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Summary

Explaining the existence of the million degree corona on top of the much cooler Solar
surface has provided scientist with a challenge for a several decades. It is not possible for
a cooler object to heat something that is hotter by conduction, which implies that there is
another mean of energy transport into the corona. The general consensus is that this role
is taken by the magnetic fields that are ever present at the solar surface.
The focus of today’s research is on the actual mechanism that thermalizes the energy
transported by the magnetic field. Several mechanisms responsible for this conversion
into thermal energy are being put forward. These suggestions fall often in the Alternating
Current (AC) or Direct Current (DC) category. The first involves rapid changes of the
magnetic field relative to the Alfvén crossing time of a coronal loop, while the second
category involves slow changes. While a convincing case can be made for each suggested
heating mechanism from modelling alone, the observational confirmation is lacking. The
theoretical estimates on which scales the energy conversion happens in these models,
are on the order of centimetres to metres. Observations, however, reach a resolution of
100 km, at best, in the relevant wavelengths, and as such no direct observational confir-
mation of one heating mechanism over the other is possible.
Synthetic observations derived from self-consistent 3D MHD models can provide the link
between theory and observation. Investigation of the emission structures and distribution
of Doppler shifts of emission lines can provide insight on which of these mechanisms is
dominant. Fully self consistent 3D MHD models have already shown the feasibility of
this method. In this work we will expand this approach in two ways.
First we investigate the effect of the strength of the magnetic field at the photospheric
layer. We find that the behaviour of the Doppler shifts is strongly depended on the the
magnetic field strength. When interpreting the stronger photospheric magnetic fields as
higher magnetic activity, the patterns seen in the Doppler shifts as a function of formation
temperature are consistent with observation of magnetically active stars. Also comparing
the C IV emission with a proxy for the X-ray flux is roughly consistent with observations.
Next we explore the observational consequences of different heating mechanisms using
3D MHD numerical experiments. This provides some insight on which of these mech-
anisms is dominant. For this we replace the Ohmic heating term in the energy equation
with parametrized forms of the heating, which are derived from reduced MHD models.
These models involve heating through Alfvén wave dissipation and MHD-turbulence. We
find that the different heating parametrizations give similar coronae in terms of synthe-
sized emission as it would be observed e.g. by EUV imaging. Thus EUV imaging alone
are not sufficient to distinguish between these parametrizations. However, Doppler shift
observations acquired by e.g. Hinode/EIS can provide the pivotal information. In our
numerical experiments the different parametrizations of the heating leads to significantly
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Summary

different distributions of the Doppler shifts of the synthesized emission lines in the tran-
sition region and corona. In particular, this applies to the average redshifts seen in the
transition region and the average blueshifts in the coronal lines. Based on this, our results
favour the turbulent cascade over the Alfvén wave heating, at least when considering an
active region. Future observational and numerical studies will have to show to what ex-
tend this will hold in general.
Combining the results from the two investigations we conclude that different heating dis-
tributions produce different observables. But it is not trivial to conclude which distribution
is the most likely.
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1 Introduction

1.1 Our central star

The Sun has always played an important role in history, religion and science. Almost ev-
ery religion had major role for the Sun god of goddess. The occurrence of a solar eclipse
was often seen as a bad sign, and in many civilizations it was thought the Sun was being
eaten by a giant monster. Therefore the prediction of such an event was considered of ut-
ter importance. As such the Chinese civilization was able to predict these already around
2000 BCE. The Greeks followed around 600 BCE. This is very impressive considering
their ignorance on the nature of the cosmos. Around this time Chinese records mention
the appearance of a darkening or obscuration on the solar disk. These are now understood
to be sunspots.
The Dutch invention of the telescope in the beginning of the seventeenth century allowed
for systematic recording of Sun spots. These recordings are still used today to reconstruct
past solar activity. Some of the most well-known records of the sunspots are those by
Galileo. The number of spots on the Sun follows a cycle of roughly eleven years. This
was only found in the middle of the 19th century by a German astronomer Samuel Hein-
rich Schwabe. It might have been discovered as earlier as in the time of Galileo, if it
were not for the peculiar behaviour of the Sun at that time. From roughly 1600 until 1750
nearly no sunspots appeared on the surface, and the solar cycle seemed to have stopped.
Nowadays we know that the solar cycle is actually a 22 year cycle. In this cycle the
magnetic North and South pole of the sun reverses and back again. During a solar min-
imum the Solar magnetic field is close to a dipole, but during a reversal the magnetic
field becomes very chaotic. At this time strong patches of magnetic flux emerge from the
solar surface. The strongest of those are able to push away the plasma and inhibit convec-
tion, making these areas show up as cool, dark patches on the solar surface, e.g. sun spots.

Core

The energy radiated away by the Sun surface originates from the core. In this region the
temperature reaches well over 15 million degrees and together with the high pressure this
is enough to fuse hydrogen into helium. The small difference in mass between these two
atoms, is released as energy in the form of radiation and neutrinos. The latter provided the
pivotal evidence that the process of nuclear fusion actually occurred in the Sun. Before
that time it was thought the Sun was powered predominantly through the energy released
by the gravitational contraction. This would however not agree with the age found for
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1 Introduction

the Earth and evolution to occur. The gravity powered Sun would have an estimated life-
time of roughly 10 million years, whereas the age of the earth was estimated to be of
the order of 5 billion years. The detection of the Solar neutrinos confirmed fusion takes
place in the core, and the age of the Sun shifted to 5 billion years. It is expected the that
our star can be powered by fusion for another 5 billion years before the hydrogen runs out.

Radiative zone

It has been estimated that a photon (in the classic sense) remains between a hundred thou-
sand and one million years inside the Sun. During this time the photon is scattered around
by free electrons. This constant scattering provides a significant amount of pressure, as
well as an important means of energy transport. In the radiative zone, just above the core,
this is the dominant energy transport mechanism.
If one would fall into the Sun, and not burn instantly, only halfway radiative zone you
would come to a rest. At this point the density equals that of a human body, i.e. water.

Convective zone

In the convective zone this mode of energy transfer changes. Convective motion takes
over from radiation at roughly 86% of the Solar radius as the most efficient way of energy
transport. Bubbles of hot plasma rise up from the tachocline, the interface between the
radiative and the convective zone. From there the bubbles of hot plasma move upward
toward the solar surface. There energy is lost trough radiation. After cooling the cold
plasma sinks back into the solar interior. This is what we observe as granular motion on
the surface.

1.2 Solar atmosphere
The Solar atmosphere is separated in three different zones, distinguished by their different
physical properties.

Photosphere

In this layer the most of the energy from the Sun is lost through radiation. The temper-
ature at the bottom of the photosphere is 6600 K and drops further to 4300 K at the top.
Not all radiation is lost directly from the photosphere, radiation in certain wavelengths
are again absorbed by the upper photosphere which holds most of the observed absorp-
tion lines. The photospheric energy distribution characterizes the Solar spectrum which
follows roughly a 6000 K Planck curve.

Chromosphere

The Chromosphere is named after its colourful appearance during a solar eclipse. The
chromosphere is characterized by a rise in temperature, which is a result of acoustic waves
dissipating. The chromosphere is very non-uniform, a view at the limbs sees this region

12



1.2 Solar atmosphere

as a mass of spicules, or mottles as they are called on-disk, which are small jets of plasma.
In contrast to the absorption-dominated photosphere the spectrum of the chromosphere is
emission dominated, mainly as a result of the increasing temperatures. The temperatures
in the chromosphere reach about 10,000 K.

Corona

The interface between the chromosphere and corona is the Transition Region (TR) in
which is characterized by a sudden increase of temperature by several orders of mag-
nitude. Here the temperature of the solar atmosphere surges from tens of thousands of
degrees to over several million degrees.
The first mention of the solar corona was by the Byzantine historian Leo Diaconus, who
mentioned a "dim and feeble glow like a narrow band shining in a circle around the
edge of the disk" around the darkened Sun during the 968 eclipse in Constantinople. The
corona is usually very faint and therefore only visible if the light of the Sun itself blocked,
as is the case during a Solar eclipse. The low intensities are a result of the extremely
low densities. Despite the clearly visible corona during an eclipse, the densities are lower
than the best vacuum we can create on Earth. Modern observatories use a small occulter
to block out the bright solar disk, or observe in high energy wavelengths in which the rest
of the Solar atmosphere is not emitting.
The corona is where magnetic fields have free play and are not prohibited by the dense
plasma as in the chromosphere and photosphere. This leads to coronal loops, bright loops-
like structures of plasma captured by the strong magnetic fields. Also prominences, cooler
and denser plasma hoovering above the solar surface, kept up by magnetic fields. The
magnetic fields lie at the source of extremely violent explosions, solar flares, which set
off coronal mass ejection. These launch plasma from the solar surface into the interplan-
etary space, and if it hits Earth would be able to knock out satellites or even power plants
on the surface. The extreme conditions the plasma is subject to in the corona is unique
and unreproducible in laboratory conditions. Studying the corona is therefore crucial to
fully understand the properties of plasma, the stuff where 99% of our universe is made of.
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1 Introduction

Figure 1.1: A cartoon depicting the different regions of the Sun. Image courtesy of SOHO
consortium. SOHO is a project of international cooperation between ESA and NASA.
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2 Motivation

In this chapter we discuss the context and motivation of our model. This is done by
introducing the coronal heating problem, and discussing the proposed solutions. Next we
give an overview on the current state of numerical models in this field and how our work
fits within.

2.1 The hot Corona
The nature of the corona has been a mystery for a very long time. Several anomalous
observations made this region hard to physically explain. The first to suggest the mil-
lion degree solar corona was Hannes Alfvén in 1941 (Alfvén 1941). This conclusion
was reached after examination of several of these anomalous observations. So was the
energy distribution of the continuum spectrum observed in the corona the same as the
photosphere. This would imply that the light from the photosphere was scatter off free
electrons in the corona.
This was supported by the near absence of the Fraunhofer (absorption) lines, scattering
on a distribution of high velocity electrons would wash out most of these lines, through
the wide distribution of Doppler shifts. Only remnants of the strongest absorption lines
could be observed, such as H and K absorption lines from singly ionized calcium, as was
discovered by Grotrian (1931). The degree of "washing out" is a measure of the mean
electron velocity, and thus the temperature of the coronal electrons. This way the author
found a mean electron velocity of 7.5 · 108 cm s−1 and later 4 · 108 cm s−1 (Grotrian 1934),
which would correspond to temperatures of respectively 1.2 · 106 and 0.35 · 106 degrees.
The existence of so-called "forbidden lines" was observed by Edlén (1943) to whom the
discovery of the million degree corona is usually attributed to. These lines belong to
atoms with an extremely high degree of ionization, such as Fe XIV and Ca XV. To reach
these levels of ionization through collisions would require very high electron energies.
These lines are called "forbidden" because of their relatively low change of spontaneous
de-excitation, which allows the ion to stay in an exited state for a long time. In higher den-
sities the collisional de-excitation rates are therefore much higher than the spontaneous
ones. The coronal densities are however very low, so that the collisions are so infrequent
as to allow the spontaneous (radiative) de-excitation of these excited states. The existence
of these highly ionized atoms, as well as the degree of Doppler broadening of the emis-
sion lines, would require temperatures of the order of a million degrees.
These, and several other lines of evidence, led to the conclusion that the corona actually
is one million degrees and over. Something that was not expected at that time. This dis-
covery led to a new question, "How is the corona heated?", which, in a slightly modified

15



2 Motivation

version, remains one of the greatest unanswered questions in physics.

2.2 Coronal energy budget
The temperature of the corona is remarkably robust. If we think of a simplified picture
of a coronal loop in equilibrium, with energy being deposited in the corona, a majority of
this energy is transported downward though heat conduction and subsequently lost in the
chromosphere through radiation. Scaling laws of coronal temperature and pressure based
on this principle were derived as the RTV-scaling laws (Rosner et al. 1978), who found
these as a result of early 1D models. They developed an order-of-magnitude estimate on
how the apex temperature of a coronal loop scales with the energy input. When assuming
all energy is transported downward and is lost there predominantly through radiation, we
can construct a energy-balance equation

Lrad ≈ ∇ · q ≈ H (2.2.1)

where, the radiative losses, Lrad ∝ ρ
2Tα, are a function of the density ρ and temperature

T . α is a result of approximating the radiative losses by a piecewise power law. This is of
the same order as the second term, the energy conduction, which is given by q ∝ T 5/2∇T .
This term is again of the same order as the energy input, H. We ignore here all the
constants since our interest lies in how the terms scale with each other, not the absolute
values. The full equations, including the constants are discussed in chapter 3.
The values of α are approximated by −1/2, which provides a good fit over the range of
105 K to 107 K. We know that for a classical gas ρ ∝ p/T , where we take the pressure p
to be constant along the loop. Estimating ∇ with the loop length 1/L, leads to two scaling
laws:

Ttop ∝ H2/7L4/7, (2.2.2)
p ∝ H6/7L5/7. (2.2.3)

These laws relate the temperature are the top of the loop, Ttop and the pressure, p, with the
heating rate and loop length. The first scaling law shows that the temperature of a coronal
loop is rather insensitive to the energy input. In order to double the coronal temperature,
one needs to increase the energy input by more than a factor 10.
The coronal heating problem becomes apparent when considering the lower lying and
cooler photosphere. The heating requires an upward non-thermal transport of energy
through the lower cooler regions and a mechanism to deposit this energy into the corona.
To balance the energy losses of the corona trough radiation, particle acceleration and con-
duction, requires an energy flux of 3 · 102 Watt m−2, for the quiet sun, to 104 Watt m−2 in
active regions (Withbroe and Noyes 1977).
The magnetic fields that are ever present on the Sun provide both the means of energy
transport and more than enough energy to keep the corona at one million degrees As-
chwanden (2004). There is, however, no consensus in what way the magnetic energy is
converted into thermal energy.
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2.3 Heating mechanisms

2.3 Heating mechanisms

It is clear from various observations that the heating of the corona is closely linked to
the magnetic field. Strong enhancements in emission lines originating from hot plasma,
coincide with regions of strong magnetic field. This puts the magnetic field at the forefront
as the dominant energy carrier. This is reassuring, since acoustic waves are extremely
inefficient in crossing the transition region. The drop in density in the TR causes these
wave to shock and dissipate well before they reach the corona. Waves in the magnetic field
can travel partially into the corona and deliver sufficient energy across the TR. Changes in
the configuration of the field travel nearly unhindered through the transition region. Also
this allows the transport of sufficient energy Aschwanden (2004) into the corona. The
exact nature of this transport, and subsequent dissipation is still largely unknown. There
are however, many suggestions which general fall within either of the two categories,
alternating current (AC) heating and direct current (DC) heating. This depends on the
time scales involved in respect to the time needed for an Alfvén wave to travel the across
the whole loop.

2.3.1 AC heating

AC heating is characterized by fast changes in the magnetic field configuration, faster
than the field line can adapt to the changing conditions. These fast changes often take
the form of Alfvén waves which are exited by the convective motion at the solar sur-
face. The downflows in the inter-granular lanes are highly turbulent (Cattaneo et al. 2003;
Vögler et al. 2005; Stein and Nordlund 2006; Bushby et al. 2008) and as such causes
transverse motions within the flux elements. A fraction of these waves reach the corona
were, through some mechanism, they dissipate and convert the magnetic energy into ther-
mal.
These Alfvén waves, a pure magnetic wave, have no density perturbation associated with
it, and are therefore hard to detect. Tomczyk et al. (2007) reported the first observations
of these waves using the high temporal and spatial resolution of the AIA instrument on
SDO.
A problem with AC heating based on Alfvén waves is the strong increase of the Alfvén
speed that increases from 15 km s−1 in the photosphere to over 1000 km s−1 in the corona.
This leads, just as for sound waves, to a barrier. The strong reflection of the Alfvén waves
allows only a small fraction of the energy to be transported into into the corona. Due to
the low densities in the corona this leakage of energy through the TR should be sufficient
to heat the corona. The biggest obstacle for these suggestions it that Alfvén waves are
notoriously hard to dissipate because of the independence on the local density.
It is suggested that field-lines in resonance have unique eigen-frequencies. When two
neighbouring field-lines resonate out-of-phase, strong currents that form as a result of this
could dissipate the wave energy and heat the loop (Ionson 1978). Also resonances of
Alfvén waves with ions would deposit sufficient energy Aschwanden (2004). An attrac-
tive feature of the last suggestion is that it also work in open field-lines, and the deposited
energy would not only be sufficient to heat the corona but also to accelerate the solar wind.
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2 Motivation

[h]

Figure 2.1: A schematic depiction of field line braiding. The cartoon depicts an unfolded
loop. Photospheric motions entangle the different field-lines. Stress induced by this en-
tanglement is released through reconnection events, which converts magnetic energy into
thermal and kinetic energy. Image taken from Parker (1983)

2.3.2 DC heating

DC heating involves slowly changing magnetic fields, so that the fields can adapt to the
changing conditions. These changes are thought to be induced by the granular motion of
the photosphere that shuffles the magnetic fields around. In the photosphere the thermal
pressure is stronger than the magnetic pressure and as such the magnetic field is forced
to follow the granular flows. In the corona the field-lines are braided which induces
currents which then dissipate and heat the corona. This model was first suggested by
Parker (1972). This is schematically drawn in figure 2.1. In this model the energy is not
continuously released, but will start when enough stress has been accumulated through
the entangling of the magnetic field by photospheric motions. At a critical angle two
braided magnetic field-lines will reconnect and release their stored energy as a short burst
of energy. These short burst of energy are also named "nanoflares" after their relative
strength in comparison to large scale flares.
The dissipation of magnetic energy in these models is thought of to occur through small
scale reconnection events. This change in connectivity of field-lines induces a sudden
contraction of field-lines, similar to letting go of a stretched rubber band. This causes an
acceleration of the charged particles, which then collide with other particles, and in this
way thermalizes the particle flow.
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2.4 Modelling of the Solar corona

2.3.3 No consensus
The actual dissipation in both categories would happen on scales of well below metres,
whereas the highest resolution observations reach down to roughly a hundred kilometres.
Therefore all hypotheses for the heating mechanism eventually have to rely on indirect
observations of the heating as the means of confirmation or falsification. It is expected that
different rates and locations of heating lead to different dynamics of the corona, these can
then be used as a probe to give a clue about the underlying mechanism. These observables
can be Doppler shifts as a function of temperature, or the emission structure along a
coronal loop.
It is, however, not trivial to conclude from the various observables the most likely heating
mechanism. This is a result of the chaotic nature of the corona. Heating will cause a
response of the plasma as a result of a change in the pressure balance, which in turn
will change the radiative structure and subsequently influences the different observables
available to us.
Large scale 3D magneto hydrodynamic (MHD) simulations are able to bridge the gap
from heating to observables, but are limited by the same limitation as observations, the
length-scales on which the energy conversion acts. Therefore these models have to fall
back on parametrizations of the heating. Despite this limitation, the models are able
to treat the heating self-consistently in time and space. Therefore realistic large scale
simulations provide the link between theory and observation.
This is where this work makes a contribution. In changing the way the corona is heated,
we hope to produce different structures and dynamics. These can then be used to derive
several statistics that might give a hint on whether these heating mechanisms are feasible.

2.4 Modelling of the Solar corona
This subsection gives a short overview about the modelling done on the coronal heating
problem and the corona in general. This is based on Peter (2007).

2.4.1 1D models
The first models developed to investigate the heating of closed coronal loops were one di-
mensional models. The 1D approach was required because of the limited computational
power at that time, but such an approximation of a coronal loop is none-the-less a good
simplification. Since the plasma is frozen-in into the magnetic field, nearly no flow across
the magnetic field is allowed. The flow of plasma and the energy transport take place
almost exclusively along the field-lines, and therefore one field line can be considered
isolated from neighbouring lines.
Based on this principle of using the magnetic field line as a flow channel, a large amount
of successful 1D models were produced. One set of these are the RTV models, which
were mentioned in Sect. 2.2. Advances in computational capacity and power allowed
for a more complete treatment of the coronal loops by including additional physics, such
as radiative transfer and ionization. Very high resolutions are reached with the use of
adaptive mesh refinement. This led to very thin transition regions, which is a result of
the inefficient heat conduction at lower temperatures, which is compensated by a high
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temperature gradient to accommodate the energy flux into the photosphere via heat con-
duction.
Besides closed coronal loops, the corona contains open field-lines. This means that the
field-lines do not connect back in the nearby vicinity, but either far away or to the inter-
planetary field. These open field-lines generally start from a funnel-like-structure in the
corona. These originate from a concentrated magnetic field at the bottom of the corona
and then fan out as a results of the difference in the pressure balance between magnetic
and thermal pressure (Reeves 1976; Gabriel 1976). These funnels are believed to be the
source of the solar wind (Tian et al. 2009). The emission measure, EM =

∫
V

nedV , cal-
culated from funnel models were unable to reproduce the observed emission measure.
This was a result of the extreme thin TR, which resulted in a too low emission at lower
temperature. This lead to the proposal by Dowdy et al. (1986) of a "magnetic junk yard",
a region of short and cool coronal loops which can account for the missing emission.
Despite the high resolution and high level of included physics of these 1D models, single
coronal magnetic field-lines do not exist in a vacuum. Changes within one single strand
has influence on neighbouring strands and vice-versa.

2.4.2 3D coronal box models

Although the energy transport and mass balance is modelled well in a 1D set-up, these
models fall short in the heating mechanisms. Especially in Parker’s braiding model the
heating is a function of the 3D-configuration of the magnetic field. Therefore 1D models
(as well as 2D models) have to rely on an ad-hoc parametrization of the heating, which
often takes the form of an exponentially decreasing heating function.
The ability of Parker’s field line braiding model to maintain a hot corona was demon-
strated by Gudiksen and Nordlund (2002, 2005b,a). They developed a 3D MHD model
which includes the photosphere and lower corona. By solving the full energy equation,
including the field-aligned Spitzer heat conduction and optical thin radiative losses, the
evolution of the corona is solved self-consistently. The model is driven by an evolving
magnetic field at the bottom boundary, with the purpose of entangling the magnetic field-
lines. This braiding results in the formation of current structures. These are assumed to
dissipate and convert into thermal energy. This energy is sufficient to keep the coronal
regions of the model at temperatures of the order of 1 million degrees. Statistical analysis
of the results of these models show a good match with actual observations of e.g. emis-
sion structures and Doppler shifts (Peter et al. 2004, 2006).
The work presented in this thesis is based on the model developed by Bingert and Pe-
ter (2011) which follows the concept originally developed by Gudiksen and Nordlund
(2005a). Also in this numerical experiment the full MHD equations, are solved. The ma-
jor difference between the earlier work is the inclusion of magnetic network elements.
This type of model has proven itself successful in reproducing several observational con-
strains. Figure 2.2, taken from Zacharias et al. (2011), shows the Dopplershifts as a
function of formation temperature. The diamonds indicate the calculated Dopplershifts
from Bingert and Peter (2011). The dashed line is the trend derived from actual obser-
vations (Peter and Judge 1999). The observed red-shifts of several transition region lines
are reproduced by the model. However, the observed blue shifts at higher temperature
are not reproduced. This could be explained by the closed top boundary, which would
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Figure 2.2: The Doppler shifts as a function of formation temperature of an active region.
The diamonds are the calculated Doppler shifts from a 3D MHD simulation. The dashed
line indicates the trend as derived from observations (Peter and Judge 1999). Image taken
from Zacharias et al. (2011)

constrain significant up-flows. Follow-up models at higher resolution and an extended
vertical range do find blue shifts at high temperature (P. Bourdin, 2013, Priv. Comm.).

Also the emission measure (EM), as derived from the model follows, the same trend
as in the observations. Synthetic observations derived from synthesised emission found
constant cross-sections of intensity for coronal loops as well as a similar intensity profile
along the loop (Peter and Bingert 2012). Statistical analysis of the energy release shows
a consistent scale-invariant distribution that is consistent with a nano-flare heated corona.
These similarities to observations make the results of both models very robust.

2.4.3 Dopplershifts

The cause of the observed blue and red-shifts on the Sun are still under debate. Athay
(1984) proposed that these observation could be explained by the down flows of plasma
draining of cooling coronal loops. An alternative suggestion was proposed by Boris and
Mariska (1982), which involved syphon flows along the coronal loops.
Spadaro et al. (2006); Hansteen et al. (2010) suggested that a localized heating would push
mass up and down, away from the point of heating. This would cause lower lying, and
this cooler, plasma to move downward, whereas the the higher, and hotter, plasma would
move upward. This could explain the excess of observed redshift for cooler plasma, a
blue shifts for hotter plasma.
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2.5 Motivation for present study
In this work we want to investigate whether it is possible to use 3D-MHD models to
investigate alternative heating mechanisms, such as Alfvén wave dissipation and MHD
turbulence. Whether these different heating models produce observationally distinct or
similar patterns is a crucial step in bridging the gap between model and observations. For
this purpose we use the set up from Bingert and Peter (2011) as a starting point to investi-
gate the effect on the corona and its dynamics as a result of different heating distributions
and different levels of magnetic activity.
First we start with an investigation on the difference between the heating as a result Ohmic
dissipation, and heating according to two different parametrizations presented in Sect. 4.5.
We do that by investigating the different heating distributions along individual field-lines
in the model from Bingert and Peter (2011), which is done in chapter 5.
Next we investigate the effect of a different magnetic field strength on the dynamics of
the corona in chapter 6. We find a clear difference in Doppler shift for the models with
different field strengths. This is relevant in the context of different stellar coronae for stars
with different magnetic activity. Increasing the magnetic field strength, while keeping
everything else constant is a first step for such an investigation. We find that the relation
between the photospheric field strength and the total energy deposition in the corona is
non-trivial. Additionally we find significantly different Doppler shift patterns for different
magnetic field strengths. One of these models is then used as a reference model for the
the next chapter.
The possibility to observationally distinguish between different heating distribution is piv-
otal to answer the question of the coronal heating. We want to find out if, and how, a
different heating distribution changes the observables. For this purpose in chapter 7 we
replace the heating though Ohmic dissipation with a parametrized for of the heating. The
different distribution of heating leads similar coronal structures but to different dynam-
ics. This makes emission structures unable to accurately distinguish between different
heating mechanisms. Doppler shifts, however, show clearly distinct patters for different
heating distributions. Further more the heating through MHD-turbulence produces the
most Solar-like pattern in the Doppler shifts.
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In this section we describe the MHD equations and the corresponding physics that are
used in our model. The actual mathematical implementation of these equations might
differ, and will partially be discussed in the next chapter, the physics described by these
equation do not change. A more complete introduction into solar MHD is provided by
Priest (1982).

3.1 Maxwell Equations
The Maxwell equations for in a vacuum are, in differential form, given by

∇ · B = 0 No monopoles, (3.1.1)
∇ · E =

ρe
ε0

Gauss, (3.1.2)

∇ × E = −∂B
∂t Faraday, (3.1.3)

∇ × B = µ0j + 1
c2
∂E
∂t Ampère. (3.1.4)

In here E and B denote respectively the electric and magnetic field, ρe the charge dis-
tribution, j the current density, and t the time. ε0 and µ0 represent the permittivity and
permeability of the vacuum, they relate with the speed of light, c2 = 1

ε0µ0
.

The first equation tells us that magnetic field-lines (imaginary lines that follow the mag-
netic vector field) are closed, which excludes the existence of monopoles 1. Or, in other
words, the same amount of field-lines that enter an arbitrary volume in space also leave
that volume.
The second equation shows that any distribution of charge in space is accompanied by an
electric field radiating in- or outward. The third and last equation couple the magnetic and
electric fields. Any change in one, will induce the other field. These equations give rise
to electromagnetic waves, also known as photons. The last equation includes, besides the
time derivative of the electric field, also the current, j. This expresses a flow of charges
particles.
In our setting the typical velocities, v0 are much smaller than the speed of light, c. From
this we can make some order-of-magnitude estimates. From Eq. (3.1.3) we get

E0

l0
≈

B0

t0
, (3.1.5)

1Recent developments in particle physics, such as grand unified theories and super string theories, do
predict the existence of monopoles. However, at the moment of writing, there is no (conclusive) evidence
of their existence.
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with l0 and t0 a typical length and time. Applying this to the most right term of Eq. (3.1.4)
we get

1
c2

E0

t0
≈

v2
0

c2

B0

l0
≈

(
v2

0

c2

)
| ∇ × B | . (3.1.6)

We can therefore safely neglect the displacement current, ∂E
∂t , since it is much smaller than

the other terms. As a result of this simplification, currents are always closed, since the
divergence of a curl is always zero. This way Maxwell’s version of Ampére’s law then
reverts back to it’s original pre-Maxwellian form,

∇ × B = µ0j. (3.1.7)

Using the approximation of Eq. (3.1.5) we can estimate the fraction of the magnetic and
electric energy densities

ε0E2
0

B2
0/µ0

=
l2
0

t2
0c2

=
v2

0

c2 , (3.1.8)

from which we see that the energy in the electric field is much smaller than in the mag-
netic field.

The small energy content of the electric field is also a result of the requirement of charge
neutrality. From Eq. (3.1.2) we can see that the electric field depends on the distribution
of charged particles. Any charge instability causes strong electric fields that move par-
ticles of opposed charge toward each other, and in doing so almost instantly negate the
charge-instability. Small scale charge instabilities can occur due to the thermal motion
of the particles. Typical lengths on which these thermal charge instabilities can occur are
expressed by the Debye length

λD ≡

√
ε0kT
e2n

, (3.1.9)

where n denotes the electron density and e their charge, k represents the Boltzmann con-
stant and T the temperature. For a coronal plasma this is roughly 0.07 metre. In our
simulations the typical lengths are of the order hundreds of kilometres, and thus the as-
sumption of charge neutrality is justified.

3.2 Ohm’s law
For a free moving particle in a perfectly conduction fluid the electric field vanishes in the
local rest frame (denoted by a prime),

E′ = E + v × B = 0 (3.2.1)

where v the velocity of the gyrocentre of the particle. A charged particle in a constant
magnetic field with a perpendicular electric field will exhibit a drifting motion in the
direction perpendicular to both. This drift velocity is given by

v =
E × B

B2 . (3.2.2)
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Inserting this in Eq. (3.2.1) shows the electric field vanishes. In the reference frame of the
particle the currents are connected with the electric field through Ohm’s law

j′ = σeE′, (3.2.3)

here σe is the electric conductivity. Combining this equation with the invariance of the
magnetic field and the currents,

B′ = B j′ = j, (3.2.4)

this leads to Ohm’s law in its simplified form

j = σe (E + u × B) . (3.2.5)

Since we can express j by 1
µ0
∇ × B, the electric field has been reduced to a secondary

quantity.

3.3 MHD equations
The four MHD equations are given by

Dρ
Dt

= −ρ(∇ · u), (3.3.1)

ρ
Du
Dt

= j × B − ∇p + ρg, (3.3.2)

cV(γ − 1)ρ
DT
Dt

= p(∇ · u) + S, (3.3.3)

∂B
∂t

= ∇ × (u × B) − ∇ × η (∇ × B) . (3.3.4)

where ρ denotes the mass density, and u the velocity vector. The thermal pressure is in-
dicated by p and the gravity by g. In the energy Eq. (3.3.3) cV denotes the heat capacity
at constant volume and γ the adiabatic index. S includes all energy sinks and sources,
which are further discussed in Sect. 3.3.3. Finally, η represents the magnetic resistivity.
The different equations are discussed in the following subsections.

In the above equations we have used the Lagrangian time derivative for a comoving ob-
server, which relates to the Eulerian time derivative for an observer at a fixed position
through,

D
Dt
≡
∂

∂t
+ ∇ · u. (3.3.5)

3.3.1 Continuity equation
The general continuity equation is in the form of

∂φ

∂t
= −∇ · fφ. (3.3.6)
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This shows that any change of a conservative physical quantity φ in time is only due to a
non-zero divergence in the flux, f, of that quantity. In the case of the equation mass this
flux is the mass flow, thus f = uρ.
Eq. (3.3.1) therefore expresses that the only change in density is due to either an inflow
or outflow of mass, and is not created. There are no sinks or sources for the mass, and
therefore the total mass is conserved.

3.3.2 Equation of motion
Eq. (3.3.2) describes the effect of the different force densities on the plasma. These forces
include the pressure, gravity and the Lorentz force.
In a rotating body other forces, such as Coriolis or centrifugal force, also act on the
plasma. These are, however, too small, to be included in our model. The centrifugal
force in the corona, for example, is about 0.004% of the gravitational force, and can thus
be safely be neglected.

Pressure and the equation of state

In order to calculate the pressure from the density and temperature we need an equation
of state. For an ideal gas, which is discussed in more detail in Sect. 4.7 this is given by

p =
(
cp − cV

)
ρT, (3.3.7)

which relates the temperature and density with the pressure through the specific heats.
These are the specific heat at constant pressure, cp and at constant volume, cV. They
represent the ratio of energy input and the the change in temperature as a result of this
energy input, when keeping either the volume or pressure constant. The ratio between
these specific heats are given by adiabatic index

γ ≡
cp

cV
, (3.3.8)

which is the case of an ideal gas is 5
3 . The pressure force is a result of a gradient in the

pressure field.

Gravity

The gravitational force is defined as the gradient of a scalar field

fg = −ρ∇φ. (3.3.9)

The vertical extend of our model is about 50 Mm and is located at the solar surface.
With this the gravitational force at the bottom is roughly 1.13 times stronger than at the
top. Since we assume that this difference in gravity from bottom to top does not play a
significant role in our modelled setting,we simplify this to

fg = −ρg�ẑ, (3.3.10)

where g� is the gravity at the solar surface.
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Lorentz force

The existence of currents that are not parallel to the magnetic field give rise to the Lorentz
force,

fLor = j × B. (3.3.11)

Replacing j with equation Eq. (3.1.7) and expanding leads to

fLor =
1

2µ0

[
∇B2 − 2(B · ∇)B

]
. (3.3.12)

The first term on the right side is the gradient of the magnetic energy density, and can thus
be interpreted as the magnetic pressure force. This pressure, B2/2µ0 term acts isotropic in
space.
The second term on the right side is a tension term, and cancels the magnetic pressure in
the direction of the magnetic field. This term is also a straightening force for when the
magnetic field is curved. The Lorentz force only acts perpendicular to the magnetic field.

Viscosity

A fluid with a non-uniform flow is subject to viscous forces. These are calculated via the
non-isotropic rate-of-strain tensor, given by

S i j = µ

(
∂ui

∂x j
+
∂u j

∂xi
−

2
3
δi j∇ · u

)
, (3.3.13)

where µ represents the dynamic visosity. The force related to the viscosity is then

ρ
Du
Dt

= ∇ · S i j = ρν(∇2u +
1
3
∇(∇ · u)) (3.3.14)

where ν is the kinematic viscosity, which has the same units as a diffusion constant and
relates to the dynamic viscosity via

ν =
1
ρ
µ

[
m2

s

]
. (3.3.15)

We can therefore think of this as ’momentum-diffusion’, as it tends to remove strong
gradients of momentum. The loss of momentum by viscous forces has a counter part in
the energy equation, Eq. (3.3.25).

3.3.3 Energy equation
Equation (3.3.3) only considers the thermal energy. A full description of the energy flows
and conversions is given in Sect. 3.7. The S-term representing the different energy sinks,
sources and transport terms includes the conduction, radiative losses, viscous heating, and
Ohmic heating,

S = ∇ · q + Lrad + QOhm + Qvisc. (3.3.16)

The following discusses these four terms.
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Conduction

The basic equation for the diffusion of a quantity φ(x, t) is

∂φ

∂t
= −∇ · (D∇φ) (3.3.17)

where D the diffusion factor, which could be either a scalar or a tensor.

Conduction is the manifestation of diffusion for thermal energy. In a magnetized plasma
this is different from a normal gas in the sense that the majority of the conduction takes
place exclusively along the magnetic field-lines. This is explained by the electrons being
’captured’ by the magnetic field, as they are forced to gyrate around a magnetic field line.
The larger gyro radius of the ions allows some conduction perpendicular to the magnetic
field, but at a very low rate because of their limited movement range in that direction. It is
therefore justified to think of conduction in an MHD gas as exclusively along the magnetic
field-lines. Spitzer (1962) derived the diffusion constant for a magnetized plasma as

κSpitzer ≈ κ‖δi j + (κ⊥ − κ‖)bib j, (3.3.18)

which is for a coronal plasma

κ‖ ≈ 2 · 10−11
(

T
[K]

) 5
2
[

W
m K

]
. (3.3.19)

The ratio of perpendicular over parallel conduction is depending on temperature, density
and magnetic field

κ⊥
κ‖

= 2 × 10−31 n2

T 3B2 (3.3.20)

is, under coronal conditions, in general a very small number, and thus it is justified to
think of thermal conduction to be pure field aligned.
The change in thermal energy as a result of conduction is the diffusion equation, such as
Eq. (3.3.17), and in its final form given as

q = κSpitzer∇T = κ‖T 5/2∇T, (3.3.21)

where the last equality is for conduction along the magnetic field-lines.

Radiative losses

For our model we assume an optical thin medium, this implies that the radiation is a pure
loss-function; no absorption takes place. For certain wavelengths the corona is slightly
more opaque, but the very low density prevents thermalization of absorbed photons. Ex-
cited states will spontaneously de-excite by emitting a photon before being de-exited
through a collision with another particle.
The radiative loss curve is calculated assuming ionization equilibrium. This assumption
is justified when the dynamic time scales are larger than the recombination time, as is the
case in the corona. This leads to radiative losses being an energy sink only, in the form of
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Figure 3.1: The radiative losses as a function of temperature approximated by a piecewise
powerlaw. The actual radiative losses of the plasma scales with ρ2.

Lrad = nenHQ(T ) ≈ ρ2Q(T ). (3.3.22)

The last approximation holds in case of a fully ionized plasma where ne = nH ∝ ρ.The
radiative loss function Q(T ) can be approximated by a piecewise power law

Q(T ) = χTα
[
Wm3

]
(3.3.23)

where the coefficients α and χ are specified for a number of temperature regimes. In our
simulation we use the continuous loss function Q(T ) following Cook et al. (1989), shown
in Fig. 3.1.

Ohmic heating

The plasma is heated through the dissipation of the magnetic field. Currents induced by
the magnetic field are assumed to be dissipated within the grid scales. This implies that
any current structure is directly thermalized, the Ohmic heating then enters the energy
equations as

QOhm = µ0ηj2. (3.3.24)

This follows self-consistently from the induction equation, which will be discussed below.
In two of our runs this heating term is turned off and replaced by an alternative heating,
these are described in more detail in Sect. 4.5.

Viscous heating

The momentum lost by viscosity in the equation of motion is converted into thermal
energy through

Qvisc = 2ρνS 2, (3.3.25)
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with the rate of strain tensor defined in Eq. 3.3.13.

3.3.4 Induction equation
The induction equation follows straightforward from the two Maxwell equations, Eq. (3.1.4)
and Eq. (3.1.2) in the MHD approximation. In combination with Ohms law, Eq. (3.2.5),
this results in

∂B
∂t

= ∇ × (v × B) − ∇ × (η∇ × B) . (3.3.26)

For a constant resistivity, η, this simplifies to

∂B
∂t

= ∇ × (v × B) − η∇2B. (3.3.27)

In this equation the second term on the right hand side is the diffusion of the magnetic
field, which we earlier encountered in the the energy equation as the Ohmic heating term
in Eq. (3.3.24). In the induction equation his term is always negative and destroys the
magnetic field. The first term on the right hand side represents the advection of magnetic
field and the Lorentz force, this term can be negative as well as positive.

In rotating planets with a liquid inner core, the first term on the right hand side can be
much stronger than the diffusion term and because of this could give gives rise to a global
magnetic field. This also holds for the convective layer of the Sun. Here the magnetic
fields are produced, which we later see the effects of at the Solar surface when they
emerge.

Magnetic diffusion

Now that we have introduced the induction equation we quickly look back to the previous
section where we mention that Ohmic diffusion follows self- consistently from the induc-
tion equation. Taking the time derivative of the magnetic energy, eB = B2/(2µ0), leads
to

1
2µ0

∂B2

∂t
=

1
µ0

B ·
∂B
∂t
. (3.3.28)

We can now insert the induction equation for the time derivative of the magnetic field.
Then using a vector identity 2 and Ampére’s law, Eq. (3.1.7), to find

∂eB

∂t
=

1
µ0

u · (B × j) − ηµ0 j2. (3.3.29)

In this a change in magnetic energy, can occur through the action of the Lorentz force,
which can be both positive or negative, which is the first therm on the right side. The sec-
ond term on the right side changes the magnetic energy through the diffusion of magnetic
field. The energy lost by the magnetic field adds to the thermal energy in our case. In a
less simplified case this energy also goes into particle acceleration.

2∇ · (a × b) = b · (∇ × a) − a · (∇ × b)
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3.4 Vector Potential
Instead of using B in the MHD equations we can also write the equations as a function of
the vector potential A instead. They relate trough

A = ∇ × B. (3.4.1)

The requirement of a divergent free magnetic field is automatically satisfied since the
divergence of a curl is always 0. This is a strong motivation to use the vector potential in-
stead of the magnetic field, as one does not have to worry about violating the solenoidality
of the field. Then Ampère’s law, Eq. (3.1.7) can be written as

∇ × B = ∇ × (∇ × A) = ∇(∇ · A) − ∇2A = µ0j. (3.4.2)

We can add any function to A whose curl vanishes, without having any effect on B. Taking
the gradient of a scalar field satisfies this condition (the curl of a gradient is 0), such as

A = A0 + ∇φ, (3.4.3)

with A0 the original field and φ the scalar field.
We can exploit this to eliminate the divergence of A by requiring

∇2φ = −∇ · A0 (3.4.4)

so that

∇ · A = ∇ · (A0 + ∇φ) = ∇ · A0 + ∇2φ = 0. (3.4.5)

This way Ampére’s law reverts to

∇2A = −µ0j. (3.4.6)

On our simulation the gauge is chosen as φ = 0, also known as the Weyl gauge.

3.5 Ordering of plasma along the magnetic field.
The use of field-lines to visualize and understand the magnetic field is an often employed
tool, and as such it is worthwhile to explore the physical significance of this concept of
magnetic field-lines. This is discussed in more detail by Longcope (2005).
The existence of a magnetic field limits a charged particle’s freedom of movement. The
Lorentz force on a charged particle in the presence of magnetic field is F = q(v × B).
Along the direction of the field the particle is free to move, but its perpendicular velocity
is constantly deflected in the direction perpendicular to v̂ and B̂. Therefore this force
causes the particle to gyrate around a hypothetical line.
This effect severely limits the mean free path perpendicular to the magnetic field, and
effectively quenches the thermal conduction in that direction. This results in neighbouring
volumes of plasma to be thermally isolated from each other, if they are not connected by
the magnetic field. This effect lies behind the strand-like structure of coronal loops. Any
heating event will only heat the plasma through thermal conduction along the direction
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of the magnetic field. Or in other words, any heating event will predominately heat the
plasma contained within the bundle of field-lines in which this heating event took place.
The increase of temperature also increases the radiate losses of the heated plasma, which
then can be observed. There is still a unsettled debate on the thickness of these strands,
and whether beyond the spatial resolution of our instruments these strands are made up
from even thinner strands.

3.6 Poynting flux
Magnetic energy can be transported. This is expressed by the Poynting flux,

S =
1
µ0

E × B, (3.6.1)

which has the units Wm−2. Using Ohm’s law, Eq. (3.2.5), to replace E we get

S = ηj × B −
1
µ0

(u × B) × B. (3.6.2)

Here the first term on the right hand side is recognisable as the Lorentz force which we
encountered earlier in Sect. 3.3.2. The second part expresses the advection of magnetic
energy through the motion of the plasma perpendicular to the magnetic field. Plasma can
freely move in the direction of the magnetic field without changing the energy density of
the magnetic field. Also worth noting is that the Poynting flux is always perpendicular to
the magnetic field.
That last statement might make the interpretation of the Poynting flux unnecessary com-
plicated. Imagining a small perturbation on the background magnetic field, a vector per-
pendicular to the perturbed magnetic field has a non-zero component in the direction
of the unperturbed magnetic field. In case of sinusoidal perturbation the perpendicular
components of the Poynting flux compared to the background field cancel out, and the
component parallel to the background magnetic field remains. This way the Poynting flux
is able to transport energy in the direction of the magnetic field.

3.7 The flow of energy in the model
To understand the flow of energy in our model we write down the full energy equation as

e =
ρu2

2
+

p
γ − 1

+
B2

2µ0
. (3.7.1)

The three terms on the right side represent respectively, the kinetic energy, the thermal
energy, and the magnetic energy. Energy can not be created or destroyed, other than by
the sinks and sources present in the equations.3 However, several processes can, and will,
convert the different forms of energy into each other. The flows of energy, including the

3The non-conservative nature of our form of the MHD equations does create and destroy energy, but
this is non-physical and very little compared to the physical sinks and sources, we will therefore ignore this
in the discussion.
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sinks and source, are shown in a comprehensive diagram in fig. 3.2.
Energy enters our domain at the bottom boundary. The driving of the magnetic field cre-
ates a Poynting flux into our domain, which increases the magnetic energy there. In the
corona, this energy is predominantly converted into thermal energy through Ohmic dis-
sipation. Another part of the magnetic energy can be used to accelerate the plasma by
the Lorentz force, i.e. converting magnetic energy in to kinetic energy. Since the term
∇× (u×B) can both be positive and negative this can also be used to induce magnetic en-
ergy from kinetic energy. A similar case hold for the connection between thermal energy
and kinetic energy. Kinetic energy is lost through viscous forces, but (uncompensated)
gradients in thermal pressure causes an acceleration of mass. In this case the Ohmic dissi-
pation is somewhat of an exception for not having a compensating mechanism. Magnetic
energy can be converted into thermal energy, but not directly back into magnetic energy.
Thermal energy is transported downward into the dense chromosphere through conduc-
tion. In this high density region the radiative losses become a very efficient because of the
ρ2 dependence. Since the corona in our model is treated as optically thin, the radiation is
not absorbed anywhere, and is thus lost from our model.
To summarize, energy is inserted in our domain through the Poynting flux and in the same
way transported into the corona, there the energy is thermalized and transported back into
the chromosphere where it is lost as radiation.
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Figure 3.2: A schematic representation of the energy flows in our model. Energy en-
ters our domain through the Poynting flux as a result of the granular diver at the bottom
boundary, which stresses the magnetic field. The conversion of magnetic to kinetic en-
ergy is two way, meaning that the kinetic energy can be converted in to magnetic energy
(through induction), but magnetic energy also into kinetic (through the Lorentz force).
The same hold for the conversion between kinetic and thermal energy. The conversion of
magnetic energy into thermal is a one way process, and the most important source of ther-
mal energy in our model. The energy in our domain is only lost through radiation. Some
processes can transport energy, but not convert it, gravity and conduction are indicated as
an example of such a process.
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In this chapter we discuss the basic set-up of the model.

4.1 Model philosophy
The numerical models used in this work describe a part of the solar atmosphere in a box.
At the bottom of the box the top of the photosphere is included, in which the magnetic
field in anchored. Above the photosphere a roughly 5 Mm dense layer as the chromo-
sphere before reaching the TR. In our model the chromosphere is mainly considered a
mass reservoir, because in order to properly describe this region one has to include ra-
diative transfer with NLTE effects included and a much higher resolution. When heat is
deposited into the corona though some heating mechanism, the thermal conduction along
the magnetic field transports the energy downward into the dense chromosphere where it
is lost through radiation. Using the density and temperature, the synthetic emission can
be used to compare the models with observables.
In the models in chapter 6, the heating takes place thought the dissipation of braided mag-
netic fields. In these models the bottom boundary mimics the granular motion of the solar
surface. This evolves the magnetic field and braids the coronal fields. Ohmic dissipation
removes this stress by converting the non-potential magnetic energy into thermal energy,
and in this way heats the corona.
The models in chapter 7 replace the heating as a result of the the Ohmic dissipation with
two other heating functions. These functions are based on parametrizations which were
derived from other high resolution models of single strands of coronal loops. Since these
functions do not require braiding, the granular driver is not used for these models.

4.2 Numerical scheme used by the Pencil Code
In order to solve the MHD equation we employ the Pencil Code (Brandenburg and Dobler
2002). This code is open source and available for free via Google-code via http:
//pencil-code.nordita.org/. Although primarily developed by Axel Brandenburg
and Wolfgang Dobler, the list of contributors counts 40 people, at the moment of writing,
and has not stopped growing. The modular set-up of the code allows a flexible use for a
wide variety of physical problems.
The name is derived from the method of calculating the numerical domain. This is
constructed by elongated arrays of data, so-called pencils, in the x-direction of the do-
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4 Treatment of model corona

main. This direction aligns with the physical storage of the data in the computer, which
makes this storage very efficient. Additionally, this methods allows for easy parallelisa-
tion through MPI (Message Parsing Interface).
For the spatial derivatives we employ 6th order spatial derivatives. This requires the in-
formation of the three neighbouring grid points in order to calculate the derivative. The
use of this high-order finite-difference scheme is a compromise between the numerical
accuracy of spectral codes and time consumption of the calculation. In order to properly
solve equations at the boundaries, an additional three grid points are needed outside of the
physical domain. Through these three ’ghost cells’ the boundary conditions are imposed
on the model. The time evolution is calculated through a 3rd order Runge-Kutta scheme.
This scheme divides the time step into several sub-timesteps before calculating the actual
time step. A special 2N-version of this scheme is used, which only requires two version
the variable-array in the computer memory rather than the four versions usually required.

Time step
To ensure numerical stability the time-step is limited by by the Courant time step. This
condition ensures that any moving ’information’ can not travel further than only a fraction
of a grid point, which is a necessary condition for a numerical stable solution. The time-
step is calculated by

δt = min
(
cδt
δxmin

Umax
, cδt,v

δx2
min

Dmax
, cδt,s

1
Hmax

)
(4.2.1)

where
δxmin ≡ min(δx, δy, δz) (4.2.2)

and
δUmax ≡ max

(
|u| +

√
c2

s + v2
A

)
, (4.2.3)

where cs and vA are respectively the sound speed and Alfvén speed. Their combination√
c2

s + v2
A is the speed of the fast-acoustic wave, the fastest wave possible in MHD. Further

Dmax ≡ max
(
ν, γ

K
cpρ

, η,D
)
, (4.2.4)

is defined by the different diffusion constants. Finally, Hmax relates to the viscosity and
shock diffusion. The cδt, cδt,v and cδt,s are weighting constants that can be chosen freely,
but should be smaller than 1.

4.3 Implementation of the MHD equations
The full MHD equations as they are implemented in the code are different from the equa-
tions presented in the previous chapter. The values of both the density ρ and temperature
T are in logarithmic form. In this form the MHD equations allow for a large range of val-
ues up to several orders of magnitude. This is important for the model where the density
differs by about 10 orders of magnitude from top to bottom.
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4.3 Implementation of the MHD equations

The magnetic field is replaced by the vector potential A instead. This way Alfvén waves
are better resolved and the calculation of the helicity, A ·B, straightforward. However, the
main advantage for our application of the code is that we do not have to worry about the
solenoidality of the magnetic field (i.e. ∇ · B = 0), as shown in Sect. 3.4.
In addition to the MHD equations several additional diffusion terms are included, such as
the isotropic thermal condition (the last term in eq. (4.3.3)), for numerical stability.

The full set of equations as used by the code are

∂u
∂t

= −(u · ∇)u +
1
ρ

[
−∇p + j × B − ρg� + 2ν∇ ⊗ (ρS)

]
, (4.3.1)

∂ ln ρ
∂t

= −(u · ∇) ln ρ − ∇ · u, (4.3.2)

∂ ln T
∂t

= −(u · ∇) ln T − (γ − 1)∇ · u + ηµ0j2 + 2ρνS +

γ

cpρT

− (
0.8ρ
mp

)2

Q(T ) + ∇ ·
(
K0T 5/2b(b · ∇T )

) +

γ

cpρT

[
∇ · (cpχρ∇T ) + ∇ · (ciso|∇T |∇T )

]
, (4.3.3)

∂A
∂t

= u × (∇ × A) + η∇2A. (4.3.4)

The constants in here are

µ = 0.667 - Mean atomic weight,
g� = 274 m s−2 Surface gravity,
cp ≈ 312 · 102 J kg−1 K−1 Heat capacity at constant pressure,
γ = cp/cV = 5/3 - Adiabatic index,
η = 1010 m2 s−1 Magnetic diffusion,
ν = 1010 m2 s−1 Viscosity,
χ = 5 m2 s−1 Temperature diffusion,

K0 = 2 · 10−11 kg m s−3 K−1 Spitzer heat conduction,
mp = 1.67 · 10−27 kg Proton mass.

There are additional diffusion algorithms in place for numerical stability, which are not
included in the above set of equations. There is additional diffusion in regions that qualify
as a shock, and a hyper diffusion scheme is present at the level of the 6th order derivative.

Coronal module
The module we use for our experiments provides us with the specific physics in the
corona, and routines specific to our model set-up. The radiative losses or coronal plasma
are described by the radiative loss function in Sect. 3.3.3. This is implemented in a lin-
early interpolated piecewise fashion over 38 points. Below 4000 K the radiative cooling
is close to 0 to avoid over-cooling high density regions and reach negative temperatures.
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The photopsheric driver is similar to Gudiksen and Nordlund (2002, 2005b,a), who mod-
elled this granular motion after observationally derived quantities. These include the ve-
locity distribution and amplitude, and the granular lifetime. Also the vorticity of the
granular motion is included. Just as in observations the regions with the strongest mag-
netic field have reduced granular velocities . This motion shuffles the foot points of the
magnetic field though each other and entangles the field. In time, patches with opposing
flux might meet and cancel, and the stronger concentrations of magnetic field will diffuse
away through the random motion and magnetic diffusion. To cancel this we decreased the
resistivity near near the bottom to avoid too strong diffusion. At the same time we also
add a small fraction of the initial magnetogram to the current one, so that it stays close to
its initial active-region configuration. During the run the total magnetic flux through the
bottom boundary is kept constant to counteract the magnetic cancellation.

4.4 Numerical model setup
The set-up of the models used in Sect. 7 and 6 are nearly identical. Each numerical
experiment is done with a three dimensional rectangular box. This box is build from 128
grid points in each dimension. The x and y axis cover 51.2 Mm, and the z-axis 45 Mm.
This brings the resolution of our model to 400 km in the horizontal direction and 352 km
in the vertical directions.

4.4.1 Boundary conditions

The boundary conditions are imposed on the model through the use of ghost cells, the
additional three grid points outside the physical domain.
For the horizontal directions the domain is assumed to be periodic.
The top boundary is closed, this means we allow for no energy or mass transport through
the boundary. Preferably one would like an open top boundary, allowing for in- and out-
flow of mass and energy. But this could also lead to unconstrained in- or outflows, because
of the lack of information on the state of the corona outside of the box. For the magnetic
field, the box is not closed, and is extrapolated according to a potential field extrapola-
tion. This leads to some inconsistencies at the top boundary, such as mass flows along the
field-lines that cannot continue. This leads to an enhancement of the currents at the top of
the corona. Therefore one should be careful with the interpretation of the dynamics at the
very top of the computational domain.
The bottom boundary is the driver of the dynamics in our model. Through this boundary
new energy is inserted into the system by the driving at the bottom in the form of the
Poynting flux. At the bottom of the box the field is extrapolated, but kept vertical with
only a small deviation.
The driver at the bottom does include magnetic diffusion, which is a problem for the mag-
netic field there. This diffuses into a dipole in a short time if we use the same value of η
as used in the coronal region. To avoid this problem we use a modified profile of the η
value by decreasing it by two orders of magnitude near the bottom. This also decreases
the heating rate through Ohmic dissipation near the bottom of the domain.
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Figure 4.1: The vertical magnetic field at the bottom boundary. Left: The initial magnetic
field at t = 0 seconds. Right: The vertical magnetic field after 45 minutes. The initial
magnetogram is deformed through the granular motion imposed on the plasma at the
bottom boundary. The basic structure of a dipole is conserved and small scale magnetic
structures are seen throughout the plane.

The evolved magnetic field after 90 minutes can be seen in the right panel of Fig. 4.1. The
disturbed field shows the patterns from the granular motion, but retains the dipolar nature
of the initial magnetogram (Fig. 4.1, left panel). Despite the lower η the magnetic field
is still fairly diffuse in comparison with the initial conditions, but will not diffuse much
further than the state displayed now.

4.4.2 Initial conditions

Our initial conditions take the form of a hydrostatic corona with a tanh-profile for the
temperature. Starting at 6000 K at the bottom, to 1.5 million Kelvin at the top. By solving
for a hydrostatic solution, which includes gravity, we end up with a density in the corona
of about 108 particles cm−3, which roughly matches the density derived from observations
(Priest 1982).
At the bottom we use a downscaled version of an observed active-region magnetogram, as
shown in the left panel of Fig. 4.1. We include an initial magnetic field through a potential
field extrapolation. Since a potential field is current-free and consequently force-free, this
can be super imposed on the hydrostatic corona, without introducing a force imbalance
(within the limits of the numerical precision).
When we turn on the model we damp all velocities for roughly 50 seconds after which
we slowly remove the quenching. We do this to reduce the initial shock in the system that
would appear as a turn-on effect.
Figure 4.2 shows a 3D rendering of one of our experiments at roughly 45 minutes into

the simulation as an example. The colours in the vertical cut represent the temperature,
where green is cool and red is hot log T [K]≈6. The horizontal surface indicates the layer
at which the plasma is log T [K]=5. The green and red shades on this iso-surface represent
respectively the downward and upward magnetic field at that height. This iso-surface
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4 Treatment of model corona

Figure 4.2: A 3D rendering of one the experiments described in this work. The colours
in the vertical cut represent the temperature, where green is cool and red is hot. The iso-
surface indicates the layer at which the plasma is log T [K]=5. The green and red colours
on this iso-surface represent the magnetic field at that height. This is also seen by the lines
which trace the magnetic field. The mist represents the emission produced which would
be observed by the 171 Åfilter on SDO/AIA (Lemen et al. 2012) (see section 4.6). Image
produced by VAPOR.

indicates the TR, the thin region that separates the chromosphere and corona. The lines
in the box trace the magnetic field, and thus represent the magnetic field lines. Those
that exit the box through one of the sides enter the domain on the other side as a result
of the periodic boundaries. The mists represents the emission produced which would be
observed by the 171 Åfilter on SDO/AIA (Lemen et al. 2012) (see section 4.6)

4.5 Heating parametrizations

For our goal to investigate different heating mechanisms of the corona, we focus on two
heating mechanisms in particular. Although a large amount of different models and sug-
gestions are available, only a few offer the possibility to be directly applied to our model-
framework. The two suggestions investigated, which are discussed in more detail in
the following subsections, offer this possibility through parametrizations of the respec-
tive heating mechanisms. Both these parametrizations are derived from Reduced-MHD
(RMHD) models. This branch of MHD allows high resolutions by reducing the equation
to only consider the deviations from a background atmosphere.
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4.5 Heating parametrizations

4.5.1 Ohmic heating in the model
Heating in our model acts predominantly through Ohmic dissipation, as in Eq. (3.3.24).
The value for the magnetic diffusivity in the Sun, as derived from transport theory, es-
timates this value to be of the order of 1 m2s−1. To estimate the typical length scales
involved one can use the magnetic Reynolds number, which is an order-of-magnitude
estimate of the ratio between the advective (inductive or creative) term in the induction
equation, and the diffusive (destructive) term,

Rm =
uL
η
. (4.5.1)

Hhere u is the typical velocity and L the typical length scale. The energy is dissipated on
length scales of L where Rm is of the order 1. For the corona these values are far below
our grid resolution. Formation of structures below grid resolution can and will lead to
numerical errors, and therefore we increase the value of η to 1010 m2s−1 so that L is of the
same order of magnitude as our grid size.

This leads to an overestimation of the size and thickness of the current sheets, and dissi-
pation will become a significant loss of magnetic energy for even a small deviation from
a potential field. We assume that locations where our model evolves strong currents also
represents locations where in reality strong currents evolve, albeit at smaller scales.

Conservation of energy ensures that the amount of energy dissipated is equal to what
would be dissipated in a more realistic case. Although in such case the evolution away
from the potential field configuration might take longer, the total energy dissipated is the
same. So it might be that more energy is stored in the magnetic field at smaller scales, the
energy flux from Ohmic heating is of the same order in the model as in a more realistic
case.

In conclusion, we do not resolve the actual current structures that heat the corona in the
braiding model (as suggested by Parker, Sec. 2.3.2), but we will assume that the large
current structures in our model represent an ensemble of many small current structures
below our resolution limit. As such, we will consider Eq. (3.3.24) as a parametrisation of
heating through field-line braiding.

4.5.2 Alfvénic heating
One of the heating mechanisms that we investigate is Alfvén wave turbulence, or, as we
refer to it in the rest of the thesis, "Alfvénic heating". It is based on an earlier suggestion
of current cascades (van Ballegooijen 1986), in which the random motions of the granu-
lar motions causes the free magnetic energy to form smaller and smaller structures until
eventually dissipated.

A scaling law from RMHD models based on this principle is derived by van Ballegooijen
et al. (2011). These numerical experiments model a single kilogauss magnetic flux tube
with both ends in the photosphere. The background atmosphere in the tube includes the
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4 Treatment of model corona

effects of gravity and the expansion of the magnetic field in the lower corona. This is
relevant for taking into account the reflection of the Alfvén waves. At the two bottom
boundaries Alfvén waves are excited by foot-point motions. Through varying several
model parameters such a scaling law can be derived,

Qalf ≈ 2.9 · 10−4
(
0.45 +

33
τ0

) ( vrms

1.48km s−1

)1.65

( L
50Mm

)−0.92 ( B
50G

)0.55 [
W

m−3

]
∝ B0.55L−0.92v1.65

rms , (4.5.2)

where vrms is the (root-mean-squared) velocity of the foot-point motions, L the length
of the loop, and B the local magnetic field strength. τ0 is a model depended parameter
relevant to the driver. The constants originally included in the derived scaling law are
dropped in the approximation here, since we are interested only in the dependencies on
the different physical parameters.

4.5.3 MHD turbulence
The heating parametrization derived from Rappazzo et al. (2006) is based on the same
philosophy as the models from Gudiksen and Nordlund (2002) and Bingert and Peter
(2011), the field-line braiding of Parker (1972). This numerical experiment, however,
reaches high resolution and extremely large Reynolds numbers, and can therefore resolve
the small structures on which the energy is dissipated. The model set up is similar to
the set up of the previously discussed model. This allows the derivation of a scaling
law depending on the model parameters such as the loop length and driver velocity. The
scaling law given by Rappazzo et al. (2006) for the energy flux

S ∝ `2
⊥ρvAu2

rms

(
`⊥vA

Lurms

)(α+1)/(α+2)

, (4.5.3)

where vA is the Alfvén speed, urms the rms velocity at the bottom boundary, `⊥ the typical
perpendicular length scales, ρ is the local density, and L the magnetic loop length. α
is a model dependent function of the loop parameters. The power, (α + 1)/(α + 2) we
approximate by 0.75, which is halfway the two possible limits. To get an estimate of
the volumetric heating rate we divide the flux by the loop length and substitute vA with
B(µ0ρ)−1/2 to find the dependency on the magnetic field and density, this leads to

Qturb ∝ B1.75L−1.75ρ0.125u1.25
rms `

2.75
⊥ , (4.5.4)

where parameters are the same as above.

4.6 Synthetic emission
One test to evaluate the results of our models is to compare synthetic observations with
real observables. The synthetic emission spectra from which we calculate our synthetic
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4.7 Mean atomic weight

observations are produced based on the CHIANTI atomic database (Dere et al. 1997).
This database allows us to calculate the emission for a large amount atomic transitions in
the plasma depending on temperature and density. This is important for comparison with
the AIA/SDO observations, where one filter is sensitive to a relative large wavelength
range. Therefore the emission detected is produced by a large sample of atoms and tran-
sition lines over wide range of temperatures. Although one "wavelength" of AIA is often
interpreted as plasma at a certain temperature, it only means that the response function
of that filter, has a maximum at that temperature. This does not mean that the emission
observed comes exclusively from plasma at that temperature. Therefore great care has to
be taken in the interpretation of the observations.
Integrating the synthesized emission in the box in one direction allows us to produce
synthetic observations of the numerical model. This allows us to investigate the basic
structure and evolution of the system as it would be observed by an actual observatory. In
addition to investigating the emission structures, synthetic observations also allow us to
derive synthetic Doppler images, by investigating the line-shift of the lines as a result of
bulk flow of the plasma. Also here great care has to be taken in the interpretation of the
Dopplergrams. As can be seen from the Eq. (3.3.22), the emission scales with the den-
sity squared. So small-scale high density regions of up- or downflowing plasma, have an
unpropotional high influence on the observed flows. None-the-less, statistics of observed
Doppler velocities as a function of formation temperature provides an important test for
the validity of our models.

4.7 Mean atomic weight
We assume in our models a constant value for the mean atomic weight µ. This is however
not the case in the real solar atmosphere, since the mean atomic weight is heavily depend-
ing on degree of ionization. A different values would result in a change in our physics.
The importance of µ comes from its role in the equation of state,

p =
Rspec

µ
ρT (4.7.1)

where Rspec = kB
mu

= 8314.4621 J
kg K is the gas constant. This equations shows that doubling

µ results in half the photospheric pressure. In a hydrostatic equilibrium (assuming no
magnetic field or a potential field) we know that

∇p = −gzρ , (4.7.2)

where the pressure balances the gravitational force, gz. Using this with the equation of
state for an ideal gas gives

∂ ln ρ
∂z

= −
∂ ln T
∂z
−

gµ
RspecT

. (4.7.3)

We see that µ has an influence on both the temperature and density profile. In addition the
density has an additional influence on the temperature through the radiative losses.
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Figure 4.3: The first 3 plots show different profiles for (from left to right,from top to
bottom) density, pressure, and temperature as a function of height for different values of
µ.The colours from blue to red indicates an increasing mean atomic weight. The dashed
line represents the results when µ is calculated when including temperature dependent
ionization. The bottom right panel shows the values of µ for this temperature dependent
ionization.

The mean atomic weight for a fully ionized is given by

µ−1 =
∑

i

Xi(1 + Zi)
µi

. (4.7.4)

Where Xi is the weight fraction of nuclei of type i and Zi its charge and µi the atomic
weight of the nuclei of type i. A fully ionized nuclei contributes 1 plus the number of
electrons (i.e. it’s charge) to the number of particles. For a fully neutral gas this changes
to:

µ−1
0 =

∑
i

Xi

µi
. (4.7.5)

When we consider a gas with 90% H and 10% He, we have a µ that varies between 1.08
and 0.533. From equations 4.7.4 and 4.7.5 we can see that the contribution of the rare
higher mass elements can easily be neglected.
Fig. 4.3 displays different profiles for a set of 1D atmospheric models, with the full en-

ergy equation (radiative losses, conduction) included, that evolved into a in hydrostatic
equilibrium. What we see for an increase in the values of µ is that the density drops faster
with height, and so steepening the transition region. The latter moves downward as a
result of the shorter scale height of the density. The higher regions of the hydrostatic loop
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model appear to remain un-influenced by the change in µ. Therefore the coronal temper-
ature, the coronal density, and therefore also the coronal pressure do not depend on the
choice of the mean atomic weight.
The value of the mean atomic weight is assumed to be constant over the computational
domain. On the Sun, however, the mean atomic weight is a function of temperature.
At lower temperatures, such as in the photosphere, hydrogen is predominantly neutral.
Higher up in the corona, the temperatures are hight enough so that hydrogen is fully ion-
ized. The additional electrons from the ionization have a significant effect on the mean
atomic weight. Since our interest lies in the coronal dynamics, and a different value for µ
has nearly no effect on those, we choose to employ a constant values for µ throughout the
domain. This is also in favour of not overcomplicating an already complicated problem.

4.8 Extraction of field-lines
In the models described in chapters 5 and 7, we have to extract the field-lines in the
model. This is needed in order to calculate the heating rates according the parametriza-
tions, Eqs. (4.5.2) and (4.5.4), which require the length of the loops. For this purpose we
track from each gridpoint the field-lines that passes through it back to it’s origins.
A field line, with space-curve r(l) satisfies the differential equation

dr
dl

=
B(r(l))
|B(r(l))|

. (4.8.1)

Which is a property that we use in our routine to trace the field-lines. In small steps ∆l
we trace the direction of the magnetic field in both directions until it reaches the bottom
boundary. If the field leaves the domain via the top, the full path, and thus actual length
of the field line cannot be recovered. We assume the field line is much longer than any
other field line in the domain.
After tracing the field-lines the information on the length of each field line at each grid-
point is stored. The values of these lengths are then used for the parametrizations of the
heating in Eqs. (4.5.2) and (4.5.4). This procedure of tracing field-lines at each gridpoint
is very time consuming, and thus not viable to do during the run of the numerical exper-
iment. We therefore trace the magnetic field-lines prior to the start of the the numerical
experiment, and assume that then during the run the lengths of the field-lines at the grid-
points do not change significantly.
This does not mean that the length of a field-lines itself cannot change, but only that the
length of the field-lines passing through a specific gridpoint doesn’t change. When for
example a fieldline extends and moves slightly upward, the position where this line was
earlier is now replaced with a new fieldline that will have roughly the same length as the
other field line had before. Other sources of error in field-line lengths are reconnection
events and foot-point shuffling. To reduce the error from these sources we turn off the
granular driver our models with the parametrizations.
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5 Heating along individual fieldlines

This chapter is based on the published paper: van Wettum et al. (2013) 1

5.1 Goal
The work presented in this chapter is a first step to investigate the feasibility of replacing
the Ohmic heating with a parametrized heating. The goal of this experiment is to find
out how the heating of these parametrization behave along individual field-lines as well
as globally and compare this to the energy distributions through Ohmic dissipation. Fur-
thermore we investigate whether these parametrized heating functions produce a different
coronal loop in terms of density, temperature and emission.

5.2 Method
The equations provided in Sect. 4.5 allow us to calculate the distribution of a a parametrized
heating in a 3D MHD model. For this purpose use the results of the model by Bingert
and Peter (2011). The set-up of this experiment is similar to the coronal model set-up we
described earlier in detail in chapter 4.
We select one snapshot of the model when the simulation is, after roughly one hour of
solar time, in a quasi steady state. One snapshot contains the relevant parameters, such
as density and magnetic field strength, which allows us to calculate the relative heating
rates according to the two parametrizations, Eqs. (4.5.2) and (4.5.3). The loop lengths are
extracted by tracing the field-lines at each grid point back their origins or until the point
where they leave the box through the top boundary, as is described in Sect. 4.8. This way
we can calculate the length of each field line at each point in the box. For the field-lines
that leave the box through the box top boundary we lack the information to calculate the
length of the line and therefore assume a length much larger than any of the other field-
lines, 1000. Mm.
Since our focus is on the different distributions of the heating, rather than the absolute
values we ignore the different constants in front of the parametrizations.

5.2.1 Horizontal averages
Using the method described above we calculate the relative heating rates at each point
in the physical domain of the model. The horizontally averaged heating rates for Ohmic

1van Wettum, T., Bingert, S., & Peter, H. 2013, A& A, 554, A39
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Figure 5.1: Horizontally averaged heating rates for different parametrizations. The dashed
line indicates the average height of the base of the corona (log T [K]=5.5). The Alfvénic
and turbulent heating rates are in arbitrary units. See Sect. 5.2.1.

heating Eq. (3.3.24), Alfvénic heating Eqs. (4.5.2), and turbulent heating Eq. (4.5.3), are
shown in Fig. 5.1. The heating rates associated with Alfvénic and Turbulent heating are
plotted in this figure are plotted in arbitrary units. What we are interested in is how the
heating rates change with height, not their absolute magnitude.
All three parametrisations drop roughly exponentially in the coronal part of the volume.
For the Ohmic heating case, this is well known from previous studies. The fact that this
exponential drop is common to all these three processes underlines the result (in part based
on observations) that the energy input into the corona should be concentrated towards the
footpoints (e.g. Aschwanden et al. 2007). While the (exponential) scale height for the
drop of the heating rate is about 5 Mm for the Ohmic and Alfvénic heating, it is only
3 Mm for the turbulent heating. Thus the turbulent heating drops slightly faster than the
two other mechanisms.
This common exponential drop for the three mechanisms is interesting because different
(1D loop) models made different assumptions about the spatial distribution. While many
models have assumed this exponentially dropping heat input (e.g. Serio et al. 1981; Müller
et al. 2003), there are also numerous models that assume a spatially constant heating rate
(e.g. Patsourakos and Klimchuk 2006; Klimchuk 2006).
Based on the horizontal averages alone as shown in Fig. 5.1, one cannot conclude that the
distribution of the heat input along each magnetic field line is non-constant, but drops with
height. Since the heating rates depend inversely on the loop length, it could be the result
of stronger heating along the short field lines in the lower regions, even if the heating
rate along each individual field line is constant. In the following we investigate individual
field lines to determine if the drop of the horizontally averaged heating rate is because the
heating drops with height for each field line or because longer field lines are heated less.
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Figure 5.2: Three-dimensional illustration of selected field-lines for this investigation.
The red lines belong to the bright loop selection, and the green ones to selection of the
random set of field-lines. The grey-scale image shows the magnetogram at the bottom
boundary of the simulation (which is based on observations).

5.2.2 Heating along individual field-lines

For the investigation of the heating along the individual field-lines we made several selec-
tions of field-lines and calculated the heating rates for each parametrization along each of
them. We will discuss and further investigate two of these selections below.

Selection of loops

The first selection of field-lines was based on a bright loop in the synthetic emission in
the model by (Bingert and Peter 2011). This is done by selecting only the denser and
hottest field-lines in the corona. These field-lines have lengths between 45 and 50 Mm,
a maximum temperature of more than log T [K] = 6.15, and a minimum density of more
than 108.5 particles per cm3. This leads to the selection of the field-lines, indicated with
red, in Fig. 5.2. Since this selection of field-lines is associated with the fright loop in
emission we refer to it as the ’bright loop’.
The second selection is a more randomized selection of field-lines with looser constrains.
Now the field-lines are no constrained to to central region and the maximum-temperature
requirement is loosened a bit to log T [K] = 6.05. This more randomized selection acts as
an additional check to see whether the results we get from the bright loops selection also
hold for other field-lines. Due to its more randomized nature we refer to this selection as
the ’random set’.
For each set we investigate the heating rates along a randomly selected subset of 25 loops
to avoid cluttering the figures.
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5 Heating along individual fieldlines

Bright loop

The heating rates along the bright loop are shown in the 3 panels in Fig. 5.5. From top to
bottom, shown are the heating rates according to the different parametrizations of Ohmic,
Alfvénic, and turbulent heating. We plot this as a function of the arc length along the
field line, where the length of each field line is normalized to unity. The field-lines in the
set differ in length by 10% at most. Furthermore, for the Alfvénic and turbulent heating
the heating rates are normalized in respect to the heating just below the thermal transition
region.
The most striking difference is that the Ohmic heating varies much more strongly than the
Alfvénic and turbulent heating on small scales (smaller than a couple of % of the field-line
length). This is because Ohmic heating depends on the spatial derivatives of the magnetic
field (actually, the square thereof). Naturally, these show much stronger small-scale (but
well-resolved) variations than the magnetic field itself. The original spatial variation of
the Alfvénic and turbulent heating rate in the respective numerical models (van Ballegooi-
jen et al. 2011; Rappazzo et al. 2008) also shows a stronger spatial variation. The heating
rate becomes smooth only when the average behaviour of deriving the parametrisations as
a function of B and other quantities is considered. Apart from the small-scale variation,
the (smoothed) Ohmic heating and the turbulent heating along the magnetic field-lines are
rather similar. In both cases the heating rate drops from the base of the corona (indicated
in Fig. 5.1 by vertical dashed lines) to the loop apex by about a factor of 150 to 200. This
is not too surprising because the Rappazzo et al. (2008) 3D reduced MHD model for the
turbulent heating is, in principle, quite similar to our 3D MHD model for Ohmic heating
(Bingert and Peter 2011). In both cases the foot points are smoothly driven at boundaries,
which braids the magnetic field and induces currents. The reduced MHD model lacks the
realistic set-up and the proper treatment of the energy equation to get the coronal pressure
correct, but it can afford a much higher resolution in the numerical experiment and prop-
erly resolves the turbulent nature of the dissipation process. It is reassuring that these two
models provide results for the heating rate that are not too different.

In contrast, the results for the Alfvénic heating following the van Ballegooijen et al. (2011)
parametrisation show a different drop of the heating rate. From the coronal base to the top
of the loop, the heating rate drops only by a factor of five to six (second panel of Fig. 5.3).
Comparing the Alfvénic and turbulent parametrisations, Eqs. (4.5.2) and (4.5.3), clearly
indicates that the magnetic field B makes the difference. The lengths L of the field-lines in
the set are the same within 10%, the horizontal velocities at the footpoints vrms due to the
granulation cover only a small range, and the drop of the density ρ is not very important
because of the comparably large barometric scale height (and the turbulent heating de-
pends only weakly on ρ). However, the drop of the magnetic field from the coronal base
to the loop apex by a factor of about 20 is mainly responsible for the large drop of the
turbulent heating (201.75≈190) and the only small drop of the Alfvénic heating (200.55≈5).
To highlight the differences in the spatial distribution of the three heating parametrisa-
tions, we plot the ratio of Ohmic to Alfvénic and turbulent heating in Fig. 5.4. This
underlines that (on average) the turbulent heating is quite similar to the Ohmic heating.
They both show a much stronger concentration towards the footpoints, which is mainly
because of the different dependence on the magnetic field strength. The heating rates also
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Figure 5.3: Volumetric heating rates along individual field-lines of the bright loop set,
marked in red in Fig. 5.2. The lengths of the field-lines are normalized to unity. The
thick black line in the top panel shows the average of the Ohmic heating for the selected
field-lines. The Ohmic heating rates are averaged over five minutes to reduce the effect
of transient events. The dashed lines indicate the average position of the coronal base
at log T [K]=5.5 for the selected field-lines. The Alfvénic and the turbulent heating are
plotted normalized to the heat input just below the coronal base. All panels cover the
heating rate over four orders of magnitude on the ordinate. See Sect. 5.2.2 and 5.2.2.

differ quite significantly below the base of the corona. This is not surprising because the
parametrisations for the Alfvénic and turbulent heating are derived for the corona. So tak-
ing them seriously in the chromosphere would be overstretching these approximations.
The 3D MHD model with the Ohmic heating shows a much stronger energy input in the
chromosphere, which is because of the strong shearing of the magnetic field in the lower,
denser part of the atmosphere, where plasma-β is no longer smaller than unity.

5.2.3 The “random set” of field-lines

The preceding discussion is for a quite special structure, namely, for field-lines associated
with a bright loop. As a sort of blind test we now investigate a more random set of field-
lines that are not associated with any particular coronal structures. This random set is
plotted in green in Fig. 5.2 (see 5.2.2 for the definition). The volumetric heating rates and
the ratio of the heating rates are plotted in Figs. 5.5 and 5.6
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Figure 5.4: Normalized ratio of Ohmic heating to Alfvénic and turbulent heating (volu-
metric heating rates) for the field-lines of the bright loop set, marked in red in Fig. 5.2.
The lengths of the field lines are normalized to unity. The thick black lines show the aver-
age of the ratios for the selected field-lines. The dashed lines indicate the average position
of the coronal base at log T [K]=5.5 for the selected field-lines. Both panels show the ratio
over a range of four orders of magnitude. See Sect. 5.2.2.
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Figure 5.5: Similar to Fig. 5.3, but for the volumetric heating rates of the random set of
field-lines marked in Fig. 5.2 as green lines. The asymmetry of the field line shapes shows
up clearly, especially for turbulent heating. See Sect. 5.2.3.

Interestingly, this selection gives overall similar results as the bright loop set, albeit with a
larger scatter. This is a result of greater variety of field-lines that sample different regions
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Figure 5.6: Similar to Fig. 5.4, but for the ratios of the heating rates of the random set of
field-lines marked in Fig. 5.2 as green lines. See Sect. 5.2.3.

in the simulation box in different states. Despite the larger scatter, this clearly shows that
the results outlined for the bright loop set can be generalized for the whole corona. This
is not too surprising because in a low-β plasma the magnetic effects should be not too
sensitive to the loading of the field-lines with plasma. Thus field-lines that are strongly
loaded with hot plasma will show the same properties of the (magnetic) heating as other
field-lines that are not loaded with plasma. Of course, there is still the correlation between
heating and coronal density that determines which field-lines are loaded with how much
plasma (for a discussion of the appearance of loops see e.g. Peter and Bingert 2012).
There is one pointed difference between the bright loop and the random set, though. The
heating rates of the latter show stronger asymmetries between both sides of the loop,
which are particularly strong for the turbulent heating parameterisation (middle panel of
5.5). This is because some of the field-lines in the random set are quite far from being
semi-circular (cf. green lines in Fig. 5.2). These more strangely shaped field-lines are
hosting the asymmetric heating mainly because of the field-strength asymmetry. More-
over, in the side where the field line does not reach very high into the corona, the density
is higher and thus according to Eq. (4.5.3) the turbulent heating is stronger. This shows
that the back-reaction of the heat input on the magnetic structure cannot be completely
neglected (as noted in Sect. 5.2).

5.2.4 From field-lines to loop models

We have looked at the spatial distribution of three different parameterisations of coronal
heating for two different selections of coronal field-lines. The volumetric heating rates
of all parameterisations drop for all field-lines, and this drop is roughly exponential with
height. The main difference is that the heat input for the Ohmic and turbulent case is much
more concentrated towards the foot points than in the case of Alfvénic heating.
It is instructive to explore whether this difference in foot-point dominated and more uni-
form heating has a significant effect on the coronal emission (and the dynamics). There-
fore, we now synthesize coronal emission from 1D loop models with a spatial distribution
of the heat input similar to the average of the set of field-lines associated with the bright
loop. Based on this, we can investigate to what extent one can distinguish the heating
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parameterisations based on observable quantities. Obviously, this can only be a first step
because in the end it has to be done within the framework of a 3D MHD model.

5.3 Details of 1D coronal models

The 1D loop model describes a semi-circular 1D coronal loop with a length of 45 Mm.
Along the loop we solve the mass and momentum balance, including gravity. The energy
balance includes heat conduction parallel to the magnetic field and optically thin radiative
losses. The heating is exponentially dropping according to Eq. (5.4.1) with a scale height
λi. Using the Pencil Code (Brandenburg and Dobler 2002) we solve these equations on a
2048 grid, closely following Peter et al. (2012). Starting from an initial condition with a
prescribed temperature profile in hydrostatic equilibrium, we evolve the equations.
The results of the numerical experiments are shown in Fig. 5.7 for the parametrisation of
the Ohmic heating (λOhm=1.8 Mm) and in Fig. 5.8 for the Alfvénic heating (λalf=6.8 Mm).
Temperature, density, and velocity are plotted as a space-time plot, i.e. as a function of
arc length along the loop (normalized to the loop length) and time. In the case of Alfvénic
heating (Fig. 5.8), the coronal loop reaches a stable static state after some 2000 s. For
the discussion of this parametrisation in Sect. 5.4, we thus select a snapshot at t=2500 s,
where the velocity is very close to zero, less than 3% of the sound speed. The situation is
different for the Ohmic heating (Fig. 5.7). The strong concentration of the heating towards
the footpoints evaporates chromospheric material, which then climbs up the loop towards
the apex, where the heating rate is quite low. As the density increases, the radiative losses
of the plasma increase and the plasma effectively cools. In a runaway process, a con-
densation forms because radiation becomes more efficient with decreasing temperature.
Finally the condensation slides down one side of the loop. Because the heat input is kept
constant, the whole procedure starts again. This process of loss of equilibrium is well
known (e.g. Müller et al. 2003; Karpen et al. 2006; Peter et al. 2012), and the results we
find for the onset of the condensation (depending on λi) are consistent with previous stud-
ies. From an inspection of Fig. 5.7, it is clear that there are long stretches of time between
condensations wherein the loop is comparably stable at hot temperatures without any con-
densation present. During the time span shown in Fig. 5.7, this covers about 3000 s. This
is long compared to the sound-crossing time, which is of the order of 400 s. Arguing that
we want to catch the loop undergoing Ohmic heating in a phase when it is hot and free
of condensation, we select a snapshot at t=7500 s (cf. Fig. 5.7) for the further analysis in
Sect. 5.4. At this time the velocity along the loop is almost zero everywhere, so that we
consider this a quasi-steady state. The 3D MHD model our study, based upon Bingert
and Peter (2011), does not find such condensations in their synthesized emission. In that
3D model, the heat input along the loop is not symmetric, which is evident from the first
panel of Fig. 5.3. Even comparably small deviations from a symmetric heating will lead
to different pressures at the coronal base of the two loop legs, which will drive a siphon
flow through the loop (e.g. Boris and Mariska 1982). To some extent, such a siphon flow
will prevent strong condensations from forming because the flow carries away the plasma
as soon as it starts to condense (Z. Mikić, priv. comm.). Thus we do not see a conden-
sation in our 3D model. Furthermore, because condensations do not form, the loop apex
can reach higher temperatures, as we see in the 3D model. We see the condensations form
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Figure 5.7: Variation of tempera-
ture, density, and velocity along
the loop in the 1D model. Here
we show the results for the param-
eterisation of Ohmic heating with
a scale height of λOhm=1.8 Mm for
an exponentially dropping heat in-
put following Eq. (5.4.1). The
arc length is normalized to the
loop length of 45 Mm. The verti-
cal dashed line indicates the time
of the snapshot, which is further
analysed in Sect. 5.4.
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Figure 5.8: Same as Fig. 5.7,
but for the case of Alfvénic
heating with a scale height of
λalf=6.8 Mm.

in the more idealized 1D loop model with a perfectly symmetric heating rate. However,
in view of the above discussion it is reasonable to concentrate on the phase between the
condensations and to use the snapshot at t=7500 s for the analysis in Sect. 5.4.

5.4 One-dimensional coronal loop models

In the following, we construct simple 1D models of a coronal loop with constant cross-
section and a prescribed heating function. All quantities depend only on the arc length
along the magnetic field line defining the loop. The velocity is parallel to the loop. Besides
accounting for the conservation of mass and momentum (including gravity), we solve the
energy equation. The latter accounts for optically thin radiative losses (following Cook
et al. 1989) and heat conduction parallel to the magnetic field. This ensures that the
coronal pressure is set self-consistently, which is pivotal if the resulting coronal emission
radiated from the loop is to be synthesized, as we do here. The 1D models are run using
the Pencil Code (Brandenburg and Dobler 2002) and follow the procedure of Peter et al.
(2012).
For the purpose of comparing the synthesized emission from the 1D, loop we adopt the
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average heating rate of the set of field-lines associated with the bright loop (red lines in
Fig. 5.2, definition in Sect. 5.2.2, discussion in Sect. 5.2.2). This loop has a height of
roughly 15 Mm and a foot-point distance of about 28 Mm. This corresponds to a roughly
semi-circular shape with a length of about 45 Mm which we will use in our numerical 1D
model.
The volumetric heating rate Qi in the 1D model, which we will assume to fall off expo-
nentially, is

Qi = H0,i exp
(
−

z
λi

)
, (5.4.1)

where z denotes the geometric height and H0,i is the heating rate at z=0. The scale height
λi for the heating remains to be determined for the three heating parametrisations, here
represented by the index i.
To determine the scale heights λi, we show in Fig. 5.9 the volumetric heating rates as
a function of the geometric height z, including both loop legs, and not as a function of
the arc length as before. We now fitted a simple exponential function in the form of
Eq. (5.4.1), which provides values for the λi. For the fitting procedure we ignored all data
points below the coronal base (at log T [K]=5.5, roughly at 3 Mm). These fits are over-
plotted in Fig. 5.9 and the values for the λi are given. The exponential drop gives quite a
good fit to the average variation. As suspected from the discussion in Sect. 5.2.2, Ohmic
and turbulent heating show very similar results. This is why in the following we only
compare the Ohmic and Alfvénic parametrisations. In the Ohmic case we adopt a scale
height of λOhm=1.8 Mm, for the Alfvénic case λalf=6.8 Mm. For the Ohmic case we use a
heating rate at z=0 of about H0,Ohm≈3 mW/m3 (see first panel of Fig. 5.9). We determine
the value for H0,alf using the requirement that the heat input into the corona (i.e. integrated
above the coronal base) has to be the same in both cases.
Because of the short scale height λOhm, the loop for the parametrisation of the Ohmic heat-
ing is subject to a loss of equilibrium near the apex. This process is well documented in
the literature (e.g. Müller et al. 2003; Karpen et al. 2006; Peter et al. 2012, and references
therein). It leads to the episodic formation of condensations in the loop that eventually
slide down into the photosphere. For the following discussion we thus investigate a snap-
shot in the comparably long time between two condensations (near t≈7500). The loop
model of the Alfvénic heating with the longer scale height λalf reaches a static solution,
which we then select for further analysis. For the times we analyse the two 1D models,
the velocities along the loop are very close to zero, less than 3% of the sound speed, in
both cases.
The temperature and density along the 1D model loops are plotted in Fig. 5.10 (top row).
In the case of the Ohmic parametrisation (in red), the temperature is below the temperature
at the apex as found in the 3D model. The condensation that formed earlier on is an
effective sink for the energy, and thus preventing strong condensation, e.g., by a siphon
flow induced by asymmetric heating, could allow the temperature to reach higher values
near the apex. However, the focus of the following discussion is not to what extent the
1D models can reproduce the results of the 3D model, but if one can find observable
differences for the two loop models with different heating parametrisations.
For the Ohmic and the Alfvénic heating we now calculate the coronal emission from the
1D loop model as it would be observed by the extreme UV imager on-board the Solar
Dynamics Observatory, the Atmospheric Imaging Assembly (AIA, Lemen et al. 2012).
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5.4 One-dimensional coronal loop models
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Figure 5.9: Volumetric heating rates over geometrical height for the bright loop (red in
Fig. 5.2) for the three parametrisations. The black dots show the actual heating rates along
the field-lines. The straight lines display the best exponential fit according to Eq. (5.4.1).
The resulting scale height for the heating rate, λi, is listed. For comparison the exponential
drop of the Alfvénic heating is over-plotted (in arbitrary units). See Sect. 5.4.

In particular, following the procedure of (Peter et al. 2012), we synthesize the emission
for the 131 Å and 171 Å channels that are dominated by emission from ion Fe viii and ion
Fe ix from plasma at temperatures of about 5.7 and 5.9 in log T [K] (Boerner et al. 2012).
The resulting emission in these two pass bands for the two loop models is shown in the
bottom panel of Fig. 5.10.
Overall, the (relative) spatial distribution of the 171 Å emission is quite similar for both,
the Ohmic and the Alfvénic heating (Fig. 5.10 c,d). However, because of a lower density
(and temperature), the absolute level of the emission is different. Still, when investigating
actual observations to test which heating mechanism might be dominant, we would have
to rely mostly on the relative distribution of the emission along the loop and not so much
on the absolute level. Thus, at least in the case that we look at here, it would be hard to
distinguish the heating mechanisms based on the 171 Å band alone.
A clearer difference is seen in the 131 Å channel, where Alfvénic heating has two distinct
“horns” near the foot points of the loop but is significantly weaker in the centre of the loop,
when compared to the case of Ohmic heating. This is somewhat unexpected because the
Ohmic heating shows a much stronger concentration towards the footpoints. However,
the emission we see does not directly reflect the spatial variation of the heat input but is a
convolution of temperature and density, both of which are set by the heat input. Because
of the higher apex temperature for the Alfvénic heating case, the spatial regions where
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5 Heating along individual fieldlines
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Figure 5.10: Variation along the loops in the 1D models for the parametrisation of the
Ohmic (red) and Alfvénic heating (green). The arc length is normalized to the loop length
of 45 Mm. The top panels show the temperature and the density, the velocities are very
close to zero. The bottom panels show the coronal emission synthesized from the model
as it would be observed with AIA in the 131 Å band (c) and the 171 Å band (d). See
Sect. 5.4.

the (comparatively cool) 131 Å emission originates are narrower and shifted down when
compared to the Ohmic case.
Depending on the band pass of coronal emission, two quite different heating mechanisms
might produce similar or very different spatial distribution of the emission along the loop.
In this example the 171 Å band is similar, the 131 Å band is different. For other 1D loop
experiments with different total heat input, one can expect to find similar results, even
though other channels might then be similar or different. So after all, observations of
the coronal emission should hold the potential to distinguish between different spatial
distributions of the heat input if one is not focusing on a single emission line or extreme
UV bandpass alone.

5.5 Conclusions

In this paper we investigated differences and similarities of three mechanisms to heat
the corona: Ohmic heating following braiding of magnetic field-lines by photospheric
motions, the dissipation of Alfvén waves, and MHD turbulence. For our study we used
the results of a self-consistent 3D MHD simulation (Bingert and Peter 2011). From this
we calculated the Ohmic heating rate as resulting from that model, and heating rates that
would be given by parametrisations for Alfvénic heating (van Ballegooijen et al. 2011),
and turbulent heating (Rappazzo et al. 2008).
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5.5 Conclusions

We find that all the horizontally averaged heating rates drop roughly exponentially with
height. This is true for the average and also when investigating the heating rate along
individual field-lines. We find a drop of the volumetric heating rate that is roughly ex-
ponential with height, along magnetic field-lines that are associated with a bright coronal
loop in the 3D model, and along basically all other field-lines reaching into the corona.
The Ohmic and the turbulent heating show roughly the same spatial distribution. This
is not really surprising because the reduced MHD model for the turbulent heating is
based upon Rappazzo et al. (2008), and is similar in principle to the full 3D MHD model
(Bingert and Peter 2011). In both models the field-lines are braided and the non-linearity
of the MHD equations drives the formation of small scales. This induces currents at small
scales that are dissipated. While the full MHD model properly includes the energy equa-
tion, the reduced MHD models allow a much higher resolution. It is reassuring that these
two models, using different approaches, give roughly the same result on the spatial dis-
tribution of the heating. In contrast, the Alfvénic heating (van Ballegooijen et al. 2011)
shows a significantly smaller degree of concentration of the heating rate towards the foot
points.
Using the spatial distribution of the heat input from the 3D models, we ran 1D loop models
to make a first estimate whether one can distinguish the different mechanisms by the
distribution of the coronal emission along the loop. For this we synthesized the emission
to how it would be seen with AIA. Here we find that some bands (for our example at
171 Å) look quite similar, while others (here at 131 Å) show quite different variations
along the loop.
The good news is that the different heating mechanisms will produce different observ-
ables (when considering enough bands). However, the bad news is that probably fiddling
around with 1D models might be not sufficient because there are too many free param-
eters. Here we showed only results for one loop for two AIA bands, and the situation
is quite different for other loops and/or other bands. Accounting for spatial complexity,
new 3D models with a self-consistent treatment of the heat input based on driving in the
photosphere will help in pinpointing the observational similarities and differences of the
different heating mechanisms.
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6 Coronal heat input and magnetic
activity

6.1 Goal

The Sun is not not unique for having a corona. Surveys show X-ray emission, a com-
monly used tracer for magnetic activity, across almost the whole of the main sequence
Güdel (2004) Although some of these observations could also be explained by sources
other than a corona, such as strong solar winds in OB-stars, this provides clear evidence
that coronae exist on majority of main sequence stars. A more complete discussion on
stars and magnetic activity is provided by Reiners (2012) and Güdel (2004)

There is ample evidence of a connection between chromospheric emission and X-ray
emission of cool stars and their magnetic activity. A relation between the emission of
Ca II K emission and C IV emission we found by Schrijver et al. (1989); Schrijver (1990).
The Ca emission is another often used tracer for magnetic activity. The relations follows
a power law as a function of the observed unsigned magnetic flux f B,

FCiv ∝ 〈 f B〉0.7. (6.1.1)

A similar power law for the X-ray luminosity was found by Pevtsov et al. (2003) and Saar
(2001).

FX ∝ Φα, (6.1.2)

where Φ denotes the magnetic flux and α takes the value of 1.15 for active stars and 0.95
for cool stars.

The investigation described in this chapter explores the effect of a different unsigned mag-
netic flux in the photosphere on the dynamics and observables of the corona and TR. We
interpret this higher magnetic flux as if the host star would have a higher magnetic activ-
ity. In addition to this we briefly look at the effect of a different driver velocity. Or, to
phrase it differently, we investigate the effect of a different Poynting flux into the corona.
After synthesizing the emission we expect to find a relation between the magnetic field
and coronal emission.
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6 Coronal heat input and magnetic activity

Run B0[1013]B̂ v0 [km s−1]
Run 1.1 1.0 1
Run 1.2 1.0 2
Run 2.1 1.8 1
Run 2.2 1.8 2
Run 3 2.4 1
Run 4 4.0 1

Table 6.1: Overview of the setting of the six numerical experiments. These differences
are the only differences between the models. B0 relates to the total unsigned magnetic
flux at the bottom boundary. The u0 is the mean granular velocity of the driver.

6.2 Method

For this purpose have performed several numerical experiments with a nearly identical
set-up of a corona in a box. The general set-up of the model is already discussed in
chapter 4. For this experiment we use different amplitudes of the magnetic field at the
bottom boundary to mimic a higher or lower magnetic activity. The threshold for the the
quenching of the granulation driver is increased or decreased accordingly to keep the same
surface of the photosphere driving the magnetic foot points. In addition two experiments
also had a different strength of the granular velocity driver at the bottom boundary. An
overview of the different parameters used in the six numerical experiments are given in
table 6.1. Each run starts from identical initial conditions with the exception of run 2.1,
which is a continuation from run 2.2. These differences mentioned are the only differences
between the different runs.
The heating of the corona is through the dissipation of currents, induced by the braided
magnetic fields. In our model we use a threshold magnetic field strength at the bottom
boundary above which the granular motion is quenched. This threshold has to be adapted
with accordingly when increasing or decreasing the magnetic field at the photosphere,
since the same surface area has to participate in the braiding to ensure a fair comparison.

6.3 Results

Most of the runs cover over one hour of solar time. Runs 1.1 and 1.2 encountered nu-
merical problems which forced the simulations to terminate early. The experiments lasted
fortunately long enough for the purpose of our investigation, but too short to investigate a
possible observed oscillatory behaviour. Aside from this problem each model was able to
produces a corona and TR.
As a test on whether the different runs are able to produce coronal structures similar to
observations, we investigate the synthesized emission structures of the different runs as it
would be detected by the 171 Å filter of the AIA instrument on SDO (Lemen et al. 2012).
Pre-calculated tables based on the CHIANTI database (Dere et al. 1997) of the response
functions of this instrument allow us to calculate the total emission at a gridpoint as a
function of density and temperature. The results are displayed in Figs. 6.1 and 6.2. These

62



6.3 Results

Figure 6.1: Synthetic observations for the AIA 171 Å filter for the (from left to right)
runs 1.1,1.2 and 2.1 in table 6.1. The response function of the AIA 171 Å filter peaks
at log T [K] = 5.8. The top panel shows the integrated intensities along the z-axis. The
middle and bottom panel show the sideview from the box along respectively the x and
y-axis. The intensity ranges differ per run for clarity.

figures show the synthesized coronal emission integrated along the major axes. The in-
tensity ranges are scaled differently for each run for clarity. This can be excused since
the emission scales with the density squared, a factor two difference in intensity is only a
factor

√
2 = 1.4 in density.

The figures we see that each model produces a loop dominated hot corona. The actual
structures of these coronae are quite similar, which is expected for nearly identical mag-
netic field structures at the bottom. Each model contains a clear loop structure connecting
the main two polarities in the centre. A more diffuse loop structure is found connecting
the two polarities through the periodic side boundaries.

6.3.1 Heating in time

The different magnetic field strengths and heating distributions affect the dynamics and
structure of the corona. We want to investigate how the heating rates of the numerical
experiments differ, and how they behave as a function of time. The temporal variability is
displayed in Fig. 6.3 in which the total Ohmic heating in the physical domain is plotted as
a function of time. Run 2.1 is a continuation of run 2.2, and thus shown behind that run,
all other runs start from t = 0.
The total Omhic heating of the experiments with a stronger magnetic field are higher
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6 Coronal heat input and magnetic activity

Figure 6.2: Similar to 6.1, but for the (from left to right) runs 2.2,3 and 4 in table 6.1.

than those with a weaker magnetic field. All runs start with a strong heating as a result of
switching on the simulation. This initial heating is limited to only the lower few gridpoints
of the box, and fades in roughly 20 minutes. At this point in the heating in most of
the simulations reaches a plateau. An exception to this are runs 1.1 and 1.2. These
appear to to have a strong oscillatory behaviour of Ohmic heating in time. Whether this is
truly oscillatory could not be determined, as the strong heating-induced dynamics caused
numerical instabilities and the simulations could not advance further.
The symbols in Fig. 6.3 mark a sets of snapshots that we use for further investigation
below. These snapshots are chosen at a time in which the simulations are relatively steady.
For most runs these snapshots accurately represent the rest of the run, with an exception
for those belonging to run 1.1 and 1.2, as there is no existing representative timespan due
to the dynamic nature of these runs.

The Fig. 6.4 shows the temporal averaged heating of the selected snapshots versus the
magnetic field strength at the bottom. Runs 1.2 and 2.2, which have a stronger velocity
driver, are shifted slightly to the right for clarity. From this we see that in general the
total Ohmic heating in the physical domain is higher for the experiments with a stronger
magnetic field at the bottom. This seems, however, not to scale with the amplitude of the
square of the magnetic field as one would expect from energy-considerations (magnetic
energy scales with B2), but with a linear relation instead.

This could be explained by looking at the Poynting flux in more detail, which is the flux
of magnetic energy. The last term of Eq. (3.6.2) is a double cross product. The vertical
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Figure 6.3: The integrated Ohmic heating in the physical domain as a function of time
for the different runs. The marked points are a selection of snapshots use for further
investigation.
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Figure 6.4: Time averaged heating as a function of the magnetic field strength at the
bottom. The two runs, 1.2 and 2.2, with a higher diver velocity are shifted slightly to the
right for clarity. The black line indicates a linear relation between the bottom magnetic
field and the total heat deposited.

component can be rewritten, in a simplified way as,

S z ∝ (uh × Bv) × Bh, (6.3.1)
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6 Coronal heat input and magnetic activity
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Figure 6.5: The averaged energy flux into the corona just below the Transition Region
(roughly 4 Mm from the bottom) as a function of uhBv. The black line shows the relation
FTR ≈ (uhBv)3. Note that both axis are logarithmic scaled.

where the subscripts v and h denote the vertical and horizontal directions respectively.
Since the magnetic field at the bottom boundary is predominantly vertical, doubling the
magnetic field will yield a doubling in the vertical component, but no doubling in the
horizontal. As such, the vertical magnetic energy flux scales linearly with B. Assuming
that the total heat input directly relates to the coronal energy input, and thus the coronal
emission, a close-to a linear relation between the magnetic flux at the surface and the X-
ray emission would be expected, which is in fact observed (see Eq. (6.1.2)).
We investigate this suggestion by investigating the product of the vertical magnetic field
and the horizontal velocity field at 3.9 Mm with the total heating above that region, av-
eraged over the earlier marked snapshots. This height is just below transition region and
just above the region of the step in the magnetic diffusion η. This is displayed in the
bottom panel of Fig. 6.5. Although the points do scale with the magnetic field strength at
the bottom boundary, we can find good fit between this proxy of the Poynting flux at the
bottom of the TR and the total energy deposition above that layer. We find a good fit for
(uhBv)3. Higher up this relation breaks down as the horizontal magnetic field and vertical
flows become more dominant.

One caveat of the plots of Fig. 6.3 is that the averages are dominated by the heating in
the lower regions of the physical domain, due to the exponential drop with height. This
can be seen in Fig. 6.6, where the horizontally and temporally averaged heating rates are
shown over height.
The peak around 3 Mm is an effect of the η-step function described in Sec. 4.5.1, which
reduces the magnetic diffusion, and thus the Ohmic heating, by a factor 100 below that
height. The heating rates in the corona do no directly line up with the magnetic field
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Figure 6.6: Top: The horizontally and temporally averaged Ohmic heating over height for
the different runs. The peak around 3 Mm is a result of the η-step function at that height.
The heating rates do not differer from each other by more than a factor 10. Bottom: The
horizontally and temporally averaged Ohmic heating-flux as a function of height for the
different runs.

strengths. The slope of the heating rates are all roughly the same. The increasing slope at
the top is an artefact of the closed boundary, that causes the formation of strong currents
there. It can however be argued that, although the formation of the currents there is a
numerical artefact, the energy deposited originates from the driver at the bottom.
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6 Coronal heat input and magnetic activity

When considering (a proxy of) the flux in the form of

F(z) =

∫ ∞

z
H(z′)dz′, (6.3.2)

with F denoting the flux, and H the (horizontally averaged) volumetric heating rate. The
result of this is shown in the bottom panel of Fig. 6.6. With this proxy we find a good
match with the field strengths and driver velocities starting from roughly 25 Mm and up-
wards, with an exception for run 1.1.

When moving upwards into the corona, the heating rates stop to line up with the mag-
netic field strength at the bottom. The heating of plasma above a certain temperature is
investigated in the top panel of Fig. 6.5. In here we see the total averaged heating as a
function of the magnetic field at the bottom (with run 1.2 and 2.2 shifted slightly to the
left again), for different temperature thresholds of the coronal plasma. It shows no clear
relation between the magnetic field strength a the total heating for any of the thresholds.

6.3.2 Doppler shifts
Stronger or weaker heating events can have an influence on the velocity field throughout
the corona.

The Doppler shifts of synthesized emission lines for the selected snapshots and their av-
erage are shown in Fig 6.7 as a function of the formation temperature. The coloured lines
are for the individual snapshot, and the black line indicates the average of those. The
vertical black error bars represent the 0.1σ spread of the Doppler shits. The calculated
Doppler shifts for the cool lines, emission lines with low formation temperatures, are
more static in time, whereas the hotter lines vary more strongly in time. Of all six runs,
run 2.2 and 3 have the most solar-like pattern of Doppler shifts.
A recent study by Linsky et al. (2012a,b) investigated the relation between Dopplershifts
as a function of formation temperature and rotation period of rapidly rotating Solar-like
stars. Fast rotation periods are coupled with stronger magnetic fields as a result of the
stronger dynamo action. It was found that for more rapid rotating stars the red-shifts
of the C IV and SI IV lines increased. This is displayed in Linsky et al. (2012b) their
Fig. 6, which shows stronger red shifts for emission lines formed at high temperatures
for active starts. Less active /slower rotating stars show a more Solar like pattern where
these emission lines are more blue-shift. In the context of these findings, our results are
consistent with these findings.

6.3.3 Flux flux relation
We use the total emission of the different lines in order to compare our results with the
flux-flux relations mentioned earlier in Sect. 6.1. Since the C IV emissions scales with
the magnetic flux, and the X-ray flux in turn also scales with the magnetic field strength,
we expect a relation between the C IV emission and X-ray flux. Although we don’t
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Figure 6.7: Doppler shifts for the different runs. The different colours represent the dif-
ferent snapshots, and the black line the average. The error bars indicate the spread of
observed Doppler shifts.

have synthesized emission lines in the range of X-rays, we assume that the lines with the
highest formation temperature are a good approximation for it. In general Fe XV formed
at roughly 3 MK shares many characteristics with the X-ray emission on the Sun. When
we combine Eqs. 6.1.1 and 6.1.2, assuming α is 0.95, we end up with an expected relation
of

FX ∝ F0.98/0.7
C IV ≈ F1.4

C IV. (6.3.3)

This relation is plotted by a black line in Fig. 6.8.
In this figure the symbols represent the mean C IV emission per snapshot compared to
the mean emission of the other emission lines in that snapshot. The emission from the
different lines are all normalized in respect to the maximum emission of that line and then
shifted for clarity in order of their formation temperature. The respective lines, indicated
with different colour and sign, from bottom to top represent the emission from: C II, O V,
O VI, Si VII, Fe X, Fe XII, Fe XIII, Fe XV. This order (from bottom to top) also follow
the formation temperature of these lines from bottom, around log T [K] = 4.5, to top,
log T [K] = 6.4, for Fe XV.
Especially for the emission lines coming for the highest formation temperatures the peak
of the emission distribution does not coincide exactly with the formation temperature.
This is the result of the ρ2 dependence of the emission, and thus the slightly cooler, but
denser, plasma emits more photons in that wavelength range than the hotter plasma. This
means that the emission coming from, i.e. Fe XV, does not represent the 3 MK plasma,
but a lower temperature plasma which is denser.
The bottom few lines follow a relation close to linear since the formation temperatures
are very close to each other, and thus the lines probe the same region of the simulation.
The emission lines at the top of the plot, coming from hot plasma, loosely follow a power
law relation with the C IV emission as from the derived relation in Eq. (6.3.3).
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6 Coronal heat input and magnetic activity

Maybe more interesting that the lines of Si VII, Fe X, and Fe XII seem to be independent
of the C IV emission. It is unknown whether a similar trend, or the lack thereof, is seen
in observations. This motivates new observations to explore this range T in the coronae.

Figure 6.8: The normalized emission of several synthesized emission lines. The ion re-
sponsible for the emission line is indicated on the left. The black line shows the relation
F1.4

C IV which is expected from observations.
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6.4 Conclusion & Discussion
In this chapter we have described investigation of the effect of a varying magnetic photo-
spheric field strength on the coronal dynamics. This was done with six nearly identical
numerical experiments of a corona in a box, just differing the amount of magnetic flux.
Four different amplitudes of the magnetic field were applied, where two of the models
had an additional experiment with a stronger granular driving velocity.
The total Ohmic heating rates do not line up everywhere with the magnetic field strength
at the bottom boundary. The horizontally averaged heating rates around the TR appear
all to be around the same amplitude. The total flux in this region also no longer scale
with the magnetic field strength. However, roughly 20 Mm above the TR, the total energy
flux starts to scale with the magnetic field strength. When investigating a proxy for the
Poynting flux, the product of the vertical magnetic field with the horizontal velocities, we
find a relation where the total energy deposition above the base of the TR, lines up with
(uhBv)3 at that location.
The emission structures of the coronae produced by these models are very similar, in the
sense that they all produce a hot, loop-dominated corona. The Doppler shift, however, are
very similar. Of the six runs, only run 2.1 and 2.2 produce a similar pattern as observed
in Solar observations. The different distribution of the Doppler-shift as a function of line
formation temperature are consistent with the results of Linsky et al. (2012a) and Linsky
et al. (2012b). E.g. the emission lines from hotter plasma are more red shifted for higher
magnetic activity than for lower activity.
Whether the behaviour of the runs with the weakest magnetic field is possible oscillatory
could not be determined in this work. Changing the simulation parameters to allow the
simulation to overcome the numerical instabilities would also make the simulation incom-
parable with the other runs. It would be non-the-less interesting to see whether we can
reproduce this observed behaviour in a future, more specialized numerical set-up. And,
in case we reproduce the oscillatory behaviour, what the cause of this behaviour is, and if
it is possible to trace back this behaviour to observed regions on the Solar surface.
The models are limited in the ranges of magnetic fields covered. For a full coverage
and a proper investigation of the relation between magnetic field strength and corona one
would need a much larger range of photospheric magnetic field strengths. But magnetic
fields that are much stronger, by orders of magnitude, or weaker do not only influence
the corona, but also the lower lying regions. Magneto-convective simulations of the con-
vective layer show that very strong magnetic fields have a significant effect on the con-
vective motion. Naturally this leads to a coronal structures very different from the Solar
corona. For a model description of these regions this requires proper treatment of the
lower atmospheric regions in order to have a a driver matching the both the distribution
of magnetic fields and velocities. This would require the combination of the results of
magneto-convective simulations with coronal models as presented in this work. A first
step in this direction, of coupling convective models with coronal model, is taken by
F. Chen, 2013 (Priv. Comm.). This work the couples results from a model of an emerging
flux-tube in the convective layer is coupled with a coronal model.
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7 Testing parametrizations of coronal
heating

7.1 Goal

In this chapter we investigate the effect of a different heating distribution on the corona
and its dynamics. We do this by replacing the heating by Ohmic dissipation in Eq. (3.3.3)
by parametrizations for heating mechanisms via MHD turbulence and Alfvén wave dis-
sipation. We use this to explore the observational consequences of the different heating
mechanisms using 3D MHD numerical experiments. The main goal is the identify to what
extend such different parametrizations would lead to differences in coronal emission that
can be distinguished by current instrumentation. Synthesized EUV emission and Doppler
shifts provide insight on which of these mechanisms is dominant.

7.2 Model set-up

The basic set-up of the numerical experiments discussed in this chapter is described in
chapter 4. In the work presented in this chapter we replace the heating by Ohmic dissipa-
tion in Eq. (3.3.24) with two parametrizations based on Alfvén wave dissipation (see van
Ballegooijen et al. (2011), Sect. 4.5.2) and MHD turbulence (see Rappazzo et al. (2006),
Sect. 4.5.3). We still allow for Ohmic dissipation in the induction equation, which is re-
quired for numerical stability, but the energy removed by Ohmic dissipation is not fed
back into the energy equation. As a reference and starting point for these models we use
the results at 45 solar time from the fully self consistent run 2.2 with Ohmic dissipation
(B0 ∝ 1.8 and u0 = 2), which was presented in the previous chapter.
For a fair comparison of the different models we scale the parametrizations so that the
total energy deposition into the corona is roughly the same as the Ohmic heating. For this
we extract the total energy deposition through Ohmic dissipation in the reference run at
45 minutes into the simulation. At this point the heating rates are steady in time (Fig. 6.3).
The mean rms-velocity and the vertical velocity in the domain are indicated in Fig. 7.1.
The orange dashed line shows the rms velocity and the blue dotted the averaged verti-
cal velocities (for comparison, the soundspeed is about 100 km s−1). The vertical black
dashed line indicates at what time we chose the snapshot from the reference run to use
as the starting point of the runs with the parametrized heating. Since both velocities vary
relatively little in time, and together with the plateau in the heating rate from the top panel
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7 Testing parametrizations of coronal heating

of Fig. 6.3, we assume that we reached a quasi steady state.
For the scaling of the heating the total energy input by Ohmic dissipation into the corona
in the reference is calculated by upward integrating the total Ohmic heating from the aver-
age height where the temperature reaches log T [K] = 5.0. This is where the TR is located.
We used this result to scale the Eqs. (4.5.2) and (4.5.3) to ensure a roughly equal energy
deposition into the corona.
This is effectively the same as finding the combined values of the constants in those
equations, which are otherwise not available in our set-up. One could argue that urms

is available in our model, however, extracting these values would require additional com-
munication with the processors at the bottom boundary to retrieve the velocity field there.
The latter would then still be inaccurate since urms represents the velocity field within a
magnetic patch, not the bulk flow.
The heating rates very close to the bottom boundary are artificially set to 0. This is to
avoid numerical problems due to extremely high heating rates from very small loops. In
this region the radiative losses are very high in comparison with the expected heating
rates, it would effectively cool any heated plasma back to about 3500 K within one time-
step. The radiative losses below below that temperature are nearly 0, and the plasma does
not cool further than that. Since our main interest lies in the corona and its dynamics, and
the lower chromospheric regions mainly as a mass reservoir, we can justify turning off the
heating in the bottom layer of our physical domain.
In order to calculate the full parametrized heating, we need the length of the magnetic
field-line at each point in the box. We trace the magnetic field-lines with the method de-
scribed in Sect. 4.8. In this work we assume that the lengths of the field-lines does not
change significantly in time during the runs. To ensure our assumption is valid we turn
off the granular velocity driver at the bottom boundary. In contrast to the the braiding
mechanism, a driver is not required for the parametrized heating of the plasma.
The horizontally averaged heating rates for the three numerical experiments over height
are depicted in Fig. 7.2. These heating rates are for the Ohmic heating at 45 minutes (the
snapshot used as initial condition for the 2 parametrized runs), for the Alfvénic and turbu-
lent heating these curves are calculated at 50 minutes into the simulation. In here we see
that the heating for the 2 parametrizations are differently distributed from Ohmic heating.
The heating rates are all of the same order, which confirms that the scaling of the heating
works properly. Also each heating rate drops exponentially with height. The dashed line
indicates a fit-by-eye which is used to find the approximate scale heights for the heating.
The scale height of the Ohmic heating and turbulent heating are with roughly 4 Mm of the
same order, which matches the results of the scale heights of the heating along individual
loops of Fig. 5.9. The Alfvénic heating, with a scale height of 9 Mm drops slower with
height. The scale heights found in that experiment are a shorter than those in this work
because those are calculated along individual field-lines, while this work examines the
horizontal averages.

7.3 Results

A first check to investigate the validity of these models is to investigate their ability to
retain a hot corona with a TR. A temporally and horizontally averaged profile of the
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Figure 7.1: The average vertical and rms velocities of the reference run over time. The
dashed line indicates snapshot-90 which is used as initial condition for the experiments
with the parametrized heating. For comparison, the sound speed in the corona is of the
order of 100 km s−1.
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Figure 7.2: Bottom: Horizontally averaged heating of the different heating parametriza-
tions over height. The dashed lines indicate a fit by eye for the scale heights, which are
indicated in the legend.

temperature and density of the different runs can be seen in Fig. 7.3. The red, blue, and
green curve are respectively the profiles for the reference run (Ohmic heating), Alfvénic
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Figure 7.3: Time averaged temperature (top) and density (bottom) profile for the differ-
ent heating functions over height. The red line represents the Ohmic heating, blue the
Alfvénic and green the turbulent heating. The dashed lines indicate both the maxima and
minima.

heating and turbulent heating. The dashed lines indicate the maxima and minima of the
plotted variables. All models are able to produce a hot corona with a steep TR as far
as the horizontally averaged temperatures and densities structures go. The temperature
profiles are very similar, despite the spatially different heating distributions. The profiles
of the minimum temperatures indicate that the actual temperature differences might not
be that similar. The same is seen in the the density profile, a large variation in the maxima
and minima over height, but the averages all match each other closely.
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Figure 7.4: The temporal evolution of the rms velocity (top) and the vertical velocity
(bottom) for the two different numerical experiments. The green line represents model
with turbulent-heating and the blue line represents the Alfvénic-heating.

In Fig. 7.4 we see the average rms- and vertical velocities of the two models with the
Alfvénic and Turbulent heating. This is an indication on how dynamic the runs are. Due
to the more static heating in time and the lack of a driver, the velocities in these models
are significantly lower than in the reference run. Initially the sudden change of the heating
leads to a change in pressure balance, and as such an increase in velocities. In time the
rms-velocities damp out and the models reach a quasi steady state.
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7.3.1 Emission

We use the same method as described in Sect. 6.3 to produce synthetic observations of
our experiments. The resulting synthetic emission for the models result in overall similar
emission structures. This is displayed in Figs. 7.5 to 7.7 for different response functions
corresponding to three AIA/SDO filters (Lemen et al. 2012). These are the 131 Å which
corresponds to 5.6, 7.0 and 7.2 log T [K], 171 Å which has a peak in the response function
at 5.8 log T [K], and the 193 Å filter, which correspond to 6.1 log T [K]. In each figure from
left to right the synthetic observations are calculated from the reference run at 45 minutes,
then the Alfvénic and turbulent heating parametrizations at 50 minutes.
Each parametrization produces a loop dominated corona, including stronger emission at
the foot-points. The synthetic emission from the reference run are more chaotic and
structured, which can be attributed to the driver. The granular velocity driver causes
more short and small scale heating events, which results in more small-scale structures in
emission, whereas the parametrized heating is nearly constant in time. At the top of the
domain the emission from the models with parametrized heating is lower than that of the
reference model, for the latter the heating at the top of the domain actually increases as a
result of the imperfect boundary conditions.
Beside details such as the exact location of the loop brightnings, there are no features
that would set one model aside as non-coronal. Each model produces emission structures
that are coronal-like, and as such, these integrated emission structures cannot be used to
distinguish between different heating mechanisms.

7.3.2 Doppler shifts

The thermal energy of an heating event along a coronal loop is spread rapidly along the
whole of the loop as a result of the efficient heat conduction. This nearly isothermal
loop would then appear also nearly uniform in emission, independent on where the actual
heating event took place. We would therefore expect no major difference in the emission
structures. Beside intensity observation we also have access to Doppler observations.
A different distribution of heating in the corona would lead to different velocity distribu-
tions, since the resulting pressure increase would accelerate the plasma in the loop. The
flow of mass in a loop heated at the top would be different from a loop heated near the foot
points, as long as no equilibrium has been reached. The first would produce initially down
flows, while the latter would produce upflows into the loop. A more localized heating at
a point along the loop would induce a combination of up- and downflows. Therefore we
expect that a different distribution of heating unambiguously leads to differently observed
Doppler shifts. Therefore comparing Doppler shift of synthesized emission lines, might
provide important information on the most likely heating mechanism.
We investigate the Doppler shifts of the three numerical experiments as function of forma-
tion temperature. These are displayed in the left panels of Fig. 7.8 for every 90 seconds,
over a timespan of 15 minutes, indicated with different colours. These are centred around
45 minutes into the simulation for the Ohmic heating and centred around 50 minutes for
the Afvénic and turbulent heating mechanisms. The colours indicate the time, from blue
to green to red indicates further in time. The black line represents the averaged Doppler
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Figure 7.5: Integrated emission as it would be observed by the 131 Å filter of SDO/AIA.
This filter has maxima in response function around 5.6, 7.0 and 7.2 log T [K]. The colour
scale is scaled logarithmically, and the range is chosen individually for each run for clar-
ity. The runs are, from left to right, the reference run (Ohmic heating), the run heated
according to a parametrization of Alfvén wave dissipation, and the run heated through
the parametrization of MHD turbulence. The top panel shows the integrated intensities
along the z-axis. The middle and bottom panel show the sideview from the box along
respectively the x and y-axis.

shifts derived from the synthesized emissions lines. The vertical bars show the 0.1 σ
spread of the observed Doppler shifts. The results for the reference run are discussed in
the previous chapter in Sect. 6.3.2. The right panels in Fig. 7.8 show the Doppler shifts
of the vertical integrated emission line profiles. This represents what EUV spectrometers,
e.g. SoHo/SUMER, Hinode/EIS, would actually observe.
As already expected from Fig. 7.4 the derived Doppler shift patterns are stable in time,
they are, however, not zero. Based on these results the turbulent heating, heating through
current cascades, produces the best match with observed Doppler shifts in active regions.
It shows the same tendency as the dashed line in Fig. 2.2, which dips toward blue-shifts at
higher temperatures. This shows that different heating distributions have a clear distinct
Doppler pattern and can therefore be used as a probe for the heating distribution.

7.3.3 Direct comparison of heat input for parametrizations

The heating distributions for both parametrizations are compared to the Ohmic heating
distribution in Fig. 7.9. This figure compares the Ohmic heating in the grid points of the
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Figure 7.6: Same as Fig. 7.5, but for the 171 Å filter of SDO/AIA, which has a response
function that peaks at 5.8 log T [K].

reference run with the Turbulent or Alfvénic heating at those grid points at 50 minutes
into the simulation. The black lines indicates the values where the heating rates would
be the same. The figure is a 2D histogram, where colour indicates the amount of points
corresponding to that combination of heating rates. Two concentrations of points at the
bottom of the plot correspond to heating along the field-lines that leave the domain at the
top (and have therefore a very long length associated with it), and have nearly no heating
for the parametrizations. The heating for the turbulence case follows the Ohmic heating
closer than the Aflvénic heating.

7.4 Discussion and conclusion
In this chapter we discussed the results of numerical experiments in which we replaced the
Ohmic heating with a parametrized version of an heating mechanism. These parametrized
heating functions depended on local variables such as, ρ, L or B. We did this by using the
results of the self consistent run 2.2 of the previous chapter as reference model for the
Ohmic heating and as a starting point. At the 45 minute mark we used a snapshot as the
initial condition for two runs with the parametrized heating. Also at that point we trace the
length of each field-line going through each grid point in the box, this information is then
used for the parametrized heating according to Eqs. (4.5.2) and (4.5.3). This assumes that
during the run the length of the field-lines do not change significantly. For this purpose
the granular driver at the bottom boundary is turned off. The parametrized heating is then
scaled to ensure that the total energy deposition in the corona is roughly the same as for
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Figure 7.7: Same as Fig. 7.5, but for the 193 Å filter of SDO/AIA, which has a response
function that peaks at 5.8 log T [K].

the Ohmic heating.
We see that each parametrization is able to produce a hot and loop-dominated corona as
far as the synthesized emission structures go. From these images alone one would not be
able to identify the heating distribution. Therefore the synthesized emission is insufficient
to to distinguish between the heating parametrizations. We therefore turn to the Doppler-
shifts, which are more sensitive to a difference in heating distribution. The Doppler shifts
of vertically integrated emission lines as a function of formation temperature show that
the different parametrizations show a significantly different pattern. The most Solar-like
profile is found for the experiment with the parametrization based on turbulent heating.

The results of this work show that it is possible to investigate different heating mecha-
nisms by replacing the standard heating with a parametrization. This adds the possibility
to investigate heating mechanisms outside the scope of this work. One of these is a sug-
gestion by Van Doorsselaere et al. (2007), based on heating through wave dissipation.
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Figure 7.8: The Doppler shifts around 45 minutes (Ohmic heating) and 50 minutes
(Alfvénic and turbulent heating) in the simulation. The left panels show the doppler shifts
as a function of the line formation temperature. The coloured lines represent the Doppler
shifts of one snapshot for every 90 seconds, over a timespan of 15 minutes centred around
45 minutes Solar time. The black line shows the average of these and the vertical bars
represent the 0.1 σ spread. The right panel show the Doppler shifts of the vertical inte-
grated emission line profiles. For the C II, C IV, O V and O VI lines. From top to bottom
the figures are come the run with Ohmic heating, Alfvénic heating and turbulent heating.
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Figure 7.9: Comparison of the two parametrizations of the heating rate with the Ohmic
heating. The plot shows the Ohmic heating at one point compared to the Alfvénic or
turbulent heating at that point. The colour indicates the density of those points. The black
line divides the plot in two halves, above the line the parametrized heating is higher than
the Ohmic heating and below the line vice versa. The top panel is a comparison of the
Ohmic heating with the Alfvénic heating distribution, the bottom panel the Ohmic heating
with the turbulent heating distribution.
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8.1 Conclusion

In this work we have investigated the dynamics of the corona when subject to different
Poynting flux of heating distributions. Two different heating distributions were chosen ac-
cording to a parametrization derived from results of RMHD-models. These models were
based on dissipation Alfvén waves (van Ballegooijen et al. 2011) and MHD turbulence
(Rappazzo et al. 2006).
As a first step we looked at how the parametrized heating distributions along individual
closed magnetic field-lines in a self consistent 3D MHD model behaved. This model was
heated self-consistently through Ohmic dissipation, driven by photospheric granular mo-
tion. From that we investigated whether a different distribution of the heating in such a
loop would produce a different corona. We found that the Alfvénic heating had a longer
scale height than the turbulent heating. For the latter the scale height was similar to that of
heating through Ohmic dissipation, which is not too surprising as both are derived from
the same principles.
Next we investigated the influence of the photospheric magnetic field strength on the
heating and dynamics of the corona. The results were surprising in the sense that the
actual heating not necessarily scales with the magnetic field strength in the photosphere.
Although the heating in the whole of the physical domain scales with the photospheric
magnetic field, the heating in the corona does not. Instead the heating scales with a mea-
sure of the pointing flux at the height of the TR. These Poynting fluxes do not scale with
the photospheric magnetic field strength.
Comparing the results of these models with observations of magnetic active stars we
found an interesting match with Doppler shifts patterns as a function of line formation
temperature. A similar interesting correlation was found for the C IV emission and emis-
sion from highly ionized iron, such as Fe XV and Fe XII. Observation found a similar
relation for the X-ray flux with the magnetic flux, which in in turn scales with the ob-
served flux from C IV. The model set-up only covers a small range of the parameters, and
as such it could prove fruitful to expand this range in future work. We use one model
of this work in which we replace the heating by Ohmic dissipation with a parametrized
version of the heating. We did this for Alfvénic heating and for turbulent heating. The
experiments with these parametrized heating use a snapshot of the model heated through
Ohmic dissipation at 45 minutes as a starting point. Since the parametrized heating does
not require braiding of magnetic fields the granular diver is turned off. To ensure a proper
comparison we scale the parametrizations so that the total heating in the corona is the
same as for the Ohmic heating. We find that the different heating distributions all produce
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a corona in the emission structures derived from synthesized emission. If these we actual
observations they would not provide a hint on the actual heating distribution. Doppler
shift from synthesized line emission do produce distinct patterns, and as such could be
used as a test on which heating mechanism is most likely.

8.2 Outlook
The work described in this thesis leaves room for additional investigation. In the experi-
ment done on the effect of the photospheric magnetic field strengths several improvements
could be made. First of all, a stronger magnetic field would lead to longer scale height for
the magnetic field, and as such would require a larger computational domain. Too strong
magnetic configuration would be significantly influenced by itself through the periodic
boundaries. A larger set-up would allow for a less constrained expansion of the magnetic
field, and inclusion of quiet Sun magnetic fields would be able to "shield" strong mag-
netic fields from itself (through the periodic boundaries). Also, a stronger magnetic fields
would influence the granular motion, an effect not included in our current simulations.
In this work we only replaced the Ohmic heating with two other parametrizations. The
results showed that it is feasible to replace the Ohmic heating with a parametrized version.
Future work would expand this to include a wider variety of heating parametrizations.
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