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Chapter outline 

 

Chapter 1 describes some basic concepts and features of near infrared spectroscopy (NIRS) 

technique, along with its recent application in agriculture especially for quality attributes 

assessment. The chapter also describes a brief introduction into chemometrics focused on 

multivariate data analysis for NIRS spectral data. This analysis is including; principal 

component analysis (PCA) and outlier detection, NIRS spectra pre-treatment, linear 

calibration method using principal component (PCR) and partial least squares (PLSR), and 

non-linear regression method with support vector machine regression (SVMR) and artificial 

neural networks (ANN).          

 

Chapter 2 addresses to evaluate the feasibility of NIRS method in determining quality 

attributes of intact commercial mango purchased in local markets. These quality attributes 

here refer to sweetness (soluble solids content (SSC)) and acidity (titratable acidity (TA) and 

ascorbic acid (AA)) of mango. The calibration or prediction models for these quality 

attributes were developed by principal component regression and partial least squares 

regression method. 

 

Chapter 3 focuses on the comparisons among different NIR spectra pre-processing methods 

(mean centering (MC), mean normalization (MN), multiplicative scatter correction (MSC), 

standard normal variate (SNV), de-trending (DT), orthogonal signal correction (OSC)) prior 

to prediction model development. The model accuracy and robustness obtained from these 

NIR spectra treatments are then compared. 

 

In Chapter 4, nonlinear regression methods (SVMR and ANN) were applied to develop NIR 

prediction models for TA and SSC in which MSC and SNV spectra treatment are also used 

during calibration. The results obtained from these both methods are compared with ordinary 

linear PLS regression method. The optimal models for TA and SSC prediction were then 

selected from these there regression methods based on their accuracy and robustness 

performance.  

 

Chapter 5 presents the general conclusion and summary for the whole contents of all works 

answering the objectives of the present studies. 
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Chapter 1. General Introduction 

 

1.1. Basic concept of near infrared spectroscopy and its application in agriculture 

In foods and agricultural products processing, the quality evaluation of these products is an 

important issue.  Consumers are gradually looking for quality seals and trust marks on food 

and agricultural products, and expect producers and retailers to provide products with high 

quality. In order to ensure and maintain the chain supply of acceptable agricultural products, 

it is important to sort and grade products based on their quality. Thus, quality control plays a 

major important role in in every phase of the agricultural products processing (Cen and He, 

2007; Jha et al., 2012).  To determine quality parameters in food and agricultural products, 

several methods are already widely used whereby most of them are based on solvent 

extraction followed by other laboratory procedures. However, these methods often require 

laborious and complicated processing for samples. Also, they are time consuming and 

destructive. Therefore, a rapid and non-destructive method is required as an alternative 

method in determining quality parameters of foods and agricultural products. 

During the last few decades, near infrared spectroscopy (NIRS) has become one of the most 

promising and used non-destructive methods of analysis in many field areas including in 

agriculture due to its advantage; simple sample preparation, rapid, and environmental friendly 

since no chemicals are used. More importantly, it has the potential ability to determine 

multiple quality parameters simultaneously (Liu et al., 2010). Numerous studies have been 

carried out to investigate and apply NIRS in quality assessment of foods and agricultural 

products (Vesela et al., 2007; Gomez et al., 2006; Jaiswal et al., 2012; Liu et al., 2008; Curda 

and Kukackova, 2004; Kavdir et al., 2007; Liu et al., 2007; Cen et al., 2007; Chen et al., 

2011; Fan et al., 2009; Bobelyn et al., 2010; Penchaiya et al., 2009). The increasing 

importance of NIRS in agriculture is obvious from the recent increase in numbers of 
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publications, as well as from the fact that many manufacturers and agricultural industries 

(e.g., grains, beverage, milk and dairy, and fruits and vegetables) have now implemented 

NIRS systems to measure and determine various quality parameters (Nicolai et al., 2007; 

Cozzolino et al., 2011). 

The NIRS is a technique or method which uses near infrared radiation (780 – 2500 nm) of the 

electromagnetic spectrum to analyze the chemical composition of organic matter. It provides 

information through spectra signatures and patterns, regarding with the intrinsic organic 

bonds of the molecules and thus the primary chemical constituents of the object can be 

determined (Strang, 2004; Workman and Shenk, 2004; Nicolai et al., 2007). The term 

spectroscopy as defined by Clark (1999) is the study of electromagnetic radiation as a 

function of wavelength, which has been reflected, absorbed or transmitted from a solid, liquid 

or gas material. Spectroscopy generates a unique spectral pattern of the material monitored. 

Each biological object has its own special optical properties, which means it has a different 

spectra pattern or signatures indicated its chemical compositions. The spectral patterns of 

different matter are defined by their reflectance or absorbance as a function of wavelength 

(Siesler et al., 2002). These special signatures were then used to describe and predict the 

chemical constituents of biological matter. 

In NIRS, the object is irradiated with near infrared radiation and the reaction (reflection, 

absorption or transmission) is captured. While the radiation penetrates the object, its spectral 

characteristics changes through wavelength dependent scattering and absorption process. The 

contribution of each reaction depends on the chemical composition, cell structure and 

physical properties of the object (Clark, 1999; Cozzolino et al., 2006; Nicolai et al., 2007).  A 

captured NIR spectra of biological object consists the response of the molecular bonds O-H, 
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C-H, C-O and N-H. These bonds are subject to vibrational energy changes when irradiated by 

NIR frequencies (Cen and He, 2007).  

The primary information that can be gathered from the interaction of the near-infrared 

radiation with the biological object is its physical, optical and chemical properties. Fruit, 

grain and forage material have shown to have identifiable C-H, N-H, and O-H absorption 

bands in the near-infrared region whereas each have a specific vibrational frequency and it is 

different between one object and the others (Workman and Shenk, 2004). Figure 1.1 shows 

typical diffuse reflectance spectra of NIR for some selected agricultural products. NIR 

spectra of fruits and vegetables is essentially composed of a large set of overtones and 

combination bands and further may be complicated since the spectra is influenced by 

wavelength dependant scattering effects, tissue heterogeneities, instrumental noise, ambient 

effects and other source of variability (Nicolai et al., 2007; Cozzolino et al., 2011). These 

factors may generate spectra noise and influence NIR prediction performance. Several 

methods are introduced as spectra pre-treatment to overcome these factor effects such as 

spectra smoothing, standardization, normalization and transformation (Pontes et al., 2006). 

 

  

 

 

 

 

 

 

 

Figure 1.1.Typical diffuse reflectance spectra of some agricultural products. The 

near infrared reflectance spectra were acquired using a FT-NIR instrument: Nicolet 

Antaris (Source: Own data analysis).  
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The whole measurement processing in NIRS generally consists of the following: (1) NIR 

spectra data acquisitions, (2) spectra pre-processing to eliminate noises and baseline shift 

from the instrument and background, (3) develop calibration models using a set of samples 

with known analyzed concentration obtained by suitable and standard laboratory procedures, 

and (4) validate the prediction models using another set of independent samples. Since NIRS 

itself cannot reveal chemical information in the spectra, chemometrics is required to extract 

the information about quality attributes buried on NIR spectra through a process called 

multivariate calibration from which a mathematical relationship between NIR spectra and the 

measured quality parameter will be revealed to determine desired quality attributes. 

 

1.2. Chemometrics 

According to Naes et al. (2004) chemometrics is the use of statistical and mathematical 

procedures to extract information from chemical and physical data. It has been used to extend 

and improve the potential application of NIRS technique in many fields including food and 

agricultural industries. In NIRS analysis, this method is includes three facets: (1) spectral data 

pre-processing to eliminate noise and enhance spectra prior to models development, (2) 

building calibration models for quantitative and qualitative analysis and (3) model transfer for 

real-time and in-line prediction (Cen and He, 2007).  

1.2.1. Spectra pre-processing 

The spectra data acquired from NIR instrument contain spectra background information and 

noises which are interfered desired relevant quality attributes information. Interfering spectral 

parameters, such as light scattering, path length variations and random noise resulted from 

variable physical sample properties or instrumental effects need to be eliminated or reduced 

in order to obtain reliable, accurate and stable calibration models (Reich, 2005; Cen and He, 

2007). Thus, it is very necessary to pre-process spectral data prior to modeling. The most 
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commonly used spectra pre-processing methods are briefly discussed with respect to the 

effect they are able to correct.  

The first stage in spectra pre-processing is mean centering. This is often the simply preferred 

pre-processing method prior calibration development as it focuses on differences between 

observations rather than their absolute values. It ensures that the resulting data or model may 

be interpreted in terms of variation around the mean (Naes et al., 2004; Nicolai et al., 2007). 

Another common spectra pre-processing is smoothing from which improves the visual aspect 

of the NIR spectra. Spectra standardisation is also commonly used when variables are 

measured in different units or have different ranges (Cozzolino et al., 2011). Standardisation 

means dividing spectrum at every wavelength by the standard deviation of the spectrum at 

this wavelength. Typically variances of all wavelengths are standardised to 1, which results in 

an equal influence of the variables in the model (Naes et al., 2004).  

The other spectra pre-processing method is normalization. Multiplicative scatter correction 

(MSC) and standard normal variate (SNV) are the most popular normalization technique. 

MSC is used to compensate for additive (baseline shift) and multiplicative effects in the 

spectral data, which are induced by physical effects, such as the non-uniform scattering 

throughout the spectrum. The degree of scattering is dependent on the wavelength of the 

radiation, the particle size and the refractive index. This method attempts to remove the 

effects of scattering by linearizing each spectrum to an ‘ideal’ spectrum of the sample, which 

is normally corresponds to the average spectrum. On the other hand, in SNV each individual 

spectrum is normalized to zero mean and unit variance. Apart from the different scaling, the 

result is more-less similar to that of MSC (Naes et al., 2004; Nicolai et al., 2007; Cozzolino et 

al., 2011). Figures 1.2 show a visual example result after spectra pre-processing which is in 

this case after MSC treatment.      
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Figure 1.2. Raw untreated near infrared spectra (a) and after multiplicative scatter 

correction (b) (Source: Own data analysis). 

 

Spectra transformation into its derivatives is also used as a spectra pre-processing since this 

method also has the ability for correcting both additive and multiplicative effects (like MSC 

or SNV). Derivation is usually calculated according to the Savitzky-Golay algorithm (Naes et 

al., 2004). The smoothing parameters of the algorithm, interval width and polynomial order, 

should be considered carefully in order to avoid spectral noise amplification. These 

smoothing factors determine how many adjacent variables will be used to estimate the 

polynomial approximation used for derivatives (Mouazen et al., 2010). The latest spectra pre-

processing is a method called orthogonal signal correction (OSC). It is the method developed 

to reduce the data variance in the spectra due to light scatter effects and to more general types 

of interferences that have no correlation with the measured property i.e quality attributes or 

chemical constituents of the object (Azzouz et al., 2003; Felizardo et al., 2007). 

1.2.2. Principal component analysis and outlier detection 

Prior to calibration model development, normally original NIR spectra acquired from the NIR 

instrument were analyzed through principal component analysis (PCA). It employs a 
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mathematical procedure that transforms a set of possibly correlated response variables into a 

new set of non-correlated variables, called principal components. The first principal 

component accounts for as much of the variability in the data as possible, and each 

succeeding component accounts for as much of the remaining variability as possible. PCA is 

used as a tool for screening, extracting, compressing and discriminating samples based on 

their similarities or dissimilarities of multivariate data. Figure 1.3 shows PCA discrimination 

result of some agricultural products based on NIR diffuse reflectance spectral data.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Principal component analysis of some agricultural products based on near 

infrared reflectance diffuse reflectance spectra (Source: Own data analysis). 

 

Sample or variable outliers may be induced by typing errors, file transfer, interface errors, 

sensor malfunctions and fouling, poor sensor calibration, poor sampling or poor sample 

presentation. A sample can be considered as an outlier according to the spectra (X-variables) 

only, to the reference or measured property (Y-variables), or to both. It might also not be an 

outlier for either separate sets of variables, but become an outlier when the X–Y relationship 

is considered. The detection of outliers was carried out by subjecting the 95% confidence 
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ellipse (Hotelling T
2
 ellipse analysis) onto PCA map. Outliers related to the spectra show up 

in the first two principal components of PCA scores plot as points outside the ellipse and 

should be removed before building a calibration model (Constantinou et al., 2004; Naes et al., 

2004; Nicolai et al., 2007; Dardenne, 2010; Cozzolino et al., 2011). 

1.2.3. Calibration models 

The main part of NIR - chemometrics is building a calibration model used to predict quality 

attributes or chemical constituents of agricultural products to be observed. This model 

consists of the relationship between the observed response variable y (Y-variables: quality 

attributes such as total soluble solids, acidity, protein content or fat content) and the 

independent variable x (X-variables: NIR spectra matrices). The common linear regression 

methods for building this model such as multiple linear regression (MLR), principal 

component regression (PCR) and partial least squares regression (PLSR). Meanwhile, as 

nonlinear regression, supporting vector machine regression (SVMR) and artificial neural 

networks (ANN) are two common examples.  

In multiple linear regressions, the response (Y variable) is approximated by a linear 

combination of the spectral values at every single wavelength. The regression coefficients are 

estimated by minimizing the error between predicted and observed response values based on 

least squares. A stepwise or backward elimination method may be applied to select a number 

of optimum variables for the equation. MLR models typically do not perform well because of 

the often high co-linearity of the spectra and easily lead to over-fitting and loss of robustness 

of the calibration models (Saranwong et al., 2001; Naes et al., 2004; Nicolai et al., 2007).  

On the other hand, principal component regression is a two-step procedure; first decomposes 

the X-variables by a principal component analysis (PCA) and then fits a MLR model, using a 

small number of principal components (PCs) or latent variables (LVs) instead of the original 
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variables (NIR spectra) as predictors (Naes et al., 2004). The advantage with respect to MLR 

is that the X-variables (principal components) are uncorrelated, and that the noise is filtered. 

Also, usually a small number of principal components are preferable and sufficient for the 

models. The main disadvantage of PCR is that the principal components are ordered 

according to decreasing explained variance of the spectral matrix, where the first principal 

component which is used for the regression model is not necessarily the most informative 

with respect to the response variable (Wold et al., 2001; Naes et al., 2004; Nicolai et al., 

2007; Cozzolino et al., 2011). 

Partial least squares regression is a regression method with close likely to principal 

component regression. The main difference of the PLSR method is that both the input X-

variables (NIR spectra) and response variables Y are projected to new spaces (Balabin et al., 

2011). PLS regression is of particular interest because, unlike MLR, it can analyze data with 

strongly collinear (correlated), noisy and redundant variables (X variables or wavelengths) 

and also model several characteristics (Y values) at the same time. In PLS regression an 

orthogonal basis of latent variables is constructed one by one in such a way that they are 

oriented along the directions of maximal covariance between the spectral matrix and the 

response vector (Wold et al., 2001). In this way it is ensured that the latent variables are 

ordered according to their relevance for predicting the Y-variable. Interpretation of the 

relationship between X-data and Y-data (the regression model) is then simplified as this 

relationship is concentrated on the smallest possible number of latent variables (Wold et al., 

2001; Naes et al., 2004).  

This method performs particularly well when the various X-variables express common 

information, for example, when there is a large amount of correlation, or even co-linearity, 

which is the case for spectral data of biological materials such as fruits or vegetables. The 
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required number of latent variables is typically smaller than that in a PCR calibration model 

for a similar model performance (Wold et al., 2001; Brereton, 2000; Naes et al., 2004). 

In many current and potential applications of NIR spectroscopic measurement, the 

relationship between NIR spectra and targeted constituents to be modeled is not always 

linear. The source of nonlinearity may vary widely, and is difficult to identify. In NIRS, as in 

other spectroscopic techniques, some deviations from linearity are of known origin 

(breakdown of the Lambert–Beer law at high analyte concentrations, nonlinear detector 

response, light source scatter), whilst others are intrinsic to the parameter to be measured. 

This means that classical linear regression such as MLR, PCR or PLSR methods are not 

always the most suitable option. Extrinsic deviations from linearity may be corrected by 

mathematical pretreatment of the signal prior to using linear calibration techniques. Intrinsic 

source of non-linearity in NIR spectral data and target chemical components cannot be 

corrected by spectral pretreatments and require the use of special nonlinear adjustment 

approaches (Perez-Marin et al., 2007).  

Besides with linear regression technique (PCR and PLSR), NIR calibration models were also 

can be constructed using nonlinear regression like supporting vector machine regression 

(SVMR) and artificial neural networks (ANN). Based on some previous studies, SVMR and 

ANN are more flexible methods since they can handle both linear and nonlinear relationship 

between the NIR spectra and corresponding chemical constituents (Blanco and Peguero, 

2008; Cozzolino et al., 2011; Blanco et al., 2000; Zou et al., 2010).  

Support vector machine is very specific class of algorithm, characterized by usage of kernels 

(kernel based). In earlier development, this method was applied for classification problems, 

but nowadays it also has been used to the case of regression. In kernel-based methods, the 

calibration is carried out in a space of non-linearly transformed input data (so called feature 
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space) without actually carrying out the transformation. The feature space is defined by the 

kernel function, a measure of similarity between spectra. The most popular kernel functions 

are the Gaussian and polynomial functions (Nicolai et al., 2007). A number of studies has 

been reported the use of ANN or SVM method and comparison between both of them for 

NIR calibration to solve various regression and classification problems in agriculture (Janik 

et al., 2007; Xiaoying et al., 2012; Cao et al., 2010; Wu et al., 2008; Borin et al., 2006; Huang 

et al., 2011). 

On the other hand, artificial neural network is a machine learning algorithm inspired to 

mimic human brain that is characterized by its analogy with a biological neuron (Sima and 

Orponen, 2003; Naes et al., 2004). In the biological neuron the input signal from the 

dendrites travels through the axons to the synapse (Janik, et al., 2007). There the information 

is transformed and sent across the synapse to the dendrites of the next neuron forming part of 

a highly complex network.  

Artificial neural network typically consists of three layers so called input layer, hidden layer 

and output layer. Like our brains, each input is connected with cells called neurons. Every 

neuron of the input layer is connected to every neuron of the hidden layer, and every neuron 

of the hidden layer is connected to the output layer. In agreement with Naes et al. (2004), 

Brereton (2000) stated that the multivariate techniques based on ANN simulates the 

biological neuron by multiplication of the input signal (X) with the synaptic weight (W) to 

derive the output signal (Y). A neuron is acted as a computational device that calculates the 

weighted sum of its input and calculates the output signal from this using a non-linear 

function (Kim, et al., 2000; Hahn et al., 2004; Nicolai et al., 2007). In NIR cases, the spectral 

value at every wavelength is fed to the input layer, while the output layers delivers the 

prediction of the quality attributes observed. To simplify the input and reduce calculation 
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times, the spectral value of NIR were subjected firstly to the PCA, then, five to seven PCs 

were used as input instead of all spectral value. This combination method is called PCA-NN 

(principal component analysis-neural network).  

1.2.4. Model validation and accuracy 

During calibration model development, cross validation procedures have to be applied in 

order to assess the accuracy of the model and to avoid over-fitting. In NIR feasibility studies, 

cross validation is a practical method to demonstrate that NIRS can predict something, but 

the actual accuracy must be estimated with an appropriate test dataset or validation set 

(Dardenne, 2010). Therefore in such studies different cross validation techniques can be used. 

For example, in leave one out cross validation, one sample is removed from the dataset, and a 

calibration model is constructed for the remaining subset. The removed samples are then used 

to calculate the prediction residual (Brereton, 2000; Naes et al., 2004). The process is 

repeated with other subsets until every sample has been left out once, and in the end the 

variance of all prediction residuals is estimated. In multifold cross validation, a well-defined 

number of samples (‘segment’) are left out instead of one. In internal validation, the dataset is 

split into a calibration and a validation set. The calibration model is constructed using the 

calibration set, and the prediction residuals are then calculated by applying the calibration 

model to the validation dataset (Naes et al., 2004; Nicolai et al., 2007; Cozzolino et al., 

2011).  

The predictive ability and accuracy of the NIRS method needs to be demonstrated using an 

independent validation set. Independent means that samples need to come from different 

experiments, harvest times, or batches with spectra taken at a time different from the 

calibration spectra (Norris, 2007; Dardenne, 2010). For example, samples obtained from a 

different orchard, different season or different region or environment. Many statistics are 
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reported in the literature to interpret a calibration such as the coefficient of determination (R
2
) 

of calibration and validation which essentially represents the proportion of explained variance 

of the response in the calibration or validation data set (Nicolai et al., 2007), coefficient of 

correlation (r) between predicted and measured quality attributes, prediction error which is 

defined as the root mean square error of calibration (RMSEC), standard error of calibration 

(SEC), root mean square error of cross validation prediction (RMSECV), root mean square 

error prediction (RMSEP), and the difference between RMSEC and RMSECV or RMSEP 

(Jha, et al., 2006; Flores et al., 2009).  
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Where
iy



is the predicted value of the i-th observation, yi is the measured value of the i-th 

observation from desired quality attributes, n is the number of observations in the calibration, 

validation or prediction set, and ym is the mean value of the calibration or validation data set. 

The prediction error of a calibration model is defined as the RMSECV when cross validation 

is used or the RMSEP when independent validation is used (Naes et al., 2004; Zeaiter et al., 

2004; Walsh and Kawano, 2009). As defined by Golic and Walsh (2006), The RMSECV 

describes total error for samples within the calibration dataset while the RMSEP is an 

estimate of total prediction error for an independent validation dataset. Another useful 

statistic commonly used to interpret NIRS calibrations is the residual predictive deviation or 

RPD (Williams, 2001; Fearn 2002). It shows the ratio between the standard deviation (SD) of 

the original reference data to the root mean square error of cross validation (RMSECV) or to 

the root mean square error of prediction (RMSEP). 



[14] 
 

RMSECV

SD
RPD

ref
  or 

RMSEP

SD
RPD

ref
    (eq. 1.3) 

Based on literature, An RPD between 1.5 – 1.9 means that coarse quantitative prediction are 

possible, but still need some improvement in calibration. A value between 2 and 2.5 indicates 

that prediction model is sufficient. Meanwhile, an RPD value between 2.5 and 3 or above 

corresponds to good and excellent prediction accuracy respectively (Williams, 2001; Fearn 

2002; Nicolai et al., 2007).  

 

1.3. Objectives 

The present study was addressed to achieve the following objectives: 

a. Evaluate the feasibility of NIRS method in determining quality attributes in term of 

soluble solids content (SSC), titratable acidity (TA) and ascorbic acid (AA) of intact 

mango as example for agricultural product through multivariate calibration model 

followed by cross validation. 

b. Compare different spectra pre-processing methods prior to calibration models 

development and evaluate their impact to the model prediction accuracy and robustness. 

c. Investigate the use of nonlinear regression method (supporting vector machine regression, 

SVMR and artificial neural networks, ANN) to predict quality attributes of mango and 

compare the results obtained by linear partial least square regression (PLSR) method. 
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Chapter 2. Non-destructive prediction of mango quality attributes  

using near infrared spectroscopy 

2.1. Abstract 

To establish a non-destructive method for prediction of mango quality attributes, near 

infrared reflectance spectroscopy (NIRS) combined with chemometrics was studied. NIR 

spectra were recorded on intact mangos (cv. Kent, n = 58) in the wavelength range of 1000 to 

2500 nm using a Fourier transform near infrared spectroscopy, followed by its quality 

attributes measurement. Partial least squares regression (PLSR) and principal component 

regression (PCR) based on various spectral pre-treatment (multiplicative scatter correction 

(MSC), standard normal variate (SNV) and first derivative) were used to develop prediction 

models for quality attributes such as soluble solids content (SSC), titratable acidity (TA) and 

ascorbic acid (AA). The models yielded satisfactory results with coefficient of determination 

of calibration ranging from 0.66 to 0.91 (SSC), 0.94 to 0.98 (TA) and 0.62 to 0.92 (AA) 

while standard error of calibration and cross validation were low. It is concluded that NIRS 

and chemometrics is feasible for rapid and non-destructive prediction of mango quality. 

Keywords: NIRS, chemometrics, soluble solids, ascorbic acid, acidity, rapid methods. 

 

2.2. Introduction 

Mango (Mangifera indica) is one of the most important and popular tropical fruits for people 

around the world due to its taste, appearance and excellent overall nutritional source from 

which lead to a heavy demand in world fruit market. To ensure and maintain the chain supply 

of good quality fruit, it is important to sort and grade mango based on its quality. Thus, 

quality control plays a major important role in deciding the export value of the fruit (Jha et 

al., 2012). The quality of mango fruit is judged by external parameters such as surface colour, 

size and shapes , and internal attributes such soluble solids content (SSC), vitamin A, vitamin 

C, acidity, pH and dry matter indicating sensory properties (Xudong et al., 2009). The 

internal quality is commonly determined by wet laboratory methods which are destructive in 

nature, involve chemicals, laborious and time consuming (Jha et al., 2012). Hence, research is 

being performed worldwide to develop rapid and non-destructive techniques to predict the 
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quality attributes simultaneously. These techniques include ultrasound, tapping method, 

nuclear magnetic resonance (NMR), machine vision including image processing, and near 

infrared spectroscopy (Khalaf et al., 2004).  

Recently, the application of near infrared reflectance spectroscopy (NIRS) as non-destructive 

technique in food and agricultural product sector is gaining more attentions both in term of 

instrumental design and spectra data analysis. By definition, NIRS covers of spectra 

wavelength range from 780 to 2500 nm (Cen & He, 2007; Nicolai et al., 2007), works based 

on the principle of electromagnetic radiation interaction with biological objects. Interacting 

with biological objects, the incident radiation is partially reflected (diffuse and specular 

reflection), absorbed, and transmitted. The contribution of each reaction depends on the 

chemical composition, cell structure and physical properties of the object (Clark, 1997; 

Nicolai et al., 2007).  

NIRS is considered to be suitable for determining inner quality of food and agricultural 

product since it is characterized by low labour costs, non-destructive, pollution free and rapid. 

NIRS also allows several constituents to be evaluated at the same time (Moghimi et al., 

2010). This technique has been gaining widespread acceptance for analyzing foods and 

agricultural products since its development in 1964 (Khalaf et al., 2004; Nicolai et al., 2007). 

The increasing numbers of research and publications in NIRS showed obviously that this 

method is becoming more important and promising technique in quality control as well as 

from the fact that many manufacturers have now implemented NIRS system to measure 

various physical and chemical quality attributes (Cen and He, 2007: Nicolai et al., 2007).  

A number of studies have been investigating the feasibility of NIRS to determine various 

quality attributes in horticultural products as shown in Table 2.1. For mango quality, there 

are, however, few studies applying NIRS (Jha, et al., 2010). Schmilovitch et al. (2000) used 
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NIR spectra with wavelength range of 1200-2400 nm to evaluate major physiological 

properties and quality indices of mango fruit (cv. Tommy Atkins) included softening of the 

flesh, soluble solid content and acidity. Mahayothee et al. (2004) evaluated firmness on two 

Thai mango cultivars in the visible to NIR range (650-2500 nm). Mango eating qualities, i.e. 

soluble solid content, dry matter (DM) and flesh colour have been predicted using short wave 

NIR of 700-1100 nm (Saranwong et al., 2004) and 300-1150 nm (Subedi et al., 2006). 

Firmness and yellowness of mango during growth and storage has also been determined 

using NIRS (Jha et al., 2006; Valente et al., 2009).  

Table 2.1. Overview of NIRS application to predict some quality attributes of horticultural 

products  

Fruit Quality attributes Reference 

Apples SSC and firmness Ventura et al. (1998); Lammertyn et al. (1998); 

Xiaobo et al. (2007); Fan et al. (2009); Mendoza 

et al. (2012) 

Strawberries SSC, TA and firmness Sánchez et al. (2012) 

Orange SSC Cayuela (2008); Liu et al. (2010) 

Mandarin  SSC and TA Gomez et al. (2006) 

Tomato SSC, TA and firmness Shao et al. (2007); Flores et al. (2009) 

Banana Dry matter content, pH, SSC and 

acid to brix ratio 

Jaiswal et al. (2012) 

Kiwifruit SSC and acidity Moghimi et al. (2010) 

Apricot SSC, firmness and TA Camps and Christen (2009) 

Bayberry TA, malic acid, and citric acid Xie et al. (2011) 

SSC: soluble solids content, TA: titratable acidity 

As NIRS itself cannot predict quality, chemometrics is required to extract the information 

provided by near infrared spectra. Multivariate calibration is used to establish mathematical 

and statistical relationships between NIR spectra and target quality parameters (Naes et al., 

2004). In NIRS analysis, this chemometrics includes three facets: (i) spectral data pre-

processing, (ii) building calibration models for quantitative and qualitative analysis 

(including model validation) and (iii) model transfer (Cen and He, 2007). As NIR spectra of 

fruits and vegetables are characterized by a large set of overtones and combination bands, and 

further may be complicated since the spectra is influenced by wavelength dependant 
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scattering effects, tissue heterogeneities, instrumental noise, ambient effects and other source 

of variability. Several pre-processing methods have been introduced to overcome these 

effects such as spectra smoothing, standardisation, normalisation, derivation, wavelet 

transforms, Fourier transform, orthogonal signal correction, net analyte signal and 

combination among them (Pontes et al., 2006; Wang et al., 2006; Nicolai et al., 2007; Cen 

and He, 2007; Cozzolino et al., 2011).  

Therefore, the main objective of this study is to develop multivariate calibration models using 

PLS and PCR based on scatter corrected spectra, namely multivariate scatter correction 

(MSC) and standard normal variate (SNV) and their transformed spectra into first derivative 

to predict soluble solid content (SSC), titratable acidity (TA), and ascorbic acid (AA) 

representing sweetness and acidity of mango respectively in a non-destructive manner. 

Calibration model performance was evaluated through ten segments cross validation. 

2.3. Materials and methods 

2.3.1. Samples 

A total of 58 mango samples (cv. Kent) selected from three different origins (Brazil, Spain, 

and Israel) were purchased at local market in Göttingen, Germany. These samples were 

stored at ambient temperature of 25
°
C and measured every 2 days (0, 2, 4, 6, 8 and 10) in 

order to have samples with varied SSC, TA and AA. Day 0
th

 was the day when all samples 

mango were purchased and initial day of measurement for NIR spectra, SSC, TA and AA. 

For each measurement day, ten mango samples were analyzed except for the day of 10
th

, it 

was eight remaining samples. NIR spectra of samples were recorded before SSC, TA and AA 

measurement and they were performed in the same day or maximum one day after. 
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2.3.2. Spectra acquisition 

NIR spectra data of all samples were acquired using a benchtop Fourier transform near 

infrared (FT-NIR) instrument (Thermo Nicolet, Antaris model MDS-method development 

sampling). High resolution (2 nm interval) sample measurement with integrating sphere was 

chosen as a basic measurement in this study. Background spectra correction was performed 

every hour automatically. Sample mangoes were placed manually upon the measurement 

window of the integrating sphere (1 cm of diameter) of the light source to ensure direct 

contact and eliminate noise. Diffuse reflectance (Log 1/R) spectra in wavelength range of 

1000 – 2500 nm with 2 nm resolution were acquired 64 times and averaged (Figure 2.1). 

Taking a potential variation of the quality attributes within the fruit into account, spectra were 

collected in six different points of each sample (two in the left and right edge, and four in the 

center). The mean values of these measurements were noted as single spectrum with a total of 

1557 data points for one sample mango that were used for further analysis.   

 

Figure 2.1. Experimental setup for near infrared spectroscopy on intact mango. 

 

2.3.3. Soluble solids content, titratable acidity and ascorbic acid measurement 

After collecting and recording the spectra, each sample fruit was sliced at the same marked 

location of the NIR acquisition and the pulp was taken. The ascorbic acid (AA) was analyzed 

firstly since this quality attribute is susceptible to oxidation by atmospheric oxygen after 

slicing (Cozzolino et al., 2011). Titration method was used to determine ascorbic acid using 
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2.6 Dichlorophenolindophenol solution (Arya et al., 2000). Five grams of pulp sample was 

macerated and mixed with 20 ml of 5% meta-phosphoric acid (Roth, Germany) into a beaker 

to prevent oxidation. It was then homogenized using the ultra-turrax (IKA T 18B, Germany) 

for about two minutes. Distilled water was added to the solution until 50 ml of volume was 

reached, then filtered through filter paper (MN 6151/4 with diameter of 150 mm, Macherey-

Nagel, Germany). Ten ml of the filtrate was taken and transferred into a 25 ml beaker glass 

and was titrated with 0.064 M 2.6 Dichlorophenolindophenol. The ascorbic acid, expressed in 

mg∙100g
-1 

fresh mass (FM), was quantified based on its reaction with this solution as an 

indicator in titration method. The titration was stopped when light red (pink) color is 

appeared.  

Soluble solids content (SSC) and titratable acidity (TA) measurement were carried out 

simultaneously by making another juice from 20 grams of pulp sample and maximum 100 ml 

distilled water. In order to obtain clarified sample juice and separate suspended solids, the 

centrifuge (20
o
C, 10 000 g) was applied for about 10 minutes (Schmilovitch et al., 2000). A 

single drop filtered supernatant juice was squeezed and dropped onto a hand-held analog 

refractometer (model HRO32, Krüss Optronic GmbH) to record SSC as 
o
Brix (Xiaobo et al., 

2007) whilst automatic titration (Titroline 96, Schott) with 0.1 N NaOH to an end point of pH 

8.1 was used to measure TA expressed as mg∙100g
-1

 fresh mass (Flores et al., 2009). All 

these three quality attributes were measured in duplicate and averaged. 

2.3.4. Spectra calibration and validation 

Spectra were analyzed using The Unscrambler
®
 X version 10.2 Network Client (CAMO 

software AS, Oslo-Norway). Prior to further analysis, spectra were visually inspected for 

typical spectra features. Principal component analysis (PCA) was then applied to the 

untreated (raw) spectra in order to explore spectral similarities among samples and to detect 



[27] 
 

outliers by subjecting a Hotelling T
2
 ellipse as shown in Figure 2.2. Data points (representing 

samples) outside this ellipse were marked as spectral outliers and deleted (Constantinou et al., 

2004; Mouazen et al., 2010).   

 

Figure 2.2. Hotelling T
2
 ellipse applied to the raw spectra of 58 samples after 

principal component analysis for outlier detection. 

 

Prior to calibration model development, spectra pre-processing was performed to eliminate 

noise and scattering. Multiplicative scatter correction (MSC) and standard normal variate 

transformation (SNV) algorithms followed by Savitzky-Golay smoothing (three smoothing 

points) were applied to correct additive (baseline shift) and multiplicative scatter effects (Liu, 

et al., 2010; Cozzolino, et al., 2011). First derivative spectra were obtained using Savitzky-

Golay algorithm (three smoothing points, 2
nd

 polynomial order) for both MSC and SNV 

spectra. It was also used as spectra pre-treatment since spectra transformation into its 

derivative also has the ability for correcting both additive and multiplicative effects (Naes, et 

al., 2004). Thus, four different spectra pre-treatments (MSC, SNV, D1+MSC and D1+SNV) 

were used prior to model development.    
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Calibration models were established to predict SSC, TA and AA using principal component 

regression (PCR) and partial least squares regression (PLSR). Full cross validation with ten 

random segments was applied during model development to quantify the model performance 

and to prevent over fitting. Predictive capabilities of these calibration models and their 

validation were evaluated by using several statistical parameters, i.e. (i) the coefficient of 

determination (R
2
) of calibration and validation representing the proportion of variance 

(fluctuation) of the response variable that is explained by the spectral features in the 

calibration or validation model. It also measure how certain one can be in making predictions 

from a certain models (Nicolai et al., 2007), (ii) the prediction error which is defined as the 

root mean square error of calibration (RMSEC), standard error of calibration (SEC), root 

mean square error of cross validation prediction (RMSECV), (iii) the error difference 

between RMSEC and RMSECV (Jha, et al., 2006; Flores, et al., 2009), and (iv) the residual 

predictive deviation (RPD) providing the ratio between the standard deviation of the target 

variable and the standard error of prediction performance RMSECV or RMSEP. RPD is a 

commonly used to interpret and compare NIR calibration models (Fearn, 2002; Kapper, et al., 

2012). The higher the RPD, the greater is the probability of the model to predict desired 

chemical constituent in samples set accurately (Sinelli et al., 2008).  

Finally, the number of factors or latent variables used in the prediction models was also taken 

into account since they represent the main spectral variance. Fewer latent variables are 

preferable to avoid modeling noise signal (Schmilovitch et al., 2000; Nicolai et al., 2007). 

Apparently, the ideal model should have a high R
2
 using a few latent variables, a high RPD, a 

low error prediction value (RMSEC, RMSECV or RMSEP) and small difference between 

RMSEC and RMSECV or RMSEP. 
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2.4. Results and discussion 

2.4.1. Spectra features  

A typical diffuse reflectance spectrum and its first derivative for intact mango in the NIR 

region (1000-2500 nm) are shown in Figure 2.3. The NIR spectrum indicates the presence of 

organic materials as derived from the bands that result from the interaction of molecular 

bonds of O-H, C-H, C-O and N-H with the incident radiation (Cen and He, 2007). These 

bonds are subject to vibrational energy changes in which two vibration patterns exist in these 

bonds including stretch vibration and bend vibration. Here, the presence of strong water 

absorbance bands was observed at around 1460 nm and 1930 nm because of O-H tone 

combination and its first overtone. Absorption bands at around 1400 nm and 1900 nm were 

previously assigned to water absorption (Workman and Weyer, 2008). Moreover, the 

absorption bands in the range of 2200 - 2300 nm are suggested to be related to C-H-O 

structures such as glucose, fructose, vitamin A and C; whilst absorption bands at around 

1400, 1800 and 2100 nm are associated with organic acids (Cen and He, 2007).  

 

 

 

 

 

 

 

Figure 2.3. Typical diffuse reflectance spectra (a) and first derivative (b) of one intact 

mango after multiplicative scatter correction. 

 

SSC, TA and AA are organic molecules, and contain bonds of C-H, O-H, C-O and C-C. 

Thus, it appears feasible to apply NIR methods to predict these quality attributes in intact 
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mango. In overall, the spectral pattern of mango is similar to that for mandarin (Gomez et al., 

2006), apple (Xiaobo et al., 2007), blueberries (Sinelli et al., 2008), apricot (Bureau et al., 

2009) and tomato (Flores et al., 2009). Important wavelengths of near infrared spectra for 

desired quality attributes predictions can be identified by inspecting regression coefficients of 

the respective PCR or PLSR models. The size of the coefficients indicates which independent 

variables (wavelengths) significantly impact on the response variables (referred quality 

attributes). Wavelengths having higher absolute value of regression coefficient than others, 

located at the peaks or valleys of the spectrum, were noted as the important or effective 

wavelengths that contributed more to the models (Liu et al., 2008). 

2.4.2. Calibration and prediction of quality attributes  

Descriptive statistics for actual measured SSC, TA and AA are given in Table 2.2. Since the 

number of samples in this study was limited, no independent prediction using external 

samples was performed. Instead, the robustness of calibration models was evaluated using 

internal samples through cross validation. Two different calibration models (PCR and PLSR) 

using the whole spectral range for each pre-processing method (MSC, SNV and first 

derivative) were developed for predicting SSC, TA and AA of intact mango.  

Table 2.2. Descriptive statistics for measured soluble solids content (SSC), titratable acidity 

(TA) and ascorbic acid (AA) 

 SSC (
o
Brix) TA (mg∙100g

-1
 FM) AA (mg∙100g

-1
 FM) 

number of samples 58   58 58 

min    9 189.72 28.93 

max 20 772.77 35.66 

mean 13.39 495.48 32.21 

range 11 583.05   6.73 

SD   2.43 131.07   1.31 

SD: standard deviation, FM: fresh mass. 

 

During model development, PCA was firstly applied to detect sample spectra that can affect 

the model performance, i.e. spectral outliers. Two samples for SSC, one sample for TA and 
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three samples for AA were left out due to their potential bad influences over the models. In 

agreement with Xie et al. (2011), sample outliers may contain valuable information but they 

may also be non-representative samples that could introduce errors to a model.  

2.4.2.1. Soluble solids content 

Calibration and validation results for determining soluble solids content (SSC) using NIR 

spectra are shown in Table 2.3. In general, both PCR and PLSR regressions provide better 

and robust models using smoothed MSC or SNV treated spectra compared to using first 

derivative spectra. Though given higher coefficient of determination (R
2
) and lower errors, 

derivative spectra involved more latent variables (LVs) and larger error differences than non-

derived spectra in all cases. The maximum error difference for non-derived spectra was 0.13 

while derivative spectra produced maximum error difference of 0.69. Liu et al. (2008) also 

reported that non-derived log (1/R) spectra perform better than derived spectra (first and 

second derivative) to predict SSC in pears with coefficient of correlation and root mean 

square error of prediction (RMSEP) values were 0.91 and 0.66 
o
Brix respectively.  

Table 2.3. Calibration statistics for the prediction of soluble solids content, 
o
Brix  

Method Spectra treatment LVs 
Calibration Cross validation Error 

difference R
2
 RMSEC SEC R

2
 RMSECV RPD 

PCR 

MSC 3 0.67 1.36 1.37 0.65 1.43 1.70 0.07 

SNV 3 0.66 1.36 1.37 0.65 1.43 1.70 0.07 

D1+MSC 7 0.69 1.30 1.31 0.51 1.67 1.46 0.37 

D1+SNV 7 0.68 1.34 1.36 0.54 1.68 1.45 0.34 

PLSR 

MSC 3 0.67 1.34 1.36 0.62 1.47 1.65 0.13 

SNV 3 0.67 1.34 1.36 0.65 1.42 1.71 0.08 

D1+MSC 5 0.90 0.75 0.75 0.64 1.44 1.69 0.69 

D1+SNV 5 0.91 0.71 0.72 0.66 1.35 1.80 0.64 

LVs: number of latent variables, R
2
: coefficient of determination, RMSEC: root mean square error of 

calibration, RMSECV: root mean square error of cross validation, SEC: standard error of calibration, 

RPD: ratio prediction to deviation, Error difference: absolute value of (RMSECV-RMSEC), PCR: 

principal component regression, PLSR: partial least square regression, MSC: multiplicative scatter 

correction, SEC: standard error calibration, SNV: standard normal variate.  
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Partial least square regression using SNV treated spectra yielded the best model for SSC 

prediction with R
2
 of calibration 0.67, root mean square error cross validation (RMSECV) of 

1.42 
o
Brix, error difference of 0.08 

o
Brix and residual predictive deviation (RPD) of 1.71 

(Figure 2.4a). Similar finding also reported by Jha et al. (2012) where SSC of seven major 

mango varieties in India (Chausa, Langra, Kesar, Neelam, Dashehri, Mallika and Malda) 

could be predicted with reasonable accuracy by PLSR using second derivative NIR 

transmittance spectra in which maximum correlation coefficient of calibration and validation 

was 0.782 and 0.762, respectively.  

The standard error of calibration (SEC) in the present study was slightly better than that 

obtained by Schmilovitch et al. (2000) in mango (cv. Tommy Atkins) with SEC of 1.81 
o
Brix 

using 4 latent variables, yet the R
2
 values of studies (0.86) was better than in the present 

study (0.67). SSC is correlated with soluble sugar; it is expected to be represented by spectral 

features related to C-H-O absorption bands. Based on the regression coefficient curve, the 

observed important or relevant wavelengths for the SSC calibration model were 1081, 1940, 

2250, 2315 and 2355 nm (Figure 2.4b). The highest relevant wavelength proportion was 

found at wavelength range from 2200 to 2400 nm. This is an agreement with Cen and He 

(2007) that near infrared absorption bands at 2000 – 2300 nm were associated with C-H-O 

compositions like sugars or carbohydrates. 
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Figure 2.4a. Scatter plot of measured versus predicted soluble solids content based 

on partial least square regression-standard normal variate model.  

 

 

 

 

 

 

 

 

Figure 2.4b. Important wavelengths for soluble solids content predictions derived 

from regression coefficients plot based on partial least square regression-standard 

normal variate model.  

 

2.4.2.2. Titratable acidity 

Titratable acidity (TA) calibration and cross validation results are presented in Table 2.4. 

PLSR based on MSC spectra calibration was found best model to predict TA of intact mango 
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fruit. The model required only 3 latent variables of PLS and achieved R
2
 coefficient of cross 

validation of 0.95 and yielded the lowest error (RMSECV) of 26.94. The RPD index based on 

this model was also the most robust (4.87).  

Table 2.4. Calibration statistics for the prediction of titratable acidity, mg∙100g
-1

 FM 

Method Spectra treatment LVs 
Calibration Cross validation Error 

difference R
2
 RMSEC SEC R

2
 RMSECV RPD 

PCR 

MSC 3 0.95 27.57 27.82 0.94 29.89 4.39 2.32 

SNV 3 0.95 27.58 27.83 0.95 29.36 4.46 1.78 

D1+MSC 7 0.94 31.07 31.35 0.91 39.04 3.36 7.97 

D1+SNV 7 0.94 31.37 34.65 0.90 40.77 3.21 9.40 

PLSR 

MSC 3 0.96 25.83 26.05 0.95 26.94 4.87 1.11 

SNV 3 0.96 25.82 26.05 0.95 27.44 4.78 1.62 

D1+MSC 5 0.98 14.95 15.08 0.95 28.84 4.54 13.89 

D1+SNV 5 0.98 14.98 15.11 0.95 28.57 4.59 13.59 

FM: fresh mass, LVs: number of latent variables, R
2
: coefficient of determination, RMSEC: root 

mean square error of calibration, RMSECV: root mean square error of cross validation, SEC: standard 

error of calibration, RPD: ratio prediction to deviation, Error difference: absolute value of (RMSECV-

RMSEC), PCR: principal component regression, PLSR: partial least square regression, MSC: 

multiplicative scatter correction, SEC: standard error calibration, SNV: standard normal variate.  

 

Coefficients of determination in all cases (MSC and first derivative MSC) of PLSR were 

found to be 0.96 and 0.98 for calibration and 0.95 for cross validation. Like SSC, calibration 

models based on non-derived spectra were preferable providing fewer numbers of LVs and 

smaller error difference compared to derivative spectra. Calibration models based on MSC 

and SNV required 3 latent variables while derivatives spectra required 5 (PLSR) and 7 (PCR) 

latent variables to predict TA. Scatter plot drawn from this best selected model (Figure 2.5a) 

indicate that slope of the curve is near to ideal of 45
o
 and imply that predicted TA is nearly to 

that in measured TA. Based on the regression coefficient curve of the best TA calibration 

model (Figure 2.5b), relevant wavelengths were found at around 1470, 1733, 1895, 2308 and 

2355 nm. The last two mentioned wavelengths contributed more to the TA prediction model. 

Cen and He (2007) also found absorption bands of NIR associated with acid compound in the 

wavelength region of 1400 to 1500 nm, 1850 to 1900 nm and, since many acids are formed in 
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C-O-H structures, the higher peak of the absorption bands were found mostly in the region 

2200 – 2300 nm.  

 

 

 

 

 

 

 

 

Figure 2.5a. Scatter plot of measured versus predicted titratable acidity based on 

partial least square regression - multiplicative scatter correction model.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5b. Important wavelengths for titratable acidity predictions derived from 

regression coefficients plot based on partial least square regression - multiplicative 

scatter correction model. 
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A wide range of actual TA in this study was observed and perhaps contributed positively to 

the model performance since a better model performance may be achieved with a higher 

sample range.  

2.4.2.3. Ascorbic acid  

As shown in Table 2.5, PLSR based on MSC spectra with six latent variables was found to be 

the best model to predict ascorbic acid (AA) content of intact mango with R
2
 coefficient of 

0.70 and 0.60 for calibration and cross validation respectively. The first derivative of MSC 

spectra also achieved a good result from which the R
2
 of calibration and cross validation were 

0.82 and 0.61 respectively. The highest RPD index resulted from this model was 1.70 which 

means that coarse quantitative prediction are still possible, but the model need some 

improvements in calibration. Predicted versus measured AA derived from PLSR-MSC model 

is shown in Figure 2.6a. Furthermore, based on regression coefficients curve from this model, 

the important relevant wavelengths for ascorbic acid prediction were found at 1930, 2015, 

2027, 2300, 2418, 2430 and 2446 nm as presented in Figure 2.6b.  

Table 2.5. Calibration statistics for the prediction of ascorbic acid, mg∙100g
-1

 FM  

Method Spectra treatment LVs 
Calibration Cross validation Error 

difference R
2
 RMSEC SEC R

2
 RMSECV RPD 

PCR 

MSC 7 0.62 0.75 0.75 0.43 0.93 1.41 0.18 

SNV 7 0.63 0.74 0.75 0.53 0.87 1.51 0.13 

D1+MSC 6 0.67 0.70 0.70 0.58 0.82 1.60 0.12 

D1+SNV 7 0.69 0.68 0.69 0.59 0.80 1.64 0.12 

PLSR 

MSC 6 0.70 0.65 0.66 0.60 0.80 1.64 0.15 

SNV 6 0.71 0.65 0.66 0.55 0.84 1.56 0.19 

D1+MSC 4 0.82 0.51 0.52 0.61 0.77 1.70 0.26 

D1+SNV 5 0.92 0.33 0.34 0.60 0.80 1.64 0.47 

FM: fresh mass, LVs: number of latent variables, R
2
: coefficient of determination, RMSEC: root 

mean square error of calibration, RMSECV: root mean square error of cross validation, SEC: standard 

error of calibration, RPD: ratio prediction to deviation, Error difference: absolute value of (RMSECV-

RMSEC), PCR: principal component regression, PLSR: partial least square regression, MSC: 

multiplicative scatter correction, SEC: standard error calibration, SNV: standard normal variate.  
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Figure 2.6a. Scatter plot of measured versus predicted ascorbic acid based on 

partial least square regression - multiplicative scatter correction model.  

 

 

 

 

 

 

 

 

 

 

Figure 2.6b. Important wavelengths for ascorbic acid predictions derived from 

regression coefficients plot based on partial least square regression - multiplicative 

scatter correction model. 

Compared to SSC and TA, prediction of AA yielded unsatisfactory result as to be seen from 

R
2
 coefficient; even R

2
 resulted from AA (0.70) prediction was slightly better than that in 
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SSC prediction (0.67). However, the difference between R
2
 calibration and R

2
 cross 

validation was higher in AA (0.10) prediction compare to the R
2
 calibration-cross validation 

difference in SSC prediction (0.05). Furthermore, RPD for AA is the lowest (1.64) indicating 

that the model provides rather a rough screening and low prediction capability for AA. This 

might be due to spectral noise: Based on the regression coefficients plot, it is observed that 

noise is present in the model from the beginning of wavelength 1000 to 1400 nm and 1450 to 

1700 nm. Another possible reason is the low AA range of the studied mangos (6.34 mg∙100g
-

1
FM). Nevertheless, this prediction model was reasonably reliable to predict ascorbic acid of 

intact mango.  

In general, judging from calibration and cross validation performance, NIRS can predict TA 

of intact mango with higher accuracy compare to SSC and AA (R
2
 = 0.67, RPD = 1.71 for 

SSC, R
2
 = 0.96, RPD = 4.87 for TA and R

2
 = 0.70, RPD = 1.64 for AA). An RPD between 

1.5 and 1.9 means that the model can discriminate low from high values of the response 

variable and still need improvement. A value between 2 and 2.5 indicates that quantitative 

predictions are possible, and can be seen as promising prediction accuracy. An RPD value 

between 2.5 and 3 or above 3 corresponds to good and excellent prediction accuracy 

respectively. These values give the average uncertainty that can be expected for predictions 

of future samples (Williams, 2001; Fearn 2002; Nicolai et al., 2007). In addition, non-derived 

spectra were found to be preferable than first derivative spectra, even they produce higher R
2
 

value in calibration and validation, there is a big difference between RMSEC and RMSECV. 

This indicates that prediction model based on derived spectra is over-fitted, generating good 

R
2
 and RMSEC values, which fits parts of the noise of the calibration set but performing 

poorly in the future validation set.   
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The optimal number of latent variables in PCR or PLSR was determined by the lowest value 

of predicted residual error sum of squares. In non-derived spectra, 3 latent variables were 

found to be sufficient to explain variance in the model whilst derived spectra required five 

and 7 latent variables in PCR and PLSR method respectively. A relatively low number of 

latent variables are desired to avoid the modeling of spectral noise. Within this study non 

derivative NIR spectral calibration models are preferable. From the regression method point 

of view, even PCR provided lower error differences between calibration and validation; 

PLSR appeared to be more robust where coefficient of R
2
 and RPD were higher whilst 

RMSEC, RMSECV were lower compared to PCR.  

 

2.5. Conclusion 

Near infrared spectroscopy appears feasible to predict main quality attributes of intact mango 

namely soluble solids content (SSC), titratable acidity (TA) and ascorbic acid (AA). Spectral 

pre-processing such as derivative, SNV and MSC, affects the quality of the prediction models 

using PCR and PLSR. Best prediction models for all quality attributes were achieved using 

PLSR method combined with non-derived spectra. TA could be predicted with the highest R² 

and lowest prediction error compared to SSC and AA content that could be modeled with 

reasonable performance. Despite the fact that determination coefficient observed in SSC and 

AA prediction models are not very high and the RPD for both models are lower than two, It 

is assumed that NIRS still could be used for sorting and grading of mango fruit. The results 

are based on samples from commercially purchased mangos and can be considered as a 

promising technique for the use of sorting and grading mango quality. However improvement 

should be made to generate a better SSC and AA prediction model performance. Thus, NIRS 

combined with appropriate multivariate analysis could become a rapid and non-destructive 

alternative method for determining inner quality attributes of mango.  
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Chapter 3. Comparisons of different spectra pre-processing to predict quality attributes 

of intact mango using near infrared spectroscopy and partial least square regression 

3.1. Abstract 

Spectra pre-processing is one of the main factors affecting model robustness and prediction 

capabilities with near-infrared spectroscopy (NIRS). The objective of the present study is to 

compare the performance of untreated and six different treated spectra methods, namely 

mean centering (MC), normalization, de-trending (DT), multiplicative scatter correction 

(MSC), standard normal variate (SNV) and orthogonal signal correction (OSC), through 

partial least square (PLS) regression for the prediction accuracy of quality attributes in form 

of titratable acidity (TA) and soluble solids content (SSC) of intact mango. A total of 99 

samples mango (cv. Kent) were used as data-set for calibration, cross validation (CV) and 

prediction procedures. Diffuse reflectance spectra (log1/R) were acquired and recorded in 

wavelength range of 1000 – 2500 nm by Antaris Fourier transform NIR instrument whilst TA 

and SSC were measured by titration and refraction index method respectively. Judging from 

calibration and prediction performance, OSC found to be the best pre-processing method 

prior to PLS model development (R
2
 CV = 0.923, R

2
 prediction = 0.718, RMSECV = 38.869 

mg∙100g
-1

, RMSEP = 52.363 mg∙100g
-1

) for TA and (R
2
 CV = 0.828, R

2
 prediction = 0.605, 

RMSECV = 0.533 
o
Brix, RMSEP = 0.716 

o
Brix) for SSC. It may conclude that proper NIR 

spectra pre-processing combine with PLS multivariate calibration method may lead to good 

prediction accuracy.  

Keywords: NIR, quality parameter, spectroscopy, spectra pre-processing. 

 

3.2. Introduction 

In last two decades, near infrared reflectance spectroscopy (NIRS) technique have become 

more attractive and widely used for quality control analysis in many field sectors including 

agro-food industries due to its advantage characteristics; nearly without sample preparation, 

rapid, low labor and non-destructive (Perez-Marin et al., 2007). It also allows several quality 

parameters can be analyzed simultaneously in the same time. NIR spectra of fruits and 

vegetables are characterized by a large set of overtones and combination bands representing 
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light absorption by organic compound of specific quality parameter (i.e sugar, acid or amino) 

of the biological object (Nicolai et al., 2007). Therefore, multivariate analysis is required to 

extract the information about quality attributes buried on near infrared spectra through a 

process called calibration modeling from which a mathematical relationship between NIR 

spectra and the measured quality parameter will be revealed to determine desired quality 

attributes.  

Partial least squares regression (PLSR) is one of the most popular methods for multivariate 

calibration of NIR spectra data. Unlike principal component regression (PCR), the PLSR 

takes both X (NIR spectra data) and Y (desired quality attributes) matrices into account when 

developing the models to find the latent (or hidden) variables in X that will best predict the 

latent variables in Y. PLSR maximizes the covariance between X and Y. In this case, 

convergence of the system to a minimum residual error is often achieved in fewer factors 

than using PCR. This is in contrast to PCR, which first performs principal component 

analysis (PCA) on X and then regresses the PCA scores with the Y data. PLSR also leading 

to the reduction of the number of latent variable  or principal component  (in PCR) that are 

needed to describe the model compared to PCR (Felizardo et al., 2007; CAMO The 

Unscrambler, 2012). 

The NIR spectra of biological objects is influenced by wavelength dependent scattering 

effects, tissue heterogeneities, instrumental noise, ambient effects and other source of 

variability. In order to eliminate these variations unrelated to desired chemical 

concentrations, NIR spectra should be conveniently pre-processed prior to calibration model 

development. Several pre-processing methods were applied to overcome these effects such as 

spectra smoothing, standardization, normalization, derivation, wavelet transforms, Fourier 

transform, orthogonal signal correction, net analyte signal and combination among them 
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(Pontes et al., 2006; Wang et al., Cen and He, 2007; Cozzolino et al., 2011; Blanco et al., 

2001; Azzouz et al., 2003; Chen et al., 2003). These pre-processing methods may produce 

good and accurate prediction model.  

The main aim of this study is to compare the prediction model performance of untreated 

spectra and six different treated spectra methods, namely mean centering (MC), mean 

normalization (MN), de-trending (DT), multiplicative scatter correction (MSC), standard 

normal variate (SNV) and orthogonal signal correction (OSC). The models were developed 

through partial least square regression (PLSR) for quality attributes prediction in form of 

titratable acidity (TA) and soluble solids content (SSC) of intact mango. PLSR was chosen 

based on our previous study results on the feasibility of NIRS for SSC, TA and ascorbic acid 

prediction of mango fruit concluded that PLSR was slightly better than PCR (Munawar et al., 

2013). 

 

3.3. Materials and methods 

3.3.1. Experimental 

Laboratory works were performed in order to acquire NIR spectra data, SSC and TA from a 

total of 99 mangos (cv. Kent) obtained from local market. The NIR diffuse reflectance of 

mango samples were recorded in wavelength range of 1000 – 2500 nm using a benchtop 

Fourier transform (FT) NIR instrument (Thermo Nicolet, Antaris model MDS-method 

development sampling) with the aid of the Thermo
®
 integrated software: Thermo Integration 

and Thermo Operation. The workflow has been set up to run specified tasks of the 

instrument. High resolution sample measurement with integrating sphere was chosen as a 

basic measurement. Background spectra correction was set to be performed every hour 

automatically. Samples were placed manually upon the measurement window of the 

integrating sphere (one cm of diameter) of the light source to ensure direct contact and 
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eliminate noise. The spectra of each sample were collected in six different points and 

averaged (two in the left and right edge, and four in the center) representing acidity and 

sweetness distribution of mango fruit.  

After spectra acquisition, each sample fruit was sliced and the pulp was taken. 20 grams of 

pulp sample was macerated, mixed and homogenized with maximum 100 ml distilled water. 

To obtain clarified sample juice and separate suspended solids, the centrifuge with 20
o
C and 

10 000 g was applied for about 10 minutes (Schmilovitch et al., 2000). A little filtered juice 

was squeezed and dropped into a hand-held analog refractometer (model HRO32, Krüss 

Optronic GmbH) to record SSC in form of 
o
Brix (Xiaobo et al., 2007) whilst automatic 

titration method (Titroline 96, Schott) with 0.1 N NaOH to an end point of pH 8.1 (Flores et 

al., 2009) was used to measure TA expressed mg∙100g
-1

 FM. These both quality attributes 

measurement were performed in duplicate and averaged.      

3.3.2. Outlier detection 

Sample outliers were inspected by plotting all 99 original diffuse reflectance spectra onto 

principal component analysis and subjecting Hotelling T
2
 ellipse. Data points lying outside 

this ellipse were marked as outliers and deleted (Constantinou et al., 2004; Mouazen et al., 

2010). This process was applied until no more outliers were detected. Thus, remaining 

samples after outlier removal were used to establish calibration models using different spectra 

pre-processing. 
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3.3.3. Spectra data pre-processing 

Prior to PLSR model development, different spectra data pre-processing were applied to the 

data. This work presents PLSR calibration obtained from untreated spectra (identified as 

none) and from six different pre-processing methods as follows:  

3.3.3.1. Mean centering (MC) 

This is often the simply preferred pre-processing method prior calibration development as it 

focuses on differences between observations rather than their absolute values. MC ensures 

that the resulting data or model may be interpreted in terms of variation around the mean. It 

was applied to all spectra (calibration and prediction). 

3.3.3.2. Mean normalization (MN) 

The purpose of this pre-treatment is to scale samples in order to get all data on approximately 

the same scale based on area, mean, range, maximum, peaks and unit vector. All spectra data 

were also normalized as mean normalization.  

3.3.3.3. De-trending (DT) 

This pre-treatment method tends to remove nonlinear trends in spectroscopic data. It 

calculates a baseline function as a least squares fit of a polynomial to the sample spectral 

data. DT was applied to individual spectra. As the polynomial order of the DT increases, 

additional baseline effects are removed. Zero-order: offset; first-order: offset and slope; 

second-order: offset, slope and curvature (CAMO The Unscrambler, 2012). In this work, 

second-order of DT was applied to all spectra prior to PLSR calibration. 
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3.3.3.4. Multiplicative scatter correction (MSC) 

Multiplicative scatter correction is one of the approaches to reduce amplification 

(multiplicative, scattering) and offset (additive, chemical) effects in NIR spectra (Chen et al., 

2002). It rotates each spectrum so that it fits as closely as possible to a standard spectrum that 

may often be the mean spectrum (rm). Every spectrum is then corrected using the linear 

equation (Azzouz et al., 2003): 

r = a + brm + v    (eq. 3.1) 

whereas a and b are the correction coefficients computed from a regression of each individual 

spectrum onto the mean spectrum. Coefficient a is the intercept of the regression line 

indicating a constant linear absorption additive effect, coefficient b is the slope indicating the 

influence of absorption multiplicative effect and v is the residuals vector giving the 

differences between original spectrum (r) and mean spectrum (rm). This residual vector is 

assumed to contain the chemical variance in r. The new corrected NIR spectrum (r1) is 

obtained by means of the expression (Azzouz et al., 2003): 

b

v
r

b

ar
m 



     (eq. 3.2) 

b

v
rr m 1

     (eq. 3.3) 

MSC was applied to all spectra with an option full MSC (common amplification and offset 

removal) prior to calibration and prediction procedures.  

3.3.3.5. Standard normal variate (SNV) 

Standard normal variate was also applied to all spectral data as a spectra pre-processing 

method prior to calibration and prediction. It is a transformation which removes scatter 

effects from spectra by centering and scaling individual spectra. Like MSC, the practical 

result of SNV is that it removes multiplicative interferences of scatter effects from spectral 
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data. An effect of SNV is that on the vertical scale, each spectrum is centered on zero and 

varies roughly from –2 to +2. Apart from the different scaling, the result is more-less similar 

to that of MSC. The practical difference is that SNV standardizes each spectrum using only 

the data from that spectra, it does not use the mean spectra of any set (CAMO The 

Unscrambler, 2012).  

3.3.3.6. Orthogonal signal correction (OSC) 

Orthogonal scatter correction is a relatively new pre-processing method applied to the NIR 

spectra. The OSC seek to correct X data matrix; NIR spectra data by removing the 

information from the spectra that is orthogonally uncorrelated to the Y data matrix; reference 

quality attributes data. This is was done in order to avoid the removal of useful information 

that is important for modeling, and removes only the irrelevant variation that creates 

problems for the regression model (Cen and He, 2007; Blanco et al., 2001). This treatment is 

applied jointly to all the spectra in the calibration set. Later, the correction on the X matrix 

can be applied to an external prediction set to evaluate the prediction ability of the calibration 

model built with the treated data. The algorithm used in this type of correction is similar to 

the non-iterative partial least square (NIPALS) algorithm, commonly used in PCA and PLS. 

In each step of the algorithm, the weight vector (w) is modified, imposing the condition that t 

= X·w is orthogonal to the Y matrix, and where t is the corresponding score vector. In PLS the 

condition that weights would be calculated to maximize the covariance among X and Y is 

imposed, but in OSC just the opposite is attempted, to minimize this covariance, making t as 

close as possible to the orthogonality with Y. The result of this calculation are scores and 

loadings matrices that contain the information not related to the concentration. Each internal 

latent variable (score by loading product) removes a part of the X matrix variance (Blanco et 

al., 2001).  
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3.3.4. Model calibration and prediction 

Once spectra pre-processing was completed, calibration models were developed for each 

quality attributes (SSC and TA) based on raw and pre-processed spectra. Samples were split 

into calibration datasets and prediction datasets. PLSR calibration with ten-segments full 

cross validation was applied to establish these models. The capability of calibration models 

were quantified by predicting quality attributes of external prediction samples.  

All of developed models, obtained using different spectra pre-processing, were compared and 

evaluated by using the following statistical parameters: the coefficient of determination (R
2
) 

of calibration, cross validation and prediction which essentially represents the proportion of 

explained variance of the response in the calibration or validation data set. Prediction error 

which is defined as the root mean square error of calibration (RMSEC), root mean square 

error of cross validation prediction (RMSECV) and root mean square error prediction 

(RMSEP), the difference between RMSEC and RMSEP (Jha et al., 2006; Flores et al., 2009).  

Another statistical parameter commonly used to interpret and compare NIR calibration 

models is the RPD, defined as the ratio between standard deviation of the reference or actual 

value of SSC and TA and the RMSEP. The higher the value of RPD, the greater is the 

probability of the model to predict desired chemical constituent in samples set accurately 

(Sinelli et al., 2000; Naes et al., 2004). The number of factors or latent variables was also 

taken into account since they could represent the main features of the spectra, reduce the 

number of variables and express most of the variance in the data set. Fewer latent variables 

are preferable to avoid modeling noise signal.  
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3.3.5. Software 

All spectra data pre-processing and calibration model development were carried out using 

software packages namely The Unscrambler
®
 X version 10.2 network client (CAMO 

software AS, Oslo-Norway).  

 

3.4. Results and discussion 

At first, after obtaining spectra data of all 99 samples, PCA with Hotelling T
2
 ellipse were 

applied to the original log (1/R) spectra for outlier detection. Eight samples were detected as 

outliers and removed as shown in Figure 3.1. Thus, there were 91 samples used for model 

development through PLSR method. From these samples, 56 were used for calibration and 

cross validation whilst remaining 35 samples were used for external prediction. 

 

Figure 3.1. Principal component analysis with Hotelling T
2
 ellipse for outliers 

detection; 4 outliers detected (a), 3 outliers (b), 1 outlier (c) and no outlier (d). 

In order to observe samples set distribution of these two datasets after splitting, PCA then 

again was performed to the calibration samples data set and prediction samples one. As 

expected, prediction samples data sets distributed and located in one cluster within the 
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calibration samples data. Original raw diffuse reflectance spectra of all calibration and 

prediction samples are shown in Figure 3.2a. The presence of strong water absorbance bands 

were observed at around 1460 nm and 1930 nm because of O-H tone combination and first 

overtone of water. Absorption bands at around 1400 nm and 1900 nm were noted to be 

associated with water absorption. 

3.4.1. Spectra features of different data pre-processing methods 

Figure 3.2b and Figure 3.2c give a multiplicative scatter correction (MSC) and standard 

normal variate (SNV) pre-processing. Overall improvements of baseline shift and signal 

overlap are clearly apparent in these two figures. Multiplicative interferences of scatter and 

additive effects from spectral data are also drastically reduced from raw untreated diffuse 

reflectance spectra. MSC and SNV spectra provide quite similar spectra results. However, 

when these two spectra are visually compared, the slope of the SNV spectra decreases 

compared to the slope of MSC spectra. SNV standardizes each spectrum using only the data 

from that spectra, it does not use the mean spectra of any set whilst MSC rotates each 

spectrum so that it fits as closely as possible to a standard spectrum that may often be the 

mean spectrum. Figure 3.2d shows second order de-trending (DT) spectra of all samples. 

Spectra shift changes, additional baseline and curvatures effects are also removed compare to 

raw spectra.  
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Figure 3.2. Raw spectra (a), multiplicative scatter correction (MSC) spectra (b), 

standard normal variate (SNV) spectra (c), mean normalization (MN) spectra (d), de-

trending (DT) spectra (e), mean centered (MC) spectra (f), orthogonal signal correction 

(OSC) for titratable acidity spectra (g), OSC for soluble solids content spectra (h).   
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In Figure 3e, mean normalization (MN) spectra are given from which all spectra data were 

normalized in order to obtain spectra on approximately the same scale based on mean. On the 

other hand, mean-centered (MC) spectra of samples are shown in Figure 3f; and in Figure 3g 

and 3h, orthogonal scatter correction (OSC) spectra for titratable acidity (TA) and soluble 

solids content (SSC) are respectively given. For both OSC cases, only one OSC component 

was extracted to removes spectra data variance which is not correlated with the respective 

quality attributes either of titratable acidity or soluble solids content. When visually 

compared, OSC removes more spectral variance in the case of soluble solids content than in 

the case of titratable acidity. Yet, the OSC corrected spectra for titratable acidity are better 

than mean-centered original spectra with no OSC pre-processing. In agreement with previous 

work (Azzouz et al., 2003) and also found in this work that one or two OSC components are 

should be enough to represent spectra data set with respective quality attributes. 

3.4.2. Comparison of calibration and prediction performance of different data pre-processing 

methods 

Partial least squares regression (PLSR) models were built based on untreated and treated 

spectra using 56 calibration samples datasets with the wavelength range of 1000 - 2500 nm. 

Then, 35 prediction samples datasets were used to evaluate the models. The standard error for 

calibration and prediction as well as correlation coefficient and number of PLS factors, were 

compared. The obtained results of these models are discussed below.    

3.4.2.1. Calibration model for titratable acidity  

The content of titratable acidity (TA) in all samples ranged from 189.72 to 757.02 mg∙100g
-1 

fresh mass for calibration, and from 190.04 to 632.03 mg∙100g
-1 

fresh mass for prediction. 

The partial least square regression (PLSR) models were developed by applying the above 

mentioned spectra pre-processing methods to predict TA contents. The comparison among 
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spectra pre-processing methods prior to PLSR on the prediction of TA is presented in Table 

3.1. As shown in this table, the untreated spectra which is identified as none and mean 

centering (MC) provided quite similar values for R
2
 calibration, prediction and error values. 

Four numbers of latent variables of PLSR were required to build the models. In calibration 

step, both none and MC produced R
2
 of 0.9123 whilst root mean square errors of cross 

validation (RMSECV) were 43.8665 and 42.0972 mg∙100g
-1 

for none and MC respectively.  

Table 3.1. Partial least square calibration and prediction results of titratable acidity based on 

different spectra pre-processing 

Statistical 

Parameter 
none MC MN DT MSC SNV OSC 

LVs 4 4 4 7 3 3 2 

R
2
 calibration 0.912 0.912 0.921 0.910 0.925 0.925 0.925 

R
2
 cross validation 0.892 0.903 0.908 0.844 0.919 0.916 0.923 

R
2
 prediction 0.691 0.691 0.675 0.686 0.682 0.682 0.708 

RMSEC 39.494 39.483 37.526 39.998 36.508 36.503 36.642 

RMSECV 43.867 42.097 41.916 53.017 39.072 39.376 38.869 

RMSEP 53.879 53.795 55.283 54.355 54.628 54.629 52.363 

RPD 2.498 2.502 2.435 2.476 2.464 2.464 2.570 

Error difference 4.372 2.614 4.390 13.019 2.564 2.874 2.228 

MC: mean centering, MN: mean normalization, DT: de-trending, MSC: multiplicative scatter 

correction, SNV: standard normal variate, OSC: orthogonal signal correction, LVs: number of latent 

variables in PLSR, RMSE: root mean square error; C: calibration, CV: cross validation, P: prediction 

respectively, RPD: residual predictive deviation, error difference: RMSEC-RMSECV. 

 

When these models were tested using 35 samples data set for prediction, they produced R
2
 

value of 0.6911 and root mean square error of prediction (RMSEP) is 53.84 mg∙100g
-1

. On 

the other hand, mean normalization (MN) pre-processing provided slightly better result in 

calibration and cross validation with the increasing R
2
 calibration to 0.9208 and cross 

validation to 0.9077 with the same number of LVs (four LVs) to develop PLSR model 

compared to none and MC. However, this pre-processing method produced poor external 

prediction result (R
2
 = 0.6747 and RMSEP = 55.2834 mg∙100g

-1
). This indicates that 
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prediction model based on MN pre-processing method is over-fitted; generating good R
2
 and 

RMSE in calibration but performing poorly in the external prediction data set.  

Furthermore, as presented also in Table 1, the use of MSC and SNV as a pre-processing 

method produced a better result in calibration. R
2
 calibration was increased to 0.9251 and 

RMSECV was decreased to 39.3763 mg∙100g
-1 

with fewer number of latent variables (three 

LVs) required to establish PLSR model. MSC and SNV provided similar results both in 

calibration and prediction. Then again, when both MSC and SNV were tested using 35 

external samples, these models produced slightly lower R
2
 value (0.6824) and higher RMSEP 

(54.6292 mg∙100g
-1

) compared to none and MC. De-trending (DT) spectra pre-processing  

appeared to be unworthy method to apply in case of solids sample like mango. It produced 

highest RMSECV (53.017 mg∙100g
-1

) and seven latent variable were required to establish 

PLSR model. Based on literature, DT pre-processing was suitable to be applied on bulk 

samples like flour or soil samples (Azzouz et al., 2003).  

The best calibration and prediction results was obtained when OSC was applied as a pre-

processing method from which highest R
2
 (0.925 and 0.708 for calibration and external 

prediction respectively) and lowest error (RMSECV = 38.869 and RMSEP = 52.363 

mg∙100g
-1

) were produced. The number of latent variable required was also decreased to two 

for PLSR with only one principal component (PC) or factor of OSC. The number of OSC 

factors is the number of times that OSC is applied to the NIR spectra. One OSC factor is 

usually enough, since a second factor may lead to a great over-fitting. Figure 3.3 presented a 

scatter plot resulted from the OSC-PLSR model for TA calibration and prediction. 
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Figure 3.3. Scatter plots of predicted and measured titratable acidity based on 

orthogonal signal correction – partial least square regression model. 

 

3.4.2.2. Calibration model for soluble solids content 

Like in TA predictions, all pre-processing methods were also applied before PLSR to predict 

soluble solids content (SSC) of intact mango fruit. The models were developed using 56 

samples and tested using 35 external mango samples. These samples contain between 7 and 

18 
o
Brix of SSC for calibration and between 6 and 17 

o
Brix for prediction. Calibration results 

for SSC based on different spectra pre-processing are presented in Table 3.2.  

Table 3.2. Partial least square calibration and prediction results of soluble solids content 

based on different spectra pre-processing 

Statistical Parameter none MC MN DT MSC SNV OSC 

LVs 5 5 4 9 3 3 2 

R
2
 calibration 0.8537 0.8541 0.8369 0.8231 0.8349 0.8349 0.8433 

R
2
 cross validation 0.8235 0.8258 0.8079 0.6357 0.8280 0.8124 0.8285 

R
2
 prediction 0.5407 0.5417 0.5402 0.5261 0.5754 0.5753 0.6050 

RMSEC 0.4858 0.4847 0.5129 0.5343 0.5116 0.5160 0.5029 

RMSECV 0.5401 0.5411 0.5760 0.7780 0.5505 0.5517 0.5330 

RMSEP 0.7681 0.7653 0.7677 0.7803 0.7368 0.7382 0.7164 

RPD 1.6691 1.6752 1.6699 1.6430 1.7400 1.7367 1.7895 

Error difference 0.0543 0.0564 0.0631 0.2437 0.0389 0.0357 0.0301 
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MC: mean centering, MN: mean normalization, DT: de-trending, MSC: multiplicative scatter 

correction, SNV: standard normal variate, OSC: orthogonal signal correction, LVs: number of latent 

variables in PLSR, RMSE: root mean square error; C: calibration, CV: cross validation, P: prediction 

respectively, RPD: residual predictive deviation, error difference: RMSEC-RMSECV. 

 

As shown in Table 3.2, five latent variables were required to capture all variance of the data 

and develop the model when the NIR spectra were directly modeled without spectra pre-

processing. Even so, the calibration and prediction results were quite sufficient with R
2
 of 

0.8235 and 0.5407 for cross validation and prediction respectively. Table 2 also shows that 

for SSC calibration and prediction, the application of MC, MN and DT did not significantly 

influence the models performance. The coefficient determination and error values were still 

quite similar to that for none (original spectra).  As also shown in TA calibration, the use of 

DT as pre-processing method did not suitable in this case and, even so, the R
2
 coefficient of 

cross validation was decreased to 0.6357 and the errors of prediction (RMSEP) was increased 

to 0.7803 
o
Brix.  

The use of MSC and SNV spectra data pre-processing appeared to improve the calibration 

models. Beside the reduction number of latent variables required (three LVs), the use of these 

both pre-processing methods has been increased the R
2
 prediction value to 0.5753 and 

decreased the errors in prediction (RMSEP) to 0.73 
o
Brix. The results presented in Table 2 

shows the significant influence of OSC prior to PLSR model from which the calibration and 

prediction performance has been improved. Figure 3.4 presents the performance of PLSR 

model after OSC pre-processing of the spectra data, developed for the calibration and 

prediction of SSC. 
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Figure 3.4. Scatter plots of predicted and measured soluble solids content based on 

orthogonal signal correction – partial least square regression model. 

 

The use of orthogonal signal correction allowed a decrease of the number of latent variables. 

Concerning with the R
2
 and errors of prediction, better results were obtained using OSC. On 

top of that, the model uses only two latent variables of PLS with one principal component of 

OSC to obtain R
2
 prediction of 0.605 and prediction errors (RMSEP) of 0.71 

o
Brix. This may 

argue that OSC is more superiors than other spectra pre-preprocessing methods both for TA 

and SSC predictions.   

 

3.5. Conclusion 

The main objective of this study was to compare spectra pre-processing methods prior to 

partial least square regression in the ability performance of the calibration and prediction 

models developed to relate the near infrared spectra of mango fruit samples and their quality 

attributes in form of titratable acidity (TA) and soluble solids content (SSC). The presented 
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results reinforce that the use of orthogonal signal correction (OSC) pre-processing method 

particularly allow a significant improvement both for TA and SSC prediction compared to 

other methods. Compared to untreated original spectra, the use of OSC found to be the best 

spectra pretreatment prior to PLSR model, allowing the reduction of the number of latent 

variables from four to two for TA and from five to two for SSC. It also allowed the reduction 

of prediction errors from 53.879 to 42.362 for TA and from 0.768 to 0.641 for SSC 
o
Brix.  
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Chapter 4. Comparisons of different regression approaches in prediction of quality 

attributes in intact mango using near infrared spectroscopy 

4.1. Abstract 

In the present study, three different linear and non-linear regression techniques namely partial 

leas squares regression (PLSR), support vector machine regression (SVMR), and artificial 

neural network (ANN) were studied and compared in predicting titratable acidity (TA) and 

soluble solids content (SSC) of intact mangoes. TA and SSC prediction models were 

established based on near infrared diffuse reflectance spectra acquired between 1000 and 

2500 nm. The results obtained show that ANN and SVMR are more powerful than PLSR for 

TA and SSC prediction. The optimal prediction models for both quality attributes were 

obtained by ANN with the first 4 principal components (PCs) as input. For TA prediction, the 

coefficient determination of calibration (R
2

cal) and prediction (R
2
pred), the root-mean square 

error of calibration (RMSEC) and prediction (RMSEP), and the residual predictive deviation 

(RPD) were 0.97, 0.89, 25.29 mg∙100g
-1

, 28.42 mg∙100g
-1

 and 4.02, respectively. For SSC 

prediction, the accuracy indexes were 0.92, 0.86, 0.65 
o
Brix, 0.69 

o
Brix and 2.52. The overall 

results sufficiently demonstrate that NIR spectroscopy coupled with the ANN regression 

approach has the optimal results to determine TA and SSC of intact mango. 

Keywords: regression tool, NIR spectroscopic data, non-linear approach.    

 

4.2. Introduction 

Mango which is known as king of fruits is one of the most popular fruits in tropical 

horticultures and very popular worldwide due to its high nutritional value, delicious taste and 

excellent overall flavor. It has very high demand and fetches a good price in the world market 

(Schmilovitch et al., 2000). With the increasing demand and consumption of mango, quality 

control becomes more and more important nowadays. Many national and international 

authorities are setting such criteria for quality factors to ensure good chain supply of 

mangoes. In general, consumers purchase fresh fruits on the basis of quality which is an 

important subject to those engaged in horticultural industries. Their acceptance depends on 
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highly subjective factors including appearance, touch, smell and taste. Titratable acidity (TA) 

and soluble solid content (SSC) are two main quality attributes among others for mango fruit. 

The TA is represents mango total acidities whilst the SSC is normally responsible for 

mango’s sweetness.  

To determine acidity and sweetness of mango or other agricultural products, several methods 

were already widely used in which most of them are based on solvent extraction followed by 

other laboratory procedures. However, these methods often require laborious and complicated 

processing for samples. They are time consuming and destructive, therefore unsuitable for the 

quality control of fresh agricultural products which requires real time, rapid, on-line and non-

destructive measurements. Nowadays, several rapid and non-destructive methods are 

available such as ultrasound, microwaves absorption, nuclear magnetic resonance and 

infrared spectroscopy (Xie et al., 2011). Near infrared spectroscopy (NIRS) is among these 

methods has been proved to be a fast, simple, chemical free and non-destructive method and 

widely used for quality control assessment of various agricultural products (Chen et al., 2012; 

Agelet et al., 2012; Xiaoying et al., 2012; Niu et al., 2008; Guthrie et al., 2006; Liu et al., 

2006; Han et al., 2006; Tewari et al., 2008).  

Recently, our own studies and some authors attempted to determine quality parameters such 

as soluble solids content, yellowness, acidity, pH, ascorbic acid and firmness of mango using 

NIR spectroscopy technique (Jha et al., 2012; Schmilovitch et al., 2000; Jha et al., 2006; 

Valente et al., 2009; Subedi et al., 2007). However, the most commonly used multivariate 

calibrations in these previous studies are based on linear approaches such as multiple linear 

regression (MLR), principal component regression (PCR), and partial least square regression 

(PLSR). NIRS is based on overtones and combinations of fundamental vibrations from the 

hydrogenous bonds. Most absorption bands in the near infrared region are overtone or 
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combination bands of the fundamental absorption bands in the infrared region of the 

electromagnetic spectrum which are due to vibrational and rotational transitions (Nicolai et 

al., 2007; Cozzolino et al., 2011; Chen et al., 2012). In large molecules and in complex 

mixtures, such as foods and agricultural products, the multiple bands and the effect of peak-

broadening result in NIR spectra that have a broad envelope with few sharp peaks (Nicolai et 

al., 2007). Mango is the biological object that contains a great quantity of hydrogenous bonds 

(i.e C-H, O-H and N-H). As water (O-H) highly absorbs near infrared radiation, the near 

infrared spectrum of mango is dominated by water. This, in combination with the complex 

chemical constituents of a typical fruit causes the near infrared spectrum to be highly 

convoluted. Finally, the spectrum may further be complicated by wavelength dependent 

scattering effects, tissue heterogeneities, instrumental noise, ambient effects and other 

sources of variability (Nicolai et al., 2007). As a consequence, these overtones and 

combinations bands in the NIR region are typically very broad, leading to complex spectra, 

and it could be difficult to assign specific features to specific chemical constituents (Chen et 

al., 2012; Nicolai et al., 2007). Hence, the correlation between the NIR spectra and SSC and 

TA in mango fruit would incline to nonlinearity.  

In many spectroscopic applications, PLSR are often used to make regression models because 

of its simplicity to use, speed and good performances. However, as described by Perez-Marin 

et al. (2007), in many current and potential applications of NIRS measurement, the 

relationship to be modeled is not always linear. This means that the classical linear regression 

methods (i.e MLR, PCR or PLSR) alone are not always the most suitable option and may not 

provide a complete solution to the regression problem in this work. Therefore, it is necessary 

that different linear and nonlinear tools should be attempted, and that is the aim of our present 

study. The use of support vector machine regression (SVMR) approach as non-linear method 

for NIR spectroscopic regression purposes may be an option. Another possibly method to 
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overcome non-linear regression of NIR spectroscopic data is artificial neural network (ANN). 

These both two mentioned approaches have now recently applied for NIR spectroscopic data 

calibration in addition to classical linear regression method. 

Therefore, the objective of the present work is to systematically study and compare three 

different linear and non-linear regression techniques namely partial leas squares regression 

(PLSR), supporting vector machine regression (SVMR), and artificial neural networks 

(ANN) to develop calibration models for titratable acidity (TA) and soluble solids content 

(SSC) prediction of intact mangos. The models were established based on NIR spectroscopic 

data after multiplicative scatter correction (MSC) and standard normal variate (SNV) spectra 

pre-processing, and the optimal model was selected from these three models. 

 

4.3. Materials and methods 

4.3.1. Spectra acquisition 

In this experiment, NIR diffuse reflectance spectra were acquired for a total of 90 samples 

using a benchtop Nicolet-Antaris Method Development Sampling (MDS) system (Thermo 

Scientific Inc., Madison, WI, USA). Samples mango (cv. Kent) were purchased in local 

markets and measured every two days after the day purchased with around 10 samples per 

measurement. This was done by means to obtain varied distributions of SSC and TA of 

mango. Diffuse reflectance spectra were recorded on wavelength range between 1000 and 

2500 nm, by co-adding 64 scans per sample using an integrating sphere as a basic setting 

measurement. Spectra for each sample were captured 6 times at different point (two in the left 

and right edge, and four in the center) and the average of the six spectra was stored and used 

for further analysis.   
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4.3.2. Reference measurement 

The reference measurement of mango quality attributes (TA and SSC) was taken directly 

after spectra acquisitions. Each sample fruit was sliced at the same marked point of the NIR 

acquisition and the pulp was taken. TA and SSC measurement were carried out 

simultaneously by making sample juice from 20 grams of pulp sample and adding maximum 

100 ml distilled water. To ensure clarified sample juice and separate suspended solids were 

obtained, the centrifuge (20
o
C, 10 000 g) was applied for about 10 minutes (Schmilovitch et 

al., 2000). For TA measurement, automatic titration (Titroline 96, Schott) with 0.1 N NaOH 

to an end point of pH 8.1 was used to obtain TA expressed as mg∙100g
-1

 Fresh Mass (Flores 

et al., 2009). Meanwhile for SSC measurement, a single drop of filtered supernatant juice was 

squeezed and dropped onto a hand-held analog refractometer (model HRO32, Krüss Optronic 

GmbH) to record SSC as 
o
Brix (Xiaobo et al., 2007). Both these two reference quality 

attributes were measured in duplicate and averaged. The data were then used as an actual or 

measured value of TA and SSC for calibration models development. 

4.3.3. Spectra pre-processing 

In order to achieve a reliable, accurate and stable prediction model, NIR spectra of all 

samples were pre-processed using multiplicative scatter correction (MSC) and standard 

normal variate (SNV). Figure 4.1a presents the raw original spectra of all samples which 

contained not only specific chemical constituent information, but also background 

information and noises. From our previous studies, MSC and SNV spectra pre-processing 

were found to be effective to eliminate noises and scatter effects prior to TA and SSC models 

development. Therefore, MSC and SNV were attempted in this work. First of all, MSC 

spectra pre-processing separates scatter and multiplicative, and additive and chemical effects 

on measurement by linear fitting each individual spectrum to a reference spectrum that is 
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usually a mean or average spectrum (Chen et al., 2002; Azzouz et al., 2003). The NIR spectra 

of all samples after MSC preprocessing are presented in Figure 4.1b. On the other hand, SNV 

is used to remove slope variation, and to correct scatter light effects. Each spectrum was first 

centered individually, and then scaled by the standard deviation calculated from the 

individual spectrum (Chen et al., 2012). The NIR spectra corrected by SNV pre-processing 

are shown in Figure 4.1c. As a result after MSC and SNV pre-processing, overall 

improvements of baseline shift and signal overlap are clearly apparent. Multiplicative 

interferences of scatter and additive effects from spectral data are also drastically reduced 

from raw NIR spectra.  

4.3.4. Software 

Integrated software, Thermo Integration
®

 and Thermo Operation
®
 (Thermo Inc.) were used to 

develop workflow and run specified tasks of the NIR instrument for spectra acquisition. The 

Unscrambler X version 10.2 network clients (CAMO Software AS, Oslo) was used for 

spectra MSC and SNV pre-processing, and building calibration models with PLSR and 

SVMR algorithms. Meanwhile, NeuralTools 6.0 (Palisade Corp., NY) was used for 

developing ANN calibration models using generalized regression neural networks (GRNN) 

algorithm.  
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Figure 4.1. Near infrared raw spectra (a), spectra after multiplicative scatter 

correction (b), spectra after standard normal variate (c). 
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4.4. Results and discussion 

4.4.1. Calibration models and prediction 

Calibration models for tiratable acidity (TA) and soluble solids content (SSC) prediction were 

established using multiplicative scatter correction (MSC) and standard normal variate (SNV) 

spectral data respectively. For each quality attribute, three different regression approaches 

were applied: partial least square regression (PLSR), support vector machine regression 

(SVMR) and artificial neural network (ANN) algorithm. In this present study, 90 samples 

were divided into two subsets; one called calibration dataset containing 55 samples in which 

these samples were used for establishing calibration models. Other 35 remaining samples 

called prediction dataset were used for external prediction to evaluate the performance of the 

models. In order to achieve a robust calibration model, the selection samples for calibration 

and prediction datasets were treated carefully. We ensure that the range of actual reference 

values (y-value) for TA and SSC in calibration dataset covers their range in the prediction set 

as shown in table 4.1. Also, the distributions of y-values are close both in the calibration and 

prediction datasets. 

Table 4.1. Descriptive statistics of reference titratable acidity and soluble solids content 

QA Datasets n mean ranges SD 

TA (mg 100g
-1

) Calibration 55 457.71 189.72 - 717.59 129.70 

  Prediction 35 453.08 190.04 - 632.03 114.35 

SSC (
o
Brix) Calibration 55 13.56 9 - 20 2.31 

  Prediction 35 13.97 12 - 18 1.74 

QA: quality attributes, n: number of samples, SD: standard deviation, TA: titratable acidity, SSC: 

soluble solids content.   

 

Calibration models were established between reference measurement data as y-variable and 

NIR spectra data as x-variable in the calibration dataset. For TA prediction, calibration 

models were built based on MSC spectra while for SSC predictions, all models were built 

based on SNV spectral data. The models were then tested by independent samples in the 
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prediction dataset. The performance of the final model was quantified based on calibration 

and prediction results according to the coefficient of determination of calibration (R
2

cal) and 

prediction (R
2
pred), the root mean square error of calibration (RMSEC) and prediction 

(RMSEP), the error difference between RMSEC and RMSEP, and the residual predictive 

deviation (RPD) indexes obtained by dividing standard deviation of reference data with the 

RMSEP value. Finally, the number of principal components or latent variables required to 

build the model was also took into account for optimal model criteria selections.  

The optimal model here refers to its prediction accuracy and robustness, and commonly, an 

accurate and robust model should have a higher R
2
 coefficient both in calibration and 

prediction, lower RMSEC and RMSEP, small difference between RMSEC and RMSEP, 

higher RPD index, and fewer numbers of latent variables. Some literatures mentioned NIR 

calibration model robustness criteria as follows: An RPD between 1.5 – 1.9 means that coarse 

quantitative prediction are possible, but still need some improvement in calibration. A value 

between 2 and 2.5 indicates that prediction model is sufficient. Meanwhile, an RPD value 

between 2.5 and 3 or above corresponds to good and excellent prediction accuracy 

respectively (Williams, 2001; Fearn 2002; Nicolai et al., 2007). 

4.4.2. Calibration and prediction results of PLSR, SVMR and ANN regression approaches  

First of all, the PLSR method was attempted to predict TA and SSC. PLSR is one of the most 

widely used regression methods for NIR calibration. In this present study, during calibration, 

PLSR was optimized by a multifold cross validation with 10 segments and determined 

according to the lowest minimum root mean square error cross validation on the respective 

latent of variable. Based on the best calibration result, the optimum PLSR model was 

achieved when five latent variables are included both for TA and SSC prediction as presented 

in Table 4.2.  
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For TA calibration, the optimal PLSR model produced the coefficient of determination (R
2
) 

and the root mean square error of calibration (RMSEC) is 0.95 and 28.51 mg 100g
-1

 

respectively. When the model tested by using samples on the prediction dataset, it yields the 

R
2 

prediction and the root mean square error of prediction (RMSEP) is 0.83 and 33.08 mg 

100g
-1

 respectively. Thus, the error difference between calibration and prediction is 4.57, and 

the residual predictive deviation is 3.46. This means, PLSR was accurate and robust for TA 

prediction. Scatter drawn from the PLSR model for predicted TA versus reference measured 

TA is presented in Figure 4.2a.  

Table 4.2. Calibration and prediction of various regression methods for titratable acidity and 

soluble solids content 

Method QA PCs / LVs 
Calibration Prediction Error 

RPD 
R

2
 RMSEC R

2
 RMSEP difference 

PLSR 

TA 

5 0.95 28.51 0.83 33.08 4.57 3.46 

SVMR 4 0.96 26.94 0.87 30.13 3.19 3.80 

ANN 4 0.97 25.29 0.89 28.42 3.13 4.02 

PLSR 

SSC 

5 0.84 0.81 0.76 0.92 0.11 1.89 

SVMR 4 0.90 0.70 0.83 0.75 0.05 2.32 

ANN 4 0.92 0.65 0.86 0.69 0.04 2.52 

QA: quality attributes, TA: titratable acidity, SSC: soluble solids content, PCs: number of principal 

components, LVs: number of latent variables, R
2
: coefficient of determination, RMSEC: root mean 

square error calibration, RMSEP: root mean square error prediction, error difference: RMSEP – 

RMSEC, RPD: residual predictive deviation, PLSR: partial least square regression, SD: standard 

deviation, SVMR: support vector machine regression, ANN: artificial neural networks.   

 

For SSC calibration and prediction using PLSR approach, the optimal PLSR produced R2 

calibration and prediction of 0.84 and 0.76 respectively; while the RMSEC and RMSEP for 

SSC prediction is 0.81 
o
Brix and 0.92 

o
Brix. The RPD index for SSC prediction by PLSR is 

1.89. This may imply in this case that the model is quite sufficient for SSC prediction, but 

need some improvements. The scatter plot of predicted and measured SSC based on PLSR 

model is presented in Figure 4.2b.  
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Figure 4.2. Scatter plot of predicted versus measured titratable acidity (a) and soluble 

solids content (b) based on partial least square regression model. 

 

A nonlinear regression approach for TA and SSC calibration was attempted by support vector 

machine regression (SVMR) method. It can map the complex and nonlinear data into a higher 

dimensional feature space, where the nonlinear problem could be solved. Mapping data into a 

higher dimensional space is often implemented through a kernel function (Chen et al., 2007). 
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In general, SVMR has three classical kernel functions: polynomial, radial basic function 

(RBF), and sigmoid. Kernel functions have a great influence on the performance of SVMR 

model. Among three kernel functions, RBF is simpler and faster to compute in contrast to the 

others (Labbe et al., 2008). Thus, RBF as the kernel function was applied in this experiment. 

To obtain a good performance, two parameters in SVMR model had to be optimized by 

cross-validation. These parameters include: (1) Regularization parameter (γ), it determines 

the balance between minimizing the training error and minimizing model complexity; and (2) 

constraint parameter (C), it is used to decide a trade-off between the training error and the 

margin and can affect the number of support vectors used and loss function (ε) to construct 

the regression function (Chen et al., 2012; Eskidere et al., 2012). Based on grid search 

optimization, the parameter values for SVMR approach are as follows: C=100, γ=0.01, ε=0.1 

for TA, and C=10, γ=0.1, ε=0.1 for SSC.  

Prior to calibration models development using SVMR, the independent variables or x-

variable (wavelength) based on MSC and SNV spectral data were compressed using principal 

component analysis (PCA). The PCA is extensively used for data synthesis, since the 

principal components (PCs) successively represent the sources of maximum variance in the 

NIR spectroscopic data and may replace wavelength as input (Perez-Marin et al., 2007). To 

determine the optimum number of principal components to be used as inputs for SVMR, we 

use the number of PCs that can explain the all variance nearly to 99% or 100%. In this study, 

it is found that four principal components (4 PCs) of PCA are sufficient to represent 

maximum variance (99%) of both MSC and SNV spectroscopic data as shown in Figure 4.3. 

The score results of these four PCs were used as inputs for SVMR algorithm.  
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Figure 4.3. Explained variance of principal component analysis based on multiplicative 

scatter correction and standard normal variate spectroscopic data. 

 

As can be seen in Table 4.2, SVMR provided superior results compared to PLSR both for TA 

and SSC predictions. For TA calibration and prediction, the R
2
 coefficient indexes are 0.96 

and 0.87 respectively whilst error coefficient are 26.94 mg 100g
-1

 (RMSEC) and 30.13 mg 

100g
-1

  (RMSEP). The use of SVMR improves the R
2
 coefficient the error both in calibration 

and prediction phases. As a consequence, the RPD index by SVMR for TA is also better 

(3.80) than by PLSR (3.46). Nevertheless, since the RPD is above 3, we may argue that TA 

can be predicted well either by SVMR or PLSR. Furthermore, for SSC calibration and 

prediction, SVMR also provided better results than PLSR as shown in Table 4.2. The R
2
 

coefficients are increase to 0.90 for calibration and 0.83 for prediction whilst error 

coefficients are decrease to 0.70 and 0.75 for RMSEC and RMSEP respectively. Scatter plot 

for TA and SSC based on SVMR calibration and prediction are presented in Figure 4.4a and 

Figure 4.4b respectively. 
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Figure 4.4. Scatter plot of predicted versus measured titratable acidity (a) and soluble 

solids content (b) based on supporting vector machine regression model. 

 

In addition to SVMR approach as nonlinear regression method, calibration models for TA 

and SSC prediction were also established using artificial neural network (ANN) algorithm 

approach. In this present study, a generalized regression neural network (GRNN) was used as 

an ANN method to establish the models. The GRNN does not require an iterative training 
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procedure as in other neural network algorithm such back propagation neural network 

(BPNN). It trains itself in a significantly shorter time as compared with the back propagation 

based training. The GRNN topology consists of four layers; the input layer, hidden (pattern) 

layer, the summation layer, and the output layer. The input layer is fully connected to the 

hidden layer. Kernel function is computed in the hidden layer and outputs of the hidden layer 

are passed on to the summation layer in order to calculate the sum of the weighted outputs of 

the hidden layer (Kim et al., 2004). As a result, the neurons in the output layer take results 

from summation units and then compute the output. The main advantage of GRNN is that it 

is easily trained and requires only one free parameter (Celikoglu and Cigizoglu, 2007). The 

input data subjected into this GRNN approach was also based on the PCA results of MSC and 

SNV as shown in Figure 4.3. Score results of first 4 PCs were used as inputs for the ANN 

structure both in TA and SSC calibration. 

If all NIR spectra data, recorded at several hundred wavelengths are used as inputs for 

training the neural network, the number of weights to be estimated will be too high. Network 

training will take a long time (hours, depending on the complexity of the network 

architecture). But the main disadvantage of using all wavelengths as inputs is one of 

dimensionality, since there will be too many parameters in the model and too few samples in 

the training (calibration) set to enable fitting (Perez-Marin et al., 2007). This could pose 

problems, particularly where there is excess noise in the calibration set. Hence, the use of 

PCA as data compression tools is also enables to eliminate irrelevant information such as 

noise or redundancies present in NIR spectra data matrix. This also in agreement with other 

previous works (Bertran et al., 1999; Udelhoven and Schütt, 2000; Moros et al., 2007; Chen 

et al., 2012) that most applications of ANN to the processing of spectroscopic data for 

quantitative analysis use PCs as input variables instead of original NIR spectral data.  
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Calibration and prediction results for TA and SSC using ANN approach are presented in table 

4.2. Figure 4.5 is the scatter plot between reference measurements and NIR predicted results 

for TA and SSC. For TA prediction, the R
2
 index is increase to 0.97 in calibration and 0.89 in 

prediction while RMSEC and RMSEP are decreased to 25.29 and 28.42 respectively. 

Meanwhile, for SSC prediction, ANN achieved highest R
2
: 0.92 for calibration and 0.86 for 

prediction and lowest error indexes: 0.65 for RMSEC and 0.69 for RMSEP.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Scatter plot of predicted versus measured titratable acidity (a) and soluble 

solids content (b) based on artificial neural network model. 
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In general, judging from calibration and prediction performances, ANN and SVMR methods 

provided comparable results, and both of them are robust. They used the same number of PCs 

as inputs obtained after PCA. In term of error and RPD as shown in Figure 4.6 and Figure 

4.7, both of them are also achieved excellent results for TA prediction and good enough 

results for SSC prediction. ANN and SVMR are superior over PLSR for TA and SSC 

prediction, and may imply that nonlinear regression approach is better that linear regression 

one. The optimal model for quality attributes prediction was achieved by using ANN 

approach as regression method because ANN provided smallest error index (RMSEC and 

RMSEP) and difference between each other: 3.13 for TA and 0.04 for SSC. ANN also 

provided the highest RPD index for both quality attributes: 4.02 for TA and 2.52 for SSC. 

  

 

 

 

 

 

 

 

 

 

Figure 4.6. Summary of the results for titratable acidity (a) and soluble solids content 

(b) calibration and prediction in term of error using different regression approaches.   
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Figure 4.7. Summary of the results for titratable acidity and soluble solids content 

prediction in term of residual predictive deviation index using different regression 

approaches.   

 

As mentioned previously, it is obvious that mango is a biological object containing a great 

quantity of hydrogenous bonds. NIR spectroscopy is based on overtone and combination of 

fundamental vibration from these bonds. The Overtone and combination bands in the near 

infrared region typically very broad, and leading to a complex spectra from which difficult to 

assign specific bands to specific chemical components. Hence, the correlation between the 

spectra and mango quality attributes could be nonlinear. When handling NIR spectroscopic 

data for calibration, PLSR is the most widely used regression method because it is 

traditionally assumed that Lambert-Beer’s law can be applied. This law states that absorption 

values are linearly related to the concentration concerned in each sample. PLSR also proved 

better than other linear regression approach. However, the use of linear regression including 

PLSR may hinder chemical interpretation (Perez-Marin et al., 2007), and the relationship to 

be modeled is not always linear.  



[84] 
 

The source of nonlinearity may vary widely, and is difficult to identify. Some source of this 

nonlinearity may be corrected by spectra pre-processing like MSC, SNV or others prior to 

using linear calibration technique. However, by contrast, some others source of nonlinearity 

require the use of special nonlinear calibration approach. This means that classical regression 

methods are not always the most suitable option. Similar finding also reported by others 

(Pierna et al., 2011; Chen et al., 2012; Eskidere et al., 2012; Xiaoying et al., 2012) that 

nonlinear regression approach achieved optimal results compare to linear regression. It is 

clearly found from our present study that nonlinear regression approach, either SVMR or 

ANN achieved a better accuracy and more robust than linear regression method for quality 

attributes (TA and SSC) prediction of intact mango.  

 

4.5. Conclusion 

In this present work, we systematically studied and compared the performance of three 

different regression approaches namely PLSR, SVMR and ANN for near infrared 

spectroscopic data calibration. These regression approaches were applied to predict TA and 

SSC of intact mango non-destructively by NIR spectra data corrected after MSC and SNV 

pre-processing. The overall calibration and prediction results sufficiently demonstrate that 

NIR spectroscopy with the help of these various regression approaches can be successfully 

used in determination of TA and SSC in mango. The evaluation performance results of 

PLSR, SVMR and ANN with respect to TA and SSC prediction accuracy and robustness 

could be arranged in the following order: ANN (4 PCs of PCA as input) > SVMR (4 PCs of 

PCA as input) > PLSR (5 LVs). The optimal models were obtained using ANN (GRNN) with 

the first 4 PCs extracted by PCA in spectral range of 1000-2500 nm: the result for TA with 

accuracy and robustness index of R
2

cal., R
2

pred., RMSEC, RMSEP and RPD of 0.97, 0.89, 

25.29 mg 100g
-1

, 28.42 mg 100g
-1

 and 4.02, respectively had excellent predictive accuracy 
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and robustness; the result for SSC with the same respective indexes of 0.92, 0.86, 0.65 
o
Brix, 

0.69 
o
Brix and 2.52 gave a good precision and its robustness was acceptable. The obtained 

results in this present study show the high potential of NIRS with nonlinear regression 

approach for determination of TA and SSC of intact mango rapidly and non-destructively. 

Further study with more amounts of samples, varieties, and wide range of maturity is needed 

to enhance the expandability of TA prediction model and improve the robustness of SSC 

model.    
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Chapter 5. Conclusion and summary 

5.1. Conclusion 

The present studies obviously show that near infrared reflectance spectroscopy (NIRS) 

combined with chemometrics has the ability to determine quality attributes of intact mango 

satisfactorily. The first study attempted to apply principal component regression (PCR) and 

partial least square regression (PLSR) to predict soluble solids content (SSC), titratable 

acidity (TA) and ascorbic acid (AA). The result shows that PLSR is preferable than PCR in 

all prediction cases providing the R
2
 coefficient range from 0.67 to 0.96, and RPD index from 

1.56 to 4.87 with maximum number of latent variables is 6.    

The second study mainly focuses to the application of different spectra pre-processing prior 

to PLSR calibration. Based on prediction results with different spectra pre-processing, 

orthogonal signal correction (OSC) is the most optimum pre-processing method for TA and 

SSC prediction. The RPD index for TA and SSC are 2.57 and 1.79 respectively with only 2 

LVs required to develop the model. Multiplicative scatter correction (MSC) and standard 

normal variate (SNV) are also provided robust results for TA and SSC prediction. They 

required maximum 3 LVs with the RPD index for TA and SSC are 2.46 and 1.74 

respectively.       

Non-linear regression method for NIR calibration was attempted in the third study. The 

machine learning methods: supporting vector machine regression (SVMR) and artificial 

neural networks (ANN) were applied to the first 4 principal components of PCA result 

derived from MSC and SNV spectra. The results show that non-linear regression method 

(SVMR and ANN) was superior to linear regression (PLSR) for both TA and SSC prediction. 

In general, it may conclude that NIRS combined with proper chemometrics approaches may 

be used as an alternative for quality attributes measurement of intact mango. 
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5.2. Summary 

Mango is one of the most important and popular tropical fruits for people around the world 

due to its taste, appearance and excellent overall nutritional source from which lead to a 

heavy demand in world fruit market. With the increasing demand and consumption of mango, 

quality control becomes more and more important nowadays. Many relevant authorities are 

setting such criteria for quality factors to ensure good chain supply of mangoes. Therefore, to 

ensure the chain supply of good quality fruit, it is important to sort and grade mango based on 

its quality. To determine quality parameters in mango, several methods were already widely 

used in which most of them are based on solvent extraction followed by other laboratory 

procedures. However, these methods often require laborious and complicated processing for 

samples. Also, they are time consuming and destructive. Hence, a rapid and non-destructive 

method is required as an alternative method in determining quality parameters of mangos. 

Near infrared spectroscopy (NIRS) has become one of the most promising and used non-

destructive methods of analysis in many field areas including in agriculture due to its 

advantage; simple sample preparation, rapid, and environmental friendly since no chemical 

materials are used. More importantly, it has the potential ability to determine multiple quality 

parameters simultaneously. Since NIRS itself cannot reveal chemical information in the 

spectra, chemometrics is required to extract the information about quality attributes buried on 

NIR spectra through a process called multivariate calibration from which a mathematical 

relationship between NIR spectra and the measured quality parameter will be revealed to 

determine desired quality attributes. Thus, the main objective of this study is to investigate 

the use of NIRS as non-destructive method combined by chemometrics for quality attributes 

in term of soluble solids content (SSC), titratable acidity (TA) and ascorbic acid (AA) 

predictions of intact mango.  
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A total of 99 mangos were used as samples in the study from which NIR spectra were 

acquired at wavelength range of 1000-2500 nm. A reference measurement for desired quality 

attributes were obtained by standard laboratory procedures: solvent extraction, refractive 

index by refractomter (for SSC), and titration method (for TA and AA). Chemometrics, 

which are include principal component analysis (PCA), outlier detections, spectra pre-

processing (mean centering (MC), mean normalization (MN), de-trending (DT), 

multiplicative scatter correction (MSC), standard normal variate (SNV) and orthogonal signal 

correction (OSC)), linear calibration models by principal component regression (PCR) and 

partial least square regression (PLSR), and non-linear regression by supporting vector 

machine regression (SVMR) and artificial neural networks (ANN) were applied to reveal 

chemical information buried in the NIR spectra by creating calibration models followed by 

validation or prediction for models evaluation.    

The results show that for linear regression method, PLSR seems to be more accurate and 

robust than PCR. From the spectra pre-processing point of view, the use of MSC, SNV and 

OSC prior to PLSR models development, significantly has an impact to the model accuracy 

and robustness. This can be seen from the reduction of latent variables used in PLSR (3 LVs 

after MSC and SNV, and 2 LVs after OSC), and increasing coefficient of determination (R
2
) 

and residual predictive deviation (RPD) index in calibration and validation. Based on 

accuracy (R
2
, RMSEC and RMSEP) and robustness index (RPD), the non-linear regression 

method (SVMR or ANN) was found to be better than linear regression (PLSR). The most 

optimal models for mango quality attributes prediction were achieved when ANN is used in 

combination with PCA as input. Thus, it may conclude that NIRS coupled with proper 

spectra pre-processing and regression method may be used as non-destructive technique for 

quality attributes measurement of intact mango and replace laboratory measurement method. 
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