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Preface 
During my doctoral thesis I worked on several projects, aimed to investigate 
molecular mechanisms of neuropsychiatric disorders. These projects were: 
1. The contribution of common variants of autism related synaptic 

genes to neuropsychiatric risk, as exemplified in schizophrenia. 
Result:  Common variants (Single Nucleotide Polymorphisms,  

SNPs) of synaptic genes NLGN3, NLG4X, NLGN4Y, 
SHANK3 and NRXN1 are not associated with global  
schizophrenia risk in the GRAS sample. 

2. D. melanogaster, lacking dnrxn1 and dnlgn2, as plausible model 
for autism spectrum disorders. 
Result:  D. melanogaster dnrxn1 - KO flies demonstrated  

locomotor impairment which did not allow testing of 
socially relevant readouts. Dnlgn2 – KO flies have normal 
motor activity and show impairment in social interaction. 

3. Analysis of episode-specific gene expression of prostaglandin 
related genes in peripheral blood mononuclear cells of patients 
with rapid cycling bipolar disorder. 
Result: Genes involved in the prostaglandin cascade show a 

phase specific differential expression pattern in rapid 
cycling patients. 

Project 1 is a side project of a larger study on autism, spanning beyond the 
scope of this thesis. The results described here will later be incorporated in a 
publication, which is currently being prepared. 
Project 2 has led to a publication, provided in the appendix. Additional 
experiments on dnrxn KO flies that I performed and analyzed, but that were 
not included in the publication, are presented here in detail. Other results are 
presented briefly here with reference to the appendix for details.  
Project 3 is my first author publication, which is currently in press. Results 
and methods are shortly presented here with reference to the manuscript in 
the appendix for details. 
Furthermore I have contributed as a coauthor to three other papers:  

Hagemeyer et al, EMBO Molecular Medicine, 2012 
Hammer et al, Molecular Psychiatry, 2013 
Wojcik et al, Molecular Medicine, 2013. 

.



Introduction 

 1 

1. Introduction 

1.1. Autism  

1.1.1 Clinical characteristics of autism  

 

Autism, first described in 1943 by Kanner (Kanner 1943), is listed under the 

category “Autism Spectrum Disorder” in the Diagnostic and Statistical Manual 

of Mental Disorders (DSM-5). The main features of Autism Spectrum Disorder 

(ASD) are: (A) persistent impairment of social interaction and communication; 

(B) restricted, repetitive patterns of behavior activities and interests; (C) 

persistence of the above mentioned symptoms since early childhood and (D) 

impairment of everyday living caused by the symptoms 

(AmericanPsychiatricAssociation 2013).  

Autism is most often recognized by parents due to a delay in speech and 

language development at the mean age of 19 months (De Giacomo and 

Fombonne 1998). Some symptoms, which may include impaired orienting to 

name, looking at the faces of people around, imitative behavior and sharing of 

affect, may be recognized at earlier stages (Ozonoff, et al. 2008).  

The symptom pattern in autistic individuals is presented in a broad spectrum 

with a considerable variability of symptom structure and severity across 

individuals (Geschwind 2009). A number of attempts have been made to 

define subgroups of patients based on various criteria, such as signs of early 

dysmorphogenesis (Miles, et al. 2005), patterns of social interaction  

(Castelloe and Dawson 1993; Wing and Gould 1979), intelligence quotient 

(Bartak and Rutter 1976) and neurocognitive profiles (Tager-Flusberg and 

Joseph 2003). 

A number of studies have attempted to classify the clinical patterns using 

different diagnostic instruments, like ADI-R (Lord, et al. 1994) or ADOS (Lord, 

et al. 2000), or by applying various statistical approaches, such as principle 

component analysis, latent class analysis or factor mixture modeling 

(Boomsma, et al. 2008; Georgiades, et al. 2013; Georgiades, et al. 2011; 

Georgiades, et al. 2007; Kamp-Becker, et al. 2009; Munson, et al. 2008; 
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Snow, et al. 2009; van Lang, et al. 2006).  These studies represent an 

approach, where the distinctions in autism spectrum disorders are thought to 

be qualitative (Frazier, et al. 2010), whereas other researchers argue in favor 

of a dimensional approach, in which autistic traits are seen as a quantitative 

spectrum of traits (Constantino 2011). This is supported by the assessment of 

the distribution of autistic traits in the general population (Constantino and 

Todd 2003; Constantino and Todd 2005) and by the notion that some autistic 

behavioral traits have been observed in unaffected family members of autistic 

patients (Losh, et al. 2008; Murphy, et al. 2000; Piven, et al. 1997; Szatmari, 

et al. 2000). Interestingly, in addition to being seen in the general population, 

the autistic phenotype may also share common features with other psychiatric 

disorders, particularly schizophrenia. Thus, patients with ASD may suffer from 

paranoid (Craig, et al. 2004) and psychotic symptoms (Toal, et al. 2009), 

whereas patients of both disorders might show such symptoms as 

communication impairments (Bagner, et al. 2003; Condray, et al. 2002; DeLisi 

2001) and social functioning deficits (Bellack, et al. 1990; Edwards, et al. 

2002). 

1.1.2 Genetic basis of autism: monogenetic cases 

Prevalence of autism is estimated to be 62 affected individuals in 10,000 

(Elsabbagh, et al. 2012). Autism spectrum disorders have a high concordance 

rate of 88%-95% for monozygotic twins, compared to the lower rate in 

dizygotic twins, ranging from 0%-31% (Bailey, et al. 1995; Rosenberg, et al. 

2009; Taniai, et al. 2008). Heritability rates range from 80%- 93% (Bailey, et 

al. 1995; Lichtenstein, et al. 2010). Various genetic mechanisms have been 

suggested to explain such a high genetic influence in the disease. Thus, 

genome wide association studies (GWAS) have revealed a number of single 

nucleotide polymorphisms (SNPs) and copy number variations (CNVs) 

associated with autism (Alarcon, et al. 2008; Maestrini, et al. 2010; Szatmari, 

et al. 2007; Weiss, et al. 2009). Rare and de novo CNVs were also identified 

as important genetic markers for ASD (Marshall, et al. 2008; Morrow, et al. 

2008; Sebat, et al. 2007; Stefansson, et al. 2014). In genome wide linkage 

studies the regions 2q, 7q and 17q, 15q and 22q have recurrently shown 

positive results for ASD (Freitag 2007; IMGSAC 2001; Kim, et al. 2008; 
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Malhotra and Sebat 2012; Szatmari, et al. 2007). However, around 10% of 

autistic cases may be explained by rare de novo mutations (Abrahams and 

Geschwind 2008; Weiss, et al. 2009). Among those traceable causes of these 

monogenic forms of ASD, a number of synaptic genes were identified.  

Two genetic alterations in SHANK3 were shown to cause autism in a study by 

Durand et al.: a de novo 142 kb deletion of 22q13, mapping to exon 8 of 

SHANK3, and a G nucleotide insertion in exon 21, which has later been 

shown by Arons et al. to lead to loss of function (Arons, et al. 2012; Durand, et 

al. 2007). A SHANK3 mutation in a third family, studied by Durand et al., a 

large 800 kb deletion in 22q was identified in a girl with autism, suffering from 

severe language impairment. Interestingly her brother suffering from Asperger 

syndrome with fluent speech but compromised social interaction, had a 22qter 

partial trisomy. Authors suggested an important role of fine gene dosage in 

the regulation of speech and communication abilities. Indeed, in further 

studies using a mouse model, mutations in Shank3 have caused a deficit in 

social interaction (Peca, et al. 2011), and a dose-related phenotype-genotype 

correlation has been observed in patients with deletions, including SHANK3 

(Sarasua, et al. 2011). However, a mouse model overexpressing Shank3 

shows a manic-like hyperactivity behavior (consistent with two human cases 

of SHANK3 duplication with attention deficit hyperactivity disorder (ADHD) 

and bipolar disorder reported in study), but no autism–like phenotype (Han, et 

al. 2013).  

A study published by Jamain et al. has reported mutations in the homologous 

neuroligin genes, found in two unrelated families with siblings suffering from 

autism spectrum disorders (Jamain, et al. 2003). In one family a 1186insT 

NLGN4 frameshift mutation has been found in two siblings, one with typical 

autism and another with Asperger syndrome, but not in their unaffected 

brother. The mutation causes a stop codon and premature protein 

termination.  

Another mutation, namely 1351C→T transition in NLGN3, which results in the 

amino acid substitution Arg451→Cys451, was found in both affected siblings 

of another family. Nonsynonymous mutations in NLGN4, namely 1597A→G 

and 1253del(AG), have further been found in individuals with autism, as the 
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studies of Laumonnier et al. and Pampanos et al. reported (Laumonnier, et al. 

2004; Pampanos, et al. 2009). NLGN4X and NLGN3 are situated on the X- 

chromosome, in the regions Xp22.3 and Xq13 respectively, which have been 

affected in autistic cases (Auranen, et al. 2002; Gillberg 1998; Shao, et al. 

2002; Shinawi, et al. 2009; Wentz, et al. 2013). The location of these genes 

on the X-chromosome may partially explain a male-to-female ratio of 4:1 

among affected individuals (Fombonne 2003; Ritvo, et al. 1989). Moreover, 

mutations in another homologous sex-chromosome related gene, NLGN4Y 

situated on the Y chromosome, was reported in an autistic case (Yan, et al. 

2008). Further animal model studies, testing neuroligin deficient mice, have 

shown autism related phenotypes. Specifically, Nlgn3-knock out mice showed 

a deficit in social novelty and olfaction (Radyushkin, et al. 2009) and Nlgn4-

knock out mice showed a deficit in social behavior (Jamain, et al. 2008), while 

both null mutations resulted in reduced ultrasound vocalization and brain 

volume. Moreover, further tests of Nlgn4 – knock out mice showed that these 

mice also show stereotyped repetitive behaviors detected by marble burying 

test, increased circling episodes in spontaneous homecage behavior and 

extensive grooming (El-Kordi, et al. 2013). 

1.1.3 Neuropsychiatric disorders as diseases of the synapse: 

emphasis on autism 

 

As discussed by Baudouin et al. (Baudouin 2014), the fact that such a wide 

range of underlying genetic patterns leads to a relatively convergent 

phenotype in ASD patients may be explained by the fact that the genetic 

markers identified in association and linkage studies might affect similar 

functional molecular pathways. Thus, the genetic findings concerning 

SHANK3, NLGN3, NLGN4X, and NLGN4 coding for post-synaptically 

localized proteins show that disturbance in synaptic functioning contributes to 

the complex autistic phenotype. Interestingly the NRXN1 gene, which codes 

for the binding partner of neuroligin proteins (Ichtchenko, et al. 1996), has 

also been associated with autism spectrum disorders (Kim, et al. 2008).  
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Neurexins have initially been identified as receptors of α-latrotoxin (a black 

widow venom, binding to presynaptic nerve terminals) as proteins, specifically 

expressed in the brain and present in excitatory and inhibitory neurons as 

shown by in-situ hybridization (Ullrich, et al. 1995; Ushkaryov, et al. 1992). 

Neurexin genes (I-III) each have two promoters, yielding transcripts for α- and 

β- neurexins which, in combination with alternative splicing, results in 

thousands of isoforms (Missler and Sudhof 1998). Both longer α-neurexins, 

containing five LNS and three EGF-like domains, and shorter β-neurexins, 

which lack those domains but have a laminin G domain, can interact with 

postsynaptic neuroligins (Rudenko, et al. 1999; Ushkaryov, et al. 1994; 

Ushkaryov and Sudhof 1993). Neuroligins were isolated as binding partners 

of neurexins using an affinity matrix made from β-neurexins (Ichtchenko, et al. 

1995; Ichtchenko, et al. 1996). Nguyen and Sudhof have shown a Ca2+ 

dependent binding of transfected cell lines expressing neuroligin-1 and 

neurexin 1β (Nguyen and Sudhof 1997). Neuroligin-1 has been proven to 

localize in the postsynaptic membrane, where it extends into the synaptic cleft 

and co-localizes with glutamatergic synapses (Song, et al. 1999). Neuroligin-4 

is situated (as studied in rodents) in inhibitory synapses within the retina, 

spinal cord, thalamus, colliculi and brainstem (Hoon, et al. 2011), similar to 

neuroligin-2 (Varoqueaux, et al. 2004). Studies in cultured neurons show that 

neuroligin-3 can be localized in inhibitory and in excitatory synapses (Budreck 

and Scheiffele 2007; Levinson, et al. 2010). Neuroligins contain a PDZ-

binding site on a C-terminal domain and have been shown to physiologically 

interact with PSD-95 and thus with glutamate receptors in excitatory synapses 

(Irie, et al. 1997). They also interact with collybistin in inhibitory synapses 

(Papadopoulos, et al. 2008) and with gephyrin (Graf, et al. 2004) connecting 

to GABA receptors. Further, direct yeast two-hybrid assays have shown that 

neuroligins interact with Shank3 (Meyer, et al. 2004), and a study in rodent 

neurons has shown that changes in levels of Shank3 provokes alterations in 

pre- and postsynaptic protein levels through neurexin-neuroligin signaling. 

Moreover, SHANK3 might have a functional connection to NRXN1, due to its 

binding to latrophilins (CIRLs) which form NRXNs-like receptors to α-latrotoxin 

(Tobaben, et al. 2000). 
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As summarized by Krueger et al. (Krueger, et al. 2012), several lines of 

evidence show that the neuroligin-neurexin complex is involved in in-vitro 

synapse formation (Graf, et al. 2004; Scheiffele, et al. 2000), in-vivo synapse 

maturation and maintenance (Varoqueaux, et al. 2006), and its activity-

dependent validation (Chubykin, et al. 2007). 

The link of these synaptic functions of the neuroligin-neurexin complex to an 

autistic phenotype has been made by performing animal model studies, such 

as a knock in mouse line, carrying an Arg451→Cys451 mutation in 

neuroligin3 that was previously associated with ASD (Jamain, et al. 2003; 

Tabuchi, et al. 2007), and another line lacking Nlgn4 entirely (Jamain, et al. 

2008). The Arg451→Cys451 knock in mutation, leading to a 90% decrease in 

neuroligin3 in mice, leads to an increase in inhibitory synaptic transmission 

and an increased number of GABAergic synapses, whereas this was not 

observed in mice with a complete knock out of Nlgn3 (Tabuchi, et al. 2007). 

This agrees with the hypothesis that an imbalance in inhibition and excitation 

may be one of the factors laying ground for an autistic phenotype, as 

reviewed by Rubenstein and Merzenich (Rubenstein and Merzenich 2003). 

Indeed, the prevalence of epileptiform electroencephalograms in autistic 

individuals has been estimated as high as 60% (Spence and Schneider 

2009). Furthermore, a study based on an optogenetic method showed that 

altered excitation and inhibition balance led to social behavior deficits in mice 

(Yizhar, et al. 2011).  

Similarly, behavioral characterization of the knock in mice carrying the 

Arg451→Cys451 mutation showed a decrease in social interaction in tests 

with a novel caged target mouse, and an increase in spatial learning and 

memory in the Morris water maze (Tabuchi, et al. 2007). This overlaps with 

the autistic phenotype in humans, since some individuals have normal to 

enhanced cognitive abilities in combination with impaired social interaction 

(AmericanPsychiatricAssociation 2013).  

A knock out mouse lacking Nlgn4 shows reduced interest in conspecific mice 

and reduced ultrasound vocalization in contact with a female (Jamain, et al. 

2008). Furthermore, the loss of Nlgn4 provokes a reduction in the number of 

glycerin receptors (GlyR) and leads to slower glycinergic miniature inhibitory 

postsynaptic currents (mIPSCs), as shown in a retina model (Hoon, et al. 
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2011). Mice lacking Nrxn1 demonstrate a decrease in miniature excitatory 

postsynaptic current (EPSC) frequency, and decreased evoked excitatory 

synaptic strength (Etherton, et al. 2009), however, behavioral characterization 

of the Nrxn1 knock out model is somewhat inconsistent (Etherton, et al. 2009; 

Grayton, et al. 2013; Laarakker, et al. 2012).  

Overall these data suggest an important role of synapse altered functionality 

in the autistic phenotype, where the neurexin-neuroligin-shank complex may 

be crucial for synapse stabilization and maturation, which occurs in the 

perinatal period, shortly before manifestation of the first signs of autism 

(Bourgeron 2009). 

Synaptic alterations were also suggested to play an important role in 

schizophrenia, another disorder of the neuropsychiatric spectrum (Yin, et al. 

2012). Genes encoding proteins involved in synaptic function were shown to 

play an etiological role in schizophrenia (Karlsgodt, et al. 2008; Stephan, et al. 

2006). Post mortem studies revealed altered expression of synaptic proteins 

in the brain tissue of schizophrenic patients (Eastwood, et al. 2001; Harrison 

and Eastwood 1998; Knable, et al. 2004). Furthermore, genes involved in 

regulation of synaptic transmitter release and synaptic plasticity were shown 

to regulate disease symptomatology, in particular cognitive performance of 

schizophrenic patients (Begemann, et al. 2010; Grube, et al. 2011).  

Interestingly, the Copy Number Variants (CNVs) of presynaptic NRXN1 were 

associated with both schizophrenia (Kirov, et al. 2008; Rujescu, et al. 2009; 

Walsh, et al. 2008) and autism (Kim, et al. 2008; Szatmari, et al. 2007). A 

genetic overlap based on rare structural variants can be seen between 

schizophrenia and autism (Sebat, et al. 2009). In a recent study, de novo 

mutations in genes, revealed by exome sequencing of >600 schizophrenia 

trios, were shown to overlap with de novo mutations identified in autism 

(Fromer, et al. 2014). 

1.1.4. D. melanogaster as an animal model for ASD 

 

Several Drosophila genes have been reported to be homologous to human 

neuroligins and neurexins, although none of them have a particular similarity 

to human orthologous genes.  
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Drosophila neuroligin homolog CG31146, also referred to as Drosophila 
neuroligin 1 (dnlg1) has been identified in an unbiased mutagenesis screen 

for genes that influence neuromuscular structure in flies (Banovic, et al. 2010). 

The study was mainly focused on neuromuscular junctions (NLJ), which serve 

as a model for synaptic formation and functioning in Drosophila (Collins and 

DiAntonio 2007), and was able to isolate mutations in dnlg1, resulting in NMJs 

with a strongly reduced number of synaptic boutons. It was shown that dnlg1 

is specifically expressed and functionally required at the postsynaptic side of 

the NMJ, which corresponds to the data about postsynaptic localization of 

neuroligins in humans, as described in chapter 1.1.3. The study of Banovic et 

al. was unable to identify any expression of this gene in the central nervous 

system (Banovic, et al. 2010). 

A Drosophila gene named gliotactin, has been suggested as the most 

homologous to NLGN3 in humans (Gilbert, et al. 2001). Gliotactin is 

expressed in the glia, associated with the olfactory neurons from the maxillary 

palp and antennae (Gilbert, et al. 2001), which corresponds to the data in 

mice (Radyushkin, et al. 2009). However, despite the fact that the knock out 

embryos are morphologically normal, they are unable to hatch and were 

paralyzed (Zeev-Ben-Mordehai, et al. 2003). The latter obviously made 

behavioral tests of knockout flies impossible.  

Another Drosophila gene CG13772, also referred to as Drosophila 
neuroligin 2 (dnlg2), codes for a protein which has a similar structure to 

vertebrate neuroligins: an N-terminal extracellular acetylcholinesterase-like 

domain, a single transmembrane region, and a C-terminal cytoplasmic region 

with a conserved PDZ binding motif (Sun, et al. 2011). Dnlg2 is expressed in 

the embryonic brain, ventral nerve cord and glutamatergic neuromuscular 

junction (NMJ) (Sun, et al. 2011). The same study has identified the strong 

co-localization of the dnlg2 with the Drosophila neurexin homolog, dnrxn, in 

the central nervous system and neuromuscular junction (NMJ), also outlining 

the important role of dnlg2 in synaptic development. The expression of this 

gene in the CNS was widespread and uniform and was not preferentially 

localized with any specific neurotransmitter or neurohormone.  

As mentioned previously, the expression analysis of dnlg2 high levels in the 

brain and ventral nerve cord (VNC) of third-instar larvae, and co-localization 
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with dnrxn (Sun, The Journal of Neuroscience, 2011). The same co-

localization has been seen in NMJ. This data goes along with the fact that 

human neuroligins and dnrxn form a complex in the synaptic region, 

performing important functions in synaptic transmission and differentiation as 

discussed in chapter 1.1.3. Dnrxn is reported to be homologous to vertebrae 

α-Neurexin (26% amino acid identity with the rat a-neurexin 1) (Zeng, et al. 

2007).  

No additional neurexin-like genes or transcripts in Drosophila were revealed. 

A gene named Drosophila neurexin IV has been identified as an analog of the 

human Neurexin family gene CASPR (Baumgartner, S, Cell, 1996); however, 

as mentioned by Nguyen and Südhof (Nguyen and Sudhof 1997), it cannot be 

regarded as a human neurexin homolog distantly homologous to vertebrate 

neurexins, as it has a different domain structure and is expressed in glia but 

not neurons (Banerjee and Bhat 2007).  

Dnrxn expression in the central nervous system is maintained at all stages of 

development (Zeng, et al. 2007). It was shown that the dnrx null mutants are 

viable, fertile, but have a reduced lifespan. The dnrx null mutants have fewer 

synaptic boutons, but more active zones per bouton (similar to dnl2 null 

mutants); however, in contrast to dnl2 null mutants, they show a decrease in 

transmitter release (Li, et al. 2007; Sun, et al. 2011).  

While Sun et al. (Sun, et al. 2011) have focused on locomotor activity of 

different mutants lacking dnrx and/or dnlg2 (a homozygous mutant of dnl2 that 

lacked one copy of dnrx, and a homozygous mutant for dnrx that lacked one 

copy of dnl2), Zeng et al. (Zeng, et al. 2007) looked at associative learning in 

larvae of dnrx mutant flies. The associative learning was reduced in 

hypomorphic mutants and more severely reduced in null mutant larvae. These 

findings provide some grounds to further test the central nervous system 

function in dnrx mutant flies. 

Banovic et al. failed to detect any direct interactions between dnrx and dnlgn1 

in neuromuscular junctions (Banovic, et al. 2010). However, dnrx and dnlgn1 

mutants shared phenotypical similarities in abnormalities of synapse structure, 

while dnlgn1 mutations resulted in more severe disturbances.  

Thus, given the fact Drosophila dnrx and dnlg2 mutants have not been 

previously tested for social interaction, performing such behavioral 
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experiments may deliver first evidence for Drosophila to be used as a model 

organism for autism spectrum disorders.  

One approach to investigate social behavior in Drosophila is to study their 

courtship behavior. The courtship behavior in Drosophila includes several 

steps (Greenspan and Ferveur 2000). The male orients towards the female, 

taps the female’s abdomen and thorax with a foreleg, and extends the wing 

nearest to the female. Vibration of the wing generates the courtship song. 

Then comes the licking of the female’s genitalia and an attempt to copulate. 

The courtship song is only produced by males and has been shown in 

playback experiments to reduce the female locomotion and to increase her 

receptivity (Gailey, et al. 1986). The song consists of a continuous oscillation 

known as the “sine song”, followed by pulses, named the “pulse song”, which 

are separated by so called interpulse intervals (IPI) (Tauber and Eberl 2003). 

The song can be characterized by various parameters (Gleason 2005), which 

are important in species recognition to prevent interbreeding. 

In this study, several approaches using the readouts of the courtship behavior 

were used, which will be discussed in respective chapters and in the attached 

original publication in the appendix (Hahn, et al. 2013).  

 

1.2 Rapid cycling syndrome 

1.2.1 Clinical characteristics of rapid cycling bipolar disorder  

The rapid cycling syndrome is a subtype of the bipolar disorder, which is 

characterized by the presence of manic phases and/or depressive phases. A 

manic episode is described as a distinct period of abnormally elevated, 

expansive or irritable mood, causing impairment in social functioning, which is 

not attributed to any substance and is accompanied by at least three of the 

following symptoms: grandiosity, decreased need for sleep, pressure to keep 

talking, flight of ideas, increased distractibility, psychomotor agitation, and/or 

involvement in activities with potential painful consequences 

(AmericanPsychiatricAssociation 2013). Depressive episodes are 

characterized by the presence of at least five of the following symptoms: 

depressed mood, diminished interest in almost all activities, weight loss, 
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hyper- or insomnia, stable psychomotor retardation or agitation, loss of 

energy, feeling of guilt, diminished concentration, and/or suicidal ideations; 

these symptoms are not due to any substance consumption and lead to 

impairment in social and occupational functioning 

(AmericanPsychiatricAssociation 2013).  

Rapid cycling is listed in the DSM-5 as a specifier for bipolar disorder and it is 

mainly defined by the presence of at least four mood episodes in the previous 

twelve months that meet the criteria for a manic, hypomanic or major 

depressive episode (AmericanPsychiatricAssociation 2013). Faster switches 

in polarity, namely in the course of weeks to days (ultradian) and faster than 

once in 24 hours (ultra-rapid) have also been described (Kramlinger and Post 

1996).  

The term “rapid cycling” was first coined in a study aiming to identify the 

clinical features leading to unsuccessful treatment by lithium (Dunner and 

Fieve 1974). Indeed, rapid cycling syndrome was later shown to have a much 

higher clinical non-improvement rate than non-rapid cycling bipolar disorder 

and not only upon treatment with lithium (Tondo, et al. 2003).  

This data, in combination with a relatively high prevalence of rapid cycling 

among bipolar patients (>12%) (Kupka, et al. 2003), provides sufficient 

reasons for exploring the molecular mechanism underlying this syndrome.  

1.2.2 Potential involvement of prostaglandins in bipolar disorder: 

preliminary evidence 

Begemann and colleagues published a case report, describing a female case 

with an extreme rapid cycling syndrome that has been monitored for over 20 

years (Begemann, et al. 2008). The case report describes a female patient, 

born in 1945, with no prior medical illness and no evidence of 

neuropsychiatric illnesses in her family. In 1991, she became ill with rapid 

cycling syndrome of extreme severity and kept a diary of her illness, which 

was used to reconstruct 108 cycles over a 16-year period. The time series 

suggests complex rhythms in periodicity with a mean total cycle length of 53 ± 

21 d, switching within hours between manic (mean 28 ± 14 d) and depressed 

(mean 26 ± 14 d) episodes without normal intervals.  
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To investigate possible underlying biological mechanisms, a strategy to 

identify genes differentially expressed in the manic and depressed phases 

has been applied. Firstly, eight blood samples were collected during two 

consecutive depressed and manic episodes on two consecutive days each. 

After screening by microarrays GeneChip Human Genome U133 Plus 2.0 

(Affymetrix, Santa Clara, CA, USA), the data set was submitted to two 

bioinformatic processing steps. Any genes that differed between the two 

consecutive days within a particular episode were excluded  (arbitrary daily 

variation). Further genes were excluded that were differentially expressed 

within the two depressed or within the two manic episodes (arbitrary monthly 

or inter-episode variation of the same mood state). The expression patterns of 

the remaining depressed and manic episode genes were subsequently 

compared. Genes found to be differentially expressed by microchip screening 

were confirmed by qRT-PCR in all samples (blood sampling was extended 

beyond the initial screening period, and regulated genes were again validated 

more than one year later). 

Among other groups of genes, which have shown an episode specific 

expression pattern, the prostaglandin metabolism related genes PTGDS 

(lipocalin-type prostaglandin D synthetase) and AKR1C3 (prostaglandin D2 

11-ketoreductase) were shown to have a higher expression in depressed 

episodes, and have been addressed further. A clinical experiment using a 

treatment approach was completed by applying a compassionate use of the 

cyclooxygenase inhibitor Celecoxib (Celebrex, Pfizer, 2 × 200 mg daily oral). 

A significant improvement in clinical symptomatology upon treatment with 

Celecoxib as measured with Hamilton Rating Scale for Depression (HAMD), 

Young Mania Rating Scale (YMRS) and Positive and Negative Syndrome 

Scale (PANSS) was reported. 

Other studies also showed the effectiveness of COX2 inhibitors in the 

treatment of affective disorders. For example, a double blind add-on study by 

Müller et al. (Muller, et al. 2006) showed that Celecoxib was effective in 

reducing symptom severity in patients suffering from an acute depressive 

episode. This result was replicated in a study with a similar design three years 

later (Akhondzadeh, et al. 2009). Anti-inflammatory drugs from other classes, 

namely polyunsaturated fatty acids and anti-TNFalpha, were also effective in 
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depression treatment, as recently reviewed by Fond et al. (Fond, et al. 2013). 

These treatment approaches were mostly derived from the idea of underlying 

inflammatory pathology in affective states (Leboyer, et al. 2012).  

Interestingly, prostaglandin related genes have previously been shown to play 

an important role in hibernation. Specifically, Prostaglandin D2 (PGD2) shows 

increased expression levels in the brain during the torpor phase in chipmunks 

(Takahata, et al. 1996). Also, the mRNA levels of Prostaglandin D2 Synthase 

(PTGDS) declines significantly in the hypothalamus of ground squirrels across 

the hibernation cycle (O'Hara, et al. 1999), whereas intracerebral injections of 

PGD2 promotes sleep in rats and monkeys (Hayaishi 1999; Onoe, et al. 1988). 

These findings allow parallels to be drawn between rapid cycling syndrome 

and hibernation (Begemann, et al. 2008). 

1.2.3 Key players of the prostaglandin pathway 

One key player in the prostaglandin pathway, which has been used as a 

clinical target for decades, is cyclooxygenase (COX), also named 

Prostaglandin-endoperoxide synthase (PTGS), which catalyzes the synthesis 

Figure 1 Key players of the Prostaglandin Pathway, modified from Gurvich et al, in 

press 
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of Prostaglandin G2 (PGG2) and Prostaglandin H2 (PGH2) by arachidonic acid 

(AA) (DeWitt and Smith 1988).  

The COX gene has two isoforms, namely COX-1 and COX-2, which share a 

great structural and biochemical similarity, and both have arachidonic acid as 

a substrate; however, COX-1 activity is physiological, whereas COX-2 activity 

is mostly induced and pathological (Vane, et al. 1998). COX-2 is expressed 

also constitutively in the brain, specifically in the forebrain, and is enriched in 

the cortex, in the hippocampus in neuronal cells (Yamagata, et al. 1993), in 

microglia and in endothelial cells (Laflamme, et al. 1999). The two structurally 

and functionally interconnected sites (the cyclooxygenase site and peroxidase 

site) of the COX protein catalyze two consecutive reactions: first is the 

cyclooxygenase reaction, in which arachidonate and two O2 molecules are 

converted to PGG2, and then the peroxidase reaction occurs, in which PGG2 

is converted to PGH2 (Smith, et al. 2000). The Cyclooxygenase 2 coding gene 

has two isoforms, referred to as PTGS2, which has been identified in brain 

tissue (Knott, et al. 2000), and PTGDS2a, so far only identified in 

thrombocytes (Censarek, et al. 2004). 

Additionally, several metabolic pathways are possible. PGH2 can be converted 

to Prostaglandin D2 (PGD2) in a reaction catalyzed by Prostaglandin D2 

synthase (PTGDS) (Urade and Hayaishi 2000). 

PGD2 is then non-enzymatically converted to Prostaglandin J2 (PGJ2) and 

then to 15Δ - PGJ2 (Desmond, et al. 2003), which activates Peroxisome 

Proliferator–Activated Receptor Activator γ (PPARγ), a molecule important for 

the inhibition of pro-inflammatory signals (Dave and Amin 2013). In the 

presence of Aldo-keto reductase family 1 member C3  (AKR1C3), however, 

another pathway is activated. In this pathway, the protein AKR1C3, also 

referred to as type 5 17β- hydroxysteroid dehydrogenase (17β-HSD) due to 

its involvement in the steroid hormone metabolism (Lin, et al. 1997) and as 

prostaglandin F synthase (Matsuura, et al. 1998), exhibits two type of 

activities in the prostaglandin pathway. Firstly, PGH2 9,11-endoperoxide 

reductase activity catalyzes the formation of Prostaglandin F2 alpha (PGF2α) 

directly from PGH2, and secondly, PGD2 11-ketoreductase activity, which in 

the presence of NADPH catalyzes the formation of 9α,11β - PGF2 from PGD2 
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(Komoto, et al. 2004; Liston and Roberts 1985; Watanabe, et al. 1986). PGH2 

can also be converted to Prostaglandin E2 (PGE2) by Prostaglandin E 

synthase (PGES) (Nakanishi and Rosenberg 2013). Finally, PGH2 can be 

processed by NAD+-linked 15-hydroxyprostaglandin dehydrogenase 

(15PGDH), which leads to the formation of low biologically active 15-keto 

metabolites, which, taking into consideration the reciprocal interaction of 

15PGDH and COX-2, allows 15PGDH to be regarded as the enzyme 

responsible for the inactivation of prostaglandins (Tai, et al. 2006).  

1.3.1 Aims Part I 

The aim of the project related to autism was to (a) investigate the plausible 

contribution of normal variation in autism related synaptic genes as risk 

factors in a schizophrenic population, applying a case-control design, and (b) 

to further explore the contribution of these genes to social behavior, 

suggesting Drosophila melanogaster as an animal model.   

1.3.2 Aims Part II 

The aim in Part II of the study was to further investigate the role of 

prostaglandin related genes in the pathogenesis of the rapid cycling 

syndrome. For this purpose it was set to explore (a) whether the results 

published earlier by our group can be replicated in other rapid cyclers, (b) 

whether another gene involved in the prostaglandin metabolism of COX2 will 

also show phase dependent changes in mRNA levels, and (c) whether such 

changes can also be observed in a sample of patients suffering from non-

rapid cycling bipolar disorder and/or monopolar depression.  
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2. Methods 

2.1 Methods Part I  

2.1.1 GRAS population and healthy controls 

The Göttingen Research Association for Schizophrenia patient data collection 

has been extensively described elsewhere (Ribbe, et al. 2010). Briefly, in the 

time period between 2005 and 2008, a total of 1071 schizophrenic patients 

were investigated by a travelling team all across Germany. For 1041 patients 

(66.7% men/ 33.3% women; mean age 39.54±12.55), the diagnosis of 

schizophrenia or schizoaffective disorder was confirmed by a careful re-check 

of diagnostic criteria.  

 

Healthy control subjects, who gave written informed consent, were voluntary 

blood donors and were recruited by the Department of Transfusion Medicine 

at the Georg-August-University of Göttingen according to national guidelines 

for blood donation. They fulfilled health criteria, confirmed by a pre-donation 

screening process containing standardized questionnaires and interviews, as 

well as hemoglobin, blood pressure, pulse, and body temperature 

determinations. Blood samples from a total of 2265 subjects were obtained 

(m/f= 1303/962) with the mean age of 33.8 ± 12.2 years, with a range from 18 

to 69 years. Participation as healthy controls for the GRAS sample was 

anonymous, with information restricted to age, gender, blood donor health 

state and ethnicity. 

 

2.1.2 Selection of the single nucleotide polymorphisms  

 

The selection of the single nucleotide polymorphisms (SNPs) was first 

performed by making an extensive database/ in silico analysis using the open-

access databases: The National Center for Biotechnology Information 

(NCBI)(Sherry, et al. 2001), The University of California Santa Cruz genome 
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browser (UCSC)(Kent, et al. 2002), Ensembl genome browser (Flicek, et al. 

2013), and data from the Hapmap project (HapMapConsortium. 2003).  

 

Criteria for selection 

 

The SNPs for the genes NLGN3, NLGN4X, NLGN4Y, NRNX1, and SHANK3 

were selected to be of a relatively equal distance from each other across the 

gene. The linkage disequilibrium – the non-random association of alleles – 

was taken into account, so that each SNP would at most report by itself for 

the corresponding region, not serving as a proxy for another selected marker.  

 

To make sure that the study has enough power to detect the plausible effects, 

the minor allele frequencies (MAF) were selected so that most of the selected 

SNPs had a MAF of around 0.5 and only few of them had the MAF around 

0.15.  

 

2.1.3 Genotyping procedures 

 

DNA from whole blood was isolated using the JETQUICK Blood & Cell 

Culture DNA Spin Kit (Genomed GmbH, Löhne, Germany). Two vials EDTA - 

whole blood (S-Monovette® EDTA K2 Gel, Sarstedt, Germany), (ca 2,7 ml) 

were poured into one Falcon tube and mixed with 150 RNase A (Roche 

Diagnostics GmbH, Mannheim, Germany). Following the addition of 250 µl of 

Protease, the contents were mixed vigorously and 5 ml of K1 Buffer was 

added. The tubes were then incubated for 10 min at 70 °C; 5 ml of ethanol 

was added, mixed vigorously and the solution was put through a JETQUICK 

Maxi-spin Column. The column was centrifuged for 3 min at 2000 xg. The 

flow-through was discarded, 10 ml of KX Buffer was introduced to the column 

and the column was centrifuged for 5 min at 4000 xg. The flow-through was 

discarded, 10 ml of K2 Buffer was applied and the column was again 

centrifuged for 5 min at 4000 xg. Once more, the flow-through was discarded 

and the column was centrifuged for 17 min at 4000 xg. The column was put 

into a 50 ml Falcon tube and 1 ml of 10 mM Tris-HCl Buffer (pH 9.0;  
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preheated to 70 °C) was added. This mixture was incubated for 5 min at room 

temperature and centrifuged for 3 min at 4000 xg. The flow-through was 

collected into Eppendorf tubes. 

 

Genotyping was performed with simple probes, ordered from TIB Molbiol, 

Berlin, Germany.  Simple probes for overall 22 SNPs in the NLGN3, NLGN4X, 

NLGN4Y, NRNX1, and SHANK3 were ordered.  

 

First a test run with a limited sample set of human DNA and a water negative 

control was performed for each SNP probe to determine the best master mix 

solution: 
Master mix Solution Reagent Mix Genotyping Mix MgCl2 Water 

1 1:10,3mM MgCL2 0,5 µl 1 µl 0,6 µl 5,9 µl 

2 1:10,1,5mM MgCL2 0,5 µl 1 µl - 6,5 µl 

3 1:20,3mM MgCL2 0,5 µl 0,5 µl 7,2 µl 6,7 µl 

4 1:10,2,5mM MgCL2 0,5 µl 0,5 µl 2,4 µl 6,7 µl 

  

The test runs with 2 µl of DNA per sample and 8 µl of the described master 

mixes were performed in the Roche LC480 Light Cycler (Roche Diagnostics 

GmbH, Mannheim, Germany). The master mix for each SNP was selected 

according to the best Melting Curves profile as compared to those provided by 

TIB Molbiol. Furthermore, the genotyping of all subjects and healthy controls 

was performed using the best master mix in the Multiwell plate 384 (Roche 

Diagnostics GmbH, Mannheim, Germany).  

The Melting curves were analyzed using the LightCycler® 480 Software, 

Version 1.5. The Tm-calling and the curve shape for each patient was 

checked and in case of unusual curve shape or shifted peak melting 

temperature (as compared to the profile provided by TIB Molbiol for each 

probe), the PCR run was repeated.  

2.1.5 Case – control association study 

The case – control study was performed using the SPSS Statistics 17.0 for 

Mac (BM Deutschland GmbH, Ehningen, Germany). The Pearson Chi-square 
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test was used to assess if the genotype frequencies were different between 

the case and the control group. 

2.1.6 Drosophila melanogaster experiments 

2.1.6.1 dnrxn1 –mutant animals  

Originally two populations of balanced flies were obtained: DfExcel6191/Tm6b 

and nrx-1241 / Tm3c. Tubby pupae of DfExcel6191/Tm6b were collected and 

virgin females were separated. This was done based on the following criteria: 

female virgin flies have larger abdomens, the abdomen is very tender to the 

touch and white colored, and finally, females with a greenish spot on their 

dorsal part (meconium) are virgins. They were crossed against nrx-1241 / 

Tm3c males. The progeny of nrx-1241/DfExcel6191 was collected, first 

selecting the non-Tubby pupae and then the fetched flies lacking the Serrate 

maker. Virgin females were collected. Males and females were separated 

from each other in groups until the experiments.  

2.1.6.2 dnl2 –mutant animals  

dnl2-deficient mutant lines (dnl2KO17, dnl2KO70), generated by targeted knock 

out of the dnl2 genomic locus (Sun, et al. 2011), were obtained. Virgin 7 days 

old decapitated wild type females were used as courtship targets and males 

were between 7 and 12 days of age and socially naïve. All recordings were 

performed at temperature (20-22°C). Results reported are taken from dnl2KO17 

flies, whereas trial tests with dnl2KO70 flies have shown similar, though 

sometimes weaker effects in acoustic communication effects. A detailed 

description is presented in the original publication (Hahn, et al. 2013), see 

Appendix. 

 

2.1.6.3 Sound and video recordings  

Acoustic signals were recorded in a sound proof chamber with a microphone 

(Bruel&Kjaer Type 4165), and then amplified (Bruel&Kjaer Type 2619 and 

5935) and directly digitized. The software Audacity 1.3.12 beta 

(http://audacity.sourceforge.net) was used for data acquisition and analysis. 
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The total duration of sine and pulse songs was determined between the 1st 

and 6th minutes of the recording period. From each recorded male (where 

possible) three representative song sequences, that contained both pulse and 

sine song, were selected for the following analysis. Frequency spectra of 

pulse songs and sine songs were determined by Fourier transformation with 

2048 Hanning window. The dominant frequency component was determined 

from these spectra. Interpulse intervals were determined for pulse song 

periods. 

Video recording using a Logitec Web-Camera were done simultaneously with 

the sound recording.  

The experimenter was blinded to genotypes during data acquisition and 

analysis.  

 

2.1.6.4 Experimental setting 

For nrnx-1 mutant flies, courtship songs were recorded during a 10-minute 

interaction between one 4-7 day old mutant (nrx-1241/DfExcel6191) male or 

one control (Canton-S) male and one intact virgin 4-7 day old wild type 

Canton-S female at room temperature. Additionally, 4-7 day old Canton S 

males were tested during interaction with 4-7 day old virgin mutant (nrx-

1241/DfExcel6191) females under the same conditions. Flies were tested in 

two sets, on separate days, at the same time of the day (around mid-day). 

The experimenter was blind to the genotypes while performing the 

experiments and analyzing the data.  

 

The experimental setting used in testing the dnl2 mutant flies is described in 

the original publication (Hahn, et al. 2013) in the appendix. Here is a short 

summary.  

In an inter-individual distance assay ten mature flies of the same genotype 

were put in a featureless arena. After an exploration period, their individual 

positions were recorded, analyzed by ivTools software suite (developed by 

Lindemann & Braun, https://opensource.cit-ec.de/projects/ivtools) and MatLab 

(Mathworks inc.) was used to calculate the median distance of each fly from 

all other flies in the assay. The competitive courtship assay was performed 
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with a decapitated female and two males in a round arena; videos were 

recorded. Courtship and agonistic interactions during the 1st, 4th, 7th, 10th 

and 13th minute were scored through analysis of individual frames by an 

observer blind to the genotype of the flies. To assess the circadian locomotor 

activity, the flies were put into a glass tube (3 mm in diameter and 7 mm in 

length) sealed with food at one end and with a gas permeable cap on the 

other. The tube was put into a special incubator (Tritech Research, 

CircKinetics). Midline crossings of individual flies were counted over 96 hours.  

2.2 Methods Part II 

2.2.1 Patients with bipolar disorder and monopolar depression: 

cohort collection 

The detailed description of Methods Part II is presented in the manuscript 

(Gurvich et al in press) attached in the Appendix. Here a short summary.  

The collection of data and samples has been approved by the ethical 

committee of the Georg-August-University of Göttingen. All patients have 

signed an informed consent. The recruitment took place between 2010 and 

2013. Four rapid cycling patients (3 males and 1 female) were included in the 

study, as well as 43 patients with non-rapid cycling bipolar affective disorder 

and 97 monopolar depressed patients. All patients kept their preexisting 

medication and no systematic intervention was undertaken in this study.  

2.2.2 Psychopathology rating 

Psychopathology was rated using standard scores: Hamilton Depression 

Rating Scale (HAMD) (Hamilton 1967), Beck Depression Inventory (BDI) 

(Beck, et al. 1961), Yong Mania Rating Scale (YMRS) (Young, et al. 1978) 

and Positive and Negative Syndrome Scale (PANSS) (Kay, et al. 1987). 

2.2.3 Isolation of peripheral blood mononuclear cells (PBMCs) 

Blood samples, obtained via phlebotomy into CPDA vials (Citrate Phosphate 

Dextrose Adenine, Sarstedt, Germany) underwent the standard Ficoll-Paque 

Plus isolation procedure (GE Healthcare, Munich, Germany). RNA isolation 

was performed using the miRNeasy Mini Kit (Qiagen, Hilden, Germany). The 
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cDNA was transcribed from 1µg of total RNA with a mixture of oligo-dT- and 

hexamer primers, dNTPs, DTT and 200U SuperScriptIII (Life Technologies 

GmbH, Darmstadt, Germany). The mixture was incubated for 10min at 25°C, 

45min at 50°C and 45min at 55°C. 

2.2.4 qRT-PCR 

For the qRT-PCR, the cDNA was diluted 1:25 in a 10µl reaction mix, 

containing 5µl SYBR Green (Life Technologies GmbH, Darmstadt, Germany) 

and 1pmol of each primer.  

The following primer sequences were used:  

PTGDS: 5’ CGGCTCCTACAGCTACCG 3’ (forward)  

5’ CAGCGCGTACTGGTCGTA 3’ (reverse) 

AKR1C3: 5’ CATTGGGGTGTCAAACTTCA 3’ (forward)  

5’ CCGGTTGAAATACGGATGAC 3’ (reverse) 

COX2PAN: 5’ GAGCAGGCAGATGAAATACCAG 3’ (forward)  

5’ GTTGGAAGCACTCTATGGTGACA 3’ (reverse) 

PTGS2:  5’ GATCCCCAGGGCTCAAACAT 3’ (forward)  

5’ TCATATTTACGGTGAAACTCTGG 3’ (reverse) 

P2RX7:  5’ AGGAAGAAGTGCGAGTCCAT 3’ (forward)  

5’ CTGCTGGTTCACCATCCTAA 3’ (reverse) 

 

The samples were run with technical triplicates on the LightCycler480 system 

(Roche Diagnostics GmbH, Mannheim, Germany). 

A detailed procedure description is provided in the manuscript attached in the 

Appendix.   

2.2.5 Statistical analysis 

All numerical results are presented as mean±SD in the text and mean±SEM in 

the figures. Student t test (two-tailed or one-tailed if applicable) was 

performed using GraphPad Prism version 5.04 for Windows, GraphPad 

Software, San Diego California USA. 
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2.3 Materials 

2.3.1 Chemicals 

Product Supplier Product number 
Chloroform Merck	
  KGaA,	
  Darmstadt	
  (Germany) 102445 

Ethanol	
  99,8%	
   Sigma-­‐Aldrich,	
  Steinheim	
  (Germany) 603002005 

Ficoll-­‐Paque	
  PLUS	
  	
   GE	
  Healthcare	
  Munich	
  (Germany)	
   17144003	
  

Power	
  SYBR	
  Green Life	
  Technologies	
  GmbH,	
  Darmstadt	
  (Germany) 4367659 

 

2.3.2 Consumables 

Product Supplier Product number 
S-­‐Monovette	
  CPDA SARSTEDT	
  AG	
  &	
  Co.,	
  Nümbrecht	
  (Germany) 051167001 

Microwell	
  plate	
  96 Thermo	
  Fisher	
  Scientific,	
  Roskilde	
  (Denmark) 269620 

Multiwell	
  plate	
  384 Roche	
  Diagnostics,	
  Mannheim	
  (Germany) 04729749001 

 

2.3.3 Equipment 

Product Supplier 
EpMotion	
  robot	
  5075 Eppendorf	
  AG,	
  Hamburg	
  (Germany) 

Light	
  Cycler	
  480 Roche	
  Diagnostics	
  GmbH,	
  Mannheim	
  (Germany) 
Water	
  purification	
  system	
  arium	
  611 Sartorius,	
  Göttingen	
  (Germany) 

 

Centrifuges 
Megafuge	
  16R Thermo	
  Fisher	
  Scientific,	
  Bonn	
  (Germany) 
Megafuge	
  3.0 Thermo	
  Fisher	
  Scientific,	
  Bonn	
  (Germany) 

Mini	
  Spin	
  Plus Eppendorf	
  AG,	
  Hamburg	
  (Germany) 

Biofuge	
  Haemo Thermo	
  Fisher	
  Scientific,	
  Bonn	
  (Germany) 
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2.3.4 Software 

Product  Supplier 
Audacity	
  1.3.13	
  beta	
   http://audacity.sourceforge.net/	
  

GraphPad	
  Prism	
  5 GraphPad	
  Software	
  Inc.,	
  La	
  Jolla	
  (USA) 

LightCycler®	
  480	
  Software,	
  Version	
  1.5 Roche	
  Diagnostics	
  GmbH,	
  Mannheim	
  (Germany) 

SPSS IBM	
  Deutschland	
  GmbH,	
  Ehningen	
  (Germany) 

2.3.5 Enzymes 

Product Supplier Product number 
RNase	
  A Roche	
  Diagnostics	
  GmbH,	
  Mannheim	
  (Germany) 10109169001 

SuperScript	
  III Life	
  Technologies	
  GmbH,	
  Darmstadt	
  (Germany) 18080-­‐044 

 

2.3.6 Kits 

Product Supplier Product number 
miRNeasy	
  Mini	
  Kit Qiagen,	
  Hilden	
  (Germany) 217004 

JETQUICK	
  Blood	
  &	
  Cell	
  Culture	
  DNA	
  Spin	
  Kit Genomed	
   GmbH,	
   Löhne,	
  

(Germany) 

440	
  050 
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3. Results 

3.1 Results Part I 

3.1.1 SNPs selection 

 

NLGN3 
 

The gene size of 26,3 KB allowed distribution of the SNPs at nearly equal 

distances (5-7 KB) and the detection of possible signals from each part of the 

gene. Figure 2 shows the position of the SNPs on the gene.    

 
Figure 2. Schematic representation of the NLGN3 gene. Lines represent introns, empty 

boxes represent exons, filled boxes represent 3’- and 5’ UTR regions. The distances 

between exons are written in black. Distances between SNPs are written in purple.   

 

All SNPs in the NLGN3 gene met the selection criteria for minimal allelic 

frequency. The minimal allelic frequencies and the SNP alleles are presented 

in the table below. 

 

SNP MAF Alleles 

rs11795613 0.5 A:G 

rs5981079 0.456 T:C 

rs10127395 0.482 T:G 

rs4844287 0.456 T:C 
 

Table 1. Single nucleotide polymorphisms (SNPs) in the NLGN3 gene. The minor allele 
frequency (MAF) for each SNP and the SNP alleles are shown.  
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SHANK3 
 

This gene is 58,57 KB in size and was covered by nine SNPs, which are 

shown in the figure below.  

 
Figure 3: Schematic representation of the SHANK3 gene. Lines represent introns, 

empty boxes represent exons, filled boxes represent 3’ UTR region. 

 

Table 2 shows the characteristics of the SNPs selected for SHANK3. Eight 

SNPs have minor allele frequencies close to 0.5. Although rs2301584 has a 

smaller MAF, its location is in the 3’UTR region, involved in expression 

regulation (Barrett, et al. 2012; Pichon, et al. 2012). Another SNP, rs9628185, 

is situated 3 KB away from the transcription start site, in the promoter region, 

which in case of significant association signals might shed light directly onto 

expression regulation mechanisms (Ayoubi and Van De Ven 1996; Juven-

Gershon and Kadonaga 2010). 

 

SNP MAF Alleles 

rs9628185  0.478 T:C 

rs9616915 0.491 C:T 

rs13055562 0.491 A:G 

rs739365 0.321 C:T 

rs2040487 0.429 A:G 

rs6009951 0.402 C:T 

rs6010065 0.441 G:C 

rs8137951 0.286 G:A 

rs2301584 0.164 G:A 
Table 2 Single nucleotide polymorphisms (SNPs) in the SHANK3 gene. The minor allele 

frequency (MAF) for each SNP and the SNP alleles are shown 
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NLGN4X 
 

Since the gene size, at 337,8KB, is relatively big, the SNPs were selected to 

specifically cover the gene region, where mutations have been reported to 

cause autism, i.e. in exon 5: K378R reported by (Pampanos, et al. 2009), 

1253delAG reported by (Laumonnier, et al. 2004) and 1186insT reported by 

(Jamain, et al. 2003). The rs2290488 was chosen due to its position in the 

exonic region of the splice variant NM_020742.3, while the slice variants 

NM_181332.2 and NM_001282145.1 map to the intronic region (Kent, et al. 

2002). The rs1455316 SNP is 3237 base pairs away from the coding 

sequence start at the 5’ end.  

 
Figure 4 Schematic representation of the NLGN4X gene. Lines represent introns, 

empty boxes represent exons, filled boxes represent 3’ and 5’ UTR region 

 

 

SNP MAF Alleles 

rs1455316  0.244 G:A 

rs2290488 0.4 C:G 

rs5961886 0.494 C:T 

rs1921360 0.325 G:T 

rs3810686 0.3 C:T 
Table 3 Single nucleotide polymorphisms (SNPs) in the NLGN4X gene. The minor allele 

frequency (MAF) for each SNP and the SNP alleles are shown 
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NLGN4Y 
Due to a repressed meiotic recombination in the y-chromosome (Sun and 

Heitman 2012) only two markers were chosen. Both have relatively low MAF, 

since they are situated on an infrequently recombining chromosome, but both 

lie in close vicinity to the exons (Fig 

5).

 
Figure 5 Schematic representation of the NLGN4Y gene. Lines represent introns, 

empty boxes represent exons, filled boxes represent 3’ UTR and 5’ UTR regions 

 

SNP MAF Alleles 

rs7067486 0.3 G:A 

rs16980459 0.15 A:G 
Table 4 Single nucleotide polymorphisms (SNPs) in the NLGN4Y gene. The minor allele 

frequency (MAF) for each SNP and the SNP alleles are shown 

 
 
NRXN1 
The gene is very big in size, spreading over 1 MB on chromosome 2. The 

extensive coverage of the gene with SNPs positioned in regular intervals 

would be difficult to accomplish due to its big size. Thus, two markers were 

selected and both are situated in the UTR- regions.  

 
Figure 6 Schematic representation of the NRXN1 gene. Lines represent introns, empty 

boxes represent exons, filled boxes represent 3’ UTR and 5’ UTR regions 
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SNP MAF Alleles 

SNP2 0.2 C:A 

SNP1 0.25 A:G 
Table 5 Single nucleotide polymorphisms (SNPs) in the NRXN1 gene. The minor allele 

frequency (MAF) for each SNP and the SNP alleles are shown 

 

3.1.2 Case-control association study 

All SNPs fulfilled the Hardy- Weinberg equilibrium as shown in Table 6. 

SNP P cases P controls 

NLGN3 (women) 

rs11795613 0,87 0,75 

rs5981079 0,59 0,99 

rs10127395 0,47 0,61 

rs4844287 0,42 0,55 

SHANK3 

rs9628185 0,33 0,98 

rs9616915 0,98 0,97 

rs13055562 0,93 0,22 

rs739365 0,98 0,70 

rs2040487 0,25 0,99 

rs6009951 0,66 0,84 

rs6010065 0,81 0,99 

rs8137951 0,20 0,99 

NLGN4X (women) 

rs1455316 0,56 0,99 

rs2290488 0,94 0,72 

rs5961886 0,77 0,33 

rs1921360 0,98 0,90 

rs3810686 0,98 0,99 
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NRXN1 

rs35228545 0,65 0,48 

rs118855824 0,79 0,49 
Table 6 Test for deviation from Hardy-Weinberg-Equilibrium (HWE) for NLGN3 (for 

women), SHANK3, NLGN4X (for women), and NRXN1. 

 

 

 

The case control study did not deliver any significant results. Table 7 lists the 

results of genomic comparisons for each SNP. For genes in the sex 

chromosomes, analysis was performed separately for men and women. 

 
NLGN4X  

 Genotypes P-value 

rs1455316 (MEN) C T 

0.459 Cases (n=691) 514 (74.4%) 177(25.6%) 

Controls (n=657) 477 (72.6%) 180 (25.6%) 

rs2290488  (MEN)   G C 

0.980 Cases (n=700) 441 (63.0%) 259(37.0%) 

Controls (n=661) 416 (62.3%) 245 (37.1%) 

rs5961886 (MEN) C T 

0.912 Cases (n=699) 278 (39.8%) 421(60.2%) 

Controls (n=660) 265(40.2%) 395 (59.8%) 

rs1921360 (MEN) G T 

0.128 Cases (n=692) 389 (56.2%) 303(43.8%) 

Controls (n=660) 398 (60.3%) 262 (39.7%) 

rs3810686 (MEN) C T 

0.209 Cases (n=700) 401 (57.3%) 299(42.7%) 

Controls (n=663) 402 (60.6%) 261 (39.4%) 

 

rs1455316 (Women) CC TT TC 

0.306 Cases (n=339) 186 (54.9%) 28(8.3%) 125(36.9%) 

Controls (n=461) 228 (49.5%) 40(8.7%) 193(41.9%) 

rs2290488 (Women) GG CC GC 

0.305 Cases (n=340) 137 (40.3%) 43(12.6%) 160(47.1%) 

Controls(n=461) 173 (37.5%) 76(16.5%) 212(46.0%) 
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rs5961886 (Women) CC TT TC 

0.298 Cases (n=339) 53 (15.6%) 132(38.9%) 154(45.4%) 

Controls(n=462) 58 (12.6%) 172(37.2%) 232(50.2%) 

rs1921360 (Women) GG TT TG 

0.866 Cases (n=334) 108 (32.3%) 64(19.2%) 162(48.5%) 

Controls(n=461) 157 (34.1%) 84 (18.2%) 220(47.7%) 

rs3810686 (Women) CC TT TC 

0.695 Cases (n=339) 108 (31.9%) 66(19.5%) 165(48.7%) 

Controls(n=462) 158(34.2%)     81(17.5%) 223(48.3%) 

 

NLGN3  

 Genotypes P-value 

rs11795613 (MEN) A G 

0.938 Cases (n=701) 376 (53.6%) 325(46.4%) 

Controls (n=663) 357 (53.8%) 306(46.2%) 

rs5981079 (MEN) T C 

0.988 Cases (n=701) 418 (59.6%) 283(40.4%) 

Controls (n=662) 395 (59.7%) 267 (40.3%) 

rs10127395 (MEN) T G 

0.993 Cases (n=699) 424 (60.7%) 275(39.3%) 

Controls (n=663) 402 (60.6%) 261(39.4%) 

rs4844287 (MEN) T C 

0.774 Cases (n=701) 431 (61.5%) 270(38.5%) 

Controls (n=662) 402 (60.7%) 260 (39.3%) 

 

rs11795613 (Women) AA GG GA 

0.672 Cases (n=340) 102 (30.0%) 74(21.8%) 164(48.2%) 

Controls (n=461) 128 (27.8%) 111 (24.1%) 222(48.2%) 

rs5981079 (Women) TT CC TC 

0.069 Cases (n=340) 141 (41.5%) 50 (14.7%) 149 (43.8%) 

Controls (n=461) 155 (33.6%) 82 (17.8%) 224 (48.6%) 

     

rs10127395 (Women) TT GG TG 

0.827 Cases (n=340) 145 (42.6%) 49(14.4%) 146 (42.9%) 

Controls (n=462) 187 (40.5%) 69 (14.9%) 206 (44.6%) 

     

rs4844287 (Women) TT CC TC 0.907 
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Cases (n=340) 146 (42.9%) 49 (14.4%) 145 (42.6%) 

Controls (n=461) 191 (41.4%) 67 (14.5%) 203 (44.0%) 

 

SHANK3 

 Genotypes P-value 

rs9628185 TT CC TC 

0.476 Cases (n=1040) 281 (27.0%) 263 (25.3%) 496 (47.7%) 

Controls (n=1128) 286 (25.4%) 275 (24.4%) 567 (50.3%) 

rs9616915 TT CC TC 

0.843 Cases (n=1039) 236 (22.7%) 288 (27.7%) 515 (49.6%) 

Controls (n=1130) 245 (21.7%) 319 (28.2%) 566 (50.1%) 

rs13055562 GG AA GA 

0.614 Cases (n=1006) 198 (19.7%) 318 (31.6%) 490 (480.7%) 

Controls (n=1091) 231 (21.2%) 349 (32.0%) 511 (46.8%) 

rs739365 TT CC TC 

0.314 Cases (n=1036) 95 (9.2%) 507(48.9%) 434(41.9%) 

Controls (n=1128) 123 (10.9%) 525 (46.5%) 480(42.6%) 

rs2040487 GG AA GA 

0.333 Cases (n=993) 192 (19.3%) 342(34.4%) 459(46.2%) 

Controls (n=1106) 187 (16.9%) 385(34.8%) 534(48.3%) 

rs6009951 CC TT CT 

0.814 Cases (n=1039) 347 (33.4%) 173(16.7%) 519(50.0%) 

Controls (n=1030) 392 (34.7%) 183 (16.2%) 555 (49.1%) 

rs6010065 GG CC CG 

0.059 Cases (n=1033) 305 (29.5%) 206(19.9%) 522(50.5%) 

Controls (n=1130) 298 (26.4%) 269 (23.8%) 563(49.8%) 

rs8137951 GG AA GA 

0.096 Cases (n=1036) 519 (50.1%) 72(6.9%) 445(43.0%) 

Controls (n=1129) 542 (48.0%) 107(9.5%) 480(42.5%) 

 

NLGN4Y 

rs7067486 A G 

0.058 Cases (n=692) 310 (44.8%) 382(55.2%) 

Controls (n=660) 262 (39.7%) 398(60.3%) 

rs16980459 A G 

0.059 Cases (n=696) 640 (92.0%) 56(8.0%) 

Controls (n=659) 623 (94.5%) 36(5.5%) 
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NRXN1 

rs35228545 AA GG AG 

0.323 Cases (n=1039) 508 (48.9%) 103(9.9%) 428(41.2%) 

Controls (n=1127) 534 (47.4%)  97(8.6%) 496(44.0%) 

     

rs118855824 AA CC AC 

0.118 Cases (n=1035) 33 (3.2%) 716(69.2%) 286(27.6%) 

Controls (n=1126) 34 (3.0%) 735 (65.3%) 357(31.7%) 

Table 7 Case - control study of the synaptic genes in the GRAS population. P –value 

reported is derived from the genotypic comparisons.  
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3.1.3 Screen testing of dnrxn and D. melanogaster 

Sound recordings, obtained from Canton S (wild type) flies, demonstrated a 

normal pattern characteristic of courtship song for Drosophila melanogaster 

(Tauber and Eberl 2003). Figure 7 demonstrates how a male wild type fly 

switches repeatedly from sine to pulse song.  

 
Figure 7 Courtship song of a male Canton S D. Melanogaster. Sine (S) and Pulse (P) 

songs are highlighted. 

 

Figure 8 represents the pulse song of the Cantos S fly in an enlarged time 

scale. The average Inter Pulse Interval (IPI): IPI=36 (±3,8) milliseconds (Fig8). 

This corresponds to the normal average pulse song characteristics of the wild 

type Drosophila (Tauber and Eberl 2003). 

 

 
Figure 8 Pulse song of a Canton S drosophila in an enlarged time scale.  

The Interpulse Interval (IPI) is highlighted.  
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Figure 9 Spectral analysis of the sine song of the Canton S (wild type) male song. The 

Peak frequency is 190 Hz. 

Twelve trials were run in two sets of experiments. Eight mutant male flies and 

four male Canton S (wild type) were tested. Table 8 shows the duration of the 

sine and pulse songs of the nrx-1241/DfExcel6191 and control flies, 

measured between the 1std and 6th minutes of the recording period.  

Subject	
   Genotype	
   Sine	
  (sec)	
   Pulse	
  (sec)	
  

Set	
  1	
  

Male1 CS	
   10,5	
   4,5	
  

Male2 Mutant	
   silent	
   silent	
  

Male3 Mutant	
   6,5	
   2,4	
  

Male4 Mutant	
   silent	
   silent	
  

Male5 CS	
   silent	
   silent	
  

Set	
  2	
  

Male1 Mutant	
   <1	
   single	
  pulses	
  

Male2  Mutant	
   2	
   single	
  pulses	
  

Male3  CS	
   60	
   53	
  

Male4 Mutant	
   2	
   single	
  pulses	
  

Male5  Mutant	
   1	
   single	
  pulses	
  

Male6 CS	
   43	
   38	
  
Male7 Mutant	
   1	
   6,3	
  

Table 8 Courtship songs of male mutant nrx-1241/DfExcel6191 and control flies. The 

duration of the sine and pulse songs (where applicable) is shown. 
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Two of the eight flies did not produce any sound. The video recording has 

showed that they tried to initiate the courtship song production, but stayed 

with one wing extended and could not produce any sound, which is indicative 

of a severe locomotor impairment  (Fig 9). The other six male mutant nrx-

1241/DfExcel6191 flies produced sounds, however they were abnormal 

courtship songs. Thus, no pulse song was produced, which normally should 

contain from 2 to 50 pulses per train (Tauber and Eberl 2003), but single 

pulses were observed instead (Fig 10). The sine song produced by male 

mutant nrx-1241/DfExcel6191 flies was also abnormal. The overall length of 

the sine song of the mutant flies was shorter than that of wild type flies.  

 
Figure 10: Male mutant nrx-1241/DfExcel6191 tries to initiate the courtship song 

production, but the wing stays extended, indicating a locomotor impairment. 
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Figure 11: Male mutant nrx-1241/DfExcel6191 is only able to produce single pulses not 

accompanied by a sine song. 

 

The sine song produced my nrx-1241/DfExcel6191 flies also arrived in short 

bouts of about 0,1 seconds (Fig 12) and had abnormal spectral characteristics 

(max frequencies 646 Hz and 1175 Hz) as compared to the Canton S flies 

(max frequency 190 Hz) (Fig 9 and Fig13).  

 

 
Figure 12: Abnormal sine song (S) of nrx-1241/DfExcel6191 male fly. The song is 

produced in very short bouts, with reduced amplitude and accompanied  

by single pulses.  
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Figure 13: Spectrum analysis of the sine song of the nrx-1241/DfExcel6191 male fly 

shows abnormal characteristics of song; peak frequencies at 646 Hz and 1175 Hz.  

 

Additionally, the screen testing of nrx-1241/DfExcel6191 mutant male flies 

showed that the flies are either silent or produce a severely abnormal pattern 

of the courtship song, which is due to their severe locomotor impairment.  

3.1.4 Behavioral assay of the dnl2 mutant flies 

The detailed description of the results is provided in the Appendix in Hahn et 

al. 2013. Here the results summary is provided. 

The acoustic signals of the dnl2-deficient flies had overall characteristics 

similar to those of the wild type flies, though the IPI of the pulse song was 

shorter and the volume of the sine song was reduced in dnlKO17 flies compared 

to the wild type flies.  

The median distance of individual flies to all other flies in the arena during the 

group behavior assay was significantly larger in dnlKO17 mutants than in wild 

type flies.  

In the assay, where two males of equal genotype were assessed during their 

interaction with a decapitated mature virgin wild type female, the dnlKO17 

mutants showed no difference in courtship behavior as compared to wild 

types. However in the mixed assay, where one dnlKO17 mutant was competing 
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with one wild type male, the mutant flies performed significantly less 

courtship, initiated less courtship attempts, and the courtship bouts were 

shorter than in the wild type males. Moreover, a large proportion of mutant 

males did not initiate courtship at all while competing with the wild type males 

in the mixed assay. The durations of agonistic interaction in the equal 

genotype and mixed assays was reduced in the dnlKO17 mutants as compared 

to the wild types. The results are suggestive of a reduced motivation in the 

males. Furthermore, no difference was found in the general activity and 

peripheral sensory processing of the mutant or the wild type flies.  

 

3.2 Results Part II 

3.2.1 Demographic and clinical characteristics of four rapid 

cyclers 

Four rapid cycling patients, one female (born in 1958) and three male (born in 

1961, 1941 and 1959) were included in the study. The detailed 

sociodemographic and clinical data is presented in Table 1 in the attached 

manuscript (Gurvich et al, in press), in the appendix. 

3.2.2 Bipolar and monopolar patients cohort description 

43 patients with bipolar affective disorder (male/female=24/19; mean age 

50.0±12.1 years; mean age at disease onset: 34.5±11.6 years; mean number 

of phases/year: 0.9±0.6), as well as 97 monopolar depressed patients 

(male/female=42/55; mean age 49.4±15.0 years; mean age at disease onset: 

41.0±15.7 years; mean number of phases/year: 1.2±1.3) were recruited. 

3.2.3 PTGDS, ARK1C3 and PTGS2/COX2PAN episode specific 

expression in rapid cyclers, patients with bipolar disorder and 

monopolar depression. 

Detailed results are provided in the manuscript in the Appendix (Gurvich et al, 

in press), but here is a short summary.  

The expression levels of genes that were previously shown to be differentially 

regulated in a phase specific manner (PTGDS and AKR1C3) were explored 
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once more in four patients with rapid cycling bipolar disorder. Furthermore, as 

a new readout of the prostaglandin synthesis pathway, a ratio of 

PTS2/COX2PAN was determined (the ratio was calculated to specifically 

address the brain expressed splice variant). P2RX7 (P2X purinoceptor7) was 

also assessed as a non-prostaglandin related control gene. In order to apply 

an integrative approach and to assess the expression levels in all four rapid 

cycling patients, the mean of all measured values per gene regardless of 

episode was calculated and set to 100%; all individual data obtained were 

then expressed in % of this mean value for each gene. Thus, replicating 

previous findings from the original case report (Begemann, et al. 2008), the 

levels of PTGDS were significantly higher in the depressed phases of the 

rapid cycling patients. In contrast, AKR1C3 neither showed any significant 

differential regulation as assessed by integrative approach, nor did it have a 

consistent trend for such regulation in the individual patient panels. The new 

PTS2/COX2PAN demonstrated a trend to be increased in depressed episodes 

in three out of four patients, resulting in borderline significance upon 

integration. The control gene, P2RX7, did not show any steady trend in these 

4 patients.  

The expression levels of PTGDS, AKR1C3, P2RX7 and the ratio 

PTS2/COX2PAN measured in PBMCs of 43 patients with non-rapid cycling 

bipolar disorder and 97 monopolar depressed patients did not show any 

episode specific changes.  
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4. Discussion 

4.1 Part I 

4.1.1 Synaptic genes and schizophrenia risk 

A major involvement of synaptic function and homeostasis in autism spectrum 

disorders is well documented (Bourgeron 2009). This study aimed to further 

explore the association of several synaptic genes, NLGN3, NLGN4X, 

NLGN4Y, SHANK3 and NRXN1, previously shown to play an important role in 

autism spectrum disorders (Durand, et al. 2007; Jamain, et al. 2003; 

Szatmari, et al. 2007) with neuropsychiatric risk. Altered synaptic functioning 

has also been reported to be pivotal in another psychiatric disorder – 

schizophrenia (Yin, et al. 2012) - which has a phenotypic and genetic overlap 

with autism spectrum disorders (Owen, et al. 2011). Thus it was intriguing to 

explore whether the common variation of these synaptic genes plays a role in 

schizophrenia risk. Therefore, a population of more than one thousand 

schizophrenic patients, included in the GRAS sample (Ribbe, et al. 2010), 

was genotyped with respect to the Single Nucleotide Polymorphisms (SNPs) 

selected to representatively cover each of the five synaptic genes. Then a 

case-control study was undertaken. The analysis for the sex chromosome-

linked genes, NLGN3, NLGN4X and NLGN4Y, was performed separately for 

men and women. The case-control study did not reveal any association of 

NLGN3, NLGN4X, NLGN4Y, SHANK3 or NRXN1 with schizophrenia in the 

GRAS population.  

The role of NLGN3, NLGN4X, NLGN4Y and SHANK3 in the etiology of autism 

was initially described based on mutations leading to major disturbance in 

gene function, whereas subsequent genome-wide association studies, taking 

into account common polymorphisms, failed to find any association of these 

genes with an autistic phenotype (Anney, et al. 2012; Wang, et al. 2009; 

Weiss, et al. 2009). Thus, it is possible that the lack of association of these 

genes with schizophrenia is due the fact that those genes only lead to the 

disease when severely mutated, whereas common polymorphisms do not 

play a role in the neuropsychiatric disease risk. NRNX1 was associated with 
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neuropsychiatric risk based on Copy Number Variants (CNVs), which are far 

rarer than SNPs. Similarly, the lack of association of NRXN1 with 

schizophrenia risk in this study may be indicative of the primarily important 

role of CNVs in the disease risk and not SNPs. However a much more likely 

explanation is the heterogeneity of the disease group called “schizophrenia”. 

Whether common polymorphisms (SNPs) in these synaptic genes are 

important for the subtle phenotype alterations and/or disease symptomatology 

is a matter of further investigation. 

4.1.2 D. melanogaster as a model of autism  

Previous studies addressed the possible behavioral implications upon knock 

out of neuroligin and neurexin genes in mice. Specifically, the Nlgn-3 knock 

out (KO) mice showed a deficit in social novelty and olfaction (Radyushkin, et 

al. 2009), while the Nlgn4-KO mice showed a deficit in social behavior 

(Jamain, et al. 2008), and both null mutations had reduced ultrasound 

vocalization and brain volume. Neuroligins and neurexins are evolutionary 

conserved (Knight, et al. 2011) and previous studies described D. 

melanogaster mutants lacking genes, which are homologous to human 

neurexins and neuroligins (Sun, et al. 2011; Zeng, et al. 2007). However, 

none of the previous studies explored whether flies lacking neurexin and/or 

neuroligin demonstrate autism related features in behavior.  

Thus, nrx-1241/DfExcel6191 mutant D. melanogaster, lacking the neurexin – 

1 gene, and dnlKO17 mutant flies, lacking the neuroligin - 2 gene, were 

obtained and involved in behavioral testing. Since one of the key features of 

an autistic phenotype is impaired social interaction, this behavioral read-out 

was directly addressed, testing the courtship, agonistic and group behavior of 

the flies. The courtship behavior in male flies includes several steps, one of 

which is producing a courtship song, consisting of so-called sine and pulse 

songs; this is performed by a unilateral wing extension and its vibration 

(Tauber and Eberl 2003). The courtship song of nrx-1241/DfExcel6191 mutant 

male flies was recorded during their interaction with a female virgin. Two out 

of eight tested mutants did not produce any sound at all, though the video 

recording showed that they attempted to initiate courtship song production, 

but stayed with one wing extended, and were therefore unable produce any 
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sound. The other six male mutant nrx-1241/DfExcel6191 flies produced 

abnormal courtship songs. While a normal courtship song should contain from 

2 to 50 pulses per train, a song of nrx-1241/DfExcel6191 contained only 

separate pulses. The overall length of their sine song was shorter than the 

one of the wild type flies. The sine song of nrx-1241/DfExcel6191 flies also 

came in short bouts of about 0,1 seconds and had abnormal spectral 

characteristics (max frequencies 646 Hz and 1175 Hz) compared to the 

Canton S flies (max frequency 190 Hz). The fundamental frequency of the 

sine song of Canton S wild type flies obtained in this study is consistent with 

previous reports on spectral characteristics of the wild type sine songs (von 

Schilcher 1976; Wheeler, et al. 1988). These results are indicative of a severe 

locomotor impairment in the dnrxn1- deficient flies, which did not allow further 

testing or drawing any conclusions on social interaction of the mutants.  

In contrast, dnln2-deficient flies did not show any major locomotor disabilities. 

The courtship songs of dnln2 – mutants showed reduced intensity of the sine 

song and shorter interpulse intervals of the pulse song. Since dnln2 – mutant 

flies were shown to have reduced synaptic transmission in the neuromuscular 

junction (Banovic, et al. 2010; Sun, et al. 2011), reduced amplitude of wing 

vibration provoked by decreased muscle activation in the NMJ leads to a 

lower intensity of the sine song. Altered synaptic properties in thoracic circuits, 

which generate the pulse song pattern, and/or differences in the intensity of 

their activation by descending brain neurons is likely responsible for the 

reduced interpulse intervals of the pulse song (Clyne and Miesenbock 2008). 

The courtship song of male D. melanogaster aims to make the female more 

receptive and reduce her activity so that further courtship acts can be 

performed by the male, finally leading to copulation (Greenspan and Ferveur 

2000). Thus, altered acoustic communication in the dnln2 –KO flies, which 

goes along with reduced ultrasound vocalization in Nlgn-3 and Nlgn-4 

deficient mice (Jamain, et al. 2008; Radyushkin, et al. 2009), lack of 

locomotor and sensory impairment, and larger interindividual distances in the 

group behavior assay are clearly indicative of an impaired social interaction 

between these mutant flies. This, in turn, may be due to compromised 

information processing in the central nervous system circuits responsible for 

behavior initiation and coordination. Mushroom bodies are the structures 
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which play a role in these processes in insects (Popov, et al. 2005). 

Interestingly, the neuroligin and neurexin expression in mushroom bodies of a 

honeybee was shown to be regulated by social exposure (Biswas, et al. 

2010). This further supports the role of neuroligin- neurexin complexes in 

social behavior across species and provides intriguing perspectives for 

studying neuroligin – deficient Drosophila.  

4.2 Part II: Prostaglandin related genes in rapid cycling bipolar 

disorder 

This study was initiated based on a previous report of a female case with 

extreme rapid cycling, where genes involved in prostaglandin metabolism 

were shown to be regulated in a phase-specific manner (Begemann, et al. 

2008). For further investigation of the prostaglandin related genes in rapid 

cycling syndrome, four patients suffering from this disease were included in 

the study and expression levels of PTGDS and AKR1C3 were measured in 

the PBMCs from various phases. Indeed, the phase specific expression 

pattern of PTGDS was replicated in this study, with significantly more 

expression of the gene during depression. In contrast, AKR1C3 was not 

differentially regulated in depressive or in manic phases in this study. 

AKR1C3 and PTGDS are closely related functionally. The product of PTGDS, 

Prostaglandin D2, has an important role in sleep regulation (Matsumura, et al. 

1994; Urade and Hayaishi 2011), while sleep pattern is known to be disturbed 

in bipolar disorder (Plante and Winkelman 2008). A strong stimulation or 

accumulation of PGD2 over the course of severe rapid cycling syndrome may 

lead to a more pronounced induction of AKR1C3 (Mantel, et al. 2012), which 

could explain the upregulation of AKR1C3 in the initial report of extreme 

symptom severity (Begemann, et al. 2008) and not in the present study, 

where the patients’ psychopathology was less severe.  

Furthermore, a new read-out, PTGS2/COX2PAN, specifically addressing the 

expression levels of a brain expressed cyclooxygenase isoform, showed a 

differential phase dependent expression pattern in pooled PBMC samples 

during depressive episodes. This further supports a strong involvement of the 

prostaglandin cascade regulation in the course of rapid cycling syndrome. 
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No significant results, however, were obtained when expression of these 

genes was estimated in a phase specific manner in patients with non-rapid 

cycling bipolar disorder and monopolar depression. It is also important to 

mention that only a limited number of samples were available from these 

patients after a 3-year recruitment period, due to rare episode occurrence in 

non-rapid cycling individuals. This did not allow application of the integrative 

approach while analyzing the data. Thus these negative findings in non-rapid 

cycling bipolar patients and monopolar depressed patients may be a result of 

inter-individual mean expression variability. 
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5. Outlook 

 
The case-control study did not reveal significant association between common 

genetic variants in autism related synaptic genes and schizophrenia risk. As 

discussed previously, this may be due to the fact that only severe gene 

disruptions may lead to disease, as shown by case reports on autism. 

Common variation in these genes however may contribute to different aspects 

of symptomatology of the neuropsychiatric disorders, such as autistic features 

in schizophrenia. This can be studied by careful analysis of autism related 

phenotypic readouts and their association with common genetic variants of 

the synaptic genes, using the PGAS approach (Begemann, et al. 2010). 

Furthermore, patients having the genotype associated with a more 

pronounced autistic symptomatology may be selected as donors of 

fibroblasts, which can be reprogrammed to neurons using an induced 

pluripotent stem cell technique. This will allow for the application of 

electrophysiological tests on neurons directly obtained from patients with 

important genotype-phenotype correlations. Indeed this ambitious and 

promising project is currently running in our lab on the basis of the GRAS 

sample.  

 

The present study revealed that dnlgn2 -KO Drosophila melanogaster 

demonstrate impaired social interaction, as measured by courtship, agonistic 

and group behavior. It would be intriguing to perform rescue experiments to 

further validate present findings. Also it would important to assess if other 

Drosophila neuroligins, namely dnlgn3 and dnlgn4 (dnln1 is not expressed in 

the nervous system), work as counterparts of dnlgn2, allowing formation of 

proper excitation/inhibition balance, which may be disturbed in autism 

(Rubenstein and Merzenich 2003). Additionally, based on findings in 

honeybees that indicate a regulatory role of social exposure in the expression 

of neuroligins and neurexins (Biswas, et al. 2010), it would interesting to 

investigate if similar effects may be seen in Drosophila.  
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This study also provided further evidence that genes involved in the 

prostaglandin synthesis cascade are differentially regulated across phases of 

rapid cycling syndrome. This provides ground for a prospective study in a 

larger sample of rapid cycling patients and implicates medical intervention 

strategies, e.g. with cyclooxygenase inhibitors, that would potentially 

revalidate the compassionate use of medication, as suggested in the initial 

case report (Begemann, et al. 2008). This would contribute to the 

development of novel treatment approaches for rapid cycling bipolar disorder, 

which is hardly manageable with the existing conventional treatment 

approaches. It would also be intriguing to further explore the gene expression 

patterns in patients with non-rapid cycling bipolar disorder and monopolar 

depression in a larger sample, including individuals for a longitudinal follow-

up, importantly ensuring repetitive blood sample collection in several phases 

for each patient. This will allow for better controlling of inter-individual 

variability upon data analysis, which may mask existing phase dependent 

gene expression patterns. Finally, no construct valid animal model is available 

for bipolar disorder. This study provides evidence, which may lead to the 

creation of a transgenic mouse model with inducible and reversible 

PTGDS expression in the brain, thus allowing the study of behavioral 

consequences of episode specific gene expression changes.  
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