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Prof. Dr. Dorothea Bahns,

Mathematisches Institut, Universität Göttingen

Prof. Dr. Tatyana Krivobokova,

Institut für Mathematische Stochastik, Universität Göttingen

Prof. Dr. Stephan Waack,

Institut fr Informatik, Universität Göttingen

Prof. Dr. Max Wardetzki,

Institut fr Numerische und Angewandte Mathematik, Universität Göttingen

Tag der mündlichen Püfung: 22.01.2014
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Preface

Piecewise constant step functions with a finite number of change-points provide a suitable

regression model in many situations. Estimation of such change-point functions is deemed to

be a classical problem in statistics, which experienced a revival with applications in various

interdisciplinary fields in recent years. Two examples that received particular attention are

the detection of gene copy number aberrations in genomics and the unveiling of changes in

the volatility of time series in financial econometrics.

This thesis mainly concerns change-point models with independent observations from an

exponential family, with constant mean in between change-points. An inferential scheme

for estimation and confidence statements based on a multiscale statistic is provided, which

allows for efficient and accurate detection of multiple change-points. A universal bound for the

asymptotic null-distribution of the considered multiscale statistic is derived. Based on this,

the probability of over- and underestimation of change-points is bounded explicitly. From

these bounds, model consistency is obtained and (asymptotically) honest confidence sets for

the unknown change-point function and its change-points are constructed. It is shown that

the change-point locations are estimated at the minimax rate O(n−1) up to a logarithmic

term. Moreover, the optimal detection rate of vanishing signals as n→ ∞ is attained.

The general methodology, as in Section 1 and Section 2, and large parts of the theory in

Section 3 have been published in Frick et al. (2013). However, several theoretical findings are

extended and refined, as described precisely at the beginning of Section 3.

It is shown how dynamic programming can be used for efficient computation of estimators,

confidence intervals and confidence bands for the change-point function.

The performance and robustness of the approach are illustrated in various simulations. The

proposed estimate has been applied to DNA segmentation (Futschik et al., 2013) and with

some modifications to idealization of ion-channel recordings (Hotz et al., 2012). Both papers

are not part of this thesis, yet, the application in Futschik et al. (2013) is illustrated by means

of a data set from the literature in Section 6.7.

This thesis extends the work of Frick et al. (2013) by including two generalizations beyond

exponential families (Section 5). In addition, an approach is derived, which is tailor-suited for

applications in which the change-point function is known to have few different values (Section

7). Finally, extensions and modifications that give motivation for future work are discussed

in Section 8.
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SECTION 1

Introduction

We assume that independent random variables Y = (Y1, . . . , Yn) are given by the regression

model

Yi ∼ Fϑ(i/n), for i = 1, . . . , n. (1.1)

Here, {Fθ}θ∈Θ is a one-dimensional exponential family with densities fθ and the regression

function ϑ : [0, 1) → Θ ⊆ R is a right-continuous change-point function with an unknown

number K of change-points. The change-points locations will be denoted by (τ1, . . . , τK) and

the value of the function by (θ1, . . . , θK). Figure 1 depicts such a step function with K = 11

change-points and corresponding data Y for the Gaussian family Fθ = N (θ, 1). A formal

definition of the model is given in Section 2.1. The statistical problem related with this

model is often referred to as the change-point problem (Carlstein et al., 1994) and consists in

estimating

(i) the number of change-points K,

(ii) the change-point locations (τ1, . . . , τK) and

(iii) the function values (θ1, . . . , θK).

Additionally, we address the more involved issue

(iv) of constructing simultaneous asymptotic confidence statements for the function ϑ, its

number of change-points and its change-point locations.

Within this work we present an approach to the change-point problem based on a multiscale

test statistic. In general, the problem of detecting changes in the characteristics of a sequence

of observations has a long history in statistics and related fields, dating back to the 1950’s (see

e.g. Page (1955)). For a selective survey, we refer the reader also to the books of Basseville

and Nikiforov (1993), Brodsky and Darkhovsky (1993), Csörgö and Horváth (1997), Chen

and Gupta (2000), Wu (2005) and the extensive list in Khodadadi and Asgharian (2008).
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Figure 1: Example of a regression function ϑ ∈ S with Gaussian observations Y and variance
σ2 = 1.

In recent years, the change-point problem experienced a renaissance in the context of regres-

sion analysis due to novel applications that mainly came along with the rapid development

in genetic engineering, looking at detection of changes in gene copy numbers in the genome

(Jeng et al., 2010; Lai et al., 2005; Olshen et al., 2004; Zhang and Siegmund, 2007). Also in

the context of detecting changes in the volatility of time series in financial econometrics much

research has been done (Davies et al., 2012; Inclán and Tiao, 1994; Lavielle and Teyssière,

2007; Spokoiny, 2009). Motivated by these applications for large data sets, fast computation

of estimates is crucial and a lot of work on efficient algorithms was carried out recently (see

e.g. Friedrich et al. (2008), Killick et al. (2011) and Venkatraman and Olshen (2007)).

1.1 Method

In order to address the points (i)− (iv), we propose a methodology, which can be considered

as a hybrid method of two well-established approaches to the change-point problem.

Likelihood ratio statistics are frequently employed to test for a change in the parameter

of the distribution family and to construct confidence regions for change-point locations.

Approaches of this type date back as far as Chernoff and Zacks (1964), Kander and Zacks

(1966) and have gained considerable attention afterwards (Dümbgen, 1991; Hinkley, 1970;

Hinkley and Hinkley, 1970; Hušková and Antoch, 2003; Siegmund, 1988; Worsley, 1983, 1986).

The likelihood-ratio test was also extensively studied for sequential change-point analysis

(Siegmund, 1986; Siegmund and Venkatraman, 1995; Yakir and Pollak, 1998). These methods

are primarily designed to detect a predefined maximal number (mostly one) of change-points.

A generalization of this approach towards testing of multiple (i.e. an unknown number of)

change-points yields a multiple testing problem. Such problems have e.g. been addressed by

multiscale (scanning) statistics, see Dümbgen and Spokoiny (2001), Dümbgen and Walther
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(2008) and in the context of change-point regression Siegmund and Yakir (2000). In this

work we employ a multiscale statistic which will be derived in detail in Section 2.2 and is

based on results from Dümbgen and Spokoiny (2001). By these approaches simultaneous

confidence statements about multiple qualitative features are obtained, which makes this

approach particular suitable for the problem raised in (iv). Moreover, it was shown in Chan

and Walther (2013) that statistics of this kind achieve optimality in detection of signals on

segments of any lengths simultaneously.

Another popular approach in change-point regression is based on minimizing a penalized cost

function, i.e. solving an optimization problem of the form

inf
ϑ∈S

c(Y, ϑ) + pen(ϑ). (1.2)

Here the cost function c(Y, ϑ) serves as a goodness-of-fit measure and the penalty term pen(ϑ),

which may e.g. depend on the number of change-points, penalizes the complexity of ϑ and

prevents over-fitting. It increases with the dimension of the model and provides a model

selection criterion. A minimizer of the optimization problem (1.2) naturally provides solutions

for (i)-(iii).

A special case of (1.2) is linear penalization of the number of change-points, more precisely

pen(ϑ) = ω#J(ϑ), which has been considered in Yao (1988) and Yao and Au (1989) with a

BIC type weight ω ∼ log n. Model selection based `0-penalized functionals, which are nonlin-

ear in #J(ϑ) have been investigated in Birgé and Massart (2001) for change-point regression.

Furthermore, Zhang and Siegmund (2007) introduced a penalty, which depends on the num-

ber of change-points and additionally on its locations. Various methods based on weighted

l0-penalties have since been developed in Braun et al. (2000), Winkler and Liebscher (2002),

Wittich et al. (2008) and Boysen et al. (2009). As an eligible property of l0-penalization, it

was shown that exact solutions of such optimization problems can often be computed effi-

ciently by dynamic programing (see the literature in Section 4 for a selective overview on the

literature).

In many situations the optimization problem in (1.2) may equivalently be written as

inf
ϑ∈S

pen(ϑ) s.t. c(Y, ϑ) ≤ q, (1.3)

for some (unknown) threshold q > 0. In this work, we combine these two ideas and propose

to solve an optimization problem of the type (1.3), where the goodness-of-fit measure c is

chosen to be a multiscale statistic. This statistic will be restricted to constant parts of ϑ,

which makes dynamic programing applicable while maintaining optimal detection properties

of the multiscale statistic. By this the above mentioned advantages of both approaches are

combined, as we will point out in this work: on the one hand, we obtain confidence statements
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for the estimate originating from the multiscale statistic (see Section 3) and on the other hand

we show that it can be implemented with worst case complexityO(n2) by dynamic programing

(see Section 4).

In order to outline the estimation procedure, let Tn(Y, ϑ) denote a (later specified) multiscale

statistic. The goals (i)-(iv) will then be achieved based on an estimation and inference method

for the change-point problem in exponential families: the Simultaneous MUltiscale Change-

point Estimator (SMUCE). For ϑ ∈ S we denote by J(ϑ) the ordered vector of change-points

and by #J(ϑ) its length, i.e. the number of change-points. We consider the optimization

problem

inf
ϑ∈S

#J(ϑ) s.t. Tn(Y, ϑ) ≤ q. (1.4)

SMUCE addresses change-point regression in two simultaneously combined estimation steps:

model selection (estimation ofK) and estimation of ϑ givenK. The minimal value of #J(ϑ) in

(1.4) gives the estimated number of change-points, denoted by K̂(q). To obtain an estimator

for ϑ first consider the set of all solutions of (1.4) given by

H(q) =
{
ϑ ∈ S : #J(ϑ) = K̂(q) and Tn(Y, ϑ) ≤ q

}
. (1.5)

We will show in Section 3.6 that H(q) constitutes a confidence set for the true regression

function ϑ. Based on this confidence set, we address (iv) and derive confidence bands for ϑ

and confidence intervals for the change-point locations. As the final estimate ϑ̂(q) for ϑ we

propose the constrained maximum likelihood estimator within this confidence set, i.e.

ϑ̂(q) = argmax
ϑ∈H(q)

n∑
i=1

log
(
fϑ(i/n)(Yi)

)
. (1.6)

Since ϑ̂(q) implies an estimate of the change-point locations and function values, this provides

a solution to (ii)-(iii). Figure 2 shows the SMUCE (red solid line) for the data example in

Figure 1. As stressed above, the multiscale constraint on the r.h.s. of (1.4) renders SMUCE

sensitive to the multiscale nature of the signal ϑ. The signal in Figure 2 illustrates this as

the signal is recovered on large and small scales equally well.

1.2 Related work

Estimates, which minimize target functionals under a statistical multiscale constraint have

been already considered in Nemirovski (1985), Donoho (1995) and more recently in Davies and

Kovac (2001), Candès and Tao (2007), Davies et al. (2009) and Frick et al. (2012). To piecewise

constant regression this idea was first applied in Höhenrieder (2008) for approximation of

financial data in a Gaussian model, see also Davies et al. (2012). There it was also shown that
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Figure 2: Example of a regression function ϑ ∈ S (black, dotted line) with Gaussian observa-
tions Y and variance σ2 = 1 and SMUCE (solid, red line).

the reduction to a multiscale statistic acting on constant parts makes dynamic programing

applicable (see Section 4 for more details).

The literature in Section 1.1 can be complemented by further prominent penalization ap-

proaches of the type (1.2) including the fused lasso procedure (Friedman et al., 2007; Tib-

shirani et al., 2005) and Harchaoui and Lévy-Leduc (2010) that use a linear combination

of the total-variation and the `1-norm to penalize complexity. Multiscale based partitioning

methods include binary segmentation in Sen and Srivastava (1975), Vostrikova (1981), Olshen

et al. (2004) and Fryzlewicz (2012). Besides the already mentioned frequentists work, there

are also several Bayesian approaches to the change-point problem. For some recent literature,

we refer to Du and Kou (2012), Fearnhead (2006), Luong et al. (2012), Rigaill et al. (2012)

and the references therein.

1.3 Main results

1.3.1 Deviation bounds and confidence sets

The parameter q ∈ R in (1.4) plays a crucial role for estimation as it governs the trade-off

between data-fit and parsimony, represented by the number of change-points. It has an

immediate statistical interpretation. From (1.4) it follows that

P
(
K̂(q) > K

)
≤ P(Tn(Y, ϑ) > q). (1.7)

Hence, by choosing q = q(α) to be the (1− α)-quantile of the (asymptotic) null-distribution

of Tn(Y, ϑ), we can (asymptotically) control the probability of overestimating the number of

change-points by α. In fact, we show that the null-distribution of Tn(Y, ϑ) can be bounded

asymptotically by a distribution which is independent of ϑ (see Section 3.1). In addition,
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Figure 3: Estimated change-points (red dots) for the signal in Figure 1 and different values
of α. The true change-point locations are shown grey vertical lines.

in Theorem 37 we provide an estimate for the tails of this limit distribution, which yields

explicit bounds. It is noteworthy that for Gaussian observations these bounds are even

non-asymptotic (see Section 3.5). In Figure 3 we reconsider the previous example and show

for different choices of α (y-axis) the corresponding estimates for the change-point locations

(red dots). The vertical ticks mark the true change-point locations. The number of estimated

change-points is monotonically increasing in α in accordance with (1.7), which guarantees at

error level α that SMUCE has not more change-points than the true signal ϑ.

As mentioned before, the threshold q(α) for SMUCE automatically controls the probability of

overestimating the number of change-points. In Section 3.2 we prove a refinement (Theorem

5) which actually shows that for any k ∈ N0

P
(
K̂(q(α))−K > 2k

)
≤ αk+1.

Based on this bound we will derive an upper bound for the expected number of overestimated

change-points (Corollary 6). This bound in turn opens the opportunity for a data-driven

choice of q, based on controlling the false discovery rate (FDR), as we will show in Section

8.1.

In addition, we prove an upper bound for the probability of underestimating the number of

change-points. Any such bound necessarily depends on characteristics of the signal ϑ, as no

method can recover arbitrary fine features for given sample size n, see Donoho (1988) for a

rigorous argument in the context of density estimation. Our bound (see Theorem 7) reflects

this fact and is given in terms of the length of segments of ϑ and the height of its jumps. A

simplified version, which only depends on the smallest interval length Λ, the smallest absolute
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jump size ∆ and the number of change-points K of the true regression function ϑ reads as

P
(
K̂(q) < K

)
≤ 2Ke−CnΛ∆2

[
e

(
q+

√
2 log(e/Λ)

)2

+ 1

]
. (1.8)

Here, C > 0 is some known universal constant only depending on the family of distributions

(see Section 3.3). While the bounds for overestimation are essentially build on the control

of the null-distribution of Tn, these bounds rely on power approximations for the local test

statistics. For the case of Gaussian observations we derive the detection power of the mul-

tiscale statistic Tn, i.e. we determine the rate and constants at which a signal may vanish

with increasing n but still can be detected with probability 1, asymptotically. For the task

of detecting a single constant signal against a noisy background, we prove that the obtained

rate is optimal (cf. Dümbgen and Spokoiny (2001), Dümbgen and Walther (2008) and Chan

and Walther (2013)). Further, we extend this result to the case of an arbitrary number of

change-points, retrieving the same optimal rate but different constants (Section 3.5.1).

As a consequence of the bounds for over- and underestimation, H(q(α)) in (1.5) constitutes

an asymptotic confidence set at level 1−α and we will explain in Section 4.5 how confidence

bands for the graph of ϑ and confidence intervals for its change-points can be obtained from

this. Of course, honest (i.e. uniform) confidence sets cannot be obtained on the entire set

of step functions S, as ∆ and Λ can become arbitrarily small. Nevertheless, we can show

that simultaneously, confidence bands for ϑ and intervals for the change-points are both

asymptotically honest with respect to to a sequence of nested models S(n) ⊂ S that satisfy

n

log n
∆2

nΛn → ∞, as n→ ∞. (1.9)

In other words, the confidence level α is kept uniformly over S(n) as n → ∞ (c.f. Section

3.6). Here Λn and ∆n represent the smallest interval length and smallest absolute jump size

in S(n), respectively.

1.4 Beyond exponential families

Even though the results in Section 3 generally rely on the restriction to exponential families,

the SMUCE methodology can be applied to other distributions. Extending the results from

Section 3.1, we show that the null-distribution of the multiscale statistic with Gaussian like-

lihoods converges to the same limit distribution for any sub-Gaussian additive noise. This

makes the procedure applicable in this more general model (Section 5.1). These findings may

also be understood as a certain robustness property of the SMUCE with Gaussian likelihood,

which is confirmed by simulations in Section 6.6 for uniformly distributed noise.

Moreover, we provide a modification of SMUCE for quantile regression. The approach is based
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on a multiscale analysis of the signs of residuals, and is hence applicable to any distributions

(Section 5.2).

1.5 Implementation and Software

The applicability of dynamic programming to the change-point problem has been subject of

research recently (Auger and Lawrence, 1989; Fearnhead, 2006; Friedrich et al., 2008; Har-

chaoui and Lévy-Leduc, 2010; Jackson et al., 2005). The SMUCE ϑ̂(q) can also be computed

by a dynamic program due to the restriction of the local likelihoods to the constant parts

of candidate functions. This was shown in Höhenrieder (2008) for the multiscale constraint

considered there.

Much in the spirit of the dynamic program suggested in Killick et al. (2011), our implemen-

tation exploits the structure of the constraint set in (1.6) to include pruning steps. These

reduce the worst case computation time O(n2) considerably in practice. Simultaneously, the

algorithm returns a confidence band for the graph of ϑ as well as confidence intervals for the

location of the change-points (Section 4.5), the latter without any additional cost. A complete

pseudo-code of the algorithm is given and complexity and computation time are discussed. An

R-package (stepR) including an implementation of the pruned dynamic program for SMUCE

is available (Hotz and Sieling, 2013)1.

1.6 Choice of q, simulations and applications

We investigate the performance of our approach in simulations and real world data exam-

ples. For this purpose, we first discuss the choice of the threshold parameter q. As pointed

out above, q can be chosen such that the probability of overestimation is controlled. More-

over, balancing the probabilities for over- and underestimation gives an upper bound on

P(K̂(q) 6= K), i.e. the probability that the number of change-points is misspecified. This

bound depends on n, q,Λ and ∆ in an explicit way and opens the door for several strategies

to select q, e.g. such that P(K̂(q) = K) is maximized if prior information on ∆ and Λ is

incorporated. We discuss different approaches and suggest a simple way how to do this in

Section 6.1. Additionally, we relate our findings to false and true discoveries in Section 8.1.

From this in turn we derive an alternative, data-driven parameter choice, designed to control

the false discovery rate.

Extensive simulations reveal that SMUCE is competitive with state-of-the-art methods for

the change-point problem. Our simulation study includes the CBS method (Olshen et al.,

2004), the fused lasso (Tibshirani et al., 2005) and the modified BIC (Zhang and Siegmund,

2007) for Gaussian regression, the multiscale estimator in Davies et al. (2012) for piecewise

1R package available at http://www.stochastik.math.uni-goettingen.de/smuce

http://www.stochastik.math.uni-goettingen.de/smuce
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constant volatility estimation and the extended taut string method for quantile regression in

Dümbgen and Kovac (2009). In our simulations we consider several risk measures, including

the mean integrated squared error (MISE), the mean integrated absolute error (MIAE) and

the model selection error P(K̂ 6= K). Within these simulations the robustness to violations

of the assumption of a piecewise constant function is investigated.

As stressed before the applications for change-point models are vast. Besides the data exam-

ples in Frick et al. (2013) the procedure underlying SMUCE has been applied to idealization of

ion channels recordings (Hotz et al., 2012) and to segmentation of DNA-sequences (Futschik

et al., 2013). In extension to the results in Futschik et al. (2013) we illustrate the capacity of

SMUCE by means of a data example from the literature.

1.7 Multiscale segmentation with few levels

A modification of SMUCE is presented, which is designed for applications in which it is known

that the signal only takes few different values. The application, which we bear in mind is the

analysis of array CGH data. It is shown how the prior information of few different values

can be incorporated into the estimation procedure underlying SMUCE. The superiority of

the modified approach is illustrated in simulations and it is applied to an array CGH data

set, which has been considered in Snijders et al. (2001) and Olshen et al. (2004).

1.8 Discussion

In this section possible extensions and modifications of the proposed methodology are dis-

cussed. Motivated by the bounds for the expected number of overestimated change-points in

Section 3.2 we relate our findings to false discoveries. From this in turn we derive a data-driven

choice of q and show promising results in simulations.

Moreover, we investigate possibilities to further reduce the computation time of SMUCE by

considering fewer intervals in the multiscale statistic Tn. This is reduction is based on ideas

in Walther (2010) and makes SMUCE applicable to large data sets.

In addition we outline how SMUCE can be applied to dependent data in certain situation,

where the dependence structure is known. The ideas, which have been elaborated in detail

for an applications in Hotz et al. (2012), are shown at a simple example.

Finally, the scale-calibrated penalization chosen for Tn is discussed and a possible extension

of SMUCE to more general piecewise parametric models is outlined.
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SECTION 2

Statistical methodology

2.1 Model and notation

Before we can formally state the regression model, some definitions have to be introduced. We

recall the definition of exponential families and define the space of right-continuous change-

point functions.

Definition 1. Let ν be a σ-finite measure on the Borel set of R. Let F be the family of

distributions with ν-densities

fθ(x) = exp (θx− ψ(θ)) , x ∈ R, (2.1)

and with natural parameter space

Θ =

{
θ ∈ R :

∫
R
exp(θx) dν(x) <∞

}
.

The family F is called a natural exponential family and is said to be regular and minimal if

Θ is an open interval and the cumulant transform ψ is strictly convex on Θ.

Some well-known examples of exponential families are Gaussian distributions with fixed vari-

ance σ2, Poisson distributions and Bernoulli distributions.

Definition 2. The class of right-continuous change-point functions is defined as

S :=

{
ϑ : ϑ(t) =

K∑
k=0

θk1[τk,τk+1)(t), θk ∈ Θ, 0 = τ0 < τ1 < . . . < τK < τK+1 = 1,K <∞

}
.

With these preparations, we now state the regression model.
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Model 1. Suppose we observe the independent random variables Y = (Y1, . . . , Yn) from

Yi ∼ Fϑ(i/n), for i = 1, . . . , n, (2.2)

where {Fθ}θ∈Θ is a regular and minimal one-dimensional exponential family of distributions

and ϑ ∈ S a right-continuous change-point function.

It will be useful to define the functions

m(θ) := ψ̇(θ) = E [X] and v(θ) := ψ̈(θ) = Var [X] , (2.3)

for X ∼ Fθ. Note that m is strictly increasing and v is positive on Θ. In Definition 2 the

values τk are the change-point locations and θk ∈ Θ the corresponding intensities of ϑ. We

will assume that θk 6= θk+1 for k = 0, . . . ,K to ensure identifiability. To ease presentation we

also use the notation Ik = [τk, τk+1) for the k-th segment of ϑ.

Also, it turns out to be useful to consider the mean-value parameterization of ϑ and θk given

by

µ(x) = m(ϑ(x)) and mk = m(θk). (2.4)

Due to the monotonicity of m, the mapping µ 7→ ϑ is one-to-one and hence inference on ϑ

and µ are equivalent. Clearly, the same is true for any strictly monotone transformation of

ϑ. For ϑ ∈ S as in Definition 2 we denote by J(ϑ) = (τ1, . . . , τK) the increasingly ordered

vector of change-points and by #J(ϑ) = K its length.

For any estimator ϑ̂ of ϑ ∈ S, the estimated number of change-points will be denoted by

#J(ϑ̂) = K̂, the change-point locations by J(ϑ̂) = (τ̂1, . . . , τ̂K̂). Further, we set θ̂k = ϑ̂(t) for

t ∈ [τ̂k, τ̂k+1), i.e. θ̂k is the value of ϑ̂ on the k-th segments Îk. Analogously we set µ̂ = m(ϑ̂)

and m̂k = m(θ̂k).

Let S[k] denote the class of all functions in S which number of change-points is less or equal to

k. For simplicity, for each n ∈ N we restrict ourselves to estimators which have change-points

only at sampling points, i.e. ϑ̂ ∈ Sn[K] with τ̂k = l̂k/n for some 1 ≤ l̂k ≤ n. For a simple

presentation, we consider an equidistant sampling scheme as in Model 1. However, extensions

to more general designs are straightforward.

2.2 A Multiscale test for change-point regression

In this section we derive the multiscale statistic, which we employ for change-point inference

throughout this work. We will first consider local likelihood-ratio tests for local intensities of

ϑ (Subsection 2.2.1) and then combine these into a multiscale statistic (Subsection 2.2.2).
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2.2.1 Local likelihood-ratio tests

Given a candidate function ϑ̂ ∈ S we want to decide whether or not ϑ̂ is a good reconstruction

of ϑ. With a slight abuse of notation, ϑ̂ is considered as a fixed non-random function at this

point. To begin with, we fix some 1 ≤ k ≤ K and consider one fixed interval [i/n, j/n] ⊂ Îk,

i.e. which ϑ̂ is constant on with value θ̂k. Then, consider the local test problem

Hi,j : Yi, . . . , Yj ∼ Fθ̂k
vs. (2.5)

Ki,j : Yi, . . . , Yj ∼ Fθ̃ for some θ̃ ∈ {Θ \ θ̂k}.

For i.i.d. observations Yi, . . . , Yj , the local likelihood-ratio statistic for this test is given by

T j
i (Y, θ̂k) = log

(
supθ̃∈Θ

∏j
l=i fθ̃(Yl)∏j

l=i fθ̂k(Yl)

)
. (2.6)

Introducing the notation φ(x) = supθ∈Θ(θx−ψ(θ)) and J(x, θ) = φ(x)− (θx−ψ(θ)) we find

T j
i (Y, θ̂k) = (j − i+ 1)J(Y

j
i , θ̂k) ≥ 0, (2.7)

where Y
j
i = (

∑
i≤l≤j Yl)/(j − i + 1). This reveals the property of the likelihood-ratio test

to achieve reduction of the data by sufficiency, as the local test statistic T j
i depends on the

minimal sufficient statistic Y
j
i only. The resulting test at level α ∈ (0, 1) is of the form

φ(Y ) =

1 if T j
i (Y, θ̂k) ≤ qi,j(α) and

0 otherwise,
(2.8)

for some constant qi,j(α), determined by the level of significance α ∈ (0, 1) of the test. Hence,

Hi,j is rejected if T j
i exceeds the threshold qi,j(α). Given the observations Yi, . . . , Yj , there

exist constants bi,j and bi,j such that θ̂k is accepted if and only if

bi,j ≤ θ̂k ≤ bi,j . (2.9)

This follows from the strict convexity of T j
i , as we will show in Section 4.3. In summary, any

function ϑ̂ which is constant on [i/n, j/n] is rejected if its value on [i/n, j/n] is not in the

interval [bi,j , bi,j ].

Our goal is to decide if ϑ̂ is a good reconstruction of the entire signal, i.e. on all intervals

simultaneously. For ϑ̂ ∈ S with K̂ segments Î1, . . . , ÎK̂ and values θ̂1, . . . , θ̂K̂ we therefore
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consider the following multiple testing problem

K̂⋂
k=1

⋂
[i/n,j/n]⊂Îk

Hi,j vs.
K̂⋃
k=1

⋃
[i/n,j/n]⊂Îk

Ki,j .

In other words, ϑ̂ is rejected, whenever any of the local hypotheses in (2.5) is rejected on

an interval, which ϑ̂ is constant on. In the upcoming section we discuss how the local test

statistics in (2.7) can be combined into a multiscale statistic.

2.2.2 Combing local tests

Recall that given a candidate function ϑ̂ ∈ S, we perform the local test in (2.7) on any

interval, which ϑ̂ is constant on. We aim for finding a testing procedure which will not reject

the true signal ϑ with a specified probability α ∈ (0, 1). In the theory of multiple testing this

corresponds to controlling the family wise error (FWE). By this approach the error of first

type is controlled uniformly over all local tests. Assuming the values qi,j in (2.8) could be

chosen such that

P

(
max

k=1...,K
max

[i/n,j/n]⊂Ik
T j
i (Y, θk)− qi,j(α) > 0

)
≤ α, (2.10)

for the true signal ϑ ∈ S, one can guarantee that the true function ϑ is not rejected with

probability greater than 1−α by any of the local tests. Following the argumentation in (2.9),

we can construct the acceptance region for the multiple test:

max
k=1...,K̂

max
[i/n,j/n]⊂Îk

T j
i (Y, θ̂k)− qi,j(α) ≤ 0

is satisfied if and only if for all k = 1, . . . , K̂

bi,j ≤ θ̂k ≤ bi,j for all [i/n, j/n] ⊂ Îk. (2.11)

Here, the bounds bi,j and bi,j depend on Y and qi,j(α). The computation of these bounds is

crucial for an efficient implementation of our approach (see Section 4.3). For the moment,

however, we focus on the statistical problem to find constants qi,j that satisfy condition (2.10).

Clearly, this problem has no unique solution. The particular choice we make enables us to

prove optimal detection of segments an all scales simultaneously. For this purpose, it puts

different scales on equal footing by penalization of small intervals. This becomes advanta-

geous, since there are many more small than large intervals. Without a scale-calibration the

null-distribution would hence be dominated by the small scales. We use an additive penal-

ization introduced in Dümbgen and Spokoiny (2001) and consider the penalized multiscale
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statistic

Tn(Y, ϑ̂) = max
0≤k≤K̂

max
[i/n,j/n]∈Îk

(√
2T j

i (Y, θ̂k)− p

(
j − i+ 1

n

))
(2.12)

with penalties p(x) =
√
2 log(e/x). We use a penalization of the square root of the likelihood-

ratios instead of the likelihood-ratios. As it was argued in Rivera and Walther (2012) this

allows for optimal detection with a simple additive penalty term. The same is not true if

the likelihood-ratios were penalized instead. In Section 8.4 we will briefly discuss different

penalizations. Assume that q(α) is the (1 − α)-quantile of the null-distribution of Tn(Y, ϑ),

i.e. the distribution of Tn(Y, ϑ) for the true signal ϑ ∈ S. Then we easily find that

qi,j = q(α) + p

(
j − i+ 1

n

)
(2.13)

satisfies (2.10). We will investigate the null-distribution Tn(Y, ϑ) (asymptotically) in Section

3.1. In the further course of this thesis, we will consider the multiscale constraint Tn(Y, ϑ) ≤ q

for the multiscale statistic Tn in (2.12) and a threshold q ∈ R.

2.3 Statistical multiscale change-point inference

With the definition of the multiscale statistic Tn in (2.12), we formally state the inference

scheme, which we employ in this thesis. For q ∈ R the set of function, that fulfill the multiscale

constraint, will be denoted by

C(q) := {ϑ ∈ S : Tn(Y, ϑ) ≤ q} . (2.14)

We then consider the multiscale constraint optimization problem

inf
ϑ∈S

#J(ϑ) s.t. ϑ ∈ C(q). (2.15)

Let the estimate K̂(q) for K be given by be the minimal value #J(ϑ) of (2.15), i.e.

K̂(q) = min {k ∈ N : ∃ ϑ ∈ Sn[k] : Tn(Y, ϑ) ≤ q} . (2.16)

Further, define the set of all solutions of (2.15) as

H(q) :=
{
ϑ ∈ S : Tn(Y, ϑ) ≤ q and #J(ϑ) = K̂(q)

}
. (2.17)
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Finally, let the estimate ϑ̂(q) for ϑ be the maximum likelihood estimator among all functions

in H(q), i.e.

ϑ̂(q) := argmax
ϑ∈H(q)

n∑
i=1

log
(
fϑ(i/n)(Yi)

)
. (2.18)

Clearly, ϑ̂(q) implicitly defines estimates for the change-points locations by(
τ̂1, . . . , τ̂K̂(q)

)
:=J(ϑ̂(q)). (2.19)

In the upcoming section we develop a theory for these estimates and show that H(q) con-

stitutes an asymptotic confidence set. Further, we will show in Section 4 that an efficient

computation of a solution of (2.18) relies crucially on the equivalence in (2.11).



SECTION 3

Theory

In this section asymptotic and non-asymptotic properties of SMUCE are shown. Parts of

these results have appeared in Frick et al. (2013). In Section 3.1, we prove convergence of the

null-distribution of the statistic Tn. These findings from Frick et al. (2013) are complemented

by explicit bounds for the tails of the limit distribution. Based on these results, the probability

of overestimating the number of change-points and the expected number of overestimated

change-points is bounded. This extends the results in Frick et al. (2013) and opens the door

to a data-driven threshold selection as we show in Section 8.1. Additionally, bounds for

the probability of underestimation are shown in the spirit of Frick et al. (2013). Here, a

refined version is derived, which yields sharper finite bounds. Finally, we prove asymptotic

confidence statements for the set H(q) as in (2.17). We stress that non-asymptotic versions

of these results exists in the Gaussian case (Section 3.5).

3.1 Asymptotic null-distribution

We now investigate the null-distribution of Tn as in (2.12). It is well known that in expo-

nential families the null-distribution of the local likelihood-ratio tests T j
i are χ2

1-distributed

asymptotically (i.e. as n → ∞, s.t. (j − i + 1) → ∞), see e.g. the book of van der Vaart

(1998)[Chapter 16]. Put differently, this says that the asymptotic null-distribution of the

local tests is the same as in the Gaussian case and depends neither on the specific exponential

family nor on the regression function ϑ.

We will prove a result in that spirit for the multiscale statistic Tn, i.e. for the scale-calibrated

maximum of the local tests. For Gaussian observations, it follows from Dümbgen and

Spokoiny (2001) and Dümbgen et al. (2006) that under the null-hypothesis Tn converges to a

random variable, concentrated on the positive reals, which is finite almost surely. Moreover,

it has sub-exponential tails, as we will prove in Section A.1.2. In this section we show weak

convergence of the null-distribution of Tn to the Gaussian limit distribution under Model 1.
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For the proof we bound the smallest size of intervals and consider a modified version of (2.12),

which reads as

Tn(Y, ϑ; cn) = max
0≤k≤K

max
τk≤i/n≤j/n<τk+1

(j−i+1)/n≥cn

(√
2T j

i (Y, θk)−
√
2 log

en

j − i+ 1

)
, (3.1)

where it is assumed that

c−1n log3(n)/n→ 0. (3.2)

This lower bound is necessary by technical reasons. We use strong approximations of par-

tial sum processes (see Lemma 41), which require cn log
2(n)/n → 0. Furthermore, Taylor

expansion of the local likelihood-ratios T j
i (see Lemma 40) is used to show convergence to a

Gaussian limit law. These rely on the assumption that c−1n log3(n)/n→ 0.

The representation of the asymptotic null-distribution is given in terms of the random variable

M := sup
0≤s<t≤1

(
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

)
, (3.3)

where (B(t))t≥0 denotes the standard Brownian motion. After these preparations we can

state the main theorem on the null-distribution.

Theorem 3 (Asymptotic null-distribution). Let Y be given by Model 1 and assume (cn)n∈N

satisfies (3.2). Then,

Tn(Y, ϑ; cn)
D→ max

0≤k≤K
sup

τk≤s<t≤τk+1

(
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

)
. (3.4)

Further, let M0, . . . ,MK be independent copies of M as in (3.3). Then, the r.h.s. in (3.4) is

stochastically bounded from above by M and from below by

max
0≤k≤K

(
Mk −

√
2 log

1

τk+1 − τk

)
. (3.5)

We emphasize that the limit distribution in (3.4) (as well as the lower bound in (3.5)) depends

on the unknown regression function ϑ only through the change-point locations τ1, . . . , τK .

Whereas the function values of ϑ do not influence the limit law. The upper bound M is

independent of ϑ, i.e. for any x > 0

lim
n→∞

sup
ϑ∈S

P (Tn(Y, ϑ, cn) > x) ≤ P (M > x) . (3.6)

We will show in Section A.1.2 that M has sub-Gaussian tails (see Theorem 37). Together

with Theorem 3 this yields the following corollary.
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Figure 4: Simulations of the cumulative distribution function (left) and density (right) of M
as in (3.3) for n = 50(dotted line), n = 500(dashed line) and n = 5,000(solid line) equidistant
discretization points.

Corollary 4. Let Y be given by Model 1. For all x > 2E [M ] it holds that

lim
n→∞

P (Tn(Y, ϑ; cn) > x) ≤ 2 exp(−x2/8).

This bound on the tails of the null-distribution turns out to be useful throughout this the-

sis. For example it allows us to prove almost sure consistency for the estimated number of

change-points K̂ (see Corollary 15) in the Gaussian setting. In addition, the result can be

employed in order to approximate quantiles of M in the tails.

In Section 3.5 we will show that for the Gaussian case even non-asymptotic versions of the

latter results can be obtained, which allows for finite sample refinement of the null-distribution

of Tn. More precisely, in (3.6) the random variable M can be replaced by

M (n) = max
0≤i<j≤n

|B(j/n)−B(i/n)|√
(j − i)/n

−
√

2
en

j − i
.

As the convergence in Theorem 3 is rather slow, this finite sample correction is helpful even

for relatively large samples, say if n is of the order of a few thousands. This is highlighted

in Figure 4 where it also becomes apparent that the empirical null-distributions for finite

samples, obtained from simulations, is in general not supported in [0,∞).

Hence, it is advantageous for Gaussian data to use finite sample simulations from M (n). For

non-Gaussian data the bound is valid asymptotically only. Empirically, however, we found

that the approximation of the likelihood-ratios by the Gaussian version is very accurate, even

for small sample sizes. This is illustrated in Figure 6, which shows probability-probability

plots of M (n) against the null-distribution of Tn for Poisson observations with constant mean

3 (first row) and Bernoulli observations with constant mean 0.8 (second row) for sample size

n = 100 (left), n = 500 (middle) and n = 1,000 (right). Even for the smallest sample size

n = 100 we find that M (n) approximates the null-distributions quite well in both cases.

The inequality in (3.6) is not sharp, if the true function has at least one change-point. For an
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illustration of this, Figure 5 shows probability-probability plots of the exact null-distribution

of signals with two, four and ten equidistant change-points against the null-distribution of

a signal without change-points for sample size n = 500. Clearly, further information on the

number and location of change-points could be used to improve the distributional bound.

3.2 Overestimation of change-points

We first note that with the additional constraint in (3.1) on the minimal interval length, the

estimated number of change-points is given by

K̂(q) = min {k ∈ N : ∃ ϑ ∈ Sn[k] : Tn(Y, ϑ; cn) ≤ q} , q ∈ R. (3.7)

From the construction of SMUCE, it is immediate that if q = q(α) is chosen to be the

(1− α)-quantile of M , then

lim sup
n→∞

P(K̂(q(α)) > K) ≤ α. (3.8)

This holds since the number of change-points is minimized among all functions in C(q) and

P(ϑ ∈ C(q)) ≥ 1 − α. However, in (3.8) we only distinguish between the events that the

number of change-points was overestimated or not. In many applications as well as from a

theoretical point of view, it is certainly of interest to quantify the number of overestimated

change-points. For this purpose, we extend the latter result in the following theorem.

Theorem 5 (Overestimation bound). Let Y be given by Model 1, K̂(q) as in (3.7), q = q(α)

be the (1− α)-quantile of M and k ∈ N0. Then,

lim sup
n→∞

P
(
K̂(q(α)) > K + 2k

)
≤ αk+1. (3.9)
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Figure 5: Probability-probability plots of the empirical null-distribution of a signal with-
out change-points (x-axis) against signals with 2(left), 5 (center) and 10 (right) equidistant
change-points (y-axis) for n = 500.
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Figure 6: Probability-probability plots (black line) of M (n) against the null-distribution of
Tn for Poisson observations with µ ≡ 3 (first row) and Bernoulli observations with µ ≡ 0.8
(second row) for sample size n = 100 (left), n = 500 (middle) and n = 1,000 (right).

First, we observe that for k = 0, (3.9) boils down to (3.8). For general k ≥ 1, the theorem

reveals that we cannot only control the probability of overestimation but, moreover, give

confidence statements about the number of overestimated change-points. As an application,

this allows to control the expected value of overestimated change-points, as shown in the

following corollary.

Corollary 6. Let Y be given by Model 1, K̂(q) as in (3.7), q = q(α) be the (1− α)-quantile

of M . Then,

lim
n→∞

E

[(
K̂ (q(α))−K

)
+

]
≤ 2

α

1− α
,

where (x)+ = max(x, 0).

This shows that even for rather large values of α, the expected value of overestimated change-

points is relatively small, see also Figure 7 for an illustration. Hence, SMUCE is a method,

which first of all guarantees the error of overestimation to be small.
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Figure 7: Bounds for the expected value of (K̂(q(α))−K)+ in Corollary 6 in dependence of
α ∈ (0, 1) (x-axis).

3.3 Underestimation of change-points

In this section we derive explicit bounds for the probability that K̂(q) as defined in (2.15)

underestimates the true number of change-points K. For these bounds it is not necessary to

impose a lower bound on the lengths of the considered intervals. Bounds for the probability

of underestimation necessarily have to depend on the true signal ϑ, as no method can recover

changes of arbitrarily small height or on arbitrarily small segments for a given sample size n.

For a similar argument in the context of density estimation we refer to the work of Donoho

(1988). Under assumptions on the true signal ϑ such two-sided inference can be achieved.

We begin with a general result that bounds the probability of missing change-points given

some characteristics of the regression function ϑ. This needs some preparations. First, define

for k = 1, . . . ,K the height of the k-th change-point δk and as a measure for the lengths of

the corresponding segments λk as

δk = |θk+1 − θk| and λk = min

{
τk − τk−1

2
,
τk+1 − τk

2

}
.

We will also frequently use the notations

∆ = min
1≤k≤K

δk and Λ = 2 min
1≤k≤K

λk (3.10)

for the smallest jump and smallest segment of ϑ, respectively. By D(θ||θ̃) we will denote the

Kullback-Leibler divergence of Fθ and Fθ̃, i.e.

D(θ||θ̃) =
∫
R
fθ(x) log

fθ(x)

fθ̃(x)
dν(x) = ψ(θ̃)− ψ(θ)− (θ̃ − θ)m(θ). (3.11)
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To state bounds for the probability of underestimation we further require the functions

κ±1 (v, w, x, y) = inf
v≤θ≤w

θ±x∈[v,w]

sup
ε∈[0,x]

[ ε
x
(D(θ||θ ± x)− y)−D(θ||θ ± ε)

]
, (3.12)

κ±2 (v, w, x) = inf
v≤θ≤w

θ±x∈[v,w]

D(θ ± x||θ). (3.13)

Finally, we define

κk1 = min

κ+1
θ, θ, δk

2
,

(
q +

√
2 log e

λk

)2
nλk

 , κ−1

θ, θ, δk
2
,

(
q +

√
2 log e

λk

)2
nλk


 , (3.14)

κk2 = min

{
κ+2

(
θ, θ,

δk
2

)
, κ−2

(
θ, θ,

δk
2

)}
. (3.15)

After these preparations we can now give an explicit bound on the probability of underesti-

mating the number of change-points.

Theorem 7 (Underestimation bound). Let Y be given by Model 1, q > 0 and K̂(q) be defined

by (2.16) and let

βnk(q) =
[
1− e−κ

k
1nλk − e−κ

k
2nλk

]2
. (3.16)

Then,

P
(
K̂(q) ≥ K

)
≥

K∏
k=1

βnk(q)

and moreover

E

[(
K − K̂(q)

)
+

]
≤

K∑
k=1

(1− βnk(q)).

As it becomes clear in the proofs, βnk(q) is a lower bound for the probability of detecting the

k-th change-point. Let

βn(q) = min
1≤k≤K

βnk(q), (3.17)

which bounds the probability of detecting the change-point, which is hardest to detect. As a

direct consequence of Theorem 7, we obtain from the inequality (1 − x)m ≥ 1 −mx (for all

x ∈ (0, 1) and m ∈ N0) that

P
(
K̂(q) ≥ K

)
≥ βn(q)

K ≥ 1−K (1− βn(q)) . (3.18)
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Furthermore, it holds that

E
[
(K − K̂(q))+

]
≤ K(1− βn(q)). (3.19)

The parameters βnk(q) depend not only on the true function ϑ but also on the family of

distribution F . Their explicit computation can be rather tedious and has to be done for each

exponential family separately (for the Gaussian case see Section 3.5). Therefore, it is useful

to have a lower bound for these constants, which is given in the following.

Lemma 8. Let v be as in (2.3) and κ±1 and κ±2 be defined as in (3.12) and (3.13), respectively.

Then,

κ±1 (v, w, x, y) ≥
x2

8

infv≤t≤w v(t)
2

supv≤t≤w v(t)
− y and κ±2 (v, w, x) ≥

x2

2
inf

v≤t≤w
v(t).

Clearly, Lemma 8 can be used to bound the results in Theorem 7 further. In particular,

combination with (3.18) yields a simplified version, which only depends on Λ and ∆ as in

(3.10). For this purpose, we assume that ϑ ∈ S is so that θ ≤ ϑ(t) ≤ θ for all t ∈ [0, 1]. Then,

P
(
K̂(q) < K

)
≤ 2Ke−CnΛ∆2/2

[
e

(
q+

√
2 log(2e/Λ)

)2

+ 1

]
, (3.20)

where

C = C(F , θ, θ) = 1

32

infθ≤θ≤θ v(θ)
2

supθ≤θ≤θ v(θ)
. (3.21)

Such simplified bounds were also derived in Frick et al. (2013). We stress that the refined

version in Theorem 7 is sharper, since the height and length corresponding to the same

change-point are taken into account, which is reflected in the definition of βnk in (3.16).

3.4 Consistency and locations of estimated change-points

We will employ the latter results, in order to investigate the asymptotic behavior of SMUCE

for a fixed signal ϑ ∈ S as n → ∞. Under rather mild assumption on qn the estimate K̂(qn)

converges to the true number of change-points K in probability. This is made precise in the

following corollary.

Corollary 9 (Model selection consistency). Let ϑ ∈ S be fixed and K̂(q) be as in (3.7).

Further, assume that qn/
√
n→ 0 and qn → ∞. Then,

P
(
K̂(qn) = K

)
→ 1.

We will show in Section 3.5 that this result can be extended to a.s. convergence for Gaussian

observations.
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Remark 10. In Corollary 9 we found that qn/
√
n → 0 is sufficient to ensure consistency of

SMUCE. Since e.g. qn = O(
√
n/ log n) fulfills these assumptions, we find from Corollary 4

that P(K̂(qn) > K) ≤ 2 exp(−n/ log n) can be achieved. Hence, the error of overestimation

can be controlled at an (almost) exponential rate while ensuring consistency.

Next, we investigate the localization of estimated change-points as in (2.19). Any candidate

in H(q) recovers the change-point locations of the true regression function ϑ with the same

convergence rate. In other words, the maximum likelihood step in (1.6) is not needed for these

results. To ease notations we nevertheless state the result only for (τ̂1, . . . , τ̂K̂), estimated by

SMUCE as in (2.19). The results are proved similarly as the bounds for underestimation.

Here, we focus on asymptotic rates here and not on finite bounds. For this reason we give a

simpler bound which is less sharp for small n, similar to (3.20).

Theorem 11. Let q ∈ R and (εn)n∈N a sequence in (0, 1]. Further let ϑ ∈ S be bounded by

θ ≤ ϑ ≤ θ and let C = C(F , θ, θ) be as in (3.21). Then, for all n ∈ N

P

(
max
τ∈J(ϑ)

min
τ̂∈J(ϑ̂(q))

|τ̂ − τ | > εn

)
≤ 2Ke−Cnεn∆2

[
e
−
(
q+

√
2 log(2e/εn)

)2

+ 1

]
.

For a fixed signal ϑ ∈ S, a sufficient condition for the r.h.s. in Theorem 11 to vanish as

n→ ∞ is

εn ≥ 1

∆2C

log n

n
. (3.22)

This improves several results obtained for other methods, e.g. in Harchaoui and Lévy-Leduc

(2010) for a total variation penalized estimator a log2 (n)/n rate has been shown.

In the following we will apply Theorem 11 to determine subclasses of S in which the change-

point locations are reconstructed uniformly with rate εn. These subclasses are delimited by

conditions on the smallest absolute jump height ∆n and on the number of change-points Kn

(or the smallest interval lengths Λn by using the relation Kn ≤ 1/Λn) of its members. For

instance, the rate function εn = n−β with some β ∈ (0, 1) implies the condition

nβ exp(−n1−β∆n)

Λn
→ 0.

A value of β close to 1 gives a small subclass of functions which then can be reconstructed

uniformly with convergence rate arbitrarily close to the sampling rate 1/n. We finally point

out that the result in Theorem 11 does not presume the number of change-points to be

estimated correctly. If εn additionally satisfies (3.2) and if q = qn → ∞ slower than
√
− log εn

in Theorem 11, we find that P(K̂(q) = K) → 1 and it follows that

P
(
ε−1n |τk − τ̂k| > 1

)
→ 0, for k = 1, . . . ,K.
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3.5 Gaussian observations

We now derive explicit results for the case when F is the Gaussian family of distributions

with constant variance σ2. In this case the regression Model 1 can be rewritten to

Yi = µ(i/n) + σεi, i = 1, . . . , n, (3.23)

where ε1, . . . , εn are independent standard Gaussian random variables and σ > 0. We will

refer to the value of the k-th segment as mk ∈ R as in (2.4).

The result on the asymptotic null-distribution in Theorem 3 is based on strong approximation

of the likelihood-ratios by Gaussian partial sums. Since this step is superfluous for Gaussian

observations, it is possible to get rid of the lower bound for the smallest scales cn as in (3.2).

Furthermore, we can bound the null-distribution non-asymptotically. To this end, we set (as

before)

M (n) = max
0≤i<j≤n

|B(j/n)−B(i/n)|√
(j − i)/n

−
√

2
en

j − i
. (3.24)

Clearly, M (n)
D
≤M , since the maximum is taken over a subset of {[s, t] : 0 ≤ s < t ≤ 1}.

Corollary 12 (Null-Distribution of Tn). Let Y be given by (3.23) and let M (n) be as in

(3.24). Then, for any n ∈ N

Tn(Y, µ)
D
≤M (n)

D
≤M.

In contrast to Theorem 3, this result is non-asymptotic and we can control the error of

overestimation for any finite n, which e.g. enables us to prove almost sure consistency (see

Corollary 15). Further, we can also state finite bounds for overestimation.

Corollary 13 (Overestimation bound). Let Y be given by (3.23), q(α) be the (1−α)-quantile
of M (n) and K̂(q) be defined as in (2.16). Then, for any k ∈ N0 and n ∈ N

P
(
K̂(q(α)) > K + 2k

)
≤ αk+1

and

E
[
(K̂(q(α))−K)+

]
≤ 2

α

1− α
. (3.25)

We now turn to bound the probability of underestimating the number of change-points.

Similar to Section 3.3 we set

δk =
|mk+1 −mk|

σ
, λk = min

{
τk − τk−1

2
,
τk+1 − τk

2

}
(3.26)

and let Λ = 2min1≤k≤K λk be the smallest interval length and ∆ = min1≤k≤K δk the smallest
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normalized jump height. We then define

βnk(q) :=

1− exp

−

(√
nλkδk − 2q −

√
8 log e

λk

)2
+

8

− exp

(
−
nλkδ

2
k

8

)
2

and βn(q) = mink=1,...,K βnk(q).

Theorem 14 (Underestimation bound). Let µ ∈ S and Y be given by (3.23). Let q > 0 and

K̂(q) be defined as in (2.16). Then,

P
(
K̂(q) ≥ K

)
≥

K∏
k=1

βnk(q) (3.27)

and

E
[
(K − K̂(q))+

]
≤

K∑
k=1

(1− βnk(q)). (3.28)

Note that the r.h.s. in (3.27) can be further bounded by (βn(q))
K . Similarly the r.h.s. in

(3.28) can be bounded from above by K(1 − βn(q)). We will employ the latter results, in

order to investigate the asymptotic behavior of SMUCE for a fixed signal µ ∈ S as n→ ∞.

Corollary 15. Let µ ∈ S and Y be given by (3.23). Let K̂(q) be defined as in (2.16). Further,

set 0 < ζ < 0.5, let qn such that qn/
√
log n→ ∞ and qnn

−ζ → 0. Then,

lim
n→∞

K̂(qn) = K a.s.

In comparison to Corollary 9 this shows that almost sure consistency can be obtained if

the assumption qn/
√
n → 0 is replaced by qnn

−ζ → 0 and it is additionally assumed that

qn/
√
log n→ ∞.

3.5.1 Detection of vanishing signals

The previous results may also be seen from a different angle. Instead of considering a fixed

signal µ as n → ∞, we shall now determine sequences of subclasses of S, among which the

number of change-points is estimated correctly with asymptotic probability 1. In other words,

we investigate at which rate signals may vanish while still being detected by SMUCE. We

begin with signals on a single interval against an unknown background.
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Theorem 16. Let m0 ∈ R and µn(t) = m0 +∆n1In(t) for a sequence of intervals In ⊂ [0, 1]

with lengths |In|. Further, let Y be given by (3.23) and (qn)n∈N be bounded away from zero.

Assume

(1.) for signals on a large scale (i.e. lim inf |In| > 0), that
√
|In|n∆n/qn → ∞,

(2.) for signals on a small scale (i.e. |In| → 0) that
√
|In|n∆n ≥ (

√
2+εn)

√
− log(|In|) with

εn, s.t. εn
√

− log(|In|)/qn → ∞.

Then,

P
(
K̂(qn) > 0

)
→ 1. (3.29)

Remark 17. In Theorem 16 it is shown that SMUCE detects at least one change-point with

asymptotic probability one. This is due to the fact that the intervals In are allowed to be

arbitrarily close to the borders of the unit interval. If it is further assumed that for some

ε > 0 the intervals In are in [ε, 1 − ε], i.e. In is bounded away from the borders, we find

P
(
K̂(qn) ≥ K

)
→ 1. This is a direct consequence of the proofs of Theorem 16.

Theorem 16 gives sufficient conditions on the signals µn (through the interval length |In| and
the jump height ∆n) as well as on the thresholds qn such that the multiscale statistic Tn

detects the signals with probability one asymptotically. The following theorem shows that

the result is optimal in the sense that any test with level α ∈ (0, 1) has non-trivial power if

εn in (2.) of Theorem 16 is replaced by −εn. To state this more precisely, define

S̃n =
{
µ(t) = ∆n1In(t) :

√
|In|n∆n = (

√
2− εn)

√
− log(|In|)

}
. (3.30)

Theorem 18. Let εn be such that limn→∞ εn = 0 and limn→∞ εn
√
− log |In| → ∞. For any

test φn(Y ) with asymptotic level α under the null-hypothesis µ ≡ 0, it holds that

inf
µ∈S̃n

Eµφn(Y )− α ≤ o(1).

For the special case, when qn(= q(α)) is a fixed α-quantile of the limiting null-distribution

M in (3.3), the result in Theorem 16 boils down to the findings in Chan and Walther (2013).

In particular, aside to the optimal asymptotic power (3.29), the error of first kind is bounded

by α. The result in Theorem 16 goes beyond that and allows to shrink the error of first kind

to zero asymptotically, by choosing qn → ∞. The rate of qn then determines explicitly the

rate of εn through the assumption εn
√
− log(|In|)/qn → ∞.

We finally generalize the results in Theorem 16 to the case when µ ∈ S has multiple change-

points. These results are based on the bound in (3.27). To ease notations, we formulate the

result in terms of the smallest interval length Λn and the smallest jump height ∆n of µn. We

give conditions on Λn and ∆n so that no change-point is missed asymptotically.



3.5 Gaussian observations 29

Theorem 19. Let (µn)n∈N be a sequence in S with Kn change-points and denote by ∆n and

Λn the smallest absolute jump size and smallest interval of µn, respectively. Further, assume

that qn is bounded away from zero and

(1.) for signals on large scales (i.e. lim inf Λn > 0), that
√
Λnn∆n/qn → ∞.

(2.) for signals on small scales (i.e. Λn → 0) with Kn bounded, that
√
Λnn∆n ≥ (4 + εn)

√
− log(Λn) with εn

√
− log(Λn)/qn → ∞.

(3.) the same as in (2), with Kn unbounded and the constant 8 instead of 4.

Then,

Pµn

(
K̂(qn) ≥ Kn

)
→ 1.

Theorem 19 amounts to say that the statistic Tn is capable of detecting multiple change-points

simultaneously at the same optimal rate (in terms of the smallest interval and jump) as a

single change-point (see Theorem 16). The only difference being the constants that bound

the size of the signals that can be detected. These increase with the dimension of the model:√
2 for a single change against an unknown background, 4 for a bounded (but unknown), and

8 for an unbounded number of change-points. In Jeng et al. (2010) it was shown that for step

functions that exhibit certain sparsity patterns the optimal constant
√
2 can be achieved. It

is important to note that we do not make any such sparsity assumption on the true signal.

It is not clear, if the constants in Theorem 19 are optimal. Finally we mention an analogy

to Theorem 4.1. of Dümbgen and Walther (2008) in the context of detecting areas of local

increase and decrease of a density. As in Theorem 19 they showed that only the constants

and not the detection rates changes for simultaneous detection of infinitely many features.
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3.6 Confidence regions

In this Section we discuss how confidence statements can be constructed from the approach

in Section 2.3. Using the terminology in Li (1989), we agree upon the following definition.

Definition 20. A set C ⊂ S is called asymptotically honest for the class S at level 1− α if

lim
n→∞

inf
ϑ∈S

P (ϑ ∈ C) ≥ 1− α.

Clearly, from Theorem 5 it follows that for q(α) being the (1−α)-quantile of M , the set C(q)
(as in (2.14)) is an asymptotically honest confidence set at level 1 − α. This set, however, is

large, e.g. any interpolation of the data is in C(q(α)). Recall that SMUCE is the maximum

likelihood estimate restricted to H(q) (as in (2.17)). From the definition of H(q) we observe

P (ϑ ∈ H(q(α))) ≥ P (ϑ ∈ C(q(α)))−P
(
K̂(q(α)) < K

)
. (3.31)

Combining Theorem 7 with the latter inequality gives the following corollary, which bounds

the coverage of H(q).

Corollary 21. Let α ∈ (0, 1) and q(α) be the (1− α)-quantile M as in (3.3). Moreover, set

βn as in (3.17). Then, we find from (3.18) that

P (ϑ ∈ H(q)) ≥ 1− α−K(1− βn(q)) + o(1). (3.32)

Since βn(q(α)) → 1 for any ϑ ∈ S as n→ ∞ it holds for any ϑ ∈ S that

lim
n→∞

P (ϑ ∈ H(q)) ≥ 1− α.

We mention that for the Gaussian family (see Section 3.5) inequality (3.32) even holds for

any n, i.e. the o(1) term on the r.h.s. can be omitted. Thus, the r.h.s. of (3.32) gives an

explicit and finite lower bound for the true confidence level of H(q(α)).

Being a subset of S, the confidence set H(q) is hard to visualize in practice. Therefore, in

Section 4.5 we compute a confidence band B(q) ⊂ [0, 1] × Θ that contains the graphs of all

functions in H(q) as well as disjoint confidence intervals for the change-point locations. These

will be denoted by [τ lk(q), τ
r
k (q)] ⊂ [0, 1] for k = 1, . . . , K̂(q). For the sake of simplicity, we

abbreviate the collection {K̂(q), B(q),
{
[τ lk(q), τ

r
k (q)]

}
k=1,...,K̂(q)

} by I(q) and agree upon the

notation

ϑ ≺ I(q) if K̂(q) = K, (t, ϑ(t)) ∈ B(q) and τk ∈ [τ lk(q), τ
r
k (q)] for k = 1, . . . ,K, (3.33)

ϑ ⊀ I(q) otherwise.
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Put differently, ϑ ≺ I(q) implies that simultaneously

1. the number of change-points is estimated correctly,

2. the change-points lie within the confidence intervals (i.e.τk ∈ [τ lk(q), τ
r
k (q)) and

3. the graph is contained in the confidence band B(q).

As it becomes clear from the construction of I(q) in Section 4.5, the confidence set H(q) and

I(q) are linked by the relation

ϑ ∈ H(q) ⇒ ϑ ≺ I(q). (3.34)

In the following we will use this result to determine classes of step functions on which these

confidence statements hold uniformly. Following the terminology in Definition 20 we call I(q)

asymptotically honest for S, if

lim inf
n→∞

inf
ϑ∈S

P (ϑ ≺ I(q)) ≥ 1− α. (3.35)

Such a condition obviously cannot hold over the entire class S, since signals cannot be detected
if they vanish too fast as n→ ∞. Because of this, assumption (1) cannot be fulfilled uniformly

over S by any statistical procedure. For Gaussian observations this was made precise in

Section 3.5.

To overcome this difficulty, we will relax the notion of asymptotic honesty. Let S(n) ⊂ S,
n ∈ N be a sequence of subclasses of S. Then, we call I(q) sequentially honest with respect to

S(n) at level 1− α if

lim inf
n→∞

inf
ϑ∈S(n)

P (ϑ ≺ I(q)) ≥ 1− α.

By combining (3.31), (3.34) and Theorem 7 we obtain the following result about the asymp-

totic honesty of I(q(α)).

Corollary 22. Let θ < θ, α ∈ (0, 1) and q(α) be the (1 − α)-quantile of M as in (3.3) and

assume that (bn)n∈N → ∞ is a sequence of positive numbers. Define

S(n) =
{
ϑ ∈ S : nΛ∆2/ log(1/Λ) ≥ bn, θ ≤ ϑ ≤ θ

}
.

Then I(q(α)) is sequentially honest with respect to S(n) at level 1− α, i.e.

lim
n→∞

inf
ϑ∈S(n)

P (ϑ ≺ I(q(α))) ≥ 1− α.

By estimating 1/Λn ≤ n we find that the confidence level α is kept uniformly over nested

models S(n) ⊂ S, as long as nΛn∆
2
n/ log n → ∞. Here Λn and ∆n are again the smallest

interval length and smallest absolute jump size in S(n), respectively.
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3.6.1 Empirical coverage of confidence sets I(q)

So far we gave asymptotic results on the simultaneous coverage of the confidence sets I(q)

as defined in (3.33). We now investigate the simultaneous coverage empirically. To this end,

we consider the test signals shown in Figure 8 for Gaussian observations with varying mean,

Gaussian observations with varying variance, Poisson observations and Bernoulli observations.

In our simulations we choose q = q(α) to be the (1 − α)-quantile of M as in (3.3). It then

follows from Corollary 22 that asymptotically the simultaneous coverage is larger than 1−α.

Table 1 summarizes the empirical coverage (first column) for different values for α and n

obtained by 500 simulation runs each and the relative frequencies of correctly estimated

change-points (second column). The results show that for n = 2,000 the empirical coverage

exceeds 1− α in all scenarios. The same is not true for smaller n (indicated by bold letters),

since here the number of change-points is misspecified rather frequently. Given K has been

estimated correctly, we find that the empirical coverage of bands and intervals is in fact larger

than the nominal 1 − α for all simulations (see third column). The low coverage for small

sample size is hence caused by underestimation of the number of change-points.

n 1− α Gaussian Gaussian Poisson Bernoulli
(mean) (variance)

0.8 0.59 0.64 0.92 0.66 0.68 0.97 0.87 0.89 0.98 0.85 0.90 0.94
1,000 0.9 0.48 0.49 0.98 0.39 0.39 1.00 0.85 0.86 0.99 0.86 0.86 0.99

0.95 0.28 0.28 1.00 0.16 0.18 0.93 0.71 0.74 0.96 0.66 0.70 0.94
0.8 0.84 0.90 0.93 0.87 0.88 0.98 0.92 0.95 0.96 0.93 0.97 0.96

1,500 0.9 0.73 0.74 0.98 0.72 0.74 0.97 0.95 0.97 0.98 0.96 0.97 0.99
0.95 0.55 0.56 0.98 0.45 0.47 0.98 0.92 0.93 0.99 0.89 0.90 0.99
0.8 0.94 0.99 0.95 0.98 1.00 0.98 0.95 0.99 0.95 0.96 0.99 0.97

2,000 0.9 0.98 1.00 0.98 0.99 1.00 0.99 0.96 0.99 0.96 0.97 0.99 0.98
0.95 0.99 1.00 0.99 0.97 0.99 0.98 1.00 1.00 1.00 0.99 1.00 0.99

Table 1: Empirical coverage obtained from 500 simulations for the signals shown in Figure 8.
For each choice of α and n we computed the simultaneous coverage of I(q(α)), as in (3.33)
(first value), the percentage of correctly estimated number of change-points (second value)
and the simultaneous coverage of confidence bands and intervals for the change-points given
K̂(q(α)) = K (third value).
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Figure 8: From top left to bottom right: Gaussian observations with varying mean, Gaussian
observations with varying variance, Poisson and Bernoulli observations and SMUCE (solid
black line) with confidence bands (red hatched) and confidence intervals for change-points
(shown by brackets []).
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SECTION 4

Implementation

In this section we show how SMUCE can be computed by a pruned dynamic programing

algorithm. This approach has been outlined in Frick et al. (2013) and Futschik et al. (2013).

We describe the implementation in detail here (Section 4.2). Further, the complexity is

discussed and an efficient computation for confidence region is shown (Section 4.5). An

R-package of the implementation is available (Hotz and Sieling, 2013)1.

4.1 Dynamic programming in change-point regression

Dynamic programming algorithms for the change-point problem based on penalized least-

square fitting can be traced back to the work of Bellman (1961). In fact, the underlying

idea was already introduced in Arrow et al. (1949). All later approaches using dynamic

programming are essentially based on Bellman’s Principle of Optimality (Bellman, 1961):

“An optimal policy has the property that whatever the initial state and the initial

decision are, the remaining decisions must consist an optimal policy with regard

to the state resulting from the first decision.”

In the context of change-point regression this boils down to the observation that a part of the

optimal segmentation is optimal itself. We will explain in the following section why such an

observation is true for SMUCE. More general, dynamic programming has been used to find

exact solutions of penalized cost functionals in the Segment Neighborhood method, which

was suggested in Auger and Lawrence (1989). Under the specification of an upper bound

on the number of change-points Kmax, the solution is computed in O(Kmaxn
2). Also for

penalized cost functionals, dynamic programming has been used more recently in Jackson

et al. (2005) and Friedrich et al. (2008) and it was shown that the proposed algorithms are

O(n2). Killick et al. (2011) developed this approach further by including a pruning step into

1R package available at http://www.stochastik.math.uni-goettingen.de/smuce

http://www.stochastik.math.uni-goettingen.de/smuce
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the dynamic program. Their PELT -algorithm has a worst case complexity of O(n2) but

under the assumption that the number of change-points increases in a certain way as more

data is collected, the expected computational costs are linearly increasing in n.

Any of the latter approaches is based on the idea of minimizing a global cost functional

(sometimes referred to as measure-of-fit) with the additional penalization of change-points.

In contrast to that, SMUCE requires the final estimate to fulfill a multiscale constraint,

which acts locally. An adaption of the dynamic program to such multiscale problems has

been introduced in Davies et al. (2012) in a similar setting. The authors showed that a

solution with minimal number of jumps can be computed in O(n2) operations. Moreover,

an algorithm which minimizes the empirical quadratic deviations among the solutions with

minimal jumps is proposed. This is similar in spirit to the maximum likelihood step in (2.18).

The author stated that this algorithm is O(n3).

We will exploit the structure of the optimization problem in (2.18) explicitly by including

several pruning steps, similar in spirit to Killick et al. (2011). Due to this we can show that

the computation of the multiscale restricted maximum likelihood estimator in (2.18) has a

worst case complexity of O(n2). In addition, we will illustrate that in many situations the

computation is much faster than this complexity suggests.

Simultaneously, we derive an efficient way to compute confidence bands for the graph of ϑ

(Section 4.5.2) as well as confidence intervals for the location of the change-points (Section

4.5.1).

4.2 A pruned dynamic program for SMUCE

Suppose that n ∈ N and q > 0 are fixed and that Y = (Y1, . . . , Yn) are observed data. In this

section we present a dynamic programming algorithm to compute the estimated number of

change-points K̂(q) in (1.4) and the statistical multiscale estimator ϑ̂(q) as defined in (2.18).

To this end, we note that an estimator ϑ̂ can be identified with the vector (ϑ̂1, . . . , ϑ̂n) ∈ Θn

where

ϑ̂i = ϑ̂(i/n).

Next, we note that for a given θ ∈ Θ the log-likelihood on an interval {k, . . . , l} is given by

(k − l + 1)(θY
l
k − ψ(θ)). With this we define the local costs of θ on {k, . . . , l} as

ck,l(θ) =

(k − l + 1)(ψ(θ)− θY
l
k) if maxk≤i≤j≤l

√
2T j

i (Y, θ)−
√
2 log en

j−i+1 ≤ q

∞ else.

In other words, the costs for θ ∈ Θ coincide with the negative log-likelihood if θ satisfies the

multiscale constraint on {k, . . . , l} and are infinitely large else. A parameter value that has
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finite costs will be referred to as admissible on the interval {k, . . . , l}. The optimal costs on

the interval {k . . . , l} are defined as

ck,l = min
θ∈Θ

ck,l(θ).

If ck,l <∞ we say that θ̂k,l is the optimal parameter if ck,l = ck,l(θ̂k,l). If ck,l = ∞ then there

exists no parameter θ ∈ Θ such that the multiscale constraint is satisfied on {k, . . . , l}.
A detailed pseudocode is given in Algorithm 1. Here, we outline the main idea. To this

end, assume the data is not available at once but piece by piece and the optimal estimator

is computed iteratively. For p = 1, 2, . . . we compute the optimal costs cp := c1,p and the

corresponding parameter values θ̂1,p as long as cp < ∞. If c1,p+1 = ∞ then there are no

admissible constant estimators on {1, . . . , p+ 1} and we save the latest feasible index by

R0 = p.

For all p > R0 at least one change-point has to be introduced into the reconstruction in order

to satisfy the multiscale constraint. Note that for 1 ≤ l ≤ R0 the estimator

ϑ̂(l, p) = θ̂1,l1{1,...,l} + θ̂l+1,p1{l+1,...,p}

is the estimator with lowest costs on its constant pieces given the jump location l.

By setting

l(p) = argmin
1≤l≤R0

c1,l + cl+1,p

we find that ϑ̂(p) = ϑ̂(l(p), p). It is the estimator on the interval {1, . . . , p} with lowest

cumulative costs cp := c1,l(p) + cl(p)+1,p among all piecewise constant estimators with one

jump. Proceed until cl+1,p+1 = ∞ for all 1 ≤ l ≤ R0 and then set R1 = p. Put differently,

for p > R1 no piecewise constant estimator with one change-point exists on {1, . . . , p} that

satisfies the multiscale constraint.

Now assume that k ≥ 1, Rk−1 and Rk are known and that for Rk−1 < l ≤ Rk the estimator

ϑ̂(l) is the one with lowest cumulative costs cl with k jumps on the interval {1, . . . , l}. Then,
for p > Rk

ϑ̂(l, p) = ϑ̂(l)1{1,...,l} + θ̂l+1,p1{l+1,...,p}

is an estimator with k+1 jumps on the interval {1, . . . , p} with lowest cumulative costs given

that the last jump is at l. Again, by setting

l(p) = argmin
Rk−1<l≤Rk

cl + cl+1,p

we obtain the estimator ϑ̂(p) = ϑ̂(l(p), p) with lowest cumulative costs cp = c1,l(p) + cl(p)+1,p.

Such equalities, which constitute the key ingredient for the application of dynamic programing
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Data: Y1, . . . , Yn

Result: Estimate for number of change-points K̂, location of change-points l̂1, . . . , l̂K̂ , values on the segments

θ̂0, . . . , θ̂K̂
for p← 1 to n do1

Compute cp ← c1,p ← infθ∈Θ c1,p(θ);2
if c1,p =∞ then // note that p > 1 always3

R0 ← p− 1;4
break5

else6

θ̂1,p ← argminθ∈Θ c1,p(θ);7
end8

end9
if c1,n <∞ then // there exists a constant feasible estimate10

return K̂ ← 0 and θ̂0 ← θ̂1,n ;11
end12
R−1 ← 1;13
for k ← 1 to n do14

Lk−1 ← Rk−2 + 1;15
for p← Rk−1 + 1 to n do16

Initialize cp ←∞;17
for l← Rk−1 − 1 to Rk−2 do18

Compute cl+1,p ← infθ∈Θ cl+1,p(θ) // possibly cl+1,p =∞!;19
if cl+1,p =∞ then20

if p = Rk−1 + 1 then21
Lk−1 ← l // save left bound for confidence intervals;22

end23
break;24

end25
if cl + cl+1,p ≤ cp then // placing a change-point at l reduces overall costs26

cp ← cl + cl+1,p, l(p)← l, θ̂l+1,p ← argminθ∈Θ cl+1,p(θ);27
end28

end29
if cp =∞ then // there is no feasible estimate with k change-points on {1, . . . , p}30

RK ← p− 1;31
break32

end33

end34
if cn <∞ then // there exists a feasible estimate with k change-points!35

return K̂ ← k;36

l̂K̂+1 ← n;37

for k ← K̂ to 1 do38

return l̂k ← l(l̂k+1) and θ̂k ← θ̂l̂k+1,l̂k+139

end40

end41

end42

Algorithm 1: Dynamic programming algorithm for the computation of SMUCE
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Figure 9: Illustration of the iterative computation for p = 2, . . . , 9; estimate ϑ̂(p) (red line)
and standard Gaussian observations (black dots) for q = 1.

are referred to as Bellman equalities. This equality shows explicitly why Bellman’s principle

of optimality holds for the computation of SMUCE.

Proceed until cl+1,p+1 = ∞ for all Rk−1 < l ≤ Rk (then define Rk+1 = p and restart the

iteration) or until p = n (then set ϑ̂ = ϑ̂(n) and exit).

In Figure 9 we show the iteratively computed estimators ϑ̂(p) for a given data set. The exam-

ple illustrates that the location of detected change-point may alter within the computation:

the location of the first change-point changes in the last iteration.

Comparing it to the general dynamic programming approach, it shows important differences

which allow for considerable speed-ups. They take into account the specific structure of cost

functional by including pruning steps, which are founded on the following three observations:

1. Whenever cl,p = ∞ for some p, no smaller values for l need to be considered, since

cl̃p = ∞ for any l̃ ≤ l (see line 24 in Algorithm 1).

2. Whenever there exists no feasible solution with k change-points on {1, . . . , p}, then there

also exists no feasible solution with k change-points on {1, . . . , p̃} for any p̃ > p (see line

32 in Algorithm 1).

3. If for a fixed p a feasible solution with k change-points exists, there is no need to consider

functions which have more than k + 1 change-points up to point p. Consequently, for

p in [Rk−1, Rk] only estimates whose rightmost change-point is in [Rk−2, Rk−1) have to

be computed (see line 18 in Algorithm 1).
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Particularly, for signals with many detected change-points these lead to faster computation,

as we will discuss in Section 4.4. A crucial part of the algorithm is the computation of the

optimal local costs ci,j . For the sake of clarity, we gave no details about the computation of

these costs in the pseudo-code in Algorithm 1 but postpone this issue to the next subsections.

4.3 Computation of the optimal costs

We will show how the optimal costs cr,p can be computed for some 1 ≤ r ≤ p ≤ n. To this

end, fix some r ≤ i < j ≤ p. Since {Fθ}θ∈Θ was assumed to be a regular, one-dimensional

exponential family, the natural parameter space Θ is a nonempty, open interval (θ1, θ2) with

−∞ ≤ θ1 < θ2 ≤ ∞. Moreover, the mapping θ 7→ J(Y
j
i , θ) is strictly convex on Θ and has the

unique global minimum at m−1(Y
j
i ) if and only if m−1(Y

j
i ) ∈ int(Θ). In this case it follows

from Theorem 6.2 in Nielsen (1973) that for all q > 0

{
θ ∈ Θ :

√
2T j

i (Y, θ)−
√
2 log

en

j − i+ 1
≤ q

}

=

θ ∈ Θ : J(Y
j
i , θ) ≤

(
q +

√
2 log en

j−i+1

)2
2(j − i+ 1)

 =: [bi,j , bi,j ],

with −∞ < bi,j ≤ m−1(Y
j
i ) ≤ bi,j < ∞. In other words, bi,j and bi,j are the two finite

solutions of the equation

J(Y
j
i , θ) =

(
q +

√
2 log en

j−i+1

)2
2(j − i+ 1)

. (4.1)

Ifm−1(Y
j
i ) 6∈ int(Θ), then Nielsen (1973) [Thm. 6.2] implies that either bi,j = −∞ or bi,j = ∞.

Let us assume without restriction that bi,j = −∞ which in turn shows that Θ = (−∞, θ2)

and m−1(Y
j
i ) = −∞. In this case, the infimum of θ 7→ J(Y

j
i , θ) is not attained and (4.1) has

only one finite solution bi,j . The lower bound bi,j = −∞ then is trivial.

After computing bi,j and bi,j for all r ≤ i ≤ j ≤ p, define Br,p = maxr≤i≤j≤p bi,j and

Br,p = minr≤i≤j≤p bi,j . Hence, if cr,p <∞ we obtain

θ∗r,p = argmin
θ∈[Br,p,Br,p]

cr,p(Y, θ) =


Br,p if m−1(Y

p
r) ≥ Br,p,

Br,p if m−1(Y
p
r) ≤ Br,p,

m−1(Y
p
r) otherwise.

(4.2)

Moreover, cr,p = ∞ if and only if Br,p > Br,p.

To summarize, the computation of θ∗r,p (and hence the computation of the minimal costs cr,p)

reduces to finding the non-trivial solutions of (4.1) for all r ≤ i ≤ j ≤ p. This can either be
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done explicitly (as for the Gaussian family) or approximately e.g. by Newton’s method.

4.4 Complexity and computation times

In this section we investigate the complexity of Algorithm 1. To this end, we will only assume

that the local bounds bi,j and bi,j can be computed in O(1). Let us for a moment fix p = p0

and k = k0. Observe from Algorithm 1 that l runs from Rk0−1 to Lk0−1 (see line 16 and line

20). For every value of l the optimal costs cl+1,p have to be computed, which requires the

computation of Bl+1,p0 and Bl+1,p0 as shown in (4.2). We first consider the case l = Rk0−1

and observe

Bl+1,p0 = max
{
Bl+1,p0−1, (bi,p0)i=l+1,...,p0

}
and Bl+1,p0 = min

{
Bl+1,p0−1, (bi,p0)i=l+1,...,p0

}
.

In the previous steps of the algorithm, i.e. for p = p0−1, the values Bl0+1,p0−1 and Bl0+1,p0−1

have already been computed and hence can be recycled. Thus, there are p0 − Rk0−1 values

from which the maximum/ minimum have to be determined. Hence, this leads to costs of

order O(p0 − Rk0−1) for l = Rk0−1. Also for l = Rk0−1 − 1, . . . , Lk0−1 we find that previous

computations can be employed. This follows from the observation that

Bl+1,p0 = max
{
Bl+2,p0 , Bl+1,p0−1, bl+1,p

}
and Bl+1,p0 = min

{
Bl+2,p0 , Bl+1,p0−1, bl+1,p

}
.

In the previous steps, Bl+2,p0 and Bl+2,p0 have been computed as well as Bl+1,p0−1 and

Bl+1,p0−1 have been computed for p = p0−1. Therefore, the computation of cl+1,p essentially

reduces to the computation of bl0+1,p and bl0+1,p, which shows that for any

l = Rk0−1 − 1, . . . , Lk0 it is O(1). In summary, the costs for all computations for p = p0

(and k = k0) are of order O(p0 −Rk0−1) +O(Rk0−1 − Lk0−1).

We now consider the overall complexity of Algorithm 1. Since, for every k, p runs from Rk−1

to Rk, one finds that for a sufficiently large constant C the complexity can be bounded by

C
K̂+1∑
k=1

Rk∑
p=Rk−1

[(p−Rk−1) + (Rk−1 − Lk−1)]

≤C
K̂+1∑
k=1

(Rk −Rk−1)
2 + ((Rk −Rk−1)(Rk−1 − Lk−1))

=C

K̂+1∑
k=1

(Rk −Rk−1)((Rk −Rk−1) + (Rk−1 − Lk−1))

≤Cn

[
max

k=1,...,K̂+1
(Rk −Rk−1) + max

k=1,...,K̂+1
(Rk − Lk)

]
, (4.3)
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where we used
∑K̂+1

k=1 (Rk − Rk−1) = n for the last inequality. We stress that this bound for

the complexity is a-posteriori, since it depends on Lk as well as on Rk, which in turn depend

on the data Y . It sheds some light on these bounds to regard two “extreme” scenarios: If

Rk − Rk−1 can be uniformly bounded from above by a constant the bound in (4.3) is linear

in n. If, in contrast the estimated signal is constant, which implies L0 = R0 = 1 and hence

L1 = R1 = n, the bound is quadratic in n.

From Theorem 11 and the subsequent remark, we may (asymptotically) include the uncer-

tainty of estimating the change-points correctly into the bound in (4.3). Roughly speaking,

the result says that the true change-points can be localized with asymptotic probability one

at a rate of order log n. For a fixed signal ϑ ∈ S there hence exists a constant C1 < ∞, so

that with probability tending to one

max
k=1,...,K̂+1

(Rk −Rk−1) ≤ max
k=1,...,K̂+1

n(τk − τk−1) + C1 log(n) and

max
k=1,...,K̂+1

(Rk − Lk) ≤ C1 log(n).

Together with (4.3) this shows that the complexity is bounded by

max
k=1,...,K+1

(τk − τk−1)n
2 + 2C1n log n (4.4)

with probability converging to one. Clearly, this bound is not a-posteriori, as it only depends

on the true locations (τ1, . . . , τK) and not on the data Y .

We investigate the actual computation time empirically. To this end, we consider two different

signals (see Figure 10). The first signal (left) is constant with value zero, while the second

signal (right) consists of segments of 50 observations and values alternating between zero and

ten. For n = 100, 500, 1,000, 2,000, . . . , 8,000 and standard Gaussian noise we compute the

average computation time of SMUCE with α = 0.1 in 100 runs each. In order to justify

the assumptions that bi,j and bi,j are computed in O(1), these values are pre-computed in

a first step. The results are shown in Figure 10. The increase is approximately quadratical

for the second signal (blue line). For the first signal (red) we find that the computation time

increases slightly faster than linearly. However, we note that in fact the computation is much

faster for the signal with many change-points, in particular for large values of n. This is in

accordance with (4.3) and (4.4). All simulations were performed on a single core system with

2.67 GHz and 8 GB RAM in a 64-bit OS.
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Figure 10: First row: test signals for n = 2,000 observations; second row: average computation
time for SMUCE in dependence of n for both signals.

4.5 Confidence sets

The multiscale constraint underlying SMUCE can be used to obtain confidence intervals

[τ lk, τ
r
k ] as well as a confidence band B(q) ⊂ [0, 1]×Θ such that for each estimator ϑ̂ ∈ H(q)

τ̂k ∈ [τ lk, τ
r
k ] for k = 1, . . . , K̂(q) and (t, ϑ̂(t)) ∈ B(q), for all t ∈ [0, 1].

In this section the computational aspects will be discussed in detail. A theoretical foundation

for the confidence sets was given in Section 3.6.

4.5.1 Confidence intervals

For the construction of confidence intervals we will consider Rk as in Section 4.2 and further

define Lk = min {l : cl,Rk
<∞}. Recall that Rk denotes the largest p such that there exists

a feasible estimate with k change-points on {1, . . . , p}. Then, Lk is the smallest l, such that

a feasible constant estimate exists on {l, . . . , Rk}. Then, for any estimator ϑ̂ ∈ S[K̂(q)]

(i.e. with K̂(q) change-points) that satisfies Tn(Y, ϑ̂) ≤ q, it holds that τ̂k ∈ [τ lk, τ
r
k ] with

τ lk = n−1Lk and τ rk = n−1Rk.
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Figure 11: Simulated data and confidence intervals (grey hatched) obtained from applying
SMUCE forwards (upper panel), backwards (center panel) and intersection of both (lower
panel). The lower panel also shows confidence bands (red hatched).

To show this, assume for a moment that ϑ̂ ∈ H(q) is fixed. If for some k, ϑ̂ has no change-point

in [Lk, Rk], ϑ̂must be constant on [Lk−1, Rk]. Since by the definition of Lk no feasible estimate

on [Lk − 1, Rk] exists, this contradicts Tn(Y, ϑ̂) ≤ q. Since ϑ̂ has exactly K̂ change-points, we

find that τ̂k ∈ [τ lk, τ
r
k ] for all k = 1, . . . , K̂.

These bounds have been computed within Algorithm 1, and can hence be read of without

additional costs. Moreover, the precision of these intervals can be increased by the following

idea. Since the optimization problem (2.18) is invariant with respect to reversion of the data,

i.e. to consider (Yn, . . . , Y1) instead of (Y1, . . . , Yn), we can also run the dynamic program on

the reversed data and compute the corresponding confidence intervals. Taking the intersec-

tions of the obtained intervals tightens the confidence intervals considerably in practice, as

we illustrated in Figure 11. Clearly, this doubles the overall computation time.

4.5.2 Confidence bands

We construct a confidence band B(q) that contains the graphs of all functions in H(q). To this

end, fix some ϑ̂ ∈ H(q) and recall that for 1 ≤ k ≤ K̂(q) there is exactly one change-point in

the interval [τ lk, τ
r
k ] and no change-point in (τ rk , τ

l
k+1). We will consider two cases separately.



4.6 Software 45

First, assume that t ∈ (τ rk , τ
l
k+1). Then we get a lower and an upper bound for ϑ̂(t) by

BRk+1,Lk+1−1 and BRk+1,Lk+1−1, respectively. Now let t ∈ [τ lk, τ
r
k ]. Then, the k-th change-

point is either to the left or to the right of t and hence any feasible estimator is constant either

on [τ rk−1, t] or on [t, τ lk+1]. Thus, we obtain a lower bound by min
{
BRk−1,btnc, Bdnte,Lk+1

}
and

an upper bound by max
{
BRk−1,btnc, Bdnte,Lk+1

}
, where Br,p and Br,p are chosen as in (4.2).

In the lower panel of Figure 11 we have depicted confidence bands obtained in this manner.

4.6 Software

SMUCE is implemented for the statistical software R (R Core Team, 2013) in the package

stepR (Hotz and Sieling, 2013)2. The SMUCE procedure for Gaussian mean regression,

Gaussian variance regression, Binomial regression and Poisson regression is available via the

function smuceR, which also provides confidence bands and confidence intervals as described

in the previous sections.

2R package available at http://www.stochastik.math.uni-goettingen.de/smuce

http://www.stochastik.math.uni-goettingen.de/smuce
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SECTION 5

Beyond exponential families

So far we have assumed that the data are given by an exponential family regression model.

We extend the methodology to an additive noise model in Section 5.1. Further, we provide

a distribution-free approach based on the signs of residuals in Section 5.2, which elaborates

the idea as it was outlined in Frick et al. (2013) in detail.

5.1 Sub-Gaussian additive noise

In this section, we show how the methodology and theory underlying SMUCE can be ex-

tended to additive noise, different than normal noise. We show that for additive noise with

sub-Gaussian tails the limit null-distribution is the same as in the Gaussian case. More

precisely, we will consider the following model:

Model 2. Let ε1, . . . εn be independent and identically distributed observations with E [εi] = 0

and Var [εi] = σ2 > 0 and assume that there exists a constant A > 0 such that

P (|εi| > xσ) ≤ A exp(−x2/2), for all x > 0. (5.1)

Let µ ∈ S be a piecewise constant, right-continuous function with values in R. Further, let

the observations W1 . . . ,Wn be given by

Wi = µ(i/n) + εi, i = 1, . . . , n.

Example 23. Distributions that fulfill the assumptions of Model 2 are e.g. any bounded

random variables with mean zero, such as the uniform distribution U [−u, u] for some u <∞
and the Beta(2, 2) distribution.

Since the noise in Model 2 is additive, local tests of the type (2.5) do not depend on the values

of the true signal µ. We will consider the multiscale test statistic for Gaussian likelihoods and
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investigate the properties of the resulting estimate under Model 2. The multiscale statistic

reads as

Tn(W,µ) = max
0≤k≤K

max
τk≤i/n≤j/n<τk+1

∣∣∣∑j
l=iWl − µ(l/n)

∣∣∣
√
j − i+ 1σ

−
√
2 log

en

j − i+ 1
. (5.2)

We will first show that the null-distribution of Tn converges to the same limit law as for

Gaussian data.

As a direct consequence of Dümbgen and Walther (2008)[Theorem 7.1] the asymptotic null-

distribution of Tn(W,µ) is finite almost surely, due to the sub-Gaussian tails of the noise.

Moreover, by refined strong Gaussian approximation (see Sakhanenko (1985)), we can prove

that under the null-hypothesis the statistic converges weakly to the same distribution as in

Theorem 3. Note further that here we do not assume any lower bound on the length of the

considered intervals as in Theorem 3.

Theorem 24 (Asymptotic null-distribution). Set Tn(W,µ) as in (5.2), let M0, . . . ,MK be

independent copies of M as in (3.3) and let W be observations from Model 2. Then,

Tn(W,µ)
D→ max

0≤k≤K
sup

τk≤s<t≤τk+1

(
|B(t)−B(s)|√

t− s
−
√
2 log

e

t− s

)
D
≤M.

Empirically, we find that even for relatively small sample sizes the null-distribution of the

multiscale statistic is close to the Gaussian version M (n). Figure 12 shows quantile-quantile

plots of the null-distribution for Gaussian observations against uniform noise supported on

[−1, 1] and standardized Beta(2,2) random variables. For the sample size n = 1,000 we

observe only minor differences between the null-distribution of Tn and the Gaussian version.

Based on Theorem 24, we can also derive the asymptotic distribution of the extension of Tn

on all subintervals.

Corollary 25. Let W1, . . . ,Wn be observations from Model 2 and let M be as in (3.3). Then,

max
1≤i≤j<n

∣∣∣∑j
l=i(Wl − µ(l/n))

∣∣∣
σ
√
j − i+ 1

−
√
2 log

en

j − i+ 1

D→M.

Proof. Under the null-hypotheses, the l.h.s. is distributed as Tn(ε, µo) for µ0 ≡ 0 and ε1, . . . , εn

as in Model 2. With this observation the assertion follows directly from Theorem 24.

Without any further assumptions we can give the rate for multiple detection of change-points,

which is purely based on the almost sure finiteness of the asymptotic null-distribution of Tn.
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Theorem 26 (Detection rates). Let (µn)n∈N ∈ S be a sequence of change-point functions

with Kn change-points and set ∆n and Λn as in (3.26). Further, let W1, . . . ,Wn be given by

Model 2. Assume that qn is bounded away from zero and

(1.) for signals on large scales (i.e. lim inf Λn > 0), that
√
Λnn∆n/qn → ∞.

(2.) for signals on small scales (i.e. Λn → 0) and Kn unbounded, that
√
Λnn∆n ≥ (8 + εn)

√
− log(Λn) with εn

√
− log(Λn)/qn → ∞.

Then,

Pµn

(
K̂(qn) < Kn

)
→ 0.

Comparing the result to Theorem 19 shows that under either of the assumptions (1.) or (2.)

the same constants are obtained as for Gaussian observations. Combination of Theorem 26

and Theorem 24 yields model consistency for any fixed signal µ ∈ S as long as qn = o(1/
√
n).

In Section 6.6 we empirically assess the performance of the SMUCE with Gaussian likelihoods

for uniformly distributed noise.
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●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
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Figure 12: Left: Quantile-quantile plots of the empirical null-distribution of Tn for Gaussian
(x-axis) vs. Beta(2,2) data (y−axis) with sample size n = 1,000; right: quantile-quantile plots
of the empirical null-distribution of Tn for Gaussian (x-axis) vs. U(−1, 1) data (y−axis) with
sample size n = 1,000.

5.2 A sign-based version of SMUCE for quantile regression

In this section, we adopt the SMUCE methodology to quantile regression problems. This is of

interest e.g. for distributions with heavy tails (e.g. Student’s t- or Cauchy distribution) or if

the distribution of the observations is unknown. The approach is based on the idea to consider

only the signs of residuals. Such sign-based approaches have a long history in non-parametric

regression. For example, the run procedure, proposed in Davies and Kovac (2001), is build

on the construction of “simple” estimates under the constraint that the maximal length of

a sequence of residuals with the same sign is below a specified threshold. In contrast, we
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suggest to use a multiscale analysis of the residuals’ signs in the spirit of the approach in

Section 2.3. To state this precisely, let the observations Z1, . . . , Zn be given by the following

model.

Model 3. Let ϑβ ∈ S be a piecewise constant, right-continuous function with values in R.
Further, let Z1, . . . , Zn be independent random variables, such that for some β ∈ (0, 1)

P (Zi ≤ ϑβ(i/n)) = β for all i = 1, . . . , n.

We now aim for estimation of the piecewise-constant β-quantile function ϑβ. This can be

turned into a Bernoulli regression problem as follows: given the β-quantile function ϑβ, define

the random variables W (Z, ϑβ) = (W1, . . . ,Wm) as

Wi =

0 if ϑβ(i/n)− Zi < 0 and

1 if ϑβ(i/n)− Zi ≥ 0.

Under Model 3 we then find that W1, . . . ,Wn are i.i.d. Bernoulli random variables with mean

value β. Extending the idea from Section 2.3 we aim for computing the estimate with fewest

change-points, such that the signs of the residuals fulfill the multiscale test for Bernoulli

observations with mean β. To this end, we consider the multiscale statistic

Tn(Z, ϑβ) = max
1≤i≤j≤n

ϑβ is constant on [i/n,j/n]

√
2T j

i (W (Z, ϑβ), β)−
√
2 log

en

k − j + 1

with the local likelihood-ratio statistic for Bernoulli observations

T j
i (W (Z, ϑβ)), β) = (j − i+ 1)

(
W

j
i log

(
W

j
i

β

)
+ (1−W

j
i ) log

(
1−W

j
i

1− β̂

))
. (5.3)

Here, W
j
i = (j − i+ 1)−1

∑j
l=iWl. As before we consider the optimization problem

inf
ϑβ∈S

#J(ϑβ) s.t. Tn(Z, ϑβ) ≤ q. (5.4)

Let Hβ(q) denote the set of all solutions of (5.4) and define the estimate ϑ̂β as the restricted

maximum likelihood estimate

ϑ̂β(q) = argmax
ϑ∈H(q)

n∑
i=1

log (fβ(W (Z, ϑβ))) , (5.5)

where fβ denotes the density of a Bernoulli distribution with mean β. We will refer to ϑ̂β(q)

as Q-SMUCE in the following. The null-distribution of Tn(Z, ϑβ) can again be bounded
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Figure 13: from top to bottom: data Z; data Z (zoomed in); median function ϑ0.5; estimated
locations of change-points by Q-SMUCE for different values of alpha with confidence intervals;
Q-SMUCE ϑ̂0.5 for α = 0.3 with confidence intervals for the change-points location (blue
hatched area).

asymptotically by M , as a direct consequence of Theorem 3. Moreover, we emphasize that

even non-asymptotically the null-distribution is bounded in probability by Tn(X, ϑ̃β) where

X = (X1, . . . , Xn) are independent Bernoulli random variables with mean β and ϑ̃β ≡ β.

Therefore, in practice we can approximate the quantiles by Monte-Carlo simulations with

Bernoulli random variables at sample size n.

This idea enables us to control the error of overestimation non-asymptotically as for SMUCE

by choosing q(α) as the (1− α) quantile of the null-distribution, such that for all k ∈ N0

P
(
K̂(q(α)) > K + k

)
≤ αk+1.

Further, confidence bands and intervals can be computed analogously to Section 4.5. An

illustration of Q-SMUCE is depicted in 13. A simulation study for an evaluation of the

approach can be found in Section 6.5.
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5.2.1 Implementation

The Q-SMUCE ϑ̂β(q) as in (5.5) can be implemented similarly to the general approach in

Section 4. However, the computation of the local costs differs from the procedure described

in Section 4.3. For this reason, we restrict ourselves to discuss the computation of the local

optimal costs. For an interval [i/n, j/n] ⊂ [0, 1) let bi,j and bi,j denote the two unique solutions

of

x log

(
x

β

)
+ (1− x) log

(
1− x

(1− β)

)
= q/(j − i+ 1)

such that bi,j < bi,j (see (5.3)). Note that these bounds are independent of the observations

Z. Due to the monotonicity of the log-likelihood we then find that T k
j (W (θβ), β) ≤ q if and

only if W
j
i (θβ) ∈

[
bi,j , bi,j

]
Moreover, let fβ to be the log-likelihood for a Bernoulli observation with mean β. With this

we define the local costs of an estimate θβ on [i/n, j/n] as

ci,j(θβ) =

−
∏j

t=i fβ(Wt(θβ)) if maxi≤k≤l≤j T
k
j (W (θβ), β) ≤ q,

∞ otherwise.

Following the notation in Section 4.3 let Br,p = maxr≤i≤j≤p bi,j and Br,p = minr≤i≤j≤p bi,j .

Further, set

x∗ = argmax
m∈N:0≤m≤j−i+1

(
fβ(1)

mfβ(0)
j−i+1−m) .

In other words, for the sum of j − i + 1 independent Bernoulli observations with mean β,

x∗ is observed with highest probability. Furthermore, let Zij
[1], Z

ij
[2], . . . , Z

ij
[j−i+1] be the order

statistic of Zi, . . . , Zj . Then,
∏j

t=i fβ(Wt(θβ)) is maximized by Zrp
[x∗]. Therefore, the optimal

local estimate on an interval [i/n, j/n] is given as

θ∗i,j =


Bi,j if Zij

[x∗] ≥ Bi,j ,

Bi,j if Zij
[x∗] ≤ Bi,j ,

Zij
[x∗] otherwise,

by the same convexity argument as in Section 4.3. Therefore, with these modifications, the

estimate ϑ̂β as defined in (5.5) can be computed by dynamic programing as described in

Section 4.



SECTION 6

Simulations and applications

We first discuss strategies to choose the threshold parameter q in practice. Then, the perfor-

mance of SMUCE is investigated in various simulations and the results are compared with

state-of-the-art methods for change-point regression. The Sections 6.1-6.4 trace back to Frick

et al. (2013) and are complemented in Section 6.5 and Section 6.6 by simulations for the mod-

ifications introduced in Section 5. Finally, the application of SMUCE to binary observations

in DNA segmentation (Futschik et al., 2013) is illustrated by means of a data set.

6.1 On the choice of q for finite sample size n

The choice of the parameter q in (2.15) is crucial for it balances data fit and parsimony of the

estimator. First we discuss a general methodology that takes into account prior information

on the true signal ϑ. Based on this, a specific choice is given in the second part which we

found particularly suitable for our purposes. Further generalizations are discussed briefly. In

addition, a data-driven choice of q based on controlling the false discovery rate is introduced

in Section 8.1.

For the Gaussian case we have shown in Section 3.5 that the bound for overestimation is

non-asymptotic, i.e.

P(K̂(q) > K) ≤ αn(q), (6.1)

where αn(q) is defined as αn(q) = P(M (n) ≥ q) with M (n) as in (3.1). This allows to control

the probability of overestimating the number of change-points. If the latter is considered as a

measure of smoothness, (6.1) can be interpreted as a minimal smoothness guarantee. This is

similar in spirit to results on other multiscale regularization methods (see Donoho (1995) and

Frick et al. (2012)). As argued in Section 3.6, in general it is not possible to bound the minimal

number of change-points without further assumptions on the true function ϑ. However, we

can draw a bound for the probability of underestimating the number of change-points from

Theorem (14) in terms of the minimal interval length Λ and minimal feature size η2 = nΛ∆2,
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which gives

P
(
K̂(q) < K

)
≤

1− exp

−

(√
n(Λ/2)∆− 2q −

√
8 log 2e

Λ

)2
+

8

− exp

(
−nΛ∆

2

16

)
2/Λ

=: β(q, η,Λ),

where we have exploited the fact that K ≤ 1/Λ. By combining (6.1) with the bound above

one finds

P
(
K̂(q) = K

)
≥ 1− αn(q)− β(q, η,Λ). (6.2)

In order to optimize the bound on the probability of estimating the correct number of change-

points, one has to balance the error of over- and underestimation. Therefore, we aim for

maximizing the r.h.s. over q. Given Λ and η2 = nΛ∆2 we therefore suggest to choose q as

q∗Λ,η = argmax
q>0

{1− αn(q)− β(q, η,Λ)} . (6.3)

0.
0

0.
2

0
.4

0
.6

0.
8

1.
0

q

-1 0 q∗Λ,η 2 3

αn(q)
β(q)
αn(q) + β(q)

Figure 14: Illustration of αn(q), β(q, η,∆) and q∗Λη as in (6.3) for n = 500, ∆ = 1 and
Λ = 0.25.

Figure 14 illustrates this balancing of both error terms. The explicit knowledge of the influence

of Λ and η in (6.3) paves the way to various strategies for incorporating prior information in

order to determine q. One might e.g. use a full prior distribution on (Λ, η) and minimize the

posterior model selection error, i.e.

max
q∈R

E [1− αn(q)− β(q, η,Λ)] .
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Here, we suggest a rather simple way to proceed, which we found empirically to perform

quite well. We stress that there is certainly room for further improvement. Motivated by the

results of Section 3.5.1 we suggest to define Λ and η =
√
nΛ∆ in dependence of n implicitly

by the following assumptions

(i) η∗ = 8
√
− log(Λ∗) and

(ii)
√
Λ∗ = g(∆, n),

for some function g with values in (0, 1]. According to Theorem 19, the first assumption

reflects the worst case scenario among all signals that can be recovered with probability 1

asymptotically. The second assumption corresponds to a prior belief in the true function µ.

In the following simulations we always choose g(∆, n) = ∆ which puts the decay of Λ and ∆

on equal footing. We then come back to the approach in (6.3) and define

q∗n = max
q>0

{1− αn(q)− β(q, η∗,Λ∗)} , (6.4)

where λ∗ and η∗ are defined by (i) and (ii). Consequently, q∗n is the element that maximizes

the probability bound in (6.2). Note that q∗n does not depend on the true signal µ but only

on the number of observations n.

5 6 7 8 9 10 11

0.
0

0.
5

1
.0

1
.5

log n

0
0.
2
5

0.
5

0.
75

α
∗ n

q∗ n q∗n
α∗n

Figure 15: Optimal values q∗n as in (6.4) obtained from simulations together with the corre-
sponding α∗n = αn(q

∗
n).

Even though the motivation for q∗n is build on the assumption of Gaussian observations,

simulations indicate that it performs also well for other distributions. That is why we choose

q = q∗n, unless stated differently throughout all simulations. To compute q∗n in practice αn(q) is

estimated by Monte-Carlo simulations. These simulations are rather expensive but only need
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to be performed once. For a given n, a solution of (6.4) may then be approximated numerically

by computing the r.h.s. for a range of values for q. Figure 15 shows the approximated values

of q∗n for a variety of n, obtained from Monte Carlo simulations of M (n). We stress again that

the general concept given by (6.3) can be employed further to incorporate prior knowledge of

the signal in applications.

6.2 Gaussian mean regression

Recall model (3.23) in Section 3.5. Throughout this section we assume the variance σ2 to

be known, otherwise one may estimate it by standard methods, see e.g. Davies and Kovac

(2001) or Dette et al. (1998). Then, the multiscale statistic (2.12) evaluated at µ̂ ∈ Sn[K̂]

reads as

Tn(Y, µ̂) = max
0≤k≤K̂

max
l̂k<i≤j≤l̂k+1


∣∣∣∑j

l=i Yl − µ̂k

∣∣∣
σ
√
j − i+ 1

−
√

2 log
en

j − i+ 1

 .

After selecting K̂(q) as the minimal value of (1.4), SMUCE becomes

µ̂(q) = argmin
µ̂∈Sn[K̂(q)]

K̂(q)∑
k=0

(l̂k+1 − l̂k)(Y
l̂k+1

l̂k
− µ̂k)

2 s.t. Tn(Y, µ̂) ≤ q.

In our simulation study we compare our approach to the following change-point methods. A

large group follows the common paradigm of maximizing a penalized likelihood criterion of

the form

µ 7→ l(Y, µ)− pen(µ) (6.5)

over µ ∈ Sn[k] for k = 1, . . . , n, where the function pen(µ) penalizes the complexity of the

model. This includes the Bayes Information Criterion (BIC) introduced in Schwarz (1978).

As it was for instance stressed in Zhang and Siegmund (2007), the formal requirements to

apply the BIC are not satisfied for the change-point problem. Instead the authors propose

the following penalty function, denoted as modified BIC:

pen(µ) = −1

2

3#J(µ) log n+

#J(µ)+1∑
k=1

log(τk − τk−1)

 .

They compare their mBIC method with the traditional BIC as well as with circular binary

segmentation (Olshen et al., 2004) and the method in Fridlyand et al. (2004) by means of

a comprehensive simulation study and demonstrated the superiority of their method with

respect to the number of correctly estimated change-points. We only consider the method of
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Zhang and Siegmund (2007) and CBS in our simulations.

In addition, we will include the penalized likelihood oracle (PLoracle) as a benchmark, which

is defined as follows: Recall that K denotes the true number of change-points. For given data

Y , define ωl and ωu as the minimal and maximal element of the set{
ω ∈ R : argmax

µ̂∈Sn
(l(Y, µ̂)− ω#J(µ̂)) has K change-points

}
,

respectively. In particular, for ωm := 2(ωl+ωu) the penalized maximum likelihood estimator,

i.e. a maximizer of (6.5) obtained with penalty pen(µ) = ωm#J(µ), has exactly K change-

points. For our assessment, we simulate 104 instances of data Y and compute the median

ω∗ of the corresponding ωm’s. We then define the PLoracle to be a maximizer of (6.5) with

pen(µ) = ω∗#J(µ). Of course, PLoracles are not accessible in practice (since K and µ are

unknown). However, they represent benchmark instances within the class of estimators given

by (6.5) and penalties of the form pen(µ) = ω#J(µ). We stress again that even if SMUCE

and the PLoracle have the same number of change-points they are in general not equal, since

the likelihood in (2.18) is maximized only over the set H(q).
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Figure 16: True signal (solid line), simulated data (dots) and confidence bands (grey hatched)
and confidence intervals for the change-points (inwards pointing arrows) for a = 0 (left),
a = 0.01 (middle) and a = 0.025 (right) and σ = 0.2.
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Moreover, we consider the fused lasso algorithm which is based on computing solutions of

min
µ̂∈S

n∑
i=1

(Yi − µ̂(i/n))2 + λ1
∥∥µ̂∥∥

1
+ λ2

∥∥µ̂∥∥
TV
, (6.6)

where ‖·‖1 denotes the l1-norm and ‖·‖TV the total variation semi-norm (see also Harchaoui

and Lévy-Leduc (2010)). The fused lasso is not specifically designed for the change-point

problem. However, due to its prominent role and its application to change-point problems

(Tibshirani and Wang, 2008), we include it into our simulations. An optimal choice of the

parameters (λ1, λ2) is crucial and in our simulations we consider two fused lasso oracles

FLIMSE and FLc-p. In 500 Monte Carlo simulations (using the true signal) we compute λ1

and λ2 such that the mean integrated squared error (MISE) is minimized for the FLIMSE

and such that the frequency of correctly estimated number of change-points is maximized for

FLc-p.

In summary, we compare SMUCE with the modified BIC approach suggested in Zhang and

Siegmund (2007), the CBS algorithm1 proposed in Olshen et al. (2004), the fused lasso al-

gorithm2 suggested in Tibshirani et al. (2005) and the PLoracle as defined above. Since the

CBS algorithm tends to overestimate the number of change-points, the authors included a

pruning step which requires the choice of an additional parameter. The choice of the parame-

ter is not explicitly described in Olshen et al. (2004) and here we only consider the un-pruned

algorithm.

We follow the simulation setup considered in Zhang and Siegmund (2007). The application

they bear in mind is the analysis of array-based comparative genomic hybridization (array-

CGH) data. Array-CGH is a technique for recording the number of copies of genomic DNA

(cf. Kallioniemi et al. (1992)). As pointed out in Olshen et al. (2004), piecewise constant re-

gression is a natural model for array DNA copy number data. We will discuss the application

of SMUCE to these data sets in Section 7.

Here, one has n = 499 observations with constant variance σ2 and the true regression function

has 6 change-points at locations τi = li/n and (l1, . . . , l6) = (138, 225, 242, 299, 308, 332) with

intensities (m0, . . . ,m6) = (−0.18, 0.08, 1.07,−0.53, 0.16,−0.69, −0.16). In order to investi-

gate robustness against small deviations from the model a small deterministic sinusoidal local

trend component is included in these simulations, i.e.

Yi ∼ N (µ(i/n) + 0.05 sin(aπi), σ2), i = 1, . . . , n. (6.7)

Following Zhang and Siegmund (2007) we simulate data for σ = 0.2 and a = 0 (no trend),

a = 0.01 (long trend) and a = 0.025 (short trend), see Figure 16 for an illustration. Moreover,

1R package available at http://cran.r-project.org/web/packages/PSCBS
2R package available at http://cran.r-project.org/web/packages/flsa/

http://cran.r-project.org/web/packages/PSCBS
http://cran.r-project.org/web/packages/flsa/
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trend σ ≤ 4 5 6 7 ≥ 8 MISE MIAE
SMUCE (1− α = 0.55) no 0.1 0.000 0.000 0.988 0.012 0.000 0.00019 0.00891
PLoracle no 0.1 0.000 0.000 1.000 0.000 0.000 0.00019 0.00874
mBIC no 0.1 0.000 0.000 0.964 0.031 0.005 0.00020 0.00888
CBS no 0.1 0.000 0.000 0.922 0.044 0.034 0.00023 0.00903
FLc-p no 0.1 0.124 0.122 0.419 0.134 0.201 0.00928 0.15821
FLIMSE no 0.1 0.000 0.000 0.000 0.000 1.000 0.00042 0.00274
SMUCE (1− α = 0.55) no 0.2 0.000 0.000 0.986 0.014 0.000 0.00117 0.01887
PLoracle no 0.2 0.024 0.001 0.975 0.000 0.000 0.00138 0.01915
mBIC no 0.2 0.000 0.000 0.960 0.037 0.003 0.00120 0.01894
CBS no 0.2 0.000 0.000 0.870 0.089 0.041 0.00146 0.01969
FLc-p no 0.2 0.184 0.162 0.219 0.174 0.261 0.08932 0.23644
FLIMSE no 0.2 0.000 0.000 0.000 0.000 1.000 0.00297 0.03692
SMUCE (1− α = 0.55) long 0.2 0.000 0.000 0.825 0.171 0.004 0.00209 0.03314
PLoracle long 0.2 0.026 0.030 0.944 0.000 0.000 0.00245 0.03452
mBIC long 0.2 0.000 0.000 0.753 0.215 0.032 0.00214 0.03347
CBS long 0.2 0.000 0.000 0.708 0.130 0.162 0.00266 0.03501
FLc-p long 0.2 0.078 0.112 0.219 0.215 0.376 0.08389 0.22319
FLIMSE long 0.2 0.000 0.000 0.000 0.000 1.000 0.00302 0.03782
SMUCE (1− α = 0.55) short 0.2 0.000 0.002 0.903 0.088 0.007 0.00235 0.03683
PLoracle short 0.2 0.121 0.002 0.877 0.000 0.000 0.00325 0.03846
mBIC short 0.2 0.000 0.000 0.878 0.107 0.015 0.00238 0.03695
CBS short 0.2 0.000 0.000 0.675 0.182 0.143 0.00267 0.03806
FLc-p short 0.2 0.175 0.126 0.192 0.210 0.297 0.08765 0.23105
FLIMSE short 0.2 0.000 0.000 0.000 0.000 1.000 0.00331 0.04111
SMUCE (1− α = 0.55) no 0.3 0.030 0.340 0.623 0.007 0.000 0.00660 0.03829
PLoracle no 0.3 0.181 0.031 0.788 0.000 0.000 0.00505 0.03447
mBIC no 0.3 0.015 0.006 0.927 0.050 0.002 0.00364 0.03123
CBS no 0.3 0.006 0.019 0.764 0.157 0.054 0.00449 0.03404
FLc-p no 0.3 0.038 0.059 0.088 0.115 0.700 0.08792 0.23496
FLIMSE no 0.3 0.531 0.200 0.125 0.078 0.066 0.09670 0.24131
SMUCE (1− α = 0.4) no 0.3 0.000 0.099 0.798 0.089 0.000 0.00468 0.03499

Table 2: Frequencies of estimated number of change-points and MISE by model selection for
SMUCE, PLoracle, mBIC (Zhang and Siegmund, 2007), CBS (Olshen et al., 2004), the fused
lasso oracles FLc-p and FLIMSE. The results are obtained from 500 simulations and the true
signals, shown in Figure 16, have each six change-points.

we included a scenario with a smaller signal-to-noise ratio, i.e. σ = 0.1 and a = 0 and one

with a higher signal-to-noise ratio, i.e. σ = 0.3 and a = 0. For σ = 0.1 and σ = 0.3 we do not

display results with a local trend, since we found the effect to be quite similar to the results

with σ = 0.2.

Table 2 shows the frequencies of the number of detected change-points for all methods men-

tioned and the corresponding mean integrated squared error (MISE) and mean integrated

absolute error (MIAE). Moreover, in Figure 17 we displayed typical observation of model

(6.7) with a = 0.1 and b = 0.1 and the aforementioned estimators. The results show that

the SMUCE outperforms the mBIC (Zhang and Siegmund, 2007) slightly for σ = 0.2 and

appears to be less vulnerable for trends, in particular. Notably, SMUCE often performs even

better than the PLoracle. For σ = 0.3 SMUCE has a tendency to underestimate the num-

ber of change-points by one, while CBS and in particular mBIC estimates the true number

K = 6 with high probability correctly. As it is illustrated in Figure 18, this is due to the

fact that SMUCE can not detect all change-points at level 1 − α ≈ 0.55 as we have chosen
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Figure 17: An example of model (6.7) for a = 0.01, b = 0.1 and σ = 0.2. From top left to
bottom right: true signal, SMUCE, mBIC, CBS, FLIMSE and FLcp.

it following the simple rule (6.4) in Section 4. For further investigation, we lowered the level

to 1 − α = 0.4 (see last row in Table 2). Even though this improves estimation, SMUCE

performs comparably to CBS and the PLoracle now, it is still worse than mBIC.

For an evaluation of FLMSE and FLc-p one should account for the quite different nature of

the fused lasso: The weight λ1 in (6.6) penalizes estimators with large absolute values, while

λ2 penalizes the cumulated jump height. However, none of them encourages directly sparsity

with respect to the number of change-points. That is why these estimators often incorporate

many small jumps (well known as the staircase effect). In comparison to SMUCE one finds

that SMUCE outperforms the FLIMSE with respect to the MISE and it outperforms FLc-p with

respect to the frequency of correctly estimated the number of change-points. The example in
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Figure 18: Top: typical example of model (6.7) for b = 0 and σ = 0.3; bottom: change-points
and confidence intervals for SMUCE with α = 0.1, . . . , 0.9 (left y-axis) and the corresponding
quantiles q(α) (right y-axis).
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Figure 17 suggests that the major features of the true signal are recovered by FLIMSE. But

additionally, there are also some artificial features in the estimator which indicate that an

additional filtering step has to be included (see Tibshirani and Wang (2008)). Again, we note

that Table 2 can be complemented by the simulation study in Zhang and Siegmund (2007)

which accounts for the classical BIC (Schwarz, 1978) and the method suggested in Fridlyand

et al. (2004).

6.3 Gaussian variance regression

Again, we consider normal data Yi, however, in contrast to the previous section we aim to

estimate the variance σ2 ∈ S. For simplicity we set µ = 0. This constitutes a natural

exponential family with natural parameter θ = −(2σ2)−1 and ψ(θ) = − log(−2θ)/2 for the

sufficient statistic Zi = Y 2
i , i = 1, . . . , n. It is easily seen that the multiscale statistic in this

case reads as

Tn(Z, σ̂
2) = max

0≤k≤K̂
max

l̂k<i≤j≤l̂k+1

√
j − i+ 1√

2

√
Z

j
i

σ̂2k
− log

Z
j
i

σ̂2k
− 1−

√
2 log

en

j − i+ 1

 .

After selecting K̂(q) as the minimal value of (1.4), SMUCE is given by

σ̂2(q) = argmax
σ̂2∈Sn[K̂(q)]

K̂(q)∑
k=0

(l̂k+1 − l̂k)

log
1

σ̂2k
−
Z

l̂k+1

l̂l

σ̂2k

 , s.t. Tn(Z, σ̂
2) ≤ q.

We compare our method to the method proposed in Höhenrieder (2008), see also Davies et al.

(2012). Similar to SMUCE they propose to minimize the number of change-points under a

multiscale constraint. They additionally restrict their final estimator to coincide with the

local maximum likelihood estimator on constant segments. This may increase the number of

detected change-points, as pointed out by the authors and confirmed in our simulations.

k -3 -2 -1 0 +1 +2 +3 MISE MIAE
SMUCE 0 0.000 0.000 0.000 0.945 0.053 0.002 0.000 0.00072 0.02040

(Davies et al., 2012) 0 0.000 0.000 0.000 0.854 0.127 0.019 0.000 0.00093 0.02122
SMUCE 1 0.000 0.000 0.000 0.975 0.024 0.001 0.000 0.00653 0.04295

(Davies et al., 2012) 1 0.000 0.000 0.000 0.901 0.089 0.009 0.001 0.00935 0.04648
SMUCE 4 0.000 0.000 0.000 0.997 0.003 0.000 0.000 0.02153 0.07967

(Davies et al., 2012) 4 0.000 0.000 0.000 0.957 0.042 0.001 0.000 0.03378 0.09655
SMUCE 9 0.000 0.001 0.023 0.973 0.003 0.000 0.000 0.06456 0.13206

(Davies et al., 2012) 9 0.000 0.000 0.009 0.968 0.023 0.000 0.000 0.11669 0.18297
SMUCE 19 0.000 0.027 0.222 0.751 0.000 0.000 0.000 0.26076 0.27468

(Davies et al., 2012) 19 0.000 0.008 0.074 0.912 0.006 0.000 0.000 0.47105 0.40606

Table 3: Comparison of SMUCE and the method in Davies et al. (2012). The table shows the
frequencies of the differences between the estimated and the true number of change-points for
k = 0, 1, 4, 19 as well as MISE and MIAE for both estimators.
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Following their simulation study we consider test signals σk with k = 0, 1, 4, 9, 19 equidistant

change-points and constant values alternating from 1 to 2 (k = 1), from 1 to 2 (k = 4),

from 1 to 2.5 (k = 9) and from 1 to 3.5 (k = 19). For this simulation the parameter of

both procedures are chosen such that the number of changes should not be overestimated

with probability 0.9. For any signal we computed both estimates in 1,000 simulations. The

difference of true and estimated number of change-points as well as the MISE and MIAE are

shown in Table 3. Considering the number of correctly estimated change-points, it shows that

SMUCE performs better for few changes (k = 1, 4, 9) and worse for many changes (k = 19).

This may be explained by the fact that the multiscale test in Davies et al. (2012) does not

include a scale-calibration and is hence more sensible on small scales than on larger ones,

see also Subsection 8.4. With respect to MISE and MIAE, SMUCE outperforms in every

scenario, even for k = 19, where Davies et al. (2012) performs better with respect to the

estimated number of change-points.

6.4 Poisson regression

We consider the Poisson-family of distributions with intensity µ > 0. Then, θ = log µ and

ψ(θ) = exp θ. The multiscale statistic is computed as

Tn(Y, µ̂) = max
0≤k≤K̂

max
l̂k<i≤j≤l̂k+1

√2(j − i+ 1)

√
Y

j
i log

Y
j
i

µk
+ µk − Y

j
i −

√
2 log

en

j − i+ 1

 .

After selecting K̂(q) as the minimal value of (1.4), the SMUCE is given by

µ̂(q) = argmax
µ̂∈Sn[K̂(q)]

K̂(q)∑
k=0

(l̂k+1 − l̂k)(Y
l̂k+1

l̂l
log µ̂k − µ̂k) s.t. Tn(Y, µ̂) ≤ q.

In applications one is often faced with the problem of low count Poisson data, i.e. when the

intensity µ is small. It will turn out that in this case, data transformation towards Gaussian

variables such as variance stabilizing transformations are not always sufficient and it pays off

to take into account the Poisson likelihood into SMUCE.

≤5 6 7 8 ≥9 MISE MIAE Kullback-Leibler
SMUCE 0.000 0.067 0.929 0.004 0.004 0.274 0.217 0.0187
BIC 0.000 0.000 0.080 0.094 0.920 0.575 0.313 0.0417
SMUCEmm 0.013 0.420 0.561 0.005 0.006 0.434 0.364 0.0418
PLoracle 0.045 0.014 0.942 0.000 0.000 0.275 0.217 0.0185
MLoracle 0.000 0.000 1.000 0.000 0.000 0.258 0.208 0.0143

Table 4: Frequencies of K̂ and distance measures for SMUCE, the BIC (Schwarz, 1978),
SMUCE for variance stabilized signals as well as the PLoracle and MLoracle.
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Figure 19: From top to bottom: simulated data, true signal, SMUCE with confidence bands
for the signal intensities (gray area) and confidence intervals for the change-points (inward
pointed arrows), SMUCEmm and Ploracle.

In the following, we perform a simulation study where we use a signal with a low count and a

spike part (see top panel of Figure 19). In order to evaluate the performance of the SMUCE,

we compare it to the BIC estimator and the PLoracle as described before. Moreover, we

included a version of SMUCE which is based on variance stabilizing transformations of the

data. To this end, we applied the mean-matching transformation (Brown et al., 2010) to

pre-process the data. We then compute SMUCE under a Gaussian model and re-transform

the obtained estimator by the inverse mean-matching transform. The resulting estimator is

referred to as SMUCEmm. Moreover, as a benchmark, we compute the (parametric) maximum

likelihood estimator with K = 7 change-points, which is referred to as MLoracle.

Table 4 summarizes the simulation results. As to be expected the standard BIC performs

far from satisfactorily. We stress that SMUCE clearly outperforms the SMUCEmm, which

is based on Gaussian transformations. Note that SMUCEmm systematically underestimates

the number of change-points K = 7 which highlights the difficulty to capture those parts of
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the signal correctly, where the intensity is low (see also the example in Figure 19). Again,

SMUCE performs almost as good as the Poisson-oracle PLoracle. To get a visual impression

along with the results of Table 4, we illustrated these estimators in Figure 19.

6.5 Quantile regression

In the following we compare the Q-SMUCE from Section 5.2 with a generalized taut string

algorithm which was proposed in Dümbgen and Kovac (2009). Their estimate is constructed

in such a way that it minimizes the number of local extreme values among a specified class

of functions. Here, a local extreme value is either a local maximum or a local minimum.
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Figure 20: First row: signal blocks (left) and simulated Cauchy data (right) for sample size
n = 2048. Second row: Estimator for median (solid), 0.1 and 0.9-quantiles (dashed) from
SMUCE (left) and generalized taut string (right).

In contrast to SMUCE the number of change-points is not penalized. In a simulation study

the authors showed that their method is particularly suitable to detect local extremes of a

signal. We follow this idea and repeated their simulations for the signals blocks and doppler

(Donoho et al., 1995), see Figure 20 and Figure 21 for an illustration. For the simulations we

considered independent Cauchy observations given by

Yi ∼ C(ϑ(i/n), 0.4), i = 1, . . . , n,
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Figure 21: First row: signal doppler (left) and simulated Cauchy data (right) for sample size
n = 2048. Second row: Estimator for median (solid), 0.1 and 0.9-quantiles (dashed) from
SMUCE (left) and generalized taut string (right).

where C(l, s) denotes the Cauchy distribution with location l and scale s. The results which

also include the estimated number of change-points, are shown in Table 5. Even though

detection of local extremes and change-points is almost the same for the blocks signal, it can

be seen that the generalized taut string estimates the number of local extremes slightly better

than SMUCE, while the number of change-points is overestimated for n = 2048 and n = 4096.

Clearly, this may be explained by the fact that the generalized taut string is primarily designed

to have few local extremes instead of change-points. The results are similar for the doppler

signal, even though it is not piecewise constant. The generalized taut string approximated the

signal by step functions which typically incorporate many more change-points than SMUCE.

The performance with respect to the number of detected local extremes is better throughout

all scenarios. However, the difference is rather small, indicating that SMUCE is able to

provide a good approximation of the signal, even though the assumption of a piecewise step

function is violated.
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local extreme values change-points
signal n β = 0.5 β = 0.1 β = 0.9 β = 0.5 β = 0.1 β = 0.9

SMUCE 512 3 (5.9) 1 (7.9) 2 (7.4) 5 (5.8) 2 (9.1) 3 (8.3)
gen. taut string 512 3(6.0) 3 (6.6) 3 (6.6) 12 (2.0) 6 (4.9) 7 (4.0)
SMUCE 2048 9 (0.4) 4 (5.4) 3 (5.8) 11 (0.1) 6 (5.2) 5 (5.9)
gen. taut string 2048 9 (0.7) 5 (4.0) 3 (5.7) 26 (15.3) 18 (7.1) 16 (5.7)
SMUCE 4096 9 (0.1) 4 (4.3) 5 (4.5) 11 (0.2) 8 (3.1) 6 (4.8)

blocks

gen. taut string 4096 9 (0.0) 6 (3.1) 3 (5.3) 35 (24.1) 25 (13.8) 21 (9.9)

SMUCE 512 5 2 1 8 3 2
gen. taut string 512 5 3 2 38 18 9
SMUCE 2048 10 4 4 26 7 7
gen. taut string 2048 11 5 6 132 38 43
SMUCE 4096 15 6 7 43 13 14

doppler

gen. taut string 4096 16 8 9 266 70 75

Table 5: Comparison of SMUCE and generalized taut string (Dümbgen and Kovac, 2009).
Median of local extreme values/ change-points of the estimators and mean absolute difference
(in brackets) to true number of local extremes/ change-points. For blocks the true number of
local extremes equals 9 and the true number of change-points equals 11.

6.6 Uniform noise

In this section we consider uniform additive noise, i.e. for µ ∈ S and some u > 0 we assume

Yi = µ(i/n) + εi with εi
i.i.d.∼ U [−u, u].

Here U [−u, u] denotes the uniform distribution with support [−u, u]. For our simulations we

let µ be the blocks signal from the previous section. A realization of Y together with the

signal µ is shown in Figure 22.

0 500 1000 1500 2000

-2
0

2
4

6

Figure 22: Blocks signal (black solid) and simulated uniform noise supported on [−2, 2].

For our simulations we consider the SMUCE with Gaussian likelihood (see also Section 5.1

for a theoretical justification). Clearly, the Gaussian SMUCE is not an optimal estimator for

uniform noise. The motivation for this simulation study is to investigate the robustness of

SMUCE against violations of the assumed distribution.
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10 11 12 13 ≥ 14

SMUCE u = 1.5 0.026 0.974 0 0 0
CBS (Olshen et al., 2004) u = 1.5 0.616 0.863 0.09 0.036 0.011
SMUCE u = 2 0.616 0.384 0 0 0
CBS (Olshen et al., 2004) u = 2 0.002 0.569 0 0.259 0.117 0.053

Table 6: Frequencies of estimated number of change-points for SMUCE and CBS (Olshen
et al., 2004) for the blocks signal and independent uniform noise εi ∼ U [−u, u].

In 1,000 simulations we compare the SMUCE for Gaussian likelihoods and the CBS (Olshen

et al., 2004). In the CBS procedure permutations of the data are used for the choice of the

required thresholds, which makes it applicable to any distributions. For two different signal-

to-noise-ratios (u = 1.5 and u = 2) the frequencies of the estimated number of change-points

are shown in Table 6.

Similar to the results in Section 6.2, we find that SMUCE performs very well for data with a

large signal-to-noise ratio, while CBS is superior for signals with higher variance.

In order to assess the locations of the change-points, we depicted histograms of the locations

of estimated change-points for both procedures and u = 2 in Figure 23. It can be seen that

the estimated locations by SMUCE and CBS is quite similar in both scenarios, even though

CBS tends to include more change-points.
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Figure 23: Histograms of the locations of estimated change-points for SMUCE (blue) and
CBS (red) and the true signal. The results are based on 1,000 simulations with u = 2.
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6.7 Application to DNA segmentation

As we have stressed in Section 1 the applications for change-points methods are vast. So

far, the SMUCE methodology has been applied thoroughly for the idealization of ion channel

recordings (Hotz et al., 2012) and for segmentation of DNA sequences (Futschik et al., 2013).

The application to binary data in Futschik et al. (2013) does not need any modification of

the approach in Section 2.3. Here, we briefly introduce the application and, as an extension

of the empirical findings in Futschik et al. (2013), we illustrate the applicability of SMUCE

by means of a data set from the literature.

Change-point methods for binary responses have frequently been used to identify regions of

homogeneous GC-content in DNA sequences. Each base of a DNA sequence is one of the four-

adenosine(A), guanine(G), cytosine(C) or thymine(T). The DNA sequence is often converted

into a binary sequence where G and C are set to “1” and A and T to “0”. The relative

frequency of bases G and C is referred to as the GC-content.

The GC-content is typically not homogeneously composed and detection of these inhomo-

geneities is important as it correlates with many features of biological interest, see Futschik

et al. (2013) for a detailed list. Various methods have been suggested for the segmentation

of DNA sequences, including Bayesian methods as in Boys and Henderson (2004) and the

quasi-likelihood approach in Braun et al. (2000) (see also Elhaik et al. (2010) for an overview

and comparison of available methods).

We think that SMUCE is suitable for these data since it is designed to detect variations on

small and large scales simultaneously and can moreover provide significant statements about

the detected changes. We illustrate this by means of segmentation of the bacteriophage

lambda. This virus has been recently analyzed, see e.g. again Braun et al. (2000), Boys

and Henderson (2004), Churchill (1992) and the references therein. It became a common

benchmark sequence for segmentation algorithms. The whole genome is available from the

National Center for Biotechnology Information (NCBI) and can be obtained online3. The

GC-content of the sequence is shown in the top panel of Figure 24.

The third panel shows the change-points estimated by SMUCE for α varying from 0.1 up to

0.9. For 0.3 ≤ α ≤ 0.85 it can be seen that SMUCE detects K̂ = 8 change-points, which is in

accordance with the results from Braun et al. (2000).

We also included the CBS estimate as introduced in Section 6.2 into Figure 24 (second panel).

It consists of 12 change-points, which includes the eight change-points, that were detected

by SMUCE. Since CBS is not taking into account the multiple testing problem it has the

tendency to overestimate change-points. The fact that SMUCE is constructed to control the

error of overestimation can therefore be utilized in combination with the results from CBS:

a comparison of the estimated change-points by SMUCE and CBS reveals that some of the

3http://www.ncbi.nlm.nih.gov/

http://www.ncbi.nlm.nih.gov/
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detected changes from CBS can be confirmed with high significance by SMUCE.
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Figure 24: From top to bottom: binned GC-content of bacteriophage lambda; segmen-
tation by CBS (Olshen et al., 2004) (purple); estimated change-points by SMUCE for
α ∈ {0.1, 0.15, . . . , 0.9} (y-axis); SMUCE for α = 0.3 (red line).
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SECTION 7

Multiscale segmentation with few levels

In this section we assume that the mean regression function µ ∈ S has only a finite number

of values, which is typically much smaller than the number of change-points. Throughout

this section, we restrict ourselves to Gaussian observations. Nevertheless, an extension to

additive sub-Gaussian noise as in Section 5.1 is straightforward. More precisely, we consider

the following model:

Model 4. Let ε1, . . . , εn be independent and identically distributed Gaussian observations with

E [εi] = 0 and Var [εi] = σ2. We assume that µ ∈ S is a piecewise constant, right-continuous

function with L different values, denoted by L(µ) = {l1, . . . , lL}. Further, let the observations

Y1 . . . , Yn be given by

Yi = µ(i/n) + εi, i = 1, . . . , n.

Henceforth, we will refer to L(µ) as the levels of µ. SMUCE, as it was defined in (2.18),

is entitled to sparsity with respect to the number change-points. However, in general the

estimated function values will be different on different segments. In other words, the estimate

µ̂ is not enforced to sparsity with respect to its level L(µ̂). In many applications, however, it

is known that the mean function µ takes values from a finite but unknown number of states,

which is typically much smaller than the number of change-points. One prominent example

is the analysis of array CGH data, which we will discuss in Section 7.3. It may seriously

weaken inference in applications if this discreteness is not taken into account. In a first step

we will illustrate this and show how SMUCE can be modified, assuming the true levels L(µ)
are known (Section 7.1). Subsequently, we incorporate an estimation step for the values L(µ)
into the SMUCE procedure. To this end, we will take advantage of the fact that the multiscale

constraint Tn(Y, µ) ≤ q carries two kinds of information about µ simultaneously: first about

the location of change-point and second about the values of µ.
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7.1 A modification for known levels

Let us assume that the levels L(µ) are known. We define the function

Γ(x, y) :=

(
y +

√
2 log

e

x

)
x−1/2.

Further, for any 1 ≤ i ≤ j ≤ n let µi,j = (j − i+ 1)−1
∑j

l=i µl denote the mean value of µ on

the interval [i/n, j/n]. Then, Theorem 3 yields that with probability greater than 1− α

µi,j ∈ [bi,j(q(α)), bi,j(q(α))], (7.1)

for all 1 ≤ i ≤ j ≤ n such that µ is constant on [i/n, j/n]. Here bi,j(q) = Y
j
i−Γ((j−i+1)/n, q),

bi,j(q) = Y
j
i +Γ((j − i+ 1)/n, q) and q(α) is the (1− α)-quantile of M . Assuming that L(µ)

is known, (7.1) can easily be refined to

µi,j ∈
{
[bi,j(q), bi,j(q)] ∩ L(µ)

}
,

for all 1 ≤ i ≤ j ≤ n such that µ is constant on [i/n, j/n]. Following the estimation

methodology in Section 2.3 we now consider the optimization problem

inf
µ̂∈S

#J(µ̂) s.t. µ̂i,j ∈
{
[bi,j(q), bi,j(q)] ∩ L(µ)

}
, (7.2)

for all 1 ≤ i ≤ j ≤ n such that µ̂ is constant on [i/n, j/n]. Note that for q = q(α) the

side-constraint is fulfilled for the true signal µ with probability greater than 1 − α. As

the side-constraint in (7.2) is more restrictive than in (2.15) the estimate will in general

incorporate more change-points than the regular SMUCE.

We illustrate the advantage of this approach in the two upper panels of Figure 25, where

we compare the regular SMUCE with the modification from (7.2) that incorporates the true

levels L(µ) = {0, 2}. Clearly, the additional information result in a better estimation.

7.2 A modification for unknown levels

In real world applications the assumption that L(µ) is known is often not realistic. Therefore,

we will incorporate estimation of L(µ) into the methodology in this section. We begin with

a simplification of Model 4, in which we assume that the number of levels L ≤ 2. As shown

in the following this leads to a natural way to include inference on L(µ) into the procedure.

In Section 7.2.2, these ideas will be extended to an arbitrary number of levels.
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Figure 25: Upper panel: SMUCE (red) with data and true signal (black); Middle panel:
modified SMUCE for known levels L = {0, 2} (red) with data and true signal (black); modified
SMUCE (as in (7.5)) for estimated levels L̂(q) as in (7.4) (red) with data and true signal
(black). For all estimates q was chosen to be the 0.9-quantile of the null-distribution.

7.2.1 Estimation of signals with two levels

We assume that µ has not more than two different values, i.e. L(µ) = {l1, l2}, where we allow
for l1 = l2. By choosing q = q(α), it holds as a consequence of Corollary 25 with probability

greater than 1− α

µi,j ∈
{
[bi,j(q), bi,j(q)]

}
for all 1 ≤ i ≤ j ≤ n. (7.3)

In particular, this implies

l∗2(q) := max
1≤i≤j≤n

bi,j(q) ≤ l2 and l
∗
1(q) := min

1≤i≤j≤n
bi,j(q) ≥ l1.

Hence, R\
(
l
∗
1(q), l

∗
2(q)

)
is a confidence set for the true levels L(µ).

We set

M(q) :=
{
R \

(
l∗1(q), l

∗
2(q)

)}
(7.4)
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and consider the optimization problem

inf
µ̂∈S

#J(µ̂) s.t. µ̂i,j ∈
{
[bi,j(q), bi,j(q)] ∩M(q)

}
, (7.5)

for all 1 ≤ i ≤ j ≤ n so that µ̂ is constant on [i/n, j/n]. We then proceed analogously to

the method in Section 1.1. The minimal value of (7.5) gives an estimate for the number

of change-points and the final estimate for µ is chosen as to be the solution of (7.5) with

maximal likelihood.

This approach is illustrated in the lower panel of Figure 25. The signal contains large and small

segments of its two levels. The large segments allow us to obtain sharp bounds l∗1(q) and l
∗
2(q)

which in turn strengthen inference on small scales. For this reason, we obtain a considerably

better reconstruction than from the regular SMUCE. For an empirical assessment, we ran

100 simulations for the signal in Figure 25 with standard Gaussian noise. Table 7 shows the

frequencies of estimated number of change-points. In general, the results show that both

modified estimates outperform the regular SMUCE by far. In particular, the estimate based

on (7.2) is superior to SMUCE, which does not account for the information that the number

of levels is bounded by two.

Remark 27. Note that whenever Tn(Y, µ) ≤ q we find that l1 ≤ l∗1 and l2 ≥ l
∗
2. Hence, for

all intervals [i/n, j/n], which the true regression function µ is constant on, it holds

µi,j ∈
{
[bi,j(q), bi,j(q)] ∩ L̂(q)

}
.

Consequently (given Tn(Y, µ) ≤ q), the number of change-points is not overestimated. Which

in turn implies that

P
(
K̂(q(α)) > K

)
≤ α

remains true for the modified approach given by (7.5).

2 3 4 5 6 7

SMUCE for known levels 0 0 0 0.19 0.79 0.02

modified SMUCE for L̂(q) as in (7.4) 0 0 0.8 0.26 0.66 0
SMUCE 0.29 0.59 0.11 0.01 0 0

Table 7: Frequencies of estimated change-points for the modified SMUCE with known levels
as in (7.2), the modified SMUCE as in (7.5) and the regular SMUCE. For all estimates
q is chosen as the 0.9-quantile of the null-distribution. The results are obtained from 100
simulations with standard Gaussian noise and the signal from Figure 25.
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7.2.2 Signals with an unknown number of levels

Finally, we assume the number of levels M to be finite but unknown. We propose a more

general modification of SMUCE which is designed to incorporate few different levels.

Assume an interval I contains two subintervals [i1/n, j1/n] ⊂ I and [i2/n, j2/n] ⊂ I such

that bi1,j1(q) > bi2,j2(q) or vice versa. Clearly, this implies that any function fulfilling the

multiscale constraint Tn(Y, µ̂) ≤ q (i.e. µ̂ ∈ C(q)) has at least one change-point in I. Let Ψ(q)

denote the set of all such intervals, i.e. define

Ψ(q) :=
{
[k/n, l/n] : bi1,j1(q) > bi2,j2(q) or bi2,j2(q) > bi1,j1(q) and k ≤ i1 ≤ j1 ≤ i2 ≤ j2 ≤ l

}
.

We then find that any µ̂ ∈ C(q) has a change-point in every interval I ∈ Ψ(q). More precisely,

J(µ̂) =
(
τ̂1, . . . , τ̂K̂

)
∩ I 6= ∅ for all I ∈ Ψ(q).

Hence, Ψ(q) constitutes a confidence region for the location of change-points. The estimated

number of change-points K̂(q) as in (2.15) is the minimal value of

inf
µ∈S

#J(µ) s.t. J(µ) ∩ I 6= ∅ for all I ∈ Ψ(q).

Moreover, we can employ Ψ(q) to construct confidence regions for L(µ). To this end, consider

the complement of Ψ(q) defined as

ΨC(q) := {[i/n, j/n] : i < j and [i/n, j/n] 6∈ Ψ(q)} .

Then ΨC(q) is a confidence set of all intervals the true regression function is constant on.

Consequently, a confidence set for the levels L(µ) is given by

Υ(q) :=
⋃

[i/n,j/n]∈ΨC(q)

[bi,j(q), bi,j(q)].

Recall that in Section 1.1 we proposed first to minimize the number of change-points and

estimate the function values m1, . . . ,mK̂(q) by the maximum likelihood step in (2.18).

In comparison to SMUCE, we will now interchange the role of change-points and levels. In a

first step we concern estimating the levels L(µ). For this purpose, we consider the optimization

problem

inf
µ∈S

#L(µ) s.t. L(µ) ∩ J 6= ∅, ∀J ∈ Υ(q). (7.6)

Let M(q) denote the set of all solutions of (7.6) and L̂(q) its minimal value. For estimation
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Figure 26: From top to bottom: true signal (black line) and simulated data for Gaussian
noise with variance σ = 0.8; modified SMUCE for α = 0.1 together with M (blue hatched
area); SMUCE (as in (2.18)) for α = 0.1; mBIC estimate (Zhang and Siegmund, 2007).

of µ we then propose to consider the optimization problem

inf
µ∈S

#J(µ) s.t. Tn(Y, µ) ≤ q and L(µ) ∈ M(q). (7.7)

In other words, we minimize the number of change-points under the additional side-constraint

that it has a minimal number of levels (in the sense of (7.6)). In order to make fast computa-

tion possible, we consider a relaxation of (7.7) by replacingM(q) by a supersetM(q) ⊇ M(q).

In general, this relaxation decreases the number of detected change-points. This superset

M(q) can be constructed very similar in spirit as the confidence intervals in Section 4.5.1. It

consists of L̂(q) disjoint intervals [l1, l1], . . . , [lL̂(q), lL̂(q)]. A formal proof for M(q) ⊃ M(q) is

analog to Section 4.5.1 and is omitted.

A pseudo-code for the computation is given in Algorithm 2. The relaxation of (7.7) is then
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Data: ΨC(q) and {bi,j(q), bi,j(q)}i,j∈ΨC(q)

Result: l, l
I ← ΨC(q);1
for m = 1, 2, . . . do2

lm ← min[i/n,j/n]∈I bi,j(q);3

I ← I\{[i/n, j/n] : bi,j(q) < lm} // remove already considered intervals;4

if I = ∅ then5
break6

end7

end8

I ← ΨC(q);9
for m = 1, 2, . . . do10

lm ← max[i/n,j/n]∈I bi,j(q);11

I ← I\{[i/n, j/n] : bi,j(q) > lm};12
if I = ∅ then13

break14
end15

end16

return l, l17

Algorithm 2: Algorithm for the computation of M(q)

explicitly given by

inf
µ∈S

#J(µ) s.t. µi,j ∈
{
[bi,j(q), bi,j(q)] ∩M(q)

}
, (7.8)

for all 1 ≤ i ≤ j ≤ n so that µ̂ is constant on [i/n, j/n]. This relaxed optimization problem

can be solved by dynamic programing as in Section 4. Analogously to Section 2.3, let K̂∗(q)

denote the minimal value of (7.8) and µ̂∗(q) be the maximum likelihood estimate among all

solutions of (7.8).

Figure 26 shows a simulated data set, together with the modification of SMUCE defined by

(7.8). The set M(q) is shown in the second panel (blue hatched area). For comparison, we

also depicted the regular SMUCE and the mBIC estimate (Zhang and Siegmund, 2007) as

introduced in Section 6.2. Clearly, the regular SMUCE does not give a precise reconstruction

of the signal. The mBIC performs slightly better. However, with none of both approaches,

the different levels with values three and four can be separated in the first part of the signal.

In contrast, the modified approach distinguishes between them almost perfectly.

In 100 simulations for the signal in Figure 26 we found that modified SMUCE µ̂∗ detected the

43 change-points in all 100 simulations at level α = 0.1. In contrast, the regular SMUCE at

α = 0.1 detected 28.7 change-point in average and 35 maximum. This confirms that inference

is considerably strengthened by including the information that only few levels are present in

the true signal. In the upcoming section we apply the modified approach to a real data set.
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7.3 Application to array CGH data

The statistical analysis of array CGH data has drawn a lot of attention recently, see e.g.

Fridlyand et al. (2004), Venkatraman and Olshen (2007), Lai et al. (2008) and Jeng et al.

(2010).

The analysis of CGH data concerns detection of aberrations in DNA copy number. In nor-

mal diploid cells, the autosomal chromosomes each have two copies. The earliest observed

aberration is a trisomy of chromosome 21 in Down’s Syndrome. Nowadays it is known that

changes in copy number occur on parts of chromosomes of different lengths. For example,

in cancer cells parts of chromosomes can be present in zero copies (loss) as well as in two or

more copies (gain). Detection of gains or losses is e.g. important in order to identify certain

cancer genes.
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Figure 27: Log ratios and the modified SMUCE for the cell line GM03563.

In array CGH analysis genomic DNA is isolated from a test and a reference sample and

labeled differently. In a second step the DNA is hybridized to a DNA micro-array. Ideally,

the hybridization intensity for a segment gives the proportion of the copy number of the test

and reference sample. For the (statistical) analysis of array CGH data the log2 ratios of the

intensities are considered. Since the ratios at each position are half-integer-valued, the log

ratios are discrete. However, due to normal tissue contamination and other effects the log2

ratios differ from the expected values log2(1/2), log2(1), log2(3/2), . . . and it cannot assumed

that these values are known.

We apply the modified approach from the previous section (see (7.8)) to a data set from

Snijders et al. (2001), which was also considered in Olshen et al. (2004) and is available

online 1. In total the data set consists of 15 cell lines with 2,276 observations each. In each

cell line there are one or two aberrations present as was shown by spectral karyotyping. For

comparison we consider the same nine cell lines as in Olshen et al. (2004). They showed that

1http://nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html

http://nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html


7.3 Application to array CGH data 79

12 from 15 aberrations are detected by their approach. With the modified SMUCE we could

identify the same 12 aberrations at level α = 0.25. In addition, in chromosome 9 on GM03563

we could detect an aberration on a segment consisting of only two observations, which is not

detected by CBS. This observation is in accordance with the results from the simulations

in the previous section. There, it was shown that in particular inference on small segment

can be strengthened by the modified approach. Figure 27 shows the data and estimate ϑ̂∗(q)

for the entire cell line GM03563. Further, we depicted magnifications of chromosomes 3 and

chromosome 9 in Figure 28 as examples.
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Figure 28: Log ratios and the modified SMUCE for chromosome 3 and chromosome 9.
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SECTION 8

Outlook and discussion

In this section we discuss extensions and modifications of the methodology in this thesis.

Recall that SMUCE is primarily based on the idea of controlling the probability of overes-

timation of the number of change-points. We first discuss a less conservative approach by

controlling the false discovery rate. Moreover, we give a brief motivation how the method may

be extended to dependent data and mention alternative penalizations of the multiscale statis-

tic. Finally, we show how the computation time may be reduced considerably by restricting

the multiscale statistic to fewer intervals.

8.1 False discovery rate

In this section we will relate the findings of Chapter 3 to the frequently considered quantities

true and false discoveries. To this end, we consider Gaussian random variables and stress

that asymptotic versions can be obtained for exponential families in general. The following

results are a direct consequence of the proofs of Section 3. The false discovery rate as it

was introduced in the celebrated work of Benjamini and Hochberg (1995) is a criterion for

controlling the Type 1 error in multiple testing which has drawn lots of attention since.

Following their notation, let R denote the number of discoveries of a statistical procedure and

let V denote the number of false discoveries. The false discovery rate (FDR) is then given as

E
[
1{R>0}V/R

]
.

We consider the multiple testing problem underlying SMUCE in (2.5). As it was pointed out in

Siegmund et al. (2011) such local tests are highly correlated and consequently tests on nearby

intervals will likely reject the (true) null-hypotheses together. These rejections, however,

typically lead to detection of only one single (false) change-point. Instead of considering

the number of false rejected null-hypotheses Hi,j it is more intuitively to balance false and

true discoveries in terms of change-points. The specification of true and false change-points

is ambiguous, here we agree upon the following definitions, which are tailor-suited to the

findings in Section 3.
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Definition 28. For the true signal ϑ ∈ S and an estimate ϑ̂ with change-points (τ1, . . . , τK̂)

• an estimated change-point τ̂i is a false positive (false discovery), if

(τ̂i−1, τ̂i+1] ⊆ (τj , τj+1] for some j = 1, . . . ,K.

• a true change-point τi is a false negative, if the estimate ϑ̂ is constant on(
τi−1+τi

2 , τi+τi+1

2

]
.

Figure 29 illustrates these definitions by means of an example.

For the SMUCE at level α, the number of discoveries is given by R(α) = K̂(q(α)) and

we denote the number of false positives for SMUCE at level α by V (α). For K > 0 the

sensitivity rate is then defined as E [(R(α)− V (α))/K] and the false discovery rate is defined

as E
[
1{R(α)>0}V (α)/R(α) > 0

]
.

As a straightforward consequence of Definition 28, the expression K̂(q(α))−K can be replaced

by the number of false positives V (α) in Corollary 6 and Theorem 5. Hence,

P (V (α) > 0) ≤ α and E [V (α)] ≤ 2α

1− α
. (8.1)

Similarly, (3.19) implies for K > 0 that

E

[
R(α)− V (α)

K

]
≥ 1− βn(q), (8.2)

where βn is as in (3.17). The bound in (8.1) reveals the nature of SMUCE with respect to

false discoveries. The absolute number of false discoveries is controlled uniformly over all

ϑ ∈ S. In contrast to that SMUCE uniformly controls the sensitivity rate: the bound in (8.2)

does not depend on K but on βn(q) only.

These findings give motivation to a different parameter choice which depends on the number

of discoveries and which is related to ideas in Siegmund et al. (2011). This approach will be

designed in such a way that not the probability of overestimation is bounded but rather the

0 200 400 600 800

0.
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0
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1
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ϑ
ϑ̂
false positive
false negative

Figure 29: Illustration of false positives and false negatives as in Definition 28



8.1 False discovery rate 83

false discovery rate, which leads to a data-driven choice of the threshold q. We chose the level

α in such a way that the false discovery rate is bounded by some γ ∈ (0, 1). To this end, let

α∗(γ) := max

{
α ∈ (0, 1) : 1{R(α)=1}α+ 1{R(α)>1}

2α

(1− α)R(α)
≤ γ

}
. (8.3)

If the threshold parameter q = q(α∗) is chosen to be the (1 − α∗)-quantile of the null-

distribution of Tn the false discovery rate can be controlled. This is due to the following

bound which is based on (8.1) and the definition of α∗. We find that

E

[
1{R(α∗)>0}

V (α∗)

R(α∗)

]
≤ max

{
E

[
V (α∗)

R(α∗)

∣∣∣∣R(α∗) = 1

]
,E

[
V (α∗)

R(α∗)

∣∣∣∣R(α∗) > 1

]}
. (8.4)

First, we find from the definition of α∗ and the r.h.s. of (8.1) that

E

[
V (α∗)

R(α∗)

∣∣∣∣R(α∗) > 1

]
= E

[(
2α∗

1− α∗
1

R(α∗)

)(
1− α∗

2α∗
V (α∗)

) ∣∣∣∣R(α∗) > 1

]
(8.5)

≤ γE

[
1− α∗

2α∗
V (α∗)

∣∣∣∣R(α∗) > 1

]
≤ γ.

Second, the r.h.s. of (8.1) together with the definition of α∗ yield

E

[
V (α∗)

R(α∗)

∣∣∣∣R(α∗) = 1

]
= P

(
V (α∗) > 0

∣∣∣∣R(α∗) = 1

)
≤ α∗ ≤ γ. (8.6)

Plugging (8.5) and (8.6) into (8.4) finally gives

E

[
1{R(α∗)>0}

V (α∗)

R(α∗)

]
≤ γ.

This proves that the false discovery rate for the SMUCE at level α∗(γ) is bounded from

above by γ. Overall, this provides a method in order to control the false discovery rate by

choosing q = q(α∗). In order to solve the optimization problem underlying (8.3), one has to

compute the path of solutions R(α) = K̂(q(α)) for all α ∈ (0, 1). We use an approximation by

computing K̂(q(α)) for the discretization α = 5i/100, i = 1, . . . , 20. Clearly, this will give an

approximation for α∗, however, the false discovery rate is controlled for this approximation.

We illustrate this approach for two different signals (see Figure 30). For the two data sets

in the first row of Figure 30 we computed the selection criterion in (8.3) and chose α∗(0.15)

accordingly (vertical gray line), i.e. we bound the false discovery by γ = 0.15. For the signal

with many change-points (left), this leads to α∗(0.15) = 0.55 and for the signal with one

change-point(right) to α∗(0.15) = 0.15. The resulting estimates for this choices are shown

in the bottom row. In both scenarios the number of change-points is estimated correctly.
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Figure 30: First row: simulated standard Gaussian data and true regression functions (solid
line); second row: selection criterion as in (8.3) and optimal choice α∗(0.15) (vertical line);
third row: SMUCE for α∗(0.15).

In order to assess the performance empirically we simulated data for both signals in 100

runs with standard Gaussian noise. For each simulation we computed the regular SMUCE

at level α = 0.15 as well as SMUCE for α∗(γ) with γ = 0.15. The frequency of estimated

change-points for both procedures is shown in Table 8. For the signal with one change-point

both methods perform equally well. For the signal with 19 change-points, we find that

controlling the FDR leads to considerably better results. This is due to the less conservative

approach of controlling the false discovery rate instead of the probability of overestimation.
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K = 19 K = 1
≤ 15 16 17 18 19 0 1 2

SMUCE with α = 0.15 0.37 0.21 0.31 0.17 0.04 0.07 0.92 0.01
SMUCE with α = α∗(0.15) 0 0.01 0.02 0.19 0.78 0.07 0.92 0.01

Table 8: Frequencies of estimated change-points for the signals in Figure 30 by the SMUCE
for α = 0.15 and the SMUCE for α∗(γ) with γ = 0.15. The results are obtained from 100
simulations.

8.2 Reducing computation time

In order to apply SMUCE to large data sets, one has to reduce the number of considered

intervals in the multiscale constraint in order to make fast computation possible. For the

applications in Hotz et al. (2012) and Futschik et al. (2013) this was achieved by considering

only intervals of dyadic length. However, an interesting strategy to reduce the computational

costs even further can be adapted from Walther (2010), see also Rivera and Walther (2012).

There it was suggested to restrict the multiscale constraint to a specific system of intervals,

which is of size O(n). The authors could prove that this still guarantees optimal detection.

We used the system of intervals as in Rivera and Walther (2012) but also included intervals

with size smaller than log n, which were not considered in Rivera and Walther (2012) in the

context of density estimation. For the same signal as in Section 6.2 (without a deterministic

trend) and for the same level of significance as before we compute the SMUCE for the reduced

set of intervals. The results from 1,000 simulations are shown in Table 9. It turns out that

the performance is only slightly worse than for the regular SMUCE for σ = 0.1 and σ = 0.2

and in fact better for σ = 0.3.

More striking, however, is the decrease of computation, that comes along with the reduc-

tion to fewer intervals. The data consists of n = 499 observations and hence potentially

n(n − 1)/2 = 124,750 subintervals have to be considered for the computation of the regular

SMUCE, whereas the reduced system consists of only 2,207 intervals. This reduction leads

to a considerable speed up of the computation times: in average the computation of SMUCE

took 0.1384 seconds, whereas the modified version was in average computed in 0.0078 seconds

(on a single-core system with 2.67 GHz and 8 GB RAM in a 64-bit OS).

4 5 6 7

σ = 0.1 0 0.004 0.979 0.020
σ = 0.2 0 0.003 0.978 0.022
σ = 0.3 0.022 0.242 0.702 0.040

Table 9: Frequencies of estimated number of change-points for the modified SMUCE (with
α = 0.1) for different noise levels σ. The true signal (in Figure 16) has 6 change-points.



86 Outlook and discussion

8.3 Dependent data

So far the theoretical justification for SMUCE relies on the independence of the data in Model

1. The methodology underlying SMUCE can be extended to piecewise constant regression

problems with serially dependent data, if the dependence structure is known. We will outline

this in the following for a simple example.

Example 29. For a piecewise constant function µ ∈ S we consider the MA(1) model

Yi = µ(i/n) + εi + βεi−1 for i = 1, . . . , n,

where β < 1 and ε0, ε1, . . . , εn
i.i.d.∼ N (0, σ2). We aim to adapt the SMUCE to this situation.

Following (1.4), one might simply replace the local statistic
√
2T j

i (Y, µ0) for µ0 ∈ R in (2.6)

by the (modified) local statistics

√
2T̃ j

i (Y, µ0) =

∣∣∣∑j
l=i Yl − µ0

∣∣∣√
σ2 [(j − i+ 1)(1 + β2) + (j − i)β]

. (8.7)

This is motivated by the fact that Var(
∑j

l=i Yl) = σ2
[
(j − i+ 1)(1 + β2) + (j − i)β

]
. Under

the null-hypothesis the local statistics T̃ j
i then marginally have χ2

1 distributions, as T
j
i in (2.6)

for independent Gaussian observations.

In order to control the overestimation error as in Section 3.2, one now has to compute the

null-distribution of

T̃n(Y, µ) = max
1≤i<j≤n

µ(t)=µ0 for t∈[i/n,j/n]

(√
2T̃ j

i (Y, µ0)−
√
2 log

en

j − i+ 1

)
.
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Figure 31: Empirical distribution functions of the null-distribution for dependent observations
with β = 0.3 and probability-probability plot against the null-distribution for independent
observations.



8.4 Penalizations 87

To this end, we used Monte-Carlo simulations for a sample size of n = 500. We reconsider

the test signal from Section 6.2 with σ = 0.2 and a = 0. The empirical null-distribution of

T̃n and a probability-probability plot of the null-distribution of Tn against T̃n are shown in

Figure 31.

For β = 0.1 and β = 0.3, which corresponds to a correlation of ρ = 0.1 and ρ = 0.27,

we run 1,000 simulations each. We compute the modified SMUCE, as in (8.7), and the

SMUCE for independent Gaussian observations. For both procedures we choose q to be the

0.75-quantile of the corresponding null-distribution. The results are shown in Table 10. For

β = 0.1 both procedures perform similarly, which indicates that SMUCE is robust to such

weak dependences, while for β = 0.3 the modified version performs much better with respect

to the estimated number of change-points.

β 5 6 7 8 ≥ 9 MISE MIAE
modified SMUCE 0.1 0.02 0.98 0.00 0.00 0.00 0.00154 0.02104
SMUCE 0.1 0.00 0.95 0.04 0.00 0.00 0.00142 0.02117
modified SMUCE 0.3 0.27 0.73 0.00 0.00 0.00 0.00435 0.03084
SMUCE 0.3 0.00 0.29 0.34 0.24 0.13 0.00277 0.03229

Table 10: Frequencies of estimated number of change-points and MISE by model selection
for the modified SMUCE and SMUCE.

The example illustrates that the ideas underlying SMUCE can be successfully applied to

dependent data after an adjustment of the underlying multiscale statistic Tn to the dependence

structure.

This strategy has been elaborated for m-dependent data in a more complex model in Hotz

et al. (2012) in order to apply the SMUCE methodology to estimating the channels conduc-

tivity in ion channel recordings. In this application an analog filter is applied before the data

analysis which yields dependent observations. The methods capacity is shown in simulations

as well as in real data examples.

8.4 Penalizations

The penalization of different scales we use for SMUCE in (2.12) was established in Dümbgen

and Spokoiny (2001) and calibrates the number of intervals on a given scale. This prevents

small intervals from dominating the statistic. For this purpose one might also consider two

alternative penalizations methods given by

T 1
n(Y, ϑ) = max

1≤i<j≤n
ϑ(t)=θ for t∈[i/n,j/n]

√log
en

j − i+ 1

√
2T j

i (Y, θ)−
√
2 log n

j−i+1

log(e log(en/(j − i+ 1)))


T 2
n(Y, ϑ) = max

1≤i<j≤n
ϑ(t)=θ for t∈[i/n,j/n]

(
T j
i (Y, θ)− 2 log n

j−i+1

log log een
j−i+1

)
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which are both finite a.s. as n→ ∞ (see again (Dümbgen and Spokoiny, 2001, Theorem 6.1)

and Dümbgen and Walther (2008)). A multiscale statistic without scale calibration, i.e.

T 3
n(Y, ϑ) = max

1≤i<j≤n
ϑ(t)=θ for t∈[i/n,j/n]

T j
i (Y, θ)

was e.g. considered similarly in Davies et al. (2012) and Davies and Kovac (2001). We

illustrate the calibration effect of the statistics Tn, as in (2.12), T 1
n , T

2
n and T 3

n in Figure 32.

The graphic shows the frequencies at which the multiscale constraint is violated for Tn, T
1
n ,

T 2
n and T 3

n at a certain scale (scales are displayed on the x-axis). It can be seen that T 3
n

puts much emphasis on small scales, while the penalized statistics Tn, T
1
n and T 3

n treats the

scales more uniformly. The difference between the various penalizations, however, is rather

small. For our purposes calibration is beneficial in two ways: First it is required to obtain

the optimal detection rates in Theorem 19 as it was shown in Chan and Walther (2013).

Second, we find it to work well in practice. However, there is no uniformly superior type of

penalization: in application were changes are known to occur mainly on the smallest scales

the choice of T 3
n is most appropriate.
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Figure 32: Frequencies at which the corresponding 0.75-quantiles of the statistics Tn, T
1
n , T

2
n

and T 3
n is exceeded at a certain scale (x axis). Results are obtained from 10,000 simulations

with Gaussian observations.
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8.5 Piecewise parametric models

In this section, we discuss how SMUCE may be extended to more general right-continuous

piecewise models. To this end, let Γ ⊂ Rk and hγ(x) : [0, 1] × Γ 7→ R. We will assume that

the mean regression function µ is in the class of piecewise parametric functions{
µ(x) =

K∑
k=1

1[τk,τk+1)(x)hγk(x) : 0 = τ0 < τ1 < . . . < τK < τK+1 = 1, γ1, . . . , γk ∈ Γ,K <∞

}
.

Example 30. Setting γk = (γ1k , γ
2
k) ∈ R2 and hγk(x) = γ1k + γ2kx yields piecewise linear

regression functions with jumps between its linear segments.

In this more general setting, the observations Y are not identically distributed within one

segment. We leave the generality of exponential families and consider only such families that

fulfill the following reproducing property.

Assumption 31. Let F = {Fµ} be a one-dimensional, standard exponential family, pa-

rameterized in the mean value µ ∈ m(Θ). Further, let Yi ∼ Fµi be an arbitrary sequence of

independent random variables with µi ∈ m(Θ) for all i = 1, . . . , n. We assume that a sequence

of positive numbers (an)n∈N exists, so that 1/an
∑n

i=1 Yi ∼ Fµ̃, with µ̃ = 1/an
∑n

i=1 µi.

Two examples of such reproducing exponential families are Gaussian distributions with a

fixed variance and Poisson distributions. We suggest a modifications of the local tests in

(2.5) for a fixed candidate function µ̂ ∈ S and the observations Yi, . . . , Yj . Recall that
1

aj−i+1

∑j
l=i Yl ∼ Fµ̃ for some µ̃ ∈ m(Θ). We consider the local tests

Hi,j : µ̃ =
1

aj−i+1

j∑
l=i

µ̂(l/n) vs. Ki,j : µ̃ 6= 1

aj−i+1

j∑
l=i

µ̂(l/n).

By choosing θ̂i,j such that m(θ̂i,j) =
1

aj−i+1

∑j
l=i µ̂(l/n), the local likelihood-ratios are given

by

T j
i (Y, µ̂) = sup

θ∈Θ

(
θ

1

aj−i+1

j∑
l=i

Yl − ψ(θ)

)
−

(
θ̂i,j

1

aj−i+1

j∑
l=i

Yl − ψ(θ̂i,j)

)
.

Again, we consider the multiscale statistic which evaluates the maximum over all local statis-

tics on intervals between two change-points

Tn(Y, µ̂) = max
0≤k≤K̂

max
τ̂k≤i/n≤j/n<τ̂k+1

(√
2T j

i (Y, µ̂)−
√
2 log

en

j − i+ 1

)
.

The null-distribution of Tn(Y, µ) can be computed, following the ideas in Section 3.1. This is



90 Outlook and discussion

due to the fact that the minimal sufficient statistic 1/aj−i+1
∑j

l=i Yl is again in the exponential

family.

A crucial task is to compute the estimate efficiently. In particular it is important to provide

a fast computation of local optimal costs as in Section 4.3. More precisely, the local optimal

costs θ∗r,p are a solution for the multiscale constrained maximum likelihood problem

max
γ∈Γ

p∑
l=r

l(Yl, hγ(l/n)) s.t. bi,j ≤
j∑

l=i

hγ(l/n) ≤ bi,j for all r ≤ i ≤ j ≤ p,

where the constraints bi,j and bi,j are computed analogously to Section 4.3.

In particular, it is important for a fast implementation that these solutions can be updated ef-

ficiently, i.e. that θ∗r,p+1 can be computed fast if θ∗r,p is given. However, even if the computation

of the restricted maximum likelihood estimate is too expensive, the number of change-points

may be estimated and confidence regions may be constructed, as we will illustrate by means

of the piecewise linear regression model in Example 30.

Example 32 (Example 30 revisited). We reconsider the example of piecewise linear regres-

sion, i.e. γk = (γ1k , γ
2
k) ∈ R2 and hγk(x) = γ1k+γ

2
kx. For this problem, a dynamic programming

has been used in Bellman (1961) for the computation of least square solutions for a given num-

ber of segments. The special case, in which no jumps between the linear segments are allowed

is often referred to as the broken-line problem and has been studied extensively (see e.g. Feder

(1975) and Siegmund and Zhang (1994)). We briefly discuss the computation of solutions,

fulfilling the constraint Tn(Y, µ̂) ≤ q. From

j∑
l=i

hγ(l/n) = (j − i+ 1)hγ(i+ j/(2n))

we find that the multiscale constraint on an interval [p/n, r/n] is fulfilled by γ if

bi,j(j − i+ 1)−1 ≤ hγ

(
i+ j

2n

)
≤ bi,j(j − i+ 1)−1 for all r ≤ i ≤ j ≤ p. (8.8)

In other words, there exists a parameter γ which fulfills the multiscale constraint on [p/n, r/n],

whenever a linear function exists, that lies below the points
(
(i+ j)/2, bi,j(j − i+ 1)−1

)
and

above
(
(i+ j)/2, bi,j(j − i+ 1)−1

)
for all p ≤ i ≤ j ≤ r. These conditions can be restated

with the notions of greatest convex minorants and least concave majorants (Barlow et al.,

1972). The latter conditions are fulfilled, if the greatest convex minorant of

(
(i+ j)/2, (j − i+ 1)−1bi,j

)
p≤i≤j≤r
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and the least concave majorant of

(
(i+ j)/2, (j − i+ 1)−1bi,j

)
p≤i≤j≤r

do not intersect. Hence, confidence intervals for the change-points τ1, τ2, . . . can be constructed

similar to Section 4.5. Moreover, on the intervals between these confidence intervals we obtain

simultaneous confidence bands for the graph of ϑ by the greatest convex minorant and the

least concave majorant, as above. Without discussing any algorithmic details, we stress that

these can be used to construct simultaneous confidence bands. Figure 33 illustrates this for

an example with Poisson observations: any estimator fulfilling the multiscale constraint with

minimal number of change-points K̂ has exactly one change-point in any of the (blue hatched)

confidence regions and its graph lies within the (red hatched) confidence bands.
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Figure 33: Top: Poisson data and a piecewise linear regression function (black, solid line);
bottom: confidence bands for ϑ (red hatched) and confidence intervals for the change-point
location (blue hatched). Here q is chosen as the 0.9-quantile of M .
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APPENDIX A

Proofs

A.1 Auxiliary Results

A.1.1 Large deviation and power results

We begin by showing some large deviation results for exponential families. Recall that by

D(θ||θ̃) we denote the Kullback-Leibler divergence of Fθ and Fθ̃, i.e.

D(θ||θ̃) =
∫
R
fθ(x) log

fθ(x)

fθ̃(x)
dν(x) = ψ(θ̃)− ψ(θ)− (θ̃ − θ)m(θ).

With the techniques used in Brown (1986) [Thm 7.1] it is readily seen that for a sequence of

independent and Fθ-distributed r.v. Y1, . . . , Yn one has that

P
(
Y −m(θ) ≥ η

)
≤ en(D(θ||θ+ε)−ηε) (A.1)

for all ε > 0 such that θ + ε ∈ Θ. The following restatement of inequality (A.1) turns out to

be very useful.

Lemma 33. Let Y = (Y1, . . . , Yn) be independent random variables such that Yi ∼ Fθ and

assume that δ > 0 is such that θ + δ ∈ Θ. Then,

P(m−1(Y ) ≥ θ + δ) ≤ e−nD(θ+δ||θ).

Proof. First observe that according to (A.1)

P(m−1(Y ) ≥ θ + δ) = P(Y −m(θ) ≥ m(θ + δ)−m(θ))

≤ exp(n(D(θ||θ + δ)− (m(θ + δ)−m(θ))δ)).
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Now it follows from (3.11) that

D(θ||θ + δ)− (m(θ + δ)−m(θ))δ = ψ(θ + δ)− ψ(θ)−m(θ + δ)δ

= −(ψ(θ)− ψ(θ + δ)− (θ − (θ + δ))m(θ + δ))

= −D(θ + δ||θ).

From (A.1) we further derive a basic power estimate for the local likelihood-ratio statistic.

Lemma 34. Let Y = (Y1, . . . , Yn) be independent random variables such that Yi ∼ Fθ and

assume that δ ∈ R is such that θ + δ ∈ Θ. Then, for all x > 0

P

(√
2Tn

1 (Y, θ + δ) ≥ x

)
≥ 1− exp

(
n inf

ε∈[0,δ]

[
D(θ||θ + ε)− ε

δ
D(θ||θ + δ) +

εx2

2nδ

])
.

Proof. For

J(Y , θ) = φ(Y )−
(
Y θ − ψ(θ)

)
we obtain

J(Y , θ + δ) = J(Y , θ)− δY − ψ(θ) + ψ(θ + δ). (A.2)

Thus, we have for any z > 0

Π(z, n, δ) := P
(
Tn
1 (Y, θ + δ) ≥ z

)
= P

(
J(Y , θ + δ) ≥ z

n

)
= P

(
J(Y , θ)− δY ≥ z

n
− ψ(θ + δ) + ψ(θ)

)
≥ P

(
−δY ≥ z

n
− ψ(θ + δ) + ψ(θ)

)
,

where in the last inequality holds since J(z, θ) ≥ 0 for all z ∈ R and θ ∈ Θ. Now, let us first

assume that δ > 0. Then by (3.11) we find

P
(
−δY ≥ z

n
− ψ(θ + δ) + ψ(θ)

)
= P

(
Y −m(θ) ≤ − z

δn
+
D(θ||θ + δ)

δ

)
. (A.3)

Combining this with the large deviation inequality (A.1) yields

P

(√
2Tn

1 (Y, θ + δ) ≥ x

)
≥ 1− exp

(
n(D(θ||θ + ε)− ε

δ
D(θ||θ + δ)) +

ε
√
2x

δ

)
,

for all 0 ≤ ε ≤ δ. The case when δ < 0 follows analogously.
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For Gaussian observations the result can be sharpened, as shown in the following lemma.

Lemma 35. Let Y1, . . . , Yn be i.i.d. random variables such that Y1 ∼ N (0, 1) and let

x+ = max(0, x) for x ∈ R. Then,

P

(√
2Tn

1 (Y, δ) ≥ x

)
≥ 1− exp

(
−
(
√
nδ − x)2+

2

)
. (A.4)

Proof. Assume w.l.o.g. that δ > 0 and observe that√
2Tn

1 (Y, δ) =
∣∣√nY n

1 −
√
nδ
∣∣ ≥ √

nδ −
√
nY

n
1 .

Since
√
nY

n
1 is standard normal distributed, we find for any z > 0

P
(√
nY

n
1 ≥ z

)
≤ exp(−z2/2).

Therefore, we find

P
(√
nδ −

√
nY

n
1 ≥ x

)
≥ 1−P

(√
nY

n
1 ≥

√
nδ − x

)
,

which proves the assertion.

A.1.2 On the limit distribution M

In this section we collect some known facts and proof some new properties of the random

variable M defined as in (3.3). These results will be employed frequently for the proofs

of Section 3 but might also be of interest on its own. We will first fix some notations.

Throughout this Section, let B denote the standard Brownian motion. For 0 ≤ s < t ≤ 1

define the calibrated absolute increments of the Brownian motion as

ξ(s, t) =
|B(t)−B(s)|√

t− s
−
√
2 log

e

t− s
. (A.5)

Thus, we find that

M = sup
0≤s<t≤1

ξ(s, t). (A.6)

The first result gives a bound for the probability that these calibrated increments exceed a

threshold value on multiple disjoint subintervals of the unit interval.

Theorem 36. Let k ∈ N with k ≥ 1 and q(α) be the (1− α)-quantile of M . Then,

P

(
min

l=1,...,k
ξ(sl, tl) > q(α) for some 0 ≤ s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sk < tk ≤ 1

)
≤ αk. (A.7)
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Proof. For a fixed q > 0 we iteratively define the stopping times ζ0(q), ζ1(q), ζ2(q), . . . by

ζ0(q) = 0,

ζi(q) = inf

{
t > 0 : sup

ζi−1(q)≤s≤t
ξ(s, t) > q

}
for i = 1, 2, . . .

From the strong Markov property of the Brownian motion, we obtain that the waiting times

ζ1(q), ζ2(q)− ζ1(q), ζ3(q)− ζ2(q), . . .

are independent and identically distributed. Therefore, for any x > 0 and for any k ≥ 1 it

follows that

P (ζk(q) ≤ x) = P

(
k∑

l=1

ζl(q)− ζl−1(q) ≤ x

)
≤P (ζl(q)− ζl−1(q) ≤ x ∀l = 1, . . . , k) (A.8)

=P (ζ1(q) ≤ x)k .

Next, note that by definition ζ1(q) ≤ 1 implies that M > q. Therefore,

P (ζ1(q(α)) ≤ 1) ≤ P(M > q(α)) ≤ α, (A.9)

where q(α) denotes the (1 − α)-quantile of M . Combing the results from (A.8) and (A.9)

leads to

P (ζk(q(α)) ≤ 1) ≤ αk.

The proof is now completed by the observation that the l.h.s. in (A.7) already implies that

ζk(q(α)) ≤ 1.

It was shown in Dümbgen and Spokoiny (2001) thatM is finite almost surely and in Dümbgen

et al. (2006) that it has a continuous distribution which is supported on [0,∞). Moreover,

we can prove the following lemma about the tails of M .

Theorem 37. Let M be as in (3.3). Then,

(i) E [M ] <∞,

(ii) med [M ] <∞,

(iii) P(M ≥ t) ≤ 2 exp(−(t−E [M ])2/2) for all t > E [M ],

(iv) P(M ≥ t) ≤ exp(−(t−med [M ])2/2) for all t >med [M ],

(v) P(M ≥ t) ≤ 2 exp
(
−t2/8

)
for all t > 2E [M ] .
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The proof needs some preparation. It is essentially build on a corollary of Borell’s inequality

(Borell, 1975), see also van der Vaart and Wellner (1996).

Corollary 38. Let (Xt)t∈T be a separable Gaussian process on T , such that

Ψ := sup
t∈T

|Xt| <∞ a.s. and sup
t∈T

Var [Xt] ≤ 1.

Then, E [Ψ] <∞,med [Ψ] <∞ and for all t > 0

P (Ψ−E [Ψ] > t) ≤ exp(−t2/2),

P (Ψ−med [Ψ] > t) ≤ 1/2 exp(−t2/2).

The main idea the proof follows van der Vaart and Wellner (1996) [Proposition A.2.1.] and

at some points Adler and Taylor (2007). However, since some modifications are needed, we

give the complete proof for the sake of clarity. It strongly relies on the following lemma (see

van der Vaart and Wellner (1996) [Lemma A.2.2.]).

Lemma 39. Let Z ∼ N (0, Id), where Id ∈ Rd×d denotes the d-dimensional unit matrix.

Then, for every function f : Rd → R that is Lipschitz-continuous with constant 1, it holds for

all t > 0 that

P (f(Z)−E [Z] > t) ≤ exp

(
− t

2

2

)
,

P (f(Z)−med [Z] > t) ≤ 1

2
exp

(
− t

2

2

)
.

Proof of Corollary 38. The proof is done in two steps: first the result is shown for a finite T

and extended to separable spaces in the second step. We prove the result only for the version

with the expected value, as the argumentation is the same for the median. Let us assume for

the moment that T is finite with |T | = n and covariance matrix

Σ = {σij}1≤i,j≤n ∈ Rn×n.

Then, there exists a matrix Q ∈ Rn×n, such that QTQ = Σ. Further, for Z ∼ N (0, In) and

µ = E [(Xt)t∈T ] ∈ Rn one finds that

(Xt)t∈T
D
= QZ + µ.

We define f(x) = ‖Qx‖∞ and will show that f is Lipschitz-continuous with constant one,

which is a consequence of the following observation. Let ei ∈ Rn denote the i-th unit vector.
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Then,

‖Qx‖∞ ≤ max
1≤i≤n

‖Qei‖∞ ‖x‖∞ ≤ max
1≤i≤n

√
eTi Q

TQei ‖x‖∞ = max
1≤i≤n

σii ‖x‖∞ ≤ ‖x‖∞ .

We have used the Cauchy-Schwarz inequality as well asQTQ = Σ and σii ≤ 1 (by assumption).

Therefore, we can now apply Lemma 39, which completes the proof for finite T .

We extend the result to general T by taking into account separability. To this end, let Tn be

a sequence of finite subsets of T , such that Tn−1 ⊂ Tn and Tn increases to a subset which is

dense in T . Then,

Ψn := max
t∈Tn

|Xt| → Ψ a.s.

From the monotonicity of the convergence, we also deduce

lim
n→∞

P (Ψn > x) = P (Ψ > x) and lim
n→∞

E [Ψn] = E [Ψ] .

It remains to ensure that E [Ψ] < ∞ to prove the assertion. To this end, let us assume that

E [Ψ] = ∞. We choose some x0 ∈ R that satisfies

exp

(
−x

2
0

2

)
≤ 1

2
and P (Ψ < x0) ≥

3

4
.

Since limn→∞E [Ψn] = E [Ψ] = ∞ we can select n0 ∈ N large enough that E [Ψn] > 2x0 for

all n ≥ n0. Using the argumentation as for finite sets T , we obtain on the one hand

P (E [Ψn0 ]−Ψn0 > x0) ≤ exp

(
−x

2
0

2

)
≤ 1

2
. (A.10)

On the other hand, since Ψn is monotonically increasing in n and E [Ψn0 ] > 2x0, we find

P (E [Ψn0 ]−Ψn0 > x0) ≥ P (2x0 −Ψn0 > x0) = P (Ψn0 < x0) ≥ P (Ψ < x0) ≥
3

4
.

Since this contradicts (A.10) to the latter inequality, we have shown that E [Ψ] < ∞. The

proof for Ψ−med [Ψ] is obtained analogously, for uniqueness of the median see e.g. van der

Vaart and Wellner (1996).

Proof of Theorem 37. After having established Corollary 38 the proof of (i)-(iv) is straight-

forward. Let T = {(t0, t1) : 0 ≤ t0 < t1 ≤ 1} and define the Gaussian-processes

X1
(t0,t1)

=
Bt1 −Bt0√
t1 − t0

−
√

2 log
e

t1 − t0
and X2

(t0,t1)
= −Bt1 −Bt0√

t1 − t0
−
√
2 log

e

t1 − t0
.
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We then observe that

M = sup
(t0,t1)∈T

|Bt1 −Bt0 |√
t1 − t0

−
√
2 log

e

t1 − t0
≤ max

(
sup

(t0,t1)∈T
X1

(t0,t1)
, sup
(t0,t1)∈T

X2
(t0,t1)

)
.

Then, the assertions (i)-(iv) follow by applying Corollary 38 to X1 and X2 together with the

observation

E [M ] > E

[
sup

(t0,t1)∈T
X1

(t0,t1)

]
= E

[
sup

(t0,t1)∈T
X2

(t0,t1)

]

med [M ] >med

[
sup

(t0,t1)∈T
X1

t

]
= med

[
sup

(t0,t1)∈T
X2

(t0,t1)

]
.

For (v) note that from t > 2E [M ] we find that t/2 + E [M ] < t and hence (v) follows from

(iii).

A.2 Proofs of Section 3

In this section we collect the proofs of Section 3. We begin with results on the asymptotic

null-distribution.

A.2.1 Proof of Section 3.1

We will assume for now that Y = (Y1, . . . , Yn) are independent and identically distributed

random variables with Y1 ∼ Fθ and θ ∈ Θ, i.e. we consider the situation of no change-point.

Without loss of generality we will assume that m(θ) = ψ̇(θ) = 0 and v(θ) = ψ̈(θ) = 1.

Moreover, assume that (cn)n∈N satisfies (3.2) and introduce the notation

I(cn) = {(i, j) : j − i+ 1 ≥ cnn}.

We will show that in this scenario Tn(Y, ϑ, cn)
D→M . The proof is divided into several steps.

First, we use Taylor expansions and strong approximation results to approximate the local

likelihood-ratios uniformly by a function of Gaussian partial sums (Proposition 42). This

function is then shown to converge to the random variable M weakly, which completes the

proof for signals without change-point. The actual assertion is then derived at the end of this

section.
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Lemma 40.

max
(i,j)∈I(cn)

∣∣∣∣√2T j
i (Y, θ)−

√
j − i+ 1

∣∣Y j
i

∣∣∣∣∣∣ = oP(1)

Proof. Set ξ = m−1 and note that ξ is strictly increasing. Since Θ is open, there exists for

each given δ′ > 0 a δ > 0 such that ξ(Bδ(0)) ⊂ Bδ′(θ) ⊂ Θ. Next define the random variable

Ln = max
1≤i<j≤n

∣∣∣Y j
i

∣∣∣√j − i+ 1.

Then, it follows from Shao’s Theorem (Shao, 1995) that Ln/
√
log n converges a.s. to some

finite constant and we hence find that

max
(i,j)∈I(cn)

∣∣∣Y j
i

∣∣∣ ≤√ log n

ncn

Ln√
log n

→ 0 a.s.

Thus, for each ε > 0 there exists an index n0 = n0(ε) ∈ N such that for all n ≥ n0

P

(
max

(i,j)∈I(cn)

∣∣∣Y j
i

∣∣∣ ≥ δ

)
≤ ε.

In other words, ξ(Y
j
i ) ∈ Bδ(θ) uniformly over I(cn) with probability not less than 1−ε. Note

that φ(Y
j
i ) = maxθ∈Θ θY

j
i − ψ(θ) = ξ(Y

j
i )Y

j
i − ψ(ξ(Y

j
i )) which in turn implies that

J(Y
j
i , θ) = φ(Y

j
i )− θY

j
i + ψ(θ) = (ξ(Y

j
i )− θ)Y

j
i − (ψ(ξ(Y

j
i ))− ψ(θ)).

Taylor expansion of ψ around θ gives (recall that m(θ) = ψ̇(θ) = 0 and v(θ) = ψ̈(θ) = 1)

ψ(ξ(Y
j
i ))− ψ(θ) =

1

2
(ξ(Y

j
i )− θ)2 +

1

6

...
ψ(θ̃)(ξ(Y

j
i )− θ)3

for some θ̃ ∈ Bε(θ). This in turn implies

J(Y
j
i , θ) = (ξ(Y

j
i )− θ)(Y

j
i )−

1

2
(ξ(Y

j
i )− θ)2 − 1

6

...
ψ(θ̃)(ξ(Y

j
i )− θ)3.

Again, Taylor expansion of ξ = m−1 around 0 shows

ξ(Y
j
i )− θ = Y

j
i −

...
ψ(θ̃)

2(v(θ̃))2
(Y

j
i )

2

for some θ̃ ∈ Bδ′(θ). This finally yields

2T j
i (Y, θ) = (j − i+ 1)J(Y

j
i , θ) = (j − i+ 1)(Y

j
i )

2 + (j − i+ 1)rn(Y
j
i )

where rn is such that
∣∣rn(Y j

i )
∣∣ ≤ C2(Y

j
i )

3 for a constant C = C(δ′) > 0 (independent of ε, i
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and j) and for all n ≥ n0. It thus holds with probability not less than 1− ε that

max
(i,j)∈I(cn)

∣∣∣∣√2T j
i (Y, θ

∗)−
√
j − i+ 1

∣∣Y j
i

∣∣∣∣∣∣ ≤C max
(i,j)∈I(cn)

∣∣∣∣(j − i+ 1)
(
Y

j
i

)3∣∣∣∣1/2
=C max

(i,j)∈I(cn)

∣∣∣∣∣
∑j

l=i Yl√
j − i+ 1

(j − i+ 1)−1/6

∣∣∣∣∣
3/2

≤C
(

Ln√
log n

)3/2
4

√
log3 n

ncn
.

From Shao’s Theorem it follows that the r.h.s. vanishes almost surely as n→ ∞.

We proceed with some strong approximation results for Y
j
i , which is due to Komlós et al.

(1976).

Lemma 41. There exist i.i.d standard normally distributed r.v. Z1, . . . , Zn such that

lim
n→∞

√
log n max

(i,j)∈I(cn)

(√
j − i+ 1

∣∣∣∣∣Y j
i

∣∣− ∣∣Zj
i

∣∣∣∣∣) = 0 a.s.

Proof. We define the partial sums SY
0 = 0 and SY

l = Y1 + . . .+ Yl and find that

(j − i+ 1)
∣∣Y j

i

∣∣ = ∣∣∣SY
j − SY

i−1

∣∣∣. Analogously we define SZ
l . Now let (i, j) ∈ I(cn) and observe

that ∣∣∣∣∣∣
∣∣∣SY

j − SY
i−1

∣∣∣
√
j − i+ 1

−

∣∣∣SZ
j − SZ

i−1

∣∣∣
√
j − i+ 1

∣∣∣∣∣∣ ≤
∣∣∣SY

j − SZ
j

∣∣∣
√
ncn

+

∣∣SY
i − SZ

i

∣∣
√
ncn

≤ 2 max
0≤l≤n

∣∣SY
l − SZ

l

∣∣
√
ncn

.

It follows from the KMT inequality in Komlós et al. (1976)[Thm. 1] and (3.2) that

√
log n max

(i,j)∈I(cn)

(√
j − i+ 1

∣∣∣∣∣Y j
i

∣∣− ∣∣Zj
i

∣∣∣∣∣) =
√
log n max

0≤l≤n

∣∣SY
l − SZ

l

∣∣
√
ncn

≤ o(1) a.s.

By combining Lemma 41 and 40 we obtain

Proposition 42. There exist i.i.d standard normally distributed r.v. Z1, . . . , Zn such that

max
(i,j)∈I(cn)

∣∣∣∣√2T j
i (Y, θ)−

√
j − i+ 1

∣∣Zj
i

∣∣∣∣∣∣ = oP(1).
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Lemma 43. For n ∈ N, define the continuous functionals h, hn : C([0, 1]) → R by

h(x, c) = sup
0≤s<t≤1
t−s≥c

(
|x(t)− x(s)|√

t− s
−
√
2 log

e

t− s

)
and

hn(x, c) = max
1≤i<j≤n

(j−i+1)/n≥c

(
|x(j/n)− x(i/n)|√

(j − i+ 1)/n
−
√
2 log

en

j − i+ 1

)
,

respectively. Moreover assume that {xn}n∈N ⊂ C([0, 1]) is such that xn → x for some

x ∈ C([0, 1]). Then hn(xn, c) → h(x, c).

Proof. Let δ > 0. Then there exists an index n0 ∈ N such that |xn(t)− x(t)| ≤ δ for all

n ≥ n0 and t ∈ [0, 1]. Thus, it follows directly from the definition that hn(x) = hn(xn)+O(δ)

for n ≥ n0. Since u 7→
√
2 log e/u is uniformly continuous on [c, 1] we consequently have that

hn(x) → h(x) as n→ ∞ and the assertion follows.

Before we proceed, recall the definition of M in (3.3). Moreover, we introduce for 0 < c ≤ 1

the statistic

M(c) := sup
0≤s<t≤1
t−s>c

(
|B(t)−B(s)|√

t− s
−
√
2 log

e

t− s

)
. (A.11)

From (Dümbgen and Spokoiny, 2001, Thm. 6.1) (and the subsequent Remark 1) it can be

seen that M(c) converges weakly to M as c→ 0+.

We continue by showing the convergence of the multiscale statistic with a constant lower

bound on the interval length. More precisely we consider the statistic

T c
n(Y, θ) = max

(i,j)∈I(c)

(√
2T j

i (Y, θ)−
√

2 log
en

j − i+ 1

)
. (A.12)

Proposition 44. For c > 0 and the statistic T c
n, as in (A.12), we find that

lim
c→0+

lim
n→∞

T c
n(Y, θ) =M,

weakly.

Proof. Let SZ be the partial sums of Z as in Lemma (41) and let {Xn(t)}t≥0 be the process

that is linear on the intervals [i/n, (i+1)/n] with values Xn(i/n) = SZ
i /

√
n. We obtain from

Donsker’s Theorem that Xn
D→ B. Now, recall the definition of h and hn in Lemma 43 and

observe that

hn(Xn, c) = max
(i,j)∈I(c)

(√
j − i+ 1

∣∣Zj
i

∣∣−√2 log
en

j − i+ 1

)
.
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It hence follows from Proposition 42 that

|T c
n(Y, θ)− hn(Xn, c)| ≤ max

(i,j)∈I(c)

∣∣∣∣√2T j
i (Y, θ)−

√
j − i+ 1

∣∣Zj
i

∣∣∣∣∣∣ = oP(1). (A.13)

Since Xn
D→ B, Lemma 43 and (Billingsley, 1968, Thm. 5.5) imply that

hn(Xn, c)
D,→ h(B, c)

D
=M(c).

Together with (A.13) one hence finds that for all c > 0

T c
n(Y, θ)

D→ h(B, c) =M(c) as n→ ∞.

Thus, the assertion finally follows, since M(c) →M weakly as c→ 0+.

Theorem 45. Let ϑ ≡ θ and recall from the definition of Tn that

Tn(Y, ϑ, cn) = max
(i,j)∈I(cn)

(√
2T j

i (Y, θ)−
√
2 log

en

j − i+ 1

)
.

Then, Tn(Y, ϑ, cn) →M weakly as n→ ∞.

Proof. First observe that according to Proposition 42 we have for all t > 0 that

P (Tn(Y, ϑ; cn) ≤ t) = P

(
max

(i,j)∈I(cn)

(√
j − i+ 1

∣∣Zj
i

∣∣−√2 log
en

j − i+ 1

)
≤ t

)
+ o(1).

Since furthermore

P

(
max

(i,j)∈I(cn)

(√
j − i+ 1

∣∣Zj
i

∣∣−√2 log
en

j − i+ 1

)
≤ t

)
≥P

(
sup

0≤s<t≤1

(
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

)
≤ t

)
,

this shows that for all t > 0

lim inf
n→∞

P(Tn(Y, ϑ, cn) ≤ t) ≥ P(M ≤ t).

Now let c > 0 be fixed and assume w.l.o.g. cn < c for all n ∈ N. With T c
n as defined in

Proposition 44 we conversely find

lim sup
n→∞

P(Tn(Y, ϑ, cn) ≤ t) ≤ lim sup
n→∞

P(T c
n(Y, ϑ, cn) ≤ t) = P(M(c) ≤ t).

Hence, the assertion follows from Proposition 44 with c→ 0+ and the fact thatM > 0 a.s.
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Proof of Theorem 3. Let Tn(Y, ϑ; cn) be defined as in (2.12). From Theorem 45 it then follows

that

Tn(Y, ϑ; cn)
D→ max

0≤k≤K
sup

τk≤s<t≤τk+1

(
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

)
.

The limiting statistic on the right hand side is stochastically bounded from above byM , since

the maximum is taken over a smaller set. Conversely, we observe by the scaling property of

the Brownian motion, its stationarity and by choosing s̃ = s/(τk+1−τk) and t̃ = t/(τk+1−τk)

sup
τk≤s<t≤τk+1

(
|B(t)−B(s)|√

t− s
−
√
2 log

e

t− s

)
D
= sup

0≤s̃<t̃≤1

(∣∣B(t̃)−B(s̃)
∣∣√

t̃− s̃
−

√
2 log

e

t̃− s̃
+ 2 log

1

τk+1 − τk

)
D
≥M −

√
2 log

1

τk+1 − τk
.

A.2.2 Proofs of Section 3.2

We now give the proofs for the bounds for the probability of overestimation. These essentially

rely on the results in Section 3.1 and Section A.1.2.

Proof of Theorem 5. We first note that it suffices to give the proof for constant ϑ ≡ θ0, i.e.

K = 0, which will ease notation. Second, observe that K̂(q(α)) > K + 2k implies that the

multiscale constraint for true regression function ϑ is violated on at least k disjoint intervals.

This amounts to say that for k disjoint intervals [i1/n, j1/n], . . . , [ik/n, jk/n] ⊂ [0, 1] it holds

that √
2T js

is
(Y, θ0)−

√
2 log

en

js − is + 1
≥ q(α) for all 1 ≤ s ≤ k.

As a consequence of Proposition 42 we find that there exist i.i.d. standard normally dis-

tributed random variables Z1, . . . , Zn so that

max
(i,j)∈I(cn)

∣∣∣∣√2T j
i (Y, θ0)−

√
j − i+ 1

∣∣Zj
i

∣∣∣∣∣∣ = oP(1).

As before, we set

I(cn) = {(i, j) : 1 ≤ i ≤ j ≤ n and j − i+ 1 ≥ cnn}

and moreover define

Dk :=
{
((i1, j1), . . . , (ik, jk)) ∈ (I(cn))k : 1 ≤ i1 < j1 < . . . < ik < jk ≤ n

}
.
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Next we observe that

lim
n→∞

P

(
∃((i1, j1), . . . , (ik, jk)) ∈ Dk : min

1≤s≤k

√
2T js

is
(Y, θ0)−

√
2 log

en

js − is + 1
≥ q(α)

)
= lim

n→∞
P

(
∃((i1, j1), . . . , (ik, jk)) ∈ Dk : min

1≤s≤k

√
js − is + 1

∣∣Zjs
is

∣∣−√2 log
en

js − is + 1
≥ q(α)

)

= lim
n→∞

P

∃((i1, j1), . . . , (ik, jk)) ∈ Dk : min
1≤s≤k

∣∣∣B( isn )−B( jsn )
∣∣∣

√
js − is + 1

−
√
2 log

en

js − is + 1
≥ q(α)


≤αk+1.

Here the last inequality follows from Theorem 36.

With Theorem 5 we can proof Corollary 6.

Proof of Corollary 6. For the proof we will use that for a random variable supported on N0

it holds that

E [X] =

∞∑
i=0

P (X > i) .

Together with Theorem 5 this shows that

lim
n→∞

E
[
(K̂(q(α))−K)+

]
= lim

n→∞

∞∑
s=0

P(K̂(q(α))−K > s)

≤ lim
n→∞

2

∞∑
s=0

P(K̂(q(α))−K > 2s) ≤ 2

∞∑
s=0

αs+1 =
2α

1− α
,

which completes the proof.

A.2.3 Proofs of Section 3.3

In this section we prove the bounds for the probability of underestimation. We begin with the

result for Gaussian observations (Theorem 14) and then turn to the general case (Theorem

7). This eases presentation, since the idea of both proofs is the same, but the Gaussian case

requires less technicalities.

Proof of Theorem 14. For the proof we define for k = 1, . . . ,K the pairwise disjoint intervals

Ik =

(
τk−1 + τk

2
,
τk + τk+1

2

]
. (A.14)

Recall that the value of µ on the segment Ik is denoted by mk. Let m+
k = max {mk,mk+1},
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τk−1 τk τk+1

µ−k

µ+k

I−k I+k

µ

Figure 34: Illustration of I−k , I+k , m−k and m+
k as in (A.14) and (A.15).

m−k = min {mk,mk+1} and split each interval Ik accordingly, i.e.

I+k = {t ∈ Ik : µ(t) = m+
k } and I−k = {t ∈ Ik : µ(t) = m−k }. (A.15)

Clearly, it holds that Ik = I+k ∪ I−k . We define the event that a function exists, which is

constant on Ik and fulfills the multiscale constraint on I+k and I−k , i.e.

Ωk =

{
∃m̂ ∈ R :

√
2TI+k

(Y, m̂)−
√
2 log

en

#I+k
≤ q and

√
2TI−k

(Y, m̂)−
√
2 log

en

#I−k
≤ q

}
.

Here #Ik denotes the number of observations in the interval Ik. We proceed by computing an

upper bounds for P (Ωk). To this end, observe that either m̂ ≤ m+
k − δk/2 or m̂ ≥ m−k + δk/2.

Following this idea we define

Ω+
k =

{
∃m̂ ≤ m+

k − δk/2 :
√

2TI+k
(Y, m̂0)−

√
2 log

en

#I+k
≤ q

}
and (A.16)

Ω−k =

{
∃m̂ ≥ m−k + δk/2 :

√
2TI−k

(Y, m̂0)−
√

2 log
en

#I−k
≤ q

}
.

Next, observe that P(Ωk) ≤ 1 − (1 − P(Ω+
k ))(1 − P(Ω−k )), due to independence of Ω−k and

Ω+
k and the fact that Ωk ⊂ {Ω−k ∪ Ω+

k }. In other words, the event Ωk implies either Ω−k or

Ω+
k . We proof an upper bound for P(Ω−k ) only, the same bound can be obtained for P(Ω+

k )

by symmetry arguments.

Recall that x 7→ TI−k
(Y, x) is convex with global minimum at Y I−k

. Thus, for all m̂ ≥ m−k +δk/2

one obtains

TI−k
(Y, m̂) ≥ TI−k

(Y,m−k + δk/2)
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whenever Y I−k
≤ m−k + δk/2. This yields

P
(
Ω−k
)
≤ P

(
Ω−k ∩

{
Y I−k

≤ m−k +
δk
2

})
+P

(
Y I−k

> m−k +
δk
2

)
≤ P

(√
2TI−k

(
Y,m−k +

δk
2

)
≤
(
q +

√
2 log(e/λk)

))
+P

(
Y I−k

> m−k +
δk
2

)

≤ exp

−

(√
nλkδk − 2q −

√
8 log e

λk

)2
8

+ exp

(
−
nλkδ

2
k

8

)
,

where the last inequality stems from Lemma 33 and Lemma 35. Hence,

P(Ωk) ≤1− (1−P(Ω+
k ))(1−P(Ω−k ))

≤1−

1− exp

−

(√
nλkδk − 2q −

√
8 log e

λk

)2
8

− exp

(
−
nλkδ

2
k

8

)
2

=1− βnk(q). (A.17)

Next, for k = 1, . . . ,K we define the random variables

Zk(ω) =

0 if ω ∈ Ωk and

1 otherwise.

Observe that Zk = 1 implies that any function µ̂ ∈ S with Tn(Y, µ̂) ≤ q has a least one

change-point on the interval Ik. Since the intervals I1, . . . , IK are pairwise disjoint, this yields

K̂(q) ≥
∑K

k=1 Zk. Therefore, we find

P
(
K̂(q) ≥ K

)
≥ P

(
K∑
k=1

Zk ≥ K

)
=

K∏
k=1

(1−P(Ωk)) =
K∏
k=1

βnk(q),

which completes the proof of the first part. As a result of (A.17), Zk can be bounded in

probability by a Bernoulli random variable with success probability βnk. Therefore,

E
[
K̂(q)

]
≥ E

[
K∑
k=1

Zk

]
≥

K∑
k=1

βnk(q)
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and hence

E

[(
K − K̂(q)

)
+

]
≤ K −

K∑
k=1

βnk(q) =

K∑
k=1

(1− βnk(q)).

We now turn to the proof of Theorem 7, which follows the proof Theorem 14. But here we

will employ a general large deviation results for exponential families (Lemma 34), instead of

Lemma 35.

Proof of Theorem 7. First, let Ik, I
−
k and I+k as in (A.14) and (A.15) and define θ−k and θ+k

accordingly. We again consider the events

Ωk =

{
∃θ̂ ∈ Θ :

√
2TI+k

(Y, θ̂)−
√
2 log

en

#I+k
≤ q and

√
2TI−k

(Y, θ̂)−
√
2 log

en

#I−k
≤ q

}
,

Ω−k and Ω+
k analog to (A.16). We provide an upper bound for P

(
Ω−k
)
and P

(
Ω+
k

)
. Again,

we only show the proof for P
(
Ω−k
)
, since the bound for P

(
Ω+
k

)
follows by symmetry. To this

end, we find from Lemma 34 and (A.1)

P
(
Ω−k
)

≤P

(
Ω−k ∩

{
Y I−k

≤ m−1(θ−k ) +
δk
2

})
+P

(
Y I−k

> m−1(θ−k ) +
δk
2

)
≤P

(√
2TI−k

(
Y, θ−k +

δk
2

)
≤
(
q +

√
2 log(e/λk)

))
+P

(
Y I−k

> m−1(θ−k ) +
δk
2

)

≤ exp

λkn inf
ε∈[0,δk/2]

D(θ−k ||θ
−
k + ε)− 2ε

δk
D(θ−k ||θ

−
k + δk/2) +

ε
(
q +

√
2 log(e/λk)

)2
δkλkn




+ exp
(
−λknD(θ−k + δk/2||θ−k )

)
.

From P(Ωk) ≤ 1− (1−P(Ω+
k ))(1−P(Ω−k )) and the definitions of κ1k and κ2k in (3.14) we then

find

P(Ωk) ≤ 1− (1− enλkκ
1
k − enλkκ

1
k)2 = 1− βnk(q). (A.18)

With this inequality, the rest of the proof is identical to the proof of Theorem 14.

Proof of Lemma 8. First observe from (3.11) that for any θ ∈ Θ and ε > 0 such that θ+ε ∈ Θ
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one has D(θ||θ + ε) =
∫ θ+ε
θ (θ + ε− t)v(t) dt. Thus, it follows that for all 0 ≤ ε ≤ x

ε

x
D(θ||θ + x)−D(θ||θ + ε) =

ε

x

∫ θ+x

θ
(θ + x− t)v(t) dt−

∫ θ+ε

θ
(θ + ε− t)v(t) dt

≥ εx

2
inf

t∈[θ,θ+x]
v(t)− ε2

2
sup

t∈[θ,θ+x]
v(t).

Maximizing over 0 ≤ ε ≤ x then yields

sup
ε∈[0,x]

ε

x
D(θ||θ + x)−D(θ||θ + ε) ≥ x2

8

inft∈[θ,θ+x] v(t)
2

supt∈[θ,θ+x] v(t)
.

This proves that

κ+1 (v, w, x, y) ≥
x2

8

infv≤t≤w v(t)
2

supv≤t≤w v(t)
− y.

Likewise, one finds

κ+2 (v, w, x) ≥
x2

2
inf

v≤t≤w
v(t).

The estimates for κ−1 and κ−2 are derived analogously.

A.2.4 Proofs of Section 3.4

Proof of Corollary 9 and Corollary 15. First recall, that ϑ ∈ S is fixed and therefore K, Λ

and ∆ are constant. From (3.20) we find that there exists a constant C <∞, so that

P
(
K̂(q) < K

)
≤ 2Ke−CnΛ∆2

[
e

(
q+

√
2 log(2e/Λ)

)2

+ 1

]
. (A.19)

On the other hand, Corollary 13 combined with Corollary 4 yields for sufficiently large values

of qn that

lim
n→∞

P
(
K̂(qn) > K

)
≤ 2e−q

2
n/8. (A.20)

Therefore, a sufficient condition for P
(
K̂(qn) = K

)
→ 1, is that the r.h.s. in (A.19) and

(A.20) are converging to zero. It is clear that this is true, whenever qn/
√
n→ 0 and qn → ∞,

which proves Corollary 9.

We now proof the almost sure statement in Corollary 15, i.e. we consider Gaussian obser-

vations. Note that in this case, inequality (A.20) holds for finite n. We employ the Borel-

Cantelli-Lemma. Let 0 < ζ < 0.5 assume that qn/
√
log n → ∞ and qnn

−ζ → 0 holds. First,
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we show that qnn
−ζ → 0 implies that the r.h.s. in (A.19) is summable. To this end, observe

exp

[
−CnΛ∆2 +

(
qn +

√
2 log(2e/Λ)

)2]

=exp

−n2ζ
Cn1−2ζΛ∆2 −

(
qn
nζ

+

√
2 log(2e/Λ)

nζ

)2
 .

Since 1 − 2ζ > 0 and qn−ζ → 0 as n → ∞, the latter expression is summable (and there-

fore the r.h.s. in (A.19)). Summability of the r.h.s. of (A.20) follows directly from from

qn/
√
log n→ ∞. This shows that

∞∑
n=1

P
(
K̂(qn) 6= K

)
<∞

and almost sure convergence from K̂(qn) to K follows from the Borel-Cantelli-Lemma.

We close this section with the proof of Theorem 11 which is in the spirit of the proof of

Theorem 7 above.

Proof of Theorem 11. Let again ∆ be the smallest jump of the true signal ϑ and recall that

ϑ(t) ∈ [θ, θ] for all t ∈ [0, 1]. Further, as in the proof of Theorem 7, define the K disjoint

intervals Ik := (τk − εn, τk + ε) ⊂ [0, 1] and I−k , I+k and θ−k , θ
+
k accordingly.

Now assume that K̂ ∈ N0 and that ϑ̂ ∈ Sn[K̂] is an estimator of ϑ such that Tn(Y, ϑ̂) ≤ q and

max
0≤k≤K

min
0≤l≤K̂

|τ̂l − τk| > εn.

Put differently, there exists an index k ∈ {1, . . . ,K} such that |τ̂l − τk| > εn for all 0 ≤ l ≤ K̂

or, in other words, ϑ̂ contains no change-point in the interval Ik. With the very same reasoning

as in the proof of Theorem 7 we find that

P

(
∃K̂ ∈ N, ϑ̂ ∈ Sn[K̂] : Tn(Y, ϑ̂) ≤ q and max

0≤k≤K
min

0≤l≤K̂
|τ̂l − τk| > εn

)
≤P

(
∃θ̂ ∈ Θ and k : TI+k

(Y, θ̂) ≤ 1

2

(
q +

√
log

e

εn

)2

and TI−k
(Y, θ̂) ≤ 1

2

(
q +

√
log

e

εn

)2
)
.

By replacing λk in the proof of Theorem 7 by εn and the assertion follows from (3.20).

A.2.5 Proofs of Section 3.5

Proof of Theorem 16. W.l.o.g. we shall assume that ∆n ≥ 0. The main idea of the proof is

as follows: Let Jn = argmax {|J | : J ⊂ [0, 1], J ∩ In = ∅}. In order to show that (3.29) holds,
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we prove

sup
µ0≡m∈Θ

Pµn (Tn(Y, µ0) ≤ qn) → 0. (A.21)

For this purpose we construct a sequence m∗n ∈ R such that

sup
m≥m∗

n

P
(√

2TJn(Y,m) ≤ qn +
√

2 log (e/ |Jn|)
)
→ 0 and (A.22)

sup
m≤m∗

n

P
(√

2TIn(Y,m) ≤ qn +
√
2 log(e/ |In)|

)
→ 0. (A.23)

Recall that the true signal µn takes the value m0 +∆n on In and m0 on Jn. Without loss of

generality we assume that infn∈N |Jn| > 0. We will construct a sequence of functions

m∗n = m0 +
√
βn/n

for a sequence (βn)n∈N that satisfies
√
βn/qn → ∞, (A.22) and (A.23), where we consider

(A.22) first. Observe that for all t ∈ Jn we have |m∗n − µn(t)|
√

|Jn|n =
√
βn |Jn|. We further

find that

ΓJn :=
√
βn |Jn| − qn −

√
2 log(e/ |Jn|) = qn

(√
βn |Jn|
qn

− 1−
√

2 log(e/ |Jn|)
qn

)
→ ∞.

With this preparations, we can apply (A.4) and find for all m ≥ m∗n

P
(√

2TJn(Y, µ) ≤ qn +
√
2 log(e/ |Jn|)

)
≤ exp

(
−
Γ2
Jn

2

)
→ 0.

Now observe that for t ∈ In we have |m∗n − µn(t)|
√
|In|n = ∆n

√
|In|n−

√
βn |In|. Thus, by

again applying (A.4) we can show (A.23) by proving

ΓIn := ∆n

√
|In|n−

√
βn |In| − qn −

√
2 log(e/ |In|) → ∞.

It hence remains to construct sequences (βn) for each case (1.) and (2.) in the assumptions,

such that the previous condition holds while
√
βn/qn → ∞. We assume lim infn→∞ |In| > 0

and define βn through the equation√
βn |In| = c

(
∆n

√
|In|n− qn −

√
2 log(e/ |In|)

)
for some arbitrary 0 < c < 1. Clearly, this implies that√

βn |In|
qn

= c

(
∆n

√
|In|n
qn

− 1−
√
2 log(e/ |In|)

qn

)
.
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From the condition in case (1.) of the theorem, the fact that |In| is bounded away from zero

for large n and
√
βn/qn → ∞ we find

ΓIn = (1− c)
√
βn |In| → ∞.

Finally, we consider the case when |In| → 0 and define βn through the equation√
βn |In| = cεn

√
− log |In|. (A.24)

From the conditions in case (2.) of the theorem and the inequality
√
x+ 1−

√
x ≤ 1/(2

√
x),

which holds for any x > 0, one obtains

ΓIn ≥ (
√
2 + εn)

√
− log |In| −

√
βn |In| − qn −

√
2 log(e/ |In|)

= (
√
2 + (1− c)εn)

√
− log |In| − qn −

√
2
√
1 + log(1/ |In|)

≥ (1− c)εn
√

− log |In| −
1√

−2 log |In|
− qn.

This shows that ΓIn → ∞ for a suitable small c, such that

sup
n∈N

qn/(εn
√
log(1/ |In|)) ≤ 1− 2c,

which is not restrictive since c was only assumed to be in (0, 1).

Proof of Theorem 19. The proof will be essentially based on Theorem 14. First, we define

β, δn1, . . . , δnK and λn1, . . . , λnK as in Theorem 14. From Theorem 14 and the subsequent

remarks we find that Kn(1− βn(qn)) → 1 is a sufficient conditions for

P
(
K̂(qn) ≥ Kn

)
→ 1.

By definition we find Kn ≤ 1/Λn, 2λnk ≤ Λn and δnk ≤ ∆n for all 1 ≤ k ≤ K. Therefore,

K(1− βn(q)) ≤ exp

−

(√
nΛn∆n − 2

√
2q − 4

√
log(2e/Λn)

)2
+

8
√
2

+ log(Kn)


+ exp

(
−nΛ∆

2
n

16
+ log(Kn)

)
=: exp (−Γ1,n) + exp (−Γ2,n) .

Hence, the proof is completed by showing that Γ1,n → ∞ and Γ2,n → ∞. It is easy to see

that any of the conditions (1.)-(3.) implies Γ2,n → ∞. Therefore, it only remains to ensure
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that Γ1,n → ∞. Under condition (1.) we find that 1/Λn is bounded and observe that

Γ1,n

q2n
=

1

8
√
2

(√
nΛn∆n

qn
−

2
√
2qn + 4

√
log(2e/Λn)

qn

)2

+

− log 1/Λn

q2n
→ ∞.

Since qn is bounded away from zero, the assertion follows. Next, we consider conditions (2.)

and (3.). To this end, assume that
√
nΛn∆n ≥ (C + εn)

√
log(1/Λn) for some constant C > 0

and a sequence εn such that εn
√
log(1/Λn) → ∞. We find that

Γ1,n ≥ 1

8
√
2

(
(C + εn)

√
log

1

Λn
− 2

√
2qn − 4

√
log(2e/Λn)

)2

+

− logKn

≥ 1

8
√
2

(
εn

√
log

1

Λn
+ (C − 4)

√
log

1

Λn
− 2

√
2qn − 4

1 + log 2

2
√
log(1/Λn)

)2

+

− logKn,

where we have used the inequality
√
x+ y −

√
x ≤ y/(2

√
x). Under condition (2.), i.e. if

supn∈NKn < ∞, the choice C = 4 implies Γ1,n → ∞. Otherwise, we use the estimate

Kn ≤ 1/Λn which results in C = 8 as a sufficient condition for Γ1,n → ∞.

Proof of Theorem 18. The proof is build on a result on Gaussian likelihood-ratios which we

state here, see Ingster (1993) or Dümbgen and Spokoiny (2001)[Lemma 6.2] for a proof.

Lemma 46. Let Z1, Z2 . . . be independent standard Gaussian random variables. If

ωm =
√
2 logm(1− εm) with limm→∞ εm = 0 and limm→∞ εm

√
logm = ∞, then

E

∣∣∣∣∣∣ 1m
m∑
j=1

exp
(
ωmZj − ω2

m/2
)
− 1

∣∣∣∣∣∣→ 0.

With this lemma we can now give the proof of Theorem 18 which follows ideas from Dümbgen

and Spokoiny (2001). Let ln = b1/Λnc and define the piecewise constants functions

µ0 ≡ 0, µn,j = 1[(j−1)Λn,jΛn)∆n,

for j = 1, . . . , ln. Clearly, {µn,j}1≤j≤ln ⊂ S̃n (as in (3.30)) for any n. We will show that for

any test φn(Y )

lim
n→∞

Eµ0φn(Y )− α = 0 ⇒ lim
n→∞

inf
1≤j≤ln

Eµn,jφn(Y )− α = 0.

To this end, let φn be a test, so that Eµ0φn(Y ) ≤ α + o(1). Let fµ denote the Lebesgue

density of a Gaussian random variable with mean µ ∈ R and variance one and define the
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likelihood-ratios

Ln,j(Y ) =
n∏

i=1

fµn,j(i/n)(Yi)

f0(Yi)
.

We then find that,

inf
1≤j≤ln

Eµn,jφn(Y )− α ≤ 1

ln

ln∑
j=1

[
Eµn,jφn(Y )− α

]
≤ 1

ln

ln∑
j=1

Eµn,j [φn(Y )−Eµ0φn(Y )] + o(1)

=Eµ0

 1

ln

ln∑
j=1

Ln,j(Y )− 1

φn(Y )

+ o(1)

≤Eµ0

∣∣∣∣∣∣ 1ln
ln∑
j=1

Ln,j(Y )− 1

∣∣∣∣∣∣+ o(1).

Next observe that for i.i.d. standard Gaussian observations Z1, Z2, . . . , Zln

Eµ0

∣∣∣∣∣∣ 1ln
ln∑
j=1

Ln,j(Y )− 1

∣∣∣∣∣∣ = E

∣∣∣∣∣∣ 1ln
ln∑
j=1

exp
(√

|In|n∆nZj − |In|n∆2
n/2
)
− 1

∣∣∣∣∣∣ ,
which is a straightforward computation. Since the r.h.s. converges to zero by Lemma 46, this

completes the proof.

A.3 Proof of Section 5

Proof of Theorem 24. To begin the proof we show that Tn is finite almost surely, which follows

from Dümbgen and Walther (2008)[Theorem 7.1]. More precisely, their result states that

max
1≤i≤j≤n

D((j − i+ 1)/n)


∣∣∣∑j

l=i εl

∣∣∣
√
j − i+ 1σ

−
√
2 log

en

j − i+ 1

 <∞ a.s. (A.25)

where D(x) = log(e/x)1/2 log(e log(e/x))−1. Note that D(x) → ∞ as x → 0. For the proof

we divide the set of intervals into sets of “large” intervals

In = {(i, j) : 1 ≤ i ≤ j ≤ n and j − i+ 1 ≥ cn}
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and “small” intervals

Jn = {(i, j) : 1 ≤ i ≤ j ≤ n and j − i+ 1 < cn}

for some sequence cn such that cn/ log n → ∞. We first consider the small intervals in Jn.

Note that min(i,j)∈Jn D((j − i+ 1)/n) → ∞ as n→ ∞. Therefore, we find from (A.25) that

max
(i,j)∈Jn


∣∣∣∑j

l=i εl

∣∣∣
√
j − i+ 1σ

−
√
2 log

en

j − i+ 1

 ≤ 0 a.s. (A.26)

In order to deal with the intervals in In we use strong Gaussian approximation results from

Sakhanenko (1985) (see also Zaitsev (2002)[Theorem 1] and the subsequent remark) which

provides a generalization and a refinement of the results in Komlós et al. (1976).

Corollary 47 (Sakhanenko (1985)). Given the random variables ε1, . . . , εn, one can con-

struct a sequence of independent Gaussian random variables ζ1, . . . , ζn, such that E [ζi] = 0,

Var [ζi] = Var [εi] = σ2 and for all x > 0

P (C1∆(ε, ζ) ≥ x) ≤ exp
(
log
(
1 + C2

√
nσ
)
− x
)
,

for some constants C1 <∞ and C2 <∞ and ∆(ε, ζ) = maxi≤n

∣∣∣∑i
l=1(εl − ζl)

∣∣∣.
From Corollary 47 and cn/ log n→ ∞ we deduce that there exists a sequence of independent

Gaussian random variables ζ1, . . . , ζn such that

max
(i,j)∈I

∣∣∣∣∣∣∑j
l=i εl

∣∣∣− ∣∣∣∑j
l=i ζl

∣∣∣∣∣∣
√
j − i+ 1

≤ 2∆(ε, ζ)√
j − i+ 1

≤ 2∆(ε, ζ)

cn
→ 0 a.s.

From this in turn we observe that

lim
n→∞

∣∣∣∣∣∣ max
(i,j)∈In


∣∣∣∑j

l=i ζl

∣∣∣
√
j − i+ 1σ

−
√
2 log

en

j − i+ 1


− max

(i,j)∈In


∣∣∣∑j

l=i εl

∣∣∣
√
j − i+ 1σ

−
√
2 log

en

j − i+ 1


∣∣∣∣∣∣ = 0 a.s.

We have shown in Theorem 3 that the l.h.s. converges in distribution to theM . The assertion

then follows together with (A.26) and the fact that M is concentrated on the positive reals,

as it was shown in Dümbgen et al. (2006).
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Proof of Theorem 26. We first define

Γ(x, y) =

(
y +

√
2 log

en

x

)
x−1/2.

Further, let µ̂(qn) be the SMUCE estimate with threshold qn. For any interval [i/n, j/n]

which µ̂(qn) is constant on, let m̂
j
i denote the value of µ̂ on [i/n, j/n] and mj

i denote the mean

value of µn on [i/n, j/n], i.e. mj
i = (j − i+ 1)−1

∑j
l=i µ(l/n). Then, for α(qn) = P(M > qn)

we find

P

(
max

[i/n,j/n]∈Î

∣∣∣mj
i − m̂j

i

∣∣∣− 2Γ(j − i+ 1, qn) > 0

)
≤ α(qn). (A.27)

The inequality is based on the following observations: first note, that Tn(W, µ̂(qn)) ≤ qn

implies that
∣∣∣m̂j

i −W
j
i

∣∣∣ ≤ Γ(j − i + 1, qn) for all intervals [i/n, j/n], which µ̂ is constant on.

Here, W
j
i = (j − i+ 1)−1

∑j
l=iWl. Second, Corollary 25 yields that with probability greater

than 1 − α(qn) it holds uniformly over all 1 ≤ i ≤ j ≤ n that
∣∣∣W j

i −mj
i

∣∣∣ ≤ Γ(j − i + 1, qn).

Combining both observations together with the triangle inequality yields (A.27).

Now, define Ik, I
−
k , I+k , m−k and m+

k as in (A.15). Assume that K̂(qn) < K which implies that

µ̂(qn) is constant on Ik with value m̂k for some k . Since
∣∣m+

k −m−k
∣∣ ≥ ∆n, this means that

either

∣∣m−k − m̂k

∣∣ ≥ ∆n/2 or
∣∣m+

k − m̂k

∣∣ ≥ ∆n/2.

Furthermore, by straightforward calculations we find

∆n

2
− 2Γ(Λnn/2, qn) =

∆n

√
Λnn−

√
32qn − 8 log (2e/Λn)

2
√
Λnn

. (A.28)

Under any of the two assumptions (1.) or (2.) the last term in (A.28) is greater than zero,

if n is sufficiently large. Under assumptions (1.) this is clear. For assumption (2.) we set

∆n

√
Λnn = (8 + ε)

√
log e

Λn
. With the inequality

√
x+ y −

√
x ≤ y/(2

√
x) we find that the

r.h.s. of (A.28) is greater than or equal to

ε
√
log Λn −

√
32qn − log(2e)

2
√
− log Λn

2
√
Λnn

,

which is positive for large n, by assumption. Summarizing, K̂(qn) < K implies that for large

n there exists an interval [i/n, j/n], which µ̂(qn) is constant on and∣∣∣mj
i − m̂j

i

∣∣∣− 2Γ(j − i+ 1, qn) > 0. (A.29)
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As shown in (A.27), the probability for (A.29) can be bounded by α(qn) and consequently

P
(
K̂(qn) < K

)
≤ α(qn) → 0,

since α(qn) → 0 as qn → ∞ (see e.g. Theorem 37).
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