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CHAPTER A INTRODUCTION 

CHAPTER A 

INTRODUCTION 

A.1 Bacillus licheniformis DSM13 

Members of the genus Bacillus have been exploited for biotechnological purposes since the 

production of natto from soy beans using Bacillus subtilis was developed in Japan over 

thousand years ago (Schallmey et al., 2004). As enzymes deriving from bacterial fermentation 

processes have become accessible for technical applications in the 1960s, they have been 

produced in large scale employing B. licheniformis and B. amyloliquefaciens (Maurer, 2004). 

It is estimated, that 50% of the total enzyme market is nowadays constituted by enzymes 

obtained from Bacillus species, especially from B. subtilis, B. clausii, and B. licheniformis 

(Schallmey et al., 2004). Main reasons for this development are the species’ high growth rates 

combined with their large capacities to secrete enzymes into the extracellular space. In 

contrast, in Gram-negative bacteria like Escherichia coli, proteins tend to accumulate in the 

periplasm or cytoplasm, leading to incorrect protein folding or the formation of insoluble 

inclusion bodies (Hintz, 2003; Schallmey et al., 2004). The enzymes produced by Bacilli are 

mainly employed by detergent, food and textile industries, and comprise large shares of 

amylases, pullanases, and glucose isomerases (Kirk, 2002; Schallmey et al., 2004). However, 

approximately 40% of the total enzyme sales account for proteases; alkaline proteases such as 

Subtilisin Carlsberg, Subtilisin BPN’ and Savinase utilized in household detergents constitute 

the largest proportion among this group (Gupta et al., 2002a, 2002b). 

The genus Bacillus currently comprises more than 250 described species, after being subject 

to numerous taxonomic changes during recent years (Logan and de Vos, 2008). For example, 

several members of this genus were transferred to the newly defined genus Geobacillus 

(Nazina et al., 2001). Two major species groups, the B. subtilis and the B. cereus group, were 

identified within the genus Bacillus (Ash et al., 1991; Wang et al., 2007). According to this 
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INTRODUCTION CHAPTER A 

definition, B. licheniformis is a member of the B. subtilis group, which also includes 

B. pumilus and B. amyloliquefaciens (Rooney et al., 2009). An multi-locus sequence typing 

(MLST)-based phylogenetic analysis of the B. licheniformis species itself revealed that the 

type strain B. licheniformis DSM13 shares a high degree of similarity with B. licheniformis 

ATCC 9945A (Madslien et al., 2012), which is frequently used for laboratory purposes 

(Hoffmann et al., 2010; Rachinger, 2010). 

B. licheniformis was first described as Clostridium licheniforme in 1898, referring to the 

formation of lichen-shaped colonies (Logan and de Vos, 2008). The organism is facultative 

anaerobic, Gram-positive, forms motile rods and develops endospores (Logan and de Vos, 

2008; Slepecky and Hemphill, 2006). B. licheniformis has been reported to show growth in 

slightly acidic environments and in the presence of up to 7% NaCl at temperatures ranging 

from 15 °C to 55 °C (Logan and de Vos, 2008; Slepecky and Hemphill, 2006). Like most 

other members of the genus Bacillus, B. licheniformis is a widely distributed saprophyte and 

has mainly been isolated from soil. Nevertheless, isolates have also been derived from other 

sources, including inner plant tissue, feathers, milk, marine sponges and clinical specimens 

(Logan and de Vos, 2008; Sayem et al., 2011). The species has occasionally been reported as 

opportunistic pathogen and members have been isolated in cases of bacteremia, peritoneum 

inflammation, food poisoning and eye infection from immunocompromised patients 

(Agerholm et al., 1997; Haydushka et al., 2012; Logan and de Vos, 2008). Also, there seem to 

be cases in which infection with B. licheniformis has led to bacteremia in immunocompetent 

patients (Galanos et al., 2003; Haydushka et al., 2012; Sugar and McCloskey, 1977). 

However, the U.S. Environmental Protection Agency (1997) stated that infections occur most 

probably when an individual is exposed to atypically high bacterial cell counts. In this 

context, enzymes with applications as food additives produced in B. licheniformis have been 

generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (1999-

2013). 

The genome sequence of B. licheniformis DSM13 (4.22 Mb), which was also deposited as 

B. licheniformis ATCC 14580 at the American Type Culture Collection (Euzéby, 1997), is 

available since 2004 and was determined independently in the course of two separate studies 

(Rey et al., 2004; Veith et al., 2004). Both studies calculated a G+C content of 46.2% and 

identified seven ribosomal RNA (rRNA) operons and 72 transfer RNAs (tRNAs). Altogether, 

4,286 (Veith et al., 2004) or 4,208 (Rey et al., 2004) protein-coding genes were annotated, 

including regions coding for exoenzymes such as α-amylases, pectate lyases and cellulases. 

Furthermore, B. licheniformis has the capacity to produce several extracellular proteases, e.g. 
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CHAPTER A INTRODUCTION 

Subtilisin Carlsberg, to make environmental proteins accessible as carbon and nitrogen 

sources. In total, 296 proteins were predicted to carry an N-terminal signal peptide for the 

secretion to the extracellular space (Voigt et al., 2006). 

The ability of the Gram-positive model organism B. subtilis to differentiate into distinct, co-

existing cell types such as motile, sporulating or competent cells, cells that secrete 

extracellular enzymes or cells that produce biofilms and cannibalize their siblings, has been 

studied intensely (Dubnau and Losick, 2006; Shank and Kolter, 2011; Veening et al., 2008). 

Therefore, the formation of different subpopulations discussed in this thesis is based on 

studies targeting B. subtilis and supplemented with the incomplete knowledge of the process 

in B. licheniformis. To coordinate the activation and regulation of the developmental 

programs of cell differentiation, B. subtilis possesses Spo0A, DegU and ComA, which are the 

master regulators of a complex regulatory network (Davidson et al., 2012; Kuchina et al., 

2011; López and Kolter, 2010; Schultz et al., 2009). The phosphorylated state of each master 

regulator activates the expression of genes required for a distinct developmental pathway 

(López and Kolter, 2010). The onset of differentiation is dependent on a certain threshold of 

the regulator, which – once it is reached – will promote an exponential activation of the 

respective regulon by positive autoregulation or mutually repressing repression (Lopez et al., 

2009). Therefore, only a fraction of the cell population can form a specific subpopulation 

whereas other fractions differentiate into separate subpopulations and thereby build the multi-

cellular community (Lopez et al., 2009). 

Various approaches to enhance the performance of B. licheniformis in terms of the previously 

mentioned industrial protease production have addressed many different targets. (i) The 

improvement of B. licheniformis as an industrial production strain has mainly been performed 

by random mutagenesis and subsequent rationalized screening procedures (Gupta et al., 

2002a; Hintz, 2003; Parekh et al., 2000). In recent years, attention has also been paid on 

directed genetic alterations targeting genetic accessibility (Hoffmann et al., 2010; Rachinger, 

2010; Waschkau et al., 2008), secretion capability (Waldeck et al., 2007a), sporulation and 

biological containment (Borgmeier et al., 2012; Nahrstedt et al., 2005; Waldeck et al., 2007b). 

(ii) The optimization approaches did not only address the host organism, but also the 

commercial enzymes. Strategies for the improvement of subtilisin by random or site-directed 

mutagenesis, gene shuffling and phage display have facilitated the production of enzymes 

with altered pH optima and substrate specificities and with enhanced stability and resistance 
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INTRODUCTION CHAPTER A 

to oxidative agents (Maurer, 2004; Schallmey et al., 2004). Additionally, engineering of 

signal peptides led to significantly increased yields of secreted protease (Degering et al., 

2010). (iii) The bioprocess itself has also been the target of optimization efforts concerning 

the oxygen transfer rate (Çalık et al., 1999, 2000a, 2000b), pH value (Hornbaek et al., 2004a; 

Çalık et al., 2002), inoculum quality (Hornbaek et al., 2004b), initial glucose concentration 

(Çalık et al., 2003a), and the fermentation medium composition (Enshasy and Azaly, 2008; 

Çalık et al., 2003b). (iv) Furthermore, purification techniques have been improved or newly 

developed to allow efficient and resource-saving downstream processing (Gupta et al., 

2002b). 

All approaches targeting the internal optimization of the organism suffer from the drawback 

that they do not account for the complex interactions throughout the entire pathway network 

(Becker and Wittmann, 2012). As optimization on a global scale has shown tremendous 

improvements of productivity (Leprince et al., 2012; Park et al., 2008) such an approach 

could also allow increasing the performance of B. licheniformis. To achieve this goal, it is 

necessary to gain profound knowledge of the cellular processes during protease production, 

for example by studying the proteome and transcriptome of the cellular community at all 

stages of the fermentation process. Therefore, one major focus of this thesis was the analysis 

of the B. licheniformis transcriptome during an industrial fermentation process. To introduce 

this topic, an overview of the current knowledge in the fields of transcriptome analysis and 

post-transcriptional regulation will be given in the following chapter. 

A.2 The bacterial transcriptome 

The term “transcriptome” was initially introduced in 1996 and describes the complete set of 

transcripts in a cell at a specific developmental state or physiological condition (Piétu et al., 

1999). It usually consists of de novo synthesized and post-transcriptionally modified 

messenger RNA (mRNA) and non-coding RNA species like rRNA, tRNA, and regulatory 

RNA (van Vliet, 2010). 

A.2.1 Post-transcriptional regulation 

Over the past decades, the regulation of bacterial transcription was thought to be quite well 

understood and generally considered to be accomplished by the interaction of different RNA 

polymerase σ factors and a variety of transcriptional repressors and activators with the DNA 
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strand. In contrast, the last decade has revealed plenty additional mechanisms (Sesto et al., 

2013). On DNA level, methylation patterns, nucleoid compaction, RNA polymerase-

associated regulatory proteins, and operon-internal promoters have been shown to have an 

impact on transcriptional regulation (Güell et al., 2011). Furthermore, it is now known that 

post-transcriptional regulation has a fundamental part in the organization of gene expression 

and can affect transcription as well as translation (Güell et al., 2009; Marguerat and Bähler, 

2010). In general, post-transcriptional control relies on regulatory RNAs either located in 

untranslated regions (UTRs) of mRNA transcripts (A.2.2) or transcribed as independent, non-

coding RNAs acting on their targets by base-pairing mechanisms (A.2.2.1 & A.2.2.2). 

A.2.2 Regulatory RNAs localized in untranslated regions 

One main mechanism of post-transcriptional and translational regulation is located in the 

5’untranslated regions of mRNA transcripts. Several 5’UTRs harbor control systems that are 

Figure 1 Mechanisms of 5’UTR-intrinsic regulatory elements - Part A 
(a) Riboswitches. Upon metabolite (blue) binding to the sensor domain, transcriptional regulation is achieved by 
the formation of terminating or antiterminating stem loops by the expression platform domain (second stem 
loop). Translational regulation is achieved by different stem loop structures which either release or bind the 
ribosome binding site (purple; Breaker, 2012; Romby and Charpentier, 2010). (b) T-boxes. The formation of a 
terminator is forced upon the binding of a charged tRNA (green & magenta), whereas the binding of an 
uncharged tRNA (green) induces the formation of an antiterminating stem loop to enable the transcription of 
aminoacyl-tRNA ligase and related genes (Green et al., 2010; Gutiérrez-Preciado et al., 2009; Mäder et al., 
2012). (c) Protein-binding RNAs. During conditions of high pyrimidine availability, the regulatory protein 
PyrR binds to the RNA and triggers the formation of an intrinsic terminator to halt further transcription of the 
operon (Winkler, 2012). 
The components of the figure were modified from Waters and Storz (2009), Green et al. (2010), and Winkler 
(2012). 
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Figure 2 Mechanisms of 5’UTR-intrinsic regulatory elements - Part B 
Ribosome binding sites are indicated in purple. (a) RNA thermometers. RNA-based thermoregulation of 
bacterial genes is accomplished by translation regulation by two different mechanisms: RNA zippers and RNA 
switches (Dethoff et al., 2012; Kortmann and Narberhaus, 2012). (b) Ribosome stalling. The ribosome induces 
the formation of a stem loop that sequesters the RBS located upstream of the erythromycin resistance gene ermC 
during translation of ErmL. When erythromycin is present, the ribosome stalls during translation of ErmL. 
Consequently, the stem loop which sequesters the RBS is not formed and erythromycin resistance can be 
developed (Cruz-Vera et al., 2011; Ramu et al., 2009). (c) Transcriptional pausing. Under conditions of neutral 
pH, the leader peptide of alx forms a structure, which sequesters the RBS and inhibits translation. At alkaline 
conditions, the RNA polymerase pauses during the transcription of the leader peptide and thereby promotes the 
development of a RBS-releasing conformation (Nechooshtan et al., 2009). 
The components of the figure were modified from Kortmann and Narberhaus (2012), Cruz-Vera et al. (2011), 
and Nechooshtan et al. (2009). 

based on cis-acting regulatory elements capable of adopting different RNA structures. Even 

though it is not always possible to make a clear distinction between all types of cis-acting 

regulators (Breaker, 2011), the elements can roughly be divided into the six classes of 

riboswitches, T-boxes, protein-binding RNAs, RNA thermometers, ribosome stalling and 

transcriptional pausing (Figures 1&2; Cruz-Vera et al., 2011; Dethoff et al., 2012; Green et 

al., 2010; Gutiérrez-Preciado et al., 2009; Kortmann and Narberhaus, 2012; Landick, 2006; 

Mäder et al., 2012; Nechooshtan et al., 2009; Ramu et al., 2009; Winkler, 2012). Since they 

all rely on similar 5’UTR-internal structural rearrangements with analogous effects on 

transcription or translation, only the well-studied group of riboswitches will be exemplarily 

introduced in more detail. 

The term “riboswitch” is exclusively used for RNA structures that bind metabolites or 

inorganic ions without the involvement of any protein (Breaker, 2011; Serganov and Nudler, 

2013). They consist of two functional domains: the sensor domain is a highly conserved 

structure that specifically recognizes defined ligands, whereas the expression platform domain 

enables regulation of the downstream coding sequence (Breaker, 2012; Romby and 

Charpentier, 2010). Riboswitches have four functionalities (Figure 1a): either promoting or 

terminating transcription or translation (Waters and Storz, 2009). Furthermore, some ribo-
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switches with rare mechanisms were identified, including dual control of transcription and 

translation (Serganov and Nudler, 2013), self-cleaving ribozyme action (Ferré-D’Amaré, 

2010), and tandem riboswitches containing at least two sensor domains (Welz and Breaker, 

2007). It has also been shown that after transcription termination, a cis-regulatory element can 

act in trans as sRNA (A.2.2.1; Loh et al., 2009; Serganov and Nudler, 2013). 

In contrast, the less understood 3’UTRs of bacterial mRNAs mainly seem to contain 

transcription terminators aiding the protection against RNase-mediated degradation of the 

transcript (Gripenland et al., 2010). As many long 3’UTRs extend beyond their intrinsic 

terminator structures, regulatory effects of these long transcripts are also assumed. They 

might, for example, trigger mRNA localization or the regulation of adjacent genes located on 

the opposite strand (A.2.2.2; Gripenland et al., 2010; Sorek and Cossart, 2010). 

A.2.2.1 Trans-encoded small RNAs 

The most extensively studied group of regulatory base-pairing RNAs, the trans-encoded base-

pairing small RNAs (sRNAs), range in size from 50 to 400 nt and are mainly involved in 

adjusting the cell to environmental changes (Balasubramanian and Vanderpool, 2013; 

Desnoyers et al., 2013). They are transcribed from a chromosomal locus distal, hence in trans, 

to their target RNA (Brantl, 2009). It should be mentioned that most, but not all sRNAs are 

strictly “non-coding”, as some regulatory RNAs also encoding small peptides with 

complementary functions have been identified (Gottesman and Storz, 2011; Vanderpool et al., 

2011). 

In general, trans-encoded sRNAs interact with their target RNAs by imperfect base-pairing, 

triggered by the binding of a seed region of at least six contiguous nucleotides to the target 

(Gottesman and Storz, 2011; Waters and Storz, 2009). Upon the first contact of the two RNA 

molecules, additional base pairs can form, often in conjunction with a rearrangement of the 

RNA structure (Storz et al., 2011). Until today, various regulatory mechanisms of trans-

encoded sRNAs were elucidated, and more are expected to be discovered (Desnoyers et al., 

2013). In Gram-positive bacteria, five mechanisms are known so far (Figure 3a-e): upon 

binding of the sRNA, inhibition of translation can be achieved by structural changes 

downstream of the ribosome binding site (RBS) or by direct blocking of the RBS coupled 

with mRNA degradation. Instead, translation activation is induced by mRNA stabilization, 

mRNA processing or revelation of the RBS (Brantl, 2012a, 2012b). In Gram-negative 

bacteria, additional mechanisms have been observed, including independent direct blocking of 
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the RBS or mRNA degradation, blocking of ribosome standby sites and translation enhancers, 

and differential degradation of polycistronic mRNAs (Brantl, 2012b; Desnoyers et al., 2013). 

As the sRNA research on Gram-positive bacteria is still in its infancy, it cannot be excluded 

that the latter mechanisms also play a role in post-transcriptional regulation in Gram-positive 

bacteria (Brantl, 2012b). 

It is known that some mRNAs, which mainly encode transcription regulators, are targeted by 

multiple sRNAs (Storz et al., 2011). Furthermore, many sRNAs were shown to regulate not 

one, but a multitude of genes (Schmiedel et al., 2012; Storz et al., 2011). It is now evident that 

such sRNA regulons are integrated in global regulatory networks to transduce environmental 

stimuli in order to orchestrate the cellular response to specific environmental challenges 

(Beisel and Storz, 2010). 

Figure 3 Trans-encoded regulatory sRNAs in Gram-positive bacteria 
Ribosome binding sites are indicated in purple, ribosomes are light blue and RNA polymerases are turquoise. 
(a) Translation inhibition by structural changes downstream of the RBS (Heidrich et al., 2007). 
(b) Combined translation inhibition and mRNA decay. First example of the multiple targets of the 
Staphylococcus aureus sRNA RNAIII (Boisset et al., 2007). (c) mRNA stabilization (Ramirez-Peña et al., 
2010). (d) mRNA processing (Obana et al., 2010). (e) Translation activation. Second example of RNAIII 
(Morfeldt et al., 1995). (f) RNA polymerase sequestration. Example of a protein-binding sRNA. The 6S RNA 
forms a double-stranded hairpin with a critical bubble that mimics the formation of DNA in an open complex 
promoter. Therefore, an increased level of 6S RNA titrates the σB factor of RNA polymerase and decreases the 
transcription from resembling promoters (Gottesman and Storz, 2011).  
The components of the figure were modified from Waters and Storz (2009) and Brantl (2012a). 
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Next to the numerous regulatory RNAs that act by base-pairing mechanisms, the group of 

trans-encoded sRNAs also encompasses several protein-binding regulatory sRNAs, which 

can be divided into two different groups (Romby and Charpentier, 2010). The first group 

contains protein-binding RNAs (RNase P, tmRNA, Scr), which form ribonucleoprotein 

complexes with housekeeping functions (Romby and Charpentier, 2010; Waters and Storz, 

2009). The second group encompasses CsrB, GlmY and 6S RNA, of which only the latter is 

found in B. licheniformis (Figure 3f). These sRNAs are mimicking the structure of another 

nucleic acid and thus sequester the respective target protein (Gottesman and Storz, 2011; 

Romby and Charpentier, 2010). 

A.2.2.2 Cis-encoded antisense RNAs 

In contrast to the group of trans-encoded sRNAs, cis-encoded antisense RNAs (asRNAs) are 

transcribed directly from the opposite strand of their target RNA (Georg and Hess, 2012). 

Therefore, they are completely complementary to the sense RNA and form complete duplexes 

between both molecules (Brantl, 2012a). 

Figure 4 Categories of cis-encoded antisense RNAs 
(a) Short antisense RNA. (b) Long antisense RNA. (c) Overlapping 3’UTR. (d) Overlapping 5’UTR. 
(e) Overlapping operons. 
The components of the figure were modified from Sesto et al. (2013) and Lasa et al. (2012). 
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Figure 5 Mechanisms of cis-encoded antisense RNAs 
Ribosome binding sites are indicated in purple, T- and S-boxes are yellow, ribosomes are light blue and RNA 
polymerases are turquoise. (a) Direct translation inhibition (Kawano et al., 2007). (b) Indirect translation 
inhibition (Kwong et al., 2006). (c) mRNA degradation (Jahn et al., 2012). (d) mRNA processing (Opdyke et 
al., 2004, 2011). (e) mRNA stabilization (Stazic et al., 2011). (f) Transcriptional interference. In the presence 
of methionine cysteine a long asRNA is transcribed, which then induces the collision and subsequent 
dissociation of the RNA polymerase transcribing the mRNA (André et al., 2008; Georg and Hess, 2011). (g) 
Transcription attenuation. The binding of RNAβ to its complementary mRNA during transcription leads to a 
structural change and the formation of a stem loop, which forces transcription termination (Stork et al., 2007). 
The components of the figure were modified from Sesto et al. (2013), Georg and Hess (2011), Lasa et al. (2012), 
and Brantl (2012a, 2012b). 
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In general, cis-encoded asRNAs, transcribed from autonomous promoters located on the 

opposite strand of the sense target, do not encode proteins and vary tremendously in size 

(Figure 4a&b; Lasa et al., 2012; Sesto et al., 2013). Short asRNAs of 100 to 300 nt have been 

observed as well as long asRNA, ranging in size up to 7,000 nt (Georg and Hess, 2011; Stazic 

et al., 2011). AsRNAs can originate from elongated 5’ and 3’UTRs of mRNAs that are 

transcribed in reverse direction of the target mRNA (Figure 4c&d; Georg and Hess, 2011; 

Sesto et al., 2013). They can also be transcribed from intergenic operon regions, which 

overlap a single gene encoded on the opposite strand (Figure 4e; Lasa et al., 2012). Hence, 

cis-encoded asRNAs are located on non-coding as well as on coding RNA transcripts. 

So far, six different regulatory mechanisms employed by cis-encoded asRNAs were 

determined (Georg and Hess, 2012; Sesto et al., 2013). Inhibition of translation can be 

achieved by direct or indirect blocking of the RBS (Figure 5a&b; Kiley Thomason and Storz, 

2010), the translation process can additionally be affected by degradation (Figure 5c), 

processing (Figure 5d) or stabilization (Figure 5e) of the target mRNA (Brantl, 2007, 2012b; 

Georg and Hess, 2012). Regulatory effects that target transcription are either based on RNA 

polymerase interferences (Figure 5f) or transcription attenuation (Figure 5g; Georg and Hess, 

2011; Kiley Thomason and Storz, 2010). In addition to these regulatory effects on protein-

coding genes, some asRNAs overlap and thereby affect regulatory sRNAs (Sesto et al., 2013). 

A.2.3 Analysis of the bacterial transcriptome 

The study of the transcriptome, referred to as transcriptomics, is necessary for the 

interpretation of functional genomic elements and the revelation of the RNA content of cells 

in different developmental stages and under different conditions (Wang et al., 2009). In order 

to achieve these goals, the key aims of transcriptomics are: (i) cataloging of all species of 

RNA transcripts, (ii) determination of transcriptional structures of genes, in terms of 

transcription start sites (TSS), 5′ and 3′ends, or putative post-transcriptional modifications, 

and (iii) quantification of changes in the expression levels of each transcript (Wang et al., 

2009). 

Over the past two decades, several methods to infer and quantify the transcriptome were 

developed. First, Sanger sequencing of Expressed Sequence Tags (EST; Adams et al., 1991) 

and full-length cDNA (Strausberg, 1999) as well as Serial Analysis of Gene Expression 

(SAGE; Velculescu et al., 1995) and Massively Parallel Signature Sequencing (MPSS; 

Brenner et al., 2000) have granted insights into the transcribed regions of a genome. Other 
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ways to address quantification are the use of different hybridization-based array techniques. 

After the development of ORF-based microarrays in the mid 1990s (Brown and Botstein, 

1999; Schena et al., 1995), nowadays whole genome tiling arrays (Mockler et al., 2005; 

Yamada et al., 2003) are the method of choice for high-throughput transcriptome analyses 

(Mäder et al., 2011; Nicolas et al., 2012). However, the onset of new sequencing technologies 

during the past years has allowed the emergence of further methods.  

After the unveiling of the human genome (Lander et al., 2001) by classic Sanger chain 

termination sequencing (first-generation sequencing) had produced costs of over three billion 

US$ in the 1990s and early 2000s (Schadt et al., 2010), the future needs for advanced 

sequencing technologies became obvious (Groß, 2011; Schloss, 2008). As a result, second-

generation sequencers like 454 GS20, Solexa GA and SOLiD were released from 2005 on 

(MacLean et al., 2009; Rothberg and Leamon, 2008). Albeit the underlying biochemistries of 

these sequencing machines differ, all share an underlying PCR amplification step and require 

extensive washing steps (Liu et al., 2012; Schadt et al., 2010). These features are drawbacks 

in terms of sequence reliability and processing time, therefore, sequencing approaches 

overcoming these drawbacks are considered as third-generation sequencing systems, but are 

not commonly employed yet (Mason and Elemento, 2012; Schadt et al., 2010). 

Next to genome sequencing, metagenomics, and the analysis of methylation patterns and 

single nucleotide polymorphisms (MacLean et al., 2009), one broad scope of second-

generation sequencing is the analysis of transcriptomes by RNA sequencing (RNA-Seq; van 

Vliet, 2010; Wang et al., 2009). Since its initial application on a bacterial transcriptome in 

2009 (Passalacqua et al., 2009; Yoder-Himes et al., 2009), this method has enabled new 

insights into the regulation and composition of the bacterial transcriptome (Güell et al., 2011). 

During preparation of RNA-Seq libraries for second-generation sequencing, as shown in 

Figure 6, several challenges have to be overcome. (i) RNA isolation. High quality RNA is 

required. Ideally, the RNA should be highly pure, not degraded, include all RNA species and 

keep its natural proportions (Mäder et al., 2011). Hence, isolation methods have to be adapted 

to the respective organism and the specific aims of the study. Special attention must be paid to 

ensure that the protocol allows the isolation of RNA transcripts <200 nt (Koo et al., 2011). (ii) 

rRNA depletion. Bacterial RNA preparations usually contain more than 80% rRNA 

(Filiatrault, 2011; van Vliet, 2010). To increase the amount of mRNA and other RNA species 

of interest in the sequencing library, many protocols rely on the depletion of rRNA (Perkins et  
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al., 2009; Vivancos et al., 2010). However, as 

sequencing capacities are expected to rise 

tremendously upon developments in third-

generation sequencing, the depletion step may not 

be necessary anymore in future protocols 

(Croucher and Thomson, 2010). (iii) Strand 

specificity. It is now standard to keep the strand 

specificity of the RNA during library preparation 

to gain information valuable for accurate 

determination of gene expression and evaluation 

of all kinds of antisense transcription (Filiatrault, 

2011). Next to the approach described in Figure 6, 

several further methods were developed 

(Croucher et al., 2009; Filiatrault et al., 2010; 

Marguerat and Bähler, 2010). Until today, none of 

those methods became prevalent, as every method 

has its own specific advantages as well as 

drawbacks and inherent biases. 

RNA-Seq does not only bear the possibility to 

analyze whole transcriptomes (Dötsch et al., 

2012; Høvik et al., 2012), but can also be utilized 

to specifically study small RNAs (Arnvig et al., 

2011; Liu et al., 2009) or protein-RNA 

interactions (Gatewood et al., 2012; Sittka et al., 

2008). Furthermore, techniques to directly 

sequence the 5’region of RNA molecules have 

been developed (Fouquier d’Hérouel et al., 2011; 

Sharma et al., 2010). They allow the identification 

of putative transcription start sites in order to aid 

the annotation of transcript  boundaries and the 

prediction of promoter sites (Albrecht et al., 2010; Mitschke et al., 2011). The first method to 

accomplish this goal - differential RNA-Seq (dRNA-Seq) - was introduced in 2010 by Sharma 

et al. (2010) and is outlined in Figure 6. 

Figure 6 Library preparation for whole 
transcriptome and differential RNA-Seq 
RNA-Seq. After establishing monophosphory-
lated 5’ends by antarctic phosphatase (APP) 
and polynucleotide kinase (PNK) treatment, 
followed by ligation of a 3’poly(A) tail and a 
5’RNA adapter, whole transcriptome RNA-Seq 
allows the sequencing of all transcripts 
available after the removal of ribosomal RNAs. 
dRNA-Seq. In contrast, the dRNA-Seq proc-
edure allows the enrichment of 5’triphosphory-
lated fragments originating from 5’ends of 
unprocessed and non-degraded transcripts 
(Sharma et al., 2010): treatment with PNK and 
5’phosphate-dependent exonuclease (TEX) 
promotes the degradation of all non- and mono-
phosphorylated transcripts. The subsequent 
pyrophosphatase (TAP) step generates 5’mono-
phosphorylated fragments to enable ligation of 
the 5’RNA adapter. A detailed description of 
the process will be given in Chapter B. 
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Although tiling arrays are a mature technology, which still is more efficient than RNA-Seq, 

they have several drawbacks suggesting RNA-Seq as advantageous technique (Mäder et al., 

2011). Firstly, RNA-Seq has a very low, if any, background signal because sequences can be 

unambiguously mapped to the genome and no cross-hybridization can occur (van Vliet, 2010; 

Wang et al., 2009). Secondly, since the measurement cannot be saturated, RNA-Seq has no 

upper limit of quantification. Hence, transcripts with a high dynamic range spanning several 

orders of magnitude can be detected (Vivancos et al., 2010; Wang et al., 2009). Both effects 

enhance the accuracy of RNA-Seq regarding quantification of gene expression (van Vliet, 

2010; Wang et al., 2009). The accuracy is also elevated by the provided single-base resolution 

(Güell et al., 2011; Sorek and Cossart, 2010). Moreover, RNA-Seq is highly reproducible 

(Wang et al., 2009) and requires only small amounts of input RNA (Mutz et al., 2013), 

particularly when considering upcoming developments in third-generation sequencing. 

A.3 Aim of the thesis 

The main goals of the project, in which this thesis is embedded, are to gain profound 

knowledge of the regulatory processes in wild type and production strains of B. licheniformis 

and, based on this understanding, to identify targets, which can be modified to improve the 

efficiency of industrial fermentation processes. 

In this framework, the aims of the present thesis were the analysis of the transcriptome and 

proteome of B. licheniformis DSM13 sampled from different time points of an industry-

oriented fermentation for the production of detergent proteases. After whole transcriptome 

RNA-Seq and differential RNA-Seq were accomplished, the obtained data were assessed for 

the determination of RNA-based regulatory features, transcription start points and operon 

boundaries as well as for an improvement of the functional annotation of the B. licheniformis 

genome sequence. Furthermore, gene expression and protein abundance data allowed the 

analysis of pathways involved in carbon and nitrogen metabolism, stress response, protein 

secretion and cell differentiation under fermentation conditions. All gained data were 

evaluated with a special emphasis to putative targets for bioprocess optimization. Further 

goals of the thesis were the development of prediction algorithms to enable the 

comprehensive analysis of the generated transcriptome data, as well as the sequencing and 

annotation of the genome of Geobacillus sp. GHH01, another biotechnologically promising 

member of the genus Bacillus. 
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Abstract

Background: The production of enzymes by an industrial strain requires a complex adaption of the bacterial
metabolism to the conditions within the fermenter. Regulatory events within the process result in a dynamic
change of the transcriptional activity of the genome. This complex network of genes is orchestrated by proteins as
well as regulatory RNA elements. Here we present an RNA-Seq based study considering selected phases of an
industry-oriented fermentation of Bacillus licheniformis.

Results: A detailed analysis of 20 strand-specific RNA-Seq datasets revealed a multitude of transcriptionally active
genomic regions. 3314 RNA features encoded by such active loci have been identified and sorted into ten
functional classes. The identified sequences include the expected RNA features like housekeeping sRNAs, metabolic
riboswitches and RNA switches well known from studies on Bacillus subtilis as well as a multitude of completely
new candidates for regulatory RNAs. An unexpectedly high number of 855 RNA features are encoded antisense to
annotated protein and RNA genes, in addition to 461 independently transcribed small RNAs. These antisense
transcripts contain molecules with a remarkable size range variation from 38 to 6348 base pairs in length. The
genome of the type strain B. licheniformis DSM13 was completely reannotated using data obtained from RNA-Seq
analyses and from public databases.

Conclusion: The hereby generated data-sets represent a solid amount of knowledge on the dynamic
transcriptional activities during the investigated fermentation stages. The identified regulatory elements enable
research on the understanding and the optimization of crucial metabolic activities during a productive
fermentation of Bacillus licheniformis strains.

Keywords: dRNA-Seq, RNA-based regulation, UTR, ncRNA, sRNA, Antisense RNA, Subtilisin, Transcription start site,
Operon prediction, Reannotation

Background
Bacillus licheniformis is a spore-forming soil bacterium
closely related to the Gram-positive model organism
Bacillus subtilis. The species’ saprophytic life style, based
on the secretion of biopolymer-degrading enzymes, pre-
destinates strains of B. licheniformis as ideal candidates
for the large-scale industrial production of exoenzymes,

such as amylases and peptide antibiotics [1]. Especially
its high capacity of secreting overexpressed alkaline
serine proteases has made B. licheniformis one of the
most important bacterial workhorses in industrial en-
zyme production [2]. Due to their high stability and rela-
tively low substrate specificity, alkaline serine proteases
like subtilisins are crucial additives to household detergents
and the greatest share on the worldwide enzyme market
[2,3]. Attempts to optimize the productivity have addressed
the fermentation process [4,5], protein-engineering [3,6,7],
and cellular influences on protein quality and quantity
[2,8]. Since the 4.2 Mb circular genome of the type strain
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B. licheniformis DSM13 was published in 2004 [1,9],
several genome-based studies targeting strain improve-
ment have been performed successfully [10,11]. How-
ever, genome-based studies are limited to information
directly accessible from the DNA sequence and cannot
benefit from knowledge of the active transcriptome.
Considering that the regulatory network represented
by protein- and RNA-based regulators determines the
performance of an industrial-oriented fermentation
process [12] RNA-Seq data might contribute to further
optimization approaches.
RNA-based regulatory elements are involved in the

regulation of metabolism, growth processes, the adapta-
tion to stress and varying culture conditions [13] and
can be divided into two main categories. The first cat-
egory comprises non-coding RNAs (ncRNAs). Trans-
encoded ncRNAs, often referred to as small RNAs
(sRNAs), are encoded independently from protein genes
and are able to modulate the mRNA of genes located at
distant chromosomal loci or to interact with target pro-
teins [14]. Upon formation of secondary structures,
trans-encoded ncRNAs interact with their target RNAs
by imperfect base pairing, which is triggered by the
binding of a seed region of at least six contiguous nucle-
otides [15,16]. This mechanism allows the sRNA to ad-
dress multiple targets, thus orchestrating different
members of one regulon [14,17]. It has been shown that
sRNAs affect mRNA degradation and translation and
modulate protein activity [14,16]. A second class of
regulatory ncRNAs is encoded in cis, which means that
these ncRNAs are transcribed from the antisense strand
of protein-coding genes [18]. Hence, they are comple-
mentary in full-length and can therefore form RNA du-
plexes with the mRNA of the targeted genes [19]. Most
described examples of these cis-encoded antisense RNAs
(asRNA) range from 100 to 300 nt in size, but some
asRNAs are also shown to be substantially longer [18,20].
Antisense RNAs have been proven to either positively or
negatively affect transcription, translation and mRNA sta-
bility [16]. In addition, a cis-encoded asRNA might work
as a trans-encoded sRNA for another target [19]. Anti-
sense transcription has been detected in multiple organ-
isms [21] and, with the growing number of explored
species, it is assumed that antisense transcripts can be
found for ~10 to 20% of the bacterial genes [22]. A
second class of RNA-based regulators encompasses cis-
regulatory elements, mainly present at the 5′ untrans-
lated region (5′UTR) of mRNA transcripts, e.g.
riboswitches, T-boxes or thermosensors [23]. Whereas
both 5′ as well as 3’untranslated regions can bear sig-
nals for the initiation and termination of translation
[24,25], respectively, 5′UTRs additionally have the abil-
ity to fine-tune translation by cis-regulatory elements.
They can be prone to RNA-binding proteins or antisense

RNAs, carry attenuation systems [14,23] and play a role
in mRNA stability [26]. In contrast, 3’UTRs are not as
well understood and have escaped the attention of most
transcriptomic studies [27]. It is known that long UTRs
can be localized antisense to adjacent genes on the op-
posite strand; in fact some of these overlapping UTRs
have been demonstrated to act as negative regulators
for genes encoded on the opposite strand [20].
The development of next-generation sequencing tech-

niques including RNA sequencing (RNA-Seq) enabled
the genome-wide identification of RNA-based regulatory
elements in an unprecedented depth. The high dynamic
range of RNA-Seq allows the identification of transcripts
which are expressed at vastly different levels. Also, this
method does not exhibit background noise and is
therefore appropriate for the identification of lowly
abundant transcripts [28]. RNA-Seq analyses targeting
ncRNA in particular, have been published for e.g.
Mycobacterium tuberculosis [29], Streptomyces coelicolor
[30] and Sinorhizobium meliloti [31].
The major goal of the project in which this study is

embedded is the improvement of production strains
and thus ultimately the enhancement of enzyme pro-
duction. This study is targeted on the identification
of active regulatory RNA elements within the different
phases of a productive fermentation process. Therefore
samples from crucial stages of an industrial-oriented B.
licheniformis subtilisin fermentation process have been ex-
amined by strand-specific RNA-Seq and differential RNA-
Seq (dRNA-Seq) [32]. A comprehensive analysis of the
data revealed a multitude of RNA features which correlate
to the physiology and the growth phases during the pro-
cess. The combination of genomic data and RNA features
provides an excellent basis to understand the regulatory
events within an industrial fermentation process.

Results and discussion
B. licheniformis MW3Δspo, a germination deficient mu-
tant of B. licheniformis DSM13, transformed with an ex-
pression plasmid encoding an alkaline serine protease,
was grown in fed-batch mode in 6 L cultures. The fer-
mentations were carried out in complex amino acid
broth under conditions resembling the parameters used
in industrial fermentation processes (Figure 1). To en-
hance the reliability of the analysis, the experiments
were carried out in triplicate (L, R and M). Samples
were taken at five selected time points of the fermenta-
tion process, which were chosen to follow the initial cell
growth (sampling points I, II and III) and to determine
the decisive changes within the early (IV) and the late
stage (V) of the protease-producing states (Figure 1).
Total RNA from each sample was prepared for strand-
specific whole transcriptome sequencing [33]. RNA
from samples L-I to L-V was additionally prepared for
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differential RNA-Seq for determination of transcription
start sites (TSS), as described by Sharma et al. [32].

Whole transcriptome sequencing
Strand-specific deep sequencing of the whole transcrip-
tome of 15 B. licheniformis samples yielded more than
500 million reads with a specific length of 50 nucleo-
tides. The number of reads for each library ranged from
2.4 × 107 to 4.3 × 107.
After the application of a strict quality processing (see

Methods), 77.3 to 93.9% of these reads have been found to
map to the chromosome and the expression plasmid used
in this study (for details see Additional file 1: Figure S1
and Additional file 2: Table S1). Due to repeat regions,
1.45% of the B. licheniformis genome is not precisely map-
pable when considering the applied read length of 50
nucleotides. Thus, all reads mapping completely to such
repeat regions have been excluded from further analysis.
This pertains mainly to those 68.5 to 88.8% of reads which
map to tRNA and rRNA genes. The majority of these
rRNA matching reads can be assigned to 5S rRNA genes,
which is in accordance with the fact that the applied de-
pletion targets especially 16S and 23S rRNAs. Also, all
reads mapping to the plasmid were removed from the
dataset, as this analysis is focused on the transcriptional

activity of the chromosome. Finally, 4.4 to 12.0% of the
initial reads were taken for further analyses. These reads
enabled the identification of transcriptional units and the
determination of their boundaries to assign the transcrip-
tional activity of coding as well as non-coding regions of
the chromosome (see Methods).
To facilitate the comparison of different transcription

levels between samples, we introduce the nucleotide activ-
ity per kilobase of exon model per million mapped reads
(NPKM) value as single nucleotide-resolution measure of
transcriptional activity (see Methods). NPKMs for each
RNA feature and for every gene were calculated and are
available at Additional file 2: Table S2 and Table S3.

Transcription start site determination and
operon prediction
Differential RNA-Seq (dRNA-Seq) has been designed by
Sharma et al. [32] to allow selective enrichment of native
5′ ends of transcripts for the determination of trans-
cription start sites (TSS). The method is based on the
observation that 5′ triphosphorylated RNA fragments are
originating from native 5′ ends. In contrast, 5′ mono-
phosphorylated RNAs are products of RNA decay or pro-
cessing and do not contain information of transcription
initiation. The dRNA-Seq approach includes a treat-
ment with 5′ phosphate-dependent exonuclease (TEX),
which results in the depletion of all monophos-
phorylated transcripts. It has been shown that TSS iden-
tification based on dRNA-Seq data is superior to an
estimation of transcript boundaries based on whole
transcriptome RNA-Seq reads [32].
The differential sequencing of samples L-I to L-V

resulted in 22,047,373 reads (Additional file 2: Table S4).
A total of 2522 putative TSS was predicted (see Methods),
1500 of which were detected in at least two samples
(Additional file 2: Table S5). A comparison of the latter
with the transcript boundaries obtained by whole tran-
scriptome sequencing (Additional file 2: Table S6) shows
that 412 identified TSS confirm the RNA-Seq data,
whereas the other findings introduce TSS not detectable
by conventional RNA-Seq. To allow the assignment of the
identified TSS to their putative origin, an allocation to four
different classes was accomplished (Figure 2A) [34]. Nat-
urally, the affiliation of TSS according to this schema is
ambiguous as some TSS sort to multiple classes, e. g. some
TSS are located in a promoter region and within the up-
stream gene as well. The distribution of the identified TSS
to each class is shown in Figure 2B. 1092 TSS were
detected in promoter regions, 72 genes are bearing more
than one putative TSS in this region. The dRNA-Seq data
enabled conclusions for TSS determination in cases in
which read-through transcription of the upstream gene
caused by leaky termination prohibits the identification of
downstream TSS by conventional RNA-Seq data. Of the
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Figure 1 Protease production and process parameters. Process
parameters are shown for fermentation L (the parameters for the
replicate fermentations R and M are corresponding, data not
shown). Temperature T [°C], oxygen partial pressure pO2 [%], glucose
concentration cGlucose [g/L], supplied glucose feedGlucose [g/L] and
normalized protease activity [%] are displayed on left y-axis, whereas
acetate concentration cAcetate [g/L] and carbon dioxide content CO2
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x-axis. The sampling points I to V are indicated by orange lines.
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identified 456 intragenic TSS, 267 are not located in the
500 bp promoter region of the downstream gene,
reflecting a high number of putative internal promoters.
Orphan TSS may indicate potential start sites of yet un-
known genes or non-coding RNAs, this is supported by
the finding that 76 of the 141 detected orphan TSS could
be allocated to identified ncRNAs.
Operon prediction based on RNA-Seq and dRNA-

Seq data resulted in 2510 putative operons structuring
the genome of B. licheniformis (Additional file 2: Table
S7). While most operons are monocistronic (66.8%) or
bicistronic (18.3%), seven operons seem to encompass
more than ten genes (Additional file 1: Figure S2). This
small number of long operons is not in accordance
with the operon prediction made by Kristoffersen et al.
[35] for B. cereus. The difference is due to the varying
operon concept employed here. Especially the consid-
eration of internal TSS in combination with distinct
shifts of expression resulted in an increase of short-
ened operons in this study.

Reannotation
The first genome annotation of B. licheniformis DSM13
has been published in 2004 [1]. It has been shown previ-
ously that mapping of RNA-Seq data to genomes allows
the correction of open reading frames and supports the
identification of not-annotated protein genes [36].
Therefore, we performed a complete reannotation of the
genome in order to integrate the RNA-Seq data provided
by this study as well as the progress in gene prediction
and annotation of the recent years. Distinct transcription
start sites determined by dRNA-Seq and RNA-Seq-based
whole transcriptome data have been used to identify pu-
tative mis-annotated genes (Figure 3A). These findings
were validated by length comparisons to genes deposited
in public databases and confirmation of ribosomal bind-
ing sites and −10 and −35 promoter regions. This ap-
proach enabled the correction of reading frames of 23
protein genes, 25 pseudo genes, 21 rRNA genes and two
tRNA genes (Additional file 2: Table S8). Moreover, 60
previously not-annotated protein genes were identified
based on transcriptional activity and protein conserva-
tion (Figure 3B, Additional file 2: Table S9). 52 genes
(Additional file 2: Table S10) were removed from the an-
notation as these previously predicted ORFs could not
be verified by detailed genome analysis and comparisons
to public databases. In total, the reannotation approach
resulted in a dataset containing 4297 ORFs. Compari-
sons to the annotation of B. licheniformis DSM13 by Rey
et al. [9] showed that 16 of the newly annotated genes
have not been described for this organism before. 18 of
the removed genes were annotated in both genomes.
More than 2000 gene annotations have been improved.
These improvements mainly comprise former hypo-
thetical proteins now assigned to a function and proteins
with altered gene symbols. In addition to gene-
associated improvements, seven genomic regions were
identified as prophage regions based on GC content de-
viations, significant similarities to known prophage genes
and the presence of insertion repeats. The transcrip-
tional activity of the prophage regions was rather low,
which is consistent with the observation that many pro-
phages are induced during SOS response, which should
not occur within a fermentation process [37].

5′ and 3′untranslated regions
In this study, 1433 5′untranslated regions (Figure 4)
with a mean length of 117 nt (Figure 5A, Additional
file 2: Table S6) could be identified. Thirty of these 5′
UTRs are shorter than 11 nt, implicating that leader-
less transcription, commonly found in many bacteria
[38], is not an abundant mechanism in B. licheniformis.
Correspondingly, low occurrence of leaderless tran-
scription has also been suggested for other members
of the phylum Firmicutes [39]. The most strongly
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Figure 2 Classification and distribution of TSS. (A) Classification
scheme of transcription start sites adapted from Dötsch et al. [34].
White arrows indicate genes. P: Protein-coding gene-dependent TSS
located within a 500 bp range upstream of annotated start codons.
I: Intragenic TSS situated within an annotated gene on the same
strand. A: TSS localized antisense to an annotated gene. O: Orphan
TSS not located in a promoter region or a gene on the same strand.
(B) Distribution of transcription start sites identified in this study.
Numbers in brackets give the amount of instances for each class.
Numbers in the legend give the total amount of every class.
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transcribed 5’UTRs ≥150 nt and the 5’UTRs discussed
in the following passage are listed in Table 1.
At sampling points I, II, and III, the gene of the sporula-

tion inhibitor KapD (BLi03329) reveals a 5’UTR of 113 nt
(Figure 6A), whereas an alternative, dRNA-Seq-supported
5’UTR (BLi_r2510) with a length of 2226 nt is present at
the later stages of the fermentation process. The TSS of
both 5’UTRs seem to be preceded by a σA recognition site.
At sampling point IV, the transcriptional activity of the
gene is higher than the activity of the 5’UTR region. In B.
subtilis, growth phase-dependent differentiation into sub-
populations of distinct cell types with different gene ex-
pression patterns is well described [40,41]. The divergent
expression levels of kapD and the long 5’UTR in B.
licheniformis might therefore result from different usage
of promoter sites dependent on the respective cell type.
However, the observed effect could also derive from slow
decay rates of the short form of the kapD mRNA tran-
scribed earlier. 52 further 5’UTRs exhibited antisense
activity towards upstream genes (A5’UTR; Figure 4), as
shown for the untranslated region BLi_r1609 upstream
of the glutamate synthase operon gltAB (BLi02161/62;
Figure 6B). The observed 5’UTR is completely antisense
to the gene of the corresponding transcriptional activator
GltC (BLi02163). The dRNA-Seq data suggest the pres-
ence of only one TSS. This finding might be an example
for a regulatory linkage between adjacent genes localized
on different strands. This concept has recently been

termed the excludon by Sesto et al. [20], who demon-
strated that long 5’UTRs can act negatively on the tran-
scription of the opposite gene. Following this idea in the
case of the glutamate synthase operon, the preceding
5’UTR might establish a negative feedback regulation of
the transcriptional activator GltC. A corresponding elon-
gated UTR of the gltAB operon has not been found in B.
subtilis [42,43], which indicates different regulations of
glutamate homeostasis in the two species.
Next to regulatory effects based on antisense orienta-

tion, 5’UTRs can bear intrinsic, so-called cis-regulatory el-
ements [44]. At the time of this study, 62 cis-regulatory
elements have been predicted for B. licheniformis DSM13
by covariance models [45,46]. All elements have been
shown to be transcriptionally active during the fermenta-
tion process (Additional file 2: Table S11), although some
are not located in 5’UTRs but in intergenic read-through
regions. Three new T-boxes, located upstream of the
serine acetyltransferase gene cysE and the tRNA ligase
subunit genes glyQ and pheS, could be identified by com-
parison to the Rfam database. In B. subtilis, 92 cis-regula-
tory elements have been described [43], comprising RNA
switches as well as protein-binding RNAs. For 76 of these
instances, transcription could be shown at orthologous
loci in B. licheniformis (Additional file 2: Table S12).
1365 3’UTRs (Additional file 2: Table S6) with an ave-

rage length of 276 nt have been identified according to
Figure 4, the most strongly transcribed 3’UTRs ≥150 nt
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Figure 3 Correction and insertion of annotated genes. (A) Correction of start codons. (Upper panel) Transcriptional activity of pooled RNA-Seq
data. The grey arrow displays the coordinates of the ribose operon repressor RbsR (BLi03840) according to Veith et al. [1]. Based on the transcriptional
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and the 3’UTR discussed in this chapter are listed in
Table 2. Of the identified 3’UTRs, 42% exceed 100 nt
and 16% even exceed 500 nt in length (Figure 5B). In
total, 338 3’UTRs are localized antisense to adjacent
genes (A3’UTR; Figure 4). A detailed manual inspection
revealed that all 3’untranslated regions longer than 1000
nt seem to be protruding after incomplete termination
[18,32]. Altogether, 684 3’UTRs with internal termin-
ation sites could be determined, whereas 511 3’UTRs
end at predicted termination sites. These findings sug-
gest that the effect of fading-out at the end of operons
due to imperfect termination might be a common effect
in B. licheniformis. An example is the 3965 nt 3’UTR
(BLi_r2654) downstream of the cell envelope stress re-
sponse operon liaIHGFSR (BLi03492-97; Figure 6C).
The mRNA transcript of this operon protrudes beyond a
termination signal, which is located directly behind the

stop codon of liaR. This protruding mRNA sequence is
antisense to the next four genes which comprise the ger-
mination receptor operon gerAAABAC (BLi03488-90)
and a hypothetical protein (BLi03491). A second termin-
ator structure can be found 370 nt upstream of the end
of the transcript.

Non-coding RNA features
Non-coding RNAs were identified in non-coding regions
of the chromosome, for example in intergenic regions or
localized in antisense direction to protein genes (see
Methods). The boundaries of the identified transcripts
were determined by upshifts or downshifts of transcrip-
tional activity. All identified RNA features were checked
for similarities to complete protein genes as well as pro-
tein domains to ensure that they indeed represent non-
coding RNAs.

transcribed genes
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To extract the basic types of ncRNA expression profiles
during the examined fermentation process, cluster analysis
based on the k-means algorithm [47] was applied to those
273 ncRNAs with highly reliable replicates. In total, 15
clusters of divergent expression profiles were generated

(Figure 7, Additional file 2: Table S13). Cluster 1 contains
36% of the applied ncRNAs and 50% of all ncRNAs >1000
nt. It displays a strong up-shift of transcriptional activity
at sampling point IV followed by a decrease at sampling
point V. The high portion of transcripts in this cluster
prompts the conclusion that RNA-based regulation is es-
pecially important during the later stages of the fermenta-
tion process. Other ncRNAs exhibiting up-shifts of
transcriptional activity are displayed in clusters 2 to 4,
whereas clusters 5 to 8 include transcripts with activity
down-shifts. The further clusters comprise ncRNAs with
expression shifts during the early fermentation process, as
well as an activity up-shift at sampling point V in clusters
10 to 12.
All assigned non-coding RNAs were categorized accor-

ding to the scheme displayed in Figure 4 and subdivided
into the classes A5, A3, AI, Amisc and indep. Selected
ncRNAs are listed in Table 3, whereas an overview of all
identified features is given in Additional file 2: Table S6.
Several ncRNAs have been selected for validation by
Northern blotting (Additional file 1: Figure S3). The ana-
lyzed ncRNAs were chosen as they are exemplarily for their
respective class. The occurrence of eight ncRNAs could be
verified, especially ncRNAs <500 nt are in good accordance
with the results gained by RNA-Seq. The results for tran-
scripts >2000 nt are indicative for RNA degradation or pro-
cessing and leaky transcription termination. However, three
ncRNAs could not be validated, which is most probably
due to their low expression levels.

Indep ncRNAs
As depicted in Figure 4, indep transcripts are defined as
non-coding RNAs not localized antisense to any mRNA.
Instead they can be found in intergenic regions or any
other position of the chromosome. In total, 53 indep
RNAs with sizes between 51 and 602 nt have been identi-
fied, of which 40 have TSS verified by dRNA-Seq. Within
this group five housekeeping sRNAs could be annotated:
the tmRNA SsrA (BLi_r2758), the 6S RNAs BsrA
(BLi_r2163) and BsrB (BLi_r1454), the RNA component
of RNase P RnpB (BLi_r1808) and the signal recognition
particle Scr (BLi_r0016) [13]. 87% of the indep transcripts
exhibited NPKM values ≥100 in at least three samples,
reflecting a strong transcriptional activity of the encoding
genomics regions. For example the sRNA Scr, an essential
part of the protein secretion system [48], reaches a ma-
ximal NPKM value of almost 400,000. This is in perfect
accordance with the fact that the cells are derived from a
fermentation process optimized for protein secretion.
Interestingly, 39 indep ncRNAs seem to be transcribed
constitutively under the examined conditions (Figure 8A),
whereas only thirteen indep RNAs show differential ex-
pression (likelihood value ≥0,99) [49]), as illustrated exem-
plarily for BLi_r1424 (Figure 8B).

A5'UTR 5'UTR completely or partially antisense to a 
protein-coding region

A3'UTR 3'UTR completely or partially antisense to a 
protein-coding region

Amisc

5'UTR 5'untranslated region of an mRNA

ncRNA partially antisense to an mRNA transcript 
or antisense to more than one gene

  

 3'UTR 3'untranslated region of an mRNA

indep ncRNA, not antisense to  any mRNA
AI ncRNA completely antisense to a protein-coding gene

A5 ncRNA exclusively antisense to the 5'UTR of an mRNA 
A3 ncRNA exclusively antisense to the 3'UTR of an mRNA 

0

80

120

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

30
0

>3
50

60

40

20

100

5'UTR
A5'UTR

(A) 5'UTRs180

140

160

0

20

40

60

80

100

10 30 50 70 90 11
0

13
0

15
0

20
0

30
0

40
0

50
0

10
00

>1
00

0

3'UTR
A3'UTR

(B) 3'UTRs140

120

indep

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

15
00

>2
00

0
0

10

20

30

40

50

60

A3
A5

Amisc

(C) ncRNAsz

AI

C
o

u
n

t
C

o
u

n
t

C
o

u
n

t

Feature Length

Figure 5 Length distribution of RNA features. Size range of (A)
1433 identified 5’ untranslated regions, (B) 1365 identified 3’
untranslated regions and (C) 461 identified non-coding RNAs. Please
note that the classification scheme corresponds to Figure 4.

Wiegand et al. BMC Genomics 2013, 14:667 Page 7 of 20
http://www.biomedcentral.com/1471-2164/14/667

30 



Antisense ncRNAs
In contrast to the class of indep ncRNAs, the antisense
ncRNAs (asRNAs) AI, A3, A5, and Amisc comprise non-
coding transcripts localized antisense to annotated
protein-coding genes. They either target the protein-
coding region of a gene (AI) or the 5’ and 3’ untranslated
regions (A5 and A3). Furthermore, ncRNAs that target
more than one gene or that are only partially antisense
are classified (Amisc). In this study, 242 Amisc RNAs
(Figure 8C/D) could be identified. Approximately 150 of
them (and also all A5 ncRNAs) are located opposite to
ribosome binding sites and could therefore function as
inhibitors of translation, a very common mechanism of
cis-encoded asRNAs [50]. The length distribution of the
non-coding RNA features is shown in Figure 5C, and

illustrates that 42% of the Amisc RNAs are less than 400 nt
in length. Twenty-seven of these short Amisc RNAs reach
maximal NPKM values ≥100, suggesting putative sRNA
mechanisms. However, some Amisc RNAs are much longer,
i.e. BLi_r2246 is 6348 nt in length and spans six genes.
The occurrence of antisense transcripts of such length
is not unexpected, as asRNAs with very diverse sizes,
reaching more than 7000 nt, have been described for
several species [18]. Furthermore, 146 AI transcripts
(Figure 8E) could be assigned, ranging in size from 54 to
1572 nt. Over 95% of the AI transcripts exhibit maximal
NPKM values ≤100, 68% even ≤20, due to the low cover-
age only 20 TSS could be verified by dRNA-Seq for these
asRNAs. In total, 408 non-coding asRNAs were deter-
mined, comprising 89% of all identified non-coding RNA

Table 1 Selected 5’untranslated regions (5‘UTRs)

RNA feature Start Stop Length Downstream gene Antisense genes cis-regulatory element NPKM value*

BLi_r0085 210580 210926 347 thrZ T-box 1966

BLi_r0356 542296 542520 225 BLi00536 ydaO-yuaA leader 1368

BLi_r0498 712264 712587 324 yybP yybP-ykoY leader 1144

BLi_r0691 942026 942290 306 thiC TPP 5030

BLi_r0744 998913 999033 121 glpD 5693

BLi_r0943 1207762 1207542 180 yitJ SAM 2782

BLi_r0982 1243825 1243498 328 trpS T-box 865

BLi_r0983 1244045 1244232 188 oppA 1465

BLi_r1011 1271178 1271391 255 tenA TPP 9963

BLi_r1028 1291984 1292289 306 metI SAM 3605

BLi_r1168 1487545 1487279 226 mtnK SAM 2207

BLi_r1196 1510226 1511237 1012 BLi05023 BLi01539, BLi01540 651

BLi_r1485 1973018 1973209 192 BLi02027 1035

BLi_r1609 2118173 2117083 1091 gltA gltC 34

BLi_r1634 2146236 2145933 304 expZ 1225

BLi_r1709 2204969 2205111 143 dhaS 2816

BLi_r1801 2295779 2295571 168 xpt Purine 1540

BLi_r1835 2356768 2356478 291 hbs 3478

BLi_r1850 2382265 2381914 352 ribU FMN 2367

BLi_r1871 2409288 2409010 238 ribD FMN 2512

BLi_r2045 2616129 2615830 300 glyQ T-box 787

BLi_r2142 2742406 2742106 301 yrzI 860

BLi_r2241 2878256 2877902 313 lysC Lysine 751

BLi_r2286 2949768 2949565 204 citZ 1563

BLi_r2389 3060789 3060456 292 leuS T-box 998

BLi_r2510 3188213 3185988 2226 kapD yuxJ, pbpD 13

BLi_r2628 3302655 3302393 221 metN2 SAM 2661

BLi_r3184 4014316 4014539 224 yxjG SAM 5296

BLi_r3195 4037045 4036819 185 BLi04205 TPP 9303

BLi_r3196 4037110 4037236 127 BLi04206 2693

*(pooled RNA-Seq data).
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transcripts and targeting 15% of all genes. The number of
identified antisense ncRNAs is in accordance to previous
studies which assume that antisense transcription con-
cerns ~10 to 20% of the bacterial genes [22].

Antisense transcripts with putative impact on productivity
The general aim of our group is the identification of
productivity related features. Thus, a special focus has
been set on the identification of antisense transcripts
with a putative impact on protease production as targets
for strain improvement.
The alkaline serine protease Subtilisin Carlsberg (apr,

BLi01109) represents the major secreted feeding protease
of B. licheniformis. Thus, it competes for energetic and
secretory resources with the production protease. We
identified a cis-encoded 144 nt AI asRNA (BLi_r0872)
which is located at the 3’end of the apr mRNA (Figure 9).
A highly active TSS determined from the dRNA-Seq data
and a terminator structure downstream of the adjacent
gene yhfN confirm the characterization of the transcript as
independently transcribed asRNA. BLi_r0872 is highly
expressed at all fermentation stages, whereas the tran-
scriptional activity of the Subtilisin Carlsberg gene in-
creases at the productive stages of the process. The
presence of the cis-encoded asRNA opposite to the 3’end
of the target mRNA resembles the B. subtilis RatA/txpA

toxin/antitoxin system or the Escherichia coli GadY/gadX
system in which an antisense RNA promotes either
mRNA degradation or stability [19]. To elucidate the im-
pact of the detected asRNA, further analyses will be neces-
sary, especially as a corresponding transcript is absent in
the transcriptome of B. subtilis [43].
Further antisense transcripts against genes involved in

cell differentiation, cell stress response, and thiamine and
folate biosynthesis could be observed and are presented in
Additional file 1: Figure S4.
It is exciting to think about a regulatory impact of the

mentioned ncRNAs, but there are also some noteworthy
limitations to putative effects. (i) The completed RNA-Seq
experiments cannot discern if the sense and the antisense
transcript are transcribed in the same type of differen-
tiated cells, which especially challenges stoichiometric esti-
mations of asRNAs and their mRNA targets. Whether
they can influence each other or fulfill different purposes
in different cell types has to be a topic of single cell
targeted investigations. (ii) It has been reported that func-
tional sRNAs are produced in excess amounts over the
targeted mRNA [16,51]. Therefore, a regulatory mechan-
ism of poorly transcribed antisense RNA cannot be as-
sumed bona fide, but has to be evaluated carefully.
Nonetheless, our data implicate that there might be a bio-
logical function assignable to the RNA features, especially
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when they are conserved within related species as B.
subtilis. (iii) At last, it has to be experimentally excluded,
especially for low abundant instances, that the found
ncRNAs originate from spurious transcriptional events,
for instance driven by alternative sigma factors [43].

Comparative transcriptomics
In total, we determined 461 candidate non-coding
RNA transcripts, including antisense, as well as indep
ncRNAs (see Non-coding RNA features). For Synechocystis
sp. PCC6803, Sinorhizobium meliloti and the archaea
Sulfolobus solfataricus P2 and Methanosarcina mazei Gö1
between 50 and 107 non-coding RNAs per Mb were iden-
tified [31,52-54], matching our result of 109 ncRNAs/Mb.
For B. subtilis, the close relative of B. licheniformis,

Nicolas et al. [43] have found 472 non-coding RNA fea-
tures in a tiling array-based, condition-dependent tran-
scriptome study. The majority (68%) of these features are
intergenic transcripts determined by promoter analysis,
whereas only 32% are derived from independently tran-
scribed (antisense) RNAs. In contrast, the majority of
ncRNAs identified in B. licheniformis are antisense RNAs
(89%), transcribed independently from protein-coding
genes. The identification of more antisense transcripts in
B. licheniformis might be accounted to the reduced back-
ground noise in RNA-Seq in comparison to tiling arrays,
which allows a better detection of low abundant tran-
scripts [28]. 167 of the B. licheniformis ncRNAs are lo-
cated in regions with high sequence similarity to B.
subtilis [55] and 126 ncRNAs are encoded at the frontiers

Table 2 Selected 3’untranslated regions (3‘UTRs)

RNA feature Start Stop Length Upstream gene Antisense genes NPKM value*

BLi_r0075 198675 198433 243 citM 127

BLi_r0671 919040 918595 446 ygzB perR1 50

BLi_r0688 938151 938591 441 BLi00936 496

BLi_r0817 1054694 1054523 172 msmX BLi01051 75

BLi_r0859 1099760 1099445 316 ynzH yhfE 2310

BLi_r0949 1209837 1210136 300 BLi01196 188

BLi_r1013 1278149 1277370 780 cotZ fabI, cotO 116

BLi_r1145 1465905 1468238 2334 ykoM ykoU, ykoV 264

BLi_r1333 1655028 1654895 134 ylaL 195

BLi_r1357 1680492 1679988 505 ylbP gerR 62

BLi_r1521 2008172 2008031 142 BLi02067 224

BLi_r1720 2216049 2215342 708 odhB yocS 41

BLi_r1750 2244661 2244519 143 yodL yoyE 16

BLi_r1797 2291386 2291184 203 ypbQ 268

BLi_r1927 2463046 2465026 1981 BLi02544 BLi02545,ymaC 213

BLi_r1985 2537707 2537586 122 mntR 151

BLi_r1995 2550986 2550862 125 tasA 482

BLi_r2041 2606579 2606461 119 cccA 431

BLi_r2067 2662102 2661914 189 BLi02768 yrhD 87

BLi_r2141 2741955 2741415 541 yrzI 348

BLi_r2152 2754987 2754859 129 yrzB 140

BLi_r2178 2787395 2787201 195 yrbF 1520

BLi_r2292 2952407 2952263 145 pyk 520

BLi_r2582 3255915 3256420 506 yutI yuxL 324

BLi_r2620 3292613 3292481 133 sufB 405

BLi_r2654 3332662 3328698 3965 liaR gerAA, gerAB, gerAC, BLi03491 11

BLi_r2700 3398622 3398373 250 copA 166

BLi_r2729 3427607 3428159 553 BLi05033 345

BLi_r2752 3464447 3464713 267 BLi03635 286

BLi_r2855 3591778 3591637 142 cccB 80

*(pooled RNA-Seq data).
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of conserved and not conserved regions of the two ge-
nomes. Based on sequence similarity, only 43 (Additional
file 2: Table S14) out of the, in total, 293 ncRNAs located
in these regions seem to occur in the B. subtilis transcrip-
tome [43], emphasizing the differences of the two closely
related species. Comparisons to two earlier B. subtilis tran-
scriptome studies show similar low levels of accordance
[56,57]. However, as mentioned above, it is also possible
that the identified antisense ncRNAs partly derive from
spurious transcription events [43], and hence do not intro-
duce a species-specific effect.
For B. subtilis, 22 sRNAs have been validated experi-

mentally [43,58]. Comparison to Rfam and/or comparison
of genomic locations facilitated the detection of eleven of
these sRNAs in the transcriptome of B. licheniformis
(Additional file 2: Table S15). These include, in addition to
the mentioned five housekeeping sRNAs [13], two re-
gulatory RNAs with well-known function in B. subtilis:
SR1 and RnaA [59,60]. The other RNAs found in B.
licheniformis are BsrI, CsfG, SurC and RsaE [61-64]. The
B. subtilis sRNAs which could not be confirmed in B.
licheniformis originate from loci with no conserved gene
pattern in this organism and thus may contribute to the
differences between the two species. Jahn et al. [65] de-
scribed the toxin-antitoxin system BsrG/SR4 located in
the SPβ prophage region of B. subtilis. Although B.
licheniformis does not harbor a homolog of the SPβ pro-
phage, two distinct transcripts were found to encode pep-
tides similar to the BsrG toxin (Additional file 1: Figure

S5). Additionally, the transcriptional activity of the corre-
sponding loci revealed pairs of overlapping transcripts
from both strands (Figure 3 and Additional file 1: Figure
S5) as shown for the BsrG/SR4 type toxin-antitoxin sys-
tem. Therefore both newly identified ORFs were anno-
tated as BsrG-like peptides (BLi05015 and BLi05038).
Furthermore, the antisense transcripts (indep RNAs
BLi_r1034 and BLi_r2780) resemble the SR4 antitoxin, es-
pecially in stem loops SL3, SL4 and TSL [65] directly anti-
sense to the BsrG-encoding mRNA.

Conclusions
The presented study generated substantial data on the tran-
scriptional activity of B. licheniformis within five relevant
growth stages of an industrial-oriented fermentation pro-
cess. A detailed analysis of the transcriptome data enabled
us to accomplish a high quality functional genome rean-
notation of B. licheniformis DSM13 (Figure 10, Ring 4).
The integration of the reannotation and the transcription-
ally active regions (Figure 10, Ring 1&2) resulted in the
identification and quantification of hundreds of RNA based
regulatory elements as well as protein encoding genes.
In total, 3314 RNA features have been sorted into ten

functional classes (Figure 4). 1433 5’UTRs and 1365
3’UTRs (Figure 10, Ring 8) as well as 461 ncRNAs
(Figure 10, Ring 7) and 55 antisense intergenic read-
through (Art) transcripts have been identified. A striking
observation was the identification of 855 RNA features,
which mapped antisense to annotated genomic features

1) 98 ncRNAs

8) 10 ncRNAs

5) 31 ncRNAs2) 10 ncRNAs 3) 15 ncRNAs

9) 13 ncRNAs

14) 7 ncRNAs

4) 11 ncRNAs

13) 6 ncRNAs 15) 3 ncRNAs12) 14 ncRNAs11) 11 ncRNAs

10) 16 ncRNAs6) 17 ncRNAs 7) 10 ncRNAs

Figure 7 Cluster analysis of ncRNA expression profiles. Expression profiles of ncRNAs after k-means clustering (Additional file 2: Table S13).
The x-axis shows sampling points I to V from left to right and the y-axis gives the expression strength in z-score transformed mean NPKM values
of each replicate. Clusters are numbered and captioned with the count of included ncRNAs. Transcripts with a maximal NPKM value >100,000 are
marked in orange and transcripts with a maximal NPKM value >1000 are marked in green.
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(Figure 10, Ring 6). Notably antisense RNA features have
been found in each of the functional classes and include
transcripts of a size range from 38 to 6348 base pairs in
length. We have identified both: constitutively as well as
growth phase dependently expressed RNA features.
Our data represent a solid amount of knowledge on regu-

latory elements which orchestrate the cellular activities of
B. licheniformis during the succession of growth phases
within a productive fermentation. To generate an overview
of the functional diversity of the identified RNA features, all
instances have been screened against the Rfam database.
This approach resulted in hits to experimentally well cha-
racterized RNA features known from B. subtilis and other
relatives, as well as in a multitude of so far unknown RNA

features without any Rfam hit. The knowledge on genes
and regulatory RNA features which are transcription-
ally active during an industrial-oriented fermentation
enables an excellent access to a rational strain design
approach for the optimization of B. licheniformis as
industrial workhorse. Especially the regulatory features
which represent differences to the model organism B.
subtilis give new insights to the still open question what
makes strains of the species B. licheniformis superior to
B. subtilis strains in terms of protease production cap-
acity in industrial applications [2]. In the future it may
be promising to correlate the transcriptional activity
of the RNA features to the corresponding protein ex-
pression patterns.

Table 3 Selected non-coding RNAs (ncRNAs)

RNA feature Start Stop Length Class Rfam Upstream gene Downstream gene Antisense genes NPKM value*

BLi_r0016 30440 30837 398 indep Scr tadA dnaX 223117

BLi_r0026 54282 49490 4793 Amisc RnaA metS, yabD, yabE, rnmV 18

BLi_r0086 212998 213153 156 indep thrZ BLi00235 242952

BLi_r0253 413569 412086 1484 Amisc BLi00412, BLi00413 14

BLi_r0415 617488 617027 462 Amisc thiL 6

BLi_r0451 653178 652888 291 Amisc BLi00649 15139

BLi_r0844 1082413 1082091 323 indep yhaA1 hit 8039

BLi_r0872 1108968 1109111 144 AI apr 25689

BLi_r1000 1262387 1262504 118 indep RsaE pepF yjbL 5791

BLi_r1034 1300088 1300311 224 indep pbpE1 BLi01297 1902

BLi_r1306 1639742 1639946 205 Amisc SR1 speA 502

BLi_r1347 1673741 1673635 107 Amisc CsfG ylbG, ylbH 5366

BLi_r1424 1898847 1898597 251 indep yqeD BLi01936 2023

BLi_r1454 1929530 1929709 180 indep BsrB 26604

BLi_r1474 1960434 1960112 323 indep BLi02008 61592

BLi_r1596 2101575 2102388 814 AI cysP2 12

BLi_r1645 2156680 2156597 84 indep yobS yndG 13545

BLi_r1808 2302203 2301803 401 indep RnpB gpsB ypsC 55930

BLi_r1834 2355791 2356137 347 Amisc folE 1

BLi_r2049 2634028 2634231 204 Amisc SurC dnaK 29

BLi_r2163 2770133 2769931 203 indep BsrA aspS yrvM 389442

BLi_r2390 3060847 3062662 1816 Amisc ytvB, yttB 11

BLi_r2624 3299320 3299025 296 indep BsrI yurZ BLi03452 514

BLi_r2645 3325524 3323636 1889 A3'UTR yirB cssR, cssS 112

BLi_r2758 3469610 3469009 602 indep SsrA smpB BLi03638 78287

BLi_r2780 3485163 3485306 144 indep BLi03658 BLi03670 3747

BLi_r2828 3552518 3552467 52 indep trxB yvcI 15924

BLi_r2863 3611192 3612078 887 Amisc degU, degS 5

BLi_r2925 3692599 3692663 65 AI BLi03865 14110

BLi_r3203 4050815 4050900 86 Amisc bglP 35711

*(pooled RNA-Seq data).
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Methods
Bacterial strain and fermentation conditions
Bacillus licheniformis MW3Δspo (kindly provided by F.
Meinhardt and St. Wemhoff, University of Münster) was
used for the fermentation experiments. B. licheniformis
MW3Δspo is a derivate of the B. licheniformis wild type
strain DSM13, bearing three deletions: ΔhsdR and ΔhsdR2
coding for restriction endonucleases [10] and ΔyqfD [66]
to prevent the production of viable spores and thus the
long-term contamination of the used fermenters [67].
Fermentation was carried out for 46 h in aerated 16 L

fermenters with a culture volume of 6 L at 39°C. Medium
contained 12% w/v of a complex nitrogen source, 57 mM
KH2PO4, 21 mM (NH4)2SO4, 0.53 mM Mn(II)SO4,
0.17 mM Fe(II)SO4, 2.0 mM CaCl2 * 2 H2O, 5.7 mM
MgSO4, 0.4% v/v PPG200, 0.03 mM tetracycline and
3% w/v glucose. The pH value was regulated to a set
point of 7.9 with sodium hydroxide solution. Glucose-feed
was started after exceeding the point of biphasic growth.

RNA isolation and preparation
5 mL of the harvested cells were mixed with 5 mL of
RNAprotect Bacteria Reagent (Qiagen) directly upon sam-
pling. After 10 min incubation at room temperature the
samples were centrifuged at 4500× g, the supernatant was
removed, the sample was snap-frozen in liquid nitrogen

and finally stored at −80°C. The cells were separated from
the remainders of the fermentation broth by washing re-
peatedly with Buffer RLT (Qiagen). Subsequent RNA iso-
lation was carried out with a modified protocol of the
RNeasy Midi Kit (Purification of RNA including small
RNAs using the RNeasy Midi Kit RY39 Apr-09, Qiagen)
to retain short RNAs. The cells were disintegrated with
the ball mill Mikro-Dismembrator U (B. Braun Biotech) in
400 μL Buffer RLT and afterwards resuspended in 1.4 mL
Buffer RLT and 2.7 mL pure ethanol. The initial washing
step of the column was done using 4 mL Buffer RWT
(Qiagen). The DNA was digested successively with two
different DNases (TURBO™ DNase, Ambion and DNase I
recombinant, Roche), with a purification step after the first
treatment. Purification was performed with a protocol
adapted for small RNA purification of the RNeasy
MinElute Cleanup Kit (Qiagen). Instead of 250 μL, 675 μL
pure ethanol were added to the RNA before binding to
the column to shift the binding capacity of the column.
A control PCR with 35 cycles was conducted to con-
firm complete DNA removal. Depletion of rRNA was
obtained using the MICROBExpress™ Bacterial mRNA
Enrichment Kit (Ambion) according to manufacturer’s
instructions. The following purification step was also
carried out with the described adaption to the RNeasy
MinElute Cleanup Kit.

(See figure on previous page.)
Figure 8 Non-coding RNAs (ncRNAs). (Left) Sum of transcriptional activities from all 15 replicates (pooled RNA-Seq data). Black arrows indicate
genes and green arrows the identified ncRNAs. (Right) Log-transformed NPKM values of ncRNAs and adjacent genes for single samples. (A) Indep
RNA BLi_r0086 is transcribed constitutively with a length of 156 nt and located between the genes of threonyl-tRNA synthetase (thrZ, BLi00234)
and a hypothetical protein (BLi00235). Both adjacent genes are also transcribed constitutively, but are less abundant by four and three orders of
magnitude, respectively. (B) The differentially expressed indep transcript BLi_r1424 is located between the gene of a hypothetical protein
(BLi01936) and a pseudogene (yobN, BLi01938) with a length of 251 nt. The TSS could be confirmed by dRNA-Seq. In the three early conditions
the BLi_r1424 transcription level is low, but NPKM values of more than 12,000 were recorded during the productive stages of the fermentation
process. A direct transcriptional connection to the adjacent BLi01936 is not visible from the shown NPKM values. (C) BLi_r2390 antisense to ytvB
(BLi03176) and yttB (BLi03177) is an example for long antisense ncRNAs. The Amisc RNA occurs only in the later stages of the fermentation process,
parallel to a distinct increase in transcriptional activity of ytvB, but does not exceed it regarding the NPKM value. (D) One example suggesting a
regulatory function of Amisc RNAs is BLi_r0253, oriented antisense to BLi00413. In the earliest stage the asRNA shows stronger transcription than
the corresponding gene, but in all later stages the asRNA is only weakly transcribed. This might indicate a silencing effect in the exponential
stage. (E) AI RNA BLi_r1596 localized antisense to the gene of the sulfate permease CysP2 (BLi02153). The transcription of both, the ncRNA and
the protein-coding gene, starts during the late stages of the fermentation process.
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Figure 9 Antisense RNA against Subtilisin Carlsberg. (Left) Transcriptional activities (sample L-III) of apr, the gene which encodes Subtilisin
Carlsberg, and the AI RNA BLi_r0872 (green), which is antisense to the 3’UTR of apr. (Right) Log-transformed NPKM values of BLi_r0872 and apr.
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Library construction and sequencing
cDNA libraries were prepared by vertis Biotechnologie
AG, Germany (www.vertis-biotech.com). For whole tran-
scriptome libraries [28,33] the RNA samples were frag-
mented by ultrasound and dephosphorylated with Antarctic
phosphatase. After polynucleotide kinase treatment the RNA
was poly(A)tailed and an RNA adapter was ligated to the
5’phosphate. cDNA synthesis was accomplished by the use

of poly(T) adapters and M-MLV reverse transcriptase.
The subsequent PCR was carried out with cycle numbers
between nine and twelve. The construction of the libraries
for the dRNA-Seq was performed as described by Sharma
et al. [32], supplemented by an additional treatment with
polynucleotide kinase after the fragmentation step to allow
removal of fragments previously not phosphorylated. The
samples were incubated with Terminator™ 5’-Phosphate-
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Figure 10 Circular plot of transcriptional activity and identified RNA features. Combined depiction of reannotated genes and
transcriptional activity of B. licheniformis. Unmappable regions, GC skew, transcription start sites, non-coding RNAs, untranslated regions and
antisense transcripts are also shown. 5’UTRs and 3’UTRs are evenly distributed over the whole chromosome of B. licheniformis, except for regions
a – h: these regions contain long operon structures (a: ribosomal superoperon, b: lch operon, e: fla/che operon, f: trp operon, h: eps operon) or
prophage regions with low transcriptional activity (c, d and g). The classification scheme corresponds to Figure 4. (indep) ncRNA, not antisense to
any mRNA; (Amisc) ncRNA partially antisense to an mRNA transcript or antisense to more than one gene; (Ai) ncRNA completely antisense to a
protein-coding gene; (A5) ncRNA exclusively antisense to the 5'UTR of an mRNA; (A3) ncRNA exclusively antisense to the 5'UTR of an mRNA;
(5'UTR) 5'untranslated region of an mRNA; (A5'UTR) 5'UTRs completely or partially antisense to a protein-coding region; (3'UTR) 3'untranslated
region of an mRNA transcript; (A3'UTR) 3'UTRs completely or partially antisense to a protein-coding region.
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Dependent Exonuclease (Epicentre) and a poly(A) tail was
ligated to the 3’end of the transcripts. Hereafter an incuba-
tion step with tobacco acid pyrophosphatase and the
ligation of an RNA adapter to the 5’end was conducted.
Reverse transcription was processed as described above,
the cycle numbers of the following PCR were 14 or 15.
The RNA-Seq libraries as well as the libraries for dRNA-
Seq were size fractioned in the range of 200 to 400 nt on
agarose gels and then sequenced on an Illumina HiSeq
2000 machine with a read length of 50 nt.

In silico sequence read processing
Initially, all sequence reads mapping to B. licheniformis
rRNA and tRNA genes according to BLAST analysis
were removed. The remaining reads were processed in a
multi-step procedure to ensure the reliability of the read
mappings used for the analysis of the transcriptional activity
of the genome and to estimate the quality of the RNA-Seq
data. All reads which mapped over the full read length of
50 bases with 98% or sequence identity were used for fur-
ther analyses. Additionally, a distinct bit score was required
to ensure an unambiguous assignment to one locus. All
discarded reads were screened with relaxed similarity qua-
lity criteria vs. the B. licheniformis genome. 75% of these
reads generated hits and were therefore assigned as
bad quality B. licheniformis reads. The remaining reads
(approximately 3% of the total generated sequence)
cannot be mapped on the genome. A detailed sequence
analysis of these unmappable reads revealed that they
mainly contain poly(A) tails or concatenated adapters
and therefore represent methodic artifacts. All datasets
were depleted for plasmid-mapping reads and have
been deposited in NCBI Sequence Read Archive data-
base under accession number SRP018744 (Additional
file 2: Table S16).
To obtain the maximal number of features, a dataset

containing all reads of the 15 samples was prepared and
is referred to as pooled RNA-Seq data. To reduce puta-
tive background noise, all reads with coverage of one
and no intersecting or adjacent reads were omitted prior
to combination of the datasets. This is done to reduce
transcriptional activity that was not replicated within a
dataset in order to avoid incorrect extension of predicted
features (e.g. transcriptional activity from leaky termin-
ation masking or extending 5’UTR extensions due to
overlap). The generation of five datasets describing each
sampling point was processed accordingly.

Expression strength values
The analytical methods used to process the 15 gener-
ated RNA-Seq datasets require the use of single nu-
cleotide activities instead of read mappings. This
makes RPKMs [68] inapplicable as a measure of tran-
scriptional activity. Instead, we defined the nucleotide

activity per kilobase of exon model per million mapped
reads (NPKM) value. An NPKM is defined as:

NPKM n;mð Þ ¼ 109

Xm

i¼n
f ið Þ

Xm

i¼1
g ið Þ m−nð Þ

Where n and m are the start and stop of the region of
interest, f(i) is the base activity of base i on a specific
strand and g(i) is the sum of the activities of base i of
positive and negative strands.
NPKM values are a derivate of RPKMs [68], adapted

to per base nucleotide activities. They are designed to be
functionally equivalent to RPKMs, albeit they are more
accurate due to the single base-resolution. We are aware
that RPKMs and therefore NPKMs do not account for
sequencing-based bias [69]. Although sequencing-based
bias produces some local errors, the overall comparabil-
ity of active genomic regions is still possible.

Untranslated regions
5’ and 3’ UTRs were considered as regions of continu-
ous, non-interrupted transcriptional activity upstream or
downstream of annotated genomic features, respectively.
The boundary of an identified 5’UTRs was set at the
point of the rising of the continuous transcript from
zero transcriptional activity. The boundary of a 3’ UTRs
was accordingly set at the point of the downshift of the
continuous transcript to zero transcriptional activity.
The analysis of 5’ and 3’untranslated regions was

aimed to find the longest UTR, as the longest transcript
should cover all possible alternative UTRs and contain
all transcribed regulatory elements. Therefore, the com-
putational analysis was based on the pooled RNA-Seq
data. Few 5’ and 3’UTRs were manually extended on ac-
count of adjacent transcripts which are only separated
from the UTR by a very short downshift and potentially
are part of the UTR. To exclude that the resulting UTRs
correspond to previously not annotated protein genes,
searches versus the InterPro and the UniProtKB/Swiss-
Prot databases were performed [70,71].
5’ and 3’UTRs which are antisense to an adjacent gene

on the opposite strand were classified as A5’UTR and
A3’UTR. The respective UTRs were computationally ex-
amined and assigned to be antisense when their overlap
to an opposite gene exceeded 100 nt in length.
Intergenic read-through transcripts localized antisense

to an opposite gene were determined manually and clas-
sified as Art.

Non-coding RNA features
The RNA-Seq data were scanned for transcriptionally
active regions that were clearly separated from the tran-
scripts corresponding to any annotated gene or its un-
translated regions. This primary computational search
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identified transcripts which were either located on
the opposite strand of a protein-coding gene, in in-
tergenic regions or any other region of the chromo-
some. The boundaries of the identified transcripts
were set to those nucleotides with the first and last oc-
currence of transcriptional activity higher than zero of
the corresponding transcriptional unit. NPKM values
for the resulting loci were generated from each of
the 15 datasets. Subsequently, all results from the
computational search were evaluated as depicted in
Additional file 1: Figure S6A to approve the reliability
of the identified ncRNAs. Searches vs. the InterPro and
the UniProtKB/Swiss-Prot databases were performed
to exclude the possibility that the resulting non-coding
RNA features correspond to non-annotated protein
genes [70,71]. Subsequently, the non-coding tran-
scripts were subdivided into the ncRNA classes de-
scribed in Figure 4 (A3, A5, AI, Amisc, and indep).
The class indep comprises all identified ncRNAs that are

not located antisense to any protein-coding gene or its re-
spective untranslated regions. Several transcripts of this ca-
tegory were added manually as this class comprises
RNA transcripts which could not clearly be distin-
guished from surrounding mRNAs by complete down-
shifts of transcriptional activity, but were detected by
their remarkably higher abundance.
The categories A3, A5, AI and Amisc comprise

ncRNAs which are localized antisense to protein-
coding genes or their respective untranslated regions.
The class AI contains all ncRNAs with an antisense
localization solely towards a protein-coding gene. The
class A5 contains all ncRNAs with an antisense
localization solely towards the 5’UTR of an opposite
mRNA. The class A3 contains all ncRNAs with an
antisense localization solely towards the 3’UTR of an
opposite mRNA. The class Amisc contains all ncRNAs
with an antisense localization towards more than one
protein-coding gene and all ncRNAs which are only
partially antisense to an mRNA transcript.

Analysis of dRNA-Seq reads
Transcriptional start sites were determined by the iden-
tification of significant increases of the log-scaled ex-
pression strength of the dRNA-Seq data from succeeding
bases greater than ln 4. The reference value of ln 4 was
empirically determined based on the observation that
ln 4 represents the smallest expression strength in-
crease for TSS present across all samples of one sam-
pling point. In a second step, all TSS in promoter
regions of rRNA or tRNA genes and all TSS being
apart less than 20 bp were excluded. TSS matching the
boundaries of RNA-Seq predicted 5’UTRs or ncRNAs
were determined accordingly to the flow chart depicted
in Additional file 1: Figure S6B.

Transcriptome Viewer
Additionally, the gained RNA-Seq data were used to gen-
erate logarithmic scaled, color coded graphs representing
strand-specific transcription.

Operon prediction
Operon predictions based on whole transcriptome se-
quencing, dRNA-Seq transcription start sites, and op-
eron and transcription terminator site determination
with DOOR [72], OperonDB [73], and TransTermHP
[74]. Operon predictions were curated manually as de-
scribed by Sharma et al. [32], regarding especially level
shifts in transcriptional activity.

Reannotation
Functional reannotation was carried out using the ERGO
software tool (Integrated Genomics, Chicago, USA) [75]
and the IMG/ER (Integrated Microbial Genomes/Expert
Review) system [45]. Subsequent manual curation was
based on the results of a bidirectional BLAST analysis
comprising B. subtilis, B. pumilus and related, manually
annotated organisms, the comparisons to UniProtKB/
Swiss-Prot and UniProtKB/TrEMBL databases [71] and
the analysis of functional domains with InterProScan
[70]. The annotation of new genes and the correction
of reading frames was based on transcriptional activity
and was performed upon analysis of GC frame plots,
ribosome-binding sites and −10 and −35 promoter regions
using Artemis v12 [76] and comparisons to UniProtKB/
Swiss-Prot, UniProtKB/TrEMBL, and InterProScan [70,71].
The removal of gene annotations relied on the com-
bined evaluation of GC frame plots, ribosome-binding
sites and −10 and −35 promoter regions using Artemis
v12 [76] and comparisons to UniProtKB/Swiss-Prot,
UniProtKB/TrEMBL, and InterProScan [70,71]. The
absence of transcriptional activity was not used to sup-
port the removal of gene annotations. Prophage re-
gions have been annotated by an initial bioinformatic
search using Prophagefinder [77] followed by manual
evaluation of the candidate regions. Based on the existence
of GC content deviations, genes in these regions with sig-
nificant similarities to known prophages and the iden-
tification of insertion repeats, genomic regions were
assigned as prophages. The annotation followed the
principles of prophage annotation outlined by Casjens
[78]. The reannotated data set has been used to update
the B. licheniformis DSM13 genome data initially sub-
mitted by Veith et al. [1] and is now available at NCBI
under accession number AE017333.1.

Clustering of ncRNAs
Cluster analysis to elucidate the fundamental types of
ncRNA expression profiles was performed based on the
respective NPKM values (Additional file 2: Table S2). To
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ensure that the data of each replicate are sufficiently reli-
able, t-tests were performed with MeV [79]. For at least
three out of the five samples, the respective ncRNA had
to have a P value <0.15 to be taken into further analysis,
as described by Koburger et al. [80]. Furthermore, all
ncRNAs taken into analysis had to have a minimal
NPKM value >10. Means of the replicates of each sam-
pling point were built and z-score transformation was
performed. The number of clusters was determined by
Figure of merit (FOM) analysis, which basically is an esti-
mate of the predictive power of a clustering algorithm
[81]. Clusters were generated by employing k-means
clustering [47] with Euclidian distances in the MeV soft-
ware [79] and subsequent manual curation.

Utilized software and databases
ACT and Mauve
The comparison of RNA features from B. licheniformis
with the reference genome B. subtilis was based on se-
quence similarity analyzed with ACT v11, the Artemis
comparison tool [82]. Quantification of ncRNAs located
in conserved or not-conserved loci, was done employing
the progressive Mauve alignment tool [83].

baySeq
Determination of constitutive or differential expression
of the RNA features was employed with baySeq [49],
which uses an empirical Bayes approach assuming a
negative binomial distribution and is capable of dealing
with multi-group experimental designs. Input data were
generated by counting the reads referring to every gene.

DOOR and OperonDB
Predictions for operons were thankfully downloaded
from the DOOR Database of prOkaryotic OpeRons [72]
and OperonDB [73].

Gem mappability
The determination of the genome mappability was calcu-
lated for a read length of 50 nt with the Gem mappability
program [84].

MeV
Cluster analysis was performed using the Multiexperiment
Viewer v4.8 [79].

Rfam
Annotation of cis-regulatory elements and small RNAs
was carried out by Infernal searches [85] of RNA fea-
tures versus the Rfam database [46].

TransTermHP
Transcription terminators pre-computed withTransTermHP
v2.07 were gratefully downloaded from transterm.cbcb.umd.

edu [74]. 3’UTRs were checked for terminators as described
by Martin et al. [86]. Terminators were considered as in-
ternal if they were located at least 50 nt upstream of the end
of the transcript.

Northern blot analysis
B. licheniformis DSM13 was cultivated at 37°C and
160 rpm in a 5 L Erlenmeyer flask on defined minimal
medium [87]. Cells were harvested at OD600 1 and 4.5 and
after having reached the stationary phase for at least 2 h.
Escherichia coli DH5α was cultivated in Luria broth at
37°C and 180 rpm to an OD600 of 2. RNA was isolated as
described in RNA isolation and preparation. Digoxigenin-
labeled RNA probes were prepared by in vitro transcrip-
tion with T7 RNA polymerase (DIG Northern Starter Kit,
Roche). Templates for in vitro transcription were gene-
rated by PCR using primer pairs (Additional file 2: Table
S17) containing a primer flanked with the T7 promoter
sequence. Gel electrophoresis of the RNA was carried out
using a 1% agarose formaldehyde MOPS gel [88] with
100 V applied for 2,5 h. RNA was transferred to the mem-
brane (Nylon Membranes, positively charged, Roche) via
vacuum blotting with the Amersham VacuGene XL
Vacuum Blotting System (GE Healthcare) using the reco-
mmended protocol. The RNA probe hybridization pro-
cedure was performed following the manufacturer’s
instructions (DIG Northern Starter Kit, Roche). Detection
was accomplished with ChemoCam Imager (Intes). Ribo-
Ruler High Range RNA Ladder (Thermo Scientific) ran-
ging from 200 to 6000 nt was used as RNA marker.

Additional files

Additional file 1: Figure S1. Distribution of whole transcriptome
sequencing reads. Figure S2: Comparative operon prediction. Figure S3:
Northern blot confirmation of non-coding RNAs. Figure S4: Antisense
RNAs with putative impact on productivity. Figure S5: BsrG/SR4-like loci
in B. licheniformis. Figure S6: Work flow charts.

Additional file 2: Table S1. Whole transcriptome sequencing reads. Table
S2: NPKM values of RNA features. Table S3: NPKM values of all genes. Table
S4: Differential RNA-Seq reads. Table S5: Transcription start sites. Table S6:
Identified RNA features. Table S7: Predicted operons. Table S8: Corrected
genes. Table S9: New genes. Table S10: Removed genes. Table S11:
Predicted cis-regulatory elements. Table S12: Comparison of cis-regulatory
elements known from B. subtilis. Table S13: Cluster analysis of ncRNA
expression profiles. Table S14: Comparison of ncRNAs to B. subtilis. Table S15:
Comparison of small RNAs from B. subtilis to identified ncRNAs. Table S16:
Sequence Read Archive accession. Table S17: Primer pairs for Northern blots.

Abbreviations
°C: Degrees Celsius; μL: Microliter; A: Adenine; asRNA: Antisense RNA;
bp: Base pairs; C: Cytosine; cDNA: Complementary DNA; dRNA-
Seq: Differential RNA sequencing; g: Gram; g: Gravitational constant;
G: Guanine; h: Hours; L: Liter; ln: Natural logarithm; Mb: Megabase pairs;
min: Minute; mL: Milliliter; mM: Millimolar; mRNA: Messenger RNA;
ncRNA: Non-coding RNA; NPKM: Nucleotide activity per kilobase of exon
model per million mapped reads; nt: Nucleotides; OD: Optical density;
ORF: Open reading frame; PCR: Polymerase chain reaction; RNA-Seq: RNA
sequencing; rpm: Revolutions per minute; rRNA: Ribosomal RNA; T: Thymine;

Wiegand et al. BMC Genomics 2013, 14:667 Page 18 of 20
http://www.biomedcentral.com/1471-2164/14/667

41 



TAP: Tobacco Acid Pyrophosphatase; TEX: Terminator™ 5′-Phosphate-
Dependent Exonuclease; tmRNA: Transfer-messenger RNA; tRNA: Transfer
RNA; TSS: Transcription start sites; UTR: Untranslated region; V: Volt;
v/v: Volume per volume; w/v: Weight per volume.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SW performed the experiments, analyzed data and wrote paper, SD developed
the analysis tools, RH performed northern blots, JB and SE provided industrial
fermentation facilities and performed the fermentation, SV prepared submission
of genome and transcriptome data, RD wrote paper and provided research
facilities, HL wrote paper, designed research and analyzed data. All authors read
and approved the final version of the manuscript.

Acknowledgements
This study was funded by the Bundesministerium für Bildung und Forschung
(FKZ-0315387).
The authors would like to thank the Henkel Company for kind access to their
fermentation facility. We are grateful for expert technical assistance by Ayhan
Aydemir and Maik Schlieper.

Author details
1Department of Genomic and Applied Microbiology & Göttingen Genomics
Laboratory, Institut für Mikrobiologie und Genetik, Norddeutsches Zentrum
für Mikrobielle Genomforschung, Georg-August-Universität Göttingen,
Grisebachstr. 8, D-37077, Göttingen, Germany. 2Henkel AG & Co. KGaA,
Henkelstraße 67, D-40191, Düsseldorf, Germany.

Received: 25 February 2013 Accepted: 25 September 2013
Published: 1 October 2013

References
1. Veith B, Herzberg C, Steckel S, Feesche J, Maurer K-H, Ehrenreich P, Bäumer

S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G: The complete
genome sequence of Bacillus licheniformis DSM13, an organism with
great industrial potential. J Mol Microbiol Biotechnol 2004, 7:204–211.

2. Schallmey M, Singh A, Ward O: Developments in the use of Bacillus
species for industrial production. Can J Microbiol 2004, 50:1–17.

3. Maurer K-H: Detergent proteases. Curr Opin Biotechnol 2004, 15:330–334.
4. Çalık P, Takac S, Çalık G, Özdamar T: Serine alkaline protease

overproduction capacity of Bacillus licheniformis. Enzyme Microb Tech
2000, 26:45–60.

5. Çalık P, Çalık G, Takaç S, Ozdamar TH: Metabolic flux analysis for serine alkaline
protease fermentation by Bacillus licheniformis in a defined medium: effects
of the oxygen transfer rate. Biotechnol Bioeng 1999, 64:151–167.

6. Degering C, Eggert T, Puls M, Bongaerts J, Evers S, Maurer K-H, Jaeger K-E:
Optimization of protease secretion in Bacillus subtilis and Bacillus
licheniformis by screening of homologous and heterologous signal
peptides. Appl Environ Microbiol 2010, 76:6370–6376.

7. Gupta R, Beg QK, Lorenz P: Bacterial alkaline proteases: molecular
approaches and industrial applications. Appl Microbiol Biotechnol 2002,
59:15–32.

8. Nielsen AK, Breüner A, Krzystanek M, Andersen JT, Poulsen TA, Olsen PB,
Mijakovic I, Rasmussen MD: Global transcriptional analysis of Bacillus
licheniformis reveals an overlap between heat shock and iron limitation
stimulon. J Mol Microbiol Biotechnol 2010, 18:162–173.

9. Rey M, Ramaiya P, Nelson N, Brody-Karpin S: Complete genome sequence
of the industrial bacterium Bacillus licheniformis and comparisons with
closely related Bacillus species. Genome Biol 2004, 5:R77.

10. Waschkau B, Waldeck J, Wieland S, Eichstädt R, Meinhardt F: Generation of
readily transformable Bacillus licheniformis mutants. Appl Microbiol
Biotechnol 2008, 78:181–188.

11. Nahrstedt H, Waldeck J, Gröne M, Eichstädt R, Feesche J, Meinhardt F: Strain
development in Bacillus licheniformis: Construction of biologically
contained mutants deficient in sporulation and DNA repair. J Biotechnol
2005, 119:245–254.

12. Madan Babu M, Teichmann SA, Aravind L: Evolutionary dynamics of
prokaryotic transcriptional regulatory networks. J Mol Biol 2006, 358:614–633.

13. Romby P, Charpentier E: An overview of RNAs with regulatory functions
in gram-positive bacteria. Cell Mol Life Sci 2010, 67:217–237.

14. Storz G, Vogel J, Wassarman KM: Regulation by small RNAs in bacteria:
expanding frontiers. Mol Cell 2011, 43:880–891.

15. Gottesman S, Storz G: Bacterial small RNA regulators: versatile roles
and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011,
3:a003798.

16. Waters L, Storz G: Regulatory RNAs in bacteria. Cell 2009, 136:615–628.
17. Schmiedel JM, Axmann IM, Legewie S: Multi-target regulation by small

RNAs synchronizes gene expression thresholds and may enhance
ultrasensitive behavior. PLoS One 2012, 7:e42296.

18. Georg J, Hess WR: cis-antisense RNA, another level of gene regulation in
bacteria. Microbiol Mol Biol R 2011, 75:286–300.

19. Brantl S: Regulatory mechanisms employed by cis-encoded antisense
RNAs. Curr Opin Microbiol 2007, 10:102–109.

20. Sesto N, Wurtzel O, Archambaud C, Sorek R, Cossart P: The excludon: a
new concept in bacterial antisense RNA-mediated gene regulation.
Nat Rev Microbiol 2013, 11:75–82.

21. Sorek R, Cossart P: Prokaryotic transcriptomics: a new view on regulation,
physiology and pathogenicity. Nat Rev Genet 2010, 11:9–16.

22. Güell M, Yus E, Lluch-Senar M, Serrano L: Bacterial transcriptomics: what is
beyond the RNA horiz-ome? Nat Rev Microbiol 2011, 9:658–669.

23. Breaker RR: Prospects for riboswitch discovery and analysis. Mol Cell 2011,
43:867–879.

24. Araujo PR, Yoon K, Ko D, Smith AD, Qiao M, Suresh U, Burns SC, Penalva
LOF: Before It Gets Started: Regulating Translation at the 5’ UTR.
Comp Funct Genom 2012, 2012:475731.

25. Zoll J, Heus H, van Kuppeveld F, Melchers W: The structure-function
relationship of the enterovirus 3’-UTR. Virus Res 2009, 139:209–216.

26. Kaberdin VR, Bläsi U: Translation initiation and the fate of bacterial
mRNAs. FEMS Microbiol Rev 2006, 30:967–979.

27. Evguenieva-Hackenberg E, Klug G: New aspects of RNA processing in
prokaryotes. Curr Opin Microbiol 2011, 14:587–592.

28. Vivancos AP, Güell M, Dohm JC, Serrano L, Himmelbauer H: Strand-specific
deep sequencing of the transcriptome. Genome Res 2010, 20:989–999.

29. Arnvig KB, Comas I, Thomson NR, Houghton J, Boshoff HI, Croucher NJ, Rose G,
Perkins TT, Parkhill J, Dougan G, Young DB: Sequence-based analysis
uncovers an abundance of non-coding RNA in the total transcriptome of
Mycobacterium tuberculosis. PLoS Pathog 2011, 7:e1002342.

30. Vockenhuber M-P, Sharma CM, Statt MG, Schmidt D, Xu Z, Dietrich S,
Liesegang H, Mathews DH, Suess B: Deep sequencing-based identification of
small non-coding RNAs in Streptomyces coelicolor. RNA Biol 2011, 8:468–477.

31. Schlüter J-P, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E,
Janssen S, Jänicke S, Becker JD, Giegerich R, Becker A: A genome-wide
survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium
Sinorhizobium meliloti. BMC Genomics 2010, 11:245.

32. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A,
Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stadler PF, Vogel J: The
primary transcriptome of the major human pathogen Helicobacter pylori.
Nature 2010, 464:250–255.

33. Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman
NH: Structure and complexity of a bacterial transcriptome. J Bacteriol
2009, 191:3203–3211.

34. Dötsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe
M, Geffers R, Häussler S: The Pseudomonas aeruginosa transcriptome in
planktonic cultures and static biofilms using RNA sequencing. PLoS One
2012, 7:e31092.

35. Kristoffersen SM, Haase C, Weil MR, Passalacqua KD, Niazi F, Hutchison SK,
Desany B, Kolsto A-B, Tourasse NJ, Read TD, Okstad OA: Global mRNA
decay analysis at single nucleotide resolution reveals segmental and
positional degradation patterns in a Gram-positive bacterium.
Genome Biol 2012, 13:R30.

36. Wurtzel O, Sesto N, Mellin JR, Karunker I, Edelheit S, Bécavin C, Archambaud
C, Cossart P, Sorek R: Comparative transcriptomics of pathogenic and
non-pathogenic Listeria species. Mol Syst Biol 2012, 8:1–14.

37. Lemire S, Figueroa-Bossi N, Bossi L: Bacteriophage crosstalk: coordination
of prophage induction by trans-acting antirepressors. PLoS Genet 2011,
7:e1002149.

38. Zheng X, Hu G-Q, She Z-S, Zhu H: Leaderless genes in bacteria: clue to
the evolution of translation initiation mechanisms in prokaryotes.
BMC Genomics 2011, 12:361.

Wiegand et al. BMC Genomics 2013, 14:667 Page 19 of 20
http://www.biomedcentral.com/1471-2164/14/667

42 



39. Nakagawa S, Niimura Y, Miura K, Gojobori T: Dynamic evolution of
translation initiation mechanisms in prokaryotes. Proc Natl Acad Sci U S A
2010, 107:6382–6387.

40. Veening J-W, Igoshin OA, Eijlander RT, Nijland R, Hamoen LW, Kuipers OP:
Transient heterogeneity in extracellular protease production by Bacillus
subtilis. Mol Syst Biol 2008, 4:184.

41. Shank EA, Kolter R: Extracellular signaling and multicellularity in Bacillus
subtilis. Curr Opin Microbiol 2011, 14:741–747.

42. Gunka K, Commichau FM: Control of glutamate homeostasis in Bacillus
subtilis: a complex interplay between ammonium assimilation, glutamate
biosynthesis and degradation. Mol Microbiol 2012, 85:213–224.

43. Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E,
Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E,
Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A,
Hansen A, Hartig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E,
Le Chat L, Lecointe F, Lewis P, Liebermeister W, et al: Condition-Dependent
Transcriptome Reveals High-Level Regulatory Architecture in Bacillus
subtilis. Science 2012, 335:1103–1106.

44. Brantl S: Acting antisense: plasmid- and chromosome-encoded sRNAs
from Gram-positive bacteria. Future Microbiol 2012, 7:853–871.

45. Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K, Kyrpides NC:
IMG ER: a system for microbial genome annotation expert review and
curation. Bioinformatics 2009, 25:2271–2278.

46. Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD,
Nawrocki EP, Kolbe DL, Eddy SR, Bateman A: Rfam: Wikipedia, clans and
the “decimal” release. Nucleic Acids Res 2011, 39:D141–D145.

47. Sherlock G: Analysis of large-scale gene expression data. Curr Opin
Immunol 2000, 12:201–205.

48. Pool MR: Signal recognition particles in chloroplasts, bacteria, yeast and
mammals (Review). Mol Membr Biol 2005, 22:3–15.

49. Hardcastle TJ, Kelly KA: baySeq: empirical Bayesian methods for
identifying differential expression in sequence count data.
BMC Bioinformatics 2010, 11:422.

50. Kiley Thomason M, Storz G: Bacterial antisense RNAs: how many are
there, and what are they doing? Annu Rev Genet 2010, 44:167–188.

51. Levine E, Zhang Z, Kuhlman T, Hwa T: Quantitative characteristics of gene
regulation by small RNA. PLoS Biol 2007, 5:e229.

52. Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voß B,
Steglich C, Wilde A, Vogel J, Hess WR: An experimentally anchored map of
transcriptional start sites in the model cyanobacterium Synechocystis sp.
PCC6803. Proc Natl Acad Sci U S A 2011, 108:1–6.

53. Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons B, Sorek R: A single-base
resolution map of an archaeal transcriptome. Genome Res 2010, 20:133–141.

54. Jäger D, Sharma C, Thomsen J, Ehlers C, Vogel J, Schmitz R: Deep
sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in
response to nitrogen availability. Proc Natl Acad Sci U S A 2009,
106:21878–21882.

55. Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, Sekowska A, Vallenet D,
Wang T, Moszer I, Médigue C, Danchin A: From a consortium sequence to
a unified sequence: the Bacillus subtilis 168 reference genome a decade
later. Microbiology 2009, 155:1758–1775.

56. Rasmussen S, Nielsen H, Jarmer H: The Transcriptionally Active Regions in
the Genome of Bacillus subtilis. Mol Microbiol 2009, 73:1043–1057.

57. Irnov I, Sharma C, Vogel J, Winkler W: Identification of regulatory RNAs in
Bacillus subtilis. Nucleic Acids Res 2010, 38:6637–6651.

58. Mäder U, Schmeisky AG, Flórez LA, Stülke J: SubtiWiki–a comprehensive
community resource for the model organism Bacillus subtilis.
Nucleic Acids Res 2012, 40:D1278–D1287.

59. Eiamphungporn W, Helmann JD: Extracytoplasmic function sigma factors
regulate expression of the Bacillus subtilis yabE gene via a cis-acting
antisense RNA. J Bacteriol 2009, 191:1101–1105.

60. Gimpel M, Heidrich N, Mäder U, Krügel H, Brantl S: A dual-function sRNA
from B. subtilis: SR1 acts as a peptide encoding mRNA on the gapA
operon. Mol Microbiol 2010, 76:990–1009.

61. Geissmann T, Chevalier C, Cros M-J, Boisset S, Fechter P, Noirot C, Schrenzel
J, François P, Vandenesch F, Gaspin C, Romby P: A search for small
noncoding RNAs in Staphylococcus aureus reveals a conserved sequence
motif for regulation. Nucleic Acids Res 2009, 37:7239–7257.

62. Marchais A, Duperrier S, Durand S, Gautheret D, Stragier P: CsfG, a
sporulation-specific, small non-coding RNA highly conserved in
endospore formers. RNA Biol 2011, 8:358–364.

63. Saito S, Kakeshita H, Nakamura K: Novel small RNA-encoding genes in the
intergenic regions of Bacillus subtilis. Gene 2009, 428:2–8.

64. Silvaggi J, Perkins J, Losick R: Genes for Small, Noncoding RNAs under
Sporulation Control in Bacillus subtilis. J Bacteriol 2006, 188:532–541.

65. Jahn N, Preis H, Wiedemann C, Brantl S: BsrG/SR4 from Bacillus subtilis–the
first temperature-dependent type I toxin-antitoxin system. Mol Microbiol
2012, 83:579–598.

66. Feucht A, Evans L, Errington J: Identification of sporulation genes by
genome-wide analysis of the σE regulon of Bacillus subtilis. J Mol Biol
2003, 149:3023–3034.

67. Wemhoff S: Deletionsmutagenese des yqfCD/phoH-Operons in Bacillus
licheniformis - Untersuchungen zur Auswirkung auf die Sporulation, Master
thesis. Westfälische Wilhelms-Universität Münster, Institut für Molekulare
Mikrobiologie und Biotechnologie; 2008.

68. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008,
5:621–628.

69. Risso D, Schwartz K, Sherlock G, Dudoit S: GC-content normalization for
RNA-Seq data. BMC Bioinformatics 2011, 12:480.

70. Zdobnov EM, Apweiler R: InterProScan–an integration platform for the
signature-recognition methods in InterPro. Bioinformatics 2001, 17:847–848.

71. The UniProt Consortium: The Universal Protein Resource (UniProt) 2009.
Nucleic Acids Res 2009, 37:D169–D174.

72. Mao F, Dam P, Chou J, Olman V, Xu Y: DOOR: a database for prokaryotic
operons. Nucleic Acids Res 2009, 37:D459–D463.

73. Pertea M, Ayanbule K, Smedinghoff M, Salzberg SL: OperonDB: a
comprehensive database of predicted operons in microbial genomes.
Nucleic Acids Res 2009, 37:D479–D482.

74. Kingsford CL, Ayanbule K, Salzberg SL: Rapid, accurate, computational
discovery of Rho-independent transcription terminators illuminates their
relationship to DNA uptake. Genome Biol 2007, 8:R22.

75. Overbeek R: The ERGOTM genome analysis and discovery system. Nucleic
Acids Res 2003, 31:164–171.

76. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, Barrell
B: Artemis: sequence visualization and annotation. Bioinformatics 2000,
16:944–945.

77. Bose M, Barber RD: Prophage Finder: a prophage loci prediction tool for
prokaryotic genome sequences. In Silico Biol 2006, 6:223–227.

78. Casjens S: Prophages and bacterial genomics: what have we learned so
far? Mol Microbiol 2003, 49:277–300.

79. Saeed A, Bhagabati N, Braisted J, Liang W, Sharov V, Howe E, Li J,
Thiagarajan M, White J, Quackenbush J: TM4 microarray software suite.
Methods Enzymol 2006, 411:134.

80. Koburger T, Weibezahn J, Bernhardt J, Homuth G, Hecker M: Genome-wide
mRNA profiling in glucose starved Bacillus subtilis cells. Mol Genet
Genomics 2005, 274:1–12.

81. Hahne H, Mäder U, Otto A, Bonn F, Steil L, Bremer E, Hecker M, Becher D: A
comprehensive proteomics and transcriptomics analysis of Bacillus
subtilis salt stress adaptation. J Bacteriol 2010, 192:870–882.

82. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J:
ACT: the Artemis Comparison Tool. Bioinformatics 2005, 21:3422–3423.

83. Darling AE, Mau B, Perna NT: ProgressiveMauve: multiple genome alignment
with gene gain, loss and rearrangement. PLoS One 2010, 5:e11147.

84. Marco-Sola S, Sammeth M, Guigó R, Ribeca P: The Gem mapper: fast, accurate
and versatile alignment by filtration. Nat Methods 2012, 9:1186–1188.

85. Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0: inference of RNA alignments.
Bioinformatics 2009, 25:1335–1337.

86. Martin J, Zhu W, Passalacqua K, Bergman N, Borodovsky M: Bacillus
anthracis genome organization in light of whole transcriptome
sequencing. BMC Bioinformatics 2010, 11:S10.

87. Schwarzer M: Physiologische Untersuchungen zur Regulation des Aminosäure-
Stoffwechsels von Bacillus licheniformis DSM13, PhD thesis. Georg-August-
Universität Göttingen, Institut für Mikrobiologie und Genetik; 2010.

88. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning - A Laboratory Manual.
Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989.

doi:10.1186/1471-2164-14-667
Cite this article as: Wiegand et al.: RNA-Seq of Bacillus licheniformis:
active regulatory RNA features expressed within a productive
fermentation. BMC Genomics 2013 14:667.

Wiegand et al. BMC Genomics 2013, 14:667 Page 20 of 20
http://www.biomedcentral.com/1471-2164/14/667

43 



RNA FEATURES OF B. LICHENIFORMIS CHAPTER B 

Additional information 

Additional file 1 
Figure S1 Distribution of whole transcriptome sequencing reads ......................................................... 45 
Figure S2 Comparative operon prediction ............................................................................................ 45 
Figure S3 Northern blot confirmation of non-coding RNAs ................................................................. 46 
Figure S4 Antisense RNAs with putative impact on productivity ........................................................ 54 
Figure S5 BsrG/SR4-like loci in B. licheniformis ................................................................................. 56 
Figure S6 Work flow charts .................................................................................................................. 57 

Additional file 2 
Table S1 Whole transcriptome sequencing reads .................................................................................. 58 
Table S2 NPKM values of RNA features.............................................................................................. 59 
Table S3 NPKM values of all genes...................................................................................................... 59 
Table S4 Differential RNA-Seq reads ................................................................................................... 59 
Table S5 Transcription start sites .......................................................................................................... 60 
Table S6 Identified RNA features ......................................................................................................... 60 
Table S7 Predicted operons ................................................................................................................... 60 
Table S8 Corrected genes ...................................................................................................................... 60 
Table S9 New genes .............................................................................................................................. 62 
Table S10 Removed genes .................................................................................................................... 63 
Table S11 Predicted cis-regulatory elements ........................................................................................ 65 
Table S12 Comparison of cis-regulatory elements known from B. subtilis .......................................... 65 
Table S13 Cluster analysis of ncRNA expression profiles .................................................................... 65 
Table S14 Comparison of ncRNAs to B. subtilis .................................................................................. 65 
Table S15 Comparison of small RNAs from B. subtilis to identified ncRNAs .................................... 67 
Table S16 Sequence Read Archive accession ....................................................................................... 69 
Table S17 Primer pairs for Northern blots ............................................................................................ 70 

References ............................................................................................................................................. 71 

44 



CHAPTER B RNA FEATURES OF B. LICHENIFORMIS

Figure S1 Distribution of whole transcriptome sequencing reads 
Mapping results of the RNA-Seq reads to the B. licheniformis genome based on sequence similarity. Results are 
shown for replicates of the sampling points I to V. The category unmapped reads comprises reads derived from 
experimental artifacts like poly(A) tails or concatenated RNA adapters, as well as reads with more than one 
sequencing error per 50 bp. Please note that not a single read which has been tested from this fraction can be 
assigned to other organisms than B. licheniformis. 

Figure S2 Comparative operon prediction 
Number of genes in predicted operons are shown for the in silico prediction available at DOOR (black; Mao et 
al., 2009) and the manually curated prediction based on RNA-Seq provided in this study (blue). The deviations 
especially in the longer operons are due to the here employed expression profile-accounting method of operon 
prediction. Please note that results are given on log-transformed scale. 
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Figure S3 Northern blot confirmation of non-coding RNAs 
For each blot the corresponding genomic loci and the transcriptional activity is shown for all sampling points. 
The black arrows show genes, the green arrow the respective ncRNA. Probes (Table S17) are marked orange. 
Northern blotting was carried out as described in Methods. The size range is given in base pairs and the number 
under each picture signifies the different replicates. (A) indep RNA BLi_r0329 (expected size: 373 bp). (B) 
indep RNAs BLi_r0450 and BLi_r0451 (expected size: 127 bp and 291 bp, respectively). (C) AI RNA 
BLi_r0872 (expected size: 144 bp). This ncRNA is of special interest since it is encoded antisense to the alkaline 
protease Subtilisin Carlsberg. (D) Amisc RNA BLi_r1306 (expected size: 205 bp). Please note that within the 
same transcript an ORF was annotated “SR1-like protein”, according to the finding in B. subtilis, where SR1 acts 
as functional sRNA and encodes a protein. (E) Amisc RNA BLi_r1585 (expected size: 2072 bp). The observed 
bands indicate processing or degradation of the RNA transcript. (F) indep RNA BLi_r2340 (expected size: 
188 bp) (G) Amisc RNA BLi_r3281 (expected size: 2688 bp). The observed bands may indicate a fading-out of 
the transcription after leaky termination. 
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Figure S4 Antisense RNAs with putative impact on productivity 
Antisense transcriptional activities at different fermentation stages. Black arrows indicate genes and green 
arrows identify antisense RNAs. (A) Amisc RNA BLi_r2863, (B) A3’UTR BLi_r2645, (C) Amisc RNA BLi_r0415 
and (D) Amisc BLi_r1834 are shown for L-I to L-V. NPKM values are displayed for all replicates of the sampling 
points I to V for: (E) BLi_r2863 and the degSU operon, a two-component regulatory system which is involved in 
the manifestation of multicellular communities (Murray et al., 2009) and regulates biofilm formation, genetic 
competence, swarming motility, polyglutamic acid production as well as exoprotease secretion (Davidson et al., 
2012; Hoffmann et al., 2010). As the transcript is present in the productive stages of the fermentation process, an 
influence on protease secretion via an impact on the degSU mRNA should be carefully considered. In B. subtilis, 
an ncRNA antisense to degSU is also annotated (Nicolas et al., 2012), but varies in length and start position due 
to a disparate genomic context. (F) BLi_r2645 and the cssRS operon, a two-component regulatory system in 
control of the serine proteases HtrA and HtrB (Darmon et al., 2002), which bear proteolytical as well as 
chaperone activity in response to secretion stress (Marciniak et al., 2012). The overlapping 3’UTR antisense to 
the cssRS operon is generated by the proteolytical anti-adaptor protein YirB. (G) BLi_r0415 and thiL, which 
encodes a thiamine-monophosphate kinase; (H) BLi_r1834 and folE, which encodes a GTP cyclohydrolase I 
involved in folate biosynthesis (plus hbs, the adjacent DNA-binding protein HBsu). Please note that results are 
given on log-transformed scale.  
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Figure S5 BsrG/SR4-like loci in B. licheniformis 
(A) ClustalW2 alignment of BsrG from B. subtilis (Jahn et al., 2012) and the peptides deduced from the newly 
annotated genes BLi05015 and BLi05038. Blue boxes show amino acids conserved in all three peptides and 
orange boxes amino acids only conserved between the two B. licheniformis peptides. (B) BLi05015 (1300390-
1300316) indicated by the black arrow and BLi_r1034 (green arrow). (C) Transcriptional activities of BLi05038 
(3485388-3485308) indicated by the black arrow and BLi_r2780 (green arrow). (D) ClustalW2 alignment of 
SR4 from B. subtilis (Jahn et al., 2012) and indep RNAs BLi_t1034 and BLi_r2780. Nucleotides overlapping the 
opposite mRNA are pictured black and bold, non-overlapping nucleotides are marked gray. The green and red 
boxes indicate the stem loops SL1 to SL4 and TSL identified for SR4 (Jahn et al., 2012) in the non-overlapping 
and the overlapping region, respectively. 
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Figure S6 Work flow charts 
(A) Work flow of non-coding RNA evaluation. (B) Work flow of transcription start site evaluation. 
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Table S1 Whole transcriptome sequencing reads 
The total of all reads could be assigned to: reads mapping to rRNA or tRNA genes; reads mapping to multiple 
loci in the genome; unmapped reads; reads mapping to the protease-encoding plasmid and reads mapping to one 
locus of the chromosome. 
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Table S2 NPKM values of RNA features 

Please refer to “Chapter B_Additional information” on digital medium. 

Table S3 NPKM values of all genes 

Please refer to “Chapter B_Additional information” on digital medium. 

Table S4 Differential RNA-Seq reads  
The total of all reads could be assigned to: reads mapping to multiple loci in the genome; unmapped reads; reads 
mapping to the protease-encoding plasmid and reads mapping to one locus of the chromosome. The majority of 
the multihit reads can be retraced to originate from rRNA and tRNA genes. 
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Table S5 Transcription start sites 

Please refer to “Chapter B_Additional information” on digital medium. 

Table S6 Identified RNA features 

Please refer to “Chapter B_Additional information” on digital medium. 

Table S7 Predicted operons 

Please refer to “Chapter B_Additional information” on digital medium. 

Table S8 Corrected genes 

Locus tag New 
start Old start Stop Strand Type Gene

symbol Function 

BLi00008 9713 9710 11250 + rRNA rrsA 16s_rRNA 

BLi00011 11594 11592 14522 + rRNA rrlA 23s_rRNA 

BLi00012 14656 14644 14770 + rRNA rrfA 5s_rRNA 

BLi00022 26352 26355 26444 + tRNA trnS1 tRNA-Ser-TCA 

BLi00033 34411 34408 35948 + rRNA rrsB 16s_rRNA 

BLi00036 36292 36290 39220 + rRNA rrlB 23s_rRNA 

BLi00037 39355 39343 39469 + rRNA rrfB 5s_rRNA 

BLi00098 95153 95150 96691 + rRNA rrsC 16s_rRNA 

BLi00099 96873 96871 99801 + rRNA rrlC 23s_rRNA 

BLi00100 99936 99924 100050 + rRNA rrfC 5s_rRNA 

BLi00176 158109 158106 159647 + rRNA rrsD 16s_rRNA 

BLi00177 159829 159827 162757 + rRNA rrlD 23s_rRNA 

BLi00178 162892 162880 163006 + rRNA rrfD 5s_rRNA 

BLi00209 187962 187899 188210 + CDS HTH-type transcriptional regulator 

BLi00232 210427 210227 208350 - pseudo yyaL hypothetical protein 

BLi00252 228113 227626 227318 - pseudo ybfI putative HTH-type transcriptional regulator 

BLi00291 266093 266181 266786 + pseudo ycbL two-component response regulator 

BLi00392 368757 367582 367079 - pseudo tlpC methyl-accepting chemotaxis protein 

BLi00421 421011 421104 419599 - CDS rocR arginine utilization regulatory protein 

BLi00575 575330 575351 575091 - CDS putative phage protein 

BLi00606 611805 611802 613342 + rRNA rrsE 16s_rRNA 

BLi00607 613524 613522 616452 + rRNA rrlE 23s_rRNA 

BLi00608 616587 616575 616701 + rRNA rrfE 5s_rRNA 

BLi00848 867352 867574 866801 - CDS hypothetical protein 

BLi00870 889249 889631 889780 + pseudo yfiT putative metal-dependent hydrolase 

BLi00903 920785 920782 922323 + rRNA rrsF 16s_rRNA 

BLi00904 922505 922503 925433 + rRNA rrlF 23s_rRNA 

BLi00905 925606 925617 925720 + rRNA rrfF 5s_rRNA 

BLi01034 1035023 1035056 1034319 - CDS yhdW1 putative glycerophosphoryl diester 
phosphodiesterase 
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Table S8 Continued 

Locus tag New 
start Old start Stop Strand Type Gene

symbol Function 

BLi01269 1279238 1279289 1278750 - CDS cotY spore coat protein 

BLi01304 1307931 1307450 1307058 - pseudo yoaU putative HTH-type transcriptional regulator 

BLi01427 1422023 1421963 1422430 + CDS hypothetical protein 

BLi01506 1480354 1480300 1480515 + CDS hypothetical protein 

BLi01754 1713319 1713361 1713990 + CDS hypothetical protein 

BLi01765 1722163 1722085 1722624 + CDS lspA lipoprotein signal peptidase 

BLi01938 1899053 1899497 1900495 + pseudo yobN putative L-amino-acid oxidase 

BLi01942 1903533 1904017 1904790 + pseudo tetB tetracycline/Na+ resistance protein 

BLi02004 1958074 1957906 1958553 + CDS yoaO hypothetical protein 

BLi02061 2000669 2000744 1999578 - CDS araR1 arabinose metabolism transcriptional 
repressor 

BLi02350 2299348 2299435 2297543 - CDS ypvA putative ATP-dependent helicase 

BLi02482 2415316 2415118 2416212 + CDS ypuA hypothetical protein 

BLi02508 2435454 2436059 2436928 + pseudo pucI putative allantoin permease 

BLi02548 2466810 2466849 2465857 - CDS yqjP putative beta-lactamase 

BLi02561 2482119 2481190 2480804 - pseudo gmuC glucomannan-specific EIIC component 

BLi02576 2496082 2495412 2495314 - pseudo artP arginine ABC transporter binding protein 

BLi02698 2599042 2598575 2598318 - pseudo ywqL putative endonuclease 

BLi02777 2669421 2669256 2668447 - pseudo ansA2 L-asparaginase 

BLi02839 2725814 2725883 2724579 - CDS ytbD major facilitator superfamily protein 

BLi02893 2784448 2784295 2786001 + CDS spoVB stage V sporulation protein 

BLi03090 2976780 2976858 2976097 - CDS ytfI DUF2953 family protein 

BLi03240 3116592 3116589 3116500 - tRNA trnS5 tRNA-Ser-TCA 

BLi03253 3118373 3118385 3118259 - rRNA rrfG 5s_rRNA 

BLi03254 3121435 3121437 3118507 - rRNA rrlG 23s_rRNA 

BLi03255 3123152 3123155 3121614 - rRNA rrsG 16s_rRNA 

BLi03276 3142332 3143342 3143512 + pseudo oxdD oxalate decarboxylase 

BLi03570 3416061 3415480 3414884 - pseudo amidase 

BLi03655 3483214 3482574 3481447 - pseudo yvbJ hypothetical protein 

BLi03659 3486205 3485812 3485573 - pseudo hypothetical protein 

BLi03675 3502474 3502543 3501758 - CDS lutA lactate utilization protein 

BLi03794 3612592 3612643 3611435 - CDS degS two-component sensor histidine kinase 

BLi03840 3668380 3668323 3669360 + CDS rbsR ribose operon repressor 

BLi04044 3870416 3870668 3871042 + pseudo ywqN putative oxidoreductase 

BLi04053 3879902 3879579 3878986 - pseudo putative HTH-type transcriptional regulator 

BLi04062 3886860 3886533 3885913 - pseudo glyoxylate reductase 

BLi04122 3942251 3942338 3942060 - CDS lanR putative regulatory protein 

BLi04144 3970756 3971145 3971444 + pseudo yxdJ2 two-component response regulator 

BLi04152 3978373 3977693 3977478 - pseudo hypothetical protein 

BLi04196 4027880 4027259 4025799 - pseudo katE catalase  

BLi04297 4145251 4147104 4147199 + pseudo hypothetical protein 

BLi04300 4148379 4148596 4149111 + pseudo yvfS putative ABC transporter permease 

BLi04345 4192151 4192211 4191933 - CDS hypothetical protein 
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Table S9 New genes 

Locus tag Start Stop Strand Gene symbol Function 

BLi05000 23278 22148 - glxK glycerate kinase  

BLi05001 39637 39828 + gin forespore-specific protein  

BLi05002 217298 217065 - hypothetical protein 

BLi05003 247064 245634 - glnt sodium:glutamine symporter 

BLi05004 629808 629461 - hypothetical protein 

BLi05005 774580 775293 + hypothetical protein 

BLi05006 897768 897598 - hypothetical protein 

BLi05007 928712 928849 + hypothetical protein 

BLi05008 928965 929090 + hypothetical protein 

BLi05009 929505 929807 + hypothetical protein 

BLi05010 934163 934459 + putative RlfA like protein 

BLi05011 1047444 1047184 - putative heterocycle-containing bacteriocin 

BLi05012 1101815 1101714 - hypothetical protein 

BLi05013 1252084 1251422 - yjbE membrane protein  

BLi05014 1284826 1285083 + hypothetical protein 

BLi05015 1300390 1300313 - BsrG-like peptide 

BLi05016 1426080 1425856 - phage putative repressor 

BLi05017 1426652 1426888 + phage putative repressor 

BLi05018 1430073 1430177 + phage related membrane protein 

BLi05019 1434830 1434919 + putative phage protein 

BLi05020 1436519 1436725 + putative phage protein 

BLi05021 1444952 1445098 + putative phage protein 

BLi05022 1450290 1450733 + putative phage protein 

BLi05023 1511238 1511426 + putative phage protein 

BLi05024 1511517 1511735 + putative phage protein 

BLi05025 1512367 1512537 + putative phage protein 

BLi05026 1515821 1516159 + putative phage protein 

BLi05027 2055295 2055023 - hypothetical protein 

BLi05028 2195153 2194911 - spore coat protein-like protein 

BLi05029 2447588 2447373 - hypothetical protein 

BLi05030 2511511 2511215 - hypothetical protein 

BLi05031 2894531 2894830 + hypothetical protein 

BLi05032 3393454 3393789 + hypothetical protein 

BLi05033 3427079 3427606 + putative phage protein 

BLi05034 3454164 3453790 - hypothetical protein 

BLi05035 3454940 3454716 - cotD3 spore coat protein D 

BLi05037 3467283 3467921 + putative phage protein 

BLi05038 3485388 3485308 - BsrG-like peptide 

BLi05039 3701264 3701154 - usd putative spoIIID leader peptide 
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Table S9 Continued 

Locus tag Start Stop Strand Gene symbol Function 

BLi05040 3798142 3798408 + ywjC general stress protein 

BLi05041 3842580 3842290 - hypothetical protein 

BLi05042 3949514 3949296 - lanA1 lichenicidin prepeptide 

BLi05043 4157493 4157263 - putative phage protein 

BLi05044 4161050 4160448 - putative phage protein 

BLi05045 4169347 4168853 - putative phage protein 

BLi05046 763186 763308 + phrK response regulator aspartate phosphatase (RapK) 
regulator 

BLi05047 1142428 1142544 + phrG response regulator aspartate phosphatase (RapG) 
regulator 

BLi05048 1280933 1281289 + yjcA sporulation protein  

BLi05049 1281576 1281785 + hypothetical protein 

BLi05050 1465091 1465270 + ykoL stress response protein 

BLi05051 2244490 2244624 + yoyE hypothetical protein 

BLi05052 2310333 2310437 + sspM small acid-soluble spore protein 

BLi05053 2760326 2760195 - yrzQ hypothetical protein 

BLi05054 3097490 3097651 + ytzL hypothetical protein 

BLi05055 4040502 4040365 - hypothetical protein  

BLi05056 1639788 1639907 + Sr1-like peptide 

BLi05057 2246052 2246186 + yoyF hypothetical protein 

BLi05058 2742105 2741956 - yrzI hypothetical proteinI 

BLi05059 3089961 3090104 + hypothetical protein 

BLi05060 3863368 3863484 + hypothetical protein 

Table S10 Removed genes 

Locus tag Start Stop Strand Gene symbol 

BLi00233 210427 210266 - yyaO 

BLi00253 228113 227673 - ybfI2 

BLi00290 266093 266191 + 

BLi00393 368757 367579 - tlpC 

BLi00577 577425 577535 + 

BLi00653 654973 655200 + 

BLi00752 763203 763397 + 

BLi00869 889249 889626 + yfiT 

BLi00961 959291 959205 - 

BLi01073 1076310 1076396 + 

BLi01084 1082262 1082564 + 

BLi01273 1281616 1280960 - 

BLi01278 1285095 1284778 - 
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Table S10 Continued 

Locus tag Start Stop Strand Gene symbol 

BLi01305 1307931 1307431 - yoaU2 

BLI01492 1465399 1465154 - 

BLi01753 1713116 1713325 + 

BLi01764 1722009 1722134 + 

BLi01937 1899053 1899475 + 

BLi01941 1903533 1904096 + 

BLi02507 2435454 2436377 + ywoE 

BLi02517 2442450 2442752 + 

BLi2518 2442701 2442468 - yqkE 

BLi02562 2482119 2481226 - 

BLi02577 2496082 2495543 - yqiX 

BLi02632 2547446 2547240 - 

BLi02699 2599042 2598599 - ywqL 

BLi02772 2665310 2665447 + 

BLi02773 2665444 2665578 + 

BLi02778 2669421 2669257 - yccC2 

BLi02800 2685947 2686267 + 

BLi03252 3118011 3117814 - 

BLi03275 3142332 3143408 + yoaN1 

BLi03523 3365908 3366282 + 

BLi03564 3409984 3410073 + 

BLi03571 3416061 3415396 - 

BLi03584 3422949 3423176 + 

BLi03620 3453653 3453579 - 

BLi03656 3483214 3482549 - yvbJ2 

BLi03660 3486205 3485876 - yoaZ2 

BLi03727 3552312 3552584 + 

BLi04043 3870416 3870661 + 

BLi04054 3879902 3879576 - ywbI2 

BLi04063 3886860 3886555 - 

BLi04112 3934943 3934791 - 

BLi04143 3970756 3971130 + 

BLi04153 3978373 3977690 - 

BLi04186 4014225 4014064 - 

BLi04197 4027880 4027263 - katE2 

BLi04295 4145251 4145511 + 

BLi04296 4145904 4146893 + 

BLi04299 4148379 4148927 + yvfS1 

BLi04309 4156999 4157157 + 
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Table S11 Predicted cis-regulatory elements 

Please refer to “Chapter B_Additional information” on digital medium. 

Table S12 Comparison of cis-regulatory elements known from B. subtilis 

Please refer to “Chapter B_Additional information” on digital medium. 

Table S13 Cluster analysis of ncRNA expression profiles 

Please refer to “Chapter B_Additional information” on digital medium. 

Table S14 Comparison of ncRNAs to B. subtilis 
All ncRNAs identified in this study were compared to ncRNAs identified for B. subtilis by Nicolas et al. (2012). 
Last and second last columns show the names for matching transcripts and the allocated classes in B. subtilis. 

RNA feature Start Stop Strand Class B. subtilis transcript tag B. subtilis class 

BLi_r0001 945 5 - Amisc S4, S2 indep, Indep-nt 

BLi_r0016 30440 30837 + indep S17 5' 

BLi_r0026 54282 49490 - Amisc S25 Indep-NT 

BLi_r0035 76356 74559 - Amisc S37 indep 

BLi_r0329 518777 519149 + indep S140 indep 

BLi_r0373 571429 571162 - Amisc S166 Indep-NT 

BLi_r0598 837456 837589 + Amisc S274 inter 

BLi_r0706 959393 959171 - Amisc S313 indep 

BLi_r0736 991982 992128 + indep S1029 indep 

BLi_r0844 1082413 1082091 - indep S357 indep 

BLi_r1000 1262387 1262504 + indep S414 inter 

BLi_r1003 1263961 1264435 + Amisc S416 Indep-NT 

BLi_r1125 1438764 1438856 + indep S433 inter 

BLi_r1235 1558438 1556635 - Amisc S503 Indep-NT 

BLi_r1259 1588610 1588725 + indep S512 indep 

BLi_r1347 1673741 1673635 - Amisc S547 indep 

BLi_r1370 1710228 1709186 - Amisc S562 indep 

BLi_r1500 1984654 1984873 + Amisc S665 indep 

BLi_r1622 2128868 2128723 - Amisc S708 Indep-NT 

BLi_r1777 2271835 2271887 + Amisc S821 indep 

BLi_r1808 2302203 2301803 - indep RnpB 

BLi_r1826 2320181 2320265 + Amisc S849 indep 

BLi_r1838 2359724 2359631 - indep S863 indep 

BLi_r1955 2492524 2492751 + Amisc S907 indep 

BLi_r2042 2607228 2608674 + Amisc S951 Indep-NT 

BLi_r2043 2608736 2609200 + AI S951 Indep-NT 

BLi_r2163 2770133 2769931 - indep BSU_misc_RNA_41 

BLi_r2295 2957279 2960402 + Amisc S1105 Indep-NT 
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Table S14 Continued 

RNA feature Start Stop Strand Class B. subtilis transcript tag B. subtilis class 

BLi_r2390 3060847 3062662 + Amisc S1157 Indep-NT 

BLi_r2442 3114363 3114648 + AI S1180 Indep-NT 

BLi_r2497 3179098 3178992 - A3 S1476 inter 

BLi_r2500 3179557 3179966 + Amisc S1201 inter 

BLi_r2546 3229393 3229473 + AI S1225 Indep-NT 

BLi_r2548 3232552 3232651 + A3 S1227 Indep-NT 

BLi_r2624 3299320 3299025 - indep BsrI 

BLi_r2758 3469610 3469009 - indep SsrA 

BLi_r2771 3479954 3480425 + AI S1299 inter 

BLi_r2863 3611192 3612078 + Amisc S1354 Indep-NT 

BLi_r2868 3615456 3617050 + Amisc S1359 Indep-NT 

BLi_r2883 3640577 3640465 - indep S1372 inter 

BLi_r3204 4051076 4050982 - indep S1514 inter 

BLi_r3205 4051704 4054845 + Amisc S1520 Indep-NT 

BLi_r3313 4220164 4220560 + AI S1579 indep 
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Table S15 Comparison of small RNAs from B. subtilis to identified ncRNAs 
B. subtilis small RNAs were taken from Nicolas et al. (2012) and SubtiWiki (Mäder et al., 2012). Detection was 
derived by comparison to Rfam (Gardner et al., 2011) or locus conservation. 
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Table S15 Continued 
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CHAPTER B RNA FEATURES OF B. LICHENIFORMIS

Table S16 Sequence Read Archive accession 

Type Name Accession number 

STUDY Bacillus licheniformis DSM13 Transcriptome SRP018744 

   SAMPLE M-I SRS396769 

      EXPERIMENT   whole transcriptome RNA-Seq M-I SRX242882 

   SAMPLE  M-II SRS396772 

      EXPERIMENT   whole transcriptome RNA-Seq M-II SRX242885 

   SAMPLE  M-III SRS396773 

      EXPERIMENT   whole transcriptome RNA-Seq M-III SRX242886 

   SAMPLE  M-IV SRS396774 

      EXPERIMENT   whole transcriptome RNA-Seq M-IV SRX242887 

   SAMPLE  M-V SRS396775 

      EXPERIMENT   whole transcriptome RNA-Seq M-V SRX242888 

   SAMPLE  R-I SRS396777 

      EXPERIMENT   whole transcriptome RNA-Seq R-I SRX242890 

   SAMPLE  R-II SRS396778 

      EXPERIMENT   whole transcriptome RNA-Seq R-II SRX242891 

   SAMPLE  R-III SRS396779 

      EXPERIMENT   whole transcriptome RNA-Seq R-III SRX242892 

   SAMPLE  R-IV SRS396781 

      EXPERIMENT   whole transcriptome RNA-Seq R-IV SRX242893 

   SAMPLE  R-V SRS396782 

      EXPERIMENT   whole transcriptome RNA-Seq R-V SRX242894 

   SAMPLE  L-I SRS396783 

      EXPERIMENT   whole transcriptome RNA-Seq L-I SRX242895 

      EXPERIMENT   differential RNA-Seq L-I SRX242900 

   SAMPLE  L-II SRS396784 

      EXPERIMENT   whole transcriptome RNA-Seq L-II SRX242896 

      EXPERIMENT   differential RNA-Seq L-II SRX242901 

   SAMPLE L-III SRS396785 

      EXPERIMENT   whole transcriptome RNA-Seq L-III SRX242897 

      EXPERIMENT   differential RNA-Seq L-III SRX242902 

   SAMPLE  L-IV SRS396786 

      EXPERIMENT   whole transcriptome RNA-Seq L-IV SRX242898 

      EXPERIMENT   differential RNA-Seq L-IV SRX242903 

   SAMPLE L-V SRS396787 

      EXPERIMENT   whole transcriptome RNA-Seq L-V SRX242899 

      EXPERIMENT   differential RNA-Seq L-V SRX242904 
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Table S17 Primer pairs for Northern blots 

Probe Figure Target Primer (5'-3') Position Strand 

1 S1A BLi_r0329 
AACAGGAACACGCAAAAGAGCAA 518774 + 
CTAATACGACTCACTATAGGGAGAGCCGAAGCG
GTCTCAATTATC 519297 - 

2 S1B BLi_r0450 
GGAAATCATGATATATTCAAGGTGTATG 652827 + 
CTAATACGACTCACTATAGGGAGACGTAGTGGCC
ATTCTGTCATC 653057 - 

3 S1B BLi_r0451 
CTAATACGACTCACTATAGGGAGAGGAAGCAAC
AGAGAGGCTCC 652922 + 

GTCGGCTCATCCTCCATCTC 653148 - 

4 S1C BLi_r0872 
CACTAGCTTTTTCTATATGCCATTTG 1108930 + 
CTAATACGACTCACTATAGGGAGACAGCTTCACA
AGTCCGCAAC 1109069 - 

5 S1D BLi_r1306 
GATTTAAATGTGTTATACAATTTACCGTTGAC 1639680 + 
CTAATACGACTCACTATAGGGAGAAAAGAACAG
CAGGCAATCCTGTAAA 1639975 - 

6 S1E BLi_r1585 
GAGCGCTTCATTTCCATTAATAAGCC 2082882 + 
CTAATACGACTCACTATAGGGAGACCTGTCACAA
ATGTAGAAGGAAACG 2083388 - 

7 S1F BLi_r2340 
CATTCATTTCGCCTCCGTAGCTC 2997767 + 
CTAATACGACTCACTATAGGGAGACTTCTTCGAG
ACCAGAGATGTAATC 2997975 - 

8 S1G BLi_r3281 
CAAAGCCGTCTATATAGTAACGTC 4187044 + 
CTAATACGACTCACTATAGGGAGATTCCGTCCCG
AGCCACTC 4187205 - 
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Abstract

Background: Industrial fermentations can generally be described as dynamic biotransformation processes in which
microorganisms convert energy rich substrates into a desired product. The knowledge of active physiological
pathways, reflected by corresponding gene activities, allows the identification of beneficial or disadvantageous
performances of the microbial host. Whole transcriptome RNA-Seq is a powerful tool to accomplish in-depth
quantification of these gene activities, since the low background noise and the absence of an upper limit of
quantification allow the detection of transcripts with high dynamic ranges. Such data enable the identification
of potential bottlenecks and futile energetic cycles, which in turn can lead to targets for rational approaches to
productivity improvement. Here we present an overview of the dynamics of gene activity during an
industrial-oriented fermentation process with Bacillus licheniformis, an important industrial enzyme producer.
Thereby, valuable insights which help to understand the complex interactions during such processes are provided.

Results: Whole transcriptome RNA-Seq has been performed to study the gene expression at five selected growth
stages of an industrial-oriented protease production process employing a germination deficient derivative of B.
licheniformis DSM13. Since a significant amount of genes in Bacillus strains are regulated posttranscriptionally, the
generated data have been confirmed by 2D gel-based proteomics. Regulatory events affecting the coordinated
activity of hundreds of genes have been analyzed. The data enabled the identification of genes involved in the
adaptations to changing environmental conditions during the fermentation process. A special focus of the analyses
was on genes contributing to central carbon metabolism, amino acid transport and metabolism, starvation and
stress responses and protein secretion. Genes contributing to lantibiotics production and Tat-dependent protein
secretion have been pointed out as potential optimization targets.

Conclusions: The presented data give unprecedented insights into the complex adaptations of bacterial
production strains to the changing physiological demands during an industrial-oriented fermentation. These are,
to our knowledge, the first publicly available data that document quantifiable transcriptional responses of the
commonly employed production strain B. licheniformis to changing conditions over the course of a typical
fermentation process in such extensive depth.
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Background
For several decades, strains of the Bacillus subtilis group
[1] have been exploited for industrial purposes. The scope
of applications includes the production of amylases, prote-
ases and antibiotics by strains of B. subtilis, B. amylolique-
faciens, B. pumilus or B. licheniformis [2]. High capacities
of product secretion, high growth rates, and the GRAS
(generally regarded as safe) status of many strains have
contributed to the employment of these species as bio-
technological workhorses [2]. In general, the production
process can be considered as an energy consuming
biotransformation in which a nutrient rich substrate is
converted into the desired product by a member of the
genus Bacillus.
The productive process examined in this study is based

on the production platform B. licheniformis, which has
been proven to perform well for the production of alkaline
proteases and in particular subtilisins, which are used in all
types of laundry detergents [3]. Therefore, research efforts
have been focused on the B. licheniformis subtilisin fer-
mentation process and the resulting yield of active enzyme.
A major aspect has been monitoring and improvement of
bioprocess parameters such as oxygen transfer rate [4-6],
pH value [7,8], inoculum quality [9] and initial glucose
concentration [10], whereas other studies addressed the
optimization of the fermentation medium [11,12]. Strat-
egies for the molecular biological improvement of subtilisin
[13] and its secretion [14] have been described. Attention
has also been paid to strain optimization by generation
of deletion mutants targeting transfer of genetic mater-
ial [15,16], secretion capability [17], sporulation and
biological containment [18-20]. Investigation of B. liche-
niformis under different stress conditions by proteomics
and microarray-based transcriptomics have been ap-
plied to identify marker genes [21-24], to enable the de-
tection of stressors during a productive fermentation
process. However, rational strain or bioprocess optimization
requires potential targets and therefore the knowledge of
genomic activities during the crucial stages of a fermenta-
tion process under industry-oriented conditions is essential.
An RNA-Seq-based study targeting the identification

of B. licheniformis DSM13 RNA-based regulatory ele-
ments such as non-coding and antisense RNAs under
production-oriented growth conditions has recently been
published by our group [25]. The application of RNA-Seq
allows the quantification of transcripts with a hitherto
unmatched dynamic range spanning several orders of
magnitude [26], therefore enabling in depth analysis of
differential expression between physiological conditions or
developmental states. Further advantages of RNA-Seq are
the low background noise, the provided single base reso-
lution and the high reproducibility [26,27]. Therefore,
RNA-Seq, especially when coupled with other “omics”
techniques like 2D gel-based proteomics, provides the

opportunity for global investigation of microbial gene ex-
pression. However, although recent advantages in RNA-
Seq technology have greatly enhanced the efficiency and
availability of this approach, no such data on industrial fer-
mentations of B. licheniformis have been made publicly
available to this day.
To identify gene activities of B. licheniformis directly

related to the productivity of a subtilisin fermentation
process, we present a high-resolution quantitative and dy-
namic exploration of the transcriptional responses of B.
licheniformis confirmed by proteome data. Special atten-
tion was given to production stage-related adaptions of B.
licheniformis. The RNA abundances and the cytoplasmic
proteome composition of all samples were determined by
RNA-Seq experiments and by 2D gel electrophoresis [25],
respectively. As measure of gene expression, the nor-
malized amount of sequenced nucleotides per gene is
expressed in single-base resolution by the NPKM (nu-
cleotide activity per kilobase of exon model per million
mapped reads) value [25], which is closely related to the
more common RPKM value [28]. These data provide a
first analytical framework to gain better understanding
of the dynamics during such fermentations, and to en-
able the identification of potential physiological and
genetic bottlenecks. Furthermore, the data are intended
as a reference for subsequent comparisons with transcrip-
tome data from other fermentation procedures employing
related Bacillus strains, in order to guide rational ap-
proaches for the optimization of production processes.

Results and discussion
In this study, transcriptome and proteome data of se-
lected samples from an industry-oriented fermentation
have been analyzed with focus on physiological changes
during the process. The samples were taken in triplicate
at five time points (sampling points I-V) during growth
within a subtilisin fermentation process of B. lichenifor-
mis MW3Δspo (Figure 1; Additional file 1: Figure S1).
This strain is a germination deficient mutant of B. licheni-
formis DSM13, transformed with an expression plasmid
encoding a subtilisin protease. Sampling point I represents
the growth in presence of glucose, whereas sampling
points II and III correspond to the subsequent phase of
glucose starvation. Sampling points IV and V represent
the productive stages of the process in which the alkaline
protease is synthesized and secreted.
Previously, we curated the annotation of 4172 protein-

coding genes and determined the respective transcript
abundances in all samples [25,29], resulting in NPKM
values from 0 for lacking transcripts to 85.267 for the
most abundant transcripts (Figure 2). Analysis of the
obtained data with baySeq [30] and ANOVA revealed
that 980 and 1016 genes, respectively, are differentially
expressed at the different sampling points. In total, 1395
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genes were determined as differentially expressed by at
least one method and utilized for further analysis. Gen-
eric GO slim enrichment analysis [31,32] revealed that
genes assigned to regulation, protein modification and
metabolism, DNA metabolism, cell cycle and translation
are underrepresented within this dataset of differentially
expressed genes. Overrepresented genes were assigned
to protein transport, response to external stimuli, carbo-
hydrate metabolic processes and cell differentiation.
The transcriptome data allowed the assignment of 3567

genes to 23 clusters by k-means cluster analysis based on
the determined differentially expressed genes (Figure 3 and
Figure 4; Additional file 2: Table S1) [36]. Each cluster was
also examined for over- and underrepresented groups of
genes by GO term-based enrichment analysis (Additional
file 2: Table S2) [32,37]. Clusters A-H and N-Q comprise
genes which are more abundant at the early stages of the
process than at the later sampling points. In this group,
overrepresented genes are mainly involved in gene expres-
sion and translation, biosynthetic processes, transport and
metabolism of amino acids, or central carbon metabolism
including glycolysis and TCA cycle. Another pattern can
be found for clusters I-M and R + S which contain genes
displaying higher transcript abundances in the productive

stage of the fermentation (sampling points IV and V). In
clusters with the highest measured transcript abundances
at stage IV (K-M) genes were predominantly involved in
sporulation processes. Transcripts more abundant in stage
V than in stage IV are depicted in clusters I and J and,
among others, encompass genes for phosphate ABC trans-
porter PstABC and nitrate reductase NarGHIJ.
Detailed analyses of transcript and protein abundances

(Additional file 2: Table S3) concerning important factors
of bacterial growth and productivity (amino acid transport
and metabolism, central carbon metabolism, starvation
and stress responses, and protein secretion) will be pre-
sented in the following passages.

Amino acid transport and metabolism
The examined fermentation process was performed in
the presence of a complex nitrogen source initially sup-
plemented with glucose. To elucidate how B. lichenifor-
mis utilizes the supplied peptide substrate, the transcript
(Figure 5 and Figure 6) and protein (Additional file 1:
Figure S2 and Figure S3) abundances of the major amino
acid metabolism-related genes were examined in the
context of their metabolic network.
The genome of B. licheniformis encodes six unambigu-

ous operons encoding peptide ABC transporters (app1,
app2, dpp, opp, BLi00892-96, BLi02527-31) [25,29], four
of them showing transcript abundance under the exam-
ined conditions (Figure 5). The app1 and the opp operon
each encode oligopeptide ABC transporter systems. They
are transcribed during all stages of the fermentation
process, but show top transcript abundances at the earlier
sampling points, particularly at sampling point II (NPKM
values >500). In contrast, the dpp operon encoding a di-
peptide ABC transporter displays increased RNA abun-
dance over time with maximal levels at sampling point IV.
Furthermore, transcripts of the dipeptide/oligopeptide
ABC transporter operon BLi00892-96 are only abundant
at the later fermentation stages. Regarding the RNA abun-
dances of the opp and dpp operons, similar patterns of ac-
tivation and repression during cell growth and sporulation
have been observed in B. subtilis [38-40]. In contrast, the
app1 operon, which is orthologous to the app operon of
B. subtilis, does not resemble the sporulation-dependent
regulation in the model organism [39,40], indicating a dif-
ferent regulation of this operon in B. licheniformis.
The RNA abundances of the ABC transporter operons

seem to reveal a fermentation stage-dependent pattern,
promoting the idea that oligopeptides are imported pri-
marily, whereas dipeptides are presumably consumed
after oligopeptides are exhausted. This transcriptional
pattern may be influenced by the fact that dipeptides
should become more available over time due to the
activity of extracellular protease secreted within the fer-
mentation process. The RNA abundances of further
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Figure 1 Protease production and process parameters. Process
parameters are shown for fermentation L (please refer to Additional
file 1: Figure S1 for replicate fermentations R and M). Oxygen partial
pressure pO2 [%], glucose concentration cGlucose [g/L], supplied
glucose feedGlucose [g/L] and normalized protease activity [%] are
displayed on the left y-axis, whereas acetate concentration cAcetate
[g/L], carbon dioxide content CO2 [%], and ammonium concentration
cNH4+ [g/10 L] are scaled on the right y-axis. The process time t [h] is
given on the x-axis. The sampling points I to V are indicated by light
blue lines. The figure was modified from Wiegand et al. [25] where a
detailed analysis of RNA-Seq data of the same experimental setup
aiming at the identification of regulatory RNAs was performed.
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amino acid transporters are shown in Additional file 1:
Figure S4.

Sampling point I
At this fermentation stage of carbon excess (Figure 1),
transcripts of the operon of the glutamate synthase
(GOGAT) gltAB and the gene of the glutamine synthetase
(GS) glnA are highly abundant (Figure 6). This prompts
the conclusion of a strong glutamate production, which is
fed by 2-oxoglutarate provided by the catabolism of glu-
cose (see Central carbon metabolism). The high transcript
abundance of genes involved in the glutamate-dependent
anabolism of proline, aspartate, alanine and aromatic and
branched-chain amino acids (Figure 5 and Figure 6) indi-
cates that the produced glutamate is utilized for the syn-
thesis of other amino acids [41,42], despite the given
complex amino acid broth.
Further active genes have been assigned to aspartate

degradation for pyrimidine biosynthesis (Figure 3), ar-
ginine and S-adenosyl methionine (SAM) metabolism
for putrescine synthesis, and cysteine degradation re-
leasing sulfur-containing compounds (Figure 5 and
Figure 6).

Sampling point II
Upon glucose exhaustion (Figure 1), the transcriptome
indicates drastic changes in the fluxes of the amino acid
metabolism. Transcripts of genes for glutamate-releasing

catabolic processes are highly abundant, as it can also be
observed for transcripts of genes promoting the degrad-
ation of proline, arginine and branched-chain amino
acids (Figure 5 and Figure 6). In reverse, the transcripts
of the glutamate-consuming pathways abundant at sam-
pling point I have declined. Glutamate now seems to be
metabolized to 2-oxoglutarate by the glutamate dehydro-
genase (GDH) GudB and channeled into the TCA cycle.
Complementarily, the transcripts of GS and GOGAT are
also less abundant [41]. Furthermore, the observed tran-
script abundances indicate that threonine is metabolized
to glycine which is then degraded by the glycine cleavage
complex, in order to gain reducing equivalents and C1
compounds while serine is degraded to pyruvate by L-
serine dehydratase SdaAAAB to provide further energy
sources.

Sampling point III
During the later glucose exhaustion stage (Figure 1)
most genes involved in amino acid metabolism show re-
duced transcript abundances. Elevated abundances are
nearly exclusively found in pathways involved in serine
degradation, such as the above mentioned conversion of
serine to pyruvate, the metabolization to glycine for sub-
sequent degradation by the glycine cleavage complex,
and the conversion to cysteine which is then further
metabolized to pyruvate via the intermediate alanine
(Figure 5 and Figure 6).
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Figure 2 Most abundant gene transcripts. Mean NPKM values of the most abundant gene transcripts are plotted against sampling points.
Colored lines indicate classes of similarly abundant transcripts. Grey and black lines represent genes with high RNA abundances in all 15 samples
(NPKM values 1000–5000); black lines additionally indicate genes referred to in the text. Green color marks those genes, whose transcripts are
most abundant (NPKM values >5000) throughout all sampling points, whereas genes with highly abundant transcripts (NPKM values >5000) only
at specific sampling points are shown in orange, red and blue. The most abundant transcript was assigned to lanA2 in sample R-III. This gene
encodes a component of the two-peptide lantibiotic lichenicidin [33] and is transcribed with NPKM values >5000 at all sampling points. Accordingly
high transcript abundance can also be observed for lanA1, which codes for the second prepeptide of this lantibiotic. Further genes with similar abundances
are coding for the BsrG-like peptide (BLi05015) [25,34], the sporulation protein SpoVG, the DNA-binding protein Hbsu, BLi01059 and Veg [35]. The
gene encoding the oxygen detoxification protein SodA, the cold shock responsive genes cspB and cspD, the gene for the elongation factor
Tu, and genes coding for components of the translation machinery are transcribed with NPKM values >1000 at all sampling points. Transcripts
which are highly abundant exclusively in the later, productive stages of the process are associated to spore formation, whereas transcripts which are
highly abundant during the early stages of the process encode ribosomal proteins, proteins of the TCA cycle and ATP synthase subunits. For an
illustration of highly abundant proteins please refer to Additional file 1: Figure S8.
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The transcript abundances of purA and purB – and
other genes associated with purine biosynthesis (Figure 3) -
indicate the degradation of aspartate in order to provide
building blocks for this pathway.

Sampling points IV & V
In the productive stages of the fermentation process
(Figure 1), the determined RNA abundances show that the

amino acid metabolism has progressed to the glutamate-
consuming synthesis of proline and the nitrogen-rich
amino acids arginine and histidine (Figure 6). The reason
for this reaction may lie in the previous high induction of
genes mediating the degradation of proline and arginine
during the earlier stage of glucose exhaustion. The glu-
tamate required for these anabolic reactions is delivered
by the glutamate dehydrogenase GdhA [43], and the
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Figure 3 k-means clustering of expression profiles with assigned GO terms. Thirteen gene clusters determined by k-means clustering are
depicted with corresponding, significantly enriched GO terms [32] (see also Figure 4). Over- and underrepresented GO terms are indicated by red
and green symbols, respectively. Black lines mark genes with a baySeq [30] likelihood value >0.99, which indicates differential expression; all other
genes are colored in grey. All values are depicted by Z-score transformed NPKM values (y-axis) versus sampling points I to V (x-axis).
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GOGAT/GS system which becomes slightly re-induced
upon amino acid consumption and the applied glucose
feed [41].
Further pathways whose transcripts are abundant at

these fermentation stages include the synthesis of threo-
nine via the anabolism of homoserine, and the conver-
sion of valine to alanine (Figure 5 and Figure 6). Also,
the transcripts of genes for the degradation of lysine are
highly abundant; as members of the σE regulon, they are
activated by the initiation of sporulation [44]. In addition
to the high transcript abundance of sporulation-related
genes shown in Figure 3, this is evidence for active
sporulation within the fermenter population.
Of course, the conditions in the fermenter do not cause

a response to nitrogen limitation as described by Voigt
et al. [21]. However, the shut-down of branched-chain
amino acid degradation during the phase of glucose ex-
haustion at sampling point III might be accounted to a
limitation effect, as in B. subtilis the orthologous transcrip-
tional regulator for activation of this pathway is induced by
the presence of such amino acids [45]. Additionally, as
transcripts of several amino acid synthesis pathways of are
abundant during the later fermentation stages, these amino
acids are seemingly not available in excess.

Central carbon metabolism
The production process was initially supplemented with
glucose. Upon depletion of this sugar and its derivates, a

pulsed glucose feed was established in order to enhance
the available energy. Thus, enzymes relevant for sugar
catabolism (Figure 7; Additional file 1: Figure S5) and
sugar transport (Additional file 1: Figure S6) are required
to maintain an optimal energy supply throughout the
fermentation. The transcriptional changes of those en-
zymes were analyzed at the different sampling points
and will be described in the following passages.

Sampling point I
Shortly before the total depletion of the initially supplied
glucose (Figure 1), the genes for glycolytic enzymes are
highly transcribed (NPKM values from 359 to 2473). High
transcript abundance has also been recorded for the genes
of the oxidative pentose phosphate pathway and the TCA,
but not for the embedded glyoxylate bypass [29] (Figure 7).
Furthermore, the alsSD operon for acetoin synthesis
and the phosphate acetyltransferase gene pta for acetate
production were maximally transcribed, indicating the
channeling of carbon to the production of overflow
metabolites (Figure 1) [46]. However, varying transcript
abundances of the acetate kinase gene (ackA), also in-
volved in acetate synthesis, were observed. This is due
to slightly asynchronous samples for this fermentation
stage (Figure 1; Additional file 1: Figure S1) and restricts
the determination of reproducible NPKM values for this
gene and sampling point (Figure 7).

R S

P QN O

T U V W

Figure 4 k-means clustering of expression profiles. Ten gene clusters determined by k-means clustering with no significantly enriched GO
terms (see also Figure 3). Black lines mark genes with a baySeq [30] likelihood value >0.99, which indicates differential expression; all other genes
are colored in grey. All values are depicted by Z-score transformed NPKM values (y-axis) versus sampling points I to V (x-axis).
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grey boxes. Amino acids written in bold can also be found in Figure 6. Yellow frames indicate reactions with multiple assigned enzymes of
which only one is strictly necessary. Pyr: Pyruvate. For the corresponding proteome data please refer to Additional file 1: Figure S2.
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Sampling point II
After exhaustion of the carbohydrate source (Figure 1),
the transcript abundances of the genes of acetate and
acetoin synthesis decline (NPKM values <72) (Figure 7).
This regulatory effect can be explained by the fact that
the expression of the acetate synthesis genes pta and
ackA is influenced by CcpA triggered carbon catabolite
activation, as shown for B. subtilis [47-49], which ceases
with glucose depletion. Furthermore, the acetoin synthe-
sis operon alsSD is activated by the transcriptional regu-
lator AlsR in the presence of acetate [50,51]. Therefore,
it exhibits reduced transcription when acetate concen-
tration decreases due to the dissimilation of the products
formed during overflow metabolism (Figure 1). The
dissimilatory reaction is caused by the termination of
carbon catabolite repression, allowing an increasing
transcript abundance of acsA (Figure 7), which encodes
an acetyl-CoA synthetase for the conversion of acetate to
acetyl-CoA [52]. Transcript abundance of the acuABC op-
eron, which has been shown to lead to in- and reactivation
of AcsA in B. subtilis [53,54], is also increased upon cessa-
tion of carbon catabolite repression (Additional file 1:
Figure S7). However, an influence of this operon on the
acetate or acetoin metabolism of B. licheniformis has not
been revealed [55]. Furthermore, the transcript abundance
of the acoABCL operon has strongly increased (NPKM
values >2500) (Figure 7). The expression of the corre-
sponding transcriptional activator gene, acoR, depends on
induction by acetoin [55,56]. Therefore, a high concen-
tration of acetoin is indicated by the high transcript
abundance of this operon. In contrast, the gene of the
acetoin reductase/2,3-butanediol dehydrogenase budC
is only weakly transcribed (NPKM value <60) through-
out the production process. Thus, it appears that no sig-
nificant 2,3-butanediol production occurred under the
given conditions.
Negative regulatory effects could be observed for the

genes of the gapA and the pdh operon (Figure 7), which
are repressed as reaction to glucose starvation [21]. In
contrast, the genes coding for the isocitrate lyase AceA
and the malate synthase AceB, reach their top level of
transcript abundances at this sampling point. Both genes
belong to the glyoxylate bypass, allowing B. licheniformis
not only to gain energy by C2 compound oxidation, but
also to grow on acetate and acetoin as sole carbon sources
by bypassing the oxidative, CO2 evolving steps of the TCA
cycle [55,57]. Additionally, the high transcript abundance

of the other genes of the TCA cycle enables the utilization
of 2-oxoglutarate provided from amino acid catabolism
(see Amino acid transport and metabolism).
In general, the registered changes in metabolism dur-

ing this process stage are in good accordance with re-
sults presented by a previous study on glucose starvation
in B. licheniformis [21]. However, this is the first time
that expression of these production-relevant genes [3] is
shown during growth of B. licheniformis in rich medium.

Sampling point III
At this stage of the fermentation process, the C2 com-
pounds were completely depleted and the cells entered a
short phase of reduced metabolic activity (Figure 1). The
genes coding for glycolytic enzymes also involved in glu-
coneogenesis, which have shown decreased transcript
abundances at sampling point II, are slightly increased
(Figure 7). This is confirmed by the amount of the corre-
sponding proteins (Additional file 1: Figure S5). Further-
more, transcripts of exclusively gluconeogenic genes gapB
and glpX show their maximal abundances at this sampling
point (Figure 7). Phosphoenolpyruvate (PEP), the building
block for gluconeogenesis, seems to be converted from
oxaloacetate, as the gene for the phosphoenolpyruvate
carboxykinase PckA is maximally transcribed. Contrarily,
the genes for the phosphoenolpyruvate synthases Pps1,
Pps2 and Pps3 [25], promoting PEP synthesis from pyru-
vate, show only low levels of transcript abundance (NPKM
values <25). Additionally, the genes of the non-oxidative
pentose phosphate pathway show their highest transcript
abundances during the phase of glucose starvation (sam-
pling point II and III). This regulatory effect is in accord-
ance with previous observations in B. licheniformis [21],
and is remarkable as no glucose-dependent regulation of
this pathway has been found in B. subtilis [58].
Taken together, the observations indicate that the C2

compounds catabolized via the glyoxylate bypass are uti-
lized for the generation of glucose and other sugars.

Sampling points IV & V
The last two samples were taken during the subtilisin
production stage of the fermentation process. At these
sampling points, glucose was added to the fermenter in
pulsed feeding steps and channeled to energy metabolism
via glycolysis and TCA cycle (Figure 7). Although the
RNA abundances of both pathways are reduced compared
to the previous sampling points, they are still abundant

(See figure on previous page.)
Figure 7 Transcriptome of the central carbon metabolism. Heat map representation of Z-score transformed NPKM values of genes
involved in central carbon metabolism. Genes with an assigned antisense RNA [25] are marked in blue, genes with NPKM values <25 at
all sampling points are indicated by dark grey boxes and statistically not significant values are indicated by light grey boxes. Yellow
frames indicate reactions with multiple assigned enzymes of which only one is strictly necessary. For the corresponding proteome data
please refer to Additional file 1: Figure S5.
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(NPKM values >100). Similar results were also obtained
for the transcript abundances of genes involved in glu-
coneogenesis and the non-oxidative pentose phosphate
pathway. These findings, together with the above de-
scribed glutamate-consumption by anabolic amino acid
pathways during the late stages of the fermentation
process, indicate that the pulsed supply with glucose
during this fermentation stage is not only sufficient for
provision of reducing equivalents, but also for facilita-
tion of 2-oxoglutarate formation needed for glutamate
synthesis.

Starvation and stress responses
Bacterial cells react to declining nutrient concentrations
or changing environmental conditions by exhibiting well
orchestrated starvation or stress responses. To elucidate
whether B. licheniformis suffers of any of these situations
during the fermentation process, we compared the ob-
tained transcriptomic and proteomic data to described
starvation and stress responses of B. licheniformis and B.
subtilis [23,24,59-62].
In B. licheniformis, oxidative stress induced by hydro-

gen peroxide results in increased RNA abundances of
the PerR, Spx, Fur, and SOS regulon [23]. In our study,
we found the PerR as well as the Spx regulon (Figure 8)
temporarily induced during the early stages of the fer-
mentation process (sampling points I to III). The tran-
script as well as the gene product of the superoxide
dismutase-encoding sodA were highly abundant at all
sampling points (see also Figure 2 and Additional file 1:
Figure S8), leading to an accumulation of the SodA pro-
tein over time. A similar pattern of transcript abundance
and protein accumulation could also be observed for the
putative thiol peroxidase Tpx, but not for the vegetative
catalase KatA. In contrast to these results, the Fur regu-
lon and the SOS regulon did not show distinct RNA
abundances. In B. subtilis, the SOS regulon has been
described to be more responsive to hydrogen peroxide
than to superoxide exposure [59]. Therefore, and also
considering the high transcript abundance of sodA, we
infer a cellular response to a potentially toxic superoxide
load at the early stages of the fermentation process.
Strikingly, we found the lan gene cluster [33,63], which

encodes the genes for lantibiotic production and immun-
ity, to show a high transcript abundance during the early
stages of the fermentation process (Additional file 1:
Figure S9). The highly abundant transcripts of the licheni-
cidin prepeptide genes lanA2 and lanA1 depicted in
Figure 2 are members of this cluster. Although the tran-
script abundances decline at the later fermentation stages,
they remain on a high level, indicating a substantial liche-
nicidin production during the fermentation process. In
consistence with the elevated lichenicidin challenge, cell
envelope stress responsive operons like liaRSFGHI [24]

display transcript abundances during the early stages of
the process (Additional file 1: Figure S10). In the following
stages, the level of transcripts declines to NPKM values
still >100; corresponding to the high levels of lantibiotic-
coding mRNA over the complete fermentation process. It
remains elusive why the cells channel energy to the
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production of antimicrobial compounds and the corre-
sponding immunity response while grown in pure culture.
The performed cluster analysis indicated emerging tran-

script abundances for sporulation-dependent genes at
sampling point IV (Figure 3; Additional file 1: Figure S11).
In general, sporulation is observed as a complex, energy-
consuming response to nutrient limitation, which is acti-
vated by the master regulator of sporulation Spo0A [64].
Obviously, sporulation is rather unproductive in terms of
industrial fermentation and thus undesired during such
processes. Unfortunately, it has been shown that deletion
of Spo0A does not only result in a sporulation-deficient
phenotype, but also in increased cell lysis [65]. In B.
subtilis, it has been shown that activation of Spo0A is
influenced by a cascade of different regulatory systems,
including the potassium leakage-sensing kinase KinC
[66,67]. Strikingly, one known effect of two-peptide lanti-
biotics like the aforementioned lan cluster is indeed the
induction of potassium leakage [68,69]. Thus, our data
indicate a lichenicidin-mediated sporulation induction
within the fermentation. The deletion of the lan system
may present a promising approach to strain optimization,
as this should lead to reduced levels of phosphorylated
Spo0A with less probability of exceeding the sporulation-
inducing threshold.
A detailed inspection of iron starvation and heat shock

response did not reveal any distinct activation patterns
(Additional file 1: Figure S12 and Figure S13), whereas a
notable phosphate starvation response could be identi-
fied at the latest stage of one fermentation (Additional
file 1: Figure S14).

Protein secretion
In the Gram-positive model organism B. subtilis, secre-
tion of subtilisin is directed via the secretory (Sec) path-
way [14]. Subtilisin is synthesized as preproenzyme [70]
containing a Sec-dependent signal peptide [14] and a
propeptide, which serves as intramolecular chaperone
[71]. The nascent protein chain is recognized by the signal
recognition particle (SRP) and transferred to the mem-
brane [72] where it is forwarded to the Sec translocase and
transported across the membrane [73]. After cleavage of
the signal peptide, the subsequent protein folding into pro-
subtilisin is aided by the propeptide [74] and the extracyto-
plasmic chaperone PrsA [75]. Following the autoprocessed
cleavage of the propeptide, it is degraded in trans and the
active enzyme is released into the extracellular space [71].
The heat map depicted in Figure 9A shows the RNA
abundances of the required orthologous genes in B.
licheniformis. Interestingly, the transcript abundances of
these genes decline in the late stages of the process in
which the main amount of subtilisin is secreted. This ob-
servation is also supported on protein level by the abun-
dance of PrsA, which declines at the later sampling

points (Additional file 2: Table S3). The only exception
to this pattern is the highly abundant SRP component
scr (4.5S RNA) which shows increased RNA abundance
at the later sampling points.
In contrast to genes of the Sec pathway, the transcript

abundances of the genes of the twin-arginine transloca-
tion (Tat) system TatAyCy double from sampling point I
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Figure 9 Secretion. Heat map representation of Z-score transformed
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to II (Figure 9B) and increase further to maximal abun-
dance (NPKM values 1221 and 1155) at the latest sam-
pling point. In contrast to TatAyCy, transcripts of the
second Tat system TatAdCd do not show any abundance
during the fermentation process. Five proteins were
predicted to contain a corresponding Tat signal peptide.
However, the pattern of transcript abundances of these
proteins does not indicate that they are the main secre-
tion targets for the strongly transcribed TatAyCy system.
It has recently been shown that the extracellular B. sub-
tilis lipase BSU02700, which is Sec-dependently secreted
under standard conditions, is translocated by the B. sub-
tilis Tat pathway in a hyper-secreting strain [80]. Hence,
this phenomenon has been assumed to be an overflow
mechanism [80]. Considering the RNA abundances shown
for the secretion machinery in this study (Figure 9), it is
tempting to speculate that this overflow mechanism may
also play a role in the secretion of subtilisin in B. licheni-
formis. The fact that no typical Tat signal peptide is at-
tached to the subtilisin proenzyme seems to argue against
this hypothesis. However, it was shown that the conserva-
tion of the RR motif of the signal peptide [81] is not essen-
tial for Tat-dependent secretion [82,83]; an RK motif, as
present in the Subtilisin Carlsberg prepeptide, can like-
wise facilitate Tat-dependent secretion (Additional file 1:
Figure S15) [82,83]. The blurred boundaries of Tat- and
Sec-dependent secretion are additionally pointed out by
the facts that proteins with a Tat signal peptide can, vice
versa, be secreted by the Sec pathway and that the Tat
system is accessible for originally Sec-dependent pro-
teins fused to Tat signal peptides [84,85]. This was demon-
strated by the detection of TatAyCy-dependent export of
active subtilisin [85] and gives reason to assume that
Tat-dependent subtilisin secretion is not an obstacle for
proper folding of the enzyme.
In B. subtilis, a CssRS-dependent response to protein

secretion stress triggered by both, homologous and
heterologous proteins, has been described [86-88]. The
two-component regulatory system CssRS reacts to secre-
tion stress by activating the transcription of htrA and
htrB [87], which encode membrane-anchored serine pro-
teases that trigger refolding or degradation of misfolded
or aggregated proteins [89]. The here determined RNA
abundances of the genes of the CssR regulon are given
in Figure 9C. High transcription rates can be observed
for the genes of the serine proteases HtrA and HtrB at
the first sampling point, but these rates decline at later
stages of the process. This reaction could be due to vari-
ous reasons: (i) even highly synthesized pre-subtilisin
does not aggregate in the cells, (ii) the cells are highly
tolerant to large amounts of (aggregated) pre-subtilisin
or (iii) the preprotein is efficiently exported in the late
production stages, maybe even supported by the Tat
pathway.

Conclusion & outlook
The presented data give unprecedented insights into the
complex adaptations of the bacterial production strain B.
licheniformis DSM13 to the changing physiological de-
mands during an industrial-oriented fermentation using
the example of a detergent protease production process.
We thereby provide reference data for a better under-
standing and possible optimization of industrial fermenta-
tion processes.
These insights enabled us to pinpoint physiological ad-

aptations within the bioprocess, many of which could be
confirmed by proteome analysis. Cluster analysis clearly
revealed strong growth phase dependencies of many
genes as well as some phase-independent genes. RNA as
well as protein abundances of the central carbon metabol-
ism and the amino acid metabolism are in accordance
with the initial glucose-driven metabolism. Main changes
in the corresponding pathways regard the overflow metab-
olism and the subsequent catabolism of the thereby pro-
duced C2 compounds as well as the alternating synthesis
and degradation of glutamate and its derivates. Changes in
RNA abundances reflect a transition of sustenance from
more complex molecules like peptides and oligomers to
amino acids. This emphasizes the importance of the se-
creted protease and its activity on the substrate as a func-
tional component of the productive fermentation.
By comparing our data to previous transcriptome

studies focusing on stress conditions, we were able to re-
liably identify potential stress factors within the process.
A detailed inspection of the associated transcripts re-
vealed oxidative stress and increasing phosphate limita-
tion as important factors. Notably, the transcripts of the
lichenicidin biosynthesis-related genes lanA1 and lanA2
are highly abundant throughout all sampling points. The
high abundances of the complete lan gene cluster and
the majority of sporulation-involved genes indicate a sub-
stantial production of antimicrobial compounds and a re-
sponsive, KinC-enhanced induction of sporulation. This
energy-consuming behavior is clearly not supportive in
terms of productivity.
An interesting finding concerning protein secretion

pathways is the increase in abundance of the Tat path-
way components tatAY and tatCY from sampling point I
to V, which is in contrast to the abundance patterns of
genes of the Sec secretory system. Thus, the cells seem to
increase the overall secretion capacity during the produc-
tion process by including non-typical secretory pathways.
The presented findings enabled the identification of

important physiological and genetic switches of B. liche-
niformis which limit the overall productivity. The data
indicate several opportunities to improve the strains per-
formance in the production of subtilisin. The observed
adaptions to the changing substrate supply during the
successive metabolization of media components suggest
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that an optimization of the non-optimal amino acid com-
position or phosphate supply may lead to better reproduci-
bility, increased efficiency, cycle time reduction, and finally
a diminished employment of resources. Optimization of
the deployed strain should also be achieved by the intro-
duction of genetic modifications. For instance, the ob-
served strong expression of the lan gene cluster which
encodes an undesirable cell wall stress inducing byproduct
marks it as promising target for a gene deletion. Another
approach might be the modulation of the subtilisin signal
peptide to channel subtilisin to the putative Tat-dependent
secretion pathway.

Methods
Bacterial strains and fermentation
The samples for the proteome analysis were derived from
fermentation experiments carried out for Bacillus licheni-
formis MW3Δspo described earlier. For detailed descrip-
tion of fermentation conditions, sampling points and
sequencing of the transcriptome please refer to Wiegand
et al. [25].

Preparation of cytosolic protein extracts
50 mL of harvested cells were supplemented with 0.5 mL
of protease inhibitor (3758.1, Carl Roth, Germany) directly
upon sampling. Centrifugation was carried at 4500× g and
4°C for 10 min. The supernatant was removed and the
cells were stored at −80°C.
For preparation of the cytosolic protein extracts the

insoluble components of the fermentation medium were
removed from the bacterial pellet by washing at least
three times in ice cold 100 mM Tris/HCl, pH 7.5 buffer
at 10000× g and 4°C for 10 min. After the last washing
step the pellet was resuspended in 600 μL TE buffer
(10 mM Tris/HCl, pH 7.5, 1 mM EDTA) containing
1.4 mM phenylmethylsulfonyl fluoride (PMSF). After
addition of 250 μL glass beads (0.25-0.5 mm) the cells
were disrupted by using RiboLyser cell mill (30 s at
6800 rpm, 5 min on ice, 30 s at 6800 rpm; Hybaid, UK).
Glass beads and cell debris were removed by two centri-
fugation steps at 13000× g and 4°C for 30 min. To re-
move ions, which could disturb the isoelectric focusing,
the protein extracts were purified with Amicon Ultra
3 K Centrifugal Filters (Millipore, Germany). The pro-
tein concentration of the protein extracts was deter-
mined using Roti®NanoQuant (Carl Roth, Germany).

Two dimensional gel electrophoresis, imaging and
quantification
Isoelectric focusing (IEF) of the cytosolic protein extracts
was performed according to [90]. IPG BlueStrips 4–7
(SERVA, Germany) were loaded with 150 μg protein ex-
tract, which was adjusted to 340 μL with 2 M thiourea/
8 M urea buffer and 34 μL CHAPS solution (20 mM

DTT, 1% w/v CHAPS detergent) and rehydrated over
night. IEF was carried out on a Multiphor II unit
(Amersham Pharmacia Biotech) employing the following
step gradient: 150 V for 150 Vh,300 V for 300 Vh, 600 V
for 600 Vh, 1500 V for 1500 Vh, and a final phase of
3000 V for 57.5 kVh at 20°C. Before separation in the
second dimension the IPG strips were incubated in 3.5 mL
equilibration buffer A (2.4 M urea, 12% v/v glycerol, 4% v/v
0,5 M Tris pH 6.8, 55.5 mM SDS, 9 mM DTT) and equili-
bration buffer B (2.4 M urea, 12% v/v glycerol, 4% v/v
0,5 M Tris pH 6.8, 55 mM SDS, 9 mM DTT, 97 mM ioda-
cetamide, 0.15 mM bromphenol blue), each for 15 min on
an orbital shaker. Electrophoresis of the proteins was car-
ried out on 12.16% acrylamide/0.34% bisacrylamide gels at
40 W for 1 h and 16 W for additional 16.5 h at 12°C.
Gels were stained with Flamingo™ Fluorescent Gel Stain
(Bio-Rad Laboratories, USA) following the manufacturer’s
instructions. The gels were imaged with a Typhoon Imager
9400 (GE Health Care, UK). Spot detection was performed
semi-manually with the Delta2D software version 4.1
(Decodon, Germany). Spot quantification was also done
with the Delta2D software as described by Wolf et al. [91].
Quantities for proteins represented by more than one
distinct spot are given for each spot separately.

Identification of proteins from 2D gel spots
Selected protein spots were excised from 2-D gels using
a spot cutter (Bio-Rad, USA). Digestion with trypsin and
spotting on the MALDI-target was achieved using the
Ettan Spot Handling Workstation (GE Health Care, UK)
employing the manufacturers’ protocol. Mass spectrom-
etry was carried out with a Proteome Analyzer 4800 (Ap-
plied Biosystems, USA) according to Wolf et al. [91]. The
spectra were recorded in a mass range from 900 to
3700 Da with a focus mass of 1600 Da. An internal cali-
bration was performed automatically when the autolytic
fragments of trypsin with the mono-isotopic (M + H)+

m/z at 1045.556 or 2211.104 reached a signal to noise
ratio (S/N) of at least 20.
Peak lists were created by using the script of the GPS

Explorer TM Software Version 3.6 (Applied Biosystems,
USA) with the following settings: mass range from 900
to 3700 Da, peak density of 15 peaks per 200 Da, mi-
nimal area of 100 and maximal 60 peaks per spot. The
peak list was created for an S/N ratio of 15. MALDI-
TOF-TOF measurements were carried out for the five
strongest peaks of the TOF-spectrum. Using a random
search pattern, 25 sub-spectra with 125 shots per sub-
spectrum were accumulated for one main spectrum. The
mono-isotopic arginine (M +H)+ m/z at 175.119 or ly-
sine (M +H)+ m/z at 147.107 was used for internal cali-
bration (one-point-calibration) when it reached a signal
to noise ratio (S/N) of at least 5. Peak lists were created
with the following settings: mass range from 60 to
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precursor – 20 Da, peak density of 15 peaks per 200 Da,
minimal area of 100 and maximal 65 peaks per precur-
sor. The peak list was created for an S/N ratio of 10. For
data base search the Mascot search engine version 2.4.0
(Matrix Science Ltd, UK) with a specific Bacillus liche-
niformis (http://www.uniprot.org/uniprot/?query=Bacil-
lus+licheniformis&sort=score) database was used.

Statistical data analysis
NPKM (nucleotide activity per kilobase of exon model
per million mapped reads) values [25] were computed
for every protein-coding gene in all samples as a measure
of RNA abundance. Based on the NPKM values analysis
of differential expression was performed with baySeq [30]
and one-way ANOVA [92]. Genes were assumed to be dif-
ferentially expressed with a resulting baySeq likelihood
value >0.9 or an ANOVA-based p-value <0.01 (False Dis-
covery Rate (FDR) 2%).

k-means clustering
k-means clusters were generated to identify fermentation
stage-dependent trends in gene expression. (i) To ensure
that the data of each replicate are sufficiently reliable, t-
tests [93] were performed using TM4 MeV v4.8 software
[36]. At least three out of the five samples had to have a
p-value <0.15 to be taken into further analysis. (ii) For
setting up the clusters only transcripts with baySeq like-
lihood values >0.99 were applied to the next step. (iii)
Means of the replicates of each sampling point were cal-
culated and z-score transformation was performed to gain
a mean expression value of 0 and a standard deviation of
1 [94]. Clusters A to K and M to S were generated with
TM4 MeV v4.8 [36] employing k-means clustering with
Euclidian distances after estimating the cluster number by
Figure of merit (FOM) analysis [94]. Clusters were cured
manually. (iv) Finally, expression profiles of all other genes
(p-value <0.15) were added to the determined clusters.
Therefore Gene Distance Matrices were computed with
TM4 MeV v4.8 [36] in Euclidian distance for all remaining
transcripts and the respective cluster means as point of
reference. Transcripts were assigned to the previously
determined clusters dependent on their scaled distance
value. In general the scaled distance value had to be
<0.3, exceptions are clusters G and Q with a scaled dis-
tance value <0.6. 312 of the remaining 332 expression
profiles could be assigned to the newly defined clusters
L and T - W.

GO
Gene Ontology terms [37] have been assigned to the
genome of B. licheniformis using Blast2GO [32]. Enrich-
ment analysis for every cluster was performed with the
implemented Gossip [95] package running a two-tailed
Fisher’s Exact Test (FDR 0.05). Go terms over- or

underrepresented were sorted to their respective child
or parent using OBO-Edit. To enable a broad overview
of enriched groups Generic GO slims [31] also were
assigned and analyzed with Blast2GO.

Heat maps
Color codes presented in the heat maps are based on z-
score transformed mean NPKM values for the transcrip-
tome and mean spot quantities for the proteome. Figures 5,
6 and 7 were designed utilizing the CellDesigner™ v4.2
software [96] and employing the databases of SubtiWiki
[76], BioCyc [97], KEGG [98] and IMG [99].

Tat signal prediction
Proteins with RR and KR motifs of Tat signal peptides
where predicted employing the TatP v1.0 software [100].
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CHAPTER C GENE EXPRESSION IN B. LICHENIFORMIS

Figure S1 Protease production and process parameters 
Process parameters are shown for fermentations R and M (please refer to Figure 1 for replicate L). Oxygen 
partial pressure pO2 [%], glucose concentration cGlucose [g/L], supplied glucose feedGlucose [g/L] and normalized 
protease activity [%] are displayed on the left y-axis, whereas acetate concentration cAcetate [g/L] (only for 
fermentation R), carbon dioxide content CO2 [%], and ammonium concentration cNH4+ [g/10L] (only for 
fermentation R) are scaled on the right y-axis. Process time t [h] is given on the x-axis. The sampling points I to 
V are indicated by light blue lines. 
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Figure S2 Proteome of the amino acid metabolism – Part I 
Heat map representation of Z-score transformed protein spot volumes of proteins involved in amino acid 
transport and metabolism. In cases where a specific protein is assigned to more than one spot, the particular spots 
are indicated by an underscore, followed by an ordering letter. Statistically not significant values are indicated by 
light grey boxes. Pyr: Pyruvate. For the corresponding transcriptome data please refer to Figure 5. 
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Figure S3 Proteome of the amino acid metabolism – Part II 
Heat map representation of Z-score transformed protein spot volumes of proteins involved in amino acid 
metabolism. In cases where a specific protein is assigned to more than one spot, the particular spots are indicated 
by an underscore, followed by an ordering letter. Statistically not significant values are indicated by light grey 
boxes. Yellow frames indicate reactions with multiple assigned enzymes of which only one is strictly necessary. 
Pyr: Pyruvate, Oxo: 2-Oxoglutarate. For the corresponding transcriptome data please refer to Figure 6. 
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Figure S4 Amino acid transport 
Heat map representation of Z-score transformed NPKM values. The depicted genes have been annotated as (A) 
amino acid or nitrogen transporters and (B) amino acid ABC transporter components. Please note that the figure 
does not give a complete list of genes involved in amino acid transport. Genes with an assigned antisense RNA 
(Chapter B) are marked in blue, asterisks indicate a detected protein spot for the respective gene (Table S3) and 
statistically not significant values are marked by grey boxes.  
Transporter genes with high transcript abundances during the early stages of the fermentation process are for 
example encoding a tryptophan transporter (trp), cystine (tcyABC) and methionine (metNPQ) ABC transporters 
and diverse proteins for uptake of alanine or unspecific amino acids. Additionally, the transcript of the 
ammonium transporter NrgA, especially required for ammonium transport at low ammonium concentrations in 
B. subtilis (Detsch and Stülke, 2003), is highly abundant at sampling point I. The only operon besides the 
dipeptide ABC transporters mentioned in the main text with distinct transcript abundance at the later sampling 
points encodes a high-affinity arginine ABC transporter (artPQR). 
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Figure S5 Proteome of the central carbon metabolism 
Heat map representation of Z-score transformed protein spot volumes of proteins involved in central carbon 
metabolism. In cases where a specific protein is assigned to more than one spot, the particular spots are indicated 
by an ordering letter. Statistically not significant values are indicated by light grey boxes. For the corresponding 
transcriptome data please refer to Figure 7. 
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Figure S6 Carbohydrate transport 
Heat map representation of Z-score transformed NPKM values. The depicted genes have been annotated as (A) 
carbohydrate ABC transporter components, (B) phosphotransferase system EII components and (C) further 
carbohydrate transporters. Please note that the figure does not give a complete list of genes involved in 
carbohydrate transport. Genes with an assigned antisense RNA (Chapter B) are marked in blue, asterisks indicate 
a detected protein spot for the respective gene (Table S3) and statistically not significant values are marked by 
grey boxes. 
At sampling point II, the transcript abundances indicate the consumption of the previously synthesized acetate 
(Figure 7). These results are supported by RNA abundance shifts of associated transporters. The transcript of a 
tripartite ATP-independent periplasmic dicarboxylate transporter (TRAP) of the TAXI type (BLi02556 and 
BLi02558), which is suggested as capable of acetate transport (Bakermans et al., 2009), is highly abundant. 
During the late production stages, transcripts of transporters of diverse sugars (GlcP, XynP, BglP, SdcS) and cell 
wall components (MurP, NagP) are abundant. It is likely that this reaction can be accounted to the availability of 
such compounds due to cell lysis, as for example described at the onset of sporulation in B. subtilis (González-
Pastor, 2011), or shear effects in the fermenter. 
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Figure S7 Acetoin utilization operon acuABC 
Heat map representation of Z-score transformed NPKM values. The depicted genes are annotated as acetoin 
utilization operon acuABC. 

Figure S8 Most abundant proteins 
Mean spot volumes of the most abundant proteins are plotted against sampling points (see also Table S3). Grey 
lines represent protein spot volumes either higher than 0.8% at one sampling point or higher than 0.5% at all 
sampling points. Lines colored green, red and orange indicate the three most abundant protein spots Eno, Tu and 
SodA_a. In case a specific protein can be assigned to more than one spot, the particular spot is indicated by an 
ordering letter. Please note that statistically not significant values are not shown. 
Highly abundant transcripts (Figure 2) for which predominant proteins could also be observed are coding for 
SodA, Tu and SpoVG. Other strongly synthesized proteins are, for example, the enolase Eno and proteins 
involved in carbon and amino acid metabolism or cofactor synthesis. They also comprise peptidases, the heat 
shock proteins GroES and DnaK and elongation factor G. Protein spots corresponding to the strongly transcribed 
genes lanA1 and lanA2 could not be identified. This was expected, as these proteins are probably exported by 
ABC transporters (Dischinger et al., 2009) and thus cannot be detected by proteome analysis of cytoplasmic 
proteins. The findings of highly abundant proteins match the results for B. licheniformis shown by Voigt et al. 
(Voigt et al., 2004). The only major exception is the absence of the flagellin protein Hag, which is also not 
highly abundant on transcript level. This effect is due to repression of hag gene expression in the presence of 
amino acids (Bergara et al., 2003). 
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Figure S9 Lichenicidin gene cluster 
Heat map representation of Z-score transformed NPKM values. The depicted genes have been identified as two-
peptide lantibiotic lichenicidin-processing gene cluster Lan in B. licheniformis (Begley et al., 2009; Dischinger et 
al., 2009). Genes with an assigned antisense RNA (Chapter B) are marked in blue. 
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Figure S10 Cell envelope stress response 
Heat map representation of Z-score transformed NPKM values. The depicted genes have been identified as 
marker genes for the B. licheniformis cell envelope stress response by Wecke et al. (2006). Genes with an 
assigned antisense RNA (Chapter B) are marked in blue, asterisks indicate a detected protein spot for the 
respective gene (Table S3) and statistically not significant values are marked by grey boxes. The genes yvnB, 
sigY, pbpX and yxlCDEFG are not shown due to lacking transcript abundances (NPKM values <10). 
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Figure S11 Sporulation 
Heat map representation of Z-score transformed NPKM values. The depicted genes were identified as members 
of the sporulation cascade by reciprocal BLAST analysis (Lechner et al., 2011) between B. licheniformis genes 
(Chapter B) and B. subtilis genes assigned to sporulation (Mäder et al., 2012). Genes with an assigned antisense 
RNA (Chapter B) are marked in blue, genes with NPKM values <10 at all sampling points are indicated by dark 
grey boxes, and statistically not significant values are indicated by light grey boxes. 
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Figure S12 Iron starvation 
Heat map representation of Z-score transformed NPKM values. The depicted genes have been identified as 
marker genes for B. licheniformis iron starvation by Nielsen et al. (2010). Genes with an assigned antisense RNA 
(Chapter B) are marked in blue, genes with NPKM values <20 at all sampling points are indicated by dark grey 
boxes and statistically not significant values are indicated by light grey boxes. 
A well described indicator for iron starvation is the induction of siderophore anabolic genes (dhbABCEF and 
rhbCDEF) and siderophore importer genes (feuABC and yclNOPQ) (Nielsen et al., 2010), which are under 
control of the transcriptional regulator Fur (Ollinger et al., 2006). With exception of the Ycl operon, these 
transcripts of these genes are not abundant during the fermentation process. This behavior indicates that iron 
starvation does not occur in any of the examined fermentation phases and corresponds to the observation that the 
Fur regulon is only induced during growth in minimal medium with restricted iron supply but not in rich medium 
(Helmann et al., 2003; Mostertz et al., 2004; Nielsen et al., 2010), as used in this study. 
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Figure S13 Heat shock response 
Heat map representation of Z-score transformed NPKM values. The depicted (A) HrcA and (B) CtsR regulons 
have been identified as B. licheniformis heat stress markers by Nielsen et al. (2010). Genes with an assigned 
antisense RNA (Chapter B) are marked in blue, asterisks indicate a detected protein spot for the respective gene 
(Table S3). 
In cases of heat shock in B. licheniformis, the HrcA regulon including the dnaK and the groE operons and the 
CtsR regulon have been shown to be induced (Nielsen et al., 2010). Furthermore, genes involved in iron and 
purine metabolism were upregulated, whereas the ABC transporter encoding ytrABCEF operon was repressed 
(Nielsen et al., 2010). Since the here analyzed fermentation was not performed under heat shock conditions, the 
data did not show a typical heat shock response. Nevertheless, a transcriptional reaction to the fermentation 
temperature of 39 °C cannot be excluded, as the responses between moderate and severe heat shock can differ 
remarkably (Barreiro et al., 2009). Despite the constant and moderate process temperature, differential 
expression of genes involved in a classic heat shock response (Helmann et al., 2001; Nielsen et al., 2010; 
Schumann, 2003) was observed. The ATP-dependent ClpCP protease shows changes in transcript abundance. 
However, the enzyme has been reported to be involved in proteolysis of misfolded proteins, which were caused 
by a variety of different stressors (Frees et al., 2007; Krüger et al., 2000) including for example the mentioned 
oxidative stress (Leichert et al., 2003; Mostertz et al., 2004; Schroeter et al., 2011). A reaction to non-heat 
stressors is also known for the chaperonins GroEL and GroES (Babu et al., 2011; Lee et al., 2011; Seydlová et 
al., 2012), which were transcribed with NPKM values >1000 at all sampling points or sampling point I, 
respectively. Although both chaperonins are encoded by the groE operon, the ratio of the transcript levels of the 
genes is highly variable between sampling points I and III – whereas groES declines over time, the groEL 
transcripts seem to be increasing. An explanation might be the processing of the bicistronic transcript into two 
monocistronic mRNAs. This effect has been described for Agrobacterium tumefaciens (Segal and Ron, 1995), in 
which the accumulation of groEL over time could also be shown. Furthermore, the determined GroEL protein 
amount (Table S3) does not correlate with the amount of groEL mRNA, but shows the strongest abundance of 
protein at sampling point I. 
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Figure S14 Phosphate starvation response 
Heat map representation of Z-score transformed NPKM values. The depicted genes have been identified as 
marker genes for the B. licheniformis phosphate starvation response by Hoi et al. (2006). The figure shows the 
transcript abundances of those marker genes within the fermentation samples of one replicate (replicate M). 
Genes with an assigned antisense RNA (Chapter B) are marked in blue; asterisks indicate a detected protein spot 
for the respective gene Table S3. Genes with NPKM values <10 at all sampling points are indicated by dark grey 
boxes.  
At sampling point V, transcripts of pstS and the downstream pst operon encoding a phosphate ABC transporter 
(see also Figure 3), but also of phy, phoB, phoD, and yfnK are highly abundant. All of the mentioned genes are 
members of the Pho regulon, also known to provide a specific phosphate starvation stress response in B. subtilis 
(Allenby et al., 2005; Antelmann et al., 2000). Furthermore, yurI and dhaS abundant as described by Hoi et al. 
(2006), supporting the inference of a phosphate shortage in this sample. However, no corresponding 
transcriptional response could be observed for the other fermentation samples (L and R) of sampling point V. 
This disparity coincides with an increased partial pressure of oxygen, starting ~1 h ahead of sampling point M-V 
(Figure S1), which indicates a decreased metabolic activity in this sample at this fermentation stage. At the same 
time, the genes yvnA, alsD, and alsS show no increased transcript abundance. This is in accordance with the 
results obtained by Hoi et al. (2006), who observed no induction of these genes in the early phases (~2 h) of 
declining metabolic activity after phosphate exhaustion. In addition, transcripts of genes involved in metabolic 
pathways, chemotaxis and especially teichoic acid synthesis were lacking, as also shown before (Hoi et al., 
2006). The transcript abundance of the teichuronic acid synthesis operon (tuaABCDEFG), which enables the 
replacement of phosphate-rich teichoic acids, has been described as additional indicator of phosphate starvation 
in B. subtilis (Allenby et al., 2005; Liu and Hulett, 1998) and could also be observed in sample M-V (data not 
shown). In summary, these results indicate that fermentation M is under phosphate limitation during the latest 
stage of the process. This finding might be a target for bioprocess optimization aiming at the prolongation of the 
fermentation process. 
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Figure S15 Putative Tat signal peptide of Subtilisin Carlsberg 
(A) Tat signal peptides contain a conserved twin-arginine motif, defined as SRRXFLK, in which the consecutive 
arginine residues are almost always invariant (Palmer and Berks, 2012). Nevertheless, one arginine residue (§), 
but not both, can be replaced by a lysine residue (DeLisa et al., 2002; Ize et al., 2002). The other motif residues 
occur with a frequency of >50%, whereas the amino acids at the # positions are usually hydrophobic and the 
amino acid at the X position is polar (Kouwen et al., 2009; Palmer and Berks, 2012). (B) The signal peptide of 
Subtilisin Carlsberg matches the Tat model motif with the exception of two hydrophilic residues in the middle 
positions, a condition not considered an exclusion criterion for a putative Tat signal peptide motif (Berks, 1996; 
van Dijl et al., 2002). In Sec signal peptides, helix breaking glycine or proline residues are often found in the 
middle of the hydrophobic domain following the N-terminal domain (de Vrije et al., 1990). These are not found 
in B. subtilis Tat signal peptides (van Dijl et al., 2002) and also not in the signal peptide of Subtilisin Carlsberg. 

Table S1 k-means clustering of expression profiles  

Please refer to “Chapter C_Additional information” on digital medium. 

Table S2 GO term enrichment analysis of k-means clusters 

Please refer to “Chapter C_Additional information” on digital medium. 

Table S3 Proteome data 

Please refer to “Chapter C_Additional information” on digital medium. 
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Introduction

The possibility to sequence complete transcriptomes (RNA-Seq)

opens a new level of quality of transcriptomics [1]. The development

of next generation sequencing (NGS) methods [2] enabled the

quantitative strand-specific investigation of transcriptional activities of

genomes at single nucleotide resolution [3,4]. The discovery of new

regulatory RNA features like small RNAs, riboswitches and antisense

transcripts revealed the existence of an RNA based regulation layer in

prokaryotic genomes [5,6]. A detailed analysis of highly resolved data

on transcriptionally active genome loci should therefore enable the

identification of these regulators on a whole genome scale. A

comprehensive workflow in a microbial transcriptome experiment

may comprise four steps: (i) production of sequence data from an

RNA sample, (ii) filtering of bad quality reads and reads for rRNA

and tRNA sequences, (iii) strand-specific mapping of the remaining

RNA-derived sequences to the genome, and finally (iv) functional

analysis of the transcriptionally active genomic regions in their

physiological context. A deep sequencing experiment on a microbial

genome with Illumina technology may result in several million reads

per experiment [7–9]. This sheer amount of data is challenging with

regards to read mapping as well as detailed analysis. Obviously,

sophisticated bioinformatics tools are crucial to enable convenient

and rapid RNA-Seq data analysis. Whereas NGS techniques like

454, Illumina and ABI Solid have continuously advanced over the

years, approaches to improve or develop bioinformatics tools to

handle the generated data have focused almost exclusively on

mapping of the sequences to a genomic backbone, e.g. SSAHA2

[10], bowtie2 [11] and/or BWA [12]. Current visualization tools like

Artemis [13], SAMSCOPE [14] or Integrative Genomics Viewer

[15] focus on single or few parallel datasets and face performance

issues due to the handling of single read mapping information.

Therefore, the analysis of multiple datasets in parallel remains

difficult, thus demanding further developments in the area of

visualization and automated analysis. Here, we introduce TraV

(Transcriptome Viewer), a freely available tool which provides

support in organization and analysis of multiple transcriptome

datasets in relation to the corresponding genomic context. TraV

focuses on the identification of regions of transcriptional activity in

correspondence to known genes like 59 and 39 untranslated regions

(UTRs), transcripts that do not correspond to known genomic

features, antisense transcripts and transcription start sites (TSS).

TraV’s ability to process many RNA-Seq data sets simultaneously

enables the comparison of many different experimental conditions at

the same time. The handling of multiple RNA-Seq datasets is based

upon a data abstraction which transforms read mapping data into

single base transcriptional activities of the genome. In case single read

mapping information is required other tools have to be applied.

Thereby, the tool facilitates the search for novel features based on

comparative RNA-Seq analysis. TraV’s capabilities make the tool an

appropriate choice for the comparative analysis of multiple

transcriptome experiments with focus on the transcriptional activities

of corresponding genome loci from different experiments.

Materials and Methods

Calculation of base activity counts
TraV uses single base resolution coverage counts for both

positive and negative strand as basis for all calculations and
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graphical presentations of mapping information, a method firstly

described by Wurtzel et al. [4]. The coverage counts are calculated

from a SAM mapping file [16], obtainable from currently

available single read mappers like e.g. bowtie2 [11]. The

SAMtoTDS tool provided with TraV can be used to convert

SAM files into TraV’s innate TDS format (see below for details).

For each successfully mapped read, the associated base coverage

counts for regions covered by the read are increased by one. To

constitute a successful mapping, a read has to be uniquely

mapped, meaning that it has only one optimal mapping position in

the genome. In case of multiple best mapping locations, a read is

considered multi-mapped and will not be included in the base

coverage calculation. After all mapped reads have been processed;

the resulting base coverage strings serve as an abstracted

representation of the mapping. This procedure greatly reduces

the memory required to handle such transcriptome mapping data

and thereby allows TraV to deal with multiple datasets simulta-

neously.

Data analysis
The analytical methods embodied in TraV are designed for the

identification of regions of transcriptional activity fulfilling a set of

constraints. These regions of transcriptional activity can be

indicative of novel RNA features. The methods are implemented

as background tools and do not interfere with the functionality of

the display view. Each analytical method can be performed

independently on loaded data sets. Results are provided either as

tab-separated value files or General Feature Format (GFF version

3) formatted files. TraV’s analytical methods work on a single

nucleotide resolution by avoiding sliding window-based approach-

es. This allows TraV to make predictions accurate to a single base,

giving the maximal possible precision of the analytical approaches

like e.g. transcription start site (TSS) predictions. The comparison

of RNA-Seq experiments from different conditions requires

normalization of the mapped data. To achieve this goal,

Mortazavi et al. [17] introduced the read oriented RPKM values.

RPKMs represent the number of reads mapped for any

transcriptionally active region normalized against the total number

of reads per experimental condition. As TraV does not use single

read information, RPKMs cannot be calculated. TraV instead

uses nucleotide activities per kilobase of exon model per million

mapped reads (NPKM) values (Equation 1 and [9]) to represent

transcriptional activity of all identified regions of transcriptional

activity in its analytical methods.

NPKM value : NKPKM(n,m)~109

Pm

i~1

f (i)

Pm

i~1

g(i)(m{n)

ð1Þ

Where n and m are the start and stop of the region of interest, f(i)

is the base activity of base i on a specific strand and g(i) is the sum

of the activities of base i of positive and negative strands [9].

Implementation
TraV is implemented as a JAVA web application for Linux-

based webservers capable of providing a java container. Runtime-

critical and memory-limited procedures have been implemented in

C++. For data storage and retrieval a PostgreSQL database

(PostgreSQL version 8.4 or higher) is used. A dedicated user

management has been established which consists of two admin-

istrative and one application level. The user management is

implemented via a WWW interface with dedicated user accounts.

TraV features three different levels of access: (i) the admin user

who may create and delete user accounts and has the ability to

create new projects, (ii) administrative users who may import,

export and delete transcriptome data sets for their assigned

projects and (iii) standard users who may view and analyze the

transcriptome data sets of their projects. The webserver-based

implementation with differing levels of access makes TraV a good

solution for cooperative projects. TraV centralizes data storage

and processing for workgroups and provides access to the server-

based environment for workstations that do not provide the

hardware to cope with the amount of data generated in whole

genome transcriptome sequencing experiments. The secure user

password restricted WWW access was designed to enable users to

work from any reliable internet connection. TraV may use

annotated genome information, either as EMBL- or as GenBank-

formatted files, to generate the genomic context of transcription-

ally active regions. It is possible to assign multiple EMBL or

GenBank-formatted files to a single genome project, thus enabling

projects that include strains with multiple replicons or draft

genomes.

Graphical user interface. The display view represents the

main working interface of TraV (Figure 1). The interface allows

navigating, zooming, searching by specific genomic features,

loading of additional transcriptome data sets for comparison

(Figure 2) as well as accessing the analytical methods. All displayed

plots are log scaled to enable the view of a wide range of possible

transcriptional activities within the display. Strand-specificity is

addressed by two different coverage plots: red and blue mark the

transcriptional activity of the positive and negative strand,

respectively, whereby positive and negative represent the orienta-

tion of the genome in relation to dnaA. TraV has been developed

for RNA-Seq protocols which generate strand-specific data, thus

the TraV default working mode is ‘‘strand-specific’’. However,

data sets may not always contain strand-specific information. To

enable the analysis of strand-unspecific data, a corresponding work

mode has been implemented (Figure 3). Within the strand-

unspecific mode, coverage counts from both strands are summed

up. To gain the full value of the single nucleotide resolution of

RNA-Seq data, TraV contains a magnification view, which

displays sequence information in context to their transcriptional

activity (Figure 4). For instance, this function proved suitable for

manual promoter pattern searches guided by TSS. The graphical

viewer of the transcriptome and the genomic features are

interactive and display information on coverage and genome

position upon mouse input events. All graphics comply with the

Scalable Vector Graphics (SVG) standard. Should rasterized

graphics be required, TraV can convert the SVG graphics to

Portable Network Graphics (PNG) images. TraV supports user-

provided annotations in the form of GFF3-formatted files. Each

loaded annotation set is displayed by coloured arrows between the

provided genome annotations. GFF-encoded loci may be used for

feature-oriented navigation as well as input for annotation-

dependent analytical methods. To enable comparisons of different

experiments with different sequencing efficiencies within the

interface, TraV contains a normalization method for data sets

depending on their mapped read count. The normalization factor

x is calculated specifically for each loaded dataset (Equation 2:

Normalization factor: x~
m

max (m)
). The factor x exclusively

scales the graphical representation of activity plots to the data set

with the highest read number. Currently, TraV does not offer a

normalization method to account for sequencer bias such as

Illumina read biases deriving from random hexamer priming, as

described by Risso et al. [18] and Hansen et al. [19].

TraV: A Transcriptome Browser
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Normalization factor : x~
m

max(m)
ð2Þ

Where x is the normalization factor for the current dataset applied

to each base activity, m is the number of mapped reads in the

current dataset and max(m) is the greatest amount of mapped

reads of all currently loaded data sets.

Analytical methods. TraV has been designed for the

identification of regions of transcriptional activity such as 59 and
39 untranslated regions [20], transcriptional activities of non-

annotated genome loci (which may encode sRNAs or hitherto

unknown protein genes) and antisense transcripts. Furthermore,

transcription pattern search for sharp increases in transcription

activity can be used to identify transcription start sites. To

represent transcriptional activities, TraV can calculate NPKM

values for all identified regions as well as already annotated

genomic or user-provided features.

TraV offers five analytical methods to accomplish the detection

of RNA (Figure 5). Since some analytic procedures can consume a

considerable amount of computing power, it is possible to choose

which data sets should be included for further analysis. In case

multiple RNA-Seq data sets are selected, one merged dataset

accumulating all available data is generated from these data sets.

TraV adds the base transcriptional activities of each selected

dataset for each base position to create the merged dataset. This

approach allows replicates to close gaps in the sequencing

coverage and therefore improves the accuracy of the predictions.

Merging data sets originating from different growth phases or

environmental conditions enables a combined search for overlap-

ping as well as for differentially expressed features. However, this

approach comes with the potential drawback that features like

alternative transcription start sites or alternative termination sites

become less obvious. Therefore, in cases where the merging of the

data sets might obfuscate interesting features, only single data sets

should be used for analysis. Prior to merging different data sets,

TraV performs a noise filtering on each dataset by removing

singularly mapped reads which never intersect with at least one

other mapped read from the dataset. This is accomplished by

searching for regions of transcriptional activity going from zero to

one and back to zero activity without ever encountering an activity

greater than one. TraV does not check for a minimum or

maximum length of such a region since the different sequencing

methods are producing reads of varying length. Subsequently,

TraV performs the described merging process and applies the

selected analytical method to the merged dataset. For each region

identified by an analytical method, TraV calculates the NPKMs

from the original data sets instead of the merged set. This allows a

comparison of the transcriptional activity of a region between the

different data sets. All analytical methods, with the exception of

‘‘Transcription Start Site prediction’’ can use either the replicon

provided annotations or user-provided annotations in form of

imported GFFs.

(i) Calculate NPKM Values determines NPKMs for

annotated regions, which may also include any GFF-

definable features (i.e. genes, operons or phages). NPKMs

enable impromptu comparisons of the transcriptional

expression strength of features. These comparisons may

indicate candidate genes for more sophisticated, statistical

methods like e.g. baySeq [21].

(ii) 39 and 59UTR Search identifies regions of uninterrupted

transcriptional activity entering or leaving an annotation.

The algorithm searches regions of transcriptional activity

flanking annotated features. The start and stop of

transcriptional activity has to lie outside of an annotated

feature on the same strand.

(iii) Free Transcript Search scans the transcriptome for

regions of transcriptional activity that do not intersect with

any annotated genomic features on either positive or

negative strand. Therefore this method is suitable to scan

for genes which might correspond to not yet annotated

sRNAs or protein-coding genes.

(iv) Antisense Transcript Search is functionally similar to

‘‘Free Transcript Search’’. In contrast to the constraints of

a free transcript, an antisense transcript requires an

annotation on the opposite strand of its genomic location.

Since the method requires strand-specific transcriptome

data, it is unavailable in TraV’s strand-unspecific mode.

Figure 1. Main display of TraV. Transcriptional activity is depicted by graphs (red graph representing positive strand, blue representing negative
strand). Annotated genome information is represented by black arrows. User-provided GFF-based annotations are represented in tracks between the
original genome information by coloured arrows (green arrow in this figure).
doi:10.1371/journal.pone.0093677.g001
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(v) Transcription Start Site Prediction predicts candi-

dates for TSS based on the identification of strong

increases in transcriptional activity over a very short

distance. This is done by calculating the slope of the

transcriptional activity graph at any given position of the

genome. This method is controlled by two values: the

minimal height of the increase in transcriptional activity

that constitutes the minimum height to define a positive hit

and the slope distance which defines how many bases the

slope should include. TraV offers a function to suggest an

appropriate slope for a dataset. This function does a

59UTR search and checks the distance necessary to obtain

a positive hit with the current minimum height. The

suggested standard value for the minimal height of three

proved to be a good compromise between accuracy and

noise in our test cases. Obviously, this method is dependent

on the coverage of the sequencing experiment and

insufficient coverage information may lead to gaps in

Figure 2. Differential expression. Differential expression of genes BLi00261 and BLi00262 at selected time points of a fermentative process.
Dataset L-I shows the transcriptional activity of B. licheniformis DSM13 at the early exponential growth phase, L-III shows the transcriptional activity at
the end of the exponential growth phase and L-V shows the transcriptional activity at the late stationary phase.
doi:10.1371/journal.pone.0093677.g002
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transcript coverage to be misinterpreted as TSS candi-

dates.

Please note that, depending on operon structure and regulation

of transcription units, the different analytical methods may identify

regions that belong to another feature class. For instance, the

‘‘Free Transcript Search’’ method may identify features that are

actually cis-regulatory elements inhibiting downstream transcrip-

tion which are therefore not connected to the respective gene.

Therefore each region identified by the analytical methods has to

be considered as a candidate for a RNA feature and the biological

relevance has to be evaluated carefully.

TDS format and SAMtoTDS converter. TraV employs the

generic TDS flat file data format to describe and save

transcriptome mappings. The format consists of the following

three sections: (i) a count data section which stores the number of

mapped and unmapped reads and the total activity count of the

RNA-Seq experiment. The mapped reads count is used by TraV

for normalization of the graphical representation of different

RNA-Seq experiments. The total activity count is used for the

calculation of NPKM values. (ii) A coverage section, introduced by

the string \\COV. In this section, the mapping is represented by

transcriptional activity values per base. Every line in this section

represents the coverage data of one base. (iii) An optional

\\READS section can be used to provide the single read mapping

information. TraV does not use single read mappings, however, as

downstream analysis tools like mpileup [16] or GATK [22]

require single read mapping information, this data can be

included. TraV provides a command line conversion tool for

SAM-formatted [16] mappings to generate its TDS import data

format. This tool uses the CIGAR and bit flag information of the

SAM format to determine successful read mappings. SAMtoTDS

can use the CIGAR string information to apply a sequence

similarity filter. This function is essential since some mappers do

not apply a whole sequence length similarity filter. SAMtoTDS

has been successfully used on SAM files generated by bowtie2,

BWA and SSAHA2. This conversion step from SAM to TDS is

done outside of TraV to conserve bandwidth of the server as the

resulting TDS files are much smaller than the original SAM files.

Results and Discussion

TraV was developed and extensively tested for the analysis of

RNA-Seq experiments on Bacillus licheniformis DSM13 during an

industrial fermentation process [9]. The tested RNA-Seq data was

sequenced using an Illumina HiSeq 2000 machine with a read

length of 50 nucleotides and is available in the Sequence Read

Archive (SRA) under accession no. SRP018744. Mapping was

performed using the Wurtzel et al. [4] BLAST-based method with

a minimum sequence similarity of 98% for the complete read

length. TraV was furthermore used to successfully visualize

eukaryotic RNA-Seq data from Schizosaccharomyces pombe (SRA

accession no. PRJEB3065). Please note: the analytical methods are

currently only applicable to prokaryotic data since TraV does not

yet have methods to deal with splicing events.

Transcriptionally active region evaluation
Predicted UTR and Free/Antisense transcript candidates were

checked with the Rfam [23] covariance models for known

structured RNAs. The results of this analysis are presented in

Table 1. These predictions were used as foundation for a detailed

manual curation and characterization process of regulatory RNA

candidates [9]. Among the identified candidates are expected

RNA genes like the 6S RNAs, the tmRNA as well as orthologous

riboswitches described in the Rfam database. However, beside the

elements with an Rfam assignment, a great number of transcribed

RNA features without known function with a size greater than

100 nt have been identified which may contain interesting

candidates for novel regulatory RNA features.

Figure 3. Strand unspecific mode of TraV. In case that the available mapped read data does not contain strand specificity information TraV can
be switched into the strand unspecific mode in which all mapped reads are summed up to an general activity of a genome locus.
doi:10.1371/journal.pone.0093677.g003

Figure 4. Magnification view of TraV. Transcriptional activities are
displayed at single nucleotide resolution. The interactive graphic allows
access to coverage information as well as to distinct base distances
between the selected base (grey marker) and any other base of the
displayed sequence. In the example perfect 210 and 235 boxes of a
sigma70 promoter are visible.
doi:10.1371/journal.pone.0093677.g004
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Visualization and Memory Management
Tools like T-ACE [24], Tablet [25] and SAMSCOPE [14] use

indexed single reads and display the mapping information based

on these single reads. Tools like T-ACE [24] suggest upper limits

to their input data due to these limitations (60,000 bp contig size

with a suggested maximum of 100,000 mapped reads). This

reduces their usability with increasing contig sizes commonly used

in whole genome RNA-Seq experiments. With the application of

high coverage generating NGS techniques they are inevitably

challenged by memory consumption issues. Programs like Tablet,

SAMSCOPE or Artemis circumvent this issue by using the

indexing information of BAM [16] to stream the loading and

unloading of read information based on the displayed genomic

region. This approach reduces the memory footprint but causes

computational overhead due to the streamed loading mechanism

leading to bad responsiveness when dealing with multiple datasets

at the same time and to possible memory limitations at big window

sizes. In contrast, TraV loads the whole data set and keeps it

available in memory; therefore the tool does not incur stream

loading congestions. The memory requirements on our test data

resulted in approximately 50 Mbyte per data set with TraV when

loaded in the working environment. In our tests TraV still works

with 15 simultaneously loaded data sets in a comparative analysis

on a workstation with 6 Gbyte RAM. Since TraV sacrifices single

read information, it is unsuitable for data analysis dependent on

information derived from base differences of single reads like single

nucleotide polymorphism (SNP) studies, phase variation analysis

or methylome studies by bisulfate sequencing.

Transcription start site prediction
RNA-Seq-based transcription start site prediction has been

shown to be efficient by Sharma et al. [26,27]. The method

described therein generates region lists within a 500 nt sliding

window based on the comparison of transcriptional activities from

corresponding RNA-Seq and differential RNA-Seq data sets,

which were then manually evaluated. Differential RNA-Seq is a

specialized version of RNA-Seq which is designed to identify

microbial transcriptions start sites [28]. It is based on a selective

digestion of all transcripts which do not represent primary

transcripts. In contrast, the TSS prediction by TraV generates

TSS candidate lists of single nucleotide resolution on single data

sets from high coverage RNA-Seq or preferably differential RNA-

Seq data sets, which have to be evaluated by a biological expert.

Furthermore, the TraV approach is not dependent on the

existence of corresponding RNA-Seq and differential RNA-Seq

data sets and can thus be applied to a single deep sequencing

Figure 5. Patterns visualized by TraV. (A) 59UTR of annotated gene feature. (B) Antisense transcript. (C) Transcriptional activity at a non-
annotated region (free transcripts). A, B and C also show strong increases in transcriptional activity, which TraV predicts as transcription start sites. All
graphs shown represent data from RNA-Seq experiments performed on B. licheniformis DSM13 [9] (indicated by red boxes). All graphs shown
represent data from RNA-Seq experiments performed on B. licheniformis DSM13 [9].
doi:10.1371/journal.pone.0093677.g005

Table 1. Identified UTRs and Free Transcripts in B. licheniformis DSM13.

39UTR 59UTR Free Transcripts Antisense Transcripts

Identified with TraV 1396 1404 476 3777

Candidates .100 nt 581 446 124 1933

Candidates with Rfam hits 78 27 10 212

doi:10.1371/journal.pone.0093677.t001
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experiment. However, TraV’s TSS prediction is directly depen-

dent on the coverage; therefore an application of the data of

Sharma et al. resulted in an accelerated error rate of artefact TSSs

due to mapping gaps within transcriptionally active regions.

Therefore TraV is not applicable for data sets with an insufficient

coverage.

Conclusion

The hereby introduced RNA-Seq analysis software package

TraV includes an import function for mapping data from SAM-

formatted mappings, five prediction tools to identify RNA features

and a memory efficient transcriptome visualization engine

addressing the typical work flow of a comparative RNA-Seq

analysis. TraV has been successfully applied to Illumina generated

data sets consisting of fifteen RNA-Seq and five differential RNA-

Seq records [9]. The analytical tools of TraV identified previously

missing protein genes and RNA-based regulatory features like e.g.

riboswitches or regulatory RNAs. TraV is inapplicable for single

read based data as necessary in SNP analysis, phase variations or

bisulfate sequencing. TraV is positioned as a tool focused on

comparative high coverage transcriptome mappings on well-

polished and annotated microbial genomes. TraV operates

simultaneously on multiple RNA-Seq mappings and provides

analysis functions that focus on whole contigs rather than limited

areas. The program’s primary purpose is the global identification

of RNA-based regulators within a genome and providing

researchers with automatically generated candidate lists and

interactive evaluation tools.
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Geobacillus sp. strain GHH01 was isolated during a screening for producers of extracellular thermostable lipases. The completely
sequenced and annotated 3.6-Mb genome encodes 3,478 proteins. The strain is genetically equipped to utilize a broad range of
different substrates and might develop natural competence.
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The genus Geobacillus contains thermophilic strains, which
produce a variety of thermostable hydrolytic extracellular en-

zymes, such as proteases, amylases, and lipases. These features are
interesting for future production platforms used in industrial ap-
plications (1).

Here, we present the complete genome sequence of Geobacillus
sp. strain GHH01, a thermophilic lipase producer. The strain was
isolated from an enrichment culture originally sampled at Bota-
nischer Garten, University of Hamburg, Germany, and was culti-
vated at 60°C with 1.5% native olive oil as the sole carbon source.
Recombinant expression in Escherichia coli revealed that the Geo-
bacillus sp. GHH01 lipase (locus tag GHH_c20570) is highly active
but only moderately thermostable.

The genome sequence of Geobacillus sp. GHH01 was deter-
mined by a combined approach of 454 GS-FLX Titanium XL
paired-end sequencing (454 Life Sciences, Branford, CT) and Ge-
nome Analyzer II single-read sequencing (TruSeq Chemistry, Il-
lumina, San Diego, CA), resulting in average coverages of 10.91-
fold and 33.03-fold, respectively. The assembly employing the
MIRA v3.4.1.1 software (2) yielded 84 contigs �3 kbp. Gap clo-
sure and quality improvement were performed by PCR-based
techniques and subsequent Sanger sequencing (ABI 3730xl, Life
Technologies, Carlsbad, CA). Initial gene prediction was per-
formed with IMG/ER (3), followed by manual curation based on
comparisons to the Swiss-Prot, TrEMBL (4), and InterPro (5)
databases. For the identification of rRNA and tRNA genes,
RNAmmer v1.2 and tRNAscan-SE v1.4 (6, 7) were used, respec-
tively.

The complete genome consists of a 3,582,992-bp chromosome
with a G�C content of 52.3%. In total, 3,597 genes were identi-
fied, including 10 rRNA gene clusters and 88 tRNA genes. The
annotation resulted in 2,724 protein-encoding genes with as-
signed functions.

16S rRNA gene phylogenetic analysis confirmed the affiliation
of Geobacillus sp. GHH01 to the genus Geobacillus, whereas an
assignment to a described species was not possible. We deter-

mined average nucleotide identities (8) of approximately 96% be-
tween the Geobacillus sp. GHH01 genome and the genomes of
Geobacillus kaustophilus HTA426 (9) and Geobacillus thermoleo-
vorans CCB_US3_UF5 (10). The recently mentioned (10) high
synteny between G. thermoleovorans CCB_US3_UF5 and G. kaus-
tophilus HTA426 (97.94%) calls into question their assignment to
distinct species. Hence, a sequence similarity-based assignment of
Geobacillus sp. GHH01 to a distinct species could not be em-
ployed.

Geobacillus sp. GHH01 is predicted to secrete 139 en-
zymes by the Sec-dependent pathway (11, 12), including the
identified lipase, diverse peptidases, proteinases, an amylopulla-
nase (GHH_c32620), an alpha-amylase (GHH_c32630), and an
alkaline phosphatase (GHH_c27900). Several substrate-binding
proteins of ABC transporters indicate the potential for utilization
of a broad range of substrates. The ability to take up extracellular
DNA is a crucial mechanism for strain development. Eighteen out
of 25 main competence-related structural genes identified for Ba-
cillus subtilis (13) were detected, featuring a possible mechanism
of DNA uptake.

Genome comparisons revealed seven distinct GHH01-specific
genomic islands (14). Furthermore, 123 putative transposases,
five clustered regularly interspaced short palindromic repeat
(CRISPR) regions, and nine CRISPR-associated genes of subtype
III-B (15) could be detected.

Nucleotide sequence accession number. The genome se-
quence of Geobacillus sp. GHH01 has been deposited in GenBank
under accession no. CP004008. The strain is available upon re-
quest at the Bacillus Genetic Stock Center (BGSC).
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CHAPTER F DISCUSSION AND OUTLOOK 

CHAPTER F 

DISCUSSION AND OUTLOOK 

F.1 Transcriptome complexity 

The advent of genome-wide transcriptome analysis techniques like RNA-Seq and tiling arrays 

has revealed many unexpected findings, including a plethora of antisense and small RNAs, 

versatile untranslated regions and alternative operon structures (Sorek and Cossart, 2010). 

With the exception of sRNAs, which were thoroughly discussed in Chapter B, this unfore-

seen, domain-spanning transcriptome complexity will be presented in this chapter. 

F.1.1 Untranslated regions 

The RNA-Seq-based analysis of 5’UTRs in B. licheniformis revealed an unexpected size 

range of the leader regions. For example, the 5’UTR of the sporulation inhibitor-encoding 

gene kapD can reach 2226 nt in length. Although this 5’UTR is exceptionally long, still 4% of 

all detected leader regions are longer than 400 nt, as shown in Figure 1. Altogether, 33% of 

the detected 5’UTRs are more than 100 nt in size and might therefore bear a regulatory 

function (Güell et al., 2011; Chapter B). A GO term-based enrichment analysis of the genes 

downstream of 5’UTRs >400 nt revealed an enrichment of cation-binding protein genes, 

which might indicate yet unknown cis-regulatory RNAs in this region. However, in 

Photobacterium profundum, a significant enrichment of genes involved in energy, coenzyme 

and lipid metabolism has been observed, suggesting that some classes of genes might 

preferably be regulated by mechanisms intrinsic to long 5’UTRs (Campanaro et al., 2012). 

Comparisons of 5’UTR lengths in different species (Figure 1), with special consideration of 

the respective median values, point out that 5’UTR sizes are not only very diverse within one 

organism, but are also highly variable between species. Especially the two archaea 

Methanosarcina mazei and Sulfolobus solfataricus have either very long or very short 5’UTRs, 
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Figure 1 Distribution of 5’UTR lengths 
The 16S rRNA gene sequence neighbor-joining tree was calculated with ARB (Ludwig et al., 2004) for those 
organisms with available 5’UTR length data. A detailed register of strain designations and corresponding studies 
is given in Table S1. B. licheniformis DSM13, examined in this study, is indicated in red. Only bootstrap values 
above 50% are given at the respective nodes. 
Colored bars indicate the percentage of identified 5’UTRs with a certain length, as outlined in the legend. On the 
right hand side, the median (m) of the determined 5’UTR lengths and the longest identified 5’UTR length (L) are 
given. 

respectively. It has been shown that bacteria have widely different average intergenic region 

sizes (Molina and van Nimwegen, 2008). These appear to correlate slightly with the lengths 

of 5’UTRs, supporting the hypothesis that large intergenic regions have a high regulatory 

potential (Campanaro et al., 2012). When comparing the varying 5’UTR lengths of closely 

related species like B. subtilis and B. licheniformis, where high similarities are expected 

(Wurtzel et al., 2012), it becomes obvious that the different approaches to determine the sizes 

of 5’UTR bear a high potential for methodical biases. Hence, comparative analyses not 

relying on data generated with a comparable method are prone to errors and should be 

considered with care. 

To date, 65 cis-regulatory elements, comprising mainly riboswitches and T-boxes, were 

identified in B. licheniformis by covariance models (Burge et al., 2013; Markowitz et al., 

2012). All of them showed transcriptional activity during the monitored fermentation process 

(Chapter B). Analyses of the frequency of common cis-regulatory elements in different 

bacterial species (Figure 2) show that cis-regulatory elements are evenly distributed within the 

Bacillus subtilis as well as within the Bacillus cereus group, whereas the latter appears to 

contain considerably more of these elements. It is noteworthy that riboswitches and T-boxes 
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seem to be highly abundant in Firmicutes. It has been proposed previously that members of 

this phylum seem to make more extensive use of riboswitches and T-boxes than other 

bacterial phyla, Archaea or Eukarya (Barrick and Breaker, 2007; Vitreschak et al., 2008). 

Interestingly, riboswitches tend to affect transcription in Gram-positive bacteria whereas 

translation is more frequently regulated in Gram-negative bacteria (Nudler and Mironov, 

2004). This effect might be due to the fact that Gram-positive bacteria contain larger 

biosynthetic operons, hence more resources can be saved by tight transcriptional regulation 

(Nudler and Mironov, 2004; Waters and Storz, 2009). 

Knowledge of the length of 5’UTRs can be helpful for the prediction of unidentified cis-

regulatory elements. For example, three previously undetected T-box structures could be 

identified in unexpectedly long 5’UTRs by covariance analyses in this study (Chapter B). In 

silico analyses for the prediction of yet unknown regulatory motifs can also benefit from this 

knowledge, as they presently often rely on assumed 5’UTR lengths (Bastet et al., 2011; Wein- 

Figure 2 Distribution of five common cis-regulatory elements 
The 16S rRNA gene sequence neighbor-joining tree was calculated with ARB (Ludwig et al., 2004) for selected 
organisms. Sulfolobus solfataricus P2 was used as outgroup. B. licheniformis DSM13, which was examined in 
this study, is indicated in red. Only bootstrap values above 50% are given at the respective nodes.  
Colored bars depict the frequency of the following cis-regulatory elements, chosen due to their most common 
distribution within the bacterial domain (Barrick and Breaker, 2007), as outlined in the legend. The length of the 
bars corresponds to the number of Rfam predictions (Burge et al., 2013). A length scale for 20 cis-regulatory 
elements is given. 
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berg et al., 2007). Moreover, the identification of varying transcriptional activities of a 5’UTR 

and its following gene can help to elucidate putative regulatory events originating from 

regulatory elements in the untranslated region (personal communication, Robert Hertel). 

Riboswitches do not only increase the complexity of the transcriptome by their presence, but 

also provide the opportunity to artificially increase the complexity by introducing (synthetic) 

riboswitch variants into the genome (Weigand and Suess, 2009). This approach has led to 

engineered riboswitches that allow conditional gene expression in bacteria (Topp et al., 2010) 

and might enable the fine-tuning of complex, metabolic engineered processes in future 

applications (Wittmann and Suess, 2012). 

In general, translation initiation in prokaryotes is achieved by interaction of the Shine-

Dalgarno (SD) sequence with a 16S rRNA, which triggers the anchoring of the 30S ribosomal 

subunit to the start codon. Nonetheless, two additional mechanisms of translation initiation 

not requiring a SD sequence were identified: one mechanism is dependent on the ribosomal 

protein S1 and at least a short 5’UTR (Chang et al., 2006; Malys and McCarthy, 2011); the 

other accomplishes the binding of the 70S ribosomal subunit directly to the start codon of 

mRNAs not possessing a 5’UTR (Brock et al., 2008; Giliberti et al., 2012; Moll et al., 2002). 

In B. licheniformis, 33 genes were found to be led by 5’UTRs with lengths between 0 and 10 

nucleotides, which might be targets of SD-free, so-called leaderless translation initiation. 

RNA-Seq studies of other prokaryotes have assigned 1.3% to 81.4% of the determined 

5’UTRs to be leaderless (Figure 1). This broad range of leaderless transcription fits the results 

of genome-based predictions of SD-free transcription by Zheng et al. (2011), who have 

predicted over 70% leaderless genes in some archaea. On the other hand, they found α-, γ- and 

ε-Proteobacteria to be amongst the bacteria with the lowest amount of leaderless transcripts. 

Firmicutes were calculated to harbor 2.4 to 16.6% leaderless mRNAs, which is close to the 

2.1% determined for B. licheniformis. This rather low proportions of leaderless transcripts in 

Bacilli was also predicted by Nakagawa et al. (2010) by proposing a high amount of SD-

containing genes in Firmicutes. 

Next to 5’UTRs, high size variability was also shown for the generally less regarded 3’UTRs 

(Brenneis et al., 2007; Campanaro et al., 2012). In B. licheniformis, 1365 3’UTRs with a 

median length of 73 nt were determined. 19% of these 3’UTRs exceed a length of 400 nt and 

range up to a maximal length of 4508 nt (Chapter B). 
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Both 5’UTR as well as 3’UTR transcripts enhance the transcriptome complexity also by their 

extensive localization antisense to adjacent genes on the opposite strand (overlapping UTRs), 

which applies for 4% and 25% of the total 5’ and 3’UTRs, respectively (Chapter B). In fact, 

13 and 104 of these overlapping UTRs are longer than 1000 nt and span up to six genes. 

Examples for overlapping UTRs are also known from B. subtilis and Anabaena sp. PCC 7120 

(Hernández et al., 2006; Nicolas et al., 2012; Rasmussen et al., 2009). The comparison of the 

overlapping 5’UTRs identified in B. licheniformis (53) to those identified by tiling arrays in 

B. subtilis (90; Nicolas et al., 2012), showed only 12 of these 5’UTRs to be length-conserved 

in both species. Furthermore, less than 6% of the overlapping 3’UTRs >1000 nt seem to be 

conserved. The variability among the detected UTRs can be partially explained by the 

different analytical methods, but manual inspection also gives the impression that overlapping 

UTRs might rather occur in the unconserved regions of the chromosome. Certainly, this 

impression will have to be evaluated by the comparison of related, uniformly analyzed 

genomes. 

The phenomenon of overlapping bacterial UTRs has been analyzed in more detail in Listeria 

monocytogenes and Listeria innocua (Sesto et al., 2013; Toledo-Arana et al., 2009; Wurtzel et 

al., 2012). One example is the long 5’UTR of a conserved putative ABC transporter permease 

component operon, which overlaps a gene coding for a multidrug efflux pump (Wurtzel et al., 

2012). Two promoters were identified for this operon. The promoter upstream of the long 

5’UTR is dependent of the σB transcription factor: upon deletion of σB, the long 5’UTR shows 

no expression, but the overlapped gene is upregulated, confirming a negative effect of the 

antisense transcript (Wurtzel et al., 2012). It was also shown that the σB-dependent transcript 

contributes to the expression level of the downstream operon, in addition to the second, σB-

independent promoter (Wurtzel et al., 2012). The finding of this and three further examples of 

adjacent genes with opposed or related function regulated by overlapping 5’UTRs in 

L. monocytogenes and L. innocua led to the introduction of the term excludon to describe this 

regulatory elements as expression-excluding operons (Sesto et al., 2013; Wurtzel et al., 2012). 

As excludon mRNAs are detected as multiple fragments with different sizes (Toledo-Arana et 

al., 2009; Wurtzel et al., 2012), it is likely that the mechanism behind these regulatory events 

relies on degradation of the double-stranded RNA resulting from hybridization of the sense 

and the antisense transcript (Sesto et al., 2013). In B. licheniformis, the transcriptional activity 

of the GltC regulon shows similarities to this regulatory mechanism (Chapter B): the gene of 

the associated transcriptional activator is encoded on the opposite strand of the glutamate 

synthase operon and overlapped by the long 5’ UTR of the operon genes. 
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Taken together, these findings promote the idea that the arrangement of bacterial genes on the 

chromosome is not random (Lasa et al., 2012; Lawrence, 2003): in addition to the clustering 

of protein-encoding genes of the same metabolic pathway into operons, 5’ and 3’ overlapping 

UTRs seem to introduce a further regulatory level for the coordinated expression of adjacent 

genes (Lasa et al., 2012). 

F.1.2 Non-coding antisense transcripts 

Next to antisense transcripts deriving from overlapping 5’ and 3’ UTRs, many asRNAs are 

expressed independently from protein-coding transcripts. In B. licheniformis, 408 of such 

non-coding asRNAs were identified, comprising 89% of all identified non-coding RNA 

transcripts and 48% of all antisense transcripts (Chapter B). In total, 15% of all genes are co-

located with an independently transcribed antisense transcript. In contrast to the occasional 

occurrence of bacterial antisense transcription anticipated in the past, it has now become clear 

that asRNAs are abundant in all investigated species (Sorek and Cossart, 2010) and are 

therefore expected to be ubiquitously distributed throughout the bacterial, but also the 

archaeal and eukaryotic domain (Georg and Hess, 2011; Raghavan et al., 2012). It has been 

Figure 3 Distribution of antisense transcription 
The 16S rRNA gene sequence neighbor-joining tree was calculated with ARB (Ludwig et al., 2004) for those 
bacteria and archaea with available antisense transcription data. A detailed register of strain designations and 
corresponding studies is given in Table S2. B. licheniformis DSM13, which was examined in this study, is 
indicated in red. Only bootstrap values above 50% are given at the respective nodes. 
Colored bars indicate the numbers of identified antisense transcripts/mB: (yellow) non-coding asRNAs; (blue) 
antisense transcripts deriving from overlapping UTRs; (green) unspecified antisense transcripts. The length of 
the bars corresponds to the number of identified asRNAs. A length scale for 200 asRNAs is given. 
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speculated previously that the frequency of asRNAs depends on the taxonomic allocation of 

the investigated organism (Qiu et al., 2010). However, with the growing number of explored 

species (Figure 3), it is now assumed that antisense transcripts can be found for ~10-20% of 

the bacterial genes, and that smaller numbers observed are a result of low-sensitive detection 

methods (Güell et al., 2011). Figure 3 illustrates the differences of identified asRNAs for 

those prokaryotes with obtainable data sets. It becomes obvious that the so far available data, 

derived from different experimental approaches, are not readily comparable. This observation 

is especially pinpointed by the varying amounts of asRNAs identified in B. subtilis. However, 

high variability of independently transcribed asRNAs was suggested after comparison of in-

depth analyses of B. subtilis and B. licheniformis (Chapter B). This raises the question, 

whether asRNAs are conserved between closely related species or, despite their costly 

production, derive from transcriptional noise due to spurious transcriptional events (Nicolas et 

al., 2012; Raghavan et al., 2012). A study by Raghavan et al. (2012) addressing this question 

in enteric bacteria revealed that only 14% of the detected asRNAs are abundant in E. coli as 

well as the related Salmonella enterica serovar Typhimurium. The authors showed 

furthermore, that promoters enabling antisense transcription do not seem to be under the same 

evolutionary pressure as promoters of protein-coding genes. Therefore, Raghavan et al. 

conclude that a large fraction of the observed antisense expression is non-functional and 

derives from promoter-like sequences under weak selection. This hypothesis is also 

prioritized by Nicolas et al. (2012), who found that many asRNAs are products of spurious 

transcription from alternative promoter sequences under low evolutionarily pressure. 

Nevertheless, asRNAs with a clear impact on the sense transcript have been identified. In 

B. subtilis, the analysis of the toxin/antitoxin system of overlapping bsrG/SR4 showed severe 

growth defects of the organism upon depletion of the sr4 gene (Jahn et al., 2012). This effect 

is prompted by the increased half-life of the bsrG mRNA when not degraded by RNases as a 

result of duplex formation with SR4 (Jahn et al., 2012). Two sense/antisense pairs encoding 

BsrG-like peptides and forming RNAs with SR4-like stem loops could be identified in 

B. licheniformis (Chapter B). An effect of an asRNA located strictly within the boundaries of 

the respective sense RNA was investigated in Synechocystis sp. PCC6803: the isiA gene 

encodes a protein involved in photosynthesis and is a member of the iron stress response 

regulon. The constitutively expressed IsiR asRNA is located antisense to this gene (Dühring 

et al., 2006). When both RNAs are transcribed at the same time, a rapidly degraded RNA 

duplex is formed; hence, the protein cannot be synthesized until the isiA mRNA levels are 

high enough to titrate the IsiR asRNAs (Dühring et al., 2006; Georg and Hess, 2011). An 
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interesting study by Dornenburg et al. (2010) showed the effect of the studied antisense 

transcripts by knocking out only the respective asRNA promoters. In consequence, the sense 

transcript of one investigated sRNA/asRNA pair showed higher transcript levels, pointing out 

the negative effect of the asRNA, whereas no altered transcript level could be observed for 

another pair (Dornenburg et al., 2010). These findings complement the above mentioned 

hypothesis, that not all of the identified asRNAs might have a regulatory potential. 

F.1.3 The operon concept 

In addition to the discussed features enhancing the complexity of the transcriptome, the 

operon structure itself contributes to raise the diversity of transcripts due to multiple possible 

transcriptional variants. 

Until recently, the identification of operons was either based on computational predictions or 

analytical methods focusing on few specific targets. The advent of RNA-Seq and tiling arrays 

now enables the experimental determination of whole genome operon maps for bacteria 

(Campanaro et al., 2012; Güell et al., 2009; Qiu et al., 2010; Ramachandran et al., 2012; Sahr 

et al., 2012; Toledo-Arana et al., 2009) and archaea (Wurtzel et al., 2010). Especially the 

knowledge of transcription start sites (TSS) derived by dRNA-Seq aids the assignment of 

operons by pointing out those TSS not recognizable by standard RNA-Seq analyses (Sharma 

et al., 2010). The operon map compiled for B. licheniformis (Chapter B) contains 1677 

monocistronic and 833 polycistronic operons, the latter of which comprise 3.15 genes in 

average. In comparison, a bioinformatic prediction available at the DOOR database lists 1629 

monocistronic and 877 polycistronic operons with a mean of 3.03 genes per polycistronic 

operon (Mao et al., 2009). These results are in good accordance with the results achieved 

during operon map generation for other prokaryotic organisms (Campanaro et al., 2012; Güell 

et al., 2009; Qiu et al., 2010; Ramachandran et al., 2012; Sahr et al., 2012; Toledo-Arana et 

al., 2009), for which also no remarkable variations between the numbers of predicted and 

validated operons could be determined. Nevertheless, despite the similar operon counts, only 

65% of the predicted B. licheniformis polycistronic operons have a perfect match to the 

experimentally verified operons, whereas the other operons are either extended or shortened. 

According to this observation, only 60% of predicted operons in Salmonella enterica serovar 

Typhimurium match the obtained transcriptome data (Ramachandran et al., 2012). These high 

rates of introduced changes show that computational approaches can give a good estimation 
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of the operon map, but are presently not capable of replacing the accuracy of experimental 

validation (Brouwer et al., 2008; Ramachandran et al., 2012). 

A comprehensive, tiling array-based study of B. subtilis grown at 104 different conditions has 

lately revealed that 46% of all annotated CDS are transcribed from more than one promoter 

under the tested conditions (Nicolas et al., 2012). A similar result of 42% was found for 

Mycoplasma pneumoniae studied under 62 independent conditions (Güell et al., 2009). In 

Helicobacter pylori, grown under only five different conditions, 192 alternative transcripts 

complementing the 337 primary operons were predicted (Sharma et al., 2010). The analysis of 

TSS identified in B. licheniformis (Chapter B) is in accordance with these results. Secondary 

or tertiary starting sites, which suggest the presence of additional promoters, were revealed 

upstream (<500 nt) of 72 annotated genes. Furthermore, 125 TSS were identified upstream 

(<500 nt) of genes localized within an operon, also pointing out putative alternative promoter 

sites. In total, 43 mono- and 146 polycistronic operons, which putatively form alternative 

transcripts, were detected in the evaluated time-course experiment under only one condition. 

Notably, 267 further gene-internal TSS were detected; these might derive from promoters 

more distal to the annotated start codon and may therefore also contribute to the formation of 

alternative transcripts. 

Another known effect is naturally occurring operon polarity (Adhya, 2003), describing a 

decay behavior within cistrons whereby promoter-distal genes are less expressed than genes 

in close proximity to the promoter. In M. pneumoniae, most of the observed operons show 

natural polarity, which appears to be condition-dependent in most cases (Güell et al., 2009). 

The results of a manual inspection of the B. licheniformis operons also match this observation. 

Specific analyses of natural polarity have revealed that there is not one global mechanism 

triggering this effect, but that many different components are involved in dependence of the 

respective operon (Laing et al., 2006). These components range from sRNAs and riboswitches 

to RNA polymerase binding factors to Rho-dependent internal terminators (Adhya, 2003; 

Güell et al., 2011). The effect of differential termination has also been found to be affected by 

transcription initiation from different promoters (Lee et al., 2008). Furthermore, a 

termination-inducing coupling of transcription and translation has been proposed, based on 

affectation of the RNA polymerase binding stability by the following ribosome (Bonekamp et 

al., 1984; Güell et al., 2011). Of course, another main influential effect is RNase-mediated 

mRNA degradation (Li and Altman, 2004). 
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F.2 Process monitoring and optimization 

In addition to the identification of RNA-based regulators and the evaluation of 

B. licheniformis transcriptome complexity, a further aim of this thesis was the physiological 

monitoring of the fermentation process and the assignment of putative optimization targets, as 

described and discussed in the following passages.  

F.2.1 Process monitoring by RNA-Seq 

The initial steps in RNA-Seq data analysis are bioinformatic approaches to transfer the vast 

amount of sequencing data into interpretable units representing, for example, gene expression 

or transcript boundaries. First, the gained sequencing reads had to be aligned to a reference 

sequence. In this study, 1.5x106 to 4.5x106 reads per sample were mapped to the 

B. licheniformis DSM13 genome (Veith et al., 2004) utilizing the BLAST algorithm 

(Altschup et al., 1990; Chapter B). The results of this strategy proved to be equally exact as, 

but to require more computation time than, results gained by commonly used mapping tools 

like BWA or Bowtie 2 (personal communication, Sascha Dietrich; Langmead and Salzberg, 

2012; Li and Durbin, 2009; Mutz et al., 2013). Hence, the usage of these sophisticated read 

alignment tools is proposed in Chapter D. One obstacle that had to be overcome during the 

mapping process was the handling of reads mapping to multiple locations due to high 

sequence similarities. A conservative approach, used in this study and described in Chapter B, 

is the elimination of such sequences from the data set (Mäder et al., 2011), whereas an 

alternative method proportionally allocates the multi-mapping reads based on the number of 

reads mapped to their neighboring unique sequences (Wang et al., 2009). 

The next step of data analysis was the identification of RNA features at single base-resolution 

as described comprehensively in Chapter B and D. To allow comparison and illustration, the 

expression strength of each identified feature and every annotated gene was calculated as 

normalized NPKM value (Chapters B and D). 

Furthermore, the RNA-Seq data were utilized for differential expression analysis of protein-

encoding genes (Chapter C). In average, 2.8x106 sequencing reads per sample were employed 

for this analysis. This amount of input data has been shown to be appropriate for differential 

expression analysis in bacteria; in fact, considerably higher read counts primarily increase the 

rate of false positives (Haas et al., 2012; Tarazona et al., 2011). At the moment, there is an 

ongoing debate on which statistical methods and analytical tools are best suited for the 

identification of differentially expressed genes in RNA-Seq experiments (Fang et al., 2012; 
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Oshlack et al., 2010; Trapnell et al., 2013). In this study the baySeq tool was employed, as it 

was the only tool with reliable performance for comparison of more than two different 

conditions (Hardcastle and Kelly, 2010; Kvam et al., 2012; Vijay et al., 2013) available at the 

time (autumn 2011) the analyses were performed. 

F.2.2 Strategies for process monitoring and optimization 

The monitoring of global expression profiles of cells at different time points throughout a 

fermentation process enables the exploration of physiological and genetic bottlenecks of the 

strain of interest (Jürgen et al., 2005a). Therefore, the generated data of expression strength 

(NPKM) and differential gene expression (Chapter B) were analyzed with regard to critical 

process parameters like carbon and nitrogen supply, oxidative, cell envelope and phosphate 

stress, as well as sporulation and secretion capacity (Chapter C; Schweder, 2011). This 

approach allowed the identification of several putative optimization targets, which will be 

discussed below (E.2.3). 

The assessed data only provide insight into five discrete temporary states of the production 

process, but nevertheless allow exploitation for future applications. Generally, industrial 

fermentation processes are in demand of on-line analysis techniques to gain information about 

process-critical physiological parameters (Pioch et al., 2007; Schweder, 2011). Therefore, 

direct monitoring of the transcriptome by measuring distinct gene markers as indicators of 

unfavorable growth conditions would be most helpfully (Jürgen et al., 2005b; Pioch et al., 

2007). The thereby obtained information could allow an enhanced control of the process, 

leading to better reproducibility, increased efficiency, cycle time reduction, and finally a 

diminished employment of resources (Rautio, 2007; Schweder, 2011). Whereas current state 

of the art is off-line RT-qPCR, more direct at-line methods based on mRNA hybridization 

techniques have been proposed (Jürgen et al., 2005b; Pioch et al., 2007; Rautio et al., 2006; 

Schweder, 2011). Next to necessary improvements regarding analysis time, these methods 

could also be advanced by the identification of additional markers derived from protein genes 

but also from sRNAs or asRNAs, as identified in Chapter B. 

However, an important factor that has to be kept in mind when developing transcriptome 

monitoring systems is the distinct stability of the observed mRNAs. The decay of mRNA 

transcripts plays an important role in the cellular control of gene expression, which is highly 

regulated by the use of sRNAs, RNA-binding proteins, internal cleavage sites and diverse 

ribonucleases (Anderson and Dunman, 2009; Arraiano et al., 2010; Condon, 2007). For 
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example, mRNA half-lives from around 1 min to more than 15 min could be determined in 

B. subtilis (Hambraeus et al., 2003). Additionally, mRNA turnover has been shown to be 

condition dependent in other members of the division Firmicutes (Redon et al., 2005). Briefly, 

mRNA levels are determined by the momentary transcriptional activity of the respective gene 

as well as by the rate of regulatory mRNA decay (Condon and Bechhofer, 2011; Evguenieva-

Hackenberg and Klug, 2011). Hence, when carrying out mRNA quantification experiments 

like hybridization assays or RNA-Seq, it is important to keep in mind that the determined 

mRNA amount does not exactly represent the actual gene expression, but only the mere 

presence of a transcript. Furthermore, it is not assignable whether the detected mRNA had 

been inactivated at the sampled time point (Evguenieva-Hackenberg and Klug, 2011). 

To gain deeper insight into metabolic activities, the proteome of the analyzed fermentation 

process was explored as described in Chapter C. By the employed 2D gel-based approach 367 

protein spots representing 260 different proteins could be identified and were assessed to 

confirm the insights gained by RNA-Seq. Similar, though microarray-based, experiments, 

which addressed the B. licheniformis stress and starvation responses, have been performed 

previously (Hoi et al., 2006; Schroeter et al., 2011; Voigt et al., 2007) and allowed thorough 

analysis of the production process evaluated in this study (Chapter C). To explore the 

obtained proteomic and transcriptomic data on a more global scale, integration of the different 

layers of information with system biological approaches will be necessary (Maier et al., 

2011). However, as adjustment of the deployed methodologies is a major challenge (De 

Keersmaecker et al., 2006; Zhang et al., 2010), data integration will be part of future work 

embedded in the encompassing project (personal communication, Heiko Liesegang).  

Systems biology is not only a powerful tool to monitor processes, but also to optimize 

bioprocesses by metabolic and process engineering based on the gained models (Carrondo et 

al., 2012). Whereas systems biology-based process engineering focuses on the optimized 

supply with nutrients and oxygen, metabolic engineering conventionally targets the rate-

limiting steps of the given process identified by the developed process model (Deckwer et al., 

2006; Vemuri and Aristidou, 2005). However, it might also be reasonable to keep in mind 

further strategies that do not aim at the optimization of an existing fermentation, but at the 

establishment of a whole new process. This might, for example, be the complete 

reorganization of an existing pathway or the insertion of a previously absent pathway by 

metabolic engineering (Park et al., 2007; Ro et al., 2006). Moreover, the employment of new 
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production platforms, either derived by methods of synthetic biology (Purnick and Weiss, 

2009) or originating from new, but promising isolates like high-temperature production 

strains (Chapter E) might also contribute to the optimization of enzyme yields. 

F.2.3 Putative optimization targets 

In addition to the mentioned approaches towards bioprocess improvement (Chapter A, E.2.2), 

the RNA-Seq data obtained in this study also allowed the identification of putative 

optimization targets. 

As described in Chapter B, antisense transcripts with a putative impact on protease production 

could be found located opposite to apr coding for Subtilisin Carlsberg, and opposite to the 

two-component regulatory system operons degSU and cssRS, which have roles in cell 

differentiation and the secretion stress response, respectively. Especially the antisense 

transcript addressing the alkaline protease Subtilisin Carlsberg is of high interest, as this RNA 

feature has no ortholog in the transcriptome of B. subtilis (Nicolas et al., 2012). The first step 

to elucidate the impact of the asRNA on the synthesis of the protease could, for example, be 

the removal of the asRNA promoter sequence (personal communication, Robert Hertel). This 

approach would show whether the asRNA has a stabilizing or degradative effect on the sense 

mRNA, effecting the production of the protease. In case of a stabilizing effect, it might also 

be promising to overexpress the asRNA to increase its impact. Subsequently, the results from 

the experiments targeting the chromosomally encoded apr gene might then be transferred to 

the plasmid-encoded industrial Subtilisin gene to eventually optimize protease production. 

This would be a new approach, as previous efforts of bacterial production strain engineering 

by modulation of antisense transcription have relied on introduction of artificial asRNAs into 

the cell to destabilize the sense target (Desai and Papoutsakis, 1999; Tummala et al., 2003).  

The analysis of gene expression presented in Chapter C pointed out some reactions to changes 

in nutrient and oxygen supply, for example phosphate limitation and superoxide stress, which 

could be overcome by bioprocess engineering approaches. The data suggest furthermore, that 

the secretion of the produced protease might not be solely accomplished by the Sec protein 

translocation pathway, but may also involve the twin-arginine translocation (Tat) pathway. 

This finding could be further investigated by the creation of deletion mutants targeting either 

the Tat- or the Sec-dependent pathway. If a Tat-directed secretion could be confirmed, an 

improvement of the production process might be achieved by the optimization of the 

Subtilisin signal peptide (Degering et al., 2010). 
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In terms of bioprocess development, it is also interesting to consider the impact of 

multicellularity (Chapter A) on the capacity of protease secretion. Although differentiated cell 

states were not considered separately in this study, information can be gained from 

exploration of the whole transcriptome data. In order to give a brief overview on the influence 

of the three master regulators of cell differentiation, their mode of action will be described at 

first. 

ComA-dependent differentiation. In 

B. subtilis, the genetic cascades regulated 

by ComA induce surfactin production as 

well as natural competence (Figure 4; 

Dubnau and Losick, 2006; Hoffmann et al., 

2010; López and Kolter, 2010). The 

induction of these pathways starts with the 

production of the peptide pheromone 

ComX. Accumulation of the pheromone is 

sensed by the sensor histidine kinase 

ComP, which then phosphorylates ComA. 

Subsequently, ComA~P activates the 

expression of the surfactin operon and, via 

the transcriptional activator ComK, the 

formation of genetic competence. In 

contrast to B. subtilis 168 and mutant 

strains of B. licheniformis ATCC 9945A, 

ComP is found inactive in B. licheniformis 

DSM13 due to an insertion element in 

comP (Rey et al., 2004; Veith et al., 2004). 

DegU-dependent differentiation. The regulatory effect of DegU depends fairly on its 

phosphorylation state. Whereas non-phosphorylated DegU is necessary to support the 

development of competence, low levels of DegU~P facilitate swarming motility (Verhamme 

et al., 2007). Furthermore, moderate levels of DegU~P support colony architecture and finally 

high amounts of DegU~P are required for the activation of exoprotease production (Figure 4; 

Veening et al., 2008; Verhamme et al., 2007). 

Figure 4 Multicellularity of B. subtilis 
Schematic representation of the cell types in a 
B. subtilis community that differentiate beginning from 
motile cells, under the influence of the phosphorylated 
states of the three master regulators DegU, Spo0A and 
ComA, and the transcriptional activator ComK. The 
figure was modified from López and Kolter (2010). 
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Spo0A-dependent differentiation. In B. subtilis, low levels of phosphorylated Spo0A trigger 

the secretion of the two main components of biofilms: exopolymeric polysaccharides (EPS) 

and the structural protein TasA (López et al., 2010). In the same subpopulation, two peptide 

toxins are expressed to facilitate the lysis of members of other subpopulations (López et al., 

2009). The coupling of cannibalistic behavior and biofilm production is thought to be a 

mechanism to delay sporulation by providing nutrients originating from lysed cells under 

nutrient-limited conditions. (González-Pastor, 2011; López et al., 2009). High levels of 

Spo0~P, which emerge in response to starvation, activate the sporulation of a fraction of the 

matrix producer/ cannibal subpopulation (Figure 4; González-Pastor, 2011; López and Kolter, 

2010). 

The expression of the fla/che-operon, as marker for flagellum-based motility (Amati et al., 

2004), is repressed at all sampling points. Biofilm formation, indicated by the eps operon and 

tasA, is highly induced at the early sampling points I to III whereas sporulation seems to occur 

mainly at the later sampling point IV. Additionally, enhanced expression of exoprotease-

encoding genes is monitored throughout the sampling points with exception to sampling 

point I. Because the first sample was taken ten hours after onset of the fermentation process at 

a time point showing already high activation of biofilm formation, it can be concluded that a 

low phosphorylation level of Spo0A~P is given, inducing biofilm formation as well as 

repressing swimming motility (López and Kolter, 2010; Lopez et al., 2009). With the entry to 

carbohydrate limitation at sampling point IV (Chapter C), the level of Spo0A~P seems to rise 

to levels sufficient for the triggering of sporulation in a subset of cells (Schultz et al., 2009; 

Vlamakis et al., 2008). Meanwhile high levels of DegU~P appear to be preserved throughout 

the productive stages of the fermentation process in order to allow the formation of an 

exoprotease-producing subpopulation (Ogura et al., 2003; Verhamme et al., 2007). It is fairly 

natural to assume that this subpopulation is likewise suited for the production and secretion of 

the overexpressed protease of interest and, hence, the maintenance of this cell state is an 

important aspect of the industrial production process. Furthermore, neither the lichenysin-

encoding operon nor the operon coding for the late competence genes show activation at any 

sampling point, implying that subpopulations of biosurfactant producing and competent cells 

(Chapter A) are not formed in the monitored process. As both multicellular states are expected 

to be induced in response to ComA~P (Hoffmann et al., 2010a; López and Kolter, 2010), the 

lack of operon activity might be a direct consequence of the missing functionality of the 

ComA-phosphorylating kinase ComP. Although the introduction of a functional copy of 
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ComP could not restore the genetic competence of B. licheniformis DSM13, a result not 

totally understood by now (Hoffmann et al., 2010), an impact on lichenysin production cannot 

be excluded. It is not difficult to imagine, that the lacking cell differentiation itself is not only 

a drawback in terms of genetic accessibility (Rachinger, 2010; Waschkau et al., 2008), but 

offers a crucial advantage over other biotechnological-relevant bacteria (Schallmey et al., 

2004) by releasing anabolic and catabolic resources. 

Some questions arise with regard to the existing subpopulations: Is the population of 

exoprotease-producing cells in fact the most suitable subpopulation for the industrial 

production of a plasmid-encoded protease? And, if an optimal cell state for this purpose could 

be identified, would it be possible to shift more cells to this subpopulation in order to increase 

the productivity of the process? 

Both questions have been addressed by different approaches in order to raise the amount of 

available DegU~P in the cells by the Meinhardt group. They could increase the proteolytic 

activity of B. licheniformis by deleting the operon encoding genes for polyglutamate 

production, which is, like the production of exoproteases, regulated by DegU~P (Hoffmann et 

al., 2010b; Stanley and Lazazzera, 2005). Although the underlying reasons for this result 

remain unresolved, it is proposed that the deletion of competing molecular targets of DegU~P 

releases capacities to enhance production of other targets of this activator (Hoffmann et aAl., 

2010b). In contrast, the deletion of the DegU-phosphorylation repressor RapG did not show 

any effect on exoprotease secretion (Borgmeier et al., 2012), which is contrary to the results 

of an according experiment carried out in B. subtilis (Ogura et al., 2003). In a different 

attempt, the Meinhardt group found that enhanced production of chromosomally encoded 

exoproteases can also be achieved in B. licheniformis by introduction of the degU32 allele, 

known to cause hypersecretion in B. subtilis (Borgmeier et al., 2012). Furthermore, it was 

shown that a chromosomal copy of degU32 has a positive effect on the production of a 

plasmid-encoded exoprotease in B. amyloliquefaciens (Borgmeier et al., 2011). Nevertheless, 

since this exoprotease was under the control of a DegU~P-responsive promoter (Borgmeier et 

al., 2011), it is not yet known if there is an impact of enhanced DegU~P availability on 

exoprotease production induced by a constitutive, DegU-independent promoter. 

A further approach to optimize the productivity of the fermentation might be to diminish the 

influence of other abundant cell states, especially the spore-forming subpopulation 

(Chapter C). Moderate levels of Spo0A~P are not only necessary to induce biofilm formation, 

but also to establish the exoprotease-producing subpopulations, by repressing the 
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transcriptional repressor AbrB (Davidson et al., 2012; Schultz et al., 2009). Instead, high 

levels of phosphorylated Spo0A induce sporulation (Davidson et al., 2012; Schultz et al., 

2009). Hindering Spo0A~P to accumulate could inhibit the formation of spores and could 

therefore contribute to the establishment of optimized multicellularity. Ways to address this 

goal might be the overexpression of the RapA phosphatase (Perego et al., 1996), the deletion 

of its repressor PhrA (Perego et al., 1996) or a reduced expression of the lichenicidin cluster, 

as described in Chapter C. However, sporulation itself might as well be a factor contributing 

to the bioprocess, for instance by providing nutrients through cannibalism-induced cell lysis. 

It is obvious that manipulation of cellular pathways tightly controlled by the described master 

regulators and a plethora of additional activators and repressors is labor-intensive and highly 

speculative. Therefore, techniques to determine the effective cell state regarding protease 

production and general metabolic activity would be of high benefit. Some recent methods 

allowing single-cell analyses with the most prominent omics technologies could be used for 

these purposes. For example, developments in mass spectrometry now enable the detection of 

metabolites deriving from a single bacterial cell (Heinemann and Zenobi, 2011; Svatoš, 

2011). Additionally, the proteome of cellular subpopulations sorted by flow cytometric 

methods can also be analyzed by mass spectrometry (Bernhardt et al., 2013). Other 

approaches allow protein analysis on single cell-resolution by imaging of fluorescent reporter 

proteins coupled to the promoter or protein of interest (De Jong et al., 2012; Taniguchi et al., 

2010). Another imaging technique, fluorescence in situ hybridization, can also be applied for 

the identification of mRNA transcripts (Taniguchi et al., 2010). Finally, transcriptome 

analysis of single bacterial cells was performed successfully (Kang et al., 2011). Although the 

method was originally established for microarray detection, it should be applicable to RNA-

Seq approaches, as has already been demonstrated for eukaryotic cells (Tang et al., 2009). 

This technique is expected to make future contributions to many leading questions concerning 

the differences between the heterogeneous cell populations (Filiatrault, 2011; Mäder et al., 

2011), particularly when coupled with third-generation sequencing techniques. 
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SUMMARY 

SUMMARY 

Bacillus licheniformis has been employed as industrial workhorse since several decades, 

especially for the production of alkaline serine proteases like Subtilisin Carlsberg, which is 

used as additive inhousehold detergents. Since the progress in second-generation sequencing 

technologies facilitated the determination of whole bacterial transcriptomes by RNA-Seq 

approaches, in-depth analyses of different stages of a fermentation process are now possible 

and allow new insights into bacterial regulation to accomplish optimization of production 

strains and bioprocesses. 

In total, 15 samples of B. licheniformis DSM13 were derived from industrial-oriented 

fermentations, aiming at the production of Subtilisin Carlsberg. The samples were taken at 

five different time points during three independent fermentation processes. Whole 

transcriptome analysis yielded 2.4x107 to 4.3x107 RNA-Seq reads per sample. Analysis of 

these results and the utilization of public databases enabled the complete reannotation of the 

genome of B. licheniformis. Subsequently, the development of suitable prediction algorithms, 

led to the identification of 2798 untranslated regions and 461 non-coding RNAs in the 

generated transcriptome data sets. Thorough examination showed that 14% and 89% of these 

RNA features, respectively, are located in antisense orientation to a gene on the opposite 

strand, revealing a previously not expected wealth of putative antisense transcription-based 

regulation. Furthermore, the analyses allowed the confirmation and new identification of cis-

regulatory elements, and the determination of several new RNAs, which are either expressed 

independently or located in intergenic regions. Cluster analysis of the transcriptome data 

allowed the assignment of differentially expressed protein and ncRNA genes to distinct 

expression patterns. 

Moreover, differential RNA-Seq analysis of five of the aforementioned samples allowed the 

identification of 1500 transcription start sites. 408 of these are not located in a common 

promoter region, pinpointing additional regulatory sites. The integration of dRNA-Seq and 
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whole transcriptome RNA-Seq data made it possible to generate the first experimentally 

verified operon map of B. licheniformis. 

Proteome analysis of the fermentation samples, based on 2D gel fractionation and subsequent 

assignment by mass spectrometry, yielded 367 protein spots representing 260 different 

proteins. Together with the obtained gene expression values, these data enabled the thorough 

examination of carbon and nitrogen metabolism, stress responses, sporulation, secretion 

capacities and cell differentiation, in order to provide an overview on the complex dynamics 

of B. licheniformis during an industry-oriented fermentation process. 

The comprehensive analysis of all generated data facilitated the identification of putative 

targets for bioprocess and strain optimization approaches. These targets comprise, amongst 

others, the Tat-secretory pathway, the cell differentiation cascade and the antisense transcript 

located opposite to apr, which encodes the native Subtilisin Carlsberg preprotein. 
Finally, the accomplished complete sequencing and annotation of the 3.6 Mb genome of 

Geobacillus sp. GHH01, a thermophilic, lipase-secreting member of the family Bacillaceae, 

grants access to a new possible industrial production platform for high-temperature 

applications. 

162 



ACKNOWLEDGEMENTS 

ACKNOWLEDGEMENTS 

Mein Dank gilt meinem Doktorvater Prof. Rolf Daniel für die Übernahme des Referates und 

seine oft kurzen, aber prägnanten Kommentare, die halfen diese Arbeit und die damit 

verbundenen Veröffentlichungen auf den richtigen Weg zu bringen. Desweiteren möchte ich 

meinem Korreferenten Prof. em. Gerhard Gottschalk, der es stets schafft mir einen guten Rat 

mit auf den Weg zu geben, herzlich für sein Interesse und seine Zeit danken. Den Mitgliedern 

der Prüfungskommission Prof. Pöggeler, Jun.-Prof. Heimel, PD Dr. Hoppert und PD Dr. 

Kramer möchte ich für ihre Bereitschaft diese Aufgabe zu übernehmen ebenfalls herzlich 

danken. 

Ein ganz spezieller Dank gilt vor allem Dr. Heiko Liesegang für die Ermöglichung dieser 

Arbeit im weitesten Sinne. Dazu gehörte nicht nur die Konzipierung des Projektes, sondern 

auch eine intensive Betreuung, verbunden mit zahllosen Diskussionen und Vorschlägen. 

Danke auch für die zahlreichen Lektionen in positivem Denken und angewandter Diplomatie. 

Weiterhin bedanken möchte ich mich bei Dr. Johannes Bongaerts, Stefan Evers und Ayhan 

Aydemir, die mir die Probenahme bei der Firma Henkel ermöglichten. Dr. Henning Hellmuth 

danke ich für die schnelle und unkomplizierte Unterstützung bei der Freigabe der erstellten 

Schriften. Bei Dr. Birgit Voigt, Antje Fengler, Stefan Handtke, Dr. Dirk Albrecht und Prof. 

Dr. Michael Hecker von der Universität Greifswald möchte ich mich für die Möglichkeit die 

Proteomanalysen in etabliertem Umfeld durchzuführen, sowie für die fortwährende 

Unterstützung und eine schöne Zeit bedanken. Desweiteren gilt mein Dank Prof. Dr. Wolfang 

Streit, Ulrich Rabausch und Dr. Jennifer Chow von der Universität Hamburg für die 

Überlassung des Geobacillus-Stammes zur Sequenzierung. Außerdem möchte ich Dr. Andrea 

Thürmer, Frauke-Dorothee Meyer, Maik Schlieper und im Besonderen Stefanie Offschanka 

für ihre Unterstützung der Arbeiten hier in Göttingen danken. 

VII 



ACKNOWLEDGEMENTS 

Ganz besonders herzlich bedanken möchte ich mich bei Dr. Anja Poehlein und Dr. Sonja 

Volland, die mir beide stets mit fachlicher Hilfe, aber vor allem auch mit moralischer 

Unterstützung, weiterhalfen. Danke, dass ihr auf mich aufgepasst habt. 

Desweiteren gilt mein Dank meinen beiden Projekt-Mitstreitern Sascha Dietrich und Robert 

Hertel, die es mit ihrer Herzlichkeit schafften jede Schrulligkeit vergessen zu machen und mir 

zu wertvollen und liebgewonnenen Kollegen geworden sind. 

Zuletzt, dafür aber besonders innig, möchte ich mich bei Marvin Djukic, Dr. Katrin Hartwich, 

Andreas Leimbach und John Vollmers dafür bedanken, mit mir geduldig jedes noch so kleine 

Problem gelöst und am Ende des Tages immer noch einen Grund zum Lachen, Weinen oder 

Biertrinken gefunden zu haben. 

VIII 



PROMOVIERENDEN-ERKLÄRUNG 

DER GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Name:  Wiegand, Sandra 
Anschrift:  Nonnenstieg 51, 37075 Göttingen 

Ich beabsichtige, eine Dissertation zum Thema „RNA-Seq and proteomics based analysis of 
regulatory RNA features and gene expression in Bacillus licheniformis“ an der Georg-
August-Universität Göttingen anzufertigen. Dabei werde ich von Herrn Prof. Rolf Daniel 
betreut. 

Ich gebe folgende Erklärung ab: 
1. Die Gelegenheit zum vorliegenden Promotionsvorhaben ist mir nicht kommerziell
vermittelt worden. Insbesondere habe ich keine Organisation eingeschaltet, die gegen Entgelt 
Betreuerinnen und Betreuer für die Anfertigung von Dissertationen sucht oder die mir 
obliegenden Pflichten hinsichtlich der Prüfungsleistungen für mich ganz oder teilweise 
erledigt. 
2. Hilfe Dritter wurde bis jetzt und wird auch künftig nur in wissenschaftlich vertretbarem und
prüfungsrechtlich zulässigem Ausmaß in Anspruch genommen. Insbesondere werden alle 
Teile der Dissertation selbst angefertigt; unzulässige fremde Hilfe habe ich dazu weder 
unentgeltlich noch entgeltlich entgegengenommen und werde dies auch zukünftig so halten. 
3. Die Richtlinien zur Sicherung der guten wissenschaftlichen Praxis an der Universität
Göttingen werden von mir beachtet. 
4. Eine entsprechende Promotion wurde an keiner anderen Hochschule im In- oder Ausland
beantragt; die eingereichte Dissertation oder Teile von ihr wurden nicht für ein anderes 
Promotionsvorhaben verwendet. 

Mir ist bekannt, dass unrichtige Angaben die Zulassung zur Promotion ausschließen bzw. 
später zum Verfahrensabbruch oder zur Rücknahme des erlangten Grades führen. 

Göttingen, den 29.08.2013


	Title
	List of publications
	Table of contents
	Abbreviations
	Chapter A
	Bacillus licheniformis DSM13
	The bacterial transcriptome
	Post-transcriptional regulation
	Regulatory RNAs localized in untranslated regions
	Trans-encoded small RNAs
	Cis-encoded antisense RNAs

	Analysis of the bacterial transcriptome

	Aim of the thesis
	References

	Chapter B
	Additional information

	Chapter C
	Additional information

	Chapter D
	Chapter E
	Chapter F
	Transcriptome complexity
	Untranslated regions
	Non-coding antisense transcripts
	The operon concept

	Process monitoring and optimization
	Process monitoring by RNA-Seq
	Strategies for process monitoring and optimization
	Putative optimization targets

	References
	Additional information

	Summary
	Acknowledgements



