" based on either entire or bifid underleaves (Evans, 1935; Schuster, 1963). Herzog (1957) divided Lejeuneaceae into Lejeuneoideae and Cololejeuneoideae based on the number of underleaves per leaf pair. Mizutani (1961) recognized that "Holostipae" and "Schizostipae" differ constantly by sporophytic characters, and he renamed the two subfamilies Ptychanthoideae (Holostipae) and Lejeuneoideae (Schizostipae). Later, Mizutani (1985) merged Cololejeuneoideae with Lejeuneoideae. Recent morphological and molecular phylogenetic analyses (Gradstein et al., 2003; Heinrichs et al., 2005a; Wilson et al., 2004; Wilson et al., 2007a) recovered a paraphyletic Ptychanthoideae (19 genera) and a monophyletic Lejeuneoideae (49 genera), the latter including three main lineages: Lejeuneeae, Brachiolejeuneeae, and Symbiezidiae. Ahonen and Muona (2003) excluded Nipponolejeunea from Lejeuneaceae and moved it to Jubulaceae whereas the two controversial genera Bryopteris and Metzgeriopsis were proved to be genuine members of this family based on molecular evidence (Wilson et al., 2004). Many genera in Lejeuneaceae were reduced to subgeneric rank or synonymy by molecular studies, e.g., Metzgeriopsis (Gradstein et al., 2006), Cystolejeunea (Wilson et al., 2004), Dendrolejeunea (Sukkharak et al., 2011), Taxilejeunea and Leucolejeunea (Wilson et al., 2007a), and Oryzolejeunea (Ye et al., 2013).

4. Molecular Studies

Subfamily Ptychanthoideae and Lejeuneoideae can be distinguished by a set of morphological characters, i.e., Lejeuneoideae have underleaves either bifid or entire and

usually 2-celled ventral merophytes in contrast to entire underleaves and at least 4celled ventral merophytes in Ptychanthoideae; Lejeuneoideae have an articulate seta (12+4 cell rows), erect capsule valves with 5-6 elaters per valve, capsule valve hinge horseshoe-, butterfly-, or broadly quadrate-shaped, not extending to the valve margin, whereas Ptychanthoideae have a non-articulate seta (16+4 cell rows), suberect to obliquely spreading capsule valves with 6-20 elaters per valve which are also fixed at the surface of the valve, and a rectangular valve hinge extending to the valve margin.

The subfamily Lejeuneoideae includes three tribes, Brachiolejeuneeae (8 genera), Symbiezidieae (1 genus) and Lejeuneeae (40 genera). Lejeuneeae, the largest tribe in Lejeuneaceae, is mainly characterized by usually bifid underleaves (rarely entire or lacking) with bistratose bases, segmented or homogeneous (Massula-type) oil bodies, occasional presence of ocelli, seta of 12 outer rows of cells, and the butterfly - or broadly quadrate-shaped valve hinge (Gradstein, 2013; Wilson *et al.*, 2007a). Based on molecular and morphological evidence, Gradstein (2013) classified Lejeuneeae into eight subtribes, Cheilolejeuneinae (4 genera), Echinolejeuneinae (3 genera), Cyclolejeuneinae (3 genera), Lepidolejeuneinae (2 genera), Lejeuneinae (5 genera), Ceratolejeuneinae (2 genera), Drepanolejeuneinae (2 genera), and Cololejeuneinae (12 genera).

My studies focused on several critical genera in two subtribes, Cololejeuneinae and Lejeuneinae. Previous morphological and molecular studies of Lejeuneaceae (Gradstein *et al.*, 2003; Wilson *et al.*, 2007a) have recovered these two subtribes as robust monophyletic lineages, which contain the majority of the family diversity. Species within these two groups are usually highly specialized to an epiphytic living and grow in extreme habitats, such as leaf surfaces of vascular plants and twigs. Some species in these two groups can even grow in periodically submerged running waters as rheophytes (Gradstein and Reiner-Drehwald, 2007; Heinrichs *et al.*, 2012e; Reiner-Drehwald and Gradstein, 1995). However, few studies (Hartmann *et al.*, 2006) have investigated genus level molecular phylogenies within Lejeuneeae genera. Considering widespread morphological homoplasy within Lejeuneeae and subsequent taxonomic confusions, it is necessary to apply molecular methods to study and test the systematic

positions and biogeography of these genera in a phylogenetic context. In the following paragraphs, I will introduce the genera studied in my molecular studies.

4.1. Diplasiolejeunea

Diplasiolejeunea is a pantropical genus growing on living leaves, fine twigs, and smooth-barked trunks, usually in well-illuminated sites from sea level to 4150 m. This genus is mainly characterized by one underleaf per leaf in combination with rather large but not sac-like leaf lobules (Zhu and So, 2001). Due to extensive morphological homoplasy, previous morphological systematic studies usually arrived at conflicting results (Grolle, 1966; Pócs, 2006; Pócs and Schäfer-Verwimp, 2006; Schäfer-Verwimp, 2004 & 2006; Schäfer-Verwimp and Reiner-Drehwald, 2009; Tixier, 1985). The uncertainty regarding species circumscription has led to divergent estimates of global diversity, ranging from 35 (Schuster, 1980) to 70 Diplasiolejeunea species (Schäfer-Verwimp, 2006). Most Diplasiolejeunea species seem to have rather narrow distribution ranges, in contrast to the pantropical ranges of *D. cavifolia* Steph., *D. cobrensis* Steph. and D. rudolphiana Steph. (Grolle, 1995; Zhu and So, 2001). Hence, it would be necessary to test the species concept, as well as to carve out the distribution pattern of this genus and explore the possible reasons for its range formation. To this end, my comprehensive study on Diplasiolejeunea in Appendix 1 sampled 122 accessions covering the whole range of the genus, three genomic regions (cp rbcL and trnL-F, nrITS), and six morphological and ecological characters. The recovered topology and ancestral area reconstructions show geographically separated clades as well as ecologically and altitudinally separated clades. My study supports a deep split into a Neotropical and a Paleotropical clade, the latter structured into Australasian, Asian and Afromadacascan lineages. Presented results confirm the ranges of two pantropical species (*D. cavifolia*, *D. rudolphiana*), provide evidence for dispersal from the Neotropics into the Paleotropics, indicate speciation along altitudinal gradients and demonstrate extensive morphological homoplasy. I propose a revised supraspecific classification of Diplasiolejeunea into a predominantly Paleotropical subgenus Physolejeunea and predominantly Neotropical subgenera Austrolejeuneopsis and Diplasiolejeunea, the former containing mainly epiphytic species, the latter mainly epiphylls.

4.2. Lejeunea

Lejeunea Lib. is one of the most species rich and taxonomically complex genera of Lejeuneaceae. This genus is currently circumscribed by long-inserted leaves, divided or undivided underleaves, leaf lobules with an unreduced first tooth and a marginal hyaline papilla, small, segmented or homogeneous oil bodies, lack of ocelli, lejeuneoid innovations, unwinged female bracts and inflated perianths with 0-5 smooth or toothed wings. Lejeunea was first described by Libert (1820) to include only two species: Cololejeunea calcarea and Lejeunea cavifolia (Grolle, 1971). Adopting a broad genus concept, Gottsche et al. (1844-1847) described ca. 300 tropical species of Lejeunea. Spruce (1884) further grouped all the Lejeuneaceae elements into two genera, the monospecific genus Myriocolea and the speciose genus Lejeunea. Later on, Stephani (1898-1925) provided a global treatment of liverworts; his Species Hepaticarum included numerous new species, many of which were known only from single accessions, creating a multitude of synonyms. Most binomials in *Lejeunea* are now assigned to other genera or are reduced to synonyms. Reiner-Drehwald accepted 165 binominals out of 1749 Latin American Lejeunea names as effectively belonging to this genus (Reiner-Drehwald, 1999). Revisions and updated checklists of Lejeunea for different regions have also been published, i.e., 12 species were recognized for Japan (Mizutani, 1961), 30 species for China (Piippo, 1990), 9 species for Europe (Grolle, 1983), 39 species for Sub-Saharan Africa (Wigginton and Grolle, 1996), 25 species for East African Islands (Grolle, 1995), 16 species for North America (Schuster, 1980), 12 species for southern South America (Solari, 1983), and 41 species for Brazil (Reiner-Drehwald, 2007). However, the exact number of Lejeunea species remains unclear due to a lack of comprehensive taxonomic studies (Gradstein et al., 2003) and scarcity of diagnostic morphological characters (Gradstein et al., 2003; Hartmann et al., 2006; Heinrichs et al., 2009; Reiner-Drehwald and Ilkiu-Borges, 2007; Renner et al., 2011; Schuster, 1983; Wiggington, 2004).

Meanwhile, subgenus circumscription is also a major problem in *Lejeunea*. Spruce (1884) described 39 subgenera in *Lejeunea*, of which the majority was later elevated to genus rank by Schiffner (1893) since Spruce's "*Lejeunea*" represents nearly the whole

family Lejeuneaceae as it is now understood. Subsequent authors (Gradstein and Reiner-Drehwald, 2007; Grolle, 1984a & 1984b & 1995; Schuster, 1963) added further 13 subgenera to Lejeunea. Most of these subgenera, were not accepted by other workers (Reiner-Drehwald, 1999). Recent morphological and molecular studies indicated that many previously defined *Lejeunea* subgenera do not merit subgeneric status and were reduced to synonyms of Lejeunea, namely, subg. Apolejeunea and Hygrolejeunea (Schuster, 1980), Crossotolejeunea (Reiner-Drehwald and Goda, 2000), Inflatolejeunea and Macrolejeunea (Reiner-Drehwald and Schafer-Verwimp, 2008b), and Taxilejeunea (Wilson et al., 2007a). Subgenus Microlejeunea was treated as an independent genus by many recent authors (Ah-Peng and Bardat, 2011; Bischler et al., 1963; Grolle, 1995). By now, eight Lejeunea subgenera are provisionally accepted, Chaetolejeunea (Schuster, 1963), Heterolejeunea (Grolle, 1995), Nanolejeunea (Schuster, 1980), Neopotamolejeunea (Gradstein and Reiner-Drehwald, 2007), Otigoniolejeunea (Spruce, 1884), Pleurolejeunea (Schuster, 1963) and Sphaerocolea (Schuster, 1963). Subgenus Lejeunea was considered to be a polymorphic group including nine sections (Schuster 1957, 1980). A comprehensive study of Lejeunea would hopefully establish the species limits as well as an improved subgenus circumscription.

Compared to three pantropical species in *Diplasiolejeunea*, 25.6% (21/82) of the investigated *Lejeunea* species show disjunct ranges, many of these species span several continents. Molecular phylogenetic studies of this genus and subsequent ancestral area reconstruction would be crucial to recover the distribution pattern of *Lejeunea*, providing insights into the range formation of the genus. In **Appendix 2**, I produced a large *Lejeunea* phylogeny incorporating three genomic regions (nrITS, cp *rbc*L and *trn*L-F) and 332 accessions covering the whole distribution range of the genus. My study recovered two major lineages differing in sexuality tendencies, which were subsequently assigned to two subgenera, subgenus *Lejeunea* and subgenus *Crossotolejeunea*. Nearly half of the species (25/54) with multiple accessions were resolved as para- or polyphyletic. Ancestral area reconstructions pointed to a Neotropical origin of *Lejeunea* and confirmed the previous hypothesis that the tropics are the cradle and museum of Lejeuneaceae diversity.

4.3. Microlejeunea

Microlejeunea has been treated either as a genus (Ah-Peng and Bardat, 2011; Bischler *et al.*, 1963; Grolle, 1995) or as a subgenus of *Lejeunea* (Schuster, 1980; Thiers, 1997). Both treatments seem consistent with the available phylogenies (Ahonen and Muona, 2003; Wilson *et al.*, 2004) which placed *Microlejeunea* in a sister relationship to *Lejeunea*. Wilson *et al.* (2007a) also resolved the monospecific genus *Pluvianthus* and *Harpalejeunea* in a sister relationship to *Lejeunea*, whereas this study lacked representatives of *Microlejeunea*. Therefore, the systematic position of *Pluvianthus* is still in need of further investigations with a dense sampling of the related genera.

Morphologically, *Microlejeunea* is characterized by sinuose stems, presence of three medullary cells, perpendicular branching, large lobules being usually longer than wide, dimorphic lobules, small bifid underleaves, bracts being larger than the leaves and often shortly connate at their bases, male bracts being distinctly larger than the leaves (Bischler *et al.*, 1962), a tendency to produce ocelli (Schuster, 1957), and the presence of lejeuneoid subgynoecial innovations (Grolle, 1995). *Pluvianthus* differs from *Lejeunea* by its rather large plant size, utriculiform leaves, laminar elaters, and capsule microanatomy (Schuster and Schäfer-Verwimp, 1995).

Harpalejeunea closely resembles *Microlejeunea* but has underleaves with diverging lobes, those of *Microlejeunea* being forward directed (Grolle and Reiner-Drehwald, 1999). The generic circumscription of *Harpalejeunea* is still subject to controversy. Grolle and Reiner-Drehwald (1999) separated *Harpalejeunea* by its lejeuneoid subgynoecial innovations from *Drepanolejeunea* with pycnolejeuneoid innovations. In contrast, Schuster (1980) considered *Harpalejeunea filicuspis* to be an element of *Drepanolejeunea*, despite the presence of lejeuneoid subgynoecial innovations. In **Appendix 3** I tested the current genus concepts by including representatives of *Harpalejeunea*, *Microlejeunea*, *Pluvianthus*, and *Drepanolejeunea* in a three-marker dataset of Lejeuneeae. My study constantly placed *Pluvianthus* and three *Harpalejeunea* species within the *Microlejeunea* clade. Based on the molecular lineages recovered and a reinterpretation of morphological traits, the above four species were transferred to

Microlejeunea. Microlejeunea and Harpalejeunea are accepted at genus level.

4.4. Myriocolea

Spruce (1884) accepted only two genera in the Lejeuneaceae, the monotypic Myriocolea with its single representative Myriocolea irrorata and the speciose genus Lejeunea with hundreds of species. This rheophytic genus Myriocolea differs from other Lejeuneaceae species by the exclusive presence of *Radula*-type branches, transversely inserted leaves without well delimited lobuli, presence of numerous antheridia per bract, and an extraordinary high number of clustered gynoecia (Gradstein et al., 2004; Thiers, 1983). The systematic position of Myriocolea is controversial. Schuster (1963) set up a new subfamily Myriocoleoideae to include Myriocolea and Cladocolea, a taxon treated as a synonym of Lejeuneoideae by Gradstein (1994). The latter treatment was also supported by cladistic analyses of morphological character states of Lejeuneaceae (Gradstein et al., 2003) where Myriocolea was resolved in an unsupported Cololejeunea-Tuyamaella clade. This relationship was also recovered by several molecular phylogenies based on one or two molecular markers (Gradstein et al., 2006; Wilson et al., 2004). Phylogenetic analyses of a comprehensive four molecular marker set of Lejeuneaceae consistently located Myriocolea in a clade with Macrocolura and Colura (Wilson et al., 2007a). However, lack of comprehensive sampling of Colura (three Colura species) hampered the discovery of the true relationships of Myriocolea. In Appendix 4, I present the results of phylogenetic analyses of a dataset comprising two chloroplast genome regions and one nuclear genome region and a comprehensive taxonomic sampling of Macrocolura, Myriocolea and Colura. Molecular phylogenetic analyses resolved Myriocolea within Colura.

4.5. Sphaerolejeunea

Sphaerolejeunea Herzog was set up for a single species, *S. umbilicata* Herzog and based on a single specimen collected by E.P. Killip in 1922 in the Andes of Colombia (Herzog, 1938). This epiphyllous species stands out by leaf lobes bordered by several rows of hyaline cells, basally leafless gynoecial branches and perianths lacking both a beak and keels. These perianths hardly exceed the surrounding vegetative leaves

(Herzog, 1938) and open in an umbilicus at their dorsal side (Reiner-Drehwald and Drehwald, 2002). In 2001 a second locality of *Sphaerolejeunea umbilicata* was discovered in the Andes of northern Peru (Reiner-Drehwald and Drehwald, 2002). The respective herbarium specimen allowed for a detailed morphological investigation of the species and the proposal of a close relationship of *Sphaerolejeunea* and *Lejeunea* (Reiner-Drehwald and Drehwald, 2002). In the framework of a molecular phylogenetic study of *Lejeunea*, three molecular markers of *Sphaerolejeunea* were sequenced and included in a large sequence alignment of Lejeuneaceae to clarify its systematic position (**Appendix 5**). *Sphaerolejeunea* was resolved within *Lejeunea* and transferred to this genus, as *Lejeunea drehwaldii* Heinrichs & Schäfer-Verwimp.

4.6. Bromeliophila

Bromeliophila R.M. Schust. was established for Peltolejeunea natans Steph., a Brazilian endemic, growing exclusively in the tanks of Bromeliaceae (Schuster, 1994), with the lower parts of the shoots often submerged and only the upper parts above the water. Schuster (1994) pointed to close relationships of Bromeliophila and Lejeunea, a view shared by Gradstein (1997) who considered the generic status to be "critical". However, Gradstein described a second Neotropical species, Bromeliophila helenae Gradst. Earlier, Grolle (1985) transferred Peltolejeunea natans to Lejeunea, as Lejeunea natans (Steph.) Grolle. Recent molecular phylogenetic studies of Lejeuneaceae confirmed a general trend towards the acceptance of larger genera (Humphreys and Linder, 2009), especially merging small or monotypic genera into larger ones. A similar result was also expected for Bromeliophila since several authors proposed close relationships (Gradstein, 1997; Schuster, 1994) of Bromeliophila and Lejeunea based on their extensive morphological overlap or treated the generitype *Peltolejeunea natans* as an element of Lejeunea (Grolle, 1985). In Appendix 6, the systematic position of Bromeliophila is clarified in the framework of a comprehensive molecular phylogenetictaxonomic study of Lejeuneaceae. This molecular study supports a sister relationship of Bromeliophila and Prionolejeunea, which is in turn sister to Cyclolejeunea.

5. Discussion

Molecular phylogenetic studies in several genera of Lejeuneeae allow deeper insights into this taxonomically complex group. The phylogeny of the pantropical genus Diplasiolejeunea shows ecologically as well as geographically separated lineages. Based on the recovered topology and the distribution of subgenus type species, three major clades were formally named, leading to the acceptance of a pantropical subg. Physolejeunea, a predominantly neotropical epiphytic subg. Austrolejeunopsis, and a predominantly neotropical epiphyllous subg. Diplasiolejeunea. Ancestral area reconstructions of Diplasiolejeunea support dispersal scenarios in shaping current distribution patterns, which is also corroborated by the Lejeunea biogeography reconstruction with 25.6% disjunct species (21/82). The Lejeunea phylogeny contradicts with previous subgenus classification and many existing species concepts. Based on the presence of type species in each clade, we assign subgenus Lejeunea to the major clade I and subgenus Crossotolejeunea to the major clade II. These two major clades differ in sexuality tendencies, clade I shows a tendency of monoecy whereas clade II shows more often dioecy. Nearly half of the species (44.6%) with multiple accessions are para- or polyphyletic, of these, monoecious taxa contribute to 66.7%, diocious taxa take 33.3%. Majority (70.4%) of diocious taxa, in contrast to 42.9% in monecious taxa, form monophyletic lineages. Monecious taxa (27.3%) as well as diocious taxa (23.7%) show disjunct distribution range.

The presented studies clarified the systematic positions of several controversial taxa, based on molecular phylogenies and a reinterpretation of morphological characters. Monotypic *Myriocolea* is transferred to *Colura*, monotypic *Pluvianthus* and three *Harpalejeunea* species are transferred to *Microlejeunea*, monotypic *Sphaerolejeunea* is transferred to *Lejeunea*, adding to the growing evidence that many small genera nest in larger ones. However, *Bromeliophila* breaks the rule. *Bromeliophila* was previously believed to be an element of *Lejeunea* based on its extensive morphological overlap with *Lejeunea* whereas molecular studies unexpectedly placed *Bromeliophila* in a sister relationship to *Prionolejeunea*.

5.1. Biogeography

The clear geographic pattern shown in *Diplasiolejeunea* in **Appendix 1** is surprising with regard to the high dispersal ability of spore plants (van Zanten, 1978; Vanderpoorten et al., 2010; Wolf et al., 2001), and has not yet been documented for any other liverwort genus. Diplasiolejeunea splits into pantropical subgenus Physolejeunea, neotropical epiphytic subgenus Austrolejeuneopsis, and neotropical epiphyllous subgenus Diplasiolejeunea. Epiphytic subgenus Austrolejeuneopsis occurs in high altitudinal Andean cloud forests whereas epiphyllous subgenus *Diplasiolejeunea* occurs in lowland forests and low montane regions. This strong correlation could point to the rise of Andes' influence on the assembly of *Diplasiolejeunea* diversity, possibly by stimulating the diversification of the subgenus Austrolejeuneopsis, perhaps by providing new habitats. The clear geographical pattern shown in Diplasiolejeunea could be indicative of Gondwanan vicariance, however, divergence time estimates suggest an origin of Diplasiolejeunea in the Oligocene (Wilson et al., 2007b), posterior to the Mesozoic breakup of the Southern landmass. Therefore, a combination of frequent short distance dispersal, occasional long distance dispersal, extinction and recolonization, as well as niche conservatism was invoked to explain the observed pattern.

The biogeographical pattern recovered in *Lejeunea* in **Appendix 2** is not so distinct, compared with that observed in *Diplasiolejeunea*. Both main clades of *Lejeunea* show a more even representation of putative regions of endemism, indicating that long distance dispersal is more frequent in *Lejeunea* than in *Diplasiolejeunea* as long as we assume similar ages for both genera. Both S-diva and Mesquite reconstructions indicated that *Lejeunea* originated and initially diversified in the Neotropics with subsequent dispersal into other tropical as well as temperate regions. A few temperate lineages nested within tropical clades. This pattern appears to be consistent with the role of the tropics as a cradle and museum of diversity, and mirrors observations for the whole family Lejeuneaceae.

In the systematic examination of *Myriocolea*, 17 *Colura* accessions show a geographic structure into Asian-Australasian, Neotropical and African lineages. However, whether

this pattern would sustain or not when more accessions are included, is still left to future studies.

5.2. Cryptic speciation

An important question in bryophyte systematics is whether disjunctive geographical distributions, morphological uniformity, and long evolutionary history, reflect evolutionary stasis or if morphological uniformity masks underlying genetic complexity (Shaw et al., 2002). Traditional hypotheses regarding liverworts as unmoving, unchanging sphinxes of the past (Crum, 1972) is frequently challenged. Increasing molecular phylogenetic studies in bryophytes reveal the existence of numerous cryptic biological species that have accumulated genetic divergence without concordant morphological disparities. Morphologically cryptic biological entities have been observed in the general Conocephalum (Odrzykoski and Szweykowski, 1991), Frullania (Ramaiya et al., 2010), Leptoscyphus (Vanderpoorten et al., 2010), Marchesinia (Heinrichs et al., 2009), Metzgeria (Fuselier et al., 2009), Pellia (Odrzykoski et al., 1996), Ptilidium (Kreier et al., 2010), and are also present in Diplasiolejeunea and Lejeunea. For example, the pantropical species D. cavifolia is regarded to be a somewhat variable species (Schäfer-Verwimp and Reiner-Drehwald, 2009) including forms with strongly T-shaped lobule teeth (earlier recognized as D. matoubae and D. zacatepecensis) as well as forms without such teeth. This species forms a robust lineage with two main clades; however, the different morphotypes are present in both. The two clades occur sympatrically in the West Indies, and can thus neither be separated using geographical nor morphological evidence. Many cryptic speciations occur along altitudinal gradients, i.e., D. pauckertii, L. reflexistipula. L. reflexistipula is an Andean species, characterized by entire incubous underleaves and relatively large size. Molecular studies resolved this species into two robust clades, one from lower altitude, the other from higher altitude including two accessions of *L. reflexistipula* var. costaricensis and three accessions of *L. reflexistipula*. The two clades cannot be separated by morphological evidence, indicating cryptic speciation along atlitudinal gradients.

5.3. Taxa relocation

Liverworts are a group of simple and primitive plants with a long evolutionary history. Traditional taxonomy on this group usually relied mainly on morphological descriptions and observations. The resulting classification scheme was often problematic due to extensive morphological homoplasy, especially in the family Lejeuneaceae. Recent molecular studies have greatly improved the classification of liverworts. Based on the recovered lineages and reinterpretation of morphological characters, numerous smaller genera were incorporated into larger ones.

My phylogenetic study in **Appendix 3** resolved a monotypic genus *Pluvianthus* and three *Harpalejeunea* species, namely *H. filicuspis*, *H. fischeri*, and *H. latitans* in a clade with several species of *Microlejeunea* including the generitype *M. africana*. Morphologically these species shared with *Mircrolejeunea* three medullary cells, a tendency to produce ocelli and forwardly directed underleaf lobes. Typical *Harpalejeunea* are similar to *Microlejeunea* in many aspects, but differ from *Microlejeunea* by their widely diverging underleaf lobes (Grolle and Reiner-Drehwald, 1999). Hence a transfer of the above three species of *Harpalejeunea* to *Microlejeunea* is justified both by molecular and morphological data.

Molecular studies in **Appendix 4** resolved *Myriocolea irrorata* in the *Colura* sect. *Colura* clade. Morphologically, these two genera share one underleaf per leaf (also present in *Diplasiolejeunea* and *Macrocolura*) instead of one underleaf per leaf pair as presented in the rest Lejeuneaceae (Gradstein *et al.*, 2003). *Myriocolea irrorata* differs from *Colura* by lack of sack-like lobules, whereas a tendency to lose lobules is also seen in *Colura* sect. *Heterophyllum* and *Colura corynephora*. Therefore, *Myriocolea irrorata* is transferred to *Colura*. The rheophytic, nutrient-rich habitat may explain the untypical leaf development of *Colura irrorata* because a structure for water storage or zoophagy is not needed in such an environment. Rheophytes from different taxonomic groups exhibit a parallel development, because running waters and regular flooding shape them into flood resistant plants (Van Steenis, 1981), e.g., *Myriocoleopsis* and *Myriocolea* (Gradstein *et al.*, 2004), *Lejeunea* subg. *Neopotamolejeunea* (Gradstein and Reiner-

Drehwald, 2007), and Cololejeunea stotleriana (Gradstein et al., 2011).

Reiner-Drehwald and Drehwald (2002) pointed out that *Sphaerolejeunea* may represent the sister group of *Lejeunea*. Despite many similarities, *Sphaerolejeunea* differs from *Lejeuna* by the development of a second lobule tooth, gynoecial branches without leaves at the base, beakless perianths being umbilicate on the dorsal side and valves with five marginal elaters lacking thickenings. However, the molecular studies in **Appendix 5** indicate that *Sphaerolejeunea* is nested in *Lejeunea* and that its morphological peculiarities represent autapomorphies of a *Lejeunea* species.

Although there is a general trend towards merging smaller genera into larger ones, a few exceptions break the rule. Morphologically, *Bromeliophila* stands out by its 5-keeled perianth with each keel doubled winged, and entire leaf margin in contrast to 2-keeled perianth and denticulate leaf margin in *Prionolejeunea* and *Cyclolejeunea*. Phylogenetic analyses in **Appendix 6** confirmed the monophyly of *Bromeliophila* and provided evidence for a sister relationship of *Bromeliophila* and *Prionolejeunea*; this clade is in turn sister to *Cyclolejeunea*. *Bromeliophila* and *Prionolejeunea* share *Lejeunea* type gynoecial innovations in contrast to pycnolejeunea with ocelli and rounded gemmae, monospecific subgenus *Hyalolejeunea* without ocelli, and monospecific subgenus *Nephrolejeunea* with elongate gemmae and ocelli.

5.4. Future Prospects

Previous molecular and morphological studies divided Lejeuneaceae into 2 subfamilies and 4 lineages but deep nodes remained unsupported. Current phylogenetic study of several genera within subfamily Lejeuneoideae clarified their circumscription whereas the inter-relationships among many problematic taxa remains unclear, i.e. *D. pauckertii* group, *D. pellucida-caribea* complex, *L. flava* complex, *L. anisophylla* complex. Future studies incorporating molecular markers (Chang and Graham, 2011; Qiu *et al.*, 2006), cytological studies, spore ultra-structure studies (von Konrat *et al.*, 2012), geometric morphometric analysis (Renner, 2012) and phylogenomic studies (Timme *et*

al., 2012) may attain better phylogenetic resolution to these problems.

Recent biogeographical studies (Feldberg *et al.*, 2007; Feldberg *et al.*, 2010; Hartmann *et al.*, 2006; Heinrichs *et al.*, 2006) on leafy liverworts unanimously pointed to dispersal scenarios in shaping current distribution ranges. My studies on *Lejeunea* and *Diplasiolejeunea* also confirm this pattern. However, the discussion of the impact of geological events cannot be detailed without reasonable time constraints. So far, only several dating studies (Cooper *et al.*, 2012b; Hartmann *et al.*, 2006; Heinrichs *et al.*, 2007; Wilson *et al.*, 2007b) have been conducted in leafy liverworts. These studies all point to the origin of many genera of leafy liverworts in the Cretaceous or Cenozoic. Future dating studies incorporating more fossil records and dense taxon sampling will be essential to illustrate the general biogeographical pattern of Lejeuneaceae and the impacts of geological events.

Plant geographical pattern is affected by sexual system, spore dispersal ability and plant ecological fitness. Thus future studies in these areas will help to better illustrate the dynamics of plant genetic structure. To achieve this point, population studies at species level (Bączkiewicz, 2013), spore germination studies, and hybrid speciation studies, would be of prime importance. Hybridization (Shaw, 1998) and polyploidy in bryophytes is drawing increasingly attention (Self, 2002; Shaw and Goffinet, 2000). Hybridization is an important type of evolution (Natcheva and Cronberg, 2004), which might be the reason for the lack of support in some nodes. However, hybridization in leafy liverworts has only been demonstrated in European *Porella* × *baueri*, an allopolyploid derivative of *P. cordaeana* and *P. platyphylla* (Boisselierdubayle and Bischler, 1994). Heinrichs *et al.* (2011) also suggest an ancient hybrid origin of *P. platyphylloidea* from crossings of *P. cordaeana* and *P. platyphylla* s.str., inferred from the incongruent signals of chloroplast and nuclear markers.

6. References

Ah-Peng, C. and Bardat, J. (2011). *Microlejeunea strasbergii* sp. nov. (Lejeuneaceae) from Réunion Island (Mascarenes). *The Bryologist* **114**, 668–673.

- Ahonen, I. and Muona, J. (2003). Inferring the phylogeny of the Lejeuneaceae (Jungermanniopsida): A first appraisal of molecular data. *The Bryologist* **106**, 297-308.
- Bączkiewicz, A. (2013). Genetic diversity of leafy liverwort species (Jungermanniidae, Marchantiophyta) in Poland: regional genetic differentiation of leafy liverworts. *Biodiversity: Research and Conservation* 27, 55–76.
- Beckert, S., Steinhauser, S., Muhle, H. and Knoop, V. (1999). A molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrial *nad*5 gene. *Plant Syst. Evol.* **218**, 179-192.
- Bischler, H., Bonner, C.E.B. and Miller, H.A. (1963). Studies in Lejeuneaceae, VI. The genus *Microlejeunea* Steph. in Central and South America. *Nova Hedwigia* **5**, 359–411.
- Bischler, H., Miller, H.E. and Bonner, C.E.B. (1962). Studies in Lejeuneaceae IV: The typification of the genus *Microlejeunea*. *Nova Hedwigia* **4**, 173–187.
- Boisselier-Dubayle, M.C., Lambourdiere, J. and Bischler, H. (2002). Molecular phylogenies support multiple morphological reductions in the liverwort subclass Marchantiidae (Bryophyta). *Mol. Phylogenet. Evol.* **24**, 66-77.
- Boisselier-Dubayle, M.C. and Bischler, H. (1994). A combination of molecular and morphological characters for delimitation of taxa in European *Porella*. *J. Bryol.* 18, 1-11.
- Capesius, I. (1995). A molecular phylogeny of bryophytes based on the nuclear encoded 18S rRNA genes. *J. Plant Physiol.* **146**, 59-63.
- Capesius, I. and Bopp, M. (1997). New classification of liverworts based on molecular and morphological data. *Plant Syst. Evol.* **207**, 87-97.
- Chang, Y. and Graham, S.W. (2011). Inferring the higher-order phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set. *Am. J. Bot.* **98**, 839-849.

- Cooper, E.D., Henwood, M.J. and Brown, E.A. (2012a). A molecular phylogeny of the *Lepidozia* generic complex supports re-circumscription of the Lepidozioideae. *Mol. Phylogenet. Evol.* **65**, 10-22.
- Cooper, E.D., Henwood, M.J. and Brown, E.A. (2012b). Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. *Biol. J. Linn. Soc.* **107**, 425-441.
- Cooper, E.D., Shaw, A.J., Shaw, B., Henwood, M.J., Heslewood, M.M. and Brown, E.A. (2011). A multi-locus molecular phylogeny of the Lepidoziaceae: laying the foundations for a stable classification. *Mol. Phylogenet. Evol.* **59**, 489-509.
- Cornelissen, J.H.C. and Ter Steege, H. (1989). Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. *J. Trop. Ecol.* **5**, 131–150.
- Crandall-Stotler, B. and Stotler, R.E. (2000). Morphology and classification of the Marchantiophyta. Reino Unido, Cambridge University Press.
- Crandall-Stotler, B., Stotler, R.E. and Long, D.G. (2009). Phylogeny and classification of the Marchantiophyta. *Edinb. J. Bot.* **66**, 155–198.
- Crandall-Stotler, B.J., Forrest, L.L. and Stotler, R.E. (2005). Evolutionary trends in the simple thalloid liverworts (Marchantiophyta, Jungermanniopsida subclass Metzgeriidae). *Taxon* **54**, 299-316.
- Cronberg, N. (2002). Colonization dynamics of the clonal moss *Hylocomium splendens* on islands in a Baltic land uplift area: reproduction, genet distribution and genetic variation. *J. Ecol.* **90**, 925-935.
- Crum, H.A. (1972). The geographic origins of the mosses of North America's Eastern deciduous forest. *J. Hattori Bot. Lab.* **35**, 269-298.
- Cusimano, N. and Renner, S.S. (2010). Slowdowns in diversification rates from real phylogenies may not be real. *Syst. Biol.* **59**, 458-464.

- Davis, C.C., Bell, C.D., Mathews, S. and Donoghue, M.J. (2002). Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. *Proc. Natl. Acad. Sci.* U.S.A. **99**, 6833-6837.
- Davis, E.C. (2004). A molecular phylogeny of leafy liverworts (Jungermanniidae: Marchantiophyta). *Monogr. Syst. Bot. Missouri Bot. Gard.* **98**, 61–86.
- Devos, N. and Vanderpoorten, A. (2009). Range disjunctions, speciation, and morphological transformation rates in the liverwort genus *Leptoscyphus*. *Evolution* 63, 779-792.
- Duff, R.J. and Nickrent, D.L. (1999). Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. *Am. J. Bot.* **86**, 372-386.
- Evans, A.W. (1935). The anatomy of the stem in the Lejeuneae. *Bull. Torrey Bot. Club.* **62**, 259-280.
- Feldberg, K. and Heinrichs, J. (2006). A taxonomic revision of *Herbertus* (Jungermanniidae : Herbertaceae) in the Neotropics based on nuclear and chloroplast DNA and morphology. *Bot. J. Linn. Soc.* **151**, 309-332.
- Feldberg, K., Hentschel, J., Wilson, R., Rycroft, D.S., Glenny, D. and Heinrichs, J. (2007).
 Phylogenetic biogeography of the leafy liverwort *Herbertus* (Jungermanniales, Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution. *J. Biogeogr.* 34, 688-698.
- Feldberg, K., Vana, J., Long, D.G., Shaw, A.J., Hentschel, J. and Heinrichs, J. (2010). A phylogeny of Adelanthaceae (Jungermanniales, Marchantiophyta) based on nuclear and chloroplast DNA markers, with comments on classification, cryptic speciation and biogeography. *Mol. Phylogenet. Evol.* 55, 293-304.
- Fiz-Palacios, O., Schneider, H., Heinrichs, J. and Savolainen, V. (2011). Diversification of land plants: insights from a family-level phylogenetic analysis. *BMC Evol. Biol.* **11**.

- Forrest, L.L. and Crandall-Stotler, B.J. (2004). A phylogeny of the simple thalloid liverworts (Jungermanniopsida, Metzgeriidae) as inferred from five chloroplast genes. *Monogr. Syst. Bot. Missouri Bot. Gard.* **98**, 119-140.
- Forrest, L.L. and Crandall-Stotler, B.J. (2005). Progress towards a robust phylogeny for the liverworts, with particular focus on the simple thalloids. *J. Hattori Bot. Lab.*, 127-159.
- Forrest, L.L., Davis, E.C., Long, D.G., Crandall-Stotler, B.J., Clark, A. and Hollingsworth,
 M.L. (2006). Unraveling the evolutionary history of the liverworts (Marchantiophyta):
 multiple taxa, genomes and analyses. *The Bryologist* **109**, 303-334.

Frahm, J.P. (2000). Bryophytes. Ecol. Stud. 146, 91-102.

- Frahm, J.P. (2004). New frontiers in bryology and lichenology Recent developments of commercial products from bryophytes. *The Bryologist* **107**, 277-283.
- Fuselier, L., Davison, P.G., Clements, M., Shaw, B., Devos, N., Heinrichs, J., Hentschel, J., Sabovljevic, M., Szövenyi, P., Schütte, S., Hofbauer, W. and Shaw, A.J. (2009).
 Phylogeographic analyses reveal distinct lineages of *Metzgeria furcata* and *M. conjugata* (Metzgeriaceae) in Europe and North America. *Biol. J. Linn. Soc.* 98, 745-756.
- Fuselier, L.C., Shaw, B., Engel, J.J., von Konrat, M., Costa, D.P., Devos, N. and Shaw, A.J. (2011). The status and phylogeography of the liverwort genus *Apometzgeria* Kuwah. (Metzgeriaceae). *The Bryologist* **114**, 92-101.
- Garbary, D.J., Renzaglia, K.S. and Duckett, J.G. (1993). The phylogeny of land plants a cladistic-analysis based on male gametogenesis. *Plant Syst. Evol.* **188**, 237-269.
- Goremykin, V.V. and Hellwig, F.H. (2005). Evidence for the most basal split in land plants dividing bryophyte and tracheophyte lineages. *Plant Syst. Evol.* **255**, 119-119.
- Gottsche, C.M., Lindenberg, J.B.G. and Nees ab Esenbeck, C.G. (1844-1847). Synopsis Hepaticarum, I-XXVI, 1-834. Hamburg.

- Gradstein, S.R. (1994). Lejeuneaceae: Ptychantheae, Brachiolejeuneae. *Fl. Neotrop. Monogr.* **62**, 1–217.
- Gradstein, S.R. (1997). The taxonomic diversity of epiphyllous bryophytes. *Abstr. Bot.* **21**, 15–19.
- Gradstein, S.R. (2013). A classification of Lejeuneaceae (Marchantiophyta) based on molecular and morphological evidence. *Phytotaxa* **100**, 6-20.
- Gradstein, S.R., Churchill, S.P. and Salazar-Allen, N. (2001). Guide to the bryophytes of tropical America, New York Botanical Garden Press.
- Gradstein, S.R., Ilkiu-Borges, A.L. and Vanderpoorten, A. (2011). Habitat specialization triggers the evolution of unusual morphologies the case of *Cololejeunea stotleriana* sp. nov. from Ecuador. *The Bryologist* **114**, 9-22.
- Gradstein, S.R. and Reiner-Drehwald, M.E. (2007). The status of *Neopotamolejeunea* (Lejeuneaceae) and description of a new species from Ecuador and southern Brazil. *Syst. Biol.* **32**, 487-492.
- Gradstein, S.R., Reiner-Drehwald, M.E. and Jost, L. (2004). The systematic position and distribution of *Myriocolea irrorata* (Lejeuneaceae), an endangered liverwort of the ecuadorian andes. *J. Hattori Bot. Lab.*, 235-248.
- Gradstein, S.R., Reiner-Drehwald, M.E. and Schneider, H. (2003). A phylogenetic analysis of the genera of Lejeuneaceae (Hepaticae). *Biol. J. Linn. Soc.* **143**, 391-410.
- Gradstein, S.R., Wilson, R., Ilkiu-Borges, A.L. and Heinrichs, J. (2006). Phylogenetic relationships and neotenic evolution of *Metzgeriopsis* (Lejeuneaceae) based on chloroplast DNA sequences and morphology. *Biol. J. Linn. Soc.* **151**, 293-308.
- Grolle, R. (1966). Über Diplasiolejeunea in Asien. Feddes Repert 73, 78-89.
- Grolle, R. (1971). Miscellanea hepaticologica 111-120. *Trans. Brit. Bryol. Soc.* **6**, 258-265.

- Grolle, R. (1983). Hepatics of Europe including Azores: an annotated list of species, with synonyms from recent literature. *J. Bryol* **12**, 403-459.
- Grolle, R. (1984a). Zur kenntnis der Lejeuneoideae in Cuba (1): *Cyclolejeunea.* Wiss. Z. Friedrich-Schiller-Univ.Jena, Math. Naturwiss. *Reihe* **33**, 759-764.
- Grolle, R. (1984b). Miscellanea hepaticologica 221-230. J. Hattori Bot. Lab. 55, 501-511.
- Grolle, R. (1985). Miscellanea Hepaticologia 231-240. J. Hattori Bot. Lab. 58, 197-202.
- Grolle, R. (1995). The Hepaticae and Anthocerotae of the East African Islands. An annotated catalogue. *Bryophyt. Biblioth.* **48**, 1-178.
- Grolle, R. and Reiner-Drehwald, M.E. (1999). Review of the genus *Harpalejeunea* (Lejeuneaceae) including the description of *H. grandis*, a new species from the páramos of Colombia. *J. Bryol.* **21**, 31–45.
- Groth-Malonek, M. and Knoop, V. (2005). Bryophytes and other basal land plants: the mitochondrial perspective. *Taxon* **54**, 293-297.
- Grundmann, M., Ansell, S.W., Russell, S.J., Koch, M.A. and Vogel, J.C. (2007). Genetic structure of the widespread and common Mediterranean bryophyte *Pleurochaete squarrosa* (Brid.) Lindb. (Pottiaceae) - Evidence from nuclear and plastidic DNA sequence variation and allozymes. *Mol. Ecol.* **16**, 709-722.
- Guo, C.Q., Edwards, D., Wu, P.C., Duckett, J.G., Hueber, F.M. and Li, C.S. (2012).
 Riccardiothallus devonicus gen. et sp nov., the earliest simple thalloid liverwort from the Lower Devonian of Yunnan, China. *Rev. Palaeobot. Palynol.* **176**, 35-40.
- Hartmann, F.A., Wilson, R., Gradstein, S.R., Schneider, H. and Heinrichs, J. (2006).
 Testing hypotheses on species delimitations and disjunctions in the liverwort *Bryopteris* (Jungermanniopsida: Lejeuneaceae). *Int. J. Plant. Sci.* 167, 1205-1214.
- He-Nygren, X., Juslen, A., Ahonen, I., Glenny, D. and Piippo, S. (2006). Illuminating the evolutionary history of liverworts (Marchantiophyta) - Towards a natural classification. *Cladistics* 22, 1-31.

- Heinrichs, J., Bombosch, A., Feldberg, K., Kreier, H.P., Hentschel, J., Eckstein, J., Long, D., Zhu, R.L., Schafer-Verwimp, A., Schmidt, A.R., Shaw, B., Shaw, A.J. and Vana, J. (2012c). A phylogeny of the northern temperate leafy liverwort genus *Scapania* (Scapaniaceae, Jungermanniales). *Mol. Phylogenet. Evol.* 62, 973-985.
- Heinrichs, J., Dong, S.S., Yu, Y., Schafer-Verwimp, A., Pocs, T., Feldberg, K., Hentschel, J., Schmidt, A.R. and Schneider, H. (2012e). A 150 year-old mystery solved: transfer of the rheophytic endemic liverwort *Myriocolea irrorata* to *Colura*. *Phytotaxa* 66, 55-64.
- Heinrichs, J., Gradstein, S.R., Wilson, R. and Schneider, H. (2005a). Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene *rbcL*. *Cryptog. Bryol.* **26**, 131-150.
- Heinrichs, J., Groth, H., Lindner, M., Renker, C., Pocs, T. and Proschold, T. (2004). Intercontinental distribution of *Plagiochila corrugata* (Plagiochilaceae, Hepaticae) inferred from nrDNA ITS sequences and morphology. *Biol. J. Linn. Soc.* **146**, 469-481.
- Heinrichs, J., Hentschel, J., Bombosch, A., Fiebig, A., Reise, J., Edelmann, M., Kreier, H.P., Schafer-Verwimp, A., Caspari, S., Schmidt, A.R., Zhu, R.L., von Konrat, M., Shaw, B. and Shaw, A.J. (2010). One species or at least eight? Delimitation and distribution of *Frullania tamarisci* (L.) Dumort. s. I. (Jungermanniopsida, Porellales) inferred from nuclear and chloroplast DNA markers. *Mol. Phylogenet. Evol.* 56, 1105-1114.
- Heinrichs, J., Hentschel, J., Wilson, R., Feldberg, K. and Schneider, H. (2007). Evolution of leafy liverworts (Jungermanniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. *Taxon* **56**, 31-44.
- Heinrichs, J., Klugmann, F., Hentschel, J. and Schneider, H. (2009). DNA taxonomy, cryptic speciation and diversification of the Neotropical-African liverwort, *Marchesinia brachiata* (Lejeuneaceae, Porellales). *Mol. Phylogenet. Evol.* **53**, 113-121.
- Heinrichs, J., Kreier, H.P., Feldberg, K., Schmidt, A.R., Zhu, R.L., Shaw, B., Shaw, A.J. and Wissemann, V. (2011). Formalizing morphologically cryptic biological entities: new

insights from DNA taxonomy, hybridization, and biogeography in the leafy liverwort *Porella Platyphylla* (Jungermanniopsida, Porellales). *Am. J. Bot.* **98**, 1252-1262.

- Heinrichs, J., Lindner, M., Gradstein, S.R., Groth, H., Buchbender, V., Solga, A. and Fischer, E. (2005b). Origin and subdivision of *Plagiochila* (Jungermanniidae: Plagiochilaceae) in tropical Africa based on evidence from nuclear and chloroplast DNA sequences and morphology. *Taxon* 54, 317-333.
- Heinrichs, J., Lindner, M., Groth, H., Hentschel, J., Feldberg, K., Renker, C., Engel, J.J., von Konrat, M., Long, D.G. and Schneider, H. (2006). Goodbye or welcome Gondwana? insights into the phylogenetic biogeography of the leafy liverwort *Plagiochila* with a description of *Proskauera* gen. nov (Plagiochilaceae, Jungermanniales). *Plant Syst. Evol.* 258, 227-250.
- Heinrichs, J., Reiner-Drehwald, M.E., Feldberg, K., von Konrat, M., Hentschel, J., Vana, J., Grimaldi, D.A., Nascimbene, P.C. and Schmidt, A.R. (2012a). The leafy liverwort *Frullania* (Jungermanniopsida) in the Cretaceous amber forest of Myanmar. *Rev. Palaeobot. Palynol.* 169, 21-28.
- Hentschel, J., von Konrat, M.J., Pocs, T., Schafer-Verwimp, A., Shaw, A.J., Schneide, H. and Heinrichs, J. (2009). Molecular insights into the phylogeny and subgeneric classification of *Frullania* Raddi (Frullaniaceae, Porellales). *Mol. Phylogenet. Evol.* 52, 142-156.
- Hentschel, J., Zhu, R.L., Long, D.G., Davison, P.G., Schneider, H., Gradstein, S.R. and HeinrichS, J. (2007b). A phylogeny of *Porella* (Porellaceae, Jungermanniopsida) based on nuclear and chloroplast DNA sequences. *Mol. Phylogenet. Evol.* **45**, 693-705.
- Hernick, L.V., Landing, E. and Bartowski, K.E. (2008). Earth's oldest liverworts -*Metzgeriothallus sharonae* sp. nov. from the Middle Devonian (Givetian) of eastern New York, USA. *Rev. Palaeobot. Palynol.* **148**, 154-162.
- Herzog, T. (1938). *Sphaerolejeunea*, eine neue gattung der Lejeuneaceae Schizostipae. *Annales Bryologici* **11**, 86–89.

Herzog, T. (1957). Naturliche einteilung der familie [Lejeuneaceae]. Leipzig, 3rd ed.

- Humphreys, A.M. and Linder, H.P. (2009). Concept versus data in delimitation of plant genera. *Taxon* **58**, 1054–1074.
- Karol, K.G., McCourt, R.M., Cimino, M.T. and Delwiche, C.F. (2001). The closest living relatives of land plants. *Science* **294**, 2351-2353.
- Kato, M. and Akiyama, H. (2005). Interpolation hypothesis for origin of the vegetative sporophyte of land plants. *Taxon* **54**, 443-450.
- Kelch, D.G., Driskell, A. and Mishler, B.D. (2004). Inferring phylogeny using genomic characters: a case study using land plant plastomes. *Monogr. Syst. Bot. Mo. Bot. Gard.*, 3-12.
- Knoop, V. (2010). Looking for sense in the nonsense: a short review of non-coding organellar DNA elucidating the phylogeny of bryophytes. *Trop. Bryol.*, 51-60.
- Kreier, H.P., Feldberg, K., Mahr, F., Bombosch, A., Schmidt, A.R., Zhu, R.L., von Konrat, M., Shaw, B., Shaw, A.J. and Heinrichs, J. (2010). Phylogeny of the leafy liverwort *Ptilidium*: cryptic speciation and shared haplotypes between the Northern and Southern Hemispheres. *Mol. Phylogenet. Evol.* 57, 1260-1267.
- Laurin-Lemay, S., Brinkmann, H. and Philippe, H. (2012). Origin of land plants revisited in the light of sequence contamination and missing data. *Curr. Biol.* **22**, R593-R594.
- Lewis, L.A., Mishler, B.D. and Vilgalys, R. (1997). Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene *rbc*L. *Mol. Phylogenet. Evol.* **7**, 377-393.
- Libert, M. (1820). Sur un genre nouveau d'Hepatiques, Lejeunia. Annales Gen. Sci. Phys. 6, 372-374.
- Ligrone, R., Duckett, J.G. and Renzaglia, K.S. (2012). The origin of the sporophyte shoot in land plants: a bryological perspective. *Ann. Bot.* **110**, 935-941.

Long, D.G. (2006). New higher taxa of complex thalloid liverworts (Marchantiophyta-Marchantiopsida). *Edinburgh J. Bot.* **63**, 257-262.

Magill, R.E. (2010). Moss diversity: new look at old numbers. Phytotaxa 9, 167-174.

- Mizutani, M. (1961). A revision of Japanese Lejeuneaceae. *J. Hattori Bot. Lab.* **24**, 115-302.
- Mizutani, M. (1985). Subfamilies of Lejeuneaceae. Proc. Bryol. Soc. Japan 4, 3-4.
- Natcheva, R. and Cronberg, N. (2004). What do we know about hybridization among bryophytes in nature? *Can. J. Bot.* **82**, 1687-1704.
- Nishiyama, T. and Kato, M. (1999). Molecular phylogenetic analysis among bryophytes and tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene. *Mol. Biol. Evol.* **16**, 1027-1036.
- Nishiyama, T., Wolf, P.G., Kugita, M., Sinclair, R.B., Sugita, M., Sugiura, C., Wakasugi, T.,
 Yamada, K., Yoshinaga, K., Yamaguchi, K., Ueda, K. and Hasebe, M. (2004).
 Chloroplast phylogeny indicates that bryophytes are monophyletic. *Mol. Biol. Evol.* 21, 1813-1819.
- Odrzykoski, I.J., Chudzinska, E. and Szweykowski, J. (1996). The hybrid origin of the polyploid liverwort *Pellia borealis*. *Genetica* **98**, 75-86
- Odrzykoski, I.J. and Szweykowski, J. (1991). Genetic differentiation without concordant morphological divergence in the thallose liverwort *Conocephalum conicum*. *Plant Syst. Evol.* **178**, 135–152.
- Oostendorp, C. (1987). The bryophytes of the Paleozoic and Mesozoic. *Bryophyt. Bibl.* **34**, 5-112.
- Pócs, T. (2006). New or little-known epiphyllous bryophytes, X. On two Neotropical *Diplasiolejeunea* species. *The Bryologist* **109**, 408-414.

- Pócs, T. and Schäfer-Verwimp, A. (2006). East African bryophytes, XXIII. Three new species of *Diplasiolejeunea* (Lejeuneaceae, Jungermanniopsida) from Madagascar. *Cryptog. Bryol.* 27, 439-452.
- Patsch, R., Hentschel, J., Linares-Palomino, R., Zhu, R.L. and Heinrichs, J. (2010).
 Diversification and taxonomy of the liverwort *Jubula* Dumort. (Jungermanniopsida: Porellales) inferred from nuclear and chloroplast DNA sequences. *Syst. Bot.* 35, 6-12.
- Pfeiffer, T. (2000). Molecular relationship of *Hymenophyton* species (Metzgeriidae, Hepaticophytina) in New Zealand and Tasmania. Studies in austral temperate rain forest bryophytes 5. *New Zeal. J. Bot.* **38**, 415-423.
- Piippo, S. (1990). Annotated catalogue of Chinese Hepaticae and Anthocerotae. *J. Hattori Bot. Lab.* **68**, 1-192.
- Qiu, Y.L. (2008). Phylogeny and evolution of charophytic algae and land plants. *J. Syst. Evol.* **46**, 287-306.
- Qiu, Y.L., Li, L.B., Wang, B., Chen, Z.D., Knoop, V., Groth-Malonek, M., Dombrovska, O., Lee, J., Kent, L., Rest, J., Estabrook, G.F., Hendry, T.A., Taylor, D.W., Testa, C.M., Ambros, M., Crandall-Stotler, B., Duff, R.J., Stech, M., Frey, W., Quandt, D. and Davis, C.C. (2006). The deepest divergences in land plants inferred from phylogenomic evidence. *Proc. Natl. Acad. Sci. U.S.A.* 103, 15511-15516.
- Ramaiya, M., Johnston, M.G., Shaw, B., Heinrichs, J., Hentschel, J., von Konrat, M., Davison, P.G. and Shaw, A.J. (2010). Morphologically cryptic biological species within the liverwort, *Frullania asagrayana*. *Amer. J. Bot.* **97**, 1707-1718.
- Reiner-Drehwald, M.E. (1999). Catalogue of the genus *Lejeunea* Lib. (Hepaticae) of Latin America. *Bryophyt. Bibl.* **54**, 1–101.
- Reiner-Drehwald, M.E. (2007). Preliminary key to the genus *Lejeunea* in Brazil (draft version 30 April 2007).
- Reiner-Drehwald, M.E. and Drehwald, U. (2002). Sphaerolejeunea umbilicata (Lejeuneaceae): a critically endangered epiphyllous liverwort of the Andes. The Bryologist 105, 422–430.
- Reiner-Drehwald, M.E. and Goda, A. (2000). Revision of the genus *Crossotolejeunea* (Lejeuneaceae, Hepaticae). *J. Hattori Bot. Lab.*, 1-54.
- Reiner-Drehwald, M.E. and Gradstein, S.R. (1995). *Myriocoleopsis riparia* (Lejeuneaceae), a new species from south-eastern Brazil and north-eastern Argentina. *J. Bryol.* **18**, 479-484.
- Reiner-Drehwald, M.E. and Ilkiu-Borges, A.L. (2007). Lejeunea huctumalcensis, a widely distributed Lejeuneaceae from the Neotropics, and its relation to Ceratolejeunea. The Bryologist **110**, 465-474.
- Reiner-Drehwald, M.E. and Schafer-Verwimp, A. (2008b). On *Inflatolejeunea*, *Lejeunea* species with eplicate perianths and *Lejeunea talamancensis* sp. nov. from Costa Rica (Lejeuneaceae). *Nova Hedwigia* 87, 387-420.
- Renner, M.A.M. (2012). Further insight into lobule teeth homology in Lejeuneaceae subf. Lejeuneoideae from *Cheilolejeunea oscilla*, a new species from Australia. *The Bryologist* **115**, 536-556.
- Renner, M.A.M., Brown, E.A. and Wardle, G.M. (2011). The *Lejeunea tumida* species group is positively polyphyletic (Lejeuneaceae: Jungermanniopsida). *Aust. Syst. Bot.* 24, 10-18.
- Renzaglia, K.S., Duff, R.J., Nickrent, D.L. and Garbary, D.J. (2000). Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. *Phil. Trans. Biol. Sci.* **355**, 769-793.
- Rubasinghe, S.C.K., Milne, R., Forrest, L.L. and Long, D.G. (2011). Realignment of the genera of Cleveaceae (Marchantiopsida, Marchantiidae). *The Bryologist* **114**, 116-127.

- Sakakibara, K., Ando, S., Yip, H.K., Tamada, Y., Hiwatashi, Y., Murata, T., Deguchi, H., Hasebe, M. and Bowman, J.L. (2013). KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. *Science* **339**, 1067-1070.
- Sakakibara, K., Nishiyama, T., Deguchi, H. and Hasebe, M. (2008). Class 1 KNOX genes are not involved in shoot development in the moss *Physcomitrella patens* but do function in sporophyte development. *Evol. Dev.* **10**, 555-566.
- Samigullin, T.H., Valiejo-Roman, K.M., Troitsky, A.V., Bobrova, V.K., Filin, V.R., Martin, W. and Antonov, A.S. (1998). Sequences of rDNA internal transcribed spacers from the chloroplast DNA of 26 bryophytes: properties and phylogenetic utility. *Febs Lett.* **422**, 47-51.
- Sano, R., Juarez, C.M., Hass, B., Sakakibara, K., Ito, M., Banks, J.A. and Hasebe, M. (2005). KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. *Evol. Dev.* 7, 69-78.
- Schäfer-Verwimp, A. (2004). The genus *Diplasiolejeunea* (Lejeuneaceae, Marchantiopsida) in the tropical Andes, with description of two new species. *Cryptog. Bryol.* **25**, 3-17.
- Schäfer-Verwimp, A. (2006). A new species of *Diplasiolejeunea* (Lejeuneaceae, Jungermanniopsida) from Sumatra, and a key for the genus in Asia. *Herzogia* **19**, 239-244.
- Schäfer-Verwimp, A. and Reiner-Drehwald, M.E. (2009). Some additions to the bryophyte flora of Guadeloupe, West Indies, and new synonyms in the genera *Diplasiolejeunea* and *Lejeunea*. *Cryptog. Bryol.* **30**, 357-375.
- Schaumann, F., Frey, W., de Menendez, G.H. and Pfeiffer, T. (2003). Geomolecular divergence in the Gondwanan dendroid *Symphyogyna* complex (Pallaviciniaceae, Hepaticophytina, Bryophyta) - Studies in austral temperate rain forest bryophytes 22. *Flora* **198**, 404-412.

Schiffner, V. (1893). Hepaticae. Nat. Pflanzenfam. 1, 97-141.

- Schill, D.B., Long, D.G. and Forrest, L.L. (2010). A molecular phylogenetic study of Mannia (Marchantiophyta, Aytoniaceae) using chloroplast and nuclear markers. Bryologist 113, 164-179.
- Schuster, R.M. (1957). North American Lejeuneaceae VI. Lejeunea: introduction and keys; subgenus Lejeunea I. J. Elisha Mitchell Sci. Soc. 73, 122–197.
- Schuster, R.M. (1963). An annotated synopsis of the genera and subgenera of Lejeuneaceae. *Nova Hedwigia* **9**, 1-203.
- Schuster, R.M. (1980). The Hepaticae and Anthocerotae of North America Vol. IV, Columbia Univ. Press, New York.
- Schuster, R.M. (1983). Phytogeography of the bryophyta. *New manual of bryology* **1**, 626.
- Schuster, R.M. (1984). Evolution, phylogeny and classification of the Hepaticae. *New manual of bryology* **2**, 892-1070.
- Schuster, R.M. (1994). Studies on Lejeuneaceae, I. Preliminary studies on new genera of Lejeuneaceae *J. Hattori Bot. Lab.* **75**, 211-235.
- Schuster, R.M. and Schäfer-Verwimp, A. (1995). On *Pluvianthus* (Lejeuneaceae: Lejeuneoideae). *Nova Hedwigia* **60**, 59–72.
- Self, S.L. (2002). The systematic status of *Pelliax appalachiana* R.M. Schust, Southern Illinois University Carbondale.
- Shaw, A.J. (1998). Genetic analysis of a hybrid zone in *Mielichhoferia* (Musci) Leeds, UK, Maney Publishing and the British Bryological Society.
- Shaw, A.J. (2001). Biogeographic patterns and cryptic speciation in bryophytes. *J. Biogeogr.* **28**, 253-261.

- Shaw, A.J. and Goffinet, B. (2000). Molecular evidence of reticulate evolution in the peatmosses (*Sphagnum*), including *S. ehyalinum* sp. nov. *The Bryologist* **103**, 357-374.
- Shaw, A.J., McDaniel, S.F., Werner, O. and Ros, R.M. (2002). New frontiers in bryology and lichenology — phylogeography and phylodemography. *The Bryologist* **105**, 373-383.
- Shaw, A.J., Szovenyi, P. and Shaw, B. (2011). Bryophyte diversity and evolution: windows into the early evolution of land plants. *Am. J. Bot.* **98**, 352-369.
- Singer, S.D. and Ashton, N.W. (2007). Revelation of ancestral roles of KNOX genes by a functional analysis of *Physcomitrella* homologues. *Plant Cell Rep.* **26**, 2039-2054.
- Snall, T., Hagstrom, A., Rudolphi, J. and Rydin, H. (2004). Distribution pattern of the epiphyte *Neckera pennata* on three spatial scales importance of past landscape structure, connectivity and local conditions. *Ecography* **27**, 757-766.
- Solari, S.S. (1983). Lejeuneaceae. catalogo de especies Andinopatagonicas. *J. Hattori Bot. Lab.* **54**, 533-553.
- Spruce, R. (1884). Hepaticae Amazonica et Andinae. *Trans. Proc. Bot. Soc. Edinburgh* **15**, 1-588.
- Stech, M. and Frey, W. (2001). CpDNA-relationship and classification of the liverworts (Hepaticophytina, Bryophyta). *Nova Hedwigia* **72**, 45-58.
- Stech, M. and Frey, W. (2004). Molecular circumscription and relationships of selected Gondwanan species of *Haplomitrium* (Calobryales, Haplomitriopsida, Hepaticophytina)
 Studies in austral temperate rain forest bryophytes 24. *Nova Hedwigia* **78**, 57-70.
- Stephani, F. (1898-1900). Species Hepaticarum I: 1-413. Georg & Cie, Genève et Bâle, Lyon.
- Stephani, F. (1901-1906). Species Hepaticarum II: 1-615. Georg & Cie, Genève et Bâle, Lyon.

- Stephani, F. (1905-1908). Species Hepaticarum III: 1-693. Georg & Cie, Genève et Bâle, Lyon.
- Stephani, F. (1909-1912). Species Hepaticarum IV: 1-824. Georg & Cie, Genève et Bâle, Lyon.
- Stephani, F. (1912-1917). Species Hepaticarum V: 1-1044. Georg & Cie, Genève et Bâle, Lyon.
- Stephani, F. (1917-1925). Species Hepaticarum VI: 1-763. Jent, S.A., Genève.
- Sukkharak, P., Gradstein, S.R. and Stech, M. (2011). Phylogeny, taxon circumscriptions, and character evolution in the core Ptychanthoideae (Lejeuneaceae, Marchantiophyta). *Taxon* **60**, 1607-1622.
- Thiers, B.M. (1983). Branching in Lejeuneaceae II. Nipponolejeuneoideae, Tuyamaelloideae and Myriocoleoideae. *Lindbergia* **10**, 4–18.
- Thiers, B.M. (1997). *Lejeunea bischlerae*, a new species of *Lejeunea* subgenus *Microlejeunea* from Australia. *Cryptog. Bryol.* **18**, 223–226.
- Timme, R.E., Bachvaroff, T.R. and Delwiche, C.F. (2012). Broad phylogenomic sampling and the sister lineage of land plants. *Plos One* **7**, e29696.
- Tixier, P. (1985). Contribution à la connaicance des Cololejeunoideae. *Bryophyt. Biblioth* **27**, 1-439.
- Turmel, M., Ehara, M., Otis, C. and Lemieux, C. (2002). Phylogenetic relationships among streptophytes as inferred from chloroplast small and large subunit rRNA gene sequences. J. Phycol. 38, 364-375.
- Turmel, M., Otis, C. and Lemieux, C. (2006). The chloroplast genome sequence of *Chara vulgaris* sheds new light into the closest green algal relatives of land plants. *Mol. Biol. Evol.* 23, 1324-1338.

- Turmel, M., Pombert, J.F., Charlebois, P., Otis, C. and Lemieux, C. (2007). The green algal ancestry of land plants as revealed by the chloroplast genome. *Int. J. Plant Sci.* 168, 679-689.
- Van der Velde, M. and Bijlsma, R. (2003). Phylogeography of five *Polytrichum* species within Europe. *Biol. J. Linn. Soc.* **78**, 203-213.
- Van Steenis, C.G.G. (1981). Rheophytes of the world.
- van Zanten, B.O. (1978). Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. *J. Hattori Bot. Lab.* **44**, 455-482.
- Van Zanten, B.O. and Pócs, T. (1981). Distribution and dispersal of bryophytes. *Advances Bryol.* **1**, 479-562.
- Vanderpoorten, A., Devos, N., Goffinet, B., Hardy, O.J. and Shaw, A.J. (2008). The barriers to oceanic island radiation in bryophytes: insights from the phylogeography of the moss *Grimmia montana*. *J. Biogeogr.* **35**, 654-663.
- Vanderpoorten, A., Gradstein, S.R., Carine, M.A. and Devos, N. (2010). The ghosts of Gondwana and Laurasia in modern liverwort distributions. *Biol. Rev.* **85**, 471-487.
- Vilnet, A.A., Konstantinova, N.A. and Troitsky, A.V. (2008). Phylogeny and systematics of the genus *Lophozia* s. str. (Dumort.) Dumort. (Hepaticae) and related taxa from nuclear ITS1-2 and chloroplast *trn*L-F sequences. *Mol. Phylogenet. Evol.* 47, 403-418.
- Vilnet, A.A., Konstantinova, N.A. and Troitsky, A.V. (2009). Genosystematics and new insight into the phylogeny and taxonomy of liverworts. *Mol. Biol.* **43**, 783-793.
- von Konrat, M., de Lange, P., Greif, M., Strozier, L., Hentschel, J. and Heinrichs, J. (2012). *Frullania knightbridgei*, a new liverwort (Frullaniaceae, Marchantiophyta) species from the deep south of Aotearoa-New Zealand based on an integrated evidence-based approach. *PhytoKeys* **8**, 13–36.

- Von Konrat, M., Soderstrom, L., Renner, M.A.M., Hagborg, A., Briscoe, L. and Engel, J.J. (2010). Early Land Plants Today (ELPT): how many liverwort species are there? *Phytotaxa* **9**, 22-40.
- Wahrmund, U., Groth-Malonek, M. and Knoop, V. (2008). Tracing plant mitochondrial DNA evolution: rearrangements of the ancient mitochondrial gene cluster trnA-trnTnad7 in liverwort phylogeny. *J. Mol. Evol.* 66, 621-629.
- Weeks, A., Daly, D.C. and Simpson, B.B. (2005). The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. *Mol. Phylogenet. Evol.* **35**, 85-101.
- Wellman, C.H., Osterloff, P.L. and Mohiuddin, U. (2003). Fragments of the earliest land plants. *Nature* **425**, 282-285.
- Wheeler, J.A. (2000). Molecular phylogenetic reconstructions of the marchantioid liverwort radiation. *The Bryologist* **103**, 314-333.
- Wiggington, M.J. (2004). E.W Jones's liverwort and hornwort flora of West Africa, National Botanic Garden of Belgium.
- Wigginton, M.J. and Grolle, R. (1996). Catalogue of the Hepaticae and Anthocerotae of Sub-Saharan Africa. *Bryophyt. Biblioth.* **50**, 1-267.
- Wilson, R., Gradstein, S.R., Heinrichs, J., Groth, H., Ilkiu-Borges, A.L. and Hartmann, F.A. (2004). Phylogeny of Lejeuneaceae: a cladistic analysis of chloroplast gene rbcL sequences and morphology with preliminary comments on the mitochondrial nad4-2 spacer region. *Monogr. Syst. Bot. Mo. Bot. Gard.* **98**, 189-202.
- Wilson, R., Gradstein, S.R., Schneider, H. and Heinrichs, J. (2007a). Unravelling the phylogeny of Lejeuneaceae (Jungermanniopsida): evidence for four main lineages. *Mol. Phylogenet. Evol.* **43**, 270-282.
- Wilson, R., Heinrichs, J., Hentschel, J., Gradstein, S.R. and Schneider, H. (2007b). Steady diversification of derived liverworts under Tertiary climatic fluctuations. *Biology Letters* **3**, 566-569.

- Wodniok, S., Brinkmann, H., Glockner, G., Heidel, A.J., Philippe, H., Melkonian, M. and Becker, B. (2011). Origin of land plants: do conjugating green algae hold the key? *BMC Evol. Biol.* 11.
- Wolf, P.G., Schneider, H. and Ranker, T.A. (2001). Geographic distributions of homosporous ferns: does dispersal obscure evidence of vicariance? *J. Biogeogr.* 28, 263-270.
- Ye, W., Wei, Y.M., Schäfer-Verwimp, A. and Zhu, R.L. (2013). Phylogenetic position of Oryzolejeunea (Lejeuneaceae, Marchantiophyta): evidence from molecular markers and morphology. J. Syst. Evol. 51, 468–475.
- Zartman, C.E. (2003). Habitat fragmentation impacts on epiphyllous bryophyte communities in central Amazonia. *Ecology* **84**, 948-954.
- Zartman, C.E., McDaniel, S.F. and Shaw, A.J. (2006). Experimental habitat fragmentation increases linkage disequilibrium but does not affect genetic diversity or population structure in the Amazonian liverwort *Radula flaccida*. *Mol. Ecol.* **15**, 2305-2315.
- Zartman, C.E. and Nascimento, H.E.M. (2006). Are habitat-tracking metacommunities dispersal limited? Inferences from abundance-occupancy patterns of epiphylls in Amazonian forest fragments. *Biol. Conserv.* **127**, 46-54.
- Zhu, R.L. and So, M.L. (2001). Epiphyllous liverworts of China. *Nova Hedwigia* **121**, 1-418.

Appendix 1

Tramps, narrow endemics and morphologically cryptic species in the epiphyllous liverwort *Diplasiolejeunea*

Shanshan Dong, Alfons Schäfer-Verwimp, Philipp Meinecke, Kathrin Feldberg, Andrea Bombosch, Tamás Pócs, Alexander R. Schmidt, Joachim Reitner, Harald Schneider, Jochen Heinrichs

Published in MolecularPhylogen etics and Evolution 2012, 65, 582-594.

Abstract

Diplasiolejeunea is a pantropical, epiphytic genus of leafy liverworts that occurs from the lowlands to more than 4000 m. Phylogenetic analyses of a molecular dataset consisting of three markers (nuclear ribosomal ITS region, plastidic trnL-F region and rbcL gene) and 122 accessions (plus two outgroups, Colura and Cololejeunea) indicate that the evolutionary diversity of Diplasiolejeunea is underestimated by current morphology-based classification. Four morphologically semi-cryptic species have been recovered. The molecular phylogenies support a deep split into a Neotropical and a Paleotropical clade, the latter structured into Australasian, Asian and Afromadacascan lineages. Presented results confirm the ranges of two pantropical species (D. cavifolia, D. rudolphiana), provide evidence for dispersal from the Neotropics into the Paleotropics, indicate speciation along altitudinal gradients and demonstrate extensive morphological homoplasy. We propose a revised supraspecific classification of *Diplasiolejeunea* into a predominantly Paleotropical subgenus Physolejeunea and predominantly Neotropical subgenera Austrolejeuneopsis and Diplasiolejeunea, the former containing mainly epiphytic species, the latter mainly epiphylls. Several clades are supported by combinations of morphological character states, and could be assigned to sections at some later point. This is the first comprehensive phylogeny of a largely epiphyllous genus of liverworts.

Keywords: classification, dispersal, Lejeuneaceae, phylogenetic biogeography, Porellales,

1. Introduction

Molecular phylogenetic studies have greatly improved our understanding of relationships within liverworts. These studies led to numerous adjustments of family and genus concepts (Crandall-Stotler et al., 2009) and allowed for new insights into their biogeography (Shaw, 2001). Among the most remarkable findings was the evolutionarily dynamic nature of liverworts (Heinrichs et al., 2009a; Vanderpoorten et al., 2010a), rejecting the hypothesis of bryophytes being "unmoving, unchanging sphinxes of the past" (Crum, 1972). However, this dynamic nature of colonization, extinction and local

differentiation is often poorly recognizable using morphological evidence alone and thus breakthrough studies required the application of molecular methods ranging from isozyme studies to DNA based studies, the latter using haplotype variation at population level and phylogenetic approaches at deeper taxonomic levels (Odrzykoski and Szweykowski, 1991; Feldberg et al., 2007; Devos and Vanderpoorten, 2009; Forrest et al., 2011; Heinrichs et al., 2011; Laenen et al., 2011). Related studies demonstrated a complex genetic structure of morphologically circumscribed liverwort species and provided evidence for morphologically cryptic or semicryptic speciation (Wachowiak et al., 2007; Fuselier et al., 2009; Heinrichs et al., 2010; Ramaiya et al., 2010; Heinrichs et al., 2011). It is now proven that only species-level phylogenies with extensive population sampling will allow for an approximation of the actual liverwort diversity, and to better understand speciation processes and distribution range formation (Kreier et al., 2010).

Lejeuneaceae, with an estimated number of about 1000 species (Wilson et al., 2007a), represent the most species rich epiphytic lineage of leafy liverworts (Heinrichs et al., 2005a). This family is common throughout the humid tropics, especially in the lowlands were up to 70% of the present liverworts belong to Lejeuneaceae (Cornelissen and Ter Steege, 1989; Zartman, 2003). In epiphyllous communities Lejeuneaceae are even more dominant, totalling to more than 90 % of the present bryophyte species (Pócs, 1996; Sonnleitner et al., 2009; Benavides & Sastre-De Jesús, 2011). Epiphyllous Lejeuneaceae are characterized by a rather small or even minute size, frequent vegetative reproduction by multicellular, disciform gemmae, and are closely attached to the substratum (Gradstein et al., 1997). Due to their diminutive size and reduced morphology, it is far from surprising that they belong to the taxonomically most difficult groups of Lejeuneaceae (Gradstein et al., 2006).

Diplasiolejeunea is a pantropical, partly epiphyllous Lejeuneaceae genus growing on living leaves, fine twigs, and smooth-barked trunks, usually in well-illuminated sites from sea level to 4150m (Gradstein et al., 2001; Schäfer-Verwimp, 2004). This genus is easily recognized by the presence of one underleaf per leaf in combination with rather large but not sac-like leaf lobules (Zhu & So, 2001). *Diplasiolejeunea* species taxonomy has been the subject of several morphological studies, often with controversial results (Grolle,

1966; Tixier, 1985; Schäfer-Verwimp, 2004, 2006; Pócs, 2006; Pócs and Schäfer-Verwimp, 2006; Schäfer-Verwimp and Reiner-Drehwald, 2009). The uncertainty regarding species circumscription has led to divergent estimates of global diversity, ranging from 35 (Schuster, 1980) to 70 *Diplasiolejeunea* species (Schäfer-Verwimp, 2006). Most of these species seem to have rather narrow distribution ranges, in contrast to the pantropical ranges of *D. cavifolia* Steph., *D. cobrensis* Steph. and *D. rudolphiana* Steph. (Grolle, 1995; Zhu & So, 2001).

Up to now, less than 20 % of the Lejeuneaceae species have been included in molecular phylogenetic studies (Ahonen et al., 2002; Hartmann et al., 2006; Wilson et al., 2007a; Heinrichs et al., 2009b; Gradstein et al., 2011; Renner et al., 2011; Sukkharak et al., 2011); hence this family is in need of further investigations. Here we present the first global phylogeny of a partly epiphyllous genus of Lejeuneaceae, *Diplasiolejeunea*, based on 122 accessions that cover the whole range of the genus, and sequences from the nuclear ribosomal internal transcribed spacer region (nrITS), along with the plastid DNA *rbcL* gene, and the *trnL*-F region. We test current species and range concepts by including multiple accessions and examine whether the recovered phylogenetic relationships correspond to/or conflict to morphologically circumscribed taxa. Our data support intercontinental ranges of a few *Diplasiolejeuna* species, presence of several so far unrecognised species, morphologically cryptic speciation, diversification along altitudinal gradients, and geographically separated main clades.

2. Material and methods

2.1 Taxon sampling and outgroup selection

Taxa studied, including GenBank accession numbers and voucher details, are listed in Table 1. All voucher specimens were carefully examined and original identifications were corrected when necessary. To identify DNA vouchers we used monographic treatments (e.g., Tixier, 1985; Reyes, 1982; Schäfer-Verwimp et al., 2004, 2006), original descriptions (e.g., Schäfer-Verwimp et al., 2005; Pócs and Schäfer-Verwimp, 2006) and type material preserved in the herbaria EGR, G, GOET, JE, and PC (abbreviations according to Holmgren et al., 1990).

Besides availability of material, ingroup taxa were selected to represent the morphological variation and geographical distribution of *Diplasiolejeunea*. Multiple accessions of several species were used to explore intraspecific genetic variation. Based on the analyses of Gradstein et al. (2006) and Wilson et al. (2007a), *Cololejeunea vitalana* and *Colura acroloba* were designated as outgroup taxa for phylogenetic reconstruction.

2.2 DNA extraction, PCR amplification and sequencing

Plant tissue was isolated from herbarium collections. Total genomic DNA was purified using Invisorb Spin Plant Mini Kit (Invitek, Berlin, Germany) prior to amplification. Protocols for PCR were carried out as described in previous publications: *rbc*L gene and *trn*L-F region from Gradstein et al. (2006), and nrITS1-5.8S-ITS-2 region from Hartmann et al. (2006). Bidirectional sequences were generated using a MegaBACE 1000 automated sequencing machine using DYEnamic ET Primer DNA Sequencing Reagent (Amersham Biosciences, Little Chalfont, UK). Sequencing primers were those used for PCR. Voucher specimens for all sequences were deposited in EGR, GOET or JE. Three hundred and fourty three sequences were newly generated for this study; 9 sequences were downloaded from Genbank (http://www.ncbi.nlm.nih.gov/genbank/).

2.3 Phylogenetic analyses

All sequences were aligned manually in Bioedit version 7.0.5.2 (Hall, 1999). Ambiguous positions were excluded from all alignments and lacking data were coded as missing. Some analyses were carried out using a comprehensive alignment including all studied accessions, whereas other analyses used a reduced alignment with one accession per taxon as required for plotting of several morphological characters and ecological preferences (see Table 2). The reduced alignment comprises the accessions with the most complete sequences. The *rbc*L sequence of the *D. plicatiloba* specimen Schäfer-Verwimp 14246 was combined with the *trn*LF and ITS sequences of specimen Pócs 0057/R to get a complete sequence set for the reduced alignment.

Maximum parsimony (MP) analyses were carried out with PAUP* version 4.0b10

(Swofford, 2000). MP heuristic searches of the comprehensive and the reduced datasets were conducted with the following options implemented: heuristic search mode, 1000 random-addition-sequence replicates, tree bisection-reconnection (TBR) branch swapping, MULTrees option on, and collapse zero-length branches off. All characters were treated as equally weighted and unordered. Non-parametric bootstrapping values (Felsenstein, 1985) were generated as heuristic searches with 1,000 replicates, each with ten random-addition replicates. The number of rearrangements was restricted to ten millions per replicate. Bootstrap percentage values (BPVs) \geq 70 were regarded as good support (Hillis and Bull, 1983). Where more than one most parsimonious tree was found, trees were summarized in a strict consensus tree.

The three genomic regions and the combined chloroplast DNA dataset vs nrITS dataset were first analysed separately to check for incongruence. The strict consensus trees of the non-parametric bootstrap analyses were compared by eye to identify conflicting nodes supported by at least 70% (Mason-Gamer and Kellog, 1996). The trees gave no evidence of incongruence. Hence the datasets were combined. The influence of D. alata on the robustness of the reconstructed phylogeny was tested by excluding this species from the analyses. jModeltest 0.1 (Posada, 2008) was used to select a model of evolution for the maximum likelihood (ML) analyses of the large combined dataset. A General Time Reversible (GTR) model (Tavaré, 1986) was chosen with proportion of invariable characters (1) and among-site rate heterogeneity modelled as discrete gamma distribution with four rate categories, and its estimated parameters (Γ) (Goldman, 1993). ML trees were generated using the programs PAUP* and GARLI version 0.96 beta (Zwickl, 2006). The PAUP*-Analysis was performed as heuristic search, MULTrees option on, collapse zero length branches off, and TBR branch swapping. All GARLI analyses were performed with the default settings and several times repeated. The default setting of GARLI was also employed to calculate bootstrap values for ML analyses based on 200 bootstrap replicates.

Bayesian inference was implemented in MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001) on the large combined dataset using a GTR substitution model. A Bayesian search was carried out with four simultaneous Markov chains, ten million generations

and sampling every 100th generation. Tracer version 1.3 (Rambaut and Drummond, 2003) was used to examine the parameters and determine the number of trees needed to reach stationarity (burn-in). Bayesian posterior probability (BPP) confidence values were generated from trees saved after this initial burn-in. Values were regarded as significant when BPP \ge 0.95 (Larget and Simon, 1999).

2.4 Reconstruction of ancestral areas of distribution, distribution of morphological character states and growth preferences

Ancestral areas of distribution were reconstructed using MP criteria as implemented in Mesquite ver. 2.72 (Maddison and Maddion, 2004) based on the ML topology of the combined dataset. Data on distribution ranges of the investigated taxa were obtained from the literature, in addition to own observations. Given the wide distribution ranges of some species, the putative distribution range of endemism was coded as covering four possible areas: Neotropics, Afromadagascar, Asia, Australasia. The ranges of the outgroup species were coded as "unknown" because the closest relatives of *Diplasiolejeunea* have not yet been determined (see Wilson et al. 2007a). We plotted several morphological characters (see table 2) on the MP tree of the reduced dataset that are relevant for the systematics of the genus (Schuster, 1970; Tixier, 1985; Schäfer-Verwimp, 2004). We did not map generative structures because of their high infraspecific variation in the current *Diplasiolejeunea* classification. Growth preferences of the investigated characters were mapped based on own observations during fieldwork in all parts of the tropics, and data from the literature. We also mapped the altitude of the DNA vouchers on the ML topology.

3. Results

3.1 Small combined dataset

Of a total of 2148 character sites, 467 were parsimony informative, 257 autapomorphic and 1424 constant. The MP analysis resulted in four equally parsimonious trees with a length of 2116 steps, a consistency index (CI) of 0.48 and a retention index (RI) of 0.61. The strict consensus tree is depicted in Fig. 1.

Diplasiolejeunea is split into a well supported (BPV=78) mainly Neotropical clade II,

and an unsupported (BPV<50) Paleotropical clade I with the Australasian *D. plicatiloba* (clade I-a) placed sister to a clade that is divided into an Asian (clade 1-b) and an Afromadagascan lineage (clade I-c). Clade I includes the type of *D.* subgen. *Physolejeunea*, *D. plicatiloba*. Clade II splits into an unsupported clade II-a with the type of *D.* subgen. *Austrolejeuneopsis*, *D. alata*, and a robust (BPV=87) clade II-b with the generitype *D. pellucida*. *Diplasiolejeunea alata* forms a long branch in all MP trees (not shown). Exclusion of *D. alata* from the dataset does not lead to changes in the topology but to a BPV of 75 for clade II-a. All investigated morphological characters proved to be homoplasious but several derived clades share certain character state combinations. Clade II-a includes mostly epiphytes wheras the majority of species belonging to clade II-b predominanly occurs as epiphylls.

3.2 Large combined dataset

The PAUP* ML analysis of the large dataset led to three nearly identical topologies with -In=18325.54055, of which one is depicted in Fig. 2. This topology was also found with GARLI and Mrbayes. The MP topology is confirmed with the extended dataset albeit with high BPV and BPP values for both clade I (90/0.99) and clade II (91/1.00). The sister relationship of the Asian and the Afromadagascan clade is well supported with a BPV of 75 but gets no significant support in the Bayesian analysis. Multiple accessions of morphologically circumscribed species form monophyletic lineages with the exception of *D. unidentata* nested in *D. rudolphiana* and *D. caribea* nested in *D. pellucida*. *Diplasiolejeunea pauckertii* and *D. pluridentata* are polyphyletic. Five accessions represent undescribed species.

Pantropical ranges are confirmed for *D. cavifolia* and *D. rudolphiana* although the ancestral area reconstruction indicates a Neotropical origin of these species (Fig. 3). Accessions of *D.* subgen. *Austrolejeuneopsis* were usually collected in high montane regions, in addition to a few accessions from the lowlands or low montane regions (*D. rudolphiana*, *D. unidentata*). Representatives of *D.* subgen. *Diplasiolejeunea* were mostly collected in low montane regions or lowlands.

4. Discussion

4.1. Supraspecific classification

Schuster (1970) classified *Diplasiolejeunea* in three subgenera, *Austrolejeuneopsis*, *Physolejeunea* and *Diplasiolejeunea* s.str. based on the absence (*Austrolejeuneopsis*, *Physolejeunea*) or presence of ocelli (*Diplasiolejeunea* s.str.). He set up subgen. *Physolejeunea* to include a single Australasian species with very large leaf lobules, *D. plicatiloba* (as *D. lyratifolia*), and proposed subgen. *Austrolejeuneopsis* - typified with the Neotropical *D. alata* - for a few species with moderately sized, strongly inflated lobules.

This classification is not supported by the molecular phylogenies (Figs. 1 and 2) since the few species without ocelli are diffusely distributed in the molecular topologies (Fig. 1, character 3), and the type species of subgen. Austrolejeuneopsis and Physolejeunea nested in subgen. Diplasiolejeunea sensu Schuster (1970) and Tixier (1985). Our attempt to refine the present classification is hampered by the extensive morphological homoplasy observed in the genus (Fig. 1). However, the recovered phylogenetic hypothesis mirrors geographical differentiation with one mainly Neotropical and one Paleotropical main clade, the latter subdivided in Australasian, Asian and Afromadagascan lineages (Fig. 2). We propose to assign the name D. subgen. Physolejeunea to the Paleotropical main clade I, and to use the names D. subgen. Austrolejeuneopsis and D. subgen. Diplasiolejeunea for the predominantly Neotropical clades IIa and IIb (Fig. 1). These assignments reflect the relationships of the type species of each clade, D. plicatiloba nested in clade I, D. alata nested in clade IIa, and D. pellucida nested in clade IIb. Subgen. Physolejeunea achieves good bootstrap support only in the ML analysis; subgen. Austrolejeuneopsis is unsupported in both the MP and ML analyses. However, the lack of support for subgen. Austrolejeuneopsis is caused by the "long branch" taxon D. alata; exclusion of this species leads to a MP bootstrap percentage value of 75 for this clade. The long-branch of Diplasiolejeunea alata is not caused by a large inversion or related structural evolution event but appears to be the result of higher mutation rates than average rate of *Diplasiolejeunea*. The long branch has been found in both, the nuclear and the chloroplast datasets (data not shown).

Diplasiolejeunea s.str. includes predominantly epiphyllous species whereas epiphytic occurrences are more typical for subgen. *Austrolejeuneopsis*. The different subclades of clades I, IIa, and IIb differ by certain character state combinations or tendencies, e.g., inflexed leaf margins in combination with strongly inflated lobules and ovate, acute underleaves in clade II-a1 (Fig. 1), and can be assigned to sections *Physolejeunea* (Ia), *Cornutae* (Ib), *Austrolejeuneopsis* (IIa2) and *Diplasiolejeunea* (IIb2). New sections for subclades Ib, IIa3, IIb1 will be established elsewhere.

4.2. Species classification

In this study, we explore the support of species that are defined using a morphological-typological approach. We sample multiple accessions of morphologically circumscribed species and explore their consistence with the molecular data using monophyly as the core criterion. The majority of currently accepted species concepts, e.g. the different forms of phylogenetic species concepts and the unified species concept (de Queiroz, 2007), consider reciprocal monophyly as the explicit criterion or a property of species. Incongruence of morphological taxa with DNA sequence based phylogenetic results is considered as evidence for limitations of species concepts relying exclusively on the diagnostics of morphological features. We consider here only three criteria, diagnostic morphology, biogeographic consistency, and reciprocal monophyly, in the absence of studies on the reproductive biology. However, we need to stress out the recovered congruence between phylogenetic hypothesis obtained from DNA sequences of either the chloroplast or the nuclear markers. These results may be valued as indicators of reproductive isolation.

Based on the phylogeny shown in Fig. 2 we propose several refinements of the current *Diplasiolejeunea* classification including recognition of five new species that will be formally described in a separate paper. Only one of the five new species (Fig. 1, spec. nov. V) was tentatively identified as an undescribed entity prior to the molecular study based on its morphological characters. Four of the five new species were placed in currently accepted species prior to our molecular investigation, but in some cases weak morphological disparities were already recognized. New species I was originally

identified as *D. pauckertii* but stands out among specimens identified as this species by very densely arranged, squarrose leaves. The new species II and III were identified as *D. cavifolia* but were collected at higher altitudes than *D. cavifolia* s.str. (Fig. 3). Morphologically they differ slightly in underleaf shape, general lack of T-like lobule teeth, gender distribution, and lack of gemmae. One new species (spec. nov. IV) resembles *D. caribea* but stands out by leaf lobes with a broad marginal border consisting of small, subquadrate to (short-)rectangular cells. The study of additional material will likely result in a better understanding of the morphological disparity among these species and allow to identify characters for specimen identification. However, morphology alone was not sufficient to recognize these phenotypes as independent biological entities, accentuating the importance of integrative, molecular-morphological studies to recognize the actual liverwort diversity (Dayrat, 2005, Will et al., 2005 and Heinrichs et al., 2009b).

Our data tend to support narrow species concepts in Diplasiolejejeunea but the example D. inermis contradicts this finding (Fig. 2). Diplasiolejeunea inermis was separated from *D. pellucida* by a free tooth on the margin of the lobule (incurved in *D.* pellucida; Tixier, 1985) and can usually be separated without much doubt. We chose typical forms of both taxa including two specimens from the same locality in Venezuela (Venezuela 1: D. inermis, 2: D. pellucida). These accessions produced identical sequences and form a robust monophyletic lineage within D. pellucida (Fig. 2). We furthermore observed morphological intermediates when checking larger specimen sets. Based on our phylogeny and the observed intermediate forms we regard *D. inermis* as a synonym of D. pellucida, and the direction of the outer lobule tooth subject to infraspecific variation. The situation is complicated by the presence of *D. caribea* in the D. pellucida clade. This taxon differs from D. pellucida by its T-shaped first (median) and a free second (apical) lobule tooth and is possibly a recent derivative of a local D. pellucida population. Diplasiolejeunea malleiformis closely resembles D. pellucida and is often treated as a variety of the latter (Schäfer-Verwimp and Reiner-Drehwald, 2009). However, West Indian accessions of *D. malleiformis* form an independent lineage (Figs. 1, 2). Incongruence of morphological and molecular variation is also seen in the D. rudolphiana / D. unidentata clade. Diplasiolejeunea rudolphiana and D. unidentata differ by the length and orientation of the lobule teeth, and sex distribution. However, both accessions of *D. unidentata* from Guadeloupe are nested in *D. rudolphiana* and placed sister to a *D. rudolphiana* accession from the same region. Inclusion of *D. unidentata* samples from other parts of the Neotropics is necessary to ellucidate the status of both taxa.

4.3. Cryptic speciation

There is increasing evidence for molecular variation without concordant morphological differentiation in liverworts. Morphologically cryptic biological entities have been observed in the genera Conocephalum (Odrzykoski and Szweykowski, 1991), Frullania (Ramaiya et. al., 2010), Leptoscyphus (Vanderpoorten al.. et 2010b), Marchesinia (Heinrichs et al.. 2009b), Metzgeria (Fuselier et al.. 2009), Pellia (Odrzykoski et al., 1996), Ptilidium (Kreier et al., 2010) and others, and are also present in Diplasiolejeunea.

Diplasiolejeunea pauckertii is narrowly circumscribed, а montane species characterized by inrolled leaf lobules with obscurely toothed free margins, ocelli and gemmae. However, a few D. pauckertii accessions are placed outside the main lineage of this species (Fig. 2). The accessions Ecuador (I) and (II) come from lower altitudes than other D. pauckertii accessions of this species (Fig. 3) and could thus be indicative along of morphologically cryptic speciation altitudinal gradients. Another D. robust with D. pauckertii morphotype forms а monophyletic lineage involuta ssp. andicola.

Diplasiolejeunea pluridentata occurs in similar habitats as *D. pauckertii*. Two accessions of this species form a paraphyletic grade within the *D. pauckertii-involuta*erostrata clade; another accession is placed sister to a clade with *D. pauckertii* and *D. involuta* ssp. *andicola*. It is still unclear if the grade holds when more accessions are included, and complete sequence stretches become available.

The pantropical species *D. cavifolia* is regarded to be a somewhat variable species (Schäfer-Verwimp and Reiner-Drehwald, 2009) including forms with strongly T-shaped

lobule teeth (earlier recognized as *D. matoubae* and *D. zacatepecensis*) as well as forms without such teeth. This species forms a robust lineage with two main clades (Fig. 2); however, the different morphotypes are present in both. The two clades occur sympatrically in the West Indies, and can thus neither be separated using geographical nor morphological evidence. We consider *D. cavifolia* to be another example of morphologically cryptic speciation.

4.4. Biogeography

4.4.1 Geographical pattern and evolution along altitudinal gradients.

Both the MP and ML analyses (Fig. 1, Fig. 2 and Fig. 3) reveal a clear geographical pattern with a Paleotropical and a Neotropical main lineage. This clear pattern is surprising with regard to the high dispersal ability of spore plants (Wolf et al., 2001, van Zanten, 1978 and Vanderpoorten et al., 2010a), and to our knowledge has not yet been documented for any other liverwort genus. The observed pattern could be indicative of Gondwanan vicariance, however, divergence time estimates suggest an origin of Diplasiolejeunea in the Oligocene (Wilson et al., 2007b), posterior to the Mesozoic breakup of the Southern landmass (McLoughlin, 2001). The main clades of Diplasiolejeunea seem to be the result of a few dispersal events in the early history of the genus, and subsequent local diversification. Mapping the altitudinal distribution and growth preferences of the investigated species on the molecular trees (Fig. 1 and Fig. 3) reveals ecological and geographical tendencies for the Neotropical main clades IIa llb (subgen. Diplasiolejeunea). (subgen. Austrolejeuneopsis) and Subgenus Diplasiolejeunea includes species which grow predominantly on living leaves of angiosperms and ferns rather than on trunks and twigs. This preference for an epiphyllous growth is correlated with an occurrence in the lowlands and lower montane regions; however, a few exceptions prove the rule (D. pocsii, D. spec. nov. II and III). In contrast, subgen. Austrolejeuneopsis includes mostly montane or Andean species with a preference for epiphytic occurrences, in addition to a few epiphytes from lower altitudes. This pattern may sustain the hypothesis of a strong influence of the rise of the Northern and Central Andes on the assembly of this liverwort diversity by triggering the diversification of the Neotropical *D.* subg. *Austrolejeuneopsis* clade, perhaps by

providing new habitats. Entrance of lowland and mid-elevation epiphytes into Andean cloud forests and subsequent speciation could explain the observed pattern, and has also been proposed for other neotropical plant groups including the fern Serpocaulon (Kreier et al., 2008) and Bromeliaceae (Givnish et al., 2004). In short, the recovered evidence indicates that the same processes influence the diversification of derived liverworts and angiosperms in the Neotropics (Pennington et al., 2010 and Antonelli and Sanmartin, 2011). Similar speculations cannot yet be made for the Paleotropical main clade since the regional sampling is still very limited, especially for continental Africa. Our attempts to extract DNA from numerous accessions from this region were unsuccessful with the exception of *D. villaumei*, of which three Kenyan and one Madagascan accession were studied (Fig. 2). The related sequences are very similar, and provide no evidence for a separation of East African Island and Continental African lineages as seen in Plagiochila sect. Vagae(Heinrichs et al., 2005b). The East African Islands have been regarded as а centre of diversification of Diplasiolejeunea (Tixier, 1985), and it would be worthwhile to carve out the relationships of the island and the mainland populations.

4.4.2 Intercontinental species ranges, dispersal and migration routes

Our study confirms a pantropical range of *D. cavifolia*. The considerable sequence similarities of the accessions forming the pantropical subclade (Fig. 2) indicate recent emergence and fast range expansions or occasional intercontinental gene exchange (Fig. 3). Pantropical ranges of liverworts are rather uncommon, and have otherwise been supported by molecular data only for *Frullania arecae* and *F. ericoides* (Hentschel et al., 2009).

According to morphological evidence (Zhu and So, 2001), *D. rudolphiana* is another pantropical species. We could include only accessions from the Neotropics and Madagascar in our sampling. These accessions form a robust monophyletic lineage together with accessions of *D. unidentata* (Fig. 2). The extensive sequence similarities of our *D. rudolphiana* accession from Guadeloupe and those from Madagascar may be more consistent with the hypothesis of recent long distance dispersal rather than the

hypothesis of fragmentation of a broader range triggered by the climate cooling during the Neogene (Zachos et al., 2001). *Diplasiolejeunea cavifolia* and *D. rudolphiana* are nested in the Neotropical *Diplasiolejeunea* clade (Fig. 3), providing evidence for a Neotropical origin of these species and dispersal into the Paleotropics. The same direction of propagation has recently been proposed for several other liverwort species based on molecular phylogenies, e.g., for the tropical American–African *Herbertus juniperoideus* (Feldberg et al., 2007), *Plagiochila boryana* and *P. corrugata* (Heinrichs et al., 2005b). *Diplasiolejeunea cobrensis* is the third pantropical species within this genus, however, we were only able to sequence accessions from Madagascar and Mayotte; an accession from Brazil (Schäfer-Verwimp 8730b) did not yield PCR products. Although it would be desirable to test the range of this species with molecular data, we can tentatively reconstruct an Afromadagascan origin based on its presence in the Afromadagascan *Diplasiolejeunea* clade.

Diplasiolejeunea includes narrow endemics such as the Indonesian *D. ingekarolae* and widespread "tramp" species occurring on one to several continents. A similar situation is present in many spore plant lineages, and has been demonstrated, e.g., for the moss genus *Daltonia* with the pantropical species *D. marginata* and *D. splachnoides* (Yu et al., 2010), and the fern *Nephrolepis* with the pantropical species *N. biserrata* (Hennequin et al., 2010).

Germination experiments provided evidence for a higher survival rate of spores of widespread liverworts under conditions required to be successfully dispersed in the trade wind zones (van Zanten and Gradstein, 1988), even though the physiological characteristics of such spores are still largely unknown (Löbel and Rydin, 2010). Germination experiments have not yet been conducted in *Diplasiolejeunea*, hence we cannot explain the different ranges by characters of the spores. Many liverworts are capable of vegetative reproduction through propagules or unspecific gametophyte fragments. Vegetative reproduction by propagules has generally been accepted as an important dispersal mode for epiphytic bryophytes (van Zanten and Pócs, 1981), at least over short distances (Löbel and Rydin, 2010), and has been documented for the majority of *Diplasiolejeunea* species (Fig. 1, character 8). It is thinkable that these dispersal

entities also contribute to the formation of disjunct ranges (Pohjamo et al., 2006). The pantropical species *D. cavifolia* and *D. rudolphiana* seem to have a broader ecological amplitude than other species of this genus, and occur not only in moist forests but also in more mesic woodlands, plantations and orchards (Gradstein et al., 2001). This broad amplitude together with an assumed tolerance of diaspores against drought and frost could explain the success of these species and their pantropical ranges. All three pantropical species of *Diplasiolejeunea* occur at rather low altitudes; however, this is not a general phenomenon for intercontinentally distributed liverworts. *Plagiochila boryana* is an example of a tropical American–African species occurring at high altitudes.

4.4.3 Range formation and diversification

Our study points to geographically restricted clades in *Diplasiolejeunea*, as well as to clades consisting of species groups with similar ecological and altitudinal preferences. This pattern is obviously the result of occasional long distance dispersal, frequent dispersal over short distances, local diversification, and perhaps also niche conservatism. It is also likely that extinction and recolonization processes contributed to the formation of current ranges. This combination of processes obviously shaped many liverwort ranges; examples come from the genera *Bryopteris* (Hartmann et al., 2006), *Herbertus* (Feldberg et al., 2007), *Plagiochila* (Heinrichs et al., 2006), *Syzygiella* (Feldberg et al., 2010) and others.

The observed patterns contradict a general panmixis hypothesis as well as Crum's (1972) hypothesis of bryophytes being "unmoving, unchanging sphinxes of the past" (Crum, 1972). Instead, they are commemorative of biogeographical patterns in angiosperms (Renner, 2004 and Bartish et al., 2011), although bryophyte species tend to have larger ranges. However, already Shaw (2001) pointed out that morphological uniformity of bryophytes belies complex underlying genetic and phylogenetic patterns. Since then, numerous molecular studies confirmed this hypothesis (Stech and Wagner, 2005, Grundmann et al., 2007, Shaw et al., 2008, and Ramaiya et al., 2010), accentuating that our understanding of speciation processes in bryophytes is still limited. In this regard, *Diplasiolejeunea* confirms the rule.

4.4.4. Perspectives

The present study is the first comprehensive molecular phylogenetic investigation of a largely epiphyllous genus of liverworts. Despite their diminutiveness and the small size of many vouchers, we were able to include about fifty percent of the expected *Diplasiolejeunea* species diversity (Schäfer-Verwimp, 2006). Hence our topologies allow for a reclassification of the genus, and provide a framework for forthcoming monographic studies. Presently molecular studies of *Diplasiolejeunea* are hampered by the limited number of herbarium specimens suitable for DNA extraction. Future fieldwork will thus be essential to complete the phylogeny of *Diplasiolejeunea*; and to further elucidate the relationships in several critical complexes such as the andine *D. pauckertii* group and the *D. pellucida-caribea* complex.

Acknowledgments

We are grateful to the directors and curators of the herbaria EGR, G, JE, and PC for the loan of specimens including types. Thanks are due to Maarten Kappelle and Nelson Zamora, Instituto Nacional de Biodiversidad (INBio), for logistic support during fieldwork in Costa Rica, and Susanna León-Yánez and Santiago Yandún for logistic support in Ecuador. Fieldwork in Ecuador by the second author in the framework of the ABA-GAM project was funded by the German Research Foundation (grant LE 1826/4-1). The *Diplasiolejeunea* project was supported by the German Research Foundation (grants HE 3584/2 and 4) and scholarship No. 2010697001 granted to S.D. by China Scholarship Council. This is publication number 78 from the Courant Research Centre Geobiology that is funded by the German Initiative of Excellence.

References

- Ahonen, I., Muonen, J., Piippo, S., 2003. Inferring the phylogeny of Lejeuneaceae: a first appraisal of molecular data. Bryologist 106, 297-308.
- Antonelli. A., Sanmartin. I., 2011. Why are there so many plant species in the Neotropics? Taxon 60: 403-414.
- Bartish, I.V., Antonelli, A., Richardson, J.E., Swenson, U., 2011. Vicariance or long-

distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae). J. Biogeogr. 38, 177-190.

- Benavides, J.C., Saste-De Jésus, 2011. Diversity and rarity of epiphyllous bryophytes in a superhumid tropical lowland forest of Chocó-Colombia. Cryptog., Bryol. 32, 119-133.
- Cornelissen, J.H.C., Ter Steege, H., 1989. Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. J. Trop. Ecol. 5, 131–150.
- Crandall-Stotler, B., Stotler, R.E., Long, D.G., 2009. Phylogeny and classification of the Marchantiophyta. Edinburgh J. Bot. 66, 155-198.
- Crum, H.A., 1972. The geographic origins of the mosses of North America's Eastern deciduous forest. J. Hattori Bot. Lab. 35, 269-298.
- Dayrat, B., 2005. Towards integrative taxonomy. Biol. J. Linn. Soc. 85, 407-415.
- De Queiroz, K., 2007. Species concepts and species delimitation. Syst. Biol. 56, 879-886.
- Devos, N., Vanderpoorten, A., 2009. Range disjunctions, speciation, and morphological transformation rates in the liverwort genus *Leptoscyphus*. Evolution 63, 779-791.
- Feldberg, K., Hentschel, J., Wilson, R., Rycroft, D.S., Glenny, D., Heinrichs, J., 2007.
 Phylogenetic biogeography of the leafy liverwort *Herbertus* (Jungermanniales, Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution. J. Biogeogr. 34, 688-698.
- Feldberg, J., Váňa, J., Long, D.G., Shaw, J., Hentschel, J., Heinrichs, J., 2010. A phylogeny of Adelanthaceae (Jungermanniales, Marchantiophyta) based on nuclear and chloroplast DNA markers, with comments on classification, cryptic speciation and biogeography. Mol. Phylogenet. Evol. 55, 293-304.

- Forrest, L.L., Salazar Allen, N., Gudiño, J.A., Korpelainen, H., Long, D.G., 2011. Molecular and morphological evidence for distinct species in *Dumortiera* (Dumoerieraceae). Bryologist 114, 102-115.
- Fuselier, L., Davison, P.G., Clements, M., Shaw, B., Devos, N., Heinrichs, J., Hentschel, J., Sabovljevic, M., Szövenyi, P., Schütte, S., Hofbauer, W., Shaw, A.J., 2009.
 Phylogeographic analyses reveal distinct lineages of *Metzgeria furcata* and *M. conjugata* (Metzgeriaceae) in Europe and North America. Biol. J. Linn. Soc. 98, 745-756.
- Goldman, N., 1993. Statistical tests of models of DNA substitution. J. Molec. Evol. 36, 182-198.
- Givnish, T.J., Millam, K.C., Evans, T.M., Hall, J.C. Pires, J.C., Berry, P.E., Sytsma, K.J., 2004. Ancient vicariance or recent long-distance dispersal? Inferences about phylogeny and South American-African disjunctions in Rapateaceae and Bromeliaceae based on *ndh*F sequence data. Int. J. Pl. Sci. 165(suppl), S35-S54.
- Gradstein, S.R., 1997. The taxonomic diversity of epiphyllous bryophytes. Abstr. Bot. 21, 15–19.
- Gradstein, S.R., Churchill, S.P., Salazar-Allen, N., 2001. Guide to the Bryophytes of tropical America. Mem. New York Bot. Gard. 86, 1-577.
- Gradstein, S.R., Ilkiu-Borges, A.L., Vanderpoorten, A., 2011. Habitat speciation triggers the evolution of unusual morphologies - the case of *Cololejeunea stotleriana* sp. nov. from Ecuador. Bryologist 114, 9-22.
- Gradstein, S.R., Wilson, R., Ilkiu-Borges, A.L., Heinrichs, J., 2006. Phylogenetic relationships and neotenic evolution of *Metzgeriopsis* (Lejeuneaceae) based on chloroplast DNA sequences and morphology. Bot. J. Linn. Soc. 151, 293–308.

Grolle, R., 1966. Über Diplasiolejeunea in Asien. Fedd. Repert. 73, 78-89.

- Grolle, R., 1995. The Hepaticae and Anthocerotae of the East African Islands. An annotated catalogue. Bryophyt. Biblioth. 48, 1-178.
- Grundmann, M., Ansell, S.W., Russel, S.J., Koch, M.A., Vogel, J.C., 2007. Genetic structure of the widespread and common Mediterranean bryophyte *Pleurochaete squarrosa* (Brid.) Lindb. – evidence from nuclear and plastidic DNA sequence variation and allozymes. Molec. Ecol. 16, 709-722.
- Hall, T.A., 1999. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
- Hartmann, F.A., Wilson, R., Gradstein, S.R., Schneider, H., Heinrichs, J., 2006. Testing hypotheses on species delimitations and disjunctions in the liverwort *Bryopteris* (Jungermanniopsida: Lejeuneaceae). Int. J. Plant Sci. 167, 1205-1214.
- Heinrichs, J., Gradstein, S.R., Wilson, R., Schneider, H., 2005a. Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene *rbcL*. Cryptog. Bryol. 26, 131-150.
- Heinrichs, J., Hentschel, J., Bombosch, A., Fiebig, A., Reise, J., Edelmann, M., Kreier, H.-P., Schäfer-Verwimp, A., Caspari, S., Schmidt, A.R., Zhu, R.-L., von Konrat, M., Shaw, B., Shaw, A.J., 2010. One species or at least eight? Delimitation and distribution of *Frullania tamarisci* (L.) Dumort. (Jungermanniopsida, Porellales) inferred from nuclear and chloroplast DNA markers. Molec. Phylogen. Evol. 56, 1105-1114.
- Heinrichs, J., Hentschel, J., Feldberg, K., Bombosch, A., Schneider, H., 2009a.Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. J. Syst.Evol. 47, 497-508.

- Heinrichs, J., Klugmann, F., Hentschel, J., Schneider, H., 2009b. DNA taxonomy, cryptic speciation and diversification of the Neotropical-African liverwort, *Marchesinia brachiata* (Lejeuneaceae, Porellales). Molec. Phylogenet. Evol. 53, 113-121.
- Heinrichs, J., Kreier, H.-P., Feldberg, K., Schmidt, A.R., Zhu, R.L., Shaw, B., Shaw, A.J., Wissemann, V., 2011. Formalizing morphologically cryptic biological entities: New insights from DNA taxonomy, hybridization, and biogeography in the leafy liverwort *Porella platyphylla* (Jungermanniopsida, Porellales). Amer. J. Bot. 98, 1252-1262.
- Heinrichs, J., Lindner, M., Gradstein, S.R., Groth, H., Buchbender, V., Solga, A., Fischer, E., 2005b. Origin and subdivision of *Plagiochila* (Jungermanniidae: Plagiochilaceae) in tropical Africa based on evidence from nuclear and chloroplast DNA sequences and morphology. Taxon 54, 317-333.
- Heinrichs, J., Lindner, M., Groth, H., Hentschel, J., Feldberg, K., Renker, C, Engel, J.J., von Konrat, M., Long, D.G., Schneider, H., 2006. Goodbye or welcome Gondwana? insights into the phylogenetic biogeography of the leafy liverwort *Plagiochila* with a description of *Proskauera*, gen. nov. (Plagiochilaceae, Jungermanniales). Pl. Syst. Evol. 258, 211-226.
- Hennequin, S., Hovenkamp, P., Christenhusz, M.J.M., Schneider, H., 2010. Phylogenetics and biogeography of *Nephrolepis* – a tale of old settlers and young tramps. Bot. J. Linn. Soc. 164, 113-127.
- Hentschel, J., von Konrat, M.J., Pócs, T., Schäfer-Verwimp, A., Shaw, A.J., Schneider, H.,
 Heinrichs, J., 2009. Molecular insights into the phylogeny and subgeneric classification of *Frullania* Raddi (Frullaniaceae, Porellales). Molec. Phylogen. Evol. 52, 142-156.
- Hillis, D.M., Bull, J.J., 1993. An empirical test of bootstrapping as a method for assessing the confidence in phylogenetic analysis. Syst. Biol. 42, 182-192.

- Holmgren, P.K., Holmgren, N.H., Barnett, N.C., 1990. Index Herbariorum. Part I: The Herbaria of the World (Regnum Veg. 120), eighth ed. New York Botanical Garden, New York.
- Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755.
- Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.
- Kreier, H.-P., Feldberg, K., Mahr, F., Bombosch, A., Schmidt, A.R., Zhu, R.-L., von Konrat, M., Shaw, B., Shaw, A.J., Heinrichs, J., 2010. Phylogeny of the leafy liverwort *Ptilidium*: cryptic speciation and shared haplotypes between the Northern and Southern Hemispheres. Molec. Phylogen. Evol. 57, 1260–1267.
- Kreier, H.-P., Rex, M., Weising, K., Kessler, M., Smith, A.R., Schneider, H., 2008. Inferring the diversification of the epiphytic fern genus *Serpocaulon* (Polypodiaceae) in South America using chloroplast sequences and amplified fragment length polymorphisms. Pl. Syst. Evol. 274, 1-16.
- Laenen, B., Désamoré, A., Devos, N., Shaw, A.J., Gonzáles-Mancebo, J.M., Carine, M.A., Vanderpoorten, A., 2011. Macaronesia: a source of hidden genetic diversity for post-glacial recolonization of western Europe in the leafy liverwort *Radula lindenbergiana*. J. Biogeogr. 38, 631-639.
- Löbel, S., Rydin, H., 2010. Trade-offs and habitat constraints in the establishment of epiphytic bryophytes. Funct. Ecol. 24, 887–897.
- Maddison, D.R., Maddison, W.P., 2004. Mesquite, version 2. Tucson, Arizona. Available at http://mesquiteproject.org
- McLoughlin, S., 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Austral. Syst. Bot. 49, 271-300.

- Mason-Gamer, R.J., Kellogg, E.A., 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45, 524-545.
- Odrzykoski, I.J., Chudzinska, E., Szweykowski, J., 1996. The hybrid origin of the polyploid liverwort *Pellia borealis*. Genetica 98, 75-86.
- Odrzykoski, I.J., Szweykowski, J., 1991. Genetic differentiation without concordant morphological divergence in the thallose liverwort *Conocephalum conicum*. Plant Syst. Evol. 178, 135–152.
- Pennington, R.T., Lavin, M., Sarkinen T, Lewis GP, Klitgaard BB, Hughes CE 2010 Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc. Nat. Acad. Sci USA 107, 13783-13787.
- Pócs, T., 1996. Epiphyllous liverwort diversity at worldwide level and its threat and conservation. Anales Inst. Biol. Univ. Nac. Autón. México, Ser. Bot. 67, 109-127.
- Pócs, T., 2006. New or little-known epiphyllous bryophytes, X. On two Neotropical *Diplasiolejeunea* species. Bryologist 109, 408-414.
- Pócs, T., Schäfer-Verwimp, A., 2006. East African bryophytes, XXIII. Three new species of *Diplasiolejeunea* (Lejeuneaceae, Jungermanniopsida) from Madagascar. Cryptog., Bryol. 27, 439-452.
- Pohjamo, M, Laaka-Lindberg, S, Ovaskainen, O, Korpelainen, H., 2006. Dispersal potential of spores and asexual propagules in the epixylic hepatic Anastrophyllum hellerianum. Evolutionary Ecology 20: 415–430.
- Posada, D., 2008. jModelTest: Phylogenetic model averaging. Molec. Biol. Evol. 25, 1253-1256.

Rambaut, A., Drummond, A.J., 2003. Tracer V1.3. < http://evolve.zoo.ox.ac.uk>.

- Ramaiya, M., Johnston, M.G., Shaw, B., Heinrichs, J., Hentschel, J., von Konrat, M., Davison, P.G., Shaw, A.J., 2010. Morphologically cryptic biological species within the liverwort, *Frullania asagrayana*. Amer. J. Bot. 97, 1707-1718.
- Renner, M.A.M., Brown, E.A., Wardle, G.M., 2011. The Lejeunea tumida group is positively paraphyletic (Lejeuneaceae: Jungermanniopsida). Austral. Syst. Bot. 24, 10-18.
- Renner, S., 2004. Plant dispersal across the tropical Atlantic by wind and sea currents. Int. J. Pl. Sci. 165 (suppl.), S23-S33.
- Reyes, D.M., 1982 [1983]. El género *Diplasiolejeunea* en Cuba. Acta Bot. Acad. Sci. Hung. 28, 145-180.
- Schäfer-Verwimp, A., 2004. The genus *Diplasiolejeunea* (Lejeuneaceae, Marchantiopsida) in the tropical Andes, with description of two new species. Cryptog., Bryol. 25, 3-17.
- Schäfer-Verwimp, A., 2005. *Diplasiolejeunea riclefgrollei* (Lejeuneaceae, Jungermanniopsida), a remarkable new species from Cuba. Cryptog., Bryol. 26, 37-40.
- Schäfer-Verwimp, A., 2006. A new species of *Diplasiolejeunea* (Lejeuneaceae, Jungermanniopsida) from Sumatra, and a key for the genus in Asia. Herzogia 19, 239-244.
- Schäfer-Verwimp, A., Reiner-Drehwald, M.E., 2009. Some additions to the bryophyte flora of Guadeloupe, West Indies, and new synonyms in the genera *Diplasiolejeunea* and *Lejeunea*. Cryptog., Bryol. 30, 357-375.
- Schuster, R.M., 1970. Studies on Hepaticae, XLIX-LIII. New Lejeuneaceae from Dominica and Jamaica. Bull. Torrey Bot. Club 97, 336-352.

- Schuster, R.M., 1980. The Hepaticae and Anthocerotae of North America, East of the Hundredth Meridian, Vol. IV. Columbia University Press, New York.
- Shaw, A.J., 2001. Biogeographic patterns and cryptic speciation in bryophytes. J. Biogeogr. 28, 253-261.
- Shaw, A.J., Boles, S., Shaw, B., 2008. A phylogenetic delimitation of the "*Sphagnum* subsecundum complex" (Sphagnaceae, Bryophyta). Amer. J. Bot. 95, 731-744.
- Sonnleitner, M., Dullinger, S., Wanek, W., Zechmeister, H., 2009. Microclimatic patterns correlate with the distribution of epiphyllous bryophytes in a tropical lowland rain forest in Costa Rica. J. Trop. Ecol. 25, 321-330.
- Stech, M., Wagner, D., 2005. Molecular relationships, biogeography, and evolution of Gondwanan *Campylopus* species (Dicranaceae, Bryopsida). Taxon 54, 377-382.
- Sukkharak, P., Gradstein, S.R., Stech, M., 2011. Phylogeny, taxon circumscriptions and character evolution in the core Ptychanthoideae (Lejeuneaceae, Marchantiophyta). Taxon 60, 1607-1622.
- Swofford, D.L., 2000. PAUP*, phylogenetic analyses using parsimony (* and other methods), version 4.01b10. Sinauer Associates, Sunderland, Massachusetts.
- Tavaré, S., 1986. Some probabalistic and statistical problems on the analysis of DNA sequences. Lec. Math. Life Sci. 17, 57-86.
- Tixier, P., 1985. Contribution à la connaicance des Cololejeunoideae. Bryophyt. Biblioth. 27, 1-439.
- Vanderpoorten, A., Gradstein, S.R., Carine, M.A., Devos, N., 2010a. The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biol. Rev. 85: 471-487.

- Vanderpoorten, A., Schäfer-Verwimp, A., Heinrichs, J., Devos, N., Long, D.G., 2010b. The taxonomy of the leafy liverwort genus *Leptoscyphus* (Lophocoleaceae) revisited. Taxon 59, 176-186.
- Wachowiak, W., Bącziewicz, A., Chudzińska, E, Buczkowska, K., 2007. Cryptic speciation in liverworts - a case study in the *Aneura pinguis* complex. Bot. J. Linn. Soc. 155, 273-282.
- Will, K.W., Mishler, B.D., Wheeler, Q.D., 2005. The perils of DNA barcoding and the need for integrative taxonomy. Syst. Biol. 54, 844-851.
- Wilson, R., Gradstein, S.R., Schneider, H., Heinrichs, J., 2007a. Unravelling the phylogeny of Lejeuneaceae (Jungermanniopsida): evidence for four main lineages. Molec. Phylogen. Evol. 43, 270-282.
- Wilson, R., Heinrichs, J., Hentschel, J., Gradstein, S.R., Schneider, H., 2007b. Steady diversification of derived liverworts under Tertiary climatic fluctuations. Biol. Lett. 3, 566-569.
- Wolf, P.G., Schneider, H., Ranker, T.A., 2001. Geographic distributions of homosporous ferns: does dispersal obscure evidence of vicariance? J. Biogeogr. 28, 263-270.
- Yu, J., Devos, N., Mayestyk, P., Shaw, A.J., 2010. Intercontinentally disjunct species are derived rather than relictual in the moss genus *Daltonia* (Bryophyta). Taxon 59, 459-465.
- Zachos, J., Pagani, M., Sloan, L., Thomas, L., Billups, K., 2001. Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292, 686-693.
- van Zanten, B.O. 1978. Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J. Hattori Bot. Lab. 44, 455-482.

van Zanten, B.O., Gradstein, S.R., 1988. Experimental dispersal geography of

Neotropical liverworts. Beih. Nova Hedwigia 90, 41-94.

- Zartman, C.E., 2003. Habitat fragmentation impacts on epiphyllous bryophyte communities in central Amazonia. Ecology 84, 948-954.
- Zhu, R.-L, So, M.-L., 2001. Epiphyllous liverworts of China. Nova Hedwigia Beih. 121, 1-418.
- Zwickl, D.J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. GARLI version 0.96 beta available online at http://www.nescent.org/informatics/.

Table 1. Taxa used in the present study, including information about the origin of the studied material, voucher information, and the herbarium where the voucher is deposited, as well as GenBank accession numbers. Sequences in bold were obtained from GenBank. Herbarium acronyms follow Holmgren et al. (1990).

Taxon	Origin and altitude	Collector and herbarium	GenBank accession number					
			nrITS	<i>trn</i> L-F	rbcL			
Cololejeunea vitalana	Costa Rica	Schäfer-Verwimp & Holz SV/H-0473/A (GOET)	DQ987348	DQ238573	DQ238564			
Colura acroloba	Fiji Isls.	Pócs 02361/BK (EGR)	DQ987306	DQ238586	DQ238565			
Diplasiolejeunea alata	Costa Rica, Cartago, 2460 m	Schäfer-Verwimp & Holz SV/H-0422 (GOET)	JQ729355	JQ729579	JQ729471			
D. alata	Ecuador (I), Pichincha, 1980 m	Schäfer-Verwimp et al. 24116/A (GOET)	JQ729353	JQ729577	JQ729469			
D. alata	Ecuador (II), Zamora-Chinchipe, 2750–2780 m	Schäfer-Verwimp & Preussing 23311 (GOET)	JQ729354	JQ729578	JQ729470			
D. alata	Panama, Chiriqui, 1740 m	Schäfer-Verwimp et al. 30956 (GOET)	JQ729352	JQ729576	JQ729468			
D. andringitrae	Madagascar (I), Toamasina Prov., 1080–1214 m	Pócs et al. 9890/CT (GOET, Paratype)	JQ729338	JQ729561	JQ729453			
D. andringitrae	Madagascar (II), Andringitra Mts., 750–1000 m	Pócs et al. 9472/AC (EGR, Paratype)	JQ729339	JQ729562	JQ729454			
D. armatiloba	Guadeloupe, Basse Terre, 950 m	Schäfer-Verwimp & Verwimp 22580/C (GOET)	JQ729388	JQ729613	JQ729505			
D. borhidiana	Dominican	Schäfer-Verwimp &	JQ729391	JQ729616	JQ729508			
	Republic,	Verwimp 27214/C						
--------------	---------------------	--------------------	----------	----------	----------	--	--	--
	Santiago, 930 m	(GOET)						
D. brunnea	Bolivia,	Abrahamczyk 29013	JQ729400	JQ729624	_			
	Cochabamba,	(GOET)						
	195 m							
D. brunnea	Brazil, Mato	Schäfer-Verwimp	JQ729402	JQ729626	JQ729517			
	Grosso, 320 m	11380 (GOET)						
D. brunnea	Dominican Rep.,	Schäfer-Verwimp &	JQ729399	JQ729623	JQ729515			
	Santiago, 930 m	Verwimp 27206/A						
		(GOET)						
D. brunnea	Ecuador (I),	Schäfer-Verwimp &	JQ729406	JQ729630	JQ729520			
	Zamora-Chinchipe,	Nebel 31968/A						
	2002 m	(GOET)						
D. brunnea	Ecuador (II), Napo,	Schäfer-Verwimp &	JQ729405	JQ729629	JQ729519			
	400–450 m	Nebel 31704 (GOET)						
D. brunnea	Ecuador (III),	Schäfer-Verwimp &	JQ729401	JQ729625	JQ729516			
	Zamora-Chinchipe,	Preussing 23237/A						
	1860 m	(GOET)						
D. caribea	Guadeloupe (I),	Schäfer-Verwimp &	JQ729374	JQ729598	JQ729491			
	Basse Terre,	Verwimp 22287/A	22287/A					
	450 m	(GOET)						
D. caribea	Guadeloupe (II),	Schäfer-Verwimp &	JQ729378	JQ729602	JQ729495			
	Basse Terre,	Verwimp 22133/B						
	600 m	(GOET)						
D. caribea	Guadeloupe (III),	Schäfer-Verwimp &	JQ729379	JQ729603	JQ729496			
	Basse Terre,	Verwimp 22580/A						
	950 m	(GOET)						
D. caribea	Guadeloupe (IV),	Schäfer-Verwimp &	JQ729380	JQ729604	JQ729497			
	Basse Terre,	Verwimp 22172/A						
	615 m	(GOET)						
D. cavifolia	Brazil, Santa	Schäfer-Verwimp &	JQ729415	JQ729638	-			
	Catarina, 3 m	Verwimp 13598						

		(GOET)			
D. cavifolia	Dominica, M. Trois	Schäfer-Verwimp &	JQ729422	JQ729645	-
	Pitons, 1000 m	Verwimp 17812			
		(GOET)			
D. cavifolia	Dominican Rep. (I),	Pócs & Pócs 03145/M	JQ729420	JQ729643	JQ729533
	Mons. Noel, 955 m	(EGR)			
D. cavifolia	Dominican Rep.	Schäfer-Verwimp &	JQ729416	JQ729639	JQ729529
	(II), Santiago,	Verwimp 27214/A			
	930 m	(GOET)			
D. cavifolia	Ecuador,	Schäfer-Verwimp et al.	JQ729417	JQ729640	JQ729530
	Tungurahua,	24241/B (GOET)			
	1540 m				
D. cavifolia	Fiji Isls., Central	Pócs 08035/H (EGR)	JQ729413	JQ729636	JQ729527
	Viti Levu, 800 m				
D. cavifolia	Guadeloupe (I),	Schäfer-Verwimp &	JQ729421	JQ729644	JQ729534
	Basse Terre,	Verwimp 22402/E			
	780 m	(GOET)			
D. cavifolia	Guadeloupe (II),	Schäfer-Verwimp &	JQ729423	JQ729646	JQ729535
	Basse Terre,	Verwimp 22137/B			
	743 m	(GOET)			
D. cavifolia	Guadeloupe (III),	Schäfer-Verwimp &	JQ729419	JQ729642	JQ729532
	Basse Terre,	Verwimp 22597			
	900 m	(GOET)			
D. cavifolia	Indonesia,	Schäfer-Verwimp &	JQ729410	JQ729633	JQ729524
	Sumatra, 1580 m	Verwimp 24923/B			
		(GOET)			
D. cavifolia	Madagascar (I),	Pócs & Zsabo	JQ729412	JQ729635	JQ729526
	Andasive, 995 m	9484/AE (EGR)			
D. cavifolia	Madagascar (II),	Pócs & Pócs 04118/CB	JQ729414	JQ729637	JQ729528
	Fianarantsoa Prov.,	(EGR)			
	865–1015 m				
D. cavifolia	Malaysia (I),	Schäfer-Verwimp &	JQ729411	JQ729634	JQ729525

	Pahang, 1280 m	Verwimp 18584/B			
		(GOET)			
D. cavifolia	Malaysia (II),	Schäfer-Verwimp &	JQ729418	JQ729641	JQ729531
	Perak, 1340 m	Verwimp 19036/A			
		(GOET)			
D. cavifolia	Panama, Prov.	Schäfer-Verwimp &	JQ729424	JQ729647	_
	Panama, 970 m	Verwimp 30738			
		(GOET)			
D. cavifolia	Réunion, Piton de	Schäfer-Verwimp	JQ729407	JQ729631	JQ729521
	la Fournaise,	20385 (GOET)			
	1030 m				
D. cavifolia	Venezuela (I),	Pócs et al. 0225EA	JQ729409	JQ729632	JQ729523
	Bolivar, 1370 m	(EGR)			
D. cavifolia	Venezuela (II),	Pócs et al. 0225EA-1	JQ729408	_	JQ729522
	Bolivar, 1370 m	(JE)			
D. cobrensis	Madagascar,	Pócs et al. 9882/AE	JQ729337	_	JQ729452
	Toamasina, 4 m	(GOET)			
D. cobrensis	Mayotte Isl,	Pócs et al. 05092/R	JQ729336	JQ729560	JQ729451
	Poroani, 500 m	(EGR)			
D. cornuta	Réunion (I), Cirque	Schäfer-Verwimp et al.	JQ729341	JQ729564	JQ729456
	de Salazie, 1800 m	20012 (GOET)			
D. cornuta	Réunion (II), Gîte	Pócs 08063/E (EGR)	JQ729342	JQ729565	JQ729457
	de Bélouve,				
	1520 m				
D. cubensis	Guadeloupe (I),	Schäfer-Verwimp &	JQ729392	JQ729617	JQ729509
	Basse Terre,	Verwimp 22580/B			
	950 m	(GOET)			
D. cubensis	Guadeloupe (II),	Schäfer-Verwimp &	JQ729393	JQ729618	JQ729510
	Basse Terre,	Verwimp 22388/C			
	1100 m	(GOET)			
D. eggersii	Costa Rica, San	Schäfer-Verwimp &	JQ729368	JQ729591	JQ729484
	José, 1600 m	Holz SV/H-0238			

		(GOET)			
D. eggersii	Panama, Chiriqui,	Schäfer-Verwimp &	JQ729367	JQ729590	JQ729483
	1670 m	Verwimp 30933			
		(GOET)			
D. erostrata	Ecuador (I), Loja,	Schäfer-Verwimp	JQ729426	JQ729649	JQ729537
	2970 m	31769/B-1 (GOET)			
D. erostrata	Ecuador (II), Loja,	Schäfer-Verwimp &	JQ729427	JQ729650	JQ729538
	2970 m	Nebel 31769 (GOET)			
D. erostrata	Ecuador (III),	Schäfer-Verwimp	-	JQ729651	JQ729539
	Zamora-Chinchipe,	23335 (GOET)			
	2740 m				
D. ingekarolae	Indonesia,	Schäfer-Verwimp &	JQ729335	JQ729559	JQ729450
	Sumatra, 1520 m	Verwimp 24906/B			
		(GOET, isotype)			
<i>D. involuta</i> ssp.	Ecuador (I), Loja,	Schäfer-Verwimp &	JQ729442	JQ729665	JQ729551
andicola	3050 m	Preussing 23288			
		(GOET)			
<i>D. involuta</i> ssp.	Ecuador (II),	Schäfer-Verwimp &	DQ987288	DQ238582	AY548096
andicola	Zamora-Chinchipe,	Preussing 23508			
	2860 m	(GOET)			
<i>D. involuta</i> ssp.	Costa Rica (I), San	Schäfer-Verwimp &	JQ729438	JQ729661	JQ729548
involuta	José, 3400 m	Holz SV/H-0147/A			
		(GOET)			
<i>D. involuta</i> ssp.	Costa Rica (II),	Morales & Blanco 24/2	JQ729441	JQ729664	JQ729550
involuta	Cartago, 2500 m	(GOET)			
<i>D. involuta</i> ssp.	Dominican Rep.,	Schäfer-Verwimp &	JQ729437	JQ729660	JQ729547
involuta	Cordillera Central,	Verwimp 26680/B			
	2170–2200 m	(GOET)			
<i>D. involuta</i> ssp.	Ecuador, Zamora-	Mandl B6 (GOET)	JQ729439	JQ729662	JQ729670
involuta	Chinchipe, 2650 m				
<i>D. involuta</i> ssp.	Panama, Bocas	De Gracia et al. 376	JQ729440	JQ729663	JQ729549
involuta	del Toro, 3200 m	(GOET)			

			-	-	-
D. johnsonii	Dominican Rep.,	Pócs & Pócs 03150/T	JQ729364	JQ729587	JQ729480
	La Vega, 1945 m	(EGR)			
D. johnsonii	Ecuador, Zamora-	Schäfer-Verwimp &	JQ729363	JQ729586	JQ729479
	Chinchipe, 1060 m	Preussing 23426/A			
		(GOET)			
D. jovet-astiae	Malaysia (I),	Schäfer-Verwimp &	JQ729672	JQ729556	JQ729447
	Pahang, 1640 m	Verwimp 18902/B			
		(GOET)			
D. jovet-astiae	Malaysia (II),	Schäfer-Verwimp &	JQ729333	JQ729557	JQ729448
	Pahang, 1300 m	Verwimp 18620/C			
		(GOET)			
D. kraussiana	Madagascar,	Pócs et al.04115/CA	JQ729348	JQ729572	JQ729463
	Fianarantsoa Prov.,	(GOET)			
	1700–1750 m				
D. leiocarpa	Guadeloupe (I),	Schäfer-Verwimp &	JQ729386	JQ729610	_
	Basse Terre,	Verwimp 22384			
	1170 m	(GOET)			
D. leiocarpa	Guadeloupe (II),	Schäfer-Verwimp &	JQ729387	JQ729611	JQ729503
	Basse Terre,	Verwimp 22385			
	1160 m	(GOET)			
D. leiocarpa	Guadeloupe (III),	Schäfer-Verwimp &	JQ729674	JQ729612	JQ729504
	Basse Terre,	Verwimp 22143			
	670 m	(GOET)			
D. malleiformis	Dominica, 450 m	Schäfer-Verwimp	JQ729397	JQ729622	_
		17784/B (GOET)			
D. malleiformis	Guadeloupe (I),	Schäfer-Verwimp &	JQ729394	JQ729619	JQ729511
	Basse Terre,	Verwimp 22496			
	400 m	(GOET)			
D. malleiformis	Guadeloupe (II),	Schäfer-Verwimp &	JQ729395	JQ729620	JQ729512
	Basse Terre,	Verwimp 22300/C			
	650 m	(GOET)			
D. malleiformis	Guadeloupe (III),	Schäfer-Verwimp &	JQ729396	JQ729621	JQ729513

	Basse Terre,	Verwimp 22172/B			
	615 m	(GOET)			
D. malleiformis	Guadeloupe (IV),	Schäfer-Verwimp &	JQ729398	_	JQ729514
	Basse Terre,	Verwimp 22328			
	700 m	(GOET)			
D. ornata	Madagascar,	Pócs & Szabó 9878/F	JQ729340	JQ729563	JQ729455
	Tomasina Prov.,	(GOET)			
	220–300 m				
D. papilionacea	Ecuador, Napo,	Schäfer-Verwimp et al.	JQ729362	JQ729585	JQ729478
	1970 m	24212/A (GOET)			
D. patelligera	Malaysia, Pahang,	Schäfer-Verwimp &	JQ729334	JQ729558	JQ729449
	1460 m	Verwimp 18802/A			
		(GOET)			
D. pauckertii	Brazil, Rio de	Schäfer-Verwimp &	JQ729432	JQ729655	JQ729544
	Janeiro, 2340 m	Verwimp 15022			
		(GOET)			
D. pauckertii	Costa Rica,	Schäfer-Verwimp &	JQ729434	JQ729657	-
	Cartago, 2460 m	Holz SV/H-0418			
		(GOET)			
D. pauckertii	Ecuador (I),	Schäfer-Verwimp &	JQ729435	JQ729658	JQ729545
	Zamora-Chinchipe,	Preussing 23219/B			
	1880 m	(GOET)			
D. pauckertii	Ecuador (II),	Schäfer-Verwimp &	JQ729436	JQ729659	JQ729546
	Zamora-Chinchipe,	Preussing 23528/A			
	1860 m	(GOET)			
D. pauckertii	Ecuador (III),	Mandl A7 (GOET)	JQ729433	JQ729656	-
	Zamora-Chinchipe,				
	2500 m				
D. pauckertii	Ecuador (IV),	Schäfer-Verwimp et al.	JQ729428	JQ729669	JQ729540
_	Carchi, 3700 m	24383/D (GOET)			
D. pauckertii	Panama (I), Bocas	De Gracia et al. 338	JQ729429	JQ729652	JQ729541
	del Toro, 3335 m	(GOET)			

D. pauckertii	Panama (II),	Schäfer-Verwimp &	JQ729430	JQ729653	JQ729542
	Chiriqui, 2600 m	Verwimp 30921			
		(GOET)			
D. pauckertii	Panama (III),	Schäfer-Verwimp &	JQ729431	JQ729654	JQ729543
	Chiriqui, 2600 m	Verwimp 30908			
		(GOET)			
D. pellucida	Brazil, São Paulo,	Schäfer-Verwimp &	JQ729376	JQ729600	JQ729493
	570 m	Verwimp 11234/A			
		(GOET)			
D. pellucida	Ecuador,	Schäfer-Verwimp et al.	JQ729383	JQ729607	JQ729500
	Pichincha, 1380 m	24134 (GOET)			
D. pellucida	French Guiana,	Holz FG00–24 (GOET)	JQ729382	JQ729606	JQ729499
	Kaw Mts., 300 m				
D. pellucida	Panama, Chiriqui,	Schäfer-Verwimp &	JQ729384	JQ729608	JQ729501
	1670 m	Verwimp 30936/A			
		(GOET)			
D. pellucida	Venezuela (I),	Pócs et al. 00227/CO	JQ729377	JQ729601	JQ729494
	Bolivar, 1340 m	(EGR)			
D. pellucida	Venezuela (II),	Pócs et al. 00227/CG	JQ729385	JQ729609	JQ729502
	Bolivar, 1340 m	(EGR)			
D. plicatiloba	Australia,	Pócs & Pócs 0057/R	JQ729332	JQ729555	-
	Tasmania, 750 m	(EGR)			
D. plicatiloba	New Zealand,	Schäfer-Verwimp &	JQ729671	JQ729554	JQ729446
	South Isl., 750–	Verwimp 14246			
	850 m	(GOET)			
D. pluridentata	Costa Rica, San	Schäfer-Verwimp &	JQ729445	JQ729668	JQ729553
	José, 3400 m	Holz SV/H-0147/B			
		(GOET)			
D. pluridentata	Ecuador, Zamora-	Schäfer-Verwimp &	JQ729444	JQ729667	JQ729552
	Chinchipe, 2220 m	Preussing 23366/A			
		(GOET)			
D. pluridentata	Ecuador, Zamora-	Sauer & Gradstein	JQ729443	JQ729666	_

	Chinchipe, 2200 m	MS-E-143 (GOET)			
D. pocsii	Ecuador (I),	Schäfer-Verwimp &	JQ729389	JQ729614	JQ729506
	Zamora-Chinchipe,	Nebel 32080 (GOET)			
	2550 m				
D. pocsii	Ecuador (II),	Schäfer-Verwimp &	JQ729390	JQ729615	JQ729507
	Zamora-Chinchipe,	Preussing 23320			
	2780 m	(GOET)			
D. ranomafanae	Madagascar,	Pócs 04129/Y,	JQ729343	JQ729566	JQ729458
	Fianarantsoa Prov.,	Paratype (GOET)			
	1080–1160 m				
D. replicata	Brazil, Rio de	Schäfer-Verwimp &	JQ729361	JQ729584	JQ729477
	Janeiro, 2420 m	Verwimp 15032			
		(GOET)			
D. replicata	Costa Rica, San	Schäfer-Verwimp &	JQ729356	JQ729580	JQ729472
	José, 2100 m	Holz SV/H-0246/C			
		(GOET)			
D. replicata	Ecuador (I),	Schäfer-Verwimp et al.	JQ729357	JQ729581	JQ729473
	Pichincha, 2300 m	24523 (GOET)			
D. replicata	Ecuador (II),	Schäfer-Verwimp &	JQ729360	JQ729583	JQ729476
	Zamora-Chinchipe,	Preussing 23496/B			
	2900 m	(GOET)			
D. replicata	Panama, Chiriqui,	Schäfer-Verwimp &	JQ729359	JQ729582	JQ729475
	1880 m	Verwimp 30983			
		(GOET)			
D. replicata	Venezuela, Mérida,	Léon & Pócs 9707/BG	JQ729358	-	JQ729474
	3090–3200 m	(EGR)			
D. rudolphiana	Brazil, São Paulo,	Lüth 3416 (GOET)	JQ729373	JQ729597	JQ729490
	150 m				
D. rudolphiana	Dominican Rep.,	Schäfer-Verwimp &	JQ729371	JQ729595	JQ729488
	Santiago, 930 m	Verwimp 27214/B			
		(GOET)			
D. rudolphiana	Guadeloupe,	Schäfer-Verwimp &	JQ729370	JQ729594	JQ729487

	Basse Terre,	Verwimp 22512/B			
	180 m	(GOET)			
D. rudolphiana	Madagascar (I),	Pócs & Szabo 9887/P	_	JQ729592	JQ729485
	Toamasina Prov.,	(GOET)			
	10 m				
D. rudolphiana	Madagascar (II),	Pócs et al. 9882/AE	JQ729372	JQ729596	JQ729489
	Toamasina Prov.,	(pp.) (EGR)			
	4 m				
D. rudolphiana	Panama,	Schäfer-Verwimp &	JQ729369	JQ729593	JQ729486
	Veraguas, 850 m	Verwimp 30843			
		(GOET)			
D. unidentata	Guadeloupe (I),	Schäfer-Verwimp &	JQ729365	JQ729588	JQ729481
	Basse Terre,	Verwimp 22500/A			
	400 m	(GOET)			
D. unidentata	Guadeloupe (II),	Schäfer-Verwimp &	JQ729366	JQ729589	JQ729482
	Basse Terre,	Verwimp 22168/A			
	615 m	(GOET)			
D. villaumei	Kenya (I), Coast	Pócs et al. 04042/AP	JQ729349	JQ729573	JQ729464
	Prov., 1980–	(EGR)			
	2210 m				
D. villaumei	Kenya (II), Coast	Pócs et al. 04042/Q	JQ729350	JQ729575	JQ729466
	Prov., 1980–	(EGR)			
	2210 m				
D. villaumei	Kenya (III) Coast	Pócs et al. 04042/QR	JQ729351	_	JQ729467
	Prov., 1980–	(EGR)			
5 <i>'''</i>	2210 m	- /			
D. villaumei	Madagascar, Prov.	Pócs et al. 9851/Z	_	JQ729574	JQ729465
	Antananarivo,	(EGR)			
	1500 m			10	
D. Zakiae	Madagascar (I),	POCS & SZADO 9486/K	JQ729345	JQ729568	-
	NE ANDASIVE,	(GOET)			
	1000 m				

D. zakiae	Madagascar (II),	Vojtkó & Pócs 9486/S	JQ729673	JQ729570	JQ729461
	NE Andasive,	(EGR)			
	1000 m				
D. zakiae	Madagascar (III),	Pócs et al. 9889/BA	JQ729344	JQ729567	JQ729459
	Toamasina Prov.,	(GOET)			
	900–970 m				
D. zakiae	Madagascar (IV),	Vojtkó 9484/AA (EGR)	JQ729346	JQ729569	JQ729460
	NE Andasibe,				
	995 m				
D. zakiae	Madagascar (V),	Pócs & Szabó	JQ729347	JQ729571	JQ729462
	NE Andasibe,	9484/AF (EGR)			
	995 m				
D. spec. nov. I	Ecuador, Zamora-	Schäfer-Verwimp &	JQ729425	JQ729648	JQ729536
	Chinchipe, 2460 m	Preussing 23476/A			
		(GOET)			
D. spec. nov. II	Ecuador, Loja,	Schäfer-Verwimp &	JQ729404	JQ729628	JQ729518
	2850 m	Nebel 31834/A			
		(GOET)			
D. spec. nov. III	Costa Rica, San	Schäfer-Verwimp &	JQ729403	JQ729627	-
	José, 2330 m	Holz SV/H-0473/B			
		(GOET)			
D. spec. nov. IV	Ecuador, Zamora-	Schäfer-Verwimp &	JQ729381	JQ729605	JQ729498
	Chinchipe, 2180 m	Preussing 23364/A			
		(GOET)			
D. spec. nov. V	Ecuador, Zamora-	Schäfer-Verwimp &			
	Chinchipe, 850 m	Nebel 32094 (GOET)			

Table 2. Morphological character states and ecological preferences of the investigatedtaxa as mapped onto the MP topology (Fig. 1).

1. Leaf margin	with border of hyaline cells
	without border of hyaline cells
2. Ventral leaf margin	involute (inflexed) from lobule to leaf apex
	plane
3. Ocelli	present
	lacking
4. T-like first tooth	consistently present
on lobule	occasionally to frequently present
	lacking
5. Lobule shape	Lobule strongly inflated throughout, upper margin inrolled (inflexed)
	Lobule inflated (at least in part), upper margin not or only narrowly inflexed
	Lobule (+/-) flat, upper margin flat or narrowly inflexed)
6. Underleaf lobes	triangular, acute, sinus (120-)150-180°, margin not crenulate
	triangular, acute, sinus 90-120(-150°), margin not crenulate
	+/- ovate, apex rounded to narrowly obtuse, margin not crenulate
	+/- ovate, apex acute (to narrowly obtuse), margin not crenulate
	lanceolate to narrowly ovate, margin +/- crenulate
7. Gender distribution	dioecious
	monoecious
	dioecious or monoecious
8. Gemmae	present
	lacking
9. occurrences	epiphytic (occasionally epiphyllous)
	epiphyllous (occasionally epiphytic)
	+/- equally often epiphytic or epiphyllous

Morphological character states and occurences of the investigated taxa as mapped onto the MP topology (Fig. 1)

Fig. 1. Rooted strict consensus of 4 most parsimonious trees recovered during heuristic searches of the reduced combined dataset. Bootstrap percentage values >50 are indicated at branches. Morphological character states and ecological preferences (Table2) are mapped on to the tree.

Fig. 2. A most likely phylogram resulting from maximum likelihood analysis of the combined comprehensive dataset. Bootstrap percentage values >50 are indicated at branches. A star indicates Bayesian support of 0.95–1.00.

Fig. 3. Maximum likelihood topology of *Diplasiolejeunea*. Branch colors correspond to the most parsimonious reconstruction of distributions of *Diplasiolejeunea* and letters on the node show the reconstructed ancestral distribution. Altitudes of collections sites are indicated in square brackets.

Appendix 2

Molecular phylogeny of the leafy liverwort *Lejeunea* (Porellales): Evidence for a Neotropical origin, uneven distribution of sexual systems and insufficient taxonomy

Jochen Heinrichs, Shanshan Dong, Alfons Schäfer-Verwimp, Tamás Pócs, Kathrin Feldberg, Aleksandra Czumaj, Alexander R. Schmidt, Joachim Reitner, Matt A.M. Renner, Jörn Hentschel, Michael Stech, Harald Schneider

Published in Plos I: 2013, 8(12): e82547. DOI: 10.1371/journal.pone.0082547

Abstract

Background: Lejeunea is a largely epiphytic, subcosmopolitan liverwort genus with a complex taxonomic history. Species circumscriptions and their relationships are subject to controversy, biogeographic history and diversification through time are largely unknown.

Methodology and Results: We employed sequences of two chloroplast regions (*trnL-trnF, rbcL*) and the nuclear ribosomal ITS region of 332 accessions to explore the phylogeny of the *Harpalejeunea-Lejeunea-Microlejeunea* complex. *Lejeunea* forms a well-supported clade that splits into two main lineages corresponding to *L*. subg. *Lejeunea* and *L*. subg. *Crossotolejeunea*. Neotropical accessions dominate early diverging lineages of both main clades of *Lejeunea*. This pattern suggests an origin in the Neotropics followed by several colonizations from the Neotropics into the Paleotropics and vice versa. Most Afromadagascan clades are related to Asian clades. Several temperate *Lejeunea* radiations were detected. Eighty two of the 91 investigated *Lejeunea* species could be identified to species level. Of these 82 species, 54 were represented by multiple accessions (25 para- or polyphyletic, 29 monophyletic). Twenty nine of the 36 investigated species of *L*. subg. *Lejeunea* were monoecious and 7 dioecious. Within *L*. subg. *Crossotolejeunea*, 15 of the 46 investigated species were monoecious and 31 dioecious. Some dioecious as well as some monoecious species have disjunct ranges.

Conclusions/Significance: We present the first global phylogeny of *Lejeunea* and the first example of a Neotropical origin of a Pantropical liverwort genus. Furthermore, we provide evidence for the Neotropics as a cradle of *Lejeunea* lineages and detect post-colonization radiations in Asia, Australasia, Afromadagascar and Europe. Dioecy/monoecy shifts are likely non-randomly distributed. The presented phylogeny points to the need of integrative taxonomical studies to clarify many *Lejeunea* binomials. Most importantly, it provides a framework for future studies on the diversification of this lineage in space and time, especially in the context of sexual systems in Lejeuneaceae.

Key words: biogeography, *Harpalejeunea*, Lejeuneaceae, *Microlejeunea*, reproductive biology, taxonomy

Introduction

The taxonomic history of the leafy liverwort *Lejeunea* Lib. is best characterized as a story of controversial opinions on species delimitation and assumed relationships. Libert [1] described the genus based on only two species, *Lejeunea calcarea* Lib. [nowadays treated as *Cololejeunea calcarea* (Lib.) Schiffn.] and *Lejeunea serpyllifolia* Lib., the latter being a synonym of *Lejeunea cavifolia* (Ehrh.) Lindb. [2,3]. Soon after Libert's publication, the genus became widely recognized and numerous new species were described [4]. Until the end of the 19th century, the number of *Lejeunea* species exceeded one thousand [5] but early authors applied a wider genus concept than is accepted today. A good example in this regard is the treatment of Spruce [6] who classified *Lejeunea* in 39 subgenera. The majority of these subgenera was elevated to genus rank by Schiffner [7]. Subsequently, further new genera were introduced consisting of former *Lejeunea* species [e.g., 8-10]. As a consequence, *Lejeunea* species sensu Spruce [6] were placed in some 60 different genera [11].

Recent taxonomic and/or molecular phylogenetic studies of Lejeuneaceae led to a considerable reduction of genera [12-18]. This trend becomes particularly apparent in *Lejeunea* since more than a dozen generic names were recently lowered to synonyms of this genus [15,18,19]. *Lejeunea* is currently circumscribed by long-inserted leaves, divided or undivided underleaves, leaf lobules with an unreduced first tooth and a marginal hyaline papilla, small, segmented or homogeneous oil bodies, lack of ocelli, lejeuneoid innovations, unwinged female bracts and inflated perianths with 0-5 smooth or toothed wings [17,20]. *Lejeunea* is recognized for its morphological disparity. Diversification time estimates indicated an origin of *Lejeunea* in the early Cenozoic [21-23]. The genus has its centre of diversity in the humid tropics where the species usually grow as epiphytes on stems, branches, twigs and leaves of a large number of cormophytes but also on rock [24]. Although the vast number of species occur exclusively in tropical climates, the genus is also well represented in temperate regions with a humid climate [25,26].

According to recent estimates the species diversity of *Lejeunea* may exceed three hundred [27], however, the precise number of species is still unclear due to the limited

availability of modern revisionary studies [13,28-30]. According to current knowledge, *Lejeunea* includes narrow endemics [29] as well as intercontinentally distributed species such as the subcosmopolitan *Lejeunea flava* (Sw.) Nees [31]. Intercontinental ranges have been accepted for many liverwort species due to an extensive morphological overlap of remote populations and the production of spores and propagules suitable for long-distance dispersal [32-34], although molecular phylogenetic studies incorporating multiple accessions of morphologically-typologically circumscribed liverwort species usually demonstrate a considerable genetic variation and a structure that is related to spatial ranges rather than to morphological disparities [35-40]. These studies also demonstrated the para- or polyphyly of many morphologically circumscribed liverwort species [36,41,42].

The objective of this study is to reconstruct the first comprehensive phylogeny of *Lejeunea* using chloroplast and nuclear DNA markers. This phylogenetic framework is used to reconstruct the origin of the genus and infer evidence, which supports dispersal between the Neotropics and the Paleotropics [40], respectively the hypothesis of a tropical origin of the extant temperate species diversity [22,43]. In addition, we infer the evolution of reproductive systems with the focus on monoicy and dioicy in the evolution of *Lejeunea*. Finally, we test current morphological-typological species concepts by including multiple accessions and examine whether the recovered phylogenetic relationships correspond to/or conflict with morphologically circumscribed taxa.

Results

Phylogeny - Reduced dataset

The reduced dataset comprised one accession per ingroup species (specimens identified only to genus level excluded). Of a total of 2,351 character sites, 725 were parsimony informative, 248 unique to a single accession and 1,378 constant. The maximum parsimony (MP) analysis resulted in 4,578 most parsimonious trees with the features: length of 4,016 steps, consistency index of 0.38, and retention index of 0.69 (Figure 1). Bayesian inference of phylogeny and maximum likelihood (ML) analyses recovered consensus trees respectively optimal trees that were highly similar in their

topologies to each other as well as to the MP tree. The four representatives of Harpalejeunea (Spruce) Schiffn. formed a clade that was placed sister to a clade comprising two clades of which one included eight Microlejeunea Steph. species whereas the other one was composed by 82 Lejeunea species. The monophyly of Lejeunea achieves bootstrap percentage values (BPVs) of 99 or 100 % and a Bayesian Posterior Probability (BPP) of 1.00 (Figure 1). The Lejeunea clade consisted of two main lineages corresponding to Lejeunea subg. Lejeunea (BPV MP 100 %, ML 100 %, BPP p = 1.00) and L. subg. Crossotolejeunea Spruce (BPV MP 82 % ML 97 %, BPP p = 1.00). In past classification, the investigated *Lejeunea* species were alternatively placed in 32 different genera, with up to 6 different treatments per species (Figure 1). Lejeunea species previously treated as Taxilejeunea (Spruce) Schiffn. were diffusely distributed and nested in most Lejeunea clades. Elements of Crossotolejeunea (Spruce) Schiffn. were found in both main lineages of Lejeunea. Twenty nine of the 36 investigated representatives of Lejeunea subg. Lejeunea were monoicous (81 %) and 7 (19 %) dioicous (Figure 1). Within Lejeunea subg. Crossotolejeunea, 15 of the 46 investigated species were monoicous (33 %) and 31 dioicous (67 %). Ancestral character reconstruction recovered dioicy as the likely ancestral state of Lepidolejeunea R.M.Schust., Harpalejeunea, and Microlejeunea, whereas the ancestral state of Lejeunea was found to be equivocal in maximum parsimony reconstructions. In maximum likelihood reconstructions, dioicy was found to be ancestral with a probability of 0.75 versus a probability of 0.25 for monoicy. The ancestral state of L. subg. Lejeunea was either resolved as equivocal (50 % of most parsimonious trees) or monoicous (50 % of most parsimonious trees). ML reconstructions recovered a probability of monoicy of 0.71. Similarly, the ancestral state of subg. *Crossotolejeunea* was found to be equivocal in all most parsimonious trees but showed a probability of 0.77 to be dioicous (Table 1).

Phylogeny - Large dataset

The large dataset consisted of 2,351 character sites (909 parsimony informative, 1,212 constant). The MP analysis resulted in more than 350,000 equally parsimonious trees with a length of 6,427 steps, a consistency index of 0.30 and a retention index of 0.83 (not depicted).

The ML phylogeny based on the large dataset is shown in Figure S1. A condensed version without species labeling is depicted in Figure 2. The *Lejeunea* clade was pruned and split in three parts, which are depicted in Figure 3, with BPPs and ML/MP BPVs indicated at branches. The phylogeny was consistent to the topology derived from the reduced dataset albeit without good ML BPV for *Lejeunea* subg. *Crossotolejeunea* (ML BPV = 65 %). Out of the 82 *Lejeunea* species with reliable species identification, 54 were represented by multiple accessions. Twenty five of these 54 *Lejeunea* species were resolved as para- or polyphyletic, whereas 29 were monophyletic. Intercontinental ranges of several *Lejeunea* species were confirmed.

Biogeography

The most parsimonious reconstruction of ancestral areas of distribution based on the large dataset (Figures 2, 3 A-C) indicated a Neotropical origin of Lejeunea as well as of its subgenera Crossotolejeunea and Lejeunea. The S-Diva reconstruction generated from the reduced dataset suggested two scenarios. In scenario one both subgenera originated in the Neotropics, whereas in the other scenario two alternative solutions were found for L. subg. Crossotolejeunea (Figure 4). In the second scenario, L. subg. Crossotolejeunea originated in an area comprising the Neotropics but also Europe plus Macaronesia and North Africa. African and Asian accessions were found to be nested in derived lineages. Lejeunea subg. Crossotolejeunea comprised a species rich radiation in Afro-Madagascar, Africa, and Asia that likely originated from a single colonization of the Paleotropics from the Neotropics. Each four clades of *Lejeunea* were recovered with occurrences in Australasia or North America respectively, five clades with occurrences in Macaronesia and Atlantic Europe, and seven clades with occurrences in temperate/subtropical Asia (Figure 3). The subcosmopolitan L. flava complex nested in an African lineage. Accessions from Gough Island were resolved in Neotropical lineages; accessions from Easter Island in tropical Asian clades. The African-Neotropical L. trinitensis Lindenb. & Gottsche nested in a Neotropical clade; the Neotropical L. adpressa Nees in a clade dominated by Asian accessions. North American accessions of L. lamacerina (Steph.) Schiffn. are placed sister to European/Macaronesian accessions.

Discussion

Supraspecific classification

Recent molecular phylogenetic studies identified a monophylum with representatives of *Harpalejeunea*, *Microlejeunea* and *Lejeunea* [17]. Furthermore, a recent report showed that the putatively allied genus *Bromeliophila* R.M.Schust. [20] forms a sister relationship with *Prionolejeunea* (Spruce) Schiffn. rather than nesting in *Lejeunea* [44]. Morphologically, *Lejeunea* differs from the former two genera by a lack of ocelli [the sole representative of *Lejeunea* with ocelli, *L. huctumalcensis* Lindenb. & Gottsche, belongs to another main lineage of Lejeuneaceae (Czumay et al., unpublished)]. The monophyly of *Harpalejeunea*, *Microlejeunea* and *Lejeunea* is confirmed in our study, with *Microlejeunea* placed sister to *Lejeunea*.

Lejeunea has been classified in some 50 subgenera of which 17 are still accepted as part of *Lejeunea*. These subgenera are usually defined by one or a few morphological character states, and their recognition and circumscription is subject to controversy. A good example is Lejeunea subg. Taxilejeunea which was alternatively treated as separate genus Taxilejeunea, and as such accepted by several recent authors [9,12,45,46], although the morphology of both genera is largely overlapping [12]. This situation is reflected in our phylogeny, with *Taxilejeunea* elements in nearly all lineages of Lejeunea (Figure 1). The problematic circumscription of Lejeunea taxa is also reflected in the alternative placement of the 82 identified species of our study in 32 different genera of Lejeuneaceae (Figure 1), with one species in up to six genera (Lejeunea apiculata Sande Lac.). Lejeunea splits into two main clades with heterogeneous morphology. One includes the generitype *L. serpyllifolia* (= *L. cavifolia*) and the types of three further subgenera; the other clade comprises types of four different subgenera, the oldest available subgenus name being L. subg. Crossotolejeunea Spruce (type: L. boryana Mont.) (Figure 1). Lejeunea subg. Crossotolejeunea was proposed for monoicous species with decurved and acuminate leaf apices, and 5-keeled perianths with denticulate and fimbriate keels [6]. A few years later, Crossotolejeunea was raised to generic rank [7]. However, Crossotolejeunea was synonymized with Lejeunea because the diagnostic character combinations were found to be inconsistent among species considered to belong to Crossotolejeunea [13]. The

polyphyly of *Crossotolejeunea* as circumscribed by Spruce [6] is confirmed in the presented study by recovering *Crossotolejeunea* representatives in both main clades of *Lejeunea* (Figure 1). However, the presence of the type species *L. boryana* in the second main clade allows the assignment of *L.* subg. *Crossotolejeunea*. Incongruence of morphology-based classifications and molecular phylogenies was reported for a rapidly increasing number of genera of liverworts such as *Athalamia* Falc. [47], *Cololejeunea* (Spruce) Schiffn. [48], *Diplasiolejeunea* (Spruce) Schiffn. [40], *Frullania* Raddi [49], *Plagiochila* (Dumort.) Dumort. [50], *Porella* L. [51], *Radula* Dumort. [52], *Scapania* (Dumort.) Dumort. [53], *Syzygiella* Spruce [54], and *Telaranea* Schiffn. [55]. Together, these studies clarified the phylogeny of these liverworts and provided the foundation to introduce new classifications using holophyly as the main criterion [40,52,56-58]. Unfortunately, many of these newly circumscribed taxa lack obvious morphological diagnostic characters hampering assignments of species to these clades using solely morphology.

In this study we propose to assign the two main *Lejeunea* clades to *Lejeunea* subg. *Crossotolejeunea* and *Lejeunea* subg. *Lejeunea* but hesitate to establish further supraspecific entities. In our opinion, it is premature to introduce a comprehensive classification of the two subgenera into sections since our *Lejeunea* sampling is still rather incomplete in the context of taxonomic sampling. In addition, further studies are required to explore the morphological features of species recovered in well supported clades. A good example in this regard is the morphological treatment of *L. pulverulenta* (Gottsche ex Steph.) M.E.Reiner [46]. In this study, *L. pulverulenta* was assumed to be aligned with *L. controversa* Gottsche and *L. cerina* (Lehm. & Lindenb.) Gottsche et al. based on morphological similarities, e.g. the papillose leaf cells with trigones and intermediate cell wall thickenings. A sister relationship of *L. pulverulenta* and *L. controversa* (*L.* subg. *Crossotolejeunea*) is confirmed (Figure 1) but *L. cerina* is found to be nested in *Lejeunea* subg. *Lejeunea* instead of *L.* subg. *Crossotolejeunea*.

The morphology of many *Lejeunea* species has not yet been exhaustively studied and our knowledge is often restricted to descriptions of the gross morphology of the gametophyte. Schuster [9,31] repeatedly pointed to the taxonomical value of character states visible only in living plants, namely the oil bodies, and the sporophytes. Only recently it was shown that the rough surface of *Lejeunea* species is not necessarily caused by papillae but can also result from the production of surface waxes [59]. We need comprehensive morphological datasets of gametophytes and sporophytes besides expansion of molecular datasets to establish a hierarchical classification of *Lejeunea* into subgenera and sections. These data will also demonstrate whether clades share certain morphologies or can only be defined by DNA sequence evidence.

Circumscription of species

The present study addressed the reliability of current morphological-typological species concepts in *Lejeunea* by sampling multiple accessions of several currently accepted species. In the absence of studies on speciation processes and the maintenance of species borders in *Lejeunea*, we consider three criteria - diagnostic morphology, biogeographic consistency, and reciprocal monophyly - as the most reliable procedure to identify putative species [60]. Congruence between the phylogenies derived from either the nuclear or the chloroplast markers is interpreted as evidence for reproductive isolation. Hence we regard incongruence of morphologically circumscribed taxa with molecular phylogenies as evidence for the limitations of our current morphological data allows often but not always for a reconsideration of morphological features considered to be of diagnostic importance and result in modified species circumscriptions [e.g., 61-64]. These short-term solutions are practical and helpful despite the amount of efforts required. In addition, they may allow to recognize the extent of the failure of current taxonomic practice.

Multiple accessions of 29 *Lejeunea* species formed monophyletic lineages but 25 species proved to be para- or polyphyletic (Figure 3 A-C). The ratio of nearly 50% rejection of currently accepted species is remarkable and requires further using of more comprehensive datasets and analyses. These datasets may expand not only the number of accessions studied per species but also explore the genetic diversity by employing markers that will allow a more comprehensive study of the genotypic distinction such as ISSRs, AFLPs, and SNPs. Exhaustive studies with such marker-systems hold special promises for lineages with a low clade diversity such as the *Lejeunea cavifolia – L*.

eckloniana Lindenb. - L. holtii Spruce-complex. The high number of non-monophyletic Lejeunea-species indicates that our current morphology-based classification does not adequately consider the possible presence of morphologically cryptic or semicryptic entities, and local endemism [38,62,65]. Some studies reported evidence for rather limited morphological variation among Lejeunea species and thus morphologically similar plants may be placed in different main clades of Lejeunea. A good example is the Lejeunea tumida Mitt. complex whose representatives are placed in both main clades of Lejeunea although they were earlier treated as a single species [30,42]. This observation is consistent with the results available for other genera of Lejeuneaceae, namely Marchesinia Gray [36], Ptychanthus Nees [66], Mastigolejeunea (Spruce) Schiffn. and Thysananthus Lindenb. [67]. All these studies suggest that we currently underestimate Lejeuneaceae species diversity. Examples supporting this notion are reported here with Lejeunea flava and L. laetevirens Nees & Mont., which may in fact represent complexes including several independent entities. Lejeunea flava has been studied exhaustively using morphological evidence and several subspecies or segregates have been proposed [10,31,68,69]. However, we were not able to adopt these taxonomical concepts for our phylogeny (Figure 3 C) although we could recognize some morphological tendencies and found the morphologically well separated species L. acuta Mitt. and L. tuberculosa Steph. nested in the L. flava clade. The L. laetevirens complex is similarly problematic since our phylogeny indicates that several still unrecognized entities hide in L. laetevirens s.l.: A robust clade with Neotropical and Macaronesian accessions of *L. laetevirens* is placed sister to a Neotropical clade with *L.* laetevirens morphotypes as well as multiple accessions of L. multidentata M.E.Reiner & Mustelier and L. ramulosa (Herzog) R.M.Schust. The latter two species differ from L. laetevirens by dentate or acute leaves. Lejeunea multidentata was aligned with L. boryana Mont. and L. controversa rather than with L. laetevirens based on shared dull appearance caused by strongly papillose cells [70,71], however, according to our phylogenies these species are not closely related. An extension of the sampling is necessary to revise the taxonomy of the L. laetevirens clade. The same holds true for the polyphyletic *L. anisophylla* Nees & Mont. and several other problematic binomials.

Dispersal biogeography

Liverworts produce spores and small propagules that are capable for distribution through air currents over larger distances [72,73]. However, population studies of liverworts generally show a spatial distribution of genetic diversity that does not correspond to a general panmixis hypothesis [74,75]. Thus, the current distribution of liverworts is not random and biogeographic studies frequently recover conserved biogeographic patterns that can be interpreted by considering the combination of processes such as occasional long distance dispersal, frequent dispersal over short distances, local extinction, and local diversification [76,77]. The reported distribution of Lejeunea suggests that this genus is not an exception and that conserved spatial patterns exist. Although the limited availability of lejeuneoid fossils prevents us from a detailed reconstruction of divergence times (the two Miocene fossils Lejeunea sp. [78] and Lejeunea palaeomexicana Grolle [79] cannot be assigned to any of our Lejeunea clades) an early Cenozoic origin of the genus can be assumed based on the existing estimates [21-23]. This time frame provides information about the position of the continents which is important in distinguishing between establishment via long-distance dispersal versus vicariance as the preferred explanation for the observed disjunct ranges. Dispersal over larger distances seems to occur only infrequently in *Lejeunea*, as is indicated by the clear geographical structure of disjunct species as well as multispecies clades. A good example is the L. lamacerina clade that splits into a North American and a European/Macaronesian lineage, without any evidence of recent geneflow. The unsatisfactory taxonomy of many other investigated clades hampers similar statements, however, the long branches in many morphologically circumscribed species and their para- or polyphyly provide evidence for local diversification/speciation. Evidence for lacking or restricted geneflow between distant liverwort populations has been demonstrated several times [74,80] and can also be concluded for Lejeunea. Local diversification subsequent to successful long-distance dispersal seems to dominate the evolutionary history of Lejeunea. Accordingly, the majority of the investigated Lejeunea species has regional distribution ranges but about 23 % of the identified species are more widespread and occur in at least two of our ten putative areas of endemism. Examples include the Neotropical-Macaronesian range of L. laetevirens, the Neotropical-Asian range of L. trinitensis Lindenb. & Gottsche (Figure 3 B) and the African-Asian range of *L. anisophylla* (Figure 3 C).

Neotropical origin

The early diverging lineages of both main clades of *Lejeunea* occur predominantly in the Neotropics. Thus, our reconstructions revealed a Neotropical origin of Lejeunea with subsequent dispersal into other tropical as well as temperate regions. A Neotropical origin has been shown for several lineages of angiosperms, namely Burmanniaceae [81], Burseraceae [82], Gentianaceae [83] and Malpighiaceae [84]. It has also been discussed for the grammitid clades of polygrammoid ferns [85,86] and the Neotropical-African liverwort *Bryopteris* (Nees) Lindenb. [87] but has not yet been proposed for any subcosmopolitan liverwort genus based on molecular data. This is partly caused by the limited access to comprehensive phylogenies of species-rich liverwort genera [40,49,51-54,76,77,88]. The lejeuneoid genus Diplasiolejeunea shows a somewhat different pattern with a deep split into a Paleotropical and a Neotropical clade [40], but a few Pantropical species soften this otherwise strict separation by indicating occasional intercontinental dispersal events. In contrast to the pattern in Diplasiolejeunea both main clades of Lejeunea show a more even representation of putative regions of endemism, indicating that long distance dispersal is more frequent in Lejeunea than in Diplasiolejeunea as long as we assume similar ages for both genera.

Our topologies point to several dispersal events from the Neotropics into Africa (*L. trinitensis*, *L. phyllobola* Nees & Mont.). This pattern is not uncommon in leafy liverworts and has been recovered for *Herbertus juniperoideus* (Sw.) Grolle [77], *Marchesinia brachiata* (Sw.) Schiffn. [36], *Plagiochila boryana* Steph. [56] and the genus *Bryopteris* [87]. The subcosmopolitan *L. flava* complex appears to have originated in Africa and subsequently colonized large parts of the tropics and adjacent regions, with several dispersal events between the Old and the New World. This pattern of older spatial separations followed by young inter-continental dispersals was reported for a few plants such as the fern genus *Nephrolepis* Schott [89] and the pantropical liverwort *Plagiochila* sect. *Vagae* Lindenb. [56]. Our phylogenies support close relationships of African and Asian *Lejeunea* floras, however, the Neotropical *L. adpressa* is of Paleotropical, most likely Asian, origin (Figure 3 C). *Lejeunea*-accessions from the Polynesian Easter Island

are likewise related to Asian clades whereas the *Lejeunea* accessions from Gough Island (Southern Atlantic Ocean) are nested in Neotropical lineages. A South American origin of Gough Island liverworts has already been demonstrated for the genus *Herbertus* [90]. The Macaronesian accessions of *L. laetevirens* are nested in a Neotropical clade, indicating dispersal from the Neotropics into Macaronesia. This pattern seems to be common in leafy liverworts and has also been reconstructed for species of *Plagiochila* [91] and *Leptoscyphus* Mitt. [92].

The tropics as a cradle and museum

Lejeunea has its centre of diversity in the humid lowlands and lower montane sites of the tropics; its diversity in temperate regions is considerably lower. This pattern is consistent with the widely recognized latitudinal biodiversity gradient [43,93-96]. Various hypotheses have been introduced to explain the origin of this gradient (see [43] for review) of which some involve the rather controversial concept of niche conservatism. So far, very little attention has been given to latitudinal biodiversity gradients in seed-free land plants, but is starting to be explored in ferns (see [97]) and here in the liverwort genus *Lejeunea*. In accordance with the general hypothesis of a latitudinal diversity gradient, *Lejeunea* includes only a few temperate lineages, which are in each case nested in tropical clades.

The pattern observed for *Lejeunea* appears to be consistent with the role of the tropics as a cradle and museum of diversity [98-100], and mirrors observations for the whole family Lejeuneaceae [22]. Liverwort families with a centre of diversity in the tropical highlands can show considerably different patterns and may have entered the tropics from temperate regions [76]. Interestingly, temperate species were not always found to possess a tropical sister species but evidence for several radiations in temperate regions were discovered, including two multi-species clades with occurrences in Australasia, one with occurrences in temperate Asia, and two with occurrences in Macaronesia and Atlantic Europe (Figs 3 A-C). The discovery of these clades provides opportunities to test some of the arguments concerning the origin of the latitudinal diversity gradient such as niche conservatism and different speciation rates [97,101]. The recovery of radiations in the temperate climate zones of Australasia resembles the

recent report of a New Zealand radiation of grammitid ferns [102]. Grammitid ferns share with *Lejeunea* their origin in tropical regions and their preference to climates with high humidity. These examples may indicate the possibility of high speciation rates in temperate climates caused by ecological opportunities. The observed change in the climatic niche preferences is again consistent with reports in tree ferns growing in the wet temperate climates of Australasia [103].

Sexual systems in a largely epiphytic genus

About two third of liverworts are dioicous [104] whereupon the distribution of dioicous and monoicous species differs from genus to genus. The speciose genus *Plagiochila* is a prime example of a completely dioicous group whereas monoicous species dominate in *Cololejeunea* (Spruce) Schiffn., *Riccia* L. and *Riccardia* Gray [24,105]. The evolution of sexual systems has so far been studied for only two genera of liverworts using a phylogenetic framework: the largely epiphytic leafy liverworts *Radula* Dumort. and *Diplasiolejeunea* [40,106]. Only 16 of the ca. 200 *Radula* species are monoicous whereas monoicous species of *Radula* were resolved in *Diplasiolejeunea*. Single monoicous species of *Radula* were resolved in *Diplasiolejeunea*. Monoicy in *Radula* was also not correlated with obligate epiphytism but occurred in facultative epiphytic lineages [106].

In Lejeunea we observed an uneven distribution of sexual systems (Figure 1). Lejeunea subg. Lejeunea is dominated by monoicous species whereas dioicous species dominate in *L*. subg. *Crossotolejeunea*. Similarly to the situation in *Radula*, some monoicous species clustered in clades dominated by dioicous species, in particular in *L*. subg. *Crossotolejeunea*. However, monoicous species are the most frequent in *L*. subg. *Lejeunea* and our character reconstruction (Table 1) recovered some indications for the transition from dioicy to monoicy in the early diversification of the genus. We also found evidence for a rather frequent change of the reproductive system during the history of the genus with a minimum number of character state changes: five times in *L*. subg. *Lejeunea* and nine times in *L*. subg. *Crossotolejeunea*.

Monoicous species are potentially capable to produce sporophytes through self-

fertilization. On one hand this may allow a more frequent establishment of new populations via long distance dispersal, but on the other hand this may result in invariable genotypes, accumulation of genetic load, and limited adaptation to new environments [105]. However, dioicy is not necessarily a barrier to regular sporophyte development. Many *Plagiochila* species frequently produce sporophytes as do at least some dioicous species of *Frullania* and *Porella* [50,105]. Thus, future studies need to explore the accumulation of genetic load, effective population size, and the temporal stability of habitats as factors that shape the evolution of reproductive systems in *Lejeunea*.

According to existing data, both dioicous and monoicous *Lejeunea* species are able to form disjunct ranges. However, disjunctions over large distances might not necessarily be the result of spore dispersal but could also be caused by vegetative reproduction through propagules. Vegetative reproduction plays an important role in the range formation of liverworts and enhances the chances of establishing in a new environment, especially for dioicous species. A dioicous long-distance disperser is trapped in a very small area unless it is able to colonize its new environment through vegetative distribution. Accordingly the likelihood of the arrival of spores of the other sex clearly increases with range expansion through vegetative distribution. However, *Lejeunea* includes only few species that frequently produce propagules [107], despite wide species distribution ranges. A further aspect may be variation in the extinction risks caused by the different sexual systems but very little evidence exists to evaluate this factor.

Schuster [31] emphasizes the importance of monoicy for species colonizing unstable epiphytic habitats but many *Lejeunea* species are dioicous. This trend is even more evident in the sister genus *Microlejeunea* which is nearly completely dioicous [24], despite its general preference for epiphytic habitats. The same applies to *Radula*. Devos et al. [106] speculate that dioicous epiphytes often distribute vegetatively, not only through specialised propagules but also through unspecialized gametophyte fragments, and that they are often not strictly depending on epiphytic environments. Kraichak [108] reinforces this argument by demonstrating a correlation of reproduction through asexual propagules and an epiphyllous mode of life in Lejeuneaceae.

Currently the importance of monoicy for an epiphytic mode of life and long distance dispersal is rather unclear since the available studies point to more complex interrelationships. Future studies should not only focus on an extension of the phylogenetic sampling and improvements of the underlying taxonomy but also on the ecological ranges of disjunct liverworts. Intercontinentally distributed *Diplasiolejeunea* species have broader ecological amplitudes compared to geographically more restricted species [40], allowing for the colonization of a larger number of environments and enhancing the chance of a permanent establishment. We also need comprehensive studies on the resistance of spores and vegetative propagules of liverworts against drought and frost and the ability of sporophyte production under suboptimal climatic conditions.

Perspectives

Lejeunea is a prime example to illustrate the current state of affairs in liverwort classification. After three centuries of morphology-based research a plethora of taxa have been proposed in this genus, of which only a small part has been included in modern revisions, reflecting the limited number of liverwort specialists dealing with these taxonomically difficult plants. Our molecular data add to growing evidence that not all biologically relevant entities can be detected using solely morphology, and that the acceptance of a considerable intraspecific morphological variation may lead to an underestimation of the actual number of biological species [109,110]. Thus, concepts considering cryptic and semi-cryptic species may provide more realistic estimates than the current practice. Based on our topology it is possible to identify species complexes that are not yet properly understood and that need to be studied using extended datasets. We urgently need molecular studies incorporating numerous accessions of morphologically circumscribed species from throughout their range. Only combined molecular-morphological studies will allow to understand range formation and to establish more natural species circumscriptions [111]. These studies will also facilitate estimates of the real number of biological species of liverworts. It is not unlikely that a portion of these species will not exhibit morphological disparities or can at best been identified using statistical methods and larger series of reference specimens [112]. In such a situation, reference sequences (= DNA barcodes) are the most promising

approach to obtain reliable identifications of these plants [113]. However, the establishment of the DNA barcodes needs to go hand-in-hand with critical taxonomic revision of species-rich genera like *Lejeunea*. The reported phylogeny provides the framework enabling the design and management of these studies because the major task of taxonomic revisions can be separated in groups of species belonging to the same clade.

Materials and Methods

Taxon sampling and outgroup selection

Taxa studied, including GenBank accession numbers and voucher details, are listed in Table S1. Ingroup taxa were selected according to availability and to represent the morphological variation and geographical distribution of *Lejeunea*. Representatives of the sister genera *Harpalejeunea* and *Microlejeunea* [17] were included to test the *Lejeunea* genus concept. Multiple accessions of several species were used to explore intraspecific genetic variation. Representatives of *Lepidolejeunea* were selected as outgroup species based on the analyses of [14] and [17]. Altogether 332 accessions from the herbaria AK, DUKE, EGR, GOET, JE, L, or NSW were used for this study.

DNA extraction, PCR amplification and sequencing

Upper parts of a few gametophytes were isolated from herbarium specimens. Total genomic DNA was extracted using Invisorb Spin Plant Mini Kit (Invitek, Berlin, Germany) prior to amplification. Protocols for PCR were carried out as described in previous publications: *rbc*L gene and *trn*L-F region from [114], and nrITS1-5.8S-ITS-2 region from [87]. Bidirectional sequences were generated using a MegaBACE 1000 automated sequencing machine using BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA). Sequencing primers were those used for PCR. Newly generated sequences were assembled and edited using SeqAssem [115]. Seven hundred and nineteen sequences were newly generated for this study; 175 sequences were downloaded from Genbank.

Phylogenetic analyses

All sequences were aligned manually in Bioedit version 7.0.5.2 [116] resulting in a

*rbc*L alignment with 895 positions, *trn*L-F 441 and an nrITS alignment with 1,015 putatively homologous sites. Ambiguous positions were excluded from all alignments and lacking data were coded as missing. Two datasets were compiled and analysed separately: dataset 1 (= large dataset) included all studied accessions, whereas dataset 2 (= reduced dataset) included only one accession per identified ingroup species. Accessions identified only to genus level were excluded from dataset 2. Phylogenetic trees based on the reduced dataset were used to visualize the current supraspecific classification of *Lejeunea* and to explore the evolution of monoicy/dioicy.

Maximum parsimony (MP) analyses were carried out with PAUP* version 4.0b10 [117]. MP heuristic searches of the comprehensive and the reduced datasets were conducted with the following options implemented: heuristic search mode, 1,000 random-addition-sequence replicates, tree bisection-reconnection (TBR) branch swapping, MULTrees option on, and collapse zero-length branches off. All characters were treated as equally weighted and unordered. Non-parametric bootstrapping values [118] were generated as heuristic searches with 1,000 replicates, each with ten random-addition replicates. The number of rearrangements was restricted to ten millions per replicate. Bootstrap percentage values (BPV) \geq 70 were regarded as good support [119]. Where more than one most parsimonious tree was found, trees were summarized as strict consensus tree(s). The three genomic regions and the combined chloroplast DNA dataset vs nrITS dataset were first analysed separately to check for topological incongruence. The consensus trees of the non-parametric bootstrap analyses were compared by eye to identify conflicting nodes supported by at least 70 % [120]. The trees gave no evidence of incongruence. Accordingly, the datasets were combined.

The program jModeltest 0.1.1 [121] was used to select a best-fit model of sequence evolution for the maximum likelihood (ML) analyses of the each genomic region, using the Akaike information criterion. The following models were chosen for the respective data divisions: (*rbc*L) TPM1uf+I+G; (*trn*L-F) TVM+G and (nrITS) TIM3+G. A partitioned ML bootstrap analysis was conducted using the program Garli 2.0 [122]. The analysis was run until five million generations were completed without significant improvement (In *L* increase of 0.01) to the topology. Node support was evaluated through 200 bootstrap replicates in which each repetition terminated after 100,000 generations were

completed without topological improvements.

Bayesian inference was implemented in the program MrBayes 3.2 [123] allowing different models for each partition. Bayesian searches were carried out with four simultaneous Markov chains, ten million generations, and sampling every 1000^{th} generation. The first 25% of trees were discarded as burn-in. Bayesian posterior probability (BPP) confidence values were generated from trees saved after this initial burn-in. Values were regarded as significant when BPP ≥ 0.95 [124].

Ancestral areas of distribution

Data on distribution ranges of the investigated taxa were obtained from the literature. Given the wide distribution ranges of some species, the putative distribution range of endemism was coded as covering ten possible areas: Neotropics, North America, Southern South America, Europe with North Atlantic Islands (e.g. Macaronesia) and North Africa (Africa north of the Sahara), Afro-Madagascar (sub-Saharan Africa, Madagascar, Mascarenes, Seychelles, and São Tomé), continental Asia (comprising temperate and subtropical regions), tropical Asia (including Melanesia and tropical Australia), temperate Australia and New Zealand, Tristan da Cunha Islands and Easter Island. Ancestral areas of distribution were reconstructed using two different approaches. The first approach was based on the large dataset and considers the presence of several unidentified species with unclear distribution ranges. To overcome this problem, the putative region of endemism (= the ten regions mentioned above, see also Fig. 2) of every accession was coded rather than the species range. Subsequently we reconstructed ancestral areas of distribution using MP criteria as implemented in Mesquite ver. 2.75 [125] based on the ML topology.

In the second approach we used dataset 2 including each one accession per identified species and a coding of the complete species range. Ancestral areas of distribution were reconstructed using S-DIVA [126] as implemented in RASP 2.0 based on 7,500 Bayesian trees from the reduced dataset.

Evolution of reproductive systems

The occurrence of dioicous/monoicous reproductive systems was scored by

evaluating the information provided in the literature for each species included in dataset 2 [13,28,31,45,68,127-137]. In case both character states were indicated (*L. hibernica* Grolle, [131]), the species was scored as monoicous. These efforts resulted into a matrix of two character states without any polymorphic or unknown character states. To explore the evolution of this character, we used the results of the MP analyses of the reduced dataset. Maximum parsimony character reconstructions were carried out using Mesquite 2.75. The character states were plotted over all most parsimonious trees recovered in the MP analysis of the reduced dataset. Nodes absent from some of these trees were ignored. In addition, we carried out maximum likelihood analyses using the MK model [138] and the strict consensus tree obtained from the most parsimonious tree set.

Acknowledgements

We thank the curators and directors of the herbaria cited in the text for the loan of specimens and permission for destructive sampling.

References

- Libert M (1820) Sur un genre nouveau d'Hépatiques, *Lejeunia*. Ann Gen Sci Phys
 6: 372-374.
- Bonner CEB, Miller HA (1960) Studies in Lejeuneaceae, I. The typification of Lejeunea. Bryologist 63: 217-225.
- Grolle R (1971) Miscellanea hepaticologica 111-120. Trans Brit Bryol Soc 6: 258-265.
- 4. Gottsche CM, Lindenberg JBG, Nees ab Esenbeck CG (1844-1847) Synopsis Hepaticarum. Hamburg: Meissner. 834 p.
- Reiner-Drehwald ME (1999) Catalogue of the genus *Lejeunea* Lib. (Hepaticae) of Latin America. Bryophyt Biblioth 54: 1-101.
- Spruce RM (1884) Hepaticae Amazonicae et Andinae. Tribus I: Jubuleae. Trans Proc Bot Soc Edinburgh 15: 1-308.

- 7. Schiffner V (1893) Hepaticae. In: Engler A, Prantl K, editors. Die natürlichen Pflanzenfamilien 1. Engelmann: Leipzig. pp. 97-141.
- 8. Evans AW (1904) Hepaticae of Puerto Rico IV. *Odontolejeunea*, *Cyclolejeunea* and *Prionolejeunea*. Bull Torr Bot Club 31: 183-226.
- 9. Schuster RM (1994) Studies on Lejeuneaceae, I. Preliminary studies on new genera and subgenera of Lejeuneaceae. J Hattori Bot Lab 75: 211-235.
- 10. Reiner-Drehwald ME (2000) On *Potamolejeunea* and *Neopotamolejeunea* gen. nov. (Lejeuneaceae, Hepaticae). Nova Hedwigia 71: 447-464.
- 11. Gradstein SR, Reiner-Drehwald ME, Jost L (2004) The systematic position and distribution of *Myriocolea irrorata* (Lejeuneaceae), an endangered liverwort of the Ecuadorian Andes. J Hattori Bot Lab 95: 235-248.
- 12. Reiner-Drehwald ME (2005) On *Lejeunea rotundifolia* and *Dicladolejeunea* (Lejeuneaceae, Jungermanniopsida). Syst Bot 30: 687-692.
- Reiner-Drehwald ME, Goda A (2000) Revision of the genus Crossotolejeunea (Lejeuneaceae, Hepaticae). J Hattori Bot Lab 89: 1-54.
- Wilson R, Gradstein SR, Schneider H, Heinrichs J (2007) Unravelling the phylogeny of Lejeuneaceae (Jungermanniopsida): evidence for four main lineages. Molec Phylogen Evol 43: 270-282.
- Heinrichs J, Dong S, Feldberg K, Schäfer-Verwimp A, Schmidt AR (2012) Sphaerolejeunea (Lejeuneaceae, Porellales) is a synonym of Lejeunea. Phytotaxa 69: 7-15.
- Heinrichs J, Dong S, Yu Y, Schäfer-Verwimp A, Pócs T, et al. (2012) A 150 year old mystery solved: Transfer of the rheophytic liverwort *Myriocolea irrorata* to *Colura*. Phytotaxa 66: 55-64.
- 17. Dong S, Schäfer-Verwimp A, Pócs T, Feldberg K, Czumaj A, et al. (2013) Size doesn't matter recircumscription of *Microlejeunea* (Lejeuneaceae, Porellales)

based on molecular and morphological evidence. Phytotaxa 85: 41-55.

- Ye W, Wei YM, Schäfer-Verwimp A, Zhu RL (2013) Phylogenetic position of Oryzolejeunea (Lejeuneaceae, Marchantiophyta): Evidence from molecular markers and morphology. J Syst Evol 51: 468-475.
- 19. Pócs T (2011) What is *Cladolejeunea* Zwickel? New or little known epiphyllous liverworts, XV. Acta Biol Plant Agr 1: 53-62.
- 20. Gradstein SR (2013) A classification of Lejeuneaceae based on molecular and morphological evidence. Phytotaxa 100: 6-20.
- Heinrichs J, Hentschel J, Wilson R, Feldberg K, Schneider H (2007) Evolution of leafy liverworts (Jungermanniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon 56: 31-44.
- Wilson R, Heinrichs J, Hentschel J, Gradstein SR, Schneider H (2007) Steady diversification of derived liverworts under Tertiary climatic fluctuations. Biol Lett 3: 566-569.
- Cooper ED, Henwood MJ, Brown EA (2012) Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. Biol J Linn Soc 107: 425-441.
- Gradstein SR, Churchill SP, Salazar-Allen N (2001) Guide to the bryophytes of tropical America. Mem New York Bot Gard 86: 1–577.
- Glenny D (1998) A revised checklist of New Zealand liverworts and hornworts. Tuhinga 10: 119–149.
- 26. Grolle R, Long DG (2000) An annotated check-list of the Hepaticae and Anthocerotae of Europe and Macaronesia. J Bryol 22: 103-140.
- 27. Lee GE, Gradstein SR (2013) Distribution and habitat of the Malaysian species of *Lejeunea* (Marchantiophyta: Lejeuneaceae), with description of *Lejeunea*
tamaspocsii sp. nov. Pol Bot J 58: 59-69.

- Ilkiu-Borges AL (2005) A taxonomic revision of *Echinocolea* (Lejeuneaceae, Hepaticae). Nova Hedwigia 80: 45-71.
- Renner MAM, Brown EA, Wardle GM (2009) Lejeunea pocsii R.M. Schust. is a heterotypic synonym of *L. helmsiana* (Steph.) Steph. (Lejeuneaceae, Marchantiophyta). Nova Hedwigia 89: 335-348.
- Renner MAM, Brown EA, Wardle GM (2010) The Lejeunea tumida species group (Lejeuneaceae, Jungermanniopsida) in New Zealand. Austral Syst Bot 23: 443-462.
- Schuster RM (1980) The Hepaticae and Anthocerotae of North America. Volume 4. New York: Columbia University Press. 1344 p.
- 32. Herzog T (1926) Geographie der Moose. Jena: Fischer. 439 p.
- Grolle R (1969) Großdisjunktionen in Artarealen lateinamerikanischer Lebermoose. In: Fittkau EJ, editor. Biogeography and Ecology in South America. The Hague: Junk. pp. 562-582.
- 34. Gradstein SR, Pócs T, Váňa J (1983) Disjunct Hepaticae in tropical America and Africa. Acta Bot Hung 29: 127-171.
- Fuselier L, Davison PG, Clements M, Shaw B, Devos N, et al. (2009) Phylogeographic analyses reveal distinct lineages of *Metzgeria furcata* and *M. conjugata* (Metzgeriaceae) in Europe and North America. Biol J Linn Soc 98: 745 – 756.
- Heinrichs J, Klugmann F, Hentschel J, Schneider H (2009) DNA taxonomy, cryptic speciation and diversification of the Neotropical-African liverwort, *Marchesinia brachiata* (Lejeuneaceae, Porellales). Molec Phylogen Evol 53: 113-121.
- 37. Heinrichs J, Kreier H-P, Feldberg K, Schmidt AR, Zhu RL, et al. (2011) Formalizing morphologically cryptic biological entities: New insights from DNA

taxonomy, hybridization, and biogeography in the leafy liverwort *Porella platyphylla* (Jungermanniopsida, Porellales). Amer J Bot 98: 1252–1262.

- Ramaiya M, Johnston MG, Shaw B, Heinrichs J, Hentschel J, et al. (2010) Morphologically cryptic biological species within the liverwort, *Frullania* asagrayana. Amer J Bot 97: 1707-1718.
- Laenen B, Désamoré A, Devos N, Shaw AJ, Gonzáles-Mancebo JM, et al. (2011) Macaronesia: a source of hidden genetic diversity for post-glacial recolonization of western Europe in the leafy liverwort *Radula lindenbergiana*. J Biogeogr 38: 631-639.
- Dong SS, Schäfer-Verwimp A, Meinecke P, Feldberg K, Bombosch A, et al. (2012) Tramps, narrow endemics and morphologically cryptic species in the epiphyllous liverwort *Diplasiolejeunea*. Molec Phylogen Evol 65: 582–594.
- Feldberg K, Groth H, Wilson R, Schäfer-Verwimp A, Heinrichs J (2004) Cryptic speciation in *Herbertus* (Herbertaceae, Jungermanniopsida). Range and morphology of *Herbertus sendtneri* inferred from nrITS sequences. PI Syst Evol 249: 247-261.
- Renner MAM, Brown EA, Wardle GM (2011) The *Lejeunea tumida* species group is positively polyphyletic (Lejeuneaceae: Jungermanniopsida). Austral Syst Bot 24: 10-18.
- Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, et al. (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Letters 10: 315-331.
- Heinrichs J, Czumaj A, Dong S, Scheben A, Schäfer-Verwimp A, et al. (2013) The Bromeliaceae tank dweller *Bromeliophila* (Lejeuneaceae, Porellales) is a member of the *Cyclolejeunea-Prionolejeunea* clade. PI Syst Evol: doi 10.1007/s00606-013-0860-4.
- 45. Reiner-Drehwald ME (2000) Las Lejeuneaceae (Hepaticae) de Misiones,

Argentina VI. Lejeunea y Taxilejeunea. Trop Bryol 19: 81-131.

- Reiner-Drehwald ME (2005) *Taxilejeunea pulverulenta* (Lejeuneaceae, Jungermanniopsida), a poorly known species from the Neotropics, is transferred to *Lejeunea*. Cryptog Bryol 26: 59-65.
- 47. Rubasinghe SCK, Milne R, Forrest LL, Long DG (2011) Realignment of the genera of *Cleveaceae* (Marchantiopsida, Marchantiaceae). Bryologist 114: 116-127.
- Yu Y, Pócs T, Schäfer-Verwimp A, Heinrichs J, Zhu RL, Schneider H (2013) Evidence for rampant homoplasy in the phylogeny of the epiphyllous liverwort genus *Cololejeunea* (Lejeuneaceae). Syst Bot 38: 553-563.
- Hentschel J, von Konrat MJ, Pócs T, Schäfer-Verwimp A, Shaw AJ, et al. (2009) Molecular insights into the phylogeny and subgeneric classification of *Frullania* Raddi (Frullaniaceae, Porellales). Molec Phylogen Evol 52: 142-156.
- Heinrichs J (2002) A taxonomic revision of *Plagiochila* sect. *Hylacoetes*, sect. *Adiantoideae* and sect. *Fuscoluteae* in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine lineages. Bryophyt Biblioth 58: 1-184, Append. 1-5.
- 51. Hentschel J, Zhu R-L, Long DG, Davison PG, Schneider H, et al. (2007) A phylogeny of *Porella* (Porellaceae, Jungermanniopsida) based on nuclear and chloroplast DNA sequences. Molec Phylogen Evol 45: 693-705.
- Devos N, Renner MAM, Gradstein SR, Shaw J, Vanderpoorten A (2011) Molecular data challenge traditional subgeneric divisions in the leafy liverwort *Radula*. Taxon 60: 1623-1632.
- Heinrichs J, Bombosch A, Feldberg K, Kreier HP, Hentschel J, et al. (2012) A phylogeny of the northern temperate leafy liverwort genus *Scapania* (Scapaniaceae, Jungermanniales). Molec Phylogen Evol 62: 973-985.
- 54. Feldberg K, Váňa J, Long DG, Shaw AJ, Hentschel J, et al. (2010) A phylogeny of

Adelanthaceae (Jungermanniales, Marchantiophyta) based on nuclear and chloroplast DNA markers, with comments on classification, cryptic speciation and biogeography. Molec Phylogen Evol 55: 293-304.

- Cooper ED, Henwood MJ, Brown EA (2012) A molecular phylogeny of the Lepidozia generic complex supports re-circumscription of the Lepidozioideae. Molec Phylogen Evol 65: 10-22.
- 56. Heinrichs J, Lindner M, Gradstein SR, Groth H, Buchbender V, et al. (2005) Origin and subdivision of *Plagiochila* (Jungermanniidae: Plagiochilaceae) in tropical Africa based on evidence from nuclear and chloroplast DNA sequences and morphology. Taxon 54: 317-333.
- 57. Feldberg K, Váňa J, Hentschel J, Heinrichs J (2010) Currently accepted species and new combinations in Jamesonielloideae (Adelanthaceae, Jungermanniales). Cryptog Bryol 31: 141-146.
- 58. Váňa J, Hentschel J, Müller J, Heinrichs J (2012) Taxonomic novelties in *Scapania*. Phytokeys 10: 13-17.
- 59. Heinrichs J, Reiner-Drehwald ME (2012) Surface wax in *Dinckleria*, *Lejeunea* and *Mytilopsis* (Jungermanniidae). Cryptog Bryol 33: 81-86.
- De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56: 879-886.
- Szweykowski J, Buczkowska K, Odrzykoski IJ (2005) Conocephalum salebrosum, (Marchantiopsida, Conocephalaceae) – a new holarctic liverwort species. PI Syst Evol 253: 133-158.
- 62. Feldberg K, Váňa J, Schulze C, Bombosch A, Heinrichs J (2011) Morphologically similar but genetically distinct: on the differentiation of *Syzygiella concreta* and *S. perfoliata* (Adelanthaceae subfam. Jamesonielloideae). Bryologist 114: 686-695.
- 63. Forrest LL, Salazar Allen N, Gudiño JA, Korpelainen H, Long DG (2011) Molecular and morphological evidence for distinct species in *Dumortiera*

(Dumortieraceae). Bryologist 114: 102-115.

- 64. Patiño J, Devos N, Vanderpoorten A, Schäfer-Verwimp A, Renner M (2013) The identity of *Radula carringtonii* Jack. J Bryol.: in press.
- 65. Kreier HP, Feldberg K, Mahr F, Bombosch A, Schmidt AR, et al. (2010). Phylogeny of the leafy liverwort *Ptilidium*: cryptic speciation and shared haplotypes between the Northern and Southern Hemispheres. Molec Phylogen Evol 57: 1260-1267.
- Ahonen I, Sass-Gyarmati A, Pócs T (2005) Molecular, morphological and taxonomic evaluation of the *Ptychanthus striatus* (Lejeuneaceae, Marchantiophyta) complex. Acta Bot Hung 47: 225-246.
- 67. Sukkharak P, Gradstein SR, Stech M (2011) Phylogeny, taxon circumscriptions, and character evolution in the core Ptychanthoideae (Lejeuneaceae, Marchantiophyta). Taxon 60: 1607-1622.
- Jones EW (1968) African Hepatics. XIX. The *Lejeunea flava* complex. Trans Brit Bryol Soc 5: 548-562.
- 69. Ah-Peng C, Bardat J, Ellis L (2005) Additions to the bryoflora of Réunion Island (France). Lindbergia 30: 43-45.
- 70. Reiner-Drehwald ME, Martinez KM (2004) On *Lejeunea multidentata*, a new species from Cuba (Jungermanniopsida: Lejeuneaceae). J Bryol 26: 103-106.
- 71. Reiner-Drehwald ME (2010a) On *Lejeunea* subgenus *Nanolejeunea* (Lejeuneaceae, Jungermanniopsida). Nova Hedwigia Beih 138: 117-128.
- 72. Zanten BO van, Gradstein SR (1988) Experimental dispersal geography of Neotropical liverworts. Nova Hedwigia Beih 90: 41-94.
- Zanten BO van, Pócs T (1981) Distribution and dispersal of bryophytes. In: Fittkau EJ, editor. Advances in Bryology. Vaduz: Cramer. pp. 479-562.
- 74. Pohjamo M, Korpelainen H, Kalinauskaite N (2008) Restricted gene flow in the

clonal hepatic *Trichocolea tomentella* in fragmented landscapes. Biol Conserv 141: 1204-1217.

- 75. Vanderpoorten A, Gradstein SR, Carine MA, Devos N (2010) The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biol Rev 85: 471-487.
- 76. Heinrichs J, Lindner M, Groth H, Hentschel J, Feldberg K, et al. (2006) Goodbye or welcome Gondwana? Insights into the phylogenetic biogeography of the leafy liverwort *Plagiochila* with a description of *Proskauera*, gen. nov. (Plagiochilaceae, Jungermanniales). Pl Syst Evol 258: 211-226.
- 77. Feldberg K, Hentschel J, Wilson R, Rycroft DS, Glenny D, et al. (2007). Phylogenetic biogeography of the leafy liverwort *Herbertus* (Jungermanniales, Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution. J Biogeogr 34: 688-689.
- Reiner-Drehwald ME, Schmidt AR, Heinrichs J (2012) The genus *Lejeunea* in Miocene amber from the Dominican Republic. Cryptog Bryol 33: 33-38.
- 79. Grolle R (1984) *Lejeunea palaeomexicana* n. sp., das erste Moos aus mexikanischem Bernstein. Stuttg Beitr Naturk, Ser B 108: 1-7.
- 80. Korpelainen H, von Crautlein M, Laaka-Lindberg S, Huttunen S (2011) Fine-scale spatial genetic structure of a liverwort (*Barbilophozia attenuata*) within a network of ant trails. Evol Ecol 25: 45-57.
- Merckx V, Chatrou LW, Lemaire B, Sainge MN, Huysmans S, et al. (2008) Diversification of myco-heterotrophic angiosperms: Evidence from Burmanniaceae. BMC Evol Biol 8: 178.
- 82. Weeks A, Daly DC, Simpson BB (2005) The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Molec Phylogen Evol 35: 85-101.
- 83. Merckx VSFT, Kissling J, Hentrich H, Janssens SB, Mennes CB, et al. (2013) Phylogenetic relationships of the mycoheterotrophic genus *Voyria* and the

implications for the biogeographic history of Gentianaceae. Amer J Bot 100: 712-721.

- 84. Davis CC, Bell CD, Mathews S, Donoghue MJ (2002) Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proc Nat Acad Sci U S A 99: 6833-6837.
- Schneider H, Kreier HP, Janssen T, Otto E, Muth H, et al. (2010) Key innovations versus key opportunities: identifying causes of rapid radiations in derived ferns. In: Glaubrecht M, editor, Evolution in Action. Berlin: Springer. pp. 61-75.
- Rouhan G, Labiak PH, Randrianjohany E, Rakotondrainibe F (2012) Not so Neotropical after all: the grammitid fern genus *Leucotrichum* (Polypodiacae) is also paleotropical, as revealed by a new species from Madagascar. Syst Bot 37: 331-338.
- Hartmann FA, Wilson R, Gradstein SR, Schneider H, Heinrichs J (2006) Testing hypotheses on species delimitations and disjunctions in the liverwort *Bryopteris* (Jungermanniopsida: Lejeuneaceae). Int J PI Sci 167: 1205-1214.
- Schaumann F, Frey W, Pfeiffer T, Stech M (2005) Molecular circumscription, intrafamilial relationships and biogeography of the Gondwanan liverwort family Pallaviciniaceae. Pl Syst Evol 252: 27-48.
- Hennequin S, Hovenkamp P, Christenhusz MJM, Schneider H (2010) Phylogenetics and biogeography of *Nephrolepis* - a tale of old settlers and young tramps. Bot J Linn Soc 164: 113-127.
- Heinrichs J, Feldberg K, Kreier H-P, Váňa J (2010) DNA-based identification of *Herbertus* species on Gough Island, South Atlantic Ocean. Cryptog Bryol 31: 67-74.
- 91. Heinrichs J, Lindner M, Groth R, Renker C (2005) Distribution and synonymy of *Plagiochila punctata* (Taylor) Taylor, with hypotheses on the evolutionary history of *Plagiochila* sect. *Arrectae* (Plagiochilaceae, Hepaticae). Pl Syst Evol 250: 105-117.

- Vanderpoorten A, Long DG (2006) Budding speciation and neotropical origin of the Azorean endemic liverwort, *Leptoscyphus azoricus*. Molec Phylogen Evol 40: 73-83.
- Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19: 639-644.
- Ricklefs RE (2010) Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proc Nat Acad Sci U S A 107: 1265-1272.
- Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2010) Is there a latitudinal gradient in the importance of biotic interactions. Ann Rev Ecol Evol Syst 40: 245-269.
- 96. Romdal TS, Araujo MB, Rahbeck C (2013) Life on a tropical planet: niche conservatism and the global diversity gradient. Global Ecol Biogeogr 22: 344-350.
- 97. Schneider H, He LJ, Marquardt J, Wang L, Heinrichs J, et al. (2013) Exploring the origin of the latitudinal diversity gradient: contrasting the sister fern genera *Phegopteris* and *Pseudophegopteris*. J Syst Evol 51: 61-70.
- 98. Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314: 102-106.
- Marshall CR (2006) Fossil record reveals tropics as cradle and museum. Science 313: 66-67.
- 100. McKenna DD, Farell BD (2006) Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. Proc Natl Acad Sci U S A 103: 10 947-10 951.
- 101. Moreau CS, Bell CD (2013) Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution. doi: 10.111/evo.12105.
- 102. Perrie LR, Parris BS (2012) Chloroplast DNA sequences indicate the grammitid

ferns (Polypodiacae) in New Zealand belong to a single clade, *Notogrammitis* gen. nov. New Zealand J Bot 50: 475-472.

- 103. Bystriakova N, Schneider H, Coomes D (2011) Evolution of the climatic niche in scaly tree ferns (Cyatheaceae, Polypodiopsida). Bot J Linn Soc 165: 1-19.
- Vanderpoorten A, Goffinet B (2009) Introduction to Bryophytes. Cambridge: Cambridge University Press. 303 p.
- 105. Longton RE, Schuster RM (1983) Reproductive biology. In: Schuster RM, editor, New manual of bryology. Nichinan: Hattori Botanical Laboratory. pp. 386-462.
- 106. Devos N, Renner MAM, Gradstein SR, Shaw J, Laenen B, et al. (2011) Evolution of sexual systems, dispersal strategies and habitat selection in the liverwort genus *Radula*. New Phytologist 192: 225-236.
- Reiner-Drehwald ME (2010) A taxonomic revision of Lejeunea deplanata (Lejeuneaceae, Marchantiophyta) from tropical America. Nova Hedwigia 91: 519-532.
- 108. Kraichak E (2012) Asexual propagules as an adaptive trait for epiphylly in tropical leafy liverworts (Lejeuneaceae). Amer J Bot 99: 1436-1444.
- 109. Heinrichs J, Hentschel J, Bombosch A, Fiebig A, Reise J, et al. (2010) One species or at least eight? Delimitation and distribution of *Frullania tamarisci* (L.) Dumort. (Jungermanniopsida, Porellales) inferred from nuclear and chloroplast DNA markers. Molec Phylogen Evol 56: 1105-1114.
- 110. Hutsemekers V, Vieira CC, Ros RM, Huttunen S, Vanderpoorten A (2012) Morphology informed by phylogeny reveals unexpected patterns of species differentiation in the aquatic moss *Rhynchostegium riparioides* s.l. Molec Phylogen Evol 62: 748-755.
- 111. Heinrichs J, Hentschel J, Feldberg K, Bombosch A, Schneider H (2009) Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. J Syst Evol 47: 497-508.

- 112. Renner MAM, Brown EA, Wardle GM (2013) Averaging v. outlier removal. Decrypting variance among cryptic *Lejeunea* species (Lejeuneaceae: Jungermanniopsida) using geometric morphometrics. Austral Syst Bot 26: 13-30.
- 113. Hollingworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, et al. (2009) A DNA barcode for land plants. Proc Nat Acad Sci U S A 31: 12794-12797.
- 114. Gradstein SR, Wilson R, Ilkiu-Borges AL, Heinrichs J (2006) Phylogenetic relationships and neotenic evolution of *Metzgeriopsis* (Lejeuneaceae) based on chloroplast DNA sequences and morphology. Bot J Linn Soc 151: 293-308.
- 115. Hepperle D (2004) SeqAssem©. A sequence analysis tool, contig assembler and trace data visualization tool for molecular sequences. Win32-Version. Distributed by the author via: http://www.sequentix.de.
- 116. Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95-98.
- 117. Swofford DL (2000) PAUP*, phylogenetic analyses using parsimony (* and other methods), version 4.01b10. Sunderland, Sinauer Associates.
- 118. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
- 119. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing the confidence in phylogenetic analysis. Syst Biol 42: 182-192.
- 120. Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45: 524-545.
- Posada D (2008) jModelTest: Phylogenetic model averaging. Molec Biol Evol 25: 1253-1256.
- 122. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. GARLI version 2.0 available online at https://code.google.com/p/garli/.

- 123. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
- 124. Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molec Biol Evol 16: 750-759.
- 125. Maddison DR, Maddison WP (2004) Mesquite, version 2.75 Tucson, Arizona. Available at http://mesquiteproject.org.
- 126. Yu Y, Harris AJ, He XJ (2010) S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories. Molec Phylogen Evol 56: 848-850.
- 127. Stephani F (1898-1925) Species Hepaticarum 1-6. Geneva: Georg & C^{ie}. 4354 p.
- 128. Grolle R (1966) Lebermoose aus Neuguinea. 3. *Stenolejeunea*. J Hattori Bot Lab 29: 75-78.
- 129. Mizutani M (1971) *Lejeunea* from the Himalayan region. J Hattori Bot Lab 34: 445-457.
- Reiner-Drehwald ME (1995) La familia Lejeuneaceae (Hepaticae) en Misiones, Argentina: estudio taxonómico-floristico. PhD thesis. 237 p.
- 131. Paton JA (1999) The liverwort flora of the British Isles. Colchester: Harley Books.626 p.
- 132. Zhu R-L, Grolle R (2003) Taxonomy and distribution of *Lejeunea exilis* (Lejeuneaceae, Hepaticae). Ann Bot Fennici 40: 101-106.
- Wigginton MJ, ed. (2004) E. W. Jones's liverwort and hornwort flora of West Africa. Scripta Bot Belg 30: 1-443.
- 134. Reiner-Drehwald ME, Schäfer-Verwimp A (2008) Lejeunea oligoclada and L. rionegrensis (Lejeuneaceae) in tropical America: new data on morphology and geographical distribution. Nova Hedwigia 87: 175-184.
- 135. Reiner-Drehwald ME, Schäfer-Verwimp A (2008) On Inflatolejeunea, Lejeunea

species with eplicate perianths and *Lejeunea talamancensis* sp. nov. from Costa Rica (Lejeuneaceae). Nova Hedwigia 87: 387-420.

- 136. Gradstein SR, Ilkiu-Borges AL (2009) Guide to the plants of central French Guiana. Part 4. Liverworts and hornworts. Mem New York Bot Gard 76: 1-140.
- 137. Renner MAM (2013) *Lejeunea subelobata* and *Lejeunea drummondii* (Jungermanniopsida) in Australasia. Polish Bot J 58: 193-203.
- 138. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50: 913-925.

Table1.Ancestralcharacterreconstructionofdioecious/monoeciousreproductive systems.The reconstruction is based on the reduced dataset usingMaximum Parsimony (MP) and Maximum Likelihood (ML).

	MP Dioecy	MP Monoecy	ML	ML
			Dioecy	Monoecy
Lepidolejeunea	yes	No	0.93	0.07
Harpalejeunea	yes	No	0.98	0.02
Microlejeunea	yes	No	0.93	0.07
Lejeunea	equivocal	equivocal	0.75	0.75
L. subg. Lejeunea	equivocal	equivocal	0.29	0.71
	(50%)	(50%)		
	no (50%)	yes (50%)		
L. subg. Crossotolejeunea	equivocal	equivocal	0.77	0.23
clade L. lamacerina-L. grossitexta	no	yes	0.01	0.99
clade L. hibernica-L. oracola	no	yes	0.29	0.71
clade L. pallescens- L. topoensis	no	yes	0.24	0.76
clade L. catinulifera-L. oracola	yes	No	0.75	0.25
clade L. amaniensis-L. oracola	no	yes	0.10	0.90
clade L. asperrima-L. controversa	equivocal	equivocal	0.40	0.60
clade L. trinitensis-L. adpressa	yes	No	0.92	0.08
clade L. trinitensis-L. ruthei	yes	No	0.96	0.04
clade L.capensis-L. adpressa	yes	No	0.97	0.03

Table S1. Taxa used in the present study. Information about the origin of the studied material, vouchers, as well as GenBank accession numbers is included. New sequences in bold face.

Tayon	Origin	Collector	GenBank Accession No.		
Taxon	Ungin	Collector	rbcL	trnL-F	nrITS
<i>Harpalejeunea. grandis</i> Grolle & M.E.Reiner	Colombia	Cleef 6450 (GOET)	KC313144	KC313184	KC313106
<i>H. grandistipula</i> R.M.Schust.	Ecuador	Schäfer-Verwimp et al. 24163/B (GOET)	KC313145	KC313185	KC313107
<i>H. marginalis</i> (Hook.f. & Taylor) Steph.	Chile	Schäfer-Verwimp & Verwimp 8082 (GOET)	KC313147	KC313187	KC313109
<i>H. molleri</i> (Steph.) Grolle	Azores	Schäfer-Verwimp & Verwimp 29334 (GOET)	KC313148	KC313188	KC313110
<i>Lejeunea acuta</i> Mitt.	Comoros	Pócs et al. 9276/CX (EGR)	KF556383	KF556133	KF556601
L. acuta	Kenya	Chuah-Petiot Mb 22 (JE)	KF556384	KF556134	KF555917
L. adpressa Nees	Dominican Rep. (I)	Schäfer-Verwimp & Verwimp 26931/B (GOET)	KF556386	KF556136	KF555919
L. adpressa	Dominican Rep. (II)	Schäfer-Verwimp & Verwimp 27215/F (GOET)	KF556387	KF556137	KF555920
L. adpressa	Dominican Rep. (III)	Pócs & Pócs 03156/F (EGR)	KF556385	KF556135	KF555918
L. alata Gottsche	Malaysia	Schäfer-Verwimp & Verwimp 18912 (GOET)		KF556140	KF555922
<i>L. amaniensis</i> E.W.Jones	Ethiopia	Hylander 4589 (EGR)	KF556393	KF556144	KF555925
L. amaniensis	Kenya (I)	Malombe 5012/cau.x2 (EGR)	KF556390	KF556141	KF555923
L. amaniensis	Kenya (II)	Malombe & Chituyi 5006/Si.1aS5 (EGR)	KF556392	KF556143	KF556603
L. amaniensis	Kenya (III)	Malombe & Soita 5008/K.1cS5 (EGR)	KF556391	KF556142	KF555924
<i>L. anisophylla</i> Nees & Mont.	China	Koponen et al. 56008 (H)	AY125943	AY144484	AY125348
L. anisophylla	Fiji Isls.	Pócs & Pócs 03307/O (EGR)	KF556397	KF556149	KF555929
L. anisophylla	Indonesia	Schäfer-Verwimp & Verwimp 21131 (GOET)	KF556398	KF556150	KF555930
L. anisophylla	Japan	Yamaguchi 24461 (GOET)	KF556400	KF556152	KF555931

L. anisophylla	Kingdom of Tonga	Schäfer 18341 (GOET)	KF556394	KF556145	KF555926
L. anisophylla	Equatorial Guinea	Müller B312/B (EGR)	KF556399	KF556151	KF556605
L. anisophylla	São Tomé and Príncipe (I)	Shevock & Daniel 34368 (EGR)	KF556401	KF556153	KF556606
L. anisophylla	São Tomé and Príncipe (II)	Pócs & Pócs 34749 (EGR)	KF556395	KF556146	KF555927
L. anisophylla	Vietnam (I)	Pócs 02103/V (EGR)	KF556396	KF556148	KF556604
L. anisophylla	Vietnam (II)	Pócs 02105/J (EGR)	KF556529	KF556303	KF556629
L. anisophylla	Vietnam (III)	Pócs 02103/C (EGR)		KF556147	KF555928
<i>L. apiculata</i> Sande Lac.	Indonesia	Schäfer-Verwimp & Verwimp 20985 (GOET)		KF556154	KF555932
L. aquatica Horik.	Japan	Higuchi 1021 (JE)		KF556155	KF555933
<i>L. asperrima</i> Spruce	Panama	Schäfer-Verwimp & Verwimp 30817 (GOET)	KF556402	KF556157	KF555935
<i>L. asperula</i> (Steph.) Mizut.	Papua New Guinea	Streimann 40815 (JE)		KF556156	KF555934
<i>L. bermudiana</i> (A.Evans) R.M.Schust.	USA	Shaw 14939 (DUKE)	KF556403	KF556158	KF555936
<i>L. boryana</i> Mont.	Ecuador	Schäfer-Verwimp & Nebel 33218 (GOET)	KF556404		KF555937
L. boryana	French Guiana (I)	Hartmann et al. 04- 054 (GOET)		KF556160	
L. boryana	French Guiana (II)	Holz FG 00-0103 (GOET)	KF556405	KF556159	KF555938
<i>L. cancellata</i> Nees & Mont.	Costa Rica (I)	Schäfer-Verwimp & Holz SV/H-0507/C (GOET)	KF556409	KF556164	KF555942
L. cancellata	Costa Rica (II)	Schäfer-Verwimp & Holz SV/H-0374/A (GOET)	KF556410	KF556165	KF556607
L. cancellata	Dominican Rep.	Schäfer-Verwimp & Verwimp 27005 (GOET)	KF556411	KF556166	KF556608
L. cancellata	Panama	Schäfer-Verwimp & Verwimp 30850 (GOET)	KF556408	KF556163	KF555941
<i>L. capensis</i> Gottsche	Brazil	Schäfer-Verwimp & Verwimp 15057 (GOET)		KF556167	KF555943
<i>L. catinulifera</i> Spruce	Ecuador	Gradstein & Mandl 10141 (GOET)	DQ983688	DQ987411	DQ987307
L. catinulifera	Ecuador	Wilson et al. 04-01 (GOET)	DQ983687	DQ987432	DQ987328

L. catinulifera	Ecuador	Schäfer-Verwimp et al. 24259/A (GOET)	KF556413		KF555945
L. catinulifera	Ecuador	Schäfer-Verwimp et al. 24188 (GOET)	KF556412	KF556168	KF555944
L. catinulifera	Ecuador	Schäfer-Verwimp et al. 24248 (GOET)	KF556414	KF556169	KF555946
<i>L. cavifolia</i> (Ehrh.) Lindb.	Belgium	Heinrichs et al. 3816 (GOET)	KF556419	KF556174	KF555950
L. cavifolia	Finland	Ahonen s.n. (H)	AY125945	AY144486	AY125347
L. cavifolia	France	Schäfer-Verwimp & Verwimp 27247 (GOET)	KF556421	KF556176	KF555952
L. cavifolia	Georgia	Hentschel Bryo 04382 (JE)	KF556418	KF556173	KF555949
L. cavifolia	Germany (I)	Heinrichs 3695 (GOET)	AY548102	DQ238581	DQ987259
L. cavifolia	Germany (II)	Schäfer-Verwimp & Verwimp 28787 (GOET)	KF556420	KF556175	KF555951
L. cavifolia	Germany (III)	Schäfer-Verwimp & Verwimp 28806 (GOET)	KF556415	KF556170	KF555947
L. cavifolia	Greece (I)	Düll 1./10.5.2004 (JE)	KF556417	KF556172	KF555948
L. cavifolia	Greece (II)	Schäfer-Verwimp & Verwimp 15888 (GOET)	KF556416	KF556171	
<i>L. cerina</i> (Lehm. & Lindenb.) Gottsche, Lindenb. & Nees	Costa Rica	Schäfer-Verwimp & Holz SV/H-0471 (GOET)	KF556425	KF556180	KF555955
L. cerina	Dominican Rep.	Schäfer-Verwimp & Verwimp 26978 (GOET)		KF556182	KF555957
L. cerina	Ecuador (I)	Schäfer-Verwimp & Nebel 32122 (GOET)	KF556423	KF556178	KF555954
L. cerina	Ecuador (II)	Wilson et al 04-02 (GOET)	DQ983686	DQ987433	DQ987329
L. cerina	Ecuador (III)	Wilson et al 04-13 (GOET)	DQ983689	DQ987441	DQ987339
L. cerina	Ecuador (IV)	Schäfer-Verwimp & Nebel 31942 (GOET)	KF556422	KF556177	KF555953
L. cerina	Ecuador (V)	Nöske & Holz 165 (GOET)	KF556424	KF556179	KF556609
L. cerina	Guadeloupe	Schäfer-Verwimp & Verwimp 22473 (GOET)	KF556426	KF556181	KF555956
L. cocoes Mitt.	Indonesia	Schäfer-Verwimp & Verwimp 21050 (GOET)	KF556430	KF556186	KF555961

L. cocoes	Solomon Isls.	Seaward 108088 (JE)		KF556187	KF555962
<i>L. colensoana</i> (Steph.) M.A.M.Renner	New Zealand (I)	Renner 300101 (AK)		JF308572	JF308543
L. colensoana	New Zealand (II)	Renner 300127a (AK)		JF308576	JF308547
L. colensoana	New Zealand (III)	Renner 300044 (AK)		JF308565	JF308536
L. colensoana	New Zealand (IV)	Renner 300130 (AK)		JF308577	JF308548
L. colensoana	New Zealand (V)	Renner 300028 (AK)		JF308562	JF308533
L. colensoana	New Zealand (VI)	Renner 300140 (AK)		JF308578	JF308549
L. colensoana	New Zealand (VII)	Renner 300104 (AK)		JF308573	JF308544
L. colensoana	New Zealand (VIII)	Renner 300103 (AK)		JF308574	JF308545
L. colensoana	New Zealand (IX)	Renner 300127 (AK)		JF308575	JF308546
L. colensoana	New Zealand (X)	Renner 300039 (AK)		JF308564	JF308535
L. colensoana	New Zealand (XI)	Renner 300030 (AK)		JF308563	JF308534
<i>L. controversa</i> Gottsche	Bolivia	Gradstein 7189 (JE)		KF556190	KF556610
L. controversa	Brazil	Vital 8794 (GOET)	KF556431	KF556188	KF555963
L. controversa	French Guiana (I)	Hartmann et al. 04- 033 (GOET)	KF556432	KF556189	KF555964
L. controversa	French Guiana (II)	Hartmann et al. 04- 092 (GOET)	KF556434	KF556192	KF555965
L. controversa	Guadeloupe	Schäfer-Verwimp & Verwimp 22196 (GOET)	KF556433	KF556191	
L. cristulata (Steph.) M.E.Reiner & Goda	Brazil	Giancotti 17 (JE)		KF556193	KF555966
<i>L. cuculliflora</i> (Steph.) Mizut.	Fiji Isls. (I)	Pócs & Pócs 03286/L (EGR)		KF556359	KF556110
L. cuculliflora	Fiji Isls. (II)	Pócs & Pócs 03286/D (EGR)	KF556435	KF556194	KF556611
L. cuculliflora	Fiji Isls. (III)	Pócs & Pócs 03274/BL (EGR)	KF556577	KF556358	KF556109
L. curviloba Steph.	Bhutan	Long 10611 (JE)		KF556195	KF555967
L. cf. curviloba	Indonesia	Gradstein 10300 (GOET)	KF556427	KF556183	KF555958

<i>L. debilis</i> (Lehm. & Lindenb.) Nees & Mont.	Costa Rica (I)	Dauphin 1793 (GOET)	KF556436	KF556196	KF555968
L. debilis	Costa Rica (II)	Biasi et al. 21 (GOET)	KF556438	KF556198	KF555970
L. debilis	Costa Rica (III), La Gamba	Schluder 7 (GOET)	KF556437	KF556197	KF555969
L. deplanata Nees	Dominican Rep., San José de Ocoa	Schäfer-Verwimp & Verwimp 26636 (GOET)	KF556442	KF556202	KF555974
L. deplanata	Ecuador (I), Imbabura	Schäfer-Verwimp et al. 24260/A (GOET)	KF556440	KF556200	KF555972
L. deplanata	Ecuador (II), Pichincha	Schäfer-Verwimp et al. 24252/A (GOET)	KF556441	KF556201	KF555973
L. deplanata	Ecuador (III), Pichincha	Schäfer-Verwimp et al. 24502/C (GOET)	KF556439	KF556199	KF555971
<i>L. discreta</i> Lindenb.	Australia	Thiers & Halling 2219 (L)	KF556444	KF556206	KF555977
L. discreta	China	Zhu 89038 (JE)		KF556204	KF555976
L. discreta	Fiji Isls.	Pócs & Pócs 03289/CA (EGR)	KF556443	KF556203	KF555975
L. discreta	Indonesia	Gradstein 12032 (GOET)		KF556205	
<i>L. drehwaldii</i> Heinrichs & Schäf Verw	Peru	Drehwald 4384 (JE)	KF556445	KF556207	KF555978
<i>L. drummondii</i> Taylor	Australia (I)	Streimann 16698 (JE)			KF555979
L. drummondii	Australia (II)	Pamt 38AL (JE)		KF556208	KF555980
L. drummondii	Australia (III)	Jarman 91/4 (JE)		KF556209	KF555981
L. drummondii	Australia (IV)	Renner 872058 (NSW)		JF308584	JF308555
<i>L. eckloniana</i> Lindenb.	Azores	Schäfer-Verwimp & Verwimp 29528 (GOET)	KF556448	KF556212	KF555984
L. eckloniana	La Palma	Schäfer- Verwimp 24788 (GOET)	DQ983690	DQ987457	DQ987357
L. eckloniana	Madeira (I)	Stech 04-271 (L)	KF556446	KF556210	KF555982
L. eckloniana	Madeira (I)	Stech 04-433 (L)	KF556447	KF556211	KF555983
<i>L. epiphylla</i> Colenso	New Zealand	Renner 300056 (AK)		JF308568	JF308539
<i>L. exili</i> s (Reinw., Blume & Nees) Grolle	Australia	Renner 872056 (NSW)		JF308583	JF308554
L. exilis	Indonesia (I)	Schäfer-Verwimp & Verwimp 25231 (GOET)	KF556449	KF556213	KF555985

		<u> </u>			
L. exilis	Indonesia (II)	Schäfer-Verwimp & Verwimp 24853 (GOET)	KF556451	KF556215	KF555987
L. exilis	Indonesia (III)	Schäfer-Verwimp & Verwimp 21080/B (GOET)	KF556450	KF556214	KF555986
L. exilis	Malaysia	Gradstein 10336 (GOET)	DQ983691	DQ987472	
<i>L. flava</i> (Sw.) Nees	Brazil (I)	Gradstein (GOET)	KF556480	KF556244	KF556010
L. flava	Brazil (II)	Gradstein s.n. (GOET)	DQ983692	DQ987413	DQ987309
L. flava	La Palma	Schafer-Verwimp & Verwimp 24780 (GOET)	DQ983693		DQ987363
L. flava	Tenerife	Drehwald & Drehwald 4121 (GOET)	KF556478	KF556242	KF556008
L. flava	Dominican Rep. (I)	Schäfer-Verwimp & Verwimp 26855/B (GOET)	KF556479	KF556243	KF556009
L. flava	Dominican Rep. (II)	Schäfer-Verwimp & Verwimp 27043 (GOET)	KF556452	KF556216	KF556612
L. flava	Easter Island	Ireland & Bellolio 30111 (JE)	KF556469	KF556234	KF556001
L. flava	Ecuador (I)	Schäfer-Verwimp & Preussing 23435/A (GOET)	KF556454	KF556218	KF556613
L. flava	Ecuador (II)	Schäfer-Verwimp & Preussing 23203/B (GOET)	KF556471	KF556236	KF556003
L. flava	Fiji Isls.	Pócs & Pócs 03269/F (EGR)	KF556463	KF556227	KF555996
L. flava	Gough Island	Gremmen 2005-0794 (EGR)	KF556484	KF556248	KF556013
L. flava	Guadeloupe	Schäfer-Verwimp & Verwimp 22495 (GOET)	KF556473	KF556237	KF556005
L. flava	India	Schäfer-Verwimp & Verwimp 28396 (GOET)	KF556462	KF556226	KF555995
L. flava	Indonesia (I)	Schäfer-Verwimp & Verwimp 25243/C (GOET)	KF556453	KF556217	KF555988
L. flava	Indonesia (II)	Schäfer-Verwimp & Verwimp 21078/A (GOET)	KF556466	KF556230	KF555998
L. flava	Indonesia (III)	Gradstein 12037 (GOET)	KF556481	KF556245	KF556619
L. flava	Indonesia (IV)	Schäfer-Verwimp & Verwimp 24907 (GOET)	KF556467	KF556231	KF556616

L. flava	Indonesia (V)	Schäfer-Verwimp & Verwimp 24825 (GOET)	KF556460	KF556224	KF555993
L. flava	Indonesia (VI)	Schäfer-Verwimp & Verwimp 24806/B (GOET)	KF556455	KF556219	KF555989
L. flava	Indonesia (VII)	Schäfer-Verwimp & Verwimp 24901/A (GOET)		KF556232	KF555999
L. flava	Kenya (I)	Chuah et al. 03017/H (EGR)	KF556566	KF556347	
L. flava	Kenya (II)	Pócs & Pócs 04011/AY (EGR)		KF556250	KF556620
L. flava	Kenya (III)	Pócs & Pócs 04013/M (EGR)	KF556586	KF556368	KF556120
L. flava	Kenya (VI)	Pócs & Pócs 04026/X (EGR)	KF556587	KF556369	KF556121
L. flava	Kenya (V)	Pócs & Pócs 04026/X (EGR)	KF556588	KF556370	KF556635
L. flava	Madeira (I)	Drehwald 3722 (GOET)	KF556472		KF556004
L. flava	Madeira (II)	Stech 09-425 (L)	KF556474	KF556238	KF556006
L. flava	Malaysia (I)	Schäfer-Verwimp & Verwimp 18541/C (GOET)	KF556459	KF556223	KF555992
L. flava	Malaysia (II)	Schäfer-Verwimp & Verwimp 18861/B (GOET)	KF556458	KF556222	KF556614
L. flava	Malaysia (III)	Schäfer-Verwimp & Verwimp 18528/A (GOET)	KF556461	KF556225	KF555994
L. flava	Nepal	Long 17308 (JE)	KF556470	KF556235	KF556002
L. flava	New Zealand, North Island	Braggins 90/30 (GOET)	KF556475	KF556239	KF556617
L. flava	Panama	Schäfer-Verwimp & Verwimp 30873 (GOET)	KF556482	KF556246	KF556011
L. flava	Réunion (I)	Gradstein 12013 (GOET)	KF556465	KF556229	KF555997
L. flava	Réunion (II)	Pócs 9501/J (EGR)	KF556487	KF556252	KF556016
L. flava	Réunion (III)	Pócs 08068/Z (EGR)	KF556486	KF556251	KF556015
L. flava	São Tomé and Príncipe	Shevock 34217 (EGR)	KF556464	KF556228	KF556615
L. flava	South Africa	Arts RSA 25/LL (JE)		KF556233	KF556000
L. flava	Sri Lanka (I)	Schäfer-Verwimp & Verwimp 15761 (GOET)	KF556428	KF556184	KF555959

L. flava	Sri Lanka (II)	Schäfer-Verwimp & Verwimp 5631 (GOET)	KF556456	KF556220	KF555990
L. flava	USA (I)	Majestyk & Wilbur 9979 (DUKE)	KF556476	KF556240	KF556618
L. flava	USA (II)	Nelson et al. 18549 (DUKE)	KF556477	KF556241	KF556007
<i>L. grossitexta</i> (Steph.) M.E.Reiner & Goda	Brazil, Paraná	Schäfer-Verwimp & Verwimp 10920 (GOET)	KF556490	KF556255	KF556019
L. grossitexta	Ecuador (I)	Schäfer-Verwimp & Nebel 31985 (GOET)	KF556489	KF556254	KF556018
L. grossitexta	Ecuador (II)	Schäfer-Verwimp & Nebel 32151/A (GOET)	KF556488	KF556253	KF556017
L. grossitexta	Panama	Schäfer-Verwimp & Verwimp 31000 (GOET)	KF556491	KF556256	KF556020
<i>L. helmsiana</i> Steph.	New Zealand (I)	Renner 300050 (AK)		JF308567	JF308538
L. helmsiana	New Zealand (II)	Renner 300069a (AK)		JF308570	JF308541
L. helmsiana	New Zealand (III)	Renner 300069 (AK)		JF308569	JF308540
L. hibernica Grolle	Ireland	Long 11743 (JE)		KF556257	KF556021
L. holtii Spruce	Madeira	Drehwald & Drehwald 3719 (GOET)	KF556492	KF556258	KF556022
<i>L. intricata</i> J.B.Jack & Steph.	Ecuador	Schäfer-Verwimp & Nebel 33217 (GOET)			KF556023
<i>L. isocalycina</i> (Nees.) Steph.	Bolivia	Gradstein 7492 (GOET)	KF556495	KF556261	KF556026
L. isocalycina	Brazil (I)	Costa & Gradstein 3720 (GOET)	KF556496	KF556262	KF556027
L. isocalycina	Brazil (II)	Costa & Gradstein 3864 (GOET)	KF556493	KF556259	KF556024
L. isocalycina	Brazil (III)	Costa & Gradstein 3863 (GOET)	KF556494	KF556260	KF556025
<i>L. isophylla</i> E.W.Jones	Madagascar	Lübenau 21 (EGR)	KF556497	KF556263	KF556028
<i>L. japonica</i> Mitt.	Japan (I)	Mizutani 15618 (L)	KF556499	KF556265	KF556030
L. japonica	Japan (II)	Mizutani 14074 (L)	KF556498	KF556264	KF556029
L. japonica	Russia	Bakalin HRE 63 (GOET)	KF556500	KF556266	KF556031
<i>L. laeta</i> (Lehm. & Lindenb.) Gottsche, Lindenb. & Nees	Ecuador	Schäfer-Verwimp et al. 24412 (GOET)	KF556501	KF556267	KF556032

<i>L. laetevirens</i> Nees & Mont.	Argentina	Reiner MER 985 (JE)		KF556278	KF556040
L. laetevirens	Bolivia	Linneo et al. 533 (MO)	KF556505	KF556271	KF556034
L. laetevirens	Costa Rica (I)	Schäfer-Verwimp & Holz SV/H-0315/A (GOET)		KF556274	KF556623
L. laetevirens	Costa Rica (II)	Schafer-Verwimp & Holz SV/H-0406 (GOET)	KF556507	KF556273	KF556036
L. laetevirens	Dominican Rep. (I)	Schäfer-Verwimp & Verwimp 27079 (GOET)	KF556508	KF556275	KF556037
L. laetevirens	Dominican Rep. (II)	Schäfer-Verwimp & Verwimp 27049 (GOET)	KF556502	KF556268	KF556033
L. laetevirens	Dominican Rep. (III)	Schäfer-Verwimp & Verwimp 27009/A (GOET)	KF556503	KF556269	KF556621
L. laetevirens	Dominican Rep. (IV)	Schäfer-Verwimp & Verwimp 27166 (GOET)	KF556509	KF556276	KF556038
L. laetevirens	Ecuador	Schäfer-Verwimp & Nebel 31905/A (GOET)	KF556504	KF556270	KF556622
L. laetevirens	French Guiana	Holz FG00-311 (GOET)		KF556277	KF556039
L. laetevirens	Madeira (I)	Schäfer-Verwimp & Verwimp 26013A (GOET)	KF556406	KF556161	KF555939
L. laetevirens	Madeira (II)	Schäfer-Verwimp & Verwimp 26013B (GOET)	KF556407	KF556162	KF555940
L. laetevirens	Mexico	Gradstein & Velasquez s.n. (GOET)	KF556506	KF556272	KF556035
<i>L. lamacerina</i> (Steph.) Schiffn.	Azores (I)	Schäfer-Verwimp & Verwimp 29394 (GOET)	KF556510	KF556279	KF556041
L. lamacerina	Azores (II)	Schäfer-Verwimp & Verwimp 29325/A (GOET)	KF556513	KF556282	KF556044
L. lamacerina	Canada	Schofield & Schofield 95548 (DUKE)	KF556514	KF556283	KF556045
L. lamacerina	Ireland	Long 11625 (JE)		KF556286	KF556047
L. lamacerina	Madeira (I)	Stech 04-297 (L)	KF556512	KF556281	KF556043
L. lamacerina	Madeira (II)	Stech 04-361 (L)	KF556511	KF556280	KF556042
L. lamacerina	USA (I)	Risk 13222 (DUKE)	KF556515	KF556284	KF556624

L. lamacerina	USA (II)	Shaw 10368 (DUKE)	KF556516	KF556285	KF556046
<i>L. Iomana</i> E.W.Jones	Réunion (I)	Pócs 08068/P (EGR)	KF556389	KF556139	KF556602
L. lomana	Réunion (II)	Pócs 08064/L (EGR)	KF556388	KF556138	KF555921
L. lumbricoides (Nees) Nees	Indonesia	Gradstein & Ariyanti 11028 (GOET)		KF556287	KF556048
<i>L. micholitzii</i> Mizut.	Fiji Isls. (I)	Pócs & Pócs 03288/DC (EGR)	KF556517	KF556288	KF556049
L. micholitzii	Fiji Isls. (II)	Pócs & Pócs 03309/L (EGR)	KF556518	KF556289	KF556625
L. micholitzii	Indonesia	Schäfer-Verwimp & Verwimp 24923/E (GOET)	KF556519	KF556290	KF556050
L. microloba Taylor	Fiji Isls. (I)	Pócs & Pócs 03280/CC (EGR)		KF556292	KF556626
L. microloba	Fiji Isls. (II)	Pócs 08013/Y (EGR)	KF556520	KF556291	KF556051
L. microloba	Fiji Isls. (III)	Pócs & Pócs 03279/CK (EGR)	KF556521	KF556293	KF556627
<i>L. mimula</i> Hürl.	Fiji Isls. (I)	Pócs 08013/M (EGR)	KF556522	KF556294	KF556628
L. mimula	Fiji Isls. (II)	Pócs 08034/E (EGR)	KF556523	KF556295	KF556052
L. mimula	Indonesia (I)	Schäfer-Verwimp & Verwimp 16973 (GOET)	KF556524	KF556296	KF556053
L. mimula	Indonesia (II)	Schäfer-Verwimp 20930 (GOET)	AY548104	DQ238580	DQ987261
<i>L. minutiloba</i> A.Evans	Easter Island	Ireland & Bellolio 30138 (JE)	KF556525	KF556297	KF556054
<i>L. monimiae</i> (Steph.) Steph.	Ecuador	Schäfer-Verwimp & Preussing 23226/A (GOET)	KF556526	KF556298	KF556055
<i>L. multidentata</i> M.E.Reiner & Mustelier	Dominican Rep. (I)	Pócs & Pócs 03157/A (EGR)	KF556528	KF556300	KF556057
L. multidentata	Dominican Rep. (II)	Pócs & Pócs 03157/A (EGR)	KF556527	KF556299	KF556056
<i>L. neelgherriana</i> Gottsche	Japan	Higuchi BSE 1295 (L)		KF556301	KF556058
<i>L. nepalensis</i> (Steph.) H.A.Mill., Bonner & Bischl.	Nepal	Long 17250 (JE)		KF556302	KF556059
L. obscura Mitt.	Malaysia	Schäfer-Verwimp & Verwimp 18745/B (GOET)		KF556304	KF556060
L. obscura	Indonesia	Schäfer-Verwimp & Verwimp 16737 (GOET)	KF556530		KF556630

L. obtusangula	Bolivia (I)	Gradstein 9948 (GOET)	DQ983731	DQ987428	DQ987324
<i>L. obtusangula</i> Spruce	Bolivia (II)	Krömer 869 (GOET)	KF556532	KF556307	KF556063
L. obtusangula	Bolivia (III)	Krömer 1061 (GOET)		KF556306	KF556062
L. obtusangula	French Guiana	Holz FG 00-291B (GOET)	KF556531	KF556305	KF556061
<i>L. oligoclada</i> Spruce	Brazil (I)	Schäfer-Verwimp & Verwimp 13590 (GOET)	KF556533	KF556308	KF556064
L. oligoclada	Brazil (II)	Schäfer-Verwimp & Verwimp 10560 (GOET)	KF556534	KF556310	
L. oligoclada	Brazil (III)	Schäfer-Verwimp & Verwimp 11780 (GOET)		KF556309	
<i>L. oracola</i> M.A.M.Renner	New Zealand (I)	Renner 299972 (AK)		JF308557	JF308528
L. oracola	New Zealand (II)	Renner 300010 (AK)		JF308560	JF308531
L. oracola	New Zealand (III)	Renner 300078 (AK)		JF308571	JF308542
L. oracola	New Zealand (IV)	Renner 300012 (AK)		JF308561	JF308532
L. oracola	New Zealand (V)	Renner 300003 (AK)		JF308559	JF308530
<i>L. osculatiana</i> De Not.	Costa Rica	Schäfer-Verwimp & Holz SV/H-0496/B (GOET)	KF556539	KF556315	KF556068
L. osculatiana	Ecuador	Schäfer-Verwimp et al. 24526 (GOET)	KF556535	KF556311	KF556065
L. osculatiana	Panama	Schäfer-Verwimp & Verwimp 30958 (GOET)	KF556538	KF556314	KF556631
L. osculatiana	Venezuela	Drehwald & Reiner- Drehwald 40081 (GOET)	KF556537	KF556313	KF556067
L. pallescens Mitt.	Ecuador (I)	Schäfer-Verwimp & Nebel 32731 (GOET)	KF556540		KF556069
L. pallescens	Ecuador (II)	Schäfer-Verwimp & Nebel 31824 (GOET)	KF556541	KF556316	KF556070
<i>L. parva</i> (S.Hatt.) Mizut.	Japan (I)	Mizutani 16204 (L)	KF556543	KF556319	KF556073
L. parva	Japan (II)	Inoue 959 (JE)		KF556317	KF556071
L. parva	Japan (III)	Mizutani 15293 (L)	KF556542	KF556318	KF556072
<i>L. patriciae</i> Schäf Verw.	Malaysia	Schäfer-Verwimp & Verwimp 18583 (GOET)		KF556320	KF556074

<i>L. paucidentata</i> (Steph.) Grolle	Cuba	Pócs & Caluff 9199/CL (JE)		KF556321	KF556075
L. paucidentata	Dominica	Schäfer- Verwimp 17737 (GOET)	DQ983695		DQ987345
<i>L. phyllobola</i> Nees & Mont.	Ecuador	Noeske et al. 204 (GOET)	KF556600	KF556322	KF556076
L. phyllobola	Kenya	Pócs & Pócs 04009/B (EGR)	KF556544	KF556323	KF556632
<i>L. pterigonia</i> (Lehm. & Lindenb.) Schiffn.	Bolivia (I)	Churchill et al. 21851 (GOET)	KF556546	KF556325	KF556078
L. pterigonia	Bolivia (II)	Gradstein 9963 (GOET)	KF556548	KF556327	KF556080
<i>L. pterigonia</i> (Lehm. & Lindenb.) Mont.	Bolivia (III)	Gradstein 9964 (GOET)	DQ983732	DQ987429	DQ987325
L. pterigonia	Bolivia (IV)	Churchill et al. 23467 (GOET)	KF556547	KF556326	KF556079
L. pterigonia	Brazil	Costa & Gradstein 3867 (GOET)	KF556545	KF556324	KF556077
L. pterigonia	Ecuador	Nöske 164 (GOET)	KF556549	KF556328	KF556081
<i>L. puiggariana</i> Steph.	Dominican Rep. (I)	Schäfer-Verwimp & Verwimp 27016/A (GOET)	KF556550	KF556329	KF556082
L. puiggariana	Dominican Rep. (II)	Schäfer-Verwimp & Verwimp 27215/A (GOET)	KF556551	KF556330	KF556083
<i>L. pulverulenta</i> (Gottsche ex Steph.) M.E.Reiner	Bolivia	Reiner-Drehwald & Drehwald 4517 (GOET)	KF556552	KF556331	KF556084
<i>L. ram</i> osossima Steph.	São Tomé and Príncipe (I)	Shevock 34551 (EGR)		KF556334	KF556087
L. ramosissima	São Tomé and Príncipe (II)	Shevock 34348A (EGR)	KF556554	KF556333	KF556086
L. ramosissima	São Tomé and Príncipe (III)	Shevock 34451 (EGR)	KF556553	KF556332	KF556085
<i>L. ramulosa</i> (Herzog) R.M.Schust.	Costa Rica	Schäfer-Verwimp & Holz SV/H-0229/A (GOET)	KF556555	KF556335	KF556088
L. ramulosa	Dominican Rep.	Schäfer-Verwimp & Verwimp 26954 (GOET)		KF556337	KF556633
L. ramulosa	Ecuador (I)	Wilson et al. 04-24 (GOET)	KF556556	KF556336	KF556089
L. ramulosa	Ecuador (II)	Schäfer-Verwimp et al. 24208 (GOET)	KF556557	KF556338	KF556090
<i>L. reflexistipula</i> (Lehm. & Lindenb.) Gottsche, Lindenb. & Nees	Brazil	Schäfer-Verwimp & Verwimp 12482 (GOET)	KF556558	KF556339	KF556091

L. reflexistipula	Ecuador (I)	Schäfer-Verwimp & Nebel 31707 (GOET)	KF556560	KF556341	KF556093
L. reflexistipula	Ecuador (II)	Schäfer-Verwimp et al. 24215/A (GOET)	KF556563	KF556344	KF556096
L. reflexistipula	Ecuador (III)	Schäfer-Verwimp & Nebel 33162 (GOET)	KF556559	KF556340	KF556092
L. reflexistipula	Ecuador (IV)	Schäfer-Verwimp & Nebel 32032 (GOET)	KF556561	KF556342	KF556094
L. reflexistipula	Peru	Drehwald 10046 (GOET)	KF556562	KF556343	KF556095
L. reflexistipula var. costaricensis (Steph.) M.E.Reiner	Costa Rica	Schäfer-Verwimp & Holz SV/H-0434 (GOET)	KF556565	KF556346	KF556098
L. reflexistipula var. costaricensis	Panama	Schäfer-Verwimp & Verwimp 30930 (GOET)	KF556564	KF556345	KF556097
<i>L. rhigophila</i> M.A.M.Renner	New Zealand	Renner 300147 (AK)		JF308579	JF308550
L. rhigophila	New Zealand	Renner 300044a (AK)		JF308566	JF308537
L. rhigophila	New Zealand	Renner 300149 (AK)		JF308580	JF308551
L. rotundifolia Mitt.	Costa Rica, Cartago	Schäfer-Verwimp & Holz SV/H-0378 (GOET)	KF556567	KF556348	KF556099
L. rotundifolia	Ecuador	Gradstein 10172 (GOET)	DQ983734	DQ987410	DQ987304
L. rotundifolia	Panama, Chiriqui	Schäfer-Verwimp & Verwimp 31029 (GOET)	KF556568	KF556349	KF556100
<i>L. ruthii</i> (A.Evans) R.M.Schust.	USA (I), North Carolina	Duell 1411 p.p. (JE)		KF556350	KF556101
L. ruthii	USA (II), Tennessee	Zartman 681 (DUKE)	KF556569		KF556634
<i>L. sordida</i> (Nees) Nees	Fiji Isls. (I)	Pócs & Pócs 03300/AP (EGR)	KF556570	KF556351	KF556102
L. sordida	Fiji Isls. (II)	Pócs & Pócs 03305/J (EGR)	KF556572	KF556353	KF556104
L. sordida	Fiji Isls. (III)	Pócs & Pócs 03305/J (EGR)	KF556571	KF556352	KF556103
L. sordida	Indonesia	Sporn 101 (GOET)	KF556574	KF556355	KF556106
L. sordida	Japan	Yamaguchi 29848 (GOET)	KF556575	KF556356	KF556107
L. sordida	Papua New Guinea	Streimann 41611 (JE)	KF556573	KF556354	KF556110
<i>L. sporadica</i> Besch. & Spruce	Panama	Schäfer-Verwimp & Verwimp 31033 (GOET)	KF556583		KF556117

<i>L. subspathulata</i> Spruce	Colombia	Gradstein 8991 (GOET)	KF556584	KF556366	KF556118
L. subspathulata	Dominica	Gradstein 6643 (GOET)	KF556585	KF556367	KF556119
<i>L. tapajosensis</i> Spruce	Ecuador	Nöske et al. 204 (GOET)	KF556589	KF556371	KF556122
<i>L. tasmanica</i> Gottsche	New Zealand	Renner 872054 (NSW)		JF308581	JF308552
<i>L. topoensis</i> Gradst. & M.E.Reiner	Ecuador (I)	Gradstein & Jost 10163 (GOET)	KF556590	KF556372	KF556123
L. topoensis	Ecuador (II)	Gradstein & Jost 10063 (GOET)	DQ983712	DQ987416	DQ987312
L. topoensis	Ecuador (III)	Gradstein & Jost 10063a (GOET)	KF556591	KF556373	KF556124
L. topoensis	Ecuador (IV)	Wilson et al 04-04 (GOET)	DQ983733	DQ987435	DQ987331
<i>L. trinitensis</i> Lindenb. & Gottsche	Bolivia	Linneo et al. 82 (GOET)	KF556593	KF556375	KF556126
L. trinitensis	Brazil	Vital 10.168 (JE)	KF556594	KF556376	KF556127
L. trinitensis	Mayotte	Pócs & Pócs 05097/C (EGR)	KF556592	KF556374	KF556125
<i>L. tuberculosa</i> Steph.	São Tomé and Príncipe (I)	Pócs & Pócs 34690 (EGR)	KF556595	KF556377	KF556128
L. tuberculosa	São Tomé and Príncipe (II)	Shevock 34776 (EGR)	KF556483	KF556247	KF556012
L. tuberculosa	Thailand	Schäfer-Verwimp & Verwimp 23880 (GOET)	KF556457	KF556221	KF555991
<i>L. tumida</i> Mitt.	New Zealand (I)	Renner 299949 (AK)		JF308556	JF308527
L. tumida	New Zealand (II)	Renner 300002 (AK)		JF308558	JF308529
<i>L. umbilicata</i> (Nees) Nees et al.	Indonesia (I)	Gradstein 12076 (GOET)	KF556598	KF556380	KF556131
L. umbilicata	Indonesia (II)	Gradstein 51 (GOET)	KF556599	KF556381	KF556132
L. umbilicata	Indonesia (III)	Schäfer-Verwimp & Verwimp 20794/B (GOET)	KF556596	KF556378	KF556129
L. umbilicata	Indonesia (IV)	Schäfer-Verwimp & Verwimp 16954 (GOET)	KF556597	KF556379	KF556130
<i>L. wallichiana</i> Gottsche	Nepal	Long 16716 (JE)		KF556382	
<i>L.</i> sp. l	Ecuador	Schäfer-Verwimp & Preussing 23533 (GOET)	KF556536	KF556312	KF556066
<i>L.</i> sp. II	Bolivia	Fuentes & Aldana 6473 (GOET)	KF556429	KF556185	KF555960

L. sp. III	Gough Island	Gremmen 2000-0075 (EGR)	KF556579	KF556361	KF556112
L. sp. IV	Fiji Isls.	Pócs 08029/O (EGR)	KF556580	KF556362	KF556113
<i>L.</i> sp. V	Madagascar	Geissler 3498 (EGR)	KF556578	KF556360	KF556111
<i>L.</i> sp. VI	Panama	Schäfer-Verwimp & Verwimp 30834 (GOET)	KF556582	KF556365	KF556116
<i>L.</i> sp. VII	Nepal	Pölt H3071 (JE)		KF556363	KF556114
L. sp.VIII	Ethiopia	Hylander 5564 (EGR)	KF556576	KF556357	KF556108
L. sp. IX	São Tomé and Príncipe	Shevock et al. 34316 (EGR)	KF556485	KF556249	KF556014
<i>L.</i> sp. X	Madagascar	Pócs et al. 90100/C (JE)	KF556581	KF556364	KF556115
<i>Lepidolejeunea bidentula</i> (Steph.) R.M.Schust.	China	Koponen et al. 51525 (H)	AY125936	AY144476	AY125340
<i>Lep. eluta</i> (Nees) R.M.Schust.	Bolivia (I)	Churchill & Vasquez 2180 (GOET)	AY548066	DQ238579	DQ987266
Lep. eluta	Bolivia (II)	Drehwald 4833 (GOET)	DQ983696	DQ987379	DQ987257
<i>Lep. integristipula</i> (J.B.Jack & Steph.) R.M.Schust.	Fiji Isls.	Pócs 03307/AC (GOET)	DQ983697	DQ987417	DQ987313
<i>Microlejeunea.</i> <i>africana</i> Steph.	Madagascar	Lübenau 2 (JE)	KC313149	KC313189	KC313111
M. africana	São Tomé and Príncipe (I)	Shevock 34576A (GOET)	KC313150	KC313190	KC313112
M. Africana	São Tomé and Príncipe (II)	Shevock 34576B (GOET)	KC313151	KC313191	KC313113
<i>M. capillaris</i> (Gottsche) Steph.	Costa Rica	Schäfer-Verwimp & Holz SV/H-0489/B (JE)	KC313152	KC313192	KC313114
<i>M. colombiana</i> Bischl.	Dominican Rep.	Schäfer-Verwimp & Verwimp 26614/A (JE)	KC313153	KC313193	KC313079
<i>M. filicuspis</i> (Steph.) Heinrichs, SchäfVerw., Pócs & S.Dong	Fiji Isls. (I)	Pócs & Pócs 03306/R (EGR)	KC313137	KC313177	KC313099
M. filicuspis	Fiji Isls. (II)	Pócs & Pócs 03304/A (EGR)	KC313138	KC313178	KC313100
M. filicuspis	Thailand	Pócs & Pócs 07006/A (EGR)	KC313139	KC313179	KC313101
<i>M. fischeri</i> (Tixier) Heinrichs, Schäf Verw., Pócs & S.Dong	Uganda (I)	Pócs & Lye 97141/T (EGR)	KC313140	KC313180	KC313102

M. fischeri	Uganda (II)	Pócs & Lye 97142/AM (EGR)	KC313141	KC313181	KC313103
M. fischeri	Uganda (III)	Pócs & Lye 97142/BB (EGR)	KC313142	KC313182	KC313104
M. fischeri	Uganda (IV)	Pócs & Lye 97142/BQ (EGR)	KC313143	KC313183	KC313105
<i>M. latitan</i> s (Hook.f.		· · · ·			
& Taylor) Heinrichs,		Schäfer-Verwimp &	KC212146	KC212196	KC212109
SchäfVerw., Pócs	New Zealand	Verwimp 13869 (JE)	KU313140	NC313100	KC313108
& S.Dong					
<i>M.</i> sp.	Thailand	Schäfer-Verwimp & Verwimp 16293 (GOET)		KC313196	KC313117
<i>M. squarrosa</i> (Steph.), Heinrichs, SchäfVerw., Pócs & S.Dong	Brazil (I)	Schäfer-Verwimp & Verwimp 14780 (JE)	KC313157	KC313197	KC313118
M. squarrosa	Brazil (II)	Schäfer-Verwimp & Verwimp 14638 (JE)	KC313158	KC313198	KC313119
M. squarrosa	Brazil (III)	Schäfer-Verwimp & Verwimp 13376 (GOET)	DQ983720	DQ987446	DQ987344
<i>M. ulicina</i> (Taylor) Steph.	La Palma (I)	Schäfer-Verwimp & Verwimp 24800 (GOET)	KC313154	KC313194	KC313115
M. ulicina	La Palma (II)	Schäfer-Verwimp & Verwimp 24666 (GOET)	KC313155	KC313195	KC313116

Figure 1.

Strict consensus of 4578 equally parsimonious trees derived from the small dataset including each one accession per species. MP and ML bootstrap percentage values and Bayesian Posterior Probabilities are indicated at branches. Monoecious species are given in blue, dioecious species in black. Type species of subgenera of *Lejeunea* are marked and alternative genus assignments of *Lejeunea* species shown.

Figure 2.

Condensed Maximum Likelihood phylogeny of the *Harpalejeunea-Lejeunea-Microlejeunea* clade. Branch colors correspond to the most parsimonious reconstruction of ancestral areas of distribution and provide evidence for a Neotropical origin of *Lejeunea*.

Figure 3 A.

Pruned *Lejeunea* clade from Fig. 2. Fifty nine *Lejeunea* species are represented by multiple accessions, 29 of these are monophyletic, 25 para- or polyphyletic.

Pruned *Lejeunea* clade from Fig. 2. Fifty nine *Lejeunea* species are represented by multiple accessions, 29 of these are monophyletic, 25 para- or polyphyletic.

Figure 3 C.

Pruned *Lejeunea* clade from Fig. 2. Fifty nine *Lejeunea* species are represented by multiple accessions, 29 of these are monophyletic, 25 para- or polyphyletic.

Ancestral areas of distribution reconstructed using S-DIVA based on 7500 Bayesian trees from the reduced dataset. The distribution of each species is given in brackets according to the ancestral areas of distribution scheme. Putative ancestral areas of distribution are shown at nodes, in case of alternative results the less likely solution is given in black. Question marks indicate ambiguities [more than two alternative proposals]. The reconstruction points to a Neotropical origin of *Lejeunea*

Figure S1. Maximum Likelihood phylogeny of the *Harpalejeunea-Lejeunea-Microlejeunea* clade. ML and MP bootstrap percentage values as well as Bayesian Posterior Probabilities are indicated at branches. Branch colors correspond to the most parsimonious reconstruction of ancestral areas of distribution
Appendix 3

Size doesn't matter – recircumscription of *Microlejeunea* (Lejeuneaceae, Porellales) based on molecular and morphological evidence

Shanshan Dong, Alfons-Schäfer-Verwimp, Tamás Pócs, Kathrin Feldberg, Aleksandra Czumaj, Alexander R. Schmidt, Harald Schneider, Jochen Heinrichs

Published in Phytotaxa, 2013, 85, 41-55.

Abstract

Phylogenetic analyses of a three marker dataset of Lejeuneaceae (chloroplast genome *rbc*L gene and *trn*L-F region, and nuclear ribosomal ITS1-5.8S-ITS2 region) resolve the "*Lejeunea* complex" in three main lineages assigned here to *Harpalejeunea*, *Lejeunea* and *Microlejeunea*. The taxa *Harpalejeunea fischeri*, *H. filicuspis*, *H. latitans* and *Pluvianthus squarrosus* are nested in a clade with several representatives of *Microlejeunea* including the generitype *M. africana*, and are transferred to the latter genus. *Harpalejeunea* and *Microlejeunea* differ from *Lejeunea* by the presence of ocelli. *Harpalejeunea* has diverging, blunt underleaf lobes in contrast to the forward directed, blunt to acute underleaf lobes of *Microlejeunea*. Morphologically similar accessions of *Microlejeunea* form independent lineages. *Drepanolejeunea vandenberghenii* is newly reported for Madagascar, Malawi and Réunion.

Key words: cryptic speciation, *Drepanolejeunea, Harpalejeunea,* Jungermanniopsida, *Lejeunea*, liverwort, *Pluvianthus*, taxonomy

Introduction

Lejeunea Libert (1820: 372) is a species rich and taxonomically complex genus of Lejeuneeae with some 1700 species described worldwide (Reiner-Drehwald 1999). The high number of *Lejeunea* species is due to the wide genus concept of early authors including Gottsche et al. (1844-1847) and Spruce (1884). Later authors placed *Lejeunea* elements sensu Spruce in more than 60 different genera (Gradstein et al. 2004), leading to tentative estimates of species numbers "over 100"; the exact number being unclear due to a lack of comprehensive taxonomic studies (Gradstein & Pinheiro da Costa 2003). Molecular phylogenetic studies resolved several of the segregate genera as nested within *Lejeunea*, e.g. *Taxilejeunea* (Spruce 1884: 212) Schiffner (1893: 125), *Macrolejeunea* (Spruce 1884: 224) Schiffner (1893: 118) (Wilson et al. 2007) and *Sphaerolejeunea* Herzog (1938: 88), results that support a wider genus concept (Heinrichs et al. 2012a). Currently *Lejeunea* is considered to be a morphologically heterogeneous genus with unclear boundaries (Gradstein et al. 2001).

Microlejeunea Stephani (1888: 61) has been treated either as a genus (Bischler et al. 1963, Grolle 1995, Ah-Peng & Bardat 2011) or as a subgenus of Lejeunea (Schuster 1980, Thiers 1997). It differs from Lejeuneas.str. by sinuose stems, presence of three medullary cells, perpendicular branching, large lobules being usually longer than wide, small underleaves, bracts being larger than the leaves and often shortly connate at their bases, male bracts being distinctly larger than the leaves (Bischler et al. 1962), a tendency to produce ocelli (Schuster 1957), and the presence of lejeuneoid subgynoecial innovations (Grolle 1995). In some molecular phylogenetic analyses of Lejeuneaceae, Microlejeunea was placed sister to Lejeunea (Ahonen et al. 2003, Wilson et al. 2004); hence both treatments are consistent with the available phylogenies. Another comprehensive molecular phylogeny of Lejeuneaceae (Wilson et al. 2007) resolved the monospecific genus *Pluvianthus* Schuster & Schäfer-Verwimp in Schuster (1994: 213) and Harpalejeunea (Spruce 1884: 164) Schiffner (1893: 126) in a sister relationship to Lejeunea, however, this study lacked representatives of Microlejeunea. Pluvianthus resembles the "Lejeunea complex" (Lejeunea, Harpalejeunea and *Microlejeunea*) in many respects but differs by its utriculiform leaves, laminar elaters, and capsule microanatomy (Schuster & Schäfer-Verwimp 1995). Harpalejeunea closely resembles Microlejeunea but has underleaves with diverging lobes, those of Microlejeunea being forward directed (Grolle & Reiner-Drehwald 1999). The generic circumscription of Harpalejeunea is still subject to controversy. Grolle & Reiner-Drehwald (1995) separate Harpalejeunea by its lejeuneoid subgynoecial innovations from Drepanolejeunea Spruce (1884: 186) Schiffner (1893: 126) with pycnolejeuneoid innovations. In contrast, Schuster (1980) considered Harpalejeunea filicuspis (Stephani 1913b: 344) Mizutani (1973: 197) to be an element of Drepanolejeunea, despite the presence of lejeuneoid subgynoecial innovations.

In the present study we test the current genus concepts by including representatives of *Harpalejeunea*, *Microlejeunea*, and *Pluvianthus* in a three-marker dataset of Lejeuneeae. Based on the outcome of our phylogenetic analyses we accept the genera *Microlejeunea* and *Harpalejeunea* but transfer several representatives of *Harpalejeunea* and *Pluvianthus* to *Microlejeunea*.

143

Materials and methods

Taxa studied, DNA extraction, PCR amplification and sequencing:—Plant tissue was isolated from herbarium collections of specimens assigned to the Lejeuneeae genera *Drepanolejeunea, Harpalejeunea, Microlejeunea* and *Pluvianthus* (Table 1). Total genomic DNA was purified using Invisorb Spin Plant Mini Kit (Invitek, Berlin, Germany) prior to amplification. Protocols for PCR were carried out as described in previous publications: chloroplast genome *rbc*L gene and *trn*L-F region from Gradstein et al. (2006), and nuclear ribosomal ITS1-5.8S-ITS-2 region from Hartmann et al. (2006). Bidirectional sequences were generated using a MegaBACE 1000 automated sequencing machine using DYEnamic ET Primer DNA Sequencing Reagent (Amersham Biosciences, Little Chalfont, UK). Sequencing primers were those used for PCR. Newly generated sequences were assembled and edited using SeqAssem (Hepperle 2004).

We compiled a Lejeuneeae ingroup dataset based on Wilson et al. (2007) using our new sequences as well as Genbank sequences (http://www.ncbi.nlm.nih.gov/genbank/). Thirteen representatives of Brachiolejeuneeae and Ptychanthoideae were chosen as outgroup according to the topologies presented in Wilson (2007). The related sequences came also from Genbank (Table 1).

Phylogenetic analyses:—All sequences were aligned manually in Bioedit version 7.0.5.2 (Hall 1999). Ambiguous positions were excluded from the alignments. Missing sequence stretches were coded as unknown. Maximum parsimony (MP) analyses were carried out with PAUP* version 4.0b10 (Swofford 2000). MP heuristic searches were conducted with the following options implemented: heuristic search mode, 1.000 random-addition-sequence replicates, tree bisection-reconnection (TBR) branch swapping, MULTrees option on, and collapse zero-length branches off. All characters were treated as equally weighted and unordered. Where more than one most parsimonious tree was found, trees were summarized in a strict consensus tree.

Non-parametric bootstrapping values (Felsenstein 1985) were generated as heuristic searches with 1.000 replicates, each with ten random-addition replicates. Rearrangements were restricted to 10,000,000 per replicate. Bootstrap percentage

values (BPV) \geq 70 were regarded as good support (Hillis and Bull 1983). The individual marker sets and the combined chloroplast DNA dataset vs nrITS dataset were first analysed separately to check for incongruence. The strict consensus trees of the non-parametric bootstrap analyses were compared by eye to identify conflicting nodes supported by at least 70% (Mason-Gamer and Kellog 1996). The trees gave no evidence of incongruence. Hence the datasets were combined.

jModeltest 0.1 (Posada 2008) was used to select models of evolution for maximum likelihood (ML) analyses of the three molecular markers. A TVM + Γ model for the *rbcL*-partition and GTR + I + Γ models for the *trn*L-F partition and the nrITS partition were implemented in the program GARLI version 2.0 (Zwickl, 2006). Subsequently the datasets were combined and ML trees were generated. All GARLI analyses were performed with the default settings and several times repeated. The default setting of GARLI was also employed to calculate bootstrap values for ML analyses based on 200 bootstrap replicates.

Distribution of ocelli:—Ocelli are modified leaf cells containing only a single large oil body (Suire 1999). Their distribution was reconstructed using MP criteria as implemented in Mesquite ver. 2.72 (Maddison and Maddion, 2004) based on the ML topology. Data on the presence or absence of ocelli were obtained from the literature, in addition to our own observations.

Results

Of the 2,064 investigated sequence characters, 758 were parsimonious informative and 190 were unique to a single specimen (see Table 2 for character state distributions within the single markers). The MP analysis yielded five equally parsimonious trees with a length of 5,487 steps, a consistency index (CI) of 0.30 and a retention index (RI) of 0.66. The strict consensus is depicted in Figure 1. Representatives of *Harpalejeunea*, *Lejeunea* and *Microlejeunea* ("*Lejeunea* complex") formed a polytomous lineage with a BPV of 100. A *Harpalejeunea* clade with the species *H. grandistipula* Schuster (1999: 290), *H. grandis* Grolle & Reiner-Drehwald (1999: 32), *H. marginalis* (Hooker & Taylor

1845: 91) Stephani (1913a: 271) and *H. molleri* (Stephani 1887: 3) Grolle (1989: 89) achieved a BPV of 100. Harpalejeunea filicuspis, H. fischeri (Tixier 1995: 29), H. latitans (Hooker & Taylor 1844: 399) Grolle (1980: 239) and Pluvianthus squarrosus (Stephani 1896: 130) Schuster & Schäfer-Verwimp in Schuster (1994: 213) were nested in a clade with several species of *Microlejeunea* including the generitype *M. africana* Stephani (1888: 61). This clade had a BPV of 95. Multiple accessions of Harpalejeunea filicuspis, H. fischeri, Drepanolejeunea anoplantha (Spruce 1884: 189) Stephani (1913b: 325), D. vandenberghenii Buchbender & Fischer (2004: 273), D. vesiculosa (Mitten 1861: 116) Stephani (1913b: 356) and *Pluvianthus squarrosus* formed monophyletic lineages. Representatives of *Microlejeunea africana* from Principe Island and Madagascar were placed in separate clades. Drepanolejeunea was monophyletic with a BPV of 56. It consisted of two main lineages, each with a BPV of 100. Drepanolejeunea was placed in a clade with Cololejeunea (Spruce 1884: 291) Schiffner (1893: 121), Colura (Dumortier 1831: 32) Dumortier (1835: 12), Diplasiolejeunea (Spruce 1884: 301) Schiffner (1893: 121), Macrocolura Schuster (1994: 233), Myriocoleopsis Schiffner (1944: 234), and Siphonolejeunea Herzog in Skottsberg (1942: 744).

The ML tree (Figure 2, In = -29005,9392) resembled the MP strict consensus tree. The *Harpalejeunea* clade was placed sister to the clade with *Microlejeunea*, *Pluvianthus* and several *Harpalejeunea* species. This sister relationship had a BPV of 66. The *Cololejeunea-Colura-Diplasiolejeunea-Drepanolejeunea-Macrocolura-Myriocoleopsis-Siphonolejeunea* clade achieved a BPV of 83. In our reconstruction ocelli evolved twice in Lejeuneeae and were lost twice in the main "ocelli clade" with a BPV of 99. MP character reconstruction suggested the occurrence of ocelli as a putative apomorphy of derived Lejeuneeae and a loss of this character in the clade comprising *Lejeunea* s.str.

Discussion and taxonomic treatment

Circumscription of genera:— Arguably the *Lejeunea* complex belongs to the most difficult groups of liverworts in terms of genus circumscription. As a consequence of Spruce's (1884) wide genus concept, numerous heterogeneous elements were placed in *Lejeunea*, and classified into 39 subgenera (Spruce 1884). Most of these subgenera were elevated to genus rank by Schiffner (1893). Later authors established additional

genera that often included only one or a few species, e.g., Amblyolejeunea Jovet-Ast (1948: 24), Bromeliophila Schuster (1994: 226), Dactylolejeunea Schuster (1971: 341), and Metalejeunea Grolle (1995: 17). Many of these genera were shown to nest within larger genera, and were treated as synonyms (Wilson et al. 2007, Ye & Zhu 2010, Heinrichs et al. 2012b). Recently, a considerable number of these genera were transferred to Lejeunea (Heinrichs et al. 2012a). These changes resulted in a rather heteromorphic genus Lejeunea including species with different size, leaf and underleaf shape, and different perianth forms (e.g., Reiner-Drehwald & Goda 2000, Ilkiu-Borges 2005, Reiner-Drehwald 2005, Reiner-Drehwald & Schäfer-Verwimp 2008). With a single exception, these species lack ocelli (Reiner-Drehwald & Ilkiu-Borges 2007). In contrast, the Harpalejeunea-Microlejeunea-Pluvianthus clade consistently possesses ocelli (Grolle 1995, Schuster & Schäfer-Verwimp 1995, Grolle & Reiner-Drehwald 1999). Harpalejeunea is characterized by leaves with basal or suprabasal ocelli, diverging underleaf lobes with blunt, obtuse to rounded apices, and lejeuneoid gynoecial innovations. We already sequenced about 60 accessions of Harpalejeunea which fall into the Harpalejeunea clade of Figures 1 and 2, however, as a consequence of the unclear species taxonomy (Grolle & Reiner-Drehwald 1999) we included only a few of our *Harpalejeunea* accessions in the present study. Species delimitation and phylogeny of Harpalejeunea will be addressed in separate studies.

A few Harpalejeunea species, namely H. filicuspis, H. fischeri, and H. latitans were resolved in a clade with several species of Microlejeunea including the generitype M. africana. These species lack the typical Harpalejeunea underleaves; instead they possess underleaves with forward directed lobes (e.g., Mizutani 1973, Figure IV: 12-13; Grolle 1980, Figure 2: f-i; Buchbender & Fischer 2004, Figures 6 and 7). Microlejeunea resembles Harpalejeunea in many aspects but has the above type of underleaves (Grolle & Reiner-Drehwald 1999). Hence a transfer of the above three species of Harpalejeunea to Microlejeunea is justified both by molecular and morphological data, and formalized below. Already Schuster (1980: 1177) doubted the systematic position of H. filicuspis and considered a placement in Drepanolejeunea, as was first proposed by Stephani (1913b: 344). Drepanolejeunea, however, has pycnolejeuneoid innovations, not the lejeuneoid ones of the Lejeunea complex (Mizutani 1973, Grolle 1980). The

difficulties in separating *Harpalejeunea filicuspis* from *Drepanolejeunea* were also evident in our DNA vouchers. All four Indonesian *Drepanolejeunea vesiculosa* accessions were initially identified as *Harpalejeunea filicuspis*.

Pluvianthus forms a derived clade within the *Microlejeunea* lineage. This genus shares with *Microlejeunea* the shape of the underleaves, the presence of three medullary cells and the tendency to produce ocelli (Schuster & Schäfer-Verwimp 1995). Otherwise it is quite different; its sole species *P. squarrosus* differs from other representatives of the *Microlejeunea* clade (Figures 1, 2) by its larger size and robust habit, and larger leaf lobes (see Schuster & Schäfer-Verwimp 1995 for a detailed morphological treatment). However, we support monophyletic genus concepts (Humphreys & Linder 2009) and treat *Pluvianthus* as a synonym of *Microlejeunea*.

Key for identification of the genera of the Lejeunea complex

1. Plants lacking ocelli	Lejeunea*
 Plants with ocelli 	2
2. Underleaves ovate, with forward-directed, blunt to acute lobes separated	d by a narrow
sinus٨	<i>Aicrolejeunea</i>
- Underleaves obtrapezoid, with diverging, blunt (obtuse to rounded) lob	es separated
by a wide sinus	larpalejeunea
*the sole representative of the genus with ocelli, Lejeunea huctumalcensis Lindenberg	3 & Gottsche in
Gottsche et al. (1847: 762) has not yet been included in a molecular phylogenetic study.	

Although our treatment leads to a morphologically somewhat unstable *Microlejeunea* concept, the genus can be separated from other genera of the *Lejeunea* complex by the shape of the underleaves and the presence of ocelli, which, however, are best seen in living or freshly collected material. At first glance, the new circumscription may be somewhat irritating, however, numerous genera of liverworts show an even broader morphological variation, e.g., *Chiloscyphus* Corda (1829: 651), *Lejeunea, Leptoscyphus* Mitten (1851: 358), *Frullania* Raddi (1818: 9) or *Plagiochila* (Dumortier 1831: 42) Dumortier (1835: 14). Our study supports a general trend towards broader genus concepts in Lejeuneaceae (Heinrichs et al. 2012a, b), which still belong to the poorly

studied liverwort families in terms of molecular investigation. Follow-up studies with a denser taxon sampling are needed to scrutinize the new genus concepts.

Distribution of ocelli:—Ocelli are widespread in Lejeuneaceae and occur also in Frullaniaceae (Gradstein et al. 2003). According to our reconstruction (Figure 2), ocelli evolved twice in Lejeuneeae. However, the position of *Pycnolejeunea* (Spruce 1884: 246) Schiffner (1893: 124) is unsecured and lacks bootstrap support. Ocelli were lost twice in the main "ocelli-clade". The pattern will likely be somewhat more complex when ocellate *Cheilolejeunea* (Spruce 1884: 251) Schiffner (1893: 124) (Bastos 2012) and *Cololejeunea* species (Zhu & So 1999) will be included in the dataset.

The presence or absence of ocelli allows for a recognition of two main clades of the *"Lejeunea* complex", *Lejeunea* (without ocelli) and *Microlejeunea* plus *Harpalejeunea* (with ocelli). He & Piippo (1999) and Gradstein et al. (2003) distinguished different types of ocelli based on their distribution in leaves and underleaves and their arrangement; those of *Harpalejeunea* are colorless and form a short row near the leaf base (Gradstein et al. 2001). The 1-3(-6) ocelli of *Microlejeunea* are usually positioned near the leaf base. *Pluvianthus* (*Microlejeunea*) *squarrosus* includes highland forms with leaves with 0-2(4) basal ocelli and forms from lower elevations having up to 16 ocelli in 2–3 rows at the leaf bases, in addition to up to 70 ocelli in the perianth (Schuster & Schäfer-Verwimp 1995). A larger sampling is necessary to evaluate whether the distribution of ocelli in *Pluvianthus squarrosus* is correlated with molecular variation.

Species classification and extensions of range:—Multiple accessions of *Pluvianthus squarrosus* and several *Drepanolejeunea* species form robust monophyletic lineages, indicating congruence of molecular and morphological species concepts (Figs 1, 2). Our study also provides evidence for a larger African range of *Drepanolejeunea vandenberghenii*, a recently described species that is so far known only from Rwanda (Buchbender & Fischer 2004). Several accessions from Madagascar, Malawi and Réunion formed a monophyletic lineage with a *D. vandenberghenii* paratype from Rwanda, and were also in good accordance with the detailed morphological description of Buchbender & Fischer (2004).

Buchbender & Fischer (2004) already pointed to morphological similarities of *D. vandenberghenii* and *D. vesiculosa*. This observation is confirmed in our study where both species form a robust sister relationship. In the present study we adopt a wide species concept for *D. vesiculosa* [incl. *D. physaefolia* (Gottsche 1882: 357) Stephani (1913b: 324); Tixier (1995)]; however, the considerable sequence variation within the *D. vesiculosa* clade may indicate that several independent biological entities are at hand.

In contrast to the situation in Drepanolejeunea, not all morphologically circumscribed *Microlejeunea*species were consistent with the relationships supported by the genotypic evidence. The Microlejeunea africana specimens from Principe Island-the type locality—and an accession from Madagascar formed independent lineages although they were morphologically very similar. The *Microlejeunea* sp. accession from Thailand was originally identified as *M. ulicina* (Taylor 1844: 115) Stephani (1890: 88), however, M. ulicina accessions from the Canary Islands were only loosely related to this accession. Morphologically cryptic or nearly cryptic speciation is a common phenomenon in liverworts (e.g., Odrzykoski & Szweykowski 1991, Wachowiak et al. 2009, Feldberg et al. 2010, Heinrichs et al. 2010, 2011, Kreier et al. 2010, Renner et al. 2011, Dong et al. 2012) and not unexpected in the morphogically strongly reduced genus *Microlejeunea*. A much denser sampling is required to arrive at a more natural classification of the genus, however, only few specimens are available which are suitable for molecular investigation. *Microlejeunea* species often grow intermingled with other bryophytes, and often only in very small cushions. On the other hand it would be worthwile to investigate intercontinentally distributed taxa such as M. ulicina for the presence of geographical clades and other morphologically cryptic lineages. It needs to be stressed that *M. africana* has already been treated as a subspecies of *M. ulicina* based on a broad morphological overlap (Vanden Berghen 1972). Grolle (1995) pointed out that the distinction between the two taxa is merely based on geographical patterns and needs clarification; however, the uniform morphology belies a considerable molecular variation.

Taxonomic treatment

Microlejeunea Stephani (1888: 61)

= Pluvianthus Schuster & Schäfer-Verwimp in Schuster (1994: 213), syn. nov.

Microlejeunea squarrosa (Steph.) Heinrichs, Schäf.-Verw., Pócs & S. Dong, comb. nov.
Basionym: Strepsilejeunea squarrosa Steph., Hedwigia 35: 130, 1896.
= Pluvianthus squarrosus (Steph.) R.M. Schust. & Schäf-Verw., J. Hattori Bot. Lab. 75: 213, 1994.

Microlejeunea filicuspis (Steph.) Heinrichs, Schäf.-Verw., Pócs & S. Dong, *comb. nov.*Basionym: *Drepanolejeunea filicuspis* Steph., Spec. Hepat. V: 344, 1913. *Harpalejeunea filicuspis* (Steph.) Mizut., J. Hattori Bot. Lab. 37: 197, 1973.

Microlejeunea fischeri (Tixier) Heinrichs, Schäf.-Verw., Pócs & S. Dong, *comb. nov.* Basionym: *Harpalejeunea fischeri* Tixier, Trop. Bryol. 11: 29, 1995.

Microlejeunea latitans (Hook. f. & Taylor) Heinrichs, Schäf.-Verw., Pócs & S. Dong, comb. nov.

Basionym: Jungermannia latitans Hook. f. & Taylor, London J. Bot. 3: 399, 1844.

= *Lejeunea latitans* (Hook. f. & Taylor) Gottsche, Lindenb. & Nees, Syn. Hepat. 345, 1845

= Drepanolejeunea latitans (Hook. f. & Taylor) Steph., Hedwigia 29: 72, 1890.

= Harpalejeunea latitans (Hook. f. & Taylor) Grolle, J. Hattori Bot. Lab. 47: 239, 1980.

Perspectives

Our study is a step forward towards a monophyletic genus concept for the *Lejeunea* complex. However, several putatively related genera such as *Bromeliophila* and *Metalejeunea* need to be included in follow-up studies. Our previous attempts to extract DNA from herbarium specimens of these genera were not successful but fresh material may allow to produce sequences of these taxa.

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft [HE 3584/2 and 4, LE 1825/4]. SD was supported by the China Scholarship Council (scholarship No. 2010697001). HS acknowledges the Senior Visiting Professorship awarded by the Chinese Academy of Sciences. We acknowledge useful comments of Matt Renner (Sidney, Australia). This is publication number 106 from the Courant Research Centre Geobiology that is funded by the German Initiative of Excellence.

References

- Ah-Peng, C. & Bardat, J. (2011) *Microlejeunea strasbergii* sp. nov. (Lejeuneaceae) from Réunion Island (Mascarenes). *The Bryologist* 114: 668–673.
- Ahonen, I., Muona, J. & Piippo, S. (2003) Inferring the phylogeny of the Lejeuneaceae (Jungermanniopsida): a first appraisal of molecular data. *The Bryologist* 106: 297–308.
- Bastos, C.J.P. (2012) Taxonomy and distribution of *Cheilolejeunea aneogyna* (Spruce)A. Evans (Lejeuneaceae, Marchantiophyta). *Acta Botanica Brasilica* 26: 709–713.
- Bischler, H., Bonner, C.E.B. & Miller, H.A. (1963) Studies in Lejeuneaceae, VI. The genus *Microlejeunea* Steph. in Central and South America. *Nova Hedwigia* 5: 359– 411.
- Bischler, H., Miller, H.E. & Bonner, C.E.B. (1962) Studies in Lejeuneaceae IV: The typification of the genus *Microlejeunea*. *Nova Hedwigia* 4: 173–187.
- Buchbender, V. & Fischer, E. (2004) Drepanolejeunea vandenberghenii (Jungermanniopsida: Lejeuneaceae), a previously overlooked new species from Rwanda including comments on *D. physaefolia* and *Harpalejeunea fischeri*. Journal of Bryology 26: 273–283.
- Corda, A.J.C. (1829) Genera Hepaticarum. *Die Gattungen der Lebermoose*. In: Opiz, P.M. (ed.), Naturalientausch 12, pp. Prague, Enders, pp. 643–655.

- Dong, S.S., Schäfer-Verwimp, A., Meinecke, P., Feldberg, K., Bombosch, A., Pócs, T., Schmidt, A.R., Reitner, J., Schneider, H. & Heinrichs, J. (2012) Tramps, narrow endemics and morphologically cryptic species in the epiphyllous liverwort *Diplasiolejeunea*. *Molecular Phylogenetics and Evolution* 65: 582–594.
- Dumortier, B.C.J. (1831) Sylloge Jungermannidearum Europae indigenarum: earum genera et species systematice complectens. Casterman, Tournay, 100 pp.
- Dumortier, B.C.J. (1835) *Recueil d'Observations sur les Jungermanniacées*. Blanquart, Tournay, 27 pp.
- Feldberg, J., Váňa, J., Long, D.G., Shaw, J., Hentschel, J., Heinrichs, J. (2010) A phylogeny of Adelanthaceae (Jungermanniales, Marchantiophyta) based on nuclear and chloroplast DNA markers, with comments on classification, cryptic speciation and biogeography. *Molecular Phylogenetics and Evolution* 55: 293–304.
- Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* 39: 783–791.
- Gottsche, C.M. (1882) Reliquiae Rutenbergianae. Lebermoose. Abhandlungen herausgegeben vom Naturwissenschaftlichen Verein zu Bremen 7: 338–365.
- Gottsche, C.M., Lindenberg, J.B.G. & Nees ab Esenbeck, C.G. (1844-1847) *Synopsis Hepaticarum*. Hamburg, Meissner, 834 pp.
- Gradstein, S.R., Churchill, S.P. & Salazar-Allen, N. (2001) Guide to the bryophytes of tropical America. *Memoirs of the New York Botanical Garden* 86: 1–577.
- Gradstein, S.R. & Pinheiro da Costa, D. (2003) The Hepaticae and Anthocerotae of Brazil. *Memoirs of the New York Botanical Garden* 87: I–XVIII, 1–318.
- Gradstein, S.R., Reiner-Drehwald, M.E. & Jost, L. (2004) The systematic position and distribution of *Myriocolea irrorata* (Lejeuneaceae), an endangered liverwort of the Ecuadorian Andes. *Journal of the Hattori Botanical Laboratory* 95: 235–248.

- Gradstein, S.R., Reiner-Drehwald, M.E. & Schneider, H. (2003) A phylogenetic analysis of the genera of Lejeuneaceae (Hepaticae). *Botanical Journal of the Linnean Society* 143: 391–410.
- Gradstein, S.R., Wilson, R., Ilkiu-Borges, A.L. & Heinrichs, J. (2006) Phylogenetic relationships and neotenic evolution of *Metzgeriopsis* (Lejeuneaceae) based on chloroplast DNA sequences and morphology. *Botanical Journal of the Linnean Society* 151: 293–308.
- Grolle, R. (1980) Über Harpalejeunea in Australasien. Journal of the Hattori Botanical Laboratory 47: 237–244.Grolle, R. (1989) A technically new lectotypification of Harpalejeunea (Hepaticae). Taxon 38: 88–90.
- Grolle, R. (1995) The Hepaticae and Anthocerotae of the East African Islands. *Bryophythorum Bibliotheca* 48: 1–178.
- Grolle, R. & Reiner-Drehwald, M.E. (1999) Review of the genus *Harpalejeunea* (Lejeuneaceae) including the description of *H. grandis*, a new species from the páramos of Colombia. *Journal of Bryology* 21: 31–45.
- Hall, T.A. (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposia Series* 41: 95–98.
- Hartmann, F.A., Wilson, R., Gradstein, S.R., Schneider, H. & Heinrichs, J. (2006)
 Testing hypotheses on species delimitations and disjunctions in the liverwort *Bryopteris* (Jungermanniopsida: Lejeuneaceae). *International Journal of Plant Sciences* 167: 1205–1214.
- He, X.L. & Piippo, S. (1999) On the taxonomic significance of ocelli characters in the hepatic family Lejeuneaceae. *Bryobrothera* 5: 93–97.
- Heinrichs, J., Dong, S., Feldberg, K., Schäfer-Verwimp, A. & Schmidt, A.R. (2012a)
 Sphaerolejeunea (Lejeuneaceae, Porellales) is a synonym of *Lejeunea*. *Phytotaxa* 69: 7–15.

- Heinrichs, J., Dong, S., Yu, Y., Schäfer-Verwimp, A., Pócs, T., Feldberg, K., Hentschel, J., Schmidt, A.R. & Schneider, H. (2012b) A 150 year old mystery solved: Transfer of the rheophytic liverwort *Myriocolea irrorata* to *Colura*. *Phytotaxa* 66: 55–64.
- Heinrichs, J., Hentschel, J., Bombosch, A., Fiebig, A., Reise, J., Edelmann, M., Kreier, H.-P., Schäfer-Verwimp, A., Caspari, S., Schmidt, A.R., Zhu, R.-L., von Konrat, M., Shaw, B. & Shaw, A.J. (2010) One species or at least eight? Delimitation and distribution of *Frullania tamarisci* (L.) Dumort. (Jungermanniopsida, Porellales) inferred from nuclear and chloroplast DNA markers. *Molecular Phylogenetics and Evolution* 56: 1105–1114.
- Heinrichs, J., Kreier, H.-P., Feldberg, K., Schmidt, A.R., Zhu, R.L., Shaw, B., Shaw, A.J.,
 Wissemann, V. (2011) Formalizing morphologically cryptic biological entities: New insights from DNA taxonomy, hybridization, and biogeography in the leafy liverwort *Porella platyphylla* (Jungermanniopsida, Porellales). *American Journal of Botany* 98: 1252–1262.
- Hepperle, D. (2004) SeqAssem©. A sequence analysis tool, contig assembler and trace data visualization tool for molecular sequences. Win32-Version. Distributed by the author via: http://www.sequentix.de.
- Herzog, T. (1938) *Sphaerolejeunea*, eine neue Gattung der Lejeuneaceae Schizostipae. *Annales Bryologici* 11: 86–89.
- Hillis, D.M. & Bull J.J. (1993) An empirical test of bootstrapping as a method for assessing the confidence in phylogenetic analysis. *Systematic Biology* 42: 182–192.
- Hooker, J.D. & Taylor, T.T. (1844) Hepaticae Antarcticae; being characters and brief descriptions of the Hepaticae discovered in the southern circumpolar regions during the voyage of H. M. discovery ships Erebus and Terror. *London Journal of Botany* 3: 366–400.
- Hooker, J.D. & Taylor, T.T. (1845) Hepaticae Antarcticae, supplementum: or specific characters, with brief descriptions, of some additional species of the Hepaticae of the

Antarctic regions, New Zealand and Tasmania, together with a few from the Atlantic islands and New Holland. *London Journal of Botany* 4: 79–97.

- Humphreys, A.M. & Linder, H.P. (2009) Concept versus data in delimitation of plant genera. *Taxon* 58: 1054–1074.Ilkiu-Borges, A.L. (2005) A taxonomic revision of *Echinocolea. Nova Hedwigia* 80: 45–71.
- Jovet-Ast, S. (1948) Hépatiques des Antilles françaises récoltées par P. et V. Allorge en 1936. *Revue Bryologique et Lichénologique* 17: 24–34.
- Konstantinova, N.A. & Vilnet, A.A. (2011) *Jubula hutchinsiae* ssp. *caucasica* subsp. nov. (Jubulaceae, Marchantiophyta) a new taxon from the Western Caucasus. *Arctoa* 20: 227–238.
- Kreier, H.-P., Feldberg, K., Mahr, F., Bombosch, A., Schmidt, A.R., Zhu, R.-L., von Konrat, M., Shaw, B., Shaw, A.J., Heinrichs, J. (2010) Phylogeny of the leafy liverwort *Ptilidium*: cryptic speciation and shared haplotypes between the Northern and Southern Hemispheres. *Molecular Phylogenetics and Evolution* 57: 1260–1267.
- Libert, M. (1820) Sur un genre noveau d'Hépatiques, *Lejeunia. Annales Generales des Sciences Physiques* 6: 372–374.Maddison, D.R. & Maddison, W.P. (2004) Mesquite, version 2. Tucson, Arizona. Available at http://mesquiteproject.org
- Mason-Gamer, R.J. & Kellogg, E.A. (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). *Systematic Biology* 45: 524–545.
- Mitten, W. (1851) Catalogue of cryptogamic plants collected by Professor W. Jameson in the vicinity of Quito. *Hooker's Journal of Botany and Kew Garden Miscellany* 3: 351–362.
- Mitten, W. (1861) Hepaticae Indiae Orientalis: an ennumeration of the Hepaticae of the East Indies. *Journal of the Proceedings of the Linnean Society, Botany* 5: 89–128.

- Mizutani, M. (1973) The genus *Harpalejeunea* from Sabah (North Borneo). *Journal of the Hattori Botanical Laboratory*37: 191–203.
- Odrzykoski, I.J. & Szweykowski, J. (1991) Genetic differentiation without concordant morphological divergence in the thallose liverwort *Conocephalum conicum*. *Plant Systematics and Evolution* 178: 135–152.
- Raddi, G. (1818) Jungermanniografia Etrusca. *Memorie i Mathematica e di Fisica della* Societa Italiana delle Scienze (Modena) 18: 14–56.
- Reiner-Drehwald, M.E. (1999) Catalogue of the genus *Lejeunea* Lib. (Hepaticae) of Latin America. *Bryophytorum Bibliotheca* 54: 1–101.Reiner-Drehwald, M.E. (2005b) On *Lejeunea rotundifolia* and *Dicladolejeunea* (Lejeuneaceae, Jungermanniopsida). *Systematic Botany* 30: 687–692.
- Reiner-Drehwald, M.E. & Goda, A. (2000) Revision of the genus Crossotolejeunea (Lejeuneaceae, Hepaticae). Journal of the Hattori Botanical Laboratory 89: 1–54.Reiner-Drehwald, M.E. & Ilkiu-Borges, A.L. (2007) Lejeunea huctumalcensis, a widely distributed Lejeuneaceae from the Neotropics, and its relation to Ceratolejeunea. The Bryologist 110: 465–474.
- Reiner-Drehwald, M.E. & Schäfer-Verwimp, A. (2008) On Inflatolejeunea, Lejeunea species with eplicate perianths and Lejeunea talamancensis sp. nov. from Costa Rica. Nova Hedwigia 87: 387–420.
- Renner, M.A.M., Brown E.A. & Wardle, G.M. (2011) The *Lejeunea tumida* group is positively polyphyletic. *Australian Systematic Botany* 24: 10–18.
- Schiffner, V. (1893) Hepaticae. In: Engler, A. & Prantl, K., Die natürlichen *Pflanzenfamilien* 1. Engelmann, Leipzig, pp. 97–141.
- Schiffner, V. (1944) *Myriocoleopsis*, eine neue Gattung der Jubuleae. *Hedwigia* 81: 234–237.

- Schuster, R.M. (1957) North American Lejeuneaceae VI. Lejeunea: Introduction and keys; subgenus Lejeunea I. Journal of the Elisha Mitchel Scientific Society 73: 122– 197.
- Schuster, R.M. (1971) Studies on Hepaticae, XLIX-LIII. New Lejeuneaceae from Dominica and Jamaica. *Bulletin of the Torrey Botanical Club* 97: 336–352.
- Schuster, R.M. (1980) *The Hepaticae and Anthocerotae of North America.* Volume 4. New York, Columbia University Press, 1344 pp.
- Schuster, R.M. (1994) Studies on Lejeuneaceae, I. Preliminary studies on new genera and subgenera of Lejeuneaceae. *Journal of the Hattori Botanical Laboratory* 75: 211–235.
- Schuster, R.M. (1999) Harpalejeunea (Spr.) Schiffn. I: Studies on a new Andean species of Harpalejeunea. Journal of the Hattori Botanical Laboratory 87: 287–294.
- Schuster, R.M. & Schäfer-Verwimp, A. (1995) On *Pluvianthus* (Lejeuneaceae: Lejeuneoideae). *Nova Hedwigia* 60: 59–72.Skottsberg, C.J.F. (1942) *The Natural History of Juan Fernandez and Easter Island 2. Botany.* Almqvist & Wiksells, Uppsala, 744 pp.
- Spruce, R.M. (1884) Hepaticae Amazonicae et Andinae. Tribus I: Jubuleae. *Transactions and Proceedings of the Botanical Society of Edinburgh* 15: 1–308.
- Stephani, F. (1887) Über einige Lebermoose Portugals. *Hedwigia* 26: 1–6.Stephani, F. (1888) Hepaticae Africanae. *Hedwigia* 27: 59–63.
- Stephani, F. (1890) Die Gattung *Lejeunea* im Herbarium Lindenberg (Fortsetzung). *Hedwigia* 29: 68–99.
- Stephani, F. (1896) Hepaticarum species novae IX. *Hedwigia* 35: 73–140.
- Stephani, F. (1913a) *Harpalejeunea*. Species Hepaticarum V, Georg & Cie, Geneva, pp. 243–273.

- Stephani, F. (1913b) *Drepanolejeunea*. Species Hepaticarum V, Georg & Cie, Geneva, pp. 317–360.
- Suire, C. (1999) A comparative, transmission-electron microscopic study on the formation of oil-bodies in liverworts. *Journal of the Hattori Botanical Laboratory* 89: 209–232.
- Swofford, D.L. (2000) PAUP*, phylogenetic analyses using parsimony (* and other methods), version 4.01b10.
- Sinauer Associates, Sunderland, Massachusetts.Taylor, T. (1844) Descriptions of *Jungermannia ulicina*, (Taylor), and of *J. lyoni*, (Taylor). *Transactions and Proceedings of the Botanical Society of Edinburgh* 1: 115–118.
- Thiers, B.M. (1997) *Lejeunea bischlerae*, a new species of *Lejeunea* subgenus *Microlejeunea* from Australia. *Cryptogamie*, *Bryologie et Lichénologie* 18: 223–226.
- Tixier, P. (1995) Résultats taxonomiques de l'éxpédition BRYOTROP au Zaire et Rwanda. 30. Bryophytes épiphylles (récoltes de E. Fischer). *Tropical Bryology* 11: 11– 76.
- Vanden Berghen, C. (1972) Hépatiques et Anthocérotées. In : Symoens, J.J. (ed.),
 Résultats schientifiques. Exploration hydrobiologique du bassin du lac Bangweolo et du Luapula 8: 1–220.
- Wachowiak, W., Bącziewicz, A., Chudzińska, E. & Buczkowska, K. (2007) Cryptic speciation in liverworts - a case study in the *Aneura pinguis* complex. *Botanical Journal of the Linnean Society* 155: 273–282.
- Wilson, R., Gradstein, S.R., Heinrichs, J., Groth, H., Ilkiu-Borges, A.L. & Hartmann, F.A. (2004) Phylogeny of Lejeuneaceae: a cladistic analysis of chloroplast gene *rbcL* sequences and morphology, with preliminary comments on the mitochondrial NAD4-2 spacer region. *Monographs in Systematic Botany from the Missouri Botanical Garden*98: 189–202.

- Wilson, R., Gradstein, S.R., Schneider, H. & Heinrichs, J. (2007) Unravelling the phylogeny of Lejeuneaceae (Jungermanniopsida): evidence for four main lineages. *Molecular Phylogenetics and Evolution* 43: 270–282.
- Ye, W. & Zhu, R.L. (2010) *Leucolejeunea*, a new synonym of *Cheilolejeunea* (Lejeuneaceae), with special reference to new combinations and nomenclature. *Journal of Bryology* 32: 279–282.
- Zhu, R.L. & So, M.L. (1999) New records of *Cololejeunea* for China and Vietnam. *Botanical Bulletin of Academia Sinica* 40: 165–171.
- Zwickl, D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. GARLI version 2.0 available online at https://code.google.com/p/garli/.

TABLE 1. Taxa used in the present study, including information about the origin of the studied material, voucher information, as well as GenBank accession numbers. New sequences in **bold** face.

Taxon	Voucher	-		
		rbcL	<i>trn</i> L-F	nrITS
<i>Acanthocoleus javanicus</i> (Steph.) Kruijt	Bali, Schäfer-Verwimp & Verwimp 20817 (GOET)	DQ983648	DQ987398	DQ987291
<i>Acrolejeunea fertilis</i> (Reinw. et al.) Schiffn.	Bali, Schäfer-Verwimp & Verwimp 17009(GOET)	AY684929	DQ987391	DQ987281
Anoplolejeunea conferta (C.F.W. Meissn. ex Spreng.) A.Evans	Ecuador, Wilson et al. 04- 08 (GOET)	DQ983653	DQ987438	DQ987335
<i>Archilejeunea fuscescens</i> (Hampe ex Lehm.) Fulf.	Costa Rica, Bernecker 97 – 53 (GOET)	DQ983655	DQ987384	DQ987267
<i>Aureolejeunea aurifera</i> R.M.Schust.	Costa Rica, Holz CR00- 696 (GOET)	AY548082	DQ238569	DQ987272
<i>Aureolejeunea fulva</i> R.M.Schust.	Brazil, Costa & Gradstein 3849 (GOET)	AY548070		DQ987269
Aureolejeunea quinquecarinata R.M.Schust.	Ecuador, Schäfer- Verwimp & Preußing 23299/A (GOET)	DQ983658	DQ987450	DQ987350
<i>Bryopteris diffusa</i> (Sw.) Nees	Bolivia, Acebey & Villavicencio 855 (GOET)	AY548085	AM237147	AM237095

<i>Ceratolejeunea cornuta</i> (Lindenb.) Steph.	Bolivia, Drehwald 4739 (GOET)	AY548088	DQ238570	DQ987257
<i>Ceratolejeunea</i> cf. <i>guianensi</i> s (Nees & Mont.) Steph.	Ecuador, Wilson et al. 04- 15 (GOET)	DQ983662	DQ987442	DQ987340
<i>Cheilolejeunea acutangula</i> (Nees) Grolle	Mexico, Gradstein & Velasquez s.n. (GOET)	DQ983664	DQ987386	DQ987270
Cheilolejeunea beyrichii	Honduras, Allen 17393	AY548091	DQ987387	DQ987271
(Lindenb.) E.Reiner	(GOET)			
<i>Cheilolejeunea clypeata</i> (Schwein.) W. Ye & R.L. Zhu	USA, Davis s.n. (GOET)	DQ983699	DQ987426	DQ987322
<i>Cheilolejeunea revoluta</i> (Herz.) Gradst. & Grolle	Costa Rica, Dauphin 1990 (GOET)	DQ983667	DQ987454	DQ987354
<i>Cheilolejeunea rigidula</i> (Mont.) R.M.Schust.	Suriname, Munoz 98-62 (GOET)	DQ983668	DQ987453	DQ987353
<i>Cheilolejeunea xanthocarpa</i> (Lehm. & Lindenb.) Malombe	Brazil, Costa & Gradstein 3839 (GOET)		DQ987470	DQ987371
Cololejeunea laevigata	New Zealand, von Konrat	DQ238563	DQ238571	DQ987349
(Mitt.) Tilden	& Herangi 503 (F)			
<i>Cololejeunea metzgeriopsis</i> (K.I.Goebel) Gradst. et. al.	Malaysia, Gradstein et al. 10436 (GOET)	DQ238567	DQ242521	DQ987319
Cololejeunea obliqua (Nees & Mont.) Schiffn.	Ecuador, Wilson et al. 04/11 (GOET)	DQ983669		DQ987337

<i>Cololejeunea peculiaris</i> (Herz.) Benedix	Malaysia, Schäfer- Verwimp & Verwimp 18861/A (GOET)	AY548095	DQ238572	DQ987280
<i>Cololejeunea vitalana</i> Tixier	Costa Rica, Schäfer- Verwimp & Holz SV/H- 0473/A (GOET)	DQ238564	DQ238573	DQ987348
<i>Colura acroloba</i> (Mont. ex. Steph.) Ast	Fiji, Pócs 03261/BK (GOET)	DQ238565	DQ238586	DQ987306
Colura cylindrica Herzog	Guadeloupe, Schäfer- Verwimp & Verwimp 22154/B (JE)	JX470969	JX470980	JX470992
<i>Colura irrorata</i> (Spruce) Heinrichs, Y. Yu, Schäf Verw. & Pócs	Ecuador, Gradstein et al. 10033 (GOET)	AY548073	DQ238584	DQ987279
<i>Colura ornithocephala</i> Herzog	Ecuador, Schäfer- Verwimp & Nebel 32854 (JE)	JX470974	JX470985	JX470997
<i>Colura tenuicorni</i> s A. Evans) Steph.	Dominican Republic, Schäfer-Verwimp & Verwimp 27039 (JE)	JX470967	JX470978	JX470990
<i>Cyclolejeunea peruviana</i> (Lehm. & Lindenb.) A. Evans	Colombia, Gradstein 8546 (GOET)	DQ983672	DQ987383	DQ987265
<i>Diplasiolejeunea cavifolia</i> Steph.	Malaysia, Schäfer- Verwimp & Verwimp	JQ729531	JQ729641	JQ729418
	19036/A (GOET)			

<i>Diplasiolejeunea pelluci da</i> (C.F.W. Meissn. ex Spreng.) Schiffner	Ecuador, Schäfer- Verwimp et al. 24134 (GOET)	JQ729500	JQ729607	JQ729383
<i>Diplasiolejeunea unidentata</i> (Lehm. & Lindenb.) Steph.	Guadeloupe, Schäfer- Verwimp & Verwimp 22500/A (GOET)	JQ729481	JQ729588	JQ729365
<i>Drepanolejeunea anoplantha</i> (Spruce) Steph.	Dominican Republic, Schäfer-Verwimp & Verwimp 27059 (JE)	KC313120	KC313159	KC313080
Drepanolejeunea anoplantha	Ecuador, Wilson et al. 04- 22 (GOET)	DQ983677		DQ987372
<i>Drepanolejeunea</i> <i>biocellata</i> A. Evans	Ecuador, Gradstein 10053 (GOET)	AY548097	DQ238578	DQ987276
<i>Drepanolejeunea</i> <i>granatensi</i> s (J.B. Jack & Steph.) Bischl.	Ecuador, Schäfer- Verwimp et al. 24383/B (JE)	KC313121	KC313160	KC313081
<i>Drepanolejeunea hamatifolia</i> (Hook.) Steph.	Azores, Schäfer-Verwimp & Verwimp 29482/A (JE)		KC313161	KC313082
<i>Drepanolejeunea inchoata</i> (C.F.W. Meissn.) Steph.	Ecuador, Gradstein 10169 (GOET)	KC313122	KC313162	KC313083
<i>Drepanolejeunea mosenii</i> (Steph.) Bischl.	Dominican Republic, Schäfer-Verwimp & Verwimp 27063 (JE)	KC313123		KC313084
Drepanolejeunea navicularis Steph.	Ecuador, Schäfer- Verwimp & Nebel 31772/A (JE)	KC313124	KC313163	KC313085

<i>Drepanolejeunea vandenberghenii</i> Buchbender & Eb. Fisch.	Madagascar, Pócs & Szabó 9778/AB (EGR)	KC313125	KC313164	KC313086
Drepanolejeunea vandenberghenii	Malawi, Pócs 9184/D (EGR)	KC313126	KC313165	KC313087
Drepanolejeunea vandenberghenii	Réunion (I), Pócs 08071/L (EGR)	KC313127	KC313166	KC313088
Drepanolejeunea vandenberghenii	Réunion (II), Pócs 08071/H (EGR)	KC313128	KC313167	KC313089
Drepanolejeunea vandenberghenii	Rwanda, Pócs 6249 (Paratype, EGR)		KC313168	KC313090
<i>Drepanolejeunea</i> <i>vesiculosa</i> (Mitt.) Steph.	Australia (I), Pócs & Streimann 99109/T (EGR)	KC313129	KC313169	KC313091
Drepanolejeunea vesiculosa	Australia (II), Pócs & Streimann 99122 (EGR)	AY302449		AY257496
Drepanolejeunea vesiculosa	Indonesia (I), Gradstein 12052 (GOET)	KC313130	KC313170	KC313092
Drepanolejeunea vesiculosa	Indonesia (II), Gradstein 10331 (GOET)	KC313131	KC313171	KC313093
Drepanolejeunea vesiculosa	Indonesia (III), Gradstein 12026 (GOET)	KC313132	KC313172	KC313094
Drepanolejeunea vesiculosa	Indonesia (IV), Gradstein 12014 (GOET)	KC313133	KC313173	KC313095
Drepanolejeunea	Madagascar, Pócs &	KC313134	KC313174	KC313096

vesiculosa	Szabó 9882/G (EGR)			
Drepanolejeunea vesiculosa	Malaysia, Gradstein et al. 10372 (GOET)	DQ983679	DQ987421	DQ987317
Echinolejeunea papillata (Mitt.) R.M.Schust.	New Zealand (I), Schäfer- Verwimp & Verwimp 14195/A (JE)	KC313135	KC313175	KC313097
Echinolejeunea papillata	New Zealand (II), Schäfer- Verwimp & Verwimp 13967 (JE)	KC313136	KC313176	KC313098
Evansiolejeunea roccatii Vanden Berghen	Rwanda, Fischer RWA- 1120 (GOET)	DQ983680	DQ987427	DQ987323
<i>Frullanoides corticalis</i> (Lehm. & Lindenb.) van Slageren	French Guiana, Hartmann 04-080 (GOET)	DQ983681	AM237196	AM237143
<i>Fulfordianthus evansii</i> (Fulford) Gradst.	Costa Rica, Dauphin s.n. (GOET)	DQ983683	AM237197	AM237144
<i>Harpalejeunea filicuspi</i> s (Steph.) Mizut.	Fiji Isls. (I), Pócs & Pócs 03306/R (EGR)	KC313137	KC313177	KC313099
Harpalejeunea filicuspis	Fiji Isls. (II), Pócs & Pócs 03304/A (EGR)	KC313138	KC313178	KC313100
Harpalejeunea filicuspis	Thailand, Pócs & Pócs 07006/A (EGR)	KC313139	KC313179	KC313101
<i>Harpalejeunea fischeri</i> Tixier	Uganda (I), Pócs & Lye 97141/T (EGR)	KC313140	KC313180	KC313102
Harpalejeunea fischeri	Uganda (II), Pócs & Lye 97142/AM (EGR)	KC313141	KC313181	KC313103

Harpalejeunea fischeri	Uganda (III), Pócs & Lye 97142/BB (EGR)	KC313142	KC313182	KC313104
Harpalejeunea fischeri	Uganda (IV), Pócs & Lye 97142/BQ (EGR)	KC313143	KC313183	KC313105
<i>Harpalejeunea grandis</i> Grolle & M. Reiner	Colombia, Cleef 6450 (Paratype, GOET)	KC313144	KC313184	KC313106
Harpalejeunea grandistipula R.M.Schust.	Ecuador, Schäfer- Verwimp et al. 24163/B (JE)	KC313145	KC313185	KC313107
<i>Harpalejeunea latitan</i> s (Hook. F. & Tayl.) Grolle	New Zealand, Schäfer- Verwimp & Verwimp 13869 (JE)	KC313146	KC313186	KC313108
<i>Harpalejeunea marginalis</i> (Hook. f & Tayl.) Steph.	Chile, Schäfer-Verwimp & Verwimp 8082 (JE)	KC313147	KC313187	KC313109
<i>Harpalejeunea molleri</i> (Hook. f. & Tayl.) Grolle	Azores, Schäfer-Verwimp & Verwimp 29334 (JE)	KC313148	KC313188	KC313110
<i>Lejeunea</i> cf. <i>asthenica</i> Spruce	Bolivia, Gradstein 9948 (GOET)	DQ983731	DQ987428	DQ987324
<i>Lejeunea cancellata</i> Nees & Mont. ex Mont.	Ecuador, Wilson et al. 04- 02 (GOET)	DQ983686	DQ987433	DQ987329
<i>Lejeunea catinulifera</i> Spruce	Ecuador, Wilson et al. 04- 01 (GOET)	DQ983687	DQ987432	DQ987328
<i>Lejeunea cavifolia</i> (Ehrh.) Lindb.	Germany, Heinrichs 3695 (GOET)	AY548102	DQ238581	DQ987259

<i>Lejeunea cerina</i> (Lehm. & Lindeb.) Gottsche, Lindenb. & Nees	Ecuador, Wilson et al. 04- 13 (GOET)	DQ983689	DQ987441	DQ987339
<i>Lejeunea drehwaldii</i> Heinrichs & Schäf-Verw.	Peru, Drehwald 10014 (JE)	HE995781	HE995782	HE995783
<i>Lejeunea flava</i> (Sw.) Nees	Brazil, Gradstein s.n. (GOET)	DQ983692	DQ987413	DQ987309
<i>Lejeunea</i> cf. <i>isocalycina</i> (Nees) Spruce	Ecuador, Wilson et al. 04- 04 (GOET)	DQ983733	DQ987435	DQ987331
<i>Lejeunea laetevirens</i> Nees & Mont.	Dominica, Schäfer- Verwimp & Verwimp 17899 (GOET)	AY548103	DQ987402	DQ987296
<i>Lejeunea lamacerina</i> (Steph.) Schiffn.	Canary Islands, Schäfer- Verwimp & Verwimp 24616 (GOET)	DQ983694		DQ987358
<i>Lejeunea mimula</i> Hürl.	Bali, Schäfer-Verwimp & Verwimp 20930 (GOET)	AY548104	DQ238580	DQ987261
<i>Lejeunea pallescens</i> Mitt.	Ecuador, Schäfer- Verwimp & Preußing 23533 (GOET)	AY548068	DQ238576	DQ987292
<i>Lejeunea paucidentata</i> (Steph.) Grolle	Dominica, Schäfer- Verwimp & Verwimp 17737 (GOET)	DQ983695	DQ987447	DQ987345
<i>Lejeunea</i> cf. <i>pterigonia</i> (Lehm. & Lindenb.) Mont.	Bolivia, Gradstein 9964 (GOET)	DQ983732	DQ987429	DQ987325
<i>Lejeunea</i> sp. l	Ecuador, Gradstein & Jost	DQ983712	DQ987416	DQ987312

10063 (GOET)

<i>Lejeunea</i> sp. II	Ecuador, Gradstein 10172 (GOET)	DQ983734	DQ987410	DQ987304
<i>Lepidolejeunea bidentula</i> (J.B. Jack & Steph.) R.M. Schust.	China, Koponen et al. 51525 (H)	AY125936	AY144476	AY125340
<i>Lepidolejeunea eluta</i> (Nees) R.M.Schust.	Bolivia, Drehwald 4833 (GOET)	DQ983696	DQ987379	DQ987257
<i>Lepidolejeunea integristipula</i> (Jack & Steph.) R.M.Schust.	Fiji, Pócs 03307/AC (GOET)	DQ983697	DQ987417	DQ987313
<i>Lopholejeunea eulopha</i> (Tayl.) Schiffn.	Australia, Pócs & Streimann 9987/H1 (GOET)	AY548067	DQ987381	DQ987262
<i>Luteolejeunea herzogii</i> (Buchloh) Piippo	Costa Rica, Schäfer- Verwimp & Holz 0294/B (GOET)	DQ983706	DQ987467	DQ987368
<i>Microlejeunea africana</i> Steph.	Madagascar, Lübenau 2 (JE)	KC313149	KC313189	KC313111
Microlejeunea africana	São Tomé and Principe (I), Shevock 34576 A (GOET)	KC313150	KC313190	KC313112
Microlejeunea africana	São Tomé and Principe (II), Shevock 34576 B (GOET)	KC313151	KC313191	KC313113
<i>Microlejeunea capillaris</i> (Gottsche) Steph.	Costa Rica, Schäfer- Verwimp & Holz SV/H-	KC313152	KC313192	KC313114

0489/B (JE)

<i>Microlejeunea colombiana</i> Bischl.	Dominican Republic, Schäfer-Verwimp & Verwimp 26614/A (JE)	KC313153	KC313193	KC313079
<i>Microlejeunea ulicina</i> (Tayl.) Steph.	Canary Isls., Schäfer- Verwimp & Verwimp 24800 (GOET)	KC313154	KC313194	KC313115
Microlejeunea ulicina	Canary Isls., Schäfer- Verwimp & Verwimp 24666 (JE)	KC313155	KC313195	KC313116
<i>Microlejeunea</i> sp.	Thailand, Schäfer- Verwimp & Verwimp 16293 (JE)	KC313156	KC313196	KC313117
<i>Macrocolura sagittistipula</i> (Spruce) R.M.Schust.	Dominica, Schäfer- Verwimp & Verwimp 18014 (GOET)	DQ983707	DQ987466	DQ987367
<i>Marchesinia robusta</i> (Mitt.) Schiffn.	Ecuador, Wilson et al. 04- 05 (GOET)	DQ983710	DQ987436	DQ987332
<i>Mastigolejeunea auriculata</i> (Wilson & W.J.Hooker) Schiffn.	Bolivia, Churchill 21275 (GOET)	AY548070	DQ987385	DQ987268
<i>Myriocoleopsis gymnocolea</i> (Steph.) M.E. Reiner & Gradst.	Ecuador, Gradstein et al. 10020 (GOET)	DQ238568	DQ238583	DQ987277
<i>Neurolejeunea breutelii</i> (Gottsche) A.Evans	Brazil, Schäfer-Verwimp & Verwimp 14740 (GOET)	DQ983714	DQ987405	DQ987299
Omphalanthus filiformis	Ecuador, Schäfer-	DQ983716	DQ987393	DQ987283

Nees	Verwimp & Preußing 23543 (GOET)			
<i>Omphalanthus ovalis</i> (Lindenb. & Gottsche) Gradst.	Ecuador, Wilson et al. 04- 07 (GOET)	DQ983717		DQ987334
<i>Physantholejeunea portoricensis</i> (Hampe & Gottsche) R.M.Schust.	Guadeloupe, Schäfer- Verwimp & Verwimp 22615 (GOET)	DQ983719	DQ987448	DQ987346
Pluvianthus squarrosus (Steph.) R.M.Schust. & SchäfVerw.	Brazil (I), Schäfer- Verwimp & Verwimp14780 (JE)	KC313157	KC313197	KC313118
Pluvianthus squarrosus	Brazil (II), Schäfer- Verwimp & Verwimp 14638 (JE)	KC313158	KC313198	KC313119
Pluvianthus squarrosus	Brazil (III), Schäfer- Verwimp & Verwimp 13376 (GOET)	DQ983720	DQ987446	DQ987344
<i>Ptychanthus striatus</i> (Lehm. & Lindenb.) Nees	Java, Gradstein 10215 (GOET)	DQ983721	DQ987406	DQ987300
<i>Pycnolejeunea densistipula</i> (Lehm. & Lindenb.) Steph.	Ecuador, Schäfer- Verwimp & Preußing 23368 (GOET)	AY548075	DQ987400	DQ987294
<i>Rectolejeunea berteroana</i> (Gottsche) A. Evans	Guadeloupe, Schäfer- Verwimp & Verwimp 22245/A (GOET)	DQ983724	DQ987444	DQ987342
Schiffneriolejeunea nymannii (Steph.)	Malaysia, Gradstein et al. 10321 (GORT)	DQ983725	DQ987424	DQ987320

Gradst. & Terken				
Siphonolejeunea elegantissima (Steph.)	Australia, Pócs & Brown 0026/AA (E)	DQ983726	DQ987452	DQ987352
Grolle				
<i>Spruceanthus thozetianus</i> (Gottsche &	Australia, Pócs 01107/M (GOET)	AM384877	DQ987460	DQ987362
F. v. Müll.) B. Thiers				
<i>Thysananthus spathulistipus</i> (Reinw. et al.) Lindenb.	Bali, Schäfer-Verwimp & Verwimp 20790 (GOET)	DQ983739	DQ987392	DQ987282
<i>Xylolejeunea crenata</i> (Nees & Mont.) XL. He & Grolle	Brazil, Schäfer-Verwimp & Verwimp 11225 (GOET)	DQ983740	DQ987443	DQ987341

TABLE 2. Distribution of constant and phylogenetically informative sites for aligned positions of the three genomic regions.

	rbcL	<i>trn</i> L-F	ITS1-5.8S-ITS2	Total
Number of sites in matrix	914	433	717	2,064
constant	634	202	280	1,116
autapomorphic	80	55	55	190
parsimony informative	200	176	382	758

FIGURE 1. Strict consensus of 5 equally parsimonious trees based on the combined nrITS- chloroplast DNA *rbc*L—*trn*L-F dataset with bootstrap percentage values \geq 50 at branches.

Appendix 4

Molecular study of *Myriocolea*: A 150-year old mystery solved: Transfer of the rheophytic endemic liverwort *Myriocolea irrorata* to *Colura*

Jochen Heinrichs, Shanshan Dong, Ying Yu, Alfons Schäfer-Verwimp, Tamás Pócs, Kathrin Feldberg, Jörn Hentschel, Alexander R. Schmidt, Harald Schneider.

Published in Phytotaxa, 2012, 66, 55-64.

Abstract

Myriocolea irrorata is an endemic rheophytic liverwort known from a few localities in the Eastern Andes of Ecuador. Morphologically it belongs to the Cololejeunea-Tuyamaella clade of Lejeuneaceae, however, due to its exclusively Radula-type branching, transversely inserted, hollow leaves, large size, and an extremely high number of clustered gynoecia it has often been regarded as an isolated element of this group. Phylogenetic analyses of a molecular dataset consisting of three markers (nuclear ribosomal ITS region, plastidic *trn*L-F region and *rbc*L gene) and 20 accessions resolved Myriocolea in one of the main clades of Colura, sister to the generitype Colura calyptrifolia. Based on the molecular topology and a reinterpretation of morphological traits, Myriocolea irrorata is transferred to Colura, as Colura irrorata. The example Myriocolea/Colura adds to growing evidence that rheophytic liverworts may develop unusual morphologies that hamper their classification using exclusively morphology. Key words: Lejeuneaceae, liverwort, Porellales, taxonomy

Introduction

In 1857, the English botanist Richard Spruce collected a previously unknown rheophytic liverwort along the Río Topo of the Eastern Andes of Ecuador. Describing it in a new genus of Lejeuneaceae, *Myriocolea* Spruce (1884: 305), he stated that "anything more alien from the aspect of a *Lejeunea* cannot well be imagined" (Spruce 1884: 307). Using a very wide genus concept for *Lejeunea* Libert (1820: 372), Spruce only accepted two genera in Lejeuneaceae, *Lejeunea* with several hundreds of species, and the monospecific *Myriocolea* with its single representative *Myriocolea irrorata* Spruce (1884: 305). This species differs from all other Lejeuneaceae by the exclusive presence of Radula-type branches, transversely inserted leaves without well delimited lobuli, presence of numerous antheridia per bract, and an extraordinary high number of clustered gynoecia (Thiers 1983, Gradstein et al. 2004). By its up to ca. 5 cm long, stiff, protruding leafy shoots it is easily recognizable in the field, however, was not redetected until 2002. It grows on twigs of shrubs occurring along the Topo and Zuñac rivers, especially on the periodically submerged riverbanks (Gradstein & Nöske 2002, Gradstein et al. 2004).

176
The systematic position of the monospecific genus *Myriocolea* has been subject to controversy. Schuster (1963a: 93) set up a new subfamily Myriocoleoideae to include Myriocolea and Cladocolea Schuster (1963a: 155), hom. illeg. [= Schusterolejeunea Grolle (1980: 105)], a taxon treated as a synonym of Lejeuneoideae by Gradstein (1994). The latter treatment was also supported by cladistic analyses of morphological character states of Lejeuneaceae (Gradstein et al. 2003) where Myriocolea was resolved in an unsupported Cololejeunea-Tuyamaella clade. This relationship was also recovered by several molecular phylogenies based on one or two molecular markers (Wilson et al. 2004: Gradstein et al. 2006). Phylogenetic analyses of a comprehensive four molecular marker set of Lejeuneaceae consistently located Myriocolea in a clade with Macrocolura Schuster (1994: 233) and Colura (Dumortier 1831: 32) Dumortier (1835: 12) (Wilson et al. 2007a). However, the lack of taxonomic sampling of these two genera hampered the discovery of the true relationships of Myriocolea. Addition of further Colura sequences to the published ones pointed to a possible close relationship of the genera Colura and Myriocolea (Yu et al., unpublished). Here we present the results of phylogenetic analyses of a dataset comprising two chloroplast genome regions and one nuclear genome region and a comprehensive taxonomic sampling of Macrocolura, Myriocolea and 15 accessions of Colura.

Materials and Methods

Taxa studied, including GenBank accession numbers and voucher details, are listed in Table 1. Besides availability of material, ingroup taxa were selected to represent the morphological variation and geographical distribution of *Colura*. Multiple accessions of several species were used to explore intraspecific genetic variation. Based on the analyses of Wilson et al. (2007a), *Cololejeunea laevigata* (Mitten 1855: 157) Schuster (1963b: 241) and *Cololejeunea vitalana* Tixier (1995: 230) were designated as outgroup taxa for phylogenetic reconstruction. The ingroup includes accessions of *Colura* and *Macrocolura*.

DNA extraction, PCR amplification and sequencing

Plant tissue was isolated from herbarium collections housed at the herbaria EGR, GOET and JE. Total genomic DNA was purified using Invisorb Spin Plant Mini Kit (Invitek, Berlin, Germany) prior to amplification. Protocols for PCR were carried out as described in previous publications: *rbcL* gene and *trnL-F* region from Gradstein et al. (2006), and nrITS1-5.8S-ITS-2 region from Hartmann et al. (2006). Bidirectional sequences were generated using a MegaBACE 1000 automated sequencing machine using DYEnamic ET Primer DNA Sequencing Reagent (Amersham Biosciences, Little Chalfont, UK). Sequencing primers were those used for PCR. Thirty six sequences were newly generated for this study and 21 sequences were downloaded from GenBank (http://www.ncbi.nlm.nih.gov/genbank/).

Phylogenetic analyses

All sequences were aligned manually in Bioedit version 7.0.5.2 (Hall 1999). Ambiguous positions were excluded from all alignments. Maximum parsimony (MP) and maximum likelihood (ML) analyses were carried out with PAUP* version 4.0b10 (Swofford 2000). MP heuristic searches were conducted with the following options implemented: heuristic search mode, 1,000 random-addition-sequence replicates, tree bisection-reconnection (TBR) branch swapping, MULTrees option on, and collapse zero-length branches off. All characters were treated as equally weighted and unordered. Non-parametric bootstrapping values (Felsenstein 1985) were generated as heuristic searches with 1,000 replicates, each with ten random-addition replicates. Bootstrap percentage values (BPV) \geq 70 were regarded as good support (Hillis & Bull 1983). The individual marker sets and the combined chloroplast DNA dataset vs. nrITS dataset were first analysed separately to check for incongruence. The strict consensus trees of the non-parametric bootstrap analyses were compared by eye to identify conflicting nodes supported by at least 70% (Mason-Gamer & Kellogg 1996). The trees gave no evidence of incongruence. Hence the datasets were combined.

jModeltest 0.1 (Posada 2008) was used to select a model of evolution for ML analyses of the combined dataset. A General Time Reversible (GTR) model (Tavaré 1986) was chosen with among-site rate heterogeneity modelled as discrete gamma distribution with four rate categories, and its estimated parameters (Γ) (Goldman 1993). The ML-Analysis was performed as heuristic search, MULTrees option on, collapse zero length branches off, and TBR branch swapping. The confidence of branching was assessed using 300 non-parametric bootstrap resamplings generated as heuristic searches.

Results

Of the 2,321 investigated molecular characters, 468 were parsimony informative and 166 autapomorphic (see Table 2 for character state distributions within the single markers). The MP analysis resulted in a single tree of 304 steps with a consistency index of 0.696 and a retention index of 0.774 (not depicted). The ML analysis likewise resulted in a single tree (Figure 1) that confirmed the MP topology. Macrocolura was placed sister to the well supported Colura-clade. Colura comprised two main clades with ML/MP bootstrap percentage values of 99 and 100 respectively. One main clade included only Neotropical accessions of Colura [Colura calyptrifolia (Hooker 1813: pl. 43) Dumortier (1835: 12), C. ornithocephala Herzog (1952a: 107), C. rhynchophora Jovet-Ast (1948: 27), C. tenuicornis (Evans 1900: 455) Stephani (1916: 942)] as well as the monospecific genus Myriocolea. The generitype of Colura, C. calyptrifolia, was placed sister to a clade with two accessions of Myriocolea. This sister relationship achieved a ML bootstrap percentage value of 100 and a MP value of 99. The second main clade of Colura separated into a robust Asian-Australasian clade comprising C. inflata Goebel (1928: 11) and C. acroloba (Stephani 1890: 97) Jovet-Ast (1953: 297) and a clade with Australasian [C. imperfecta Stephani (1916: 938)], African [C. digitalis (Mitten 1886: 325) Stephani (1916: 931)] and tropical American accessions [C. cylindrica Herzog (1952a: 106), C. tortifolia (Montagne 1843: 265) Trevisan de Saint-Léon (1877: 402)]. The African accession was placed sister to the Neotropical clade in a robust sister relationship. Multiple accessions of several morphologically circumscribed species formedrobust monophyletic lineages with bootstrap percentage values between 93 and 100.

Based on the molecular topology and adopting a monophyly approach we transfer *Myriocolea irrorata* to *Colura*:

179

Colura (Dumortier 1831: 32) Dumortier (1835: 12) = *Myriocolea* Spruce (1884: 305), *syn. nov.*

Colura irrorata (Spruce) Heinrichs, Y.Yu, Schäf.-Verw. & Pócs, comb. nov.
Basionym: Myriocolea irrorata Spruce (1884: 305).
Type:— ECUADOR, Tungurahua, Río Topo, Spruce s.n. (isotype, G).

Discussion

Classification: General trends

Morphology based classification systems often include small or even monospecific genera. However, modern broad scaled taxonomical studies tend to the acceptance of larger genera and incorporation of many small taxonomic entities, especially when molecular data are included and a monophyly approach is adopted (Humphreys & Linder 2009). Although molecular studies may lead to the division of large genera such as Jungermannia Linnaeus (1753: 1131) (Hentschel et al. 2007b), there is a general trend towards larger genus concepts. Phylogenetic analyses repeatedly demonstrated that the character states separating small genera may in fact represent autapomorphies of taxa nested in larger genera (e.g., Heinrichs et al. 2003). Small genera of liverworts that have recently been synonymized with larger genera based on phylogenetic evidence reinterpretation of morphological and character states include Rhodoplagiochila Schuster (1978: 247), Steereochila Inoue (1987: 279), Szweykowskia Gradstein & Reiner-Drehwald (1995: 33) [= Plagiochila (Dumortier 1831: 42) Dumortier (1835: 14), Heinrichs et al. 2004], Metzgeriopsis Goebel (1888: 54) [= Cololejeunea (Spruce 1884: 291) Schiffner (1893: 121), Gradstein et al. 2006], Pachyglossa Herzog & Grolle (1959: 150) [= Chiloscyphus Corda (1829: 651), Hentschel et al. 2007a] and Perssoniella Herzog (1952b: 268) [= Schistochila Dumortier (1835: 15), He & Glenny 2010]. The transfer of Myriocolea to Colura thus confirms a general trend in plant systematics.

Colura and Myriocolea

Colura is a large pantropical genus comprising about 70 species (Jovet-Ast 1953, Gradstein et al. 2001, Grolle & Zhu 2002) of which eleven species were investigated in our study. Species of *Colura* are typically recognized by their leaf morphology: the presence of lobules forming an apical sac with an aperture mechanism consisting of a valve and a hinge. This sac varies greatly in size and shape, and may function for water retention and in some species also for zoophagy (Barthlott et al. 2000). *Colura* species grow in well-illuminated sites from the lowlands to about 4,000 m above sea level, usually as epiphytes on twigs and trunks or on leaves, as epiphylls.

At first glance, the position of *Myriocolea irrorata* in the *Colura* sect. *Colura* clade is surprising. However, Thiers (1983) points out that the unique aspect of *Myriocolea irrorata* results from an exaggeration of conditions found elsewhere in the Lejeuneaceae whereas an exclusively Radula-type branching is otherwise unknown in Lejeuneaceae. However, Radula-type branches in combination with Lejeunea-type branches occur, e.g., in several species of *Lejeunea* (Schuster 1994, Reiner-Drehwald 2000a, 2005).

Morphological support for the synonymy of Myriocolea and Colura comes from the number of underleaves. Usually, Lejeuneaceae have one underleaf per leaf pair, however, a few exceptions prove the rule (Gradstein et al. 2003). The presence of one underleaf per leaf characterizes Colura, Diplasiolejeunea (Spruce 1884: 301) Schiffner (1893: 121), Macrocolura and Myriocolea, the latter being here identified as an element of Colura. Colura (Myriocolea) irrorata does not produce well-developed lobules; however, the ventral part of the hollow leaves may be interpreted as an incompletely inrolled, large lobule. Other members of Colura sect. Colura are characterized by a lobule consisting of a sac terminated by a long, conico-cylindric, elongate horn (Grolle & Zhu 2002). Colura irrorata is not the only species of Colura without a well-developed lobule. In Colura sect. Heterophyllum Jovet-Ast (1983: 213) there is also a tendency to lose the lobule, which is very much reduced or completely missing in Colura corynephora (Nees, Lindenberg & Gottsche in Meyen 1843: 474) Trevisan de Saint-Léon (1877: 402), a phenomenon that parallels the situation in Colura irrorata. This fact also raises the classification problem of Calatholejeunea Goebel (1928: 8), which generally resembles Colura by its pendular segmentation and Colura irrorata by its transversely inserted, hollow leaves with unsharply defined lobules. Calatholejeunea was morphologically compared to *Colura* by Mizutani (1984) but its molecular phylogeny has not yet been studied.

Colura irrorata is a rheophilous liverwort growing on twigs of shrubs on the periodically inundated riverbanks of the Río Topo. The rheophytic, nutrient-rich habitat may explain the untypical leaf development of *Colura irrorata* because a structure for water storage or zoophagy is not needed in such an environment. Rheophytes from different taxonomic groups exhibit a parallel development, because running waters and regular flooding shape them into flood resistant plants (Van Steenis 1981). Accordingly, Colura *irrorata* shares its long, robust stems, pinnate branching, and the presence of numerous small gametoecial branches with other rheophytic Lejeuneaceae, namely Myriocoleopsis Schiffner (1944: 234), Lejeunea subg. Neopotamolejeunea (Reiner-Drehwald 2000b: 449) Gradstein & Reiner-Drehwald (2007: 484) (Wilson et al. 2007a) and Cololejeunea stotleriana (Gradstein et al. 2011: 13). Non-rheophytic Colura species have a smaller size, grow usually attached to the substratum, have sac-like lobules, a lower number of gametoecia, and less robust stems. However, the phylogenetic distance between Colura irrorata and other members of C. sect. Colura is low (Fig. 1), indicating that the rheophytic species C. irrorata originated in rather recent times. This scenario is also supported by the derived position of *C. irrorata*. It is likely that the Ecuadorian endemic *C.* irrorata evolved from a local population of a species close to C. calyptrifolia and C. tenuicornis, and that the morphological rearrangements of the gametophyte took place in a short period of time. A rapid reorganization of gametophytical traits has also been demonstrated for some epiphytic representatives of *Plagiochila* sect. *Hylacoetes* Carl (1931: 50) (Heinrichs et al. 2003), providing some evidence that an occurrence in extreme habitats may occasionally lead to considerable changes in morphology. The molecular control procedures of such rapid rearrangements and their contribution to plant evolution are still incompletely understood (Stern 2000, Carroll 2008, Theissen 2009, Frankel et al. 2011). However, rheophytic plants appear to be an excellent group on which to study the impact of selection on the establishment of rapid growth habit changes. Research on Japanese occurrences of the terrestrial fern Osmunda japonica Thunberg (1780: 209) and the rheophytic O. lancea Thunberg (1784: 330) showed that habitat conditions may lead to dramatic changes of the leaf morphology in sister taxa

that otherwise share more or less the same genetic information (Imaichi & Kato 1992; Yatabe et al. 2009).

Species concepts and supraspecific classification of Colura

Colura species have so far been described using a morphological-typological approach. Multiple accessions of several morphologically circumscribed species form monophyletic lineages (*C. acroloba*, *C. cylindrica*, *C. imperfecta*, *C. irrorata*, *C. ornithocephala*, *C. tortifolia*, Fig. 1), indicating congruence of morphological and phylogenetic species concepts.

Grolle & Zhu (2002) provided the most recent classification of *Colura*. They split *Colura* into two subgenera and six sections, and accepted the monospecific genus *Macrocolura* based on its asymmetrically shaped, only weakly bifid underleaves with rhizoid fascicles originating from their central part. *Colura*, in contrast, has symmetrical, deeply bifid underleaves with rhizoid fascicles originating at the base of the underleaves. Earlier, *Macrocolura* was treated as *Colura* sect. *Lingua* Jovet-Ast ex Thiers (1987: 177). In our study, *Macrocolura* is placed sister to *Colura*, hence both treatments appear consistent with the recovered phylogeny. Based on the molecular topology and the morphological disparities, we tentatively accept *Macrocolura* as a genus. This taxonomic position, however, should be scrutinized by an extension of the *Colura* taxon sampling.

The classification of *Colura* into subg. *Colura* with hinged valves and subg. *Glotta* Grolle & Zhu (2002: 187) having valves without a distinct hinge (Grolle & Zhu 2002), is not confirmed in our study because *C*. subg. *Glotta* (represented in our study by *C*. sect. *Heterophyllum*) nests in *C*. subg. *Colura* (Fig. 1). In total, we included members of four out of six *Colura* sections in our sampling. Sections *Colura* (following inclusion of *Myriocolea*), *Harmophyllum* Grolle (1965: 44) and *Oidocorys* Jovet-Ast ex Grolle (1969: 140) were resolved as monophyletic entities. *Colura* sect. *Heterophyllum* is paraphyletic because *C*. sect. *Harmophyllum* nests in it. Grolle & Zhu (2002) included species with rounded valves in *Colura* sect. *Heterophyllum*, however, according to our topology this section should be split in two entities, of which the *C. imperfect* clade represents *C*. sect. *Heterophyllum* s. str. (Grolle & Zhu 2002). Our sampling, however, is too sparse to reinterpret morphological traits in *C.* sect. *Heterophyllum* s. I. The formal denomination

of the *C. acroloba-C. inflata* clade should thus await a more comprehensive study, which should also consider representatives of *C.*sect. *Gamolepis* Jovet-Ast (1983: 207) and *Glotta* Grolle & Zhu (2002: 187).

Biogeography

A phylogenetic analysis of the largely epiphyllous genus *Diplasiolejeunea* revealed a remarkably clear geographical structure with several Neotropical and Paleotropical lineages (Dong et al. 2012). A similar structure is seen in the epiphytic-epiphyllous genus *Colura*, containing Asian-Australasian, Neotropical and African lineages (Fig. 1). The occurrence of a relatively high number of *Colura* species on isolated and young oceanic islands such as Fiji (Pócs & Eggers 2007) is best explained by long-distance dispersal through propagules; however, the clear geographical pattern within the genus seems to indicate that long distance dispersal occurs only occasionally. The range of the Cenozoic genus *Colura* (Wilson et al. 2007b) is possibly the result of rare long distance dispersal, frequent short-distance dispersal, local diversification, extinction and recolonization, processes that likely shaped the ranges of numerous other genera of leafy liverworts (Heinrichs et al. 2009). A more detailed biogeographic reconstruction needs a considerable extension of the taxon sampling and inclusion of multiple accessions of species with broad ranges.

Acknowledgements

JHei and ASV thank Hugo Navarrete, Susanna León-Yánez and Santiago Yandún (Herbarium QCA, Quito) for logistic support during fieldwork in Ecuador. This study was supported by the Deutsche Forschungsgemeinschaft [grants He 3584/2, HE 3584/4, Gr 1588/9 and LE1826/4]. SD was supported by the China Scholarship Council (scholarship No. 2010697001). YY acknowledges financial support by the Chinese student council (Fellowship No.: 2010614081), HS the senior visiting professorship granted by the Chinese Academy of Sciences. This is publication number 104 from the Courant Research Centre Geobiology that is funded by the German Initiative of Excellence.

References

- Barthlott, W., Fischer, E., Frahm, J.P. & Seine, R. (2000) First experimental evidence for zoophagy in the hepatic *Colura*. *Plant Biology* 2: 93–97.
- Carl, H. (1931) Die Arttypen und die systematische Gliederung der Gattung *Plagiochila* Dum. *Annales Bryologici, supplement* 2: 1–170.
- Carroll, S.B. (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. *Cell* 134: 25–36.
- Corda, A.J.C. (1829) Genera Hepaticarum. Die Gattungen der Lebermoose. *Naturalientausch* 12: 643–655.
- Dong, S., Schäfer-Verwimp, A., Meinecke, P., Feldberg, K., Bombosch, A., Pócs, T., Schmidt, A.R., Reitner, J., Schneider, H. & Heinrichs, J. (2012) Tramps, narrow endemics and morphologically cryptic species in the epiphyllous liverwort *Diplasiolejeunea*. *Molecular Phylogenetics and Evolution* 65: 582–594.
- Dumortier, B.C.J. (1831) Sylloge Jungermannidearum Europae indigenarum: earum genera et species systematice complectens. Casterman, Tournay, 100 pp.
- Dumortier, B.C.J. (1835) *Recueil d'Observations sur les Jungermanniacées*. Blanquart, Tournay, 27 pp.
- Evans, A.W. (1900) The Hawaiian Hepaticae of the tribe Jubuloideae. *Transactions of the Connecticut Academy of Arts and Sciences* 10: 387–462.
- Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* 39: 783–791.
- Frankel, N., Erezylmaz, D.F., McGregor, A.P., Wang, S., Payre, F., Stern, D.L. (2011) Morphological evolution caused by many subtle–effect substitutions in regulatory DNA. *Nature* 474: 598–603.

- Goebel, K.I.E. (1888) Morphologische und biologische Studien I: Über epiphytische Farne und Muscineen. Annales du Jardin Botanique de Buitenzorg 7: 1–73.
- Goebel, K.I.E. (1928) Morphologische und biologische Studien XII: Malesische Lebermoose. *Annales du Jardin Botanique de Buitenzorg* 39: 1–116.
- Gradstein, S.R. (1994) Lejeuneaceae: Ptychantheae, Brachiolejeuneae. *Flora Neotropica Monograph* 62: 1–217.
- Gradstein, S.R., Churchill, S.P. & Salazar-Allen, N. (2001) Guide to the bryophytes of tropical America. *Memoirs of the New York Botanical Garden* 86: 1–577.
- Gradstein, S.R., Ilkiu-Borges, A.L. & Vanderpoorten, A. (2011) Habitat specialization triggers the evolution of unusual morphologies the case of *Cololejeunea stotleriana* sp. nov. from Ecuador. *The Bryologist* 114: 9–22.
- Gradstein, S.R. & Nöske, N. (2002) The extraordinary hepatic *Myriocolea irrorata* rediscovered. *Bryological Times* 107: 16.
- Gradstein, S.R., Reiner-Drehwald, M.E. & Jost, L. (2004) The systematic position and distribution of *Myriocolea irrorata* (Lejeuneaceae), an endangered liverwort of the Ecuadorian Andes. *Journal of the Hattori Botanical Laboratory* 95: 235–248.
- Gradstein, S.R. & Reiner-Drehwald, M.E. (1995) *Szweykowskia*, a new genus of Plagiochilaceae from tropical America. *Fragmenta Floristica et Geobotanica* 40: 31–38.
- Gradstein, S.R. & Reiner-Drehwald, M.E. (2007) The status of *Neopotamolejeunea* (Lejeuneaceae) and description of a new species from Ecuador and Southern Brazil. *Systematic Botany* 32: 487–492.
- Gradstein, S.R., Reiner-Drehwald M.E. & Schneider, H. (2003) A phylogenetic analysis of the genera of Lejeuneaceae (Hepaticae). *Botanical Journal of the Linnean Society* 143: 391–410.

- Gradstein, S.R., Wilson, R., Ilkiu-Borges, A.L. & Heinrichs, J. (2006) Phylogenetic relationships and neotenic evolution of *Metzgeriopsis* (Lejeuneaceae) based on chloroplast DNA sequences and morphology. *Botanical Journal of the Linnean Society* 151: 293–308.
- Grolle, R. (1965) Lebermoose aus Neuguinea. I. *Journal of the Hattori Botanical Laboratory* 28: 43–54.
- Grolle, R. (1969) Novae Guineae Hepaticae Schusteranae. I. *Journal of the Hattori Botanical Laboratory* 32: 140–144.
- Grolle, R. (1980) *Schusterolejeunea* Grolle nom. nov. statt *Cladocolea* Schust. 1963, non van Tieghem 1895. *Journal of Bryology* 11: 105–106.
- Grolle, R. & Zhu, R.L. (2002) On *Macrocolura* and the subdivision of *Colura* (Lejeuneaceae, Hepaticae). *Journal of the Hattori Botanical Laboratory* 92: 181–190.
- Hall, T.A. (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposia Series* 41: 95–98.
- Hartmann, F.A., Wilson, R., Gradstein, S.R., Schneider, H. & Heinrichs, J. (2006)
 Testing hypotheses on species delimitations and disjunctions in the liverwort *Bryopteris* (Jungermanniopsida: Lejeuneaceae). *International Journal of Plant Sciences* 167, 1205–1214.
- He, X. & Glenny, D. (2010) *Perssoniella* and the genera of Schistochilaceae: a new classification based on molecular phylogenies. *Australian Systematic Botany* 23: 229–238.
- Heinrichs, J., Gradstein, S.R., Groth, H. & Lindner, M. (2003) *Plagiochila cucullifolia* var. anomala var. nov. from Ecuador, with notes on discordant molecular and morphological variation in *Plagiochila*. *Plant Systematics and Evolution* 242: 205–216.

- Heinrichs, J., Hentschel, J., Feldberg, K., Bombosch, A. & Schneider, H. (2009): Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. *Journal* of Systematics and Evolution. 47: 497–508.
- Heinrichs, J., Lindner, M. & Pócs, T. (2004) nrDNA internal transcribed spacer data reveal that *Rhodoplagiochila*R.M.Schust. (Jungermanniales, Marchantiophyta) is a member of *Plagiochila* sect. *Arrectae* Carl. *Organisms Diversity and Evolution* 4: 109– 118.
- Hentschel, J., Feldberg, K., Zündorf, H.-J., Hellwig, F.H., Schneider H. & Heinrichs, J. (2007a) The systematic position of *Pachyglossa* and *Clasmatocolea* (Jungermanniopsida: Lophocoleaceae) inferred from nrDNA ITS sequences and morphology. *Taxon* 56: 1136–1142.
- Hentschel, J., Paton, J.A., Schneider, H. & Heinrichs, J. (2007b) Acceptance of *Liochlaena* Nees and *Solenostoma* Mitt., the systematic position of *Eremonotus* Pearson and notes on *Jungermannia* L. s.l. (Jungermanniidae) based on chloroplast DNA sequence data. *Plant Systematics and Evolution* 268: 147–157.
- Herzog, T. (1952a) Hepaticae Ecuadorienses a cl. D:re Gunnar Harling annis 1946-1947 lectae. Svensk Botanisk Tidskrift 46: 62–108.
- Herzog, T. (1952b) *Perssoniella* Herz. nov. gen. hepaticarum. *Arkiv för Botanik utgivet* av K. Svenska Vetenskapsakademien 2: 265–269.
- Herzog, T. & Grolle, R. (1959 ["1958"]) Was ist *Pachyglossa? Revue Bryologique et Lichénologique* 27: 147–165.
- Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing the confidence in phylogenetic analysis. *Systematic Biology* 42: 182–192.
- Hooker, W.J. (1813) British Jungermanniae: being a history and description, with colored figures, of each species of the genus, and microscopical analyses of the parts. Part 11, plates 41–44. Longman et al., London.

- Humphreys, A.M. & Linder, H.P. (2009) Concept versus data in delimitation of plant genera. *Taxon* 58: 1054–1074.
- Imaichi, R. & Kato, M. (1992) Comparative leaf development of Osmunda lancea and O. japonica (Osmundacae): Heterochronic origin of rheophytic stenophylly. The Botanical Magazine, Tokyo 105: 199–213.
- Inoue, H. (1987) *Steereochila*, a new genus of the Plagiochilaceae from the Neotropics. *Memoirs of the New York Botanical Garden* 45: 279–282.
- Jovet-Ast, S. (1948) Hépatiques des Antilles françaises récoltées par P. et V. Allorge en 1936. *Revue Bryologique et Lichénologique* 17: 24–34.

Jovet-Ast, S. (1953) Le genre Colura. Revue Bryologique et Lichénologique 22: 206-312.

- Jovet-Ast, S. (1983) *Colura* nouveaux d'origines diverses (Hépatiques, Lejeunéacées). *Cryptogamie, Bryologie Lichénologie* 4: 205–216.
- Libert, M. (1820) Sur un genre nouveau d'Hépatiques, *Lejeunia. Annales Générales des Sciences Physiques* 6: 372–374.

Linnaeus, C. (1753) Species Plantarum, ed. 1, Holmiae [Stockholm], 1200 pp.

- Mason-Gamer, R.J. & Kellogg, E.A. (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). *Systematic Biology* 45: 524–545.
- Meyen, F.J.F. (1843) Observationes Botanicas in itinere circum terram institutas. Opus posthumum. Sociorum Academiae curis suppletem. Novorum actorum Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum, v. 19, suppl. 1, 512 pp.

Mitten, W. (1855) Flora Novae Zelandiae 2: Flowerless plants. Reeve, London, 378 pp.

Mitten, W. (1886) The mosses and hepaticae collected in Central Africa by the late Right Rev. James Hannington, bishop of Mombasa, F.L.S., F.G.S., &c., with some others,

including those gathered by Mr. H. H. Johnston on Kilimanjaro. *Journal of the Linnean Society of London, Botany* 22: 298–329.

- Mizutani, M. (1984) Notes on the Lejeuneaceae 7. *Calatholejeunea paradoxa*, *C. lamii* (sp. nov.) and *Plagiolejeunea zantenii* (gen. et sp. nov.). *Journal of Hattori Botanical Laboratory* 56: 331–338.
- Montagne, C. (1843) Quatrième centurie de plantes cellulaires exotiques nouvelles, décades I-VI. Annales des Sciences Naturelles; Botanique Sér. 2 19: 238–266.
- Pócs, T. & Eggers, J. (2007) Bryophytes from the Fiji Islands, II. An account of the genus *Colura*, with the description of *C. vitiensis* sp. nov. *Polish Botanical Journal* 52: 81–92.
- Posada, D. (2008) jModelTest: Phylogenetic model averaging. *Molecular Biology and Evolution* 25: 1253–1256.
- Reiner-Drehwald, M.E. (2000a) Las Lejeuneaceae (Hepaticae) de Misiones, Argentina VI. *Lejeunea y Taxilejeunea. Tropical Bryology* 19: 81–131.
- Reiner-Drehwald, M.E. (2000b) On *Potamolejeunea* and *Neopotamolejeunea* gen. nov. (Lejeuneaceae, Hepaticae). *Nova Hedwigia* 71: 447–464
- Reiner-Drehwald, M.E. (2005) On *Lejeunea rotundifolia* and *Dicladolejeunea* (Lejeuneaceae, Jungermanniopsida). Systematic Botany 30: 687–692.
- Schiffner, V. (1893) Hepaticae. *In*: Engler, A. & Prantl, K., *Die natürlichen Pflanzenfamilien* 1. Engelmann, Leipzig, pp. 97–141.
- Schiffner, V. (1944) *Myriocoleopsis*, eine neue Gattung der Jubuleae. *Hedwigia* 81: 234–237.
- Schuster, R.M. (1963a) An annotated synopsis of the genera and subgenera of Lejeuneaceae. *Beihefte zur Nova Hedwigia* 9: 1–203.

Schuster, R.M. (1963b) Studies on antipodal Hepaticae. I. Annotated keys to the genera of antipodal Hepaticae with special reference to New Zealand and Tasmania. *Journal of the Hattori Botanical Laboratory* 26: 185–309.

Schuster, R.M. (1978) Studies on Venezuelan Hepaticae, I. Phytologia 39: 239–251.

- Schuster, R.M. (1994) Studies on Lejeuneaceae, I. Preliminary studies on new genera and subgenera of Lejeuneaceae. *Journal of the Hattori Botanical Laboratory* 75: 211–235.
- Spruce, R.M. (1884) Hepaticae Amazonicae et Andinae. Tribus I: Jubulae. *Transactions* and *Proceedings of the Botanical Society Edinburgh* 15: 1–308.
- Stephani, F. (1890) Die Gattung *Lejeunea* im Herbarium Lindenberg. *Hedwigia* 29: 68-99.

Stephani, F. (1916) Colura. Species Hepaticarum V, Georg & Cie, Geneva, pp. 929–943.

- Stern, D.L. (2000) Perspective: Evolutionary developmental biology and the problem of variation. *Evolution* 54: 1079–1091.
- Swofford, D.L. (2000) PAUP*, phylogenetic analyses using parsimony (* and other methods), version 4.01b10. Sinauer Associates, Sunderland, Massachusetts.
- Tavaré, S. (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. *Lectures on Mathematics in the Life Sciences* 17: 57–86.
- Theissen, G. (2009) Saltational evolution: hopeful monsters are here to stay. *Theory in Biosciences* 128: 43–51.
- Thiers, B.M. (1983) Branching in Lejeuneaceae II. Nipponolejeuneoideae, Tuyamaelloideae and Myriocoleoideae. *Lindbergia* 10: 4–18.
- Thiers, B.M. (1987) A preliminary account of *Colura* (Hepaticae, Lejeuneaceae) in Australia. *Brittonia* 39: 175–179.

Thunberg, C.P. (1780) Kaempferus Illustratus. Explicatio illarum plantarum quas Kaempferus in Iaponia collegit [...]. *Nova Acta Regiae Societatis Scientiarum Upsaliensis* 3: 196–209.

Thunberg, C.P. (1784) Flora Japonica. G. Müller, Leipzig, 511 pp.

- Tixier, P. (1995) Rectifications nomenclaturales typifications. *Cryptogamie, Bryologie, Lichénologie* 16: 229–230.
- Trevisan de Saint-Léon, V. (1877) Schema di una nuova classificazione delle epatiche. Memorie del Reale Istituto Lombardo di Scienze e Lettere, Serie 3, Classe di Scienze Matematiche e Naturali 4: 383–451.
- Van Steenis, C.G.G. (1981) Rheophytes of the world. Sijthoff & Noordhoff, Alphen aan den Rijn, 408 pp.
- Wilson, R., Gradstein, S.R., Heinrichs, J., Groth, H., Ilkiu-Borges, A.L. & Hartmann, F.A. (2004) Phylogeny of Lejeuneaceae: A cladistic analysis of chloroplast gene *rbcL* and morphology with preliminary comments on the mitochondrial *nad*4-2 spacer region. *Monographs in Systematic Botany from the Missouri Botanical Garden* 98: 189–202.
- Wilson, R., Gradstein, S.R., Schneider, H. & Heinrichs, J. (2007a) Unravelling the phylogeny of Lejeuneaceae (Jungermanniopsida): evidence for four main lineages. *Molecular Phylogenetics and Evolution* 43: 270–282.
- Wilson, R., Heinrichs, J., Hentschel, J., Gradstein, S.R. & Schneider, H. (2007b) Steady diversification of derived liverworts under Tertiary climatic fluctuations. *Biology Letters* 3: 566–569.
- Yatabe, Y., Tsutsumi, C., Hirayama, Y., Mori, K., Murakami, N. & Kato, M. (2009) Genetic population structure of *Osmunda japonica*, rheophilous *Osmunda lancea* and their hybrids. *Journal of Plant Research* 122: 585–595.

TABLE 1. Taxa used in the present study, including information about the origin of the studied material, voucher information, and the herbarium where the voucher is deposited, as well as GenBank accession numbers. Sequences in bold were obtained from GenBank.

Taxon	Origin	Collector and		Genbank	
		herbarium		Accession	
				number	
			rbcL	<i>trn</i> L- <i>trn</i> F	nrITS
Cololejeunea	New Zealand	von Konrat 81-503	DQ238563	DQ238571	DQ987349
<i>laevigata</i> (Mitt.)		(GOET)			
R.M. Schust.					
Cololejeunea	Costa Rica	Schäfer- Verwimp &	DQ238564	DQ238573	DQ987348
<i>vitalana</i> Tixier		Holz SV/H-			
		0473/A (GOET)			
Colura aaralaha		Dáco 02261/PK	D0000565	D0000506	D0097306
	Fiji 1515.	F 065 0320 1/ BR	DQ230303	DQ230300	DQ907300
		(GOET)			
Steph.) Jovet-					
Ast					
Colura acroloba	Malaysia	Schäfer-Verwimp &	JX470966	JX470977	JX470989
		Verwimp			
		18860/A (JE)			
Colura	Dominican	Schäfer-Verwimp &	JX470970	JX470981	JX470993
calyptrifolia	Republic	Verwimp 26843 (JE)			
(Hook.) Dumort.					
Colura cylindrica	Guadeloupe	Schäfer-Verwimp &	JX470969	JX470980	JX470992
Herzog		Verwimp 22154/B			
0		·			

		(JE)			
Colura cylindrica	Panama	Schäfer-Verwimp &	JX470973	JX470984	JX470996
		Verwimp 30741 (JE)			
Oshura distitalia				1)(170000	1)(474000
	La Reunion	Schafer-Verwimp &	-	JX470988	JX471000
(Mitt.) Steph.		Verwimp 20134 (JE)			
Colura	Fiji Isls.	Pócs 03261/BA	DQ238566	DQ238585	DQ987305
imperfecta					
Steph.		(GOET)			
Colura	Papua New	Streimann 41383/a	JX470971	JX470982	JX470994
imperfecta	Guinea	(JE)			
Colura inflata	Malaysia	Schäfer-Verwimp &	JX470968	JX470979	JX470991
K.I. Goebel		Verwimp 19010/A			
		(JE)			
Colura	Ecuador,	Schäfer-Verwimp &	JX470974	JX470985	JX470997
ornithocephala	Azuay	Nebel 32854 (JE)			
Herzog					
Colura	Ecuador,	Schäfer-Verwimp et	JX470975	JX470986	JX470998
ornithocephala	Carchi	al. 24391/A (JE)			
Coluro	Dominico		IV 470070	12470007	12/170000
Colura	Dominica	Schafer-Verwimp &	JX470976	JX470987	JX470999
rhynchophora		Verwimp 17755 (JE)			
Jovet-Ast					
Colura	Dominican	Schäfer-Verwimp &	JX470967	JX470978	JX470990
tenuicornis	Republic	Verwimp 27039 (JE)			
		, , , , , , , , , , , , , , , , , , , ,			
(A. Evans)					
Steph.					

Colura tortifolia	Ecuador	Wilson et al. 04-12	DQ983671	DQ987440	DQ987338
(Nees & Mont.)		(GOET)			
Trevis.					
Colura tortifolia	Guadeloupe	Schäfer-Verwimp & Verwimp 22441/C (JE)	JX470972	JX470983	JX470995
Macrocolura	Dominica	Schäfer-Verwimp &	DQ983707	DQ987466	DQ987367
sagittistipula		Verwimp 18014			
(Spruce) R.M.		(GOET)			
Schust.					
Myriocolea	Ecuador	Gradstein 10033	AY548072	DQ238584	DQ987279
irrorata Spruce		(GOET)			
Myriocolea	Ecuador	Heinrichs et al. 4497	-	-	JX471001
irrorata					

TABLE 2. Distribution of constant and phylogenetically informative sites for aligned positions of the three genomic regions.

	rbcL	<i>trn</i> L-F	ITS1-5.8S-ITS2	Total
Number of sites in matrix	935	431	955	2,321
constant	823	324	540	1,687
autapomorphic	42	34	90	166
parsimony informative	70	73	325	468

FIGURE 1. Single most likely tree (In= -9,559.44384) derived from a cp DNA *rbc*L-*trn*L-F – nrITS dataset. ML bootstrap values (bold) and MP bootstrap values (not bold) are indicated at branches. Two accessions of *Myriocolea irrorata* are nested in a robust subclade of *Colura*, and are placed sister to the *Colura*-generitype, *C. calyptrifolia*.

Appendix 5

Sphaerolejeunea (Lejeuneaceae, Porellales) is a synonym of Lejeunea

Jochen Heinrichs, Shanshan Dong, Kathrin Feldberg, Alfons Schäfer-Verwimp, Alexander R. Schmidt

Published in Phytotaxa, 2012, 69, 7-15.

Abstract

Phylogenetic analyses of a three marker dataset of Lejeuneaceae (chloroplast genome *rbc*L gene and *trn*L-F region, and nuclear ribosomal ITS1-5.8S-ITS-2 region) show the presence of the monospecific genus *Sphaerolejeunea* in a robust subclade of *Lejeunea*. We treat *Sphaerolejeunea* as a synonym of *Lejeunea*, and propose a new name for *Sphaerolejeunea umbilicata*, *Lejeunea drehwaldii*.

Key words: Jungermanniopsida, liverwort, Neotropics, taxonomy

Introduction

Spruce (1884) in his outstanding treatment of Lejeuneaceae accepted only two genera, *Myriocolea* Spruce (1884: 305) and *Lejeunea* Libert (1820: 372), the latter subdivided in 39 subgenera. Most of them were elevated to genus rank by Schiffner (1893), and additional genera were newly established (e.g., Piippo 1986, Schuster 1994, Reiner-Drehwald 2000), leading to the recognition of about 90 genera in Lejeuneaceae (Gradstein et al. 2003). More than sixty of them include species placed in *Lejeunea* by Spruce (Gradstein et al. 2004).

However, after an era in which numerous genera were separated from *Lejeunea*, the recent trend goes to a wider genus concept. Several genera were recently synoymized with *Lejeunea*, namely *Crossotolejeunea*(Spruce 1884: 161) Schiffner (1893: 127) and *Dactylolejeunea* Schuster (1971: 341) (Reiner-Drehwald & Goda 2000), *Amphilejeunea* Schuster (1978: 431) and *Cryptogynolejeunea* Schuster (1994: 215) (Reiner-Drehwald 2005a), *Dicladolejeunea* Schuster (1994: 220) (Reiner-Drehwald 2005b), *Echinocolea* Schuster (1963: 125) (Ilkiu-Borges 2005), *Neopotamolejeunea* Reiner-Drehwald (2000: 449) (Gradstein & Reiner-Drehwald 2007), *Inflatolejeunea* Arnell (1953: 173), *Macrolejeunea* (Spruce) Schiffner in Engler & Prantl (1893: 118) (Reiner-Drehwald & Schäfer-Verwimp 2008), and *Amblyolejeunea* Jovet-Ast (1948: 24) (Zhu & Cheng 2008).

Sphaerolejeunea Herzog (1938: 88) was set up for a single species, *S. umbilicata* Herzog (1938: 88) and based on a single specimen collected by E.P. Killip in 1922 in the

Andes of Colombia. This epiphyllous species stands out by leaf lobes bordered by several rows of hyaline cells, basally leafless gynoecial branches and perianths lacking both a beak and keels. These perianths hardly exceed the surrounding vegetative leaves (Herzog 1938) and open in an umbilicus at their dorsal side (Reiner-Drehwald & Drehwald 2002).

In 2001 U. Drehwald discovered a second locality of *Sphaerolejeunea umbilicata* in the Andes of northern Peru. The related herbarium specimen allowed for a detailed morphological investigation of the species and the proposal of a sister relationship of *Sphaerolejeunea* and *Lejeunea* (Reiner-Drehwald & Drehwald 2002).

In the framework of a molecular phylogenetic study of *Lejeunea* (Dong et al. in prep.) we sequenced three molecular markers of *Sphaerolejeunea*, and included the sequences in a large alignment of Lejeuneaceae. Our phylogenetic analyses show that *Sphaerolejeunea* forms a lineage within *Lejeunea*. Accordingly, we transfer *Sphaerolejeunea umbilicata* to *Lejeunea*, and propose a nomen novum since the taxon *Lejeunea umbilicata* (Nees 1830: 42) Nees, Lindenberg & Gottsche in Meyen (1843: 472) blocks a new combination.

Materials and methods

Taxa studied, DNA extraction, PCR amplification and sequencing

Plant tissue was isolated from a herbarium collection of *Sphaerolejeunea umbilicata* (Peru, Drehwald 10014, JE). Total genomic DNA was purified using Invisorb Spin Plant Mini Kit (Invitek, Berlin, Germany) prior to amplification. Protocols for PCR were carried out as described in previous publications: chloroplast genome *rbc*L gene and *trn*L-F region from Gradstein et al. (2006), and nuclear ribosomal ITS1-5.8S-ITS-2 region from Hartmann et al. (2006). Bidirectional sequences were generated using a MegaBACE 1000 automated sequencing machine using DYEnamic ET Primer DNA Sequencing Reagent (Amersham Biosciences, Little Chalfont, UK). Sequencing primers were those used for PCR.

First we compared the new *Sphaerolejeunea* sequences with GenBank sequences using the BLASTN program (Altschul et al. 1990). These BLAST searches pointed to close relationships of *Sphaerolejeunea* and Lejeuneeae. Accordingly we compiled a Lejeuneeae ingroup dataset based on Wilson et al. (2007) using Genbank sequences (http://www.ncbi.nlm.nih.gov/genbank/). Fourteen representatives of Brachiolejeuneeae and Ptychanthoideae were chosen as outgroup. The related sequences came also from Genbank (Table 1).

Phylogenetic analyses

All sequences were aligned manually in Bioedit version 7.0.5.2 (Hall 1999). Ambiguous positions were excluded from all alignments. Lacking parts of *rbcL*-sequences were coded as "N" (A, C, G or T), lacking parts of other markers as unknown sequence stretches. Maximum parsimony (MP) analyses were carried out with PAUP* version 4.0b10 (Swofford 2000). MP heuristic searches were conducted with the following options implemented: heuristic search mode, 500 random-addition-sequence replicates, tree bisection-reconnection (TBR) branch swapping, MULTrees option on, and collapse zero-length branches off. All characters were treated as equally weighted and unordered. Where more than one most parsimonious tree was found, trees were summarized in a strict consensus tree.

Non-parametric bootstrapping values (Felsenstein 1985) were generated as heuristic searches with 500 replicates, each with ten random-addition replicates. Bootstrap percentage values (BPV) \geq 70 were regarded as good support (Hillis and Bull 1983). The individual marker sets and the combined chloroplast DNA dataset vs nrITS dataset were first analysed separately to check for incongruence. The strict consensus trees of the non-parametric bootstrap analyses were compared by eye to identify conflicting nodes supported by at least 70% (Mason-Gamer and Kellog 1996). The trees gave no evidence of incongruence. Hence the datasets were combined.

jModeltest 0.1 (Posada 2008) was used to select models of evolution for maximum likelihood (ML) analyses of the three molecular markers. In all cases, a General Time

Reversible (GTR) model (Tavaré 1986) was chosen with proportion of invariable characters (I) and among-site rate heterogeneity modelled as discrete gamma distribution with four rate categories, and its estimated parameters (Γ) (Goldman 1993). Models for the *rbcL*-partition, the *trn*L-F partition and the nrITS partition were implemented in the program GARLI version 2.0 (Zwickl, 2006). Subsequently the datasets were combined and ML trees were generated. All GARLI analyses were performed with the default settings and several times repeated. The default setting of GARLI was also employed to calculate bootstrap values for ML analyses based on 200 bootstrap replicates.

Results

Seven hundred and thirteen of the 2086 investigated characters were parsimony informative, 251 variable but parsimony uninformative, and 1122 constant. The MP analysis resulted in 45 equally parsimonious trees with a length of 4852 steps, a consistency index (CI) of 0.34 and a retention index (RI) of 0.58. The strict consensus tree is depicted in Figure 1. Most deep nodes did not get BPVs. A derived clade with *Harpalejeunea grandistipula* Schuster (1999: 290), *Pluvianthus squarrosus* (Stephani 1896: 130) Schuster & Schäfer-Verwimp in Schuster (1994: 213) and 15 representatives of *Lejeunea* had a BPV of 100, the *Lejeunea* clade a BPV of 81. *Spaerolejeunea umbilicata* was nested in a robust subclade of *Lejeunea* that achieved a BPV of 100.

The Garli analysis resulted in a ML topology (In=-24516.7446, Figure 2) that resembles the MP strict consensus tree. Again *Sphaerolejeunea* is nested in a derived subclade of *Lejeunea* with a BPV of 100.

Discussion and taxonomic treatment

Reiner-Drehwald and Drehwald (2002) in their detailed morphological treatment of *Sphaerolejeunea* listed numerous analogies with *Lejeunea* including the presence of shoots with a hyalodermis, two cells wide ventral merophytes, proximal hyaline papillae, lejeuneoid innovations, inflated perianths without keels, capsule wall apices with a quadrate cell in the outer layer, and "butterfly-shaped" cell structures in the basal half of

the capsule walls. The above authors however pointed out that *Sphaerolejeunea* differs from *Lejeuna*by the development of a second lobule tooth, leaves bordered by hyaline cells [but also present in *Neopotamolejeunea*, another synonym of *Lejeunea* (Reiner-Drehwald 1999, Gradstein & Reiner-Drehwald 2007)], beakless perianths being umbilicate on the dorsal side and valves with five marginal elaters lacking thickenings. Taking into account the morphological similarities Reiner-Drehwald & Drehwald (2002) suggested that *Sphaerolejeunea* may represent the sister group of *Lejeunea*. However, our phylogenies (Figures 1, 2) indicate that *Sphaerolejeunea* is nested in *Lejeunea* and that its morphological peculiarities represent autapomorphies of a *Lejeunea* species rather than of its sister lineage.

We therefore lower Sphaerolejeunea to a synonym of Lejeunea:

Lejeunea Libert (1820: 372)

= Sphaerolejeunea Herzog (1938: 88), syn. nov.

The taxon *Lejeunea umbilicata* (Nees 1830: 42) Nees, Lindenberg & Gottsche in Meyen (1843: 472) blocks a transfer of *Sphaerolejeunea umbilicata* to *Lejeunea*. Accordingly, we propose a new name, as follows:

Lejeunea drehwaldii Heinrichs & Schäf.-Verw., **nom. nov.** Replaced name:-*Sphaerolejeunea umbilicata*Herzog, *Annales Bryologici* 11: 88, 1938 (Herzog 1938). Holotype:-COLOMBIA, Cauca, Micay Valley, 1400–1800 m, 1922, Killip 7750 p.p. (JE). Blocking name:-*Lejeunea umbilicata* (Nees) Nees, Lindenberg & Gottsche in Meyen 472, 1843 (Meyen 1843).

Etymology: We dedicate the new name to the bryologist and lichenologist Uwe Drehwald, Göttingen, who collected the DNA voucher of *Sphaerolejeunea* on which our study was based.

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft [HE 3584/4]. SD was supported by the China Scholarship Council (scholarship No. 2010697001). This is

publication number 105 from the Courant Research Centre Geobiology that is funded by the German Initiative of Excellence.

References

- Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. *Journal of Molecular Biology* 215: 403–410.
- Arnell, S. (1953) Hepaticae collected in South Africa 1951. New and little known species II. *Botaniska Notiser* 106: 163–186.
- Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* 39: 783–791.
- Goldman, N. (1993) Statistical tests of models of DNA substitution. *Journal of Molecular Evolution* 36: 182–198.
- Gradstein, S.R. & Reiner-Drehwald, M.E. (2007) The status of *Neopotamolejeunea* (Lejeuneaceae) and description of a new species from Ecuador and southern Brazil. *Systematic Botany* 32: 487–492.
- Gradstein, S.R., Reiner-Drehwald, M.E. & Jost, L. (2004) The systematic position and distribution of *Myriocolea irrorata* (Lejeuneaceae), an endangered liverwort of the Ecuadorian Andes. *Journal of the Hattori Botanical Laboratory* 95: 235–248.
- Gradstein, S.R., Reiner-Drehwald M.E. & Schneider, H. (2003) A phylogenetic analysis of the genera of Lejeuneaceae (Hepaticae). *Botanical Journal of the Linnean Society* 143: 391–410.
- Gradstein, S.R., Wilson, R., Ilkiu-Borges, A.L. & Heinrichs, J. (2006) Phylogenetic relationships and neotenic evolution of *Metzgeriopsis* (Lejeuneaceae) based on chloroplast DNA sequences and morphology. *Botanical Journal of the Linnean Society* 151: 293–308.

- Hall, T.A. (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposia Series* 41: 95–98.
- Hartmann, F.A., Wilson, R., Gradstein, S.R., Schneider, H. & Heinrichs, J. (2006)
 Testing hypotheses on species delimitations and disjunctions in the liverwort *Bryopteris* (Jungermanniopsida: Lejeuneaceae). *International Journal of Plant Sciences* 167: 1205–1214.
- Herzog, T. (1938) *Sphaerolejeunea*, eine neue Gattung der Lejeuneaceae Schizostipae. *Annales Bryologici* 11: 86–89.
- Hillis, D.M. & Bull J.J. (1993) An empirical test of bootstrapping as a method for assessing the confidence in phylogenetic analysis. *Systematic Biology* 42: 182–192.

Ilkiu-Borges, A.L. (2005) A taxonomic revision of Echinocolea. Nova Hedwigia 80: 45-71.

- Jovet-Ast, S. (1948) Hépatiques des Antilles françaises récoltées par P. et V. Allorge en 1936. *Revue Bryologique et Lichénologique* 17: 24–34.
- Libert, M. (1820) Sur un genre noveau d'Hépatiques, *Lejeunia. Annales Generales des Sciences Physiques* 6: 372–374.
- Mason-Gamer, R.J. & Kellogg, E.A. (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45: 524– 545.
- Meyen, F.J.F. (1843) Observationes Botanicas in itinere circum terram institutas. Opus posthumum. Sociorum Academiae curis suppletem. Novorum actorum Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum, v. 19, suppl. 1, 512 pp.

Nees, C.G.D. (1830) Enumeratio Plantarum Cryptogamicarum Javae [...]. Breslau,

Sumptibus Grassii, Barthii et Soc., 86 pp.

- Piippo, S. (1986) A monograph of the genera *Lepidolejeunea* and *Luteolejeunea* (Lejeuneaceae, Hepaticae). *Acta Botanica Fennica* 132: 1–69.
- Posada, D. (2008) jModelTest: Phylogenetic model averaging. *Molecular Biology and Evolution* 25: 1253–1256.
- Reiner-Drehwald, M.E. (1999) On *Potamolejeunea polyantha* (Mont.) E.Reiner & Goda comb. nov. (Lejeuneaceae), a poorly known rheophytic liverwort from South America. *Haussknechtia Beiheft* 9: 299–306.
- Reiner-Drehwald, M.E. (2000) On *Potamolejeunea* and *Neopotamolejeunea* gen. nov. (Lejeuneaceae, Hepaticae). *Nova Hedwigia* 71: 447–464.
- Reiner-Drehwald, M.E. (2005a) On *Amphilejeunea* and *Cryptogynolejeunea*, two small genera of Lejeuneaceae, and two common Neotropical *Lejeunea* species. Nova Hedwigia 81: 395–411.
- Reiner-Drehwald, M.E. (2005b) On *Lejeunea rotundifolia* and *Dicladolejeunea* (Lejeuneaceae, Jungermanniopsida). *Systematic Botany* 30: 687–692.
- Reiner-Drehwald, M.E. & Goda, A. (2000) Revision of the genus *Crossotolejeunea* (Lejeuneaceae, Hepaticae). *Journal of the Hattori Botanical Laboratory* 89: 1–54.
- Reiner-Drehwald, M.E. & Drehwald, U. (2002) Sphaerolejeunea umbilicata (Lejeuneaceae): a critically endangered epiphyllous liverwort of the Andes. *The Bryologist* 105: 422–430.
- Reiner-Drehwald, M.E. & Schäfer-Verwimp, A. (2008) On Inflatolejeunea, Lejeunea species with eplicate perianths and Lejeunea talamancensis sp. nov. from Costa Rica. Nova Hedwigia 87: 387–420.

205

- Schiffner, V. (1893) Hepaticae. In: Engler, A. & Prantl, K., Die natürlichen *Pflanzenfamilien* 1. Engelmann, Leipzig, pp. 97–141.
- Schuster, R.M. (1963) An annotated synopsis of the genera and subgenera of Lejeuneaceae. Beihefte zur *Nova Hedwigia*9: 1–203.
- Schuster, R.M. (1971) Studies on Hepaticae, XLIX-LIII. New Lejeuneaceae from Dominica and Jamaica. *Bulletin of the Torrey Botanical Club* 97: 336–352.

Schuster, R.M. (1978) Studies on Venezuelan Hepaticae, II. *Phytologia* 39: 425–432.

- Schuster, R.M. (1994) Studies on Lejeuneaceae, I. Preliminary studies on new genera and subgenera of Lejeuneaceae. *Journal of the Hattori Botanical Laboratory* 75: 211–235.
- Schuster, R.M. (1999) *Harpalejeunea* (Spr.) Schiffn. I: Studies on a new Andean species of *Harpalejeunea*. *Journal of the Hattori Botanical Laboratory* 87: 287–294.
- Spruce, R.M. (1884) Hepaticae Amazonicae et Andinae. Tribus I: Jubuleae. *Transactions and Proceedings of the Botanical Society of Edinburgh* 15: 1–308.

Stephani, F. (1896) Hepaticarum species novae IX. *Hedwigia* 35: 73–140.

- Swofford, D.L. (2000) PAUP*, phylogenetic analyses using parsimony (* and other methods), version 4.01b10. Sinauer Associates, Sunderland, Massachusetts.
- Tavaré, S. (1986) Some probabalistic and statistical problems on the analysis of DNA sequences. *Lectures on Mathematics in the Life Sciences* 17: 57–86.
- Wilson, R., Gradstein, S.R., Schneider, H. & Heinrichs, J. (2007) Unravelling the phylogeny of Lejeuneaceae (Jungermanniopsida): evidence for four main lineages.

Molecular Phylogenetics and Evolution 43: 270–282.

- Zhu, R.L. & Cheng, X.F. (2008) The status of *Amblyolejeunea* (Lejeuneaceae) from Ecuador and Guadeloupe. *Systematic Botany* 33: 617–620.
- Zwickl, D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. GARLI version 2.0 available online at https://code.google.com/p/garli/.

TABLE 1. Taxa used in the present study, including information about the origin of the studied material, voucher information, as well as GenBank accession numbers.

Taxon	Voucher			
		rbcL	<i>trn</i> L-F	nrITS
<i>Acanthocoleus javanicus</i> (Steph.) Kruijt	Bali, Schäfer-Verwimp 20817	DQ983648	DQ987398	DQ987291
<i>Acrolejeunea fertilis</i> (Reinw. et al.) Schiffn.	Bali, Schäfer-Verwimp 17009	AY684929	DQ987391	DQ987281
<i>Anoplolejeunea conferta</i> (C.F.W. Meissn. ex Spreng.) A.Evans	Ecuador, Wilson et al. 04– 08	DQ983653	DQ987438	DQ987335
<i>Archilejeunea fuscescens</i> (Hampe ex Lehm.) Fulf.	Costa Rica, Bernecker 97– 53	DQ983655	DQ987384	DQ987267
<i>Aureolejeunea aurifera</i> R.M.Schust.	Costa Rica, Holz CR00- 696	AY548082	DQ238569	DQ987272
<i>Aureolejeunea fulva</i> R.M.Schust.	Brazil, Costa & Gradstein 3849	AY548070		DQ987269
Aureolejeunea quinquecarinata R.M.Schust.	Ecuador, Schäfer-Verwimp 23299/A	DQ983658	DQ987450	DQ987350
<i>Bryopteris diffusa</i> (Sw.) Nees	Bolivia, Acebey & Villavicencio 855	AY548085	AM237147	AM237095
<i>Ceratolejeunea cornuta</i> (Lindenb.) Steph <i>.</i>	Bolivia, Drehwald 4739	AY548088	DQ238570	DQ987257
Ceratolejeunea cf.	Ecuador, Wilson et al. 04-	DQ983662	DQ987442	DQ987340

guianensis	15			
Cheilolejeunea acutangula (Nees) Grolle	Mexico, Gradstein & Velasquez s.n.	DQ983664	DQ987386	DQ987270
Lejeunea lamacerina (Steph.) Schiffn.	Canary Islands, Schäfer- Verwimp 24616	DQ983694		DQ987358
Lejeunea mimula Hürl.	Bali, Schäfer-Verwimp 20930	AY548104	DQ238580	DQ987261
Lejeunea pallescens Mitt.	Ecuador, Schäfer-Verwimp 23533	AY548068	DQ238576	DQ987292
Lejeunea paucidentata (Steph.) Grolle	Dominica, Schäfer- Verwimp 17737	DQ983695	DQ987447	DQ987345
Lejeunea cf. pterigonia (Lehm. & Lindenb.) Mont.	Bolivia, Gradstein 9964	DQ983732	DQ987429	DQ987325
Lejeunea sp. l	Ecuador, Gradstein & Jost 10063	DQ983712	DQ987416	DQ987312
Lejeunea sp. Il	Ecuador, Gradstein 10172	DQ983734	DQ987410	DQ987304
Lepidolejeunea bidentula (J.B. Jack & Steph.) R.M. Schust.	China, Koponen et al. 51525	AY125936	AY144476	AY125340
Lepidolejeunea eluta (Nees) R.M.Schust.	Bolivia, Drehwald 4833	DQ983696	DQ987379	DQ987257
Lepidolejeunea integristipula (Jack & Steph.) R.M.Schust.	Fiji, Pócs 03307/AC	DQ983697	DQ987417	DQ987313
Lopholejeunea eulopha (Tayl.) Schiffn.	Australia, Pócs & Streimann 9987/H1	AY548067	DQ987381	DQ987262

Luteolejeunea herzogii	Costa Rica, Schäfer-	DQ983706	DQ987467	DQ987368
(Buchloh) Piippo	Verwimp & Holz 0294/B			
Macrocolura sagittistipula	Dominica, Schäfer-	DQ983707	DQ987466	DQ987367
(Spruce) R.M.Schust.	Verwimp 18014			
	· • · · · · · · · · · · · · · · · · · ·			
Marchesinia robusta (Mitt.)	Ecuador, Wilson et al. 04-	DQ983710	DQ987436	DQ987332
Schiffn.	05			
Mastigolejeunea auriculata	Bolivia, Churchill 21275	AY548070	DQ987385	DQ987268
(Wilson & W.J.Hooker)				
Schiffn.				
Myriocoleopsis gymnocolea	Ecuador, Gradstein et al.	DQ238568	DQ238583	DQ987277
(Steph.) M.E. Reiner &	10020			
Gradst.				
Neurolejeunea breutelii	Brazil, Schäfer-Verwimp	DQ983714	DQ987405	DQ987299
(Gottsche) A.Evans	14740			
Omphalanthus filiformis	Ecuador, Schäfer-Verwimp	DQ983716	DQ987393	DQ987283
Nees	23543			
Ourse had a state as a list		D 0000747		D0007004
Omphalanthus ovalis	Ecuador, Wilson et al. 04-	DQ983717		DQ987334
(Lindenb. & Gottsche)	07			
Gradst.				
Dhuaanthalaiaunaa	Quedeleure Cebëter	D0000740	D0007440	D0007040
Priysantholejeunea	Guadeloupe, Scharer-	DQ983719	DQ987448	DQ987346
portoricensis (Hampe &	Verwimp 22615			
Gottsche) R.M.Schust.				
Pluvianthus squarrosus	Brazil, Schäfer-Verwimp	DQ983720	DQ987446	DQ987344
(Steph) R M Schust &	13376		001 110	
Cabifan Vanuine	10070			
Scnater-verwimp				
Ptychanthus striatus (Lehm.	Java, Gradstein 10215	DQ983721	DQ987406	DQ987300

& Lindenb.) Nees

Pycnolejeunea densistipula (Lehm. & Lindenb.) Steph.	Ecuador, Schäfer-Verwimp 23368	AY548075	DQ987400	DQ987294
Rectolejeunea berteroana (Gottsche) A. Evans	Guadeloupe, Schäfer- Verwimp 22245/A	DQ983724	DQ987444	DQ987342
Schiffneriolejeunea nymannii (Steph.) Gradst. & Terken	Malaysia, Gradstein et al. 10321	DQ983725	DQ987424	DQ987320
Siphonolejeunea elegantissima (Steph.) Grolle	Australia, Pócs & Brown 0026/AA	DQ983726	DQ987452	DQ987352
Sphaerolejeunea umbilicata Herzog	Ecuador, Drehwald 10014	HE995781	HE995782	HE995783
Spruceanthus thozetianus (Gottsche & F. v. Müll.) B. Thiers	Australia, Pócs 01107/M	AM384877	DQ987460	DQ987362
Thysananthus spathulistipus (Reinw. et al.) Lindenb.	Bali, Schäfer-Verwimp 20790	DQ983739	DQ987392	DQ987282
Xylolejeunea crenata (Nees & Mont.) XL. He & Grolle	Brazil, Schäfer-Verwimp 11225	DQ983740	DQ987443	DQ987341

FIGURE 1. Strict consensus of 45 equally parsimonious trees based on the combined nrITS- chloroplast DNA *rbcL* – *trn*L-F dataset with bootstrap percentage values at branches. *Sphaerolejeunea* is nested in a robust subclade of *Lejeunea*.

FIGURE 2. Phylogram generated in a maximum likelihood analysis of the combined dataset. Bootstrap values are indicated at branches.

Appendix 6

The Bromeliaceae tank dweller *Bromeliophila* (Lejeuneaceae, Porellales) is a member of the *Cyclolejeunea-Prionolejeunea* clade

Jochen Heinrichs, Aleksandra Czumaj, Shanshan Dong, Armin Scheben, Alfons Schäfer-Verwimp, Denilson F. Peralta, Kathrin Feldberg, Alexander R. Schmidt, Harald Schneider

Published in Plant Systematics and Evolution 2014, 300: 63-73

Abstract

The Neotropical genus *Bromeliophila* includes two species that grow exclusively in the water-filled leaf axils of Bromeliaceae. Phylogenetic analyses of a three marker dataset (chloroplast genome *rbc*L gene and *trn*L-F region, and nuclear ribosomal ITS1-5.8S-ITS-2 region) confirmed the monophyly of *Bromeliophila* and provided evidence for a sister relationship of *Bromeliophila* and *Prionolejeunea*; this clade is in turn sister to *Cyclolejeunea*. Despite remarkable morphological similarities, *Bromeliophila* is not closely related to *Lejeunea* and its close relatives *Harpalejeunea* and *Microlejeunea*. Based on the molecular topology and morphological evidence, *Cyclolejeunea* is subdivided in subgenus *Cyclolejeunea* and the monospecific subgenera *Hyalolejeunea* and *Nephrolejeunea*. Genetic relationships among multiple accessions of the same species support currently accepted morphological–typological species concepts.

Keywords: Classification, Epiphyte, Epiphylly, Jungermanniopsida, Liverwort

Introduction

Lejeuneaceae are very abundant in the humid tropics, making up a large part of the local epiphytic, and especially epiphyllous, liverwort diversity (Wilson et al. 2007). With some 1,000 species in 68 currently accepted genera, they are the largest family of liverworts (Gradstein et al. 2003, 2013). Generic limits in Lejeuneaceae, however, often remain controversial (Schuster 1994).

Recent molecular phylogenetic studies of Lejeuneaceae have led to a considerable reduction of generic names and the establishment of morphologically variable, species-rich taxonomic units (Gradstein et al. 2006; Wilson et al. 2007; Heinrichs et al.2012a, b; Dong et al. 2013; Ye et al. 2013). This trend is rather consistent with the trend towards the acceptance of larger genera in all lineages of land plants (Humphreys and Linder 2009). A good example in this regard is *Lejeunea* Lib. whose current synonymy includes more than a dozen generic names (Heinrichs et al. 2012a; Ye et al. 2013).

Bromeliophila R.M. Schust. was set up for *Peltolejeunea natans* Steph., a Brazilian endemic, growing exclusively in the tanks of Bromeliaceae (Schuster *1994*). The lower

216

parts of the gametophytic shoots are often submerged and only the upper parts are located above the water. Schuster (1994) considered *Bromeliophila* and *Lejeunea* to be closely related, a view reiterated by Gradstein (1997), who deemed the generic status "critical". However, a second Neotropical species, *Bromeliophila helenae* Gradst., was introduced without further confirmation of the generic classification. The morphological similarities between *Bromeliophila* and *Lejeunea* are illustrated by the classification of Grolle (1985), who transferred *Peltolejeunea natans* to *Lejeunea*, renaming it to *Lejeunea natans* (Steph.) Grolle.

In the framework of a comprehensive molecular phylogenetic-taxonomic study of Lejeuneaceae (Hartmann et al. 2006; Wilson et al. 2007; Dong et al. 2012, 2013; Heinrichs et al. 2009, 2012a, b; Yu et al. 2013) we sequenced chloroplast and nuclear markers of both species of *Bromeliophila*. Here, we aim to confirm the monophyly of *Bromeliophila* and provide evidence for a close relationship of *Bromeliophila* with *Prionolejeunea* (Spruce) Schiffn. rather than with *Lejeunea*.

Materials and methods

Taxa studied, DNA extraction, PCR amplification and sequencing

Plant tissue was isolated from herbarium collections of the two known species of *Bromeliophila*, six species of *Cyclolejeunea* A. Evans, and twelve species of *Prionolejeunea* (Table 1). Total genomic DNA was purified using Invisorb Spin Plant Mini Kit (Stratec Molecular, Berlin, Germany) prior to amplification. Protocols for PCR were carried out as described in previous publications: chloroplast genome *rbc*L gene and *trn*L-F region from Gradstein et al. (*2006*), and nuclear ribosomal ITS1-5.8S-ITS2 region from Hartmann et al. (*2006*). Bidirectional sequences were generated using a MegaBACE 1,000 automated sequencing machine using DYEnamic ET Primer DNA Sequencing Reagent (Amersham Biosciences, Little Chalfont, UK). Sequencing primers were those used for PCR. Newly generated sequences were assembled and edited using SeqAssem (Hepperle *2004*).

We compared our new sequences with GenBank sequences using the BLASTN program (Altschul et al. *1990*). The BLASTN searches confirmed an affiliation of the

studied taxa to Lejeuneeae. Accordingly, we compiled a Lejeuneeae ingroup dataset based on Dong et al. (2013) and Wilson et al. (2007) using our new sequences as well as Genbank sequences (http://www.ncbi.nlm.nih.gov/genbank/). Two representatives of Ptychanthoideae were chosen as outgroup according to the topologies presented in Wilson et al. (2007). The related sequences were also obtained from Genbank (Table 1). Phylogenetic analyses of the Lejeuneeae dataset identified the closest relatives of Bromeliophila. Based on the outcome of these analyses, we assembled a second dataset consisting of accessions of Bromeliophila, Cyclolejeunea, and Prionolejeunea as the ingroup and three species of Lepidolejeunea R.M. Schust. as the outgroup. Whenever possible we included multiple accessions of species to explore infraspecific genetic variation and to examine whether our phylogeny corresponds to morphologically circumscribed entities.

Phylogenetic analyses

All sequences were aligned manually in Bioedit version 7.0.5.2 (Hall 1999). Ambiguous positions were excluded from the alignments. Missing sequence stretches were coded as unknown. Bayesian inference of phylogeny was carried out with MrBayes 3.2.1 (Huelsenbeck and Ronquist 2001) on XSEDE via the Cipres Science Gateway (http://www.phylo.org/sub_sections/portal/). Maximum parsimony (MP) analyses were carried out with PAUP* version 4.0b10 (Swofford 2000). MP heuristic searches were conducted with the following options implemented: heuristic search mode, 1,000 random-addition-sequence replicates, tree bisection-reconnection branch swapping, MULTrees option on, and collapse zero-length branches off. All characters were treated as equally weighted and unordered. Where more than one most parsimonious tree was found, they were summarized in a strict consensus tree.

Non-parametric bootstrapping values (Felsenstein *1985*) were generated as heuristic searches with 1,000 replicates, each with ten random-addition replicates. Rearrangements were restricted to one million per replicate. Bootstrap percentage values (BPV) ≥70 % were regarded as good support (Hillis and Bull *1993*). The individual marker sets and the combined chloroplast DNA dataset versus nrITS dataset were first analysed separately to check for incongruence. The strict consensus trees of

218

the non-parametric bootstrap analyses were compared by eye to identify conflicting nodes supported by at least 70 % (Mason-Gamer and Kellogg *1996*). The trees gave no evidence of incongruence. Hence, the datasets were combined.

Bayesian searches were conducted using four simultaneous Markov chains over 25 million generations (heterogeneous model) and sampling every 2,500th generation. Tracer version 1.5 (Rambaut and Drummond *2003*) was used to examine the parameters and determine the number of trees needed to reach stationarity (burn-in). Bayesian posterior probability (BPP) confidence values were generated from trees saved after this initial burn-in. Values were regarded as significant when BPP ≥ 0.95 (Larget and Simon *1999*).

Results

Lejeuneeae dataset

Of the 2,015 investigated characters, 1,321 were constant and 441 parsimony informative (see Table 2 for character state distributions within the single markers). The MP analysis yielded four equally parsimonious trees with a length of 1,940 steps, a consistency index (CI) of 0.53 and a retention index (RI) of 0.47 (Fig. 1). *Bromeliophila natans* and *Prionolejeunea limpida* Herzog formed a clade with a BPV = 100 %; this clade was placed sister to *Cyclolejeunea luteola* (Spruce) Grolle with a BPV = 100 %. The *Bromeliophila–Cyclolejeunea–Prionolejeunea* clade was found as sister to a clade made up by *Rectolejeunea berteroana* (Gottsche ex Steph.) A. Evans and *Lepidolejeunea integristipula* (J.B. Jack & Steph.) R.M. Schust. in a moderately supported sister relationship (BPV = 67 %). *Lejeunea cavifolia* (Ehrh.) Lindb., *Harpalejeunea molleri* (Steph.) Grolle and *Microlejeunea africana* Steph. were placed in an independent, polytomous clade with a BPV = 100 %.

Bromeliophila-Cyclolejeunea-Prionolejeunea dataset

Five hundred and thirty of the 2,291 investigated characters were parsimony informative, 211 unique to a single specimen and 1,550 constant (Table 2). The strict consensus tree of 156 equally parsimonious trees with a length of 1,715 steps, a

consistency index (CI) of 0.6 and a retention index (RI) of 0.84 is shown in Fig. 2. *Bromeliophila* was sister to *Prionolejeunea* with a BPV = 100 %. The *Bromeliophila* clade (BPV = 99 %) consisted of two accessions of *B. natans* from the states of São Paulo and Santa Catharina and a paratype of *B. helenae* from Dominica. The two *B. natans* accessions formed a sister relationship with a BPV of 100 %. The *Prionolejeunea* clade achieved a BPV = 99 %. One accession of *P. grata* (Gottsche) Schiffn. from Réunion was placed sister to a moderately supported Neotropical *Prionolejeunea* clade (BPV = 63 %). Multiple accessions of *P. schlimiana* (Gottsche) Steph. and *P. scaberula* (Spruce) Steph. formed monophyla. Three accessions of *P. mucronata*(Sande Lac.) Steph. (BPV = 67 %).

The Bromeliophila–Prionolejeunea clade was placed sister to the well-supported *Cyclolejeunea* clade (BPV = 100 %). Multiple accessions of all investigated *Cyclolejeunea* species formed monophyla with BPVs ranging from 85 to 100 %. *Cyclolejeunea* (subg. *Nephrolejeunea* Grolle) *luteola* was sister to the rest of the genus with a BPV = 55 %, followed by a clade with several accessions of *C*. (subg. *Hyalolejeunea* Grolle) *accedens* (Gottsche) A. Evans. *Cyclolejeunea peruviana* (Lehm. & Lindenb.) A. Evans formed a well supported sister relationship (BPV = 99 %) with a clade including accessions of *C. chitonia* (Taylor) A. Evans, *C. foliorum* (Nees) Grolle and *C. convexistipa* (Lehm. & Lindenb.) A. Evans (*C. subg. Cyclolejeunea*). A sister relationship of *C. chitonia* and *C. foliorum* has a BPV = 98 %.

The topology derived from the Bayesian analysis (Fig. 3) resembles the MP strict consensus tree (Fig. 2). In contrast to the MP topology, *Prionolejeunea aemula* (Gottsche) A. Evans from Guadeloupe is placed sister to the rest of this genus but with a BPP value <0.95. Three accessions of *P. decora* form a monophyletic lineage with a BPP = 1.00. *Cyclolejeunea luteola* was sister to the rest of this genus with a BPP = 1.00. The crown groups of most *Cyclolejeunea* species showed intra-species relationships with BPP > 0.95.

Discussion

Systematic position of Bromeliophila

Small or even monospecific genera of Lejeuneeae often prove to be nested in larger entities when molecular data are taken into account, e.g. Metzgeriopsis K.I. Goebel in Cololejeunea (Spruce) Schiffn. (Gradstein et al. 2006), Myriocolea Spruce in Colura(Dumort.) Dumort. (Heinrichs et al. 2012b) and Oryzolejeunea (R.M. Schust.) R.M. Schust. as well as Sphaerolejeunea Herzog in Lejeunea (Heinrichs et al. 2012a; Ye et al. 2013). We expected a similar result for Bromeliophila since several authors proposed a close relationship of Bromeliophila and Lejeunea based on their extensive morphological overlap (Schuster 1994; Gradstein 1997, 2013). In addition, some authors treated the generitype Peltolejeunea natans as an element of Lejeunea (Grolle 1985). Bromeliophila and Lejeunea share a soft texture, greenish or yellowish-green color, lejeuneoid gynoecial innovations, 2-cells broad ventral merophytes, bifid underleaves and noncompressed, equally 5-keeled perianths. However, despite these similarities, Bromeliophila is not closely related to Lejeunea but an element of the Prionolejeunea-Cyclolejeunea clade (Fig. 1). The close relationship of Prionolejeunea and Cyclolejeunea is morphologically well founded since both genera share 2-keeled perianths, denticulate leaf margins and vegetative branches of the Lejeunea-type (Schuster 1992). This sister relationship has furthermore been supported by DNA sequence data (Ilkiu-Borges 2005). In stark contrast, Bromeliophila has entire leaf margins and longly stipitate 5-keeled perianths of which each is double-winged (Fig. 4; Schuster 1994; Gradstein 1997). Despite these differences in leaf margin and perianth structure, nuclear as well as chloroplast sequence data recovered a sister relationship of Bromeliophila and Prionolejeunea. This relationship is consistent with the shared occurrence of lejeuneoid gynoecial innovations and lack of ocelli (Schuster 1994; Bernecker-Lücking 1998). Cyclolejeunea on the other hand has pycnolejeuneoid gynoecial innovations (Grolle 1984) and—with the exception of C. accedens—ocelli.

Classification of Cyclolejeunea and Prionolejeunea

The species lineages of *Prionolejeunea* originate from a largely polytomous backbone (Fig. 3), hence a classification into supraspecific entities is unwarranted. In contrast, the *Cyclolejeunea* crown group splits into several well-separated lineages that can be

recognized by combinations of morphological character states (Grolle 1984). *Cyclolejeunea* subg. *Nephrolejeunea* includes the only species with ovate to elongate gemmae with a median constriction, *C. luteola* (Bernecker-Lücking 1998), whereas *C.* subg. *Hyalolejeunea* includes *C. accedens*, the only species lacking ocelli. *Cyclolejeunea* subg. *Cyclolejeunea* comprises the species with ocelli and rounded gemmae (*C. chitonia*, *C. convexistipa*, *C. foliorum*, *C. peruvianum*).

Ecology of the Bromeliophila --- Cyclolejeunea -- Prionolejeunea clade

Cyclolejeunea and *Prionolejeunea* are epiphyllous or corticolous epiphytes in moist lowland and lower montane rainforests. They do not show an obvious preference to particular groups of angiosperms. In contrast, *Bromeliophila* is so far known only as an epiphyll, growing exclusively in the water-filled leaf axils of Bromeliaceae (Gradstein et al. 2001; Benavides and Callejas 2004). Due to this peculiar habitat, *Bromeliophila* stands are likely better supplied with nutrients than *Cyclolejeunea* and *Prionolejeunea* populations; however, the humid and rather nutrient-rich habitat cannot explain the deviant perianth structure of *Bromeliophila*. It is still somewhat unclear how *Bromeliophila* builds up local populations; however, the lack of propagules indicates that range formation is a result of spore dispersal. Given the unique habitat, *Bromeliophila* spores may be not only distributed through wind currents but also through animals, such as amphibians and insects, that are dependent on the watertight compartments formed by leaf bases of bromeliads. It has been shown that frogs and snakes can act as dispersal agents for limnetic invertebrates endemic to the bromelioid tanks (Lopez et al. *1999, 2005*).

Bromeliophila and *Cyclolejeunea* are Neotropical genera whereas *Prionolejeunea* occurs in tropical America and Africa (Ilkiu-Borges 2005). The limited genetic divergence among species of the *Prionolejeunea* crown group (Fig. 3) indicates that the African-American disjunctions are the result of dispersal events rather than vicariance. Similar patterns have been reported for other genera of liverworts (Heinrichs et al. 2005; Hartmann et al. 2006; Feldberg et al. 2007) and also other land plants such as ferns (Janssen et al. 2007; Rouhan et al. 2012) and bromelioids (Givnish et al. 2004).

222

Circumscription of species

Multiple accessions of morphologically-typologically circumscribed species form monophyletic lineages (Figs. 2, 3), indicating congruence of morphologically-typologically inferred and phylogenetically inferred species. In a study on *Cyclolejeunea*, Bernecker-Lücking (*1998*) recovered considerable infraspecific variation of characters of the sterile gametophyte. This variation/plasticity may reflect at least partly adaptation to environmental conditions. Several *Cyclolejeunea* species show a genetic differentiation among accessions, providing some evidence for the accumulation of genetic diversity, which may coincide with the mentioned morphological variation. An extension of the sampling is necessary to discover morphological disparity or geographical patterns within the currently accepted *Cyclolejeunea* species. Similar results have been reported for several genera of leafy liverworts such as *Diplasiolejeunea* (Spruce) Schiffn. (Dong et al. *2012*), *Frullania* Raddi (Ramaiya et al. *2010*), *Marchesinia* Gray (Heinrichs et al. *2009*), and *Porella* L. (Heinrichs et al. *2011*). Morphologically cryptic or semicryptic biologically relevant entities have been recovered in the majority of species complexes of liverworts that were studied exhaustively.

The infraspecific variation of *Bromeliophila* and *Prionolejeunea* species is comparatively low. Unfortunately, we were not able to sequence multiple accessions of *Bromeliophila helenae*. This species is considered to be morphologically variable and has a disjunct range with stands in the Lesser Antilles, Colombia and the Guyana Highland of Venezuela (Benavides and Callejas *2004*). Information on the internal molecular variation would allow for testing of the current species concept and a reconstruction of the formation of its range.

Perspectives

Our study provides evidence for a single origin of the obligate Bromeliaceae tank dwellers of Lejeuneaceae and clarifies their systematic position. The sister relationship of *Prionolejeunea* and *Bromeliophila* is proposed here for the first time, demonstrating the importance of molecular data for resolving relationships within Lejeuneaceae. Several genera with unclear taxonomic affinities need to be included in future studies, e.g. *Kymatolejeunea* Grolle and *Metalejeunea* Grolle. These studies will allow for a classification of Lejeuneaceae in monophyletic entities and a reconstruction of their morphological evolution and range formation.

Acknowledgments

We are grateful to the directors and curators of the herbaria cited in the text for the loan of specimens and the permission for destructive sampling. This study was supported by the German Research Foundation [HE 3584/2 and 3584/4]. SD was supported by the China Scholarship Council (scholarship No. 2010697001). This is publication number 118 from the Courant Research Centre Geobiology that is funded by the German Initiative of Excellence.

References

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Molec Biol 215:403–410
- Benavides JC, Callejas R (2004) The discovery of *Bromeliophila helenae* Gradst. (Marchantiophyta, Lejeuneaceae) in the northern Andes of Colombia. Cryptog Bryol 25:169–174
- Bernecker-Lücking A (1998) The genus *Cyclolejeunea* A. Evans (Hepaticae, Lejeuneaceae) in Costa Rica. Phyton 38:175–193
- Dong S, Schäfer-Verwimp A, Meinecke P, Feldberg K, Bombosch A, Pócs T, Schmidt AR, Reitner J, Schneider H, Heinrichs J (2012) Tramps, narrow endemics and morphologically cryptic species in the epiphyllous liverwort *Diplasiolejeunea*. Molec Phylogen Evol 65:582–594
- Dong S, Schäfer-Verwimp A, Pócs T, Feldberg K, Czumaj A, Schmidt AR, Schneider H, Heinrichs J (2013) Size doesn't matter—recircumscription of *Microlejeunea* based on molecular and morphological evidence. Phytotaxa 85:41–55
- Feldberg K, Hentschel J, Wilson R, Rycroft DS, Glenny D, Heinrichs J (2007) Phylogenetic biogeography of the leafy liverwort *Herbertus* (Jungermanniales,

Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution. J Biogeogr 34:688–698

- Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
- Givnish TJ, Millam KC, Evans TM, Hall JC, Pires JC, Berry PE, Sytsma KJ (2004) Ancient vicariance or recent long-distance dispersal? Inferences about phylogeny and South American-African disjunctions in Rapataceae and Bromeliaceae based on *ndh*F sequence data. Int J PI Sci 54:S35–S54
- Gradstein SR (1997) *Bromeliophila helenae*, a new species of Lejeuneaceae from the Neotropics. Cryptog Bryol Lichenol 18:217–221
- Gradstein SR (2013) A classification of Lejeuneaceae (Marchantiophyta) based on molecular and morphological evidence. Phytotaxa 100:6–20
- Gradstein SR, Churchill SP, Salazar-Allen N (2001) Guide to the bryophytes of tropical America. Mem New York Bot Gard 86:1–577
- Gradstein SR, Reiner-Drehwald ME, Schneider H (2003) A phylogenetic analysis of the genera of Lejeunecaeae (Hepaticae). Bot J Linn Soc 143:391–410
- Gradstein SR, Wilson R, Ilkiu-Borges AL, Heinrichs J (2006) Phylogenetic relationships and neotenic evolution of *Metzgeriopsis* (Lejeuneaceae) based on chloroplast DNA sequences and morphology. Bot J Linn Soc 151:293–308
- Grolle R (1984) Zur Kenntnis der Lejeuneoideae in Cuba (1): *Cyclolejeunea*. Wiss Z Friedrich-Schiller-Univ Jena, Math-Naturwiss Reihe 33:759–764
- Grolle R (1985) Miscellanea hepaticologia 231–240. J Hattori Bot Lab 58:197–202
- Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

- Hartmann FA, Wilson R, Gradstein SR, Schneider H, Heinrichs J (2006) Testing hypotheses on species delimitations and disjunctions in the liverwort *Bryopteris* (Jungermanniopsida: Lejeuneaceae). Int J PI Sci 167:1205–1214
- Heinrichs J, Lindner M, Gradstein SR, Groth H, Buchbender V, Solga A, Fischer E (2005)
 Origin and subdivision of *Plagiochila* (Jungermanniidae: Plagiochilaceae) in tropical
 Africa based on evidence from nuclear and chloroplast DNA sequences and
 morphology. Taxon 54:317–333
- Heinrichs J, Klugmann F, Hentschel J, Schneider H (2009) DNA taxonomy, cryptic speciation and diversification of the Neotropical-African liverwort, *Marchesinia brachiata* (Lejeuneaceae, Porellales). Molec Phylogen Evol 53:113–121
- Heinrichs J, Kreier HP, Feldberg K, Schmidt AR, Zhu R-L, Shaw B, Shaw AJ, Wissemann V (2011) Formalizing morphologically cryptic biological entities: new insights from DNA-taxonomy, hybridization and biogeography in the leafy liverwort *Porella platyphylla* (Jungermanniopsida, Porellales). Amer J Bot 98:1252–1262
- Heinrichs J, Dong S, Feldberg K, Schäfer-Verwimp A, Schmidt AR (2012a) *Sphaerolejeunea* (Lejeuneaceae, Porellales) is a synonym of *Lejeunea*. Phytotaxa 69:7–15
- Heinrichs J, Dong S, Yu Y, Schäfer-Verwimp A, Pócs T, Feldberg K, Hentschel J, Schmidt AR, Schneider H (2012b) A 150-year old mystery solved: Transfer of the rheophytic endemic liverwort *Myriocolea irrorata* to *Colura*. Phytotaxa 66:55–64
- Hepperle, D. (2004) SeqAssem©. A sequence analysis tool, contig assembler and trace data visualization tool for molecular sequences. Win32-Version. Distributed by the author via: http://www.sequentix.de
- Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing the confidence in phylogenetic analysis. Syst Biol 42:182–192
- Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

- Humphreys AM, Linder HP (2009) Concept versus data in delimitation of plant genera. Taxon 58:1054–1074
- Ilkiu-Borges AL (2005) A taxonomic monograph of the genus *Prionolejeunea* (Lejeuneaceae, Jungermanniopsida). Cuvillier, Göttingen
- Janssen T, Kreier HP, Schneider H (2007) Origin and diversification of African ferns with special emphasis on Polypodiaceae. Brittonia 59:159–181
- Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molec Biol Evol 16:750–759
- Lopez LCS, Oena Rodrigues PJF, Rios RI (1999) Frogs and snakes as phoretic dispersal agents of bromeliad ostracods (Limnicytherideae: *Elpidium*) and annelids (Naididae: *Dero*). Biotropica 31:705–708
- Lopez LCS, Filizola B, Deiss I, Rios RI (2005) Phoretic behavior of bromeliad annelids (*Dero*) and ostracods (*Elpidium*) using frogs and lizards as dispersal vectors. Hydrobiologia 549:15–22
- Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45:524–545
- Ramaiya M, Johnston MG, Shaw B, Heinrichs J, Hentschel J, von Konrat M, Davison PG, Shaw AJ (2010) Morphologically cryptic biological species within the liverwort, *Frullania asagrayana*. Amer J Bot 97:1707–1718
- Rambaut A, Drummond AJ (2003) Tracer v1.3, available from http://evolve.zoo.ox.ac.uk/>
- Rouhan G, Labiak PH, Randrianjohany E, Rakotondrainibe F (2012) Not so Neotropical after all: the grammitid fern genus *Leucotrichum*(Polypodiacea) is also Paleotropical, as revealed by a new species from Madagascar. Syst Bot 37:331–338

- Schuster RM (1992) The oil-bodies of the Hepaticae II. Lejeuneaceae. J Hattori Bot Lab 72:163–359
- Schuster RM (1994) Studies on Lejeuneaceae, I. Preliminary studies on new genera of Lejeuneaceae. J Hattori Bot Lab 75:211–235
- Swofford DL (2000) PAUP*, phylogenetic analyses using parsimony (* and other methods), version 4.01b10. Sinauer Associates, Sunderland, Massachusetts
- Wilson R, Gradstein SR, Schneider H, Heinrichs J (2007) Unravelling the phylogeny of Lejeuneaceae (Jungermanniopsida): evidence for four main lineages. Molec Phylogen Evol 43:270–282
- Ye W, Wei YM, Schäfer-Verwimp A, Zhu RL (2013) Phylogenetic position of Oryzolejeunea (Lejeuneaceae, Marchantiophyta): Evidence from molecular markers and morphology. J Syst Evol. doi:10.1111/j.1759-6831.2012.00238.x
- Yu Y, Pócs T, Schäfer-Verwimp A, Heinrichs J, Zhu RL, Schneider H (2013) Evidence for rampant homoplasy in the phylogeny of the epiphyllous liverwort genus *Cololejeunea* (Lejeuneaceae). Syst Bot 38(3) (in press)

Table 1

Taxa used in the present study, including information about the origin of the studied material, voucher information, as well as GenBank accession numbers

Taxon	Voucher	rbcL	<i>trn</i> L-F	nrITS
Anoplolejeunea conferta	Ecuador, Wilson et al . 04-08 DQ983653		DQ987438	DQ987335
(C.F.W. Meissn.) A. Evans	(GOET)			
Aureolejeunea	Ecuador, Schäfer-Verwimp &	DQ983658	DQ987450	DQ987350
quinquecarinata R.M.	Preußing 23299/A (GOET)			
Schust.				
Bromeliophila	Dominica, Schäfer-Verwimp &	KF039847	_	KF039810
helenaeGradst.	Verwimp17887 (GOET,			
	Paratype)			
Bromeliophila	Brazil, Santa Catarina, Gehrig	KF039849	KF039879	KF039812
natans(Steph.) R.M.	s. <i>n</i> . (GOET)			
Schust.				
Bromeliophila natans	Brazil, São Paulo, Peralta et	KF039848	_	KF039811
	al . 8112 (M)			
Ceratolejeunea	Bolivia, Drehwald 4739(GOET)	AY548088	DQ238570	DQ987257
<i>cornuta</i> (Lindenb.) Steph.				
Cheilolejeunea	Suriname, <i>Muñoz 98</i> -	DQ983668	DQ987453	DQ987353
<i>rigidula</i> (Mont.) R.M.	63(GOET)			
Schust.				
Cololejeunea peculiaris	Malaysia, Schäfer-Verwimp &	AY548095	DQ238572	DQ987280
(Herzog) Benedix	Verwimp 18861/A (GOET)			
Colura tenuicornis (A.	Dominican JX47096		JX470978	JX470990
Evans) Steph.	Republic, Schäfer-Verwimp &			
	Verwimp 27039 (JE)			
Cyclolejeunea accedens	Costa Rica, San	KF039826	KF039858	KF039788

(Gottsche) A. Evans	José, Schäfer-Verwimp &			
	Holz279/A (M)			
Cyclolejeunea accedens	Ecuador (I), Zamora-	KF039824	_	KF039786
	Chinchipe, Schäfer-Verwimp &			
	Nebel 31964/B(M)			
Cyclolejeunea accedens	Ecuador (II), Zamora-	KF039825	-	KF039787
	Chinchipe, Schäfer-Verwimp &			
	Nebel 31949/B(M)			
Cyclolejeunea	French Guiana, Holz FG-00-	KF039844	KF039875	KF039806
<i>chitonia</i> (Taylor) A. Evans	124 (GOET)			
Cyclolejeunea chitonia	Guadeloupe (I), Schäfer-	KF039845	KF039876	KF039807
	Verwimp & Verwimp 22130/A			
	(M)			
Cyclolejeunea chitonia	Guadeloupe (II), Schäfer-	-	KF039877	KF039808
	Verwimp & Verwimp 22218/A			
	(M)			
Cyclolejeunea chitonia	Panama, Schäfer-Verwimp &	KF039846	KF039878	KF039809
	Verwimp 30724 (M)			
Cyclolejeunea	Brazil, São Paulo, Schäfer-	KF039839	KF039871	KF039801
<i>convexistipa</i> (Lehm. &	Verwimp & Verwimp 11621 (M)			
Lindenb.) A. Evans				
Cyclolejeunea	Costa Rica, Schäfer-Verwimp	KF039838	KF039870	KF039800
convexistipa	& Holz 300/D (M)			
Cyclolejeunea	Ecuador (I),	KF039842	KF039873	KF039804
convexistipa	Orellana, Schäfer-Verwimp &			
	Nebel 32820 (M)			
Cyclolejeunea	Ecuador (II), Zamora-	KF039835	KF039867	KF039797
convexistipa	Chinchipe, Schäfer-Verwimp &			

	Preussing 23427 (M)				
Cvcloleieunea	Ecuador (III), Zamora-	dor (III). Zamora- KF039836 KF039868			
convexistipa	Chinchipe. Schäfer-Verwimp &				
oonroxicapa	Preussing 23408/F (M)				
	- 10000 mg 20 100,1 (m)				
Cyclolejeunea	Ecuador (IV),	KF039843	KF039874	KF039805	
convexistipa	Tunguragua, Gradstein et al.				
	<i>10039</i> (GOET)				
Cyclolejeunea	French Guiana (I), Hartmann	KF039840	_	KF039802	
convexistipa	& <i>Riet 04/109</i> (GOET)				
Cyclolejeunea	French Guiana (II), Holz FG00-	_	DQ207904	DQ207882	
convexistipa	<i>0157</i> (GOET)				
Cyclolejeunea	Guyana, Kennedy & Pulles	KF039837	KF039869	KF039799	
convexistipa	<i>473</i> 9 (GOET)				
Cyclolejeunea	Panama, Schäfer-Verwimp &	KF039872	KF039803		
convexistipa	Verwimp 30786 (M)				
Cyclolejeunea	Ecuador (I),	KF039833	KF039865	KF039795	
foliorum(Nees) Grolle	Orellana, Schäfer-Verwimp &				
	Nebel 32784 (M)				
Cyclolejeunea foliorum	Ecuador (II), Zamora-	KF039834	KF039866	KF039796	
	Chinchipe, Schäfer-Verwimp &				
	Nebel 32104/A(M)				
Qualataiauraa	Colombia Dalacza & Aiaroa		D0007000	D0007004	
		-	DQ207906	DQ207884	
luteola(Spruce) Grolle	919 (GOET)				
Cyclolejeunea luteola	Dominica, Schäfer-Verwimp &	KF039823	KF039857	KF039785	
	Verwimp 17866 (M)				
Cyclolejeunea luteola	Ecuador, Zamora-Chinchipe,	KF039821	KF039855	KF039783	
	Schäfer-Verwimp & Preussing				
	23356 (M)				

Cyclolejeunea luteola	Jamaica, Gradstein	KF039822	KF039856	KF039784
	6353(GOET)			
Cyclolejeunea luteola	Panama, Schäfer-Verwimp &	KF039820	KF039854	KF039782
	Verwimp 30955 (M)			
Cyclolejeunea peruviana	Brazil, São Paulo, Schäfer-	KF039831	KF039863	KF039793
(Lehm. & Lindenb.) A.	Verwimp & Verwimp 11621/A			
Evans	(M)			
Cyclolejeunea peruviana	Colombia, Gradstein	DQ983672	DQ987383	DQ207885
	<i>8546</i> (GOET)			
Cyclolejeunea peruviana	Costa Rica, Schäfer-Verwimp	KF039827	KF039859	KF039789
	& Holz 280/A (M)			
Cyclolejeunea peruviana	Dominica, Schäfer-Verwimp &	KF039828	KF039860	KF039790
	Verwimp 17737/A (M)			
Cyclolejeunea peruviana	Ecuador (I),	KF039832	KF039864	KF039794
	Pichincha, Schäfer-Verwimp			
	et al . 24126/A (M)			
Cyclolejeunea peruviana	Ecuador (II), Zamora-	KF039829	KF039861	KF039791
	Chinchipe, Schäfer-Verwimp &			
	Preussing 23352 (M)			
Cyclolejeunea peruviana	Ecuador (III), Zamora-	KF039830	KF039862	KF039792
	Chinchipe, Schäfer-Verwimp &			
	Nebel 31956(M)			
Diplasiolejeunea pellucida	Ecuador, Schäfer-Verwimp et	JQ729500	JQ729607	JQ729383
(C.F.W. Meissn. ex	<i>al . 24134</i> (GOET)			
Spreng.) Schiffn.				
Drepanolejeunea	Dominican	KC313120	KC313159	KC313080
anoplantha (Spruce)	Republic, Schäfer-Verwimp &			
Steph.	Verwimp 27059 (JE)			

Echinolejeunea papillata	New Zealand, Schäfer-	KC313135	KC313175	KC313097		
(Mitt.) R.M. Schust.	Verwimp & Verwimp 13967					
	(JE)					
Harpaleieunea	Azores, Schäfer-Verwimp &	KC313148	KC313188	KC313110		
molleri(Hook, f & Tayl.)	Verwimp 29334 (JF)					
Grolle						
<i>Lejeunea cavifolia</i> (Ehrh.)	Germany, <i>Heinrichs</i>	AY548102	DQ238581	DQ987259		
Lindb.	3695(GOET)					
Lepidolejeunea delessertii	Réunion, Schäfer-Verwimp &	KF039819	KF039853	KF039781		
(Nees & Mont.) Grolle	Verwimp 20355/B(M)					
Lepidolejeunea	Bolivia, Churchill & Vasquez	AY548066	DQ238579	DQ987266		
eluta(Nees) R.M. Schust.	21800 (GOET)					
Lepidolejeunea	Fiji Isls., Pócs 3307/AC(GOET)	DQ983697	DQ987417	DQ987313		
integristipula (J.B. Jack &						
Steph.) R.M. Schust.						
Luteolejeunea	Costa Rica, Schäfer-Verwimp	DQ983706	DQ987467	DQ987368		
<i>herzogii</i> (Buchloh) Piippo	& Holz 0294/B(GOET)					
Marchesinia robusta(Mitt.)	Ecuador, Wilson et al . 04-05 DQ983710		DQ987436	DQ987332		
Schiffn.	(GOET)					
Mastigolejeunea	Bolivia, Churchill	AY548070	DQ987385	DQ987268		
<i>auriculata</i> (Wilson &	21275(GOET)					
Hook.) Schiffn.						
Microlejeunea	São Tomé &	KC313150	KC313190	KC313112		
africanaSteph.	Principe, Shevock 34576A					
	(GOET)					
Myriocoleopsis	Ecuador, Gradstein et al.	DQ238568	DQ	DQ987277		
<i>gymnocolea</i> (Steph.) M.E.	<i>10020</i> (GOET)	238583				
Reiner & Gradst.						

Omphalanthus filiformis	Ecuador, Schäfer-Verwimp & DQ983716		DQ983793	DQ987283
Nees	Preußing 23543 (GOET)			
Prionolejeunea	Guadeloupe, Schäfer-Verwimp	-	DQ207915	DQ207898
<i>aemula</i> (Gottsche) A.	& Verwimp 22588 (M)			
Evans				
Prionolejeunea	Dominica, Schäfer-Verwimp &	KF039851	KF039881	KF039816
<i>decora</i> (Taylor) Steph.	Verwimp 18028 (M)			
Prionolejeunea decora	Guadeloupe (I), Schäfer-	-	DQ207919	DQ207890
	Verwimp & Verwimp 22308 (M)			
Prionolejeunea decora	Guadeloupe (II), Schäfer-	_	KF039880	KF039815
	Verwimp & Verwimp 22263 (M)			
Prionolejeunea	Panama, Reiner-Drehwald	_	DQ907923	DQ207886
<i>galliotii</i> Steph.	<i>960026</i> (GOET)			
Prionolejeunea	Réunion, Pócs 08056/W(M)	-	-	KF039818
<i>grata</i> (Gottsche) Schiffn.				
Prionolejeunea	Guadeloupe, Schäfer-Verwimp	-	DQ907225	DQ207887
grolleillkiu-Borges &	& Verwimp 22355 (M,			
SchäfVerw.	Paratype)			
Prionolejeunea	Dominica, Schäfer-Verwimp &	-	DQ207926	DQ207892
guadalupensis(Lindenb.)	Verwimp 17922/A (M)			
Steph.				
Prionolejeunea	Brazil, Schäfer-Verwimp &	KF039850	DQ207928	DQ207895
<i>limpida</i> Herzog	Verwimp 13291 (M)			
Prionolejeunea	Colombia, Gradstein	-	DQ207929	DQ207896
<i>magnistipula</i> Herzog	8964(GOET)			
Prionolejeunea mucronata	Costa Rica, Schäfer-Verwimp	KF039852	_	KF039817
(Sande Lac.) Steph.	& Holz 287 (M)			
Prionolejeunea scaberula	French Guiana, Holz FG-0012	_	DQ207934	DQ207889

(Spruce) Zwickel	(GOET)			
Prionolejeunea scaberula	Guadeloupe, Schäfer-Verwimp	-	DQ207933	DQ207888
	& Verwimp 22184/B (M)			
Prionolejeunea schlimiana	Costa Rica, <i>Dauphin</i>	-	DQ207935	DQ207893
(Gottsche) Steph.	2115(GOET)			
Prionolejeunea schlimiana	Ecuador (I), Andersson &	_	DQ207936	DQ207894
	<i>Kautz 3202</i> (GOET)			
Prionolejeunea schlimiana	Ecuador (II), Schäfer-Verwimp	-	-	KF039814
	& Nebel 33210(M)			
Prionolejeunea	Panama, Schäfer-Verwimp &	-	-	KF039813
trachyodes (Spruce)	Verwimp 30778 (M)			
Steph.				
Rectolejeunea berteroana	Guadeloupe, Schäfer-Verwimp	DQ983724	DQ987444	DQ987342
(Gottsche) A. Evans	& Verwimp 22245/A (GOET)			
Siphonolejeunea	Australia, Pócs &	DQ983726	DQ987452	DQ987352
<i>elegantissima</i> (Steph.)	Brown0026/AA (EGR)			
Grolle				

Accession numbers of new sequences are in bold face

Table 2

Distribution of constant and phylogenetically informative sites for aligned positions of the three genomic regions (1. Lejeuneeae dataset, 2. *Bromeliophila-Cyclolejeunea-Prionolejeunea* dataset)

	rbcL	<i>trn</i> L- <i>trn</i> F	ITS1-5.8S-ITS2	Total
Number of sites in matrix	914/936	433/435	668/920	2,015/2,291
Constant	720/793	268/327	333/430	1,321/1,550
Unique to a single specimen	90/48	73/49	90/114	253/211
Parsimony informative	104/95	92/59	245/376	441/530

Fig. 1 Strict consensus of four equally parsimonious trees. *Bromeliophila* is placed sister to *Prionolejeunea* rather than *Lejeunea*

Fig. 2 Rooted strict consensus of 156 most parsimonious trees recovered during heuristic searches of the combined *rbc*L–*trn*L-F–nrITS dataset. Bootstrap percentage values >50 are indicated at branches

Fig. 3 Majority rule consensus tree of trees recovered in stationary phase of Bayesian search. Support (≥0.95) from Bayesian searches is indicated at branches

Fig. 4 *Bromeliophila natans*, part of shoot with perianth and two androecia, ventral view [drawn from Peralta et al. 8112 (M)]

Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Jochen Heinrichs for giving me the opportunity to study at the department of Systematic Botany in Göttingen. Many thanks for his help with specimens, discussion, and literature. I am also very grateful to PD. Dr. Alexander Schmidt as he co-supervised my work with Prof. Heinrichs. Many thanks for their kind supervision, continuous guidance and helpful discussion throughout the duration of my thesis. Financial support from China Scholarship Council awarded to me is gratefully acknowledged (CSC No. 2010697001).

I would also like to thank Prof. Dr. Elvira Hoerandl, Prof. Dr. Hermann Behling and Prof Dr. Markus Hauck for agreeing to be my thesis committee members. I am also very grateful to Dr. Harald Schneider for his helpful discussion with biogeography and Dr. Alfons Schäfer-Verwimp for his help and discussion with specimens and morphology. Thanks also to Dr. Kathrin Feldberg and Dr. Hans-Peter Kreier for their help with my lab work and computer program. I would also like to thank Dr. M. Elena Reiner-Drehwald for her literature and help with morphology and Dr. Simone Klatt for her cordial help with the computer software.

Special thanks go to Tamás Pócs (Eger, Hungary), Matt von Konrat (Chicago, USA), Gregorio Dauphin (San José, Costa Rica), Hironori Deguchi (Hiroshima, Japan), Alfons Schäfer-Verwimp (Herdwangen-Schönach, Germany) and Elena Reiner-Drehwald (Götttingen) for their support in specimen materials. In addition, I would like to thank all the other staff and colleagues in the Department of Systematic Botany and Courant Center. Thanks are also to the fellows in Experimental Phycology & Culture Collection of Algae group and Institute of Human Genetics for assistance of lab work and for sequencing. Last but by no means least, thank you to all my friends and family!

Curriculum vitae

Personal

Born in Shaanxi Province, China, on Nov. 21th, 1984
Contact information
Address for correspondence:
Department of Systematic Botany, Albrecht von Haller Institute of Plant Sciences, Georg
August University, Untere Karspüle 2, 37073 Göttingen, Germany
E-mail: shanshan.dong@stud.uni-goettingen.de
Phone: +49 551 39 22014

Education

2010.10 -present Department of Systematic Botany, University of Goettingen, Germany

Doctoral studies: Phylogeny and Biogeography of leafy liverworts Thesis title: Systematics and biogeography of several genera in subfamily Lejeunoideae

2007.09-2010.07 College of Life Science, Northwest University Shaanxi, China

Master of Science: Plant Population Genetics Thesis title: A Study on Population Structure of *Saruma henryi* Oliv. in China by using genomic SSR Markers (developed by myself)

2003.09-2007.07 College of Life Science, Northwest University Shaanxi, China

Bachelor of Science, Biotechnology Thesis title: A preliminary Study on Molecular Systematics of *Dipteronia* Oliv. Population based upon Chloroplast DNA Sequences