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Abstract

In this cumulative thesis the onset of turbulence in shear flows with a linearly stable
laminar flow is investigated experimentally. The experiments are performed in a pipe and
a Taylor-Couette setup, both with large system sizes. A high-precision Taylor-Couette
experiment has been designed and three important main results have been obtained in the
course of this study.

The first main result gives the solution to a question from the 19th century by one
of the pioneers of fluid dynamics, Osborne Reynolds. He asked at what critical Reynolds
number Rec pipe flow turns persistently turbulent. My experiments show it is at Rec =

2040±10. The pressure driven pipe flow experiment had a length of more than 3300 pipe
diameters and water was used as working fluid. Turbulence was induced in a controlled
manner and its development detected downstream with pressure sensors. Large statistical
ensembles were performed.

The second main result is to identify the mechanism that determine this transition
between laminar flow and sustained turbulence. It is shown that purely temporal aspects
like the Ruelle-Takens scenario or the statistical decay of turbulent patches are not suf-
ficient to characterize it. Instead the spatial proliferation of turbulence, which is also a
statistical process, has to be taken into account. The competition of the decay and the
spreading of turbulence define Rec. The larger picture emerging from these observations
is that the onset of turbulence in pipe flow can be characterized as a non-equilibrium phase
transition.

The third main result is that the phase transition is of second order. In contrast to the
previous observation, this result was obtained in a flow between two concentric counter-
rotating cylinders (Taylor-Couette flow). In the selected parameter regime the dynamics
resembles that of pipe flow, but with the advantage that the time scales are much shorter.
Therefore it was possible to investigate the phase transition in more detail by analyzing
the scaling of the mean turbulent fraction depending on Re. A system size 12 times larger
than previous Couette experiments combined with a high accuracy and long observation
times allowed it to measure substantially closer to the critical point than previously. The
continuity of the transition could be identified for the first time, thereby contradicting
interpretations from experiments in literature, but supported by models of pipe flow and
recent numerical simulations of Couette flow.

A radius ratio of η = 0.98 and an aspect ratio of about 260 were used and the working
fluid, silicone oil, was seeded with Al-tracers for visualization. The flow was monitored
with a high speed camera from which the mean turbulent fraction was obtained by image
processing.

Another accomplishment of this thesis is the construction of the Taylor-Couette ex-
periment that was used for the aforementioned investigation. Besides its large system size
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Abstract

and high accuracy this setup offers a wide regime of parameters. The radius ratio can be
easily changed from extremes of a thin inner cylinder (radius ratio η = 0.03) to almost
identical radii (η = 0.98), the aspect ratio can be dynamically varied during measure-
ments and the rotation rates of the cylinders allow studies in the transitional as well as in
the turbulent regime. By independently rotating the top and bottom lid the boundary con-
dition can be adjusted to minimize endwall effects. The sophisticated bearing system is
combined with several cooling circuits to provide a high precision during long-time mea-
surements. Excellent optical access and index matching allow for optical measurement
techniques.
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Motivation

Some seemingly simple questions turn out to be extremely tricky to answer, and few of
them in addition turn out to reveal deep physical insights. The question addressed in the
first part of this thesis is such a question – and indeed it was asked exactly 130 years ago
by Osborne Reynolds, one of the pioneers in fluid dynamics. He asked himself under
what conditions turbulence becomes sustained in a pipe. Or more precisely in his own
words:

‘it became clear to me that if in a tube of sufficient length the water were
at first admitted in a high state of disturbance, then as the water proceeded
along the tube the disturbance would settle down into a steady condition,
which condition would be one of eddies or steady motion, according to whether
the velocity was above or below what may be called the real critical value’
(Reynolds 1883).

In this thesis the ‘real critical value’(Reynolds 1883) is determined. It is appealing
that it could not be determined just because of an advancement of technical procedures
or methods. It is a consequence of the knowledge that has been contributed by many
researchers over the last century, and especially the last decade. In principle Reynolds
could have answered his question – even though he would have had to spend many month
in the lab. I am convinced he would have done it.

Luckily today we have measurement techniques that can be automated, so that another
more general question could be attacked in the second part of this thesis that arose from
the answer to Reynolds’ question. The onset of turbulence in pipe flow can be charac-
terized as a non-equilibrium phase transition (Chapter 2, Avila et al. (2011)). Models in
pipe flow predict it to be of second order (Barkley 2011) and ongoing experiments 1 are
supporting this. But is this generally valid for linearly stable shear flows? Is the onset of
turbulence in these flows a non-equilibrium phase transition of second order? Previous
investigations in other shear flows (plane and Taylor-Couette flow) do not support this
appealing idea and seem to undergo a first order transition (Bottin et al. 1998, Duguet
et al. 2010). However, here the challenge is not only in the understanding of the ongoing
physics, but in building an experiment, in which this can be accurately measured. Re-
searchers have tried to do so for more than a decade (Prigent et al. 2003), but could not
achieve it. In the second part of my thesis I designed, build and tested a complex high-
precision (Taylor-Couette) experiment with which it could be shown that the transition is
of second order. Furthermore, ongoing measurements will likely clarify if this transition
belongs to the universality class of directed percolation. Although directed percolation

1private communication with Mukund Vasudevan
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Motivation

serves as a model for many processes in nature (from the spreading of infections to forest
fires), it has so far only been accurately measured in a single experiment of liquid crystals
(Takeuchi et al. 2007).

My thesis is structured as follows: In the Introduction (Chapter 1), I draw the path
that research has taken from Reynolds’ pioneering pipe flow experiments to current re-
search in transition to turbulence. The main focus is on canonical flows like pipe, plane
Couette (flow between two shearing plates) and Taylor-Couette flows (flow between two
concentric rotating cylinders) to concentrate on the underlying physical mechanisms.
Chapter 2 consists of a publication published in Science, where the critical Reynolds
number for the onset of turbulence in pipe flow is determined and the transition placed in
the group of phase transitions (Avila et al. 2011). In Chapter 3 a technical description
of the Taylor-Couette experiment is presented. This appeared in the Review of Scien-
tific Instruments (Avila & Hof 2013). Besides the technical description, the method of
analysis is explained and it is shown that finite amplitude perturbations are avoided in
the relevant regime. In Chapter 4 unpublished measurements on the phase transition in
Taylor-Couette flows are presented. It is revealed that the phase transition is of second
order in a system of sufficient size and accuracy and not of first order as reported in lit-
erature. In Chapter 5 the results are discussed altogether and put in a larger context,
including a specific outlook on localized turbulence. The last part is a Perspective on the
transition to turbulence in general.
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1 Introduction

The understanding and control of fluid dynamics accompanied civilization from its very
beginnings and still poses one of the greatest challenges nowadays. By using the wind
with sailing boats, humans were able to cross oceans and discover new continents. By
building aqueducts the Romans made the first large step towards metropolitan cities,
thereby overcoming also the main reason for the spreading of diseases. Later on, with
a much deeper understanding of the underlying physical mechanism, one of the oldest
dreams of mankind came true – flying.

In recent years applications of fluid dynamics range from Lab-on-a-chip devices on
the nanometer scale up to predictions of the global climate change. These suggests that all
basic questions have already been answered. But a closer look reveals that basic questions
like: ‘How does turbulence develop? What is the critical transition point?’ are still unan-
swered. One of the largest problems in micro- and nanofluidics is for example to generate
chaotic behavior, so that fluids become well mixed. In climate models it is crucial to un-
derstand the dynamics beyond statistical averages to determine critical transition points.
If such a critical point is crossed once, the behavior changes qualitatively. For example,
if the Earth’s temperature rises by some degrees, than the Golf stream may stop and the
climate in Europe may change drastically.

1.1 Transition to turbulence in the 19th century

1.1.1 Navier-Stokes equation, Hagen-Poiseuille

The first person asking these basic questions was Osborne Reynolds in the 19th century.
What was known at that time is the Navier-Stokes equation, which correctly describes
the motion of fluids. Prior to it, Euler (1752) first applied Newton’s second law to fluids
and derived an equation describing the motion of frictionless (inviscid) fluids. These
equations are still widely used in aerodynamics and astrophysics. However, to describe
flows close to walls and the onset of turbulence Euler’s equations are not satisfactory. In
such cases the internal friction of the fluid, characterized by its viscosity is of tremendous
importance. Navier (1823) and Stokes (1845) combined in their equation for the first
time the viscous force of the internal motion of the fluid with the Euler equation. As a
boundary condition they assumed that the fluid has zero velocity where it is in contact with
a stationary wall (‘no-slip boundary condition’). Although the final form of the equation
and boundary conditions were correctly derived by Stokes in 1845, it took much longer
to verify its validity experimentally (see Section 1.2.2).
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1 Introduction

Figure 1.1: Hagen (1839) and Poiseuille (1840) analytically obtained the velocity profile
of laminar pipe flow, which is parabolic.

The Navier-Stokes equation reads

ρ

(
∂~u
∂t

+ (~u · ∇)~u
)

= −∇p + µ∇2~u + ~F, ∇ · ~u = 0,

where the first equation expresses the balance of linear momentum and the second con-
servation of mass. Here ~u is the velocity field, p the pressure, ρ and µ the fluid density
and dynamic viscosity, and ~F an external force.

The Navier-Stokes equation is a nonlinear partial differential equation, which makes
it very difficult to solve it. Mathematically it is not even clear, if a three dimensional
solution always exists and if so, if it contains no singularities. A price of US$ 1.000.000
is set by the Clay Mathematics Institute to solve this problem, which is one out of seven
millennium prize problems (Carlson et al. 2006).

Only very few exact solutions of the Navier-Stokes equation are known. The perhaps
most relevant one describes the parabolic velocity profile of a flow through a straight,
circular pipe, as shown in Fig. 1.1. The flow assumes such a profile only after a certain
distance from the pipe entrance, which is inversely proportional to the viscosity (Tietjens
1970). When the fluid enters the pipe from e.g. a large container, the streamwise velocity
is nearly uniform across the bulk of the pipe. However, the no-slip boundary condition
enforces zero-velocity at the pipe wall, which leads to a spatially developing boundary
layer. While the fluid is flowing downstream, the boundary layer thickness increases due
to viscosity. Once the effect of the viscosity has reached the centerline of the pipe, the
velocity profile becomes parabolic. The corresponding volume flux Q is proportional to
the applied pressure difference and was obtained by Hagen (1839) and Poiseuille (1840):

Volume flux Q =
(p0 − p1)R4

8µl
,

with (p0−p1) being the pressure drop between two positions at distance l along the pipe, R
the radius of the pipe and µ the dynamic viscosity of the fluid. However, this linear relation
is only valid for laminar flows as in the capillary pipes of Poiseuille. In larger pipes Hagen
(1854)1 and also Darcy (1857)2 observed the onset of disordered motion (e.g. turbulence)

1mentioned inTietjens (1970)
2mentioned in Mullin (2011)
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1.1 Transition to turbulence in the 19th century

when the flow velocity was increased. In this case, the Hagen-Poiseuille law was not valid
any more. This is to my knowledge the first time that the dynamics of flows was divided
in two different classes by flow visualization. The first one is the laminar flow, here the
fluid is moving in nearby layers, no mixing between these layers is observed and the flow
velocity is often constant with time. The other type is turbulent flow, here many vortices
appear with different sizes, interacting in an unpredictable way, thereby mixing the fluid.
In turbulent flows the friction of the flow is substantially increased, which is exactly what
Hagen and Darcy observed in their pipes.

1.1.2 Reynolds pioneering experiments
But why the linear dependence of the friction with the fluid velocity is not valid any more
when turbulence sets in was not clear at all.

‘This accidental fitness of the theory to explain certain phenomena while en-
tirely failing to explain others, affords strong presumption that there are some
fundamental principles of fluid motion of which due account has not been
taken in the theory’ (Reynolds 1883).

Reynolds revealed this ‘fundamental principles’ with his pioneering, extremely care-
fully conducted pipe flow experiments. He used straight, smooth pipes made of glass with
different diameters. The working fluid was water and the flow rate and temperature were
accurately controlled. In addition he was able to visualize the flow by injecting ink at the
entrance of the pipe center. In this experiment he could confirm the onset of turbulence,
when the fluid velocity was increased above a critical value (see Fig. 1.3). A systematic
continuation of this experiment for different pipe diameters and temperatures lead him to
the conclusion, that

‘the general character of the motion of fluids [. . . ] depends on the relation
between a physical constant of the fluid [the viscosity] and the product of
the linear dimensions of the space occupied by the fluid and the velocity’
(Reynolds 1883).

This non-dimensional parameter became much later known as the Reynolds number
Re (Sommerfeld 1908, Blasius 1911, von Kármán 1954, Rott 1990):

Reynolds number Re =
ud
ν
,

for pipe flow: u averaged velocity, d pipe diameter, ν kinematic viscosity. The Reynolds
number Re is the most important parameter in fluid dynamics. For low Re flows are
laminar, for increasing Re they become turbulent at a critical value. What may look rather
simple at a first glance, was a breakthrough in fluid dynamics. The Reynolds similarity
principle means that flows on e.g completely different length scales are identical to each
other, if Re is the same. This is the basis on which large-scale flows can in principle all
be studied in a laboratory experiment.

However, Reynolds realized also that perturbations, e.g. waves in the tank feeding the
pipe, changed the critical Re for the onset of turbulence.
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1 Introduction

Figure 1.2: Reynolds pipe flow experiment with his assistant. The pipe is made of glass
with a diameter of 25mm±0.78mm and a length of 1.5m and is horizontally placed inside
a tank of water. The water from the tank is entering the pipe through a trumpet mouth
made of wood. The height of the water in the tank is measured (see instrument to the
right side of the assistant) to obtain the velocity of the flow. A vertically mounted iron
tube connects the end of the glass pipe with a valve at ground level. A long lever is
connected to this valve that reaches up to the platform, so that the flow rate can be easily
controlled. For the flow visualization another tube connects a reservoir of ink (placed on
top of the water tank) with the centerline of the trumpet mouth. The figure is a public
domain and taken from Reynolds (1883).
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1.1 Transition to turbulence in the 19th century

Figure 1.3: Visualization of the onset of turbulence. Ink is added at the center of the
trumped mouth. If the flow is laminar, the ink stays confined to the center of the pipe
(top picture). The onset of turbulence is not directly at the entrance but some distance
downstream. It can be seen by the mixing of the ink with the surrounding water (bottom
picture). The figure is a public domain and taken from Reynolds (1883).

‘This showed that the steady motion was unstable for large disturbances long
before the critical velocity was reached . [. . . ] But the fact that in some
conditions it [the laminar flow] will break down for a large disturbance, while
it is stable for a smaller disturbance shows that there is a certain residual
stability so long as the disturbances do not exceed a given amount’ (Reynolds
1883).

What Reynolds was guessing here, is that pipe flow is linearly stable to infinitesimal
perturbations and only finite amplitude perturbations can trigger the transition to turbu-
lence. The linear stability was first supported only 100 years later (Salwen et al. 1980,
Drazin & Reid 2004). So far it has been proven to be true at least up to Re = 107 in
computations (Meseguer & Trefethen 2003) and up to 105 in experiments (Pfenninger
1961). The linear stability of the parabolic velocity profile of pipe flow is the reason, why
transition to turbulence is still puzzling researchers nowadays.

But after many experiments Reynolds found a way in which the critical Re for the
onset of turbulence could be determined:

‘it became clear to me that if in a tube of sufficient length the water were
at first admitted in a high state of disturbance, then as the water proceeded
along the tube the disturbance would settle down into a steady condition,
which condition would be one of eddies or steady motion, according to whether
the velocity was above or below what may be called the real critical value’
(Reynolds 1883).

Reynolds continued the search for this critical Re for his entire life, even though

‘at first sight such experiments may appear to be simple enough, yet when
one began to consider actual ways and means, so many uncertainties and
difficulties presented themselves that the necessary courage for undertaking
them was only acquired after two years’ further study of the hydrodynamical
aspect of the subject by the light thrown upon it by the previous experiment’
(Reynolds 1883).
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1 Introduction

Figure 1.4: Localization of turbulence. At low Re the flow is spatio-temporally intermit-
tent, consisting of an irregular sequence of laminar and turbulent patches in the stream-
wise direction. Reynolds called the turbulent patches ‘flashes of turbulence’, nowadays
there commonly referred to as ‘puffs’. The figure is a public domain and taken from
Reynolds (1883).

His last estimates were about Re=1900, 2000, but he could never get the answer. This
is nowadays known as the ‘Reynolds-problem’. At these Re turbulence is intermittent,
appearing in form of streamwise localized patches that are swept downstream with the
surrounding laminar flow as it is illustrated in Fig. 1.4.

1.2 Transition to turbulence in the 20th century

1.2.1 Rotta’s pipe flow experiments
Almost 70 years after the experiments by Osborne Reynold, Julius C. Rotta (1956) quan-
tified how turbulent patches spread while traveling downstream. In his experiments in
Göttingen he used glass pipes of different lengths and water as working fluid, but in con-
trast to Reynolds’ experiments the water at the exit of the pipe was ejected as a free jet.
The angle of this jet is different for laminar and turbulent flows, which can be explained
by the different mean profiles of the velocity (see Fig. 1.7). Rotta used this effect to
determine the turbulent fraction of the intermittent flow by placing two containers at dif-
ferent positions (see Fig. 1.5). One container was placed close to the pipe exit thereby
collecting the water from a turbulent jet, the other one was located downstream of the first
thereby collecting the water from a laminar jet. The ratio of the water volumes of the two
containers corresponds to the turbulent fraction at a certain downstream position which
corresponds here to the length of the pipe.

From measurements at different pipe length Rotta could infer the corresponding (mean)
spreading velocities of the turbulence in terms of the averaged flow velocity for different
Re. These are shown in Fig. 1.6. It is clearly visible, that the spreading velocities are
quickly decreasing for decreasing Re.

‘Die Reynoldszahl, bei der sie den Wert Null erreicht, muss als die wirkliche
kritische Reynoldszahl angesehen werden, unterhalb derer sich die turbulente
Rohrströmung nicht mehr aufbauen kann. Der genaue Wert dieser kritischen
Reynoldszahl kann aus vorliegenden Versuchen nicht bestimmt werden; er
mag etwa bei Re = 2000 liegen’ (Rotta 1956).
[freely translated: The Re where the spreading velocity becomes zero, must be regarded as
the real critical value. Below it the turbulence cannot be regenerated. The exact value cannot
be determined from present experiments, it may be around Re=2000.]
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1.2 Transition to turbulence in the 20th century

laminar
stromende Menge
turbulent

Elektrode

Versuchsrohr

stromende Menge

Figure 1.5: Measuring the turbulent fraction. The angle of the free jet of water at the
exit of the the pipe is different for laminar and turbulent flows. The left (right) container
collects the water from the laminar (turbulent) free jet. The ratio of the measured fluid
volumes corresponds to the turbulent fraction. The number of turbulent patches is deter-
mined by an electrode, which is positioned in the laminar free jet. The figure is taken
from Rotta (1956).
Credit to Ingenieur-Archiv, vol. 24, issue 4, 1965, ‘Experimenteller Beitrag zur Entstehung turbulenter
Strömung im Rohr’, Rotta, page 262, Fig. 4. Reused with kind permission from Springer Science and
Business Media.

Despite this clear interpretation, Rotta has been wrongly cited in the literature to have
determined the transition to turbulence in pipe flow at Re=2300. Textbooks and even spe-
cialized publications (Moxey & Barkley 2010) commonly give this number by referring
to his work. Most likely it is due to his last measurement point in Fig. 1.6 at Re=2300
with a spreading velocity of only 2%.

Another rather common misinterpretation of Rotta’s work concerns the flow state that
would develop in an infinitely long pipe, called by him ‘stationäre Endzustand’ [final
equilibrium state]. He assumed that the onset of turbulence and the onset of the spreading
of turbulence to fill the pipe appears at the same critical Re. Once turbulence has set in it
would spread with the velocities shown in Fig. 1.6 until the flow is completely turbulent,
i.e. without any laminar gaps (‘stationäre Endzustand’). This would apply for any Re >
Rec.

‘Die Partien turbulenter Strömung werden mit der Strömung fortgeführt; dabei
wachsen sie mit einer von der Reynoldszahl abhängigen Ausbreitungsgeschwindigkeit
und schmelzen nach und nach zusammen, his schliesslich ein voll turbulen-
ter Strömungszustand hergestellt ist. [. . . ] Dieser Vorgang erstreckt sich über
sehr grosse Rohrlängen, die für kleine Reynoldszahlen sogar nach Tausenden
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Figure 1.6: Spreading rate of turbulence. Rotta analyzed the turbulent fraction of the flow
depending on Re and pipe length. By assuming that the velocity of the turbulent fronts
is similar to the mean velocity of the flow the data shown here can be interpreted as the
mean spreading rate of turbulence. The line is to guide the eyes. Data are taken from
Rotta (1956).

Figure 1.7: Laminar and turbulent velocity profile in pipe flow. The laminar flow profile
was mathematically derived by Hagen (1839) and Poiseuille (1840). Hot-wire measure-
ments by Rotta confirmed this ‘Poiseuille profile’ for laminar flow and showed in addition
that turbulence leads (in average) to a plug-like profile. The figure is reproduced from
Rotta (1956).
Credit to Ingenieur-Archiv, vol. 24, issue 4, 1965, ‘Experimenteller Beitrag zur Entstehung turbulenter
Strömung im Rohr’, Rotta, page 266, Fig. 9. Reused with kind permission from Springer Science and
Business Media.
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von Durchmessern zählen’ (Rotta 1956).
[freely translated: Turbulent patches are swept downstream with the mean flow; at the same
time these patches spread into the laminar gaps with a spreading velocity depending on the
Reynolds number. The final flow state is fully turbulent, meaning that turbulent patches have
merged, leaving no laminar gaps in between. [. . . ] This process requires large pipe length,
at small Re it can take several thousand pipe diameters.]

To sum up, Rotta was estimating the critical Reynolds number for the onset of turbu-
lence from his extrapolation astonishingly well, but he missed the intermittent character
of the turbulence that is intrinsic to pipe flow at low Re.

At that time many researchers have tried to derive a mathematical description that can
predict the onset of turbulence. For a flow between two plane plates shearing in opposite
directions (plane Couette system)

‘it seemed probable that the mathematical analysis might prove compara-
tively simple; but . . . it has actually proved very complicated and difficult’
(Taylor 1923).

Taylor considered also to investigate pipe flow, but from the experiments of Reynolds
he concluded that it is too difficult, because of the finite amplitude perturbations that are
required to trigger turbulence. He therefore decided to

‘examine the stability of liquid contained between concentric rotating cylin-
ders. If instability is found for infinitesimal disturbances in this case it will
be possible to examine the matter experimentally’ (Taylor 1923).

The setup used by Taylor was originally invented for a completely different purpose,
which is explained in the next section.

1.2.2 The invention of the Taylor-Couette system and its pioneering
studies

As stated before, the key innovation of the Navier-Stokes equation was to combine the
Euler equation with the concept of viscosity. At the end of the 19th century it was there-
fore the goal of researchers to measure the viscosity precisely in an experiment. Mallock
(1888, 1896) and Couette (1890) had great engineering skills and built independently
from each other the first experiments consisting of two concentric cylinders. The gap
between the cylinders was filled with water of different temperatures to determine its vis-
cosity. These were the most precise experiments at that time. Mallock filled even mercury
at the bottom of the gap to minimize endwall effects and determined the viscosity of water
with an accuracy of 1% (Mallock 1896, Ritwik 2012). The technique used by Couette of
driving the outer cylinder at a constant rotation rate and suspending the inner cylinder on
a fibre to measure the torque became later known as Couette viscometers.

Apart from the application of the flow between two rotating cylinders to determine the
viscosity of fluids, Rayleigh (1917) used this system for the first time to fundamentally
study the stability of rotating flows. In his theory he neglected the influence of viscosity
and found that a rotating inviscid flow is in general stable if the angular momentum per
Volume (r2ω) increases with the radius. By applying this condition on the flow between
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Figure 1.8: Streamlines of the flow instability, calculated by Taylor. The flow pattern is
axisymmetric and consists of vortices with a diameter of approximately the gap width.
Adjacent vortices rotate in opposite direction. In honor to G.I. Taylor they were later
called ‘Taylor vortices’. The figure is reproduced from Taylor (1923).
Republished with permission of Phil. Trans. Roy. Soc. Lond., from ‘Stability of a viscous liquid contained
between two rotating cylinders’, Taylor, Vol. 223, page 289–343, 1923; permission conveyed through
Copyright Clearance Center, Inc..

two rotating cylinders with radii ri (inner cylinder) < ro (outer cylinder) and the angular
velocities ωi,o respectively, the flow is stable when ωir2

i < ωor2
o . This condition became

later known as Rayleigh criterion.
The flow for a pure inner cylinder rotation (with the outer cylinder at rest) is unstable

according to the Rayleigh criterion for all Rei. Here Rei is defined as Rei = ωirid/ν with
the gap width d = ro − ri and the viscosity ν. But the influence of viscosity can damp
instabilities. The exact onset of the instability - including the effects of viscosity - was
first investigated by G.I. Taylor experimentally and theoretically in 1923. He observed in
his experiment that the laminar flow is stable for small Reynolds number Rei and becomes
unstable when Rei was increased above a critical value Rei,c. The laminar flow consists
of a purely azimuthal motion, while the instability appears as toroidal vortices. These
vortices have a diameter of approximately the gap width d and are alternately rotating in
opposite directions as it is illustrated by the streamlines in Fig. 1.8.

What became a breakthrough in fluid dynamics is the fact that Taylor was able to
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1.2 Transition to turbulence in the 20th century

Figure 1.9: Quantitative agreement for the onset of instability between theory and ex-
periment in Taylor-Couette flow. Taylor applied for the first time successfully a linear
stability analysis to predict the onset of an instability. The agreement is excellent in all
regimes. A pure inner cylinder rotation corresponds to Ω2 = 0, the co-rotating regime to
Ω2 > 0 and counter-rotating cylinders to Ω2 < 0. The working fluid was water with a
viscosity ν ≈ 1cS t. The figure is taken from Taylor (1923).
Republished with permission of Phil. Trans. Roy. Soc. Lond., from ‘Stability of a viscous liquid contained
between two rotating cylinders’, Taylor, Vol. 223, page 289–343, 1923; permission conveyed through
Copyright Clearance Center, Inc..

predict the exact value of Rei,c from the Navier-Stokes equation. This was the first quan-
titative agreement between experiment and Navier-Stokes equation, thereby proving the
validity of the no-slip condition at the wall. On the other hand to predict the instability he
applied a method now called ‘linear stability analysis’. This method is nowadays widely
used in all fields of physics. The work of Taylor can be regarded as one of the most
important one of physics in the 20th century (Donnelly 1991).

In honor of Taylor and Couette the flow between two concentric rotating cylinders
is now called ‘Taylor-Couette flow’ and the axisymmetric toroidal vortices appearing as
primary instability are called ‘Taylor vortices’.

In the same study Taylor investigated the stability of the flow also for independently
rotating cylinders. If the cylinders were co-rotating the onset of instability agreed well
with the Rayleigh criterion. But for counter-rotating cylinders only the linear stability
analysis could predict the onset of instability for increasing Re. The corresponding stabil-
ity diagram is shown in Fig. 1.9.

1.2.3 Linear instabilities: supercritical transition

With the ‘linear stability analysis’ a certain (flow) state is investigated under the influence
of infinitesimal perturbations. Depending on Re and flow state these perturbations can
either grow exponentially in time or they decay. If the perturbations grow, the flow state
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becomes unstable to the fastest growing mode. The flow state changes qualitatively. If
the perturbations decay, the flow remains the same.

Taylor was able to calculate the primary instability from the laminar flow in a Taylor-
Couette setup and Chandrasekhar (1961) applied the analysis successfully to the Rayleigh-
Benard setup. In this setup the flow is driven by convection between a hot bottom plate
and a cold top plate. Note that Rayleigh (1916) had already conducted the stability anal-
ysis but with a free-slip boundary condition, which prevented quantitative comparison
to experiments. In the following years researchers could also calculate secondary insta-
bilities (Davey et al. 1968, Clever & Busse 1974), but it was analytically too difficult
to analyze further instabilities. From experimental observations it was known, that the
flow becomes much more complex and finally turbulent for increasing Re. In order to
still investigate these flows theoretically, the description switched from a quantitative to
a qualitative one. In 1944 Landau proposed that an infinite sequence of instabilities lead
to turbulence. The flow would appear ‘complicated and confused’, but it could still be
interpreted as a quasi-periodic flow, consisting of a superposition of many frequencies
(Landau 1944, Landau & Lifshitz 1959, Swinney & Gollub 1978). A qualitatively differ-
ent scenario developed Lorenz (1963) almost 20 years later. According to him turbulence
is non-periodic and its main characteristic the sensitivity to initial conditions. His theory
together with his model laid the foundations of chaos theory that is nowadays extensively
used to describe deterministic systems. The dispute could only be settled in the 80s.
Ruelle & Takens (1971) refined the model of Landau and combined it with the chaotic
behavior described by Landau. In their scenario only 3-4 instabilities are required and
it is the nonlinear interaction of these that give rise to chaotic flows. In phase space
this leads to the generation of a so called ‘strange attractor’ (Ruelle & Takens 1971).
Measurements with a Laser-Doppler Velocimeter confirmed the ‘Ruelle-Takens scenario’
to turbulence in a Taylor-Couette and Rayleigh-Benard experiment (Gollub & Swinney
1975). In both experiments the transition from periodic (visible as a single frequency peak
in the spectrum) over quasi-periodic (visible as two distinguished frequencies and their
linear combinations) to chaotic flow (visible as frequency peaks combined with broad-
band noise) was clearly detected. I want to highlight that turbulence arises according to
Ruelle-Takens exclusively through an increase of temporal complexity, any spatial aspect
is neglected here! The expectation behind this theory was that an increasing number of
temporal modes would also lead to the development of spatial modes thereby generating
the Kolmogorov cascade of turbulence. Many more investigations of such bifurcations
and pattern formation followed in Taylor-Couette and Rayleigh-Benard flows and are still
topic of current research (Bradshaw 1969, Pfister & Rehberg 1981, Di Prima & Swinney
1985, Andereck et al. 1986, Bodenschatz et al. 1991, Dubrulle & Hersant 2002, Pacheco
et al. 2011).

All flows mentioned in this subsection so far have in common that the basic flow be-
comes linearly unstable to infinitesimal perturbations, thereby giving rise to instabilities.
With increasing Re the flow becomes increasingly complex (Ruelle-Takens scenario) at
well defined thresholds. This route to turbulence is here referred to as ‘super-critical tran-
sition’3. Part of the success of Taylor’s work is based on his choice for the Taylor-Couette
flow, which exhibits these features. Many of the previous attempts to calculate the on-

3A specific bifurcation might be still subcritical, but the critical Re is aways well defined.
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set of instabilities/turbulence by other researchers were failing, because the flows they
investigated were linearly stable to infinitesimal perturbations. Perturbations of a certain
strength, finite amplitude perturbations, are here required to trigger the transition. The
critical Re is therefore not well defined, but depends on the perturbations. If the pertur-
bation is sufficient, the flow transitions directly from laminar to turbulence. This route to
turbulence is commonly referred to as a ‘sub-critical transition’. The onset of turbulence
in pipe flow is a typical example. We remember that Reynolds observed that the appear-
ance of turbulence depended on the level of perturbations present in his experiments. A
nonlinear theory is necessary to understand this transition, which is obviously much more
difficult.

1.2.4 Linearly stable basic flow: subcritical transition
Reynolds (1883) speculated already that laminar pipe flow is linearly stable and that fi-
nite amplitude perturbation are necessary to trigger the transition to turbulence. But also
Taylor-Couette flow can be linearly stable for a certain ratio of the cylinder rotation rates.
For a pure outer cylinder rotation the flow is Rayleigh-stable for all Reo and hence also
linearly stable. Taylor observed for this configuration in his experiment that

‘there is a lower critical point below which the flow is in all cases steady,
and an upper critical point above which the flow is always turbulent’ (Taylor
1936).

These two critical points determine the size of the observed hysteresis. In this hys-
teretical regime

‘the flow is usually stable if the rotation of the outer cylinder is steadily in-
creased through the lower critical point, but a slight disturbance, such as that
produced by a slight rotation of the inner cylinder in the opposite direction
to that of the outer one, will make the flow permanently turbulent’ (Taylor
1936).

Despite this observation and the deep understanding of linear instabilities, it seems
that Taylor could not interpret the origin of the upper critical point. Only much later a
comparison of this upper critical value from different experiments of that time showed
clearly that it depends exclusively on the perturbations present in an experiment (Schultz-
Grunow 1959, Joseph 1976, Burin & Czarnocki 2012).

The first systematic study of subcritical turbulence for counter-rotating cylinders was
performed by Coles in 1965. He called this transition ‘catastrophic’ to emphasize the
sudden appearance of turbulence when the laminar flow was disturbed. This transition
can be observed when the outer cylinder is rotating faster and in the opposite direction
than the inner cylinder. The corresponding flow states consists of a mixture of laminar
and turbulent patches. By flow visualization he identified regimes where the turbulent
patches seem to be disordered and others where the patches align in a spiral pattern. He
defined two thresholds, one below which ‘turbulence if present will always decay if left to
itself’, an intermediate regime where ‘turbulence if present will persist indefinitely, but it
will not appear spontaneously if the flow is not disturbed’ and above the second threshold
where linear instabilities set in. The investigation of the intermediate regime ‘presents a
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real experimental challenge’ and features ‘the same properties which distinguish the pipe
flow’ (Coles 1965). Coles drew here a very important connection between subcritical
turbulence in Taylor-Couette flow and pipe flow in general. This resemblance of the
dynamics lead to great advances in understanding the nature of this transition by applying
an idea or observation from one system to the other.

Coles saw this connection so clearly, because he had worked in pipe flow before. Also
here the flow is highly intermittent in space and time at low Re. Two different kind of
streamwise localized turbulent structures were distinguished at that time. The first one is
characterized by a constant length (in average) in the streamwise direction and is called
‘puff’. The second one is growing in length and called ‘slug’. Coles (1962) found out
that puffs and slugs can only be classified by the Re and not by their origin, meaning
the kind of perturbation that created them. A far deeper understanding of turbulence in
pipe flow at low Re was gained by the experiments of Wygnanski & Champagne (1973)
and Wygnanski et al. (1975). They applied for the first time the concept of a controlled
localized perturbation to trigger turbulence (Wygnanski et al. 1975). As working ‘fluid’
air was used and the perturbation was created by pressure pulses from loudspeakers. The
perturbation time and amplitude could be easily changed and, in addition, by placing
several hot-wire probes at different streamwise locations the development of the turbulent
patches could be followed consecutively while swept downstream with the mean flow.
This setup was the milestone for quantitative investigations of the dynamics of turbulence,
which is why modern studies are still working with similar methods (Darbyshire & Mullin
1995, Hof et al. 2003, Durst & Ünsal 2006, Avila et al. 2011). In all previous studies,
turbulence was created randomly in time by placing an obstacle close to the pipe inlet
(Reynolds 1883, 1895, Rotta 1956).

In Fig. 1.10 the Re-regimes for the appearance of slugs and puffs is qualitatively il-
lustrated. It can be seen that puffs exist at Re & 2000 and need a higher amplitude of
perturbation to be triggered than slugs, appearing for Re & 3000 (Wygnanski & Cham-
pagne 1973). In fact the required amplitude decreases as a power law over Re (Darbyshire
& Mullin 1995, Hof et al. 2003). In the range of Reynolds numbers where Reynolds and
Rotta expected the transition (Rec ≈ 2000), one finds puffs, so that their observations are
related to the dynamic of puffs. The so called ‘puff splitting’ (Wygnanski et al. 1975)
is the mechanism through which turbulence spreads in this regime by a spatial prolifer-
ation. In this process the puff is temporarily growing in the downstream direction until
this ‘oversized’ puff splits thereby generating a new puff. The two puffs have similar sizes
and are swept downstream with the mean flow at an approximately constant distance. The
puff splitting is thereby increasing the turbulent fraction of the flow (Rotta 1956, Wyg-
nanski et al. 1975, Moxey & Barkley 2010, Avila et al. 2011). It was assumed that the
spatial proliferation sets in at a critical point, which is why it was often used to predict Rec

(Rotta 1956, Wygnanski & Champagne 1973, Moxey & Barkley 2010). It is important to
note that the appearance of turbulence is here due to spatial proliferation in contrast to the
Ruelle-Takens scenario that considers only temporal aspects.
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Figure 1.10: Occurrence of puffs depending on Re. Puffs are streamwise localized
patches of turbulence with a length of about 20-30 pipe diameters. Slugs are also lo-
calized turbulent patches, but their length increases while traveling downstream. The
amplitude of the perturbation required to trigger turbulence decreases for increasing Re.
The figure is taken from Wygnanski & Champagne (1973).
Republished with permission of Cambridge University press, Journal of fluid mechanics, from ‘On transi-
tion in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug’, I. J. Wygnanski and F.
H. Champagne, Vol. 59, issue 02, page 281–335, 1973; permission conveyed through Copyright Clearance
Center, Inc..

1.2.5 Statistical approach: Directed percolation and Coupled map
lattices

A startling connection between the onset of turbulence in pipes and directed percolation
was suggested by Pomeau (1986). The directed percolation model was originally invented
to describe the flow of water through porous rocks under the influence of gravitation as it
appears in nature (Broadbent & Hammersley 1957, Hammersley 1957). Here the gravity
imposes a preferred spatial direction of the water flow, which characterizes the percolation
as directed and not isotropic. The average connectivity of the pores corresponds to the
permeability and the global behavior of the system is analyzed by statistical averages. If
the permeability is below the critical point the water will (in average) not reach the bottom
of the rock, i.e. the rock is impermeable at large scale. If the permeability is above the
critical point the water will reach the bottom easily, also over infinitely thick rocks. The
critical point corresponds statistically to exactly a single stream of water reaching the
bottom. The directed percolation model is a universality class belonging to the group of
non-equilibrium phase transitions (Janssen 1981, Grassberger 1982, Hinrichsen 2000a).

The possible connection noted by Pomeau (1986) can only become clear if one looks
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Figure 1.11: Directed percolation model applied to a diagonal square lattice. Open
(closed) connection between two sites are drawn as a solid (dashed line). If only the site
marked by the circle would be activated as initial condition, the activation would spread
along the open bonds and spatio-temporal intermittency, as it is illustrated by the thick
lines would appear. The figure is reproduced from Hinrichsen (2000b), which is under a
Creative Commons Attribution License.

at the directed percolation in a more specific way. In this picture a pore filled with water
would be equivalent to a turbulent localized patch (e.g. a puff). Both are described as
an ‘active site’. A ‘passive site’ would correspond to a dry pore or a laminar patch. The
percolation model describes how the contamination spreads (statistically averaged) from
an active site to its neighboring sites depending on the control parameter, or in other
words how likely it is that a neighboring site becomes active (see also Fig. 1.11 and
Fig. 1.12). In the example of the porous rocks the control parameter is the permeability
and the contamination corresponds to the stream of water connecting the pores. In pipe
flow the control parameter is the Reynolds number Re and the contamination corresponds
to the spreading of turbulence. At a global level, beyond the critical permeability the
stream percolates from top to bottom of the rocks. Similarly, beyond the critical Re the
turbulence is sustained.

A mixture of active and passive sites corresponds globally to a fluctuating (active)
system state. If all sites are passive, the global state is also passive. This passive state
must be unique and absorbing: once the system has reached it, the system remains there
for all times. A linearly stable laminar flow would be such an absorbing (passive) state.
Special requirements are also needed for the fluctuating (active) state, but they are more
complicated. The active state can be described by a single parameter, the mean density of
active sites.

In porous media this order parameter is the ratio of wet to dry pores, in pipe flow the
turbulent fraction. The first requirement out of three to belong to the universality class of
directed percolation (Janssen 1981, Grassberger 1982, Hinrichsen 2000a) is that the order
parameter changes continuously from the fluctuating (active) to the absorbing (passive)
state of the system, as the control parameter is varied. In pipe flow this would correspond
to a continuous decrease of the turbulent fraction down to zero (=laminar flow), when
the Re is decreased. At the same time this would correspond to a second order non-
equilibrium phase transition. The second criteria is the one excluding most systems: only
short range dynamics are allowed, similar to a contamination process. In fluid dynamics
this means that turbulence can only be generated by a neighboring patch, for example by
puff splitting. Turbulence is not allowed to be generated spontaneously from laminar flow
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Figure 1.12: Spatio-temporal evolution of active sites below (p < pc), exactly at (p = pc)
and above (p > pc) the critical probability pc. As initial condition a single site was
activated. Applied to pipe flow this would correspond to the triggering of exactly a single
puff. Below the critical Reynolds number Rec the puff would most likely decay (left
picture), at the critical point it would in average be sustained (middle picture), and for
Re > Rec the turbulence would spread (right picture). Similar spatio-temporal dynamics
from a direct numerical simulation of pipe flow are shown in Fig. 2.8 for Re ≈ Rec and in
Fig. 2.2 (B) for Re > Rec. The figure is taken from Hinrichsen (2000a) and reused with
permission of Taylor & Francis, 2000.
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Figure 1.13: Determination of the correlation length ξ⊥ and correlation time ξ‖ from a
spatio-temporal pattern. Applied to fluid dynamics, the black (active) sites would corre-
spond to turbulence, the white (passive) regions to laminar gaps. By analyzing the size
distributions of the laminar gaps depending on Re, the second (ν⊥) and third (ν‖) criti-
cal exponent can be obtained. Figure taken from Hinrichsen (2000a) and reused with
permission of Taylor & Francis, 2000.

or an underlying instability. The third requirement is about special attributes that should
be absent. Such attributes are e.g. additional symmetries or quenched randomness. From
pipe and Taylor-Couette flow no such attributes are known.
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scaling exponent 1 dim (Hinrichsen 2000b) 2 dim (Voigt & Ziff 1997)
Fstat ∝ (Re − Rec)β β 0.2765 0.584
ξ⊥ ∝ (Re − Rec)−ν⊥ ν⊥ 1.0969 0.734
ξ‖ ∝ (Re − Rec)−ν‖ ν‖ 1.7338 1.295

Table 1.1: Critical exponents from directed percolation applied to fluid dynamics. The
scaling of the turbulent fraction Fstat by approaching the critical point would be described
by the first critical exponent β. The scaling of the correlation length ξ⊥ and correlation
time ξ‖ is obtained from the distributions of laminar gaps in space and time and is reflected
in the exponents ν⊥ and ν‖ respectively.

All these requirements seem to be fulfilled for subcritical turbulence and it is an ap-
pealing idea to describe the onset of turbulence with this statistical mechanics approach.
But these requirements are not sufficient to determine if a system belongs to the directed
percolation universality class. This can only be clarified by analyzing the three critical
exponents of scaling functions. These are summarized in Table 1.1 and have been numer-
ically estimated (unpublished work of Jensen, mentioned in Hinrichsen (2000b), Voigt
& Ziff (1997)). The first exponent β describes the scaling of the density of active states
(e.g. the turbulent fraction) with the control parameter (e.g. the Re). In one dimensional
directed percolation close to the transition this exponent is β = 0.277, in two dimensions
it is β = 0.584. The scaling follows a power law. For the statistically stationary turbulent
fraction Fstat it can be written as Fstat = (Re − Rec)β. The second exponent describes the
correlation length ξ⊥, the third exponent the correlation time ξ‖. In fluid dynamics the
correlation length ξ⊥ is determined from the distribution of the length of laminar gaps ap-
pearing in the intermittent flow, as it is illustrated in Fig. 1.13. Far away from the critical
point the distribution is exponential, close to the critical point it becomes a power-law
with an exponent of ν⊥. The qualitative change of the distribution can also be seen for the
correlation time ξ‖. An excellent overview of directed percolation is given by Hinrichsen
(2000a), also pointing out the difficulties of experimental realizations (Hinrichsen 2000b).

It is assumed that directed percolation describes many systems, reaching from the
spreading of wood fire over the spreading of diseases. But the experimental confirmation
of this theory by observing the corresponding critical exponents was first provided in 2007
for liquid crystals (Takeuchi et al. 2007). Despite many attempts it could up to date not be
proven to be a valid description for turbulence (Ciliberto & Bigazzi 1988, Daviaud et al.
1990, Degen et al. 1996, Colovas & Andereck 1997, Bottin et al. 1998). But it gave many
new ideas to understand the onset of turbulence, which will be explained in the following.

Stimulated by the idea of Pomeau, Chaté & Manneville (1987) investigated a 1-dim
partial differential equation for convective turbulence. They observed spatio-temporal
intermittency close to the onset of turbulence. The analysis of the correlation time showed
an exponential distribution far away from the critical point and a power-law scaling close
to it. But the comparison to directed percolation stayed at such a qualitative description,
the corresponding exponent differed substantially from the one of directed percolation.
For a better comparison the authors suggested the application of ‘coupled map lattices’
models, that were invented just two years before by Kaneko (1985).
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Nowadays coupled map lattices are used in various fields of physics. But the motiva-
tion to invent them came from turbulence:

‘One fascinating idea for the turbulence is to regard it as a direct product
state of elementary low-dimensional systems. Landau took a limit cycle as the
elementary system and considered a model for the turbulence as a quasiperi-
odic state with infinite number of incommensurable frequencies, which has
been denied by Ruelle and Takens picture and by the abundance of lockings.
Then what happens if we choose a low-dimensional chaos as elementary sys-
tem? This question has led the author to construct and study the ‘coupled
map lattice’ model’ (Kaneko 1985).

This model was a milestone for the study of spatio-temporal intermittency in general,
although it could not confirm that spatio-temporal intermittency in one dimension belongs
to the universality class of directed percolation (Chaté & Manneville 1988). But Chaté
and Manneville still emphasized that a statistical mechanics approach to study turbulence
might be very useful.

The first statistical approach to study the onset of turbulence was performed in a plane
Couette experiment. This setup consists of two parallel plane plates, shearing in opposite
directions. The laminar flow profile is linearly stable for all Re (Romanov 1973, Drazin
& Reid 2004). By applying a localized perturbation in form of a jet turbulence was trig-
gered (Daviaud et al. 1992). At low Re the turbulence decayed and the flow remained
laminar. The mean time it takes until the flow relaminarizes is from now on referred to as
‘lifetime’, and the measurement method as ‘lifetime measurements’. Without a perturba-
tion no spontaneous generation of turbulence was observed. Daviaud et al. repeated the
procedure up to 10 times4. At slightly higher Re they observed a ‘contamination’ pro-
cess of turbulent patches that split, merged and decayed – features characteristically for
directed percolation. At the same time another group performed a similar investigation in
this intermittent regime (Tillmark & Alfredsson 1992). But the goal of both these studies
was the determination of a critical point for the onset of turbulence in plane Couette flow
rather than to seek for a connection to directed percolation.

1.2.6 Statistical analysis of flow dynamics
The first investigation aiming to analyze the flow dynamics in the transitional regime
statistically was performed by Bottin and his collaborators (Bottin et al. 1998, Bottin &
Chaté 1998). They concluded from the previous work in models that

‘the spatiotemporal intermittency framework implies that the turbulent regime
in plane Couette flow must be approached statistically’ (Bottin & Chaté
1998).

Two different sets of measurements were performed. In the first they measured life-
times of turbulent spots. But in contrast to the study of Daviaud et al. (1992) they repeated
the procedure with about 100 times much more often and found the distribution of the life-
times to be exponential (see Fig. 1.14). In addition this distribution was independent of

4The actual number was not mentioned in the original publication by Daviaud et al. (1992), but it is
stated in Bottin & Chaté (1998)
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Figure 1.14: First systematic lifetime study in shear flows. In a plane Couette experiment
turbulence was triggered and after a sudden decrease in Re the time was measured until
the flow relaminarized (‘quench experiments’). The measurements were repeated up to
120 times for a single Re. An exponential probability distribution was observed, which
means that that the probability of a turbulent patch to decay is independent of its age. The
slope of a distribution corresponds to the mean lifetime. The figure is taken from Bottin
& Chaté (1998).
Credit to Springer and The European Physical Journal B, vol. 6, 1998, page 143–155, ‘Statistical analysis
of the transition to turbulence in plane Couette flow’, Bottin, Chate, Fig. 6c, in which the material was
originally published. Reused with kind permission from Springer Science and Business Media

the kind of perturbation that was applied. With increasing Re the mean lifetime increased
rapidly from which the authors inferred a critical Rec above which the lifetimes would
diverge and the turbulence would become sustained. Below this threshold the turbulence
would be transient. These results indeed revealed for the first time that the onset of turbu-
lence has to be investigated statistically.

In the second set of measurements they analyzed the dependence of the mean turbulent
fraction on the Re, as it is suggested by the model of directed percolation. But they
could not draw a connection to this theory, because they observed a discontinuous first
order phase transition. To be able to distinguish between a first and a second order phase
transition it is crucial to measure as close as possible to the transition threshold. This
would correspond to observe turbulent fractions as close to zero as possible. In the work
of Bottin & Chaté (1998) the minimal mean turbulent fraction was about 35%. However,
I note that the system size might be very important in this context (see Chapter 4). If
the system size had been larger, it might have been possible to observe smaller turbulent
fractions. Many other questions remained open and
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‘call for an experimental setup which would allow a more detailed investiga-
tion of the threshold region. The most crucial factor in this context is to in-
crease the system size, and we hope that, in the future, carefully controlled ex-
periments with, say, aspect ratios four times larger, will be performed’ (Bottin
& Chaté 1998).

This study by Bottin and his collaborators (Bottin & Chaté 1998, Bottin et al. 1998)
was a breakthrough for investigations of the onset of turbulence for flows with a linearly
stable basic flow. It has shown that such flows have to be analyzed statistically. The obser-
vation that localized patches of turbulence are transient at low Re and that the transition
to sustained turbulence can be interpreted as a phase transition are ideas, which still play
a key role in research nowadays.

1.3 Transition to turbulence in the 21st century

1.3.1 Transient turbulence in pipe flow

In pipe flow transient turbulence was first mentioned by Brosa (1989), who observed the
decay of turbulence in numerical simulations. The first systematic statistical investiga-
tion of transient turbulence in pipe flow was performed by Faisst & Eckhardt in 2004.
Following the idea of Bottin & Chaté (1998) they measured lifetimes of large ensembles.
The direct numerical simulations were performed in a small box with periodic boundary
conditions that captured the local dynamics, but not the localization of the puffs in the
streamwise direction. Like in the plane Couette experiments (Bottin & Chaté 1998) they
observed an exponential probability distribution and the characteristic mean lifetime in-
creased with Re. The results indicated that there was a critical Reynolds number Rec at
which the lifetimes would diverge and the turbulence would be sustained (Faisst & Eck-
hardt 2004). From the theoretical side the authors connect the onset of turbulence with the
generation of a chaotic saddle in phase space. Investigations of the turbulence dynamics
indicate a chaotic behavior and the exponential distribution of the lifetimes is characteris-
tic for the escape from such a chaotic saddle. At Rec the divergence of the lifetimes would
correspond to a transition from a chaotic saddle to an attractor. But

‘the question of whether we will arrive at a turbulent attractor cannot be
answered here. But from the rapid increase [of the mean lifetime] it is clear
that it will become an attractor for all practical purposes’ (Faisst & Eckhardt
2004).

It was exactly this question that stimulated a series of experiments and further simula-
tions in pipe flow that are summarized in Fig. 1.15. But before explaining them I want to
highlight that this investigation of Faisst & Eckhardt was the first direct numerical sim-
ulation (DNS) of the Navier-Stokes equation that contributed substantially to solve the
‘Reynolds-problem’ of the critical Rec for the onset of sustained turbulence. All such
studies before were performed either experimentally or theoretically (including models)
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Figure 1.15: Mean lifetime of a puff in pipe flow. Empty symbols correspond to exper-
imentally obtained data, filled symbols to numerical results. The study of Peixinho &
Mullin (2006) and Willis & Kerswell (2007) suggested a divergence of the lifetimes at a
critical Rec, which was contradicted by Hof et al. (2006). Experiments (Hof et al. 2008,
Kuik et al. 2010) and numerical simulations (Avila et al. 2010) with substantially larger
statistical ensembles showed later that the mean lifetime increases super-exponentially
and thus does not diverge.

and this study is therefore representative for the inflection point in the investigation of
transitional turbulence towards numerical simulations.

The results of Faisst & Eckhardt (2004) were qualitatively confirmed in experiments
by Peixinho & Mullin (2006). The important invention in the experiment was here that
a single puff was triggered and the lifetime of this individual puff detected downstream.
A quantitative comparison was not possible due to the small box of the numerical sim-
ulations. Although the picture so far seemed to be consistent, it was challenged by Hof
et al. (2006) with a new set of experiments in a substantially longer pipe. They obtained
transient turbulence far above the Rec that was extrapolated from the previous experi-
ments (Peixinho & Mullin 2006) and in addition could not confirm a divergence of the
mean lifetime. Instead they observed an exponential increase with Re. Consequently they
followed that turbulence may always be transient. Only

‘the rapid exponential increase of lifetimes explains why the transient nature
of turbulence has not been observed previously: to detect the decay of tur-
bulence in a garden hose at a flow rate as low as 1 l/min (Re = 2400) would
require a physical length of the tube of 40000 km, about the Earth’s circum-
ference, and an observation time of almost 5 years’ (Hof et al. 2006).
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The dispute continued with a numerical study (Willis & Kerswell 2007) in long do-
mains that supported the divergence of the lifetimes at a Rec, but showed a shift in Re
of about +100 compared to the experiments by Peixinho & Mullin (2006) and a shift of
approximately -30 with the experiments of Hof et al. (2006). A new set of experiment
by Hof et al. (2008) increased the investigated time scales by 6 orders of magnitude and
revealed a superexponential scaling of the mean lifetimes with Re and supported thus
the transient nature of turbulence. Compared to all previous measurements the experi-
ments were conducted much more carefully and the measurement method was automa-
tized, thereby making it possible to collect much larger statistics. The dispute was finally
settled when DNS results by Avila et al. (2010) agreed quantitatively with the new results
of Hof et al. (2008). The simulations were performed as in Willis & Kerswell (2007), but
they were statistically much better resolved and reached up to higher Re. The 95% con-
fidential intervals of the lifetimes detected by DNS reflect the statistical uncertainty and
are shown in Fig. 1.15. All these studies demonstrate how difficult it is to quantitatively
describe flows like pipe flow. The timescales involved are much larger than previously an-
ticipated. No critical Rec could be detected up to 108 advective units (Hof et al. 2008) and
the superexponential scaling of the mean lifetimes indicates that such a threshold does not
exist. Turbulence seems to be always transient (Hof et al. 2008, Avila et al. 2010). Ex-
perimentally the different results and shifts in Re of the studies also indicate how difficult
it is to determine the exact Re (Peixinho & Mullin 2006, Hof et al. 2006).

In flows that become linearly unstable, like Taylor-Couette flow, a quantitative agree-
ment between theory and experiment was already proven almost 90 years ago (Taylor
1923). On the other hand the numerical study by M. Avila et al. (2010) achieved the
first quantitative agreement between simulation and experiments of flows without a linear
instability in the transitional regime. The experiments by Hof et al. (2008) were experi-
mentally confirmed in another study (Kuik et al. 2010) and can now be used as a bench-
mark to check the precision in Re of a pipe flow experiment. On the theoretical side the
picture emerges that localized turbulence in pipe flow at least in this intermittent regime
is described by a strange repeller in phase space (Hof et al. 2008, Avila et al. 2010).

1.3.2 Spatial proliferation of turbulence in pipe flow
The concept of spatio-temporal intermittency (Kaneko 1985) was introduced to pipe flow
by Moxey & Barkley in 2010:

‘While it is possible that all turbulence in pipe flow is transient, it does not
seem likely. It seems equally unlikely that lifetime measurements of localized
puffs will ultimately determine a critical Re. We believe that the key to the
transition to sustained turbulence is not in the lifetimes of localized puffs, but
in the spatio-temporal aspects of the turbulence’ (Moxey & Barkley 2010).

The ‘spatio-temporal aspects’ of their investigation were focused on the spreading of
turbulence in the transitional regime. Rotta (1956) already quantified the spreading of
turbulence, but he missed the intermittent character of turbulence at this Re and assumed
that the flow would become fully turbulent for all Re > 2000. Wygnanski et al. (1975)
captured the intermittent character of turbulence and investigated in detail how localized
turbulence spread via the ‘puff splitting’, but they were not aware of the transient nature

31



1 Introduction

of puffs. Moxey & Barkley (2010) were the first to compare the purely temporal behavior
of puffs, which is reflected in the lifetimes, with their spatial dynamics leading to a spread
of turbulence. At Rec the spreading of turbulence (called ‘contamination’) occurs

‘vastly faster than the characteristic lifetime for decay of a puff. As is well
established for directed percolation, once the probability ratio of contami-
nation to decay exceeds a critical value, turbulence has a finite probability
of sustaining indefinitely as spatial-temporal intermittency, even though any
individual turbulent patch has a finite probability of decay. Thus there is a
clear mechanism, involving spatio-temporal intermittency, that implicates a
change to finite probability of indefinitely sustained turbulence above’ Rec

(Moxey & Barkley 2010).

The idea to compare the timescales of the decay of puffs with the timescales of the
spreading of them to determine the onset of sustained turbulence in pipe flow was the
leading idea to solve the Reynolds problem. However, in this numerical study it was
assumed that the spreading of turbulence is a deterministic process and can therefore
be investigated with a single simulation. My experimental results in Chapter 2 show
that this assumption was wrong. The spreading of turbulence is a stochastic process and
only by analyzing the mean time of its occurrence and comparing it to the mean time
of the decay, the critical Rec Reynolds was looking for could be determined to Rec =

2040 ± 10. Many critical Rec have been determined in previous studies, often relying on
newly introduced concepts. In order to not confuse the reader, in this introduction only
the values of Rec estimates that were close to the one determined in this thesis have been
listed. The values reported in previous studies reach from 1700 to typically 2300 or even
up to 6000 (Darbyshire & Mullin 1995, Faisst & Eckhardt 2004, Eckhardt 2009, 2008),
but I am convinced that finally we found the ‘real critical value’(Reynolds 1883).

1.3.3 Plane Couette flow: 1st or 2nd order phase transition?
Bottin & Chaté (1998) suggested in their cutting-edge study to build a plane Couette
experiment with a larger system size to allow for more detailed studies close to the critical
point. French researchers (Prigent et al. 2003) experienced in plane Couette flow worked
for about five years on a setup that was almost 10 times larger than the one previously used
(Bottin & Chaté 1998), but even after such an effort the accuracy of the Re was still ‘at
best 7.5%’ (Prigent et al. 2003). The problem here is that a large system size corresponds
to a small gap between the plates, which is mechanically difficult to maintain constant
over the whole surface of the plates. The achieved accuracy was not enough for studies
close to the critical point.

Another problem are the large time scales involved. In the experiments the observation
time was up to 1.0 · 106 advective units to reach the statistically stationary flow state (e.g.
turbulent fraction) (Bottin et al. 1998, Bottin & Chaté 1998). However, this is not durable
for DNS even in recent years. Duguet et al. (2010) calculated the mean turbulent fraction
of a large system (800 x 365 half gap width), but the simulations were stopped after 2.0 ·
104 advective units. Since the time scales of the flow to equilibrate are increasing when the
critical point is approached (‘critical slowing down’), Duguet et al. were not able to come
as close to the critical point as the experiments (Duguet et al. 2010, Bottin et al. 1998).
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Figure 1.16: Phase transition in plane Couette flow. In the gray shaded regime turbulence
is transient. Above a critical Rec ≈ 323 the turbulence is sustained. In this regime the
mean turbulent fraction was determined experimentally (Bottin & Chaté 1998) and nu-
merically (Duguet et al. 2010). Both studies interpret their results as a first order phase
transition. A comparison of the numerically obtained data with scalings corresponding
to directed percolation indicates that a second order phase transition may be compatible
with these results.

Experiments and numerical simulations agree qualitatively and Duguet et al. interpreted
their results as a confirmation of a discontinuous first order phase transition. However,
a direct comparison of these simulations with the scaling corresponding to one or two
dimensional directed percolation as I have plotted it in Fig. 1.16 reveals that the numerical
results cannot distinguish between a first and a second order phase transition, because
they are too far away from the critical point. Manneville investigated this transition with
a model of the Navier-Stokes equation and found that it

‘could be second order (continuous) or first order (discontinuous). Exper-
iments tell us that, in the cases studied so far, it is first order and thus de-
prived of any universality (correlation lengths remain finite at threshold)’
(Manneville 2009).

The studies on the phase transition in plane Couette flow can be summarized as fol-
lows:

1. The dynamical behavior of the flow resembles that of directed percolation (which is
a 2nd order phase transition) and all requirements mentioned by Hinrichsen (2000a)
to belong to this universality class are fulfilled.

2. Models allow for a 1st and a 2nd order phase transition (Manneville 2009).
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3. Direct numerical simulations (Duguet et al. 2010) cannot resolve the time scales
and can therefore not distinguish between 1st and 2nd order transition.

4. Experiments seem to clearly observe a 1st order phase transition (Bottin et al. 1998,
Bottin & Chaté 1998). However, the relatively small system size and the deviation
of the Re on the order of 3% may change the transition qualitatively. Further expla-
nations are given in Chapter 4.

1.3.4 Taylor-Couette flow: Analogy and differences to plane
Couette flow

The first attempt to determine the phase transition in Taylor-Couette flow was performed
in 1997 by Colovas and Andereck, one year before the study in plane Couette flow by
Bottin et al. (1998). In these experiments a continuous (linear) decrease of the turbulent
fraction was observed, but the scaling of the distribution of laminar domains followed a
power-law also far away from the critical point. From directed percolation a crossover
from a power-law scaling to an exponential one would be expected for an increasing dis-
tance from the critical point (Chaté & Manneville 1987). The problem in this investigation
were the underlying long-range instabilities. In contrast to plane Couette flow, which is
linearly stable for all Re, Taylor-Couette flow becomes linearly unstable to instabilities
depending on the rotation rates of the cylinders and their radius ratia. The investigation of
Colovas & Andereck (1997) was performed in the linearly unstable regime. The ‘laminar
flow’ was not a purely azimuthal motion, but a laminar spiral mode, which triggered tur-
bulent bursts that grow in size for increasing Re. The turbulent fraction in this study refers
to the ratio of the turbulent bursts to the laminar spirals. However, the laminar spirals are
long-range coherent structures, so that the flow does not fulfill the requirements for di-
rected percolation (Hinrichsen (2000a) and section 1.2.5). It can therefore be expected
that the transition does not belong to the directed percolation universality class.

The radius ratio η of the cylinders plays an important role to connect the Taylor- and
the plane Couette system as it is illustrated in Fig. 1.17. The plane Couette system cor-
responds to η = 1 and the laminar flow is linearly stable for all Re. As η approaches
one in the Taylor-Couette system, the primary instability are still Taylor vortices but the
secondary wavy vortex state bifurcates subcritically and can be traced to lower Re. Faisst
& Eckhardt (2000) converged this wavy mode into a flow state in the plane Couette sys-
tem (e.g. the Nagate-Busse-Clever flow state (Nagata 1990, Clever & Busse 1997)) by
increasing η. In addition, they identified a parameter regime at large η, in which the flow
is linearly stable and the turbulence decays in some cases (Faisst & Eckhardt 2000). A
more detailed analysis of lifetime measurements in Taylor-Couette flow was performed
experimentally a decade later by Borrero-Echeverry et al. (2010). For a pure outer cylin-
der rotation the flow is linearly stable and the turbulence decays exponentially, exactly
like in plane Couette (Bottin et al. 1998) or pipe flow (Faisst & Eckhardt 2004). The ex-
periments have further shown that the mean lifetimes of the turbulent spots remain finite
and do not diverge.

These investigations show that pipe, plane Couette and Taylor-Couette flow have sim-
ilarities beyond that of qualitative resembles that Coles observed already in 1965. More
similarities between plane and high radius ratio Taylor-Couette flow were found by Pri-
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(a) (b)

Figure 1.17: Radius ratio dependences. Three different radius radii are displayed and
indicated by color: η = 0.71 (green), η = 0.88 (blue) and η = 0.98 (red). (a) The
influence of the radius ratio η on the curvature for azimuthal length Lazim = 10 gap width
is illustrated in comparison to a plane Couette setup (η = 1, black). (b) In experiments
different η are realized by exchanging e.g. the inner cylinder, while maintaining the outer
cylinder (indicated by the black line). An increasing η leads to a decreasing gap width.
The smaller the gap compared to the radii, the more difficult it is to reach a high accuracy
gap width. The radius radii displayed are used in the Taylor-Couette experiment built in
this thesis (see Chapter 3).
I thank M. Avila for preparing these sketches for me. A sketch similar to the one in (a) is shown in Faisst &
Eckhardt (2000).

gent et al. (2002). In their experiments they observe a quantitative agreement between
the axial wavelength of spiral-turbulence in the Taylor-Couette system and the transversal
wavelength of turbulent bands in the plane Couette system (see Fig. 1.18). However, there
were also clear differences between these flows, which are explained in the following. The
onset of turbulence in plane Couette flow depends on the amplitude of the perturbations.
If no controlled perturbation is specifically added, the flow becomes turbulent at an upper
limit of Reu, which depends on the precision of the setup. If the Re is decreased after-
ward, the flow relaminarizes at a lower limit Rel. The value of Rel depends on the lifetime
statistics, but in general Rel � Reu. This means the flow features a strong hysteresis as it
was already observed by Coles (1965).

However, such a hysteresis was not observed in the Taylor-Couette experiments by
Prigent & Dauchot (2005). In the Taylor-Couette system the hysteresis is typically be-
tween the linear instability as the upper Reu and the subcritical transition at the lower Rel

where perturbations are able to trigger turbulence (Coles 1965). The main difference be-
tween these two Taylor-Couette experiments is the radius ratio η. In the study by Coles
η = 0.881, while in the experiment by Prigent & Dauchot η = 0.983. From the theoretical
side a larger η would lead to a larger hysteresis (Faisst & Eckhardt 2000), which couldn’t
be observed by Prigent & Dauchot (2005). A hint to the reason why no hysteresis was
observed is given by an experimental study in an even larger radius ratio η = 0.99 (Carey
et al. 2007). There, the onset of Taylor vortices for a pure inner cylinder rotation could
only be detected with an accuracy of 20% in Re, most likely due to local variations of the
gap width. In the subcritical regime such deviations in the gap width may act as finite
amplitude perturbations and trigger the transition to turbulence. In the plane Couette ex-
periments, it was exactly the uncertainty in the gap width that prevented the application
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(a) (b)

Figure 1.18: Intermittent turbulence in a Taylor-Couette (a) and a plane Couette (b) ex-
periment. In Taylor-Couette flow this pattern is called ‘spiral’ or ‘barber pole turbulence’.
The usage of mirrors allowed a 360◦ view of the flow, as it is shown in this picture. The
similarities go beyond that of a qualitative one. Comparisons of the wavelength (Prigent
et al. 2002) and of lifetime dynamics (Bottin et al. 1998, Borrero-Echeverry et al. 2010)
have shown this. The figures are taken from Prigent et al. (2003).
Reprinted from Physica D, vol. 174, no. 1, Prigent, Grégoire, Chaté, Dauchot, ‘Long-wavelength modula-
tion of turbulent shear flows’, pages 100–113, 2003 with permission from Elsevier.

of larger system size setups to study the phase transition (Bottin & Chaté 1998).
These difficulties could be overcome in the new high-precision Taylor-Couette setup

that was developed within this thesis and is presented in Chapter 3. The measurements
reveal the existence of a large hysteresis, thereby providing the possibility to study the
phase transition in an ‘unperturbed’ environment. The setup has a system size 12 times
larger than the plane Couette experiments used before (Bottin et al. 1998, Bottin & Chaté
1998). Indeed the measurements in Chapter 4 show that the phase transition is of second
order, which is in contrast to previous work in plane Couette flow (Bottin et al. 1998,
Bottin & Chaté 1998, Duguet et al. 2010).
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Contribution: I built the experiment, performed the measurements1, analyzed the corre-
sponding data and prepared most of the figures (Fig. 2.1A–B, Fig. 2.3, Fig. 2.4, Fig. 2.5,
Fig. 2.6, Fig. 2.7, Fig. 2.9, Fig. 2.10) for publication. I wrote the first draft, whose struc-
ture has been preserved. The work is a combination of experiments (K. Avila, Lozar,
Hof) and numerical simulations (Moxey, M. Avila, Barkley). The main message of this
publication (determination of the critical point) is based on the experiments I performed
and analyzed.

2.1 Abstract

Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity
increases and the onset of turbulence radically changes transport efficiency and mixing
properties. Even for the well-studied case of pipe flow, it has not been possible to de-
termine at what Reynolds number the motion will be either persistently turbulent or ulti-
mately laminar. We show that in pipes, turbulence that is transient at low Reynolds num-
bers becomes sustained at a distinct critical point. Through extensive experiments and
computer simulations we are able to identify and characterize the processes ultimately
responsible for sustaining turbulence. In contrast to the classical Landau-Ruelle-Takens
view that turbulence arises from an increase in the temporal complexity of fluid motion,
here, spatial proliferation of chaotic domains is the decisive process and intrinsic to the
nature of fluid turbulence.

1all except for two in Fig. 2.5 where the perturbation was created by an obstacle
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Figure 2.1: Puff splitting in experiment and numerical simulation. (a), (b) Pressure
signals from experiment are used to distinguish the case of (a) a split puff from (b) a
single puff. A splitting is registered if the signal has peaks separated by 20D or more
and if between peaks the signal drops by at least 30%. The flow between the two puffs
does not recover to the fully developed laminar profile. (c) Space-time diagram from
numerical simulation using the spectral-element Fourier code at Re = 2350 showing the
splitting process. Streamwise vorticity at the centerline is plotted on a linear scale in a co-
moving reference frame (speed Up = 0.912U). The upstream edge of a puff is relatively
well defined while the downstream edge is fuzzy and fluctuates. Following a splitting
the two puffs propagate downstream, separated by an approximately constant distance,
and generate a twin-peaked pressure signal (a). (d) Visualization of puff splitting in a
cross-sectional (x, y)-plane, with red (blue) as positive (negative) streamwise vorticity on
a linear scale in a frame moving with the trailing edge velocity. 66D of a 88D simulation
domain is shown. At t = 0 (bottom panel) Re is impulsively changed from 2200 to 2250.
Snaphots are taken at t = 0, 1436, 1537, 1575 and 1612. Once the puff extends far enough
and the vorticity decays in its central section, a new puff emerges.
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2.2 Introduction

The seemingly simple question as to when the flow down an ordinary pipe turns turbulent
dates back to the pioneering study of Osborne Reynolds in the late 19th century (Reynolds
1883). Reynolds proposed that below a critical velocity pipe flows are always laminar,
whereas above turbulence prevails given the right initial conditions. The observation that
this critical point can be expressed in a dimensionless form was the basis of one of the
central concepts in fluid dynamics: the Reynolds number (Re = UD/ν, where U is the
mean velocity, D the pipe diameter and ν the kinematic viscosity). Curiously, while the
Reynolds similarity has proved to be valid throughout fluid mechanics, the value of the
critical point in pipe flow has been debated ever since. Values reported in textbooks and
journal papers vary widely, typically ranging from 1700 to 3000 (Darbyshire & Mullin
1995, Eckhardt 2008, 2009).

One circumstance that complicates this problem is that laminar pipe flow is stable to
infinitesimal perturbations (Drazin & Reid 2004, Meseguer & Trefethen 2003) and there-
fore in order to trigger turbulence a disturbance of finite amplitude is required (Reynolds
1883). What makes matters even more difficult is that at low Re turbulence is transient.
Here turbulence occurs in the form of localized patches called ’puffs’ (Wygnanski &
Champagne 1973) which are embedded in the surrounding laminar flow and decay ac-
cording to a memoryless process (Eckhardt et al. 2007). The rapid increase in lifetime
with Re has led to various proposed values for a critical point where the lifetime would di-
verge and turbulence would become sustained (Faisst & Eckhardt 2004, Willis & Kerswell
2007, Peixinho & Mullin 2006). However, more detailed studies (Hof et al. 2006, 2008,
de Lozar & Hof 2009, Avila et al. 2010, Kuik et al. 2010) have shown that the lifetime
of individual puffs remains finite and only approaches infinity in the infinite Re limit. In
analogy to observations in model systems known as coupled-map lattices (Kaneko 1985),
the point has been raised that in addition to purely temporal aspects, spatial dynamics
are important for the long term behavior in fluid systems (Pomeau 1986, Bottin & Chaté
1998, Bottin et al. 1998, Manneville 2009). Spatial coupling can give rise to a critical
point where complex dynamics is sustained even though individual turbulent patches are
transient. In a numerical study of pipe flow, Moxey and Barkley (Moxey & Barkley 2010)
observed that at Re ≈ 2300 turbulent puffs delocalize and the turbulent fraction increases,
as expected in a system with spatio-temporal dynamics. However, the stochastic nature of
the spatial coupling was not taken into account and the extremely long timescales intrinsic
to the flow could not be resolved in the simulations. In this work we resolve the critical
point in pipe flow and quantify the relevant process sustaining turbulence in this and other
linearly stable shear flows.

2.3 Long-pipe experiments

Determining the point where the proliferation of turbulence outweighs its decay and tur-
bulence eventually becomes sustained requires that the timescales of both decay and
spreading processes be captured. Since turbulent puffs move downstream at approxi-
mately the mean flow velocity, a long pipe is required to observe long timescales. Using a
precision glass tube with a relatively small diameter (D = 4±0.01mm) and overall length
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of 15m, a total dimensionless length of 3750D is achieved. The pipe is composed of 14
sections joined by machined perspex connectors which provide an accurate fit. A smooth
inlet together with careful alignment of the individual pipe sections allows the flow to re-
main laminar up to Re = 4400. Deviations in Re were kept below ±5 throughout each set
of measurements, which extended over periods of up to 45h. This precision was achieved
by stringent control of both the pressure difference driving the flow and the fluid (water)
temperature (±0.05K). A detailed description of the experimental setup can be found in
(Hof et al. 2008).

Starting from a fully developed laminar flow allows us to induce turbulence in a con-
trolled manner and quantify the spreading rate at some downstream position. The ex-
perimental procedure is to create a single turbulent puff close to the pipe inlet and to
monitor any changes in the turbulent fraction at downstream positions. It is important
that a perturbation is chosen which efficiently triggers turbulence. In many earlier studies,
e.g. (Wygnanski & Champagne 1973, Rotta 1956), turbulence was induced by insertion
of a static obstacle close to the pipe inlet. Such obstacles provide a continuous pertur-
bation and at high Reynolds numbers the flow downstream is fully turbulent whereas in
the transitional regime (Re . 3000) irregular sequences of turbulent and laminar phases
are created (Rotta 1956). At lower Reynolds numbers (Re ≈ 2000) on the other hand
sufficiently strong continuous perturbations cause plug shaped velocity profiles which are
unable to sustain turbulence (Hof et al. 2010) and lead to relaminarization. Hence even
for large disturbance levels continuous perturbations will fail to trigger turbulence at low
Reynolds numbers. To avoid such problems in the present study an impulsive perturbation
was chosen, consisting of a water jet injected through a circular hole of 0.2D in the pipe
wall 250D downstream of the inlet. The duration of the perturbation was adjusted for each
set of measurements (8− 20 ms, corresponding to advection of approximately 1− 2.5D at
the mean flow velocity) ensuring that only one single puff is generated from each pertur-
bation. Different amplitudes were tested and the results were found to be independent of
the perturbation strength. In relation to the mass flow in the pipe, typical injection rates
were about 2.5%. To establish that results are independent of the perturbation, additional
measurements were carried out using an obstacle to impulsively disturb the flow. A thin
wire (0.8mm in diameter and 10 mm in length) was inserted into the pipe 150D from the
inlet. The wire was held against the pipe wall and aligned with the pipe axis using a small
magnet attached to the outside of the pipe. When against the wall the disturbance created
by the wire is too small to trigger turbulence for the Re investigated. When the wire was
moved impulsively, (azimuthally along the pipe wall by approximately 0.5mm over about
0.1s), a single turbulent puff was triggered.

After triggering disturbances, the flow is monitored by two downstream pressure sen-
sors (Fig. 2.6). The first one, located 300D from the inlet, confirms that each perturbation
results in the creation of a single puff. The second one, which can be positioned at var-
ious distances L from the perturbation, is used to distinguish cases where multiple puffs
arrive (Fig. 2.1(a)) from those where only the single puff arrives (Fig. 2.1(b)). This is a di-
rect measurement of whether the turbulent fraction in the flow has increased or remained
constant during downstream propagation.
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Figure 2.2: Spreading of turbulence in numerical simulation. Space-time diagram at
Re = 2300 (a) and 2450 (b) from numerical simulation using the hybrid spectral finite-
difference code showing how turbulence proliferates starting from a localized puff at Re =

2200 as initial condition. The cross-sectional average of streamwise vorticity squared
is plotted on a logarithmic scale in a co-moving reference frame at speed 0.947U and
0.94U, respectively. At Re = 2300 the expansion process is dominated by discrete steps,
corresponding to puff splits, while at 2450 expansion is more smooth, more rapid, and
individual puffs are no longer easily identified.
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2 The onset of turbulence in pipe flow

2.4 Simulations
To complement experiments and gain insights into the underlying spread of turbulence,
we have carried out extensive numerical simulations. Two independent numerical codes
have been used; one is a spectral-element Fourier code (Blackburn & Sherwin 2004)
which solves the Navier–Stokes equations in Cartesian coordinates (DNS1), and the other
a hybrid spectral finite-difference code (Willis & Kerswell 2009) which solves the equa-
tions in cylindrical coordinates (DNS2). Both methods use periodic boundary conditions
in the streamwise direction and impose constant unit mass flux, ensuring no variation in
Re during any run. The codes have been tested both against each other, producing statisti-
cally identical results, and by increasing the resolution of the discretizations. Details have
been reported elsewhere (Avila et al. 2010, Moxey & Barkley 2010) -(see also supporting
online materials).

2.5 Puff splitting
For all of the lower Re under investigation, an increase in the turbulent fraction manifests
itself in the form of ‘puff splitting’ (Wygnanski & Champagne 1973, Nishi et al. 2008),
where new puffs are seeded downstream of existing ones (Fig. 2.1(c) and (d)). Directly
downstream of a turbulent puff the flow has not recovered a parabolic profile and cannot
sustain turbulence (Hof et al. 2010). To successfully seed a new puff, a patch of vorticity
has to escape far enough downstream from the initial puff to an area where the velocity
profile is sufficiently parabolic. This process can be observed in Fig. 2.1(c) where regions
of large vorticity fluctuations repeatedly propagate downstream and decay. Only during a
sufficiently large excursion does a new puff arise downstream of the old one.

Fig. 2.2(a) illustrates how, starting from a single puff, turbulence proliferates through
a sequence of splittings at Re = 2300. For Re ≤ 2300 for all our measurements (nu-
merical as well as experimental) spreading of turbulence and hence any increase in tur-
bulence fraction (Fig. 2.10) was exclusively observed in the form of puff splitting. Only
at Reynolds numbers somewhat larger than considered here (Re > 2400) do individual
puffs start to noticeably expand (Fig. 2.2(b)) such that the overall spreading of turbulence
becomes a complex mixture of splitting as well as growth and merging of individual tur-
bulent domains.

2.6 Characteristic time of memoryless process
Due to the stochastic nature of the splitting process, a statistical approach must be used.
To investigate splitting statistics, we have performed ensembles of numerical simulations
starting from independent puffs (Table 2.3) from which we determine the time for each
to split. As shown in Fig. 2.3, the probability for a puff to remain localized, i.e. not split,
can be described by 1 − P(Re, t) = exp(−(t − t0)/τ(Re)) where t is the observation time,
t0 is a formation time and τ(Re) is the Re dependent characteristic time for the process.
The formation time t0 includes any equilibration time for the initial condition to evolve to
the turbulence attractor at the particular Re and the intrinsic time needed for splitting. In
principle t0 depends on Re as well as on the initial conditions used in ensemble runs, but
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Figure 2.3: Probability distributions for a puff to remain in equilibrium. P is the
probability that a puff will split before time t. Hence the plotted quantity 1 − P is the
probability that a puff remains a single localized puff up to time t. The numerical distribu-
tions at Re = 2300 and Re = 2350 are obtained from all first splitting times in ensembles
of simulations using both the spectral-element Fourier code (DNS 1) and the hybrid spec-
tral finite-difference code (DNS 2). Experimental distributions at Re = 2195 and 2255 are
obtained from statistics collected from fixed downstream locations L converted to time
by the Re dependent mean puff propagation speed Up. All distributions are of the form
exp(−(t − t0)/τ), as illustrated by the dashed lines, where t0 is a development time for
splitting to take place (t0 ≈ 150 for DNS, while for experiment t0 is nearer to 100 and has
greater uncertainty.) The exponential form of the distributions indicates that splitting is a
memoryless process with characteristic time τ.

from the two detailed cases in Fig. 2.3 as well as from the time of first splitting at other
Re, we find consistently 100 . t0 . 200.

Experimental measurements (Fig. 2.3 circels and squares) also reveal exponential dis-
tributions. Observations were carried out at different distances, L, which are translated
into observation time by t = L/Up, where Up = 1.482 − 2.416 × 10−4Re is an approxi-
mation to the mean puff speed in this Re range, as obtained by numerical simulation (see
Fig. 2.6).

Beyond the initial formation time the distributions are exponential and hence memo-
ryless, reflecting that the probability of splitting does not depend on the age of the puff

under investigation. The splitting probability is constant in time and characterized solely
by τ, which after the initial formation time gives the mean time for a puff to split and the
turbulence fraction to increase.

Experimentally it is far easier to keep the observation point fixed during one series
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Figure 2.4: Probability of puff splitting after traveling a fixed distance. The five data
sets correspond to distances L in the experiments as indicated in the legend. Here the
splitting probability P is computed as P = k/n, where k is the number of events that split
and n the total number of realizations. The error bars in the vertical direction are 95%
confidence intervals for the parameter P of a binomial distribution as a function of (n, k)
obtained with the Wilson method (Brown et al. 2001), whereas in the horizontal direction
they show the uncertainty in Re during a set of measurements. The solid lines correspond
to the super-exponential fit from Figure 2.5 without additional fitting parameters.

of measurement and vary Re in order to determine P(Re, t) from which τ(Re) can be ob-
tained. The results for five distances L are shown in Fig. 2.4. For each data point typically
2000 measurements are performed, but for the lowest Re, up to 60,000 measurements are
used. As expected, at large Re the splitting probability is high and decreases as Re is
reduced. Curves for fixed L are S-shaped indicating that P→ 0 only asymptotically as Re
decreases. All measurements are well approximated by a single super-exponential fit with
only two-parameters, τ = exp(exp(aRe + b)), where a = −0.003115 and b = 9.161 (solid
lines in Fig. 2.4). In contrast to earlier studies (Moxey & Barkley 2010, Wygnanski &
Champagne 1973, Nishi et al. 2008) our data indicate that there is no critical point where
the spatial proliferation of turbulence abruptly sets in. The tendency to split appears to be
intrinsic to turbulence even at low Reynolds numbers and turbulent patches are not in an
equilibrium state (Wygnanski et al. 1975). It is hence the stochastic details of this process
that decide if turbulence will either invade the entire domain or recede and eventually
decay.
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2.7 Critical point
To determine this critical point for the onset of sustained turbulence it is necessary to
compare the timescale for turbulence to spread through splitting to the timescale for tur-
bulence to decay. The dependence of the mean splitting time on Re is plotted in Fig. 2.5.
From each experimental data point in Fig. 2.4 the mean time τ is obtained and plotted
(colored symbols on right branch in Fig. 2.5), together with the single super-exponential
fit (solid line in Fig. 2.5). In order to obtain τ from the experimental probabilities a forma-
tion time of t0 = 100 and uncertainties in the splitting time are included in the error bars.
Note that because in experiments observation times are generally large the uncertainties
in t0 are negligible compared to statistical errors.

Additionally, τ values from simulations are included in Fig. 2.5 (black solid triangles),
showing that results from both numerical codes are in excellent agreement with the exper-
imental data. From ensemble simulations one obtains directly the times for each split and
one obtains a maximum likelihood estimate of τ from the memoryless character of the
splitting process (Avila et al. 2010, Lawless 2003). The rapid-increase in splitting times
make it infeasible to obtain τ numerically at low Re.

The left branch in Fig. 2.5 summarizes previously measured mean lifetimes for tur-
bulent decay (Hof et al. 2008, Avila et al. 2010, Kuik et al. 2010) together with a single
super-exponential fit for mean lifetimes. The intersection at Re ≈ 2040 marks where the
mean lifetime is equal to the mean splitting time and to the right of the intersection split-
tings outweigh the decay of puffs. Analyzing the data in terms of the turbulent fraction
results in the same critical point (see Fig. 2.10) confirming the procedure applied here.

Typically in statistical phase transitions, critical points are not identical to the exact
balance point of two competing processes due to correlations. For example in the standard
contact process (Harris 1974, Hinrichsen 2000a) the spreading (contamination) rate of an
active phase has to outweigh its decay (recovery) rate by a ratio of about 3 before the
active phase becomes sustained. While in the present case the long timescales make it
impossible to measure other signatures of criticality such as scale invariance, the super-
exponential scaling of the two processes ensures that the critical point will be almost
indistinguishable from the intersection point. For an increase in Re of 10 (or 0.5%) above
the critical point, the splitting rate already outweighs the decay rate by a factor of 4.
Therefore the difference between the intersection point and the critical point is of the
same order as the experimental uncertainty in Re and 2040± 10 provides a close estimate
of the critical point for the onset of sustained turbulence.
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Figure 2.5: Mean lifetime of a puff before decaying or splitting. Full colored symbols
correspond to experimental splitting measurements. Measurements downstream of jet in-
jection are at different distances L as indicated in Fig. 2.4. Measurements downstream of
an obstacle perturbation are at L = 1700. The full black triangles show the characteris-
tic splitting time obtained from direct numerical simulations using the spectral-element
Fourier code (DNS 1) and the hybrid spectral finite-difference code (DNS 2). The solid
curve given by τ = exp(exp(−0.003115Re+9.161)) and approximates the Reynolds num-
ber dependence of mean time until a second puff is nucleated and the turbulent fraction
increases. This curve was obtained by fitting the data sets with distances L = 1664, 2100
and 3380, whereas results from shorter pipes were not fitted due to the stronger influence
of the uncertainty in t0. The dashed curve is given by τ = exp(exp(0.00556Re − 8.4988))
and approximates the mean time until turbulence decays and the flow relaminarizes.
Both curves correspond to super-exponential scaling with Re and have a crossover at
Re = 2040 ± 10, determining the transition between transient and sustained turbulence in
pipe flow in the thermodynamic limit.
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2.8 Conclusion
The complexity of the transition process encountered in pipe flow is common to many
shear flows, including Couette, channel, duct and boundary layer flows. In all these cases
turbulence is found despite the stability of the base flow and first takes the form of lo-
calized patches which are transient. The key to the approach here to determine the onset
and sustainment of turbulence has been to separate the analysis of decay and prolifera-
tion mechanisms, and this approach should be equally applicable even though details of
these mechanisms may differ from case to case. The intermittently alternating laminar
and turbulent regions encountered in pipe flow just above criticality are intrinsic to the
problem and place pipe flow in the larger theoretical framework of spatiotemporal inter-
mittency (Kaneko 1985, Chaté & Manneville 1988) and nonequilibrium phase transitions
where universal scaling properties may be expected (Rolf et al. 1998, Hinrichsen 2000a).
While in the present study the spatial interaction is relatively simple due to the clear sepa-
ration of adjacent puffs, further above the critical point (Re & 2400) the dynamics quickly
becomes increasingly complicated with domains merging and annihilating. To compre-
hend this increasing spatial complexity sets challenges for future studies and is key to our
understanding of the onset and nature of turbulence.

2.9 Acknowledgments
We thank A. P. Willis for sharing his hybrid spectral finite-difference code. We acknowl-
edge the Deutsche Forschungsgemeinschaft (project FOR 1182), the Max Planck Society
for financial support. DB thanks the Leverhulme Trust and the Royal Society, and the
Engineering and Physical Sciences Research Council(grant EP/F017413/2) for financial
support. D.B. thanks the Leverhulme Trust and the Royal Society for their support. MA
and BH acknowledge computing resources from GWDG and the Jülich Supercomputing
Centre (grant HGU16), where DNS2 were performed. DM and DB acknowledge comput-
ing resources from the Centre for Scientific Computing, University of Warwick and Grand
Equipement National de Calcul Intensif-Institut du Développement et des Ressources
en Informatique Scientifique (grants 2010-1119 and 2011-1119) where DNS1 were per-
formed. K.A. acknowledges support from the International Max Planck Research School
for the Physics of Biological and Complex Systems and the Göttinger Graduate School
for Neurosciences and Molecular Biosciences.

47



2 The onset of turbulence in pipe flow

2.10 Supplementary Online Material

2.10.1 Materials and Methods

Numerical Simulations
The numerical results presented here have been obtained with two distinct methods.

The first (DNS1) is the spectral-element–Fourier code Semtex (Blackburn & Sherwin
2004), which solves the Navier–Stokes equations in Cartesian coordinates (x, y, z). 36
spectral elements are used to represent the circular (y, z) cross-sections of a pipe. Ele-
ments are placed to mimic the radial distribution of Chebyshev collocation points, with
fields approximated using a 12th order polynomial expansion basis within each element.
Fourier modes are used in the periodic axial direction at a density of 768 complex modes
(1536 collocation points) per 100D in pipe length.

The second (DNS2) is the hybrid spectral finite-difference method of Willis & Ker-
swell (2009), which solves the equations in cylindrical coordinates (x, r, θ). The numeri-
cal discretization consists of a non-equispaced 9-point finite-difference stencil in r and of
Fourier modes in θ and z. Here 56 radial points, ±32 azimuthal Fourier modes and ±1024
axial Fourier modes (64 and 2048 collocation points, respectively) have been used per
L = 32πD ' 100D in pipe length.

Both methods use periodic boundary conditions in the streamwise direction, fix the
diameter at D = 1, and impose constant volume flux (so that U = 1), ensuring no variation
in Re (which is given by 1/ν), during any run.

Initial conditions for ensemble runs where obtained from snapshots of simulation of
puffs at lower Re, similarly to the approach in puff lifetime studies (Avila et al. 2010).
In the case of the spectral-element–Fourier (DNS1) runs, all such initial conditions were
generated from simulations at Re = 2100 with snapshots taken every 20 (D/U). In the
case of the hybrid spectral finite-difference (DNS2) runs, all such initial conditions were
generated from simulations at Re = 2200 with snapshots taken every 10 (D/U).
Experiments: Pressure measurements
Pressure measurements are performed at two positions along the pipe. The first measure-
ment is made 50D downstream of the perturbation in order to verify the generation of a
single puff by the perturbation. The second one is located at various distances L > 50D
from the perturbation in order to determine the subsequent turbulent fraction. Sensors
measure the pressure difference over 3D along the pipe. Pressure sensors are connected
via tubes to pressure taps in the pipe wall as illustrated in Fig. 2.6. We used the low pres-
sure sensor DP45 from Validyne with the diaphragm no. 14 (0.021 - 0.049 PSI). Special
care was taken to remove all airbubbles from the tubes and sensor prior to measurements.
Such air pockets could alter the signal and even reinduce disturbances into the pipe under
unsteady flow conditions.
Puff speed

To convert between distances and times and to plot puffs in co-moving frames of
reference, We use the following approximation for the Reynolds number dependent puff

speed:
Up = 1.482 − 2.416 × 10−4Re (2.1)

This is shown graphically in Fig. 2.7.
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Figure 2.6: Pressure difference measurement at a machined perspex connector. (a) The
connector features three holes of 0.2D diameter and separated by 3D, of which here two
neighboring ones are used for the pressure measurement. Air bubbles are removed from
the sensor and the tubing prior to usage. The precision glass tube to the left and right
are covered by insulating materials to minimize temperature effects and light exposure (to
avoid algae growth). (b) The pressure signals are then analyzed to detect the number of
peaks (here one, marked by the blue diamond) and the length of the turbulent region at
20% of the maximal pressure peak, indicated by the red line.

Obtaining confidence intervals for DNS
As seen in Table 2.3, each observed lifetime t1, . . . , tn obtained through DNS is cen-

sored by imposing an upper bound on the simulation time so that ti ≤ tmax. In Lawless
(2003) this is defined as type I censoring, for which exact confidence intervals do not exist
and must therefore be approximated numerically. Given the small number of samples, the
central limit theorem provides inaccurate intervals, and so here we opt to use the tech-
nique of bootstrapping as seen in appendix D.2 of Lawless (2003). The procedure for
generating confidence intervals is as follows:

1. Generate a pseudorandom sample t∗1, t
∗
2, . . . , t

∗
n by sampling from the set of lifetimes

with replacement.

2. Calculate the maximum likelihood estimator τ̂∗1 of this data as

τ̂∗1 =
1
r∗1

n∑
k=1

t∗k ,

where r∗1 is the number of uncensored lifetimes and t0 + t∗k = tmax.

3. Repeat the previous two steps B times to obtain bootstrap samples {τ̂∗1, τ̂
∗
2, . . . , τ̂

∗
B}.

4. Sort this data so that τ̂∗b ≤ τ̂
∗
b+1.

Assuming B = 10k where k ≥ 2, confidence intervals at level 1 − α may then be read
off as [τ̂∗Bα/2, τ̂

∗
B(1−α/2)].
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Analysis of the experimental data
The analysis of each set of experimental measurements leads to a splitting probability

P(Re, L) = r/n. Here L is the downstream distance from the perturbation and r is the
number of runs that splitted out of a total of n (see Table 2.1). In the first step L is
converted into time t by using the puff speed approximation of equation (2.1). The mean
time τ of the splitting process with formation time t0 = 100 is then calculated as:

τ =
t0 − t

log(1 − P(Re, t))
(2.2)

The 95% confidential intervals P (shown in Fig. 2.4 of the paper) are estimated by the
Wilson method (Brown et al. 2001):

Perror = P ±
1.96n1/2

(n + 1.962)
(P(1 − P) + (1.962/(4n)))1/2 (2.3)

By inserting Perror into (2.2) confidence intervals for τ are obtained. Note that the final
error bars for τ shown in Fig. 2.5 of the paper include the uncertainty in t0 ∈ [50, 150].
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2.10.2 Supporting Figures
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Figure 2.7: Numerically computed puff speed (squares) using the hybrid spectral finite-
difference code. The puff speed is very well approximated by Eq. 2.1 over the range
2000 ≤ Re ≤ 2400 plotted as red dashed line. Circles are from experiments in de Lozar
& Hof (2009) and triangles from Hof et al. (2005).
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Figure 2.8: Space-time diagram for a puff at the critical Reynolds number Re = 2040.
Streamwise vorticity is plotted on a linear scale in a co-moving reference frame (speed
Up = 0.9873U from Eq. 2.1). There are fluctuations in the width and intensity, but on
the whole the size and speed of a puff at this Re is constant, i.e. it is an ‘equilibrium
puff’ (Wygnanski et al. 1975). Based on the evidence presented in the paper, the puff will
eventually, with nearly equal probability, decay or split. However, the characteristic time
for this to occur is more than 107D/U, considerably longer than the 4 × 103 D/U shown
here.
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Figure 2.9: Enlargement of Fig. 2.5 in the vicinity of the critical point.
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Figure 2.10: Increase of the turbulent fraction from experimental measurements defined
as I = (S 3380 − S pu f f )/S pu f f . At each Re the size of the turbulent region is measured
at a distance of L = 3380 from the perturbation by setting a threshold on the pressure
signal (see also Fig. 2.6 (B)). The measurement is subsequently repeated to determine the
average turbulent size (S 3380). Finally, the value is normalized with respect to the mean
size of a single puff (S pu f f ) measured at this Re using the same threshold. The dotted
line connects measurements to guide the eyes. Below the critical point Rec ' 2040 the
turbulent fraction decreases, as indicated by negative values of I, whereas for supercritical
Re it increases. The error bars in the vertical direction are 95% confidence intervals of the
increase of the turbulent fraction. Note, that they are hidden by the symbol in most of the
cases. The size of a single puff is here about S pu f f ≈ 25D ± 10D.
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2.10.3 Supporting Table

Table 2.1: Tabular data for Fig. 2.5 (Experiment) Characteristic splitting time τ from ex-
periment (jet perturbation) as a function of Reynolds number Re and t0 = 100. Each row
corresponds to a set of measurements. The fourth and fifth columns indicate the number
of splitting events r and total number of runs n.

L Re τ r n

350 2252 2735 21 221
2273 1801 99 699
2295 1062 415 1806
2333 663 144 417

790 2095 826518 17 19844
2173 33776 22 1037
2252 3817 39 221
2273 2080 451 1497
2295 1240 1302 2868
2333 673 282 417
2379 404 3600 4229

1664 2199 17702 76 854
2237 6633 54 243
2277 2238 182 344
2308 1274 123 167
2327 861 583 676
2351 642 922 990

2100 2045 9434617 4 18636
2107 852816 20 8298
2119 574935 25 6975
2170 48717 156 3711
2237 6721 66 243
2253 4777 61 169
2277 2357 206 344
2308 1216 139 167
2324 778 635 676
2351 548 972 990
2385 485 960 970

L Re τ r n

3380 2032 27338718 7 57823
2060 3715436 18 20073
2095 1042648 26 8074
2142 187364 31 1722
2185 49835 66 989
2201 25358 178 1397
2212 19142 160 966
2239 7525 366 986
2253 5896 2666 5950
2269 3728 1562 2557
2283 2830 4226 5928
2305 1654 1029 1165
2325 975 1825 1873

Obstacle

1700 2214 9719 8 50
2285 1691 32 50
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Table 2.2: Tabular data for Fig. 2.5 (Lifetime) Characteristic decay time τ from exper-
iment (jet perturbation) as a function of Reynolds number Re and t0 = 0. Each row
corresponds to a set of measurements. The fourth and fifth columns indicate the number
of decaying events r and total number of runs n.

L Re τ r n

3380 2015 1014588 67 20052
2032 9262569 22 59773

Table 2.3: Tabular data for Fig. 2.5 (DNS) Characteristic splitting time τ from direct nu-
merical simulations as a function of Reynolds number Re. The second and third columns
indicate the number of splitting events r and total number of runs n. The runs were termi-
nated after registering a splitting or after a truncation time of tmax. The earliest splitting
time for a set of runs is indicated as t1. Upper and lower confidence intervals ±∆τ are
given in columns 7 and 8, respectively are generated using B = 105 bootstrap samples.

Re τ r n t1 tmax +∆τ −∆τ

DNS1 2275 1795 15 30 281 1500 1349 664
2300 1042 22 30 177 1500 550 344
2325 563 27 30 233 1500 247 184
2350 445 48 50 170 1500 133 109
2375 454 29 30 147 1500 153 116

DNS2 2250 5696 12 50 410 2000 6465 2269
2300 1923 29 60 194 1500 965 572
2350 484 42 45 130 1500 165 130
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Title: ‘High-precision Taylor-Couette experiment to study subcritical transitions and the
role of boundary conditions and size effects’
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Contribution: I designed and built the corresponding experiment (with the support of
an external engineering office). I wrote the paper (the introduction was polished by B.
Hof, minor comments about the rest), decided on the illustrations from the design and
prepared them with annotations as figures. I performed all measurements, analyzed them
and made all figures. Although the main focus of the paper is a technical description of
the setup, the measurements included in the paper (stability diagram) shed a new light on
the subcritical transition to turbulence in Taylor-Couette flows.

3.1 Abstract

A novel Taylor-Couette system has been constructed for investigations of transitional as
well as high Reynolds number turbulent flows in very large aspect ratios. The flexibility
of the setup enables studies of a variety of problems regarding hydrodynamic instabilities
and turbulence in rotating flows. The inner and outer cylinder and the top and bottom
endplate can be rotated independently with rotation rates of up to 30 Hz, thereby covering
five orders of magnitude in Reynolds numbers (Re = 101 − 106). The radius ratio can be
easily changed, the highest realized one is η = 0.98 corresponding to an aspect ratio of
260 gap width in the vertical and 300 in the azimuthal direction. For η < 0.98 the as-
pect ratio can be dynamically changed during measurements and complete transparency
in the radial direction over the full length of the cylinders is provided by the usage of a
precision glass inner cylinder. The temperatures of both cylinders are controlled indepen-
dently. Overall this apparatus combines an unmatched variety in geometry, rotation rates
and temperatures, which is provided by a sophisticated high-precision bearing system.
Possible applications are accurate studies of the onset of turbulence and spatio-temporal
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intermittent flow patterns in very large domains, transport processes of turbulence at high
Re, the stability of Keplerian flows for different boundary conditions and studies of baro-
clinic instabilities.

3.2 Introduction

3.2.1 Applications of the Taylor-Couette setup

Taylor-Couette flow is the flow of fluid in the gap between two concentric rotating cylin-
ders and was first devised more than a century ago by Mallock and Couette in order to
determine the viscosity of fluids (Mallock 1888, 1896, Couette 1890). Since then, the flow
in this geometry has become one of the most widely studied problems in fluid dynamics,
particularly for investigations of hydrodynamic stability, the onset of chaos and turbulence
(Cross & Hohenberg 1993). Taylor demonstrated that the onset of the primary centrifugal
instability could be accurately predicted by linear stability analysis (Taylor 1923). With
increasing rotation rate of the inner cylinder the flow undergoes various transitions and
exhibits a great variety of flow states while it gradually becomes turbulent (Coles 1965).

Similarly if both cylinders are rotated (either co or counter rotation) and the gap (and
hence curvature) is large the flow is still dominated by the centrifugal instability followed
by bifurcation scenarios leading to chaos. The majority of Taylor-Couette studies were
concerned with such supercritical transition scenarios (Andereck et al. 1986, Dominguez-
Lerma et al. 1986), including their dependence on finite-size effects (Benjamin 1978,
Heise et al. 2009). This transition type bears many similarities to Rayleigh-Benard con-
vection, which is thermally driven fluid confined between a hot bottom and a cold top
plate. Recently a large Taylor-Couette facility, the Twente-Turbulent-Taylor-Couette ex-
periment has been built to compare transport properties and further explore analogies
between these two flows in the turbulent regime (van Gils et al. 2011a).

A qualitatively very different transition scenario is found in Taylor-Couette (TC) if
the gap is small and the outer cylinder rotates faster than the inner one. In this case the
flow typically goes directly from laminar to turbulent and this transition already occurs in
regimes where the laminar flow is linearly stable (hence resulting from finite amplitude
perturbations). From the theoretical side much less is known about this transition type
because standard stability analysis fails here. Experimental studies of this regime on the
other hand are technically very challenging because perturbation levels have to be kept
low (to avoid uncontrolled transition) while at the same time the gap needs to be small.

Overall only very few experiments addressed this regime. What has been found so
far is that right after transition turbulence is spatially intermittent and typically only fills
part of the flow domain. Flows can either consist of alternating bands of laminar and
turbulent motion, known as spiral or barber-pole turbulence (Coles 1965), or of isolated
transient spots surrounded by laminar flow (Borrero-Echeverry et al. 2010). Coles already
noted that ’these are the same properties which distinguish the pipe flow’ (Coles 1965).
In pipes at low Reynolds numbers turbulence appears in the form of localized structures
(Reynolds 1883) (called puffs in pipe flow) which are transient and decay after a finite
time (Hof et al. 2006, 2008, Avila et al. 2010, Kuik et al. 2010). However, the ability
of such puffs to spread and split thereby generating new puffs can statistically outweigh
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the decay of individual puffs, leading to a sustainment of turbulence (Avila et al. 2011,
Barkley 2011). This non-equilibrium phase transition between transient and sustained
turbulence takes place at Reynolds number Re = 2040 ± 10 (Avila et al. 2011) and is
believed to be of second order (Barkley 2011, Allhoff & Eckhardt 2012).

How these recent findings in pipe flow can be related to Taylor- and plane Couette
flows is not yet understood. One of the main differences being that turbulence cannot
only spread in the stream-wise but also in the span-wise direction, leading to spatial inter-
mittency in two dimensions. The transition scenario is thus likely to be more complicated.

Earlier investigation of two dimensional intermittent flow patterns were carried out in
plane Couette flow (Bottin & Chaté 1998, Duguet et al. 2010). From measurements of the
mean turbulent fraction as a function of Re the authors inferred that (in contrast to pipe
flow) here the transition is of first order. However, the recent studies of pipe flow (Avila
et al. 2011) infer that equilibrium turbulent fractions can only be determined accurately
if domain sizes are much larger than previously expected. Therefore it is also not clear
if the system size was sufficient in these earlier Couette experiments to unambiguously
determine the nature of this transition. Unfortunately large plane Couette experiments
are technically difficult to control (Bottin & Chaté 1998) with deviations of the order of
7 % (Prigent et al. 2003), and numerical simulations that would match the time scales
used in the experiments are currently too expensive to allow statistical studies (Duguet
et al. 2010). Another possibility to still study this transition is to use a TC experiment,
which is easier to control (including the boundary condition) and offers all the advantages
of a closed system. In the TC system the azimuthal length (at midgap) Lazim depends on
the radius ratio η of the two cylinders ( Lazim = π(η + 1)/(1 − η)): the larger the radius
ratio the larger the azimuthal length. The limit of η = 1 corresponds to plane Couette
flow and hence for flows in narrow gap experiments with a faster outer cylinder speed the
transition becomes subcritical just like in plane Couette flow (Faisst & Eckhardt 2000,
Prigent et al. 2002). However as η approaches the value of one not only the flow states
resemble each other, but also some of the technical problems. As the gap-width in high-
radius ratio TC systems is very small compared to the radii of the cylinders, any small
geometric imperfection of either cylinder may produce a substantial loss of accuracy in
the gap width and hence influence the dynamics (Schultz-Grunow 1959). For example,
the super-critical onset of Taylor vortices in an η = 0.99 experiment could only be deter-
mined with an accuracy of 20 % in Re (Carey et al. 2007). In the subcritical regime the
precision of the apparatus is even more important: imperfections may induce finite am-
plitude perturbations that already trigger turbulence in an uncontrolled manner and this
would make measurements of characteristic quantities in the asymptotic limit (e.g. equi-
librium turbulent fraction) of the idealized system impossible. Such problems occurred in
previous plane Couette experiments and high-radius ratio TC setups (η = 0.983) (Prigent
et al. 2003) (see Section 3.5.2). The purpose of this paper is to show that it is nevertheless
possible to built a TC apparatus overcoming these challenges and allowing to study the
nature of the subcritical phase transition between decaying and spreading turbulence in a
large system of 311 (azimuthal) x 263 (axial) gap width (η = 0.98).

In recent years TC flows have been used to study the stability of quasi-Keplerian ve-
locity profiles. Here the azimuthal velocity component decreases in the radial direction
(with r−1.5 for Keplerian), whereas the angular momentum increases. Flows of this type
occur in astrophysical accretion discs and following a criterion by Lord Rayleigh it is well
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known that such velocity profiles are linearly stable (Rayleigh 1917). However, observa-
tions in astrophysics infer that such flows must be turbulent because the observed accre-
tion rates are orders of magnitude shorter than one would expect from laminar (molecular)
transport. So there must be a physical mechanism leading to instability and resulting in
higher (turbulent) angular momentum transfers. The TC setup offers the possibility to
generate a quasi-Keplerian velocity profile when both cylinders are co-rotating at ade-
quate speeds but the challenge is here to minimize the effects of the axial endplates on
the flow. A recent numerical study by M. Avila has shown that the endplates in current
experiments severely distort the flow profile and trigger instabilities already at Reynolds
numbers at about 1000 (Avila 2012). One of the current experiments (Princeton) has each
endplate split into two rings that can be rotated independently and therefore adapted to
the desired velocity profile (Ji et al. 2006, Schartman et al. 2009). However, the aspect
ratio Γ = 2.1 is so small, that the end wall effects are necessarily very large at higher Re.
The aspect ratio Γ is defined as L/d with the gap length L and the gap width d. The other
experiment (Maryland) has an aspect ratio of Γ = 11.5, but the endplates are attached to
the outer cylinder (Paoletti & Lathrop 2011) as this is also the case for many other exper-
iments (Atlanta (Borrero-Echeverry et al. 2010), Delft (Ravelet et al. 2010), Twente (van
Gils et al. 2011b)). To minimize end wall effects and to be able to generate Keplerian type
flows at higher Re it is desirable to combine movable end walls and large aspect ratios.
Our TC setup offers the possibility of independently rotating top and bottom endplates, to
change the aspect ratio continuously during measurements and to investigate the flow for
different radius ratio of the cylinders for Re ranging from 101 up to 106. In addition, in
contrast to most of the experiments used in this regime we have full optical access to the
flow.

The paper is structured as follows. In Section 3.2.2 we list the main features of the
experiment and summarize the achieved accuracy, in Section 3.3 it is explained in detail
how this was achieved, with the focus on the bearings. In Section 3.4 we give an example
of the image processing from flow visualization, which will be used to investigate the
subcritical phase transition. First measurements of the stability are compared with theory
and previous experimental investigations in Section 3.5. An outlook and discussion is
given in Section 3.6.

3.2.2 High precision Taylor–Couette apparatus

The Göttingen TC experiment is designed to cover a huge parameter space in Reynolds
number and radius ratio, combined with the flexibility to dynamically change the aspect
ratio and the axial boundary conditions by rotating the endplates independently. In order
to study subcritical transitions also in a high radius ratio the experiment has to be as
precise as possible to avoid triggering finite amplitude perturbations. In the following we
list the main features:

• The inner and outer cylinder and the top and bottom endplate rotate independently
up to 30 Hz

• The possible radius ratio is between 0.03 and 0.98, the already existing inner cylin-
ders correspond to η = [0.71, 0.88, 0.98]
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Figure 3.1: The outer cylinder is placed in a square acrylic box filled with silicone oil to
provide index-matching and temperature stability. On top and bottom the acrylic box is
mounted on massive aluminum plates that are in addition connected by a pillar. The pillar
and the aluminum plates build the frame on which the bottom bearing unit and the drive
(and bearing) of the outer cylinder is mounted. Altogether this assembly group contains
both cylinders and the bottom endplate.

• The aspect ratio can be continuously changed during measurements from its maxi-
mum value to zero (except for η=0.98).

• The system is completely transparent in the radial direction over the full length of
the cylinders to optimize the access for optical measurements. The outer and inner
cylinder are made of glass (except for η = 0.98). To match the refractive index the
inner cylinder is filled with silicone oil and the outer cylinder is placed in a square
box of acrylic filled also with silicone oil.

The temperature stability (± 0.01K) and rotation rates (deviation ≤ 1%) are precisely
controlled and all rotating assembly groups have been dynamically balanced to a preci-
sion of ≤ 1mm/s corresponding to a balance quality grade G=1 (ISO 19401]), which is

1Mechanical vibration – Balance quality requirements for rotors in a constant (rigid) state – Part 1:
Specification and verification of balance tolerances, International Organization for Standardization, Geneva,
Switzerland, 2003
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Figure 3.2: The Taylor-Couette device consists of three main assembly groups. The first
group consists of the cylinders, the bottom endplate and the acrylic box (see Fig. 3.1).
The second group allows an axial movement of the top endplate during measurements
over the full length of the cylinders. It consists of a heavy-lift profile along which two
massive sledges can be moved, that bear the top endplate and the top of the inner cylinder
(see Fig. 3.5). The third assembly group is a stiff frame (here shown in green) on which
the first and second assembly groups are mounted and aligned with respect to each other.
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Radius ratio Gap width d Deviation of d
(mm) (%)

η=0.71 32.53 ± 0.210 0.65
η=0.88 13.53 ± 0.140 1.04
η=0.98 2.28 ± 0.075 3.29

Table 3.1: Geometric dimensions of the gap for different radius ratio and the achieved
precision. The deviations are measured while being mounted in the experiment. The
axial runout of the endplates is within ± 0.030mm, corresponding to a deviation of the
maximal gap length L of less than 0.01 %. Further details are summarized in Table 3.2.

typically achieved by machine tools. In publications it is common to describe the geo-
metric precision of a TC-experiment by referring to the deviation of the cylindricity of
the cylinders given by the manufacturer (Prigent & Dauchot 2000b, Ravelet et al. 2010,
van Gils et al. 2011b). Few experiments also take account of the deviations stemming
from the bearing (Schartman et al. 2009). We find that the values of precision given even
by world-leading manufacturers (e.g. Schott Duran) are locally often exceeded. In order
to estimate all geometric deviations possibly acting on the flow we have measured and
optimized all mechanical components while being mounted in the experiment. Table 3.1
summarizes the physically relevant measurements.

A comparison of the non-dimensionalized system size of our setup with other cur-
rently in use TC experiments is given in Table 3.3, including the axial boundary condi-
tions.

3.3 System Description

3.3.1 General setup

The Taylor-Couette (TC) apparatus consists of two vertical, concentrically aligned cylin-
ders with different diameters, which can be rotated independently. The gap between the
two cylinders is filled with a working fluid (typically silicone oil or water) to investigate
the flow states depending on the speed of the cylinders using optical measurement tech-
niques. Therefore the outer cylinder is made of glass producing full optical access over
the whole gap. The outer cylinder is mounted between aluminum plates at top and bot-
tom and placed inside a square acrylic box. The entire box is filled with a temperature
controlled fluid (silicone oil or water) to provide temperature stability and a matching of
the refractive index. To avoid stresses in the acrylic box, the two aluminum plates are
in addition connected by an aluminum pillar (350mm x 180mm) as it is illustrated in
Fig. 3.1.

The working fluid inside the gap is confined in the axial direction by annular endplates,
that can be rotated independently. The top endplate can in addition be moved in the axial
direction over the full length of the cylinders of 600mm (except for η = 0.98), allowing
to change the aspect ratio of the gap continuously. The axial movement of the endplate is
driven by a motor that moves a sledge along a high-precision profile that is mounted on a
heavy-lift profile. The top bearing of the inner cylinder is also mounted on this profile so
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Radial runout (mm)
Position of measurement Outer cylinder Inner cylinder

L η = 0.98 η = 0.88 η = 0.71
0 (bottom) 0.025 0.025 0.050 0.110

1/4 0.050 0.021 0.045 0.115
1/2 0.045 0.021 0.070 0.125
3/4 0.050 0.021 0.075 0.130

1 (top) 0.050 0.023 0.090 0.160
Overall accuracy of ri,o

1 112.53 ± 0.050 110.25 ± 0.025 99.00 ± 0.090 80.00± 0.160
Axial runout (mm)

Bottom endplate 0.030 0.030 0.020
Top endplate 0.020 0.020 0.020

Table 3.2: Geometric dimension and precision of the cylinders and the endplates while
they are mounted in the Taylor-Couette device. The runouts have been measured by a
dial extensometer with a resolution of 0.002mm. Note, that for each radius ratio η a
corresponding pair of endplates is necessary.
1 absolute value measured by the manufacturer

that the top endplate and the top bearing of the inner cylinder are always concentric to each
other (see Fig. 3.2 and Section 3.3.3.2 on page 69 for details). The challenge now is to
align the top endplate (and therefore the top bearing of the inner cylinder) concentrically
to the bottom bearing unit (consisting of the bottom endplate and the bottom bearing
of the inner and outer cylinder, see Section 3.3.3.1 for details). Since the top endplate is
guided along the heavy-lift profile in the axial direction, this profile and the cylinders have
to be exactly parallel. Only in this case both endplates and both cylinders are concentric
to each other at any axial position. For this purpose the heavy-lift profile can be moved
in the horizontal plane and the box in which the bottom bearing unit is mounted can be
aligned in three directions. Both components are mounted on a frame (shown in green in
Fig. 3.2) with high stiffness that is aligned with respect to gravity.

3.3.2 Geometry and materials of the cylinders and the endplates
The outer cylinder is made of Borosilicate precision glass with a length of 650mm, a thick-
ness of 5mm and was manufactured to a radius at the inner surface of ro = 112.53mm ±
0.02mm. We used glass in order to provide full optical access combined with a high pre-
cision, thereby also avoiding bending effects as they may appear with an acrylic cylinder
at high rotation rates when no additional radial support is provided. The cylinder was
manufactured by Duran Schott, which is to our knowledge the only company producing
high-precision glass cylinders at this size. For larger diameters the production procedure
changes and the precision is substantially decreased. To provide access for the endplates
to enter the gap the outer cylinder is beared from the outside. Therefore the inner and
outer cylinder surfaces need to be as concentric as possible to allow for a uniform rotation
of the inner surface. The radial offset of the cylindricity centers between the inner and
the outer cylinder surface was measured to be 0.103 mm which is double the value given
by the company. It was improved by re-engineering the bearing seat at the outside of the
outer cylinder. The overall achieved precision when the outer cylinder is mounted in the
experiment is ro = 112.53mm ± 0.050mm, corresponding to a deviation of 0.044 % .

The radius ratio η of the cylinders can be chosen between 0.03 and 0.98, which cor-
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System

D
escription

Princeton Cottbus Twente Maryland Delft Madison Gif sur Yvette Göttingen
11.6 0 - 18.4

Γ = L/d 2.1 20 15.5 11.7 22 44.8 430 0 - 44.3
23.3 263
0.71 0.71

η = ri/ro 0.35 0.5 0.77 0.73 0.92 0.99 0.983 0.88
0.83 0.98
18.5 18.5

Lazim
1 6.5 9.4 24.2 20.1 75.4 625.2 366.5 49.2

33.8 311.0
Endplate independent, stationary attached to outer cylinder attached to not described independent
condition two rings outer cylinder2

Table 3.3: Comparison of the non-dimensionalized geometries of various Taylor-Couette devices with both cylinders rotating (except for
Madison), operating either at high Reynolds numbers (Princeton, Cottbus, Twente, Maryland) or in a high radius ratio (Delft, Madison, Gif
sur Yvette) and their axial boundary condition.
References: Princeton (Schartman et al. 2009), Cottbus (Merbold et al. 2013), Twente (van Gils et al. 2011b), Maryland (Paoletti & Lathrop
2011), Delft (Ravelet et al. 2010), Madison (Carey et al. 2007), Gif sur Yvette (Prigent & Dauchot 2000b), Göttingen (Avila & Hof 2013).
1Lazim = π(η + 1)/(1 − η)
2 and free surface at the top
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responds to a radius of the inner cylinder ri between 3.38 mm and 110.25 mm, currently
built ratios are η = [0.71, 0.88, 0.98]. The inner cylinders are beared from the inside us-
ing top and bottom caps that have an identical fit for the supports for all inner cylinders.
The same system is adapted to the endplates, so that the inner cylinder with its corre-
sponding pair of endplates can be exchanged, without changing any alignment or further
dismantling of the experiment. For η = 0.98 the inner cylinder is made of stainless steel
with a polished surface and an overall precision when mounted in the experiment of ri =

110.25mm ± 0.025mm corresponding to a deviation of 0.023 %. The endplates have a
width of 2.00mm, leaving a gap of minimum 50 µm to each cylinder (including the radial
runouts of cylinder and endplate). The axial position of the top endplate is fixed during
measurements (for η = 0.98), resulting in an aspect ratio Γ = 263. For η = 0.88 and
0.71 the inner cylinder are made of Borosilicate precision glass with a length of 650mm
to optimize the illumination and access for Stereo or Tomo-PIV measurements. The in-
side of the inner cylinder is filled with the working fluid (but without tracers) to avoid
reflections and provide index matching in the radial direction. However, the advantages
of transparency come with losses in precision as it was already described for the outer
cylinder. Here the complete outside surface of the inner cylinders was re-engineered us-
ing a lathe (done by Schott Duran). The achieved accuracy is still worse than for the steel
inner cylinder (see Table 3.2), but since the gap is much wider the relative deviation of the
gap width (and therefore the Reynolds number) is with about 1% still smaller (see Table
3.1).

The top endplate can be continuously moved or kept at any axial position between the
maximum gap length Lmax = 600mm and Lmin = 0mm. Especially in small aspect ratio
systems the axial runout of the endplates can considerably disturb the flow, even when
the endplates are stationary (Pacheco et al. 2011). Besides the accuracy of the cylinders
Table 3.2 includes therefore also the axial runout of the endplates. The gap between each
cylinder and the endplates is on average about 0.15mm to provide a friction free rotation
or/and axial movement. The endplates are made of stainless steal.

3.3.3 Bearing, sealing and balancing
A sophisticated bearing system has been designed which allows for independent rotation
of both cylinders and both endplates. At the same time the aspect ratio should be vari-
able and both cylinders should be transparent for optical access. In addition the overall
perturbation level has to be minimized to avoid transition to turbulence in the subcritical
regime even in a high-radius ratio (η = 0.98). Examples of such perturbations are runouts
of the cylinders and the endplates, variations of the rotation speeds or local heat sources.
All these are strongly influenced by the arrangement of the ball bearings, the seals and
their cooling. The geometric runouts of the cylinders and the endplates in Table 3.2 are
mainly due to the limited accuracy of the components themselves while the deviations
stemming from the bearings are much smaller (about 0.005mm at the shafts). In other ex-
periments clearances in the bearings cause the main deviations, especially when the setup
is very complex (Schartman et al. 2009). The high accuracy in the present setup could be
reached with the following design.

Each rotating assembly group is guided by two high-precision angular contact ball
bearings (quality P3) arranged in O- or X-position along a vertical shaft and is dynami-
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cally balanced to a precision of ≤ 1mm/s corresponding to a balance quality grade G=1
(ISO 19402). Each component of an assembly group is measured for axial and radial
runouts while being mounted in the experiment and is assembled to its neighbor in a way
that runouts are minimized (compensated). Labeling assures an identical arrangement
even after dismantling. Accuracy changes after complete dismantling of the experiment
are within ±0.005mm (measured at the cylinders and endplates). All rotating components
(shafts, flange) are made of stainless steel and have tight fittings with a radial and axial
runout below ± 0.005mm and a high surface quality (roughness parameter Ra = 0.8).
Each pair of ball bearings is build in with a permanent bearing-preload using belleville
spring packs to provide a backlash-free run and low friction. The driving force of the
motor is transmitted without generating any radial force on the shafts (see Section 3.3.5
on page 72 for more details).

While all these aspects apply to the bearing at the top and the bottom of the experi-
ment, there are also various differences. At the bottom three independently rotating as-
sembly groups had to be housed within each other with a high precision, thereby separat-
ing two different fluid volumes by seals that have to be cooled. The design on the upper
part was complicated by the requirement that the (rotating) top endplate must be mobile
in the axial direction over the full length of the cylinders with a high accuracy (see Ta-
ble 3.2). In addition changing the inner cylinder and its corresponding pair of endplates
should be as simple as possible with a minimum of re-alignment. To minimize friction,
no seals were used at the top bearing. In the following sections we describe the top and
bottom bearing in more detail.

3.3.3.1 Bottom bearing unit

The bottom bearing unit is a concentric shaft system for the outer cylinder, for the bottom
endplate and for the inner cylinder as can be seen in Fig. 3.3. The fittings are very tight
so that single components have to be heated by a hot-air blower to (dis-)assemble them.
The bottom endplate itself can be exchanged more easily, because it is beared in the radial
direction by an O-ring (see Fig. 3.3). For an exchange it has just to be lifted and the new
one pressed in until it meets the axial fitting. However, this system does not apply to the
narrow gap endplate (η = 0.98) due to the limited space. Here the support with the O-ring
has to be removed and the endplate is screwed directly to the support beneath (indicated
by the arrow). Except for the small modification for the narrow gap endplate all endplates
and inner cylinders have identical fittings and can thus be easily exchanged.

The total number of seals was reduced to two in order to avoid friction and thus heat-
ing: Seal 1 (see Fig. 3.3) to prevent mixing between the working fluid in the gap and
the cooling liquid in the square box around the outer cylinder and another Seal 2 to pre-
vent loss of cooling liquid from this box. We use low-friction seals made of Teflon that
are surrounded by a cooling channel system (see Section 3.3.6 on page 75). The bot-
tom of each support has a tilted surface to prevent air bubbles (that might be trapped in
the working fluid after filling) entering the measurement gap in an uncontrolled manner.
With this tilt air bubbles are immediately evacuated (i.e. before the measurement starts)

2Mechanical vibration – Balance quality requirements for rotors in a constant (rigid) state – Part 1:
Specification and verification of balance tolerances, International Organization for Standardization, Geneva,
Switzerland, 2003
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support

outer cylinder

support 

inner cylinder

support

bottom endplate

seal 2

seal 1

driving shaft
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outer
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Figure 3.3: The bottom bearing unit houses the bottom of both cylinders and the bottom
endplate. It is mounted on the aluminum plate beneath the acrylic box (see Fig. 3.1). Each
rotating shaft is kept in position by two ball bearings that are separated by a maximal
axial distance to optimize the alignment. Clearances of the bearings are minimized by
tight radial fittings and an axial preload provided by belleville spring packs. The number
of seals is minimized to two to avoid unnecessary friction. The inner cylinder (and its
support) are not sealed to allow torque measurements.
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(b)

(a)

inner hollow shaft

outer hollow shaft 
(driving top endplate)

drive axle inner cylinder

flange for top endplate

flange for inner cylinder

sliding contact

sliding contact

(c)

Figure 3.4: (a) View from the top at
the TC-device to demonstrate the top
bearings for the rotation. The two up-
per timing belts are clearly visible, that
are each mounted on a sledge moving
along the vertical heavy-lift profile. Be-
low them the timing belt of the outer
cylinder can be seen. It is mounted on
a small plate on top of the aluminum
plate which is on top of the acrylic box.
Below the small plate is the top bear-
ing of the outer cylinder: (b) The stain-
less steel ring bearing the outer cylinder
at the top is concentrically mounted to
the outer glass cylinder by two O-rings.
The outer surface of this ring is pol-
ished and kept in position by an air bear-
ing consisting of three concave blocks
made of a porous media (shown in blue).
By pumping pressurized air through this
blocks the outer cylinder is beared fric-
tionless and able to reach high rotation
rates. The outer cylinder is concentri-
cally aligned with respect to the inner
cylinder by positioning the three blocks
with respect to the aluminum plate. (c)
The shaft of the inner cylinder and of
the top endplate are beared in the lower
sledge to provide concentricity. The de-
sign allows in addition to the two inde-
pendently rotating shafts an axial move-
ment of the top endplate during mea-
surements (see Section 3.3.4 on page 70
for more details).

instead of hanging for a while and entering the measurement gap at unpredictable times.
The working fluid in the gap can be emptied via the hollow driving shaft of the bottom
endplate.

3.3.3.2 Top bearing units

The top bearing consists of three independent assembly groups. The first is housing the
top of the outer cylinder, the second allows the axial movement and rotation of the top
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endplate and is in addition bearing the driving shaft of the inner cylinder that is passing
through to provide concentricity. In the third assembly group the shaft of the inner cylin-
der is finally driven. In the following this shaft will be referred to as ’drive axle’ or ’drive
axle of the inner cylinder’ to avoid confusion with other shafts. The second and third
assembly group can be moved axially by being mounted on the heavy-lift profile that is
aligned with respect to the cylinders (see Fig. 3.4(a) and Section 3.3.1).

The first assembly group to bear the outer cylinder shown in Fig. 3.4(b) is mounted
on an aluminum plate which sits on top of the acrylic box and on an additional pillar
connecting the top aluminum plate with the bottom aluminum plate (see Fig. 3.1). The
outer cylinder is guided from the outside to have free access to the gap. Due to the
potentially high rotation rates of the outer cylinder of 30Hz (corresponding to an angular
velocity at the bearing seat of 90 km/h) the bearing is via frictionless radial air bearings
(New way by IBS Precision Engineering, concave L profile). The air bearing consists of
three independent parts that can be moved in the radial direction to align the top of the
outer cylinder concentrically to the bottom part (and therefore also to the inner cylinder
and both endplates).

The second assembly group guiding the top endplate and the drive axle of the inner
cylinder consists of a massive bearing support made of aluminum, two hollow shafts, the
drive axle and two high accuracy flanges made of stainless steal as shown in Fig. 3.4(c).
The top endplate with the chosen geometry is directly attached to the outer flange for
η = 0.98 or to a cylinder with a length of 600mm for the other radius ratios (see Fig. 3.5).
This outer flange is permanently connected to the outer hollow shaft (mounted by heat-
shrinking and afterwards dressed to size). It is guided by two high-precision angular
contact ball bearings in O-arrangement. The outer hollow shaft is driven by a toothed
pulley to rotate the top endplate. The inner hollow shaft is beared in the outer hollow
shaft by high-precision deep groove ball bearings to provide concentricity. The inner
hollow shaft is in sliding contact with the drive axle from the inner cylinder. These two
components slide against each other when the top endplate is axially moved (by moving
the sledge as a whole). Here the sliding friction is artificially increased, so that during
(pure) rotation the drive axle of the inner cylinder is rotating together with the inner hollow
shaft (which is guided by deep groove ball bearings).

The drive axle of the inner cylinder is massive and made of stainless steel with a length
of 1000mm, a diameter of 40mm and a polished surface. At the bottom end it has a flange
(mounted by heat-shrinking and afterwards dressed to size) that fits in the top caps of the
various inner cylinders. At the top it is connected to a collet chuck shaft joining that is
beared in the third assembly group and allows the driving of the inner cylinder. The third
assembly group is similar to the second one but with just a single hollow shaft.

3.3.4 Aspect ratio control
For radius ratios other than 0.98 the top endplate can be continuously moved or kept at
any axial position between the maximum gap length Lmax = 600mm and Lmin = 0mm.
Therefore the massive bearing support of the top endplate is screwed to a ball-beared
sledge that moves along a high-precision profile that is mounted on the heavy-lift profile
(see Fig. 3.5). The sledge is driven by a trapezoidal screw (slope: 5mm / rotation) with
self-locking that is connected to the timing belt of a brushless servo motor. The axial speed
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rotational drive

inner cylinder 

rotational drive

top endplate 

top endplate

(cylinder)

(ring) 

axial drive

top endplate 

Figure 3.5: The bearing and drives of the top endplate and of the top part of the in-
ner cylinder are mounted on sledges that can be moved vertically along a high-precision
profile. The axial position of the lower sledge determines the axial position of the top
endplate and therefore also the aspect ratio Γ of the gap. The top endplate consists of a
long cylinder and a short ring beneath fitting exactly in the gap between the cylinders.
Its position can be dynamically changed during measurements by a servomotor. The top
sledge with the rotational drive of the inner cylinder can be moved axially via a crank
handle (see bottom right) for maintenance work or an exchange of the inner cylinder.
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Figure 3.6: A special arrangement of the guidance of the timing belt by five rollers allows
a transmission of the power from the servomotor (left side in the picture) to a rotating
shaft (here of the inner cylinder) without generating a radial force on the shaft. This
arrangement minimizes forces on ball bearings and thus runouts of the shaft in the long-
term.

is in between 0.15mm/s and 35mm/s, the position is measured by a digital glass scale
with a resolution of 0.001mm that is directly mounted on the sledge of the top endplate
and the heavy-lift profile. Magnetic proximity sensors avoid collisions by stopping the
servo motor. The rotation of the endplates and both cylinders is independent from the
axial movement or position of the top endplate, so the aspect ratio can be continuously
changed during the measurement. The realized aspect ratios Γ are summarized in Table
3.3.

3.3.5 Rotation rate control
Both cylinders and the endplates have a maximum rotation rate of 30Hz and are driven by
servomotors. The power is transmitted by a timing belt with toothed pulleys with a gear
ratio of 3 for the endplates and 2.22 for the cylinders. In order to avoid radial forces on
the driving shafts (of the cylinders and endplates) and therefore a loss of precision in the
long-term use, each timing belt is guided by five fixed rollers as shown in Fig. 3.6. The
tension and exact position of the timing belt is adjusted by aligning the asymmetric base
of the fixed rollers.

The servomotors are brushless AC motors with permanent magnets and 16 Bit re-
solvers. To allow large accelerations the Novotron motors driving the cylinders are more
powerful (2.9 kW, 5.2 Nm, type NHDM 105E10-81SC47F00K10) than the ones for the
endplates (1.5 kW, 1.6 Nm, type NHDM 82C8-28SC0F00K10). The rotation rates are
controlled in a feedback loop by the corresponding converters from Novotron (ND42-
5610VD-011-000, ND41-3207VD-011-000), based on a proportional-integral-derivative
(PID) control algorithm. The converters are connected to a PC by a serial port to operate
the experiment and read the actual speeds of the motors.

In Fig. 3.7(a) the raw data signal from the fluctuations of the speed of the motor
rotating at 5Hz is shown by the black line. The signal includes electronic noise and a
systematic geometric deviation of the resolver which is explained in the following: The
speed of the rotor shaft is calculated from the change of its angular position with time. The
position is detected by the resolver from the magnetic coupling of two transformers, which
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Figure 3.7: (a) Fluctuations of the speed of the motor rotating at 5 Hz. The black line
indicates the measured raw data deviation from the mean. The sampling rate is 38 Hz,
which corresponds here to 17 measurements per cylinder rotation. The averaged speed
value of one cylinder rotation is plotted as blue circle and has a standard deviation of
0.13%. (b) In the spectrum of the raw data signal the motor frequency and its first har-
monic are dominating, which is partly due to a systematic deviation of the resolver (see
text for further details). The rotation frequency of the inner cylinder (2.25 Hz) is at noise
level.

is carried out with a precision of 65536 (216 bits) increments per rotation corresponding
to 65536 positions of the motor shaft. The positions have geometric deviations that are
repeated with each turnover of the motor shaft. As a consequence the motor frequency
(and its harmonics) typically appear in the spectrum of the speeds, which is plotted in
Fig. 3.7(b). The rotation frequency of the cylinder (2.25Hz) is at the noise level in the
spectrum, which reflects the high quality of the bearings and the balancing. At double the
speed the raw data fluctuations shown in Fig. 3.8(a) decrease slightly to 1%, the standard
deviation of the speed averaged over a cylinder rotation (blue circles) is 0.10%.

Our speed data (Fig. 3.8(a)) are compared to the data from van Gils et al. (2011a)
in Twente (Fig. 3.8(b)) for a motor frequency of 10 Hz, corresponding to an inner cylin-
der frequency of 5 Hz, given their 2:1 pulley ratio. The solid black line in Fig. 3.8(b)
corresponds to the raw data, acquired at a rate of 1kHz, underlying the averaged values
presented in figure 4 of van Gils et al. The data has been kindly provided by the authors
of van Gils et al. (2011a). The reason for the difference between the data in their figure
4 and the averaged data (blue circles) in our Fig. 3.8(b) can be attributed to a different
averaging technique and window width. The blue circles in Fig. 3.8(b) are obtained by
averaging the raw data over one cylinder turnover (corresponding to 0.2sec), whereas van
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Figure 3.8: (a) Fluctuations of the speed of the motor rotating at 10 Hz to compare
directly to the raw data measurements of van Gils et al.(van Gils et al. 2011a) in Twente,
shown in (b). The standard deviation of the speed averaged over a cylinder rotation (blue
circles) is in both experiments 0.10%. The main deviation in the Twente experiment is
caused by a slow oscillation of 0.37 Hz, which can also be seen in the spectrum of the
(Twente) raw data in (c). The peak at 5Hz corresponds to the rotation frequency of the
inner cylinder, the peak at 10 Hz to both, the first harmonic of the cylinder frequency and
the motor frequency. Their contributions cannot be distinguished due to a gear ratio of
2:1.

Gils et al. presented their data by applying a low-pass filter followed by a downsampling
resulting in an effective data rate of 1 Hz. In our experiment fluctuations are dominated
by the motor frequency. In the Twente experiment an additional slow oscillation of 0.73
Hz is present, corresponding to a period of almost 7 cylinder turnovers. The authors of
van Gils et al. (2011a) would like to point out that they were unaware of the slow and
small amplitude oscillation at the time of publication. The standard deviation of the speed
averaged over a cylinder rotation is for both experiments the same (0.10%). Note that the
corresponding Rei and the standard deviation averaged over a cylinder rotation in both
experiments are very different with about 1600± 1.6 in our experiment and 500000± 500
in Twente. The Reynolds number is calculated as Rei = 2π fICrid/ν with the viscosity ν.
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Figure 3.9: A channel system for the cooling liquid surrounds the bearing and seals in
the bottom bearing unit. It consists of two horizontal annular channels that are connected
by 16 vertical channels. This view from the bottom displays two ball bearings and the
bottom horizontal channel with some of the vertical channels.

3.3.6 Temperature control
The viscosity of a fluid varies with temperature. Hence a precise Reynolds number control
requires a precise temperature control. In the transitional Reynolds number regime it is
important to avoid any axial gradient and to minimize the influence of fluctuations of
the room temperature on the working fluid. In the turbulent regime it is necessary to
remove a large amount of heat. Therefore three parts of the experiment can be temperature
controlled, the outer cylinder, the seals and ball bearings and the inner cylinder.

The outer cylinder is surrounded at the sides by a square acrylic box with a wall
thickness of 20mm and at top and bottom by aluminum plates of 30mm (35mm) thickness
(see Fig. 3.1). The bottom plate has two hose connections with a diameter of 20mm at
opposite sides through which cooling liquid is entering. It is exiting the acrylic box at
the top through 2 hose connections of diameter 32mm. The large diameters of the hose
connectors allow to pump a large amount of cooling fluid through the box.

The seals and the ball bearings can be cooled locally. Therefore the bottom bearing
unit includes a cooling channel system consisting of two horizontal (slightly tilted) chan-
nels (around the ball bearings and the seals) that are connected by 16 vertical channels
with a diameter of 10mm (see Fig. 3.9). The cooling liquid is entering at the bottom
horizontal channel from where it is streaming upwards along the vertical channels. From
there it can either exit into the acrylic box and mix with the other cooling circuit or it can
be directly removed in the top horizontal channel thereby generating a separate cooling
circuit for the bearings. Note that cooling is not necessary for the bearing at the top of
the experiment, since the bearing is frictionless in the first assembly group (air bearings
at the outer cylinder) and the working fluid is thermally completely decoupled from the
2nd and 3rd assembly group (bearing supports mounted on the heavy-lift profile).
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In case large amount of heat has to be removed, the setup offers as a third method the
possibility to cool the inner cylinder from the inside. In this case the solid drive axle of
the inner cylinder is replaced by a hollow shaft that consists of an inner tube (feed) and an
annular passage (drain) to create a cooling circuit. On top of the solid bearing support the
hollow shaft is connected to a rotary union to allow the coolant liquid to be passed from
the stationary lab to the rotating inner cylinder.

For the current measurements in the transitional regime a 0.8 kW (cooling at 20◦C)
temperature bath (Lauda Proline RP 845 C) with a pump capacity of 25 l/min and a
suction capacity of 23 l/min is used. The listed temperature stability is within 0.1 K,
measurements of PT100 sensors placed in the cooling liquid at different positions in the
experiment (one at the bottom of the acrylic box, one at the top and another one at the hor-
izontal bottom channel) indicate even a relative accuracy of ± 0.01 K, which corresponds
to the accuracy of the PT100.

3.3.7 Other (not yet implemented) possibilities

The experiment offers many new possibilities. Four of them will be explained here that
can be achieved with very little time and effort. The first possibility is to investigate the
influence of special surface materials and structures (e.g. hydrophobic, nano-structures)
on the flow. Instabilities that are exclusively triggered by the endplates and reflection
symmetric over the equator (Avila et al. 2008) are perfectly suited for this purpose. The
top endplate (or also the bottom endplate) can be exchanged by one with the desired
surface properties. The effect of the surface properties can then be easily quantified by
the (possible) shift of the onset to higher Reynolds numbers.

The second possibility is to remove the inner cylinder completely and manufacture a
new set of endplates. In this case the TC experiment becomes a Von-Karman experiment,
the flow between two independently rotating disks. The distance between the disks can
be continuously changed during measurements.

The third possibility is to generate a radial temperature gradient to study baroclinic
instabilities in quasi-Keplerian flows (Klahr & Bodenheimer 2003). Instead of cooling
the inner cylinder from the inside (see Section 3.3.6) the temperature can be set to a
desired value. Additional temperature sensors and the exchange of the solid drive axle of
the inner cylinder by a hollow shaft are necessary.

The scaling of torque for independently rotating cylinders (van Gils et al. 2011b, Pao-
letti & Lathrop 2011) and different radius ratio (Merbold et al. 2013, Brauckmann &
Eckhardt 2013) has attracted much interest in the past years. In the experiments the
method developed by (Lathrop et al. 1992) to measure the torque only at the bulk of the
inner cylinder is used and the endplates are either attached to the outer cylinder or kept
stationary. In our experiment the aspect ratio and speed of the endplates can be dynam-
ically changed, allowing for a systematic study of geometry and endplate configuration
on the torque. Hence the fourth possibility is to measure the torque on the inner cylinder.
Here the torque can be measured over the full length of the inner cylinder because of
low-friction ball bearings which guide the cylinder in the absence of rotary shaft seals. A
commercial torque sensor must be placed between the top of the inner cylinder and the
solid drive axle.
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3.4 Flow visualization

In this section we outline how we visualize and analyze the flow in the narrow gap of 2.28
mm (η=0.98), without introducing perturbations that trigger subcritical turbulence.

3.4.1 Working fluid and tracers

The working fluid is silicone oil with a viscosity of 5 cSt, which is seeded with highly
reflective aluminum platelets (Eckart, Effect Pigments, STAPA WM Chromal V/80 Alu-
minum). The concentration of the tracers is less than 1% in weight (and volume). Due
to the elliptical shape the tracers align with the flow and depending on their position they
reflect the light, thereby revealing the flow behavior. Note that large dirt particles or clus-
ters of tracers are able to trigger turbulence in the subcritical regime. These disturbances
create typically a wake in the downstream laminar flow. When the Re is increased above
the subcritical bifurcation, turbulence is immediately triggered spreading in a v-shape
from this particle. The spreading rates have been analyzed quantitatively for a controlled
perturbation (Hegseth et al. 1989, Burin & Czarnocki 2012). Great care has to be taken
to remove this kind of perturbations for measurements in the subcritical regime.

3.4.2 Spatio-temporal analysis

The goal of the spatio-temporal analysis is to determine the turbulent fraction of the flow
for given Reynolds numbers. The illumination is therefore optimized to distinguish be-
tween laminar and turbulent flow patches. By illuminating the flow (seeded with tracers)
only from the top by two light-emitting diods (LED) lamps (each consisting of 96 LEDs,
400 lumen) and monitoring the flow at 90◦ angle, the light intensity is related to the tur-
bulence intensity. In laminar flows the tracers align all in a similar direction. With the
current position of the illumination and the camera only scattered light is detected. This
corresponds to the minimal light intensity. In the turbulent patch the tracers are randomly
oriented, so that some tracers (e.g. flat surface in an 45 degree angle between light and
camera) reflect the light directly to the camera causing peaks in the light intensity. Since
the light intensity never drops significantly below the value of the laminar flow (because
scattered light is always present), the turbulence leads in average to a net increase in the
detected light intensity.

The flow is monitored with a 4 Megapixel high-speed CCD camera (Phantom V10),
and typical sampling rates used here are 80 Hz. The spatio-temporal dynamics is sim-
ply retrieved by plotting the light intensity along a line of 3 pixels width parallel to the
cylinder (marked as green line in Fig. 3.10(a)) from each frame over time. Three steps of
analyses are necessary to retrieve the turbulent fraction and are explained in the following.

In the first step the background has to be removed. The raw data profile of the light
intensity from the snapshot in (a) showing subcritical turbulence is plotted in green in (b).
The peaks corresponding to the turbulent spiral arm are clearly visible. The black line
corresponds to the axial intensity profile of purely laminar flow and is used for the analysis
of all images. It is determined by averaging the light intensity of laminar flow along the
vertical line over about 10 seconds. The profile reflects the non-uniform illumination
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Figure 3.10: (a) Snapshot of a subcritical turbulent spiral arm by a high-speed CCD cam-
era. The raw data profile of the light intensity along the green line is plotted in (b) as a
green line, the black line corresponds to laminar flow. (c) Profile of the light intensity
after subtracting the laminar flow. The peaks indicate clearly the location of the turbulent
spiral arm. For the further analysis a light intensity value above the dashed line is counted
as turbulent flow, a value below as laminar flow. Note that the illumination is optimized
for the image processing and not for the observation by eye.

along the axial direction (background). This effect is compensated by subtracting this
(laminar) profile from the turbulent raw data signal, as it is shown in (c).

In the second step the analysis distinguishes between laminar and turbulent regions
by setting a threshold that is clearly above the noise level of the laminar flow, displayed
as black dashed line in Fig. 3.10(c). Even though the choice of this threshold will slightly
affect the absolute value of the turbulent fraction, the scaling behavior is likely not affected
by it and this will be checked in later studies. More important is that a single threshold
can be applied along the full length of the monitoring window. While the background can
be simply subtracted from the images, the height of the peaks corresponding to turbulent
flow has to be rather equal within fluctuations. This is determined by the illumination
(exact position of the LEDs) and is the limiting factor to increase the window length.

By plotting the profiles like in Fig. 3.10(c) from all frames after each other, the
space-time diagram in Fig. 3.11(a) is generated. The time is given in advective units
(d/(2π( fICri − fOCro))with fOC < 0 for counter-rotation). Lighter regions correspond to
turbulent flow, dark regions are laminar. The random orientation of the tracers in the tur-
bulent flow includes also orientations typical for the laminar flow. These may lead locally
and temporally confined to a drop of the light intensity below the threshold. In the bina-
rized space-time diagram (after thresholding) they appear as tiny black holes surrounded
by white (turbulent) regions. In the third and last step of the image processing these black
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Figure 3.11: Space-time diagram from a flow visualization at successive steps of the im-
age processing to determine the turbulent fraction: (a) Image of the light intensity along
the green line in Fig. 3.10(a) with time after subtracting the laminar flow. Lighter regions
indicate turbulent flow, dark regions are laminar. (b) Binarized image after thresholding,
eroding and dilating. The turbulent fraction corresponds to the ratio of the white (turbu-
lent) regions over the total area. The profile along the red line is plotted in Fig. 3.12.

holes are eliminated by first dilating and afterwards eroding the image with the same pa-
rameters (e.g 19 pixels in the axial direction, 7 pixels in the time-direction). The resulting
spatio-temporal diagram is displayed in Fig. 3.11(b). The turbulent fraction corresponds
to the ratio of the white (turbulent) regions over the total area.

To allow for a direct comparison between the raw data signal (without background)
and the final result of the image processing, the profile along the red line in Fig. 3.11(b)
is plotted in Fig. 3.12(a) and partly magnified in (b). The black solid line corresponds
to the raw data signal and the black dashed line indicates the threshold to distinguish
between laminar and turbulent flow. Note that the peaks corresponding to turbulent flow
have on average a comparable height and can be clearly distinguished. The red line is the
final result of the image processing. A value of 20 (here arbitrary set for demonstration)
represents a turbulent patch and a value of zero a laminar one.
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Figure 3.12: (a) Comparison of the raw data signal (without background) plotted as black
solid line with the result of the image processing (red line) for a profile through space and
time along the red line in Fig. 3.11(b). A value of 20 in the final result (here arbitrary
set for demonstration) represents a turbulent patch, a value of zero a laminar one. (b)
Magnification of (a)

3.5 Examples of results

3.5.1 Onset of Taylor vortices for stationary outer cylinder (η = 0.98)

The primary instability for a radius-ratio of 0.98 with a stationary outer cylinder is the
Taylor vortex flow (TVF). In a finite system Ekman vortices form close to the endplates
and excite Taylor vortices in their vicinity, so that the onset of Taylor vortices is not a
bifurcation (Benjamin 1978). However, by flow visualization it can be easily seen when
Taylor vortices occur in the bulk of the system, which is considered as onset of the TVF
(Carey et al. 2007). The onset can be determined by linear stability theory to Rei = 291.6
for η = 0.980, which we use to determine the viscosity of the working fluid. Especially
in high-radius ratio experiments the onset of TVF can vary locally up to a difference in
Reynolds number of more than 80 (Carey et al. 2007) most likely due to deviations of
the gap width. In our experiment the onset of the TVF is uniform across the bulk (<1
Rei corresponding to deviations <1 %), reflecting the high quality of the bearing and the
cylinders. This is remarkable since the gap width has local deviations of up to 3%, but it
seems that the flow averages this out.
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Figure 3.13: Stability diagram for η = 0.98. For increasing Rei at a constant Reo the
supercritical onset of instabilities (blue circles) agrees well with the linear stability anal-
ysis (black line). Subcritical turbulence in the form of turbulent spirals and spots is found
for decreasing Rei and constant Reo < −800 until it decays approximately at the red
triangles. No hysteresis was observed in previous measurements for a similar η from Pri-
gent, Dauchot and coworkers (black diamonds) (Prigent et al. 2003, Prigent & Dauchot
2005, 2000a) due to finite amplitude perturbations triggering turbulence in the subcritical
regime. Here finite amplitude perturbations trigger instabilities (blue circle) only slightly
below the linear instability for Reo ≤ −1500.

3.5.2 Onset of the linear instability for counter-rotating cylinders
with η = 0.98

In the first measurements we investigate the stability of the laminar flow for counter-
rotating cylinders and stationary endplates. For each measurement the Reynolds number
of the outer cylinder Reo is kept constant, while the Reynolds number of the inner cylinder
Rei is increased quasi-statically (1 Rei / 2 min) until an instability sets in (blue circles in
Fig. 3.13). The onset of these supercritical instabilities deviates less than 1% from the
predicted values by linear stability analysis (black line in Fig. 3.13 for Reo > −1500.
On the other hand for Reo ≤ −1500 the instabilities set in systematically below the val-
ues predicted by theory. In this regime finite amplitude perturbations already trigger the
transition to turbulence, showing that here turbulence can be triggered subcritically and
reflecting how sensitive the system is.

In the following measurements we investigate the transition from turbulent (time-
dependent modes) to laminar flow for quasi-statically decreasing Rei (1 Rei / 1 min). No
hysteresis is observed for Reo ≥ −800, but for higher counter-rotation rates the hysteresis
is clearly evident. This subcritical transition border is approximated by the measurement
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method and displayed as red triangles. Note that the decay of turbulence is a stochastic
process and the real critical phase transition point can only be determined by analyzing
the turbulent fraction, which is one goal of our future studies.

Stability diagrams similar to Fig. 3.13 have been determined for smaller radius-ratio
systems (Andereck et al. 1986), but it is the first time in a high-radius ratio experiment
(η ≥ 0.98) that the supercritical transition could be clearly distinguished from the subcrit-
ical one. The challenge is to minimize finite amplitude perturbations that would otherwise
trigger the transition to turbulence in the linearly stable regime (below the black line in
Fig. 3.13). This becomes clear by comparing our measurements to the only existing stud-
ies in this regime by Prigent, Dauchot and coworkers for an η = 0.983 (black diamonds
in Fig. 3.13)(Prigent et al. 2003, Prigent & Dauchot 2005, 2000a). For Reo ≥ −800
the measurements agree qualitatively with ours, but for higher counter-rotating rates their
measurements do not exhibit hysteresis. The transition between laminar and turbulent
flow is always at the subcritical border independent of the measurement procedure (in- or
decreasing Rei), triggered by finite amplitude perturbations. This is not of great impor-
tance for their investigations in the supercritical regime (Prigent et al. 2002), but in order
to determine the equilibrium turbulent fraction and to characterize the phase transition as
we are planning here it is absolutely crucial to avoid such uncontrolled finite amplitude
disturbances.

3.6 Discussion

We have built and tested the first high-radius ratio Taylor-Couette experiment (η = 0.98),
in which perturbations are so small that the phase transition towards sustained turbulence
in the subcritical regime can be investigated. The system size is 12 times larger than
the largest plane Couette experiment, that can technically still be controlled to study the
phase transition (Bottin & Chaté 1998). In future this together with a measured accuracy
of better than 1% will allow us to measure the turbulent fraction significantly closer to
the critical phase transition point than all previous experiments. The optical measurement
method and analysis developed, enables the measurement of both the fast dynamic and the
critical slowing down, up to time scales of 107 advective units, three orders of magnitude
longer than previous numerical simulations (Duguet et al. 2010).

By an independent rotation of the axial endplates combined with a variable aspect
ratio, this device bridges the gap in astrophysically motivated investigations between large
aspect ratio experiments with axial endplates attached to the outer cylinder and small
aspect ratio systems with an active control of the axial boundaries. In this experiment it
could be tested if endplate driven instabilities at low Reynolds numbers (Avila 2012) are
eventually superseded by shear flow turbulence with universal scaling at large Re (Paoletti
et al. 2012), as recently suggested (Avila 2012). A clear distinction between these two
regimes is necessary before experimental results from the TC system can be used to infer
the dynamics of turbulence in accretion disks.

Besides these two specific applications the device features a large number of control
parameters allowing to investigate a big variety of different aspects of rotating flows. We
only want to point out the large Reynolds number regime in which the experiment can
operate (Re = 101 − 106), the possibly extreme radius-ratios (η = 0.03 to 0.98) and the

82



3.7 Acknowledgments

excellent optical access.

3.7 Acknowledgments
We acknowledge K. Rühl (arkkon Gmbh, Germany) for his technical and engineering
support and particularly his enthusiasm and ideas in finding various technical solutions.
We appreciate discussions about motor fluctuations with D. van Gils and the coauthors of
(van Gils et al. 2011a) and the sharing of their data. We want to mention the excellent
technical service of Novotron (Germany), especially of R. Mühlberger and we thank M.
Avila for computing the linear stability (black line in Fig. 3.13). The research is financially
supported by the Max Planck society and the Deutsche Forschungsgemeinschaft (FOR
1182). K.A. acknowledges support from the International Max Planck Research School
for the Physics of Biological and Complex Systems and the Göttinger Graduate School
for Neurosciences, Biophysics and Molecular Biosciences.

83





4 Phase transition in Couette flows

In the introduction (Section 1.3.3), the results of previous models (Manneville 2009),
experiments (Bottin & Chaté 1998, Bottin et al. 1998) and simulations (Duguet et al.
2010) on the phase transition between decaying and spreading turbulence have been sum-
marized. The flow dynamics and models indicate that directed percolation might be a
proper description for this transition. But observations of direct numerical simulations
and experiments in plane Couette flow show a behavior that is not in agreement with this
expectation. They report the transition to be of first order, instead of second order, which
is required for directed percolation. However, a closer look on the scaling of the turbulent
fraction (see Fig.1.16) revealed that the simulations are not close enough to the critical
transition point to be able to distinguish between a first and a second order phase tran-
sition. The problem are the time scales to reach the steady state which increase as the
critical point is approached. The experiments provided long observation times, but the
system size was very limited. Attempts to build an experiment with a larger system size
failed due to an insufficient precision (Prigent et al. 2003).

In this section I will discuss the interpretations of the previous experiments by high-
lighting the influence of the system size and the accuracy of the setup on this phase tran-
sition, before presenting my own measurements. In this context, the linear stability of
the laminar flow is very important. If all turbulence in the system has decayed, the flow
remains laminar for all times. In the framework of statistical mechanics this behavior
is reflected in the non-equilibrium class of phase transitions. Finite amplitude perturba-
tions are necessary to trigger the transition to turbulence. In these investigations such
perturbations are applied only once to create turbulence initially. While the mean turbu-
lent fraction is measured, such perturbations have to be avoided to observe the intrinsic
dynamics of the flow.

4.1 Influence of the system size
In order to investigate a phase transition large statistical ensembles have to be analyzed.
It is therefore commonly known that a large system size is required. In most systems the
system size in experiments is by default large enough to approximate many characteristics
of phase transitions very well. An example is the loss of spontaneous magnetization
when the temperature exceeds a critical value, which is described by the Ising model.
In a ferrum cube with side length of 1cm there are about 109 electronic spins (Bramfitt
2001). The net magnetization depending on the temperature in an experiment shows
clearly a second order phase transition. As I will show in this section, the limited size
in plane Couette experiments might change the appearance of the phase transition. The
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(a) (b)

Figure 4.1: (a) Sketch of the influence of the system size on the phase transition. The
blue area corresponds to the laminar flow and the yellow area to the minimal turbulent
structure that is sustained. In pipe flow this structure corresponds to a puff, in Taylor-
Couette flow to a single spiral arm and in plane Couette flow to a turbulent band. In
this system the minimum turbulent fraction that is still sustained corresponds therefore to
25%. (b) Measurements closer to the critical point (by decreasing Re) would lead to the
decay of the turbulent structure and the the flow would relaminarize. Since the laminar
flow is linearly stable, the turbulence cannot recover and the flow remains laminar for all
times.

main difference stems from the minimal turbulent structure that can be sustained by the
mean flow. In pipe flow, such a structure is a puff, which is localized in the streamwise
direction to about 20-30 pipe diameters (Wygnanski et al. 1975). If a puff is ‘squeezed’ by
an external force, e.g. by another puff it will decay (Hof et al. 2010, Samanta et al. 2011).
In Taylor-Couette and plane Couette flow turbulence is localized in the form of spirals
or tilted bands, respectively. The width of these bands is about 20-40 gap units (Prigent
et al. 2002). My observations of flow visualization in high-radius ratio Taylor-Couette
flow (η = 0.98) suggest that a spiral arm has a rather constant width in the streamwise
(azimuthal) direction, but its length in the spanwise (axial) direction changes substantially.
As long as the turbulence arranges itself in a spiral arm (either confined by the axial lids
of the experiment or by an intrinsic localization) it can usually be sustained. But if the
turbulence arranges itself in a spot of similar dimensions in streamwise and spanwise
direction it usually decays, unless it can recover its spiral shape in a time corresponding
to about 5-10 times propagating around the inner cylinder.

To sum up, it seems that in linearly stable shear flows a minimum turbulent structure
exists. In contrast to the aforementioned magnet, here these structures have a macroscopic
size, which is on the same order as the system size of experiments. If in average exactly
a single of this turbulent structures exists in the system, then this defines the minimum
turbulent fraction that can be measured in a setup. In the example in Fig. 4.1(a) this
minimum turbulent fraction corresponds to 25%. If the system size increases by 10, the
minimum turbulent fraction that can be measured is 10 times smaller, namely 2.5%. In
this example it is therefore the size of the system and not the dynamics of the flow that
determines the size of the discontinuity. The classification of a transition in first and
second order on the other hand depends exactly on the size of this discontinuity. Applied
to experiments it means that this phase transition will always appear discontinuous, even
though it might be of second order.

The minimum turbulent fraction in the plane Couette experiments was about 35%
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Figure 4.2: Previous experimental (Bottin & Chaté (1998), Bottin et al. (1998)) and
numerical (Duguet et al. (2010)) investigations in plane Couette flow interpreted the phase
transition to be of first order. The minimum turbulent fraction that was sustained is above
35%. The gray area indicates where the turbulence was observed to decay. It is clearly
visible that the error bars with about 3% of the Re, stemming from the experimental
precision reach inside this regime. The consequences on the nature of the transition are
discussed in Fig. 4.3.

(Bottin & Chaté 1998). If the transition is of first or of second order could be determined
by increasing the system size and checking if the minimum turbulent fraction decreases.
An almost ten times larger plane Couette experiment was indeed build, but the accuracy
in Re was with about 7.5% not sufficient to investigate this phase transition (Prigent et al.
2003). In the following it is demonstrated why the accuracy is so important.

4.2 Influence of the accuracy of the experimental setup

So far we have assumed that an experimental setup has a finite size but no uncertainties,
which is obviously wrong. In the plane Couette experiments of Bottin et al. (1998) the
accuracy in Re is estimated to about 3%, which I plotted as error bars in Fig. 4.2. It can
be clearly seen that the error bars reach inside the gray shaded area, which indicates the
transient turbulent regime. The influence of deviations in Re on the flow dynamics close
to this regime is qualitatively different from its influence at larger turbulent fractions.

This becomes clear by looking at the simple example in Fig. 4.3. We assume that
Re drops temporally or locally due to an inaccuracy of the experiment, e.g. stemming
from a temperature drop or a varying gap width. If several turbulent patches are present
in the system like in Fig. 4.3(a) this drop in Re leads to the decay of several patches. If
Re increases afterwards, new patches will be generated from existing ones by processes
similar to puff splitting in pipe flow. If the deviations in Re are symmetric to higher
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(a) (b)

Figure 4.3: (a) In this large system 10 turbulent patches (marked in yellow) correspond
to a turbulent fraction of 25%. If Re is temporarily decreased, either on purpose or due
to an imprecision of the experiment, some of the patches decay. If Re increases again,
the turbulent patches spread, thereby generating new ones. The turbulent fraction remains
constant apart from fluctuations around the mean. (b) Close to the minimum turbulent
fraction (here corresponding to 2.5%), a decrease in Re will lead to the relaminarization
of the flow. If the Re is increased afterwards, the flow remains laminar.

and lower values, these deviations will lead to a fluctuation around the mean turbulent
fraction. By using long observation times precise measurements are possible even though
the experiment itself might not be that accurate.

The situation is completely different close to the minimum turbulent fraction of the
setup as it is displayed in Fig. 4.3(b). In average only a single turbulent patch will be
present. A drop in Re is likely to kill this last turbulence. Once this patch has decayed
the flow remains laminar, even when Re increases again. Deviations in Re close to the
minimum turbulent fraction are therefore not a fluctuation around the mean value, but
influence how the phase transition appears.

4.3 Phase transition in a large system with high accuracy

If we assume that the onset of turbulence follows a second order phase transition then it
is the system size that determines the minimum turbulent fraction that could be possibly
measured. The accuracy of the setup determines which turbulent fraction is sustained
and can actually be measured. System size and accuracy of the experiment are therefore
the key players that control how close to the critical point turbulence is sustained. They
determine how well a continuous scaling can be approximated.

In this thesis the measurements of the phase transition are performed in a high-radius
ratio Taylor-Couette system (radius ratio η = 0.98), whose system size is 12 times larger in
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Figure 4.4: Phase transition of second order in a high radius-ratio Taylor-Couette exper-
iment (η = 0.98). The minimum turbulent fraction corresponds to about 7%. The system
size is 12 times larger and the observation time 30% longer than in Bottin & Chaté (1998).
The error bars were determined by comparing the onset of linear instabilities with linear
stability analysis and correspond to 1% of the Re. The blue line is a power law fit to
the data points in the vicinity of the critical point (520 < Rei < 550). The correspond-
ing exponent of ≈ 0.57 agrees well with the one from 2-dimensional directed percolation
(0.58). A square-root scaling is shown by the black line for comparison. During the
measurements Reo = −1000 and the endplates are at rest. The linear stability sets in at
Rei = 637.

area1 than the previous plane Couette experiment of Bottin & Chaté (1998). The accuracy
in Re is about 1%, which was estimated by comparing the onset of linear instabilities with
linear stability analysis for a pure inner cylinder rotation and counter-rotating cylinders
(see Fig. 3.13 on page 81). Finite amplitude perturbations are better controlled than in
previous Taylor-Couette experiments with the same η (see also Fig. 3.13). The turbulence
was triggered by increasing Rei until the flow becomes linearly unstable. Afterwards
Rei was abruptly decreased to the desired value and the measurements started after the
flow reached a steady state. The turbulent fraction is obtained in the counter-rotating
regime, where the laminar profile is linearly stable (subcritical turbulence). The dynamics
resembles here the one of pipe and plane Couette flows (Coles 1965, Prigent et al. 2002,
Borrero-Echeverry et al. 2010). The outer cylinder speed is kept constant throughout the
study at Reo = −1000 and the endplates confine the axial length to 263 gap width units
and are at rest. The turbulent fraction is determined by analyzing the images from a high
speed camera (see Section 3.4.2), which monitors the flow after it has reached its steady
state. The recording time reaches from 90 seconds at the largest Rei to 15 minutes at the

1The spanwise length is about 7.5 times larger and the streamwise about 1.6.
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4 Phase transition in Couette flows

lower Rei corresponding to 1.4 · 106 advective units. The recording times increase as the
critical point is approached to account for the critical slowing down.

The retrieved turbulent fractions are plotted in Fig. 4.4. It is clearly visible that the
minimum turbulent fraction is substantially smaller than in the plane Couette experiments
of Bottin & Chaté (1998). In fact it is five times smaller and the observation time is
about 30% longer than in the plane Couette experiments. The turbulent fraction increases
smoothly with increasing Rei from its minimum value of about 7% to more than 50%.
From these results it can be concluded that the phase transition is likely to be of second
order.

In these measurements the scaling of the mean turbulent fraction can be approximated
by a square-root over the full Rei-regime, which is indicated by the black line. It seems
that closer to the critical point an exponent of 0.57, shown by the blue line, approximates
the measurements better. This exponent agrees well with the one from two dimensional
directed percolation (0.58).

Please note that these measurements are preliminary. I do believe that the phase transi-
tion is of second order, a second set of preliminary experiments (performed by Dr. Jalikop
and not shown in this thesis) has confirmed this. But even though the scaling of the tur-
bulent fraction is exactly what we were hoping for, namely a scaling corresponding to
directed percolation, this has to be checked in a new set of experiments. In these mea-
surements the long-time condition of the working fluid is problematic. Usually the fluid
volume in the gap is used throughout the whole study and the experiment is working 24
hours a day to minimize any change of the conditions. This was not possible for these
measurements, because the working fluid was leaking out of the experiment due to a
worn out seal. Several times new working fluid was added. Even though the fluid comes
from the same container, its temperature might not have been exactly the same (deviation
≥ 0.01K) and particle sizes/concentration of the tracers might have slightly changed. In
addition, refilling the experiment trapped air bubbles. These were removed, but overall
it remains to be said that the conditions were not as good as I would have liked them to
be. Future experiments are already in preparation with measurements closer to the critical
point and even longer observation times. By analyzing also the distribution of the laminar
gaps to obtain the second and third exponent, these measurements will finally clarify if
the onset of turbulence can be described by directed percolation or at least if it can be
observed in an experiment at all.
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5 Discussion

The transition to turbulence has been and continues to puzzle researchers since the pio-
neering experiments in pipe flow of Reynolds (1883) in the 19th century. Although the
onset of turbulence in flows that become linearly unstable is well understood since the
work of Sir Taylor (1923) and Ruelle & Takens (1971), the transition in linearly stable
laminar flows has remained quite mysterious. For the latter there does not exist a theory
that can either predict the exact transitional Reynolds number Re or even describe the
nature of the transition route qualitatively. Even one of the simplest questions, at what
critical Re pipe flow remains turbulent, was unanswered since the work of Reynolds (see
e.g. Eckhardt (2008)).

In this thesis (Chapter 2) the question has been answered experimentally. The critical
Rec is 2040 ± 10. But much more important than the exact value is the knowledge gained
by determining this number. Prior to this work it was suggested that the nature of turbu-
lence in pipe flow is transient (Hof et al. 2006). In fact, the decay of turbulent puffs is
a stochastic, memoryless process (Faisst & Eckhardt 2004), and the time scales involved
grow explosively with increasing Re, but remain always finite (Hof et al. 2008, Avila et al.
2010, Kuik et al. 2010). Therefore, from these lifetime studies of single puffs no critical
Rec could be determined. However, during my thesis Moxey & Barkley (2010) compared
the onset of puff splitting, through which turbulence can spread, with the time scales of
the decay. They concluded that even though the nature of a single turbulent puff might
be transient, the mechanism of splitting can fill the pipe with intermittent turbulence. The
main drawback of their work was that they assumed puff splitting to be a deterministic
mechanism starting at a critical Re ≥ 2300. Moreover, they postulated that the onset
of puff splitting is equal to the onset of sustained turbulence. At that time I was in the
laboratory performing a statistical investigation of the puff splitting mechanism. The re-
sults of Chapter 2 show that puff splitting is not a deterministic mechanism, but rather a
stochastic, memoryless process, exactly like the lifetime dynamics. By combining this
knowledge with the idea of Moxey & Barkley of comparing splitting and decay it was
possible to determine in this thesis the ‘real critical value’ (Reynolds 1883) for the onset
of turbulence in pipe flow.

The measurements in Chapter 2 show that the mean time of the splitting increases
superexponentially for decreasing Re. The mean lifetimes, on the other hand, increase
superexponentially for increasing Re (Hof et al. 2008). At the critical Rec = 2040 the
time scales of both processes balance each other. For smaller Re the mean time of decay
is shorter than the mean time of splitting. This means in average the turbulence will decay
and the flow relaminarize. For larger Re the opposite situation occurs: the mean time of
the decay is longer than the one of the splitting and hence in average a puff will split more
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often than decay. In this case the pipe fills with intermittent turbulence. Note, that an
individual puff at Re > 2040 could possibly decay before it were able to generate another
puff via puff splitting. In this case, the flow would reverse to its laminar state. Only in an
infinitely long pipe, which has infinitely many puffs traveling downstream the concept of
the critical Rec is a valid description.

These arguments bring us to statistical mechanics, and indeed this transition can be
interpreted as a non-equilibrium phase transition between decaying and spreading turbu-
lence. But before continuing with this idea, some experimental challenges of pipe flow
experiments are highlighted. The main challenge was posed by the large time scales in-
volved, up to 107 advective units at Rec. Experimentally this means extremely rare events
have to be properly detected, without false positives, and a long-time stability of the setup
provided. To determine the mean time of the splitting close to Rec, up to 60000 mea-
surements, of which only seven splitted, were performed in a pipe of about 15m overall
length with a diameter of 4mm. The triggering of perturbations with a valve to generate
puffs, and their detection with pressure sensors (without disturbing the flow in an uncon-
trolled manner) required intensive careful tests. In addition, the superexponential scaling
of the mean time of splitting with the Re implies that any small deviation in Re leads to
large uncertainties in splitting time. Such deviations can arise from temperature differ-
ences, changing the viscosity of the working fluid (distilled water with copper sulfate), or
from the growth of algae, which is substantially more difficult to control. Algae can form
biofilms, which act similarly as a polymer, and shift the onset of turbulence to higher Re
(Hartung 2012). But especially for measurements close to the critical Rec, such a shift can
only be detected after several days of measurements. Therefore, a routine was introduced
of calibrating the pipe every other day against well-known mean splitting times at higher
Re, and if a shift occurred the pipe was dismantled and thoroughly cleaned. In addition
to developing a sophisticated cleaning method, the distilled water was exchanged after
a few days to prevent algae growth instead of several weeks (as it was commonly done
before). To have a more than 3000 diameter long pipe flow experiment reliably working
for several months, was accomplished for the first time in this thesis. The setup itself,
and also the maintenance methods, are now used by other researchers for more detailed
investigations around Rec.

The onset of sustained turbulence in pipe flow is determined by the competition of
two contrary statistical processes, the spreading and the decaying of turbulent patches.
Two important conclusions can be drawn from this. The first one is that the temporal
aspects (as in Ruelle & Takens 1971) do not determine the transition. The results of
this thesis emphasize the importance of spatial aspects and present a new scenario of the
transition to turbulence for shear flows with a linearly stable laminar flow profile. From
plane Couette and Taylor-Couette flows it is known that turbulent patches at low Re are
transient, but spread at larger Re (Daviaud et al. 1992, Bottin & Chaté 1998, Coles 1965,
Borrero-Echeverry et al. 2010). By comparing the time scales of both these processes the
critical Rec for the onset of sustained turbulence could be determined in these systems.
The scenario is therefore not only a valid description for pipe flow but most likely for a
whole class of shear flows. The second conclusion reaches even further. The transition
of such kind of shear flows can be interpreted as non-equilibrium phase transition, which
separates the regimes of decaying from spreading turbulence.

The framework of statistical physics opens new ways to study this transition. The
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first question is, if the transition is discontinuous, and therefore of first order, or if it is
continuous and therefore of second order. This can be distinguished by looking at the
scaling of the mean turbulent fraction with the Re > Rec. However, the time scales
to reach equilibrium in pipe flow are so long that they can be hardly realized. They
are therefore clearly out of the scope of this thesis. Motivated by the results presented
in Chapter 2, Barkley (2011) developed a model that reproduces the dynamics of the
decaying and spreading of puffs. The transition was found to be of second order with the
scaling of the turbulent fraction described by a power law. Moreover, the exponent of the
power law is identical within computational accuracy to the one of directed percolation
in one dimension. Pomeau (1986) had already pointed out that the transition in pipe flow
might be described by directed percolation, but the comparison stayed at a qualitative
level. While this idea gave great impulse to the study of shear flows with a linearly stable
laminar flow, the plane Couette experiments performed much later yielded a different
result. Bottin et al. (1998) suggested the transition to be of first order, which excludes
any description with directed percolation models. The recent results of Barkley (2011)
have resurrected the idea to describe the onset of turbulence by directed percolation. In
plane Couette, or high radius-ratio Taylor-Couette flows, the time scales are several orders
of magnitude shorter than in pipe flow (Shi et al. 2013), so that experiments and direct
numerical simulations are doable.

In the introduction (Chapter 1) results from literature of the scaling of the turbulent
fraction are compared with the one corresponding to directed percolation. It turns out that
simulations (Duguet et al. 2010) are not close enough to the critical point to clearly dis-
tinguish between a first and a second order phase transition. As discussed in Chapter 4
the accuracy achieved in the experiments was about 3% in Re (Bottin et al. 1998, Bottin
& Chaté 1998). Moreover, the small system size may have prevented observing a con-
tinuous transition. In a qualitative analysis of the influence of system size and accuracy
on the phase transition, it has been argued in this thesis that a second order phase transi-
tion would always appear discontinuous in an experiment. The system size and accuracy
of the setup determine the minimum (non-zero) turbulent fraction that can be measured,
or in other words how well the second order phase transition can be approximated. At-
tempts to build a large system size experiment with a high accuracy failed in the past
for both, plane Couette (Prigent et al. 2003) and Taylor-Couette setups (see Chapter 3,
Fig. 3.13). The origin of these technical problems lies in the fact that an increasing sys-
tem size corresponds to a decreasing gap width (see Chapter 1, Fig. 1.17). The smaller
the gap compared to the size of the plates or cylinders, the more difficult it is to keep
the gap width constant. The accuracy of the gap width on the other hand determines the
deviation in Re. Such deviations may act as finite amplitude perturbations that trigger
the transition to turbulence in the subcritical regime (see Chapter 3, Fig. 3.13). In this
thesis a high-precision Taylor-Couette setup (see Chapter 3) has been built with a system
size 12 times larger than previous plane Couette experiments (Bottin & Chaté 1998). The
accuracy in Re is better than 1%, which was determined by comparing the onset of in-
stabilities with a linear stability analysis. In contrast to other Taylor-Couette experiments
with comparable system sizes (Prigent et al. 2003, Prigent & Dauchot 2005) in this setup
finite amplitude perturbations are indeed avoided in the subcritical regime. This setup
satisfies for the first time all conditions to study the phase transition, which was attempted
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by several researchers (assisted by engineers) for more than a decade.
The measurements using this apparatus in Chapter 4 reveal that the phase transition

is of second order and not of first order as previously anticipated. Compared to the pre-
viously detected minimal turbulent fraction in a plane Couette experiment (of about 35%
Bottin et al. (1998)), the measurements in this thesis reach a five times smaller value
(about 7%). Because of the large system size and high precision, the turbulence was sus-
tained for the whole observation period of 1.4 · 106 advective units. The scaling of the
turbulent fraction in the vicinity of the critical point (Re ≥ Rec + 20) is approximated by a
power law with the first critical exponent of directed percolation in two dimensions. Even
though this result needs more detailed measurements to be confirmed, the idea that the
onset of turbulence in linearly stable shear flows is described by directed percolation is
very fascinating.

In future measurements the distributions of the laminar gaps in space and time will
be analyzed. According to directed percolation their distribution is expected to follow a
power-law scaling with the second and third critical exponent respectively (Hinrichsen
2000a). However, these scalings can only be observed in the vicinity of the critical Rec,
far away the scaling is predicted to be exponential (Chaté & Manneville 1987). This
change from a power-law to an exponential scaling is characteristic of directed percolation
and was recently numerically observed in a quasi-one dimensional plane Couette system
(Shi et al. 2013). Even though this result supports directed percolation as the proper
description for the onset of turbulence, no critical exponents were presented in this study
that could prove this. Future experiments are already in preparation and will clarify this.
The image processing was automatized during this thesis, so that huge amounts of data
from the high-speed cameras can be effectively analyzed (see Chapter 3 for details).

Apart from the specific investigation of the phase transition at the onset of turbulence
in pipe and Taylor-Couette flow, a major accomplishment of this thesis is the develop-
ment of the Taylor-Couette device as it is presented in Chapter 3. For the first time this
setup has allowed it to accurately study the phase transition as it was already described
above. But the main advantage of this setup lies in its exceptional flexibility in Reynolds
numbers, geometric dimensions, boundary conditions and temperatures combined with a
high-precision and optimal optical access. In the future this device will be used for all
kind of investigations concerning transitional and high-Reynolds number flows.

Since this experiment is highly complex, it would be tedious to summarize all the
technical difficulties and details in this paragraph (see Chapter 3 for details). Instead I
want to point out that it was the hand in hand work with an external engineer (Klaus
Rühl, arkkon GmbH, Germany) that led to this design. I used my knowledge of physics
and experience in the field of fluid dynamics to derive the objective from the general
setup down to details, like the desired precision or specific bearing of an individual piece.
From this objectives he developed a design with state-of-the-art products and techniques.
Subsequently, I checked the design, and as probably one of the most important steps, I
tried to foresee problems of physical or technical nature and suggested specific changes in
the design. After many iterations the final design was obtained. The effort was rewarded,
on the one hand when it was finally build and only small changes were necessary, and on
the other hand, when I obtained results (presented in Chapter 4) that re-opened the path
to a new understanding of the onset of turbulence. I am convinced that this device with
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its large flexibility and high-precision, will enable investigations that seemed technically
too difficult but are physically highly interesting.

5.1 Open question: Localization of turbulence
The results of this thesis are an important step to quantify the transition to turbulence
and to place this transition in the group of phase transitions. However, a question of
transitional flows that remained completely untouched here is the physical mechanism
that leads to the localization of turbulence at low Re. The lower energy input at these
Re (Hof et al. 2010) explains the intermittent and therefore localized nature of turbulence
compared to higher Re, where the flow appears fully turbulent. But what is very puzzling
is that the turbulent patches have a similar characteristic size in different systems (Samanta
et al. 2011). In pipe flow for example the puffs have a length of about 20-30 diameters
(Wygnanski et al. 1975) and in Taylor-Couette and plane Couette flows the turbulent
bands have a width of 20-40 gap units (Prigent et al. 2002). The universality of this length
in different flows hints at a universal origin of localization. But so far the underlying
physical mechanism are not understood.

Localization in pipe flow
In the recent model of Barkley (2011) the proper behavior of puff decaying and puff

splitting is observed, but no physical mechanisms are directly modeled here. Instead,
it is based on similar equations as models describing excitable media. In such media a
relaxation time leads to a localization of the activity. In pipe flow the relaxation time leads
to the localization of turbulence and hence the generation of laminar gaps. Experiments
have shown that the physical mechanism behind these gaps is the change of the mean flow
profile. Directly downstream of a puff the profile is plug-like. Only at a distance of about
15 pipe diameter the profile has recovered enough towards a Poiseuille profile so that it
can sustain a puff again (Samanta et al. 2011, Hof et al. 2010). However, the question
why the turbulent puffs are localized with a characteristic length of 20-30 diameters is
still open.

Localization in Couette flows
The combined length of a turbulent stripe and a laminar gap was investigated experimen-
tally in plane and Taylor-Couette flow (Prigent et al. 2002, 2003). This combined length
is similar in both systems and decreases for increasing Re. The authors interpreted the
localization as a result of a supercritical long-wavelength instability. But the origin of
this instability and the underlying physical mechanism remained unknown (Prigent et al.
2002). Interestingly the same wavelength/instability was observed for the plane-Couette
flow, where the laminar flow is linearly stable in contrast to their measurements in Taylor-
Couette flow, where the flow was already linearly unstable.

It remains a challenge for the future to gain new insights into this apparently quite
universal mechanism.
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Perspective

In this thesis the oldest question of the onset of turbulence has been answered and the
transition of shear flows with a linearly stable laminar flow was placed in the class of
non-equilibrium phase transitions. These results have been exclusively obtained by ex-
periment.

However, the growing importance of direct numerical simulations (DNS) for the onset
of turbulence should not be underestimated. In this work the main advantage of the exper-
iments compared to simulations are the large system sizes and long observation times. If
the numerical and statistical resolution is sufficient and boundary conditions are properly
chosen, then there is no doubt that the DNS of the Navier-Stokes equation describes the
‘real’ flow dynamics. In addition, simulations offer besides the information of the full
flow field the opportunity to track and stimulate certain (coherent) structures, which are
believed to be the seeds of turbulence (Kawahara et al. 2012). With the quickly growing
computing power I therefore assume that in the future main advances in understanding
the onset and nature of purely hydrodynamic turbulence in simple geometries will be
gained by numerical simulation. The picture is completely different when new physical,
biological or chemical effects are added to the flow. New physical effects can e.g. be
generated by a magnetic field, particles, non-Newtonian fluids or two-phase flows. These
are of paramount importance in applications. Even though DNS are in these cases very
challenging, at least the equations describing the behavior are more or less clear. How
the onset of turbulence influences biological and chemical processes like reproduction
or the developing of cellular structures is far from understood and the equations needed
to perform DNS are not available. I believe that in such fields precise, well-controlled
experiments in simple geometries are imperative to push the frontiers of knowledge.
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Endlich gelang es Forschern, eine mehr als 100 Jahre alte Frage der Strömungsdy-
namik zu beantworten: Wann gewinnen in Rohrströmungen Turbulenzen die Ober-
hand?

Manch scheinbar simple Frage hat in der Wissenschaft schon Generationen von Forschern
beschäftigt, die vergeblich nach der Antwort gesucht, dabei aber fundamentale Erken-
ntnisse gewonnen haben. Ein gutes Beispiel dafür bietet die Fluiddynamik, die Wis-
senschaft von der Bewegung von Flüssigkeiten und Gasen. Schon vor über 120 Jahren
wollte Osborne Reynolds (1842 - 1912) an der University of Manchester herausfinden,
wann eine Flüssigkeit nicht mehr glatt durch ein Rohr strömt, sondern Wirbel bildet, die
den Strömungswiderstand drastisch ansteigen lassen.

Mit seinen Untersuchungen hat der britische Ingenieur bahnbrechende Fortschritte
in der Fluiddynamik erzielt, ohne jedoch seine Ausgangsfrage definitiv beantworten zu
können. Das Rätsel blieb bis vor Kurzem ungelöst. Eine vermeintliche Lösung schaffte es
zwar in etliche wissenschaftliche Veröffentlichungen, Lehrbücher und sogar in Wikipedia.
Doch beruht sie auf einer inkorrekt zitierten Zahl.

In der Fluiddynamik unterscheidet man zwischen laminaren und turbulenten Strö-
mungen. In ersteren bewegt sich die Flüssigkeit glatt in Schichten, die sich nicht ver-
mischen. Meist ist die Strömungsgeschwindigkeit zeitlich konstant. Man denke etwa an
Honig, der von einem Löffel fließt. Turbulente Strömungen sind dagegen stark fluktu-
ierend und verwirbelt, was unter anderem zu deutlich höheren Reibungsverlusten führt.

Um den Übergang zwischen den beiden Strömungsarten zu erforschen, wählte Rey-
nolds einen Versuchsaufbau mit möglichst einfacher Geometrie und großer technischer
Bedeutung: ein gerades, glattes Glasrohr mit rundem Querschnitt, durch das er unter-
schiedlich warmes Wasser strömen ließ. Durch Einspritzen von Tinte konnte der britische
Forscher die Bewegung sichtbar machen und so eindeutig zwischen laminaren und turbu-
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Figure A.1: Auf der historischen Zeichnung ist Osborne Reynolds bei seinen bahn-
brechenden Versuchen zur Strömung von Flüssigkeiten in Rohren zu sehen.

lenten Regionen unterscheiden. Wie er feststellte, spielte die Strömungsgeschwindigkeit
eine entscheidende Rolle. Erst wenn sie relativ hoch war, bildeten sich Wirbel. Außerdem
bemerkte Reynolds, dass ein großer Rohrdurchmesser und eine geringe Viskosität – also
Zähigkeit – der Flüssigkeit Turbulenzen begünstigten. Das Verhalten der Strömung hing
demnach vom Verhältnis der drei Größen zueinander ab.

Bedeutendes Lebenswerk, doch ohne krönenden Abschluss
Dies führte Reynolds zu dem wichtigsten Parameter der Fluiddynamik: der später nach
ihm benannten Reynoldszahl. Die dimensionslose Größe ist gleich dem Produkt aus
Strömungsgeschwindigkeit und Rohrdurchmesser, geteilt durch die Viskosität. Auf ihr
beruht das reynoldssche Ähnlichkeitsgesetz, wonach es möglich ist, von Beobachtungen
an kleinen Modellen – etwa im Windkanal – auf das Verhalten des Originalsystems zu
schließen. Dieses Gesetz bildet eine wesentliche Grundlage der experimentellen Strö-
mungsforschung.

Die Messungen von Reynolds zeigten allerdings auch, dass äußere Störungen – etwa
Wellen im Tank, der das Rohr speist – großen Einfluss darauf haben, wann die Turbu-
lenz einsetzt. So konnten Strömungen bei gleicher Reynoldszahl mal verwirbelt und mal
laminar sein. Die Frage, ab welcher Geschwindigkeit – bei gegebener Rohrdicke und
Viskosität – eine Strömung turbulent wird, hängt somit stark vom Versuchsaufbau ab
und lässt sich daher nicht eindeutig beantworten. Reynolds postulierte allerdings, dass
es einen kritischen Wert für die Reynoldszahl (Rec) geben müsse, oberhalb dessen sich
vorhandene Wirbel ausbreiten und zu dauerhafter Turbulenz führen, während sie unter-
halb dieses Werts zerfallen, so dass die Strömung schließlich in den laminaren Zustand
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Figure A.2: Die Schnappschüsse einer Computersimulation zeigen von unten nach oben,
wie aus einem wachsenden Wirbelballen – einem ‘puff’ – ein zweiter hervorgeht. Die
Flüssigkeit strömt von links nach rechts. Das Bild wurde von M. Avila zur Verfügung
gestellt.

zurückkehrt.
Trotz langjähriger Forschung gelang es dem britischen Forscher aber nicht, diese Zahl

zu bestimmen. Seine letzten Schätzungen lagen zwischen 1900 und 2000. In diesem
Bereich wird die Strömung nie vollständig turbulent. Vielmehr bleiben zwischen den
lokalisierten Wirbelballen, so genannten ‘puffs’, die eine typische Länge von 20 bis 30
Rohrdurchmessern haben, stets laminare Bereiche bestehen (Bild oben).

Unter der Vielzahl von Versuchen, diesen kritischen Punkt zu bestimmen, fanden
Experimente besondere Beachtung, die Julis C. Rotta (1912 - 2005) 70 Jahre später an
der Aeronautischen Versuchsanstalt in Göttingen durchführte. Sie galten dem Bereich
oberhalb von Rec, in dem sich die turbulenten Regionen auf Kosten der laminaren aus-
breiten. Rotta verfolgte, wie diese Ausbreitungsgeschwindigkeit abnahm, während er die
Reynoldszahl allmählich senkte; bei Rec sollte sie gleich null sein. Doch er kam nie so
weit, weil sein Rohr zu kurz war und er nicht genügend Experimente durchführen kon-
nte. Seine letzte Messung bei Re = 2300 ergab noch eine Ausbreitungsgeschwindigkeit
von zwei Prozent der mittleren Strömung. Deshalb konnte Rotta das gesuchte Rec nur
extrapolieren. In seiner Veröffentlichung schrieb er: ‘Der genaue Wert dieser kritis-
chen Reynoldszahl kann aus vorliegenden Versuchen nicht bestimmt werden; er mag bei
Rec = 2000 liegen.’ Dennoch zitierten viele Wissenschaftler das Ergebnis seiner letzten
Messung fälschlicherweise als angebliche Schwelle für den Einsatz der Turbulenz bei der
Rohrströmung. Die Zahl 2300 fand so auch Eingang in Lehrbücher und Lexika – darunter
Wikipedia. Da das Problem gelöst schien, beschäftigte sich in der Folge kaum noch je-
mand damit. Das änderte sich erst, als 2004 theoretische Physiker um Bruno Eckhardt
von der Universität Marburg neue Erkenntnisse über das Verhalten der Strömung unter-
halb von Rec vorlegten. Demnach handelt es sich beim Zerfall der Turbulenz im Rohr
um einen statistischen Vorgang mit einer exponentiellen Wahrscheinlichkeitsverteilung.
Er findet also vollkommen zufällig statt. Genau wie beim Zerfall radioaktiver Substanzen
lässt sich aber eine mittlere Zeit angeben, nach der die Turbulenz zur Hälfte zerfallen ist.

Gleichgewicht zwischen Ausbreitung und Zerfall
Die exakte Bestimmung dieser Halbwertszeit für jede Reynoldszahl erfordert allerdings
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Figure A.3: Ausbreitung und Zerfall von Turbulenzen sind Zufallsprozesse, deren
Wahrscheinlichkeit von der Reynoldszahl abhängt. Wo sie sich die beiden Vorgänge die
Waage halten – also am Schnittpunkt der beiden Wahrscheinlichkeitskurven –, liegt die
kritische Reynoldszahl Rec, die den Übergang zwischen laminarer und turbulenter Strö-
mung kennzeichnet.

Tausende bis Hunderttausende von Messungen. Viele Forschergruppen auf der ganzen
Welt unterzogen sich dieser Mühe – mit teils widersprüchlichen Ergebnissen. Die Haupt-
schwierigkeit bestand darin, über Zigtausende von Messungen hinweg alle Versuchs-
bedingungen exakt konstant zu halten. Ziel der Experimente war es, festzustellen, bei
welcher Reynoldszahl die mittlere Zerfallszeit unendlich groß wird. Dies sollte das ge-
suchte Rec sein. Doch zur großen Enttäuschung der Forscher stiegen die Zerfallszeiten
mit zunehmender Reynoldszahl zwar sehr schnell an (linker Ast in Grafik A.3), erreichten
aber nie unendlich. Somit ließ sich Rec auf diese Weise nicht bestimmen. Den Durch-
bruch brachte schließlich die Erkenntnis, dass sich Turbulenz auch schon bei unerwartet
niedrigen Reynoldszahlen ausbreiten kann, indem sich Wirbel von einem existierenden
‘puff’ ablösen und einen neuen bilden (Bild A.2). Wie die Beobachtungen unserer Gruppe
an einem 15 Meter langen Glasrohr mit vier Millimeter Durchmesser ergaben, geschieht
das jedoch extrem selten. Deshalb bleibt ein turbulenter Bereich oft tagelang unverän-
dert, bevor er plötzlich einen zweiten erzeugt. Wie eine statistische Untersuchung ergab,
handelt es sich hierbei ebenfalls um einen Zufallsprozess mit exponentieller Wahrschein-
lichkeitsverteilung (Journal of Fluid Mechanics 646, S. 127, 2010). Folglich lässt sich
nicht nur für den Zerfall, sondern auch für die Ausbreitung der Turbulenz eine Halbwerts-
zeit bestimmen. Diese fällt mit sinkender Reynoldszahl sehr schnell ab (rechter Ast in
Grafik A.3). Damit war die Lösung des Problems plötzlich ganz einfach. Offenbar über-
wiegt bei niedrigen Reynoldszahlen der Zerfall der Turbulenz. Dadurch wird die gesamte
Strömung irgendwann wieder laminar. Bei hohen Reynoldszahlen hingegen lösen sich
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turbulente ‘puffs’ langsamer auf, als neue entstehen. Folglich breitet sich die Turbulenz
aus und erfasst schließlich die gesamte Strömung. Der kritische Punkt liegt nun genau
dort, wo diese beiden Vorgänge sich die Waage halten, also die Kurven der Halbwerts-
zeiten für Ausbreitung und Zerfall sich schneiden. Das ist bei einer Reynoldszahl von
2040 der Fall (Science 333, S. 192, 2011). Von uns durchgeführte Computersimulationen
bestätigten dieses Ergebnis. Nach über 100 Jahren konnten wir also eine grundlegende
Frage der Strömungslehre mit immenser praktischer Bedeutung endgültig beantworten.
Eine besonders wichtige technische Anwendung ist der Transport von Flüssigkeiten und
Gasen durch Rohre – etwa Erdöl und Erdgas durch Pipelines. Hier sind Turbulenzen uner-
wünscht, da sie viel Energie kosten. Ein besseres Verständnis ihrer Entstehung könnte
Wege aufzeigen, sie mit geringem Energieaufwand im Keim zu ersticken. Allerdings
erfordert das noch tiefere Einblicke in den Mechanismus, wie Wirbelflecken sich aufspal-
ten. Daran arbeiten wir am Max-Planck-Institut für Dynamik und Selbstorganisation in
Göttingen nunmehr mit Nachdruck. Mathematisch handelt es sich beim Umschlag von
laminarer zu turbulenter Strömung übrigens um einen so genannten Nichtgleichgewichts-
phasenübergang, der den gleichen Gesetzmäßigkeiten gehorcht wie die Ausbreitung von
Waldbränden oder Epidemien.

Die Autoren
Kerstin Avila fertigt am Max-Planck-Institut für Dynamik und Selbstorganisation in
Göttingen ihre Doktorarbeit über das Thema dieses Beitrags an. Björn Hof, ihr Betreuer,
leitet dort als promovierter Physiker eine Arbeitsgruppe, die über die Entstehung von
Komplexität und Unordnung in Strömungen forscht.
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