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1. Introduction 

1.1 Pancreas: morphology and function 

The pancreas is a lobulated gland that is located on the posterior abdominal wall behind 

the stomach. It is elongated in shape with a head, neck, body, and tail. The head lies 

towards duodenum, the body runs behind stomach, and its tail contacts the spleen. The 

pancreas is a gland with dual functions: an endocrine function that most importantly 

involves the maintenance of glucose homeostasis with the help of peptide hormones 

released into the blood stream and an exocrine function mediated through the release of 

digestive enzymes into the small intestine (duodenum), where they aid in the digestion 

process. Accordingly, the pancreas is comprised of an endocrine compartment and an 

exocrine compartment. Endocrine portion of the pancreas is arranged into globular 

structures named as the islets of Langerhans. Each islet is further composed of five 

different cell types: alpha, beta, delta, PP (pancreatic polypeptide), and epsilon that 

secrete peptide hormones glucagon, insulin, somatostatin, pancreatic polypeptide, and 

ghrelin, respectively (Figure 1.1). Exocrine portion of the pancreas is comprised of acinar 

cells, that secrete digestive enzymes, and duct cells that form ducts to collect these 

secretions and empty them into the duodenum along with their own secretion comprised 

of bicorbonate and mucins (Cleaver and Melton, 2005; Pan and Wright, 2011). 

1.2 Endocrine pancreas 

Islet of Langerhan is the functional unit of the endocrine pancreas. As mentioned above, 

each islet is composed of five hormone producing cell types. In mouse islets, beta-cells 

are mainly arranged at the centre while other cell types are arranged at the periphery. 

Human islets, on the contrary, possess a mixed architecture. Composition of individual 

cell types in each islet is also more homogeneous in mouse islets compared to human 

islets (Brissova et al., 2005; Jeon et al., 2009). Below is a brief description of each 

endocrine cell type and the relative hormone produced. 

1.2.1 Beta-cells 

Beta-cell is the most abundant cell type in the islet, constituting 61 to 88 % of the mouse 

islets (Brissova et al., 2005). Beta-cells produce the peptide hormone insulin. Insulin is  



Introduction                                                                                                    2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The pancreas consists of three main cell types: acinar, duct, and 

endocrine. Endocrine cells are clustered in the form of islets. Each islet is composed of 

five different hormone producing cell types. Modified from: 

http://www.olivelab.org/the-pancreas-overview.html 

http://www.betacell.org/content/articleview/article_id/13?aid=13

Insulin 
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Somatostatin 

Pancreatic Polypeptide 

Ghrelin 

http://www.olivelab.org/the-pancreas-overview.html
http://www.betacell.org/content/articleview/article_id/13?aid=13
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synthesized as a prohormone that consists of two chains A and B, and a middle portion 

called as the connecting peptide (C-peptide). This proinsulin is then cleaved by 

prohormone convertases (PC1/3 and 2) and carboxypeptidase H to generate the mature 

hormone. During this cleavage process C-peptide is released as a by-product at an 

equimolar ratio to insulin (Goodge and Hutton, 2000; Vasic and Walcher, 2012). Insulin 

is secreted from the beta-cells in response to glucose stimulation and exerts many 

anabolic effects in the body. It promotes glucose uptake and oxidation, stimulates 

glycogen synthesis, and inhibits gluconeogenesis. Additionally, it enhances the protein as 

well as fatty acid synthesis. Insulin action is mediated through insulin receptor (Najjar, 

2003). Insulin knockout (KO) mice show growth retardation. They develop hyper-

glycemia and die within first two days after birth (Duvillié et al., 1997). Similarly, insulin 

receptor knockout mice also develop hyperglycemia and die early after birth (Kitamura et 

al., 2003). In humans, insulin gene mutations can cause maturity-onset diabetes of the 

young type 10 (MODY10) (Molven et al., 2008). 

1.2.2 Alpha-cells 

Alpha-cells constitute the second largest population in the islet, making 9 to 31 % of the 

mouse islets (Brissova et al., 2005). Alpha-cells produce the hormone glucagon. 

Glucagon is also synthesized as a prohormone that is processed by prohormone 

convertase 2 (PC2) in alpha-cells to generate the mature glucagon. Proglucagon is also 

expressed in the intestinal L cells where it is differently processed by prohormone 

convertase 1/3 (PC1/3) to generate two other peptide hormones, glucagon-like peptide 1 

and 2 (GLP-1 and 2), instead of glucagon (Wideman and Kieffer, 2009). Glucagon is 

released from alpha-cells in response to hypoglycemia and mainly acts in opposite to 

insulin. It promotes glycogenolysis and gluconeogenesis, while it inhibits the glycogen 

synthesis and glycolysis (Bansal and Wang, 2008). Glucagon action is mediated through 

the glucagon receptor. Glucagon receptor knockout mice exhibit hypoglycemia and 

hyperplasia of alpha-cells (Gelling et al., 2003). A similar phenotype is also observed in 

PC2 knockout mice that have defective proglucagon processing (Furuta et al., 1997). 

1.2.3 Delta-Cells 

Nearly 5 to 10 % of the islet is composed of delta-cells (Hauge-Evans et al., 2009). Delta-

cells produce the hormone somatostatin. Biological actions of somatostatin are mainly of 
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inhibitory nature. Both insulin and glucagon can induce the release of somatostatin which, 

in turn, inhibits the release of insulin and glucagon. Somatostatin can also inhibit the 

exocrine secretions, and the release of ghrelin and pancreatic polypeptide (Kojima et al., 

2007; Chanclón et al., 2012). In somatostatin knockout mice the development of 

endocrine and exocrine pancreas is completely normal. These mice, however, show 

increased insulin and glucagon secretion after nutrient stimulation (Hauge-Evans et al., 

2009). 

1.2.4 PP-cells 

PP-cells constitute about 6 % of the islet cells (Adeghate and Ponery, 2003). These cells 

produce the hormone pancreatic polypeptide. Pancreatic polypeptide release is stimulated 

by food ingestion. It suppresses food intake and inhibits gastric emptying as well as the 

biliary and pancreatic exocrine secretion. Pancreatic polypeptide may also have a role in 

increasing the hepatic insulin sensitivity. As expected from its actions, pancreatic 

polypeptide overexpressing mice are thin and show decreased intake of food and gastric 

emptying (Banerjee and Onyuksel, 2012; Kojima et al., 2007). 

1.2.5 Epsilon-cells 

Epsilon-cells constitute a very minute population of endocrine cells in the adult islet. 

These cells produce the hormone ghrelin (Prado et al., 2004). However, ghrelin is also 

produced by some endocrine cells (P/D1 cells in humans and X/A like cells in rodents) in 

the stomach (Inui et al., 2004). Actually, pancreas is the major source of ghrelin during 

fetal life while stomach produces nearly all of the circulating ghrelin during adult life. 

Accordingly, the number of epsilon-cells is higher in the developing fetal pancreas and 

starts to decrease in the early postnatal life. In adult pancreas epsilon-cells are almost 

undetectable (Wierup et al., 2004; Chanoine and Wong, 2004). 

Ghrelin is an orexigenic peptide that is secreted in response to fasting (Inui et al., 

2004). Apart from its role in food intake regulation, ghrelin is involved in stimulating the 

growth hormone release from pituitary (Kojima et al., 1999). It also acts to promote cell 

proliferation and survival, and to reduce apoptosis (Granata et al., 2006, 2007). In the 

endocrine pancreas, ghrelin promotes the glucagon secretion and inhibits the secretion of 

insulin and somatostatin (Chanclón et al., 2012). 
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Role of ghrelin in the developing pancreas is so far not clear. Epsilon-cell number is 

tremendously increased when some important pancreatic endocrine transcription factors 

are knocked out. These include Nkx2.2, Pax4, and Pax6 (Prado et al., 2004; Kordowich et 

al., 2011). However, in ghrelin knockout mice the pancreatic development is completely 

intact. Recently, Arnes et al. (2012) have shown by lineage tracing that ghrelin expressing 

cells are not terminally differentiated cells. Instead, they represent an intermediate 

progenitor population that would later give rise to a subset of alpha and PP-cells. 

1.3 Diabetes mellitus 

Diabetes mellitus is a metabolic disease identified by hyperglycemia i.e., the high blood 

glucose level. It is caused by insufficient insulin production from the beta-cells and/or due 

to insulin resistance i.e., the inability of the peripheral tissues to correctly respond to 

insulin. In either case, the result is an elevated blood glucose level. Acute symptoms 

caused by hyperglycemia include, increase in thirst and hunger, increase in urination, and 

loss of weight. It can further lead to ketoacidosis that can be fatal. Chronically, 

hyperglycemia can impair the function of different organs. There are two main types of 

diabetes, type 1 and type 2. Type 1 diabetes is caused by the cell-mediated autoimmune 

destruction of the beta-cells that eventually leads to nearly complete loss of insulin 

production. This form of diabetes is treated by providing external insulin, mostly in the 

form of injection. On the other hand, type 2 diabetes is initially caused by insulin 

resistance and a partial insulin deficiency. Accordingly, the treatment involves oral 

hypoglycemic agents, exercise, and diet changes in the beginning. Only if the insulin 

deficiency becomes severe at a later stage, the insulin therapy is recommended. 

Gestational diabetes is a form of type 2 diabetes that results from insufficient insulin 

production during pregnancy. Rarely, diabetes is also caused by monogenetic disorders 

(also called maturity onset diabetes of the young MODY). (Buchanan and Xiang, 2005; 

Stumvoll et al., 2005; Daneman, 2006; Slingerland, 2006) 

( http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0002194/). 

1.4 Development of the pancreas 

During embryonic development of vertebrates, gastrulation results in the specification of 

three germ layers namely ectoderm, mesoderm, and endoderm (Arnold and Robertson, 

http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0002194/
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2009). The endoderm further undergoes patterning along the anteroposterior axis to 

generate foregut, midgut, and hindgut domains (Grapin-Botton and Melton, 2000). Two 

factors that play important roles at this initial step include: fibroblast growth factor 4 

(FGF4) and retinoic acid (RA). FGF4 aids in posteriorising the endoderm by promoting 

the expression of posterior endodermal transcription factors Pdx1 and Cdx1/Cdx2 (Wells 

and Melton, 2000; Dessimoz et al., 2006). Retinoic acid is important for the initial 

anterior-posterior patterning as well as for the later pancreas development (Chen et al., 

2004; Stafford et al., 2004, 2006; Bayha et al., 2009). 

1.4.1 Generation of pancreatic buds 

After early patterning, pancreas then develops from the foregut endoderm as two 

pancreatic evaginations. The dorsal pancreatic bud is first to appear as an outgrowth of 

the dorsal foregut at the duodenal region. This happens around embryonic day 9.5 (E9.5) 

in mouse and around gestational day 26 (G26d) in humans. Half a day later in mouse 

(E10) and six days later in humans (G32d) the ventral pancreatic bud appears as an 

evagination of the ventral foregut close to the hepatic/biliary region (Gittes, 2009). Dorsal 

and ventral pancreas development proceeds through different pathways. Dorsal pancreas 

first receives signals from the notochord, then from the dorsal aorta, and lastly from the 

pancreatic mesenchyme. Ventral pancreas receives signals from the cardiac mesoderm, 

lateral plate mesoderm, and the septum transversum mesenchyme (Pan and Wright, 

2011). 

1.4.1.1 Genesis of dorsal pancreas 

In the beginning, prepancreatic dorsal endoderm is in contact with the notochord and 

receives permissive signals in the form of activin-betaB and FGF2 that may suppress 

Sonic hedgehog (Shh) in the endoderm to allow dorsal bud formation (Hebrok et al., 

1998). Around E8 then the fusion of dorsal aortas moves the notochord away from the 

dorsal endoderm. At this time, the aortic endothelial cells may help to induce Pdx1 and 

Ptf1a expression in the dorsal endoderm. Furthermore, they also promote the survival of 

dorsal pancreatic mesenchyme. Subsequently, the pancreatic mesenchyme grows and 

envelops the epithelium. Further pancreatic development then depends on the signals 

from the mesenchyme. Pancreatic epithelium cultured in the absence of mesenchyme 

does not develop (Golosow and Grobstein, 1962). Later, it was found that the 
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mesenchyme is mainly required for the acinar formation while islet formation is the 

default pathway in the absence of mesenchyme (Gittes et al., 1996). Detailed study 

further showed that mesenchymal-epithelial contact induces notch-signalling mediated 

hes1 expression in the epithelium that would repress Ngn3 and promote acinar 

differentiation (Duvillie et al., 2006). Additionally, the FGF signalling from mesenchyme 

to epithelium promotes epithelial proliferation (Miralles et al., 1999; Elghazi et al., 2002). 

1.4.1.2 Genesis of ventral pancreas 

Ventral pancreas and liver seem to originate from a common progenitor population 

located on the ventral side of foregut endoderm (Deutsch et al., 2001). Cardiac mesoderm 

induces hepatic differentiation from ventral endoderm via FGF signaling (Gualdi et al., 

1996; Jung et al., 1999). In the absence of this signal the pancreatic fate is followed that 

seems to be the “default pathway” for the ventral endoderm (Deutsch et al., 2001). Bone 

morphogenetic protein (BMP) signals from the septum transversum mesenchyme are also 

involved in inducing the liver fate at the expense of ventral pancreas (Rossi et al., 2001). 

Therefore, in order to form the ventral pancreas, a part of the ventral endoderm must 

escape the hepatogenic signals from the mesoderm. This escape is achieved by movement 

of a part of the endoderm away from the cardiac mesoderm. It has been shown that this 

tissue positioning is achieved via Hex gene that controls the proliferation rate and, 

therefore, the proper positioning of the leading edge of endoderm (Bort et al., 2004). 

1.4.2 Bud to gland formation 

The early dorsal and ventral pancreatic buds (at E10 in mouse) predominantly consist of 

multipotent pancreatic progenitor cells (MPC) interspersed with a couple of early 

endocrine cells, including mainly glucagon+ cells. Some insulin-glucagon co-positive 

cells as well as ghrelin+ cells are also evident at this time point. However, these early 

endocrine cells do not give rise to the mature endocrine cells and their function is not yet 

defined. Once generated, the dorsal and ventral bud epithelium proliferates and grows, 

this leads to elongation of the stalk region and branching at the bud tip. As the 

development continues, the gut tube rotates and brings the dorsal and ventral buds into 

close proximity. This leads to their fusion (around E12.5 in mouse and G6w in humans), 

generating a single definitive pancreas. By this time, along with the morphogenetic 

development, the pancreatic epithelium also undergoes a clear “tip-trunk” segregation. 
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The tip region contains multipotential pancreatic cells (MPC), that would later give rise to 

the progenitors with an acinar fate, and the trunk region contains duct/endocrine 

bipotential progenitors (Figure 1.2) (Pan and Wright, 2011). It has been suggested that the 

final size of the adult mouse pancreas is determined by the number of the progenitor cells 

assigned to the developing pancreas between E9.5 to E12.5 (Stanger et al., 2007). 

Around E13.5 in mouse, there is a sudden outburst of growth in the developing 

pancreas termed as the “secondary transition“. During this phase, there is a rapid 

differentiation and proliferation of acinar cells arising from the tip regions. At the same 

time, endocrine cells originate from the bipotential progenitors in the trunk regions. 

Alpha- and beta-cells are first to appear followed by the delta-cells a day later. Finally, 

PP-cells appear around E18. As the endocrine cells develop, they leave the trunk 

epithelium and start to cluster into islets (Figure 1.2). In the mouse, further arrangement 

and maturation of islets continues from late gestation to the first few weeks after birth. 

Beta-cells form the core of the islets in mouse, while other types of endocrine cells are 

arranged at the periphery. On the contrary, in mature human islets, alpha- and beta-cells 

are inter-mingled. Following the secondary transition, pancreatic epithelium continues to 

expand mainly via proliferation of acinar cells. Expansion of islet cell mass after birth is 

also predominantly achieved through self-duplication. However, once the mature islet cell 

mass is achieved the ability of endocrine cells (e.g., beta-cells) to divide is strongly 

reduced (Collombat et al., 2006; Pan and Wright, 2011). 

1.5 Role of transcription factors in developing and adult endocrine 

pancreas 

Gene knockout, overexpression, and misexpression studies in mice have generated a 

wealth of information on the role of many different transcription factors in the 

development and function of endocrine pancreas. In the following section, some of the 

important transcription factors are reviewed. The expression pattern of each transcription 

factor in the developing and adult pancreas is described, and the published knockout 

and/or overexpression phenotype is mentioned. In view of the thesis topic, the role of 

Pax6 is discussed in a separate section in greater detail. 
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Figure 1.2: Early development of pancreas. Induction of dorsal and ventral bud 

occurs through different pathways. After the bud epithelium undergoes branching 

morphogenesis, the tip-trunk segregation becomes apparent. Tip gives rise to acinar cells 

and trunk contains bipotential progenitors for ductal and endocrine cells. Once a cell 

becomes committed to endocrine lineage, it leaves the ductal epithelium, undergoes 

further differentiation, and clusters with other endocrine cells to form an islet (modified 

from Mastracci and Sussel, 2012). 
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1.5.1 Hlxb9 

Hlxb9 expression is detectable in the developing mouse embryo around E8. At this stage, 

it is expressed in the whole endoderm destined to become pancreas as well as in the 

notochord. Around E9.5, the Hlxb9 expression forms a gradient with higher expression to 

the dorsal side and lower to the ventral side and the expression generally declines towards 

E12.5 (Sherwood et al., 2009). Later on, during the secondary transition, strong 

expression comes back and is limited to the Pax6+ endocrine precursors. Finally, Hlxb9 

expression becomes restricted to the beta-cells in the adult pancreas (Harrison et al., 

1999; Li et al., 1999). Apart from the pancreas, Hlxb9 expression is also detected in the 

developing esophagus, stomach, and small intestine (Li et al., 1999). 

In Hlxb9 knockout mice, dorsal pancreatic bud shows complete agenesis, while the 

ventral bud development is apparently normal. However, the beta-cells originated from 

the ventral pancreas are not fully mature as they lack the expression of Glut2, the glucose 

transporter in beta-cells that plays an important role in the glucose-stimulated insulin 

secretion (GSIS). Furthermore, Hlxb9 knockout mice died at birth due to failure of the 

respiratory system (Thaler et al., 1999). On the other hand, over-expression of Hlxb9 in 

the entire Pdx1 domain disturbs the development of both exocrine and endocrine 

pancreas, and instead induces an intestinal-like differentiation program in the pancreatic 

anlage. These Hlxb9 overexpressing mice also die shortly after birth (Li and Edlund, 

2001). 

1.5.2 Pdx1 

Pdx1 expression is first evident at E8.5 in the entire pancreatic-fated region of the 

endoderm. Around E10 to E11.5, its expression extends to the common bile duct, 

duodenum, and distal stomach (Jonsson et al., 1994, 1995; Offield et al., 1996). 

Moreover, lineage-tracing in the pancreas has confirmed that the duct, acinar, and 

endocrine cells are all generated from the Pdx1+ progenitors (Gu et al., 2002). Pdx1 

expression undergoes dynamic changes during pancreas development. Initially, it is 

expressed in the entire epithelium at high levels. Then its expression is reduced as the 

cells are specified to the endocrine, duct, and acinar lineages (Jensen et al., 2000b; Gu et 

al., 2002; Hale et al., 2005). Subsequently, high level of Pdx1 expression is re-induced in 

the beta-cells and is required for their maturity and proper function (McFarlane et al., 
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1994; Marshak et al., 1996). A low level of Pdx1 expression is maintained in the acinar, 

ductal, and other types of endocrine cells (Guz et al., 1995; Wu et al., 1997). 

In Pdx1 knockout mice, initial budding of the dorsal pancreatic bud occurs but fails to 

develop further. Additionally, unlike Hlxb9 mutant mice there is no ventral pancreas 

development either (Jonsson et al., 1995; Offield et al., 1996). Moreover, it was found 

that the dorsal pancreatic rudiment in these mutants does contain the first-wave endocrine 

cells that fail to expand further. These knockout mice died in the first few days after birth 

due to defects in the pancreatic as well as other gastro-duodenal areas (Larsson et al., 

1996; Offield et al., 1996). Pdx1 expression is critical not only in the beginning but also 

in the subsequent phases of pancreatic development as shown by the later studies where 

Pdx1 was depleted after the initial budding had occurred (Holland et al., 2002; Hale et al., 

2005). 

As mentioned before, unlike other endocrine cells, Pdx1 is highly expressed in the 

mature beta-cells. To uncover the role of Pdx1 in mature beta-cells, Ahlgren et al., (1998) 

generated knockout of Pdx1 in beta-cells alone. These mice were initially healthy but 

developed an overt-diabetic phenotype with age (at 3-5 months), showing the importance 

of Pdx1 in maintaining the functional identity of beta cells. Consistent with the mouse 

studies, PDX1 homozygous null mutation causes pancreatic agenesis (Stoffers et al., 

1997a), while a heterozygous mutation causes diabetes (MODY4) in humans (Stoffers et 

al., 1997b). 

To further delineate the role of Pdx1 in pancreatic development, an opposite approach 

was applied by over-expressing the Pdx1 in the whole pancreatic anlage (Using Ptf1a 

regulatory domain). This led to the pancreatic hypoplasia with severe defect in the acinar 

cells. Acinar cells adopted a duct like phenotype and their apoptosis was also increased 

(Miyatsuka et al., 2006). On the other hand, overexpression of Pdx1 in the endocrine 

progenitors (using Ngn3 regulatory domain) led to the reprogramming of alpha- to beta-

cells (Yang et al., 2011). 

1.5.3 Pbx1 

At E10.5, Pbx1 expression is detected in the pancreatic epithelium and surrounding 

mesenchyme. Later in development, the expression is maintained in the mesenchyme and 

reduced in the epithelium. Finally, in the adult pancreas, Pbx1 is expressed in the acinar, 

ductal, and endocrine cells. Pbx1 knockout mice have pancreatic hypoplasia with a severe 
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defect in both endocrine and exocrine cell differentiation. They die before birth during 

embryonic development (around E15 to E16). Pbx1 heterozygous mutants are initially 

healthy, however, they develop glucose intolerance and hypoinsulinemia with age. 

Furthermore, when Pbx1 heterozygous mutation is combined with a heterozygous Pdx1 

mutation the resultant phenotype is much more drastic as the mice develop age-related 

overt diabetes mellitus (Kim et al., 2002). Indeed, Pbx1 and Pdx1 have been shown to 

interact with each other (Dutta et al., 2001; Swift et al., 1998). In acinar cells, the elastase 

I expression is activated by a regulatory complex in which Pdx1 interacts with Pbx1 (Liu 

et al., 2001). 

1.5.4 Ptf1a 

Ptf1a is a member of the heterotrimeric Pancreas Transcription Factor 1 complex (PTF1). 

This complex comprises of three proteins: Ptf1a (or p48), E2A (or p75), and RBP-J/RBP-

JL (Rose et al., 1994; Krapp et al., 1996). Ptf1a expression starts around E9.5 in both the 

dorsal and ventral pancreatic foregut endoderm (Krapp et al., 1998). As the development 

proceeds, expression is reduced in the endocrine lineage and is maintained in the 

developing and mature acinar cells of the pancreas. As confirmed by the lineage-tracing 

in mice, pancreatic progenitors expressing Ptf1a in the initial stage of development give 

rise to acinar cells, nearly all of the ductal, and most of the endocrine cells (Kawaguchi et 

al., 2002). In Ptf1a knockout mice, pancreatic agenesis is evident with almost no ventral 

bud and a very rudimentary dorsal bud that does not develop beyond the initial 

outgrowth. These mice die within first few hours after birth. As expected, acinar cells do 

not develop in the Ptf1a knockouts, however, a reduced number of endocrine cells do 

develop including a significant number of relatively mature beta-cells (Krapp et al., 1998; 

Burlison et al., 2008). Therefore, it appears that Ptf1a is not required for the endocrine 

cell specification but is important for the initial allocation and amplification of pancreatic 

progenitors that would later give rise to the endocrine population. This idea is supported 

by the fact that Ptf1a misexpression together with Pdx1 can convert duodenum into 

pancreas with an intact acinar to endocrine cell ratio (Afelik et al., 2006). In accordance 

to the mouse studies, PTF1a null mutation causes permanent neonatal diabetes mellitus in 

humans due to pancreatic agenesis (Sellick et al., 2004). 
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1.5.5 Isl1 

Isl1 expression is first detected in the dorsal pancreatic epithelium and the surrounding 

mesenchyme around E9 to E9.5. Later, it is expressed in the endocrine cells during 

development as well as in the adult pancreas. Isl1 knockout mice do not develop dorsal 

pancreatic mesenchyme and dorsal pancreatic bud. As they die at E9.5 before the ventral 

bud emergence, it is not possible to investigate the effect on ventral bud development 

(Ahlgren et al., 1997). To analyze the role of Isl1 in the later stages of development, Du et 

al. (2009) generated pancreas-specific Isl1 knockout mice. These mice are born alive but 

develop hyperglycemia from early postnatal life onwards that finally leads to their death 

between 3 to 8 weeks of age. In the mutant pancreata, the number of endocrine cells is 

significantly declined due to reduced proliferation and increased apoptosis. Moreover, the 

beta-cells present in the mutant pancreata are not fully mature as they lack the expression 

of MafA. Therefore, Isl1 is initially required for the maintenance of pancreatic 

mesenchyme and subsequently for the maturation and expansion of endocrine cells. 

1.5.6 Sox9 

Sox9 is expressed around E10.5 in the early pancreatic progenitors. Lineage-tracing 

experiments have confirmed that these Sox9 expressing progenitors give rise to the acinar, 

ductal, and endocrine cells of the pancreas (Akiyama et al., 2005). In the course of 

secondary transition, Sox9 expression is confined to the duct/endocrine bipotential 

progenitors in the developing epithelium. Finally, Sox9 expression is then restricted to the 

ductal epithelium of the adult pancreas (Lynn et al., 2007). Pancreas-specific Sox9 

knockout mice show hypoplasia of dorsal as well as ventral pancreatic bud and die within 

first few days after birth. Moreover, as a cause behind this phenotype, it was found that 

Sox9 is required for the maintenance of pancreatic progenitors by restricting their 

premature differentiation, as well as by promoting their survival through increased 

proliferation and decreased apoptosis (Seymour et al., 2007). In addition to this, Sox9 has 

been found to regulate the expression of Ngn3, and therefore, may play an important role 

in initiating the endocrine differentiation program (Lynn et al., 2007). 
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1.5.7 Ngn3 

Ngn3 is considered as a master regulator in the pancreatic endocrine differentiation 

program. Ngn3 expression is first detected in the early endocrine progenitors around E9.5. 

Later, the expression increases as the endocrine progenitors expand, and peaks around 

E15.5. From there on, it decreases and finally becomes nearly undetectable in the late 

embryonic and adult pancreas (Gradwohl et al., 2000; Schwitzgebel et al., 2000). In fact 

the expression of Ngn3 in the endocrine progenitors is transient and occurs only in the 

undifferentiated progenitors. Ngn3 directly activates many of the endocrine specific 

transcription factors, while it represses its own promoter activity (Huang et al., 2000; 

Smith et al., 2003, 2004, 2010; Mellitzer et al., 2006). Once the endocrine differentiation 

program has been initiated in a cell, the expression of Ngn3 is then repressed (Jensen et 

al., 2000; Smith et al., 2004). Accordingly, the Ngn3 expression is biphasic and 

corresponds to the two phases of endocrine cell generation (primary and secondary). As 

more endocrine cells are generated in the secondary phase, the Ngn3 expression also 

peaks around this time (Villasenor et al., 2008). 

Ngn3 knockout mice do not develop any of the endocrine cell types and die within 

first few days after birth (Gradwohl et al., 2000). Lineage-tracing analysis also confirms 

the generation of all the endocrine cell types from the Ngn3 expressing progenitors (Gu et 

al., 2002). On the other hand, overexpression of Ngn3 under Pdx1 domain directs the 

entire progenitor pool to differentiate into endocrine tissue that consists of predominantly 

alpha-cells (Apelqvist et al., 1999). Later on, Johansson et al. (2007) found that the ability 

of Ngn3 to induce various endocrine cell types is associated with the specific 

developmental time-point. They used Ngn3-addback strategy to induce Ngn3 expression 

at various time points of pancreatic development in mice that are Ngn3 deficient. It was 

found that Ngn3 activation around E9 generates alpha-cells alone, activation around 

E11.5 generates alpha, beta, and gamma-cells, and activation around E14.5 generates all 

four types of endocrine cells. Apart from the timing, the level of Ngn3 expression is also 

very important. Endocrine progenitors with a high Ngn3 expression are truly committed 

to the endocrine fate, while the progenitors with low Ngn3 expression can opt for other 

pancreatic fates as well (Wang et al., 2010). Therefore, progenitors with low Ngn3 

expression may represent an intermediate state where the cell has still a choice to move in 

either direction. 
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1.5.8 Rfx6 

Rfx6 is broadly expressed in the early gut endoderm. At E9, its expression is detected in 

the dorsal pancreatic bud. Around this time, many Rfx6 positive cells co-express Pdx1. 

Later around E10-12.5, Rfx6 expression gets more restricted to the differentiating 

endocrine cells and is excluded from Pdx1 or Ptf1a expressing cells. During the 

secondary transition, many of the Rfx6 positive cells co-express Ngn3. Furthermore, in 

Ngn3-/- mice the expression of Rfx6 is lost indicating that Rfx6 is Ngn3-dependent 

transcription factor in the pancreas. Finally, in the adult pancreas, Rfx6 is expressed only 

in the endocrine cells of the islet. Rfx6 plays important role in the endocrine pancreas 

development as in the Rfx6 knockout mice, pancreatic endocrine cells do not develop 

except for the PP producing cells (Smith et al., 2010; Soyer et al., 2010). 

1.5.9 NeuroD 

NeuroD expression is first detectable in the endocrine committed cells of the early 

pancreas around E9.0 (Huang et al., 2000). Later in development, it continues to express 

in most of the endocrine cell population. Finally, as the islets mature in the adult 

pancreas, its expression becomes restricted to only beta-cells (Itkin-Ansari et al., 2005). 

NeuroD is one of the direct downstream targets of Ngn3 (Gradwohl et al., 2000; Huang et 

al., 2000; Jensen et al., 2000) and an important mediator in the induction of endocrine 

differentiation program (Gasa et al., 2008). This is supported by the fact that both Ngn3 

and NeuroD can activate many of the same target genes (Gasa et al., 2008). 

In contrast to Ngn3 knockout mice, NeuroD knockout mice can develop all types of 

endocrine cells. However, the number of endocrine cells is significantly reduced as they 

fail to expand after initial differentiation. Therefore, NeuroD knockout mice also develop 

hyperglycemia and die within first few days after birth (Naya et al., 1997). To understand 

the role of NeuroD in beta-cells, Gu et al., (2011) generated beta-cell-specific NeuroD 

knockout mice. These mice are slightly hyperglycemic and develop severe glucose 

intolerance due to immature beta-cell function. In humans, NEUROD1 heterozygous 

mutations are associated with maturity onset diabetes of the young type 6 (MODY6), and 

homozygous null mutations can cause permanent neonatal diabetes (Malecki et al., 1999; 

Rubio-Cabezas et al., 2010). 
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1.5.10 Nkx2.2 

Nkx2.2 expression begins in the early pancreatic epithelium around E9.0. Initially, it is 

expressed in most of the epithelial cells and later becomes gradually confined to the 

endocrine progenitors. Nkx2.2 expression then persists in beta-cells, and in a subset of 

alpha- and PP-cells. Nkx2.2 is not expressed in either developing or mature delta-cells 

(Sussel et al., 1998; Jørgensen et al., 2007). Accordingly, in Nkx2.2 knockout mice, beta-

cells are lost, alpha- and PP-cells are reduced in number, and delta-cells are not changed. 

These mice develop hyperglycemia and die shortly after birth (Sussel et al., 1998). Later, 

it was found that the lost endocrine cells, in Nkx2.2 mutant mice, are replaced by epsilon-

cells expressing ghrelin (Prado et al., 2004). Nkx2.2 inactivation in pancreas alone 

produces a similar phenotype (Mastracci et al., 2013). A compound deficiency of Nkx2.2 

and Arx leads to upregulation of ghrelin+ cells that co-express somatostatin (Kordowich et 

al., 2011; Mastracci et al., 2011). Nkx2.2 can function both as an activator and a repressor 

of transcription in the endocrine pancreas depending on the specific cell type or the time-

point of development (Raum et al., 2006; Doyle et al., 2007; Papizan et al., 2011). For 

example, Nkx2.2 can activate MafA expression that is required for the beta-cell maturity 

(Raum et al., 2006) and represses Arx expression in beta-cells to maintain their identity 

(Papizan et al., 2011). On the other hand, Nkx2.2 repressor function is also required for 

alpha-cell differentiation (Doyle et al., 2007). It has been suggested that Nkx2.2 repressor 

activity is mainly required during embryonic development of the pancreas, while activator 

function is more important in mature beta-cells (Doyle et al., 2007; Doyle and Sussel, 

2007). 

1.5.11 Nkx6.1 

Nkx6.1 expression is first detected in few cells of the early pancreatic epithelium around 

E9. Around E10.5, the expression is detected in most of the pancreatic epithelium. Later, 

the expression becomes restricted to endocrine progenitors and then to beta-cells alone 

(Sander et al., 2000; Jørgensen et al., 2007). In mature islets, Nkx6.1 is expressed only in 

the beta-cells. In Nkx6.1 knockout mice, beta-cells are significantly reduced in number 

but other endocrine cell types are not affected. This reduction arises from inefficient beta-

cell neogenesis during secondary transition as the earlier population of beta-cells is not 

affected. Furthermore, analysis of Nkx6.1/Nkx2.2 double knockout shows a phenotype 
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similar to Nkx2.2 single knockout. Accordingly, Nkx6.1 expression is lost in Nkx2.2 

knockout but Nkx2.2 expression is maintained in Nkx6.1 knockout pancreata. It is, 

therefore, suggested that Nkx6.1 acts downstream of Nkx2.2 (Sander et al., 2000). 

Inactivation of Nkx6.1 in endocrine precursors or beta-cells favors non-beta endocrine cell 

lineages at the expense of beta-cells while overexpression of Nkx6.1 in endocrine 

precursors selectively favors beta-cell fate (Schaffer et al., 2013). Therefore, Nkx6.1 is 

required for beta-cell specification and maintenance of beta-cell fate. 

1.5.12 Pax4 and Arx 

At E9.5, Arx expression is detectable in the pancreatic epithelium. During further 

development, Arx continues to express in the endocrine progenitors and then in the 

endocrine cells (mainly alpha-cells). In the adult pancreas, Arx is expressed in the alpha- 

and PP-cells (Collombat et al., 2003, 2007). Pax4 expression also starts in the early 

pancreas at E9.5. Pax4 expression then increases and peaks around the time of secondary 

transition when majority of the endocrine cells are generated. Later, its expression is 

reduced to nearly undetectable levels and is restricted to beta-cells (Sosa-Pineda et al., 

1997; Smith et al., 1999). 

Arx and Pax4 are important for the early lineage specification in the endocrine 

pancreas and an opposing link has been described between them. In Arx knockout mice, 

alpha-cells fail to develop, beta- and delta-cells are increased in number, and PP-cells are 

not affected (Collombat et al., 2003). On the other hand, in Pax4 knockout mice, beta- 

and delta-cells do not develop while alpha-cell numbers are increased (Sosa-Pineda et al., 

1997). As expected from these phenotypes, in the Arx/Pax4 double knockout mice, both 

alpha- and beta-cells fail to develop but surprisingly the number of delta-cells is highly 

increased (Collombat et al., 2005). Furthermore, misexpression of Arx in the mature beta-

cells can convert them to alpha-cells, and that of Pax4 in alpha-cells can convert them to 

beta-cells (Collombat et al., 2007, 2009). These studies establish the essential role of Arx 

in alpha-cell specification, and that of Pax4 in beta-cell specification. 

1.5.13 MafA and MafB 

MafB expression is detectable in the early pancreatic epithelium around E10.5. At this 

time, most of the MafB expression is observed in alpha-cells. Subsequently, during 

secondary transition, MafB is expressed in some endocrine progenitors, in most of the 
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alpha- and many of the beta-cells. Finally, in adult pancreas, MafB expression is restricted 

to alpha-cells only (Artner et al., 2006; Nishimura et al., 2006). MafB knockout mice die 

at birth due to respiratory problems. Pancreatic analysis shows that alpha- and beta-cells 

are significantly reduced in number, while PP- and delta-cells are not affected in these 

mice. As compared to wild type mice, the total number of endocrine cells is also not 

changed. Therefore, the defect seems to be with the maturation of cells rather than their 

specification. Accordingly, MafB can bind to the promoters of glucagon, and insulin 

genes and activates their transcription. MafB may also activate the expression of other 

factors required for beta-cell maturity, including MafA, Pdx1, and Glut2 (Artner et al., 

2007). Thus, MafB plays an important role in the development of mature alpha- and beta-

cells. 

In the developing pancreas, MafA expression starts later than MafB and is normally 

restricted to beta-cells. Around E12.5, few MafA positive beta-cells are visible. During 

secondary transition, the number of beta-cells expressing MafA increases (Nishimura et 

al., 2006). Finally, in the adult pancreas MafA is expressed in all of the beta-cells and not 

in other endocrine cells (Zhang et al., 2005). MafA knockout mice have normal pancreas 

development and appear healthy at birth. However, they develop glucose intolerance and 

diabetes mellitus with increasing age. Islet architecture, Insulin synthesis, and glucose 

stimulated insulin secretion is also affected in these mice (Zhang et al., 2005). Hence, 

MafA plays an important role in the functional maturity of beta-cells. 

1.6 Paired box genes 

The paired box gene family encodes nuclear transcription factors. It comprises of nine 

members that are characterized by the presence of a highly conserved paired box domain. 

This domain is named after the Drosophila gene Paired (Prd) where it was first 

identified. These nine members are placed into four subgroups based on the presence or 

absence of an octapeptide, and the presence of a complete, truncated or no homeodomain. 

Apart from the Paired domain and homeodomain that serve the purpose of DNA binding, 

all Pax proteins contain a C-terminal transactivation domain that is rich in Proline, Serine, 

and Threonine. Pax genes play an important role in the development and function of 

many different tissues. Therefore, mutations causing impairment in their function can 

lead to serious medical ailments (Buckingham and Relaix, 2007; Wang et al., 2008). 
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1.7 Paired box gene 6 (Pax6) 

Pax6 belonging to the group IV of Pax gene family is a highly conserved transcription 

factor among different animal species (Callaerts et al., 1997). The vertebrate Pax6 gene is 

organized into 16 exons that are numbered from 0 to 13 with two in between named alpha 

and 5a. Pax6 gene is transcribed from three different promoters: P0, P1, and Pα (Figure 

1.3). Mammalian Pax6 protein exists in three isoforms: Pax6 canonical, Pax6 5a, and 

Pax6 pairedless. These three isoforms are generated either by the selection of different 

promoters or by alternative splicing. Transcription from P0 and P1 promoters generate 

two different mRNAs that are translated into identical proteins because of the common 

translation start site. However, transcription from these two promoters shows different 

spatio-temporal patterns during embryonic development. The function of two different 

promoters for the expression of identical protein is not clear. However, the presence of 

different regulatory elements at each promoter may provide differential expression levels 

in different tissues or in the same tissue at different time points of development. 

Transcript initiated from P0 and P1 promoter is alternatively spliced to generate either 

Pax6 canonical or Pax6 5a isoform. Pax6 5a contains an additional exon (5a) that leads to 

a 14 amino acid insertion in the paired domain and changes the DNA binding properties 

of the protein. Third promoter Palpha is located within the intron between exon 4 and 5; 

and transcription from this promoter generates a Pax6 protein without paired domain 

(Shaham et al., 2012). 

1.8 Pax6 in mammalian development 

Initially, the role of Pax6 in development has been suggested by its expression in the 

developing tissues and by analysis of the phenotypes associated with naturally occurring 

Pax6 mutations. Later on, the generation of Pax6 knockout and more importantly the 

tissue specific Pax6 knockout mice has helped to understand the finer details of Pax6 role 

in the development and function of different tissues. Pax6 is expressed in the mouse eye, 

central nervous system (CNS), olfactory system, and pancreas (Walther and Gruss, 1991). 

Mice homozygous for Pax6 null mutation die early after birth. They lack eyes, and nasal 

cavities, and the development of CNS and endocrine pancreas is also disturbed (Hill et 

al., 1991; Ashery-Padan et al., 2004; Osumi et al., 2008), further confirming the role of 

Pax6 in the development of these organs. Below is a brief description of the Pax6 role in  



Introduction                                                                                                    20 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.3: Pax6 gene and protein. (a) Pax6 gene structure. Colored boxes indicate 

coding exons and black boxes indicate non-coding exons. Grey boxes indicate various 

regulatory elements. (b) Pax6 protein domains. Note the additional 5a insertion in the 

paired domain that is not present in canonical isoform. PD=paired domain, 

HD=homeodomain, and PST=Proline-Serine-Threonine rich transactivation domain 

(adapted from Shaham et al., 2012). 

a) 

b) 
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eye and brain development. Subsequently, the role of Pax6 in the endocrine pancreas 

development and function is discussed in greater detail. 

1.8.1 Pax6 in eye development 

Role of Pax6 in eye development was first to be identified and has been extensively 

studied. Aniridia is a human disease of the eye that is caused by heterozygous mutations 

in the PAX6 gene (Ton et al., 1991). In mouse, a heterozygous Pax6 mutation results in 

the “small eye” phenotype and homozygous Pax6 mutation leads to complete absence of 

eyes and is lethal in both mouse and human (Hill et al., 1991; Hodgson and Saunders, 

1980). Therefore, a diploid dosage of Pax6 is essential for normal eye development. On 

the contrary, overexpression of Pax6 can also lead to severe eye defects (Schedl et al., 

1996). Mammalian eye develops from three derivatives of ectodermal origin namely the 

neuroectoderm, head surface ectoderm, and the neural crest. Pax6 is expressed in the 

surface and neuroectodermal derivatives of the eye. It is required for the retinal 

neurogenesis, and for the specification of the ciliary body and iris progenitor pools. It is 

also required for the lens placode formation, for the lens vesicle detachment from the 

surface ectoderm, and for the lens fiber differentiation. Moreover, the corneal 

development is also disturbed in the Pax6 mutant mice (Shaham et al., 2012). 

1.8.2 Pax6 in brain development 

In the mouse embryo, Pax6 expression is first detectable around E8 in the neural plate. 

Subsequently, after neural tube regionalization, Pax6 expression is found in certain areas 

of the forebrain, midbrain, hindbrain, and the spinal cord (Walther and Gruss, 1991; Duan 

et al., 2013). Pax6 plays multiple roles in the development of central nervous system. It is 

required for the neural tube patterning, neuronal subtype specification, proper neuronal 

migration, and also for the neurogenesis itself. Appropriate dosage of Pax6 is required to 

control the proliferation of neural progenitor cells, the timing of cell cycle exit, and the 

differentiation into neurons (Osumi et al., 2008; Georgala et al., 2011). In the adult brain, 

Pax6 expression continues in the neurogenic niches as well as in certain subtypes of 

mature neurons. Therefore, Pax6 might be involved in maintaining the neuronal features 

of some neuronal subtypes (Duan et al., 2013). 
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1.8.3 Pax6 in Pancreas development 

Pax6 expression is first detected around E9 in the developing pancreatic epithelium. 

Around E10, it is detected in the early glucagon cells and in most of the Isl1 expressing 

cells in the pancreatic epithelium. Later, Pax6 expression is detected in the endocrine 

cells from the secondary transition. It then continues to express in alpha, beta, PP, and 

delta cells of the islet during later gestation as well as during adult life (Sander et al., 

1997; St-Onge et al., 1997; Jensen et al., 2000a). Epsilon-cells, the fifth type of endocrine 

cells in the islet, may or may not express Pax6 (Kordowich et al., 2011). The expression 

pattern of Pax6 in developing and adult pancreas is suggestive of a vital role of Pax6 in 

the endocrine pancreas. 

1.8.3.1 Pax6 knockout in vivo studies 

In 1997, St-Onge et al. published the pancreatic phenotype of Pax6 KO mice. They found 

a reduction of endocrine cell population that was the most prominent among alpha-cells. 

Additionally, the normal islet architecture was disturbed in the mutant pancreata. Due to 

the fact that Pax6 KO mice die shortly after birth, it was not possible to analyze the role 

of Pax6 in adult Pancreas. In the same year, Sander et al. (1997) described a similar 

phenotype in Pax6sey/sey mutant mice. Moreover, it was found that Pax6 can bind to 

insulin, glucagon, and somatostatin gene promoters and transactivate the expression of 

insulin and glucagon. 

In an effort to analyze the role of Pax6 in postnatal pancreas development, Ashery-

Padan et al. (2004) used Cre-loxP system to generate the conditional inactivation of Pax6 

in Pdx1 and Pax6 regulatory domains. The phenotype was similar to the classical Pax6 

KO. Furthermore, they used Z/AP reporter strain to demonstrate that the overall 

endocrine area in the mutant pancreata was not reduced and, therefore, the islet cell 

neogenesis was not affected. Similar to the classical KO these conditional KO mice died 

in a few days after birth leaving the role of Pax6 in adult pancreatic function unresolved. 

Later on, Heller et al. (2005) further analyzed Pax6sey/sey pancreata and found that the 

ghrelin positive cell population was 5 fold increased compared to the wild type. However, 

increase in ghrelin positive cell population has also been reported in Pax4 and Nkx2.2 KO 

pancreata (Prado et al., 2004). Since these three KO models die shortly after birth it was 

never possible to analyze the phenotype in adult pancreas. Analysis of ghrelin positive 
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cells in the embryonic pancreas is further complicated due to the existence of these cells 

in the wild type pancreas as a separate population as well as being co-positive with alpha-

cells. Therefore, the origin of ghrelin positive cells in the embryonic KO pancreas cannot 

be faithfully defined. 

Among the endocrine cells, alpha-cells are the most severely affected ones in the 

Pax6 knockout mice. To understand the relative role of different Pax6 domains in the 

development of alpha-cells, Dames et al. (2010) analyzed the pancreata of Pax6 mutant 

mice that carried mutations in either paired domain, homeodomain, or transactivation 

domain of Pax6. It was found that the activity of paired domain is more important for the 

development of alpha-cells. On the other hand, mutation in the homeodomain results into 

least affected phenotype. 

Recently, Hart et al. (2013) used tamoxifen inducible ubiquitous Cre line to knockout 

Pax6 in adult mice. They observed an overt diabetes and weight loss in knockout animals. 

Furthermore, the expression of insulin, glucagon, and somatostatin was reduced. In 

accordance with the previous studies they found an increased expression of ghrelin in the 

knockout pancreata. 

The only in vivo study of Pax6 overexpression (OE) in mice resulted in diabetes due 

to apoptosis of beta-cells. In addition, overexpression under Pdx1 domain resulted in 

hypoplasia of exocrine pancreatic portion, and pancreatic tumors (Yamaoka et al., 2000). 

1.8.3.2 Pax6 knockdown in vitro studies 

In order to understand the role of Pax6 in alpha- and beta-cell function at the molecular 

level, Gosmain et al. (2010, 2012a, 2012b) used siRNA based approach to generate the 

Pax6 knockdown (KD) in primary rat alpha- and beta-cells. It was found that Pax6 can 

control the expression of several critical genes involved in the alpha- and beta-cell 

function. These included proglucagon, PC2, MafB, c-Maf, NeuroD1/Beta2, GK, GIPR, 

and GPR40 in alpha-cells; and insulin 1, insulin 2, Pdx1, MafA, Glut2, PC1/3, GK, 

Nkx6.1, c-Maf, PC2, GLP-1R, and GIPR in beta-cells. Additionally, Pax6 knockdown in 

alpha-cells imapirs the processing of proglucagon and secretion of glucagon due to 

decreased expression of the factors involved in proglucagon processing and glucagon 

secretion (Katz et al., 2009; Gosmain et al., 2012b). Moreover, Liu et al. (2012) showed 

that Pax6 can bind to the proSAAS (Pcsk1n) gene promoter and directly downregulate its 
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expression, thereby controlling the PC1/3 activity and proper insulin processing in beta-

cells. 

These in vitro studies demonstrate that Pax6 is essential for both alpha- and beta-cell 

function as it controls the expression of many different genes involved in the synthesis, 

processing, and secretion of glucagon and insulin. 

1.8.3.3 Pax6 in diabetes (human studies) 

Several PAX6 mutations have been reported in humans (Prosser and Heyningen, 1998; 

Dansault et al., 2007). Heterozygous PAX6 mutations are a cause of aniridia (an eye 

disease) and are frequently linked to glucose intolerance (Yasuda et al., 2002). However, 

the etiology of age-induced glucose intolerance in aniridia patients is not completely 

understood. Wen et al. (2009) showed that defective proinsulin processing is one of the 

factors involved in the impairment of glucose tolerance in aniridia patients. 
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1.9 Aims of the study 

As discussed above,  the Pax6 KO mice as well as Pax6sey/sey mutant mice die shortly 

after birth (Hill et al., 1991; St-Onge et al., 1997; Heller et al., 2005). This makes it 

impossible to analyze the role of Pax6 in adult endocrine pancreas in vivo. Later, the 

generation of Pax6 floxed mice allowed the ablation of Pax6 from the pancreas alone 

(Ashery-Padan et al., 2004). However, even these pancreas-specific conditional Pax6 KO 

mice do not survive beyond early postnatal stage. Recently, a study has been published 

where Pax6 was knocked out from adult pancreas with the help of an inducible ubiquitous 

Cre line (Hart et al., 2013). The ubiquitous Cre, however, removes Pax6 from all of the 

endocrine cell types at once and, therefore, does not allow the detection of cell-type-

specific effects. 

Our study aims at analyzing the role of Pax6 in adult pancreas in a cell-type-specific 

manner.  For this purpose, we carried out conditional Pax6 KO in alpha- and beta-cells 

separately. This was done by using the Cre/loxP system (Sauer and Henderson, 1989; 

Rajewsky et al., 1996). Furthermore, YFP (yellow fluorescent protein) reporter transgene 

(Srinivas et al., 2001) was included to specifically mark the KO cells and to trace them 

over long-period of time. Along with that we also decided to increase the Pax6 dosage by 

overexpressing it in the whole pancreas, in the beta-cells alone, and in the alpha-cells 

alone. As an opposite approach to the knockout, overexpression can also provide useful 

information about the function of a protein. 

 

This study was particularly aimed: 

 

1. To identify and compare the characteristics of Pax6 KO alpha- and beta-cells. 

This would help us to know if Pax6 ablation affects both cell types in a similar or 

differential way. 

 

2. To study the ghrelin+ cell population in both types of KO pancreata, especially 

focusing on their origin and later fate. Ghrelin upregulation has been linked to 

Pax6 ablation in pancreas (Heller et al., 2005; Kordowich et al., 2011) but the 

origin of ghrelin+ cells has not been exactly defined. 
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3. To investigate the possibility of regeneration in alpha- and beta-cell population in 

adult pancreas using Pax6 KO as a model of glucagon and insulin deficiency. 

 

4. To analyze gross changes in the hormonal cell population following Pax6 

overexpression. It would be interesting to know, how increased Pax6 dosage 

affects pancreas development. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Primary antibodies 

Table 2.1: List of primary antibodies used. 

Antibody Manufacturer Host species Working dilution 

Insulin Sigma Mouse 1:1000 

Insulin Dako Guinea pig 1:1000 

Glucagon Abcam Mouse 1:1000 

Glucagon Abcam Rabbit 1:50 

Somatostatin Dako Rabbit 1:600 

PP Millipore Rabbit 1:1000 

Ghrelin Santa Cruz Goat 1:50 

Ghrelin Kindly provided by (1) Mouse 1:1000 

Neurotensin Abcam Rabbit 1:200 

Pax6 Covance Rabbit 1:300 

Pax6 DSHB Mouse 1:100 

Isl1 Abcam Rabbit 1:500 

Rfx6 Millipore Rabbit 1:2000 

Pdx1 Kindly provided by (2) Rabbit 1:2000 

Nkx6.1 DSHB Mouse 1:50 

MafA Bethyl Labs Rabbit 1:500 

MafB Bethyl Labs Rabbit 1:1000 

Arx Millipore Rabbit 1:200 

Glut2 Millipore Rabbit 1:1000 

GLP-1 receptor Kindly provided by (3) Rabbit 1:4000 

C-peptide Cell Signaling Rabbit 1:100 

IAPP Phoenix Pharma Rabbit 1:500 

PC1/3 Millipore Rabbit 1:500 

PC2 Millipore Rabbit 1:200 
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7B2 Abcam Rabbit 1:5000 

7B2 Kindly provided by (4) Rabbit 1:200 

ProSAAS Kindly provided by (4) Rabbit 1:50 

Ki67 Dako Rat 1:100 

BrdU Roche Mouse 1:50 

GFP Abcam Chicken 1:1000 

β-galactosidase Aves Labs Chicken 1:5000 

 

1. Dr. C. Tomasetto (Université Louis Pasteur, Strasbourg, France) 

2. Dr. C. Wright (Vanderbilt University, Nashville, Tennessee) 

3. Dr. J.F. Habener (Harvard Medical School, MA) 

4. Dr. I. Lindberg University of Maryland-Baltimore, Maryland 

DSHB=Developmental Studies Hybridoma Bank 

2.1.2 Secondary antibodies 

Table 2.2: List of secondary antibodies used. 

Conjugate Host species Reactivity Working dilution Manufacturer 

Alexa 488 Goat Rabbit 1:1000 Invitrogen 

Alexa 594 Goat Rabbit 1:1000 Invitrogen 

Alexa 594 Donkey Rabbit 1:1000 Invitrogen 

Alexa 488 Goat Mouse 1:1000 Invitrogen 

Alexa 594 Goat Mouse 1:1000 Invitrogen 

Alexa 594 Donkey Mouse 1:1000 Invitrogen 

Cy5 Sheep Mouse 1:300 Jackson Immuno-
Research Labs, Inc 

Alexa 488 Goat Guinea Pig 1:1000 Invitrogen 

Alexa 594 Goat Guinea Pig 1:1000 Invitrogen 

Alexa 594 Goat Rat 1:1000 Invitrogen 

Alexa 488 Chicken Goat 1:1000 Invitrogen 

Alexa 594 Chicken Goat 1:1000 Invitrogen 

Alexa 488 Goat Chicken 1:1000 Invitrogen 

Alexa 594 Goat Chicken 1:1000 Invitrogen 
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2.1.3 Quantitative RT-PCR primers 

Table 2.3: List of qRT-PCR (quantitative reverse transcription - polymerase chain 

reaction) primers. 

Gene Primer 

Insulin QuantiTect Primer Assay QT00258083 

Ghrelin QuantiTect Primer Assay QT00137536 

Pax6 QuantiTect Primer Assay QT01052786 

MafA QuantiTect Primer Assay QT01037638 

Nkx6.1 QuantiTect Primer Assay QT00143318 

Pdx1 QuantiTect Primer Assay QT00102235 

Nkx2.2 QuantiTect Primer Assay QT00495502 

Gusb QuantiTect Primer Assay QT00176715 

2.1.4 PCR primers for chromatin immunoprecipitation (ChIP) 

Table 2.4: List of PCR primers used in ChIP. 

Primer Sequence 
Promoter-region 

amplified 

Glut2-ChIP-F CCTAAGACACAGAAAAGTCACAGGG -415 to -547 (contains 

proposed Pax6 

binding site) Glut2-ChIP-R GTGGCCACAGAGTGTGGCAGCATCG 

Ghrelin-ChIP-F GGAGAAGCCGGTGAGCAGGCACCAC -335 to -476 (contains 

proposed Pax6 

binding site) Ghrelin-ChIP-R CTGAATAATTTAGACCCCGGTGAGC 

MafA-ChIP-F CACCCCAGCGAGGGCTGATTTAATT 
-7750 to -8120 

(Raum et al., 2010) 
MafA-ChIP-R AGCAAGCACTTCAGTGTGCTCAGTG 
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2.1.5 PCR primers used in cloning 

Table 2.5: List of PCR primers used in cloning. 

No. Primer Sequence 

1 Pax6-SalI-forward 
TTTTTTTGTCGACATGCAGAACAGTCACAGCGGAGT

GAATCAGCTTGG 

2 Pax6-SalI-reverse 
TTTTTTTGTCGACTTACTGTAATCGAGGCCAGTACT

GAGACATGTCAG 

3 Pax6-seq-1 CAGTATAAACGGGAGTGCCCTTC 

4 Pax6-seq-2 CTTCTCTGGTTCCTCAGTTTCTC 

2.1.6 PCR primers used for genotyping 

Table 2.6: List of PCR primers used for genotyping. 

No. Primer Sequence 

1 Flp6-primer-83 GCGGTTGAGTAGCTCAATTCTA 

2 Flp6-primer-84 AGTGGCTTGGACTCCTCAAGA 

3 Flp6-primer-del CGTGTGCCCCAGCTTCCGGT 

4 AM-89-Cre ATG CTT CTG TCC GTT TGC CG 

5 AM-90-Cre CCT GTT TTG CAC GTT CAC CG 

6 GFP-Forward ACCCTGAAGTTCATCTGCACCA 

7 GFP-Reverse TGGGTGCTCAGGTAGTGGTTGT 

2.1.7 Mouse lines used 

Table 2.7: List of mouse lines used. 

Mouse line Reference 

Pax6 floxed Ashery-Padan et al., 2000 
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RIP-CreER Dor et al., 2004 

Glucagon-Cre Herrera, 2000 

Insulin-Cre Herrera, 2000 

Pdx1-Cre Gannon et al., 2000 

R26-YFP reporter Srinivas et al., 2001 

2.1.8 Solutions and Media 

Table 2.8: Phosphate buffered saline (PBS). 

Component Amount (g/L) 

NaCl 8.0 

KCl 0.2 

Na2HPO4.2H2O 1.35 

NaH2PO4.2H2O 0.1 

KH2PO4 0.2 

 Dissolve in Milli-Q water and bring the final volume to 1 litre. 

Table 2.9: Luria-Bertani medium (LB medium). 

Component Amount (g/L) 

Tryptone 10 

Yeast extract 5 

NaCl 10 

Dissolve in 900 mL Milli-Q water, adjust the pH to 7.0 and bring the final volume to 1 

liter. The medium was autoclaved before use. 

LB agar plates 

For LB agar plates, add 15 g/L agar to LB medium before autoclaving. After autoclaving, 

let the medium cool down to ≈50°C, add the antibiotic (e.g., ampicillin), and pour into 

sterile plates. After the medium has solidified, invert the plates and store at 4°C in dark. 
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2.2 Methods 

2.2.1 Animal treatments 

2.2.1.1 Tamoxifen treatment 

Tamoxifen was prepared in corn oil (at 20 mg/ml). For 3 week old mice, 1 mg tamoxifen 

was administered intraperitoneally for 3 days every other day. For 1.5 month and 2 month 

old mice, 2 mg tamoxifen was administered intraperitoneally for 4 days every other day. 

2.2.1.2 Bromodeoxyuridine (BrdU) treatment 

BrdU was given in drinking water (at 0.8 mg/mL) to the mice for 3 days. Water bottles 

were wrapped in aluminium foil to protect from light-mediated degradation. 

2.2.1.3 Blood and urine glucose measurement 

For glucose measurements One Touch Glucose meter (Johnson & Johnson) was used. A 

drop of blood from tail vein or a drop of urine was directly taken on to the test strip. 

2.2.2 Histological procedures 

2.2.2.1 Pancreas preparation, cryo-embedding, and sectioning 

Mice were killed by decapitation (at P0) and by cervical dislocation or CO2 inhalation (at 

age of 3 weeks or more). Pancreata were removed and immediately placed in ice-cold 

PBS (Table 2.8). It was followed by washing in PBS (3x10minutes) at 4°C. After 

washing the pancreata were fixed in 4% paraformaldehyde (dissolved in PBS; pH 7.4) for 

1 hour at 4°C. Fixed pancreata were then washed in PBS (4x20minutes) and placed in 

25% sucrose (dissolved in PBS) for overnight at 4°C. After this pancreata were washed 

two times in Jung Tissue Freezing Medium™ (Leica Microsystems) (2x2hours), and 

embedded in the same medium on dry ice using cryomolds. Frozen embedded pancreata 

were stored at -20°C or -80°C. 

From the frozen pancreata, 8 μm sections were cut on a cryostat and mounted on 

SuperFrost® Plus slides (Thermo Scientific). Slides were kept at 30°C for half an hour, to 

allow the adhesion of sections, before being stored at -20°C or -80°C. 
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2.2.2.2 Immunofluorescence staining of cryosections 

Pancreatic cryosections on each slide were encircled with ImmEdge™ pen. Slides were 

then washed in PBS (3x5minutes). Next, the sections were blocked with 10% fetal calf 

serum (in PBS containing 0.1% triton x-100) for 1 hour at room temperature. It was 

followed by incubation of the sections with primary antibodies (diluted in the same 

blocking solution) at 4°C for overnight. Next day, the slides were washed in PBS 

(3x5minutes). After washing, the sections were incubated with the appropriate secondary 

antibodies (diluted in the same blocking solution) for 1 hour at room temperature. 

Afterwards, the slides were washed again in PBS (3x5minutes) and mounted with 

Vectashield® mounting medium containing DAPI (4',6-diamidino-2-phenylindole) 

(Vector Labs). 

2.2.2.3 BrdU staining 

Slides with cryosections were washed in PBS for 15 minutes and incubated in 2 N HCl 

for 30 minutes at 37°C. This was followed by washing of slides in PBS (2x30minutes). 

Next, the cryosections on each slide were encircled with ImmEdge™ pen and blocked 

with 10% fetal calf serum (in PBS containing 0.1% triton x-100) for 1 hour at room 

temperature. It was followed by incubation of the sections with primary antibodies 

(diluted in the same blocking solution) at 4°C for overnight. Next day, the slides were 

washed in PBS (2x15minutes). After washing, the sections were incubated with the 

appropriate secondary antibodies (diluted in the same blocking solution) for 1 hour at 

room temperature. Afterwards, the slides were washed again in PBS (2x30minutes) and 

mounted with Vectashield® mounting medium containing DAPI (Vector Labs). 

2.2.2.4 TUNEL staining 

TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay detects 

apoptotic cells by labeling fragmented DNA resulting from apoptosis. For TUNEL 

staining, Apop Tag® Red In Situ Apoptosis Detection Kit (Millipore) was used and the 

procedure was performed according to the manufacturer’s instructions. 

2.2.2.5 X-Gal staining 

For X-Gal (5-bromo-4-chloro-indolyl-β-D-galactopyranoside) staining, pancreata were 

prepared and embedded in the same way as mentioned before (section 2.2.2.1). However, 
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the fixative used was different. These pancreata were fixed in fixative A (1% 

formaldehyde, 0.2% glutaraldehyde, 0.02% NP-40, in PBS) for 30 minutes and then in 

fixative B (1% formaldehyde, 0.2% glutaraldehyde, 0.2% NP-40, 0.1% sodium 

deoxycholate, in PBS) for 1 hour at 4°C. From the embedded pancreata, 8 μm sections 

were cut. The cryosections were fixed again in ice-cold 0.2% glutaraldehyde (in PBS) for 

10 minutes. Next, the sections were washed in X-Gal staining buffer (2mM MgCl2, 

0.02% NP-40, 0.01% sodium deoxycholate, in PBS) at room temperature (3x5minutes). 

Then the sections were overlayed with X-Gal staining solution (1mg/mL X-Gal, 5 mM 

K3Fe(CN)6, 5 mM K4Fe(CN)6, 2 mM MgCl2, 0.02% NP-40, 0.01% sodium 

deoxycholate, in PBS) and incubated at 30°C for 24-72 hours in dark. For staining longer 

than 24 hours, the staining solution was changed after every 24 hours. After completion 

of staining, the slides were washed in PBS (2x5minutes) and the sections were mounted 

with Vectashield® mounting medium containing DAPI (Vector Labs). Images of X-Gal 

staining were acquired on Olympus BX 60 fluorescent microscope at 20x magnification. 

2.2.2.6 Imaging 

For quantification of islet cell numbers, images were acquired on Olympus BX 60 

fluorescent microscope at 20x magnification. All other images were acquired using a 40x 

oil-immersion objective on Leica TCS SP5 laser scanning confocal microscope. 

2.2.2.7 Quantification of islet cell numbers 

The whole pancreata were cut into serial sections and every 20th section was stained with 

antibodies against different hormone/hormone combinations. Cells were counted from all 

the islets on every section and an average no./islet was calculated. Quantification data is 

presented as mean±Standard error of mean (SEM). To measure statistical significance, 

unpaired student’s two-tailed t-test was applied and p<0.05 was considered as significant. 

2.2.3 Cell culture 

Mouse insulinoma (Min6) cells were maintained in Dulbecco’s modified eagle medium 

(Gibco®-containing 25 mM glucose and 3.97 mM L-Glutamine) supplemented with 10% 

fetal calf serum, 1X penicillin/streptomycin (Gibco®-100U/mL penicillin and 100 μg/ml 

streptomycin) and beta-mercaptoethanol (5 μL/L). The cells were grown at 37°C in the 

presence of 5% CO2. 
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2.2.4 Immunofluorescent staining of cultured cells 

For immunofluorescent staining, Min6 cells were cultured in four-chamber slides 

(Thermo Scientific). Medium was removed and cells were washed once with PBS. Then, 

the cells were fixed with 3.6% formaldehyde (in PBS) for 20 minutes at room 

temperature. It was followed by washing with PBS (2x5minutes). Next, the cells were 

permeabilized with 0.5% triton x-100 (in PBS) for 10 minutes and washed again with 

PBS (1x5minutes). After washing, the cells were blocked with 10% fetal calf serum (in 

PBS containing 0.1% triton x-100) for 1 hour at room temperature. Then the cells were 

incubated with primary antibodies (diluted in the same blocking solution) at 4°C for 

overnight. Next day, the cells were washed with PBS (3x5minutes). After washing, the 

cells were incubated with the appropriate secondary antibodies (diluted in the same 

blocking solution) for 1 hour at room temperature. Afterwards, the cells were washed 

again with PBS (3x5minutes). The slide chamber was then removed and cells were 

mounted with Vectashield® mounting medium containing DAPI (Vector Labs). 

2.2.5 Molecular Biology 

2.2.5.1 Chromatin immunoprecipitation assay 

For chromatin immunoprecipitation, EZ-ChIP™ kit (Millipore) was used and the 

procedure was performed according to manufacturer’s instructions. Briefly, Min6 cells 

were cultured in 10 cm dish to 90% confluency. Formaldehyde was directly added to 

culture medium (1% final concentration) to fix the cells at room temperature for 10 

minutes. Fixation was stopped by adding glycine to the medium (125 mM final 

concentration) and incubating for 5 minutes at room temperature. All the next steps were 

performed on ice. Cells were washed twice in PBS and collected in 2 mL PBS containing 

protease inhibitor cocktail. After centrifugation the pellet was resuspended in 1 mL lysis 

buffer. This cell suspension was sonicated to shear the crosslinked DNA to a fragment 

length of ≈200-1000 base pairs. The sonicated suspension was centrifuged to remove the 

insoluble material. After centrifugation, 100 μL of the supernatant was diluted to 1 mL 

with dilution buffer containing protease inhibitor cocktail. The diluted chromatin was pre-

cleared by incubating with Protein G Agarose beads for 1 hour at 4°C on a rotating 

platform. At this step, 1% of the chromatin sample was set aside as input. The rest of 

precleared chromatin was incubated, with 10 μg of rabbit anti-Pax6 antibody or 10 μg of 
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normal rabbit IgG (Millipore), for overnight at 4°C on a rotating platform. Next day the 

antibody-protein-DNA complexes were collected by incubating with Protein G Agarose 

beads for 1 hour at 4°C with rotation. The complexes were then washed through a series 

of wash buffers and eluted with elution buffer. Finally, the protein-DNA crosslinks were 

removed and the DNA was purified. This purified DNA was then used for PCR.  

To check the binding of Pax6 with various promoter regions, PCR was performed 

with the primer sets mentioned in Table 2.4. Reaction was carried out in eppendorf 

Mastercycler®. PCR reaction composition and the program used were as follows: 

Reaction component Volume (μL) 

DNA 2.0 

H2O 12.6 

5X PCR buffer 4 

20mM dNTP 0.2 

Primer (forward) 0.4 

Primer (reverse) 0.4 

Go Taq® DNAPolymerase 

(5U/μL) (Promega) 
0.4 

PCR program used was as follows: 

Initial denaturation 94°C - 3 minutes, 35 cycles (denaturation 94°C – 20 seconds, 

annealing 59°C – 30 seconds, extension 72°C – 30 seconds), final extension 72°C – 5 

minutes. 

2.2.5.2 Tail DNA isolation 

Genomic DNA was isolated from tail-tip biopsy samples. For tissue lysis, 0.5 mL tail 

lysis buffer (100 mM Tris-pH 8.0, 5 mM EDTA, 0.2% SDS, 200 mM NaCl, 

supplemented with 250 μg/ml Proteinase K) was added to each cut-tail taken in a 1.5 mL 

eppendorf tube. Samples were then incubated at 55°C for overnight on a shaker. Next 

day, the samples were centrifuged at 13,000 rpm for 6 minutes. The supernatant from 

each sample was transferred to a new 1.5 mL eppendorf tube. Next, to precipitate the 

DNA, 0.5 mL isopropanol was added to each sample and inverted several times to mix 

well. This was followed by centrifugation at 13,000 rpm for 6 minutes to collect the DNA 
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pellets. Supernatant was discarded and 0.5 mL 70% ethanol was added to each DNA 

pellet for washing. Next, the samples were centrifuged again at 13,000 rpm for 6 minutes. 

Supernatant was discarded and pellets were allowed to air-dry. Dried pellets were 

dissolved in autoclaved Milli-Q water (60 μL per pellet) and stored at 4°C. 

2.2.5.3 Genotyping of mice 

Genotyping of mouse lines was done by PCR using the DNA isolated from tails. 

Pax6wild-type, floxed allele, and deleted allele was detected by using primer number 1, 

2, and 3 (Table 2.6 - as used in Piñon et al., 2008). Cre transgene and YFP reporter 

transgene was detected by using primer number 4/5 and 6/7, respectively (Table 2.6). 

Reactions were carried out in eppendorf Mastercycler®. The same PCR reaction 

composition was used for all genotyping PCRs but different PCR programs were used as 

follows: 

Reaction component Volume (μL) in total of 30 μL 

H2O 22.3 

5X buffer 6.0 

dNTPs (20mM) 0.38 

Primers (10 μM)  0.16 (each) 

Go Taq® DNAPolymerase 

(5U/μL) (Promega) 
0.16 

Template DNA 1 

Pax6-flox PCR program: 

Initial denaturation 95°C - 4 minutes, 30 cycles (denaturation 95°C – 50 seconds, 

annealing 58°C – 50 seconds, extension 68°C – 50 seconds), final extension 72°C – 10 

minutes. 

Cre PCR program: 

Initial denaturation 95°C - 4 minutes, 30 cycles (denaturation 95°C – 30 seconds, 

annealing 57°C – 30 seconds, extension 65°C – 30 seconds), final extension 72°C – 10 

minutes. 
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GFP PCR program: 

Initial denaturation 95°C - 4 minutes, 35 cycles (denaturation 94°C – 30 seconds, 

annealing 62°C – 30 seconds, extension 72°C – 30 seconds), final extension 72°C – 10 

minutes. 

2.2.5.4 Total RNA isolation, cDNA synthesis, and qRT PCR 

For RNA isolation, pancreata were placed in RNAlater (Qiagen) immediately after 

removal. Pancreata were kept in RNAlater for overnight at 4°C. Next day they were 

either used for RNA isolation or transferred to -20°C for long-term storage. For total 

RNA isolation, pancreatic tissue was first disrupted using Tissuelyser (Qiagen). Total 

RNA was then extracted from the tissue lysate by using RNeasy Plus Mini Kit (Qiagen) 

according to the manufacturer’s instructions. RNA quality was checked by spectrometry 

on NanoDrop (Peqlab) and by agarose gel electrophoresis. For cDNA synthesis, 

SuperScript II Reverse Transcriptase Kit (Invitrogen) was used according to the 

manufacturer’s instructions. Finally, this cDNA was used for quantitative real-time PCR 

using primers mentioned in Table 2.3. Beta-glucuronidase (Gusb) was used as a house 

keeping control. PCR was carried out in Mastercycler® realplex2 (Eppendorf) using 

SYBR Green Master Mix (Qiagen) according to manufacturer’s instructions. 

2.2.5.5 Generation of calcium competent cells 

A single colony of E. coli (DH5α) was inoculated into 5 mL LB medium (Table 2.9) and 

incubated for overnight at 37°C on shaker. Next day this 5 mL pre-culture was added to 

50 mL LB medium and incubated further at 37°C on shaker until an OD600 of 0.5 was 

achieved. Then the bacteria were pelleted by centrifugation at 4°C (3000g, 8 minutes). 

The pellet was resuspended in 25 mL ice-cold CaCl2 (50 mM) and incubated on ice for 

30 minutes. It was followed by centrifugation again at 4°C (3000g, 4 minutes). 

Supernatant was discarded and the pellet was resuspended in 2.5 mL ice-cold CaCl2 (50 

mM). For storage, 1 mL of 50% glycerol was added and the competent cells were stored 

in 200 μL aliquots at -80°C. 

2.2.5.6 Transformation of competent cells 

Competent cells stored at -80°C were thawed on ice for 10 minutes. Purified plasmid 

DNA (50 ng) or ligation mixture (10 μL) was added to competent cells and incubated on 
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ice for 30 minutes. Next, the competent cells were given a heat shock at 42°C for 90 

seconds. After heat shock cells were put back on ice for 2 minutes. Then 800 μL LB 

medium was added to transformed competent cells and the cells were incubated at 37°C 

for 1 hour on shaker. Finally, the transformed cells were plated on LB agar plates 

supplemented with appropriate selection antibiotic. The plates were incubated at 37°C for 

overnight. Next day the plates were observed for the appearance of resistant clones. 

2.2.5.7 Plasmid DNA isolation 

Plasmid DNA from bacteria was isolated by using the Qiagen Mini prep and High Speed 

Midi prep kits. DNA concentration was measured by spectrometry using NanoDrop 

(Peqlab). 

2.2.5.8 Agarose gel electrophoresis and gel extraction of DNA fragments 

Depending on the size of DNA fragments to be analyzed, a 0.8 – 2% agarose gel was 

prepared. Agarose (Roti®garose-Roth) was dissolved by melting in 0.5X TBE buffer 

(44.5 mMTris-base, 44.5 mM boric acid, 1 mM EDTA-pH 8.0). To visulaize the DNA 

after electrophoresis, ethidium bromide was directly added to the gel at a final 

concentration of 0.2 μg/mL. DNA was mixed with 6X DNA loading dye (30% v/v 

glycerol, 0.25% bromophenol blue, 0.25% xylene cyanol FF) before loading. 

GeneRuler™ 1 kb and 100 bp DNA ladders were used for estimation of band sizes. TBE 

(0.5X) was used as a running buffer and electrophoresis was performed at 4-5 volts per 

cm. Afterwards the DNA fragments were visualized under a UV transilluminator. For gel 

extraction, the DNA band of the required size was cut out of the gel and purified by using 

Gene Clean® Spin Kit (MPIbio), according to the manufacturer’s instructions. 

2.2.5.9 Restriction digestion and dephosphorylation 

For restriction digestion, 1 to 5 μg of plasmid DNA or purified PCR product was 

incubated with 20 to 100 units of restriction enzyme (New England BioLabs) and 

appropriate buffer in the presence or absence of bovine serum albumin. The digestion was 

carried out at 37°C for 4 to 8 hours. For dephosphorylation of vector backbone antarctic 

phosphatase (New England BioLabs) and the associated buffer were directly added to the 

restriction digest mixture (10U/μg of DNA) and incubated for 1 hour more at 37°C. 
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2.2.5.10 Ligation 

Ligation was carried out using T4 DNA ligase at 16°C for overnight. Ligation mixture 

contained: 2 μL vector DNA (50 ng/μL), 6 μL insert DNA (50 ng/μL), 1 μL ligation 

buffer (10X), 1 μL T4 DNA ligase (400 U/μL). Next day the ligation mixture was directly 

used for transformation. 

2.2.5.11 Generation of Pax6 overexpression construct 

Pax6cDNA was amplified by PCR using forward and reverse primers containing SalI 

restriction site (Table 2.5). CMV-Pax6 plasmid (Walther and Gruss, 1991) was used as a 

template. Reaction was carried out in eppendorf Mastercycler®. Composition of the 

reaction mixture and PCR program used was as follows: 

Reaction component Volume (μL) in total of 50 μL 

H2O 40.5 

10X buffer 5 

dNTPs (20mM) 0.5 

Primer-forward (10 μM) 1 

Primer-reverse (10 μM) 1 

Template DNA (100 ng/μL) 1 

Taq DNA Polymerase (1U/μL) 

(Roche) 
1 

PCR program used: 

Initial denaturation 95°C - 4 minutes, 35 cycles (denaturation 95°C – 40 seconds, 

annealing 60°C – 40 seconds, extension 72°C – 90 seconds), final extension 72°C – 20 

minutes. 

PCR product was purified by gel extraction and digested with SalI restriction enzyme. 

The destination vector pJojo (Collombat et al., 2007) was digested with XhoI and 

dephosphorylated to prevent self-ligation. The digested PCR product and vector backbone 

were again purified by gel extraction. This was followed by the overnight ligation of PCR 

product and vector backbone. Next day the ligation mixture was transformed into 

competent E. coli (DH5α) and the transformed cells were plated on LB-agar plates 
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supplemented with 50 μg/mL ampicillin. The plates were incubated at 37°C for overnight. 

Next day 10 single colonies were picked and each was inoculated into 5 mL LB medium 

(supplemented with 50 μg/mL ampicillin) in a sterile tube. The tubes were incubated on 

shaker at 37°C for overnight. Next day the plasmid DNA was isolated. Finally, the correct 

orientation and sequence of the insert was confirmed by sequencing with the primers 

(3/4) mentioned in Table 2.5. For sequencing, Seqlab (Goettingen) sequencing service 

was used. The clone with the correct orientation and sequence was linearized by digesting 

with SalI restriction enzyme and purified by gel extraction. This purified linear construct 

was then used for pronuclear injection to generate the transgenic mouse lines. 
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3. Results 

3.1 Analysis of beta-cell-specific Pax6 knockout pancreata 

3.1.1 Inducible conditional knockout of Pax6 in the adult pancreatic beta-cells 

Pax6 classical as well as pancreas-specific conditional knockout mice die shortly after 

birth. Death of these mice results from an overt diabetic phenotype that points to the 

essential role of Pax6 in the maintenance of beta-cell function (Ashery-Padan et al., 

2004). However, due to this early postnatal lethality it is impossible to analyze the role of 

Pax6 in adult beta-cells. For this reason, we decided to generate inducible Pax6 knockout 

(KO) mice where Pax6 is ablated upon tamoxifen induction in beta-cells alone without 

affecting other endocrine cell types. In order to generate the mice with the required 

genotype, Pax6 floxed mouse line (Pax6fl/fl) (Ashery-Padan et al., 2000) was crossed with 

RIP-CreER mouse line (Dor et al., 2004). Secondarily, we decided to incorporate the YFP 

reporter that allows the identification and tracing of Cre-recombined cells (Figure 3.1). 

This was achieved by including an additional cross with R26-YFP reporter mouse line 

(Srinivas et al., 2001). Mice with the right genotype were injected with tamoxifen and the 

ablation of Pax6 from beta-cells was confirmed by double immunofluorescence staining 

(Figure 3.2a-d). The efficiency of Pax6 ablation from beta-cells was nearly 95% as 

indicated by quantification of the Pax6- insulin+ cells (Figure 3.2e). A similar labeling 

efficiency was obtained with the YFP reporter (Figure 3.2f). It was further confirmed by 

immunofluorescence staining that Pax6 is specifically deleted from the YFP labeled cells 

and the YFP- insulin+ cells that either escape recombination and/or arise later as a result 

of regeneration are positive for Pax6 expression (Figure 3.2g-j). Thus, Cre is active in 

95% of beta-cells and the ablation of Pax6 and labeling with the YFP reporter are 

faithfully linked to each other. 

3.1.2 Development of diabetes in the beta-cell-specific Pax6 KO mice 

As Pax6 has been shown to be implicated in the control of beta-cell function, an increase 

in the level of blood glucose was expected (Ashery-Padan et al., 2004; Gosmain et al., 

2012a). Therefore, we monitored the non-fasting blood glucose level in control and beta-

cell specific Pax6 KO mice following the tamoxifen injection. As compared to the control 

mice, blood glucose level started to rise in the KO mice within a week after first injection  
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Figure 3.1: Lineage tracing with R26-YFP reporter mouse line. (a) The “stop cassette” 

flanked by loxP sites includes a trascriptional stop that does not allow the expression of 

YFP in the absence of Cre activity. (b) Following Cre-mediated recombination “stop” is 

removed allowing the permanent expression of YFP in Cre expressing cells. (c) YFP 

Labeling of alpha-cells expressing Cre under glucagon promoter. (d) YFP labeling of 

beta-cells expressing Cre under rat insulin II promoter (RIP). (R26=Rosa26; SA=splice 

acceptor) 
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Figure 3.2: Beta-cell-specific ablation of Pax6. Double immunofluorescence staining of 

pancreatic cryosections from 2 month old mice at 4 days (a-d) or 4 weeks (g-j) after 

tamoxifen induction. Pax6 expression is lost from majority of the insulin+ cells (c, d). 

Ablation of Pax6 is specific to YFP labeled cells (i,j) as YFP- insulin+ cells continue to 

express Pax6 (arrows i,j). Quantification of Pax6- insulin+ (e) and YFP+ insulin+ (f) cells 

in the pancreata of 2 month old mice at 4 days after tamoxifen induction (n=3). Cre-

mediated recombination/Pax6 ablation takes place in nearly 95% of beta-cells. Error bars 

represent SEM. 
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of tamoxifen. At four weeks after injection the blood glucose level in the KO mice was 

≈450 mg/dL on average compared to ≈100 mg/dL average level in the control mice. At 

this time point a high glucose level was also detected in the urine of KO mice. Hence, the 

ablation of Pax6 from beta-cells leads to an overt diabetic phenotype and supports the 

essential role of Pax6 in the maintenance of adult beta-cell function. 

3.1.3 Expression of pancreatic endocrine hormones in the beta-cell-specific Pax6 KO 

mice 

In the classical and pancreas-specific conditional Pax6 KO mice as well as in the 

Pax6sey/sey mutant mice, the number of ghrelin+ cells is highly elevated and that of insulin+ 

cells is decreased (Ashery-Padan et al., 2004; Heller et al., 2005; Kordowich et al., 2011). 

In the adult beta-cell-specific Pax6 KO mice we also found an increase in the ghrelin+ cell 

population and a decrease in the insulin+ cell population. This change was, however, 

gradual. Following tamoxifen induction, there was a steady increase in the number of 

ghrelin+ cells (Figure 3.3a and 3.4) with a concomitant decrease in the number of  insulin+ 

cells over time (Figure 3.3a and 3.5). This inverse relationship over time indicated a 

possible direct conversion of one cell type into the other. A decrease in the expression of 

insulin and increase in the expression of ghrelin was also confirmed by qRT-PCR (Figure 

3.3b,c). The number of other endocrine cell types, including glucagon, somatostatin, and 

PP producing cells, was increased in the pancreata of beta-cell-specific Pax6 KO mice 

(Figure 3.6). 

3.1.4 Expression of beta-cell related transcription factors in the pancreata of beta-

cell-specific Pax6 KO mice 

Apart from Pax6, several other transcription factors are involved in the maintenance of 

mature beta-cell function. By immunofluorescence staining, we checked the expression of 

beta-cell related transcription factors MafA, Pdx1, Nkx6.1, Isl1, and Rfx6. MafA, Pdx1, 

and Nkx6.1 are specifically expressed in mature beta-cells while Isl1 and Rfx6 are 

expressed in all endocrine cells of the islet (Ahlgren et al., 1997; Ahlgren et al., 1998; 

Zhang et al., 2005; Gauthier et al., 2007; Smith et al., 2010).  In beta-cell-specific Pax6 

KO islets the expression of MafA was absent from most of the insulin+ cells (Figure 3.7). 

Expression of Pdx1, Isl1 and Rfx6 was not affected in the KO islets (Figure 3.7 and 3.8). 

Expression of Nkx6.1 was not affected in the early days after KO induction but was  
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Figure 3.3: Inverse relationship of ghrelin and insullin expression in the pancreata 

of beta-cell-specific Pax6 KO mice. (a) Quantification of ghrelin+ and insulin+ cells in 

the islets of beta-cell-specific Pax6 KO mice (injected at 1.5 month of age) at different 

time points after tamoxifen induction (n=3). (b,c) Quantitative RT-PCR of insulin and 

ghrelin mRNA in the pancreata of 4.5 month old mice at 3 months after tamoxifen 

induction (n=2). Error bars represent SEM; *p<0.05. 
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Figure 3.4: Gradual increase in the population of ghrelin expressing cells in the islets 

of beta-cell-specific Pax6 KO mice. Immunofluorescence staining of pancreatic 

cryosections from 4 week old mice at 7 days after tamoxifen induction (a-d) and 9 week 

old mice at 6 weeks after tamoxifen induction (e,f). (a,b) Ghrelin+ cells are not detected in 

the control islets. (c,d) At 7 days after tamoxifen induction few YFP+ Pax6-deficient cells 

express ghrelin in the KO islets. (e,f) At 6 weeks after tamoxifen induction majority of 

the YFP+ Pax6-deficient cells express ghrelin in the KO islets. 
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Figure 3.5: Gradual decrease in the population of insulin expressing cells in the islets 

of beta-cell-specific Pax6 KO mice. Immunofluorescence staining of pancreatic 

cryosections from 4 week old mice at 7 days after tamoxifen induction (a-d) and 9 week 

old mice at 6 weeks after tamoxifen induction (e, f). (a, b) In the control islets, all of the 

YFP+ cells express insulin. (c, d) At 7 days after tamoxifen induction few YFP+ Pax6-

deficient cells are negative for insulin expression. (e, f) At 6 weeks after tamoxifen 

induction majority of the YFP+ Pax6-deficient cells are negative for insulin expression. 
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Figure 3.6: Changes in the glucagon+, somatostatin+, and PP+ cell population in the 

islets of beta-cell-specific Pax6 KO mice. Immunofluorescence staining of pancreatic 

cryosections (a-f) and quantification of glucagon+, somatostatin+, and PP+ cells (g) from 2 

month old mice at 4 weeks after tamoxifen induction (n=3). Glucagon+, somatostain+, and 

PP+ cells are increased in number in the beta-cell-specific Pax6 KO islets. Error bars 

represent SEM; *p<0.05. 
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Figure 3.7: Expression of beta-cell related transcription factors in the islets of beta-

cell-specific Pax6 KO mice. Double immunofluorescence staining of pancreatic 

cryosections from 2.5 month old mice at 2 weeks after tamoxifen induction. Expression 

of MafA is lost (e) and that of Pdx1, Nkx6.1, and Isl1 (f-h) is maintained in the islets of 

beta-cell-specific Pax6 KO pancreata. 

RIP-CreER; Pax6 +/+ RIP-CreER; Pax6 fl/fl 

In
su

lin
 M

af
A

 
In

su
lin

 P
dx

1 
In

su
lin

 N
kx

6.
1 

In
su

lin
 Is

l1
 

a e 

b f 

c g 

d h 



Results                                                                                                            51 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.8: Expression of Rfx6 in the islets of beta-cell-specific Pax6 KO mice. 

Immunofluorescence staining of pancreatic cryosections from 6 month old mice at 4.5 

month after tamoxifen induction. Expression of Rfx6 is maintained in the YFP+ Pax6-

deficient cells of the beta-cell-specific Pax6 KO islets (c,d). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Expression of beta-cell related transcription factors in the pancreata of 

beta-cell-specific Pax6 KO mice. Quantitative RT-PCR of MafA, Nkx6.1, Pdx1, and 

Nkx2.2 mRNA in the pancreata of 4.5 month old mice at 3 months after tamoxifen 

induction (n=2). Error bars represent SEM. 
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reduced at the later stage (Figure 3.7 and 3.9). The expression of MafA, Pdx1, Nkx6.1, 

and Nkx2.2 was also checked by qRT-PCR. Here the expression of MafA and Nkx6.1 

was found to be reduced, Pdx1 expression was slightly reduced and that of Nkx2.2 not 

affected at all (Figure 3.9). 

3.1.5 Expression of Glut2 and GLP-1 receptor is lost after ablation of Pax6 in beta-

cells 

Glut2 is a glucose transporter in beta-cells that plays an important role in glucose-

stimulated insulin secretion. Loss of Glut2 disturbs the first phase of glucose-stimulated 

insulin secretion (Guillam et al., 1997). Shortly after tamoxifen induction the expression 

of Glut2 was found to be lost in the islets of beta-cell-specific Pax6 KO mice (Figure 

3.10). Additionally, when checked in the presence of YFP reporter, Glut2 expression was 

found to be lost in YFP+ as well as in the YFP- insulin+ cell population of the KO islets 

(Figure 3.11). This indicates that the expression of Glut2 is either affected by Pax6 

ablation directly and/or indirectly by the resulting hyperglycemia. Effect of 

hyperglycemia on Glut2 expression has been reported before (Thorens et al., 1992). 

Glucagon-like peptide 1 (GLP-1) released from the intestinal L cells is known to 

promote insulin secretion from beta-cells in a glucose dependent manner. The effect of 

GLP-1 is mediated through the GLP-1 receptor that is expressed on beta-cells 

(MacDonald et al., 2002). In beta-cell-specific Pax6 KO islets the expression of GLP-1 

receptor was lost. This loss was specific to the YFP labeled Pax6-deficient cells and a 

normal expression was found in the YFP- insulin+ cells (Figure 3.12). Loss of Glut2 and 

GLP-1 receptor expression indicates an obvious defect in the glucose-stimulated insulin 

secretion in the pancreata of beta-cell-specific Pax6 KO mice. 

3.1.6 Defective proinsulin processing in Pax6-deficient beta-cells 

In beta-cells insulin is synthesized as a prohormone that is cleaved by prohormone 

convertases 1/3 and 2 (PC1/3 and PC2) to generate mature insulin peptide and C-peptide. 

C-peptide is released together with insulin at an equimolar concentration (Vasic and 

Walcher, 2012; Goodge and Hutton, 2000). A defect of proinsulin processing can 

decrease the amount of C-peptide produced and leads to a concomitant increase in the 

amount of proinsulin. We checked the expression of PC1/3, PC2, and C-peptide in the 

islets of beta-cell-specific Pax6 KO mice. Expression of PC1/3 and PC2 was unchanged  
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Figure 3.10: Expression of Glut2 in the islets of beta-cell-specific Pax6 KO mice. 

Double immunofluorescence staining of pancreatic cryosections from 2.5 month old mice 

at 2 weeks after tamoxifen induction. Glut2 is expressed in beta-cells of the control islets 

(a). In the KO pancreata Glut2 expression is lost in the entire islet (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Loss of Glut2 expression due to direct and/or indirect effect of Pax6 

ablation in the islets of beta-cell-specific Pax6 KO mice. Double immunofluorescence 

staining of pancreatic cryosections from 2 month old mice at 4 weeks after tamoxifen 

induction. In the control islets, expression of Glut2 is detected in both YFP+ and YFP- 

insulin+ cells (a-c). In the beta-cell-specific Pax6 KO islets, Glut2 expression is lost in the 

YFP labeled Pax6-deficient cells as well as in majority of the YFP- insulin+ cells (aroows 

d-f). Rarely, some YFP- insulin+ cells do express Glut2 in the KO islets (arrowhead d-f). 
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Figure 3.12: Expression of GLP-1 receptor in the islets of beta-cell-specific Pax6 KO 

mice. Double immunofluorescence staining of pancreatic cryosections from 4 month old 

mice at 6 weeks after tamoxifen induction. GLP-1 receptor is expressed in both YFP+ and 

YFP- insulin+ cells in the control islets (a-d). In the beta-cell-specific Pax6 KO islets, 

GLP-1 receptor expression is lost from the YFP labeled Pax6-deficient cells but 

maintained in the YFP- insulin+ cells (e-h). 

RIP-CreER; 
R26-YFP; Pax6fl/fl 

RIP-CreER; 
R26-YFP; Pax6+/+ 

Y
FP

 
G

L
P-

1 
R

ec
ep

to
r 

M
er

ge
d 

In
su

lin
 

a 

b 

c 

d 

e 

f 

g 

h 



Results                                                                                                            55 

 

in the Pax6-deficient YFP labeled cells including those cells that had even stopped the 

expression of insulin (Figure 3.13). Interestingly, however, the expression of C-peptide 

was lost in the Pax6-deficient YFP labeled cells but was maintained in the YFP- insulin+ 

cells (Figure 3.14). This may indicate a defect in the normal processing of proinsulin that 

is not primarily due to an altered expression of prohormone convertases. 

To point out the cause of defective proinsulin processing, we then checked the 

expression of proSAAS and 7B2. ProSAAS and 7B2 are the regulatory peptides of PC1/3 

and PC2 respectively. proSAAS has been shown to inhibit the activity of PC1/3 and 7B2 

has been shown to increase the activity of PC2 (Helwig et al., 2011; Liu et al., 2012). We 

found that the expression of both proSAAS and 7B2 was highly upregulated in the Pax6-

deficient YFP labeled cells of the beta-cell-specific Pax6 KO islets but the expression 

was similar to control islets in the YFP- insulin+ cells (Figure 3.15 and 3.16). 

Furthermore, this increase in the expression of proSAAS and 7B2 was not immediate but 

gradual after the induction of Pax6 ablation. In the early days after tamoxifen induction, 

only few YFP labeled cells showed upregulated expression of proSAAS and 7B2. 

However, after long time following the tamoxifen induction nearly all of the YFP labeled 

cells expressed high levels of proSAAS and 7B2 (Figure 3.17). 

Therefore, the defective proinsulin processing in Pax6-deficient beta-cells is mainly 

due to the increased level of proSAAS that would inhibit the activity of PC1/3. 

3.1.7 Ghrelin+ cells originate from beta-cells in the beta-cell-specific Pax6 KO mice 

Previous studies have shown that the ghrelin+ cell population is expanded in the Pax6 KO 

and Pax6sey/sey pancreata (Heller et al., 2005; Kordowich et al., 2011). This led to the 

conclusion that Pax6 somehow antagonizes the development of ghrelin+ cells. As 

compared to the adult pancreas, ghrelin+ cells are normally present at a higher number in 

the embryonic pancreas and further occur as a ghrelin only or ghrelin-glucagon double 

positive cell population (Prado et al., 2004). This makes it hard to exactly define the 

origin of upregulated ghrelin+ cells in the embryonic pancreas of Pax6 KO mice. 

Furthermore, as the Pax6 KO mice die shortly after birth (St-Onge et al., 1997; Ashery-

Padan et al., 2004), it makes it impossible to analyze the ghrelin+ cells over a long period 

of time. 
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Figure 3.13: Expression of PC1/3 and PC2 in the islets of beta-cell-specific Pax6 KO 

mice. Double immunofluorescence staining of pancreatic cryosections from 2 month old 

mice at 4 weeks after tamoxifen induction. In the control islets, expression of PC1/3 (a-c) 

and PC2 (g-i) is detected in both YFP+ and YFP- insulin+ cells. In the beta-cell-specific 

Pax6 KO islets, PC1/3 (d-f) and PC2 (j-l) expression is maintained in the YFP labeled 

Pax6-deficient cells, including those cells that have lost the expression of insulin. 
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Figure 3.14: Expression of C-peptide in the islets of beta-cell-specific Pax6 KO mice. 

Double immunofluorescence staining of pancreatic cryosections from 2 month old mice 

at 4 weeks after tamoxifen induction. In the control islets, expression of C-peptide is 

detected in both YFP+ and YFP- insulin+ cells (a-c). In the beta-cell-specific Pax6 KO 

islets, C-peptide expression is lost from the YFP labeled Pax6-deficient cells but 

maintained in the YFP- insulin+ cells (d-f). 
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Figure 3.15: Expression of proSAAS in the islets of beta-cell-specific Pax6 KO mice. 

Double immunofluorescence staining of pancreatic cryosections from 4 month old mice 

at 6 weeks after tamoxifen induction. In the control islets, expression of proSAAS is low 

in the insulin+ cells (a-d). In the beta-cell-specific Pax6 KO islets, expression of 

proSAAS is highly upregulated in the YFP labeled Pax6-deficient cells (e,f) but remains 

low in the YFP- insulin+ cells (g,h). 
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Figure 3.16: Expression of 7B2 in the islets of beta-cell-specific Pax6 KO mice. 

Double immunofluorescence staining of pancreatic cryosections from 4 month old mice 

at 6 weeks after tamoxifen induction. In the control islets, expression of 7B2 is low in the 

insulin+ cells (a-d). In the beta-cell-specific Pax6 KO islets, expression of 7B2 is highly 

upregulated in the YFP labeled Pax6-deficient cells (e,f) but remains low in the YFP- 

insulin+ cells (g,h). 
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Figure 3.17: Gradual increase in the population of proSAAS and 7B2 expressing 

cells in the islets of beta-cell-specific Pax6 KO mice. Immunofluorescence staining of 

pancreatic cryosections from 4 week old mice at 7 days after tamoxifen induction (a-h) 

and 9 week old mice at 6 weeks after tamoxifen induction (i-l). Expression of proSAAS 

(a,b) and 7B2 (c,d) is very low in the YFP labeled beta-cells of the control islets. At 7 

days after tamoxifen induction few YFP labeled Pax6-deficient cells start to express 

proSAAS (e,f) and 7B2 (g,h) at a higher level in the KO islets. At 6 weeks after 

tamoxifen induction majority of the YFP labeled Pax6-deficient cells express high levels 

of proSAAS (i,j) and 7B2 (k,l) in the KO islets. 
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Therefore, an important aim of generating the adult beta-cell-specific Pax6 KO mice 

was to analyze the ghrelin+ cell population in a greater detail. Similar to the previous 

studies of Pax6 KO, we found an increase in the number of ghrelin+ cells in the beta-cell-

specific Pax6 KO islets compared to the control islets where ghrelin expression was 

undetectable. Double immunofluorescence staining of ghrelin with insulin showed some 

ghrelin-insulin co-positive cells indicating the possible origin of ghrelin+ cells from 

insulin producing beta-cells (Figure 3.18). To confirm it further, we checked the 

expression of various beta-cell related factors in the ghrelin+ cells. Ghrelin+ cells 

expressed Pdx1, Nkx6.1, and Isl1 but were negative for the expression of Pax6 (Figure 

3.19). Ghrelin expression was also co-localized with that of islet amyloid polypeptide 

(IAPP) and PC1/3 but was never co-localized with the expression of glucagon (Figure 

3.20). The absence of Pax6 and the presence of several beta-cell related markers in the 

ghrelin+ cells, therefore, strongly indicated the direct conversion of Pax6-deficient beta-

cells into ghrelin expressing cells. Additionally, we noticed that the expression of IAPP 

was completely normal in the islets of beta-cell-specific Pax6 KO mice (Figure 3.20a,d). 

IAPP is another peptide hormone released from beta-cells that can modify the secretion 

and function of insulin (Hull et al., 2004). 

Lastly, we took advantage of the YFP reporter system to exactly define the origin of 

ghrelin+ cells in the beta-cell-specific Pax6 KO islets. As expected, all of the ghrelin 

expression co-localized with the YFP labeled Pax6-deficient beta-cells. Most of these 

YFP+ ghrelin+ cells were negative for the expression of insulin but it was possible to find 

many cells that were ghrelin-insulin-YFP triple positive indicating the intermediate 

conversion state from insulin to ghrelin expressing cell (Figure 3.21d-f). Based on these 

observations, we concluded that the ablation of Pax6 from beta-cells results in the 

downregulation of insulin expression and upregulation of ghrelin expression in these 

cells. 

3.1.8 Tracing the fate of Pax6-deficient beta-cells over long period of time 

So far we observed that the beta-cells lose their mature phenotype upon deletion of Pax6 

and start the expression of ghrelin. Now the interesting question is that what happens to 

these immature Pax6 deficient beta-cells over time. As mentioned before, the ghrelin 

expression gradually increased following the ablation of Pax6 (Figure 3.3a and 3.4).  
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Figure 3.18: Co-expression of ghrelin with insulin in the islets of beta-cell-specific 

Pax6 KO mice. Double immunofluorescence staining of pancreatic cryosections from 2.5 

month old mice at 2 weeks after tamoxifen induction. Ghrelin+ cells are not detected in 

the control islets (a-c). In the beta-cell-specific Pax6 KO islets, ghrelin expression is 

upregulated and some of the ghrelin+ cells co-express insulin (arrows d-f). 
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Figure 3.19: Expression of beta-cell related transcription factors in the ghrelin+ cell 

population of the beta-cell-specific Pax6 KO islets. Double immunofluorescence 

staining of pancreatic cryosections from 2.5 month old mice at 2 weeks after tamoxifen 

induction. Ghrelin expression is not detected in the control islets (a-d). In the beta-cell-

specific Pax6 KO islets, ghrelin expression is upregulated and these ghrelin+ cells are 

negative for Pax6 (e) but positive for Isl1 (f), Pdx1 (g), and Nkx6.1 (h) expression. 
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Figure 3.20: Co-expression of ghrelin with beta-cell related factors in the islets of 

beta-cell-specific Pax6 KO mice. Double immunofluorescence staining of pancreatic 

cryosections from 2.5 month old mice at 2 weeks after tamoxifen induction. Ghrelin+ 

cells are not detected in the control islets (a-c). In the beta-cell-specific Pax6 KO islets, 

ghrelin expression is upregulated and these ghrelin+ cells co-express IAPP (d) and PC1/3 

(e). Also note that IAPP and PC1/3 expression is maintained in the KO islets (d,e). 

Ghrelin+ cells never co-express glucagon in the beta-cell-specific Pax6 KO islets (f). 
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Figure 3.21: Ghrelin+ cells originate from beta-cells in the beta-cell-specific Pax6 KO 

islets. Double immunofluorescence staining of pancreatic cryosections from 4 month old 

mice at 6 weeks after tamoxifen induction (a-f) and 6 month old mice at 4.5 months after 

tamoxifen induction (g-i). Ghrelin expression is not detected in the control islets (a-c). In 

the beta-cell-specific Pax6 KO islets, ghrelin expression is upregulated in the YFP 

labeled Pax6-deficient cells (d-f). Most of the ghrelin+ cells have lost the expression of 

insulin but some are still insulin+ (arrows d-f). Some YFP+ cells in the KO islets are 

negative for both insulin and ghrelin (arrowheads d-f). At 4.5 months after tamoxifen 

induction many of the YFP+ cells are negative for both insulin and ghrelin expression 

(arrowheads g-i). 
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Quantification of YFP+ ghrelin+ cells further clarified that ghrelin expression is 

upregulated in majority, but not all, of the YFP+ Pax6-deficient beta-cells (Figure 3.22a). 

Moreover, double immunofluorescence staining with insulin and ghrelin antibodies in the 

presence of YFP reporter indicated a population of insulin- ghrelin- YFP+ cells at various 

time points after tamoxifen induction. The number of such cells was, however, higher in 

the islets of those mice that were kept for the longest time-period after tamoxifen 

induction (upto 4.5 month) (Figure 3.21g-i and 3.22b). This indicated two things. Firstly, 

not all of the Pax6-deficient beta-cells upregulate ghrelin expression even after they have 

lost the expression of insulin. Secondly, some of the Pax6-deficient beta-cells that 

upregulate the expression of ghrelin, lose the high level of ghrelin expression over time. 

Another possibility is that the Pax6-deficient beta-cells may change their fate to 

another cell type in the pancreas. However, we found that the YFP labeled cells in the 

beta-cell-specific Pax6 KO islets were positive for Rfx6, and Pdx1 (Figure 3.7 and 3.8) 

and they never co-localized with glucagon, somatostatin, or PP expressing cells (data not 

shown). This means that Pax6-deficient beta-cells retain their endocrine character as they 

are positive for Rfx6 that is an endocrine specific transcription factor in the adult pancreas 

(Smith et al., 2010; Soyer et al., 2010). Secondly, they do not convert to other endocrine 

cell types as they continue to express Pdx1 that is specific to beta-cells in the adult 

pancreas (Ahlgren et al., 1998). 

Next, by quantification we found that the number of YFP labeled cells was always 

less in the beta-cell-specific Pax6 KO islets compared to the control islets when checked 

at few weeks post tamoxifen induction. To identify the reason behind this we checked the 

proliferation and apoptosis in the KO islets. By TUNEL staining we found no increased 

apoptosis in the KO islets (data not shown). However, we observed that the YFP labeled 

Pax6-deficient cells were never positive for Ki67 compared to the control islets where 

YFP+ Ki67+ cells were frequently observed at seven weeks of age (Figure 3.23). From 

this we concluded that the obvious difference in the number of YFP+ cells between the 

control and the KO islets is mainly due to the lack of proliferation in the Pax6-deficient 

beta-cells. 

3.1.9 Ghrelin and Glut2 are not the direct downstream targets of Pax6 

Ghrelin is upregulated and Glut2 downregulated in Pax6 KO beta-cells. To see if Pax6 

directly regulates the expression of these two genes, we searched for the in silico Pax6  
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Figure 3.22: Changes in the ghrelin expressing cell population over time in the islets 

of beta-cell-specific Pax6 KO mice. Quantification of YFP+ ghrelin+ cells in relation to 

the total YFP+ cells (a) and quantification of YFP+ ghrelin- insulin- cells (b) in the islets of 

control and beta-cell-specific Pax6 KO mice injected with tamoxifen at 1.5 months of age 

and analyzed at various time points indicated (n=3). (a) Ghrelin expressing cell 

population in the KO islets expands over time but ghrelin expression is never detected in 

100% of YFP+ Pax6-deficient cells indicating that a certain number of beta-cells do not 

express ghrelin after the loss of Pax6. (b) The number of YFP+ ghrelin- insulin- cells in 

the KO islets increases over time indicating the conversion of some insulin+/ghrelin+ or 

insulin-ghrelin co-positive cells to hormone negative YFP-only positive cells. Error bars 

represent SEM; *p<0.05. 
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Figure 3.23: Pax6-deficient beta-cells do not proliferate. Immunofluorescence staining 

of pancreatic cryosections from 7 week old mice at 4 weeks after tamoxifen induction. 

Ki67+ YFP+ cells are detected in the control islets (a,b) but not in the beta-cell-specific 

Pax6 KO islets (c,d). Quantification of Ki67+ YFP+ cells in the islets of 7 week old mice 

at 4 weeks after tamoxifen induction (n=3). Error bars represent SEM. 
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binding sites in the promoters of these two genes by using MatInspector 

(http://www.genomatix.de/). In silico binding sites were found in both promoters. Next 

we performed ChIP assay to check the actual binding of Pax6 with the identified 

promoter regions. The ChIP assay performed on Min6 cells did not show any binding of 

Pax6 with ghrelin or Glut2 promoter (Figure 3.24). Pax6, however, did show binding to 

the region3 of MafA promoter that was used as a positive control (Raum et al., 2010). 

Therefore, the upregulation of ghrelin and loss of Glut2 in Pax6 KO islets occurs through 

some indirect pathway. 

3.1.10 Beta-cell regeneration in the beta-cell-specific Pax6 KO islets 

Regeneration of beta-cells in the diabetic mouse models is an interesting topic of 

research. As the beta-cell-specific Pax6 KO mice developed hyperglycemia, we were also 

interested in looking for the possibility of beta-cell regeneration. For this purpose, we 

injected the mice (containing YFP reporter) with tamoxifen at 3 weeks and 1.5 months of 

age and analyzed the pancreata at 10 weeks and 4.5 months post tamoxifen induction, 

respectively. During this time period the non-fasting blood glucose level was also 

monitored over regular intervals. In both cases the blood glucose level started to rise until 

it reached a plateau. Afterwards, the blood glucose level slightly decreased in the mice 

that were injected at 3 weeks of age. However, in the mice that were injected at 1.5 

months of age, no decrease was observed in the blood glucose level (Figure 3.25a,b). This 

showed a slight, but not complete, recovery from hyperglycemia in the mice injected at 3 

weeks but not in the mice injected at 1.5 months. 

To check for the regeneration of beta-cells at the cellular level, immunofluorescence 

staining was performed with insulin antibody on the pancreatic sections from these 3 

weeks and 1.5 months injected mice. Immediately following the tamoxifen injection 

nearly 5% of the insulin+ cells were YFP-, showing the cells that escaped recombination 

(data not shown). However, long time after the tamoxifen induction an increase in the 

number of insulin+ YFP- cells was observed indicating some regeneration of beta-cells. 

This increase in the number of insulin+ YFP- cells was higher in the mice that were 

injected at 3 weeks of age as compared to the ones injected at 1.5 months of age (Figure 

3.26a,b). This result is also in accordance with the levels of blood glucose. Thus, we 

conclude that following the ablation of Pax6 some degree of beta-cell regeneration does  
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Figure 3.24: Pax6 does not bind to Glut2 and ghrelin promoters. Min6 cells that 

express Pax6, insulin, and Glut2 were used for ChIP assay (a). Cross-linked chromatin 

from Min6 cells was precipitated by anti-Pax6 antibody and analyzed by PCR for the 

corresponding promoter regions (detail in material and methods) (b). Pax6 interacts with 

MafA promoter region 3 but not with Glut2 and ghrelin promoters. 
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Figure 3.25: Development of diabetes in the beta-cell-specific Pax6 KO mice. 

Measurement of blood glucose level in mice after tamoxifen induction at 3 weeks (a) or 

1.5 month (b) (n=5). Increase in blood glucose level is observed at either age but a slight 

decrease in the long term is only seen in young mice. Error bars represent SEM. 
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b) 
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Figure 3.26: Beta-cell regeneration in the beta-cell-specific Pax6 KO mice. 

Quantification of insulin+ YFP-, YFP+ insulin-, and insulin+ YFP+ cells in the islets of 13 

week old mice at 10 weeks after tamoxifen induction (a) and 6 month old mice at 4.5 

month after tamoxifen induction (b) (n=3). Number of insulin+ YFP- cells is increased at 

either age indicating some beta-cell regeneration. Error bars represent SEM; *p<0.05. 
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occur and this is more pronounced in the young 3 week old mice compared to the older 

1.5 month old mice. 

These new beta-cells may arise from proliferation of existing beta-cells that escaped 

recombination or by transdifferentiation and/or neogenesis (Ahmad, 2013). As compared 

to the control islets an increased proliferation was not observed in the KO islets. 

However, compared to the 1.5 month injected mice an increased proliferation was 

observed in the YFP- insulin+ cells of the 3 weeks injected mice at 4 weeks post 

tamoxifen induction (Figure 3.27). Furthermore, in both young (3 week) and older (1.5 

month) injected mice Pdx1+ glucagon+ cells or MafB+ insulin+ cells were occasionally 

observed (Figure 3.28). Pdx1 expressing glucagon+ cells may indicate alpha-cells 

transdifferentiating to beta-cells (Thorel et al., 2010). On the other hand, MafB expression 

in some insulin+ cells can indicate the presence of newly generated insulin+ cells because 

MafB is expressed in immature insulin+ cells during embryonic development (Artner et 

al., 2007). Therefore, in both young and older Pax6 KO mice new beta-cells may arise 

from alternative sources. 

Regeneration of beta-cells in the beta-cell-specific Pax6 KO mice is, however, not 

sufficient to allow for the complete recovery from diabetes. 

3.2 Analysis of alpha-cell-specific Pax6 knockout pancreata 

3.2.1 Conditional knockout of Pax6 in the pancreatic alpha-cells 

In the classical as well as pancreas-specific conditional Pax6 KO mice the number of 

glucagon positive alpha-cells is drastically reduced (St-Onge et al., 1997; Ashery-Padan 

et al., 2004). It does show the essential role of Pax6 in the development of alpha-cells. 

However, as these mice die shortly after birth it does not allow analyzing the role of Pax6 

in alpha-cells later in life. Furthermore, if Pax6 is knocked out from the whole islet then 

the resulting phenotype cannot be specifically linked to the Pax6-deficient alpha-cells. 

Therefore, to investigate the role of Pax6 in alpha-cell population, we decided to ablate 

Pax6 from alpha-cells alone. In order to generate the alpha-cell-specific Pax6 KO mice, 

Pax6 floxed mouse line (Pax6fl/fl) (Ashery-Padan et al., 2000) was crossed with glucagon-

Cre mouse line (Glu-Cre) (Herrera, 2000). Additionally, we incorporated the YFP 

reporter to identify and trace the Cre-recombined cells (Figure 3.1). This was achieved by 

including an additional cross with R26-YFP reporter mouse line (Srinivas et al., 2001).  
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Figure 3.27: Proliferation in the regenerating population of beta-cells in the beta-

cell-specific Pax6 KO islets. Quantification of Ki67+ insulin+ YFP- cells at 4 weeks after 

tamoxifen induction (n=3). As compared to the control islets, increased proliferation is 

not seen in the KO islets. Error bars represent SEM. 
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Figure 3.28:  Beta-cell regeneration in the beta-cell-specific Pax6 KO islets may 

occur via transdifferentiation and/or neogenesis. Double immunofluorescence staining 

of pancreatic cryosections from 2 month old mice at 4 weeks after tamoxifen induction. 

In the control islets, MafB is not expressed in the insulin+ cells (a,b) and Pdx1 is not 

expressed in the glucagon+ cells (c,d). In some of the beta-cell-specific Pax6 KO islets, 

few insulin+ cells express MafB (arrow e,f) and few glucagon+ cells express Pdx1 (arrow 

g,h) that may indicate neogenesis of beta-cells and/or transdifferentiation of alpha- to 

beta-cells. 
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Successful ablation of Pax6 from the Cre-recombined YFP labeled cells was confirmed 

by double immunofluorescence staining (Figure 3.29a-f). Quantification of YFP+ 

glucagon+ cells showed nearly 70% recombination efficiency with glucagon-Cre mouse 

line (Figure 3.29g). 

3.2.2 Ghrelin+ cells originate from alpha-cells in the alpha-cell-specific Pax6 KO 

pancreata 

3.2.2.1 Co-expression of ghrelin with glucagon in the alpha-cell-specific Pax6 KO 

pancreata 

Similar to the previous Pax6 KO studies (Kordowich et al., 2011; Hart et al., 2013), we 

found an increase in the number of ghrelin+ cells in the alpha-cell-specific Pax6 KO mice. 

As mentioned before, ghrelin+ cells are present at a higher number in the embryonic 

pancreas. At this stage many of the ghrelin+ cells are co-localized with the glucagon+ cells 

(Prado et al., 2004). This makes it difficult to relate the ghrelin upregulation with that of 

Pax6 ablation. Indeed when we analyzed the control and alpha-cell-specific Pax6 KO 

pancreata at P0 we found ghrelin-glucagon double positive as well as ghrelin-glucagon-

YFP triple positive cells in both types of pancreata (Figure 3.30a-h). However, even at 

this stage the number of ghrelin+ cells was increased in the KO pancreata (Figure 3.30i). 

Furthermore, ghrelin+ YFP+ glucagon- cells were only observed in the KO pancreta 

(Figure 3.30e-h). This indicated the cells that had lost the expression of glucagon as a 

result of Pax6 ablation. Loss of glucagon expression in Pax6-deficient alpha-cells was 

expected as Pax6 has been shown to control the transcription of glucagon gene (Sander et 

al., 1997; Gosmain et al., 2010). 

As compared to the embryonic or early postnatal pancreas, in the adult pancreas the 

expression of ghrelin decreases to undetectable level (Wierup et al., 2004). That is why 

the ghrelin positive cells are very rare to observe in the adult pancreas from control mice. 

Accordingly, we detected no ghrelin expression in the adult control islets. In comparison 

to that the number of ghrelin+ cells was increased in the alpha-cell-specific Pax6 KO 

islets and nearly all of these cells were co-localized with the YFP labeled cells confirming 

their origin from Cre-recombined cells (Figure 3.31 and 3.32). Additionally, we observed 

that majority of these ghrelin+ YFP+ cells in the KO islets were negative for the glucagon  
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Figure 3.29: Alpha-cell-specific ablation of Pax6. Double immunofluorescence staining 

of pancreatic cryosections from 1 month old mice. In the control islets, all the YFP+ cells 

express Pax6 and glucagon (a-c). In the alpha-cell-specific Pax6 KO islets, most of the 

YFP+ cells are negative for Pax6 and have lost the expression of glucagon as well (d-f). 

YFP- glucagon+ cells in the KO islets express Pax6 (arrowheads d-f). Rarely YFP+ 

glucagon+ Pax6- cells are also found in the KO islets (arrows d-f). Quantification of YFP+ 

glucagon+ cells in relation to the total glucagon+ cells in 1 month old mice (g) (n=3). 

Nearly 70% of the glucagon+ cells are labeled with YFP. Error bars represent SEM. 
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Figure 3.30: A mixed population of ghrelin and glucagon positive cells at P0. Double 

immunofluorescence staining of pancreatic cryosections at P0. In both the control and 

alpha-cell-specific Pax6 KO islets, YFP-glucagon-ghrelin triple positive cells are 

detectable (arrows a-h). Additionally, in the alpha-cell-specific Pax6 KO islets, YFP+ 

ghrelin+ glucagon- cells are deteced (arrowhead e-h) that are not found in the control 

islets. Quantification of glucagon+, ghrelin+, and glucagon-ghrelin co-positive cell 

population at P0 (i) (n=3). Ghrelin+ cells are increased in the KO pancreata while 

glucagon+ cell population is not significantly changed. Error bars represent SEM; 

*p<0.05.

i) 

* 

a 

b 

c 

d 

e 

f 

g 

h 



Results                                                                                                            79 

 

 

 

 

 

 

 

Figure 3.31: Ghrelin+ cell population is increased in the adult alpha-cell-specific 

Pax6 KO islets. Quantification of ghrelin+ YFP-, YFP+ ghrelin-, and YFP+ ghrelin+ cells 

at 1 month, 3 months, and 8 months of age (c) (n=3). As compared to the control islets, 

number of YFP+ ghrelin+ cells is significantly increased in the KO islets at all the ages 

analyzed. However, YFP+ ghrelin+ cell population is not significantly changed within the 

KO group at different ages. Error bars represent SEM; *p<0.05. 
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Figure 3.32: Ghrelin+ cells originate from alpha-cells in the alpha-cell-specific Pax6 

KO islets. Double immunofluorescence staining of pancreatic cryosections from 1 month 

old mice. Ghrelin expression is not detected in the control islets (a-c). In the alpha-cell-

specific Pax6 KO islets, ghrelin expression is upregulated in YFP labeled cells (d-f) and 

rarely ghrelin expression co-localizes with glucagon expression (arrows d-f). 
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expression but it was possible to observe some ghrelin-glucagon-YFP triple positive cells 

in the KO islets (Figure 3.32). In the adult islet these cells may indicate an intermediate 

state of conversion from glucagon to ghrelin expressing cells. Thus, we conclude that 

alpha-cells lose the expression of glucagon and start to express ghrelin following the 

ablation of Pax6. 

3.2.2.2 Expression of alpha-cell related transcription factors in the ghrelin+ cell 

population of alpha-cell-specific Pax6 KO islets 

In the next step we checked the expression of alpha-cell related transcription factors 

MafB and Arx in the YFP labeled Pax6-deficient alpha-cells that now expressed ghrelin 

instead of glucagon. As compared to the YFP labeled cells in the control islets, YFP 

labeled ghrelin+ cells in the KO islets were negative for MafB but they still expressed 

Arx. Additionally, in some KO islets few YFP- ghrelin+ cells were detected that were also 

negative for MafB and positive for Arx (Figure 3.33 and 3.34). MafB is specifically 

expressed in adult alpha-cells and is important for the glucagon gene transcription (Artner 

et al., 2006). On the other hand, expression of Arx defines the alpha-cell lineage 

(Collombat et al., 2003, 2005, 2007). Therefore, absence of MafB and presence Arx 

shows the loss of mature alpha-cell function in the Pax6-deficient alpha-cells but 

preservation of the alpha-cell lineage. Furthermore, persistent expression of Arx in YFP 

labeled ghrelin+ cells is another proof of their origin from alpha-cells. 

3.2.3 Regeneration of alpha-cells in the alpha-cell-specific Pax6 KO islets 

Alpha-cell regeneration has been shown in some models of glucagon deficiency (Furuta 

et al., 1997; Gelling et al., 2003). As Pax6 KO also led to the loss of glucagon expression, 

we were interested in looking for the regeneration of alpha-cells. The number of total 

glucagon+ cells in the KO islets was not significantly different from that in the control 

islets at either 1 month or 3 months of age but was significantly reduced at 8 months of 

age (Figure 3.35a). This means that at younger age some alpha-cell regeneration was 

taking place. To clarify this further, we quantified the number of YFP- glucagon+ and 

YFP+ glucagon+ cells in control and KO islets. We found that the number of YFP- 

glucagon+ cells was significantly increased in the KO islets at 1 month and 3 months of 

age but not at 8 months of age (Figure 3.35b).  
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Figure 3.33: Expression of alpha-cell related transcription factors in the ghrelin+ 

cells of the alpha-cell-specific Pax6 KO islets. Double immunofluorescence staining of 

pancreatic cryosections from 1 month old mice. Ghrelin expression is not detected in the 

control islets (a-c and g-i). In the alpha-cell-specific Pax6 KO islets, ghrelin expression is 

upregulated in YFP labeled cells and these ghrelin+ cells are negative for Pax6 (d-f) and 

MafB (j-l) expression. Rarely some YFP- ghrelin+ cells are also detected in the KO islets 

and they are also negative for MafB expression (arrows k,l). 
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Figure 3.34: Expression of alpha-cell-lineage determinant Arx in the ghrelin+ cells of 

the alpha-cell-specific Pax6 KO islets. Double immunofluorescence staining of 

pancreatic cryosections from 1 month old mice. Ghrelin expression is not detected in the 

control islets (a-c). In the alpha-cell-specific Pax6 KO islets, ghrelin expression is 

upregulated in YFP labeled Pax6-deficient cells and these ghrelin+ cells are positive for 

Arx expression (d-f). Rarely some YFP- ghrelin+ cells are also detected in the KO islets 

and they are also positive for Arx expression (arrows e,f). 
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Figure 3.35: Alpha-cell regeneration in the alpha-cell-specific Pax6 KO islets. 

Quantification of total glucagon+ cell pouplation at 1 month, 3 months, and 8 months of 

age (a) (n=3). Number of total glucagon+ cells is significantly reduced in the KO islets at 

8 months of age but not at 1 month or 3 months of age. Quantification of glucagon+ YFP-, 

YFP+ glucagon-, and YFP+ glucagon+ cells at 1 month, 3 months, and 8 months of age (b) 

(n=3). Number of glucagon+ YFP- cells is significantly increased in the KO islets at 1 

month and 3 months of age but not at 8 months of age. Error bars represent SEM; 

*p<0.05. 
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This indicated the regeneration capacity of alpha-cells at young and middle age but a 

loss of regeneration at older age. However, even the older mice did not show any 

symptoms of glucagon deficiency because nearly 30% population of alpha-cells that 

escaped recombination was still present. 

3.2.4 7B2 is upregulated and PC2 not affected in the alpha-cell-specific Pax6 KO 

islets 

Proglucagon, the precursor of glucagon, is processed in alpha-cells by prohormone 

convertase 2 (PC2) to generate the mature glucagon peptide. The neuropeptide 7B2 is 

involved in the activation of PC2 (Fortenberry et al., 2002; Katz et al., 2009). To see how 

proglucagon processing is affected in Pax6-deficient alpha-cells, we checked the 

expression of PC2 and 7B2. We found that in comparison to the control islets the 

expression of PC2 was not affected and that of 7B2 highly upregulated in the YFP labeled 

Pax6-deficient alpha-cells (Figure 3.36). Therefore, a loss of proglucagon processing via 

PC2 downregulation does not seem to occur in these cells. 

3.3 Pax6 overexpression 

3.3.1 Generation of transgenic mice conditionally overexpressing Pax6 

For conditional overexpression of Pax6, Jojo vector was used (Collombat et al., 2007). 

Pax6 cDNA was cloned into this vector to generate the overexpression construct. The 

construct contained an EGFP (enhanced green fluorescent protein) cassette flanked by 

loxP sites under the control of cytomegalovirus (CMV) early enhancer/beta-actin (CAG) 

promoter that provides high level of constitutive expression. The EGFP cassette was 

followed by Pax6 cDNA, an internal ribosome entry site (IRES), and beta-galactosidase 

encoding sequence (Figure 3.37a). In the absence of Cre-mediated recombination only 

EGFP is expressed from this construct because of the transcriptional stop site present 

after EGFP. However, in the presence of Cre, recombination of loxP sites removes the 

EGFP cassette along with the transcriptional stop and allows for the expression of Pax6 

along with beta-galactosidase in the Cre expressing cells (Figure 3.37b). Expression of 

beta-galactosidase, therefore, serves as a marker of overexpression. 
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Figure 3.36: Expression of 7B2 and PC2 in the alpha-cell-specific Pax6 KO islets. 

Immunofluorescence staining of pancreatic cryosections from 1 month old mice. 7B2 

expression is very low in the control islets (a,b). In the alpha-cell-specific Pax6 KO islets, 

7B2 expression is higly upregulated in YFP labeled Pax6-deficient cells (e,f). Compared 

to the control islets, PC2 expression is unchanged in the alpha-cell-specific Pax6 KO 

islets (c,d and g,h). 

Glu-Cre; 
R26-YFP; Pax6fl/fl 

Glu-Cre; 
R26-YFP; Pax6+/+ 

7B
2 

Y
FP

 7
B

2 
Y

FP
 P

C
2 

PC
2 

a 

b 

c 

d 

e 

f 

g 

h 



Results                                                                                                            87 

 

 

 

 

 

Figure 3.37: Construct used to generate conditional Pax6-overexpressing (Pax6OE) 

transgenic mice. (a) Before Cre-mediated recombination, only GFP is expressed due to 

the transcriptional stop present after it. (b) After Cre-mediated recombination, GFP 

cassette (together with the stop) is removed allowing the expression of Pax6 and beta-

galactosidase in the Cre expressing cells. 

a) 

b) 
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This construct was then used for the pronuclear injection to generate three GFP 

expressing transgenic mouse lines (termed Pax6OE), all of which gave germ-line 

transmission. Line 3 and 2 were used for all of the experiments. These Pax6OE mice 

were then crossed with different Cre mouse lines including Pdx1-Cre (for overexpression 

in the whole pancreas), insulin-Cre (Ins-Cre, for overexpression in beta-cells), and 

glucagon-Cre (Glu-Cre, for overexpression in alpha-cells) (Gannon et al., 2000; Herrera, 

2000). 

In the Pax6OE; Pdx1-Cre pancreata GFP expression was lost from most of the 

pancreatic tissue and Pax6 expression was found in the whole pancreas including the 

exocrine tissue where Pax6 is normally not expressed (Figure 3.38a-f). This indicated the 

correct functioning of the Pax6OE construct. In case of Pax6OE; Ins-Cre and Pax6OE; 

Glu-Cre mice the overexpression of Pax6 was confirmed by beta-galactosidase staining 

and X-Gal staining, respectively (Figure 3.38g-j). Furthermore, overexpression of Pax6 

was also confirmed by qRT-PCR in Pax6OE; Pdx1-Cre and Pax6OE; Ins-Cre mice 

(Figure 3.38k). 

3.3.2 Pancreatic phenotype of Pax6 overexpressing mice 

There was no difference in the blood glucose level of Pax6OE; Pdx1-Cre, Pax6OE; Ins-

Cre, and Pax6OE; Glu-Cre mice as compared to the Pax6OE control mice. At the 

pancreatic level, we observed slight hypoplasia of the pancreatic tissue in the Pax6OE; 

Pdx1-Cre mice as compared to the Pax6OE control mice (Figure 3.39). In the endocrine 

pancreas, islet structure was intact and the number of insulin+ and somatostatin+ cells was 

not significantly different in the Pax6OE; Pdx1-Cre mice as compared to the Pax6OE 

control mice at 3 weeks of age (data not shown). However, the number of glucagon+ and 

PP+ cells was significantly reduced in Pax6OE; Pdx1-Cre mice as compared to the 

Pax6OE control mice at 3 weeks of age (Figure 3.40a). Expression of various beta-cell 

related factors was also not changed in the Pax6OE; Pdx1-Cre mice as compared to the 

Pax6OE control mice (Figure 3.41). 

We found in our study that ghrelin expression upregulates in both the alpha- and beta-

cell-specific Pax6 KO pancreata. In relation to that we were interested to see the effect of 

Pax6 overexpression on ghrelin+ cell population. In the adult islet, ghrelin+ cell  
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Figure 3.38: Pax6 overexpression under Pdx1, insulin, and glucagon expression 

domains. Immunofluorescence staining (a-h) and X-Gal staining (i,j) of pancreatic 

cryosections from 2 month old mice. In Pax6OE control pancreata, Pax6 is expressed 

only inside the endocrine cells of the islets (a-c). In Pax6OE; Pdx1-Cre pancreata, Pax6 is 

expressed in the whole pancreas including both the endocrine and exocrine tissue (d-f). 

Pax6 overexpression indicated by the beta-galactosidase expression in Pax6OE; Ins-Cre 

islets (h), and by the X-Gal staining in Pax6OE; Glu-Cre islets (j). Quantitative RT-PCR 

of Pax6 mRNA in the pancreata of 2 month old mice shows overexpression in Pax6OE; 

Pdx1-Cre and Pax6OE; Ins-Cre mice (k) (n=3). Error bars represent SEM. 
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Figure 3.39: Pancreatic hypoplasia in Pax6OE; Pdx1-Cre mice. Pancreatic tissue is 

slightly reduced in size in Pax6OE; Pdx1-Cre mice (c,d) compared to the Pax6OE control 

mice (a,b) at 4 months of age. Absence of GFP expression in (d) shows the successful 

Cre-mediated recombination. 

 

 

 

 

 

 

 

 

 

 

Figure 3.40: Changes in the glucagon+, ghrelin+, and PP+ cell population in the 

pancreata of Pax6OE; Pdx1-Cre mice. Quantification of glucagon+ and PP+ cell 

pouplation at 3 weeks of age (a), and glucagon+ and ghrelin+ cell pouplation at P0 (b), in 

Pax6OE control and Pax6OE; Pdx1-Cre mice (n=3). In Pax6OE; Pdx1-Cre pancreata, 

number of glucagon+, ghrelin+, and PP+ cells is decreased. Error bars represent SEM; 

*p<0.05. 
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Figure 3.41: Expression of beta-cell related factors in Pax6OE; Pdx1-Cre islets. 

Immunofluorescence staining of pancreatic cryosections from 4 month old mice. As 

compared to the Pax6OE control islets, no change is detected in the expression of insulin 

(f), IAPP (g), Isl1 (h), MafA (i), and Pdx1 (j) in Pax6OE; Pdx1-Cre islets. 
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population was not detectable in both Pax6OE and Pax6OE; Pdx1-Cre mice. Therefore, 

to examine any possible difference we went to the early postnatal stage P0, that is a time-

point where ghrelin+ cells are in generally higher in number in the islets (Wierup et al., 

2004). By quantification at P0, we found a small but sgnificant decrease in the number of 

ghrelin+ cells in the pancreata of Pax6OE; Pdx1-Cre mice as compared to the Pax6OE 

control mice (Figure 3.40b). Furthermore, the change in other endocrine cells at P0 was 

similar to that in 3 week old mice (data not shown). As Pdx1-Cre is active from the 

beginning of pancreatic development, we conclude that this reduction in the population of 

glucagon+, ghrelin+, and PP+ cell population is probably due to the reduced number of 

progenitors initially specified to these cell types or due to the reduced proliferation during 

early development. However, at 3 weeks of age no difference in proliferation (determined 

by BrdU labeling) or apoptosis (determined by TUNEL staining) was detected (data not 

shown). 

In case of Pax6OE; Ins-Cre mice, no phenotypic change was observed. As compared 

to the Pax6OE control mice, the number of insulin+ cells, number of islets per section, as 

well as the proliferation in the insulin+ cell population was not significantly changed 

(Figure 3.42). Furthermore, the expression of different beta-cell related factors including 

Pdx1, MafA, Glut2, and IAPP was also not changed in the Pax6OE; Ins-Cre mice as 

compared to the Pax6OE control mice (data not shown). 

Lastly, in Pax6OE; Glu-Cre mice, reduction in the number of glucagon+ cells was 

observed like the Pax6OE; Pdx1-Cre mice. On the contrary, the number of PP+ cells was 

slightly increased (Figure 3.43). Rest of the endocrine cell population was not changed in 

these mice (data not shown). 

If the pancreatic phenotype of Pax6OE; Pdx1-Cre, Pax6OE; Ins-Cre, and Pax6OE; 

Glu-Cre mice is compared, it seems that the development of alpha-cells is more sensitive 

to the level of Pax6 expression as compared to the development of beta-cells. 
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Figure 3.42: Pax6OE; Ins-Cre islets do not show any change in the beta-cell 

population. Quantification of insulin+ and BrdU+ cells (a), islets/section (b), and insulin+ 

cells/section (c) at 2 months of age shows no significant difference in Pax6OE vs. 

Pax6OE; Ins-Cre mice (n=3). Error bars represent SEM. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.43: Changes in glucagon+ and PP+ cell pouplation in the islets of Pax6OE; 

Glu-Cre mice. Quantification of glucagon+ and PP+ cell pouplation in Pax6OE control 

and Pax6OE; Glu-Cre mice at 2 months of age (n=3). In Pax6OE; Glu-Cre islets, number 

of glucagon+ cells is decreased and that of PP+ cells is slightly increased. Error bars 

represent SEM; *p<0.05. 
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4. Discussion 

Pax6 has been shown to play an important role in the maturation of pancreatic endocrine 

cells, especially alpha- and beta-cells. The crucial role of Pax6 in this process is evident 

by the fact that mice lacking a functional Pax6 protein in the pancreas die shortly after 

birth (St-Onge et al., 1997; Ashery-Padan et al., 2004). Pax6 is one of those transcription 

factors that are expressed in the endocrine pancreas during development and their 

expression further continues throughout the adult life-span. This persistent expression 

during postnatal life indicates the continuous requirement of Pax6 in the endocrine 

pancreas. This is supported by the fact that in both humans and mice, heterozygous Pax6 

mutations lead to glucose intolerance with age (Yasuda et al., 2002; Wen et al., 2009). 

Hence, there has been a great interest in understanding the role of Pax6 in adult endocrine 

cell function. 

In vitro Pax6 knockdown (KD) studies, in alpha- and beta-cells, have identified 

several downstream targets of Pax6 that are essential for the functional maturity of these 

cells (Katz et al., 2009; Gosmain et al., 2010; Gosmain et al., 2012a; Gosmain et al., 

2012b). However, a detailed in vivo investigation of Pax6 knockout (KO) in the adult 

pancreas is lacking. As both classical and pancreas-specific conditional Pax6 KO mice 

die at early postnatal age, the only possible way to investigate the role of Pax6 in adult 

islets is by utilizing an inducible Cre line that can be activated during the adult life. Using 

this idea in a study that has been recently published, Hart et al. (2013) knocked out Pax6 

in five month old mice. In this study, many of the same findings were recapitulated as 

those of the previous KO studies, including the loss of hormone expression and 

development of diabetes as well as the upregulation of ghrelin expression (Ashery-Padan 

et al., 2004; Heller et al., 2005). In this study a ubiquitous Cre line was used that led to 

the removal of Pax6 from all of the endocrine cell types. Therefore, it did not allow the 

study of a cell-type-specific effect. 

Islets of Langerhans consist of five types of endocrine cells: alpha (glucagon+), beta 

(insulin+), delta (somatostatin+), PP (pancreatic-polypeptide+), and ε (ghrelin+). Pax6 is 

expressed in all of them except for a subset of ghrelin+ cells (Ashery-Padan et al., 2004; 

Kordowich et al., 2011). In our study we aimed at elucidating the role of Pax6 in adult 

alpha- and beta-cells in vivo by employing the Cre/loxP system (Sauer and Henderson, 

1989; Rajewsky et al., 1996). Therefore, we utilized the Pax6 floxed mouse line together 
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with an inducible Cre mouse line (RIP-CreER) for beta-cell-specific Pax6 ablation, and a 

non-inducible Cre mouse line (glucagon-Cre) for alpha-cell-specific Pax6 ablation 

(Ashery-Padan et al., 2000; Dor et al., 2004; Herrera, 2000). This allowed us to study the 

role of Pax6 in alpha- and beta-cells separately and without affecting the rest of the 

endocrine pancreas which was not the case in previous studies. We further incorporated 

the YFP reporter transgene (Srinivas et al., 2001) that allowed us to assess the 

recombination efficiency, to trace the fate of Pax6 KO cells, and to estimate the relative 

regeneration in each case. 

Apart from the loss-of-function, another useful way to identify the role of a gene 

product in the developmental and/or functional context is via overexpression of that gene 

in the specific cell-type of interest (Prelich, 2012). In our study, we generated transgenic 

mice to conditionally overexpress Pax6. To see the effect of overexpression on pancreatic 

development, we utilized a wider range of expression domains including the whole 

pancreas, the beta-cells alone, and the alpha-cells alone. This was achieved by using 

Pdx1-Cre, insulin-Cre, and glucagon-Cre mouse lines, respectively (Gannon et al., 2000; 

Herrera, 2000). As the Pax6 overexpression phenotype was not lethal we used only non-

inducible Cre lines for Pax6 overexpression. 

4.1 Pax6 knockout in beta-cells 

4.1.1 Hyperglycemia in beta-cell-specific Pax6 KO mice and the associated changes 

in the pancreatic endocrine cell population 

To knockout Pax6 in adult beta-cells, tamoxifen inducible RIP-CreER mouse line was 

employed (Dor et al., 2004). This Cre line gave nearly 95% recombination efficiency. In 

accordance with this near complete removal of Pax6 from the beta-cell population, a 

prominent phenotype was observed. Pax6 KO in beta-cells resulted in severe 

hyperglycemia, emphasizing the requirement of Pax6 in beta-cells for the establishment 

of glucose homeostasis. Development of an overt diabetic phenotype in these mice is also 

in agreement with the previous Pax6 KO studies (Ashery-Padan et al., 2004; Hart et al., 

2013). Consistent with the hyperglycemia, number of insulin+ cells was decreased in the 

KO pancreata. At the same time all other endocrine cell types (glucagon+, somatostatin+, 

PP+, and ghrelin+) were increased in number. Decrease in the number of insulin+ cells and 

increase in the number of glucagon+, somatostatin+, and PP+ cells also occurs in 
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streptozotocin-induced diabetic mouse models (Adeghate and Ponery, 2003; Zhang et al., 

2012). Therefore, an increase in the population of glucagon+, somatostatin+, and PP+ cells 

seems to be a general phenomenon related to the development of diabetes. However, 

increase in the ghrelin+ cell population is more unique to the Pax6 KO phenotype. The 

difference lies in the fact that in streptozotocin-induced diabetic models beta-cells die but 

in Pax6 KO mice beta-cells do not die. Instead, they just lose their mature differentiation 

status that may cause ghrelin upregulation in the previously insulin+ cells (would be 

discussed later). 

4.1.2 Expression of beta-cell related transcription factors in beta-cell-specific Pax6 

KO pancreata 

A detailed immunohistochemical analysis was performed to check the expression status 

of important beta-cell related factors. Among the beta-cell specific transcription factors, 

the expression of MafA was undetectable shortly after the KO. MafA is a transcription 

factor that specifically marks the mature beta cells and has been confirmed as a direct 

downstream target of Pax6 (Raum et al., 2010; Gosmian et al., 2012a). MafA, together 

with Pdx1 and Pax6 binds to the insulin promoter and controls its transcription (Sander et 

al., 1997; Matsuoka et al., 2007; Gosmain et al., 2012a). Indeed, the MafA deficient mice 

also develop glucose intolerance and diabetes mellitus (Zhang et al., 2005). Therefore, the 

loss of Pax6 and the concomitant loss of MafA in beta-cells can explain the reduced 

insulin synthesis that results into diabetes later. 

Pdx1 and Nkx6.1 are two more beta-cell specific transcription factors in the adult 

islet. Pdx1 is important for insulin expression and mature beta-cell function, and its loss 

from beta-cells can lead to diabetes (Ahlgren et al., 1998; Matsuoka et al., 2007). In some 

studies, Pdx1 has been shown to be downregulated after Pax6 KO/KD (Heller et al., 

2005; Gosmain et al., 2012a; Hart et al., 2013). On the contrary, it was still found to be 

expressed after Pax6 KO in another study (Ashery-Padan et al., 2004). In our beta-cell-

specific Pax6 KO, Pdx1 expression was not changed even at 4.5 months after KO 

induction. However, as we have seen in our study the expression of Pdx1 alone is not 

sufficient to rescue the mature beta-cell phenotype. Thus, Pdx1 needs to cooperate with 

other beta-cell related transcription factors, including Pax6, MafA, and Nkx6.1, to 

maintain the mature differentiation state of beta-cells. 
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Nkx6.1 in beta-cells is required to maintain the beta-cell identity by repressing the 

expression of glucagon and Arx (Gauthier et al., 2007; Schaffer et al., 2013). A reduction 

in the Nkx6.1 expression has been reported in Pax6 KO/KD models (Gosmain et al., 

2012a; Hart et al., 2013). In our study, there was a gradual loss of Nkx6.1 expression. 

Shortly after KO induction, Nkx6.1 was still detectable but after a long time its 

expression was lost. Nkx6.1 expression is also reduced in beta-cell-specific Pdx1 KO 

mice and in turn leads to the ectopic expression of glucagon in beta-cells (Ahlgren et al., 

1998). However, in our beta-cell-specific Pax6 KO mice the loss of Nkx6.1 expression 

did not lead to upregulation of glucagon, because the expression of glucagon depends on 

the presence of Pax6 (Sander et al., 1997; Gosmain et al., 2010). Regarding Arx 

expression following Nkx6.1 KO, Schaffer et al. (2013) showed that Nkx6.1 inactivation 

in endocrine precursors but not in beta-cells leads to the ectopic expression of Arx. Once 

beta-cells are specified, the repression of Arx is independent of Nkx6.1 and occurs via 

DNA methylation (Dhawan et al., 2011). In accordance with that, we did not observe the 

ectopic expression of Arx in Pax6-deficient beta-cells following Nkx6.1 downregulation 

(data not shown). 

Nkx2.2 is another transcription factor that is expressed in beta-cells, and in a subset of 

alpha- and PP-cells, and is required for the proper differentiation of these cell types 

(Kordowich et al., 2011). Previous studies have shown that Nkx2.2 expression is not 

affected in the Pax6 KO pancreata (Ashery-Padan et al., 2004; Gosmain et al., 2012a; 

Hart et al., 2013). Accordingly, in our beta-cell specific Pax6 KO mice the expression of 

Nkx2.2 was not changed. 

Isl1 and Rfx6 are general pancreatic endocrine specific transcription factors in the 

adult pancreas. Both of them are expressed in all types of endocrine cells in the islet 

(Ahlgren et al., 1997; Smith et al., 2010). In mouse, Isl1 is required for the maturation and 

expansion of islet endocrine cells (Du et al., 2009) and Rfx6 is required for the generation 

of these cells except for the PP-cells that can develop in the absence of Rfx6 (Smith et al., 

2010). In beta-cell-specific Pax6 KO islets the expression of both Isl1 and Rfx6 was not 

affected. Isl1 has also been shown to be unaffected in the previous Pax6 KO studies 

(Ashery-Padan et al., 2004; Gosmain et al., 2012a; Hart et al., 2013) while Rfx6 has not 

been evaluated. 



Discussion                                                                                                    98 

 

Collectively, the expression profile of various beta-cell related transcription factors in 

Pax6 KO beta-cells indicates a loss of mature differentiation state (due to the absence of 

MafA and downregulation of Nkx6.1) but preservation of basic endocrine and partial 

beta-cell character (due to the presence of Isl1, Rfx6, Nkx2.2, and Pdx1). 

4.1.3 Defective glucose-stimulated insulin secretion in beta-cell-specific Pax6 KO 

pancreata 

Glucose-stimulated insulin secretion (GSIS) from beta-cells is a crucial step in the 

maintenance of glucose homeostasis. In order for the GSIS to take place, an efficient 

glucose metabolism is required in the beta-cells. Glut2 is a high capacity (high Km) 

glucose transporter located in the membranes of beta-cells. At high blood glucose level, it 

allows an efficient transport of glucose into the cell (e.g., immediately following a meal). 

This, in turn, leads to an increased glucose metabolism and stimulated insulin secretion 

(Jensen et al., 2008; Kramer et al., 2009). Loss of GSIS is an important step in the 

development of type 2 diabetes and is associated with the loss of Glut2 (Thorens et al., 

1992). Glut2 deficient mice develop hyperglycemia and show loss of the first phase of 

GSIS (Guillam et al., 1997). In our study, following Pax6 KO, beta-cells quickly lost the 

expression of Glut2. It took place in the first few days together with the loss of MafA. 

Loss of Glut2 has been shown in previous Pax6 KO studies as well (Ashery-Padan et al., 

2004). Additionally, we observed that the loss of Glut2 occurred in the whole islet, 

including the YFP labeled Pax6-deficient cells as well as the YFP- insulin+ cells that still 

express Pax6. Furthermore, ChIP analysis did not show any binding of Pax6 with the 

Glut2 promoter. Collectively, these results suggest an indirect affect of Pax6 ablation on 

Glut2 expression. It has been shown before that the diabetic environment can result in the 

loss of Glut2 expression (Thorens et al., 1992). Therefore, it is quite possible that the loss 

of Glut2 expression in the islets of beta-cell-specific Pax6 KO mice also occurs in an 

indirect way through the development of hyperglycemia. 

Another important factor involved in GSIS is glucagon-like peptide 1 (GLP-1). GLP-

1 acts through the GLP-1 receptor that is highly expressed on beta-cells. Following 

nutrient stimulation, GLP-1 is released from intestinal L cells and promotes the insulin 

secretion from beta-cells. Apart from the role of GLP-1 in GSIS, it has also been shown 

to promote beta-cell proliferation and neogenesis as well as insulin synthesis (MacDonald 

et al., 2002). Previously, an in vitro Pax6 KD study has shown Pax6 mediated control of 
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GLP-1 receptor expression (Gosmain et al., 2012a). In agreement with that, we found that 

the expression of GLP-1 receptor was specifically lost in the Pax6-deficient beta-cells. 

Loss of both Glut2 and GLP-1 receptor shows an obvious defect in the GSIS in Pax6-

deficient beta-cells. Additionally, the loss of GLP-1 receptor mediated signaling may also 

explain the reduced insulin production and the lack of proliferation in these Pax6-

deficient beta-cells. 

Previously, MafA has been shown as a regulator of glucose-stimulated insulin 

secretion (Zhang et al., 2005). As MafA expression is downregulated in beta-cell-specific 

Pax6 KO islets, the impairment in GSIS in these mice may also occur indirectly via Pax6-

MafA pathway. 

4.1.4 Defective proinsulin processing in beta-cell-specific Pax6 KO pancreata 

Insulin is synthesized as a prohormone in beta-cells. Proinsulin is then processed to 

generate mature insulin peptide. During this process C-peptide is released as a byproduct 

at an equimolar concentration. In case of defective proinsulin processing the ratio of 

proinsulin to C-peptide is increased (Vasic and Walcher, 2012). Beta-cells contain two 

prohormone convertases for insulin processing, PC1/3 and PC2. This is in contrast to the 

non-beta-cells of the islet that contain only PC2 (Marcinkiewicz et al., 1994). Although 

both PC1/3 and PC2 are involved, proinsulin processing is more severely affected in 

PC1/3 KO mice as compared to PC2 KO mice (Furuta et al., 1997; Zhu et al., 2002). We 

checked the expression of insulin, C-peptide, PC1/3, and PC2 to evaluate the effect of 

Pax6 KO on proinsulin processing. Within few weeks of Pax6 KO, a lot of beta-cells lost 

the expression of C-peptide. Some of these C-peptide negative beta-cells were also 

insulin negative but some continued to express insulin at low level. We speculate that this 

insulin reactivity was due to the presence of proinsulin that was not completely processed 

as indicated by the absence of C-peptide. Surprisingly, however, the expression of both 

PC1/3 and PC2 was unchanged in the C-peptide- insulin+ cells. PC1/3 and PC2 expression 

was also found in those cells that had completely lost the expression of insulin (C-peptide- 

insulin- cells). Previous studies show some conflicting data on PC1/3 and PC2 expression. 

PC1/3 expression has been shown to be not changed in one study (Ashery-Padan et al., 

2004) and lost in the other study (Hart et al., 2013) after Pax6 KO, while it was found to 

be 30% decreased at protein level after in vitro Pax6 KD (Gosmain et al., 2012a). PC2 
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expression was found to be not changed after Pax6 KO (Hart et al., 2013) and a 30% 

decrease in protein content was found after in vitro Pax6 KD (Gosmain et al., 2012a ). 

Activities of PC1/3 and PC2 are further modulated by the neuropeptides proSAAS 

and 7B2, respectively (Fortenberry et al., 2002). We found that both of these peptides 

were highly upregulated in Pax6 KO beta-cells. It has been shown before that proSAAS 

can inhibit the activity of PC1/3 and its overexpression in mice leads to diabetes and 

obesity (Wei et al., 2004). Moreover, proSAAS is directly repressed by Pax6 and its 

expression is increased in the Pax6 heterozygous null mutant mice (Liu et al., 2012). 

Therefore, the increased level of proSAAS expression is expected in Pax6 KO beta-cells 

and is a possible indicator of defective proinsulin processing in these cells. Interestingly, 

however, we found that the proSAAS expression is in generally higher in alpha-cells in 

the control islets and does not seem to be affected after alpha-cell-specific Pax6 ablation 

(data not shown). Thus, while Pax6 may repress the expression of proSAAS in beta-cells, 

it does not seem to do so in alpha-cells indicating that the proSAAS expression in alpha- 

vs. beta-cells is differentially regulated.  

Unlike proSAAS, the effect of upregulated 7B2 is hard to explain. 7B2 is a chaperone 

required for the maturation and activity of PC2 (Westphal et al., 1999). At the same time, 

C-terminal peptide of 7B2 can inhibit PC2 activity in vitro but apparently not in vivo 

(Fortenberry et al., 1999). When overexpressed in a beta-cell line, 7B2 did not affect 

insulin production or secretion, although, it increased the secretion of active PC2 (Helwig 

et al., 2011). In another study, 7B2 upregulation was linked to obesity and increased PC2 

activity without changing the level of PC2 processed peptides (Farber et al., 2008). On 

the other hand, 7B2 downregulation is found in human medulloblastomas indicating that 

proper expression of 7B2 is required to suppress the tumor growth and to maintain the 

neuronal differentiation state (Waha et al., 2007). Finally, in a very recent study, it was 

shown that 7B2 can also prevent the aggregation of proteins involved in the pathogenesis 

of Alzheimer’s and Parkinson’s disease, thereby improving the cell viability (Helwig et 

al., 2013). 

Therefore, on one hand, the increased expression of 7B2 in Pax6 KO beta-cells may 

help to increase the PC2 activity that may increase proinsulin processing in the absence of 

PC1/3 activity. On the other hand, this increased 7B2 expression might also be a result of 

the immature differentiation status of these cells and help in their survival by acting as a 
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chaperone. However, the exact role of upregulated 7B2 in Pax6 KO beta-cells remains 

elusive. 

4.1.5 Ratio of IAPP to insulin is changed in the beta-cell-specific Pax6 KO islets 

Islet amyloid polypeptide (IAPP) (also called amylin) is a peptide hormone produced in 

beta-cells and secreted together with insulin in a ratio of 1:100 (IAPP to insulin). IAPP is 

secreted in response to nutrient stimuli together with insulin and may play a role in the 

regulation of food intake, in the development of insulin resistance (by suppressing the 

peripheral glucose disposal), and in the inhibition of glucose-stimulated insulin secretion 

(Leighton and Cooper, 1988; Sowa et al., 1990; Dégano et al., 1993; Hull et al., 2004). At 

the same time, IAPP is also well known for its pathological role in the development of 

type 2 diabetes as a part of the amyloid deposits (Kahn et al., 1999). Similar to insulin, 

IAPP is synthesized as a prohormone (proIAPP). ProIAPP is processed by the same 

enzymes (PC1/3 and PC2) that process proinsulin. Therefore, a defect in the proinsulin 

processing can also affect the proIAPP processing. It has been suggested that the 

unprocessed form of IAPP is more prone to form the amyloid deposits that cause the 

damage to beta-cells in type 2 diabetes (Marzban et al., 2004). 

We found that the expression of IAPP was not affected in the islets of beta-cell-

specific Pax6 KO mice. Firstly, this would change the normal IAPP to insulin ratio (as 

insulin is decreased in the KO islets) that may negatively affect the insulin secretion and 

contribute to further impairment of beta-cell function. A change in the IAPP to insulin 

ratio may also contribute to insulin resistance. Secondly, as the proinsulin processing is 

defective in the Pax6 KO islets, proIAPP processing would also be defective due to the 

same processing machinery involved. This may lead to the accumulation of unprocessed 

form of IAPP that can cause additional damage to beta-cells. 

4.1.6 Long-term tracing of Pax6 KO beta-cells in relation to ghrelin expression 

Ashery-Padan et al. (2004) used hAP (human alkaline phosphatase) reporter in pancreas-

specific conditional Pax6 KO mice to trace the Pax6 KO endocrine cells. They found that 

the number of glucagon and insulin expressing cells is decreased but that of somatostatin 

and PP expressing cells is unchanged in the KO pancreata. Additionally, the hAP labeled 

endocrine area was not significantly changed in the KO pancreata. This led them to 

conclude that the KO endocrine cells stay in the pancreas but do not undergo a fate 
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change to any of the other pancreatic endocrine cells. It was published before the 

discovery of ghrelin expressing epsilon-cells in the pancreas (Prado et al., 2004). Later 

on, it was shown by Heller et al. (2005) that ghrelin expressing cells are increased in 

number in Pax6sey/sey pancreata. In this study, it was concluded that Pax6 antagonizes the 

formation of ghrelin+ epsilon-cells. 

In the wild-type pancreas, the number of ghrelin expressing cells is highest during the 

embryonic development. Subsequently, these cells decrease in number and finally 

become almost undetectable in the adult pancreas (Wierup et al., 2004; Hill et al., 2009). 

As both the Pax6 KO and Pax6sey/sey mice die shortly after birth (Hill et al., 1991; St-Onge 

et al., 1997; Ashery-Padan et al., 2004), it was only possible to analyze the ghrelin+ cell 

population at the embryonic stage and the long term fate of the Pax6-deficient cells was 

not identified. Furthermore, due to the absence of Pax6 from the beginning of pancreatic 

development, the endocrine cells (especially alpha- and beta-cells) never attain the 

functional maturity. Therefore, an upregulation of ghrelin at this stage can suggest a 

possible developmental shift to the ghrelin expressing epsilon-cell fate. 

Recently, Hart et al. (2013) carried out the whole-body knock out of Pax6 in the adult 

mice and found an increase in the ghrelin expressing cell population of the pancreas. In 

this study, most of the ghrelin+ cells found were located at the periphery of the islets and 

were not shown to be co-positive for any of the other endocrine hormones. Therefore, the 

authors concluded that these ghrelin+ cells belong to the standard epsilon-cell population. 

In our study, we knocked out Pax6 specifically from the beta-cells while leaving the 

rest of the endocrine cell population unaffected. After the induction of KO, ghrelin 

expression started to upregulate in beta-cells and gradually expanded as more and more 

Pax6-deficient cells started to produce ghrelin. Initially the Pax6 KO beta-cells expressed 

ghrelin together with insulin. At later stages, insulin expression disappeared from many 

cells converting them to ghrelin only expressing cells. By showing the expression of 

several other beta-cell related factors in ghrelin+ cells we proved that these ghrelin+ cells 

arise from beta-cells. This was additionally confirmed by YFP reporter tracing. Therefore, 

the ghrelin+ cells in our beta-cell-specific Pax6 KO pancreata do not belong to the 

standard epsilon-cell population. Instead, they are the beta-cells that have lost their 

maturity and started to produce higher levels of ghrelin (Figure 4.1). 
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Figure 4.1: Schematic representation of the phenotypic change observed in Pax6-

deficient beta-cells. Beta-cells in the control mice express insulin, Pax6, Isl1, Rfx6, 

Pdx1, MafA, Nkx6.1, Glut2, GLP1-R, PC1/3, PC2, and very low levels of 7B2 and 

proSAAS. Following Pax6 ablation, the expression of MafA, Glut2, and GLP-1 receptor 

(GLP1-R) is lost, the expression of Nkx6.1 is reduced, the expression of Isl1, Rfx6, Pdx1, 

PC1/3, and PC2 is maintained, and the expression of proSAAS and 7B2 is upregulated.  

Along with that, Pax6-deficient cells gradually lose the expression of insulin and gain the 

expression of ghrelin.  During this process these cells pass through a transient state of 

ghrelin-insulin co-expression before converting to ghrelin only expressing cells (arrows 1 

and 2). Later on, some of these ghrelin expressing cells lose the expression of ghrelin as 

well (arrow 3). Some of the insulin+ cells directly convert to insulin- cells after losing 

Pax6, without going through the ghrelin expression route (arrow 4). 
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Moreover, we found that not all the beta-cells start to produce ghrelin after Pax6 

ablation and many that do produce ghrelin stop to do so over long period of time. 

However, irrespective of the ghrelin expression these Pax6-deficient cells retain their 

endocrine and beta-cell like character as indicated by the presence of Rfx6 and Pdx1 

expression, respectively. Therefore, even after losing the Pax6 expression beta-cells do 

not change their fate to ductal or exocrine cells that are the Pax6 negative population of 

cells in the pancreas. Lastly, we found that these Pax6-deficient beta-cells neither 

proliferate nor they undergo apoptosis. They stay as a quiescent population of immature 

beta-like-cells in the islets. The prevention from apoptosis can be attributed to the 

antiapoptotic effect of ghrelin and neurotensin (Coppola et al., 2008; Chung et al., 2008). 

Neurotensin is another hormone that was found to be upregulated in Pax6 KO islets (data 

not shown). 

The role of ghrelin in the embryonic pancreas development is not clear. Ghrelin 

deficient mice have a completely normal development of endocrine and exocrine 

pancreas (Hill et al., 2009). Recently, Arnes et al. (2012) used lineage tracing to find the 

fate of ghrelin+ cells in the wild-type pancreas. They found that ghrelin+ cells mainly give 

rise to most of the alpha- and PP-cells in the islets. It was, thus, concluded that ghrelin+ 

cell population represents a multipotent progenitor population in the wild-type pancreas. 

From this it is also evident that ghrelin expression marks cells that have the potential to 

differentiate but have not fully differentiated yet, and when they do differentiate they lose 

the expression of ghrelin. 

It could be, therefore, hypothesized that ghrelin expression marks a specific pre-

differentiation state of the cell. When beta-cells lose their functional maturity, they go 

back to a pre-differentiation embryonic-like state. This specific state is marked by an 

increased expression of ghrelin. However, it must be emphasized here that this pre-

differentiation state following Pax6 ablation is distinct from the normal immature state of 

beta-cells in the embryonic pancreas. The adult Pax6 KO beta-cells express neither MafA 

nor MafB but the early embryonic beta-cells express MafB before they start to express 

MafA. Furthermore, we never found the co-expression of ghrelin with insulin in the wild-

type embryonic pancreas (data not shown). 
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Finally, a rare population of ghrelin+ cells in the beta-cell-specific Pax6 KO islets was 

not YFP+ meaning that these cells do not arise from beta-cells and may represent the 

genuine epsilon-cell population. 

4.1.7 Regeneration of beta-cells in the beta-cell-specific Pax6 KO islets 

Beta-cells constitute a dynamic population that can undergo compensatory changes in 

relation to the varying metabolic needs. Increase in metabolic demand during pregnancy, 

obesity, or diabetes can induce an increase in beta-cell mass. This expansion of beta-cell 

mass may occur via increase in proliferation, decrease in apoptosis, increase in cell size 

and insulin secretion, and generation of new beta-cells from progenitors (neogenesis) or 

from other endocrine cells (transdifferentiation) (Ahmad, 2013). 

Regeneration of beta-cells has been reported in various diabetic mouse models and 

can lead to a spontaneous recovery from diabetes (Nir et al., 2007; Thorel et al., 2010; 

Ahmad, 2013). After Pax6 ablation in beta-cells, we observed an overt diabetic 

phenotype. However, when followed over a long time a slight decrease in the blood 

glucose level was observed in young mice (KO induction at 3 weeks) but not in older 

mice (KO induction at 1.5 months). Nevertheless, a complete recovery to pre-KO level 

was never observed. By quantification, an increase in the number of YFP negative 

insulin+ cells was observed in the KO islets that shows expansion of insulin+ cells that 

escaped recombination and/or insulin+ cells that appeared as a result of neogenesis. Again 

this increase was greater at younger age compared to the older age. This difference in 

young vs. old age is explained by the higher basal proliferation in 3 week old mice 

compared to 1.5 month old ones. 

Apart from proliferation some beta-cells may arise from alternative sources such as 

via transdifferentiation of alpha-cells (Thorel et al., 2010). Occasionally, we observed 

some Pdx1 positive alpha-cells in beta-cell-specific Pax6 KO islets. As Pdx1 is a beta-cell 

specific transcription factor, its presence in alpha-cells can show an intermediate 

transition state towards beta-cell generation. Transdifferentiation of alpha- to beta-cells 

has bee shown as the primary mechanism of beta-cell generation after extreme beta-cell 

loss (Thorel et al., 2010). Additionally, we observed some MafB positive beta-cells in the 

beta-cell-specific Pax6 KO islets. MafB is an alpha-cell specific transcription factor that 

is also expressed in immature beta-cells during embryonic development (Artner et al., 
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2007). Presence of MafB in some beta-cells can, therefore, indicate their immature state 

and new emergence. 

In conclusion, some level of beta-cell regeneration does occur after Pax6 ablation 

from beta-cells. This regeneration involves proliferation of pre-existing beta-cells and/or 

generation of some new beta-cells through other sources. 

4.2 Pax6 knockout in alpha-cells 

4.2.1 Loss of glucagon expression in Pax6 KO alpha-cells 

Using the non-inducible glucagon-Cre mouse line (Herrera, 2000), we achieved almost 

70% recombination efficiency as indicated by the YFP reporter expression. This means 

that at a given time-point nearly 70% of the alpha-cells would have lost Pax6. Labeling 

with YFP reporter also allowed us to precisely identify and track the Pax6 KO alpha-

cells. The KO alpha-cells did not express glucagon as revealed by immunostaining and 

were also negative for the expression of MafB. In adult islets, MafB is an alpha-cell 

specific transcription factor that is a direct downstream target of Pax6 and together with 

Pax6 it controls the transcription of Proglucagon gene (Artner et al., 2006; Gosmain et 

al., 2010). Therefore, the loss of Pax6 and then MafB explains the inability of these cells 

to synthesize glucagon. 

4.2.2 Ghrelin upregulation in Pax6 KO alpha-cells 

It has been previously shown that ghrelin is upregulated in Pax6 KO pancreata. However, 

the exact origin of these ghrelin+ cells has not been clearly identified (Heller et al., 2005; 

Kordowich et al., 2011). Similar to these preceding studies, we found an increased 

expression of ghrelin in the mutant islets. Lineage tracing with YFP reporter confirmed 

that these ghrelin+ cells are originated from previously glucagon+ cells. This conclusion 

was strengthened by two more observations. Firstly, the presence of some reporter labeled 

ghrelin-glucagon co-positive cells along with the reporter labeled ghrelin-only+ cell 

population. Secondly, the expression of Arx, a marker of alpha-cell lineage (Collombat et 

al., 2003, 2005, 2007), in the ghrelin+ cells. Thus, alpha-cells lost the expression of 

glucagon following Pax6 ablation and started to produce ghrelin (Figure 4.2). These 

ghrelin expressing cells were distinct from the ghrelin+ cells that emerge in the beta-cell-

specific Pax6 KO islets as the later did not express Arx (data not shown). 
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Figure 4.2: Schematic representation of the phenotypic change observed in Pax6-

deficient alpha-cells. Alpha-cells in the control mice express glucagon, Pax6, MafB, 

Arx, PC2, proSAAS, and low level of 7B2. Following Pax6 ablation, the expression of 

glucagon and MafB is lost, the expression of Arx, PC2, and proSAAS is maintained, and 

the expression of 7B2 is upregulated.  Along with that ghrelin expression is highly 

upregulated in the Pax6-deficient cells, and the cells transiently pass through a glucagon-

ghrelin co-positive state before they completely convert into ghrelin expressing cells. 
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Additionally, we observed some YFP- ghrelin+ cells in the alpha-cell-specific Pax6 

KO islets that were also Arx+. Hence, a rare population of ghrelin+ cells in the KO islets is 

not coming from alpha-cells and may represent the cells from genuine epsilon-cell 

population. 

We found the upregulation of ghrelin expression in both Pax6-deficient alpha- and 

beta-cells. This suggests that the molecular mechanism behind this upregulation of 

ghrelin is probably similar in both of these cell types. By ChIP assay, we found no 

interaction of Pax6 with the ghrelin promoter. Therefore, it seems that the upregulation of 

ghrelin is not directly due to the loss of Pax6-mediated repression of ghrelin expression. 

It is rather due to the activation of a pathway that is shared between alpha- and beta-cells 

and is activated when these cells lose their mature differentiation status. 

4.2.3 7B2 upregulation in Pax6 KO alpha-cells 

In alpha-cells, glucagon is initially synthesized as proglucagon, a precursor form that is 

processed by the enzyme prohormone convertase 2 (PC2) to generate the mature 

glucagon peptide (Furuta et al., 1997). Prohormone convertase 2 is itself synthesized as a 

proprotein (pro-PC2) that requires the presence of neuroendocrine protein 7B2 for its 

maturation and activation (Westphal et al., 1999). Previous in vitro studies have shown 

that proglucagon processing in the Pax6 knockdown alpha-cells is impaired due to the 

reduced expression of both PC2 and 7B2 (Katz et al., 2009). However, in contrast to this 

in vitro study we found no change in the PC2 immunoreactivity in Pax6 KO alpha-cells. 

Surprisingly, instead of being decreased the expression of 7B2 was highly upregulated in 

these cells. This increased expression of 7B2 in the KO cells might be in an effort to 

enhance the PC2 activity in response to the reduced hormone synthesis. This idea is 

supported by the in vitro study, where 7B2 overexpression in alpha-TC6 cells led to the 

increased production of glucagon (Helwig et al., 2011). Alternatively, this upregulation of 

7B2 might be in relation to the differentiation status of Pax6-deficient cells as discussed 

in the beta-cell section. 

As 7B2 is upregulated in both alpha- and beta-cell-specific Pax6 KO mouse models, 

this means that a common pathway is affected in both cell types that leads to upregulation 

of 7B2. This specific pathway is perhaps affected in the intact islet in vivo but not in the 

isolated cells in vitro. This may explain the difference of 7B2 expression following Pax6 

ablation in vitro vs. in vivo. 
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4.2.4 Regeneration of alpha-cells in the alpha-cell-specific Pax6 KO islets 

As the function of glucagon is to increase the blood glucose level in response to 

hypoglycemia, a reduced blood glucose level is expected under conditions of glucagon 

deficiency (Gelling et al., 2003). In spite of the fact that Pax6 KO alpha-cells lose the 

expression of glucagon, we were not able to see any change in the blood glucose level. 

This can be explained by either the lower recombination efficiency and/or by the 

regeneration of alpha-cells. Indeed, as the recombination efficiency was 70%, the rest of 

the 30% alpha-cells may produce enough glucagon to prevent any appreciable change in 

the blood glucose level. Interestingly, however, the total number of glucagon+ cells was 

not significantly different in 1 month old control and knockout mice. In contrast to the 

total population, the number of YFP negative glucagon+ cells was significantly increased 

in the KO islets. Hence, it is quite probable that alpha-cell regeneration did take place 

after the Pax6 KO. Analysis of later stages (3 month and 8 month) showed a decrease in 

the alpha-cell regeneration at older age (8 months) but not at the middle age (3 months). 

However, even the older mice that showed no regeneration were healthy, possibly due to 

the remaining unrecombined population of alpha-cells. Regeneration of alpha-cells has 

been demonstrated in other models of glucagon deficiency as well. Mice that lack 

glucagon receptor or PC2 show a massive alpha-cell hyperplasia (Furuta et al., 1997; 

Gelling et al., 2003). As compared to these models, the regeneration that we observe is 

only moderate, and this is because of the inability to achieve 100% recombination in 

alpha-cells. 

As the glucagon-Cre line used was not inducible, it was not possible to define the age 

of Pax6-deficient alpha-cells. At each of the age analyzed, the number of YFP labeled 

cells was significantly less in the alpha-cell-specific Pax6 KO islets compared to the 

control islets. In contrast to that, same numbers of YFP labeled cells were detected at 

either 1 month or 8 months of age in the alpha-cell-specific Pax6 KO islets. If we assume 

that glucagon+ cells regenerate in the KO islet and convert to ghrelin+ cells following the 

activation of Cre, this should lead to an increase in the ghrelin+ YFP+ cell population. 

Otherwise, some of the ghrelin+ YFP+ cells should disappear e.g., via apoptosis. 

However, apoptosis was not detectable in the KO islets as determined by the TUNEL 

staining (data not shown). Therefore, it remains unclear that what happens to the ghrelin+ 

cells that arise from alpha-cells. 
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4.3 Comparison of Pax6 KO in alpha- and beta-cells 

In both alpha- and beta-cells, the ablation of Pax6 results in the loss of mature 

differentiation status and upregulation of ghrelin expression. However, the original 

character of the cell type is maintained in each case as evident by the continued 

expression of Arx in Pax6-deficient alpha-cells and that of Pdx1 in Pax6-deficient beta-

cells. Similarly, the ghrelin expressing cells in each type of knockout pancreata are 

distinct from each other. Ghrelin expressing cells in beta-cell-specific Pax6 KO islets 

express Pdx1 and remain negative for Arx and glucagon expression. On the other hand, 

ghrelin expressing cells in alpha-cell-specific Pax6 KO islets express Arx and never show 

co-expression with insulin. Moreover, the alpha-cell derived ghrelin+ cells are located at 

the periphery of the islets that is the normal location of alpha-cells in mouse islets. In 

contrast to that, the beta-cell derived ghrelin+ cells are dispersed throughout the islet. 

In the normal mouse islet, beta-cells form the core of the islet and other endocrine cell 

types stay at the periphery (Brissova et al., 2005). As compared to the control mice, the 

islet architecture in beta-cell-specific Pax6 KO mice is slightly disturbed as different 

types of endocrine cells are sometimes mixed into each other. Additionally, the number of 

glucagon, somatostatin, and PP producing cells is increased in these islets. However, in 

alpha-cell-specific Pax6 KO mice no such disturbance is observed. The number of 

insulin, somatostatin, and PP producing cells is not changed (data not shown) and the islet 

structure remains intact. For the comparison of cell-type-specific changes in both types of 

KO mice, see Figures 4.1 and 4.2. 

4.4 Pax6 overexpression 

To date, there is only one in vivo study of Pax6 overexpression done in pancreas. In this 

study, Yamaoka et al. (2000) overexpressed Pax6 directly under Pdx1 and insulin 

promoter. The phenotype was variable with many animals developing diabetes but not all. 

They found reduction in the number of insulin+ cells due to increased apoptosis. 

Additionally, when overexpressed under Pdx1 promoter, Pax6 caused hypoplasia of the 

pancreatic exocrine tissue. One disadvantage of overexpressing Pax6 in this way is that 

both the Pdx1 and insulin promoters would be subject to regulation inside beta-cells that 

may lead to variation in the phenotype. 
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We decided to repeat the overexpression of Pax6 in a different way. In our system 

Pax6 was overexpressed under CAG promoter that provides constitutive expression and, 

therefore, is less sensitive to cellular state. However, this overexpression is dependent on 

Cre/loxP system and can be activated in the desired cell type. Along with the Pdx1 (whole 

pancreas), and insulin (beta-cells) expression domains we overexpressed Pax6 in the 

glucagon (alpha-cells) expression domain too. Pax6OE mice in any domain did not 

develop diabetes. Difference in proliferation or apoptosis of beta-cells was also not 

detectable. However, like this previous study we also found hypoplasia of the exocrine 

pancreas in Pax6OE; Pdx1-Cre mice. Furthermore, we found decrease in the glucagon+, 

ghrelin+, and PP+ cell population when Pax6 was overexpressed under Pdx1 expression 

domain indicating that compared to insulin+ or somatostatin+ cell population, 

development of these three cell types is more sensitive to the level of Pax6. 

In another study by Kredo-Russo et al. (2012), miR-7 knockdown lead to indirect 

overexpression of Pax6. In this case also the number of ghrelin+ cells was decreased. 

However, in contrast to our study, the number of both the insulin+ and glucagon+ cells 

was increased. This difference may arise from other targets that are affected by miR-7 

knockdown along with Pax6. Secondly, the study was performed in explant culture that 

may behave a bit different from the real in vivo system. 

4.5 Comparison of the Pax6 pancreatic phenotype in relation to Pax6 

function in brain and eye 

Apart from pancreas, Pax6 also plays essential roles in the development of brain and eye 

(Callaerts et al., 1997). However, the exact function of Pax6 in different tissues as well as 

in the different cell types of the same tissue can be highly variable. Without going into 

extensive detail we will note down few interesting examples from eye and brain and 

compare them with our pancreatic Pax6 KO /OE phenotype. 

During eye development, Pax6 is required in the retinal progenitor cells (RPCs) for 

the completion of retinal neurogenesis. When Pax6 is deleted from the late phase optic 

cup after e10.5, a dual function of Pax6 is revealed. In the peripheral RPCs, loss of Pax6 

results in reduced proliferation and beginning of early differentiation that never attains 

maturity. In the central RPCs, loss of Pax6 leads to a cell-fate change from retinal lineage 

to amacrine interneurons (Oron-Karni et al., 2008). Along with the retinal neurogenesis, 
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Pax6 is also required for lens fiber cell differentiation. Here the presence of Pax6 is 

essential for the early phase of differentiation while downregulation of Pax6 is required 

for the last stage of lens differentiation (Shaham et al., 2012). 

In brain, Pax6 is highly expressed in cortical radial glial cells (neural progenitors). In 

the absence of Pax6, neural progenitor pool is reduced due to increased cell-cycle exit and 

premature start of neuronal differentiation (Quinn et al., 2007). Pax6 is also expressed in 

the developing and postnatal astrocytes that originate from neural progenitors. Cultured 

astrocytes from Pax6sey/sey mice are not fully differentiated and show increased 

proliferation. Furthermore, the PI3K/Akt pathway, that enhances cell survival and reduces 

apoptosis, is also activated in these astrocytes as indicated by the increased activity of Akt 

(Sakurai and Osumi, 2008). 

In spite of the variation, it seems that Pax6 derives successful differentiation of the 

respective cell types. Especially as compared to the Pax6sey/sey astrocyte phenotype, we 

also observed a loss of differentiation in the Pax6 KO alpha- and beta-cells. Though in 

our case there was decrease in proliferation rather than increase, that is more similar to 

the Pax6 KO in peripheral RPCs in the eye. Moreover, ghrelin that is upregulated in 

alpha- and beta-cells after Pax6 KO, may provide cell survival and anti-apoptotic affect 

by activating PI3K/Akt pathway (Chung et al., 2008). 

Pax6 gene dosage is important during development. Like the reduced dosage, an over-

dosage of Pax6 also leads to developmental defects. However, again the effect of Pax6 

overexpression can vary in different cell types at different time points of development. In 

eye, overexpression of Pax6 leads to defective iris, ciliary body, and retinal development 

without inducing apoptosis (Manuel et al., 2008; Davis et al., 2009). In brain, it was 

shown that Pax6 overexpression causes apoptosis in a set of cortical progenitors. 

Progenitors that have higher endogenous level of Pax6 expression are more resistant to 

the effect of Pax6 overexpression. Additionally, overexpression of Pax6 in postmitotic 

neurons does not cause apoptosis (Berger et al., 2007). Therefore, it seems that the 

sensitivity of different cell types to Pax6 dosage is different. 

In our study, Pax6 overexpression in the pancreas did not cause apoptosis in the adult 

pancreas. In the exocrine pancreas, slight hypoplasia was observed. In the endocrine 

pancreas, glucagon+ and PP+ cells were reduced in number. Therefore, at the level of 
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Pax6 expression achieved in these transgenic mice, the development of pancreas does not 

seem to be drastically affected. 

Lastly, it is important to mention that some of the Pax6 target genes are shared among 

forebrain, lens, and beta-cells. In a recent study, Xie et al. (2013) utilized ChIP-chip 

approach to identify the targets of Pax6 in forebrain, lens, and beta-cells. Interestingly, 

they found that 133 target promoters were shared between all three tissue sources. 

Furthermore, MafA, MafB, Isl1, and Pcsk1n (proSAAS) that are expressed in the 

endocrine pancreas are also expressed in the eye and regulated by Pax6 (Xie et al., 2013). 

MafA and MafB are important for the alpha- and beta-cell development/maturation and 

are also required for lens development (Reza et al., 2002; Cvekl et al., 2004; Zhang et al., 

2005; Artner et al., 2007). However, only about 3% of the Pax6-bound promoters are 

shared between lens, forebrain, and beta-cells (Xie et al., 2013). This means that apart 

from having some similarity, these three tissue types are only distantly related. 
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5. Summary 

Pax6, a transcription factor from the paired-box family is expressed in the eye, central 

nervous system, olfactory system, and pancreas, and plays an important role in the 

development of these tissues (Shaham et al., 2012). In pancreas, Pax6 is required for the 

development and function of the endocrine pancreas especially alpha- and beta-cells (St-

Onge et al., 1997; Ashery-Padan et al., 2004; Gosmain et al., 2010; Gosmain et al., 

2012a). However, as the Pax6 knockout mice die shortly after birth, it does not allow for 

the elucidation of Pax6 function in adult endocrine pancreas in vivo. Secondly, a cell-

type-specific effect of Pax6 ablation cannot be established if Pax6 is ablated from the 

whole pancreas. 

For this purpose, we decided to generate Pax6 konckout (KO) in alpha- and beta-

cells, separately. Additionally, we used a tamoxifen-inducible Cre line to ablate Pax6 

from beta-cells in the adult mice. In parallel to that, we overexpressed Pax6 in the whole 

pancreas, in beta-cells alone, and in the alpha-cells alone. Following results were obtained 

in this study: 

1. The beta-cell-specific Pax6 KO mice developed an overt diabetes in a short time-

period after tamoxifen induction. In pancreas, the number of insulin+ cells was 

decreased and that of ghrelin+ cells increased. Lineage tracing with YFP reporter 

confirmed the origin of these ghrelin+ cells from the insulin+ cells. 

2. Following Pax6 ablation, beta-cells lost their mature differentiation status and 

function. This was evident by the reduced expression of MafA and Nkx6.1, two 

mature beta-cell-specific transcription factors. Moreover, Pax6-deficient beta-cells 

were defective in insulin synthesis and glucose-stimulated insulin secretion, 

indicated by the absence of insulin, Glut2, and GLP-1 receptor expression. 

Finally, the proinsulin processing was also defective in Pax6-deficient beta-cells 

due to the increased expression of proSAAS that can inhibit PC1/3-mediated 

proinsulin processing. 

3. Long-term tracing of Pax6-deficient beta-cells revealed that most of them 

continue to express ghrelin. These cells did not die or convert to any other cell 

type. Apparently, they maintained their endocrine and partial beta-cell-like 

character as shown by the continued expression of Rfx6 and Pdx1, that are 
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endocrine-specific and beta-cell related transcription factors in the adult pancreas, 

respectively. 

4. The alpha-cell-specific Pax6 KO mice remained healthy and did not show any 

change in blood glucose level. In pancreas, the number of glucagon+ cells was 

unchanged at younger age but decreased at an older age. Ghrelin expression was 

also upregulated in alpha-cell-specific Pax6 KO islets. Lineage tracing with YFP 

reporter confirmed the origin of these ghrelin+ cells from the glucagon+ cells. 

5. Following Pax6 ablation, alpha-cells lost their mature differentiation status and 

function. This was evident by the loss of glucagon and MafB expression. Pax6-

deficient alpha-cells, however, maintained their alpha-cell-like character as they 

continued to express Arx that is alpha-cell lineage determinant. 

6. We found the increased expression of ghrelin in both Pax6-deficient alpha- and 

beta-cells. In each case, however, the ghrelin+ cells maintained the character of the 

cell-type from which they originated. Alpha-cell derived ghrelin+ cells continued 

to express Arx. On the other hand, beta-cell derived ghrelin+ cells did not express 

Arx. Instead, they continued to express beta-cell related factors (e.g., Pdx1, IAPP, 

PC1/3). 

7. Pax6 ablation from alpha- and beta-cells led to the loss of glucagon and insulin 

expression, respectively. This in turn resulted in the regeneration of the respective 

cell-type in each case. Regeneration capacity of both alpha- and beta-cells was 

higher at a younger age. However, in beta-cell-specific Pax6 KO mice the 

regeneration of beta-cells was not sufficient to allow for the complete recovery 

from diabetes even at a younger age. 

8. Pax6 overexpressing mice remained healthy and did not show any change in the 

blood glucose level. In the pancreas-specific Pax6 overexpressing mice, slight 

hypoplasia of the exocrine pancreas was observed. In the endocrine pancreas, 

numbers of alpha-, PP-, and epsilon-cells were decreased and that of beta- and 

delta-cells not affected. In the beta-cell-specific Pax6 overexpressing mice, no 

change was observed in the pancreas. Lastly, in the alpha-cell-specific Pax6 

overexpressing mice, again a decrease in the number of alpha-cells was observed. 
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Therefore, the development of alpha-cells appears to be more sensitive to the level 

of Pax6 expression as compared to that of beta-cells. 
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