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“Die meisten Menschen wissen gar nicht, wie schön die Welt ist und wie viel 

Pracht in den kleinsten Dingen, in irgendeiner Blume, einem Stein, einer 

Baumrinde oder einem Birkenblatt sich offenbart. Die [meisten] erwachsenen 

Menschen, die Geschäfte und Sorgen haben und sich mit lauter Kleinigkeiten 

quälen, verlieren allmählich ganz den Blick für diese Reichtümer, welche die 

Kinder [und Wissenschaftler]...bemerken und mit dem ganzen Herzen lieben.” 

Rainer Maria Rilke 
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ZUSAMMENFASSUNG 

Obwohl Böden des Kronendachs (canopy soils) deutlich zur oberiridischen labilen 

Biomasse beitragen können, werden sie oft in Studien über Nährstoffkreisläufe übersehen. In 

Wäldern mit einem großen Vorkommen an Böden im Kronendach, wie beispielsweise jene in 

tropischen Bergregionen, könnte dies zu einem unvollständigen Verständnis der Gesamt-

Nährstoffprozesse des Waldes beitragen. Böden im Kronendach sind Ansammlungen 

organischen Materials, welche gewöhnlich auf Zweigen von Bäumen tropischer Wälder zu 

finden sind. Sie bestehen in erster Linie aus zersetztem epiphytischen Material aber umfassen 

auch herunterfallendes Laub, Staub, wirbellose Tiere, Pilze und Mikroorganismen. Es  gibt 

nur eine Handvoll Studien, die Stickstoff (N) Kreisläufe und/oder Treibhausgas (THG) Flüsse 

in Böden des Kronendachs untersucht haben und keine hat versucht die tatsächlichen 

Feldraten zu bestimmen oder herauszufinden, wie sich diese Böden – welche besonders 

sensibel gegenüber atmosphärischen Prozessen sind – mit Nährstoffdeposition ändern 

könnten. Diese Dissertation stellt die Ergebnisse einer Forschungsstudie dar, welche N-

Umsatzraten und THG Flüsse von Böden des Kronendachs quantifiziert und untersucht, wie 

diese Raten durch zunehmende Mengen an N und Phosphor (P) im Boden verändert werden.  

In Gebieten mit atmosphärischer N- und P-Deposition, erhalten Böden des Kronendaches 

sowohl direkte als auch indirekte Nährstoffeinträge auf Grund von angereichertem 

Bestandsniederschlag und Pflanzenstreu. Es wurden folgende Umsatzraten in Böden des 

Kronendachs tropische Bergwälder entlang eines Höhengradienten (1000 m , 2000 m , 3000 

m) gemessen: (1) asymbiotische biologische N2-Fixierung, (2) Netto- und Brutto-N-

Transformation, und (3) Kohlendioxid (CO2), Methan (CH4) und Lachgas (N2O) Flüsse. 

Zudem wurden indirekte Auswirkungen von N-und P-Gaben, die auf dem Waldboden 



 
X 

ausgebracht wurden, untersucht. Umsatzraten der N2-Fixierung, des N Kreislaufes und von 

THG Flüssen, welche in Böden des Kronendachs gemessen wurden, wurden mit denen vom 

Waldboden verglichen (entweder als Teil dieser Arbeit oder in parallelen Studien von zwei 

anderen Mitgliedern unserer Arbeitsgruppe), um die Aktivität von Böden des Kronendachs in 

den Kontext des gesamten Waldes zu stellen. N2-Fixierung wurde mit der 

Acetylenreduktionsmethode, Netto-N-Umsatzraten wurden mittels in situ Inkubationen 

(buried bag method) und Brutto-N-Umsatzraten wurden mit der 
15

N-Verdünnungsmethode 

(
15

N pool dilution technique) bestimmt. Gasflüsse wurden sowohl unter Verwendung 

statischer Kammern gemessen, deren  Sockel permanent im Boden angebracht waren, als auch 

unter Verwendung regelmäßig entfernter intakter Bodenproben, die zur Gasmessung in 

luftdichten Einweckgläsern inkubiert wurden. Messungen der N2-Fixierung und des N 

Kreislaufes erfolgten während der Regen- und Trockenzeit im Feld unter Verwendung intakter 

Bodenproben. THG Messungen wurden fünf Mal während des Zeitraumes von einem Jahr 

durchgeführt. Der Waldboden unserer Standorte war 4 Jahre lang zweimal im Jahr mit 

moderaten Mengen an N ( 50 kg N ha
-1

 Jahr
-1

) und P (10 kg P ha
-1

 Jahr
-1

) gedüngt worden und 

umfasste folgende Behandlungen: Kontrolle, N-, P- und N+P-Zugaben. 

Das Kronendach trug 7-13 % zur gesamten Boden N2-Fixierung (Kronendach + 

Waldboden) bei, welche zwischen 0,8 und 1,5 kg N ha
-1

 Jahr
-1

 lag. N2-Fixierungsraten 

veränderten sich nur geringfüging mit der Höhenstufe, waren aber in der Trockenzeit deutlich 

höher als in der Regenzeit. N2-Fixierung im Waldboden wurde in N-Parzellen im Vergleich zu 

Kontroll- und P-Parzellen gehemmt, währen sie in Böden des Kronendachs in P-Parzellen im 

Vergleich zu Kontrollparzellen stimuliert wurde. Böden des Kronendachs trugen bis zu 23% 

zur gesamten mineralischen N-Produktion (Kronendach + Waldboden) bei; Brutto-N-
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Mineralisierung in Böden des Kronendachs lag zwischen 1,2 und 2,0 mg N kg
-1

 d
-1

. In 

Kontrollparzellen nahmen Brutto-Umsatzraten von Ammonium (NH4
+
) mit zunehmender 

Höhe ab, wohingegen Brutto-Umsatzraten von Nitrat (NO3
-
) keinen klaren Trend mit der 

Höhenstufe aufwiesen, aber signifikant durch die Saison beeinflusst wurden. Effekte durch 

Nährstoff-Zugabe unterschieden sich je nach Höhenstufe, aber kombinierte N+P-Zugabe 

erhöhte in der Regel auf allen Höhenstufen die N-Umsatzraten. CO2 Emissionsraten von 

Böden des Kronendachs berechnet auf der Basis der Fläche von Gaskammern (10,5 bis 109,5 

mg CO2-C m
-2 

h
-1

) waren ähnlich denen vom Waldboden ähnlich und nahmen mit 

zunehmender Höhenstufe ab. Emissionen vom Kronendach, berechnet auf der Basis der 

Waldfläche (0,15 bis 0,51 Mg CO2-C m
-2 

h
-1

), machten jedoch nur 5-11% der  gesamten 

Boden-CO2 Emissionen (Kronendach + Waldboden) aus. CH4 Flüsse (-0,07 bis 0,02 kg CH4-

C ha
-1 

Jahr
-1

) und N2O Flüsse (0,00 bis 0,01 kg N2O-N ha
-1 

Jahr
-1

) von Böden des 

Kronendachs machten weniger als 5% der Gesamtflüsse von Böden aus. P-Zugabe reduzierte 

CH4 Emissionen in allen Höhenstufen, so dass Böden des Kronendachs als leichte CH4 

Senken agierten (-10,8 bis -2,94 μg CH4-C m
-2 

h
-1). Nur in 2000 m wurden Böden des 

Kronendachs unter N Zugabe zu leichten N2O Quellen (2,43 ± 3,72 μg N2O-N m
-2 

h
-1), 

wohingegen P Zugabe die CO2 emissionen um ungefähr 50% reduzierte.   

 Die Ergebnisse zeigen, dass Böden des Kronendachs eine aktive Mikrobengemeinschaft 

besitzen, welche wertvolle Dienstleistungen hinsichtlich von Nährstoffkreisläufen für das 

Ökosystem des Kronendachs erbringt. Zusätzlich, war der Nährstoffkreislauf der Böden des 

Kronendachs in unseren Wäldern eindeutig an die Nährstoffverfügbarkeit des Waldbodens 

gekoppelt, was im Gegensatz zu Theorien steht, die besagen dass Böden des Kronendachs 

vom Nährstoffkreislauf der Waldböden entkoppelt seien. Wir haben festgestellt, dass Böden 
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des Kronendachs in höheren Lagen eher einen wesentlichen Anteil des gesamten Wald-

Nährstoffkreislaufes ausmachen; dies sollte in Studien berücksichtigt werden, die sich mit 

Nährstoffkreisläufen solcher Gegenden beschäftigen.  Langfristige atmosphärische N- und P-

Deposition verfügt über das Potenzial, die Dynamik von Nährstoffflüssen im Kronendach 

erheblich zu verändern. N-Deposition könnte die N2-Fixierung hemmen, wobei “hotspots“ 

weiterhin in Bereichen mit großen Mengen an P vorkommen. Interne N-Kreisläufe in Böden 

des Kronendachs werden wahrscheinlich durch N -und P-Deposition stimuliert werden, aber 

chronischen Nährstoffzugabe könnte auch zu erhöhten mineralischen N-Verlusten aus dem 

Bodensystem des Kronendachs führen. THG-relevante Prozesse in Böden des Kronendachs 

werden wahrscheinlich auch auf N- und P-Deposition reagieren, aber mit Ausnahme von CO2-

Emissionen ist es unwahrscheinlich, dass Gasflüsse von Böden des Kronendachs wesentlich 

zum gesamten THG-Budget des Waldes beitragen. 
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SUMMARY 

Although canopy soils can contribute significantly to aboveground labile biomass, they 

are often overlooked in nutrient cycling studies. In forests with large accumulations of canopy 

soil, such as those found in tropical montane regions, this could contribute to an incomplete 

understanding of nutrient cycling in the overall forest. Canopy soils are collections of organic 

material commonly found on the branches of trees in humid forests; they are primarily made 

up of decomposed epiphytic material but also include intercepted litter, dust, invertebrates, 

fungi and microorganisms. There are only a handful of studies that have looked at nitrogen 

(N) cycling and/or greenhouse gas (GHG) flux in canopy soils and none have tried to assess 

the actual field rates or investigated how these soils - which are particularly sensitive to 

atmospheric processes - could change with nutrient deposition. This dissertation presents the 

results of a research study that quantified rates of canopy soil N cycling and GHG flux and 

assessed how these rates were affected by increased levels of N and phosphorus (P) in the soil.  

In areas of atmospheric N and P deposition, canopy soils receive both direct inputs and 

indirect enrichment via enriched throughfall and plant litter. We measured rates of (1) free-

living N2 fixation, (2) net and gross mineral N cycling, and (3) carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O) exchange, in canopy soils of tropical montane forests along an 

elevation gradient (1000 m, 2000 m and 3000 m) and assessed the indirect effects of N and P 

addition to the forest floor.  Rates of N2 fixation, N cycling and GHG flux measured in canopy 

soil were compared with those measured on the forest floor (either as a part of this work or in 

parallel studies by two other members of our working group), to put canopy soil activity in the 

context of the total forest. N2 fixation was determined using the acetylene reduction assay, net 

N cycling rates were determined using the buried bag method and gross N cycling rates were 
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determined using 
15

N pool dilution techniques. Gas fluxes were measured using static 

chambers with permanent bases in the soil, as well as intact soil cores sealed in jars. N2 

fixation and N cycling measurements took place in the field, in the wet and dry seasons, using 

intact cores of soil. GHG measurements were done five times during a one-year period. The 

forest floor of our study sites had been fertilized biannually with moderate amounts of N (50 

kg N ha
-1

 yr
-1

) and P (10 kg P ha
-1

 yr
-1

) for 4 years; treatments included control, N, P and N+P.  

The canopy contributed 7-13 % of total (canopy + forest floor) soil N2 fixation, which 

ranged from 0.8 to 1.5 kg N ha
-1

 yr
-1

. N2 fixation rates exhibited little variation with elevation 

but were much higher in the dry season than the wet season. N2 fixation was inhibited in forest 

floor N plots compared to control and P plots, and stimulated in canopy P plots compared to 

control. Canopy soils contributed up to 23% of total (canopy + forest floor) mineral N 

production; gross N mineralization in canopy soils ranged from 22.7 to 45.8 mg N kg
-1 

d
-1

 and 

gross nitrification ranged from 1.2 to 2.0 mg N kg
-1 

d
-1

. In control plots, gross rates of 

ammonium (NH4
+
) transformations decreased with increasing elevation, whereas gross rates 

of nitrate (NO3
-
) transformations did not exhibit a clear elevation trend but were significantly 

affected by season. Nutrient-addition effects were different at each elevation, but combined 

N+P generally increased N cycling rates at all elevations. Rates of canopy CO2 emissions 

based on chamber area (10.5 to 109.5 mg CO2-C m
-2 

h
-1

) were similar to those measured on 

the forest floor and decreased with increasing elevation. However, canopy emissions based on 

forest area (0.15 to 0.51 Mg CO2-C ha
-1 

yr
-1

) made up only 5-11% of total (canopy + forest 

floor) soil CO2 emissions. Canopy soil CH4 fluxes (-0.07 to 0.02 kg CH4-C ha
-1 

yr
-1

) and N2O 

fluxes (0.00 to 0.01 kg N2O-N ha
-1 

yr
-1

) made up less than 5% of the total soil fluxes. P 

addition decreased net CH4 emissions at all elevations, so that canopy soils acted as a slight 
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sink for CH4 (-10.8 to -2.94 μg CH4-C m
-2 

h
-1). At 2000 m only, canopy soils with N addition 

became a slight N2O source (2.43 ± 3.72 μg N2O-N m
-2 

h
-1

), whereas P addition decreased CO2 

emissions by approximately 50%.  

Results show that canopy soils have active microbial communities, which provide 

valuable nutrient cycling services to the canopy ecosystem. Additionally, in contrast to 

theories that canopy soil is decoupled from nutrient cycling in forest floor soil, nutrient 

cycling in the canopy soils of our forests was clearly linked to forest floor nutrient availability. 

We observed that canopy soils at higher elevations were more likely to make up a significant 

percentage of total forest nutrient cycling; this should be considered in nutrient cycling studies 

carried out in such areas. Long-term atmospheric N and P deposition has the potential to 

significantly change the dynamics of nutrient cycling in these canopies. N deposition may lead 

to inhibition of N2 fixation, with hotspots still occurring in areas with higher amounts of P. 

Internal N cycling in canopy soils will likely be stimulated by N and P deposition, but chronic 

nutrient addition may also lead to increased mineral N losses from the canopy soil. GHG-

related processes in canopy soils will likely also respond to N and P deposition, but with the 

exception of CO2 emissions, fluxes in canopy soils are unlikely to significantly contribute to 

total forest GHG budgets. 
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1.1 - Atmospheric deposition, tropical forests and canopy soil  

Tropical regions are currently experiencing dramatic increases in nitrogen (N) and 

phosphorus (P) deposition as compared to historical levels and these increases are expected to 

continue (Boy et al. 2008; Galloway et al. 2004; Hietz et al. 2011; Mahowald et al. 2005, 

2008). Deposition of N and P into otherwise undisturbed tropical forests could have a 

significant impact, as many of these forests are expected to be N and/or P limited (Elser et al. 

2007; Vitousek et al. 2010). However, studies looking at nutrient cycling in tropical forests 

have shown that the heterogeneity of tropical forests makes it difficult to understand even 

current processes, much less predict how they could change (Townsend et al. 2008; 2011). 

One form of complexity that is often overlooked is the forest canopy. Despite the important 

role that canopies play in forest nutrient cycles, canopy-based processes are rarely included in 

studies of nutrient deposition.  

The canopy of a forest is a complex ecosystem existing within the larger forest ecosystem 

(Nadkarni 1994; Ozanne et al. 2003); it includes not only plants and animals, but also 

wetlands (Martinson et al. 2010) and soil (Enloe et al. 2006). Canopies affect forest 

ecosystems in a number of vital ways, buffering extreme temperature changes through 

shading, altering hydrological conditions to reduce leaching and overland flow (Prescott 

2002), providing a unique habitat for plant and animal ‘canopy specialists’ and acting as a 

storehouse/source of nutrients for the forest ecosystem (Nadkarni 1994, Nadkarni et al. 2002). 

Globally, forest canopies are thought to contain about 50% of the biodiversity of terrestrial 

ecosystems (as cited in Lowman and Schowalter 2012).     

An important component of the canopy ecosystem is canopy soil, an accumulation of 

organic material primarily made up of decomposed material from epiphytes (Hietz et al. 
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2002), but also including intercepted litter, invertebrates, fungi and microorganisms (Nadkarni 

et al. 2002).  Canopy soil performs several functions for the total forest ecosystem. First, it 

contributes to total canopy nutrient retention from precipitation (Umana and Wanek 2010). 

These nutrients can then be leached to the forest floor, adding to terrestrial soil nutrition 

(Zimmerman et al. 2007), or be taken up by epiphytes; epiphyte diversity has been observed to 

be higher in trees where canopy soil is present (Barthlott et al. 2001; Cardelus and Mack 

2010). The soil found in the canopy can also be a reservoir for seeds (Nadkarni and Haber, 

2009) and a habitat for a diverse community of invertebrates (Beaulieu et al. 2010; Yanoviak 

et al. 2007) - and these can, in turn, be a source of food for larger canopy dwellers. Birds, 

specifically, are known to forage in canopy soil, with some species foraging there almost 

exclusively (Nadkarni and Matelson 1989; Remsen and Parker 1984). Although there is 

clearly far less soil in the canopy than on the forest floor, it is not always an insignificant 

amount. Estimates of canopy soil biomass can range from only 1000 kg ha
-1

 up to 33,000 kg 

ha
-1

 (Chen et al. 2010; Freiberg and Freiberg 2000; Nadkarni et al. 2004; Vance & Nadkarni, 

1990; Werner et al. 2012), becoming most significant in coastal rainforests or tropical 

montane forests (Coxson and Nadkarni 1995). Furthermore, while Nadkarni et al. (2004) 

showed that canopy soil made up only 6% of the aboveground biomass of a tropical forest, the 

canopy soil made up over 80% of the mass of labile (non-woody) components.  

Studies looking at canopy soil have examined nutrient pools (Cardelus et al. 2009; 

Cardelus and Mack, 2010; Chen et al. 2010; Nadkarni et al. 2002, 2004; Soethe et al. 2008), 

net nutrient cycling (Clark et al. 1998, 2005), gross N cycling (Wanek et al. 2002), microbial 

biomass and potential microbial activity (Vance and Nadkarni, 1990) and decomposition rates 

(Cardelus 2010). Through such studies we know that, in comparison with forest floor soils (on 
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a mass-based scale), canopy soils can have similar or higher C:N ratios and cation exchange 

capacity (Cardelus et al. 2009, Nadkarni et al. 2002), similar (Vance and Nadkarni 1990) or 

higher (Cardelus et al. 2009) microbial biomass C and N, similar (Perez et al. 2005) or both 

higher and lower (Cardelus et al. 2009) net N cycling, and similar gross N cycling (Wanek et 

al. 2002). However, canopy soils are generally more acidic than forest floor soils (Cardelus et 

al. 2009; Vance and Nadkarni 1990), with significantly higher amounts of aluminum 

(Nadkarni et al. 2002). There is, however, still a paucity of data regarding field rates of N 

cycling and GHG flux in canopy soils of different regions.  

 

1.2 - Deposition and the global N cycle 

N is an indispensable element for all life on earth, forming an integral part of 

biomolecules such as proteins and DNA (Bernhard 2012). However, although N is ubiquitous 

worldwide in the form of dinitrogen gas (N2), only a small fraction of global N is available for 

use by the majority of organisms. In order to become available, N2 must be ‘fixed’ by one of 

the small number of bacteria or Achaea capable of breaking the triple bond between the two 

atoms and incorporating the N into a biologically available form (Bernhard 2012). Since this 

process has a very high energy requirement, N2 fixation should only occur when no other form 

of N is available, and consequently the amount of reactive N in any given ecosystem should 

remain in check (Hedin et al. 2009). Historically, this was often the case, and N still limits 

primary production in the majority of undisturbed ecosystems (Vitousek and Howarth 1991). 

As global populations have increased in the last hundred years, however, there have been 

significant changes to this balance. Not only has the cultivation of N2-fixing crops 

dramatically increased the fixation of N2 through biological means, but fixation now also 
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occurs through fossil fuel combustion and the Haber-Bosch process (Boy et al. 2008; 

Galloway et al. 2004; Hietz et al. 2011). The latter is an industrial process created to generate 

synthetic fertilizer, which has allowed an exponential increase in the amount of reactive N 

entering ecosystems worldwide. It has been estimated that up to 80% of the N now found in 

human tissues was fixed through the Haber-Bosch process (Howarth 2008).    

Once biologically-available N has been added to an ecosystem, it can have several fates: 

incorporation into organic matter, partitioning into inorganic N pools, leaching to groundwater 

or denitrification back to the atmosphere (Silver et al. 2001). In most undisturbed ecosystems, 

the N cycle is tightly controlled, but anthropogenic contributions to the amount of reactive N 

in an ecosystem can dramatically alter the N cycle and have serious consequences. In aquatic 

systems, excess N can cause eutrophication and declining habitat quality (Howarth et al. 2000; 

Schindler 2006; Smith et al. 2006). In forests, effects can include soil acidity (Hoegberg et al. 

2006), decreases in biodiversity (Stevens et al. 2004; Vitousek et al. 1997) and losses in 

carbon storage (Cleveland and Townsend 2006). In populated regions, nitrate in drinking 

water can be a serious health issue (Townsend et al. 2003), and indirect effects of the 

changing N cycle could include an increased risk of parasites and infectious diseases among 

both humans and wildlife (Johnson et al. 2010). However, consequences are not limited to 

populated areas. Atmospheric processes allow reactive N to be transported and deposited long 

distances; the potential for N to be emitted, transported, deposited, re-emitted, etc. has been 

termed the ‘hopscotch’ of N around the world (Galloway et al. 1995). Galloway et al. (2003) 

describes the movement of N once it has been fixed into a reactive form as the nitrogen 

cascade. Briefly, once reactive N has entered an ecosystem it can travel through and affect the 

atmosphere, terrestrial ecosystems and aquatic ecosystems. The cascade only ends when the N 
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is converted back to unreactive N2, but this may occur over very long time-scales and it is 

currently far outpaced by the production of reactive N, causing an accumulation of reactive N 

to occur globally.  

 

1.3 - Deposition and the global P cycle 

Like N, P is essential to most living things, as it is required for the formation of 

carbohydrate polymers, proteins and nucleic acids (Westheimer 1987).  Unlike N, there is no 

biological mechanism to mobilize P; in undisturbed ecosystems, biologically available P must 

come from weathering of soil minerals or through atmospheric dust inputs (Chadwick et al. 

1999). However, the global P cycle is changing. Worldwide, there is an ever-increasing 

demand for phosphate rock, which is used to produce fertilizer and other P-containing 

products (mostly detergents and animal feed) (Smil 2000). In order to meet this demand, 

extraction of phosphate rock has increased exponentially; between 1911 and 2011, worldwide 

production increased from 6 Mt yr
-1

 to 198 Mt yr
-1

 (Smil 2000; U.S. Geological Survey 2011).  

In undisturbed ecosystems, the availability of P is highly dependent on soil weathering, so 

soils that have undergone more weathering are more prone to P limitation. Studies looking at 

soil chronosequences have found that younger soils tend to be limited by N, while mid-aged 

soils are co-limited by N and P, and older soils are limited by P (Harrington et al. 2001; 

Vitousek and Farrington 1997). This same theory has also been applied on a geographical 

scale, suggesting that P will be more available in high-latitude soils as compared to those of 

the lowland tropics, since the former have undergone more recent glaciation, which renews 

the supply of rock-based minerals in soils (Vitousek and Sanford 1986). Dust as a supplier of 

P becomes more important as available stocks of P through weathering are decreased 
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(Chadwick et al. 1999). Natural sources of aeolian P for weathered soils can be very 

geographically distinct. For example, Amazonian forests have been shown to be highly 

dependent on P deposition that originates from the Saharan desert (Okin et al. 2004; Swap et 

al. 1992). However, like N, anthropogenic activities can also be the cause of atmospheric 

mobilization of P. In fact, activities related to increased N in the environment (i.e. 

transformation of forested areas to pasture or farmland) can contribute P to the atmosphere, 

first through biomass burning (Mahowald et al. 2005; 2008) and then further through 

increased incidence of forest fires as a result of land clearing (Cochrane and Laurance 2008). 

In tropical areas such as the Amazon, slash-and-burn activities can result in combustion P 

losses greater than 20 kg ha
−1

, not including subsequent wind and water erosion of P-

containing ash (Kauffman et al. 1993).  

Regardless of the P source, once soil mineral P has been mobilized by weathering, it can 

have three general fates: sorption (adsorption onto secondary clay minerals or being bound as 

aluminum or iron phosphates), losses through hydrological processes, or immobilization by 

microbes or plants; P returned as organic P can also be sorbed or leached, or mineralized back 

to the available inorganic P pool (Reed et al. 2011). Sorption is an important controller of P 

availability in soils, particularly highly-weathered tropical soils, as it can result in sorbed 

inorganic P concentrations in soil being several orders of magnitude higher than available P 

concentrations (as cited in Reed et al. 2011). Hydrological P losses are also an important 

controller of P retention; although it has been shown that P losses decrease with increasing P 

limitation in soils, small but significant losses continue regardless of the extent of P limitation 

(Hedin et al. 2003). P enrichment of ‘downstream’ ecosystems through atmospheric and 

hydrological processes has fewer known negative consequences as compared to N enrichment, 
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but it is a major driver of aquatic eutrophication (Carpenter et al. 1998; Schindler 2006; Smith 

et al.2006) and has been linked to carbon storage losses in terrestrial ecosystems (Cleveland 

and Townsend 2006).  

 

1.4 - Experimental set-up and study objectives 

This study took place in three forest sites, which formed an elevation gradient (1000 m, 

2000 m and 3000 m asl) in the Andes of southern Ecuador. The forests in this area are 

considered diversity hot-spots for vascular plants (Barthlott et al. 2007; Brummitt and 

Lughadha 2003) and birds (Orme et al. 2005). The study sites were in or adjacent to 

Podocarpus National Park (Figure 1.1), a primary forest covering an area of approximately 

1450 km² on the border of the provinces of Loja and Zamora Chinchipe (Ministerio del 

Ambiente, no date). At each elevation, four replicate blocks were laid out, with each replicate 

block containing a control plot and three treatment plots: added N, added P and the 

combination of added N and P (Figure 1.2). More detailed site information is included in the 

following chapters, and the study area is also extensively reviewed by Richter et al. (2013). 
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Figure 1.1 Map of Ecuador (left) and the area around Loja and Zamora (right) showing the approximate locations of the 1000 m, 2000 m and 3000 m study sites. 

Pictures adapted from: https://www.cia.gov/library/publications/cia-maps-publications/Ecuador.html (left) and https://www.cia.gov/library/publications/cia-

maps-publications/Ecuador.html (right). 
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Figure 1.2 Topographic maps showing the layout of the nutrient manipulation experiment (NUMEX) plots at 1000 m (left), 2000 m (middle) and 3000 m (right) 

(diagrams adapted from J. Homeier, 2010). 
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Our objectives were to quantify rates of (1) N2 fixation, (2) internal N cycling, and (3) 

carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) flux, for canopy soils along an 

elevation gradient of tropical montane forests, and put these measurements in context of the 

total forest by comparing them with measurements from the forest floor. In addition, we 

assessed, in the context of the above-mentioned measurements, the sensitivity of the canopy 

soils to four years of moderate nutrient addition to the forest floor. Due to the short duration of 

the nutrient manipulation experiment before we began our measurements, and the low amount 

of fertilizer added to the forest floor, we anticipated only small changes as a result of fertilizer 

addition, but were looking for confirmation of the following hypotheses (the detailed 

justification for which is outlined in the introductory sections of Chapters 2, 3 and 4):  

 

(1) N2 fixation would be inhibited in N and N+P plots but enhanced in P plots (we 

expected this to be significant on the forest floor but to see only trends in the canopy). 

(2) N cycling rates would increase as a result of all three treatments, since both nutrients 

should be limiting activity in canopy soils. 

(3) N and P would stimulate CH4 uptake and improve litter quality, increasing CO2 

emissions. There would be no change in N2O flux, as the canopy should be N-limited 

and therefore have a very conservative N cycle.  
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2.1 - Abstract 

Although the canopy can play an important role in forest nutrient cycles, canopy-based 

processes are often overlooked in studies on atmospheric deposition. In areas of nitrogen (N) 

and phosphorus (P) deposition, canopy soils receive both direct atmospheric inputs and 

indirect enrichment via enriched throughfall and plant litter. We measured rates of free-living 

N2 fixation along an elevation gradient (1000, 2000 and 3000 m) of tropical montane canopy 

soils, compared these to rates measured in the top 5 cm of forest floor soils, and assessed the 

indirect effects from elevated nutrient inputs to the forest floor. N2 fixation was measured 

using the acetylene reduction assay. Measurements took place in the field, in the wet and dry 

seasons, using intact cores of soil. The forest floor had been fertilized biannually with 

moderate amounts of N and P for 4 years; treatments included control, N, P and N+P. The 

canopy contributed 7-13 % of free-living soil N2 fixation, which ranged from 0.8 to 1.5 kg N 

ha
-1

 yr
-1

. N2 fixation rates exhibited little variation with elevation but were much higher in the 

dry season than the wet season. Fixation activity was inhibited in forest floor N plots 

compared to control and P plots, and stimulated in canopy P plots compared to control. 

Results suggest that N2 fixation is an active process in canopy soils, but is extremely variable 

across seasons and sensitive to changes in nutrient availability. Long-term atmospheric N 

and/or P deposition has the potential to significantly change the dynamics of soil N cycling in 

these canopies. 
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2.2 - Introduction 

Tropical regions have experienced dramatic increases in anthropogenic nitrogen (N) and 

phosphorus (P) deposition in recent decades – mainly as a result of increased fertilizer use, 

fossil fuel use and biomass burning – and these increases are expected to continue (Boy et al. 

2008; Galloway et al. 2004; Hietz et al. 2011; Mahowald et al. 2005, 2008). It has been 

projected that almost two-thirds of N fertilizer use and energy-related N inputs worldwide will 

be occurring in the tropics and subtropics by 2020 (Matthews 1994; Galloway et al. 1994). 

Although these inputs are the by-product of necessary activities required to sustain a growing 

global population, reactive N is prone to moving into neighboring, undisturbed areas through 

hydrological and atmospheric processes (Galloway et al. 2003). Additionally, many of the 

activities related to increased N in the environment (i.e. transformation of forested areas to 

pasture or farmland) contribute nutrients such as P to the atmosphere, first through biomass 

burning (Mahowald et al. 2005; 2008) and then further through increased incidence of forest 

fires as a result of land clearing (Cochrane and Laurance 2008). Deposition of N and P into 

otherwise undisturbed tropical forests could have a significant impact, as many of these 

forests are expected to be N and/or P limited (Elser et al. 2007; Vitousek et al. 2010). 

However, the long-term effect that deposition of these nutrients will have on tropical forests is 

still uncertain.  

The major non-anthropogenic pathway of N input to an ecosystem is N2 fixation. Since it 

has a very high energy requirement, N2 fixation should, theoretically, down-regulate as other 

sources – such as atmospheric deposition – increase N availability in the soil. However, in 

what has been termed the nitrogen paradox (Hedin et al. 2009), this is not always the case in 

tropical forests, where N supply often seems to exceed biological demand. The majority of N2 
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fixed worldwide is through symbiotic bacteria in root nodules (Cleveland et al. 1999), but in 

tropical forests a significant amount of N2 can also be fixed by asymbiotic or ‘free-living’ 

microbes in litter or soil (Cleveland et al. 1999, Jordan et al. 1982, Maheswaran and 

Gunatilleke 1990, Reed et al. 2007). However, the distribution and controls of free-living N2 

fixation are still not well understood and documented in tropical regions. Hedin et al. (2009) 

suggest in their theory to explain the nitrogen paradox that N2 fixation (and especially that 

from free-living N2 fixers) might occur in zones of N deficiency, which are spatially separated 

from areas of N abundance, allowing N2 fixation to continue despite the ecosystem being N-

rich as a whole. The two areas that they suggest are the surface of forest floor soils and the 

forest canopy. 

Despite the important role that canopies play in forest nutrient cycles, canopy-based 

processes are often overlooked in studies on nutrient cycling. Canopies affect forest 

ecosystems in a number of vital ways, buffering extreme temperature changes through 

shading, altering hydrological conditions to reduce leaching and overland flow (Prescott 

2002), providing a unique habitat for plant and animal ‘canopy specialists’ and acting as a 

storehouse/source of nutrients for the forest ecosystem (Nadkarni 1994, Nadkarni et al. 2002). 

Often envisioned as just the uppermost part of the trees in a forest, the canopy is, in fact, a 

complex ecosystem existing within the larger forest ecosystem (Nadkarni 1994; Ozanne et al. 

2003); it includes not only plants and animals, but also wetlands (Martinson et al. 2010) and 

soil (Enloe et al. 2006). In tropical montane forests, a major component of canopy functioning 

is canopy soil, an accumulation of organic matter found on branches and tree junctions. 

Canopy soil is mainly comprised of decomposed material from epiphytes (Hietz et al. 2002), 

but also includes intercepted litter, invertebrates, fungi and microorganisms (Nadkarni et al. 
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2002). Studies have shown that canopy soil has many similarities to tropical forest floor litter 

(Cardelus et al. 2009; Nadkarni et al. 2002; Vance and Nadkarni 1990), but due to its isolation 

from the mineral soil, it could continue to be nutrient limited – and therefore active in fixing 

N2 – even as N accumulated on the forest floor. However, to date, N2 fixation studies in 

tropical forests that include the canopy have done so in only a few compartments: canopy 

leaves (Bentley 1987; Carpenter 1992; Cusack et al. 2009; Freiberg 1998; Fürnkranz et al. 

2008; Goosem and Lamb 1986; Reed et al. 2008), bryophytes (Cusack et al. 2009; Matzek and 

Vitousek 2003) and lichens (Benner et al. 2007; Cusack et al. 2009; Forman 1975; Matzek and 

Vitousek 2003). Potential N2 fixation rates from these canopy compartments vary, but are 

suggested to be up to 8 kg N ha
-1 

yr
-1

 (Forman 1975). In terms of nutrient response, several 

studies observed a positive effect of P (or low N:P ratios) on N2 fixation rates (Benner et al. 

2007; Bentley 1987; Matzek and Vitousek 2003; Reed et al. 2008), but often mixed effects 

with N. Cusack et al. (2009) observed that added N decreased N2 fixation rates in the canopy 

and on the forest floor, but effects were only significant on the forest floor. The results of 

these studies indicate that the canopy could remain a zone of N deficiency as N accumulated 

elsewhere in the forest. However, while all of these studies provided estimates and 

information about different compartments in the canopy, several were lab-based studies and/or 

provided only potential values, and none of them included canopy soil.  

Although canopy soil may not be a significant part of all forest ecosystems, it can be a 

significant part of some; estimates of canopy soil biomass range from 1000 to 33000 kg ha
-1

 

(Vance and Nadkarni, 1990; Nadkarni et al. 2004; Chen et al. 2010; Werner et al. 2012). 

Furthermore, Nadkarni et al. (2004) showed that while canopy soil made up only 6 % of the 

aboveground biomass of a tropical montane forest in Costa Rica, when one focused on the 
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biomass of just labile (non-woody) components, canopy soil made up over 80 % of the total. 

Therefore, in order to understand tropical montane forest ecosystems and predict changes due 

to disturbances such as nutrient deposition, we need to better understand how canopy soil 

functions and how it compares to forest floor soil. 

In this study, we measured rates of N2 fixation along an elevation gradient of tropical 

montane forests in intact cores of canopy and forest floor soil (forest floor soil is defined as 

the top 5 cm of material - excluding coarse litter - found on the forest floor). Cores were taken 

from plots with and without fertilization of N and P. In order to avoid short-term effects from 

adding fertilizer directly to canopy soils, we used a pre-existing experimental setup where N 

and P had been added to the forest floor for four years. Our objectives were to: (1) determine 

and compare rates of free-living N2 fixation in canopy and forest floor soil and (2) assess 

whether these rates were affected by indirect enrichment from moderate nutrient inputs to the 

forest floor. We hypothesized that N2 fixation would be inhibited in the N-fertilized forest 

floor soils but not in their corresponding canopy soils. Similarly, we expected N2 fixation to 

increase in P-fertilized forest floor soils but not in the corresponding canopy soils. 

 

2.3 - Materials and Methods 

2.3.1 Study sites 

This study was carried out along an elevation gradient in and adjoining Podocarpus 

National Park, a tropical montane forest in the Andes of southern Ecuador. The gradient 

included three study areas: 1000 m (4.115° S, 78.968° W; ranging from 990-1100 m), 2000 m 

(3.982° S, 79.083° W; ranging from 1950-2100 m) and 3000 m (4.110° S, 79.178° W; ranging 

from 2900-3050 m) (Martinson et al. 2013). Details about general climate, soil parameters and 
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vegetative cover are included in Table 2.1. Although we attribute differences between the 

three study areas to the combination of climatic, vegetation and soil factors associated with 

elevation, it is notable that the elevations themselves were not replicated, so these results 

cannot be said to represent these elevations in tropical montane forests as a whole.  

 

Table 2.1 Site and soil characteristics along an elevation gradient from 1000 m to 3000 m, in a tropical montane 

forest of southern Ecuador. Soil characteristics (mean (SE); n=4) were measured from the top 5 cm of soil on the 

forest floor (mineral soil at 1000 m and organic soil at 2000 m and 3000 m) and on branches in the upper and 

lower canopy. Previously published material: temperature, rainfall (Moser et al. 2007), vegetation type (Homeier 

et al. 2010), stand height, tree density, forest floor organic layer, soil type and forest floor total phosphorus 

(Martinson et al. 2013).  

 1000 m 2000 m 3000 m 

Annual temperature (°C)
 

19.4 15.7 9.4 

Annual rainfall (mm)
 

2230 1950 4500 

Vegetation type
 

Premontane Lower montane Upper montane 

Stand height (m)
 

20-25 10-14 6-8 

Tree density (trees ha
-1

) 747.5 1142.5 1305.0 

Forest floor organic layer (cm)
 

0 10-30 10-40 

Soil type Dystric Cambisol Stagnic Cambisol Stagnic Histosol 

      

Canopy soil (0-5 cm) Upper Upper Lower Upper Lower 

δ
15

N 1.2 (0.4) -0.03 (0.7) -0.8 (0.2) 0.1 (0.5) -0.2 (0.3) 

Total carbon (%) 48.9 (0.9) 48.0 (0.6) 47.8 (0.4) 48.9 (1.5) 49.3 (1.8) 

Total nitrogen (%) 2.4 (0.3) 1.7 (0.1) 1.9 (0.1) 1.5 (0.2) 1.7 (0.3) 

C/N ratio 20.8 (2.2) 28.7 (1.6) 25.4 (1.6) 34.4 (2.3) 30.5 (3.8) 

pH (1:4 soil-to-H2O) 4.2 (0.2) 3.7 (0.3) 3.4 (0.1) 3.8 (0.2) 4.3 (0.5) 

Total magnesium (mg Mg g
-1

) 0.9 (0.2) 0.6 (0.2) 0.3 (0.1) 1.3 (0.2) 2.3 (1.4) 

Total phosphorus (mg P g
-1

) 0.9 (0.2) 0.5 (0.1) 0.5 (0.0) 0.5 (0.0) 0.6 (0.1) 

      

Forest floor soil (0-5 cm)      

δ
15

N
a 

4.1 (0.6) 0.3 (1.0) 0.2 (1.0) 

Total carbon (%)
a 

5.7 (1.7) 47.5 (0.7) 47.4 (2.0) 

Total nitrogen (%)
a 

0.4 (0.1) 1.9 (0.1) 1.4 (0.1) 

C/N ratio
a 

13.7 (1.2) 26.2 (2.2) 34.7 (1.4) 

pH (1:4 soil-to-H2O)
a 

4.3 (0.2) 4.0 (0.1) 3.7 (0.0) 

Total magnesium (mg Mg g
-1

)
a 

- 0.4 (0.0) 0.1 (0.1) 

Total phosphorus (mg P g
-1

)
 

0.1 (0.0) 0.5 (0.0) 0.7 (0.0) 
a
 Unpublished data used with the permission of A. Baldos 
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2.3.2 Nutrient addition 

The individual study sites were plots of the nutrient manipulation experiment (NUMEX) 

project (fully described in Martinson et al. 2013), in which 20 x 20 m plots had been fertilized 

biannually with moderate amounts of N (urea at 50 kg N ha
-1

 yr
-1

) and P (analytical grade 

monosodium phosphate at 10 kg P ha
-1

 yr
-1

) since 2008. In comparison, between 1998 and 

2012, ambient deposition near our 2000 m site ranged from 14 to 45 kg N ha
−1

 yr
-1

 and 0.4 to 

4.9 kg P ha
−1

 yr
-1

 (Homeier et al. 2012). Rates of nutrient addition were deliberately chosen to 

be low, as compared to other nutrient manipulation experiments (Crews et al. 2000; Benner et 

al. 2007; Hall and Matson 2003; Koehler et al. 2009; Reed et al. 2007), in order to more 

accurately mimic projected atmospheric deposition rates (Galloway et al. 2004; Phoenix et al. 

2006). Treatments plots (control, N, P and N+P) were grouped into blocks, with a minimum 

distance of 10 m between each plot. Each elevation had four replicate blocks, making a total 

of 16 plots per elevation. Solid fertilizer was applied to the forest floor by hand; in 2011 and 

2012, fertilization at all elevations occurred once between February and April, and once in 

August or September. 

Sampling sites for canopy soil were chosen in trees within the NUMEX plots which 

fulfilled certain criteria. First, we looked for individuals with the presence of canopy soil ≥ 5 

cm in depth, and enough volume to take the required number of samples (between 4 and 6 

cores, depending on the treatment). Then, we excluded any trees in which canopy soil was in 

an area that was inaccessible using rope techniques or a ladder. Finally, to avoid edge effects, 

we chose from the remaining trees, the individual that was the furthest possible distance from 

the edge of the plot. The original intent was to limit the study to specific species, but there was 

no species that had individuals in every plot, which had an adequate volume of canopy soil in 
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an accessible location. We chose, instead, to see whether we could observe general canopy 

soil trends despite any variability caused by tree species. 

 

2.3.3 N2 fixation 

N2 fixation was measured once in the dry season (November 2011) and once in the wet 

season (June 2012), using the acetylene reduction assay (Hardy et al. 1968); climate 

parameters for these specific dates are shown in Table 2.2. Pairs of intact soil cores were taken 

from the forest floor (near trees where canopy samples were taken) and canopy, in each 

treatment plot; cores were 4.7 cm deep with a volume of 78.1 cm
3
. In all cores (forest floor 

and canopy), twigs and leaves were removed before sampling, but moss, lichens and litter that 

was at least partially decomposed was included. Cores from the forest floor at 1000 m were a 

mix of organic matter and mineral soil, whereas the thick organic layer at 2000 m and 3000 m 

(see Table 2.1) made those cores entirely organic. At 2000 m and 3000 m, samples were taken 

in all four blocks, from both upper canopy (near the top of a tree in an area relatively open to 

sun/wind/rain) and lower canopy (mid to lower area of a tree, with less exposure to 

sun/wind/rain), as well as the forest floor, making 6 cores per plot (2-forest floor, 4-canopy). 

At 1000 m, there was little canopy soil in the lower-canopy region of trees, so sampling 

occurred only in upper canopy and forest floor soil, making 4 cores per plot (2-forest floor, 2-

canopy). 
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Table 2.2 Soil moisture (mean (SE); n=4) and climatic parameters along a montane forest elevation gradient, 

measured during the dry season (November 2011) and wet season (May/June 2012), on days when N2 fixation 

was determined. All parameters differed between the two seasons (P ≤ 0.09 for climate station data and P ≤ 0.08 

for soil moisture) except relative humidity at 1000 m (P = 0.12) and solar radiation at 2000 m (P = 0.22). 
 

 1000 m 2000 m
 

3000 m
 

November 2011 (7:00-19:00)  

Air temperature (°C)
a 

23.6
a 

17.6
b 

10.2
c 

Relative humidity (%)
a 

74.3
a 

69.2
a 

67.5
a 

Solar radiation (W m
-2

)
a 

422
a 

404
a 

400
a 

Soil moisture (% dry wt) – Upper canopy 160 (22)
Aa 

171 (23)
Aa 

193 (49)
Aa 

Soil moisture (% dry wt) – Lower canopy -
 

225 (32)
Aa 

236 (62)
Aa 

Soil moisture (% dry wt) – Forest floor 49.0 (10.1)
Bb 

268 (32)
Aa 

268 (27)
Aa 

  

May/June 2012 (7:00-19:00)  

Air temperature (°C)
a 

21.7
a 

14.8
b 

6.7
c 

Relative humidity (%)
a 

81.8
a 

80.3
a 

99.9
b 

Solar radiation (W m
-2

)
a 

283
ab 

322
a 

187
b 

Soil moisture (% dry wt) – Upper canopy 290 (21)
Aa 

263 (18)
Ba 

323 (31)
Ba 

Soil moisture (% dry wt) – Lower canopy -
 

396 (64)
Aa 

388 (38)
ABa 

Soil moisture (% dry wt) – Forest floor 55.0 (15.2)
Bc 

368 (32)
ABb 

481 (12)
Aa 

a
 Unpublished data used with the permission of T. Peters 

*
 Values with different lowercase letters indicate significant differences between elevations (P < 0.03 for climate 

station data and P < 0.03 for soil moisture). 

**
 Values with different uppercase letters indicate significant differences in moisture within each elevation and 

season (P < 0.04). 

 

To measure N2 fixation, cores were sealed in 500 mL glass mason jars fitted with septa 

for gas sampling. In one set of cores, 10 % of the headspace air was removed and replaced 

with acetylene (scrubbed according to Hyman and Arp 1987); the other set was incubated 

without acetylene to measure background ethylene (C2H4) production rates. The jars were then 

partially buried – so that they were still exposed to light while keeping the cores at a realistic 

field temperature – and incubated in the field for 24 hours, during which 4 samples of 

headspace air were taken. Samples (15 mL) were taken using a 20-mL syringe and injected 

into 12-mL Labco Exetainer® (Labco Limited, Lampeter, UK) evacuated tubes. Each time an 
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air sample was removed from a jar, an equal volume of ambient air was injected in order to 

prevent an under-pressure in the jar. This dilution was accounted for during calculations using 

values from an empty jar which was also incubated with 10 % acetylene and sampled exactly 

like the others. Tubes with gas samples were shipped to Germany for analysis. The soil from 

each core was returned to the field station and dried to a constant weight, to measure dry soil 

mass and gravimetric water content. 

Gas samples were analyzed for C2H4 concentrations using a gas chromatograph 

(Shimadzu GC-14B, Duisburg, Germany) with a flame ionization detector (FID). Operating 

conditions for the GC were: 65 °C injector temperature, 80 °C oven temperature and 290 °C 

FID temperature, with N2 as the carrier gas. C2H4 separations used a Heyesep T column (5.0 

m length x 0.2 cm inside diameter). Total C2H4 produced was plotted for each time step and 

the C2H4 production rate was calculated as the linear slope of the resulting best-fit line through 

these points. 

 

2.3.4 N2 fixation conversion factor 

In 2012, six additional cores per elevation (taken only from control plots) were incubated 

with 
15

N-enriched N2 for 12-13 days (based on previous measurements of how long oxygen 

concentration remained above 10% in the jars’ headspace), in order to determine the correct 

conversion factor for the measured C2H4 production rates to N2 fixation. Due to the costs 

associated with this method, we could only do the conversion factor in one season, and chose 

to do it in the wet season (June 2012), assuming it would be the season with the most activity. 

The calculated C2H4:N2 conversion factors were: (a) 2.1 at 3000 m, (b) 1.2 at 2000 m, and (c) 

0.11 at 1000 m.  
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Given that N2 fixation can be sensitive to increased soil N availability (i.e. Cusack et al. 

2009), the reliability of the 
15

N2-incubation could be highly dependent on mineral N 

availability in the soil. Thus, we also compared net nitrification rates in our soil cores to the 

C2H4:N2 conversion factors and found a negative relationship between net nitrification rates 

and C2H4:N2 conversion factors along the elevation gradient (not shown). This indicated that 

increased N availability in the cores may have inhibited N2 fixation and resulted in a lower 

C2H4:N2 conversion factor than was actually occurring in the field. In retrospect, the 
15

N2 

calibration could have been made more robust by incubating additional cores in jars with an 

unenriched headspace, and then assessing C2H4 production several times throughout the 
15

N2 

incubation. Given that we did not do so, we chose to use the theoretical ratio of 3:1 (Hardy et 

al. 1968), which is the other common practice used in N2 fixation studies (i.e. Cusack et al. 

2009 & Reed et al. 2008 [1:3]; Benner et al. 2007 & Matzek and Vitousek 2003 [1:3.1]).  

 

2.3.5 Soil analyses 

In 2011, additional soil samples to those used in the incubations were taken from the 

canopy soil in each plot and used to measure other soil parameters. δ
15

N signatures of the soils 

were measured using IRMS (Delta Plus, Finnigan MAT, Bremen, Germany). Total C and N 

were measured by dry combustion in a CN analyzer (Elementar Vario EL; Elementar Analysis 

Systems GmbH, Hanau, Germany). Total elemental concentration of P, Fe, Mg, Mn, Na, S, 

Fe, K and Al were determined using pressure digestion of the sample in concentrated nitric 

acid and then analysis of the resulting solution with an inductively coupled plasma-atomic 

emission spectrometer (Spectroflame, Spectro Analytical Instruments, Kleve, Germany). Soil 
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pH (H2O) was analyzed in a 1:4 soil-to-water ratio. The forest floor parameters shown in 

Table 2.1 were from a 2010 analysis of our study sites (Baldos et al. unpublished data).  

 

2.3.6 Statistics and calculations 

Results were analyzed using the R (version 2.15.3) open source software. N2 fixation 

rates were significantly non-normal, according to both Kolmogorov-Smirnov and Shapiro-

Wilk tests, exhibiting a zero-inflated Poisson distribution. We tested control plots for 

differences between elevations and positions using a Kruskal-Wallis H test followed by a 

pairwise Mann-Whitney U test with Holm’s correction for multiple comparisons. Seasons 

were compared using a paired Mann-Whitney U test and correlations with soil parameters 

were tested using Spearman rank correlations. The climate data at each elevation were tested 

for differences between seasons using a linear mixed effect model. To test for treatment 

effects, the data was modeled using the Tweedie compound Poisson linear model (cplm) R 

package (Zhang 2012). In our model, N2 fixation was the response variable, with season, 

block (replicate) and position (canopy or forest floor) as random effects, and treatment and 

elevation as fixed effects. We also made smaller models for each position and season, with 

block as the only random effect. We used the Tukey HSD test to assess the differences 

between fixed effects. We accepted P values of P < 0.10 as significant.  

We report N2 fixation rates both in units of mg kg
-1 

d
-1

 as well as kg ha
-1 

yr
-1

. In order to 

calculate the latter, we used data from Werner et al. (2012). They found a total of 3877 kg ha
-1

 

canopy soil (which they termed ‘dead organic matter’) on trees from mid-slope positions at 

2000 m, in the same forest (although a different area) where we worked. We then made a 

rough approximation based on our field observations, and adjusted the amount of canopy soil 
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to half that amount for the plots at 1000 m and twice that amount for those at 3000 m. In order 

to upscale to an annual rate, we assumed that the wet and dry season each lasted for six 

months. 

 

2.4 - Results 

2.4.1 Control plots (canopy vs. forest floor, elevation, seasonality and controlling soil factors) 

N2 fixation was an active process in our montane forests, occurring in both canopy and 

forest floor soils at all elevations (Table 2.3). N2 fixation rates from control plots were not 

significantly different between canopy (upper canopy at 1000 m and both upper and lower 

canopy at 2000 m and 3000 m) and forest floor soils, in the dry season (P = 0.25 at 1000 m, P 

= 0.11 at 2000 m and P = 0.62 at 3000 m) or the wet season (P = 0.15 at 1000 m, P = 0.87 at 

2000 m and P = 0.70 at 3000 m). Although N2 fixation rates in the canopy soils in the dry 

season appeared to decrease with elevation (Table 2.3), this trend was not statistically 

significant in the dry season (P = 0.28 for the upper canopy and P = 0.15, for the lower 

canopy) or the wet season (P = 0.11 for the upper canopy and P = 0.72 for the lower canopy) 

due to the variation within the replicates (i.e. large standard errors). There were also no 

differences between elevations in the forest floor soils in the dry (P = 0.87) or wet season (P 

= 0.12). 
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Table 2.3 N2 fixation rates (mean (SE); n=4) along a montane forest elevation gradient in southern Ecuador, 

measured in the dry season (November 2011) and the wet season (May/June 2012). Measurements were taken 

from the top 5 cm of soil from control plots on the forest floor (mineral soil at 1000 m and organic soil at 2000 m 

and 3000 m) and in the canopy.   

Elevation 

(m) 

Dry season (mg N kg
-1 

d
-1

) Wet season (mg N kg
-1 

d
-1

) Annual (kg N ha
-1 

yr
-1

)
a 

Forest floor Canopy Forest floor Canopy All soil
 Canopy 

contribution
 

1000 0.08 (0.05)
a 

0.30 (0.16)
a
 0.00 (0.00)

a
 0.00 (0.00)

a
 1.5 (0.8)

 
 7% 

2000 0.10 (0.03)
a
 0.20 (0.11)

a
 0.04 (0.03)

a
 0.01 (0.01)

ab
 1.2 (0.8)

 
 12% 

3000 0.09 (0.05)
a
 0.05 (0.03)

a
 0.01 (0.01)

a
 0.02 (0.01)

b
 0.8 (0.5)

 
 13% 

a
 Annual fixation rates are calculated as the combined fixation occurring in forest floor and canopy soil at each 

elevation, on a per area basis (see Materials and Methods: Statistics and Calculations).  

* 
For each column, means with different letters indicate significant differences between elevations (P = 0.09). 

 

N2 fixation rates in the dry season were markedly higher than those in the wet season 

(Fig. 1a and 1b). Comparing across elevations, rates of N2 fixation in the control plots were 

significantly higher in the dry season than the wet season in the upper canopy (P = 0.02), 

lower canopy (P = 0.02) and forest floor (P = 0.01). In addition, we observed significant 

differences in climatic factors between the two seasons. Our measured soil moisture contents, 

as well as air temperature, relative humidity and solar radiation measured from climate 

stations installed in the forests where we worked – and taken from only the dates when N2 

fixation was determined – showed clear differences between seasons (Table 2.2). At all 

elevations, the wet season was cooler, moister and darker as compared to the dry season (P < 

0.03 for climate station data and P < 0.08 for soil moisture), with only two exceptions 

(relative humidity at 1000 m and solar radiation at 2000 m), where the trend was the same but 

the differences were not significant (P = 0.12 for humidity and P = 0.22 for radiation). 

Soil properties for canopy and forest floor soil at each elevation are shown in Tables 2.1 

and 2.2. In the dry season, lower canopy rates were negatively correlated with δ
15

N (P < 0.01) 
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but no significant correlations were observed for the upper canopy. In the wet season, upper 

canopy N2 fixation rates were positively correlated with the C:N ratio (P = 0.03) and total Mg 

(P = 0.05) and negatively correlated with total N (P = 0.05), total S (P < 0.01) and δ
15

N (P = 

0.02), but no significant correlations were observed for the lower canopy.  There were no 

significant correlations with N2 fixation rates in the forest floor soils (not including 1000 m, 

since those were mineral soils and the others were organic) in either season. 

 

2.4.2 Nutrient-addition effects (canopy vs. forest floor, seasonality and elevation) 

Data for all three elevations is combined when reporting treatment effects (Fig. 2.1). 

Comparing across treatments, in the dry season there were no significant elevation effects on 

N2 fixation, while in the wet season, the only significant elevation effect was N2 fixation rates 

on the forest floor at 1000 m, which were lower (close to zero) than at 2000 m and 3000 m (P 

< 0.01 for both).  

Looking at N2 fixation rates on the forest floor across elevations, the control plots were 

higher than the N treatment (P = 0.02 wet season, P = 0.09 dry season) but not the N+P 

treatment (P = 0.23 wet season, P = 0.16 dry season) or P treatment (P = 1.00 in both 

seasons). The P treatment was higher than the N treatment (P = 0.06 in both seasons) but not 

the N+P treatment (P = 0.48 wet season, P = 0.10 dry season). There was no significant 

difference between the N and N+P treatments (P = 0.89 wet season, P = 0.99 dry season).  

Looking at N2 fixation rates in the canopy across elevations, the control plots were lower 

than the P treatment (P = 0.04 wet season, P = 1.00 dry season) but not different from the N 

(P = 0.97 wet season, P = 0.72 dry season) or N+P (P = 0.98 wet season, P = 0.27 dry 

season) treatments. The P treatment was higher than both the N (P = 0.01 wet season, P = 
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0.78 dry season) and N+P (P = 0.09 wet season, P = 0.32 dry season) treatments. There was 

no significant difference between the N and N+P treatments (P = 0.83 wet season, P = 0.87 

dry season). 

 

 

  

Figure 2.1 N2 fixation rates (mg N kg
-1

d
-1

) along a montane forest elevation gradient (1000 m, 2000 m and 3000 

m) in southern Ecuador. Dry season measurements (a) were taken in November 2011. Wet season measurements 

(b) were taken in June 2012. Values for each treatment are the average of 4 replicates taken from 3 elevations 

(n=12); in the dry season there were no significant difference between elevations and in the wet season, forest 

floor values at 1000 m were significantly lower (close to zero) than those at the higher elevations (P < 0.01). 

Treatments (applied only to the forest floor) started in 2008 and include: control, nitrogen (N), phosphorus (P) 

and combined N+P; stars indicate that a treatment is significantly different from the control 
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2.5 - Discussion 

2.5.1 Canopy vs. forest floor soils 

Our results show that N2 fixation was an active process in canopy soils, with mass-based 

rates similar to those found in forest floor soils and area-based rates comprising 7-13 % of 

total (canopy and the top 5 cm of forest floor) free-living soil N2 fixation (Table 2.3). N2 

fixation rates in canopy soils (0.10 to 0.15 kg N ha
-1

 yr
-1

) fall within the lower end of the 0.02 

to 8 kg N ha
-1

 yr
-1

 range observed and/or predicted for other tropical forest canopy 

compartments (Benner et al. 2007; Carpenter 1992; Cusack et al. 2009; Forman 1975; 

Freiberg 1998; Fürnkranz et al. 2008; Matzek and Vitousek 2003; Reed et al. 2008). Summed 

N2 fixation rates for canopy and forest floor soils (0.8 to 1.5 kg N ha
-1

 yr
-1

) also fall within the 

lower end of the 0.1 to 60 kg N ha
-1

 yr
-1

 range reported for free-living N2 fixation in tropical 

forest floor soils (Reed et al. 2011). Our lower rates are unsurprising, given that several of the 

other canopy studies were based on laboratory incubations, which would be anticipated to 

have higher rates than those observed in the field (Keuter et al. 2014). Additionally, in both 

canopy and forest floor studies, most measurements come from lowland or premontane 

forests, whereas our sites span premontane to upper montane forests. 

Observations regarding the relative importance of mass-based N2 fixation rates in the 

canopy as compared to forest floor soil are inconsistent. When there is an abundance of N2-

fixing bryophytes and/or lichens found in the canopy, the rate of N2 fixation can be equivalent 

to (Cusack et al. 2009; Matzek and Vitousek 2003), or much higher than (Benner et al. 2007), 

the rate in forest floor soils. When only considering N2 fixation on leaf surfaces, rates in the 

canopy are smaller than those in the forest floor (Reed et al. 2008). In our study, we only 

considered the top 5 cm of forest floor soil, and included a combination of all of the above-
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mentioned fractions, in that our intact core samples included moss, lichens and partially-

decomposed leaf litter as well as the organic soil itself. Therefore, it is unsurprising that 

overall, we did not detect a significant difference between the canopy and forest floor.  

 

2.5.2 Seasonality (soil moisture, solar radiation, temperature and soil properties) 

Seasonal patterns in soil N2 fixation can be controlled by soil moisture. Since the 

nitrogenase enzyme is sensitive to O2 (Hicks et al. 2003; Nohrstedt 1983) and increased soil 

moisture decreases soil O2 concentrations (Silver et al. 1999), rates of N2 fixation in the wet 

season are often higher than those in the dry season (Hofmockel and Schlesinger 2007; Reed 

et al. 2007). However, although the wet season in our study had higher soil moisture (Table 

2.2), we observed significantly lower N2 fixation rates in the wet season as compared to the 

dry season. It is notable, though, that although moisture increased in the wet season, it was 

(except the forest floor at 1000 m) well over 100 % dry weight in both seasons. Given that 

cyanobacteria, for example, can fix N2 at moisture levels as low as 6 % dry weight and in one 

study reached maximum N2 fixation rates at soil moistures between 22 % and 42 % (Jones 

1977), it is possible that seasonal changes in moisture are not directly responsible for seasonal 

variations in N2 fixation in our soils. In contrast, although our soils were moist, the water-

filled pore space remained below 60 %, even in the wet season, due to the low bulk density of 

organic soils. This combination of high moisture and highly porous soils could have led to 

higher soil nitrification rates (which we observed in another set of canopy soils during the wet 

season; Matson et al. unpublished data). Although nitrification is an aerobic process that often 

decreases in soils during the wet season (Breuer et al. 2002), an increase in soil moisture may 
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increase nitrification in organic soils (as seen by Ingwersen et al. 1999 in the organic layer of 

the forest floor), with the increased mineral N then inhibiting N2 fixation. 

Seasonal patterns in N2 fixation can also be controlled by solar radiation, if the N2-fixing 

microbial community is predominantly made up of photoautotrophic organisms, such as 

cyanobacteria, which are dependent on photosynthetically active radiation (PAR). A positive 

correlation of N2 fixation with PAR has been observed several times for tropical forest canopy 

leaves (Bentley 1987; Freiberg 1998; Reed et al. 2008). In low PAR conditions, N2 fixation 

can continue in cyanobacteria, but normally at a reduced rate, which is limited in duration by 

the organism’s carbon stores (Jones 1977, Millbank 1978; Rai et al. 1981). Although we did 

not measure PAR in this study, we did observe more cloud cover and significantly less solar 

radiation (Table 2.2) in the wet season as compared to the dry season.  

Given adequate moisture and light, the other most common factor affecting seasonal 

patterns in N2 fixation is temperature (Belnap and Lange 2001). In our study, temperature as a 

possible driver of seasonal differences in N2 fixation was possible at 1000 m. It has been 

shown that at temperatures above 22 °C, the activation energy for nitrogenase is 0.65 eV, but 

that once the temperature drops below that threshold, the required activation energy increases 

to 2.18 eV (Vitousek et al. 2013). The average temperature at our 1000 m site (the elevation 

that exhibited the most dramatic change in N2 fixation rates between seasons) was above this 

threshold during the dry season sampling, but below it during the wet season sampling. 

However, an increase in the required activation energy does not explain the significant 

decreases in N2 fixation rates at 2000 m or 3000 m in the wet season. At those elevations, both 

temperatures in the dry and wet seasons were well below 22 °C. In addition, the similar N2 

fixation rates at all three elevations indicated that N2 fixation was not responding strongly to 
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elevation-related differences in air temperature. Nevertheless, if N2-fixing organisms at each 

elevation were adapted to their specific environmental niche, changes from the dry to wet 

season could have affected N2-fixers at each elevation in a similar manner, so that N2 fixation 

rates remained similar across elevations. 

Finally, seasonal patterns in N2 fixation could also be controlled by season-related 

differences in microbial diversity. Seasonal changes have been shown to affect microbial 

diversity in soil (Smit et al. 2001), and microbial community shifts have been shown to at 

least partially explain observed differences in N2 fixation in a tropical rain forest (Reed et al. 

2010). Although we did not measure microbial diversity, we observed far more correlations 

with soil properties in the wet season as compared to the dry season. In the wet season, N2 

fixation rates were more affected by N (as shown by the negative correlation with total N and 

positive correlation with C:N ratio), more affected by P (as shown by the positive effect of the 

P addition treatment), and were also correlated with other soil nutrients, namely total Mg and 

total S.  

 

2.5.3 Canopy response to forest floor nutrient addition 

Although many studies have shown and/or postulated that the canopy is largely decoupled 

from forest floor nutrient pools in lowland and lower-montane tropical forests (Hedin et al. 

2009; Hietz et al. 2002; Stewart et al. 1995; Tozer et al. 2005; Wania et al. 2002), our study 

shows that this may not always be the case in lower- to upper-montane tropical forests. The 

NUMEX experiment had only been active for four years when we initiated our study, and our 

rates of nutrient addition to the forest floor were quite low as compared to other fertilization 

studies (Benner et al. 2007; Crews et al. 2000; Reed et al. 2007). Moreover, we knowingly 



Chapter 2 

 

 
40 

allowed an additional source of variation into our measurements by including different tree 

species. Therefore, although there were no significant N-addition effects on N2 fixation in the 

canopy soil, the trend towards N2 fixation being inhibited in N and N+P plots (Fig. 2.1a), as 

well as the significant positive effect of P addition in the wet season (Fig. 2.1b), suggest that, 

contrary to the hypothesis that the canopy is decoupled from nutrients in forest floor soil, it 

may actually be sensitive to relatively small changes in forest floor nutrient availability.   

Studies from temperate forests have shown that nutrients leaching from host tree leaves 

and bark can affect epiphytic lichens (Gauslaa 1995; Goward and Arsenault 2000; Hauck 

2003; Hauck and Runge 2002), and in a Hawaiian montane forest, Benner et al. (2007) and 

Benner and Vitousek (2007) reported that 14 years of high (100 kg ha
-1

 yr
-1

) P addition to the 

forest floor, resulted in a significant increases in epiphyte abundance and diversity - in 

particular N2-fixers. Although their study did not report when effects first became visible, in 

our study area the effects of forest floor fertility on canopy processes seemed to occur very 

rapidly. Not only did we see significant changes in canopy soil N2 fixation after four years of 

forest floor fertilization, but in 2008 and 2009, Wullaert et al. (2010) had already observed 

significant changes in throughfall nutrients in the NUMEX plots at 2000 m. Although the 

canopy in all plots still exhibited net retention of N and P deposited from the atmosphere, 

there was already a decrease in N and P retention (i.e. higher throughfall N and P fluxes) in  

N-, P- and combined N+P-fertilized plots as compared to control plots after the second and 

third fertilization (Wullaert et al. 2010). 
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2.5.4 Forest floor and canopy soil response to N and P addition 

N2 fixation in our forest floor soils was significantly inhibited by N addition (Fig. 2.1), an 

outcome which has been observed in previous tropical forest studies (Barron et al. 2008; 

Crews et al. 2000; Cusack et al. 2009). However, a surprising number of studies have also 

observed no significant effect of N on N2 fixation (Benner et al. 2007; Matzek and Vitousek 

2003; Reed et al. 2007), which is generally attributed to a study area being N-limited or 

having N2-fixers that are not sensitive to N supply. In our study, the inhibitory effect of N on 

the forest floor was not as strong in the N+P plots as it was in the N plots. If soils and/or 

plants in our forest stands were co-limited by N and P (Homeier et al. 2012; Wullaert et al. 

2010), the addition of both nutrients together may have facilitated nutrient immobilization, so 

that the added N had less of an inhibitory effect on N2 fixation. Although the P plots were not 

significantly different than the control on the forest floor, an alternate explanation could be 

that combined N+P addition may have been simultaneously decreasing (in the case of N) and 

increasing (in the case of P) N2 fixation so that the net effect was not significantly different 

from the control.  

The effect of N addition on N2 fixation was not significant in the canopy soils, which is 

unsurprising given that we expected the canopy to be N-limited (Hedin et al. 2009). However, 

the fact that the N2 fixation rates in control canopy soil were negatively related to δ
15

N 

enrichment (which can be an indication of more N-rich soils, as shown by Arnold et al. 2009), 

were positively related to soil C:N ratios in the wet season, and exhibited a tendency to be 

inhibited by N in the dry season (Fig. 2.1), indicates that with time, chronic N addition will 

likely inhibit N2 fixation in canopy soils as it did in the forest floor soils. We saw a positive 

effect of P addition on N2 fixation in our canopy soils, which has been observed in the canopy 
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(Benner et al. 2007; Bentley 1987; Matzek and Vitousek 2003; Reed et al. 2008) and on the 

forest floor (Crews et al. 2000; Reed et al. 2007; Vitousek and Hobbie 2000). While the 

canopy soils in the P plots exhibited higher N2 fixation rates than all other treatment plots, the 

N+P plots were not significantly different from the control and only marginally smaller than 

the P plots. Similar to the N and N+P effects on the forest floor, this also suggests that a co-

limitation of N and P may have facilitated the immobilization of these nutrients when both 

were added together, or that the counteracting effects of these two nutrients on N2 fixation led 

to no net change. Reed et al (2010) found that P fertilization increased both diversity and 

abundance of N2-fixers in tropical forest soils. If there was an increased diversity of N2-fixers 

in the canopy soil due to P addition, only some of which were inhibited by additional N in the 

N+P plots, this could also explain why we saw no net effect in these plots. Similarly, it could 

explain why, during the wet season, when N2 fixation in all our soils seemed to be suppressed, 

we observed higher N2 fixation in the canopy soils of P plots than in all other plots.  

 

2.5.5 Conclusion 

Tropical montane forest soils in Ecuador can fix 0.8-1.5 kg N ha
-1

 yr
-1

 through free-living 

soil N2 fixation, up to 13 % of which may be a result of fixation in canopy soils. However, N2 

fixation in these soils can be subject to high seasonal variation and the specific environmental 

factors causing this warrant further study. Atmospheric N and P deposition could change the 

dynamics of soil N2 fixation in these forests; additional N may cause significant decreases in 

N2-fixing activity, while hotspots occur in areas with additional P. However, future research 

should focus on the link between canopy and forest-floor soil fertility, as this will impact how 

nutrient deposition affects N2 fixation in the two different soils. 
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3.1 - Abstract 

Although the canopy can play an important role in forest nutrient cycles, canopy-based 

processes are often overlooked in studies on atmospheric deposition. In areas of nitrogen (N) 

and phosphorus (P) deposition, canopy soils may retain a significant proportion of direct 

atmospheric inputs, and also receive indirect enrichment through root uptake followed by 

throughfall or recycling of plant litter. We measured net and gross rates of N cycling in 

canopy soils of tropical montane forests along an elevation gradient and assessed indirect 

effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using 

the buried bag method. Gross N cycling rates were measured using 
15

N pool dilution 

techniques. Measurements took place in the field, in the wet and dry season, using intact cores 

of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been 

fertilized biannually with moderate amounts of N and P for 4 years; treatments included 

control, N, P and N+P. In control plots, gross rates of NH4
+
 transformations decreased with 

increasing elevation; gross rates of NO3
-
 transformations did not exhibit a clear elevation trend 

but were significantly affected by season. Nutrient-addition effects were different at each 

elevation, but combined N+P generally increased N cycling rates at all elevations. When 

compared with a parallel study from the forest floor, canopy soils contributed up to 23% of 

total (canopy + forest floor) mineral N production in our soils. In contrast to theories that 

canopy soil is decoupled from nutrient cycling in forest floor soil, N cycling in the canopy 

soils of our forests was remarkably sensitive to even slight changes in forest floor N and P 

availability. Long-term atmospheric N and P deposition may lead to increased N cycling but 

also increased mineral N losses from the canopy soil system. 
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3.2 - Introduction 

Although they have the potential to play an important role in forest nutrient cycles, 

canopy soils are rarely included in studies of nutrient cycling. In forests with large stores of 

canopy soil, such as those found in tropical montane regions, this could contribute to an 

incomplete understanding of total forest nutrient cycling.  

Ecologists were the first to recognize the importance of the nutrient capital found in 

“crown humus” (Jeník, 1973) or “dead organic matter” (Nadkarni, 1984) and eventually this 

material began being referred to as a soil (i.e. as “arboreal soil” by Nadkarni, 2002 or 

“epiphytic soil” by Perez et al., 2005). However, the first analysis of this material from a 

pedological perspective did not appear in literature until Enloe et al. (2006) identified soils 

found in Californian redwood trees as Typic Udifolists (soil order: Histosol - acidic, low-

density soils primarily made up of organic material and developed in areas of restricted 

drainage [IUSS, 2006]). Canopy soils are a unique type of Histosol; although they are most 

commonly found in forests with high annual humidity and rainfall, they are not formed in 

areas with restricted drainage like most Histosols. Instead, being more subject to climatic 

variability (less protected from wind, precipitation, sun, etc.) than forest floor Histosols, they 

go through frequent dry/wet cycles. Studies have shown that Histosols from temperate or 

boreal regions that have been drained or have experienced changing water tables can exhibit 

higher rates of nitrogen (N) cycling, especially nitrification (Regina et al., 1996; Venterink et 

al., 2002; Yu & Ehrenfeld 2009), than those with relatively constant moisture conditions. 

Canopy Histosols have the potential, therefore, to have high N cycling rates, but there is still a 

paucity of data about N cycling in these soils. 
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Compared on a mass-based scale to forest floor soils, canopy soils are remarkably alike in 

many respects. They can have similar or higher C:N ratios and cation exchange capacity 

(Nadkarni et al., 2002; Cardelus et al., 2009), similar (Vance & Nadkarni, 1990) or higher 

(Cardelus et al., 2009) microbial biomass C and N, similar N2 fixation (Matson et al., 

unpublished data), similar (Perez et al., 2005) or both higher and lower (Cardelus et al., 2009) 

net N cycling, and similar gross N cycling (Wanek et al., 2002). However, canopy soils are 

usually more acidic than forest floor soils (Cardelus et al., 2009), with significantly higher 

amounts of extractable aluminum (Nadkarni et al., 2002). The relevance of canopy soil N 

cycling to the total forest nutrient cycle depends not only on N cycling rates, however, but 

also on the amount of canopy soil present in any given forest. Canopy soil biomass can range 

from 1000 kg ha
-1

 to 33,000 kg ha
-1

 (Vance & Nadkarni, 1990; Nadkarni et al., 2004; Chen et 

al., 2010; Werner et al., 2012). In some forests, canopy soil can account for up to 80% of non-

woody aboveground biomass (Nadkarni et al., 2004). However, there are still only a handful 

of studies that have looked at N cycling in canopy soils and none have tried to assess the 

actual field rates (i.e. in situ with intact cores of soil) or investigated how these rates could 

change with nutrient deposition. 

Due to disturbances such as forest clearing, industrialization and biomass burning, 

tropical regions are experiencing increasing amounts of atmospheric N and phosphorus (P) 

deposition (Galloway et al., 2004; Mahowald et al., 2005, 2008; Hietz et al., 2011). Some of 

this occurs in agricultural or urban areas where the additional nutrients may not have a 

significant impact on an already-altered landscape, but deposition also occurs in neighboring 

forests that are otherwise undisturbed (Galloway et al., 2003; Mahowald et al., 2008). Many 

of these forests are expected to be N and/or P limited (Elser et al., 2007; Vitousek et al., 2010) 
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and could therefore be strongly affected by the deposition of these nutrients. This could be 

especially true for canopy soils. Canopy budget studies have shown that from 50% (Clark et 

al., 1998, 2005) up to 80% (Gaige et al., 2007) of N deposition to tropical forests may be 

retained by the canopy. Therefore, canopy soils may first receive the bulk of direct N 

deposition in a forest stand and then be indirectly enriched through root uptake and nutrient-

enriched throughfall or recycling of nutrient-enriched plant litter. However, it is still uncertain 

how strongly or quickly internal N cycling in canopy soil would be altered by nutrient 

deposition. Decomposition is much slower in the canopy than on the forest floor (Nadkarni & 

Matelson 1991; Cardelus, 2010). Furthermore, in montane canopies, wind often removes the 

majority of litter from branches, resulting in the formation of canopy soil being largely 

dependent on epiphytes, which are thought to be disconnected from forest soil nutrient pools 

(Nadkarni & Matelson 1991; Hietz et al., 2002). Hedin et al. (2009) use this disconnection to 

postulate that areas such as the canopy may remain N-limited and continue N2 fixation even as 

N accumulates elsewhere in the forest. However, the canopy and forest floor were not entirely 

decoupled in a long-term fertilization study in Hawaii, where addition of P to the forest floor 

caused an increase in epiphyte abundance and richness - in particular N2-fixing lichens - 

although addition of N and other nutrients did not (Benner et al., 2007; Benner & Vitousek 

2007). It has also been shown that when N and P start to accumulate on the forest floor, net 

canopy retention of both these nutrients decreases (Wullaert et al., 2010). However, it is not 

clear whether N and P accumulation and retention processes are mainly controlled by and 

affecting epiphytes, or if canopy soil also plays a significant role in N and P dynamics.  

In this study, we measured net and gross rates of N cycling in intact cores of canopy soil 

along an elevation gradient of tropical montane forests. Cores were taken from trees in plots 
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with N, P and combined N+P additions to the forest floor and in the control plots (without 

fertilization). Our objectives were to: (1) determine rates of N cycling in canopy soil (in 

comparison with forest floor rates which were measured in a separate, parallel study by 

another member of our working group) and (2) assess whether these rates were affected by 

indirect fertilization (through nutrient inputs to the forest floor). We hypothesized that in 

control plots, N cycling rates in canopy soils would be similar to forest floor soils, and would 

decrease with increasing elevation. We expected to see slightly (given the low amount of 

nutrients added and that our study was conducted in only the fourth year of treatment) higher 

N cycling rates in N- and P-fertilized plots as compared to control. 

 

3.3 - Materials and Methods 

3.3.1 Study sites 

This study took place along an elevation gradient in and adjoining Podocarpus National 

Park, a tropical montane forest in the Andes of southern Ecuador. The gradient included three 

sites: 1000 m (ranging from 990-1100 m), 2000 m (ranging from 1950-2100 m) and 3000 m 

(ranging from 2900-3050 m) (Martinson et al., 2013). With increasing elevation, annual 

temperature decreased from 19.4 °C to 9.4 °C and precipitation varied from 2230 mm (1000 

m), to 1950 mm (2000 m), to 4500 mm (3000 m) (Moser et al., 2007). Vegetation at 1000 m 

was classified as premontane, shifting to lower montane and then upper montane with 

increasing elevation (Homeier et al., 2010). As elevation increased, stand height decreased 

(from 20 - 25 m at 1000 m to 6 - 8 m at 3000 m) and tree density increased (from 747.5 trees 

ha
-1

 at 1000 m to 1305.0 m trees ha
-1

 at 3000 m) (Martinson et al., 2013). We assume that 

differences between the three study areas observed in our results are caused by elevation-
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related climatic, soil and vegetation differences, but we do note that the elevations themselves 

were not replicated, so these results cannot be said to represent these elevations in tropical 

montane forests as a whole. Canopy soil parameters for each elevation are summarized in 

Table 3.1. 

 

Table 3.1 Canopy soil characteristics from three study sites located along a 1000- to 3000-m elevation gradient 

in a tropical montane forest of southern Ecuador. Soil characteristics (mean ± SE; n = 4) were measured from the 

top 5 cm of soil in the upper canopy 

 1000 m 2000 m 3000 m 

Total carbon (%) 48.9 ± 0.9 48.0 ± 0.6 48.9 ± 1.5 

Total nitrogen (%) 2.4 ± 0.3 1.7 ± 0.1 1.5 ± 0.2 

C/N ratio 20.8 ± 2.2 28.7 ± 1.6 34.4 ± 2.3 

δ
15

N 1.2 ± 0.4 -0.03 ± 0.7 0.1 ± 0.5 

pH (1:4 soil-to-H2O) 4.2 ± 0.2 3.7 ± 0.3 3.8 ± 0.2 

Total aluminum (mg Al g
-1

) 2.8 ± 1.4 2.3 ± 0.4 1.6 ± 0.2 

Total calcium (mg Ca g
-1

) 3.8 ± 0.7 0.7 ± 0.4 1.3 ± 0.5 

Total iron (mg Fe g
-1

) 0.4 ± 0.1 0.8 ± 0.1 0.6 ± 0.1 

Total magnesium (mg Mg g
-1

) 0.9 ± 0.2 0.6 ± 0.2 1.3 ± 0.2 

Total manganese (mg Mn g
-1

) 0.23 ± 0.07 0.09 ± 0.05 0.16 ± 0.07 

Total phosphorus (mg P g
-1

) 0.9 ± 0.2 0.5 ± 0.1 0.5 ± 0.0 

Total potassium (mg K g
-1

) 2.2 ± 0.3 1.9 ± 0.4 1.4 ± 0.1 

Total sodium (mg Na g
-1

) 0.03 ± 0.01 0.03 ± 0.00 0.06 ± 0.01 

Total sulphur (mg S g
-1

) 2.2 ± 0.3 1.7 ± 0.2 1.4 ± 0.1 

 

3.3.2 Nutrient addition 

We focused on the possible effects of indirect fertilization by using canopy soil from trees 

within a pre-existing experimental setup. Samples were taken from trees within plots of the 

nutrient manipulation experiment (NUMEX) project (fully described by Martinson et al., 

2013), in which the forest floor of 20x20 m plots had been fertilized biannually with moderate 
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amounts of N (urea at 50 kg N ha
-1

 yr
-1

) and P (analytical grade monosodium phosphate at 10 

kg P ha
-1

 yr
-1

) since 2008. Between 1998 and 2012, ambient deposition near our 2000 m site 

ranged from 14 to 45 kg N ha
−1

 yr
-1

 and 0.4 to 4.9 kg P ha
−1

 yr
-1

 (Homeier et al., 2012), so 

fertilization rates were quite realistic in terms of projected deposition rates (Galloway et al., 

2004; Phoenix et al., 2006), as opposed to other nutrient manipulation experiments that have 

used much higher rates (e.g. Hall & Matson 2003; Corre et al., 2010). The solid fertilizer was 

distributed by hand; in 2011 and 2012, all elevations were fertilized once between February 

and April and once in August/September. Treatments plots (control, N, P and N+P) were 

separated from each other by a minimum of 10 m. Each elevation had four replicate blocks 

containing each treatment, making a total of 16 plots per elevation.  

Although we originally intended to limit the study to specific tree species, there were no 

species – even within each elevation – that appeared in all of the treatment plots, contained an 

adequate volume of canopy soil, and had soil in a location that was accessible. Since we 

wanted to work in the NUMEX plots where the forest floor measurements were underway, 

and knowing that there is evidence that canopy soil in montane forests is largely derived from 

epiphytes rather than host tree material (Nadkarni & Matelson 1991; Hietz et al., 2002), we 

decided to see whether we could observe treatment effects regardless of any variability caused 

by tree species. We chose sample trees by first looking for a high volume of canopy soil (≥ 5 

cm in depth) and then eliminating any trees where soil was in an area that could not be 

reached using rope techniques or a ladder. Of the remaining trees, we chose the individual that 

was furthest from the edge of the plot in order to avoid edge effects. 
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3.3.3 N cycling measurements 

N cycling was measured twice: once in the dry season (July/August 2011) and once in the 

wet season (Jan/Feb 2012), using 
15

N pool dilution techniques (Davidson et al., 1991). 

Climate and soil moisture data for these specific dates are shown in Table 3.2. Six intact soil 

cores were taken from the upper canopy (near the top of a tree in an area relatively open to 

sun/wind/rain) and lower canopy (mid to lower area of a tree, with less exposure to 

sun/wind/rain) in each treatment plot (except at 1000 m, where lower canopy was excluded 

because there was little to no soil present at mid-stem positions); cores were 4.7 cm high with 

a volume of 78.1 cm
3
. In all cores, twigs and leaves were removed before incubation, but 

moss, lichens and decomposing litter were left, when removing them would have disturbed the 

soil within the core.  

In each set of six cores, two were injected with 
15

 NH4
+
 (in the form of (

15
NH4)2SO4) to 

measure gross N mineralization rates and two were injected with 
15

 NO3
-
 (in the form of 

K
15

NO3) to measure gross nitrification rates. Of the remaining two cores, one was used to 

measure background N concentrations and the other was incubated in the field for 7-9 days to 

measure net N mineralization and nitrification rates, using the buried bag method (Hart et al., 

1994). The 
15

N cores were labeled using side-port needles, with five, 1-mL injections; the 

solutions were added to maximize the homogeneity of the label in the core without increasing 

the gravimetric soil moisture more than 30% (based on previous field measurements). The 

solutions added 50 µg of 
15

 NH4
+
 and 25 µg 

15
 NO3

-
 (both 99% 

15
N enriched) to their 

respective cores, corresponding to 7 µg 
15

N g
-1

 dry soil in the N mineralization cores and 3.5 

µg 
15

N g
-1

 dry soil in the nitrification cores. Once they were labeled, one of each set of cores 

was immediately mixed and extracted with 0.5 M K2SO4, and the soil and extract bottle stored 
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in a container with ice for transport back to the field station. The other core from each pair 

was incubated in the field for 24 hours (N mineralization) or 48 hours (nitrification). Since the 

NO3
-
 pool was quite small, we incubated nitrification cores for longer in order to allow time 

for dilution to be seen in the labeled pool. The 1- and 2-day incubated cores were also 

extracted with 0.5 M K2SO4 in the field and transported back to the field station on ice.  

 

Table 3.2 Soil and climatic
a
 parameters in montane forests along a 1000- to 3000-m elevation

b
 gradient, during 

the dry season (July/August 2011) and wet season (Jan/Feb 2012), on days when N cycling was measured 

 1000 m 2000 m
 

3000 m
 

Dry Season
c 

 

Air temperature (°C)
 

22.9
a 

14.9
b 

6.25
c 

Wind speed (m s
-1

)
 

1.28
b 

1.12
b 

11.2
a 

Relative humidity (%)
 

62.4
c 

76.5
b 

96.5
a 

Solar radiation (W m
-2

)
 

761.5
a 

293.1
b 

226.6
c 

WFPS (%) 31.2 ± 1.7
a 

31.7 ± 3.0
a 

30.0 ± 6.8
a 

Wet Season
c 

 

Air temperature (°C)
 

21.3
a 

15.1
b 

7.10
c 

Wind speed (m s
-1

)
 

0.38
b 

0.76
b 

5.85
a 

Relative humidity (%)
 

87.4
b 

82.8
b 

97.9
a 

Solar radiation (W m
-2

)
 

235.2
a 

281.4
a 

230.8
a 

WFPS (%) 42.0 ± 2.0
b 

33.5 ± 2.4
b 

56.0 ± 6.0
a 

a
 Unpublished data used with the permission of T. Peters 

b
 Values with different letters indicate significant differences between elevations (linear mixed effects models 

with Tukey HSD test at P < 0.05). 

c
 Differences between seasons were not significant, except the difference in solar radiation at 1000 m (Paired T 

test at P = 0.09). 

 

At the field station, a subsample of soil from each core was dried to a constant weight at 

105°C, to measure gravimetric water content. In 2012, in order to determine microbial 

biomass N, a subsample of the soil from the 1- and 2-day incubated cores was fumigated with 

CHCl3 (Brookes et al., 1985). Fumigation was initiated as soon as the cores returned from the 
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field and lasted 5 days, after which soil was extracted with 0.5 M K2SO4. All extracts were 

double-filtered using pre-washed filter paper and then frozen before transport to Germany for 

further analysis.   

 

3.3.4 Laboratory Analyses 

In Germany, the concentrations of NH4
+
 and NO3

-
 in the extracts were analyzed using 

continuous flow injection colorimetry (Cenco/Skalar Instruments, Breda, Netherlands). NH4
+
 

was determined using the Berthelot reaction method (Skalar Method 155-000) and NO3
-
 was 

determined using the copper-cadmium reduction method (Skalar Method 461-000). Organic N 

was determined by persulfate digestion of the extract followed by analysis of the NO3
-
 

concentration as described above. 

Extracts were analysed for 
15

 NH4
+
, 

15
 NO3

-
 and 

15
N in organic pools by NH3 diffusion 

(which for NO3
-
 and organic N digested to NO3

-
 include a reduction step to NH4

+
) onto 

polytetrafluoroethylene-encased acid traps (Stark & Hart, 1996), which were then analysed 

using isotope ratio mass spectrometry (IRMS) (Delta C, Finnigan MAT, Bremen, Germany). 

The full procedure used by our working group has been outlined in detail in previous studies 

(e.g. Corre et al., 2007, 2010). Rates of gross N mineralization and were calculated according 

to Davidson et al. (1991). Note that we define N both net and gross mineralization to be the 

production of NH4
+
 alone, not NH4

+
 and NO3

-
 combined. Microbial biomass N was calculated 

as the difference between extractable N in the original and fumigated soils, divided by kN = 

0.68 (Brookes et al., 1985).  
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3.3.5 Additional soil analyses 

In 2011, soil samples were taken from the upper, mid and lower canopy positions in each 

plot and used to measure additional soil parameters. Natural abundance (δ) 
15

N signatures of 

the soils were measured using IRMS (Delta Plus, Finnigan MAT, Bremen, Germany). Total C 

and N were measured by dry combustion in a CN analyzer (Elementar Vario EL; Elementar 

Analysis Systems GmbH, Hanau, Germany). Total elemental concentration of P, Fe, Mg, Mn, 

Na, S, Fe, K and Al were determined using pressure digestion of the sample in concentrated 

nitric acid followed by analysis with an inductively coupled plasma-atomic emission 

spectrometer (Spectroflame, Spectro Analytical Instruments, Kleve, Germany). Soil pH (H2O) 

was analyzed in a 1:4 soil-to-water ratio. Soil moisture was expressed as water-filled pore 

space (WFPS), calculated using an organic soil particle density of 1.40 g cm
-3

 (Breuer et al., 

2002).  

 

3.3.6 Statistical analyses and calculations 

Results were analyzed using the R (version 2.15.3) open source software. N cycling rates 

and climate data were all tested for normality and those exhibiting non-normal distributions 

were square root or log transformed. Positional (i.e. upper vs. lower canopy) differences in the 

control plots were tested for each elevation using an Independent T test; as differences 

between positions were only sporadically significant, they are not discussed further except to 

mention when they interact with seasonal effects. Control plots were tested for seasonal 

differences using Paired T tests for 1000 m (where only one canopy position was sampled) 

and linear mixed effect models (LME) for 2000 m and 3000 m with plot (replicate) and 

canopy position (nested in plot) as random effects and season as the fixed effect; possible 
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interaction effects between season and canopy position were also tested. Elevation differences 

between control plots were also tested using LME with season, plot (replicate) and canopy 

position as random effects and elevation as the fixed effect. If significant seasonal differences 

in the control plots were detected, separate LME for each season were used. Nutrient-addition 

effects were also tested using LME and conducted for each elevation. For this, models 

included season, plot (replicate) and canopy position as random effects and treatment as the 

fixed effect, and were tested for interactions between treatment and season. Where significant 

interactions existed, separate LME for each season were used to determine treatment effects. 

The climate data in Table 3.2 was also tested for differences between seasons and elevations 

using a LME. We used a Tukey HSD test for multiple comparisons. For correlations between 

soil properties and N cycling rates, we tested the upper canopy values from control plots 

across all three elevations using Pearson correlations. We accepted P values of P < 0.10 as 

significant. 

In order to understand the relevance of canopy rates in the forest as a whole, we converted 

our rates to kg ha
-1

 yr
-1

 using data from Werner et al. (2012). They found an average of 3877 

kg ha
-1

 canopy soil on trees from mid-slope positions at 2000 m, in the same forest area where 

we worked. We used this number as the mass of canopy soil in our site at 2000 m and then 

(based on our field observations) made a rough approximation of the amount of soil at 1000 m 

and 3000 m, using half that amount for 1000 m and twice that amount for 3000 m. To upscale 

to a per year rate, we assumed that the wet and dry season each lasted for six months. 
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3.4 - Results 

3.4.1 Control plots: seasonal pattern 

Comparing between the two sampling dates, relative humidity and WFPS increased, and 

wind speed decreased, in the wet season at all elevations (although only WFPS at 1000 m and 

3000 m was significant) (Table 3.2). Seasonal differences in N cycling were also seen at each 

elevation (Table 3.3). At 1000 m, all of the following were significantly higher in the wet 

season than the dry season: NO3
-
 concentrations (P < 0.01), gross nitrification (P = 0.02), 

gross consumption of NO3
-
 (P = 0.05) and the mean residence time (MRT) of NO3

-
 (P = 

0.01). At 2000 m, NO3
-
 concentrations were also higher in the wet season (P = 0.01), while 

net nitrification and MRT of NO3
-
 had significant interactions with season and canopy 

position (P = 0.01 for net nitrification and P = 0.02 for MRT of NO3
-
), with upper canopy 

values decreasing and lower canopy values increasing in the wet season (data per canopy 

position are not shown). At 3000 m, NH4
+
 concentrations were higher in the wet season (P = 

0.01) and gross nitrification showed an interaction with season and canopy position (P = 

0.06), with rates in the upper canopy decreasing and in the lower canopy increasing from dry 

season to wet season (data per canopy position are not shown). Note that microbial biomass N 

(MBN) was only measured in the wet season, so it could not be tested for seasonal 

differences.
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Table 3.3 Nitrogen pools and cycling rates in the canopy soils of the control plots in tropical montane forests along a 1000- to 3000-m elevation gradient. Values 

shown (mean ± SE; n = 4) were measured in intact cores from the top 5 cm of organic material found on branches in the canopy. Measurements were taken in the 

dry season (Jul./Aug. 2011) and wet season (Jan./Feb. 2012)  

Elevation
a 

Season
b 

Mineral  N 

(mg N kg
-1

) 

Mean residence  

time (d) 

Net cycling 

(mg N kg
-1

d
-1

) 

Gross cycling 

(mg N kg
-1

d
-1

) 

Consumption 

(mg N kg
-1

d
-1

) 

DNRA
c
 

(mg N kg
-1

d
-1

) 

Microbial biomass N  

(mg N kg
-1

) 

  NH4
+ 

NH4
+
 Mineralization Mineralization NH4

+
  

 

1000 m
 

 

Dry 30.7 ± 7.4
AB 

0.65 ± 0.09 0.80 ± 0.37
AB

 53.0 ± 21.2
A 

66.9 ± 27.8
A
 NA - 

Wet 27.1 ± 4.6 0.89 ± 0.24 0.59 ± 0.73
AB

 38.6 ± 13.2
A
 41.4 ± 12.5

A
 NA 347 ± 63 

2000 m
 

 

Dry 31.5 ± 6.4
A 

1.50 ± 0.71 -0.77 ± 0.75
B 

41.2 ± 16.3
AB

 40.7 ± 18.0
AB

 NA - 

Wet 24.6 ± 4.1
 

1.61 ± 0.87 -0.11 ± 0.68
B 

20.4 ± 7.5
AB

 25.7 ± 7.1
AB

 NA 357 ± 67 

3000 m
 

 

Dry 17.3 ± 3.7
Bb 

4.31 ± 4.12
 

0.11 ± 0.63
A
 20.6 ± 7.3

B 
23.2 ± 8.0

B 
NA - 

Wet 24.8 ± 3.4
a 

3.26 ± 2.38 2.58 ± 2.10
A
 24.8 ± 14.1

B
 28.5 ± 15.0

B
 NA 444 ± 69 

  NO3
- 

NO3
-
 Nitrification Nitrification NO3

-
 

  

1000 m
 

 

Dry 0.80 ± 0.47
b 

0.52± 0.37
b 

2.84 ± 1.60
 

1.19 ± 0.41
b 

1.05 ± 0.39
b 

0.03 ± 0.02 - 

Wet 3.42 ± 1.27
Aa

 1.19 ± 0.42
a
 0.29 ± 0.32 2.77 ± 0.32

a
 4.06 ± 0.79

a
 0.71 ± 0.62 347 ± 63 

2000 m
 

 

Dry 0.73 ± 0.11
b 

0.98 ± 0.17
* 

0.01 ± 0.02
* 

0.86 ± 0.26 1.79 ± 0.39 0.08 ± 0.02 - 

Wet 2.38 ± 1.37
ABa 

0.81 ± 0.48
*
 0.26 ± 0.26

* 
2.24 ± 1.05 2.14 ± 1.30 0.36 ± 0.29 357 ± 67 

3000 m
 

 

Dry 0.62 ± 0.12 0.73 ± 0.24 -0.02 ± 0.03
 

1.14 ± 0.36
* 

2.17 ± 0.54 0.14 ± 0.03 - 

Wet 0.85 ± 0.21
B 

0.70 ± 0.20 -0.03 ± 0.04 1.26 ± 0.43
*
 2.35 ± 0.66 0.58 ± 0.32 444 ± 69 

a
 Values with different uppercase letters indicate significant differences between elevations (linear mixed effects model with Tukey HSD test at P ≤ 0.04).  

b
 Values with different lowercase letters indicate significant differences between seasons for each elevation (Paired T test at P ≤ 0.06).  

c
 DNRA – dissimilatory NO3

-
 reduction to NH4

+ 

* 
Significant interaction between season and canopy position (linear mixed effects model at P ≤ 0.05). 
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3.4.2 Control plots: elevation differences 

In our canopy soils, total N and total P concentrations decreased with elevation, the C/N 

ratio increased, and other soil nutrients had varying trends (Table 3.1). Similarly, mineral N 

concentrations and gross rates of N mineralization, nitrification, and NH4
+
 or NO3

-
 

consumption tended to decrease with increasing elevation, while MRT and MBN tended to 

increase and net rates of N cycling had no consistent trend (Table 3.3). However, not all of the 

trends were statistically significant. NH4
+
 concentrations in the dry season were lower at 3000 

m than at 2000 m (P = 0.01), but there was no difference in NH4
+
 at 1000 m and either 2000 

m (P = 0.80) or 3000 m (P = 0.15). NO3
-
 concentrations in the wet season were lower at 3000 

m than at 1000 m (P = 0.01), but there was no difference in NO3
-
 at 2000 m and either 1000 m 

(P = 0.34) or 3000 m (P = 0.20).  

Comparing across seasons, net N mineralization was higher at 3000 m than at 2000 m (P 

= 0.04), but 1000 m was not different from 2000 m (P = 0.13) or 3000 m (P = 0.98). Gross N 

mineralization and consumption of NH4
+
 were lower at 3000 m than at 1000 m (P = 0.03 for 

N mineralization and P = 0.04 for NH4
+
 consumption), but 2000 m was not different from 

1000 m (P = 0.35 for N mineralization and P = 0.20 for NH4
+
 consumption) or 3000 m (P = 

0.34 for a N mineralization and P = 0.63 for NH4
+
 consumption).  

 

3.4.3 Control plots: correlations between N cycling and soil properties 

In both seasons, gross N mineralization and gross NH4
+
 consumption had a strong 

negative correlation with the C/N ratio (P < 0.02) (Table S3.1), which was also evident within 

each elevation, suggesting it was not simply a correlation with elevation. In the dry season 

(Table S3.1a), net nitrification and MRT of NO3
-
 were positively correlated with total P (P < 
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0.01 for nitrification and P = 0.03 for MRT) and net nitrification was negatively correlated 

with gross NO3
-
 consumption (P = 0.03).  There were no significant correlations between 

NH4
+
-related rates and NO3

-
-related processes. In the wet season (Table S3.1b), gross N 

mineralization, gross NH4
+
 consumption and net nitrification were all positively correlated 

with total P (P = 0.02 for N mineralization, P = 0.03 for consumption and P = 0.04 for 

nitrification).  Gross nitrification and gross NO3
-
 consumption were negatively correlated with 

the C/N ratio (P = 0.01 for both). Relating NH4
+
-related rates and NO3

-
-related rates, net N 

mineralization was positively correlated with MRT of NO3
-
 (P = 0.02), and gross N 

mineralization and gross NH4
+
 consumption were positively correlated with gross nitrification 

and gross NO3
-
 consumption (all P < 0.01). 

 

3.4.4 Effects of nutrient addition to the forest floor on canopy N cycling 

At 1000 m, net nitrification was lower in P plots than in N+P plots (P = 0.01), and gross 

nitrification was lower in N plots than in control (P = 0.01) and N+P plots (P < 0.01), and 

marginally lower in P plots than in N+P plots (P = 0.06; Table 3.4). Of the measured soil 

properties, δ
15

N at 1000 m was higher in N+P plots as compared to all other treatments (P < 

0.01 for control and P plots, and P = 0.06 for N plots), and also higher in N plots than P plots 

(P = 0.03). Both total P (P < 0.01 for control, P = 0.03 for P plots, P = 0.01 for N+P plots) 

and total Mn concentrations (P < 0.01 for control, P = 0.03 for P plots, P = 0.09 for N+P 

plots) were lower in N plots than in all other treatments.  
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Table 3.4 Nitrogen (N) pools and cycling rates in the canopy soils of a nutrient manipulation experiment in tropical montane forests along a 1000- to 3000-m 

elevation gradient. Low levels of N, phosphorus (P) and combined N+P were added to the forest floor biannually starting in 2008. Values shown (mean ± SE; n = 

4) were measured in the top 5 cm of organic material found on branches in the canopy, in the dry season (Jul./Aug. 2011) and wet season (Jan./Feb. 2012)  

Elevation Nitrogen measurement Season
 

Treatment
a 

   Control Added N Added P Added N+P 

1000 m Net nitrification (mg N kg
-1

d
-1

) Wet/dry 1.56 ± 1.27
ab 

1.78 ± 1.76
ab 

0.47 ± 0.48
b 

2.86 ± 1.04
a 

 Gross nitrification (mg N kg
-1

d
-1

) Wet/dry 1.98 ± 0.54
ab 

0.56 ± 0.21
c 

1.32 ± 0.78
bc 

2.56 ± 0.98
a 

2000 m Gross N mineralization (mg N kg
-1

d
-1

) Wet/dry 30.8 ± 13.4
b 

36.9 ± 12.2
ab 

48.5 ± 15.3
a 

34.6 ± 9.9
ab 

 NO3
- 
concentration (mg N kg

-1
) Wet/dry 1.55 ± 1.06

ab 
1.31 ± 0.37

ab 
1.40 ± 0.89

b 
2.80 ± 1.68

a 

 Net nitrification (mg N kg
-1

d
-1

) Wet/dry 0.11 ± 0.17
ab 

0.16 ± 0.23
ab 

0.03 ± 0.05
b 

0.34 ± 0.26
a 

 Gross nitrification (mg N kg
-1

d
-1

) Dry 0.86 ± 0.26
b 

0.62 ± 0.16
b 

0.76 ± 0.19
b 

1.61 ± 0.31
a 

3000 m Gross N mineralization (mg N kg
-1

d
-1

) Wet/dry 22.7 ± 10.9
b 

36.1 ± 13.0
ab 

25.9 ± 11.2
ab 

39.2 ± 11.6
a 

 Gross NH4
+ 

consumption (mg N kg
-1

d
-1

) Wet/dry 25.9 ± 11.7
b 

38.8 ± 14.5
ab 

33.9 ± 14.8
ab 

46.3 ± 14.3
a 

a 
For each elevation, values with different lowercase letters indicate significant differences between treatments (linear mixed effects models with Tukey HSD test 

at P < 0.09). 
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At 2000 m, gross N mineralization was higher in P plots as compared to control (P = 

0.05), and NO3
-
 concentration and net nitrification were higher in N+P plots than in P plots (P 

= 0.08 for NO3
-
 and P = 0.00 for nitrification). Gross nitrification displayed a significant 

interaction between season and treatment; in the dry season, gross nitrification was higher in 

N +P plots than in all other treatments (P = 0.02 for control and P < 0.01 for both N plots and 

P plots). Of the measured soil properties, δ
15

N at 2000 m was higher in N+P plots as 

compared to P plots (P = 0.01). In the mid-canopy, total K was lower in N plots than in all 

other treatments (all P < 0.01). 

At 3000 m, gross N mineralization and gross NH4
+
 consumption were higher in N+P plots 

as compared to control (P < 0.01). There were no treatment effects on canopy soil properties 

at 3000 m.  

3.5 - Discussion 

3.5.1 Canopy vs. forest floor 

Gross N mineralization rates in our canopy soils were larger on a mass basis than those 

measured on the forest floor, in a parallel study conducted by another member of our working 

group (Table S3.2; Baldos et al., unpublished data), whereas gross nitrification rates were 

comparable or slightly lower in the canopy soils. However, N cycling rates in the canopy soils 

were considerably lower on an area basis, since canopy soil mass is considerably lower than 

that of the forest floor. In the canopy, gross N mineralization ranged from 32 to 64 kg N ha
-1

 

yr
-1

 across the elevations gradient and gross nitrification ranged from 1.4 to 3.4 kg N ha
-1

 yr
-1

. 

In comparison, the rates in the top 5-cm depth of forest floor soils ranged from 219 to 858 kg 

N ha
-1

 yr
-1

 for gross N mineralization and 91 to 321 kg N ha
-1

 yr
-1

 for gross nitrification. The 

contribution of canopy soil at 3000 m was larger (23% of the sum of gross N mineralization 
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from forest floor and canopy soils), where N cycling on the forest floor was low, than at the 

lower elevations (4-6 %) where N cycling on the forest floor was high. In a similar trend 

across the elevation gradient, gross nitrification in the canopy soil contributed 4% to the total 

gross nitrification (forest floor and canopy soils) at 3000 m and only 0.4% at 1000 m.  

The only other measurements of gross N cycling in canopy soils that we are aware of, 

come from canopy soils in a lowland tropical forest in Costa Rica (Wanek et al., 2002). They 

measured mass-based gross rates of N mineralization and nitrification similar to those found 

in our study (27.5 mg N kg
-1

 d
-1

 for gross N mineralization and 2.1 mg N kg
-1

 d
-1

 for gross 

nitrification), and found no significant difference in N cycling between canopy and forest 

floor soils. Similarity in NH4
+
 concentrations and MBN between canopy and forest floor soils 

was also reported for a lower montane forest in Costa Rica by Vance and Nadkarni (1990) and 

in wet-season net N cycling for lowland canopy soils in Costa Rica by Cardelus et al. (2009). 

Since the available studies did not detect differences in N cycling rates between canopy 

and forest floor soils, and in the absence of other studies on gross N cycling in canopy soils, 

we compare our results to tropical forest floor soils. Published rates of gross N cycling vary 

considerably, but our values were well within the range of other tropical montane forest 

studies that used field incubation of intact cores. When expressed on an area-based scale, the 

significance of N cycling rates in canopy soils of most forests will likely be small (Table 

S3.2). However, when compared on a mass-based scale, gross N cycling rates in a lower 

montane forest in Puerto Rico (Silver et al., 2001; Templer et al., 2008) were lower than those 

which we measured in canopy soils, whereas gross N mineralization rates were similar with 

those from a lower montane forest soil in Ecuador (Arnold et al., 2009) and a lower montane 

forest soil in Panama (Corre et al., 2010). Similar to what we observed in our study area, our 
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gross nitrification rates were lower than these published values, possibly because canopy soils 

tend to be more acidic than forest floor soils and therefore have less potential for nitrification 

(Vance & Nadkarni, 1990).  

 

3.5.2 Environmental effects (seasonality, elevation and soil properties) 

Seasonality appeared to have a stronger effect on NO3
-
-related processes than on NH4

+
-

related processes (Table 3.3). A simple reason for this could be that the NO3
-
 pool is much 

smaller than the NH4
+
 pool and therefore even small fluctuations are likely to be significant. 

However, there are also mechanistic explanations for this observance. Where seasonal 

differences were significant, we saw increased pool sizes/rates in the wet season as compared 

to the dry season. Although nitrification is an aerobic process that is normally expected to 

decrease in soils during the wet season (Breuer et al., 2002), nitrification may increase in 

organic soils such as ours (also seen by Ingwersen et al., (1999) in a forest floor organic layer) 

since high porosity allows them to remain aerobic as moisture increases. Gross N 

mineralization did not increase during the wet season; however, gross N mineralization rates 

were at least a factor of 10 higher than nitrification rates throughout the study at all elevations 

and the higher nitrification rates may be related to lower NH4
+
 immobilization during the wet 

season. Alternately, the changes may not have been related to increased N cycling rates due to 

higher moisture, but instead due to increased inputs of mineral N through precipitation during 

the wet season. A study in our 2000 m forest site consistently observed net loss of dissolved 

organic N from the canopy during rainfall events, but during some rainfall events, net 

retention of NH4
+
 and NO3

-
 was detected (Zimmerman et al., 2007). They also measured 

higher concentrations of NO3
-
 as compared to NH4

+
 in rainfall. Mineral N addition to our soils 
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with concurrent decreases in organic N could help to explain why NO3
-
-related processes 

increased while NH4
+
-related processes remained relatively unchanged. A contribution of 

external nutrient sources to N cycling in our soils is supported by the correlations that we 

observed. Whereas only gross N mineralization and gross NH4
+
 consumption were correlated 

in the dry season (Table S3.1a), gross N mineralization, gross NH4
+
 consumption, gross 

nitrification and gross NO3
-
 consumption were all correlated with one another in the wet 

season (Table S3.1b), perhaps because increased nutrient availability through precipitation 

removed local limitations on N cycling in some of the soils. Cardelus (2009) saw a similar 

effect in the wet season; discriminant function analyses of canopy soil properties showed that 

tree species were more similar to each other in the wet season whereas they were all 

significantly different in the dry season. Dry-season differences may then be a result of 

microclimate and/or host tree chemistry, which become more important when there are fewer 

nutrient inputs from external sources.   

Along our elevation gradient, we expected N cycling in the canopy soil to decrease with 

elevation, as temperature decreased (inhibiting microbial activity), wind speeds increased 

(removing litter and/or speeding up evaporation) and C/N ratios increased (indicating 

decreasing organic matter quality; Booth et al., 2005). Although not always significant, we did 

often observe this pattern in N cycling rates (Table 3.3). The importance of organic matter 

quality, in particular, was highlighted by the negative correlations that we saw with N cycling 

rates and C/N ratios in both seasons (Table S3.1). However, N cycling rates measured at 2000 

m occasionally did not fall between the other two elevations - as was the case with net N 

mineralization (Table 3.3). In addition, the δ
15

N in the canopy soil (Table 3.1) shows that 

although there were definitely higher rates of N cycling at 1000 m as compared to the other 
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elevations, there seemed to be no difference in δ
15

N between 2000 m and 3000 m. This is 

likely related to specific differences in our site characteristics; our 2000 m elevation actually 

received less precipitation than the 1000 m or 3000 m sites, and in our study, the WFPS of the 

canopy soil at 2000 m was not different between the two seasons (Table 3.2). Additionally, 

several characteristics in the canopy soil at 2000 m (namely Ca, Fe, Mg and Mn; Table 3.1) 

were either higher or lower than both of the other elevations, rather than exhibiting 

intermediate values. Such specific site differences are not uncommon in elevation gradient 

studies, and simply need to be taken into account when making sweeping statements about 

elevation effects (Körner 2007). 

 

3.5.3 Response to four years of indirect fertilization 

The response of canopy soils to indirect fertilization showed a clear tendency for N+P 

plots at all three elevations to have significantly higher N concentrations and cycling rates 

than the other treatments (Table 3.4). Increases in N cycling rates in response to N and N+P 

additions were also seen in the forest floor soil of our site, and were attributed to increased 

substrate quality and quantity (Baldos et al., unpublished data). We are likely seeing a similar 

effect in the canopy, as there was no evidence of treatment effects on MBN, but we did 

observe significant negative correlations with soil C:N ratio and net nitrification, gross N 

mineralization, gross nitrification and gross consumption of NH4
+
 and NO3

-
 (Table S3.1).  

Homeier et al. (2012) proposed that the combination of N and P was important for N 

cycling in our forest floor soils because P limits the involved microorganisms, whereas N is 

limiting as a substrate. Our results indicate that canopy soils were also limited by both 

elements as shown by significant increases in net nitrification and gross nitrification (at1000 
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m and 2000 m) and in gross N mineralization and gross NH4
+
 consumption (at 3000 m) with 

N+P addition (Table 3.4). Furthermore, at both 1000 m and 2000 m, the significantly higher 

δ
15

N in N+P plots as compared to control (1000 m) or P plots (2000 m) emphasizes that the 

combination of N and P increased N cycling rates at these elevations. This was also shown by 

the fact that net nitrification was lowest in the P plots at both 1000 m and 2000 m, suggesting 

with additional available P, more N was immobilized. At 2000 m, the significant increase in 

gross N mineralization in P plots (Table 3.4) could indicate that the N required as a substrate 

was relatively sufficient or that additional P increased another source of N. For example, as 

was also reported by Benner et al. (2007) for Hawaiian montane forests, P fertilization to the 

forest floor at 2000 m had increased N2 fixation in the canopy soils (Matson et al., 

unpublished data). Finally, it is notable that N+P addition at 1000 m and 2000 m increased 

mineral N production rates but not mineral N consumption rates. This could be an early 

indication that N cycling in these canopy soils may become decoupled (immobilization not 

keeping pace with production).  Strong decoupling of the N cycle was observed by Baldos et 

al. (unpublished data) in our forest floor soils in both the N and N+P treatments. 

In contrast to the increases observed in N+P plots, the decrease in gross nitrification in N 

plots (observed at both 1000 m and 2000 m, although only significant at 1000 m) may be a 

response to increased acidity. The significant decrease in total Mn concentrations in the 

canopy soil of N plots at 1000 m and the decrease of total K concentrations in the canopy soil 

at mid-canopy position of N plots at 2000 m could be a result of NO3
-
 leaching. Gaige et al. 

(2007) observed that the relative amount of throughfall NO3
-
 (as compared to dissolved 

organic N and NH4
+
) increased in N plots compared to control plots. NO3

-
 leaching can, in 

turn, lead to cation leaching and soil acidity (Matson et al., 1999) and acidity may inhibit 
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nitrification in the soil (Vance & Nadkarni, 1990). We also observed lower total P 

concentrations at 1000 in the N plots as compared to the control, which would be consistent 

with higher P mobilization through N mineralization, followed by leaching; although we do 

not have data for the 1000 m site, an increase in throughfall P concentration in N-amended 

plots compared to control was observed in our 2000 m site (Homeier et al., 2012). 

It is important to stress that all observed fertilization effects were a result of indirect 

fertilization. This means that we may not have seen treatment effects in some of the treatment 

plots because the canopy soils in that treatment were simply not yet enriched (as seen by 

Benner and Vitousek (2007) with N addition), considering that our study was conducted in 

only the fourth year since this nutrient manipulation experiment started. From other studies 

done in our site at 2000 m, we know that several indices of relevance to canopy nutrient 

enrichment increased as a result of forest floor N and/or P addition: N or P return with 

throughfall, N or P concentration in litterfall, N or P return with litter, total leaf litter 

production, foliar N or P concentration and litter decomposition (Homeier et al., 2012). 

However, we also know that in plots with just addition of N, litter may be less quickly 

decomposed in the canopy, as P has been shown to limit decomposition in some canopies 

(Cardelus et al., 2010). In addition, Nadkarni and Matelson (1991) showed that due to the 

prevalence of wind, very little tree litter actually remains and decomposes in montane forest 

canopies, and of the litter that remained, decomposition was significantly slower than on the 

forest floor. Therefore, although we cannot exclude that some nutrient-rich litter may be 

contributing to canopy soil, it is more likely that canopy soils were largely dependent on 

throughfall and stemflow for nutrient enrichment (Wullaert et al., 2010).  
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3.5.4 Implications 

This study had three key implications for N cycling in canopy soils. First, N cycling in 

canopy soil can be an important component of total forest N cycling. This is most likely to 

occur in humid, high altitude tropical montane forests, where N cycling rates in forest floor 

soil are relatively low and the amount of canopy soil is relatively high. Second, in contrast to 

theories that canopy soil is decoupled from soil on the forest floor, the canopy in our forests 

was remarkably sensitive to changes in nutrient availability in the forest floor soil. Our canopy 

soils responded very rapidly (within 4 years from the onset of nutrient addition) to relatively 

low amounts of added N and P. However, N cycling processes in our canopy soils were 

clearly limited by both N and P, so a final key implication of this study is that the canopy soil 

response to nutrient deposition will depend on local nutrient limitations. In canopy soils like 

ours, chronic N and P deposition may stimulate mineral N production and consumption 

processes, but over time a decoupling of the N cycle could occur, with the decreased 

immobilization of mineral N providing more N for plant uptake and/or causing increased 

leaching of N to the forest floor. In canopy soils where N cycling processes are limited by 

both N and P, the response of N cycling to a single limiting nutrient is more complex. Based 

on our observations, an increase in P without a concurrent increase in N may cause increased 

N cycling through a more efficient use of extant N stores and/or increased rates of N2 fixation 

in the canopy soil. However, an increase in N without a concurrent increase in P may lead to 

nutrient mining of the canopy soil, with stores of P used up first, followed by a loss of soil 

cations through increased NO3
-
 leaching.   
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Table S3.1 Pearson correlation coefficients between N cycling rates and nutrient concentrations measured in the dry season (a) and wet season (b), in upper 

canopy soils of control plots in tropical montane forests along a 1000- to 3000-m elevation gradient (n = 12)  

(a) C:N 
Net N 

mineralization 

Net 

nitrification 

Gross N 

mineralization 

Gross NH4
+
 

consumption 

Gross  

nitrification 

Gross NO3
-
 

consumption 

MRT 

 NH4
+
 

MRT  

NO3
-
 

N 

 
-0.99

** 0.17 0.89
** 

0.73
** 

0.77
** 0.24 -0.49 -0.62

* 0.41 

C:N 
 

 
0.13 -0.86

** 
-0.77

** 
-0.80

** -0.15 0.49 0.66
* -0.41 

Net N 

mineralization   
0.27 -0.01 0.00 0.32 -0.31 -0.08 -0.23 

Net  

nitrification    
0.54 0.56 0.33 -0.63

* -0.44 0.52 

Gross N 

mineralization     
0.99

** 0.39 0.05 -0.91
** -0.10 

Gross NH4
+ 

consumption      
0.39 0.01 -0.87

** -0.04 

Gross  

nitrification       
0.22 -0.32 -0.33 

Gross NO3
-
 

consumption        
-0.01 -0.72

** 

MRT NH4
+
 

 

        
0.27 
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 (b) C:N 
Net N 

mineralization 

Net  

nitrification 

Gross N 

mineralization 

Gross NH4
+

  

consumption 

Gross  

nitrification 

Gross NO3
-
  

consumption 

MRT  

NH4
+ 

MRT  

NO3
- 

N 

 
-0.99

** -0.11 0.48 0.56 0.60
* 

0.62
* 

0.68
* -0.10 0.00 

C:N 
 

 
0.17 -0.53 -0.66

* 
-0.69

* 
-0.70

* 
-0.74

** 0.22 0.10 

Net N 

mineralization   
-0.02 -0.27 -0.19 -0.08 0.09 0.38 0.75

*
 

Net  

nitrification    
0.48 0.52 0.20 0.18 -0.17 -0.22

 

Gross N 

mineralization     
0.98

**
 0.79

**
 0.78

**
 -0.92

**
 -0.32 

Gross NH4
+

  

consumption      
0.80

** 
0.82

** 
-0.82

** -0.35 

Gross  

nitrification       
0.94

** -0.61
 

-0.31 

Gross NO3
-
  

consumption        
-0.57 0.00 

MRT NH4
+
 

 

        
0.12 

*, **
 Significant at P ≤ 0.05 and P ≤ 0.01, respectively. 
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Table S3.2 Nitrogen (N) cycling rates in canopy and forest floor
a
 soils of tropical montane forests along a 1000- to 3000-m elevation gradient. Values shown 

(mean ± SE; n = 4) were measured in the top 5 cm of organic material found on branches in the canopy or from the top 5 cm of forest floor soil (corresponding to 

a mineral soil at 1000 m and an organic soil at 2000 m and 3000 m) 

Elevation  Nitrogen cycling measure Mass-based rates (mg N kg
-1

 d
-1

) Area-based rates (kg N ha
-1

 yr
-1

)
 
 

  Canopy Forest floor
 

Canopy
b
 Forest floor

 
Canopy contribution  

1000 m Gross N mineralization 45.8 ± 16.8 5.60 ± 0.71 32.4 ± 11.9 858 ± 110 3.6% 

 Gross nitrification 1.98 ± 0.54 2.10 ± 0.29 1.40 ± 0.38 321 ± 44 0.4% 

2000 m Gross N mineralization 30.8 ± 13.4 21.2 ± 5.9 43.6 ± 18.9 697 ± 193 5.9% 

 Gross nitrification 1.55 ± 0.82 3.89 ± 0.22 2.20 ± 1.17 128 ± 7 1.7% 

3000 m Gross N mineralization 22.7 ± 10.9 10.9 ± 1.8 64.2 ± 30.8 219 ± 37 22.7% 

 Gross nitrification 1.20 ± 0.39 4.55 ± 1.09 3.40 ± 1.10 91.3 ± 22 3.6% 

a 
Forest floor data adapted from Baldos et al. (unpublished data) . 

b 
For details on how area-based rates were calculated for canopy soils, see Materials and methods: statistical analyses and calculations. 
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4.1 - Abstract 

Canopy soils can contribute significantly to aboveground labile biomass, especially in tropical 

montane forests. Whether this means that they also contribute to the exchange of greenhouse 

gases is unknown. We quantified fluxes of CO2, CH4 and N2O in canopy soils along a 1000- 

to 3000-m elevation gradient of tropical montane forests and assessed the indirect effects of 

nutrient addition to the forest floor on canopy soil gas exchange. Gas fluxes were measured 

using both static chambers with permanent bases, and intact soil cores sealed in jars. The 

forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; 

treatments included control, N, P and N+P. Canopy soil CO2 emissions based on chamber area 

(10.5 to 109.5 mg CO2-C m
-2 

h
-1

) were similar to those from the forest floor, but emissions 

based on forest area made up only 5-11% of total (canopy + forest floor) soil CO2 emissions. 

Canopy soil CH4 fluxes (-0.07 to 0.02 kg CH4-C ha
-1 

yr
-1

)  and N2O fluxes (0.00 to 0.01 kg 

N2O-N ha
-1 

yr
-1

) made up less than 5% of total soil fluxes. At all elevations, canopy soils in P 

plots were a slightly stronger CH4 sink than in other treatments. At 2000 m only, canopy soils 

in N plots became a slight N2O source, whereas P addition decreased CO2 emissions by 

approximately 50%. Results suggest that GHG-related processes in canopy soils will respond 

to long-term atmospheric N and/or P deposition. However, fluxes in canopy soils are unlikely 

to significantly contribute to total forest greenhouse gas budgets.    
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4.2 - Introduction 

Canopy soils are the collection of non-living organic material commonly found on the 

branches of trees from humid forests (Coxson and Nadkarni 1995); they are primarily made 

up of decomposed epiphytic material from epiphytes but also include intercepted litter, dust, 

invertebrates, fungi and microorganisms (Freiberg and Freiberg 2000; Hietz et al. 2002; 

Nadkarni et al. 2002). The relevance of canopy soil nutrient cycling to the forest as a whole 

depends, in part, on the amount of canopy soil present in a given stand. This can range from 

1000 kg ha
-1

 to 33,000 kg ha
-1

 (Chen et al. 2010; Freiberg and Freiberg 2000; Nadkarni et al. 

2004; Vance and Nadkarni, 1990; Werner et al. 2012). In some forests, canopy soil can 

account for up to 80% of aboveground labile (non-woody) biomass (Nadkarni et al. 2004). 

Therefore, despite their relatively low biomass, canopy soils can be an important part of the 

overall nutrient cycle.  

Canopy soils also have the potential to be sources or sinks of the greenhouse gases 

(GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O); as compared to the 

forest floor, canopy soils can have similar or higher microbial biomass carbon (C) and 

nitrogen (N) (Cardelus et al. 2009; Vance and Nadkarni 1990), as well as slightly higher 

microbial respiration (Vance and Nadkarni 1990). However, canopies are unique 

environments that are home to many ‘canopy specialists’ not found on the forest floor 

(Beaulieu et al. 2010; Nadkarni et al. 1994, 2002; Pittl et al. 2010), so it cannot be assumed 

that canopy soil activity will always mimic that of forest floor soils. Regarding CO2 

emissions, it is known that canopy soils emit CO2 through soil respiratory activity (Vance and 

Nadkarni 1990; Wardle et al. 2003), but data is still lacking on estimates of CO2 emissions 

from canopy soils on a forest-area basis. As for CH4, although significant emissions have been 
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measured from canopy bromeliads (Martinson et al. 2010), substantial emissions from canopy 

soils are unlikely. Methanogenesis is a strictly anaerobic process (Le Mer and Roger 2001); 

since the structure of trees is not conducive to standing water and canopy soils are highly 

porous, they are unlikely to ever be completely anaerobic. Canopy soils are, however, a 

potential CH4 sink. Although studies from boreal and temperate forest soils report that organic 

layers have little ability to oxidize CH4 (Butterbach-Bahl et al. 2002; Maurer et al. 2008; Saari 

et al. 1998; Steinkamp et al. 2001) studies in both temperate and tropical montane forests have 

found that organic layers can act as a strong CH4 sink (Chan et al. 2005; Wolf et al. 2012).  

Finally, concerning N2O, the contribution of canopy soils is uncertain. Although canopies are 

generally understood to be N limited (Hedin et al. 2009), making them an unlikely source of 

N2O, they otherwise have many of the right environmental conditions. Denitrifiers are 

heterotrophic (Knowles 1982), suggesting that they could thrive in canopy soils, which may 

have less recalcitrant C than on the forest floor (Vance and Nadkarni 1990). In addition, 

canopy soils are acidic (Cardelus et al. 2009), which inhibits the final reaction of N2O to N2 

(Knowles 1982), and although they are unlikely to ever be completely anaerobic, canopy soil 

moisture could reach 70-80% WFPS, which is the accepted threshold for N2O production 

(Davidson et al. 2000).   

Not only is it important to quantify current fluxes, however, it is also necessary to 

understand how GHG fluxes might change under future global change scenarios. Due to 

anthropogenic disturbances such as forest clearing, industrialization and biomass burning, 

tropical regions are experiencing increasing amounts of atmospheric N and phosphorus (P) 

deposition (Galloway et al. 2004; Hietz et al. 2011; Mahowald et al. 2005, 2008). Studies have 

shown that GHG fluxes in tropical montane forest soils can exhibit contrasting responses to 
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these nutrients. For example, a recent study from Ecuador initially showed increased N2O 

emissions in response to low levels of N addition (Martinson et al. 2013), but the effect of N 

addition on N2O disappeared as the study continued (Mueller et al. unpublished data). In the 

same study, N and P additions both increased and decreased CO2 emissions, depending on 

elevation and the duration since onset of nutrient addition, and increased CH4 uptake, but with 

shifting limiting nutrients along the elevation gradient (Mueller et al. unpublished data). Other 

studies have also shown mixed responses of CO2, CH4 and N2O to nutrient addition, 

depending on the forest type, elevation and type/amount/duration of nutrient addition 

(Cleveland and Townsend 2006; Corre et al. 2010, 2014; Cusack et al. 2011; Hall and Matson 

2003; Koehler et al. 2009; Veldkamp et al. 2013; Zhang et al. 2011).  

In this study, we measured greenhouse gas (CO2, CH4 and N2O) fluxes in canopy soils 

along an elevation gradient of tropical montane forests. Canopy soils were located in trees of 

plots with and without N and P addition to the forest floor. Our objectives were to: (1) 

quantify the magnitude of GHG fluxes in canopy soils and asses their contribution to total soil 

(forest floor and canopy) fluxes and (2) assess whether these rates were affected by indirect 

fertilization through nutrient inputs to the forest floor. We hypothesized that canopy soil 

fluxes of CH4 and N2O would be low, but that CO2 emissions would be similar to those 

measured on the forest floor. Since canopies are assumed to be N limited, we did not expect to 

see treatment effects on N2O emissions, but postulated that both N and P could stimulate CH4 

uptake and improve litter quality, increasing CO2 emissions.   
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4.3 - Materials and Methods 

4.3.1 Study sites 

This study took place along an elevation gradient from 1000- to 3000-m asl, in and 

adjoining Podocarpus National Park, a tropical montane forest in the Andes of southern 

Ecuador. The sites have been thoroughly described by Richter et al. (2013), but basic climate 

details, soil parameters and vegetative cover are summarized in Table 4.1.  

 

Table 4.1 Site and canopy soil characteristics from three study sites located along an elevation gradient in a 

tropical montane forest of southern Ecuador. Soil characteristics (mean (SE); n=4) are measured from the top 5 

cm of soil in the upper canopy. 

 1000 m 2000 m 3000 m 

Annual temperature (°C)
1 

19.4 15.7 9.4 

Annual rainfall (mm)
1 

2230 1950 4500 

Vegetation
2 

Premontane Lower montane Upper montane 

Stand height (m)
3 

20-25 10-14 6-8 

Tree density (trees ha
-1

)
 3
 747.5 1142.5 1305.0 

Total carbon (%) 48.9 (0.9) 48.0 (0.6) 48.9 (1.5) 

Total nitrogen (%) 2.4 (0.3) 1.7 (0.1) 1.5 (0.2) 

C/N ratio 20.8 (2.2) 28.7 (1.6) 34.4 (2.3) 

δ
15

N 1.2 (0.4) -0.03 (0.7) 0.1 (0.5) 

pH (1:4 soil-to-H2O) 4.2 (0.2) 3.7 (0.3) 3.8 (0.2) 
1
Moser et al., (2007) 

2
Homeier et al., (2010) 

3
Martinson et al., (2013) 

 

4.3.2 Nutrient addition 

We focused on the effects of indirect fertilization by studying canopy soil from trees in a 

pre-existing fertilization experiment. The trees were in plots of the nutrient manipulation 

experiment (NUMEX) project (fully described in Martinson et al. 2013), in which the forest 

floor had been fertilized biannually with moderate amounts of N (urea at 50 kg N ha
-1

 yr
-1

) 

and P (analytical grade monosodium phosphate at 10 kg P ha
-1

 yr
-1

) since 2008; treatments 
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included control, N, P and N+P. Between 1998 and 2012, ambient deposition near our 2000 m 

site ranged from 14 to 45 kg N ha
−1

 yr
-1

 and 0.4 to 4.9 kg P ha
−1

 yr
-1

 (Homeier et al. 2012), so 

fertilization rates were quite realistic in terms of projected deposition rates (Galloway et al. 

2004; Phoenix et al. 2006). The solid fertilizer was broadcast by hand; in 2011 and 2012 

fertilization occurred between February and April, and in August or September.  

Although we had intended to limit the study to specific tree species, there were no species 

– even within each elevation – that appeared in all of the plots, contained an adequate volume 

of canopy soil, and had soil in a location that was accessible. Therefore, we decided to look 

for general treatment effects, which were visible across tree species. Sample trees were chosen 

by identifying the individual in each plot that was furthest from the edge (to avoid edge 

effects), but still had a high volume of canopy soil (≥ 5 cm in depth) in a location accessible 

using rope techniques or a ladder. Both chambers and rings (described in detail in the next 

section) were installed in the canopy soil for use in measuring gas fluxes. Chambers were 

installed in the upper canopy (near the top of a tree in an area relatively open to sun/wind/rain) 

of trees within three blocks of the NUMEX plots at 2000 m and 3000 m in January/February 

2011. Lower canopy chambers (mid to lower area of a tree, with less exposure to 

sun/wind/rain) were added after the first two sampling dates (June 2011). Rings (for intact soil 

cores) were installed at 1000 m in August, 2011 and for comparison they were also installed in 

the other two elevations in September, 2011.   

 

4.3.3 Gas flux field sampling 

Soil CO2, CH4 and N2O fluxes were measured five times between June 2011 and April 

2012 (June, September, November, January and April). Gas flux was measured in canopy soil 
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at 2000 m and 3000 m using chambers (all five dates) and intact cores (last four dates). At 

1000 m, only intact cores were used (last four dates). The two-piece, closed, vented chambers 

were made of telescopic PVC fitted with caps; the cap of each chamber had a septum for gas 

sampling. The bases were inserted 2-3 cm into the canopy soil, fixed to the branch with nylon 

cable ties, and remained in the field throughout the study. Two sizes of chambers were used; 

the smaller chambers had a 1.09 L headspace and 0.008 m
-2

 surface area and the larger 

chambers had a 1.64 L headspace and a 0.012 m
-2

 surface area. The intact cores were 5 cm 

high and covered a surface area of 0.002 m
-2

; bottoms of the intact cores were fitted with a 

piece of plastic mesh, which hindered soil loss when removing the cores for sampling, but 

allowed for water flow and nutrient exchange when the core was in the tree. Cores remained 

in the tree throughout the study, except during gas sampling.   

When sampling, chambers were fitted onto the permanent bases installed in the trees, 

whereas intact cores were carefully removed from the tree and sealed in 500 mL glass jars 

fitted with septa for gas sampling. The jars were then partially buried, so they were still 

exposed to light while keeping the cores at a realistic field temperature. Gas was sampled over 

a period of 30 to 60 minutes, during which gas samples were taken five times, using a 20-mL 

syringe, and injected into 12-mL Labco Exetainer® (Labco Limited, Lampeter, UK) 

evacuated tubes. Since jars were not vented, each time an air sample was removed from a jar, 

an equal volume of ambient air was injected in order to prevent an under-pressure in the jar. 

This dilution was accounted for during calculations. During or immediately following gas 

sampling on each date, air pressure, air temperature and soil temperature were measured for 

use in flux calculations.  
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4.3.4 Gas and soil analyses 

Gas samples were analyzed using a using a gas chromatograph (Shimadzu GC-14B, 

Duisburg, Germany) equipped with a flame ionization detector (FID) and an electron capture 

detector (ECD); this is the same system described in Martinson et al. (2013) and Wolf et al. 

(2012), but adjusted to measure the smaller 12-mL tubes. Gas concentrations were calculated 

by comparing integration peaks with three standard gases containing CO2, CH4 and N2O 

(Deuste Steiniger GmbH, Mühlhausen, Germany). Standard gases were included during each 

analytical run to check for drift and calculate the minimum detectable concentration difference 

(MDCD; explained in detail in Yates et al. 2006). The MDCD was then used to determine if 

gas flux was significantly different from zero. If fluxes were significant, they were calculated 

as the linear (CH4) or both linear and quadratic (CO2 and N2O) change in concentration over 

time. All fluxes - including zero fluxes - were used in calculations.  

In 2011, soil samples were taken from the upper, mid and lower canopy soil in each plot 

and used to measure additional soil parameters. Natural abundance 
15

N signatures of the soils 

were measured using IRMS (Delta Plus, Finnigan MAT, Bremen, Germany). Total C and N 

were measured by dry combustion in a CN analyzer (Elementar Vario EL; Elementar Analysis 

Systems GmbH, Hanau, Germany). Soil pH (H2O) was analyzed in a 1:4 soil-to-water ratio.  

 

4.3.5 Statistics and calculations 

Results were analyzed using the R (version 2.15.3) open source software. Control blocks 

were tested for elevation effects using nested linear mixed-effect models (LME), with date, 

block (replicate) and position as random effects, and elevation as the fixed effect. Positional 

(i.e. upper vs. lower canopy) differences were tested for each elevation using an Independent 
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T-test, but as there were only infrequent differences, position is not discussed further. 

Treatment effects were also tested using LME, with separate models at each elevation. For all 

LME, we used a Tukey-HSD test for multiple comparisons and used the AIC to determine 

whether the quadratic or linear fluxes (for CO2 and N2O) were the best fit for our data (Wolf 

et al. 2012). We accepted P-values of P < 0.10 as significant.  

 In order to upscale fluxes to ha
-1

 yr
-1

, we converted the fluxes from a chamber-area basis 

to one based on canopy soil mass, by using the soil core depth (5 cm) and average soil bulk 

densities at each elevation (1000 m: 0.07 g cm
-3

, 2000 m: 0.10 - 0.11 g cm
-3

, 3000 m: 0.09 g 

cm
-3

), and then adjusted for the total mass of canopy soil per hectare at each elevation. Werner 

et al. (2012) found an average of 3877 kg ha
-1

 canopy soil on trees from mid-slope positions 

near our 2000 m site. We used this number as the mass of canopy soil in our 2000 m plots and 

then (based on our field observations) made a rough approximation for the other elevations, 

using half that amount for 1000 m and twice that amount for 3000 m. To upscale to per year 

fluxes at each elevation, we used the average fluxes that we measured over the entire study 

period and assumed that these were representative of the whole year.  

 

4.4 - Results 

4.4.1 CO2 fluxes 

Using both the chamber and jar methods, positive CO2 fluxes were consistently measured 

at all elevations (Table 4.2).  Compared on a forest-area-based scale, canopy soil CO2 fluxes 

made up 5-11% of forest floor and canopy fluxes combined. Using the chamber method (2000 

m and 3000 m only), CO2 emissions from control plots were higher at 2000 m than 3000 m (P 

= 0.05) whereas using the jar method (all elevations), CO2 emissions were higher at 1000 m 
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than at 2000 m and 3000 m (P = 0.01 for 2000 m and P < 0.01 for 3000 m) but 2000 m and 

3000 m were not different from one another (P = 0.78).   

At 2000 m, chamber CO2 emissions were 45-56% lower in P plots as compared to control 

(P = 0.02) and N+P (P < 0.01) plots. In the jars at 2000 m, CO2 emissions were again lower 

in P plots (51-54%) as compared to control plots and N+P plots (P < 0.01 for both). There 

were no treatment effects on CO2 fluxes at 1000 m (P = 0.44) or 3000 m (P > 0.39). 

 

4.4.2 CH4 and N2O fluxes 

Compared on a forest-area-based scale, CH4 and N2O fluxes in canopy soils contributed 

only marginally (up to 5%) to combined canopy and forest floor fluxes (Tables 4.2 and S4.1); 

standard errors indicated that fluxes of both gases could be slightly positive or negative.  

At 1000 m, net CH4 emissions were lower in P plots than N plots (P = 0.06); canopy soils 

in P plots were a slight CH4 sink (-2.94 ± 4.15 μg CH4-C m
-2 

h
-1

), while in N plots they were a 

slight source (9.03 ± 11.2 μg CH4-C m
-2 

h
-1

). At 2000 m, using the jar method, canopy soils in 

P plots were also a slight CH4 sink (-8.93 ± 9.62 μg CH4-C m
-2 

h
-1

), so that net CH4 emissions 

in P plots were lower than the slight CH4 source from control (2.10 ± 3.85 μg CH4-C m
-2 

h
-1

;
 
P 

= 0.05) and N+P plots (1.71 ± 10.6 μg CH4-C m
-2 

h
-1

; P = 0.06). At 3000 m, using the 

chamber method, soils in P plots were again a CH4 sink (-10.8 ± 13.5 μg CH4-C m
-2 

h
-1

), with 

net emissions lower than control plots (1.24 ± 5.32 μg CH4-C m
-2 

h
-1

;
 
P = 0.01), N plots (-0.13 

± 5.16 μg CH4-C m
-2 

h
-1

;
 
P < 0.01) and N+P plots (0.23 ± 2.87 μg CH4-C m

-2 
h

-1
;
 
P < 0.02).  

N2O fluxes exhibited one significant treatment effect; at 2000 m, using the jar method, 

soils in N plots were a slight N2O source (2.43 ± 3.72 μg N2O-N m
-2 

h
-1

), which was higher (P 

< 0.01) than soils in control plots, which were a slight sink (-2.03 ± 2.97 μg N2O-N m
-2 

h
-1

). 
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Table 4.2 Average CO2 fluxes, CH4 fluxes and N2O fluxes of tropical canopy soils along an elevation gradient, averaged from measurements on Sept. 2011, Nov. 

2011, Jan. 2012 and April 2012. Gas was measured in three replicate blocks (n=3, SE shown in brackets), using two methods: static, vented chambers and soil 

cores sealed in jars.  

Greenhouse 

gas  

Elevation 

 
Rates based on chamber/jar area  Rates based on forest area

1 
Canopy contribution (jar 

values) to total forest soil 

emissions (CO2/N2O) 

 or uptake (CH4) 
  Chamber Jar Chamber Jar 

CO2  (mg CO2-C m
-2 

h
-1

) (Mg CO2-C ha
-1 

yr
-1

)  

 1000 m - 109.5 (43.4) - 0.51 (0.20) 5% 

 2000 m 17.5 (6.1) 47.3 (24.3) 0.11 (0.04) 0.30 (0.16) 5% 

 3000 m 10.5 (5.4) 26.5 (10.9) 0.15 (0.08) 0.39 (0.16) 11% 

CH4  (μg CH4-C m
-2 

h
-1

) (kg CH4-C ha
-1 

yr
-1

)  

 1000 m - 0.93 (3.91) - 0.00 (0.02) 0% 

 2000 m -6.04 (6.76) 2.10 (3.85) -0.04 (0.04) 0.01 (0.02) 0% 

 3000 m 1.24 (5.32) -4.62 (6.61) 0.02 (0.08) -0.07 (0.10) 4% 

N2O  (μg N2O-N m
-2 

h
-1

) (kg N2O-N ha
-1 

yr
-1

)  

 1000 m - 0.99 (4.44) - 0.00 (0.00) 0% 

 2000 m -0.37 (0.46) -2.03 (2.97) 0.00 (0.00) 0.00 (0.00) 0% 

 3000 m 2.33 (3.52) 3.43 (5.15) 0.00 (0.00) 0.01 (0.01) undefined
2 

1
 For details on how area-based rates were calculated for canopy soils, see Materials and methods: statistics and calculations 

2
 The sum of the canopy and forest floor rates was zero (Table S4.1), so a contribution for the canopy could not be calculated 
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4.5 - Discussion 

4.5.1 Canopy vs. forest floor 

Although CO2 emissions based on chamber area were similar between canopy and forest 

floor soil, when compared using forest area, canopy soils had much lower GHG fluxes – less 

CO2 and N2O production and less CH4 consumption (Table 4.2; Table S4.1). Therefore, we  can 

conclude that the canopy soils in our study forests were not making a significant contribution to 

total (canopy and forest floor) soil GHG flux, with the possible exception of CO2 emissions from 

canopy soils at higher altitudes (i.e. at 3000 m canopy soils comprised 11% of total emissions).  

 

4.5.2 GHG fluxes in canopy soil - CO2 (C turnover) 

Combining the chamber and jar relationships that we observed, there was a significant 

decrease in CO2 fluxes with increasing elevation, as observed in other studies from tropical 

montane forest elevation gradients (Purbopuspito et al. 2006; Wolf et al. 2012; Zimmermann et 

al. 2010), including the forest floor of our plots (Mueller et al. unpublished data; Table S4.1).  

Although the percentage of total C in the canopy soil at all three elevations was similar (Table 

4.1), there was significantly more canopy soil biomass with increasing elevation (personal 

observation). This indicates that C turnover likely has a strong elevation trend. Using our total C 

and CO2 flux measurements (Tables 4.1 and 4.2) to make a rough comparison (assuming all CO2 

is heterotrophic respiration and all C is equally available), the C turnover time along our 

elevation gradient would increase from approximately 2 years at 1000 m up to 16 years at 3000 

m. This has implications when considering climate change, suggesting that the proposed future 

increase in temperature and decrease in moisture (Foster 2001; Loope et al. 1998; Nadkarni and 

Solano 2002) could cause faster turnover and less retention of C in higher elevation canopies. 
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Studying the simulated effect of climate change on the canopy community in a tropical cloud 

forest in Costa Rica, Nadkarni and Solano (2002) suggest that these forests may experience 

significant losses in epiphytes followed by loss of canopy soil altogether. Loss of canopy soil 

would, in turn, have effects on forest diversity. The forests in our study area are considered 

diversity hot-spots (Richter et al. 2013), but in Ecuador, over 25% of vascular plant diversity in 

montane forests has been shown to be a result of epiphytes (Jørgensen and León-Yánez 1999). 

Although all epiphytes are not necessarily dependent on the presence of canopy soil, diversity is 

higher in trees where organic matter is present (Barthlott et al. 2001; Cardelus and Mack 2010).     

At 2000 m, the decrease in CO2 with added P at first seemed counterintuitive, as there were 

few live roots left in the cores used for the jar method (ruling out changes as a result of 

differences in root biomass and/or exudates) and decomposition in the canopy has been found to 

be P limited (Cardelus 2010). However, we can offer two possible explanations. First, P addition 

decreased litter production in our study sites at all elevations (Homeier et al. 2012), so there 

would have been less fresh litter as a substrate for canopy decomposition. Second, decreased 

CO2 may have been caused by decreases in microbial C. Keller et al. (2006) observed decreases 

in CO2 with added P in an ombrotrophic bog (comparable to our soils in the sense that they are 

also ombrotrophic organic soils) and attributed it to direct inhibition of the microbial community 

by P. This result may be stemming specifically from an inhibition of enzymatic activity through 

the addition of P and possibly N. We measured a general increase in N2 fixation in P-amended 

plots across all elevations, as well as an increase in gross mineralization in these same P plots at 

2000 m (Matson et al., unpublished data). Increases in N, in turn, have been documented to 

inhibit enzymatic activity and result in decreased microbial biomass C in soils (Baldos et al. 

unpublished data; Carreiro et al. 2000; Sinsabaugh et al. 2002).  
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4.5.3 GHG fluxes in canopy soil - CH4  

The low fluxes of CH4 at all elevations were within the same magnitude as the standard error 

of the forest floor soils (Table S4.1). Production of CH4 requires anaerobic conditions (Le Mer 

and Roger 2001), so although some CH4 was produced in our soils - probably in anaerobic 

microsites - the high porosity of the canopy soils means they are unlikely to ever be a significant 

CH4 source. The high porosity also means that, in terms of CH4 oxidation, only high-affinity 

oxidation should be possible in our soils, as low-affinity requires high CH4 concentrations (Le 

Mer and Roger 2001). Furthermore, most CH4 oxidizers are neutrophiles and mesophiles, which 

may have been inhibited in our acidic, montane canopy soils (Whittenbury et al. 1970). Although 

species of methanotrophs have been found in more extreme ecosystems (Op den Camp et al. 

2009; Trotsenko and Khmelenina 2002), they do not appear to be active in these soils.  

The general decrease of CH4 flux with P addition suggests that additional P in the canopy 

either inhibits CH4 production or promotes CH4 uptake. Higher rates of CH4 uptake with P and 

N+P addition were seen in our forest floor soils at 2000 m (Mueller et al., unpublished data) and 

were attributed to an increase in methanotrophic activity, since consumption of CH4 was the 

dominant CH4 flux, and a previous study had shown that the forest floor soils in our study area 

produced very little CH4 (Wolf et al. 2012). However, decreased methanogenic activity from 

anaerobic microsites is also possible. If, as suggested above, P was inhibiting enzyme activity, 

causing a decrease in microbial C, this would have likely resulted in decreased methanogenic 

activity in addition to decreases in total respiration. It is notable, for example, that in the 

ombrotrophic bog where CO2 was inhibited by P, CH4 emissions also decreased with P addition 

(Keller et al. 2006). Therefore, we cannot rule out either explanation given our available data.   
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4.5.4 GHG fluxes in canopy soil - N2O  

Similar to CH4, the low N2O fluxes at all elevations were within the same magnitude as the 

standard error of the forest floor fluxes (Table S4.1). Unlike CH4, there was a good possibility 

that our soils could have exhibited significant N2O fluxes. On the forest floor, the majority of 

N2O emissions comes from denitrification (Mueller et al. unpublished data), and although 

canopy soils are unlikely to ever be completely anaerobic, the moisture threshold for N2O 

emissions via denitrification is generally considered to be 70-80% WFPS (Butterbach-Bahl et al. 

2013). However, even in the wet season, we rarely observed moistures higher than 60% WFPS in 

our soils (Matson et al. unpublished data), which is probably why N2O emissions were so trivial.  

Indirect fertilization of our soils showed that, in addition to a lack of moisture, N2O 

emissions may have been limited by available N (significant at 2000 m). Increases in N2O 

emissions were also seen with N addition to our forest floor soils during the first two years of the 

nutrient manipulation experiment (Martinson et al., 2012). Given that we saw an N effect in this 

study even when our fluxes were so low, and we know that in the wet season, soil NO3
-
 

concentrations and nitrification increase in these soils (Matson et al. unpublished data), in very 

wet years these canopy soils could be a slight N2O source - especially under conditions of N 

deposition. However, given that future climate scenarios predict that montane forests will 

become warmer and drier (Foster 2001; Loope et al. 1998; Nadkarni and Solano 2002), canopy 

soils are unlikely to ever become a significant source of N2O.  

 

4.5.5 Measuring gas fluxes in canopy soil  

Gas exchange measurements in canopy soil presented a unique challenge due to the high 

porosity of the soil. Although static chamber bases were fixed firmly to a branch, in at least 3 cm 
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of soil, we suspect that as gas concentrations started to increase in the chamber headspace, gas 

could still diffuse out of the chamber through the porous soil. In contrast, although the jar 

method precluded diffusion of gas from the sampling headspace, they necessitated a slight 

disturbance of the soil each time they were measured (the act of removing the core from the tree 

and dislodging any new roots that had formed). On hot days, the soil in jars may also have 

warmed slightly, which may have also affected gas flux. Therefore, the two methods likely 

represent a slight under-estimation (chambers) and a slight over-estimation (jars), yet fluxes from 

both methods were within the same order of magnitude. Future measurements of canopy gas flux 

should be done by enclosing whole branch areas in a sampling chamber that allows an acceptable 

volume of soil to be completely contained, and fluxes measured, without requiring any soil 

disturbance. However, we also draw attention to the results of this study, which strongly indicate 

that GHG fluxes are unlikely to be significant in canopy soils. 

 



Greenhouse gas flux 

 
101 

4.6 - References 

Barthlott W, Schmit-Neuerburg V, Nieder J, Engwald S (2001) Diversity and abundance of 

vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in 

the Venezuelan Andes. Plant Ecology 152:145–156 

Beaulieu F, Walter DE, Proctor HC, Kitching RL (2010) The canopy starts at 0.5 m: predatory 

mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any 

height. Biotropica 42:704–709 

Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) 

Nitrous oxide emissions from soils: how well do we understand the processes and their 

controls? Phil Trans R Soc 368:20130122 

Butterbach-Bahl K, Papen H (2002) Four years continuous record of CH4-exchange between the 

atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem 

in Germany. Plant Soil 240:77–90 

Cardelús CL (2010) Litter decomposition within the canopy and forest floor of three tree species 

in a tropical lowland rain forest, Costa Rica. Biotropica 42:300–308 

Cardelus CL, Mack MC (2010) The nutrient status of epiphytes and their host trees along an 

elevational gradient in Costa Rica. Plant Ecol 207:25–37 

Cardelús CL, Mack MC, Woods CL, DeMarco J. Treseder, K (2009) Nutrient cycling in canopy 

and forest floor soils in a lowland tropical wet forest, Costa Rica. Plant Soil 318:47–61 

Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain 

litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365 

Chan AS, Steudler PA, Bowden, RD et al. (2005) Consequences of nitrogen fertilization on soil 

methane consumption in a productive temperate deciduous forest. Biol Fert Soils 41:182–189  

Chen L, Liu WY, Wang GS (2010) Estimation of epiphytic biomass and nutrient pools in the 

subtropical montane cloud forest in the Ailao Mountains, southwestern China. Ecol Res 

25:315–325 

Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial 

soil carbon dioxide losses to the atmosphere. PNAS 103:10316–10321 

Corre MD, Veldkamp E, Arnold J, Wright SJ (2010) Impact of  elevated N input on soil N 

cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91:1715–

1729 



Chapter 4 

 

 
102 

Corre MD, Sueta JP, Veldkamp E (2014) Nitrogen-oxide emissions from tropical forest soils 

exposed to elevated nitrogen input strongly interact with rainfall quantity and seasonality. 

Biogeochemistry 118:103–120  

Coxson DS, Nadkarni NM (1995) Ecological Role of Epiphytes in Nutrient Cycles. in Lowman 

MD, Nadkarni NM (eds.), Forest Canopies. Academic Press, New York, pp. 495–543 

Cusack DF, Silver WL, Torn MS, McDowell WH (2011) Effects of nitrogen additions on above- 

and belowground carbon dynamics in two tropical forests. Biogeochemistry 104:203–225  

Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual 

model of soil emissions of nitrous and nitric oxides. BioScience 50:667–680 

Foster P (2001) The potential negative impacts of global climate change on tropical montane 

cloud forests. Earth-Science Reviews 55:73–106 

Freiberg M, Freiberg E (2000) Epiphyte diversity and biomass in the canopy of lowland and 

montane forests in Ecuador. Journal of Tropical Ecology 16:673–688 

Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, 

Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, 

Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry         

70:153–226 

Hall SJ, Matson PA (2003) Nutrient status of tropical rain forests influences soil N dynamics 

after N additions. Ecological Monographs 73:107–129 

Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical 

forest ecosystems. Annu Rev Ecol Evol S 40:613–635  

Hietz P, Wanek W, Wania R, Nadkarni NM (2002) Nitrogen-15 natural abundance in a montane 

cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 

131:350–355 

Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ (2011) Long-term change in the 

nitrogen cycle of tropical forests. Science 334:664–666 

Homeier J, Breckle SW, Gunter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest 

structure and productivity along altitudinal and topographical gradients in a species-rich 

Ecuadorian montane rain forest. Biotropica 42:140–148 



Greenhouse gas flux 

 
103 

Homeier J, Hertel D, Camenzind T et al. (2012) Tropical Andean forests are highly susceptible 

to nutrient inputs—rapid effects of experimental N and P addition to an Ecuadorian montane 

forest. PLoSONE doi:10.1371/journal.pone.0047128 

Jørgensen PM, Leon-Yanez S (eds) (1999) Catalogue of the vascular plants of Ecuador. 

Monographs in systematic botany of the Missouri Botanical Garden, 75. Missouri Botanical 

Garden, St Louis. 

Keller JK, Bauers AK, Bridgham SD, Kellogg LE, Iversen CM (2006) Nutrient control of 

microbial carbon cycling along an ombrotrophic-minerotrophic peatland gradient. J Geophys 

Res 111:G03006 

Knowles R (1982) Denitrification. Microbiol Rev 46:43–70 

Koehler B, Corre MD, Veldkamp E, Wullaert H, Wright SJ (2009) Immediate and long-term 

nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Glob 

Change Biol 15:2049–2066 

Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: 

a review. Eur J Soil Biol 37:25–50 

Loope LL, Giambelluca TW (1998) Vulnerability of island tropical montane forest to climate 

change, with special reference to East Maui, Hawaii. Clim Change 39:503–517 

Mahowald, NM, Artaxo P, Baker AR, Jickells TD, Okin GS, Randerson JT, Townsend AR 

(2005) Impacts of biomass burning emissions and land use change on Amazonian 

atmospheric phosphorus cycling and deposition. Global Biogeochem Cycles 19:GB4030 

Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, 

Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin 

GS, Siefert RL, Tsukuda S (2008) Global distribution of atmospheric phosphorus sources, 

concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem Cycles 

22:GB4026 

Martinson GO, Werner FA, Scherber C, Conrad R, Corre MD, Flessa H, Wolf K, Klose M, 

Gradstein SR, Veldkamp E (2010) Methane emissions from tank bromeliads in neotropical 

forests. Nat Geosci 3:766–769 

Martinson G, Corre MD, Veldkamp E (2013) Responses of nitrous oxide fluxes and soil nitrogen 

cycling to nutrient additions in montane forests along an elevation gradient in southern 

Ecuador. Biogeochemistry 112:625–636 



Chapter 4 

 

 
104 

Maurer D, Kolb S, Haumaier L, Borken W (2008) Inhibition of atmospheric methane oxidation 

by monoterpenes in Norway spruce and European beech soils. Soil Biol Biochem         

40:3014–3020 

Moser G, Hertel D, Leuschner C (2007) Altitudinal change in LAI and stand leaf biomass in 

tropical montane forests: a transect shady in Ecuador and a pan-tropical meta-analysis. 

Ecosystems 10:924–935 

Nadkarni NM (1994) Diversity of species and interactions in the upper tree canopy of forest 

ecosystems. American Zoologist 34:321–330 

Nadkarni NM, Schaefer DA, Matelson TJ, Solano R (2002) Comparison of arboreal and 

terrestrial soil characteristics in a lower montane forest, Monteverde, Costa Rica. 

Pedobiologia 46:24–33 

Nadkarni NM, Schaefer DA, Matelson TJ, Solano R (2004) Biomass and nutrient pools of 

canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa 

Rica. For Ecol Manag 198:223–236 

Nadkarni NM, Solano R (2002) Potential effects of climate change on canopy communitiesin a 

tropical cloud forest: an experimental approach. Oecologia 131:580–586 

Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, et al. (2009) 

Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. 

Environ Microbiol Rep 1: 293–306 

Purbopuspito J, Veldkamp E, Brumme R, Murdiyarso D (2006) Trace gas fluxes and nitrogen 

cycling along an elevation sequence of tropical montane forests in Central Sulawesi, 

Indonesia. Globacl Biogeochemical Cycles 20:GB3010 

Pittl E, Innerebner G, Wanek W, Insam H (2010) Microbial communities of arboreal and ground 

soils in the Esquinas rainforest, Costa Rica. Plant Soil 329:65–74 

Richter M, Beck E, Rollenbeck R, Bendix J (2013) The study area. in Bendix J, Beck E, 

Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W. (eds) Ecosystem Services, 

Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador. 

Ecological Studies 221:3–18  

Saari A, Heiskanen J, Martikainen PJ (1998) Effect of the organic horizon on methane oxidation 

and uptake in soil of a boreal Scots pine forest. Fems Microbiology Ecology 26:245–255 



Greenhouse gas flux 

 
105 

Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzyme activity in 

relation to litter composition, N deposition, and mass loss. Biogeochemistry 60:1–24 

Steinkamp R, Butterbach-Bahl K, Papen H (2001) Methane oxidation by soils of an N limited 

and N fertilized spruce forest in the Black Forest, Germany. Soil Biol Biochem 33:145–153 

Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant 

methanotrophs. Arch Microbiol 177:123–131 

Vance E, Nadkarni NM (1990) Microbial biomass and activity in canopy organic matter and the 

forest floor of a tropical cloud forest. Soil Biol Biochem 22:677–84 

Veldkamp E, Koehler B, Corre MD (2013) Indications of nitrogen-limited methane uptake in 

tropical forest soils. Biogeosciences 10:5367–5379 

Wardle DA, Yeates GW, Barker GM, Bellingham PJ, Bonner KI, Williamson WM (2003) Island 

biology and ecosystem functioning in epiphytic soil communities. Science 301:1717–1720 

Werner FA, Homeier J, Oesker M, Boy J (2012) Epiphytic biomass of a tropical Andean forest 

varies with topography. J Trop Ecol 28:23–31 

Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of 

methane utilizing bacteria. J Gen Microbiol 61:205–218 

Wolf K, Flessa H, Veldkamp E (2012) Atmospheric methane uptake by tropical montane forest 

soils and the contribution of organic layers. Biogeochemistry 11:469–483 

Yates, T.T., Si, B.C., Farrell, R.E. and Pennock, D.J. 2006. Probability distribution and spatial 

dependence of nitrous oxide emission: temporal change in hummocky terrain. Soil Sci Soc 

Am J 70:753–762 

Zhang T, Zhu W, Mo J, Liu L, Dong S, Wang X (2011) Increased phosphorus availability 

mitigates the inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, 

southern China. Biogeosciences 8:2805–2813 

Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana AJQ (2010) Temporal variation and 

climate dependence of soil respiration and its components along a 3000 m altitudinal tropical 

forest gradient. Global Biogeochem Cycles 24:GB4012 

 



Chapter 4 

 

 
106 

Table S4.1 Average CO2 fluxes, CH4 fluxes and N2O fluxes of tropical forest floor soils along an elevation gradient, 

from measurements in Sept. 2011, Nov. 2011, Jan. 2012 and April 2012 (Mueller et al. unpublished data). On each 

date, gas was measured in three replicate blocks (n=3, SE shown in brackets).  

Greenhouse gas 

units 
Elevation Rates based on chamber area  Rates based on forest area

 

  (mg CO2-C m
-2 

h
-1

) (Mg CO2-C ha
-1 

yr
-1

) 

CO2-C 1000 m 123 (12) 10.8 (1.0) 

 2000 m 71.3 (19.2) 6.25 (1.68) 

 3000 m 33.6 (11.8) 2.94 (1.03) 

  (μg CH4-C m
-2 

h
-1

) (kg CH4-C ha
-1 

yr
-1

) 

CH4-C 1000 m -19.5 (8.2) -1.71 (0.71) 

 2000 m -33.7 (7.1) -2.95 (0.62) 

 3000 m -19.7 (3.7) -1.73 (0.32) 

  (μg N2O-N m
-2 

h
-1

) (kg N2O-N ha
-1 

yr
-1

) 

N2O-N 1000 m 3.11 (5.57) 0.27 (0.49) 

 2000 m 1.44 (1.60) 0.13 (0.14) 

 3000 m -0.09 (0.94) -0.01 (0.08) 
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5.1 - Cracking open the canopy ‘black box’ 

 

Key Finding: Soil N cycling processes were active in canopy soils along the whole elevation 

gradient, with mass-based rates similar to those found on the forest floor.  

 

Canopy science is still a relatively young branch of forest biology. It has only been in the 

past three decades that safe and effective methods were established to access canopies, before 

which the canopy was mostly studied from below (Lowman and Schowalter 2012). Early canopy 

research, which relied on ground observations and measurements to gather data about the canopy 

(i.e. Ford 1976), was not able to address specific questions about within-canopy diversity and 

processes. Once it was possible to work in the canopy, the number of canopy-based research 

studies increased rapidly (Nadkarni and Parker 1994). However, in a recent review about canopy 

science, Lowman and Schowalter (2012) outlined many ‘black boxes’ that still remain, including 

the need to understand pathways of nutrient transport and to predict how future disturbances 

might affect the canopy. 

Previous research has customarily focused on canopy soils in their role as a bulk nutrient 

source for plants, rather than looking specifically at internal nutrient cycling rates. Yet in this 

study, we found that N cycling was quite active in canopy soils, with many parallels to what was 

seen in the corresponding forest floor soils. Figure 5.1 shows a possible N budget for the canopy 

at 2000 m, using the data from Chapters 2, 3 and 4, additional data (gross NH4
+
 and NO3

-
 

immobilization) not included in Chapter 3, and other measurements from research done within 

our study area, namely: canopy soil biomass (Werner et al. 2012), total N in rainfall and dry 

deposition (Wullaert et al. 2010), total N in throughfall (Homeier et al. 2012), and relative 

abundance of different N forms in throughfall (Zimmerman et al. 2007). 
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Figure 5.1 Nitrogen (N) inputs and losses from canopy soil (the shaded region of the figure) of a tropical montane forest at 2000 m. Values were taken from this 

study, except total N in rainfall and dry deposition (Wullaert et al. 2010) and total N in throughfall (Homeier et al. 2012). Forms of N in rainfall and throughfall 

were calculated using the proportion of each N form given by Zimmerman et al. (2007). Other N
*
 is the difference between total canopy soil N (based on the 

canopy soil biomass from Werner et al. (2012) and the % N that we measured in canopy soil) and all other measured N pools.
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 This study provided a considerable amount of new information regarding N cycling in 

canopy soils, but there are still some points that remain unclear. In the soil NH4
+
 pool shown 

in Fig. 5.1, the sum of total inputs was 46.5 kg N ha
-1

 yr
-1

 and the sum of total outputs was 

44.7 kg N ha
-1

 yr
-1

. Discounting other possible fates of NH4
+
 (i.e. retention through abiotic 

processes; Johnson et al. 2000), this suggests that 1.8 kg NH4-N ha
-1

 yr
-1

 was taken up by 

epiphytes. Werner et al. (2012) found the combined epiphytic biomass of lichens, bryophytes 

and vascular plants at this elevation to be, on average, 1898 kg ha
-1

. Combining this with the 

average foliar N concentration (1.5 %) that Stewart et al. (1995) found in epiphytes, this 

amount of NH4
+
 uptake would account for 6% of epiphyte biomass N. However, uptake could 

be considerably larger, given the lack of stemflow data for this area and the uncertainty in the 

rainfall and throughfall estimates (see below). In the NO3
-
 pool, the sum of total inputs was 

5.4 kg N ha
-1

 yr
-1

 and the sum of total outputs was 8.5 kg N ha
-1

 yr
-1

. This suggests that there 

was minimal uptake of NO3
-
 by epiphytes, which is consistent with epiphyte preference for 

NH4
+ 

over NO3
-
 , as observed by Wanek et al. (2002). Since outputs exceeded inputs by 3.1 kg 

N ha
-1

 yr
-1

 (only 1.2 kg N ha
-1

 yr
-1

 of which can be explained by standard error), it is likely 

that stemflow (which was not measured in our study area) and throughfall from further up in 

the canopy make up much of this missing source.  

The amount of N that epiphytes and canopy soil contribute to throughfall and/or receive 

from throughfall remains unclear. Normally, studies looking at throughfall only take two 

measurements: before any interaction with the canopy (incident rainfall) and what reaches the 

ground after interaction with the canopy (throughfall). But, from a canopy perspective, there 

are also intermediate values that would need to be calculated to understand N dynamics. 

Figure 5.1 shows rainfall interacting with live parts of the canopy and then possibly entering 
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the canopy soil or simply terminating on the ground as throughfall. So, when doing an N 

budget for canopy soil, which is the correct ‘input’ to the canopy soil: the rainfall or the 

throughfall? For simplicity, in Figure 5.1, rainfall is the input and throughfall is the output, but 

it should be noted that, in reality, those numbers could be very different. Studies have shown 

that nutrient concentrations in throughfall measured from collectors under large accumulations 

of epiphytes and/or canopy soil vary from other measured values of throughfall in a forest 

(Fleischbein et al. 2005; Zimmerman et al. 2007). Compiling a proper N budget of canopy soil 

would therefore require a much more detailed look at throughfall N concentrations along a 

vertical gradient in the canopy. Adriaenssens et al. (2012) used a vertical profile to study 

throughfall within beech and spruce canopies in a temperate forest, and they observed 

significant differences in the chemical composition of throughfall at different canopy heights.  

   

5.2 - Moving from a ‘top down’ to a connected view of canopy and forest floor soil 

 

Key Finding: The canopy and forest floor soil fertility in these forests is closely linked. 

Changes in canopy N cycling and GHG flux were seen after only a short period of moderate 

nutrient inputs to the forest floor.  

 

 Most research linking forest floor and canopy fertility uses a ‘top down’ approach: ‘How 

do canopies affect nutrient cycling on the forest floor?’ Canopies are considered to be 

collectors and reservoirs of available nutrients, which will eventually add to the nutrient 

capital of terrestrial soil. This generally occurs in one of two ways: detritus or precipitation. 

Detritus can move from the canopy to the forest floor through epiphytic litterfall, storm 

breakage of branches or growth of epiphytes beyond the capacity of the host tree (Diaz et al. 
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2010; Lowman and Schowalter 2012; Tejo 2013). Precipitation can, in the form of throughfall 

and stemflow, wash adsorbed minerals from different canopy components (leaves, epiphytes, 

bark) or leach nutrients from canopy soil (Coxson and Nadkarni 1995; Lowman and 

Schowalter 2012; Tukey 1970; Zimmerman et al. 2007). However, although the general 

mechanism for precipitation-related nutrient mobilization is clear, the specific processes are 

still not completely understood. It is assumed that epiphytes and canopy soil contribute to the 

high spatial variability of throughfall nutrient concentrations in some tropical forests 

(Fleischbein et al. 2005; Veneklaas and Van Ek 1990; Zimmerman et al. 2007), but 

differences in areas with and without epiphytes are not always significant (Fleischbein et al. 

2005). In a lowland forest in Costa Rica, Umana and Wanek (2010) isolated single branches 

that contained epiphytes and canopy soil, and looked specifically at how epiphytic material 

affected N in throughfall; they found large differences between net and gross canopy retention 

and exchange processes. This suggests that more research is required to explore the 

complexity of throughfall in large areas.  

 But what about ‘bottom up’ processes? Although many studies look at how canopies 

affect the forest floor, studies reporting nutrient effects in the opposite direction are less 

common, possibly because this link in the cycle is poorly understood. In our study, four years 

of moderate fertilization (50 kg N ha
-1

 yr
-1

 and 10 kg P ha
-1

 yr
-1

) had significant effects on N2 

fixation, N cycling and GHG flux, indicating that the fertility of canopy and forest floor soils 

in our study area was very closely linked. There is, however, scant literature with which to 

compare this. Benner et al. (2007) and Benner and Vitousek (2007) reported that after 14 

years of high (100 kg ha
-1

 yr
-1

) P addition to the forest floor, they observed significant 

increases in epiphyte abundance and diversity (in particular N2-fixers) in a tropical forest. 
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However, they specifically mention that they did not expect epiphytic N2-fixers to be affected 

by fertilization of the forest floor. The expectation for the canopy to be largely decoupled 

from forest floor nutrient status has been shown or postulated in many studies (Hedin et al. 

2009; Hietz et al. 2002; Stewart et al. 1995; Tozer et al. 2005; Wania et al. 2002). Even in 

their study area where P had an effect on epiphytes, Benner and Vitousek (2007) observed that 

other nutrients (N and a combination of micronutrients) did not have significant effects. On 

the other hand, the mechanism for nutrient enrichment of the canopy is clear. There are studies 

from temperate forests, dating back almost 20 years, which have shown that nutrients leaching 

from host tree leaves and bark can affect epiphytic lichens (Gauslaa 1995; Goward and 

Arsenault 2000; Hauck 2003; Hauck and Runge 2002). Additionally, in a follow-up to the 

fertilization study, Benner (2011) showed that epiphytes in Hawaiian forests preferentially 

colonize unfertilized trees with naturally high P concentrations. Perhaps the link between all 

of these studies is the nutrient limitation in each specific area. In our study, we saw more 

increases in N cycling with N+P addition than with the addition of only one of the two 

nutrients, suggesting that our canopy soils were co-limited by N and P. So, the canopy soils 

may remain essentially ‘decoupled’ from forest floor nutrients if they are co-limited but only 

have access to a single limiting nutrient. Our study clearly indicates the need for more 

research into canopy-forest floor nutrient interactions. 

 

 

 

 



Chapter 5 

 

 
114 

5.3 - Atmospheric deposition and global change - how will they affect canopies?  

    

Key Finding: Elevated levels of N and P significantly affected nutrient cycling in canopy soils 

and indicated that these canopies are co-limited by both nutrients.  

 

We found that all of the processes that we measured in the canopy soil (N2 fixation, N 

cycling and GHG flux) were in some way affected by moderate nutrient addition to the forest 

floor. So, chronic atmospheric N and P deposition has the potential to significantly change the 

dynamics of nutrient cycling in these canopies. As outlined in the summary at the beginning 

of this dissertation, N deposition may lead to inhibition of N2 fixation, with hotspots still 

occurring where P is present. Internal N cycling in canopy soils will likely be stimulated by N 

and P deposition, but chronic nutrient deposition may also lead to increased mineral N losses 

from the canopy soil. GHG-related processes in canopy soils will probably also respond to N 

and P deposition, but with the exception of CO2 emissions, fluxes in canopy soils are unlikely 

to significantly contribute to total forest GHG budgets. So what does that mean for the total 

canopy ecosystem? In terms of these specific processes, N2 fixation is a relatively minor input 

compared to other sources (Fig. 5.1), so complete inhibition would likely have a negligible 

effect, while increases in N2 fixation in areas of P deposition could become a useful N source 

(Benner et al. 2007). Increases in soil mineral N cycling should benefit the epiphytes that use 

canopy soil resources, but if leaching also increases, it might result in the loss of other 

important nutrients (i.e. cations) from the soil. Changes in GHG fluxes are unlikely to be 

significant in terms of GHG budgets, but may be significant in terms of changes in C cycling 

(see below). 
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 More research would be required before we could formulate a more detailed theory as to 

how nutrient deposition might affect canopies. However, if deposition accompanies other 

global change processes, like climate change, the most significant driver of change in the 

canopy will likely be changes in the moisture regime. Water supply is considered the most 

powerful determinant of epiphyte distribution (Benzing 1998) and several studies have 

postulated that the dependence of epiphytes and canopy soil on atmospheric moisture will 

make them very sensitive to fluctuations in moisture levels with climate change (Benzing 

1998; Foster 2001; Nadkarni and Solano 2002). In Chapter 4, we suggested that future 

increased temperature and decreased moisture could cause faster turnover and less retention of 

C in higher elevation canopies. This was linked to a study from a tropical cloud forest in Costa 

Rica (Nadkarni and Solano 2002), which simulated how climate change may effect epiphytes 

in the canopy; they concluded that canopies may experience significant losses in epiphytes, 

followed by the loss of canopy soil altogether. Such dramatic changes to the canopy would 

probably have cascading effects to the rest of the forest. Since epiphytes provide habitat, food 

and water for a vast number of invertebrates and vertebrates, a significant reduction in 

epiphytes would almost certainly lead to decreases in species abundance and perhaps even to 

some extinctions (Foster 2001).  
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