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Preface

The present thesis deals with the construction of algebraic structure, par-
ticularly products, on generalized differential cohomology from an abstract
homotopy-theoretic point of view.

Beginning with a multiplicative cohomology theory E, we will show that
the corresponding differential cohomology groups Ê are multiplicative in a
suitable sense, which had been an open question for some time. The goal of
this thesis is to provide two solutions to this problem:

First, we begin with a ring spectrum E up to homotopy. We must then
make some additional assumption that will guarantee various coherence con-
ditions that lie at the heart of any construction of additional data on differ-
ential cohomology. A reasonable class is that of ‘rationally even’ cohomology
theories and it contains most of the theories that arise in practice (the only
notable exception being algebraic K-theory). We will show how our assump-
tion implies half the coherence conditions we are after. We must also deal
with the discrepancy between the cup product of cochains and the exterior
product of differential forms. To this end we will prove, using standard
ideas, a rather general cohomological Acyclic Models Theorem for ‘corepre-
sentable’ functors (Theorems 7.9, 7.10) in Chapter 7, which may be applied
to our situation. Combining this result with the coherence properties above,
we are then able to work out products in even degrees (Theorem 8.7). It will
then be our strategy to transport our construction from even to odd degrees
(Theorem 8.19) by using so-called integration maps (Theorem 6.15), whose
development is another important accomplishment of this thesis (Chapter 6).

In order to verify distributivity of the product and linearity of the inte-
gration map, we must have some information on the additive structure on the
differential cohomology groups, which has unfortunately been constructed in
[HS05] only in a completely abstract way: the diff. cohomology groups are
realized there as homotopy groups of a spectrum which is, strictly speak-
ing, obtained by applying fibrant replacement functors in a diagram model
category (there is a choice of functorial section involved). In particular, no
explicit structure maps are given. The lack of tractable ‘deloopings’ pro-
hibits any understanding of addition. Moreover, the spaces of the differential
function spectra don’t seem to be Kan complexes, so the direct extraction of
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algebraic data is problematic at any rate.

We will spend considerable effort in Chapters 4 and 5 to construct an
additive structure on the level of differential cocycles (without any assump-
tions on E), which is a major accomplishment of this thesis (Theorem 5.26).
Working with simplicial sets, we may slightly remedy the situation with the
structure maps above if we work with ‘cospectra’ instead of spectra. The
main step is then the establishment of a refined generalized Chern character
(Section 5.2)

ch : Hom(K,E)→ Z(K ∧∆•), K ∈ Set∆

which relates the mapping spectrum of E with an algebraic construct that
yields ordinary cohomology, which we call the cocycle spectrum. We will
prove that both sides may be viewed as cospectra and that ch preserves the
structure maps strictly. One may then extract parts of this information (us-
ing a fundamental groupoid construction – Chapter 4) to exhibit an addition
on the level of differential cocycles.

Prior to this, we develop in Chapter 3 an explicit cocycle-based con-
struction of generalized differential cohomology, whose definition is coarsely
modeled on that of [HS05]. We will verify all the axioms for a differential
refinement (Theorem 3.12) and develop some techniques for manipulating
differential cocycles. Everything will be developed for pairs of spaces (which
is crucial for the construction of the integration map later) and we will es-
tablish a certain long exact sequence for pairs (Theorem 3.15), which will
prove very useful later.

This concludes the overview of our first approach.

The second solution is more abstract and views the differential function
spectra as (homotopy) pullbacks in an ∞-category of spectra. It is our goal
to give them the structure of commutative algebra objects (more precisely,
commutative ring spectra valued presheaves on manifolds, that is, objects of
the ∞-category Fun(Manop,CAlg(Sp))). Roughly speaking, differential co-
homology is a pullback of the diagram determined by the deRham homomor-
phism and the generalized Chern character. [Bun12] deals with a refinement
of the deRham homomorphism. The situation for the Chern character is
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much more involved (we need some hypothesis) and the necessary structure
is assumed in [Bun12] as additional data.

Note that the construction of E∞-structures is difficult at the best of times
and is virtually impossible ‘by hand.’ We will need some large categorical
machine for this and we will show how to squeeze the most out of the Schwede-
Shipley Theorem [SS03b] for this purpose. In Chapter 9 we will prove a (of
course somewhat restricted) refinement (to the higher-categorical setting) of
a Theorem of Dold [Dol62] on the realization of maps between cohomology
theories (Theorems 9.9 and 9.15). This will then be applied to construct, un-
der a suitable hypothesis, a canonical (equivalence class) of a refinement of
the generalized Chern character to an E∞-homomorphism (Subsection 9.2.5).
Combined with the discussion in [Bun12], this refinement then determines
a lift of the differential cohomology groups to spectra-valued presheaves. In
particular, the corresponding homotopy groups are graded rings.

In Chapter 10 we investigate what can been said about uniqueness of
differential refinements without restricting to the rationally even case. The
main result (Theorem 10.3) may be viewed as a (weakened) generalization
of a theorem by Bunke-Schick [BS10].

Integration over manifolds with boundary has not yet received a satisfac-
tory treatment in differential cohomology. We will indicate in Chapter 11
(in the case of ordinary cohomology) that for this one should view differen-
tial cocycles as the ‘fields’ of a Lagrangian field theory and that integration
of fields on manifolds with boundaries should be viewed as taking values in
anomaly lines associated to the boundary. The results there explain also
why it was not possible by [Fre02] to construct the integral of differential
cohomology classes independent of any choices. We interpret Chern-Simons
theory and WZW-lines as the differential intersection pairing in this context,
and show that the analogous construction for K-theory leads to η-invariants.
The generalization of these arguments to other cohomology theories requires
the use of ∞-categories and is a future project.

Chapter 1 serves as motivation and introduction to differential cohomol-
ogy and includes some discussion on the history of the subject. In Chapter
2 we establish the classical generalized Chern character, which first appears
in [Dol62] (using different arguments). The appendix fixes terminology from
(higher) category theory and the theory of simplicial sets used in this thesis.

7



I would like to thank my advisor Thomas Schick for his constant support
in my endeavors and his invaluable advice during my time as a doctoral
student. Also, I would like to express my gratitude towards Ralf Meyer for
supporting and advising me during this period, for pointing me towards the
general treatment of uniqueness questions, and for encouraging me to use
monoidal categories in the context of differential cohomology

Notational Conventions

The following standard (ordinary) categories will be denoted by bold face:

Man Manifolds and smooth maps
Man2 Pairs (M,N) of a smooth manifolds M with a closed

submanifold N ⊂M and smooth maps of pairs
Ab Abelian groups and group homomorphisms
Set Sets and set maps
Cat Categories and functors
ModR R-modules (R an ordinary ring) and R-module homo-

morphisms
VectR Real vector spaces and R-linear maps
Ch Unbounded chain complexes and chain maps
Ch≥0 Positive chain complexes and chain maps
CoCh Unbounded cochain complexes and cochain maps
CoCh≥0 Positive cochain complexes and cochain maps
cDGA Commutative differential graded algebras over R
sC Category of simplicial objects in C , that is, the functor

category sC = Fun(∆op,C )
C ∗ Pointed objects in C , that is, the comma category

C ∗ = (∗ ↓ C ) (for ∗ final in C )
Fun(C ,D) Functors C → D and natural transformations
Set∆ Simplicial sets and simplicial maps
Set+

∆ Marked simplicial sets
Kan Kan complexes and simplicial maps
CGHaus Compactly generated Hausdorff spaces and continuous

maps
VectBun Real vector bundles and vector bundle homomorphisms
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hSp Stable homotopy category (see 2.1) and homotopy
classes of ‘maps’ of spectra

Alg(C ),CAlg(C ) Category of (commutative) algebra objects in a (sym-
metric) monoidal category C

Ar(C ) Arrow category of C whose objects are morphisms in C
and morphisms given by commutative squares

hModE Monoidal category of E-modules up to homotopy (for
E ∈ CAlg(hSp) a commutative ring spectrum up to ho-
motopy)

Coh Category of reduced additive cohomology theories (see
2.1) and transformations of cohomology theories

C ◦ Full subcategory spanned by the cofibrant-fibrant ob-
jects in a model category C .

coSpt Cospectra (Definition 4.1)
2BrMonCat Definition 4.4
MonCat Monoidal categories and strong monoidal functors (Sub-

section A.1.2)
BrMonCat Braided monoidal categories and braided strong

monoidal functors (Subsection A.1.3)
R/Z-Spaces Sets with a simply transitive R/Z-action and equivariant

maps
HermLines Complex one-dimensional vector spaces with Hermitian

metric and C-linear maps preserving the metric

Note that for us ‘monoidal functor’ refers to what is sometimes called a
strong (or weak – as opposed to (co)lax) monoidal functor. For an ordinary
category C , the set of morphisms will be written HomC (x, y) or also C (x, y).
If C is a V-enriched category (for example, a simplicial category), the map-
ping object will be denoted MapC (x, y) ∈ V. If K,L are simplicial sets (for
example,∞-categories), we will write Hom(K,L) for the internal hom, that
is, the simplicial set

Hom(K,L)n = Set∆(K ×∆n, L).

Similarly, for pointed simplicial sets K,L we write also Hom(K,L) for the
(pointed) simplicial set whose n-simplices are simplicial maps

K ∧∆n
+ → L.
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Following [GJ09], we will write more generally HomC (X, Y ) ∈ Set∆ for the
mapping space in any simplicial model category C .

If L = C is an ∞-category, Hom(K,L) is again an ∞-category, which is
usually denoted by Fun(K,C). We will generally try to keep in line with the
notation from [Lur09], [Lur11], and [GJ09].

D(A ) Unbounded derived ∞-category of the abelian category A
Fun(K,C) ∞-category of diagrams in C of shape K ∈ Set∆

S Spaces. The simplicial nerve of the simplicial subcategory of
Set∆ spanned by the Kan complexes

C∗ Pointed objects of C, the full subcategory of Fun(∆1,C)
spanned by those edges e : ∆1 → C with e(0) final in C

Sp Spectrum objects in pointed spaces S∗
CAlg(C) Category of commutative algebra objects in a symmetric

monoidal ∞-category
ModR Category of R-modules, R ∈ CAlg(C)
CAlgR Category of HR-algebras, that is, CAlgR = CAlg(ModHR) for

R an ordinary ring

Equivalences will be denoted by ‘'’ while the symbol ‘∼=’ is reserved for
isomorphisms. The degree of an object e (differential form, chain, etc.) will
be written |e|.

I denotes the unit interval [0, 1] whenever this makes sense. S1 = ∆1/∂∆1

as a simplicial set and S1 = I/∂I as a CW-complex. We will use standard
notation for the following maps:

const Constant map (usually with image a base-point)
incl Inclusion of a subset
pri Projection from a product onto the i-th factor
id Identity in a category
ev Evaluation
can Canonical projection

If (C, δ) is a cochain complex we will write Cn
δ for the quotient group

Cn/im(δn−1 : Cn−1 → Cn). Ωn
cl(M) denotes the group of closed n-forms on

M and Ωn
cl,Z(M) the subgroup of those with integer periods.
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1 Introduction

1.1 Ordinary Differential Cohomology

One of the basic goals in topology is the distinction of spaces up to homeo-
morphism, diffeomorphism, or homotopy equivalence. The first sophisticated
invariant of a space, the fundamental group, was defined by Poincaré more
than 100 years ago. This concept has many extensions such as the homology
groups H∗(M) of a space. Roughly speaking, one investigates a space by
embedding certain simple spaces into it and studying the resulting interrela-
tions. Cohomology is the dual concept, elements of which typically ‘classify’
in some way topological objects defined over the space, such as characteristic
classes of bundles or a ‘bundle gerbe,’ a higher-categorical generalization of
a bundle.

On the other hand, classes in differential cohomology classify more ge-
ometric objects defined over the space, for example bundles with metrics
and connections. These groups take the differential structure of the under-
lying manifold into account and are a much finer invariant of the situation,
reflected by the presence of two homomorphisms

I : Ĥ∗(M)→ H∗(M),

R : Ĥ∗(M)→ Ω∗cl(M).

Differential cohomology combines ideas from gauge theory (connections,
curvature) and stable homotopy theory. For example, Chern-Weil theory
combines gauge theory and ordinary cohomology. Early interest in differ-
ential cohomology [CS85] arose from the fact that the Chern-Weil homo-
morphism lifts to (ordinary) differential cohomology. In many cases this lift
carries strictly more information than the Chern-Weil form and the charac-
teristic class together, the example being that the holonomy of a flat bundle
may be non-zero, even though the Euler form and class vanish (Example
1.7).

The differential cohomology groups originate from the study of Chern-
Simons invariants of a bundle with connection and provide a natural home for
these. Oftentimes these invariants are called secondary invariants, reflecting
their dependence on an additional piece of data (the connection). Earlier still,
Deligne considered a sheaf-theoretic definition of differential cohomology in
the context of geometric quantization, which can serve as a starting point of
a discussion on the physical significance of these groups.
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1.1.1 Classical Gauge Theory

The term ‘gauge theory’ refers to field theory in which a given physical sit-
uation is described by gauge potentials. Different gauge potentials that are
related by a gauge transformation cannot be distinguished by any observer
and are therefore equivalent descriptions of the same physical state. In prac-
tice, this often amounts to choosing antiderivatives of a physically observable
quantity. Sometimes this allows to solve the field equations more conve-
niently. Let us consider electromagnetic field theory and the structure that
naturally comes up when trying to choose antiderivatives:

Example 1.1 (Dirac’s Magnetic Monopole). The electromagnetic field

~E(~x, t), ~B(~x, t)

may be combined into a 2-form F ∈ Ω2(M) on Lorentzian space-time M =
(R4, dx2

0−dx2
1−dx2

2−dx2
3). It satisfies a fully symmetric version1 of Maxwell’s

equations
dF = jB, d ∗ F = jE

for the magnetic and electric currents jB, jE ∈ Ω3(M), which contain infor-
mation about where the charges are and where they are heading to.

As an example of a magnetic monopole, consider the following static
electromagnetic field on M = R× (R3)×: the form

F = g
zdxdz + xdydz + ydzdx

r3

is a solution to the Maxwell equations with jE = 0 and jB = 0. This field
is considered to represent a magnetic monopole since by Gauss’ theorem we
have

4πg =

∫
∂Br(0)

F =

∫
Br(0)

dF.

In particular, F is closed but not exact on the sphere S2 = ∂Br(0). Of course,
we may locally choose gauge potentials A+, A− ∈ Ω1(S2

±) on the upper and
lower hemispheres, but these will not agree on the overlap. Instead, this data

1Many scientists believe that in nature there are no ‘magnetic monopoles,’ jB = 0, but
some models of particle physics do predict the existence of particles with non-zero net
magnetic charge.
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may be viewed as defining a principal circle bundle with connection on S2

with curvature F/(2πi). The condition for this to work is g ∈ Z (being the
first Chern number).

Apart from mere convenience, let us consider the following justification
for studying gauge theory:

Example 1.2 (Quantum Mechanics). When passing to quantum mechanics
one faces the problem that one has to choose a gauge potential A ∈ Ω1(M)
with dA = F in order to perform the formal quantization. Different choices
of potentials A lead to formally different Schrödinger equations. Moreover,
the Bohm-Aharonov experiment asserts that on the quantum level the gauge
potentials actually have physical significance. In it, one observes that elec-
trons traveling through a region in space in which the electromagnetic field
vanishes may still experience a force from a field that is trapped inside a
Faraday cage. The solution as proposed by Dirac is to replace the quan-
tum Hilbert space L2(R3) by the space of sections of a line bundle L on R3

[Bry08]. The point is that even though L is trivializable, there is no pre-
ferred trivialization, or gauge. Any two trivializations will be related by a
bundle automorphism. The Hamiltonian operator then involves a covariant
derivative of a connection on L given by the choice of A (gauge potential) in
the given local gauge.

1.1.2 Motivation: Degree Two Differential Cohomology

The structure appearing naturally in both these examples is that of a prin-
cipal S1-bundle with connection.

Definition 1.3. Let H 2(M) denote the groupoid of principal S1-bundles
(P,∇) with connection on M . The morphisms from (P1,∇1) to (P2,∇2) are
given by the set of all bundle maps f : P1 → P2 (over idM) with f ∗∇2 = ∇1.

By the associated bundle construction, H 2(M) is equivalent to the cat-
egory of Hermitian line bundles with connection on M . The tensor product
of line bundles and connections gives rise to a symmetric monoidal structure
on H 2(M).

13



Definition 1.4. Ĥ2(M) is the abelian group of equivalence classes of prin-
cipal S1-bundles on M with connection: Ĥ2(M) = π0H 2(M).

A gauge potential of F ∈ Ω2
cl(M ; iR) consists of a circle bundle with

connection that has curvature F . A necessary and sufficient criterion for the
existence of a gauge potential is that F be integral (quantization condition).
Moreover, any two gauge potentials will differ by a flat connection, which
in turn are classified by homomorphisms π1(M) → S1. We get an exact
sequence

0→ H1(M ;R/Z)→ Ĥ2(M)
R−→ Ω2

cl,Z(M)→ 0. (1)

Here, Ω2
cl,Z(M) denotes closed differential 2-forms ω with integer periods,

with
∫
σ
ω ∈ Z for every cycle σ. On the other hand, a circle bundle is

topologically classified by its first Chern class, and the space of connections
is an affine space modeled on Ω1(M). This leads to another exact sequence

Ω1(M)/im(d) = Ω1(M)d
a−→ Ĥ2(M)

I−→ H2(M ;Z)→ 0. (2)

Here, a assigns the class of the trivial bundleM×S1 to θ ∈ Ω1(M)d with the
connection determined by θ. To compute the kernel of a, we must understand
gauge transformations g : M → S1 from the trivial bundle to itself that pull
the connection θ back to zero, which solve

g−1dg = θ.

Viewing the left-hand side as a logarithmic derivative, it is clear that we
may always locally find 2πiR-valued solutions g. The condition that the
exponential of these local solutions agree on overlaps leads to an integrality
condition on θ, as expressed in the extended exact sequence

H1(M ;Z)→ Ω1(M)d
a−→ Ĥ2(M)

I−→ H2(M)→ 0. (3)

By the Chern-Weil Theorem, the maps I andR are equal upon post-composing
to H2(M ;R). These properties of Ĥ2 motivate the following definition due
to [SS08]:

Definition 1.5. A differential extension of ordinary cohomology consists of
functors on the category of manifolds

Ĥ∗ : Manop → Ab, ∗ ∈ Z,
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along with natural transformations

I : Ĥ∗ −→ H∗(−;Z),

R : Ĥ∗ −→ Ω∗cl,Z,

a : Ω∗−1/im(d) −→ Ĥ∗,

b : H∗−1(−;R/Z) −→ Ĥn.

These are required to fit into a commutative diagram (the unnamed maps
come from the Bockstein sequence)

0

��
Hn−1(M ;R)

can

��

// Hn−1(M ;R/Z)

b
�� ''

0 // Ωn−1(M)/Ωn−1
cl,Z (M) a //

d ))

Ĥn(M) I //

R

��

Hn(M ;Z) //

��

0

Ωn
cl,Z(M) can

//

��

Hn(M ;R)

0

(4)

in which the middle vertical and middle horizontal sequence are exact.

1.1.3 Cheeger-Simons Differential Characters

The construction in the preceding section applies only to 2-forms F . There
exist higher-categorical objects (bundle gerbes) that are analogous to circle
bundles and have ‘curvatures’ that are 3-forms. Higher degrees are even
more complicated, the definitions being based on Čech-type descriptions of
generalized ‘bundles with connection.’ While it is possible to carry this gen-
eralization out in detail, we shall proceed in a more elementary fashion. This
is the approach of Cheeger-Simons [CS85] by what are called differential
characters.
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Definition 1.6. Let M be a smooth manifold. The n-th (ordinary) differ-
ential cohomology group of M is defined as

Ĥn(M) = {(u, ω) ∈ HomAb(Zn−1(M),R/Z)× Ωn(M) | u ◦ ∂ = ω mod Z} .

In detail, we require that the homomorphism u on the group Zn−1(M) of
smooth (n − 1)-cycles on M be given on boundaries ∂σ by integrating the
differential n-form ω over σ:∫

σ

ω = u(∂σ) mod Z. (5)

Example 1.7. Given a circle bundle with connection (P,∇) on M , there
is an element u ∈ Ĥ2(M) which maps a closed curve γ to its holonomy
∈ S1. In case γ is the boundary curve of a surface σ, then the holonomy may
be computed by integrating the curvature form ω over σ. We observe that
the holonomy u may be non-zero, even when both the curvature ω and the
characteristic class of P vanish (for example M = S1).

M

σ
∂σ u R/Z

Lemma 1.8. For n > 0 the form ω in (5) is unique.

Proof. Suppose ω ∈ Ωn(M) has the property that
∫
σ
ω ∈ Z for each smooth

σ : ∆n → M . We wish to show ω = 0. Given p ∈ M , choose σ : ∆n → M
with p ∈ σ((∆n)◦). Pulling back along σ and choosing a chart (∆n)◦ ≈ Rn

we are reduced to showing that a smooth function f : Rn → R whose integral
over every simplex σ : ∆n → Rn is an integer must vanish. By choosing a
descending sequence of simplices around any point of Rn, this follows easily
from the continuity of f and by approximating the integral by some value of
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f times the volume of σ.

Applying the argument of the Lemma to dω, we conclude that a form ω
as in (5) must be closed.

Definition 1.9. For u ∈ Ĥn(M) choose ω as in (5). Define

R(u) = ω ∈ Ωn
cl,Z(M).

Choose a real-valued lift of u to a map û. By choice of ω, the cochain
W = ω− û◦∂ : Cn(M)→ Z takes values in Z. It also vanishes on boundaries
and we set

I(u) = [W ] ∈ Hn(M ;Z).

Finally, for θ ∈ Ωn−1(M) and w ∈ Hn−1(M ;R/Z) we set

a(θ) : Zn−1(M)→ R/Z, σ 7→
∫
σ

θ mod Z,

b(w) : Zn−1(M)→ R/Z, σ 7→ w(σ).

Note that b(w) vanishes on boundaries, so that it indeed belongs to
Ĥn(M) and also Rb(w) = 0. The composition I ◦ b is essentially the defini-
tion of the Bockstein homomorphism.

By Stokes’ Theorem, a(θ) is given on boundaries by dθ, so that it too
belongs to Ĥn(M) and we have Ra(θ) = dθ. Since û = σ 7→

∫
σ
θ is a

real-valued lift of a(θ), we have Ia(θ) = 0.

Theorem 1.10. The groups Ĥn(M) of Definition 1.6 and the transforma-
tions R, I, a, b of Definition 1.9 are a differential extension of ordinary coho-
mology.

Proof. It remains to prove the commutativity of the two squares in (4) and
exactness. Since û ◦ ∂ is a real coboundary, the maps R and I agree upon
mapping to real cohomology. For the other square, let x ∈ Cn−1(M) → R
represent a class in Hn−1(M ;R) and choose θ ∈ Ωn−1(M) cohomologous to x
(viewed as a real cochain). Then both x and θ agree on cycles, so the other
square commutes as well.

The exactness of the vertical sequence is trivial and the exactness of the
horizontal sequence is a direct consequence of deRham’s Theorem.
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Example 1.11 (Generalization of Example 1.7). Let G be a Lie group with
Lie algebra g. Given an invariant polynomial f on g, the (absolute) Chern-
Simons form on a G-principal bundle with connection (P → M,∇) is a
canonical choice of antiderivative of the pullback of the Chern-Weil form
f(∇2) ∈ Ω∗(M) to the total space P . As a consequence, one cannot com-
pare them for different principal bundles P , even if they have the same base
space. However, the mod Z-reduction of the cochain corresponding to the
Chern-Simons form may be viewed as an element u ∈ Ĥ∗(M), a group in-
trinsically assigned to the base space. This is why differential cohomology is
regarded to be the ‘natural home’ for the Chern-Simons ‘form.’ The Chern-
Weil form f(∇2) can be recovered by taking the ‘curvature’ R(u), and I(u)
is the characteristic class of P belonging to f ∈ H∗(BG;R).

1.2 Generalized Differential Cohomology

1.2.1 Introduction

Generalized cohomology theories have their roots in index theory (K-theory)
and in Thom’s work on cobordisms. In essence, generalized cohomology
classes are invariants attached to topological situations constructed from the
manifold. For example, the families index is associated to a family of elliptic
differential operators over a manifold and represents a K-theory class.

Now again, generalized differential cohomology is a refinement of general-
ized cohomology theory that takes additional geometric features into account.
Its first incarnation was in the form of differential K-theory and allows for
a refined statement of the index theorem. The classical Atiyah-Singer Index
Theorem for families asserts the equality of the analytic index of a family of
Dirac operators with a cohomological quantity, involving the Chern character
of the symbol and an Â-class. In the presence of ‘additional geometry’ one
may pick canonical Chern-Weil representative differential forms. The Differ-
ential Index Theorem [BS09], [FL10] asserts that actually more (in the sense
of Example 1.7) is true: one may lift both the analytical and topological
index to differential cohomology and these refined indices coincide.

Roughly speaking, the objects of generalized differential cohomology rep-
resent gauge potentials of fields F ∈ Ωn(M ;V ) whose ‘charges’ have been
lifted along the generalized Chern character (Chapter 2)

ch : E∗(M)→ H∗(M ;V ), V = E∗(pt)⊗ R.

18



Here, E∗ denotes a generalized cohomology theory, such as K-theory or
cobordism theory.

1.2.2 Axiomatic Approach

For ordinary integer cohomology the axioms in Definition 1.5 were presented
by [SS08]. By analyzing only these axioms, they proved that the various
constructions of differential cohomology were in fact isomorphic: the sheaf-
theoretic Deligne cohomology [Gaj97], Cheeger-Simons differential characters
[CS85], a stratifold model by Bunke-Kreck-Schick [BKS10], and the homo-
topy theoretic model of Hopkins-Singer [HS05].

Subsequently, [BS10] considered the case of generalized cohomology. Let
E be a generalized cohomology theory in the sense of the Eilenberg-Steenrod
axioms and let V ∗ = E∗(pt)⊗Z R denote the graded coefficient vector space.

Definition 1.12 ([BS10]). A differential extension of E consists of functors

Ê∗ : Manop → Ab, ∗ ∈ Z,

together with natural transformations

I : Ê∗ −→ E∗,

R : Ê∗ −→ Ω∗cl(−, V ),

a : Ω∗−1(−, V )/im(d) −→ Ê∗.

These are required to fit into a commutative diagram

E∗−1(M) ch // Ω∗−1(M ;V )/im(d) a //

d ((

Ê∗(M) I //

R
��

E∗(M) //

ch
��

0

Ω∗cl(M ;V ) // H∗(M ;V )

with an exact upper horizontal line. Such a differential extension is called
multiplicative if Ê is a functor into graded commutative rings, if I and R are
unital ring homomorphisms, and if

a(θ) ∪ x̂ = a(θ ∧R(x̂)) ∀θ ∈ Ωn−1(M ;V ), x̂ ∈ Êm(M).
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The generalized Chern character ch : E∗(M) → H∗(M ;V ) will be care-
fully constructed in Section 2.

Example 1.13 (Differential K-Theory). Following [FL10], the 0th differen-
tial K-theory group K̂0(M) may be identified with a quotient of the set of
Hermitian vector bundles with connection on M equipped with an element
φ ∈ Ωodd(M)/im(d). Then R takes (E,∇, φ) to ch(∇2)− dφ, essentially the
Chern-Weil representative of the Chern character. The map I simply retains
the ordinary K-theory class.

An isomorphism of differential cohomology theories is defined to be a nat-
ural transformation which is compatible with the maps a,R, I. One of the
main results in [BS10] is the following theorem. It justifies the axiomatic ap-
proach presented above, but note the assumptions on the cohomology theory
E:

Theorem 3.10 from [BS10]. Suppose E is rationally even, that is, E is
a cohomology theory whose graded coefficient group E∗(pt) is torsion in all
odd degrees. If E∗(pt) is countably generated in all degrees, then any two
differential extensions Ě with integration will be isomorphic via a unique
isomorphism respecting integration.

We shall see in Chapter 10 how uniqueness may be formulated in the
case of an arbitrary cohomology theory. For this we must introduce a weaker
notion of ‘equivalent’ differential cohomology theories.

1.3 Elementary Notions

1.3.1 Manifolds with Corners

We will need to extend the functor Ω∗(M ;W ) to the category Man of mani-
folds with corners, that is, second countable Hausdorff spaces with a smooth
structure modeled on ‘Euclidean corners’

2n = {(x1, . . . , xn) ∈ Rn | x1, . . . , xn ≥ 0}.

A map on an open subset U of a Euclidean corner is said to be smooth if it
allows a smooth extension to some open subset of Rn containing U . With
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this extended notion of smoothness, charts and atlases may be defined as
usual. The tangent bundle is the unique up to isomorphism functor

T : Man→ VectBun with T2n
∼= 2n × Rn.

In particular, it makes sense to consider differential forms on manifolds with
corners.

Example 1.14. The standard simplex ∆n is an n-manifold with corners.
An atlas is given by the collection i = 0, . . . , n of homeomorphisms

{(t0, . . . , tn) ∈ ∆n | ti 6= 0} →
{

(x1, . . . , xn) ∈ 2n

∣∣∣ ∑xi < 1
}

(t0, . . . , tn) 7→ (t0, . . . , ti−1, ti+1, . . . , tn).

∆n

2n

Note that there are several competing definitions for ‘manifold with cor-
ners.’ The one presented here is briefly discussed in the textbook [Lee03] and
called ‘t-manifolds’ in [HS05, C.1].

1.3.2 Smooth Chains and Cochains

For any M ∈Man one may form the smooth singular set sings(M)• whose
n-simplices are smooth maps

σ : ∆n →M

Passing to the associated Moore complex leads to the smooth chain groups

Cs
n(M) =

⊕
{Z | σ : ∆n →M ∈ sings(M)n}.

Relative versions Cs
n(M,N) for submanifolds N ⊂M are constructed in the

usual way by taking quotients. For any abelian group A, dualizing yields the
cochain complex of smooth cochains

Cn
s (M ;A) = HomAb(Cs

n(M), A).

Note that any singular cochain may be restricted to a smooth cochain.
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1.3.3 Relative de Rham Complex

For a closed submanifold i : N ⊂M we let Ω∗(M,N) = {ω ∈ Ω∗(M) | i∗ω = 0}.
We include the case N = ∅ where we set Ω∗(∅) = 0. There is a short exact
sequence

0→ Ω∗(M,N)→ Ω∗(M)→ Ω∗(N)→ 0 (6)

of cochain complexes, which of course yields a corresponding long exact se-
quence in cohomology. Integrating smooth simplices allows us to view differ-
ential forms as smooth singular cochains∫

: Ωn(M,N) −→ Cn
s (M,N),

(∫
ω

)
σ =

∫
σ

ω.

By the five-lemma and the long exact sequences we have the relative de Rham
isomorphism

Hn
dR(M,N)

∼=−→ Hn
s (M,N)

∼=←− Hn(M,N) (7)

2 Generalized Chern Character

The goal of this section is to establish the classical Chern Character. This is
a transformation of cohomology theories that derives from the fact that over
the reals there is an essentially unique cohomology theory. This is due to
Dold [Dol62]. It derives from deep results of Serre on the stable homotopy
groups of spheres, namely that

πi(S) =


i < 0 : 0,

i = 0 : Z,
i > 0 : finite group.

2.1 Stable Homotopy Category

To formulate and establish the results in this section it will suffice to work
in the stable homotopy category hSp, whose main features we briefly recall.

Definition 2.1. A prespectrum is a sequence of pointed Kan complexes (or
spaces) En along with pointed structure maps En → ΩEn+1. In case these
are all weak equivalences, we speak of a spectrum (for emphasis also called
Ω-spectrum).
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The objects of the stable homotopy category are all prespectra, but mor-
phisms are more complicated to define. In short, they are eventually defined
‘maps’ (equivalence classes of cofinally defined ‘functions’) up to eventually
defined homotopy [Ada95, Section III.2]. This category is equivalent to the
category whose objects are all CW-spectra with morphisms given by ho-
motopy classes of ‘functions.’ The category hSp has a closed symmetric
monoidal structure given by the so-called smash product and an internal

∧ : hSp× hSp→ hSp, hSpop × hSp→ hSp.

It is also a triangulated category (which roughly asserts the existence of
sensible Puppe sequences), but we will only need that it is additive. The
abelian group of morphisms will be denoted [E,F ]. The 0-th space functor

Ω∞ : hSp→ Ho(Set∗∆)

has a left-adjoint Σ∞ : Ho(Set∗∆) → hSp called suspension spectrum. In
addition, there is an adjoint equivalence

Σ : hSp // hSp : Ω.oo

While Σ is compatible with Σ∞ and the usual suspension, Ω is compatible
with Ω∞ and the usual loop space. Finally, there is a symmetric monoidal
functor called ‘Eilenberg-MacLane spectrum’

H : Ab→ hSp.

Our presentation here is inspired by [Mal11], [Ada95], and [Swi75], where the
reader interested in more details is referred to.

Monoids in hSp are called ring spectra (up to homotopy). For each
commutative ring spectrum E we form the category of E-modules (up to
homotopy) hModE which inherits a (closed) monoidal structure ∧E with
unit object E (see [HSS00] or [Ada95, p.320]). It is defined by the coequalizer

M ∧ E ∧N ////M ∧N //M ∧E N.

The monoid objects in this category are called E-algebras (up to homo-
topy) and form a category Alg(hModE) (or CAlg(hModE) in the commu-
tative case).
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Remark 2.2. The stable homotopy category hSp is but the first level of a
much richer structure: a stable symmetric monoidal ∞-category Sp whose
refined structure we will need later to establish more precise results. The
homotopy category of Sp is equivalent to the stable homotopy category, but
be warned that it is not true that the homotopy category of the∞-category of
algebra objects Alg(Sp) stands in the same relationship to Alg(hSp)! Indeed,
as remarked in [Sch07, p.114], the question of whether one may realize a
ring spectrum up to homotopy as a symmetric ring spectrum involves many
obstructions! Similarly, the homotopy category of the ∞-category ModE is
not equivalent to hModE.

A cohomology theory satisfying Milnor’s wedge axiom is also said to be
additive [tD08, p.406]. This means that for any family of pointed spaces Xα,
α ∈ A, the restriction maps induce an isomorphism

Ẽ∗(
∨
α∈A

Xα)→
∏
α∈A

Ẽ∗(Xα).

In this situation, we have the Brown Representation Theorem:

Theorem 2.3 (9.27 and 9.13 in [Swi75] and [Bro62]). Let Coh denote the
category of reduced cohomology theories with values in Ab satisfying Mil-
nor’s wedge axiom. Formation of reduced cohomology induces an essentially
surjective, full (but not faithful) functor of categories

hSp→ Coh, E 7→ Ẽ∗.

Remark 2.4. If Ẽ∗ is a multiplicative cohomology theory on the homotopy
category of spectra, there exists a ring spectrum E ∈ hSp that gives rise
to the product structure (13.70 and 13.71 in [Swi75]). The corresponding
assertion for theories defined only on spaces seems to be false [Ada72, p.154].

The trouble with faithfulness is that from the equality of two morphisms
Ẽ∗ → F̃ ∗ one may only deduce the existence of level-wise homotopies, but our
homotopies need to commute with the structure maps. The non-faithfulness
in the theorem gives rise to the theory of phantom maps. For example,
there exists a non-trivial map Σ∞CP∞ → Σ∞S3 which induces the zero
transformation of cohomology theories.
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2.1.1 Ordinary Cohomology with Graded Coefficients

Definition 2.5. Ordinary cohomology with coefficients in a graded real vec-
tor space V is defined as (see for example [tD08, p. 520])

H∗(X,A;V ) =
∏
i∈Z

Hn−i(X,A;V i).

It is important to use the product (not the direct sum) in order to obtain
an additive cohomology theory for the establishment of the Chern charac-
ter [Lüc05, 5.12]. Of course for finite-dimensional X there is no difference
between the product and the direct sum. Similarly, the generalized Eilenberg-
MacLane spectrum HV ∈ hSp is (where V ∗ = V−∗)

HV =
∏
i∈Z

HVi[i]
'←−
∨
i∈Z

HVi[i].

The right hand equivalence is induced by the canonical map [Ada95,
Proposition III.3.14]. Explicitly, the n-th space of the spectrum HV is∏

i∈Z

(HVi)i+n.

The adjoint structure maps of HV are defined as the product of the adjoint
structure maps of the individual spectra (this is because Ω, being a right
adjoint, commutes with limits).

Definition 2.6. Suppose V is a graded commutative algebra. Cohomology
classes x ∈ Hn(X,A;V ), y ∈ Hm(X,B;V ) are represented by left-bounded
sequences

xi ∈ H i(X,A;V n−i), yj ∈ Hj(X,B;V m−j), i, j ≥ 0.

We define z = x ∪ y ∈ Hn+m(X,A ∪B;V ) as the sequence

zk =
∑
i+j=k

(−1)(n−i)jxi ∪ yj ∈ Hk(X,A ∪B;V n+m−k).

Since i, j ≥ 0, this sum is finite. The units are given by one-term sequences
(all other entries are zero)

1X ∈ H0(X;V 0).
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The sign makes certain that we retain graded commutativity:

(−1)(n−i)jxi ∪ yj = (−1)(n−i)j+ij+(n−i)(m−j)yj ∪ xi = (−1)mn(−1)(m−j)iyj ∪ xi.

If we define the boundary operators δ by (δx)k = δxk−1 then these definitions
allow us to view H∗(−;V ) as a multiplicative cohomology theory [Lüc05,
Definition 5.12] on pairs of CW-complexes.

The following will be needed in the proof of Theorem 2.8: it is not a
fact about cohomology theories, but uses that we are working over the real
numbers:

Lemma 2.7. Suppose V is a graded vector space. Let Xλ, λ ∈ L, denote
the poset of finite subcomplexes of X. The restriction maps induce an iso-
morphism

H∗(X;V ) ∼= lim
←−

H∗(Xλ;V ). (8)

Proof. Using the Universal Coefficient Theorem, since homology and filtered
colimits X = colimXλ commute, and since any two limits commute:

H∗(X;V ) =
∏
i∈Z

H∗−i(X;V i) ∼=
∏
i∈Z

Hom(H∗−i(X), V i)

∼=
∏
i∈Z

Hom(colimH∗−i(Xλ), V
i) ∼=

∏
i∈Z

lim Hom(H∗−i(Xλ), V
i)

∼= lim
∏
i∈Z

Hom(H∗−i(Xλ);V
i) ∼= lim

∏
i∈Z

H∗−i(Xλ, V
i)

= limH∗(Xλ;V
i).

2.2 Construction

The proof of the following theorem will occupy the bulk of this subsection.
The first part is mentioned without proof in [Lüc05, 5.12]. It was first for-
mulated in [Dol62, p.172 and p.175]

Theorem 2.8. Let Ẽ be a reduced additive cohomology theory that takes
values in real vector spaces. Then there is a canonical natural isomorphism
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of cohomology theories

Ẽ∗ ∼= H̃∗(−;W ), W ∗ = Ẽ∗(S0).

If E is multiplicative, so is this transformation.

Note that Ẽ∗(−) ⊗Z R does generally not satisfy Milnor’s wedge axiom
[Lüc05, p.93], so we may not apply Theorem 2.8 directly to this cohomology
theory. Instead, we will work with E ∧HR which satisfies this hypothesis.

Corollary 2.9. For every E ∈ hSp there exists a canonical natural trans-
formation from the associated cohomology theory

ch : Ẽ → H̃∗(−;V ), V ∗ = π−∗(E)⊗ R.

If E ∈ CAlg(hSp), then ch is multiplicative.

Proof. The cohomology theory associated to E ∧HR satisfies the conditions
of Theorem 2.8, so we obtain a canonical isomorphism of cohomology theories
Ẽ ∧HR ∼= H̃∗(−;W ) for W ∗ = Ẽ ∧HR∗(S0). For finite CW-complexes X
we have [Ada95, Proposition III.6.7]

Ẽ ∧HR∗(X) ∼= Ẽ∗(X)⊗Z R,

from which the formula for the coefficients follows. Now precompose with
the transformation associated to E → E ∧HR.

Suppose next that E ∈ CAlg(hSp). Then E ∧ HR is an HR-algebra
spectrum (up to homotopy) and E → E ∧HR is a morphism in CAlg(hSp),
which induces a multiplicative transformation of cohomology theories. By
Theorem 2.8 the isomorphism Ẽ ∧HR ∼= H̃∗(−;W ) is multiplicative.

For any Ẽ ∈ Coh we may of course use Theorem 2.3 to choose an object
F ∈ hSp representing it, but F and Ẽ ∼= F̃ are not canonical.

Example 2.10. Let E = K be topological K-theory, which is defined as the
cohomology theory represented by the spectrum BU×Z. For path-connected
compact X, the Chern character K(X) → Heven(X;R) takes the class of a
line bundle L→ X to [tD08, p.520]

ch(L) =
∞∑
i=0

c1(L)n

n!
.
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If Ln denotes the tautological line bundle over X = CP n for n = 0, 1, . . . ,∞,
we have

ch(Ln) = 1 +X +X2/2! + . . .+Xn/n! ∈ Heven(CP n;R) = R[X]/(Xn+1).

Naturality implies

ch(L∞) = eX ∈ Heven(CP∞;R) = RJXK.

We see again that it is important to take the product in Definition 2.5 because
eX is not an element of R[X].

The cohomological Chern Character is somewhat tedious to establish:

Proof of Theorem 2.8. Since the coefficients of HW and E agree and both
cohomology theories are additive, by a theorem of Milnor [Swi75, Theorem
7.67] or by the Atiyah-Hirzebruch spectral sequence it suffices to construct
a natural transformation of cohomology theories. The construction has two
steps: first, we shall establish a natural transformation of cohomology the-
ories

∏
i+j=n H̃

i(X;W j) → Ẽn(X) on finite pointed CW-complexes X. In
this case, the product is a biproduct and we may define the map as a sum
of wedges of generalized Hurewicz homomorphisms. Next, using that a CW-
complex X is the colimit of its finite subcomplexes, we will define a natural
transformation for general X.

Suppose that X is a finite pointed complex. For [X ∧ Sl f−→ Sj+l] ∈
πj(Σ∞X) consider the canonical map

W i = Ẽi(S0) ∼= Ẽi+j+l(Sj+l)
f∗−→ Ẽi+j+l(X ∧ Sl) ∼= Ẽi+j(X). (9)

More explicitly, choose E ∈ hSp representing Ẽ. Elements [Sk
σ−→ Ei+k] ∈

W i and [X ∧ Sl f−→ Sj+l] ∈ πj(Σ∞X) are then paired together to an element
of Ẽi+j(X) represented by (−1)kj times the class of

X ∧ Sk+l → Sk ∧X ∧ Sl σ∧f−−→ Ei+k ∧ Sj+l → Ei+k+j+l.

The sign2 ensures that this element only depends on the stable class of σ
and f : replacing f by its suspension clearly results in the suspension of the

2Predicted in the sense of [Sch07] by the occurence of i+ k+ j+ l in the ‘wrong’ order:
k and j need to be exchanged in order to match Sk+l. Note that all signs depend on
whether one takes suspensions on the left or on the right. We take them on the right.
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paired class. On the other hand, replacing σ by σ∧ idS1 , we need to compare
the stable class of (−1)(k+1)j times the upper line with (−1)kj times the lower
line in the following commutative diagram:

X ∧ Sk+1+l //

1
X∧Sk∧χ1,l

��

Sk+1 ∧X ∧ Sl σ∧1∧f // Ei+k ∧ S1+j+l //

1Ei+k∧χ1,j+l

��

Ei+k+1+j+l

X ∧ Sk+l+1 // Sk ∧X ∧ Sl+1 σ∧f∧1// Ei+k ∧ Sj+l+1 // Ei+k+j+l+1.

In this diagram, χn,m denotes the permutation of sphere coordinates accord-
ing to the block permutation on n+m letters of type (n,m). Using [Sch07,
Lemma 2.3], we conclude that the upper and lower line represent stable
classes that differ by (−1)j, as desired.

These pairings (9) piece together to a natural transformation, compatible
with suspension, on the biproduct

h :
∏
i+j=n

W i ⊗ πjs(X)→ Ẽn(X). (10)

Comparing coefficients, we deduce that this map is an isomorphism3. It is
important to remark here that the left hand side indeed is a cohomology
theory on finite complexes (because stable cohomotopy is).

Suppose now that E is multiplicative and choose maps µi,j : Ei ∧ Ej →
Ei+j representing the product (well-defined up to homotopy). The left hand
side of (10) is endowed with the product of graded algebras

([σ]⊗ [f ]) ∪ ([τ ]⊗ [g]) = (−1)|f |·|τ |([σ] ∪ [τ ])⊗ ([f ] ∪ [g]).

Our transformation (10) is a homomorphism of graded rings: Unitality is
clear. For multiplicativity, choose representatives

σ : S0 → Ei [σ] ∈ W i,

τ : S0 → Ej [τ ] ∈ W j,

f : X ∧ Sc → Sp+c [f ] ∈ πps(X),

g : X ∧ Sd → Sq+d [g] ∈ πqs(X).

3Milnor’s Theorem is valid also for cohomology theories defined only on finite pointed
CW-complexes [DK01, Theorem 8.31]; the proof follows by induction on the number of
cells, the Mayer-Vietoris Sequence, and the Five Lemma.
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For simplicity, we may restrict to σ, τ being defined on S0 (since E is an
Ω-spectrum). Then we have4

[σ] ∪ [τ ] = [S0 = S0 ∧ S0 σ∧τ−−→ Ei ∧ Ej
µ−→ Ei+j],

[f ] ∪ [g] = (−1)cq[X ∧ Sc+d → X ∧ Sc ∧X ∧ Sd f∧g−−→ Sp+c+q+d],

h([σ]⊗ [f ]) = [X ∧ Sc = S0 ∧X ∧ Sc σ∧f−−→ Ei ∧ Sp+c
ε−→ Ei+p+c],

h([τ ]⊗ [g]) = [X ∧ Sd = S0 ∧X ∧ Sd τ∧g−−→ Ej ∧ Sq+d
ε−→ Ej+q+d].

Thus, h(([σ]⊗ [f ])∪ ([τ ]⊗ [g])) = (−1)pjh([σ]∪ [τ ]⊗ [f ]∪ [g]) is represented
by (−1)cq times the stable class of the composition

X ∧ Sc+d → S0 ∧X ∧ Sc ∧ S0 ∧X ∧ Sd σ∧f∧τ∧g−−−−−→ Ei ∧ Sp+c ∧ Ej ∧ Sq+d
ε∧ε−−→ Ei+p+c ∧ Ej+q+d

µ−→ Ei+p+c+j+q+d. (A)

On the other hand, h([σ]⊗ [f ])∪h([τ ]⊗ [g]) is represented by (−1)c(j+q) times
the stable class of the composition

X ∧ Sc+d → S0 ∧ S0 ∧X ∧ Sc ∧ C ∧ Sd σ∧τ∧f∧g−−−−−→ Ei ∧ Ej ∧ Sp+c ∧ Sq+d
µ∧1−−→ Ei+j ∧ Sp+c+q+d

ε−→ Ei+j+p+c+q+d. (B)

The diagram

Ei ∧ Sp+c ∧ Ej ∧ Sq+d

ε∧ε
��

flip // Ei ∧ Ej ∧ Sp+c ∧ Sq+d

µ∧1
��

Ei+p+c ∧ Ej+q+d

µ
((

Ei+j ∧ Sp+c+q+d

ε
vv

Ei+p+c+j+q+d

commutes up to sign (−1)(p+c)j (viewing both ways around as elements of
the group [Ei ∧ Sp+c ∧ Ej ∧ Sq+d, Ei+p+c+j+q+d]; this follows from the com-
patibility of the multiplication on Ẽ with suspensions). It follows that the
stable classes of (A) and (B) differ by the factor (−1)(p+c)j. Thus (10) is

4The sign for [f ] ∪ [g] arises since we take our suspensions on the right.
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multiplicative.

In the special case Ẽ = H̃W j we obtain the Hurewicz isomorphism
π∗s(X) ⊗ W j → H̃∗(X;W j). Taking the product of these and composing
with (10) yields a natural isomorphism

H̃n(X;W ) =
∏
i+j=n

H̃ i(X;W j) ∼=
∏
i+j=n

πis(X)⊗W j → Ẽn(X). (11)

This concludes the first step.

The second step is formal. For a CW-complex X, let LX denote the
directed poset of finite CW-subcomplexes Xλ ⊂ X. We consider the functors

Ẽn, H̃n(−;W ) : Lop
X → VectR.

The restrictions determine a canonical map

Ẽn(X)→ lim
←−

λ∈LX

Ẽn(Xλ) (12)

which is an isomorphism if X is already finite (being then the initial object
of Lop

X ). Recall that by (8) the canonical map

H̃n(X;W )→ lim
←−

λ∈LX

H̃n(Xλ;W ) (13)

is an isomorphism for any X. For each CW-complex X, the limit of the maps
(11) therefore determine maps

Ẽn(X)→ lim
←−

λ∈LX

Ẽn(Xλ)→ lim
←−

λ∈LX

H̃n(Xλ;W ) ∼= H̃n(X;W ). (14)

which generalize those for finite complexes. A map f : X → Y of CW-
complexes induces a functor LX → LY and therefore determines maps

lim
←−
µ∈LY

H̃n(Yµ;W )
f∗−→ lim

←−
λ∈LX

H̃n(Xλ;W ), lim
←−
µ∈LY

Ẽn(Yµ)
f∗−→ lim

←−
λ∈LX

Ẽn(Xλ).

Explicitly, the component of f ∗ for λ ∈ LX is given by projecting to Yµ =
f−1(Xλ) and then using f ∗ for finite complexes. With these definitions, (12)
and (13) are natural transformations. From the naturality in the case of
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finite CW-complexes we conclude that (14) is natural. To show that (14) is
compatible with suspensions it suffices to observe that Xλ∧S1 for λ ∈ L is a
cofinal subcategory of LX∧S1 , so that we may take the corresponding limits
in (13) and (12) over these objects. Comparing coefficients, we conclude that
(14) is an isomorphism of cohomology theories. It is multiplicative since the
restriction maps are multiplicative and because this was true in the case of
finite complexes.

3 Differential Cohomology

We will be concerned with the construction of differential cohomology the-
ories Ê satisfying the axioms of Definition 1.12 (except the additive struc-
ture). The treatment in this section is completely elementary and requires
no knowledge of abstract homotopy theory.

The additive structure is more difficult to see explicitly and will be devel-
oped in Section 5. This will be important for us since we will later construct
products ‘by hand’ and this enables us to prove distributivity.

3.1 Fundamental Cocycles

3.1.1 Setup

We begin with a reduced additive cohomology theory Ẽ∗ ∈ Coh. Choose an
Ω-spectrum (En, εn) representing Ẽ. We will require the adjoint structure
maps

εadj
n−1 : En−1

≈−→ ΩEn (15)

to be pointed homeomorphisms (this can always be arranged).

Remark 3.1. Making a different choice of representing spectrum (En, εn)
leads to an isomorphic differential extension of E. They are not, however,
canonically isomorphic. On the one hand, this makes the construction of
additional structure so difficult. On the other hand, it is precisely this kind
of behavior which ‘enriches’ differential cohomology as compared to classical
cohomology theory. Otherwise one might suspect that the uniqueness result
of [BS10] guarantees that nothing has been gained. This is not the case.
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3.1.2 Implementation of the Chern Character

Recall the generalized Chern character, which was a transformation

ch : Ẽ∗ −→ H̃∗(−;V )

of reduced cohomology theories. Since Ẽn is represented by En, Yoneda’s
Lemma shows that the Chern character is implemented by pullback along
the so-called fundamental cohomology classes [ιn] ∈ H̃n(En;V ):

ch[X
f−→ En] = E(f)∗[ιn]

Since ch is a transformation of cohomology theories, the elements [ιn] are re-
lated by the suspension and the structure maps and may therefore be viewed
as an element of the group lim H̃n(En;V ), the inverse limit being taken over

H̃∗+n(En;V )
ε∗n−1 // H̃∗+n(ΣEn−1;V )

susp // H̃∗+n−1(En−1;V ).

Lemma 3.2. lim H̃n(En;V ) is isomorphic to the 0th cohomology of the cochain
complex limC∗+n(En, pt;V ), where the limit is taken over

C∗+n(En, pt;V ) −→
ε∗n−1

C∗+n(ΣEn−1, pt;V ) −→∫
S1

C∗+n−1(En−1, pt;V ).

Proof. Using universal coefficients, the fact that HomR takes colimits in the
first variable to limits, that any two limits commute, and that directed co-
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limits and homology commute, we calculate:

Hn
(

limC∗+k(Ek, pt;V )
)

= Hn
(

lim
∏
j∈Z

C∗−j+k(Ek, pt;V j)
)

= Hn
(∏
j∈Z

limC∗−j+k(Ek, pt;V j)
)

=
∏
j∈Z

Hn
(

limC∗−j+k(Ek, pt;V j)
)

=
∏
j∈Z

HomR

(
Hn(colimC∗−j+k(Ek, pt)), V j

)
=
∏
j∈Z

HomR

(
colimHn(C∗−j+k(Ek, pt)), V j

)
=
∏
j∈Z

lim HomR

(
Hn(C∗−j+k(Ek, pt)), V j

)
= lim

∏
j∈Z

Hn(C∗−j+k(Ek, pt;V j)) = limHn
(∏
j∈Z

C∗−j+k(Ek, pt;V j)
)

= limHn(C∗+k(Ek, pt;V )) = lim H̃n+k(Ek;V )

If follows from Lemma 3.2 that we may choose fundamental cocycles ιn ∈
Zn(En, pt;V ) with the property that

ιn−1 =

∫
S1

ε∗n−1ιn. (16)

3.2 The Construction

Fix the data (En, εn) from Subsection 3.1.1 and let ιn ∈ Zn
sing(En, pt;V ) be

a fixed choice of fundamental cocycles.

Definition 3.3. Let N ⊂M be a closed submanifold. The n-th differential
E-cohomology Ên(M,N) is the set of equivalence classes of triples

c : (M,N)→ (En, pt), ω ∈ Ωn
cl(M,N ;V ), h ∈ Cn−1

s (M,N ;V )

satisfying
δh = ω − c∗ιn.

An equivalence (c0, ω0, h0) ∼ (c1, ω1, h1) with ω0 = ω1 is a pair

C : [0, 1]× (M,N)→ (En, pt), H ∈ Cn−1
s ([0, 1]× (M,N);V )
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with the properties

δH = pr∗2ω − C∗ιn
i∗0C = c0, i

∗
1C = c1, i∗0H = h0, i

∗
1H = h1.

An equivalence class [c, ω, h] is called a differential cocycle.

Here, i0, i1 : (M,N) → [0, 1] × (M,N) denote the inclusions of the end-
points and pr2 : [0, 1]× (M,N)→ (M,N) is the projection.

By pulling maps, forms, and cochains back along smooth maps we see
that the differential cohomology sets may be organized into a functor

Ên : (Man2)op → Set∗

into the category of pointed sets. The base-point is [const, 0, 0].

Remark 3.4. Two different choices of fundamental cocycles lead to isomor-
phic, but not canonically isomorphic differential cohomology theories. This
makes the definition of structure on these groups very difficult, and every
construction ultimately boils down to a compatibility statement for the fun-
damental cocycles. One might hope to obtain a family of fundamental co-
cycles compatible with the cup product structure by applying the approach
of Lemma 3.2 to diagrams on index categories more sophisticated than N.
Unfortunately, the proof of this lemma relies on the fact that homology com-
mutes with filtered colimits.

In general, one can obtain a spectral sequence which, when it collapses,
guarantees that a compatible choice is possible:

3.2.1 Aside: Spectral Sequence for the Simplicial Resolution of a
Diagram

Suppose F : I → Ch is a diagram of chain complexes of vector spaces,
indexed on some category I. The standard simplicial resolution of F is the
simplicial chain complex S ∈ sCh with n-simplices

Sn =
⊕
i:[n]→I

F (i0).
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For 0 < k ≤ n, the face maps dk on Sn are given by ‘covering up ik.’ Formally,
dk ◦ ini = ini◦dk , where ini : F (i0)→ Sn denotes the canonical inclusion. The
map d0 is defined by

d0 ◦ ini = ini◦d0 ◦ F (i(0→ 1)).

The simplicial object S• may be visualized as follows:⊕
i0∈Ob(I)

F (i0)∗ //
⊕
i0→i1

F (i0)∗oo
oo //

//
⊕

i0→i1→i2
F (i0)∗ · · ·oo

oo
oo

From S• ∈ sCh we may extract a double complex Tn∗ = (Sn)∗ with
horizontal differential δ =

∑
(−1)kdk and vertical differential ∂ = (−1)ndS :

(Sn)∗ → (Sn)∗−1, where dS denotes the differential on Sn.
Of course the double complex induces a (homological) spectral sequence

[McC01]
E2
p,q = Hp,q(H(T, ∂), δ)⇒ Hp+q(Tot(T )).

By first applying the vertical differential ∂ to T we get

⊕
i0∈Ob(I)

H∗(F (i0))
⊕
i0→i1

H∗(F (i0))
(d0)∗−(d1)∗oo

⊕
i0→i1→i2

H∗(F (i0)) · · ·δoo

The first two columns of T are just the coequalizer that is used to ex-
press an arbitrary colimit using coproducts and a coequalizer, hence E2

0,q =
colimi∈I Hq(F (i)).

Since our spectral sequence is in the right half-plane, we have edge ho-
momorphisms E2

0,n � E∞0,n ⊂ Hn(Tot(T )). Using the Universal Coefficient
Theorem, these induce maps for every vector space V (in VectR, monos
dualize to epis and epis dualize to monos):

Hn(Tot(T );V ) = Hom(Hn(Tot(T )), V )� Hom(E∞0,n, V ) (17)
↪→ Hom(colim

i∈I
Hn(F (i)), V ) = lim

i∈I
Hn
(
F (i);V

)
By taking direct products, (17) generalizes immediately to graded vector
spaces V .

Proposition 3.5. If our spectral sequence collapses, (17) is surjective.
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A representative cocycle on the left may be interpreted as a coherent
family of cocycles, refining the cohomology classes on the right. Indeed, an
n-cocycle of Hom(Tot(T );V ) consists for each 0 ≤ p ≤ n and ϕ : [p] → I of
a homomorphism

fϕ : F (ϕ0)n−p → V, that is, cochains fϕ ∈ Cn−p(F (ϕ0), V ).

These vanish on coboundaries of Tot(T ), which implies ‘coherence’ relations
among them. The above map (17) sends such a family to the element of the
limit represented by the subfamily of cohomology classes of fi:[0]→I : F (i)n →
V, i ∈ I.

Unfortunately, there is no indication why the corresponding spectral se-
quence should collapse, except if we make homological assumptions on E.

3.2.2 The Equivalence Relation

To keep control over Ên(M,N) it is important to observe that ‘∼’ is indeed
an equivalence relation, so we don’t have to pass to a ‘generated’ equivalence
relation. It is obvious that the relation defined above is reflexive and sym-
metric (pull back along ϕ × id(M,N) for ϕ : [0, 1] → [0, 1], ϕ(t) = 1 − t). To
prove that our relation is transitive, we need a lemma on gluing cochains:

Lemma 3.6. Let A ∪ B = X be an open covering and Ã ⊂ A, B̃ ⊂ B
be subsets with Ã ∩ B = B̃ ∩ A. Then, restriction Cn(A ∪ B, Ã ∪ B̃) −→
Cn(A, Ã)×Cn(A∩B) C

n(B, B̃) is surjective. Similarly for smooth cochains.

Proof. Suppose u ∈ Cn(A, Ã), v ∈ Cn(B, B̃) have equal restriction to A∩B.
Consider the projection

π : ∆n+1 → ∆n, (t0, . . . , tn+1) 7→
(
t0 +

tn+1

n+ 1
, . . . , tn +

tn+1

n+ 1

)
.
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σ3 = σn+1
σ 0

σ1

π

σ1 σ0

σ2

σ2

The coface map dn+1 : ∆n → ∆n+1, (t0, . . . , tn) 7→ (t0, . . . , tn, 0) then satisfies
π ◦ dn+1 = id∆n . Let σn+1 : ∆n → X be a simplex. For σ := σn+1 ◦ π let
σi = σ ◦ di = σn+1 ◦ π ◦ di so that we have

∂σ = σ0 − σ1 + σ2 · · ·+ (−1)n+1σn+1.

We define a subdivision operator (not a chain map)

sd : Cn(X)→ Cn(X)

on a basis by sd(σn+1) = σn−σn−1 · · ·+(−1)nσ0 = (−1)n∂σ+σn+1. Our sub-
division lets the diameters tend to zero and ∆n is a compact metric space.
Therefore after a finite minimal number m = m(σ) of applications of sd
any simplex σ ∈ Cn(X) will be a chain

∑
k

nk · τk consisting only of sim-

plices τk whose image lies entirely in A or entirely in B. We define w(σ) as∑
k nk

{
u(τk) if τk(∆n) ⊂ A,

v(τk) if τk(∆n) ⊂ B.
By the minimality assumption, w restricts

to u and v respectively; thus w is preimage of (u, v). This proves that the
restriction map is surjective. We remark that our subdivision operator takes
the subcomplex of smooth chains to itself.

Remark 3.7. Cocycles are invariant under the subdivision operator sd. In-
deed, by definition sd(σn+1) = (−1)n∂σ + σn+1 from which we conclude
u(sd(σn+1)) = u((−1)n∂σ + σn+1) = u(σn+1). Closed differential forms are
also invariant under sd.

Proposition 3.8. The above relation is an equivalence relation.
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Proof. We first remark that if (c0, ω0, h0) ∼ (c1, ω1, h1) then there exist H,C
as above such that C|[0,1/4] = c0 ◦ pr, C|[3/4,1] = c1 ◦ pr, H|[0,1/4] = pr∗h0,
H|[3/4,1] = pr∗h1, so H and C are ‘constant’ near the endpoints. Indeed,
given C,H we may pull back along φ× id(M,N) where φ is a smooth strictly
increasing function [0, 1]→ [0, 1] with φ|[0,1/4] = 0, φ|[3/4,1] = 1.

Suppose now that (c0, ω0, h0) ∼ (c1, ω1, h1) via H0, C0 and (c1, ω1, h1) ∼
(c2, ω2, h2) via H1, C1 where the H’s and C’s have been replaced as above so
that they are constant near the endpoints. We apply the above lemma to
[0, 2]× (M,N) with open cover [0, 1[×(M,N), ]3

4
, 5

4
[×(M,N), ]1, 2]× (M,N)

and the cochains H0, pr∗h1, H1 translated properly to obtain H. The cochain
H clearly restricts to h0 and h2 at the endpoints. Let C be the composition
of homotopies C0, C1. We have to verify the equation of cocycles

δH = pr∗ω − C∗ιn.

By Remark 3.7 it suffices to consider a smooth simplex σ with image entirely
contained in one of the three open subsets (because δH(σ) = δH ◦ sdn(σ) for
any n ∈ N). For example, if σ(∆n) ⊂ [0, 1[×M then σ = i∗σ for the inclusion
i : [0, 1[×M ⊂ [0, 2]×M . We have

(δH)(σ) = (δi∗H)(σ) = (δH0)(σ) = pr∗ω(σ)− (C∗0)ιn(σ)

which is also the value of pr∗ω − C∗ιn on σ = i∗σ.

3.3 Verification of the Axioms

In Theorem 3.12 we will give an elementary verification of the fact that the
differential cohomology groups of Definition 3.3 along with maps (I, R, a),
to be defined below in Definition 3.11, do indeed constitute a differential
extension of E-cohomology (the group structure will be treated later).

It is clear that this verification on the elementary level must be somewhat
technical in nature. We refer to Section 9 for a more elegant (but also more
involved) treatment in terms of ∞-category theory.

Definition 3.9 (p.240 in [tD08]). The ‘standard’ Alexander-Whitney map
is the natural chain equivalence

AW : Cn(X × Y )→
⊕
p+q=n

Ci(X)⊗ Cj(Y )
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which assigns to σ : ∆n → X × Y the sequence in the direct sum∑
p+q=n

p(pr1 ◦ σ)⊗ (pr2 ◦ σ)q.

Here, pτ(t0, . . . , tp) = τ(t0, . . . , tp, 0 . . . , 0) denotes the front p-face of τ , and
similarly τq is the back q-face with the zeros up front.

The standard Alexander-Whitney map has better formal properties than
those that are obtained abstractly from the theory of Acyclic Models.

Lemma 3.10. For any v ∈ Cn−1(X,A) there exists a cocycle E ∈ Zn(I ×
(X,A)) such that i∗0E = 0, i∗1E = δv. In particular, for differential cocycles

h− h′ ∈ im(δ) =⇒ [c, ω, h] = [c, ω, h′]. (18)

Proof. Suppose first that A = ∅. Define the cochain E as

E : Cn(I ×X)
pr◦AW−−−−−→ C0(I)⊗ Cn(X)

id⊗∂−−−→ C0(I)⊗ Cn−1(X)
ε⊗v−−−→ R,

where

ε

(∑
x∈I

rx[∆
0 → {x} ⊂ I]

)
:=
∑
x∈I

rx · x.

From the formula for AW

E(∆n (σ1,σ2)−−−−→ I ×X) = σ1(~0) · v(∂σ2).

It follows that i∗0E = 0, i∗1E = δv, and that E is a cocycle. In the relative
case, the cochain E just constructed is zero on Cn(I × A), by naturality of
AW . There is an analogous result for smooth cochains since AW takes the
complex of smooth cochains to itself. A version with coefficients in a graded
vector space is deduced by applying our result to each component of the
product (see Definition 2.5).

Definition 3.11. Define natural transformations

I : Ên(M,N)→ En(M,N), [c, ω, h] 7→ [c],

R : Ên(M,N)→ Ωn
cl(M,N ;V ), [c, ω, h] 7→ ω,

a : Ωn−1(M,N ;V )d → Ên(M,N), θ 7→ [constpt∈En , dθ, θ].
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Note that a is well-defined since δθ = dθ = dθ− const∗ιn (the fundamen-
tal cocycles are reduced). By (18), a vanishes on im(d).

Recall that a sequence of maps between pointed sets

A
f−→ B

g−→ C

is said to be exact if im(f) = g−1(pt). If A,B,C are abelian groups, f, g are
homomorphisms, and the base-point is the zero element, then this implies
that we have an exact sequence in the usual sense.

We will use slant products along I of cochains from the left

∫
I

: Cn+1(I ×X)→ Cn(X),

whose definition and elementary properties are reviewed in Remark 6.3. Re-
call that the singular cohomology and the deRham cohomology agree for
manifolds. We obtain a transformation

En−1(M,N)
ch−→ Hn−1

dR (M,N ;V ) =
Ωn−1

cl (M,N ;V )

im(d)
→ Ωn−1(M,N ;V )

im(d)

which is used in the following theorem:

Theorem 3.12. The following sequence is exact:

En−1(M,N)
ch−→ Ωn−1(M,N ;V )/im(d)

a−→ Ên(M,N)
I−→ En(M,N) −→ 0

Moreover, R◦a = d and can◦R = ch◦I (straightforward from the definitions).

Proof. We begin with two observations from the deRham isomorphism (7):

(i) Every smooth cocycle is cohomologous to a closed form.

(ii) If a closed form bounds a singular cochain it also bounds a form.

Exactness at En(M,N): I is surjective by (i) applied to the cocycle c∗ιn.

Exactness at Ên(M,N): Clearly I ◦ a = 0. Conversely, I[c, ω, h] = 0 yields
a homotopy C : c ' const rel N . Since also C ' const rel N we may pick
e ∈ Cn−1(I × (M,N);V ) with δe = C∗ιn. Consider

u = h+ i∗0e− i∗1e ∈ Cn−1
s (M,N ;V )
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for the inclusions i0, i1 : (M,N)→ I × (M,N). Then δu = ω is a differential
form so that by (ii) we may write δu = dκ for some differential form κ ∈
Ωn−1(M,N ;V ). By (i) we may then write

u− κ = η + δv for η ∈ Ωn−1
cl (M,N ;V ), v ∈ Cn−2

s (M,N ;V ).

Using Lemma 3.10 choose a cocycle E ∈ Zn−1
s (I × (M,N);V ) with i∗0E =

0, i∗1E = δv. Set

H := pr∗2h+ (pr∗2i
∗
0 − id)e− E ∈ Cn−1

s (I × (M,N);V ) and θ = κ+ η.

By construction, the pair (C,H) witnesses (c, ω, h) ∼ (const, dθ, θ) = a(θ).

Exactness at Ωn−1(M,N ;V )d: Suppose next that (const, 0, 0) ∼ a(θ) =
(const, dθ, θ), that is, we have dθ = 0 and are givenH ∈ Cn−1

s (I×(M,N);V ),
C : const ' const : (M,N)→ (En, pt) with

i∗0H = θ, i∗1H = 0, δH = −C∗ιn.

We have to show that θ is cohomologous to an element of type c∗ιn−1 for a
map c : (M,N) → (En−1, pt). Using the structure maps, let c = (εadj

n−1)−1 ◦
Cadj, so that we have C = εn−1 ◦ (Σc). We will write ‘≡’ for ‘up to cobound-
ary.’ Using the compatibility of the fundamental cocycles (16) we have

c∗ιn−1 = c∗ ∫
I
ε∗n−1ιn = ∫

I
C∗ιn = −∫

I
δH = δ ∫

I
H + i∗0H − i∗1H ≡ θ.

To conclude the proof of exactness at Ωn−1(M,N ;V )d it remains to check
a ◦ ch[c] = 0. This may be concluded from the following proposition, applied
to the homotopy C : const ' const, corresponding as above under the adjoint
structure maps to c : (M,N)→ (En−1, pt).

It is our convention that homotopies I × X → Y have the unit interval
on the left, so in the following proposition the integral is taken from the left.

Proposition 3.13. Given a homotopy C : c0 ' c1 (rel N) we obtain for all
ω ∈ Ωn(M,N ;V ), h0 ∈ Cn−1(M,N ;V ) equivalences

(c0, ω, h0) ∼ (c1, ω, h0 − ∫
I
C∗ιn) in Ên(M,N) (19)
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Proof. Set h1 = h0 −
∫
I
C∗ιn. We first remark that (c1, ω, h1) satisfies

δ
(
h0 −

∫
I
C∗ιn

)
= (ω−c∗0ιn)+ i∗0C

∗ιn− i∗1C∗ιn = ω−c∗1ιn. We seek a suitable
H ∈ Cn−1

s (I × (M,N)) with i∗0H = h0 , i∗1H = h1 and δH = pr∗ω − C∗ιn =
δpr∗h1 + ((c1 ◦ pr)∗ − C∗) ιn. The homotopy K : C ' (c1 ◦ pr)

K : I × I × (M,N)→ (En, pt), (s, t, x) 7→

{
C(t, x) (s ≤ t),

C(s, x) (s ≥ t)

is relative to I ×N and yields a chain homotopy

δ

∫
I

K∗ιn = (i1)∗K∗ιn − (i0)∗K∗ιn = (c1 ◦ pr)∗ιn − C∗ιn.

We may thus take H = pr∗h1 +
∫
I
K∗ιn. Then

(i0)∗H = h1 +

∫
I

(idI × i0)∗K∗ιn = h1 +

∫
I

C∗ιn = h0,

(i1)∗H = h1 +

∫
I

(idI × i1)∗K∗ιn = h1 +

∫
I

(c1 ◦ pr)∗ιn.

The assertion now follows from Lemma 3.10 since
∫
I
(c1 ◦ pr)∗ιn =

∫
I

pr∗(ω−
δh1) =

∫
I

pr∗ω −
∫
I

pr∗δh1 = −
∫
I

pr∗δh1 = δ
∫
I

pr∗h1 is a coboundary, using
the fact that

∫
I

pr∗ω = 0 for differential forms.

3.4 Exact Sequence of Pairs

Definition 3.14. The associated flat theory is defined as

Ê∗flat(M,N) := ker
(
Ê∗(M,N)

R−→ Ω∗cl(M,N)
)

In [HS05, (4.57)] it is shown that Ê∗flat(M) may be canonically identi-
fied with ER/Z∗−1(M). Applying the same reasoning to relative differential
function complexes (using the obvious relative version of [HS05, Definition
4.1]) shows that Ê∗flat(M,N) may be identified with ER/Z∗−1(M,N). We
will only need that Ê∗flat is a cohomology theory, which is also independently
shown in [BS10, Theorem 7.11].
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Theorem 3.15. For any closed submanifold N ⊂M we have a natural long
exact sequence

Ên−1
flat (M,N) i∗ // Ên−1

flat (M)
j∗ // Ên−1

flat (N)
δ1

// Ên(M,N) i∗ // Ên(M)
j∗ // Ên(N)

δ2

// En+1(M,N) i∗ // En+1(M)
j∗ // En+1(N)

Here, the coboundary maps are defined as the compositions

δ1 : Ên−1
flat (N) δ // Ên

flat(M,N)
⊂ // Ên(M,N)

δ2 : Ên(N) I // En(N) δ // En+1(M,N).

Proof. Exactness at Ên(M): j∗◦i∗ = 0 follows directly by definition. Suppose
conversely that (c, ω, h)|N ∼ (const, 0, 0). This means that there exists a
homotopy C : c|N ' const and cochain H ∈ Cn−1

s (I ×N ;V ) satisfying

i∗0H = h|N , i∗1H = 0, j∗ω = 0, δH = −C∗ιn.

Pulling back along a smooth strictly increasing function φ : [0, 1] → [0, 1]
with φ[0,1/4] = 0, φ3/4,1 = 1, we may assume that C|[0,1/4]×N = c|N ◦ pr and
H|[0,1/4]×N = pr∗h|N are ‘constant near the endpoints.’

Applying Lemma 3.6 to the open subsets

0×M ∪ [0,
1

4
[×N, ]0, 1]×N

and the cochains pr∗2h,H, we find H̃ ∈ Cn−1
s (0×M ∪ I ×N) with

H̃|0×M = h, H̃|I×N = H.

Because 0×N ⊂ 0×M ∪I×N is closed we may define C̃ by gluing C and c.
As in the proof of Proposition 3.8, Remark 3.7 implies that δH̃ = pr∗ω−C̃∗ιn.
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Since N ⊂M is a cofibration we may find a smooth retraction5

r : I ×M → (0×M) ∪ (I ×N).

Pulling back along r we obtain δr∗H̃ = pr∗ω − (C̃ ◦ r)∗ιn, which witnesses
an equivalence in Ên(M) from (c, ω, h) to ((C̃ ◦ r)|1×M , ω, r∗H̃|1×M), which
represents an element of Ên(M,N).

Exactness at Ên(M,N): If i∗[c, ω, h] = 0 then ω = 0 so that [c, ω, h] ∈
Ên

flat(M,N). By the exactness of the sequence of pairs of Ê∗flat at Ên
flat(M,N)

it follows that [c, ω, h] lies in the image of the coboundary operator δ :
Ên−1

flat (N) → Ên
flat(M,N) which is also the image of δ1. It is also clear that

i∗ ◦ δ1 = 0.

Exactness at Ên−1
flat (N): Clearly δ1 ◦ j∗ = incl ◦ δ ◦ j∗ = 0. Conversely, if

δ1(x) = 0 then δ(x) = 0. By the exactness of the sequence of pairs of Ê∗flat it
follows that x lies in the image of j∗.

Exactness at Ên(N): We have δ2 ◦ j∗ = 0 by the commutative diagram

Ên(M)
j∗ //

I
��

Ên(N)

I
��

δ2

""
En(M)

0

99j∗
// En(N)

δ
// En+1(M,N)

Suppose next that δ2(x̂) = 0. Then δ(I(x̂)) = 0 so that I(x̂) has a preimage
y ∈ En(M) under j∗ : En(M) → En(N). By the surjectivity of I we may
write y = I(ŷ) and then j∗ŷ − x̂ ∈ ker(I) = im(a) so that we may write
a(θ) = j∗ŷ − x̂ by Theorem 3.12. θ ∈ Ωn−1(N ;V ) may be extended by (6)
to a differential form θ ∈ Ωn−1(M ;V ). Then

j∗(ŷ − a(θ)) = j∗ŷ − a(θ) = x̂.

Exactness at En+1(M,N): Clearly i∗ ◦ δ2 = i∗ ◦ δ ◦ I = 0. Conversely, if
i∗x = 0 for x ∈ En+1(M,N) then by the exact sequence of pairs of E∗ we

5Start with a continuous retraction and deform to a smooth map relative to the closed
subset 0×M ∪ I ×N .
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may write x = δ(y) for y ∈ En(N). Since I is surjective, y = I(ŷ) for some
ŷ ∈ Ên(N) and then δ2(ŷ) = x.

3.5 Addition (Rationally Even Case)

The goal of this section is to quickly sketch how to construct the additive
structure on the differential cohomology groups in an elementary manner. A
similar method will be applied when we deal with products later. An explicit
abelian group structure in the general case will be the topic of a later chapter.
We will assume that E is rationally even, which means that

π2n+1(E)⊗ R = 0, ∀n ∈ Z.

This condition allows us to make arbitrary choices in even degrees. It is
then our strategy to extend this data to odd degrees by a specific choice.

Using Theorem 2.3, select for n even maps αn : En×En → En representing
addition in cohomology En. These are then extended to odd degrees by
using the structure maps En−1 ≈ ΩEn. Since suspension is linear, αn−1 also
represents addition. Because αn represents addition and the Chern character
is linear, pr∗1[ιn]+pr∗2[ιn] = α∗n[ιn] in cohomology and we may therefore choose
reduced cochains An ∈ C̃n−1(En × En;V ) with

δAn = pr∗1ιn + pr∗2ιn − α∗nιn. (20)

Using ϕn : Σ(En×En)→ ΣEn×ΣEn
εn×εn−−−→ En+1×En+1 we make a specific

choice for An−1:

An−1 = − ∫
S1

ϕ∗n−1An ∈ C̃n−2(En−1 × En−1;V )

The formula for An implies a corresponding formula (20) for An−1. The
addition is then defined as

[c0, ω0, h0] + [c1, ω1, h1] = [αn ◦ (c0, c1), ω0 + ω1, h0 + h1 + (c0, c1)∗An].

This is well-defined: If (C0, H0) witnesses an equivalence x0 = (c0, ω0, h0) ∼
(c′0, ω0, h

′
0) = x′0 and (C1, H1) witnesses x1 = (c1, ω1, h1) ∼ (c′1, ω1, h

′
1) = x′1

in the sense of Definition 3.3, then

Y = (αn ◦ (C0, C1), pr∗(ω0 + ω1), H0 +H1 + (C0, C1)∗An)
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relates the corresponding sums.

The abelian group axioms are then more or less automatic in even de-
grees. To prove the various equalities we need to construct equivalences as in
Definition 3.3 between the involved triples. Using Lemma 3.10 and Proposi-
tion 3.13, this ultimately boils down to proving that certain combinations of
cochains differ only by a coboundary. Using ‘rationally even,’ this is easy in
even degrees n since it then suffices to prove that their difference is a cocycle.
Our choice of αn−1 and An−1 then allows us to conclude the same for degree
n − 1, by constructing specific equivalences, using the structure maps and
integration.

Consider for example associativity: we have to compare the differential co-
cycles

[αn(αn × id)(c0, c1, c2), (ω0 + ω1) + ω2, h0 + h1 + (c0, c1)∗An + h2 + (αn(c0, c1), c2)∗An] ,

[αn(id× αn)(c0, c1, c2), ω0 + (ω1 + ω2), h0 + h1 + h2 + (c1, c2)∗An + (c0, αn(c1, c2))∗An] .

Choose Hn : αn(αn × id) ' αn(id × αn) for n even and extend by requiring
the formula εn−1 ◦ΣHn−1 = Hn ◦ (idI × εn−1 × εn−1 × εn−1). Using (19) and
(18) we see that it suffices to show that the pullback along (c0, c1, c2) of

pr∗12An + (αn × id)∗An − ∫
I
H∗nιn − pr∗23An − (id× αn)∗An (♦n)

is a coboundary. Since E is rationally even and n is even, it suffices to show
that it is a cocycle. Applying δ yields

pr∗12(pr∗1ιn + pr∗2ιn − α∗nιn) + (αn × id)∗(pr∗1ιn + pr∗2ιn − α∗nιn) + (αn × id)∗α∗nιn

− (id× αn)∗α∗nιn − pr∗23(pr∗1ιn + pr∗2ιn − α∗nιn)− (id× αn)∗(pr∗1ιn + pr∗2ιn − α∗nιn)

which is zero. Let ψn−1 : Σ(En−1 × En−1 × En−1) → En × En × En be
the obvious map. Applying −

∫
S1 ψ

∗
n−1 to (♦n) we obtain the corresponding

coboundary (♦n−1), by the way we have chosen everything in degree n− 1.

Remark 3.16. Let E be an Ω-spectrum. We can make canonical choices

αn : En × En ≈ ΩEn+1 × ΩEn+1
κ−→ ΩEn+1 ≈ En,

where the map κ is concatenation, which is compatible with the integra-
tion of cochains up to explicit coboundary terms. For e = π : ∆2 →
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∆1, (t0, t1, t2) 7→ (t0 + t1/2, t2 + t1/2) we have, denoting by [a, b] the 1-simplex
∆1 → [a, b], (x, y) 7→ ya+ xb, the relation ∂e = [0, 1

2
]− [0, 1] + [1

2
, 1] so that

∫
[0,1]

u = ∫
[0, 1

2
]

u+ ∫
[ 1
2
,1]

u− ∫
∂e
u = ∫

[0, 1
2

]

u+ ∫
[ 1
2
,1]

u+ ((−1)|e|δ ∫
e
u− ∫

e
δu).

This may be used to show that α∗nιn and pr∗1ιn+pr∗2ιn differ by the coboundary
of the canonical cochain

An = (εadj
n × εadj

n )∗ ∫
e
(κadj)∗ιn+1.

This observation can be used to exhibit an abelian group structure in the
general case. One can then construct ‘by hand’ higher simplices that exhibit
the coherence conditions.

The idea of the previous remark will be dealt with more systematically
in the following two chapters.

4 Fundamental Groupoids of Cospectra

It is well-known that infinite loop spaces possess a rich algebraic structure,
they are all algebras for the little ∞-cubes operad. In this section, we shall
extract parts of this algebraic structure, adapted to our context. While none
of the results here should come as a surprise, they are much less trivial to
establish than one might expect (especially for spectra of simplicial sets and
if the adjoint structure maps are not isomorphisms). This is reflected for
instance by the fact that we are only able to construct an equivalence class
of lifts of the fundamental groupoid functor (29). In particular, we lack a
canonical choice.

4.1 Cospectra and the Category 2BrMonCat

A cospectrum is a spectrum object in the opposite of the category of spaces.
Everything in this chapter goes through for spectra as well, but it will turn
out later that it is more convenient for us to regard the spaces we are inter-
ested in as spectra whose adjoint structure maps are looking in the ‘wrong’
direction.
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In this section we will freely use the theory of simplicial sets, whose basic
notions are recalled in A.3. For the more involved parts of the theory we will
refer to the appropriate places in [GJ09].

Definition 4.1. A cospectrum is a sequence of pointed Kan complexes En,
n ∈ Z, which are equipped with pointed ‘structure’ maps (weak equivalences)

ΩEn+1
∼−→ En. (21)

Example 4.2. Every spectrum E = (En, εn) whose adjoint structure maps
εadj
n : En → ΩEn+1 are isomorphisms may be regarded as a cospectrum.
More generally, suppose that all εadj

n are trivial Kan fibrations. By choosing
sections, E may be viewed as a cospectrum.

Definition 4.3. Cospectra are the objects of a category coSpt. Morphisms
f : E → F are sequences of pointed maps fn : En → Fn which commute
strictly with the maps (21).

The goal of this section is to construct, for each n, a lift of the functor
‘fundamental groupoid at level n,’

(Π1)−n : coSpt→ Cat, E 7→ Π1En, (29)

along the forgetful functor to the following category:

Definition 4.4. The category 2BrMonCat has as objects (small) cate-
gories C with two braided monoidal structures ‘�’, ‘�’, sharing a unit, and
a braided monoidal structure on the identity functor e : (C,�)→ (C,�). As
morphisms we take functors F : C→ D which are braided monoidal for both
structures and which induce a commutative diagram in MonCat

(C,�)

e

��

F�
// (D,�)

e

��
(C,�)

F�
// (D,�).

(22)

We will call the isomorphisms ex,y : x�y → x�y encoded in the monoidal
structure on the functor e the Eckmann-Hilton isomorphisms.
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A morphism F : (C,�,�, e)→ (D,�,�, e) in 2BrMonCat is said to be
strict if the two braided monoidal structures on the functors

F� : (C,�)→ (D,�), F� : (C,�)→ (D,�)

are strict.

The elementary theory of (braided) monoidal categories, functors, and
transformations is outlined in A.1. A number of non-standard results on the
behaviour of ‘monoidal notions’ under equivalences are developed in A.2.

Remark 4.5. There is a forgetful functor from the category of ‘tensor cat-
egories with strict braided multiplications’ as studied in [JS93, p.56] to
2BrMonCat. In fact, the objects of 2BrMonCat we shall use arise in this
way (see the discussion following Definition 4.9). Objects of 2BrMonCat
are not what are traditionally called 2-monoidal categories.

Example 4.6. Any braided monoidal category is an object of 2BrMonCat
in which � = � and e = id.

The following example will be studied in more rigor in the next subsection:

Example 4.7. Suppose X is a pointed topological space. Let

ΩX = (X, pt)(S1,1) =
{
γ : S1 → X continuous | γ(1) = pt

}
denote the loop space of X (with the compact open topology [DK01, p.113]).
The one-fold loop space (Π1Ω1(ΩX),�) is easily seen to give rise to a monoidal
category. Also, M(f, g) = f � g is a (strict) multiplication on (Π1Ω2X,�)
in the sense of [JS93] on account of the identity

(A�B) � (C �D) = (A� C) � (B �D).

Here we view M as a strict monoidal functor and the transformations ρf :
M(f, const) ' f , λf : M(const, f) ' f are given by the obvious homotopies.
This implies Π1Ω2X ∈ 2BrMonCat. Pictorially:
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f � g = f g f � g =
g

f

ef,g = f g f g
f
g g

f
g
f

s�
f,g = f g f g

f
g g

f
g
f

g f g f

4.1.1 Fundamental Groupoids of Double Loop Spaces

The two monoidal structures on the fundamental groupoid Ω2X of a double
loop space of a pointed topological space (X, pt) are given as follows:

(f � g)(s, t) =

{
f(2s, t) (0 ≤ s ≤ 1/2),

g(2s− 1, t) (1/2 ≤ s ≤ 1).

(f � g)(s, t) =

{
f(s, 2t) (0 ≤ t ≤ 1/2),

g(s, 2t− 1) (1/2 ≤ t ≤ 1).

The unit object 1 ∈ Π1Ω2X in both cases is given by the constant loop.
Let us consider ‘�’ in detail; the structure ‘�’ in analogous by replacing the
roles of s and t. Clearly, a map X → Y induces a strict monoidal functor
Π1Ω2X → Π1Ω2Y for each of the monoidal structures ‘�’, ‘�’.

Proposition 4.8. (Π1Ω2X,�, 1, a�, λ�, ρ�) is a monoidal category (the iso-
morphims a�, λ�, ρ� are defined below).

Proof. We begin by turning ‘�’ into a functor Π1Ω2X × Π1Ω2X → Π1Ω2X.
Write F ◦G for the composition of homotopies

(F ◦G)(s, t, u) =

{
G(s, t, 2u) (0 ≤ u ≤ 1/2),

F (s, t, 2u− 1) (1/2 ≤ u ≤ 1).
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For f ∈ Ω2X, idf (s, t, u) = f(s, t) denotes the constant homotopy. If F :
f1 ' f2 and G : g1 ' g2 are homotopies, we set

(F �G)(s, t, u) =

{
F (2s, t, u) (0 ≤ s ≤ 1/2),

G(2s− 1, t, u) (1/2 ≤ s ≤ 1).

These definitions turn ‘�’ into a functor, on behalf of the equalities (F ◦F ′)�
(G◦G′) = (F�G)◦(F ′�G′) and idf�idg = idf�g. For a monoidal structure,
we also need to provide associativity and unit constraints a�, λ�, ρ�. Set

a�
f,g,h =


f( 4s

1+u
, t) (0 ≤ s ≤ 1+u

4
),

g(4s− 1− u, t) (1+u
4
≤ s ≤ 2+u

4
),

h( 4s
2−u −

2+u
2−u , t) (2+u

4
≤ s ≤ 1).

The verification that a is a natural transformation is based on the following
observation:

Claim: A continuous map h : [0, 1]× [0, 1]→ X induces a homotopy h(1,−)◦
h(−, 0) ' h(−, 1) ◦ h(0,−).

Proof. We can take the homotopy

(t, u) 7→



h(2t, 0) (0 ≤ t ≤ 1/2, 0 ≤ u ≤ 1/2− t),
h(t− u+ 1/2, t+ u− 1/2) (0 ≤ t ≤ 1/2, 1/2− t ≤ u ≤ 1/2 + t),

h(0, 2t) (0 ≤ t ≤ 1/2, 1/2 + t ≤ u ≤ 1),

h(1, 2t− 1) (1/2 ≤ t ≤ 1, 0 ≤ u ≤ t− 1/2),

h(t− u+ 1/2, t+ u− 1/2) (1/2 ≤ t ≤ 1, t− 1/2 ≤ u ≤ 3/2− t),
h(2t− 1, 1) (1/2 ≤ t ≤ 1, 3/2− t ≤ u ≤ 1).

We need to check that a�
f2,g2,h2

◦ [(F �G)�H] is homotopic to [F � (G�
H)] ◦ a�

f1,g1,h1
. This follows by applying the claim (using u, v) to the map

(s, t, u, v) 7→


F ( 4s

1+u
, t, v) (0 ≤ s ≤ 1+u

4
),

G(4s− 1− u, t, v) (1+u
4
≤ s ≤ 2+u

4
),

H( 4s
2−u −

2+u
2−u , t, v) (2+u

4
≤ s ≤ 1).
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The unit constraints are given by the following formulas:

λ�
f : 1 � f → f, λ�

f (s, t, u) =

{
pt (0 ≤ s ≤ 1−u

2
),

f( 2s
1+u
− 1−u

1+u
, t) (1−u

2
≤ s ≤ 1),

ρ�
f : f � 1→ f, ρ�

f (s, t, u) =

{
f( 2s

1+u
, t) (0 ≤ s ≤ 1+u

2
),

pt (1+u
2
≤ s ≤ 1)

The triangle equality ρf�g ' (idf � ρg) ◦ af,g,1 is exhibited by the homotopy

(s, t, u, v) 7→



pt (0 ≤ u ≤ 1, u+1
2
≤ s ≤ 1),

f( 4s
u+uv+1

, t) (0 ≤ u ≤ 1
2
, 0 ≤ s ≤ u+uv+1

4
),

g( 4s
u−uv+1

− u+uv+1
u−uv+1

, t) (0 ≤ u ≤ 1
2
, u+uv+1

4
≤ s ≤ u+1

2
),

f( 4s
u+v−uv+1

, t) (1
2
≤ u ≤ 1, 0 ≤ s ≤ u+v−uv+1

4
),

g( 4s
u−v+uv+1

− u+v−uv+1
u−v+uv+1

, t) (1
2
≤ u ≤ 1, u+v−uv+1

4
≤ s ≤ u+1

2
).

The other triangle equality is analogous. The commutativity of Mac Lane’s
Pentagon can also shown by linear reparameterization: both

af,g,h�i ◦ af�g,h,i, (1f � ag,h,i) ◦ af,g�h,i ◦ (af,g,h � 1i)

are homotopic to the homotopy

b(s, t, u) =


f( 8s

1+3u
, t) (0 ≤ s ≤ 1+3u

8
),

g( 8s
1+u
− 1+3u

1+u
, t) (1+3u

8
≤ s ≤ 1+2u

4
),

h( 8s
2−u −

2+4u
2−u , t) (1+2u

4
≤ s ≤ 4+3u

8
),

i( 8s
4−3u
− 4+3u

4−u , t) (4+3u
8
≤ s ≤ 1).

For example, a homotopy af,g,h�i ◦ af�g,h,i ' b is given by

(s, t, u, v) 7→



f( 8s
1+3u+uv

, t) (0 ≤ u ≤ 1
2
, 0 ≤ s ≤ 1+3u+uv

8
),

g( 8s
1+u−uv −

1+3u+uv
1+u−uv , t) (0 ≤ u ≤ 1

2
, 1+3u+uv

8
≤ s ≤ 1+2u

4
),

h( 8s
2−vu −

2+4u
2−vu , t) (0 ≤ u ≤ 1

2
, 1+2u

4
≤ s ≤ 4+4u−vu

8
),

i( 8s
4−4u+vu

− 4+4u−vu
4−4u+vu

) (0 ≤ u ≤ 1
2
, 4+4u−vu

8
≤ s ≤ 1),

f( 8s
v−uv+4u

, t) (1
2
≤ u ≤ 1, 0 ≤ s ≤ v−uv+4u

8
),

g( 8s
2−v+uv

− v−uv+4u
2−v+uv

, t) (1
2
≤ u ≤ 1, v−uv+4u

8
≤ s ≤ 1+2u

4
),

h( 8s
5−v+2u+uv

− 2+4u
5−v+2u+uv

) (1
2
≤ u ≤ 1, 1+2u

4
≤ s ≤ 5−v+2u+uv

8
),

i( 8s
3+v−2u−uv −

5−v+2u+uv
3+v−2u−uv ) (1

2
≤ u ≤ 1, 5−v+2u+uv

8
≤ s ≤ 1).

The other homotopy is similar and has twelve cases.
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The monoidal structure ‘�’ is obtained by replacing the roles of the vari-
ables s and t. To establish the monoidal structure on the identity functor (the
‘Eckmann-Hilton isomorphisms’) it is difficult to proceed directly: instead,
we will use the following proposition, due to [JS93] (see also [AM10, Proposi-
tion 6.11]). Definition 4.9 is a special case of [AM10, Proposition 6.4], where
we assume that the units I = J strictly coincide and that ∆I = µJ = id.

Definition 4.9. A strong 2-monoidal category (sharing units) consists of a
category C, two monoidal structures (�, I, a�, λ�, ρ�), (�, I, a�, λ�, ρ�) on
C, sharing a unit I with I � I = I, I � I = I, and a natural isomorphism

ζA,B,C,D : (A�B) � (C �D)→ (A� C) � (B �D). (23)

The maps (23) are required to endow both functors

� : (C× C,�)→ (C,�), � : (C× C,�)→ (C,�) (24)

with the structure of strong monoidal functors.

Proposition 6.11 in [AM10]. A strong 2-monoidal category (sharing units)
C gives rise to braidings on each of ‘�’, ‘�’. The identity functor can be
viewed as a braided strong monoidal isomorphism e�,� : (C,�)→ (C,�) (the
monoidal structure is defined in terms of the interchange isomorphism).

This braid on ‘�’ is given by the composition

a� b
λ��ρ�

←−−−− (1 � a) � (b� 1) ∼= (1 � b) � (a� 1)
λ��ρ�

−−−−→ b� a (*)
ρ��λ�

←−−−− (b� 1) � (1 � a) ∼= (b� 1) � (1 � a)
λ��ρ�

−−−−→ b� a.

The strong monoidal structure e�,� on the identity functor will be called
Eckmann-Hilton isomorphisms for the structures ‘�’, ‘�’ because they are
given by the familiar composition

e�,�
a,b : a� b

ρ��λ�

←−−−− (a� I) � (I � b) ∼= (a� I) � (I � b)
ρ��λ�

−−−−→ a� b.

The unit constraint e�,�
I : I → I is given by the identity morphism.
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Consider the category Π1(Ω2X) with the two monoidal structures ‘�’,
‘�’ defined above. Then we even have an equality

(f � g) � (h� i) = (f � h) � (g � i).

By the way we have defined the associativity and unitality constraints (not
using the t variable) we have identities

a�
A,A′,A′′ � a�

B,B′,B′′ = a�
A�B,A′�B′,A′′�B′′ ,

ρ�
A�B = ρ�

A � ρ�
B,

λ�
A�B = λ�

A � λ�
B.

This is just the assertion that ‘�’ in (24) is a strict monoidal functor. By
changing the roles of s and t we get dual identities which show that ‘�’
in (24) is also strict monoidal. The two monoidal structures on Π1(Ω2X)
therefore satisfy the conditions of [AM10, Proposition 6.11]. We conclude
that Π1(Ω2X) has two canonical braided monoidal structures (given by the
compositions (*) above) and canonically the structure of braided monoidal
functor on the identity between these two monoidal structures. Spelling out
the definition, we have explicitly

e�,�
f,g (s, t, u) =



f(2s, t
1−u) (u ≤ 1

2
, s ≤ 1

2
, t ≤ 1− u),

pt (u ≤ 1
2
, s ≤ 1

2
, t ≥ 1− u),

pt (u ≤ 1
2
, s ≥ 1

2
, t ≤ u),

g(2s− 1, t
1−u −

u
1−u) (u ≤ 1

2
, s ≥ 1

2
, t ≥ u),

f( s
u
, 2t) (u ≥ 1

2
, t ≤ 1

2
, s ≤ u),

pt (u ≥ 1
2
, t ≤ 1

2
, s ≥ u),

pt (u ≥ 1
2
, t ≥ 1

2
, s ≤ 1− u),

g( s
u
− 1−u

u
, 2t− 1) (u ≥ 1

2
, t ≥ 1

2
, s ≥ 1− u).

(25)

The definition makes no explicit use of the space X so that a map X → Y
clearly preserves the Eckmann-Hilton isomorphisms. To conclude:

Proposition 4.10. For each pointed space X, Π1Ω2X may be viewed as an
object of 2BrMonCat. A pointed map X → Y induces a strict morphism
Π1Ω2X → Π1Ω2Y in 2BrMonCat.
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4.2 Fundamental Groupoids of Loop Spaces

4.2.1 Fundamental Groupoid of a Kan complex

Definition 4.11. Let K ∈ Set∆ be a Kan complex. The fundamental
groupoid Π1K has object set K0. A morphism from k ∈ K0 to k′ ∈ K0 is a
homotopy class [u] (rel ∂∆1) of paths u : ∆1 → K from k to k′. Composition
[u] ◦ [v] is given by choosing an arbitrary filler in the diagram

Λ2
1

��

utv // K

∆2

σ

>> (26)

and passing to the homotopy class of d1σ.

The following is an elementary, though important observation:

(*) Suppose a, a′ : A → X are homotopic rel C, X fibrant. If
i : A ⊂ B is a trivial cofibration and b, b′ : B → X are extensions
of a, a′ along i, then b and b′ are homotopic rel C as well.

Proof. Use the standard cylinder object A × ∂∆1 → A ×∆1 → A in Set∆.
Since X is a Kan complex a ' a′ implies that we may find a homotopy
h : A×∆1 → X. By [GJ09, I.4.6] the map A×∆1 ∪B × ∂∆1 → B ×∆1 is
again a trivial cofibration so that we may extend h along it.

We conclude from (*) that composition determined via (26) is well-defined.
It is associative and has identity morphisms s0k for every k ∈ K0 (cf. [GJ09,
Section I.8]). The groupoid Π1K is equivalent to the more traditional ‘topo-
logical’ fundamental groupoid Π1|K| of the topological space |K| by [GJ09,
Theorem III.1.1]. The equivalence is given by taking the geometric realiza-
tion of points k : ∆0 → K and paths u : ∆1 → K.

4.2.2 Loop Spaces

The loop space ΩK of a pointed Kan complex K is the simplicial set whose
n-simplices are given by pointed simplicial maps (here, L+ := Lt∆0 denotes
the simplicial set L together with a disjoint base point)

f : S1 ∧∆•+ → K.
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This is again a Kan complex. A pointed simplicial map K → L induces
a map ΩK → ΩL of the loop spaces by post-composition. That is, Ω is a
functor. We wish to lift the composition of the functors

Kan∗
Ω−→ Kan∗

Π1−−→ Cat

to a functor ‘Π1Ω’ taking values in monoidal categories.

Recall that we have a pair of adjoint functors (even Quillen adjunction),
which relate the theory of simplicial sets and topological spaces (see [GJ09,
Theorem I.11.4]):

| · | : CGHaus // Set∆ : singoo

For any pointed Kan complexK, geometric realization induces an equivalence

| · | : Π1ΩK
'−→ Π1Ω|K|. (27)

In more detail, for any pointed simplicial set K there is a canonical map
(inducing (27) by applying Π1)

ΩK → singΩ|K|, (*)

which takes an simplex S1 ∧ ∆•+ → K to the adjoint of the geometric real-
ization |S1| ∧ |∆•+| → |K|, that is, the pointed map |∆•+| → |K||S

1|, which
amounts to an unpointed map ∆• → |K||S1|. For pointed Kan complexes K
the map (*) is a homotopy equivalence [HS05, Section 4.6], by the following
computation of homotopy groups

πiΩK ∼= πi+1K,

πisingΩ|K| ∼= πiΩ|K| ∼= πi+1|K| ∼= πi+1K.

For later use, we record also that, due to the Quillen equivalence | · | a sing,
the adjoint map

|ΩK| → Ω|K|

is a weak equivalence for every pointed Kan complex K.

Of course, Π1Ω|K| has a canonical monoidal structure ‘�’ determined by
the composition of loops. According to Proposition A.9 we may choose a
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monoidal structure ‘�’ on Π1ΩK so that (27) becomes a monoidal equiva-
lence. To make Π1Ω a functor we need to define a monoidal structure on
Π1Ωf for each map f : K → L:

Π1ΩK '
|·| //

Π1Ωf

��

Π1Ω|K|
Π1Ω|f |
��

Π1ΩL '
|·|
// Π1Ω|L|

Proposition A.14 implies that there is a unique monoidal structure on Π1Ωf
so as to refine this diagram to MonCat. Uniqueness of course implies func-
toriality:

Proposition 4.12. There exists a functor Π1Ω : Kan∗ → MonCat into
monoidal categories with p ◦ Π1Ω = Π1 ◦ Ω, where p : MonCat → Cat
denotes the forgetful functor. For each K ∈ Kan∗, geometric realization
induces a monoidal functor

(Π1ΩK,�)→ (Π1Ω|K|,�).

These are natural in K.

4.2.3 Aside: Exhibition of Monoidal Structure

Unlike the case of spaces, the fundamental groupoid of a loop space of a Kan
complex does not carry a canonical monoidal structure. Using (27), we have
singled out above an equivalence class of monoidal structures.

In this subsection we will give another view of this equivalence class, more
intrinsic to simplicial sets. It may safely be skipped.

The objects of Π1ΩK are based loops u : S1 → K. A morphism h : u→ v
is (a homotopy class of) a homotopy of based loops h : S1 ×∆1 → K which
restricts on ∂∆1 to u t v. We now define a monoidal structure on Π1ΩK.
For any pair of objects u, v ∈ Π1ΩK choose fillers

Λ2
1

��

utv // K.

∆2

σ(u,v)

>>
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We set u⊗ v = d1σ(u, v) on objects. Suppose [h] : u1 → u2 and [g] : v1 → v2

are morphisms in Π1ΩK. Then we may choose a filler in the diagram

(Λ2
1 ×∆1) ∪Λ2

1×∂∆1 (∆2 × ∂∆1)
(htg)∪(σ(u1,v1)tσ(u2,v2)) //

��

K.

∆2 ×∆1

τ

22

σ(u2, v2)σ(u1, v1)

h⊗ g

h
g

Define h⊗g as the homotopy class of τ |∆{0,2}×∆1. Using (*), this homotopy
class is seen to be independent of the choice of representatives h, g and of
the choice of filler τ .

Remark 4.13. The similarity between the definition of ‘⊗’ and ‘◦’ is no
coincidence: Π1ΩK can be identified with the automorphism category (at the
base-point) of the fundamental 2-groupoid of K. Under this correspondence,
the tensor product corresponds to vertical composition.

Lemma 4.14. We have defined a functor ⊗ : Π1ΩK × Π1ΩK → Π1ΩK.

Proof. We must check (h1 ⊗ g1) ◦ (h2 ⊗ g2) = (h1 ◦ h2)⊗ (g1 ◦ g2). Choose a
filler κ in the diagram

∆2 × Λ2
1

τ(h2,g2)tτ(h1,g1) //

��

K.

∆2 ×∆2

κ

55

Then κ|∆{0,2}×∆2 is a filler as in the definition of composition of κ|∆{0,2}×
∆{0,1} and κ|∆{0,2} ×∆{1,2}, whence κ|∆{0,2} ×∆{0,2} represents the class of
(h1⊗g1)◦(h2⊗g2). Also, κ|∆{0,1}×∆2, κ|∆{1,2}×∆2 are valid choices for fillers
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in the diagram defining composition in Π1ΩK. The classes of κ|∆{0,1}×∆{0,2}

and κ|∆{1,2}×∆{0,2} are therefore h1◦h2, g1◦g2. The restriction κ|∆2×∆{0,2}

shows that κ|∆{0,2} ×∆{0,2} is the class of (h1 ◦ h2)⊗ (g1 ◦ g2).
Next, we have to check that idu ⊗ idu = idu for every u : S1 → K. This

follows since we may choose the filler τ : ∆2 ×∆1 → K defining the tensor
product as a degenerate simplex (pieced together by the degenerate simplices
u : ∆3 → ∆0 → K).

To prove that this really defines a monoidal structure on Π1ΩK, we will
take a shortcut that appeals to the readers knowledge that Π1Ω|K| carries
a monoidal structure. At the same time, this will show that the monoidal
structure on Π1ΩK is independent (up to monoidal equivalence) of the choice
of fillers σ(u, v) above. Note that we ‘keep track’ of σ(u, v).

Recall that the monoidal structure on the fundamental groupoid Π1Ω|K|
may be defined similarly to the above, except that one takes a ‘standard’
choice of filler, coming from a standard retraction |∆2| → |Λ2

1|:

orth. projection

This amounts to the usual placing of loops and homotopies ‘next to each
other.’ The associators and unitors are defined by the ‘standard’ homotopies,
analogous to those used for the fundamental group.

Proposition 4.15. The functor ⊗ determines a monoidal structure on Π1ΩK.
Different choices of fillers σ(u, v) lead to equivalent monoidal structures. For
each choice, the functor induced by geometric realization

Π1ΩK → Π1Ω|K|

is a monoidal equivalence.

Proof. This follows from the proof of Proposition A.9. It suffices to remark
that by (*) the geometric realization of any choice of filler σ(u, v) is homotopic
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to the standard choice in Π1Ω|K|. Restricting to the bottom face we obtain
a homotopy |u ⊗ v| ' |u| ⊗ |v| which, in the notation of the proof of A.9 is
‘a’ tensor product for |u| and |v| in Π1ΩK.

4.2.4 Double Loop Spaces

We have a forgetful functor

q : 2BrMonCat→MonCat, (C,�,�, e) 7→ (C,�).

Proposition 4.16. The composition Π1Ω ◦ Ω : Kan∗ → MonCat may be
lifted along q to a functor Π1Ω2 : Kan∗ → 2BrMonCat is such a way that
for each K ∈ Kan∗ ‘geometric realization’

(Π1Ω2K,�,�, e)→ (Π1Ω2|K|,�,�, e)

is a morphism in 2BrMonCat.

Proof. The composition Π1Ω ◦ Ω may be lifted to BrMonCat: we have a
diagram of monoidal equivalences

(Π1Ω)(ΩK)
'−→ Π1Ω|ΩK| '−→ Π1ΩΩ|K|. (28)

The first functor is by definition of the monoidal structure on (Π1Ω)(ΩK)
and is given by geometric realization. The second is induced by the canonical
map |ΩK| → Ω|K| and is obviously monoidal.

The category on the right of (28) is braided monoidal. Using Proposition
A.10, we obtain canonical braided monoidal structures on each of the cate-
gories and functors in (28). Since Π1Ω2|f | is braided monoidal, Proposition
A.11 implies that the functors (Π1Ω)(Ωf),Π1Ω|Ωf | induced by a simplicial
map f are automatically braided.

According to Proposition 4.10, Π1Ω2|K| ∈ 2BrMonCat. Using Proposi-
tion A.9 we see that we may transport the second braided monoidal structure
‘�’ to Π1Ω2K as well. The functoriality of the second structure is again de-
termined by Proposition A.14. Also, the identity functor may be viewed
uniquely as a monoidal functor (Π1Ω2K,�) → (Π1Ω2K,�), on account of
Proposition A.14. This concludes the proof of Proposition 4.16.
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Remark 4.17. It is our convention that ‘�’ denotes the monoidal structure
on the fundamental groupoid of Ω2K which comes by viewing it as the one-
fold loop space of ΩK. The symbol ‘�’ indicates ‘horizontal concatenation.’

4.3 Construction of Cospectrum Groupoids

We now come to the construction of the functors

(Π1)−n : coSpt→ 2BrMonCat, n ∈ Z, (29)

which lift the assignments En 7→ Π1En.

4.3.1 Definition on Objects

For each object E ∈ coSpt we have weak equivalences

Ω2En+2 → Ω1En+1 → En.

Let 2BrMonCat
q−→ MonCat

p−→ Cat denote the forgetful functors. We
have a diagram of equivalences of categories

pqΠ1Ω2(En+2)→ pΠ1Ω(En+1)→ Π1En.

According to Proposition A.9 we may choose a monoidal structure ‘�’ on
Π1En so as to make

Π1Ω(En+1)→ (Π1En,�) (30)

a monoidal equivalence. Also, qΠ1Ω2(En+2) = (Π1Ω)(ΩEn+2)→ (Π1Ω)(En+1)
is monoidal (since Π1Ω is a functor). Therefore,

qΠ1Ω2(En+2)→ Π1Ω(En+1)→ (Π1En,�) (31)

is a diagram of monoidal equivalences. The category on the left is braided,
so Proposition A.10 implies that we may choose braids on the other two
categories so as to refine (31) to BrMonCat.

With help of Propositions A.9, A.10 the second braided monoidal struc-
ture ‘�’ on Π1Ω2(En+2) is analogously transported (involving choices of ‘�’
and of the braids) to Π1Ω(En+1) and then to Π1En, so we have another
diagram in BrMonCat

(Π1Ω2(En+2),�)→ (Π1Ω(En+1),�)→ (Π1En,�).

62



Consider now the following diagram in MonCat (the monoidal structure e
on the identity functor on the left is provided by Proposition 4.16):

(Π1Ω2(En+2),�)

e

��

// (Π1Ω(En+1),�)

��

// (Π1En,�)

��
(Π1Ω2(En+2),�) // (Π1Ω(En+1),�) // (Π1En,�)

Using Proposition A.13, the dashed identity functors uniquely inherit monoidal
structures, making the diagram commute. All in all, we have constructed a
diagram

Π1Ω2(En+2)→ (Π1Ω(En+1),�, e)→ (Π1En,�,�, e).

in 2BrMonCat. We now set (Π1)−nE = (Π1En,�,�, e). This completes
the definition of (29) on objects.

4.3.2 Cospectrum Groupoids for Abelian Group Spectra

For a spectrum of simplicial abelian groups, the above construction may
be greatly simplified: take both monoidal structures to be induced by the
addition in the abelian group and the trivial Eckmann-Hilton isomorphisms.
We prove below in (32) that this construction may be canonically identified
with the one given above.

If A is topological abelian group, the fundamental groupoid has a strict
symmetric monoidal structure given by addition:

a1 ⊗ a2 := a1 + a2, (a1
f−→ b1)⊗ (a2

g−→ b2) := f + g

The loop space of a topological abelian group is again a topological abelian
group, by pointwise addition of functions. The geometric realization |A|
of a simplicial abelian group A• is a topological abelian group (induced by
|A| × |A| = |A× A| → |A|).

Lemma 4.18. Suppose X is a topological abelian group, base-pointed by 0.
Then there is a canonical morphism in 2BrMonCat

(Π1Ω2X,�,�, e�,�)→ (Π1Ω2X,+,+, id)

covering the identity functor in Cat.
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Proof. We need to turn the identity functor into a monoidal functor in two
ways:

(Π1Ω2X,�)→ (Π1Ω2X,+), (Π1Ω2X,�)→ (Π1Ω2X,+)

This will be done by an Eckmann-Hilton argument, that is, by appealing to
Proposition 6.11 in [AM10] (recalled above): the equality

(f + g) � (h+ i) = (f � h) + (g � i)

along with the identities

a�
f,f ′,f ′′ + a�

g,g′,g′′ = a�
f+g,f ′+g′,f ′′+g′′ , ρ�

f+g = ρ�
f + ρ�

g , λ�
f+g = λ�

f + λ�
g

yields the structure e�,+ of braided monoidal functor on id. Unravelling the
definition of the Eckmann-Hilton isomorphism, we have

e�,+
f,g (s, t, u) =


f( 2s

1+u
, t) (s ≤ 1−u

2
),

f( 2s
1+u

, t) + g( 2s
1+u
− 1−u

1+u
, t) (1−u

2
≤ s ≤ 1+u

2
),

g( 2s
1+u
− 1−u

1+u
, t) (s ≥ 1+u

2
).

Exchanging the roles of s and t we obtain a similar Eckmann-Hilton homo-
topy for the other monoidal structure:

e�,+
f,g (s, t, u) =


f(s, 2t

1+u
) (t ≤ 1−u

2
),

f(s, 2t
1+u

) + g(s, 2t
1+u
− 1−u

1+u
) (1−u

2
≤ t ≤ 1+u

2
),

g(s, 2t
1+u
− 1−u

1+u
) (t ≥ 1+u

2
)

Recall that from a morphism in 2BrMonCat we require that it be compati-
ble with the Eckmann-Hilton isomorphisms on the target and source category.
We have taken ‘id’ on the target category, so we must show e�,+◦e�,� = e�,+

as morphisms in Π1Ω2X. We have:

e�,+
f,g ◦e

�,�
f,g (s, t, u) =



f(2s, t
1−2u

) (u ≤ 1
4
, s ≤ 1

2
, t ≤ 1− 2u),

g(2s− 1, t
1−2u
− 2u

1−2u
) (u ≤ 1

4
, s ≥ 1

2
, t ≥ 2u),

f( s
2u
, 2t) (1

4
≤ u ≤ 1

2
, s ≤ 2u, t ≤ 1

2
),

g( s
2u
− 1−2u

2u
, 2t− 1) (1

4
≤ u ≤ 1

2
, s ≥ 1− 2u, t ≥ 1

2
),

f(s, t
u
) (u ≥ 1

2
, t ≤ 1− u),

f(s, t
u
) + g(s, t

u
− 1−u

u
) (u ≥ 1

2
, 1− u ≤ t ≤ u),

g(s, t
u
− 1−u

u
) (u ≥ 1

2
, u ≤ t),

0 (else).
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A homotopy e�,+ ◦ e�,� ' e�,+ is given by H1 +H2, where

H1(s, t, u, v) =


f( 2s

1+uv
, t

1−2u+2uv
) (u ≤ 1

4
, s ≤ 1+uv

2
, t ≤ 1− 2u+ 2uv),

f( 2s
v+4u−3uv

, 2t
1+v

) (1
4
≤ u ≤ 1

2
, s ≤ v+4u−3uv

2
, t ≤ 1+v

2
),

f( 2s
2−v+vu

, t
u+v−uv ) (1

2
≤ u, s ≤ 2−v+vu

2
, t ≤ u+ v − uv),

0 (else),

H2(s, t, u, v) =


g(1− 2−2s

1+uv
, 1− 1−t

1−2u+2v
) (u ≤ 1

4
, s ≥ 1−uv

2
, t ≥ 2u− 2uv),

g(1− 2−2s
v+4u−3uv

, 1− 2−2t
1+v

) (1
4
≤ u ≤ 1

2
, s ≥ 2−v−4u+3uv

2
, t ≥ 1−v

2
),

g(1− 2−2s
2−v+vu

, 1− 1−t
u+v−uv ) (1

2
≤ u, s ≥ v−vu

2
, t ≥ 1− u− v + uv),

0 (else).

e�,+ ◦ e�,�
f +

g

f

g+
e�,+

Remark 4.19. We have just defined a functor (Π1)−n : coSpt→ 2BrMonCat.
For cospectra (En, εn) of simplicial abelian groups (with linear structure
maps) there is another such functor

(Πab
1 )−n : coSptab → 2BrMonCat, (En, εn) 7→ (En,+,+, id).

We shall now describe a canonical natural isomorphism

(Π1)−n ∼= (Πab
1 )−n (32)

covering the identity isomorphism between the corresponding Cat-valued
functors. When understood that we are working with a spectrum E of sim-
plicial abelian groups, we will identify (Π1)−nE with the easier construction
(Πab

1 )−nE using this natural isomorphism.
By Lemma 4.18, there is a canonical way to view the identity as a mor-

phism in 2BrMonCat

(Π1Ω2|En+2|,�,�, e�,�)→ (Π1Ω2|En+2|,+,+, id).

By definition of the structure on (Π1)−nE, the first row in the following
diagram consists of morphisms in 2BrMonCat. The second row is obviously
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by morphisms in 2BrMonCat and the left vertical morphism has just been
endowed with such a structure:

(Π1Ω2|En+2|,�,�, e�,�)

��

(Π1Ω2)En+2

��

'oo ' // (Π1)−nE

��
(Π1Ω2|En+2|,+,+, id) (Π1Ω2En+2,+,+, id)'

oo
'

// (Π1En,+,+, id)

By Propositions A.11, A.13, and A.14 the dotted arrow may uniquely be
endowed with the structure of morphism in 2BrMonCat, making the dia-
gram commute in 2BrMonCat. The right vertical isomorphism yields the
sought-for (32); naturality follows from uniqueness.

4.3.3 Definition on Morphisms

Suppose next that f : E → F is a map of cospectra. Since Π1Ω2(f) is a
morphism in 2BrMonCat we may use Propositions A.13, A.11 to uniquely
endow Π1(f) and Π1(Ωf) with the structure of a monoidal functor, for each
of the two structures:

(Π1Ω2(En+2),�/�)

Π1Ω2(f)�/�

��

// (Π1Ω(En+1),�/�)

Π1Ω(f)�/�

��

// (Π1En,�/�)

Π1(f)�/�

��
(Π1Ω2(Fn+2),�/�) // (Π1Ω(Fn+1),�/�) // (Π1Fn,�/�).

The uniqueness of the monoidal data implies that the assignments f 7→
Π1f

�/�,Π1Ωf�/� are functorial also in this data. The commutativity of
Π1f with the Eckmann-Hilton isomorphisms (namely (22) commutes) follows
from the uniqueness part of Proposition A.13 and since this is true for Π1Ω2f
(by Proposition 4.16).

5 Additive Structures

For our construction Ê above to qualify as a differential extension of E in
the sense of Definition 1.12 we must produce abelian group structures on the
sets constructed in Definition 3.3 and prove that a, I, R are homomorphisms.

We have already mentioned that the construction of additional structure
on Ê relies on a coherent choice of the fundamental cocycles. The choice (16)
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is well-suited for defining integration maps.

For the additive structure it is possible to proceed in several ways:

1. Restrict to rationally even cohomology theories E. This was sketched
in Section 3.5.

2. View Ên(M) as a homotopy group of an appropriate spectrum that
depends onM . This will be the method of choice in the more advanced
approach presented later. The main drawback is that it is hard to ‘see’
how addition works concretely. As such, it is difficult to relate it with
other explicitly constructed structures.

3. Take a middle ground between 1. and 2. by observing that in an Ω-
spectrum (whose adjoint structure maps are homeomorphisms) there
is a canonical choice for the maps αn : En × En → En representing
addition:

En × En ≈ ΩEn+1 × ΩEn+1
concat−−−−→ ΩEn+1 ≈ En. (33)

In this case, elements An with (20) may be written down concretely
(Remark 3.16) and the coherence conditions are exhibited by certain
higher dimensional ‘canonical’ simplices. We will use the results of the
previous chapter to proceed more systematically.

5.1 The Cocycle Spectrum

The goal of this section is to construct a spectrum whose n-th space is given
by (singular) cocycles on the cosimplicial space K ∧∆•+:

Z̃n(K ∧∆•+) (34)

The spaces (34) have been introduced in [HS05]. The arguments presented
there imply that there exists a spectrum whose n-th level is weakly equivalent
to (34). In part this is because they need to chose certain functorial sections
which, strictly speaking, involves a fibrant replacement in a diagram model
category (in particular, the spaces (34) are replaced).

We will give a refined treatment which produces functorial spectra with
the actual spaces (34). This additional control will be crucial in verifying
linearity of explicit constructions of further data defined on Ê.
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5.1.1 Reduced Chain Complex of a Space

The forgetful functor sAb → Set∗∆ has a left adjoint Z̃ given on a pointed
simplicial set K ∈ Set∗∆ by the formula

Z̃Kn = free abelian group on generators Kn \ {∗} = ZKn/Z{∗}.

Composing it with the Moore complex functor C : sAb → Ch≥0 into the
category of positive chain complexes yields the reduced chain complex functor

C̃ : Set∗∆ → Ch≥0.

Being the composition of two left adjoints, C̃ preserves colimits.
For a pointed topological space X, we will use the functor sing from (108)

to extract a pointed simplicial setK = sing(X). We will also use the notation
C̃∗(X) = C̃∗(K) = C(Z̃ sing(X)).

5.1.2 Alexander-Whitney and Eilenberg-Zilber Maps

For each p + q = n ∈ N define morphisms pθ : [p] → [n], θq : [q] → [n] in ∆
by pθ(i) = i, θq(i) = i+ p.

Definition 5.1. TheAlexander-Whitney map is a canonical quasi-isomorphism

AW : C(A⊗B)
∼−→ C(A)⊗ C(B), A,B ∈ sAb

AW (a⊗ b) =
∑
p+q=n

(pθ)
∗a⊗ (θq)

∗b, a ∈ An, b ∈ Bn

from the complex of the level-wise tensor product of simplicial abelian groups
to the tensor product of the corresponding chain complexes.

A shuffle λ ∈ Σ(p, q) is a morphism λ : [p + q] → [p] × [q] from (0, 0)
to (p, q). It induces a map λ∗ : ∆p+q → ∆p × ∆q. A shuffle has a signum
sgn(λ) (cf. [tD08, p.240]). Working instead with normalized complexes, the
following map is a canonical section of AW :

Definition 5.2. The Eilenberg-Zilber map EZ (or shuffle map) is

EZ : C(A)⊗ C(B)→ C(A⊗B)

EZ(a⊗ b) =
∑

λ∈Σ(p,q)

sgn(λ) · (a⊗ b) ◦ λ∗,

68



where a : ∆p → A in C(A)p and b : ∆q → B in C(B)q.

We will mainly apply these maps for simplicial abelian groups A = Z̃K,
B = Z̃L where it should be noted that

Z̃K ⊗ Z̃L = Z̃(K ∧ L), K, L ∈ Set∗∆.

Remark 5.3. There are version of AW , EZ for the normalized complex as
well, and below it is possible to work with them instead.

5.1.3 Structure Maps of the Cocycle Spectrum

Definition 5.4. Fix a Z-graded real vector space V ∗, which we will view as
a chain complex, having n-th chain group Vn = V −n and zero differential.
The vector space of reduced n-cocycles of K ∈ Set∗∆ (with coefficients in V )
is the vector space of chain maps

Z̃n(K) = Ch≥0(C̃(K), V [−n]), n ∈ Z.

Here [k] denotes the shift of a chain complex, given by C[k]∗ = Ck+∗.

We may view Z̃n : Set∗∆ → VectR as a functor. In particular, the
cosimplicial object ∆•+ of Set∗∆ gives rise to simplicial vector spaces (these
are always Kan complexes [GJ09, Lemma I.3.4])

Z̃n(K ∧∆•+), n ∈ Z. (35)

We shall place these vector spaces inside a spectrum. That is, we will
produce weak equivalences

Z̃n−1(K ∧∆•+)→ ΩZ̃n(K ∧∆•+). (36)

Remark 5.5. The spaces (35) are equivalent to the value of the Dold-Kan
functor DK : Ch≥0 → sAb on the truncated mapping chain complex

τ≥0Hom(C̃(K), V [−n]).

In particular, (35) is equivalent to the mapping space MapCh(C̃(K), V [−n])
in the ∞-category Ch of all chain complexes. The cocycle spectrum may
therefore be viewed as a kind of function spectrum construction.
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We have a diagram of quasi-isomorphisms

C̃(K ∧∆•+ ∧ S1)
AW //

C̃(K ∧∆•+)⊗ C̃(S1)
EZ
oo

id⊗pr //
C̃(K ∧∆•+)⊗ Z[1].

id⊗incl
oo (37)

The complex on the right may be identified with the shift C̃(K ∧∆•+)[−1].

Lemma 5.6. There is a canonical isomorphism of simplicial sets

ΩZ̃n(K ∧∆•+) ∼= Z̃n(K ∧∆•+ ∧ S1). (38)

Proof. The usual subdivision of the prism in terms of the maps hi : ∆k+1 →
∆k ×∆1 (i = 0, . . . , k) [GJ09, p.17] leads to a coequalizer diagram in Set∗∆

K ∧ (∆k)+ id∧dj+1
//

inj
��

K ∧ (∆k+1)+

inj
��∨k

j=−1K ∧ (∆k)+ //
//
∨k
j=0 K ∧ (∆k+1)+ h0∨...∨hk // K ∧ (∆k)+ ∧ S1.

K ∧ (∆k)+

id∧dj+1
//

inj

OO

K ∧ (∆k+1)+

inj+1

OO

Here, the righthand vertical maps inl map to the base point if l = −1, k+ 1.
In view of the description of the simplicial loop space in Corollary A.18,
an element of ΩZ̃n(K ∧ (∆k)+) amounts to a map to V [−n] on C̃ of this
coequalizer. Since C̃ preserves colimits, we conclude the result.

We remind the reader that V is suppressed from the notation (35).

Lemma 5.7. The homotopy groups πi
(
Z̃n(K ∧∆•+), 0

)
are given by coho-

mology H̃n−i(K;V ) with coefficients in V .

A similar statement appears without proof in [HS05, D.13] and also con-
tains a slight inaccuracy (the complex needs to continue to the right). It
seems better therefore to prove our assertion.

The homotopy groups of a simplicial group (or vector space, etc.) are
defined as the simplicial homotopy groups of the underlying simplicial set
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(110). We will use that the simplicial homotopy groups πi(A, 0) of a simplicial
abelian group A can be identified with the homology of the corresponding
Moore complex [GJ09, Corollary III.2.7].

Proof. The proof has two parts:

(i) For each n ∈ Z, the simplicial abelian group C̃n(K ∧ ∆•+;V ) of all
n-cochains with coefficients in V is contractible.

Using the obvious abbreviations (for example, Bn = B̃n(K∧∆•+;V )) we then
show:

(ii) The short exact sequences 0→ Zn → Cn → Bn+1 → 0 and 0→ Bn →
Zn → Hn → 0 of the Moore complexes imply Lemma 5.7.

Here, the Moore complex construction refers to ‘the •-direction’ and there-
fore produces a positive chain complex (regardless of V ).

To prove the first assertion, we use ‘extension by zero’ [HS05, D.11]:

Hk : C̃n(K ∧∆k
+;V )→ C̃n(K ∧∆k+1

+ ;V )

sends u ∈ C̃n(K ∧ ∆k
+;V ) to the V [−n]-valued cochain on C̃(K ∧ ∆k+1

+ )
which is given by u on simplices contained in K ∧ ∆k

+ (viewed as the face
opposite to 0) and takes every other simplex to zero. The maps Hk define a
chain homotopy from the identity to zero, so the chain complex belonging to
C̃n(K∧∆•+;V ) is acyclic: In detail, Hk : C̃n(K∧∆k

+;V )→ C̃n(K∧∆k+1
+ ;V )

is given by

(Hku)(∆n σ−→ K ∧∆k+1
+ ) =

{
u(τ) (∃τ : σ = (idK ∧ d0) ◦ τ),

0 (else).

Observation: We have (id ∧ di)∗(Hku) =

{
u (i = 0),

Hk+1((id ∧ di−1)∗u) (i 6= 0).

Proof. Clearly, (id∧d0)∗(Hku) = u. Suppose i > 0. In case (id∧di)◦σ = (id∧
d0)◦κ for some κ we have (id∧di)∗(Hku)(σ) = u(κ) and (id∧di)∗(Hku)(σ) = 0
otherwise. But this is also the value of

Hk+1((id ∧ di−1)∗u)(σ) =

{
u((id ∧ di−1) ◦ τ) (∃τ : σ = (id ∧ d0) ◦ τ),

0 (else),

due to the following observation (applied to the second component):
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Suppose σ ∈ ∆k
n. If di ◦ σ = d0 ◦ κ for some κ, then there exists

τ with σ = d0 ◦ τ . Moreover, κ = di−1 ◦ τ .

The observation holds because σ corresponds to a map σ : [n]→ [k− 1] and
the equation diσ = d0κ shows that 0 is not in the image of σ, so one may
factor σ = d0τ . Since d0 is injective, d0di−1τ = did0τ = diσ = d0κ implies
κ = di−1 ◦ τ .

Using this observation, we calculate that (Hk) defines a chain homotopy

k+1∑
i=0

(id ∧ di)∗Hku+
k∑
j=0

(−1)jHk+1[(id ∧ dj)∗u]

=u+
k+1∑
i=1

(id ∧ di)∗Hku+
k+1∑
i=1

(−1)i−1Hk+1[(id ∧ di−1)∗u] = u,

where we have reindexed the second summation according to j = i−1. Using
[GJ09, III.2.7], we conclude (i).

To deduce (ii), we consider long exact sequences in homology. First
note that the projection induces an isomorphism from H̃n(K ∧ ∆•+;V ) to
H̃n(K;V ). The differential

∑
(−1)i(di)∗ then corresponds to 1 or 0, depend-

ing on the parity of the dimension. The homology of the simplicial abelian
group H̃n(K∧∆•+;V ) is therefore H̃n(K;V ) in degree 0 and zero else. Using
(i) and the long exact sequence

· · · ∂−→ H∗(Z
n)→ H∗(C

n)→ H∗(B
n+1)

∂−→ · · ·

we deduce that H0(Bn+1) = 0 for each n. The other long exact sequence

· · · ∂−→ H∗(B
n)→ H∗(Z

n)→ H∗(H
n)

∂−→ · · ·

now implies π0(Z̃n(K ∧∆•+;V ), 0) = H0(Zn) = H0(Hn) = H̃n(K;V ). Using
this and Lemma 5.6 we may now calculate

πi

(
Z̃n(K ∧∆•+), 0

)
∼= π0

(
ΩiZ̃n(K ∧∆•+), 0

)
∼= π0

(
Z̃n(K ∧∆•+ ∧ Si), 0

)
= H̃n(K ∧ Si;V ) ∼= H̃n−i(K;V ).

72



Remark 5.8. For every pointed spaceX, the simplicial abelian group Z̃n(X∧
|∆•+|;V ) also has i-th homotopy group H̃n−i(X;V ). We need only to change
the use of Lemma 5.6 to the assertion that the canonical map

Z̃n(X ∧ |∆•+| ∧ |S1|;V )→ ΩZ̃n(X ∧ |∆•+|;V )

given by ‘subdivision of the prism’ is a weak equivalence of simplicial abelian
groups [HS05, (4.45)].

Now for the definition of the structure maps (36). We have

ΩZ̃n(K ∧∆•+) ∼= Z̃n(K ∧∆•+ ∧ S1) = Ch≥0(C̃(K ∧∆•+ ∧ S1), V [−n]),

Z̃n−1(K ∧∆•+) = Ch≥0(C̃(K ∧∆•+)⊗ Z[1], V [−n]).

Definition 5.9. The structure maps Z̃n−1(K∧∆•+)→ ΩZ̃n(K∧∆•+) in (36)
are defined as pullback AW ∗(id⊗ pr)∗ along (37).

Lemma 5.10. The maps (36) are weak equivalences.

Proof. Since Z̃n(K∧∆•+∧S1) is isomorphic to ΩZ̃n(K∧∆•+), we are reduced
to proving that

Z̃n−1(K ∧∆•+)→ Z̃n(K ∧∆•+ ∧ S1)

is a weak equivalence. But, applying the i-th homotopy group, this map
induces the suspension isomorphism

H̃n−1−i(K;V )→ H̃n−i(K ∧ S1;V ).

As already mentioned, it will be more convenient to work instead with
the following weak inverse of (36):

(id⊗ incl)∗EZ∗ : ΩZ̃n(K ∧∆•+)→ Z̃n−1(K ∧∆•+). (39)

5.2 Chern Character Transformation

We view Z̃n(K ∧∆•+) as a cospectrum because we wish to define a map

ch : Hom(K,E)→ Z̃n(K ∧∆•+) (40)
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and in ‘elementary’ treatments of spectra one usually requires that maps
commute strictly with the structure maps6. We will instead define a cospec-
trum map (40).

We will work in this chapter with a spectrum (En, εn) of pointed Kan
complexes and suppose that the adjoint structure maps

εadj
n : En → ΩEn+1

are isomorphisms of simplicial sets. Beginning with a spectrum as in (15),
such a spectrum may be obtained by applying the singular space functor:

singEn
∼=−→ sing(ΩEn+1) ∼= Ωsing(En+1)

To explain the isomorphism, note that a k-simplex of sing(ΩEn+1) amounts
to a simplicial map S1 ∧ |∆k

+| → En+1, while a k-simplex of Ωsing(En+1)
amounts to a map S1 ∧ ∆k

+ → sing(En+1) (or |S1 ∧ ∆k
+| → En+1). The

isomorphism now follows from the fact that | · | preserves products [GJ09,
Proposition I.2.4], so that |S1 ∧∆k

+| ∼= |S1| ∧ |∆k
+|. By definition of singular

cochains (and of ∫S1), our fundamental cocycles (16) then amount to elements

ιn ∈ Z̃n(En;V ), n ∈ Z,

with the property that each of the following diagrams commute:

C̃(En)⊗ Z[1] // C̃(En)⊗ C̃(S1) EZ // C̃(En ∧ S1)
(εn)∗ // C̃(En+1)

ιn+1

��
C̃(En)[−1]

ιn[−1]
// V [−n− 1].

(41)

5.2.1 Mapping and Loop Spaces

We recall in this section the most commonly used notions of mapping spaces.
The mapping space Hom(X, Y ) [GJ09, Section I.5] between simplicial sets
X, Y has as n-simplices all simplicial maps

X ×∆n → Y.

6It is possible to develop stable homotopy with maps which commute with the structure
maps up to homotopy, provided one keeps track of them (and uses them to define the notion
of homotopy of such maps). This has already been observed in [Ada95, p.141] and is the
homotopy category hSp of the ∞-category of spectra in [Lur07c].
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We have an adjunction Set∆(K,Hom(X, Y )) ∼= Hom(X ×K,Y ) given by
evaluation [GJ09, Proposition I.5.1]. These definitions turn the category of
simplicial sets into a simplicial category. Another common example is the
category of pointed simplicial sets Set∗∆, which is tensored over simplicial
sets via [GJ09, p.84]

X ⊗K = X ∧K+, X ∈ Set∗∆, K ∈ Set∆.

The mapping space is given by Hom∗(X, Y )n = Set∗∆(X ⊗ ∆n, Y ). For
example, the loop space is defined by

Ω(X) = Hom∗(S
1, X).

The suspension is defined by ΣX = X ∧ S1. We have isomorphisms

Hom∗(ΣX, Y ) ∼= Hom∗(X,ΩY )

Recall that a simplicial category (in the sense of [GJ09, Definition II.2.1])
is a category C along with functors

HomC : C op × C → Set∆,

⊗ : C × Set∆ → C ,

homC : Setop
∆ × C → C .

such that

1. The zero simplices of HomC (X, Y ) is given by the set C (X, Y ) of
morphisms in the category C .

2. We have adjunctions [GJ09, p.83]

HomSet∆
(K,HomC (X, Y )) ∼= HomC (X ⊗K,Y ),

∼= HomC (X,hom(K,Y )).

3. X ⊗ (K × L) ∼= (X ⊗K)⊗ L.

Parts of this data is determined by the other parts, for example, we have
HomC (X, Y )n ∼= C (X ⊗∆n, Y ).

The most obvious example is the category of simplicial sets with ⊗ = ×
and HomSet∆

(X, Y ) = hom(X, Y ) (whose n-simplices are simplicial maps
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X ×∆n → Y ). If C = Set∗∆ is the simplicial category of pointed simplicial
sets [GJ09, p.84], we have

X ⊗K = X ∧K+, hom(K,X) = HomSet∆
(K,X).

Here, hom(K,X) has the constant map given by the base-point of X as
base-point. The n-simplices of the mapping space are simplicial maps

X ∧∆n
+ → Y.

If understood from the context that X, Y are to be viewed as pointed sim-
plicial sets, we will also write Hom(X, Y ) for HomSet∗∆

(X, Y ). Using the
constant base-point map allows us to view HomSet∗∆

(X, Y ) as a pointed sim-
plicial set.

The adjunction above specializes to the isomorphisms of simplicial sets

Hom(K,ΩY ) ∼= HomSet∗∆
(S1

+ ∧K,Y ) ∼= ΩHom(K,Y ).

Note that S1
+ ∧ K is the unreduced suspension of K. If we base-point

HomSet∗∆
(X, Y ) by the constant base-point map, we have an adjunction in

Set∗∆
(− ∧X) a HomSet∗∆

(X,−)

Proof. We must show that for any pointed simplicial set A we have Set∗∆(A∧
X, Y ) ∼= Set∗∆(A,HomSet∗∆

(X, Y )). An unpointed simplicial map f : A →
HomSet∗∆

(X, Y ) amounts by the adjunction 2. above to a pointed map g :
A+ ∧ X → Y , that is, a map A × X → Y which takes A × {pt} to the
base-point. The condition that f be pointed means precisely that g take
{pt} × X to the base-point as well, that is, defines a map on the smash
product A ∧X.

From this adjunction we deduce pointed isomorphisms

HomSet∗∆
(X,ΩY ) ∼= HomSet∗∆

(ΣX, Y ) ∼= ΩHomSet∗∆
(X, Y ). (42)

Indeed, simplices in these simplicial sets are described respectively by

X ∧∆•+ → ΩY,

X ∧ S1 ∧∆•+ → Y,

S1 ∧∆•+ ∧X → Y.
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The category CGHaus of compactly generated Hausdorff spaces is also
a simplicial category, but we will instead usually use the internal hom

Y X = {X → Y continuous},

endowed with the compact-open topology. We then have [DK01, Theorem
6.5] homeomorphisms

ZX×Y ∼= (ZY )X .

If X, Y ∈ CGHaus∗ are pointed, we let

Y X = {X → Y continuous, pointed},

topologized as a subspace of the unpointed exponential. The above homeo-
morphism then restricts to a pointed homeomorphism

ZX∧Y ∼= (ZY )X .

For pointed X, we let ΩX = XS1 and ΣX = X ∧ S1. Then

(ΩY )X = (Y S1

)X ∼= Y ΣX ∼= (Y X)S
1

= Ω(Y X).

5.2.2 Mapping Spectra

Let (Fn)n∈Z be a spectrum of pointed Kan complexes so that we have pointed
weak equivalences

Fn
'−→ ΩFn+1.

Both sides are fibrant. By applying (the dual of) [GJ09, II.3.15] to Set∗∆ we
deduce that for any (automatically cofibrant) K ∈ Set∗∆ the structure maps
induce weak equivalences

Hom(K,Fn)
'−→ Hom(K,ΩFn+1) ∼= ΩHom(K,Fn+1). (43)

The last isomorphism is (42).

Definition 5.11. For a pointed simplicial set K, the spaces Hom(K,Fn)
along with the structure maps (43) form the mapping spectrum Hom(K,F ).
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5.2.3 Construction of ch

In this subsection, we will define the cospectrum map from above

ch : Hom(K,E)→ Z̃n(K ∧∆•+). (40)

Definition 5.12. The n-th level of the map (40) is defined as ‘pullback along
the fundamental cocycles:’

ch : Hom(K,En) −→ Z̃n(K ∧∆•+)

(f : K ∧∆•+ → En) 7−→ (C̃(K ∧∆•+)
f∗−→ C̃(En)

ιn−→ V [−n]) = f ∗ιn.

Proposition 5.13. The maps in Definition 5.12 commute strictly with the
cospectrum structure maps (the inverse of (43) and the canonical section
(39)).

Proof. For each f : K ∧∆•+∧S1 → En+1 let g : K ∧∆•+ → En be the unique

map with εn ◦ (g ∧ 1S1) = f (given by K ∧ ∆•+
fadj

−−→ ΩEn+1
(εadj
n )−1

−−−−→ En).
Unwinding the definitions, we see that we need to compare

C̃(K ∧∆•+)⊗ Z[1]
1⊗incl−−−→ C̃(K ∧∆•+)⊗ C̃(S1)

EZ−−→ C̃(K ∧∆•+ ∧ S1)

f∗−−−→ C̃(En+1)
ιn+1−−→ V [−n− 1]

with the shift of

C̃(K ∧∆•+)
g∗−−→ C̃(En)

ιn−−→ V [−n].

By naturality of EZ and the compatibility (41) we have a commutative
diagram in which the maps we wish to compare appear:

C̃(K ∧∆•+)⊗ Z[1]
g∗⊗1 //

1⊗incl
��

C̃(En)⊗ Z[1]

1⊗incl
��

ιn⊗1 // V [−n]⊗ Z[1]

C̃(K ∧∆•+)⊗ C̃(S1)
g∗⊗1 //

EZ
��

C̃(En)⊗ C̃(S1)

EZ
��

(41)

C̃(K ∧∆•+ ∧ S1)

f∗

22
(g∧1)∗ // C̃(En ∧ S1)

(εn)∗ // C̃(En+1)

ιn+1

OO
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5.3 The Additivity Coherence Conditions

5.3.1 Chern Character as a Functor

The Chern character (40) may be regarded as a functor

Kan∗ → Ar(coSpt)

into the category of arrows in coSpt, whose morphisms are commutative
squares. Post-composing with the fundamental groupoid construction (Π1)−n
of cospectra takes us to the category Ar(2BrMonCat):

Theorem 5.14. For each K ∈ Kan∗, the Chern character induces a natural
family of morphisms in 2BrMonCat

(Π1)−nHom(K,E) −→ (Π1)−nZ̃(K ∧∆•+).

Let us unwind what this means in more detail. First we recall the def-
inition of (Π1)−nHom(K,E): it denotes category Π1Hom(K,En) and is
a braided monoidal category in two ways ‘�’, ‘�’ (arising essentially from
En ∼= Ω2En+2). We had also defined a braided monoidal structure on the
identity functor (stemming from an Eckmann-Hilton argument)

e�,� : (Π1Hom(K,En),�)→ (Π1Hom(K,En),�).

The structure on the category (Π1)−nZ̃(K ∧ ∆•+) is defined in the same
way. It was seen above that we may identify it (in 2BrMonCat) with
(Πab

1 )−nZ̃(K ∧∆•+), which as we recall denotes the category Π1Z̃
n(K ∧∆•+)

with both monoidal structures given by addition ‘+’ in the simplicial abelian
group and the strict monoidal structure on the identity functor.

The theorem now asserts that the functor Π1ch : Π1Hom(K,En) →
Π1Z̃

n(K ∧∆•+) may be viewed as a monoidal functor for each of the struc-
tures ch� : �→ +, ch� : �→ +. Since Π1ch is a morphism in 2BrMonCat,
these two monoidal structures on Π1ch are related by the following commu-
tative diagram in braided monoidal categories:

(Π1Hom(K,En),�) ch�
//

e�,�

��

(Π1Z̃
n(K ∧∆•+),+)

id
��

(Π1Hom(K,En),�)
ch�

// (Π1Z̃
n(K ∧∆•+),+)
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5.3.2 Transition to Spaces

We now indicate how Theorem 5.14 specializes to pointed spaces. Suppose
still that (En, εn) is a spectrum whose adjoint structure maps are pointed
homeomorphisms and that X is a pointed space. We may then apply our
result to K = sing(X) and (sing(En), sing(εn)).

As outlined in Appendix A.3, a space X gives rise to a Kan complex
sing(X) whose n-simplices are continuous maps |∆n| → X. There is a canon-
ical map

sing(Y X)→ HomSet∆
(singX, singY ), (44)

which takes an n-simplex σ : ∆n → Y X to

∆n × sing(X)→ sing(∆n)× sing(X) = sing(∆n ×X)
sing(σadj)−−−−−→ sing(Y ).

The simplicial map (44) is a weak equivalence: applying [GJ09, Lemma
II.3.15] to X ' |sing(X)| and Y yields a weak equivalence

sing(Y X) = HomCG(X, Y ) ' HomCG(|sing(X)|, Y ).

The map (44) is the composition of this equivalence with the equivalence

HomCG(|sing(X)|, Y ) ' HomSet∆(sing(X), sing(Y ))

from [GJ09, p.95].

Definition 5.15. ForX, Y ∈ CGHaus∗, let Map(X, Y ) = Π1Y
X = Π1sing(Y X).

Proposition 4.10 asserts that Map(X,En) ∈ 2BrMonCat, by writing
En ≈ Ω2En+2 and Map(X,En) ∼= Π1(Ω2En+2)X ∼= Π1Ω2(EX

n+2).

Lemma 5.16. The natural equivalence induced by (44)

Map(X,En)→ (Π1)−nHom(singX, singE) (45)

may canonically be viewed as a morphism in 2BrMonCat.

Proof. By definition of (Π1)−nHom(singX, singE) we have morphisms in
2BrMonCat

(Π1)−nHom(singX, singE)
'←− Π1Ω2Hom(singX, singEn+2), (A)

Π1Ω2Hom(singX, singEn+2)
'−→ Π1Ω2|Hom(singX, singEn+2)|. (B)
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As an ordinary category, Π1Ω2Hom(singX, singEn+2) is isomorphic to Π1Ω2E
|singX|
n+2

(an object S2 → Hom(singX, singEn+2) amounts to S2∧singX → sing(En+2)

or to |S2|∧|singX| → En+2). Using Proposition 4.10, we may view Π1Ω2E
|singX|
n+2

as an object of 2BrMonCat. The map

E
|singX|
n+2 → |Hom(singX, singEn+2)|,

taking f : |singX| → En+2 to its adjoint singX → singEn+2 (viewed as a
zero simplex of the right hand side), induces a strict morphism (second part
of Proposition 4.10)

Π1Ω2E
|singX|
n+2 → Π1Ω2|Hom(singX, singEn+2)|.

It lifts uniquely via Propositions A.11, A.14 along (B) to a morphism in
2BrMonCat

Π1Ω2E
|singX|
n+2 → Π1Ω2Hom(singX, singEn+2). (C)

Pullback along |singX| → X, the map EX
n+2 → E

|singX|
n+2 , induces another

strict morphism (second part of Proposition 4.10)

Map(X,En) ∼= Π1Ω2EX
n+2 → Π1Ω2E

|singX|
n+2 . (D)

Each of (A), (C), (D) are morphisms in 2BrMonCat, so that their compo-
sition (45) is also a morphism in 2BrMonCat.

Definition 5.17. For X ∈ CGHaus∗ and a graded vector space V , let
C̃ n(X) denote the strict symmetric monoidal groupoid from Example A.3
induced by the homomorphism δ : C̃n−1(X;V )δ → C̃n(X;V ).

These may be organized into a functor C̃ n : CGHausop
∗ → SymMonCatstrict

by pullback of cochains along maps.

Lemma 5.18. We have strict symmetric monoidal functors, natural in X,

(Π1)−nZ̃(sing(X) ∧∆•+) = Π1Z̃
n(sing(X) ∧∆•+)→ C̃ n(X) (46)

given by inclusion on objects (the first equality is by definition). To the class
of f : C̃(sing(X) ∧∆1

+)→ V [−n] we assign by (59) the class of the (n− 1)-
cochain ∫∆1 f .
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Proof. (46) is well-defined: making use of the abelian group structure, it
suffices to show the following: if u ∈ Z̃n(sing(X) ∧∆2

+) with d0u = d2u = 0,
then the (n − 1)-cochain associated to d1u bounds. This is immediate from
Lemma 6.2 (ii). Since

∫
S1 is linear, (46) is a strict monoidal functor. Also∫

S1 is compatible with pullback, by Lemma 6.2 (i).

Pre- and post-composing the result of Theorem 5.14 with these functors
we deduce:

Theorem 5.19. The Chern character induces morphisms in 2BrMonCat

Map(X,En)
ch−−→ C̃ n(X).

Explicitly, ch(c) = c∗ιn on objects and ch(h) = ∫I h∗ιn on morphisms. These
are natural in X in the sense that any pointed map f : X → Y induces a
commutative diagram in 2BrMonCat:

Map(Y,En) ch //

f∗

��

C̃ n(Y )

f∗

��

Map(X,En)
ch
// C̃ n(X)

5.3.3 Display of Coherence Conditions

Theorem 5.19 is really a result about our fundamental cocycles ιn and the
possibility of coherently chosing cochains An as in (20). We will make this
explicit in this section.

Remark 5.20. For the results of this section it would have sufficed to work
in BrMonCat instead of 2BrMonCat. This is only needed later for the
integration maps.

Fix the associativity and unit constraints a, r, l and the braid s in Map(X,En):

a : E×3
n × I → En, αn ◦ (αn × id) ' αn ◦ (id× αn),

s : E×2
n × I → En, αn ◦ twist ' αn,

r : En × I → En, αn ◦ (id, const) ' id.

We will write ‘≡’ for ‘up to coboundary.’

82



Corollary 5.21. Let αn : En × En → En be concatenation of loops (33).
There exist cochains An ∈ C̃n−1(En × En;V ) with

δAn = pr∗1ιn + pr∗2ιn − α∗nιn. (47)

These are coherent in the sense that

pr∗12An + (αn × 1)∗An ≡ pr∗23An + (1× αn)∗An + ch(a) associative
twist∗An ≡ An + ch(s) commutative

(idEn , const)∗An ≡ ch(r) unit

Proof. According to Theorem 5.19 (forgetting the second monoidal structure
�) we have natural (in X) braided monoidal functors

ch : (Map(X,En),�)→ (C̃ n(X),+).

The data of a monoidal functor includes isomorphisms in C̃ n(X) relating the
two tensor products, that is, elements ch�

c,d ∈ C̃n−1(X)δ with

δch�
c,d = ch(f � g)− ch(f)− ch(g). (48)

For the units we have ch�
const = 0, which induces an isomorphism δ0 =

ch(const) − 0. Naturality asserts that we have a commutative diagram of
braided monoidal categories

(Map(X,En),�) ch // (C̃ n(X),+)

(Map(Y,En),�)

f∗

OO

ch
// (C̃ n(Y ),+).

f∗

OO

By definition of the composition in C̃ n(X) and since the vertical functors are
strict this means

f ∗ch�
c,d = ch�

f∗c,f∗d in C̃n−1(X)δ, c, d : Y → En. (49)

The structure on a braided monoidal functors has to satisfy several coherence
conditions:

ch((f � g) � h)

ch(a)

��

chf�g,h// ch(f � g) + ch(h)
chf,g // (ch(f) + ch(g)) + ch(h)

ch(f � (g � h))
chf,g�h

// ch(f) + ch(g � h)
chg,h

// ch(f) + (ch(g) + ch(h)).
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ch(f) + ch(const) ch(f) + 0

ch(f � const)

ch�
f,const

OO

ch(r)
// ch(f)

ch(f) + ch(g) ch(g) + ch(f)

ch(f � g)

chf,g

OO

ch(s)
// ch(g � f)

chg,f

OO

Set c = pr1, d = pr2 : En × En → En in (48) to define

An = ch�
pr1,pr2

. (50)

The three coherence diagrams then express the three equations we wish to
prove: the associativity diagram says

ch�
g,h + ch�

f,g�h + ch(a) = ch�
f,g + ch�

f�g,h in C̃n−1(X)δ. (51)

If we set f = pr1, g = pr2, h = pr3 : En × En × En → En, naturality (49)
yields the following implications:

f = (1× αn)∗pr1, g � h = (1× αn)∗pr2 ⇒ ch�
f,g�h = (1× αn)∗ch�

pr1,pr2
,

g = pr∗23pr1, h = pr∗23pr2 ⇒ ch�
g,h = pr∗23ch�

pr1,pr2
,

f � g = (αn × 1)∗pr1, h = (α× 1)∗pr2 ⇒ ch�
f�g,h = (αn × 1)∗ch�

pr1,pr2
,

f = pr∗12pr1, g = pr∗12pr2 ⇒ ch�
f,g = pr∗12ch�

pr1,pr2
.

Inserting these equalities and (50) into (51) then gives

pr∗23An + (1× αn)∗An + ch(a) = pr∗12An + (αn × 1)∗An.

Similarly, the second coherence diagram for f = pr1 asserts ch(r) ≡
ch�

pr1,const ≡ (id, const)∗chpr1,pr2
= (id, const)∗An (the second equivalence is

by naturality (49)). The third diagram for f = pr1, g = pr2 says, using
naturality (49) for pr2 = twist∗pr1, pr1 = twist∗pr2:

twist∗An + ch(s) = twist∗chf,g + ch(s) ≡ chg,f + ch(s) ≡ chf,g = An
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The existence of inverses in a monoid is a property, not additional data.
This is reflected in the following corollary. Pick arbitrary maps

νn : En → En

and homotopies h : En × I → En from idEn � νn to const.

Example 5.22. We will usually make the following choices:

νn : En → Ω2En+2
flip−→ Ω2En+2 ← En

given by exchanging the two path variables. Another possible choice is ν ′n :

En → ΩEn+1
inv−→ ΩEn+1 ← En using loop inversion. There is a standard

homotopy h′ : id�ν ′n ' const. To define h we precompose h′ with a homotopy
νn ' ν ′n given by ‘rotating the axis of reflection:’

νn ν ′n

Corollary 5.23. There exist cochains Nn ∈ C̃n−1(En;V ) with the property

δNn = −ιn − ν∗nιn. (52)

Moreover, we have
Nn + (id, νn)∗An = ch(h). (53)

Proof. If we define Nn according to (53), then a calculation shows that (52)
holds, taking (47) and

δch(h) = ch(idEn � νn)− ch(const) = (id, νn)∗α∗nιn − 0

into account.

Of course we have an obvious version of Corollary 5.23 for left inverses,
but this leads to different elements N ′n.

Remark 5.24. For any choice of (νn, h,Nn) as in Corollary 5.23 the triple
(νn ◦ c1,−ω1,−h1 + c∗1Nn) will represent a (two-sided) inverse in differential
cohomology of [c1, ω1, h1]. This will be clear from the proof of Theorem 5.26.
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5.4 Group Structure on Differential Cohomology

Definition 5.25. Let x1 = (c1, ω1, h1), x2 = (c2, ω2, h2) be representatives of
elements of Ên(M,N) as in Definition 3.3. We set

x1 + x2 := (αn ◦ (c1, c2), ω1 + ω2, h1 + h2 + (c1, c2)∗An). (54)

Also, let 0 = (const, 0, 0).

Theorem 5.26. Let x̂1, x̂2 ∈ Ên(M,N) be represented by triples x1, x2 as in
5.25. Then x̂1 + x̂2 := [x1 +x2] is well-defined and endows Ên(M,N) with the
structure of an abelian group. The maps a, I, R are group homomorphisms.

Proof. If (C1, H1) witnesses an equivalence x1 = (c1, ω1, h1) ∼ (c′1, ω1, h
′
1) =

x′1 and (C2, H2) witnesses x2 = (c2, ω2, h2) ∼ (c′2, ω2, h
′
2) = x′2 in the sense of

Definition 3.3, then

Y = (αn ◦ (C1, C2), pr∗(ω1 + ω2), H1 +H2 + (C1, C2)∗An)

relates the corresponding sums. For Y obviously restricts on the boundary to
x1 +x2, x′1 +x′2 and it is also easily checked that δ(H1 +H2 + (C1, C2)∗An) =
pr∗(ω1 + ω2)− (C1, C2)∗α∗nιn. We conclude that addition is well-defined.

Using Proposition 3.13 (with the canonical homotopies of Subsection
5.3.3), the proofs of associativity, unitality, commutativity, and of inverses
reduce immediately to the corresponding parts of Corollaries 5.21, 5.23. For
example, let us show that [νn◦c,−ω,−h+c∗Nn] is a right inverse for [c, ω, h]:
select the homotopy h : αn ◦ (id, νn) ' const from Corollary 5.23. Then
Proposition 3.13 shows that

[c, ω, h] + [νn ◦ c,−ω,−h+ c∗Nn] = [αn(id, νn) ◦ c, 0, c∗(Nn + (id, ν)∗An)]

= [const, 0, c∗(Nn + (id, ν)∗An − ∫ h)]

We conclude by applying Lemma 3.10, since Nn + (id, ν)∗An − ∫ h bounds
by Corollary 5.23 (in this case even zero). Similarly, [νn ◦ c,−ω,−h+N ′n] is
seen to be a left inverse (at first sight different from the right inverse). But
of course the existence of all left and right inverses in any monoid shows that
we have a group and that the two inverses coincide.
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The proof that the maps I, R from Definition 3.11 are homomorphisms
is trivial. Since we have chosen An as a reduced cochain, we deduce that
a(θ) = [const, dθ, θ] is a homomorphism as well.

5.5 Bicategory Construction

We present here an approach to the construction of Ên in which it is not
necessary to make the coherence conditions explicit. The other axioms for
a differential extension are also easily verified in this context. The main
technical difficulty is the construction of a functorial inverse of the deRham
homomorphism, which may systematically be produced in the context of
bicategories.

5.5.1 Inverting the deRham Homomorphism

Using Example A.3, the map d : Ωn−1(M ;V )d → Ωn(M ;V ) gives rise to
a strict symmetric monoidal groupoid On(M) which, for varying M , piece
together a functor

On : Manop → SymMonCatstrict.

Similarly for δ : Cn−1(M ;V )δ → Zn(M ;V ) we obtain

Z n : Manop → SymMonCatstrict.

Note that the objects of Z n(M) is the set of cocycles, not all cochains.
The deRham homomorphisms may be interpreted as a strict symmetric

monoidal equivalence of categories

ρX : On(M)
∼−→ Z n(M),

which are the components of a natural transformation On → Z n. Every
component is an equivalence and we would like to invert ρ.

With monoidal transformations as 2-arrows, SymMonCat forms a strict
2-category. We will view Man as a 2-category with only identity 2-arrows.
Then ρ is a strict transformation between the two strict functors On,Z n of
bicategories.

Lemma 5.27. Suppose C is a category, considered trivially as a bicategory.
Let

F,G : C −→ SymMonCat
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be strict functors of bicategories and u : F ⇒ G a strict transformation which
has the property that all of the functors uX : FX → GX are equivalences.
Then there exists a weak transformation v : G⇒ F such that uv and vu are
the identity functors up to modifications.

Proof. By Leinster, 1.2.14 we may place each uX in a monoidal adjoint equiv-
alence (uX , vX , εX , ηX) – meaning that we have an adjoint equivalence in
which vX is a monoidal functor and εX , ηX are monoidal transformations.

It remains to check that the monoidal functors (vX , µX) depend functo-
rially on X up to coherent 2-cells vf : (Ff, φ) ◦ (vX , νX)⇒ (vY , νY ) ◦ (Gf, γ)
for f : X → Y in C . The monoidal transformation vf is defined as the 2-cell

GX 1 //

vX ((
εX
��

GX
Gf // GY

ηY

��

vY

��
FX

uX

CC

Ff
// FY

uY
66

1
// FY

Note that the middle diagram commutes. The coherence conditions follow
from the zig-zag equations for εX , ηX .

We may thus find a weak transformtion, unique up to modifications,

τ : Z n =⇒ On,

inverse to ρ in the sense of the preceding lemma.

Proposition 5.28. It is possible to lift the Chern character transformation
ch : [M,En]→ Hn(M ;V ) to a braided monoidal functor

Map(M,En)→ Z n(M),

natural in M , i.e. to a strict transformation Map(−, En)→ Z n.

Proof. This is Theorem 5.19 applied to X = M+ and where we observe that
ch takes values in the full subcategory Z n.

Composing this transformation with the weak inverse τ of the deRham
transformation, we obtain a weak transformation

ch : Map(−, En) =⇒ On.
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What this means explicitly it that we are given monoidal functors

chM : Map(M,En) −→ On(M), M ∈Man,

that is, a functor chM together with a natural transformation, denoted ch+
M :

chM ◦ � → + ◦ (chM × chM), and a map chM(const) → 0 which may be
chosen to be zero (since the fundamental cocycles are reduced). Also, for
every smooth map f : M → N we have a map

chf : EN
n −→ Ωn−1(M ;V )d

with

d(chf (c)) = f ∗chN(c)− chM(c ◦ f) for all c : N → En
(55)

f ∗chN(H) + chf (H0) = chf (H1) + chM(H ◦ (f × idI)) for a homotopy H : H0 ' H1

(56)

where H : N × I → En. The coherence conditions for M f−→ N
g−→ O

c−→ En
amount to

chgf (c) = chf (c ◦ g) + f ∗chg(c), (57)
chid = 0. (58)

The compatibility condition for the ιn ensure that for a map h : M → En−1,
viewed as a homotopy H : M × I → En from const to const, we have

chM(h) = chM(H) ∈ Ωn−1(M ;V )d.

5.5.2 Construction of Differential Refinements

Consider the equivalence relation ∼ on the set E n(M) = EM
n ×Ωn−1(M ;V )d

given by (c1, ω1) ∼ (c2, ω2) iff there exists a homotopy H : c1 → c2 with

chM(H) = ω1 − ω2.

Reflexivity, symmetry, and transitivity of ‘∼’ follow from the following func-
tional properties of chM : that it preserves the identity, inverses of isomor-
phisms, and composition. We may now define

Ên(M) = E n(M)/ ∼ .
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For a smooth map M f−→ N we let

Ên(f) : Ên(N) −→ Ên(M), [c, ω] 7→ [c ◦ f, f ∗ω + chf (c)]

This is well-defined by (56) and yields a functor Ên : Manop −→ Set by
(57) and (58). The group structure is given by

[c1, ω1] + [c2, ω2] = [c1 � c2, ω1 + ω2 + ch+
M(c1, c2)],

0 = [const, 0].

Define natural transformations

Ωn−1(M ;V )d
a−→ Ên(M), a(ω) = [const, ω]

Ên(M)
I−→ En(M), I[c, ω] = [c] ∈ [M,En] = En(M)

Ên(M)
R−→ Ωn(M ;V )d=0, R[c, ω] = ch(c) + dω

The map R is well-defined, again by functoriality of chM .

Proposition 5.29. Ên is a differential cohomology theory in the sense of
[BS10]. That is, we have a commutative diagram with an exact row:

En−1 ch // Ωn−1(−;V )d
a //

d

''

Ên I //

R
��

En //

ch
��

0

Ωn
cl(−;V ) // Hn(−;V )

Proof. The commutativity is clear. If I[c, ω] = 0 there exists a homotopy
H : c → const so that [c, ω] = [const, ω + chM(H)] = a(ω + chM(H)).
Also I ◦ a = 0. If a(ω) = [const, 0] then there exists H : const→ const with
chM(H) = ω. Conversely, a map c : M → En−1 may be viewed as a homotopy
H : const ' const : M → En. Then a(ch(h)) = [const, ch(h)] = [const, 0],
using H and the compatibility (16) of the ιn.

6 Integration Maps

In this chapter we will develop the theory of integration maps

∫ : Ên+1(M × S1)→ Ên(M)
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in differential cohomology. These will be important because they relate dif-
ferent degrees: later, products will initially only be defined in even degrees.
It will then be our strategy to ‘transport’ this structure to odd degrees by
demanding compatibility with the integration maps. Subsection 6.2.5 on
multiple integrals will help us clarify well-definedness for extensions of this
sort.

In the case of generalized cohomology, the underlying spectrum is at
first related to ‘reduced’ integration maps (the suspension) and may then
be modified to an ‘absolute’ version (Remark 6.14). Similarly, integration
in differential cohomology may be understood explicitly only on pairs and is
then extended to the absolute case.

6.1 Slant Products and Integration over the Fiber

6.1.1 Cochains

The Eilenberg-Zilber map may be used to construct the integration (or slant
product) of cochains. For a pair of simplicial sets A ⊂ X let

C∗(X,A) = HomZ(C∗(X)/C∗(A),R)

denote the real cochain complex obtained by dualizing the Moore complex
(note that the reals are not reflected in the notation of this cochain complex;
the Moore chain complex, however, is conventionally taken over the integers).
The differential is usually taken to be ‘pullback along the Moore differential’.
The introduction of a sign (−1)degree would make this an internal hom, but
we will stick to the more traditional convention.

Definition 6.1. Let X, Y be simplicial sets and suppose e ∈ Ck(Y ). We
define natural homomorphisms ∫e : C∗(X × Y ) −→ C∗−|e|(X) as follows: a
cochain u : C∗(X × Y )→ R is mapped to the composition

C∗−k(X)
id⊗e−−→ C∗−k(X)⊗ Ck(Y )

EZ−−→ C∗(X × Y )
u−→ R.

Here, EZ denotes the Eilenberg-Zilber map from Definition 5.2.

Lemma 6.2. The integration maps are R-linear.
(i) The integration maps are natural in the sense that

∫
e
(f × idY )∗u = f ∗(∫

e
u), ∫

f∗e
u = ∫

e
(idX × f)∗u.
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(ii) We have Stokes’ formula ∫e δu = δ ∫e u− (−1)|u|+|e| ∫∂e u.

Proof. Linearity is trivial, (i) follows from the naturality of the Eilenberg-
Zilber maps, while (ii) is just the fact that EZ is a chain map.

Naturality implies that integration descends to relative cochain com-
plexes:

∫
e

: C∗ ((X,A)× Y )→ C∗−|e|(X,A). (59)

Remark 6.3. It would be more precise to call ∫e integration from the right.
There is an obvious version from the left (used for instance for integrating
the pullback ∫I H∗ι along homotopies – whose time interval we conventionally
take on the left):

∫
e

′ : C∗(Y ×X)→ C∗−|e|(X).

Usually, there should be no confusion if we denote this by the symbol ∫ as
well. If care needs to be taken, we will include the slash for integration from
the left. It is important to distinguish between these two integration maps,
especially if X = Y , because there is a sign involved: if τ : X × Y → Y ×X
denotes the twist, then the symmetry properties of the Eilenberg-Zilber map
imply

∫
e

′u = (−1)(|u|−|e|)·|e| ∫
e
τ ∗u.

Stokes’ formula on the left reads

∫
e

′δu = ∫
∂e

′u+ (−1)eδ ∫
e

′u.

By passing to singular sets, we may use the above constructions for spaces
A ⊂ X and Y .

Remark 6.4. We will primarily take the CW-complex Y = S1 and the
canonical 1-chain e ∈ C1(singS1), which is the adjoint of the canonical pro-
jection |∆1| → S1. Since such integrals will appear a lot we shall omit the
reference to S1 when integrating over the circle. Stokes’ formula simplifies
to

∫ δu = δ ∫ u, ∫ ′δu = −δ ∫ ′u (60)
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Remark 6.5. In the case of manifolds with corners, we remark that EZ
carries the complex of smooth chains to itself. If e is a smooth chain, we
therefore have a version of (59) for smooth cochains (take the smooth singular
sets for X and Y in Definition 6.1).

6.1.2 Differential Forms

We have used the ‘integral’ notation for the slant product of cochains in
the previous section because it generalizes the integral along the fiber of
differential forms ω ∈ Ωn(M × I) (for the proof cf. [HS05, Lemma 3.15] or
the remark below).

Definition 6.6. Given a differential form ω ∈ Ωn+1(M × I), let (Uα, φα)α∈A
be an atlas ofM and (χα) a subordinate partition of unity. Using the product
atlas (φα × idI)α∈A at (x, t) ∈ Uα × I we may write:

ω(x,t) =
∑

i1<...<in

ωαi1,...,in(x, t)dφi1α · · · dφinα ∧dt+
∑

i1<...<in+1

ω̃αi1,...,in+1
(x, t)dφi1α · · · dφin+1

α

In accordance with [BT82, p.61], we define the integral of ω along I (on the
right) by(∫

I

ω

)
x

:=
∑
α

χα(x) ·
∑

i1<...<in

(∫ 1

0

ωαi1,...,in(x, t)dt

)
(dφi1α )x · · · (dφinα )x.

The above definition is independent of the choices (Uα, φα) and χα; for
the tedious verification we refer to [BT82]. We have naturality in Definition
6.6 in the sense that

∫
I
(f × idI)

∗ω = f ∗(∫
I
ω), f : M ′ →M smooth. (61)

In view of (6), this leads to a relative integration map for forms. Precom-
posing with pullback along id(M,N) × p for the canonical map p : I → S1, we
obtain integration over S1 (again omitting reference to S1 in the notation)

∫ : Ωn+1((M,N)× S1)→ Ωn(M,N).

In Definition 6.6 we sent forms that have no dt-component to zero. For the
projection pr1 : (M,N)× S1 → (M,N) we therefore have

∫ pr∗1ω = 0. (62)
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Remark 6.7. A differential form ω ∈ Ωn+1(M × S1) may be viewed as a
cochain u, which we usually also denote by ω. This causes no confusion in
connection with the integration map since the cochain associated to ∫S1 ω
and the cochain ∫S1 u coincide on behalf of the calculation for M = ∆n:∫

∆n

∫
S1

ω =

∫
∆n×S1

ω =
n∑
i=0

(−1)i
∫

∆n+1

h∗iω = u(EZ(∆n⊗S1)) = ( ∫
S1

u)(∆n).

The signs appear due to orientations.

6.1.3 E-cocycles

As above, fix a spectrum En with structure maps εn : En∧S1 → En+1 whose
adjoints En → ΩEn+1 are homeomorphisms.

Definition 6.8. For a map of pairs c : (M × S1,M × 1) → (En+1, ∗) there
is a unique map ∫ c : M → En with

εn ◦ (∫ c ∧ idS1) = c, (63)

namely the map (εadj
n )−1 ◦ cadj.

We again have naturality

∫(f ∧ idS1)∗c = f ∗(∫ c). (64)

Recall that in (16) we have chosen the fundamental cocycles ιn compatible
with the structure maps. Using Lemma 6.2 (i), this implies that Definitions
6.1 and 6.8 are compatible in the sense that

(∫ c)∗ιn = (∫ c)∗ ∫ ε∗nιn+1 = ∫(∫ c ∧ idS1)∗ε∗nιn+1 = ∫(c∗ιn). (65)

6.2 Integration in Differential Cohomology

For integration in differential cohomology to be linear, we need to compare
the additive structure in neighboring degrees. This is the reason for having
worked above in 2BrMonCat. We again exhibit the coherence conditions
inherent in Theorem 5.19.
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6.2.1 Loop Spectra

For varying degrees n the functors from (29)

(Π1)−n : coSpt→ 2BrMonCat

are related. The notation from Subsection 4.3.1 can be confusing when deal-
ing with loop spectra ΩE = Hom(S1, E). Recall that (Π1)−nE denotes the
fundamental groupoid Π1En along with two monoidal structures

� by writing En ' ΩEn+1,

� by writing En ' Ω2En+2,

and a monoidal structure e on the identity functor (Π1En,�)→ (Π1En,�).
Define forgetful functors

q1, q2 : 2BrMonCat→MonCat, (C ,�,�, e) 7→ (C ,�), (C ,�).

The structure maps on E determine a functor Π1ΩEn+1 → Π1En which by
Proposition A.13 inherits a unique monoidal structure turning the following
into a diagram in MonCat

q1(Π1)−n−1ΩE // q2(Π1)−nE

(Π1Ω2En+2,�)

'

99

'

gg

Here, the two equivalences are monoidal essentially by definition of the cor-
responding monoidal structures on (Π1)−∗. For example, for the left hand
diagonal map, recall that the symbol q1(Π1)−n−1ΩE denotes the category
Π1ΩEn+1 with the monoidal structure ‘�’ given by the equivalence

(Π1(ΩEn+1),�)
'←− (Π1Ω)(ΩEn+2).

By definition of the structure maps of a loop spectrum, the loop space in
(Π1Ω) on the right refers to the coordinate obtained by writing En+1

∼=
ΩEn+2. The monoidal structure ‘�’ on the right corresponds therefore to
‘�’ in (Π1Ω2)En+2. More precisely, Propositions A.13 and A.14 provide the
structure of monoidal functor on the dotted arrow in

(Π1Ω)(ΩEn+2)

|·| '
��

// (Π1Ω2)En+2

' |·|
��

Π1Ω|ΩEn+2|,� // Π1Ω2|En+2|,�,

95



where the vertical functors are monoidal by definition. The lower horizontal
functor is induced by the canonical map |ΩX| → Ω|X|.

Proposition 6.9. Given a morphism f : E → F in coSpt, we have a
commutative diagram

q1(Π1)−n−1ΩE //

q1(Π1)−n−1Ωf
��

q2(Π1)−nE

q2(Π1)−nf
��

q1(Π1)−n−1ΩF // q2(Π1)−nF

Proof. According to the uniqueness part of Proposition A.13 it suffices to
prove equality upon precomposing with (Π1Ω2En+2,�)

'−→ q1(Π1)−nE which
then boils down to the definition of monoidal structure on the functors
q1(Π1)−n−1Ωf and q2(Π1)−nf .

6.2.2 Compatibility of ch with Eckmann-Hilton

Applying Proposition 6.9 to (40) exhibits the commutativity in MonCat of
the upper square in the diagram

q1(Π1)−n−1Hom(K ∧ S1, En+1)

��

q1(Π1)−n−1ch // q1(Π1)−n−1Z̃
n+1(K ∧ S1 ∧∆•)

��

q2(Π1)−nHom(K,En)

e

��

q2(Π1)−nch // q2(Π1)−nZ̃
n(K ∧∆•)

e=id
��

q1(Π1)−nHom(K,En)
q1(Π1)−nch // q1(Π1)−nZ̃

n(K ∧∆•).

The lower square commutes since (Π1)−nch is a morphism in 2BrMonCat.
Making the transition to spaces by using the above diagram forK = sing(X),
(sing(En), sing(εn)) and by using the maps (45), (46) we obtain a commuta-
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tive diagram in MonCat

q1Map(X ∧ S1, En+1)

εadj
n

��

q1(chn+1) // C̃ n+1(X ∧ S1),+

∫S1

��

q2Map(X,En)

e

��

C̃ n(X),+

e=id
��

q1Map(X,En)
q1(chn)

// C̃ n(X),+.

Recall that the Eckmann-Hilton isomorphisms (homotopies in this case)
e : q2Map(X,En) → q1Map(X,En) are given by writing En ≈ Ω2En+2 and
the formula (25). These are the usual homotopies relating the two possible
additions ‘�’ (which yields αn in the notation of Corollary 5.21), ‘�’ on a
double loop space.

Corollary 6.10. Let ϕn : (En×En)∧S1 → En+1×En+1 denote the ‘product
of structure maps’ and e : E×2

n × I → En the Eckmann-Hilton homotopy.
Then

∫
S1

(ϕn)∗An+1 ≡ ch(e) + An mod im(d). (66)

Proof. Set X = En × En in the previous commuting diagram in MonCat.
The two ways around yield two monoidal functors (whose composition is
recalled in (107)) that agree. In particular, their ‘extra monoidal data’ agrees
at the objects pradj

1 , pradj
2 : X ∧ S1 → En+1 (which are adjoint to the two

projections pr1, pr2 : En × En → ΩEn+1 ≈ En). This yields ∫ chpradj
1 ,pradj

2
≡

ch(e) + chpr1,pr2
, which in the notation of Corollary 5.21 reads (66).

6.2.3 Construction on Pairs

Definition 6.11. By combining the three integration maps above, we obtain

∫ : Ên+1(M × S1,M × 1)→ Ên(M), [c, ω, h] 7→ [∫ c, ∫ ω, ∫ h].

This triple represents a differential cohomology class: combining (60) and
(65), we have

δ ∫ h = ∫ δh = ∫ ω − ∫(c∗ιn) = ∫ ω − (∫ c)∗ιn.
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Moreover, the class of this triple is well-defined: if (H,C) witnesses an equiv-
alence (c, ω, h) ∼ (c′, ω, h′), then (∫ H, ∫ C) yields the necessary equivalence.

Proposition 6.12. The integration map in differential cohomology is a nat-
ural transformation Ên+1(−×S1,−×1)→ Ên(−). In particular, integration
is linear and natural in the sense of ∫(f × idS1)∗x̂ = f ∗(∫ x̂).

Proof. Naturality follows from the naturality of the integration map for
forms, cochains, and E-cocycles. For linearity, let (c1, ω1, h1), (c2, ω2, h2)
represent classes x̂1, x̂2 in Ên+1(M × S1,M × 1). We compute

∫(x̂1 + x̂2) = [∫ αn+1(c1, c2), ∫(ω1 + ω2), ∫(h1 + h2 + (c1, c2)∗An+1)]

∫ x̂1 + ∫ x̂2 = [αn(∫ c1, ∫ c2), ∫ ω1 + ∫ ω2, ∫(h1 + h2) + (∫ c1, ∫ c2)∗An]

Using (63) and (64) we see that

∫ αn+1(c1, c2) = (∫ c1, ∫ c2)∗ ∫ αn+1(εn, εn)

is the pullback along (∫ c1, ∫ c2) of the starting point of the Eckmann-Hilton
homotopy from Corollary 6.10. Combining Lemma 3.10 and Proposition
3.13, we see that in order to prove equality of the differential cohomology
classes above it suffices to show that

∫(c1, c2)∗An+1 − ch ((∫ c1, ∫ c2)∗h) ≡ (∫ c1, ∫ c2)∗An

modulo coboundaries. But, using (63), this is just the pullback along (∫ c1, ∫ c2)
of (66).

Proposition 6.13. The integration map commutes with the maps a,R, I.

Proof. Straightforward from the definitions.

6.2.4 Integration Maps

We have developed differential cohomology for pairs in order to be able to
define rigorously the integration map ∫ : Ên+1(M×S1,M×1)→ Ên(M). In
this subsection we will use our ‘pair’ integration map to define an ‘absolute’
integration map

∫ : Ên+1(M × S1)→ Ên(M). (67)
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Remark 6.14. To motivate our definition, let us consider the case of (gen-
eralized) cohomology [BS10]. Let

i : M = M × 1 ⊂M × S1,

j : (M × S1, ∅)→ (M × S1,M × 1),

pr1 : M × S1 →M.

We have a long exact sequence

· · · → En(M×S1)
i∗−→ En(M)

δ−→ En+1(M×S1,M×1)
j∗−→ En+1(M×S1)→ · · ·

Since i is a section of the projection pr1, the map i∗ is surjective, so δ = 0
and j∗ is injective. For any x ∈ En+1(M × S1) we therefore have a unique
element y ∈ En+1(M × S1,M × 1) with j∗y = x− pr∗1i

∗x. Define

∫ x := ∫ y ∈ En(M),

where the integral on the right is given by suspension En+1(M×S1,M×1) ∼=
Ẽn+1(M+ ∧ S1) ∼= Ẽn(M+). These definitions piece together linear maps

∫ : En+1(M × S1)→ En(M)

which fit into commutative diagrams

En+1(M × S1,M × 1)

∫
##

j∗ // En+1(M × S1).

∫
||

En(M)

Clearly, ∫ pr∗1x = 0 for all x ∈ En+1(M).

Using a similar procedure, we now define maps (67).

Theorem 6.15. Suppose ∫ : Ên+1(− × S1,− × 1) → Ên is an integration
on pairs as in Proposition 6.12 satisfying also Proposition 6.13. Then there
exist a unique natural transformation (linear)

∫ : Ên+1(M × S1)→ Ên(M) (68)

with the following properties:
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(i) The composition of (68) with j∗ is integration on pairs (Definition
6.11):

Ên+1(M × S1,M × 1)

∫
""

j∗ // Ên+1(M × S1).

∫
}}

Ên(M)

(ii) ∫ pr∗1 = 0.

Proof. To prove uniqueness, suppose ∫1, ∫2 are two transformations satisfying
(i) and (ii) and let x̂ ∈ Ên+1(M×S1). According to Theorem 3.15, x̂−pr∗1i

∗x̂
may be written as j∗ŷ for some ŷ ∈ Ên+1(M × S1,M × 1). Then

∫
1
x̂

(ii)
= ∫

1
(x̂− pr∗1i

∗x̂)
(i)
= ∫ ŷ (i)

= ∫
2
(x̂− pr∗1i

∗x̂)
(ii)
= ∫

2
x̂.

Conversely, we define a map (68) as follows: for each x̂ ∈ Ên+1(M × S1)
write x̂− pr∗1i

∗x̂ = j∗ŷ for some ŷ ∈ Ên+1(M × S1,M × 1). Set

∫ x̂ := ∫ ŷ. (69)

This definition clearly satisfies (i) and (ii), so it remains to check that (69)
is well-defined. Using the linearity, it suffices to show the implication j∗ŷ =
0⇒ ∫ ŷ = 0. Consider the following commutative diagram with exact rows:

En(M × S1)
ch // Ωn(M × S1;V )d

a // Ên+1(M × S1)
I // En+1(M × S1)

En(M × S1,M × 1)
ch //

j∗

OO

Ωn(M × S1,M × 1;V )d
a //

j∗

OO

Ên+1(M × S1,M × 1)
I //

j∗

OO

En+1(M × S1,M × 1)
� ?

j∗

OO

Since 0 = Ij∗ŷ = j∗Iŷ and j∗ : En+1(M × S1,M × 1) → En+1(M × S1)
is injective we may write ŷ = a(θ). The class j∗θ lies in the kernel of a and
therefore j∗θ = ch(t) for some t ∈ En(M × S1). Next, t − pr∗1i

∗t lies in the
kernel of i∗, so we may write t−pr∗1i

∗t = j∗s for some s ∈ En(M×S1,M×1).
Remark 6.14 implies

∫
S1

s = ∫
S1

j∗s = ∫
S1

t− ∫
S1

pr∗1i
∗t = ∫

S1

t.
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Because the Chern character is a transformation of cohomology theories, we
have

∫
S1 ch(s) = ch(

∫
S1 s) = ch(

∫
S1 t) =

∫
S1 ch(t). Thus

∫
S1

ŷ = a( ∫
S1

θ) = a( ∫
S1

j∗θ) = a( ∫
S1

ch(t)) = a(ch( ∫
S1

s)) = 0.

This proves well-definedness. From this one concludes linearity, using that
i∗, pr∗1 are linear maps in differential cohomology. Similarly, naturality in
Proposition 6.12 implies the naturality of (68).

Proposition 6.16. The integration maps (68) commute with a,R, I.

Proof. This follows easily from Proposition 6.13 and the previous theorem:
If x̂ ∈ Ên+1(M × S1) write j∗ŷ = x̂− pr1i

∗x̂. Then we have

I(∫ x̂) = I(∫ ŷ)
6.13
= ∫ Iŷ (i)

= ∫ j∗Iŷ = ∫ I(j∗ŷ) = ∫ I(x̂− pr1i
∗x̂)

(ii)
= ∫ Ix̂

and similarly for R. If θ ∈ Ωn(M × S1;V ) write j∗η = θ − pr∗1i
∗θ. Then

∫ a(θ)
(ii)
= ∫ a(j∗η)

(i)
= ∫ a(η)

6.13
= a(∫ η) = a(∫ j∗η) = a(∫ θ).

6.2.5 Multiple Integrals

Definition 6.17. Let τ : M×S1×S1 →M×S1×S1, (m, z, w) 7→ (m,w, z)
denote the flip. We define integration ‘over the first variable’ by

∫ ′ : Ên+1(M × S1 × S1)
τ−→ Ên+1(M × S1 × S1)

∫−→ Ên(M × S1).

Proposition 6.18. We have ∫ ∫ ′ = −∫ ∫ : Ên+2(M × S1 × S1)→ Ên(M).

The proof of this proposition is rather cumbersome due to the indirect
definition of (68) and will occupy the remainder of this section.

The first step is the reduction to the integral for pairs using the following
lemma. We will use the maps

i1 : M × S1 × 1←→M × S1 × S1 : pr1,

i2 : M × 1× S1 ←→M × S1 × S1 : pr2,
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and their relative versions

i′1 : (M × S1 × 1,M × 1× 1)←→ (M × S1 × S1,M × 1× S1) : pr′1,

i′2 : (M × 1× S1,M × 1× 1)←→ (M × S1 × S1,M × S1 × 1) : pr′2.

Lemma 6.19. Let x̂ ∈ Ên+2(M × S1 × S1,M × 1× S1). Then

ŷ = x̂− pr′∗1 i
′∗
1 x̂ (70)

may be represented by a triple (c, ω, h) with

c|M × (S1 ∨ S1) = const, i∗1ω = i∗2ω = 0, h|M × (S1 ∨ S1) = 0.

Proof. Replacing x̂ = [c, ω, h] by x̂−pr′∗1 i
′∗
1 x̂ leaves (70) unchanged. We may

therefore assume that i′∗1 x̂ = 0. This means that i∗1ω = 0 and that we have a
homotopy

C1 : c ◦ i′1 ' const (rel M × 1× 1).

By extending this homotopy with c and the constant map, we get a map

[0, 1]×M×S1×1 ∪ [0, 1]×M×1×S1 ∪ 0×M×S1×S1 C1 ∪ const∪ c−−−−−−−→ En+2.

Because M × (S1 ∨S1) ⊂M ×S1×S1 is a closed cofibration, this map may
be extended to a homotopy C (rel M × 1× S1) from c to some map c′ with
c′|M × (S1 ∨ S1) = const. From Proposition 3.13 it follows that

x̂ = [c′, ω, h′] for h′ = h− ∫ C∗ιn.

Now compute, using that Nn is reduced and Remark 5.24:

−pr′∗1 i
′∗
1 x̂ = [νn ◦ c′ ◦ i′1 ◦ pr′1, 0,−pr′∗1 i

′∗
1 h
′ + (c′i′1pr′1)∗Nn]

= [const, 0,−pr′∗1 i
′∗
1 h
′]

x̂− pr′1i
′
1x̂ = [αn(c′, const), ω, h− pr′∗1 i

′∗
1 h
′ + (c′, const)∗An].

This is the required triple representative (αn is pointed and An reduced).

Remark 6.20. The statement ∫ ∫ ′ = −∫ ∫ is true for cochains (by the
symmetry properties of the Eilenberg-Zilber map), differential forms (since
dt ∧ ds = −ds ∧ dt), and for E-cocycles in the sense that

∫ ∫ τ ∗c = t ◦ ∫ ∫ c, for c : M × S1 × S1 → En+2,

for the twist t : En → Ω2En+2
flip−→ Ω2En+2 ← En.
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In addition to the maps introduced above, let

j1 : M × S1 × S1 → (M × S1 × S1,M × S1 × 1),

j2 : M × S1 × S1 → (M × S1 × S1,M × 1× S1),

and

i : M × 1←→M × S1 : pr, j : M × S1 → (M × S1,M × 1).

Proof of Proposition 6.18. Let ẑ ∈ Ên+2(M × S1 × S1) and choose x̂ ∈
Ên+2(M × S1 × S1,M × 1 × S1) with j∗2 x̂ = ẑ − pr∗2i

∗
2ẑ (possible by 3.15).

Then ŷ := x̂− pr′∗1 i
′∗
1 x̂ may be represented by a triple (c, ω, h) as in Lemma

6.19. Using the formal rules of Theorem 6.15 one calculates

∫ ∫ −ẑ = ∫ ∫ −ŷ, ∫ ∫ τ ∗ẑ = ∫ ∫ j∗1τ ∗ŷ

It suffices therefore to prove the analog of Proposition 6.18 for an element
ŷ = [c, ω, h] which may be written as in Lemma 6.19.

In this case, the triple (c ◦ τ, τ ∗ω, τ ∗h) may be viewed as a representative
in Ên+2(M × S1 × S1,M × S1 × 1) as in the definition (69) of the absolute
integral of j∗1τ ∗ŷ, so by Definition 6.11:

∫ j∗1τ ∗ŷ = [∫ c ◦ τ, ∫ τ ∗ω, ∫ τ ∗h] ∈ Ên+1(M × S1).

The triple on the right represents an element of Ên+1(M × S1,M × 1) as in
the definition (69) of the absolute integral of ∫ j∗1τ ∗ŷ, so

∫ ∫ j∗1τ ∗ŷ = [∫ ∫ c ◦ τ, ∫ ∫ τ ∗ω, ∫ ∫ τ ∗h].

Similarly, we deduce the first equality in

∫ ∫ −ŷ = −[∫ ∫ c, ∫ ∫ ω, ∫ ∫ h] = [νn ∫ ∫ c,−∫ ∫ ω,−∫ ∫ h+ (∫ ∫ c)∗Nn].

Using Remark 6.20 and (54) we now compute

∫ ∫ −ŷ + ∫ ∫ j∗1τ ∗ŷ = [αn(νn ∫ ∫ c, ∫ ∫ cτ), 0, (∫ ∫ c)∗Nn + (νn ∫ ∫ c, ∫ ∫ cτ)∗An].

We wish to show that this element is zero. Choose the homotopy h : id�νn →
const defined from Example 5.22. According to Lemma 3.10 and Proposition
3.13 it suffices to show that (∫ ∫ c)∗Nn + (νn ∫ ∫ c, ∫ ∫ cτ)∗An− ch((∫ ∫ c)∗h) is
a coboundary. But this assertion is just the pullback along ∫ ∫ c of (53).
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7 Acyclic Models Theorem

The product of differential characters is defined in [CS85] by using an explicit
chain homotopy which relates the exterior product of differential forms and
the cup product of the corresponding cochains. Such homotopies may also
be obtained abstractly from the theory of acyclic models. This approach is
particularly useful because it makes the relationship between higher combi-
nations of these homotopies clear.

The goal of the first two sections is to establish a rather general Acyclic
Models Theorem for functors that are corepresentable on the models which,
in this form, seems not to be in the literature. Our treatment is an adaption
of standard ideas [Bar02], [Dol95].

7.1 Cohomological Version

7.1.1 Corepresentability on Models

Definition 7.1. The pair (C ,M) of a category and a full subcategory M

is called a category with models. In this case we have a functor ‘̂’ on the
presheaf categories

Fun(C op,ModR) −→ Fun(C op,ModR)

defined on objects F : C op →ModR by

F̂X =
∏

σ:M→X
M∈M

FM × {σ} = {(xσ)σ:M→X,M∈M | xσ ∈ FM} ,

F̂ (X
ϕ→ Y ) : F̂ Y → F̂X, {yτ}τ :M→Y 7→ {yϕσ}σ:M→X .

To a morphism Θ : F → G the functor ‘̂’ assigns
Θ̂X : F̂X → ĜX, {xσ}σ:M→X 7→ {ΘM(xσ)}σ:M→X .

Observe that this last formula makes sense for any family (ΘM)M∈M of
morphisms FM → GM on the models.

There is a canonical natural transformation Φ : idFun(C op,ModR) ⇒̂ from
the identity functor to ‘̂’ defined as

Φ(F ) : F → F̂ , Φ(F )X : FX → F̂X, x 7→ {F (σ)x}σ:M→X
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Definition 7.2. A functor F : C op →ModR is corepresentable with respect
to the models M if there exists a natural transformation

Ψ : F̂ → F

with the property that Ψ ◦ Φ(F ) = idF .

Remark 7.3. There is a similarity between the definition of ‘̂’ and the
(dual of the) way one establishes a class of generating cofibrations for the
projective model structure on diagram categories [Lur09, p.824]. It seems
plausible that there exists a model structure on Fun(C ,CoCh≥0

R ) in which
the weak equivalences are the quasi-isomorphisms on the models and the
corepresentable functors are (retracts of generating) fibrations. This would
make the Acyclic Models Theorem below a simple lifting argument (the chain
contractible functors below would admit a trivial cofibration from the initial
object) and therefore yield a well-defined filler up to contractible choice. The
only difficulty with this approach is that the notion of ‘class of generating
fibrations’ is not a very useful one (as opposed to cofibrations) – only few
‘naturally’ appearing model categories admit them.

Example 7.4. Let C = Man and M = {∆n | n ≥ 0}. Then the smooth
k-cochain functor Ck

s (−;A) is corepresentable with respect to M:

ΨX : Ĉk
s (X;A)→ Ck

s (X;A), {xσ}σ:∆n→X 7→ (Cs
k(X)→ A, σ 7→ xσ(id∆k))

Example 7.5. Let C = Man ×Man and M = {(∆n,∆m) | n,m ≥ 0}.
Then Ck

s (M ×N ;A) is corepresentable with respect to M by choosing

ΨX,Y {xσ,τ}σ : ∆n → X
τ : ∆m → Y

: Cs
k(X × Y ;A) −→ A,

(∆k (σ,τ)−→ X × Y ) 7−→ xσ,τ (∆
k diag−→ ∆k ×∆k).

7.1.2 Chain Contractibility

Definition 7.6. A functor F : C op → CoCh≥0
R is chain contractible on the

models M ∈M in degree n if there exist homomorphisms of R-modules

hnM : F n(M)→ F n−1(M), hn+1
M : F n+1(M)→ F n(M) (∀M ∈M)
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with the property that

idFn(M) = hn+1
M ◦ δ + δ ◦ hnM .

Example 7.7. For R = R this just means Hn(F (M)) = 0.

Proof. Clearly, chain contractibility in degree n implies Hn(F (M)) = 0.
Conversely, let C∗ = F ∗(M), so that

· · · −→ Cn−1 δn−1

−→ Cn δn−→ Cn+1 −→ · · ·

is exact at Cn. Since δ : Cn → δ(Cn) is surjective there is a section hn+1 :
δ(Cn) → Cn with δ ◦ hn+1 = idδ(Cn). We extend hn+1 to Cn+1 by chosing a
complementary subspace of δ(Cn) and by defining hn+1 to be zero there. Let
(ei)i∈I denote a basis of Cn. Then

ei − hn+1δn(ei) ∈ ker(δn) = im(δn−1)

so that we may write ei − hn+1δn(ei) = δn−1(fi) for some fi ∈ Cn−1. Now
define hn by letting hn(ei) = fi, i ∈ I.

7.1.3 Acyclic Models Theorem

Lemma 7.8. Given a commutative diagram of functors C op →ModR and
natural transformations

F n−1

fn−1

��

δ
//

0
))

F n

fn

��

δ
// F n+1

fn+1

��
Gn−1

0

55
δ // Gn δ // Gn+1,

there exists the indicated natural extension fn+1 in case

1. F n is chain contractible on the models,

2. Gn+1 is corepresentable with respect to M.
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Proof. Choose contracting homotopies hnM , h
n+1
M for the models. We first

define a map En+1
M for each model M ∈M by the composition

En+1
M : F n+1(M)

hn+1
M−−−→ F n(M)

fn→ Gn(M)
δ→ Gn+1(M).

Then

En+1
M δ = δfnhn+1

M δ = δfn(id− δhnM) = δfn − δ2fn−1hnM = δfn.

The required map fn+1 is then given by the composition

F n+1 Φ(Fn+1)−−−−−→ F̂ n+1 Ên+1

−−−→ Ĝn+1 Ψ−→ Gn+1.

The formula fn+1δ = δfn follows from the naturality of Ψ:

F n+1(X)
Φ(Fn+1)// F̂ n+1(X) Ên+1

// Ĝn+1(X) Ψ // Gn+1(X)

F n(X)

id

66

δ

OO

Φ(Fn)
// F̂ n(X)

δ̂

OO

δ̂fn= ̂En+1δ

88

Ψ
// F n(X)

δfn

OO

Let us concentrate now on the case R = R of real vector spaces. The
following is a cohomological version of the Acyclic Models Theorem:

Theorem 7.9. Let F,G : C op → CoCh≥0
R be functors such that G∗ is

corepresentable with respect to M and H∗+1(F (M)) = 0 (∀M ∈ M) for
all ∗ ≥ 0. Then any natural transformation H0(F ) → H0(G) is induced by
a natural chain map F ∗ → G∗, unique up to natural chain homotopy.

Proof. The first part is an inductive application of Lemma 7.8 to

0

��

// H0(F ) //

��

F 0 //

��

F 1 //

��

· · ·

0 // H0(G) // G0 // G1 // · · ·
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Note here that the first line is exact, so that by Example 7.7 the required
chain contractions are available. For the uniqueness statement we have to
exhibit a chain homotopy sn : F n → Gn−1 with

fn − gn = δsn + sn+1δ

Set s0 = 0. By Lemma 7.8 we may define s1 as a filler in

H0(F )

��

⊂ // F 0

f0−g0−δs0
��

δ // F 1

s1

��
0 // G0

id
// G0

Here the left rectangle commutes since f 0 and g0 are equal on 0-cocycles, by
assumption. For n = 1, 2, 3, . . . inductively define sn+1 as a filler in

F n−1

��

δ // F n

fn−gn−δsn
��

δ // F n+1

sn+1

��
0 // Gn

id
// Gn.

Here, the commutativity of the left rectangle follows by induction:

(fn − gn − δsn)δ = δfn−1 − δgn−1 − δ(fn−1 − gn−1 − δsn−1) = 0.

Theorem 7.10. Let F,G : C op → CoCh≥0
R be functors such that G∗ is

corepresentable with respect to M and H∗+1(F (M)) = 0 (∀M ∈ M) for all
∗ ≥ 0. Suppose given two natural chain maps f ∗, g∗ : F ∗ → G∗. Then
any two natural chain homotopies s∗, r∗ : F ∗ → G∗−1 are naturally chain
homotopic: there exist t∗ : F ∗ → G∗−2 with

sn − rn = δtn − tn+1δ (71)

Proof. Set t0 = 0, t1 = 0. Since from G−1 = 0 necessarily s0, r0 = 0, equation
(71) is valid for n = 0. Consider inductively for n = 1, 2, 3, . . . the diagram

F n−1

��

δ // F n δ //

δtn−sn+rn

��

F n+1

tn+1

��
0 // Gn−1

id
// Gn−1
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to obtain the required filler tn+1. Here, the left rectangle commutes by the
inductive assumption:

(δtn − sn + rn)δ = δtnδ − snδ + rnδ

= δtnδ − (fn−1 − gn−1 − δsn−1) + (fn−1 − gn−1 − δrn−1)

= δ(tnδ + sn−1 − rn−1) = δδtn−1 = 0

7.2 Applications

7.2.1 Coefficients in a Vector Space

We will use differential forms with coefficients in a real vector space W ,
as defined in [BS10, p.3]. Recall that the cross-product of cochains u ∈
Cn(X;V ), v ∈ Cm(Y ;W ) is defined using the Alexander-Whitney map (Def-
inition 5.1) for A = Z sing(X), B = Z sing(Y ):

u×v : Cn+m(X×Y )
AW−−→

⊕
i+j=n+m

Ci(X)⊗Cj(Y )
pr−→ Cn(X)⊗Cm(Y )

u⊗v−−→ V⊗W.

From properties of the Alexander-Whitney map, it is associative and uni-
tal already on the level of cochains. Working instead with smooth singular
complexes, we obtain a corresponding definition for smooth cochains.

Example 7.11. Write ω1 ∧ ω2 = pr∗1ω1 ∧ pr∗2ω2 for the associated external
product of differential forms. The functor

Manop ×Manop 7−→ CoCh≥0
R , (M,N) 7−→ Ω(M ;V )⊗ Ω(N ;W )

is acyclic on the models (∆n,∆m). Consider the natural chain maps

(Ω(M ;V )⊗ Ω(N ;W ))∗ −→ C∗s (M ×N ;V ⊗W ), ω0 ⊗ ω1 7−→ ω0 ∧ ω1,

ω0 ⊗ ω1 7−→ ω0 × ω1.

Both these chain maps coincide in degree 0. By Example 7.5, the functor
C∗s (M ×N ;V ⊗W ) is corepresentable on the models. Using Theorem 7.9 we
obtain a natural chain homotopy

B : (Ω(M ;V )⊗ Ω(N ;W ))∗ −→ C∗−1
s (M ×N ;V ⊗W )

109



satisfying

δB(ω0 ⊗ ω1) +Bd(ω0 ⊗ ω1) = ω0 ∧ ω1 − ω0 × ω1. (72)

Setting M = N and post-composing with ‘pullback along the diagonal,’ we
obtain a corresponding chain homotopy between the internal products ∧,∪.

Example 7.12. Next consider the two natural chain maps

(Ω(L;U)⊗ Ω(M ;V )⊗ Ω(N ;W ))∗ −→ C∗s (L×M ×N ;U ⊗ V ⊗W ),

ω0 ⊗ ω1 ⊗ ω2 7−→ ω0 ∧ ω1 ∧ ω2,

ω0 ⊗ ω1 ⊗ ω2 7−→ ω0 × ω1 × ω2.

Using (72) we see that

ω0 ⊗ ω1 ⊗ ω2 7→B((ω0 ∧ ω1)⊗ ω2) +B(ω0 ⊗ ω1)× ω2,

B(ω0 ⊗ (ω1 ∧ ω2)) + (−1)|ω0|ω0 ×B(ω1 ⊗ ω2),

define two natural chain homotopies between these two chain maps. By
Theorem 7.10 these are themselves chain homotopic.

Example 7.13. We have two natural chain maps

Cs(M ;V )⊗ Cs(N ;W ) −→ Cs(M ×N ;V ⊗W ),

u⊗ v 7−→ u× v,
u⊗ v 7−→ (−1)|u||v|flip∗(v × u),

which induce the same map in degree zero (flip∗ includes the flip of coeffi-
cients). Theorem 7.9 yields a natural chain homotopy

D :
(
Cs(M ;V )⊗ Cs(N ;W )

)∗ −→ C∗−1
s (M ×N ;V ⊗W )

between these maps:

δD(u⊗ v) +Dδ(u⊗ v) = u× v − (−1)|u||v|flip∗(v × u). (73)

Example 7.14. The exterior product of differential forms is graded commu-
tative: ω0 ∧ ω1 = (−1)|ω0||ω1|flip∗(ω1 ∧ ω0). It follows that between the two
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natural chain maps(
Ω(M ;V )⊗ Ω(N ;W )

)∗ −→ C∗s (N ×M ;V ⊗W )

ω0 ⊗ ω1 7−→ (−1)|ω0||ω1|ω1 ∧ ω0,

ω0 ⊗ ω1 7−→ (−1)|ω0||ω1|ω1 × ω0,

the following associations define two natural chain homotopies

ω0 ⊗ ω1 7−→ (−1)|ω0||ω1|B(ω1 ⊗ ω0),

ω0 ⊗ ω1 7−→ flip∗B(ω0 ⊗ ω1)− (−1)|ω0||ω1|D(ω1 ⊗ ω0).

By Theorem 7.10, these are themselves chain-homotopic. In particular, for
closed forms ω0, ω1 we have, up to coboundaries,

(−1)|ω0||ω1|B(ω0 ⊗ ω1) ≡ flip∗B(ω1 ⊗ ω0)− (−1)|ω0||ω0|D(ω0 ⊗ ω1). (74)

Example 7.15. As another application, consider the functor

F n(M) =

{
(Ω(M ;V )⊗ Ω(N × S1 × S1;W ))

n+2
(n ≥ 0),

0 (n < 0),

and the two natural chain maps given in positive degrees ∗ ≥ 0 by

F ∗(M) −→ C∗s (M ×N ;V ⊗W ), ω0 ⊗ ω1 7−→ ω0 ×
(∫

S1

∫
S1

ω1

)
,

ω0 ⊗ ω1 7−→
∫
S1

∫
S1

(ω0 ∧ ω1),

and otherwise by zero. It follows from Theorem 7.10 that the two natural
chain homotopies ∫

S1

∫
S1

B(ω0 ⊗ ω1),

B

(
ω0 ⊗

(∫
S1

∫
S1

ω1

))
,

between these two natural chain maps are themselves chain homotopic.
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7.2.2 Generalization to Graded Coefficients

We begin by discussing the cross-product on Cn(X;V ) in case V ∗ is a graded
commutative real algebra. Let u ∈ Cn(X;V ), v ∈ Cm(Y ;V ), corresponding
to left bounded sequences

u0 ∈ C0(X;V n), u1 ∈ C1(X;V n−1), . . . , ui ∈ Ci(X;V n−i), . . . ,

v0 ∈ C0(Y ;V m), v1 ∈ C1(Y ;V m−1), . . . , vj ∈ Cj(Y ;V m−j), . . . .

To define w = u × v ∈ Cn+m(X × Y ;V ) we need to specify elements wk ∈
Ck(X × Y ;V n+m−k) for each k ≥ 0:

wk =
∑
i+j=k

(−1)(n−i)jui × vj (75)

Every such sum is finite since i, j ≥ 0 (we have started with positive cochain
complexes). In (75) we have used the multiplication on V :

Ci(X;V n−i)⊗Cj(Y ;V m−j)→ Ci+j(X×Y ;V n−i⊗V m−j)→ Ci+j(X×Y ;V n+m−i−j).

The cross-product restricts to smooth cochains, a fact that descends to the
graded case. Replacing ‘×’ by ‘∧’ in (75), the exterior product of differential
forms may also be extended to graded coefficients (the sign has been chosen
so as to make this extension graded commutative). Similarly for internal
products. The differentials are given by (dω)k = dωk−1. With these sign
conventions, the usual formulas for forms and cochains are retained, e.g.,

d(ω ∧ η) = dω ∧ η + (−1)|ω|ω ∧ dη, δ(u× v) = δu× v + (−1)|u|u× δv,
ω ∧ η = (−1)|ω|·|η|flip∗(η ∧ ω).

In particular, we have two chain maps

(Ω(M ;V )⊗ Ω(N ;V ))∗ −→ C∗s (M ×N ;V ), ω0 ⊗ ω1 7−→ ω0 ∧ ω1,

ω0 ⊗ ω1 7−→ ω0 × ω1.

From Example 7.11 we get maps

B : Ωi(M ;V n−i)⊗ Ωj(N ;V m−j)→ Ci+j−1(M ×N ;V n−i ⊗ V m−j)

→ Ci+j−1(M ×N ;V n+m−i−j)
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which piece together a natural chain homotopy

B : (Ω(M ;V )⊗ Ω(N ;V ))∗ → C∗−1
s (M ×N ;V ). (76)

between these two chain maps. In detail, for ω ∈ Ωn(M ;V ), η ∈ Ωm(N ;V ),
B(ω, η) is given by the sequence of ordinary cochains∑

i+j=k

(−1)(n−i)jB(ωi, ηj) ∈ Ck−1(M ×N ;V n+m−k)

It is important to observe that this sum is finite since i, j ≥ 0. Similarly, the
chain homotopies from the other examples generalize to graded coefficients.

8 Products (Rationally Even Case)

In this chapter, we will work out the product structure on the differential
cohomology groups, starting from a ring spectrum E up to homotopy7. This
lack of structure will be compensated by assuming E to be rationally even,
which means that

π2n+1(E)⊗ R = 0, ∀n ∈ Z. (77)

For the construction of products in differential cohomology we will need to
choose the fundamental cocycles ιn coherently compatible with the cup prod-
uct. This means that ιn× ιm and µ∗n,mιn+m should differ in a controlled way,
where µn,m : En ∧ Em → En+m represents multiplication.

Assumption (77) will imply all the coherence conditions we are after, at
least in even degrees. It will then be our strategy to ‘transport’ this structure
to odd degrees by demanding compatibility with the integration map.

8.1 Construction in Even Degrees

The goal of this section is the construction of a canonical refinement of Ê2∗

to a functor into unital (graded) commutative rings in a such a way that

a(θ) ∪ x̂ = a(θ ∧Rx̂), ∀θ ∈ Ωn−1(M ;V ), x̂ ∈ Êm(M).

In the next section, we will extend the product to odd degrees by using the
integration map. For this reason, it is slightly more convenient to work with
external products.

7In fact, we will just need a multiplicative cohomology theory.
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8.1.1 Internal and External Products

For clarity, we record the following standard observation:

Proposition 8.1. Given functors E∗ : Manop → Ab, ∗ ∈ Z (or any sub-
monoid of (Z,+, 0)). Then the following structures correspond bijectively to
each other:

1. Natural External Products, i.e., natural transformations

× : En(N)⊗ Em(M)→ En+m(N ×M), n,m ∈ Z.

2. Natural Internal Products, i.e., natural transformations

∪ : En(M)⊗ Em(M)→ En+m(M), n,m ∈ Z.

This correspondence is given by (∆ denotes the diagonal)

x ∪ y = ∆∗(x× y), x× y = pr∗1x ∪ pr∗2y.

The notions of associativity and commutativity correspond to each other:

(u ∪ v) ∪ w = u ∪ (v ∪ w) (u× v)× w = u× (v × w)

u ∪ v = (−1)|u||v|v ∪ u u× v = (−1)|u||v|flip∗(v × u).

Moreover, in this situation, the following structures are equivalent:

1. An element 1pt ∈ E0(pt) which acts as a unit: u × 1 = u, 1 × u = u
(using the identifications M × pt = M, pt×M = M).

2. Elements 1M ∈ E0(M) for each M ∈Man which are units in E∗(M)
and which are preserved by each induced homomorphism E0(f).

8.1.2 Setup

Let E be a multiplicative cohomology. By the Brown Representability The-
orem 2.3, we may choose pointed maps

µn,m : En ∧ Em → En+m, u : S0 → E0, (78)
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representing multiplication and the unit. They are unique up to homotopy.
Therefore, the usual diagrams expressing the axioms of associativity, com-
mutativity, etc., commute in the homotopy category of spaces. We will view
u as a map

u : pt→ E0.

According to Corollary 2.9, there is a canonical natural transformation of
multiplicative cohomology theories

ch : Ẽn(X) = [X,En]→ H̃n(X;V ), V = Ẽ∗(S0)⊗ R. (79)

Recall also from (16) the fundamental cocycles

ιn ∈ Z̃n(En;V ) with ιn = ∫ ε∗nιn+1.

These represent the fundamental cohomology classes ch(idEn) = [ιn] ∈ H̃n(E;V )
that implement the Chern character (79) by way of Yoneda’s Lemma.

Since ch(idEn × idEm) = ch(idEn) × ch(idEm) we may choose reduced
cochains

Mn,m ∈ C̃n+m−1(En ∧ Em;V ) with δMn,m = ιn × ιm − µ∗n,mιn+m. (80)

We make this choice only for n,m even. Similarly, ωpt ∈ Ω0(pt;V ) represents
the unit 1 ∈ H0(pt;V ), and unitality of (79) implies the existence of a cochain

U ∈ C−1(pt;V ) with δU = ωpt − u∗ι0. (81)

Lemma 8.2. Suppose E is rationally even (77). Then, if V = Ẽ∗(S0)⊗ R,

H̃∗(En;V ) = 0 (n even)

H̃∗(En × Em;V ) = 0 (n,m even)

for all odd degrees ∗ ∈ Z. Similarly for higher products.

Proof. This follows from [BS10, Lemma 3.8], Universal Coefficients, and the
Künneth Theorem.

The following consequence of this lemma plays a central role in this section:

(♦) If x, y ∈ C̃k(En ×Em × · · · ;V ) are cochains in odd degree k
with δx = δy, then x and y differ by a coboundary.
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For example, any two choices of (80) and (81) differ by a coboundary. Recall
that for integration on the left (for example, in (19)) Stokes’ formula reads

δ ∫
I

+ ∫
I
δ = i∗1 − i∗0 (82)

8.1.3 Explicit Construction

For the construction of representatives (c, ω, h) for the product of differential
cohomology classes it is important to use the chain homotopy B from (76)
which relates the cross-product with the exterior product of differential forms.
This is because Definition 3.3 requires that

δh = ω − c∗ιn.

Definition 8.3. For n,m even let x0 = (c0, ω0, h0) and x1 = (c1, ω1, h1) be
representatives of elements of Ên(M) and Êm(N). Set

x0×x1 = (µnm(c0×c1), ω0∧ω1, B(ω0⊗ω1)+h0×ω1+ω0×h1−h0×δh1+(c0×c1)∗Mn,m).

Recall that a differential cohomology class is an equivalence class of dif-
ferential cocycles (c, ω, h). Definition 8.3 descends to a well-defined multipli-
cation of equivalence classes:

Lemma 8.4. The differential cohomology class of x0× x1 in Ên+m(M ×N)
is well-defined and depends only upon the equivalence classes of x0 and x1.
It is also independent of the choices (78), (80).

Proof. By choice of (76) and (80) we have

δ(B(ω0 ⊗ ω1) + h0 × ω1 + ω0 × h1 − h0 × δh1 + (c0 × c1)∗Mn,m)

= ω0 ∧ ω1 − (c0, c1)∗µ∗n,mιn+m.

Therefore, x0×x1 represents an element in Ên+m(M×N). Suppose (C0, H0),
(C1, H1) witness equivalences x0 ∼ (c′0, ω0, h

′
0) = x′0, x1 ∼ (c′1, ω1, h

′
1) = x′1.

Then the pair of C = µn,m(C0 × C1) and of the cochain

H = B(pr∗ω0⊗pr∗ω1)+H0×pr∗ω1 +pr∗ω0×H1−H0×δH1 +(C0×C1)∗Mn,m
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witnesses a corresponding equivalence x0 × x1 ∼ x′0 × x′1.

Any other choice µ′n,m in (78) leads to homotopic maps h : µn,m ' µ′n,m
for some homotopy h : I × (En ∧ Em)→ En+m. Choose M ′

n,m for µ′n,m as in
(80). Using (18) and (19), we see that in order to prove the last statement
of the lemma it suffices to show that the pullback along c0 × c1 of

M ′
n,m + ∫

I
h∗ιn+m −Mn,m

is a coboundary, which follows from (80), (82), and (♦).

Definition 8.5. Define the unit by

1̂ = [u, ωpt, U ] ∈ Ê0(pt).

Lemma 8.6. The differential cohomology class of 1̂ is well-defined and in-
dependent of the choices (78), (81).

Proof. The triple represents a differential cocycle by (81). Any other choice
of map u′ in (78) is homotopic to u; write h : u ' u′ for the homotopy,
and choose U ′ as in (81) for u′. It suffices to show that U ′ + ∫ h∗ι0 − U is a
coboundary, which follows from (81), (82), and (♦).

8.1.4 Verification of Ring Structure in Even Degrees

Theorem 8.7. Definitions 8.3 and 8.5 determine a bilinear, unital, com-
mutative, and associative external product on even degrees Ê2∗(M).

The proof is rather tedious. We shall omit irrelevant degree indices on A,
ι, andM . In our calculations with differential cocycles we will often combine
Leibniz’ rule (δu) × v ≡ u × (δv) with (18). We will write x̂i = [ci, ωi, hi].
The reader should keep in mind that δhi = ωi − c∗i ι.

Proof. Bilinear: In view of commutativity below, it is enough to show the
equality x̂0 × (x̂1 + x̂2) = x̂0 × x̂1 + x̂0 × x̂2. Unwinding Definitions 8.3 and

117



5.25, we see that we need to compare the class of the triple

c =µ(c0 × α(c1, c2)),

ω =ω0 ∧ (ω1 + ω2),

h =B(ω0, ω1 + ω2) + h0 × (ω1 + ω2) + ω0 × (h1 + h2 + (c1, c2)∗A)

− h0 × δ(h1 + h2 + (c1, c2)∗A) + (c0 × α(c1, c2))∗M,

with the class of

c′ =α(µ(c0 × c1), µ(c0 × c2)),

ω′ =ω0 ∧ ω1 + ω0 ∧ ω2,

h′ =B(ω0, ω1) +B(ω0, ω2) + h0 × ω1 + h0 × ω2 + ω0 × (h1 + h2)

− h0 × δ(h1 + h2) + (c0 × c1)∗M + (c0 × c2)∗M + (µ(c0 × c1), µ(c0 × c2))∗A.

Using bilinearity of B and of ‘×’ we see that, up to coboundaries, h− h′ is

c∗0ι×(c1, c2)∗A+(c0×α(c1, c2))∗M−(c0×c1)∗M−(c0×c2)∗M−(µ(c0×c1), µ(c0×c2))∗A.

Let pr12, pr13 denote the projections onto the factors 12, 13 and let

π : En × Em × Em → En × Em × En × Em, (x, y, z) 7→ (x, y, x, z).

Select a homotopy H : µ(id× α) ' α(µ× µ)π. To show that the above two
triples are equivalent it suffices by (18) and (19) to show that the pullback
along c0 × (c1, c2) of

ιn×Am+(id×αm)∗Mn,m−pr∗12Mn,m−pr∗13Mn,m−π∗(µn,m×µn,m)∗An+m−∫
I
H∗ιn+m

is a coboundary, which follows from (47), (80), (82), and (♦).

Commutative: Select a homotopy H : µm,n◦τ ' µn,m where τ = flip. In view
of the graded commutativity for differential forms, to prove τ ∗(x̂1 × x̂0) =
x̂0 × x̂1 it remains by (18) and (19) to show that

τ ∗
(
B(ω1, ω0) + h1 × ω0 + ω1 × h0 − h1 × δh0 + (c1 × c0)∗M

)
(A)

−
[
B(ω0, ω1) + h0 × ω1 + ω0 × h1 − h0 × δh1 + (c0 × c1)∗M

]
− (c0 × c1)∗ ∫

I
H∗ι

bounds. To be able to apply (♦) we need to reduce the problem to the
space En × Em. Recall that the cross-product of cochains is not graded
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commutative, but is so up to natural homotopy D from (73). Using (73) and
(74) one computes that, up to coboundaries, (A) is

D(c∗0ι, c
∗
1ι) + τ ∗(c1 × c0)∗M − (c0 × c1)∗M − (c0 × c1)∗ ∫ H∗ι. (B)

In full detail,

τ ∗
[
B(ω1, ω0) + h1 × ω0 + ω1 × h0 − h1 × δh0

]
−B(ω0, ω1)− ω0 × h1 − h0 × c∗1ι

≡D(ω0, ω1) + τ ∗(ω1 × h0 − δh1 × h0)−D(ω0, δh1)− h0 × c∗1ι
≡D(ω0, ω1) + τ ∗(c∗1ι× h0)−D(ω0, δh1)− τ ∗(c∗1ι× h0)−D(δh0, c

∗
1ι)

=D(ω0, ω1 − δh1)−D(δh0, c
∗
1ι) = D(c∗0ι, c

∗
1ι).

Now (B) is the pullback along c0 × c1 of the cochain

D(ιn, ιm) + τ ∗Mm,n −Mn,m − ∫ H∗ιn+m

on En × Em, which bounds by virtue of (♦) and (73), (80), (82).

Units: Observe that B(ωpt,−) is a natural chain homotopy from ω 7→ ωpt ∧
ω = ω to ω 7→ ωpt × ω = ω, as is the zero map. By the Acyclic Models
Theorem 7.10 these maps are themselves chain homotopic. In particular
B(ωpt, ω0) is a coboundary for every closed ω0. Now 1̂× x̂0 is

[µ(u× c0), ωpt ∧ ω0, B(ωpt, ω0) +U × ω0 + ωpt × h0 −U × δh0 + (u× c0)∗M ].

Combining the above observation with Lemma 3.10 and using that ωpt is the
unit for both forms and smooth cochains, this class equals

[µ(u× c0), ω0, U × c∗0ι+ h0 + (u× c0)∗M ].

Select a homotopyH : µ◦(u×id) ' id. By (18) and (19), to prove 1̂×x̂0 = x̂0

it suffices to show that the pullback along c0 of

U × ιn + (u× id)∗M0,n − ∫ H∗ιn
bounds, which follows from (81), (82), (♦).

Associativity: We wish to prove x̂0 × (x̂1 × x̂2) = (x̂0 × x̂1) × x̂2. Select a
homotopy H : µ(id× µ) ' µ(µ× id). Using the associativity of the exterior
product and cross product and combining (18), (19), and Example 7.12 we
see that we are reduced to showing that

Mn,m+l + µ∗n,m+l(ιn ×Mm,l)−Mn+m,l − µ∗n+m,l(Mn,m × ιl)− ∫ H∗ιn+m+l

bounds, which follows from (♦) and (80).
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Proposition 8.8. For smooth maps f, g we have

(f × g)(x̂× ŷ) = f(x̂)× g(ŷ).

Proof. Straightforward, using naturality of B, ∧, δ, and ×.

Combining the previous proposition with Proposition 8.1 gives:

Corollary 8.9. Our functors Ê2∗ have been canonically lifted to the category
of (graded) commutative unital rings.

8.1.5 Further Properties

The map a from Definition 3.11 cannot be multiplicative by reasons of degree.
Instead, one demands [BS10] the following compatibility:

Proposition 8.10. For n,m even, θ ∈ Ωn−1(N ;V ), x̂ = [c, ω, h] ∈ Êm(M):

a(θ)× x̂ = a(θ ∧Rx̂). (83)

Proof. Select a homotopy H : µ(const × id) ' const. Using B(dθ, ω) ≡
θ ∧ ω − θ × ω from (72), (18), and dθ × h ≡ θ × δh we compute:

a(θ)× x̂ = [µ(const× c), dθ ∧ ω,B(dθ, ω) + θ × ω + dθ × h− θ × δh+ (const× c)∗M ]

= [µ(const× c), dθ ∧ ω, θ ∧ ω + (const× c)∗M ]

We wish to compare this class with (recall that ω is automatically closed)

a(θ ∧Rx̂) = [const, dθ ∧ ω, θ ∧ ω].

By Lemma 3.10 and Proposition 3.13 it suffices to show that

(const× id)∗Mn,m − ∫
I
H∗ιn+m

is a coboundary, which is follows from (♦) and (80).

We record also the following proposition, which is straightforward from
Definitions 8.3, 8.5 (the maps I, R were defined in Definition 3.11):
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Proposition 8.11. The maps R, I preserve the external product and 1pt.

Corollary 8.12. The maps R, I are unital natural homomorphisms of graded
rings R : Ê2∗ → Ω2∗(−;V ), I : Ê2∗ → E2∗. We have

a(θ) ∪ x̂ = a(θ ∧Rx̂), θ ∈ Ωn−1(M ;V ), x̂ ∈ Êm(M).

8.2 Extension to Odd Degrees

By demanding compatibility with the integration map (67), the canonical
structure in even degrees from the previous section can be uniquely pro-
moted to a product for all degrees. This extension is completely formal and
can be carried out for any differential cohomology theory with the following
properties:

1. Ê is a differential cohomology theory of pairs (a variant of [BS10]) in the
sense of a family of Ab-valued functors with natural homomorphisms
a,R, I satisfying Theorem 3.12.

2. Ê admits a long exact sequence of pairs as in Theorem 3.15.

3. An integration for pairs ∫ : Ên+1(M × S1,M × 1) → Ên(M), mean-
ing a natural transformation commuting with R, I, and a. Theorem
6.15 uses only formal arguments to produce a corresponding ‘absolute’
integration map, for which we assume the property of Proposition 6.18.

4. A natural, graded commutative product-structure in even degrees for
which R, I are homomorphisms and a satisfies (83). For the associated
external product we require Lemma 8.18.

The transition is based on the following variant of [BS10, p.21]:

Proposition 8.13. For any x̂ ∈ Ên(M) there is X̂ ∈ Ên+1(M ×S1,M × 1)
with

∫ X̂ = x̂.

Any two choices of X̂ differ by a(θ), where θ ∈ Ωn(M × S1,M × 1) is such
that ∫ θ represents an element in the image of the Chern character.
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Proof. Existence. By the surjectivity of

Ên(M × S1,M × 1)� En(M × S1,M × 1) ∼= En−1(M), (84)

we may choose X̂ ∈ Ên(M × S1,M × 1) with ∫ I(X̂) = I(x̂). By Propo-
sition 6.16, x̂ − ∫ X̂ lies in the kernel of I and therefore equals a(θ) for
some θ ∈ Ωn−2(M ;V ), by Theorem 3.12. Pick α : S1 → R smooth with
∫ α(t)dt = 1 and α(1) = 0 and let θ̃ = pr∗1θ∧α(t)dt ∈ Ωn−1(M×S1,M×1;V ).
Then ∫ θ̃ = θ, and X̂ + a(θ̃) is the element we seek.

Uniqueness. If ∫ X̂ = ∫ X̂ ′, then Proposition 6.16 implies ∫ I(X̂−X̂ ′) = 0
so that I(X̂ − X̂ ′) lies in the kernel of the suspension (right isomorphism in
(84)), which is trivial. It follows that I(X̂ − X̂ ′) = 0, whence X̂ − X̂ ′ = a(θ)
for some θ ∈ Ωn−1(M ×S1,M × 1;V ). Since a ∫ θ = ∫ a(θ) = ∫(X̂− X̂ ′) = 0,
Theorem 3.12 implies that ∫ θ lies in the image of the Chern character.

We will generally denote a choice of element X̂ with ∫ X̂ = x̂ as in (84)
by upper case.

Definition 8.14. For x̂ ∈ Ên(M), ŷ ∈ Êm(N) pick classes X̂ ∈ Ên+1(M ×
S1), Ŷ ∈ Êm+1(N × S1) with ∫ X̂ = x̂, ∫ Ŷ = ŷ. Define

x̂× ŷ =


∫ X̂ × ŷ (for n odd,m even),

∫ x̂× Ŷ (for n even,m odd),

∫ x̂× Ŷ = −∫ X̂ × ŷ (for n,m odd).

The last equality follows from Proposition 6.18:

∫ X̂ × ŷ def
= ∫ ∫ X̂ × Ŷ = −∫

′
∫ X̂ × Ŷ def

= −∫ x̂× Ŷ

Lemma 8.15. The definition of x̂ × ŷ is independent of the choices of X̂
and Ŷ . Moreover, in all degrees we have

a(θ)× x̂ = a(θ ∧Rx̂). (85)

Proof. Suppose, for example, that ∫ X̂ = x̂ = ∫ X̂ ′ in the case n odd, m even.
We will use the maps

j : M × S1 → (M × S1,M × 1), i : M × 1←→M × S1 : pr1.
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Using Theorem 3.15, write

j∗Ẑ = X̂ − pr∗1i
∗X̂, j∗Ẑ ′ = X̂ ′ − pr∗1i

∗X̂ ′

for Ẑ, Ẑ ′ ∈ Ên+1(M × S1,M × 1). By Theorem 6.15 and Proposition 8.13,
Ẑ−Ẑ ′ = a(θ) for some form θ ∈ Ωn(M×S1,M×1) with ∫ θ in the image of the
Chern character. Since R has image in can(im(ch)) and ch is multiplicative,
∫ θ ∧Rŷ also represents an element in the image of the Chern character. By
Proposition 6.16,

∫ a(θ)× ŷ (83)
= ∫ a(θ ∧Rŷ) = a(∫ θ ∧Rŷ) = 0,

which shows that x̂× ŷ is well-defined:

∫(X̂ − X̂ ′)× ŷ = ∫(Ẑ − Ẑ ′)× ŷ = ∫ a(θ)× ŷ = 0

Suppose that θ ∈ Ωn−1(M ;V ). Still in the case n odd, m even we wish to
prove (85). Pick θ̃ ∈ Ωn(M × S1;V ) with ∫ θ̃ = θ. Then ∫ a(θ̃) = a(θ), so
that by definition

a(θ)× ŷ def
= ∫ a(θ̃)× ŷ (83)

= ∫ a(θ̃ ∧Rŷ) = a(∫ θ̃ ∧Rŷ) = a(θ ∧Rŷ).

The proofs of the other two cases are completely parallel.

The following is an immediate consequence of the well-definedness of Def-
inition 8.14 and of the corresponding property in even degrees:

Proposition 8.16. The product is bilinear, unital, and graded commutative
in all degrees.

Associativity follows directly from the following compatibility of multi-
plication and the integration map:

Proposition 8.17. For any x̂ ∈ Ên(M × S1) and ŷ ∈ Êm(N) we have

∫(ŷ × x̂) = ŷ × (∫ x̂), (−1)|ŷ| ∫(x̂× ŷ) = (∫ x̂)× ŷ.

Proof. The second formula follows from the first by graded commutativity.
Considering each of the cases in Definition 8.14, the first formula follows from
the next lemma, which is the corresponding result in even degrees.
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Lemma 8.18. For x̂ ∈ Ên(M), ŷ ∈ Êm(N × S1 × S1) and n,m even we
have

∫ ∫(x̂× ŷ) = x̂× (∫ ∫ ŷ).

Proof. The proof is similar to that of Proposition 6.18 and we will use the
notation established there. Pick ŷ′ ∈ Ên(M × S1 × S1,M × 1 × S1) with
j∗2 ŷ
′ = ŷ − pr∗2i

∗
2ŷ. Then

ŷ′ − pr′∗1 i
′∗
1 ŷ
′ = [c0, ω0, h0]

may represented as a triple as in Lemma 6.19. Since such triples may be
viewed as relative classes as required by (69), the double integral may be
performed ‘directly’ (without choosing a replacement to compute the second
integration): as in the proof of Proposition 6.18, Theorem 6.15 implies

∫ ∫ ŷ = ∫ ∫ ŷ′ = ∫ ∫ [c0, ω0, h0] = [∫ ∫ c0, ∫ ∫ ω0, ∫ ∫ h0]

and similarly

∫ ∫ x̂×ŷ = [∫ ∫ µ(c0×c1), ∫ ∫ ω0∧ω1, ∫ ∫
(
B(ω0, ω1)+ω0×h1+h1×ω1−h0×δh1+(c0×c1)∗M

)
].

We have to compare this class with x̂× (∫ ∫ ŷ), which is

[µ(c0×∫ ∫ c1), ω0∧(∫ ∫ ω1), B(ω0, ∫ ∫ ω1)+h0×(∫ ∫ ω1)+ω0×(∫ ∫ h1)−h0×δ(∫ ∫ h1)+(c0×∫ ∫ c1)∗M ].

Example 7.15 implies that ∫ ∫ B(−,−) and B(−, ∫ ∫ −) differ on closed forms
only by a coboundary. Select a homotopy H from µn,m ◦ (idn×εm−1 ◦Σεm−2)
to εn+m−1 ◦Σεn+m−2 ◦Σ2µn,m−2. Then by Lemma 3.10 and Proposition 3.13
it suffices to show that the pullback under (c0 × ∫ ∫ c1) of

∫ ∫(idn×εm−1◦Σεm−2)∗Mn,m−∫
I
H∗((Ωεadj

n+m−1)−1)∗((εadj
n+m−2)−1)∗ιn+m−2−Mn,m−2

is a coboundary, which follows from (♦).

Theorem 8.19. Let E be a rationally even, multiplicative cohomology the-
ory and choose an Ω-spectrum En representing it. Then the Hopkins-Singer
differential extension Ê can canonically be viewed as a multiplicative differ-
ential cohomology theory in the sense of [BS10]. The product structure is
compatible with integration.

Proof. It remains only to remark that multiplicativity of f ∗ in odd degrees
follows from Proposition 8.8 and the functoriality in Theorem 6.15.
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9 Highly Structured Differential Func-
tion Spectra

We have shown that for rationally even spectra E up to homotopy it is possi-
ble to construct a canonical product structure on the differential cohomology
groups. This is slightly unsatisfactory for two reasons:

1. Even though most naturally arising cohomology theories of interest are
rationally even (with the exception of algebraic K-theory), this is a
rather technical condition. An explanation for this condition is that
it seems to guarantee a unique multiplicative structure, at least if one
requires compatibility with the integration maps.

2. In the field theory interpretation of differential cohomology (Chapter
11), the groups Ên(M) are the equivalence classes of gauge potentials
(of fields whose charges have been lifted along the generalized Chern
character). Important operations like gluing fields or integrating them
on manifolds with boundary do not descend to equivalence classes.

The second point motivates looking for a refined structure that represents
differential cohomology

Ê∗ : Manop −→ Z-Graded-Rings.

This refined structure will be a functor of ∞-categories

NManop → CAlg(Sp). (86)

Here, NMan denotes the ordinary nerve [GJ09, Example I.1.4] of the cate-
gory of manifolds, that is, the simplicial set whose set of n-simplices is that
of all composable sequences

M0
f1−→ · · · fn−→Mn

of manifolds Mi and smooth maps fi. The notation from higher algebra is
explained in the next subsection.

The study of differential function spectra was initiated in [HS05, 4.6],
where essentially an ordinary functor

Manop → hSp, S 7→ filtn(En; ιn)S (87)
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is constructed8.
Beginning with a ‘highly structured’ commutative ring spectrum E ∈

CAlg(Sp), we will discuss how one may construct refinements (86). By de-
veloping the deRham isomormophism for Eilenberg-Mac Lane spectra and
the theory of smooth objects (∞-category valued presheaves on manifolds),
[Bun12] exhibits a passage from multiplicative differential data to functors
(86) (discussed in Section 9.1). While several examples of multiplicative data
are given, [Bun12] does unfortunately not show how to obtain such multi-
plicative data for generic E. This is certainly a crucial issue because the de-
Rham homomorphism is essentially just a feature of ordinary Eilenberg-Mac
Lane spectra, while the coherence conditions (similar to the compatibility
condition (80)) are encoded in the multiplicative data.

The main point that remains is therefore the construction of canonical
multiplicative data for E ∈ CAlg(Sp), that is, an equivalence class of a
morphism in CAlg(Sp)

E ∧HR→ HV, V∗ = π∗(E)⊗Z R, (88)

which will then lead to our refinement (86). Let me point out that the
construction of such E∞-morphisms is daunting business and hardly possible
‘by hand.’ We will use the Schwede-Shipley Theorem [SS03a] and the idea
that on certain Eilenberg-Mac Lane spectra there is an essentially unique
multiplicative structure. This theorem forces us to restrict to cofibrant V .
The results in this chapter are therefore not a generalization of the rationally
even case.

We will establish (88) in (97) and call it a refined Chern character.

9.1 Construction from Multiplicative Data

9.1.1 Notation from Higher Algebra

A short introduction to ∞-categories in general is given in the appendix.
Here we will recall briefly some terminology from ‘higher algebra’ [Lur11].
We will generally use the notation introduced there and in [Lur09].

8Up to the issue of functorial replacement in (4.41) which, strictly speaking, involves
a fibrant replacement in a diagram category – in particular, the spaces filtn(En; ιn)S are
replaced by equivalent spaces (which of course makes no matter upon the passage to
homotopy groups).
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We let Γ denote Segal’s (skeletal) category of finite pointed sets. This
category has objects

0 ∈ 〈n〉 = {0, . . . , n}, n ≥ 0,

base pointed by zero. Morphisms α : 〈m〉 → 〈n〉 are ordinary maps preserv-
ing the base point. For example we have ‘characteristic maps’

χi : 〈n〉 → 〈1〉, j 7→

{
1 (i = j),

0 (else).

A morphism is said to be inert if α−1(i) is a singleton for every i 6= 0.
The following is a different way to view an ordinary monoidal category:

it is a category C along with a way to ‘operate’ on sequences

(C1, . . . , Cn)

of objects of C . That is, a monoidal structure gives a way to ‘contract’ and
‘expand’ such sequences, for example,

(U, V,W,X, Y, Z) −→ (U, V ⊗W, 1C , X ⊗ Y ). (89)

Of course, we may apply more contractions on the right. Similar to an operad,
this should be compatible in the sense that the result remains the same if
we compute some intermediate step first. The precise way to state this is
that the category of sequences C⊗ is the total space of a Grothendieck op-
fibration C⊗ → N∆op (the classical counterpart of a coCartesian fibration).
The shape of ∆op encodes the compatibilities we require. The operation (89)
is then an allowed ‘horizontal lift’ of the morphism α : [4] → [6] in ∆ given
by 0 ≤ 1 ≤ 3 ≤ 3 ≤ 5.

In the symmetric monoidal case, ∆op is replaced by Γ and morphisms
α : 〈m〉 → 〈n〉 in Γ are thought of as contractions

(C1, . . . , Cm)→
( ⊗
i∈α−1(1)

Ci, . . . ,
⊗

i∈α−1(n)

Ci

)
.

The compatibility mentioned above is of course only required up to co-
herent homotopy:
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Definition 9.1 (1.2.12 in [Lur07b]). A symmetric monoidal ∞-category is
a coCartesian fibration

p : C⊗ → NΓ

with the additional property that for each n ≥ 0 the canonical map induced
by ‘fiber transport’ along χ1, . . . , χn (well-defined up to equivalence)

C⊗〈n〉 → C〈1〉 × · · · × C〈1〉

is a categorical equivalence. The fiber C = C〈1〉 is called the underlying
∞-category.

Example 9.2. The ∞-category of spectra Sp is defined as the full subcate-
gory of Fun(Z×Z, S∗) spanned by the spectrum objects X (that is, Xij ' ∆0

for all i 6= j and the diagram X induces identifications Xi,i ' ΩXi+1,i+1).
There exists a symmetric monoidal structure on Sp. This is the main result
of [Lur07a] and [Lur07b].

Example 9.3. The derived category D(A ) [Lur11, 1.3.5.8] of an abelian
category A (for example, the category of R-modules ModR for an ordinary
ring R). The monoidal structure stems from the tensor product of chain
complexes.

In more detail, the unbounded derived category is defined as the ‘differ-
ential graded nerve’ [Lur11, 1.3.1.6] of the differential graded category of real
(unbounded) chain complexes ChR. The differential enrichment is given by
the internal hom, i.e. the chain complex with n-chains

MapCh(C,D)n =
∏
i∈Z

VectR(Ci, Di+n).

Thus, Ndg(Ch) = D(VectR). By [Lur11, Remark 1.3.1.11], the homotopy
category of a differential graded category (obtained by passing the the ho-
mology of the mapping chain complexes) is canonically isomorphic to the
homotopy category of the∞-category obtained by passing to the differential
graded nerve.

Definition 9.4 (1.3.3, 1.2.1, and 1.1.27 in [Lur07b]). Let p : C⊗ → NΓ be
a symmetric monoidal ∞-category. The ∞-category of commutative alge-
bra objects CAlg(C) is the full subcategory of Fun(NΓ,C⊗) spanned by all
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sections A : NΓ → C⊗ of p which carry inert morphisms to p-coCartesian
edges.

Definition 9.5. Suppose p : C⊗ → NΓ and q : D⊗ → NΓ are symmetric
monoidal ∞-categories. A symmetric monoidal functor is a simplicial map
f : C⊗ → D⊗ with the property that fq = p and which preserves coCartesian
edges. We will often identify it with its restriction f : C → D to the fiber
over 〈1〉.

In addition, for each E ∈ CAlg(Sp) we may form the ∞-category of E-
modules ModE, which is again symmetric monoidal. The corresponding ∞-
category of algebras CAlg(ModE) is called the ∞-category of commutative
E-algebra objects. We will write CAlgR = CAlg(ModHR) for an ordinary
ring R.

9.1.2 Smash Product of Spectra

Recall from [Lur07a, 4.1.1] that the∞-category of all∞-categories Cat∞ may
be viewed as the simplicial nerve of the fibrant-cofibrant objects of Set+

∆.
Since Set+

∆ is even a monoidal model category (for the Cartesian product
of simplicial sets), we may define a monoidal structure Cat⊗∞ on Cat∞ with
objects

[X1, . . . , Xn], Xi ∈ Cat∞, n ≥ 0. (90)

An edge in Cat⊗∞ from [X1, . . . , Xn] to [Y1, . . . , Ym] is given by f ∈ ∆([m], [n])
together with functors

ηi : Xf(i−1)+1 × · · · ×Xf(i) → Yi. (91)

This is in fact a Cartesian model structure on Cat∞. The ∞-category of
algebra objects Alg(Cat∞) may be identified with the ∞-category CatMon

∞
of all monoidal ∞-categories and whose morphisms are monoidal functors,
but the mechanism is unfortunately somewhat abstract (it is basically an
unstraightening construction).

We let CatPr
∞ denote the subcategory of Cat∞ spanned by presentable

∞-categories and whose morphisms are required to be colimit-preserving.
It is an important fact that the subcategory CatPr

∞
⊗ ⊂ Cat⊗∞ spanned

by objects only those tuples (90) consisting of presentable ∞-categories and
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edges (91) that preserve colimits in each variable (are multilinear) deter-
mines a monoidal structure on CatPr

∞ . The main observation is that the q-
coCartesian edges f : [X1, . . . , Xn]→ Y (where q : CatPr

∞
⊗ → N∆op) covering

[n]→ [1] in ∆op may be characterized by the following condition:

“f is multilinear and induces for every Z ∈ CatPr
∞ a categorical

equivalence f ∗ : FunL(Y, Z) → Fun′(X1 × · · · × Xn, Z) onto the
full subcategory of multilinear functors.”

We even have a canonical choice of q-coCartesian morphism covering the
edge [n]

{0,n}−−−→ [1] in ∆op:

X1 × · · · ×Xn → FunR(Xop
1 ,FunR(Xop

2 , . . .FunR(Xop
n−1, Xn)))

In particular, S is the unit [Lur11, 5.1.5.6] (the q-coCartesian edge []→ [S] is
given by ∆0 ∆0

−→ S) and we are thus not dealing with a Cartesian monoidal
structure (since S is not final). By [Lur07a, 1.4.3], the unit S determines an
essentially well-defined object of Alg(CatPr

∞), which determines a monoidal
structure on S. This is just the Cartesian structure.

Now let CatPr,σ
∞

⊗ ⊂ CatPr
∞
⊗ denote the full subcategory whose objects

are tuples (90) consisting only of stable presentable ∞-categories. This will
define a monoidal structure on CatPr,σ

∞ , owing to the fact that this is a local-
ization of CatPr

∞ whose localization functor

Stab = −⊗ Sp : CatPr
∞ → CatPr,σ

∞

is compatible with the monoidal structure [Lur07a, 1.3.9]. By the same
result, Stab extends to a monoidal functor while the inclusion extends to a
lax monoidal functor.

In particular, Sp = Stab(S) is the unit. By [Lur07a, 1.4.3], the unit
Sp determines an essentially well-defined object of Alg(CatPr,σ

∞ ) – by the
mechanism of left Kan extension. As remarked to above, performing then an
unstraightening construction finally yields a monoidal structure on Sp, called
the smash product.

9.1.3 Homotopy Pullback Construction

In view of our discussion of products in the rationally even case, it is clear
that their existence depends on a coherent choice of maps µn,m representing
multiplication and cochains Mn,m relating the fundamental cocycles.
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The passage from multiplicative data to differential function spectra has
been made explicit in [Bun12], some results of which we now briefly recall.

Definition 9.6. A canonical multiplicative differential datum for E ∈ CAlg(Sp)
is a morphism (V ∗ = π−∗E ⊗Z R denotes the coefficients of E)

c : E ∧HR→ HV

in the ∞-category CAlg(Sp).

The (generalized) Eilenberg-Mac Lane spaces HV above are reviewed in
subsection 9.2.1.

Roughly speaking, the differential function spectrum is the (homotopy)
pullback in Sp of the diagram

Hom(M+, En)

ch
��

filtnΩn(M ×∆•;V ) Rham // Zn(M ×∆•;V ).

(92)

Here, Z(M ×∆•;V ) denotes the cocycle spectrum (34), which we have eval-
uated at M+, and ch is the map (40), viewed as a morphism in Sp. The n-th
level of the lower left corner is

filtnΩn(M ×∆•;V ) =
∏
i∈Z

filtnΩi(M ×∆•;V n−i),

where filtn indicates that we take only forms whose Künneth component in
direction of ∆• is of degree ≤ n. The lower horizontal map is given by viewing
a differential form as a cochain (the ‘deRham homomorphism’). As shown
in [HS05], there is an equivalence

Z(M ×∆•;V ) ' Hom(M+, HV ),

so one may replace the lower right corner in (92) by a mapping spectrum.
For each M , we wish to refine the resulting diagram to CAlg(Sp). Passing
to mapping spectra and precomposing with E → E ∧ HR, a multiplicative
datum (E, V, c) gives rise to a diagram

Hom(M+, En)

c

��
filtnΩn(M ×∆•;V ) //Hom(M+, HVn)
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whose vertical map is a morphism in CAlg(Sp). The main result of [Bun12,
Section 4] is a version of deRham’s Theorem for Eilenberg-Mac Lane spec-
tra. In particular, a morphism in CAlg(Sp) is constructed that replaces the
horizontal map in the previous diagram. For varying manifoldsM , the result
may be viewed as a diagram in the ∞-category

Fun(N(Man)op,CAlg(Sp)),

of commutative ring spectra-valued presheaves on manifolds (in [Bun12], this
category is denoted by Sm(CommMon(N(Sp)[W−1]̂), but we stick to the
notation of [Lur11]).

The limit of this diagram then gives (86). The construction therefore has
two components:

1. The horizontal deRham homomorphism must be a morphism in CAlg(Sp).

2. A morphism E → E∧HR→ HV in CAlg(Sp), which yields the vertical
morphism upon passage to mapping spectra.

A treatment of a candidate for 1. is given in [Bun12, Lemma 4.111 and the
surrounding discussion]. On the other hand, the morphism in 2. is assumed
there as additional data (the multiplicative differential data).

9.2 Canonical Multiplicative Data

In this section we will construct canonical multiplicative data (88), assuming
that V is a cofibrant commutative DGA.

Recall that the category cDGA of commutative differential graded alge-
bras over the reals admits a model structure whose weak equivalences are the
quasi-isomorphisms and whose fibrations are morphisms that are surjective
in every degree [Lur11, Proposition 8.1.4.10], [SS00]. While every object is
fibrant, in order to get the Schwede-Shipley Theorem going (recalled below),
we need to assume that V ∈ cDGA is cofibrant.

Our construction of (88) will be based on a generalization of a Theorem
of Dold:

Theorem 2 and Proposition 2 in [Dol62] Let E,F be cohomology the-
ories and assume that F takes values in real vector spaces. Then any trans-
formation φ : π∗E → π∗F of the coefficients may uniquely be extended to a
transformation Φ : E → F of cohomology theories.
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Moreover, if E,F are both multiplicative cohomology theories and φ is
multiplicative, then Φ is a multiplicative transformation.

While the first part goes through essentially unaltered, we will only be
able to prove a restricted version of the second assertion.

9.2.1 Generalized Eilenberg-Mac Lane spectra

The following is a ∞-categorical formulation of the Schwede-Shipley Com-
parison Theorem [SS03a]:

Theorem 8.1.2.13 in [Lur11] We have an equivalence of symmetric monoidal
∞-categories

θ : D(VectR)
∼−→ ModHR. (93)

In particular, θ induces an (ordinary) symmetric monoidal equivalence of the
associated homotopy categories.

Both D(VectR) and ModHR are stable ∞-categories [Lur07c] which im-
plies in particular that their homotopy categories are additive. This is be-
cause suspension is an equivalence in stable ∞-categories and characterized
by an equivalence of simplicial sets

MapC(ΣC,D) ' ΩMapC(C,D)

and the homotopy groups of a two-fold loop space are abelian groups. Since θ
is an equivalence, it preserves colimits and limits. In particular, it is an exact
functor in the sense of [Lur07c, Section 5]. As such, θ carries suspensions to
suspensions and therefore induces and additive functor

hθ : hD(VectR)
∼−→ hModHR

between the homotopy categories, which also inherits a symmetric monoidal
structure.

Remark 9.7. The functor θ is a generalized Eilenberg-MacLane functor.
Indeed, for a graded vector space V (regarded as a chain complex with zero
differential) we have θ(V ) = θ(

∏
i∈Z Vi[i]) =

∏
i∈ZHVi[i]. We will also write

HV := θ(V ) ∈ ModHR. Here, ‘[ ]’ denotes the shift.
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To explain what an Eilenberg-Mac Lane spectrum associated to a chain
complex is, note that, up to equivalence, a chain map C∗(X)→ V amounts
to a map Σ∞X → HV . In the same way, an Eilenberg-Mac Lane spectrum
for a chain complex D∗ should classify chain maps C∗(X)→ D∗.

Both the homology groups of a chain complex and the homotopy groups
of a spectrum have a description in terms of a Hom-set from the unit objects:
for E ∈ ModHR we have

πnE = π0MapSp(S[n], E) = hSp(S[n], E)

∼= hModHR(S ∧HR[n], E) ∼= hModHR(HR[n], E).

Here we have used that the forgetful functor hModHR → hSp has the left
adjoint − ∧HR. Similarly, for C ∈ D(VectR) we have

HnC = π0MapD(VectR)(R[n], C) = hD(VectR)(R[n], C),

where we view R as a chain complex concentrated in degree 0.

Lemma 9.8. For every chain complex C ∈ D(VectR), θ induces a natural
isomorphism of graded vector spaces

hθ : H∗C
∼=−→ π∗θ(C)

If C ∈ cDGA, this is an isomorphism of graded commutative algebras.

Proof. The functor hθ takes the unit R to the unit in ModHR, that is, an
Eilenberg-MacLane spectrum HR := θ(R). Since hθ is exact, it preserves
suspensions and therefore induces an isomorphism of abelian groups

hθ : hD(VectR)(R[n], C)→ hModHR(HR[n], θ(C)). (94)

The vector space structure is induced by the monoidal structure on the ho-
motopy categories and the fact that R and HR = θ(R) are the units. For
example, the action of R on π∗E is given by

hModHR(HR[n], E)⊗ hModHR(HR, HR)→ hModHR(HR[n]⊗HR HR, E ⊗HR HR)
∼= hModHR(HR[n], E),
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along with the isomorphism R ∼= hD(VectR)(R,R) ∼= hModHR(HR, HR),
induced by hθ. This implies R-linearity of (94). To see the isomorphism
R ∼= hD(VectR)(R,R) recall that at the end of Example 9.3 we mentioned
that the homotopy category of the unbounded derived category satisfies
hD(VectR)(C,D) ∼= H0MapChR

(C,D). We must therefore compute all chain
homotopy classes of chain maps R[0] → R[0]. Clearly, any chain homotopy
must be zero, so this is just HomR(R,R) ∼= R.

Suppose now that E ∈ CAlg(ModHR) and C is a commutative DGA.
Then C may be regarded as an element of CAlg(D(VectR)). In this case,
π∗(E) and H∗(C) are graded commutative R-algebras, induced by the follow-
ing identifications and the symmetric monoidal structure on the homotopy
categories hD(VectR) and hModHR:

R[n]⊗ R[m] ∼= R[n+m],

θR[n]⊗HR θR[m] ∼= θ(R[n]⊗ R[m]) = θR[n+m].

It follows from this description that the maps (94) are the components of a
map of graded algebras.

9.2.2 Refinement for Modules

We are now ready to generalize the first part of Dold’s Theorem:

Theorem 9.9. Suppose E ∈ Sp, H ∈ ModHR and given a homomorphism
of graded abelian groups

ϕ : π∗E → π∗H.

Then there exists a morphism φ : E → H in Sp, unique up to equivalence,
with π∗φ = ϕ.

Proof. Uniqueness: Suppose π∗φ1 = π∗φ2 for φ1, φ2 : E → H in Sp. By
the essential surjectivity of (93) we may find chain complexes C,D with
θ(C) ' E ∧ HR and θ(D) ' H. In fact, since over the reals any chain
complex is quasi-isomorphic to a graded vector space with zero differential
(the homology), we may even find graded vector spaces V,W and equivalences

α : θ(V )
'−→ E ∧HR, β : θ(W )

'−→ H.
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The forgetful functor ModHR → Sp has left adjoint − ∧ HR. By [Lur09,
5.2.2.8], this means that we have a weak equivalence

MapModHR
(E ∧HR, H) ' MapSp(E,H). (95)

It follows that we may find ψ1, ψ2 : E ∧ HR → H in ModHR such that the
homotopy class of ψ1 is

E ∧HR [φ1]∧HR−−−−−→ H ∧HR→ H,

and similarly for φ2. In particular, π∗φ1 = π∗φ2 implies that

π∗(ψ1) = π∗(ψ2) : π∗(E)⊗ R→ π∗(H)⊗ R→ π∗(H)

coincide. Applying that (93) is fully faithful to any choice of composition of

θ(V ) α // E ∧HR
ψ1 //

ψ2

// H θ(W ),
βoo

we see that we may find ϕ1, ϕ2 : V → W in D(VectR) such that the equiva-
lence classes of θ(ϕ1), θ(ϕ2) are [β] ◦ [ψ1] ◦ [α]−1 and [β] ◦ [ψ2] ◦ [α]−1, respec-
tively. Consider the diagram

π∗(E ∧HR)
π∗ψ1=π∗ψ2 // π∗(H)

π∗θ(V )
π∗θ(ϕ1) //

π∗θ(ϕ2)
//

α ∼=

OO

π∗θ(W )

β∼=

OO

H∗V
H∗(ϕ1) //

H∗(ϕ2)
//

∼=

OO

H∗W

∼=

OO

V
ϕ1 //
ϕ2

//

∼=

OO

W.

∼=

OO

From the equality π∗ψ1 = π∗ψ2 above and since the vertical maps are iso-
morphisms, we conclude ϕ1 = ϕ2. Thus in hModHR we have

[ψ1] = [β]−1 ◦ [θ(ϕ1)] ◦ [α] = [β]−1 ◦ [θ(ϕ2)] ◦ [α] = [ψ2].

The equivalence (95) then implies φ1 ' φ2.
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Existence: Choose V,W and α, β as before. As in the diagram above,
V ∼= π∗(E ∧HR) ∼= π∗(E)⊗ R and W ∼= π∗(H) so that ϕadj : π∗(E)⊗ R →
π∗(H) gives rise to a homomorphism ξ : V → W as in

π∗(E ∧HR)
ϕadj

// π∗(H)

V

∼=

OO

ξ
//W.

∼=

OO

The required morphism φ is now any choice of composition in ModHR

E −→ E ∧HR α←− θ(V )
θ(ξ)−−−→ θ(W )

β−→ H.

On the level of homotopy groups, any such composition induces an adjoint
to ϕ and therefore coincides with ϕ.

The following subsection will be needed for our study of multiplicative
structures. It addresses the behavior of various notions under equivalences.

9.2.3 The Forgetful Functor on Algebras

If C is a monoidal category, any category equivalent to C may also be en-
dowed with a monoidal structure in such a way that the equivalence is a
strong monoidal functor. The main result in this subsection (Proposition
9.10) may be regarded as a generalization of this statement.

For the reader uncomfortable with the techniques of ∞-categories I have
formulated two immediate consequences (Corollaries 9.12 and 9.11) of Propo-
sition 9.10 which are more easily accessible and play the main role in the
sequel.

Let p : C⊗ → NΓ be a symmetric monoidal ∞-category with underlying
∞-category C = p−1〈1〉. Evaluation at 〈1〉 ∈ Γ0 determines a simplicial map,
the forgetful functor

q : CAlg(C)→ C.

The following technical proposition is proven using the language of marked
simplicial sets, which is just a simplicial set K along with a subset s0K0 ⊂
E ⊂ K1 of ‘marked’ edges [Lur09, 3.1]. Along with morphisms that pre-
serve marked edges we obtain a category Set+

∆. It carries a model structure
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(the Cartesian model structure) which is ‘created’ by marked anodyne maps
(a class of monomorphisms with certain markings [Lur09, 3.1.1.1]) and the
so-called Cartesian equivalences [Lur09, 3.1.3.7]. (The opposite of) marked
simplicial sets are intimately tied to the homotopy theory (lifting arguments)
of (co)Cartesian fibrations. There are three kinds of standard ‘markings’ on
a simplicial set K: K] means all edges have been marked, K[ means only
degenerate edges have been marked, and K\ makes sense only if there is un-
derstood an inner fibration p : K → L and then we mark the p-coCartesian
edges. In this notation, a p-coCartesian fibration is then just a morphism
K\ → L] which has the RLP for the opposite of all marked anodyne maps
[Lur09, 3.1.1.6].

Proposition 9.10. The map q is a coCartesian fibration. The q-coCartesian
edges e ∈ CAlg(C)1 ⊂ Set∆(NΓ×∆1,C⊗) are characterized by the following
condition: For every inert morphism σ ∈ NΓ1 and every edge τ ∈ ∆1

1 the
image e(σ, τ) is p-coCartesian.

Proof. Let I ⊂ NΓ1 be the set of inert morphisms in Γ, so that by definition
Funlax(NΓ,C⊗) is the simplicial set underlying the marked simplicial set of
sections

Map/NΓ

(
(NΓ, I), (C⊗)\

)
.

We will use the marking on CAlg(C) given by the internal hom of Set+
∆.

By the dual of [Lur09, 3.1.1.6] it will be sufficient to show that the marked
simplicial map q : CAlg(C) → C] has the right lifting property with respect
to every marked morphism i : A → B opposite to a marked anodyne map.
Let j : ∆0 → NΓ denote the inclusion of the object 〈1〉. Providing the dotted
arrow in the diagram

A //

i
��

CAlg(C)

q

��
B //

::

C

is equivalent to solving (the diagrams are adjoint to each other)

A× (NΓ, I)
∐

A×(∆0)]
B × (∆0)] //

i∧j
��

(C⊗)\

p

��
B × (NΓ, I)

55

pr2

// (NΓ)].
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But by [Lur09, 3.1.2.3], the map iop ∧ jop = (i ∧ j)op is marked anodyne, so
[Lur09, 3.1.1.6] implies that in the second diagram the dotted arrow exists.

Corollary 9.11. Let A ∈ CAlg(C) be an algebra object. Suppose the un-
derlying object q(A) ∈ C is equivalent to some other object B ∈ C. Then
there exists an algebra object B ∈ CAlg(C) (with underlying object B) and
an equivalence A ' B in CAlg(C) covering the given equivalence.

Proof. Pick a q-coCartesian edge e starting at A and covering the equivalence
q(A)→ B. By [Lur09, 2.4.1.5], e is an equivalence in CAlg(C) and the target
d0e is the required algebra object.

Corollary 9.12. Suppose f : A→ B is a morphism in CAlg(C). Then any
morphism g : q(A) → q(B) in C of the underlying objects that is equivalent
to q(f) may be endowed with the structure of a morphism of algebras: there
exists ĝ : A→ B in CAlg(C), equivalent to f , with q(ĝ) = g.

Proof. Since q(f) and g are equivalent we may pick σ : ∆2 → C with d2σ =
q(f), d1σ = g and so that d0σ = id, as depicted in the diagram

q(B)

q(A)

g
;;

q(f)
// q(B).

id
cc

Since (Λ2
1)[ ⊂ (∆2)[ (and its opposite) is marked anodyne and CAlg(C)→ C

is a coCartesian fibration we may find σ̂ : ∆2 → CAlg(C) covering σ with
d2σ̂ = f, d0σ̂ = id. The edge ĝ = d1σ̂ then has the required properties.

9.2.4 Refinement for Algebras

It is not surprising that we may not completely generalize the second part
of Dold’s Theorem because the homotopy/homology groups don’t reflect the
full homotopical characteristics of a product structure. For example, even
though they split as chain complexes, only the so-called formal real DGAs
are quasi-isomorphic to their homology.
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Since (93) is symmetric monoidal, it induces a corresponding functor
between the categories of commutative algebra objects. Combining [Lur07b,
Example 4.3.23] and [Lur07b, Theorem 4.3.22] with (93), we obtain an equiv-
alence

θ : N(cDGA◦)
'−→ CAlg(D(VectR))

θ−→ CAlg(ModHR). (96)

This is also established in [Lur11, Theorem 8.1.4.11]. Note the restriction to
the subcategory cDGA◦ of cofibrant objects.

Proposition 9.13. Suppose V,W are cofibrant graded commutative algebras
and suppose given a morphism

φ : HV → HW in ModHR.

If π∗φ preserves the graded algebra structure, then we may refine φ to CAlgR.
This refinement is unique up to equivalence.

Proof. Existence: By (93) one may find a chain map f : V → W such that
θ(f) is equivalent to φ. In particular, we have a commutative diagram

π∗θ(V )
π∗φ=π∗θ(f) // π∗θ(W )

V = H∗V
f //

∼=

OO

H∗W = W,

∼=

OO

so that by assumption f is a homomorphism of graded algebras. By (96)
we may view θ(f) as a morphism in CAlgR. Now apply Corollary 9.12 to
φ ' θ(f).

Uniqueness: Since (96) is fully faithful, any lift of φ is equivalent to the
image under θ of a homomorphism f : V → W in cDGA◦ which, using the
last diagram, must correspond under the vertical isomorphisms to π∗φ.

Remark 9.14. Suppose V is a cofibrant graded algebra. Since the dif-
ferential on V is zero, it is generated as a graded commutative algebra by
some set of generators of various degrees. Therefore, for any homomorphism
V → H∗C of graded algebras (with C ∈ cDGA◦) we may find some V → C
in cDGA◦ which induces V → H∗C in homology. Then the argument of the
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previous proposition shows the following:

(♥) Suppose H ∈ CAlgR. Under the above assumption, any morphism
φ : HV → H in ModHR with π∗φmultiplicative may be refined to a morphism
in CAlgR.

We offer the following extension of the second part of Dold’s Theorem:

Theorem 9.15. Let V be cofibrant and let E ∈ CAlgR. For any equivalence

φ : E → HV in ModR.

such that π∗φ is a homomorphism of graded algebras there exists a unique up
to equivalence refinement of φ to a morphism in CAlgR.

Proof. Uniqueness: Given (necessarily equivalences) φ1, φ2 : E → HV in
CAlgR refining φ, choose a composition ψ as in

E
φ1

}}

φ2

""
HV

ψ
// HV.

By (96) we may find a morphism f : V → V in cDGA◦ such that θ(f) is
equivalent in CAlgR to ψ. Therefore

f = H∗(f) = π∗θ(f) = π∗ψ = π∗φ2 ◦ π∗φ−1
1 = id

so that ψ ' θ(f) is equivalent in CAlgR to id, that is, φ1 ' φ2.
Existence: According to Corollary 9.11, there exists an object H ∈ CAlgR

and an equivalence Φ : E → H with lifting φ. In particular, H has underlying
HR-module HV . To find ψ : HV → H in CAlgR lifting the identity idHV it
suffices by (♥) to show that the identity

π∗HV → π∗H (*)

is a homomorphism of graded algebras. Note here that π∗H has the same
underlying graded vector space than π∗HV , but a possibly different algebra
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structure. Now (*) is multiplicative by the commutative diagram

π∗H

π∗E

π∗Φ 66

π∗φ
((
π∗HV

id

OO

in which π∗Φ, π∗φ are known to be isomorphisms of graded algebras. We
obtain an equivalence

ψ : HV → H in CAlgR covering idHV .

Any choice ξ of composition of

E
Φ−→ H

ψ←− HV

satisfies [q(ξ)] ' [q(ψ)]−1 ◦ [q(Φ)] = [φ] in hModHR. By Corollary 9.12 we
obtain the required lift of φ to CAlgR.

9.2.5 Refined Chern Character

Suppose E ∈ Sp. According to Theorem 9.9 from the canonical map π∗E →
V = π∗HV we obtain a morphism

φ : E → HV in Sp,

well-defined up to equivalence. Passing to the adjoint, this determines an
equivalence class of morphisms in ModHR

φadj : E ∧HR→ HV.

Assume that V is cofibrant. By definition of the algebra structure on V , the
map π∗φadj is a graded algebra isomorphism. Theorem 9.15 determines a lift

E ∧HR→ HV in CAlgR, (97)
well-defined up to equivalence. Precomposing with E → E∧HR now singles
out a canonical equivalence class of a morphism ch : E → HV in CAlg(Sp),
which we call the refined Chern character. This is our canonical multiplicative
datum.

Example 9.16. We list some cohomology theories E whose coefficient alge-
bra V = π∗E⊗R satisfies the hypothesis of V being cofibrant: ku (connective
K-theory), MU , MO, S (sphere spectrum), HV .
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10 Uniqueness (General case)

As mentioned in Subsection 1.2.2, for rationally even cohomology theories
there is an essentially unique differential refinement of a generalized coho-
mology theory [BS10, Theorem 3.10], at least if we demand compatibility
with integration maps.

In this chapter, we shall investigate how to answer the corresponding
question without making further assumptions. We will prove that the axioms
from Definition 1.12 determine the differential extension up to ‘equivalence,’
a weakening of the notion of ‘isomorphic differential extensions’ from [BS10].

Definition 10.1. Let (Ê, I, R, a) be a differential extension of E. For each
n ∈ Z and M ∈ Man the transformation a : Ωn−1(M ;V )d → Ên(M) gives
rise to a (standard) strict symmetric monoidal groupoid

Ê n(M) =


objects: x, y, z, . . . ∈ Ên(M)

HomÊ n(M)(x, y) = {η ∈ Ωn−1(M ;V )d | a(η) = y − x}
composition & monoidal structure: +

For varying M , these may be organized into a functor

Ê n : Man→ BrMonCatstrict.

In the same way, the differentials d : Ωn−1(M ;V )d → Ωn(M ;V ) and
δ : Cn−1(M ;V )δ → Cn(M ;V ) give functors

On,C n : Man→ BrMonCatstrict

(by Example A.3). The transformation R along with the property Ra = d

amounts to a natural transformation R : Ê n → On.

Definition 10.2. An equivalence between differential extensions Ê1, Ê2 of E
is a natural equivalence of the corresponding symmetric monoidal groupoids

Ê n
1 (M)

'−→ Ê n
2 (M), ∀n ∈ Z.

Theorem 10.3. Any two differential extensions of E are equivalent.
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Proof. Suppose Ê1, Ê2 are differential extensions of E and form the corre-
sponding functors Ê1, Ê2. We will construct a natural equivalence of symmet-
ric monoidal groupoids

ΦM : Ê n
1 (M) −→ Ê n

2 (M), n ∈ Z.

We will use the results from [BS10, Sections 2 and 3], whose notation we
now quickly recall: represent E∗ by an Ω-spectrum (En, εn). Fix a degree
n. According to [BS10, Proposition 2.3] there exists a sequence of pointed
manifolds E

(i)
n , i ∈ N, together with pointed embeddings of submanifolds

κi : E
(i)
n ↪→ E

(i+1)
n as well as (i − 1)-connected pointed maps xi : E

(i)
n → En

such that xi+1 ◦ κi = xi and such that for any finite-dimensional pointed
CW-complex X the canonical map

colim
i

[X,E(i)
n ]→ [X,En] = En(X)

is an isomorphism. Using [BS10, Propositions 2.5, 2.6] one may choose ûi ∈
Ên

1 (E
(i)
n ) with

κ∗i ûi+1 = ûi, I(ûi) = [xi], Rham(R(ûi)) = ch[xi].

In the same way one may choose elements û′i ∈ Ên
2 (E

(i)
n ). We are now ready to

recall the definition of ΦM as a set map Ên
1 (M)→ Ên

2 (M): For v̂ ∈ Ên
1 (M)

write I(v̂) = [M
f−→ En] for some f and factor f ' xi ◦ fi up to homotopy

for some fi : M → E
(i)
n . Then, by the exact sequence defining differential

extensions (Definition 1.12),

v̂ − f ∗i ûi = a(α) for some α ∈ Ωn−1(M ;V )d,

and we define
ΦM(v̂) := f ∗i (û′i) + a(α).

As shown in [BS10, Lemmas 3.2, 3.3, 3.4], ΦM is well-defined (independent
of the choice of α and fi), compatible with I, R, a and natural in M . We use
the identity on Ωn−1(M ;V )d to view ΦM as a functor

ΦM : Ê n
1 (M)→ Ê n

2 (M),

which is of course fully faithful. It is also essentially surjective: For û′ ∈
Ê∗2(M) choose û ∈ Ê∗1(M) with I(û) = I ′(û′). Using that I ◦ ΦM = I and
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again the exact sequence, we may write ΦM(û)−û′ = a(α) ∈ Ên
2 (M) for some

α ∈ Ωn−1(M ;V )d. Thus, using ΦM ◦ a = a, the object û − a(α) ∈ Ê n
1 (M)

clearly maps to û′.

It follows that ΦM is an equivalence of categories. It remains therefore to
show that ΦM is a symmetric monoidal functor. The deviation of ΦM from
being additive is a natural transformation

(ΦM ◦+)− (+′ ◦ (ΦM × ΦM)) : Ên
1 (M)× Ên

1 (M)→ Ên
2 (M)

that composes with I to zero, so that it factors over a natural transformation

B : Ên
1 (M)× Ên

1 (M)→ Ωn−1(M ;V )d/im(ch).

satisfying

B(û, v̂ + ŵ) +B(v̂, ŵ) = B(û, v̂) +B(û+ v̂, ŵ),

B(û, v̂) = B(v̂, û),

B(û, 0) = 0 = B(0, û).

Together with the identity arrows 0
0−→ ΦM(0) = 0 the transformation B

gives ΦM the structure of a symmetric monoidal functor. The naturality of
B in the objects of Ê n

1 (M) follows from the observation that

ΦM(v̂ + a(β)) = ΦM(v̂) + a(β).

Remark 10.4. Under additional assumptions (rationally even, finiteness
conditions on the coefficients) the results of [BS10] amount to the assertion
that one may even pick a strict monoidal equivalence.

11 Field Theory Interpretation

On closed, differentially oriented n-manifolds M , differential cohomology
classes x̂ ∈ Ĥn+1(M) may be integrated to numbers∫

M

x̂ ∈ R/Z = S1 ⊂ C. (98)
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An example of this construction is the Chern-Simons action

S(x̂) =

∫
M

x̂ ∪ x̂ (99)

of a principal S1-bundle P → M with connection ∇ on a 3-manifold M
(represented by x̂ ∈ Ĥ2(M)). By (85), the expression (99) agrees with the
more traditional formula

S(A) =

∫
M

A ∧ dA+
2

3
A ∧ A ∧ A, A ∈ Ω1(M)

for topologically trivial bundles x̂ = a(A) with connection A.

For bundles P that are trivial (but not trivialized) one needs to choose
a section of P to define the action S(P,∇). If M is closed, an application
of Stokes’ Theorem shows that S is well-defined up to integers. However,
if M has boundary, this is no longer true. The remarkable solution to this
problem is to interpret the action as an element of an abstract complex line
which belongs to the restriction of the field (P,∇) to the boundary: these
are the Wess-Zumino-Witten Lines S(P,∇)|∂M . The action determines a
well-defined element S(P ) ∈ S(P |∂M) in this line.

This may be summarized by saying that S is the action of a Lagrangian
field theory [Fre95], which means the following:

• We have groupoids of ‘fields’ CM , CN for every 3-manifold M (possibly
with boundary) and every 2-manifold N (we have taken the groupoids
of principal circle bundles with connection above).

• There is given an action S which assigns complex lines to fields on 2-
manifolds. Fields φ on 3-manifolds with boundary M have an action
S(φ) which is an element of the line S(φ|∂M).

These are required to satisfy various functoriality and locality properties (see
[Fre95, Theorem 2.19]).

The integral (98) is not well-defined unless ∂M = ∅. In this section,
we will present a generalization of the WZW-construction for the solution
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of this problem (Theorem 11.15). This will be carried out for ordinary dif-
ferential cohomology (which can be handled using ordinary category theory).

Using the product structure developed in this thesis, the differential inter-
section pairing S(x̂) =

∫
M
x̂∪ x̂ can be studied also for generalized cohomol-

ogy theories E. These generalizations of the Chern-Simons action probably
also belong to certain Lagrangian field theories, but the corresponding in-
tegral (98) for manifolds with boundary has not yet been developed (and
probably requires the use of higher categories of fields).

In the final section of this thesis, we show that in the case of K-theory
and ∂M = ∅ this intersection pairing is non-trivial. It can be identified (up
to rationals) with a certain η-invariant.

11.1 Fields

Ordinary differential cohomology Ĥn(M) = Hn(Ĉ(n)∗(M)) may be defined
in terms of cochain complexes [HS05, Definition 2.5]:

Definition 11.1.

Ĉ(n)∗(M) =

{
C∗(M ;Z)× C∗−1(M ;R)× Ω∗(M) (∗ ≥ n),

C∗(M ;Z)× C∗−1(M ;R)× {0} (∗ < n),

with differential
d(c, h, ω) = (δc, ω − c− δh, dω).

Definition 11.2. Let Ĥn(M) be the monoidal groupoids with π0Ĥ
n(M) =

Ĥn(M) obtained by from Ĉ(n)∗ at level n by Example A.3.

The objects of Ĥn(M) are the cocycles x ∈ Ĉ(n)n(M), dx = 0. The
morphisms x1 → x2 are im(d)-cosets of cochains y ∈ Ĉ(n)n−1(M) with
dy = x1 − x2.

Recall the natural chain homotopy B from Example 7.11. The cup-
product in differential cohomology is a chain map (using (72))

∪ : Ĉ(n)∗(M)⊗ Ĉ(m)∗(M)→ Ĉ(n+m)∗(M), (100)
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defined by the formula

(c0, h0, ω0)∪ (c1, h1, ω1) = (c0∪c1, (−1)nc0∪h1 +h0∪ω1 +B(ω0, ω1), ω0∧ω1).

This chain map gives rise to bilinear functors [HS05, p.13]

∪ : Ĥn(M)× Ĥm(M)→ Ĥn+m(M).

For n = 0, 1, 2 these are familiar geometric categories:

Example 11.3. Ĥ0(M) ∼= C∞(M,Z) (discrete category).

Example 11.4. Ĥ1(M) is the category of (set) maps f : M → R that are
smooth when post-composed to R/Z; there is a unique morphism f1 → f2

whenever f1 − f2 is integer-valued.

Example 11.5. Ĥ2(M) is equivalent to the category of circle bundles with
connection [HS05, Example 2.7]. This is a monoidal equivalence if we take
the monoidal structure P ×S1 Q on principal bundles9. Writing down the
equivalence in [HS05, Example 2.7] in the special case M = pt, one sees
that Ĥ2(pt) ' R/Z-Spaces sends every object to I = R/Z. The category
R/Z-Spaces is equivalent to the category HermLines of Hermitian lines
(one-dimensional complex vector spaces with Hermitian metric).

11.2 Push-Forward Maps

Let p : E → S be a smooth map between compact manifolds E, S. The
relative dimension of p is k = dimE − dimS. Analogous to the case of gen-
eralized cohomology theories, [HS05, Section 2.4] define push-forward maps
in differential cohomology. We will recall their construction in this section.

Definition 11.6. A differential orientation (j,W, J, U) on p consists of the
following data:

1. An embedding j : E ↪→ S × SN with pr1 ◦ j = p and a tubular neigh-
borhood of j (that is, a vector bundle π : W → E and an extension of
j to an open embedding J : W ↪→ S × SN with pr1 ◦ J = p ◦ π).

9P ×S1 Q is P ×Q modulo the diagonal action (p.z, q) ∼ (p, z.q), z ∈ S1.
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Figure 1: The data of 1. is called a framing of p : E → S.

E

W

[0, 1] = S

SN

p

2. A differential ‘Thom’ cocycle U = (c, h, ω) ∈ Ẑ(N − k)N−kc (W ) which
is compactly supported10. It is required that ω ∈ ΩN−k(W ) define an
ordinary orientation11 of W .

A quadruple (j,W, J, Û) as above with Û ∈ ĤN−k
c (W ) (R(Û) determining

an orientation on W ) will be called a differential orientation class.

The slant product of cochains and the integral of forms along the fiber
SN determines a cochain map (using Lemma 6.2 (ii))∫

SN
: Ĉ(n+N)∗(S × SN)→ Ĉ(n)∗(S). (101)

Explicitly, ∫SN (c, h, ω) = (∫SN c, ∫SN h, ∫SN ω).

Definition 11.7. Given a differential orientation on p, we get a cochain
map, the push-forward along p, denoted either by p!,

∫
E/S

, or
∫ U :

Ĉ(m+ k)∗+k(E)
π∗−→ Ĉ(m+ k)∗+k(W )

−∪U−−−→ Ĉ(m+N)∗+Nc (W )

J∗−→ Ĉ(m+N)∗+N(S × SN)

∫
SN−−→ Ĉ(m)∗(S). (102)

10There exists K ⊂W compact so that the restriction of U to W \K vanishes
11This means that ω(v1, . . . , vN−k) 6= 0 for any basis v1, . . . , vN−k ∈We ⊂ TeE, e ∈ E.
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That is, ∫ U

x =

∫
SN
J∗(π

∗x ∪ U).

11.3 Integration on Closed Manifolds

The construction of the push-forward map p! depends on several choices, most
notably a framing and a differential Thom cocycle U . The framing is a fea-
ture of the situation (in Chern-Simons theory certain numbers are known to
depend on the choice of framing). We will see however that, interpreted suit-
ably, the integral depends only on the differential class Û = [U ] ∈ ĤN−k

c (W ).

Fix a smooth map p : E → S between compact manifolds and a framing
J : W ↪→ S × SN on p. Given Û ∈ ĤN−k

c (W ), let

U =

{
objects: U ∈ Ẑ(N − k)N−kc (W ) with Û = [U ],

morph. U1 → U2 : V ∈ Ĉ(N − k)N−k−1
c (W )/im(d) with dV = U1 − U2.

This category is connected (meaning there is an arrow between any two
objects). We begin by constructing a functor

Ψ : Ĥn+k(E)→ Fun(U , Ĥn(S)), (103)

or, more precisely, its adjoint F : Ĥn+k(E) × U → Ĥn(S). On objects
x ∈ Ẑ(n+ k)n+k(E), U ∈ Ẑ(N − k)N−kc (W ), the functor F is given by

F (x, U) =

∫ U

x ∈ Ẑ(n)n(S).

To a morphism y ∈ Ĉ(n+k)n+k−1(E)/im(d), V ∈ ĈN−k−1(N−k)c(W )/im(d)
from (x1, U1) to (x2, U2) the functor F assigns

F (y, V ) =

∫
SN
J∗(π

∗y ∪ U1) + J∗(π
∗x2 ∪ V ).

Since (100), (101) are cochain maps, this is indeed a morphisms from
∫ U1 x1

to
∫ U2 x2. Linearity implies the functoriality of F .

Lemma 11.8. The functor (103) maps into the subcategory of ‘holonomy-
free’ functors: for each x ∈ Ĥn+k(E) the functor F (x,−) takes automor-
phisms to the identity.
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Proof. Suppose V ∈ Ĉ(N −k)N−k−1
c (W ) represents an automorphism, dV =

0. By [HS05, p.25], the (N − k− 1)-th cohomology of Ĉ(N − k)∗c(W ) can be
identified with HN−k−2

c (W ;R)/HN−k−2
c (W ;Z). By the Thom isomorphism,

this is just H−2
c (W ;R)/H−2

c (W ;Z), which is zero. We may therefore find
L ∈ Ĉ(N − k)N−k−2

c (W ) with dL = V . Since (100), (101) are cochain maps,

F (idx, V ) =

∫
SN
J∗(π

∗x ∪ V ) = ±d
∫
SN
J∗(π

∗x ∪ L)±
∫
SN
J∗(π

∗dx ∪ L).

Since x is closed, F (idx, V ) bounds (so represents the identity).

A diagram F : I → C into a groupoid C (with I connected) has a limit
precisely when F is holonomy-free. Composing (103) with the limit

Funhol-free(U , Ĥn(S))
lim−→ Ĥn(S)

determines a functor that depends only upon the class Û ∈ ĤN−k
c (W ):

Ĥn+k(E)→ Ĥn(S) (104)

We summarize our discussion as follows:

Proposition 11.9. The exists a canonical functor (104), depending only
on the differential orientation class Û of p, which refines the push-forward
p! : Ĥn+k(E) → Ĥn(S) in differential cohomology (by passing to connected
components).

Remark 11.10. Restricting to the ‘flat’ subcategory Ĥn+k
flat (E), one may

consider the dependence of this functor on Û → Û + a(θ). More precisely,
given an ordinary Thom class U ∈ HN−k

c (W ) define Ob (I (U)) = I−1(U), a
morphism U1 → U2 being a im(d)-coset of differential forms θ ∈ ΩN−k−1(W )

with a(θ) = U1 −U2. For x flat, Û 7→
∫ Û

x turns out to be holonomy-free as
well (by the Thom isomorphism), so one obtains a functor

Ĥn+k
flat (E)→ Ĥn(S)

that depends only on the ordinary orientation of the normal bundle W .
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Definition 11.11. A differential orientation on a closed n-manifold N is
defined to be a differential orientation class (j,W, J, Û) of the projection
p : N → pt. Using the identification of Example 11.5, we define a functor

SÛ : Ĥn+2(N)→ HermLines (105)

as the post-composition with ‘lim’ of the functor

Ψ : Ĥn+2(N)
(103)−−−→ Funhol-free(U , Ĥ2(pt))

'−→ Funhol-free(U ,HermLines).

We will keep writing Ψ(x)(U) =
∫ U

x on objects, now viewed as an object
of HermLines. For each morphism V in U , Ψ(x)(U1

V−→ U2) is a Hermitian
isomorphism (given by multiplication with

∫
SN J∗(π

∗x ∪ V ) ∈ S1). Recall
that the equivalence Ĥ2(pt) ' R/Z-Spaces ' HermLines in Example 11.5
takes every object to the identity object C. Therefore,∫ U

x = C, ∀x ∈ Ob(Ĥn+2(N)),

for every differential cocycle U representing Û . By definition of the limit
in a groupoid, we have an isomorphism φU : SÛ(x)

∼=−→
∫ U

x. Also, φU1 =

Ψ(x)(U1
V−→ U2) ◦ φU2 . In other words:

Proposition 11.12. Let N be a closed, differentially oriented n-manifold.
To every object x ∈ Ĥn+2(N) we may functorially associate a Hermitian line
SÛ(x). Any choice of cocycle U representing Û determines a trivialization
φU of SÛ(x). If dV = U1 − U2 are two choices of trivialization, Ψ(x)(V )

is a Hermitian isomorphism C =
∫ U1 x →

∫ U2 x = C, making the following
diagram commute:

∫ U1 x
Ψ(x)(V ) //

∫ U2 x

SÛ(x).

φU1

;;

φU2

cc
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11.4 Manifolds with Boundary

Definition 11.13. Let M be a compact (n + 1)-manifold, equipped with a
map f : M → [0, 1] which defines the boundary. A differential orientation
on M is a differential orientation class (j,W, J, Û) on f .

For each cocycle representative U of Û we define∫ U

M/pt

: Ĉ(m+ n+ 1)∗+n+1(M)
f!−→ Ĉ(m+ 1)∗+1([0, 1])

∫ 1
0−→ Ĉ(m)∗(pt).

This is not a chain map, so there is no induced map in differential cohomology.
Instead, one has a version of Stokes’ Theorem [HS05, (2.10)]

d

∫ U

M/pt

x =

∫ U

M/pt

dx− (−1)|x|
∫ U |∂M

∂M/pt

x. (106)

We have Ĉ(1)1(pt) = Z × R, which we interpret as a number via Z × R →
R/Z ⊂ C.

Definition 11.14. Suppose Û ∈ ĤN−n−1(W ) is a differential Thom class
on M . For x ∈ Ĥn+2(M) we define SÛ(x) as the following element of
SÛ |∂M(x|∂M): for every cocycle U representing Û , let SÛ(x) denote the preim-
age of

∫ U
M/pt

x ∈ C under the isomorphism φU |∂M : SÛ |∂M(x|∂M)→
∫ U |∂M

x =
C.

It remains to check that this is well-defined. Suppose U1, U2 are two trivi-
alizations of Û and pick V with dV = U1−U2. We claim that φ−1

U1|∂M

(∫ U1

M/pt
x
)

=

φ−1
U2|∂M

(∫ U2

M/pt
x
)
. By Proposition 11.12, the right-hand side equals Ψ(x)(V |∂M)◦

φ−1
U1|∂M

(∫ U2

M/pt
x
)
, so we are claiming

∫ U1

M/pt

x =

∫
SN
J∗(π

∗x|∂M ∪ V |∂M) +

∫ U2

M/pt

x =

∫ V

∂M/pt

x+

∫ U2

M/pt

x.

This follows from (106).
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Theorem 11.15. For every differentially oriented n-manifold N , we have a
functor

SÛ : Ĥn+2(N)→ HermLines

that depends only upon the differential Thom class Û of the orientation. Ev-
ery differentially oriented (n + 1)-manifold M determines a section

∫ Û of
this functor: ∫ Û

x ∈ SÛ |∂M(x|∂M), ∀x ∈ Ĥn+2(M).

11.5 The Lagrangian field theory

Let k = n/2 + 1 for n even. We set

dimM = n+ 1, dimN = n dimension
CM,U = Ĥk(M) 3 x, CN,V = Ĥk(N) 3 y space of fields
S(x) =

∫ U
M/pt

x ∪ x, S(y) =
∫ V
N/pt

y ∪ y action

Here it should be noted that 2k = n + 2, so that x ∪ x and y ∪ y are
automatically flat.

Example 11.16. If n = k = 2, a field x ∈ CM,U on a 3-manifoldM is a prin-
cipal S1-bundle with connection. IfM is closed, S(x) is the S1-Chern-Simons
invariant of this bundle. On a 2-manifold N , a field is again a circle bundle
with connection, and the complex lines we obtain may also be constructed
from the WZW-functional.

11.6 Outlook: Differential K-theory

For ordinary cohomology, the differential intersection pairing produces the
Chern-Simons invariant, and we have just seen how in a refined viewpoint
on differential cohomology the intersection pairing also produces the WZW-
lines. The goal of this section is to show that the differential intersection
pairing for K-theory on closed manifolds is non-trivial and also produces a
sophisticated concept: it is essentially a certain η-invariant. One may specu-
late that the refined differential viewpoint for other generalized cohomology
theories leads to other sophisticated invariants which, in the case of manifolds
with boundary, take values in objects more fancy than complex lines.
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Rational ordinary differential cohomology may be defined by12

Ĥk(M ;Q) =
{
f ∈ HomAb(Zk−1(M),R/Q)

∣∣∣
∃ω ∈ Ωk(M)∀σ ∈ Ck−1(M) : f(∂σ) =

∫
σ

ω mod Q
}
.

This is a differential cohomology theory in the usual sense for the cohomology
theory E = HQ.

Lemma 11.17. Suppose M = ∂W for an oriented compact n-dimensional
manifold W and let x ∈ Ĥn

flat(M ;Q). Suppose x has an extension to a class
y ∈ Ĥn(W ;Q). Viewing x as an element of Hn−1(M ;R/Q), we have

〈x, [M ]〉 =

∫
W

R(y) mod Q

Proof. By definition, x([M ]) = y(∂[W ]) ≡
∫
W
R(y).

Since Hn+1(W,M) = 0 such an extension of x may always be chosen, by
the long exact sequence in differential cohomology of the pair. It is unique
up to Ĥn(W,M).

Suppose given Hermitian vector bundles Ei → X with connections, i =
1, 2, representing differential K-theory classes xi. Suppose X is a compact
spin manifold of dimension (4k + 3). We write (x, y) =

∫
X
x ∪ y for the

differential intersection pairing. Then, using the differential Riemann-Roch
Theorem, and identifying ĉh : K̂1(pt)

∼=−→ Ĥodd(pt;Q),

(x1, x2) ∼= ĉh

(∫
X

x1 ∪ x2

)
=

∫
X

Â(X) ∪ ĉh(x1 ∪ x2).

The element Â(X) ∈ Ĥeven(X;Q) is a refinement of the Â-genus to differ-
ential cohomology. The integrand is a sequence of even-degree ordinary dif-
ferential cohomology classes, but only the component y of degree dimX + 1
contributes to the integral. Now if X is a (4k + 3)-dimensional compact

12In [CS85], this group would have been called Ĥk−1(M,R/Q).
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spin manifold, then y is automatically flat. If we assume the existence of
extensions of E1, E2 to Y , ∂Y = X, Lemma 11.17 implies

(x1, x2) =

∫
Y

Â(Y ) ∧ ch ((E1,∇1)⊗ (E2,∇2)) mod Q.

By (4·3) in [APS75], this equals

ind(DE1⊗E2) + [h(E1 ⊗ E2) + η(E1 ⊗ E2)]/2,

where the index is taken of the twisted Dirac operator (with respect to cer-
tain boundary conditions), h denotes the dimension of the space of harmonic
spinors for the restriction of DE1⊗E2 to X and η = η(0) its eta-invariant. Of
course, the index is an integer and vanishes in R/Q, as does h/2.

In summary, the intersection pairing (mod Q) is essentially the eta-
invariant of the corresponding twisted Dirac operator on X. In particular,
this expression (mod Q) depends only on X (being the differential intersec-
tion pairing on X), a fact that can also be deduced directly from the Index
Theorem.

Corollary 11.18. The differential intersection pairing in differential K-
theory is non-trivial in certain cases.

A Appendix

A.1 Braided Monoidal Categories

A.1.1 Adjunctions

Definition A.1. An adjunction (F,G, ε, η) consists of

1. Functors F : C→ D and G : D→ C,

2. Natural transformations ε : FG→ idD, η : idC → GF .

These are required to satisfy the zig-zag identities :

idF : F
Fη−→ FGF

εF−→ F, idG : G
ηG−→ GFG

Gε−→ G.
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The definition of adjunction makes sense in any bicategory, for example
in MonCat. An adjunction is said to be an adjoint equivalence in case ε, η
are natural isomorphisms. An equivalence in a bicategory consists of the data
(F,G, ε, η) as above with ε, η natural isomorphisms, but we do not require the
zig-zag identities. Then (G,F, η−1, ε−1) is another equivalence and similarly
for adjoint equivalences.

An important feature of Cat is that a functor F may be placed inside
an (adjoint) equivalence precisely when it is essentially surjective and fully
faithful.

A.1.2 Monoidal Categories, Functors, and Transformations

[JS93], [ML98], and [Lei04] are good references for (braided) monoidal cate-
gories.

Definition A.2. A monoidal category is an ordinary category C along with
a functor

⊗ : C× C→ C,

an object 1 ∈ C, and natural isomorphisms

aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) (associator)
λX : 1⊗X → X (unit constraints)
ρX : X ⊗ 1→ X

satisfying the following axioms:

Mac Lane’s Pentagon:
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W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z

a⊗ 1

a

1⊗ a

a

a

Triangle Identities:

(X ⊗ Y )⊗ 1 X ⊗ (Y ⊗ 1)

X ⊗ Y

(1⊗X)⊗ Y 1⊗ (X ⊗ Y )

X ⊗ Y

a

ρX⊗Y 1⊗ ρY

a

λX ⊗ 1 λX⊗Y

If the associativity and unit constraints are all the identity, one speaks of
a strict monoidal category.

Example A.3. From a cochain complex (C, δ) one may construct a strict
symmetric monoidal category C n in degree n as follows. As objects we take
Ob(C ) = Cn. A morphism from x ∈ Cn to y ∈ Cn consists of a im(δ)-coset
of elements u ∈ Cn−1 with δu = x− y, and composition is given by addition.
The monoidal structure is determined by addition as well, and the symmetry
is taken as the identity.

The full subcategory Z n ↪→ C on objects Zn = {x ∈ Cn | δx = 0} will
also occasionally be used.

A functor between monoidal categories carries extra data:
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Definition A.4. Suppose C,D denote monoidal categories. A functor

F : C→ D

along with an isomorphism F1 : 1→ F (1) and natural isomorphisms

FX,Y : F (X)⊗ F (Y )→ F (X ⊗ Y )

is called a monoidal functor in case the following diagrams commute:

FX ⊗ F1 FX ⊗ 1

F (X ⊗ 1) FX

FX,1 ρFX

1⊗ F1

F (ρX)

F1⊗ FX 1⊗ FX

F (1⊗X) FX

F1 ⊗ 1

F1,X λFX

F (λX)

F ((X ⊗ Y )⊗ Z) F (X ⊗ Y )⊗ FZ (FX ⊗ FY )⊗ FZ

F (X ⊗ (Y ⊗ Z)) FX ⊗ F (Y ⊗ Z) FX ⊗ (FY ⊗ FZ)

F (a)

FX⊗Y,Z

FX,Y⊗Z

FX,Y ⊗ 1

1⊗ FY,Z

a

In case all FX,Y , F1 are the identity, we speak of a strict monoidal functor.
Monoidal functors F : C→ D and G : D→ E are composed as follows:

(GF )X,Y : GF (X)⊗GF (Y )
GFX,FY−−−−−→ G(FX⊗FY )

FX,Y−−−→ GF (X⊗Y ), (107)

(GF )1 : 1
G1−−→ G(1)

G(F1)−−−−→ G(F (1)).

Along with the identity functor id (strict) we obtain the category MonCat.
Like Cat, this is in fact a bicategory:

Definition A.5. Suppose F,G : C→ D are monoidal functors. A monoidal
transformation u : F → G is a natural transformation uX : FX → GX (of
ordinary functors) such that the following diagrams commute:

FX ⊗ FY GX ⊗GY

F (X ⊗ Y ) G(X ⊗ Y )

uX ⊗ uY

FX,Y

uX⊗Y

GX,Y 1

F1

G1
G1

F1

u1
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Note that, unlike a monoidal functor, a monoidal transformation has no
additional data. Since we work only with strong monoidal functors we have
the following:

Theorem A.6 (Doctrinal Adjunction [Kel74]). Suppose (F,G, ε, η) is an
adjoint equivalence and that F : C → D is a monoidal functor. Then there
exists a unique monoidal structure on G turning (F,G, ε, η) into an adjoint
equivalence in MonCat.

Proof. That ε, η are monoidal transformations means

ηX⊗Y = G(FX,Y ) ◦GFX,FY ◦ (ηX ⊗ ηY ),

εA ⊗ εB = εA,B ◦ F (GA,B) ◦ FGA,GB,
η1 = G(F1) ◦G1,

id = ε1 ◦ F (G1) ◦ F1.

Since F is faithful this clearly determines GA,B, G1 uniquely. Conversely,
the second and forth equations may be used to define these isomorphisms.
The other two equations are then consequences of the zig-zag identities and
naturality. Compatibility with the associativity and unit constraints derive
from the corresponding properties of F , the zig-zag identities, and naturality.
For more detail, see [Kel74].

A.1.3 Braids

Definition A.7. Suppose C is a monoidal category. A braid on C is a natural
family of isomorphisms

sX,Y : X ⊗ Y → Y ⊗X

making the following two hexagons commute:

(X ⊗ Y )⊗ Z

(Y ⊗X)⊗ Z

X ⊗ (Y ⊗ Z)

Y ⊗ (X ⊗ Z)

(Y ⊗ Z)⊗X

Y ⊗ (Z ⊗X)

sX,Y ⊗ 1

a

1⊗ sX,Z

a

sX,Y⊗Z

a
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X ⊗ (Y ⊗ Z)

(X ⊗ Y )⊗ Z

X ⊗ (Z ⊗ Y )

Z ⊗ (X ⊗ Y )

(X ⊗ Z)⊗ Y

(Z ⊗X)⊗ Y

a−1

sX⊗Y,Z

a−1

1⊗ sY,Z

a−1

sX,Z ⊗ 1

A monoidal category together with a braid is called a braided monoidal
category. The hexagon implies that we have the following compatibility with
the unit [JS93, Proposition 2.1]:

A

A⊗ 1

1⊗ A
λA

ρA

sA,1

Definition A.8. A monoidal functor F : C→ D between braided monoidal
categories is said to be braided in case the following diagram commutes:

FX ⊗ FY F (X ⊗ Y )

FY ⊗ FX F (Y ⊗X)

FX,Y

FY,X

sFX,FY FsX,Y

A monoidal transformation between braided monoidal functors is called
a braided monoidal transformation (no further conditions imposed).

A.2 Monoidal Structures under Equivalences

In this section we collect some of the more sophisticated facts on monoidal
categories for later reference. They all reflect that the notion of monoidal
category is the ‘correct’ weakening of the notion of a strict monoid inCat and
concern the behavior of these notions under various types of equivalences.
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A.2.1 Structure on Categories under Equivalences

Proposition A.9. Suppose that F : C → D is an equivalence of categories
and that C or D is monoidal. Then there exists a monoidal structure on the
other category, turning F into a monoidal equivalence.

Of course, the monoidal structure is then unique up to equivalence. There
is, however, no canonical choice in this equivalence class.

Proof. Placing F in an adjoint equivalence (F,G, ε, η), doctrinal adjunction
implies that we may assumeD to be monoidal. It is possible to verify directly
that C1 ⊗ C2 = G(FC1 ⊗ FC2) defines a monoidal structure on C. The
associativity and unit constraints are constructed by applying G to those of
D and using ε, η. Let me outline a different proof: let’s call a pair (X,ϕ) of

X ∈ C, ϕ : FC1 ⊗ FC2

∼=−→ FX

‘a’ tensor product of C1, C2 ∈ C. For any two choices (X1, ϕ1), (X2, ϕ2) of
tensor product of C1, C2 the full faithfulness of F implies that there is a
unique isomorphism

f : X1

∼=−→ X2 with ϕ2 = F (f) ◦ ϕ1.

The functor F is essentially surjective, so we may choose tensor products
C1 � C2 for every pair of objects:

FC1,C2 : FC1 ⊗ FC2

∼=−→ F (C1 � C2)

Since F is fully faithful, � may be viewed uniquely as a functor C× C→ C.
In detail, f1 � f2 is the unique dotted arrow making the diagram

FC1 ⊗ FC2

Ff1⊗Ff2

��

∼=

FC1,C2 // F (C1 � C2)

F (f1�f2)

��
FC ′1 ⊗ FC ′2 FC′1,C

′
2

∼= // F (C ′1 � C ′2)

commute. Pick also an element 1C ∈ C with an isomorphism

F1 : 1D
∼= F (1C).
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The constraints λ, ρ, α in C are obtained uniquely from those in D by requir-
ing that the diagrams of Definition A.4 commute. Their naturality follows
from the faithfulness of F and the corresponding naturality in D.

It remains to prove the commutativity of Mac Lane’s Pentagon and the
triangle equalities in C. Using the faithfulness of F this may be checked
after applying F , which results in diagrams which may be identified with the
corresponding diagrams in D.

The previous proposition refines to braided monoidal categories:

Proposition A.10. Let F : C → D be a monoidal equivalence. If D is
braided monoidal, one may define a canonical braided monoidal structure on
C that turns F into a braided monoidal equivalence. If C is braided monoidal,
D has a braided monoidal structure making F braided, but it is not unique.

Proof. The braid

F (C1 � C2) ∼= F (C1)⊗ F (C2)→ F (C2)⊗ F (C1) ∼= F (C2 � C1)

is covered by a unique isomorphism C1�C2 → C2�C1. The three coherence
conditions are verified by applying F and identifying the resulting diagram
with the corresponding diagram in D.

For the second part note that one may choose an inverse monoidal equiv-
alence of F [Lei04, Proposition 1.2.14]. Now apply the first part.

A.2.2 Structure on Functors under Equivalences

Recall that for a monoidal functor to be braided is a property, namely com-
patibility with the braid, not additional data.

Proposition A.11. Let φ1 : C1
∼−→ D1, φ2 : C2

∼−→ D2 be braided monoidal
equivalences. Suppose we have a diagram of monoidal functors

C1

φ1

��

F // C2

φ2

��
D1

η↗

G
// D2
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which commutes up to a monoidal natural isomorphism η : Gφ1 → φ2F .
Suppose that G is a braided monoidal functor. Then F is braided monoidal
as well.

Proof. We must check the commutativity of the diagram in C2

F (c1 ⊗ c′1)

��

Fsc1,c′1 // F (c′1 ⊗ c1)

��
Fc1 ⊗ Fc′1

?

sFc1,Fc′1

// Fc′1 ⊗ Fc1

for which we apply φ2 to it. The resulting diagram may be identified (using
the definition of braid on C2, the given natural isomorphism, and the com-
patibility of G with the symmetry) with a diagram which is the image under
G of the compatibility of φ1 with s:

Gφ1(c1 ⊗ c′1)

Gφ1(s)

++

∼=

��

∼=
η

// φ2F (c1 ⊗ c′1)

��

φ2F (s) // φ2F (c′1 ⊗ c1)

��

Gφ1(c′1 ⊗ c1)η

∼=oo

∼=

��

φ2(Fc1 ⊗ Fc′1)

?

φ2(s)
//

∼=

��

φ2(Fc′1 ⊗ Fc1)

∼=

��
Gφ1c1 ⊗Gφ1c

′
1

s

44
η⊗η
∼=
// φ2Fc1 ⊗ φ2Fc

′
1

s // φ2Fc
′
1 ⊗ φ2Fc1 Gφ1c

′
1 ⊗Gφ1c1∼=

η⊗ηoo

G(φ1c1 ⊗ φ1c
′
1)

∼=

OO

G(s) // G(φ1c
′
1 ⊗ φ1c1)

∼=

OO

All diagrams, including the outer square, commute. It follows that the dia-
gram marked ‘?’ commutes as well.

A version in which F is assumed to be braided monoidal is immediately
deduced by applying Proposition A.11 to inverse equivalences of φ1, φ2.
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Lemma A.12. Suppose F : C → D is a monoidal functor and let u : F →
G be a natural isomorphism to an ordinary functor G. There is a unique
monoidal structure on G making u a monoidal transformation.

Proposition A.13. Given a commutative diagram in Cat, G ◦ F = H,

C

F ��

H // D

E

G

GG

in which F,H are monoidal functors and F is an equivalence. Then there
exists a unique structure of monoidal functor on G, making the previous
diagram commute in MonCat.

Proof. If a monoidal structure on G exists, we must have

HC1,C2 = G(FC1,C2) ◦GFC1,FC2 , H1 = G(F1) ◦G1,

so GE1,E2 is determined on the image of F . For general E1, E2 ∈ E pick iso-
morphisms ϕi : Ei → FCi. By naturality we have GFC1,FC2 ◦ (Gϕ1⊗Gϕ2) =
G(ϕ1 ⊗ ϕ2) ◦ GE1,E2 . We conclude that the monoidal structure on G is
unique. To prove that such a structure exists, place F in an adjoint equiva-
lence (F,R, η, ε) which, by doctrinal adjunction, may uniquely be viewed as
an adjoint equivalence in MonCat. We have a natural isomorphism

G(ε) : HR = GFR
∼=−→ G.

According to Lemma A.12, there is a unique monoidal structure on G making
G(ε) a monoidal transformation. The composition of a monoidal transfor-
mation with a monoidal functor is again monoidal. Therefore

H(η) : H → HRF, G(ε)F : HRF → GF

are monoidal transformations which compose to the identity, by the zig-zag
identities. But this just means H = GF in MonCat.

By a dual argument we have:
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Proposition A.14. Given a commutative diagram in Cat, G ◦ F = H,

C

F ��

H // D

E

G

GG

in which G,H are monoidal functors and G is an equivalence. Then there
exists a unique structure of monoidal functor on F , making the previous
diagram commute in MonCat.

A.3 Simplicial Sets

Before we begin, let us quickly establish essentially the notation of [GJ09]
from simplicial homotopy theory. Let ∆ ⊂ Cat denote the full skeletal
subcategory on all finite ordinals [n] = 0 → · · · → n, n ≥ 0. Recall that a
simplicial set is a functor

X : ∆op → Set.

Define the category of simplicial sets as Set∆ = Fun(∆op,Set). Small limits
and colimits are formed level-wise and all exist. Since every morphisms in ∆
may by written as compositions of codegeneracy maps

si : [n− 1]→ [n] (skip i in the image)

and coface maps

di : [n]→ [n− 1] (repeat i twice)

this amounts to the classical definition of a simplicial set (as a family of sets
Xn ∈ Set along with maps si, di between them satisfying various relations).

The most common simplicial sets are the standard simplices which may
be organized into a functor

∆→ Set∆, [n] 7→ ∆n = ∆(−, [n]).

By the Yoneda Lemma, Set∆(∆n, X) ∼= Xn. Another important class of
simplicial sets are the horns,

Λn
k ⊂ ∆n,
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which is the smallest simplicial subset of ∆n containing the image of di :
∆n−1 → ∆n for every i 6= k.

A fibration is a simplicial map p : X → Y for which we may always
provide the dotted arrow in all diagrams of the form (n ∈ N, 0 ≤ k ≤ n)

Λn
k

⊂
��

// X

p

��
∆n //

>>

Y.

A level-wise monomorphism A → B is called a cofibration. Any simplicial
set X with base-point x ∈ X0 has (functorial) homotopy groups π∗(X, x)
(a set for ∗ = 0). These may be defined as the usual homotopy groups of
a geometric realization of X, which is the following coend (more commonly
known as a certain coequalizer) in CGHaus (the category of compactly
generated Hausdorff spaces):

|X| =
∫ [n]∈∆

Xn × |∆n|,

where |∆n| = {(t0, . . . , tn) ∈ Rn+1 |
∑n

i=0 ti = 1, ti ≥ 0}.

A simplicial map f : X → Y is called a weak equivalence if |f | : |X| → |Y |
is a weak equivalence of topological spaces:

1. π0|f | : π0|X| → π0|Y | is a bijection.

2. For every x ∈ |X| and n ≥ 1, πn|f | is an isomorphism.

For Kan complexes X, Y , this may be checked also by using simplicial ho-
motopy groups.

Theorem A.15 ([GJ09, Theorem I.11.3]). The category Set∆ with the above
cofibration, fibrations, and weak equivalence forms a model category.

The geometric realization | · | : Set∆ → CGHaus has a right adjoint
S = sing, the singular set of a topological space. Its n-simplices are given by

(singX)n = {σ : |∆n| → X continuous} (108)
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Since the pair (| · |, S) is a Quillen equivalence ([GJ09, Theorem I.11.4]), to
practice homotopy theory in any of these two categories is generally regarded
as being equivalent.

Fibrant objects in this model category are called Kan complexes. Note
that every object in Set∆ is cofibrant. The category Set∆ has an internal
Hom given by

HomSet∆
(X, Y )n = Set∆(X ×∆n, Y ). (109)

We may therefore view Set∆ as a category enriched in Set∆, and it is in
fact even a simplicial model category (so Quillen’s axiom SM7 is satisfied
[Qui67]).

The standard subdivision of the prism [GJ09, p.17] will appear a lot. It
is given by simplicial maps

hj : ∆n+1 → ∆n ×∆1, j = 0, . . . , n,

which are determined by the map [n+ 1]→ [n]× [1] as in the diagram

(0, 0) // (1, 0) // · · · // (j, 0)

��
(j, 1) // · · · // (n, 1).

This diagram determines the boundary of the embedded (n + 1)-simplex hj
in ∆n ×∆1.

The homotopy groups of a pointed simplicial set K are defined in terms
of their geometric realizations:

πk(K, k) = πk(|K|, k).

It is an important fact that for a pointed Kan complex K, we have the fol-
lowing combinatorial description of the homotopy groups (sometimes called
simplicial homotopy groups):

πk(K, pt) =
{
f ∈ Set∆(∆k, K) | f(∂∆k) = {pt}

}
/ ' (110)

Here, f ' g if there exists h : ∆k ×∆1 → K with

1. h|∆k × {0} = f , h|∆k × {1} = g,

2. h(∂∆k ×∆1) = {pt}.
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A.3.1 Simplicial Loop Space

The purpose of this subsection is to exhibit an isomorphism between two def-
initions for the simplicial loop space (113). While the standard construction
HomSet+

∆
(S1, K) has nice adjointness properties, the other definition is more

explicit and allows to view loops as certain coequalizer diagrams, which is
sometimes useful.

In the following we will identify maps θ : [n] → [m] with their push-
forwards θ∗ : ∆n → ∆m.

Lemma A.16. Every θ = (θ1, θ2) : ∆n+1 → ∆k ×∆1 for which there exists
i with θ2(i) = 0, θ2(i+ 1) = 1 factors uniquely as

θ : ∆n+1 θ̂−→ ∆k+1 hj−→ ∆k ×∆1. (111)

In this case, j = θ1(i).

Proof. We first prove uniqueness. By assumption, pr2θ is the push-forward
of [n+ 1]→ [1], i 7→ 0, i+ 1 7→ 1. By (111),

pr2hj θ̂(i) = 0, pr2hj θ̂(i+ 1) = 1, (112)

which implies θ̂(i) = j and j = sj(j) = sj θ̂(i) = pr1θ(i) = θ1(i). Applying
pr1 to (111) yields

sj θ̂ = pr1hj θ̂ = θ1.

It follows that for all r : θ1(r) < j we have θ̂(r) = θ1(r), for all r : θ1(r) > j
we have θ̂(r)−1 = θ1(r), and that for all r ∈ θ−1

1 (j) we have θ̂(r) ∈ {j, j+1}.
By (112), θ̂(i) = j, θ̂(i+ 1) 6= j. In case θ1(i+ 1) = j we have θ̂(i+ 1) = j+ 1
which of course determines θ̂ on θ−1

1 (j) as well. In case θ1(i+ 1) > j, i is the
largest element of θ−1

1 (j) so that θ̂ takes θ−1
1 (j) to elements ≤ θ̂(i) = j, i.e.

is constant. This implies the uniqueness of θ̂. Conversely, this prescription
proves the existence of θ̂ as well.

Lemma A.17. For every τ : ∆n+1 → ∆k+1 and i with τ(i + 1) = τ(i) + 1
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there exists a unique factorization (a unique j and σ)

∆n+1 τ //

hi
��

∆k+1

hj
��

∆n ×∆1
σ×id∆1

// ∆k ×∆1.

Moreover, j = τ(i).

Proof. To prove uniqueness, observe that pr2hjτ = pr2(σ × id∆1)hi implies
that τ(i) = j, τ(i + 1) 6= j. Composing with pr1 leads to sjτ = σsi. Thus
σ = σsidi = sjτdi is unique, which also proves existence.

Corollary A.18. Let (K, ∗) ∈ Set∗∆ be a pointed simplicial set. A sequence
of (n+ 1)-simplices f0, . . . , fn ∈ Kn+1 satisfying

d0f0 = ∗ = dn+1fn, djfj = djfj−1 (1 ≤ j ≤ n) (113)

uniquely determines an n-simplex f ∈ Ω(K, ∗)n = HomSet+
∆

(S1, K)n ⊂
Set∆(∆n×∆1, K). Moreover, fj = fhj. If we define a simplicial set ΩsimpK
having as n-simplices all sequences f0, . . . , fn ∈ Kn+1 as above and with face
and degeneracy maps

di(f0, . . . , fn) = (di+1f0, . . . , di+1fi−1, difi+1, . . . , difn),

si(f0, . . . , fn) = (si+1f0, . . . , si+1fi, sifi, . . . , sifn),

then we have an isomorphism φ : Ω(K) ∼= ΩsimpK of simplicial sets.

Proof. We must associate a value f(σ) to every simplex σ : ∆k → ∆n ×∆1.
If pr2σ is constant, we set f(σ) = ∗. Else we may factor

σ : ∆k σ̂−→ ∆n+1 hj−→ ∆n ×∆1.

Now set f(σ) = σ̂∗fj. The inverse φ of this association is given by φ(f) =
(fh0, . . . , fhn). The compatibility of φ with the face an degeneracy maps
now follows from the compatibility of the subdivision of the prism maps hi
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with faces and degeneracies:

hjs
i = (si × 1)hj+1 (i ≤ j)

(sj × 1)hi = his
j+1 (i ≤ j)

(di × 1)hj−1 = hjd
i (i < j)

hjd
j+1 = hj+1d

j+1

(di × 1)hj = hjd
i+1 (i ≥ j + 1).

A.4 ∞-Categories

For the convenience of the reader, we shall give in this section a rapid ac-
count of those parts of the theory of ∞-categories which are relevant to our
discussion. The definite reference for these matters is [Lur09].

Definition A.19. An inner fibration p : K → L between simplicial sets is a
map which has the right lifting property (RLP) for all inner horn inclusions
Λn
i ⊂ ∆n, 0 < i < n.

An∞-category C is a simplicial set for which the map C→ ∆0 is an inner
fibration. That is, every inner horn Λn

i → C admits some filler ∆n → C. An
∞-category is a generalization of an ordinary category in the sense that the
nerve N : Cat→ Set∆, which is a fully faithful embedding, has image those
simplicial sets that admit unique inner horn fillers.

An edge φ ∈ C1 is called a morphism in C and said to have domain d1φ
and codomain d0φ. For example, idc = s0c is called the identity of c ∈ C0.

Of course, these kinds of morphisms may not be composed. We will,
however, for any σ : ∆2 → C regard d1σ as a composition of d0σ and d2σ
and present σ as a witness for it.

A.4.1 The Simplicial Nerve

The above approach to higher categories is essentially equivalent to that
of simplicial categories Cat∆ and stands in close relationship to the latter.
There is a functor, due to Cordier,

C : Set∆ → Cat∆.
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As observed in [DS11], the simplicial category C[S] may be described nat-
urally as a generalization of the free simplicial resolution of an ordinary
category: Ob(C[S]) = S0 and for X, Y ∈ S0 the n-simplices C[S](X, Y )n are
the (n + 1)-fold bracketings of necklaces in S from X to Y . To explain, a
necklace from X to Y in S is a simplicial map from a pushout, for some
k ≥ 0 and each ni > 0,

f : ∆n0 ∨∆n1 ∨ · · · ∨∆nk → S,

where ∆ni is glued to ∆ni+1 by attaching the last vertex ni ∈ ∆ni to the
first vertex 0 ∈ ∆ni+1 so that each f | ∆ni is a non-degenerate simplex. The
joints J of the necklace are the attaching vertices. The initial joint maps to
X while the final joint maps to Y . An (n + 1)-fold bracketing is a flag of
subsets of the vertices

J ⊂ T 0 ⊂ · · · ⊂ T n ⊂ (∆n0 ∨∆n1 ∨ · · · ∨∆nk)0.

The face and degeneracy maps are simply given by leaving out or doubling
terms in this flag. Composition is by concatenation of necklaces. More for-
mally, one may also define C first only on simplices ∆n and then extend. This
is the approach in [Lur09]

The functor C has three important applications: first, we obtain a notion
of mapping space

MapC(X, Y ) = C[C](X, Y ) ∈ Set∆

for ∞-categories C. Secondly, by retaining only the path components, we
may define the homotopy category hC of an ∞-category C:

hC =

{
Objects: C0,

Morphisms: hC(X, Y ) := π0MapC(X, Y ).

An isomorphic category may be constructed by the usual fundamental groupoid
construction [Lur09, 1.2.3.9]. Finally, the functor C admits a right adjoint,
the simplicial nerve

N : Cat∆ → Set∆,

which is defined as N(C )n = Cat∆(C[∆n],C ).
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That is, an n-simplex of N(C ) is a homotopy coherent diagram in C of
shape [n], that is, a map of graphs [n] → C along with various homotopies
between compositions, homotopies between these homotopies, and so forth.
More specifically, N(C )0 = Ob(C ), N(C )1 is the set of arrows, and N(C )2

is the set of all triples of morphisms (f, g, h) together with a homotopy filling
the triangle

X

f
��

h // Z.

Y

g

>>

Example A.20 (3-simplices in the nerve). N(C )3 is the set of all homotopy
coherent diagrams of shape [3] in C :

W

k

��f //

i

%%
X

g //

j

AAY
h // Z.

As usual, we have suppressed arrows like g ◦ f , h ◦ g, and h ◦ g ◦ f in the
figure, but these morphisms will play a role in the following. If this diagram
commutes up to homotopy, then there exist homotopies

α : g ◦ f ' i, β : h ◦ g ' j, γ : h ◦ g ◦ f ' k.

δ : h ◦ i ' k, ε : j ◦ f ' k.

This just means that the corresponding diagram in Ho(C ) commutes. To say
that the diagram is homotopy coherent means more, namely, that there exists
a coherent system of homotopies: In addition to the homotopies α, β, γ, δ, ε
above there should exist homotopies (rel ∂∆1)

ε ∗ (β ◦ f) ' γ ' δ ∗ (h ◦ α).

These are all part of the data of a homotopy coherent diagram of shape [3].

A.4.2 Further Elementary Notions

The most important example of the simplicial nerve construction is the ∞-
category S = N(Kan) of spaces, defined as the simplicial nerve of Kan-
complexes with the simplicial enrichment given by (109).
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Definition A.21. Morphisms φ, ψ ∈ C1 are said to be homotopic or equiv-
alent in case ∂φ = ∂ψ and there exists σ ∈ C2 with ∂σ = (s0b, φ, ψ).

This amounts to saying that [φ] = [ψ] in hC. A morphism φ is called an
equivalence (and source and target are equivalent) if [φ] is an isomorphism
when viewed as an arrow in hC.

Definition A.22. A functor between ∞-categories C,D is a simplicial map
f : C→ D. It is said to be a categorical equivalence if:

1. Every d ∈ D0 is equivalent in D to some f(c), c ∈ C0.

2. For any pair of objects c1, c2 ∈ C0, f induces a weak equivalence of
simplicial sets

C[f ] : MapC(c1, c2)→ MapD(fc1, fc2).

Definition A.23. Suppose C is an ∞-category. Then for any simplicial
set K, the space HomSet∆

(K,C) is again an ∞-category and is denoted by
Fun(K,C).

A.4.3 The Join of ∞-Categories

Let K and L be simplicial sets. Then the join K ? L is obtained by putting
K and L next to each other and joining all the simplices of K with those of
L by lines (pointing in the direction of L), thus obtaining a simplex of one
dimension higher. More precisely, setting K−1 = {∗} = L−1,

(K ? L)n =
n∐

k=−1

Kk × Ln−k−1.

The face maps di : (K ? L)n → (K ? L)n−1 are given by

di | Kk × Ln−k−1 =

{
di × id (i ≤ k),

id× di−k−1 (i > k).

The degeneracy maps si are given by the same formula – replacing d by s
throughout.
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I

I
I

I

•

I

•
I

K = ∂∆2

•
I

L = ∆1
•

I

•

We have an isomorphism ∆i ? ∆j ∼= ∆i+j+1. The join is obviously a
functor. The non-degenerate n-simplices of K ? L are given by all of the
σ ? τ : ∆n → K ? L for non-degenerate simplices ∆k σ−→ K, ∆n−k−1 τ−→ L.

It is not hard to check that the join of two ∞-categories is again an ∞-
category. Moreover, for the classical join of ordinary categories (the disjoint
union of the categories together with precisely one arrow from every object
in C to every object in D) we have

N(C ?D) ∼= N(C) ? N(D).

A.4.4 Overcategories and Undercategories

For ordinary categories, a functor C ? [0] → D is just a functor F : C → D

with a co-cone on it and DF/ = FunF (C ? [0],D) is the category of co-cones
from F , an arrow of which may be identified as an object of FunF (C? [1],D).
If we take C = [0], then this is just the category DF (0)/ of objects under
F (0) ∈ D. We call DF/ the category of objects under the functor F , which
may be identified with the comma category {F} ↓ ∆ for the diagonal functor
∆ : D→ DC. Of course, a colimit of F is just an initial object in DF/.

Now suppose f : K → L is a simplicial map and L an ∞-category. Then
the ∞-category of objects of L under f is

(Lf/)n := (Set∆)f (K ?∆n, L),

where the subscript “f ” indicates that we are considering the subset of sim-
plicial maps K ? ∆n → L that restrict to f on K. This is indeed again an
∞-category. Moreover, N(DF/) ∼= N(D)N(F )/ so we have generalized the
classical case. Dually, the ∞-category of objects of L over f is

(L/f )n = (Set∆)f (∆
n ? K,L),
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which is to be thought of as a generalization of the category ∆ ↓ {F} of
cones to f .

A.4.5 Final and Initial Objects, Limits and Colimits

Let K be an∞-category. An object x ∈ K0 is said to be final/initial if it is
final/initial when considered an object of the hS-enriched category hK. That
is, x is initial if for each object y ∈ K0 the mapping space C[K](x, y) ' ∗ is
contractible. Dually, y ∈ K0 is final if for all x ∈ K0 the space C[K](x, y) ' ∗.

For ∞-categories this is equivalent to the much more usable criterion of
being strongly initial: Every f : ∂∆n → K with f(0) = x extends to
∆n. In other words, the canonical map Kx/ → K is required to be a trivial
fibration. Strongly final objects are defined similarly and are the same as
final objects.

The full sub-category Kinitial = K ×N(hK) N((hK)initial) of initial objects
in K is contractible or empty. This is immediate since every ∂∆n → K may
be filled. More concretely,

(Kinitial)n = {f : ∆n → K | f(0), . . . , f(n) initial}.

Let f : K → L be a functor of ∞-categories. Then a colimit of f is an
initial object of Lf/ while a limit of f is a final object of L/f . That is, a
colimit of f consists of a simplicial map

φ : K ?∆0 → L

that restricts to f onK having the following property: every mapK ? ∂∆n → L
there exists the indicated extension

K ?∆n

$$
K ? ∂∆n //

OO

L.

K ?∆0

idK?0

OO

φ

::

A.4.6 coCartesian Fibrations

Roughly speaking, a coCartesian fibration is a map p : K → L which may be
thought of as a covariant functor F on L into the fibers of p (which are ∞-
categories) satisfying the axioms for a functor up to ‘coherent homotopy’ (in
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detail, F is a simplicial functor C[L]→ Cat∞). For each morphism e : x→ y
in L one must present a sensible ‘functor’ Lx → Ly. The functor F is de-
fined by ‘fiber transport’, that is, it associates to an initial point a ∈ Lx
the endpoint of a ‘lift’ of e. Of course, this endpoint should be unique up
to contractible choice, so we need to choose special kinds of lifts that will
guarantee this. The allowed choices for lifts are the p-coCartesian edges:

Suppose p : K → L is an inner fibration. An edge e ∈ K1 is said to
be p-coCartesian [Lur09, 2.4.1.4] in case for each n ≥ 2 we may always find
fillers as indicated:

∆{0,1}

��

e

""
Λn

0

��

// K

p

��
∆n //

<<

L.

Example A.24 (Joyal / Theorem 1.2.4.3 in [Lur09]). Let p : C→ ∆0 be an
inner fibration. Then a p-coCartesian edge is precisely an equivalence in the
∞-category C.

Definition A.25. An inner fibration p : K → L is said to be a coCartesian
fibration if there is a sufficient supply of p-coCartesian edges: for every f ∈ L1

and every k ∈ K0 there exists a p-coCartesian edge e ∈ K1 beginning at k.

Fiber transport along p-coCartesian edges of a coCartesian fibration p :
C→ D determines a functor

hD→ Ho(Set∆),

which on objects is given by taking d ∈ D to the fiber p−1(d).

Remark A.26. A characteristic of the ∞-category approach to higher cat-
egories is that coherence conditions are encoded by lifting properties and
not made explicit (as, for example, for simplicial categories). Structure is
presented as a (co)Cartesian fibration p : C → K and the shape of K
determines the kind of structure we are dealing with. Under an abstract
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(un)straightening construction, p corresponds to a simplicial functor indexed
on a simplicial resolution C[K] of K, and the data here is explicit.
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