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Abstract

The theme of this thesis is transition to turbulence in linearly stable shear flows.

Laminar-turbulent intermittency and hysteresis are typical feature of these flows at

transitional Reynolds numbers, characterizing a subcritical scenario. Subcritical tran-

sition is a dynamically rich phenomenon in nature and has been scrutinized for over a

century. The critical Reynolds number for the transition and its physical mechanisms

are fundamental problems in fluid dynamics and are still not fully understood. These

questions are addressed in this thesis by performing direct numerical simulations of

Taylor-Couette flow in linearly stable regimes: counterrotating narrow-gap regime (in

the plane Couette limit) and corotating quasi-Keplerian regime. The essential contri-

butions in this study can be summarized as follows.

In the first part of the thesis, a highly efficient parallel DNS code for tur-

bulent Taylor-Couette flow has been developed. The Navier-Stokes equations

are discretized in cylindrical coordinates with the spectral Fourier-Galerkin method

in the axial and azimuthal directions, and high-order finite differences in the radial

direction. Time is advanced by a second-order, semi-implicit projection scheme, which

requires the solution of five Helmholtz/Poisson equations, avoids staggered grids and

renders very small slip velocities. Nonlinear terms are computed with the pseudospec-

tral method. The code is parallelized using a hybrid MPI-OpenMP strategy, which

is simple to implement, reduces inter-node communications and is more efficient com-

pared to a flat MPI parallelization. A strong scaling study shows that the hybrid code

maintains very good scalability up to 3×104 processor cores and thus allows to perform

simulations at higher Re with higher resolutions than previously feasible.

In the second part, this code is used to study the subcritical transition to turbulence in

plane Couette flow. Here turbulent spots can grow and form continuous stripes, yet in

the stripe-normal direction they remain interspersed by laminar fluid. By performing

direct numerical simulations in a long narrow domain, it is observed that individual

turbulent stripes are transient. In agreement with recent observations in pipe flow it is

found that turbulence becomes sustained at a distinct critical point once the

spatial proliferation outweighs the inherent decaying process. By resolving

the asymptotic size distributions close to criticality, the feature of scale invariance

at the onset of turbulence is demonstrated and the critical exponents are obtained.

i



These results shows that the transition is a continuous phase transition and

may belong to the directed percolation universality class.

Third, subcritical hydrodynamic turbulence is probed in Taylor-Couette flow (TCF) in

the quasi-Keplerian regime at Re up to 105. Whether hydrodynamic turbulence exists

in linearly stable quasi-Keplerian flows is strongly debated and controversial results

were reported. To avoid the axial end-wall effects in experiments, DNS simulations of

axially periodic TCF have been conducted. By analyzing the temporal evolution of

perturbation kinetic energy, secondary instability is identified and it causes the

flow break down to turbulence. However, the arising turbulence eventually

decays.

The effects of Earth rotation may contribute to the observed turbulence in experiments.

In the final part of the thesis, linear stability and transient energy growth have been

studied in the plane Couette flow with system rotation perpendicular to the wall. It

is found that wall-normal external system rotation causes linear instability.

At small rotation rates, the onset of linear instability scales inversely with the rotation

rate and the optimal transient growth in the linearly stable region is slightly enhanced,

∼ Re2. At large rotation rates, the transient growth is significantly inhibited.
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“A journey of a thousand miles starts with a

single step.”

Laozi (c. 400 - 500 BC)

1
Introduction

1.1 Transition to turbulence

In fluid dynamics, laminar-turbulent transition, the process of a laminar flow becom-

ing turbulent, has been the subject of research for over a century. This transition

arises throughout nature from star formation, weather dynamics, down to cardiovas-

cular circulation. A typical example is a rising plume of smoke from a cigarette, where

the regular, non-mixing, smooth motions of smoke at the beginning turns chaotic,

disordered and turbulent at some distance above the cigarette. The study of laminar-

turbulent transition has significant theoretical meaning, to understand the origin and

nature of turbulence, which is described by Nobel Laureate Richard Feymann as “the

most important unsolved problem of classical physics”. Besides this, turbulence tran-

sition appears also frequently in engineering and has both detrimental and beneficial

effects. Turbulent flows lead to much higher energy losses during the transport of

liquid due to high wall friction, whereas turbulence improves drastically the mixing

efficiency in chemical reactions. If the transition mechanisms were fully understood,

efficient turbulence-controlling strategies could be conceived to either delay or promote

a transition.

The first quantitative study on transition to turbulent flow dates back to the cir-

cular pipe experiments performed by Osborne Reynolds in 1883 [1]. In his study,

Reynolds tried to find a critical velocity below which “the disturbance would settle
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Chapter 1. Introduction

down into a steady condition” and above which turbulence persists. However, he re-

alized that the seemingly simple experiments were extremely complicated. Reynolds

finally couldn’t obtain a precise critical value but concluded with a rough but relatively

accurate estimation. In this paper Reynolds introduced the idea of the most important

non-dimensional number in fluid mechanics, later named after him as the Reynolds

number, Re = UL
ν , where L is the length scale upon which the characteristic velocity

U varies and ν is the kinematic viscosity . The puzzle left behind by Reynolds triggered

tremendous research work on the subject of flow instabilities, including Rayleigh [2],

Taylor [3, 4], Laudau [5], Rotta [6], Lorenz [7], Coles [8], Ruelle and Takens [9], Swinney

and Gollub [10], Pomeau [11]. However, it was not until 2011 upon cumulative efforts

of previous experiments and numerical simulations that the puzzle of the critical point

in pipe flow was finally resolved [12]. The whole exciting story of turbulence transition

in pipe flow has been recently documented in Kerstin Avila’s PhD thesis [13].

Figure 1.1: Cartoon illustrating the supercritical and subcritical transition to tur-
bulence: statistical equilibrium (Stat. Equil.) states versus the control parameter
Reynolds number Re. The solid and dashed lines denotes the stable and unstable
equilibrium states, respectively. Supercritical transition is characterized by bifurca-
tions sequences and continuous variation, whereas subcritical transition has feature
of discontinuity and hysteresis as Re varies.

The transition scenarios from laminar to turbulent flow can be, in light of the nonlinear

dynamics theory, categorized into two types: supercritical and subcritical transition.

The schematic pictures are illustrated in Fig. 1.1. Supercritical transition often under-

goes a series of successive bifurcations and instabilities before the flow eventually breaks

down to turbulence (Fig. 1.1 (left)). One of the typical examples is Taylor-Couette

flow (TCF) with stationary outer cylinder. TCF is the flow between two independently

rotating concentric cylinders. When the outer cylinder is fixed and the inner cylinder is

rotated, the base velocity profile (an equilibrium solution of the governing equations of

the incompressible fluid flows, Navier-Stokes equations) is linearly unstable according

to Rayleigh’s criterion [2]. Rayleigh’s criterion derives from an inviscid analysis and

states that flow with outward decreasing angular momentum is linearly unstable. How-

ever, the flow maintains the laminar motion at small Re due to the stabilizing effect of

viscosity. Beyond a certain critical Reynolds number, a new state bifurcates from the
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Chapter 1. Introduction

laminar one and it is characterized by axially-periodic roll structures, known as Taylor

vortices. As Re is further increased, new (statistically) steady states arise and the

complexity of the flow augments continuously, starting from wavy vortices, modulated

wavy vortices, to turbulent Taylor vortices and finally cascading to turbulence [14].

In contrast, subcritical transition is much more complicated and has been puzzling

many researchers, in that it is very sensitive to the initial conditions and to the his-

torical path of the flow. In this case, the laminar flow is linearly stable. With pertur-

bations of finite amplitude, the complexity of the flow displays discontinuous feature

as Re varies: Turbulence arises or decays abruptly, as shown in Fig. 1.1 (right). What

makes things more delicate is the fact that turbulent and laminar regions can coexist in

the system at moderate Re. Pipe and plane Couette flow (PCF) exemplify excellently

this type of transition. Literature on the subcritical transition to turbulence in pipe

flow can be found in [15–20]. PCF is an idealized flow which denotes the fluid flow

sheared between two parallel infinite plates at a finite distance apart and moving with

different speed. The flow is purely driven by the viscous force of the fluid and the shear

formed by the plates. The linear velocity profile of the base flow in PCF has been the-

oretically proven to be linearly stable [21, 22]. However, by sufficiently perturbing the

flow, turbulence is observed in both experiments [23] and numerical simulations [24].

At moderate Re turbulence forms localized structures, such as turbulent spots and

stripes, surrounded by laminar regions. The observation of this spatial irregularity

and complexity has actually raised a wave of investigations and it is a hot topic in the

community of fluid dynamics. More significantly, it shifts the physical understanding

of the transition process from the traditional viewpoints of consecutive bifurcations [5]

or temporal chaos [9, 10, 25] to the spatio-temporal perspectives [26]. As has been

shown in pipe flow [12] and as will be further evidenced in the first part of this thesis,

the spatial complex dynamics indeed plays a crucial role in the subcritical transitions

process towards turbulence.

1.2 Subject of the thesis

In this thesis, direct numerical simulations (DNS) were performed to study the subcrit-

ical transition to turbulence in shear flows. Distinguished from the Reynolds-averaged

Navier-Stokes (RANS) and large-eddy simulations (LES), DNS solves directly the

Navier-Stokes equations and resolves the whole range of scales relevant to the tur-

bulence dynamics, hence providing data of high fidelity. Moreover, DNS enables access

to the whole-field data of physical quantities and it is free from the unavoidable defects

in lab experiments (boundary roughness, environmental noise, etc). The disadvantage

of DNS is that it is computationally very costly, since the relevant spatial and tem-

poral scales span several orders of magnitude. The largest scale is about the domain

3



Chapter 1. Introduction

size L while the smallest one l, according Kolmogolov’s theory [27, 28], is set by the

energy dissipation rate ǫ and the viscosity ν, l ∼ (ν3/ǫ)1/4. Assuming that the energy-

containing scales dominate the dissipation rate ǫ ∼ u3/L, the scale separation L/l

is thus enlarged with the increasing Reynolds number as L/l ∼ (Re)3/4. Therefore,

the total complexity of a DNS for a three dimensional unsteady flow amounts up to

O(Re3), with a temporal duration of order ∼ O(Re3/4) needed for the flow to cross

the computational domain [29]. One goal of this thesis is to develop a highly efficient

parallel DNS code which allows us to make full advantage of modern supercomput-

ers and then to conduct cutting-edge research on long-standing classical problems in

transition to turbulence.

The flow between two independently rotating concentric cylinders, Taylor-Couette flow

(TCF), is the main subject of our study. Fig. 1.2 (left) shows the geometry of the flow.

The inner (outer) cylinder has radius ri (ro) and rotates at a speed of Ωi (Ωo). The

Reynolds number in the inner and outer cylinder is defined as Rei,o = Ωi,ori,od/ν,

where d = ro − ri is the gap between the cylinders. The geometry of TCF is fully

specified by two dimensionless parameters: the radii-ratio η = ri/ro and the length-to-

gap aspect-ratio Γ = Lz/d, where Lz is the axial length of the cylinders. The laminar

base flow, often called circular Couette flow, has only azimuthal velocity component.

The amplitude of the angular velocity Ω depends on the location in radial direction,

as

Ωb(r) = C1 +
C2

r2
, with C1 =

Reo − ηRei
1 + η

, C2 =
η(Rei − ηReo)

(1− η)(1− η2)
, (1.1)

which corresponds to a pure rotary shear flow.

Two different regimes in TC flow are considered in the thesis: counter-rotating regime

in the narrow-gap limit (Regime I) and co-rotating quasi-Keplerian regime (Regime

II), as shown in Fig. 1.2 (right). In the former, the radius ratio is η = 0.993, where

the curvature effects are negligible and the flow behaviors asymptotically as plane

Couette flow (PCF). PCF is a canonical example for studying shear flow instabilities

and subcritical transition to turbulence. The latter one (Regime II) denotes the co-

rotating region below the Rayleigh line and above the solid-body line in the (Reo, Rei)

parameter space. The Rayleigh line (Reo = ηRei) seperates the linearly stable and

unstable flows for inviscid fluids. Below the Rayleigh line, the circular couette flow

is linearly stable. On the solid-body line the fluids behaves like a rigid body without

shear, which means Ωi = Ωo or Rei = ηReo. In the region limited by these two lines, the

base velocity profiles satisfy two conditions: (1) radially increasing angular momentum
dΩb(r)r2

dr > 0; (2) radially decreasing angular velocity dΩb(r)
dr < 0. Since the astrophysical

Keplerian velocity ΩK(r) ∼ r−3/2 satisfies both conditions, the region in light blue is

often called quasi-Keplerian regime, especially in studying the astrophysical Keplerian

flows.
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Figure 1.2: (Left) Schematic of the Taylor-Couette system in cylindrical coordi-
nates. The inner and outer cylinder rotate independently with speeds Ωi and Ωo, re-
spectively. No-slip boundary conditions at the cylinder are used together with axially
periodic boundary conditions. The fluid between the cylinders (hatched region) flows
by the shear force due to the fluid viscosity. (Right) The parameter space Reo −Rei.
Two different regimes are here considered: exactly counter-rotating regime I and co-
rotating quasi-Keplerian regime II. In regime I, we take Rei = −Reo and η = 0.993,
while the quasi-Keplerian regime is bounded by the Rayleigh line and the solid-body
line.

There are two scientific problems that are concerned in this thesis. The first one is on

the critical Reynolds number beyond which turbulence sustains and on the physical

nature of such a transition in PCF. The simulations were performed in flow regime I

in TCF. As shown in an earlier study [30] TCF approaches the PCF limit for these

parameter settings and is linearly stable for all Reynolds numbers relevant in this

thesis. The second problem is to check whether turbulence in the flow regime II can

arise via subcritical mechanisms. This study is motivated by the accretion in weakly-

ionized astrophysical disks, where the accretion process requires angular momentum

transport in the disk and turbulence-enhanced viscosity is the mechanism thought to

be responsible for the transportation. However, the question how turbulence arises

in cold disks is still unclear. Subcritical transition to turbulence (like in other shear

flows) may be a potential candidate.

1.3 Threshold of sustained turbulence in PCF

The critical Reynolds number for sustained turbulence in PCF has been investigated for

a long time. The classical theoretical approaches to study the stability of PCF include

the Kelvin modes method [31], linear stability analysis [32, 33] and the method of

solving the initial-value problem of the inviscid PCF introduced by Case [34]. All

those methods failed to predict a critical Re since the laminar profile of PCF has been

mathematically proven to be stable to infinitesimal perturbations (or to be linearly
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stable) for all Re [21]. On the other hand, Ellingsen and Palm [35] showed that

finite three-dimensional disturbances may lead to breakdown of the laminar motion,

which was supported by Nagata’s discovery of 3D finite-amplitude exact solutions for

Re > 125, giving a lower bound for the onset of turbulence in PCF [36]. Through the

numerical investigation of the development of localized turbulent spots, Lundbladh and

Johansson [24] proposed for the first time an estimation of the critical Reynolds number

Rec ≃ 375, which agreed well with the experimental results Rec = 360 ± 10 obtained

one year later by Tillmark and Alfredsson [23]. These work motivated an effort from the

French CEA Saclay group to reveal the subcritical transition to turbulence in PCF.

The critical Re had also been successively refined by employing different methods,

from examining the evolution of turbulent spots (Rec = 370± 10) [37], measuring the

critical amplitude of the initial perturbation to trigger turbulence (Rec = 325±5) [38],

to the statistical approach of measuring the mean lifetime of turbulent spots (Rec =

323 ± 2) [39]. With this statistical method Bottin and Chaté thought “the transition

to turbulence in plane Couette flow is best studied”.

With the fast development of supercomputing infrastructures and parallel computing

software, DNS becomes another powerful tool to explore the physics of turbulence

(see [29, 40–42]). By performing DNS simulations over a computational domain with

similar size as in previous experiments [39], Duguet et al. [43] monitored the velocity

fluctuations and found that the threshold of sustained turbulence happens at Rec =

324± 1. However, these results have been contradicted by the finding of Schneider et.

al. [44], who showed in a small domain of PCF that turbulence is always transient,

as argued earlier in pipe flow [16, 45]. Interestingly, it is observed in previous studies

on linearly stable flows that at moderate Re turbulence firstly appears in localized

form, such as turbulent “puffs” in a pipe [46] or turbulent “spots” or “bands” in PCF

and TCF [8, 24, 47, 48], before eventually evolving into fully developed turbulence at

higher Re. The dynamics of localized turbulence are rather complex: decay, spreading,

splitting, merging, etc. The transient nature of localized turbulence in small systems

in [44] (without sufficient spatial interactions) does not necessarily indicate the absence

of sustained turbulence in a spatially extended system. This thesis actually shows that

the spatial dynamics of the temporally transient localized turbulence lead to sustained

turbulence in PCF.

Continuous or discontinuous phase transition?

Meanwhile, extensive work from French scientists has been devoted to understand

the nature of subcritical transition to turbulence in PCF from the viewpoint of phase

transition in statistical physics, following the line of argument by Pomeau [11]. Pomeau

proposed that subcritical turbulence bears resemblance to “directed percolation” (DP)

in statistical physics. Percolation generally describes the physical phenomenon of a
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fluid spreading randomly through a medium, e.g., the wetting of a porous medium,

and was firstly mathematically studied by Broadbent and Hammersley [49]. Here the

spreading of the fluid is determined by the permeability or randomness of the medium

instead of the randomness of the fluid itself like in diffusion processes. When the

symmetry of the system is broken in a particular direction due to an external force or

law (gravity, time, etc), percolation is usually constrained in this direction and therefore

called DP. DP problem was introduced by S. P. Obukhov [50] and the aforementioned

wetting problem under gravity is an example. Nowadays, the term DP mostly refers to

a universality class of continuous phase transitions out of thermodynamic equilibrium.

Taking the simplest bond DP model for example (Fig. 1.3), each active (blue) site at

the current level connects to the neighboring two sites at one level down with a fixed

probability p. This probability controls the local connectivity and is the only parameter

to determine the global permeability of the system. Beyond some critical threshold

p > pc, the system undergoes a phase transition from impermeable to permeable, as

shown in Fig. 1.4.

seed

time

p

Figure 1.3: Bond directed percolation model [51]. In this model, each active site
(in blue) connects to a neighbor with probability of p. As time evolves downwards,
whether the initial active site reaches the bottom totally depends on p.

i

t

i

t
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t

p<p
c cc

p=p p>p

Figure 1.4: Spatial-temporal dynamics in bond DP model [51]. Three different
scenarios are shown: below the critical value pc, the initial active sites simply die
away, while at the critical value they struggle to reach the end. When p > pc, the
system is almost fully active. These diagrams are typical for systems in the DP
universality class.
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The connection proposed by Pomeau between subcritical turbulence and DP model

seems reasonable at least at a qualitative level: the localized turbulence can be inter-

preted as the active individual site, whereas the laminar flow as the inactive site; The

Reynolds number Re plays the role of the connecting probability p. This analogy had

been further advocated by Chaté and Manneville [26], who observed typical features

of critical phenomena by numerically solving a group of partial differential equations.

It is worth to note that this paper emphasised for the first time both the spatial and

temporal aspects in the transition to turbulence with its conceptually beautiful title

“Transition to Turbulence via Spatiotemporal Intermittency”, although the concept

“spatiotemporal intermittency” (STI) was coined earlier in a paper by Kaneko [52].

Additionally, Janssen [53] and Grassberger [54] earlier conjectured that an absorbing

continuous phase transition with a single non-negative order parameter (density of

active sites in bond DP model), short-range interactions and without unconventional

symmetries or quenched disorder generally falls into the DP universality class. The

transition to subcritical turbulence appears to fulfill all the above requirements:

1) linearly stable laminar flow;

2) non-negative turbulent fraction as the only order parameter;

3) no long-range interactions1.

Quantitatively, the question whether transition via STI to subcritical turbulence falls

into the DP universality class, according to Pomeau [11], “could be checked, at least

in principle by comparing the predicted “universal” critical exponents of directed per-

colation with experimental data.” In the DP universality class, the order parameter ρ,

the spatial and the temporal correlation length (ξ⊥ and ξ‖) follow universal power-law

scalings with a universal exponent, as listed in Table 1.1. To the best of my knowl-

edge, these universal scaling behaviors were only obtained from theoretical and model

studies and there is no experimental or numerical evidences, except the one realized in

liquid crystals by Takeuchi et al. [55]. In NS equations it has not been shown yet.

order parameter spatial temporal

scaling ρ ∼ (p− pc)
β ξ⊥ ∼ (p− pc)

ν⊥ ξ‖ ∼ (p− pc)
ν‖

exponents β ν⊥ ν‖
1D 0.276 1.097 1.734
2D 0.583 0.733 1.295

Table 1.1: The universal critical exponents in 1D and 2D DP universality class [56].

1Although pressure is a global quantity in the flow, the dynamics of localized turbulence (spots or

stripes) is confined to the nearby region.
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Through a model study in coupled map lattices, Chaté and Manneville [57] quanti-

tatively investigated the STI phenomenon and statistically measured the scaling be-

haviors. They found a continuous phase transition but with a different exponent and

thus concluded that STI does not belong to the DP universality class. Careful readers

will notice that the results in this paper actually do not provide sufficient evidence to

support this conclusion. The only obvious deviation from DP class is the exponent

β ≃ 0.25 instead of βDP ≃ 0.276. However, the data points in Fig. 8 in that paper

would also easily match well with a power-law scaling with the DP exponent within

the range of the error bars. A decade later, Bottin et al. [39, 58] conducted the first

series of experiments in PCF aiming to clarify the continuous nature of the transition

to sustained turbulence. Based on the seemingly-discontinuous curve of the mean tur-

bulent fraction and the qualitative comparison between experiments and models, they

claimed that the transition is discontinuous, i.e., of the first order. Since the system

in their study was small and contained only few spots, the results might be influenced

by the finite-size effects and thus the conclusion remains controversial. Although re-

cent numerical studies in PCF [43, 59] appears to support a discontinuous nature of

the transition, the viewpoint was challenged by both the numerical and experimen-

tal observations in pipe flow [12, 60]. To resolve this mystery, quantitative evidence

(e.g. critical exponents) are needed. Unfortunately in pipe flow the extremely large

time scale (∼ 107−8) of dynamical events (turbulence decay or spreading) at criticality

makes the measurement of critical exponents beyond the current capabilities. As we

will show later in this thesis, the time scale in PCF is several orders of magnitude

smaller than that in a pipe, which thus provides a unique opportunity to measure the

critical exponents at criticality.

1.4 Stability of rotating flows in astrophysical accretion

disks

Relevant physical mechanisms for the onset of turbulence in linearly stable flows like

PCF and pipe flow are well established. Due to the non-normality of the linearized

system, initial disturbances are algebraically amplified by a large factor before the

viscosity of the fluid damps out all the fluctuations. This effect is known as transient

growth [61–63]. Under sufficiently large initial perturbations, linear transient growth

will, by pumping energy from the laminar flow to big structures such as streamwise

streaks and vorticities, distort strongly the laminar flow. This distortion makes non-

linear interactions between modes no longer negligible, which eventually causes the

flow break down to turbulence. The relevance of such mechanisms is much less un-

derstood for other shear flows. One interesting example is the turbulence in cold or
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weakly-ionized astrophysical accretion disks, where rotation plays a key role besides

shear.

Figure 1.5: Artist rendering of astrophysical accretion disk: turbulent motions of
fluids accompany with the outbursts of radiation jets. (Credit: Gemini Observatory)

As an ubiquitous phenomenon in the universe, astrophysical accretion disks are thin-

layer rotating flows of matter (dust, gas, ions, etc) around a massive central body, such

as a star or a black hole (see Fig. 1.5). In Keplerian flows, the angular velocity in the

disk is ΩK(r) ∼ r−3/2, which leads to an increasing angular momentum outwards. As

matter spirals towards the central body under gravity, it incurs a loss of gravitational

energy and angular momentum. The gravitational energy is tranferred into heat or

radiated by the emission of electromagnetic radiation. On the other hand, the loss

of angular momentum due to the mass falling into the center must be compensated

by an angular momentum gain of the mass far from the center, in order that the

total angular momentum is conserved in the whole disk. In rotating flows, it must

be the torque induced by the azimuthal shear stresses between different layers that

causes the redistribution of angular momentum in the disk. Since molecular viscosity

is known to be too small to match the observed accretion rates, turbulent viscosity,

which can be several orders of magnitude larger than the molecular one, was proposed

by Shakura and Sunyaev [64] to account for disk accretion. Observational evidences of

turbulent motion have been reported in some disks [65–67]. A more intriguing question

is how turbulence arises, given that the Keplerian velocity profile is linearly stable

according to Rayleigh criterion [2]. In hot or ionized disks, magnetic fields in stars

act on the ionized rotating fluids, which causes linear instability if the fluid velocity

decreases outwards [68–70]. This is nowadays called “magnetorotational instability”

(MRI). However, in cold disks a clear candidate is still lacking to explain the origin of

turbulence. As shown in pipe and Couette flows, nonlinear mechanisms can give rise

to sustained turbulence, despite the linear stability of the laminar profiles. Turbulence

10



Chapter 1. Introduction

was also observed in case of stationary inner cylinder [4] as well as in the counter-

rotating regimes [8] in TCF, which are also linearly stable.

For decades, TCF has been employed to probe subcritical turbulence in accretion disks

[71–75], as initially proposed by Zeldovich [76]. The main reasons are as follows. Firstly,

laminar TCF can realize the outwards increasing distribution of angular momentum

as encountered in Keplerian flows and it can approach asymptotically the Keplerian

velocity profile. On the other hand, physical processes involving in disk accretion

are very complicated, including hydrodynamics, magnetic fields, radiation, thermal

stratification, etc. The irregular geometry and free-surface boundaries of the disks

adds more complexity to the real physical problem. Because of these difficulties in

real disks, TCF is therefore an appropriate laboratory framework to understand as a

first step the pure hydrodynamics in the disks. A more detailed comparison between

accretion disks and TCF can be found in [77].

Recently, conflicting results on whether subcritical hydrodynamic turbulence exists in

the quasi-Keplerian regime in TCF (regime II in Fig. 1.2) have been reported. All cited

experiments do not include magnetic or other physical fields except the hydrodynamic

flows. Ji et al. [72, 73] measured the Reynolds stress or the β parameter introduced

by Richard and Zahn [71] at discrete interior locations at Re up to 2× 106 and found

that experimentally measured β is far below the value calculated from astrophysical

observations and hence cannot explain the observed transportation rate of angular

momentum in disks. However, this was challenged by the results from another two

groups [74], where strong level of angular momentum transport was observed in inde-

pendent experiments in TCF at similar Re as in [72]. The estimated β based on the

torque measurement in the inner cylinder is at similar level as in astrophysical disks.

However, differences between the experiments, such as geometry (axial-length-to-gap

aspect ratio Γ) and end-cap treatment as well as the measured physical quantities,

make a direct comparison very difficult [78]. In TCF experiments, the finite-size effect

due to the presence of end caps is unavoidable and not expected in astrophysical disk

flows. This experimentally imposed axial boundary condition drives the nearby fluids

at the same rotational speed as the end caps and causes instabilities penetrating into

the bulk flow, which is known as the Ekman effect. The team of Ji claimed that,

although they have a very small aspect ratio Γ = 2.104, the split end caps in their

setup [72] help to mitigate and minimize the Ekman effects, whereas Paoletti et al.

have longer cylinders (Γ = 11.47) and argued that the measurement in the middle sec-

tion of the inner cylinder would be free of Ekman effects. By contrast, direct numerical

simulations of above experimental flows showed that the presence of top and bottom

end caps leads to strong deviations from the Keplerian velocity profile and that these

deviations cause turbulence to arise [75]. It turns out that experiments alone are hard
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to fully address the subtle question whether disks can be turbulent for purely hydro-

dynamic reasons. This motivated us to perform direct numerical simulations of TCF

with axially periodic cylinders and hence free of end-cap effects.

1.5 Thesis outline

The thesis addresses the following four questions.

1. What is the critical Reynolds number in PCF beyond which turbulence is sus-

tained?

2. Is this transition a continuous or discontinuous phase transition in statistical

physics?

3. Can sustained turbulence in quasi-Keplerian TCF arise for purely hydrodynamic

mechanisms?

4. How does the Earth rotation influence linearly stable rotating flow?

For the questions 1 − 3, we solve numerically the governing equations of fluid flows

and conduct the direct numerical simulations (DNS) of TCF. Simulations concerning

question 1−2 are performed in regime I of the parameter space shown in Fig. 1.2, where

the flow approaches asymptotically the PCF limit as stated in Sec. 1.2. The Reynolds

numbers of interest here are at low range, Re ∼ O(102). Due to the stochastic nature

of turbulence in PCF, large ensemble of simulations are performed and statistical

methods are employed to analyze the data. Regime II in Fig. 1.2 is often referred to

as the quasi-Keplerian regime, which is related to Question 3. To reach the Reynolds

number of astrophysical relevance, a highly efficient and parallelized DNS code has

been developed. The code will be presented in Chapter 2 and we perform simulations

at shear Re up to 1 × 105. To understand the influence of Earth rotation on linearly

stable flows, we choose the simplest shear flow PCF and put it under system rotation.

We solve the linearized governing equations, conduct the linear stability analysis and

transient growth study.

The structure of the rest of the thesis is as follows. The governing equations of fluid

flows and the numerical method are presented in Chapter 2, which also provides a

detailed demonstration of the high efficient parallel code nsCouette. In Chapter 3,

the results on the onset of sustained turbulence in PCF are shown. By balancing the

time scale of the decay and spreading dynamical processes, a distinct Re is obtained,

Re ≃ 325, which defines a lower bound for the real critical point Rec of the transi-

tion. At criticality, the critical exponents are measured and the subcritical transition
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to sustained turbulence is found to be a continuous phase transition in spatially ex-

tended systems, which may fall into the DP universality class. Chapter 4 presents

simulations in the quasi-Keplerian regime of TCF. Starting with optimal perturba-

tions, our simulations reveal a secondary instability in the axial direction. Through

nonlinear interactions this instability gives rise to transient turbulence. The influence

of Earth rotation on shear flow experiments is shown in Chapter 5. It is found that

infinitesimal system rotation perpendicular to the walls of PCF causes the system lin-

ear instability. The results of the thesis are summarized and discussed in Chapter

6.
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“There are 3 rules to follow when paralleliz-

ing large codes. Unfortunately, no one knows

what these rules are.”

A computer scientist

“Anyone who considers arithmetical methods

of producing random digits is, of course, in a

state of sin.”

John Von Neumann (1903 - 1957)

2
A highly efficient parallel DNS code

nsCouette
1

2.1 Introduction

Starting with the study of homogeneous isotropic turbulence conducted by Orszag

and Patterson [79], direct numerical simulation (DNS) has been proven as a very

powerful approach to explore the physics of turbulent flows (see Ref. [41], [42]). It

has been widely used in fundamental research on both transitional and fully-developed

turbulence in boundary layers over a flat plate (e.g. [80], [81]), channel (e.g. [82], [83]),

pipe (e.g. [84], [85]) and Couette flows (e.g. [86], [87]). Distinguished from Reynolds-

averaged equations (RANS) and Large-Eddy simulation (LES), a carefully performed

DNS resolves all temporal and spatial scales relevant to turbulence and thus provides

data of high fidelity. Its advantage is also its main drawback: resolving the physics of

turbulence implies a scaling of the computational complexity as O(Re3) [88].

In this section we present a highly efficient DNS code for TCF with axially periodic

boundary conditions using a hybrid two-level parallelization strategy. It enables DNS

to be performed up to Re ∼ O(105), and thus provides access to a broad range in

1The content in this Chapter is mainly from the paper: L. Shi, M. Rampp, B. Hof, M. Avila, A
Hybrid MPI-OpenMP Parallel Implementation for Pseudospectral Simulations: Application to Taylor-
Couette Flow, accepted with minor revision to Computers & Fluids, (2014).
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the parameter space of TCF, including quasi-Keplerian flows at experimentally rele-

vant Reynolds numbers. The most efficient method for discretizing partial differential

equations with periodic boundary conditions is the spectral Fourier–Galerkin method,

so we use this in the axial and azimuthal directions. Many authors use the spectral

Galerkin-method in the non-periodic radial direction by employing Chebyshev, Legen-

dre or Jacobi polynomials. The two latter render however a computational complexity

of O(M2), where M is the degree of the approximation, due to the lack of fast transfor-

mations between physical and spectral spaces. This makes computations too expensive

at large Reynolds number. In contrast, with the Chebyshev method the fast cosine

transform allows it to keep the cost at O(M log(M)). However, in order to use accurate

quadratures the projection basis must be different from the basis used to discretize the

Navier-Stokes equations (Petrov-Galerkin method) [89, 90]. On the other hand, if the

spectral method is used directly at a collocation grid (in physical space) the resulting

differentiation matrices are dense. Hence the solution of the Poisson equations, for

example with the diagonalization method [91], requires O(M2) operations. A common

drawback of all the aforementioned spectral methods is that the density of collocation

nodes towards the boundaries scales as O(M2). Although this allows to properly re-

solve boundary layers with relatively low resolutions, at large Reynolds numbers the

clustering is excessive and the required resolution is often given by the spacing of nodes

far from the boundaries. Moreover, this clustering poses a severe restriction on the

time step of ∆t = O(M−2) because of the CFL condition. Although transformations

of the node distribution have been proposed [92], these result in the loss of the spectral

convergence. Finally, it becomes impractical to use the Chebyshev method for large

resolutions M & 600, as needed in the simulation of turbulence at large Re (see §2.5).
For these reasons we use the high-order finite-difference (FD) method in the radial

direction, which makes the stretching of grid nodes straightforward.

The dimensionless, incompressible Navier-Stokes equations in primitive variables are

integrated in time with a second-order O(∆t2) time-splitting scheme proposed by

Hugues & Randriamampianina [93]. The scheme is semi-implicit and is second-order

accurate also for the pressure, rendering a very small O(∆t3) slip-velocity error at

the boundary while fulfilling the incompressibility constraint. It is straightforward to

implement: it avoids staggered grids and requires the solution of five equations of Pois-

son or Helmholtz type. The nonlinear advective term is computed in physical space

with the pseudospectral method. The code is parallelized by combining the Message

Passing Interface (MPI) and the Open Multiprocessing (OpenMP) paradigms. The

Fourier-Galerkin method leads to mode-decoupled linear equations, which makes the

one-dimensional MPI parallelization rather straightforward to implement. OpenMP

threading within MPI tasks allows to efficiently use modern high performance com-

puting (HPC) architectures and mitigates the overhead induced by MPI All-to-all

inter-task communications which are typical of spectral methods.
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2.2 Navier-Stokes equations

The equations governing the motion of an incompressible fluid of kinematic viscosity

ν and constant density ρ is called Navier-Stokes equations. Its mathematical form

consists of a equation of momentum and a equation of mass conservation,

∂tu+ u · ∇u = −1

ρ
∇ph + ν∆u, ∇ · u = 0, (2.1)

where u(r, t) is the velocity field and ph(r, t) is the hydrodynamic pressure. Here

cylindrical coordinates r = (r, θ, z) are used. The geometry and parameters of the TCF

system are shown in Fig. 1.2 and presented in §1.2. At the cylinders no-slip boundary

conditions are applied, whereas in the axial direction periodic boundary conditions are

imposed to avoid end-wall effects. This approximates the case of very long cylinders.

In the azimuthal direction periodic boundary conditions occur naturally. However, it

is often computationally convenient to simulate only an angular section Lθ ≤ 2π of

the cylinders, and periodic boundary conditions are then used for θ ∈ [0, Lθ]. This

is justified provided that the correlation length of the turbulent flow in the azimuthal

direction is shorter than riLθ [87].

Henceforth, all variables will be rendered dimensionless using d, τ = d2/ν, and ν2/d2

as units for space, time, and the reduced pressure p = ph/ρ, respectively. The Navier-

Stokes equations (2.1) for this scaling become

∂tu+ u · ∇u = −∇p+∆u

∇ · u = 0.
(2.2)

In cylindrical coordinates the equations read

(∂t + u · ∇)ur − u2θ/r = −∂rp+∆ur − ur/r
2 − 2∂θuθ/r

2

(∂t + u · ∇)uθ + uθur/r = −∂θp/r +∆uθ − uθ/r
2 + 2∂θur/r

2

(∂t + u · ∇)uz = −∂zp+∆uz,

ur/r + ∂rur + ∂θuθ/r + ∂zuz = 0.

(2.3)

with ∇ = (∂r, ∂θ/r, ∂z) and ∆ = ∂r/r + ∂2
rr + ∂2

θθ/r
2 + ∂2

zz. Note that the Reynolds

numbers enter the system through the boundary conditions

uθ(ri,o, θ, z) = Rei,o,

ur,z(ri,o, θ, z) = 0,

u(r, θ, z) = u(r, θ + Lθ, z),

u(r, θ, z) = u(r, θ, z + Γ).

(2.4)
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By taking the divergence of the first equation and then applying the incompressibility

condition, we obtain a Poisson equation for the pressure,

∆p = −∇ ·N(u), where N(u) = u · ∇u, (2.5)

with consistent boundary conditions [94]

∂np|r=ri,o = n · [−∂tu−N(u) + ∆u]. (2.6)

As explained in §2.3.2, this equation will be solved for the pressure prediction.

2.3 Numerical method

The governing equations (2.3) are solved for the primitive variables (u, p). We dis-

cretize the equations with a combination of the spectral-Fourier method with the

finite-difference method (FD) in space, whereas time is advanced with a semi-implicit

fractional-step method proposed by Hugues and Randriamampianina [93], who employ

a second-order-accurate backward-differentiation formula with second-order extrapo-

lation for the nonlinear term. The pseudospectral technique with 3/2-dealiasing [79]

is applied to compute the nonlinear term N(u) in physical space.

2.3.1 Spatial discretization

In the periodic axial and azimuthal directions, the velocity field and pressure are

approximated as

u(r, θ, z) =
L∑

l=−L

N∑

n=−N

ûln(r)ei(lkzz+nkθθ),

p(r, θ, z) =
L∑

l=−L

N∑

n=−N

p̂ln(r)ei(lkzz+nkθθ),

(2.7)

where kz is the minimum (fundamental) axial wavenumber and fixes the axial non-

dimensional length Γ = 2π/kz of the computational domain. Similarly, Lθ = 2π/kθ

is the azimuthal arc degree; kθ = 1 corresponds to the natural periodic boundary

condition in the azimuthal direction, whereas kθ = 4 corresponds to one quarter of an

annulus. The hat symbolˆ in (2.7) denotes quantities in Fourier space and the tuple

(L,N) determines the spectral numerical resolution.

By substituting (2.7) into (2.3) and projecting the result onto a basis e−i(lkzz+nkθθ) (l =

−L, · · · , L;n = −N, · · · , N), we obtain the mode-decoupled Navier-Stokes equations.
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For each Fourier mode (l, n), they read

∂tûr + N̂r = −∂rp̂+ ∆̂ûr − ûr/r
2 − 2inkθûθ/r

2,

∂tûθ + N̂θ = −inkθp̂/r + ∆̂ûθ − ûθ/r
2 − 2inkθûr/r

2,

∂tûz + N̂z = −ilkz p̂+ ∆̂ûz.

(2.8)

Here ∆̂ = ∂r/r+∂rr−n2k2θ/r
2− l2k2z and the superscripts (l, n) have been omitted for

clarity. Note that the nonlinear term couples Fourier modes and it is thus computed

in physical space with the pseudospectral method. Details of the implementation and

parallelization of the nonlinear term are given in §2.4. Equations (2.8) couple the radial
and azimuthal velocities. By applying the following change of variables [95]

û+ = ûr + iûθ,

û− = ûr − iûθ,

to equation (2.8), we yield the decoupled equations

∂tû+(r) + N̂+(r) = −∂rp̂(r) + nkθp̂(r)/r + (∆̂− 1/r2 − 2nkθ/r
2)û+,

∂tû−(r) + N̂−(r) = −∂rp̂(r)− nkθp̂(r)/r + (∆̂− 1/r2 + 2nkθ/r
2)û−,

∂tûz(r) + N̂z(r) = −ilkz p̂(r) + ∆̂ûz,

(2.9)

where N̂± = N̂r ± iN̂θ.

We use a standard high-order, central finite-difference method to approximate the

radial derivatives in equations (2.9) (see Ref. [96]). The radial nodes are distributed

as [92]

rj =
1 + η

2(1− η)
+

sin−1(−α cos(πj/M))

2 sin−1 α
, j = 0, . . . ,M. (2.10)

For α = 1 the grid is uniform, whereas for α → 0 the Chebyshev collocation points are

obtained. Here stencils of ns = 9 points, corresponding to a scheme of formally order

7 was found to give the best compromise in our tests. Note that we reduce the stencil

length gradually towards the boundaries in order to keep the FD-matrices banded. We

show in §2.5 that due to the clustering of nodes near the walls with typical values of

α = 0.5 this reduction of the order of accuracy does not produce a larger error at the

boundaries.

With (L,N) Fourier modes and M radial nodes, the number of grid points in physical

space is (nr, nθ, nz) = (M, 2N + 1, 2L + 1) in radial, azimuthal and axial direction,

respectively. Note that we dealise the nonlinear term by computing it in a grid of

(M, 3N + 1, 3L+ 1) points.
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2.3.2 Temporal scheme

A stiffly stable temporal scheme based on a backward differentiation formula with

extrapolation for the nonlinear term is adopted (see Ref. [93, 97]). It reads

3ui+1 − 4ui + ui−1

2∆t
+ 2Ni(u)−Ni−1(u) = −∇pi+1 +∆ui+1. (2.11)

This is often referred in the literature to as Adams-Bashforth backward-difference

method of second order (AB2BD2). The viscous terms are discretized implicitly,

whereas the nonlinear terms are treated explicitly. At each time step, equation (2.11) is

solved through a fractional step method proposed by Hugues and Randriamampianina [93].

The method is summarized below. Here (ûi, p̂i) denote the spectral coefficients at the

ith time step.

1. Obtain spectral coefficients of the nonlinear term, N̂
i
(u), using the 3/2-dealiasing

rule

• Do matrix-vector multiplication to calculate ∂rû
i (FD method)

• Compute dot product in Fourier space to calculate ∂θû
i and ∂zû

i

• Perform Fourier transform of ∂r,θ,zû
i and ûi to obtain the velocity field and

all its derivatives in physical space;

• Calculate Ni(u) = ui · ∇ui;

• Perform inverse Fourier transform to obtain the spectral coefficients N̂
i
(u).

2. Obtain the pressure prediction, p̂∗: solve the Poisson equation

∆p̂∗ = ∇ · [−2N̂
i
(u) + N̂

i−1
(u)], (2.12)

with consistent Neumann boundary conditions (2.6). In practice, to remove the

singularity of the problem, the Neumann boundary condition at the outer cyliner

is replaced by the Dirichlet boundary condition.

3. Obtain the velocity prediction, û∗: solve the three Helmholtz equations

3û∗ − 4ûi + ûi−1

2∆t
+ 2N̂

i
(u)− N̂

i−1
(u) = −∇p̂∗ +∆û∗ (2.13)

with Dirichlet boundary conditions (2.4).

4. Correct via an intermediate variable φ = 2∆t(p̂i+1−p̂∗)
3 : The incompressibility

condition ∇ · ûi+1 = 0 leads to a Poisson equation for φ with homogeneous
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Neumann boundary conditions (see Ref. [93, 94])

∆φ = ∇ · û∗,

∂rφ|r=ri,o = 0
(2.14)

5. Compute pressure and velocity correction, p̂i+1 and ûi+1:

p̂i+1 = p̂∗ + 3φ/(2∆t)

ûn+1 = û∗ −∇φ
(2.15)

6. Go back to step 1

The Navier-Stokes equations are thus advanced in time by solving five systems of

linear equations (2.12)-(2.14), of Poisson or Helmholtz type. This method accounts for

a divergence-free velocity field and a small slip at the wall of the order of O(∆t3) in the

tangential velocities, uz and uθ. We note that the method was originally developed and

tested [93] for the two-dimensional Navier-Stokes equation discretized on a Chebyshev-

Chebyshev collocation grid, and the Poisson and Helmholtz equations were solved using

the double diagonalization method. Here, the FD-discretized Poisson and Helmholtz

render banded matrices which are solved with the LU-method. The decompositions are

precomputed at the beginning of a simulation and at each time step only backward and

forward substitutions need to be computed, resulting in an operation count of O(M)

for the solution of each system. Note that for the axially and azimuthally invariant

Fourier mode, n = l = 0, the Poisson equations (2.12) and (2.14) are singular: their

solution is defined up to a constant because of the Neumann boundary conditions.

Here a Dirichlet homogeneous boundary condition was employed at the outer cylinder

to select a particular solution.

2.4 Parallelization scheme and its implementation

A hybrid MPI-OpenMP parallelization strategy is adopted for the implementation of

the code. Since the linear equations (2.12)–(2.14) are mode-independent, it is conve-

nient to employ an MPI-based, one-dimensional domain decomposition (also known as

“slab” decomposition, Fig. 2.1): The Fourier coefficients (û+, û−, ûz, p̂) corresponding

to different modes are distributed across the MPI tasks which allows to solve equa-

tions (2.12)–(2.14) concurrently, without any inter-task communication. Each of the

Ntasks MPI tasks operates on data corresponding to a number of mθ ·mz/Ntasks modes,

where (mr,mθ,mz) = (M,N +1, 2L) are the dimensions of variables in Fourier space.

OpenMP threading inside each MPI task allows to efficiently exploit the remaining

coarse-grained parallelism (see below).
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Figure 2.1: Schematic of the MPI-based, one-dimensional “slab” domain decom-
position and the global transposition by using the function MPI Alltoall(). Mode-
independent spectral coefficients in Fourier space are distributed among different MPI
tasks. Each variable has a dimension of (mr,mθ,mz).

We compute the nonlinear term (step 1 in Section 2.3.2) by performing global matrix

transpositions (Fig. 2.1) of the discretized fields ∂rû and û such that for each radial

point the complete spectrum of Fourier modes is localized in one MPI task. This

requires a collective communication operation of type ”all-to-all” but allows to most

efficiently compute the Fourier transformations and the derivatives with respect to the

spectral coordinates, namely θ and z. Finally, inverse transpositions are performed for

the resulting array N̂.

In our applications, typically mθ ·mz ≫ mr applies, i.e. there are much more Fourier

modes than radial grid points. Hence, the number of MPI tasks in our slab decom-

position is bounded by Ntasks ≤ mr (cf. Fig.. 2.1) and consequently the maximum

achievable parallel speedup would be limited by mr. However, OpenMP threads allow

to parallelize over the mθ · mz/Ntasks modes within a MPI task while retaining the

one-dimensional MPI domain decomposition which is conceptually straightforward to

implement. Similarly, we can exploit concurrency in the nonlinear part if Ntasks < mr

applies. In addition, the Fourier transformations and the individual partial derivatives

required for evaluating u ·∇u are computed concurrently and the transposition of ∂rû

is overlapped with the computation of u, ∂θu, and ∂zu.

Theoretically, this strategy allows to utilize a number of min(mr,mθ · mz) · Nthreads

processor cores where Nthreads is the maximum number of threads a shared-memory

compute node provides. Current high performance computing (HPC) platforms feature

at least 16 cores with up to 32 logical threads per node (e.g. Intel Sandy-Bridge

E5 clusters), and thread-based concurrency on the node-level is expected to increase

substantially in the near future, in particular with the upcoming many-core processors

and GPU-accelerated nodes [98]. In practice, we achieve excellent parallel efficiencies

when MPI tasks are mapped to the individual ”sockets” (i.e. CPUs or NUMA domains)

of a compute node and the number of OpenMP threads equals the number of physical

22



Chapter 2. A highly efficient parallel DNS code nsCouette

cores per socket. Due to the smaller number of MPI tasks per node (compared with

a plain MPI parallelization) the amount of inter-node communications is reduced in

the global transposition. This transposition, which is implemented by MPI Alltoall

collective communication and task-local transpositions, ultimately limits the overall

parallel scalability of the code at high task counts (see Section 2.6).

The code is implemented in FORTRAN 90 and has been ported to a number of major

HPC architectures, including IBM Power and BlueGene, as well as compute clusters

based on x86 64 processors and high-performance interconnects such as InfiniBand.

We employ vendor-optimized BLAS and LAPACK routines for the matrix-vector mul-

tiplication (BLAS level-2 routine DGEMV) and the linear solvers (variants of LAPACK

routines DGBTRF, DGBTRS taken e.g. from the Intel Math Kernel Library, or IBM ESSL),

respectively, and utilize the FFTW library [99] for performing the Fourier transforma-

tions in the nonlinear part of the code. For data output we employ the parallel HDF5

libraries which enable collective output of the MPI-distributed data into a single file

in a transparent and efficient way. This facilitates data handling, post-processing and

visualization, e.g. with VisIT or Paraview (cf. Fig. 2.9).

2.5 Numerical Accuracy and Code Validation

The code has been tested over a wide range of Reynolds numbers Re ∈ [50, 100 000].

A number of specific test cases will be given in the following.

2.5.1 Laminar flow

We firstly computed the laminar velocity profile, which is also known as circular Cou-

ette flow. It can be expressed as U = (0, Uθ(r), 0), where Uθ(r) = C1r + C2/r with

C1 = (Reo − ηRei)/(1 + η) and C2 = η(Rei − ηReo)/((1− η)(1− η2)), corresponding

to pure rotary shear flow . The tests were performed at Rei = 50, Reo = 200 and at

η = 0.5. A non-uniform grid according to formula (2.10) is used in the radial directio n,

clustering at the boundaries. Fig. 2.2(top) shows the numerical velocity and pressure

profiles for α → 0 (Chebyshev points ) and nr = 32, which match well with the the-

oretical curves (dashed lines). The distributions of the relative error ǫu(r) = |uθ−Uθ

Uθ
|

along the radial direction are shown in Fig. 2.2(bottom) for different stencil lengths ns.

In FD method, the stencil length is the number of consecutive points used to approxi-

mate the derivatives. The error is quite smoothly dist ributed at the bulk flow. As ns

is increased, the relative error decreases until approaching the machine precision. In

order to make the best compromise be tween the computing time and the accuracy,

ns = 9 is chosen for the following tests.
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Figure 2.2: Laminar Couette flow. (top) The numerical and theoretical (dashed
lines) streamwise velocity profile (blue squares) and pressure field (green circles).
(bottom) The local relative error ǫu as a function of r. Here Γ = 2 and kθ = 2, with
a resolution of (nr, nθ, nz) = (64, 8, 8). In the radial direction Chebyshev points are
used, α → 0.

To measure the global error, we integrate the local error ǫu over the radial direction,

Eu =
∫ ro
ri

ǫurdr, which is pl otted in Fig. 2.3 as a function of nr and the parameter α.

In the left figure, Eu scales as a power law with nr for bo th α = 0 and α = 0.5. The

power exponent is fitted to be about −11, which is even better than as is expected from

the 9-points-stencil FD scheme. The right figure shows that the error is minimized for

α ≃ 0.5 and that below 0.5 the errors are almost at the same level and thus are all

acceptable at this Re. Except that nr is varied in the left figure, the rest resolution is

the same as in above figure.

2.5.2 Time-dependent flow and slip velocity at walls

The onset of stability in the case of stationary outer cylinder (Reo = 0) has been

verified at two different radius ratios η = 0.5, 0.95. As the Reynolds number of the
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Figure 2.3: The global relative error Eu as a function of (left) nr and (right) α. The
dashed line in the left figure is the power fit with an exponent about -11. The stencil
length is ns = 9. The resolution (nr, nθ, nz) = (32, 8, 8), except nr in the left figure.

inner Cylinder increases beyond a certain value, the laminar Couette flow gives way

to Taylor vortices (see Fig. 2.4). In our simulations, this critical Reynolds number is

estimated by measuring the exponential growth rate of the perturbed kinetic energy,

which vanishes at the critical point. It turns out that Recriti ∈ [68, 68.5] for η = 0.5

and Recriti ∈ [184.5, 186] for η = 0.95, which are consistent with the values reported in

previous publications (see Table 2.1).

Figure 2.4: Contour plot of the mid-gap streamwise velocity in the middle (θ, z)
plane for Taylor vortices at Rei = 182, Reo = 0.

η Recriti reported value [100]

0.5 68.2± 0.3 68.2
0.95 185± 0.5 ∈ [184, 186]

Table 2.1: Critical Reynolds number at inner cylinder for the appearance of Talor
vortices: η = 0.5 and η = 0.95.

Time-dependent periodic flow was computed at Rei = 458.1, Reo = 0, η = 0.868. The

axial length was chosen as Γ = 2π/kz = 2.4 and kθ = 6 to compare to the experimental

observations of King et al. [101] and numerical simulations of Marcus [91]. At these

parameter values the flow is characterized by wavy Taylor vortices with azimuthal

wavenumber 6, as shown in Fig. 2.5. Wavy Taylor vortices are a relative equilibrium:
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they consist of a constant pattern rotating as a solid at a constant wave speed. Mar-

cus [91] notes: ‘A test that is more sensitive than the comparison of torques is the

comparison of the numerically computed wave speed with the experimentally observed

wave speed ’. We performed this test with spatial resolution (nr, nθ, nz) = 32× 32× 32

and time-step size ∆t = 2 × 10−5. The wave speed normalized by the rotation speed

of the inner cylinder was accurately computed with a rigorous method ba sed on

Brent’s minization algorithm (for details see Appendix A). Our result the wave speed

c = 0.34432, with the pattern rotating at about one-third of the speed of inner the

cylinder, agrees to all decimal places given in [101]. The same result was reproduced

at higher resolutions and on various HPC platforms.

Figure 2.5: Contour plots of the streamwise velocity in the middle (θ, z) plane for
wavy Taylor vortices. The outer cylinder is stationary, whereas the inner cylinder
rotates with Rei = 458.1. The geometrical parameters are η = 0.868 and Γ = 2.4 and
only one sixth of the circle (kθ = 6) was used in the simulations and is displayed here.

We further examined the tangential velocity slip at the cylinders. In the projection

scheme we employed, the incompressibility constraint ∇ · u = 0 is discretely fulfilled

by construction, in that the Poisson equation for φ in §2.3 is derived by applying the

divergence-free condition. However, the velocities at the inner and outer cylinders slip

by an amount of |∇φ| = O(∆t3) after the correction step [93, 102]. We evaluated the

L2-norm of the tangential velocity slip at the inner cylinder,
∫

θ

∫

z

√

((uθ −Rei)2 − u2z)|r=ridθdz.

In Fig. 2.6 the relative velocity slip, i.e. slip velocity normalized with Rei, is shown as

a function of ∆t for several radial resolutions nr (see Fig. 2.6). For the lowest resolu-

tion nr = 32 the curve rapidly levels off, indicating that spatial-discretization errors

domina te over temporal errors. Note that with the largest time-step size allowed for

stability and lowest resolution we already obtain five digits in the accuracy of c. As

nr is increased the slip velocity decreases and its scaling gradually approaches a power

law, here with an exponent of approximately 2.5. Improving the resolution in θ and z

directions does not change the scaling and the reason why it deviates from the expected

value of 3 is not clear. Nevertheless, we can conclude that in typical simulations the

dominating source of error comes from the spatial discretization. The largest possible

time-step size yield s already very accurate results in the solution and very small slip

velocities.
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Figure 2.6: Normalized velocity slip at the inner cylinder against time-step size ∆t
for different nr. The parameters are the same as in Figure 2.4. The spatial resolution
in axial and azimuthal directions is (nθ, nz) = (32, 32)

2.5.3 Localized turbulence at moderate Re

Localized turbulence, interspersed in the surrounding laminar flow, is a typical feature

of transitional Reynolds numbers in shear flows. The turbulent stripe pattern found

in the counter-rotating Taylor-Couette flow in the narrow-gap limit is an example. We

obtained this pattern at Rei = 680, Reo = −680 with η = 0.993. The time-step size

was ∆t = 2×10−5 and the domain size in the axial and azimuthal directions was Γ = 50

and kθ = 179. The θ-direction in our computational domain is tilted with an angle

of 24◦ to the streamwise direction (for details see [103]). We tested the probability

distributions of the splitting times of turbulent stripes reported in [103], which were

obtained by using the spectral Petrov-Galerkin code of Meseguer et al. [90]. We here

used nr = 32 in the radial direction, whereas Shi et al. [103] used modified Chebyshev

polynomials of degree up to 26. In both cases the azimuthal and axial resolutions

are nθ = 48 and nz = 640, respectively. The exponential distributions of splitting

times obtained by both codes are statistically equivalent (see the inset in Fig. 2.7): our

computed decay rate of the exponential distributions is well within the 95% confidence

interval about the decay rate reported in [103].

2.5.4 Turbulent flow at high Re

The robustness of the code was further validated at high Reynolds numbers in the

linearly unstable regime, where the flow is fully turbulent. Here we computed the
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Figure 2.7: Probability distributions of the splitting time of single turbulent stripe
at Rei = 680, Reo = −680 and at η = 0.993. The black data set was obtained with
the spectral Petrov-Galerkin code of Meseguer et al. [90] and the red one with the new
code with nr = 32. In both cases the azimuthal and axial resolutions are nθ = 48 and
nz = 640, respecitvely. The red curve is from the present code. Inset: characteristic
splitting time estimated by the sample mean, with the error bar corresponding the
95% confidential interval.

global torque exerted by the fluid on the inner and outer cylinders, which characterizes

the turbulence intensity and the transport of angular momentum [87]. The tests were

done at Rei = 8000 and stationary outer cylinder with η = 0.5, Γ = 2π/kz = π

and kθ = 2. The time-step size is ∆t = 2 × 10−7. As is shown in Fig. 2.8(top),

the quasi-Nusselt number Nuω [87], which is the torque normalized by the torque of

the laminar flow, converges to 8.815 at the resolution (nr, nθ, nz) = (128, 192, 320).

This value agrees very well to the value of 8.816 recently reported by Brauckmann

and Eckhardt [87], who also used the spectral Petrov-Galerkin code of Meseguer et

al. [90]. The temporal fluctuation of the Nusselt number obtained with the highest

resolution is shown in the bottom figure. At this Re, we also examined the influence of

the radial node distribution by varying the parameter α in Eq. 2.10. Three runs with

α = 0, 0.5, 0.99 were done, and all three render Nuω = 8.81 ± 0.05. The maximum

time-step size is ∆t ≈ 3×10−7 in all cases and it is independent of α. This is explained

by the fact that the CFL number is highest in the azimuthal direction. Thus at this

Reynolds number the Chebyshev node distribution does not impose a restriction in the

time-step, as one may have expected.

Another test run was performed at Rei = 105, Reo = 79685 and at η = 0.71. To

the best of our knowledge, no DNS at such a high Re have been reported for Taylor-

Couette flow. We used kθ = 16 and axial length Γ = 0.5, with a spatial resolution

(1152 × 384 × 384) and time step ∆t = 1 × 10−9. The initial condition at t = 0 is

taken from the optimal initial perturbation which gives the maximal transient energy

growth [104] supplemented with very small three-dimensional noise. Fig. 2.9 shows the

3D contour plot of the streamwise vorticity, ωθ = ∂zur − ∂ruz, at t = 5× 10−4 (≃ 3.3
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Figure 2.8: Top: Quasi-Nusselt number at Rei = 8000, Reo = 0, η = 0.50, kz = π
and kθ = 2, as a function of the azimuthal and axial resolutions for nr = 128. The
dashed line corresponds to the value (Nuω ≃ 8.816) reported in [87]. The error
bars indicate the 95% confidential interval. Bottom: The temporal fluctuation of the
quasi-Nusselt number at the highest resolution (nr, nθ, nz) = (128, 192, 320).

cylinder rotations) which illustrates a transiently turbulent flow state. The research

is still ongoing and will be disseminated in future publications. We expect that the

results will contribute to clarify the role of pure hydrodynamic turbulence, if any, in

astrophysical disks [78].
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Figure 2.9: Isosurfaces of the streamwise vorticity in the quasi-Keplerian regime
at Rei = 105, Reo = 79685, η = 0.71, Γ = 0.5 and kθ = 16. The resolution is
(nr, nθ, nz) = (1152, 384, 384).

2.6 Computational efficiency2

2.6.1 Benchmark setup

In this section we report benchmarks results obtained with the new code, using up to

8192 processor cores of an IBM iDataPlex compute cluster with Intel Sandy-Bridge

processors and InfiniBand (FDR 14) interconnect. Each shared-memory compute node

hosts two Intel Xeon E5-2670 eight-core processors (CPUs) with a clock frequency of

2.6 GHz. We employ Intel compilers (version 12.1), the Intel Math Kernel Library

(MKL 10.3) and the FFTW library (version 3.3.2 with AVX kernels enabled).

2The work in this section is mainly done by Dr. Markus Rampp and is put here for the reason of
consistency.
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We have performed two strong scaling studies, i.e., the scaling of the runtime with the

number of cores for a fixed problem size. Two different, representative setups were

considered:

a) a “SMALL” setup with number of grids points (nr, nθ, nz) = (32, 384, 640). This

setup is used to investigate the localized turbulence at the transitional stage

(Re ∼ O(102)), where the structures inside the turbulence are relatively large.

The probability distributions of the splitting time of localized turbulent stripe

mentioned in Section 2.5 are obtained at this resolution level.

b) a “LARGE” setup with number of grids points (nr, nθ, nz) = (512, 256, 1024).

This resolution is representative of our ongoing studies of hydrodynamic turbu-

lence in Taylor-Couette flows with quasi-Keplerian velocity profiles at Reynolds

numbers up to O(105).

2.6.2 Benchmark results and discussion

Fig. 2.10 provides an overview of the strong scalability of the hybrid code. Different

colors and symbols are used to distinguish runs which use different numbers of MPI

tasks (Ntasks) and OpenMP threads (Nthreads). The total number of processor cores is

given by Ncores = Ntasks ·Nthreads.

For both setups we observe good scalability up to the maximum number of cores our

parallelization scheme admits on this compute platform, i.e., Ncores = 32 · 16 = 512

for the SMALL setup, and Ncores = 512 · 16 = 8192 for the LARGE setup. Beyond

a number of 8 threads per MPI task the scalability curves markedly level off. The

code, however, still delivers a parallel efficiency of more than 0.5, which is commonly

considered as the minimum for acceptable resource usage.

For the SMALL setup (Fig. 2.10, left) we show that up to a number of 8 threads per

MPI task the run times for a given number of cores are virtually the same, independent

of the distribution of the resources to MPI tasks and OpenMP threads (compare the

green and the red symbols at Ncores = 32, or the red and the blue symbols at Ncores =

128). This indicates that the efficiency of our coarse-grained OpenMP parallelization is

almost the same as the explicit, MPI-based domain decomposition, thus demonstrating

the additional gain in flexibility of our hybrid approach compared to a plain MPI

parallelization. Moreover, as the results for the LARGE setup (Fig. 2.10, right) show,

it can even be more efficient to use less than the maximum of nr MPI tasks for a given

number of cores and utilize the resources with OpenMP threads (compare the green

and the red symbols at moderate core counts). This is due to the fact that a lower

number of MPI tasks per node reduces the amount of inter-node MPI communication
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(specifically the MPI Alltoall communication pattern for the global transpositions)

and hence network congestion. Notably, for the LARGE setup, the hybrid code shows

nearly perfect linear scaling between 128 and 2048 cores.

Figure 2.10: Runtime per time step for the SMALL setup (left panel) and for the
LARGE setup (right panel) as a function of the number of cores, Ncores = Ntasks ·
Nthreads. Different colors and symbols are used to distinguish runs with different
numbers of MPI tasks (Ntasks) and OpenMP threads (Nthreads), respectively. The
slope of an ideal scaling curve is indicated by dotted lines.

The details on the absolute run times and the parallel efficiencies of the whole code

(the bottom row) as well as the individual parts of the algorithm (cf. Section 2.3) are

listed in Table 2.2. The first column, which corresponds to a plain MPI-parallelization

using the maximum number of tasks (Ntasks = nr) for the given setup, is assigned an

efficiency of 1.0, by definition. The code reaches a floating-point performance of about

16 GFlop/s per compute node which is roughly 5% of the nominal peak performance.

For the SMALL setup (the upper part of Table 2.2) we observe perfect OpenMP

efficiency up to 8 threads (which are pinned to the 8 physical cores of single CPU

socket) per MPI-task for the pressure and velocity predictor steps, the corrector step,

and also the matrix-vector multiplication in the nonlinear part. When using all 16

cores of a shared-memory node with a single MPI task one notices a slight degradation

in OpenMP efficiency due to memory-bandwidth limitations and NUMA effects. The

overall parallel efficiency (the bottom row) can be considered as very good up to

128 cores, but gets increasingly bounded by the global transposition (MPI Alltoall

communication) and the limited parallelism in the nonlinear part.

For the LARGE setup (the lower part of Table 2.2), where the highly scalable linear

parts and the matrix-vector multiplication still contribute more than 60% to the total

runtime on 4096 processor cores, the code maintains an excellent parallel efficiency
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SMALL setup (32, 384, 640)

cores (Nthreads) 32(1) 64(2) 128(4) 256(8) 512(16)

T1 [s] η T2 [s] η T4 [s] η T8 [s] η T16 [s] η

nonlinear (1 ) 0.760 100% 0.435 87% 0.265 72% 0.161 59% 0.105 45%
p prediction (2 ) 0.084 100% 0.042 99% 0.021 100% 0.011 97% 0.006 84%
u prediction (3 ) 0.218 100% 0.109 99% 0.055 98% 0.028 96% 0.016 83%
correction (4 ) 0.089 100% 0.044 101% 0.022 101% 0.011 99% 0.006 90%

complete step 1.217 100% 0.666 91% 0.385 79% 0.229 66% 0.152 50%

LARGE setup (512, 256, 1024)

cores (Nthreads) 512(1) 1024(2) 2048(4) 4096(8) 8192(16)

T1 [s] η T2 [s] η T4 [s] η T8 [s] η T16 [s] η

nonlinear (1 ) 1.20 100% 0.67 90% 0.33 91% 0.20 75% 0.19 39%
p prediction (2 ) 1.12 100% 0.49 114% 0.25 112% 0.13 108% 0.08 88%
u prediction (3 ) 1.38 100% 0.61 113% 0.31 111% 0.17 101% 0.11 78%
correction (4 ) 1.12 100% 0.52 108% 0.28 100% 0.15 93% 0.09 78%

complete step 4.88 100% 2.32 106% 1.20 102% 0.66 92% 0.49 62%

Table 2.2: Runtime per time step, Tn and parallel efficiency η of the OpenMP
parallelization as a function of the number Nthreads of OpenMP threads per MPI
task, using the maximum number of 32 MPI tasks for the SMALL setup, and 512 MPI
tasks for the LARGE setup, respectively. Parallel efficiency is conventionally defined
as η := T1/(n · Tn) with n = Nthreads. Different rows show the contributions of the
individual algorithmic steps (numbering in brackets chosen according to Section 2.3)
to the total runtime of a complete time step (the bottom row).

of 92%. Even up to 8192 cores an acceptable parallel efficiency of more than 60% is

achieved. Computing times on the order of 0.5s per time step enable us to perform

highly resolved simulations (e.g. of Keplerian flows which require on the order of a

million time steps) within a couple of days.

2.7 Discussion and summary

With the motivation of exploring high-Reynolds-number turbulent flows, we have devel-

oped a highly efficient parallel DNS code for Taylor-Couette flows. The incompressible

Navier-Stokes equations in cylindrical coordinates are solved in primitive variables by

using an improved projection method proposed by Hugues et. al. [93], which is second-

order accurate in both pressure and velocity. This method leads at each time step to

the solution of five linear differential equations, either of Poisson or of Helmholtz type,

which simplifies significantly the programming of the code. For the spatial discretiza-

tion, we use a combination of Fourier spectral in axial and azimuthal directions and

finite differences in the radial direction, which allow the use of tailored stretched grids.

The computing cost scales linearly with the number of grid points in each direction.

In order to reach higher Reynolds numbers and to take full advantage of the modern

HPC facilities, the code is parallelized by a hybrid MPI-OpenMP strategy, combin-

ing the simplicity of a MPI-based one-dimensional “slab” domain decomposition in
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Fourier space with efficient exploitation of the remaining coarse-grained parallelism by

OpenMP threading. Compared to a flat MPI-parallelization, the hybrid code maps

more naturally to the current multi-node, multi-core architectures and, most impor-

tantly, reduces inter-node communications, which improves the overall efficiency and

scalability. The strong scaling study which was performed with scientifically relevant

setups shows a very good scalability of the code up to O(104) cores. This allows to

perform simulations with much higher resolutions than previously possible. With the

current HPC technology, this code pushes the achievable Re to the order of magnitude

of O(105) in DNS of Taylor-Couette flow, which therefore opens up the possibility to

study quasi-Keplerian flows at experimentally relevant parameters.

The new code has been shown to be very accurate in various regimes: laminar Cou-

ette flow, wavy vortices, transitional and turbulent flow at high Re. With the high

efficiency of the hybrid parallel scheme, this code possesses great potential to explore

the turbulent TC flows in a much broader parameter space.
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“Big whirls have little whirls

that feed on their velocity;

And little whirls have lesser whirls

and so on to viscosity.”

Lewis Fry Richardson (1881 - 1953)

3
Onset of sustained turbulence in

Couette flow 1

3.1 Introduction

Turbulence often arises despite linear stability of the laminar flow and the nature of

this transition has remained unresolved for over a century [1]. Prominent examples

are pipe, channel and Couette flows. Here finite amplitude perturbations can lead to

sufficiently strong distortions of the base flow, that for large enough Reynolds numbers

cause transition to turbulence. At moderate Re turbulent structures are localized and

are commonly referred to as spots or stripes in Channel and Couette flow, and puffs in

pipe flow. Individual localized structures are of transient nature [16, 18, 45, 105] but

they can also temporarily grow and seed new spots in their vicinity, overall resulting in

complex spatial-temporal dynamics. Figure 3.1 shows the growth process of a turbulent

spot in PCF, leading to a statistically steady state, a turbulent stripe. The turbulent

stripes can further spread through the splitting events (more details in [106]). As

shown for pipe flow, this spreading rate increases with Re, eventually outweighing the

decay [12]. It has been argued that this mechanism causes a phase transition in the

thermodynamic limit from transient to sustained turbulence [60]. As Re surpasses

the critical point, turbulence can overall survive due to the spatial spreading. The

1The first part of the content in this Chapter is mainly from the paper: L. Shi, M. Avila, B. Hof,
Scale Invariance at the Onset of Turbulence in Couette Flow, Phys. Rev. Lett., 110, 204502 (2013).
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observed dynamics bears resemblance to contact process such as directed percolation

(DP) [11]. In this analogy laminar flow corresponds to the absorbing passive state

and turbulence to the active one. However, for pipe flow [12] the phase transition

has not been characterized directly, but has only been inferred from the statistical

behaviour (mean splitting and decay times) of individual spots. The main difficulty in

pipe flow is that the relevant time scales of the relevant processes are extremely large,

putting a study of correlation exponents presently beyond reach. Here it is reported a

numerical (DNS) study of another fundamental shear flow, plane Couette flow (PCF)

where the fluid is sheared between two sliding plates (see Figure 3.2(left)). As will be

shown below, the time scales close to the critical point are much smaller than those in

pipe flow. Hence size distributions and turbulent fractions can be determined close to

criticality, which provides a unique opportunity to characterize the phase transition.

Figure 3.1: Growth of the turbulent spot in PCF at Re = 350, based on half gap
distance. Streamwise vorticity field in the mid-plane is plotted and time is advanced
from top to bottom and from left to right.

3.2 Numerical experiments

Because of its unlimited width in the spanwise direction (z′ in Figure 3.2), PCF is

spatially more complex than pipe flow. In order to simplify the spatial-temporal com-

plexity and to enable us to resolve the long interaction times, we choose a slender

computational domain inclined with the flow streamwise direction, as shown in Fig-

ure 3.2(right). The idea of such a “tilted” computational domain was originally intro-

duced to reduce the computing cost by Barkley & Tuckerman [48, 107].

Simulations are carried out using the parallel code nsCouette 2. The two cylinders

are chosen to counter-rotate and a radius ratio (inner to outer cylinder radius) of

2Part of the results in this Chapter are obtained by using another numerical code for Taylor-Couette
flow (TCF) (see [90] for details).
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Figure 3.2: Schematic of the computational domain for PCF. (a) normal box; (b)
“tilted” slender box [white box in (a)]. The stripe pattern in the background is a
visualization of the streamwise vorticity field.

η = 0.993 has been selected so that curvature effects are negligible. As shown in an

earlier study [30] TCF approaches the PCF limit for these parameter settings and

is linearly stable for all Re relevant to this study. By using the half gap distance

h = d/2 and τh = h/U (here U is the magnitude of the boundary velocity) as the

length and time unit, we solve numerically the incompressible Navier-Stokes equation

(see section §2.3). The Reynolds number is defined as Re = Uh/ν. Periodic boundary

conditions are imposed in the in-plane directions, while no-slip boundary conditions

are applied in the wall-normal direction. The size of the computational domain is

chosen sufficiently long in the z direction (Lz × Lθ × Lr) = (100h × 10h × 2h) to

study the evolution of isolated stripes whereas for the study of stripe interactions Lz

is increased to 960h and 1920h. The spatial resolution (number of grid points) for the

smaller domain is (nz × nθ × nr) = (512× 48× 32), the adequacy of which is checked

by the one-dimensional energy spectra and by the convergence study of the statistical

lifetime and splitting time distributions (see Fig. 3.3) 3. For the larger domains the

axial resolution is increased to 6144 and 12288, respectively.

3.3 Memoryless dynamical processes

For the investigation of the decay and splitting of individual localized turbulent stripes,

uncorrelated velocity fields of single stripes were used as initial conditions, which were

generated at Re = 325 and contain single turbulent stripe in the domain. Since the

decay and splitting are observed to depend strongly on the initial conditions, many

realizations are necessary to determine the mean lifetimes and splitting times. The

Reynolds numbers of interest are in the range of Re ∈ [310, 350]. At each Re, 300

realizations with different initial conditions are conducted and each simulation was

3These two figures were obtained with another spectral Petrov-Galerkin code of Meseguer et al. [90],
where the radial direction is discretized by the Chebyshev spectral method. The resolution is (nz ×

nθ × nr) = (512× 48× 26). The comparison between two codes are shown in § 2.5.3.
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Figure 3.3: Numerical resolution [106]. (left) One dimensional energy spectra as
function of resolution, with log-scale in y-axis; (right) Probability distribution of
splitting events at Re = 340 for different resolutions. The distributions with higher
resolutions are statistically equivalent. Inset is the scale parameter τ associated to
the corresponding resolution. The error bar of the original resolution represents about
95% confidential interval.

run for a predefined time duration (cutoff time). If a decay or splitting occurred

earlier, the run was terminated after this event. Let N s, Nd, and N c denote the

number of splitting, decaying cases and the ones reaching the cutoff time, respectively.

By sorting in increasing order all the final times associated with splitting events (or

splitting time), we obtain a splitting time series {tsi}N
s

i=1, with the probability that a

stripe has not split up to a time t

P (splitting at t > tsi ) = P s
i = 1− (i− 1)/N s, i = 1, . . . , N s. (3.1)

As shown in Fig. 3.4(a), the probability distributions of the splitting have exponential

tails (excluding the initial formation period t0). This shows that stripe splitting is

a memoryless process and we can therefore determine the mean time τ s(Re) for a

splitting to occur by the following exponential ansatz:

P s(t) = exp[−(t− t0)/τ
s(Re)], (3.2)

with τ s estimated by the sample mean

τ s =
1

N s

Ns
∑

i=1

tsi − t0. (3.3)

The sample mean is effectively the maximum likelihood estimator of the scale param-

eter τ s [108]. t0 has been determined in the same way as described in [18]. From

Fig. 3.4(a), we find that the mean splitting time (slope of the distributions) decreases

quickly with increasing Re. The exact dependence of τ s on Re is shown in Fig. 3.5

38



Chapter 3. Onset of sustained turbulence in Couette flow

(dark square points). It turns out that the best fit for the simulation data is a super-

exponential function represented by the dark dashed line. Hence τ s(Re) only ap-

proaches infinity asymptotically as Re decreases and consequently a nonzero splitting

probability remains even for small Re.
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Figure 3.4: Probability distributions of a single turbulent stripe at different
Reynolds numbers. (a) Splitting times; (b) lifetimes, normalized by τh = h/U . The
dashed lines are the corresponding exponential curves from Eq. (3.2). Y axis is in
the logarithmic scale.

The same method is applied to obtain the probability distributions of the decay events

(or lifetimes), the result of which is plotted in Fig. 3.4(b). The lifetimes of localized

turbulent stripes are also exponentially distributed, with the mean lifetime τd scal-

ing super-exponentially with Re (red circles in Fig. 3.5). Overall splitting and decay

statistics show the same qualitative behavior as pipe flow (see Ref. [12]), suggesting

that the key physical processes are largely independent of the geometry and possibly

apply to many canonical shear flows.
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Figure 3.5: Scaling of the parameter τs,d with Re of the splitting (dark square) and
decaying (red circle) of individual turbulent stripes. The error bars correspond to the
95% confidence intervals. The dashed lines are the super-exponential curves to guide
the eyes.

The intersection of the two curves τ s,d(Re) in Fig. 3.5 fixes a distinct Reynolds num-

ber Re ≃ 325 where the mean time scales of both processes are in balance, namely,

τ s(Re) = τd(Re). This value gives a lower bound for the critical Rec below which tur-

bulence decays after a sufficiently long time and it is also very close to earlier estimates

of the critical point [39, 43], although those were carried out in domains with a much

larger spanwise length. While characterization of the spreading and decay processes

for flows in streamwise and spanwise long domains would require excessive compu-

tation time, the same line of argument would be applicable here. Again turbulence

should become sustained once growth processes (streamwise and spanwise) outweigh

the decay.

3.5 Scale invariance at criticality

In analogy to contact processes like DP the turbulent and laminar domains can be

viewed respectively as the active and passive state. In order for turbulence to survive in

the system the splitting rate has to be larger than the decay rate, otherwise turbulence

dies out. The onset of sustained turbulence may, in analogy to DP-like systems, become

sustained at a nonequilibrium phase transition [26, 59]. If that were the case the spacing

between active sites should become scale invariant close to the critical point and hence

the passive regions would have no characteristic length.
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Figure 3.6: Spatio-temporal diagrams at different regimes: (a) subcritical at Re =
300; (b) slightly above the critical point at Re = 329.5; (c) supercritical at Re = 360.
(d) A close-up view of the splitting event at the moment indicated by the circle in (b).
Snapshots are taken at the mid θ-z plane. Color map shows the streamwise vorticity.

To test this, another set of simulations are performed and we extend the box size in

the stripe-normal direction êz to 960h such that spatial correlations are taken into

account. Through the simulations at three different Reynolds numbers (subcritical,

critical and supercritical), the observed dynamics agree qualitatively with the DP

model (see Fig. 3.6): At Re = 300, the flow returns to the laminar state after suf-

ficiently long time; at Re = 360, an initial single stripe quickly splits until it reaches

a statistically stationary state with a typical stripe spacing. At Re = 329.5 on the

other hand, turbulence persists but the stripe spacings change throughout, exploring

all scales permitted in the given domain size. An example of stripe splitting is shown in

Fig. 3.6(d). After an initial increase in width, the stripe breaks up into two segments

of similar size that then continue to separate. It should be noted that this process

differs from puff splitting in pipes where the new puff originates from a thin filament

of vorticity that disconnects from the original puff (Fig. 2A in [12]). Furthermore, in

pipes, splitting exclusively occurs in the downstream direction whereas in the present

case no preferable splitting direction exists.

For a quantitative evaluation of the laminar spacing, sizes of laminar gaps are measured

by setting a cutoff value to the averaged vorticity, below which the flow is considered

to be laminar, and the distributions are tested to be insensitive to the cutoff value

(except for shifts of the absolute values). Data are sampled at the (quasi-)stationary

state, over a time interval of O(105)τh. It is observed that the size distributions suffi-

ciently above critical are exponential and hence possess a characteristic size. Close to

the critical point the distributions follow a power law instead (Re = 329 in Fig. 3.7),

implying that there is no characteristic length. Size distributions hence indeed ex-

hibit scale invariance, confirming that the intersection point in Fig. 3.5 marks a phase

transition and the onset of sustained turbulence. Furthermore the circumstance that
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size distributions follow a power law close to criticality and become exponential at

larger supercritical values shows that the resulting intermittent flows are intrinsically

irregular and do not form fixed patterns as had been proposed previously [47, 109].
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Figure 3.7: Size distributions of laminar gaps at Re = 329 and Re = 340 in semilog-
arithmic scale. The length in z direction is Lz = 960h. Inset is the plot in log-log
scale.

3.6 Critical exponents at criticality

While the feature of scale invariance observed above shows that the transition to tur-

bulence is a nonequilibrium continuous phase transition, measurement of the critical

exponents at criticality allows us to test Pomeau’s conjecture [11], on whether the

subcritical transition to turbulence belongs to the DP universality class. Simulations

with different initial conditions have been performed at Re ∈ [328, 360]. The spatial

length Lz is required to be long enough to avoid the finite-size effects. However, to

make a better trade-off between the spatial extension and the computational costs,

the size of the computational domain in our simulations depends on Re: Lz is larger

at Re closer to the critical point while the other two directions are kept unchanged.

Table 3.1 lists the Re-dependent domain sizes and the corresponding resolutions. At

each Re, five runs with different initial conditions have been done over a time inteval

of O(104−105)τh. The laminar-gap size and the turbulent-stripe length in Z direction

are obtained with the same method as described in Sec. 3.5.

The time series of the ensemble-averaged (averaged over all realizations at each Re)

turbulent fraction FT (t) is shown in Fig. 3.8. As Re approaches the critical point,

the fluctuations of the ensemble-averaged turbulent fraction become larger and this
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Re 328.85 [329, 332.5] [335, 360]

Lz 1920h 960h 480h
nz 12288 6144 3072

Table 3.1: The computational domain size Lz and the corresponding resolutions for
different Re. The other two directions have a size of (Lθ × Lr) = (10h × 2h) with
resolution of (48× 32).
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Figure 3.8: Temporal evolution of the ensemble-averaged turbulent fraction FT at
Re = 328.85. Time is in the advective time unit τh = h/U .

requires longer time to obtain better statistics. At the statistically steady state, we

take the temporal mean of the ensemble-averaged turbulent fraction FT (t), labeled

here “mean turbulent fraction” F̄T . The mean turbulent fraction depends solely on Re

and is considered as the order parameter in our system. Below the critical Reynolds

number Rec, F̄T = 0, while F̄T > 0 for Re > Rec, as shown in Fig. 3.6.

The mean turbulent fraction F̄T is plotted against Re in Fig. 3.9 and is then fitted

with different power-law functions (F̄T ∼ ǫβ where ǫ = Re−Rec

Rec ) as listed in Table 3.2.

In Fig. 3.9, the black square points are obtained from simulations. The red dashed

line shows the power-law fit with a fixed exponent β = 0.276, which is here called

“β-fit “. The β-fit is done for Re ∈ [328.85, 332.5], giving a critical Reynolds number

Reβ-fitc ≃ 328.65. Note that the chosen exponent is the universal value in the one-

dimensional DP universality class (see Table 1.1). Within the error bars and the range

of fitting, the numerical date matches very well with the fitting line. In the best fit

(the blue dot-dashed line), the exponent β is a fitting parameter, together with another

two: the coefficient a and the critical value Rec. The power exponent from the best

fit is βbest-fit ≃ 0.211, about 24% lower than the 1D-DP value. The critical Reynolds
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number is almost the same Rebest-fitc ≃ 328.76, although the fitting range of Re is

different.

power fit fitting function Re range a Rec β

β-fit a(Re−Rec)
0.276 [328.85, 332.5] 0.323 328.65 0.276

best fit a(Re−Rec)
β [328.85, 340] 0.337 328.76 0.211

Table 3.2: The power-law fits of the mean turbulent fractions: β-fit has two fitting
parameters (a,Rec) with a fixed β = 0.276, the 1D-DP universal value; In the best
fit, β is an additional fitting parameter.
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Figure 3.9: Mean turbulent fraction F̄T as a function of Re. The black square points
denote the numerical data. The red dashed line is the power fit with fixed exponent
β = 0.276 (“β-fit”) while the blue dot-dashed line is the best power fit. The fits give
a critical Reynold number Rec = 328.5± 0.5. Error bars correspond to the standard
deviation. Inset is log-log plots, with the normalized Reynolds number ǫ = Re−Rec

Rec
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the X axis.

Different fitting methods have also been tried. One example is the best fit within

various range of Re (number of data points) (see Table 3.3). For different fits, the

critical value Rec changes very little, only at the first or even the second decimal place.

Hence, Rec = 328.5 ± 0.5. Note that the critical Reynolds number is slightly higher

than the crossing point Re ≃ 325 in Fig. 3.5. In statistical phase transitions, the real

critical point typically occurs not at the balance point of two competing processes, but

at a higher point where the spreading rate slightly outweighs the decay one [12].

However, the exponent β from different fits varies approximately from 0.21 to 0.28,

very sensitive to the data point closest to criticality and the fitting method. Certainly,

more statistics are required to obtain a conclusive value for β. Besides, a more reliable

way to obtain β is to fit the data with decreasing number of fitting points until the

fitting β converges to a certain value. The reason is that in the 1D-DP universality class

the scaling F̄T ∼ ǫ0.276 holds only at criticality. Therefore, the deviation of the above
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βbest-fit from the universal value does not exclude the possibility that the transition

falls into the DP universality class. Moreover, the agreement between the β-fit and the

simulation data near the criticality are actually very good.

# points 5 6 7 8 9

β 0.247 0.229 0.223 0.216 0.211
Rec 328.71 328.74 328.75 328.76 328.76
a 0.330 0.332 0.333 0.335 0.335

Table 3.3: The best fits of the mean turbulent fractions with different number of
data points. “5” means the first 5 points in Fig. 3.9.

Furthermore, we analysed the probability density function (PDF) of laminar gap sizes

at criticality. As shown in Fig. 3.10, the PDF at Re close to the critical point follows

a power law, whereas at Re = 335 it deviates obviously from a power-law scaling,

which further confirms the feature of scale invariance at criticality as illustrated in

§3.5. At Re = 329, the power exponent from the best fit is µ ≃ −1.75. According

to [51], at criticality this so-called empty-interval exponent is linked to the spatial

critical exponent ν⊥ by the following relation, µ⊥ = β/ν⊥ − 2. Therefore, we have

ν|Re=329 ≃ 1.1, which is very close to the universal value 1.097 and hence provides

evidence that the transition in our system belongs to 1D DP universality class.
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Figure 3.10: Probability density function (PDF) of laminar gap sizes at different
Re. The line with slope -1.748 (the value of 1D DP class) serves as guide to our eye.
Both axes are in logarithmic scale.

In contrast, the width of turbulent stripes are exponentially distributed even at Re close

to the critical point, meaning that there is a characteristic length for the turbulent

stripe. Figure 3.11 shows the cumulative probability distributions of the widths of

turbulent stripes. All curves collapse together, with a mean width of about 41h (see
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Fig. 3.12). This value is, to the best of my knowledge, for the first time quantitatively

obtained and is consistent with the observations from previous experiments [47] and

numerical simulations [48]. It is worth to note that this value is slightly dependent on

the cutoff vorticity level below which the flow is considered to be laminar.
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3.7 Discussion and summary

Laminar-turbulent intermittency is intrinsic to the transitional regime of a wide range

of fluid flows including pipe, channel, boundary layer, and Couette flow. In the latter

turbulent spots can grow and form continuous stripes, yet in the stripe-normal direction

they remain interspersed by laminar fluid. We carried out direct numerical simulations

in a long narrow domain and observed that individual turbulent stripes are transient.

In agreement with recent observations in pipe flow, we find that turbulence becomes

sustained at a distinct critical point once the spatial proliferation outweighs the in-

herent decaying process. Furthermore, by resolving the asymptotic size distributions

close to criticality we demonstrate scale invariance at the onset of turbulence, which

indicates that the transition to turbulence is a continuous (2nd order) phase transition.

The power-law exponents associated with the turbulent fraction and the laminar gap

sizes are in reasonably good agreement with the universal values in the 1D-DP class

and hence support that the transition to turbulence in Couette flow belongs to the DP

universality class.

These results are robust in the “tilted” slender computational box of this study. The

flow is three dimensional but its dynamics is quasi-1D, mainly constrained in the

direction perpendicular to the stripe (Z direction in Fig. 3.2 (right)). Although our

flow may not be a general PCF system and it is certainly very tricky to check our

results in experiments, it is not a model or a simple system of ODE. It represents a

real flow, the motion of which governed by the Navier-Stokes equations. To extend our

results to the general PCF, one may still need to consider the following factors:

• The domain size. While the size in Z direction is spatially extended, the size

in θ direction is relatively short. This choice actually turns out to be a very

successful strategy to simplify the complicated dynamics and to make the whole

study possible within our current computing resources. However, the length Lθ

has an influence on the results. As is shown in our previous study [106], doubling

the size in θ direction (from 10h to 20h) steepens the exponential distributions

of the splitting time. This indicates that a longer turbulent stripe tends to split

at an earlier moment, which may saturate as we further increase Lθ. Whether

it would influence the critical Reynolds number is unknown and worth further

investigation.

• The “titled” angle. In all our simulations, this angle is fixed to be 24◦. In a

general PCF, this angle varies a lot, ranging from 20◦-70◦ [43]. However, we

believe that this angle will not change the results in a titled box.

• Simulation in the conventional PCF domain (as in Fig. 3.2, left). In this box,

the dynamics is two dimensional. Besides the decay and splitting events, the
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stripe can also break into spots as Re decreases and grow along the stripe as Re

increases. To quantify the dynamics in this case, the measurements of turbulent

fraction and splitting time are difficulties. Especially close to the critical point,

turbulent spots dominate the dynamics and it is thus hard to define a splitting

event. One may define splitting as the doubling of the turbulent fraction. Since

simulation would be too costly, experiments may be a better choice.

The last remark is on the temporal exponent. In our quasi-1D system, the calculation of

the temporal exponent is very difficult. Theoretically, both steady-state and quenching

experiments1 can be employed to calculate the temporal exponent [51]. In steady-state

experiments, one can obtain the data of the time empty intevals from the space-time

diagrams and then calculate the probability distributions, as is done for the turbulent

liquid crystals in [55]. However, the mean decay or splitting time in Couette flow is

about 2× 104τh at criticality while the longest running time (∼ 5× 105τh) is still too

short to obtain sufficient statistics for the temporal exponent. On the other hand,

in quenching experiments 5 runs at each Re result in big fluctuactions even at the

initial relaxation stage. Moreover, the computation domain is still not big enough

to reach very small turbulent fraction. However, by performing the under-resolved

simulations, we are able to have 20 runs at each Re and indeed we observe collapse

of time series of the turbulent fraction by rescaling the axes (see Appendix B). In

summary, the calculation of the temporal exponent requires much larger realizations

and much longer integration time, setting a challenge for future studies.

1In steady-state experiments, data are sampled and results are obtained at the statistically steady

states. However, quenching experiments depart from a fully turbulent state but run at Re close to

the critical point, mainly devoted to study the dynamical behaviors before the flow decays or before

it reaches the steady states.
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“The “paradox” is only a conflict between re-

ality and your feeling of what reality “ought

to” be. “

Richard P. Feynman (1918 - 1988)

4
Nonlinear transition to turbulence

in quasi-Keplerian flow

Astrophysical disk flows must be turbulent so that the angular momentum can be

transported outwards in the disk, as the matter spirals inwards and accretes onto the

central massive body (see Fig 1.5). However, the origin of turbulence is still unclear.

The Keplerian angular velocity profile, decreasing radially as Ω(r) ∼ r−3/2, is linearly

stable according to the inviscid Rayleigh criterion [2] and hence alternative mechanisms

are required for turbulence to arise. In hot and ionized disks the magnetorational

instability gives rise to turbulence [68–70], but it nonetheless fails to operate in cold

and poorly ionized disks. However, as shown in Chapter §3, in PCF and other linearly

stable flows subcritical transition to turbulence via nonlinear mechanisms may apply to

accretion disk flows. This Chapter is devoted to check whether subcritical turbulence

arises in Rayleigh stable rotating flows. This question has been recently studied in the

quasi-Keplerian regime (Regime II in Fig. 1.2) in TCF. The experimental results from

different groups yielded contradictory results. More background can be found in §1.4.
This discrepancy may arise from the axial boundary conditions: numerical simulations

of the experimental setups show that top and bottom end walls confining the fluid

strongly disrupt Keplerian velocity profiles and causes turbulence to arise already at

Re ∼ O(103) [75]. Hence, the interpretation and extrapolation of experimental data

remains controversial because of the prominent role played by axial end walls. To avoid

end-wall, we here perform direct numerical simulations of TCF with axially periodic
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boundary conditions. At shear Re as large as 1×105 no sustained turbulence has been

found. Although the flow is strongly disturbed and develops quickly into a turbulent

state, the disturbance eventually decay but in very long time duration.

4.1 Numerical specification
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Figure 4.1: The parameter space Res-RΩ. RΩ is constant along the half-line starting
from origin. The range of RΩ is shown at different regions seperated by the Rayleigh
line (RΩ = −1) and the solid body line (RΩ = ±∞).

Following the parameter choice of Dubrulle et al. [110], we introduce two dimensionless

parameters, namely, the shear Reynolds number Res and the rotation number RΩ:

Res =
2

1 + η
|ηReo −Rei|, RΩ =

(1− η)(Rei +Reo)

ηReo −Rei
. (4.1)

The shear Reynolds number Res characterizes the shear between the inner and outer

cylinders while the rotation number RΩ is a measure for the mean rotation and is

constant on every half-line out from the origin in the Reo-Rei space (see Fig. 4.1).

On the solid-body line, there is no relative motions between different layers and hence

Res = 0, whereas RΩ = ±∞. For comparison to the recent experimental and nu-

merical results, we choose the radius ratio η = 0.71. This value is fixed for all the

simulations. The simulations have been performed at three different Reynolds num-

bers Rei = [1×104, 1×105, 2×105] on the half line RΩ = −1.2. The corresponding shear

Reynolds number is Res = [5078.8, 50788, 101576]. Another relevant parameter often

encountered in the literature is the local exponent of angular velocity q = −dlnΩ/dlnr.

For a Keplerian velocity profile, q = 3/2, and on the Rayleigh line q = 2. Note that for

the TCF base flow the parameter q is not constant in the radial direction. In all our
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simulations, q(r) = 2
r2+constant

∈ [1.5, 1.8], which is between the Keplerian line and the

Rayleigh line in the Reo-Rei space (the blue region in Fig. 4.1). A comparison between

astrophysical Keplerian flow and TCF of our simulations is shown in table 4.1.

Ωb(r) Res RΩ q(r) axial boundary

our TCF simulations C1r + C2/r 104−5 -1.2 [1.5, 1.8] periodic

Keplerian Cr−3/2 ≫ 106 - 4/3 3/2 free surfaces

Table 4.1: A parameter comparison between TCF of our study and astrophysical
Keplerian flows: base angular velocity profile Ωb(r), shear Reynolds number Res,
rotation number RΩ, local exponent q(r) and axial boundary conditions. C1 and C2

are defined in Eq. 1.1 while C is a constant.

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

Wavenumber  k

 E
l,n

(k
)/

E
l,n

(1
)

 

 

axial  El

azimuthal  En

Figure 4.2: The axial (black) and azimuthal (red) energy power spectra El,n(k) at
time t = 4× 10−4τν , before the decay of turbulence. The wavenumber k corresponds
to the axial or azimuthal wavenumber.

We use the parallel code nsCouette to simulate the Taylor-Couette flow. The technical

details and the accuracy of the code are presented in section §2.3. The corresponding

parameters of the simulations are listed in table 4.2. As for the computational domain,

we choose 1/8 cylinder in the azimuthal direction and Γ = Lz/d = 2 at Res = 5078.8.

The total number of grid points (Nr×Nθ×Nz) is (256×256×256). This resolution is

checked by the axial and azimuthal energy spectra (see Fig. 4.2). To save computing

time, the domain size for higher Reynolds numbers is chosen to be smaller, 1/16 cylin-

der in θ direction and Γ = 0.5. As we will shown in the next section, this domain is

sufficient to hold the building blocks (streaks and vorticities) of turbulence. At higher

Re the spatial resolution in each direction is proportionally increased as N ∼ Re3/4,

given that the domain size is the same. We should point out that in the case II a lower

resolution than the one shown in Table 4.2 causes the simulations to blow up. This

may be explained by the fact that with a lower resolution the smallest scale where

the energy dissipates is not resolved such that the energy accumulates in the flow and
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causes the simulations to explode. The time step in Table 4.2 is the maximal value

which allows the simulations not to blow up.

No. Rei Res kθ Γ # points dt

I 1× 104 5078.8 8 2 256× 256× 256 10−9

II 1× 105 50788 16 0.5 1152× 384× 384 10−9

III 2× 105 101576 16 0.5 2048× 768× 512 5× 10−10

Table 4.2: DNS parameters of TCF in quasi-Keplerian regime. The radius ratio is
η = 0.71. Periodic boundary conditions are imposed in axial direction.

Our initial conditions are derived from the optimal perturbations from a study of

transient growth by Maretzke et al. [104], on top of which small three dimensional

noise is added. Since the global optimal azimuthal wavenumber koptθ for the transient

growth is 7 (Table 4.3), smaller than kθ used in our simulations, only part of the

optimal perturbations are used as the initial conditions. For the case RΩ = −1.2 and

Res > O(103), the optimal axial wavenumber equals to zero, indicating an axially-

independent structure. The optimal transient growth rate Gopt at these Reynolds

numbers are listed in table 4.3. All simulations have been run on a Intel cluster

(HYDRA in Garching Computing Center RZG) and over a time duration ∼ O(102) d
U

(about 13 cylinder rotations) in our best effort. The simulations are very costly in

computing time: the simulation III takes about 5×106 core hours, with 512 MPI tasks

and 10 OpenMP threads. The results are shown and discussed in the remaining of this

Chapter.

No. Rei Gopt topt/τν koptz koptθ

I 1× 104 15.00 0.00185 0 7
II 1× 105 75.15 0.00040 0 7
III 2× 105 120.19 0.00025 0 7

Table 4.3: The transient growth rate of the initial perturbations attained at time
topt and the corresponding optimal wavenumber.

4.2 Numerical results

We first measured the time series of the total perturbation energy. Assuming that

ûln(r) = û(r, lkθ, nkz) are the spectral coefficients in Fourier space of the velocity

field u(r, θ, z), the modal kinetic energy Eln associated with the Fourier mode (l, n) is

defined as

Eln =
1

2

∫ ro

ri

[ûlnr (r)2 + ûlnθ (r)2 + ûlnz (r)2]rdr. (4.2)
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We also need the kinetic energy of the axial mode l and of the azimuthal mode n,

respectively,

El =

N∑

n=−N

Eln, En =

L∑

l=−L

Eln. (4.3)

The total kinetic energy can be therefore expressed as

E =

L∑

l=−L

N∑

n=−N

Eln. (4.4)

Deducing the laminar energy from the total energy gives the perturbation energy Ep,

the formulation of which differs only at mode (0,0) in Eq. 4.2 by replacing û00θ (r) with

[û00θ (r) − U b
θ (r)]. Figure 4.3 shows the temporal evolution of the total perturbation

energy Ep(t) normalized by the initial perturbation energy E0 at all Re of this study.

The time is here in viscous unit τν = d2/ν.
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Figure 4.3: The temporal evolution of the total perturbation energy Ep(t) nor-
malized by the initial perturbation energy E0. The dashed lines are guided lines
seperating three different stages while different color corresponds to different Rei.
The time is in viscous unit τν = d2/ν.

In all cases the perturbation energy decays eventually. However, the whole process

occurs in a very long viscous time scale. We identify three different stages: 1) the first

stage is mainly the transient growth of the initial perturbations which is attributed to

the non-normality of the eigenmodes in the linearized Navier-Stokes equations. This

stage happens within relatively short time since the nonlinear effects takes over once the

amplitudes of the higher modes become non-negligible. 2) The nonlinear interactions

give rise to secondary instabilities which will be further discussed in section §4.2.1.
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These instabilities pump energy from the mean flow to the small scale structures and

drive the flow turbulent. This is the second stage. 3) At the third stage, however,

turbulence can not maintain its momentum due to the viscous and Coriolis forces and

starts decaying, but with a different decay rate at different Re.

4.2.1 Secondary instability

Linear stability analysis tells us that the primary mode has negative growth and will

eventually decay for TCF in the quasi-Keplerian regime [104]. As mentioned above,

the most amplified axial mode in our case is l = 0. The inset in Fig. 4.4 shows the

nonlinear temporal evolution of the modal energy for l = 0, which is the perturbation

energy of the axially-averaged flow. The evolution follows qualitatively the prediction

of the linear stability analysis: After the initial transient growth, the energy starts

decaying. Note that the time for reaching the maximal point here is different from

the optimal time listed in table 4.3 and that the transient growth rates are also much

smaller than in the linear system. One reason is that the initial conditions in our

simulations are not exactly only part of the optimal perturbations. The transient

growth of the primary mode distorts the mean flow and supplies energy to the higher

modes (small-scale structures). If the distortion is strong enough it causes the rapid

growth of secondary modes. Figure 4.4 shows the exponential growth of the first eight

axial modes at the early moment for Rei = 1×105. At all Re, the secondary instabilities

happen very fast, in the time interval [1, 4] × 10−4τν , and then drive the mean flow

breakdown to a seemingly turbulent state. The energy power spectra El,n(k) and

dissipation spectra k2El,n(k) at time t = 4× 10−4τν , where the turbulence intensity is

nearly the strongest, is shown in Fig. 4.5. The power spectra shows that the flow is well

resolved. The inertial range is short and the energy dissipation peaks at wavenumber

k < 10, meaning that turbulence here has relatively large “eddy” structures.

4.2.2 Decaying turbulence

The arising turbulence starts decaying at time t ≃ 4× 10−4τν , at all Re of this study.

This can be seen from the azimuthal and axial modal energy at different Re. As shown

in Fig. 4.3, after the secondary instabilities the perturbation energy firstly decays

exponentially and switches finally to a wavy route downwards and with a lower decay

rate. Figure 4.6 shows the temporal evolution of the velocity components at one point

at mid gap at different Re. We can see that the fluctuation of uz fades away, while ur

and uθ oscillate around zero and around the laminar value, respectively. As the time

advances further, the fluctuation and oscillation will eventually decay to zero.
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Figure 4.5: Axial and Azimuthal energy power El,n(k) (left) and dissipation spectra
k2El,n(k) (right), normalized by the energy of mode 1, El,n(1). The time is t =
4 × 10−4 and the Reynolds number is Rei = 1 × 105. The guided line has a slope
−5/3, the power cascade exponent for homogeneous isotropic turbulence.

The decay of turbulence can be more clearly seen in Fig. 4.7, the azimuthal and axial

modal energy, En(t) and El(t), at Rei = 1× 105. The azimuthal and axial mode both

varies from 0 to the highest 192 (half of the number of points) from top to bottom.

Each mode is decaying about exponentially. Moreover, we visualize also the field of

streamwise vorticity, ωθ = ∂zur − ∂ruz, at two different moments, as shown in Fig. 4.8

for Rei = 1×104. The flow is rather turbulent at time t1 while almost laminar at time

t2. Similar dynamical behaviors have been found at higher Re (Fig. 4.9).
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4.3 Discussion and summary

By performing DNS simulations of axially periodic TCF in the quasi-Keplerian regime,

decaying turbulence is found at shear Re up to 105. Starting from the optimal per-

turbations (2D, axially independent) with 3D noise, the flow undergoes three stages

before the relaminarization: i) linear transient growth; ii) secondary instabilities due to

nonlinear mechanisms; iii) turbulence decaying. The nonlinear secondary instabilities

causes the linearly stable flow turbulent. However, turbulence does not sustain against

the stabilizing (viscous or Coriolis) forces, oscillating down towards laminar motion.

From the temporal evolution of axial or azimuthal modal energy, it is shown that tur-

bulence decay at all Re starts at approximately the same viscous time, ∼ 4× 10−4τν .

This indicates that the viscous dissipation is the main mechanism for decay.

Decaying turbulence has been also found in recent studies from two other groups

[111, 112]. Mónico et al. conducted also DNS simulations of TCF with periodic axial

boundary conditions and found no sustained turbulence. A comparison to our simu-

lations is drawn in Table 4.4. Although similar results have been obtained from both

simulations, it is worth to mention that the resolutions per volume in their simulations

are about 20 times smaller than ours at similar Re. However, as mentioned before, with

such low resolutions our spectral code blows up, since the energy-dissipating scale is

not well resolved. In their study, the second-order finite difference code may have high

numerical viscosity, which helps dissipate the energy. In addition, their initial condi-

tions are turbulent states taken from the Rayleigh-unstable regime (at stationary outer

cylinder). A sudden rotation of the outer cylinder may cause very strong resistance of

the flow, driving the intense initial turbulence even quicker relaminarization.

DNS In this thesis by Mónico et al.

Highest Res
1 1.01× 105 9.45× 104

η = ri/ro 0.71 0.714
Geometry2 Lr × Lθ × Lz 1× 0.96× 0.5 1× 2.614× 2.094
# points per unit length 2048× 800× 1024 800× 196× 490

Numerical method 2nd-order FD (r) + 2nd-order FD
Fourier spectral (θ, z) (r, θ, z)

Initial conditions from optimal perturbations turbulent states from
+ 3D noise Rayleigh-unstable regime

Table 4.4: A Comparison between our DNS simulations and the ones from
Twente [111]

On the other hand, no persistent turbulence was observed at shear Re up to 2 × 106

in the new experiments of TCF conducted by Edlund and Ji [112]. With a radius

ratio of η ≃ 0.34, the new experimental setup has axial end caps splitting into three

1The definition of Res in this thesis is different from the one in [111] by a factor of 2

1+η
.

2The azimuthal length Lθ is based on the inner cylinder.
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parts: the middle part is flexible whereas the other two are attached with the inner and

outer cylinder, respectively. By fine-tuning the rotation speed of the middle ring, the

velocity profile of the laminar flow can match very well with the theoretical Couette

profile. The laminar flow is then disturbed by injecting jets of fluid at the mid-plane.

The decaying time scales of turbulence after stopping injection, however, are much

shorter than what is observed in DNS simulations. A possible explanation is that in

simulations the perturbations are imposed in the whole field whereas in experiments

disturbances are always localized. The lack of strong spatial interactions in experiments

may shorten the decay time, with a more stabilizing curvature effect (η ≃ 0.34) also

possibly contributing.

Albeit all these studies found no sustained hydrodynamic turbulence, the strong sec-

ondary instabilities observed in our simulations hints that subcritical hydrodynamic

turbulence may still exist at higher Reynolds numbers. Besides, only the incompress-

ible hydrodynamics of the flow is considered in these studies, which is very different

from the astrophysical disks: i) The Reynolds number of astrophysical relevance is

much higher; ii) Astrophysical flows are mostly compressible; iii) The physics of as-

trophysical disks is more complicated, including many other physical fields, such as

self-gravity, magnetic field and temperature gradients [113]. Regarding the extremely

high computing cost of DNS at higher Re, efforts in the near future may be better

invested on the study of multi-physical processes, such as baroclinic instabilities origi-

nated from temperature gradients [114–116].
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Figure 4.6: The temporal evolution of the velocity at a point at mid gap: Rei =
1 × 104 (top), Rei = 1 × 105 (middle) and Rei = 2 × 105 (bottom). The time is in
viscous unit τν = d2/ν. Note that the total time durations are different at different
Re.
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t1 = 8 x 10
 -4(a) t2 = 0.0022(b)

Figure 4.8: 2D contour plots of the streamwise vorticity ωθ at (a) t1 = 8 × 10−4

and (b) t2 = 2.2 × 10−3. The Reynolds number is Rei = 1 × 104. The plot is in the
r-θ plane for z = d.
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Figure 4.9: 3D contour plots of the streamwise vorticity ωθ at (a) t1 = 4.8 × 10−4

and (b) t2 = 9.6 × 10−4. The Reynolds number is Rei = 1 × 105. The left-bottom
arrow indicates the azimuthal direction.
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“Everything should be made as simple as pos-

sible, but not simpler.”

Albert Einstein (1879 - 1955)

5
Transient growth of Couette flow

under Coriolis force1

In Taylor-Couette experiments, the axial end caps drive via shear the nearby fluids to

rotate at the same speed as themselves. However the fluids far away from the end caps

follow the ideal Couette profile, hence forming an axial gradient of azimuthal velocity

and causing axial motions. This effect is known as Ekman pumping effect, mainly

due to the presence of Coriolis forces. This is one source for the contradictory results

mentioned in §1.4 in TCF experiments. Another source that causes Ekman effects

is the Earth’s rotation, which brings another component of rotation perpendicular to

the cylinder walls. The influence of this rotation is still unclear. In this Chapter, the

simplest shear flow, PCF, with system wall-normal rotation is studied, including the

linear stability analysis and transient energy growth.

5.1 Introduction

Ekman-Couette flow represents the flow between two sliding parallel walls, where the

whole setup is subject to external rotation around the axis perpendicular to the walls.

Fig. 5.1 shows schematically the geometry of the flow. In the extreme cases, the flow

1The content in this Chapter is mainly from the paper: L. Shi, B. Hof, A. Tilgner, Transient Growth
of Ekman-Couette Flow, Phys. Rev. E, 89, 013001 (2014).
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becomes either plane Couette flow (PCF, if without rotation) or two well separated

Ekman layers for large rotation rates. Because of the theoretical importance and the

practical generality in planetary systems, these two canonical shear flows have both

received enormous attention for the last decades and PCF under spanwise system

rotation has also been widely studied [117, 118]. However, little work has been done

to study the Ekman-Couette flow. Hoffmann et. al. [119] studied the secondary

and tertiary flow states in Ekman-Couette flow while Ponty et. al. [120] investigated

the onset of thermal convection between two shearing plates under the influence of

external oblique rotation. Both studies focused mainly on the regime of moderate to

large external rotation. The instability at small rotation has been yet payed little

attention to. Since experimental flows on Earth are mostly subject to weak external

rotation and the Earth’s rotation has been reported to have measurable influences in

many other flows [121–124], the influence of weak system rotation on the Couette flows

will be here specially studied.

��

X

Y

Z

U0/2

-U0/2

Figure 5.1: Schematic of Ekman-Couette flow. The top and bottom walls slide both
with velocity U0/2 but in opposite directions along X axis. The whole setup rotates
at a speed of Ω0 around the Y axis. The velocity profile corresponds to the base flow
of plane Couette flow, (U0/2 · y, 0, 0).

In this Chapter we present a study on the linear stability and the transient energy

growth exploring a wide parameter space in Ekman-Couette flow. This work is interest-

ing theoretically and is also motivated by recent conflicting results [72, 73, 75, 78, 125]

in astrophysical rotating flows, on whether turbulence in cold accretion disks can arise

via hydrodynamic instabilities. The Ekman layers introduced by the top and bottom

end walls in experimental Taylor-Couette setups influence remarkably the bulk flow

and make the flow rather complicated. Besides, the Earth’s rotation gives rise to an-

other component of rotation, perpendicular to the rotation axis of the cylinders. At

high Re, its effects may become non-negligible, except that the rotation axis of the
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Chapter 5. Transient growth of Couette flow under Coriolis force

cylinders aligns with the one of Earth’s rotation. We here choose the simplest geom-

etry to study the influence of the Ekman layer on the linearly stable flows. We find

that in PCF an infinitesimal external rotation causes linear instabilities.

This Chapter is structured in the following way. The linearized Ekman-Couette prob-

lem is formulated mathematically in Section §5.2, followed by the linear stability anal-

ysis in Section §5.3. We finally study the transient energy growth in Section 4 §5.4.

5.2 Problem formulation

Considering that the fluid is incompressible, the governing equations of the fluid motion

are the Navier-Stokes equations (here with external system rotation),

∂tu+ u · ∇u+ 2Ω0ey × u = −1

ρ
∇p+ ν∆u, ∇ · u = 0. (5.1)

where u(x, t) is the flow velocity field and p(x, t) is the pressure field. By taking the

half gap distance between two plates D/2 as the length unit and D/(2U0) as the time

unit,

l = l′ ·D/2, t = t′ ·D/(2U0), u = u′ · U0, p = p′ · ρU2
0 ,

we obtain the non-dimensional form of Eq. 5.1,

∂tu+ u · ∇u+
1

Ro
· ey × u = −∇p+

1

Re
·∆u, ∇ · u = 0. (5.2)

with the Reynolds number and the Rossby number

Re =
U0D

2ν
, Ro =

U0

Ω0D

Note that the non-dimensional symbols in Eq. 5.2 are omitted. We define another non-

dimensional parameter, the rotation number Ω = Ω0D2

ν . Here, Ro = 2Re
Ω . Considering

the boundary conditions and the symmetry property about the plane y = 0, the base

velocity profile has the form of [U(y), 0,W (y)]. We introduce the complex function

Z(y) = U(y) + iW (y) and yield

Z(y) =
1

2

eiγy − e−iγy

eiγ − e−iγ
, (5.3)

with γ =
√

Re
Ro

1+i√
2

(see Appendix C for details). Fig. 5.2 displays the base velocity

profile at Re = 1000, with and without rotation, respectively. At Ω = 50, the external

rotation distorts qualitatively the base flow such that the inflection points appear in

the profiles.
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Figure 5.2: Base velocity profiles at Re = 1000,Ω = 50 (solid and dash-dotted lines)
and at Re = 1000,Ω = 0 (dashed line).

To study the linear stability and transient dynamics of the base flow, we decompose

the velocity field as u = upert + Ubase, where Ubase = [U(y), 0,W (y)]. Let v and η

denote the perturbation of the wall-normal velocity and vorticity. By taking the curl

once and twice, respectively, of Eq. 5.2 and then projecting into the Y direction, we

obtain the linearized equations for the perturbation variables (v, η),

∂t∇2v + (U∂x +W∂z)∇2v −W ′′∂zv − U ′′∂xv =

1

Re
∇4v − 1

Ro
∂yη,

∂tη + (U∂x +W∂z)η + U ′∂zv −W ′∂xv =

1

Re
∇2η +

1

Ro
∂yv.

(5.4)

In this paper we focus on the following modal perturbation,

v = v̂(y, t)ei(αx+βz), η = η̂(y, t)ei(αx+βz),
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where α and β are the wavenumbers in X- and Z- direction, respectively. By inserting

into Eq. 5.4, we have the modal equations,

∂t∇̂2v̂ =− i(Uα+Wβ)∇̂2v̂ + i(U ′′α+W ′′β)v̂

+
1

Re
∇̂4v̂ − 1

Ro
∂yη̂,

∂tη̂ =− i(Uα+Wβ)η̂ − i(U ′β −W ′α)v̂

+
1

Re
∇̂2η̂ +

1

Ro
∂yv̂,

(5.5)

with ∇̂2 = ∂2
y − (α2 + β2).

Through the Chebyshev spectral discretization in the spatial direction [126], the above

partial differential equations is transformed into a linear system ∂tv̂ = −iLv̂, where v̂ =

[v̂, η̂]. The linear stability and transient growth is then calculated by the eigenvalues

and eigenvectors of the linear operator L, which is computed in this paper by the

subroutines in the LAPACK library. The accuracy and convergence of the method have

been verified against the results in [126].

5.3 Linear instability

The inflection points in the base profile hint that the Ekman-Couette flow may be

linearly unstable. Thus we first investigate the linear instability of the flow. The

range of parameters under study is Re ∈ [100, 300000] and Ω ∈ [0, 100]. A bisection

method is employed to find the critical curve Rec(Ω), separating the linearly stable

and unstable regions. The results are shown in Fig. 5.3. At small Ω (Ω < 5), the

linear instability is here referred to as type “0” and the critical Reynolds number Rec

is found to scale with Ω as Rec(Ω) ≃ 1800 · Ω−1. Therefore, as Ω → 0, Rec → ∞,

which is consistent with the linear stability of plane Couette flow (Ω = 0) at any Re

[127, 128]. As Ω is increased, we recover the type I and type II instabilities previously

found in Ekman layer flow [129]. The corresponding wavenumbers are shown in

Fig. 5.4. Here the wavenumber k =
√

α2 + β2 and the angle θ = −arctan(α/β), where

θ is the angle between the wavevector k and the Z axis. The negative sign indicates

anti-clockwise direction. As shown in the Fig. 5.4, type I instability is characterized

by a large wavenumber and a negative angle while type II has a smaller wavenumber

and a positive angle. The results agree very well with the ones previously reported

in [119, 120].
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Figure 5.3: Critical Reynolds number Rec as a function of Ω. For Ω < 5, the critical
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5.4 Transient growth

Below the neutral stability curve Rec(Ω), the flow is linearly stable and the transient

growth of initial perturbations may play an important role in the nonlinear transition

to turbulence. Due to the non-normality of the governing linear operator L, PCF un-

dergoes substantial transient growth before nonlinear interaction sets in, [126, 130].

However, the influence of the external system rotation on the transient behavior is still

unknown. Here we employ the method presented in [126] to compute the optimal tran-

sient growth and the optimal perturbations. Let us first define the physical quantities
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Figure 5.5: (left) The temporal evolution of the maximum transient growth rate
Gm(t) at Re = 500 and at different rotation rates Ω. At Ω = 5.0, the flow is already
linearly unstable. (right) Convergence of the global optimal growth rate Gopt at
Re = 5000 and Ω = 0.05. The collocation points NCOS = 33 is chosen for the
following computations.

of interest, the spectral energy

Ê(α, β,Re,Ω; t) = ‖v̂‖2 =
∫ 1

−1
(|∂yv̂|2 + k2|v̂|2 + |η̂|2)dy (5.6)

and the optimal growth function

G(α, β,Re,Ω; t) = sup
v̂(·;0) 6=0

Ê(·; t)
Ê(·; 0)

= sup
v̂(·;0) 6=0

‖v̂(·; t)‖
‖v̂(·; 0)‖ . (5.7)

The spectral energy measures the kinetic energy contained in the mode (α, β), while the

optimal growth function is the maximal energy growth achievable among all possible

initial perturbations within time t. As presented in [126], the growth function G(·; t)
can be directly computed by the eigenvalues and eigenvectors of the linear operator L.

For simplicity of notation, we here introduce two additional functions: the maximal

growth in time as Gm(α, β,Re,Ω) = maxtG(α, β,Re,Ω; t) and the global optimal

growth in the (α, β) plane as Gopt(Re,Ω) = maxα,β G
m(α, β,Re,Ω). Examples of

the time evolution of Gm is shown in Fig. 5.5 (left), while the right figure shows the

convergence of Gopt at Re = 5000 and Ω = 0.05. One property of Gm is the symmetry

under the transformation (α → −α, β → −β). The maximal growth Gm in the α-β

plane at various Re and Ω is shown in Fig. 5.6, evidencing the symmetry with respect to

the point (0, 0). The Reynolds number and the rotation number are fixed in each case.

The range in the α-β plane is [−10, 10]× [−10, 10]. At small Ω (Fig. 5.6a), the contour

plot of Gm is similar to that in plane Couette flow [126], where the maximum is located

very close to the β axis. As Ω increases, the effect of the external rotation becomes

non negligible and the maximum moves away from the β axis. Moreover, increasing Re

from 500 (Fig. 5.6a) to 1500 (Fig. 5.6b) results in a substantial increase of Gm while

increasing Ω from 0.05 (Fig. 5.6a) to 50 (Fig. 5.6d) leads to a sharp decrease in Gm.

It is worthwhile to note that the modes that achieve the maximal transient growth are
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not the least unstable modes computed from the linear stability analysis.
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Figure 5.6: Contour plot in (α, β) space of the global maximum growth rate Gm:
(a) Re = 500,Ω = 0.05; (b) Re = 1500,Ω = 0.050; (c) Re = 500,Ω = 20; (d)
Re = 500,Ω = 50. The size of Gm is indicated by the color value.

We further compute the global optimal growth function Gopt(Re,Ω) in the linearly

stable region in Re ∈ [0, 100] and Ω ∈ [0, 1500]. The search of the global maximum

in the α-β plane is done by the downhill simplex method [131]. Fig. 5.7 shows the

contour plot of Gopt(Re,Ω). The highest growth is located in the left top region with

low Ω and high Re, while the lowest growth is in the right bottom region with high

Ω and low Re. Nevertheless, the middle bumps in the contour plot shows that the

growth variation is not monotonic, whereas the non-smooth, irregular patches are due

to the lack of sufficiently high resolution. Quantitatively, the scaling of Gopt with Re

and Ω is shown in Fig. 5.8. Fig. 5.8a displays the variation of Gopt(Re,Ω) with Re at

fixed Ω. The optimal growth scales at small Ω slightly faster than a power law with

Re, Gopt ∼ Re2, whereas the power-law scaling disappears at large Ω and the transient

growth becomes much smaller than the one at small Ω. Fig. 5.8b plots the growth

Gopt as a function of Ω when Re is fixed. It can be seen that the transient growth is

enhanced with weak external rotation while it is dramatically suppressed as Ω > 25.

The transient growth in rotating Couette flow is finally compared to the case without

external rotation. Here in the rotating case we choose Ω = 0.05. For a plane Couette
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Figure 5.7: Contour plot of the global optimal growth Gopt in the Ω-Re plane. The
boundary (the black line) is the neutral curve from the linear stability analysis. The
color value is on a logarithmic scale, e. g., the value “2” denotes Gopt = 102.

setup in Göttingen (Germany) with a gap distance D ≃ 0.03m, the rotation number

induced by the Earth’s rotation Ω0 ≃ 7.3 · 10−5 · sin(51.32 · π/180) ≃ 5.7 · 10−5 is

Ω = Ω0D2

νH2O
≃ 0.0513, where the water viscosity is νH2O ≃ 10−6m2/s at T = 20o. The

Reynolds number under investigation is in the range Re ∈ [1500, 35000]. The results are

ploted in Fig. 5.9. In PCF, we have the optimal transient growth Gopt ≃ 1.18×10−3Re2

(Fig. 5.9a) achieved at time topt ≃ 0.117Re (Fig. 5.9b), which agrees perfectly with the

results in [130]. The corresponding wavenumber αopt, as shown in Fig. 5.9c, scales as

αopt ∼ Re−1 and βopt (Fig. 5.9d) stays constant, βopt ≃ 1.60. For the case with external

rotation Ω = 0.05, the transient growth is slightly increased, with a power exponent

little greater than 2.0 and it is obtained at an earlier moment (see Fig. 5.9b). The

wavenumber α is basically the same as the case without rotation, while the wavenumber

β decreases linearly with Re and has a different slope at different Ω. Furthermore, as

shown in Fig. 5.10, the optimal perturbations are both in the form of inclined roll

structures. However, the elongated rolls in the case of Ω = 0.05 are slightly twisted.

5.5 Discussion and summary

We presented in this Chapter a study of the linear stability and transient energy growth

in rotating plane Couette flows, where the rotation axis is perpendicular to the planes.

Such a rotating framework is of interest to geophysical and astrophysical flows. For

example plane Couette and Taylor Couette experiments that are often used to study
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Figure 5.8: Scaling of Gopt (a) with Re at different Ω and (b) with Ω at different
Re.

the stability of geophysical and astrophysical flows [72] are all exposed to the Earth’s

rotation. By linearizing the Navier-Stokes equations, we firstly computed the neutral

stability curve dividing the linearly stable and unstable region in the Re-Ω parameter

space. Three different type of instabilities are found: for Ω > 20, type I and type II

instabilities which have been already known from the Ekman boundary layer flow and,

for Ω < 20, type “0” instabilities. The results are consistent with the previous one

reported in [119, 120]. Moreover, we found that the critical Re for Ω < 5 scales as

a power law with Ω, Rec(Ω) ≃ 1800 · Ω−1 , which agrees with the fact that the PCF

(Ω = 0) is linearly stable for all Re.
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Figure 5.10: Contour plot of the optimal perturbation vopt(x, y, z = 0) for (a) Ω = 0
and (b) Ω = 0.05. The Reynolds number is Re = 20000. The wavenumbers are the
ones giving the optimal transient growth.

Through computation of the eigenvalues and eigenfunctions of the governing linear

operator L, we obtained the global optimal transient growth in the α-β plane amongst

all possible initial perturbations. Our results show that the external rotation can have

both enhancing and suppressing effects on the optimal transient growth. For weak

rotation, it increases the transient growth while strong rotation inhibits significantly

the transient growth. At the rotation numbers relevant for geophysical applications, for
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example the atmospheric boundary layer, the transient growth is so small that linear

stability analysis appears to be the appropriate tool to determine the stability limits of

Ekman layers in the geophysical context. At small rotation the optimal growth scales

slightly faster than the power law Ω2 as is found in plane Couette flow. Furthermore,

the wavenumbers where the optimal transient growth is obtained is also different from

the non-rotating case. The optimal wavenumber α stays the same, scaling as a power

law α ∼ Re−1, whereas the optimal wavenumber β is shifted linearly with Re.

place gap d/mm Ω Rec,linear d⋆/mm

Toronto [132] 58 0.169 10651 234.8
Stockholm [23] 10 0.006 3× 105 214.8
Paris [39] 7 0.003 6× 105 212.7
Zürich [133] 31.2 0.052 34615 227.7

Table 5.1: Existing experimental setups of plane Couette flows and their onset of
linear instability under Earth’s rotation. The value Rec is computed according to
Rec ≃ 1800 · Ω−1, while d⋆ corresponds to the gap distance beyond which the linear
instability sets in before the nonlinear transition to turbulence in PCF.

Mostly, the rotation of the Earth has been intuitively considered to be too weak to

influence the experiments qualitatively. However, our results tell us that in the case

of PCF the Earth’s rotation does change radically the flow stability, from linearly

stable to linearly unstable. This instability may be attributed to the inflection points

in the base velocity profile introduced by the external rotation. Table 5.1 lists the

existing experimental PCF setups and their approximate critical Reynolds number for

the linear instability under Earth’s rotation. The value d⋆ indicates a reference gap

distance where Rec,linear = Rec,nonlinear, i. e., the critical Reynolds number from the

linear instability equals the one computed from nonlinear mechanism in PCF (∼ 650

based on the gap distance, see [39, 43, 103]). Although the linear Rec are far beyond the

onset of turbulence via nonlinear mechanism, the results provide important theoretical

guidance for the design of future PCF setups. It may also be relevant to recent Taylor-

Couette studies at Re of order O(106) [72, 73, 125], in that at large Re the additional

component of rotation induced by the Earth’s rotation may also cause inflection points

in the base velocity profile. Further studies on the underlying physical mechanisms

will contribute to the understanding of shear flows in rotating frameworks.
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“When I meet God, I am going to ask him two

questions: Why relativity? And why turbu-

lence? I really believe he will have an answer

for the first.”

Werner K. Heisenberg (1901-1976)

6
Conclusions

Subcritical transition to turbulence arises in many circumstances (e.g. in oil pipes

and other wall-bounded flows) and is a very interesting and active research topic for

fluid dynamicists. Subcritical turbulence is characterized by strong spatial inhomo-

geneity and rich dynamical complexity, which goes beyond the framework of classical

bifurcation and temporal chaos theory. In this thesis we developed a highly efficient

DNS code for simulating Taylor-Couette flow, which is parallelized by a hybrid MPI-

OpenMP strategy and has an excellent scalability up to 3 × 104 cores. With this

code we firstly studied statistically the subcritical transition to turbulence in a slender

domain in plane Couette flow. The results provide strong evidence that subcritical

transition to turbulence is a continuous phase transition and falls into the DP uni-

versality class, which brings important insight to the understanding of the nature of

turbulence. We then performed DNS simulations in the quasi-Keplerian regime in TC

flow in order to probe the existence of subcritical turbulence. At shear Re up to 1×105,

turbulent motion of fluids is observed due to the secondary instabilities and nonlinear

mechanisms. However, turbulence does not sustain and eventually decays. Finally, the

influence of external system rotation (such as Earth’s rotation) on linearly stable PCF

was studied. It was found that external system rotation causes linear instability and

strongly inhibits the transient growth at large rotation rates.
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6.1 Results and discussion

The first part of the thesis focus on the onset of sustained turbulence in PCF. The

main results are summarized as follows:

• Decay and splitting of localized turbulence are stochastic and memoryless dy-

namical processes, strongly depending on the initial conditions.

• The probability distributions of lifetime and splitting time of localized turbulence

are exponential at each Re of this study.

• The mean lifetime and splitting time scale super-exponentially with Re.

• A lower bound for the critical Re, ReLBc ≃ 325, is given by balancing the mean

time scales of decay and splitting events.

• The width of turbulent stripes falls on the same exponential distribution at all

Re of this study. The characteristic width is about 41h.

• At criticality, the flow displays scale invariance: the laminar spacing obeys a

power-law scaling, with an exponent ∼ −1.75.

• The mean turbulent fraction is well approximated as F̄t ∼ (Re − Rec)β , with

β ≃ 0.276.

• The critical Reynolds number for sustained turbulence is Rec = 328.5± 0.5.

These results are new and robust for the long slender and tilted PCF system (see

Fig. 3.2), and are a breakthrough in understanding the nature of transition to turbu-

lence and have significant theoretical meaning for the statistical physics. The dynamics

in such a system is quasi-one dimensional: the turbulent stripe can either decay or

spread only along the Z axis. This system has much affinity with pipe flow in all as-

pects. In pipe flow, the turbulent puffs of about fixed length have the same memoryless

dynamics. The probability distributions and scalings of lifetime and splitting time are

qualitatively comparable. Although the large mean time scales of the events in pipe

flow makes a quantitative study at criticality beyond current reach, the model of [134]

predicted that the transition in pipe flow also belongs to the 1D-DP universality class.

Beyond the similarity one should also bear in mind the differences: 1) Unlike in pipe

flow where the new puff originates from the front edge of the old one and develops in

the downstream, the stripe in Couette flow splits as a whole and can appear in both

sides of the old stripe; 2) At high Re, a puff progressively grows in length and develops

into a slug, whereas in Couette flow the stripes have more or less fixed width and

disappear in the turbulent environment as Re is increased above certain value.
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One may argue that this system does not capture the full spectrum of rich dynamics

in an infinite PCF system. However, we believe that the results presented above are

still valid in extended PCF systems, except that the transition will belong to the 2D-

DP universality class instead of 1D. First, our slender titled box involves the essential

coherent structures (streamwise vortices and streaks) and dynamical events (decay

and spreading) which are necessary for turbulence to sustain. Second, the long slender

box takes into account of the large spatial correlation length at criticality and hence

avoids the finite-size effect. Third, our obtained critical Reynolds is consistent with

the value previously reported in experiments [39] and simulations [43]; Finally, the

mean turbulent fraction in counter-rotating TCF where the system is characterized

by the spiral turbulent stripes is reported to have the same scaling as in the 2D-DP

universality class [13].

In the second part of the thesis we probed subcritical hydrodynamic turbulence in

quasi-Keplerian flows by performing highly resolved DNS simulations of TCF. Due to

limited available computing time, we have done simulations only at three points in

parameter space, with the highest shear Reynolds number up to 105. In all our simu-

lations, the flow is disturbed initially by the optimal linear perturbations, undergoes a

secondary instability due to nonlinear mechanisms and becomes turbulent. However,

turbulence decays and would relaminarise. The results may be also valid in the whole

quasi-Keplerian regime in TCF. Our main conclusion is that no sustained hydrody-

namic turbulence exists in quasi-Keplerian regime at Re up to 105 and that other

physical processes may be required to explain the origin of turbulence in astrophysical

accretion disks.

The above simulations have been performed in the Garching Supercomputer Center

(Rechnungszentrum Garching, RZG), with a high-performance DNS code . This code

is designed to simulate TCF, solving the NS equations in cylindrical coordinates. For

the spatial discretization, the spectral Fourier-Galerkin method is employed in the az-

imuthal and axial directions, whereas finite differences are used in the radial direction.

The nonlinear terms are treated by the pseudospectral technique. A second-order,

semi-implicit projection scheme is adopted for the time integration. The code is vali-

dated in many flow regimes: laminar flow, time-dependent wavy vortex flows, transi-

tional and turbulent flows. To achieve higher Re, the code is parallelized with a hybrid

MPI-OpenMP strategy. This strategy is simple to implement, reduces inter-node com-

munications and is more efficient compared to a flat-MPI parallelization. The code

demonstrates very good scalability up to 3× 104 cores and hence enables to simulate

TCF at Re relevant to experiments.

In the last part of the thesis, we studied the influence of external system rotation

on linearly stable shear flow. For simplicity we investigated the linear stability and

the transient growth behaviour of the PCF under external rotation perpendicular to
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the parallel wall, which is often called Ekman-Couette flow. We summarize the main

results as follows:

• External rotation causes linear instability in PCF.

• At small external rotation rate, the critical Reynolds number for linear instability

varies inversely with the rotation rate, Rec,linear ≃ 1800Ω−1.

• The maximum transient growth rates are strongly inhibited at large external

rotation.

Note that we have wall-normal system rotation instead of spanwise system rotation.

Since all experiments on Earth are subject to the Earth rotation, our results show that

the PCF setups on Earth are all linearly unstable. Although the critical Reynolds

numbers for linear instability under earth’s rotation are mostly far beyond the one

from the nonlinear mechanism Rec,nonlinear ( see Table 5.1), the linear instability itself

is interesting theoretically and may arise in other shear flows experiments on earth.

6.2 Future work

One interesting and difficult direction is to understand the physical mechanism of the

localized turbulent stripes in PCF or TCF, including the growth process from localized

turbulent spots to stripes, the splitting process of turbulent stripes, the fixed width

(∼ 20d) of the stripes and the obliqueness of the laminar-turbulent interfaces and the

selection of the inclined angle. Moreover, two turbulent stripes do not merge. All these

behaviors of localized stripes have been repeatedly observed in either experiments or

numerical simulations. There are some works in this direction [107, 135, 136]. However

the physical mechanisms remain largely unknown. The understanding of the underlying

physical mechanisms will help better interpret the results presented in this thesis.

Concerning the origin of turbulence in accretion disks, pure hydrodynamical nonlinear

mechanisms are shown to hardly generate sustained turbulence at Re of order O(105).

Since astrophysical accretion disks are complicated, with the presence of many physical

fields such as gravity, thermal and magnetic fields, one may add these fields to the

experiments or simulations. Baroclinic instability is an example due to the presence

of thermal gradients, in the radial and axial (vertical) direction.

Another direction is the study of warped accretion disks, where the disks are distorted

geometrically. The distortion of geometry of the disk introduces inflection points in

the base velocity profile and hence may cause linear instabilities. Linear instabilities

in warped accretion disks have already been reported in two recent papers [137, 138].

Nonlinear 3D simulations will bring valuable insights to the problem.
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“We prove what we want to prove, and the

real difficulty is to know what we want to

prove.”

Émile Chartier (1868 - 1951)

A
Computing the azimuthal wave speed

of wavy vortices in TCF

In Taylor-Couette flow, wavy vortices are time-dependent (periodic or quasi-periodic)

flow states bifurcated from stationary Taylor vortices as the shear flow rate increases.

The contour plot in Fig. 2.5 illustrates the wavy vortices flow state obtained at Rei =

458.1, Reo = 0 and η = 0.868. Starting from the laminar Couette profile with small

perturbation, the flow experiences firstly the Taylor vortices and after short-time ad-

justment it stabilizes at the stage of wavy vortices, which is demonstrated by the

velocity evolution at one point in the flow as shown in Fig. A.1. From this fig-

ure we can roughly estimate the periodicity T ≃ 0.045 · d2/ν. Since the azimuthal

wavenumber kθ of these wavy vortices is 6, then the non-dimensional rotation speed

is ω = 2π
kθTΩi

≃ 2π
kθT (1−η)Rei/η

≃ 0.334. In this appendix, we present a more rigorous

method to precisely evaluate the rotation speed of the waves.

This method consists in minimizing the difference between two velocity fields at two

different time. Let u(r, t) and u′(r, t + ∆t) denotes the velocity fields at time t and

t + ∆t. Due to the periodicity of the wavy vortices, these two velocity fields a priori

collapse each other if we apply a backward phase shift ∆θ in the azimuthal direction

on u′. Mathematically, we need to find an appropriate ∆θ0 such that the 2-norm of the

velocity difference E(∆θ) = ‖u(r, θ, z, t)−u′(r, θ−∆θ, t+∆t)‖ is minimal. In this way,

the rotation speed ω equals |∆θ0/∆t|. Theoretically E(∆θ) vanishes at ∆θ = ∆θ0.
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Figure A.1: Temporal evolution of the velocity at a middle point in the flow (Rei =
458.1, Reo = 0 and η = 0.868). The parallel horizontal lines indicate the stage of
stationary Taylor vortices while the final wavy curves signify the wavy vortices state.
Time is in viscous time unit d2/ν.

By inserting equation (2.7) into the expression of E(∆θ), we have

E(∆θ) = ‖
L∑

l=−L

N∑

n=−N

(ûln(r, t)− û′
ln(r, t+∆t)e−inkθ∆θ)ei(lkzz+nkθθ)‖

=
L∑

l=−L

N∑

n=−N

‖(ûln(r, t)− û′
ln(r, t+∆t)e−inkθ∆θ)ei(lkzz+nkθθ)‖

=
L∑

l=−L

N∑

n=−N

‖ ûln(r, t)− û′
ln(r, t+∆t)e−inkθ∆θ

︸ ︷︷ ︸

≡∆ûln(r,∆θ)

‖

=

L∑

l=−L

N∑

n=−N

∫ ro

ri

‖∆ûln(r,∆θ)‖rdr

(A.1)

where ∆ûln(r,∆θ) ≡ ûln(r, t)− û′
ln(r, t+∆t)e−inkθ∆θ and can be evaluated easily in

Fourier space, given that ∆θ, û(r, t) and û′(r, t+∆t) are known. Hence the function

E(∆θ) can also be conveniently computed. We further employ a revised version of

the Brent’s local minimization algorithm [139] to find the minimal value of E(∆θ).

The used method combines the golden section search and the successive quadratic

interpolation, which attains a super-linear convergence.

This method was applied to compute the wave speed in the above-mentioned case. We

chose two velocity fields apart by a time interval ∆t = 5 × 10−3d2/ν. Fig. A.2 shows
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Figure A.2: The 2-norm of the velocity difference E as a function of the backward
phase shift ∆θ.

the periodic variation of E(∆θ) with ∆θ. The periodicity λ of E(∆θ) corresponds to

the wavelength of the wavy vortices. Hence the wavenumber kθ = 2π/λ ≃ 6, which

is consistent with the observation. The minimization routine also returned the first

minima ∆θmin = 0.9992 and the value of E(∆θmin) ≃ 1.76 ·10−4. Since within such an

interval ∆t the wave may travel several rounds, therefore the real traveling angle can

be ∆θ0 = kπ ±∆θmin. With the estimation from figure A.1 T ≃ 0.045, we know that

∆θ0 = π/3 −∆θmin ≃ 0.047998. Rendered dimensionless by the rotation speed Ωi of

the inner cylinder, the wave rotation speed is then ω = | ∆θ0
∆tΩi

| ≃ 0.34432, which agrees

well with the estimation.
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“He who has overcome his fears will truly be

free.”

Aristotle (384 - 322 BC)

B
Onset of sustained turbulence in

less-resolved Couette flow

While direct numerical simulation of transition to turbulence at criticality requires

significant amount of computing time to fully resolve the spatial and time scales, we

resort to less-resolved simulations to make a reasonably good prediction with limited

computing resources. This type of less-resolved simulations, as proposed and argued by

Manneville [140], result in a downward shift in critical Reynolds number but preserves

the qualitative features of transitional turbulence.

Simulations are carried out using a Petrov-Galerkin pseudospectral code [90]. The

domain size is (Lz ×Lθ ×Lr) = (960h× 10h× 2h), with a resolution (nz × nθ × nr) =

(1276 × 16 × 12). Compared to the resolution for the fully resolved simulations, the

current one is about 32 times lower, which reduces substantially the computational

cost. This enables the simulations to run on a home cluster and therefore provides the

possibility to investigate the dynamics at criticality and to check whether the transition

to turbulence belongs to the DP universality class.

B.1 Steady-state experiments

We first performed a group of simulations to study the statistically stationary states.

Simulations were done at different Reynolds number Re ∈ [271.5, 285], based on half
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Appendix B. Onset of sustained turbulence in less-resolved Couette flow

gap distance. Note that the lower bound for the critical Reynolds number at this res-

olutions is about 270, determined by balancing the mean splitting time and lifetime

of localized turbulent bands. At each Re, 20 realizations were conducted, with inde-

pendent initial conditions. We did the same measurements of laminar gaps and other

analysis as described in Chapter §3.

Figure B.1 shows the temporal evolution of the ensemble-averaged (averaged over 20

independent realizations) turbulent fraction FT (t) at Re = [271.75, 272.5, 273.5, 275].

Except for the case at Re = 543.5 which tends to decay, all other ones appears to

reach a steady state with fluctuation around the mean. Moreover, the relaxation time

depends on Re: The higher the Reynolds number is, the shorter the relaxation time

becomes.
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Figure B.1: Temporal evolution of the ensemble-averaged turbulent fraction at
different Re. Each curve is obtained by averaging over 20 independent ones at the
same Re. X axis is in advective time unit τh = h/U .

In order to obtain the scaling relation with Re, the temporal mean F̄T of the ensemble-

averaged turbulent fraction is computed at the steady stage. The results are shown

in Fig. B.2. The dashed line is the β-fit with the universal value β = 0.276, giving a

critical Reynolds number Reβ-fitc ≃ 271.9. The fitting curve agrees very well with the

simulation data. Note that the exponent β from the best fit is about 0.25.

The probability distributions (power density function) of the laminar gap sizes at Re

close to the critical point follow a power-law scaling, while at higher Re the distributions

are exponential, as shown in Fig. B.3. At Re = 271.75, the fitting exponent of the tail

of the distribution equals approximately -1.75, which is consistent with the result from

the fully-resolved simulations and the universal value in 1D-DP class.
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Figure B.2: Mean turbulent fraction as a function of Reynolds number. The red
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Figure B.3: Probability distributions (Power density function) of laminar gap sizes.
The dashed line is the fitting curve to the black circle data set, at Re=271.75. Both
axes are in logarithmic scale.

To confirm the DP universality class, a third exponent corresponding to the temporal

correlation length is required. However, as stated in section §3.7, it is rather difficult

to obtain this exponent with steady-state experiments. An alternative method is to

perform the quenching experiments, starting from a fully turbulent state obtained at

very high Re and running at lower Re. The quenching experiments are described in

the next section.
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B.2 Quenching experiments

The initial conditions are obtained at Re = 300, with almost fully developed turbulence.

The simulations were conducted at Re ∈ [270, 275]. At criticality it is expected that

the turbulent fraction decays algebraically as a power law, FT (t) = t−αFU (ǫt
1/ν‖) with

α = β/ν‖ and FU a universal scaling funtion. As Re goes away from the critical point,

the turbulence decay or saturation within a finite duration. Our observation in Fig. B.4

confirms qualitatively the above scenario. With quenching experiments, the usual way

to obtain the third exponent is to collapse all curves in Fig. B.4 by rescaling the axes,

t → t|ǫν‖ | and FT → FT t
α (see [51]). Since β and the critical Reynolds number Rec

are known from the steady-state experiments, we need to tune the third exponent such

that the collapse of the curves is the best. To avoid the difficulty of defining a best

collapse, in our case we simply choose the DP exponent ν‖ = 1.734 and check whether

the curves collapse. The rescaled plot is shown in Fig. B.5, which resembles the one

obtained from the systems in 1D-DP class (e.g. the turbulent liquid crystals in [55]).

The good collapse supports that transition to turbulence in our system falls into the

DP universality class.
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Figure B.4: Temporal evolution of the ensemble-averaged turbulent fraction in the
quenching experiments at different Re. The axes are in logarithmic scale. It is shown
that the evolution follow a power law close to the critical point.

B.3 Discussion and conclusion

For saving the computing time and obtaining preliminary insights into the dynamics

at criticality, less-resolved simulations have been performed and three relevant critical
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Figure B.5: The same date as in Fig. B.4 but with rescaled axes t|ǫν‖ | and FT t
α.

exponents have been measured via steady-state and quenching experiments. The expo-

nents are in good agreement with the DP universal value. These evidences show that

the transition to turbulence in our less-resolved quasi-1D Couette flow is a continuous

phase transition and falls into the DP universality class.

One may argue that less-resolved simulations are not a real physical system and the

results presented here are not transferable to the real Couette flows. It is known that

the less-resolved simulations results in a smaller critical Reynolds number. However,

similar statistical results were obtained in both fully- or less-resolved systems. Fig-

ure B.6 shows the mean turbulent fraction as a function of the normalized Reynolds

number ǫ, a measure for the distance to the critical Re. The data points from both

case fall on the same scaling relation (the β-fit). Note that the best fit of all the data

points gives an exponent βbest-fit ≃ 0.275. These similarities indicate that in quenching

experiments for the fully-resolved case we can have also the collapsed curves and obtain

the DP temporal universal exponent. On the other hand, supposing that the quasi-1D

Couette flow falls into the DP universality class, the less-resolved Couette flow should

also belong to the DP class, since in the less-resolved system the localized turbulent

stripes are preserved and they also split and decay with certain probabilities. Whether

the smallest or microscopic structures inside turbulent stripes are resolved or not, it

does not change the macroscopic qualitative behavior and hence may still belong to

the DP universality class.

Another factor that may influence the results is the cutoff value of the vorticity averaged

over the radial and azimuthal directions. Below this cutoff the flow is considered to be

laminar. This influence is checked by varying the cutoff value, to see the change on the
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Figure B.6: Scaling of the mean turbulent fraction in both fully resolved (green
dots) and less-resolved (red squares) simulations. The dashed line is the β-fit. In the
best fit, β ≃ 0.275.

scaling relation of the mean turbulent fraction. Five different cutoff values are tested,

ranging from 1 × 104 to 1 × 105. As is shown in Fig. B.7, higher cutoff value results

in lower turbulent fraction. With an allowed range (not too high or too low), different

cutoff values lead to a shift of the absolute value but the power exponent stays almost

the same.
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Figure B.7: Scalings of the mean turbulent fraction at different cutoff value of mean
vorticity. Dashed lines are the best fits.
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“There is always a well-known solution to

every human problem - neat, plausible, and

wrong.”

Henry L. Mencken (1880 - 1956)

C
Base velocity profile in

Ekman-Couette flow

The base flow of plane Couette flow is known to be a linear profile, (U0y/2, 0, 0). For the

Ekman-Couette flow, the base flow is more complicated, including one more velocity

component in Z direction. We use here the coordinate system as shown in Fig. 5.1.

Because of the homogeneity in X and Z direction, the base profile depends only on y,

as U(y) = (U(y), 0,W (y)), which gives U ·∇U = 0. The non-slip boundary conditions

are chosen on the wall, namely, U(±1) = ±U0/2W and W (±1) = 0. Since the base

flow is also independent of time, the equation 5.2 for the base flow can be expressed as

1

Ro
W = −∂xP +

1

Re
∂2
yU (C.1)

0 = −∂yP (C.2)

− 1

Ro
U = −∂zP +

1

Re
∂2
yW (C.3)

From Eq. C.2, we have ∂x∂yP = ∂z∂yP = 0, which means that ∂xP and ∂zP are

independent of y. Due to the sysmetry about the plane y = 0, we obtain

∂2
yU |y=0 = ∂2

yW |y=0 = U |y=0 = W |y=0 = 0 (C.4)
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By evaluating Eq. C.1 and C.3 at y = 0, it gives ∂xP = 0 and ∂zP = 0. Together

with Eq. C.2, we know that the pressure P of the base flow is constant everywhere.

Therefore, the Eq. C.1 and C.3 are reduced as

1

Ro
W =

1

Re
∂2
yU (C.5)

− 1

Ro
U =

1

Re
∂2
yW (C.6)

Let us now introduce a complex function Z(y) = U(y) + iW (y). By performing (C.5)

+ i(C.6), we have

Z ′′ + i
Re

Ro
Z = 0 (C.7)

, which is a second-order ordinary differential equation with boundary conditions. By

assuming Z = Z0e
iγy, we have the eigen-equations of the ODE system, −γ2+ iRe

Ro = 0.

The root of this equation is γ± = ±
√

iRe
Ro = ±

√
Re
Ro

1+i√
2
. Hence the general solution of

Eq. C.7 is

Z(y) = A+e
iγ+y +A−e

iγ−y, withγ+ = −γ−. (C.8)

The non-slip boundary conditions for Z are

Z(1) =
U0

2
= A+e

iγ+ +A−e
iγ−

Z(−1) = −U0

2
= A+e

−iγ+ +A−e
−iγ−

(C.9)

By solving the linear equations, we obtain A+ = A = U0

2
1

eiγ+−eiγ−
. The solution to

Eq. C.7 can be thus writen as

Z(y) =
U0

2

eiγy − e−iγy

eiγ − e−iγ
, with γ =

√

Re

Ro

1 + i√
2

(C.10)

Note that in non-dimensional form U0 = 1. In summary, the base velocity of the

Ekman-Couette flow is [U(y), V (y),W (y)] = [Re(Z), 0, Im(Z)].
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“If I have seen farther than others, it is by

standing on the shoulders of giants.”

Sir Isaac Newton (1642 - 1727)

“If I have not seen as far as others, it is be-

cause giants were standing on my shoulders.”

Harold (Hal) Abelson (1947 - )
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[83] S. Hoyas and J. Jiménez. Scaling of the velocity fluctuations in turbulent channels

up to reτ = 2003. Phys. Fluids, 18(011702), 2006.

[84] J.G.M. Eggels, F. Unger, M.H. Weiss, J. Westerweel, R.J. Adrian, R. Friedrich,

and F.T.M. Nieuwstadt. Fully developed turbulent pipe flow: a comparison

between direct numerical simulation and experiment. J. Fluid Mech., 268:175–

209, 1994.

[85] X. Wu, J. R. Baltzer, and R. J. Andrian. Direct numerical simulation of a

30r long turbulent pipe flow at r+ = 685: large- and very large-scale motions.

J. Fluid Mech., 698:235–281, 2012.

[86] K. Coughlin and P.S. Marcus. Turbulent bursts in couette-taylor flow. Phys.

Rev. Lett, 77 (11):2214–2217, 1996.

96



Bibliography

[87] H. J. Brauckmann and B. Eckhardt. Direct numerical simulation of local and

global torque in taylor-couette flow up to re = 30000. J. Fluid Mech., 718:

398–427, 2013.

[88] Stephen B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[89] R. D. Moser, P. Moin, and A. Leonard. A spectral numerical method for

the navier-stokes equations with applications to taylor-couette flow. J. Com-

put. Phys., 52:524–544, 1983.

[90] A. Meseguer, Marc Avila, F. Mellibovsky, and F. Marques. Solenoidal spectral

formulations for the computation of secondary flows in cylindrical and annular

geometries. Eur. Phys. J. Special Topics, 146:249–259, 2007.

[91] Philip S Marcus. Simulation of taylor-couette flow. part 1. numerical methods

and comparison with experiment. Journal of Fluid Mechanics, 146(1):45–64,

1984.

[92] Dan Kasloff and Hillel Tal-Ezer. A modified chebyshev pseudospectral method

with an O(n−1) time step restriction. J. Comput. Phys., 104:457–469, 1993.

[93] S. Hugues and A. Randriamampianina. An improved projection scheme ap-

plied to pseudospectral methods for the imcompressible navier-stokes equations.

Int. J. Numer. Meth. Fluids, 28:501–521, 1998.

[94] P. M. Gresho and R. L. Sani. On pressure boundary conditions for the incom-

pressible navier-stokes equations. Int. J. Numer. Methods Fluids, 7:1111–1145,

1987.

[95] S. A. Orszag and A. T. Patera. Secondary instability of wall-bounded shear flows.

J. Fluid Mech., 128:347–385, 1983.

[96] Bengt Fornberg. A pratical guide to pseudospectral methods. Cambridge univer-

sity press, 1998.

[97] G. E. Karniadakis, M. Israeli, and S. A. Orszag. High-order splitting methods

for the incompressible navier-stokes equations. J. Comput. Phys., 97:414–443,

1991.

[98] J. Dongarra, P. Beckman, et al. The international exascale software project

roadmap. International Journal of High Performance Computer Applications,

25(1):3–60, 2011. ISSN 1094-3420.

[99] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3.

Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Gen-

eration, Optimization, and Platform Adaptation”.

97



Bibliography
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