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Preface 
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2014. 

All studies involving human subjects were approved by the „Ethikkommission der 

Universitätsmedizin Göttingen“. 

All chapters of this thesis are original and written by me. Only subchapter 2.1 has 

been adapted from my own manuscript I submitted to the Springer® journal „Medical 

& Biological Engineering & Computing“ and which is currently under review.  

All graphics in this manuscript are original and created solely by myself. However, 

some of the graphics have also been submitted or published in modified versions in 

manuscripts I contributed to as an author. 

Hereby I declare that I have written this thesis independently and with no other aids 

and sources than quoted. 
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Abstract 

The myoelectric control of hand prosthesis commercially available is simple and 

limits the user to very basic operations. Although in the academic research for 

prosthesis control a large variety of advanced control methods has been developed, 

none of them has replaced the current industrial state of the art, yet. In this PhD 

project I have investigated and developed an approach towards intuitive prostheses 

control, based on new signal-processing and regression algorithms. By introducing a 

novel adaptive pre-processing algorithm (ACAR) for the surface EMG signals and 

designing a regression system based on a non-negative matrix factorization, I have 

developed a myocontrol system capable of online control of upper limb prosthesis for 

two degrees of freedom, simultaneously and proportionally. Additionally, I have 

developed a virtual evaluation paradigm, which can assess the control performance 

of important hand movements necessary for daily life activities. This online 

assessment goes beyond the state of the art of myoelectric control research, which 

is done offline. That is without the interaction with the subject. 

The resulting myocontrol system and virtual evaluation paradigm have been tested in 

both intact-limb subjects and subjects with limb deficiencies. In these studies, the 

benefits of the developed algorithms have been confirmed. The scientific results and 

developments of this project have been the basis for additional publications and 

scientific achievements by the Department of Neurorehabilitation Engineering and its 

scientific partners. This underlines the impact of this work in the field of myoelectric 

control for upper limb prostheses. 
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1 Introduction 

1.1 State of the art 

For humans, the hand is the most powerful tool available. It has more than 20 

degrees of freedom (DOF) for the movement of the fingers, thumb, and wrist. This 

flexibility permits the execution of strong forces, like squeezing or holding heavy 

object, as well as the performance of precise and fine movements, such as threading 

a needle. 

The loss of the hand through traumatic amputation or other accidents has a major 

impact on an individual. Therefore, approaches for restoring a lost limb are found 

early in time. Examples of replacement methods are indeed found around 300 B.C. 

in Egypt. The Götz von Berlichingen’s Iron Hand, as a technological solution, dates 

back to the early 16th century [1].  

 
Figure 1: The first myoelectric prostheses used only a single EMG channel (a) recoded from a 
muscle site. Using two different thresholds, the hand could be opened or closed. The current 
industrial state of the art uses two electrode sites (b), providing also a proportional control. 
(This graphic has been published by the author in [109]) 
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These inventions were succeeded by other mechanical body-powered hand 

prostheses, most of which used bicycle cable to activate the hand or a hook. Only by 

1915 the first externally powered hand prosthesis was invented using compressed 

gas [2]. In the 1940’s, Reiter introduced the idea of the first myoelectric prosthesis 

[3], [4]. Subsequently, similar designs were created independently in England, 

Canada, and the Soviet Union [5]–[11]. In the following years the myoelectric control 

of upper limb prostheses developed and different control concepts emerged, using 

first one electrode system with two thresholds (Figure 1a) [9] and, afterwards, two 

electrode systems to control the opening and closing of the hand (Figure 1b) [8], 

[11]. 

Since the 1960s, the mechatronic properties of the hand prostheses have 

substantially evolved. Reduced battery size, smaller actuators and better materials 

have resulted in more powerful, longer lasting, and more robust prosthetic devices 

[12]. Examples of current commercially available myoelectric hands are provided in 

 
Figure 2: Examples of myoelectric hands commercially available: The Ottobock DMC Plus (a) is 
a typical prosthetic device with hand open/close and rotation that is widely used in clinical 
practice. In contrast to this the Ottobock Michaelangelo Hand (b), Touchbionics iLimb (c), and 
RSL Steeper Bebionic (d) are more advanced prosthetic hands, providing additional functions 
like the independent control of single fingers. Although the four models shown differ in 
complexity and components, with some offering different grip patterns (adjustable by external 
means), all are based on the simple and sequential control scheme, including its limitations for 

the prosthetic user. 
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Figure 2. Nevertheless, the simple and sequential control scheme with two electrode 

sites is still the state of the art in commercially available prostheses (Figure 1b). 

This conventional control scheme uses two electrodes placed independently on two 

muscle sites, resulting in two control signals, to control the grip and the rotation 

function of the prosthetic hand (two function modes or DOFs). One recording system 

is often placed on the flexor muscle group of the wrist, and the other is placed on the 

wrist extensor muscle group [8]. Using the activation of these two muscle sites, only 

one DOF can be controlled at a time to open and close, or to rotate the hand in 

supination or pronation. Additionally, a co-contraction is used to switch between the 

two function modes. The example of grabbing a water bottle to pour water into a 

glass is visualized in Figure 3a. After identifying which of the two DOFs is currently 

active, the hand has to be rotated into the correct position to grasp the bottle. After a 

mode switch into hand open/close function, the hand has to be opened enough to be 

able to engage around the bottle with the fingers, to then be closed again and thus 

grab the bottle. With the bottle in the hand, again a mode switch into rotation is 

 
Figure 3: Comparison of the necessary steps to pour water into a glass from a bottle, using the 
industrially available, conventional control (a) and the currently in academia used pattern 
recognition approach (b). (This graphic is an original work and has also been published in a 
modified version in [116]) 
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necessary to be able to pour the water into the glass.  

For the industrial state of the art prosthesis control, this task requires a minimum of 6 

steps and much of the control burden is left to the user with cumbersome, sequential 

and unnatural control strategies.  

Academic research has indeed been developing powerful algorithms with promising 

results (pattern recognition, regression and non-linear transformations systems [13]–

[16]), but there are still no commercial systems available using these approaches 

because they are not reliable enough for clinical applications. In contrast to the 

conventional control, pattern recognition provides the possibility of recognizing 

different hand gestures using surface EMG signals. These developments started as 

early as the 1970s [17]–[19].  

In 1993, Hudgins et al presented a multi-functional myocontrol system [20] which 

became the classic multi-functional EMG pattern recognition method in this field 

[21]–[23]. This work introduced a filtering of the raw EMG signals and the extraction 

of a set of time domain features from the filtered EMG signals. Afterwards, a linear 

 
Figure 4: Basic signal processing chain for pattern recognition based control. The recorded 
multichannel surface EMG can be pre-processed (band pass, notch filter), followed by a 
windowing and feature extraction stage. Depending on the application, a dimensionality 
reduction can be performed. Finally, the extracted features are used as input for the 
classification algorithm, resulting in a sequence of detected gestures as the output of the 

system. 
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discriminant analysis (LDA) method classifies the features that correspond to a hand 

gesture to generate a command that drives the prosthesis. A representative version 

of this method is depicted in Figure 4. 

The pattern recognition concept is based on the idea that multiple control 

signals/patterns can be extracted from multiple muscle sites in the forearm, making 

the use of co-contraction for mode switching obsolete. The myocontrol system based 

on pattern recognition has to first learn, in a training phase, the different patterns for 

the various hand functions and afterwards, during the clinical usage, the user´s 

intention is determined by the pre-trained system and used to drive the prosthesis.  

Pattern recognition allows for a continuous and multi-functional control, but imposes 

two major limitations. First, the different motion intentions can only be detected in a 

sequence of single activations; therefore simultaneous movements which the healthy 

hand can naturally perform are not possible [24]. In this context, to grab a bottle of 

water, the user has to first rotate the prosthetic hand into the right angle to then open 

and close it for grasping, instead of the natural hand behavior of rotating and 

opening simultaneously and then closing it for grasping. 

Secondly, pattern recognition does not provide a proportional control which is 

necessary to control the speed or force of the prosthetic hand in order to perform 

hand functions with a controlled force or speed level. Instead, additional methods 

have been developed to add the proportional component to the control scheme [21], 

[25]. 

Using again the example of pouring water into a glass from a bottle, pattern 

recognition can be used to recognize the four necessary activations (hand open, 

hand close, wrist supination, and wrist pronation) which are mapped to the two DOF 
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of the prosthesis (Figure 3b). In contrast to the conventional control scheme, with 

pattern recognition the same task can be solved using only four steps, by avoiding 

the mode switching by co-contraction.  

Following the concept by Hudgins et al, several classifiers have been later explored 

for the use in myocontrol, such as Linear Discriminant Analysis [24], [26], [27], 

Support Vector Machines [27]–[30], Multi-layer Perceptron Neural Networks [26], 

[27], [31]–[33], Gaussian Mixture Models [32], [34] or k-Nearest Neighbor [35]. In 

laboratory conditions, offline data analysis, and able-bodied subjects, these 

algorithms achieve recognition rates well above 95% for >10 motion classes [24], 

[36]. However, the robustness of these control methods is still very limited due to the 

fact that academic research often assumes ideal (or stationary) laboratory conditions 

which are not met in clinical applications. For example, laboratory studies often fix 

during the tests the electrode and arm positions. Moreover, the subjects in these 

experiments are in a different psychological condition than the real prosthetic users 

and are tested on one-single session, which can last up to a few hours. These 

conditions do not mimic well the repeated use of over several days. For this reason, 

none of these methods have replaced the conventional control in commercially 

available hand prostheses [37].  

1.2 Motivation and objective 

The reason for the failed transfer of the academic research knowledge and results 

into the development of commercial prosthetic products is the misleading and non-

realistic assumption in the work done in academia and the requirements of industry 

and prosthetic users in real-life situations [37]. While academia is often focused on 

publications of theoretical results, industry expects the translation of research 
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outcomes into reliable and easy-to-use products. The results found in the majority of 

scientific publications were acquired in ideal laboratory conditions and the validation 

was done offline. Just few studies have been performed in more realistic scenarios 

of prosthetic usage and all indicated that in such more realistic conditions there is a 

substantial worsening of the ideal results usually reported in the scientific literature. 

Hargrove et al investigated the effects of electrode shifts [38], [39], Fougner et al 

focused on the influence of arm position changes [40], Amsuss et al investigated the 

instability of a pattern recognition system over time [41], Ge et al analyzed the 

influence of subject´s mental state changes in pattern recognition based 

myocontrol [42]. Additionally, only few hardware or virtual implementations have 

been used to evaluate the performance of the algorithms in real life conditions [43]–

[47].  

In order to start closing the gap between academic research and industry, this PhD 

project intended to merge the efforts of academia and industry towards the 

development of a new, technologically advanced and feasible control of myoelectric 

hand prostheses1.  This PhD project has been funded by the EU IAPP Project 

AMYO2 and covers important milestones of the project. 

The problem description and objective for this PhD project can be summarized as 

follows: 

  

                                            
 
1
 For instance the Otto Bock Michelangelo Hand: http://www.living-with-michelangelo.com 

2
 See http://cordis.europa.eu/projects/rcn/95059_en.html for project details 
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Development and evaluation of a system for simultaneous and proportional 

control of two degrees of freedom (DOF) in hand prostheses, by extending the 

results from academic research and adapting them towards a functional, 

intuitive, and natural control system. 

Very recently, regression approaches have been proposed as an alternative avenue 

towards multifunctional myocontrol, providing simultaneous and proportional 

activation of multiple DOF. Specifically, work has been done using Artificial Neural 

Networks (ANN) [15], [48], [49] or Non-negative Matrix Factorization (NMF) 

algorithms [14]. Similarly to pattern recognition systems, regression methods also 

require a phase of training but in contrast to the discrete output of pattern recognition 

systems, regression methods provide a continuous and proportional estimation of 

the activation for each DOF. In order to work towards a simultaneous and 

proportional control system, a regression approach is a more promising solution than 

a classification approach. In general, the regression system can be understood as a 

transfer function F


, to transform the k -dimensional EMG signal 
kRts )(


 into the  

n ­dimensional control signal 
nRtc )(


: 

 )()( tsFtc


  

Considering the goal and requirements of this project and the achievements of the 

current research towards myocontrol, the regression approach together with the 

NMF algorithm to extract from the EMG signal low dimensional command signals 

[14] have been identified as the most promising approach for this PhD project. This 

control scheme has been presented in a theoretical framework in academia and 

tested in offline, laboratory conditions with static muscle activation for the estimation 

of force [14]. However, realistic conditions for the daily use of prosthetic devices 
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include dynamic muscle activation, counter-movements and external influences, 

such as noise [23]. Therefore, substantial improvements and extensions are 

necessary to translate regression systems into an industrially viable approach for 

myocontrol. The following three major challenges have been identified:  

(1) Conditioning of the EMG signal quality to face more realistic (non-laboratory) 

conditions. 

(2) Design of an evaluation paradigm suitable for online testing. 

(3) Development and implementation of a real-time regression system for online 

estimation, extending from the work of Jiang et al [14];. 

These improvements not only make the system applicable in realistic conditions but 

also make substantial scientific step forwards with respect to the original algorithm, 

so that a fully new method was generated at the end of this work.  

Chapter 2 presents the methodology of this work and contributions to the field. 

According to the three major challenges given above, the corresponding 

developments are presented in three subchapters. The evaluation of the developed 

methods has been done in two studies, which are presented in chapter 3. The thesis 

is closed by the discussion in chapter 4. 
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2 Methodology 

As the quality of the surface EMG signal is the key to achieve a robust and reliable 

myocontrol system, in chapter 2.1 a newly developed Adaptive Common Average 

Reference filter [50] is presented, as an important contribution towards noise 

reduction and increased selectivity of the EMG signal. Besides the theoretical 

background of this filter, a qualitative validation of the signal is presented to 

underline the benefits of this algorithm. 

Chapter 2.2 introduces a Virtual Evaluation Paradigm and Performance Assessment 

Task which was designed for the online evaluation and assessment of the 

performance of the proposed myocontrol algorithms. Hence, besides the virtual 

control paradigm, performance metrics are also provided. 

Finally, chapter 2.3 presents the online myocontrol system developed on the basis of 

the work by Jiang et al [14] but with substantial modifications, such as the estimation 

of kinematics instead of force and the possibility of use in full dynamic tasks and in 

online manner.  
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2.1 Adaptive Common Average Reference Filtering 

The Adaptive Common Average Reference has been developed during the first 

phase of this PhD project. This filter is an adaptive modification of the classic CAR 

filter [51], and is used to optimize the selectivity of the EMG signal for different 

gestures, while simultaneously improving the signal-to-noise ratio of the acquired 

signal.  

This subchapter is based on a submitted manuscript [50], therefore text or results 

taken from this manuscript are not cited explicitly. 

2.1.1 Motivation 

In myocontrol applications, the quality of the EMG signal is one of the most important 

factors for performance. Both for classification and regression approaches, the noise 

level and the spatial selectivity of the input EMG signal substantially impact the 

performance. Therefore, extensive work has been devoted in the past to increase 

the quality and information content of the control signal [52]–[54]. 

Previous pre-processing methods for EMG have focused on the reduction of 

common noise and of crosstalk. These methods include spatial filtering, that can be 

performed with bipolar, double-differential [55]–[57], Laplacian or other two-

dimensional configurations [58], [59]. Spatial filters for EMG have usually a high-pass 

spatial transfer function that eliminates the spatial DC and reduces the influence of 

distant sources (see [58], [59] for details). Additionally, time-domain filters are 

regularly used to eliminate the power line interference [60] or to reduce motion [61] 

and ECG artifacts [62].  
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For multi electrode systems, the common average reference (CAR) filtering has also 

been used in EMG applications [61], [63], although this approach is most often 

implemented in EEG recordings [51], [64]. The CAR filtering is based on a sample-

by-sample subtraction from each channel of the average signal value over all 

channels. As other spatial filters for EMG processing, CAR has a high-pass transfer 

function that eliminates the spatial DC.  

In EEG analysis, the CAR filter is used to remove dominant noise components 

present in all channels and thus enhances the signal-to-noise ratio (SNR) by 

rejecting the spatial DC component. For EEG signals, the common noise has usually 

greater power than the signal component of interest, thus the CAR filter has a strong 

effect on improving the SNR [51]. However, when the CAR is applied to EMG 

signals, it may actually introduce undesired components. In contrast to EEG, the 

common noise in EMG recordings is indeed usually smaller than the signal 

component. Thus, the virtual reference of the CAR is not dominated by the common 

noise components, but additionally contains the inverted signal of the channels with 

 
Figure 5: (a) Raw multi-channel EMG signal (16 monopolar channels). (b) The same signal 
filtered using the classic common average reference (CAR) method. For the first EMG burst 
(approximately from 1s to 2s of the recording) signal components are added by CAR in 
channels 1-4, which are originally not active. A similar effect is visible for the second burst of 
activity for channels 5-16. 
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large EMG activity. 

The effect of the CAR filter on EMG may thus be even a reduction in spatial 

selectivity (see Figure 5 for an example), which is usually contra productive for 

myocontrol applications. 

In this chapter, an extension of the CAR approach is presented based on an 

adaptive calculation of the common mean value on a subset of EMG channels. As 

mentioned before, this method will be introduced as adaptive common average 

reference (ACAR). Finally, the effectiveness of the proposed ACAR will be tested in 

a quantitative analysis and demonstrated on myocontrol applications. 

2.1.2 Methods 

2.1.2.1 Adaptive common average reference (ACAR) 

The ACAR algorithm is built on the assumption that the signal intensity on all 

channels is greater than the common noise. This is generally the case for EMG 

recordings, as shown in Figure 5(a). Additionally, we make the assumption that the 

signal power of more distant sources is smaller than that of closer sources. Using 

these hypotheses, ACAR is based on the calculation of the common mean from only 

a subset of channels, contrary to the classic CAR that computes the mean over all 

channels. By selecting this subset in a manner that the channels with EMG activity 

(and therefore information content) are excluded, the resulting mean reference signal 

is dominated by the common noise, which needs to be eliminated.  

Considering a signal 
NKRS  with K  channels and N  samples, the signal is 

separated in non-overlapping windows  
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of length L , where j  denotes the order of the windows. For each window, we 

compute the channel-wise signal intensity  

T

Kjjjj pppp ],,,[ 21 

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



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, , 

is the sum over absolute values (average rectified value). Based on 
jp


, a subset of 

channels  Kj ,...,2,1  with the lowest signal intensity is selected. For this channel 

selection, several approaches can be used. A simple method is to select the  2/K
 

channels with the lowest intensity (further denoted as K/2 criteria). Alternatively, it is 

possible to set a threshold on the intensity estimate, either dynamic (i.e., mean or 

median across the channels) or with a fixed value. In any case,   should always 

contain more than one channel, to avoid susceptibility towards a single channel. For 

the dynamic threshold this implies a second override step, to use the three channels 

with lowest intensity if the dynamic threshold results in less than three channels for 

j . Finally, the sample-wise mean value is calculated for the selected channel 

subset as: 

],,,[ ,2,1, Ljjjj  

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and subtracted from all channels in 
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The filtered signal  **** ,,, jjj WWWS   can then be obtained by concatenating all 

processed windows. The resulting filter is a spatial filter changing its transfer function 

over time. 

2.1.2.2 Quantitative evaluation of noise reduction and selectivity 

To quantify the common noise reduction and the increase in signal selectivity, the 

proposed filter has been applied to EMG data recorded with 2048 Hz sampling rate 

from 16 monopolar electrodes, placed as pairs equidistantly in a circular manner 

around the proximal third of the forearm [65]. All measures have been performed 

under the approval of the local ethics committee. Out of the 16 electrodes, two were 

located above the flexor and two above the extensor muscles of the wrist. The 

metrics used were chosen according to [58], where wrist flexor and extensor 

muscles were used as agonist/antagonist pair. As the ACAR filter is designed for the 

use in myoelectric applications, the subjects contracted their muscles voluntarily up 

to MVC instead of using stimulation, as was done in [58]. Based on the acquired 

data for maximal flexion and extension, the two following signal-to-noise ratio (SNR) 

indexes were calculated as performance metrics.  

To assess the within-channel SNR, the data of the same channel were used to 

calculate the signal power for the relaxation phase 
relaxagonist,P  and for full contraction

MVCagonist,P , leading to the factor: 
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relaxagonist,

MVCagonist,

within
P

P
SNR   

The between-channel SNR was calculated using the data of one agonist and one 

antagonist channel for the same contraction: 

MVC,antagonist

MVCagonist,

between
P

P
SNR   

For both cases, a greater SNR represents a better signal quality for the agonist 

channel. The calculation was done for 200-ms windows, each subject performing 

four contractions for both wrist flexion and wrist extension. This resulted for each 

method in two pairs of withinSNR  and betweenSNR , one for wrist flexion and one for wrist 

extension. 

Based on the above indices, the ACAR filter was tested using different channel 

selection criteria. The criterion that resulted in best performance was used for 

comparing ACAR with the unfiltered raw data, bipolar filtered data, and the data 

filtered by the classic CAR.  

The results were statistically tested using two-factor ANOVAs, with the 

pre­processing method and the subject as factors. A significance level of 05.0  

was used for all tests. 

2.1.2.3 Impact on myocontrol based on pattern classification 

The performance of the ACAR was also evaluated on classical pattern classification 

methods for myocontrol, to directly prove the impact of the new filter in myocontrol. 

For this purpose, four TD features (RMS, wave length, zero crossing, slope sign 

changes, [20]) extracted from the 16 channels (window length of 400 samples) were 
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obtained from the unfiltered EMG and the EMG filtered with CAR and ACAR, using 

the same electrode setup as above. The data were recorded from seven able-bodied 

subjects (2 female, 5 male, age range 25-57) during six wrist movements (flexion, 

extension, abduction, adduction, supination, and pronation), each performed 4 times 

for 4 seconds at 50% MVC force. For quantitative comparison of the approaches, the 

separability index (SI, larger indicates better performance) and the mean semi-

principal axes (MSA, lower indicates better performance) [66] were used. 

Additionally, the quotient of SI and MSA (distinctness coefficient DCOFF = SI/MSA, 

larger indicates better performance) was introduced as a further performance 

metrics. 

2.1.2.4 Impact on regression based myocontrol systems 

Finally, the impact of the ACAR filter on the regression myocontrol system developed 

during this PhD project has also been evaluated. This analysis has been highly 

relevant for this thesis and is therefore presented separately in chapter 3.1. 

2.1.3 Results 

2.1.3.1 Quantification of noise reduction and selectivity 

The results of the impact of the channel selection criteria are shown in Figure 6 for a 

 
Figure 6: Comparison of the different selection criteria for the ACAR algorithm. These results 
are obtained from subject 3 and show that all methods exceed the SNRs of the standard CAR. 

The same results were found for the other subjects. 
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representative subject. Besides the CAR and ACAR with K/2 method, also the mean 

and the median threshold within each 25 sample window was tested (for definition of 

the parameters see chapter 2.1.2.1). Both K/2 and the median criteria yielded 

equally good results, which were confirmed also for the other subjects. 

Additionally, the impact of the window length L  for the K/2 selection criteria is shown 

for the same subject in Figure 7. The K/2 method was used in this case due to its 

simplicity and similar performance to other selection methods (Figure 6). The 

analysis for the other subjects showed very similar results. The selection method and 

the window length did not impact the performance when analyzed statistically over 

all subjects (all p > 0.05). Therefore, the K/2 method with 25-samples window length 

was used in all subsequent analyses. 

The comparison among methods for common noise reduction and signal selectivity 

is shown in Figure 8. Over all subjects, both the within-channel SNR and the 

between-channel SNR were the highest for the ACAR method (K/2 method, 25 

samples) for both wrist flexion and extension. For the between-channel SNR, which 

represents the channel selectivity, the ACAR exceeded the CAR by a minimum of 

6 dB for all subjects.  

 
Figure 7: Comparison of the SNRs using K/2 criteria and different window length L for subject 
3. The results show that a longer window length has a stronger impact to the between-channel 
SNR, therefore increasing the separability. Similar results were found for the other selection 

criteria and subjects. 
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The statistical analysis for the comparison resulted in a strong significance for all four 

metrics (all p << 0.05).  

2.1.3.2 Myocontrol based on pattern classification 

The feature spaces for a representative subject calculated from the unfiltered EMG 

signal as well as the signal filtered with CAR and ACAR are presented in Figure 9, 

where, for graphical representation, only the first two principal components of the 

feature space are shown. The clusters for each wrist movement are represented by 

the different colors. 

 
Figure 9: Projection of the LDA spaces for subject 3 onto the first two components, separated 
by the three input signals. Only the unfiltered monopolar signal and the CAR and ACAR filtered 

data was used. (Note: the three plots have the same axis scaling) 

 
Figure 8: The results of the offline analysis for the four preprocessing methods are shown 
grouped by the four subjects (S1-4). For the ACAR the window length chosen was 25 samples 
with the K/2 channel selection criteria. The bars indicate the mean values over the four 

measures for each subject, with the standard deviation shown on top. 
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For all subjects the three metrics (MSA, SI, DCOFF) were calculated and are 

presented in Figure 10. Generally, the MSA values, as a measure of cluster density, 

were the lowest either for the unfiltered data or ACAR, while the highest SI was 

obtained by ACAR or CAR. Finally, the DCOFF as a combination of SI and MSA 

always yielded the highest values for the ACAR preprocessing. 

2.1.3.3 Discussion 

A new time-varying spatial filter for myocontrol applications has been proposed. The 

filter is based on the subtraction from each channel of the mean value of the subset 

of channels with minimal signal intensity. 

The tests on the channel selection criteria for the proposed ACAR filter identified the 

K/2 criterion as adequate and simple. The median and mean criteria require an 

additional thresholding without significant improvement. Regarding the window 

length, 25 samples (equals 12.2 ms) were identified as a good trade-off for SNR 

improvement and response time of the filter. An increased window length might give 

a slightly better performance in terms of signal quality, but would be less appropriate 

for quick control changes. Using this configuration set, the ACAR filter has been 

 
Figure 10: The three performance metrics (MSA, SI, DCOFF) have been calculated for all 
subjects and the three different preprocessing methods. The figure depicts the mean values 
and standard deviations for the four subjects. For better comparison, the values have been 

normalized on subject base using the results for unfiltered data (orange) as reference. 
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shown superior for gain in signal quality to all other tested filters. These included also 

the bipolar recording, which is the current state of the art in industrial applications. 

Furthermore, we have also shown a gain in class separability when using the ACAR 

filter on the feature space for pattern classification. As stated by [66], an increase in 

SI, as identified for the CAR and ACAR, reveals more distinct classes in the 

transformed feature space, resulting either from more dense clusters or greater 

distances between classes. For the presented results for SI, the CAR and ACAR can 

be used to increase the separability of the contractions in comparison to unfiltered 

data. Additionally, the MSA is reduced for all subjects when using the ACAR in 

comparison to CAR. This indicates that the clusters are both more compact and 

better distributed in the feature space with ACAR filtering. In comparison to the 

unfiltered data, the MSA was slightly increased, but an increasing MSA can be 

compensated by a proportionally increase in SI, to ensure separability between the 

classes. These combined effects of SI and MSA can be expressed by the DCOFF, 

according to which the ACAR outperformed the other methods. 

2.1.3.4 Conclusion 

In this chapter the ACAR filter has been presented as an adaptive approach to 

improve the signal quality of monopolar recordings, by significantly reducing the 

common noise level and increasing the spatial selectivity. This improvement has 

been quantified using an SNR measure and comparing it to three other methods 

commonly used in myocontrol. In contrast to other preprocessing methods, the 

ACAR filter does not need training or adjustments, and is based on simple 

calculations suitable for online applications. The impact of the increased signal 

quality and separability has then been presented for classical EMG pattern 



 

  22 
 

classification, where the ACAR pre-processing generated an increased separability 

and distinctness of the different gesture classes in the feature space. 

Finally, as shown in the independent study presented in chapter 3.1, the ACAR is a 

key component for this PhD project towards an online regression control system, 

which significantly improves the controllability. 
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2.2 Virtual Evaluation Paradigm 

As pointed out in chapter 1, most scientific work in myocontrol has been focused on 

the evaluation of the acquired data in an offline manner (i.e. [20], [23], [54], [67]–

[69]). However, to assess the performance of myocontrol algorithms in daily life 

situations and include the adaptive behavior of the user [70], an online 

implementation and evaluation are needed. This approach provides the user with a 

(visual) feedback plus the possibility to react to it. 

An obvious solution is to implement the control algorithm to be tested into a real 

prosthetic hand, to perform daily tasks, like pouring a glass of water or manipulating 

objects. Unfortunately, this solution requires the availability of the hardware and the 

final fitting of the prosthesis to each user. Additionally, it is difficult to measure 

performance metrics for daily tasks. Standardized methods like the Southampton 

Hand Assessment Procedure (SHAP) [71] or the Action Research Arm Test (ARAT) 

[72], [73] have been used in clinics and research [74], especially to assess the 

impairment of patients. However, those tests only allow outcome oriented metrics, 

for instance the time to finish a task. These measures do not provide information on 

the smoothness of the control or the efficiency of the task completion. 

An alternative approach for pre-testing before prosthetic fitting consists in using a 

virtual hand prosthesis embedded in a 3D virtual and immersive environment. 

However, the depth perception is limited and a virtual 3D environment is not suitable 

for all subjects [75]–[78]. 

In order to provide a simple but intuitive assessment of the controllability for two 

DOF, a Virtual Evaluation Paradigm (VEP) has been developed within this project 

and implemented using a real-time equivalent software environment [79]. The VEP is 
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designed to be used on different screens and monitor devices, therefore the units for 

positions and distances in the VEP are density-independent pixels ( dp ) [80]. 

2.2.1 Subject interface 

The VEP is based on a subject interface, representing two main DOF (DOF 1: wrist 

flexion/extension, DOF2: wrist pronation/supination) to the subject (Figure 11). This 

representation is defined by an arrow of length ŷ2 , dp 60ˆ y , that is positioned in 

the center of the target area as the neutral position. The flexion and extension of the 

wrist is mapped proportionally to the arrow’s position on the horizontal axis, using the 

control signal )(t . In case of a right-handed subject, the horizontal displacement of 

the arrow to the right side ( 0)( t ) corresponds to the extension angle of the wrist 

(see Figure 12), while the wrist flexion is represented by negative values for )(t . 

The maximum flexion and extension angle is indicated by the markers on the 

horizontal axis in the subject interface. 

 
Figure 11: (a)The user interface of the Virtual Evaluation Paradigm (VEP) developed for online 
evaluation. The flexion and extension of the wrist is represented through the horizontal 
position of the arrow (green), the wrist rotation by the rotation of the arrow. The vertical 
markers indicate maximum flexion and extension. The rotation is limited by +/- 90°. (b) The 

position of the arrow’s tip ( )(tip tx , )(tip ty ) can be calculated from the two control signals ( )(t

, )(t ), using the equations provided. 
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Similarly, the rotation of the arrow represents the rotation of the wrist 

(pronation/supination), encoded by the control signal )(t  (Figure 11b). The rotation 

is limited by +/- 90° rotation of the arrow from the upright position (see Figure 12).  

In case the subject is left-handed, the interface can be used in the same manner, by 

switching flexion with extension and pronation with supination. 

Extending from the two control signals provided, the position of the arrow’s tip 











)(

)(
)(

tip

tip

tip ty

tx
ts  can be calculated using the equations given in Figure 11b.  

For a consistent user experience, the VEP can be used both to acquire labeled data 

for training and calibration of control algorithms and to evaluate the resulting control 

performance. 

2.2.2 Guided calibration mode 

In the guided calibration mode, the VEP is used to acquire labeled EMG data for the 

wrist movements, by providing a prompt to the subject. This setup is presented in 

Figure 13. Specifically, the generated prompt consists of the two control signals )(t  

 
Figure 12: Mapping of the arrow to the hand gestures for single DOF movements. This figure 
represents the subject’s view when looking at the screen, with the hand pointed forward. The 
example is given for a right handed subject. For left handed subjects pronation and supination 

are swapped, as well as wrist flexion and extension. 



 

  26 
 

and )(t , which are sent to the VEP to control the arrow position and to provide a 

guidance to the user and the recording system, to be recorded synchronously with 

the EMG data.  

2.2.3 Free calibration mode 

Similar to the guided calibration mode, the free calibration mode is used to acquire 

labeled EMG data for wrist movements. Instead of providing a prompt to the subject, 

the actual wrist and hand kinematics are recorded using an XSens MTx Motion 

Capture System3, simultaneously with the EMG signal (see Figure 14). Hence, the 

subject can freely perform different movements for which labels are provided by the 

motion capture system. 

For the recording of the kinematics, in total three XSens MTx sensors are placed on 

the subject’s arm, as shown in the left part of Figure 14. The first sensor (MT1) is 

placed on the back of the hand (dorsal) with the sensor’s x-axis pointing towards the 

thumb. The second sensor (MT2) is placed dorsally on the distal part of the forearm, 

right before the wrist joint, with the x-axis pointing in distal direction. The third sensor 

                                            
 
3
 http://www.xsens.com/en/general/xbus-kit 

 
Figure 13: During the Guided Calibration Mode the VEP is controlled by an external prompt 
generator. The subject follows this cue and the EMG is recorded synchronously with the 

presented prompt as labels. This labeled data can be used to calibrate the control system. 
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(MT3) is placed similar as the second one, but shifted to the proximal end of the 

forearm. 

While the placements of the kinematic sensors for intact-limb subjects can be done 

on the same arm as the EMG electrodes, this is not possible for subjects with limb 

deficiencies due to the missing limb. To solve this problem for subjects with unilateral 

conditions, mirrored bilateral training can be used as a training strategy [49]. In this 

setup, the XSens sensors are placed on the intact-limb side, while the EMG 

electrodes are located on the contralateral, affected side. Then, during the calibration 

phase, the subject is asked to simultaneously generate mirrored movements on both 

sides, thereby generating the muscle activation patterns on the affected side and the 

corresponding kinematics on the contralateral side. 

During the recording, the spatial orientation of the three sensors in relation to the 

earth magnetic field is measured with 100 Hz sampling rate. The orientation is 

represented in the motion capture system through quaternions [81]. From these 

quaternions, the angles for wrist flexion/extension and rotation are extracted as 

follows: 

 
Figure 14: The Free Calibration Mode allows the subject to perform voluntary movements. 
Using three XSens measurement units the wrist angles are calculated and recorded 

synchronously with the EMG data. 
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The wrist flexion/extension angle )(t  is calculated using the orientation 

 )(),(),(),()( MT1MT1MT1MT1MT1 tztytxtwtq   of the sensor MT1 and the orientation 

 )(),(),(),()( MT2MT2MT2MT2MT2 tztytxtwtq   of sensor MT2. More specifically, the 

vector  Tw MT1MT1 0,1,0   (negative y-axis) in the coordinate system (CS) of MT1 is 

transformed into the CS of MT2. This is done by calculating the transformation matrix 

)( MT1world

MT1 qT  from the CS of MT1 to the world CS, and the transformation matrix 

)( MT2MT2

world qT  from the world CS to the CS of MT2. Finally, the angle )(t  can be 

obtained as the angle between the transformed vector 

MT1

MT1world

MT1

MT2MT2

worldMT2 )()( wqTqTw   and the x-axis of MT2  Tx MT2MT2 0,0,1 , 

both projected into the XZ-plane of MT2. 

In a similar way, the wrist rotation angle )(t  is calculated from the orientation of 

MT2 (
MT2q ) and MT3 (

MT3q ). In this calculation, )(t  is equal to the angle between 

the z-axes of MT2 projected into the CS of MT3 ( MT1

world

MT1

MT2

worldMT3 aTTa  , 

 Ta MT2MT2 1,0,0 ) and the z-axis of MT3  Tz MT3MT3 1,0,0 , both projected into YZ-

plane of MT3. 

Note: While the Free calibration mode has been used in the early stage of the PhD project [65], [79], 

the results presented in chapter 3.2 and the most recent publications [82], [83] where acquired using 

the Guided calibration mode. However, as project partners [84] and collaborators [85] continue using 

the developed system, it has been included as a part of this thesis. 

2.2.4 Evaluation mode 

During the evaluation phase, the calibrated control system is used to extract control 

signals from the EMG data, recorded online from the subject’s forearm. Due to the 
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flexibility of the VEP, algorithms based on pattern recognition, regression algorithms 

or any other myocontrol method can be used [83]. The only requirement is that the 

control algorithm provides the two continuous control signals )(t  and )(t  as 

output.  

The extracted control signals are send to the VEP, controlling the arrow’s position, 

as illustrated in Figure 15. 

2.2.5 Performance assessment task 

With the intention of assessing the online performance of a myocontrol algorithm, the 

VEP in Evaluation Mode has been extended by a Performance Assessment Task. 

As for this purpose the arrow position is controlled by the estimation algorithm, the 

Performance Assessment Task is part of the evaluation mode. 

The task itself is designed as a target hitting task. Therefore, different targets in a 

circular shape are placed within the area of reach of the tip of the arrow. Generally, 

three types of targets can be used. Targets of type 1 are placed on a horizontal line, 

vertically shifted up by half the arrow length (Figure 16, magenta targets). To reach 

these targets, only the first DOF (wrist flexion/extension) has to be used. 

 
Figure 15: In the Evaluation Mode the output of the calibrated control system is used to control 

the arrow in VEP. 
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Correspondingly, the targets of type 2 are placed on a circle with the radius equal to 

half the arrow length (Figure 16, orange targets), requiring the subject to use only 

DOF 2 (wrist pronation/supination) to reach the target. Finally, the targets of type 3 

are placed within the whole area that can be reached by the top of the target, 

requiring the user to control both DOF simultaneously. In Figure 16 this area is 

indicated by the blue colored shape and an exemplary target displayed as a blue 

circle. 

A task is defined by a single target circle colored in magenta and of diameter circled  

(measured in dp ), which is presented to the subject. Starting from the arrow in the 

center position, the subject is asked after an acoustic start signal to drive the tip of 

the arrow into the target circle, using the myocontrol algorithm provided. To exclude 

the case of hitting the target only by chance, the arrow tip has to remain in the target 

 
Figure 16: Examples for the targets in the Performance Assessment Task. The target types are 
presented in different colors. The magenta targets can be reached using solely wrist 
flexion/extension. The orange targets only require wrist pronation/supination. Finally, the blue 
area indicates the area that can be reached using both DOF simultaneously. An example for 

these combined targets is presented in blue. 
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for a given dwelling time, specified by the task parameter dwellT . If the subject is able 

to reach and remain in the target, the task is considered completed. To give a 

feedback to the subject during the dwelling time, the circle’s color is changed to 

yellow while the arrow tip is in the target. A successful task completion is indicated to 

the subject by another change of the circle color into green and the playback of a 

rewarding sound. If the subject does not remain in the target for the dwelling time, 

the color is changed back to magenta. And if the subject is not able to reach and 

remain in the target within the given timeout maxT , the task is considered as failed. A 

failed task is indicated to the 

subject by a red circle and a 

buzzing sound. 

To complete targets of type 1 

and type 2, the subject should 

solely use the corresponding 

DOF, and the other control DOF 

adversely affects the successful 

completion of the task. 

Considering, for instance, 

targets of type 1 on the 

horizontal axis, an additional 

rotation of the arrow makes it 

impossible for the subject to 

reach the target. 

 
Figure 17: The subject is asked to steer the tip of the 
arrow into the target circle (blue). The trajectory 
depends on the strategy chosen. In (a), a 
simultaneous activation of the two DOF is used, 
resulting in the shortest path from the starting point 
to the target. In contrast to this, a sequential path is 
presented in (b), a valid alternative but not optimal 

completion of the task. 



 

  32 
 

However, in the case of target type 3, the subject can use different strategies to 

complete the task, as these targets require the user to control both DOF provided. 

The optimal solution and thereby shortest path is to use both DOF simultaneously, 

as shown in Figure 17a. An alternative approach is to use a sequential activation. An 

example for this is given in Figure 17b, using first DOF 1 to the horizontal 

displacement and then DOF 2 for the rotation of the arrow. 

Furthermore, a run is defined by a pre-defined set of targets, depending on the 

complexity of the study. The tasks belonging to a target type are additionally grouped 

as a series.  

An example for a run is provided in Figure 18, with six tasks in the series for target 

type 1 (targets 1a-1f), six tasks in the series for target type 2 (targets 2a-2f), and 

twelve tasks for the series of target type 3 (targets 3a-3l). In contrast to randomly 

positioned targets, a pre-defined set can be used to compare the performance 

between subjects or algorithms and also provides a better basis for a statistical 

analysis of the results. However, the targets should be displayed in random order. 

  

 
Figure 18: Example for a task set, defining a run. In this run, six tasks are defined for each 
target type 1 (1a-1f) and target type 2 (2a-2f). For the target type 3 requiring combined 

activation of the two DOF, a total of 12 tasks is defined (3a-3l). 
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2.2.6 Performance metrics provided by the performance assessment task 

With the purpose of assessing the control performance, three performance metrics 

have been defined and are summarized in Table 1.  

2.2.6.1 Task completion rate 

Considering a full evaluation run, the number of tasks completed in the run is the 

task completion rate run . Depending on the study aim and statistical analysis, the 

completion rate can also be calculated separately for each series in the run (
type1 , 

type2 , 
type3 ). 

2.2.6.2 Task completion time and path efficiency 

Considering each task individually, two additional metrics have been defined. First, 

the time necessary to complete the task is measured as the completion time ct . 

Second, the trajectory of the arrow’s tip 
2
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 is defined as the path efficiency: 

Table 1: Basic performance metrics for the Performance Assessment Task 

Name  
Calculated on the 

basis of Short Description 

Task Completion Rate    [%]  run or series Percentage of completed targets 

Task Completion Time  ct  ][s  task Time to reach and remain in target circle 

Path Efficiency    [%]  task 
Quotient of optimal path length and 
measured path length from start to target 
position. 
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This metric is reported in percentage. An example is presented in Figure 19 

These two task-based metrics can then be used to calculate a mean completion time

ct  and mean path efficiency grouped by run ( run ) or series (
type1 , 

type2 , type3 ), as well 

as the corresponding standard deviations.  

Altogether, the three metrics presented (completion rate, completion time and path 

efficiency) provide an assessment of both the speed and quality of the control 

system under evaluation. Furthermore, by calculating path efficiency and completion 

time within the different series, a comparison of the control performance between 

 
Figure 19: The path efficiency is calculated as a ratio between optimal path length and 

measured trajectory path length. 
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DOF 1 (target type 1), DOF2 (target type 2) and DOF1+2 (target type 3) can be 

made. 

2.2.6.3 Additional metrics 

Besides the above three metrics, other three metrics have been introduced in [83]. 

All of these are calculated on a task base and are summarized in Table 2.  

Due to the given dwelling time, it can happen that the subject reaches the target 

successfully, but then moves again out of the circle before dwellT  elapses. The 

number of these occurrences is measured by the metric Overshoots k . 

The Throughput TP  is used to assess the information the user can deliver through 

the control system. As introduced in [83], [86], the task difficulty index is defined as 

bit 1log
circle2











d

A
TDI ,  

representing the Shannon extension of Fitts’ law [87], [88]. The target amplitude is 

defined as 

  dp6.04.0
2

targettarget  A , 

Table 2: Additional performance metrics for the Performance Assessment Task 

Name  
Calculated on 
the basis of Short Description 

Overshoots  k  task 
Number of occurrences that the tip of the arrow hits the 
target circle but does not remain for the dwelling time 

Throughput  TP  ]/bit[ s  task 
Ratio of targets weighted by difficulty index and 
completion time 

Speed  v  ]/dp[ s  task 
Length of the trajectory from start to target position 
divided by completion time 
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where 
target  and 

target  characterize the control angles necessary to reach the 

presented target. The weights are chosen differently, to account for the more difficult 

controllability of DOF 2 (
target ). Finally, the Throughput is defined as: 

ct

TPI
TP  . 

The Speed v  is defined as the average speed of the arrows curser. Thus, it is the 

quotient of measured trajectory path length and completion time: 

ct

L
v

trajectory
 . 

2.2.7 Discussion 

The Virtual Evaluation Paradigm has been presented as a simple and intuitive 

interface to acquire labeled or unlabeled training data, as well as an online 

evaluation paradigm for myocontrol algorithms. Specifically, the implemented subject 

interface is self-explanatory, increasing the acceptance by potential users. This was 

also confirmed during several studies that used this interface [61], [65], [82]–[85], 

[89] and that included subjects of different age (14-72 years) as well as subjects with 

different experience with computer interfaces. None of the subjects had difficulties in 

understanding the representation or following the prompt. Moreover, the 

Performance Assessment Task uses the same interface and yielded an overall 

acceptance by the subjects of the same studies. By separating the task into the three 

types, also the effect of proportional single DOF activations and simultaneous and 

proportional activations of both DOF can be investigated.  
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Besides the user acceptance of the Performance Assessment Task, the metrics 

introduced also provide a basis for the analysis and comparison of myocontrol 

algorithms. While the task completion rate  provides an initial and simple estimate 

for the general controllability of the myocontrol algorithm, the task completion time ct  

together with the efficiency coefficient   provide the basis for a qualitative 

assessment. Especially the efficiency coefficient accounts for insufficient stability of 

the control system and the use of simultaneous control of both DOF. Finally, the 

additional metrics presented in section 2.2.6.3 provide the potential for an in depth 

analysis for benchmarking different myocontrol systems. 

Until now, the VEP and Performance Assessment Task have been used within the 

PhD project for studies towards myocontrol applications for upper extremities, 

including two DOF. However, the presented subject interface supports also radial 

and ulnar deviation of the wrist as a third DOF. Similarly to the flexion and extension 

being mapped to the horizontal displacement of the arrow, the radial and ulnar 

deviation can be mapped to a vertical displacement of the arrow. Two joined studies 

without the Performance Assessment Task, using only flexion/extension and 

radial/ulnar deviation of the wrist, have already been performed [61], [84]. 
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2.3 Online Regression Control System 

Since a decade, regression techniques have been investigated as an alternative 

path for more intuitive myocontrol systems for upper extremities. Until now, different 

methods have been introduced in the academic field, based on Artificial Neural 

Networks [15], [49], [90], non-negative matrix factorization algorithms [91], and 

probabilistic methods [86].  

However, none of the proposed solutions have been implemented in a real scenario 

of prosthetic usage, but investigated solely in laboratory conditions. In order to 

merge the results from academia, the requirements of the industry and the daily 

needs of the amputees, substantial improvements and extensions are still 

necessary. In this chapter, promising results towards this final goal are presented.  

2.3.1 Physiological model 

In a prosthetic hand each degree of freedom is controlled by a single actuator, for 

example one motor for the hand rotation and one motor for hand open and close. In 

 
Figure 20: Sagittal cut though the proximal third of the human forearm, showing the presence 

of 13 muscles in this area. (original work, previously used in [115]) 
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contrast, the movements of the human hand are executed by multiple muscles, 

working together in a synergistic way. The majority of the muscles involved in the 

movements of the human wrist and hand are located in the distal part of the forearm. 

Only for some movements of the fingers the muscles are located in the hand itself. In 

case of the wrist movements considered in this work, it is sufficient to focus on the 

13 muscles in the forearm, as shown in Figure 20. 

The synergistic activation of a set of muscles involved in a movement is a 

transformation of a low dimensional and supraspinal signal set from the central 

nervous system (CNS) into a high dimensional signal set to the muscles. This 

transformation taking place in the spinal cord has been modeled in  [92]–[94], and is 

described within the so called synergy theory. The synergy concept is composed by 

two models, the forward and the inverse model. The forward model describes the 

activation of synergistic muscles from supraspinal motor commands which can be 

measured on the skin surface by surface EMG signals. The inverse model is the 

counterpart of the forward model, to obtain the motor commands for prosthesis 

control from the muscle activations. In the following, the physiological basis of both 

models is presented in more detail and the online regression control system is 

derived from both models.  

2.3.1.1 Forward model 

The application of the synergy model to the problem of controlling the wrist 

flexion/extension and wrist pronation/supination is presented in Figure 21. According 

to the model, the intended movement is represented in the motor cortex by control 

signals for each function (a low dimensional signal set). For each of the four given 

functions exists an independent control signal ( )(flexion tp , )(extension tp , )(pronation tp , 
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)(supination tp ), referred to as primitives. Each primitive indicates the activation of the 

corresponding function. As physiologically there is no negative activation, the 

primitives are by definition positive. Finally, the primitives can be combined into a 

vector representation, with N  the number of samples: 

N
RP

tp

tp

tp

tp

P
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


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4
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supination

pronation

extension

flexion

  ,

)(

)(

)(

)(

 

The next element of the model is the spinal cord, translating the activations of the 

primitives into the activations of the synergistic muscles involved in the movement. 

The muscular activation cannot be negative either (a muscle can only contract 

actively, but not expand), therefore the image of this mapping function has to be 

positively defined: 

m
RR   0

4

0: ,  

with m  number of muscles. For the present work, a simplified model was used 

assuming a linear and time invariant mapping function  , equal to the synergy 

matrix: 

 
Figure 21: Forward synergy model for the control of wrist flexion/extension and wrist 
pronation/supination. From the motor cortex the low dimensional motor commands (primitives) 
are send out to the spinal cord, where they are transformed into the high dimensional muscle 
activation signals, necessary to execute the intended movement. Finally, the muscle activation 

is recorded by the multi-channel surface EMG system. 
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From the spinal cord, the muscles are triggered to contract according to the 

innervation, this is summarized by the muscle activation
Nm

RA
 0 . Thus, the forward 

model is summarized by the equation: 

)()( tAtPS  . 

However, the muscle activation )(tA  can only be recorded indirectly by multi-channel 

surface EMG signals 
NkRtE )( , with k  number of EMG signals recorded. The 

interrelation between the muscle activation and the EMG recorded on the skin 

surface is influenced by the characteristics of the tissues between muscles and 

electrodes [95]–[98]. This transformation function from muscle activation to surface 

EMG signals can be represented by the function recf : 

  )()(rec tEtAf  . 

Taking this into account, the forward synergy model extends to: 

  )()( tEtPSfrec  . 

The transformation function recf  is defined by multiple factors. These include for 

instance the generative model for the EMG by the motor neurons [95], [98], the filter 

properties of the tissue between muscles and electrodes [99], or the transfer function 
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of the electrodes used [95]. However, this generally very complex function recf  is 

usually approximated by a linear transformation. 

2.3.1.2 Inverse model 

The primitives P  which are used as motor commands for the prosthesis are 

extracted from the recorded EMG signals. For this, first the inverse function 1

rec

f  is 

obtained in order to estimate the muscle activation A  from E . Additionally, the 

inverse synergy matrix 
1S  has to be found. Finally, primitives P  are the product 

between muscle activation A and the inverse synergy matrix 
1S . This approach is 

illustrated in Figure 22. 

2.3.2 Structure of the developed control system 

In order to extract the synergy matrix from recorded EMG data, among other 

factorization methods, the NMF algorithm [100] has been proposed and used so far 

just for the offline analysis of recorded EMG data [101], [102]. Specifically, this 

method has likewise been suggested for the analysis of movements of the upper 

extremities [14], [90]. Nonetheless, these findings resulted from studies offline and in 

laboratory conditions [23] including only static muscle activations [14], not accounting 

for the requirements of prosthesis users in daily life usage. By reconsidering these 

 
Figure 22: Inverse model to extract the myocontrol signals C  from the recorded EMG signals 

E .  
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requirements and optimizing each component of the inverse model, the following 

improvements have been developed and implemented. 

2.3.2.1 EMG acquisition system 

For the acquisition of the EMG signals, an EMG-USB2 amplifier produced by OT 

Bioelettronica4, Turin, Italy, in combination with 16 Ambu Neuroline 7205 single use 

self-adhesive pre-gelled electrodes have been used. The electrodes were placed 

around the center of the proximal third of the forearm, in two circles each with eight 

equidistantly placed electrodes, see Figure 23. The EMG was recorded in monopolar 

mode, filtered with a 3 to 500 Hz band pass, amplified by a gain of 500 and 

digitalized at a sampling rate of 2048 Hz with 16 bit resolution. These digitalized 

EMG signals
NkRtE )( , 16k , is send to the software environment for signal 

conditioning and extraction of the muscle activation through the forward model.  

                                            
 
4
 http://www.otbioelettronica.it/ 

5
 http://www.ambu.com/corp/products/patient_monitoring_and_diagnostics/product/neuroline_720-

prod14061.aspx 

 
Figure 23: The recording setup used for the EMG signal acquisition. Sixteen electrodes of type 
Ambu Neuroline 720 (see lower right box) were placed around the forearm in a 2x8 layout. The 
monopolar signals were acquired and digitalized by a EMG-USB2 amplifier. Finally, the 
digitalized signal was conditioned to represent the muscle activation in the synergy model (the 

forward model). 



 

  44 
 

2.3.2.2 Estimation of the muscle activation from the surface EMG 

As introduced in section 2.3.1.1, the muscles are represented in the model by their 

muscle activation 
Nk

RA
 0 . Hence, this activation signal has to be estimated from 

the surface EMG 
NkRtE )( , denoted in the inverse model by the function 1

rec

f . In the 

proposed control system, 1

rec

f  is characterized by two components: filtering the raw 

EMG using the ACAR filter and calculating the EMG linear envelope. This is 

summarized as the signal conditioning in Figure 23 and described in detail in the 

following two subsections. 

2.3.2.2.1 Signal pre-processing for improving selectivity 

The first component of the signal conditioning is the signal pre-processing. Ideally, 

the activation of a target muscle can be recorded more selectively using invasive 

intra-muscular needle EMG electrodes [95]. However, this technique is invasive and 

the issues related to the bio-compatibility of the implants with the tissue have not 

been solved yet for clinical applications. Therefore, it is currently more viable to 

record the muscle activation using surface EMG electrodes. However, recording 

muscle signals from the skin has drawbacks for the synergy model. First, surface 

EMG signals are more susceptible to noise. Second, surface EMG electrodes pick 

signals from neighboring muscles. This phenomenon is known as crosstalk and poor 

selectivity.  

To reduce the effects of noise and especially to record more selectively, the Adaptive 

Common Average Reference Filtering (ACAR) has been developed, as described in 

chapter 2.1. This filter is applied to the recorded EMG signal 
NkRtE )( , providing the 

optimized EMG signal NkRtE )(ACAR
 used for the estimation of the muscle activation 

in the next step. 
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2.3.2.2.2 Estimation of muscle activation using EMG linear envelope 

One criterion of the synergy model is that the muscle activation )(tA  by definition 

has a positive value range, because muscles can only contract actively. The 

extension of a muscle is always done passively by an antagonistic muscle. 

Yet, the raw EMG signal is a stochastic signal with zero mean [95], therefore it does 

not satisfy this requirement. The same applies for the ACAR filtered EMG signal 

)(ACAR tE . In order to have an estimate for the muscle activation as described in the 

model, an additional feature extraction stage is necessary to extract a valid estimate 

for the muscle activation 
Nk

RA
 0  from the ACAR filtered )(ACAR tE , with a positive 

range of values. 

The feature used was the EMG linear envelope. This feature is often used in 

measurements during locomotion to represent the activation of muscles involved 

during gait [103]–[105]. The EMG linear envelope was calculated on a channel basis, 

by applying a full-wave rectifier to )(ACAR tE , followed by a 3-rd order low-pass 

Butterworth filter with a 3dB-cut-off frequency of 5Hz. It was observed that the low-

 
Figure 24: An example for a prompt used in the calibration phase for the recording of sample 

EMG data. 
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pass filtering stage could introduce negative values due to overshoots. These 

remaining negative values were removed using a final half-wave rectification stage, 

to comply with the non-negative constraint of the model. Finally, this signal  0)( RtA  

representing the muscle activation was used as the input signal for the synergy 

model. However, as the muscle activation is calculated from all EMG channels 

available, the number of muscle activation was equal to the number of EMG 

channels, thus km  . 

2.3.2.3 Calibration data 

A calibration of the system has to be performed in order to extract the synergy matrix 

and obtain the primitives from the inverse model. For this, sample calibration data 

has to be recorded using the provided recording system. The Virtual Evaluation 

Paradigm in the Guided calibration mode is used, prompting the subject to perform a 

series of pre-defined movements. The provided prompt includes single activations of 

the four functions, grouped by the corresponding DOF. An example for this prompt is 

visualized in Figure 24. In the first part, an alternating series of wrist flexion and 

extension (DOF 1) is performed and repeated three times. In the second part, only 

the wrist rotation (DOF 2) is activated in the same alternating manner. Although the 

EMG signals and the presented prompts are saved together, the prompts cannot be 

considered as labels. The prompts are only recommendations, as the actual muscle 

activations performed by the subjects can differ. The only importance is that only a 

single DOF is activated. This data is called calibration data. 

The recorded calibration data is in contrast to pattern recognition methods, where 

the EMG signals have to be recorded with exactly matching labels [20], [23], [106], 
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resulting in training data. This would only be the case for the Free calibration mode , 

where the actual kinematics are recorded as labels.  

2.3.2.4 Extracting the synergy matrix using Non-negative Matrix Factorization 

In the Forward model, the relation between the primitives and the muscle activation 

is encoded by the mixing synergy matrix.  

Hence, the correct estimation of this matrix S  provides the key to solve and apply 

the inverse model (see Figure 25). For the estimation of the synergy matrix the Non-

negative Matrix Factorization (NMF) algorithm has been shown to be an efficient and 

promising method [14]. The input for this algorithm is a sample data set of muscle 

activations 
Nm

RA
 0 , extracted from the surface EMG signals of the calibration data. 

Using the NMF algorithm, this matrix can be factorized into the two matrices 

NmNm PSA   44
, or more precisely: 
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While the factorization is primarily targeted to estimate the mixing matrix 
4mS , the 

 
Figure 25: The input of the regression system is the muscle activation estimation, provided by 
the signal conditioning unit. The core of the regression system is the mixing matrix, calculated 
from the calibration data. Using this matrix, the primitives were extracted from the muscle 
activation. 



 

  48 
 

NMF algorithm also returns the primitives 
NP 4

 corresponding to the calibration data. 

The NMF algorithm is indeterminate in regard to the order of the components. This 

indeterminacy entails that the factorization algorithm return 
NP 4

 and 
4mS  in a 

randomly permutated order  DCBA : 
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However, instead of using the factorization approach on the global scale, a DOF-

wise processing of the calibration data is preferred. 

2.3.2.4.1 The DOF-wise factorization approach 

In order to optimize the algorithm towards a meaningful factorization and simplify the 

identification of the factorized components, a “divide and conquer” approach [91] is 

used. This approach divides the factorization along the two DOF, rather than solving 

the problem for all DOF simultaneously. This dividing step is also the reason for the 

pre-defined set of calibration EMG data recorded previously (see section 2.3.2.3). 

Firstly, in the dividing step the recorded muscle activation NmA   is separated into two 

data sets, each containing the activation of a single DOF. 

 MmLmNm AAA   DOF2DOF1, , with 0, ML  and NML  . 

and likewise the factorization is separated into two factorizations 
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By applying the NMF algorithm to both DOF separately, the indeterminacy is 

reduced to the level of each DOF; the two data sets are “conquered” separately. 

Nonetheless, each factorization provides a component for the complete mixing 

matrix 
4mS . What is left to build this complete mixing matrix is to identify the 

permutation matrices DOF1  and DOF2 , resolving the order of the factorization 

components: 

 

        22

DOF2B DOF2,A DOF2,

22
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ssssS

ssssS

. 

2.3.2.4.2 Resolving the indeterminacy 

Taking into account the prior knowledge about the labels of the performed calibration 

movements, this indeterminacy can be resolved in a second step. More precisely, it 

is possible to match the columns of the matrix 








B DOF1,

A DOF1,

p

p
 with )(t  - the labels of 

DOF 1 - and the columns of 








B DOF2,

A DOF2,

p

p
 with )(t  - the labels of DOF 2.  

For this matching process, the label for DOF 1, )(t , is separated into two 

sublabels, each with positive value ranges: 
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For a right handed subject, )(t  is 0  during wrist flexion and )(t  is 0  during 

wrist extension (see Figure 26). Next, the pair-wise cross correlation  BAcross ,  

between the labels and the identified primitives is calculated 
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and used to select the corresponding permutation matrix DOF1 : 
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In this manner, the extracted primitives and the labels are matched. An example for 

this matching process is given in Figure 26.  

However, the primitives identified by the factorization process are of arbitrary units 

and value range. By applying a scaling factor (


DOF1 ,
-

DOF1 ) to each of the extracted 

primitives, they can be scaled to the value range of the wrist angles, as used in the 

label )(t . 
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To automatically calculate these scaling factors, the area under the curve of the 

primitives extracted in the calibration is used. Thus, the scaling factor is defined as 

the ratio of the label’s area under the curve and the extracted primitive’s area under 

the curve, for the intervals of a movement being performed.  In Figure 26 the area 

under the curve is colored in light blue. For the given example the factors are 

calculated as: 
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In this manner, the permutation matrix DOF1  and the scaling factors 


DOF1  and 
-

DOF1  

for DOF 1 are identified and the indeterminacy for the flexion and extension angles is 

resolved. Identically, the permutation matrix DOF2  and the scaling factors 


DOF2  and 

-

DOF2  for DOF 2 can be identified from 








B DOF2,

A DOF2,

p

p
 and )(t  in order to resolve the 

indeterminacy for the pronation and supination angles. 

 

Figure 26: Resolving the indeterminacy for DOF 1: The label )(t  for the recorded data is 

separated into the two function components )(t  and )(t . Using the cross correlation 

between these components and the extracted primitives the correct permutation matrix is 
identified. 
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2.3.2.5 Estimation of control signals using the synergy matrix 

In the previous step, the synergy matrix  supinationpronationextensionflexion ssssS   has 

been identified from recorded calibration data, using the NMF algorithm. In addition, 

the scaling factors  -

DOF2DOF2

-

DOF1DOF1  
 were determined. These 

parameters are now applied to the inverse model to calculate the primitives from new 

and unseen EMG signals online. 

2.3.2.5.1 Calculation of the inverse synergy matrix 

The inverse synergy model to extract control signals 

 TcccctC supinationpronationextensionflexion)(   from the muscle activation )(tA  is given by the 

equation 

)()( 1 tAStC  
. 

The previous step only returned the forward synergy matrix S , which is a non-

quadratic matrix with all entries  0R . A non-quadratic matrix does not have an 

inverse, but instead the pseudo inverse S  can be calculated, using the Moore-

Penrose algorithm [107], [108]. Similarly to the synergy matrix which has been 

calculated DOF-wise, the matrix invS  for the inverse model is calculated separately 

for each DOF, too. This can be written as 
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2.3.2.5.2 Application to newly acquired EMG signals 

In an online application, the control signal is extracted from new EMG data samples

UkRtX )(EMG , acquired constantly in blocks of U  samples using the provided 

hardware. 

The steps necessary to estimate the control signal )(tC  and finally the wrist angle 

estimates )(t  and )(t  are illustrated in Figure 27. 

In a first step, the EMG muscle activation is estimated by applying the ACAR filter 

and calculating the EMG linear envelope as described in section 2.3.2.2, resulting in 

UmRtX )(Activation . Next, the inverse synergy matrix invS  is applied to the muscle 

activation. As a result, the primitives for the four functions are returned: 
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The primitives are of arbitrary unit and in order to use the primitives as a control 

signal )(tC , the scaling factors  -

DOF2DOF2

-

DOF1DOF1  
 have to be applied:  

 
Figure 27: Online processing chain to estimate the control signals. New EMG data is acquired 
by the provided hardware and the muscle activation is estimated using the ACAR filter and the 
EMG linear envelope. The resulting muscle activation is multiplied with the inverse synergy 
matrix and the resulting primitives are scaled using the previously identified scaling factors. 

Finally, the control signals are down sampled and the difference is calculated. 
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In the processing chain until now, the high sampling rate of 2048 Hz originating from 

the original EMG signal )(EMG tX  is kept. This oversampling is now used to remove 

outliers in the estimate )(tC , by down-sampling the signal. The down-sampling is 

performed by short time windowing (window length 82 sample≈40 ms) and 

averaging. The resulting sampling rate of the down-sampled estimate )(ˆ tC  is about 

25 Hz. 

Both the Virtual Evaluation Paradigm and the prosthetic hand require the two angles 

of the DOF as input. These angles can be calculated by using the DOF-wise 

difference of the control signal. This can also be written as: 
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2.3.2.5.3 Post-processing 

For an improved controllability in online experiments, a post-processing of the 

calculated estimation has been added. This additional step is added to ensure a 

more stable and reliable estimate, as well as to implement both position control and 

velocity control, based on the output of the regression system.  
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As indicated in Figure 28, the post-processing is separated into two components, 

plus an optional third integration component. The first component is a validity check 

for the estimated angles, represented by a non-linear transformation function. This is 

implemented using thresholds (


min̂ ,


min̂ ,


min̂ ,


min̂ ) and clipping values ( 

clip̂ , 

clip̂ , 

clip̂ ,



clip̂ ) and can be written as: 
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The threshold is used to reduce jittering in case of noise or weak muscle activations 

in the range 
  minmin

ˆ0ˆ   and 
  minmin

ˆ0ˆ   while the clipping avoids estimates 

exceeding the value range (Figure 28, Validity Check). 

The second component is an FIR filter with linear properties to smoothen the output 

signal. The filter length N  is selected based on the subject’s skill and for the filter 

coefficients applies the restriction 1
0´




N

i

ib . The filters for the two DOF use the same 

settings. To not reduce the fast response behavior of the system, it is suggested to 

 
Figure 28: Structure of the non-linear post-processing. In the first component, the estimate is 
sanitized using a threshold and clipping stage. Weak activations close to zero are suppressed 
and overshoots are clipped. Only if the estimates are within the borders, they pass 
proportionally. The second component is an FIR filter to stabilize the output. Finally, the 
optional integrator as third component can be used to switch from position control mode to 

velocity control mode. 
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select the coefficients according to the rule Nbbb  ...10 . Especially for 

unexperienced subjects, this step can improve the initial control experience, while 

with increasing subject skill the filter length can then be reduced. 

The output of the FIR stage is the control signal used in position mode. In this 

context, position control refers to the direct mapping of the user’s movement 

intention to the prosthetic hand or VEP. A prosthetic hand for instance mirrors the 

movements of the user, and in the VEP the arrow position represents the estimated 

wrist angles. This is equal to the control provided by a computer mouse, where the 

relative position of the mouse is related to the relative position of the mouse pointer 

on the screen. 

On the contrary, velocity control uses an additional integration step between the 

estimate input and control output. In Figure 28 this is indicated by the optional third 

integrator component of the post-processing. In velocity control, if the user keeps the 

hand relaxed ( 0)(ˆ t  and 0)(ˆ t ), the output of the post-processing is constant 

(i.e. arrow in VEP stays in the current position). But if the user performs a activates 

muscles ( 0)(ˆ t  and 0)(ˆ t ) , the output of the post-processing is changing (i.e. 

the arrow in the VEP moves). This is equal to using a joystick: In relaxed position the 

curser stays in place. While pushing the joystick in any direction, the curser moves in 

the corresponding direction as long as the joystick is activated.  

At this point it should be noted that the velocity control is the common control mode 

of both the industrial state of the art and the pattern recognition systems [1], [109], 

[110]. 
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Finally, the output of the post-processing (
out  and 

out ) is used as the control signal 

send to the VEP or a prosthetic device connected.  
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3 Experimental studies on the new myocontrol scheme and 
results 

Two studies were performed to evaluate the result of this development towards a 

new control system for prosthetic hands. The first study focused on the gain in 

controllability, provided by the introduction of the ACAR filter into the developed 

control system.  

The second study evaluated the allover performance of the control system including 

both intact-limb subjects as well as amputee subjects. 

The presented studies were approved by the local ethics committee of the 

Universitätsmedizin Göttingen6. All subjects read and signed the informed consent. 

3.1 Study 1: Impact of the ACAR filter on the Online Regression 
Control System 

3.1.1 Methods 

To evaluate and quantify the impact of the ACAR filter, the Performance assessment 

task with the Virtual Evaluation Paradigm has been used. Four intact-limb subjects 

S1-S4 (male, age range 25-39) participated in this study. All subjects were fitted with 

the 16 electrode setup as described in section 2.3.2.1.  

After the subject preparation, calibration data for the wrist flexion+extension (DOF 1) 

and pronation+supination (DOF 2 ) was acquired using the Guided calibration mode.  

                                            
 
6
 Application no 8/2/11, “Joint EEG, surface EMG and Intramuscular EMG Recordings for the 

Validation of Motor Control Muscle Synergy Model”, approved May 11
th
 2011. 
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Next, the control system was calibrated in three different pre-processing 

configurations with the previously recorded raw EMG data. The three configurations 

differed by the ACAR filter stage of the pre-processing (see section 2.3.2.2.1). In the 

ACAR configuration and the CAR [51] configuration, the respective filter was used to 

improve the selectivity of the EMG channels. In the RAW configuration no filter was 

used at all and the EMG linear envelope was calculated from the EMG signal as 

acquired by the EMG amplifier. The sequence of the configurations was randomized 

among the subjects. After every calibration and while maintaining the pre-processing 

configuration, the subject was asked to hit 20 standardized targets, distributed in the 

control range, that all required simultaneous and proportional control to be 

accomplished (target type 3, s 20max T , ms 300dwell T , dp 16circle d ).  

The time to reach the targets as well as a completion rate was recorded and used as 

performance metrics. The results were statistically tested using two-factor ANOVAs, 

with the pre-processing method and the subject as factors. A significance level of 

05.0  was used for all tests. 

3.1.2 Results 

The resulting performance metrics of the online control task for the four subjects are 

presented in Figure 29. For the subjects S1 and S2, the completion rates increased 

equally using CAR or ACAR in comparison to the unfiltered EMG signal. For subject 

S4 the completion rate was the highest using ACAR, while using the unprocessed 

EMG signal only 6 out of 20 targets were completed. In fact, the controllability of the 

online paradigm for this subject in the RAW configuration was very poor. For the very 

experienced subject S3 all three preprocessing methods yielded 100%. However, for 

all subjects, the ACAR preprocessing resulted in the most stable control experience. 
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This controllability is represented by the time to reach the target (Figure 29b). For all 

subjects the mean time to reach the target as well as the standard deviation was the 

lowest for the ACAR preprocessing, followed by the CAR algorithm. 

For subject S4, the unfiltered EMG signal yielded a similar mean time to reach as for 

ACAR, while the standard deviation was about double. However, since this subject 

was able to complete only 30% of the targets, specifically those that were the closest 

from the initial position and therefore easier to reach, the unfiltered EMG (RAW 

configuration) obviously performed poorer than both CAR and ACAR.  

The statistical analysis of the time to reach on all data acquired indicated an evident 

significance (p<0.05). 

3.1.3 Study discussion 

The evaluation of the proposed ACAR algorithm in an online performance task with 

20 targets resulted in a significant increase of controllability. In this evaluation, all 

subjects performed best with the ACAR as part of the preprocessing chain. As the 

ACAR filter increases the separability while reducing the noise, the subjects 

 
Figure 29: Acquired metric data of the online regression myocontrol using NMF. The left plot 
(a) shows the completion rate for the 20 targets of the four subjects using the three different 
EMG preprocessing methods in randomized order. The corresponding mean time to reach the 
targets and standard deviation is given in the right plot (b). 



 

  61 
 

experienced a more smooth control of the arrow, resulting in a faster and more 

reliable completion of the tasks. 

3.2 Study 2: Evaluation of the Online Regression Control System 

3.2.1 Methods 

The second study was designed to evaluate the performance of the online 

regression control system for different subjects in position mode. For this study no 

only able-body subjects were included in the study, but also subjects with limb 

deficiencies, such as amputations or congenital malformations.  

In total, 11 subjects participated in the study, 3 subjects with limb deficiencies and 8 

intact-limb control subjects. Subjects D2 and D3 used a myoelectric hand prosthesis 

(Otto Bock MyoHand) on a daily basis, while subject D1 had never used a hand 

prosthesis before. A detailed list of all subjects is presented in Table 3. For this 

study, the subjects were fitted with the 16 electrodes setup as described in section 

Table 3: Summary of the subjects who participated in Study 2 

ID Age Gender Subject Condition 

D1 38 
M congenital malformation, right side, 

hand is missing from the level of the wrist 

D2 72 
M amputation 30 years ago, left side,  

transradial short stump (approx. 8 cm) 

D3 46 
M amputation 3 years ago, left side,  

transradial long stump (approx. 17 cm) 

C1 56 F intact-limb 

C2 30 F intact-limb 

C3 33 M intact-limb 

C4 27 M intact-limb 

C5 31 M intact-limb 

C6 29 M intact-limb 

C7 35 M intact-limb 

C8 28 M Intact-limb 
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2.3.2.1, and  were asked to seat comfortably with their arm extended , approximately 

180 degrees elbow extension. 

Each subject performed the same study protocol. In the first phase of the protocol, 

EMG data for the calibration of the regression system was recorded using the 

Guided calibration mode. The subject was asked to perform dynamic activations 

within the maximum range of motion for DOF1 (wrist flexion/extension) and DOF2 

(wrist pronation/supination). The activations of each DOF were repeated four times 

and were triggered manually by the experimenter. The prompt sequence for )(t  

and )(t  presented to the subjects is given in Figure 30. 

Next, this EMG sample data was processed and the inverse synergy matrix, the 

permutation matrix and the scaling factors were determined, as described in section 

2.3.2.4.  

Once the online control system was calibrated, the subject had approx. 5 minutes to 

try to control the arrow. For the FIR filter of the post-processing during online control, 

the parameters were chosen as 
5

1
43210  bbbbb . Considering the update rate 

of 40 ms, this implied that the last 200 ms of newly acquired EMG signals were taken 

 
Figure 30: Prompt sequence used for the calibration phase of study 2. The subject was 
presented with four dynamic activations within the range of motion for both DOF. Each trial 
was triggered manually by the experimenter. Therefore, the time between two repetitions 
(dotted sections) varied depending on the subject’s preference. 
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into account for the generation of an output estimate. The scaling factors 

 -

DOF2DOF2

-

DOF1DOF1  
 were manually adjusted by the experimenter, to adapt 

the available range of motion of the arrow. 

Afterwards, the second phase of the study protocol started. In this phase, the control 

performance was evaluated using the Performance assessment task with the 

parameters s 20max T , ms 300dwell T . The diameter of the circle was chosen as 

dp 16circle d , because in this case the size of one circle is approx. 1% of the entire 

working space ( dp 60dp 360SpaceWork A ). 

Each subject was presented with a standardized run, containing one series of 

10 targets for each target type (1, 2 and 3) in the subject’s range of motion. The 

series for target type 1 and target type 2 requiring only one DOF were presented 

first, but the order of those two series was permutated randomly among the subjects. 

In this manner, the subject was able to accommodate to the system and learn to 

control the two degrees of freedom separately. Finally, the third series for target 

type 3 requiring both DOF was presented to the subjects.  

Once all data was acquired, the following performance metrics introduced in chapter 

2.2.6 were extracted: 

i) the task completion rate   [%]  

ii) task completion time ct  ][s ,  

iii) path efficiency   [%],  

iv) overshoots k   

v) speed v  ]/dp[ s . 
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3.2.2 Results 

The results for task completion rate, task completion time, and path efficiency are 

presented in Figure 31. The results are reported for each subject separately and all 

metrics were calculated for the whole run as well as for disaggregated by the three 

target types. For the completion time and path efficiency, the means and standard 

deviations were calculated including only the successfully completed tasks. 

Looking at the task completion rate, the subjects with limb deficiencies D1 and D3 

 
Figure 31: Metrics for all subjects acquired with the Performance Assessment Task. For each 
subject, the mean and standard deviation for each metric are reported for the full run (wide 
light blue bars) as well as for each target type separately (thin color bars magenta, orange and 
dark blue on top of the light blue bars). Note the legend provided in the lower right for the 
detailed description of the plot. The completion rate (a) reports the number of targets that were 
successfully completed per subject. The mean and standard deviation for the completion time 
(b) and path efficiency (c) are calculated on the basis of the successfully completed targets 
only. 
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were able to complete 100 % of the targets while D2 completed only 70% of all 

targets. In case of the eight control subjects, four subjects were able to accomplish 

100 % of the targets, three subjects missed only one of the 30 presented targets and 

only subject C3 completed less than 90% of all targets. 

Similar results are reflected in the metrics for completion time and path efficiency. 

Subject D2 and C3 required more time than all other subjects and also had worse 

path efficiency than all other subjects. Subject C8 also had longer completion times. 

However, during the study it was observed that subject C8 chose a particular 

strategy to control the arrow slowly, but steady and precise in comparison to D2 and 

C3 who did not perform well. 

Generally, the completion time for the series of target type 3 was 20-100 % longer 

for most of the subjects, except for subjects C3 and C8. This is expected because 

these targets are more demanding. The user had to hit these targets controlling the 

arrow simultaneously and proportionally. Additionally, for the same reason the path 

efficiency was generally worse for the targets of type 3. On the contrary, the 

 
Figure 32: The metric overshoots (a) counts the number of times that the subject positioned 
the tip of the arrow onto the target circle, but did not manage to remain on the target for the 

required dwelling time. The speed (b) measures the average moving speed of the arrow’s tip. 



 

  66 
 

standard deviations of the path efficiency were very similar among target types, while 

the standard deviations of the completion time for targets of type 3 were generally 

larger. 

Besides the previous three metrics, the metrics for overshoots and speed were also 

calculated and are reported in Figure 32. In most cases the number of overshoots 

was higher for the targets of type 3. Interestingly, subject C8 had very few 

overshoots and no overshoots at all for target type 3.This might be explained by his 

slow but stable strategy to control the arrow. Subjects D2 and C3 performed worse 

again; they had the highest number of overshoots. Subject D2 had similar 

overshoots for all target types. He was able to hit all target types, but needed on 

average more than 2 attempts to hit the target, before being able to remain there for 

the required dwelling time for a successful task completion.  

Considering the speed metric, subjects D2 and C3 again performed different than 

the rest of the subjects. The average speed for these two subjects was about twice 

the average speed of the other subjects. Consistently, the standard deviations were 

also larger. Interestingly, the average speed of subject C8 just was minimally slower 

than the speed of most of the other subjects and with a very low variation. All other 

subjects had similar results for both the mean and the standard deviation of the 

speed metric. 

In order to investigate the relation between the completion time as the simplest 

metric and the other three target based metrics, the Pearson correlation coefficient 

  and the corresponding statistically significant levels p  were obtained from the 

pooled measures of all subjects (Table 4). The correlation was calculated for the 

whole run as well as separately for the three different target types in order to 
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compare the differences between the target types. The completion time was 

significantly and markedly correlated with the path efficiency (negative correlation) 

and the overshoots (positive correlation). Additionally, the completion time correlated 

weakly and significantly with the speed (compare with Figure 31).  

These significant correlations indicate the consistency of the choice of these four 

metrics for the assessment of the successful task completion. Furthermore, the 

correlations were marked, but did not reach a 100% correlation indicating that these 

metrics should be employed together because they underline different aspects of the 

task completion. 

Finally, a statistical analysis of the performance metrics has been performed to find 

the differences between the subject with limb deficiencies and the intact-limb 

subjects as well as the impact of the target type.  

The non-parametric statistical test Kruskal-Wallis test [111] was used because the 

distributions of the performance metrics were not Gaussian. To assess the impact of 

the subject (limb deficiency vs. intact-limb), the subjects condition was used as a 

grouping factor. Secondly, the same test was performed using the 

target type (1, 2, 3) as grouping factor. The results of these tests are given in Table 

Table 4: Selected correlations between the performance metrics 

  Target Type 1 Target Type 2 Target Type 3 Full Run 

Completion Time   

Path Efficiency   


 

p
 

-0.61 

7e-12 

-0.53 

3e-09 

-0.64 

4e-13 

-0.61 

2e-33 

Completion Time   

Overshoots k  


 

p
 

0.35 

0.0003 

0.62 

1e-12 

0.60 

3e-11 

0.57 

3e-28 

Completion Time   

Speed v  


 

p
 

0.23 

0.02 

0.21 

0.032 

0.28 

0.004 

0.28 

5e-07 

k
v


p
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5. The subject condition did not have a significant influence on any of the five 

performance metrics. This indicates that amputees could use the systems as well as 

intact-limb subjects. The target type had significant influence on all performance 

metrics except for the completion rate. This indicates that all subjects could complete 

all given tasks, even though the tasks with target type 3 were more demanding. 

3.2.3 Study discussion 

In this study the use of an online control system for simultaneous and proportional 

has been demonstrated and evaluated using a target-based assessment task. By 

including also subjects with limb deficiencies, the transferability of the results to the 

possible target group of the developed algorithm has been ensured.  

Generally, all subjects were able to complete the majority of the provided tasks for 

the three target types. The statistical analysis for the performance metrics proved no 

significant differences between the results of the subjects with limb deficiencies and 

the intact-limb control subjects. As an important finding, these results indicate that 

the Online Regression Control System allows a similar control experience for both 

subjects groups. 

Table 5: p-Values of the Kruskal-Wallis tests for the five performance metrics 

Factor 
Completion 

Rate 
Completion 

Time 
Path 

Efficiency Overshoots Speed 

Subject Condition  
(limb deficiency / intact-limb) 

1 0.22 0.25 0.17 0.27 

Target Type  
(1, 2, 3) 

0.34 10
-6

 2*10
-4

 4*10
-4

 10
-6
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4 Discussion 

In the previous chapters three key elements in the field of myoelectric control for 

upper limb prostheses have been presented and evaluated in human studies. The 

first is the ACAR filter that has been developed as a new pre-processing stage for 

monopolar EMG signals. By introducing an adaptive channel selection algorithm for 

the calculation of a time-varying common average reference, an increase in 

selectivity and a reduction of the common noise have been achieved. By applying 

the adaptive filter to the surface EMG data recorded from different subjects, this 

improvement in signal quality has also been quantified and an optimal parameter set 

has been identified (section 2.1.3.1).  

Besides the quantitative evaluation of the signal quality, the ACAR filter was tested 

with EMG data using classical offline pattern recognition for myoelectric control, too. 

Here again, a significant improvement of the inter-class distribution of the classes in 

the feature space was demonstrated. 

However, the most important aim of this development process was to improve the 

signal conditioning for the estimation of the muscle activation in the online regression 

system. This improvement was confirmed by the results of the study in section 3.1, 

including four subjects. The direct comparison of the control performance using 

different pre-processing stages resulted in a significant gain provided by the ACAR 

filtering. Consequently, the ACAR was included as a key solution in the signal 

conditioning of the Online Regression Control System. 
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Another important advantage of the ACAR filter is the computational simplicity and 

the fact that no training is required. In the proposed configuration, each processing 

step is based on the calculation of the sum over absolutes, a sorting step and the 

calculation of the sample-wise mean to be subtracted from the input data. All these 

processing steps can be performed on basic microcontrollers or even embedded in 

hardware. And as no training is required, the algorithm runs out of the box. 

While the discussed applications are focusing mainly on myocontrol, the ACAR filter 

also has potential impact in other EMG applications. For instance, the filter has also 

been used on recordings of High-Density EMG signals from TMR subjects with 384+ 

channels [112], [113]. In this case, the filter was used to enhance the spatial 

resolution of the EMG activation during online visualizations and permitted a direct 

and distinct visual feedback to the subject. 

The second key element of this project is the Virtual Evaluation Paradigm, including 

Performance assessment task and performance metrics. While in the scientific 

community the methods and performance metrics for offline analysis are clearly 

defined, the online assessment has received a lower attention in the past [21], [23], 

[45], [47]. Therefore, the result of this work presents a simple but powerful and 

reliable methodology to assess the online performance of systems for simultaneous 

and proportional control. 

The developed paradigm provides a simple and intuitive 2D-interface that can be 

used on a standard computer monitor. In this manner, no additional hardware such 

as head mounted displays or 3D monitors are necessary, which can also be 

challenging for the subject [76], [77], [114]. None of the subjects in the two studies 

presented in chapter 3 had difficulties in understanding and using the paradigm, 
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although subjects D2 and D3 did not own or use a computer and therefore where not 

used to graphical user interfaces. Consequently, due to its intuitiveness, this 

paradigm can also be used in clinical practice with subjects of different technical 

experiences. 

For the Performance assessment task, the studies have also shown that a target-

based evaluation system is encouraging for the subjects. Especially the audio 

feedback was appreciated by the subject. Not only were the subjects motivated 

during the study, but also asked to keep on playing with the target hitting task 

afterwards. By modifying the parameters of target size, dwelling time and timeout, 

the difficulty can be adjusted for the requirements of each study. The quantitative 

performance metrics provided by the paradigm allow a comparison either between 

subjects or between different control systems. The task completion rate, task 

completion time and path efficiency are intuitive and direct metrics. Specifically, the 

task completion rate gives an overall estimate of the performance achieved and is 

also easy to understand for the subject as a direct feedback. The task completion 

time encodes the responsiveness of the control system as well as the specific 

performance of the subject. However, the task completion time also is connected to 

each task, as targets more distant from the center position will require a longer time 

to reach. On the contrary, the path efficiency is generally unrelated to each task, as it 

is normalized to the optimal path. Nevertheless, in case of the target type 3, the 

maximum path efficiency of 100% can only be achieved by using simultaneous 

control, which in turn is not available for all myocontrol system [13], [21], [109]. 

Therefore, the presented evaluation paradigm with its metrics has the advantage to 

actually account for the future requirement of prosthesis control systems of 

simultaneous and proportional control. 
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Considering the additional metrics overshoots and speed, they can be considered as 

more abstract. An increased value for overshoots indicates a lack of fine control. The 

targets can only be completed after multiple attempts or corrections, implying also a 

decrease in path efficiency. The speed on the other hand depends both on the 

completion time and the path trajectory measured, thus all three metrics have to be 

considered together. A high speed together with a short task completion time and 

high path efficiency implies a fast and efficient control performance. On the contrary, 

a high speed together with a long task completion time implies that the trajectory was 

not optimal and probably included loops. In summary, due to the correlations of the 

metrics, they are complementing each other and form a sound basis for the 

evaluation of myocontrol systems.  

The Virtual Evaluation Paradigm has been implemented within a more complex 

software environment [79], providing a toolset for signal processing, pattern 

recognition and regression systems. As a result, the developed paradigm has 

already been used in multiple studies including scientific collaborators and the 

results have been submitted or published in peer-reviewed journals or conferences 

[61], [65], [82]–[85], [89]. This underlines the importance and acceptance of this 

paradigm in the myocontrol community. 

A short video demonstrating the use of the Performance Assessment Task by an 

amputee subjects is available at: http://youtu.be/fXsPwbLsXyE 

The third and final key component of this work is the Online Regression Control 

System. Starting from the work done by Jiang et al in 2009 to investigate the force 

estimation from muscle signals in offline studies using a factorization approach [14], 

a practicable online myocontrol system has been developed. Despite the fact that 

http://youtu.be/fXsPwbLsXyE
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factorization methods and especially the NMF approach have already been 

proposed by the scientific community in the past as a potential solution for intuitive 

prostheses control, only the pre- and post-processing methods developed within this 

PhD project finally closed the existing gap towards a viable online estimation of hand 

kinematics. With the new signal conditioning stage and the post-processing to 

stabilize the output, a completely new system for the simultaneous and proportional 

control of hand prostheses has been developed. By designing the resulting system 

to run online and in real-time on standard computer hardware, it was possible to 

evaluate the applicability of the developed algorithms. 

As mentioned before, also the implementation of the control system has been 

realized as a component of a larger software environment developed at the 

beginning of this project [79]. This ensures the interconnectivity with different 

hardware and a stable software basis. The use of the algorithm by different subjects 

has been shown in a study including 3 subjects with limb-deficiencies and 8 intact-

limb control subjects (section 3.2). All of the subjects were able to control the two 

degrees of freedom simultaneously and proportionally, which has been evaluated 

using the Performance assessment task. The statistical analysis of the acquired 

performance metrics pointed out that the ability to use the control algorithm was 

independent from the subject condition. 

Due to the short and easy calibration phase, the presented control system can be 

used within 5 minutes after placing the electrodes. In comparison to classical pattern 

recognition methods, such a short preparation time is reasonable for a prosthetic 

user, for instance to calibrate the prosthetic hand in the morning after donning. For 
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such a use case, the prosthesis can even be used to provides the cue during the 

short calibration phase [44], [106].  

While the quantitative analysis of the control system proof the usability, also the real 

application of the control system for hand prostheses has been tested in a use case. 

For this, the output of the post-processing system has been connected to a virtual 

prosthetic hand as well as a real Michelangelo Hand provided by Ottobock. 

However, at the current time the virtual hand and real prosthetic hand do not provide 

performance metrics that can be used in a study. To provide the reader an 

impression about the results, two videos have been produced and are available 

online: 

 Michelangelo Hand: http://youtu.be/fjKi8NXZoi4 

 Virtual Hand Prosthesis: http://youtu.be/XbHKGhIfCtU 

While this thesis project targeted the use of myoelectric control in hand prosthetics, 

the use of the developed algorithm is not limited to this. Instead, it can also be used 

as a new kind of human interface device to interact with computers or smartphone. 

An example is the use of the generated control signal to control the mouse pointer 

on a computer. A similar application has already been tested and presented in [115]. 

As a final conclusion, a myocontrol system with an adaptive pre-processing 

algorithm has been developed, capable of controlling two degrees of freedom 

simultaneously and proportionally. Furthermore, the Virtual Evaluation Paradigm has 

been designed and implemented as a powerful tool to acquire calibration data, but 

also to evaluate the performance of myocontrol systems. The use of this paradigm 
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as a scientific tool in multiple studies underlines the impact for the research area of 

neurorehabilitation. 
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Annex I: Literature research 

Before the start of this PhD project, as well as during the project period, a literature 

research has been performed. Since already my diploma thesis was on the topic of 

myoelectric control [115], I started with an existing database of publications on this 

topic. 

Starting from this database, I used different methods to follow updates in the 

scientific community and keep up to the latest developments: 

I. Using PubMed I configured an alert for the following search tags and 

reviewed them on bi-weekly basis: 

a. Prosthetic control 

b. Gesture recognition 

c. Adaptive prosthesis 

d. (emg OR myoelectric) AND (classifier OR classification) 

e. adaptive AND (prosthesis OR prostheses OR prosthetic) AND (hand 

OR upper OR arm OR transradial) 

II. Additionally to the publications listed in PubMed, I also followed the most 

important research groups for myoelectric control of upper limb prostheses 

through direct contact or their websites. 

III. Through regular scientific meetings and journal clubs within the Department of 

Neurorehabilitation Engineering as well as the AMYO Project Consortium, 

I received additional input from peers and colleagues of different research 

fields. 
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IV. I reviewed several manuscripts for the following scientific journals: 

a. IEEE Transactions on Biomedical Engineering 

b. IEEE Journal of Biomedical and Health Informatics 

c. IEEE Transactions on Neural Systems & Rehabilitation Engineering 

V. Together with Dr. Aidan Roche, a collaborator at the University of Newcastle, I 

wrote a review on prosthetic control. While Dr. Roche focused on the clinical 

aspects, I concentrated on the technical developments since the 1940 and 

therefore reviewed the literature of the past 60+ years. The review “Prosthetic 

Myoelectric Control Strategies: A Clinical Perspective” [109] has been 

published by the peer-reviewed journal “Current Surgery Reports” in January 

2014. 

VI. During the PhD project I participated in three international conferences as well 

as multiple scientific meetings and workshops, allowing me to get into touch 

with peers from the field and discuss the most recent scientific developments. 
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