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Abstract

Fluid interfaces in contact with solid substrates play an important role in fields ranging from
microfluidics, over oil recovery and inkjet printing to coating processes. Effective models for
the static wetting of structured substrates exist, as models for the dynamics of a fluid interface
moving over a molecularly uniform and flat substrate.

In the present work, the effect of a periodically varying wetting energy on the dynamics of
contact lines is studied. To study the static configurations, a minimisation approach for the
free energy and continuation methods are employed. The dynamics of the free interface flow
are modeled in the Stokes limit using boundary element methods. This is complemented by
simulations of a simplified system in the form of the thin film model.

First, the effect of surface heterogeneities on a contact line driven with a constant velocity
is addressed. A connection between the motion of the contact line over the substrate and
the macroscopic contact angle is observed. To get a better understanding of the response of
the fluid interface to the variation of the contact angle, a time periodic variation of the contact
angle is introduced. This allows to characterise the displacement of the contact line depending
on the driving frequency and slip in the system.

Based on the observed response of the fluid interface, a mode expansion model is proposed
to give a simplified description for the motion of the contact line. The basic assumption is
that there is no distinction between the response of the interface to a non-sinusoidal variation
of the contact angle with time and the response to the contact angle determined by the current
position of the contact line.

This is followed by a study on the motion of a droplet driven over a heterogeneous substrate
with a constant body force. There, the effect of the amplitude and characteristic length scale
of the heterogeneity on the possible droplet configurations is studied. It continues with a
study of the depinning process and dynamics of the depinned droplets. In the limit of high
slip lengths, a coexistence of pinned and depinned droplets was observed.

To understand the mechanism underlying this transition, a simplified model based on the
translation and deformation mode of the droplet is considered. The model shows how the
varying mobility ratio of these two modes allows for a change in the observed bifurcation
scenario.
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1 Introduction

The problem of fluid droplets resting and moving on a solid substrate is encountered in a
range of fields from rain droplets sitting on a leaf to oil recovery[88], where water is used to
displace oil in a porous medium. Wetting of non-uniform surfaces plays an important role in
many biological systems. The Namib desert beetle for example uses a water-repelling (hy-
drophobic) structure on its wings to harvest condensing water for consumption[96]. Plants,
as the Lotus or Indian Cress, use hydrophobic structures to make droplets slide off easily[50].
The self-cleaning functionality of such surfaces, where the sliding droplets remove any resid-
ual particles on it, is often referred to as Lotus effect.

These hydrophobic structures, as inspired by nature, and more advanced amphiphobic
structures, that repel both oil and water, also have a number of industrial applications: Pos-
sible use cases range from surface coatings for simplified removal of graffiti[83] to reducing
hydrodynamic drag, for example for swimsuits[74]. This drag reduction is achieved by trap-
ping air at the surface of the material, thus reducing the friction at the interface.

In industrial applications, control of the wetting properties is important: For the printing
industry, stronger localization of the droplets is of interest to achieve higher resolutions[21].
On the other hand, insecticide dispersal requires the plants to be covered as uniform as pos-
sible by the liquid[93], as in the case of surface coating technologies[94]. The pinning and
mobilization of fluid interfaces is important in the oil industry as the goal is to make oil ac-
cessible for secondary recovery by displacing it with water[88]. One surprising application
where contact line dynamics plays an important role is lithography on silicone wafers, where
immersion lithography is used to obtain smaller structure sizes[49]. There, a droplet is de-
posited on the silicon wafer below the lithography optics to modify the index of refraction. As
different parts are exposed, the droplet must be moved without film formation or deposition
of droplets, making contact line dynamics a speed-limiting step in this process. In all of these
cases, a fluid-liquid or a liquid-liquid interface is moving over a solid substrate.

Since wetting phenomena play a fundamental role in many biological systems and appli-
cations, research on the theoretic foundations of wetting dates back to the 18th century[95].
Young explained how the interfacial energies of the interfaces determine the equilibrium con-
tact angle, i.e. the slope with which the fluid-liquid interface approaches the substrate. When
a fluid does not cover the solid completely, but forms a drop with an interface that approaches
the substrate with a finite angle, it is referred to as partially wetting. This angle is unique for
homogeneous substrates, but not for substrates with a topographically structured surface or
chemical impurities on the surface. In these cases, the microscopic contact angle varies with
the position on the substrate.

The interfacial energy argument is a continuum approach for describing static wetting. It
does not necessarily hold on length scales where thermal and molecular fluctuations play a
role, i.e. close to the contact line. Fundamental questions concerning this transition from a
molecular microscopic description to the continuum description are still unsolved[13]. The
best continuum description to date accounts for the molecular interaction of the fluids with
the substrate with an extra pressure term that depends on the distance from the surface. While
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it gives a very good agreement in the limit of small contact angles, this approach leads to
problems when attempting to model hydrophobic substrates.

Going beyond the static wetting of homogeneous substrates, there are two main directions
in wetting research: One side is focussed on preparing flat and chemically pure substrates
to study the motion of a fluid interface moving over it. The other side studies the possible
configurations that a static, non-moving fluid can take on a structured surface.

When studying static wetting of heterogeneous substrates, the goal is to determine the
shape that a fluid interface can take on a substrate, which has a position dependent contact
angle, a topographic structure of the surface or a combination of both. Two fundamental
publications in this field are the work of Cassie[17] and Wenzel[92], making predictions
on the apparent contact angle that is observed for a fluid wetting a non-uniform substrate.
These predicted only an average contact angle, though, based on a term for the effective
surface free energy that takes the topography into account. On most heterogeneous substrates,
multiple stable and and metastable configurations of the fluid interface, and therefore a range
of contact angles can be observed for which the contact line does not move. This range is
characterized by the static advancing and static receding contact angle. This problem of static
droplet configurations on heterogeneous substrates has received significant attention from the
theoretical side[17, 16, 37, 40, 80, 34]. Over time, more advanced methods to predict these
angles on patterned surfaces were developed, for example by direct numerical minimization
of an energy functional to obtain static interface shapes[69].

There were attempts to generalize this approach to moving fluid interfaces, as presented by
Santos et al.[63]. Their work studied the droplet motion on a heterogeneous substrate in the
quasi-static limit. The assumption is that the droplet shape is close to the equilibrium, but the
motion is determined by a friction law that relates the macroscopic contact angle obtained by
minimizing the free energy of the interface to a contact line velocity. This approach does not
take into account the fluid flow and resulting viscous stresses acting on the fluid interface.

For the dynamic case, where the contact line is moving over the substrate, giving universal
descriptions of the underlying mechanisms is more challenging. These interfaces are driven
by an external forcing or thermally activated processes taking place at the substrate. Disparate
approaches to describe these processes can be found in the literature. The models based on
a continuum description consider spatial averages of the molecule velocities. They hold on
length scales above the molecular length scale. Major theoretical work in this direction was
undertaken by Cox and Voinov[90] and recently by Eggers[24]. A microscopic approach to
the question is to assume that the dynamics is determined by molecular hopping processes
taking place at the contact line. One example for such a molecular model is the molecular
kinetic theory (MKT) by Blake[11]. The MKT assumes that the motion at the contact line
can be approximated by the thermally activated escape of a particle from a potential well.
These fundamental works assume an atomically flat and homogeneous substrate. They do not
attempt to describe the effect of topographic or chemical structures on the substrate that break
the translation invariance of the problem.

A natural extension of the study of contact lines dynamics is the study of moving fluids
droplets, where moving contact lines are coupled with a bulk fluid flow. The problem of a
droplet moving on a homogeneous plane with a small inclination angle has been studied ex-
tensively. The work of Hodges et al.[36] provides a range of references on this topic. Results
on the tail formed by droplets moving on an inclined substrate due to viscous stresses were
obtained by Snoeijer et al.[73]. Their work described both numerically and experimentally
how the opening angle of the corner at the back end decreases with increasing droplet velocity,
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which eventually results in a pinch-off of smaller droplets.
Going beyond the dynamic wetting on homogeneous substrates and the static wetting on

static substrates, the wetting dynamics on non-ideal substrates recently moved into the focus
of research[65]. The goal of the present work is to provide a better understanding for the
response of a fluid interface driven over a substrate with a periodically varying wetting energy
and to present possible approaches to reduce the complexity.

To achieve this goal, the motion of a droplet over a substrate, where the microscopic con-
tact angle varies periodically with the position on the substrate, is simulated in the continuum
limit. Understanding the motion over a periodically patterned substrate is a first step towards
a better understanding for the dynamic contact angles observed experimentally on real, i.e.
non-ideal, surfaces. This system is studied in the limit of continuum mechanics in a transla-
tionally invariant, i.e. effectively two-dimensional, system. For a heterogeneity of the form
of a sinusoidal variation of the wetting energy, the length scale and amplitude of the wetting
energy contrast can be varied systematically. The response was studied in two different con-
figurations: In the first part, the response of the interfaces of a droplet driven with constant
velocity was considered. In the second part, the depinning and subsequent motion of a droplet
driven with constant force is presented.

The dynamics of the free interface flow was studied in the Stokes limit. The solutions to
the Stokes equation that determine the time evolution of the free interface were computed us-
ing Boundary Element Methods(BEM), as described by Pozrikidis[55]. This approach makes
it possible to study systems with high contact angles, going beyond the lubrication approxi-
mation for fluid interfaces with small and slowly varying slopes. An application of BEM to
model moving droplets in the Stokes limit are the works of Schleizer[67] and Spelt[76, 22].
These works studied the motion of droplets on substrates in a shear flow geometry. While the
first study did not incorporate substrate heterogeneities, they were incorporated in the second
study on a microscopic scale, by using a static advancing and receding contact angle. As
the contact angles do not vary spatially, the droplet still approaches a stationary shape. The
present work goes beyond this limit by introducing a microscopic contact angle that varies
with the position of the contact line on the substrate.

These publications discuss difficulties associated with the implementation of contact line
dynamics in the boundary element formalism. When the work of Schleizer[67] was published,
implementing the Navier slip condition at the substrate required a prohibitive computational
effort, therefore an effective slip model was introduced. The present work goes beyond the
approximation of spatially homogeneous advancing and receding contact angles by studying
a spatially varying wetting energy. The goal is to understand if and in which limit such a
heterogeneous substrate can be reasonably well approximated with a spatially uniform het-
erogeneity.

The second part of the thesis was motivated by work on the depinning of droplets from
single defects done by Beltrame, Thiele and Knobloch[7, 85, 8]. It showed the effect of
pinning strength on depinning energy and mobility for cases of two-dimensional and three-
dimensional droplets. They modeled the problem in the lubrication approximation with a
disjoining pressure, which allows for fluid to flow through the prewetting film, especially for
low heterogeneities. Due to this non-vanishing flux, determining a depinning threshold for
low heterogeneities / thick precursor films is difficult. In the present work, this problem is
extended to the case of arbitrary substrate contact angles and multiple defects, in an attempt
to approach the case of a general heterogeneous substrate. The results can be found in chapter
5.
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Recently, significant progress on the wetting dynamics on structured and randomly hetero-
geneous substrates using an asymptotic matching approach was achieved by Savva and Kalli-
adasis[64, 65, 66]. While still operating in the thin film limit, their novel matching approach
allowed them to study the spreading of two-dimensional droplets on randomly structured to-
pographic and chemical heterogeneities. Their approach reduced the dynamics of a spreading
droplet to a set of ODEs for the dynamics of the contact line.

The dynamics of free interface can also be modeled without solving the fluid dynamic equa-
tions explicitly on a mesh by using particle based methods. Molecular Dynamics (MD) simu-
lations and Lattice-Boltzmann models are used for fluid dynamics problems. Other methods
are also available, like dissipative particle dynamics and stochastic rotation dynamics, bridg-
ing the gap and offering different levels of abstraction and coarse-graining. MD simulations
represent individual molecules as particles with atomistically justified two-particle interaction
forces. These models were successfully employed to study wetting dynamics[9], also when
being coupled with continuum models by parameter passing[87].

Lattice-Boltzmann simulations operate on particles in a discretised space and velocity do-
main, with the atomistic interactions represented by a collision operator acting on the density
distribution of the particle velocities at the same grid point. A range of wetting-related phe-
nomena, including contact angle hysteresis on chemically patterned substrates[40, 53, 62]
were modeled with this approach. This is the oldest and most well-established tool of the
particle based methods mentioned here. Another two recent methods are relevant to simulat-
ing fluid flows on a coarse-grained scale. In both models one particle does not represent a
single atom or molecule, but rather a volume of fluid: Stochastic rotation dynamics[61], sim-
ilar to Lattice-Boltzmann simulations, uses a rotation operator in a collision box to replace
the two-particle interactions, but with continuous particle velocities and positions. Dissipa-
tive particle dynamics[31] uses pairwise interactions between particles within a certain cutoff
region. These models cannot obtain an increased resolution in regions of interest without
coupling models for the different length scales. Therefore studying contact line phenomena
in a system spanning multiple length scales becomes computationally expensive using these
particle based methods and a continuum approach was employed in the present work.

The thesis has the following structure: In chapter 2, the foundations of free interface flows
and both statics and dynamics of contact line dynamics are introduced. After an introduction
to the fundamental equations governing fluid flows, the boundary conditions due to solid and
free interfaces are discussed. This is followed by a presentation of the different models for
static and moving contact lines.

In chapter 3, the numerical methods used to study contact line problems in the present work
are introduced. Two different approaches to obtain static fluid interface configurations are
presented: One based on a free energy minimization, the other based on determining solutions
to the differential equation that determines interface shapes directly. This is followed by an
introduction to the boundary element methods code employed in the present work to study
the dynamics of free interface flows. The method used to solve the thin film equation with
sharp contact lines is also discussed.

Chapter 4 presents the results obtained for a contact line driven with a constant velocity
over a substrate with a periodic variation of the contact angle. The goal is to get a better
understanding for the effect of the spatially varying substrate contact angle on the motion of
the interface and the macroscopic contact angle that can be observed. By combining these
observations with the results obtained from varying the contact angle with time, a simplified
model for predicting the contact line motion could be introduced.
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The second part of the results, chapter 5 presents the observations on droplets driven with a
volume force over a substrate with periodically varying contact angle. As the two-dimensional
system is studied, it can be thought of as two contact lines coupled through the fluid bulk.
Influence of the length scale of the heterogeneity on the droplet dynamics are studied. This
is followed by discussion of a simplified model for the droplet dynamics in the form of a
modified gradient dynamics on a static energy landscape.

It ends with the conclusions and an outlook on possible future research directions that build
up on the present work. A list of figures, a list of symbols and an index can be found at the
end of the thesis.





2 Foundation

This review chapter presents the foundations of fluid dynamics of immiscible fluids, confined
both by solid and free interfaces. Based on the fundamental equations used to model fluid
flows, the chapter presents the processes taking place at a moving contact lines. The contact
line is the point where two fluid and the solid phase meet.

First, the continuum transport equations for momentum and mass are introduced to de-
scribe the time evolution of velocity, pressure, and density of an incompressible fluid. As the
fluid is confined both by solid interfaces and free surfaces that can deform, the corresponding
boundary conditions are presented. Second, an overview of different approaches to incorpo-
rate the contact line as transition point between different types of interfaces is given. Finally,
a short overview over the relevant literature is given to clarify the scope and context of the
present work.

2.1 Governing equations of continuum fluid dynamics

From astronomic length scales down to length scales in the range of nanometers, fluid dynam-
ics describes the motion of molecules interacting through repulsive and attractive forces. All
the trajectories of the individual particles follow the fundamental equations of conservation
of energy and momentum. When studying the system on length scales where the individual
fluctuation can not be observed, macroscopic variables that represent these averaged value of
these quantities can now be introduced as continuous fields in space. In the continuum limit,
the conservation of of mass and linear momentum still has to hold. These conservation laws
can now be expressed in the form of continuity equations that relate changes of an averaged
density to the divergence of a flux.

Phenomena like phase separation are also based on microscopic interactions on the molec-
ular length scale. The difference in the interaction force between molecules of different fluids
leads to aggregation and separation of the different phases, as in the case of immiscible liq-
uids. Immiscible liquids still have a transition region between the different phases with a
width in the range of nanometers. If the smallest length scale that is resolved in the model
is larger than the width of the transition region, it can be replaced by a “sharp” interface at
which the system properties change discontinously. This discontinously changing property
can be for example the density, the velocity tangential to the interface or the stress normal to
the interface.

2.1.1 Navier Stokes equation

The conservation laws of mass and linear momentum can be expressed in form of a continuity
equation that relates the change of mass density to the divergence of a mass current, and
another equation that relates the volume force density to the divergence of a local stress and
a momentum flux coupled to mass transport. The conservation of linear momentum takes the
form:
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∂

∂t
(ρu)+∇(ρu⊗u)−∇σ−g(x) = 0

with u being the velocity field, ρ the local density, σ representing the local stress in the fluid
and g(x) a volume force that might depend on the position x in the system and is introduced
by an external field acting on the system. The symbol ⊗ represents the outer product of
two vectors. When integrating over a volume element, the first part represents the change in
momentum in the volume element, the gradient terms represent the flow of momentum due to
convection, viscous stresses and pressure gradients in the fluid through the domain boundaries
and the last term describes the coupling of the momentum to the external force field g(x). One
example for such an external field would be gravity.

The second continuity equation, the conservation of mass, can be written similarly as

∂

∂t
ρ+∇(ρu) = 0

assuming that no mass sources or sinks exist in the system. Integrated over a volume
element, it states that the change in mass in the volume has to correspond to the flux into or
out of the volume.

In order to obtain a closed system of partial differential equations the continuity equations
of mass and linear momentum have to be complemented by a constitutive relation between
stresses and strain rate and an equation of state of the fluid. Based on Newton’s observation
that the viscous stress σ in ideal viscous fluids is proportional to the rate of strain tensor,
together with the assumption of an isotropic liquid and the fact that ∇σ should vanish when
the fluid is at rest, the stress tensor can be assumed to have the form

σ = ηε̇− Ip

with η representing the dynamic viscosity of the fluid, p the isotropic fluid pressure and
the rate of strain tensor defined as

ε̇ = (∇⊗u)+(∇⊗u)T

The unit tensor is represented by I. The second common assumption is the incompress-
ibility of fluids, i.e. that the density ρ is a local property of the fluid that gets advected with
the fluid flow. For an incompressible fluid, the divergence of the velocity field vanishes.
With those two assumptions, i.e. for an incompressible Newtonian fluid, the Navier-Stokes
equation takes the following form[41]:

ρ

(
∂u
∂t

+(u∇)u
)
=−∇p+η∇

2u+g(x)

∇u = 0

Details of the derivation as outlined above can be found in in the textbook by Batchelor[5].
While this equation already has been simplified, it remains very difficult to solve due to the
PDE being nonlinear with respect to the velocity field.
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2.1.2 Steady Stokes equation

The nonlinear terms in the equations of motion prevent the application of standard methods
to solve linear partial differential equations, for example methods based on the superposition
of solutions. The nonlinearities arise from terms related to inertial effects. The variables can
be rescaled with the characteristic length scale L determined by the domain boundaries, the
characteristic velocity U occurring in the system and the resulting timescale T = L/U . With
this, the Navier-Stokes equation can be written in the form[55]

Re(
∂u
∂t

+u∇u) =−∇p
η

+∇
2u+

g(x)
η

∇u = 0

where Re =ULρ/η is named Reynolds number and gives the ratio between the inertial and
the viscous force scale in the system. The nonlinearities are suppressed in the case where the
Reynolds number is small, i.e. where inertia plays a minor role. In this limit, the terms on the
left hand side can be neglected, leading to the Steady Stokes equation

0 =−∇p+η∇
2u+g(x)

∇u = 0

The system of equations is linear in u and g. Therefore, a linear superposition of two solu-
tions is still a solution of the differential equations. As a consequence the Greens formalism,
as discussed by Pozrikidis[55], can be employed to express it as a boundary value problem.
By representing a particular solution as superposition of fundamental solutions, it can be ex-
pressed in terms of stresses and velocities on the domain boundary. This approach will be
discussed in the methods section, where the boundary element method (BEM) is introduced.

That means the state of the system is completely described by the current shape of the
domain boundary and the velocity and stress on the boundary. For simple fluids in a free
interface flow, the boundary values can be computed from the boundary conditions and the
current shape of the domain boundary, as discussed later on. Therefore, the time evolution
of a moving droplet is completely described by the shape of the domain boundary over time.
The time evolution is determined by the deformation of the free interface in the induced flow
field.

2.2 Boundary conditions for walls and free interfaces

With this understanding of the dynamics of the flow occurring in the bulk of a fluid, it is
important to understand how the fluid interfaces can be represented in the continuum limit.
The fluid interfaces can represent a transition region between two different liquids or a liquid
and a solid and therefore have to be treated differently.

When studying a two-phase fluid on a microscopic length scale by using molecular dynam-
ics simulations, a depletion layer or a mixing layer of molecular length scale can be observed
in the transition region, depending on the system properties. On a length scale where the
continuum description becomes appropriate, the width of this layer becomes negligible. The
transition region can be approximated by a subspace on which system parameters, such as
the density, viscosity and stress, exhibit a discontinuous variation. This is the sharp interface
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approximation. In this approach, fluid-liquid and fluid-solid interfaces are characterized by
different boundary conditions due to the microscopic interactions, as discussed below.

There are other approaches to introduce fluid interfaces in continuum models: One possi-
bility is to introduce an additional field[3, 14] with an evolution equation that locally deter-
mines the phase. This field is coupled to the fluid dynamic equations by introducing phase-
dependent viscosity and stress terms. Introducing an extra differential equation that describes
the time evolution of the phase field increases the computational difficulty significantly. In-
creased computational complexity is detrimental to the goal of resolving the region of the
three-phase contact line in detail. Therefore, the sharp interface approach is utilized in the
present work.

2.2.1 Fluid-liquid interface

The sharp interface model assumes that the transition region between the fluid and the liquid
is thin compared to the smallest length scale on which the system is observer. In this limit,
the transition region can be replaced by a surface on which the macroscopic properties, as the
density and viscosity, change discontinuously. It is observed that droplets and bubbles take
a spherical shape, indicating that the system attempts to minimize the area of this interface
between the fluid and the liquid.

The origin of of this excess energy can be understood when considering the liquid-vapor-
coexistence of a fluid in a container. The free energy of the gas over the fluid density ex-
hibits two local minima when phase separation occurs, corresponding to the liquid and the
vapor phase. In the transition region of finite width between the two phases, the fluid density
changes continuously. This gives rise to an excess free energy, as the free energy of fluid in
this region is increased compared to the fluid in the bulk. The excess energy is proportional
to the surface area of the liquid-vapor interface. In the sharp interface model, this transition
region is replaced with a surface where the density changes discontinuously and the excess
energy associated with the transition region is represented by the interfacial energy γ. A more
comprehensive derivation of this phenomenon can be found in Ref. [5, 41].

The change in surface area by an infinitesimal normal displacement is determined by the
mean curvature of the interface at that point, giving rise to a normal force acting on the
interface proportional to the curvature. In an equilibrium state of a fluid-liquid interface, this
stress has to be constant on the surface to prevent deformation of the interface. This stress
due to surface forces is balanced by the pressure difference between the two phases. This is
expressed by Laplace’s formula

pl− p f = 2γκ

with the mean curvature of the free interface κ, defined as

κ =
1
2
(

1
R1

+
1

R2
)

with R1,2 as the two principal curvatures of the interface. The sign of the mean curvature
κ is chosen such that it is positive for a spherical liquid droplet. For a static interface, only
the surface forces have to balance. For a moving free interface, the surfaces forces and the
viscous forces at the surface have to be in equilibrium[41]. This balance can be expressed in
a more general form as a jump in the normal stress component proportional to the curvature
of the interface, taking the form

n(σ f −σl) = 2 n γκ (2.1)
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with n as the normal vector to the surface, σ f ,l as the stress tensor in fluid and the liquid
at the fluid interface, respectively, and γ as the interfacial tension. This characterizes the
restoring force leading to free interfaces assuming configurations of constant mean curvature
in a static mechanical equilibrium, unless additional external forces act upon the interface.
The normal component of the velocity has to be continuous. Also, as no tangential forces act
on the interface when the surface tension is constant, the tangential stress component has to
be continuous at the fluid interface. This model aligns well with the classical treatment of
fluid dynamical problems as solutions to PDEs with certain boundary conditions.

2.2.2 Fluid-solid interface

Stokes presented in 1845[77] that the relative velocity of a fluid has to continuously approach
zero at a solid wall for slow fluid flows. He argued the stresses induced by any discontinuity
in the velocity between the fluid and the solid would slow down the flow close at the wall until
there is no relative motion of the fluid to the wall. This is called the no-slip boundary condi-
tion, stating that both the tangential velocity and the normal velocity have to be continuous
at a fluid-solid interface. The idea behind this model is that the first layer of fluid particles
adheres to the wall.
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Fig. 2.1: a) Illustration of the velocity field (blue arrows) of a pressure driven
channel flow with finite slip length. The blue parabola shows the ex-
trapolated flow field reaching zero outside of the channel. b) Zoom of
the region close to the channel wall, showing the parabolic flow profile
and the extrapolation length determined by the slip length ls more in
detail.

This point of view has been challenged over the course of the last century, as observed flow
fields showed a finite velocity close to the wall[42]. One example is the flow field observed
in a pipe with circular cross-section that is driven by a constant pressure gradient. When
fitting the measured radial velocity distribution with the closed-form solution for the flow
field, a parabola, the observed profile reaches zero not at the wall, but at an extrapolated point
outside of the fluid. That means the fluid still has a finite velocity at the wall, increasing
with the driving velocity. To remedy this discrepancy between experimental observation and
theoretical model, the Navier slip model was introduced. With u as the velocity relative to the
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wall, it maintains the assumption that the wall is impermeable, i.e. that the fluid can not enter
the wall

u⊥ = 0

but it states that the velocity tangential to the wall is proportional to the stress

u‖ = ls
∂u‖
∂n

=
ls
η

f‖

with u⊥ and u‖ as the normal and tangential components of the velocity at the wall and f⊥
and f‖ as the normal and tangential component of the projection of the stress tensor f = σn
on the surface normal n. The length scale ls is referred to as slip length, as it can be obtained
from the depth in the substrate where the extrapolated observed velocity profile would reach
zero. The slip length is commonly in the range of some nanometers, for example for water on
a hydrophilic surface[12], but can be in the range of tens to hundreds of nanometers, as shown
for polymer melts on specific surface coatings both experimentally[46] and numerically[70].

More than 150 years later, this problem is still subject of discussion. For example when
comparing molecular dynamics simulations of polymer flows in a shear or a pipe flow it is
necessary to enforce the Navier slip condition at a height above the fluid-solid interface to
obtain consistent results[86].

2.3 Contact lines

The triple line where two fluids and a solid or a fluid, a liquid and a solid are in contact is
referred to as contact line. At the contact line, interfaces with different boundary conditions,
as introduced in the previous section, come into contact and have to be matched. In the static
limit, the goal is to balance the interfacial energies in that point and study the set of energet-
ically minimal configurations on non-ideal substrates. On the smallest scale, the challenge
posed by contact lines is to obtain a description for the thermodynamics of interacting par-
ticles that can be incorporated into a continuum model capable of describing both a static
and a moving interface. Even if the underlying processes close to the contact line are under-
stood from the microscopic perspective, the observation length scale is in most cases orders
of magnitude larger than the molecular length scale. This requires a model that accounts for
the interface deformation due to viscous stresses on the intermediate length scales to enable
predictions for the macroscopic dynamics that can be observed in the system.

The following reviews provide an extensive overview over contact line dynamics related
questions, as this section only briefly covers the main results presented there that are directly
related to the thesis: A review of the historic foundations of wetting dynamics on homoge-
neous substrates is given by “Wetting: statics and dynamics” by de Gennes from 1985[30]. A
more recent overview, that also includes wetting of heterogeneous substrates, is given by the
review paper written by Bonn et al.[13]. A second review on the problems of moving contact
lines, also discussing the coupling of molecular to macroscopic scales, was written recently
by Andreotti and Snoeijer[4].

In the beginning of this section, the theory of equilibrium contact angles on homogeneous
substrates will be introduced, on which any discussion of moving contact lines must be based.
This is followed by a section on a model for the molecular processes occurring close to the
contact line, giving a description of the contact line motion as molecular hopping processes.
One approach to regularize the stress singularity occuring at a moving contact line in the
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continuum limit is to assume that the whole substrate is covered by a thin fluid film. This is
introduced in the third subsection. For a moving fluid interface, the contribution of dynamic
viscous stresses to the stress balance at the fluid interface has to be considered. Different
approximations can be made for the flow field in the contact line region and the contribution
of the resulting viscous stresses to stress balance that determines the steady shape of the fluid
interface. These approximations are discussed in the last subsection of the chapter.

2.3.1 Equilibrium contact angles

In many cases the free interface of a liquid at rest approaches the substrate with a finite slope,
as observed for a water droplet resting on a plastic plate. The angle formed between the
fluid-liquid interface and the substrate is referred to as contact angle, as illustrated in Fig. 2.2.
The wetting properties of the system, i.e. under which angle the fluid interface approaches
the substrate or if it covers the substrate completely, depend both on the chemical properties
of the substrate and the fluids, and the topographic structure of the substrate, which might
enhance or limit the spreading of the fluid.

Fig. 2.2: Three-phase contact line with the interfacial free energies of the fluid-
liquid interface γ, fluid-solid interface γ f s and liquid-solid interface γls,
giving rise to the contact angle θ from the stress balance

For an ideal substrate, topographically flat and chemically homogeneous, the contact angle
is controlled by the balance of the surface free energies, of the fluid-liquid γ, the fluid-substrate
γ f s and the liquid-substrate γls interface. The surface free energy of the fluid-liquid interface
is also commonly referred to as surface tension. If the energy difference γ+γls−γ f s is smaller
than zero, a flat substrate will be covered completely by the fluid. This is the fully wetting
case. If |γ f s− γls|< |γ|, the system is partially wetting, i.e. the system shows a finite contact
angle between the fluid-solid and fluid-gas interface, given by the relation:

γls− γ f s + γcosθ = 0
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This relation was discussed already more than 200 years ago by Young[95]. If the contact
angle deviates from the equilibrium angle, it implies that there is a residual stress at the contact
line. This means that the contact line is still moving towards the equilibrium configuration.
To describe the wetting properties of the substrate, a nondimensionalised wetting energy w
can be introduced:

w =
γls− γ f s

γ
.

For w≤−1, the fluid is completely wetting, while for −1 < w < 1, the fluid-interface ap-
proaches the substrate with a finite contact angle. This notation will be employed to describe
the wetting properties of the substrate in the present work.

2.3.2 Microscopic approach: Molecular-kinetic theory

To describe the dynamics of a contact line in the limit where the motion is dominated by
processes close to the contact line, Blake proposed a model known as molecular kinetic the-
ory[11]. On a microscopic length scale, the contact line is not a discontinuity, but a region
of space filled with particles moving due to the thermal energy in the system which display
a gradient in the concentration of particles of the two fluids. In this model, the motion of the
interface is controlled by thermal hopping of fluid molecules close to the substrate in a series
of local energy minima. The idea is that the molecular structure of the substrate allows for
a dynamic adsorption/desorption equilibrium of the migrating fluid molecules, leading to a
motion of the contact line. The contribution of bulk fluid dynamics is neglected in this model,
as the dynamic contact angle only influences the stress imbalance modifying the hopping rate.

The contact line velocity is therefore given by the flow in a forced thermally activated
hopping process, following Kramer’s problem of the escape rate of a thermally activated
particle from a potential well[39, 32].

v = K0λeλ2γ|cosθ0−cosθ|/(2kBT )

Here, K0 gives an hopping attempt frequency, λ a distance between two local minima.
The term γ|cosθ0− cosθ| gives the stress imbalance due to the apparent contact angle θ that
deviates from the equilibrium contact angle θ0.

This model has been fitted to datasets from various experimental setups [26, 45, 19]. The
reported energy barriers and hopping distances in the range of several tens of nanometers
or more do not agree well with the interpretation as hopping process on a molecular length
scale[26], as the spacing of the local minima in the energy landscape of a homogeneous
substrate is in the sub-nanometer range.

In Molecular Dynamics simulations, though, a quantitative agreement with this model has
been achieved[20]. This is an indication that the deviation in real systems might be due to the
inhomogeneous nature of the substrates in experimental setups. Most samples will feature
both chemical and topographical heterogeneities on length scales ranging from nanometers
to micrometers, depending on the preparation process. On the other hand, these structures
correspond to energy barriers much higher than kBT . It is unclear if the dynamics on such a
length scale is best described by thermally activated motion.
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2.3.3 Disjoining pressure and precursor films

Molecular forces between unpolar molecules feature both long distance attractive contribu-
tions, as van der Waals forces, and short distance repulsive forces, due to overlapping electron
orbitals. The difference between the interaction of the two phases with the substrate can be
incorporated in the continuum models as an additional pressure term on the free interface that
depends on the distance from the substrate.

As mentioned previously, introducing a contact line in continuum models requires addi-
tional assumptions, as a slip condition at the substrate and a constitutive law for the depen-
dence of the contact angle at the substrate on the velocity. Introducing such a pressure term
that depends on the distance of the fluid interface to the substrate allows for the coexistence
of macroscopic droplets and a thin film wetting the whole substrate. In the presence of such
a precursor film there is no three-phase contact line, but only a transition region between the
macroscopic droplet and the precursor film. The logarithmic stress singularity associated with
contact line problems is now regularized with the cut-off length, determined by the thickness
of the precursor. The no-slip condition at the substrate still holds for the wetting liquid in
both regions.

To allow for a precursor film to form, the disjoining pressure is derived from a molecular
interaction potential that has a local minimum at a distance h0 over the substrate and decays
to zero as h→ ∞. As presented for example in Ref. [84], the interface potential can take the
form of

W (h) =−a(
b
h3 − e−h/lr) (2.2)

with lr setting the length scale of the short-range attactive potential, 3
√

b the length scale
of the long-range repulsive potential and a, with the dimension of an interfacial energy. The
height-dependent disjoining pressure can now be introduced as the first derivative with the
distance:

Π(h) =−∂W (h)
∂h

Figure 2.3 illustrates the shape of the potential for b = 10−4 after non-dimensionalisation
with a and lr set to unity. The minimum of the potential allows for the formation of a pre-
cursor film, covering the whole substrate, from which the macroscopic droplet emerges. The
effective slip that is observed for the macroscopic droplet increases with the thickness of the
precursor film and thus is determined by the distance of the minimum of the potential from
the substrate.

A fluid interface of unit length placed at hmin, the thickness corresponding to the mini-
mum of the potential, is energetically favorable by ∆W =W (∞)−W (hmin), the depth of the
minimum. Following Young’s law, the contact angle can thus be determined by

γcosθ = γ−∆W

with the energy contribution of the free interface balanced by the reduced contribution γ−
∆W of the free interface close to the substrate forming the precursor film[60]. This approach,
especially the formation of a precursor film, leads to issues in the case of high contact angles.
For thin films of a highly wetting fluid it is an elegant method to circumvent treatment of the
three-phase contact line that intrinsically introduces a slip of the interface. Recently, Sibley
et al.[71] argued that both contact line and precursor film models can be mapped onto each
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Fig. 2.3: Interface potential W (h), as defined in eqn. 2.2, for b = 10−4 after
non-dimensionalisation with a and lr. At h0, the minimum interface
potential ∆W is plotted.

other and therefore used interchangeably for small driving forces with appropriately chosen
parameters. Their study was done for a moving contact line on a homogeneous substrate,
though. In view of Ref. [85], where it was shown that the precursor film plays an important
role in the depinning process, the present work will explore the depinning process of droplets
with contact lines on substrates with Navier slip condition.

2.3.4 Dynamic contact angles in continuum models

For a static fluid interface, the interface assumes the shape of a surface with constant mean
curvature, when gravitational contributions and other external force fields are negligible. For
a moving interface, the viscous dissipation in the fluid increases close to the contact line.
This leads to a deformation of the free interface, as the viscous stress has to be balanced by
interfacial stress.

One model for the dynamic contact angle observed on a moving contact line was introduced
by de Gennes[29]. He argued that the dissipation in a slice of the moving interface has to
be balanced by the energy gain through the uncompensated Young force of the deformed
interface. The work due to the uncompensated Young force F takes the form

Pinj = FU =Uγ(cosθ− cosθ0)

with U giving the contact line velocity, γ the surface tension of the fluid and θ0 the equi-
librium contact angle. The shape of the fluid interface h(x) is assumed to be close to the
equilibrium configuration of a liquid wedge with constant slope, with an opening angle equal
to the equilibrium contact angle. When the fluid velocity in the wedge is locally assumed to



17

correspond to a Poiseuille flow profile with a film thickness ζ = h(x),

u(z) =
3U
2ζ2 (−z2 +2ζz)

the energy dissipation rate in the wedge is given by

Pdiss =
∫ x

xm

dξ

∫
ζ(ξ)

0
dz η

(
du
dz

)2

= 3
ηU2

θ
ln

x
xm

with xm as the microscopic cutoff length (i.e. a molecular length scale) and x as the ob-
servation length. Setting these two equal, the de Gennes law for dynamic contact angles is
obtained, with l = ln

(
x

xm

)
, as

U =
γ

6lη
θ(θ2

0−θ
2)

This derivation does not hold for two immiscible liquids, as the dissipation in the second
fluid is assumed to be negligible. With a more rigid derivation based on a self-similar solution
for the shape of the interface close to the contact line Voinov[90] obtained the following
relation for the dynamic contact angle of a liquid surrounded by an inviscid fluid:

θ(x)3 = θ
3
0 +9Ca ln(x/xm)

with θ0 as the microscopic contact angle at the microscopic cut-off length xm for given
capillary number Ca and x as the distance from the contact line. While this derivation relaxes
the requirement of small contact angles, a weakly curved interface with a slow change in the
slope is still assumed. A more accessible derivation of the scaling law can be found in Ref.
[24]. There is also a more generalized expression for two liquids with arbitrary viscosity ratio,
as derived by Cox[18].

This scaling for the dynamic contact angle has been validated in a range of different
scenarios[43, 72]. One problem with the validation of this model is that usually only the
velocity-dependence of the macroscopic contact angle at fixed distance from the contact line
is checked, with the slip length as fit parameter. One example where the height-dependent
contact angle has been measured and fitted successfully with the Cox-Voinov scaling was
published by Marsh et al.[44].

One point should be kept in mind when discussion this scaling law: Even in the original
work[90] Voinov makes no claim that the microscopic cut-off is necessarily the slip length
or attempts to discuss microscopic phenomena below the this length scale at which the mi-
croscopic contact angle is observed. Still it became canon that the microscopic length scale
gives the slip length and θ0 is the substrate contact angle according to Young. This is a good
assumption for homogeneous substrates, but does not necessarily hold on heterogeneous sub-
strates, where the substrate contact angle varies with the position on the substrate.

2.3.5 Unified modeling

As there were publications showing the validity of both approaches to model contact line
dynamics in different limits and publications that attempted to show the transition between
these two[26], the question of introducing a unified model incorporating both arose.

An attempt to unify the molecular-kinetic theory and bulk fluid dynamics was undertaken
by Petrov and Petrov[51]. They argued to use a velocity-dependent contact angle of the form
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proposed by Blake[11] as microscopic contact angle in the Cox-Voinov scaling. This gives
a scaling according to Blake’s predictions for low velocities, changing to a Cox-Voinov type
scaling as the velocity increases.

As acknowledged by Blake[10] this approach gives a better experimental fit, at the price
of introducing additional fitting parameters. It still does not account for the unavoidable
mesoscopic defects on real surfaces.

2.3.6 Contact line dynamics on non-ideal substrates

Some analytical work has been done on the problem of contact lines on heterogeneous sub-
strates. Raphael and de Gennes[59] gave analytical results for the pinning of a contact line at
a single defect.

Joanny and Robbins[38] studied the problem of a driven contact line on a periodically
patterned substrate, giving scalings for the effective contact line velocity with the driving
force. Their work approximated the hydrodynamics of the contact line relaxation processes
with an effective restoring force, an assumption that has not been adequately addressed to
date.

Another work on the contact line dynamics on a heterogeneous substrate is the paper of
Hocking[35]. He studied the response of a free interface when oscillating the substrate pe-
riodically both for homogeneous and heterogeneous substrates. The heterogeneity was as-
sumed again to be represented by a constant advancing and receding contact angle over the
whole substrate, though.

In general, most theoretical work on the dynamic contact angle observed on heterogeneous
substrates was focused on the fcrit + ε case where the driving forces in the system are only
slightly above the depinning threshold fcrit . The scope of the present work are processes
beyond this limit, where the time scales of interfacial relaxation and contact line motion are
competing.



3 Methodology

The aim of this chapter is to introduce the methods used in this thesis to study the statics and
dynamics of fluid interfaces in contact to solid surfaces. In the static case, when studying
non-volatile liquids, the goal is to find a configuration of the free interface under a volume
constraint where the sum of the energy of the fluid interface and the interfacial energy of the
wetted substrate has a local minimum. When taking an alternative point of view, the con-
ditions that an energetically extremal interface shape has to fulfill can be used to determine
possible configurations. The two conditions that have to be fulfilled are the Laplace equation
for the shape of the fluid interface and the microscopic contact angle that is determined by
the wetting properties. Starting from a known droplet shape, the possible configurations can
be followed under variation of the control parameters using numerical continuation. Control
parameters in this context are for example the droplet volume, the amplitude of the wetting
heterogeneity or the driving force. The numerical continuation was done using Auto07p[23].
The stability of the droplet shapes determined by this method can not be obtained by this
method and has to be determined separately, for example by comparison to the energy land-
scape for the same system parameters.

In the third section, the main simulation method is introduced: To understand the dynamics
of the droplet after depinning, the dynamics of a free interface in the Stokes limit are mod-
eled using Boundary Element Methods (BEM). It is followed by a discussion of difficulties
encountered during the implementation.

To compare the range of validity to another method for modeling the dynamics of fluid
interfaces, this is complemented by a method to solve the thin film equation for systems with
three-phase contact lines and Navier slip condition at the substrate. Additionally, the droplet
dynamics are studied with a contact line dominated dynamics approach for comparison. In
the contact line dominated dynamics model, the shape of the interface is assumed to be in the
static equilibrium for a given contact line position, with the dissipation localised at the contact
line. To account for the dissipation in this region, a constitutive law is introduced at the
contact line that relates the deviation of the contact angle obtained by energy minimisation of
the free interface from the contact angle determined by the substrate properties to the velocity
of the contact line. With this law, the contact line position can change over time and droplet
dynamics can be studied.

All systems discussed in the present work are two-dimensional / translationally invariant
in the third dimension. Therefore, a droplet moving over a substrate does not have a contact
line, but rather a front and a back contact point.

3.1 Static interface configurations from a free energy approach

Static fluid interfaces take energetically minimal configurations, i.e. the energy increases for
any infinitesimal variation of the shape. On a homogeneous flat substrate, only one stable
droplet shape exists, i.e. there are no additional local minima. On a heterogeneous substrate,
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there can be a set of local minima. These describe different static configurations with different
baselength, leading to contact angle hysteresis.

Introducing a volume force in the system is equivalent to introducing a potential that makes
solutions that were displaced in direction of the volume force energetically more favorable.
On a homogeneous substrate, the solution is invariant under translation. Therefore no more
static solutions exist when a driving force is introduced, as the droplet can always reach an
energetically more favorable state by displacement. In the heterogeneous case, stable droplet
solutions are represented by local minima, which are generally not translationally invariant.
Introducing a small volume force reduces the depth of the minimum, but does not necessarily
eliminate it. Therefore, the locally stable solutions do not necessarily vanish when introducing
a small driving force in the system.

Fig. 3.1: Illustration of the model system, a droplet on a topographically flat
substrate with position dependent wetting energy w(x). The position
of the front and back contact line are x f and xb, determining the droplet
baselength l and center-of-base xc. The driving force is given by µ,
`free characterizes the length of the free interface. The droplet area and
surface tension are normalized to unity.

In this section this approach is introduced for the model system of chapter 5, a droplet on
a chemically heterogeneous substrate and a volume force pointing parallel to the substrate.
Chemically heterogeneous in this context means that the substrate has a position dependent
wetting energy. Figure 3.1 shows an illustration of the system. The position of the droplet
on the substrate is described by the droplet baselength l = x f − xb and the center-of-base
xc = (x f + xb)/2. The center of base is not necessarily the lateral position of the center of
mass, as it can shift when the free interface is deformed by a driving force.

To model the static side of the depinning process, i.e. to determine for which range of pa-
rameters pinned solutions exist, a free energy consideration is employed. First, the minimal
configuration of the free interface for any given position of the front and the back contact
line is determined. This makes it possible to determine and present the energy of the droplet
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configuration in dependence of of the baselength and center of base as energy landscape. By
introducing this parameterization, the dimensionality of the system is reduced from the con-
tinuum of possible interface shapes of the droplet to the two coordinates describing the contact
line positions. Minima in this energy landscape now represent stable stationary droplet solu-
tions. When no more minima exist in this reduced configuration space, the only remaining
class of solutions are moving droplets.
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Fig. 3.2: (a) Illustration of equilibrium droplet configurations on substrates with
positive or negative wetting energies (b) Energy landscape for a droplet
on a neutrally wetting substrate showing a translationally invariant local
minimum for semi-circular droplets at l = 1.59, as this shape minimizes
the length of the free interface

The total energy of the system can be separated in three contributions: Efree, the energy of
the free interface, is determined by the length of the free interface and the surface tension plus
the displacement of the center of mass compared to xc:

Efree(xc, l) = min
S∈S(l)

{γ`+µ(xcm− xc)}

with S(l) as the set of droplet shapes with the chosen baselength and xcm as the center of
mass. It depends on the base length l, and the volume force µ, deforming the droplet. This
expression does not depend on the position of the droplet on the substrate, i.e. xc, as the
displacement of the center of mass to xc stays constant. Therefore it gives a contribution
to the energy landscape that is invariant along this dimension. The contribution Efree(l) is
determined by a minimization of the free interface for a given baselength l using Surface
Evolver[15] in 2D mode with a fixed front and back contact point and the corresponding
volume constraint. Figure 3.2(b) shows the energy landscape when only considering the
contribution of the free interface. It is translationally invariant in xc-direction and shows a
minimum at the baselength that corresponds to a 90◦ contact angle, i.e. a half sphere.

Esub, the wetting energy of the substrate covered by the droplet depends on the base length
l, the center-of-base of the droplet xc, and w(x), the position-dependent wetting energy of the
substrate and is determined by the integral

Esub =
∫ xc+l/2

xc−l/2
w(x)dx
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It is independent of the driving force acting in the system or the shape of the droplet, if the
position of the contact lines is the same. Summing up Efree and Esub for a sinusoidal wetting
pattern of the form

w(x) = w0 +∆wsin(2πkx)

results in the energy landscape displayed in Fig. 3.3, with a periodicity corresponding to
the periodicity of the heterogeneity. This way, the
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Eg, the contribution of the potential energy of the droplet, depends on xc and the driving
force µ. It is the energy obtained by displacing the droplet in the gravitational field driving
the droplet, given by

Eg =−µxc

. The total energy of a droplet configuration determined by l and xc, depending on µ and w(x)
can be written as:

E(l,xc)µ,w(x) = Efree(l)µ +Esub(l,xc)w(x)+Eg(xc)µ

While the first contribution has to be determined numerically for the case µ 6= 0, as the
interfacial shape deviates from the circular shape, the expressions for Esub and Eg can be
given analytically.

From this, the 2D energy landscape for a fixed driving force µ and heterogeneity w(x)
can be computed. Minima in this resulting E(l,xc) energy landscape represent pinned states
of the droplet. As the driving force is increased, the amplitude of the heterogeneity can be
reduced up to the point where no more local minima exist. This driving force where the
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last minimum disappears defines the depinning force µ↑ above which only moving droplets
remain as solution.

Determining local extrema on a two-dimensional Energy landscape gets significantly faster
when constraining the search to one-dimensional subspaces. This was done by first evaluating
the expression

∂E(l,xc)

∂xc
= 0

which contains only the analytical expressions for Esub and Eg. Points where the derivative
in xc-direction vanishes have to fulfill the constraint:

∂Efree

∂xc
+

∂Esub

∂xc
+

∂Eg

∂xc
= 0

which is equivalent to

0+
dEsub

dxc
−µ = 0

On the resulting one-dimensional subspace of the energy landscape where this constraint
is fulfilled, the second requirement for a local extremum was evaluated numerically:

∂E(l,xc)

∂l
= 0

The signs of the eigenvalues of the Hessian obtained at these points determine the stability
of the corresponding solutions.

3.2 Continuation of static interface configurations

An alternative to the interface minimization approach to obtain the static configurations of
interfaces in a gravitational field is to compute shapes with a constant pressure directly. As
the shape of droplets without overhangs can be written as h(x) in the Monge representation,
the goal is to find solutions to the equation

const = γκ(x)−µx

with γ as the interfacial tension and µ as the volume force acting on the fluid. The curvature
κ(x) of the droplet given by

κ(x) =
h(x)′′

(1+αh(x)′2)3/2

The boundary conditions of the problem are given by the contact lines that are constrained
to the substrate and the substrate wetting energy at the contact line position, which determines
the slope of the interface at the substrate, as described by Young’s angle[95]. Additionally,
an integral boundary condition is introduced for the volume constraint. Here, α represents
a transition parameter to change the curvature term in the flat interface limit κ(x) = h(x)′′

for α = 0 to the full curvature term for α = 1. Introducing this parameter is necessary, as
the droplet shape using the reduced curvature term of the flat interface limit already deviates
strongly from a spherical cap at a contact angle of 45◦.

The solutions to this equation describing droplets on a chemically heterogeneous substate
are obtained with the free software package Auto07p[23]. It is a tool for numerical con-
tinuation of solutions to ordinary differential equations. The code to treat this problem was
developed with Prof. Uwe Thiele[33].



24

The process of numerical continuation of solutions starts with a solution of a differential
equation with boundary conditions for an initial set of parameters. For a small change in one
of the parameters, the variation of the solution can be computed. This way, solution families
for different values of this parameter can be computed while keeping the other parameters
constant. In this process, bifurcation points, where multiple solution branches meet, can be
computed.

An example run for this problem takes the following form: The continuation was started
with an analytical solution for the reduced curvature case κ(x) = h(x)′′ on a homogeneous
substrate without driving, so α = 0, w(x) = w0 and µ = 0. This initial solution takes the form
of a parabola with the appropriate slope at the contact points, with the curvature determined
from the volume constraint. This initial solution was continued along the strength of the
heterogeneity, giving the solution of a droplet on a substrate with the chosen strength of the
heterogeneity. Then it is continued along the transition parameter α to enable the full curva-
ture term, leading to a circular arc. From there, the solution is continued along the periodicity
of the heterogeneity. For the chosen values of k, the obtained solution was continued along
the driving force to the get the depinning diagram showing at which driving force no more
stable solution exists. The free energy approach from the previous section was employed to
determine the stability of the solution branches by comparing the obtained solutions to the
extrema on the energy landscape for selected parameters.

Due to the Monge representation of the interface as h(x), this method is limited to flat
droplets without overhangs. While determining minima and saddle points in close proximity
in shallow energy landscapes is difficult, with the continuation approach unstable solution
branches can be followed up to the fold. This makes it possible to capture the turning points
in the bifurcation diagram more precisely than the free energy approach. These states are
especially important when studying the depinning transition.

Auto07p is also used in the section discussing the simplified coupled ordinary differential
equation model for droplet dynamics to obtain static and time-periodic solutions.

3.3 Free interface flows in the Steady Stokes limit

To model the dynamics of the droplet after the onset of motion, we study the time evolution
of a free interface in a flow dominated by viscous dissipation, as previously introduced. The
idea is to determine the flow field corresponding to the distribution of normal stresses on the
boundary and with this evolve the interface over time.

As the Stokes equation is a linear partial differential equation(PDE), the superposition prin-
ciple holds. This implies that any flow field can be represented as a superposition of funda-
mental solutions to the PDE. The fundamental solution is the response of the system to a
singular driving force acting on the system for a given set of boundary conditions, also re-
ferred to as Green’s function. With the Green’s function the Steady Stokes equation can be
rewritten as a boundary value problem (BVP).

Following Pozrikidis[55, 56], the velocity field of the fundamental solution to the Steady
Stokes equation in two dimensions with a singular driving force g located at x0 of the form

0 =−∇p+η∇
2u+δ(x− x0)g

∇u = 0
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where p gives the fluid pressure, η the viscosity and u the velocity field has the form

u(x) =
1

4πη
Ĝ(x,x0)g
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Fig. 3.4: Flow field (black) induced by a Stokeslet in the center of the system
(red) pointing in (1,1) direction. Equivalent to the flow field around
a small particle dragged with constant force through a viscous liq-
uid in an unbounded domain. The distance at which the vortices are
formed is determined by the characteristic length scale used for non-
dimensionalisation.

with x as the position vector to the point where the flow field is evaluated and x0 as the
origin of the driving force. Ĝ, the Green’s function of a free Stokes flow, also known as
Stokeslet, written in components, is given by:

Gi j(x,x0) =−δi j lnr+
(x− x0)i(x− x0) j

r2

with r =
√
(x− x0)2 and i, j,k as indices for the component in Carthesian coordinates. The

flow field corresponding to a points force pointing in (1,1) direction is illustrated in Fig. 3.4.
Together with the stress Green function, as given by

Ti jk(x,x0) =−4
(x− x0)i(x− x0) j(x− x0)k

r4 .

the flow velocity for a point x0 within a closed domain C can be obtained from the velocity
and surface force represented by u(x) and the normal component of the stress f (x) =σ(x)n(x)
(with n as the normal vector on the domain boundary) from

u j(x0) =
1

4πη

∫
C

G ji(x0,x) fi(x)dl(x)+
1

4π

∫
C

uiTi jk(x,x0)nk(x)dl(x) (3.1)
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C represents the contour of the droplet volume. The point x0 can be taken at any point in
the fluid volume, also at the domain boundaries. This gives a self-consistency problem to
solve on the boundary in terms of u(x) and f (x), with x on the domain boundary. The idea is
that the velocity obtained from eqn. 3.1 for a point at the boundary on the left hand side of
the equation has to be consistent with the velocity on the boundary on the right hand side.

In the case studied here, there are two different kinds of boundary conditions: First, the
boundary condition of a free interface, given by the normal stress. It is determined by the
mean curvature plus the contribution of the volume force. Second, the boundary condition of
a solid substrate with Navier slip condition, as introduced previously.

To treat this problem numerically, the boundary is represented by a linear elements with
increased refinement close to the contact line region. After solving the boundary value prob-
lem self-consistently, the free interface is evolved in the time step with the obtained normal
velocity. On the last element of the free interface at the contact line, a position-dependent
microscopic contact angle is enforced to introduce the heterogeneity of the substrate wetting
energy.

The advantage of BEM is that only the domain boundary has to be taken into account.
Compared to finite element methods with volume elements where the bulk has to be resolved
to calculate the time evolution of the flow field, less discrete elements are required to ob-
tain the same resolution. With an appropriately chosen non-uniform distribution of interface
elements, the relevant region around the contact line can be resolved over multiple orders of
magnitude. The disadvantage of using BEM compared to directly solving the Stokes equation
in the bulk is the densely populated interaction matrix representing eqn. 3.1, as the interac-
tion terms from the Green function go beyond the next neighbours. Solving the boundary
value problem involves inverting this matrix. As the matrix is densely populated, the inver-
sion problem becomes computationally significantly more expensive compared to the sparse
matrices occurring in volume-mesh-based methods.

A similar method was already utilized by Schleizer et al. in [67] to model moving droplets,
but with the assumption of a no-slip boundary condition. Instead, the finite element size at
the contact line which results in a non-vanishing velocity at the collocation point is used to
implement a slip condition at the contact line. The discretization used for the simulations is
chosen such that the “numerical slip” becomes negligible compared to the slip included in the
model.

The following subsections discuss the implementation of the Stokes solver using boundary
element methods with time evolution of the free interface. The two most important refer-
ence books for the implementation were Ref. [55] for the theoretical foundation and Ref.
[54] for practical implementation recommendations. An overview article of Pozrikidis about
“Interfacial Dynamics in Stokes Flow” is Ref. [56]. The basic flow of the BEM algorithm is:

1. Set up the geometry with the corresponding boundary conditions

2. calculate the interaction integrals

3. solve the matrix problem

4. evolve the interface, introduce the contact line model

5. remesh the grid, update boundary conditions

6. (write the current system status to disk, optional)
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7. goto 2

Each of these parts posed certain challenges that are insufficiently documented in the liter-
ature and will be addressed in the following subsections separately. The code was developed
mainly in Python (available at http://www.python.org) for the ease of use together with Scipy
(available at http://www.scipy.org) for fast array operations. Especially performance critical
parts of the program were written in C, as described in the section “Optimization”.

3.3.1 Set up the geometry

The boundary of the liquid domain forming the droplet can be considered to be composed of
free interface segments and solid segments. The segments are composed of a series of linear
elements, described by markup points at their ends and a collocation point in the center, where
the stresses and velocities are determined. The boundary conditions parallel and normal to
the free interface are

f‖ = 0

f⊥ = κ+µx

with κ representing the curvature of the interface over the segment and µ the equivalent
hydrostatic pressure to represent the volume force. The curvature is given by:

κ =
dθ

dS

with θ, the tangential angle and S, the arc length parameter. A numerical estimation at the
markup points between segments i and i+1 can be given as

κ =
(θi+1−θi)

(li+1 + li)/2

with θi as the angle of the tangent vector of the corresponding segment with the surface
normal and li its length. The curvature at the collocation point was chosen as average of the
two curvatures determined at the neighbouring markup points.

The boundary conditions for the solid segments are u⊥ = 0, the non-penetration condition,
and u‖= u0+

ls
η

f‖ to represent a wall driven with a constant velocity and Navier slip condition.
When driving a fluid interface over a heterogeneous substrate, the strongest variation of the

interface shape is expected to occur close to the contact line. Therefore, a non-uniform distri-
bution should be used with an increased refinement close to the contact line. The spacing has
to fulfill the following criteria: The distance of the first collocation point from the substrate
is an input parameter. The length of the elements should be approximately constant for the
first elements and then increase continuously. The length scale up to which this non-uniform
spacing should be employed can be chosen independently of the number of elements to be
used in this region.

Therefore, the contact line region is resolved more detailed with a spacing between the
elements of the form

hi = ihmin(
hmax

Nhmin
)(i−1)/(N−1)

with i as the counting variable, hmin as the height of the last element, hmax as the height up
to which the system should be discretised and N as the number of elements in the contact line

http://www.python.org
http://www.scipy.org
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Fig. 3.5: Illustration of the curvature estimation on the free interface

region. This distribution of heights gives nearly uniform element length close to the contact
line with hi ≈ ihmin that increases significantly as it approaches hmax. The remaining part of
the free interface is discretised using an element length approximately equal to hN−hN−1.

The minimal element size has been chosen approximately one order of magnitude smaller
than the slip length in the system. When using an element size of the same scale as the
physical slip length introduced in the system, the “numerical slip” due to the discretization
will increase the effective observed slip length significantly.

3.3.2 Calculate the matrix entries

The matrix elements in the discretised form of eqn. 3.1 take the form of an integral over the
$i$th element with a source stokeslet or stresslet at the position of the collocation point:

A ji =
1

4πη

∫
Ci

G jidl

for the Green function and
B ji =

1
4π

∫
Ci

Ti jknkdl

for the tensor of the stress Green function. These expressions are straightforward to evaluate,
but the self-interaction integrals where i = j will contain singular terms.

The entries for the A and B matrices were calculated by numerical integration over the
corresponding element with the adaptive integrator for functions with an integrable singu-
larity(QAGS function) of the Gnu Scientific Library[27]. It can integrate over the singular-
ities of the Green function arising when x0 lies on the element by adaptively applying the
Gauss-Kronrod 21-point integration rule together with the Wynn epsilon-algorithm to speed
up convergence, as described in the GSL manual.
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It is possible to integrate first over the stress Green function and then take the product with
the normal vector. But taking the product first is recommended, since it halves the number
of required integrals. Also, for the self-interaction terms Aii and Bii, using the analytical
expression where available is recommended. While the integrator works with integrable sin-
gularities, the performance is significantly lower than on non-singular elements.

3.3.3 Solve the matrix problem

First, the matrix entries have to be transformed in the normal/tangential basis of the individual
elements to express the boundary conditions in terms of normal and tangential components, as
presented previously. Equation 3.1 in the discretised form, with ∗ signaling the transformed
base, takes the form:

u∗j = A∗ji f ∗i +B∗jiu
∗
i

Using the delta-function, the following linear equation has to hold for all j:

0 = A∗ji f ∗i +(B∗ji−δ ji)u∗i

The coefficients in these equations can now be sorted to construct a vector of known quan-
tities. This results in a matrix problem for the velocities and stresses not determined by the
boundary conditions of the problem.

After solving the problem using a general solver suitable for dense matrices from a standard
linear algebra package, the resulting normal and tangential velocities and stresses should be
transformed back. At this point it is possible to reinsert the resulting velocity and stress terms
in the original matrix equation to validate that the problem is solved self-consistently.

3.3.4 Evolve the Interface, introduce the Contact Line model

The obtained velocities at the collocation points in the center of the linear elements of the free
interface are linearly interpolated to obtain the displacement velocity the markup points.

There are different approaches to introduce the local contact angle at the three-phase con-
tact line in the model. An interfacial potential with a minimum at the substrate can be in-
troduced to create a height dependent pressure term, similar to the precursor model. The
estimator of the curvature at the contact line can be rewritten to incorporate the slope bound-
ary condition or the slope of the last element can be set to the local equilibrium contact angle.

Since the interface is resolved down to an order of magnitude below the slip length, the in-
terfacial contact angle is not expected to deviate strongly from the equilibrium contact angle.
Therefore, the third option of enforcing the microscopic equilibrium contact angle on the last
element was chosen.

3.3.5 Remesh, Refresh

Only moving the collocation points according to the normal velocities is insufficient, as the
element length might change significantly over time. This leads to instabilities as the elements
become too long or too short, making remeshing necessary. Two different approaches were
taken for remeshing: In the channel geometry, the height distribution of the markup points
was kept fixed, i.e. the markup points moved on horizontal rails with the projected velocity
of the free interface.
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The droplet case is not so straightforward, as the height of the droplet changes with time.
In the contact line region, below a transition height chosen to be approximately 10% of the
droplet size, the previously introduced non-uniform distribution of distances from the sub-
strate for the markup points was chosen, and maintained. For the free interface of the droplet
away from the contact line, the markup points were fitted with a third-order spline to obtain
equally-spaced markup points again after the time evolution step.

Two other approaches proved unsuccessful: Simple linear interpolation to remesh the free
interface lead to a significant volume loss. Algorithms that dynamically generated and elimi-
nated segments at the point where the transition to the contact line region occurs encountered
difficulties with the curvature estimator in this region. When an element became too short
(< 50% of the target length) and was eliminated or stretched (> 150% of the target length) to
the point that a new element was inserted, the local curvature became slightly discontinuous,
which lead to an extra point stress and a displacement of neighbouring points.

3.3.6 Optimisation

There are two computationally expensive parts in the BEM code: the first consists of popu-
lating the matrix with the entries that result from evaluating the line integrals, the second is
solving the matrix inversion problem. Calling the integrator from the gnu scientific library
using the python wrapper introduced a significant overhead, as a python function call has to
be handled whenever the Green function is evaluated at a point by it. Therefore this part of
the code was handled in a C subroutine embedded in the code using scipy.weave.inline.

In test runs, the integrator still accounted for 80% of the runtime. This problem is easily
parallelizable, since the integrals for computation of the matrix entries can be evaluated in-
dependently. This was done using an OpenMPI (http://www.open-mpi.org/) wrapper named
mpi4py (http://code.google.com/p/mpi4py/) to distribute the calculation of the matrix ele-
ments over multiple processes. A significant speedup was achieved for up to 4 parallel pro-
cesses performing the integrations, in which case the integrator accounted for about 55% of
the runtime of the program. A point that might be addressed in the future is the implementa-
tion of a parallelized solver for dense matrix problem, but as this problem is still under active
research in the computer science community1, this was not attempted in the course of the
present work.

The chosen discretization procedure with increased refinement close to the contact line
keeps the number of elements low enough that the matrix inversion did not dominate the
running time behavior of the code. The simulations in the present work were run with ap-
proximately 300-500 collocation points.

3.3.7 Testing

The correctness of the code has been checked with the following tests. They are used to
ensure each part of the code behaves as intended and the physics is represented correctly:

• The integrator for the line integrals has been evaluated by setting up a closed domain
of elements once around the singularity in the Stokeslet/Stresslet and once away from

1The content of a 2013 minisymposium at a SIAM conference on this topic can be found here:
http://web.eecs.utk.edu/l̃uszczek/conf/siamcse2013_eigvalsolv/

http://www.open-mpi.org/
http://code.google.com/p/mpi4py/
http://web.eecs.utk.edu/~luszczek/conf/siamcse2013_eigvalsolv/
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it and checking the following identities, as presented in [54], with C as the contour of a
control volume Ω: ∫

C
ni(x)Gi j(x,x0)dl = 0

if x0 is outside of the control volume, i.e. x0 6∈Ω:∫
C

Ti jk(x,x0)nk(x)dl(x) = 0

if x0 is in the control volume, i.e. x0 ∈Ω:∫
C

Ti jk(x,x0)nk(x)dl(x) = δi j

If the precision of the integrator is insufficient, there will be a residue, i.e. the result of
the integral will be not exactly zero or one.

• To validate the stress boundary conditions, a circular domain with a stress boundary
condition of the form f⊥ = const, f‖ = 0 in an inviscid fluid was set up to confirm that
the fluid velocities on the interface become zero.

• By replacing the circle with an ellipse and allowing for the ellipse to evolve, volume
conservation has be verified and the relaxation time scale compared to published results,
as presented in Ref. [78].

• For mixed boundary conditions, a box representing a gravity driven channel flow with
periodic boundary conditions in x-direction and walls with partial slip in y-direction has
been modeled. To confirm the slip condition is implemented correctly, this system has
to exhibit a parabolic flow profile with an extrapolation length to zero velocity identical
to the slip length. Another system that is suitable for testing is the deformation of a
droplet in a shear flow, as discussed in Ref. [58].

• A simple free interface flow that has been studied extensively is a droplet spreading
on a homogeneous substrate for different wetting conditions[82, 68]. In this system,
the spreading velocity of a droplet depending on the baselength can be determined and
compared to the analytical scaling given by Tanner[82].

As the main test if free interface flows are simulated physically correct, it was checked if
the Cox-Voinov scaling for the shape of a moving fluid interface close to the contact line is
obtained. For this, a droplet in a shear geometry is simulated. In this geometry a droplet is
located between two substrates with Navier slip condition at the top and the bottom that move
in opposing direction with constant velocity.

The free interface forms a straight line in equilibrium as the top and bottom wall were
chosen to be neutrally wetting, i.e. with a substrate contact angle of 90◦. Therefore, the
observed interfacial configurations for moving substrates should agree with the predictions
for interface configurations derived as perturbations from a moving fluid wedge.

The code can be validated by confirming that the obtained steady profile of the free interface
for a homogeneous substrate fulfills the Cox-Voinov relation. The self-similar solution for the
shape of a moving contact line, as discussed previously, is:

θ(x)3 = θ
3
0 +9Ca ln(x/lc) (3.2)
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with θ0 as the microscopic contact angle, x the distance to the contact line, and lc a micro-
scopic length scale determining the lower cutoff.

The numerical simulations confirm the scaling for the intermediate length scales above the
slip length and an order of magnitude below the system size. Above this length scale, the
macroscopic solution determined by recirculation in the bulk flow away from the contact line
determines the shape of the fluid interface. The scaling and the deviation for small and high
distances can be seen in Fig. 3.6(b), which shows the obtained stationary solution plotted
according to the equation 3.2. When studying the non-steady states of the interface before
it reaches an equilibrium, the capillary velocity Ca used in the equation should not be deter-
mined with the driving velocity of the system, as shown in Fig. 3.6(a), but with the current
velocity of the contact relative to the substrate, as shown in Fig. 3.6(b). Even before the
global steady state is reached, the fluid interface follows the scaling law in a region close to
the contact line, when rescaling with the local contact line velocity.
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Fig. 3.6: Slope of the fluid interface over distance to the contact line for differ-
ent times as it approaches the steady state, rescaled to show logarithmic
dependence with the distance from the contact line of the Cox-Voinov
scaling for ls = 1.0 · 10−4, Ca = 0.05. (a) rescaled with the capillary
number of the system and (b) rescaled with the capillary number deter-
mined by the contact line velocity relative to the substrate. The dashed
line shows a unit slope.

An interesting aspect is the fact that the microscopic length scale, i.e. the point where the
scaling law approaches θ0, in the equation is not exactly the slip length of our system. If this
was the case, the extrapolated line from the linear regime in the plot would cross the origin
(0,0) in the graph. The most probable explanation for this is that during the derivation of the
scaling law it is assumed that the microscopic contact angle θ0 gives the slope of the interface
at the lower cut-off height lc. In contrast to that, in our system the microscopic contact angle
is enforced on the last element, given by the last data point in Fig. 3.6(b), around one order
of magnitude below the slip length. That means the contact angle observed at ls will already
deviate slightly from the equilibrium contact angle due to the hydrodynamic deformation
taking place in the slip region.

It was also attempted to show the Cox-Voinov scaling for initially curved interfaces. The
influence of the curvature on the equilibrium shape of the fluid interface is not negligible
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for more than one order of magnitude below the system size and could not be corrected for,
therefore the attempt to resolve the scaling in space for that system did not succeed.

3.4 Time dependent thin film equation

To compare the results obtained for droplets with the boundary element method with the
results from the lubrication approximation, a solver for the thin film equation with “sharp”
contact lines and Navier slip condition was implemented. Implementing code for the thin film
equation with a precursor film is easier, as it allows for periodic boundary conditions with a
fixed domain on which the function is evaluated. On the other hand, with the sharp contact
line approach the results can be compared directly to the BEM simulations. Also, as there is
no precursor film, no flow through the precursor film has to be considered.

If the film thickness is small compared to the length scale on which the film thickness
changes and the slip is small compared to the film thickness, it can be assumed that the
flow profile is locally equal to the profile in a film with homogeneous thickness and constant
pressure gradient[6, 48], given by a parabola. In this case the fluid mobility, i.e. the volume
flux Q over the pressure gradient ∂x p = ∂p

∂x is given by

Q
∂x p

=
h3

3
+ lsh2

with h giving the film thickness and ls the slip length of the substrate. For non-
dimensionalization, the surface tension γ, the viscosity η and droplet volume were set to
unity. Together with the approximation of the curvature for flat interfaces where κ = ∂xxh, as
introduced previously, the thin film equation takes the form

∂th(x, t) =−∂xQ =−∂x((h3/3+ lsh2)(∂x(∂xxh+µx)))

with h as the position and time dependent film thickness, ls as the slip length and µ as the
driving force parallel to the substrate.

The position of the droplet on the substrate and the microscopic equilibrium contact angles
θl,θr give the boundary conditions at the position of the contact lines xl and xr as h(xl) = 0,
h(xr) = 0, h′(xl) = tan(θl), h′(xr) =− tan(θr).

To determine the time evolution of the free interface, the fluid interface is discretised in
space as (hi,xi) with a second-order estimator for the curvature[75]. As the droplet base-
length changes with time, it is necessary to introduce an additional evolution equation for the
support according to the kinematic boundary condition on the contact lines. This allows for a
varying baselength while making sure that the support points are maintained at equal spacing.
The height evolution equation was modified accordingly to account for the moving frame of
reference.

Directly enforcing the microscopic contact angle on the last element lead to numerical in-
stabilities in this system, therefore the slope boundary condition is accounted for by a numer-
ical estimator for the third derivative that incorporates the boundary condition. The modified
curvature estimator is presented in the work of Souza[75]. A standard curvature estimator
is based on inverting a Taylor expansion. Instead using higher derivatives of a function in
a point xi to estimate the shape of the function in the proximity, the shape of the function
is used to estimate a higher derivative in xi. This can be rewritten to consider not only the
function values at neighbouring points xi±1,2,..., but also derivatives at those determined by
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the boundary conditions. This approach can also be extended to non-constant spacings of the
support points. The resulting set of 2N ordinary differential equations is integrated using the
LSODA[52] library. The result is a time series (hi,xi)t=t j of the interface profiles.

3.5 Effective contact line dynamics

It was proposed by Santos et al.[63] that in the limit of small slip lengths, it can be assumed
that the dynamics is dominated by effects close to the contact line. To study droplets in this
limit and to validate up to which point this model holds, a quasi-static model of contact line
dynamics can be introduced, similar to the work of Joanny and Robbins[38]. The assumption
is that the macroscopic droplet shape represents a minimum of the interfacial energy for a
given contact line position without hydrodynamic contributions, as described in section 3.1.

The motion of the contact line is now determined by the uncompensated Young stress due
to the difference between the macroscopic contact angle θ given by the droplet shape and the
prescribed microscopic equilibrium contact angle θ0. The contact line velocity is given by

x′ = α(cos(θ)− cos(θ0))

with α being a friction coefficient setting the time scale of the droplet motion. It can be
argued if instead of the stress imbalance at the contact line, as used here, an expression in
higher powers of θ should be used. One example would a law similar to Cox-Voinov, where
the contact line velocity u displays a scaling of the form u ∝ θ3−θ3

0. As this model can only
hold for small velocities and correspondingly small contact angle deviations, most models of
such a form can be linearized to a form as presented here.

When considering the specific case of a droplet on a substrate, the shape of the droplet
is determined by minimizing the energy functional under a volume constraint for different
base length l at the chosen driving force using Surface Evolver, as described in the previous
section. The obtained front and back contact angles depending on the driving force and base
length were stored in a lookup table. On this dataset, a linearly interpolating function was
applied, giving functions θ f ,b(l). Using this, the system of ODEs given by

x′( f ,b) =±α(cos(θ( f ,b)(x f − xb))− cos(θ0(x( f ,b))))

was integrated to obtain the droplet motion in the quasi-static limit. The advantage of this
approach is that it is not necessary to run the shape minimization after every time step to
obtain the solution.

The model can be extended when a characteristic length scale on which the effect of the
heterogeneity can be observed has been established. This is one of the points to be discussed
in the following chapter.



4 Dynamic contact angles on heterogeneous
substrates

Moving contact lines on homogeneous substrates received a lot of attention over the last 40
years[18, 90, 91, 25], as mentioned previously. When treating the problem of a fluid interface
driven with constant velocity analytically, the goal is to obtain stationary solutions to the
Stokes equation describing the time evolution of a free interface flow that fulfill the boundary
conditions, as given by the slip length and the contact angle. On a substrate with a wetting
energy that varies with the position on the substrate, a stationary solution will not fulfill the
condition of a varying contact angle at the contact line. Therefore understanding the dynamics
on a spatially periodic patterned substrate requires the computation of time periodic solutions.
This is a step towards a deeper understanding of contact line dynamics on generalized, i.e.
not necessarily periodic, heterogeneous surfaces.

For the case of a homogeneous substrate, predictions can be made for the slope of the
interface that can be observed at a given distance from the contact line[18]. This is not the
case for surfaces with a position dependent wetting energy. There, such a simplified model
that relates the dynamic contact angle, i.e. the slope of the interface at a certain distance from
the contact line, with the wetting properties of the substrate and the driving applied to the
system for a given macroscopic geometry is missing.

Two main cases can be distinguished in which driven contact lines can be studied: In one
case, the fluid front is driven with a constant velocity and in the other case, with a constant
force. In this chapter, the case of driving with a constant velocity is studied. In the following
chapter, the problem of a droplet driven by a constant force is considered.

This section first presents the observations from studying the time evolution of free inter-
faces driven over a topographically flat substrate with a sinusoidally varying wetting energy
in the Steady Stokes limit. In the geometry shown in Fig. 4.1, the observed dynamic contact
angles in dependence of the substrate wetting energy and observation height are studied. It
shows how the interface fluctuations are reduced with increasing distance from the contact
line and increased driving velocity. It also shows how the sampling of the microscopic con-
tact angle through the contact line influences the dynamic contact angle observed away from
the contact line.

To separate the deformation of the free interface due to viscous stresses from the deforma-
tion of the global shape due to the variation of the microscopic contact angle, this is followed
by a section on the response of a stationary fluid interface to a contact angle that is varied
periodically in time. The response of the contact line depending on frequency and amplitude
of the contact angle variation is studied. The response of the contact line is characterized the
displacement over time and the height up to which the variation can be observed. As the driv-
ing frequency is increased for a given wetting energy contrast, the displacement is reduced
and a phase shift between the driving signal and the displacement occurs.

The problem of a contact line moving over a structured substrate is closely related to a
time periodic variation of the contact angle. In both cases the microscopic contact angle at
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Fig. 4.1: Illustration of the system with the droplet pinned at the top moving
over a substrate with fixed velocity u. The position dependent wetting
energy w(x) of the substrate is sketched underneath. It determines the
contact angles θs

( f ,b) at the contact lines depending on time and contact
line position. At every height h a macroscopic contact angle θ( f ,b) can
be defined from the local slope of the interface.

the contact line varies with time. In one case, it varies with the position of the contact line
on the substrate, that changes with time as the contact line moves. In the other case, it varies
directly with time. This connection makes it possible to construct a simplified model for the
contact line motion over a heterogeneous substrate. The idea is to use a mode expansion of the
displacement to represent the displacement of the contact line compared to the equilibrium
position as superposition of responses to time periodic contact angle variations. From this,
the effective velocity dependent microscopic contact angles can be obtained. The relations for
the contact line displacements and time averaged microscopic contact angles are compared
to the full dynamical simulations and show a good agreement. Finally, this is compared to
a simplified model based on a contact line friction approach currently considered suitable,
similar to the work of Joanny[38].

4.1 Droplet in a shear geometry

The system under consideration, as presented in Fig. 4.1, is a droplet with pinned contact
lines at the front and back end of the top plate. This plate pulls the droplet with constant
velocity over a topographically flat substrate with a position dependent wetting energy. The
droplet is surrounded by an inviscid fluid. In this geometry both the time dependent dynamic
contact angle at the advancing and receding front can be studied at a given distance from the
contact line for different driving velocities. One example where a similar geometry might be
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used is an immersion lithography setup, where the droplet is pulled by the projection optics
over the wafer[49].

The spatially periodic wetting energy that determines the local equilibrium contact angle
of the substrate was chosen as

w(x) = w0 +∆wcos(2πkx),

with w0 being the spatial average wetting energy, ∆w determining the amplitude of the
wetting energy variation and k as the periodicity. The system is non-dimensionalized with the
characteristic length scale given by the channel width, the surface tension and viscosity set to
unity. For the simulations presented here, the distance between the pinning sites of the front
and the back contact line at the top was chosen as two times the channel height. Including
both contact lines makes it possible to study the case of an advancing and of a receding contact
line in one simulation run. Additionally, it provides a natural closure for the domain under
consideration.

Unless noted otherwise, the simulations presented here were run with an average wetting
energy w0 = 0, resulting in a 90◦ contact angle and a straight interface in equilibrium, by
setting the droplet volume to 2. This brings the initial configuration of the system closer to
the assumption of moving contact lines as perturbations of a wedge solution and eliminates
the difficulties associated with separating between the dynamic deformation and the inherent
curvature of a macroscopic solution with non-zero Laplace pressure.

4.1.1 Different measures for the dynamic contact angle

Before considering heterogeneous substrates, the case of a contact line moving over a homo-
geneous substrate has to be considered. Obtaining a good estimation for a dynamic contact
angle is difficult, especially in experiments. A commonly used approach is fitting the observed
interface shape close to the contact line with an analytical function to obtain an extrapolated
macroscopic contact angle. This approach is sensitive to the resolution limits of the method
used to visualize the fluid interface in the experimental setup. This point is highlighted in the
experimental work of Marsh et al.[44], which studied the dependence of the dynamic contact
angle on the distance from the substrate.

In numerical simulations the shape of the interface can be evaluated at arbitrary heights.
This makes the local slope of the interface easily accessible and makes it possible to inves-
tigate the effect of the length scale on which the slope is observed. The observed interface
shapes at different driving velocities are illustrated in Fig. 4.2(a). The advancing fluid in-
terface is depicted, with the point fixed at height h = 1 moving to the right. As the driving
velocity is increased, the viscous bending and the displacement of the contact line compared
to the equilibrium position increases. Fig. 4.2(b) shows the obtained dynamic contact angles
over the driving velocity when measuring at different interface distances from the contact
line. As expected, the deviation from the microscopic contact angle increases with the shear
velocity and the distance from the contact line.

All of these datasets are outside of the range of validity of the Cox-Voinov scaling, which
breaks down already an order of magnitude below the system size, as shown in section 3.3.7.
Nonetheless, when taking only the advancing or receding contact angles, all of them can be
fitted reasonably well with the scaling law

θ
3 = θ

3
0 +9Ca ln(h/lfit) (4.1)
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when fixing the equilibrium contact angle θ0 = π/2 but leaving the slip length in the loga-
rithm as fitting parameter, as shown in Fig. 4.2(b). There, the dashed lines represent the result
of a least-squares fit of the Cox-Voinov scaling and the legend gives the obtained microscopic
length scale from the fit. Even though the agreement appears reasonably when considered
visually, the obtained slip length from the fit significantly underestimates the slip length in
the system, especially for high distances h.

−0.20 −0.15 −0.10 −0.05 0.00
displacement x

0.0

0.2

0.4

0.6

0.8

1.0

he
ig

ht
h

u=0.0125
u=0.025
u=0.0375

(a)

−0.10 −0.05 0.00 0.05 0.10
shear velocity u

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

m
ac

ro
sc

op
ic

co
nt

ac
ta

ng
le
θ

fitted scaling
h =0.1, lfit =0.076

h =0.2, lfit =0.089

h =0.3, lfit =0.051

h =0.4, lfit =0.024

h =0.5, lfit =0.017

(b)

Fig. 4.2: (a) Stationary profiles of an advancing fluid interface for different driv-
ing velocities u showing increased viscous bending with increasing ve-
locity and distance from the contact line, ls = 0.1 (b) Observed contact
angle at different heights h in the channel with homogeneous, neutrally
wetting substrate over driving velocity u. The graph illustrates the hy-
drodynamic deformation of free interface with increasing distance from
the contact line. Dashed lines show the result of fitting the advancing
contact angles with the Cox-Voinov scaling (eqn. 4.1) with the slip
length l f it determined from the fit, as shown in the legend. For all
graphs: w0 = 0.

Unless indicated otherwise, the macroscopic contact angle in the remaining section was
chosen as the contact angle derived from the slope of the interface at h = 0.5, in the center of
the channel.

4.1.2 Variation of contact angle over time

When introducing a position dependent wetting energy on the substrate, this system goes
from a stationary solution for a given velocity u, where the moving contact line has a constant
shape over time, to a time periodic solution. There, over the course of one period, the contact
line will approach a defect, get displaced until the depinning point is reached and then relax
back. Depending on the deviation of the initial configuration from the final state, it will take
multiple periods for the system to reach this periodic state.

Most studies do not consider these fluctuations of the observed contact angle, as they are
measuring on a length scale significantly above the characteristic length scale of the fluc-
tuations, even on significantly heterogeneous substrates. This changes when going closer
to the characteristic defect length scale, as done in this section, where the fluctuations and
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their decay is still observable. Understanding these microscopic processes is fundamental to
predicting the macroscopic contact angle that is observed in experiments.

Fig. 4.3(a) displays the microscopic contact angle at the position of the contact line, i.e. the
wetting energy that the contact line is sampling over time for different velocities. A transition
from a strongly stick-slip dominated motion to a more uniform sampling of the surface takes
place. For high velocities, the time dependent microscopic contact angle at the substrate
approaches the sinusoidal form of the spatial variation of the substrate wetting energy.

In the limit of high velocities, it can be expected the microscopic contact angle at the con-
tact line over time approaches the spatial structure of the heterogeneity, as the relative effect
of the wetting properties compared to the external driving decreases. In the limit of slow
velocities, the system approaches the quasi-static limit of being trapped in the a local equi-
librium with a relaxation process that occurs fast compared to the periodicity of the motion
when the depinning event takes place and system moves to the next minimum. The contact
line velocities observed for the different driving velocities are depicted in Fig. 4.3(b). While
the variation in the contact line speed, i.e. the difference between the minimum and maxi-
mum contact line velocity, does not decrease with the shear velocity, the average velocity does
increase. This reduced relative variation leads to a more uniform motion over the substrate.

Fig. 4.3(c) and 4.3(d) show the corresponding macroscopic dynamic contact angles that
were observed at h = 0.25 and h = 0.5. The presented driving velocities are the same as in
Fig. 4.3(a). It shows the constant offset in the observed contact angle that can be attributed to
the deformation of the fluid interface due to viscous stresses. It also shows that the amplitude
of the fluctuations decreases with increasing driving velocity. This indicates that the variation
over the course of one period becomes increasingly localized at the contact line. Another
interesting feature is the smoothening of the perturbation. While the deviation of the macro-
scopic contact angle at u = 0.02 is still clearly non-sinusoidal, it is less sharp than the jump
of the microscopic contact angle. This localization of the fluctuations of the fluid interface is
studied in the next section by employing a time periodic variation of the microscopic contact
angle.

4.1.3 Dynamic contact angles on heterogeneous substrates

After studying how the contact angle varies over time at different distances from the contact
line, the systematic change with the driving velocity and contact angle hysteresis can be
considered. The relevant variables are now the minimum and maximum observed contact
angle at a given height, in addition to their time averaged values.

Considering the macroscopic contact angle as the time averaged angle of the interface at the
center of the channel, an increase compared to the homogeneous substrate can be observed for
the advancing fluid interface and a decrease for the receding fluid interface. This is expected
for a substrate with contact angle hysteresis. This is shown in Fig. 4.4(a), which presents
the averaged macroscopic contact angle both for the homogeneous (blue) and heterogeneous
(green) case, together with the minimal and maximal observed contact angle over one period
(red).

An interesting point to consider is the offset between the time averaged macroscopic con-
tact angle at fixed height for the homogeneous and heterogeneous case. With increasing
velocity, the difference between the two contact angles is decreasing. This is at odds with the
assumption that there is a static advancing and a static receding angle, that can be employed as
microscopic contact angle in dynamic laws obtained for homogeneous substrates to describe
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Fig. 4.3: (a) microscopic contact angle over one period for different driving ve-
locities for ∆w = 0.3, k = 5 showing the more pronounced stick-slip
motion of the interface for lower velocities. In all cases, the full range
of wetting energy gets sampled as the contact line moves continuously
over the substrate, just with varying velocities. The dotted lines repre-
sent the minimum and maximum of the microscopic contact angle. (b)
corresponding contact line velocities over time showing the transition
from a pronounced stick-slip motion to a more continuous motion for
higher velocities (c,d) macroscopic contact angle observed at h = 0.25
and h = 0.5, respectively, over one period for different driving veloc-
ities for ∆w = 0.3, k = 5 showing the increased hydrodynamic defor-
mation for higher velocities but decreased propagation of the contact
angle variation. In all cases: w0 = 0

the hydrodynamic bending. Having a constant advancing and receding contact angle would
imply that the line is offset by a constant value in first order.

Another relevant measure is the minimal and maximal angle observed at that height. The
strength of the fluctuation is decreased, as the driving velocity increases. It also decreases
when observing the slope at a higher distance from the contact line. This indicates that there
is a decay length associated with the fluctuations that decreases with the frequency of the
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Fig. 4.4: Illustrating the effect of varying strength of the heterogeneity and ob-
serving at different distances from the contact line, (a) dynamic time
averaged contact angles in for homogeneous (blue), heterogeneous
(green) substrate with fluctuation of the contact angle over one period
(red) for ∆w = 0.3, h = 0.5; (b) dynamic contact angles in for homoge-
neous, heterogeneous substrate for ∆w = 0.1, h = 0.5, showing reduced
deviation for smaller heterogeneity
(c) dynamic contact angles in for homogeneous, heterogeneous sub-
strate for ∆w = 0.3, h = 0.25, showing increased fluctuation, small bulk
contribution to contact angle compared to Fig. (a); (d) dynamic con-
tact angles in for homogeneous, heterogeneous substrate for ∆w = 0.1,
h = 0.25. For all graphs: w0 = 0, k = 5.

driving. Due to the constant periodicity of the substrate, a higher contact line velocity leads
to an increased perturbation frequency. This point will be addressed later on in this chapter.

Figure 4.4(b) shows the same system with reduced heterogeneity and subsequently reduced
contact angle fluctuation and hysteresis. The homogeneous case does not change, as the mean
wetting energy of the substrate stays the same. The question is if it is possible to separate the
contribution of the bulk fluid dynamics and of the wetting heterogeneity.
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When changing the height at which the contact angle is evaluated from center of the channel
(h=0.5) to a quarter of the height (h=0.25), as done in Fig. 4.4(d), the deformation due to
viscous stresses and thus the apparent contact angle is decreased. On the other side, the
fluctuation of the contact angle increased significantly, as the fluctuation of the free interface
due to the heterogeneity is apparently damped with increasing distance from the contact line.

An special case is depicted in Fig. 4.4(c), as it shows how the time averaged macroscopic
contact angle is first decreasing for a range of small velocities before, above u = 0.05, the
hydrodynamic contribution overtakes. This can be accounted for by the microscopic contact
angle, as will be discussed later. Another interesting aspect is the range of fluctuations, i.e. the
difference between the minimum and maximum observed macroscopic contact angle. When
going to h→ 0 it can be expected that the range of fluctuations will approach the advancing
and receding microscopic contact angle determined by the minimum and the maximum of the
substrate wetting energy.
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Fig. 4.5: (a) Minimum, maximum and mean macroscopic contact angle for ho-
mogeneous and heterogeneous case with k = 2 (b) Minimum, maxi-
mum and mean macroscopic contact angle for homogeneous and het-
erogeneous case with k = 10 showing the decreased fluctuation of the
angle with smaller characteristic length scale of the substrate hetero-
geneity. For both graphs: ∆w = 0.2, w0 = 0

The effect of a changed periodicity is shown in Fig. 4.5(a) and 4.5(b). With an increased
periodicity, the fluctuation amplitude observed for a given velocity is decreased. The largest
difference is visible in the regime of low velocities, there the k = 10 case approaches smoothly
a constant value, while the contact angle observed on the heterogeneous substrate in the case
k = 2 seems to decrease and approach the average contact angle of the substrate. The under-
lying process of this effect will be revisited at the end of the chapter.

On a homogeneous substrate, the microscopic contact angle approaches the macroscopic
contact angle as the velocity goes to zero and the system approaches the quasi-static case.
Comparing the time averaged microscopic and macroscopic contact angle for the heteroge-
neous substrate, as done in Fig. 4.6(a), shows that this also holds for the case with inhomo-
geneous wetting energy. There, the system stays in the pinned, locally stable state until it
becomes unstable. The onset of instability results in a sudden transition to the next stable
state that is fast compared to the driving speed. This is equivalent to the quasi-static limit,
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as this process is independent of the capillary number. For increasing velocities, it can be
observed that the time averaged microscopic contact angle decreases, as it approaches the
spatial average of the substrate contact angle. The observed macroscopic contact angle on
the heterogeneous substrate also approaches the macroscopic contact angle observed on the
homogeneous substrate.

−0.10 −0.05 0.00 0.05 0.10
velocity u

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

co
nt

ac
ta

ng
le
〈θ〉

t

∆w = 0, h = 0.5, mean
∆w = 0.3, h = 0.5, mean
∆w = 0.3, h = 0, mean

(a) h = 0.5

−0.10 −0.05 0.00 0.05 0.10
velocity u

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

co
nt

ac
ta

ng
le

di
ffe

re
nc

e
〈θ〉
−〈
θs 〉

∆w = 0
∆w = 0.3

(b) h = 0.5

−0.10 −0.05 0.00 0.05 0.10
velocity u

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

co
nt

ac
ta

ng
le
〈θ〉

t

∆w = 0, h = 0.25, mean
∆w = 0.3, h = 0.25, mean
∆w = 0.3, h = 0, mean

(c) h = 0.25

−0.10 −0.05 0.00 0.05 0.10
velocity u

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

co
nt

ac
ta

ng
le

di
ffe

re
nc

e
〈θ〉
−〈
θs 〉

∆w = 0
∆w = 0.3

(d) h = 0.25

Fig. 4.6: (a) Time averaged microscopic and macroscopic contact angle for ho-
mogeneous and heterogeneous case with ∆w = 0.3, k = 5 showing the
more uniform sampling of the substrate wetting energy with increasing
velocity (b) Difference between microscopic and macroscopic contact
angle for homogeneous and heterogeneous case for ∆w = 0.3, k = 5
showing that for moderate velocities the hydrodynamic contribution to
the dynamical contact angle does not vary strongly between the homo-
geneous and the heterogeneous case (c) time averaged microscopic and
macroscopic contact angle at h = 0.25 (d) corresponding difference at
h = 0.25. In all cases: w0 = 0.

The difference between the microscopic and the macroscopic contact angle is approxi-
mately the same in the homogeneous and heterogeneous case, as shown in Fig. 4.6(b). The
contribution of the bulk fluid dynamics in the heterogeneous case seems to be quite similar
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to the ideal, homogeneous case, only with a changed effective microscopic contact angle. It
starts to deviate at higher velocities around Ca > 0.1.

Having this substrate dependent contribution to the dynamic contact angle indicates that
it is possible to introduce the velocity dependent time averaged microscopic contact angle as
effective microscopic contact angle in the model for the motion of a contact line on a homoge-
neous substrate, like Cox-Voinov. This simplification is expected to capture the fundamental
physics associated with the contact line dynamics on a substrate with varying wetting energy.
The approximation should especially hold for the case of a clearer separation between the
fluctuation and the observation length scale, as the fluid follows the scaling laws obtained for
an interface moving on a homogeneous substrate in this range. The heterogeneities are then
represented through the effective microscopic contact angle introduced at the lower cutoff.
This observation also holds at lower distance h = 0.25 to the contact line, as shown in Fig.
4.6(c) and 4.6(d).

To get a better understanding for the mechanism underlying the non-uniform sampling of
the substrate the dynamics of free interface with a time periodically changing microscopic
contact angle is studied in the following section. The observed response of the fluid interface
will lead towards a model to predict the velocity-dependent effective microscopic contact
angle. The idea is that the system can not distinguish if the wetting energy is determined by
the position on the substrate over time or by varying the contact angle with time directly, as for
example in an electrowetting setup[47]. In both cases, a change in the microscopic contact
angle at the contact line leads to a displacement of the fluid interface. The local response
of the fluid interface to a variation of the microscopic contact angle apparently influences
the observations on the macroscopic scale, even beyond the range where the fluctuations of
the interface due to the heterogeneities are visible. Therefore, characterizing the response
of a contact line to a time periodic driving leads for a better understanding of the dynamics
observed for a fluid interface driven over a heterogeneous substrate.

Before this line of thought is pursued, another important measure in the study of contact
line dynamics should be addressed: As presented in the theory section when discussing the de
Gennes argument for dynamic contact angles, the dissipated energy in the system is directly
related to the observed dynamic contact angle. Therefore, the next section shows the change
in the dissipated energy when introducing a heterogeneous wetting energy.

4.1.4 Dissipated energy in the system

For the Steady Stokes equation, the energy dissipation is equal to the work done on the system
by acting on the domain boundaries since there are no internal degrees of freedom, as inertia,
in the bulk of the fluid that can store energy. Due to this, the dissipation rate Pdiss in the
volume V can be expressed by a line integral over the domain boundary D of the droplet in
the following form[55]:

Pdiss =−2η

∫
V

σ
∗
ikσikdV =

∫
D

u∗i fidS

with η as the viscosity, σ as the stress tensor in the fluid, u as the velocity on the fluid
boundary and f as the projection of the stress tensor on the boundary normal, as previously
introduced. The variables i and k are indices to be summed up according to the Einstein
summation convention. The droplet considered here is bounded by solid interfaces at the top
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and the bottom, with free fluid interfaces at the sides. The dissipated energy is the difference
between the energy introduced in the system when pulling the droplet over the substrate with
Navier slip condition and the energy that is stored by deformation the free interfaces.

It is possible to obtain the energy input into the system over time by measuring the shear
stress at the solid interfaces over one period. While energy can be stored in deformations of
the free interface, in the case of a periodic motion the total energy in the system after one
period has to be the same, i.e. the free interface must have returned to its initial condition.
Therefore, any energy that went into the interface deformation was subsequently released and
dissipated in the bulk.

The analysis can be extended by separately measuring the work done on the free inter-
face, Pfree. This way, the energy stored and released by the free interface over time can be
characterized and compared to the work injected at the solid boundaries Psub.

Psub =
∫

Dsubs

u∗i fidS =−2η

∫
V

σ
∗
ikσikdV −

∫
D f ree

u∗i fidS = Pdiss−Pf ree

For the homogeneous substrate, only the bottom substrate contributes to the line integral, as
no work is done on the free interface. At the top substrate, the no-slip condition is enforced,
setting the local velocity to zero in the co-moving frame. On the free interfaces, the tangential
component of the projected stress tensor and the normal fluid velocity vanish, resulting in zero
contribution.
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Fig. 4.7: Work performed on the different interfaces of the system over two peri-
ods. Energy goes into the deformation of the free interface, until it gets
released at the depinning event, characterized by the spike, for u= 0.11,
k = 10, ∆w = 0.2, w0 = 0.

On the substrate with a periodic variation of the wetting energy, the free interfaces are
deformed periodically, leading to a variation of the energy input, as displayed in Fig. 4.7.
Over the bigger part of the period energy is absorbed by the free interface as it is stretched
until it is released when the depinning event occurs. This release of stored energy creates the
spike in the contribution of the free interfaces. The work done on the system decreases slightly
when the depinning event occurs, but the sum of the components, i.e. the total dissipation in
the system, is significantly increased at the depinning event.

The depinning events at the front and the back contact line are not exactly synchronized as
the baselength of a moving droplet does not exactly match the equilibrium baselength. This
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leads to the shift in the depinning of the front and the back contact line.
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Fig. 4.8: (a) Dissipation rate for the system driven over a homogeneous (blue) or
heterogeneous (green) substrate with k = 10, ∆w= 0.2, w0 = 0 showing
the increase associated with the period deformation of the free interface
(b) Difference in dissipation between the heterogeneous and the homo-
geneous system for different periodicities k of the substrate

Fig. 4.8(a) shows the dissipation rate over the shear velocity both for a homogeneous and
a chemically heterogeneous (green) substrate. The observed dissipation rate in the hetero-
geneous case is consistently higher than in the homogeneous case, which agrees with the
argument of de Gennes that an increased dissipation leads to an increased dynamic contact
angle[29]. The difference in dissipation for different periodicities is shown in Fig. 4.8(b). It
is increasing with the driving velocity and systematically higher for the case of higher period-
icities. But in all cases, the difference between the dissipation compared to the homogeneous
substrates continuously approach zero for increasingly small driving velocities. As the con-
tact angle hysteresis is also observed in the limit of small velocities, attempting to rely solely
on a dissipation argument without taking into account the varying microscopic contact angle
is insufficient. While the dissipation still contributes to the observed dynamic contact angle,
it is not useful to predict the static contact angle hysteresis observed in the system.

While it is interesting to understand this change in the dissipation in the system on a hetero-
geneous substrate, it can not be directly mapped to the dynamic contact angle observed in the
system. When attempting to follow the argument of de Gennes, the dissipated energy makes
it possible to determine the uncompensated Young force which leads to a deviation from the
microscopic equilibrium contact angle θ0. At this point, it is not clear what is the value of the
effective microscopic equilibrium contact angle in case of a heterogeneous substrate. To get
a better understanding for the effect of the heterogeneity it is helpful to observe the motion of
the contact line over the substrate directly.

4.2 Driven oscillations on a free interface

Given the observation that the response of the contact line is strongly velocity dependent, it
is more instructive to study a system where it is possible to separate the effect of the varying
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contact angle from the velocity-dependent effect of the bulk fluid dynamics. This is done in
this section by studying the response of a resting free interface when varying the substrate
contact angle with time. Independent of the chosen oscillation frequency, the solution will
be a perturbation of a straight interface, not an interface with a shape that changes with the
driving velocity.

In this system, the response of a fluid interface to driving with different frequencies and
the dependence on the slip length can be characterized. One point from the previous chapter
that can be addressed that way is the varying penetration depth of the fluctuations observed
for different driving velocities.

4.2.1 Simulation results from thin film model

The response of a free interface to a periodic variation was studied in the thin film limit, with
a droplet resting on a topographically flat substrate. The microscopic contact angle was varied
periodically with a wetting energy of the form

w(t) = w0 +∆wcos(2πωt)

with w0 as the average wetting energy, set to w0 = −1/
√

2 unless mentioned otherwise,
∆w as the oscillation amplitude and ω as the employed driving frequency. The change of the
interface slope over the distance from the contact line was measured. Varying the contact
angle on both contact lines symmetrically drives a bulk deformation of the droplet away from
the contact line due to volume conservation. To be able to study the decay of the fluctua-
tions caused by the periodic perturbation of the contact angle, the left and the right contact
angle were varied anti-symmetrically. In linear approximation, the fluid flow induced by the
displacement of the fluid interface when decreasing the contact angle on one side is compen-
sated by the flow due to the increasing contact angle on the other contact line. To provide the
connection to the previous section: The frequency of the periodic motion ω for a contact line
that is pulled with velocity u over a substrate with periodicity k is given by ω = ku.

Fig. 4.9(a) and 4.9(b) show the observed variation in the interface slope over the interface
height for different driving frequencies and slip lengths. With increasing distance from the
contact line, the oscillations decay due to the finite propagation speed of perturbations of the
free interface.

The two characteristic length scales in the context of contact line dynamics are the slip
length ls and the penetration depth of the fluctuation, given by losc =

uCa
ω

the driving frequency
ω and the capillary velocity. A reasonably good collapse can be obtained with the scaling
factor

√
ω/ls. The amplitudes of the contact angle oscillations were small enough to keep the

response of the fluid interface in the linear limit, i.e. the displacement amplitudes for systems
with different levels of contact angle variations ∆w < 0.1 were collapsing well when rescaled
with the strength of the heterogeneity.

As the results shown here for the slope h′0 = 1 were obtained in the lubrication approxi-
mation, they can be rescaled to give predictions for different contact angles. To study higher
contact angles beyond the thin film equation, this system with time periodic variations of the
contact angle is studied using the full Stokes simulations in the next subsection.

4.2.2 Simulation results from BEM model

In the geometry with the droplet pinned at the top substrate that was introduced previously,
the contact angle at the bottom substrate is varied periodically. The phase between the two
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Fig. 4.9: For simulations in lubrication approximation: (a) Slip dependence of
the slope oscillations of a periodically driven free interface for driving
frequency ω = 3 rescaled with (1/ls)−1/2 to collapse. (b) Frequency
dependence of the slope oscillations of a periodically driven free inter-
face at ls = 0.03 showing a good collapse with ω1/2. For both graphs:
w0 =−1/

√
2

contact lines is shifted by half a period to reduce the macroscopic deformation mode, as the
volume change is compensated in linear approximation. The displacement and deformation
of the contact line changes with the driving frequency, as shown in Fig. 4.10. The figure
shows the displacement of the free interface over the channel height for three different values
of the driving frequency. As the driving frequency is increased, the oscillation amplitude
decreases and the displacement is localized closer to the contact line.

From these simulations, the local slope of the interface was determined over the distance
from the substrate and over one period of oscillation. Based on this data, Fig. 4.11(a) shows
the observed fluctuation of the slope of the free interface over the distance from the contact
line for different slip length and driving frequencies. The substrate contact angle was 90◦ in
these simulations, i.e. it was a straight vertical fluid interface in the equilibrium configuration.

The rescaling obtained from the thin film limit works reasonably well and, as previously,
the oscillations are nearly dampened out when the characteristic length scale is reached. The
plotted amplitude is rescaled with the amplitude of the contact angle oscillation, ∆w = 0.2.

While the amplitude of the contact angle oscillations is enforced through the boundary con-
dition, the displacement of the contact line depends both on slip length and driving frequency.
This dependence determines how strongly the contact line position can be displaced over one
period of substrate sampling.

Fig. 4.11(b) shows the observed oscillation amplitude of the contact line position over the
driving frequency for different slip lengths. As expected, the displacement is decreased with
increasing oscillation frequency and decreasing slip length and goes linear with the amplitude
of the contact angle variation ∆w. With increasing driving frequency, the contact line has less
time to be displaced and with decreasing slip length the displacement time scale increases,
respectively.

Assuming that the system is still operating in the linear limit, the obtained relationship
between the time dependent contact angle and the time dependent displacement makes it
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Fig. 4.10: Minimum and maximum of the free interface position for one period
with the channel height for ls = 0.03, w0 = 0, ∆w = 0.1 and varying
frequency. Increasing the frequency leads to a reduced displacement
and stronger localization at the contact line.
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Fig. 4.11: Results from BEM simulations: (a) Oscillation of the slope of the
interface over distance from the contact line for different driving fre-
quencies and slip lengths, showing that the rescaling from the thin
film results also works for higher contact angles (b) Amplitude of the
oscillation for different driving frequencies, slip lengths showing the
decrease of the displacement with slip length, amplitude and driving
frequency. For both graphs: w0 = 0

possible to construct a mode coupling model for the velocity dependent contact line dynamics
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on a heterogeneous substrate. The idea is to represent the contact line motion over one period
as superposition of time periodic contact line displacement modes. For this, the coefficients
relating the contact angle signal and contact line displacement have to be obtained first. This
is done in the following section.

4.3 Linear response of the interface

The response of the contact line to the driving can be characterized by two terms in first order:
The amplitude ratio between the contact line displacement and contact angle signal plus the
phase shift between them. The problem was approached in collaboration with M. Brinkmann.

First, the periodic variation of the contact angle at the contact line can be treated in the
limit of small perturbations with a linearized thin film equation. Assuming small deviations
from the wedge solution h0(x) = x in the form h(x, t) = h0(x)+ εδh(x, t) and truncating after
terms in O(ε), it takes the form

∂x((x3/3+ x2ls)∂3
xδh(x, t) = ∂tδh(x, t).

With the separation ansatz δh(x, t) = aω(x)exp(i2πωt), assuming a time periodic solution
with frequency ω, and allowing for complex aω, this problem can now be solved numerically.
The goal is to find solutions that have a time dependent microscopic contact angle θ(t) =
∆θexp(i2πωt).

The coefficient aω can now be split into two components: The ratio δh/δθ = |aω| repre-
senting the contact line displacement for a given contact angle oscillation is given by ξ(ls,ω).
The phase shift, between the contact angle signal and the displacement of the contact line is
given by φ(ls,ω).

Three major regimes could be distinguished, depending on the characteristic length scale
associated with the driving frequency. The characteristic length scale losc is given by the cap-
illary velocity uca, which is unity in our case due to non-dimensionalization, and the driving
frequency ω, giving an approximation how far the oscillations will penetrate along the free
interface:

losc =
uca

ω

In the quasi-static limit, where ω→ 0 and losc approaches the system size, the displacement
becomes independent of the driving frequency in first approximation. In this limit the system
is locked to the contact angle signal. Therefore the phase shift vanishes, too. This means:

ξ ∝ const

φ≈ 0

The other extreme is characterized by very fast oscillations where the decay length losc is
in the range or below the slip length, giving rise to the scaling

ξ ∝

√
ls
ω

φ≈−π

4
with the contact line displacement trailing the contact angle driving signal. This is the

regime observed in the previously presented simulations. In the intermediate regime, where
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the characteristic length scale is above the slip length but below the system size, for the
amplitude signal, a transition region is observed. The amplitude decreases faster than the
square root scaling, but the separation of the length scales in the simulations is insufficient
to make a definitive statement. From the characteristic length scale introduced previously, a
scaling along the lines of ξ(ω) ∝ ω−1 can be expected.

The dependence of the phase shift is more complicated in this range, as visible in Fig.
4.13(b), where the phase shift displays a local minimum that depends on the slip length. It
can still be approximated reasonably well with φ(ls,ω) =−π/4.

This is the regime especially relevant for experimental systems, where the separation of
scales between slip length and system size is given more clearly. Most oscillations that can
be observed in such a system should have a decay length between those two length scales.

It is also possible to obtain these coefficients from solving the thin film equation in the
described geometry directly, as shown in Fig. 4.12(a). It shows the amplitude coefficients
approaching a constant value and the phase shift going to zero (or, in the plotted case, 2π)
as the oscillation frequency goes towards 0, i.e. the quasi-static case (shown in Fig. 4.13(a)
and 4.13(b)). The amplitude ratio decays with increasing driving frequency, approaching the√

ls/ω scaling, as predicted, and the phase shift, after an initial dip, goes to−π/4 in the limit
of characteristic length scales close to or below the slip length.
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Fig. 4.12: Simulation results of the thin film wedge driven with ω = 5, ∆ω =
0.01, ls = 0.1 (blue) and fitted response curve (red) that determined
the coefficients of the mode coupling model, with (a) showing the
wetting energy and (b) the displacement of the contact line, rescaled
with k, over one period of driving. The resulting coefficients for the
amplitude ratio and phase shift are plotted in Fig. 4.13(a) and 4.13(b)

4.4 Mode coupling model

From aω the ratio between the amplitude of the contact line displacement and contact an-
gle heterogeneity for a given driving frequency and slip length and the phase shift between
these two has obtained. With this, a linearised model for the contact line motion over the a
heterogeneous substrate can be constructed.
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Fig. 4.13: (a) Amplitude ratio between variation of wetting energy and contact
line displacement over driving frequency for different slip lengths
showing decreasing displacement of the contact line with increased
driving frequency and decreased slip length. For low frequencies, in
the quasi-static limit, the displacement approaches a constant value
independent of the slip length. For high frequencies, the displace-
ment approaches the

√
ls/ω scaling (dashed lines). (b) Corresponding

phase factor approaching 0 for quasi-static driving, as the system fol-
lows the contact angle change nearly instantaneously, and −π/4 for
very high frequencies where the characteristic length scale is below
the slip length with a transition region in between

The assumption is that one period of the motion of the contact line can be expressed in
terms of a mode expansion of the form:

x(t) = ut +∑
n

an sin(2πnkut)+bn cos(2πnkut)

with t in the interval of one period, given by [0,(ku)−1]. The coefficients an, bn are the
displacements amplitudes for n ∈ [1,N−1] for the cases presented here, with N = 30 as the
number of modes used, unless denoted otherwise. In the same form, the contact angle at the
contact line can be expressed as:

w(t) = α0 +∑
n

αn sin(2πnkut)+βn cos(2πnkut)

In this form, each of the modes of the wetting energy corresponds to a time periodic driv-
ing of the fluid interface and can thus be related with the displacement of the contact line
described by ξ(ls,ω) and φ(ls,ω) presented in the last section. The constituting set of linear
equations for the mode expansion is(

an

bn

)
= ξ(ls,nω)

(
cosφ(ls,nω) sinφ(ls,nω)
−sinφ(ls,nω) cosφ(ls,nω)

)(
αn

βn

)
(4.2)

correlating the displacement amplitudes an, bn of the nth mode with the amplitude of the
contact angle variation αn, βn. The goal is to find a set of displacement amplitudes an, bn such
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that the mode expansion of the microscopic contact angle at the contact line over time results
in the coefficients αn, βn determined by the equation above.

The system under considering has the wetting energy described previously of the shape

w(x) = w0 +∆wcos(2πk(x+ut))

over which a contact line is pulled with driving velocity u. The periodic motion of the
contact line over the heterogeneity now has a base frequency ω0 = ku. The modes from
which the solution will be constructed now have the frequencies ω = nω0 with n ∈ N.
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Fig. 4.14: a) Convergence of the trajectories for k = 10, u=−0.01, ∆w = 0.01
from initial configuration assuming a constant contact line velocity
(blue) to the final, self-consistent state where the contact angle at the
contact line position over time as input in the mode coupling model
returns the contact line displacement (red). b) first 10 amplitudes of
the mode decomposition of the contact angle (left) and displacement
(right) of the self-consistent solution (red).

To obtain the self-consistent solution, a contact line that moves over the substrate with a
constant velocity was assumed as initial configuration, i.e. an = 0 and bn = 0. This gives
a microscopic contact angle at the contact line position over time that can be expanded in
Fourier modes, giving an initial set of αn, βn. Using the displacement associated with these
coefficients, the microscopic contact angle over time for this updated trajectory is determined.
This process is repeated until convergence is achieved, i.e. the displacement over time corre-
sponding to the set of modes agrees with the microscopic contact angle at the contact line for
the given trajectory in space.

Depending on the studied scenario, it is now possible to use either the obtained scalings
or the numerically obtained coefficients directly to find self-consistent solutions to the pulled
contact line problem. The idea is to start with a contact line moving over the heterogeneous
substrate with constant speed, evaluate the contact angle at the contact line over time and
use mode coupling equation 4.2 to update the displacement of the contact line over time.
After repeating this, the system approaches a state where the contact line displacement agrees
with the displacement that would be expected when driving the system with the contact angle
signal corresponding to this trajectory.
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The process of iteratively approaching the solution is illustrated in Fig. 4.14(a). Here, the
amplitude ratio and the phase ratio obtained from the numerical simulations were employed
in the model. It shows the trajectories over time for the different iterations, starting with the
initial configuration, the blue line and ending with the red line, where the system converged.
Fig. 4.14(b) shows the amplitudes of the modes corresponding to the solution plotted in red.
The base mode corresponding to the periodicity of the substrate heterogeneity dominates the
dynamics, with five more modes having a non-negligible contribution. Their contribution
increases for smaller driving velocities, as the displacement becomes more non-sinusoidal.

Now it is possible to obtain the contact angle and velocity signal over time, as previously
presented for the full dynamical simulations. Fig. 4.15(a) shows the obtained microscopic
contact angle over time for solutions with different driving velocity. It shows the same devia-
tion away from the sinusoidal pattern of the substrate wetting energy with decreasing velocity
that could be observed in the full dynamical simulations.
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Fig. 4.15: Mode coupling model: (a) Local contact angle deviation over time for
different driving velocities u showing the increasingly sinusoidal pro-
file over time with increasing driving velocity, k = 10, ∆w = 0.01 (b)
Rescaled contact line displacement over the period showing the stick
slip motion and the decreased oscillation amplitude with increasing
velocity

Fig. 4.15(b) shows the corresponding contact line displacements with the transition from
a significant stick-slip motion to a more sinusoidal perturbation of the contact line velocity,
as the higher modes are suppressed with increasing velocity. For sufficiently high driving
velocities, the contact line is moving with nearly constant speed, the contact line displacement
goes towards zero, and the spatial average of the substrate wetting energy approaches the time
average.

Here it becomes clear at which point the model breaks down. The maximum steepness of
the slipping motion is limited due to the mode expansion. So when representing a trajectory
that is getting increasingly close to a discontinuity it fails to converge. For this, a repre-
sentation in real space with a time dependent kernel instead of Fourier space could be more
successful.

Already earlier, convergence issues will be encountered due to overshooting and subse-
quent numerical instability if the updated displacements are chosen directly from eqn. 4.2.
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By using the average of the old and new displacement coefficients as update step, the stability
of the convergence is improved significantly. The corresponding slowdown of convergence
is, compared to the numerical cost of running full dynamical simulations, negligible.

4.4.1 Scalings from the mode coupling model

These results can now be evaluated to obtain the time averaged microscopic contact angle
for different velocities and slip lengths over a wide parameter range. The obtained devia-
tions from the equilibrium contact angle are presented in Fig. 4.16(a). As the driving speed
increases, the frequency of the perturbation increases, leading to a stronger localization and
thus reduced deviation. One point that was observed in some of the full simulation runs, but
not understood, was an apparent dip of the wetting deviation for small k and low velocities u.
This effect appeared also here in the mode coupling model.

The corresponding displacement variation is plotted in Fig. 4.16(b). For high velocities, it
decays as the average wetting deviation, but for low velocities it does not decrease, but rather
approaches a constant value.
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Fig. 4.16: Mode coupling model: (a) Average contact angle deviation for dif-
ferent driving velocities u and periodicities k for ls = 0.1, ∆w = 0.01
showing the decrease for low velocities in case of small k (b) Corre-
sponding rescaled variation of the contact line displacement that de-
creases with increasing driving driving force and approaches a con-
stant value for u→ 0

The observations for high velocities can be explained by comparison to the amplitude ratio
ξ. As the phase shift approaches a constant value and the system is dominated by the lowest-
frequency mode ω0 = ku. The rescaled displacement and thus the deviation of the wetting
energy is directly determined by the decreasing ξ(ls,ω) with increasing velocity.

The low velocity case is more interesting, as it is not intuitively clear which length scale
might determine if the system approaches the static advancing and static receding contact
angle in the limit u→ 0 or if it decreases again, as for the case k = 10 shown here. An
indication for the underlying mechanism is given by Fig. 4.16(b), where ∆x approaches a
constant value for low velocities and low k.
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The limit of the amplitude ratio ξ(ω = 0) determines a maximum displacement distance
ldisp = ξ(ω = 0)∆w for a given wetting heterogeneity contrast of the substrate. This length
scale is independent of any dynamical properties of the system. If the heterogeneity length
scale lhet = 1/k is below ldisp, multiple locally stable contact line positions would exist. In
this limit, the contact line jumps from pinning site to pinning site in the quasi-static limit.

On the other hand, if ldisp� lhet, the variation of the contact angle is small in the range of
possible displacements of the contact line. Therefore, for low velocities, it will approach the
equilibrium value again. Only when the relaxation timescale after depinning approaches the
driving frequency of the system, dynamical effects play a role again.

4.4.2 Comparison to thin film simulations

The results obtained from the mode coupling model have to be compared to the results from
the dynamical simulations to validate this approach of modeling contact line dynamics. After
running the numerical simulations for the fluid wedge pulled over a heterogeneous substrate
and obtaining the self-consistent solution from the mode coupling model, the displacement
over time and the wetting energy over time can be compared, as done in Fig. 4.17(a) and
4.17(b). It shows how in both cases the contact angle deviates from the sinusoidal pattern due
to the nonlinearity of the driving.
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Fig. 4.17: Comparison of the results for a position dependent wetting energy in
a driven system (a) Wetting energy over time for dynamical simula-
tions (blue) with ls = 0.1, ∆w = 0.001, k = 500, u = 0.01 and mode
coupling model (red) (b) Obtained contact line displacement, rescaled
with the periodicity from dynamical simulations (blue) and mode cou-
pling model (red) showing reasonable agreement of wetting energy
with time, but deviation in displacement

One significant difference can be observed, though: the obtained spatial displacement ob-
served in the simulations is higher than predicted from the mode coupling model. The dis-
placement observed with the position dependent wetting energy is nearly the same as shown
for the time periodic driving in Fig. 4.12(b). Up to this point it is not clear if this is an issue
with the assumption that a moving, deformed contact line will respond exactly as a stationary
contact line to the driving or if it is an issue with non-negligible coupling between the modes.
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This question can be resolved by studying a system with the direct numerical simulations
that does not have a direct experimental analogy. For a fluid wedge at rest a position and
time dependent contact angle is enforced of the same form as introduced in the ode model in
eqn. 4.4. This is similar to the case of very small capillary numbers where the hydrodynamic
deformation of the interface is negligible. Here, u takes now the role of a driving frequency.
If the resulting displacement and time averaged wetting energy agree with the pulled contact
line, it is clear that the disagreement is due to an insufficiency of the mode coupling model.
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Fig. 4.18: Equivalent position dependent wetting energy introduced in a system
without driving, similar to a very slowly moving contact line (a) Wet-
ting energy over time for dynamical simulations (blue) with ls = 0.1,
∆w = 0.001, k = 500, u = 0.01 and mode coupling model (red) (b)
Obtained contact line displacement, rescaled with the periodicity from
dynamical simulations (blue) and mode coupling model (red) showing
very good agreement, proving that the model works if hydrodynamic
deformation is negligible on the characteristic length scale of the fluc-
tuation

Fig. 4.18(b) and 4.18(a) now show the observed contact line displacement and wetting en-
ergy obtained from the direct numerical simulations of the fluid interface (blue) and the mode
coupling model (red). They show a very good agreement. That means for very low velocities
and low wetting amplitudes, the mode coupling model for the motion of a contact line over a
heterogeneous substrate reproduces the results from the direct numerical simulation.

To understand why the pulled contact line did not show such a good agreement as well,
it helps to realize that the corresponding driving frequency for the chosen parameters is ω =
5. This corresponds to a propagation length scale of a fifth of the system size, a length
scale on which hydrodynamic bending of the interface can not be neglected. Going to lower
driving speeds and significantly higher periodicities to obtain a lower penetration depth of the
fluctuation while reducing the deformation of the interface was unfortunately not possible.
This is due to the numerical costs associated with using a discretization on the length scale of
this heterogeneity together with the appropriate time step. The agreement could be improved
by obtaining the amplitude ratio and phase shift coefficients by varying the contact angle on
a moving contact line over time.

For a more systematic comparison, the time averaged wetting energy and the displacement
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Fig. 4.19: (a) Time averaged wetting energy for different driving speeds, peri-
odicities of numerical simulations (blue) and mode coupling model
(red) showing good agreement, for ls = 0.1, k = 10, ∆w = 0.001 (b)
Displacement of the contact line over one period for different driv-
ing speeds for numerical simulations (blue) and mode coupling model
(red) showing a very good agreement of the two models for varying
driving velocities

of the contact line can be compared for different driving velocities. The results are presented
in Fig. 4.19(a) and 4.19(b). Both measures for the similarity of the solutions obtained from
the direct numerical simulations and the mode coupling model agree very well. The graph
presented here, for k = 10, reproduces the behavior described previously for widely spaced
heterogeneities where the residue is around zero for the quasi-static limit, approaches a max-
imum when the relaxation time scale of the interface and the driving frequency match and
decreases again towards zero as the fluid interface can not follow the driving anymore.

At this point, the speed advantage of the mode coupling model should be pointed out again:
Instead of requiring the time integration of a set of more than 300 ODEs, using the mode
coupling model required less than 100 iterations with 20 modes to obtain the results presented
here. This way, the contribution of the heterogeneity to the dynamic contact angle can be
predicted significantly faster than by running the full numerical simulation for each velocity.
With a thin film code that resolves the full three-dimensional problem with contact angles
varying in z-direction, it should be possible to generalize this approach by introducing an
extra parameter kz that characterizes the variation of the contact line displacement along the
fluid interface.

4.4.3 Results on random substrates

This mode coupling model not only makes it possible to study sinusoidal variations of the
wetting energy, but arbitrary periodic structures. To represent random substrates, a wetting
energy obtained as sum of sinusoidal contributions with random phase shift was used. It takes
the form:

w(x) = w0 +∆θ

N

∑
i=1

1
i

sin(2πikx+Φi)
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Fig. 4.20: Random substrates: (a) Wetting energy at the contact line from thin
film equation (blue) and mode coupling model (red) on a random sub-
strate k = 10, ls = 0.1, u = 0.01, ∆w = 0.02 (b) corresponding contact
line displacement over time

Using this model with N = 20 modes for the wetting energy, trajectories were determined
for different realizations of Φi. The observed wetting energies and displacements over time
for three sample trajectories are depicted in Fig. 4.21(a) and 4.21(b). It is visible that the
contact line displacement does follow the wetting energy signal. The displacement curve
shows a smoothing of the higher frequency components. This can be expected from the
monotonously decreasing amplitude ratio ξ(ω), which corresponds to a reduced displacement
with increasing frequency for a given variation of the wetting energy.

The deviation of the time averaged wetting energy and the displacement of the contact line
over one period can now be determined for a high number of realizations, 1000 in the case
presented here). Fig. 4.21(c) shows the histogram of the deviation of the time averaged wet-
ting energy. It displays a strong variation with the chosen realization, compared to the average
value. The second measure for the effect of the heterogeneity, the contact line displacement
distribution, is clustered more strongly, as shown in Fig. 4.21(d).

4.5 Contact line friction model

Following the reasoning behind the effective contact line friction model, the periodic de- and
repinning of the contact line can be modeled in the quasi-static limit. There, the interface
configuration is static for the given contact line position and the contact line velocity is de-
termined by the stress imbalance between the contact angle and the substrate wetting energy.
This reduces the system to a single ordinary differential equation. This model is designed for
slow contact line velocities, bulk hydrodynamics is basically completely neglected.

It is very similar to the model described by Joanny and Robbins[38], who made an early
attempt to model the dynamics of a contact line moving over a periodically structured plate.
While they discussed the effect of the heterogeneous substrate on the mean displacement of
the contact line, they did not study the fluctuation of the interface observed over one period.
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Fig. 4.21: Random substrates: (a) wetting energy at the contact line for three
different realizations of a random substrate k = 10, ls = 0.1, u = 0.01,
∆w = 0.02 (b) corresponding contact line displacement over time
(c) distribution of time averaged wetting energies of 1000 realizations
for k = 10, ls = 0.1, u = 0.01, ∆w = 0.02 (d) corresponding distribu-
tion of variations in the contact line position over one period

4.5.1 Model ODE

To understand the velocity-dependence, a simplified model can be introduced. In a quasi-
static approach the interface is assumed to be always straight and the contact line velocity is
given by a simplified linear friction law of the form:

x′ = a(cos(θ)− cos(θ0(x))) (4.3)

with θ0 as the sinusoidally varying position dependent local contact angle, θ as the current
contact angle and a as a friction factor. The position dependent local contact angle was chosen
as in the previous sections. Assuming a channel geometry where the interface is pinned at
unit height, the contact angle can be determined from the contact line displacement.

Integrating this equation with a with a position dependent θ0 on a moving substrate gives
a time dependent contact angle, as in the full dynamics simulations. The crucial difference
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is that the height dependence is non-existent in this quasi-static model. Also, the full fluid
dynamics and slip issues are reduced to the single coefficient a.

To establish the analogy to the previously introduced model: when expanding the cosine
with θ = θ0 +∆θ and linearizing eqn. 4.3, it can be written in the form of eqn. 4.2 with ξ =
a∗(θ, ls)/ω and φ = −π/2. Especially the discrepancy in the phase shift raises the question
which model represents reality better and should be addressed experimentally.
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Fig. 4.22: (a) Contact angle over one period for different driving velocities, k =
10, ∆w = 0.1, a = 1 (b) Corresponding contact angle over one period
for different driving velocities

Fig. 4.22(a) shows the contact angle observed over one period for different driving ve-
locities after the initial relaxation process. As in the full simulations, the fluctuations are
decreasing and becoming more sinusoidal as the driving frequency goes above the character-
istic relaxation time scale of the system.

The corresponding contact line velocity over the period is plotted in Fig. 4.22(b). It shows
the same stick-slip structure observed in the full dynamical simulations that becomes more
sinusoidal with increasing velocity.

These results can be evaluated for minimum, maximum and mean contact angle, as done
previously. Fig. 4.23 shows these for different driving velocities and both a homogeneous
and a heterogeneous substrate. The results show the same characteristic features as the full
BEM simulations. For the case with heterogeneity, the observed contact angle is generally
increased and with increasing velocity, the fluctuation of the contact angle decreases.

There are a few issues with this model, though. First of all, with only one free parameter
a, the two competing effects of the hydrodynamic deformation due to the interface motion
and the relaxation dynamics can not be captured. This could be fixed by introducing a cutoff
length for this quasi-static model, above which a stationary hydrodynamic profile is assumed.
If this cutoff length should be made velocity dependent is not clear and significantly increases
the amount of assumptions necessary to improve this model and additional fitting parameters.

The second issue is the disagreement, especially of the phase shift, with the direct numer-
ical simulations for higher velocities. Both models approach a constant phase shift, though.
Therefore the difference would be mainly in the ratio of the average contact angle deviation
to the amplitude of the contact line displacement. The disagreement in the amplitude ratio co-
efficient in the intermediate regime is the logarithmic component, which is difficult to discuss



62

0.00 0.05 0.10 0.15 0.20 0.25
shear velocity u

1.60

1.65

1.70

1.75

co
nt

ac
ta

ng
le

het. min/max
het. mean
hom.

Fig. 4.23: Obtained minimum, maximum and mean contact angle for homoge-
neous case, heterogeneous case, e=0.1, k=10, a=1, showing the de-
creasing variation with increasing shear velocity and change in contact
angle due to heterogeneity

unless the velocity is varied over multiple orders of magnitude.

4.5.2 Observed scalings

The previous results already showed that the qualitative features of contact angle hysteresis
and a slowly decaying deviation from the spatially averaged contact angle are fulfilled. The
predictions for the scaling from the mode expansion make it possible to check up to which
point, if at all, this model gives similar results concerning the scaling of time averaged contact
angle and contact angle fluctuation.

A similar scaling is observed for the difference between the observed time averaged contact
angle for the homogeneous and the heterogeneous case, as shown in Fig. 4.24(a). Here, the
difference between the homogeneous and heterogeneous slope decays with 1/ω. As discussed
for the mode coupling model, this is directly connected to the scaling of the amplitude ratio
ξ(ω), as the mode with the frequency ω = ku dominates for higher velocities.

Fig. 4.24(b) shows the slope fluctuation over the driving velocity. It shows the same 1/ω

decay as long as the driving velocity is not becoming too small. For slow velocities, the
curve bends down, as the maximum slope variation is limited by the substrate wetting energy
contrast. At very low velocities, the system follows the substrate contact angle directly, i.e.
θ = θ0, and this quasi-static model becomes purely static.
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Fig. 4.24: (a) Decay of the difference between the homogeneous and heteroge-
neous mean contact angle with increasing driving velocity for k = 10,
∆w = 0.1, a = 0.1 (b) Corresponding decay of the slope fluctuation
with increasing driving velocity

4.6 Summary

In this chapter, the motion of fluid interfaces over substrates with a periodic variation of
the wetting energy was studied. The change of the macroscopic contact angle away from the
contact line compared to the equivalent homogeneous substrate with the same average wetting
energy was presented. For low velocities, a pronounced stick-slip motion was observed, that
became increasingly smoothed out with increasing velocity. With increasing velocity, the
oscillations of the free interface were shown to be increasingly localized at the contact line.

The first section showed that only considering the static advancing and static receding
contact angle is insufficient to describe the dynamics observed on a substrate with spatially
varying microscopic contact angle. As alternative, a velocity dependent effective microscopic
contact angle based on the sampling of the substrate by the contact line over time was pro-
posed. Together with the deformation due to viscous stresses observed on the homogeneous
substrate, it provided a good approximation for the velocity dependent macroscopic contact
angle.

To get a better understanding for the oscillations of the free interface due to the hetero-
geneities, the response of a fluid interface to a periodic variation of the contact angle was
studied. An increased localization with increasing driving frequency and decreasing slip
length was shown. The localization is characterized both by the distance from the contact
line up to which the deformation is observed on the free interface and the displacement of the
contact line on the substrate.

Based on the frequency dependent amplitude ratio and phase shift between the contact
angle signal and the displacement response, a simplified model to obtain the contact line
motion over a heterogeneous substrate is proposed. The model represents the contact angle
at the contact line as it moves over a periodically patterned substrate as a superposition of
sinusoidal variations of the contact angle. These variations lead to a displacement of the
contact line. If the displacement of the contact line over time leads to the contact angle signal
that was used to determine the displacement, the problem is solved self-consistently.



64

In the limit where the motion can be represented by a linear superposition of the perturba-
tions and viscous bending on the length scale where the oscillations occur is negligible, the
model reproduced the trajectory obtained from direct numerical simulation of the thin film
equation. For higher velocities, the accuracy decreases as the displacement ratio and phase
shift change compared to the resting fluid interface. To show a possible application, the tra-
jectories of the contact line on multiple substrates with random substrate wetting energies
constructed as a superposition of sinusoidal variations of the wetting energy was determined.



5 Droplet depinning and mobility

This chapter is focused on the problem of the statics and dynamics of droplet depinning and
motion in two dimensions. In this limit, the droplet consists of two contact points connected
through the bulk interface. It is placed on a topographically flat substrate with a periodic
variation in the substrate wetting energy surrounded by an inviscid fluid. In the previous
chapter, the system was driven with a constant velocities. In contrast, the droplet in this
chapter is driven by a constant volume force parallel to the substrate, as in the case of a
droplet sitting on a vertical wall.

For the case of a chemically homogeneous substrate, the droplet would start moving the
moment an infinitely small driving force is applied. For a heterogeneous substrate, the energy
landscape describing the possible droplet configurations displays energy barriers between the
stable solutions. Therefore, a finite driving force is required to overcome the energy barriers
and depin the droplet. The goal is to understand how the strength and periodicity of the
substrate heterogeneities influence the depinning, mobility and repinning of such a droplet.
As the periodicity changes, the system goes from pinning at a single defect to the case where
the periodicity is significantly below the droplet size. In this limit, the position dependent,
well-defined contact angle approaches the limit of a homogeneous contact angle hysteresis
where a range of contact angles is allowed for any position of the contact line on the substrate.

In this chapter the system is non-dimensionalized with the surface tension γ, the viscosity
η, density ρ and droplet volume set to unity. With these non-dimensional units, the capillary
number Ca corresponds to the non-dimensional velocity u of the droplet. The position of the
droplet on the substrate is characterized by the location of the front and the back contact line,
x f and xb. Alternatively, the contact line position can be represented through the center of the
base, xc = (x f + xb)/2, and the baselength l = x f − xb. This parameterization is used for this
chapter.

This chapter discusses fundamental questions arising when looking closer into this prob-
lem: In the beginning the static solutions of the system for a given heterogeneity and driving
force are studied. Depending on the characteristic length scale of the heterogeneity compared
to the droplet size and the amplitude, multiple stable droplet solutions can coexist. Starting
from this set of multiple local equilibria, they annihilate until one stable equilibrium remains,
and finally none, at which point depinning is inevitable.

It continues with a study of the depinning process, showing how the depinning scenario can
change when moving beyond the single defect case. It turns out that this strongly depends on
the dynamical properties of the system. The depinning scenario changes qualitatively with
varying slip length ls of the substrate while the static wetting properties remain the same.

Having observed this phenomenon, the question arises if it is possible to give a simplified
model reproducing this change. One possible approach is to reduce the dimensionality of the
system to the contact line positions, as used to obtain the static solutions. With a contact line
friction law, as used in the model of contact line driven dynamics, does not capture the change
in the bifurcation scenario. Allowing for the ratio of translation and deformation mobility
of the droplet to change leads to the transition observed in the full dynamical simulations,
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Fig. 5.1: Illustration of the model system, a droplet sitting on a chemically het-
erogeneous substrate, characterized by the wetting energy w(x), driven
by a volume force µ parallel to the wall. The droplet position can either
be represented with the contact line positions x f and xb or the base-
length l and the center-of-base xc. The length of the free interface is
given by `free.

though. The goal is to study this system at different levels of approximation to understand
which components of the relevant physics are captured.

5.1 Statics

Before discussing the dynamics of droplet depinning, it is helpful to get an understanding of
the statics of pinned droplets on such a heterogeneous substrate. Independent of the chosen
model to study the dynamics of moving droplets, the static droplet configurations as ener-
getically extremal configurations of the fluid remain the same1. This section shows how the
number of possible configurations depends on the chosen strength and period of the hetero-
geneity. It also shows how the number of static solutions is reduced as the driving force
approaches the depinning threshold.

5.1.1 Upper bound for the depinning

The most straightforward system to consider is a droplet pinned by a single point defect
on an otherwise homogeneously wetting substrate. An upper limit for the force required to
depin a two-dimensional droplet is given by the fact that the equilibrium state has to be stable
under variational displacement on the substrate given the assumption that the droplet does not
deform. This can be represented by the following equation:

1When using the full curvature term. With the thin film approximation of κ = h′′, the static solutions differ.
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µ(∆x) = (w(x f )−w(xb))(∆x)

The energy gain through the displacement ∆x in the gravitational field, µ, has to be com-
pensated by the difference in substrate surface energy between the front and the back contact
line, (w(x f )−w(xb)) if the droplet should stay pinned. This naive model assumes that the
shape of the droplet has no influence at all. If the wetting energy depends on the contact line
position, this value can be reduced. The correlation of the wetting energy with the contact
line positions and therefore the droplet shape plays a crucial role in the wetting on substrates
with a position dependent contact angle.

5.1.2 Static drop morphologies on periodic substrates

Another case to study - and the case mainly considered in this chapter - is a substrate where the
contact angle varies periodically in space. The substrate wetting energy takes the following
form:

w(x) = w0 +∆wsin(2π(k/l0)x)

with w0 as the average wetting energy, ∆w as the strength of the heterogeneity and k/l0 as
the rescaled periodicity of the heterogeneity. The length l0 gives the equilibrium baselength of
the droplet for a given w0. The case k = 1 corresponds to a substrate where exactly one period
fits below a droplet in the limit of a weak heterogeneity. This means a droplet with different
equilibrium contact angle covers the same number of defects for the same wavenumber k.

If the wavelength of the substrate is big compared to the droplet size, the depinning process
is similar to the depinning at a single defect. The pinning force is not determined by the mini-
mum and maximum wetting energy, but the maximum wetting energy gradient. It determines
the difference between the wetting energy at the front and the back contact line in this case.

The energy of the minimal droplet configuration for a given baselength and center of base
without driving force can now be determined as the sum of the contribution from the free
interface and the wetted substrate, as presented in section 3.1:

E(l,xc) = γ`free(l)+
∫ xb

x f

w(x)dx

As the characteristic length scale of the heterogeneity goes below the characteristic length
scale of the droplet the system goes from the case with only one locally stable solution to the
case where multiple local minima can occur in the energy landscape. Fig. 5.3(b) shows an
example energy landscape in the baselength-center-of-base space with local minima at three
different base lengths. These three different baselengths correspond to solutions covering
three different numbers of periods on the substrate. The system is periodic in center-of-base
direction with the substrate periodicity.

The extrema in this energy landscape can be tracked through parameter space. Fig. 5.3(a)
shows the result of following the solution branches when varying the characteristic length
scale of the heterogeneity k, while keeping the amplitude ∆w constant. This was done with the
numerical continuation code based on Auto07p. The minimum and maximum baselength are
determined by the minimum and maximum wetting energy, respectively. As the periodicity
is increased, the number of solutions increases. The minimum and maximum baselength
of solutions for a given k do not necessarily correspond to the baselengths determined by
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Fig. 5.2: Energy landscape for a heterogeneous substrate in absence of driving
force showing the multiple stable droplet solutions with different base-
lengths, with circles representing local minima, triangles for maxima
and crosses for saddle points; w0 =−1/

√
2, ∆w = 0.2, k = 5

the minimum and maximum wetting energy. Only for higher k, as the density of solutions
increases, the whole range of possible baselengths is covered.

Two different kinds of solutions can be distinguished: The two solution branches plotted
with full lines represent droplets sitting symmetrically on a minimum or a maximum of the
energy landscape. The dashed lines represent droplets symmetric to maxima of the wetting
energy gradient. The dashed branches are inherently unstable, as these droplet configurations
can gain energy by translation on the substrate. The stability of the symmetric solutions
varies. This information could not be extracted directly from the Auto07p continuations, but
has to be extracted from the corresponding energy landscapes.

In the presence of a volume force, the liquid interface is deformed, changing the baselength-
dependent potential of the energy landscape. An extra gradient in center-of-base direction is
introduced as the droplet can gain energy by translation. The system is still periodic in center-
of-base direction, but with an offset proportional to the driving force, as shown in the energy
landscape of Fig. 5.4(a). This graph shows that one pair of solutions already annihilated,
compared to Fig. 5.3(b). The other solution branches started to approach each other pairwise,
with either a minimum or a maximum and a saddle point coming together.

In a system with constant wetting energy, no more stable solutions exist whenever a driving
force is introduced. The situation is different for a heterogeneous system, as the local minima
become increasingly shallow with increasing driving and vanish only at a finite driving force.

Fig. 5.4(b) shows the result of following the static solutions from Fig. 5.3(a) at k = 5
when varying the driving force. As the driving force is increased, pairs of solution branches
approach each other and annihilate, as marked by the red circles. Note the symmetry of the
problem, as changing the sign of the driving force has to yield the same result.
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(a) (b)

Fig. 5.3: (a) Stationary solutions for different periodicities of the substrate with
w0 =−1/

√
2, ∆w = 0.2. Full blue lines represent stable droplet states,

dashed blue lines twice unstable droplet states and dotted lines rep-
resent saddle points in the energy landscape with one stable and one
instable direction. With increasing periodicity the number of stable so-
lutions for the given heterogeneity increases. The black line represents
the parameter corresponding to the energy landscape on the left side,
the inset shows the change in stability at the turning point in detail.
(b) Illustration of the droplet configurations corresponding to the dif-
ferent solution branches. The stable solutions are either symmetric to a
minimum or a maximum of the substrate wetting energy.

At certain driving forces, the solutions annihilate pairwise until, no more pinned solutions
exist above a critical driving µ↑. For higher driving forces, only moving solutions can exist.
Fig. 5.5 shows the driving force, where the last pairs of solutions annihilate, over the strength
of the heterogeneity at the top plus the contact angle at the front or the back contact line of
that solution below.

The first observation is that the proportionality between the strength of the heterogeneity
and the critical driving force, expected from the single defect case, can be broken for the case
of small defect strength. This is caused by a comparably strong coupling of the contact line
positions through the free interface. While it would be more favorable to bring the contact
lines closer to the regions of minimum or maximum wetting energy, the increase in the length
of the free interface due to the corresponding change in the droplet baselength prevents it.
The strength of this effect depends strongly on the periodicity of the heterogeneity.

The second point is that, with increasing strength of the defects, the pinning scenario can
actually change from a system being pinned at the front, where the contact angle at the front
of the static droplet corresponds to the maximum substrate contact angle, to a system being
pinned at the back. This is illustrated by the two solutions marked by the green and blue
circles.

Fig. 5.6 plots the critical driving force where the solution branch annihilates over the
periodicity k for the different solution branches. Each branch already annihilates at a very
low driving force when it initially appears, reaches a maximum as the number of covered
periods that it is associated with approaches the equilibrium baselength of the droplet and
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Fig. 5.4: (a) Energy landscape for a heterogeneous substrate with finite driving
force showing the deformation due to the driving term coupling to the
droplet center. Due to the heterogeneity pinned solutions still exist,
even though the number of stable solutions decreases with increasing
µ; w0 =−1/

√
2, ∆w = 0.2, k = 5, µ = 0.2

(b) Baselength l of the solution branches over driving force µ of the sys-
tem showing the pairwise annihilation of solution branches. The full
lines represent minima, the dotted lines saddle points and the dashed
line maxima in the energy landscape, the red dots represent the critical
driving forces where solution branches annihilate. For driving forces
where no more stable solutions exist, only periodically moving solu-
tions remain. Parameters: w0 = −1/

√
2 (45◦), ∆w = 0.2, k = 5. The

black lines represent the energy landscapes plotted on the left side and
in Fig. 5.3(b)

subsequently vanishes again as k increases even further. One can imagine it as the underlying
checkerboard pattern of Fig. 5.3(b) being compressed, with the solutions moving towards
smaller baselengths as the wavenumber k increases.

Fig. 5.6 also shows how strongly the critical driving force where the last pinned solution
disappears can differ from 2∆w, as expected for the case of two independent pinning sites.
When the periodicity of the substrate matches, a critical driving force of 0.4 can be observed
for a defect strength of 0.2, but it can go down to nearly half of it, if the length scales are
mismatched.

In this case, due to the restoring force of the free interface, the two contact lines can not get
to the minimal and the maximal wetting energy ares at the same time, reducing the effective
pinning strength. With increasing periodicity k, the distance between minima and maxima
in the wetting energy is decreased. Therefore, the relative change in the energy of the free
interface compared to the change in wetting energy per unit is decreased. This allows for the
contact lines to get closer to the minimal/maximal wetting energy configuration and leads to
a less pronounced reduction of the critical depinning force.

When comparing this figure to Fig. 5.3(a), it becomes clear how solutions that are initially
close to the homogeneous baselength l0 have the highest depinning force. As the solution
branch moves farther away from this case toward a solution with minimum/maximum equi-
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Fig. 5.5: Critical driving force (top) and contact angle at the front and back con-
tact line (bottom) over strength of the heterogeneity. It shows the sys-
tem changing from pinning at the front contact line to pinning at the
back contact line with increasing pinning strength. The dots represent
two individual solutions (green and blue) with circles marking the criti-
cal force and corresponding front contact angle, and back contact angle
at the depinning point w0 = −1/

√
2, k = 7.1. It shows that the depin-

ning force is below the force predicted from single defects and that the
periodicity of the substrate does not determine if the droplet will be
pinned at the front or the back.

librium baselength, the pinning force decreases. This can be understood as the gradient of
the free interface contribution increases for baselength l farther away from l0, the equilib-
rium baselength. This contribution to the total configuration energy reduces the depth of the
potential well and thus the required driving force for this solution to annihilate.

5.1.3 Scaling of the depinning forces

The case where the equilibrium baselength of the droplet matches the periodicity of the sub-
strate can be treated semi-analytically to give a better understanding of the changed scaling
of the driving force. In this case, the integrated substrate wetting energy does not change
with translation when assuming a constant baselength. Therefore, depinning is determined in
second order by the change of the baselength over one period to accommodate for the local
wetting energies.

With the contribution of the free interface replaced by an harmonic approximation around
the equilibrium baselength l0 for the homogeneous substrate (with ∆w = 0), the total energy
of the system takes the following form:
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Fig. 5.6: Critical driving force where the different solution branches annihilate
over the periodicity of the substrate showing commensurability effects
for ∆w = 0.2, w0 = −1/

√
2. The black line represents the parameters

of Fig. 5.4(b), the red points representing the intersections with the
blue branches are the turning points marked there.

E(l,xc) = a(l− l0)2−µxc +∆w
∫ xc+l/2

xc−l/2
cos(2πkx)dx

Here, l represents the current baselength of the droplet, xc represents the center of the base
of the droplet, µ the driving force and ∆w the strength of the heterogeneity. The periodicity is
represented as k, as previously, and a is the spring constant of the potential representing the
configurational energy of the free interface.

A local minimum exists if both dE
d xc

= 0 and dE
dl = 0 hold for a point (l,xc). This can also

be expressed in terms of the position of the front and the back contact line, xb = xc− l/2 and
x f = xc + l/2. Then it takes the form:

dE
d xb

=−∆wcos(2πkxb)−2a(x f − xb− l)− µ
2

dE
d x f

= ∆wcos(2πkx f )+2a(x f − xb− l)− µ
2

In the case of weak coupling, the spring constant a approaches 0. Then the two contact
lines, and thus the conditions decouple, i.e. the contact line can take the energetically most
favorable position without consideration for the resulting droplet baselength. This leads to
the expression:

dE
d xb

=−∆wcos(2πkxb)−
µ
2
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dE
d x f

= ∆wcos(2πkx f )−
µ
2

As the cosine can only take values in the range [−1,1], the condition where no more minima
exist is given by

µ = 2∆w,

the same scaling as expected for the case of two independent contact lines.
In the case of strong coupling and a substrate periodicity such that the droplet covers an

integer number of periods of the substrate, i.e. k l0 ∈ N, the contribution of the integral over
the equilibrium base length vanishes. The only remaining contribution comes now from the
deformation of the droplet from the equilibrium baselength, denoted as z = (l− l0)/2, with
changing center-of-base position xc relative to the substrate.

E(µ = 0) = a(2z)2 +
∫ xb

xb−z
cos(x)dx+

∫ x f +z

x f

cos(x)dx

The two extremal cases are when both contact lines are now close to the minimum/maximum.
Then the cosine is approximately constant, giving us

E = a(2z)2±2∆wz.

This energy term has minima at z=±∆w
4a , leading to an energy difference scaling with ∆w2:

∆E =−∆w2

4l0

This leads to the scaling g ∝ ∆w2, as observed in the numerical simulations for small het-
erogeneities and substrate wavelengths that are commensurable to the equilibrium baselength
of the droplet.

5.1.4 Stability of solution branches

One important bit of information is missing from the analysis up to that point. Stability
information can not be obtained directly from the Auto07p model, but only from the energy
landscape perspective. The quality of the estimator of the local curvatures on the 2D-array
giving the configurational energies is insufficient when the energy landscape becomes flat,
close to the point where the solution branches annihilate. To improve the precision compared
to numerically estimating derivatives in both dimensions on a 2D landscape, it is instructive
to revisit the criteria a local extremum has to satisfy:

dEsub(xe, le)
dxc

=−µ

dEsub(xe, le)
dl

+
dE f ree(xe, le)

dl
= 0

with xe, le as the giving the location of the local minimum. For the case µ = 0, the first
criterion can only be fulfilled on lines of constant baselength or constant center-of-base of the
droplet. This makes it possible to give an analytic constraint from the first condition, so the
second criterion only has to be evaluated on one-dimensional subspaces.
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When going to a system with a finite driving force, the manifolds on which to evaluate
the second expression are given by an implicit equation that can still determined numerically.
This gives a tool to track saddle points, i.e. points that are stable in one dimension but unstable
in the other, in the bifurcation diagram close to the annihilation point with precision similar
to the level obtained with Auto07p for small contact angle droplets. It also makes it possible
to compute the stability information of the local extrema, unlike the Auto07p analysis.
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Fig. 5.7: Stability of the solution branches obtained from the energy landscape
for different k in a neutrally wetting system without driving force,
showing the same snaking behavior. The solution branches change
from a stable solution to a saddle point whenever the periodicity is com-
mensurable with the solution corresponding to the minimum or maxi-
mum wetting energy of the substrate. Parameters: w0 = 0, ∆w = 0.2

This gives a snaking diagram similar to Fig. 5.3(a), but with corresponding stability infor-
mation, as presented in Fig. 5.7. Seeing that the two main branches switch between stable and
unstable was expected, but there is a certain subtlety in the transition. As the stable branch
reaches the minimum or maximum baselength and annihilates with the antisymmetric solu-
tion branch, it first becomes a saddle point with one stable and one unstable direction. Only
at the turning point it becomes completely unstable, turning the saddle into a maximum.

For very low periodicities, i.e. the limit of sparse defects, this transition to a maximum
actually does not occur, but the branch only switches between minimum and saddle-point.
With increasing periodicity, the number of stable solutions increases, leading to the point
where it resembles a continuum of solutions with contact angles between the static advancing
and static receding contact angle.

The baselength of the minimal or maximal stable solution branch also increasingly ap-
proaches the baselength given by the minimum or maximum wetting energy. So for droplets
significantly larger than the characteristic length scale of the defects, the minimum and max-
imum wetting energy give a good estimator for the minimal or maximal observed contact
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angle.

5.2 Dynamics

The discussion up to this point only covers the conditions under which pinned droplets exist.
These results can now be combined with the results from full dynamical simulations to give
a full picture of the depinning/repinning process of droplets on heterogeneous substrates.

With BEM simulations for the case of k = 10 and a low slip length, the depinning point
from the static limit was recovered. That means at the driving force where no more stationary
solutions exist, the first moving droplet solutions were found. For driving forces higher than
the depinning force, the classic stick-slip motion was observed.

5.2.1 Introduction: Sniper bifurcation

A classical model for a stick-slip motion of a droplet on a periodically patterned substrate[85]
is a point mass in a sinusoidal potential with over-damped dynamics and a volume force acting
on it. The governing equation of motion that describes the motion of the particle position x
over time t, also known as Adler equation[2, 79], takes the following form:

x(t)′ = µ+ sin(x(t))

Fig. 5.8: Illustration of a particle on a periodically structured substrate. The driv-
ing force points down, so an increased slope represents an increased
driving force. In the over-damped limit and for small heterogeneities,
the observed dynamics can be approximated by the Adler equation.

with the prime denoting the derivative with respect to time. This system can be thought of
as a particle on a sinusoidal substrate that gets tilted with a constant volume force pointing
down, as illustrated in Fig. 5.8. As the inclination increases, the local energy minimum
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becomes more and more shallow, until the stable static solution (red) and the unstable static
solution (blue) annihilate and a periodically moving solution (green) appears, when no more
local minima exist.

The periodically moving solution features a stick-slip motion where the system slows down
in the region where the stable and the unstable solution branch annihilated. The velocity of
the solution (i.e. the inverse of the periodicity of the motion τ) after depinning, for µ > 0
scales as u ∝ (µ−µcrit)

0.5, with µcrit = 1 for the Adler equation. The occurring bifurcation is
called “Saddle-Node Infinite PERiod” (SNIPER) bifurcation, as the period diverges close to
the critical point.

5.2.2 Observations

Using the BEM code, the time evolution of droplets driven on substrates with different pe-
riodicities and different wetting heterogeneities was modeled. The simulations did not only
display the classical stick-slip motion associated with a single Adler equation. Depending on
the periodicity of the substrate, either a synchronized stick-slip motion can be observed or a
desynchronized motion, where the maximum of the front and the back contact line are phase
shifted by approximately half a period. This is shown in Fig. 5.9. The strength of the hetero-
geneity and the driving force were kept constant, but the periodicity of the heterogeneity was
changed by a quarter of a period from k = 10 to k = 10.25.

This desynchronized motion is especially pronounced when the droplet baselength matches
the periodicity of the substrate, i.e. the previously discussed case in the static limit where the
critical depinning force is reduced. In this case the velocity variation is significantly lower
than in the synchronized case. A small increase in the velocity of the other contact line
occurs whenever a contact line has maximum velocity. That means, while they are moving
desynchronized, a coupling of the dynamics of the two contact lines takes place.

Fig. 5.10(a) shows the average velocity of the droplet over the driving force for different
slip lengths. While the droplet velocity increases with increasing slip length and increasing
driving force acting on the droplet, another phenomenon is observed: For higher slip lengths,
the point where no more depinned state is observed shifts to lower driving forces. That means
there is not one critical driving force where the system changes from pinned to periodically
moving solutions, but rather a range of bistability where both periodically moving and pinned
solutions coexist.

Together with this, a discontinuity in the droplet velocity at the transition was observed,
indicating that the square root scaling of the velocity does not hold anymore. These imply a
change in the bifurcation scenario away from the SNIPER bifurcation.

To show how the dynamics change, Fig. 5.10(b) displays the minimum and maximum
observed baselength over one period of motion for periodically moving states, together with
the static states. As the driving force, and thus the droplet velocity increases, the change in
baselength decreases, as the droplet has less time to respond to the varying substrate wetting
energy.

With increasing slip length, the variation in the baselength decreases too, i.e. the droplet
deforms less over the course of one period. Also, the lowest driving force where a periodically
moving solution is observed decreases. As the static energy landscape and therefore the static
solutions not change with the slip length an increased range of bistability can be seen. This
implies that two competing time scales play a role, one determining the deformation of the
droplet and the second one determining the periodicity of the motion.
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Fig. 5.9: Velocity of the front and the back contact line for k = 10 (left), k =
10.25 (right), showing desynchronized and synchronized motion with
a small change in the periodicity of the substrate for w0 = 0, ∆w = 0.2,
µ = 0.35
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Fig. 5.10: (a) Observed average droplet velocity over driving force for different
slip lengths showing varying range of bistability for w0 = 0, ∆w= 0.2,
k = 10
(b) Observed minimum and maximum droplet baselength in one pe-
riod (symbols) plus static solution branches (full lines for stable, dot-
ted lines for unstable) over driving force for different slip lengths,
w0 = 0, ∆w = 0.2, k = 10.
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5.2.3 Mechanism

To get a better understanding for the dynamics, it is instructive to observe the interfacial
energies and contact line velocities over the position of the droplet on the substrate. This
might provide an insight in the change of the dynamics. The curves were reconstructed from
dumps of the droplet shape taken from multiple periods and smoothed with an interpolating
spline for presentation.

Fig. 5.11(a) shows how the droplet baselength varies over over period in space. While the
average baselength is quite similar for both slip length, the oscillation is significantly smaller
for the high slip length case as indicated by the minimal/maximal baselength plot presented
previously.
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Fig. 5.11: (a) Baselength of the moving solution over center of mass for different
slip lengths, showing increased variation in baselength with reduced
slip. System parameters: w0 = 0, ∆w = 0.2, k = 10
(b) Contact line velocity over the center of mass for different slip
length, showing the alternating oscillation and decreased average ve-
locity for decreased slip length for w0 = 0, ∆w = 0.2, k = 10. The
total fluctuation amplitude is changed only slightly compared to the
change in the average velocity.

When comparing the graph to the contact line velocities in Fig. 5.11(b), it becomes clear
that the velocity of the front or the back contact line is maximal when the baselength is close
to the average baselength. The desynchronized contact line motion is observed again, with
the second small maximum synchronized with the maximum of the other contact line.

It is interesting to observe that the difference between the minimal and maximal contact
line velocities is similar for both slip lengths. The total velocity is significantly higher for
the high slip length case, giving the droplet less time to adapt to underlying substrate by
deformation.

One of the hypotheses for the origin of the observed bistability is that a faster moving
droplet is strongly deformed due to hydrodynamic stresses. This allows the droplet to store
in the configuration of the free interface to overcome energy barriers. To test this hypothesis,
Fig. 5.12 shows the total energy (excluding the gravitational energy) of the configuration at
different substrate positions. While it displays the same oscillating behavior, the absolute
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change is very small with less than 0.5% of the total configurational energy.
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Fig. 5.12: Sum of wetting and free interface energy over the center of mass for
different slip length, showing slightly decreased fluctuation for higher
slip for w0 = 0, ∆w = 0.2, k = 10

This observation indicates that the droplet does not so much store energy to cross the en-
ergy barriers, as it bypasses them by not going through each local minimum in the energy
landscape. This might be explained by the increased translational velocity with increasing
slip length, with only a smaller change in the velocity variation over one period. The question
is which underlying process is responsible for this behavior and if there is a reduced model
capable of reproducing this change in the bifurcation scenario.

5.3 Droplet motion as coupled ODEs

A single Adler equation captures the relevant dynamics of the depinning at a single defect[85],
as mentioned previously. The dynamics of an Adler equation can also be written as gradient
dynamics of a particle in a one-dimensional energy landscape. In this form, the velocity for a
given configuration is determined by the gradient of the energy landscape at that point and a
mobility factor that relates the gradient to a velocity.

One approach to modeling a moving droplet with two contact lines would be to couple
two Adler equations, but this requires picking arbitrary coupling constants and friction coef-
ficients. To give a more robust derivation, this section presents a model for the droplet motion
as gradient dynamics on the static energy landscape given by the center and baselength of the
droplet presented previously.

As the last section showed that there is only a small change in the total configurational
energy, it can be assumed that the free interface is now close to the equilibrium configuration.
This makes it possible to introduce a simplified, energy independent expression for the energy
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of the free interface depending on the baselength. The question is if such a simplified droplet
model consisting of two coupled modes for translation and deformation can reproduce the
behavior observed in the full Stokes simulations.

5.3.1 Obtaining the coefficients

The naive assumption is to apply a friction law with a contact line velocity proportional to
the deviation from the equilibrium contact angle at both contact lines. This leads to equal
mobilities for the translation and deformation mode. Previously, on droplets simulated with
the full dynamics, the observation was made that apparently the time scales of translation and
deformation vary with the slip length. This indicates that the assumption of equal mobilities
for these two modes does not capture the underlying dynamics.

A suitable approach to estimate mobilities for the two modes is by determining them in
two different systems where the contributions are decomposed: The deformation mobility, i.e.
how fast the droplet changes its baselength for a gradient in the configurational energy, can be
determined by studying the relaxation of a droplet with a non-equilibrium baselength on a ho-
mogeneous substrate. The translation mobility can be obtained by introducing a volume force
and plotting the final translation velocity over the gradient of the free energy corresponding
to the force.
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Fig. 5.13: (a) Energy gradient over velocity of the baselength mode close to equi-
librium, used to obtain the mobility. The systems were initially per-
turbed by ± 5 and 10%, with the initial baselength l0 given in the
legend, ls = 0.01, w0 =−1/

√
2

(b) Energy gradient over center-of-base velocity to obtain the mobil-
ity, ls = 0.01, w0 =−1/

√
2

For the center-of-base direction, the gradient is given directly by the driving force and the
velocity is the steady state velocity the droplet approaches. Determining the local gradient of
the free energy for the deformed droplet is less straightforward. To obtain it, first the config-
urational energy over time was determined from the shape of the droplet. The information of
the baselength over time and the free energy over time were used to estimate the local gradient
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from the time series Ei, li as

∂E
∂l

(
(li+1 + li)

2

)
≈ Ei+1−Ei

li+1− li

giving the velocity of the deformation change for a gradient in the configurational energy.
By using a linear fit on both datasets, the mobility of the translation and the deformation mode
are estimated.
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Fig. 5.14: (a) mobility of the center-of-mass mode and the deformation mode
over the slip length for a contact angle of 45◦ (slope h′ = 1) (b) ratio
of the mobilities over the slip length of Fig. 5.14(a)
(c) mobility of the center-of-mass mode and the deformation mode
over the slope of the fluid interface at the contact line h′0 = tanθ0,
with θ0 as the microscopic contact angle, for fixed slip ls = 0.1 (d)
ratio of the mobilities over h′0 of Fig. 5.14(c)

Figure 5.13(a) shows the obtained trajectories of a 45◦ droplet in the thin film limit that
was initially deformed by 5 and 10% in either direction. After an initial relaxation process
(not displayed here), all initial conditions approach a similar state while approaching the
equilibrium shape. This is confirmed by the collapse of the trajectories in the plotted region.
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Fig. 5.13(b) shows the gradient in the energy landscape over the translation velocity of the
droplet in the same system. The observed mobility of the translation mode is significantly
lower than the mobility of the deformation mode. At this point, it should be remarked that a
model of two independent contact lines would exhibit a mobility ratio of 4, as discussed later
on, due to the chosen parameterization in terms of baselength and center-of-base.

From these simulations, the mobility as ratio between the free energy gradient and the ve-
locity was derived for different slip lengths, as shown in Fig. 5.14(a), and different contact
angles, as shown in Fig. 5.14(c). It shows that both mobilities are increasing with increas-
ing slip length and contact angle, with the mobility of the deformation mode always being
significantly higher than the mobility of the translation mode.

Another very relevant quantity to consider is the ratio of the two mobilities. When consid-
ering the droplet dynamics as two independent contact lines only coupled through the energy
functional of the free interface, the ratio between the two mobilities should be independent
of slip length and equilibrium wetting energy. This does not hold for the presented parameter
range. Fig. 5.14(b) shows the ratio increasing with increased slip length, while Fig. 5.14(d)
shows that the mobility of the deformation mode compared to the translation mode decreases
with increasing contact angle.

Up to this point, all results were obtained in the thin film limit. The same approach can
be taken with the BEM code for high contact angle droplets. In the range where the system
changed between the two depinning scenarios, the observed mobilities change significantly.
Fig. 5.15(a) shows the mobilities of the translation and the deformation mode for a slip length
ls = 0.1. As for the low contact angle case, the mobility of the deformation mode is higher
than the mobility of the displacement mode.

When increasing the slip length to ls = 3, both mobilities increase, but now the translation
mobility is higher than the deformation mobility. This is shown in figure 5.15(b). So not only
the overall mobility changes with the slip in the system, but also the ratio of the two mobilities
changes significantly.
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Fig. 5.15: (a) energy gradient over velocities for translation and deformation
mode for 90◦ droplets, ls = 0.1
(b) energy gradient over velocities for translation and deformation
mode for 90◦ droplets, ls = 3
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A helpful mental model to understand the effect of bulk fluid dynamics in the high slip
case is a droplet on a full-slip substrate in vacuum. While an infinitesimal volume force in
a system without friction will lead to the droplet accelerating to arbitrary high velocities, the
mobility of the deformation mode will still be limited by the relaxation time scale of a free
interface.

Fig. 5.16 shows the mobilities obtained through a linear fit of data sets as presented in Fig.
5.15(a), 5.15(b) for different slip lengths. Both the center-of-base mobility and the baselength
mobility are increasing, but the baselength mobility seems to slowly converge to a mobility
dominated by the bulk deformation. This leads to a crossover where the mobility in center-
of-base direction is higher than the mobility of the deformation mode.
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Fig. 5.16: Observed mobilities for 90◦ droplets over the slip length showing the
crossover between the mobilities

The magnitude of the mobilities is less significant, as one mobility can be eliminated by
rescaling the time. The ratio of the two mobility has to remain in a reduced model for the
droplet motion, though, as it can not be scaled out. While it will not influence the static
droplet solutions, it will have an influence on the dynamics observed for moving droplets.

5.3.2 Model equations

To derive the equations of motion, assume the total droplet configuration energy to be the
slightly simplified expression introduced previously

Ẽ = w̃
∫ x̃c+l̃

x̃c−l̃
cos(2πky/l0)dy− µ̃xc + ã(l̃− l̃0)2

with the first part giving the contribution of the substrate wetting energy, the second part
giving the gravitational contribution and the third part the configuration energy of the free
energy, modeled as elastic spring. Integrating it gives
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Ẽ =
w̃l̃0
πk

cos(2πk/l0x̃c)sin(2πk/l0 l̃)− µ̃xc + ã(l̃− l̃0)2

With the substitution xc = 2πk/l0x̃c and l = 2πk/l0 l̃ to eliminate the periodicity from the
system and after dividing the whole equation by (2ãl̃2

0)/(2πk)2 to eliminate one of the free
parameters, the equation takes the following form:

E(xc, l) = wcos(xc)sin(l)+µxc +0.5(l− l0)2

Here, w represents the non-dimensionalized strength of the heterogeneity and µ the strength
of the driving force. The length l0 gives the equilibrium baselength on a homogeneous sub-
strate modulo the periodicity of the heterogeneity.

The length scale is non-dimensionalized with the periodicity of the substrate, the driving
force and strength of the heterogeneity are non-dimensionalized with the spring constant of
the free interface. The equations of motion can be introduced now as gradient dynamics, with
the velocity proportional to the gradient of the energy landscape. After rescaling the time
with the mobility in center-of-base direction, the following equations of motion describe the
simplified dynamics:

dxc

dt
=− ∂E

∂xc
= µ−wsin(xc)sin(l)

dl
dt

=−1
β

∂E
∂l

= (−(l− l0)−wcos(xc)cos(l))/β.

with β =
mxc
ml

as the ratio of mobilities. For this set of ODEs, static and periodically moving
solutions can be computed with Auto07p, giving us bifurcation diagrams analogous to the
full dynamics simulations.

To understand how the dynamics depends on the initial conditions, it is also possible to
numerically integrate them directly to obtain the trajectories of the system for different initial
conditions and see the relaxation to the static or periodically moving solutions.

One question that should be addressed is why the cross-terms are assumed to be zero: The
change in baselength with a gradient in center-of-base direction has to be zero in first order, as
it has to be symmetric under inversion of the driving force. That means the baselength should
not increase when the driving force points in one direction and decrease when it changes sign.
The same holds for a change of the center-of-base with a gradient in baselength direction, at
least in the limit of no driving force, where the system is symmetric.

5.3.3 Bifurcation diagrams, scalings

The first case to study is a system with fixed strength and periodicity of the heterogeneity, but
varying ratio of the mobilities. The question is if the ODE system shows the same behavior
as the droplets studied in the direct numerical simulations. The parameters to consider are
again the velocity and the baselength as the system goes through the periodic motion.

Fig. 5.17(a) shows the obtained average velocity (i.e. the inverse of the periodicity) over
driving force for the periodically moving solutions depending on the ratio of mobilities β.
The chosen equilibrium baselength is l0 = 0.1, i.e. the case where the droplet is not quite
commensurable with the substrate, thus breaking the symmetry in baselength direction.
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The system shows the same bistability where both moving and pinned solutions coexist.
As observed in the full simulations, the minimal driving force where a periodically moving
droplet solution exists changes with the ratio of mobilities. A higher mobility in the transla-
tion direction leads to a lower minimum driving force. The velocity also drops increasingly
sharp at the critical point with increasing β.
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Fig. 5.17: (a) time averaged velocity over driving force for different mobility ra-
tios showing a changing range of bistability with changing mobility
ratio β

(b) baselength over driving force for different mobility ratios plus the
static solution branches (black) showing the transition from a homo-
clinic bifurcation to a SNIPER bifurcation
(c) velocity over driving force rescaled to show logarithmic diver-
gence, as predicted for a homoclinic bifurcation
(d) velocity over driving force rescaled to show square root behavior,
as predicted for a SNIPER bifurcation

To confirm the similarity, Fig. 5.17(b) shows the average baselength of the solution
branches over the driving force. The point where the periodically moving solution approaches
the static branch shifts with increasing beta, with the slope of the approach becoming increas-
ingly sharp.
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To confirm the change in the bifurcation scenario, it is possible to check if the scaling of
the velocity changes as expected. Fig. 5.17(c) shows the periodicity over the logarithm of
the distance from the critical point, indicating that the results for β = 10,15,20 display a
homoclinic bifurcation. Fig. 5.17(d) shows the linear scaling when plotting over (µ−µcrit)

0.5

which corresponds to a SNIPER bifurcation for β = 1, while the other three cases deviate.
It turned out that a two-dimensional configuration space is sufficient to obtain the transition

between sniper and homoclinic bifurcation. Introducing an additional degree of freedom to
represent the configuration of the free interface was not necessary.

Around the saddle point (xe, le) that is approached by the periodically moving solution, the
system can be linearized using xc = xe +δx and l = le +δl in the form(

δx′

δl′

)
= A

(
δx
δl

)
with A of the form

A =−

 ∂2E
∂x2

c

∂2E
∂xc∂l

1
β

∂2E
∂xc∂l

1
β

∂2E
∂l2

∣∣∣∣∣∣
xc=xe,l=le

Alternatively it can be written as

x′1 = λ1x1

x′2 = λ2x1

with λ1, λ2 as the eigenvalues of A plus x1 and x2 as the two coordinates in the base of
the corresponding eigenvectors. For a saddle point, λ1,2 have opposite signs, as the system is
stable in one direction and unstable in the other.

For a homoclinic bifurcation the periodically moving solution will approach the saddle
point from the stable direction and eject along the unstable direction of the linearized system.
If the periodically moving solution is stable, the time scale of this process is dominated by the
time required to leave the proximity of the saddle point, determined by the unstable eigen-
value. The scaling of the period close to the critical point and the eigenvalues at the critical
point of a homoclinic bifurcation can be related by the following equation, as explained in
detail by Gaspard[79, 28]:

µ−µc =Ce−λuT

Here, µ− µc is distance from the critical driving force, λu the unstable eigenvalue of the
linearized system at the saddle point, T the periodicity of the obtained solution and C deter-
mined by the dynamics away from the region close to the saddle point. The dynamics away
from the saddle point is assumed to change only slowly with µ, even if the system is close to
the critical point.

Figure 5.18(a) plots the eigenvalues of the unstable branch that is approached by the peri-
odically moving solutions. It shows the unstable eigenvalue approaching zero as the branch
approaches the turning point. The negative eigenvalue of the solution branch changes too, but
relatively little, compared to the absolute value. As shown in Fig. 5.17(a), the point where
the homoclinic bifurcation occurs moves to higher driving forces, as the mobility ratio β de-
creases. Therefore, even as λu increases with decreasing β for a fixed driving force, λu at µc

decreases and approaches zero.
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The previously presented velocity data can now be rescaled with the eigenvalues at the
branching points of the homoclinic bifurcation, as presented in Fig. 5.18(b). It shows a very
good agreement with the predicted scaling, with the point where the scaling breaks down
moving closer to the critical driving force with β approaching the transition point.
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Fig. 5.18: (a) Eigenvalues of the unstable branch that is approached by the peri-
odically moving solutions for different mobility ratios β, showing the
unstable eigenvalue approach 0 at the driving force where the last sta-
ble solution annihilates.
(b) Velocity rescaled with the unstable eigenvalue showing the scaling
predicted for homoclinic bifurcations, the black line represents a slope
of −1

The critical driving force where the bifurcation occurs can be determined for different
mobility ratios and periodicity mismatches l0, as shown in Fig. 5.19(a). As the periodicity
mismatch changes, the critical driving force where no more pinned solutions exist changes,
as discussed previously. At a value of β just above 5 that varies slightly with l0, the critical
driving force starts decreasing for all cases presented here. That means the critical point
where no more moving solution exists is not at the turning point of the static branch anymore
and the bifurcation scenario changed.

The transition region for the different curves has been replotted in 5.19(b). While the curves
are qualitatively similar, no sensible scaling law to describe the transition could be derived
from them. For the case l0 = 0.6 the range of bistability is decreasing most slowly, as the
system is close to the state where the baselength of the pinned droplet equals the equilibrium
baselength. This is also indicated by the fact that this state has the highest critical driving
force.

5.3.4 Sample trajectories

To obtain the domains of attraction of the system, the differential equations were integrated
for different initial conditions and plotted in Fig. 5.20(a) for a set of parameters where the
bistability was observed. They were colored according to their classification as approaching
the periodically moving or the static state.

It shows both trajectories approaching a periodically moving solution, colored red, and



88

0 5 10 15 20
mobility ratio β

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
cr

iti
ca

ld
riv

in
g

fo
rc

e
µ

cr
it

l0 = 0.1

l0 = 0.2

l0 = 0.6

(a)

−2 −1 0 1 2 3 4 5
mobility difference β − β0

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

ra
ng

e
of

bi
st

ab
ili

ty
µ

0
−µ

l0 = 0.1

l0 = 0.2

l0 = 0.6

(b)

Fig. 5.19: (a) Critical driving force where repinning occurs over ratio of mobil-
ities β showing the transition between the bifurcations for different
equilibrium baselengths l0.
(b) Zoom of the transition region between the homoclinic and the
SNIPER transition for different l0
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Fig. 5.20: (a) Trajectories obtained from different initial conditions (indicated
by full circles), color-coded for moving(red) and finally pinned (blue)
solutions plus local minimum (black circle) and saddle point (black
triangle), β = 15, µ = 0.4, l0 = 0.1.
(b) Periodic solutions obtained for different values of β showing the
reduced variation for the same driving force and underlying wetting
energy, µ = 0.4, l0 = 0.1.

trajectories approaching a local minimum, colored blue, coexisting. All solutions with a
baselength lower than the presented ones approach the periodically moving solution, all so-
lutions with a higher initial baselength approach the pinned state. This graph illustrates how
the system does not need a third degree of freedom to store energy to cross the saddle point,
but rather bypasses it.



89

Fig. 5.20(b) shows the obtained periodic solutions for different mobility ratios, with the
system coming increasingly close to the saddle point with decreasing β. The trajectories
approaching the periodically moving solution show the behavior expected from a homoclinic
bifurcation. With decreasing β, i.e. moving closer to the bifurcation point, the turning point
moves closer to the saddle point of the system.

5.4 Reducing model complexity

A recurring point in the previous discussions was up to which point the simplified models for
the droplet dynamics hold. It is important to understand that, while full dynamical simulations
in the Stokes limit or MD simulations might be able to capture most of the relevant physics,
the dynamics of the fluid are just one component when going towards dynamics of complex
fluid flows. When trying to incorporate for example surfactants or suspensions, simplified
models, as the lubrication approximation, are unavoidable. Otherwise the numerical effort
becomes unmanageable without foraying into high performance computing.

5.4.1 Full Stokes to contact line driven dynamics

It is possible to use the contact line driven dynamics model to describe the motion of droplets
on heterogeneous substrates. This approach is related closely to the ODE model approach, as
the change in the configurational energy with displacement of one of the contact lines directly
determines the contact angle.

When first looking at the results obtained from the contact line driven dynamics model,
there seems to be an increasingly good agreement between the motion of a droplet on a
heterogeneous substrate obtained from the full simulations and from the contact line driven
dynamics model. This is shown in Fig. 5.21(a), plotting the contact line velocity over one
period for different slip lengths and in the quasi-static limit.
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Fig. 5.21: (a) Full BEM simulations and surface evolver results for the contact
line velocity on a heterogeneous substrate, w = 0.2, k = 5, f = 0.35
(b) Mobilities derived from the contact line driven dynamics model for
a 90◦ droplet, with the center of base mobility being exactly 4 times
the mobility in baselength direction
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But it turns out that it is difficult to obtain an quantitative agreement between the droplet
shapes from the full dynamics and a contact line driven dynamics model for driven droplets.
In first order, the time scale can be tuned so the change in the droplet baselength with the
velocity matches the results from the dynamic simulations. At higher velocities, the thin
film droplets display hydrodynamic tail formation already for moderate slip lengths, a feature
that does not occur in a model that assumes the droplet shape to be close to the equilibrium
configuration for a given baselength. This causes a strong deviation between the two models.

Another issue arises from dealing with the two contact lines independently. As shown
previously, already for moderate slip lengths and very small driving forces the mobilities of
the deformation and translation mode vary. By treating both contact lines independently, a
varying ratio of the translation and deformation mobility can not be achieved in this model.
Fig. 5.21(b) shows the dataset from which the mobilities were determined, showing that
the center-of-base mobility is exactly 4 times the baselength mobility, as expected from this
choice of variables. This ratio does not change with the friction coefficient, as the ratio
∆Θi/x′i only determines the timescale. Agreement with the results presented in the previous
sections for droplets simulated in moderate slip length regimes, where the ratio of the two
was changing with the slip length, can not be achieved. These findings indicate that even in
the limit of low velocities and high contact angles the bulk fluid dynamics can not generally
be neglected when studying the droplet motion.

One point where the contact line driven dynamics is very helpful is to study systems close
to the depinning transition, as it does capture the approach of the critical point and the initial
depinning mode when it is reached. This is especially relevant when going to 3-dimensional
systems, where the time to run full dynamical simulations become prohibitively high.

5.4.2 Full Stokes to coupled ODE model

In the previous section, mobilities for the deformation and translation modes of the droplet
were obtained from the full simulations. The one missing component for a quantitative com-
parison of the ode model to the full dynamical simulations is the opening of the parabola
used to approximate the free energy of the interface. This is shown for a 90◦ droplet in Fig.
5.22(a), where a coefficient a = 0.49 was obtained as estimator in the equation

E(l) = E0 +a(l− l0)2

with l0 = 1.59 as shown previously and E0 irrelevant, as only the gradient of the energy
landscape is of any concern in the simplified model. The obtained values are a good approxi-
mation up to driving forces of approximately µ≈ 0.5, as both l0 and a change less than 5% in
this range and in a range for the baselength l of ±0.3. This sets an upper bound on the max-
imum defect spacing and strength, as the variation in droplet baselength should stay below
it.

Instead of using the expression for the energy that was introduced previously, the energy
functional without the non-dimensionalization using the same parameterization as the full
simulations was employed to simplify comparison of the results. It has the form:

E = a(l− l0)2−µx+w
∫ x+l/2

x−l/2
cos(2πky/l0)dy

So the final system of ODEs to be integrated takes the form
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Fig. 5.22: (a) Free energy of the static interface over baselength for 90◦ droplet
(blue), fitted (green) to obtain a spring coefficient a = 0.49 for the
ODE model.
(b) Contact line velocities for w = 0.2, k = 10,10.25, µ = 0.4 showing
the changing phase shift. Mobilities equivalent to ls = 1.

x′ = mx
∂E
∂x

= mx(−µ−2wsin(2πkl/2/l0)sin(2πkx/l0))

l′ = ml
∂E
∂l

= ml(2a(l− l0)+wcos(2πkl/2/l0)cos(2πkx/l0))

with a and l0 taken from the static configuration energy for µ = 0 and the mobilities ml
and mx taken from the fit of the full dynamics simulations on the homogeneous substrate
introduced at the beginning of the section.

Comparing the results for homogeneous substrates from this model would be moot, as the
mobilities were obtained by fitting the results of full dynamic simulations on homogeneous
substrates. Therefore the dynamics on a homogeneous substrate has to match. The question
is if the model reproduces the features of the dynamics on a heterogeneous substrate properly,
i.e. the phase shift in the contact line motion, the depinning point and the change in the
bifurcation scenario.

Fig. 5.23(a) shows the obtained average droplet velocities using the mobilities for differ-
ent slip lengths. It shows average velocities that are quite comparable to the full dynamical
simulation results for these system parameters presented previously and a strongly increasing
range of bistability for the slip length above unity. The driving force where no more pinned
solution exists agrees with the stability analysis of the energy landscape. The observed range
of bistability is even larger than observed in the full dynamical simulations, indicating that
the higher modes of droplet deformation still play a role.

This leads to the conclusion that this change in the bifurcation scenario can be explained
based on the two basic modes of droplet deformation and translation without incorporat-
ing higher modes of droplet deformation for fixed contact line position. This is surprising,
as it defies the original assumption that an additional degree of freedom capable of storing
and gradually releasing energy would be necessary to cross the energy barriers. The non-
symmetric mobilities allow for the system to bypass the saddle point at an even lower slip
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length, between ls = 0.1 and ls = 1 in this simplified model than in the full model.
A quantitative agreement can not be achieved with this model, though, for macroscopic de-

fect strengths and driving forces. This is also shown by the minimum and maximum observed
baselength presented in Fig. 5.23(b). First, the fluctuation of the baselength is significantly
lower for the ODE model with equivalent mobilities, leading to a more pronounced bistabil-
ity. That means additional deformation modes of the free interface for a given contact line
position can not be neglected completely.

Second, for the full dynamical simulations the average baselength seems to be higher due
to hydrodynamic deformation. This effect can not be accounted for in a linear model, as the
effect is symmetric under inversion of the direction of the driving force.
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Fig. 5.23: (a) Droplet velocities obtained from the ode model with mobilities
taken from full dynamic simulations on homogeneous substrates, k =
10, w = 0.2
(b) Minimal and maximal baselength of solutions from full dynamic
simulations and ODE model, k = 10, w = 0.2

Another aspect is also reproduced qualitatively: The system also shows the changing phase
shift between the front and the back contact line depending on the relative defect spacing 1/k,
as illustrated in Fig. 5.22(b). For the same strength of the heterogeneity but slightly changed
periodicity, the system gets closer to a complete halt with k = 10.25 where the contact lines
are moving nearly synchronized. For the periodicity k = 10, the system approaches the pinned
state for the same driving forces.

This model will fail at higher driving forces, as the assumption of the baselength dependent
interfacial energy, i.e. a being independent of µ, is increasingly invalid for higher driving
forces. This could be fixed by introducing a driving force dependent spring constant a, but
goes beyond the scope of this strongly simplified model.

Another point that is not captured is the change of the baselength at higher velocities due
to hydrodynamic deformation of the fluid interface. It can not be captured easily in a linear
model, as change is independent of the direction of driving. This could be solved with a
velocity-dependent term of the equilibrium baselength, though.

To conclude, for very low velocities, where the response of the system is purely linear, the
ode model for the contact line motion gives a good agreement. As the higher modes of droplet
deformation without displacement of the contact line and nonlinear responses of the system,
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as the change in baselength due to driving, become relevant, it does not reproduce the results
quantitatively.

5.5 Summary

The preceding chapter presented results on the statics and dynamics of droplets on a chemi-
cally heterogeneous substrate. For a substrate with a sinusoidally varying wetting energy, the
range of stable droplet states depending on the periodicity of the pattern was presented. For
periodicities that are small compared to the droplet baselength, stable solutions with the range
of contact angles determined by the minimum and maximum wetting energy of the droplet
were observed. As the length scale of the heterogeneity approaches the droplet size, a reduced
number of stable droplet configurations was observed with a hysteresis that varies with the
periodicity.

When introducing a volume force parallel to the substrate that acts on the droplet, the criti-
cal driving force where no more pinned droplet solutions exist has been determined depending
on the substrate properties. For a defect length scale much smaller than the droplet size, the
depinning force is directly determined by the wetting energy contrast. In contrast, as the pe-
riodicity approaches the length scale determined by the droplet, the pinning strength can be
reduced significantly if the defect length scale is commensurable with the defect length scale.

Going beyond the statics of droplet pinning, the dynamics of driven droplets on a chemi-
cally heterogeneous substrate was modeled. Depending on the periodicity of the heterogene-
ity, a transition between the synchronized and desynchronized motion of the contact line was
observed. For high slip lengths and a substrate commensurable with the equilibrium base-
length of the droplet, a bistability was observed where both a static, pinned droplet and a
periodically moving droplet are a solution. At a decreased slip length, moving droplets were
only observed at driving forces where no more pinned droplet states exist.

To understand this transition, a simplified droplet model with a transition and a deformation
mode was introduced. It represents the droplet motion as gradient dynamics on the energy
landscape given by the static configuration energy depending on the droplet baselength and
center. After estimating the mobility terms from the full droplet dynamics, the resulting set of
ODEs was integrated to obtain static and periodically moving solutions. It was shown that this
reduced two-dimensional model can reproduce the change in the bifurcation scenario only by
varying the mobility ratio of the two modes.





6 Conclusions and Outlook

The present work offered an alternative perspective on the microscopic dynamics occurring
when a contact line is driven over a chemically heterogeneous substrate. The change in the
macroscopic contact angle when a heterogeneity is introduced is documented and explained
with a velocity-dependent microscopic contact angle due to the sampling of the chemically
patterned substrate. This challenges the common assumption that the static advancing con-
tact angle together with the dynamics observed on a homogeneous substrate describes the
dynamics on a heterogeneous substrate.

To get a better understanding of the underlying processes, the response of a free interface
to a time-periodic driving has been studied. As a result, the scaling of the fluctuation am-
plitude with the distance from the contact line and the phase shift depending on the driving
were obtained. These scaling differ from the results obtained using a traditional approach to
model contact line dynamics on a heterogeneous substrate using a friction law, as proposed
by Joanny[38]. This point should be approached experimentally to answer which model re-
sembles observations more closely.

Based on these results, a simplified model for the motion over the heterogeneous substrate
is proposed. The model is based on a mode expansion in terms of the displacement of the con-
tact line in response to time periodic perturbations of the contact angle. This makes it possible
to model the contact line motion by obtaining a self-consistent solution to a set of non-linear
equations instead of running the full dynamical simulations, which significantly simplifies the
problem. The idea is that the contact line displacement due to the heterogeneities encountered
over the course of a period should be the same as the displacement due to a time dependent
variation of the contact angle of the same structure.

The model was validated by determining trajectories on substrates with a sinusoidal mod-
ulation of the substrate wetting energy and on substrates with a randomized periodic modu-
lation of the wetting energy. The randomized wetting patterns were created as superposition
of sinusoidal variations of the wetting energy with random phase shift. On these substrates,
the velocity dependent variation of the contact line displacement and time averaged wetting
energies were determined. The results on the random heterogeneity present the strength of
the mode expansion approach, as the numerical difficulty of the problem is determined by the
smallest length scale of the underlying structure, which determines the number of modes that
have to be considered. The complexity of the structure itself does not influence it.

The approach could be extended to three dimensions, i.e. to a system where the wetting
energy varies along the contact line to allow for an easier comparison to experimental results.
This would require solving the thin film equation in two spatial dimensions and goes beyond
the scope of this work. Discussions are underway to approach this in collaboration with
another research group that implemented such a code. This would give experimentalists[26]
a tool to fit their obtained contact angle-velocity diagrams with a more suitable model than
those obtained for a homogeneous substrate.

Even though this could not be achieved yet, this work clarifies that there are processes
occurring between the molecular length scale and the length scale on which the system is
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observed due to the non-constant wetting energy. These effects should not be neglected, but
are not accounted for in current models. They go beyond the effects taken into considera-
tion in the two most prominent theories for contact line motion, the molecular kinetic theory
(MKT)[11] and the Cox-Voinov scaling [90], as MKT assumes hopping on molecular length
scales and Cox-Voinov assumes a fixed microscopic contact angle in the continuum limit.
Neglecting them, as done when assuming the system goes directly from one of these limits to
the other one, is not appropriate for most system observed in reality.

One limitation of the numerical results in the present work is the small separation between
the length scales of the slip, the characteristic length scale of the contact line fluctuations and
the system size. This problem is twofold: On one side, an increased separation requires an
increased refinement of the free interface with more colocation points. On the other side, the
smallest length scale also limits the maximal time step when modeling the evolution of the
system, which directly effects the running time. Improvements in computational power and
the code base will make it possible to obtain stronger predictions concerning the problems
discussed in the present work.

In the second part, a droplet driven with constant force instead of constant velocity was
considered. Looking at the statics underlying the wetting of heterogeneous substrates, similar
to the works of Kalliadasis [65], it became clear how not only in three dimensions, but also
in two dimensions, the minimum and maximum wetting energy do not have to represent
the minimum and maximum contact angle of stable solutions. This is a result of the finite
length scale of the wetting heterogeneities. It also showed how with increasing driving force
the range of observable advancing and receding contact angles decreases, until one stable
solution remains.

Beyond the statics of wetting of heterogeneous substrate, the dynamics of droplets moving
over heterogeneous substrates with defect length scales below the droplet size was studied.
For high contact angle droplets in the high slip limit, range of bistability was observed where
both pinned and depinned droplet solutions coexist for the same system parameters. It was
surprising, as this is often associated with inertial effects, which do not play a role in the
Stokes limit. The effect could be shown to correspond to a change in the bifurcation scenario
from a SNIPER bifurcation to a homoclinic bifurcation with the corresponding change in
the scaling of the velocity. The initial assumption was that this change is due to the finite
relaxation time of the free interface leading to an alternative energy storage mechanism. This
turned out not to be the case, as the change in the length of the free interfacial energy was
observed to be very low.

The same change could be observed in a simplified ODE model for the droplet dynamics
derived as gradient dynamics on the free energy presented for the statics. In this model the
slip dependent dynamics of the droplet is represented by different mobilities of the transla-
tion and the deformation mode, without requiring an additional parameter to represent addi-
tional energy stored in the interface. This model is also relevant to the dynamical systems
community, as it motivates and enables further studies of the transition between bifurcation
scenarios. While bifurcations are a recurring topic in a range of fields, the transitions between
bifurcation scenarios in dynamical systems have not been characterized systematically. Even
though this model reproduced the transition, it did not succeed to reproduce the fluctuation
of the droplet baselength after depinning accurately. This indicates that a model incorporat-
ing additional deformation modes of the free interface would be in order. It was discussed
that this could be possible by deriving additional equations of motion for these building on
the principle of minimum energy dissipation, as already proposed for moving contact line
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hydrodynamics[57].
In this context, the question of comparability of the different droplet models, ranging from

the quasi-static approximation over the ODE models, proposed in the present work and by
Savva[66], to the thin film limit and the full Stokes model arises. This question was ap-
proached in the present thesis, but limited by the bounds on the slip length of the BEM code.
As this question was not resolved satisfactorily, further work on this topic is necessary to
determine the limits of validity of the different approximations. Understanding up to which
point the models for the fluid dynamic aspect of the problem hold is important when moving
to complex fluid flows. For example when coupling free interface flows with surfactant flows
or colloids, the complexity of the model has to be reduced to obtain an addressable problem.

Another very relevant point is the comparability of these results to experiments. For the
droplet depinning on striped substrates, a linear scaling of the velocity with the excess driving
force was reported[89]. A linear scaling agrees with the predicted scaling far away from the
critical point, but not close to the depinning. This indicates that more precise experiments on
well-controlled substrates close to the depinning transition are indispensable. Preparing sub-
strates with a controlled heterogeneity is very difficult, just as observing the dynamics close
to the contact line in an evolving system. But recent progress with confocal microscopy[1]
and micro-fabrication techniques should allow for this problem to be revisited experimentally.

In addition, a code to study free interface flow problems in the Stokes limit using boundary
element methods was implemented. Beyond studying droplets on homogeneous and het-
erogeneous substrates, it is suitable to study a range of problems with mixed solid and free
boundary conditions. For systems where it is not necessary to resolve a contact line region
over 3 or more orders of magnitude, for example when particles are suspended in the fluid,
the performance should be quite satisfactory. Possible applications range from modeling
foam formation from individual gas bubbles over suspension dynamics to active swimmers.
Another field where this code could be applied is the problem of electrowetting applied to
heterogeneous substrates. Having a tunable additional energy source in the system that en-
ables the droplet to cross local energy barriers makes it possible to probe the substrate energy
landscape in detail.
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G(x,x0) Green function of a free Stokes flow
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u(x) velocity of the fluid flow
σ(x) stress tensor of the fluid flow
f (x) projection of the stress tensor on the interface normal vector
W (h) interface potential
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∆w amplitude of the wetting heterogeneity
ω frequency of the contact angle variation
µ,g strength of the driving force
l0 equilibrium baselength of the droplet for wetting energy W0
x f position of the front contact line
xb position of the back contact line
l(t) baselength of the droplet over time
xc(t) coordinate of the center of the droplet base over time
`(t) length of the free interface of the droplet over time
u velocity of the droplet
a spring coefficient used to model the energy of the free interface
mx mobility of translation mode in center-of-base direction
ml mobility of deformation mode in baselength direction
β ratio of center-of-base mobility and deformation mobility
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