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Abstract

The topic of this thesis is the investigation of how sensitivity enhanced Nuclear Mag-

netic Resonance (NMR) spectra of biological systems could be obtained by dynamic

nuclear polarization (DNP) under conditions close to their physiological environ-

ment in solution. Here, the Overhauser effect is the driving mechanism for DNP,

which depends on the diffusion kinetics of the polarizer molecule with an unpaired

electron and the nuclei of the target molecule. For this thesis, a liquid state shuttle

DNP spectrometer was chosen, where the nuclei are polarized in a field of 0.34 T and

transferred to a field of 14.09 T for high resolution NMR detection. Several tech-

nical modifications were successively implemented, which increased stability and

improved reproducibility of the measurements.

High-field DNP enhancements εhf up to -2.4 (Hη2) were measured for the proton

signals of l-tryptophan. A general global enhancement factor εglobal was introduced

which includes advantages and disadvantages of the shuttle DNP approach, such as

an increased acquisition rate of the DNP experiments and line broadening due to

the presence of the radical, respectively. Subsequently, it was applied and adapted

to one-dimensional NMR measurements. For this purpose the polarization build-up

time and the acquisition time was optimized for the Boltzmann polarization and the

DNP measurement to gain a maximal signal-to-noise ratio per unit measurement

time based on T1 and T ∗
2 , respectively. With this, an applied global enhancement

εapp factor of -4.0 for the Hδ1 of l-tryptophan was measured.

Furthermore, the DNP spin properties of the protons, such as relaxation rates,

were measured and compared with each other. The thereby obtained coupling fac-

tors implied that the proton accessibility for the polarizer molecule had an important

influence on the intermolecular dipolar interaction between the nuclear spins of the

target molecule and the electron of the polarizer. It was shown, that this interaction

is described best by a model based on translational diffusion. With this model, the
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distance of closest approach was determined for the protons of l-tryptophan. These

distances range from 3 to 5 Å corresponding to the accessibility of each respective

proton.

In addition, carbon DNP enhancements between -0.3 and -2.5 were measured

for deuterated l-tryptophan-d8,15N2,13C11. Calculations demonstrated that these

carbon enhancements were in agreement with the previously calculated distance

of closest approach of the proton spins and therefore confirmed the approach of

the translational diffusion model, too. In further measurements on protonated l-

tryptophan-15N2,13C11, the three-spin effect was observed for the first time for a

solute molecule. This effect, based on a dipolar interaction between the proton,

the carbon and the electron spin, caused positive enhancements for all carbons up

to 2.3, but the carbonyl carbon with an enhancement of -2.5. These findings are

in agreement with an expanded coupling factor, which includes the intramolecular

carbon-proton interaction alongside the intermolecular carbon-electron interaction.

In a concluding step, shuttle DNP experiments were conducted on a protein

(Ubiquitin-U-15N,U-13C). For this purpose, a two dimensional shuttle DNP 1H-13C-

HSQC spectrum was recorded. For the first time, a DNP transfer to the surface of

a protein was demonstrated in the liquid state.



Zusammenfassung

Das Thema dieser Arbeit ist die Sensitivitätserhöhung der Kernspinmagnetreso-

nanzspektroskopie (NMR-Spektroskopie) für die Anwendung an biologischen Sys-

temen durch dynamische Kernspinpolarisation (DNP). Dementsprechend wurden

die experimentellen Bedingungen möglichst ähnlich zu einer physiologischen Umge-

bung in Lösung gewählt. Unter diesen Voraussetzungen ist der Overhauser-Effekt

der zentrale Mechanismus für DNP. Dieser ist von der relativen Diffusion zwis-

chen den Kernspins des Zielmoleküls und dem polarisierenden Molekül, welches

ein ungepaartes Elektron aufweist, abhängig. Als experimenteller Ansatz für diese

Arbeit wurde ein Shuttle-DNP-Spektrometer mit Proben im flüssigen Zustand aus-

gewählt. Hierbei wurden die Kernspins bei einem Magnetfeld von 0,34 T polarisiert

und für eine hoch auflösende NMR-Detektion in ein Magnetfeld von 14,09 T trans-

feriert. Mehrere technische Anpassungen, welche zu einer Erhöhung der Stabilität

und Reproduzierbarkeit der Messungen führten, wurden sukzessiv implementiert.

Für die Signale der Protonen von l-Tryptophan wurde im Hochfeld eine DNP-

Verstärkung εhf von bis zu -2,4 (Hη2) gemessen. Darauf aufbauend wurde ein allge-

meiner Verstärkungsfaktor εglobal eingeführt. Dieser beinhaltete sowohl die Vorteile

des Shuttle-DNP-Spektrometers, wie beispielsweise die schnellere Aufnahmerate der

DNP-Experimente als auch die Nachteile, wie etwa die Linienverbreiterung der

Signale durch die Gegenwart des polarisierenden Radikals. Anschließend wurde

dieser Faktor schrittweise auf eindimensionale Messungen angewandt und an diese

angepasst. Hierfür wurden die Aufbaurate der Polarisation und die Aufnahmezeit

der Messungen mit DNP und Boltzmann-Polarisation optimiert, um das maximale

Signal-zu-Rauschen-Verhältnis pro Messzeit zu erhalten. Diese Parameter basieren

auf T1 bzw. T ∗
2 . Das Ergebnis dieser Schritte war ein angewandter, allgemeiner

Verstärkungsfaktor εapp von -4.0 für Hδ1 von l-Tryptophan.

Des Weiteren wurden die Kernspineigenschaften von Protonen für DNP, wie z.B.
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die Relaxationsraten, gemessen und miteinander verglichen. Der daraus abgeleit-

ete Kopplungsfaktor implizierte, dass die intermolekulare, dipolare Wechselwirkung

zwischen den Kernspins des Zielmoleküls und dem Elektron des polarisierenden

Radikals von der räumlichen Zugänglichkeit der Kernspins beeinflusst wurde. Zu-

dem wurde gezeigt, dass diese Wechselwirkung am besten durch ein Model basierend

auf translatorischer Diffusion beschrieben werden konnte. Mit diesem wurde der

Abstand der dichtesten Annährung zwischen den Kernspins und dem ungepaartem

Elektron bestimmt. Diese Abstände reichen entsprechend der Zugänglichkeit des

jeweiligen Protons von 3 bis 5 Å.

Darauf aufbauend wurden die DNP-Verstärkungen für Kohlenstoff gemessen. Für

deuteriertes l-Tryptophan-d8,15N2,13C11 wurden Verstärkungen zwischen -0,3 und

-2,5 erzielt. Durch weitere Berechnungen wurde gezeigt, dass diese Verstärkun-

gen mit den zuvor berechneten Abständen der dichtesten Annäherung der Protonen

übereinstimmten und dadurch den Ansatz des Models der translatorischen Diffusion

untermauerten. In weiteren Messungen an protoniertem l-Tryptophan-15N2,13C11

wurde der Drei-Spin-Effekt erstmalig bei einem gelösten Molekül beobachtet. Dieser

Effekt basierte auf der dipolaren Wechselwirkung zwischen den Spins der Protonen,

Kohlenstoffkerne und Radikal-Elektronen. Er verursachte positive Signalverstärkun-

gen von bis zu 2,3 für alle Kohlenstoffe außer dem Carbonyl-Kohlenstoff, welcher eine

Signalverstärkung von -2,5 aufwies. Diese Ergebnisse waren in Übereinstimmung mit

einem erweiterten Kopplungsfaktor, der die intramolekulare Wechselwirkung zwis-

chen Kohlenstoff und Proton neben der zwischen Kohlenstoff und Elektron berück-

sichtigte.

In einem abschließenden Schritt wurden DNP-Experimente an einem Protein

(Ubiquitin-U-15N,U-13C) durchgeführt. Zu diesem Zweck wurden zweidimensionale

Shuttle-DNP-1H-13C-HSQC-Spektren aufgenommen. Zum ersten Mal konnte ein

DNP-Transfer zu der Oberfläche eines Proteins in Lösung nachgewiesen werden.
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1. Introduction

Note that this thesis is based on the publications by Krahn et al. [1] and Lottmann

et al. [2].

1.1. General introduction to dynamic nuclear

polarization

The theoretical background of nuclear magnetic resonance (NMR) spectroscopy is

a broad and complex field and goes beyond the scope of this work. Therefore, only

the basic principles which are most important under the aspect of dynamic nuclear

polarization (DNP) and thermal equilibrium polarization in the liquid state, are

mentioned here. A more detailed description of the theory and methodology NMR

spectroscopy can be found in the literature [3–5].

NMR is based on the nuclear spin ~I as a quantum-mechanical phenomenon. The

spin quantum number I has integer or half-integer values. Some nuclei have no

nuclear spin and therefore I is equal to 0. The nuclear spin is connected with a

magnetic momentum ~µ. The ratio between ~I and ~µ is constant and is described by

the following equation:

~µ = γ~~I (1.1)

where ~ is the reduced Planck’s constant and γ is the gyromagnetic ratio, which is

a distinct property of each isotope with a nuclear spin. In a magnetic field ~B, the

magnetic moment of the nucleus leads to an alignment of the nuclear spin. It takes

2I +1 orientations relative to the magnetic field direction (z-axis). Each orientation

has a different potential energy, which is given by:

Em = −µzB0 = −mzγ~B0 (1.2)

1



2 1. Introduction

with the magnetic momentum in field direction µz, the quantum number mz, the

magnetic field in z-direction B0 and the corresponding energy Em. m takes values

of I, I − 1, ..., −I. The difference between two (m and m + 1) of these energy levels

∆E is constant:

∆E(m+1)−m = γ~B0 (1.3)

Furthermore, the population of the energy states can be described by the Boltzmann

distribution for thermal equilibrium:

Ni
∑

i
Ni

=
gie−Ei/kBT

∑

i
gie−Ei/kBT

(1.4)

with Ni the number of nuclei in state i, the degeneracy gi and Ei the energy of this

state. The product of the Boltzmann constant kB and the temperature T gives the

thermal energy of the nuclei.

The majority of the studied nuclei have an spin quantum number of 1
2
. This is due

to the fact, that nuclei with higher quantum numbers possess electric quadrupole

moments, which render NMR experiments more difficult with a low sensitivity. Spin
1
2

nuclei have two distinct energy states in a magnetic field: the α state with mz = 1
2

parallel to the magnetic field and the β state with mz = −1
2

antiparallel, which has

a higher energy than the former state. For these two states, equation 1.4 is used

to determine the thermal equilibrium Boltzmann polarization [6] with gi = 1 and

equation 1.2:

P =
Nα − Nβ

Nα + Nβ

= tanh

(

~γB0

2kBT

)

(1.5)

With the assumption ~γB0 ≪ 2kbT , one can derive from equation 1.5 the following

equation on the basis of the Taylor series:

P ≈ ~γB0

2kBT
(1.6)

By applying this equation to a proton containing sample in a field of 14.1 T (600 MHz

proton frequency) at a temperature of 20 ◦C one gets a polarization of 5 ·10−5. This

corresponds to the detection of only one spin out of twenty thousand. This example

underlines the statement that an increased polarization of the nuclei would be an
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important progress in NMR spectroscopy.

Over the last decades nuclear magnetic resonance (NMR) has been established as

one of the most powerful and versatile analytical techniques on a molecular level.

For example, it is used for identifying individual chemical components, determin-

ing the structure of complex macromolecules or studying dynamic processes and

interactions.

All this was achieved despite the most significant drawback of NMR spectroscopy

as an analytical method, namely sensitivity. For the measurements, the very weak

magnetic moment of specific isotopes such as 1H, 13C or 15N and its properties in a

magnetic field are exploited. This weakness renders the recording of NMR spectra

time consuming or makes very high sample concentrations mandatory.

As recently summarized by Griffin and Prisner [7], several technical and method-

ological developments have been implemented in order to reduce this disadvantage:

These are namely Fourier transform spectroscopy [8], which allows to record all reso-

nances in a spectrum at once instead of consecutively, superconductor magnets and

cryoprobes [9] as well as Hartmann-Hahn cross polarization [10,11], J-coupling medi-

ated [12] transfer methods and 1H detection of 13C and 15N resonances [13], respec-

tively.

Another approach to increase the sensitivity is the transfer of polarization from

an external source to the nuclei. One possible source is an unpaired electron which

possesses a magnetic moment that is several magnitudes stronger than the magnetic

moment of a nucleus and thereby its Boltzmann polarization, too. The polarization

of the electron is 658 times larger than that of 1H and 2617 times larger than that

of 13C. For the first time [14], the basic concept of this method has been developed

and proposed by Overhauser in 1953 [15]. By now it is known as Dynamic Nuclear

Polarization (DNP).

Overhauser proposed that the polarization of the nuclei in a metal would increase

when the transitions of the metal electrons in a magnetic field are saturated by

irradiation with an electromagnetic wave. This increase is caused by the hyperfine

interaction between the nuclei and the electrons. The saturated electron transitions

represent a deviation from the thermal equilibrium polarization of the electrons and

subsequently induce relaxation processes leading to an increased polarization of the

nuclei. A more detailed description is given in section 1.3.
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In the year 1953 Carver and Slichter [16] proved Overhauser’s proposition by en-

hancing the signal of Li7 nuclei up to 100-fold. Later on, I. Solomon published

a detailed theoretical description [17] for the Overhauser effect based on dipolar in-

teractions between the intrinsic angular momenta (spins) of elementary particles.

Solomon generalized the effect to a system of two spins in a magnetic field. These

two spins can be alike or unlike and be nuclei and/or electrons. In his experiments,

I. Solomon demonstrated that the Overhauser effect occurs between nuclei (Nuclear

Overhauser Effect - NOE), too.

For the first time in 1956 a DNP experiment in liquid state was conducted by

Carver and Slichter [18]. They dissolved sodium in anhydrous liquid ammonia and

saturated the transition of the dissolved free electrons. A more than -400 times

increased proton polarization of ammonia was observed. Already, these first exper-

iments clearly demonstrated the potential of DNP as a powerful method for NMR.

To this day, DNP has evolved into a complex and heterogeneous field of research.

In literature [7,19,20], a multitude of different approaches are described as will be seen

in the following. These approaches aim for applications in liquid state and solid state

NMR as well as in Magnetic Resonance Imaging (MRI). They can be categorized

into four different groups [7]: (I) magic angle spinning (MAS) DNP, (II) dissolution

DNP, (III) high-field (hf) liquid state DNP and (IV) liquid state shuttle DNP.

MAS DNP gained a broader applicability in the 90’s when high field (>5 T) exper-

iments had become feasible with the help of gyrotrons as a high power microwave

(mw) source [21,22]. The use of biradicals [23,24] as polarization agents had been a

second important improvement in this field of research. Until today both aspects

are still under current development and optimization. New gyrotrons reaching the

terahertz regime [25] are tested as well as more efficient polarizers [26].

In the solid state, the electron polarization is transferred to the nuclei by three

different effects [27–29]: solid effect, cross effect and thermal mixing. The dominat-

ing mechanism as well as the efficiency of the polarization transfer depend on the

temperature, the polarizing agent and the field of polarization. In MAS DNP, most

experiments are conducted at 100 K where signal enhancements factors of 235 for

protons at 400 MHz proton frequency and of 128 at 600 MHz, respectively [26], are

achieved. The proton polarization is subsequently used in MAS cross polarization

experiments for carbon, nitrogen or silicon [30,31] detection.
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The second approach, dissolution DNP, is based on the same physical principles,

but differs in its experimental procedure and application. The sample is polarized in

the solid state, too, but at 1-4 K followed by dissolution with a hot solvent [32]. This

dissolution step is irreversible and can be done only once per sample. Therefore, the

main focus lies on the maximization of the initial polarization. In order to achieve

this, heteronuclei are polarized, since they have more favorable relaxation properties

in regard to the delay between polarization and detection of the sample. Here, slow

relaxation is mandatory to avoid polarization losses.

Overall nuclear polarizations of up to 70 % (13C) were reached for samples directly

before the dissolution step [33]. So far, it has not been possible to gain the same

polarization after the subsequent dissolution step, yet. However, a polarization

of about 40 % [34]was measured in the dissolved sample. This corresponds to an

enhancement factor of more than fifty thousand.

These hyperpolarized solutions are used for two different applications. One of

these is the administration as contrast agent in MRI. In this context, the technique

is used to monitor the metabolism of tumors by recording the carbon signals of

previously hyperpolarized metabolites [35,36].

The second application is in liquid state NMR spectroscopy. The polarized solu-

tion is directly transferred into a NMR probe by rapid sample injection [37–39]. With

the high initial polarization and small flip angle excitation, it is possible to follow

irreversible dynamic processes in the time scale of a few seconds such as chemical

reactions [40] or protein folding [41]. The disadvantage of this injection method in

comparison to conventional liquid state NMR experiments is that signal averaging

and proton detection are not possible or in a very limited way, respectively. Beside

this, the dissolution process with hot solvents is not applicable to every sample and

its chemical compounds or biomolecules.

An alternative, more direct approach to obtain DNP enhancements in liquid sam-

ples is the excitation of the unpaired electrons of the dissolved polarizer molecules

by mw irradiation in the liquid state. Under these conditions, the polarization is

transferred via the Overhauser effect through space to the nuclei of the solution [6].

The efficiency of the transfer depends on the distance between electron and nucleus

as well as the strength of the actual magnetic field (see 1.3.4).

Additionally, dielectric losses of the microwave irradiation represent a serious tech-
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nical complication in dipolar solvents as they cause severe heating of the sample.

This heating effect is minimized by placing the sample within the resonator at the

maximum of the magnetic field of the microwave and thereby at the minimum of

electric field which causes the heating of the sample in the first place.

The sample diameter should only be a small fraction of the wavelength of the

microwave to ensure a significant impact of this arrangement. Thus, the static

magnetic field determines the wavelength and, consequently, the sample diameter

which is linked to the sample volume. In other words, high static magnetic fields

require small sample volumes. In comparison, these restrictions are absent in the

previously described DNP approaches since the sample is in the solid state, where

the dielectric losses are negligible.

In regard to these restrictions, two different approaches for liquid state DNP are

realized: (III) hf liquid state DNP and (IV) liquid state shuttle DNP. The first

approach has the disadvantages of very small sample volumes and an inefficient

polarization transfer. In the second one, the field of polarization and detection are

separated with the gain of moderate sample volumes and a more efficient polarization

transfer. This separation makes a sample transfer between the fields mandatory

which causes relaxation losses of the previously generated polarization.

In the literature, liquid state DNP set-ups at proton frequencies of 400 MHz

(9.2 T) and sample volumes of about 3 to 4 nL are described [42–44]. Enhancements

of -13 at 45 ◦C and -79 at 160 ◦C [45] for water as well as -0.6 at 40 ◦C [46] for methyl

protons of pyruvate∗ were obtained.

As described before, the liquid state shuttle DNP approach utilizes a low magnetic

field for a more efficient polarization transfer and bigger sample volumes. However,

to obtain sufficient resolution for biological applications, a sample transfer to high

magnetic fields is necessary. A first prototype [47,48] of a shuttle spectrometer with

two dedicated magnets was built: one magnet operates at 0.34 T (9.7 GHz electron

frequency) for the polarization of the nuclei (low-field - lf) and the other one at

14.09 T (600 MHz proton frequency) for high resolution NMR detection (high-field

∗Note that the enhancement factors are back calculated to fit the definition (equation 1.22) given
below, which is based on the publication by K.H. Hausser and D. Stehlik [6]. The factor given
in these publications [42–46] are defined differently and would correspond to the definition of
polarization in this work.
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- hf). The centers of these two magnets are 1.525 m apart. A pneumatic shuttle

system transfers a sample of 10 μL within 100 to 200 ms (start of transfer to signal

acquisition). With the help this setup, it was proven, that it is possible to polarize

protons of water at a low magnetic field and transfer the sample to the high magnetic

field with a resulting signal enhancement of -3.5.

However, the sample passes through a magnetic field minimum of about 4.5 mT

during the transfer from the lf to the hf position, where the relaxation times of the

nuclei become very short. With increasing molecular size, this effect becomes more

severe because larger molecules have even shorter relaxation times. Therefore, it

was impossible to preserve the dynamic nuclear polarization, which was generated

in the lf, for dissolved molecules.

Shortly before the beginning of this PhD project, a new setup was designed fea-

turing a two center magnet [1] with a continuously increasing magnetic field strength

from the lf (0.34 T) to the hf (14.1 T) position. The lf field plateau is accomplished

by an additional ferroshim system in the stray field within the bore of the hf cryo

magnet. Furthermore, a new DNP probe was made to fit in this novel shim system.

This probe operated in the TM110 microwave mode. At this point it is referred to

chapter 2 for more details due to numerous similarities of the principle setup design

to the actual setup used in this thesis.

With this new setup, it was possible to polarize dissolved molecules in water and

preserve most of the previously generated polarization for measurements in the hf

position despite the relaxation losses during the transfer of the sample. This was

demonstrated for d-glucose with an enhancement of up to -2.8 at 60 ◦C. These

findings are the basis for the ensuing efforts of this thesis.

In summary, the liquid state shuttle DNP spectrometer set-up aims to acquire

structural and/or dynamic information of biological samples (with water as manda-

tory solvent) in the liquid state (different from MAS DNP) with rapid and repeti-

tive signal acquisition. This means, that this set-up enables the implementation of

conventional, multidimensional NMR experiments and features sample preservation

which becomes essential, when only a small amount of material is available (different

from dissolution DNP). In addition, a high efficiency is obtained for the polarization

transfer due to the more favorable lower magnetic fields (different from hf liquid

state DNP).



8 1. Introduction

1.2. Aims and outline

Krahn et al. [1] presented a first prototype of a shuttle DNP spectrometer with a

two-center magnet. They polarized dissolved (non-solvent) molecules for the first

time in the liquid state and detected them at high fields.

The first aim of this thesis is to continue the efforts mentioned above and increase

the reproducibility and stability of the shuttle DNP spectrometer with a two-center

magnet in cooperation with Bruker Biospin (Rheinstetten, Germany), in order to

enable measurements of several hours and several thousand scans, such as multidi-

mensional correlation experiments. For this purpose, several major improvements

of the shuttle DNP spectrometer are implemented and tested, such as a generally

overhauled DNP probe, active cooling of the lf section of the magnet and a newly

designed shuttle container. In this process, a more complete assessment of the signal

enhancement is established in regard to the obtained signal-to-noise ratio (SNR) per

measurement time. For this purpose, important factors are taken into account, such

as line broadening or changed acquisition rates due to the paramagnetic polarizer

in the sample solution.

The second aim is to study the polarization transfer between the nuclear spins

and the electron spins. Based on the coupling factor, it is investigated, how the

accessibility of the target nuclei by the polarizer molecule influences the polarization

transfer and how it can be theoretically described. Furthermore, heteronuclear spin

systems with more than one nuclear spin are taken into account.

As a concluding step, the third aim is to measure heteronuclear correlation spectra

of a protein with DNP based on the previously obtained results.
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1.3. Theory of liquid state shuttle DNP

1.3.1. Basics of shuttle Overhauser DNP

As described before (1.1), the idea of DNP is to increase the low Boltzmann polariza-

tion of nuclei via interacting electrons in a magnetic field. I. Solomon theoretically

described the transfer processes in a generalized system of two dipolar coupled spins

with the value 1
2

[17]. His approach is based on the Hamiltonian of two spins ~S

(unpaired electron) and ~I (nucleus) interacting in a magnetic field ~B:

H = HM − ~γI

(

~B · ~I
)

− ~γS

(

~B · ~S
)

+ HIS (1.7)

HM is the Hamiltonian of motion of the two spins followed by the respective Zeeman

energies. HIS is the spin-spin interaction term, which is considered as a fast fluctu-

ating perturbation (as for example in gases and liquids). For a pure dipole-dipole

interaction the Hamiltonian is described as follows:

HIS = −
(

~
2γIγS

r3

)

[

3
(

~I · ~r
) (

~S · ~r
)

− ~I · ~S
]

(1.8)

~r is the vector between the two dipoles and r is the distance. Based on equation 1.8

Solomon [17] derived the transition probabilities between the four energy states of

Figure 1.1.: The four energy states of a two
spin system in a magnetic field. ~S represents
the electron spin and ~I a nuclear spin with the
value 1

2 . Both spins are dipolar coupled. wi is
the transition probability and ∆E the energy
difference between the indicated states with
the gyromagnetic ratio γ, the reduced Planck
constant ~ and the magnetic field B0 along the
z-axis
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the two interacting spins (see fig. 1.1) and the change of the macroscopic magnetic

moments Iz and Sz:

dIz

dt
= − (w0 + 2w1 + w2) (Iz − I0) − (w2 − w0) (Sz − S0) (1.9)

dSz

dt
= − (w2 − w0) (Iz − I0) − (w0 + 2w′

1 + w2) (Sz − S0) (1.10)

I0 and S0 are the thermal equilibrium values of the macroscopic magnetic moments.

For a general and more realistic description, one must consider additional transitions

beside the dipolar spin-spin interaction. They can occur due to further perturbations

of the spin states in a sample. All additional externally induced transitions are

summarized in w0 as an overall transition probability of the two spins [6].

dIz

dt
= −

(

w0 + 2w1 + w2 + w0
)

(Iz − I0) − (w2 − w0) (Sz − S0) (1.11)

dSz

dt
= − (w2 − w0) (Iz − I0) −

(

w0 + 2w′
1 + w2 + w′0

)

(Sz − S0) (1.12)

Under steady state conditions with dIz

dt
= 0, equation 1.11 is rearranged to:

Iz = I0 +
(

w2 − w0

w0 + 2w1 + w2

)(

w0 + 2w1 + w2

w0 + 2w1 + w2 + w0

)

(S0 − Sz) (1.13)

and simplified by introducing the auto-relaxation rate ρ and the cross-relaxation

rate σ with:

ρ = w0 + 2w1 + w2 (1.14)

σ = w2 − w0 (1.15)

to:

Iz = I0 +

(

σ

ρ

)(

ρ

ρ + w0

)

(S0 − Sz) (1.16)

A commonly measured quantity in DNP experiments is the signal enhancement
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which is defined as:

ε =
Iz

I0

(1.17)

By inserting equation 1.16 in 1.17 and multiplying by S0/S0 one gets:

ε = 1 +

(

σ

ρ

)(

ρ

ρ + w0

)

(

S0 − Sz

S0

)(

S0

I0

)

(1.18)

For this equation, A. Abragam [49] introduced the following definitions for the cou-

pling factor ξ, the leakage factor f and saturation factor s:

ξ =
σ

ρ
(1.19)

f =
ρ

ρ + w0
(1.20)

s =
S0 − Sz

S0

(1.21)

All three parameters reflect an important aspect of the DNP process: excitation

(s), transfer (ξ) and losses (f). These factors are described in more detail in the

following subsections (1.3.3 and 1.3.4). However, the quotient of the two macroscopic

magnetic moments S0/I0 can be replaced by the quotient of the two corresponding

gyromagnetic ratios γS/γI , which gives the final equation for the DNP enhancement

in the liquid state at a specific field:

ε = 1 + ξfs
γS

γI

(1.22)

Under ideal conditions, the dipolar coupling factor ξ becomes 0.5. No polarization is

lost through competing relaxation pathways with f = 1 and the electron transition

is completely saturated with s = 1. With the gyromagnetic ratios of a proton

(γI,H = 2.675222005 · 108 1/sT) or a carbon (γI,C = 0.6728286 · 108 1/sT) and an

electron (γS,H = −1.76085970839·1011 1/sT), the theoretical maximum enhancement

εth is −328 for proton or −1308 for carbon without sample transfer.
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1.3.2. Shuttle DNP

Since the shuttle DNP approach involves two fields, the equation 1.17 for the DNP

enhancement must be adapted to this circumstance. In general, the achievable

signal enhancement εhf at the high field position is of interest, where the signal is

acquired. The generated dynamic nuclear polarization Iz,lf in the low field position

is diminished to I
′

z,lf in the high field position due to relaxation during the sample

transfer between these two fields. The reduced polarization I
′

z,lf is referenced to the

thermal equilibrium polarization of the high field position I0,hf to obtain εhf:

εhf =
I

′

z,lf

I0,hf

(1.23)

The relaxation losses λ during the transfer are defined as:

λ = 1 −
I

′

z,lf

Iz,lf

(1.24)

This gives together with equation 1.17 and 1.22:

εhf =
I0,lf

I0,hf

(

1 + ξfs
γS

γI

)

(1 − λ) (1.25)

The ratio of I0,lf and I0,hf is proportional to the field strength of the low field B0,lf

(polarization) and the high field B0,hf (detection), which finally gives:

εhf =
B0,lf

B0,hf

(

1 + ξfs
γS

γI

)

(1 − λ) (1.26)

The theoretical maximum enhancement for protons and carbons in a shuttle DNP

spectrometer with two magnetic fields at 0.34 T and 14.1 T is according to sub-

section 1.3.1 εH,hf,th = −328 · 0.34
14.1

= −7.9 and εC,hf,th = −1308 · 0.34
14.1

= −31.6,

respectively, with the assumption, that no relaxation losses occur (λ = 0) during

the transfer.
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1.3.3. Leakage and saturation factor

The leakage factor reflects how much of the transferred polarization is lost through

relaxation pathways of the nuclear spin ~I, which do not involve the electron spin ~S.

This becomes more clear by expressing equation 1.20 in a different manner [6,50]:

f =
ρ

ρ + w0
=

Rpara

R1,para + R1,dia

=
R1,rad − R1,no_rad

R1,rad

(1.27)

R1,para is the sole paramagnetic relaxation rate and R1,dia the diamagnetic relax-

ation rate. This relation can be used to experimentally determine f measuring the

relaxation rate of the nucleus in the presence R1,rad and the absence R1,no_rad of the

spin ~S and the radical, respectively. Furthermore it becomes obvious, that nuclei

with high diamagnetic relaxation rates tend to smaller leakage factors compared to

nuclei with lower rates. The consequence is a smaller enhancement.

The saturation factor is the normalized deviation of the magnetization of the

electron spin ~S from thermal equilibrium (equation 1.21). By irradiating the hy-

perfine line of ~S with a electromagnetic wave, the spin state population difference

is equalized and therefore Sz becomes zero. In this case, the Bloch equations [51] for

the rotating frame result in the following equation with the steady state condition
dSz

dt
=0 and on resonance irradiation:

Sz = S0
1

1 + g2
e µ2

Bτ1,Sτ2,SB2
1

(1.28)

τ1,S and τ2,S are the the longitudinal and transverse relaxation times of ~S, respec-

tively. B1 is the magnetic field strength of the applied electromagnetic wave. By

combining equation 1.21 and 1.28, one gets for s the following expression [52]:

s = 1 − 1
1 + g2

e µ2
Bτ1,Sτ2,SB2

1

(1.29)

This result is only valid if all electron transitions and therefore hyperfine lines are

pumped at the same time. For the specific case of exciting one of multiple lines,

additional interactions must be taken into account.

The most important effect in the context of shuttle DNP is Heisenberg exchange.
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Collisions between the radical bearing molecules lead to an exchange of electron spins

between the hyperfine lines [53,54]. Thus, electron population differences of different

nuclear spin configurations begin to equalize depending on the collision rate and

exchange rate, respectively.

For an occurring exchange, the two electron spins as well as the nuclear environ-

ment of the colliding molecules must be different to result in an observable effect.

When the molecules separate again, the probability is 1
2

that the states of the two

electrons switched between the two unaffected nuclear environments. An extended

theoretical treatment of the saturation behavior of electrons with multiple hyperfine

lines in solution was done by Freed [55,56]. The only constraint of his approach is the

limitation to low radical concentrations since he excluded collisions of more than

two radical molecules at the same time.

Türke et al. [57,58] applied Freed’s approach to nitroxide radicals with 15N label.

The spin of 15N is I = 1
2

which gives two hyperfine lines. In their approach, only one

hyperfine line is effected by the mw irradiation and saturated. With these conditions,

the corresponding effective saturation factor seff for the overall saturation of both

lines was derived:

seff =

(

2 (2w1e + w1n) + ωex

2 (w1e + w1n) + ωex

+
2

g2
e µ2

Bτ1,Sτ2,SB2
1

)−1

(1.30)

w1e and w1n are the intramolecular equivalents of the intermolecular single quantum

transition probabilities w
′

1 and w1 for two spins (see figure 1.1). ωex is the exchange

rate between the two hyperfine lines along with τ1,S and τ2,S as the longitudinal and

transverse relaxation time of the unpaired electron, respectively. B1 is the magnetic

field of the electromagnetic wave which is used for the saturation. It immediately is

evident from equation 1.30 that the exchange rate has an important impact on the

effective saturation factor and, therefore, on the enhancement.
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1.3.4. Coupling factor

The coupling factor reflects the efficiency of the dipolar polarization transfer. The

higher the coupling factor the more polarization is transferred from the unpaired

electrons to the nuclei. As illustrated by equation 1.19, the coupling factor is the

ratio between the cross-relaxation rate and the auto-relaxation rate of the nucleus

and the electron. These two rates are based on the transition probabilities in a two

spin system (figure 1.1) with zero quantum w0, single quantum w1 or w
′

1 and double

quantum w2 transitions. These probabilities are proportional to the spectral density

function J (ω, τ) of each transition [17,50,59,60]:

w0 = kJ (ωI − ωS, τ) (1.31)

w1 =
3
2

kJ (ωI , τ) (1.32)

w2 = 6kJ (ωI + ωS, τ) (1.33)

ω is the Lamor frequency of the respective spins, τ the correlation time between the

spins and k a proportionality factor.

An alternative and the transition probabilities containing expression of the cou-

pling factor is obtained by inserting equations 1.14 and 1.15 in 1.19:

ξ =
w2 − w0

w0 + 2w1 + w2

=
6kJ (ωI + ωS, τ) − kJ (ωI − ωS, τ)

6kJ (ωI + ωS, τ) + 3kJ (ωI , τ) + kJ (ωI − ωS, τ)
(1.34)

The coupling factor reaches its maximum with 0.5 for pure dipolar interactions

under ideal conditions with J (ωI + ωS, τ) ≈ J (ωI , τ) ≈ J (ωI − ωS, τ). Under these

conditions, no scalar coupling occurs.

In the literature [17,50,60,61], different models were applied to calculate the propor-

tionality factors and the spectral density functions for these transitions. In NMR,

the most prominent model describes the dipolar spin-spin interaction between spins

within a single molecule [17]. The strength of this intramolecular interaction is de-

termined by the molecular tumbling or more precisely the rotational diffusion. The

spectral density function Jtumb (ω, τc,I) of this interaction depends on the rotational
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correlation time τc,I of the specific molecule and the Lamor frequency ω:

Jtumb (ω, τc,I) =
τc,I

1 + (ωτc,I)
2 (1.35)

The proportionality factor of the mentioned transition probabilities in a two spin

system is given by :

ktumb =
1
10

(

µ0

4π

)2
(

γ2
I,1γ

2
I,2~

2

r6
12

)

(1.36)

µ0 is the vacuum permeability, γI,1 and γI,2 the gyromagnetic ratios of the coupled

nuclei as well as r12 the distance between the two nuclear spins ~II,1 and ~II,2.

This model of single molecular tumbling does not directly apply to the intermolec-

ular interaction of the DNP experiment since the electron spin ~S and the nuclear

spin ~I are located in two separate molecules which move independently of each

other. This relative movement of the two spins is accounted for by a model based

on translational diffusion and/or a for this context adapted model of the rotational

diffusion.

Bennet et al. [61] introduced the term "Outer Sphere Relaxation" (outer sphere

model) for the intermolecular dipolar spin-spin interaction based on translational

diffusion. A frequently [50,60,61] used mathematical approach for this interaction is the

force-free model [62,63] which accounts for the finite size of the diffusing molecules.

The spectral density function Jt (ω, τt) depending on the Lamor frequency ω and

the translational diffusional correlation time τt
[50] is defined as

Jt (ω, τt) =
1 + 5

8
z + 1

8
z2

1 + z + 1
2
z2 + 1

6
z3 + 4

81
z4 + 1

81
z5 + 1

648
z6

(1.37)

with

z =
√

2ωτt (1.38)

and the proportionality factor kt:

kt =
32π

405

(

µ0

4π

)2 NA[S]γ2
I g2

e µ2
BS(S + 1)

d (DS + DI)
(1.39)

NA is the Avogadro constant and d the distance of closest approach between the
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two spins. Furthermore DS and DI are the diffusion constants of the spin bearing

molecules. These diffusion constants also contribute to the translational diffusional

correlation time τt along with the distance of closest approach d between the two

spins:

τt =
d2

DS + DI

(1.40)

In addition, it is possible to extend the outer sphere model by the "Inner Sphere

Relaxation", how the intermolcular interaction based on rotational diffusion was

called by Bennet et al. [61]. The combination of inner and outer sphere relaxation is

called (in this work) the combined model.

For the occurrence of inner sphere relaxation alongside outer sphere relaxation, the

assumption is made, that both the electron and the nuclear spin bearing molecules

stay for a short period of time † τr in close vicinity to each other (in the inner sphere),

for example due to the formation of a weak complex [64,65], hydrogen bonds [60], tem-

porary van-der-Waals interactions, etc.

Beyond this superficial and general description, no further more detailed defi-

nitions are made in regard to the inner sphere. Based on these assumptions, the

intermolecular rotational correlation time τr is defined as [50]:

τr =
(

τ−1
c,S + τ−1

1,S + τ−1
M

)−1
(1.41)

Here, τc,S is the rotational correlation time of the electron spin bearing molecule,

τ1,S the longitudinal relaxation time of the electron and τM is the life time of the

interacting nucleus in close vicinity to the electron spin. The Lorentzian spectral

density function Jr (ω, τr) for the inner sphere relaxation is given by:

Jr (ω, τr) =
τr

1 + (ωτr)
2 (1.42)

which is identical to intramolecular case (equation 1.35). However, the proportion-

†In the literature, the correlation time of the rotational diffusion interaction between two
molecules is often only called rotational correlation time τc. This nomenclature may lead to
confusion since τc is used for the rotational correlation time of a single molecule, too. Therefore
τr is introduced in this work for a clear distinction.
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ality factor is different

kr =
2
15

n[S]
[I]

(

µ0

4π

)2
(

γ2
I g2

e µ2
BS(S + 1)
r6

)

(1.43)

µ0 is the vacuum permeability, γI the gyromagnetic ratio of the nucleus, ge the Landé

g-factor of the electron, µB the Bohr magneton and r the distance between ~I and ~S.

[I] and [S] are the concentrations of the two spins. n represents the temporal average

number of spins ~I in the coordination sphere of ~S. For a significant contribution of

the inner sphere relaxation to the coupling factor, τr should be at least of similar

magnitude as the translational diffusion correlation time τt.

Since the transition probabilities of inner and outer sphere relaxation add up [6,50],

the coupling factor of the combined model is given by:

ξ =
(w2,r + w2,t) − (w0,r + w0,t)

(w0,r + w0,t + 2w1,r + 2w1,t + w2,r + w2,t)
(1.44)

where the transition probabilities with the index r represent the contribution of

rotational diffusion and with the index t the contribution of translational diffusion,

respectively.

Both approaches, the translational diffusion model and the combined model were

developed based on Nuclear Magnetic Relaxation Dispersion (NMRD) measure-

ments [60,62,63] in order to describe the relaxation properties of solvents [59,62,63,65] in

the presence of dissolved paramagnetic substances at different fields and temper-

atures. However, there is no clear evidence in literature, if the pure translational

diffusion model or the combined model should be applied to the DNP experiments.

NMRD measurements by Polnaszek et al. [60] and Bennati et al. [50] showed for the

system of nitroxide radicals dissolved in water, that the dependency of the param-

agnetic relaxation rate of the water protons on the Larmor frequency is described

more accurately by using the combined model of the inner and outer sphere relax-

ation. Nevertheless Polnaszek et al. [60] were not able to obtain reasonable values of

τr for a nitroxide spin labeled protein [60] and neglected the inner sphere relaxation

for this system. The nitroxide spin labeled protein confirms that the contribution

of the rotational diffusion strongly depends on the reorientation time of nitroxide

radical. In contrast, Bennett et al. [61] reported evidence that the rotational diffusion
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Figure 1.2.: Dependency of the coupling factor on the proton Lamor frequency for
the inner sphere model (dashed line), the outer sphere model (dotted line) and the
combined model (full line). The calculations were conducted for water with 25 mM
TEMPONE-d16,15N at 298 K. They are based on measurements and experimental val-
ues of Bennati et al. [50] with τr = 20 ps, DS + DI = 2.87 · 10−9m2s-1, d = 272 pm,
r = 296 pm and n = 2.

is negligible for nitroxide radicals in water, but becomes relevant for macromolecular

complexes.

Furthermore, n, the temporal average number of nuclear spins ~I in the coordi-

nation (or inner) sphere of the electron spin ~S is difficult to determine for nuclear

spins ~I, which are located on dissolved molecules. Until now the combined model

has been only applied to solvents. Numbers of n = 2 and n = 12 are reported in

literature for water protons [50] near the unpaired electron of a nitroxide radical ‡ and

for water protons [64] in the coordination sphere of a manganese(II) ion, respectively.

For low concentrated (<1 M) dissolved target molecules, one must assume, that

these are not continuously present in the coordination sphere of the spin ~S, which is

in contrast to the always present solvent molecules. This circumstance would lead

to a temporal average number of nuclear spins n smaller than 1. Altogether, it is

necessary to asses the models based on the measured DNP data later on.

The differences between the two models are illustrated by the dependency of the

coupling factor on the proton Lamor frequency in figure 1.2. The field profile of the

coupling factor of water with 25 mM TEMPONE-d16,15N at 298 K was calculated for

‡n was back calculated from the fitted data.
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pure outer sphere relaxation (dotted line), pure inner sphere relaxation (dashed line)

and the combination of them (full line). The calculations are based on measurements

and experimental values of Bennati et al. [50].

Figure 1.2 evidently illustrates how the coupling factor increases towards lower

Lamor frequencies and therefore implies, how the enhancement factors increase with

decreasing magnetic field strength. As mentioned above, these higher enhancements

are one of the advantages of the shuttle DNP approach with low field polarization.



2. The DNP shuttle spectrometer

with a two center magnet

2.1. Overview

The DNP shuttle spectrometer with a two center magnet consists of three essential

parts: The lf section, where the sample is polarized, the pneumatic shuttle system,

which transfers the sample between the two field plateaus, and the hf section, where

the NMR signal is acquired with high resolution (figure 2.1).

For the low field part, an extra ferroshim system was installed inside the magnet

bore (54 mm) of a NMR 14.1 T shielded cryomagnet (1H 600 MHz “UltraShield”,

Bruker). It generates a second homogeneous field plateau of 0.34 T, which is located

47 cm above the center of the cryomagnet. A DNP probe is mounted from the top,

placing the EPR cavity in the center of the ferroshim system. The cavity is tuned

to a frequency of 9.6 GHz, which corresponds to the Lamor frequency of an electron

at 0.34 T. A Bruker E-Scan EPR spectrometer with an additional 20 W amplifier

(Varian MED VZX6981K1) generates the microwave for the DNP experiments and

also drives additional sweep and modulation coils inside the ferroshim system and

in the cavity, respectively.

A dedicated shuttle controller built by Bruker transfers the sample pneumatically

from the DNP probe to the NMR probe in the hf position within 65 ms. For this

purpose, a special sample container was designed to withstand the strain imposed

by the rapid transfer. It can hold up to 5 μL of sample solution. Both the shuttle

controller and the gate of the microwave amplifier are triggered using a 600 MHz

Bruker Avance III console.

A modified high resolution NMR probe (dual 1H/13C with 2H lock channel) is

21
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used for signal detection. High reproducibility and stability make signal averaging

and fast acquisition rates possible.

In the next section, the spectrometer and its components will be described in

more detail.

Figure 2.1.: The schematic overview
illustrates the DNP shuttle spectrome-
ter with its three essential parts. The
DNP probe (a) with the DNP cavity (b)
centered in the ferroshim system (c) is
mounted from the top of the magnet. A
transfer tube (d) connects the cavity to
the NMR probe (f), which is mounted
from the bottom of the magnet. The
shuttle container (e) is transferred be-
tween the two probes by a pneumatic
shuttle system
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2.2. Low field part

2.2.1. Low field plateau

As described in section 1.1, it is crucial to minimize polarization losses between the

generation of the polarization and the detection of the NMR signal. This could

be achieved in two ways: (i) by a very fast sample transfer and (ii) by ensuring

long relaxation times of the polarized nuclei during the transfer. Both aspects are

addressed by the implementation of the ferroshim system.

The ferroshim system is an additional shim system, which is used to adjust a cer-

tain section of the stray field of the hf cryomagnet. It is composed of a ferromagnetic

metal cylinder which was optimized for compensating the specific stray field gradi-

ent around 0.34 T. The resulting field profile along the magnet axis is illustrated in

figure 2.2 [1]. It is evident that the magnetic field continuously increases from the

lf plateau to the hf center. Therefore the relaxation times of the polarized nuclei

become longer during the transfer and more polarization is preserved. In addition,

the distance between the field of polarization and detection is minimized to 47 cm.

Thereby, the sample transfer is accomplished within 65 ms.

0 0.1 0.2 0.3 0.4 0.5 0.6
10

−1

10
0

10
1

Figure 2.2.: Measured magnetic field profile along the magnet bore. The field continu-
ously increases along the magnet axis from the ferroshim plateau to the magnetic center of
the magnet. The plateau in the low field position can be adjusted by moving the ferroshim
system between 0.328 T and 0.363 T. [1]



24 2. The DNP shuttle spectrometer with a two center magnet

The ferroshim system generates a field plateau with a length of 10 mm and a

calculated homogeneity of ±1 mT. The position of the ferroshim system can be

adjusted inside the magnet bore in the range of ±5 mm in axial direction to shift

the field plateau between 0.325 - 0.360 T corresponding to electron and proton

spin Larmor frequencies in the range 9.19 - 10.17 GHz and 13.96 - 15.46 MHz,

respectively.

The ferroshim system contains a sweep coil (Z0) and a shim coil (Z1) in addition

to the ferromagnetic metal cylinder. The latter is driven by an electric direct cur-

rent source and allows to further improve the field homogeneity at the plateau by

producing an additional gradient strength of 2.82 ± 0.02 mT cm-1A-1. With the

sweep coil, an extra field of 5.24 ± 0.002 mT A-1 is superimposed on the static field.

A sweep current of approximately ±1 A is applied by the E-Scan console, resulting

in a maximum spectral width of 104 G (10.4 mT) over the EPR spectrum.
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2.2.2. DNP probe

The centerpiece of the DNP probe is the EPR cavity (figure 2.3), which operated

in the TM110 mode [1]. It incorporates two modulation coils and an NMR coil for

the acquisition of EPR and NMR spectra, respectively. Both are crucial for the

optimization of the DNP parameters at the beginning of an experiment.

The geometry of the DNP cavity is given by the spatial restrictions of the ferroshim

system, in which the DNP probe is mounted. In detail, the inner diameter of

the ferroshim system is 40 mm. After subtracting the walls, an inner diameter of

33 mm remains for the cavity. This diameter corresponds to a resonance frequency

of 11.1 GHz for a classical cylindrical cavity in the TM110 mode. Therefore, two

extruded rings were added to the top and bottom plate of the DNP cavity, enabling

the TM110 microwave mode at a frequency of 9.6 GHz. Furthermore, two additional

plates were included into the resonant volume in the longitudinal plane to maintain

Figure 2.3.: Overview of the EPR cavity [2] - The shuttle
container of the sample is inserted into the cavity from the
bottom and is placed in a quartz glass tube (a) which is
in the center of the cavity volume (b). Two metal guides
(c) containing the NMR loop coil (not shown) are placed
parallel to the center tube. Two circular grooves (d) in the
top and bottom plate (e) contain the modulation coils.
The direction of the magnetic field of the microwave is
enforced in the longitudinal plane by two plates (f). A gas
stream is applied through a jet (g) for pneumatic shuttling
of the sample at the top of the guiding tube.
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Figure 2.4.: Magnetic and electric field profile of the TM110 mode in the EPR cavity. The
maximum of the transverse B1 field is along the cavity axis - (a) longitudinal crosssection
(b) transversal crosssection; The electric field vanishes in the sagittal plane - (c) longi-
tudinal crosssection (d) transversal crosssection (Courtesy of A. Krahn, Bruker Biospin,

Karlsruhe, Germany)

the correct orientation of the TM110 mode.

The TM110 mode was chosen because of a favorable microwave field distribution

in regard to the sample being placed in the center along the cavity axis. On the

one hand, the TM110 mode has a constant transverse magnetic field component B1

along that axis (figure 2.4 a) and a maximum B1 at the cavity center (b). On the

other hand the electric field vanishes in the sagittal plane (figure 2.4 c + d). This

circumstance leads to a reduction of sample heating, which is caused by absorption

of the mw electric field by an aqueous sample.

In addition, two isolated silver-coated tubes were placed parallel to the quartz

guide in the sagittal plane (where the microwave electrical field is minimum) to

guide the longitudinal sections of a multiturn wire loop used as the NMR coil. This

arrangement results in transverse microwave- and rf magnetic field components that
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are orthogonal to the cavity axis. The measured Q factor of the loaded cavity

is 3,479 at a resonance frequency of 9.59 GHz with a conversion factor of ηP =

0.055 mT W-1/2.

The temperature stability of the lf section is a very important factor for the overall

performance of the DNP set-up. Especially, a temperature rise during the DNP

experiments, caused by absorbed microwave power, leads to a mechanical expansion

of the cavity and of the ferroshim system in the long run. These geometric changes

effect the microwave properties of the cavity and the magnetic field profile of the

ferroshim. The consequence is a less efficient saturation of the EPR line due to an

partially unmatched cavity and an inhomogeneous magnetic field. To prevent these

effects, a Bruker cooling unit (BCU) was employed to cool the sample cavity and

the ferroshim system with a constant gas flow of cold nitrogen. Thereby, not only

the heating effect caused by microwave irradiation in the cavity, but also the heat

dissipation from the sweep coil (Z0) and the shim coil (Z1) of the ferroshim system

is compensated except for very long irradiation times (>6 s) at high power (>8 W).

Furthermore, the sample heating during the DNP built-up is reduced by 10 to 15 ◦C.

By adjusting the gas flow, the overall temperature in the lf part can be regulated.
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2.3. Sample shuttle system

2.3.1. Sample shuttle container

The design of the shuttle container is crucial for the quality of the recorded DNP

spectra. Additionally, it assists maintaining a constant shim quality through out

the whole experiment despite the very fast shuttling motion. However, a recurring

obstacle are arsing gas bubbles in the liquid, because the sample is sealed in the

shuttle container.

These problems of shim stability and bubble formation are resolved by the current

container design, shown in figure 2.5. Two shuttle plugs (2.5 a) restrict the sample

Figure 2.5.: Scheme of the shuttle container design: (A) assembled container, (B) close
up of container sealing. The scheme shows a) container plug, b) vibration damper, c)
glued-in glass plug, d) amorphous quartz tube, e) and f) glued-in glass capillaries, g) plug
of glue, i) active sample volume 5 μL and j) sample reservoir/bubble collector
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container inside the probe with an accuracy of 50 μm. Thereby, the perturbation of

the field homogeneity is very small after a shuttle cycle .

Beside the shuttle plugs, two glass capillaries (2.5 e & f) and one glass plug

(2.5 c) are inserted into the outer sample tube (2.5 d - outer diameter 3.3 mm, inner

diameter 0.75 mm) and fixated in their position by UV glue. The active sample

volume is restricted by the glass plug (2.5 c) and a long capillary (2.5 e), resulting

in a very accurately defined sample volume. By this means, the shim is kept stable,

if a rotation of the sample occurs during the shuttling process.

A small reservoir is left empty at the end of the long capillary (2.5 h), working as a

sample reservoir and bubble catcher. Any remaining bubbles in the sample will not

leave this volume during the shuttling process and will, therefore, not affect the shim

of the active sample volume. At the further end, another, smaller capillary (2.5 f)

restricts this volume. The sample container is filled with the help of a centrifuge and

sealed with a cyanoacrylate-based glue or UV-glue (2.5 g), when all bubbles have

been removed. The jets in the DNP probe and NMR probe as well as the end caps

of the shuttle container are constructed such that a laminar stream of air is allowed

to flow into the small gap between the guiding tube and the shuttle capillary.



30 2. The DNP shuttle spectrometer with a two center magnet

2.3.2. Shuttle cycle

A timing diagram for a typical shuttle DNP experiment (B) and for an NMR exper-

iment (A) is illustrated in figure 2.6. During the polarization time tp, the sample is

located within the low field position in the inside of the cavity and is polarized by

microwave irradiation at the electron spin Larmor frequency. The duration tp of the

microwave irradiation is determined by the polarization build-up time (see 3.3).

After the shuttle down time tsd, the sample arrives in the NMR probe and the

signal is acquired after an additional post-shuttle delay tpsd. In this set-up, the

pneumatic shuttle system and the gate of the microwave amplifier are triggered by

Figure 2.6.: Shuttle timing diagram: (A) NMR experiment with Boltzmann polarization.
rd is a recovery delay for the Boltzmann polarization followed by the pulse program (pp)
and the signal acquisition. This sequence is repeated several times for signal averaging.
For the DNP experiment, rd is replaced by several steps: a short cooling delay cd in the
hf, the sample transfer to the lf position during tsu, the polarization time tp, during which
the microwave irradiation occurs, and the sample transfer back to the hf position during
the shuttle down time tsd. After a short post shuttle delay tpsd for the sample to settle
in the NMR probe, the pulse program can be applied and the signal acquired. As in (A),
this sequence can be repeated several times for signal averaging.
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the NMR console. Therefore, the optimum polarization time, the pre- and post-

shuttle delays are controlled by the pulse program. The shuttle time tsd depends

on the applied transfer pressure and was found to be approximately 50 ms in the

experiments with a pressure reading of 4 bar.
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2.4. NMR probe

A high resolution probe (dual 1H 13C with 2H lock channel) optimized for shuttling

(figure 2.7) is used to record the NMR signal. Inside the probe, an extension of the

shuttle tube towards the lower end facilitates the insertion of the sample into the

shuttle system without removing the probe from the magnet. The basic mechanical

design of the probe is equivalent to a standard 5 mm high resolution probe for which

low-susceptibility and/or susceptibility compensated materials are used. This is

especially important for the wire material of the NMR coil and all other components

in its close vicinity. Here, the susceptibility compensation is optimized for operation

under a nitrogen atmosphere. As a result, the same spectral resolution was obtained

after shimming as for standard high resolution probes. The radio frequency (RF)

circuit corresponds to that of a typical dual-probe with an inner saddle coil for 1H

and 13C observation, and an orthogonal outer coil for an additional 2H lock channel.

Due to the high speed of the shuttle container, special care has to be taken to

prevent mechanical vibrations of the probe directly after the sample transfer. These

could lead to noticeable artifacts in the spectrum. Therefore, the shuttle system

is mechanically decoupled from the probe in order to address this problem and to

achieve the necessary reproducibility for the shuttle DNP experiments.
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Figure 2.7.: Overview of the NMR probe
with the glass tube (a) to position the shut-
tle container in the NMR coil (b + c) in the
magnetic center (h). The connection to the
transfer system is made via a conical adap-
tor (d) that is supported by rubber toroidal
joints to attenuate mechanical vibrations (e).
The stopper (i) for the shuttle container con-
sists of an air jet which applies the pressure
to shuttle the sample to the low-field position
and provides a laminar stream of shuttle gas
when the sample is in the NMR probe. An ad-
ditional Z-gradient coil (g) was installed inside
the probe cover (f).





3. Material and Methods

3.1. Chemical reagents and sample preparation

l-tryptophan, l-tryptophan-d8,15N2,13C11 and l-tryptophan-15N2,13C11 were pur-

chased from AppliChem GmbH (Germany), Cambridge Isotope Laboratories (USA)

and Euriso-Top GmbH (Germany), respectively. Furthermore, the sodium 2,2-

dimethyl-2-silapentane-5-sulfonate-d6 (DSS) as well as the unlabeled TEMPONE

and ascorbic acid for the diffusion measurements were purchased from Sigma-Aldrich

Chemie GmbH (Germany).

In addition, the TEMPONE-d16,15N for all DNP experiments was synthesized and

provided by the courtesy of Dr. Andrei Leonov based on published syntheses [66,67].

The wild-type, uniformly 15N and 13C labeled human ubiquitin (ubiquitin-U-15N,U-
13C - 9047.47 g/mol) was expressed according to a previously published protocol

by Johnson et al. [68] and kindly provided by Dr. Stefan Becker and Sebastian Wolf.

The protein sequence of the wild-type human ubiquitin in amino acid abbreviations

is:

MQIFVKTLTG KTITLEVEPS DTIENVKAKI QDKEGIPPDQ QRLIFAGKQL

EDGRTLSDYN IQKESTLHLV LRLRGG

The protein was dissolved in a buffer of 50 mM sodium chloride and 50 mM sodium

phosphate in D2O at a pH of 6.5.

Before the DNP measurements, all sample solutions were degased by ultrasonic

cavitation with an UIS250v ultrasonic processor (250 W, frequency 24 kHz - Hiel-

scher Ultrasonics GmbH) at an amplitude between 60 and 70 %. The pulse length

was set to 50 % for an total duration of approximately 5 min. Subsequently, the

degassed samples were centrifuged (Hettich EBA3S centrifuge) at 5000 rpm into

the glass capillary of the shuttle container. After the complete removal of all gas

35
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bubbles from the capillary, it was sealed with ultraviolet-glue (Panacol Vitralit 2020

or 1605). The glue was cured with ultraviolet light irradiation (UV-lamp Panacol-

Elosol UV-P280) for four times 3 min with breaks of 1 min in between.
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3.2. Sample temperature and microwave power

The temperature of the DNP sample was determined by the chemical shift difference

between the methyl peak of DSS and the water peak in the proton spectrum. This

method is based on the dependence of the chemical shift of DSS and of water on

the temperature (figure 3.1), which was published by Hoffman [69].

The required mw power for the DNP experiments is generated by a 20 W mw

amplifier. The output power level of this amplifier depends on the power and fre-

quency of the incoming mw signal. This signal is generated by the E-Scan console

with an internal attenuation parameter for the signal power. The relation between

this parameter and the mw output power of the amplifier was measured for three

different frequencies (3.2) - 9.58 GHz (solid line) 9.595 GHz (dashed) and 9.61 GHz

(dotted line). The presented data was recorded and provided by the courtesy of

Alexander Krahn and Andreas Tavernier.
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Figure 3.1.: Dependence of the chemical shift of DSS and of water on the sample tem-
perature [69].
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Figure 3.2.: Dependence of the output power of mw amplifier on the attenuation of the
E-Scan mw output for different frequencies - 9.58 GHz (solid line) 9.595 GHz (dashed)
and 9.61 GHz (dotted line).

3.3. NMR and DNP experiments

General remarks:

All Boltzmann polarization and DNP experiments were conducted with the in

chapter 2 described shuttle DNP spectrometer. The only exception are the mea-

surements of the diffusion constant. These were conducted on a spectrometer

(Bruker Karlsruhe, Germany) with 700 MHz proton frequency and a TCI cryoprobe

(Z-gradient).

In general, the chemical shifts are given in relation to the methyl signal of DSS

which was set to -0.074 ppm. Furthermore, the experiments with sample transfer

were conducted with a maximum pneumatic shuttle pressure of 2.5 to 3.0 bar of the

maximum 5 bar and a shuttle up delay tsu of 100 ms. The sum of the shuttle down

delay and the post shuttle delay was set to 70 to 80 ms.

1D proton experiments:

The one dimensional proton NMR experiments with Boltzmann polarization or

DNP, except the measurements of the applied global enhancement factor, were con-

ducted with the following parameters. The spectra were acquired with water sup-

pression by the watergate pulse sequence (w5) [70], without deuterium locking, 12k

data points in the time domain and a sweep width of 12 ppm.
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Furthermore, the measurements of the applied global enhancement factor were

conducted by using excitation sculpting with gradients [71] for the water suppression.

In the experiment with Boltzmann polarization, 3214 data points were acquired

with a spectral width of 12 ppm. The experiment with DNP was conducted with

3214 acquired data points and a spectral width of 12 ppm. For the optimization of

the experimental parameters, T ∗
2 was obtained by measuring the linewidth at half

height L and the following equation:

T ∗
2 =

1
πL

(3.1)

For this purpose, a spectrum with 32k data points was measured to ensure a sufficient

resolution for the determination of the linewidth.

Relaxation and polarization build-up measurements:

The build-up curve of the dynamic nuclear polarization was measured by system-

atically increasing tp at a fixed PMW. Thereby, the build-up time T1,bu,lf could be

determined by fitting the build-up with a mono-exponantial function. The spin lat-

tice relaxation times in the low field, T1,lf , and in the high field, T1,hf, were measured

by the decay of the DNP. For this purpose, a relaxation delay was introduced after

tp in the low field and after tpsd in the high field. The obtained signal decay was

fitted with a simple mono-exponential function to extract T1. For the measurement

of the relaxation rate in the low field without radical R1,no_rad,lf, a sample without

the addition of the radical was shuttled with the Boltzmann polarization of the high-

field to the low-field position. After a relaxation delay, the sample was transferred

back to the high-field position and the remaining signal was detected. The resulting

curve with various relaxation delays was fitted with a mono-exponential function.

Diffusion ordered NMR spectroscopy (DOSY):

In order to obtain the diffusion constant of TEMPONE-d16,15N, a sample solution

with 5 mM unlabeled TEMPONE, 5 mM DSS and 5 mM ascorbic acid in D2O was

prepared. The ascorbic acid reduces the radical [72] and, thereby, it enables the

detection of the methyl protons of TEMPONE in an NMR experiment.

For the DOSY experiment, a standard Bruker pulse program (stegp1s) with a
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stimulated echo [73] sequence was employed. The gradient strength was linearly in-

creased from 2 to 95 % in 20 steps in a pseudo-2D experiment with 16k acquired data

points and a sweep width of 10 ppm in the direct dimension. A gradient strength

of 100 % corresponds to 54.34 G/cm. The dependence of the signal amplitude on

the gradient strength was fitted by an exponential function to obtain the diffusion

constant [73].

1D carbon experiments:

The one dimensional carbon spectra were acquired with 2k data points, 4k scans

and a spectral width of 180 ppm. The experiments were conducted with deuterium

locking due to a measurement time of several hours. For this purpose, additional

delays were implemented in the pulse sequence, during which the deuterium locking

was activated and at its end deactivated. The acquired Free Induction Decays (FID)

were multiplied by an exponential window function with 20 Hz line broadening.

1H-13C-Heteronuclear Single Quantum Coherence (HSQC)

The 1H-13C-HSQC spectra [13] were recorded with a 3-9-19 watergate [74] and with-

out deuterium locking. Therefore, a selective 90◦ pulse was applied to the DSS

signal of the sample before the first INEPT (Insensitive Nuclei Enhanced by Po-

larization Transfer) step of the HSQC. This results in a positive and constant DSS

signal in all transients of the two dimensional spectrum, which is used for chemical

shift referencing.

HSQC spectra were recorded with 4k complex data points in the direct dimension

and 128 complex data points in the indirect dimension. All spectra were processed

using NMRPipe. At first, the direct dimension was Fourier transformed and the

phase adjusted. Subsequently, the chemical shift of all transients was corrected

based on the chemical shift of DSS with a software macro of NMRPipe . Afterwards,

the data was inverse Fourier transformed. For the final processing of the spectra,

only 512 data points of the direct dimension were used. A sine bell window function

with an offset of 0.5, automatic zero-filling and an automatic baseline correction was

applied to both dimensions.

Software for data analysis
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All one dimensional NMR experiments and the DOSY experiment were pro-

cessed with Topspin 3.2 (Bruker BioSpin). For the processing of the 1H-13C-HSQC

spectra, the program NMRPipe [75] and, for the assignment, the program CARA

(www.cara.nmr.ch) [76] were used. The program Igor Pro 6.2.2.2 (Wave-Metrics) was

used for the fitting of the experimental data. The calculations related to the coupling

factor were conducted with the program Scilab 5.4.1 (Scilab Enterprises S.A.S).





4. Results and discussion

4.1. DNP signal enhancement of protons

After the installation and comprehensive testing of the major set-up improvements,

namely the generally overhauled DNP probe, active cooling of the lf section and

the newly designed shuttle container, DNP measurements with l-tryptophan were

conducted. As an amino acid, it occurs in proteins and therefore represents an
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Figure 4.1.: 1H DNP enhancement of l-tryptophan (10 mM) in D2O (99.8 %) with
TEMPONE-d16,15N (10 mM) and DSS (5 mM; not shown) as a chemical shift reference.
The spectrum was acquired with tp = 3 s, PMW = 12.5 W, 64 scans and a sample volume
of about 5 μL. The sample temperature was 52 ◦C (initial temperature 25 ◦C). A watergate
pulse sequence (w5) was used for water suppression [70]. The values of εhf,max are given at
the signals.
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Table 4.1.: Measured signal enhancement of l-tryptophan and DSS after tp = 1 s and
PMW = 9 W - The sample temperature reached 42 ◦C due to the microwave irradiation.
The initial temperature was 25 ◦C. By measuring T1,lf and T1,hf (see refmnm), the lower and
upper limit for the potential relaxation losses (λ) during tsd and tpsd could be calculated
as well as the range of εhf,id

εhf T1,lf [s] T1,hf [s] λ [%] εhf,id

Hα -1.0 0.35 0.60 22-32 -1.3 to -1.5±0.2
Hβ2 -1.1 0.23 0.31 36-43 -1.7 to -1.9±0.2
Hβ3 -1.1 0.24 0.34 34-41 -1.6 to -1.9±0.3
Hδ1 -1.7 0.28 0.45 23-33 -2.2 to -2.6±0.2
Hζ2 -1.8 0.26 0.40 26-34 -2.4 to -2.8±0.2
Hε3 -1.9 0.27 0.44 24-33 -2.5 to 2.8±0.2
Hζ3 -1.9 0.26 0.42 24-33 -2.5 to -2.9±0.3
Hη2 -2.2 0.25 0.43 23-33 -2.8 to -3.3±0.3

DSS HMe -1.7 0.36 0.58 19-26 -2.1 to -2.4±0.1

interesting molecule for testing. Its molecular weight is comparable to d-glucose,

for which signal enhancements have already been achieved [1]. TEMPONE-d16,15N

was used as a polarizer in the DNP experiments based on findings from previous

experiments [1,47,77]. Furthermore recent results had shown that this polarizing agent

reaches higher saturation factors at lower concentrations than other possible radicals

(i.e. Frémy’s salt [58]).

The DNP enhancements measured for the protons of l-tryptophan are illustrated

in figure 4.1. The radical concentration was 10 mM in D2O. The overall enhancement

factor εhf as measured at high field ranges from -1.0 to -2.4. The methyl groups of

DSS (not shown in this figure) were enhanced by a factor of -2.0. These findings

are in agreement with previously published results [1]. The polarization time tp was

set to 3 s and the microwave power PMW amounted to 12.5 W. These parameters

ensured that the irradiated EPR line splitting by hyperfine coupling is saturated

and that the polarization build-up reaches saturation.

A drawback of the high microwave power and the long polarization time is severe

sample heating caused by absorption of microwave radiation by the water molecules.

The sample temperature rose from an initial value of 25 ◦C to a final value of 52 ◦C.

Adjusting PMW to 9 W and tp to 1 s reduced the heating and gave a final temperature

of 42 ◦C. The resulting enhancement factors are shown in table 4.1. The obtained
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enhancements are slightly smaller than for the longer irradiation time, potentially

due to an incomplete saturation of the electron transition, the short irradiation

time itself, or less heating. The latter is most probable, as the enhancement factor

and the longitudinal nuclear relaxation times increase with temperature [50,52]. This

results in a slightly smaller leakage factor and smaller relaxation losses during the

shuttle process. Since these losses amount about 30 %, even small changes in the

relaxation time may have a strong effect on the measured enhancement in the high-

field position. The precise magnitude of these losses will be calculated in detail

below (see 4.3).
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4.2. Global proton enhancement

For a better evaluation of the DNP enhancement factors achieved with the DNP

setup described above (chapter 2), it is necessary to expand the definition of the

enhancement factor, since there are more parameters to a NMR experiment than the

obtainable nuclear polarization. The signal accumulation rate, line broadening or

bleaching by the radical and other potential factors influence the sensitivity. For this

reason, Vitzthum et al. [78] introduced in solid state DNP the global enhancement

factor εglobal. In a first step this factor was transferred to the context of liquid

state shuttle DNP and in a second step refined to the individual parameters of a

liquid state NMR experiment with the aim of determining the gain in SNR per

measurement time.

4.2.1. Introducing the global enhancement factor

The global enhancement factor εglobal introduced by Vitzthum et al. [78] is defined in

the following way:

εglobal = εDNPεdilutionεbleach

√
κ (4.1)

εDNP is the enhancement factor in reference to the thermal Boltzmann polarization.

For the shuttle DNP setup, this parameter is identical to εhf. εdilution is a parameter

designed for solid state DNP experiments and is 1 in this case, as the sample is

already dissolved by definition. εbleach takes differences between the signal ampli-

tudes with and without added radical into account under the same experimental

conditions.

Finally, κ is the ratio between the DNP polarization build-up time, T1,bu,lf and

the spin lattice relaxation time without radical, T1,hf:

κ =
T1,hf

T1,bu,lf

(4.2)

If T1,bu,lf is shorter than T1,hf, the total experimental time per scan becomes shorter

using shuttle DNP. Therefore, the SNR is increased by faster signal accumulation.

This increase in SNR gives an enhancement in addition to the DNP enhancement

and is proportional to
√

κ. In the shuttle DNP spectrometer, the polarization takes
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Table 4.2.: The DNP enhancement factors at 52 ◦C (initial temperature 25 ◦C) for l-
tryptophan are used to calculate the global enhancement factor (equation 4.1). εbleach was
directly taken from the measured intensity drop of the l-tryptophan proton signals in the
presence of the radical.

εhf,max εbleach T1,hf [s] T1,bu,lf [s]
√

k εglobal

Hα -1.0 0.47 2.7 0.43 2.5 -1.2±0.2
Hβ2 -1.4 0.57 0.8 0.39 1.4 -1.1±0.2
Hβ3 -1.2 0.49 0.8 0.34 1.5 -0.9±0.2
Hδ1 -1.9 0.57 6.7 0.43 3.9 -4.2±0.7
Hζ2 -1.9 0.58 2.7 0.38 2.7 -2.9±0.4
Hε3 -2.0 0.51 4.6 0.38 3.5 -3.7±0.6
Hζ3 -2.0 0.58 2.7 0.40 2.6 -3.1±0.4
Hη2 -2.4 0.52 2.7 0.38 2.6 -3.3±0.4

place at low magnetic fields in the presence of a radical, which leads to much shorter

build-up times T1,bu,lf compared to the spin lattice relaxation times without the

radical at high fields.

The calculated global enhancement factors for l-tryptophan are shown in ta-

ble 4.2. For the aromatic protons, εglobal is up to two times higher than εhf, reaching

a value of -4.2 for one of the aromatic protons. Conversely, the aliphatic protons

cannot be enhanced and show only small differences in εhf. Furthermore, εglobal of

Hβ2 and Hβ3 is even smaller than εhf,max. One reason for these different results is

found in
√

κ. As all protons show a similar T1,bu,lf, yet diverse values of T1,hf,
√

κ

covers the range from 1.4 to 3.9 for these different nuclei.

An important reduction of εglobal originates in εbleach that has a value of 0.4-0.6.

This reduction is in most cases, more than compensated by
√

κ leading to a global

enhancement after all.

4.2.2. Applied global enhancement factor

The previously described approach of the global enhancement factor by Vitzthum

et al. [78] helped to gain a first insight into the possibilities and drawbacks of shuttle

DNP, yet it is not possible to directly transfer these results to an actual NMR

experiment and to directly translate them into an increased SNR.

The reason for this is an incomplete consideration of several practical aspects of
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the signal acquisition, especially in regard to the individual time per scan of the DNP

experiments compared to the Boltzmann polarization experiments. Therefore the

global enhancement factor was adjusted to obtain the best comparability between

these two experiments with the additional aim to base it on the SNR per unit time.

By this means, the enhancement was linked to the actual measurement time of

the experiments. In the following, this approach is described in more detail. An

applied global enhancement factor is given for an example proton of l-tryptophan

and compared to an experiment.

In a first step, the acquisition time must be adjusted to the experimental con-

ditions of each respective sample for the optimal SNR per unit measurement time

since the transverse relaxation rate R2 is increased by the presence of the radical

in the solution of the DNP sample. Thereby, the free induction decay (FID) of the

NMR signal becomes shorter, but the noise level during the acquisition is unaltered.

This is illustrated by the relation between the signal intensity and the acquisition

time tacqu
[79]

Signal ∝
tacqu
∫

0

e−tR2dt (4.3)

as well as the relation between noise level and the acquisition time

Noise ∝
√

tacqu (4.4)

The noise level is independent of R2. By solving equation 4.3 and dividing the result

by equation 4.4, the dependency of the signal to noise ratio on the acquisition time

is given by

S/N (tacqu) = a

(

1 − e−tacquR2

R2
√

tacqu

)

(4.5)

with a proportionality factor a. The numerical solution of equation 4.5 gives a

maximum SNR for tacqu at 1.26 R−1
2

[79]. With this equation, the enhancement factor

for the signal acquisition εacqu is described by

εacqu =
S/NDNP (tacqu,DNP)
S/NBZM (tacqu,BZM)

=

√

R2,BZM

R2,DNP

(4.6)

The proportionality constant a is identical for both types of experiments under
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the condition that the acquisition time of the DNP and Boltzmann polarization

experiment are both adjusted to the transverse relaxation rate and that the only

difference in the experimental set-up is the presence or absence of the radical.

εacqu incorporates the changes in R2 caused by the radical and the resulting the

line broadening. Therefore, it replaces in the global enhancement the previously

introduced εbleach describing the signal intensity difference.

Furthermore, the replacement of
√

κ is necessary, as it is only proportional to the

SNR gain attained by an increased acquisition rate. It does not give an accurate

value for the increased SNR per unit time in an actual experiment. In the previous

model of the global enhancement factor, only the build-up times were used for κ

(see equation 4.2). Yet the shuttle DNP specific delays such as cd, tsu, tsd and tpsd

must be considered as well, since they contribute to the overall experimental time

alongside the acquisition time.

A more accurate approach for the acquisition rate enhancement εrate is based on

the number of scans ns performed in the two compared experiments. As the SNR

increases with the square root of ns, εrate is defined as

εrate =

√

nsDNP

nsBZM

(4.7)

where nsDNP is the number of scans of the DNP experiment and nsBZM of the

Boltzmann polarization experiment. These numbers can be calculated by using the

experimental parameters. This gives

nsDNP =
tmt

tp + tacqu,DNP + tpp,DNP

− ds (4.8)

nsBZM =
tmt

rd + tacqu,BZM + tpp,BZM

− ds (4.9)

with the polarization time tp for a DNP experiment and the recovery delay rd for

the Boltzmann polarization experiment as illustrated in figure 2.6. tpp represents

the residual pulse program duration of one single scan without tp, rd and tacqu, yet

it includes cd, tsu, tsd, tpsd, the RF pulses of the pulse sequence, etc. The overall

measurement time tmt and the number of dummy scans are identical for the DNP
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and the Boltzmann polarization experiment to maintain comparability.

In a concluding step, an optimization of tp and rd based on the experimental

parameters is needed for a maximum SNR per unit time. These parameters include

properties of the samples, such as relaxation times, as well as experimental delays,

such as shuttle times or dummy scans. The relation between the SNR per unit time

S/Nt and the polarization build-up time tBU is based on the exponential build-up

of the nuclear polarization and the square root of the total number of scans, during

the measurement time tmt:

S/Nt ∝ I∞

(

1 − e−R1tBU

)√
ns (4.10)

Here I∞ represents the maximum polarization achievable for an indefinite polariza-

tion time. For a DNP experiment, the polarization build-up time tBU corresponds

to tp, but for an experiment with Boltzmann polarization, it represents the sum of

the acquisition time tacqu and the recovery delay rd, as the recovering of the thermal

equilibrium starts right after the end of the pulse sequence. After including equa-

tion 4.8 and a proportionality factor b, the equations for the SNR per unit time in

DNP and Boltzmann polarization experiments are given by

S/Nt,DNP = b I∞,DNP

(

1 − e−R1,BU,lf tp

)

√

tmt

tp + tpp + tacqu

− ds (4.11)

and

S/Nt,BZM = b I∞,BZM

(

1 − e−R1,hf(rd+tacqu)
)

√

ttotal

rd + tpp + tacqu

− ds (4.12)

, respectively. These equations incorporate a high number of individual experimen-

tal parameters, such as tpp or ds. This makes it necessary to solve equation 4.11

and 4.12 numerically for each specific measurement in order to obtain the optimal

polarization time tp,opt and the optimal recovery delay rdopt for the highest SNR

per unit measurement time. These two values lead to different percentages of the

maximum polarization I∞ per scan:

Iopt,DNP

I∞,DNP

= 1 − e−R1,BU,lf tp,opt (4.13)
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Iopt,BZM

I∞,BZM

= 1 − e−R1,hf(rdopt+tacqu) (4.14)

Iopt,DNP and Iopt,BZM are the polarizations obtained with tp,opt and rdopt, respectively.

Since the ratios of equation 4.13 and 4.14 are quite different, they give rise to the

new element εbuild-up of the globe enhancement factor:

εbuild-up =
Iopt,DNPI∞,BZM

I∞,DNPIopt,BZM

(4.15)

Finally, the new applied global enhancement factor is given by multiplying all

previously described partial enhancement factors:

εapp = εDNPεbuild-upεrateεacqu (4.16)

In order to test and illustrate the previously derived applied global enhancement

factor, an experimental setting was defined. Two almost identical samples with

50 mM l-tryptophan and 10 mM DSS in D2O were prepared, differing only in the

addition of 10 mM TEMPONE-d16,15N as polarizer for the DNP experiment. Sub-

sequently, a 1H spectrum with optimized parameters was recorded for both samples

with shuttle DNP and Boltzmann polarization, respectively. The overall measure-

ment time of each experiment was tmt = 30 min. This time included 16 ds, conducted

before the signal acquisition. In addition, the acquisition parameters were optimized

for the applied global enhancement factor.

Since these optimizations are based on single spin properties, such as longitudinal

Table 4.3.: Calculated applied global enhancement factor of the Hδ1 of l-tryptophan
for a measurement time of 30 min together with the parameters which were used for the
calculation.

L [Hz] R∗
2 [s-1] tacqu [s] tpp [s] tp,opt [s] rdopt [s] ns

BZM 1.8 5.7 0.22 0.04 - 7.4 218
DNP 2.8 8.8 0.14 0.28 0.8 - 1452

εacqu εrate εbuild-up εDNP εapp,th εapp,exp

0.8 2.6 1.2 -1.9 -4.7 -4.0
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and transverse relaxation time, the Hδ1 of l-tryptophan was chosen as an example

nucleus. This proton is the most promising nucleus of l-tryptophan due to its

relaxation properties.

For the process of optimization, the linewidth L of the Hδ1 peak was used to

calculate the transverse relaxation rate R∗
2:

L =
R∗

2

π
(4.17)

R∗
2 describes the FID most accurately by including the field inhomogeneity which

remained after shimming.

The measured linewidth and the resulting transverse relaxation rate of the DNP

and the Boltzmann polarization (BZM) experiments are listed in table 4.3. With

these rates and equation 4.6, the acquisition time tacqu and the enhancement factor

for the signal acquisition εacqu was calculated. With a value of 0.8, it reflects the

line broadening induced by the presence of the radical and the accompanying effect

of a decreased SNR. Therefore, to be exact, it is not a true enhancement factor, but

a diminishment factor.

After setting up all parameters of the pulse sequences including preliminary values

for tp and rd, the duration of tpp was determined. Subsequently tp,opt and rdopt were

calculated numerically based on equations 4.11 and 4.12, respectively, with tpp, the

longitudinal relaxation times from table 4.2 and the acquisition time tacqu. During

this calculation, the number of scans was determined for each experiment, as well.

Furthermore, a rate enhancement εrate of 2.6 was calculated. Based on equation

4.13 and 4.14, tp,opt and rdopt lead for each scan to 68 and 84 % of the maximum

polarization, respectively. Therefore, the achieved build-up enhancement εbuild-up

is 1.2.

Multiplication of all the partial enhancement factors (equation 4.16) gives a theo-

retical applied global enhancement factor εapp,th of -4.7 for Hδ1. In the corresponding

measurements, an experimental applied global enhancement factor εapp,exp of -4.0 in

respect to the SNR per measurement time was achieved, which is shown in fig-

ure 4.2. This value of -4.0 is close to the calculated value. The discrepancy could

be attributed to the difficulty of keeping all the parameters of the DNP and Boltz-

mann polarization experiments identical. The most challenging parameters were the
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Figure 4.2.: Applied global enhancement factor of Hδ1 of l-tryptophan

temperature and the shim quality during the DNP measurement.

One obvious benefit of the applied global enhancement factor is that it is a directly

observable experimental result. Its focus is on the application of shuttle DNP and

the gain of SNR per measurement time. Therefore, it makes the evaluation of the

capabilities of the shuttle DNP spectrometer more reliable. However, it is limit to

the experiment, for which it was optimized, and its determination is very intricate.

The optimization was solely done for one proton of l-tryptophan. If all protons are

included, a compromise must be found for the polarization build-up time and the

acquisition time since each proton has different relaxation properties.

In addition, by focusing on the maximum SNR per unit time, the aspect of res-

olution is completely neglected. This becomes obvious, if one examines the spec-

tral resolution in figure 4.2. Some of the multiplets in the DNP experiment are

not resolved, even though it would be generally possible with this set-up as figure

4.1 demonstrates. The for SNR optimized acquisition time is too short to provide

enough spectral resolution for the multiplets. Further consequences are baseline

distortions around the signals due to an incomplete recorded FID.

In conclusion, the applied global enhancement factor allows for making predic-
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tions for expected enhancement, yet only if all experimental parameters and spin

properties are known. Generalized statements about the enhancement are barely

possible. Nevertheless, the one fact, that becomes obvious by looking at the param-

eters and gained enhancements is, that spins with long relaxation times (longitudinal

and transverse) will benefit the most by shuttle DNP .
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4.3. The coupling factor

The coupling factor is the crucial element of the DNP experiment, since it limits

how much polarization is transferred from the electrons to the nuclei. Therefore, it

is very important to understand the transfer mechanism and the influencing param-

eters to ensure the optimal experimental conditions. In the following subsections

the coupling factor is calculated for the protons of l-tryptophan. Subsequently, the

translational diffusion model and the combined model are applied to the system of

TEMPONE-d16,15N and l-tryptophan in D2O and assessed based on the experimen-

tal data in order to determine, which model describes the intermolecular spin-spin

interaction best.

4.3.1. Calculation of the coupling factor

Previously in liquid state DNP, only the coupling factor of water molecules was cal-

culated [50,80,81]. Here, for the first time, the coupling factor of an dissolved molecule

was calculated with the help of experimental data. For this purpose, each parameter

of equation 1.26 was calculated, except for the saturation factor, which was taken

from the literature [57].

Table 4.4.: R1,no_rad,lf and R1,rad,lf (1/T1,lf of table 4.1) were used to calculate the leakage
factor for each proton of both l-tryptophan and the DSS methyl groups using equation 1.27
- By using table 4.1 and equation 1.26, the coupling factors were determined. Because
εhf,id was estimated for a certain range of values, the coupling factors are presented as
ranges as well. The sample temperature increased to 42 ◦C (initial temperature 25 ◦C).

R1,no_rad,lf [s-1] R1,rad,lf [s-1] f ξ

Hα 0.72 2.90 0.75±0.03 0.13 to 0.14±0.03
Hβ2 1.67 4.38 0.62±0.04 0.20 to 0.23±0.03
Hβ3 1.66 4.13 0.60±0.06 0.20 to 0.23±0.03
Hδ1 0.22 3.60 0.94±0.01 0.18 to 0.20±0.03
Hζ2 0.50 3.91 0.87±0.01 0.21 to 0.23±0.03
Hε3 0.51 3.70 0.86±0.02 0.21 to 0.24±0.03
Hζ3 0.54 3.78 0.86±0.02 0.22 to 0.24±0.03
Hη2 0.45 4.01 0.89±0.01 0.23 to 0.27±0.03

DSS HMe 0.36 2.75 0.87±0.01 0.18 to 0.20±0.03
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For equation 1.26, it is necessary to calculate the relaxation losses λ which occur

during the shuttling delay tsd and the delay after the sample arrival tpsd and which

diminish the measured high-field enhancement. Without these relaxation losses, one

has the ideal enhancement in the high-field position εhf,id. To obtain this, a mono-

exponential polarization decay was presumed. The longitudinal nuclear relaxation

time during the shuttle process (during tsd) is defined by the relaxation time T1,lf

in the low field as the lower limit and the relaxation time T1,hf in the high field as

the upper limit. The magnetic field increases continuously while moving the sample

rapidly from the low-field to the high-field position inside the magnet bore. During

the post-shuttle delay tpsd, the enhancement decays with T1,hf in the high field.

Based on these presumptions, a lower and an upper limit for the signal enhance-

ment without relaxation losses εhf,id was calculated as well as the relaxation losses

(λ) themselves. A summary of the calculated losses and the ideal high-field enhac-

nement is presented in table 4.1. The relaxation losses range from 19 to 43 %.

In the next step, the leakage factor was calculated using equation 1.27 [6,77]. R1,rad,lf

and R1,no_rad,lf correspond to the relaxation rates in the low-field with and without

addition of the radical, respectively. The resulting leakage factors are shown in

table 4.4. The aliphatic protons clearly exhibit a smaller leakage factor, which

results from a higher relaxation rate without radical.

The saturation factor was determined by Türke et al. [57] using a pulsed ELDOR

experiment. Due to identical experimental conditions, a similar magnitude is ex-

pected for the setup described here. Since the saturation factor is a property of the

nitroxide radical, its value is identical for all enhanced nuclei in the sample. For a

solution containing 10 mM TEMPONE-d16,15N a saturation factor of 0.85 was mea-

sured [57]. The two remaining factors in equation 1.26, namely the ratio between the

high and the low field and the ratio between the gyromagnetic ratios of the electron

and the proton, are known values and remain constant throughout the experiments

with (B0,hf/B0,lf) = 41.5 and (γS/γI) = -658, respectively.

Using these values and equation 1.26, it was possible to calculate the coupling

factor ξ. Since D2O was used as a solvent, polarization transfer between the solvent

and l-tryptophan did not influence the enhancement and therefore was neglected.

The lower and upper limit of εhf,id yields a lower and upper boundary for the coupling

factor (table 4.4).
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All determined coupling factors are within an average range of 0.21-0.23, with

the exception of Hα, which shows a distinctly smaller coupling factor of 0.13-0.14.

This reduced value indicates, that this proton is less accessible for the radical due

to the bulky carboxyl, amino and indole group in close proximity. The reduced ac-

cessibility leads to a longer minimum distance between the unpaired electron in the

radical molecule and the proton, directly resulting in a weaker coupling [50,60–62,81].

The greater coupling factor of water, ξ = 0.37 at 45 ◦C [50], serves as a further indica-

tion for this distance dependence. In comparison, water molecules are significantly

smaller than the l-tryptophan molecules and therefore move much closer to the

unpaired electron of the radical for the polarization transfer to happen.

This evidence leads to the hypothesis, that the distance of closest approach has

a strong influence on the coupling factor. Therefore, the distances between the

unpaired electron and the nuclei are calculated with translational diffusion model

and the combined model in the following subsection. The obtained distances are

included in the assessment of these two models.

4.3.2. Calculation of the distance of closest approach

As described before in the previous subsection, the accessibility of the nucleus pre-

sumably influences the coupling factor via the distance of closest approach of the

radical. Therefore, the translational diffusion model and the combined model (sec-

tion 1.3) are used to calculate the distance of closest approach for the experimentally

obtained coupling factors of l-tryptophan. In order to assess the two models, the

autorelaxation rate ρ is calculated as well. The rate was obtained from experimental

data by the following equation, which was extracted from equation 1.27:

ρ = R1,rad − R1,no_rad (4.18)

The lf relaxation rate with radical R1,rad and without radical R1,no_rad were already

used for the calculation of the leakage factor (table 4.4).

For reasons of clarity only three representative protons were selected for these

calculations: The well exposed aromatic Hη2, the less accessible Hα and the Hδ1 as

an intermediate between the previous two extremes.
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Table 4.5.: Calculated parameters of TEMPONE-d16,15N and l-tryptophan in D2O at
42 ◦C.

TEMPONE-d16,15N l-tryptophan
DS [10-10 m2s-1] τc,S [10-12 s] DI [10-10 m2s-1] τc,I [10-12 s]

8.87 8.20 8.19 17.53

Furthermore it is generally assumed, that the distance r between ~I and ~S (equa-

tion 1.43) in the rotational diffusion model is almost identical to the distance of

closest approach d in the translational diffusion model and therefore r is substituted

by d in all following calculations.

For the translational diffusion model, the diffusion constants of l-tryptophan

and TEMPONE-d16,15N are needed. The diffusion constant of l-tryptophan in

H2O at 25 ◦C was taken from L. G. Longsworth [82]. The diffusion constant of

TEMPONE-d16,15N was measured with a diffusion ordered NMR spectroscopy [73]

experiment (see section 3.3) on reduced unlabeled TEMPONE in D2O at 25 ◦C. Both

diffusion constants were scaled with the Stokes-Einstein equation for translational

diffusion to the experimental conditions of 42 ◦C and D2O as solvent:

D =
kBT

6πηrhydro,trans

(4.19)

rhydro,trans is the hydrodynamic radius of the diffusing particle. The viscosity η

was calculated with the empirical equation by Cho et al. [83] for the temperature

dependency of the viscosity of D2O.

Likewise, the parameters of the rotational diffusion model must be determined,

even though these are partially more difficult to access. The rotational correlation

time τr between the nucleus and the unpaired electron depends amongst others on

the complex life time τM. One may assume, that l-tryptophan is still able to rotate

unhindered in the complex since only weak interactions between TEMPONE-d16,15N

and l-tryptophane facilitate the inner sphere complex. Examples for these interac-

tions would be a shared solvent cage and Van der Waals interactions between the

molecular surfaces.

Therefore, its rotational correlation time τc,I limits the interactions between the
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spins and represents a reasonable approximation for the effective complex life time.

Based on this, τM is replaced in equation 1.41 by the rotational correlation time of

l-tryptophan τc,I to obtain the intermolecular rotational correlation time τr.

The rotational correlation time of TEMPONE-d16,15N with τc,S = 9 ps at 30 ◦C

and l-tryptophan with τc,I = 21.8 ps at 25 ◦C are reported in the literature [84,85]. τ1,S

for TEMPONE-d16,15N (5 mM in H2O) measured by Türke et al. [57] is with 298 ns

at room temperature about four magnitudes longer than the rotational correlation

times τc,I and τc,S. Therefore its contribution to the intermolecular rotational cor-

relation time τr is negligible.

τc,S and τc,I were scaled by the Stokes-Einstein relation for rotational diffusion to

the experimental conditions in the same manner as the diffusion constants:

τc =
1

6Drot

=
4πηr3

hydro,rot

3kBT
(4.20)

rhydro,rot is the hydrodynamic radius of the rotational diffusion∗. All calculated

parameters are summarized in table 4.5.

For the last missing parameter n, the temporal average number spins in the co-

ordination sphere of the radical, three different values (n = 0.0001, n = 0.001 and

n = 0.01) were tested in a first appraisal of the combined model. The distance of

closest approach and the auto relaxation rate were calculated for the translational

diffusion model by inserting the equations for the transition probabilities 1.31, 1.32

and 1.33 with the equations for the spectral density 1.37, 1.38 and the proportional-

ity factor 1.39 in the equation of the coupling factor 1.34 and of the autorelaxation

rate 1.14. For the same calculations with the combined model, equation 1.44 was

used for the coupling factor and equation 1.14 with the transition probabilities of

the inner and outer sphere relaxation. The corresponding transition probabilities

(equations 1.31, 1.32 and 1.33) were obtained with the equations for the spectral

density of the outer sphere relaxation 1.37 and 1.38 with the corresponding propor-

tionality factor (equation 1.39) as well as for the spectral density of the inner sphere

∗Although rhydro,rot is based on the Stokes-Einstein equation, too, it is different from rhydro,trans.
For l-tryptophan and TEMPONE-d16,15N, rhydro,trans is bigger than rhydro,rot. This is presum-
ably the case due to a hydration shell which especially effects the hydrodynamic radius of the
translational diffusion.
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Figure 4.3.: Dependency of the coupling factor on the distance of closest approach for
l-tryptophan (10 mM) and TEMPONE-d16,15N in D2O at 42 ◦C. The solid line represents
the translational diffusion model (n = 0) and the other three lines the combined model
with rotational and translational diffusion with n = 0.0001 (dashed), n = 0.001 (dash-
dotted) and n = 0.01 (dotted).

relaxation 1.37 with the corresponding proportionality factor (equation 1.43).

The dependency of the coupling factor on the distance of closest approach is

illustrated in figure 4.3 including three curves of the combined model for the different

values of n (dashed: n = 0.0001, dash-dotted: n = 0.001 and dotted: n = 0.01). The

translational diffusion model mathematically corresponds to n = 0. From figure 4.3

it becomes obvious, that the coupling factor significantly increases with increasing

n for small distances.

Based on the corresponding range of the coupling factor of each proton, taken from

table 4.4, the distance of closest approach was numerically calculated for the three

example protons Hα, Hδ1 and Hη2. The coupling factor ranges for these protons

are highlighted (grey area) in figure 4.3. Furthermore, it is exemplary shown by

vertical lines, how the ranges for distance of closest approach are obtained for the

translation diffusion model. All calculated distances are given in table 4.6 alongside

the calculated autorelaxation rates.

If one compares the obtained values of table 4.6 in regard to the contribution of

inner sphere relaxation by the temporal average number n of spins ~I inside the inner

sphere, it becomes obvious that, the calculated distances d increase with larger n

for all nuclei, but the calculated autorelaxation rate decreases in the same way.
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Table 4.6.: Calculated range of the distance of closest approach for three different protons
of l-tryptophan (10 mM) and TEMPONE-d16,15N in D2O at 42 ◦C based on the mea-
sured range of the coupling factor. The calculated autorelaxation rate of the translational
diffusion model (n = 0) comes closest to the measured value. For the combined model
of rotational and translational diffusion, the autorelaxation rate decreases and distance of
closest approach increases from n = 0.0001 to n = 0.01.

Hα Hδ1 Hη2

calculated: ρ [s-1] d [Å] ρ [s-1] d [Å] ρ [s-1] d [Å]

n = 0 1.13 - 1.19 4.8 - 5.0 1.49 - 1.66 3.9 - 4.2 1.95 - 2.46 3.1 - 3.5
n = 0.0001 1.12 - 1.18 4.8 - 5.0 1.47 - 1.63 4.0 - 4.2 1.92 - 2.42 3.2 - 3.6
n = 0.001 1.06 - 1.12 5.2 - 5.4 1.38 - 1.53 4.4 - 4.6 1.80 - 2.25 3.7 - 4.1
n = 0.01 0.87 - 0.91 6.6 - 6.7 1.12 - 1.24 5.8 - 6.0 1.45 - 1.83 5.1 - 5.5

measured: ρ [s-1] ξ ρ [s-1] ξ ρ [s-1] ξ

2.18 0.13 - 0.14 3.38 0.18 - 0.20 3.56 0.23 - 0.27

Overall the calculated autorelaxation rates are at least by a factor of two too

small in comparison to the experimental data. Nevertheless, these calculated rates

still represent a very good result, if all assumptions, approximations and possible

sources of experimental error are taken into account. The best values in regard to

the experimental data were obtained with the model of pure translational diffusion

(n = 0 - no inner sphere contribution), which is the first indication for translational

diffusion model.

In addition, Sezer [86] reported a distance of closest approach of 3.0 Å between

the aromatic protons of the solvent toluene and the unpaired electron of 4-hydroxy-

2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPOL) at 300 K. This distance was deter-

mined by molecular dynamic simulations in comparison with DNP measurements.

The accessibility of aromatic toluene protons and the Hη2 proton should be almost

identical. The same is expected from the nitroxyl-groups of TEMPONE-d16,15N

and TEMPOL. Therefore, Sezer’s distance should be directly transferable to the

Hη2. For this proton, the distance range of closest approach obtained by the trans-

lational diffusion model fits best. This range is with 3.1 Å to 3.5 Å slightly longer

than the reported 3.0 Å which could be contributed to the different experimental

condition and/or the experimental error. This finding is the second indication in

favor of the translational diffusion model.
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All in all, the translational diffusion model is sufficient to give a qualitative de-

scription in regard to the experimental data of the spin-spin interaction between

two dissolved spin bearing molecules at low fields and is in good agreement with

results reported in the literature [86]. The contribution by the inner sphere relax-

ation in the combined model is negligible in this context. The distance variation

between different protons is between 0.4 Å and 1.9 Å. These values are reasonable

in relation to the distance of closest approach itself. Therefore, the calculations,

here presented, support the hypothesis (see subsection 4.3.1), that the structure of

a molecule directly and measurably influences the coupling factor.
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4.4. DNP signal enhancement of carbon-13

After the successful measurements of enhanced proton spectra, the DNP experiments

were continued for 13C. The aim was to investigate, if even higher enhancements than

for protons could be achieved for carbon corresponding to the difference between

their respective gyromagnetic ratio. A theoretical maximum enhancement up to

−31.6 is possible for pure dipolar interactions between the spins.

Furthermore, the translational diffusion model was applied to the carbons of

l-tryptophan based on the results from section 4.3. Subsequently, the calculated

ideal enhancements were compared with the experimental results. In addition, it

was investigated in a concluding step, how the presence of a strongly coupled spin,

for example a proton, changes the carbon enhancements. This step serves as a

preparation for measurements of 13C or 15N labeled biomacromolecules.

4.4.1. Carbon enhancement in a two-spin system

The measured hf 13C enhancements with deuterated 13C and 15N labeled l-trypto-

phan were much smaller than expected from the theoretical maximum enhancement

of -31.6. These 13C enhancements ranged from −0.3 to −2.5 as illustrated in fig-

ure 4.4. For a better understanding of this result, the range of the carbon coupling

factor was calculated. This range was based on the translational diffusion model and

the calculated ranges of the distance of closest approach for the example protons of

l-tryptophan. The procedure was identical to subsection 4.3.2 but it was assumed,

that the distances of closest approach for carbons is increased due to the bonded

example protons which reduce the accessibility of the carbon nuclei. Therefore, the

calculated distances were extended by the proton-carbon bond length of 1.1 Å. Fur-

thermore, an estimation of the theoretical maximum high-field enhancement was

calculated with the calculated range of the coupling factor. For this purpose, an

ideal leakage and saturation factor of 1 was assumed in addition to zero relaxation

losses during the sample transfer. The obtained theoretical maximum enhancements

εhf,max alongside the calculated coupling factors are given in table 4.7 for the car-

bons Cα, Cδ1 and Cη2. These are bonded to the previously (subsection 4.3.2) selected

example protons.
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Table 4.7.: Calculated enhancements for l-tryptophan-d8,15N2,13C11 and corresponding
parameters of the translational diffusion model

Cα Cδ1 Cη2

measured:
εhf -0.3 -2.1 -1.8

calculated:
d [Å] 4.9 - 6.1 5.0 - 5.3 4.2 - 4.6

ξ 0.08 - 0.09 0.11 - 0.13 0.15 - 0.18
εhf,max -5.0 - -5.4 -7.1 - -7.9 -9.3 - -11.2

The calculated coupling factors are between 0.08 and 0.18 and therefore, result

in a theoretical maximum enhancements εhf,max of -5 to -11. Of course, these ideal

enhancements are reduced by different influences under the experimental conditions.

So far, a leakage factor of 1 was assumed, but a smaller leakage factor is more likely,

if one takes the previously measured leakage factors of the protons of l-tryptophan

into account. These have an average value of about 0.8.

Additionally, one has to consider, that the interactions between the carbons and

the unpaired electron of the radical are weaker than for the protons due to the longer
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Figure 4.4.: 13C enhancements of l-tryptophan-d8,15N2,13C11 (50 mM) in D2O with
TEMPONE-d16,15N (10 mM). The experimental parameters were tp = 10 s, PMW = 6.7 W
and 4096 scans
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distance of closest approach and due to the smaller gyromagnetic ratio. Furthermore,

there is the strong dipolar interaction between neighboring carbon nuclei which

represent additional relaxation pathways for “leakage”. Altogether, these aspects

lead to an estimated leakage factor of about 0.5.

Likewise, the saturation factor is smaller than 1 under the experimental condi-

tions. A saturation factor of s = 0.85 was assumed for the proton experiments. For

the carbon experiments, however, one must assume an even smaller saturation factor

due to a very long mw irradiation time (tp = 10 s). Despite the active cooling, the

DNP cavity gradually heats up during that time and is no longer fully matched. The

consequence is a reduced mw power input and thereby, an only partially saturated

EPR line. This results in a smaller saturation factor about 0.6 to 0.7.

In addition to the reduced leakage and saturation factor, relaxation losses occur

during the sample transfer from the low-field to the high-field. These are presumably

about 10 to 20 %. Taking all these effects into account, the calculated theoretical

maximum carbon enhancement is reduced to approximately one fourth which is close

to the measured enhancements.

In conclusion, the magnitude of the measured enhancements of carbon are plau-

sible and the translational diffusion model is useful for a qualitative estimation of

the achievable enhancements.

4.4.2. Carbon enhancement in a three-spin system

As a preliminary step to protein measurements, carbon DNP experiments were

conducted on protonated, 13C- and 15N-labeled l-tryptophan since most biomacro-

molecules are labeled with 13C and/or 15N with the purpose to increase the sensitiv-

ity in hetero nuclear correlation experiments. With three different spins present, the

DNP transfer becomes more complex. The strong dipolar interaction between the

proton and the carbon could lead to additional polarization transfer between these

nuclei. The result would be a positive enhancement for the carbon nuclei. This so

called “three-spin-effect” was described and investigated by Natusch et al. [87]. So far,

it has been only observed for solvents [87,88]. Here, the effect was observed for the first

time for solute molecules. The measured carbon enhancements for l-tryptophan-
15N2,13C11 are all positive and between 1.0 and 2.3, except for the carbonyl carbon
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Figure 4.5.: 13C enhancements of l-tryptophan-15N2,13C11 (50 mM) in D2O with
TEMPONE-d16,15N (10 mM). The experimental parameters were tp = 10 s, PMW = 6.7 W
and 4096 scans

with an negative enhancement of -2.5 (figure 4.5).

For a theoretical treatment of these results, it is necessary to expand the coupling

factor to the dipolar interaction in the three spin system. These interactions are

described by the following relaxation matrix:
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(4.21)

Hz, Cz and ez are the polarizations of the protons, carbons and electrons along

the z-axis. The additional index 0 indicates the thermal equilibrium polarization

along the z-axis. Furthermore, σHe, σCe and σHC are the crossrelaxation rates of the

proton-electron interaction, the carbon-electron interaction and the proton-carbon

interaction, respectively (see equation 1.14). Here ρ represents the autorelaxation

rate of each respective spin. This rate includes all transition probabilities with the

other two spins analogous to figure 1.1 and equation 1.14:

ρH = w2,He + 2w1,He + w0,He + w2,HC + 2w1,HC + w0,HC (4.22)
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ρC = w2,Ce + 2w1,Ce + w0,Ce + w2,HC + 2w
′

1,HC + w0,HC (4.23)

ρe = w2,He + 2w
′

1,He + w0,He + w2,Ce + 2w
′

1,Ce + w0,Ce (4.24)

For the DNP experiment, it is assumed, that the polarization of the spins reached

a steady state condition which gives for equation 4.21:
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(4.25)

This equation is separated into three single equations:

0 = −ρH (Hz − H0) − σHC (Cz − C0) + σHe (e0 − ez) (4.26)

0 = −σHC (Hz − H0) − ρC (Cz − C0) + σCe (e0 − ez) (4.27)

ėz = −σHe (Hz − H0) − σCe (Cz − C0) + ρe (e0 − ez) (4.28)

Since only the nuclear polarization is of interest, equations 4.26 and 4.27 are recom-

bined:

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and rearranged:
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to give the polarizations of protons and carbons after a second separation:

Hz − H0 =
σHeρC − σCeσHC

ρHρC − σ2
HC

(e0 − ez) (4.31)

Cz − C0 =
σCeρH − σHeσHC

ρHρC − σ2
HC

(e0 − ez) (4.32)
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According to subsection 1.3.1, these two equations are expanded by
(
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e0H0

)

and
(

e0

e0C0

)

, respectively:
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(4.34)

By inserting each of these equations in the equation for the enhancement factor 1.17

and using the equation of the saturation factor 1.21, one ends up with the signal

enhancement in a three spin system without leakage:

εHC,H = 1 +

(

σHeρC − σCeσHC

ρHρC − σ2
HC

)

s

(

γe

γH

)

(4.35)

εHC,C = 1 +

(

σCeρH − σHeσHC

ρHρC − σ2
HC

)

s

(

γe

γC

)

(4.36)

As in equation 1.23, the thermal equilibrium polarizations H0, C0 and e0 were sub-

stituted by the corresponding gyromagnetic ratios. For the comparison with the

experimental results, the high-field enhancement is obtained by adding the field

ratio to equation 4.36:

εhf,HC,C =

[

1 +

(

σCeρH − σHeσHC

ρHρC − σ2
HC

)

s

(

γe

γC

)](

B0,lf

B0,hf

)

(4.37)

The first fraction of equation 4.36 corresponds to the coupling factor of carbon with

an electron and a proton in the three spin system

ξHC,C =

(

σCeρH − σHeσHC

ρHρC − σ2
HC

)

(4.38)

For the intermolecular dipolar electron-proton and electron-carbon interaction the

translational diffusion model was used analogously to the previous subsection 4.4.2.

The intramolecular dipolar interaction between proton and carbon was calculated

with the model of molecular tumbling based on the equation for the spectral density
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Table 4.8.: Calculated enhancements for l-tryptophan-15N2,13C11 and the corresponding
parameters of the translational diffusion model

Cα Cδ1 Cη2

measured:
εhf 2.3 1.0 1.3

calculated:
d [Å] 4.9 - 6.1 5.0 - 5.3 4.2 - 4.6

ξ -0.03 - -0.04 -0.04 - -0.05 -0.05 - -0.06
εhf,max 2.2 - 2.3 2.9 - 3.1 3.4 - 3.6

1.35 and the equation for the proportionality factor 1.36. The distance between

proton and carbon corresponds to their bond length of 1.1 Å.

With these equations, the coupling factors and the theoretical maximum enhance-

ments for the three example carbons from subsection 4.4.1 were calculated and sum-

marized in table 4.8.

The calculated coupling factors are negative. Hence, the enhancements are pos-

itive for all three example carbons. Therefore the sign of the enhancement is in

agreement with the experimental findings. Although, the magnitude of the ideal

calculated enhancements are too small, if one applies the same considerations about

the experimental conditions as in subsection 4.4.1. A the leakage factor of f = 0.5,

a the saturation factor of s = 0.7 and relaxation losses of 10 % to 20 % result in

enhancements below the measured values, especially for the Hα.

In conclusion, the positive enhancements are qualitatively explained by including

the proton-carbon interaction, but quantitative predictions are not possible. The

used approach is with only three considered spins to superficial. One indication

are the positive enhanced quaternary carbons which were not taken into account so

far. They presumably interact with all three protons bound to their neighboring

atoms, from where the polarization is transferred. A single proton is not efficient

enough for this long distance interaction since the carbonyl carbon with one proton

in close proximity shows a negative enhancement. For more accurate predictions of

the coupling factor, it would be necessary to include all spins of the molecule.
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4.5. First results on ubiquitin

After the preparatory measurements on 13C-labeled and 15C-labeled l-tryptophan,

DNP experiments on a small fully labeled biomacromolecule were conducted to

investigated if it is possible to transfer polarization to the surface of a protein. For

this purpose, Ubiquitin-U-15N,U- 13C was chosen as a small globular protein with a

molecular mass of 8.5 kDa. It is stable under various conditions and a well studied

protein [73,89,90].

The dependency of the proton coupling factor of ubiquitin on the distance of

closest approach was calculated for the case of a three-spin system in regard to

the results of l-tryptophan. It includes the interaction between the proton and

carbon spin. Additionally, the two-spin case without carbon spins was calculated to

investigate the influence of proton-carbon interaction.

The procedure of the calculations was identical to l-tryptophan (section 4.3 and

4.4). The translational diffusion model was applied with the diffusion constant of

ubiquitin reported by Mayo et al. [91]. The intramolecular proton-carbon interaction

was again based on the molecular tumbling with the rotational correlation time of

ubiquitin reported by Tjandra et al. [92]. As done before, both literature values were
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Figure 4.6.: Dependency of the proton coupling factor on the distance of closest approach
for Ubiquitin-U-15N,U- 13C and TEMPONE-d16,15N in D2O at 54 ◦C. The solid line
represents the translational diffusion model applied to a three-spin system of a proton, a
carbon and an electron. The dotted line corresponds to a two-spin system of a proton and
an electron.
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scaled with the equations 4.19 and 4.20 to the experimental conditions of 54 ◦C

and D2O as solvent. The result for the three- (solid line) and two-spin (dotted line)

system is shown in figure 4.6.

The obtainable coupling factor relative to the distance of the closest approach for

the three-spin system is significantly smaller than for the two-spin system. The long

rotational correlation time of ubiquitin causes a strong proton-carbon interaction,

which diminishes the overall coupling factor. Therefore only a weak polarization

transfer is expected from the electron to the surface of the protein. Due to this, the

experimental set-up is changed for a clear distinction between the nuclei, which are

effected by polarization transfer from the electron, and the nuclei, which are only

effected by the sample transfer to the low field. For this reason, the DNP experiment

was compared to an identically experiment with identical delays and durations but

without microwave irradiation. By this means, even small changes in the signal

intensity due to a polarization transfer could be identified.

In a preliminary step before conducting the DNP experiment, a spectrum with

Boltzmann polarization was recorded in the high-field position. The two dimen-

sional 1H-13C-Heteronuclear Single Quantum Coherence (HSQC) spectrum of the

protein sample with only 23 nmol (5 mM) Ubiquitin-U-15N,U-13C and 10 mM

TEMPONE-d16,15N in D2O is depicted in figure 4.7 (A) with a close up of the

methyl region (B). The resolution and the sensitivity is sufficient to identify sin-

gle resonances. The subsequently recorded DNP experiment and the corresponding

shuttle experiment showed for most resonances no significant differences within the

experimental error. The main reason are the relaxation losses during the sample

transfer in addition to the predicted weak polarization transfer. Nevertheless, it

was possible to extract two important information from the recorded spectra.

Firstly, a few signals show a distinct reduction of their intensity in the DNP

experiment compared to the identical shuttle experiment without mw irradiation.

The most prominent examples are illustrated in figure 4.8. The assignment of the

ubiquitin [89] resonances was taken from the Biological Magnetic Resonance Data

Bank (BRMB) [90]. The signals of the lysine 63 Hε protons and of the arginine

74 Hδ protons are highlighted in figure 4.8. Both signals are well resolved and

distinct from other signals in the shuttle experiment without mw irradiation (left).

By contrast, the two signals are nearly gone compared to the other signals in the
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Figure 4.7.: 1H-13C-HSQC spectrum of 23 nmol (5 mM) Ubiquitin-U-15N,U-13C with
10 mM TEMPONE-d16,15N, 20 mM DSS and 50 mM NaCl in 50 mM phosphate buffer
with D2O as solvent - (A) full spectrum (B) methyl region
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Figure 4.8.: Shuttle (left) and DNP (right) 1H-13C-HSQC spectrum of 23 nmol (5 mM)
Ubiquitin-U-15N,U-13C with 10 mM TEMPONE-d16,15N, 20 mM DSS and 50 mM NaCl
in 50 mM phosphate buffer with D2O as solvent - tp was 2 s and PMW was 11 W

DNP experiment with mw irradiation. Even though, the other depicted signals show

intensity changes, these changes are not as clear as the reduction of the lysine 63 and

arginine 74 signals.

Since the only difference between the two conducted experiments is the irradiation

with the microwave, the intensity change must be caused by it. Altogether, there

are two possible explanations which are based on the relaxation during the sample

transfer.

One of these two explanation is, that the microwave irradiation heats up the

protein sample. Thereby, the molecular tumbling and the diffusion rates increase

with the consequence, that the longitudinal relaxation times of the protons increase.

These longer relaxation times would slow down the build-up of the high-field po-

larization back to thermal equilibrium during the transfer of the sample from the

low-field to the high-field position. The result would be a smaller signal intensity

compared to the shuttle experiment without mw heating. However, this change ef-

fects all signals of ubiquitin by a similar degree and not only individual signals, such

as lysine 63 and arginine 74.

The other explanation is, that polarization was transferred from the electron to

the mentioned protons resulting in an negative enhancement. However, the nega-

tive polarization relaxed back through null to a weak positive polarization during

the transfer. This polarization is still smaller than the polarization of the shuttle

experiment without mw irradiation. Hence, the conclusion is, that for the first time
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in liquid state DNP , protons of a protein were successfully polarized by the method

of DNP .

The second extracted information is based on the previous conclusion. The po-

larization transfer is especially observed on the accessible protons of the side chains

on the surface of the protein. The implication is, that surface information of a pro-

tein are obtainable by solely observing the polarization transfer from the electron to

exposed protons. Furthermore this accessibility dependence is another confirmation

of the translational diffusion model and the importance of the distance of closest

approach for the polarization transfer.



4.6. Outlook 75

4.6. Outlook

In this thesis, the parameters of protons, which are relevant for shuttle DNP, have

been elaborately studied for small molecules. For all of these parameters (coupling

and leakage factor as well as the relaxation losses during the transfer), data were

collected and theoretical models were established. This has been different for carbons

of small molecules, where further measurements are necessary. Additional relaxation

measurements would enable the calculation of the leakage factor and the relaxation

losses. With these two parameters, it would be possible to calculate the coupling

factor of the carbon nuclei based on measured data and to calculate in a subsequent

step the distance of closest approach with the translational diffusion model. These

distances would help to determine, if the translational diffusion model could be used

for qualitative predictions of the coupling factor.

For those additional measurements, the experimental condition could be improved

further. Higher radical concentrations (> 10 mM) increase the leakage factor and

reduce the build-up time of the carbon nuclei. The consequences are shorter mw

irradiation times, more time effective measurements and less heating of the DNP

cavity.

The future efforts to polarize proteins will be divided up into two different ap-

proaches. The first approach is to investigate proteins with a rotational correlation

time of approximately 40 ns. For comparison, ubiquitin has a rotational correlation

time of 4.1 ns [92]. For slow tumbling proteins above a threshold of 12 ns, the dipolar

relaxation between the protons of the protein is no longer destructive. This means,

that the net magnetization of the protons is preserved at the magnetic field strength

of 0.34 T. This effect is called spin diffusion and enables the transfer of the dynamic

nuclear polarization from the surface into the center of the protein.

Furthermore, a beneficial side effect for carbon labeled proteins with increasing

rotational correlation times is a decreasing cross relaxation rate between proton and

carbon spins, which interferes with the polarization transfer from the electron to the

proton. Therefore, a reduced cross relaxation rate leads to a higher coupling factor

of the protons in a three-spin system with a carbon and an electron.

The second approach will focus on the enhancements of amide protons in the

back bone of a protein. These protons exchange with the water protons of the bulk
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solution. The rate of this chemical exchange depends on accessibility of the amide

group by the solvent. Thereby, it would be possible to transfer protons from the

surrounding water to the backbone amides which exhibit a fast exchange rate. Since

enhancement factors of up to -4 are achievable for water, significant enhancements

are expected for the exchanging amide protons, too.
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EPR Electron Paramagnetic Resonance. 21, 25–27, 44, 65, 82

FID Free Induction Decay. 40, 48, 52, 53

hf High Field. 4, 6, 7, 21, 23, 30, 63

HSQC Heteronuclear Single Quantum Coherence. IV, VI, 40, 41, 71–73, 82, 100,
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C. Pulse programs and scripts

C.1. Pulse programs

In the following section, the pulse sequences are given, which were used for the NMR

and DNP experiments on the DNP shuttle spectrometer and which significantly

deviate from the pulse programs provide by Bruker.

Pulse program for 1H DNP experiments with watergate (w5) sequence for water

suppression:

#include <Avance.incl>

#include <Grad.incl>

1 ze

2 30m

d1

10u pl1:f1

d20 setnmr3|10

d22 setnmr3|11

50m setnmr3^10

d29 setnmr3^11

p1 ph1

p16:gp1

d16 pl18:f1

p27*0.087 ph3

d19*2

p27*0.206 ph3
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d19*2

p27*0.413 ph3

d19*2

p27*0.778 ph3

d19*2

p27*1.491 ph3

d19*2

p27*1.491 ph4

d19*2

p27*0.778 ph4

d19*2

p27*0.413 ph4

d19*2

p27*0.206 ph4

d19*2

p27*0.087 ph4

50u

p16:gp1

d16

4u

p16:gp2

d16

p27*0.087 ph5

d19*2

p27*0.206 ph5

d19*2

p27*0.413 ph5

d19*2

p27*0.778 ph5

d19*2

p27*1.491 ph5

d19*2

p27*1.491 ph6
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d19*2

p27*0.778 ph6

d19*2

p27*0.413 ph6

d19*2

p27*0.206 ph6

d19*2

p27*0.087 ph6

p16:gp2

d16

go=2 ph31

30m mc #0 to 2 F0(zd)

exit

ph1=0 2

ph3=0 0 1 1 2 2 3 3

ph4=2 2 3 3 0 0 1 1

ph5=0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

ph6=2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

ph31=0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2

;pl1 : f1 channel - power level for pulse (default)

;pl18: f1 channel - power level for 3-9-19-pulse (watergate)

;p1 : f1 channel - 90 degree high power pulse

;p16: homospoil/gradient pulse

;p27: f1 channel - 90 degree pulse at pl18

;d1 : relaxation delay; 1-5 * T1

;d16: delay for homospoil/gradient recovery

;d19: delay for binomial water suppression

; d19 = (1/(2*d)), d = distance of next null (in Hz)

;NS: 8 * n, total number of scans: NS * TD0

;DS: 4

;use gradient ratio: gp 1 : gp 2
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; 34 : 22

;for z-only gradients:

;gpz1: 34%

;gpz2: 22%

;use gradient files:

;gpnam1: SINE.100

;gpnam2: SINE.100

Pulse program for 1H DNP experiments with gradients and excitation sculpting

for water suppression:

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>

"p2=p1*2"

"d12=20u"

"d29=d28-50m"

"TAU=de+p1*2/3.1416+50u"

"acqt0=0"

baseopt_echo

1 ze

50u UNBLKGRAD

2 30m

d2

d12 pl1:f1

d20 setnmr3|10

d22 setnmr3|11

50m setnmr3^10

d29 setnmr3^11

p1 ph1

50u

p16:gp1
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d16 pl0:f1

(p12:sp1 ph2:r):f1

4u

d12 pl1:f1

p2 ph3

4u

p16:gp1

d16

TAU

p16:gp2

d16 pl0:f1

(p12:sp1 ph4:r):f1

4u

d12 pl1:f1

p2 ph5

4u

p16:gp2

d16

go=2 ph31

30m mc #0 to 2 F0(zd)

4u BLKGRAD

exit

ph1=0

ph2=0 1

ph3=2 3

ph4=0 0 1 1

ph5=2 2 3 3
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ph31=0 2 2 0

;pl0 : 0W

;pl1 : f1 channel - power level for pulse (default)

;sp1 : f1 channel - shaped pulse 180 degree

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p12: f1 channel - 180 degree shaped pulse (Squa100.1000) [2 msec]

;p16: homospoil/gradient pulse

;d1 : relaxation delay; 1-5 * T1

;d12: delay for power switching [20 usec]

;d16: delay for homospoil/gradient recovery

;NS: 8 * n, total number of scans: NS * TD0

;DS: 4

;use gradient ratio: gp 1 : gp 2

; 31 : 11

;for z-only gradients:

;gpz1: 31%

;gpz2: 11%

;use gradient files:

;gpnam1: SMSQ10.100

;gpnam2: SMSQ10.100

Pulse program for 13C DNP experiments with additional lock delay and proton

decoupling:

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>

"d11=30m"

"d29=d28-50m"

"acqt0=-p1*2/3.1416"
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1 ze

d11 pl12:f2

2 30m

d2

d1 LOCKH_OFF

500m LOCKH_ON

d20 setnmr3|10

d22 setnmr3|11

50m setnmr3^10

d29 setnmr3^11

p1 ph1

go=2 ph31

30m mc #0 to 2 F0(zd)

exit

ph1=0 2 2 0 1 3 3 1

ph31=0 2 2 0 1 3 3 1

;pl0 : 0W

;pl1 : f1 channel - power level for pulse (default)

;pl12: f2 channel - power level for CPD/BB decoupling

;p1 : f1 channel - high power pulse

;d1 : relaxation delay; 1-5 * T1

;d11: delay for disk I/O [30 msec]

;NS: 8 * n, total number of scans: NS * TD0

;cpd2: decoupling according to sequence defined by cpdprg2

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

Pulse program for 13C DNP experiments with additional lock delay and proton

decoupling - version 2:

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>
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"d29=d28-50m"

"acqt0=-p1*2/3.1416"

"d10=aq"

1 ze

4u UNBLKGRAD

d11 pl12:f2

;------------------------ dummy scan loop

2 30m do:f2

d2

d20 setnmr3|10

d22 setnmr3|11

50m setnmr3^10

d29 setnmr3^11

p1 ph1

d10 cpd2:f2

lo to 2 times l2

;------------------------ lock loop

3 d1

4u BLKGRAD

6000m

500m UNBLKGRAD

;---------------- dummy scan loop

4 30m do:f2

d2

d20 setnmr3|10

d22 setnmr3|11

50m setnmr3^10

d29 setnmr3^11

p1 ph1

d10 cpd2:f2

lo to 4 times l3

;----------------- scan loop
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5 30m do:f2

d2

d20 setnmr3|10

d22 setnmr3|11

50m setnmr3^10

d29 setnmr3^11

p1 ph1

go=5 ph31 cpd2:f2

500m

lo to 3 times l1

30m do:f2 mc #0 to 2 F0(zd)

4u BLKGRAD

exit

ph1=0 2 2 0 1 3 3 1

ph31=0 2 2 0 1 3 3 1

;pl0 : 0W

;pl1 : f1 channel - power level for pulse (default)

;pl12: f2 channel - power level for CPD/BB decoupling

;p1 : f1 channel - high power pulse

;p16: homospoil/gradient pulse

;d1 : relaxation delay; 1-5 * T1

;d11: delay for disk I/O [30 msec]

;d12: delay for power switching [20 usec]

;d16: delay for homospoil/gradient recovery

;NS: 8 * n, total number of scans: NS * TD0

;cpd2: decoupling according to sequence defined by cpdprg2

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence
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Pulse program for HSQC with Boltzmann polarization:

#include <Avance.incl>

#include <Delay.incl>

#include <Grad.incl>

"p2=p1*2"

"p4=p3*2"

"d4=1s/(cnst2*4)"

"d11=30m"

"d12=20u"

"d31=d19-p3"

"d5=d4-p16-d16-4*d19-2.385*p27-d31"

"d0=3u"

"DELTA=d0*2+p2"

"in0=inf1/2"

"TAU=p1*2/3.1416-de+46u"

1 ze

d11 pl12:f2

50u UNBLKGRAD

2 d1 do:f2

3 50u pl10:f2 pl0:f1

(p11:sp1 ph11):f1

50u pl2:f2 pl1:f1

(p1 ph1)

d5

p16:gp1

d16 pl18:f1

p27*0.231 ph20

d19*2

p27*0.692 ph20

d19*2

p27*1.462 ph20
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d31

(p4 ph9):f2

d31

p27*1.462 ph21

d19*2

p27*0.692 ph21

d19*2

p27*0.231 ph21

TAU

d16

p16:gp1

d5

(p1 ph3)

(p3 ph6):f2

d0

(p2 ph8)

d0

(p4 ph7):f2

DELTA

(p3 ph7):f2

(p1 ph4)

d5

p16:gp2

d16 pl18:f1

p27*0.231 ph22

d19*2

p27*0.692 ph22

d19*2

p27*1.462 ph22

d31
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(p4 ph5):f2

d31

p27*1.462 ph23

d19*2

p27*0.692 ph23

d19*2

p27*0.231 ph23

TAU

d16 pl12:f2

p16:gp2

d5

go=2 ph31 cpd2:f2

d1 do:f2 mc #0 to 2 F1PH(calph(ph6, +90) & calph(ph9, +90),

caldel(d0, +in0))

4u BLKGRAD

exit

ph1=0

ph2=0

ph3=1

ph4=1

ph5=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

ph6=0 2

ph7=0 0 0 0 2 2 2 2

ph8=0 0 2 2

ph9=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

ph11=1 3 1 3 3 1 3 1

ph20=0 2

ph21=2 0

ph22=0 2

ph23=2 0

ph31=0 2 0 2 2 0 2 0
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;pl1 : f1 channel - power level for pulse (default)

;pl2 : f2 channel - power level for pulse (default)

;pl12: f2 channel - power level for CPD/BB decoupling

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p3 : f2 channel - 90 degree high power pulse

;p4 : f2 channel - 180 degree high power pulse

;d0 : incremented delay (2D) [3 usec]

;d1 : relaxation delay; 1-5 * T1

;d4 : 1/(4J)XH

;d11: delay for disk I/O [30 msec]

;cnst2: = J(XH)

;inf1: 1/SW(X) = 2 * DW(X)

;in0: 1/(2 * SW(X)) = DW(X)

;nd0: 2

;ns: 4 * n

;ds: 16

;td1: number of experiments

;FnMODE: States-TPPI, TPPI, States or QSEQ

;cpd2: decoupling according to sequence defined by cpdprg2

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

Pulse program for HSQC with Boltzmann polarization and shuttling:

#include <Avance.incl>

#include <Delay.incl>

#include <Grad.incl>

"p2=p1*2"

"p4=p3*2"

"d4=1s/(cnst2*4)"

"d11=30m"
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"d12=20u"

"d31=d19-p3"

"d5=d4-p16-d16-4*d19-2.385*p27-d31"

"TAU=p1*2/3.1416-(p0-p27)*0.231-de+46u"

"d0=3u"

"DELTA=d0*2+p2"

"in0=inf1/2"

"d29=d28-50m"

1 ze

d11 pl12:f2

50u UNBLKGRAD

2 d1 do:f2

d20 setnmr3|10

d22

50m setnmr3^10

d29

3 50u pl10:f2 pl0:f1

(p11:sp1 ph11):f1

50u pl2:f2 pl1:f1

(p1 ph1)

d5

p16:gp1

d16 pl18:f1

p27*0.231 ph20

d19*2

p27*0.692 ph20

d19*2

p27*1.462 ph20

d31

(p4 ph9):f2

d31
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p27*1.462 ph21

d19*2

p27*0.692 ph21

d19*2

p27*0.231 ph21

TAU

d16

p16:gp1

d5

(p1 ph3)

(p3 ph6):f2

d0

(p2 ph8)

d0

(p4 ph7):f2

DELTA

(p3 ph7):f2

(p1 ph4)

d5

p16:gp2

d16 pl18:f1

p27*0.231 ph22

d19*2

p27*0.692 ph22

d19*2

p27*1.462 ph22

d31

(p4 ph5):f2

d31
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p27*1.462 ph23

d19*2

p27*0.692 ph23

d19*2

p27*0.231 ph23

d16 pl12:f2

TAU

p16:gp2

d5

go=2 ph31 cpd2:f2

d1 do:f2 mc #0 to 2 F1PH(calph(ph6, +90) & calph(ph9, +90),

caldel(d0, +in0))

4u BLKGRAD

exit

ph1=0

ph2=0

ph3=1

ph4=1

ph5=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

ph6=0 2

ph7=0 0 0 0 2 2 2 2

ph8=0 0 2 2

ph9=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

ph11=1 3 1 3 3 1 3 1

ph20=0

ph21=2

ph22=0

ph23=2

ph31=0 2 0 2 2 0 2 0

;pl1 : f1 channel - power level for pulse (default)
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;pl2 : f2 channel - power level for pulse (default)

;pl12: f2 channel - power level for CPD/BB decoupling

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p3 : f2 channel - 90 degree high power pulse

;p4 : f2 channel - 180 degree high power pulse

;d0 : incremented delay (2D) [3 usec]

;d1 : relaxation delay; 1-5 * T1

;d4 : 1/(4J)XH

;d11: delay for disk I/O [30 msec]

;cnst2: = J(XH)

;inf1: 1/SW(X) = 2 * DW(X)

;in0: 1/(2 * SW(X)) = DW(X)

;nd0: 2

;ns: 4 * n

;ds: 16

;td1: number of experiments

;FnMODE: States-TPPI, TPPI, States or QSEQ

;cpd2: decoupling according to sequence defined by cpdprg2

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

Pulse program for HSQC with DNP:

#include <Avance.incl>

#include <Delay.incl>

#include <Grad.incl>

"p2=p1*2"

"p4=p3*2"

"d4=1s/(cnst2*4)"

"d11=30m"

"d12=20u"
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"d31=d19-p3"

"d5=d4-p16-d16-4*d19-2.385*p27-d31"

"TAU=p1*2/3.1416-de+46u"

"d0=3u"

"DELTA=d0*2+p2"

"in0=inf1/2"

"d29=d28-50m"

1 ze

d11 pl12:f2

50u UNBLKGRAD

2 d1 do:f2

d20 setnmr3|10

d22 setnmr3|11

50m setnmr3^10

d29 setnmr3^11

3 50u pl10:f2 pl0:f1

(p11:sp1 ph11):f1

50u pl2:f2 pl1:f1

(p1 ph1)

d5

p16:gp1

d16 pl18:f1

p27*0.231 ph20

d19*2

p27*0.692 ph20

d19*2

p27*1.462 ph20

d31

(p4 ph9):f2

d31

p27*1.462 ph21
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d19*2

p27*0.692 ph21

d19*2

p27*0.231 ph21

TAU

d16

p16:gp1

d5

(p1 ph3)

(p3 ph6):f2

d0

(p2 ph8)

d0

(p4 ph7):f2

DELTA

(p3 ph7):f2

(p1 ph4)

d5

p16:gp2

d16 pl18:f1

p27*0.231 ph22

d19*2

p27*0.692 ph22

d19*2

p27*1.462 ph22

d31

(p4 ph5):f2

d31

p27*1.462 ph23
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d19*2

p27*0.692 ph23

d19*2

p27*0.231 ph23

d16 pl12:f2

TAU

p16:gp2

d5

go=2 ph31 cpd2:f2

d1 do:f2 mc #0 to 2 F1PH(calph(ph6, +90) & calph(ph9, +90),

caldel(d0, +in0))

4u BLKGRAD

exit

ph1=0

ph2=0

ph3=1

ph4=1

ph5=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

ph6=0 2

ph7=0 0 0 0 2 2 2 2

ph8=0 0 2 2

ph9=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

ph11=1 3 1 3 3 1 3 1

ph20=0

ph21=2

ph22=0

ph23=2

ph31=0 2 0 2 2 0 2 0

;pl1 : f1 channel - power level for pulse (default)

;pl2 : f2 channel - power level for pulse (default)
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;pl12: f2 channel - power level for CPD/BB decoupling

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p3 : f2 channel - 90 degree high power pulse

;p4 : f2 channel - 180 degree high power pulse

;d0 : incremented delay (2D) [3 usec]

;d1 : relaxation delay; 1-5 * T1

;d4 : 1/(4J)XH

;d11: delay for disk I/O [30 msec]

;cnst2: = J(XH)

;inf1: 1/SW(X) = 2 * DW(X)

;in0: 1/(2 * SW(X)) = DW(X)

;nd0: 2

;ns: 4 * n

;ds: 16

;td1: number of experiments

;FnMODE: States-TPPI, TPPI, States or QSEQ

;cpd2: decoupling according to sequence defined by cpdprg2

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence
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C.2. Scilab script

The following script was used to calculate all distances and coupling factors based

on the translational diffusion model and the combined model.

//calculting xi with rotational and translational contribution

funcprot(0)//removes info message about change variables

clear

//constants

//mu0 - permeability constant [N*A^-2]

mu0=4*%pi*10^-7

//avo - Avogadro constant [mol^-1]

avo=6.02214129*10^23

//gam_H - gyromagnetic ratio of proton [s^-1T^-1]

gam_H=267.5222005*10^6

//gam_C - gyromagnetic ratio of carbon [s^-1T^-1]

gam_C=67.28286*10^6

//ge - Lande factor of the electron

ge=2.0023193043617

//mub - Bohr magneton [J/T]

mub=9.27400968*10^-24

//spin - electron

s=1/2

//planck constant [J*s]

h=6.62606957*10^-34

//reduced planck constant

hbar=h/(2*%pi)

//kb - Boltzmann constant

kb=1.380648813*10^-23

//______________________________________________
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//d - Distance of closest approach [Angstrom]

d=3.5

d11=3.52

d12=3.06

d21=4.16

d22=3.89

d31=4.96

d32=4.79

d41=4.09

d42=3.73

d51=4.64

d52=4.4

d61=5.35

d62=5.19

//Frequency

nu=14.5

//Temperature [K]

t=273.15+42

//Carbon proton distance

d_HC=1.1

//n - nuclei in innersphere

n=0

//r - distance between radical and nuc [m]

//r=d

//with (1) or without (0) tau_nuc as tau_M

//______________________________________________________

//Sample properties

//++solvent viscosity++

//eta - water viscosity [Pa*s]//cho99

function eta_H_lit=eta_H_lit(t); eta_H_lit=802.25336*((t-225.334)

+3.4741*10^-3*(t-225.334)^2-1.7413*10^-5*(t-225.334)^3+2.7719
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*10^-8*(t-225.334)^4)^-1.53026/1000; endfunction

//eta_D_lit - deuterated water viscosity [Pa*s]//cho99

function eta_D_lit=eta_D_lit(t); eta_D_lit=885.60402*((t-231.832)

+2.7990*10^-3*(t-231.832)^2-1.6342*10^-5*(t-231.832)^3

+2.9067*10^-8*(t-231.832)^4)^-1.55255/1000; endfunction

//++polarizer++

//c_rad - radical concentration [mol/m^3]

c_rad=10*10^-3/10^-3

//t1e - T1 of Tempone// 5 mM Tempone - tuerke10 [s]

t1e=350*10^-9

//D_rad_lit - Diffusion constant of radical at 25Â◦C [m^2*s^-1]

D_rad_lit=5.75*10^-10//measured in 2010

T_D_rad_lit=298

eta_D_lit_rad=eta_D_lit(T_D_rad_lit)

//r_hydro_rad - hydrodyavomic radius of water

r_hydro_rad=(kb*T_D_rad_lit)/(D_rad_lit*6*%pi*eta_D_lit_rad)

//tau_c_rad_lit - tau_c of Tempone

tau_c_rad_lit=0.009*10^-9//peric13 303K (read from figure supp.)

T_tau_c_rad_lit=303

eta_tau_c_rad_lit=eta_H_lit(T_tau_c_rad_lit)

//r_rot_rad - radius rotation

r_rot_rad=((tau_c_rad_lit*3*kb*T_tau_c_rad_lit)/(4

*%pi*eta_tau_c_rad_lit))^(1/3)

//++nucleus++

//c_nuc - nucleus concentration [mol/m^3]

c_nuc=10*10^-3/10^-3

//D_nuc_lit - Diffusion constant of nucleus at 25Â◦C [m^2*s^-1]

D_nuc_lit=6.592*10^-10//longsworth53

T_D_nuc_lit=298.15

eta_D_nuc_lit=eta_H_lit(T_D_nuc_lit)

//r_hydro_nuc - hydrodyavomic radius of water
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r_hydro_nuc=kb*T_D_nuc_lit/(D_nuc_lit*6*%pi*eta_D_nuc_lit)

//Come_Hlex life time assume tau_c nuc

//tau_c_nuc_lit

//tau_rotnuc

tau_c_nuc_lit=2.18*10^-11//25Â◦C//chen88

T_tau_c_nuc_lit=298.15

eta_tau_c_nuc_lit=eta_H_lit(T_tau_c_nuc_lit)

r_rot_nuc=((tau_c_nuc_lit*3*kb*T_tau_c_nuc_lit)/(4

*%pi*eta_tau_c_nuc_lit))^(1/3)

//magnetic field

function B_0=B_0(d); B_0=nu*10^6*2*%pi/gam_H; endfunction

disp("B_0 = "+string(B_0(d)))

//eta_D - deuterated water viscosity [Pa*s]

//cho92

function eta_D=eta_D(d); eta_D=885.60402*((t-231.832)

+2.7990*10^-3*(t-231.832)^2-1.6342*10^-5*(t-231.832)^3

+2.9067*10^-8*(t-231.832)^4)^-1.55255/1000; endfunction

//D - diffusion constant

function D_nuc=D_nuc(d); D_nuc=kb*t/(6*%pi*r_hydro_nuc*eta_D(d));

endfunction

function D_rad=D_rad(d); D_rad=kb*t/(6*%pi*r_hydro_rad*eta_D(d));

endfunction

//di - relative diffusion coefficient

function D_rel=D_rel(d); D_rel=(D_nuc(d)+D_rad(d)); endfunction

disp("D_rad = "+string(D_rad(d))+" "+"D_nuc = "+string(D_nuc(d))

+" "+"D_rel = "+string(D_rel(d)))

//tau_D - translatioavol correlation time

//for proton
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function tau_D_H=tau_D_H(d); tau_D_H=(d*10^-10)^2/D_rel(d)

; endfunction

//for carbon d plus proton-carbon distance

function tau_D_C=tau_D_C(d); tau_D_C=((d+d_HC)*10^-10)^2/D_rel(d);

endfunction

disp("tau_D_H = "+string(tau_D_H(d))+" "+"tau_D_C = "

+string(tau_D_C(d)))

//rotaioavol correlation time

//radical

function tau_c_rad=tau_c_rad(d); tau_c_rad

=4*%pi*eta_D(d)*r_rot_rad^3/(3*kb*t); endfunction

//nucleus

function tau_c_nuc=tau_c_nuc(d); tau_c_nuc

=4*%pi*eta_D(d)*r_rot_nuc^3/(3*kb*t); endfunction

//tau_rot [s]

function tau_rot=tau_rot(d); tau_rot=(tau_c_rad(d)^-1

+(tau_c_nuc(d))^-1)^-1; endfunction

//tau_rot [s]

//function tau_rot=tau_rot(d); tau_rot=(tau_c_rad(d)^-1+t1e^-1

+b*(tau_c_nuc(d))^-1)^-1; endfunction

disp("tau_rot = "+string(tau_rot(d))+" "+"tau_c_rad = "

+string(tau_c_rad(d))+" "+"tau_c_nuc = "+string(tau_c_nuc(d)))

//factor k for translatioavol contribution

//proton

function k_t_eH=k_t_eH(d); k_t_eH

=32*%pi/405*(mu0/(4*%pi))^2*avo*c_rad*gam_H^2*ge^2*mub^2

*s*(s+1)/((d*10^-10)*D_rel(d))endfunction
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//carbon

function k_t_eC=k_t_eC(d); k_t_eC

=32*%pi/405*(mu0/(4*%pi))^2*avo*c_rad*gam_C^2*ge^2*mub^2

*s*(s+1)/(((d+d_HC)*10^-10)*D_rel(d))endfunction

//k for rotational contribution

//electron - proton

function k_r_eH=k_r_eH(d); k_r_eH=n*c_rad/c_nuc*2/15*(mu0/(4

*%pi))^2*gam_H^2*ge^2*mub^2*s*(s+1)/((d)*10^-10)^6 endfunction

//electron - carbon

function k_r_eC=k_r_eC(d); k_r_eC=n*c_rad/c_nuc*2/15*(mu0/(4

*%pi))^2*gam_C^2*ge^2*mub^2*s*(s+1)/((d+d_HC)

*10^-10)^6 endfunction

//proton - carbon

function k_r_HC=k_r_HC(d); k_r_HC=1/10*(mu0/(4*%pi))^2

*gam_C^2*gam_H^2*hbar^2/(d_HC*10^-10)^6 endfunction

disp("k_t_eH = "+string(k_t_eH(d))+" "+"k_t_eC = "

+string(k_t_eC(d))+" "+"k_r_eH = "+string(k_r_eH(d))+" "

+"k_r_eC = "+string(k_r_eC(d))+" "+"k_r_HC = "

+string(k_r_HC(d)))

//omega_electron

function ome_e=ome_e(d); ome_e=ge*mub/hbar*B_0(d)

; endfunction

//omega_proton

function ome_H=ome_H(d); ome_H=gam_H*B_0(d)

; endfunction

//omega_carbon

function ome_C=ome_C(d); ome_C=gam_C*B_0(d)

; endfunction
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//transition frequency

function ome_eH0=ome_eH0(d); ome_eH0=abs(ome_e(d)-ome_H(d))

; endfunction

function ome_eC0=ome_eC0(d); ome_eC0=abs(ome_e(d)-ome_C(d))

; endfunction

function ome_HC0=ome_HC0(d); ome_HC0=abs(ome_H(d)-ome_C(d))

; endfunction

function ome_eH2=ome_eH2(d); ome_eH2=ome_e(d)+ome_H(d)

; endfunction

function ome_eC2=ome_eC2(d); ome_eC2=ome_e(d)+ome_C(d)

; endfunction

function ome_HC2=ome_HC2(d); ome_HC2=ome_C(d)+ome_H(d)

; endfunction

//jr and jt are the spectral densities

//calc jt0

function zh0=zh0(d); zh0=(2*ome_eH0(d)*tau_D_H(d))^(1/2)

; endfunction

function jth0=jth0(d); jth0=(1+5*zh0(d)/8+zh0(d)^2/8)/(1+zh0(d)

+zh0(d)^2/2+zh0(d)^3/6+4*zh0(d)^4/81+zh0(d)^5/81+zh0(d)^6/648)

; endfunction

function zc0=zc0(d); zc0=(2*ome_eC0(d)*tau_D_C(d))^(1/2)

; endfunction

function jtc0=jtc0(d); jtc0=(1+5*zc0(d)/8+zc0(d)^2/8)/(1+zc0(d)

+zc0(d)^2/2+zc0(d)^3/6+4*zc0(d)^4/81+zc0(d)^5/81+zc0(d)^6/648)

; endfunction

//calc jt1

function zh1=zh1(d); zh1=(2*ome_H(d)*tau_D_H(d))^(1/2)

; endfunction

function jth1=jth1(d); jth1=(1+5*zh1(d)/8+zh1(d)^2/8)/(1+zh1(d)

+zh1(d)^2/2+zh1(d)^3/6+4*zh1(d)^4/81+zh1(d)^5/81+zh1(d)^6/648)

; endfunction
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function zc1=zc1(d); zc1=(2*ome_C(d)*tau_D_C(d))^(1/2);

endfunction

function jtc1=jtc1(d); jtc1=(1+5*zc1(d)/8+zc1(d)^2/8)/(1+zc1(d)

+zc1(d)^2/2+zc1(d)^3/6+4*zc1(d)^4/81+zc1(d)^5/81+zc1(d)^6/648)

; endfunction

//calc jt2

function zh2=zh2(d); zh2=(2*ome_eH2(d)*tau_D_H(d))^(1/2)

; endfunction

function jth2=jth2(d); jth2=(1+5*zh2(d)/8+zh2(d)^2/8)/(1+zh2(d)

+zh2(d)^2/2+zh2(d)^3/6+4*zh2(d)^4/81+zh2(d)^5/81+zh2(d)^6/648)

; endfunction

function zc2=zc2(d); zc2=(2*ome_eC2(d)*tau_D_C(d))^(1/2)

; endfunction

function jtc2=jtc2(d); jtc2=(1+5*zc2(d)/8+zc2(d)^2/8)/(1+zc2(d)

+zc2(d)^2/2+zc2(d)^3/6+4*zc2(d)^4/81+zc2(d)^5/81+zc2(d)^6/648)

; endfunction

//calc jr0

function jreh0=jreh0(d); jreh0=tau_rot(d)/(1+ome_eH0(d)^2

*tau_rot(d)^2); endfunction

function jrec0=jrec0(d); jrec0=tau_rot(d)/(1+ome_eC0(d)^2

*tau_rot(d)^2); endfunction

function jrhc0=jrhc0(d); jrhc0=tau_c_nuc(d)/(1+ome_HC0(d)^2

*tau_c_nuc(d)^2); endfunction

//calc jr1

function jreh1=jreh1(d); jreh1=tau_rot(d)/(1+ome_H(d)^2

*tau_rot(d)^2); endfunction

function jrec1=jrec1(d); jrec1=tau_rot(d)/(1+ome_C(d)^2

*tau_rot(d)^2); endfunction

function jrh1=jrh1(d); jrh1=tau_c_nuc(d)/(1+ome_H(d)^2

*tau_c_nuc(d)^2); endfunction

function jrc1=jrc1(d); jrc1=tau_c_nuc(d)/(1+ome_C(d)^2
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*tau_c_nuc(d)^2); endfunction

//calc jr2

function jreh2=jreh2(d); jreh2=tau_rot(d)/(1+ome_eH2(d)^2

*tau_rot(d)^2); endfunction

function jrec2=jrec2(d); jrec2=tau_rot(d)/(1+ome_eC2(d)^2

*tau_rot(d)^2); endfunction

function jrhc2=jrhc2(d); jrhc2=tau_c_nuc(d)/(1+ome_HC2(d)^2

*tau_c_nuc(d)^2); endfunction

//wt = transition probebility of translatioavol motion

//two spin proton-electron and carbon electron

function wth0=wth0(d); wth0=(k_t_eH(d)*jth0(d)); endfunction

function wth1=wth1(d); wth1=3/2*k_t_eH(d)*jth1(d); endfunction

function wth2=wth2(d); wth2=6*k_t_eH(d)*jth2(d); endfunction

function wtc0=wtc0(d); wtc0=(k_t_eC(d)*jtc0(d)); endfunction

function wtc1=wtc1(d); wtc1=3/2*k_t_eC(d)*jtc1(d); endfunction

function wtc2=wtc2(d); wtc2=6*k_t_eC(d)*jtc2(d); endfunction

//wr = transition probebility of rotatioavol motion

function wreh0=wreh0(d); wreh0=(k_r_eH(d)*jreh0(d)); endfunction

function wreh1=wreh1(d); wreh1=3/2*k_r_eH(d)*jreh1(d); endfunction

function wreh2=wreh2(d); wreh2=6*k_r_eH(d)*jreh2(d); endfunction

function wrec0=wrec0(d); wrec0=(k_r_eC(d)*jrec0(d)); endfunction

function wrec1=wrec1(d); wrec1=3/2*k_r_eC(d)*jrec1(d); endfunction

function wrec2=wrec2(d); wrec2=6*k_r_eC(d)*jrec2(d); endfunction

function wrhc0=wrhc0(d); wrhc0=(k_r_HC(d)*jrhc0(d)); endfunction

function wrh1=wrh1(d); wrh1=3/2*k_r_HC(d)*jrh1(d); endfunction

function wrc1=wrc1(d); wrc1=3/2*k_r_HC(d)*jrc1(d); endfunction

function wrhc2=wrhc2(d); wrhc2=6*k_r_HC(d)*jrhc2(d); endfunction
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function sig_eH=sig_eH(d); sig_eH=wth2(d)-wth0(d)

+wreh2(d)-wreh0(d); endfunction

function sig_eC=sig_eC(d); sig_eC=wtc2(d)-wtc0(d)

+wrec2(d)-wrec0(d); endfunction

function sig_HC=sig_HC(d); sig_HC=(wrhc2(d)-wrhc0(d))

; endfunction

function rho_H=rho_H(d); rho_H=(wth2(d)+2*wth1(d)

+wth0(d)+wreh2(d)+2*wreh1(d)+wreh0(d)+wrhc2(d)

+2*wrh1(d)+wrhc0(d)); endfunction

function rho_C=rho_C(d); rho_C=(wtc2(d)+2*wtc1(d)

+wtc0(d)+wrec2(d)+2*wrec1(d)+wrec0(d)+wrhc2(d)

+2*wrc1(d)+wrhc0(d)); endfunction

function rho_HwoC=rho_HwoC(d); rho_HwoC=(wth2(d)

+2*wth1(d)+wth0(d)+wreh2(d)+2*wreh1(d)+wreh0(d))

; endfunction

function xi_HC_H=xi_HC_H(d); xi_HC_H=(sig_eH(d)

*rho_C(d)-sig_eC(d)*sig_HC(d))/(rho_H(d)*rho_C(d)

-sig_HC(d)^2); endfunction

function xi_HC_C=xi_HC_C(d); xi_HC_C=(sig_eC(d)

*rho_H(d)-sig_eH(d)*sig_HC(d))/(rho_H(d)*rho_C(d)

-sig_HC(d)^2); endfunction

function xi_H=xi_H(d); xi_H=(wth2(d)-wth0(d)+wreh2(d)

-wreh0(d))/(wth2(d)+2*wth1(d)+wth0(d)+wreh2(d)

+2*wreh1(d)+wreh0(d)); endfunction
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function xi_C=xi_C(d); xi_C=(wtc2(d)-wtc0(d)+wrec2(d)

-wrec0(d))/(wtc2(d)+2*wtc1(d)+wtc0(d)+wrec2(d)

+2*wrec1(d)+wrec0(d)); endfunction

function xi_HC=xi_HC(d); xi_HC=(wrhc2(d)-wrhc0(d))/(wrhc2(d)

+2*wrc1(d)+wrhc0(d)); endfunction

function eps_C=eps_C(d); eps_C=(1-xi_C(d)

*(ge*mub/hbar)/gam_C)/(14.1/B_0(d)); endfunction

function eps_HC_C=eps_HC_C(d); eps_HC_C=(1-xi_HC_C(d)

*(ge*mub/hbar)/gam_C)/(14.1/B_0(d)); endfunction

disp("without inner sphere contribution")

n=0

disp("0.23 d11 = "+string(d11)+" "+"xi_H = "+string(xi_H(d11))

+" "+"xi_C = "+string(xi_C(d11))+" "+"xi_HC = "

+string(xi_HC(d11)))

disp("0.27 d12 = "+string(d12)+" "+"xi_H = "+string(xi_H(d12))

+" "+"xi_C = "+string(xi_C(d12))+" "+"xi_HC = "

+string(xi_HC(d12)))

disp("0.18 d21 = "+string(d21)+" "+"xi_H = "+string(xi_H(d21))

+" "+"xi_C = "+string(xi_C(d21))+" "+"xi_HC = "

+string(xi_HC(d21)))

disp("0.20 d22 = "+string(d22)+" "+"xi_H = "+string(xi_H(d22))

+" "+"xi_C = "+string(xi_C(d22))+" "+"xi_HC = "

+string(xi_HC(d22)))

disp("0.13 d31 = "+string(d31)+" "+"xi_H = "+string(xi_H(d31))

+" "+"xi_C = "+string(xi_C(d31))+" "+"xi_HC = "

+string(xi_HC(d31)))
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disp("0.14 d32 = "+string(d32)+" "+"xi_H = "+string(xi_H(d32))

+" "+"xi_C = "+string(xi_C(d32))+" "+"xi_HC = "

+string(xi_HC(d32)))

disp("d11"+" "+"rho_HwoC = "+string(rho_HwoC(d11))

+" "+"d12"+" "+"rho_HwoC = "+string(rho_HwoC(d12)))

disp("d21"+" "+"rho_HwoC = "+string(rho_HwoC(d21))

+" "+"d22"+" "+"rho_HwoC = "+string(rho_HwoC(d22)))

disp("d31"+" "+"rho_HwoC = "+string(rho_HwoC(d31))

+" "+"d32"+" "+"rho_HwoC = "+string(rho_HwoC(d32)))

//with inner sphere contribution

n=0.001

disp("with inner sphere contribution")

disp(n=0.001)

disp("0.23 d41 = "+string(d41)+" "+"xi_H = "+string(xi_H(d41))

+" "+"0.27 d42 = "+string(d42)+" "+"xi_H = "+string(xi_H(d42)))

disp("0.18 d51 = "+string(d51)+" "+"xi_H = "+string(xi_H(d51))

+" "+"0.20 d52 = "+string(d52)+" "+"xi_H = "+string(xi_H(d52)))

disp("0.13 d61 = "+string(d61)+" "+"xi_H = "+string(xi_H(d61))

+" "+"0.14 d62 = "+string(d62)+" "+"xi_H = "+string(xi_H(d62)))

disp("d41"+" "+"rho_HwoC = "+string(rho_HwoC(d41))+" "

+"d42"+" "+"rho_HwoC = "+string(rho_HwoC(d42)))

disp("d51"+" "+"rho_HwoC = "+string(rho_HwoC(d51))+" "

+"d52"+" "+"rho_HwoC = "+string(rho_HwoC(d52)))

disp("d61"+" "+"rho_HwoC = "+string(rho_HwoC(d61))+" "

+"d62"+" "+"rho_HwoC = "+string(rho_HwoC(d62)))

disp(n=0.01)

n=0.01

d41=5.47

d42=5.08

d51=6.02

d52=5.79

d61=6.73
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d62=6.57

disp("0.23 d41 = "+string(d41)+" "+"xi_H = "+string(xi_H(d41))

+" "+"0.27 d42 = "+string(d42)+" "+"xi_H = "+string(xi_H(d42)))

disp("0.18 d51 = "+string(d51)+" "+"xi_H = "+string(xi_H(d51))

+" "+"0.20 d52 = "+string(d52)+" "+"xi_H = "+string(xi_H(d52)))

disp("0.13 d61 = "+string(d61)+" "+"xi_H = "+string(xi_H(d61))

+" "+"0.14 d62 = "+string(d62)+" "+"xi_H = "+string(xi_H(d62)))

disp("d41"+" "+"rho_HwoC = "+string(rho_HwoC(d41))+" "+

"d42"+" "+"rho_HwoC = "+string(rho_HwoC(d42)))

disp("d51"+" "+"rho_HwoC = "+string(rho_HwoC(d51))+" "+

"d52"+" "+"rho_HwoC = "+string(rho_HwoC(d52)))

disp("d61"+" "+"rho_HwoC = "+string(rho_HwoC(d61))+" "+

"d62"+" "+"rho_HwoC = "+string(rho_HwoC(d62)))

disp(n=0.0001)

n=0.0001

d41=3.62

d42=3.19

d51=4.23

d52=3.97

d61=5.02

d62=4.84

disp("0.23 d41 = "+string(d41)+" "+"xi_H = "+string(xi_H(d41))

+" "+"0.27 d42 = "+string(d42)+" "+"xi_H = "+string(xi_H(d42)))

disp("0.18 d51 = "+string(d51)+" "+"xi_H = "+string(xi_H(d51))

+" "+"0.20 d52 = "+string(d52)+" "+"xi_H = "+string(xi_H(d52)))

disp("0.13 d61 = "+string(d61)+" "+"xi_H = "+string(xi_H(d61))

+" "+"0.14 d62 = "+string(d62)+" "+"xi_H = "+string(xi_H(d62)))

disp("d41"+" "+"rho_HwoC = "+string(rho_HwoC(d41))+" "

+"d42"+" "+"rho_HwoC = "+string(rho_HwoC(d42)))

disp("d51"+" "+"rho_HwoC = "+string(rho_HwoC(d51))+" "

+"d52"+" "+"rho_HwoC = "+string(rho_HwoC(d52)))

disp("d61"+" "+"rho_HwoC = "+string(rho_HwoC(d61))+" "
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+"d62"+" "+"rho_HwoC = "+string(rho_HwoC(d62)))

disp("carbon enhancement")

n=0

disp("0.23 d11 = "+string(d11)+" "+"eps_C = "

+string(eps_C(d11))+" "+"0.27 d12 = "+string(d12)+" "

+"eps_C = "+string(eps_C(d12)))

disp("0.18 d21 = "+string(d21)+" "+"eps_C = "

+string(eps_C(d21))+" "+"0.20 d22 = "+string(d22)+" "

+"eps_C = "+string(eps_C(d22)))

disp("0.13 d31 = "+string(d31)+" "+"eps_C = "

+string(eps_C(d31))+" "+"0.14 d32 = "+string(d32)+" "

+"eps_C = "+string(eps_C(d32)))

disp("3 spin system couplin factor for C")

n=0

disp("0.23 d11 = "+string(d11)+" "+"xi_HC_C = "

+string(xi_HC_C(d11))+" "+"0.27 d12 = "+string(d12)+" "

+"xi_HC_C = "+string(xi_HC_C(d12)))

disp("0.18 d21 = "+string(d21)+" "+"xi_HC_C = "

+string(xi_HC_C(d21))+" "+"0.20 d22 = "+string(d22)+" "

+"xi_HC_C = "+string(xi_HC_C(d22)))

disp("0.13 d31 = "+string(d31)+" "+"xi_HC_C = "

+string(xi_HC_C(d31))+" "+"0.14 d32 = "+string(d32)+" "

+"xi_HC_C = "+string(xi_HC_C(d32)))

disp("3 spin system carbon enhancement")

n=0
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t=273.15+50

disp("0.23 d11 = "+string(d11)+" "+"eps_HC_C = "

+string(eps_HC_C(d11))+" "+"0.27 d12 = "+string(d12)

+" "+"eps_HC_C = "+string(eps_HC_C(d12)))

disp("0.18 d21 = "+string(d21)+" "+"eps_HC_C = "

+string(eps_HC_C(d21))+" "+"0.20 d22 = "+string(d22)

+" "+"eps_HC_C = "+string(eps_HC_C(d22)))

disp("0.13 d31 = "+string(d31)+" "+"eps_HC_C = "

+string(eps_HC_C(d31))+" "+"0.14 d32 = "+string(d32)

+" "+"eps_HC_C = "+string(eps_HC_C(d32)))

d=linspace(1,10,41)

scf(1)

clf(1)

f=gdf();

f.auto_resize="off";

f.figure_size=[700,300]

f.axes_size=[700,300];

a=gca();

a.margins=[0.1 0.03 0.06 0.19]

a.x_label.fractional_font="on"

a.auto_scale="off"

a.x_ticks=tlist(["ticks","locations","labels"],

[1;2;3;4;5;6;7;8;9;10],["1";"2";"3";"4";"5";"6";"7";"8";"9";"10"]);

a.y_ticks=tlist(["ticks","locations","labels"],

[0;0.1;0.2;0.3;0.4;0.5],["0";"0.1";"0.2";"0.3";"0.4";"0.5"]);

a.data_bounds=[1,10,0,0.5]

a.font_size=[4]
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a.x_label.text=["$\mathsf{H^{\alpha} H^{\delta1} H^{\eta2}

\textit{d}\text{ - distance of closest approach [\AA]}}$"]

a.x_label.font_size=[4]

a.x_label.font_style=[6]

a.y_label.text=["$\mathsf{\xi\text{ - coupling factor}}$"]

a.y_label.font_size=[4]

a.y_label.font_style=[6]

a.thickness=[2]

n=0

fplot2d(d,xi_H,axesflag=9)

p = get("hdl");

p.children.line_style=[1]

p.children.thickness = 1.5;

n=0.01

fplot2d(d,xi_H,axesflag=9)

p = get("hdl");

p.children.line_style=[8]

p.children.thickness = 1.5;

a.sub_tics=[1,4]

n=0.001

fplot2d(d,xi_H,axesflag=9)

p = get("hdl");

p.children.line_style=[6]

p.children.thickness = 1.5;

a.sub_tics=[1,4]

n=0.0001

fplot2d(d,xi_H,axesflag=9)

p = get("hdl");

p.children.line_style=[2]

p.children.thickness = 1.5;

a.sub_tics=[1,4]

xs2eps(1,’xitryptodistance1.5.eps’)
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C.3. NMRPipe scripts

NMRPipe script for the Fourier transformation of the direct dimension:

#!/bin/csh

nmrPipe -in test.fid \

| nmrPipe -fn FT -verb \

| nmrPipe -fn PS -p0 0.0 -p1 -0.0 \

-out pure.ft1 -ov

NMRPipe script, which executes the chemical shift referencing macro:

#!/bin/csh

nmrPipe -in pure.ft1 \

| nmrPipe -fn MAC -macro findShiftpilo.M \

-str shiftX1 -0.05ppm shiftXN -0.25ppm refppm -0.074ppm \

-out corr.ft1 -ov

NMRPipe macro for the chemical shift referencing (findShiftpilo.M):

/***/

/* Align vectors in interfergram with first vector:

/*

/* | nmrPipe -fn MAC -macro findShiftpilo.M \

/* -str shiftX1 0.5ppm shiftXN -0.4ppm refppm -0.074ppm\

/***/

ix1 = spec2pnt( fdata, CUR_XDIM, shiftX1 );

ixn = spec2pnt( fdata, CUR_XDIM, shiftXN );

ixs = spec2pnt( fdata, CUR_XDIM, refppm );

n = 1;

float sR[size], qR[size];

(void) vvCopyOff( sR, rdata, n, 0, ix1-1 );

Max = vMax( sR, n );

for( qx1 = ix1; qx1 <= ixn; qx1 += 1 )

{
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(void) vvCopyOff( qR, rdata, n, 0, qx1 );

Act = vMax( qR, n );

if (Act > Max)

{ Max = Act; shift = qx1; };

};

ref = shift - ixs + 1;

(void) printf( " Vector: %4.0f Shift: %5.2f\n", yLoc, ref );

(void) fShift( rdata, size, ref );

(void) fShift( idata, size, ref );

NMRPipe script for the inverse Fourier transformation and the concluding script

for the processing of the two dimensional data set:

#!/bin/csh

nmrPipe -in corr.ft1 \

| nmrPipe -fn FT -inv -verb\

#inverse fourier transformation back to fid \

| nmrPipe -fn EXT -xn 512 -sw \

#reduction of data points in direct dimension for less noise \

| nmrPipe -fn SP -off 0.5 -end 1.0 -c 1.0 \

| nmrPipe -fn ZF -auto \

| nmrPipe -fn FT -auto -verb \

| nmrPipe -fn PS -p0 -36.3 -p1 43.0 -di \

| nmrPipe -fn TP \

| nmrPipe -fn EXT -xn 128 -sw \

| nmrPipe -fn SP -off 0.5 -end 1.0 -c 1.0 \

| nmrPipe -fn ZF -auto \

| nmrPipe -fn FT -auto -verb \

| nmrPipe -fn PS -p0 0.0 -p1 0.0 \

| nmrPipe -fn TP \

| nmrPipe -fn POLY -auto -ord 2 -xn 4.35ppm -x1 -1ppm \

-out DNP2.ft2 -ov
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