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ii



“Philosophy is written in that great book which ever lies before our eyes –I mean the
universe – but we cannot understand it if we do not first learn the language and grasp
the symbols, in which it is written. This book is written in the mathematical language,
and the symbols are triangles, circles and other geometrical figures, without whose help
it is impossible to comprehend a single word of it; without which one wanders in vain
through a dark labyrinth.” - Galileo Galilei

“Any intelligent fool can make things bigger, more complex, and more violent. It takes
a touch of genius –and a lot of courage – to move in the opposite direction.” - Albert
Einstein
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Introduction

This work lies at the intersection of Optimization, Variational Analysis and applications in
a wide spectrum of many disparate disciplines such as imaging science, signal processing
and inverse scattering, to mention just a few.

Mainly, I am interested in studying and developing qualitative and quantitative
characterizations of convergence behavior of numerical methods and using theoretical
insight to implement efficient algorithms for solving real-world problems and to legitimate
and speed up existing algorithmic schemes. I am inspired by algorithms that have been
applied to solve practical problems without theoretical justification or explanation and
eager to identify structures that lead to the success of these methods.

This thesis covers both the theoretical (Part I) and practical (Part II) aspects of these
fascinating areas.

Fixed Point Theory - Feasibility Problems

Projection algorithms for solving (nonconvex) feasibility problems provide powerful
and computationally efficient schemes for a wide variety of applications. Algorithms as
Alternating Projections (AP) and Douglas–Rachford (DR) are two of the more prominent
projection algorithms in imaging sciences and signal processing (Part II). These methods
also have been applied successfully to sparse image reconstruction (Bauschke et al., 2013b;
Hesse et al., 2014a; Demanet and Zhang, 2013) and combinatorial optimization problems
(Artacho et al., 2013; Elser et al., 2006). An introduction to feasibility problems, the
fundamental algorithmic schemes AP and DR will be given in Chapter 1.

In Part I of this thesis a nonconvex framework is introduced that enables a general and
new approach to characterizing the convergence behavior of general fixed point operators.
In classical fixed point theory, firm nonexpansiveness of mappings is a property that is
often used to show convergence of a broad class of algorithms. An overview over the
classical concepts is given in Chapter 2.

Firm nonexpansiveness of projectors onto convex sets is closely related to the best
approximation property for convex sets. As our main interest is dealing with nonconvex
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feasibility, the described methodsno longer match the notion of firm nonexpansiveness.
In Chapter 3 several nonconvex notions of set regularity are introduced and discussed, in
order to provide reasonable assumptions and an essential fundament for the following
analysis.

The framework, theorems and concepts developed in Chapter 4 then generalize the
tools from convex analysis for the analysis of fixed-point iterations of operators that
violate the classical property of firm nonexpansiveness in some quantifiable fashion.

Chapter 5 provides quantitative characterizations of regularity of collections of sets and
regularity of fixed point sets. This theory is essential in characterizing the convergence
behavior of algorithms and in achieving (optimal) rates of convergence. In some of
the applications the current convergence rates are still not optimal due to the lack of
appropriate quantitative characterizations in the literature. However, Chapter 5 provides
some new results, relating and unifying different notions of regularity, that are primal
notions like uniform and linear regularity, metric (sub-)regularity and more dual notions
like normal cone conditions.

Using these techniques, Chapter 6 then carries out the convergence analysis on AP
and DR. A preliminary version of this result was published in (Hesse and Luke, 2013). In
the nonconvex setting, to the best of our knowledge, these results were the most general
at that time, and they are by now complemented by several authors (Bauschke et al.,
2013a; Phan, 2014; Bauschke and Noll, 2014). Incorporating the results from Chapter 5
the main (nonconvex) convergence results of Chapter 6 are simplified in comparison to
other results in the current literature.

Compressed Sensing - new results on an alternative
approach

The problem of finding a vector with the fewest nonzero elements that satisfies an
under-determined system of linear equations is an NP-complete problem that is typically
solved numerically via convex heuristics or nicely-behaved nonconvex relaxations. The
nonconvex notions of regularity described Chapter 3 fit naturally in the framework of
sparse image reconstruction. In Chapter 8 elementary methods based on projections for
solving the sparse feasibility problem are considered. In contrast to methods based on
convex heuristics, these results provide an interesting and more direct approach than
usual convex relaxations.

2
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Phase Retrieval and Ptychographic Imaging

The Phase Retrieval Problem is an ill-posed inverse problem, where one seeks to determine
the shape – or more precise the amplitude and complex phase – of an unknown object
from its intensity measurement in the measurement plane (detector). The reconstruction
of the object from one intensity measurement is not possible, so usually we need to
incorporate additional, a priori information, about the object, i.e., given support or
amplitude or sparsity in some basis.

The theory developed in Part I provides insight into the behavior of classical algorithms
such as the Gerchberg-Saxton-, Error Reduction- and Hybrid-Input-Output-Algorithm
as well as to more advanced schemes as the Difference Map Algorithm or the Relaxed
Averaged Alternating Reflection Algorithm (RAAR) (regularized Douglas–Rachford). All
of these methods are basically variants of AP and DR and some of them are still
state-of-the-art methods in this field, which will be explored in Section 9.4. Ptychographic
Imaging for simultaneous probe and object reconstruction in complex wave fronts in
X-ray microscopy are also modeled within our above mentioned theoretical framework
(Section 9.6).

The characterization of the convergence behavior developed in the fixed point theory
allows us to speed up existing algorithmic schemes. The flexibility of the feasibility
problem framework allows us to easily incorporate different new physical constraints as
additional a priori information into the existing algorithms. The commonly used more
heuristic schemes lack this adaptivity and theoretical foundation.

3



Part I.

Projection Methods - Local Geometry
and Convergence
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1. Feasibility Problems – Projection
Algorithms

1.1. Notation – Foundations

Most of the notation in this work is standard and should be clear from the context.
Throughout this work H is a Hilbert space equipped with a real inner product 〈·, ·〉 :
H ×H → R, while E is an Euclidean space, i.e., a finite dimensional space equipped
with a real inner product. If not explicitly stated otherwise, norms and distance function
are implicitly referred to Euclidean norm and distance function ‖x‖ :=

√
〈x, x〉 and

d (x, y) := ‖x− y‖ (Exceptions are in some of the Remark and at the beginning of
the Part, where they are explained explicitly to circumvent any confusions). Bδ(x̄) :=
{x ∈ H | d (x, x̄) ≤ δ} is the closed ball with radius δ centered at x̄. We will use the
notation A : H ⇒ Y to indicate a set-valued operator A that maps H to subsets of a
Hilbert space Y. For an operator A : H⇒ Y its graph is given by

gphA := {(x, y) ∈ H × Y | y ∈ Ax} . (1.1)

R+ := {λ ∈ R | λ ≥ 0} is the nonnegative real line, while

R++ := R+\{0} = {λ ∈ R | λ > 0} .

For a subset Ω ⊂ H we define

coneΩ := R++Ω = {λx | x ∈ Ω, λ ∈ R++}

and imply that K is a cone if and only if K = coneK. According to (Rockafellar and
Wets, 1998, Equation 4(2)) for any sequence of sets {Ωn}n∈N the outer limit and inner
limit are given by

lim sup
n→∞

Ωn :=
{
x

∣∣∣∣∣∀ε > 0,∃ (Ωnk)k∈N subsequence of (Ωn)n∈N :
d (x,Ωnk) ≤ ε, ∀k ∈ N

}
, (1.2)

lim inf
n→∞

Ωn := {x | ∀ε > 0, ∃N ∈ N : d (x,Ωn) ≤ ε, ∀n ≥ N} , (1.3)

where d (x,Ω) = infy∈Ω ‖x− y‖ is the distance of x to Ω.

5



1. Feasibility Problems – Projection Algorithms

1.2. The Two Set Feasibility Problem

Given two (possibly nonconvex) nonempty subsets A,B of a Hilbert space H one wants
to find a point x̄ that lies in the intersection A∩B, i.e. the two set feasibility problem is

Find x̄ ∈ A ∩B. (1.4)

1.2.1. More than two sets - Pierra’s trick

If one wants to find a point in the intersection of more than two, say m, sets Ωi one faces
the feasibility problem

x̄ ∈ ∩mi=1Ωi. (1.5)

Using Pierra’s product space trick (Pierra, 1984) this can be reformulated as a two set
feasibility problem (1.4).

Note that x̄ solves the m-set feasibility problem (1.5) if and only if x̄ ∈ Ωi for all
i = 1, . . . ,m which is equivalent to

(x̄, . . . , x̄)︸ ︷︷ ︸
m−times

∈ Ω1 × · · · × Ωm.

By defining the product set A and the diagonal space B by

A := Ω1 × · · · × Ωm, (1.6)
B := {(x1, . . . , xm)|xi ∈ H and x1 = · · · = xm} . (1.7)

The corresponding projectors onto A and B are then given by

PA (x1, . . . , xm) = (PΩ1x1, . . . , PΩmxm) , (1.8)

PB (x1, . . . , xm) =
m∑
k=1

1
m
xk (1.9)

Using this product space formulation one can reduce any m-set feasibility problem to a
two set feasibility problem in order to apply two set algorithmic schemes as von Neumanns
Alternating Projections sequence or the Douglas–Rachford algorithm.

1.3. Distance Function, Proximity Operators

Definition 1.1 (distance function):
Let Ω ⊂ H be nonempty, x ∈ H. The distance of x to Ω is defined by

d (x,Ω) := inf
y∈H
‖x− y‖ . (1.10)

6



1. Feasibility Problems – Projection Algorithms

Definition 1.2 (Best approximation points and projector):
Let Ω ⊂ H be nonempty and x ∈ H. An element x̄ ∈ Ω is a best approximation to x in
Ω if

x̄ ∈ arg min
y∈Ω

‖x− y‖ . (1.11)

The (possibly empty) set of all best approximation points from x to Ω denoted PΩ(x), is
given by

PΩx := {y ∈ Ω | ‖x− y‖ = d (x,Ω)} . (1.12)

The mapping PΩ : H⇒ Ω ist called projector onto Ω.

Remark 1.3: The projector is also called metric projection, proximity map or projection
operator. The term metric projection was first used in (Aronszajn and Smith, 1954). A
best approximation point, i.e., a point in the projector is also called nearest point to or
projection of x. In the following, if the projector PΩx of a point x onto a set Ω defines a
singleton, i.e., PΩx = {x̄}, the notation PΩx := x̄ will be used which is [if any] a slight
abuse of notation. ♦

Definition 1.4 (Proximinal (Phelps, 1957, p. 790) and Chebyshev (Efimov and Steckkin,
1958) sets ):
A set Ω ⊂ H is called proximinal if

PΩ(x) 6= ∅ for all x ∈ H. (1.13)

If in addition the projection is single-valued the set is called Chebyshev.

Theorem 1.5 ((Deutsch, 2001, Theorem 3.1)):
A proximinal set Ω ⊂ H (and thereby a Chebyshev set) is closed.

Proof. Assume Ω is not closed. Then there is a sequence (xn)n∈N ⊂ Ω such that xn → x

as n→∞ but x /∈ Ω. By the definition of x one has x ∈ cl (Ω) and therefore PΩ(x) = ∅
which contradicts the set Ω being proximinal.

Proposition 1.6 ((Deutsch, 2001, Theorem 3.8)):
On a finite dimensional Hilbert space H a nonempty set Ω ⊂ H is proximinal if and only
if it is closed.

1.4. Von Neumann’s Alternating Projection Algorithm

Definition 1.7 (Alternating Projections):
For two nonempty, closed sets A,B ⊂ H the mapping

TAP x := PAPBx (1.14)

7



1. Feasibility Problems – Projection Algorithms

is called the alternating projections operator.

For given initial x0 ∈ H any sequence generated by

xn+1 ∈ TAP xn (1.15)

is called von Neumann’s alternating projection algorithm or simply von Neumann sequence
or Alternating Projections.

1.4.1. Convergence of Alternating Projections: History and known
Results

Remark 1.8 (Convergence results for convex sets): We summarize some of the results on
von Neumanns Alternating Projections:

• (von Neumann, 1933): Let A,B be closed subspaces of H. For any x ∈ H

lim
n→∞

(PAPB)n x = PA∩Bx. (1.16)

• (Aronszajn, 1950): Let A,B be closed subspaces of H. Then

sup
‖x‖=1

‖((PAPB)n − PA∩B)x‖ ≤ cF (A,B)2n−1 , (1.17)

where cF (A,B) is the Friedrichs angle between A and B, compare Definition 5.1
equation (5.1).

• (Cheney and Goldstein, 1959, Theorem 4) Let A,B be closed and convex and let
either A or B be compact or finite dimensional with d (A,B) = ‖a− b‖ for some
a ∈ A, b ∈ B then

lim
n→∞

(PAPB)n x = x̄ ∈ Fix (PAPB) . (1.18)

Note that the result does not necessarily require A ∩B 6= ∅.

• (Gubin et al., 1967): Convergence for m closed convex sets Ω1, . . . ,Ωm of the cyclic
projections algorithm, i.e., PΩ1 · · ·PΩm with a linear rate to a point in ⋂m

i=1 Ωi.

• (Bauschke and Borwein, 1993): Introduction of linear and bounded linear regu-
larity for convex sets. See Chapter 5 and Remark 5.8. The authors prove linear
convergence with rates for general closed, convex sets. Compare Corollary 6.4 A,B.

• (Deutsch, 2001; Deutsch, 1991): Detailed survey on the method of alternating
projections.

8



1. Feasibility Problems – Projection Algorithms

• (Deutsch and Hundal, 2006a; Deutsch and Hundal, 2006b; Deutsch and Hundal,
2008): Study of regularity of set intersection and characterization of convergence of
cyclic projection sequences.

♦

Remark 1.9 (Convergence results for nonconvex sets): We summarize some of the non-
convex convergence results for von Neumanns Alternating Projections:

• (Lewis and Malick, 2008; Lewis et al., 2009): First nonconvex convergence results
for the alternating projection algorithm and introduction of new nonconvex notions of
sets. That is, super-regularity [Definition 3.14 (a)], and a transversality conditions
for the collection {A,B} [Remark 5.22 equation (5.31)].

• (Bauschke et al., 2013d; Bauschke et al., 2013c; Bauschke et al., 2013b): Quantifi-
cation of (Lewis et al., 2009), i.e., introduction of (ε, δ)-regularity [Definition 3.14
(b)], CQ-number Θδ [Definition 5.40].

• (Hesse and Luke, 2013): Introduction of (ε, δ)-subregularity [Definition 3.14 (c)]
and introduction of a nonconvex approach different from (Lewis et al., 2009) more
related to the approach in (Bauschke and Borwein, 1993). Compare Corollary 6.4.

♦

1.5. Douglas–Rachford Algorithm

Definition 1.10:
Let Ω ⊂ H be nonempty and closed. The reflector RΩ : H⇒ H to the set Ω ist defined
by

RΩx := 2PΩx− x, (1.19)

for all x ∈ H.

Definition 1.11 (Douglas–Rachford Algorithm/Averaged Alternating Reflections):
For two nonempty, closed sets A,B ⊂ H the mapping

TDR x := 1
2 (RARBx+ x) (1.20)

is called Douglas–Rachford Operator.

For given initial x0 ∈ H any sequence generated by

xn+1 ∈ TDR xn (1.21)

is called Douglas–Rachford algorithm or Averaged Alternating Reflections .

9



1. Feasibility Problems – Projection Algorithms

Remark 1.12: What we are calling Douglas–Rachford algorithm was first introduced in
(Douglas and Rachford, 1956) as an operator splitting technique for partial differential
equations. In fact the original definition is more related to the equivalent formula (1.22)
that we will see in Lemma 1.13. The definition of the Douglas–Rachford operator given
in equation (1.20) is motivated by the rather geometric interpretation in the case of set
feasibility, that is, Averaged Alternating Reflections.

For a detailed study on operator splitting and Douglas–Rachford aside set feasibility
see (Lions and Mercier, 1979; Eckstein and Bertsekas, 1992) and the more recent
comprehensive works (Eckstein and Svaiter, 2008) and (Eckstein and Svaiter, 2009).
The Douglas–Rachford algorithm owes its prominence in large part to its relation via
duality to the alternating directions method of multipliers (ADMM) for solving constrained
optimization problems, see (Gabay, 1983).

Due to its success in solving nonconvex feasibility problems (see for an interesting
survey for instance (Artacho et al., 2013) and for concrete examples (Demanet and
Zhang, 2013; Hesse et al., 2014a)) the Douglas–Rachford algorithm has evolved into a
topic of intense research during the last years (Borwein and Sims, 2011; Bauschke et al.,
2013a; Bauschke and Noll, 2014; Phan, 2014). ♦

Lemma 1.13 (Equivalent definition of the Douglas–Rachford Operator):
For all x ∈ E

TDR x = {PA(2z − x)− z + x | z ∈ PBx} . (1.22)

Proof.

TDR x =
{1

2 (RAv + x)
∣∣∣∣ v ∈ RBx

}
=

{1
2 (RA(2z − x) + x)

∣∣∣∣ z ∈ PBx} ,
=

{1
2 (2PA(2z − x)− (2z − x) + x)

∣∣∣∣ z ∈ PBx}
= {PA(2z − x)− z + x | z ∈ PBx} .

1.5.1. Convergence of the Douglas–Rachford Algorithm: History
and known Results

Remark 1.14 (Some convergence results on the Douglas–Rachford Algorithm): Due to its
success in solving non-convex feasibility problems there has been an increased interest in
Douglas–Rachford type methods in the last decade. Some of the most interesting results
in the literature are:

10



1. Feasibility Problems – Projection Algorithms

• (Douglas and Rachford, 1956): Introduction of the original operator splitting scheme
for partial differential equations.

• (Lions and Mercier, 1979, Consequence of Corollary 1): Let A,B be closed and
convex subsets of H and let A∩B 6= ∅. Then for x0 ∈ H the sequence xn+1 = TDR xn
converges weakly to x̄ ∈ Fix (TDR) .

• (Bauschke et al., 2004): Characterization of fixed point set of TDR and weak
convergence of the shadow sequence (compare (2.20) ) for convex subsets of H.
The weak convergence result covers the case A ∩B = ∅.

• (Eckstein and Svaiter, 2009): Generalization to a splitting scheme for m operators
similar to Pierra’s formulation (1.6). Weak convergence of the iterates generated by
(1.21), provided A ∩B 6= ∅.

• (Borwein and Sims, 2011): Discussion of a two dimensional example, that is, the
intersection of a sphere and a line as a model case.

• (Hesse and Luke, 2013): Local linear convergence on Euclidean spaces for a super-
regular set A and a subspace B based on uniform regularity.

• (Phan, 2014): Local convergence on Euclidean spaces or two super-regular sets
A,B based on a variant of uniform regularity.

♦

1.5.2. Feasibility as a special case of Operator Splitting

To illustrate the connection between feasibility problems and operator splitting or more
general the theory of monotone operators, we give a short introduction, focusing on
the main connections between the fields. For the sake of simplicity in this introduction,
we will focus on the special setting of prox-regular sets, which implies that locally the
Projectors onto the sets are single valued and hence the different notions of the normal
cones coincide and can be described by NΩ (x̄) := cone(P−1

Ω x̄− x̄) (compare Definition
3.1).

Good sources on a general and detailed theory are -among others- (Bauschke and
Combettes, 2011) (Luke, 2008) and the references therein.

The idea of operator splitting is the following: Given two operators T1 : H⇒ H and
T2 : H⇒ H one asks for a point x̄ such that

0 ∈ T1(x̄) + T2(x̄). (1.23)

11



1. Feasibility Problems – Projection Algorithms

For x0 ∈ H the Douglas–Rachford algorithm is given by

xn+1 = JλT1(2JλT2 − Id)xn + (Id−JλT2)xn, (1.24)

where for an operator T : H⇒ H and λ > 0

JλT := (Id +λT )−1 . (1.25)

is the resolvent of T . Note that the feasibility problem (1.4) can be equivalently restated
as

min
x∈H

ιA(x) + ιB(x), (1.26)

where ιΩ : H → R ∪ {∞} is the indicator function of the set Ω, i.e.,

ιΩ(x) :=
{

0 if x ∈ Ω
∞ if x /∈ Ω . (1.27)

A necessary condition for x̄ to solve equation (1.26) –and hence equation (1.4)– is

0 ∈ ∂ιA(x̄) + ∂ιB(x̄), (1.28)

where ∂ιΩ is the subdifferential of the indicator function. Note that for any λ > 0 the
resolvent of the normal cone is exactly the projector onto the set Ω

Jλ∂ιΩ = JλNΩ(·) = PΩ. (1.29)

Remark 1.15: DR is actually engineered to find a point that solves equation (1.28), i.e.,
find x̄ such that

0 ∈ NA (x̄) +NB (x̄) . (1.30)

and not (1.4).

We will later state conditions that characterize whether or not the solution sets of (1.4)
and (1.30) coincide. ♦

1.6. Examples

Example 1.16: The following easy examples will appear throughout this work and serve
to illustrate the regularity concepts we introduce and the convergence behavior of the
algorithms under consideration.

12



1. Feasibility Problems – Projection Algorithms

(a) Two lines in R2:

A =
{

(x1, x2) ∈ R2 | x2 = 0
}
⊂ R2

B =
{

(x1, x2) ∈ R2 | x1 = x2
}
⊂ R2.

We will see that for any x0 ∈ R2 Alternating Projections and Douglas–Rachford
converge with a linear rate to the intersection.

(b) Two lines in R3:

A =
{

(x1, x2, x3) ∈ R3 | x2 = 0, x3 = 0
}
⊂ R3

B =
{

(x1, x2, x3) ∈ R3 | x1 = x2, x3 = 0
}
⊂ R3.

After the first iteration step Alternating Projections shows exactly the same con-
vergence behavior as in the first example. Douglas–Rachford does not converge to
{0} = A ∩ B. All iterates from starting points on the line {t(0, 0, 1) | t ∈ R} are
fixed points of the Douglas Rachford operator. On the other hand, iterates from
starting points in A+B stay in A+B, and the case then reduces to example ((a)).

(c) A line and a ball intersecting in one point:

A =
{

(x1, x2) ∈ R2 | x2 = 0
}
⊂ R2

B =
{

(x1, x2) ∈ R2 | x2
1 + (x2 − 1)2 ≤ 1

}
.

Alternating Projection converges to the intersection, but not with a linear rate.
Douglas–Rachford has fixed points that lie outside the intersection, namely

Fix (TDR) = P−1
B (0) = {0} × R+

(cf. Proposition 2.18).

(d) A cross and a subspace in R2:

A = R× {0} ∪ {0} × R
B =

{
(x1, x2) ∈ R2 | x1 = x2

}
.

This example relates to the problem of sparse-signal recovery. Both AP and Douglas–
Rachford converge globally to the intersection {0} = A∩B, though A is nonconvex.
The convergence of both methods is covered by the theory built up in this work (cf.
Chapter 8).

(e) A circle and a line:

A =
{

(x1, x2) ∈ R2 | x2 =
√

2/2
}
⊂ R2

B =
{

(x1, x2) ∈ R2 | x2
1 + x2

2 = 1
}
.

13



1. Feasibility Problems – Projection Algorithms

This example is of our particular interest, since it is a simple model case of the
phase retrieval problem. Until the publication of (Hesse and Luke, 2013) the only
direct nonconvex convergence results for Douglas–Rachford were related to this
model case, see (Artacho and Borwein, 2013; Borwein and Sims, 2011). Local
convergence of Alternating Projections is covered by (Lewis et al., 2009; Bauschke
et al., 2013c) as well as by the results in this work.

M
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2. Classical Convex Results

2.1. Best Approximation

Definition 2.1 (convex sets):
A subset C ⊂ H is called convex if

λx+ (1− λ)y ∈ C, for all x, y ∈ C, λ ∈ [0, 1]. (2.1)

Theorem 2.2 (uniqueness of best approximations, (Deutsch, 2001, Theorem 2.4)):
Let C ⊂ H be convex. Each x ∈ H has at most one best approximation in C. In
particular, every proximinal convex set is Chebyshev.

Proof. For any x ∈ H suppose y1, y2 ∈ PC(x). By convexity 1
2y1 + 1

2y2 ∈ C and

d (x,C) ≤
∥∥∥∥x− 1

2(y1 + y1)
∥∥∥∥ ≤ 1

2 ‖x− y1‖+ 1
2 ‖x− y2‖ = d (x,C)

which implies y1 = y2.

Theorem 2.3 ((Aronszajn, 1950), (Cheney and Goldstein, 1959)):
Let C ⊂ H be nonempty and convex, x ∈ H and x̄ ∈ C. Then x̄ is the best approximation
point x̄ = PC(x) if and only if

〈x− x̄, y − x̄〉 ≤ 0 for all y ∈ C. (2.2)

Proof. Let x̄ = PC(x) and assume 〈x − x̄, y − x̄〉 > 0 for some y ∈ C. For λ ∈ (0, 1)
define yλ := λy+ (1− λ)x̄ and note that by convexity of C yλ ∈ C. For sufficiently small
λ one achieves

‖x− yλ‖2 = ‖x− λy − (1− λ)x̄‖2

= ‖x− x̄‖2 − λ

2〈x− x̄, y − x̄〉 − λ ‖y − x̄‖2︸ ︷︷ ︸
>0

 .
This implies ‖x− yλ‖ < ‖x− x̄‖ and therefore contradicts the assumption that x̄ =
PC(x).

15



2. Classical Convex Results

Now let 〈x− x̄, y− x̄〉 ≤ 0 for all y ∈ C. Using this and the Cauchy-Schwarz inequality
one achieves

‖x− x̄‖2 = 〈x− x̄, x− x̄〉
= 〈x− x̄, x− y〉+ 〈x− x̄, y − x̄〉
≤ 〈x− x̄, x− y〉
≤ ‖x− x̄‖ ‖x− y‖ .

Therefore one can conclude ‖x− x̄‖ ≤ ‖x− y‖ for all y ∈ C, which yields x̄ = PC(x).

Theorem 2.4 ((Bauschke and Combettes, 2011, Proposition 6.27 and Theorem 6.29),
(Moreau, 1962)):
Let K be a closed convex cone. For all x ∈ H the following properties hold

〈x− PKx, PKx〉 = 0, (2.3)
〈x− PKx, y〉 ≤ 0 for all y ∈ K, (2.4)

‖x− PKx‖2 + ‖PKx‖2 = ‖x‖2 . (2.5)

Proof. The first equation follows by the best approximation property (2.2) by choosing
y = 2PKx and y = 0 and combining the resulting inequalities. The inequality (2.4) then
is a direct consequence of the first equation. Equation (2.5) follows by expanding

‖x‖2 = ‖x− PKx‖2 + ‖PKx‖2 + 2〈x− PKx, PKx〉 (2.6)

and the use of (2.3).

Corollary 2.5 ((Bauschke and Combettes, 2011, Corollary 3.20)):
Let L ⊂ H be an affine subspace, x ∈ H and x̄ ∈ L. The following hold:

(a) x̄ is the best approximation point x̄ = PL(x) if and only if

〈x− x̄, y − z〉 = 0 for all y, z ∈ L. (2.7)

(b) For all x, y ∈ H, λ ∈ R:

PL (λx+ (1− λ)y) = λPLx+ (1− λ)PLy. (2.8)

Proof. (a) By the best approximation property (2.2) one has

〈x− x̄, y − x̄〉 ≤ 0 for all y ∈ L.

Since L is an affine subspace for any y ∈ L one has ỹ := 2x̄ − y ∈ L. Inserting this
in the last inequality achieves 〈x − x̄, y − x̄〉 = 0. Likewise one has for any z ∈ L
〈x− x̄, z − x̄〉 = 0 and hence

〈x− x̄, y − z〉 = 0, for all y, z ∈ L.

16
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(b) Since L is an affine subspace for any x1, x2 ∈ H, λ ∈ R the point x̄λ := λPLx1 +
(1− λ)PLx2 is an element of L. Now by (2.7) for any y, z ∈ L

〈λx1 + (1− λ)x2 − x̄λ, y − z〉 =〈λ (x1 − PLx1) + (1− λ) (x2 − PLx2) , y − z〉
=λ 〈x1 − PLx1, y − z〉︸ ︷︷ ︸

=0

+(1− λ) 〈x2 − PLx2, y − z〉︸ ︷︷ ︸
=0

.

Hence by (2.7) x̄λ is best approximation to λx1 + (1− λ)x2.

Proposition 2.6:
Let Ω ⊂ H be closed and nonempty. Let L be an affine subspace such that Ω ⊆ L. Then

PΩPL = PΩ = PLPΩ (2.9)
RΩPL = PLRΩ (2.10)

Proof. (2.9) follows by (Bauschke et al., 2013d, Lemma 3.3).

To show (2.10) note that then

PLRΩ = PL (2PΩ − Id) (2.8)= 2PLPΩ − PL
(2.9)= 2PΩPL − PL = RΩPL.

Remark 2.7: Equation (2.9) appeared in (Bauschke et al., 2013d, Lemma 3.3). Equation
(2.10) is discussed for two linear subspaces in (Hesse et al., 2014a, Lemma 4.4 and
Proposition 4.5) and in a general version in(Phan, 2014, Lemma 2.5). ♦

2.2. Nonexpansiveness and Firm Nonexpansiveness of
Operators

Definition 2.8:
Let D ⊂ H be nonempty.

T : D→ H is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ (2.11)

holds for all x, y ∈ D.

T : D→ H is called firmly nonexpansive if

‖Tx− Ty‖2 + ‖(Id−T )x− (Id−T )y‖2 ≤ ‖x− y‖2 (2.12)

holds for all x, y ∈ D.
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Lemma 2.9 ((Bauschke and Combettes, 2011, Proposition 4.2)):
Let D ⊂ H be nonempty and let T : D→ H. The following are equivalent

(i) T is firmly nonexpansive on D .

(ii) T is 1/2-averaged, i.e., T = 1
2

(
Id +T̂

)
and the mapping T̂ : D → H, x 7→

(2T − Id)x is nonexpansive on D.

(iii) ‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉 for all x, y ∈ D.

Proof. To show that (ii) is equivalent to (iii) one observes

‖(2T − Id)x− (2T − Id) y‖2

= 4 ‖Tx− Ty‖2 − 4〈Tx− Ty, x− y〉+ ‖x− y‖2 .

The definition of nonexpansiveness

‖(2T − Id)x− (2T − Id) y‖2 ≤ ‖x− y‖2 ,

holds if and only if
‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉.

To see the equivalence of (i) and (iii) write

‖(Id−T )x− (Id−T )y‖2 = ‖Tx− Ty‖ − 2〈Tx− Ty, x− y〉+ ‖x− y‖2

and insert this in (i) (see equation (2.12)) to get

2 ‖Tx− Ty‖2 − 2〈Tx− Ty, x− y〉+ ‖x− y‖2 ≤ ‖x− y‖2 .

This then holds if and only if (iii) holds.

Remark 2.10: Firm nonexpansiveness of mappings is a property closely related to the
best approximation property (2.2), as for instance Theorem 2.11 will indicate. In the
literature firm nonexpansiveness is often defined by one of the characterization in Lemma
2.9. The term pseudocontractive also appears in the literature – compare (Eckstein,
1989, p. 43) or (Reinermann and Schöneberg, 1967) – to describe equation (2.12). For
a detailed study of firmly nonexpansive mappings see (Zarantonello, 1971, Section 1),
(Goebel and Reich, 1984; Goebel and Kirk, 1990). A detailed modern treatment of firmly
nonexpansive mappings can be found (Bauschke and Combettes, 2011, Chapter 4). ♦
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2.3. Basic Properties of Projectors and Reflectors onto
Convex Sets

Theorem 2.11 ((Nashed, 1968, Equation (10))):
Let C be a closed, nonempty and convex set. The projector PC : H → C is firmly
nonexpansive.

Proof. We use the best approximation property (2.2) to achieve

〈PCx− PCy, x− y〉
= 〈PCx− PCy, x− PCx〉︸ ︷︷ ︸

≥0

+ 〈PCx− PCy, PCy − y〉︸ ︷︷ ︸
≥0

+〈PCx− PCy, PCx− PCy〉

≥ ‖PCx− PCy‖2 .

Lemma 2.12:
Let C be nonempty, closed and convex. The reflector RC : H → H is nonexpansive.

Proof. By firm nonexpansiveness of the projector PC , or more precise Lemma 2.9 (iii),
one gets ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, which then yields

‖RCx−RCy‖2 = ‖2PCx− 2PCy − (x− y)‖2

= 4 ‖PCx− PCy‖2 − 4〈PCx− PCy, x− y〉+ ‖x− y‖2

≤ ‖x− y‖2 .

Corollary 2.13 (Projectors and reflectors on subspaces):
Let L be an affine subspace. The following conditions hold

(a) PL is firmly nonexpansive with equality, i.e.,

‖PLx− PLy‖2 + ‖(Id−PL)x− (Id−PL)y‖2 = ‖x− y‖2 (2.13)

for all x ∈ H.

(b) For all x ∈ H, y ∈ L the following identity holds

‖RLx− y‖ = ‖x− y‖ . (2.14)

Remark 2.14: Corollary 2.13 (a) is actually a restatement of the Moreau decomposition
(2.5) on subspaces. ♦
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Proof. (a) is achieved by replacing (2.2) by the stronger equation (2.7) analog to Theorem
2.11.

(b) follows by the use of equation (2.7):

‖RLx− y‖2 = ‖2PLx− 2x+ x− y‖2

= ‖x− y‖2 + 4 ‖PLx− x‖2 + 4〈PLx− x, x− y〉
= ‖x− y‖2 + 4 ‖PLx− x‖2

+4

〈PLx− x, x− PLx〉︸ ︷︷ ︸
=−‖PLx−x‖2

+ 〈PLx− x, PLx− y〉︸ ︷︷ ︸
=0


= ‖x− y‖2 .

2.4. Basic Properties of the Douglas–Rachford Operator

Theorem 2.15 ((Lions and Mercier, 1979, Proposition 2)):
Let A,B ⊂ H be closed, convex and nonempty. The Douglas–Rachford operator TDR
(1.20) is firmly nonexpansive.

Proof. By Lemma 2.12 the reflectors RA and RB are nonexpansive. For x ∈ H de-
fine T̂ x := RARBx and note that T̂ as a composition of nonexpansive mappings is
nonexpansive. Firm nonexpansiveness of TDR is then a consequence of Theorem 2.9
(ii).

Definition 2.16 (The gap vector, (Bauschke and Borwein, 1993)):
Let A,B ⊂ H be nonempty, closed and convex. Let

v := Pcl(B−A)(0). (2.15)

We call v the displacement vector or the gap vector between the sets A and B.

Proposition 2.17 (Fixed points of Alternating Projections, (Bauschke and Borwein,
1993, Section 5)):
Assume that A,B ⊂ H are closed and nonempty. Then

Fix (TAP) = A ∩ (B− v), (2.16)

where v is the displacement vector given by (2.15). Furthermore assume that there is
x̂ ∈ A ∩B. Then Fix (TAP) = A ∩B.
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Proposition 2.18 (Fixed points of Douglas–Rachford, (Bauschke et al., 2004)):
Assume that A,B ⊂ H are nonempty, closed and convex. Let v be the displacement
vector given by (2.15) and for any closed, convex set Ω let NΩ (x̄) := cone(P−1

Ω x̄− x̄) be
the normal cone to Ω at x̄ (compare Definition 3.1). The following properties hold:

(a) Let x0 ∈ H and xn be the sequence generated by (1.21), i.e., xn+1 = TDR xn. Then

TDR xn − xn → −v, n→∞. (2.17)

(b)
(A + v) ∩B +Ncl(B−A) (v) ⊂ Fix (TDR +v)

Fix (TDR +v) ⊂ (A + v) ∩B +Ncl(B−A) (v) + v.
(2.18)

(c) If A ∩B 6= ∅, then

Fix (TDR) = A ∩B +Ncl(B−A) (0) . (2.19)

Proof. For (a) see (Bauschke et al., 2004, Fact 3.2, Theorem 3.4). (b) is (Bauschke et al.,
2004, Theorem 3.5), whilst (a) is (Bauschke et al., 2004, Corollary 3.5).

Remark 2.19: A nonconvex analog to Proposition 2.18 can be found in (Luke, 2008,
Lemma 3.8).

Proposition 2.18 indicates why the Douglas–Rachford algorithm is notoriously difficult
to analyze. If A∩B = ∅ the algorithm does not converge at all, and even if there are points
x̂ ∈ A ∩B the set Fix (TDR) does not necessarily coincide with the intersection. This
was already pointed out in remark 1.15. We will characterize conditions that guarantee
Fix (TDR) = A ∩B in Chapter 5.

Proposition 2.18 also suggests that it may be reasonable for xn generated by the Douglas–
Rachford algorithm (1.21) to monitor the shadow sequence PBxn rather than the sequence
xn. See for instance (Bauschke et al., 2004, Remark 3.10). ♦

Definition 2.20 (shadow sequence):
For x0 ∈ H A,B ⊂ H closed let xn be a sequence generated by the Douglas–Rachford
operator, i.e., a sequence according to (1.21). The shadow sequence of xn is defined by

PB(xn) = PB ((TDR x0)n) , for n ∈ N. (2.20)

2.5. On the Douglas–Rachford Operator on Parallel
Subspaces

Theorem 2.21:
Let Ω,A,B be closed, nonempty subsets of H and let TDR be the Douglas–Rachford
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operator defined by (1.20) and let L be an affine subspace such that A∩B ⊆ aff (A ∪B) ⊆
L. Then

PL TDR = TDR PL. (2.21)

Furthermore for any x̃ ∈ L one has TDR x̃ ⊂ L.

Proof. Since A,B ⊂ L (2.21) follows by applying (2.10)

PL TDR =PL
1
2 (Id +RARB)

=1
2 (PL + PLRARB)

(2.10)= 1
2 (PL +RARBPL)

= TDR PL.

It is then a direct consequence of (2.21) that if x ∈ L then PL TDR x = TDR x and hence
TDR x ⊂ L .

Remark 2.22: A similar result to equation (2.21) is discussed in (Hesse et al., 2014a,
Lemma 4.4 and Proposition 4.5) and (Phan, 2014, Theorem 3.14), where the latter
provides a more general discussion for the Douglas–Rachford operator on parallel subspaces
and leads to the following interesting result. ♦

Proposition 2.23 ((Phan, 2014, Theorem 3.16)):
Let A and B be closed and nonempty and let x̂ ∈ A ∩ B 6= ∅, L := aff (A ∪B). For
x0 ∈ H let xn be a Douglas–Rachford sequence generated by (1.21), i.e.,

xn+1 ∈ TDR xn, n ∈ N

Define x̃n := PLxn, for n ∈ N. Then

(a) For all n ∈ N
x̃n ∈ TDR x̃n−1. (2.22)

(b) For all n ∈ N
x̃n − xn = x̃0 − x0. (2.23)

(c) If yn → ȳ ∈ A ∩B for n→∞ then xn → x̄ ∈ Fix (TDR).
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3.1. Foundations – Normal and Tangent Cones

From now on, if not stated otherwise, E is a Euclidean space. Ω1,Ω2 are closed and
nonempty subsets of E.

Most of the following definitions can be found in (Rockafellar and Wets, 1998) in more
detail.

Definition 3.1 (normal cones, (Rockafellar and Wets, 1998, Definition 6.3 and Example
6.16)):
The proximal normal cone NP

Ω (x̄), the Fréchet normal cone N̂Ω (x̄) and the limiting
normal cone NΩ (x̄) to a set Ω ⊂ E at a point x̄ ∈ Ω are defined by

NP
Ω (x̄) := cone(P−1

Ω (x̄)− x̄), (3.1)

N̂Ω (x̄) :=

v ∈ E

∣∣∣∣∣∣ lim sup
x

Ω→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0

 , (3.2)

NΩ (x̄) := lim sup
x

Ω→x̄

N̂Ω (x) . (3.3)

Remark 3.2: The construction of the limiting normal cone goes back to Mordukhovich
(see (Rockafellar and Wets, 1998, Chap. 6 Commentary)). Definition (3.3) is the most
conventional definition of the limiting normal cone. However, for our purposes here, the
following equivalent definition is more appropriate. ♦

Proposition 3.3 (Mordukhovich normal cone (Mordukhovich, 2006, Theorem 1.6)):
The limiting normal cone or Mordukhovich normal cone is the smallest cone satisfying
the two properties

(a) P−1
Ω (x̄) ⊆ (Id +NΩ (·)) (x̄) and in particular x̄ ∈ PΩ(x)⇒ x− x̄ ∈ NΩ (x̄) ,

(b) for any sequence xi → x̄ in Ω any limit of a sequence of normals νi ∈ NΩ (xi) must
lie in NΩ (x̄).

In fact the limiting normal cone NΩ (x̄) to a set Ω ⊂ E at a point x̄ ∈ Ω can equivalently
be defined as any vector that can be written as the limit of proximal normals; that is,
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ν̄ ∈ NΩ (x̄) if and only if there exist sequences (xk)k∈N in Ω and (νk)k∈N in NP
Ω (xk) such

that xk → x̄ and νk → ν̄.

Remark 3.4: As a consequence of the previous Proposition

NΩ (x̄) = lim sup
x

Ω→x̄

NP
Ω (x) .

This only holds on finite dimensional spaces E and is not true on general Hilbert spaces
H and in fact is one of the main reasons, most of the nonconvex convergence theory for
projection algorithms is formulated on Euclidean spaces E. ♦

Proposition 3.5 ((Rockafellar and Wets, 1998, Proposition 6.5)):
At any point x̄ ∈ Ω the sets NP

Ω (x̄), N̂Ω (x̄) and NΩ (x̄) are closed cones. In addition the
Fréchet normal cone N̂Ω (x̄) is always convex, and

N̂Ω (x̄) ⊂ NΩ (x̄) = lim sup
x

Ω→x̄

N̂Ω (x) .

Definition 3.6 (tangent cones, (Rockafellar and Wets, 1998, Definition 6.1 and 6.25)):
A vector w ∈ E is tangent to a set Ω ⊂ E at a point x̄, if there are sequences (x̄n)n∈N ⊂ Ω,
x̄n

n→∞→ x̄ and λn > 0, λn n→∞→ 0, such that
x̄n − x̄
λn

n→∞→ w. (3.4)

The set of all tangent vectors of Ω at x̄ is called tangent cone TΩ(x̄).

A vector ŵ ∈ E is a regular tangent vector to Ω ⊂ E at x̄, if for any sequence
(x̄n)n∈N ⊂ Ω, x̄n n→∞→ x̄ and λn > 0, λn n→∞→ 0, there exists a sequence (xn)n∈N ⊂ Ω,
xn

n→∞→ x̄, such that
xn − x̄
λn

n→∞→ ŵ. (3.5)

The set of all regular tangent vectors of Ω at x̄ is called regular tangent cone T̂Ω(x̄).

Proposition 3.7 ((Rockafellar and Wets, 1998, Theorem 6.26)):
Let Ω ⊂ E and x̄ ∈ Ω. Both TΩ(x̄) and T̂Ω(x̄) are closed cones. In addition T̂Ω(x̄) ⊂ TΩ(x̄)
and T̂Ω(x̄) is always convex. If Ω is closed the following relation holds

T̂Ω(x̄) = lim inf
x

Ω→x̄
TΩ(x).

Definition 3.8 ((Rockafellar and Wets, 1998, Corollary 6.21)):
For any cone K ⊂ E the polar of K is defined to be the cone

K	 := {y ∈ E | 〈x, y〉 ≤ 0 for all x ∈ K} . (3.6)

K	 is closed and convex. The bipolar is the cone K		 := (K	)	. Note that K		 =
cl (conv)K and that for two cones K1, K2 ⊂ E, K1 ⊂ K2 implies K	1 ⊃ K	2 .
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Theorem 3.9 (tangent-normal polarity, (Rockafellar and Wets, 1998, Theorem 6.28)):
Let Ω ⊂ E be closed and x̄ ∈ Ω. The following properties hold

N̂Ω (x̄) = TΩ(x̄)	,
T̂Ω(x̄) = NΩ (x̄)	.

3.2. Nonconvex Notions of Regularity

Definition 3.10 (Clarke-regularity):
A nonempty set Ω ⊂ E is Clarke-regular at a point x̄ ∈ Ω if

NΩ (x̄) = N̂Ω (x̄) . (3.7)

Definition 3.11 (Prox-regularity, (Poliquin et al., 2000, Definition 1.1)):
A nonempty, closed set Ω ⊂ E is prox-regular at a point x̄ ∈ Ω for ν̄ ∈ NΩ (x̄), if there is
δ > 0 and ρ > 0, such that for all x ∈ Ω ∩ Bδ(x̄), ν ∈ NΩ (x) ∩ Bδ(ν̄)

x = PΩ∩Bδ(x̄)
(
x+ ρ−1ν

)
. (3.8)

The set Ω is simply prox-regular at x̄ if (3.8) holds for all ν̄ ∈ NΩ (x̄).

Remark 3.12: Early results relating to the notion of prox-regularity were already in-
troduced in (Federer, 1959). We stick to the notation of (Poliquin et al., 2000) as the
following result is one of the basic properties in our intended applications. ♦

Theorem 3.13 (Prox-regularity, (Poliquin et al., 2000, Theorem 1.3)):
A nonempty, closed set Ω ⊂ E is prox-regular at a point x̄ ∈ Ω if and only if the projector
PΩ is single-valued around x̄.

Definition 3.14 (Super-regularity and its variants):
A nonempty set Ω ⊂ E is

(a) super-regular at a point x̄ ∈ Ω if, for all ε > 0, there exists a δ such that the
inequality

〈νx, y − x〉 ≤ ε ‖νx‖ ‖y − x‖ (3.9)

holds for all points y, x ∈ Bδ(x̄) ∩ Ω and all vectors νx ∈ NP
Ω (x).

(b) (ε, δ)-regular at x̄, if there exists ε > 0, δ > 0 such that (3.9) holds for all y, x ∈
Bδ(x̄) ∩ Ω, νx ∈ NP

Ω (x).

(c) (ε, δ)-subregular at x̄ with respect to a set S, if there exists ε > 0, δ > 0 such that
(3.9) holds for all x ∈ Bδ(x̄) ∩ Ω, y ∈ S ∩ Bδ(x̄), νx ∈ NP

Ω (x). The set Ω is simply
said to be (ε, δ)-subregular at x̄ if S = {x̄}.
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If a set Ω is (ε, δ)-(sub)-regular at x̄ for any δ > 0, we call it (ε,∞)-(sub)-regular at x̄.

Remark 3.15: Super-regularity was introduced in (Lewis et al., 2009, Definition 4.3). It
was introduced as one of the fundamental tools to achieve local linear convergence of
the alternating projections algorithm. (ε, δ)-regularity was introduced as a generalization
of super-regularity in (Bauschke et al., 2013d, Definition 8.1). The notion of (ε, δ)-
subregularity first appeared in (Hesse and Luke, 2013, Definition 2.9) and is weaker still
than (ε, δ)-regularity.

A similar condition to subregularity appears in the context of regularized inverse
problems (Jin and Lorenz, 2010, Corollary 3.6). ♦

Theorem 3.16 (Prox-regularity implies super-regularity, (Lewis et al., 2009, Proposition
4.9)):
Let Ω ⊂ E be closed and nonempty. If Ω is prox-regular at a x̄ ∈ Ω, then Ω is super-regular
at x̄.

Theorem 3.17 (Super-regularity implies Clarke-regularity, (Lewis et al., 2009, Corollary
4.5)):
Let Ω ⊂ E be closed and nonempty. If Ω is super-regular at a x̄ ∈ Ω, then Ω is
Clarke-regular at x̄.

Proof. (Lewis et al., 2009, Corollary 4.5) .

Remark 3.18: As mentioned before, we are interested in providing a reasonable qualitative
and quantitative framework to prove convergence of projection algorithms. Being able
to efficiently calculate projectors or more precisely best approximation points is usually
closely related to prox-regularity or as we will see later at least (ε, δ)−subregularity. ♦

Super-regularity is something between Clarke regularity and amenability or prox-
regularity. (ε, δ)-regularity is still weaker than Clarke regularity (and hence super-
regularity) as the next example shows.

Remark 3.19: [Example 1.16 (d) revisited] The set

A := R× {0} ∪ {0} × R (3.10)

is a particularly easy pathological set that illustrates the distinction between our new
notion of subregularity and previous notions found in the literature. Note that for x1 ∈
R×{0}, NA(x1) = NP

A (x1) = {0}×R and for x2 ∈ {0}×R, NA(x2) = NP
A (x2) = R×{0}

and that NA(0) = A and NP
A (0) = 0 which implies that at the origin A is not Clarke

regular and therefore neither super-regular nor prox-regular there. In fact, it is not
even (ε, δ)-regular at the origin for any ε < 1 and any δ > 0. The set A is, however,
(0,∞)-subregular at {0}. Indeed, for any x1 ∈ R× {0} one has ν1 ∈ NA(x1) = {0} × R
and therefore 〈ν1, x1 − 0〉 = 0. Analogously for x2 ∈ {0} × R, ν2 ∈ NA(x2) = R × {0}
and it follows that 〈ν2, x2 − 0〉 = 0, which shows that A is (0,∞)-subregular at 0. ♦
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Remark 3.20 ((ε, δ)-subregularity as a quantitative measure): Remark 3.19 illustrates
that (ε, δ)-subregularity with respect to a point x̄ in some sense forms a quantitative
measure on the degree of violation of convexity. In terms of the point 0 of A as in the
last example every convex combination of points x ∈ A and 0 are again points of A.
Indeed, in applications (ε, δ)-subregularity with respect to the set of feasible points leads
to improved convergence results in many application. See for instance the application to
sparse affine feasibility in Chapter 8. ♦

Lemma 3.21 (Projectors under unitary transformations):
Let N ⊂ E be closed and let U : E→ E be an unitary linear operator. Then the projector
PM onto set M defined by

M := {x ∈ E | Ux ∈ N} (3.11)

is given by

PM = U∗PNU. (3.12)

As a consequence the proximal normal cone fulfills

UNP
M (x) = NP

N (Ux) . (3.13)

for any x ∈M .

Proof. First note that N = U(M) and M = U∗(N) and hence, as N is closed so is M .
By Proposition 1.6 then PNy 6= ∅ and PMx 6= ∅ for any x, y ∈ E.

Choose any x ∈ E. Then

x̄ ∈ PMx ⇔ ‖x− x̄‖ = d (x,M) .

On the other hand, since U is an isometry

d (x,M) = d (Ux, U(M)) = d (Ux,N) ,

and hence

‖Ux− Ux̄‖ = d (Ux,N) ⇔ Ux̄ ∈ PNUx

which is equivalent to x̄ ∈ U∗PNUx.

Equation (3.13) is then a consequence of the definition of the proximal normal cone
(3.1).

Theorem 3.22 (subregularity under unitary transformations):
Let U : E→ E be an unitary linear operator. Let N ⊂ E be (ε, δ)-subregular at ȳ with
respect to S ⊂ N . Then the set M defined by

M := {x ∈ E | Ux ∈ N} . (3.14)

is (ε, δ)-subregular at x̄ := U∗ȳ with respect to U∗S ⊂M .
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Proof. Note since N is (ε, δ)-subregular at ȳ

〈νu, v − u〉 ≤ ε ‖νu‖ ‖v − u‖ (3.15)

holds for all points u ∈ Bδ(ȳ) ∩N , v ∈ S and all vectors νu ∈ NP
N (u).

Now for x̄ = U∗ȳ choose any x ∈M ∩ Bδ(x̄), y ∈ U∗S and νx ∈ NP
M (x). By definition

of M then Ux, Uy ∈ N and by Lemma 3.21 UNP
M (x) = NP

N (Ux). (ε, δ)-subregularity of
N then implies

〈νx, y − x〉 =〈 Uνx︸︷︷︸
∈NP

N (Ux)

, Uy︸︷︷︸
∈S

− Ux︸︷︷︸
∈N

〉

(3.15)
≤ ε ‖Uνx‖ ‖Uy − Ux‖
=ε ‖νx‖ ‖y − x‖ ,

which completes the proof of (ε, δ)-subregularity of M at x̄.

Corollary 3.23 (super-regularity under unitary transformations):
Let U : E→ E be an unitary linear operator. Let N be super-regular at ȳ. Then the set
M defined by

M := {x ∈ E | Ux ∈ N} . (3.16)

is super-regular at x̄ := U∗ȳ.
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4. (S, ε)-Firm Nonexpansiveness

Up to this point, the results have concerned mostly convex sets, and hence the projector
and related fixed point algorithms have all been single-valued. In what follows, we
generalize to nonconvex sets and therefore allow multi-valuedness of the projectors.

4.1. Definition and Basic Properties

We define next an analog to firm nonexpansiveness in the nonconvex case with respect
to a set S.

Definition 4.1 ((S, ε)-(firmly-)nonexpansive mappings, (Hesse and Luke, 2013, Defini-
tion 2.3)):
Let D and S be nonempty subsets of E.

T : D⇒ E is called (S, ε)-nonexpansive on D if

∀x ∈ D, ∀x̄ ∈ S, ∀x+ ∈ Tx, ∀x̄+ ∈ T x̄ :
‖x+ − x̄+‖ ≤

√
1 + ε ‖x− x̄‖ . (4.1)

If (4.1) holds with ε = 0 then we say that T is S-nonexpansive on D.

T : D⇒ E is called (S, ε)-firmly nonexpansive on D if

∀x ∈ D, ∀x̄ ∈ S, ∀x+ ∈ Tx, ∀x̄+ ∈ T x̄ :
‖x+ − x̄+‖2 + ‖(x− x+)− (x̄− x̄+)‖2 ≤ (1 + ε) ‖x− x̄‖2 .

(4.2)

If (4.2) holds with ε = 0 then we say that T is S-firmly nonexpansive on D.

Note that, as with (firmly) nonexpansive mappings, the mapping T need not be a
self-mapping from D to itself. The classical (firmly) nonexpansive operator on D is
(D, 0)-(firmly) nonexpansive on D.

Remark 4.2: In the special case where S = Fix (T ), mappings satisfying (4.1) are
also called quasi-(firmly-)nonexpansive (Bauschke and Combettes, 2011). Quasi-non-
expansiveness is a restriction of another well-known concept, Fejér monotonicity, to
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4. (S, ε)-Firm Nonexpansiveness

S = Fix (T ). Equation (4.2) is a relaxed version of firm nonexpansiveness (2.12). (S, ε)-
(firmly-)nonexpansive mappings were introduced (Hesse and Luke, 2013, Definition 2.3).
A similar concept γ-quasi firm nonexpansiveness, which is motivated by (S, ε)-(firmly-
)nonexpansiveness, was introduced (Phan, 2014, Definition 4). ♦

Analogous to the relation between firmly nonexpansive mappings and 1/2-averaged
mappings in Theorem 2.9 we have the following relationship between (S, ε)-firmly non-
expansive mappings (4.2) and their 1/2-averaged companion mapping. For a detailed
discussion on general averaged mappings see (Bauschke and Combettes, 2011, Chapter 4)
and references therein.

Lemma 4.3 (1/2−averaged mappings, (Hesse and Luke, 2013, Lemma 2.4)):
Let D,S ⊂ E be nonempty and T : D⇒ E. The following are equivalent

(a) T : D⇒ E is (S, ε)-firmly nonexpansive on D.

(b) The mapping T̃ : D⇒ E given by

T̃ x := (2Tx− x) ∀x ∈ D

is (S, 2ε)-nonexpansive on D, i.e. T can be written as

Tx = 1
2
(
x+ T̃ x

)
∀x ∈ D. (4.3)

Proof. For x ∈ D choose x+ ∈ Tx. Observe that, by the definition of T̃ , there is a
corresponding x̃ ∈ T̃ x such that x+ = 1

2(x + x̃), which is just formula (4.3). Let y be
any point in S and select any y+ ∈ Ty (respectively choose y+, ỹ). Then

‖x+ − y+‖2 + ‖x− x+ − (y − y+)‖2

=
∥∥∥1

2(x+ x̃)− 1
2(y + ỹ)

∥∥∥2
+
∥∥∥1

2(x− x̃)− 1
2(y − ỹ)

∥∥∥2

= 1
4

[
‖x− y‖2 + 2〈x− y, x̃− ỹ〉+ ‖x̃− ỹ‖2

]
+1

4

[
‖x− y‖2 − 2〈x− y, x̃− ỹ〉+ ‖x̃− ỹ‖2

]
= 1

2 ‖x− y‖
2 + 1

2 ‖x̃− ỹ‖
2

!
≤ 1

2 ‖x− y‖
2 + 1

2(1 + 2ε) ‖x− y‖2

= (1 + ε) ‖x− y‖2 ,

where the inequality holds if and only if T̃ is (S, 2ε)−nonexpansive. By definition, it
then holds that T is (S, ε)-firmly nonexpansive if and only if T̃ is (S, 2ε)−nonexpansive,
as claimed.

The (S, ε)-firm nonexpansiveness is preserved under convex combination of operators.
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4. (S, ε)-Firm Nonexpansiveness

Theorem 4.4 ((Hesse and Luke, 2013, Theorem 2.5)):
Let T1 be (S, ε1)-firmly nonexpansive and T2 be (S, ε2)-firmly nonexpansive on D. The
convex combination λT1 + (1 − λ)T2 is (S, ε)-firmly nonexpansive on D where ε =
max{ε1, ε2}.

Proof. Let x, y ∈ D. Let

x+ ∈ λT1x+ (1− λ)T2x, and
y+ ∈ λT1y + (1− λ)T2y,

⇒ x+ = λx
(1)
+ + (1− λ)x(2)

+ , where x(1)
+ ∈ T1x, x

(2)
+ ∈ T2x

y+ = λy
(1)
+ + (1− λ)y(2)

+ , where y(1)
+ ∈ T1y, y

(2)
+ ∈ T2y.

By Lemma 4.3 (b) one has nonexpansiveness of the mappings T̂1, T̂2 given by T̂1x =
2T1x− x and T̂2x = 2T2x− x, x ∈ D that is∥∥∥[2x(1)

+ − x
]
−
[
2y(1)

+ − y
]∥∥∥ ≤ √

1 + 2ε1 ‖x− y‖ ,∥∥∥[2x(2)
+ − x

]
−
[
2y(2)

+ − y
]∥∥∥ ≤ √

1 + 2ε2 ‖x− y‖ .

This implies

‖(2x+ − x)− (2y+ − y)‖
=
∥∥∥(2 [λx(1)

+ + (1− λ)x(2)
+

]
− x

)
−
(
2
[
λy

(1)
+ + (1− λ)y(2)

+

]
− y

)∥∥∥
=
∥∥∥λ ([2x(1)

+ − x
]
−
[
2y(1)

+ − y
])
− (1− λ)

([
2x(2)

+ − x
]
−
[
2y(2)

+ − y
])∥∥∥

≤ λ
∥∥∥[2x(1)

+ − x
]
−
[
2y(1)

+ − y
]∥∥∥+ (1− λ)

∥∥∥[2x(2)
+ − x

]
−
[
2y(2)

+ − y
]∥∥∥

≤
√

1 + 2ε ‖x− y‖ .

The use of Lemma 4.3 (b) then completes the proof.

4.2. Projectors and Reflectors

We show in this section how (S, ε)(firm)-nonexpansiveness of projectors and reflectors is
a consequence of (sub-)regularity of the underlying sets.

Theorem 4.5 (projectors and reflectors onto (ε, δ)-subregular sets, (Hesse and Luke,
2013, Theorem 2.14)):
Let Ω ⊂ E be nonempty, closed and (ε, δ)-subregular at x̂ with respect to S ⊆ Ω ∩ Bδ(x̂)
and define

U := {x ∈ E | PΩx ⊂ Bδ(x̂)} . (4.4)

The following properties hold.
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4. (S, ε)-Firm Nonexpansiveness

(a) The projector PΩ is (S, ε̃1)-nonexpansive on U , that is,
∀x ∈ U, ∀x+ ∈ PΩx, ∀x̄ ∈ S :
‖x+ − x̄‖ ≤

√
1 + ε ‖x− x̄‖ . (4.5)

where ε̃1 := 2ε+ ε2.

(b) The projector PΩ is (S, ε̃2)-firmly nonexpansive on U , that is,
∀x ∈ U, ∀x+ ∈ PΩx, ∀x̄ ∈ S :

‖x+ − x̄‖2 + ‖x− x+‖2 ≤ (1 + ε̃2) ‖x− x̄‖2 ,
(4.6)

where ε̃2 := 2ε+ 2ε2.

(c) The reflector RΩ is (S, ε̃3)-nonexpansive on U , that is,

∀x ∈ U, ∀x+ ∈ RΩx, ∀x̄ ∈ S : ‖x+ − x̄‖ ≤
√

1 + ε̃3 ‖x− x̄‖ , (4.7)

where ε̃3 := 4ε+ 4ε2.

Proof. (a) The projector is nonempty since Ω is closed. Then by the Cauchy-Schwarz
inequality

‖x+ − x̄‖2 = 〈x− x̄, x+ − x̄〉+ 〈x+ − x, x+ − x̄〉
≤ ‖x− x̄‖ ‖x+ − x̄‖+ 〈x+ − x, x+ − x̄〉.

(4.8)

Now for x ∈ U we have also that x+ ∈ Bδ(x̂) and thus, by the definition of (ε, δ)-
subregularity with respect to S,

∀x ∈ U, ∀x+ ∈ PΩx, ∀x̄ ∈ S :
〈x+ − x, x+ − x̄〉 ≤ ε ‖x− x+‖ ‖x+ − x̄‖

≤ ε ‖x− x̄‖ ‖x+ − x̄‖ .

Combining this with (4.8) yields

∀x ∈ U, ∀x+ ∈ PΩx, ∀x̄ ∈ S : (4.9)
‖x+ − x̄‖ ≤ (1 + ε) ‖x− x̄‖

=
√

1 + (2ε+ ε2) ‖x− x̄‖

as claimed.

(b) Expanding and rearranging the norm yields
∀x ∈ U, ∀x+ ∈ PΩx, ∀x̄ ∈ S :

‖x+ − x̄‖2 + ‖x− x+‖2

= ‖x+ − x̄‖2 + ‖x− x̄+ x̄− x+‖2

= ‖x+ − x̄‖2 + ‖x− x̄‖2 + 2〈x− x̄, x̄− x+〉+ ‖x+ − x̄‖2

= 2 ‖x+ − x̄‖2 + ‖x− x̄‖2 + 2 〈x+ − x̄, x̄− x+〉︸ ︷︷ ︸
=−‖x+−x̄‖2

+2 〈x− x+, x̄− x+〉︸ ︷︷ ︸
≤ε‖x−x+‖‖x+−x̄‖

≤ ‖x− x̄‖2 + 2ε ‖x+ − x̄‖ ‖x− x+‖
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where the last inequality follows from the definition of (ε, δ)-subregularity with respect
to S. By definition, ‖x− x+‖ = d (x,Ω) ≤ ‖x− x̄‖. Combining the last inequality and
inequality (4.5) yields

∀x ∈ U, ∀x+ ∈ PΩx, ∀x̄ ∈ S :
‖x+ − x̄‖2 + ‖x− x+‖2 ≤ (1 + 2ε (1 + ε)) ‖x− x̄‖2 .

(c) By (b) the projector is (S, 2ε+ 2ε2)-firmly nonexpansive on U , and so by Lemma 4.3
(b) RΩ = 2PΩ − Id is (S, 4ε+ 4ε2)-nonexpansive on U .

Note that ε̃1 < ε̃2 (ε > 0) in the above theorem, in other words, the degree to which
classical firm nonexpansiveness is violated is greater than the degree to which classical
nonexpansiveness is violated. This is as one would expect since firm nonexpansiveness is
a stronger property than nonexpansiveness.

We can now characterize the degree to which the Douglas–Rachford operator violates
firm-nonexpansiveness on neighborhoods of (ε, δ)-subregular sets.

Theorem 4.6 ((S, ε̃)-firm nonexpansiveness of TDR, (Hesse and Luke, 2013, Theorem
2.15)):
Let A,B ⊂ E be closed and nonempty. Let A and B be (εA, δ)- and (εB, δ)-subregular
respectively at x̂ with respect to S ⊂ Bδ(x̂) ∩ (A ∩B). Let TDR : E ⇒ E be the
Douglas–Rachford operator defined by (1.20) and define

U := {z ∈ E | PBz ⊂ Bδ(x̂) and PARBz ⊂ Bδ(x̂)} . (4.10)

Then TDR is (S, ε̃)-firmly nonexpansive on U , i.e.,

∀x ∈ U, ∀x+ ∈ TDR x, ∀x̄ ∈ S :
‖x+ − x̄‖2 + ‖x− x+‖2 ≤ (1 + ε̃) ‖x− x̄‖2 ,

(4.11)

where
ε̃ = 2εA(1 + εA) + 2εB(1 + εB) + 8εA(1 + εA)εB(1 + εB). (4.12)

Proof. Define UA := {z | PAz ⊂ Bδ(x̂)}. By Theorem 4.5 (c)

∀y ∈ UA, ∀x̃ ∈ RAy, ∀x̄ ∈ S :
‖x̃− x̄‖ ≤

√
1 + 4εA(1 + εA) ‖y − x̄‖ . (4.13)

Similarly, define UB := {z | PBz ⊂ Bδ(x̂)} and again apply Theorem 4.5 (c) to get

∀x ∈ UB, ∀y ∈ RBx, ∀x̄ ∈ S :
‖y − x̄‖ ≤

√
1 + 4εB(1 + εB) ‖x− x̄‖ . (4.14)
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Now, we choose any x ∈ UB such that RBx ∈ UA, that is x ∈ U , so that we can combine
(4.13)-(4.14) to get

∀x ∈ U, ∀x̃ ∈ RARBx, ∀x̄ ∈ S :
‖x̃− x̄‖ ≤

√
1 + 4εA(1 + εA)

√
1 + 4εB(1 + εB) ‖x− x̄‖

=
√

1 + 2ε̃ ‖x− x̄‖ .
(4.15)

Note that RARBx̄ = RBx̄ = x̄ since x̄ ∈ A ∩ B, so (4.15) says that the operator
T̃ := RARB is (S, ε̃)-nonexpansive on U . Hence by Lemma 4.3 TDR = 1

2

(
T̃ + I

)
is

(S, 2ε̃)-firmly nonexpansive on U , as claimed.

If one of the sets above is convex, say B for instance, the constant ε̃ simplifies to
ε̃ = 2εA(1 + εA) since B is (0,∞)-subregular at x̄.
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5. Regularity of Collections of Sets

5.1. Principal angles

The first idea on principal angles was introduced in (Jordan, 1875) and different notions
have been (re-)discovered at several times in the literature. At this point, we will only
introduce the following definition, as its connections to the convergence of Alternating
Projections in well understood (Deutsch, 2001) and serves it serves as a reference for
optimal convergence rates.

Definition 5.1 (Friedrichs angle, Dixmier angle on subspaces, (Friedrichs, 1937)):
The angle between two closed subspaces M and N is the angle in the interval [0, π/2]
whose cosine is given by

cF (M,N) := sup
{
〈x, y〉

∣∣∣∣∣x ∈M ∩ (M ∩N)⊥ ∩ B
y ∈ N ∩ (M ∩N)⊥ ∩ B

}
. (5.1)

The minimal or Dixmier angle between two subspaces is the number in [0, π/2] whose
cosine is given by

c
(0)
F (M,N) := sup

{
〈x, y〉

∣∣∣x ∈M ∩ B, y ∈ N ∩ B
}
. (5.2)

Theorem 5.2 ((Deutsch, 1995, Theorem 2.16)):
Let M and N be two closed subspaces. Then

cF (N,M) = cF
(
N⊥,M⊥

)
. (5.3)

5.2. Uniform and Linear Regularity

Definition 5.3 (uniform regularity, (Kruger, 2004, Definition 2 and Proposition 4)):
A collection of m closed, nonempty sets {Ω1,Ω2, . . . ,Ωm} is uniformly regular at x̂ if
there exists an α > 0 and a δ > 0 such that for all ρ ∈ (0, δ], ωi ∈ Ωi∩Bδ(x̂), ai ∈ Bαρ(0),
i = 1, 2, . . . ,m: (

m⋂
i=1

(Ωi − ωi − ai)
)
∩ Bρ 6= ∅. (5.4)
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5. Regularity of Collections of Sets

Theorem 5.4 ((Kruger, 2006, Theorem 1)):
A collection of closed, nonempty sets {Ω1,Ω2, . . . ,Ωm} is uniformly regular at x̂ if and
only if there exists a κ > 0 and a δ > 0 such that for all x ∈ Bδ(x̂), xi ∈ Bδ(0),
i = 1, . . . ,m

d

(
x,

m⋂
i=1

(Ωi − xi)
)
≤ κ max

i=1,...,m
d (x+ xi,Ωi) . (5.5)

Theorem 5.5 ((Kruger, 2006, Corollary 2)):
A collection of closed sets {Ω1,Ω2, . . . ,Ωm} is uniformly regular (5.4) at a point x̂ ∈⋂m
i=1 Ωi if and only if the only solution to the system

m∑
i=1

νi = 0, with νi ∈ NΩi(x̂) for i = 1, 2, . . . ,m (5.6)

is νi = 0 for i = 1, 2, . . . ,m.

Definition 5.6 ((Local) linear regularity, (Bauschke and Borwein, 1993, Definition 3.11
and 3.13)):
A collection of closed, nonempty sets {Ω1,Ω2, . . . ,Ωm} is locally linearly regular at
x̂ ∈ ⋂mi=1 Ωi if there exists κ > 0 and δ > 0 such that for all x ∈ Bδ(x̂):

d

(
x,

m⋂
i=1

Ωi

)
≤ κ max

i=1,...,m
d (x,Ωi) . (5.7)

If for a given δ > 0 there is a κ such that (5.7) holds, we say that the collection is locally
linearly regular with respect to δ. If (5.7) holds for any δ > 0 the collection of sets is
called linearly regular.

Example 5.7: [example 1.16 revisited.] The collection of sets in example 1.16 (a) is
uniformly regular at 0 and linearly regular. The same collection of sets embedded in
a higher-dimensional space is still linearly regular, but looses its uniform regularity.
This can be seen by shifting one of the sets in example 1.16 (b) in x3-direction, as this
renders the intersection empty. This shows that linear regularity does not imply uniform
regularity. The collection of sets in example (c) is neither uniformly regular nor linearly
regular. The collection of sets in example 1.16 (d) is uniformly regular at the intersection.
One has NB(0) = {(λ,−λ)| λ ∈ R} and by Remark 3.19 NA(0) = A and this directly
shows NA(0)∩−NB(0) = {0} and hence implies condition (5.6). In example 1.16 (e) one
of the sets is nonconvex, but the collection of sets is still well-behaved in the sense that
it is both uniformly and linearly regular. It is worth emphasizing, however, that the set
A in example 1.16 (d) is not Clarke regular at the origin (Remark 3.19 ). This illustrates
the fact that collections of classically “irregular” sets can still be quite regular at points
of intersection. M

Remark 5.8: The notions of strong, linear and uniform are overused in literature which
results in inconsistent nomenclature. Since equation (5.5) directly implies equation (5.7),
uniform regularity is indeed a more restrictive notion than linear regularity.
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5. Regularity of Collections of Sets

Uniform regularity appears in (Lewis et al., 2009) as local linear regularity, while it is
called strong regularity in (Kruger, 2006, Propostion 2). Also compare this to the basic
constraint qualification for sets in (Mordukhovich, 2006, Definition 3.2). The notion
appeared first in (Kruger, 2004, Proposition 4) and was introduced as a characterization
of the absence of weak stationary.

Based on uniform regularity (or more specific characterizations (5.6)) Lewis Luke and
Malick proved local linear convergence of AP in the nonconvex setting, where both sets
A,B are closed and one of the sets is superregular. See (Lewis et al., 2009). This was,
at the time, the most general nonconvex convergence result providing a linear convergence
rate, compare Remark 1.8. However, as we will see at several points in this work, the
notion of uniform regularity is in fact too restrictive and does not cover some easy convex
examples. Compare for instance 5.7. The ideas of (Lewis et al., 2009) were refined in
(Bauschke et al., 2013d; Bauschke et al., 2013c), compare Definition 5.40. The approach
in (Lewis et al., 2009; Bauschke et al., 2013d; Bauschke et al., 2013c) differs from the
approach in this work. Whenever possible connections between the different techniques
and frameworks are given.

The initial definition of (bounded) linear regularity goes back to (Bauschke and
Borwein, 1993, Definition 3.11 and 3.13). Compare this to (Bauschke and Borwein, 1996,
Definition 5.6). What we are calling (local) linear regularity has appeared in various
forms elsewhere. See for instance (Ioffe, 2000, Proposition 4), (Ngai and Théra., 2001,
Section 3), and (Kruger, 2006, Equation (15)). Based on (bounded) linear regularity
(Bauschke and Borwein, 1993) showed linear convergence of alternating projections in
the convex setting for a detailed survey see also (Bauschke and Borwein, 1996).♦
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5. Regularity of Collections of Sets

5.3. Metric Regularity

Definition 5.9 ((strong) metric (sub)-regularity):

(a) The mapping Φ : E⇒ Y is called metrically regular at x̂ for ŷ if there is a finite
scalar κ > 0 together with neighborhood Ux̂ of x̂ and Vŷ of ŷ such that

d
(
x,Φ−1(y)

)
≤ κ d (y,Φ(x)) for all (x, y) ∈ Ux̂ × Vŷ. (5.8)

The regularity modulus regΦ(x̂|ŷ) is the infimum of κ > 0 over all such combinations
κ, Ux̂, Vŷ that (5.8) holds.

(b) The mapping Φ : X⇒ Y is called metrically subregular at x̂ for ŷ if (x̂, ŷ) ∈ gphΦ
and there is a finite scalar κ > 0 and neighborhoods Ux̂ of x̂ and Vŷ of ŷ such that

d
(
x,Φ−1(ŷ)

)
≤ κ d (ŷ,Φ(x) ∩ Vŷ) for all x ∈ Ux̂. (5.9)

The subregularity modulus subregΦ(x̂|ŷ) is the infimum of κ > 0 over all such
combinations κ, Ux̂, Vŷ that (5.9) holds.

(c) The mapping Φ : X⇒ Y is strongly metrically subregular at x̂ for ŷ if (x̂, ŷ) ∈ gphΦ
and there is a finite scalar κ > 0 along with neighborhoods Ux̂ of x̂ and Vŷ of ŷ
such that

‖x− x̂‖ ≤ κ d (ŷ,Φ(x) ∩ V ) for all x ∈ Ux̂. (5.10)

Remark 5.10: The nomenclature metric regularity goes back to (Borwein, 1986), where
the concept itself goes back far earlier. See for instance the independent works (Ursecu,
1975) and (Robinson, 1976). In this work we follow the terminology of (Rockafellar
and Wets, 1998; Dontchev and Rockafellar, 2008). For detailed historical remarks on
metric regularity see (Rockafellar and Wets, 1998, Commentary to Chapter 9) and on
metric regularity and (strong) metric subregularity see (Dontchev and Rockafellar, 2008,
Commentary to Chapter 5) and the references therein. ♦

Corollary 5.11:
Strong metric subregularity of Φ at a point x̂ for ŷ is equivalent to metric subregularity
of Φ at x̂ for ŷ and x̂ being an isolated point of Φ−1 at ŷ.

Proof. This is an equivalent definition and can be seen by (5.9). For a detailed study see
(Dontchev and Rockafellar, 2008, pp. 186/187).

Using the above definitions and theorems from metric regularity, we can now establish
the connection to the definitions of uniform and local linear regularity.
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5. Regularity of Collections of Sets

Proposition 5.12:
For Ω1, ...,Ωm closed and nonempty subsets of E consider the set-valued mapping Φ :
E⇒ Em.

Φ(x) := (Ω1 − x)× · · · × (Ωm − x). (5.11)

Then
Φ−1 ((y1, . . . , ym)) =

m⋂
i=1
{x | yi ∈ Ωi − x} =

m⋂
i=1

Ωi − yi, (5.12)

and
Φ−1 ((0, . . . , 0)) =

m⋂
i=1

Ωi.

Hence finding (x̂, 0) ∈ gphΦ is equivalent to finding x̂ ∈ ⋂mi=1 Ωi.

Theorem 5.13:
Let Ω1, ...,Ωm be closed and nonempty subsets of E and let Φ : E⇒ Em be set-valued
mapping given by equation (5.11), i.e.,

Φ(x) = (Ω1 − x)× · · · × (Ωm − x).

We have the following characterizations:

(a) Φ is metrically regular at x̂ for 0 if and only if {Ω1,Ω2, . . . ,Ωm} is uniformly regular
at x̂ .

(b) Φ is metrically subregular at x̂ for 0 if and only if {Ω1,Ω2, . . . ,Ωm} is locally linearly
regular.

(c) Φ is strongly metrically subregular at x̂ for 0 if and only if {Ω1,Ω2, . . . ,Ωm} is
locally linearly regular and {x̂} = ⋂m

i=1 Ωi.

Proof. (a) Let Φ be metrically regular at x̂ for 0. There are Ux̂ ⊂ E and V0 ⊂ Em such
that

d
(
x,Φ−1(y)

)
≤ κ d (y,Φ(x)) for all (x, y) ∈ Ux̂ × V0.

Now choose δ > 0, such that Bδ(x̂) ⊂ Ux̂ and Bδ(0) × · · · × Bδ(0) ⊂ V0 and substitute
(x1, x2, . . . , xm) := y to achieve

d

(
x,

m⋂
i=1

(Ωi − xi)
)
≤ κ

√√√√ m∑
i=1

d2 (x+ xi,Ωi), ∀x ∈ Bδ(x̂). (5.13)

By norm equivalence on Em this implies existence of κ̃ such that (5.5) holds. On the other
hand if the collection {Ω1, . . . ,Ωm} is uniformly regular then, also by norm equivalence the
strong metric inequality (5.8) holds for Ux̂ := Bδ(x̂) ⊂ E, V0 := Bδ(0)× · · ·×Bδ(0) ⊂ Em.
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5. Regularity of Collections of Sets

(b) For y = 0 (resp. xi = 0 for i = 1, . . . ,m) the equivalence between metric
subregularity of Φ at x̂ for 0 and local linear regularity of {Ω1, . . . ,Ωm} and therefore
(b) follows analogous to the first part.

(c) This is a consequence of Proposition 5.11.

Remark 5.14: Theorem 5.13 (a) was first mentioned in (Kruger, 2006, Proposition 9)
and applied to the context of nonconvex feasibility in (Lewis et al., 2009, Section 3). The
properties (b) and (c) were proven in the prepint (Hesse and Luke, 2012). However this
proposition is not included in the final version of the article (Hesse and Luke, 2013). ♦

The following statement is an immediate consequence of Theorem 5.13.

Corollary 5.15:
Let {Ω1,Ω2, . . . ,Ωm} be a collection of closed, nonempty sets and let x̂ ∈ ⋂mi=1 Ωi. The
collection is

(a) uniformly regular at x̂ if and only if there exists a κ > 0 and a δ > 0 such that, for
all x ∈ Bδ(x̂), xi ∈ Bδ(0), i = 1, . . . ,m,

d

(
x,

m⋂
i=1

(Ωi − xi)
)
≤ κ

√√√√ m∑
i=1

d2 (x+ xi,Ωi). (5.14)

(b) locally linearly regular at x̂ if and only if there exists a κ > 0 and a δ > 0 such
that, for all x ∈ Bδ(x̂)

d

(
x,

m⋂
i=1

Ωi

)
≤ κ

√√√√ m∑
i=1

d2 (x,Ωi). (5.15)

In order to calculate the moduli of regularity regΦ(x̂, 0) and subregΦ(x̂, 0) of the
function Φ given by (5.11) we need some additional tools from variational analysis. We
will also provide some interesting properties of the function Φ, which will help us to
develop a framework that allows us to quantify the definitions of uniform and linear
regularity in a sense that gives insight in the local geometry of the intersections of the
sets.

Definition 5.16 (Graphical derivative and coderivative, (Rockafellar and Wets, 1998,
Definition 8.33)):
Let Φ : E⇒ Y be a multi valued function. The graphical derivative DΦ and the graphical
coderivative D∗Φ are defined by

z ∈ DΦ(x̂ | ŷ)(w) :⇔ (w, z) ∈ TgphΦ(x̂|ŷ), (5.16)
v ∈ D∗Φ(x̂ | ŷ)(y) :⇔ (v,−y) ∈ NgphΦ (x̂|ŷ) . (5.17)
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5. Regularity of Collections of Sets

Proposition 5.17 ((Rockafellar and Wets, 1998, Theorem 9.43) and (Dontchev and
Rockafellar, 2008, Theorem 4C.1)):
Let Φ : E ⇒ Y be a multi valued function and let (x̂, ŷ) ∈ gphΦ and gphΦ be closed
around (x̂, ŷ). The following statements hold:

(a) If Φ is metrically regular then

regΦ(x̂, ŷ) = 1/min { d (0,D∗Φ(x̂|ŷ)(y)) | ‖y‖ = 1} . (5.18)

(b) Φ is strongly metrically subregular at x̂ for ŷ if and only if

DΦ(x̂|ŷ)−1 (0) = {0} , (5.19)

which is equivalent to |DΦ(x̂|ŷ)−1|+ <∞, and in that case

subregΦ(x̂, ŷ) =
∣∣∣DΦ(x̂|ŷ)−1

∣∣∣+ , (5.20)

where for any sublinear mapping F : E→ Y

|F |+ := sup
x∈B

sup
y∈F (x)

‖y‖ (5.21)

is the outer norm.

Proposition 5.18 ((Rockafellar and Wets, 1998), Exercise 10.43):
Let Ψ : E ⇒ Y and let f : E → Y be continuously differentiable. For x̂ ∈ E, û ∈ Φ(x̂)
define û0 := û− Φ(x̂). For Φ := Ψ + f following identities hold:

DΦ(x̂|û)(w) = DΨ(x̂|û0)(w) +∇x̂f · w for all w ∈ E, (5.22)
D∗Φ(x̂|û)(y) = D∗Ψ(x̂|û0)(y) + [∇x̂f ]∗ · y for all y ∈ Y. (5.23)

Theorem 5.19 (Properties of Φ):
Let Ω1, . . . ,Ωm, be closed and nonempty subsets of E. Define function Φ : E⇒ Em, by
(5.11), i.e.,

Φ(x) = (Ω1 − x)× · · · × (Ωm − x).
The following statements hold:

(a) The graphical derivative and coderivative of Φ are given by

DΦ(x̂ | 0)(w) = (TΩ1(x̂)− w)× · · · × (TΩi(x̂)− w) , (5.24)

D∗Φ(x̂ | 0)(y) =
{
−∑m

i=1 yi if yi ∈ −NΩi (x̂) , ∀i = 1, . . . ,m
∅ else . (5.25)

(b)
1

regΦ(x̂ | 0) = min
{∥∥∥∥∥

m∑
i=1

νi

∥∥∥∥∥
∣∣∣∣∣
m∑
i=1
‖νi‖2 = 1, νi ∈ NΩi (x̂)

}
(5.26)
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5. Regularity of Collections of Sets

(c) The collection {Ω1, . . . ,Ωm} is locally linearly regular and ⋂m
i=1 Ωi = {x̂} if and

only if
m⋂
i=1

TΩi(x̂) = {0}. (5.27)

This then implies

subregΦ(x̂ | 0)
= max {‖w‖ | (TΩ1(x̂)− w)× · · · × (TΩm(x̂)− w) ∩ B 6= ∅} .

Proof. (a) To compute the graphical derivative DΦ(x̂ | 0), we decompose the mapping Φ
as Ψ− A, where, for points x ∈ E,

Ψ(x) = Ω1 × Ω2 × · · · × Ωm

Ax = (x, x, . . . , x)︸ ︷︷ ︸
m−times

.

One has
gphΨ = E× Ω1 × · · · × Ωm,

and therefore

TgphΨ(x̂ | Ax̂) = E × TΩ1 (x̂)× · · · × TΩm (x̂),
NgphΨ (x̂ | Ax̂) = {0} ×NΩ1 (x̂)× · · · ×NΩm (x̂) .

By Definition (5.16) and (5.17) this yields

DΨ(x̂ | 0)(w) = TΩ1(x̂)× · · · × TΩm(x̂),

D∗Ψ(x̂ | 0)(y) =
{
{0} if yi ∈ −NΩi (x̂) , ∀i = 1, . . . ,m
∅ else .

An application of (5.22) and (5.23) then yields (5.24) and (5.25). Application of (5.18)
then shows (5.26) and therefore (b) is complete.

(c) Note that
DΦ(x̂ | 0)−1(y1, . . . , ym) =

⋂
i

(TΩi(x̂)− yi) .

By Proposition 5.17 equation (5.19) strong metric subregularity of Φ at x̂ for 0 is
equivalent to

DΦ(x̂ | 0)−1(0) =
⋂
i

TΩi(x̂) = {0}.
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By Theorem 5.13 (c) this is equivalent to local linear regularity and ⋂mi=1 Ωi = {x̂}. Also
by Proposition 5.17 equation (5.20) one achieves

subreg(Φ; x̂ | 0) = |DΦ(x̂ | 0)−1|+

= sup
‖y‖≤1

sup
v∈DΦ(x̂|0)−1(y)

‖v‖

= sup
{
‖w‖

∣∣∣ w ∈ DΦ(x̂ | 0)−1(B) 6= ∅
}

= sup {‖w‖ | DΦ(x̂ | 0)(w) ∩ B 6= ∅}
= max {‖w‖ | DΦ(x̂ | 0)(w) ∩ B 6= ∅} .

where we used that w ∈ DΦ(x̂ | 0)−1(B) if and only if DΦ(x̂ | 0)(w) ∩ B 6= ∅. The
maximum is then attained by compactness of the unit ball B.

Remark 5.20: Theorem 5.19 complements (Lewis et al., 2009, Section 3) where both
(5.25) and (5.26) were achieved. ♦

Theorem 5.21:
Consider two closed, nonempty sets Ω1, Ω2. The following statements are equivalent:

i) The family {Ω1,Ω2} is uniformly regular (5.4) at x̂.

ii) The constant

cD := max
{
−〈ν1, ν2〉

∣∣∣∣∣ ν1 ∈ NΩ1(x̂) ∩ B
ν2 ∈ NΩ2(x̂) ∩ B

}
(5.28)

is stricly less than 1.

iii) The constant

cD = max
{

2 −〈ν1, ν2〉
‖ν1‖2 + ‖ν2‖2

∣∣∣∣∣ ν1 ∈ NΩ1(x̂)
ν2 ∈ NΩ2(x̂)

}
(5.29)

is stricly less than 1.

iv) The regularity modulus regΦ(x̂|ŷ) is finite and

regΦ(x̂|ŷ) = 1√
1− cD

. (5.30)

The constants (5.28) and (5.29) coincide.

Proof. [i) ⇔ ii)] Note that by equation (5.6) for m = 2 the collection {Ω1,Ω2} is
uniformly regular at x̂ if and only if NΩ1 (x̂) ∩ NΩ2 (x̂) = {0}. By compactness of the
unit ball the maximum in (5.28) is attained for some ν̃1, ν̃2 and by the Cauchy-Schwarz
inequality cD = −〈ν̃1, ν̃2〉 < 1 holds if and only if ν̃1 6= −ν̃2, i.e., the collection is
uniformly regular.
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[ii) ⇔ iii)] To see that (5.28) and (5.29) coincide note that

2
‖ν1‖2 + ‖ν2‖2 |〈ν1, ν2〉| ≤

1
‖ν1‖ ‖ν2‖

|〈ν1, ν2〉|

≤ cD

for all νi ∈ NΩi (x̂) , i = 1, 2. By compactness of B the maximum in (5.28) is attained and
there are ν̄1 ∈ NΩ1 (x̂) , ‖ν̄1‖ = 1 and ν̄2 ∈ NΩ2 (x̂) , ‖ν̄2‖ = 1 such that cD = −〈ν̄1, ν̄2〉
and one achieves

2
‖ν̄1‖2 + ‖ν̄2‖2 〈ν̄1, ν̄2〉 = 〈ν̄1, ν̄2〉 = cD,

which completes (5.29).

[iii) ⇔ iv)] By Theorem 5.13 and the definition of metric regularity regΦ(x̂|0) < ∞
is equivalent to uniform regularity of {Ω1,Ω2}. To show (5.30) we use (5.25) and apply
(5.18) to achieve

1
regΦ(x̂ | 0) = min

{
‖ν1 + ν2‖

∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, νi ∈ NΩi (x̂) , i = 1, 2
}

= min
{√

1 + 2〈ν1, ν2〉
∣∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, νi ∈ NΩi (x̂) , i = 1, 2

}
= max

{√
1− 2〈ν1, ν2〉

∣∣∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, ν1 ∈ NΩ1 (x̂)
ν2 ∈ −NΩ2 (x̂)

}
(5.29)=
√

1− cD.

Remark 5.22: Theorem 5.21 is a generalization of (Lewis et al., 2009, Section 5). Lewis,
Luke and Malick used the idea that for two sets Ω1,Ω2 ⊂ E uniform regularity, or more
precise the characterization in equation (5.6), can be restated as

NΩ1(x̂) ∩ −NΩ2(x̂) = {0}. (5.31)

They introduced the dual definition of an angle between two closed sets (5.28) and showed
that cD is less then 1 if and only if (5.31) holds. (Lewis et al., 2009) proved local linear
convergence of AP in the nonconvex setting, where both sets A,B are closed and one
of the sets is superregular and the rate of linear convergence depends on cD. They
furthermore were the first to observe the relation (5.30), i.e., the relation between the
modulus of uniform regularity (5.14) and the dual definition of the angle cD (5.28). We
will complement their ideas throughout section 5.4. ♦

Theorem 5.23:
Consider two closed, nonempty sets Ω1, Ω2. The following statements are equivalent:
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i) The collection {Ω1,Ω2} is locally linearly regular (5.7) at x̂ and {x̂} = Ω1 ∩ Ω2.

ii) The constant

cP := max
{
〈u, v〉

∣∣∣∣∣ u ∈ TΩ1(x̂) ∩ B
v ∈ TΩ2(x̂) ∩ B

}
(5.32)

is strictly less than 1.

iii) The mapping Φ given by (5.11) is strongly metrically subregular.

i) ⇔ ii). By (5.27) strong metric subregularity of Φ at x̂ for 0 is equivalent to

2⋂
i=1

TΩi(x̂) = {0}. (5.33)

By the fact that the intersections TΩ1(x̂) ∩ B, TΩ2(x̂) ∩ B are compact in E and the fact
that the Cauchy-Schwarz inequality holds with equality if and only if u and v are linearly
dependent cP < 1 holds if and only if (5.33) holds, which completes the proof.

[i) ⇔ iii)] This is a consequence of Theorem 5.13 and the definition of strong metric
subregularity.

Remark 5.24: Theorem 5.23 ii) seems to be new. The definition (5.32) relates to the
Dixmier angle, which initially was defined on subspaces (5.2). See Definition 5.1 (5.2). ♦

5.4. Quantitative Notions of Regularity

We have already seen in Theorem 5.13 that for any finite collection {Ω1,Ω2, . . . ,Ωm}
of m sets, one can replace the maximum norm maxmi=1 d (x,Ωi) on the product space
Ω1 × Ω2 × · · · × Ωm ⊂ Em (see (5.5) and (5.7)) by the euclidean norm

√∑m
i=1 d

2 (x,Ωi)
without any change to the qualitative characteristics given by the previous definitions
and theorems.

The tools from metric regularity indicate some nice properties between the regularity
moduli and the idea of an angle (compare (5.28), (5.29)). However, these characteristics,
or more precisely the regularity moduli and the constant cD are qualitative notions in
the sense, that they are only true asymptotically, i.e., they are defined as infima (resp.
suprema) over all neighborhoods or equivalently the limits over neighborhoods Bδ as
δ → 0. In the following section we will build up an analysis and tools that locally quantify
the results from metric regularity in a sense more appropriate for local convergence
analysis of our intended applications.
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5. Regularity of Collections of Sets

Definition 5.25 (local regularity moduli):
Let {Ω1,Ω2} be a collection of closed, nonempty sets and let x̂ ∈ Ω1 ∩ Ω2.

(a) For δ > 0 the local modulus of uniform regularity κ(δ)
u (x̂) {Ω1,Ω2} is defined as the

smallest constant κ > 0 such that

xi ∈ Bδ(x̂), νi ∈ NP
Ωi (xi) , for i = 1, 2 :√

‖ν1‖2 + ‖ν2‖2 ≤ κ ‖ν1 + ν2‖ .
(5.34)

(b) For δ > 0 the local modulus of linear regularity κ
(δ)
l (x̂) {Ω1,Ω2} is defined as the

smallest constant κ such that

d

(
x,

m⋂
i=2

Ωi

)
≤ κ

√
d2 (x,Ω1) + d2 (x,Ω2) (5.35)

holds for all x ∈ Bδ(x̂).

By definition of linear regularity it is an immediate consequence that existence of
a δ such that κ(δ)

l (x̂) {Ω1,Ω2} is finite is equivalent to local linear regularity [compare
characterization (5.15)]. The local modulus of uniform regularity is a quantification of
the constraint qualification (5.6).

Definition 5.26:
Let {Ω1,Ω2} be a collection of closed, nonempty sets and let x̂ ∈ Ω1 ∩ Ω2. Define

c
(δ)
D (x̂) {Ω1,Ω2} := sup

{
−2 〈ν2, ν2〉
‖ν1‖2 + ‖ν2‖2

∣∣∣∣∣ νi ∈ NP
Ωi (xi)

xi ∈ Bδ(x̂) , i = 1, 2
}
. (5.36)

Theorem 5.27:
Let {Ω1,Ω2} be a collection of closed, nonempty sets and let x̂ ∈ Ω1 ∩Ω2. The collection
is uniformly regular at x̂ if and only if there exists δ̄ > 0 such that for all δ ∈ (0, δ̄] the
local modulus of uniform regularity κ(δ)

u (x̂) {Ω1,Ω2} given by (5.34) is finite. Furthermore
for all δ ∈ (0, δ̄] the following relations hold

1
κ

(δ)
u (x̂) {Ω1,Ω2}

= inf
{
‖ν1 + ν2‖

∣∣∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, xi ∈ Bδ(x̂),
νi ∈ NP

Ωi (xi) , i = 1, 2

}
(5.37)

κ(δ)
u (x̂) {Ω1,Ω2} = 1√

1− c(δ)
D (x̂) {Ω1,Ω2}

, (5.38)

where c(δ)
D (x̂) {Ω1,Ω2} is defined by (5.36).

Proof. Assume that regΦ(x̂ | 0) < ∞ [The case regΦ(x̂ | 0) = ∞, i.e., the case where

46



5. Regularity of Collections of Sets

the collection is not uniformly regular, is trivial by (5.6)]. Remember that by (5.26)
1

regΦ(x̂ | 0)
= min

{
‖ν1 + ν2‖

∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, νi ∈ NΩi (x̂) , i = 1, 2
}
.

By compactness of the unit sphere and closedness of NΩi (x̄) there are ν̄i ∈ NΩi (x̄),
‖ν̄1‖2 + ‖ν̄2‖2 = 1, (i = 1, 2) such that the minimum is attained, i.e.,

1/regΦ(x̂ | 0) = ‖ν̄1 + ν̄2‖ .

Now by Proposition 3.3 there are x(k)
i ∈ Ωi and ν

(k)
i ∈ NP

Ω

(
x

(k)
i

)
,
∥∥∥ν(k)

1

∥∥∥2
+
∥∥∥ν(k)

2

∥∥∥2
= 1

such that x(k)
i → x̄ and ν

(k)
i → ν̄i, as k →∞, for i = 1, 2. As a consequence then

1
regΦ(x̂ | 0) = lim

k→∞

∥∥∥ν(k)
1 + ν

(k)
2

∥∥∥ .
On the other hand for any δ > 0

1
regΦ(x̂ | 0) ≥ inf

{
‖ν1 + ν2‖

∣∣∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, xi ∈ Bδ(x̂),
νi ∈ NP

Ωi (xi) , i = 1, 2

}
.

Combining these last two statements one achieves
1

regΦ(x̂ | 0)

= lim inf
δ↘0

{
‖ν1 + ν2‖

∣∣∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, xi ∈ Bδ(x̂),
νi ∈ NP

Ωi (xi) , i = 1, 2

}
.

Hence for any κ > regΦ(x̂ | 0) [ i.e., 1/κ < 1/regΦ(x̂ | 0) ] there is δ̄ > 0 such that for
any δ ∈ (0, δ̄]

1
regΦ(x̂ | 0) ≥ inf

{
‖ν1 + ν2‖

∣∣∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, xi ∈ Bδ(x̂),
νi ∈ NP

Ωi (xi) , i = 1, 2

}
≥ 1
κ

(5.39)

which shows (5.34). Now, for δ ∈ (0, δ̄], let κ(δ)
u (x̂) {Ω1,Ω2} be the smallest κ such that

(5.34) holds, which is equivalent to equality in the second inequality of (5.39). A short
calculation then shows

1
κ

(δ)
u (x̂) {Ω1,Ω2}

= inf
{
‖ν1 + ν2‖

∣∣∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, xi ∈ Bδ(x̂),
νi ∈ NP

Ωi (xi) , i = 1, 2

}

= inf
{√

1 + 2〈ν1, ν2〉
∣∣∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, xi ∈ Bδ(x̂),

νi ∈ NP
Ωi (xi) , i = 1, 2

}
(5.36)=

√
1− c(δ)

D (x̂) {Ω1,Ω2}.
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5. Regularity of Collections of Sets

Corollary 5.28:
Let {Ω1,Ω2} be a collection of closed, nonempty sets and let x̂ ∈ Ω1 ∩Ω2. The collection
is uniformly regular at x̂ if and only if there exists δ > 0 such that c(δ)

D (x̂) {Ω1,Ω2} given
by (5.34) is strictly less then 1.

Remark 5.29: Corollary 5.28 is an immediate consequence of Theorem 5.27. The Corol-
lary also is a generalization of (Lewis et al., 2009, Theorem 5.16), where the authors
showed that uniform regularity implies existence of a δ > 0 such that c(δ)

D (x̂) {Ω1,Ω2} < 1.
♦

5.5. Norm Equivalence

The following statement is a quantified analogue to Corollary 5.15.

Corollary 5.30:
Let {Ω1,Ω2} be a collection of closed, nonempty sets and let x̂ ∈ Ω1 ∩ Ω2.

(a) Let the collection be uniformly regular at x̂ for δ > 0 and κ(δ)
u (x̂) {Ω2,Ω2} the local

regularity modulus (5.34). Then for all xi ∈ Bδ(x̂), νi ∈ NΩi (xi) for i = 1, 2 :

max {‖ν1‖ , ‖ν2‖} ≤ κ(δ)
u (x̂) {Ω1,Ω2} ‖ν1 + ν2‖ , (5.40)

‖ν1‖+ ‖ν2‖ ≤
√

2κ(δ)
u (x̂) {Ω1,Ω2} ‖ν1 + ν2‖ . (5.41)

(b) Let the collection be locally linearly regular at x̂ for δ > 0 and κ(δ)
l (x̂) {Ω2,Ω2} the

local regularity modulus Then for all x ∈ Bδ(x̂)

d (x,Ω1 ∩ Ω2) ≤
√

2κ(δ)
l (x̂) {Ω1,Ω2} max { d (x,Ω1) , d (x,Ω2)} , (5.42)

d (x,Ω1 ∩ Ω2) ≤ κ
(δ)
l (x̂) {Ω1,Ω2} ( d (x,Ω1) + d (x,Ω2)) . (5.43)

Remark 5.31: An observation that relates to equation (5.41) can be found in (Kruger and
Thao, 2014, Remark 1). ♦

5.6. Linear Regularity under Unions of Sets

Lemma 5.32 (linear regularity under unions, (Hesse et al., 2014a, Lemma 3.5)):
Let {Ω1,Ω2, . . . ,Ωm,Ωm+1) be a collection of nonempty subsets of E with nonempty
intersection.
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5. Regularity of Collections of Sets

Let x̂ ∈
(
∩m+1
j=1 Ωj

)
. Suppose that for any j = 1, 2, . . . ,m that the collection {Ωj,Ωm+1}

is locally linearly regular with κ
(δ)
l (x̂) {Ωj,Ωm+1} local regularity modulus (5.35). Then

the collection
{⋃m

j=1 Ωj,Ωm+1
}

is locally linearly regular at x̂ with local modulus

κ
(δ)
l (x̂)


m⋃
j=1

Ωj,Ωm+1

 ≤ max
j=1,...,m

{κ(δ)
l (x̂) {Ωj,Ωm+1}}.

Proof. Denote Ω̃ := ⋃m
j=1 Ωj. Let κ ≥ maxj=1,...,m{κ(δ)

l (x̂) {Ωj,Ωm+1}} and note that for
all x ∈ Bδ(x̂) we have

d
(
x, Ω̃ ∩ Ωm+1

)
= min

j=1,...,m
{ d (x,Ωj ∩ Ωm+1)}

(5.35)
≤ min

j=1,...,m

{
κ

(δ)
l (x̂) {Ωj,Ωm+1}

√
d2 (x,Ωj) + d2 (x,Ωm+1)

}
≤ κ

√
min

j=1,...,m
d2 (x,Ωj) + d2 (x,Ωm+1)

≤ κ

√
d2
(
x, Ω̃

)
+ d2 (x,Ωm+1)

This completes the proof.

5.7. Restricted Regularity

Definition 5.33 (restricted uniform regularity):
Let x̂ ∈ Ω1 ∩Ω2. Let L0 be a subspace of E and let L := L0 + x̂, i.e., an affine subspace
parallel to L0. Define Ω̃1 := (Ω1 − x̂)|L0

, Ω̃2 := (Ω2 − x̂)|L0
.

Let κ̃(δ)
u (x̂)

{
Ω̃1, Ω̃2

}
:= κ(δ)

u (x̂)
{

Ω̃1, Ω̃2
}∣∣∣

L0
, i.e., the local modulus of uniform regu-

larity with respect to the Euclidean space L0.

On E we define the restricted modulus of uniform regularity with respect to the affine
subspace L

κ(δ,L)
u (x̂) {Ω1,Ω2} := κ̃(δ)

u (x̂)
{

Ω̃1, Ω̃2
}
. (5.44)

Furthermore let

c
(δ,L)
D (x̂) {Ω1,Ω2} := sup

{
−2 〈ν2, ν2〉
‖ν1‖2 + ‖ν2‖2

∣∣∣∣∣ νi ∈ NP
Ωi (xi) ∩ L0

xi ∈ Bδ(x̂) , i = 1, 2
}
. (5.45)

Note by definition there is a δ > 0 such that κ(δ,L)
u (x̂) {Ω1,Ω2} is finite if and only

if the collection
{

Ω̃1, Ω̃2
}

is uniformly regular with respect to the Euclidean subspace
L0 ⊂ E.
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5. Regularity of Collections of Sets

Corollary 5.34 (restricted transversality condition):
The collection {(Ω1 − x̂) ∩ L0, (Ω2 − x̂) ∩ L0} is uniformly regular at x̂ with respect to
the Euclidean subspace L0 ⊂ E if and only if

NΩ1 (x̂) ∩NΩ2 (x̂) ∩ L0 = {0} . (5.46)

Under that assumption
1

κ
(δ,L)
u (x̂) {Ω1,Ω2}

= inf
{
‖ν1 + ν2‖

∣∣∣∣∣ ‖ν1‖2 + ‖ν2‖2 = 1, xi ∈ Bδ(x̂),
νi ∈ NP

Ωi (xi) ∩ L0, i = 1, 2

}
(5.47)

κ(δ,L)
u (x̂) {Ω1,Ω2} = 1√

1− c(δ,L)
D (x̂) {Ω1,Ω2}

, (5.48)

where c(δ,L)
D (x̂) {Ω1,Ω2} is given by (5.45)

Proof. By shifting to the origin and restricting to the euclidean subspace L0 the first
part follows by (5.6). Analogously the second part of the Corollary follows by Theorem
5.27.

Corollary 5.35 (restricted uniform regularity and Friedrichs angle):
Let N , M be affine subspaces of E such that N ∩M 6= ∅ and let x̂ ∈ N ∩M . Let
A be the linear subspaces parallel to N and B be the linear subspace parallel to M

and define the linear subspace L0 by L0 := N −M = A + B and the affine subspace
L := x̂+ L0 = aff (N ∪M). Then for all δ > 0

c
(δ,L)
D (x̂) {N,M} = cF (A,B) . (5.49)

As a consequence any two linear subspaces A,B of an euclidean space are uniformly
regular with respect to the subspace A + B.

Proof. Note first that for any x ∈ A, y ∈ B one has NA (x) = A⊥ and NB (y) = B⊥.
Furthermore observe that

(
A⊥ ∩B⊥

)⊥
= A + B = L0. Then by Theorem 5.2 equation

(5.3)

cF (A,B) = cF
(
A⊥,B⊥

)
= cF

(
A⊥,−B⊥

)
= max

〈νA,−νB〉

∣∣∣∣∣∣∣
νA ∈ A⊥ ∩

(
A⊥ ∩B⊥

)⊥
∩ B

νB ∈ B⊥ ∩
(
A⊥ ∩B⊥

)⊥
∩ B


= max

{
−〈νA, νB〉

∣∣∣∣∣ νA ∈ A⊥ ∩ L0 ∩ B
νB ∈ B⊥ ∩ L0 ∩ B

}

= max
{
− 2〈νA, νB〉
‖νA‖2 + ‖νB‖2

∣∣∣∣∣ νA ∈ A⊥ ∩ L0
νB ∈ B⊥ ∩ L0

}
= c

(δ,L)
D (x̂) {N,M} .
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Corollary 5.36 (modulus of linear regularity):
Let N , M be affine subspaces of E such that N ∩M 6= ∅ and let x̂ ∈ N ∩M . Let
A be the linear subspaces parallel to N and B be the linear subspace parallel to M

and define the linear subspace L0 by L0 := N −M = A + B and the affine subspace
L := x̂+ L0 = aff (N ∪M). Then for all δ > 0

κ
(δ)
l (x̂) {N,M} ≤ 1√

1− cF (A,B)
. (5.50)

Proof. Define Φ̃ : L0 ⇒ L0×L0, Φ̃(x̃) := (A− x̃)× (B− x̃). By Corollary 5.35 {A,B} is
always uniformly regular with respect to L0 and therefor the modulus of metric regularity
regΦ̃(0|0) is finite and does not depend on specific neighborhoods. Furthermore by
definition of metric regularity and metric subregularity one has for any δ > 0

subregΦ̃(0|0) ≤ regΦ̃(0|0) = κ(δ,L)
u (x̂) {N,M} .

Hence, by (5.30) and the fact that cD|L0
= cF (A,B) one achieves

subregΦ̃(0|0) ≤ 1√
1− cF (A,B)

.

This then shows that for all x ∈ L

d2 (x,A ∩B) ≤ 1
1− cF (A,B)

(
d2 (x,A) + d2 (x,B)

)
. (5.51)

If L0 = E the proof is complete. Assume L0 ( E and let x ∈ E, then

d2 (x,A ∩B)
(2.7)= ‖x− PLx‖2 + ‖PLx− PA∩Bx‖2

(5.51)
≤ ‖x− PLx‖2 + 1

1− cF (A,B)
(
d2 (PLx,A) + d2 (PLx,B)

)
≤ 1

1− cF (A,B)
(
‖x− PLx‖2 + d2 (PLx,A) + ‖x− PLx‖2 + d2 (PLx,B)

)
= 1

1− cF (A,B)
(
d2 (x,A) + d2 (x,B)

)
.

This completes the proof.

Remark 5.37: The last Corollary is also a restatement of the fact, that on Euclidean
spaces, every two closed subspaces are linearly regular. ♦
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5.8. Other Existing Notions of Regularity

Remark 5.38: Another concept that relates to the last corollary can be found in (Bauschke
et al., 2013d; Bauschke et al., 2013c) and will be discussed in the following ♦

Definition 5.39 ((Bauschke et al., 2013d; Bauschke et al., 2013c)):
The S-restricted proximal normal cone to a set Ω ⊂ E at a point x̄ ∈ Ω is given by

NS
Ω (x̄) := cone

(
(S ∩ P−1

Ω x̄)− x̄
)

= cone
(
(S − x̄) ∩ (P−1

Ω x̄− x̄)
)
. (5.52)

for S = E this reduces to the proximal normal cone NP
Ω (x̄) [Compare (3.1)].

Definition 5.40 (CQ-number, (Bauschke et al., 2013d; Bauschke et al., 2013c)):
Let A, Ã,B, B̃ be nonempty subsets of E and let x̂ ∈ E and δ ≥ 0. The CQ-number at
x̂ associated with (A, Ã,B, B̃) and δ is

Θδ(A, Ã,B, B̃) := sup

〈u, v〉
∣∣∣∣∣∣u ∈ N B̃

A (a) ∩ B, a ∈ Bδ(x̂)
v ∈ − N Ã

B (b) ∩ B, b ∈ Bδ(x̂)

 (5.53)

where NB
A (a) is the B-restricted proximal normal cone of A at a (5.52).

Remark 5.41: Note that

Θδ(A,B,E,E) = c
(δ)
D (x̂) {A,B} (5.54)

and
Θδ(A,B,L,L) = c

(δ,L)
D (x̂) {A,B} (5.55)

but
Θδ(A,B, aff (A ∪B), aff (A ∪B)) 6= Θδ(A,B,A,B). (5.56)

♦

Example 5.42: Let E = R2,

A :=
{

(x1, x2) ⊂ R2
∣∣∣ x1 ≤ |x2|

}
(5.57)

B :=
{

(x1, x2) ⊂ R2
∣∣∣ x1 ≤ 0

}
(5.58)

Then for any δ > 0

c
(δ)
D (0) {A,B} = Θδ(A,B, aff (A ∪B), aff (A ∪B)) = 1, (5.59)

Θδ(A,B,A,B) =
√

2/2. (5.60)

M
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6. Linear Convergence of Iterated
(S, ε)-Firmly Nonexpansive
Operators

Our main goal in this section is to establish the weakest conditions we can (at the
moment) under which the AP and Douglas–Rachford algorithms converge locally linearly.

In addition to regularity of the operators –Introduced in Chapter 4–, we need regularity
of the fixed point sets of the operators. This is developed next.

The general framework is not restricted to projection-type algorithms. The main
results apply for a general class of fixed point operators, yielding local attractivity of
mappings based on fixed point properties.

Some of the results in this chapter were published in (Hesse and Luke, 2013), as well
as the basic ideas this chapter is based on.

Despite its simplicity, the following Lemma is one of our fundamental tools.

Lemma 6.1 ((Hesse and Luke, 2013, Lemma 3.1)):
Let D ⊂ E, let S ⊂ Fix (T ) be closed, T : D⇒ E and U ⊂ D. If

(a) T is (S, ε)-firmly nonexpansive on U and

(b) for some λ > 0, T satisfies the coercivity condition

∀x ∈ U, ∀ x+ ∈ Tx :
‖x− x+‖ ≥ λ d (x,S) . (6.1)

Then

∀x ∈ U, ∀ x+ ∈ Tx :
d (x+,S) ≤

√
(1 + ε− λ2) d (x,S) . (6.2)
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6. Linear Convergence of Iterated (S, ε)-Firmly Nonexpansive Operators

Proof. For x ∈ U choose any x+ ∈ Tx, and any x̄ ∈ PSx. Combining equations (6.1)
and (4.2) yields

‖x+ − x̄‖2 + (λ ‖x− x̄‖)2 (6.1)
≤ ‖x+ − x̄‖2 + ‖x− x+‖2

(4.2)
≤ (1 + ε) ‖x− x̄‖2 ,

which immediately yields

‖x+ − x̄‖2 ≤ (1 + ε− λ2) ‖x− x̄‖2 . (6.3)

Since x̄ ∈ S by definition one has d (x+,S) ≤ ‖x+ − x̄‖. Inserting this in (6.3) and using
the fact that ‖x− x̄‖ = d (x,S) then proves (6.2).

6.1. Linear Convergence of Alternating Projections

In the case of the alternating projections operator, the connection between local linear
regularity of the collection of sets and the coercivity of the operator with respect to the
intersection is natural, as the next result shows.

Proposition 6.2 (coercivity of the projector):
Let A,B be nonempty and closed subsets of E, x̂ ∈ Ŝ := A ∩B and let the collection
A,B be locally linearly regular at x̂ for δ > 0. One has

∀x+ ∈ PBx, ∀x ∈ A ∩ Bδ(x̂) :
‖x− x+‖ ≥ 1

κ
(δ)
l

(x̂){A,B}
d
(
x, Ŝ

)
,

where κ(δ)
l (x̂) {A,B} is the local regularity modulus.

Proof. By the definition of the distance and the projector one has, for x ∈ A and any
x+ ∈ PBx,

‖x− x+‖ = d (x,B)

=

 d2 (x,B) + d2 (x,A)︸ ︷︷ ︸
=0


1
2

(5.15)
≥ 1

κ
(δ)
l (x̂) {A,B}

d
(
x, Ŝ

)
.

Theorem 6.3 (projections onto a (ε, δ)-subregular set):
Let A,B be nonempty and closed subsets of E and let x̂ ∈ Ŝ := A ∩B. If
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(a) B is (ε, δ)-subregular at x̂ with respect to Ŝ and

(b) the collection {A,B} is locally linearly regular at x̂ on Bδ(x̂)

then

d
(
x+, Ŝ

)
≤
√

1 + ε̃− γ2 d
(
x, Ŝ

)
, ∀x+ ∈ PBx, ∀x ∈ U (6.4)

where γ = 1/κ(δ)
l (x̂) {A,B} with κ

(δ)
l (x̂) {A,B} the regularity modulus on Bδ(x̂), ε̃ =

2ε+ 2ε2 and

U ⊂ {x ∈ A ∩ Bδ(x̂) | PBx ⊂ Bδ(x̂)} . (6.5)

Proof. Since B is (ε, δ)-subregular at x̂ with respect to Ŝ one can apply Theorem 4.5
to show that the projector PB is (Ŝ, 2ε + 2ε2)-firmly nonexpansive on U . Moreover,
condition (b) and Proposition 6.2 yield

‖x+ − x‖ ≥ γ d
(
x, Ŝ

)
∀x+ ∈ PBx, ∀x ∈ U.

Combining (a) and (b) and applying Lemma 6.1 then gives

d
(
x+, Ŝ

)
≤
√

1 + 2ε̃− γ2 d
(
x, Ŝ

)
, ∀x+ ∈ PBx, ∀x ∈ U.

Corollary 6.4 (projections onto a convex set, (Bauschke and Borwein, 1993, Corollary
3.14)):
Let A and B be nonempty, closed subsets of E. If

(a) the collection {A,B} is locally linearly regular at x̂ ∈ A ∩B on Bδ(x̂) with local
regularity modulus κ(δ)

l (x̂) {A,B} > 0 and

(b) B is convex

then

d
(
x+, Ŝ

)
≤
√

1− γ2 d
(
x, Ŝ

)
, ∀x+ ∈ PBx, ∀x ∈ A ∩ Bδ(x̂) (6.6)

where γ = 1/κ.

Proof. By convexity of B the projector PB is nonexpansive and it follows that PBx ∈ Bδ(x̂)
for all x ∈ Bδ(x̂). Convexity of B is equivalent to B beeing (0,+∞)-regular and hence
ε̃ = 0 in Theorem 6.3.
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Theorem 6.5 (linear convergence of von Neumann sequences):
Let A,B be closed nonempty subsets of E and let the collection {A,B} be locally
linearly regular at x̂ ∈ Ŝ := A ∩ B on Bδ(x̂) with regularity modulus κ > 0. Define
γ := 1/κ(δ)

l (x̂) {A,B} and let x0 ∈ A. Generate the sequence {xn}n∈N by

x2n+1 ∈ PBx2n and x2n+2 ∈ PAx2n+1 ∀n = 0, 1, 2, . . . . (6.7)

(a) If A and B are (ε, δ)−subregular at x̂ with respect to Ŝ and ε̃ := 2ε + 2ε2 ≤ γ2,
then

d
(
x2n+2, Ŝ

)
≤ (1− γ2 + ε̃) d

(
x2n, Ŝ

)
∀n = 0, 1, 2, . . .

for all x0 ∈ Bδ/2(x̂) ∩A.

(b) If A is (ε, δ)−subregular with respect to Ŝ, B is convex and ε̃ := 2ε + 2ε2 ≤
(2γ − γ2)/(1− γ2), then

d
(
x2n+2, Ŝ

)
≤
√

1− γ2 + ε̃
√

1− γ2 d
(
x2n, Ŝ

)
∀n = 0, 1, 2, . . . ,

for all x0 ∈ Bδ/2(x̂) ∩A.

(c) If A and B are convex, then

d
(
x2n+2, Ŝ

)
≤ (1− γ2) d

(
x2n, Ŝ

)
∀n = 0, 1, 2, . . .

for all x0 ∈ Bδ(x̂) ∩A.

Proof. (a) First one has to show that all iterates remain close to x̂ for x0 close to x̂, that
is, we have to show that all iterates remain in the set U defined by (6.5). Note that for
any x0 ∈ Bδ/2(x̂), and x1 ∈ PBx0 one has

‖x0 − x1‖ = d (x0,B) ≤ ‖x0 − x̂‖ .

since x̂ ∈ B. Thus

‖x1 − x̂‖ ≤ ‖x0 − x1‖+ ‖x0 − x̂‖ ≤ ‖x0 − x̂‖+ ‖x0 − x̂‖ ≤ δ,

which shows that PBx0 ⊂ Bδ(x̂), ∀x0 ∈ Bδ/2(x̂). One can now apply Theorem 6.3 to
conclude that

d
(
x1, Ŝ

)
≤
√

1− γ2 + ε̃ d
(
x0, Ŝ

)
.

The last equation then implies that x1 ∈ Bδ/2(x̂) as long as γ2 ≥ ε̃ and therefore the
same argument can be applied to x1 to conclude that

d
(
x2, Ŝ

)
≤

√
1− γ2 + ε̃ d

(
x1, Ŝ

)
. (6.8)
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Combining the last two equations, (a) then follow by induction.

(b) Applying Corollary 6.4 yields

d
(
x1, Ŝ

)
≤

√
1− γ2 d

(
x0, Ŝ

)
and analogous to (a) note that (6.8) is still valid for ε̃ ≤ (2γ − γ2)/(1 − γ2). With
ε̃ ≤ (2γ − γ2)/(1− γ2) it follows that√

1− γ2 + ε̃
√

1− γ2 ≤
√

1− γ2 + (2γ − γ2)/(1− γ2)
√

1− γ2

≤
√

1− 2γ + γ2 + (2γ − γ2)
≤ 1

and therefore (b) follows by induction.

(c) is an immediate consequence of Corollary 6.4.

Corollary 6.6 (von Neumann sequences on subspaces):
Let N,M be two affine subspaces with N ∩M 6= ∅. Let A be the subspace parallel to N
and B be the subspace parallel to M and cF (A,B) the corresponding Friedrich angle
(compare (5.1)). Then for any x0 ∈ E

d (x2n+2, N ∩M) ≤ (cF (A,B)) d (x2n, N ∩M) ∀n = 0, 1, 2, . . . .

Proof. By Corollary 5.36

γ = 1
κ

(δ)
l (x̂) {N,M}

=
√

1− cF (A,B)

and hence by Theorem 6.5 (c) for any x0 ∈ E.

d (x2n+2, N ∩M) ≤ (cF (A,B)) d (x2n, N ∩M) ∀n = 0, 1, 2, . . . .

Remark 6.7: According to classical results (Deutsch and Hundal, 2006a; Deutsch and
Hundal, 2006b; Deutsch and Hundal, 2008) the convergence rate of alternating projections
on subspaces becomes (cF (A,B))2. This indicates that the rate achieved in Corollary 6.6
is not optimal in the case of linear subspaces. ♦

Corollary 6.8:
Let A, B be closed, nonempty and super-regular. Let {A,B} be locally linearly regular
at x̂ ∈ A ∩B. Then there is a δ > 0 such that for all x0 ∈ Bδ(x̂) ∩A any von Neumann
sequence generated by (1.15) converges with linear rate to A ∩B.
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Proof. By local linear regularity, there is δl > 0 such that κ(δl)
l (x̂) {A,B} < ∞. Now,

by super-regularity at x̂, for any ε there exists δA, such that A is (ε, δA)-subregular
at x̂. Respectively for any ε, B is (ε, δB)-subregular at x̂ for some δB. In other words,
for κ(δl)

l (x̂) {A,B} determined by the regularity of the collection {A,B} at x̂, we can
always choose ε, such that the requirement of Theorem 6.5 (a), i.e., ε̃ := 2ε + 2ε2 <

(1/κ(δl)
l (x̂) {A,B})2, is satisfied on B(2 min{δA,δB})(x̂). This completes the proof of linear

convergence on Bδ(x̂).

6.2. Linear Convergence of Douglas–Rachford

We now turn to the Douglas–Rachford algorithm. This algorithm is notoriously difficult
to analyze and our results reflect this in considerably more circumscribed conditions than
are required for the AP algorithm. There are also recent papers (Bauschke et al., 2013a),
(Phan, 2014), (Bauschke and Noll, 2014) that complement some of the results of (Hesse
and Luke, 2013), which results will be complemented at this point.

Nevertheless, to the best of our knowledge some of the following convergence results
are the most general to date.

The first result gives sufficient conditions for the coercivity condition (6.1) to hold.

Lemma 6.9:
Let the collection of closed subsets A,B of E be uniformly regular at x̂ ∈ Ŝ := A∩B on
Bδ(x̂) with constant, δ > 0 and κ(δ)

u (x̂) {A,B} > 0 according to (5.34). Let

U ⊂ {x ∈ Bδ(x̂) | PBx ⊂ Bδ(x̂), PARBx ⊂ Bδ(x̂)} . (6.9)

Then TDR satisfies

∀ x ∈ U, ∀x+ ∈ TDR x :
‖x− x+‖ ≥

(
1

κ
(δ)
u (x̂){A,B}κ(δ)

l
(x̂){A,B}

)
max

{
d
(
RBx, Ŝ

)
, 1√

10 d
(
x, Ŝ

)}
.

(6.10)

Proof. Let x ∈ U and choose any x+ ∈ TDR x. For some z ∈ PA(RBx) by the definition
of the reflector (1.19) there exists y ∈ PBx such that z ∈ PA(2y − x) and we can write

x+ = x+ z − y.

By construction of U : 2(y − x) ∈ RBx ⊂ Bδ(x̂) and z ∈ PARBx ⊂ Bδ(x̂), and hence by
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uniform regularity, or more precisely, characterization (5.34), one achieves

‖x+ − x‖2 = ‖z − y‖2

= ‖z − (2y − x)︸ ︷︷ ︸
∈−NA(2y−x)

+ y − x︸ ︷︷ ︸
∈−NB(y)

‖2 (6.11)

≥
(

1
κ

(δ)
u (x̂) {A,B}

)2 (
‖z − (2y − x)‖2 + ‖y − x‖2

)
.

Uniform regularity for given δ > 0 implies local linear regularity and therefore

‖z − (2y − x)‖2 + ‖y − x‖2 = ‖z − (2y − x)‖2 + ‖(2y − x)− y‖2

≥ d2 (2y − x,A) + d2 (2y − x,B)

≥
(

1
κ

(δ)
l (x̂) {A,B}

)2

d2
(
2y − x, Ŝ

)
Combining the last inequality and (6.11), we achieve the first part, that is

‖x+ − x‖2 ≥
(

1
κ

(δ)
u (x̂) {A,B}κ(δ)

l (x̂) {A,B}

)2

d2
(
2y − x, Ŝ

)
.

The triangle inequality shows

d (x,A) ≤ ‖x− (2y − x)‖+ d (2y − x,A)
= 2 ‖y − x‖+ ‖(2y − x)− z‖ . (6.12)

And by linear regularity (5.43) and the Cauchy-Schwartz inequality this then yields

d
(
x, Ŝ

) (5.43)
≤ κ

(δ)
l (x̂) {A,B} ( d (x,B) + d (x,A))

(6.12)
≤ κ

(δ)
l (x̂) {A,B} (3 ‖y − x‖+ ‖(2y − x)− z‖)

≤ κ
(δ)
l (x̂) {A,B}

√
(3 ‖y − x‖+ ‖(2y − x)− z‖)2

C.S.
≤ κ

(δ)
l (x̂) {A,B}

√
(32 + 12)

(
‖y − x‖2 + ‖(2y − x)− z‖2

)
.

Combining the last inequality and inequality (6.11) we achieve

‖x+ − x‖2 ≥ 1
10
(
κ

(δ)
l (x̂) {A,B}

)2 (
κ

(δ)
u (A) {B,Ω2}

)2 d
2
(
x, Ŝ

)

Remark 6.10: Some of the ideas on some of the estimates of Lemma 6.9 origin in
(Phan, 2014, Theorem 6.1) which itself was motivated by (Hesse and Luke, 2013, Lemma
3.14). The techniques are quite similar, however the main difference is the use of
different product space estimates in the definition of linear regularity, which results in
the relation µ

√
2 = κ

(δ)
l (x̂) {A,B} between the constant µ (Phan, 2014, Definition 2.11)

and κ(δ)
l (x̂) {A,B}. Compare for instance Corollary 5.30. ♦
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Lemma 6.9 with the additional assumption of (ε, δ)-subregularity of the nonconvex
sets A,B yields local linear convergence of the Douglas–Rachford algorithm.

Theorem 6.11:
Let the collection {A,B} of closed subsets A,B of E be uniformly regular at x̂ ∈ Ŝ :=
A ∩B for δ > 0 with local regularity modulus κ(δ)

u (x̂) {A,B}. Suppose that A, B are
(ε, δ)-subregular at x̂ with respect to Ŝ. Let δ̃ := δ/[2(1 + 2ε)], ε̃ be given by (4.12) and
η := 1/

[
10
(
κ(δ)
u (x̂) {A,B}κ(δ)

l (x̂) {A,B}
)2
]
. Then TDR satisfies

∀x ∈ Bδ̃(x̂), ∀x+ ∈ TDR x :
d
(
x+, Ŝ

)
≤
√

1 + ε̃− η d
(
x, Ŝ

)
.

(6.13)

Proof. First one has to show requirement (6.9). Choose any x+ ∈ TDR x. For some
z ∈ PA(RBx) by the definition of the reflector (1.19) there exists y ∈ PBx such that
z ∈ PA(2y − x) and we can write

x+ = x+ z − y.

Note that by triangle inequality, the fact

‖z − (2y − x)‖ ≤ d (2y − x,A) ≤ ‖(2y − x)− x̂‖

and by (4.7) we achieve

‖z − x̂‖ ≤ ‖z − (2y − x)‖+ ‖(2y − x)− x̂‖
≤ 2 ‖(2y − x)− x̂‖
≤ 2

√
1 + 4ε+ 4ε2 ‖(2y − x)− x̂‖

= 2(1 + 2ε)) ‖(2y − x)− x̂‖

and therefore z ∈ Bδ(x̂), i.e., Bδ̃(x̂) ⊂ U as required by (6.9). So by Lemma 6.9 the
coercivity condition (6.1)

∀x ∈ Bδ̃(x̂), ∀x+ ∈ TDR x :
‖x− x+‖ ≥

√
η d

(
x, Ŝ

)
is satisfied on Bδ̃(x̂) for √η = 1/

[√
10κ(δ)

u (x̂) {A,B}κ(δ)
l (x̂) {A,B}

]
. Moreover, since A

and B are (ε, δ)-subregular by Theorem 4.6 TDR is (Ŝ, ε̃)-firmly nonexpansive with ε̃

given by (4.12), that is

∀x ∈ Bδ̃(x̂), ∀x+ ∈ TDR x, ∀x̄ ∈ Ŝ :
‖x+ − x̄‖2 + ‖x− x+‖2 ≤ (1 + ε̃) ‖x− x̄‖2 ,

Lemma 6.1 then applies to yield (6.13).
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We summarize the discussion on Douglas–Rachford with the following convergence
result.

Theorem 6.12:
Assume A,B ⊂ E are closed and super-regular at x̂ ∈ Ŝ := A∩B and that the collection
{A,B} is uniformly regular at x̂. Then there is a δ > 0 such that for all x0 ∈ Bδ(x̂) the
Douglas–Rachford algorithm converges to Ŝ with a linear rate.

More precisely, there is a δ such that A is (ε(δ)
A , δ)-subregular at x̂, B is (ε(δ)

B , δ)-
subregular at x̂,

αδ :=
√√√√√1 + (1 + 2εA)2(1 + 2εB)2

2 − 1
10
(
κ

(δ)
u (x̂) {A,B}κ(δ)

l (x̂) {A,B}
)2 < 1 (6.14)

and
d
(
TDR xn, Ŝ

)
≤ αδ d

(
xn, Ŝ

)
, n ∈ N. (6.15)

Proof. By uniform regularity at x̂, and hence local linear regularity, there is δu > 0 such
that κ(δu)

l (x̂) {A,B} , κ(δu)
u (x̂) {A,B} < ∞. Now, by super-regularity at x̂, for any εA

there exists δA, such that A is (εA, δA)-subregular at x̂. Respectively for any εB, B is
(εB, δB)-subregular at x̂ for some δB. In other words, for κ(δu)

u (x̂) {A,B} determined by
the regularity of the collection {A,B} at x̂, we can always choose εA, εB (generating
corresponding δA, δB radius) such that

ε̃ = 2εA(1 + εA) + 2εB(1 + εB) + 8εA(1 + εA)εB(1 + εB)

< η = 1/
[
10
(
κ(δ)
u (x̂) {A,B}κ(δ)

l (x̂) {A,B}
)2
]
.

is satisfied on Bmin{δA,δB}(x̂). This is equivalent to

1 + ε̃ = 1 + (1 + 2εA)2(1 + 2εB)2

2 < 1 + η,

and hence αmin{δA,δB} :=
√

1 + ε̃− η < 1. Then for δ := min {δu, δA, δB} /[2(1 + ε)], the
requirements of Theorem 6.11 are satisfied on B2(1+ε)δ(x̂), which completes the proof of
linear convergence on Bδ(x̂).

6.2.1. Douglas–Rachford on Subspaces

We finish this section with the fact that strong regularity of the intersection is necessary,
not just sufficient for convergence of the iterates of the Douglas–Rachford algorithm to
the intersection in the affine case.

61



6. Linear Convergence of Iterated (S, ε)-Firmly Nonexpansive Operators

Corollary 6.13:
Let N,M be two affine subspaces with N ∩M 6= ∅. Let A be the subspace parallel to N
and B be the subspace parallel to M and cF (A,B) the corresponding Friedrich angle
(compare (5.1)).

(a) For any starting point x0 ∈ E the Douglas–Rachford Algorithm converges with
linear rate

√
cF (A,B) (2− cF (A,B)) to Fix (TDR) = N ∩M + (N −M)⊥.

(b) If A⊥ ∩B⊥ = {0} then the Douglas–Rachford Algorithm converges A ∩B to for
any starting point x0 ∈ E N ∩M with linear rate

√
cF (A,B) (2− cF (A,B)).

Proof. For x0 ∈ E let xn be a Douglas–Rachford sequence generated by (1.21), i.e.,

xn+1 ∈ TDR xn.

Define x̃n := PLxn − x̂, where L = aff (N ∪M). Note by (2.23) and (2.22) that x̃n is a
Douglas–Rachford sequence on the euclidean space L0 := L− x̂ = A + B. Once we show
convergence of x̃n to A ∩B on L0, (a) follows by Proposition 2.23 (c) and (b) becomes
the special case L0 = E.

To show that x̃n converges to A ∩B note that by Corollary 5.35, cF (A,B) < 1 and
by Theorem 5.27 (5.37)

κ(δ,L)
u (x̂) {N,M} = κ(δ)

u (x̂) {A,B}
∣∣∣
L0

= 1√
1− c

(δ)
D (x̂) {A,B}

∣∣∣
L0

= 1√
1− c(δ,L)

D (x̂) {N,M}

= 1√
1− cF (A,B)

.

Furthermore by Corollary 5.36

κ
(δ)
l (x̂) {N,M} = 1√

1− cF (A,B)

and hence the coercivity condition (6.10) becomes

‖x̃n − TDR x̃n‖2 ≥ (1− cF (A,B))2 d2 (RBx̃n,A ∩B)
(2.8)= (1− cF (A,B))2 d2 (x̃n,A ∩B) .
(2.8)=

(
1− 2cF (A,B) + [cF (A,B)]2

)
d2 (x̃n,A ∩B) .
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The last equation combined with the firm nonexpansiveness of TDR under the application
of Theorem 6.1 then yields

d (TDR x̃n,A ∩B) ≤
√
cF (A,B) (2− cF (A,B)) d (x̃n,A ∩B) ,

and hence the proof is complete.

Remark 6.14: In (Bauschke et al., 2013a) the authors proof linear convergence of the
Douglas–Rachford algorithm to Fix (TDR) in the case of linear subspaces on general Hilbert
spaces. They achieve an optimal rate of convergence, which is given by the Friedrichs
angle cF (A,B). This indicates, that the rate achieved in Corollary 6.13 are not optimal
in the case of linear subspaces. ♦

6.3. Conclusion on the Theory

Remark 6.15 (Severeness of Douglas–Rachford): Remark 1.15, Theorem 2.18 along with
Remark 2.19 and Theorem 6.12 indicate that the Douglas–Rachford operator is in some
sense severe to regularity of the collection {A,B} and hence not likely to converge to
A ∩ B. However, there are several reasons that indicate, that this severeness in fact
is not a disadvantage, but a benefit of this algorithmic scheme. We point the reader to
chapter 7, that is the existence of several different techniques, either (re-)establishing
well behavedness of the collections of sets or regularization the algorithmic schemes to
overcome this difficulty. In fact we will see throughout the applications part at several
points, that many algorithmic schemes can be reformulated as (regularized) Douglas–
Rachford type algorithms, and that typically this schemes emerge in applications, where
other algorithmic schemes get stuck in local minima, whilst Douglas–Rachford type
algorithms escape (cf. Remark 2.18 (a)) local minima. ♦
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Applications - Sparse Affine Feasibility
and X-Ray Imaging

64



7. Regularization

In application one often deals with small changes in the model that can render the
intersection empty, i.e.,

A ∩B = ∅. (7.1)

Small changes are manifested by various factors during the collection and recording of
measurement data as well as approximation errors caused by numerical approximations.

Especially the Douglas–Rachford method is known to be sensitive to small changes in
the intersection of the constraint sets. There are several different strategies in applications
and in the literature that deal with this kind of ill-posedness, that will be discussed
within this section.

7.1. Projections onto Regularized Sets

Probably the most intuitive scheme to overcome noisy measurements is to incorporate a
small perturbation into the feasibility problem formulation.

Definition 7.1 (Bregman-regularized sets):
Let ψ : E→ R ∪ {∞} be strictly convex and differentiable on the interior of its domain.
The Bregman distance is defined by

dψ (x, y) := ψ(x)− ψ(y)− gradψ(y) (x− y) . (7.2)

For γ ≥ 0 the γ−regularized set is defined by

Ω(γ) := {x | dψ (x,Ω) ≤ γ} . (7.3)

The γ-projector onto Ω is defined by

P
(γ)
Ω x :=

{
(1− λ)PΩx+ λx if dψ (x,Ω) ≥ γ

x if dψ (x,Ω) < γ
, (7.4)

where λ := γ
dψ(x,Ω) .
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Example 7.2: For ψ = 1
2 ‖·‖

2 the Bregman distance corresponds to the squared Euclidean
distance, which is an appropriate error measure, when dealing with Gaussian noise.

For E = Rn and

ψ(x) =
n∑
i=1

h(xi) for h(λ) :=


λ log λ− λ if λ > 0

0 if λ = 0
∞ if λ < 0

(7.5)

The Bregman distance becomes

dψ (x, y) =
n∑
i=1

xi log xi
yi

+ yi − xi (7.6)

which corresponds to the Kullback-Leibler divergence. The Kullback-Leibler divergence is
an appropriate error measure, when dealing with Poisson noise. M

Corollary 7.3:
Let dψ (x, y) := d (x, y) = ‖x− y‖ be the Euclidean distance function. For any nonempty
and closed set Ω the γ−projector coincides with the projector onto the γ−regularized
set Ωγ, i.e.,

P
(γ)
Ω x = PΩ(γ)x, for all x ∈ E. (7.7)

Proof. The first part follows by easy calculus.

To show the second part assume d (x,Ω) ≥ γ (The case d (x,Ω) < γ is trivial). By
definition of the projector

x̄γ ∈ PΩγ ⇔ ‖x− x̄γ‖ = d
(
x,Ω(γ)

)
.

Furthermore definition of Ω(γ) it holds that

d
(
x,Ω(γ)

)
= d (x,Ω)− γ

and hence for any x̄ ∈ PΩx

‖x− x̄‖ − γ = d
(
x,Ω(γ)

)
.

Reformulating

‖x− x̄‖ − γ = (1− λ) ‖x− x̄‖ = ‖x− ((1− λ)x̄− λx)︸ ︷︷ ︸
∈P (γ)

Ω

‖.

then yields the statement that PΩ(γ) and P
(γ)
Ω coincide.
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Definition 7.4 (relaxed feasibility problem):
Let A, B nonempty and closed. The relaxed feasibility problem is given by

Find x̄ ∈ A ∩B(γ). (7.8)

Remark 7.5: An analysis of the convergence behavior of Approximate Alternating Pro-
jections onto (Bregman) regularized sets can be found in (Luke, 2012a). To be more
accurate the setting in (Luke, 2012a) incorporates regularizing a set M , which is the
preimage of a set N under a uniform linear transform U , i.e., M = U∗N . In that setting
the set N is disturbed by Poisson noise. In terms of the notation used in this work the
regularized set there becomes U∗NγU , which can be handled by application of Lemma
3.21.

In case of the Douglas–Rachford Operator alternative strategies will be discussed in the
following. ♦

7.2. Regularized Douglas–Rachford

Another approach to deal with the shortcoming of small perturbations in the model, as
suggested in (Bauschke et al., 2004) (Luke, 2008), is to regularize the setting by instead
applying a relaxation of the Douglas–Rachford algorithm known as “RAAR” in the
literature. Again, this can be viewed as a kind of regularization and will be introduced
in the following.

Definition 7.6 (Regularized Douglas–Rachford Algorithm/Relaxed Averaged Alternat-
ing Reflections):
For two nonempty, closed sets A,B ⊂ H the mapping

T(λ)
DR x = λTDR x+ (1− λ)PBx (7.9)

is called regularized Douglas-Rachford Operator or Relaxed Averaged Alternating Reflec-
tions Operator.

For given initial x0 ∈ H the sequence generated by

xn+1 = T(λ)
DR xn (7.10)

is called regularized Douglas–Rachford algorithm or Relaxed Averaged Alternating Reflec-
tions.

Remark 7.7: In the literature (7.10) is usually referred to as RAAR. RAAR was introduced
in (Luke, 2005) and has proven to be an efficient regularization strategy to overcome
difficulties if the set B is affected by small perturbations caused by noisy measurement
data. A detailed analysis on RAAR can be found in (Luke, 2008).
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7. Regularization

Theorem 4.4 indicates that the same convergence analysis of the operator TDR can also
be extended to T(λ)

DR. ♦
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8. Sparse Affine Feasibility

This chapter summaries some of the results of (Hesse et al., 2014a), that are based on
the convergence results of Chapter 6 and (Hesse and Luke, 2013).

We explicitly focus on the results that reflect the geometric interpretation of the local
properties defined in Chapter 3. Basically, that is, the observation that the notion of
(ε, δ)-subregularity covers the model of sparse affine feasibility naturally and hence one
can apply the results of Chapter 6.

For a detailed survey, a more general discussion and motivation see (Hesse et al.,
2014a), (Luke, 2013), (Beck and Teboulle, 2011) and the references therein.

8.1. A Short Introduction to Sparse Affine Feasibility

We consider the problem of sparsity optimization with affine constraints:
minimize ‖x‖0 subject to Mx = p (8.1)

where m,n ∈ N, m < n, M ∈ Rm×n is a real m−by−n matrix and ‖x‖0 := ∑n
j=1 |sgnxj|

is the number of nonzero entries of a real vector x ∈ Rn of dimension n. Given an a
priori bound s ∈ N on the desired sparsity of the solution one can relax problem (8.1) to
the feasibility problem

find x̄ ∈ As ∩ L, (8.2)
where As := {x ∈ Rn| ‖x‖0 ≤ s} , and L := {x ∈ Rn| Mx = p} . The set L is an affine
subspace, whilst As is a non-convex set. However the set As locally has a nice structure
in the sense that one can explicitly calculate the projector onto the set.

We are now ready to apply the above general results to affine sparse feasibility. We
begin with characterization of the regularity of the sets involved.

8.2. The Sparse Set

Definition 8.1:
For a fixed s ≤ n the set of s-sparse vectors , i.e., the set of vectors with at most s
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8. Sparse Affine Feasibility

nonzero elements is given by

As := {x ∈ E| ‖x‖0 ≤ s} . (8.3)

Theorem 8.2 ((Bauschke et al., 2013b, Equation (27d))):
Define

J := 2{1,2,...,n} and Js := {J ∈ J | #J = s} . (8.4)
The set As can be written as the union of all subspaces indexed by J ∈ Js

As =
⋃
J∈Js

AJ , (8.5)

where AJ := span {ei| i ∈ J} and ei is the i−th standard unit vector in Rn.

Proposition 8.3 ((Bauschke et al., 2013b, Proposition 3.6)):
The projector onto As is given by

PAs(x) =
⋃

J∈Cs(x)
PAJx, (8.6)

where for x ∈ Rn

Cs(x) :=
{
J ∈ Js

∣∣∣∣ min
i∈J
|xi| ≥ max

i/∈J
|xi|

}
(8.7)

is the set of s largest coordinates in absolute value and

(PAJx)i =
{
xi, i ∈ J,
0, i /∈ J . (8.8)

Theorem 8.4 (regularity of As, (Hesse et al., 2014a, Theorem 3.4)):

Let
I : Rn → {1, . . . , n},

x 7→ {i ∈ {1, . . . , n}| xi 6= 0} . (8.9)

At any point x̄ ∈ As\{0} the set As is (0, δ)-subregular at x̄ for

δ ∈ (0,min {|x̄j| | j ∈ I(x̄)}).

On the other hand, the set As is not (0, δ)-subregular at x̄ ∈ As\{0} for any

δ ≥ min {|x̄j| | j ∈ I(x̄)}).

In contrast, at 0 the set As is (0,∞)-subregular.

Theorem 8.5 (regularity of (As,L)):
Let As be defined by (8.3), let L be an affine subspace such that As ∩L 6= ∅. At any x̄ ∈
As ∩L and for any δ ∈ (0,min {|x̄j| | j ∈ I(x̄)}) the collection {As,L} is locally linearly
regular on Bδ/2(x̄) with local modulus of regularity κ = max

J∈Js,I(x̄)⊆J
{κ(δ)

l (x̄) {AJ ,L}} where

κ
(δ)
l (x̄) {AJ ,L} is the local modulus of linear regularity (5.35) of the collection {AJ ,L}.
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8. Sparse Affine Feasibility

Proof. For any x̄ ∈ As ∩ L we have x̄ ∈ AJ ∩ L for all J ∈ Js with I(x̄) ⊆ J and thus
(AJ ,L) is linearly regular (Bauschke and Borwein, 1996, Proposition 5.9 and Remark
5.10). Now let κ(δ)

l (x̄) {As,L} be the local modulus of linear regularity (5.35) and define

As :=
⋃

J∈Js, I(x̄)⊆J
AJ .

Then by Lemma 5.32 the collection
(
As, B

)
is linearly regular at x̄ with modulus of

regularity κ := max
J∈Js, I(x̄)⊆J

{κ(δ)
l (x̄) {AJ ,L}}.

Remark 8.6: Theorem 8.5 is actually a slightly improved version of (Hesse et al., 2014a,
Theorem 3.6). The main difference lies in the application of a equivalent definition of
local linear regularity. Compare Definition 5.6, Definition 5.25 and Corollary 5.30 ♦

8.3. Local Linear Convergence of Alternating
Projections

Theorem 8.7:
Let As be defined by (8.3), let L be an affine subspace and let x̄ ∈ As ∩ L 6= ∅. Choose
0 < δ < min {|x̄j| | j ∈ I(x̄)}. For x0 ∈ Bδ/2(x̄) the alternating projection algorithm,
i.e., any sequence generated by

xn+1 ∈ TAP xn = PAsPLxn,

converges locally linearly to the intersection As ∩ L with linear rate

c = max
J∈Js,I(x̄)⊆J

cF (AJ ,L)

where cF (AJ ,L) is the cosine of the Friedrichs angle between AJ and L, see (5.1).

Proof. We will check the requirements of Theorem 6.5 (b). First note that L is convex
and As by Theorem 8.4 (0, δ)-subregular at x̄ for any 0 < δ < min {|x̄j| | j ∈ I(x̄)},
hence ε̃ = 0. By Theorem 8.5, i.e., linear regularity of {As,L} we achieve 1− 1/κ2 < 1
and hence linear convergence of any alternating projection sequence on Bδ/2(x̄).

To get a explicit estimate of the linear rate note that by Corollary 5.36

κ
(δ)
l (x̂) {AJ ,L} ≤

1√
1− cF (AJ ,L)

71



8. Sparse Affine Feasibility

for any J ∈ Js. Hence (1 − 1/
(
κ

(δ)
l (x̂) {AJ ,L}

)2
≤ cF (AJ ,L) for any J ∈ Js which

implies 1− 1/κ2 ≤ c < 1 and yields the requested estimate on the linear rate.

Remark 8.8: Theorem 8.7 was also shown in (Bauschke et al., 2013b, Theorem 3.19) using
very different techniques. The approach taken in (Hesse et al., 2014a) is based on the
local modulus of regularity κ(δ)

u (x̄) {As,L}, whilst the approach in (Bauschke et al., 2013b)
is based on the Friedrichs angle (5.1). The relation between this different techniques is
not fully understood. Theorem 8.7 is an interesting result that establishes am interesting
connection between the two different approaches. However convergence rate in (Bauschke
et al., 2013b) is c2 rather than c, which indicates that in some applications the framework
used in this work is not optimal, which is the price of its more general nature. Other
results relating the different concepts of regularity of collections and intersections of sets
are given in Chapter 5. Of special interest in this context are for instance Corollary 5.35
and Corollary 5.36. ♦

8.4. Local Linear Convergence of Douglas–Rachford

The convergence analysis on the Douglas–Rachford operator requires a broader discussion
on the geometric properties of the set As. At this point we just state one of the most
recent and interesting results and refer the interested reader to (Hesse et al., 2014a,
Section 4) for a broad discussion.

Theorem 8.9 ((Hesse et al., 2014a, Theorem 4.7)):
Let As be defined by (8.3), let L be an affine subspace and let x̄ ∈ As ∩ L 6= ∅ with
‖x̄‖0 = s. Choose 0 < δ < min {|x̄j| | j ∈ I(x̄)}. For x0 ∈ Bδ/2(x̄) the corresponding
Douglas–Rachford algorithm, i.e., any sequence generated by

xn+1 ∈ TDR xn = 1
2 (RAsRLxn + xn) ,

converge with linear rate to Fix (TDR). Moreover, for any x̂ ∈ Fix (TDR) ∩ Bδ/2(x̄), we
have PLx̂ ∈ As ∩ L.
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9. Diffraction Imaging

In this section we provide a short summary on scattering theory and Rayleigh–Sommerfeld
diffraction theory. For a nice survey see (Luke et al., 2002). A detailed study on scattering
theory can be found in (Kress and Colton, 1998). Detailed information on Coherent
X-Ray Diffraction can be found in (Paganin, 2006), (Giewekemeyer, 2011).

Let u : R3 → C be a complex valued function. For a partially differentiable function u :
R3 → C let gradu := ( ∂u

∂x1
, ∂u
∂x1
, ∂u
∂x1

) be the gradient of u and for a partially differentiable
vector field v : C3 → C3 let div v := ∑3

i=1
∂vi
∂xi

be the divergence. The Laplace Operator
is defined by ∆u := div (gradu) = ∑3

i=1
∂2u
∂x2
i

for any two times partially differentiable
function u : R3 → C.

9.1. Helmholtz Equation

Helmholtz equation

∆u+ k2u = 0 (9.1)

with positive constant wave number k

The Sommerfeld Radiation condition
∂u

∂r
− iku = O

(1
r

)
, r = ‖x‖ → ∞, (9.2)

characterizes the behavior of outgoing solutions to the Helmholtz equation in great
distance to the origin.

Definition 9.1:
Solutions to the Helmholtz equation that are defined all over R3 are called entire solutions.
A Solution that fulfills the Sommerfeld Radiation condition (9.2) is called radiating.

Proposition 9.2:
The fundamental solution to the Helmholtz equation (9.1)

Φ(x, y) = 1
4π

e ik‖x−y‖

‖x− y‖
. (9.3)
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9. Diffraction Imaging

The fundamental solution is a solution to the Helmholtz equation for all x ∈ R3\{y} and
it is radiating.

9.2. Greens Representation

9.2.1. Greens Theorem

D ⊂ R3 bounded volume with orientable boundary ∂D and inward normal ν. u, v ∈
C2(D).

∫
D

(u∆v + gradu · grad v) dx = −
∫
∂D
u
∂v

∂ν
ds. (9.4)

Green’s first theorem∫
D

(u∆v − v∆u) dx =
∫
∂D
−u ∂v

∂ν
+ v

∂u

∂ν
ds. (9.5)

Green’s second theorem

Proof. We define F = u grad v

divF = div (u grad v)
= gradu · grad v + u div grad v
= gradu · grad v + u∆v

Using Gauß’ Integral theorem∫
D

divF dx =
∫
∂D
F · ν ds

we get (9.4). Interchanging of u and v und subtraction shows (9.5).

9.2.2. Green’s Formula

Theorem 9.3:
Let D be a bounded domain. For u ∈ C2(D) one has

u(x) =
∫
∂D

(
−∂u
∂ν

(y)Φ(x, y) + u(y)∂Φ(x, y)
∂ν(y)

)
ds(y)

−
∫
D
{∆u(y) + k2u(y)}Φ(x, y) dy, x ∈ D.
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In particular, if u is a a solution to the Helmholtz equation in D we have

u(x) =
∫
∂D

(
−∂u
∂ν

(y)Φ(x, y) + u(y)∂Φ(x,y)
∂ν(y)

)
ds(y), x ∈ D. (9.6)

Proof. We can apply Green’s second theorem (9.5) to u and Φ(x, · ) in the area {y ∈ D :
|x− y| > r} and therefore get∫

D
{∆u(y) + k2u(y)}Φ(x, y) dy

=
∫
∂D∪∂B(x;r)

(
−u(y) ∂Φ(x, y)

∂ν(y) + ∂u

∂ν
(y) Φ(x, y)

)
ds(y),

where ν is directed into this area. For r → 0 using the mean value theorem we get

lim
r→0

∫
|x−y|=r

{
−u(y)∂Φ(x, y)

∂ν(y) + ∂u

∂ν
(y)Φ(x, y)

}
ds(y) = u(x),

with the aid of

Φ(x, y) = O
(1
r

)
and grad yΦ(x, y) = 1

4πr3 (x− y) +O
(1
r

)

9.2.3. Green’s Formula in a Half-Space

Let T be the x1x2−plane. To satisfy the Dirichlet boundary conditions

G = 0 on T

‖x− y‖
(
∂G

∂ν
− ikG

)
→ 0 as ‖x− y‖ → ∞

we define the field

G(x, y, x′) := Φ(x, y)− Φ(x′, y) (9.7)

where the mirror point source x′ is defined by the condition ‖x′ − y‖ = ‖x− y‖ for all
y ∈ T.

If x′ /∈ D one can use Green’s second theorem (9.5) and Green’s formula (9.6) to
establish

u(x) =
∫
∂D
G(x, y, x′)∂u

∂ν
(y)− u(y)∂G(x, y, x′)

∂ν(y) ds(y) x ∈ D. (9.8)
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9. Diffraction Imaging

9.3. Rayleigh-Sommerfeld Diffraction

Rayleigh-Sommerfeld diffraction theory is derived by considering the specific domain Let

Dr :=
{
x ∈ R3 : ‖x‖ ≤ r, x3 ≥ 0

}
.

Although the domain is depending on r we will just write D = Dr The boundary ∂D

consist of the hemisphere E = {x : ‖x‖ = r, x3 > 0} and the disk D = {x ∈ T : ‖x‖ < r}.

Since we postulate that the unknown field u is only nonzero on a compact support
A ⊂ D centered at the origin and that it satisfies the Sommerfeld radiation condition
(9.2) by passing the limit r →∞ Green’s formula (9.8) reduces to

u(x) =
∫
A
−u(y)∂G(x, x′, y)

∂ν(y) ds(y) x ∈ D (9.9)

Let I ⊂ D be a screen parallel to T. For x ∈ I, y ∈ A we assume ‖x− y‖ � λ and
approximate

∂G(x, x′, y)
∂ν(y) = 2exp( ik ‖x− y‖)

4π ‖x− y‖

(
ik − 1

‖x− y‖

)
α(ν, y − x)

≈ exp( ik ‖x− y‖)
− iλ ‖x− y‖ α(ν, y − x)︸ ︷︷ ︸

=:−h(x,y)

where α(x, y) is the cosine of the angle between two points x, y

α(x, y) := x · y
‖x‖ ‖y‖

and λ = 2π/k is the wavelength.

Substituting this in Equation (9.9) yields the following mathematical formulation of
Huygen’s principle

u(x) ≈
∫
A
u(y)h(x, y) ds(y) x ∈ I. (9.10)

9.3.1. Fresnel Approximation

For any point x ∈ I x3 is the distance between A and I. We assume that two points
x ∈ I and y ∈ A satisfy the condition

‖(x1 − y1, x2 − y2, 0)‖ � x3. (9.11)
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Therefore we have |x1 − y1| � x3 and |x2 − y2| � x3 and can use in the binominal
expansion to obtain

‖x− y‖ ≈ x3

(
1 + 1

2x2
3
(x1 − y1)2 + 1

2x2
3
(x2 − y2)2

)
(9.12)

Using α(ν, x− y) ≈ 1 and (9.12) and by neglecting the quadratics in the denominater
the kernel h reduces to the Fresnel kernel

hFre := exp( ikx3)
iλx3

exp
(

ik
2x3

(
(x1 − y1)2 + (x2 − y2)2

))
. (9.13)

This kernel satisfies what is known as the parabolic wave equation(
∂

∂x3
− i

2k∆T − ik
)
hFre (9.14)

where ∆T is the Laplacian in the T plane, i.e ∆T = ∂2

∂x2
1

+ ∂2

∂x2
2
. Using the Fresnel kernel

in (9.10) we obtain the Fresnel diffraction field

uFre(x) =
∫
A
u(y)hFre(x, y) dy1 dy2. (9.15)

Interchanging the Integral- and the Differential-Operator show that this field also satisfies
(9.14)

With the notation hFre(x− y) := hFre(x− y, 0) = hFre(x, y) one can rewrite this as

uFre(x) = u(x) ∗⊥ h(x) (9.16)

9.3.2. Fraunhofer Approximation

If A is small compared to I we can approximate

(x1 − y1)2 + (x2 − y2)2 ≈ x2
1 + x2

2 − 2(x1y2 + x2y2)

and the Fresnel kernel (9.13) reduces to the Fraunhofer approximation

hFra(x, y) = exp( ikx3)
iλx3

exp
(

ik
2x3

(x2
1 + x2

2)
)

exp
(

ik
x3

(x1y1 + x2y2)
)
. (9.17)

The Fraunhofer transform of a field u across an aperture A is therefore given by

uFra(x) =
∫
A
u(y)hFra(x, y) dy1 dy2. (9.18)
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We rewrite

uFra(x) = c(x)
∫
A
u(y) exp

(
ik
x3

(x1y1 + x2y2)
)

dy1 dy2

= c(x)
∫
R2
u(y)χA(y) exp (−2π i(ξ1y1 + ξ2y2)) dy1 dy2.

with ξi = 1
λx3
xi for i = 1, 2.

c(x) := exp( ikx3)
iλx3

exp
(

ik
2x3

(x2
1 + x2

2)
)

(9.19)

9.3.3. Coherent Diffraction Measurements

Due to wavelengths in the nanometer scale and partial incoherences in the field u

measurement devices are not able to measure the complex valued wave field F⊥u in
the detector plane. A broad discussion on the sampling of highly coherent fields and
statistical properties of waves is beyond the scope of this work. The interested readers
are referred to (Paganin, 2006).

From our mathematical point of modeling the problem, we focus on the fact that
diffraction patterns collect by measurement devices are given in terms of absolute counts
of electrons or photons. That is, the measured intensity I of the wave field in the x3-plane,
i.e., its Fourier (9.18) or Fresnel (9.15) transform F⊥, is actually given by its squared
amplitude.

|F⊥(u)|2 = I(·). (9.20)

This results in an ill-posed inverse problem as any phase could be assigned to the
amplitudes prior to an inverse Fourier or Fresnel transform to real space. Hence additional
a priori information on u are needed in order to perform a reasonable reconstruction on
u. We will see in the next chapter, that classical algorithmic schemes can be interpreted
in terms of the theory introduced in Part I
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9.4. The Phase Retrieval Problem

A detailed survey on Phase Retrieval and numerical methods can be found in (Luke
et al., 2002).

As the theoretical foundations of the first part of this work provide tools for a detailed
analysis on Euclidean spaces we will carry out our analysis on the discretized model spaces.
The motivation on this is also that at is we are able to provide a good understanding
of the algorithms behavior within the modeled problem, rather than the accuracy of
the modeling process itself. The operator F : Cn1×n2 → Cn1×n2 becomes the discretized
version of the Fourier transform (9.18) or discretized Fresnel transform (9.15). Important
properties of F are that it is an unitary, linear operator.

9.4.1. Preliminaries

Cn1×n2 equipped with the real inner product

〈x, y〉 :=
n1∑
i=1

n2∑
j=1

Re ((xij)∗ yij) (9.21)

is an Euclidean space.

We define the pointwise multiplication � : Cn1×n2 × Cn1×n2 → Cn1×n2 , (x, y) 7→ x� y
by

[x� y]ij := xij yij, i = 1, . . . n1, j = 1, . . . , n2. (9.22)

Throughout the following sections I ⊂ {1, . . . , n1} × {1, . . . , n2} is a index set and we
will use the notation

[1I]ij =
{

1 if (i, j) ∈ I
0 if (i, j) /∈ I . (9.23)

For any x ∈ Cn1×n2 we use the notation |x| as the pointwise absolute value, i.e.,

|x| :=


|x11| . . . |xn11|

... . . . ...
|x1n2| . . . |xn1n2|

 (9.24)
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9.5. Phase Retrieval as a Feasibility Problem

To model the phase retrieval problem as a feasibility problem, we define the magnitude
constraint set M by

M :=
{
φ ∈ Cn1×n2

∣∣∣ |Fφ| = b
}
. (9.25)

As mentioned at the end of section 9.3.3 the object φ cannot be recovered from a single
magnitude measurement b.

In order to achieve a reasonable reconstruction on φ one has to incorporate additional a
priori information about φ into the model. In classical applications this additional infor-
mation is for instance that the illuminated object has compact support, real-valuedness
of φ (non-scattering, absorbing), known amplitude (non-absorbing) or combinations of
these.

The support constraint, the combined support and real-valuedness and the combined
support and nonnegativity constraint can be formulated as follows

S :=
{
φ ∈ Cn1×n2

∣∣∣ φij = 0, (i, j) /∈ I
}
, (9.26)

S∗ :=
{
φ ∈ Cn1×n2

∣∣∣∣∣ φij ∈ R, (i, j) ∈ I
φij = 0, (i, j) /∈ I

}
, (9.27)

S+ :=
{
φ ∈ Cn1×n2

∣∣∣∣∣ φij ∈ [0,∞), (i, j) ∈ I
φij = 0, (i, j) /∈ I

}
(9.28)

where I ⊂ {1, . . . , n1} × {1, . . . , n2} is an arbitrary index set.

Corollary 9.4:
The sets S, S∗ and S+ are convex The corresponding projectors onto these sets are
pointwise given by

[PSφ]ij =
{
φij if (i, j) ∈ I
0 if (i, j) /∈ I , (9.29)

[PSφ]ij =
{

Reφij if (i, j) ∈ I
0 if (i, j) /∈ I , (9.30)

[PSφ]ij =
{

(Reφij)+ if (i, j) ∈ I
0 if (i, j) /∈ I . (9.31)

Note that using notation (9.22) and (9.23) the Projector PS onto the support set S for
given φ ∈ Cn1×n2 can be written as PSφ = 1I � φ.

In contrast to the above mentioned convex constraint sets the amplitude constraint

N := {φ | |φ| = a} (9.32)

is nonconvex.
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Corollary 9.5:
Let N be the amplitude constraint set given by (9.32). The projector PN can be
component wise defined by

[PNφ]ij :=
{

aijφij/|φij| if φij 6= 0
aij exp( iθ), θ ∈ [0, 2π) if φij = 0 for i = 1, . . . , n1, j = 1, . . . , n2.

(9.33)

Theorem 9.6:
The magnitude set M given by (9.25), i.e.,

M :=
{
φ ∈ Cn1×n2

∣∣∣ |Fφ| = b
}

is prox-regular. The corresponding projector is given by

PMφ = F−1φ̂ (9.34)

where for i = 1, . . . , n1, j = 1, . . . , n2

φ̂ij =
{

bij[Fφ]ij/|[Fφ]ij| if [Fφ]ij 6= 0
bij exp( iθ), θ ∈ [0, 2π) if [Fφ]ij = 0 . (9.35)

Proof. That equation (9.34) indeed forms a projector follows by Lemma 3.21 and Corollary
9.5, as F is an unitary operator. By this given closed form of the projector PM it then
follows that the projection is unique for points close enough to M and hence prox-regular
by Theorem 3.13.

9.5.1. Physical Methods vs. Mathematical Description

In (Gerchberg and Saxton, 1972), independently of previous mathematical results for
projections onto convex sets, the authors proposed a simple algorithm for solving phase
retrieval problems in two dimensions. This algorithm was recognized in (Levi and Stark,
1984) a projection algorithm.

Algorithm 9.7 (Gerchberg-Saxton Algorithm, (Gerchberg and Saxton, 1972)):
For given φ0 ∈ Cn1×n2 the Gerchberg-Saxton algorithm is defined by

φn+1 ∈ PNPMφn, (9.36)

where N and M are given by (9.32) and (9.25).

Clearly the algorithm is a special instance of von Neumanns method of alternating
projections (1.15)
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Algorithm 9.8 (Error Reduction Algorithm, (Fienup, 1982)):
For given φ0 ∈ Cn1×n2 the Error Reduction algorithm with pure support constraint is
defined by

[φn+1]ij :=
{

[PMφn]ij if (i, j) ∈ I
0 if (i, j) /∈ I (9.37)

for i = 1, . . . , n1, j = 1, . . . , n2.

The Error Reduction algorithm can be rewritten as a von Neumann sequence

φn+1 = (PSPM)φn. (9.38)

9.5.2. Hybrid Input-Output Algorithm

Algorithm 9.9 (Hybrid Input-Output Algorithm, (Fienup, 1982)):
Choose x0 ∈ Cn1×n2 . For a given β ∈ (0, 1] the Hybrid Input-Output algorithm (HIO)
with pure support constraint is defined by

[φn+1]ij =
{

[PMφn]ij if (i, j) ∈ I
[φn]ij − β [PMφn]ij if (i, j) /∈ I , (9.39)

for i = 1, . . . , n1, j = 1, . . . , n2.

Remark 9.10: Error Reduction and Hybrid Input-Output were introduced and discussed in
(Fienup, 1982) in a setting which incorporates slightly more general type of constraints.
♦

Corollary 9.11 ((Bauschke et al., 2002, Observation 5.10)):
For β = 1 HIO with a pure support constraint is equivalent to the Douglas–Rachford
Projection algorithm (1.21).

Proof. Note that for given φ ∈ Cn1×n2 update rule (9.39) can be rewritten as

1I � PMφ+ (1Cn1×n2 − 1I)� (φ− PMφ)
=1I � (2PMφ− φ) + φ− PMφ

=1I � (2PMφ− φ) + φ− PMφ

=PS (2PMφ− φ) + φ− PMφ

and by Lemma 1.13 this coincides with the Douglas–Rachford Operator (1.20).

Remark 9.12: The equivalence in Corollary 9.11 relies on the property that S is a subspace
and hence PS is a linear mapping (cf. Corollary 2.5 (b)). For other sets as S∗ or S+
this observation is not true (cf. (Bauschke et al., 2003)). ♦
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9.5.3. The Bigger Picture

Remark 9.13 (Physical Methods vs mathematical prescriptions of algorithms): Within
the last sections we have summarized and derived mathematical prescriptions for some
standard physical phase retrieval schemes. It is worth mentioning that some of the methods,
mentioning especially HIO type algorithm, are still state-of-the-art techniques in phase
retrieval. The benefit to develop a detailed mathematical framework and convergence
analysis is manifold. On the one hand the projection methods framework covers some
state-of-the-art methods out of the box, whilst it is flexible in the sense, that most of
the reasonable physical constraints or rather a priori information can be formulated as
constraint sets and can easily be incorporated in the algorithms. On the other hand the
framework enables a qualitative and even quantitative description of the convergence
behavior of the applied methods.

A nice series of papers that describes phase retrieval from the viewpoint of convex
analysis is (Bauschke et al., 2002; Bauschke et al., 2003; Bauschke et al., 2004). ♦

Remark 9.14 (Alternating Projection schemes vs. Douglas–Rachford type methods): The
problem with Alternating Projection schemes as Gerchberg-Saxton or Error Reduction
is that they tend to get stuck in local minima. Proposition 2.17 and Proposition 2.18 (c)
emphasize that the set of fixed points of AP type methods is bigger than the set of fixed
points of Douglas–Rachford type methods. Proposition 2.18 (a) also illustrates, that in
fact, even if the problem locally reduces to a convex problem, the iterates generated by the
Douglas–Rachford Operator are repelled by local minima.

A detailed survey on a numerical analysis of iterative projection algorithms for phase
retrieval can be found in (Marchesini, 2007). ♦

9.5.4. Incorporating Sparsity

The discussion of chapter 8 also allows to incorporate sparsity type constraints as a priori
information. A discussion on reconstruction schemes using a sparse shearlet constraint
for Fresnel measurements can be found in (Loock and Plonka, 2014).

Proposition 9.15:
Let As be the set of s-sparse vectors given by (8.3), i.e.,

As := {x ∈ E| ‖x‖0 ≤ s}

and let U be an unitary linear operator. The set of s-sparse vectors under the transform
U is given by

AU
s := U(As) = {x ∈ E | ‖Ux‖0 ≤ s} . (9.40)
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The Projector onto AU
s is given by

PAU
s

= U∗PAsU (9.41)

where PAs is defined by Proposition 8.3 equation (8.6). Furthermore at any point
x̄ ∈ AU

s \{0} the set AU
s is (0, δ)-subregular at x̄ for δ ∈ (0,min {|x̄j| | j ∈ I(Ux̄)}).

Proof. The identity (9.41) follows by Lemma 3.21.

Subregularity follows by Theorem 8.4 (subregularity of As) and Theorem 3.22 (subreg-
ularity under unitary transforms).

Remark 9.16: Equation (9.41) is hard-thresholding in the basis U . ♦

9.5.5. Local Linear Convergence of Projection Algorithms in Phase
Retrieval

Theorem 9.17 (linear convergence of classical phase retrieval algorithms):
Let B = M be the magnitude constraint set (9.25) and let A ∈ {S,S∗,S+,N} be a
constraint set. Assume the collection {A,B} is locally linearly regular then alternating
projections (1.15) converges locally with a linear rate.

Proof. By Theorem 9.6 the set M is prox-regular, hence by Theorem 3.16 super-regular.
The set A is super-regular (for any possible choice). Using local linear regularity of
{A,B} local convergence now follows by Theorem 6.8.

Theorem 9.18 (linear convergence using a sparsity constraint):
Let B = M be the magnitude constraint set (9.25) and let A = AU

s be a sparsity
constraint set (9.40). Assume the collection {M,AU

s } is locally linearly regular then
alternating projections (1.15) converges locally with a linear rate.

Proof. By Theorem 9.6 the set M is prox-regular, hence by Theorem 3.16 super-regular,
i.e., for any ε > 0 there exists δ > such that M is (ε, δ)-subregular on Bδ(x̂) for
x̂ ∈M ∩AU

s .

The set AU
s is (0, δ)-regular according to Proposition 9.15. Assuming local linear

regularity of {A,B} local convergence now follows by Theorem 6.5 and appropriate
choice of ε > 0.

Theorem 9.19 (linear convergence of DR for phase retrieval):
Let B = M be the magnitude constraint set (9.25) and let A ∈ {S,S∗,S+,N} be a
constraint set. Assume the collection {A,B} is uniformly regular then Douglas–Rachford
(1.21) converges locally with a linear rate.
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Proof. By Theorem 9.6 the set M is prox-regular, hence by Theorem 3.16 super-regular.
The set A is super-regular (any possible set). Assuming uniform regularity of {A,B}
local convergence now follows by Theorem 6.12.

Theorem 9.20 (linear convergence of DR using a sparsity constraint):
Let B = M be the magnitude constraint set (9.25) and let A = AU

s be a sparsity
constraint set (9.40). Assume the collection {M,AU

s } is uniformly regular then Douglas–
Rachford (1.21) converges locally with a linear rate.

Proof. By Theorem 9.6 the set M is prox-regular, hence by Theorem 3.16 super-regular,
i.e., for any ε > 0 there exists δ > such that M is (ε, δ)-subregular on Bδ(x̂) for
x̂ ∈M ∩AU

s .

The set AU
s is (0, δ)-regular according to Proposition 9.15. Assuming uniform regularity

of {A,B} local convergence now follows by Theorem 6.11 and appropriate choice of
ε > 0.

Remark 9.21: It is likely that the problems in practice do not meet the required properties.
Especially uniform regularity is a restrictive property, which is likely to to be not fulfilled
in practice (cf. Example 5.7). Due to errors in the modeling process (idealized model) or
in the measurements it may also be the case that the resulting feasibility problem does
not have feasible points at all. We refer to Chapter 7, where the standard techniques to
handle this inconsistency are summarized. ♦
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9.6. Ptychographic Imaging

The pure phase retrieval problem is in fact a special case of more general diffraction
imaging. In applications it is usually related to the setting where the object φ is
illuminated by an incoming plane wave.

A more general problem is the problem of simultaneously object and probe retrieval.
In this section we will discuss simultaneous object and probe discussion by Ptychographic
Imaging. In contrast to the Phase retrieval problem several magnitude measurements
are given in this case.

Given are m different measurements of the form (9.25), i.e.,

M(k) :=
{
φ ∈ Cn1×n2

∣∣∣ |Fφ(k)| = b(k)
}
, k = 1, . . . ,m. (9.42)

For any k = 1, . . . ,m the complex wave field φk ∈ Cn1×n2 can be described as a pointwise
product of x ∈ X ⊂ CN1×N2 and y ∈ Y ⊂ Cn1×n2

φ(k) := Sk(x)� y, (9.43)

where for k = 1, . . . ,m Sk : CN1×N2 → Cn1×n2 is a known operator with given adjoint
S∗k : Cn1×n2 → CN1×N2 and X ⊂ CN1×N2 and Y ⊂ Cn1×n2 are closed constrained sets.

Remark 9.22: In this chapter, we focus on the setting of blind tomography, that is, an
unknown object is illuminated m-times by a compactly supported wave that is shifted
after each measurement along the x− and y−axis of the object. As only a small piece of
the object is illuminated in every measurement this is typically modeled in the setting
where N1 > n1, N2 > n2, x ∈ CN1×N2 describes the unknown transmission function of
the object, y ∈ Cn1×n2 is the unknown illuminating wave and Sk : CN1×N2 → Cn1×n2 an
indexing operator that shapes the shift of the object to the probe, i.e., Sk(x) = x|Ik

for a
given index Ik ⊂ Nn1×n2. The adjoint mapping S∗k : Cn1×n2 → CN1×N2 that embeds the
probe function y into the higher dimensional space CN1×N2 pointwise by

[S∗k(y)]ij =
{

yηk(i,j) if (i, j) ∈ Ik
0 if (i, j) /∈ Ik

,

where Ik ⊂ {1, . . . , N1} × {1, . . . , N2} is an index set and ηk : Ik → {1, . . . , n1} ×
{1, . . . , n2} is the associated bijective mapping, that matches CN1×N2 |Ik to Cn1×n2.

However, the theory and suggested schemes in the following also cover other interesting
ptychographic settings. One recent approach for instance is longitudinal ptychography
which is described in (Robisch and Salditt, 2013). That is, the object is moved along
the z axis and different measurements with the same illuminating wave are taken. In
this formulation then y ∈ Cn1×n2 is the unknown object, whilst x ∈ Cn1×n2 is the
unknown probe and Sk : Cn1×n2 → Cn1×n2 becomes a propagation operator that models the
propagation of x along the z−axis. The corresponding adjoint mapping S∗k : Cn1×n2 →
Cn1×n2 is then given by the corresponding back-propagation. ♦
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9.6.1. Thibaults Approach - Difference Map

In (Thibault et al., 2009) the authors formulate the Ptychography Problem in a way,
that can be interpreted as a two set feasibility problem.

The Ptychography Problem is modeled on the product space

E :=
(
Cn1×n2

)m
= Cn1×n2 × · · · × Cn1×n2︸ ︷︷ ︸

m-times

and one seeks for (φ1, . . . , φm) ∈ E that fulfills (9.42) and (9.43) using a specific version
of the Difference Map Algorithm, that will be sketched in the following.

Within the framework of this work, their idea can be formulated in the following way.
Condition (9.42) is embedded into (Cn1×n2)m analogous to the product space formulation
of Pierra (1.6) by defining

A := M(1) × · · · ×M(m). (9.44)

To formulate condition (9.43) we embed X×Y ⊂ CN1×N2 × Cn1×n2 into (Cn1×n2)m by
setting

B := {(φ1, . . . , φm) | φk = Sk(x)� y, x ∈ X, y ∈ Y, for all k = 1, . . . ,m} . (9.45)

For Φ0 :=
(
φ

(0)
1 , . . . , φ(0)

m

)
∈ (Cn1×n2)m the Difference Map Algorithm (9) in (Thibault

et al., 2009) then is given by

Φn+1 = Φn + PA[2PBΦn − Φn]− PBΦn, (9.46)

which is by Lemma 1.13 exactly the Douglas–Rachford algorithm.

Remark 9.23: In (Thibault et al., 2009) condition (9.43) is actually modeled without any
additional constraints on x and y. As in practice usually additional a priori information
onto x and y are provided we incorporate this in form of closed constraint sets X and Y
within our analysis. ♦

9.6.2. Projectors onto Thibaults Constraint Sets

The Projector onto the magnitude constraint set A given by (9.42) is according to (1.8)
component-wise given by

PA (x1, . . . , xm) = (PM1x1, . . . , PMmxm) , (9.47)
(9.48)
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where for i = 1, . . . ,m PMi
is the Projector onto the measurement set Mi according to

(9.34).

While it is not clear how to compute an exact Projector onto the set A given by (9.45),
the following algorithmic subroutine is suggested by (Thibault et al., 2009) and can be
interpreted as a heuristic for its approximation.

Subroutine 9.24 (Thibault [approximate] Projection PB):

Input. Current Iterate Φk and current approximation to probe and object yk,xk
Initialization. Define x̂(0) := xk, ŷ(0) := yk.
For l = 0, 1, steps

1. For i = 1, . . . ,m: Define

α
(l)
i := 2

 m∑
j=1

S∗j
((

ŷ(l)
)∗
� ŷ(l)

)
i

(9.49)

and update x̂(k+1)
i by

x̂(l+1)
i :=

[∑m
j=1 S

∗
j

((
ŷ(l)

)∗
� φ(k)

j

)]
i

α
(l)
i

(9.50)

2. For i = 1, . . . ,m: Define

β
(l)
i := 2

 m∑
j=1

Sj
((

x̂(l)
)∗
� x̂(l)

)
i

(9.51)

and update ŷ(k+1)
i by

ŷl+1
i :=

[∑m
j=1 Sj

((
x̂(l)

)∗)
� φ(k)

j

]
i

βli
(9.52)

Final Step Define xk+1 := x̂(steps+1), yk+1 := ŷ(steps+1) and set

PBφ
k := (S1 (xk+1)� yk+1, · · · , Sm (xk+1)� yk+1) . (9.53)

Remark 9.25: The choice of parameters in subroutine 9.24 is indeed reasonable and
in some sense optimal. In fact αi (cf. (9.49)) is the Lipschitz modulus of the partial
derivative mapping

∂

∂xi

m∑
k=1

∥∥∥Sk (x)� y− φ(k)
∥∥∥2
.

A detailed analysis on this can be found in (Hesse et al., 2014b). ♦
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Remark 9.26: The authors of (Thibault et al., 2009) actually monitor xk and yk, i.e.,
the object and illumination function, rather than the iterate Φk itself. This is similar to
monitoring the shadow sequence (2.20), as xk and yk are computed during the computation
of PAφk, which is a kind of regularization. ♦

9.6.3. A method by Maiden and Rodenburg

In comparison to the method of Thibault, the distinctive feature of the method of
Maiden and Rodenburg (Maiden and Rodenburg, 2009) is that only a single magnitude
measurement in used in each step. Their method can be described as follows.

Algorithm 9.27 (Maiden & Rodenburg):
Input. λ1, λ2 ∈ (0, 1].
Initialization. (x0,y0) ∈ CN1×N2 × Cn1×n2 .
General Step (k = 0, 1, . . .)

1. Set I = {1, . . . ,m}, x̂1 := x1, ŷ1 := yk
Inner Step (l = 1, 2, . . . ,m)

1.1. Choose j ∈ I and set I ≡ I\{j}

φl ∈ PMj
(Sj (x̂l)� ŷl)

1.2. Update xl+1, yl+1 by

x̂l+1 = x̂l + λ1

maxij |ŷl|2ij

(
S∗j ((ŷl)∗ � φl)−−S∗j ((ŷl)∗ � ŷl)� x̂l

)
, (9.54)

ŷl+1 = ŷl + λ2

maxij |x̂l|2ij
(Sj ((x̂l)∗)� φl − Sj ((x̂l)∗ � x̂l)� ŷl) . (9.55)

2. Set xk+1 ≡ x̂m, yk+1 ≡ ŷm

Remark 9.28: The choice of parameters in subroutine 9.24 is indeed reasonable and in
some sense optimal. In fact for given l maxij |ŷl|2ij (cf. (9.54)) is the Lipschitz modulus
of the gradient mapping

∇x

∥∥∥Sl (x)� y− φ(l)
∥∥∥2
.

A detailed analysis on this can be found in (Hesse et al., 2014b). ♦
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9.6.4. Residual error

For given reconstructions of probe and object function x,y the residual error is given by

m∑
k=1

∥∥∥|F (Sk (x)� y) | − b(k)
∥∥∥∑m

j=1 ‖b(j)‖
. (9.56)

9.6.5. Reconstruction from Real Data

In this section we discuss the reconstruction from a dataset of 676 diffraction patterns
provide by the IRP (Institut für Röntgenphysik ) Göttingen. A detailed discussion on the
experimental set-up, collection and examination of this dataset can be found in (Wilke
et al., 2013).

The algorithmic schemes (Thibault et al., 2009) introduced in Section 9.6.1 and
(Maiden and Rodenburg, 2009) introduced in Section 9.6.3 are leading strategies in the
simultaneous recovery of probe and object function in Ptychographic Imaging. Motivated
and circumstantiated by the theory developed in the first part of this work, we are able to
analyze the convergence behavior and suggest improvements in particular for Difference
map algorithm.

Given are m = 262 = 676 diffraction patterns (cf. (9.42)), each are taken on a screen
of 1922 points.

Our comparison include five different algorithms: The two popular in the literature
discussed in Sections 9.6.1 & 9.6.3, and several variants based on the method of (Thibault
et al., 2009). More specially:

1. Rodenburg: (Maiden and Rodenburg, 2009) as described in Section 9.6.3 Algo-
rithm 9.27.

2. DM/DR: The original Difference Map scheme of (Thibault et al., 2009) described
in Section 9.6.1 equation (9.46), which is equivalent to Douglas–Rachford (1.21).

3. DR-λ, λ = 0.7: Relaxed Averaged Alternating Reflection (7.9) with λ = 0.7, as a
regularized version of Douglas–Rachford.

4. DR-λ auto: Relaxed Averaged Alternating Reflection (7.9). Following (Luke,
2005), sequence (λn)∞n=0 is chosen to be

λk = 0.9 exp((−k)3) + 0.5(1− exp((−k)3)).

In particular, λ0 = 0.9 and λk → .5 as k →∞.
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5. AP: The Projection schemes of (Thibault et al., 2009) using von Neumanns method
of alternating projections (AP) (1.15) in place of the difference map.

6. Reference: Reference sceme as computed in (Wilke et al., 2013) (Average over
100 iterations obtained by a Rodenburg sceme).

In all of the schemes (except the reference scheme by Maiden and Rodenburg) PB is
given by (9.47), while an approximation to PA is evaluated using Subroutine 9.24 and a
number of steps = 5 inner iteration steps.

The initial guess on the object x is constant amplitude with zero phase. The initial
guess on the probe y is the Fresnel propagation of a disc of constant amplitude according
to the aperture-size in the physical set up (Wilke et al., 2013), as in typical Ptychography
experiments a priori, though its fine structure, due to instrumentation aberrations and
the like, the general structure on the probe is unknown. The object, on the other hand,
is assumed to be completely unknown except for certain qualitative properties – for
example, that it is barely absorbing.

We run two different reconstructions imposing two different object constraints, that
are

Xrun1 =
{
x ∈ CN1×N2

∣∣∣ |x| ∈ [0, 1]N1×N2
}
, (9.57)

Xrun2 =
{
x ∈ CN1×N2

∣∣∣ |x| ∈ [0.8, 1]N1×N2
}
. (9.58)

Constraint Xrun1 applies in general, as it models the absorbing nature in the experiment,
while Xrun2 is a reasonable (additional) assumption on the object x in this specific setup.

In both runs a support constraint according to (9.26) is applied to the probe, which
imposes that the probe is compactly supported within a disc in order to incorporate a
priori information about the physical set-up.

Remark 9.29 (Remark on the plots): In the setting of blind ptychography the model does
not circumvent non-uniqueness up to global shifts in x and y (cf. equation (9.43)). For
a better comparison object and probe are translated by a global shift, computed using code
written by Mauel Guizar (Guizar-Sicairos et al., 2008). ♦
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Figure 9.1.: Residual error (9.56) for two different object constraints
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Figure 9.2.: Reconstructed illuminating wave function y for different constraint sets (9.57)
and (9.58)
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.
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9.6.6. Comments on the Reconstructions

One of the main conclusions of the first part of this work is that DM/DR is sensitive
to the intersection and does not lack the tendency to get stuck in local minima (cf.
Remark 2.19 and Remark 6.15). Figure 9.1(a)/9.1(b) indicates that the residual of the
iterates reconstructed by DM/DR oscillate (and hence in fact do not get stuck into
global/local minima). Figure 9.1(a)/9.1(b) also shows that regularization of the operator
(DR-λ ) can restore the stability of the reconstruction and yield good results in terms
of small residuals and qualitative good reconstructions. Especially when incorporating
the stronger amplitude information (9.58) the reconstructed amplitudes of the DR-λ
methods show more features than the other algorithm (Figure 9.4(b) ).

In the AP scheme on the other hand the error in the residual is decreasing (Figure
9.1(a)/9.1(b)). Note that AP by definition always generates a decreasing sequence in
‖Φn − Φn−1‖. The reconstructions are good, even though the residual stagnates at a
higher level than the of DR-λ methods. This could indicate that the algorithm is stuck
in a local minimum.

The cyclic scheme Rodenburg in both reconstruction does not form a non-decreasing
sequence. Another interesting observation for this scheme is, that rather than benefiting
from the additional information (constraint (9.58)) reconstruction actually slows down
(Figure 9.1(b)).

Remark 9.30: A comparison between the method of Thibault and Rodenburg for simulated
data can be found in (Mattsson, 2013). The code was implemented using the ProxToolbox,
which is available in (Luke, 2012b). Parts of the code were implemented in (Mattsson,
2013) and (Hesse et al., 2014b). ♦
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10. Concluding Remarks and Open
Problems

We considered projection algorithms for solving (nonconvex) feasibility problems in
Euclidean spaces. Of special interest were the Method of Alternating Projections (AP)
and the Douglas–Rachford algorithm (DR). A notion of local sub-firm nonexpansiveness
with respect to the intersection was introduced for consistent feasibility problems. This,
together with a coercivity condition that relates to the regularity of the collection of sets
at points in the intersection, yields local linear convergence of AP a for a wide class of
nonconvex problems, and even local linear convergence of nonconvex instances of the
Douglas–Rachford algorithm. We emphasize the following ideas of what could be subject
to further research.

The moduli of linear and uniform regularity ((5.35) and (5.34)) do not recover optimal
convergence results in some easy examples (see Remark 6.6 and Remark 6.13). We
suspect this is an artifact of our choice of the product-space-norm in the definition of
metric (sub)-regularity. We believe that there is a quantitative primal definition of a
angle between two sets that recovers optimal results for AP on subspaces. Corollary 5.30
indicates that the choice of different metrics result in different regularity moduli. This
could also be useful to achieve optimal linear convergence results for Douglas–Rachford.

Due to the qualitative nature of some of the definitions, which are used in parts of this
work, the local geometry is introduced on local neighborhoods (δ-Balls). This analysis
can also be carried out on more general structures (half-spaces, cones and the-like),
which are more appropriate to identify the proper regions of convergence in nonconvex
applications.

Another direction is to extend this analysis more generally to fixed point mappings built
upon functions and more general set-valued mappings, but also in particular proximal
operators and reflectors. The generality of our approach makes such extensions quite
natural. Indeed, local linear as well as uniform regularity of collections of sets was shown
in Chapter 5 to be related to metric (sub-)regularity of set-valued mappings which then
guarantees that the condition (6.1) of Lemma 6.1 is satisfied. Of course, the difficulty
remains to show that the mappings are indeed metrically subregular.
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