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Abstract

Scientists of various research fields have discovered the advantages of network-centric

analysis, which captures complex systems by networks and allows for their representation

as a collection of nodes connected by links. Currently available network-theoretic meth-

ods mainly focus on the descriptive analysis of network topology. In this thesis, different

approaches to obtain inferences about propagation processes on complex networks are

proposed. These processes influence quantities of interest at the network nodes and are

described by a collection of random variables. The developed approaches are motivated

by real-world problems ranging from food-borne disease dispersal to propagation of train

delays and the regularization of genetic effects. Firstly, dynamic metapopulation model-

ing is used for the development of a general food-borne disease model, which integrates

the local disease dynamics with the network-based dispersal of contaminated food. The

simplification of the ordinary differential equation system for the proportion of suscepti-

ble, infected and recovered individuals in each district and the derivation of its solutions

provide the opportunity to simulate efficiently a variety of realistic epidemics. Secondly,

an explorative approach for fast and efficient origin detection of propagation processes is

proposed. Based on a network-based redefinition of geodesic distance, complex spread-

ing patterns can be mapped onto simple, regular wave propagation patterns if the process

origin is chosen as the reference node. This approach is successfully applied to the 2011

EHEC/HUS outbreak in Germany and its good performance is confirmed in diverse out-

break scenarios simulated with the introduced dynamic model for food-borne diseases.

The results suggest that our method could become a useful supplement to ordinary time-

consuming outbreak investigations. Moreover, this explorative approach is generalized

to the problem of source train delay identification in railway systems. Extensive sim-

ulation studies mimicking various propagation mechanisms, indicate good performance

and promise the general applicability of the source detection approach to propagation

processes in a wide range of other applications. To demonstrate the analysis of processes

on complex networks from a probabilistic perspective, a kernel-based method is utilized.

A novel kernel based on network-interactions for the logistic kernel machine test is sug-

gested. This kernel allows seamless integration of biological knowledge and pathway

information into the analysis of data from genome-wide association studies. Applications

to case-control studies for lung cancer and rheumatoid arthritis demonstrate the ease of

implementation and the efficiency of the proposed method. Altogether, the results from

the proposed approaches demonstrate that network-theoretic analysis of propagation

processes can substantially contribute to evaluate diverse problems in various research

fields.
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Zusammenfassung

Die Methoden der Netzwerktheorie erfreuen sich wachsender Beliebtheit, da sie die

Darstellung von komplexen Systemen durch Netzwerke erlauben. Diese werden nur mit

einer Menge von Knoten erfasst, die durch Kanten verbunden werden. Derzeit verfüg-

bare Methoden beschränken sich hauptsächlich auf die deskriptive Analyse der Net-

zwerkstruktur. In der hier vorliegenden Arbeit werden verschiedene Ansätze für die

Inferenz über Prozessen in komplexen Netzwerken vorgestellt. Diese Prozesse beein-

flussen messbare Größen in Netzwerkknoten und werden durch eine Menge von Zu-

fallszahlen beschrieben. Alle vorgestellten Methoden sind durch praktische Anwendun-

gen motiviert, wie die Übertragung von Lebensmittelinfektionen, die Verbreitung von

Zugverspätungen, oder auch die Regulierung von genetischen Effekten. Zunächst wird

ein allgemeines dynamisches Metapopulationsmodell für die Verbreitung von Lebens-

mittelinfektionen vorgestellt, welches die lokalen Infektionsdynamiken mit den netzw-

erkbasierten Transportwegen von kontaminierten Lebensmitteln zusammenführt. Dieses

Modell ermöglicht die effiziente Simulationen verschiedener realistischer Lebensmittel-

infektionsepidemien. Zweitens wird ein explorativer Ansatz zur Ursprungsbestimmung von

Verbreitungsprozessen entwickelt. Auf Grundlage einer netzwerkbasierten Redefinition

der geodätischen Distanz können komplexe Verbreitungsmuster in ein systematisches,

kreisrundes Ausbreitungsschema projiziert werden. Dies gilt genau dann, wenn der Ur-

sprungsnetzwerkknoten als Bezugspunkt gewählt wird. Die Methode wird erfolgreich auf

den EHEC/HUS Epidemie 2011 in Deutschland angewandt. Die Ergebnisse legen nahe,

dass die Methode die aufwändigen Standarduntersuchungen bei Lebensmittelinfektion-

sepidemien sinnvoll ergänzen kann. Zudem kann dieser explorative Ansatz zur Identifika-

tion von Ursprungsverspätungen in Transportnetzwerken angewandt werden. Die Ergeb-

nisse von umfangreichen Simulationsstudien mit verschiedenstensten Übertragungsmech-

anismen lassen auf eine allgemeine Anwendbarkeit des Ansatzes bei der Ursprungsbes-

timmung von Verbreitungsprozessen in vielfältigen Bereichen hoffen. Schließlich wird

gezeigt, dass kernelbasierte Methoden eine Alternative für die statistische Analyse von

Prozessen in Netzwerken darstellen können. Es wurde ein netzwerkbasierter Kern für

den logistischen Kernel Machine Test entwickelt, welcher die nahtlose Integration von

biologischem Wissen in die Analyse von Daten aus genomweiten Assoziationsstudien

erlaubt. Die Methode wird erfolgreich bei der Analyse genetischer Ursachen für rheuma-

tische Arthritis und Lungenkrebs getestet. Zusammenfassend machen die Ergebnisse der

vorgestellten Methoden deutlich, dass die Netzwerk-theoretische Analyse von Verbre-

itungsprozessen einen wesentlichen Beitrag zur Beantwortung verschiedenster Fragestel-

lungen in unterschiedlichen Anwendungen liefern kann.
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CHAPTER 1

Introduction

1.1 The Emergence of Complex Network Data

With the emergence of big data with multi-scale hierarchical dependency structures,

methods that can handle its associated complexities are increasingly in demand.

Network-theoretic methods have become a popular tool due to their ability to handle

different scales at once. Additionally, these methods enable the analysis of very large

systems through developments in computational power as well as in data storage and

manipulation.

The term ’big data’ refers to the development of new methods and technologies with

the aim of systematic gathering, distribution, storage and analyses of large data sets

from multifaceted sources (Horvath, 2013). These data sets can be characterized by

the three ’V’s: large Volume through ongoing digitalization, fast Velocity of data traffic,

and wide Variety of data types (reflecting complex structures from various sources). The

resulting emergence of interdependent data structures makes many statistical approaches

unsuitable, because such methods usually rely on the assumption of independent and

identically distributed random variable realizations. These data dependencies can not

only be very complex but also exhibit multi-scale hierarchies; there is increasing evidence

that joint analysis of different scales may yield interesting new results.

1.2 Methods for the Analysis of Complex Network Data

Network representations allow the description of big data from complex systems as a col-

lection of nodes connected by links. In this framework, topology gains more importance

than metrics, so that distance can be reduced to a well-connected system. Networks are

also able to comprise a range of temporal, spatial or hierarchical scales and link different

layers. Thus, networks can describe multiple tiers of complex systems at different scales.

These networks include multifaceted examples such as disease transmission networks,

transportation systems, gene-gene interdependencies, social interaction structures, neu-

rological systems as well as routes of communication. Since the characterization of the

individuals themselves or aggregated groups can lead only to insufficient comprehension,

it is essential to analyze the interactions between the group-composing individuals in

order to understand such a complex system. The foundations for the analysis of complex

1



2 Chapter 1. Introduction

network data were laid by mathematical graph theory. There are a number of introduc-

tory textbooks (Bollobás, 1998; Bondy and Murty, 2008; Diestel, 2005; Gross and Yellen,

2005; Jungnickel and Schade, 2005). These texts are complemented by numerous method-

ological contributions from various research fields such as physics, statistics, sociology,

economics and biology. Thus, network science is a large, diverse and emerging field of

research, which is understood as a "cross-disciplinary science" (Vivar and Banks, 2012).

Different textbooks provide comprehensive overviews of network-theoretic methods (e.g.,

Barrat et al., 2008; Easley and Kleinberg, 2010; Kolaczyk, 2009; Newman, 2010).

1.3 Propagation Processes on Complex Networks

While the definitions and basic models of networks are expected to remain unchanged,

the scientific community has become aware of the need to investigate systematically

processes on networks (Barrat et al., 2008). In this context, network nodes represent in-

dividual quantities of interest. Static (or dynamic) processes, i.e. (temporal) stochastic

processes described by a collection of (time-dependent) random variables, on networks

influence these quantities. The explicit consideration of propagation processes on net-

works can answer various scientific questions. For instance:

◦ How does the network topology affect the nature of process spreading?

◦ What are basic features of equilibrium and non-equilibrium of dynamical processes?

◦ Is it possible to predict the pattern of the process in the future?

◦ How are processes affected by random or targeted removal of network nodes?

A popular example for propagation processes on networks is the global spread of infectious

diseases via the global airline network (e.g., Colizza et al., 2006). In this model, the

population of cities is captured by network nodes, which are linked according to the

capacity of direct flights between them. The propagation (here transmission) process

influences the infection status of individuals. The research questions specified above can

be refined:

◦ Does the structure of the airline network encourage the global diffusion pattern of

emerging diseases?

◦ How "infectious" can a pathogen be, so that the disease becomes extinct or remains

in the population?

◦ Are forecasts or outbreak scenarios reliable?

◦ Is it possible to keep the epidemic at bay by closing specific airports?

Other examples include diffusion of large-scale electricity failures, genetic causes for

chronic diseases, brainwaves during epileptic fits, the propagation of train delays, or

dissemination of information and rumors.
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Until recently, available methods seldomly provided comprehensive integration of prop-

agation processes on networks. In this thesis, we investigate three different methods for

analyzing propagation processes on complex networks: Dynamic modeling, investigative

explorative analyses and kernel-based regression. The developed methods are motivated

by real-world problems. Major applications include food-borne infectious disease spread-

ing, the propagation of train delays, and genome-wide association studies to rheumatoid

arthritis and lung cancer.

1.4 Outline and Related Research Papers

This thesis is organized in seven chapters. Here, each of the following chapters is briefly

summarized and the individual contributions to the related research papers are specified.

Chapter 2: Networks and their Representation presents the foundations of the

network-theoretic methods used in this thesis and gives a brief overview of the cur-

rent state of the art. An initial investigation of this powerful framework is given through

the description of some network examples, which will be used later on. Furthermore,

the chapter includes basic concepts from graph theory and the statistical characteriza-

tion of complex networks. Additionally, propagation processes on complex networks are

introduced.

Chapter 3: Modeling Food-borne Disease Dynamics gives an introduction of mathe-

matical models for infectious disease dynamics and their spatial spreading on complex

networks. We then present and derive a newly developed general dynamic model

for food-borne disease outbreaks, which is based on a system of ordinary differential

equation system and their solutions. We simulate diverse realistic spreading patterns

and analyze their epidemic characteristics. This chapter is based on the working paper:

J. Manitz, T. Kneib, M. Schlather, D. Helbing, and D. Brockmann (2014): Modeling

Dynamics and Detecting Origin of Food-borne Diseases. Working paper. In preparation.

JM developed the dynamic model with methodological assistance of DB and MS. JM

implemented the model and conducted simulation studies. TK contributed to the statistical

analysis of the resulting disease pattern. The manuscript was prepared mainly by JM,

while all authors contributed to the general definition of the scope and structure. JM did

the final editing.
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Chapter 4: Source Detection during Food-borne Disease Outbreaks describes an

investigative explorative method for the origin detection during food-borne disease

outbreaks. Based on a network-based redefinition of distance, complex spreading

patterns can be mapped onto simple, regular wave propagation patterns if and only

if the process origin is chosen as the reference node. The performance of the source

detection approach is investigated specifically by the application to the 1854 cholera

outbreak in Soho/London and the 2011 EHEC O104:H4/HUS outbreak in Germany and

generally to various scenarios of food-borne disease outbreaks that are simulated with

the previously introduced dynamic model. This chapter is mainly based on the publication:

J. Manitz, T. Kneib, M. Schlather, D. Helbing, and D. Brockmann (2014): Network-based

Source Detection of Food-borne Disease Outbreaks - A case study 2011 EHEC/HUS

Outbreak in Germany. PLOS Currents Outbreaks. Edition 1, pp. 1–31.

The idea for the research question arose from a discussion between JM, DB, and DH. The

approach was developed, implemented and applied to the example by JM and DB, while

MS and TK assisted with valuable methodological support. The paper manuscript was

prepared by JM and editing was finalized with contributions from all authors.

Chapter 5: Primary Train Delays in Railway Networks generalizes the previously

introduced method for source detection with regard to the identification of primary train

delays in public transportation networks. Extensive simulation studies, which mimic

various propagation mechanisms, indicates good performance and promise the generally

applicability of the source detection approach in spatio-temporally evolving processes

across a wide range of applications. This chapter is based on the submitted manuscript:

J. Manitz, J. Harbering, M. Schmidt, T. Kneib and A. Schöbel: Network-based Source

Detection for Train Delays on the German Railway System. Submitted working paper.

Here, in several discussion meetings with all authors, the research question was initiated,

the general scope of the project was specified and the manuscript structure was settled.

JH conducted the train delay simulations, while JM implemented the application of the

source detection approach and visualized the results. The paper was mainly written and

edited by JM and JH, while all authors contributed to its finalization.

Chapter 6: Network-based Kernel for Genetic Epidemiology describes the construc-

tion of a novel network-based kernel for the logistic kernel machine tests, which is able

to incorporate pathway information. Simulation studies examine the power performance

and the type-I-error. The application to data from genome-wide association studies about
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rheumatoid arthritis and lung cancer allow the confirmation of known genetic associ-

ations and the detection of interesting new ones. This chapter is based on the publication:

S. Freytag, J. Manitz, M. Schlather, T. Kneib, C. I. Amos, A. Risch, J. Chang-Claude, J.

Heinrich, and H. Bickeböller (2013): A Network-Based Kernel Machine Test for the

Identification of Risk Pathways in Genome-Wide Association Studies. Human Heredity,

76(2), pp. 64-75. Shared first co-authorship.

As indicated by the shared first co-authorship, SF and JM contributed equally to the pub-

lication. SF and JM developed jointly the method, settled the structure of the analyses,

and defined the scope of the manuscript. In the process, SF contributed her expert knowl-

edge of kernel methods on genome-wide association studies, implemented the simulation

study as well as the application. JM contributed know-how from her experience with

network-theoretic methods and implemented all task concerning the analysis of network

structures. HB, MS, and TK assisted with valuable methodological advise and finalization

of the manuscript. IA, AR, JC, and JH contributed the genetic data.

Chapter 7: Conclusion summarized the findings of this thesis with a view on the

advantages and disadvantages in the context of network-theoretic methods and gives an

outlook on further development.

We use the statistical software R (R Core Team, 2013) to perform the majority of the

analysis generate the figures and illustrations. In this framework, the network anal-

ysis is conducted using the R package igraph (Csardi and Nepusz, 2006). Beyond,

we utilize Gephi (Bastian et al., 2009), GRASS (GRASS Development Team, 2012), MAT-

LAB (MATLAB, 2013), LinTim (Goerigk et al., 2014), and HaploView (Barrat et al., 2008)

as indicated.
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CHAPTER 2

Networks and their Representation
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2.4.1 Mathematical Representation of Processes on Networks . . . . . . 28
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2.4.3 Gravity Model for the Estimation of Network Flux Data . . . . . . 30

2.4.4 Modeling Processes on Networks . . . . . . . . . . . . . . . . . . . . 31

2.5 Some Remarks on Sampling Networks . . . . . . . . . . . . . . . . . . . 32

2.1 Network Examples

Networks reduce complex systems into a simple architecture of nodes, which are con-

nected by links. In this section, we will describe some selected network examples and

interesting processes on them; ranging from social science to economics and biology.

7
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2.1.1 Social Networks

The analysis of individual interactions can improve the understanding of dynamics at the

level of populations, and complex networks allow for these interactions to be represented

accurately. In social networks, nodes usually represent individuals, which are connected

if there exist social relations between them. Social networks are crucial for the study of a

variety of processes ranging from infectious disease transmission, the emerge of consensus

in the society, as well as the propagation of (mis)information or rumors.

Spreading of Infectious Diseases

Understanding the spread of infectious diseases requires knowledge of the underlying

contact networks. These are disease-specific, so that the contact network for sexually

transmitted diseases (e.g. Bearman et al., 2004; Eames and Keeling, 2002) is a subnet-

work of the one for potential influenza infection (e.g. Salathe et al., 2010).

Example: 1861 Measles Outbreak in Hagelloch, Germany

Well-studied infectious disease outbreak data describe a measles epidemic through

the village Hagelloch (near Tübingen, Germany) in winter 1861/62 (Oesterle, 1993;

Pfeilsticker, 1863). The data is outstandingly detailed, and a variety of individual de-

mographic, spatial and infection information is given. The village with 577 inhabitants

(197 children under 14 years) was isolated, which prevented any external influences. The

last measles epidemic was recorded 14 years earlier, so that 95% of the children in the

age under 14 years were susceptible (partially due to placental immunity) and became

infected.

The contact network is approximated by using secondary information from the data (see

Figure 2.1A). A child represents a network node, while a link refers to a potential in-

teraction between two children that would be sufficient for a disease transmission. We

consider an interaction to be possible, if two children belong to the same household, or

attend the same school class. We also stipulated that interactions with children from

the three nearest households are likely. The resulting contact network consists of one

component and is well-connected. Children are clustered by school classes.

Based on the epidemic, a probable transmission network has been constructed by

investigating the most likely infection source of each individual (see Figure 2.1B).

This transmission network is a directed network with a tree-like structure. There is

a super-spreader, named Goehring, who is assumed to have infected 85.7% 1st class

children, his brother and sister, and two other children.
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(A) Contact Network in Hagelloch

●

●

●

preschool

1st class

2nd class

(B) Reported Transmission Network

Figure 2.1: Networks during 1861 Measles Epidemic in Hagelloch, Germany. (A) Re-
constructed contact network of the children in Hagelloch using household, school class
and spatial information. (B) Reported transmission network based on the original state-
ment of most probable infection source by Pfeilsticker (1863).

The epidemic has been analyzed within many different frameworks (e.g., Britton et al.,

2011; Groendyke et al., 2010, 2012; Lawson, 2000; Neal, 2004). We will use this example

to illustrate network node centrality (see Section 2.3.2) and dynamic models for infectious

diseases (see Section 3.1).

Rumor and Information Propagation

In order to understand how macro-level collective behavior emerges, individual inter-

action processes have to be studied. Individuals adapt and diffuse knowledge or ideas,

which may lead eventually to a consensus in an institution, or the whole society. Similar

processes take place during the dispersal of rumors and misinformation. A similarity has

been observed between these social contagion processes and infectious disease spread-

ing (Dietz, 1967). Analogous to the spread of disease, an individual may be susceptible

to information. Having received the information, the individual may disseminate it also

to others in the population. After a certain time, the individual considers the information

to be not important anymore and stops the dispersal, while the knowledge remains.

Example: Facebook Network

A very popular social network in virtual space is Facebook, which is instrumentalized

widely to disseminate information, initiate political movements, and for various other pur-

poses (for example bullying). For my Facebook account can be considered an unweighted
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Figure 2.2: Social Network for my Facebook Account Nodes represent persons and
links represent friendship between them. The data is extracted using Netvizz (Rieder,
2013); plot is generated using Gephi (Bastian et al., 2009). Superimposed colors highlight
possible clusters: Friends and classmates in Berlin (top right, yellow), fellow students
and friends during my undergrad studies in Munich (bottom right, orange), friends I made
during my study year in Cyprus (top left, violet), participants and project partners of the
German-Cypriot youth exchange (Left bottom, green), and people I got to know during my
research stays in Chicago (right, blue) or during conferences (brown).

network with 169 nodes and 595 links (see Figure 2.2). Strong clustering is observed with

numerous links within a cluster and few links between them. The clusters can be as-

signed friendship groups from different stages of my life. Some people can be members

of multiple groups, acting as connections between the clusters. Furthermore, we can also

recognize also hierarchy in the network, so that clusters can be further subdivided.

2.1.2 Technological Networks

Technological networks mainly deal with infrastructure systems, which carry some "com-

modity" such as passengers, trade goods, units of electrical energy, or Internet traffic

packets. Typical questions of interest concern capacity, efficiency, or the robustness to

failures or attacks. In this thesis, we are in particular interested in transportation and

trade networks. Other technological networks include supply networks (Kühnert et al.,

2006), power grids (Albert et al., 2004; Crucitti et al., 2004), and virtual networks such as

the Internet (Crovella and Krishnamurthy, 2006), or the World Wide Web (Broder et al.,

2000).
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Figure 2.3: Map of the Athens Metro. Only operating lines and stations are included.
Source: Anonymous (2007).

Transportation Networks

Transportation systems are crucial in modern societies, where the majority of people

live in urban areas. It is a complex composition from road networks (Kalapala et al.,

2006; Porta et al., 2006), public transportation systems (von Ferber et al., 2009), as

well as global shipping and air traffic (Guimera et al., 2005; Kaluza et al., 2010;

Woolley-Meza et al., 2011). In road networks, nodes usually represent crossings or exits,

which are linked by streets, roads or highways. Public transportation systems include

services by buses (Sienkiewicz and Holyst, 2005), subways (Angeloudis and Fisk, 2006),

or railways (Sen et al., 2003). Stations can be represented by nodes with scheduled

services connecting them (other projections are possible as well). Transportation systems

exhibit a pronounced hierarchy and large heterogeneity (Yerra and Levinson, 2005).

However, the vast majority of the literature focuses on the analysis of a scale-specific

subsystem.

Example: Athens Metro network

An example of a regional suburban public transportation network is the Athens metro

network (see Figure 2.3). The map ignores the landscape conditions, and approximates
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station location and distances only for the orientation of the user. The system consists

of 51 stations, represented by nodes, which are connected if there is a track between

the corresponding stations used by a scheduled train (52 links). Most of the stations

service only one line, so that a station is generally connected with only two others. In

comparison to other city networks (for instance those studied in Angeloudis and Fisk,

2006; von Ferber et al., 2009), this network is extremely centralized in the meaning that

intertrain transfers are only possible at four stations in the city center (highlighted

in yellow). We use this network to study the propagation of train delays in public

transportation systems (see Chapter 5). Moreover, we employ a railway network, which

is similar to the German long-distance train network.

Processes on transportation networks are naturally defined by physical constraints such

as traffic flows or capacities of the specific link between two locations. Accordingly, trans-

portation efficiency is rooted in social, economic and ecological considerations (Schöbel,

2007b). First, public transportation systems are usually operated by a private company,

which faces economic competition. An efficient system attracts more consumers and

boosts sales. Second, an increase in the number of passengers using public transit re-

duces individual traffic and therewith environmental pollution, noise and traffic. Finally,

due to social reasons, public transportation must be available also in sparsely inhabited

regions.

Trade Networks

Economics exhibits highly connected structures, e.g., strong stock price correlations

show the association of companies operating in the same sector. A severe example was

given by the financial crisis in 2008, when a number of institutions operating in finance

went bankrupt almost simultaneously (Caldarelli and Catanzaro, 2012; Kali and Reyes,

2010). These strong interconnections are projected onto trade networks, which represent

regions connected by the trade flow between them. For instance, Hidalgo and Hausmann

(2009) analyze the international trade data network to predict future economic growth

and development.

International trade networks form a highly heterogeneous and hierarchical topol-

ogy (He and Deem, 2010; Min et al., 2011). Furthermore, Bhattacharya et al. (2008);

De Benedictis and Tajoli (2011) showed that empirical features could be reproduced by

the gravity model for trade (see Section 2.4.3). We expand upon these results to con-

struct a food shipping trade network in Chapter 3 and 4, that mimics the dispersal of

contaminated food products during food-borne disease outbreaks.
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2.1.3 Biological Networks

In biology, there are numerous examples of networks at various scales; in increasing

complexity, these networks range from inter-cellular networks (such as genetic regulatory

and protein interaction networks) to neural pathways, blood circulation networks, and

finally to food webs (which refer to the interaction between species populations).

Example: Gene Regulatory Pathway

Genes are transcribed and translated to produce proteins, which interact with each other

in such a way that their production can be facilitated or hindered by the presence of other

proteins in the cell. This pattern of activation and inhibition is called a gene regulatory

network. Including environmental factors in these networks, one obtains metabolic path-

ways as chains of reactions. Genes are transcribed into proteins. In this context, genes

are represented by network nodes, while they are linked, if the corresponding proteins

interact or influence gene transcription. There are online databases that offer a selected

range of pathways including experimentally verified metabolic pathways, information and

cellular processing pathways as well as those related to organismal system information

and human diseases (see Figure 2.4). Usually, pathways govern a specific biological

function such as cell mortality of muscle movement, so that a new scale of interpretation

arises when incorporated in the genetic disease association analysis (see Chapter 6).

Here, it is assumed that if genetic variations mutate a sufficient fraction of the pathway,

its original regulation purpose may be changed and lead to the manifestation of a disease

(Cantor et al., 2010). For that, the given network information is projected into gene-gene

interaction networks.
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Figure 2.4: Pathway for "Maturity Onset Diabetes of the Young" (path:hsa04950) from
the Kyoto Encyclopedia of Genes and Genomes database (KEGG, Ogata et al., 1999).
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2.2 Basic Concepts in Graph Theory

The rigorous language and the foundations for the description of networks can be found in

mathematical graph theory. In this section, we give an introduction to its basic concepts,

which is needed for the work presented in this thesis. For comprehensive introductions,

we refer to Bollobás (1998); Bondy and Murty (2008); Bornholdt et al. (2003); Diestel

(2005); Gross and Yellen (2005); Jungnickel and Schade (2005).

2.2.1 Basic Definition and Notation of Networks

In mathematics, a network is called a graph. Complex patterns are reduced to a set of

nodes, which are connected by links.

Definition 2.1 (Graph): A (undirected) graph G is defined by a pair of sets G = (K, L),

where K is a non-empty set of elements, called nodes (or vertices), and L is a set of

unordered pairs of different nodes, called links (or edges).

In general, we refer by a network to an undirected graph. A node is denoted by k ∈ K. A

link (k, l) ∈ L connects nodes k and l, in which case k and l are adjacent. The network

size K equals the total number of nodes in the network, i.e. the cardinality of the node

set |K| = K .

Definition 2.2 (Subgraph): A graph G′ = (K′, L′) is a subgraph of G = (K, L), if all the

nodes K ′ belong to K and all links L′ belong to L, i.e. K′ ⊂ K and L′ ⊂ L.

A network structure can be captured by an adjacency matrix, which we will use as a

standard network representation. For undirected networks, the corresponding adjacency

matrix is symmetric, i.e. A = A
T , where A

T is the transposed adjacency matrix and of

dimension K × K .

Definition 2.3 (Adjacency Matrix): A network can be represented by an adjacency matrix

A = (akl)k,l∈K with elements akl ∈ {0, 1} for all k, l ∈ K, where one indicates a connection

between nodes k and l, and zero none, i.e.

akl =

{
1 if (k, l) ∈ L,

0 if (k, l) 6∈ L.
(2.1)

Alternatively, representations of networks can be given by link tables, which are data

frames with origin and target node, or link lists, which is a list of arrays for each origin

node including all connected target nodes (see Newman, 2010).
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A =




0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0
0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0
1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
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Rheinland−Pfalz
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Brandenburg

Mecklenburg−Vorpommern

Sachsen

Sachsen−Anhalt

Thüringen

Schleswig−Holstein

Figure 2.5: Illustration for the Construction of Adjacency Matrices. Adjacency matrix
for neighborhood of the German federal states (left) and corresponding map (right). Row
and column number refer to the federal state identification numbers shown in the map.

Example: Adjacency Matrix for German States

One example of an adjacency matrix is that representing the federal states of Germany

(see Figure 2.5). A federal state is represented by a network node, which is connected to

another one, if the two federal states share a common border. The result is a symmetric

adjacency matrix A of dimension 16 × 16, where each row or column corresponds to a

state node. An element akl equal to one indicates adjacent states.

2.2.2 Paths and Connectivity

A central issue in analyzing the structure of networks is the reachability of nodes, which

yields the connectivity of the network. Paths between nodes will be essential for the

development of the approach for source detection in Chapter 4 and 5.

Definition 2.4 (Path): A path γknk0
in a network G = (K, L) is an ordered

sequence of n(γknk0
) + 1 nodes Kγ = (k0, k1, . . . , kn) and n(γknk0

) links Lγ =

((k0, k1), (k1, k2), . . . , (kn−1, kn)). The path connects the nodes k0 and kn.

Definition 2.5 (Loop): A loop, also called cycle, is a closed path γknk0
, where the origin

node k0 equals the destination node kn, in which all other nodes and links are distinct,

i.e. Kγ = (k0, k1, . . . , kn−1) and Lγ = ((k0, k1), (k1, k2), . . . , (kn−1, k0)).
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In a connected network, there exists at least one path between any pair of nodes in the

network. The number of paths with length n = n(γkl) between two nodes k0 = l and

kn = k can be determined by the (k, l) element a(n)
kl of the nth power of the adjacency

matrix, i.e. An =
(

a(n)
kl

)

k,l∈K
.

Derivation. This can be proven by mathematical induction with regard to n:

n = 1 : It results A1 = A, so that according to the definition of the adjacency matrix

a
(1)
kl = akl =

{
1 if (k, l) ∈ L,

0 if (k, l) 6∈ L.
∀k, l ∈ K.

Thus, it exists one path of length one, if the two nodes are directly connected, and

no path otherwise.

n → n + 1 : With ordinary matrix multiplication, we obtain

An+1 = An · A ⇒ a
(n+1)
kl =

∑

j∈K

a
(n)
jl · akj ∀k, l ∈ K.

From the induction hypothesis follows that a
(n)
jl is the number of paths of length

n from node l to j . Furthermore, from the definition of the adjacency matrix, it

follows that

akj =

{
1 if a path to k with predecessor j exists,

0 if no path to k with predecessor j exists.
∀k, l ∈ K.

The aggregation of the paths from l to k with predecessor j results:

a
(n+1)
kl =

∑

j∈K:(k,j )∈L

a
(n)
jl · 1 +

∑

j∈K:(k,j ) /∈L

a
(n)
jl · 0 ∀k, l ∈ K,

so that a
(n+1)
kl is the number of paths of the (n + 1) from l to k (see Figure 2.6).

l

j1

j2

jK

... k

Figure 2.6: Illustration for the Derivation of Path Numbers. The aggregation of the
paths from l to k with predecessor j results in the total number of paths with length a
particular length from l to k .

�
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Since networks lack a metric, the shortest path length is the standard way to define a

distance measure between two nodes l and k on a network.

Definition 2.6 (Shortest Path Length): The shortest path is a path γkl between two nodes

l and k such that no shorter path exists. Thus, the shortest path length nsp(γkl) between

l and k is the smallest value of n such that
(

a
(n)
kl

)
> 0, i.e.

nsp(γkl) = min
{

n ∈ N :
(

a
(n)
kl

)
> 0
}

. (2.2)

If two nodes are not connected, then the shortest path length is set to be infinite by

convention (Newman, 2010). For an undirected network, the shortest path length nsp(γkl) :

K × K → R is a metric with the following characteristics for all k, l ∈ K:

(i) non-negative: nsp(γkl) ≥ 0

(ii) identity of indiscernibles: nsp(γkl) = 0, iff k = l, because A0 = I

(iii) symmetry: nsp(γkl) = nsp(γlk ), because akl = alk

(iv) triangle inequality: nsp(γkl) ≤ nsp(γkm) + nsp(γml).

Additionally,

(v) positive integer: nsp(γkl) ∈ N, because akl = {0, 1}

(vi) betweenness: If nsp(γkl) > 1, there exists another node m, so that

nsp(γkl) = nsp(γkm) + nsp(γml).

Another metric is the shortest path distance dsp(k, l), which equals the shortest path

length for unweighted networks. Details of the shortest path and effective distance will

be given in Section 4.1. Alternatively, the distance on networks can be assessed by the

expected hitting time (see Section 2.4.2).

2.2.3 Families of Networks

There are various families of networks, which have specific node and/or link properties

(Barrat et al., 2008; Boccaletti et al., 2006). Some of them will be listed below:

Tree

A tree or acyclic network is a special network structure, which has useful characteristics

for the analysis of network topology (see Figure 2.7B). Intuitive examples are a river

network or family genealogy trees without inbreeding.
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Definition 2.7 (Tree): A connected network G = (K, L) that does not contain loops is a

tree.

Furthermore, the tree has the following characteristics:

(i) unique paths: There is exactly one path between any pair of nodes k, l ∈ K in the

network.

(ii) minimal connected network: Any link in a tree is a bridge, so that the deletion of a

link will break the tree into two disconnected trees.

(iii) maximal loop-free network: Adding a new link, the network will contain a loop.

(iv) Euler formula: A connected tree with K nodes has always exactly K − 1 links while

the reverse is true too, so that a connected network of size K with K − 1 links is a

tree.

Since these characteristics of trees play an important role in analyzing network topology,

general networks are reduced to their spanning trees.

Definition 2.8 (Spanning Trees): A spanning tree of a network G = (K, L) is a subgraph

G′ = (K′, L′), that is a tree and connects all nodes, i.e. K′ = K and L′ ⊆ L.

Obviously only connected networks have a spanning tree. A spanning tree of a network

can be obtained by the combination of all shortest paths from a pre-defined root k0, which

results in a shortest path tree.

Definition 2.9 (Shortest Path Tree): Given a chosen root or reference node k0, a shortest

path tree is a collection of shortest paths to all other nodes in the network.

Thus, a tree can be restructured in such a way, that the whole network structure arises

from a common root k0. We utilize this result for the development of a source detection

approach in Chapter 4.

Digraph

If the direction of the network links is of importance, one can define a directed network.

In this type of structure, the presence of a link from l to k , does not necessarily imply a

link from k to l (see Figure 2.7C).

Definition 2.10 (Digraph): A digraph G, also called a directed network, is defined by a

pair of sets G = (K, L), where K is a non-empty set of nodes, and L is a set of ordered

pairs of nodes which are referred to as directed links.

The presence of directed links breaks the symmetry of the connections, so that the corre-

sponding adjacency matrix is in general no longer symmetric, i.e. A 6= A
T . The direction

is of crucial importance for infectious disease transmission networks (e.g., see Figure 2.1).



20 Chapter 2. Networks and their Representation

(A) (B) (C) (D) (E)

Figure 2.7: Illustrating Examples of Different Network Families. (A) An unweighted
network, (B) a tree, (C) a digraph, (D) a weighted network, and (D) a bipartite network.

Weighted Network

Usually, network links are very heterogeneous, which can be quantified by capacity or

intensity of the connection (see Figure 2.7D).

Definition 2.11 (Weighted Network): A network G = (K, L) is called weighted, if the

link strength is quantified by a non-negative weight w : L → R
+, which represents the

interaction intensity or the link capacity. Then, the adjacency matrix A is usually replaced

by the weight matrix W = (wkl)k,l∈K.

The link weights can correspond to the time needed or costs to traverse this network link.

Note that for weighted networks, the distance of a link are inverse proportional to their

weights. Further details will be given in Chapter 4, where network-based distances on

weighted networks are utilized for an approach for source detection.

Classifying the links to be either positive or negative yields a signed network. This

type of network arises frequently in social science and genetics, where the classifications

correspond to likes or dislikes in social networks or activation or inhibition in metabolic

pathways (see Figure 2.4). We use networks of this family in Chapter 6 for the analysis

of data from genome-wide association studies.

Bipartite Network

If the nodes of a network are classified into two groups, we obtain a bipartite network

(see Figure 2.7E). The concept can be generalized to more than two groups, which results

in multi-partite networks.

Definition 2.12 (Bipartite Network): If the network nodes are classified into different

groups and links run only between nodes of different groups, the network is called bi-

/multi-partite network. Thus, a network G = (K, L) is further specified by K = K1 ∪ K2

with K1 ∩ K2 = ∅ disjunct and L ⊆ {(k, l) : k ∈ K1, l ∈ K2}.

Popular examples are the actor and movie network (Watts and Strogatz, 1998) or a sci-

entific collaboration network (Newman, 2001a), where authors and publications are two

different types of nodes. Often it is convenient to work with direct connections between

nodes of just one type. This can be achieved by a one-mode-projection, through this
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approach neglects information present in the original structure. Some of this information

can be captured by a weighted projection (Newman, 2001b). In the example of the collab-

oration network, the weights could represent the intensity of cooperation by the number

of common publications.

We use a bipartite network for an exemplary application of the source detection approach

to the data from the 1854 cholera outbreak in Soho, London, where associated cholera

death cases are linked to water pumps in the area (see Section 4.3).

2.3 Statistical Characterization of Networks

Network structure has an important effect on the behavior of processes on these networks.

Here, we give a brief overview on key descriptive statistics for the characterization of

network topology. For further reading, we refer to introductory books about network-

theoretic methods (e.g., Barrat et al., 2008; Kolaczyk, 2009; Newman, 2010). We apply the

introduced metrics to characterize example networks, such as trade routes in Chapter 4

(see Section 4.4.3), railway systems in Chapter 5 (see Sections 5.4.1 and 5.5.1), or gene-

gene interactions in Chapter 6 (see Section 6.3.5).

2.3.1 Network Sparseness and Size

Many features of a network structure can be described by its sparseness, which refers

to the density of links in the network. We first consider the special case of complete

networks.

Definition 2.13 (K -Completeness): A network G = (K, L) with K nodes and
(

K
2

)
links, so

that all possible pairs of nodes are connected by links, is called K -complete.

For a network of size K , the number of links for a connected network ranges between

K −1 and
(

K
2

)
. Since the possible number of links depends on the network size, we define

the network density.

Definition 2.14 (Density): The density of a network G = (K, L) is the fraction of existing

links that are actually present, i.e.

ρ =
|L|(
K
2

) =
2|L|

K (K − 1)
∈
[

2

K
, 1

]
. (2.3)

If the density ρ ≪ 1, the network is called sparse. The magnitude of a network can be

measured by different metrics, such as diameter or average shortest path length.
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Definition 2.15 (Diameter): The diameter of a network G = (K, L) is the greatest shortest

path length between any two nodes in the network, i.e.

dG = max
k,l∈K

nsp(γkl). (2.4)

Definition 2.16 (Average Shortest Path Length): The average shortest path length of a

network G = (K, L), also called the linear size, which is the average value of all shortest

path lengths between all possible pairs of nodes in the network.

d̄ =
1

K (K − 1)

∑

k,l∈K

nsp(γkl). (2.5)

For trees, since there is exactly one path between any pair of nodes, the diameter and

average shortest path length, are relatively easy to compute (Jungnickel and Schade,

2005).

2.3.2 Degree and Centrality

The centrality of a node is a specification of its importance. There are various concepts

used to find the central nodes of a network. The simplest measurement is the degree

centrality, through closeness, betweenness and eigenvector centrality are also often used.

For an elaborate overview we refer for instance to Borgatti and Everett (2006).

Definition 2.17 (Degree Centrality): The degree cD(k) of node k in a network is the

number of links directly connected to it. This measure can be computed as the column

sums of the adjacency matrix, i.e.

cD(k) =
∑

l∈K

akl. (2.6)

In directed networks one can distinguish between in-degree cin
D (k), which is the number

of ingoing links, and out-degree cout
D (k), the number of outgoing links. In a weighted

network the capacity can be computed accordingly, i.e.

φ(k) =
∑

l∈K

wkl. (2.7)

The average degree can be derived by

cD =
1

K

∑

k∈K

cD(k) =
2|L|
K

, (2.8)

where |L| is the total number of links in the network.
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Definition 2.18 (Closeness Centrality): Closeness centrality measures the inverse mean

distance from a node to other nodes. It averages the shortest path distance from a node

to all the other nodes in the network and inverts this average, so that high values are

given to central nodes, i.e.,

cC (k) =
K∑

l∈K

dsp(k, l)
. (2.9)

In Chapter 5, we use closeness centrality to assess the influence of node importance on

the performance of source detection approach in railway network (see Sections 5.4.2 and

5.5.2).

Definition 2.19 (Betweenness Centrality): Betweenness centrality cB(k) simply measures

the number of shortest paths which are passing the node k , i.e. it is computed as the

frequency a node lies on a path between two other nodes:

cB(k) =
∑

m6=l6=k∈K

gsp(m, l|k)

gsp(m, l)
, (2.10)

where gsp(m, l|k) is the total number of shortest paths between m and l, that pass through

node k , and gsp(m, l) =
∑

k∈K gsp(m, l|k) the total number of shortest paths between m

and l.

Definition 2.20 (Eigenvector Centrality): Eigenvector centrality cE (k) gives each node k

a score proportional to the sum of the scores of its neighbors, i.e.

cE (k) = α
∑

(k,l)∈L

cE (l) = α
∑

l∈K

aklcE (l). (2.11)

Thus, a node gains importance if it has many neighbors or its neighbors are very important.

It can be computed by solving the eigenvector equation

AcE = λcE ,

where cE = (cE (1), . . . , cE (K ))T is the eigenvector for the largest eigenvalue λ = α−1.

The eigenvalue centrality attains values between 0 and 1.

Since the different centrality measures motivate distinct interpretations of an important

node, the obtained results by applying them can differ. Thus, the choice of an accurate

centrality measurement depends on the specific application.
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Central Nodes in Hagelloch Contact Network

●

●

●

betweenness

eigenvector

degree/closeness

Figure 2.8: Central Nodes in Hagelloch Contact Network. The proposed contact net-
work from Figure 2.1, where the most central nodes according to the different centrality
measures are highlighted.

Example: 1861 Measles Outbreak in Hagelloch, Germany

In the study of infectious disease spreading, we are in particular interested to identify

central nodes and therewith potential super-spreader. Dekker (2013) found betweenness

to be the best predictor for super-spreading. Its performance is closely followed by the

one of node degree. Eigenvector centrality gives less perfect predictions; because of its

recursive definition it only highlights densely connected network subsets.

For the contact network during the 1861 measles outbreak in Hagelloch (see Figure 2.1),

the different centrality measures yield varying results (see Figure 2.8). All centrality

measurements obtain a child from the second school class. Degree centrality, which is

the linkage strength of a node in the network, and closeness, which yields to the near

reachability, attain largest centrality to a boy, who lives in a large household in the

south end of the village. The importance of node as bridge between nodes is measured

by the betweenness. It results a girl living in the center of the village. With eigenvector

centrality considers a child from the north of the village to be most influential. However,

none of the predicted nodes exhibits a high degree in the reported transmission network.

This is not surprising, because the contact network as well as the transmission network

are defined uncertainty.

2.3.3 Motifs and Clustering

Beyond the characterization of individual nodes, the structure of a network can be further

described by its cohesion. Cohesion is assessed by observing the local density of motifs
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through the frequency of small subgraphs that are fully connected. Special subgraphs are

patterns, called motifs, that may recur within a network much more often than expected by

chance. A very popular motif is an interconnected node triplet. The clustering coefficient,

also called transitivity, measures their global density in the network.

Definition 2.21 (Transitivity): The transitivity, also called clustering coefficient, of a net-

work is defined by

cl =
1
K

∑

k∈K

cl(k) ∈ [0, 1], (2.12)

where

cl(k) =
2

cD(k)(cD(k) − 1)

∑

l,m∈K

aklalmamk . (2.13)

In other words, the transitivity measures the empirical probability for a link between

two neighbors of a node. Generally, transitivity is very low for public transportation

networks (e.g., Athens metro system exhibits cl = 0), while high clustering coefficients

can be observed in particular in social networks (e.g., Facebook network cl = 0.72).

For the special case of signed networks, Kunegis et al. (2009) introduced an adaption for

social networks, which is able to take into account the interaction type. The resulting

signed clustering coefficient takes values from [−1, 1], where positive values mean that

two incident links tend to be completed by a third link of type equal to the product of

the two links. These feedback loops by triangles are of particular importance in signed

networks such as gene regulatory networks (see Figure 2.4). We utilize signed transitivity

in Chapter 6 for the characterization of feedback loops in gene-gene interaction networks

(see Section 6.3.5).

2.3.4 Scale-free and Small-World Properties

On closer examination of the network characteristics, many real-world networks exhibit

interesting properties, which lead to scale-free and small-world networks. An extensive

review can be found for example in Goldenberg (2009).

Scale-free Property

A heavy tail in the degree distribution is evidence of a high level of heterogeneity of

the network. Thus, the network exhibits many low degree nodes and some high degree

nodes, also called hubs.
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(A) Scale−Free (B) Small−World

Figure 2.9: Simulated examples for network models with K = 50 nodes. (A) Scale-free
model simulated with power-law coefficient α = 2.3. Nodes are connected by 49 links.
The average path length is d̄ = 1.20, while the clustering coefficient is zero. (B) Small-
world model with three linked nearest neighbors and rewiring probability p = 0.05. Thus
the networks contains 150 links. The average shortest path measures d̄ = 2.88, while the
transitivity is high cl = 0.48.

Definition 2.22 (Scale-Free Network): The degree distribution P(k) follows for large val-

ues of k the power law

P(k) ∝ k−α (2.14)

with exponent α that lies between 2 < α < 3. The corresponding network is called

scale-free.

Since the theoretical second moment is only finite for α > 3 (the empirical second moment

is always finite due to finite network size), this refers to the absence of an intrinsic

characteristic scale, which reflects the self-similarity properties (Barrat et al., 2008).

There is an extensive review by Newman (2005), discussing the detection of power-law

distributions and the estimation of their α coefficients by many real-world examples.

The standard approach utilizes the cumulative degree distribution which also follows the

power law. On a logarithmic scale, we should obtain a straight line with decreasing

slope.

Barabási and Albert (1999) introduced scale-free network models, which are expanding

dynamically by preferential attachment of new nodes to nodes, which are already well

connected, i.e. have high degree centrality. The resulting networks exhibit stationary

scale-free degree distributions and robust self-organization (see Figure 2.9A).
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Small-World Effect

The small-world effect can also be found in many real-world networks and can be ex-

plained already by the simple inclusion of randomness (Barrat et al., 2008).

Definition 2.23 (Small-World Network): A small-world network is defined by the diameter

dG , which grows proportional to the logarithmic network size K , i.e

dG ∝ log K. (2.15)

A small-world network exhibits short paths between two nodes along a very small number

of intermediate nodes, while showing a high level of clustering.

A corresponding network model has been introduced by Watts and Strogatz (1998). Ac-

cording to this model, a regular network is constructed, in which each node is linked to

its nearest neighbors. Additionally, with a specified rewiring probability, some links are

rewired to a randomly chosen node (Boccaletti et al., 2006). This results in shortcuts, so

that the network is characterized by rare long-range connections (see Figure 2.9B). Due

to the short cuts, processes on a small-world network spread very quickly (Durrett, 2007).

Cohen and Havlin (2003) showed that scale-free network are ultra-small networks due

to the hubs. The shortest path become even smaller and the corresponding diameter dG

is proportional to log log K .

2.4 Processes on Complex Networks

Network-theoretic research focuses mainly on descriptive and explorative analysis of net-

work structures, though these aspects are seldom integrated into the analysis of processes

on networks. However, it is a well-known fact that the network topology can have strong

effects on the behavior of processes on complex networks (Watts and Strogatz, 1998).

Typical examples for processes on complex networks include the emergence of genetic

chronic diseases (in metabolic pathways, see Figure 2.4), cascades of failures (e.g., in

power grids), diffusion of knowledge (e.g., in social networks, see Figure 2.2), spread of

a virus (e.g., infectious diseases in contact networks, see Figure 2.1, or computer viruses

in virtual networks), and synchronization of a behavior (e.g., in social networks, see Fig-

ure 2.2).

In this section, processes on networks and methods for their analysis are introduced.

For further reading, we refer for instance to Barrat et al. (2008); Bornholdt et al. (2003);

Kolaczyk (2009); Newman (2010).
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2.4.1 Mathematical Representation of Processes on Networks

Here, we introduce basic mathematical concepts for propagation processes on networks.

Solid introductions to stochastic processes can be found for example in Aldous and Fill

(2002); Grimmett and Stirzaker (2001); Grinstead and Snell (1998); Stirzaker (2005). In

general, processes on complex networks can be distinguished as static or dynamic pro-

cesses. The former can be understood as a ’snapshot’ of the latter.

Definition 2.24 (Static Process): A static process on a network is a collection of random

variables X = {Xk ; k ∈ K} on a network G = (K, L) with nodes k ∈ K.

Definition 2.25 (Dynamic Process): A dynamic process on a network is a collection of

time-dependent random variables X = {Xk (t); k ∈ K, t ∈ T} on a network G = (K, L),

where t ∈ T is from a discrete or continuous time set T. A process realization xk (t) is a

value from space set R+ at a node k ∈ K and time point t ∈ T.

In the subsequent chapters, such a process will be of a interest. In Chapter 3 the magni-

tude of infections is described by the proportion of infected individuals jk (t) ∈ [0, 1] in the

population of a network node k ∈ K, while the amount of contaminated food per capita

xk (t) in district k ∈ K attains positive continuous values, i.e. xk (t) ∈ R
+. Indicating net-

work nodes with infection counts larger than zero yield to binary process observations,

i.e. xk (t) ∈ {0, 1} (see Chapter 4). Analyzing the spread of train delays in Chapter 5,

the process describes the delay counts at a network node and will attain non-negative

integers values, i.e. xk (t) ∈ N. In Chapter 6, the genetic variation as potential risk

for a common disease is canalized through the gene interaction network. Here, genetic

variation is represented by categorical variables.

We assume that network processes are much faster than network evolution, so that net-

work topology is approximately constant for the duration of the process.

2.4.2 Diffusion Processes

A simple model for propagation on a network is the diffusion process. This model orig-

inates from physics, where commodities like gas move "from regions of high density to

regions of low, driven by the relative pressure [. . . ] of the different regions" (Newman,

2010).

Definition 2.26 (Diffusion): We assume a commodity amount Xk (t) at node k and time

point t. For a diffusion constant ν , the rate at which Xk (t) is changing can be given by

∂Xk (t)
∂t

= ν
∑

l∈K

akl(Xl − Xk ), k, l ∈ K.



Processes on Complex Networks 29

Another mode of diffusion on networks is the random walk of a particle (Philibert, 2005).

Definition 2.27 (Random Walk): A random walk Z = {Zt, t ∈ T} on a network G = (K, L)

has space set K. I.e. the sequence of random variables (Z1 = k0, . . . , Zt = kn) visualizes a

path γknk0
of a particle across a network, created by taking repeated random steps on the

network. Starting from a given initial node k0, a walker chooses randomly the transition

to the next node according to the transition probabilities.

For discrete time, the transition between the states of the process is described in a prob-

abilistic framework by transition probabilities, which are normalized to range between

zero and one.

Definition 2.28 (Transition Probability): The transition probability pkl from node l to k is

the conditional probability for a transfer to k , when being in node l, i.e.,

pkl =
wkl

nl

,

where wkl refers to the corresponding link weight, and nl =
∑

k∈K wkl is the aggre-

gated weight of all outgoing links. The matrix P = (pkl)k,l∈K combines the transition

probabilities between all nodes of the network.

Note that a random walk wanders around without being target-oriented, so that repeated

visits of a node are possible. Furthermore, the random walks have the first-order Markov

property, so that the next position on the trajectory is chosen without consideration of

the previous states except the current one.

Different properties of random walks have been analyzed in various publications (e.g.

Almaas et al., 2003; Noh, 2004; Parris and Kenkre, 2005; Wu et al., 2007). One of the

most important characteristics of this model is the expected hitting time.

Definition 2.29 (Expected Hitting Time): The hitting time H(γkl) from l to k , also called

first passage time, is the path length of a random walk γkl from l, which is first passing

the node k , i.e.,

H(γkl) = min{t ≥ 0 : Zt = k |Z0 = l}.

Note that H(γkk ) = 0. The expected hitting time h(γkl), also called mean first passage

time, is the expected number of random walk steps required to walk from node l to node

k .

The expected hitting time can be seen as a distance measure. With the exception of

symmetry, all conditions for being a well-defined metric are fulfilled. If the network is

undirected, it follows that the symmetric weights are symmetric, wkl = wlk , but, due to

normalization, the transition probabilities are not, pkl 6= plk . Numerically efficient ap-
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proximations can be computed using various approaches, for instance those of Boley et al.

(2011); Von Luxburg et al. (2010). The hitting time distribution in continuous time follows

an inverse Gaussian distribution (Chhikara and Folks, 1989).

2.4.3 Gravity Model for the Estimation of Network Flux Data

Propagation processes on complex networks can be quantified by the analysis of network

traffic flux. In this context, the origin-destination matrix is of fundamental interest.

Definition 2.30 (Origin-Destination Matrix): Let G = (K, L) be a network. For all k, l ∈ K,

let Fkl be the total volume of traffic flux from origin l to destination k in a given period

of time. The corresponding matrix F = (Fkl)k,l∈K is called origin-destination (OD) matrix

or flux matrix.

Precise measurement of the link flux Fkl is usually not possible. However, there are

suitable models for the estimation of the OD-matrix.

The General Gravity Model

A well-established approximate heuristic to estimate network traffic flux in social sciences,

economics and transportation theory is the gravity model (Anderson, 1979; Bergstrand,

1985; Tinbergen, 1962). This approach derives from Newton’s law of universal gravitation

and assumes that traffic flow increases monotonically with the population size in the

locations and decreases algebraically with distance between the locations, leading to

the relationship

Fkl ∝
{

Nα
l N

β
k

(1+d(k,l)/d0)δ , k 6= l,

0 k = l,
(2.16)

where Nl, Nk , and d(k, l) quantify the population size of origin l, destination k , and their

geographic distance, respectively. The non-negative exponents α , β , δ and distance scale

d0 are parameters of the gravity model.

Gravity Model for Trade

In economics, the gravity model is applied to estimate volume of trade. In this formulation,

the population is a proxy for the economic mass of each location, which can also be

measured by gross domestic product or gross national income. The distance is a proxy for

the transportation costs, which includes the time elapsed during the shipment, the chance

for damage or loss, decomposition and spoiling of organic materials, loss of market (if the

purchaser does not want the goods anymore), and costs associated with synchronization,

communication, transaction, and cultural distance.
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Many empirical investigations of trade networks could find gravity model features (e.g.

Bhattacharya et al., 2008; De Benedictis and Tajoli, 2011; Kaluza et al., 2010; Min et al.,

2011). Additionally, the approach could be justified theoretically. For instance, Deardorff

(1998) derived the gravity law for a variety of theoretical trade models. Furthermore,

Feenstra et al. (2001) have shown by an empirical study that gravity-type equations can

arise from a wide range of models, although they have different implications on the

coefficient estimates.

Scale Invariance

The gravity model is scale invariant. In this context, investigated Wolf (1997) the trade be-

havior using the example of the U.S. states and the Canadian provinces. Martinez-Zarzoso

(2003) studied the gravity law with a focus on trade between country blocks. Mitze (2012)

fitted a complex system of gravity equations to German regional trade data which gave

robust results in line with theoretical expectations.

However, a so called border effect has been observed, so that, given the same distance

and economic mass, intra-national trade flows are higher than international trade flows.

Thilmany and Barrett (1997) investigated the effects of regulatory barriers on interna-

tional food trade. They observed that agricultural trade growth lag behind broader

growth in merchandise trade. It turned out that regulatory barriers tend to be more

episodic, costly, politically difficult to combat, and less clear than well-understood trade

constraints.

The gravity model for trade will be employed in Chapter 3 and 4 to estimate food distri-

bution pathways in Germany. For further reading, we refer to a comprehensive textbook

by Sen and Smith (1995) or Kolaczyk (2009).

2.4.4 Modeling Processes on Networks

Available network-theoretic methods seldom provide comprehensive integration of prop-

agation processes on networks. Recently, there has been growing interest in modeling

and predicting processes on networks (Vivar and Banks, 2012). If it comes to statistical

modeling, inference or prediction of processes on networks, methods developed so far can

be assigned to one of three categories (Kolaczyk, 2009).

Nearest Neighbor Smoothing

Firstly, static process quantities can be simply predicted using smoothing which exploits

the nearest neighbor structure of the network (e.g. Koylu and Guo, 2013). A key assump-

tion is that network neighbors are more similar than unconnected nodes. This approach

is also known as "guilt-by-association" method (Kolaczyk, 2009).
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Markov Random Field Models

Secondly, Markov random field models use networks as a spatial generalization of

a Markov chain, where model inference exploits the fact that the process variables

are assumed to be conditionally independent given their network neighbors (e.g.

Jaimovich, Meshi, and Friedman, Jaimovich et al.; Jiang et al., 2011). Hence, the value of

the process in a specific node behaves conditionally as a weighted combination of val-

ues of its neighbors. This is similar to the nearest neighbor approach, while additional

knowledge from covariates can be incorporated easily.

Kernel-based Regression

Finally, processes on networks can be analyzed by kernel-based models, which are

more akin to multiple regression. Here, the network topology is integrated into a kernel,

which is equivalent to a random effect, describing the similarity of the individuals in a

regression. Smola and Kondor (2003) introduced a general class of kernels integrating

network structure which include simple Laplacian and diffusion kernels for support vector

machines. Similar approaches were introduced in image analysis (e.g. Kovac and Smith,

2011). In Chapter 6, we propose a novel network-based kernel that converts information

on gene-gene interaction in order to analyze data from genome-wide association studies.

All of these approaches only consider static processes, which can be understood as a

’snapshot’ of dynamic processes. Generally, the methods have not been extended to be

able to model phenomena of a dynamic nature. An exception is the area of epidemic

modeling. The contact structure within the population is represented by a network (e.g.

Keeling and Eames, 2005; Schrödle et al., 2012). Furthermore, some initial work has been

conducted for jointly modeling the evolution of both network and process (Burk et al., 2007;

Pinter-Wollman et al., 2013; Snijders et al., 2007).

2.5 Some Remarks on Sampling Networks

In general, networks are highly complex, so that their complete or representative sam-

pling is a formidable challenge. For instance in biology, sampling bias is caused by

intrinsic experimental errors. Furthermore, many networks are highly varying, so that

their representation can give a picture of a certain sampled moment. Therefore, appro-

priate sampling strategies and corresponding estimate normalization are required. A

popular technique is snowball sampling, which is efficient for surveying social networks

of small groups with specific characteristics. An interviewed person is asked to suggest

somebody in their environment fulfilling the required characteristics, and that person is
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interviewed next. General contact networks can be sampled using social networks like

those from Facebook (see Figure 2.2). To avoid reporting bias, secondary information can

be measured to quantify the intensity of interaction, e.g. frequencies of phone calls.
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The diffusion pattern of infectious diseases is complex and highly irregular. Usually,

the underlying infection and spreading processes are insufficiently understood. Dynamic

mathematical models provide one way to describe these processes and to perform anal-

yses on them. These models use very basic assumptions and mathematics to find pa-

rameters for infectious disease such as the basic reproduction rate, which characterizes

the capability of an epidemic for wide spreading. Comprehensive introductions are given

for example by Anderson and May (1992); Grassly and Fraser (2008); Keeling and Rohani

(2008); Ma et al. (2009).

35
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This chapter gives a brief overview of dynamic mathematical models for infectious disease.

On this basis, we develop a spatio-temporal dynamic model for general food-borne dis-

eases, which is based on a system of ordinary differential equations and their solutions.

Using this model, we can simulate a variety of realistic epidemics and examine typi-

cal characteristics such as peak time and peak prevalence in dependency of exogenous

parameters. Moreover, we are able to validate a network-based approach for source

detection in a variety of food-borne disease outbreaks (see Section 4.5). The highly

promising results suggest that this technique will be an important building block in the

development of containment strategies for future food-borne disease outbreaks.

3.1 Dynamic Models for Infectious Diseases

In this section, we introduce basic concepts related to dynamic mathematical mod-

els for infectious diseases. This introduction covers benefits and limits of such mod-

els, the simple susceptible-infected-recovered (SIR) model, its extensions and the in-

tegration of complex networks. For further reading we refer to standard introductions

such as Anderson and May (1992); Grassly and Fraser (2008); Keeling and Rohani (2008);

Ma et al. (2009).

3.1.1 Benefits and Limits of Mathematical Models

The main objectives of mathematical models for disease dynamics are prediction and

understanding of the underlying processes. First, a mathematical model can predict

population-level epidemic dynamics from individual-level knowledge of epidemiological

factors. This insight is of importance to estimate characteristic parameters of an emerging

disease and predict long-term behavior of the process. The second purpose is to gain an

improved understanding of epidemic dynamics by examining different resulting scenarios.

Typical questions concern how infectious diseases spread in the real world and how

various complexities or individual factors affect these dynamics. Additionally, the impact

of interventions such as vaccination can be examined. Finally, models can provide insight

about the driving elements of a process. This in turn can help to develop more precise

predictive models.

However, the explanatory value of mathematical models has limitations. Since they are

based on simplification and assumptions, there is no "right" model which provides a fully

accurate description of the disease dynamics. Even a highly complex model will make

some simplifying assumptions. These simplifications lead to a trade-off between accuracy,

transparency and flexibility. Accuracy yields to the ability to reproduce the observed data

and the reliability of predicted future dynamics. The extent of transparency reflects the

understanding of how the individual model components and their interactions influence
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the dynamics. A model’s flexibility represents its adaptability to new situations such

as a new outbreak caused by the same pathogen. This trade-off between accuracy,

transparency and flexibility highlights the need for a subjective trade-off highlights the

need of a subjective quality measure examining the usefulness in regard to the original

purpose.

3.1.2 The Simple Deterministic SIR Model

The simple deterministic susceptible-infected-recovered (SIR) model was developed for

acute infections, a pathogen-caused illness which lasts a period of time followed by life-

long immunity. Basic idea is the reduction of the population diversity by the introduction

of compartments with key characteristics relevant to the infection under consideration.

The SIR model was first proposed by Kermack and McKendrick (1927) and ever since

several extensions have been introduced (see Section 3.1.3).

Concept of the SIR Model

The SIR model is based on the fundamental classification of the host population into

compartments of susceptible, infected and recovered individuals (see Figure 3.1). Suscep-

tible are individuals who can get the disease. An infected individual has the disease and

is able to transmit it, regardless of whether the individual is showing symptoms or not.

Recovered persons are no longer involved in the spread of the disease, because they are

immune, isolated or dead. Note that we assume the classes cover all individuals in the

population. In practice, the boundaries between the compartments are somewhat fuzzy.

For instance, the ability to transmit a disease does not turn on and off. The infectious-

ness can be seen more as a continuous curve, which increases to a maximum and then

decrease.

S I R
β γ

Figure 3.1: Flow diagram for conceptual description of the simple SIR model. The
nodes represent the compartments for susceptible (S), infected (I), and recovered (R )
individuals, while black arrows depict possible transition between them. The movements
are influenced by transmission rate β and recovery rate γ .

There are two types of possible transitions between the three compartments: Disease

transmission and recovery. Disease transmission is reflected by a movement from sus-

ceptible to infected state (S → I). This transition is determined by the prevalence of

infected in the populations and the transmission rate β . The latter can be derived from

the underlying population contact structure, and the disease-specific infectiousness κ .
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Assuming homogeneous mixing in the population, so that everyone interacts with every-

one else according to the same probability, the transmission rate β can be specified as

product of contact rate and transmission probability during a contact. Altogether

rate of new infections = number of susceptible individuals

× number of contacts

× probability a contact is infectious

× disease-specific infectiousness κ

≈ number of susceptible individuals

× prevalence of infected

× transmission rate β

A recovery is captured by a transition from infected to recovered state (I → R ). The

corresponding recovery rate γ can be specified by the inverse of the average infection

period, which usually can be predicted from the data. There is no possible transition

after turning recovered as it is a an absorbing state.

0

50

100

150

200

SIR Components during 1861 Measles Outbreak

time

n
u

m
b

e
r 

o
f 

c
h

ild
re

n

1 Nov 1861 1 Dec 1861 1 Jan 1862 1 Feb 1862

Susceptibles

Infecteds

Recovereds

Figure 3.2: SIR Classification during 1861 Measles Epidemic in Hagelloch, Germany.

Each curve corresponds to the temporal progress of number of susceptible (blue), infected
(red), and recovered (green). Nine children remain in the susceptible population by the
end of the outbreak.

Example: 1861 Measles Outbreak in Hagelloch, Germany

The classification of the host population can be illustrated by the example of the 1861

measles outbreak in Hagelloch (see Figure 3.2). The infection state of the children is given
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daily. We consider all 197 children under 14 years as susceptible in the beginning of

the outbreak at the end of November. Until the end of the measles outbreak in February

of the next year, 95.4% become infected and recovered, so that the curve of susceptible

remains above zero. The peak of the infection can be observed on December 7th, when

110 children were infected. The transition into the recovered state also captures also the

death of 12 children during the course of the epidemic. Altogether, 188 children were

infected, which correspond to the final outbreak size. Note that nine children remain in

the susceptible population until the end of the epidemic, because they were for example

isolated (Pfeilsticker, 1863).

Model Definition

The simple deterministic SIR model is based on the assumptions:

(i) Time is continuous with t ≥ 0, t ∈ R.

(ii) The population with N individuals is closed, so that neither immigration and emi-

gration, nor birth and death are possible, i.e. N ∀t is constant.

(iii) There is homogeneous mixing in the population.

(iv) The three classes cover all individuals in the population, so that the number of

susceptible (S), infected (I), and recovered (R ) individuals aggregate to the total

population, i.e. S + I + R = N .

Then, the model can be mathematically expressed by a set of three ordinary differential

equations for the proportions of susceptible s = S/N , infected j = I/N , and recovered

r = R/N :

∂s

∂t
= −βsj (3.1)

∂j

∂t
= βsj − γj (3.2)

∂r

∂t
= γj (3.3)

where the recovery rate γ is the inverse of the average infection period. The transmission

rate β combines the contact rate and pathogen-specific force of infection. Note, that

s + j + r = 1, i.e. knowing s and j allows us to derive the magnitude of recovered r

individuals in the population.

Epidemic Characteristics

From the simple deterministic system specified in Equations (3.1-3.3), we can now derive

important characteristics for general epidemics: outbreak threshold, basic reproduction

rate, long-term behavior and the final size of the epidemic.



40 Chapter 3. Modeling Food-borne Disease Dynamics

First, the threshold phenomenon gives information whether the disease will fail to invade

the population or cause an epidemic. We obtain the outbreak threshold by rewriting the

Equation (3.2) in the form

∂j

∂t
= j(βs − γ)

= j

(
s − γ

β

)
.

leads to the result that if the initial proportion of susceptible individuals is smaller than

the relative removal rate, i.e. s(0) < γ/β , the chain of transmission will eventually break.

Considering the initial conditions s(0) = 1, j(0) = 0, and r(0) = 0, the threshold phe-

nomenon can be also expressed by the basic reproduction number R0, which is a key

value to characterize epidemics (Heffernan et al., 2005).

Definition 3.1 (Basic Reproduction Number): The basic reproduction number represents

the average number of individuals infected by a single diseased individual during the

course of his illness, given that all members of the population are susceptible. The metric

can be computed by

R0 =
β

γ
. (3.4)

An important implication states that in case R0 < 1 the epidemic becomes extinct, and if

R0 > 1 the disease is not self-eliminating (Heffernan et al., 2005; Ma et al., 2009).

Aside from the outbreak prognosis in the initial stage, we are interested in the long-term

behavior of the disease dynamics. It can be shown that a few susceptible individuals will

remain in the population, while the lower the infectiousness, the larger the number of

remaining susceptibles. Simple calculations result in

s(t) = exp (−R0r(t)) . (3.5)

Derivation. Division of Equation (3.1) by Equation (3.3) yields

∂s

∂r
= −

βs

γ
= R0s

Integration with respect to r delivers

t∫

0

∂s

s
= −R0

t∫

0

∂r.

⇒ log

(
s(t)
s(0)

)
= −R0 (r(t) − r(0))

s(t) = s(0) exp (−R0s(0)(r(t) − r(0))) .
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With the initial conditions s(0) = 1, j (0) = 0, and r(0) = 0, it follows Equation 3.5. For the

long-term behavior, we consider r(∞) = lim
t→∞

r(t) = 1 and

s(∞) = lim
t→∞

s(t) = exp(−r(∞)R0)

= exp(−R0).
�

Hence, an epidemic will extinguish eventually because the chain of transmission will

be broken, as there will be too few infected in the population. After the epidemic dies

out, some susceptible individuals will remain in the population, which depends on the

magnitude of the basic reproduction number.

The severity of an outbreak can be reflected by the final size of the epidemic. This

characteristic corresponds to the final number of recovered r(∞) = lim
t→∞

r(t). This can be

computed by solving numerically Equation (3.5) with respect to r(∞), i.e.

s(∞) = 1 − r(∞)

= exp(−r(∞)R0). (3.6)

3.1.3 Extensions of the Simple SIR Model

There are many trivial extensions of the simple SIR model, which overcome its restrictive

assumptions. In the following, we will introduce some of the most common adaptations.

More details can be found for instance in Keeling and Rohani (2008).

SIR Model with Demographics

If one is interested in exploring longer-term disease dynamics, it seems natural to incor-

porate demography in terms of fertility and mortality into the model. Here, a simple and

common assumption is a constant total population size, which leads to equal fertility and

mortality rate µ. We obtain the modified equation system

∂s

∂t
= µ − βsj − µs, (3.7)

∂j

∂t
= βsj − γj − µj, (3.8)

∂r

∂t
= γj − µr. (3.9)

Note that the influx of new susceptible individuals by birth maintains the endemicity in

the population, so that the epidemic does not necessarily extinguishes. Here, the basic

reproduction rate can be determined by R0 = β/(γ + µ). Analogously, immigration and

emigration can be considered in into the model.
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SIR Models with State Variants

Adapted variants of the simple SIR model can be easily introduced by modifying or further

subdividing the S , I and R classification to reflect either more complex pathogen biology

or a greater structure within the host population (see Keeling and Rohani, 2008). Simple

examples of adapted models are the SI model for fatal infections, the SIS model for infec-

tions without immunity, or the SIRS model accounting for non-permanent immunity. The

extension of the SIS model by including another state for vaccinated population mem-

bers results in the SIS-VS model. According to the threshold phenomenon, a vaccination

strategy will succeed if the proportion of susceptible can be reduced below 1/R0.

S E I R
β1 β2 γ

Figure 3.3: Flow diagram for conceptual description of the SEIR model. The nodes
represent the classes for susceptible (S), exposed (E ), infected (I), and recovered (R ), while
black arrows depict possible transition between them. The movements are influenced by
transmission rates β1, β2 and recovery rate γ . The exposed period is assumed to last in
average 1/β2

Since the biology of a disease in general suggests a lagged infectiousness, the SEIR

model is a very popular variant of the simple SIR model. Here, an additional exposed-

latent state is introduced (see Figure 3.3). After a susceptible individual is infected, it

moves to the exposed state before it is able to pass the infection on to other individuals.

Thus, the exposed individuals are infected, but not yet infectious. This model accounts

for the typically lagged pathogen reproduction which causes delayed infectiousness.

Obviously, SEIR models have slower epidemic growth, but are qualitatively similar with

to the simple SIR model. Naturally, it is also possible to differentiate further stages of

exposure or infectiousness, which leads to multi-compartment or multi-state models.

Example: 1861 Measles Outbreak in Hagelloch, Germany

We use the example of the 1861 measles outbreak in Hagelloch to illustrate the SEIR

classification. We approximate the latent period from the the date of illness onset and

the time since probable infection. Compared to simple SIR classification (see Figure 3.2),

the number of susceptible is in general lower (see Figure 3.4). The curve for susceptible

individuals exhibits a steep decline, which levels off at the end of December 1961 and

then further declines. The curves for exposed and infected individuals have similar shape.
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Figure 3.4: SEIR Compartments during 1861 Measles Epidemic in Hagelloch, Germany.

Each curve corresponds to the temporal progress of the number of susceptible (blue),
exposed (purple), infected (red), and recovered (green).

Temporally Forced Models

The rates for transmission may be time-varying. For instance, in childhood infections such

as measles, chickenpox and rubella, the transmission rate declines during the school

holidays, while it peaks at the beginning of the school year. In such cases, it is of

importance to consider time-dependent coefficients in the simple SIR model:

∂s

∂t
= β(t)sj (3.10)

∂j

∂t
= β(t)sj − γ(t)j (3.11)

∂r

∂t
= γ(t)j (3.12)

where the time-dependent terms for transmission β(t) and recovery γ(t) can capture

trends, seasonality and other complex time-varying structures such as school holidays.

It has been shown that predictions from disease dynamics are affected qualitatively by

considering seasonal transmission variation (Keeling and Rohani, 2008).

Stochastic SIR Model

Stochastic models are concerned with approximating the random element of epidemic

dynamics. For a large population size, these models can be efficiently realized by intro-

ducing random variation into the model parameters.
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Example: Stochastic SIR Model with β = 0.05 and γ = 0.1

For a stochastic SIR model, variability is introduced in the nature of transmission. When

the population mixes at random, new infections occur at rate β ·S(t)· I(t)/N and recoveries

at rate γ · I(t), which means

P(infection occurs in the next ∆t time unit) = β · S(t) · I(t)/N · ∆t + o(∆t)

P(recovery occurs in the next ∆t time unit) = γ · I(t) · ∆t + o(∆t).

Figure 3.5 exemplifies the number of infected individuals in simulated epidemics with

parameters β = 0.05 and γ = 0.1 in a population with 50 individuals.
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Figure 3.5: Realizations from stochastic SIR model on a population with 50 individuals.

The curves depict the number of infected individuals from 50 runs of the stochastic SIR
model with β = 0.05 and γ = 0.1 in a population with 50 individuals. Each light brown
curve corresponds to a realization. Dark brown curves indicate the average over a total
of 50 simulated epidemics. The variability between the curves is a result of the stochastic
nature of transmission.

In this context, parameter noise can be generated from a variety of sources. Constant

noise mimics perturbations due to external factors. In general, the variability increases

with increasing population size. There are some key features which distinguish stochastic

models from their deterministic counter parts (Keeling and Rohani, 2008):

◦ Variability between different simulation runs result in imprecise predictions by, e.g.,

confidence intervals.

◦ Variances and covariances can be estimated for the magnitude of individuals in each

class. Additionally, it usually results in a negative covariance between the amount
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of susceptible and infected individuals.

◦ Stochastic models can be understood as random perturbations away from the un-

derlying deterministic model. Obviously, if the noise terms are reduced to zero, one

retains the corresponding deterministic dynamics (see Figure 3.5).

◦ In closed populations, stochastic dynamics may result earlier in disease extinctions,

irrespective of the deterministic threshold. Frequent imports may prevent extinc-

tions.

For further reading, I refer for instance to Andersson and Britton (2000).

3.1.4 SIR Models on Complex Networks

In general, the number of contacts of each individual is much smaller than the population

size and super-spreaders are observed. Thus, the assumption of random mixing seems

to be inappropriate. To overcome the homogeneous mixing assumption, SIR models on

complex networks are introduced to capture mixing pattern during infectious disease

transmission. Comprehensive overviews about methods for large-scale transmission mod-

els for infectious disease are given for instance by Barrat et al. (2008); Riley (2007).

Contact Network Models

Contact networks G = (K, L) capture the individual nature of infectious disease trans-

mission by describing possible transmission paths. Two individuals are linked if they

have sufficient contact to allow disease transmission between them (Keeling and Rohani,

2008). Usually, these network are disease-specific, so that the contact network for

sexually transmitted diseases is a subnetwork of the one for influenza infection. A SIR

model on a contact network considers the individual nature of disease transmission.

Thus, the individuals have a highly heterogeneous number of direct contacts. The

vast majority of the individual is in direct contact only with a small proportion of the

population, while a few individuals have many contacts and are potential super-spreaders

(Keeling and Rohani, 2008). Different structures of contact networks in regard to their

heterogeneity, clustering and average shortest path length result in different transmission

routes and epidemic characteristics.

Example: 1861 Measles Outbreak in Hagelloch, Germany

An example for a contact network during the 1861 measles outbreak in Hagelloch, Ger-

many, has been given in Section 2.1.1 (see Figure 2.1). We analyzed this social network

regarding the node centrality in order to identify possible super-spreader in Section 2.3.2

(see Figure 2.8). Realizations of SIR model simulations on the contact network exhibit a

large heterogeneity due to different starting nodes (see Figure 3.6).
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Figure 3.6: Realizations from SIR model on Hagelloch contact network. The curves
depict the number of infected individuals from 10 runs of the SIR model on the contact
network (see Figure 2.1) with parameter κ = 0.1 and γ = 1. Each curve corresponds to
a realization.

The individual-specific rate at which a susceptible individual k ∈ K turns infected can be

specified by the product of disease-specific infectiousness κ and the number of infectious

contacts, i.e.,

λk = rate(susceptible individual k infects) = κ
∑

l∈K

alk Il,

where A = (akl)k,l∈K is the adjacency matrix of the contact network G = (K, L) and Il

indicates the infectiousness of an individual l, i.e.

Il =

{
1 individual l is infectious,

0 otherwise.

If there is little information about the contact network structure, network models can be

utilized. A common choice is a scale-free network, which naturally mimics the creation of

contacts by construction with preferential attachment (see Section 2.3.4). However, there

is no simple way to evaluate sensitivity of epidemiological results from SIR models on

networks (Keeling and Eames, 2005).

For further reading, we refer for instance to Keeling and Eames (2005), who provide a

review of network-based epidemic models with a focus on the problem of finding the real

network, simulated networks, and different network models. Comprehensive textbooks
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such as Keeling and Rohani (2008) give broader introductions. The SIR model in contact

networks is an individual-based model which is very computationally demanding. This

expense makes the model infeasible for modeling large-scale (inter-)national epidemics.

Metapopulation Models

Metapopulation models are a powerful framework for modeling disease dynamics for

which the entire population can be naturally subdivided into distinct spatial subpopula-

tions (Keeling and Rohani, 2008). This is based on a proposition by Bailey et al. (1975)

that a global epidemic should be considered to be many local epidemics occurring in dif-

ferent subpopulations (Watts et al., 2005). Often it is plausible to assume random mixing

on a localized community and limited mixing between the communities. Thus, metapop-

ulation models integrate independent local SIR models with a global dispersal process

on a network G = (K, L). The spread of infectious diseases is best captured by rapid

commuter movements of individuals between subpopulations (Watts et al., 2005).

The entire population with N elements is naturally subdivided into distinct subpopula-

tions with N =
∑

k∈K Nk , where each has independent dynamics with limited interaction

between these subpopulations. Then, the metapopulation SIR model reflecting the differ-

ences in the local environments k ∈ K can be describes by

δSk

δt
= −λkSk , (3.13)

δIk

δt
= λkSk − γk Ik , (3.14)

δRk

δt
= γk Ik , (3.15)

where λk and γk is the local force of infection and recovery rate, respectively. The force

of infection λk within subpopulation k depends on the coupling to other subpopulations,

denoted by the link weight matrix W = (wkl)k,l∈K. This rate and can be written as

weighted sum of prevalence in all populations:

λk = βk

∑

l∈K

wkl

Il

Nl

.

Obviously, the synchronization of the local disease dynamics depends on the coupling

strength. It has been shown that the metapopulation model is able to reproduce important

epidemic characteristics of real epidemics, including strong variation in the final epidemic

size and duration heterogeneity, which are both very sensitive to the underlying popu-

lation structure (Colizza et al., 2006, 2007; Mossong et al., 2008). Surprisingly, the basic

reproduction rate is not affected by the topology of the underlying network. This insight

has important implications for the disease control, as it means that manipulation of natu-
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ral barriers and the transport network alone cannot provide effective control (Watts et al.,

2005). The distinction between local- and global-level disease dynamic effects has the

advantage that parameter fitting is still effective for infection data which has been aggre-

gated at the city or district level due to privacy protection. Furthermore, metapopulation

models are very reliable at the (inter-)national level (Keeling and Rohani, 2008). Fi-

nally, the multi-scale nature of metapopulation models allows for nested hierarchies of

successively larger subpopulations

3.2 General Dynamic Model for Food-borne Diseases

So far, the vast majority of the models were developed for influenza and other di-

rectly transmitted infectious diseases (e.g. Ghani et al., 2010; Tsai et al., 2010). Recently,

network-based spatial models have been developed; these models take into account

the influences of social contacts and population mixing patterns upon infectious dis-

ease dynamics (e.g. Colizza et al., 2006, 2007; Mossong et al., 2008; Watts et al., 2005).

However, most epidemiological models fail to consider the effects of human-animal con-

tact (Lloyd-Smith et al., 2009). Newell et al. (2010) emphasize in particular the need for a

better understanding of the underlying pathogen evolution and transmission routes dur-

ing food-borne disease outbreaks. Dynamic models for food-borne disease are usually

developed to describe the dynamics of very specific pathogens (e.g. Davis and Gordon,

2002; Habtemariam et al., 2002; Joh et al., 2008; Matthews et al., 2005; Nauta et al., 2007).

Therefore, we have the aim of developing a network-bases dynamic model for food-borne

diseases.

3.2.1 Concept of the Dynamic Model for Food-borne Diseases

Here, we introduce a general dynamic model for emerging food-borne disease dynamics,

which is based on a metapopulation model (Manitz et al., 2014). We assume that the

local districts, each represented by a network node, are linked according to their trade

volume (The fundamental concept is illustrated in Figure 3.7). A diffusion process on this

network defines the spatial dispersal of contaminated food products. The final quantity of

contaminated food products at each network node influences the district-specific infection

rate of a local SIR model with homogeneous mixing. Accordingly, we refer to the food-

borne disease dynamic model as fbSIR model.

Let G = (K, L) be a food shipping network with a well-defined weight matrix W =

(wkl)k,l∈K, which captures the trade intensity between the local districts. The dynamics

for food-borne diseases can be described by an equation system of (4 · K ) ordinary
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network level:
food shipping network stationary food dispersal x⋆

local level for all k ∈ K:

sk

susceptible

jk

infected

rk

recovered

W

ρ(x⋆
k ) γ

Figure 3.7: Flow diagram for conceptual description of the fbSIR model. The fbSIR
model is based on a metapopulation model with network level capturing the diffusion of
contaminated food and the linkage the local SIR models with homogeneous mixing. At
the network level, beside production, consumption and diffusion rate, we assume that a
predefined food shipping network determine the stationary distribution of contaminated
food dispersal x⋆. All districts are represented by network nodes, which are connected
according to the weight matrix W based on the trade volume between two districts. At
the local level, the nodes represent the classes for susceptible (sk ), infected (jk ), and
recovered (rk ) individuals, while black arrows depict possible movements between them.
These movements are influenced by force of transmission ρ, district-specific amount of
contaminated food per capita x⋆ and recovery rate γ .

differential equations, four for each district k = 1, . . . , K with population Nk .

∂Sk

∂t′
= −β(xk )Sk (3.16)

∂Ik

∂t′
= β(xk )Sk − γIk (3.17)

∂Rk

∂t′
= γIk (3.18)

∂Xk

∂t′
= −ζXk + ξkNk + ν ′

∑

l6=k

[wklXl − wlkXk ] , (3.19)

with Sk + Ik + Rk = Nk . The first three Equations (3.16-3.18) correspond to modified SIR

models for each district k at the local level. Susceptible individuals Sk in district k get

infected by transmission rate β(xk ) which is a function of the district-specific presence of

contaminated food. Infected Ik recover with rate γ and subsequently transfer to the class of

recovered individuals Rk . Inclusion of the dispersal effects of contaminated food products

in Equation (3.19) corresponds to a master equation modification. Aside from a diffusion
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process for contaminated food with diffusion rate ν ′ and network weights W = (wkl)k,l∈K,

the model considers consumption, and import by ζ and ξ , respectively. The parameter

ζ reduces the food products in the system according to consumption, expiration, and

extinction. Furthermore, ξ = (ξ1, ξ2, . . . , ξK ) specifies the introduction of contaminated

food into the system for each district k ∈ K by production. Then, we assume that the

contaminated food is dispersed on the network of districts according to diffusive coupling

with weight matrix W = (wkl)k,l∈K in the master equation. This system models the process

by which items move from "regions of high density to regions of low density, driven by a

relative pressure [. . . ] of the different regions" (Newman, 2010). The diffusion constant ν ′

captures the velocity of the dispersal.

3.2.2 Simplification and Linear Solution

Assumptions

The simplification of the differential equation system in (3.16–3.19) is based on the fol-

lowing assumptions:

(i) The time interval corresponds to the expected infection time period, i.e. t = t′ · γ .

(ii) The three disease categories represent the proportions of the total population, i.e.

sk + jk + rk = 1 ∀k ∈ K, with sk = Sk /Nk , jk = Ik /Nk , rk = Rk /Nk ∈ [0, 1].

(iii) In the beginning all individuals are assumed to be susceptible, i.e. the initial condi-

tions are

sk (0) = 1,

jk (0) = 0, (3.20)

rk (0) = 0.

(iv) There are restrictions to bilateral trade, so that no circular trading of contaminated

food is possible (see Figure 3.8), i.e.,

Fkl = wklX
⋆
l = wlkX ⋆

k = Flk ∀k, l ∈ K.

X ⋆
l X ⋆

k

wkl

wlk

Figure 3.8: Illustration of assumption (iv): bilateral flux equilibrium. Node size cor-
responds to the total amount of contaminated food and link width corresponds to the
strength of the trade connection between the nodes.
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(v) The food trade flux fractions fkl and population density ck are known, so that the

probability qkl for a transition to node k from l, can be computed by

qkl =
fkl

ck

∀k, l ∈ K.

(vi) The process of food trade is much faster than the disease dynamics, such that the

stationary distribution of the food dispersal x⋆
k determines the transmission likelihood

ρ(x⋆
k ).

Local Disease Dynamics

Based on the assumptions (i–vi), the ordinary differential Equations (3.16–3.18) for the

total population can be transformed into a system of equations for the corresponding

population fractions, i.e. for all k ∈ K, the changes for during a typical infection time

period t are described by

∂sk

∂t
= −ρ(x⋆

k )sk , (3.21)

∂jk

∂t
= ρ(x⋆

k )sk − jk , (3.22)

∂rk

∂t
= jk , (3.23)

where sk = Sk /Nk , jk = Ik /Nk , rk = Rk /Nk ∈ [0, 1] are the proportions of susceptible,

infected, and recovered individuals in district k ∈ K. The transmission likelihood ρ(x⋆
k ) =

β(x⋆
k )/γ is similar to the basic reproduction rate and captures the force of infection, which

depends upon the stationary presence of contaminated food products per capita in district

k ∈ K.

Further simplification of the given differential equation system in (3.21–3.23) can be

achieved by derivation of the corresponding solutions. In this context, we are especially

interested in the proportion of infected jk (t) at any time t. Given the initial conditions

from assumption (iii) with Equations (3.20), we obtain

sk (t) = exp(−ρ(x⋆
k )t) (3.24)

jk (t) =
ρ(x⋆

k )
1 − ρ(x⋆

k )
[exp(−ρ(x⋆

k )t) − exp(−t)] (3.25)

rk (t) =
1 + ρ0(x⋆

k )

(ρ0(x⋆
k ))2

− 1

1 − ρ0(x⋆
k )

exp (−ρ0(x
⋆
k ) · t) + exp(−t). (3.26)

where the values from the stationary distribution of food dispersal x⋆ = (x⋆
1 , . . . , x⋆

K )T can

be plugged in.
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Diffusive Coupling

Since the trade network weights W = (wkl)k,l∈K are usually unknown, the network is

specified by the conditional probability matrix Q = (qkl)k,l∈K, which captures the prob-

ability that a transition to k came from l. This quantity can be computed by the food

trade flux fractions fkl and population density ck as specified in assumption (v). Then,

Equation (3.19) can be simplified to

∂xk

∂t
= −ζxk + ξk + ν

∑

l6=k

qkl (xl − xk ) . (3.27)

The stationary food distribution refers to the equilibrium when the changes in the amount

of contaminated food are zero. This can be derived as

x⋆ = B−1ξ, (3.28)

where B = (ζ + ν)I − νQ. I = (δkl) is the unity matrix, and Q = (qkl)k,l∈K the matrix with

the fractions of trade between the network nodes with respect to the total incoming trade.

In the following section, the parameter interpretations will described in more detail and

the derivations of Equations (3.24–3.28) will be given.

3.3 Details of Interpretation and Derivation

In this section, we derive the ordinary differential equation system for the general food-

borne disease dynamic model, which results in a more detailed interpretation of the

involved model parameters. Furthermore, we derive the stationary equilibrium for the

contaminated food distribution and the linear solutions for the ordinary differential equa-

tions.

3.3.1 Transmission Likelihood

The transmission likelihood ρ(x⋆
k ) is modeled similar to the basic reproduction number as

ρ(x⋆
k ) =

β(x⋆
k )

γ
,

where β(x⋆
k ) is the transmission rate, which is a function of the stationary contaminated

food per capita x⋆
k in district k ∈ K. The recovery rate γ preserves its interpretation

through its inverse 1/γ , which corresponds to the expected infection time. Altogether, the

transmission likelihood ρ(xk⋆) depends on the stationary level of contamination by the
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food vehicle x⋆
k and the virulence of the pathogen ρ, e.g. ρ(x⋆

k ) = ρ · x⋆
k . Thus, the same

number of infections can be caused by a commonly-consumed food with low virulence

as by a seldom-consumed food with high virulence. Additionally, the relation of ρ(x⋆
k )

with the basic reproduction number means that in districts where ρ(x⋆
k ) < 1 the epidemic

becomes extinct, and if ρ(x⋆
k ) > 1 the disease is not self-eliminating (see Section 3.1.2,

Equation (3.4), Ma et al., 2009).

Derivation. To derive the Equations (3.21-3.23) and the interpretation of the transmission like-

lihood, we consider the simple system with Equations (3.16–3.18) using the total amount of sus-

ceptible Sk , infected Ik , and recovered Rk in each district k with total population Nk .

∂Sk

∂t′
= −β(x⋆

k )Sk

∂Ik

∂t′
= β(x⋆

k )Sk − γIk

∂Rk

∂t′
= γIk .

with Sk + Ik + Rk = Nk , ∀k ∈ K. The system has a district-specific transmission rate β(x⋆
k )

which depends on the presence of contaminated food per capita in district k . The recovery rate γ

specifies the exponentially-distributed time until a individual recovers with expectation τ = 1/γ .

Both rates can be combined into the transmission likelihood by

ρ(x⋆
k ) =

β(x⋆
k )

γ
.

This quantity represents the risk of infection combining the virulence of the pathogen ρ and the

local presence of contaminated food x⋆
k in district k . Thus, the equation system is divided by the

recovery rate γ:

∂Sk

∂γt′
= −

β(x⋆
k )

γ
Sk ,

∂Ik

∂γt′
=

β(x⋆
k )

γ
Sk − Ik ,

∂Rk

∂γt′
= Ik ,

where the transmission likelihood ρ(x⋆
k ) can be substituted. Note that on the left side, with the

expected infection time τ = 1/γ , the system time t′ is scaled to be t = t′/τ (assumption (i)). Thus,

each time step can be seen as the typical infection time period ∆t , i.e.,

∂Sk

∂t
= −ρ(x⋆

k )Sk ,

∂Ik

∂t
= ρ(x⋆

k )Sk − Ik ,

∂Rk

∂t
= Ik .
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Finally, the system is normalized by the total district population Nk in the corresponding district

k ∈ K:

∂sk

∂t
=

1
Nk

∂Sk

∂t
= −ρ(x⋆

k )sk

∂jk

∂t
=

1
Nk

∂Ik

∂t
= ρ(x⋆

k )sk − jk

∂rk

∂t
=

1
Nk

∂Rk

∂t
= jk .

with proportion of susceptible sk = Sk /Nk , infected jk = Ik /Nk , and recovered rk = Rk /Nk in a

district k (assumption (ii)). Then, one has sk + jk + rk = 1 for all k ∈ K.

�

3.3.2 Import and Consumption

The food consumption rate ζ introduces a reduction of food in the system due to con-

sumption, extinction, and expiration of the considered food products. We assume that

with the presence of large amounts of a food product, its price drops and more people are

consuming it. Thus, we assume that consumption is proportional to the presence of food

products per capita. The is considered to be constant for all districts k ∈ K and all time

points, while it would be an easy extension to introduce seasonal or spatial variation.

The international importation or production of contaminated food per capita is modeled

by ξ = (ξ1, ξ2, . . . , ξK ). It contains the amount of contaminated food per capita produced

or imported in each district k . Thus, in the case of an unique source k0 with production

of one apple a day per person, ξk0
= 1, and zero for all other districts.

Derivation. From an economic standpoint, the amount of food produced at each time point should

be comparable to the expected amount of consumed food. Assuming a consumption δ per capita

per considered time period, the effects of production and removal of contaminated food should be

about the same size, i.e.

ζ

K∑

k=1

ξk = K · δ

ζ =
δ

ξ̄
,

where ξ̄ = 1
K

∑
k∈K ξk . Thus, the consumption rate ζ can be interpreted as the proportion of

consumed food to the total amount of produced food. Clearly, (1−ζ) is the loss rate, and therefore

represents the proportion of food which is not consumed and remains in the system.

�
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3.3.3 District Linkage

The district linkage is determined by the matrix W = (wkl)k,l∈K of link weights, which are

often not known. Therefore, we specify the network by the matrix Q = (qkl)k,l∈K, which

contains the probability for a transition to k coming from l. These conditional probabilities

can be estimated as faction of the relative flux fkl and the population density ck , i.e.,

qkl ∝ fkl

ck

, ∀k, l ∈ K.

The diffusion constant ν ∝ F /N specifies the velocity of the diffusion process, where

F =
∑

k,l Fkl is the total trade flux in the network and N =
∑

k Nk the total population

in all districts. This means that the more total trade is observed in the network, the faster

the dispersal.

Derivation. The food trade is described by diffusive coupling with a metapopulation model

according to the network weights W = (wkl)k,l∈K. Each network node k = 1, . . . , K represents

a subpopulation of size Nk with N =
∑

k∈K Nk . Then, the diffusion of the total amount of

contaminated food products is described by the ordinary differential equations, which capture the

variation in a certain time period ∆t , i.e.

∂Xk

∂t
= −ζXk + ξkNk + ν′

∑

l6=k

[wklXl − wlk Xk ] ,

where the weight wkl is the per capita linkage rate at which one food item is traded from l to

k . Consequently, the probability that a food item is traded from k to l during a time interval

∆t << w−1
kl can be approximated by ∆t · wkl

Since we are interested in the amount of contaminated food per capita, the corresponding disease

dynamic equation is normalized by the population Nk in each district k , such that xk = Xk /Nk ,

i.e.,

∂xk

∂t
=

1
Nk

∂Xk

∂t
= −ζxk + ξk + ν′

∑

l6=k

[
1

Nk
wklNlxl − wlk xk

]
.

Since the link weights wkl are rarely known, we want to find estimates with reasonable interpre-

tations for the parameters. Therefore, we assume a system without importation (ξk = 0, ∀k ∈ K),

or consumption (ζ = 0), i.e.,

∂xk

∂t
= ν′

∑

l6=k

[
1

Nk
wklNlxl − wlk xk

]
.

Furthermore, a bilateral equilibrium for the food flux has been assumed, so that circular trading is

not considered (see assumption (iv), Figure 3.8). This means, the amount of food traded Fkl from l
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to k per time unit equals

Fkl = wklX
⋆
l = wlkX ⋆

k = Flk , ∀k, l ∈ K.

Since the stationary food presence is proportional to the population in district k , i.e. X ⋆
k ∝ Nk , it

follows that

Fkl = wklNl = wlkNk = Flk , ∀k, l ∈ K.

Hence, the link weights can be written as

wkl =
Fkl

Nl
and wlk =

Flk

Nk
.

Considering also the symmetry of the stationary link flux, i.e. Fkl = Flk , the ordinary equation can

be simplified to

∂xk

∂t
= ν′

∑

l6=k

[
1

Nk
Fklxl −

1
Nk

Flkxk

]

= ν′
∑

l6=k

Fkl

Nk
(xl − xk ) .

Additionally, we can normalize the flux Fkl by the total flux F =
∑

k,l Fkl in the network, and the

population Nk by the total population N =
∑

k Nk . Hence,

∂xk

∂t
= ν′ F

N

∑

l6=k

fkl

ck
(xl − xk ) ,

which only requires the flux fractions fkl = Fkl/F and population density ck = Nk /N to be known.

Finally, we introduce a adapted diffusion rate by

ν = ν′ F

N
.

Furthermore, it can be shown that the flux fraction between nodes l and k with respect to the

population density in the target node is proportional to the probability that a traveler that arrived

at node k came from node l, i.e.,

qkl ∝
fkl

ck
,

with
∑

l qkl = 1. Assuming a random walk {Zt , t ≥ 0} on the network with state space K, one

has

qkl = P (Zt = l | Zt+∆t = k )

=
P (Zt = l, Zt+∆t = k )

P (Zt+∆t = k )

∝
fkl

ck
,

because the joint probability describes the chance of a jump from k to l, and can be determined by
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the flux density, i.e. Pr (Zt+∆t = k, Zt = l) = fkl. Assuming the equilibrium, the marginal probability

that a moving food item is located in a arbitrary node k is proportional to the population density

Pr (Zt+∆t = k ) = ck .

Altogether, the diffusion equation can be rewritten by

∂xk

∂t
= ν

∑

l6=k

qkl(xl − xk ),

where ν ∝ F /N is the diffusion constant and Q = (qkl)k,l∈K the conditional probability for a

movement form l when being in k .

�

3.3.4 Stationary Food Distribution Equilibrium

For the food-borne disease dynamic model, we assume that the contaminated food is well

dispersed over the network (see assumption (vi)). This assumption is based on the idea

that contaminated food is stocked and usually not eaten before arrival at the last step of

the supply chain. Thus, the stationary food distribution is plugged into the metapopulation

disease dynamic model.

If no importation and no removal is assumed, the stationary equilibrium would be a homo-

geneous presence of contaminated food over all the network nodes. Then, the stationary

distribution for the presence of contaminated food per capita is spatially constant, because

it is proportional to the population X ⋆
k ∝ Nk . Hence

x⋆
k =

X ⋆
k

Nk

= x⋆.

Assuming importation and consumption at all times, the dispersal of contaminated food

per capita in Equation (3.27) has the stationary distribution

x⋆ = B−1ξ

with B = (ζ + ν)Ikl − νQ invertible, where Ikl is the identity matrix.

Derivation. The stationary distribution of contaminated food is reached if the changes described

by the differential Equation (3.27) are zero, i.e. ∂xk /∂t = 0 for all k = 1, . . . , K , one has

0 = ξk − ζxk + ν
∑

l6=k

qkl (xl − xk )
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Hence,

ξk = ζxk − ν
∑

l6=k

qklxl + ν
∑

l6=k

qklxk

ξk = ζxk − ν
∑

l6=k

qklxl + νxk

∑

l6=k

qkl

By definition one has
∑
l6=k

qkl = 1. Furthermore, it can be rewritten as xk =
∑

l6=k Iklxl using the

identity matrix Ikl, which is defined by

Ikl =

{
1 if k = l,

0 otherwise.

It follows for the system of equations

ξk =
∑

l6=k

ζIklxl −
∑

l6=k

νqklxl +
∑

l6=k

νIklxl

ξk =
∑

l6=k

[(ζ + ν)Ikl − νqkl] xl

ξk =
∑

l6=k

Bklxl.

Written in matrix notation, it follows ξ = Bx with B = (ζ + ν)Ikl − νQ invertible, where Ikl is the

identity matrix. Then, the stationary distribution is

x⋆ = B−1ξ .

�

3.3.5 Solution of Differential Equations

The system of differential Equations (3.21–3.23) for the disease dynamics with initial

conditions can be solved. Given assumption (iii), the initial conditions in Equations (3.20),

these solutions exist and are unique. In this context, we are especially interested in the

proportion of infected jk (t) at any time t.

sk (t) = exp(−ρ(x⋆
k )t)

jk (t) =
ρ(x⋆

k )
1 − ρ(x⋆

k )
[exp(−ρ(x⋆

k )t) − exp(−t)]

rk (t) =
1 + ρ(x⋆

k )

[ρ(x⋆
k )]2

− 1

1 − ρ(x⋆
k )

exp (−ρ(x⋆
k ) t) + exp(−t).

Derivation. The dynamics of the susceptible proportion is described by a homogeneous differential

equation of first order given by Equation (3.21), i.e.,

∂sk (t)
∂t

= −ρ(x⋆
k )sk (t).
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Since the right side f (t, s) := −ρ(x⋆
k ) · sk (t) is continuous in [0, ∞) × [0, 1] ⊂ R

2, it follows, from

Peano’s theorem, that a local solution through each point (t0, s0) ∈ [0, ∞) × [0, 1] ⊂ R
2 exists. We

derive a solution to the differential Equation (3.21) by separation of variables. The result is

sk (t) = exp(−ρ(x⋆
k ) · t),

with the initial condition sk (0) = 1 at time t = 0, because

s′
k (t) =

(
exp(−ρ(x⋆

k ) · t)
)′

= −ρ(x⋆
k ) · exp(−ρ(x⋆

k ) · t)

= −ρ(x⋆
k ) · sk (t)

and

sk (0) = exp(−ρ(x⋆
k ) · 0) = exp(0) = 1.

We can show that this solution is unique by using the Picard-Lindelöf theorem: For all (t0, s0) ∈

[0, ∞)× [0, 1] ⊂ R
2 there exists a neighborhood where f (t, s) is local Lipschitz continuous in regard

to s, because

|f (t, s) − f (t, s0)| = | − ρ(x⋆
k ) · sk (t) + ρ(x⋆

k ) · sk,0(t)|

= ρ(x⋆
k )|sk (t) − sk,0(t)|

≤ L|sk (t) − sk,0(t)|,

where L > 0, because on has ρ(x⋆
k ) ∈ [0, ∞) per definition and sk (t) ∈ [0, 1] is bounded.

The differential Equation (3.22) for the proportion of infected jk (t) in district k ∈ K:

∂jk (t)
∂t

= ρ(x⋆
k )sk (t) − jk (t)

can be written in the form of a first-order linear differential equation:

j ′
k (t) = −jk (t) + ρ(x⋆

k )sk (t)

⇔ j ′
k (t) = ak (t)jk (t) + bk (t),

with ak (t) = −1 and bk (t) = ρ(x⋆
k )sk (t).

By Peano’s theorem, a local solution exists for this type of equation. Furthermore, the solution to

the differential Equation (3.22) can be derived in a straightforward manner using the approach of

parameter variation. It yields

jk (t) =
ρ(x⋆

k )

1 − ρ(x⋆
k )

[exp(−ρ(x⋆
k )t) − exp(−t)]
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with the initial condition jk (0) = 0 at time t = 0, because

j ′
k (t) = −

ρ(x⋆
k )2

1 − ρ(x⋆
k )

exp(−ρ(x⋆
k )t) +

ρ(x⋆
k )

1 − ρ(x⋆
k )

exp(−t)

= ρ(x⋆
k ) exp(−ρ(x⋆

k )t) −
ρ(x⋆

k )

1 − ρ(x⋆
k )

[exp(−ρ(x⋆
k )t) + exp(−t)]

= ρ(x⋆
k )sk (t) − jk (t)

and

jk (0) =
ρ(x⋆

k )

1 − ρ(x⋆
k )

[exp(0) − exp(0)] =
ρ(x⋆

k )

1 − ρ(x⋆
k )

· 0 = 0.

Additionally, the right side of the differential Equation (3.22) is globally Lipschitz continuous in

jk (t), because

| − ρ(x⋆
k )sk (t) − jk (t) − ρ(x⋆

k )sk,0(t) + jk,0(t)| = |jk (t) − jk,0(t)|

≤ L|jk (t) − jk,0(t)|,

if L > 1 and therefore the given solution is unique (Picard-Lindelöf theorem).

The linear solution to the differential Equation (3.23) can be derived as the time integral of infected

individuals, i.e.,

rk (t) =

t∫

0

jk (t̃)dt̃.

�

3.4 Evaluation of Model Realizations

3.4.1 Effect Analysis of Model Parameter

The characteristics of the dynamics can be assessed by analyzing the model realizations

depending on selected model parameters (see Figure 3.9).

Conveniently, ρ(x⋆
k ) is proportional to the district-specific stationary distribution of con-

taminated food per capita, as well as the infectiousness of the contaminated food deter-

mined by ρ, i.e.

ρ(x⋆
k ) = ρ · x⋆

k .

The ratio of the infected population in a specific district follows the curve of a typical

epidemic progression over time (see Figure 3.9A). With an increase in the transmission

likelihood ρ0x
⋆
k , an outbreak becomes more likely in district k and the epidemic curve

gets steeper, while the outbreak duration shortens.

The amount of contaminated food per capita x⋆ is distributed more uniformly over the
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districts as the diffusion constant ν increases, i.e. as the diffusion takes place more quickly

(see Figure 3.9B). As expected, the behavior converges for ν ≥ 100.

The importation rate ξ and consumption rate ζ have opposing effects. With increasing ξ ,

the mean amount of available contaminated food product per capita increases, while the

slope decreases with higher consumption rate ζ (see Figure 3.9C). Increasing consumption

rate ζ exponentially reduces the stationary amount of contaminated food per capita (see

Figure 3.9D). For low consumption rates ζ , the magnitude of production ξ is important,

while for consumption rates ζ near a convergent maximum, the food presence per capita

is stationary food presence per capita.

3.4.2 Model Parameter Specifications

We simulated different epidemics using diverse specifications of the food-borne disease

(fbSIR) model. For this purpose, we varied the transmission-vehicle-specific production

and consumption rates, the diffusion constant of the epidemic, and the infectiousness of

the pathogen.

We considered a transportation network for Germany, where the nodes k = 1, . . . , K

represent the districts, which are linked with relative strength according to the magnitude

of food shipping traffic between the districts. The amount of food shipping network traffic

Fkl from node l to k is determined according to the gravity model of trade as described

in Section 4.4.3 (see Equation (4.8) with parameter α = 0, β = 1, δ = 1.5 and d0 = 1).

Various transmission vehicles were considered to be the possible cause of food-borne

disease outbreaks (see Table 3.1). We ran representative scenario simulations for sprouts,

spinach and cucumbers. The fbSIR model parameters for import ξ and consumption ζ (see

Table 3.1) were specified using estimates from the 2010/2011 vegetable consumption data

of the German ministry for food, agriculture and consumer protection (BMELV Referat 123,

2011). The parameters for diffusion ν = 1 and infectiousness ρ0 = 1.5 were assumed to

be fixed. The source detection as a function of the diffusion constant (ν ∈ {0.1, 1, 10})

and the infectiousness (ρ0 ∈ {0.7, 1.5, 5}) are investigated separately (see Table 3.1). We

simulated epidemics starting from all German districts (k0 ∈ {1, . . . , 412}) during three

typical infection time periods (t ∈ [0, 40]).

3.4.3 Epidemic Characteristics of Model Realizations

We specified selected scenarios by utilization of a new dynamic fbSIR model and pa-

rameter estimates provided by the German ministry for food, agriculture and consumer

protection (BMELV Referat 123, 2011). Figure 3.10 exemplifies realizations from the fbSIR

model for cucumbers, spinach and sprouts as transmission vehicles. The maps show the

logarithmic stationary food distribution, whose shading represents the amount of con-
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Figure 3.9: Outcomes of the dynamic fbSIR model realizations as a function of different

parameters. (A) Progression of an epidemic as a function of the transmission likelihood
ρ0 · x⋆

k ∈ [0, 10]. (B) Boxplots for stationary food distributions, given different diffusion
constants ν ∈ [0, 1000]. (C) Mean stable food distribution for different amounts of impor-
tation ξ ∈ [0, K ] given consumption rate ζ . (D) Mean stable food distribution for different
consumption rates ζ ∈ [0, 1], given the importation ξ .

taminated food per capita in each district. A large production leads to high available

amount of food per capita. Thus, given the same disease-specific virulence ρ, the trans-

mission likelihood ρ(x∗
k ) is higher if the transmission vehicle is cucumber (produced in

large amounts) than sprouts (less produced). The line plots depict the corresponding

outbreak progress, while each curve represents the proportion of infected in one of the

German districts. The higher the available amount of food per capita, the higher increase

of infected and the shorter the epidemic.
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scenario ID production/import consumption diffusion infectiousness
(per capita and week) (in percent)

ξk ζ ν ρ0

Transmission vehicle
Sprouts T1 0.005 · K kg 0.90 1 1.5
Spinach T2 0.02 · K kg 0.89 1 1.5
Cucumbers T3 0.15 · K kg 0.85 1 1.5

Diffusion
slow D1 0.02 · K kg 0.89 0.1 1.5
medium D2 0.02 · K kg 0.89 1 1.5
fast D3 0.02 · K kg 0.89 10 1.5

Infectiousness
low I1 0.02 · K kg 0.89 1 0.7
average I2 0.02 · K kg 0.89 1 1.5
high I3 0.02 · K kg 0.89 1 5

Table 3.1: Parameter settings in the fbSIR model specifying the simulation scenarios.

The production is multiplied by K = 412, the number of districts in Germany, to obtain
the amount of contaminated food per capita.

Figure 3.10: Examples for Realizations of fbSIR Model. (A) cucumbers, (B) spinach, and
(C) sprouts with source in Uelzen (location marked by a red triangle). The maps show
logarithmic contaminated food dispersal, while the line plots depict the corresponding
disease dynamics for all German districts.
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Figure 3.11: Epidemic characteristic distributions of realizations of dynamic fbSIR

model. (A) Peak time, and (B) peak prevalence. Each boxplot depicts a scenario (see
Table 3.1): Transmission vehicle sprouts (T1), spinach (T2), cucumbers (T3); slow (D1),
medium (D2), and fast (D3) dispersal; low (I1), average (I2), and high (I3) infectiousness.

Figure 3.11 depicts the characteristics of the different scenarios from the fbSIR assuming

the origin location. We deduce the peak times and peak prevalences from the simulated

infection pattern. Here, the peak time captures the time since the onset of outbreak with

the highest proportion of infected, while the peak prevalence measures the magnitude

at this point. The corresponding distributions show that the scenarios can cover various

types of epidemics. Note, that the peak prevalences are highly skewed, so that numbers

are shown on a logarithmic scale.

An increasing amount of produced contaminated food delays the peak time, while the

peak prevalence decreases. For faster dispersal of contaminated food, the peak time is

observed to be earlier and to show less variation of the districts. The corresponding peak

prevalence tends to be higher and distributed more evenly with faster diffusion. Higher

infectiousness has a similar effect to more available food. The higher the infectiousness,

the earlier the peak time with higher peak prevalence.

3.5 Conclusions

In this chapter, we introduced a general dynamic model for food-borne disease outbreaks.

Local disease dynamics were described by ordinary differential equations for susceptible,

infected and recovered for each administrative district. Based on a metapopulation model,

these local dynamics were linked according to the diffusion of contaminated food by

trade network. At the network level, the contaminated dispersal was determined by the

stationary distribution of a modified master equation that considers also production and
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consumption. The spatial dispersal of contaminated food products then influences the

transmission likelihood at the local level, In this way, the number of infections increases

with larger availability of contaminated food in the district.

The system of ordinary differential equations that describes the food-borne disease dy-

namics can be easily adapted or extended to any specific pathogen. Joh et al. (2008), for

example, suggested the consideration of a minimum infection dose.

The simplification and derivation of the corresponding solutions provide efficient simu-

lation of a variety of food-borne disease outbreaks. However, when modeling a specific

pathogen, we have to call the assumptions for the simplifications into question. In par-

ticular, the utilization of the stationary distribution of contaminated food is based on the

assumption that food trade is much faster than the disease dynamics. This fact has to be

verified for the specific pathogen to be modeled. Furthermore, the simplifications were

based on the hypothesis of only bilateral trade, so that no circular trading of contaminated

food is allowed, which should be examined.

There are various further analyses that can be made. An important issue would be a global

sensitivity analysis that decomposed the output uncertainty for each input parameter.

Since the model response is non-linear, variance-based sensitivity measures find their

application (Saltelli et al., 2010; Sobol’ et al., 2007). Beyond the application to indirectly

transmitted diseases, there is the possibility to adapt the model to the indirect spread of

information or rumors according to Dietz (1967).

In general, dynamic disease models are used to investigate the effect effects of possible

interventions. For food-borne diseases, the only efficient mitigation strategy is detecting

the source and origin and cease the production of the contaminated food. Consequently,

we show the overall applicability of a source detection approach by Manitz et al. (2014)

for various types of outbreaks in the next chapter (see Section 4.5). This approach is

based on a plausible redefinition of distance and the introduction of an effective distance

derived from the underlying food distribution network in combination with viewing the

contagion process from the perspective of a specific node in the network.
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through food vehicles. They impose enormous financial burden on health care services,

routine surveillance and public health investigations, and trigger substantial productivity
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impacts and product recalls by the food industry (Jones et al., 2007). The annual burden of

seven food-borne disease pathogens is estimated to be between $6.5-$34.5 billion in the

United States alone (Buzby and Roberts, 1997). In the same period of time, each adult in

the United States experiences in average 0.6 gastrointestinal illnesses that are caused by

food-borne diseases (Jones et al., 2007). Moreover, diarrhea is the second leading cause

of morbidity and mortality among children under five years worldwide (Bryce et al., 2005).

Due to intensified mass production, facilitated world-wide shipping and novel food

manufacturing methods, food-borne disease outbreaks occur more frequently with in-

creasing impacts on society, public health institutions, the economy, and food indus-

try (Newell et al., 2010). The only efficient mitigation strategy is the identification of

the transmission vehicle and the spatial origin in order to cease the production of con-

taminated food. Several factors make origin detection of the food-borne disease out-

break a complex problem, e.g., population growth, changing eating habits, globalization of

food supply chains, production and processing innovations, and microbiological adapta-

tion (Altekruse et al., 1997; Newell et al., 2010). Furthermore, public health institutes have

limited resources to solve issues such as underreporting, communication delay and low

specificity in the association between aetiology and food vehicle (Greig and Ravel, 2009).

The incidence patterns are geographically incoherent, while specific transport pathways

are generally not monitored. In this context, food distribution networks are multi-scale,

spanning length-scale of hundreds to thousands of kilometers, delivering to and within

spatially heterogeneous populations (He and Deem, 2010; Min et al., 2011). The complex-

ity of source detection is highlighted by the fact that only for 66% of the outbreaks, public

health investigations identified evidence concerning the infection source (O’ Brien et al.,

2006).

In particular, the 2011 EHEC (enterohemorrhagic Escherichia coli) outbreak in Ger-

many raised the awareness of timely and efficient source detection methods. The

epidemic affected 3,842 people with unusually high rates of severe HUS (hemolytic-

uremic syndrome) cases and mortality. The investigation of food-borne disease outbreaks

can be described to be comparable with sleuthing, so that there is no general pro-

cedure that fits a particular event perfectly. The World Health Organization (WHO)

provides practical standard guidelines for the investigation and control of food-borne

disease outbreaks as a multi-disciplinary task which requires information from many

sources (World Health Organization, 2008). First, an unusual accumulation of disease

reports has to be detected and defined as an outbreak. After pathogen specification,

initial cases are investigated with regard to common factors. Furthermore, clinical and

food specimens are sampled. The corresponding microbiological "fingerprinting" of strains

may also identify case relatedness and/or potential sources of contamination. From as-

sociated food and environmental samples, backward tracings are initiated to determine

the origin. Furthermore, a case definition can be established to identify outbreak re-
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lated cases and to collect their information on a standardized questionnaire. Using this

data, analytical investigations, such as case-control and cohort studies, are performed

to test hypotheses about the transmission vehicle and origin. The outbreak source is

determined by combining all collected information, otherwise further analytical studies

are required. Finally, the potential origin and transmission routes are controlled using

forward tracings from contamination to the outbreak cases. Several attempts to improve

traceability of food products to their geographical origin have been developed includ-

ing technical innovations (Regattieri et al., 2007), microbiological advances (Schwägele,

2005), or food forensics (Kelly et al., 2005). However, detection of outbreak origin remains

time-consuming and cost-intensive.

Recently, network-theoretic models have grew in popularity for modeling and predict-

ing epidemics (Brockmann, 2010; Keeling and Eames, 2005; Riley, 2007). The majority of

studies aim at understanding and forecasting the future time course of an epidemic based

on the topological connectivity of the underlying transport networks (Hufnagel, 2004;

Pérez-Reche et al., 2012). Furthermore, most studies focus on human-to-human transmis-

sible diseases. Little work has been done, however, on the inverse problem, also known

as the "zero patient" problem in epidemics. One of the exceptons is Shah and Zaman

(2010, 2012) who developed an universal source detection maximum likelihood estimate,

which assumes virus spread in a general network along a breadth-first-search tree and

derive theoretical thresholds for the detection probability. Pinto et al. (2012) extended

this estimate for partially observed transmission trees. Alternative origin reconstruction

methods are based on shortest paths or consequent diameter from transmission trees

(Lappas et al., 2010; Milling et al., 2012). Prakash et al. (2012) and Fioriti and Chinnici

(2012) developed methods based on spectral techniques to identify a (set of) origin nodes

on a transmission network. They utilize a close relationship of source estimation and

node centrality as shown by Comin and da Fontoura Costa (2011). However, these meth-

ods require comprehensive knowledge of the transmission network, which is rarely known.

Here we apply a recently developed network-geometric approach for epicenter recon-

struction (Brockmann and Helbing, 2013) to food-borne diseases. This approach is based

on a plausible network-based redefinition of spatial separation and the introduction of

an effective distance. Using this effective distance method, complex spreading patterns

can be mapped onto simple, regular wave propagation patterns if and only if the actual

outbreak origin is chosen as the reference node. This way, the method can determine the

plausible outbreak origin based on the degree of regularity of the measured prevalence

distribution when viewed in the effective distance perspective. This reconstruction is able

to detect the outbreak origin without the knowledge of the detailed infection hierarchy.

Here, the underlying network captures the transportation of the contaminated food rather

than the mobility pattern of humans.
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4.1 Distances on Networks

For propagation processes on networks, the definition of distance is of crucial interest

for the characterization of network connectivity. However, networks themselves lack of a

metric, so that there are different ways to obtain distances on networks. Most intuitive is

the geodesic distance, which is based on the projection of the network nodes into ordinary

space. Geodesic distance is defined as the shortest connection between any two points

on the surface of the earth. Since it is measured on the earth sphere, it is also called

great circle distance. An alternative network-based distance can be the expected hitting

time, which is the first passage time of a random walker on the network (for a formal

introduction see Section 2.4.2). However, due to the Markov property, this distance is not

suitable to determine the origin of propagation processes on networks. In the following,

we introduce the shortest path distance, a newly developed effective network distance

and outline their computation.

4.1.1 Shortest Path Distance

The shortest path is the standard way to define a distance on a network G = (K, L). It is

a path γkl between two nodes l and k , with k, l ∈ K, such that no shorter path exist (for

the formal introduction see Section 2.2.2). Shortest path length n(γkl) between l and k is

the number of traverse links, which can be obtained as the smallest value of n = n(γkl)

such that
(

a
(n)
kl

)
> 0. If two nodes are not connected the shortest path length is set to

be infinite by convention (Newman, 2010). For weighted networks, we can additionally

define the shortest path distance.

Definition 4.1 (Shortest Path Distance): The shortest path distance dsp(k, l) from node

l to k , minimizes the sum of link costs ckl along the path γkl with nodes Kγkl
= {k =

kn(γkl), . . . , k0 = l} and links Lγkl
= {(k = kn(γkl ), kn(γkl)−1), . . . , (k1, k0 = l)}, i.e.,

dsp(k, l) := min
γkl∈Γkl

∑

(ki,ki−1)∈Lγkl

ckiki−1, ∀k, l ∈ K, (4.1)

where the link cost ckl can be assessed by the inverse link weight 1/wkl.

Shortest paths have some interesting characteristics. First, the shortest path is never

self-intersecting, i.e., has no loops. Second, in a weighted network the shortest path is

not necessarily the same path as in the corresponding homogeneous network. Finally,

shortest paths are not necessarily unique. Some very useful network characteristics, such

as diameter and betweeness centrality, are based on the shortest paths of a network (see

Section 2.3). Additionally, if an undirected network is given, the shortest path distance is

a metric.
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Derivation. The shortest path distance defined as a function dsp : K × K → R is a metric on a

set K, if this function satisfies for all nodes k, l, m ∈ K the following conditions:

(i) non-negative: dsp(k, l) ≥ 0

(ii) identity of indiscernibles: dsp(k, l) = 0, iff k = l, because wkl < ∞

(iii) symmetry: dsp(k, l) = dsp(l, k ), if wkl = wlk

(iv) triangle inequality: dsp(k, l) ≤ dsp(k, m) + dsp(m, l).

Since all conditions are fulfilled, the shortest path distance is a metric.

�

Example: Shortest Paths in Route Planning

Shortest paths are of crucial importance in navigation problems. In the road network, the

nodes represent intersections, which are connected by different street types such as side

and main streets, expressways, motorways. Figure 4.1A illustrates the route planning

using OpenRouteService.org by car between Göttingen and Berlin. The fastest route

(blue) uses the motorways, which involves a detour. The classic shortest way (gray),

similar to the geodesic distance, ignores speed restrictions of the used roads and suggests

to travel trough a mountain range, which is more direct, but also slower. Figure 4.1B

depicts a simplification of a possible underlying network structure. The link cost is the

time required to traverse the link, while the link weights correspond to the maximum

speed level or capacity of the road. The shortest path on a weighted network results in

the fastest route.

B

Figure 4.1: Illustration of Shortest Paths using Route Planning. (A) Result from Open-
RouteService (Neis, 2008) for a navigation request from Göttingen to Berlin by car: The
fastest way considers road types (blue) and the shortest way considers all connections
regardless of the road type (gray). (B) Simplified underlying road network structure for
the route planning problem between Göttingen and Berlin.

OpenRouteService.org
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4.1.2 Effective Network Distance

Effectively, two nodes that are connected by a long-range link in a multi-scale network

system are more adjacent than their spatial distance would suggest. Based on this basic

and intuitive insight, Brockmann and Helbing (2013) introduced the concept of effective

distance to study network-driven spreading phenomena of infectious diseases such as

SARS in 2003 and pandemic influenza H1N1 in 2009.

Given a network G = (K, L), we consider a link flux matrix F = (Fkl)k,l∈K with elements

Fkl from node l to k for all nodes k, l = 1, ∈ K determining the coupling of the underlying

network. Usually, this flux corresponds to a physical quantity measuring the linkage

strength, e.g., traffic load or interaction intensity. The corresponding transition probability

pkl from node l to k can be derived by the conditional probability for a transit to k when

being in node l, i.e.

pkl =
fkl

nl

, for all k, l ∈ K, (4.2)

where fkl = Fkl/
∑

k ′,l′∈K Fk ′l′ is the relative link flux and nl =
∑

k ′ fk ′l is the aggregated

relative flux of all outgoing links. A transition probability equal to zero means there is

no direct linkage between the nodes.

Derivation. Assuming a random walk {Zt , t ≥ 0} on the network G = (K, L) with state space K,

the conditional probability for a transition to k when being in l can be written as

pkl = P (Zt+∆t = k | Zt = l)

=
P (Zt+∆t = k, Zt = l)

P (Zt = l)

The joint probability describes the chance of a jump from k to l, and can be estimated by the flux

density, i.e. Pr (Zt+∆t = k, Zt = l) = fkl. Furthermore, the marginal probability that a particle is

located in a arbitrary node l is the aggregated relative flux, i.e. Pr (Zt = l) =
∑

k∈K fkl. Thus,

pkl =
fkl∑

k ′∈K
fk ′l

=
fkl

nl
.

�

The effective distance minimizes the path length as a combination of topological length

and logarithmic path probability for all paths γkl ∈ Γkl from origin l to destina-

tion k along the nodes Kγkl
= {k = kn(γkl), . . . , k0 = l} with links Lγkl

= {(k =

kn(γkl), kn(γkl)−1), . . . , (k1, k0 = l)} (Brockmann and Helbing, 2013). Thereby, the topolog-

ical length n(γkl) is given by the number of links composing the effective path γkl. The

path probability is the product of the transition probabilities pkl of the corresponding
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links. A path is considered to be short, if the probability of transiting the path is high.

Definition 4.2 (Effective Distance): The effective distance deff(k, l) from node l to k , mini-

mizes the path distance composed by topological length n(γkl) and maximized logarithmic

path probability along the path γkl with nodes Kγkl
= {k = kn(γkl), . . . , k0 = l} and links

Lγkl
= {(k = kn(γkl), kn(γkl)−1), . . . , (k1, k0 = l)}, i.e.,

deff(k, l) := min
γkl∈Γkl



n(γkl) − log




∏

(ki,ki−1)∈Lγkl

pkiki−1







 , for k, l ∈ K.

= min
γkl∈Γkl



n(γkl) −
∑

(ki,ki−1)∈Lγkl

log pkiki−1



 (4.3)

If the probability of a path equals one, the effective distance is the number of path links,

i.e. the deterministic topological distance. The less probable a path is, the larger the

effective distance. If the probability for a path approaches zero, the effective distance

converges to infinity. Note that apart from the network, the effective distance depends

only on the static transition probabilities pkl, which define the network structure.

Derivation. The effective distance method assumes that, irrespective of the details of the local

dynamics of a spreading process, the proliferation of the contagion throughout the network is

determined by the coupling between nodes, and that this coupling is quantified by the relative

flux fkl. Given an initial location k0, a contagion process can take a multitude of paths to any other

node in the network. Each path γknk0 is taken with probability P(γknk0 ). Consider a path γknk0 that

starts at k0 and ends at kn with a sequence of intermediate steps at nodes ki, i = 1, . . . , n − 1

such that

Kγknk0
= {kn, . . . , k0} and Lγknk0

= {(kn, kn−1), . . . , (k1, k0)}.

The probability of the contagion process taking this path is assumed to be given by the product

of probabilities of each step

P(γknk0 ) =
∏

(ki,ki−1)∈Lγkl

P(ki|ki−1).

Here, for every link in the network the function P(k |l) is the probability that a particle at l

moves to k . The fundamental assumption in Brockmann and Helbing (2013) is that the single

step probability P(k |l) is identified with the flux fraction pkl that is determined by the underlying

transportation network:

P(k |l) = pkl =
fkl∑
k ′ fk ′l

=
fkl

nl
,

where fkl = Fkl/
∑

k ′,l′∈K Fk ′l′ is the relative link flux and nl =
∑

k fkl is the aggregated relative
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flux of all outgoing links. The effective cost of a direct link l → k is then defined as

λkl = 1 − log pkl.

This relation establishes a link between network topological features and effective distance. The

functional form is chosen such that a number of important features are fulfilled:

(i) the length from l to k decreases with increasing probability P(k |l). For large values of

P(k |l), the effective length is small and for vanishing transition probability the effective length

diverges,

(ii) the effective length of a multi-step path γknk0 with nodes Kγknk0
= {kn, . . . , k0} is the sum of

the effective lengths of each segment in the path, and

(iii) given two paths that occur with certainty (e.g., along each step P(ki|ki−1) = 1), but different

leg number, the path that has more legs also has a larger effective length.

Altogether, the effective length of a multi-leg path is then given by

Λ(γknk0 ) =
∑

(ki,ki−1)∈Lγknk0

λ(ki|ki−1).

Transportation networks are strongly heterogeneous such that, in an ensemble of paths with origin

k0 and destination kn, the dynamics are dominated by the most probable path and therefore the

path of minimum effective cost (Brockmann and Helbing, 2013). The effective distance deff(k, l) is

defined as the minimum effective cost of a path Λ(γkl) from origin l to destination k :

deff(k, l) = min
γkl∈Γkl

Λ(γkl).

�

Note that the effective distance is not a metric, because it is not symmetric. However, the

other formal metric characteristics are fulfilled.

Derivation. The effective distance as a function deff : K × K → R is a metric, if this function

satisfies for all k, l, m ∈ K the following conditions:

(i) non-negative: deff(k, l) ∈ [n(γkl), ∞), where L ≥ 0

(ii) identity of indiscernibles: deff(k, l) = 0, iff k = l

(iii) symmetry: deff(k, l) 6= deff(l, k ), because pkl 6= plk

(iv) triangle inequality: deff(k, l) ≤ deff(k, m) + deff(m, l),

Since condition (iii) is not fulfilled, so that the effective distance is not a metric.

�
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4.1.3 The Algorithm of Dijkstra

For the computation of network-based distances various algorithms are available (see

e.g., Jungnickel and Schade, 2005; West, 2001). Here, the Dijkstra algorithm is introduced,

which is commonly used for the search of shortest paths and can be also applied for the

calculation of effective distance.

Description of the Algorithm

The Dijkstra algorithm is one of the most popular methods to efficiently derive shortest

path distances for weighted networks. It gives asymptotically the fastest solution to the

single-source shortest path problem. For a initial node k0 the shortest path distances to

all other nodes are computed by producing a shortest path tree, which is a composition

of all shortest paths (Dijkstra, 1959):

(1) Define an array of length K representing the current estimates of the shortest path

distances. During the run of the algorithm, these are the upper bounds of the distance

estimates. Therefore, it is initialized with zero if the target node equals the initial

node k0 and infity otherwise.

(2) The initial node is set to be the current node and all targeted nodes are marked as

unvisited.

(3) For all neighbors of the current node:

(i) the distances are calculated,

(ii) the result is added to the distance of the current node, and

(iii) the new distance is compared with old distance of the neighbors. If it is smaller,

the distance estimate is revised.

(4) The current node is marked as visited and never checked again.

(5) The neighboring node with the minimal distance from the current node is defined to

be the next current node and the algorithm is iterated from step 3.

(6) The algorithm is stopped if no unvisited nodes are left or the minimum distance to

unvisited nodes is infinity.

The Dijkstra algorithm is a greedy algorithm. For all sub-steps, the shortest subsection

is favored and therefore the most promising solution is favored. The assumption that

the shortest subsections compose the shortest path results in optimal solutions if only

positive weights are used for the subsections. The algorithm can be easily extended to

save the shortest path itself as well.
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Dijkstra Algorithm: Computation of Network-based Distance

1 > dijkstra <- function(D, start){ # D ... distance matrix

2 > # start ... origin of shortest path

3 >

4 > ### initialization

5 > K <- dim(D)[2] # number of network nodes

6 > distance <- rep(Inf, times=K) # (1) initialize distance to be unknown

7 > distance[start] <- 0

8 > Q <- 1:K # (2) set of unvisited nodes

9 > ### main loop

10> while(length(Q)>0){ # (6) stopping criteria

11> u <- Q[which.min(distance[Q])] # (5) define current node u

12> Q <- Q[-match(u,Q)] # (4) mark u as visited

13> for(v in which(is.finite(D[,u]))){ # (3) for all neighbors v of u

14> if(v %in% Q){

15> old <- distance[u] + (D[v,u]) # (i,ii) calculate distance

16> if(old < distance[v]){

17> distance[v] <- old # (iii) update of distance

18> }

19> }

20> }

21> }

22> return(distance)

23> }

Computation of Shortest Path Distance

The algorithm requires the input of link costs, which do not necessarily have to be dis-

tances, and hence may also represent time needed to traverse a link. Since the link costs

are usually not known, one can estimate these using only relative flux fkl. We assume,

that the larger the traffic capacity of a link, the shorter the distance on this link. Thus,

ckl ∝ nl

fkl

,

where nl =
∑

k fkl. This relation can be written also in dependency of the transition

probability that is estimated by the relative link flux (see Equation (4.2)). I.e.

ckl ∝ 1

pkl

, ∀k, l ∈ K.
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Given the relative link flux, we derive the link distance and compute the shortest path

distance using the Dijkstra algorithm. This procedure results in a vector of length K with

elements dsp(k, k0) for all k ∈ K.

Computation of Effective Distance

On an arbitrary network, the effective distance can be computed by a simple modification

of Dijkstra’s algorithm. The modified link cost 1 − log(pkl) for each link from l to k can be

is plugged in the standard Dijkstra algorithm. Thus, the effective distance is computed by

updating in the Dijkstra algorithm with distance[u] +(1 - log(P[v,u])) (see Dijkstra

algorithm line 15). This procedure yields a vector of length K with elements deff(k, k0) for

all k ∈ K.

4.2 Explorative Approach for Source Detection

Based on this basic and intuitive insight, a recent study (Brockmann and Helbing, 2013;

Manitz et al., 2014) introduced the concept of effective distance to network-driven conta-

gion or spreading phenomena. The most important result of this study is that spatio-

temporally complex patterns of spreading can be mapped onto simple, regular wave

front patterns when the geodesic distance is replaced by a suitably chosen effective

distance. This not only permits calculations of arrival times at any node in the net-

work but, more importantly, the identification of outbreak origins. The effective distance

approach has been shown to work in the context of infectious disease dynamics on a

global scale, e.g., the worldwide spread of SARS in 2003 and pandemic influenza H1N1

in 2009 (Brockmann and Helbing, 2013).

4.2.1 Concept

The basic idea for the deterministic source detection approach arose from the view on a

traditional middle age epidemic, where the infections spread in an approximately uniform

circle around the source location of an epidemic. Brockmann and Helbing (2013) showed,

that this observation can be transferred to modern epidemics by replacing the standard

geodesic distance with an effective network distance using the underlying human mobility

pattern. For food-borne disease, the network captures the underlying transportation of a

contaminated food vehicle. Thus, we assign the source candidate, which is closest to the

median centre of the circular infection pattern to produce the source of the epidemic.

Figure 4.2 illustrates the advantages of this approach in an artificial multi-scale network

according to the small-world model (see Section 2.3.4). Figure 4.2A depicts a simple planar

quasi-lattice network, in which every node is connected only to its spatially adjacent
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Figure 4.2: Effective distance and outbreak origin reconstruction in multi-scale network

contagion processes. (A) Each panel depicts a temporal snapshot (from left to right at
equidistant time intervals) in a simple contagion process in which infected nodes (red)
deliver the infection to connected nodes at a fixed rate before they recover at another
rate (see SIR dynamics on complex networks, Section 3.1.4). The network consists of 512
nodes on a quasi-triangular, random lattice. Each node is connected to its nearest local
neighbors. In addition to the local lattice structure, 128 long range links exist between
randomly chosen pairs of nodes. The origin of the outbreak is marked in green. Because of
long range connectivity the pattern quickly looses spatial structure and becomes chaotic
such that it is difficult to predict alone from metric cues when the contagion arrives at a
given node. More importantly, long range connectivity leads to a loss of spatial coherence
and it becomes impossible to determine the origin of outbreak. (B) The same pattern as in
(A) is shown in the effective distance perspective from the outbreak origin. The depicted
tree is the shortest path tree, i.e. the most probable spreading path of the contagion
process. Radial distance is proportional to effective distance as defined in the text. In
this alternative representation the complex pattern in the geodesic view is mapped onto a
simple propagating wave front and arrival times are easily computed. (C) The regularity
of the pattern is only present from the perspective of the actual outbreak origin. When
the contagion process is viewed from any other node (here the node depicted in blue),
the pattern lacks regularity.

nodes. Additionally, a few long-range, random connections are added. Because of long-

range connections in the network, an initially localized spreading process quickly attains

a spatially incoherent structure. As a consequence, ordinary diffusion processes are

no longer able to accurately predict arrival times. More importantly, it is difficult to

reconstruct the outbreak origin from a snapshot (or a sequence of snapshots) of the spatio-

temporal pattern of spread based alone on the conventional geodesic distance measure.
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From the perspective of the outbreak origin, the shortest path tree of the root node is

shown, and the radial distance in the new map corresponds to the effective distance from

the root node to the remaining nodes in the network. The same spreading process that

appears to be spatio-temporally complex in the conventional geodesic metric layout (see

Figure 4.2A) is equivalent to a regular, constant-speed spreading wave in the effective

distance representation (see Figure 4.2B). Consequently, one can calculate arrival times

based alone on effective distance.

The most relevant consequence of the effective distance approach is that, only from the

perspective of the actual outbreak origin, the pattern exhibits a regular concentric wave

front structure (see Figure 4.2B). From the perspective of any other node in the network,

the pattern exhibits a more or less disordered structure (see Figure 4.2C). The panels

depict the same dynamics as in the other panels from a randomly chosen reference node.

Clearly, any spatial regularity is absent. One can now make use of this observation,

i.e. the fact that the spreading pattern is regular only from the perspective of the actual

outbreak location to reconstruct the outbreak origin. Given a snapshot of the disease

spread, for example the disease incidence at every node, one computes the effective

distance perspective for each node in the network and quantifies, from which node the

pattern appears to be most regular. The node with maximum regularity is considered to

be the most likely outbreak origin.

4.2.2 Network-based Source Detection

The application of the effective distance concept to network-driven spreading phenomena

opens the possibility of two different approaches for source detection: Effective distance

concentricity and arrival time correlation. The first requires only a snapshot of the spread-

ing pattern to be known, while the latter is based on the temporally evolving data about

the contagion process.

Effective Distance Concentricity

A temporal snapshot of the incidence pattern is analyzed. Typically, this data is aggre-

gated on district level due to privacy protection of the patients. For deterministic source

detection, one requires only a classification into districts with and without infections. Let

Xk (t) be the number of infected in district k ∈ K at time t ∈ T. The spreading pattern can

be captured by the node subset with the non-zero incidence districts X (t) at a certain

time point t ∈ T, i.e., X (t) = {k ; Xk (t) ≥ 0, k ∈ K}. From the perspective of the actual

outbreak origin, the effective distance to these affected nodes should be small and exhibit

a small variance; a consequence of the concentricity of the spreading pattern in the effec-

tive distance representation. In order to quantify the regularity of the incidence pattern
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from every potential outbreak origin k0 ∈ K0, we estimate the expectation µ̂X (deff; k0, t)

and variance σ̂ 2
X (deff; k0, t) of effective distances to nodes from X (t) with nonzero incidence,

i.e.,

µ̂X (deff; k0, t) =
1

NX(t)

∑

k∈X(t)

deff(k, k0),

σ̂ 2
X (deff; k0, t) =

1

NX(t)

∑

k∈X(t)

deff(k, k0)
2 − µ̂X (deff; k0, t)2, (4.4)

where NX(t) is the number of districts with non-zero incidence, i.e. NX(t) = |X (t)| =
∑

k∈K I(Xk (t) ≥ 0) with indicator function I. Due to the concentricity of the spreading

pattern in the effective distance representation, the outbreak origin is assumed to be

the reference node that exhibits small expectation and variance of effective distances

(Brockmann and Helbing, 2013). Thus, the minimization of the concentricity score results

in the estimate of the outbreak origin k̂0(t), i.e.,

k̂0(t) ∈ arg min
k0∈K0

√
µ̂2

X (deff; k0, t) + σ̂ 2
X (deff; k0, t), (4.5)

where k̂0(t) is from a set of source candidate nodes, i.e. k̂0(t) ∈ K0 ⊆ K, for which the

concentricity score attains the smallest value, i.e.

√
µ̂2

X (deff; k̂0, t) + σ̂ 2
X (deff; k̂0, t) = min

k0∈K0

√
µ̂2

X (deff; k0, t) + σ̂ 2
X (deff; k0, t).

Arrival Time Correlation

The effective distance method provides an alternative for outbreak origin reconstruction.

An important result presented in Brockmann and Helbing (2013) is that arrival times of

a network-driven contagion process correlate strongly with the effective distance. In

fact, the arrival time tX (k) of the process at a node k with initial outbreak at node k0

increases linearly with effective distance deff(k, k0). Again, arrival time and effective dis-

tance only correlate strongly when the actual outbreak origin is chosen as the reference

node. Therefore, the Pearson correlation coefficient cor(tX (k), deff(k, k0)) between the ar-

rival time and the effective distance from the source candidate k0 is computed. Then, the

likely outbreak origin is considered to be the one with the strongest correlation, i.e.

k̂0 ∈ arg max
k0∈K0

cor(tX (k), deff(k, k0)). (4.6)

Note that a temporally evolving data about the incidence spread has to be known.
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4.3 Application to the 1854 Cholera Outbreak in Broad

Street/Soho

We first motivate and illustrate the source detection approach by the example of the 1854

cholera outbreak in Soho, London. The investigation of this outbreak by John Snow is

considered to be the foundation for disease epidemiology (Bivand et al., 2008).

4.3.1 1854 Cholera Outbreak in Broad Street/Soho

Cholera is a water-borne infectious disease with diarrhea and vomiting as main symptoms.

In 1854, over 500 people died within the first ten days after the onset of the outbreak

in London’s neighborhood Soho, United Kingdom. John Snow constructed the hypothesis

that cholera is associated with the quality of water supply. He mapped the cholera

deaths and the available water pumps as potential outbreak source (see Figure 4.3).

Snow defined cells around each water pump to obtain their supply range. By matching

the spatial incidence pattern with these cells, most cholera cases could be linked to the

Broad street pump (indicated by larger triangle), as it was the closest water supply. In

further interview-based analysis, cases with a short distance to another water pump in

the quarter could be linked in further interview-based analysis also to Broad street pump.

The analysis by Snow resulted in the timely closure of the water pump in Broad street.

4.3.2 Analysis with Network-based Source Detection

John Snow basically compared the distance from each death case to the Broad street

pump with the distance to another pump. A similar comparison is done by our network-

based source detection method (Manitz et al., 2014, see Section 4.2). We minimize a

distance-based concentricity score for all potential sources. For the analysis of the 1854

cholera outbreak, we construct a bipartite network that links the deaths cases with the

available water pumps. For 322 households with recorded death cases and 12 water

pumps in the area, the resulting network is described by a 322 × 12 adjacency matrix. A

reasonable distance definition in Soho is the walking distance along the street network,

which is computed using GRASS (GRASS Development Team, 2012).

Then, we calculated the average walking distance µ̂X (d; k0, t) and the corresponding stan-

dard deviation σ̂X (d; k0, t) from all available water pumps as potential disease sources to

the observed cholera death cases (see Equation (4.5)). Like in the analysis by Snow, the

water pump at Broad street is clearly identified as the correct source of contaminated

water.
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Figure 4.3: 1854 Cholera Outbreak in Soho, London. Cholera death cases are marked
as circles on the street map of Soho, London. Circle size correspond to the number of
cases in the house. The triangles depict the locations of water pumps, while Broad street
pump is indicated by larger triangle in the canter of the map. Data and map source:
Bivand et al. (2008).

Since the geodesic distance differs only slightly from the street network distance, the

approach works also for conventional radial distance (results not shown). However, there

is one pump in Soho west, which is also quite probable. The comparison with the results

assuming walking distance along the street network, this supposition is less likely.

4.4 Application to the 2011 EHEC/HUS Outbreak in Ger-

many

In this section, we exemplify our source detection approach using the 2011 EHEC/HUS

outbreak in Germany, which was the motivation for the development of the approach

(Manitz et al., 2014). The severe impact of the disease on the population and industry, the

fast and wide spread due to mass production and optimized food shipping, and the large

public attention emphasize the need for fast and efficient outbreak origin localization.

4.4.1 German EHEC O104:H4/HUS Outbreak 2011

Regarding the number of severe HUS cases, the 2011 EHEC/HUS outbreak in Germany

has been the largest E. coli outbreak reported worldwide. Between May 2 and July 26,

2011, 3,842 outbreak associated EHEC cases were reported to the Robert Koch-Institute

(RKI), the federal public health and surveillance institute in Germany (Frank et al., 2011).
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The infection count includes 855 severe HUS cases (22.3%); 53 patients (1.4%) died. The

outbreak was caused by a rare serotype O104:H4 which infected predominantly adults

(median age, 43 years), particularly women (68%), and resulted in many severe HUS

and high mortality rates (Frank et al., 2011). In the previous years, between 925 and

1,283 cases were reported annually, mostly in children. The majority of cases were

observed in Northern Germany, which resulted in a higher incidence (number of cases

per 100,000 inhabitants) for the corresponding districts than the overall rate for Germany

(see Figure 4.4).

Extensive investigations were conducted by the Task Force EHEC, which included "a

matched case-control study, a recipe-based restaurant cohort study", and backward-

/forward-tracings (Buchholz et al., 2011). The entire process was complex, resource de-

manding, time-consuming and can be compared with detective work as a certain question

in a patient interview can give the crucial clue to find the infection source. The uncer-

tainty was also amplified by the novelty of the particular serotype O104:H4. Due to the

comparable long and varying incubation period (median 8 days, Werber et al., 2013), the

patients had to recall accurately the consumed food items in the correspondingly long

time period. The information from the case-control study were biased and incomplete,

because sprouts are less likely to be recalled than e.g., cucumbers. Thus, only 25% of

the cases remembered having eaten sprouts, while 88% mentioned having consumed cu-

cumbers (Buchholz et al., 2011). During the recipe-based cohort study, the complicated

exposure setting became obvious, because the transmission vehicle has been part of a

mixed salad. The tracings required a large amount of trained personnel and their success

depends on the quality of the epidemiological studies conducted. Only the combination

of several study designs finally led to the determination of sprouts as the transmission

vehicle and the identification of their origin, a farm in Bienenbüttel located in the dis-

trict Uelzen, Lower Saxony. The contaminated sprout seeds could be further traced to

Egypt. On June 10, the German public was informed to avoid sprout consumption and the

responsible production farm was closed.

4.4.2 Available Infection Data

For our analysis, we use the public available E. coli case count data from the database

SurvStat, which includes cases of notifiable diseases and pathogens as regulated by law

and is maintained by the Robert Koch Institute (Robert Koch-Institute, 2012, query date:

December 6, 2012). We query weekly E. coli case counts for all administrative districts

with report date between calendar weeks 18 and 26 of 2011. According to the Task

Force EHEC, this corresponds to the entire outbreak duration from May 2nd until July

4th, 2011 (Frank et al., 2011).

Altogether, the data includes 3544 cases while due to the general request (no particular
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Figure 4.4: E. coli incidence in Germany during 2011 EHEC/HUS outbreak. (A)

Each panel depicts a different outbreak week (May 30th until June 20th, 2011).
Color intensity quantifies infection counts in for each of the German districts (Data
source: Robert Koch-Institute (2012, query date: December 6, 2012), Map source:
Bundesamt für Kartographie und Geodäsie (2010)). The alleged origin of outbreak (dis-
trict Uelzen) is marked in blue. (B) Time course of E. coli incidence for selected districts.
For reference, the overall German incidence per district is shown in black.

E. coli serotype selected) not all of them are outbreak-associated. Another source of

missing data precision is induced by travel-related cases. The district of report is not

necessarily the district of infection causing spatial warping. Additionally, the data con-

siders the week of report, not the date of infection, so that the recorded long and variable

incubation period further bias our data.

However, for our analysis, there is better data available than at the time of the epi-

demic. In general, surveillance data suffers from underreporting, communication de-

lays and inaccuracies. Firstly, the cases represent usually only the "tip of the ice-

berg" (Straif-Bourgeois and Ratard, 2005), while immunocompromised are more likely to

be reported. Secondly, a case report arrives with delay at the data base of the Robert

Koch Institute after a typical series of events: Infection, onset of symptoms, doctoral di-

agnose, laboratory test result, laboratory report, quality control and updates at the local



Application to the 2011 EHEC/HUS Outbreak in Germany 85

public health department. The data includes further inaccuracies such as artefacts due to

holidays, differing infection and report district or operating errors. The elaborate inves-

tigation during the EHEC/HUS outbreak included elaborate collection of the additional

report data and extensive quality management, so that the data can be considered to be

almost complete (Bernard et al., 2014). Most importantly, we do not have to cope with

large parts of the reporting delay due to the completed quality assessment. This way

all infection case data is available directly at time of arrival at the local public health

department.

4.4.3 Definition of the Food Shipping Network

We consider a model network for spatial food distribution, where nodes k ∈ K with

K = 412 represent administrative districts in Germany. We choose this resolution to be

suitable, because the infection case data is typically aggregated on this levele due to

privacy protection. More precise knowledge of the spatial location of the infection cases

would allow the definition of a more detailed trade network, for instance on basis of the

German street network. In contrast, considering the international epidemic pattern would

require data about international vegetable trade (e.g., Min et al., 2011). The link flux Fkl

quantifies the amount of goods that are shipped from node l to k per unit time. (Note

that in the following, we set Fkk = 0.) For what follows, only relative flux fractions

fkl =
Fkl∑

k ′l′ Fk ′l′
(4.7)

are required to specify the network. The quantities fkl can be interpreted as an effective

coupling between districts l and k that is induced by the food distribution between these

districts. We consider the quantities fkl as a proxy from which spreading propensities

between l and k can be derived.

Because precise measurements of food distribution pathways are not available, we con-

sider an established, approximate heuristic from the social sciences, economics and

transportation theory known as the gravity model (see Section 2.4.3, Anderson, 1979;

Haag and Weidlich, 2010). This approach accounts for the observation that traffic flow

increases monotonically with the population size between locations and decreases alge-

braically with distance, leading to the relationship

Fkl ∝ Nα
l N

β
k

(1 + d(k, l)/d0)δ
, (4.8)

where Nl, Nk , and d(k, l) quantify the population size of origin l, destination k , and their

geographic distance, respectively. The non-negative exponents α , β , δ and distance scale

d0 are parameters of the gravity model (Kaluza et al., 2010; Min et al., 2011).
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Figure 4.5: Multi-scale Food Distribution in Germany. (A) Map of German districts;
hues correspond to the regional network modules obtained by modularity maximiza-
tion (Woolley-Meza et al., 2011); color intensity quantifies population density. The origin
of the 2011 EHEC/HUS outbreak is marked by a white circle in Bienenbüttel located in
the district Uelzen. (B) German food shipping network constructed from a gravity model
with parameters α = β = 1/2, γ = 2.6, and d0 = 10. Each district is represented by a
network node, coloring corresponds to the link strength. The network has a connectivity
of 18.1%.

.

Plausible choices for these parameters can be derived in the following way: First, we

assume that the coupling strength between two locations l and k increase with the number

of connections (Nk × Nl) that can be formed between elements of the populations. This

implies that α = β . Additionally, the coupling strength should be proportional to a mean

value of the origin and destination population sizes, while leverage by large population

nodes should be attenuated. Accounting for this, we choose the geometric average

Fkl ∝
√

NkNl. (4.9)

Furthermore, we let the coupling strength Fkl decrease with distance. The correspond-

ing tail exponent is consistent with the quantitative assessments of human mobility and

transportation networks (Brockmann et al., 2006; Gonzalez and Barabasi, 2008), i.e.

Fkl ∝ 1

d(k, l)2+µ
with µ ≈ 0.6. (4.10)

Finally, we fix the scale parameter d0 (in km) in Equation (4.8) to be of the order of the
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average radial extent of a district, i.e. d0 = 10. With these assumptions, the parameters

in the gravity model are α = β = 1/2, γ = 2.6 and d0 = 10 leading to the specification

of Equation (4.8), i.e.,

Fkl ∝
√

Nl · Nk

(1 + d(k, l)/10)2.6
.

Although we choose these parameter values as base values, we also investigate the

robustness of our results against variations in exponents and found that our results are

quite robust (results not shown).

The gravity model generates a fully connected network with strongly heterogeneous

weights, contrasting realistic mobility or transportation networks that possess a sparse

topology. In order to obtain a more realistic model for food distribution that exhibits

topological sparseness of connections, we follow a procedure recently introduced by

Serrano et al. (2009). The main idea of this approach is that only links are retained are

important with respect to a random null model, in which traffic is distributed uniformly

among links of a node. Following this concept, we first compute the flux fraction

pkl =
fkl

nl

, (4.11)

where nl =
∑

k fkl is the aggregated relative flux of all outgoing links for each node l. If

at each node, traffic was randomly distributed among the remaining K − 1 other nodes,

a null model would produce p0
kl ≈ 1/K . Thus, we only retain links that possess a flux

fraction larger than 1/K , i.e. if

pkl >
1

K
. (4.12)

This approach yields a network skeleton of structurally essential links. Following this

procedure, the resulting network has a density of 18% (ρ = 0.18, see Figure 4.5B).

4.4.4 Effective Distances on the Food Shipping Network

Effectively, two nodes that are connected by a long-range link in a multi-scale network

system are more adjacent than their spatial distance would suggest. These characteristic

features of transportation networks in general, which is also captured by the above gravity

model, is due to its multi-scale structure. Although short-range links are usually strongest,

the algebraic tail in Equation (4.8) yields long-range connections that can dominate

spreading phenomena evolving on these networks.

We compute the effective distance as introduced in Section 4.1.3. From the perspective of

a chosen root or reference node k0, one can derive the effective path tree Tk0 , which is the

collection of shortest effective paths to all other nodes in the network. This effective path

tree with the effective distance is equivalent to the most probable contagion hierarchy

that a spreading process will take through the network.
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Uelzen Göttingen

Ostalbkreis

Figure 4.6: Effective path trees among districts in Germany. Each column depicts the
effective path tree Tk0 for a sample root node (red), from left to right districts Uelzen,
Göttingen, and Oberalbkreis. The top row depicts Tk0 embedded in the conventional
geodesic distance representation, the bottom illustrates the effective path tree in a layout
such that the radial distance is proportional to the effective distance from the root node in
the same way as in Figure 4.2. The effective path tree Tk0 represents the most probable
path that a contagion process takes with initial outbreak in node k0.

Given the network for food transportation based on the gravity model, the effective path

tree Tk0 for every potential root node k0 are computed (see Figure 4.6 for examples).

Circular effective path trees represent most probable pathways of an epidemic with given

source as root. The effective path tree structures seem to be very similar, but there

are some important differences. The effective path tree with root in Uelzen exhibits many

direct connections in Northern Germany, while the Bavarian cities are reached via Berlin.

The tree from Göttingen has many direct long-range connections. In particular, Berlin

cannot be recognized as a hub. Overall, the effective distance is smaller. The last effective

path tree with root in Oberalpkreis exhibits less connections in Northern Germany, e.g.,

there is no link between Berlin and Hamburg. A concentric infection pattern can be found

only for Uelzen, while the alternative circular effective path trees do not exhibit such a

structure.
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4.4.5 Results

Effective Distance Concentricity

A temporal snapshot of the EHEC incidence pattern is analyzed in each of the effective

path tree representations, i.e. from the perspective of all network nodes as potential

candidate origins of outbreak.

Figure 4.7 shows the results of origin detection when the effective distance approach in

combination with a gravity model for food distribution is applied to the EHEC incidence

data. Since an E. coli infection clustering was noticed at May 19th, 2011 (outbreak week

3), we computed the average µ̂X (deff; k0, t) and standard deviation σ̂X (deff; k0, t) pair for

weeks t = 3, 5, 6, 7 and every node k0 in the network as a potential outbreak origin.

When both quantities are small, the resulting spreading pattern is assumed to be most

concentric from the perspective of the origin. Figure 4.7 shows that already in week

3 of the event, district Uelzen is identified as the plausible origin of the outbreak, this

is also true for weeks 6 and 7. In week 5, the method identifies district Lüneburg as

the likely outbreak origin and Uelzen ranks third in the epicenter reconstruction. Note

that the geographic center of district Lüneburg is as close to Bienenbüttel (the alleged

location of contaminated sprouts) as the geographic center of Uelzen (ca. 20km). Note

also, that the overall distribution of pairs (µ̂X (deff; k0, t), σ̂X (deff; k0, t)) differs considerably

for each temporal snapshot of EHEC incidence districts close to the actual outbreak

location exhibit combined small values of (µ̂X (deff; k0, t), σ̂X (deff; k0, t)).

Table 4.1 ranks the candidate outbreak locations for weeks 3 to 9. The ranks were

computed by comparing the effective distance to the origin of ordinates (0, 0) in the

(µ̂X (deff; k0, t), σ̂X (deff; k0, t)) scatter plot. For all time windows except weeks 4 the correct

district ranks among the top candidates for EHEC outbreak origin estimation. Note that

other potential outbreak origins are often districts that are in close geographic proximity

to the actual outbreak location. This implies that even if the origin cannot be identified

on the scale of a single district, potential candidates according to the effective distance

methods are confined to a small region in the vicinity of the actual outbreak location.

Arrival Time Correlation

To supplement the above source detection analysis with the effective distance concentric-

ity, we computed the correlation coefficient cor(tX (k), deff(k, k0)) of arrival times tX (k) (i.e.

the week of reported first case of EHEC/HUS in a given district) with effective distance

d(k, k0), considering each node k0 of the 412 districts as the potential outbreak origin.

Afterwards, we then ranked these resulting correlation coefficients. Figure 4.8 depicts the

magnitude of cor(tX (k), deff(k, k0)) in a map of all German districts. Clearly, this method

identifies a well-defined region in Northern Germany as containing the likely outbreak
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Figure 4.7: EHEC/HUS outbreak origin reconstruction: Each panel depicts a scatterplot
of average µ̂X (deff; k0, t) and standard deviation σ̂X (deff; k0, t) (see Equation (4.4)) of effective
distances from candidate nodes k0 to the subset X (t) of nodes that have nonzero incidence
for weeks t = 3, 5, 6, 7 after outbreak onset. All districts are considered as potential
candidates as outbreak origin. Symbol size quantifies population size of each district, the
blue color intensity quantifies incidence in the respective week. A few large districts are
labeled. The district with combined minimal mean and variance (closest to the origin)
has a high likelihood of being the actual 2011 EHEC/HUS outbreak origin. The actual
outbreak origin Uelzen is marked by a red cross.

location. In contrast to the incidence patterns, the correlation coefficient varies smoothly

with distance from the epicenter somewhere in Northern Germany. When correlation

coefficients are ranked according to magnitude, the correct German origin district Uelzen

only ranks 30 out of 412 districts (see Table 4.2). However, the difference in correlation

coefficients is small among the top-ranked districts.
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Rank week 3 distance week 4 distance week 5 distance
1 Uelzen 5.2 km Segeberg 65.8 km Lüneburg 5.2 km
2 Lüneburg 5.2 km Harburg 17.9 km Steinburg 88.3 km
3 Cuxhaven 97.9 km Steinburg 88.3 km Uelzen 5.2 km
4 Steinburg 88.3 km Stade 57.7 km Neumünster 103.6 km
5 Ostholstein 83.0 km Lauenburg 25.3 km Lübeck 70.7 km
6 Bremerhaven 128.8 km Pinneberg 66.0 km Segeberg 65.8 km
7 Dithmarschen 155.6 km Stormarn 43.0 km Stade 57.7 km
8 Lübeck 70.7 km Lüneburg 5.2 km Lauenburg 25.3 km
9 N-W-Mecklenburg 109.6 km Hamburg 33.0 km Harburg 17.9 km
10 Stade 57.7 km Neumünster 103.6 km Ostholstein 83.0 km

Rank week 6 distance week 7 distance week 8 distance

1 Uelzen 5.2 km Uelzen 5.2 km Bremen 100.3 km
2 Lüneburg 5.2 km Heidekreis 19.9 km Delmenhorst 118.8 km
3 Heidekreis 19.9 km Lüneburg 5.2 km Osterholz 94.4 km
4 Steinburg 88.3 km Bremen 100.3 km Verden 70.8 km
5 Lauenburg 25.3 km Delmenhorst 118.8 km Uelzen 5.2 km
6 Stade 57.7 km Verden 70.8 km Heidekreis 19.9 km
7 Harburg 17.9 km Osterholz 94.4 km Oldenburg 122.2 km
8 Lübeck 70.7 km Oldenburg 122.2 km Bremerhaven 128.8 km
9 Segeberg 65.8 km Celle 28.1 km Cuxhaven 97.9 km
10 Bremen 100.3 km Cuxhaven 97.9 km Oldenburg 144.7 km

Rank week 9 distance

1 Lüneburg 5.2 km
2 Uelzen 5.2 km
3 Stade 57.7 km
4 Neumünster 103.6 km
5 Steinburg 88.3 km
6 Lübeck 70.7 km
7 Pinneberg 66.0 km
8 Segeberg 65.8 km
9 Lauenburg 25.3 km
10 Cuxhaven 97.9 km

Table 4.1: EHEC/HUS outbreak origin reconstruction: For each week 3 to 9 relative to
the beginning of the EHEC/HUS outbreak and for each node k0 in the network a rank
was computed based on minimization of a concentricity score (see Equation (4.5)). District
Uelzen, the actual outbreak district is consistently ranked among the top ten districts.
In weeks 3, 6 and 7, Uelzen is ranked first. We considered all 412 districts. For each
district the distance provided represents the approximate distance to the actual German
outbreak location Bienenbüttel in district Uelzen.

4.4.6 Summary

Based on plausible assumptions on the structure of the national food distribution network,

we were able to identify the district of the German origin of the 2011 German EHEC/HUS

outbreak within a 10 km radius to the actual outbreak location, a farm in Bienenbüttel

(Uelzen, Lower Saxony). This result is based on the outbreak origin reconstruction with

the minimization of the concentricity score. In comparison to the correlation-based ap-

proach, the concentricity score analysis of the wave front in effective distance, seems

to be a more reliable technique for the source detection. An additional advantage of
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Figure 4.8: Correlation of effective distance and arrival time during the German

EHEC/HUS outbreak, 2011. For each district as a potential outbreak origin, we com-
puted the correlation coefficient of arrival time tX (k) at every other node k and effective
distance d(k, k0) from k0 to k . The magnitude of the correlation coefficient is color-coded
from blue to red, corresponding to low and high correlation, respectively. High correlation,
corresponding to high likelihood of being the outbreak origin is observed in a spatially
coherent region in Northern Germany.

the concentricity score compared to the correlation-based approach is that only a single

temporal snapshot of incidence is required.

One reason for the comparatively low performance of the correlation-based outbreak

reconstruction could be that the temporal resolution of the data is too coarse and fluc-

tuations dominate the signal. For instance, travel-related cases and secondary outbreak

centers could warp the infection pattern. Although we used imprecise data, the quality

is retrospectively better than at the time of the actual investigations. In those days, only

a small fraction of the cases had been registered in the database of the Robert Koch

Institute. Thus, we can only speculate, at which time our approach would have been able

to yield reliable estimates.

We limited our source detection analysis to Germany on the level of administrative dis-

tricts, because the infection counts are typically aggregated at this resolution due to

privacy protection. On the one hand, the application neglected international trade, on

the other hand the resolution is too coarse which makes the precise localization of the

sprout-producing farm impossible. A possible extension of the analysis would be the con-

struction of a multi-scale network that captures also the inner-district food distribution

and international food supply routes.

The gravity law turned out to be a very flexible model for the description of underlying food

shipping networks if no knowledge the transmission vehicle is available. An alternative
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Rank District Corr. Rank District Corr.

1 Rendsburg-Eckernförde 0.4648 51 Parchim 0.4132
2 Steinburg 0.4636 52 Güstrow 0.4132
3 Segeberg 0.4605 53 Prignitz 0.4090
4 Rotenburg (Wümme) 0.4591 54 Vechta 0.4081
5 Dithmarschen 0.4569 55 Schaumburg 0.4079
6 Harburg 0.4563 56 Wolfsburg 0.4078
7 Neumünster 0.4543 57 Peine 0.4056
8 Stade 0.4542 58 Minden-Lübbecke 0.4051
9 Stormarn 0.4535 59 Hameln-Pyrmont 0.4041
10 Pinneberg 0.4531 60 Hildesheim 0.4041
11 Cuxhaven 0.4531 61 Bad Doberan 0.4038
12 Kiel 0.4524 62 Rostock 0.4035
13 Bremerhaven 0.4518 63 Braunschweig 0.4031
14 Bremen 0.4489 64 Müritz 0.4007
15 Verden 0.4488 65 Nordvorpommern 0.3997
16 Heidekreis 0.4469 66 Emsland 0.3996
17 Osterholz 0.4465 67 Rügen 0.3976
18 Plön 0.4465 68 Stralsund 0.3962
19 Hamburg 0.4460 69 Stendal 0.3958
20 Schleswig-Flensburg 0.4455 70 Osnabrück 0.3939
21 Flensburg 0.4447 71 Herford 0.3938
22 Herzogtum Lauenburg 0.4427 72 Helmstedt 0.3913
23 Lübeck 0.4421 73 Salzgitter 0.3913
24 Ostholstein 0.4408 74 Demmin 0.3891
25 Nordfriesland 0.4402 75 Greifswald 0.3867
26 Delmenhorst 0.4402 76 Osnabrück 0.3864
27 Lüneburg 0.4376 77 Ostprignitz-Ruppin 0.3864
28 Wesermarsch 0.4372 78 Wolfenbüttel 0.3862
29 Diepholz 0.4327 79 Ostvorpommern 0.3849
30 Uelzen 0.4327 80 Lippe 0.3845
31 Celle 0.4323 81 Uecker-Randow 0.3836
32 Region Hannover 0.4309 82 Börde 0.3810
33 Oldenburg 0.4291 83 Holzminden 0.3808
34 Nienburg (Weser) 0.4283 84 Havelland 0.3778
35 Nordwestmecklenburg 0.4282 85 Goslar 0.3776
36 Oldenburg (Oldenburg) 0.4276 86 Uckermark 0.3768
37 Wittmund 0.4275 87 Grafschaft Bentheim 0.3756
38 Wilhelmshaven 0.4254 88 Brandenburg an der Havel 0.3698
39 Ludwigslust 0.4254 89 Bielefeld 0.3695
40 Friesland 0.4247 90 Neubrandenburg 0.3695
41 Lüchow-Dannenberg 0.4246 91 Northeim 0.3650
42 Ammerland 0.4244 92 Magdeburg 0.3637
43 Aurich 0.4218 93 Mecklenburg-Strelitz 0.3633
44 Schwerin 0.4218 94 Oberhavel 0.3596
45 Wismar 0.4212 95 Jerichower Land 0.3583
46 Gifhorn 0.4202 96 Potsdam-Mittelmark 0.3562
47 Leer 0.4182 97 Gütersloh 0.3533
48 Cloppenburg 0.4168 98 Steinfurt 0.3532
49 Altmarkkreis Salzwedel 0.4157 99 Berlin 0.3516
50 Emden 0.4143 100 Potsdam 0.3457

Table 4.2: Effective distance and arrival time analysis. For each potential district k0 as
outbreak origin we computed the Pearson correlation of arrival time tX (k) and effective
distance deff(k, k0) and ranked all districts with respect to correlation magnitude. The
actual outbreak origin Uelzen is ranked at position 30.
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proxy could be also the radiation model capturing general mobility pattern (Simini et al.,

2012). Certainly, the source detection results could be improved by incorporation of

information gained from sample testings and tracings along the food-shipping chain in

the specification of the network definition. In this context, one has to account for the

risk-oriented nature of sampling the network data.

However, the explorative approach can give only deterministic estimation results. The

integration in a statistical framework would make it possible to assign uncertainty to

the estimates. In a Bayesian framework, it would be further possible to employ prior

knowledge as well as additional information to improve the identification of the outbreak

epicenter (Manitz and Kneib, 2013).

Altogether, we understand our explorative approach as useful supplement to the existing

framework of outbreak investigation methods. The results could lead to more spatially

targeted sample testing, and could therefore improve the efficiency of the outbreak in-

vestigations. Furthermore, our approach could support the selection of contradictory

information. The key advantage of our approach in comparison to conventional outbreak

investigation methods is the minimal information needed. It requires only data about

snapshots of the spatial infection pattern and plausible assumptions on the food supply

chain.

4.5 Simulation Study using fbSIR Model Realizations

In order to quantify the robustness and investigate the fidelity of the deterministic source

detection approach in the context of food-borne diseases we used the dynamic fbSIR

model, which we developed for this purpose (see Chapter 3, Manitz et al., 2014).

We ran the fbSIR model with parameter specifications for various scenarios (see Table 3.1,

see Section 3.4.2) that result in different realistic food-borne disease pattern. Examples

of fbSIR model realizations and the distributions of epidemic characteristics exhibit the

large diversity including extreme situations (see Section 3.4). Each German district is

considered as potential outbreak location, so that 9 · 412 = 3, 708 epidemics were simu-

lated.

4.5.1 Effective Distance Concentricity

We computed the rank during the source detection using the concentricity score min-

imization at each time point. We summarized the simulation results by computing the

proportion of simulated epidemics, where our source detection method was able to rank

the correct outbreak source in the top ten (see Figure 4.9).

In all scenarios, we observe a steep increase in the proportion of highly ranked source
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Figure 4.9: Proportion of top ten rankings during source detection depending on

time of the simulated epidemic. fbSIR simulation model realizations distinguish be-
tween (A) transmission vehicles cucumber, spinach and sprouts, (B) diffusion rates
ν ∈ {0.1, 1, 10}, and (C) infectiousness ρ ∈ {0.7, 1.5, 5} (see Table 3.1). The basis for
each time point and scenario is 412 epidemics simulated with the fbSIR model, one for
each German districts as source.

locations with peaks close to 100% (mean 96.5%, range from 79.1% to 100%). During the

progress of the outbreak (after 3.4 outbreak weeks on average), the proportion of correctly

high ranked outbreak sources is decreasing, but the corresponding curves have specific

patterns depending on the given scenario. For the different studied transmission vehicles,

the steepest decrease can be observed for contaminated cucumbers (t1). Due to the

high amount of available food per capita, the susceptible individuals in the population

population get rapidly infected and recovered, so that the data basis for source detection

fades out. A less steep decrease in the proportion of top ten rankings can be noticed for

spinach (T2) and sprouts (T3). For the latter, the source for 24% of the simulated epidemics

can still be reconstructed after forty outbreak weeks. Diffusion constant and therefore

swiftness of the contaminated food dispersal greatly influences the performance of our

epicenter reconstruction approach. However, for very fast epidemics (D3) the correct

source detection fails already after 8 weeks. This is caused by the high speed of the

transmission vehicle dispersal, which results in an equipartition of contaminated food,

so that reported incidences are very similar for all districts. In contrast, for very slow

contaminated food dispersal (D1), the proportion of correct top ten detection converges at

a high level of about 67%. For varying infectiousness, we can notice a similar behavior as

for different transmission vehicles. The epidemic vanishes fast for high infectiousness (I3),

so that source detection becomes difficult. For lower infectiousness (I2), the epicenter

reconstruction performs well during the first 14 to 20 outbreak weeks and only then

undercuts 50% of the simulated epidemics with a successful high ranking of the correct

sources.
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Figure 4.10: Rank of correlations between effective distance and arrival time for different
fbSIR simulation model realizations as specified in Table 3.1 (see Section 3.4.2). Each
boxplot depicts a scenario: Transmission vehicle sprouts (T1), spinach (T2), cucumbers
(T3); slow (D1), medium (D2), and fast (D3) dispersal; low (I1), average (I2), and high (I3)
infectiousness. For each scenario, we simulated 412 epidemics with all German districts
as source.

4.5.2 Arrival Time Correlation

Furthermore, we examine the possibility to generalize the effective distance as predictor

for arrival times during food-borne disease outbreaks. We simulate again 412 different

outbreaks in each of the German districts for each of the scenarios described in Table 3.1

(see Section 3.4.2). We determine the corresponding arrival time and compute the rank

in the correlations with effective distance from all other nodes.

The distributions for the ranks exhibit a strong left-skew for all scenarios (see Fig-

ure 4.10). For the different transmission vehicles spouts (T1), spinach (T2), and cucumbers

(T3) 85.0%, 60.2%, and 7.5% of the simulated epidemics can be detected correctly (rank

equals one). In the worst source location reconstructions, the correct source is ranked

9th, 25th, and 75th, respectively. For divergent diffusion constant, the correct source

detection can be observed for 77.0%, 60.2%, and 9.2% of the epidemics with slow (D1),

medium (D2), and fast (D3) dispersal (ν ∈ {0.1, 1, 10}). The corresponding ranks spread

up to 6, 25, and 67, respectively. The proportions of correct detection for epidemics with

varying infectiousness are 83.5%, 60.2%, and 11.2% (ρ ∈ {0.7, 1.5, 5}). The observed ranks

reach their maximum at 12, 25 and 69 for scenarios with low (I1), average (I2) and high

(I3) infectiousness, respectively.



Conclusions 97

4.5.3 Summary

Altogether, we were able to show that the deterministic source detection using effective

network distance can be generalized to various food-borne disease outbreaks including

extreme situations. On average, our approach for origin reconstruction is able to rank

the correct source within the top ten until the eighth week of the outbreak in more than

50% of the simulated epidemics. Later, the detection performance decreases, probably

because the epidemics already vanish in many scenarios. If the complete temporally

evolving pattern of the food-borne disease outbreak is given, we can demonstrate satis-

fying performance of the correlation-based source estimation with detection rates over

60.2% for common scenarios.

4.6 Conclusions

In this chapter, we introduced a fast and efficient approach for the identification of the

origin during food-borne disease outbreaks. We analyzed effective distance of disease

pattern using a concentricity score and correlation with arrival time. We first illustrated

the source detection approach by the well-known example of 1854 cholera outbreak in

Soho, London. Households with associated deaths cases were linked with available water

pumps in a bipartite network according to the walking distance in the street network.

The correct outbreak source in Broad street could be clearly identified. Furthermore,

we showed the applicability of our explorative approach to modern outbreaks using the

case study of the 2011 EHEC/HUS outbreak in Germany. Based on plausible assump-

tions on the structure of the German food distribution network, our method was able to

identify the outbreak origin district in close proximity to the actual outbreak location.

Furthermore, we used the newly developed general dynamic model for food-borne dis-

ease to perform extensive simulation studies. In a variety of food-borne disease outbreak

scenarios satisfying detection performance could be shown.

The results of the applications and simulation study provided evidence that our approach

to be flexible and robust. As it is fast and independent of possibly biased patient-interview

data, it could be an useful and timely complement to conventional time-consuming out-

break investigation methods. Another clear advantage of the method is its robust per-

formance on the basis of limited case report data and plausible topological assumptions

concerning the underlying food distribution network. The source detection approach can

be based on a wide variety of network definitions and topologies, including directed

and bipartite networks. Basically, the network could also capture a combination of food

transportation routes as well as human mobility pattern.

However, the precision of the source estimate are pre-determined by the underlying net-

work definition, so that too coarse definitions may lack accuracy, while a fine resolutions
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requires a lot of knowledge about the underlying dispersal network. Furthermore, the

approach can be only applied if spatial infection data is available. In our analyses, the

available data already included quality assessment and we do not had to cope with the

corresponding component of the reporting delay. In general, retrospective predictions are

a lot easier. A very useful extension of the approach would be the integration into a

statistical framework, which opens the possibility to assign estimation uncertainty and

may consider also uncertainty of the network definition (Manitz and Kneib, 2013).

As our method is structurally quite general and just derived from topological features of

the underlying distribution networks, we believe that our approach could be adapted and

applied to a variety of contagion phenomena including human-to-human transmissible dis-

eases, and disease dynamics on individual based contact networks and human-mediated

bioinvasion processes. In the next chapter, we show the applicability to general spreading

processes using the example of delay propagation in railway networks.
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Many spreading phenomena, e.g., the transmission of diseases and the propagation of

delays in railway networks can be modeled as processes on networks. The aim of source

detection is to find the starting point of such a propagation process from data about

the observed event counts at the network nodes. With the knowledge of the origin of

a propagation process, one is able to truly combat further spreading. Additionally, the

origin is the basis for the prediction of future pattern of the propagation process.

99



100 Chapter 5. Source Delays of Trains in Railway Networks

Therefore, source detection plays a crucial role in the problem assessment in many

research fields. Examples are numerous: reconstruction of the epicenter of infectious

disease outbreaks (Fioriti and Chinnici, 2012; Manitz et al., 2014; Pinto et al., 2012, see

Chapter 4). initial failure detection during blackouts in power grids (Albert et al., 2004;

Crucitti et al., 2004), the origin of computer virus attacks in the Internet (Shah and Zaman,

2012), the source of invasive species in ecology (Stevenson et al., 2012), the beginning of

rumor or misinformation in social networks (Comin and da Fontoura Costa, 2011), but also

the the onset of delays in public transportation systems (Büker and Seybold, 2012).

In this context, modern propagation patterns are highly complex and irregular. They can

be described best by processes on complex networks. Therefore, we enhance the network-

based approach for source detection by Manitz et al. (2014), which has been originally

developed to reconstruct the epicenter of food-borne disease outbreaks (see Chapter 4).

As a many-faceted application, we chose delay propagation in railway networks. Based

on a well-defined network, the application benefits from already existing models for de-

lay propagation. Thus, the spreading of delays can be easily simulated and various

complex diffusion patterns from different mimicked propagation mechanisms. Hence, de-

lay propagation on railway networks is a good candidate example to test whether the

network-based approach from Manitz et al. (2014) can be applied for source detection

problems other than the spreading of food-borne diseases.

Based on a public transportation network (PTN) with a line plan, a pre-defined timetable

is executed. Exterior influences such as weather conditions, strikes, late staff arrival, main-

tenance or construction work introduce disturbance in form of delays into the timetable.

Those initial delays are then propagated, because of dependencies between the trains due

to passenger transfers or track occupation of subsequent trains. The decisions which pas-

senger transfers are supposed to be maintained and the sequence of trains running along

a track are made according to a prescribed delay management strategy. For instance,

a simple delay management strategy would be to keep all transfers and to maintain

the order of the trains as prescribed in the timetable. However, this so-called "all-wait"

strategy causes massive spreading of delays in the system. More sophisticated delay

management strategies allow to remove transfers from the delayed trains and to switch

train sequence in order to decrease the impact of delays. Using a sophisticated software

for timetable optimization (Goerigk and Schöbel, 2011), we are able to generate various

delay management strategies which mimic diverse propagation mechanisms and lead to

different interesting spreading patterns.

Beyond the application of an efficient delay management, a successful source detection

approach can be a valuable tool to find the origin of a specific delay pattern. First, it

is important to distinguish between initial and propagated delays. In case of compen-

satory damages, legal responsibility is delegated to the causative network operator or

the specific railway company. Furthermore, if the source is known, it can be inspected if
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the delay cause can be dissolved or avoided. In case of an unavoidable long-term dis-

turbance, the delay propagation process can be predicted for future time periods. Since

public transportation systems usually have a well-defined commencement of business,

the times could be adapted according to the predictions.

Currently, the network-theoretic analysis of railway systems focuses on empirical in-

vestigation of network topology such as small-world characteristics (Li and Cai, 2007;

Sen et al., 2003). Other transportation networks also exhibit such properties. Ex-

amples are urban subway systems (Angeloudis and Fisk, 2006; Seaton and Hackett,

2004), bus and tramway networks (Sienkiewicz and Holyst, 2005), complete city systems

(von Ferber et al., 2009), as well as worldwide air transportation networks (Guimera et al.,

2005) or the global cargo shipping (Kaluza et al., 2010).

5.1 Optimization in Public Transportation Networks

Mathematical optimization models in public transportation are solved with the aim to

determine an efficient execution of such a system. Efficient transportation systems are

important because of social, economic and ecological reasons (Schöbel, 2007b). First,

the public transportation systems is usually operated by a company, which faces eco-

nomic competition. An efficient system attracts more costumers and thus more tickets can

be sold. Second, more passengers using public transportation systems, reduce individ-

ual traffic and therewith environmental pollution, noise and traffic. Furthermore, social

reasons require the accessibility of public transportation as well in sparsely inhabited

regions.

In this section, we review optimization problems for line planning, timetabling and de-

lay management in order to obtain a basic setting for the simulation of delay prop-

agation. Related topics of optimization in PTNs are concerned for instance with the

network design or localization of stops (Nickel et al., 2001; Schöbel, 2007b), tariff plan-

ning or determining economic and acceptable ticket prices (e.g., Babel and Kellerer, 2003;

Hamacher and Schöbel, 2004), as well as vehicle scheduling and crew management (e.g.,

Törnquist, 2006).

5.1.1 The Basic Setting

In order to apply our method for source detection to delays on railway networks, we

simulate delays on the underlying PTN. The spreading of the delays in the network is

governed by a line concept, i.e. paths of the train lines, and a corresponding timetable.

Both are obtained by solving sequential mathematical optimization models, which we

outline and state formally in the following, whereas for a deeper insight into the problems,

the data required and the data sources we direct to the respective literature.
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Basic Definitions and Notation

First, we formally define public transportation networks, capturing the network structure

of the system (Michaelis and Schöbel, 2009; Schöbel, 2007b).

Definition 5.1 (Public Transportation Network): A public transportation network (PTN)

is an undirected graph G = (K, L) consisting of nodes K representing stations or stops,

which are connected by links L. A link between l and k indicates that there exists a

track between the corresponding stations with a scheduled train, so that no other station

is passed.

Hence, the railway network naturally consists of one component. We describe examples

for real-world PTNs similar to the German high-speed railway system and the Athens

metro in Section 5.4.1 and 5.5.1, respectively. For our purposes, the PTN is assumed to

be fixed.

It would also be possible to choose alternative PTN definitions. For instance, two sta-

tions are directly linked, if a line is connecting them, so that passengers do not have to

change trains to commute between them (e.g., Li and Cai, 2007; Sen et al., 2003). How-

ever, this representation seems to be adequate for investigating network properties such

as the small-world effect, but not well-suited for our purposes (Seaton and Hackett, 2004;

Sienkiewicz and Holyst, 2005; von Ferber et al., 2009).

Additionally, we assume the total costumer demand on the PTN to be known. This can

be captured by a so called origin-destination (OD)-matrix F = (Fkl)k,l∈K (as already

introduced in Section 2.4.3). In the context of optimization in public transportation, we

specifically refer by a matrix element Fkl to "the number of passengers who want to travel

from a origin to a destination", here from l to k , within a certain time interval (Schöbel,

2012).

The software LinTim does not only provide the network data but also all optimization

problems explained in the subsequent sections are solved within this framework.

Line Planning

The line planning problem consists of assigning frequencies to the lines of the line pool

such that the link frequency requirements are met and the costs of the line concept (lines

with frequency higher than 0) are considered. Suppose we have given line pool P0, which

is a set of paths on G representing possible lines to be operated on the network. For

each path a cost value c : P0 → R+ is associated. Even more, a lower and upper bound,

f min
kl and f max

kl , on the sum of frequencies of all lines on every link from l to k is given.

The meaning of the lower and upper bound can be seen as follows: Given an OD-matrix

the lower bound on the frequency ensures that every OD-pair is able to travel on its

shortest path in the PTN. Thus, it states the minimal vehicle frequency to ensure the
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feasibility of traffic loads on the links. An algorithmic approximation of the traffic loads

is given by Schöbel (2007b). The upper bound represents some physical track occupation

restriction to maintain the load within acceptance range. A line concept (P, f ) consists of

a subset P ⊆ P0 together with assigned frequencies f : P → N. We call a line concept

feasible, if the lower and upper bound on the sum of the frequencies of all lines passing

one link is satisfied. Then, the optimization problem consists in finding a feasible line

concept (P, f ) minimizing the operational costs.

For an elaborate overview on the line planning problem and further insight see for in-

stance Schöbel (2012).

Event-Activity-Network

Having the PTN and the line concept, the data is transformed to an event-activity-network

(EAN; see Figure 5.1 for an example), which is required to compute a feasible time table

in the next step.

Definition 5.2 (Event-Activity-Network): An event-activity-network is a network (E , A),

which consists of events E , which are connected by activities A.

The event nodes E represent the arrivals Earr and departures Edep of all trains at all stations,

i.e.,

E = Earr ∪ Edep.

The arcs connecting nodes display activities A, which describe the driving Adrive and

waiting Await of trains, the changing of passengers Achange and the sequencing of trains

on the actual tracks Aheadway, also called headways, i.e.

A = Adrive ∪ Await ∪ Achange ∪ Aheadway.

For further reading, we refer for instance to Nachtigall (1998); Schöbel (2007a);

Serafini and Ukovich (1989).

Timetabling

A time table is a determined plan on which a company operates its schedule. The litera-

ture usually considers tow rather different problems: periodic and aperiodic timetabling.

The construction of periodic time tables is a fairly complex problem, which is usually

solved by heuristics. Based on an EAN, a timetable is generated, which is given by the

arrival and departure times of all trains at all stations. Thus, all nodes A in an EAN

are assigned to a point of time (Π : A → N). Given the OD-matrix and a line concept,

the number of changing passengers can be computed. Then, weights can be assigned

on the activities which represent the amount of passengers using an activity according
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depl1,k0 arrl1,k1 depl1,k1

arrl1,k2

depl2,k3
arrl2,k1 depl2,k1 arrl2,k4

drive wait drive

drive wait drive

changeheadway

Figure 5.1: Illustration of an Event-Activity-Network (EAN). Nodes represent events
capturing arrivals and departures of trains at specific stations. Links correspond to ac-
tivities such as waiting and driving of trains, track headways, or changing of passengers.

to the OD-matrix. Additionally, lower and upper bounds on the duration of each activity

are given. The aim in computing a timetable is to find a feasible solution of a function

considering the total travel time of all passengers, and sometimes also the costs of oper-

ating the timetable. See Goerigk and Schöbel (2011) for an elaborate discussion of the

timetabling problem and the applied solving method.

However, usually there exist external and internal unexpected delays which lead to a

failure of the timetable, which we discuss next.

5.1.2 Train Delays in Railway Networks

Unpreventable events lead to delays in the timetable which raise the need to deal with

them. Usually two different types of delays are distinguished: source and propagated

delays.

Source delays are also called initial delays. These delays occur as a result from

exterior influences. Different reasons are weather conditions, strikes, late arrival of staff,

maintenance, accidents, technical failures, construction work on the infrastructure and

other similar exterior causes. In Section 5.2, we adapt the source detection approach

from Section 4.2 to localize this type of delays.

The other type of delays are so called propagated delays. Obviously, the malfunction of

the ride of some trains can affect other trains as well. We consider train dependencies

of two different kinds. First, there are passengers who want to transfer from one train to

another to reach their destination. In case the first train arrives late at a station, where

passengers want to transfer to another train, the operator has to decide if the connecting

train should wait for transferring passengers or depart on time. If a train waits for

transferring passengers from a delayed feeder train, the delay is propagated from the first
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to the second train. Otherwise, the delay is not propagated, but it is caused inconvenience

for the transferring passengers, which miss their connection. Second, delays are spread

because of limited track capacity, also called headways. The timetable specifies the

sequence in which trains pass a track. If a train arrives late at the beginning of a track,

it has to be decided, if other trains should overtake or not. Maintaining the sequence

as planned results in a knock-on delay for the other trains. Switching the sequence

might increase the delay of the first train even more. Other dependencies such as vehicle

schedules or crew schedules are important in air traffic, but are neglected in this study.

The dependencies between the trains can be formalized using the EAN as exemplified in

Figure 5.1: Suppose a train from line l1 is connected to train from line l2 at station k1 by

a change, i.e. there are passengers who want to transfer from line l1 to line l2 at station

k1. In the following we will write "line" instead of "a train from line". If line l1 arrives late

at station k1 but the operator wants the transferring passengers to be able to reach their

second line l2 the delay jumps over to line l2. Naturally the operator can decide to have

the second train leaving station k1 on time. The second type of propagated delays are

spread because of limited track capacity. Suppose the incoming line l1 from k0 to k1 and

l2 from k3 to k1 share a common track. Since there exists only one track those two lines

pass the track ordered in time on this track. A sequence might be first line l1 and after

line l1 has left the common track, line l2 can enter that track. If line l1 is delayed, but the

sequence on this track has to be maintained, the delay is propagated to line l2.

5.1.3 Delay Management

Train delays can never be entirely avoided, but their impact has to be kept to a strict

minimum. In general, this poses problems to the operator of a railway system as, conse-

quently, it has to be decided how to deal with delays in order to decrease their impact.

This includes the decisions:

◦ if "connecting trains should wait for delayed feeder trains or if they should depart

on time", and

◦ in which sequence trains can leave or enter a station, i.e. which train should go

first if two trains arrive at the same track at the same time (Schöbel, 2009).

The decisions are usually taken by consideration of the passengers perspective. To keep

the inconvenience for the customers as small as possible, the function to be minimized

includes the weighted sum of all delays over all passengers and a penalty term for the total

number of missed connections (Schöbel, 2007b). Thus, given a delay situation, a delay

management problem is solved, which results in an adapted new, so called perturbed

timetable.
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Strategies for Delay Management

Practitioners usually use strategies based on fixed waiting time rules, e.g., a train waits

for transferring passengers from a delayed train only if the delay is below a fixed time.

Those rules are easy to remember but there are more sophisticated heuristics. In the

following, we describe some of these heuristics to determine how delays propagate.

All-Wait The "all-wait" heuristic basically shifts the timetable to a later time point.

Still, the timetable is executed in the same order. All transfers are maintained, i.e. all

connecting trains wait for transferring passengers and the sequence of trains in case of

track capacity constraints is left as planned.

Propagate According to some value max_wait the transfers are maintained as long

as the second train does not have to wait more than max_wait minutes for passengers

transferring from the first train. If the specific delay exceeds max_wait, the corresponding

passenger transfer is dropped. The sequence of trains is left as planned. This heuristic is

also known as fixed waiting time rules strategy and is used for instance in the German

high-speed railway system.

First Scheduled First Served (FSFS) The "FSFS" delay management strategy redeter-

mines which passenger transfers are maintained, while the sequence of trains remains as

planned.

First Rescheduled First Served (FRFS) Given the specific delay pattern, a new

timetable is obtained by solving the delay management problem in two steps. The first

problem does not consider track capacity constraints at all and only contains the de-

cisions about transfers. The obtained solution produces the train sequences, which are

then fixed in the second problem. Since it is possible that trains do not ensure security

distances, additionally constraints requiring a minimal distance between trains are in-

troduced into the second problem. Then, the problem is solved again with regard to the

passenger transfers.

Early-Fix Also in this heuristic, the delay management problem is solved in two steps,

where the first step is equal to the first step of "FRFS". However, beside the train

sequences also the obtained transfers are set to be fixed for the second problem. Thus,

all decisions are taken in the first step, while the precise timetable is obtained from the

second step.
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Priority The proportion prio_percentage of most important transfers (according to pas-

senger weights) is set to be maintained. Furthermore, the sequence of trains is left as

planned. Then, the remaining problem only consists in determining the non-fixed transfer

decisions.

Prio-Repair The prior-repair strategy solves the delay management problem in two

steps. Similar to "priority", the proportion prio_percentage of most important transfers

(according to passenger weights) is fixed. The track capacity constraints are not

considered at all. The obtained solution specifies the train sequences for the second

problem. Its solution then decides on all changes.

For an extensive discussion of the delay management problem see Schöbel (2001),

Schachtebeck and Schöbel (2010) and Schachtebeck (2010), where both exact solution

methods and heuristics are developed and their behavior is discussed.

5.2 Source Detection of Train Delays in Railway Systems

For the application of the source detection approach, we assume a PTN, a line concept,

and a timetable to be given. Note, that the OD-matrix is not necessarily assumed to be

known, so that the network link weights need to be estimated.

In the following, we introduce the network definition and the enhancement of the method

for localization of source delays.

5.2.1 Definition of Railway Systems as Networks

As already introduced in Section 5.1.1, the PTN is represented by a network G = (K, L).

The specific link weights can be determined by the relative link flux fkl = Fkl/
∑

k ′,l′∈K Fk ′l′

from node l to k , which is the basis for calculating the transition probability pkl, i.e.

pkl =
fkl

nl

, for all k, l ∈ K,

where nl =
∑

k fkl is the aggregated flux of all outgoing links.

For the simple case of an unweighted network structure, weighted link flux is omitted,

i.e. the network can be defined by

f
(unw)
kl =

{
1, if (k, l) ∈ L,

0, otherwise.
(5.1)

For a weighted network definition, there are various ways to specify the link flux, which
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quantify the strength of the connection. Usually, it is captured by the amount of traffic

on the particular link. In the context of railway systems, it is a natural choice to use train

frequency zkl (from the line frequencies obtained by the timetable). Thus, it results the

definition for train-weighted network

f
(train)
kl =

{
zkl, if (k, l) ∈ L,

0, otherwise.
(5.2)

The strength of links can also be quantified via passenger traffic skl (from a passenger

routing, also called traffic loads). Thus, the passenger-weighted network is defined by

f
(pass)
kl =

{
skl, if (k, l) ∈ L,

0, otherwise.
(5.3)

Based on the different definitions of the railways network, we analyze how the perfor-

mance of the source detection approach is influenced by the consideration of additional

knowledge (see Section 5.2.1).

5.2.2 Adaption of the Source Detection Approach

We enhance the source detection method by Manitz et al. (2014, see Chapter 4), which

was originally suggested for the reconstruction of infectious diseases breaking out from

an epicenter. We generalize the approach for the application on universal network-based

propagation processes, so that it can be applied to the spreading of delays in railway

systems (Manitz et al., 2014).

The approach requires an underlying network, which can be specified by a network

G = (K, L) consisting of a collection of nodes k ∈ K, which are connected by direct links

from l to k between them. It consists of only one component, so that any two nodes are

connected via possibly undirected links in the existing network. When modeling food-

borne infectious diseases, the underlying network represents the transportation routes of

contaminated food.

The effective distance deff(k, l) is defined for a specific path γkl ∈ Γkl from l to k along the

nodes Kγkl
= {k = kn(γkl), . . . , k0 = l} and links Lγkl

= {(k = kn(γkl), kn(γkl)−1), . . . , (k1, k0 =

l)} in the network (Brockmann and Helbing, 2013, see Section 4.1.2 for detailed deriva-

tion):

deff(k, l) = min
γkl∈Γkl



n(γkl) −
∑

(ki,ki−1)∈Lγkl

log pkiki−1



 ,

where n(γkl) corresponds to the number of links on the path γkl and pkl to the transition
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probability from node l to k . For the transformation of the irregular diffusion pattern into

a typical concentric spreading circle, the replacement of the classic geodesic distance by

the network-based effective distance is necessary (for detailed derivation see Section 4.2).

Furthermore, we assume a time-dependent stochastic process {Xk (t) : k ∈ K, t ∈ T} with

non-negative integers as state space on the network nodes k ∈ K in a time range t ∈ T,

usually t = 1, . . . , T . Corresponding observations xk (t) ∈ N in each node k are conducted

at different time points t = 1, . . . , T to find sequential pictures of the distribution pattern.

Assuming the effective distance deff, propagation phenomena are spreading in a circular

pattern from the correct origin k0. The focal idea of source reconstruction is testing

different source candidates and examine the concentricity of the observed pattern on a

minimum effective path tree with the candidate k0 as the root. Thus, given an effective

distance definition deff, the source can be reconstructed as the median of the observed

pattern, which is obtained by minimizing the expected distance µX (deff; k0, t) from the

origin k0 to all other network nodes, i.e.

k̂0(t) ∈ arg min
k0∈K0

µX (deff; k0, t). (5.4)

where k̂0(t) is from the set of nodes k0 ∈ K0 for which the expected distance attains the

smallest value, i.e. µX (deff; k̂0, t) = min
k0∈K0

µX (deff; k0, t). Since µX (deff; k0, t) is a continuous

function in deff, this results with probability one in an unique solution.

The expected distance µX (deff; k0, t) can be estimated by the average effective distance

µ̂X (deff; k0, t) from source k0 to all destination nodes k weighted by the observed number

of delays xk (t) in node k until time t. Thus,

µ̂X (deff; k0, t) =
1

Nx (t)

K∑

k=1

xk (t) · deff(k, k0), (5.5)

where Nx (t) =
∑

k xk (t) is the total number of delays in the network at time t.

5.3 Design of Source Detection Performance Evaluation

5.3.1 Research Questions

Here we discuss the research questions, which inspired this work in the first place.

(I) Applicability of Method: Since we assume the mechanism of spreading of infectious

diseases to be similar to the propagation of delays, the source detection method is

assumed to be applicable. Good performance quality would indicate similar under-

lying propagation mechanisms.
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(II) Time Increase: In general the method applies to spreading patterns that break out

in an epicenter and spread through both time and space. As the patterns diversity

increases in time, the methods reliability is expected to decrease. This is a natural

hypothesis as the spreading is assumed to be a stochastic process which includes

probabilistic propagation.

(III) Node Centrality: The reliability of the method is expected to increase for larger

network centrality of the epicenter. Source nodes having high node centrality cause

a large number of propagated delays spreading along various directions through the

network. Hence, detection methods are expected to be more reliable for more central

nodes. Even more, the spreading of delays from a more central node is expected to

result in a more circular pattern which itself allows higher predictiveness.

(IV) Robustness: The robustness of the source detection method can be investigated by

the application to various propagation pattern. It is expected that neither consider-

ation of track occupation in the timetable nor different delay management strategies

have significant influence on the performance quality. Since different delay man-

agement strategies result in different underlying propagation mechanisms, similar

performance would approve the robustness of our source detection approach.

(V) Additional Knowledge: We discussed different ways of defining the railway network

(see Section 5.2.1). In comparison to the unweighted network, we expect the detection

to be more reliable when incorporating information from vehicle or passenger traffic

in the weighted network.

5.3.2 Simulation Scenarios

A scenario consists of a number of simulations that equals to the number of stations in

the PTN. For each simulation, one particular station represents the source of the delays.

In this section, the specific settings used for generating delays and executing the LinTim

model are described.

Basic Setting for Public Transportation

We use a PTN from the optimization software LinTim, which is similar to the German high

speed railway and the Athens metro system (Goerigk et al., 2014). We also use LinTim to

generate the basic setting for delay propagation including an optimized line plan and a

simulated period timetable for four hours (for more detailed description see Section 5.1).

According to the real world observations regarding delays, only the source delays are

generated and fed to the system which itself propagates those delays.
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Generation and Propagation of Train Delays

In this work we concentrate on generating delays that represent static sources in one

station, e.g., construction works or a long time technical failure. Here, the number of

delays is fixed while the actual delay magnitude is randomly determined. Thus, 30 from

all passing trains are delayed by a randomly determined magnitude between 60 and

900 seconds. Fixing the number of delays provides comparability between the different

simulations. The source delays are fed into the system within the first two hours of the

observation period. After deciding about a pre-selected delay management strategy (see

Section 5.1.3), delays spread out through the network for another two hours.

Specification of the Simulation Scenarios

To address all research questions, we run various different scenarios of delay propagation

and source detection.

Research Questions (I–III) For the general investigation of source detection performance

in dependence of time and node centrality in Sections 5.4.2 and 5.5.2, the standard scenario

is used. This scenario considers headways and the simple "propagate" delay management

strategy based on a unweighted network.

Research Question (IV) For analysis of the robustness (see Section 5.4.3), we run sce-

narios with and without consideration of headways and all delay management strategies

as introduced in Section 5.1.3. Here, we use the simple unweighted network structure,

omitting possible link flux weights, because we aim at keeping the complexity of the

analysis at its minimum.

Research Question (V) For the adequate evaluation of improvement through integration

of additional knowledge (see Section 5.4.4), we simulated delay pattern with delay man-

agement "priority", while the proportion of secured passenger transfers is varied between

0% and 100%. For source detection, we constructed unweighted, train- and passenger-

weighted networks according to Equations (5.1), (5.2), and (5.3), respectively.

Observation of the Propagation Pattern

The data for delay source reconstruction is gathered from the LinTim simulations as

follows:

We conduct observations of the propagated delays at ten equally distributed time points

during the observation period of four hours to find sequential pictures of the propagation
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pattern. Each of the counts gives a snapshot of a delay dispersal, while the sequence of

the pictures depicts the spreading process in space and time.

Every time a train arrives or departs late at a station, a delay occurrence is counted for

that station. Note, that arrival and departure of a delayed train are both counted as a

delay event for the corresponding station. Then, the delay propagation is captured in

the following way. At certain points in time the number of occurred delays xk (t) of every

station k ∈ K is evaluated. This gives sequential pictures of the delay spread. The source

detection method can be applied to the sequence of pictures and, thus, gives a sequence

of reconstructed sources.

5.3.3 Performance Evaluation

The performance is quantified using three different performance measures: probability of

correct detection, rank of correct detection and shortest distance to correct detection.

Probability of Correct Detection

The main concern of source detection performance is the correct reconstruction of the

source. Thus, we quantify source detection performance by probability of correct de-

tection, which is given by the relative number of correct source detections. A higher

probability of detection indicates a better performance. For comparison, we also com-

puted the probability of finding the correct source by random guessing among the nodes

at which there is at least one delay which is given as the averaged inverse node number

with delay observation larger than zero.

Rank of Correct Source

Furthermore, we examine the rank of the correct source node. To obtain the source detec-

tion rank, we order all source candidates k0 according to their average effective distance

µ̂X (deff; k0, t) (see Equation (5.5)). Obviously, a low ranking means good performance, while

a rank of one is equal to correct detection.

Distance to Correct Detection

Finally, we study the distance to correct detection, which we define as the distance to

the true source node on the network. More precisely, we find the shortest path from the

estimated source k̂0(t) to the correct source node k0(t) and aggregate the track lengths

(in km) of the links on the path. The lower the distance to correct detection, the better

the performance of source detection. A distance of 0km means, that the source was

successfully reconstructed.
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Statistical Model Analysis

For profound performance analysis, we fit a statistical model, which simultaneously

analyzes the probability of detection and the distance to the node of correct detection in

dependence of the covariates time and source node centrality.

Since distance is a continuous positive variable with left-skewed distribution, we consider

the corresponding observations yi, i = 1, 2, . . . , n, to be Gamma distributed, i.e.

yi|µi, νi ∼ Gamma(µi, σ ), i = 1, 2, . . . , n

where µi > 0 is the expected distance and σ > 0 describes the standard deviation.

Usually, the Gamma distribution has positive support and is used to model waiting times

and other left-skewed responses.

We want to treat observed distances with length zero, i.e. correct detection, as a special

case. Thus, the zero-adjusted Gamma distribution should be used. Then, the probability

density function fdens(yi|πi, µi, σ ) is conditional on the parameters πi, µi, and σ corre-

sponding to probability of detection, expected detection distance, and standard deviation,

respectively.

fdens(yi|πi, µi, σ ) =

{
πi , if yi = 0

(1 − πi)fGamma(yi|µi, σ ) , otherwise.

The specific data structure can be captured by a Generalized Additive Model for Lo-

cation, Shape and Scale (GAMLSS; Rigby and Stasinopoulos, 2005). Beside the mean

expectation it is also able to model effects for shape, location and scale. Since GAMLSS

belongs to the semi-parametric regression-type models, the covariates can be modeled

non-parametrically to capture flexible non-linear effects, i.e.

logit(πi) = βπ + sπ1(ti) + sπ2(ci(k0)),

log(µi) = βµ + sµ1(ti) + sµ2(ci(k0)),

where the parameter βπ and βµ are the intercepts for each of the submodels. Furthermore,

sπ1, sπ2, sµ1 and sµ2 are non-linear effects approximated by P-splines of the covariates time

ti ∈ T and source node centrality ci(k0), k0 ∈ K0, (Eilers and Marx, 1996). The covariates

are specified by the predefined research questions, so that model selection is redundant.

The model is fitted using the R package gamlss (Stasinopoulos and Rigby, 2007).
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5.4 Detection of Source Delays in the German Railway

System

We first use a PTN from the optimization software LinTim, which is similar to the German

high speed railway system (Goerigk et al., 2014).

5.4.1 Characterization of the Network and Available Data

For a better understanding of the given PTN structure (see Figure 5.2), we discuss a

few network characteristics including connectivity, paths and secondary information (see

Section 2.3 for an introduction to descriptive characterization of networks) based on the

simple unweighted railway network as defined in Equation (5.1). The PTN consists of

K = 319 nodes connected by 446 links, which results in a very low link density of 0.009,

i.e. only about 1% of all possible links in a fully connected network are present.

The average link number to other stations is 2.8 and therefore similar to city trans-

portation networks, where the average node degree ranges between 2 and 2.4 for world

subway networks (Angeloudis and Fisk, 2006), between 2.5 and 3.1 for Polish bus and

tramway systems (Sienkiewicz and Holyst, 2005), or from 2.2 to 3.7 in world city net-

(0.000252,0.000313]

(0.000313,0.000373]

(0.000373,0.000434]

(0.000434,0.000495]

(0.000191,0.000252]

Figure 5.2: German high speed railway network. Nodes are color-coded according
to closeness centrality cC (k) and positioned using layout by Kamada and Kawai (1989).
Network data bases on PTN, which is obtained from the optimization software LinTim
(see Goerigk et al., 2014).
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works (von Ferber et al., 2009). In our PTN, the majority of the stations are stops on a

line (median is 2). The degree distribution is left-skewed, so that there are a few stations

of high importance with a large number of links in various directions. Important hubs

are the main stations of Mannheim with maximum degree of 10, as well as Hanover and

Leipzig. A more sophisticated node centrality measure is closeness, which is depicted by

the node color-coding in Figure 5.2. It measures the inverse distance of a node to all

other nodes in the network. It exhibits that stations in the margins of the network have

low closeness centrality within the railway network. These nodes are in particular final

stations and connections to the systems of the neighboring countries. We analyze source

detection performance in dependence of closeness centrality in Section 5.4.2.

The characteristic path length is 9.4, i.e. a passenger needs to pass on average 9.4 stations

to reach to his destination. Thus, the railway connections are efficient in such a way that

the PTN exhibits low average shortest path lengths in comparison to other PTNs. For

example, in different city public transport networks studied by von Ferber et al. (2009),

the mean shortest path length ranges between 6.4 and 52.0 stations. In our PTN, the

longest shortest path, i.e. the diameter, passes along 25 stations. Furthermore, we can

observe low local clustering. The transitivity, i.e. probability for the existence of a third

link to close a triangle, is 0.141.

Secondary information for the network links are obtained from the simulations with Lin-

Tim. These include track length (in km), train frequency and passenger traffic. Track

length range between 0.4km and 379.4km with an average length of 49.3km. Train fre-

quency ranges between 1 and 18 with a median of two trains per link. The passenger

traffic is given as the relative number of passengers routed along a link. On average 0.22%

of the total passengers use a link. The most-used link is used by 1.5% of the passengers.

All measurements have strongly left-skewed distributions and are highly correlated.

Effective Distance for a Railway System

Since geographic and effective distances measure similar things, they exhibit positive

linear correlation (Pearson’s correlation coefficient ρ ∈ [0.837, 0.846], see Figure 5.3).

However, an effective distance of 20 represents a geographic distance between 0km and

800km, so that distance can be understood to be substantially reinterpreted.

The effective distances are defined via different link flux specifications (see Section 5.2.1,

Equations (5.1)-(5.3)) in the same railway network. Hence, it is not surprising that these

distances display very strong associations. The distance based on the unweighted net-

work is highly associated with distances from train- and passenger-weighted networks

(Pearson’s correlation coefficients ρ = 0.98 and ρ = 0.96, respectively). Furthermore,

the link flux measurements for the weighted networks are highly correlated, the resulting

effective distances are almost equal (Pearson’s correlation coefficient ρ = 0.99).
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Figure 5.3: Effective Distance for all possible Origin-Destination Pairs Based on Differ-

ent Network Definitions. Scatterplot matrix shows associations between (A) geographic
distance and the network-based effective distance based on different link weights: (B)
unweighted, (C) train-weighted, and (D) passenger-weighted.

5.4.2 Detection Performance

This first evaluation of the detection performance is based on K = 319 simulations using

the standard scenario, which considers track occupation and the simple delay manage-

ment strategy "propagate". Source detection performance is analyzed in dependence of

time and source node closeness as measurement of centrality (research questions I–III).

Descriptive Evaluation

The results reveal that in 28.2% of the simulations, initial delays were not yet generated

at the first time point, so that source detection cannot be performed (see Figure 5.4). This

proportion decreases to 2.5% at the second time point and vanishes afterwards. At the

third observation time, the correct source can be reconstructed for 70.5% of the pattern,

while random guessing would result in 29.8% correct detections. At the final time point,

the percentage of correct detection decreases to 15.7%, when random guessing would

lead to 3.4% of correct detection. Accordingly, the median rank of correct source remains

at one for the first four time points. At the last time point, the median is at the highest 6
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Figure 5.4: Descriptive Evaluation of Detection Performance on the German Railway

System. Results are based on K = 319 simulations in the standard scenario (with
consideration of track occupation and simple delay management strategy "propagation").
(A) Percentage of correct detection, (B) rank of correct detection, and (C) distance to
correct detection over time.

and the correct source is always ranked below 50, which indicates high performance of

source detection considering the maximum possible rank of K = 319. The mean distance

of correct detection varies from 1.1km in the beginning to 86.0km at the last observation,

which is still less than two links of mean track length. Obviously, the occurrence of very

distant estimations is more likely at the later time points.

Statistical Model Analysis

The influence of time and node centrality (research questions II and III) are analyzed in

more detail by a statistical model (as introduced in Section 5.3.3). The resulting smooth

functions describe the effects of the covariates on the probability for a correct detection
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Figure 5.5: Smooth Terms from Statistical Model Analysis of Detection Performance

on German Railway System. Zero-adjusted Gamma GAMLSS is based on K = 319
simulations in the standard scenario (with consideration of headways and simple delay
management strategy "propagation"). (A) Percentage of correct detection, and (B) distance
to correct detection (in km), if the source is not correctly detected, in dependency of time
and node centrality.

and the detection distance whenever the source detection has failed (see Figure 5.5). The

curves exhibit that the probability of detection decreases over time. At the first time point,

97.1% of the sources are expected to be correctly detected, which decreases over time to

32.1%. The centrality of the source node does not substantially influence the probability

of correct detection. It varies only little around the probability of 50%. However, there

seems to be a slight trend that more central nodes tend to have higher chances for

detection. If the source detection failed, the distance to the true source is modeled in

dependency of time and source node centrality. The detection distance increases with

ongoing propagation of the initially generated delay. However, the distance remains
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small so that at the last observed time point, we expect a distance of about 1.65km. The

source node centrality does not show a substantial effect on the detection distance.

Summary

The good performance suggests the general applicability of the source detection approach

(research question I), which indicates that train delay spreading has similar underlying

propagation mechanism as the transmission of infectious diseases. Furthermore, the re-

sults indicate decreasing performance with increasing time steps (research question II),

which has been approved by the statistical model analysis. The effect of node centrality

is moderate, if regular networks are considered. Therefore, the method seems to show

only a slight influence by source node centrality (research question III).

5.4.3 Source Detection for Different Propagation Processes

In this section, we investigate the performance of source detection for diverse propagation

processes, which result in different patterns of delay spread. It gives insight to the

robustness of the source detection approach (research question IV). First, we investigate

the impact of headway constraints, i.e. minimal distances between trains. Then, we

simulate the propagation of delays with different delay management strategies, which

represent diverse propagation mechanisms.

Consideration of Track Occupation

When the simple delay management strategy "propagate" is used, the performance of

source detection varies in scenarios with or without consideration of track occupation

(see Figure 5.6). Looking at the probability of correct detection, we can observe that the

method is more successful in the scenarios, which do not consider track occupation.

In the beginning of the observation period, our approach (91.7%) performs only slightly

better than random guessing (87.7%). At the second time step, the delays have dispersed

far enough, that our approach performs substantially better than random guessing. From

the third time point, the quality of the detection method exhibits large differences if

track occupation is considered. While the mean rank is equal in the beginning of the

pattern, it diverges until the last time step, so that the mean rank in the simulations

with track occupation (9.15) is more than twice as high as the average in the simulations

without track occupation (3.76). The distance between estimated and correct source also

increases stronger over time if headways are taken into account. However, the mean

distance remains below 90km, so that misspecification lead to estimations in the close

neighborhood.
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Figure 5.6: Comparison of detection performance in simulations w/o security distances

between trains. (A) Percentage of correct detection, (B) rank of correct source, and
(C) distance to correct source over time. Both scenarios use simple delay management
strategy "propagate".

Delay Management Strategies

For the application with different delay management strategies, source detection can be

found to give similar results for various scenarios of delay patterns (see Figure 5.7). The

results show similar trends, while the quantity of correct detections exhibits differences.

With ongoing dispersal the gaps enlarge. E.g., in the beginning of source detection the

proportion of correct detection ranges between 92% and 95% (random guess 87.7%), which

decreases until the observation at time point ten, when the proportions are between 12%

and 24% (random guess 3.6%). On average, the correct source is ranked in the top ten

and the shortest distance to the estimated source is less than 90km.

Source detection for patterns with a delay management strategy solving the delay man-

agement problem in a two-stage fashion seems to perform better than methods that

optimize only once. Thus, for the pattern produced with the "FRFS" or "earlyfix" strategies,



Detection of Source Delays in the German Railway System 121

(A) Probability of Correct Detection

time steps

p
e
rc

e
n
ta

g
e
 o

f 
c
o
rr

e
c
t 
d
e
te

c
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

(B) Rank of Correct Source

time steps

ra
n
k
 o

f 
c
o
rr

e
c
t 
s
o
u
rc
e

2

4

6

8

10

2 4 6 8 10

(C) Distance to Correct Source

time steps

d
is
ta
n
c
e
 t
o
 c
o
rr
e
c
t 
s
o
u
rc
e
 (
in
 k
m
)

0

20

40

60

80

2 4 6 8 10

all−wait

earlyfix

FRFS

FSFS

never−wait

priority

prior−repair

propagate

random guess

Figure 5.7: Comparison of detection performance in simulations for different delay

management strategies. (A) Percentage of correct detection, (B) rank of correct source,
and (C) distance to correct source over time. All scenarios consider track occupation.

the average correct source rank remains below six, while the estimated source is very

close to the correct source (average distance below 65km). Worst performance exhibits

the source detection for the delay pattern simulated by delay management strategies

"all wait" or "priority". The probability of correct detection decreases to 12% or 13% at

time point ten, respectively. The corresponding average ranks exceed 10, while for all

other strategies average ranks of correct source remain below. The shortest distance of

misspecified and correct source is about 90km.

Association with Total Number of Delays

Further inspection of the results, revealed a strong association between the total number

of delays in the network and the proportion of correct detection. The different delay

management strategies are variable in their success of delay containment. Thus, we

computed the total number of delays at all time steps averaged for all source simulations
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delay management consideration mean delay proportion of
strategy track occupation number correct detection

propagate no 216.00 0.27
propagate yes 383.01 0.16

all-wait yes 490.17 0.12
earlyfix yes 256.82 0.21

FRFS yes 242.28 0.24
FSFS yes 367.09 0.14

never-wait yes 293.23 0.20
priority yes 444.84 0.13

prior-repair yes 301.46 0.22

Table 5.1: Association of Source Detection Performance and Total Number of Delays.
Mean Number of Delays and Proportion of Correct Detection at the last time point t = 10
for different delay management strategies.

distinguished by delay management strategy (see Table 5.1). The correlation between

percentage of correct detection and total number of delays exhibit an almost perfect

negative association (Spearman’s correlation coefficient ρ = −0.995).

Thus, the performance differences between the scenarios with and without consideration

of headways, as well as for the delay management strategies can be explained by the

number of total delays in the system. The performance of the source detection approach

improves with lower delay counts and therewith for more efficient delay management.

We assume that for larger number of delays, the circular spreading pattern vanishes.

Summary

Altogether, it can be shown that our approach for source detection is robust in regard

to different propagation mechanisms (research question IV). However, we could observe

a strong dependency on the total number of delays, so that a higher number of delays

results in lower performance.

5.4.4 Incorporating Additional Knowledge

Finally, we want to investigate, if the incorporation of additional knowledge in the net-

work definition improves the source detection performance (research question V). Since

the delay propagation mechanisms depend on train frequency as well as passenger traffic,

we expect the consideration of link weights to improve source reconstruction. For the ad-

equate investigation, we simulated delay pattern with delay management "priority", while

the proportion of secured passenger transfers is varied between 0% and 100%. We con-

struct unweighted, train- and passenger-weighted networks according to Equations (5.1),

(5.2), and (5.3) and compare the performance of source detection..
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Figure 5.8: Comparison of detection performance in simulations with consideration of

track occupation for different network definitions at time step t = 7. (A) Percentage of
correct detection, (B) rank of correct source, and (C) distance to correct source for varying
proportions of secured passengers transfers in delay management strategy "priority".

The performance of our source detection approach varies only very little for different

network definitions. For simplicity, we investigate the result at time point t = 7 (see

Figure 5.8). The results for the other time steps are similar (data not shown). The source

detection probability decreases slightly with increasing proportion of secured passenger

transfers with percentages of correct detection between 30.4% and 34.5% without secured

passengers transfers and proportions from 27.3% to 29.5% if all transfers are maintained.

When examining the mean rank of the correct source, there is a slight increase with

more secured transfers. We can observe a strict order of the different network definitions.

Source detection based on the passenger-weighted network outperforms (from 3.5 to 4.4)

the others. It follows the train-weighted network (mean ranks between 3.7 and 4.6), while

the performance on the unweighted network is slightly worse (from 4.2 to 5.1). Also the

distance to the correct source exhibits only slight increase. There is little variation for

the weighted network. In comparison, larger loss is observed for the unweighted network.
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Summary

In summary, the evaluation gives some indications that the incorporation of additional

knowledge in the network definition improves the source detection (research question

V). It can be observed a strict order in the performance of the networks. The source

detection based on the passenger- and train-weighted networks performs better than on

the unweighted network. However, the unweighted network performs only a little worse,

so that the approach can be recommended even without additional knowledge for link

weighting.

5.5 Detection of Source Delays in the Athens Metro Sys-

tem

The application to the PTN similar to the German high-speed railway system exhibits a

slight influence of node centrality on the source detection performance. Therefore, we

want to investigate this in the Athens metro system, which is an extreme example of a

strongly centralized PTN.

(0.00121,0.00163]

(0.00163,0.00204]

(0.00204,0.00246]

(0.00246,0.00287]

(0.00287,0.00329]

Figure 5.9: Athens Metro Network using layout by Kamada and
Kawai (Kamada and Kawai, 1989). Nodes represent metro stations and are color-coded
according to closeness centrality. Network data is obtained using LinTim (Goerigk et al.,
2014)



Detection of Source Delays in the Athens Metro System 125

5.5.1 Characterization of the Network

In Section 2.1.2, we introduced the official map of the Athens metro system, which ap-

proximates the station location and distances only for the orientation of the user (see

Figure 2.3). Here, the location of the nodes is not of interest (see Figure 5.9). The PTN

from the Athens metro consists of 51 stations, which are connected by 52 links. It is a

very sparse network with low density of ρ = 0.0408, even less sparse than the German

railway network (ρ = 0.009). Most of the stations are stops on a line, so that a station is

generally connected with only two others, and the average degree is cD(k) = 2.039.

The combination of no clustering (transitivity cl = 0), long average shortest paths (d̄ =

9.670), and large diameter dG = 29 is characterizing the network to be very centralized.

Passenger transfers are only possible at four stations in the city center. It results a

smallest possible circle with four links. In comparison to the German railway system and

other city networks (e.g., Angeloudis and Fisk, 2006; von Ferber et al., 2009), this network

is extremely centralized.

In the following, we use this suburban public transportation system for evaluating the

performance of the deterministic source detection approach. In particular, we are able to

evaluate the influence of the node centrality in more detail.

5.5.2 Influence of Centrality to Detection Performance

In this section, we analyze the source detection performance on the Athens metro net-

work in dependency of time and node centrality (research question II and III). The results

are based on K = 51 simulations in the standard scenario (with consideration of track

occupation and simple delay management strategy "propagation", see Figure 5.10). We

fit a zero-adjusted Gamma GAMLSS, which simultaneously analyzes the probability of

detection and the distance to the correct source, if not detected (as introduced in Sec-

tion 5.3.3).

The resulting smooth functions reveal no time effect, so that the source detection perfor-

mance remains stable over time. A slight effect can be found for the effect on distance to

correct source, which is increasing with ongoing propagation. In contrast, the influence of

the node centrality is more pronounced. For source nodes with large closeness centrality,

we expect a higher probability of detection. If the detection was not successful, the effect

for the distance to the true source decrease over time. Thus, it can be observed better

detection performance for more central network nodes. However, this can be explained by

the structure of the studied PTN. Note, that the results are based on only 51 simulations,

which might make the statistical model analysis sensible.
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Figure 5.10: Smooth Terms from Statistical Model Analysis of Detection Performance

on Athens Metro System. Zero-adjusted Gamma GAMLSS model is based on K = 51
simulations in the standard scenario (with consideration of track occupation and simple
delay management strategy "propagation"). (A) Percentage of correct detection, and (B)

distance to correct detection (in km), if the source is not correctly detected, in dependency
of time and node centrality.

Summary

In contrast to the results in the application to the German railway network, the source

detection performance remain stable over time. Furthermore, the influence of the node

centrality is more pronounced for simulation in the Athens metro system.

5.6 Conclusions

As outlined in the introduction, source detection plays a key role in the assessment

of various propagation processes in a wide range of research fields: For example to
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determine the epicenter of infectious disease outbreaks, the onset of blackouts in power

grids, the root of computer virus attacks in the Internet, the origin of misinformation in

social networks, or the starting point of the invasion of non-endemic species in ecology.

Here, we consider source determination of train delays in railway systems, which mimic

many-faceted diffusion patterns. They can never be entirely avoided, but their impact has

to be kept to a strict minimum. We enhance a fast and efficient approach for the source

identification of propagation processes on networks, which is structurally quite general

and only requires a minimum data basis. In extensive simulation studies, we investigated

the performance in dependency of different parameters such as time and node centrality,

the robustness to propagation mechanisms, and the improvement due to the integration

of additional knowledge in the network definition.

As expected, source detection performance decreases over time. Furthermore, there is a

slight effect of centrality of the source node in regular railway networks, while it is more

pronounced in strongly centralized PTNs such as the Athens metro system. The method

is shown to be highly robust against various variants of delay spreading patterns. This

includes the consideration of track occupation and different delay management decisions.

Furthermore, the additional knowledge about train or passenger traffic on the network

links are not necessary, because their incorporation improves the method only slightly.

Altogether, the source detection framework turns out to be robust for diverse spatio-

temporally evolving processes, which promises the general applicability in many research

fields.

Within the area of train delays, the method can easily be applied to detect source delays

on tracks as well. Assuming long time construction works or technical failures on tracks,

also the source delays can be imposed on a track. Subsequently, a track as the cause of

failure can be reconstructed with a simple variant of the discussed method.

Still, various open questions were raised to be studied in the future. A lot of questions

deal with the delay settings. Do higher and/or more simulated initial delays affect the

system similarly? How is the source detection influenced in case of superimposed random

noise? Other open questions include possible extensions of the method. How does the

method perform in case of major problems at more than one station (or track) where

source delays are caused? And as a question of applicability of the method: What other

propagation processes are similar to infectious disease outbreaks and the spreading of

train delays?

Altogether, the performance in extensive simulation studies, which mimic different prop-

agation mechanisms, promise the general applicability of the source detection approach

to universal propagation processes in a wide range of applications.



128 Chapter 5. Source Delays of Trains in Railway Networks



CHAPTER 6

Network-based Kernel for Genetic Epidemiology

Contents

6.1 Basic Concepts in Genetic Epidemiology . . . . . . . . . . . . . . . . . . 131

6.1.1 Background in Molecular Biology and Genetics . . . . . . . . . . . 131

6.1.2 Genetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1.3 Methods in Genetic Epidemiology . . . . . . . . . . . . . . . . . . . . 135

6.2 Kernel Methods for Genome-Wide Association Studies . . . . . . . . . 137

6.2.1 The Logistic Kernel Machine Test . . . . . . . . . . . . . . . . . . . . 138

6.2.2 Construction of Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 Construction of Network-based Kernels . . . . . . . . . . . . . . . . . . 142

6.3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.2 Genotype Aggregation and Gene-SNP Annotation . . . . . . . . . . 143

6.3.3 Network Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.4 Kernel Positive Definiteness . . . . . . . . . . . . . . . . . . . . . . . 145

6.3.5 Network Characteristics for KEGG Pathways . . . . . . . . . . . . . 147

6.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4.1 Pathway Disease Model . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5 Application to Genome-Wide Association Studies . . . . . . . . . . . . . 155

6.5.1 Case-Control Data on Lung Cancer and Rheumatoid Arthritis . . . 155

6.5.2 Biological Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5.3 Comparison of Results by Different Pathway-Based Methods . . . 159

6.5.4 Distribution of p-Values . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.5.5 Impact of Network Characteristics . . . . . . . . . . . . . . . . . . . . 160

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Network-centric analysis offers an unique perspective by examining how components of a

system interact, rather than reducing a system into parts that are studied independently.

The risk of developing a common chronic human disease is also governed by networks.
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These complex networks are pathways and describe the interaction between genes and

environmental factors needed to trigger a cellular or inter-cellular function in the organ-

ism. If genetic and/or environmental perturbations cluster in the same pathway, their

effect can be functionally canalized via the cell communication and cell regulatory ma-

chinery (Califano et al., 2012). Thus functionally and topologically related perturbations

are likely to contribute to the emergence of the same physiological state associated with

a specific disease.

The potential of combining prior knowledge on biological pathways and genomic data

in order to elucidate important disease mechanisms is recognized. This incorporation

allows the identification of causal genes in the broader biological context, as well as

the generation of hypotheses for diagnostic and prognostic targets (Schadt, 2009). Such

an integrative approach seems to be particularly attractive for genome-wide association

studies (GWAS). They examine genetic variants from the whole genome and typically

focus on associations between SNPs and traits like common diseases. These studies

typically suffer from low power due to the necessity to correct for thousands or even

millions of tests. Additionally, it is often difficult to translate GWAS findings into useful

biological knowledge about disease mechanisms. To overcome these limitations a num-

ber of pathway-based analysis tools have been developed (the review by Wang et al.

(2010) provides a comprehensive overview). However, they fail to utilize all available

knowledge on pathways; in particular, they ignore known interactions between genes as

represented in the network topology. Two exceptions are the approaches by Pan (2008)

and Chen et al. (2011) who consider functional relationships among genes. Unfortunately,

both approaches are based on p-values summarizing the risk of whole genes rather than

raw genotype data. This might fail to account for the complex genetic nature of the

investigated disease.

There is mounting evidence that regulatory relationships between genes are of relevance

in the context of GWAS. Several studies have demonstrated that disease causing genes

often directly interact with each other as part of larger regulatory or functional systems

(Lim et al., 2006; Lin et al., 2007). For Crohn’s disease, Chen et al. (2011) demonstrated

that "genes in the same neighborhood within a pathway tend to show similar association

status". In fact "80% of the currently missing heritability for Crohn’s disease could be due

to genetic interactions" (Zuk et al., 2012). However, not just direct interaction seems to

be important, Lee et al. (2013) demonstrated that SNP trait associations are enriched

in genes occupying structurally relevant position in known gene-gene networks. Hence,

incorporating how genes are related to each other may increase the power of finding

genuine associations.

In this chapter, we propose a modification of the logistic kernel machine test (LKMT;

Wu et al., 2010) – a flexible and efficient semiparametric kernel-based test procedure - to

accommodate network structure. Such a modification can be easily introduced through



Basic Concepts in Genetic Epidemiology 131

the elegant framework which kernels can provide. The kernel, which can be any posi-

tive definite function, acts as the core of the LKMT describing the relationship between

the effects of SNPs and the disease status. Recently, Freytag et al. (2012) successfully

adapted the kernel to prevent bias due to differences between pathways in terms of SNP

or gene sizes. Schaid (2010) speculated that appropriate modification of the kernel could

also allow for the inclusion of networks represented by graphical structures. Following

this notion, we construct kernels that explicitly model network topology.

6.1 Basic Concepts in Genetic Epidemiology

6.1.1 Background in Molecular Biology and Genetics

In this section, we introduce the basic concepts of genetics, which is a "branch

of biology concerned with the study of heredity and variation" in living organism

(Oxford University Press, 2004). Over the last 100 years, ongoing substantial progress

in genetics has strongly influenced all fields in biology and has shaped biological re-

search and its applications (Campbell, 2009).

Basic Building Blocks: DNA, Genome, Chromosomes and Genes

DNA (deoxyribonucleic acid) is a molecule that has been passed on to an organism

from its parents. It consists of two long strands of nucleotides that form a double helix

(Griffiths et al., 2012). Each nucleotide contains a base which pairs with a base of the

opposing strand. The purin base Adenin (A) pairs always with the pyrimidin base Thymin

(T), while the purin base Guanin (G) pairs always with the pyrimidin base Cytosin (C). An

ordered sequence of A, T, C and G encodes the genetic information. During cell division,

the DNA replicates itself and is partitioned into each of the resulting cells.

The complete set of genetic information of an organism is called genome. It is organized

into chromosomes, which are physically separated pieces of the DNA double helix. They

can be found in each cell nucleus. The number of chromosomes is species-specific. In

general, humans have 23 chromosomes, while 22 chromosomes of them are available in

two copies and additional two are the sex chromosomes. The functional regions on the

chromosomes are called genes.

Altogether, there are about 20,500 genes are known for humans (Griffiths et al., 2012).

They are the primary carriers of information in the genome, which occupy about 2% of the

DNA molecule. Thus, more than 98% of the human DNA is assumed to be non-coding, so

that they do not serve the function of encoding protein, while the functionality of these

parts is controversially discussed in the scientific community (e.g., Elgar and Vavouri,

2008).
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Figure 6.1: Simplified Illustration of Basic Concepts in Genetics: From Genes to Pro-

teins. The genetic information is encoded on the genome which is in form of chromosomes
in the cell nucleus. They consist of DNA strands, which functional segments are called
genes. The genetic information is processed by transcription and translation to sim-
ple proteins. Proteins interact in complex molecular networks and cellular pathways to
achieve a particular biological function. Source: Long (2003).

Genetic Information Processing: Transcription and Translation

The genetic information encoded in genes is largely responsible for developing and func-

tioning of the living organism by two processes called transcription and translation. We

now outline this complex protein-synthesis process, which can be simplified by the se-

quence (Griffiths et al., 2012):

DNA
transcription−−−−−−−−−→ mRNA

translation−−−−−−−−→ protein.

During transcription, DNA is copied reverse complementary into messenger mRNA (mes-

senger ribonucleic acid). It is a single stranded molecule which, like DNA, encodes ge-

netic information by the sequence of purine and pyrimidine bases. The mRNA molecule

is enzymatically processed and transported out of the nucleus to the protein-generating
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machinery of the cell, called ribosome. Here, each mRNA is translated in general into one

specific protein. For the following analysis, regulatory proteins, which activate or inhibit

gene transcription activity are of particular interest. The activity of gene transcription

and therefore the production of proteins is called gene expression.

Gene Interaction Pathways

"Genes do not work in isolation [they interact in] complex molecular networks and cel-

lular pathways" (Wang et al., 2010). Basis is the one-gene-one-polypeptide hypothesis

stating each gene controls one polypeptide, the simplest type of protein. Furthermore,

proteins enhance or reduce expression of genes. In the following, we refer these pro-

cesses as activation or inhibition. Thus, genes indirectly interact in a series of inter-

connected steps within a cell to achieve a particular biological function. This system

became known as biochemical pathway (of gene-gene interaction). Pathways, that also

consider complex environmental signals to the genome and from gene to another are

called signal-transduction pathways.

Here, a pathway is defined as a network of interacting genes responsible for achieving

a specific cell function or regulation (Cantor et al., 2010). An example is the pathway

"Maturity Onset Diabetes of the Young" (path:hsa04950) from Kyoto Encyclopedia of Genes

and Genome database (KEGG, Ogata et al., 1999), which was introduced in Section 2.1

(see Figure 2.4). A comprehensive database can be found using the path resource list at

http://www.pathguide.org.

6.1.2 Genetic Data

With the completion of the sequencing of the human genome in 2003, the Human Genome

Project yielded a permanent foundation for biological research, and launched a new era

with the aim of decrypting the genetic code. This means in particular, the establishment

of a connection between the genotype, the inherited genetic information sequence from

the genome, and the phenotype, the organismal characteristics or traits. Note, that the

same genotype does not necessarily always result in the same phenotype, because of

environmental and developmental influences.

DNA Sequencing and Genetic Variation

Next generation sequencing refers to highly efficient methods, which are sequencing

parallel genetic information from DNA with extremely high throughput rate. It is now

possible to sequence a whole genome within a day. DNA sequencing means the process

of precisely determining the ordered chain of nucleotides of the DNA molecule. Note

that 99.9% of the genomic sequences are identical for the human individuals. The remain-

http://www.pathguide.org
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ing 0.1% turn out to be mostly single-nucleotide differences (Griffiths et al., 2012). For

instance, two different individuals could have the following sequence segments:

Individual 1: . . . CCGTTACCGTAGAGAG. . .

Individual 2: . . . CCGTTACCTTAGAGAG. . .

which exhibits variation in one nucleotide only. If a quite large proportion of the popu-

lation exhibit this variation, this is called a single-nucleotide polymorphism (SNP; more

than 1%). Common SNPs occur with a frequency larger than 5% and appear every 300

to 1000 DNA bases in the genome. Altogether, there are about 19 million SNPs in the

human genome (Ha et al., 2014), while many of them are not located in genes. Thus,

these SNPs cannot easily mapped to a specific biological function. However, currently

available genome-wide genotype arrays have a coverage between 500,00 SNPS to 4.3

million SNPs (Ha et al., 2014).

Since each chromosome is doubly present, an individual can have two different genetic

variations at a specific position in the genome. Thus, SNPs are usually coded in a trinary

fashion, so that the values {0, 1, 2} can be assigned. For example, if an individual has

a genetic variation on only one chromosome, the SNP is coded by one. Otherwise, it is

coded by zero or two depending on the observation. A different variation of a gene is

called allele.

Mapping Genetic Information and Linkage Disequilibrium

Genes and SNPs can be arranged on a unidimensional chromosomal map. The exact

positions are called loci. On this map, distance on the genome is measured by the

number of DNA base pairs (bp; 1, 000 bp = 1 kbp, kilo base pairs).

The chromosomal map gives information about gene linkage, which is a result of re-

combination of parental DNA segments. If the distance between two loci is low, there

is a naturally high chance that the corresponding alleles are linked. "If the associa-

tion between the alleles at two loci is nonrandom, then the loci are said to be in linkage

disequilibrium (LD)" (Griffiths et al., 2012). This can be analyzed by determining the prob-

ability that alleles occur together as depicted for instance by LD plots (for an example

see Figure 6.6).

Gene Expression Analysis

Gene expression data are for example obtained by probing mRNA and sampled using

fluorescence on a microarray. Alternatively, the complete RNA can be sequenced. The

technical procedures are very complicated, so that technical measurement error is com-

mon, which requires sophisticated data cleaning methods.
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The comparison of gene expression in different kind of cells, for example healthy and

diseased cells, can give further insights for understanding of the genetic causes of the

disease. Gene expression patterns can be also used to specify gene interaction pathways.

Given a set of genes that are known to be involved in the establishment of a specific

phenotype, the selected genes are arranged in a network according to some connectivity

measure, e.g., the Pearson correlation beyond a certain threshold (e.g., Horvath and Dong,

2008).

6.1.3 Methods in Genetic Epidemiology

Genetic epidemiology is the science of genetic factors to the determination of health

or disease. Furthermore, the interaction of genetic factor with environmental factors is

investigated.

General Problems when Analyzing Genetic Data

The most obvious problem is the so-called "curse of dimensionality", which is caused

by relatively low sample size, but large number of explanatory variables. Inappropri-

ate correction for multiple testing leads either to an increased number of false-positive

detection or result in a great loss of power for overly stringent correction. Thus, a care-

ful selection of an adjustment scheme for multiple testing is required. Furthermore, the

sampling strategies for the selection of individuals are in general non-representative. In

case-control studies, the control group is often inappropriate, because it does not reflect

similar characteristics as the case sample, e.g., ethical mixture. This makes adjustments

for population stratification (Cardon and Bell, 2001) necessary. Additionally, the linkage

disequilibrium can lead to spurious association, because data-driven analysis cannot dis-

tinguish between effect from functional variant or indirect effect through LD from marker

locus. This can cause a high number of false-positive detections (Griffiths et al., 2012).

In particular, the numerous works in the HLA region, a set of genes on chromosome six,

which is related to immune function, showed the difficulty to find a functional variant in

regions with strong LD (Cardon and Bell, 2001). However, LD can be also helpful, because

not all SNPs have to be genotyped (Hirschhorn and Daly, 2005; Pe’er et al., 2008).

Genome-Wide Association Studies (GWAS)

"GWAS have rapidly become a standard method for disease gene discovery" (Cantor et al.,

2010). They examine genetic variants and typically focus on associations between SNPs

and traits like common diseases. GWAS are based on the hypothesis that common

diseases are caused by common genetic variants (Koeleman et al., 2013). Therefore, the

majority of the genome is scanned for the identification of SNPs that are contributing to
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the establishment of a disease. The success of such a single marker analysis depends

on the efficient selection of SNPs and exploitation of information on LD structures, so

that the majority of the variation in the genome can be captured.

Most common are case-control GWAS. Typically, the statistical analysis of GWAS is

performed with simple χ2-tests for the association of each SNP with the investigated

disease. Thus, the allele frequency is tested to be different in case and control group.

Effect sizes can measured by odds ratios. More flexible analyses can be performed

by logistic regression analysis, which is able to directly incorporate the influence of

environmental factors. Anyway, the significance threshold need to be adjusted for multiple

testing (Cantor et al., 2010).

However, results from statistical analysis can give only evidence for an association,

because there are many possible confounders such as ethnic ancestry, gene linkage or

environmental factors (Cardon and Bell, 2001). The formal proof for causality requires

molecular characterization of the SNP and its different alleles (Griffiths et al., 2012).

The large expectation from the genetic community, that GWAS would greatly advance the

understanding of genetic basis for common diseases, could met only to some extend. Even

for intensively studied phenomena, there is little explanation of observed phenotype vari-

ation by discovered genetic risk factors (Koeleman et al., 2013). Various reasons for this

so-called "mystery of missing heritability" are discussed intensively (Manolio et al., 2009).

They range from missing analysis of rare genetic variants, transgenerational genetic ef-

fects (Kong et al., 2009), interaction with environmental factors (Eichler et al., 2010), to

effect from gene-gene interaction networks (Zuk et al., 2012).

Pathway-based Analysis

Pathway-based analysis can supplement the exploration of data from GWASs through

the integration of prior biological knowledge (e.g., Chen et al., 2013; Chuang et al., 2013;

Kar et al., 2013; Song et al., 2013). Primarily, the success of pathway-based analysis

may be explained by its focus on jointly testing functionally related SNPs. First, this

allows the identification of pathways via multiple causal low effect SNPs, which are

usually hard to detect with conventional GWAS approaches. Second, pathway-based

analysis also considerably reduces the multiple-testing problem. Furthermore, they have

the potential to benefit directly from the knowledge on functional dependencies in the

human organism (Califano et al., 2012). Results obtained from pathway-based analysis

can be interpreted in this context. This allows the easier generation of hypotheses for

both diagnostic and prognostic targets (Schadt, 2009) and can contribute to the devel-

opment of novel treatment strategies. The range of pathway-based analysis approaches
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is steadily expanding; for an overview of some methods see Wang et al. (2010) and

Varadan et al. (2012). Gene-set enrichment analysis (GSEA; Wang et al., 2007), which

was originally developed for gene expression data, has remained the most popular

method. Essentially, this method consists of a non-parametric test for the enrichment of

SNP-disease associations in a pathway. Like nearly all other pathway-based analysis

approaches, it fails to utilize most available knowledge on pathways. In particular, it

ignores information on which genes interact in the pathway. Instead, given a pathway

GSEA treats genes and their corresponding SNPs independently from each other.

There is increasing evidence that precisely such information on functional relationships

among genes, i.e. the topology of the pathway, is of relevance in the context of GWAS.

Several studies demonstrated that disease-causing genes often directly interact with

each other as part of larger regulatory or functional systems (Lim et al., 2006; Lin et al.,

2007). For Crohn’s disease, Chen et al. (2011) demonstrated that "genes in the same

neighborhood within a pathway tend to show similar association status". In fact, it has

been estimated that "80% of the currently missing heritability for Crohn’s disease could

be due to genetic interactions" (Zuk et al., 2012). However, not only direct interaction

seems to be important. Lee et al. (2013) demonstrated that SNP-trait-associations are

enriched in genes occupying structurally relevant positions in known pathways. Some

researchers have already recognized the potential of incorporating pathway topology, also

called network, into the analysis of GWAS data. Chen et al. (2011) proposed a Markov

Random Field to include topological structures. Pan (2008) developed a procedure that

reduces the multiple-testing burden according to the average distance between genes

in a pathway. Others have coined methods that aim to identify significantly associated

subnetworks (Consortium, 2013; Schaid et al., 2012). However, all of these methods are

based on p-values, which summarize the risk for a disease for whole genes, rather than

on raw genotype data.

6.2 Kernel Methods for Genome-Wide Association Studies

Beyond the simple χ2-test, there are many more sophisticated methods for statistical

analysis of data from GWAS. Ballard et al. (2010); Wang et al. (2010, 2011) provide a

comprehensive reviews. Kernel methods are in particularly well suited to cope with

the challenges connected to the analysis of data from GWAS. They have been proven

to be extremely powerful (Pan, 2008; Wu et al., 2010) and their superior performance

compared to other pathway-based methods, in particular gene-set enrichment analysis

and hierarchical Bayes prioritization, have been empirically established (Freytag et al.,

2012).
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6.2.1 The Logistic Kernel Machine Test

Most GWAS are designed as case-control studies. Here, the statistical methods have

to be applicable for a binary response, which leads a logistic models. In this section,

we describe the logistic kernel machine test followed by details about the construction

of established kernels in the next section. The logistic kernel machine test integrates

prior knowledge in order to analyze data from GWAS. Here, the kernel converts genomic

information of two individuals to a quantitative value reflecting their genetic similarity.

The Logistic Kernel Machine Model

The LKMT assumes a semi-parametric logistic regression model for the probability of

being a case. It models genetic effects non-parametrically and environmental effects

parametrically:

logit (P(yi = 1)) = xiβ + h(zi), (6.1)

where yi is the case-control indicator (yi = 0 control, yi = 1 case) for i = 1, . . . , n

individuals. The vector β represents the intercept and regression coefficient terms related

to the environmental covariates xi for the ith individual, i = 1, . . . , n. These typically

include gender and other trait relevant information, which are modeled parametrically as

fixed effects. The variable zi denotes the genotype vector of some selected or all SNPs,

coded in the usual trinary fashion (the number of minor alleles, i.e. zis ∈ 0, 1, 2 for any

modeled SNP s in individual i).

The non-parametric function h ∈ HK describes how the risk of being affected by the

disease depends on the observed genotypes. Here, HK denotes a reproducing kernel

Hilbert space (RKHS) generated by a kernel. By definition, HK is a vector space equipped

with an inner product, which satisfies further properties (Berlinet and Thomas-Agnan,

2004):

Definition 6.1 (Reproducing Kernel Hilbert Space): Let Z be a non-empty abstract set. A

function

K : Z × Z → R

(zi, zj ) 7→ K (zi, zj )

is a reproducing Kernel of the Hilbert space HK of functions h : Z → R, if and only if

(i) ∀z ∈ Z : K (·, z) ∈ HK

(ii) K has the reproducing property, i.e. ∀z ∈ Z ∀h ∈ HK : 〈h, K (z, ·)〉 = h(z)
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Thus, the RKHS HK is effectively generated by linear combinations of elements K (·, z),

for fixed z ∈ Z. The reproducing property states that a value of the function h at the

point z is reproduced by the inner product of h with K (·, z).

From the definition, it follows

(zi, zj ) ∈ Z × Z : K (zi, zj ) = 〈K (·, zi), K (·, zj)〉.

Furthermore, the representer theorem implies that any function in that space h ∈ HK

can be approximated arbitrarily close by linear combinations of its corresponding ker-

nel (Hofmann et al., 2008; Kimeldorf and Wahba, 1971), i.e.

h(zi) =
n∑

j=1

αjK (zj , zi), (6.2)

where αj ∈ R are unknown.

From the definition of the inner product follows, that a reproducing kernel is symmetric

and positive semi-definite, i.e.

Definition 6.2 (Positive Semi-Definiteness): A symmetric, real-valued function K (·, ·) is

said to be positive semi-definite if, for any a1, . . . , an ∈ R and z1, . . . , zn ∈ Z

n∑

i,j=1

aiajK (zi, zj ) ≥ 0. (6.3)

In the following, we simply refer to positive definiteness. The reverse can be proven to be

true too. The Moore-Aronszajn theorem states that every symmetric and positive-definite

kernel K spans an unique RKHS HK (Berlinet and Thomas-Agnan, 2004).

In our application, the kernel K (zi, zj), evaluated for individuals i and j , can also be

understood as measuring the similarity between the individuals i and j based on their

genotypes. Hence, by selecting a different kernel, one specifies a different concept of

similarity, and implicitly a different model for the effect of the SNPs on the risk of de-

veloping the investigated disease. It results in a positive definite n × n-matrix K . The

eigen-decomposition K = Φ∆ΦT , gives the eigenvectors in matrix Φ and the eigenvalues

δi > 0 in the diagonal matrix ∆, for which it holds
∑∞

i=1 δ2
i < ∞. All vectors in HK can

be represented as linear combinations of the eigenvectors in Φ (Kolaczyk, 2009).

For further reading, we refer to Berlinet and Thomas-Agnan (2004); Kolaczyk (2009);

Schölkopf and Smola (2002); Wahba (1990).
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Test Statistics and their Asymptotic Distribution

On the basis of the semi-parametric logistic regression model (see Equation (6.1)), we test

the null hypothesis that none of the modeled SNPs is associated with the disease. We can

express this mathematically by H0 : h(zi) = 0 for all i = 1, . . . , n. Such a null hypothesis

can be tested by constructing a score-type statistic. Score statistics are known from

variance component tests or lack-of-fit of fixed effect models. In our case, the score-type

statistic used in the LKMT is given by:

Q =
1

2

(
y − µ̂(0)

)T
K
(
y − µ̂(0)

)
, (6.4)

where y = (y1, . . . , yn)T denotes the vector of all individual case-control outcomes

and µ̂(0) is a vector with elements µ̂
(0)
i = logit−1(xiβ̂), the maximum likelihood estimate

under the null hypothesis for the ith individual. The matrix K corresponds to the kernel

evaluated for all combinations of individuals, which can be understood as a measure for

genetic similarity between the individuals (see Section 6.2.2).

Due to its quadratic form, the test statistic Q follows asymptotically an unknown mixture

of χ2(1)-distributions. In order to obtain a p-value for significance, this distribution is

well approximated by a moment matching method (see Wu et al., 2010). When testing

many different pathways, multiple-testing corrections should be applied to p-values. In

our analysis, we used the rather conservative but simple Bonferroni correction.

6.2.2 Construction of Kernels

The kernel acts as the core of the LKMT describing the relationship between the effects

of SNPs and the disease status and converting genomic information of two individuals to

a quantitative value reflecting their genetic similarity. With the selection of the kernel

one implicitly chooses a genetic effect model. Challenging can be the essential property

of kernels of being symmetric and positive definite. In this section, we introduce different

available kernels. Like many other pathway methods, none of them accounts for topolog-

ical structure of the pathway or gene-gene interaction types. Thus, we propose a novel

kernel that incorporates the topology of pathways and information on interactions in the

next section (see Section 6.3).

Identity-by-State Kernel

The identity-by-state kernel measures the similarity between two individuals by the

fraction of alleles that two individuals share (He et al., 2012; Wessel and Schork, 2006),
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i.e.,

K (zi, zj ) =
p∑

l=1

1

2p

[
2I(zil = zjl) + I(|zil − zjl| = 1)

]
, (6.5)

where I is the indicator function, which takes the values zero and one, and p refers to the

number of SNPs under consideration. This kernel has been examined to be quite robust

to be quite robust for non-linearity of genotype effects (Wu et al., 2010).

Linear Kernel

One of the most commonly used kernels is the linear kernel,

K (zi, zj) = zT
i zj , (6.6)

where zi denotes the genotype vector of some selected SNPs. The kernel measures

the correlation between pairs of individuals. It assumes each SNP delivers a random

independent and additive contribution with the same variance, in fact specifying a linear

multiple marker logistic regression (Wu et al., 2010). In case of a squared loss function

instead of a log-likelihood, the model implied by the linear kernel can be shown to be

equivalent to ridge regression. Note that this also highlights the close relationship to

principle component methods (Hastie et al., 2001). Because of its linear property, such a

kernel neglects interactions among the considered SNPs (Wu et al., 2010).

Despite the frequent use of the IBS and the linear kernels, both suffer from deflation of

p-values due to size bias (Wang et al., 2010). Therefore, Freytag et al. (2012) successfully

adapted the linear kernel, which is corrected for differences between pathways in terms

of SNP or gene sizes.

Kernel Construction using Network Laplacian

Smola and Kondor (2003) introduced a general class of kernels using the network Lapla-

cian. In this context, the Laplacian is constructed using the adjacency matrix A, which

naturally encodes the node proximity (see Section 2.2.1). Imposing the condition of row

and col sums being equal to zero, we obtain the network Laplacian (Newman, 2010;

Smola and Kondor, 2003).

Definition 6.3 (Laplacian): Let D be a diagonal matrix with dkk =
∑

l Akl. The Laplacian

of a network G = (K, L) is defined as

L = A − D (6.7)
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and the normalized Laplacian is

L̃ = D−1/2LD−1/2 = I − D−1/2AD−1/2, (6.8)

where I is the identity matrix.

It can be shown, that L and L̃ are a symmetric and positive definite matrices, while the

eigenvalues of L̃ range between zero and two (Newman, 2010). Thus, a natural kernel is

the (pseudo)inverse of the network (normalized) Laplacian itself, i.e.

K = L−1, (6.9)

which measures similarity among network nodes through the adjacency matrix (Kolaczyk,

2009). The Laplacian can be also used to encode higher-order topological characteristics

of a network. Considering that a diffusion process on a network can be rewritten as
d

dζ
K = −ζLK (see Section 2.4.2, Kolaczyk, 2009; Newman, 2010), we can derive the

diffusion kernel as

K = exp(−ζL), (6.10)

where exp(·) denotes matrix exponentiation rather than the single element exponentiation,

and ζ > 0 is a decay factor. It measures similarity inverse proportional to path lengths

between nodes.

6.3 Construction of Network-based Kernels

Schaid (2010) speculated that appropriate modification of the kernel could also allow

for the inclusion of networks in GWAS. In this light, we propose sophisticated kernels

for the LKMT that account for pathway topology (Freytag et al., 2013). Here, pathway

topology includes not only the network, i.e. gene-gene interactions, but also the nature

of interactions, which may either constitute activation or inhibition.

The integration of networks via kernels is not new, e.g., Rapaport et al. (2007) considered

one in a support vector machine analyzing microarray data. In general, kernels are the

basis of many powerful statistical methods, such as support vector machines, nonparamet-

ric regression and smoothing splines. In this context, kernels are positive semi-definite

functions that reflect the pairwise similarity between observations. The use of such kernel

methods rapidly gained popularity in the identification of associations between pathways

and complex traits, as they are both powerful and flexible (Liu et al., 2008; Wu et al., 2010).
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6.3.1 Concept

In order to accommodate network topologies of pathways, Schaid (2010) proposed the

kernel matrix K = ZSZT for genomic information, where the matrix S scores the similar-

ity of SNPs. The matrix Z = (z1, . . . , zn)T denotes the genotype matrix, i.e. the collection

of genotype vectors z1, . . . , zn of all individuals. However, Schaid does not give a general

specification of S, reviewing different choices for some exemplary genomic applications

instead. The kernel, which we develop to take into account network topologies, is moti-

vated by the viewpoint of a kernel as a similarity measure: SNPs located in the same

gene or in interacting genes are scored to be more similar than SNPs far apart regarding

the network structure. Such a notion of similarity is sometimes also referred to as "guilt-

by association" (Kolaczyk, 2009) and has been verified empirically for several complex

diseases. More precisely, we define the matrix S as ANAT , where matrix A maps SNPs

to genes and matrix N represents the network (for illustration of the kernel construction

see also Figure 6.2). Altogether, the kernel matrix is defined as K = ZANAT ZT . Here, the

genotype matrix Z is allowed to contain missing values making imputation necessary.

6.3.2 Genotype Aggregation and Gene-SNP Annotation

The elements asg ∈ {0, 1} of matrix A represent the membership of SNP s in gene g.

Most commonly, SNPs are assigned to genes purely on the basis of their location on the

genome, but other annotations are conceivable (Wang et al., 2010). In the two real GWAS,

we assign a SNP to a gene when it is directly located in a gene or in the 500kbp windows

on either side. Note that, a SNP can be assigned to more than one gene due to some

overlap of genes. Further, we adjust for different gene sizes by re-weighting the impact

of a gene effect. This ensures an equal treatment despite different number of genotyped

SNPs in genes. We denote the modified A by A⋆ with elements a⋆
sg = asg/

√
rg, where

rg equals the number of SNPs in gene g. In the following, we refer to network-based

kernels using the unadjusted gene-SNP annotation as NET and ANET under utilization

of the size-adjusted gene-SNP matrix A⋆.

6.3.3 Network Preparation

The matrix N denotes the quadratic adjacency matrix of the neighborhood structure of

the genes in the pathway. Its dimension equals the number of genes in the pathway. We

consider self-interactions, i.e. that every gene interacts with itself, by setting all diago-

nal elements of matrix N to one. Unlike other network-based methods, we distinguish

between activating and inhibiting gene-gene interactions. Thus, an element ngg′ of N

equals one or minus one if genes g and g′ interact in an activating or inhibiting fashion,

respectively. In the following, we refer to the use of adjacency matrices that distinguish
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Figure 6.2: Pipeline of the Construction of the Network-Based Kernel Matrix K =
ZANAT ZT . (A1) Genotype data (SNP#) coded in trinary fashion for cases and controls
(ID#) presented in a matrix. (B1) SNP-gene annotation mapping all SNPs to pathway
genes, as long as they are located in the gene or in the 500kbp windows around the
gene. (C1) The pathway network with activating (solid arrows) and inhibiting (dashed
arrows) interactions between genes. (A2) Imputation of missing genotype values via
BEAGLE (Browning and Browning, 2009) and deletion of SNPs that cannot be mapped
to a pathway resulting in genotype matrix Z. (B2) Representation of the SNP-gene
annotation as matrix A, where 1 indicates membership. (C2) Network structure is modified
so that genes without any genotyped SNPs (yellow node) and their corresponding links
(grey arrows) are deleted, but their directed interactions with their next neighbors are
retained (black arrows); network structure is then converted to an undirected adjacency
matrix N where 1 represents activation and -1 inhibition. (D) Calculation of the network-
based kernel similarity matrix by K = ZANAT ZT .
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between inhibition and activation as signed and networks with unspecified interaction

types as unsigned.

This basic network structure must be further modified to ensure a well-defined kernel,

which should be complete, symmetric and positive semi-definite. Firstly, to ensure com-

pleteness of the pathway topology, we rewire certain interactions, which are associated

to genes without genotyped SNPs. During mapping computation, S = ANAT , such genes

and their interactions would be removed from the analysis automatically. To preserve

full information on interactions in the pathway, we project links of genes without geno-

typed SNPs to their immediate neighbors. This means, we include additional links, where

earlier two interactions existed and which would otherwise have been removed entirely.

Thereby, the link sign of the newly created interaction is determined in a multiplicative

fashion, e.g., the combination of a former inhibition and activation results in a new inhibi-

tion. Secondly, we transform the directed pathway structure into an undirected network

via mirroring along the diagonal.

6.3.4 Kernel Positive Definiteness

Finally, kernels are required to be positive semi-definite, while undirected adjacency

matrices N are symmetric, but not necessarily positive semi-definite. Thus, we introduce a

new procedure to find the closest matrix N⋆ by superimposing as much noise as necessary

to render the new matrix positive semi-definite without introducing additional interactions

to the network. If N is not positive semi-definite, we replace the original matrix N in the

kernel equation by the weighted sum

N⋆ = ρN + (1 − ρ)I,

where I is the identity matrix. It can be easily verified that N⋆ is a positive semi-definite

matrix if ρ ∈ (0, ρmax], where

ρmax =
1

1 − λmin
(6.11)

and λmin is the smallest eigenvalue of N.

Derivation. Let N be a m×m non-positive definite and symmetric matrix. In general, a symmetric

matrix N⋆ is positive semi-definite, if and only if all eigenvalues are non-negative, i.e.

xT N⋆x ≥ 0 ∀x ∈ R
m

⇔ ρxT Nx + (1 − ρ)xT x ≥ 0 ∀x ∈ R
m

⇔ xT Nx ≥
ρ − 1

ρ
xT x ∀x ∈ R

m,
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ρmax for KEGG pathways
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Figure 6.3: Histogram of ρmax Values Computed by Equation (6.11) for Non-Positive

Definite Adjacency Matrices N. For 144 adjacency matrices the closest positive-definite
counterpart can be found by computing N⋆ = ρmaxN + (1 − ρmax)I. The remaining 38
adjacency matrices were already positive definite after preparation.

if ρ 6= 0. Let λmin be the smallest eigenvalue of the original matrix N for which we can show that

xT Nx ≥ λminxT x.

Given the eigenvectors v1, . . . , vm ∈ R
m of N as the orthonormal basis, i.e. vT

i v j = 0 for i 6= j ,

with the coefficients µ1, . . . , µm ∈ R, so that x =
∑m

i=1 µiv i, we obtain

xT Nx =

(
m∑

i=1

µiv i

)T

· N ·
m∑

i=j

µjv j

=

(
m∑

i=1

µiv i

)T

·




m∑

j=1

µjNv j





Since for the eigenvalues λ1, . . . , λm of N one has Nv j = λjv j for all j = 1, . . . , m, it follows

xT Nx =

(
m∑

i=1

µiv i

)T

·




m∑

i=j

µjλjv j





≥ λmin

(
m∑

i=1

µiv i

)T

·




m∑

i=j

µjv j





= λminxT x,
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where λmin is the smallest eigenvalue, i.e. λmin = min λi for all i = 1, . . . , m. Altogether, it follows

that

λminxT x ≥
ρ − 1

ρ
xT x ∀x ∈ R

m

⇔ λmin ≥
ρ − 1

ρ

⇔ ρ ≤
1

1 − λmin
,

because λmin < 0 as N is a non-positive definite matrix.

�

Our approach of approximating the symmetric matrix N by a positive semi-definite one

has the advantage that the original network topology is exactly preserved although the

link weights are eased. It also allows for an interpretation of the identity matrix as a

noise component. We suggest using ρ = ρmax since N⋆ is the closest to the original matrix

N, but is positive semi-definite and has the minimum eigenvalue zero.

We also tested normalized and ordinary Laplacian matrices (Smola and Kondor, 2003, see

Section 6.2.2) as well as an algorithm by Higham (2002) to find the nearest positive semi-

definite approximation of the network matrix, but found them to have inferior performances

(data not shown) when compared with N and its replacement described above. Moreover,

the alternative methods change the network topology by including additional interactions,

while our method preserves the structure of network.

6.3.5 Network Characteristics for KEGG Pathways

For our analysis, we decided to use the popular database KEGG due to its manual

curation. Moreover, it offers a selected range of pathways including experimentally

verified metabolic pathways, information and cellular processing pathways as well

as those related to organismal system information and human diseases. We did not

access KEGG directly, but extracted the adjacency matrices by means of the R package

rBioPaxParser (Kramer et al., 2012), which allows the use of the standardized Biological

Pathway Exchange (BioPAX) language. Viswanathan et al. (2008) called BioPAX the

"currently [...] best-suited format for mathematical modeling and simulations". Our anal-

ysis included the topology of 182 pathways, which have sufficient network information.

After preparation, 38 adjacency matrices N were already positive semi-definite. For

the remaining networks, we found the closest positive semi-definite counterpart with

the aforementioned procedure (see Figure 6.3, the medium value of ρmax computed by

Equation (6.11) is 0.48).
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Figure 6.4: Histograms for all Network Properties of the 182 KEGG Pathways. The
network characteristics include dimension, density, average degree, inhibition degree,
diameter, transitivity and signed transitivity.

Network characteristic Mean Median Range
Dimension 22.85 14.00 [2.00, 316.00]
Density 0.24 0.16 [0.00, 1.00]
Average degree 4.22 2.00 [0.00, 303.19]
Inhibition degree 0.14 0.00 [0, 3.07]
Diameter 3.57 3.00 [0.00, 15.00]
Transitivity 0.50 0.50 [0.00, 1.00]
Signed transitivity 0.32 0.31 [−0.20, 1.00]

Table 6.1: Network Characteristics for Investigated Pathways. Mean, median and range
of dimension, density, average degree, inhibition degree, diameter, transitivity and signed
transitivity for investigated pathways (total of 182 investigated pathways).
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We found the structures of the different networks to be very diverse, which is supported by

common descriptive network statistics (see Table 6.1; see Section 2.3 for an introduction

to descriptive characterization of networks). We considered:

Dimension counting the total number of genes in the pathway

Density denoting the ratio of existing interactions to possible number of interactions in

a fully connected pathway

Average degree referring to the mean number of interactions from or to a gene

Diameter measuring the maximum length of the shortest path between all pairwise com-

binations of genes

Transitivity denoting the probability of triangles, i.e. the interaction between two neigh-

bors of a gene

For transitivity and degree, we also distinguished between signed and unsigned networks.

In the case of average degree we also looked at the average degree of inhibitions only.

Its low mean highlights that there are only very few inhibiting interactions in the data

base. Furthermore, we used the extension of transitivity introduced by Kunegis et al.

(2009, see Section 2.3), which is able to take the interaction type into account. In general,

examination of the means and medians of all descriptive statistics revealed strongly left

skewed distributions for all introduced network characteristics (see Figure 6.4).

6.4 Simulation Study

To evaluate the performance of the LKMT with our network-based kernels we studied

empirical type-I error and power in different genetic settings. Note that null simula-

tions for testing the type-I error are equivalent to the scenarios for testing power without

genetic effects. Empirical power or empirical type-I error are determined as the propor-

tion of simulations for which a p-value below the ordinary 0.05 threshold is obtained.

Ideally, empirical type-I error should be exactly 0.05, while conservative approaches are

acceptable, whereas power should be as high as possible. We compared type-I error

and power of the LKMT with our network-based kernels (NET) with the performance of

the LKMT with the linear kernel (LIN) and the minimum p-value approach (minP). In the

latter method, the minimum p-value from single-marker tests applied to every SNP in

the pathway represents the association of the entire pathway. Since larger pathways

are more likely to generate low p-values by random chance (Wang et al., 2010), we used

a conservative Bonferroni correction to adjust the obtained p-value by the size of the

simulated pathway.
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6.4.1 Pathway Disease Model

A comprehensive pathway disease model that explains how interactions between genes

with susceptibility variants lead to the development of a disease connecting biological

and statistical thinking has not been developed so far. Even if such a model were to

exist, its necessary complexity would render it extremely challenging to simulate. Our

network-based kernels have been developed with such a degree of complexity in mind,

but we use a simpler simulation model. This model meets many assumptions of the LKMT

with the LIN kernel and therefore we expect the LIN kernel to be favored. Roughly, our

method of simulation can be divided into four parts:

(1) choosing the genetic setting with respect to a known network structure and corre-

sponding genetic effects,

(2) simulating genetic variants and corresponding case-control status for all individuals,

(3) creating a structure of a pathway by mapping genetic variants to "genes" and "genes"

to "pathways", and

(4) applying the pathway analysis approaches to the simulated data.

Definition of Genetic Setting

As pathways we choose to investigate network structures of two real KEGG pathways;

path:hsa04950 with 22 genes and path:hsa05218 with 9 genes (compare Figure 6.5).

Values of dimension, density (ρ = 0.126), average degree (cD = 2.636), average negative

degree (cD
neg = 0.091) of path:hsa04950 are close to the mean values of these network

characteristics obtained from all investigated KEGG pathways. In contrast, the network

characteristics of path:hsa05218 are more extreme (ρ = 0.167, cD = 1.333, cD
neg = 0.444)

compared to the KEGG pathway averages. In order to examine empirical power, we

simulated two different genetic settings each at different strengths. In the "connected"

setting, three "genes", each of which contains three causal genetic variants, were selected

in a way that they directly interact in the network. In the "apart" setting, three "genes"

each including three causal genetic variants were far away from each other with respect

to the given network structures (see Figure 6.5). We expected our network-based kernel

to perform better in the "connected" setting than in the "apart" setting, as our network-

based kernel was developed with the aim of exploiting connections explicitly. In both

settings, detection should be aided by the presence of strong linkage disequilibrium (LD)

between causal genetic variants and simulated non-causal variants (compare Figure 6.6;

Barrett et al., 2004). The effect strength was varied by increasing heterozygous risk from

1.05 to 1.20 and the homozygous risk accordingly from 1.10 to 1.40 for each causal variant.
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Figure 6.5: Pathway Network Examples "Maturity onset diabetes of the young" Path-

way (path:hsa04950), "Melanoma skin cancer" Pathway (path:hsa05218). The cor-
responding HUGO gene identifiers for each node are given in the legend on the left
hand-side. Solid lines correspond to activations and dashed lines to inhibitions. The
"connected" scenario refers to the simulations where genes with causal SNPs are close
to each other, while in the "apart" scenario the genes with causal SNPs are far apart.

Simulation of Genetic Variants

Given the causal variants and their effect sizes, we simulated genetic variants and corre-

sponding case-control status for 1,000 individuals using the HAPGEN2 (Su et al., 2011)

and the CEU sample of the International HapMap Project (Frazer et al., 2007). HAPGEN2

is considered to mimic real genetic studies due to its reliance on reference populations

and observed fine-scale recombination rates. Thus, it preserves natural LD structures in

the human genome. We simulated 1,100 genetic variants in the region between 1,054kbp
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Figure 6.6: Linkage Disequilibrium Plots for the three Causal "Proxy Genes". All "proxy
genes" exhibit major linkage disequilibrium blocks. Along the top of the triangle the ge-
netic variations are mapped according to their distance. The probability that two SNPs
occur together is represented by the color-coding at the intersection of their diagonals.
A probable linkage results in red squares, while white indicates a probability that ap-
proaches random occurrence. Figures were produced using HaploView (Barrett et al.,
2004).

and 11,657kbp on chromosome 1 for 500 cases and 500 controls. For each scenario, we

repeated the simulations 1,000 times. Note that we did not use the pathway topology

directly when simulating data.

Mapping Genetic Variants to Genes and Pathways

To apply our network-based kernel, we require genetic variants to be assigned to genes,

which are in turn mapped to a network topology. For reasons of feasibility, we simulate

genetic variants in one genomic region, and work with local regions acting as substitutes

for real genes. We selected 22 or 9 local regions each with 50 genetic variants separated

by 500kbp to prevent LD between "genes". By restricting our analysis to same size "genes",

there was no difference between results obtained with either the NET or the ANET kernel.

In the situation of equally sized genes the adjustment for ANET reduces to a constant

scale factor, which vanishes during the moment matching procedure.

Comparison of Methods

Finally, we apply all three investigated methods to the different simulations:

◦ LKMT with network-based kernels (unsigned and signed NET)

◦ LKMT with linear kernel (LIN)

◦ minimum p-value approach (minP)

For the LKMT with the NET kernel we utilized the signed as well as unsigned versions of

the pathways. Note that only the NET kernel uses the created structure of the pathway.

Neither the LIN kernel nor the minP approach even takes into account which genetic

variants belong to the same "gene".
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6.4.2 Results

Type-I Error

We demonstrate here that type-I error is maintained for the LKMT with both the LIN

and NET kernel as well as the minP approach in all studied genetic settings (see Table

6.2). Of all investigated pathway analysis approaches, minP is the most conservative

possibly due to the utilization of the Bonferroni correction. Type I error for all methods

was closer to the expected level for the pathway with only nine genes. Even so, if we

were to simulate larger pathways we would observe size bias for the LIN kernel. Size

bias refers to the inflation of type-I error with increasing number of SNPs contained in

the pathways. This phenomenon was demonstrated conclusively for the LKMT with the

LIN kernel via a simulation study by Freytag et al. (2012).

Network representation Inhibition Estimated type-I error
path:hsa04950 path:hsa05218
(1,100 SNPs) (450 SNPs)

NET Unsigned 0.039 0.050
NET Signed 0.042 0.050
LIN — 0.049 0.048
minP — 0.019 0.023

Table 6.2: Results of Type-I Error for Null Simulations Differentiated by Tested Path-

ways. Type I error is based on 1,000 null simulations each with 500 cases and 500
controls.

Power Performance

Power simulations indicate that the LKMT with our network-based kernels is indeed
superior in performance compared to other pathway analysis approaches for some genetic

settings (see Figure 6.7). In particular, the NET kernel has up to 10% more power than

the LIN kernel in the "connected" setting. However, if the causal variants are distributed

more randomly with respect to the network, the LIN kernel does generally better than

the NET kernel. Even though for lower risk the differences between the LIN and NET

kernel in the "apart" setting are not as pronounced. The minP approach was inferior to all

other methods for both simulated pathways. Generally, all methods have uniformly higher

power for the smaller simulated pathway. Furthermore, differences in power between the

signed and unsigned version of the NET kernel existed only for the larger pathway. The

equivalence of the signed and unsigned version in the small pathway probably stems from

the fact that it only contains one inhibition. Given the simplicity of our simulation study,

which favors by construction the LIN kernel, our network-based kernels (NET) performed

very well.
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Figure 6.7: Results from Power Simulations. The power in the "connected" and "apart"
scenario of the network-based kernels is plotted against the heterozygous risk com-
mon for all causal SNPs. The results are shown for two different network topologies
(path:hsa04950 and path:hsa05218). Note that the results for signed and unsigned
network-based kernel are identical in the second pathway.
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6.5 Application to Genome-Wide Association Studies

We apply the LKMT with our novel network-based kernels to genome-wide case control

data on rheumatoid arthritis (RA) and lung cancer (LC). Both diseases are common in

industrialized nations with enormous social and economic impact. Moreover, generally

effective cures or prevention strategies have not been discovered yet. In fact, for the

United States, an estimated number of 228,190 new LC cases occur in 2013, making it the

most common type of cancer (National Cancer Institute, 2013). Even though exposure to

tobacco smoke determines most of the risk of developing LC, many studies also suggest

genetic influences. Other than a few rare LC syndromes, only a moderate number of ge-

netic effects, each contributing to only a weak increase in risk, are known. RA is the most

common chronic joint disease and affects nearly 1% of the adult population in the United

States. Many genetic factors have been firmly established as contributing to RA risk, in

particular the human leukocyte antigen (HLA) region on chromosome 6 (Raychaudhuri,

2010). Thanks to their different genetic profiles, the study of both these diseases offers

an excellent opportunity to evaluate the performance of novel statistical methods whose

aim is to detect genetic associations of different strength. Using kernels that incorporate

known network structures of pathways within the LKMT has the potential to discover

previously unknown genetic risk factors. Through its focus on pathways, it also promises

to elucidate disease etiology (Califano et al., 2012).

6.5.1 Case-Control Data on Lung Cancer and Rheumatoid Arthritis

The German Lung Cancer Study (GLCS) examines the role of genetic polymorphisms

on the risk of developing LC at a relatively early age, specifically LC diagnosed prior

to the age of 50 years (Sauter et al., 2008). Cases for this study, which comprise both

small-cell LC as well as non-small-cell LC, were sampled from 31 German hospitals,

while controls are from the KORA epidemiological survey of individuals living near the

southern German city of Augsburg. The second study, which was conducted by the North

American Rheumatoid Arthritis Consortium (NARAC), aims to identify genetic risk factors

for RA (Amos et al., 2009). The criteria of being a RA case was set by the American

College of Rheumatology and they were procured from New York hospitals. Informed

consent was obtained from all participants of both studies; the studies were conducted

according to the Declaration of Helsinki.

We applied stringent quality control (QC) measures, notably the exclusion of possibly

related individuals. Furthermore, SNPs with a call rate of less than 90% were eliminated.

For all remaining SNPs missing genotypes were imputed using the standard software

BEAGLE (Browning and Browning, 2009). The number of cases, controls and genotyped

SNPs can be found in Table 6.3. Since some SNPs could not be assigned to any genes,
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GLCS GWAS NARAC GWAS

Cases

Before QC 506 868
After QC 467 866
Male 286 226
Female 181 640

Controls

Before QC 480 1,194
After QC 468 1,189
Male 237 341
Female 231 848

SNPs
Before QC 561,466 545,080
After QC 529,637 492,209
In analysis 255,241 243,096

Genes In analysis 2,808 2,807

Table 6.3: Number of Individuals, SNPs and Genes in the two GWAS of Lung Cancer

and Rheumatoid Arthritis (GLCS and NARAC). Quality control is denoted by QC.

not all genotyped SNPs were used in the analysis. In GLCS, we included sex as an

additional environmental covariate, but also considered age on LC diagnosis (cases) or

exam (controls) and the cigarette consumption in pack-years, i.e. the number of cigarettes

smoked per day multiplied by the years of exposure through active smoking.

While participants in the LC study are fairly homogeneous with regards to ethnicity, the

ancestries of the participants in the RA study ranged from Northern to Southern European.

Despite this, we did not correct explicitly for population stratification in either study.

There is cumulative evidence that multiple marker methods used in high dimensional

settings inherently capture cryptic relatedness, rendering additional corrections obsolete

(Habier et al., 2007; Kärkkäinen and Sillanpää, 2012). If multiple regression models do

not include population structure explicitly, Setakis et al. (2005) were able to demonstrate

their robustness for population stratification effects via simulation studies. Thus, it stands

to reason that additional correction for population stratification in the LKMT, which is

similar to such a model, would lead to overcorrection and in turn loss of power.

Besides applying the LKMT with our network-based kernels and the LIN kernel, we ana-

lyzed both data sets using GSEA. Unlike the LKMT, GSEA tests competitive hypotheses,

i.e. whether a particular pathway tends to be more associated with the disease than all

other investigated pathways. As a direct result of this fundamental difference between

the LKMT and GSEA, comparisons of their results are of particular interest. Here, we use

the publicly available GenGen software (Wang et al., 2007) to implement GSEA.

6.5.2 Biological Findings

Previous GWASs revealed many associations for RA, but they detected only a few for

LC (Raychaudhuri, 2010; Sauter et al., 2008). The results from our analysis of the RA and

LC GWAS confirm these observations. The LKMT with the signed ANET, unsigned ANET,
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signed NET and unsigned NET detects 26, 27, 25 and 26 pathways to be associated with

RA significantly. In contrast, we are unable to detect any significant pathway associations

for LC. Another possible explanation for the lack of significant LC associations could also

lie in the small sample size of the GLCS GWAS.

German Lung Cancer Study

Similar to previous studies on LC, we also cannot find any significant pathways. Thus,

we rank the pathways according to their p-values in order to capture potential important

effects on the disease. The top five ranked pathways are largely similar for the differ-

ent network-based kernels. As an example, we depict the results for signed ANET in

Table 6.4 as this is the most sophisticated version of our kernels. The smallest p-value

belongs to the pyruvate pathway (path:hsa00620). The pyruvate pathway converts glu-

cose to pyruvate, which supplies energy to living cells when oxygen is present. When

oxygen is lacking, it converts pyruvate to lactate. In cancer cells, this second process

takes place regardless of the presence of oxygen, otherwise known as the Warburg effect

(Koukourakis et al., 2005). Today, the Warburg effect is recognized as one of the important

characteristics of cancer-causing mutations.

Pathway KEGG Name (Function) Type p-value
hsa00620 Pyruvate metabolism Metabolism 1.04 · 10−3

hsa00240 Pyrimidine metabolism Metabolism 1.38 · 10−3

hsa00250 Alanine, aspartate and glutamate Metabolism 2.68 · 10−3

metabolism
hsa00750 Vitamin B6 metabolism Metabolism 3.66 · 10−3

hsa00630 Glyoxylate and dicarboxylate metabolism Metabolism 8.76 · 10−3

Table 6.4: List of Top Five Highly Ranked Pathways for Lung Cancer and their Re-

spective p-Values as Identified with Signed ANET.

North American Rheumatoid Arthritis Consortium

For RA, most of the identified susceptibility pathways contain genes which have been

shown to be associated with the development and progression of RA in at least one sci-

entific publication (for significant results of signed ANET see Table 6.5). Genes located in

the HLA region were present in the majority of identified pathways. The results obtained

using different network-based kernels hardly differ. Results between the signed and the

unsigned version only differ by one pathway for the adjusted and unadjusted versions of

the network-based kernel probably owing to the lack of inhibitions in the investigated

pathways. Interestingly there are two pathways identified by the signed ANET but not by

signed NET, and one vice versa. This indicates differences in the weighting of genes can

alter results. For all network-based kernels, the steroid hormone biosynthesis pathway
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Pathway KEGG Name (Function) Type p-value
hsa04141 Protein processing in endo- Genetic Information 2.33 · 10−122

plasmic reticulum Processing
hsa04330 Notch signaling pathway Environmental Information 9.14 · 10−92

Processing
hsa00140 Steroid hormone Genetic Information 5.38 · 10−47

biosynthesis Processing
hsa01100 Metabolic pathways Metabolism 1.35 · 10−45

hsa03018 RNA degradation Genetic Information 8.71 · 10−28

Processing
hsa05150 Staphylococcus aureus Human Disease 4.57 · 10−25

infection
hsa04612 Antigen processing and Organismal Systems 1.46 · 10−17

presentation
hsa04650 Natural killer cell Organismal Systems 1.32 · 10−16

mediated cytotoxicity
hsa04060 Cytokine-cytokine receptor Environmental Information 1.47 · 10−16

interaction Processing
hsa04610 Complement and co- Organismal Systems 4.24 · 10−16

agulation cascades
hsa05014 Amyotrophic lateral Human Disease 7.98 · 10−15

sclerosis
hsa05160 Hepatitis C Human Diseases 8.90 · 10−14

hsa04210 Apoptosis Cellular Processes 1.25 · 10−13

hsa04010 MAPK signaling pathway Environmental Information 1.29 · 10−13

Processing
hsa04920 Adipocytokine signaling Organismal Systems 1.58 · 10−12

pathway
hsa05145 Toxoplasmosis Human Diseases 4.44 · 10−11

hsa05142 Chagas disease Human Diseases 6.89 · 10−11

hsa04380 Osteoclast differentiation Organismal Systems 1.41 · 10−9

hsa04620 Toll-like receptor signaling Organismal Systems 1.69 · 10−9

pathway
hsa00983 Drug metabolism - other Metabolism 5.46 · 10−6

enzymes
hsa04020 Calcium signaling Environmental Information 8.02 · 10−6

pathway Processing
hsa03015 mRNA surveillance Genetic Information 2.46 · 10−5

pathway Processing
hsa04660 T cell receptor Organismal Systems 3.02 · 10−5

signaling pathway
hsa03013 RNA transport Genetic Information 3.88 · 10−5

Processing
hsa04622 RIG-I-like receptor Organismal Systems 1.06 · 10−4

signaling pathway
hsa05200 Pathways in cancer Human Diseases 1.76 · 10−4

Table 6.5: List of Significantly Rheumatoid Arthritis Associated Pathways Identified

by LKMT with Signed ANET. Highlighted pathway does not include genes located in
the HLA region or genes previously identified to be associated with RA in peer-reviewed
scientific publications (for a list of these see Hofmann et al., 2008). 88 of the 180 pathways
include previously identified genes or genes located in the HLA region.



Application to Genome-Wide Association Studies 159

(path:hsa00140) is among the pathways with the smallest p-values. Steroids are known

to influence the immune system heavily. They can, in fact, reduce inflammation, which

is the reason that they are still sometimes used in RA treatment. Moreover, we identify

one novel association with the drug metabolism pathway path:hsa00983. This pathway

is responsible for processing drugs involved in the inhibition of DNA replication, such as

fluorouracil and azathioprine. Interestingly, azathioprine is widely used as an immuno-

suppressive in the treatment of chronic inflammatory diseases, such as RA. Its efficacy in

this area is attributed to its role "in the control of T cell apoptosis by modulation of RAC1

activation upon CD28 costimulation" (Tiede et al., 2003).

6.5.3 Comparison of Results by Different Pathway-Based Methods

In addition to our novel signed ANET kernel, we also applied the established GSEA

approach and the LKMT with the simpler LIN kernel. For LC, none of the methods

detects any significant pathway association. In contrast, the number of identified RA

susceptibility pathways differs greatly, but they have a large common subset.

The conventional GSEA approach identifies only 14 pathways with significant effects,

possibly due to the comparative nature of the hypothesis. All of them are detected as

well with the LKMT using signed ANET, which finds 26 associated pathways. This might

indicate a higher sensitivity of the LKMT with network-based kernels. Instead, results

obtained by using the LIN kernel are less specific, as 130 pathways are determined to

be associated with RA. This large proportion of significant results seems to be unlikely.

Instead, we believe that size bias in combination with the HLA region is responsible

for over-sensitivity. Thus, in our applications the LKMT with the network-based kernel

is powerful, generates reasonable results and represents the happy medium between

sensitivity and specificity.

6.5.4 Distribution of p-Values

We also examined the p-values of the different methods. A p-value is the "exact signifi-

cance probability of obtaining a value of a statistic at least as extreme, in relation null

hypothesis, as that observed" (International Statistical Institute, 2003). Thus, many low

p-values indicate strong structural effects of tested variables.

For LC with non-existent or little associations between investigated trait and genotype,

statistical theory suggests asymptotically uniformly distributed p-values in the range be-

tween zero and one. Note, that in our analysis the pathway signals may be correlated,

so that we expect deviations from the ideal case, e.g., more pronounced patterns in case

of positive correlation. Here, the distribution of the LIN kernel results seem to be anoma-

lously extreme. In contrast, the p-value distribution obtained with our network-based
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Figure 6.8: QQ-Plots for p-Value Distributions Obtained from Different Pathway-Based

Analysis Methods for LC GWAS. We compare distributions obtained with LKMT using
ANET or LIN kernel as well as distributions obtained by application of GSEA to the
uniform distribution. Note, that in our analysis the pathway signals may be correlated,
so that we expect deviations from the ideal case of an uniform distrubtion.

kernel, which is fairly close to the one of GSEA, did not exhibit any such anomalies

(see Figure 6.8). Thus, our network-based kernel yield a p-value distribution that reflect

presumed characteristics, unlike the conventional LIN kernel, which behaves anomalous.

6.5.5 Impact of Network Characteristics

Associations of LKMT results and network topology indicate that effects of genotypes are

concealed by effects generated by network structures. Thus, we correlate network struc-

ture with obtained p-values according to Kendall’s rank coefficients (see Table 6.6). The

network topology is described by various network characteristics ranging from the aver-

age degree to clustering coefficient. Apparently, there is some correlation in RA GWAS

between p-values and properties of underlying networks, whereas LC GWAS results re-

veal quite low degrees of correlations. We observe correlations between RA p-values and

pathway dimension for all kernels. This indicates the aforementioned presence of size

bias. However, the bias is strongly reduced for our network-based kernels. We believe

that further investigation of this issue will lead to better size corrections. Density, which

measures the connectivity of the network, also seems to influence the magnitude of the

p-values. Since this is even higher for the LIN kernel, which does not incorporate network

information, we assume some spurious correlation. The effective size of the pathway is

reflected by the diameter; its correlation therefore depends on size as well as the de-

gree of connectivity. Inhibition degree displays negative correlations, but these are even

stronger for the LIN kernel, so that we again assume some spurious correlation. We can-
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Network characteristic LC GWAS RA GWAS
LIN ANET NET LIN ANET NET

Dimension 0.13 -0.11 -0.12 -0.58 -0.33 -0.29
Density -0.11 0.00 -0.01 0.38 0.32 0.28
Average degree 0.02 -0.16 -0.17 -0.23 -0.05 -0.04
Inhibition degree 0.13 0.06 0.06 -0.28 -0.19 -0.17
Diameter 0.05 -0.11 -0.12 -0.36 -0.25 -0.23
Transitivity 0.04 -0.10 -0.15 -0.07 0.07 0.06
Signed transitivity 0.05 -0.15 -0.12 -0.19 0.00 0.01

Table 6.6: Correlations of Network characteristics and p-Values for Investigated GWAS.

Non-linear correlation coefficients (according to Kendall) of network characteristics and
p-values from LKMT analysis with LIN, NET, and ANET kernel for RA and LC GWAS (total
of 182 investigated pathways). Highlighted cells indicate a correlation that substantially
differs from zero.

not notice any effect for the extent of clustering in the pathways which is quantified by

(signed) transitivity. Altogether, differences between networks with regard to their non

disease-causing characteristics do not seem to introduce bias.

6.6 Conclusions

The topology of pathways contains information relevant to our understanding of the func-

tional connections between biological pathways and complex disease progression and

development. We developed a network-based kernel for the logistic kernel machine to

make use of pathway information when analyzing GWAS. Altogether, this presents a so-

phisticated and elegant statistical framework, which allowing the seamless integration

of additional knowledge on biological mechanisms. We demonstrated that our procedure

maintains the correct type-I error and often has more power to detect genuine associa-

tions than two conventional pathway analysis methods.

Applications to genome-wide association case-control studies for lung cancer and

rheumatoid arthritis demonstrate the ease of implementation and efficiency of our method.

Furthermore, the disease studies reveal its ability to generate plausible results under ex-

tremely different genetic profiles. For lung cancer, the most promising result, though not

significant, was the suggestion of a relationship with pyruvate metabolism. An immunhis-

tochemical analysis conducted by Koukourakis et al. (2005) provided evidence that the

pyruvate "pathway is repressed in 73% of non-small-cell lung carcinomas". Therefore, it is

possible that the attempt to replicate our results in a bigger study may well shed further

light on the question as to whether there there exists a genuine genetic association or

not. In case of RA, several promising pathways, most involving the HLA region, were

identified using our network-based procedure. Besides the pathway for drug deactiva-



162 Chapter 6. Network-based Kernel for Genetic Epidemiology

tion, the notch signaling pathway is of considerable interest in finding the cause of RA.

Notch signaling may be responsible for further exacerbating the inflammatory response

and joint destruction in RA patients through the formation of dysfunctional microvessels

in the papillary dermis of the skin (Gao et al., 2012).

Currently, there is little knowledge of how the increased occurrence of genetic variation

in a pathway affects the functionality of the human system. This lack of a reasonable

biological effects model not only severely hampers method development, but also makes

informative simulation studies impossible. For our new kernel in particular, it would be of

tremendous interest to investigate power using meaningful pathway-disease scenarios.

Since such simulation scenarios would feature interactions between causal variants, we

are confident that our network-based kernels would then be by far superior in compari-

son with commonly used kernels. Such kernels, in particular the linear kernel, typically

assume linearity of effects and thus fail under such conditions. Furthermore, these sim-

ulation models would allow us to investigate the effect of incorrectly specified networks.

We expect that the network-based kernels can handle some missing links with some

power decrease. In the application, we already demonstrated that our approach found a

happy medium between sensitivity and specificity even though the used pathway data

are known to be incomplete. Thus, given the extent of our knowledge we will have to rely

on the good performance of our kernels in the two applications as well as the greatly

simplified simulation study.

Our method constitutes a promising foundation for further advances in network-based

analysis of GWAS data. In particular, the procedure to generate positive semi-definite

network matrices, which can include negative interactions, may find applications in diverse

fields of research. As one area of improvement, we see the inclusion of interaction direc-

tionality between genes. An adjacency matrix also tracking the direction of the interaction

would no longer be symmetric, thus violating the requirement of positive semi-definite

kernels. The restriction to undirected adjacency matrices is a common simplification but

presents a considerable loss of information. Another improvement would lie in the explicit

consideration of link uncertainty via incorporating link prediction approaches or Bayesian

methods in the construction of the kernel.

More importantly, the inaccurate and incomplete nature of regulatory models remains the

biggest challenge to network-based analysis. Collaborative research by laboratories and

institutes has improved our understanding of biological processes greatly, but much work

still remains to be done. The true value of network-based methods will only be realized

when network models leverage additional information particular to the investigated dis-

ease (Califano et al., 2012). In particular, models should account for cell specific context

and the dynamic nature of the regulation of biological mechanisms dependent on time

(Khatri et al., 2012).
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Conclusions

In this thesis, we proposed different approaches to obtain inferences about propagation

processes on complex networks, utilizing dynamic modeling, explorative approaches

and kernel methods. The methodological research has been motivated by real-world

problems ranging from food-borne disease dispersal to propagation of train delays

and genetic effects through gene interaction pathways on the manifestation of common

diseases.

We discussed that network theory is a cross-disciplinary science that focus on examining

how components of a system interact rather than studying the elements of a system

independently. The foundations for the analysis of complex network data were laid by

mathematical graph theory, which allows for the representation of networks as a collection

of nodes which are connected by links. The basic theory is complemented by various

methodological contributions from different research fields including physics, statistics,

sociology, economics, and biology.

However, the vast majority of advances in network science refer to the descriptive

analysis of the network topology, while explorative and inferring approaches are ex-

tremely underrepresented (Kolaczyk, 2009). Furthermore, little has been done so far to

investigating systematically propagation processes on complex networks, which can be

of static or dynamic nature.

One area where network science has been particularly popular is modeling the spread

of infectious diseases. How infectious diseases spread depends in large parts on the

interactions between potential disease vehicles, which can often be represented as net-

works. While common approaches focus on directly transmitted diseases, we developed

a dynamic model for food-borne diseases (Manitz et al., 2014). It is based on a meta-

population model. Here, local disease dynamics are described by ordinary differential

equations for the proportion of susceptible, infected and recovered individuals in each dis-

trict, which are linked according to the expected trade flux of contaminated food between

the districts. We assumed that trade is much faster than the local disease dynamics, so

that the local transmission likelihood is influenced by the stationary distribution of the

contaminated food product.

We approximated the food shipping network by the well-established gravity model of

163
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trade. The simplification of the model and the derivation of linear solutions provide the

opportunity to simulate efficiently a variety of realistic food-borne disease outbreaks.

This may help to improve the understanding of food-borne disease spreading as well

as estimating specific parameters or the impact of interventions. However, the model

is based on simplifications and assumptions so that it cannot give a fully accurate

description of the disease dynamics. At the same time, the suggested model is very

transparent and flexible. We also expect the model to be easily adaptable for specific

pathogens. Beyond the application to indirectly transmitted diseases, there is the

possibility to adapt the model to the indirect spread of information or rumors according

to Dietz (1967).

The only efficient mitigation strategy for food-borne disease dispersal is detecting source

and origin of the outbreak in order to cease the production of contaminated food. We con-

sequently developed a simple and quite general explorative approach for the localization

of the origin during food-borne disease outbreaks (Manitz et al., 2014). Geodesic path

lengths are reorganized by a network-based effective distance. Then, it is assumed that

complex spreading patterns of infectious disease dispersal can be mapped onto simple,

regular wave propagation patterns, if the process origin is chosen as the reference node.

We showed the applicability for specific and general examples of indirectly transmitted

disease outbreaks. First, the method is illustrated by the well-known 1854 cholera out-

break in Soho/London. Here, the associated death cases are linked to water pumps in the

district by a bipartite network. Furthermore, we were able to localize the origin of the

2011 German EHEC/HUS outbreak within a 10 km radius using a trade network proxy

(Manitz et al., 2014). Additionally, we validated the performance in a variety of realistic

epidemics simulated with the previously developed dynamic model for food-borne dis-

ease dispersal (Manitz et al., 2014). The results indicate the approach to be robust and

flexible, which suggests that our method could become a useful and timely complement

to standard outbreak investigations.

Our approach requires only little information about the spatial distribution of case re-

ports and plausible topological assumptions concerning the underlying food distribution

network. Despite, during the early stages of an outbreak, the case count data may not

be sufficiently known. In particular, during the extensive outbreak investigations of the

2011 EHEC/HUS epidemic in Germany the data has been collected, complemented and

its quality was checked. Thus, the retrospective data we used is better than the one given

at the time of the outbreak. We can only speculate about when enough data had been

available for a successful application of our source detection approach.

Furthermore, we were able to show that the proposed source detection approach can be

based on a wide variety of network definitions and topologies, including directed and
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bipartite graphs. Unlike the street network in the 1854 cholera outbreak, the underlying

network definition is not always known. The gravity law turned out to be a flexible model

to construct a proxy for the German food shipping network. Essentially, the network could

also capture a combination of food transportation routes as well as human mobility pat-

tern. Regardless of the approximation quality, we expect more reliable performance if the

true network structure would be known. In any case, the precision of the source estimate

is predefined by the resolution of the underlying network. Only high-resolution mutli-

scale networks can lead to the precise location of the outbreak source, which requires a

large amount of data.

Nonetheless, the explorative approach can give only deterministic estimation results.

A further development and the integration into a statistical framework would make it

possible to assign uncertainty to the detection estimates in form of proper probabilities

(Manitz and Kneib, 2013). This would further allow the specification of a set of probable

origin nodes or the detection of multiple origins. In a Bayesian framework, it would

be possible to employ prior knowledge as well as additional information to improve

the identification of the outbreak epicenter (Manitz and Kneib, 2013). In this context,

meaningful data could make use of results from microbiological fingerprinting, patient

interviews, case-control studies, as well as back- and forward tracings. This could lead

to an integration of our origin detection approach into standard food-borne disease

outbreak investigation by public health departments. For instance, trace-forward and

trace-backward investigations deliver valuable details about the outbreak-specific

food-shipping network. Consistent further development could be the integration of our

outbreak origin detection with routine surveillance of infectious disease reports by public

health departments (e.g., Manitz and Höhle, 2013).

Beyond the origin detection in food-borne disease outbreaks, we were able to generalize

to the problem of source train delay identification in railway networks (Manitz et al.,

2014). Source delays are introduced by exterior influences and then propagated, because

of dependencies between the trains due to passenger transfers or track occupation of

subsequent trains. Delays can never be entirely avoided, but their impact has to be

kept to a strict minimum. Based on a well-defined network, the application benefits

from already existing models for delay propagation. Thus, the spreading of delays can

be easily simulated and various complex diffusion patterns from different propagation

mechanisms can be mimicked.

As expected, the performance of source detection decreases over time. In regular rail-

way networks, the node centrality has only a slight influence. We could observe robust

performance for various delay management strategies mimicking different propagation

mechanisms. Furthermore, the results reveal dependencies between source detection

performance and the number of delays in the system. Additional knowledge about the
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traffic load on the links in the railway system could lead only to minor improvements.

This indicates robust performance though only essential information about the network

topology is given.

However, the analyses raised various open questions to be studied in the future. These

include the effect of higher and/or more primary delays, or the impact of superimposed

random noise. Additionally, our results in this application also confirmed the need for

a further extension of the source detection approach. Especially, the integration into a

statistical framework would allow the detection of more than one source delay. Despite,

the results of the extensive simulations promise the general applicability of the source

detection approach and possible extensions to various propagation processes in a wide

range of applications. For example, this could be the identification of the onset of

large-scale electrical failures in power grids, the root of a computer virus or the origin

of a misinformation or rumor in social network.

To demonstrate the analysis of processes on complex networks from an alternative per-

spective, we utilized kernel methods. We propose a novel kernel based on network-

interactions for the logistic kernel machine test to detect genetic causes in genome-wide

association studies (Freytag et al., 2013). Mathematically, kernels are embedded in a

reproducing kernel Hilbert space, where the kernel converts genomic information of two

individuals to a quantitative value reflecting their genetic similarity. We construct a

network-based kernel that incorporates the topology of pathways and information on

gene-gene interactions. These networks provide rich information and biological context

on the genetic causes of complex diseases. There is some evidence that connectivity and

neighborhood of genes are crucial in the context of GWAS, because genes associated

with a disease often interact. It is assumed, that if genetic variations disrupt a sufficient

fraction of the pathway, its ability to regulate might be severely damaged, which can lead

to the manifestation of a disease.

Using simulation studies, we demonstrate that the proposed method correctly maintains

the type-I error and can be more effective in the identification of pathways associated

with a disease than methods, which neglect network information. When applying our

approach to genome-wide association case-control data on lung cancer and rheumatoid

arthritis, we identified some promising new pathways associated with these diseases,

which may improve our current understanding of the genetic mechanisms.

Altogether, the kernel-based method presents a sophisticated and elegant statistical

framework, which allows the seamless integration of additional knowledge on biologi-

cal mechanisms. The approach creates a possibility for the interpretation of results in the

biological context. In comparison to multiple-marker methods, the consideration of SNP

sets reduces the dimensionality, which speeds up the computing procedure and scales
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down the power loss through multiple testing adjustments. An important extension could

be the inclusion of interaction directionality of the pathways. Then, the corresponding

adjacency matrix would be no longer symmetric, which violates the requirement of ker-

nels. Furthermore, the pathways suffer from inaccurate and incomplete link definitions,

because they rely on currently available microbiological knowledge. This problem could

be addressed by incorporating link prediction approaches into the construction of kernels

or by assigning link uncertainty in a Bayesian context.

Our method can constitute further advances in network-based kernel analysis in other

applications. In particular, the procedure to generate positive semi-definite network

matrices, which can include negative interactions, may find also applications in the

analysis of social networks.

Nevertheless, all presented approaches consider only static processes, or "snapshots" of

dynamic processes. Generally, the introduced methods can be extended to be able to

model phenomena of dynamic nature. There are some first attempts to include the con-

tact structure within the population represented by a network, when modeling infectious

disease dispersal (e.g., Keeling and Eames, 2005; Schrödle et al., 2012). Furthermore,

there has been conducted some initial work for modeling jointly the evolution of both

network and process (Burk et al., 2007; Pinter-Wollman et al., 2013; Snijders et al., 2007).

Additionally, the methods assume the underlying network to be completely known. How-

ever, there are many examples where the network structure is uncertain, e.g., gene-gene

interaction networks or trade networks of contaminated food accessed during food-borne

disease outbreak investigations. In a Bayesian context, uncertainty about parameters,

link existence and their strengths can be assessed by careful specification of correspond-

ing prior distributions. The estimation of the model becomes very complex, but can be

solved elegantly using a strategy suggested by (Brezger et al., 2007). This idea in mind,

it could be possible to combine link prediction approaches with statistical modeling of

processes on corresponding networks. For instance, this can be very useful for the inves-

tigation of infectious disease transmission networks, which become known via tracings

during outbreak investigations by the public health departments.

Beyond, more efficient computational possibilities could be investigated in order to

analyze statistical models for propagation processes on complex networks. This could

be achieved via the consideration of high efficiency computing using Compute Unified

Device Architecture (CUDA) on GPU (e.g., Eklund et al., 2012).

Altogether, the results from the approaches presented in this thesis demonstrate that

network-theoretic analysis of propagation processes can substantially contribute to solve

diverse problems in many-faceted applications. We developed a general dynamic model
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for food-borne diseases, introduced a source detection approach for general propagation

processes and constructed a network-based kernel for the analysis of data from genome-

wide association studies.
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