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Abbreviations 
 
5-HT   5-hydroxytryptamine/serotonin 

ADM   abductor digiti minimi  

AMPA   -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

CSP   cortical silent period 

FDI   first dorsal interosseus  

GABA    -aminobutyric acid  

G-protein  guanosine nucleotide-binding protein 

ICF   intracortical facilitation 

I-O curve  input-output curve 

ISI   interstimulus interval 

LTD   long term depression 

LTP   long term potentiation 

M1   primary motor cortex 

mAChR   muscarinic acetylcholine receptor 

MEP   motor evoked potential 

MRI   magnetic resonance imaging 

MT   motor threshold 

nAChR   nicotinic acetylcholine receptor 

NMDA   N-methyl-D-aspartate 

PAS   paired associative stimulation 

PAS10   paired associative stimulation with 10ms interstimulus interval  

PAS25   paired associative stimulation with 25ms interstimulus interval 

rTMS   repetitive transcranial magnetic stimulation 

SICI   short-latency intracortical inhibition 

SSRI    selective serotonin reuptake inhibitor 

STDP   spike-timing dependent plasticity 

tDCS   transcranial direct current stimulation 

TES   transcranial electric stimulation  

TMS   transcranial magnetic stimulation 

tRNS   transcranial random noise stimulation 
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Chapter 1 - Introduction  
 

Neuroplasticity is a feature of the human brain to dynamically reorganize itself structurally as 

well as functionally in response to changes of the environment, behavior or brain injury. It can 

be accomplished via adding, removing, strengthening or weakening of synaptic connections as 

well as neurogenesis (Pascual-Leone et al., 2005, Pascual-Leone et al., 2011). Besides being one 

of the most important physiological mechanisms of learning, memory and other cognitive 

processes, pathologically altered neuroplasticity can cause neuropsychiatric diseases. The 

discovery and development of non-invasive brain stimulation techniques in the last decades has 

given researchers the opportunity to study neuroplasticity in humans. Transcranial magnetic 

stimulation (TMS), transcranial direct current stimulation (tDCS) and paired associative 

stimulation (PAS) are widely used techniques for non-invasively inducing and monitoring these 

processes in the human brain (Nitsche and Paulus, 2000, Stefan et al., 2000, Nitsche et al., 2008, 

Ziemann et al., 2008).  

The present work is divided into two parts: first, the deeper exploration of mechanisms 

influencing brain plasticity using modified brain stimulation protocols and the second part, 

representing the impact of two major neuromodulators (serotonin and nicotine) on non-invasive 

brain stimulation-induced neuroplasticity. Several studies have previously demonstrated the 

impact of different neuromodulators on different types of plasticity in humans (Kuo et al., 2007, 

Kuo et al., 2008, Monte-Silva et al., 2009, Nitsche et al., 2009, Monte-Silva et al., 2010b, 

Thirugnanasambandam et al., 2012). In this thesis we aimed to study the impact of serotonin on 

synapse-specific focal plasticity induced by PAS and the dose-dependent effect of  nicotinic 

receptor activation on plasticity.  

The first chapter of this thesis will introduce basic information about neuroplasticity, 

neuromodulatory systems and techniques used in the studies presented in the second chapter. 

The last chapter will summarize the findings of the presented studies and offer an outlook and 

possible future research directions in the field.  
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1.1. Plasticity in the central nervous system 

 

Neuroplasticity is an intrinsic property of the nervous system to modify, optimize and reorganize 

itself structurally or functionally in response to physiological or environmental changes and 

injuries (Citri and Malenka, 2008). Functional plasticity accomplished by long-lasting changes in 

the central nervous system, such as long term potentiation (LTP) and long term depression (LTD), 

is considered to be a mechanism of learning and memory formation. LTP and LTD have been 

most frequently studied for glutamatergic synapses in various brain areas and have been shown 

to be mediated by NMDA receptors that have calcium channel properties (Bliss and Collingridge, 

1993, Malenka and Bear, 2004). Therefore, the major factor determining the direction of 

plasticity at a specific synapse is the postsynaptic calcium concentration (Lisman, 2001). It has 

been shown that low postsynaptic calcium concentration results in LTD, high concentration in 

LTP, and at a medium concentration a so-called “no man’s land” exists at which no plasticity 

results (Cho et al., 2001, Lisman, 2001). Very high Ca2+ concentrations can also result in no 

plasticity due to activation of hyperpolarizing potassium channels (Misonou et al., 2004). Low 

intracellular calcium concentration triggers a cascade of intracellular reactions leading to 

removal of AMPA receptors from the synaptic membrane, weakening synaptic strength and 

resulting in LTD. In contrast, high calcium influx into the neuron results in activation of the 

opposite mechanism, enhancing the insertion of AMPA receptors in the subsynaptic membrane, 

resulting in LTP (Cummings et al., 1996, Malenka and Bear, 2004). 
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Figure 1. Illustration of LTP and LTD induction mechanisms at a glutamatergic synapse. 

Depending on intracellular calcium concentration, a specific cascade of cytoplasmic reactions is 

triggered, leading to either LTP or LTD. Induction of LTP is followed by an addition of AMPA 

receptors to the synaptic membrane via exocytosis, respectively, removal of AMPA receptors 

occurs after LTD induction via endocytosis, thus the strength and efficacy of synaptic 

transmission is altered (adapted from (Citri and Malenka, 2008)). 

 

1.2. Neuroplasticity in humans: the motor cortex as a model 

 

Neuroplasticity in humans has been the subject of intensive studies during the past decades, and 

has been increasingly recognized as an important physiological basis for learning, and memory 

processes. Various studies demonstrate brain plasticity in healthy individuals. For example, in 

mathematicians gray matter density in the left inferior frontal and bilateral inferior parietal 

lobules (regions, related to mathematical thinking) is significantly higher than in controls (Aydin 

et al., 2007). Similarly, magnetic resonance imaging (MRI) studies have revealed increased gray 

matter density in motor, auditory cortex and cerebellum in musicians, compared to controls 

(Gaser and Schlaug, 2003). Another MRI study revealed increased gray matter density in the left 

inferior parietal cortex of bilingual subjects compared to monolinguals (Mechelli et al., 2004). 

Changes in gray matter density in regions associated with learning and memory (posterior and 

lateral parietal cortex and hippocampus) were demonstrated in medical students who were 

preparing for an exam, compared to controls who did not study at that time (Draganski et al., 

2006). Studies have also revealed that blind subjects have larger representation of fingers in the 

somatosensory maps due to increased tactile discrimination abilities (Pascual-Leone and Torres, 

1993) and rearrangements in visual areas due to echolocation (Thaler et al., 2011). 

In the clinical domain, studies suggest that depression might be caused by altered brain 

plasticity, namely, enhanced inhibitory and reduced excitatory plasticity (Christoffel et al., 2011). 

In accordance, results of a recently published study revealed deficits in motor learning and 

PAS25-induced excitatory plasticity in patients with depression compared to healthy controls 

(Player et al., 2013). Imaging studies also show changes in hippocampal volume in patients 
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suffering from depression (Sheline et al., 1996, Sheline et al., 2003, Campbell et al., 2004). In 

stroke patients, excitatory plasticity was also shown to be reduced (Traversa et al., 1997, 

Traversa et al., 1998). Functional MRI studies in stroke patients subjects also revealed changes in 

motor and sensory maps throughout the rehabilitation process, correlating with recovery 

(Liepert et al., 1998, Levy et al., 2001, Hodics et al., 2006, Johansen-Berg et al., 2010).  

In recent years, non-invasive brain stimulation techniques, such as repetitive transcranial 

magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and paired associative 

stimulation (PAS) allow researchers to induce plasticity in humans (Nitsche and Paulus, 2000, 

Stefan et al., 2000, Huang et al., 2004a). These techniques induce changes of cortical excitability 

and can be monitored by recording TMS-elicited motor evoked potentials (MEPs). The motor 

cortex was used as a model in most of the studies conducted so far, as it is relatively well 

explored, easy reachable using TMS and tDCS, because it is situated at the brain surface 

(especially, small hand muscle representations), and MEPs are relatively objective output 

parameters for measuring cortical excitability. In all our studies, we obtained MEPs from the 

abductor digiti minimi (ADM) or first dorsal interosseus (FDI) muscles elicited by single or paired-

pulse TMS to monitor plasticity.  

 

1.3. Non-invasive brain stimulation techniques  

 

The first method to non-invasively access and stimulate cortical neurons in the human brain was 

transcranial electric stimulation (TES) (Merton and Morton, 1980). To activate cortical neurons 

and induce action potentials, this method uses a high voltage current, which also activates 

cutaneous and meningeal pain receptors as well as head muscles, and therefore is 

uncomfortable and painful for the subjects. In 1985 another non-invasive brain stimulation 

technique – TMS was developed (Barker et al., 1985). Unlike TES, the TMS magnetic pulse 

penetrates the skull, induces a secondary electric field in the brain and neuronal action 

potentials, without activating pain receptors and head muscles. Thus, TMS became very popular 

for monitoring of cortical excitability. Single-pulse TMS-induced MEPs have shown to be 

objective measures of cortical excitability (Rothwell, 1993). Repetitively applied TMS pulses have 
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been shown to induce long-lasting cortical excitability changes depending on the frequency of 

application (Pascual-Leone and Hallett, 1994, Huang et al., 2004a). When combined with 

peripheral nerve stimulation, TMS can also produce excitability changes, depending on the 

interstimulus interval (ISI). This method is called paired associative stimulation (PAS) and induces 

plasticity similar to spike-timing dependent plasticity (STDP), which is thought to be involved in 

learning and memory processes (Stefan et al., 2002, Wolters et al., 2003, Caporale and Dan, 

2008).  

Apart from rTMS, another non-invasive brain stimulation technique was introduced some years 

ago, which induces polarity-dependent changes in cortical excitability using subthreshold direct 

current (tDCS) (Nitsche and Paulus, 2000). 

 

1.3.1. Transcranial magnetic stimulation  

 

TMS pulses induce rapidly changing magnetic fields in cortical structures, which results in 

secondary electric fields and current flow opposite to magnetic coil orientation. If this current is 

sufficiently large, it can depolarize neurons. In the motor cortex, a suprathreshold TMS pulse can 

activate cortical representations of a specific hand or leg muscle, eliciting motor evoked 

potentials (MEP). TMS-elicited MEPs can be recorded using surface electromyography (EMG) 

electrodes (Rothwell, 1993). Single pulse MEPs are used in our studies to precisely monitor 

changes in cortical excitability before and after pharmacological and/or non-invasive brain 

stimulation interventions. Apart from single-pulse TMS, we also used other single and paired 

pulse TMS protocols to explore various parameters of intracortical and corticospinal excitability, 

such as, active and resting motor thresholds (MTs), input-output (I-O) curves, I-waves, short 

latency intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP) 

(Fuhr et al., 1991, Kujirai et al., 1993, Ziemann and Rothwell, 2000, Abbruzzese and Trompetto, 

2002). 

In our studies, TMS was also used as plasticity-inducing protocol combined with peripheral nerve 

stimulation (see section 1.2.3).  
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1.3.2. Transcranial direct current stimulation  

 

Transcranial direct current stimulation is a non-invasive brain stimulation technique that can 

induce long lasting changes in cortical excitability. Current applied during tDCS is subthreshold, 

therefore unable to elicit action potentials (Nitsche and Paulus, 2000). The induced weak electric 

current penetrates through the skull and affects neuronal populations under the stimulation 

electrodes by shifting their resting membrane potential to the direction of de- or 

hyperpolarization, therefore making them more or less likely to be excited. These excitability 

changes depend on electrode polarity and can outlast the stimulation duration. Anodal 

stimulation induces depolarization and higher excitability, whereas cathodal tDCS has the 

opposite, hyperpolarizing effect (Nitsche and Paulus, 2001, Nitsche et al., 2003b, Nitsche et al., 

2008), when applied within the limits of standard protocols. Similar polarity-dependent long-

lasting effects have been shown before in slice and animal experiments (Bindman et al., 1964, 

Purpura and McMurtry, 1965).  

Pharmacological studies show that tDCS after-effects are NMDA receptor- and calcium-

dependent (Nitsche et al., 2003a). Administration of NMDA receptor antagonists or Ca2+ channel 

blockers abolish tDCS-induced plasticity (Liebetanz et al., 2002, Nitsche et al., 2003a), indicating 

that tDCS after-effects share similarities with LTD and LTP induction mechanisms in animal 

studies (Lisman, 2001), and alter the strength of glutamatergic synapses. 

1mA tDCS has been widely used in research as well as clinical studies. The current intensity and 

duration has been increased in numerous more recently conducted studies, based on the 

assumption that this will result in desired longer/stronger stimulation after-effects. Although 

several studies demonstrated clinical or cognitive effects of 2mA tDCS (Fregni et al., 2006a, 

Fregni et al., 2006b, Brunoni et al., 2011, Bueno et al., 2011, Brunelin et al., 2012), its impact on 

cortical excitability has not yet been explored physiologically.  

In all our studies, direct current was applied through pairs of saline-soaked surface sponge 

electrodes and delivered by a battery-driven constant current stimulator. One electrode was 

fixed over the motor cortex (the area representing the FDI or ADM muscle, as identified by TMS) 

and the return electrode was fixed contralaterally, over the right supraorbital area. The current 
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intensity was 1 or 2mA, applied for 9 (1mA cathodal tDCS), 13 (1mA anodal tDCS) or 20 minutes 

(2mA cathodal/anodal tDCS, 1mA cathodal tDCS) in the different studies, inducing after-effects 

lasting for about one hour after stimulation end.  

 

1.3.3. Paired associative stimulation  

 

Paired associative stimulation is a technique which combines a TMS pulse with low-frequency 

electric suprathreshold peripheral nerve stimulation, inducing neuroplastic changes, similar to 

spike-timing dependent plasticity (STDP). STDP is thought to be the underlying mechanism of 

learning/memory processes (Caporale and Dan, 2008). The direction of PAS-induced cortical 

excitability changes depends on the interstimulus interval between peripheral and TMS pulses. 

The peripheral stimulus is applied first and is followed by the TMS pulse. If the TMS pulse is 

applied 20-25ms after the peripheral stimulus (approximately the time the latter reaches M1), 

synchronous activation of the motor neurons occurs through somatosensory and motor cortical 

connections and facilitatory plasticity is induced. In contrast, when the TMS pulse is applied less 

than 20ms after the peripheral stimulus, it precedes the arrival of the peripheral pulse, therefore 

asynchronous activation of the above mentioned connections results in inhibitory plasticity 

(Stefan et al., 2000, Stefan et al., 2002, Wolters et al., 2003).  

PAS after-effects share some characteristics with those of tDCS, as they are also NMDA receptor 

and calcium dependent (Stefan et al., 2002, Wolters et al., 2003) and therefore thought to be 

LTP- and LTD-like. Unlike tDCS, which affects a big population of neurons under relatively large 

stimulation electrodes, PAS is thought to be focal and synapse-specific, affecting only small, 

specific population of neurons.  

In our experiments, the peripheral electric pulse was delivered over the right ulnar nerve at the 

level of the wrist at an intensity of 300% of the sensory perceptual threshold, followed by a TMS 

pulse over the M1 representation of the abductor digiti minimi muscle at ISIs of 10ms (PAS10) or 

25ms (PAS25) at a frequency of 0.05Hz. After PAS10, the asynchronous arrival of two pulses 

induced inhibitory plasticity, while after PAS25 their synchronous arrival to the motor cortex 

resulted in facilitatory plasticity (Stefan et al., 2002, Wolters et al., 2003).  
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1.4. Neuromodulators  

 

Neuromodulators are a class of neurotransmitters with specific features. Depending on 

postsynaptic receptor composition, cortical background activity, and dosage, amongst other 

factors, they can elicit either excitatory or inhibitory actions on cortical neurons and also 

modulate the release of other neurotransmitters (serotonin, dopamine, acetylcholine, etc). 

Recent studies suggest that synaptic plasticity does not always depend only on the pre-and 

postsynaptic neuronal activity, but also on the presence of neuromodulators (Malenka and Bear, 

2004). Unlike classical chemical synapses, where the presynaptic neuron directly affects the 

target cell, neuromodulatory synapses regulate relatively large neuronal populations and are 

believed to be important for learning and memory. Neuromodulators have been shown to 

influence LTP as well as LTD in animal and slice experiments in a non-linear manner (Kojic et al., 

1997, Fujii et al., 2000, Matsuyama et al., 2000, Fujii and Sumikawa, 2001b, Mori et al., 2001, 

Huang et al., 2004b, Ge and Dani, 2005, Kemp and Manahan-Vaughan, 2005, Huang and Kandel, 

2007, Luo et al., 2008, Costa et al., 2012, Park et al., 2012). 

Human and animal studies have demonstrated an impact of the above-mentioned 

neuromodulatory substances on cognitive processes, motor functions, motor learning, attention, 

working and episodic memories (Provost and Woodward, 1991, Knecht et al., 2004, Winters and 

Bussey, 2005, Floel et al., 2008, Heishman et al., 2010, Mocking et al., 2012). Moreover, several 

neurological disorders show altered neuromodulator levels that usually lead to deficits in 

cognitive functions (Parkinson’s disease, schizophrenia, Alzheimer’s disease, Lewy body 

dementia, depression, etc), whose physiological basis might be impact of neuromodulators on 

plasticity.  

In recent years several human studies were conducted using non-invasive brain stimulation 

techniques and pharmacological interventions to study the impact of neuromodulatory systems 

on different types of plasticity (Kuo et al., 2007, Kuo et al., 2008, Monte-Silva et al., 2009, 

Nitsche et al., 2009, Monte-Silva et al., 2010b, Thirugnanasambandam et al., 2012). In the 

studies presented in this thesis, we used different doses of pharmacologic agents to induce 
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alterations of cholinergic and serotonergic activity and different brain stimulation protocols to 

induce focal and non-focal plasticity in healthy human subjects.  

 

1.4.1. Serotonin  

 

The serotonergic system is one of the most important neuromodulatory systems in animals and 

humans, involved in many vital processes such as learning, memory, circadian rhythms and pain 

perception (Geyer, 1996, Hasbroucq et al., 1997, Jacobs and Fornal, 1997, Morin, 1999, Bert et 

al., 2008). Serotonin (5-HT) modulates neurotransmission by means of 5-HT receptors, which are 

a group of ligand-gated ion channels (5-HT3) and G-protein coupled receptors (5-HT1, 5HT-2, 

5HT-4, 5HT-5, 5HT-6, and 5HT-7) (Nichols and Nichols, 2008). 5-HT receptor activation has been 

shown to modulate glutamate-and GABA-mediated neurotransmission (Ciranna, 2006), as well 

as to affect LTP and LTD induction (Kojic et al., 1997, Mori et al., 2001, Ryan et al., 2008). 

Serotonin also affects cholinergic, dopaminergic, and GABAergic neuromodulatory systems, that 

impact on plasticity and cognition (Consolo et al., 1994, Roerig and Katz, 1997, Gobert and 

Millan, 1999, Zaniewska et al., 2009).  

Selective serotonin reuptake inhibitors (SSRIs) are one of the major classes of antidepressant 

drugs that inhibit the reuptake of serotonin by the presynaptic cell, therefore increasing its 

effect on the postsynaptic neuron (Stahl, 1998). Depression is thought to be affected by altered 

brain plasticity (Garcia, 2002, Christoffel et al., 2011) on which distress has a major impact (Caspi 

et al., 2003). Studies with animal models have shown that stress inhibits LTP and facilitates LTD 

induction (Foy et al., 1987, Xu et al., 1997, Rocher et al., 2004) and could be prevented by 

chronic SSRI administration (Holderbach et al., 2007). Serotonin enhancers have a positive effect 

on motor and cognitive functions in patients as well as healthy individuals (Dam et al., 1996, 

Loubinoux et al., 1999, Loubinoux et al., 2002a, Loubinoux et al., 2002b, Loubinoux et al., 2005, 

Chollet et al., 2011). This positive impact might be caused by serotoninergic modulation of 

cortical plasticity.  

Recent studies in human subjects have shown that serotonin has a facilitatory impact on 

neuroplasticity. Single-dose SSRI administration enhanced anodal tDCS-induced facilitatory 
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plasticity and converted cathodal tDCS-induced inhibitory plasticity into facilitation (Nitsche et 

al., 2009). SSRI intake also enhanced facilitatory plasticity of early visual-evoked potentials and 

trendwise shifted inhibitory plasticity towards facilitation (Normann et al., 2007).  

Other neuromodulators, such as dopamine, acetylcholine, and nicotine are characterized by a 

so-called “focusing effect” on focal, synapse-specific facilitatory plasticity (Kuo et al., 2007, Kuo 

et al., 2008, Monte-Silva et al., 2010b, Thirugnanasambandam et al., 2012), which explains their 

positive effect on processes that require consolidation of learning and memory-related cognitive 

functions, via increase of the signal-to-noise ratio. Unlike the above-mentioned 

neuromodulatory systems, data about the serotoninergic impact on focal neuroplasticity are 

missing. In accordance to the previous studies, we hypothesize that serotoninergic system 

activation should enhance focal facilitatory plasticity and abolish focal inhibitory plasticity or 

convert it into facilitation.  

  

1.4.2. Nicotine  

 

The cholinergic system is involved in attention, short-term memory, arousal and sensory 

perception (Provost and Woodward, 1991, Hahn and Stolerman, 2002, Kumari et al., 2003, 

Jubelt et al., 2008, Heishman et al., 2010). Pathological states of the cholinergic system are 

observed in schizophrenia and Alzheimer’s disease (Jones et al., 1992, White and Levin, 1999). 

Cholinergic modulation is accomplished by means of two receptor types: nicotinic (nAChRs) and 

muscarinic acetylcholine receptors (mAChRs). NAChRs are ligand-gated cation channels that are 

non-selectively activated by acetylcholine and nicotine (Burnashev, 1998, Dajas-Bailador and 

Wonnacott, 2004). Besides addictive properties, several studies demonstrate positive effects of 

nicotine on cognitive functions (Hahn et al., 2002, Hahn and Stolerman, 2002, Jubelt et al., 2008, 

Froeliger et al., 2009, Mocking et al., 2012). Nicotine withdrawal often causes impairments of 

neuroplasticity and working/verbal memory in smoking individuals, while nicotine re-

administration restores these functions (Jacobsen et al., 2005, Cole et al., 2010, Grundey et al., 

2012a). 
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The physiological mechanism for the nicotinic modulation of cognition is thought to be its impact 

on neuroplasticity, accomplished by activation of nAChRs.  and nAChRs modulate the 

permeability of Ca2+ ions, involved in LTD/LTP induction (Burnashev, 1998, Lisman, 2001). In 

accordance, several animal and slice studies have shown that nicotinic receptor activation 

results in LTP facilitation (Matsuyama et al., 2000, Fujii and Sumikawa, 2001a, Welsby et al., 

2006, Nakauchi et al., 2007), reversal of GABAergic inhibition of LTP (Fujii et al., 2000) and LTD 

enhancement (Fujii and Sumikawa, 2001b, Ge and Dani, 2005).  

Recent studies explored the nicotinic impact on cortical excitability and plasticity in humans. 

Global cholinergic activation preserved and prolonged both focal and non-focal inhibitory 

plasticity and increased focal, but abolished non-focal inhibitory plasticity. Nicotinic receptor 

activation induced similar effect for LTP-like plasticity, but LTD-like plasticity was abolished in 

healthy non-smoking subjects (Kuo et al., 2007, Thirugnanasambandam et al., 2012). These 

studies show a “focusing effect” of cholinergic activation on LTP-like plasticity, which can explain 

the positive cholinergic impact on cognition. 

Nicotinic receptor activation was accomplished by application of nicotine patches in the above-

mentioned study (Thirugnanasambandam et al., 2012), which non-specifically activates all 

nicotinic receptors, therefore contribution of specific nicotinic receptor subtypes to nicotinic 

modulation of neuroplasticity still remains unclear. Given that after-effects induced by tDCS and 

PAS are calcium-dependent (Stefan et al., 2002, Nitsche et al., 2003a), it can be hypothesized 

that nicotinic receptors with calcium channel properties ( and ) are involved. Similar to 

the effect of nicotine, activation of these receptors should result in abolishment of non-focal 

plasticity and preservation of focal facilitatory plasticity in non-smoking humans.  

 

1.5. Aim of the thesis  

 

In the studies presented in this thesis, we aimed to explore the impact of modified brain 

stimulation protocols and neuromodulatory systems on stimulation-induced plasticity in 

humans. In the first study, we explored the intracortical and corticospinal effects of clinically 



CCHHAAPPTTEERR  11  --  IINNTTRROODDUUCCTTIIOONN  

 
13 

used 2mA direct current stimulation. We used several single and paired-pulse TMS protocols 

(single-pulse MEPs, motor thresholds, I-O curve, I waves, short-latency intracortical inhibition 

and intracortical facilitation, cortical silent period) to study its impact on various 

neurophysiological parameters. Based on the generally accepted assumption that stronger 

stimulation results in larger effects of tDCS (Nitsche and Paulus, 2000), we expected a positive 

correlation between intensity of stimulation and strength and duration of after-effects.  

In the second study, we aimed to deepen our knowledge about serotoninergic modulation of 

neuroplasticity, specifically, its impact on PAS-induced focal plasticity. As PAS-induced plasticity 

is thought to share similarities with spike timing-dependent plasticity, results of this study could 

help us to explain the mechanisms of the positive serotoninergic impact on cognition and 

learning as well as on clinical symptoms in medical conditions, characterized by compromised 

and maladaptive plasticity (stroke, depression). For this purpose, we applied an experimental 

design similar to a previous study (Nitsche et al., 2009), with the only exception of the specific 

brain stimulation protocol (we administered PAS instead of tDCS). We expected that serotonin 

would shift plasticity towards an excitability enhancement.  

In the last study, our goal was to explore the contribution of nicotinic acetylcholine receptor 

subtypes to neuroplasticity. Previous studies demonstrated an impact of global cholinergic and 

nicotinic receptor activation on stimulation-induced plasticity (Kuo et al., 2007, 

Thirugnanasambandam et al., 2012), but knowledge about the involvement of specific receptors 

in this process is limited. Therefore we aimed to focus on dose-dependent effect of  nAChRs 

on both non-focal and focal types of plasticity. To that end, we administered different doses of 

the  nicotinic receptor partial agonist varenicline on both, non-focal and focal plasticity-

inducing brain stimulation protocols (tDCS and PAS). We expected that high drug dosages should 

demonstrate a focusing effect, similar to nicotine (Thirugnanasambandam et al., 2012), by 

preserving PAS-induced focal excitatory plasticity in non-smoking healthy individuals. 
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Chapter 2 – Original articles and manuscripts  

2.1. Partially non-linear stimulation intensity-dependent effects of direct current 

stimulation on motor cortex excitability in humans 
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2.2. Effect of Serotonin on Paired Associative Stimulation-Induced Plasticity in the 

Human Motor Cortex 
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Running title: Impact of varenicline on neuroplasticity 

 

Abstract 

The neuromodulator nicotine alters cognitive functions in animals and humans most likely by 

modification of brain plasticity. In the human brain, it alters plasticity induced by transcranial 

direct current stimulation (tDCS) and paired associative stimulation (PAS), probably by 

interference with calcium-dependent modulation of the glutamatergic system. We aimed to test 

this hypothesis further by exploring the impact of the  nicotinic receptor partial agonist 

varenicline, which has calcium channel properties, on focal and non-focal plasticity, induced by 

PAS and tDCS, respectively. We administered low (0.1mg), medium (0.3mg) and high (1.0mg) 

single doses of varenicline or placebo medication before PAS or tDCS on the left motor cortex of 

25 healthy non-smoking individuals. Corticospinal excitability was monitored by single-pulse 

transcranial magnetic stimulation (TMS)-induced motor evoked potential (MEP) amplitudes up 

to 36 hours after plasticity induction. Whereas low-dose varenicline had no impact on 

stimulation-induced neuroplasticity, medium-dose varenicline preserved only focal excitatory 

plasticity. High-dose application preserved cathodal tDCS-induced excitability diminution and 

focal facilitatory plasticity induced by excitatory PAS, but abolished anodal tDCS- and inhibitory 

mailto:mnitsch1@gwdg.de
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PAS-induced changes in excitability. These results are comparable to the impact of nicotine 

receptor activation and might help to further explain the involvement of specific receptor 

subtypes in the nicotinic impact on neuroplasticity and cognitive functions in humans.  

 

Key words: Neuroplasticity; nicotine; varenicline; transcranial direct current stimulation; human; 

motor cortex. 

 

Introduction 

Smoking tobacco is one of the leading risks to human health (Peto et al., 1992, Doll et al., 2005). 

Nicotine is the main neuroactive component of tobacco responsible for physical dependence 

and addiction. Besides addictive properties, many studies demonstrate positive effects on 

cognition. Human and animal studies have shown that nicotine improves attention, motor 

functions, working and episodic memories (Provost and Woodward, 1991, Hahn et al., 2002, 

Hahn and Stolerman, 2002, Kumari et al., 2003, Jubelt et al., 2008, Froeliger et al., 2009, 

Heishman et al., 2010, Mocking et al., 2012). Nicotine also improves learning, attention and 

perception in patients suffering from Alzheimer’s disease (Jones et al., 1992, Wilson et al., 1995, 

White and Levin, 1999). Nicotine withdrawal is often associated with impairments of working 

and verbal memory and neuroplasticity, while nicotine re-administration restitutes these 

functions in smoking individuals (Jacobsen et al., 2005, Cole et al., 2010, Grundey et al., 2012a).  

The neurophysiological basis for the nicotinic effects on cognition is hypothesized to be its 

impact on cortical excitability and plasticity, controlled by activation of  and nicotinic 

acetylcholine (nAChR) receptors. These are ligand-gated ion channels (Burnashev, 1998, Dajas-

Bailador and Wonnacott, 2004), which modulate the permeability of Ca2+ ions and are centrally 

involved in plasticity induction (Lisman, 2001). In accordance, animal studies have demonstrated 

that activation of nicotinic receptors results in LTP facilitation (Matsuyama et al., 2000, Fujii and 

Sumikawa, 2001a, Welsby et al., 2006, Nakauchi et al., 2007), reversal of GABAergic inhibition of 

LTP (Fujii et al., 2000) as well as LTD enhancement (Fujii and Sumikawa, 2001b, Ge and Dani, 

2005).  
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Recently, studies in humans demonstrated that global cholinergic activation increases focally, 

but abolishes non-focally induced LTP-like plasticity, whereas it preserves and prolongs both 

focal and non-focal LTD-like plasticity. For nicotine, a similar effect was seen for LTP-like 

plasticity, but LTD-like plasticity was abolished by this substance in non-smoking healthy humans 

(Kuo et al., 2007, Thirugnanasambandam et al., 2012). These results show a partial dissociation 

of the impact of global cholinergic activation and nicotinic receptor activation on plasticity. 

Furthermore, the “focusing effect” on LTP-like plasticity might explain a beneficial impact on 

cognition. 

In these studies, focal and non-focal plasticity was induced by transcranial direct current 

stimulation (tDCS) and paired associative stimulation (PAS), respectively. Both, tDCS and PAS are 

non-invasive brain stimulation techniques inducing long-lasting changes of cortical excitability 

which are Ca2+ and NMDA receptor-dependent (Nitsche and Paulus, 2000, Stefan et al., 2000, 

Nitsche and Paulus, 2001, Stefan et al., 2002, Nitsche et al., 2003a, Nitsche et al., 2003b, Wolters 

et al., 2003). Neuroplastic changes induced by tDCS are non-focal and affect neuronal 

populations beneath the relatively large stimulation electrodes via subthreshold resting 

membrane potential modulation (Purpura and McMurtry, 1965, Nitsche et al., 2007, Nitsche et 

al., 2008). In contrast, plasticity induced by PAS is presumed to be focal, synapse-specific and 

timing-dependent, affecting only selective neuronal populations. During PAS, a repetitive electric 

pulse to a peripheral nerve is combined with suprathreshold transcranial magnetic stimulation 

(TMS)-pulse over the corresponding area of the primary motor cortex. The target group of 

somatosensory-motor cortical synaptic connections, is activated synchronously or 

asynchronously by combined peripheral and TMS pulses, depending on the interstimulus interval 

(ISI), resulting in excitatory or inhibitory after-effects (Stefan et al., 2000). PAS is thought to be 

closely linked to learning and memory processes, as its mechanism resembles some 

characteristics of spike timing-dependent plasticity (STDP) (Stefan et al., 2002, Wolters et al., 

2003, Caporale and Dan, 2008).  

Beyond unspecific activation of nicotinic receptors by nicotine, not much is known about the 

contribution of nicotinic receptor subtypes on neuroplasticity in humans. Given that tDCS and 

PAS induce calcium-dependent plasticity, it can be speculated that specifically nicotinic receptors 

with calcium channel properties might be involved. In the present study, we aimed to explore 
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the contribution of  receptors on non-invasive brain stimulation-induced focal and non-focal 

plasticity in human non-smokers via application of varenicline. Varenicline is an effective 

smoking cessation agent (Coe et al., 2005), which is a high-affinity partial agonist to  and full 

agonist to  nAChRs (Mihalak et al., 2006). We hypothesized that effective dosages of the drug 

should, similar to the effect of nicotine (Thirugnanasambandam et al., 2012), abolish tDCS-

induced non-focal plasticity and preserve PAS-induced focal excitatory plasticity in non-smoking 

healthy subjects. 

 

Materials and methods 

 

Subjects  

Twenty-five healthy non-smoker subjects aged 24.8 ± 4.4 years (11 males/15 females) were 

recruited. Two subjects did not finish the experiment. All subjects were right-handed according 

to the Edinburgh handedness inventory (Oldfield, 1971). None of them took any medication, had 

a history of a neuropsychiatric or medical disease, present pregnancy, or metallic head implants. 

All volunteers gave written informed consent and were compensated for participation. The 

investigation was approved by the Ethics Committee of the University of Göttingen, and 

conforms to the principles laid down in the Declaration of Helsinki.  

 

Transcranial Direct Current Stimulation 

Twelve subjects aged 24.4 ± 4.7 years (4 males/8 females) participated in tDCS experiment. 

Direct current was delivered by a battery-driven constant current stimulator (neuroConn GmbH, 

Ilmenau, Germany) through a pair of rubber electrodes covered with saline-soaked sponges (5 x 

7 cm). The motor cortex electrode was fixed over the area representing the right abductor digiti 

minimi muscle (ADM) and the return electrode contralaterally above the right supraorbital area. 

Subjects received 1mA of either excitability-enhancing anodal tDCS for 13 minutes or excitability-
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diminishing cathodal tDCS for 9 minutes, which induces motor cortex excitability alterations 

lasting for about 1 h (Nitsche and Paulus, 2001, Nitsche et al., 2003b).  

 

Paired Associative Stimulation 

Twelve subjects 25 ± 4.4 years (6 males/6 females) participated in PAS experiment. The 

peripheral electric pulse over the right ulnar nerve at the level of the wrist at an intensity of 

300% of the sensory perceptual threshold was followed by a TMS pulse over the M1 

representation of the abductor digiti minimi muscle (ADM) at ISIs of 10ms (PAS10) or 25ms 

(PAS25) at a frequency of 0.05Hz. The peripheral electric pulse was delivered by a Digitimer D184 

multipulse stimulator (Digitimer, Welwyn Garden City, United Kingdom). The TMS pulse was 

delivered by a Magstim 200 stimulator with an intensity to elicit single pulse MEPs with peak-to-

peak amplitudes of on average 1 mV. The participants were instructed to silently count the 

number of pulses they received at their wrist during the whole stimulation duration to 

guarantee sufficient attention to the procedure, which has been shown to be crucial to obtain 

the desired after-effects (Stefan et al., 2000, Stefan et al., 2004). 

 

Pharmacological Interventions 

Low (0.1mg), medium (0.3mg) or high (1.0mg) dosages of varenicline or 0.5 mg placebo were 

administered in form of two-piece gelatin capsules (size 2, 18mm length, 6.35mm external 

diameter) 3 hours before the start of the experimental session, allowing the verum drug to 

induce a maximum plasma level and produce prominent effects in the central nervous system 

(Faessel et al., 2006, Obach et al., 2006, Faessel et al., 2010). 

 

Monitoring of motor cortical excitability 

MEPs were recorded from the right ADM by single-pulse TMS over the corresponding left 

primary motor cortex, conducted by a Magstim 200 magnetic stimulator (Magstim, Whiteland, 
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Dyfed, United Kingdom) with a figure-of-eight magnetic coil (diameter of one winding – 70mm; 

peak magnetic field - 2.2 T). The coil was held tangentially to the skull, with the handle pointing 

backwards and laterally at 450 from the midline. The hotspot was defined as the optimal coil 

placement, where the TMS pulse resulted consistently in the largest MEPs of the contralateral 

ADM. Surface MEPs were recorded from the right ADM with Ag-AgCl electrodes in a belly-

tendon montage. The signals were amplified, and band-pass filtered (2Hz to 2kHz, sampling rate, 

5kHz), digitized with a micro 1401 AD converter (Cambridge Electronic Design, Cambridge, UK), 

controlled by Signal Software (Cambridge Electronic Design, v. 2.13), and stored for offline 

analysis.  

 

Experimental procedures  

A unique sequence of experimental sessions was randomly generated individually for each 

subject, which did not match any previously generated one for other subjects. The participants 

were seated in a comfortable chair with head and arm rests. In the beginning, the hotspot was 

identified by TMS and then the stimulation intensity was adjusted to elicit single pulse MEPs 

with peak-to-peak amplitudes of on average 1 mV. Then twenty-five MEPs were recorded for the 

determination of first baseline. After baseline recording, varenicline or placebo medication was 

administered. Three hours after intake of medication, a second baseline was recorded to 

monitor for a possible impact of the drug alone on cortical excitability (baseline 2), and TMS 

intensity was adjusted, if necessary (baseline 3). After that procedure, the respective plasticity 

induction protocol was administered (cathodal tDCS, anodal tDCS, PAS10 or PAS25) and twenty-

five MEPs were recorded at time points of 0, 5, 10, 15, 20, 25, 30, 60, 90 and 120 minutes after 

tDCS. Further TMS measurements were conducted in the evening of the same day (SE), next 

morning, at ~9:00 AM (NM), next noon, at ~12:00PM (NN) and next evening, at ~6:00PM (NE) 

(Figure 1). To keep the EMG electrodes and TMS coil at the same place for later measurements, 

their positions were marked with a waterproof pen. The minimum period between two 

consecutive experimental sessions for a single subject was seven days. Subjects were blinded for 

both, stimulation and medication conditions; the experimenter was blinded for the medication 

condition.  
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Analysis and statistics 

The experimenter was unblinded after finishing data collection and analysis. The individual 

means of 25 MEP amplitudes were calculated at each time point for every subject and the post-

tDCS mean MEP amplitudes were normalized to the respective mean baseline MEP amplitudes 

(quotient of post-stimulation MEPs vs pre-stimulation values: baseline 2, or, if TMS intensity had 

to be adjusted, baseline 3). Then the grand averages for each time point were calculated. A 

repeated measures ANOVA was performed on the above-mentioned data separately for tDCS 

and PAS experiments, using MEP amplitude as the dependent variable and medication, 

stimulation type and time course as within-subject factors. The Mauchly test of sphericity was 

performed and the Greenhouse-Geisser correction applied when necessary. In case of significant 

results of the ANOVA, exploratory post hoc comparisons were performed using Student’s t tests 

(paired samples, two-tailed, p < 0.05, not corrected for multiple comparisons) between the MEP 

amplitudes before and after intervention within one experimental condition and between the 

single time points (medication vs placebo) within the same stimulation condition.  

To compare main effects of different dosages of varenicline on plasticity, averaged MEPs for the 

first 30 minutes after stimulation were calculated for each subject per experimental session and 

normalized to baseline 2 (or baseline 3, if TMS intensity was adjusted). Then, these averaged 

MEP values for each dosage condition were compared with the respective placebo condition by 

Student’s t-tests (paired samples, two-tailed, p < 0.05, not corrected for multiple comparisons).  

To exclude differences between baseline values of different conditions, and also between first, 

second and third baseline values, the respective values were compared using Student’s t-tests 

(paired samples, two-tailed, p < 0.05, not corrected for multiple comparisons).  

 

Results 

All subjects tolerated the procedure well. Only five of them reported slight dizziness, lasting for 

about one hour after drug intake, which is a mild side effect of varenicline.  
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Two participants (one from tDCS and one from PAS experiment) left the study after first 

experimental day due to time constraints.  

The average baseline MEP values did not significantly differ between groups as revealed by 

Student’s t tests (paired samples, two-tailed, p > 0.05). Varenicline alone did not have any 

impact on cortical excitability at any dosage, as revealed by Student’s t tests between first, 

second, and third baseline values (paired samples, two-tailed, p > 0.05) (Table 1).  

 

Effect of varenicline on tDCS-induced plasticity 

The ANOVA revealed significant main effects of STIMULATION (F(1)=117.900; p<0.001), 

MEDICATION x STIMULATION (F(3)=5.050; p=0.005), STIMULATION x TIME (F(14)=10.013; 

p<0.001) and MEDICATION x STIMULATION x TIME (F(42)=2.375; p<0.001) interactions (for 

details see table 2).   

Post-hoc Student’s t tests show that in the placebo and low dose varenicline medication 

conditions, MEPs were significantly enhanced for 60 minutes after anodal and reduced after 

cathodal tDCS as compared to respective baseline values. MEPs obtained under low-dose 

varenicline did not differ from those under placebo medication at any time point. Medium dose 

varenicline abolished both anodal and cathodal tDCS-induced after effects. Here MEP amplitudes 

did not differ from baseline values at any time point, and MEPs were significantly altered as 

compared to the respective placebo medication conditions for up to 30 min after tDCS. Under 

high-dose varenicline, the cathodal tDCS-induced excitability diminution was significant versus 

baseline until the evening after tDCS, but did not differ significantly from the placebo medication 

condition. For anodal tDCS, the respective excitability enhancement was initially abolished, and 

MEPs were significantly smaller than those under placebo medication for the first 10 min after 

tDCS. However, MEPs were enhanced versus baseline between 25 and 30 minutes after plasticity 

induction (Figure 2 A,B).  

For the effects of different dosages of varenicline on tDCS-induced plasticity with regard to the 

grand average calculated for the first 30 min after intervention, medium dose of varenicline had 

a significant abolishing effect on both excitability-enhancing and -diminishing non-focal 
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plasticity, as revealed by respective student’s t-tests (Student’s t test, paired samples, two-tailed, 

p<0.01). Furthermore, the anodal tDCS-induced excitability enhancement was abolished by high 

dose varenicline (Student’s t test, paired samples, two-tailed, p=0.02). Low dose of varenicline 

showed no significant differences from the respective placebo medication conditions (Student’s 

t test, paired samples, two-tailed, p > 0.05) (Figure 4). 

 

Effect of varenicline on PAS-induced plasticity 

The ANOVA revealed significant main effects of STIMULATION (F(1)=19.134; p=0.003), 

STIMULATION x TIME (F(14)=19.064; p<0.001) and MEDICATION x STIMULATION x TIME 

(F(42)=1.476; p=0.035) interactions (table 2). 

Post-hoc Student’s t tests show that MEPs were significantly enhanced for about an hour after 

PAS25 in all medication conditions, and reduced after PAS10 in placebo and low dose varenicline 

condition as compared to respective baseline values. Medium and high doses of varenicline 

abolished PAS10-induced after effects. Here MEP amplitudes did not differ from baseline values 

at any time point, and MEPs were significantly altered as compared to the respective placebo 

medication conditions for up to 60 min after PAS administration. In all other conditions, MEPs 

obtained after varenicline administration did not differ from those under placebo medication at 

any time point (Figure 3 A,B). 

For the effects of different dosages of varenicline on PAS-induced plasticity with regard to the 

grand average calculated for the first 30 min after intervention, medium and high doses of 

varenicline have a significant abolishing effect on PAS10-induced focal inhibitory plasticity as 

revealed by the respective student’s t-tests (Student’s t test, paired samples, two-tailed, p<0.001 

and p=0.01, respectively). The other conditions showed no significant differences from the 

respective placebo medication conditions (Student’s t test, paired samples, two-tailed, p>0.05) 

(Figure 4). 
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Discussion 

The results of this study show that activation of nicotinic  and possibly,  receptors has 

specific and dosage-dependent effects on neuroplasticity in healthy human non-smoking 

individuals. Low-dosage varenicline did not affect plasticity. In contrast, medium dose of the 

drug preserved only focal LTP-like plasticity. Under high dosages of the drug, non-focal LTD-like 

and focal LTP-like effects were preserved, but non-focal LTP-like and focal LTD-like plasticity 

were compromised. The results obtained under medium-dosage varenicline are fairly identical to 

those of a previous study, which explored the impact of nicotine on tDCS-induced plasticity (Kuo 

et al., 2007, Thirugnanasambandam et al., 2012). Therefore, we presume that the focusing effect 

of nicotine on facilitatory plasticity is at least partially caused by  receptors. As the MEP 

amplitudes alone were not affected by any dose of varenicline, a direct influence of the drug on 

cortical excitability can be ruled out.  

 

Proposed Mechanisms of Action 

After-effects of tDCS and PAS are NMDA receptor- and Ca2+-dependent (Stefan et al., 2002, 

Nitsche et al., 2003a, Wolters et al., 2003). Since  and nAChRs are ligand-gated ion 

channels (Burnashev, 1998, Dajas-Bailador and Wonnacott, 2004), they might affect LTP and LTD 

induction by an alteration of membrane permeability to Ca2+ ions (Lisman, 2001). Indeed, in 

animal slice experiments, agonists of the respective receptors have a prominent impact on 

stimulation-induced plasticity. Nicotine has been shown to enhance LTP by postsynaptically 

activating  nicotinic receptors in the rat dentate gyrus (Welsby et al., 2006), and facilitates 

NMDA-dependent LTP induction (Yamazaki et al., 2005, Yamazaki et al., 2006a, Yamazaki et al., 

2006b, Griguoli et al., 2013, Prestori et al., 2013). In another study, activation of both,  and 

 nicotinic receptors was essential for LTP induction (Matsuyama and Matsumoto, 2003). Since 

activation of nAChRs increased intracellular Ca2+ in several studies (Chavez-Noriega et al., 1997, 

Chavez-Noriega et al., 2000, Khiroug et al., 2003, Karadsheh et al., 2004, Fayuk and Yakel, 2005, 

2007, Jia et al., 2010), this effect is most probably accomplished by calcium concentration 

alterations.   
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At first glance, the impact of nicotinic receptor enhancement on plasticity in the present 

experiment is not completely compatible with the direction of effects obtained in the above-

mentioned animal experiments, especially with regard to LTD-induction. However, the key for 

understanding the results might be the non-linear impact of calcium on plasticity. Whereas low 

intraneuronal calcium enhancement induces LTD, high concentrations induce LTP. In between, a 

“no man´s land” does exist, in which no plasticity results, and very high calcium concentrations 

might also prevent plasticity because of activation of hyperpolarizing potassium channels 

(Lisman, 2001, Misonou et al., 2004). Therefore, whereas both strains of experiments stress the 

role of nicotine receptors for plasticity, the reason for differently directed results of animal and 

human experiments might be different amounts of calcium influx caused by the respective 

receptor agonists, and plasticity induction procedures. 

The reason that low dosage varenicline, which are 10 times lower than the single oral dosage 

(1mg) administered in smokers to support cessation of tobacco consumption (Faessel et al., 

2010), had no significant effect on plasticity is most probably that this dosage did not suffice to 

activate nicotinic receptors to an amount at which these induce relevant intraneuronal calcium 

concentration alterations. The plasticity-abolishing effects of the medium and high dosages of 

the drug with regard to excitability-diminishing plasticity, and tDCS-induced facilitatory plasticity 

go in line with the results of previous studies (Grundey et al., 2012b, Thirugnanasambandam et 

al., 2012), where global nicotinic receptor activation resulted in abolishment of these kinds of 

plasticity. Therefore, it is plausible that at least a part of the impact of nicotine on plasticity is 

driven by and  receptors. As varenicline is a full agonist of  and potent partial agonist of 

 receptors, with a far greater affinity (4000-5000 fold) to  as compared to  receptors 

(Avalos et al., 2002, Jensen et al., 2005, Mihalak et al., 2006, Rollema et al., 2010), the 

receptor might have a larger relevance for the results. Due to the above-mentioned calcium 

hypothesis, the most probable explanation for the abolishment of LTD-like plasticity by the 

medium dosage of the drug is that here nicotinic receptor activation drove calcium 

concentrations in the respective “no man´s lands”. For the abolishment of the non-focal LTP-like 

plasticity induced by anodal tDCS under high-dosage varenicline, the same mechanism might 

apply. In contrast, the PAS25-induced excitability enhancement was not affected by any dose of 

varenicline. This can be explained by differences between the stimulation-inducing protocols. 
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Neuroplastic changes via tDCS are achieved by long-lasting, tonic depolarization of large 

population of neurons and activation of voltage-dependent Ca2+-channels, whereas PAS only 

affects small group of neurons and causes short-lasting depolarizations. Therefore the amount of 

intracellular calcium increase may be smaller with regard to PAS as compared to tDCS and not 

sufficient to induce significant changes in neuroplasticity (Thirugnanasambandam et al., 2012).   

This mechanism does however not explain the re-establishment of cathodal tDCS-induced LTD-

like plasticity under the high dosage of the drug. Here it could be speculated that an antagonistic 

effect of varenicline on the respective nicotinic receptor, which takes place for higher dosages of 

the drug, resulted in reduced calcium influx, and thus a restitution of plasticity. These 

mechanistic explanations are however hypothetical at present, and should be explored more 

directly in future studies in humans, and animal models. 

For the overall pattern of experimental results, varenicline applied in medium and high doses 

results in a focusing effect on facilitatory neuroplasticity, preserving focal, but abolishing non-

focal facilitatory plasticity, similar to global nicotinic and cholinergic system activation (Kuo et al., 

2007, Thirugnanasambandam et al., 2012). Such a focusing effect might be beneficial for task 

performance via enhancing the signal-to-noise ratio and can explain the positive nicotinic effect 

on cognitive functions (attention, working and episodic memory), where a stable processing of 

information is essential (Provost and Woodward, 1991, Kumari et al., 2003, Jubelt et al., 2008, 

Froeliger et al., 2009, Heishman et al., 2010, Mocking et al., 2012). Further behavioral 

experiments should be designed to explore this hypothesis.  

 

General remarks 

This study demonstrates that varenicline has a prominent impact on neuroplasticity in non-

smoking humans, which is similar to that of nicotine application. Besides being an effective 

smoking cessation agent, varenicline is also suggested to have therapeutic effect in patients 

suffering from Alzheimer’s Disease (Kem, 2000, Jensen et al., 2005, Mihalak et al., 2006) and 

patients with schizophrenia during smoking abstinence (Hong et al., 2011, Liu et al., 2011, Shim 

et al., 2012). From this perspective, exploring the role of specific receptors ( and possibly  
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too) in the nicotinic effect on cognition and neuroplasticity is important and should be further 

addressed in future studies.  

It has to be taken into account that the results of this study show only the impact of a single 

dose of varenicline on neuroplasticity. Many studies have shown that chronic exposure to 

nicotine can cause upregulation (Wonnacott, 1990, Buisson and Bertrand, 2001) and 

desensitization (Hsu et al., 1996, Fenster et al., 1997, Fenster et al., 1999) of nAChRs, therefore 

the effect of varenicline after chronic administration on neuroplasticity might be qualitatively 

different from that after an acute dose. This important aspect of nicotinic impact on 

neuroplasticity should also be explored in future studies.  

Recent studies have shown that neuroplasticity, as well as verbal and working memory functions 

are reduced in smoking individuals after nicotine withdrawal and restituted by nicotine re-

administration (Cole et al., 2010, Grundey et al., 2012a). Varenicline has also shown to improve 

working memory in nicotine abstinence (Patterson et al., 2009, Loughead et al., 2010). It might 

be interesting to explore if varenicline has similar restituting effects on plasticity, as shown for 

cognitive processes, in these individuals.  

 

Limiting Conditions 

A possible limitation to our study is that varenicline is an agonist with moderate affinity to 5-HT3 

serotonin receptors (Lummis et al., 2011). 5-HT3 receptors have a facilitatory impact on 

plasticity (Normann et al., 2007, Nitsche et al., 2009, Batsikadze et al., In Press). However, 

concentrations of therapeutic unbound varenicline in the brain are insufficient for activation of 

these receptors (Rollema et al., 2011). Moreover, in a recently conducted study, the serotonin 

reuptake inhibitor citalopram enhanced tDCS-induced LTP-like plasticity, and converted LTD-like 

plasticity into facilitation (Nitsche et al. 2009). These results are qualitatively different to those 

obtained in the present study. Varenicline has also an impact on D2/3 dopamine receptor 

binding and availability in rats (Crunelle et al., 2009, Crunelle et al., 2011, Crunelle et al., 2012) 

and GABAergic synaptic transmission (DuBois et al., 2013), which have a major impact on 

stimulation-induced plasticity. It should be noted that also for these transmitters and receptors, 
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pharmacological modulations resulted in effects which clearly differ from those obtained under 

varenicline (Nitsche et al., 2004, Kuo et al., 2008, Monte-Silva et al., 2009, Monte-Silva et al., 

2010). Nevertheless, in order to explore the complex interplay of neuromodulatory systems on 

nicotine-modulated plasticity, future studies should use approaches combining pharmacological 

interventions with neuroimaging.  

Another limitation is that the specific neurophysiological mechanisms underlying the nicotinic 

impact on various corticospinal and intracortical excitability parameters were not investigated. 

We did not perform these measures in the present study, because this would have made it 

impossible to explore the detailed time-course of plasticity. However, it would be important to 

explore the effect of varenicline on cholinergic activity e.g. by monitoring short-latency afferent 

inhibition (SAI) and on GABAergic and glutamatergic transmission by measuring short-latency 

intracortical inhibition (SICI) and intracortical facilitation (ICF) (Ziemann et al., 1996, Di Lazzaro et 

al., 2002, Di Lazzaro et al., 2005, Paulus et al., 2008), to unravel the physiological background of 

the respective effects. 
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Table 1. MEP amplitudes and stimulation intensity before and after varenicline administration. 

 

Shown are the mean MEP amplitudes ± S.D. and stimulation intensity (percentage of maximum 

stimulator output, %MSO) mean ± S.D. of baselines 1, 2 and 3. The intensity of TMS was adjusted 

to elicit MEPs with peak-to-peak amplitude of ~1mV (baseline 1). A second baseline (baseline 2) 

was recorded three hours after varenicline or placebo intake to determine the impact of the 

drug on cortical excitability and adjusted if necessary (baseline 3). Student´s t-tests revealed no 

significant differences between conditions (p > 0.05). 

Stimulation  TMS Parameter Medication condition Baseline 1 Baseline 2 Baseline 3 

Cathodal 
tDCS 

MEP 

0.1mg 0.95 ± 0.07 
1.00 ± 0.11 
0.92 ± 0.06 
0.95 ± 0.07 

0.95 ± 0.07 
0.94 ± 0.17 
0.98 ± 0.12 
0.94 ± 0.09 

0.96 ± 0.13 
0.96 ± 0.14 
0.98 ± 0.11 
0.95 ± 0.08 

0.3mg 

1.0mg 

Placebo 

%MSO 

0.1mg 53.67 ± 6.76 
53.58 ± 7.25 
54.00 ± 7.39 
53.50 ± 7.18 

53.67 ± 6.76 
53.58 ± 7.25 
54.00 ± 7.39 
53.50 ± 7.18 

53.67 ± 6.76 
53.92 ± 7.63 
54.00 ± 7.22 
53.58 ± 7.24 

0.3mg 

1.0mg 

Placebo 

Anodal tDCS 

MEP 

0.1mg 0.99 ± 0.13 
0.98 ± 0.10 
0.98 ± 0.09 
0.92 ± 0.08 

0.92 ± 0.17 
1.00 ± 0.25 
1.01 ± 0.42 
0.97 ± 0.12 

0.95 ± 0.13 
0.95 ± 0.07 
0.98 ± 0.09 
0.98 ± 0.11 

0.3mg 

1.0mg 

Placebo 

%MSO 

0.1mg 53.67 ± 6.81 
52.83 ± 6.81 
53.33 ± 7.48 
53.25 ± 7.90 

53.67 ± 6.81 
52.83 ± 6.81 
53.33 ± 7.48 
53.25 ± 7.90 

53.83 ± 6.79 
52.67 ± 6.85 
53.42 ± 7.51 
53.33 ± 7.91 

0.3mg 

1.0mg 

Placebo 

PAS10 

MEP 

0.1mg 0.96 ± 0.12 
1.03 ± 0.10 
1.00 ± 0.12 
0.97 ± 0.08 

0.95 ± 0.29 
0.99 ± 0.18 
1.00 ± 0.16 
0.99 ± 0.07 

1.01 ± 0.10 
0.96 ± 0.11 
1.00 ± 0.08 
0.99 ± 0.07 

0.3mg 

1.0mg 

Placebo 

%MSO 

0.1mg 51.00 ± 9.05 
52.17 ± 9.33 
50.83 ± 9.46 
51.83 ± 9.23 

51.00 ± 9.05 
52.17 ± 9.33 
50.83 ± 9.46 
51.83 ± 9.23 

51.33 ± 9.82 
52.25 ± 9.29 
50.83 ± 9.77 
51.83 ± 9.23 

0.3mg 

1.0mg 

Placebo 

PAS25 

MEP 

0.1mg 0.99 ± 0.12 
1.00 ± 0.09 
0.99 ± 0.10 
0.99 ± 0.10 

0.99 ± 0.14 
1.00 ± 0.17 
1.04 ± 0.16 
0.98 ± 0.11 

1.00 ± 0.11 
1.00 ± 0.12 
1.02 ± 0.10 
0.98 ± 0.11 

0.3mg 

1.0mg 

Placebo 

%MSO 

0.1mg 52.83 ± 8.28 
52.00 ± 9.72 
52.75 ± 9.12 
52.58 ± 8.56 

52.83 ± 8.28 
52.00 ± 9.72 
52.75 ± 9.12 
52.58 ± 8.56 

53.08 ± 8.55 
51.92 ± 9.69 
52.75 ± 9.08 
52.58 ± 8.56 

0.3mg 

1.0mg 

Placebo 
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Table 2. Results of the repeated measures ANOVA.  

Experiment Factor Df F p 

tDCS 

Medication 
Stimulation  
Time 
Medication x Stimulation 
Medication x Time 
Stimulation x Time 
Medication x Stimulation x Time 

3 
1 

14 
3 

42 
14 
42 

0.596 
117.900 

1.233 
5.050 
0.931 

10.013 
2.375 

0.622 
<0.001* 

0.257 
0.005* 
0.598 

<0.001* 
<0.001* 

PAS 

Medication 
Stimulation  
Time 
Medication x Stimulation 
Medication x Time 
Stimulation x Time 
Medication x Stimulation x Time 

3 
1 

14 
3 

42 
14 
42 

0.838 
19.134 
1.285 
1.468 
0.871 

19.064 
1.476 

0.488 
0.003* 
0.230 
0.252 
0.699 

<0.001* 
0.035* 

*Significant results at p < 0.05.  
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Figure 1. Course of the study. In the beginning of each session, before administration of 

varenicline or placebo medication, 25 baseline single pulse MEPs were recorded at an intensity 

to elicit MEPs with peak-to-peak amplitudes of on average 1 mV. Three hours later, a second 

baseline was recorded to explore the effect of medication on cortical excitability, and adjusted, if 

necessary (third baseline). Afterwards, tDCS (cathodal or anodal) or PAS (PAS10 or PAS25) was 

administered and 25 MEPs were recorded immediately after stimulation and at time points of 5, 

10, 15, 20, 25, 30, 60, 90 and 120 minutes after plasticity induction. Further TMS measurements 

were conducted in the evening of the same day (SE), next morning, at ~9:00AM (NM), next noon, 

at ~12:00PM (NN) and next evening, at ~6:00PM (NE). 
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A) 

 

B)  

 

Figure 2. Impact of varenicline on tDCS-induced neuroplasticity. Shown are baseline-normalized 

MEP amplitudes after plasticity induction by anodal (A) and cathodal (B) tDCS under 0.1mg, 
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0.3mg, 1.0mg varenicline or placebo medication conditions up to the evening of the post-

stimulation day. A. In the placebo and 0.1mg varenicline medication conditions, anodal tDCS 

induced a significant excitability elevation up to 60 minutes after stimulation, which was 

abolished by 0.3mg and 1.0mg varenicline. B. In the placebo, 0.1mg and 1.0mg varenicline 

medication conditions, cortical excitability was significantly reduced after cathodal tDCS 

administration. This effect was abolished by 0.3mg varenicline. Error bars indicate S.E.M. Filled 

symbols indicate significant differences of post-stimulation MEP amplitudes from respective 

baseline values; asterisks indicate significant differences between the drug and placebo 

medication conditions at the same time points (Student’s t-test, two tailed, paired samples, p < 

0.05).  
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A) 

 

B) 

 

Figure 3. Impact of varenicline on PAS-induced neuroplasticity. Shown are baseline-normalized 

MEP amplitudes after plasticity induction by PAS25 (A) and PAS10 (B) under 0.1mg, 0.3mg, 
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1.0mg varenicline or placebo medication conditions up to the evening of the post-stimulation 

day. A. Cortical excitability was significantly elevated up to 30 minutes in all medication 

conditions after PAS25 administration. B. In the placebo and 0.1mg varenicline medication 

conditions, cortical excitability was significantly reduced up to 60 minutes after PAS10. 0.3mg 

and 1.0 mg varenicline abolished the above mentioned excitability diminution. Error bars 

indicate S.E.M. Filled symbols indicate significant differences of post-stimulation MEP amplitudes 

from respective baseline values; asterisks indicate significant differences between the drug and 

placebo medication conditions at the same time points (Student’s t-test, two tailed, paired 

samples, p < 0.05). 
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Figure 4. Both, anodal and cathodal tDCS-induced plasticity is abolished by 0.3mg varenicline, 

Anodal tDCS-induced excitatory plasticity is abolished and cathodal tDCS-induced inhibitory 

plasticity is preserved by 1.0mg varenicline. 0.1mg varenicline has no impact on stimulation-

induced plasticity. Medium and high doses of varenicline abolished PAS10-induced inhibitory 

plasticity. Varenicline at any doses did not have an impact on PAS25 induced excitability 

enhancement. Each column represents the mean of baseline-normalized MEP ± S.E.M. 

amplitudes until 30 minutes after stimulation; Asterisks indicate significant differences between 

drug and placebo conditions (Student’s t-test, two tailed, paired samples, p < 0.05).  
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Chapter 3 – Summary and Conclusions 
 

The studies presented in this thesis explore different aspects of neuroplasticity in the human 

brain. The first study demonstrated a non-linear association between tDCS intensity and its after 

effects. An enhancement of tDCS intensity is not always accompanied by an increase of efficacy 

of stimulation, but might also shift the direction of excitability alterations as in case of 2mA 

cathodal stimulation. Similar non-linear associations between stimulation intensity and after-

effects have been previously shown for other non-invasive brain stimulation protocols (rTMS, 

tRNS, tACS) (Doeltgen and Ridding, 2010, Moliadze et al., 2012). This finding should especially be 

considered with regard to clinical application of the stimulation technique. These results also 

imply that before therapeutical administration of modified stimulation protocols, it is necessary 

to study their physiological effects. The results of this study also lead to the assumption that in 

healthy individuals a “ceiling effect” exists that cannot be surpassed by simply increasing the 

intensity and/or duration of the stimulation. For achieving desired longer and stronger 

stimulation after-effects, the use of repeated stimulation protocols and pharmacological 

interventions is suggested (Nitsche et al., 2004, Kuo et al., 2008, Nitsche et al., 2009, Monte-Silva 

et al., 2010a, Monte-Silva et al., 2013). These non-linear physiological effects are reflected by the 

results of cognitive studies, where the impact of different tDCS intensities is even less uniform. 

Some studies show performance improvement via 2mA tDCS compared to 1mA (Iyer et al., 2005, 

Moos et al., 2012), the opposite effect (Hoy et al., 2013) or no difference (Teo et al., 2011). 

Beyond non-linear effects of tDCS applied with different intensities on the affected neurons, and 

an interaction between stimulation- and cognition-dependent neuronal activation, which might 

differ from the effect of “tDCS-only” conditions, another reason for such non-linear effects might 

be that increased intensity of the transcranially injected electric current could lead to increased 

electric field strength in subcortical regions and additional recruitment of adjacent, non-target 

brain regions, resulting in altered plasticity and functional connectivity (Boros et al., 2008, Datta 

et al., 2009, Polania et al., 2011a, Polania et al., 2011b, Polania et al., 2012, Kessler et al., 2013). 

However, these hypotheses are speculative and should be subject of future experiments. 

In contrast to these results, several clinical studies (Boggio et al., 2006, Fregni et al., 2006a, 

Fregni et al., 2006b, Brunoni et al., 2011, Brunelin et al., 2012) demonstrate a positive impact of 

2mA stimulation. In neuropsychiatric diseases, pathologically altered brain plasticity, and 
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activity, and thus an altered pre-stimulation state of brain physiology, could be the reason for 

the effectiveness of stronger/longer tDCS protocols, broadening the range in which plasticity 

alterations aimed for can be accomplished. Previous studies showed clearly that the basal state 

of cortical activity, and excitability have a relevant impact on the kind of plasticity induced 

(Siebner et al., 2004, Fricke et al., 2011). Thus the results of our study, conducted in healthy 

young participants and using the primary motor cortex as a model, might not translate one-to-

one to patient populations or cognitive experiments.  

The second and third studies addressed the knowledge gaps with regard to the involvement of 

certain neuromodulatory systems and receptors in specific plasticity types. In principal 

accordance to previous studies (Normann et al., 2007, Nitsche et al., 2009), the results of the 

second study demonstrate an enhancement of LTP-like plasticity and a reduction of LTD-like 

plasticity by serotonin, therefore shifting resulting net plasticity into the direction of facilitation. 

This might explain the positive effect of serotonin enhancers on rehabilitation in diseases, such 

as stroke and depression, accompanied by enhanced inhibitory and reduced excitatory plasticity 

(Foy et al., 1987, Dam et al., 1996, Traversa et al., 1997, Xu et al., 1997, Traversa et al., 1998, 

Pariente et al., 2001, Schaechter, 2004, Chollet et al., 2011, Player et al., 2013). Given that PAS-

induced plasticity is related to STDP (Stefan et al., 2000, Wolters et al., 2003), these results are 

also helpful for explaining the positive serotoninergic impact on cognitive processes (Loubinoux 

et al., 1999, Loubinoux et al., 2002a, Loubinoux et al., 2002b, Loubinoux et al., 2005).  

It is hypothesized that 5-HT2 and 5-HT3 are candidate receptors in serotoninergic modulation of 

plasticity, as they modulate intracellular Ca2+ concentration (Reiser et al., 1989, Ronde and 

Nichols, 1998). However, their specific impact on plasticity is not yet clear and has to be studied 

in future experiments using respective agonist and antagonist pharmacological agents and 

different plasticity-inducing protocols. 

The third study sheds some light on the dose-dependency of  nicotinic receptor activation 

on neuroplasticity. So far, the involvement of specific receptors in nicotine-modulated human 

brain plasticity remained unclear. In this project, we used different doses of the  nicotinic 

receptor partial agonist varenicline (Mihalak et al., 2006) and studied their impact on 

stimulation-induced non-focal and focal plasticity of the human primary motor cortex. The 
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results of this study show that a low dose of varenicline has no impact on cortical plasticity, 

while a medium dose preserves only focal facilitatory plasticity, whereas it abolishes other 

plasticity types. Varenicline in high doses preserved focal facilitatory and non-focal inhibitory 

plasticity. The results obtained under the medium-dose are identical to those of global nicotinic 

activation (Thirugnanasambandam et al., 2012). In high doses, preservation of non-focal 

inhibitory plasticity by varenicline could be explained by its antagonist effect in high dosages and 

therefore reduced calcium influx. The results of this study are in accordance with a crucial 

importance of this receptor for the modulatory impact of nicotine on plasticity, which most 

probably is driven by intracellular calcium alterations. Besides ,  nAChRs also have Ca2+ 

channel properties (Burnashev, 1998, Dajas-Bailador and Wonnacott, 2004), therefore it is 

essential to study their impact on neuroplasticity in order to fully explore the contribution of 

nicotinic receptors (Matsuyama and Matsumoto, 2003).  

With regard to the functional importance of this finding, it is relevant to notice that nicotine 

withdrawal impairs memory functions and neuroplasticity in smoking individuals and its 

readministration restitutes them (Cole et al., 2010, Grundey et al., 2012). Taking into account 

that varenicline is a popular smoking cessation drug (Coe et al., 2005) and has been shown to 

improve memory functions in nicotine abstinence (Patterson et al., 2009, Loughead et al., 2010), 

its possible restitutive effect on tobacco consumption-related impaired plasticity and cognitive 

functions might contribute to diminishing the probability to relapse in smoking addicts after 

cessation, which will be interesting to explore in future experiments.  

Possible limitations of the second and third studies is that we administered single oral doses of 

citalopram and varenicline. Many studies demonstrate that chronic exposure to 

neuromodulatory substances can lead to desensitization or up- and downregulation of receptors 

(Wonnacott, 1990, Blier and Bouchard, 1994, Pineyro et al., 1994, Hsu et al., 1996, Fenster et al., 

1997, Fenster et al., 1999, Buisson and Bertrand, 2001, Yamane et al., 2001), therefore the 

effects of these substances on neuroplasticity under chronic administration, as relevant for 

clinical application, could be qualitatively different from those after a single-dose. This important 

aspect should also be explored in future studies.  
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