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MICROLOCAL ANALYSIS OF TEMPERED DISTRIBUTIONS

RENÉ M. SCHULZ

Abstract

In this dissertation we study tempered distributions from the microlocal point of

view. The fundamental notion of microlocal analysis, the wave front set, is replaced

by two analogues, the SG-wave front set and the G-wave front set associated to

the global pseudo-differential calculi with SG- and Shubin symbols respectively.

Properties of these global wave front sets are collected and we establish various

ways to characterize them, in particular in terms of the FBI-transform.

We generalize constructions that involve the classical wave front set to the global

setting, in particular operations on tempered distributions, such as pull-backs,

(twisted) products and pairings, for which we give microlocal existence criteria.

As an application, we introduce a class of tempered oscillatory integrals, parametri-

zed by inhomogeneous phase functions and amplitudes from SG-symbol spaces. We

study the SG-wave front set of such distributions, which turns out to be bounded

by a generalization of the notion of stationary phase points.

In this framework, we establish the notion of SG-Lagrangian, which generalizes the

classical notion of conic Lagrangian submanifolds of T ∗Rd. In particular, we study

parametrization properties of these objects and it turns out that locally, each such

SG-Lagrangian is realized as the stationary points of a SG-phase function.

As further applications, we revisit certain constructions involving distributions

from axiomatic quantum field theory and show how these may be realized in the

tempered setting.
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Zusammenfassung

Diese Dissertation ist dem Studium temperierter Distributionen mittels mikro-

lokaler Methoden gewidmet. Die fundamentale Größe der mikrolokalen Analysis,

die Wellenfrontmenge, wird durch zwei analoge Konzepte ersetzt, die den pseudo-

differentiellen SG- und Shubin-Kalkülen zugeordnet sind. Die Eigenschaften dieser

globalen Wellenfrontmengen werden studiert und ferner werden unterschiedliche

Möglichkeiten, diese globalen Singularitäten zu charakterisieren, untersucht, ins-

besondere mittels der FBI-Transformation.

Zahlreiche Konstruktionen, die den klassischen Wellenfrontmengenbegriff beinhal-

ten, werden in den globalen Kontext übersetzt, insbesondere Rechenoperationen

mit temperierten Distributionen wie etwa (getwistete) Produkte, Pull-backs und

Paarungen, für die mikrolokale Existenzkriterien angegeben werden.

Als eine Anwendung wird eine Klasse von temperierten Oszillatorintegralen ein-

geführt, welche durch inhomogene Phasenfunktionen und Amplituden aus SG-

Symbolklassen parametrisiert werden. Die SG-Wellenfrontmengen dieser Distri-

butionen werden untersucht und es stellt sich heraus, dass diese durch eine Ver-

allgemeinerung der Menge stationärer Punkte der Phasenfunktionen beschränkt

werden.

In diesem Kontext wird eine Verallgemeinerung des klassischen Begriffs einer ko-

nischen Lagrange-Untermannifaltigkeit des T ∗Rd vorgenommen und diese Objekte

werden auf ihre Parametrisierungseigenschaften untersucht. Es stellt sich heraus,

dass jedes solche Objekt lokal als die Menge der stationären Punkte einer SG-

Phasenfunktion realisiert werden kann.

Als weitere Anwendung werden einige Konstruktionen der axiomatischen Quan-

tenfeldtheorie, die Distributionen beinhalten, im temperierten Kontext realisiert.
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Introduction

”
Je weiter eine mathematische Theorie ausgebildet wird, desto harmonischer und

einheitlicher gestaltet sich ihr Aufbau und ungeahnte Beziehungen zwischen bisher

getrennten Wissenszweigen werden entdeckt. So kommt es, daß mit der Ausdeh-

nung der Mathematik ihr einheitlicher Charakter nicht verloren geht, sondern desto

deutlicher offenbar wird.“ - David Hilbert [72]

General Introduction

This thesis treats the topic of microlocal analysis of tempered distributions. In

the following, we will give a broad exposition of the topic and of our approach.

We refer to the individual sections for more specific introductions for the topics

treated therein.

Microlocal analysis is a tool to study (ultra-)distributions on some manifold X in

terms of a resolution of their singularities in the cotangent space T ∗X. It has many

applications in the theory of partial differential equations and spectral theory, as

well as in other fields of study, such as constructive quantum field theory. The

term “local” stands for localization by some means in the underlying space X and

the “micro” refers to the taking-into-account of the behaviour the covariable, or

frequency, such as via the application of Fourier transformation. We give a brief

historic exposition of the history of this notion, with reference to the historic notes

in [81, 83] and [95].

The first application of the concept of microlocalization was in the framework of an-

alytic singularities of hyperfunctions (i.e. analytic functionals) see Sato [124, 125],

as well as Sato, Kawai and Kashiwara [126], making thorough use of methods

from complex analysis and sheaf theory. In a different approach, Bros and Iagol-

nitzer [15] introduced an integral transform, the FBI-transform and studied ana-

lytic singularities in terms of decay with respect to a scaling parameter. Finally,

Hörmander introduced a notion of wave front set (which we denote by WFcl(u))

suitable for the microlocal study of C∞-singularities of Schwartz distributions u

by pseudo-differential methods in [77], consider also [78, 79, 81, 83], which also has

an analytic counterpart, see [81, Sect. 9.3.]. In particular he used these techniques

to study the class of Lagrangian distributions, which arise as kernels of Fourier

Integral operators and fundamental solutions of partial differential equations, con-

sider also [56].
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The beauty of microlocal analysis is that it provides a clear geometric picture for

certain constructions involving distributions. In particular it is possible

• to prove propagation results (with emphasis on how singularities propagate

along bicharacteristics, which yields a geometric interpretation in the spirit

of Huygens),

• to prove existence and uniqueness results for solutions to partial differential

equations,

• to generalize, whenever certain microlocal existence criteria are fulfilled,

operations such as pull-backs by smooth maps and multiplication to dis-

tributions,

• to establish a calculus of Lagrangian distributions and Fourier integral

operators, based on geometric assumptions.

In this thesis, we will mainly adopt the C∞-approach, and we will define our

objects of study in the spirit of Hörmander [79, 81, 82, 83]. In particular, we study

singularities of tempered distributions in terms of generalizations and analogues to

Hörmander’s classical wave front set. Our main focus will be on how to generalize

constructions from the local theory to the global one, which we will motivate in

the following paragraph.

By now, microlocal analysis provides a well-established tool to analyse singularities

of distributions in various contexts. The original framework in which these were

introduced is local, meaning the classical notions are particularly suited to study

C∞-singularities at finite distances, that is the derivation of a distribution u from

being locally C∞, and most constructions are suitable to treat problems on (small)

open subsets of Rd and compact manifolds X.

In order to generalize these concepts to non-compact spaces, we need to make

several adaptations.

• By introducing pseudo-differential calculi suitable for the analysis of tem-

pered distributions, consider [9, 114, 135] and in particular the Hörmander-

Weyl calculus [83, 80, 94], it is possible to carry over the ideas of microlocal

analysis to the global setting and to control also “growth” of distributions,

such as with respect to weighted Sobolev spaces. We are going to Shubin

G-calculus [135] as well as the SG-calculus introduced by Parenti [114],

studied by many authors such as [44, 45, 46, 57, 131], and also under the

name of sc-calculus, see e.g. [102, 107].
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• In order to generalize microlocalization, it is important to impose a notion

of “localization at infinity”. We are going to focus on the case where

X = Rd. Even in this case, there are several reasonable choices for a

microlocal structure “at infinity”, and we are going to treat in detail two

notions suitable for the two calculi used. For an efficient formulation of

this underlying geometry, we are going to adopt the train of thoughts in

[36, 57, 102] to consider suitable compactifications of T ∗X, which amounts

to equipping X with an “asymptotically flat” structure, see also [128].

• Another development in microlocal analysis is the employment of methods

of harmonic analysis, time-frequency analysis and semi-classical analysis,

see e.g. [35, 40, 41, 51, 64, 94, 99, 157]. These methods often involve

integral transforms that yield representations of a given distribution in the

time-frequency plane and encode the behaviour in both the variable as well

as the covariable. When the range of such transforms restricted to smooth

functions is known, it is possible to use them to characterize smoothness.

Using suitable means of localization, it is then clear that this may be used

to characterize the wave front set in several ways.

In the global setting, these ideas provide various means to study global singulari-

ties, by combining (localizable) means to characterize smoothness with one of the

many ways to study decay properties.

We recall that in [12], Bony has established that in the analytic setting the previ-

ously introduced “local” notions of analytic wave front set coincide, indeed all such

notions admitting certain reasonable properties one would expect of an analytic

wave front. In the global setting, however, there are several reasonable notions

one might impose, depending on the “rate of oscillation” one is interested in, con-

sider e.g. [102, 153]. One of the reasons to do so is the fact that the classical

wave front set does not propagate in a “conventional fashion” under evolution of

the Schrödinger equation, whereas singularities caused by “quadratic oscillations”

indeed propagate nicely, as was shown in [111, 153].

We mention some of the several notions of wave front set suitable for the treatment

of global singularities, such as the S -wave front set [44] - which was seen to be

equivalent to the sc-wave front set of [102] - the homogeneous wave front set of

[111], a global wave front set in terms of the Shubin calculus in [82], named Gabor

wave front set in [121], and many others, like the aforementioned qsc-wave front

3



set of [153] and the metaplectic wave front set [149].

For some of these notions, it is unclear to make out how they relate to the others.

In this thesis, we indicate how to relate some of these different approaches with

which one characterizes global singularities and that several of these are indeed

equivalent and may be traced back to two fundamental notions of global wave

front set, which we denote by WFSG and WFG.

We establish a firm understanding, with reference to the underlying geometry, of

these two notions, which capture microlocal deviation of tempered distributions

from being S -regular, meaning from being rapidly decreasing and smooth. We

revisit certain constructions known for the classical wave front set, and relate these

to known properties of the global wave front sets. We also establish (to the best

of our knowledge) new properties of these wave front sets, such as by constructing

for any possible given wave front set a distribution which admits precisely these

singularities. We achieve this by suitably generalizing classical constructions.

The construction that may be considered our main result is that we establish a the-

ory of tempered distributions given by oscillatory integrals, which arise as (micro-)

local expressions of Lagrangian distributions, and characterize their singularities.

In the classical theory, these classes of distributions are actually associated to their

wave front set, which may be given in terms of geometric objects, that is conic

Lagrangian submanifolds of T ∗X. We establish in great detail how to generalize

this class of manifolds to the global setting, which is particularly challenging since

the structure of the compactification of T ∗X used is that of a manifold with cor-

ners. This theory has been achieved in collaboration with Coriasco in [49, 50]. We

then relate these to the known classes of Lagrangian (see [79]) and Legendrian (see

[70, 71, 107]) submanifolds used to obtain classes of distributions.

As another application of our study of global singularities, we establish for both

WFSG and WFG microlocal existence criteria for the extension of operations on

functions and of operators S 7→ S ′ to tempered distributions, generalizing and

complementing results of [81, 82]. In particular, we study “classic” operations such

as the pairing and the pull-back of distributions, but also give a - to the best of our

knowledge - novel treatment of the Weyl product and the action of Weyl-quantized

operators with distributional symbols on distributions.

We note that the microlocal approach to geneneralize operations to distributions

has been employed to great success in recent local constructions from constructive
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perturbative quantum field theory, see e.g. [4, 16, 74, 75, 112, 152]. We discuss

some of these expressions, in particular the two-point function and (twisted) pow-

ers thereof, and show how these may be defined from the microlocal point of view.

Since our methods take the global nature of singularities into account, they may

be applicable, in the future, to problems involving growth singularities or even

both frequency as well as growth singularities, such as the adiabatic limit, see e.g.

[59], as well as the IR/UV-mixing problem, see [4].

We also generalize another notion that arises in these constructions, the Steinmann

scaling degree, to the global setting. This notion is useful to extend distributions

defined on some subspace of test functions vanishing at a submanifold to general

tempered distributions and to classify the amount of possible extensions. In the

aforementioned constructions, this method is used to renormalize - that is extend

- products of distributions that are not canonically defined by microlocal existence

criteria.

We establish this way of extending distributions, which is a generalization of

Hadamard’s method of finite parts, see [16, 108, 112], for tempered distributions.

We complement this analysis by discussing in detail how these scaling techniques

relate to some of the methods used to study global singularities, with reference to

a symbol map defined for general distribution as introduced by Weinstein [148].

In the course of our analysis, we establish several techniques that may be employed

to study global singularities of tempered distributions. It is a natural question if

and how these methods translate to different functional settings, such as modula-

tion spaces - and in particular (weighted) Sobolev spaces - as well as Gelfand-Shilov

spaces Sθ. We address this along the lines of our analysis, and in the latter case

include a discussion on which of these microlocal methods may be generalized to

the quasi-analytic, or hyper-analytic context, that is for 1
2
≤ θ < 1.

Outline and main results

The thesis is organised as follows:

In Section 1 we establish the geometric set-up of radial compactification of Rd and

T ∗Rd in Section 1.1.2 and indicate how cut-offs “at infinity” may be constructed.

In particular, we carry out Construction 1.5, which resembles a dyadic decompo-

sition or Littlewood-Paley partition of unity and may be used to produce symbols

elliptic at a point.

In Section 1.2 we introduce the symbol classes needed for our purpose of analysing

5



tempered distributions. We introduce Shubin-type symbols in Section 1.2.2 and

SG-symbols in Section 1.2.3 from a unified viewpoint with reference to the afore-

mentioned compactifications, with special emphasis on the subclass of polyhomo-

geneous SG-symbols in Section 1.2.4. We list elements of the associated pseudo-

differential calculi in an appendix, that is Section A.3. We continue this in Section

A.3.3 by recalling the notion of localization operator and by indicating the inter-

play between pseudo-differential analysis and time-frequency analysis.

In Section 2 we analyse the notions of wave front sets associated to the calculi

under study. We begin by introducing the SG-wave front set in Section 2.2. We

establish that it may be understood as a generalization of Hörmander’s classi-

cal wave front set, discuss examples and study systematically how constructions

known in the classical setting may be converted to the global one. In particular

we construct, in Proposition 2.11, a tempered distribution with arbitrary as-

signed wave front set. We continue this train of thoughts and establish, in Section

2.3.1, how the SG-wave front set may be characterized in terms of a generalized

FBI-transform. The the main theorem of this section is the characterization of the

corner component WFψeSG in Theorem 2.22. In Section 2.4.1 we make use of this

characterization and show how the SG-wave front set may be used to generalize

operations from functions in a canonical way to distributions. Our main results

of this section are the characterization of the product, Corollary 2.47,1 and a

construction to establish general pull-backs by linear maps. We also study

translation invariant distributions and remark that the SG-wave front set may be

used to prove a microlocal version of the Theorem 0 of Epstein and Glaser for

tempered distributions.

We establish a similar analysis for the G-wave front set in Section 2.5. After

introducing the notion and listing basic properties of it, we proceed to give a

time-frequency theoretical description of it in Section 2.6, in particular by use of

localization operators and a parameter-dependent version of the short-time Fourier

transform. As a main result we establish the equality of the G-wave front set with

Nakamura’s notion of homogeneous wave front set in Theorem 2.74, which may

be seen as a semi-classical description of G-type singularities. Again, we construct

1We mention already at this point that this result has already been stated in some unpublished
lecture notes by R.B. Melrose, [106]. Our method of proof, however, differs from the one used
therein. Our treatment of tensor products is to the best of our knowledge new.
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a distribution with assigned wave front set in Theorem 2.68. Most of these

results were obtained in collaboration with Wahlberg in [130]. We conclude by

studying operations in terms of the G-wave front set, recalling and complementing

the results of Hörmander [82], in Section 2.7.

Having introduced these notions of wave front sets, we proceed to study applica-

tions in Section 3. In Section 3.2 we present the results of a joint project with

Coriasco, based on [49, 50]. We establish a theory of tempered oscillatory integrals

and SG-Lagrangians with suitable behaviour at infinity. The results contained in

this section may be considered the main results of this thesis. The analysis is car-

ried out by first introducing the “local picture”, that is the definition of tempered

oscillatory integrals in Theorem 3.9 and a classification of their singularities in

Theorem 3.18. We then proceed to discuss this from a geometric point of view

and define SG-Lagrangians in Section 3.2.4. We establish in Theorem 3.34 that

the structures arising in Theorem 3.18 for non-degenerate SG1,1
cl -phase functions

are precisely of this type and that conversely, locally, every SG-Lagrangian may

be parametrized by such a phase function in Theorem 3.35.

In Section 3.3 we discuss how Weinstein’s construction of a symbol for general

distributions may be formulated from the point of view of our analysis and may

be generalized to the SG-setting. We also generalize the notion of Steinmann’s

scaling degree known from quantum field theory to the global setting of tempered

distributions and study extensions of tempered distributions defined “everywhere

except at a subspace” in Proposition 3.52.

We continue our study of operations on tempered distributions in terms of the

G-wave front set in Section 3.4 and show how the notion may be used to define

twisted products, in particular the Weyl product, of distributions in Proposition

3.58. We also discuss Weyl operators with distributional symbols and extensions

of such to distributions in Proposition 3.63.

In Section 3.5, we discuss applications to the theory of quantum fields. For that,

we first study, in Section 3.5.2, a distribution known as the two-point function2

as an oscillatory integral and obtain its SG-wave front set in Corollary 3.67. In

Section 3.5.3, we mention how certain (twisted) products of distributions known

2To be precise: we study the two-point function from scalar bosonic free quantum field theory
on flat Minkowski spacetime.
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from perturbative quantum field theory may be defined and studied from the mi-

crolocal viewpoint.

In Section 4.1, we discuss, as an outlook, how and under which assumptions the

previous constructions may be translated to the functional setting of ultradistri-

butions of type S and highlight some of the features that arise in these spaces,

depending on the imposed type of regularity. In particular we mention an analogue

of the G-wave front set suitable for the analysis of singularities of ultradistribu-

tions in the quasi-analytic case, based on a joint project with Cappiello [22]. This

naturally leads over to a detailed outlook in Section 4.2, where several possible

directions into which our analysis may be pursued further are discussed.

Some preliminaries are collected in Appendix A.1. Therein, we fix our basic nota-

tion and recall established facts on tempered distributions known from the litera-

ture in Section A.2. We put special emphasis on their behaviour under transfor-

mations known from time-frequency analysis in Section A.2.1.
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1. Preliminaries

1.1. Compactification of Euclidean space.

This thesis is devoted to the microlocal analysis of tempered distributions. As such,

we assume familiarity of the reader with Schwartz functions, tempered distribu-

tions and the concepts of classical microlocal analysis. However, for the reader’s

convenience and to be able to clearly refer to them in the following, some basic

facts on Schwartz functions and tempered distributions are collected in the Ap-

pendix, see Section A.2, where we also fix notation. We strongly advise the reader

to briefly familiarize himself with the concepts included therein, since we have also

included some maybe lesser-known concepts, such as those from time-frequency

analysis in Section A.2.1. We have further collected a list of recurring symbols in

Appendix B.

In the following, we will now introduce the tools needed to study singularities of

tempered distributions. A distribution u ∈ S ′ (Rd
)

is globally S -regular if its

action on all test functions f ∈ S
(
Rd
)

may be represented by the pairing with

some g ∈ S
(
Rd
)
, that we have u(f) = 〈g, f〉. As such, a singularity of u is any

deviation from being smooth and rapidly decaying. Since rapid decay cannot be

measured in some bounded neighbourhoods of a point, we have to first introduce

means to describe and localize “points at infinity”. This will be achieved in the

next section.

1.1.1. Radial compactification of Euclidean space.

In order to properly encode “points at infinity”, we compactify Rd, i.e. embed

it into a compact manifold (with boundary or even corners) and call elements of

the boundary points at infinity. Here, we use the compactification of [57, Chap.

8.2], which is closely related to the stereographic, or also radial, compactification

(cf. [102, 107]), see also [89]. The difference between this compactification and the

directional compactification used in [36, Chap. 4],3 is that they impose a different

differential structure at infinity, consult also [153].

Construction 1.1 (Radial compactification of Rd).

(1) Embedding of Rd into Bd:
We embed Rd ↪→ Bd (see Figure 1) by use of some ι, a diffeomorphism

3Consult also [128]. In some unpublished lecture notes by Melrose [106] it is called quadratic
radial compactification.
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Rd →
(
Bd
)o

that is given by

x 7→ x

|x|

(
1− 1

|x|

)
for |x| > 3.

Consequently, the inverse ι−1 : (Bd)o → Rd is given, for 2/3 < |y| < 1, by

y 7→ y
|y|(1− |y|)

−1.

ι

ι−1

Figure 1. Radial compactification of Rd

(2) “Points at infinity”:

We then identify ∂Bd = Sd−1 as the “points at infinity”. We note that

each element of x0 ∈ Rd \ {0} can be assigned a corresponding boundary

element “in the direction of x0” via x0

|x0| ∈ Sd−1. Elements on the same ray in

Rd are identified with the same boundary element, and this may be seen as

a (canonical) representative of the equivalence class of x in (Rd \ {0})/ ∼,

which we will denote in the following by the symbolic expression4 x0∞,

where the equivalence relation ∼ is given by

x ∼ λx for λ > 0.

When working on asymptotic problems in Rd, one may thus choose to either work

on Bd itself or, in light of the isomorphism ι, on RdtSd−1 ∼= Rdt
(
(Rd \ {0})/ ∼

)
.

In the following, we will often make implicit use of this identification Rd ∼= (Bd)o,(
(Rd \ {0})/ ∼

) ∼= ∂Bd.

(3) Associated conifications:

Instead of considering subsets of
(
(Rd \ {0})/ ∼

) ∼= Sd−1, we often simply

consider conic subsets of Rd \ {0}. To identify these with subsets of ∂Bd,
we use the following notation. Let U ⊂ ∂Bd. Then the cone with base U ,

4We have essentially adapted the notation of [88] for “points at infinity”.
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Γ(U) is defined as

Γ(U) := {λy | y ∈ U ⊂ Sd−1, λ > 0}.

The inverse of this map is then the projection onto the sphere in Rd \ {0}.
(4) Admissible neighbourhoods:

We may view Bd as a subset of a “bigger” Rd, which is not the “initial”

Rd we have compactified, but we have Rd ∼=
(
Bd
)o ⊂ Bd ⊂ Rd a “trivial

continuation across infinity”. As such, Bd inherits the usual relative topol-

ogy. We may use this to define fundamental systems of neighbourhoods on

Rd t (Rd \ {0}), using the identification ι. A subset U of Rd t (Rd \ {0})
containing some x0 is an admissible open neighbourhood of x0 if either

(a) U ∩ Rd is open and bounded, U ∩ ((Rd \ {0})/ ∼) = ∅
(b) U ∩ (Rd \ {0}) is open, U ∩ Rd \ {0} is conic and[

ι
(
U ∩ Rd

)]
∪
[
Γ−1

(
U ∩ (Rd \ {0})

)]
⊂ Bd is open.

Note that in the second case all possible boundary points included in an

open set (the “exit points”), are determined as limit points of the inte-

rior points, in view of Γ−1(U ∩ (Rd \ {0})) ⊂ ι(prRd(U)). In light of the

angle-preserving definition of ι, this amounts to equipping Rd with a conic

structure at infinity.

In the following, when we localize in an open neighbourhood around a given

point, we always mean that we pick an appropriate admissible neighbour-

hood around it.

We may view neighbourhoods of a point at infinity simply as subsets of Rd:

an open neighbourhood of a point at infinity given by some representative

x0 ∈ Rd \ {0} is then the restriction of an open subset of type (4b), contain-

ing x0, to Rd. Usually, it is enough to consider conic subsets of Rd contain-

ing the ray represented by x0, intersected with (BdR)c = {x ∈ Rd | |x| > R}
for some R > 0.

In Section 1.1.2, this will allow us to localize around “infinite arguments” using

functions on Rd.

(5) Smooth structure:

As a subset of Rd, the unit ball Bd may even be equipped with a C∞-

structure and viewed as a smooth manifold with corners, cf. [98, Chap. 1].
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The reason why we work in the category of manifolds with corners and not

simply manifolds with boundary, is that we will later also study products

of balls and the category of manifolds with boundaries is not closed under

direct products.

A smooth function on this manifold Bd is then a function that is smooth

in the interior, with the usual notion of smoothness on open subsets of Rd,

and whose derivatives are bounded on all compact subset of
(
Bd
)o

.

(6) Boundary defining function:

We now choose in addition to ι a smooth function h : Bd → [0,∞) satisfyingh(y) = |y| for 2
3
< |y| < 1

1− h(y) 6= 0 for |y| < 2
3

.

Then ỹ = 1−h(y) is a boundary defining function on Bd, meaning a positive

smooth function that vanishes at the boundary and only there.

(7) Schwartz functions:

The Schwartz function space of rapid decay S
(
Rd
)

becomes, under the

above identification ι, the smooth functions on Bd vanishing of infinite order

on the boundary of Bd, denoted by Ċ∞
(
Bd
)
, see also [36, Prop. 4.1.1]

and [102, Sect. 4]. This means there is an isomorphism ιS : S
(
Rd
)
→

Ċ∞
(
Bd
)

given by f 7→ (ι−1)∗f and

Ċ∞
(
Bd
)

=
⋂
j∈N0

ỹj C∞(Bd).

If we view Bd as a subset of Rd, any element of Ċ∞
(
Bd
)

admits a trivial smooth

extension (by zero) to all of Rd. More generally, for functions that do not vanish

on the boundary, we have Whitney’s ([150], see also [81, Thm. 2.3.6]) and Seeley’s

extension theorem [134], which treat the extension of a function from a closed

subset and in particular a half-space to all of Rd. These extension theorems may

be generalized to sectors, that is sets of the form Rk
+ × Rd−k, or even manifolds

with corners such as Bd ×Bd. We quote the version of Seeley’s extension theorem

from the unpublished book [105, Thm. 1.4.1], see also [98, Chap. 2].

Proposition 1.2 (Seeley’s extension theorem). Let Ω ⊂ Rd open, k ∈ N0 with

k ≤ d and let Ω0 := Ω ∩ (Rk
+ × Rd−k). Then there exists a linear continuous
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extension map E : C∞(Ω0)→ C∞(Ω), i.e. we have

E(ḟ)|Ω0 = ḟ ∀ḟ ∈ C∞(Ω0).

(8) Tempered distributions:

Tempered distributions on Bd can therefore be identified with the ex-

tendible5 distributions, which means elements in
(
Ċ∞

)′
(Bd) (cf. e.g. [83,

App. B.2], [102]), meaning such u̇ that may be obtained from a restriction

u̇ = pr∗Bdu of a distribution u ∈ D ′(Rd) via prBd : Rd → Bd or equivalently

〈u̇, ḟ〉 = 〈u,Eḟ〉 for all ḟ ∈ Ċ∞(Bd). Any such u is called an extension of

u̇.

1.1.2. Cut-offs and cut-offs “at infinity”.

Having introduced smooth functions on the compactification of Rd, we now estab-

lish a notion of partition of unity or cut-offs respecting the structure “at infinity”.

These will be one of our main tools to (micro-)localize in the following. We note

that notions of cut-offs at infinity and structure-preserving diffeomorphisms have

been introduced in the more general context of SG-manifolds and in particular so-

called manifolds with conic ends (of which Rd is the simplest example), see [128]

and also [36, Chap. 4.2]. In the course of our analysis, we will use two ways of

looking at these localizers, and therefore establish both in detail.

Construction 1.3 (Cut-offs (at infinity)).

Definition in terms of the isomorphism ι:

A cut-off around a point y0 in Bd, denoted φy0 , is a positive element of C∞(Bd)
with ‖φy0‖L∞(Bd) = 1 that is equal to 1 in an open neighbourhood U of y0 and

vanishes outside a bigger neighbourhood V (with U ⊂ V ).

Let x0 the corresponding point in Rd t ((Rd \ {0})/ ∼), that is x0 = ι−1(y0) in

case y0 ∈
(
Bd
)o

and if y0 ∈ ∂Bd, then x0 = y0∞ ∈ (Rd \ {0})/ ∼.

• If y0 ∈
(
Bd
)o

, and V ∩ ∂Bd = ∅, we see that ι∗φy0 = φx0 ∈ C∞c (Rd) is a

“standard” cut-off around x0.

• If y0 ∈ ∂Bd, then φx0 = ι∗φy0 is an asymptotic cut-off or cut-off “at infinity”

around x0.

The latter case is highlighted in Figure 2. More generally, given arbitrary open

subsets U, V ⊂ Bd such that U ⊂ V , we can construct a positive smooth function

5Using e.g. the Hahn-Banach Theorem.
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φU : Bd → R such that (φU)|U ≡ 1 and (φU)|V c ≡ 0. As a special case we

obtain excision functions χ, meaning positive functions satisfying χ ≡ 1 in a

neighbourhood of ∂Bd and χ ≡ 0 in a neighbourhood of 0.

x0∞

x = 0

φx0

U

V

Figure 2. A model cut-off at infinity

In the previous approach, we have introduced these cut-offs with reference to

the smooth structure on the compactification. Conversely (as in [106]) one may

introduce these on Rd without reference to ι, which we will do in the following.

Definition in terms of model cases:

Cut-offs and asymptotic cut-offs can also be constructed on Rd by considering

some model cases:

• For a finite point x0 ∈ Rd, we consider “standard” cut-offs, that is pos-

itive functions φx0 ∈ C∞c (Rd) with ‖φx0‖∞ = 1 such that φx0 ≡ 1 in a

neighbourhood of x0 and φx0 ≡ 0 for |x− x0| > R for some R > 0.

• From cut-offs φ0, excision functions χ ∈ C∞(Rd) are constructed via χ =

1− φ0.

• More generally, for any point at infinity given by a representative x0∞ in

Sd−1 ∼= ((Rd \ {0})/ ∼), we can consider a positive function ψ ∈ C∞(Sd−1),

which satifies ‖ψ‖∞ = 1 and ψ ≡ 1 in a neighbourhood of the representative

x0∞. We extend such a function homogeneously to all of Rd \ {0} and

denote it by the same symbol ψ. Applying some excision function χ, we
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obtain a smooth function φx0 : Rd → R via

(1.1) x 7→

χ (x)ψ
(
x
|x|

)
x 6= 0

0 x = 0,

which provides another approach of constructing a cut-off at infinity or

asymptotic cut-offs.

We notice that we may guarantee during the construction that an asymptotic cut-

off vanishes on any chosen bounded neighbourhood of 0. By (locally finite) convex

sums of such cut-offs we may then localize any open set as in (4b) of Construction

1.1.

In either approach, cut-offs at infinity viewed as functions on Rd satisfy6 ∀α ∈ Nd
0

|∂αxφx0(x)| . 〈x〉−|α|,

which may be used to prove that they yield multipliers for the Schwartz space.7

Furthermore, in some admissible neighbourhood U of x0 they satisfy the ellipticity

condition

|φx0(x)| & 〈x〉0 ∀x ∈ U.

Being able to localize distributions in different domains via cut-offs, it is often of

importance to estimate the distance of their “arguments” from a given set. For

that, one uses a standard estimate, obtained by scaling:

Lemma 1.4. Let U, V ⊂ (Bd)o s.t. the closures of U and V in Bd satisfy U∩V = ∅.
Then for all x1 ∈ Rd∩ ι−1(U) and x2 ∈ Rd∩ ι−1(V ) we have |x1−x2| & |x1|+ |x2|.

Sometimes it is necessary to impose precise bounds on (derivatives) of cut-offs

at infinity with respect to the distance to the origin. In the following, we will

establish another construction of how to relate cut-offs at infinity and such at

finite arguments. We first work with d = 1. The construction is (schematically)

shown in Figure 3 and is similar to a dyadic decomposition, meaning the cut-

offs used in Littlewood-Paley analysis, the prototype of wavelet analysis (see e.g.

[108, 146]).

6For the first approach, this will become evident is Section 1.2.3.
7In the first construction, the multiplier property may be also concluded from the fact that
C∞(Bd) · Ċ∞

(
Bd
)
⊂ Ċ∞

(
Bd
)
.
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x

1

λ−1 λ0 λ1 λ2

φ1(x)

Figure 3. Construction of an asymptotic cut-off by summation and dilation

Construction 1.5. Pick a positive cut-off around 0 ∈ R, φ0, supported in [−1, 1],

such that ∀x ∈ [−1, 0] we have φ0(x)+φ0(x+1) = 1 and in particular φ0(0) = 1 is

satisfied.8 We can then, for any λ > 1 consider φ1(x) = φ0(logλ(x)), which yields

(trivially extended by 0 to all of R) a smooth function, compactly supported in

[λ−1, λ], which is positive and satisfies φ1(1) = 1. We can now, for any N ∈ N,

construct the sum

φ+∞
R (x) =

+∞∑
j=N

φ1(λ−jx).

This sum is locally finite and yields a smooth function supported in [λN−1,∞).

We can even construct, for any M ∈ R, a function a+∞
M via

a+∞
M (x) =

∞∑
j=N

λjMφ1(λ−jx),

that satisfies (using the support properties of φ1)

• a+∞
M is smooth and supported in [R,∞),

• |∂αxa+∞
M (x)| . 〈x〉M−α for α ∈ N0 and

8The existence of such a function can be demonstrated as follows:

pick a smooth positive function f supported in [−1, 0], such as x 7→ 1[−1,0]e
− 1

1−4|x+1/2|2 (the
function used in the classic demonstration of the existence of test functions, see [81, Lem. 1.2.3]).

With C :=
∫ 0

−1 f(x)dx we define

φ0(x) =


C−1

∫ x
−1 f(y)dy x ≤ 0

1− φ0(x− 1) 0 < x ≤ 1

0 1 < x

which satisfies all claimed properties.
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• For x > λN we have λ−1xM < |a+∞
M | < λxM and in particular we obtain

|a+∞
M (x)| & 〈x〉M for x > λN−1.

Figure 4 shows a (schematic) example for this construction in the case λ = 2,

M = 1, N = 1, where the grey “bumps” represent the functions 2jφ1(2−jx). Note

that for M = 0 this construction yields an asymptotic cut-off a∞0 = φ∞ with the

prescribed bounds from below and above around +∞.

By reflection, we can obtain functions with the same properties around −∞.

x

x
2

2x

0.5 1 2 4 8

1
2

4

8
a+∞
M=1(x)

Figure 4. Construction of a function a+∞
M=1 for λ = 2, N = 1

More generally, we can repeat the construction in higher dimensions by using

polar coordinates x = r · η, where η ∈ Sd−1 and r ∈ [0,∞), and setting

aη0∞
M (x) =

∞∑
j=N

λjMφ1(λ−jr)φη0(η),

where φη0 is some cut-off around η0 as an element of Rd (i.e. φη0 is compactly

supported).

1.1.3. Singularities at infinity.

The notions of cut-offs at infinity and the compactification of Rd can be used to

give an extension of the notion of (singular) support to tempered distributions,

see also [106].

Definition 1.6 (Cone (singular) support). The cone support of u ∈ S ′ (Rd
)

is

defined, using (asymptotic) cut-offs, in terms of its complement. We first give the
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definition of Csp(u) as a subset of Rd t Rd \ {0} in terms of its complement:

Csp(u)c = {x0 ∈ Rd t (Rd \ {0}) | ∃φx0 s.t. φx0u ≡ 0}

Correspondingly, we define the cone singular support in Rd t Rd \ {0}, Css(u),

Css(u)c = {x0 ∈ Rd t (Rd \ {0}) | ∃φx0 s.t. φx0u ∈ S
(
Rd
)
}

We denote the equivalent notions on Bd by C̃sp(u) and C̃ss(u). In their definition,

we make use of the fact that (ι−1)∗u is an element of ( ˙C∞)′(Bd):

C̃sp(u) = {y0 ∈ Bd|∃φy0 s.t. φy0
(
(ι−1)∗u

)
≡ 0}c

C̃ss(u) = {y0 ∈ Bd|∃φy0 s.t. φy0
(
(ι−1)∗u

)
∈ Ċ∞

(
Bd
)
}c.

We then have

Csp(u) ∩ Rd = ι−1(C̃sp(u) ∩
(
Bd
)o

)

Csp(u) ∩ (Rd \ {0}) = Γ(C̃sp(u) ∩ ∂Bd)

Css(u) ∩ Rd = ι−1(C̃ss(u) ∩
(
Bd
)o

)

Css(u) ∩ (Rd \ {0}) = Γ(C̃ss(u) ∩ ∂Bd)

Remark 1.7. While C̃sp(u) coincides with the closure of ι(supp(u)) in Bd, this is

not the case for C̃ss(u) and singsupp(u), since for the example u = 1Rd we have

singsupp(u) = ∅, but C̃ss(u) = ∂Bd. Indeed, Css(u) measures “deviation from

being smooth and rapidly decaying”, meaning also “growth singularities”.

It is in fact straight-forward to show, using a partition of unity argument, that

Css(u) = ∅ if and only if u ∈ S
(
Rd
)
.

To achieve more information on the nature of singularities in various functional

settings, one studies microlocal resolutions of singularities, which is achieved by

localizing in the spacial as well as in the frequency domain. This means that one

obtains a resolution of singularities in the time-frequency plane. The space with

the right transformation properties in which the resulting classical wave front set

is a subset, is T ∗Rd. In the tempered setting, singularities arising at infinity also

need to be accounted for. The choice for such a space is then a compactification

of T ∗Rd.

1.1.4. Two ways to compactify the cotangent space.

The procedure of directional compactification outlined in Section 1.1.1 yields two
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natural choices to compactify the time-frequency plane T ∗Rd ∼= Rd × Rd, i.e. the

model space used for microlocal analysis:

• one choice is B2d, which is a compact manifold with a smooth boundary,

• the other natural choice is Bd × Bd. Since Bd is a compact manifold with

boundary, it is possible to carry out the direct product construction in the

category of manifolds with corners, which yields a natural “symmetric”

choice of constructing the differential structure of a compact manifold with

corners of codimension 2, see [98, Chap. 2.3], on Bd × Bd.

The boundaries of these spaces are then the G-wave front space given by

W̃G := ∂B2d = S2d−1 ∼= (R2d \ {0})/ ∼=: WG

and the SG-wave front space, W̃SG := ∂(Bd × Bd), cf. [36, Chap. 2.3.]. The latter

may be decomposed into the union of three components and we introduce attach

names to each of these, using the notation of [57, 131] in which

• the index e is attached to objects associated with large behaviour in the

spacial variables (“exit behaviour”),

• the index ψ is attached to objects associated with large behaviour in the

covariables,

• the index ψe is attached to objects associated with large behaviour in both

sets of variables and covariables.

We may decompose W̃SG as follows.

W̃SG = ∂(Bd × Bd)

=
(
(Bd)o × Sd−1

)︸ ︷︷ ︸
=:W̃ψ

SG

∪
(
Sd−1 × (Bd)o

)︸ ︷︷ ︸
=:W̃e

SG

∪
(
Sd−1 × Sd−1

)︸ ︷︷ ︸
=:W̃ψe

SG

(1.2)

∼= Rd × ((Rd \ {0})/ ∼)︸ ︷︷ ︸
=:Wψ

SG

t ((Rd \ {0})/ ∼)× Rd︸ ︷︷ ︸
=:We

SG

(1.3)

t ((Rd \ {0})/ ∼)× ((Rd \ {0})/ ∼)︸ ︷︷ ︸
=:Wψe

SG

=: WSG.

In the following, we will again identify subsets of (Rd \ {0})/ ∼ with conic subsets

of Rd \ {0}, dropping the ∼ from the notation. Both choices impose different

topologies “at infinity” on T ∗Rd, which are highlighted in Figure 5.

Note that the classical space for microlocal analysis, T ∗Rd \
(
Rd × {0}

)
= Rd ×

20



x

ξ

The SG-wave front space WSG

Wψ
SG

We
SG

Wψe
SG

x

ξ

The G-wave front space WG

Figure 5. Two compactifications of T ∗R with “neighbourhoods at infinity”

Rd \ {0} (as a set), may therefore be identified with the Wψ
SG-component of the

SG-wave front space.

We will now introduce symbol spaces corresponding to these compactifications.
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1.2. Global symbol classes on Euclidean spaces.

1.2.1. Introduction and symbols in one set of variables.

In this section, the basic pseudodifferential calculi that are used throughout this

document are introduced. We recall, see [81, Def. 7.8.1], that the Hörmander

symbols of order m ∈ R and type (1, 0) on Rd, denoted by Sm1,0(Rd × Rs) for

s ∈ N0, are characterized by those smooth functions on Rd × Rs such that for

every compact set K b Rd and all multi-indices α ∈ Nd
0, β ∈ Ns

0 we have

(1.4) |∂αx∂
β
θ a(x, θ)| . 〈θ〉m−|α| x ∈ K, θ ∈ Rs.

Notation. We call the first set of variables x ∈ Rd the (spacial) variable and the

second set θ ∈ Rs the co-variable. If s = d, we usually denote the co-variable by

the letter ξ instead of by θ.

In order to study tempered distributions using pseudo-differential methods, in

particular to obtain pseudo-differential operators mapping S → S , it is necessary

to impose growth bounds on the symbols with respect to the (spacial) variable.9

For that purpose, various global symbol classes have been introduced, foremost the

very general Hörmander-Weyl calculus (see [80],[83, Sect. 18.5.],[94, Chap. 2]).

Here, we mainly consider two types of symbols:

• SG-symbols,10 see also [36, 57, 114, 128, 131],

• as well as Shubin G-symbols,11 as in [135, Chap. IV] and the references

therein.

For the the definition of these SG- and G-classes of symbols in full detail, embed-

ded in a very general calculus of global symbols on Rd suitable for the analysis

of tempered distributions, the reader is referred to [113], see also [9].12 Since the

attention here is limited to just the two symbol classes, they are introduced in-

dependently. We introduce both classes with reference to a symbol class “in only

9This necessity can be easily seen from the symbol a(x, ξ) = ex.
10The SG-symbols form the class associated to the metric hSG = |dx|2

〈x〉2 + |dξ|2
〈ξ〉2 in the Hörmander-

Weyl calculus. In the approach by Melrose [102] they form (in their polyhomogeneous version)
the scattering calculus.
11The G-symbols form the class associated to the metric hG = |dx|2+|dξ|2

〈(x,ξ)〉2 in the Hörmander-Weyl

calculus and form the isotropic calculus in the nomenclature of Melrose.
12To avoid confusion: in [113], the SG-calculus is called G-calculus, and the Shubin-calculus is
denoted by Γ-calculus.
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one set of (co-)variables”. For such a class Sm(Rs) ∼= Sm(R0 × Rs), the definition

of Hörmander symbols class suggest the following definition, see [151].

Definition 1.8. Denote for m ∈ R by Sm(Rs) the space of smooth functions

a ∈ C∞(Rs) that satisfy ∀β ∈ Ns
0, called the symbols, or amplitudes, of order m

|∂βθ a(θ)| . 〈θ〉m−|β|.

A family of semi-norms on this space is given by

ρmN(a) = sup
θ∈Rs

∑
|β|≤N

〈θ〉−m+|β|∣∣∂βθ a(θ)
∣∣.

and the induced topology turns Sm(Rs) into a Fréchet space.

For m′ < m we have that Sm
′
(Rs) ⊂ Sm(Rs) and symbol of order m is called

of genuine order m if it is not an element of any such Sm
′
(Rs). Using this, one

defines S(Rs) =
⋃
m∈R Sm(Rs) as the space of all symbols and notes S−∞(Rs) :=⋂

m∈R Sm(Rs) = S (Rs) with the inclusion S (Rs) ↪→ Sm(Rs) being continuous.

Given a decreasing sequence {mj}j∈N0 such that mj → −∞ as j → −∞ and a

corresponding sequence of aj ∈ Smj(Rs) we write that

a ∼
∞∑
j=0

aj

if for all n ∈ R there exists N ∈ N0 such that a−
∑N

j=0 aj ∈ Sn(Rs). In fact we can

construct (see [151, Prop. 2.1.]) for any such a given sequence {aj}j∈N0 a symbol

a ∈ Sm0(Rs), uniquely determined modulo S (Rs), such that a ∼
∑∞

j=0 aj.

The subspace Smcl (Rs) is formed by all classical, or polyhomogeneous, symbols,

meaning those symbols that admit asymptotic expansions in terms of homoge-

neous functions. For its definition, denote by Pm(Rs) the space of homogeneous

functions a ∈ C∞(Rs \ {0}) of degree m, that is a(λθ) = λma(θ) for all λ > 0.

Definition 1.9. A symbol a ∈ Sm(Rs) is called classical or polyhomogeneous, if it

admits a polyhomogeneous expansion, that is if there exists a sequence {mj}j∈N0

such that mj → −∞ as j → ∞ and a corresponding sequence of aj ∈ Pmj(Rs)

such that for any excision function χ0 ∈ C∞(Rs) we have

a ∼
∞∑
j=0

(χ0aj).
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The space of all classical symbols of a fixed order m ∈ R is denoted by Smcl (Rs).

It turns out that this space is a nuclear Fréchet space, cf. [151, Prop. 2.3.].

Example 1.10. Consider the cut-offs of Section 1.1.2.

• For θ0 ∈ Rs we have φθ0 ∈ C∞c (Rs) ⊂ S−∞(Rs).

• A cut-off around a point at infinity θ0∞ is an element of S0
cl(Rs), by (1.1).

Example 1.11. The symbol θ 7→ 〈θ〉 is polyhomogeneous, since we have

〈θ〉 = |θ|
√

1 + θ−2 = |θ|
∞∑
j=0

(−1)j(2j)!

(1− 2j)(j!)2(4j)
θ−2j,

where the Taylor series converges for |θ| > 1.

The symbol space S(Rd) is the natural choice of symbols on R0 × Rs. In the

following we will now introduce global symbol spaces on Rd × Rs for d > 0 that

correspond to the compactifications in Section 1.1.4. We have collected elements of

the associated pseudodifferential calculus in Appendix A.3. The reader is strongly

advised to familiarize himself with these constructions, since we have also included

some maybe lesser-known facts on “local parametrices” and interplay between

pseudodifferential calculi and time-frequency analysis, in particular the Weyl-Wick

connection.

1.2.2. The space of Shubin G-symbols.

Definition 1.12 (G-symbols). A function a ∈ C∞(Rd × Rd) is called G-symbol,

or Shubin symbol, of order m ∈ R if it fulfils ∀α, β ∈ Nd
0 estimates of the form

(1.5) |∂αx∂
β
ξ a(x, ξ)| . 〈(x, ξ)〉m−|α|−|β|

As such, writing Rd × Rd 3 (x, ξ) = z ∈ R2d, we have Gm(Rd × Rd) = Sm(R2d).

Consequently we obtain a family of semi-norms {ρmN}N∈N0 on Gm(Rd ×Rd) which

turns this space into is a Frechét space.

Again it holds for any m′ < m that Gm′(Rd × Rd) ⊂ Gm(Rd × Rd) and

G(Rd × Rd) =
⋃
m∈R

Gm(Rd × Rd)

denotes the space of all G-symbols. We note that exactly as for Sm we have⋂
m∈R Gm(Rd×Rd) = S (R2d) and we are able to introduce the subclass of classical
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symbols Gm
cl (Rd × Rd) in complete analogy.

A symbol a of genuine order m is called G-elliptic at a point (x0, ξ0) ∈ WG if it

fulfils, in an open neighbourhood U of (x0, ξ0) (in the sense of Construction 1.1

(4b))

(1.6) |a(x, ξ)| & 〈(x, ξ)〉m−|α|−|β|.

The (open) set of all points in WG such that a is G-elliptic at that point is denoted

by ellG(a). If a is G-elliptic at every point, ellG(a) = WG, it is calledG-elliptic. The

(closed) complement of ellG(a) in WG is denoted by charG(a), the G-characteristic

set.

Furthermore we have:

• The pointwise product induces a continuous bilinear product

Gm(Rd × Rd)×Gm′(Rd × Rd)→ Gm+m′(Rd × Rd).

and the map a(x, ξ) 7→ 〈(x, ξ)〉m′a(x, ξ) yields an isomorphism

Gm(Rd × Rd)→ Gm+m′(Rd × Rd).

• Differentiation yields continuous maps

∂αx∂
β
ξ : Gm(Rd × Rd)→ Gm−|α|−|β|(Rd × Rd).

1.2.3. The space of SG-symbols.

In the following the space of SG-symbols is introduced. It has the property that

ellipticity of SG-symbols may be formulated with respect to the SG-wave front

space.

Notation. In order to introduce the SG-calculus in a clear and efficient manner

it is of importance to distinguish if at a “point at infinity” the spacial variable or

the covariable is large - or both, i.e. in which boundary face of WSG the point is

located. We insert a placeholder • if a statement is valid if we replace all all such

placeholders by the same element • ∈ {e, ψ, ψe}.

Definition 1.13 (SG-symbols). A function a ∈ C∞(Rd×Rd) is called SG-symbol

or SG-amplitude of order (me,mψ) ∈ R× R if it fulfils estimates of the form

(1.7) |∂αx∂
β
ξ a(x, ξ)| . 〈x〉me−|α|〈ξ〉mψ−|β|.
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A family of semi-norms
{
ρ
me,mψ
N

}
N∈N0

on the space of all SG-symbols of fixed order

(me,mψ), denoted by SGme,mψ(Rd × Rd), is given by

ρ
me,mψ
N (a) = sup

(x,ξ)∈Rd×Rd

∑
|α|+|β|≤N

|∂αx∂
β
ξ a(x, ξ)|〈x〉−me+|α|〈ξ〉−mψ+|β|

and SGme,mψ(Rd × Rd) equipped with these is a Frechét space.

In the following, we list some properties of these symbol spaces:

• We have the continuous inclusion SGm′e,m
′
ψ(Rd × Rd) ⊂ SGme,mψ(Rd × Rd)

for m′e ≤ me and m′ψ ≤ mψ and a symbol of order (me,mψ) is called

of genuine order (me,mψ) if it is not in any such SGm′e,m
′
ψ(Rd × Rd) for

(m′e,m
′
ψ) 6= (me,mψ).

• The pointwise product induces a continuous bilinear product

SGme,mψ(Rd × Rd)× SGm′e,m
′
ψ(Rd × Rd)→ SGme+m′e,mψ+m′ψ(Rd × Rd).

The map

a(x, ξ) 7→ 〈x〉m′e〈ξ〉m′ψa(x, ξ)

yields an isomorphism

SGme,mψ(Rd × Rd)→ SGme+m′e,mψ+m′ψ(Rd × Rd).

• Differentiation yields continuous maps

∂αx∂
β
ξ : SGme,mψ(Rd × Rd)→ SG(me−|α|,mψ−|β|)(Rd × Rd).

• We denote by SG(Rd) the algebra of all symbols, i.e.

SG
(
Rd × Rd

)
:= SG∞,∞

(
Rd × Rd

)
:=

⋃
(me,mψ)∈R2

SGme,mψ(Rd × Rd).

We note that

SG−∞,−∞(Rd × Rd) :=
⋂

(me,mψ)∈R2

SGme,mψ(Rd × Rd) = S
(
R2d
)

Definition 1.14 (Elliptic SG-symbols). A symbol a of genuine order (me,mψ)

is called SG-elliptic at a point (x0, ξ0) ∈ WSG if it also fulfils, in an open neigh-

bourhood U × V ⊂ Rd × Rd of (x0, ξ0) in WSG (in the sense of Construction 1.1

(4b)),

(1.8) |a(x, ξ)| & 〈x〉me−|α|〈ξ〉mψ−|β| ∀(x, ξ) ∈ U × V.
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The set of all points in WSG such that a is SG-elliptic at that point is denoted by

ellSG(a). Equivalently, we may also define the notion of ellipticity at a correspond-

ing point of W̃SG and the set ẽllSG(a) as the subset of points of ellipticity W̃SG. If

a is SG-elliptic at every point, it is called SG-elliptic. The complement of ellSG(a)

in WSG is denoted by charSG(a), the SG-characteristic set.

Example 1.15. Let (x0, ξ0) ∈ WSG. Then, using the notation of Section 1.1.2,

a = φx0⊗φξ0 is a (0, 0)-order symbol elliptic at (x0, ξ0) for any (asymptotic) cut-offs

at x0 and ξ0 respectively. In particular this is true for the cut-offs of Construction

1.5.

If (x0, ξ0) ∈ Wψe
SG, then such an a is of genuine order (0, 0). Otherwise, due

to its support properties, in case (x0, ξ0) ∈ Wψ
SG it is of order (−∞, 0), or if

(x0, ξ0) ∈We
SG, of order (0,−∞).

1.2.4. Classical SG-symbols.

A SG-symbol is called polyhomogeneous, or classical, if it admits a polyhomoge-

neous expansion. The shortest way to characterize this is by [151, Prop. 2.7.],

where it is observed that SGcl(Rd × Rd) ∼= Smecl (Rd) ⊗ S
mψ
cl (Rd) with the unique

Fréchet tensor product, granted by nuclearity of Sme .

Remark 1.16. The fact that Gm
cl (Rd × Rd) ∼= Sm(R2d) corresponds to W̃G = ∂B2d

and SGcl(Rd × Rd) ∼= Smecl (Rd)⊗ S
mψ
cl (Rd) corresponds to W̃SG = ∂(Bd × Bd).

In order to make such a polyhomogeneous expansion more explicit, we first need

to introduce a number of spaces of homogeneous functions, for each component

individually. In its polyhomogeneous version, the SG-calculus was mainly devel-

oped by Schulze, see [131, Chap. 1.4]. We follow the similar outline of [113, Chap.

3.1.], with slight changes in notation.

Definition 1.17 (Polyhomogeneous symbols).

• Let P
me,mψ
e denote the space of a ∈ C∞(Rd \ {0} × Rd) such that a is

homogeneous of degree me in the first set of variables, i.e. ∀λ > 0 we have

a(λx, ξ) = λmea(x, ξ) and such that for any excision function χe ∈ C∞(Rd)

we have (
(x, ξ) 7→ χe(x)a(x, ξ)

)
∈ SGme,mψ(Rd × Rd).
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• Similarly, let P
me,mψ
ψ denote the space of a ∈ C∞(Rd×Rd \ {0}) such that

a is homogeneous of degree mψ in the second set of variables and such that

for any excision function χψ ∈ C∞(Rd) we have(
(x, ξ) 7→ χψ(ξ)a(x, ξ)

)
∈ SGme,mψ(Rd × Rd).

• Finally, let P
me,mψ
ψe denote the space of a ∈ C∞(Rd \ {0} ×Rd \ {0}) such

that a is separately homogeneous of degree me in the first and mψ in the

second set of variables respectively13 and such that for any pair of excision

functions χe, χψ ∈ C∞(Rd) we have(
(x, ξ) 7→ χe(x)χψ(ξ)a(x, ξ)

)
∈ SGme,mψ(Rd × Rd).

Let a ∈P
me,mψ
e . We say a is ψ-polyhomogeneous if a admits a polyhomogeneous

expansion with respect to the ξ-variable. That means there exists some excision

function χψ ∈ C∞(Rd) and a sequence {aj}j∈N0 with aj ∈ P
me,mψ−j
ψe such that

a ∼
∑

j aj, meaning for all N ∈ N0(
a−

N∑
j=0

χψ(ξ)aj

)
∈P

me,mψ−N−1
e .

We call aj = σ
mψ−j
ψ (a) the ψ-Symbol of order mψ − j. We define e-polyhomogene-

ity and e-Symbol of order me − j, i.e. σme−je (b) similarly, for an element of b of

P
me,mψ
ψ by interchanging the roles of the variables.

Finally, let a ∈ SGme,mψ(Rd ×Rd) a general SG-symbol. We say a is (ψe-)polyho-

mogeneous, or classical, if there exists some excision functions χe, χψ ∈ C∞(Rd)

and two sequences {aj}j∈N0 , {bj}j∈N0 with aj ∈ P
me,mψ−j
ψ e-polyhomogeneous,

bj ∈P
me−j,mψ
e ψ-polyhomogeneous, such that a ∼

∑
j aj and a ∼

∑
j bj, meaning

for all N ∈ N0 (
a−

N∑
j=0

χψ(ξ)aj

)
∈ SGme,mψ−N−1(Rd × Rd)(1.9)

(
a−

N∑
j=0

χe(x)bj

)
∈ SGme−N−1,mψ(Rd × Rd)(1.10)

For ψe-polyhomogeneous symbols, we may now define the corresponding symbols

as well, setting σ
mψ−j
ψ (a) = aj and σme−je (a) = bj. As the aj and bj are required to

13This means ∀λ, µ > 0 a(λx, µξ) = λmeµmψa(x, ξ).
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be polyhomogeneous, they admit expansions with to the remaining variable and

we have the correspondence condition ∀j, k ∈ N0:

σ
mψ−k
ψ aj = σme−je bk =: σ

me−j,mψ−k
ψe (a) ∈P

me−j,mψ−k
ψe .

The space of classical symbols is denoted by SG
me,mψ
cl (Rd × Rd).

By the previous discussion, we obtain a triple called the SG-principal symbol of a(
σmee (a), σ

mψ
ψ (a), σ

me,mψ
ψe (a)

)
∈P

me,mψ
e ×P

me,mψ
ψ ×P

me,mψ
ψe ,

such that (from (1.10) and (1.9)):

(1.11) a−χ(x)σmee (a)−χ(ξ)σ
mψ
ψ (a)+χ(x)χ(ξ)σ

me,mψ
ψe (a) ∈ SG

me−1,mψ−1

cl (Rd×Rs).

We call

χ(x)σmee (a) + χ(ξ)σ
mψ
ψ (a)− χ(x)χ(ξ)σ

me,mψ
ψe (a) ∈ SG

me,mψ
cl (Rd × Rs)

the principal part of a. Obviously it is defined only up to terms of lower order, or

on principal level. On principal level, we may drop the orders from the notation

and simply write

σ(a) =
(
σe(a), σψ(a), σψe(a)

)
.

We observe that σe(a) = σψ(a) = 0 implies a ∈ SG
me−1,mψ−1

cl (Rd × Rd).

We note that a classical symbol a is elliptic at (x0, ξ0) ∈ WSG if and only the

corresponding component of its principal symbol is non-vanishing at (x0, ξ0). We

also note that the previous operations such as multiplication by another symbol

and differentiation preserve classicality, if all involved symbols are classical. In

particular, we have:

Proposition 1.18. Let a ∈ SG
me,mψ
cl (Rd × Rd). Then, for α, β ∈ N0, we have

σ(∂αx∂
β
ξ a(x, ξ)) = ∂αx∂

β
ξ σ(a(x, ξ)),

where we differentiate the right-hand side component-wise.

For a proof of this fact consider [50]. We also have a converse construction, that

is from such a triple of functions we may define a corresponding “principal part”,

which will be an SG-amplitude that admits this triple as principal symbol:

Proposition 1.19. Let (ae, aψ) be a couple of functions satisfying the following

assumptions:
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• ae ∈P
me,mψ
e ,

• aψ ∈P
me,mψ
ψ ,

• σmee (aψ) = σ
mψ
ψ (ae) = aψe.

Then, there exists a ∈ SG
me,mψ
cl (Rd × Rd) such that σ(a) = (ae, aψ, aψe).

There is an additional way of characterizing classical SG-symbols and their

principal symbols in terms of the isomorphism Rdt ((Rd \ {0})/ ∼) ∼= Bd in terms

of the map ι used in Construction 1.1, see [57, Chap. 8.2]:

Proposition 1.20. The map

a(x, ξ) 7→ b(y, η) = (1− h(y))me(1− h(η))mψ
(
(ι−1 × ι−1)∗a

)
(y, η)

is an isomorphism ι
me,mψ
SG : SG

me,mψ
cl (Rd × Rd)→ C∞(Bd × Bd).

In light of this isomorphism, we can obtain the principal symbols of a symbol a via

the restriction of b to the boundary and homogeneous continuation to the interior,

i.e. near the respective boundary

σ
mψ
ψ (a)|Rd×Sd−1 = (ι× id)∗

(
(1− h(y))−meb|W̃ψ

SG

)
σmee (a)|Sd−1×Rd = (id× ι)∗

(
(1− h(η))−mψb|W̃e

SG

)
σ
me,mψ
ψe (a)|Sd−1×Sd−1 = (id× id)∗

(
b|W̃ψe

SG

)
,

and in particular the ellipticity of a(x, ξ) at (y0, η0) ∈ W̃SG - that is ellipticity at

(x0, ξ0) ∈WSG - is equivalent to the non-vanishing of ι
me,mψ
SG (a) at (y0, η0).

Remark 1.21. We note that the values of the restrictions of σm•• (a) to the above

spaces (i.e. to Sd−1 ⊂ Rd \ {0}) determine these, by homogeneity, on their full

domain of definition.

To phrase it differently: taking the boundary defining functions ỹ = 1− h(y) and

η̃ = 1− h(η) of Construction 1.1 (6) we have an isomorphism

SG
me,mψ
cl (Rd × Rd) ∼= ỹ−me η̃−mψC∞(Bd × Bd).

Remark 1.22. This allows us to compare the previous setting on Rd with Melrose’s

scattering calculus, or sc-calculus, consider [102, Sect. 4] and [103, 104, 107].

Therein Bd is replaced by the upper half sphere Sd+ and the map ι used to identify

the interior with Rd is replaced by stereographic projection. The symbols are then
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introduced on the compactified space (for some boundary defining functions ỹ, η̃

on the two factors)

ỹ−me η̃−mψ · C∞
(
Sd+ × Sd+

)
and pulled back to Rd using the stereographic projection, yielding precisely the

classical SG-symbols.

Remark 1.23. We mention that the class of SG symbols is formally very similar

to the class of bisingular symbols as introduced in [119]. Microlocal properties of

this calculus are studied in [14], and therein, these similarities are investigated in

more detail.
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2. Microlocal singularities and operations

2.1. Introduction. The (classical) wave front set WFcl on an open subset X ⊂ Rd

was introduced by Hörmander in [77], see also [79, 81] on T ∗X as an invariant

generalization of the singular support for distributions u ∈ D ′
(
Rd
)
. The wave

front set encodes where a distribution fails to be ”microlocally equal to a test

function”, in particular we have the essential feature of WFcl that

WFcl(u) = ∅ ⇔ u ∈ C∞(Rd).

That means WFcl encodes all types of singularities that keep a distribution from

being smooth.

In this section two notions of wave front sets, WFSG and WFG, suitable for the

treatment of tempered distributions u ∈ S ′ (Rd
)

are introduced. In particular

they have the global regularity property that

WFSG(u) = ∅ ⇔WFG(u) = ∅ ⇔ u ∈ S
(
Rd
)
.

In the following we will study if and how properties and ways to characterize WFcl

as well as constructions known in the classical theory of microlocal analysis can be

transferred to the global setting of tempered distributions. As a first application,

the two wave front sets are used to indicate microlocal existence criteria for the

extension of certain operations on test functions, such as products and pairings,

to tempered distributions.

Let us first provide some motivation for this: asking for the existence of the pairing

of distributions is a natural question. It arises when one wants to extend operators

to distributions, in particular when calculating 〈u,Av〉 for some distributions u, v

and an operator A. These expressions arise in quantum physics, scattering theory

and many more constructions. The standard way of interpreting 〈u,Av〉 is via the

Schwartz kernel KA of A, see Theorem A.4. If u and v were test functions, we

could write 〈u,Av〉 = 〈KA, u⊗ v〉. Thus one obtains an extension of A if one is

able to extend the latter pairing.

A related question is that of the existence of the product of two distributions

(or equivalently, by the Fourier transform and the convolution theorem (see [81,

Thm 7.1.15]), of their convolution). A lot of constructions in physics involving

distributions, as well as the theory of inhomogeneous differential equations, for

instance Burger’s equation, call for a generalization of the product of functions to
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distributions.

There is, however, a fundamental theorem by Schwartz, see [133], which can be

used to state the following:14

Theorem 2.1 (Schwartz impossibility theorem). There can be no associative mul-

tiplication ·S ′ on S ′ (Rd
)

that

(1) extends the product of continuous, polynomially bounded functions,15

(2) and is compatible with the differential structure, i.e. satisfies the Leibniz

rule.

One way to overcome this apparent problem in order to obtain an algebra of

generalized functions is to modify the notion of product, essentially relaxing the

condition (1) to only coincide with the usual product on smooth functions. For

this rich field of study, with many applications, we only name some fundamental

references [25, 26, 27], containing also tempered versions of the generalized func-

tions and applications to mathematical physics.

Another approach to this problem is to find suitable generalizations of the prod-

uct which do not cover all pairs u, v ∈ S ′ (Rd
)

but only such that satisfy certain

existence criteria for the product. Following this train of thoughts, there are sev-

eral ways to proceed. We confer to [87] for a survey of results known under the

assumptions that

• u and v lie in certain “compatible spaces”,16

• u and v (or û and v̂) have “compatible supports”,17

or a combination of the two.

In this section, we follow the microlocal approach, which has the following guiding

principle:

Guiding principle. Two distributions u and v are microlocally compatible if there

exists a family of cut-offs {φi}i∈I that form a partition of unity such that the (cone)

singular supports of φ̂iu and φ̂iv are “compatible”.

14In the (more general) classic formulation it is assumed that the space has to contain all con-
tinuous functions. This assumption can be relaxed to fit the case of tempered distributions.
15That is if u, v ∈ Cpol(Rd) we have u ·S ′ v = u ·C v.
16A trivial example would be that of u ∈ S

(
Rd
)

and v ∈ S ′
(
Rd
)
.

17The trivial example being that of u and v with disjoint supports, yielding 0 as a product.
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This idea is realized in the classical Theorem [81, Thm 8.2.10] that yields the

existence criterion for the product of u, v ∈ D ′(Rd) under the assumption that

WFcl(u) ∩WFcl(v) = ∅.
In [118, Chap. IX.10], this is reproduced in a different approach and an example

is given that if u · v ∈ D ′(Rd) exists, for u, v ∈ S ′ (Rd
)
, it is not necessarily

tempered. This can be seen as follows:

Example 2.2. Consider u = eie
x

and v = ∂xu. Then both distributions are

(distributional derivatives of) smooth bounded functions and thus tempered and

we have WFcl(u) = WFcl(v) = ∅. However, their product can be seen to equal

−iex, which is not tempered.

This failure to be tempered is caused by high oscillations “at infinity” of u and v.

The two kinds of wave front sets introduced in the following - associated to the SG

and the G-calculus - also encode information on singularities “at infinity” caused

by lack of decay and oscillations, which allows to (micro-)locally exclude such

phenomena. We start with the SG-wave front set, which may be more accessible

to the reader, since it is a generalization of the classical Hörmander wave front set,

whereas WFG is an independent notion.
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2.2. The SG-wave front set.

2.2.1. Introduction, basic properties and some first examples. The SG-wave front

set is a generalization of the classical wave front set of Hörmander and has been

introduced under several names to study tempered distributions.18

Definition 2.3 (SG-wave front set). Let u ∈ S ′ (Rd
)
. Then u is SG-microlocally

S -regular at (x0, ξ0) ∈WSG if there exists A ∈ LSG0,0
cl (Rd), SG-elliptic at (x0, ξ0),

such that Au ∈ S
(
Rd
)
.

The complement WFSG(u) of all such points in WSG where u is SG-microlocally

S -regular is called the SG-wave front set of u.

Equivalently, we may define the SG-wave front set (using Construction 1.1 and

Proposition 1.20) as a subset of W̃SG, denoted by W̃FSG(u), wherein any point in

W̃FSG(u) is in 1 : 1-correspondence to a point in WFSG(u).

In the following, we list some properties of the SG-wave front set, cf. [44]:

Lemma 2.4 (Properties of the SG-wave front set). Let u, v ∈ S ′ (Rd
)
.

(1) Using the structure of W̃SG and WSG respectively, we may define

W̃FSG = W̃F
ψ

SG ∪ W̃F
e

SG ∪ W̃F
ψe

SG and

WFSG = WFψSG ∪WFeSG ∪WFψeSG.

W̃FSG(u) is a closed subset of W̃SG and in particular each of the components

WF•SG of WFSG is a closed subset of the corresponding subcomponent W•
SG.

The first component coincides, under this identification, with the classical

Hörmander wave front set WFcl(u), i.e.

WFeSG(u) = WFcl(u).

(2) Fourier symmetry: (x, ξ) ∈WFSG(u)⇔ (ξ,−x) ∈WFSG(Fu).

18A note about nomenclature: in [102, Sect. 7] the SG-wave front set appears in the context of
the scattering calculus, under the name scattering-wave front set and is depicted by WFsc. The
equality between that definition and the one used here is checked in [44, Sect. 6]. Equivalently,
in [36, Sect. 6.7.], it appears as the set ZF and is obtained via a C∗-algebraic formulation of the
SG-calculus. Finally, in [44, Sect. 2], it is named the S -wave front set, WFS and is introduced
via asymptotic cut-offs and SG-operators on Rd, i.e. in the same approach as taken in this
document. Since both kinds of wave front sets that are studied in detail in this thesis are suited
for the treatment of tempered distributions, and to avoid confusion, we are going to attach the
calculus used to the respective wave front set, thus calling this one SG-wave front set.
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(3) pr1 (WFSG(u)) = Css(u), pr2 (WFSG(u)) = Css(Fu) where pri denotes the

projection on the i-th set of d variables.

In particular we have global regularity: WFSG(u) = ∅ ⇔ u ∈ S
(
Rd
)
.

(4) Microlocality and microellipticity of SG-operators: let A ∈ LSGme,mψ
(
Rd
)
.

Then WFSG(Au) ⊂WFSG(u) ⊂WFSG(Au) ∪ charSG(A).

(5) WFSG(u+ v) ⊂WFSG(u) ∪WFSG(v).

We have formulated the previous properties mostly in terms of WFSG. Of course,

there are corresponding statements for W̃FSG. We will mainly make advantage of

the formulation in terms of W̃FSG whenever we make statements about topological

properties, such as the closedness of W̃FSG in the previous lemma. This will

become even more useful in Section 3.2.4.

As for the classical wave front set, there exists a formulation equivalent to the one

in terms of ΨDOs that uses cut-offs, essentially obtained by a local parametrix

construction, that is Theorem A.23. Depending on whether x0 and ξ0 are points

at infinity or not, corresponding cut-offs have to be used (cf. [44]):

Lemma 2.5. Let (x0, ξ0) in WSG, u ∈ S ′ (Rd
)
. Then (x0, ξ0) /∈WFSG(u) if and

only if there exist cut-offs φx0, φξ0 such that

φξ0F (φx0u) ∈ S
(
Rd
)
.

Remark 2.6. Proposition A.17 yields that the notion of WFSG(u) does not depend

on the choice of quantization used, since (A.17) yields that a symbol a is elliptic

at (x0, ξ0) if and only if eitDxDξa is elliptic there.

The following Lemma has as consequence that in the definition of WFSG, the

assumption on A being classical may be dropped, which may also be deduced by

the arguments in [42].

Lemma 2.7. Let A ∈ LSG0,0(Rd), SG-elliptic at (x0, ξ0), such that Au ∈ S
(
Rd
)
.

Then there exists A′ ∈ LSG0,0
cl , SG-elliptic at (x0, ξ0), such that A′u ∈ S

(
Rd
)
, i.e.

we can replace A by a classical operator.

Proof. This is again a consequence of a localized parametrix construction, i.e.

Theorem A.23:

Let φx0 , φξ0 cut-offs such that (x0, ξ0) ∈ Csp(φx0 ⊗ φξ0) and Csp(φx0 ⊗ φξ0) ∩(
(Rd \ {0})× (Rd \ {0})

)
⊂ ellSG(A). Then we can find B ∈ LSG0,0(Rd) such that
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BA = (φx0φx0)R(x,D) +R. Consequently we have

Au ∈ S
(
Rd
)
⇒ BAu ∈ S

(
Rd
)
⇒ (φx0 ⊗ φξ0)R(x,D)u ∈ S

(
Rd
)
.

Therefore φx0F−1
{
φξ0Fu

}
∈ S

(
Rd
)

and thus, by Lemma 2.5, (ξ0,−x0) is not in

WFSG(Fu), which by Lemma 2.4 is equivalent to (x0, ξ0) /∈WFSG(u), as claimed.

�

Recall that we have (with the notation of Appendix A.3.2 for the weighted Sobolev

spaces) ⋂
(me,mψ)∈R2

H
me,mψ
SG

(
Rd
)

= S
(
Rd
)
.

It is a natural question whether one also has this equality “microlocally”. This

question was covered, in a more general setting, in [42, Sect. 4]. We state the

particular case that is of interest here by introducing the SG-wave front set with

respect to Sobolev regularity (see also [102]).

Definition 2.8 (SG-wave front set of Sobolev type). Let u ∈ S ′ (Rd
)
. Then u is

SG-microlocally H
me,mψ
SG -regular at (x0, ξ0) ∈ WSG if there exists A ∈ LSG0,0

cl (Rd),

SG-elliptic at (x0, ξ0), such that Au ∈ H
me,mψ
SG

(
Rd
)
.

The complement WF
me,mψ
SG (u) in WSG of all such points in WSG where u is SG-

microlocally H
me,mψ
SG -regular is called the H

me,mψ
SG -wave front set of u.

Using this definition and the results of [42, Sect. 4], we can state:

Lemma 2.9 (Sobolev resolution of WFSG). Let u ∈ S ′ (Rd
)
. Then⋂

(me,mψ)∈R2

WF
me,mψ
SG (u) = WFSG(u).

Having established some basic properties of WFSG, we proceed with some exam-

ples. The following model distributions provide an interpretation of the different

components of WFSG cf. the Examples 2.5, 2.6 and (with a slight correction, see

the proof below) 2.7 in [44].
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Example 2.10. Let x0 ∈ R, ξ0 ∈ R, λ > 0. Then we can list the SG-wave front

sets of the following tempered distributions on R:

“Dirac delta” WFSG (δx0) = {(x0,±∞)},

“Plane wave” WFSG

(
eiξ0·

)
= {(±∞, ξ0)},

“Dirac comb” WFSG

(∑
j∈N0

Tλjδ0

)
=

(⋃
j∈N0

{(λj,±∞)}

)
∪ {(+∞,±∞)},

“Chirp” WFSG

(
e
i
2
λ(·)2
)

= {(+∞,+∞)} ∪ {(−∞,−∞)}.

Proof. The first three examples are discussed in [44]. The fourth one needs some

attention, since the claim here differs from the one in Example 2.7 in [44].

We first use Lemma 2.4 to reduce the possible wave front set of u = e
i
2
λx2

. First

we note that u is smooth, and so is Fu =
√

2πi
λ
e−

i
2λ

(·)2
. Therefore WFψSG(u) = ∅

and WFeSG(u) = ∅. Since u /∈ S (R), WFSG(u), and consequently the remain-

ing component WFψeSG(u), is however non-empty. Applying 1
2π
F2u = u, we have

(x, ξ) ∈ WFSG(u) ⇔ (−x,−ξ) ∈ WFSG(u). It therefore remains to show that

{(+∞,−∞)} /∈WFSG(u).

We prove this in terms of the characterization of WFSG using cut-offs, Lemma

2.5. Pick a mollifier 19 φ0
ε as well as a pair of asymptotic cut-offs φ±∞ around ±∞

supported in [±R,∞) for some R > 0 respectively. We may compute, using the

continuity of the Fourier transform, in the sense of an oscillatory integral

φ−∞(ξ)
(
Fφ+∞u

)
(ξ) = lim

ε→0
φ−∞(ξ)

∫
R
e−ixξφ0

ε(x)φ+∞(x)e
i
2
λx2

dx.

For ξ 6= x, which is fulfilled on the support of φ+∞ ⊗ φ−∞, we have

(ξ − x)−1i∂x︸ ︷︷ ︸
=:tL

e−ixξ+
i
2
λx2

= e−ixξ+
i
2
λx2

.

Therefore, by repeated partial integration, one obtains for arbitrary N ∈ N0

φ−∞(ξ)
(
Fφ+∞u

)
(ξ) = lim

ε→0

∫
R
φ−∞(ξ)e−ixξ−

i
2
λx2

L2N
(
φ0
ε(x)φ+∞(x)

)
dx.

Using the support properties of φ±∞, we have |ξ − x| & 〈ξ〉 + 〈x〉 wherever the

integrand does not vanish. Thus the modulus of the integrand is bounded by

19A mollifier is a family of cut-offs
{
φ0ε
}
ε∈(0,1] with φ0ε = ε−1/2Dεφ0 and some cut-off around

zero, φ0 ∈ C∞c (R).
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CN,ε〈ξ〉−N+d+1〈x〉−d−1, with CN,ε > 0 bounded in ε. By picking N suitably large,

we have arbitrary high decay in ξ for ξ → −∞, which proves the claim. �

The previous example attaches the following interpretations to the different

components of WFSG(u), see [44]:

• WFSG(u) ∩ (Rd × Sd−1) encodes lack of smoothness at finite distances,

• WFSG(u)∩(Sd−1×Rd) encodes lack of decay and slow oscillations at infinity,

• WFSG(u) ∩ (Sd−1 × Sd−1) encodes lack of smoothness and lack of decay

accompanied by high oscillations at infinity.

The Dirac comb example underlines the closedness of WFSG(u) as a subset of the

full wave front space WSGwhich corresponds to the closedness of W̃FSG(u) in W̃SG

as in Lemma 2.4(1). In fact, if we have a sequence of singularities in either face

Wψ
SG = Rd × ((Rd \ {0})/ ∼) or We

SG = ((Rd \ {0})/ ∼)× Rd

“going to infinity” in the Rd-component, there occurs a corresponding limit point

in the corner component WFψeSG(u). The example of the chirp, however, shows that

not all such singularities are obtained in this manner.

2.2.2. Existence of distributions with assigned singularities. With the interpreta-

tion provided by the examples in mind, it is possible to construct a tempered

distribution with any given possible wave front set, that is any closed subset of

WSG. Such a distribution may be constructed explicitly, which was first carried

out in collaboration with Coriasco in [49], based on the classical construction in

[81, Thm. 8.1.4] for WFcl.

Proposition 2.11. Let Γ̃0 ⊂ W̃SG closed. Then there exists a tempered distribu-

tion u ∈ S ′ (Rd
)

with W̃FSG(u) = Γ̃0

The proof of Proposition 2.11 is divided into several steps. We first divide WFSG

into its three subcomponents and then carry out the construction in each individ-

ual component. It is clear, however, that it is in general impossible to construct

for instance uψ such that W̃FSG(uψ) = W̃F
ψ

SG(u) = Γ̃ ∩ ((
(
Bd
)o

) × Sd−1) since

the latter set might not be closed in all of W̃SG. We therefore split Γ̃0 into three

parts (Γ̃ψ0 , Γ̃
e
0, Γ̃

ψe
0 ) and introduce the sets Γ̃•0, where the closure is carried out in

W̃SG = ∂(Bd × Bd).
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We obtain, using the map ι and the conification map Γ of Construction 1.1 asso-

ciated sets Γ0 = Γψ0 ∪ Γe0 ∪ Γψe0 ) in WSG and the closures

Γψ0 := (ι−1 × Γ)(Γ̃ψ0 ∩ W̃ψ
SG) t (Γ× Γ)(Γ̃ψ0 ∩ W̃ψe

SG) ⊂Wψ
SG ∪Wψe

SG

Γe0 := (Γ× ι−1)(Γ̃e0 ∩ W̃e
SG) t (Γ× Γ)(Γ̃e0 ∩ W̃ψe

SG) ⊂We
SG ∪Wψe

SG

Γψe0 := (Γ× Γ)Γ̃ψe0 ⊂Wψe
SG.

The outline of the construction is then as follows:

(1) The classical construction is repeated (with adaptations to fit in the tem-

pered framework) to construct a tempered distribution uψ with

WFSG(uψ) = Γψ0 .

(2) Then the Fourier symmetry of WFSG is used to obtain, by the same con-

struction, a tempered distribution ue such that

WFSG(ue) = Γe0.

(3) Lastly, a tempered distribution uψe is constructed, such that

WFSG(uψe) = Γψe0 .

Then one defines the distribution u = uψ + ue + uψe, which is tempered and

satisfies WFSG(u) ⊂ Γ0 by Lemma 2.4. The converse inclusion, in particular that

no singularities can cancel, stems from the fact that WFSG(u) is a closed set. For

the completion of the proof, it remains to carry out the constructions of uψ, ue and

uψe, which is achieved in a series of lemmas. The first one is essentially a version

of [81, Thm. 8.1.4], with additional bounds on the coefficients, proved in [49].

Lemma 2.12 (Existence of uψ). Let Γ̃0 be closed in W̃SG. Then, there exists

uψ ∈ S ′ (Rd
)

such that WFSG(uψ) = Γψ0 .

Proof. Choose a dense sequence (xk, ξk) ∈ Γ0 such that |(xk, ξk)| is bounded by

log k. Let φ0 ∈ C∞c
(
Rd
)

a cut-off around 0 and set

(2.1) uψ(x) :=
∞∑
k=1

k−2−d/2DkMk3ξkTxkφ
0 (x) .
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In fact, (2.1) is precisely the function defined in the proof of [81, Thm. 8.1.4]. The

idea behind the construction is to sum up higher and higher frequency contribu-

tions around the points of singularity. In Figure 6, its representation in the time-

frequency plane is sketched, for the model case where Γ0 = {(−1,+∞), (1,+∞)}.
uψ is continuous and bounded, thus it is a tempered distribution. We claim that

x

ξ

-1 1
1

Figure 6. The construction of uψ, schematic

it fulfils all the required properties:

(1) WFψSG(uψ) = Γψ0 ,

which is the statement of [81, Thm. 8.1.4].

(2) WFeSG(uψ) = ∅,
which is, by Lemma 2.4, equivalent to the assertion that ûψ is smooth. For

that, we first note that

(2.2) ûψ(ξ) =
∞∑
k=1

k−2−d/2Dk−1Tk3ξkM−xk φ̂
0.

The series (2.2) converges absolutely and uniformly, giving Fuψ ∈ C (Rd),

since φ̂0 is rapidly decaying.

We now show that Fuψ is smooth: for any multiindex α ∈ Nd
0, we have

∂αξ

[
k−2−dφ̂0

((
ξ − k3ξk

)
/k
)
eixk·(k

3ξk−ξ)
]
∈

∈ span
[
k−2−d(∂βφ̂0)

((
ξ − k3ξk

)
/k
)
eixk·(k

3ξk−ξ) k−|β| xγk

]
β+γ=α

.
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Since the sequence (xk, ξk) is bounded in norm by log k and (log k)q/k,

q ∈ R, is a bounded sequence, it follows that the L∞-norm of each term

in the arising sum which defines ∂α(Fuψ) is bounded by the terms of the

sequence

Cα ρ
S
|α|
(
φ̂0
)
k−1−d max

γ≤α
sup
k

[
k−1 (log k)|γ|

]
≤ k−1−dC ′α ρ

S
|α|
(
φ̂
)
,

where Cα, C
′
α > 0 are suitable constants, depending only on α. Thus ûψ

yields a smooth function, as claimed, and consequently WFeSG(uψ) = ∅.
(3) WFψeSG(uψ) = Γψ0 ∩

(
Sd−1 × Sd−1

)
.

Since W̃FSG(uψ) is a closed set in Bd×Bd which contains Γ̃e0, the inclusion

Γ̃ψ0 ⊆WFSG(uψ)

is immediate.

If conversely (Rd \ {0}) × (Rd \ {0}) 3 (x0, ξ0) /∈ Γψ0 , then it is possible

to find admissible neighbourhoods at infinity U, V ⊂ Rd of x0 and ξ0,

respectively, such that (ι× ι)(U × V ) ∩ Γ̃0 = ∅. Choosing asymptotic cut-

offs φU , φV , with supports contained in in U and V , respectively, as in

Construction 1.3, it is possible to show, by the same reasoning as in [81,

Thm. 8.1.4], that ψVF{ψUuψ} ∈ S
(
Rd
)
, that is, (x0, ξ0) /∈WFSG(uψ).

The proof is complete. �

By the Fourier symmetry of WFSG as stated in Lemma 2.4, we immediately obtain

the existence of ue:

Corollary 2.13 (Existence of ue). Let Γ̃0 be closed in W̃SG. Then, there exists

ue ∈ S ′ (Rd
)

such that WFSG(ue) = Γe0.

We now turn to the construction of uψe. As already mentioned, we first carried

out this construction in [49] and it is repeated here with slight modifications. It

relies on the same idea as in the proof of Lemma 2.12 to obtain a distribution with

prescribed boundedness from below in certain directions by summing up shifted

copies of the same function in the time-frequency plane. The construction is shown

schematically for the case Γ0 = {+∞,+∞} in Figure 7. The building block of the

construction is the normalized Gaussian ψ0(x) ∈ S (Rd).
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x

ξ

-1

1

Figure 7. The construction of uψe, schematic

Definition 2.14 (Shifted Gaussians). Let x0, ξ0 ∈ Sd−1, k ∈ N0. We define

ψk(.;x0, ξ0) ∈ S (Rd) as

(2.3) ψk(x;x0, ξ0) := e−
i
2
k4x0·ξ0Mk2ξ0Tk2x0

ψ0.

The function ψk satisfies

(2.4) Fx→ξ
{
ψk(x;x0, ξ0)

}
= (2π)d/2ψk(ξ; ξ0,−x0).

Using the shifted Gaussians, it is possible to define a tempered distribution given

by a smooth function v(.;x0, ξ0), which is rapidly decreasing everywhere along the

ray through x0, and whose Fourier transform is rapidly decreasing everywhere

except along the ray through ξ0.

Lemma 2.15. The series
∑∞

k=1 ψk(·;x0, ξ0) converges absolutely and uniformly

on each compact set of Rd. Its limit v(·;x0, ξ0) is a smooth polynomially bounded

function. Considering u as an element of S ′ (Rd
)

we have

Css(v(·;x0, ξ0)) = {x0∞}.

The graph of v(·; 1, 1) is shown in Figure 8, which is fashioned after [49, Fig. 1].

Proof. The sum converges absolutely and uniformly on any compact set K, since

for any for k larger then for some R > 0 and all x ∈ K it holds that e−
1
2
|x−k2x0|2 .

43



Figure 8. The graph of v(·; 1, 1) (up to k = 4)

e−
1
2
k4

and thus ∣∣∣∣∣
N∑
k=1

ψk(x;x0, ξ0)

∣∣∣∣∣ .
N∑
k=1

e−
1
2
k4

x ∈ K.

Consequently, the sum converges to a continuous function v(·;x0, ξ0). Next, rapid

decay in any other direction than that given by x0 is shown:

Let Γ ⊂ Rd be an open cone such that x0 /∈ Γ. By Lemma 1.4 ∃ c > 0 such that

for all x ∈ Γ it holds that |x− k2x0| ≥ c(|x|+ k2).

Therefore, for arbitrary x ∈ Γ,

|xαv(x;x0, ξ0)| ≤ lim
N→∞

N∑
k=1

|xαψk(x;x0, ξ0)|

≤
N∑
k=1

|x|α exp
(
− c

2
(|x|2 + k4)

)
<∞,
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and thus x∞ /∈ Css(v(·;x0, ξ0)).

In any open cone around x, it holds that∣∣∣∣∣
N∑
k=1

ψk(x;x0, ξ0)

∣∣∣∣∣ ≤
N∑
k=1

exp

(
−1

2
(|x| − k2)2

)
,

which is bounded with respect to x. Therefore v(·;x0, ξ0) is bounded. Its deriva-

tives can be estimated similarly. Consequently v(·;x0, ξ0) is smooth and polyno-

mially bounded in all derivatives and decreases rapidly in every direction other

than that given by x0.

Additionally, it is straight-forward to show |v(k2x0, x0, ξ0)| ≥ 1
2
πd/4 ∀k ∈ N0

suitably large, and therefore x0∞ ∈ Css
(
v(·, x0, ξ0)

)
. This implies v(·;x0, ξ0) ∈(

C∞(Rd) ∩S ′ (Rd
))

and Css(v(·;x0, ξ0)) = {x0∞} �

Corollary 2.16. Let v(x;x0, ξ0) as defined in Lemma 2.15. Then,

WFSG(v(·;x0, ξ0)) = {(x0∞, ξ0∞)}.

Proof. Since, by Lemma 2.4,

pr1

(
WFSG(v(·;x0, ξ0))

)
= Css

(
v(·;x0, ξ0)

)
pr2

(
WFSG(v(·;x0, ξ0))

)
= Css

(
F(v(·;x0, ξ0))

)
,

the claim follows from Lemma 2.15 and (2.4). �

Corollary 2.17. For any closed set Γψe0 ⊂ Wψe
SG, conic w.r.t. variable and co-

variable independently, there exists uψe ∈ S ′ (Rd
)

such that WFSG(uψe) = Γψe0 .

Proof. Take a dense sequence without repetitions {(xl, ξl)}l∈N0 ⊂ Γ0 and define

(2.5) uψe :=
∞∑
l=0

2−lv(·;xl, ξl).

By the properties of v(·;xl, ξl) and by the Weierstrass M-test, the sum (2.5) yields

a smooth function that fulfils the claimed properties. �

This concludes the proof of Proposition 2.11. In the construction, we have used the

time-frequency plane to illustrate the position of the singularities of the involved

distributions. This concept will be made precise in the next section.
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2.3. Characterization of WFSG in the time-frequency plane.

2.3.1. Characterization of WFψSG and WFeSG in terms of FBI transforms.

We have discussed that WFSG is a generalization of WFcl(= WFψSG). As such, it

is reasonable to assume that some constructions involving WFcl may be adapted

to the global setting, which we have already seen in the previous construction.

We will now address that similarly to WFcl, WFSG may be obtained in terms of a

(generalized) FBI-transform.

In order to motivate this, we revisit the definition of WFψSG using cut-offs, that is

Lemma 2.5. Therein, for (x0, ξ0) ∈ Rd×(Rd \ {0}), u is SG-microlocally S -regular

at (x0, ξ0∞) if the Fourier transform of u, smoothly localized in an arbitrarily small

open set around x0, is rapidly decaying in a conic neighbourhood of ξ0. This can

be also restated as: there exists an open set U × V 3 (x0, ξ0) such that for any

cut-off φx0 with supp(φx0) ⊂ U we have some R > 0 such that ∀ξ ∈ V we have

|(F{φx0u})(λξ)| = O(λ−∞) λ ∈ [R,∞).

The idea behind characterizing singularities in the time-frequency plane using

the FBI-transform is to replace the cut-off by the normalized Gaussian standard

window ψ0. Instead of picking a small support of the localizing φx0 to achieve

an arbitrarily fine localization, this Gaussian is rescaled and estimates in terms of

the scaling parameter are used to encode microlocal regularity. We thus recall the

definition (see (A.6)) of the (global) FBI-transform of u ∈ S ′ (Rd
)
:

(2.6) Fλu(x, ξ) = Cψ0Dλ1/2(u,Dλ1/2MξTxψ0).

Studying microlocal singularities of distributions using this transform dates back

to the original works of Bros and Iagolnitzer [15], consider also [37]. Such charac-

terizations of singularities in terms of the decay properties of Fλu can be achieved

with respect to various function spaces (consider [23]). Since we are interested

in tempered distributions and not analytical functionals here, we use the fol-

lowing characterization of C∞-singularities (consider e.g. [52],[61, Chap. 3.2],

[65],[155]).20

20Note that the exact conventions for the FBI-transform vary from source to source.
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Proposition 2.18. Let u ∈ S ′ (Rd
)
. For some point (x0, ξ0) ∈ Rd×Sd−1 we have

(x0, ξ0∞) /∈ WFψSG(u) if and only if there is an open neighbourhood U ⊂ Rd × Rd

of (x0, ξ0) for which ∃R > 0 such that |Fλ(u)|U(x, ξ)| = O(λ−∞) for λ > R.

In the following, we will generalize this concept to the remaining components

of WSG. Before we present the details of this analysis, we mention that there are

additional ways to characterize WFSG in the time frequency plane, see Section 4

for more details.

We can achieve a characterization of WFeSG by an analogous transform using the

Fourier symmetry of WFSG. For that we express the FBI-transform of Fu by that

of u. In order to do so we introduce a generalized FBI transform, cf. also [99, 100],

Fλ,µ by

Fλ,µ(u)(x, ξ) := Cψ0D(µλ)1/2

(
u,D

(λµ)
1/2TxMξψ0

)
(2.7)

= (Dµ (u ∗ kλ,µ,ξ)) (x),

where kλ,µ,ξ is given by

(2.8)

kλ,µ,ξ(y) := Cψ0µ
−d/4λ3d/4ψ0

(
(λ/µ)1/2 y

)
e−iλyξ = Cψ0λ

d/2MλξD(λµ)
1/2ψ0 (y) .

In particular we can see from the first identity that |Fλ,1(u)(x, ξ)| = |Fλ(u)(x, ξ)|.
For u = f ∈ S

(
Rd
)

this reads as

(2.9) Fλ,µ(f)(x, ξ) = Cψ0µ
d/4λ3d/4

∫
f(y)ψ0

(
(λ/µ)1/2 (y − µx)

)
e−iλ(y−µx)ξdy.

It can be seen as in [99] that the characterization in Proposition 2.18 does not

depend on the scaling:

Lemma 2.19. Let u ∈ S ′ (Rd
)
. For some point (x0, ξ0) ∈ Rd × Sd−1 we have

(x0, ξ0∞) /∈WFψSG(u) if and only if there exists an open neighbourhood U ⊂ Rd×Rd

of (µ−1x0, ξ0) for which ∃R > 0 such that |Fλ,µ(u)|U(x, ξ)| = O(λ−∞) for λ > R

and µ > 0 fixed.

Lemma 2.20 (Properties of the generalized FBI transform). Let u ∈ S ′ (Rd
)
.

(1) (Continuity) Fλ,µ(u) is continuous in (x, ξ) and for any bounded open set

U ⊂ Rd × Rd there exists M,N ∈ N0 such that |Fλ,µ(u)|U | = O(µMλN).

(2) (Fourier Symmetry) Fλ,µ(û)(x, ξ) = (2π)d/2eiλµxξFµ,λ(u)(ξ,−x)
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(3) (Fourier multiplier representation) We have, in the sense of tempered dis-

tributions written as integral kernels,

(Fx→ηFλ,µ(u)) (η, ξ) =
(
Dµ−1

(
û · k̂λ,µ,ξ

))
(η)

= (2πλ)d/2Cψ0

(
(Dµ−1û) · (TλµξD(λµ)−1/2ψ0)

)
(η).

(4) (L2-Isometry) If u ∈ L2(Rd), then Fλ,µ(u) ∈ L2(R2d) and ‖Fλ,µ(u)‖2 =

‖u‖2.

Proof. (1) follows by applying the temperedness of u, i.e. |〈u , f〉| ≤ ρS
N (f) for

some N ∈ N0 to (A.6), see also the proof of Lemma 2.24 below.

The proof of the remaining identities is an application of the identities in Lemma

A.6, the identity Fψ0 = (2π)d/2ψ0 and ‖Cψ0ψ0‖2 = (2π)−d/2 to (A.6). �

Corollary 2.21. Let u ∈ S ′ (Rd
)
. For some point (x0, ξ0) ∈ Sd−1 × Rd, we

have that (x0∞, ξ0) /∈ WFeSG(u) if and only if there exists an open neighbourhood

U ⊂ Rd×Rd of (x0, λ
−1ξ0) for which ∃R > 0 such that |Fλ,µ(u)|U(x, ξ)| = O(µ−∞)

for µ > R and λ > 0 fixed.

Proof. By Lemma 2.4 we have (x0∞, ξ0) /∈ WFSG(u) if and only if (ξ0,−x0∞) /∈
WFSG(Fu). By Lemma 2.19 this is equivalent to the existence of an open neigh-

bourhood U ⊂ Rd × Rd of (µ−1ξ0, x0) such that |Fλ,µ(Fu)|U(x, ξ)| = O(λ−∞) for

λ > R for some R > 0 and µ > 0 fixed. Property (2) of Lemma 2.20 yields the

result. �

2.3.2. Characterization of the corner component.

It is now only natural to look for a characterization of WFψeSG by sending λ and µ

jointly to infinity. The main theorem of this section will be

Theorem 2.22. Let u ∈ S ′ (Rd
)
, (x0, ξ0) ∈ Sd−1 × Sd−1. Then (x0∞, ξ0∞) /∈

WFSG(u) if and only if there exists an open neighbourhood U × V ⊂ Rd × Rd of

(x0, ξ0) such that |Fλ,µu|U×V | = O(λ−Nµ−M) for all N,M ∈ N0, µ > R and λ > R

for some constant R > 1.

For the implication, we proceed by proving a number of lemmas. The first one

corresponds to the fact that if u ∈ S
(
Rd
)

then WFψeSG(u) = ∅.

Lemma 2.23. Let u ∈ S
(
Rd
)
. Then for all (x0, ξ0) ∈ (Rd × Rd) with x0 6= 0

and ξ0 6= 0, there exists an open neighbourhood U × V ⊂ Rd × Rd of such that
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|Fλ,µu|U×V | = O(λ−Nµ−M) for all N,M ∈ N0, µ > R and λ > R for some

constant R > 1.

Idea of the proof. Estimate (2.9) by the use of stationary phase methods. �

Our second lemma corresponds to x0∞ /∈ Csp(u) ⇒ ∀ξ∞ ∈ Sd−1(x0∞, ξ∞) /∈
WFSG(u).

Lemma 2.24. Let u ∈ S ′ (Rd
)

and x0 ∈ Sd−1 such that x0∞ /∈ Csp(u). Then

for all ξ0 ∈ Rd with ξ0 6= 0, there exists an open neighbourhood U × V ⊂ Rd × Rd

of (x0, ξ0) such that |Fλ,µu|U×V | = O(λ−Nµ−M) for all N,M ∈ N0, µ > R and

λ > R for some constant R > 1.

Proof. Let Γ̃ ⊂ Bd an open neighbourhood of x0 ∈ ∂Bd such that C̃sp(u) ∩ Γ̃ = ∅.
We then have, for some N ∈ N0 and C > 0 and all f ∈ S

(
Rd
)
,

|〈u, f〉| ≤ C sup
y∈Csp(u)

∑
|α|+|β|≤N

〈y〉|α||∂βy f(y)|.

Now pick a bounded open neighbourhood U ⊂ Rd of x0 open such that ι−1(tU) ⊂ Γ

for all t > R > 0, some R > 0. We thus find for x ∈ U , ξ ∈ V some bounded

neighbourhood of ξ0 such that

(2.10) |Fλ,µ(u)(x, ξ)| ≤

Cψ0µ
d/4λ3d/4C sup

y∈Csp(u)

∑
|α|+|β|≤N

〈y〉|α|
∣∣∣∂βy (ψ0

(
(λ/µ)1/2 (y − µx)

)
e−iλ(y−µx)ξ

)∣∣∣ .
Using Lemma 1.4 in the form |y − µx|2 & |y|2 + |µx|2, it is well-known how to

estimate these dilated, translated and modulated Gaussians, consider i.e. [63]. �

By linearity of the FBI-transform and the definition of Css(u), we can combine

the previous two lemmas into one Corollary:

Corollary 2.25. Let u ∈ S ′ (Rd
)

and x0 ∈ Sd−1 such that x0∞ /∈ Css(u). Then

for all ξ0 ∈ Rd with ξ0 6= 0, there exists an open neighbourhood U × V ⊂ Rd × Rd

of (x0, ξ0) such that |Fλ,µu|U×V | = O(λ−Nµ−M) for all N,M ∈ N0, µ > R and

λ > R for some constant R > 1.

We have now established the means to prove Theorem 2.22.
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Proof of Theorem 2.22.

(“⇒”): Let (x0, ξ0) ∈ Sd−1 × Sd−1 such that (x0∞, ξ0∞) /∈ WFSG(u). By Lemma

2.5 we can find cut-offs φx0∞, φξ0∞ such that φξ0∞F (φx0∞u) ∈ S
(
Rd
)
. But then

we can find a neighbourhood U × V with the desired properties, since

u = (1− φx0∞u)︸ ︷︷ ︸
x0∞/∈Csp

+φx0∞u and Fφx0∞u = (1− φξ0∞)F(φx0∞u)︸ ︷︷ ︸
x0∞/∈Csp

+φξ0∞F(φx0∞u)︸ ︷︷ ︸
∈S (Rd)

such that the assertion follows by Corollary 2.25 as well as Fourier symmetry.

(“⇐”): Let us first calculate, M,N ∈ N0 and for some cut-offs φx0 and φξ0 ,

which are supported in V and U as given in the statement of the theorem, the

expression 〈Fλ,µ(u)(x, ·) , λNµMφx0(x)φξ0〉ξ, meaning the pairing with respect to

the ξ variable. The integral is well-defined by the support properties of the cut-offs

and the continuity of Fλ,µ(u).〈
Fλ,µ(u)(x, ·) , λNµMφx0(x)φξ0

〉
ξ

= λNµM
∫

Fλ,µ(u)(x, ξ)φξ0(ξ)φx0(x)dξ(2.11)

= λNµM
∫
F−1
η→x {Fy→ηFλ,µ(u)(y, ξ)}φξ0(ξ)φx0(x)dξ

(Lemma 2.16 (2)⇒) = λNµM
∫
F−1
η→x

(
Dµ−1

(
û · k̂λ,µ,ξ

))
(η)φξ0(ξ)φx0(x)dξ

= λNµM
∫
Dµ
(
φx0(µ−1x)F−1

η→x

(
û · k̂λ,µ,ξ

)
(η)
)
φξ0(ξ)dξ

=: Dµ
(
F−1
η→x

(
aN,Mλ,µ (x, η)û(η)

))
(2.12)

The latter expression is a (dilated) right-quantized pseudo-differential operator

applied to u that is given by the amplitude (by (2.8))

aN,Mλ,µ (x, η) = λNµM
∫
φx0
(
µ−1x

)
k̂λ,µ,ξφ

ξ0(ξ)dξ

= Cψ0λ
NµM

∫
φx0
(
µ−1x

)
F
(
λd/2M−λξD(λµ)

1/2ψ0

)
(η)φξ0(ξ)dξ

= (2π)d/2Cψ0λ
N−d/2µM

∫
φx0
(
µ−1x

)
ψ0

((µ
λ

)1/2

(η − ξ)
)
φξ0(λ−1ξ)dξ(2.13)

If we now insert λ = 2l and µ = 2m, and let m and l suitably large, then we may

sum up this expression, using the assumption∣∣∣〈Fλ,µ(u)(x, ·) , φx0(x)φξ0
〉
ξ

∣∣∣ = O
(
λ−Mµ−N

)
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for all M,N ∈ N0:

∞ >
∞∑

m=R

∞∑
l=R

(∫ ∣∣∣〈F2l,2m(u)(x, ·), 2lN2mMφx0(x)φξ0
〉
ξ

∣∣∣2 dx)1/2

(2.12)
=

∞∑
m=R

∞∑
l=R

(∫ ∣∣∣D2m

(
F−1
η→x

(
aN,M

2l,2m
(x, η)û(η)

))∣∣∣2 dx)1/2

=
∞∑

m=R

∞∑
l=R

(∫ ∣∣∣F−1
η→x

(
aN,M

2l,2m
(x, η)û(η)

)∣∣∣2 dx)1/2

≥

∫ ∣∣∣∣∣
∞∑

m=R

∞∑
l=R

F−1
η→x

(
aN,M

2l,2m
(x, η)û(η)

)∣∣∣∣∣
2

dx

1/2

(2.14)

We are thus led to study
∑∞

µ=Rµ

∑∞
λ=Rλ

F−1
η→x

(
aN,Mλ,µ (x, η)û(η)

)
. This is a pseudo-

differential operator applied to u with (right) symbol (consider (2.13))

(2.15) aN,M(x, η) :=

(2π)d/2Cψ0

∞∑
m=R

∞∑
l=R

2lN−ld/2+mM

∫
φx0

( x

2m

)
ψ0

(
2
m−l

2 (η − ξ)
)
φξ0
(
ξ

2l

)
dξ

If we now choose φx0 and φξ0 as in Construction 1.5, we have on the support of

φx0
(
x

2m

)
φξ0
(
ξ
2l

)
the bound 2m � 〈x〉 and 2l � 〈ξ〉 jointly over all (l,m). Using

this and following the outline in Construction 1.5, we can estimate (2.15) from

above and below (for different constants C, c > 0) by

ãN,M(x, η) := C

∫
〈x〉N+d/2〈ξ〉N+d/2φx0∞ (x)ψ0

(
c

(
〈x〉
〈ξ〉

)1/2

(η + ξ)

)
φξ0∞ (ξ) dξ

for some cut-offs φx0∞ and φξ0∞. We can proceed to estimate this using decay

properties of the Gaussian and Lemma 1.4 to estimate |η − ξ| in case η and ξ lie

in disjoint cones to show that aN,M is an element of SGM,N−d/2(Rd × Rd) and is

elliptic at (x0∞,−ξ0∞). For that, we may estimate the derivatives of aN,M in a
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similar fashion to (2.15), since, by partial integration, we have

|∂αx∂βη aN,M(x, η)| .
∞∑

m=R

∞∑
l=R

(−1)|α|2l(N−d/2−|β|)+m(M−|α|) ×∣∣∣∣∫ (∂αφx0)
( x

2m

)
ψ0

(
2
m−l

2 (η − ξ)
)

(∂β)φξ0
(
ξ

2l

)
dξ

∣∣∣∣ .
By (2.14) we have that aN,M(x, η)u ∈ L2(Rd). Since M and N are arbitrary, we

have (x0∞, ξ0∞) /∈WFSG(u), by Lemma 2.9. �
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2.4. Operations on tempered distributions using WFSG.

2.4.1. (Multi-)linear operations.

So far, we have only discussed properties of the SG-wave front set and different

ways to obtain the notion. As it was announced and motivated in the introduction,

Section 1.2.1, we will now study a series of applications, in particular how the

concept of WFSG can be used to extend operations on test functions to tempered

distributions. In this, we will make use of the various characterizations of WFSG(u)

(i.e. via ΨDOs, (asymptotic) cut-offs and the FBI-transform), underlining how

each concept has its advantages.

In order to extend operations to distributions, we follow the principle of [82]: we

first discuss elementary (multi-)linear operations on distributions, in particular

tensor products, restrictions, changes of coordinates and (trivial) extensions. For

these, we establish existence criteria in terms of the SG-wave front set and its

propagation under such operations. Then, since every (multi-)linear map may be

decomposed into such operations, we obtain a general framework to analyse the

pull-back of distributions by multilinear maps.

When dealing with tempered distributions with singularities lying in some given

set Γ and studying (sequential) continuity of operations, it is often useful to use

approximating sequences that “behave nicely outside Γ”. For that, one introduces

spaces of tempered distributions with prescribed wave front set and imposes a

notion of convergence with respect to the singularity structure. In the following,

when an operation is called sequentially continuous it is with reference to this

notion of convergence.

Definition 2.26. Let Γ a closed subset of WSG. Define

S ′
Γ

(
Rd
)

= {u ∈ S ′ (Rd
)
|WFSG(u) ⊂ Γ}

equipped with the notion of convergence given by u
S ′Γ−→ 0 if

(1) u
S ′→ 0,

(2) for all a ∈ SGme,mψ
(
Rd
)

vanishing on all of Γ we have a(x,D)u
S→ 0.

We then have the following result, which may be achieved by carefully approxi-

mating the e−, ψ− and ψe-parts of a distribution seperately, using cut-offs.

Lemma 2.27. S
(
Rd
)

is dense in S ′
Γ

(
Rd
)
.
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Remark 2.28. In this section we regard WFSG as conic set in(
Rd × (Rd \ {0})

)
t
(
(Rd \ {0})× Rd

)
t
(
(Rd \ {0})× (Rd \ {0})

)
,

allowing us to define sums in (co-)variables in Rd \ {0}.

We start by examining the tensor product of tempered distributions. It is a

well-known fact that the tensor product may be defined in a canonical way on

S ′ (Rd
)
×S ′ (Rd′

)
(consider e.g. [117, Thm. V.12]) by setting u ⊗ v to be the

unique distribution (using nuclearity of S
(
Rd
)
) that satisfies

〈u⊗ v, f ⊗ g〉 = 〈u, f〉〈v, g〉 ∀(f, g) ∈ S
(
Rd
)
×S

(
Rd′
)

It is another well-known fact ([81, Thm. 8.2.9.]), that the classical wave-front set

admits a simple behaviour under tensor products:21

(2.16) WFcl(u⊗ v) ⊂(
WFcl(u)×WFcl(v)

)
∪
(
(Rd × {0})×WFcl(v)

)
∪
(
WFcl(u)× (Rd′ × {0})

)
,

where the factors are reordered according to(
Rd × (Rd \ {0})

)
×
(
Rd′ × (Rd′ \ {0})

)
∼= Rd+d′ × (Rd+d′ \ {0}).

This can be reformulated into

Lemma 2.29. Let u ∈ S ′ (Rd
)

and v ∈ S ′ (Rd′
)
. Then (x, ξ) /∈WFψSG(u) implies

(x, y; ξ, η) /∈WFψSG(u⊗ v) ∀(y, η) ∈ Rd × Rd.

This can immediately be used, via Fourier symmetry of WFSG, to obtain

Lemma 2.30. Let (u, v) ∈ S ′ (Rd
)
×S ′ (Rd′

)
. Then (x, ξ) /∈WFeSG(u) implies

(x, y; ξ, η) /∈WFeSG(u⊗ v) ∀(y, η) ∈ Rd × Rd.

The restatement in Lemma 2.29 may seem tedious at first. However, the following

example shows how all the different components of the SG-wave front contribute

to the corner component in the tensor product, which therefore has to be analysed

carefully, and the above formulation may be used to do so.

21We neglect here the fact that it can be further reduced considering the supports of the involved
distributions by the fact that ∀u ∈ S ′

(
Rd
)

we have x /∈ supp(u) ⇒ (x, ξ) /∈ WFcl(u)∀ξ ∈
Rd \ {0}.
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Example 2.31. Let x0 ∈ R. Consider the distribution u = δx0 ∈ S ′(R) and

v = 1 ∈ S ′(R). Then (recall Example 2.10) we have

WFSG (u) = {x0} × (R \ {0}) ⊂We
SG

WFSG (v) = (R \ {0})× {0} ⊂Wψ
SG

and

WFψSG(u⊗ v) = {(x0, y; ξ, 0) | y ∈ R, ξ ∈ R \ {0}}

WFeSG(u⊗ v) = {(0, y; ξ, 0) | y ∈ R \ {0}, ξ ∈ R}

WFψeSG(u⊗ v) = {(0, y; ξ, 0) | y ∈ R \ {0}, ξ ∈ R \ {0}}.

This shows that the different components of WFSG(u) and WFSG(v) mix up in

WFψeSG(u ⊗ v). Obtaining a statement similar to Lemma 2.29 for the remaining

component WFψeSG is therefore more complicated, and addressing this issue using

the definition of the SG-wave front set in terms of ΨDOs is technically involved.

The main issue behind that is SG0,0(Rd) ⊗ SG0,0(Rd′) 6⊂ SG0,0(Rd+d′). While

this may be overcome by techniques as in [82], the characterization of the corner

component of WFSG via the FBI-transform in Theorem 2.22 proves to be a suitable

tool to study this problem, since we have the identity

(2.17) Fλ,µ(u⊗ v) = Fλ,µ(u)⊗Fλ,µ(v).

Proposition 2.32. Let (u, v) ∈ S ′ (Rd
)
×S ′ (Rd′

)
.

(1) If (x, ξ) /∈WFψeSG(u), then

(x, y; ξ, η) /∈WFψeSG(u⊗ v) ∀(y, η) ∈ Rd × Rd.

(2) Let (x, η) ∈
(
(Rd \ {0}) × (Rd′ \ {0})

)
and (x, ξ) /∈ WFSG(u) for all ξ ∈(

Rd t (Rd \ {0})
)

as well as (y, η) /∈WFSG(v) for all y ∈ (Rd′ tRd′ \ {0}).
Then (x, 0; 0, η) /∈WFψeSG(u⊗ v).

Proof. (1): This follows immediately from (2.17), Theorem 2.22 and (1) of Lemma

2.20.

(2): The assumptions imply x /∈ Css(u) and η /∈ Css(Fv). Consequently, we

have asymptotic cut-offs φx and φη s.t. φxu ∈ S
(
Rd
)

and φηFu ∈ S
(
Rd′
)
.

Consequently may find

(1⊗ φη)F {(φx ⊗ 1) (u⊗ v)} = (Fφxu)⊗ (φηFv) ∈ S
(
Rd+d′

)
,
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which proves the claim. �

Revisiting Example 2.31, we see that the map u 7→ u ⊗ 1R is nothing but a

generalization of the pull-back of test functions via the map prd : Rd+1 → Rd

defined by (x, x′) 7→ x to tempered distributions, since we have for g ∈ S
(
Rd
)

and f ∈ S (Rd+1)

〈pr∗dg, f〉 =

∫
(pr∗dg)(x, x′) f(x, x′) dx dx′ =

∫
g(x)f(x, x′) dx dx′ = 〈g(x)⊗ 1R, f〉.

We can thus establish, using the previous discussion and WFSG (1R) = (R \ {0})×
{0} the following lemma.

Lemma 2.33. Let u ∈ S ′ (Rd
)
. Then we can define the pull-back of u by prd in

S ′ (Rd+1
)
. We have the following inclusion:

WFSG(pr∗du) ⊂ pr∗dWFSG(u),

where

pr∗dWFψSG(u) = {(x, x′, ξ, 0) | (x, ξ) ∈WFψSG(u), x′ ∈ R}
(2.18)

pr∗dWFeSG(u) = {(x, x′, ξ, 0) | (x, ξ) ∈WFeSG(u), x′ ∈ R}

∪ {(x, x′, 0, 0) |x ∈ Rd, x′ ∈ (R \ {0})}

pr∗dWFψeSG(u) = {(x, x′, ξ, 0) | (x, ξ) ∈WFψeSG(u), x′ ∈ Rd}

∪ {(0, x′, ξ, 0) | ∃x ∈ Rd s.t. (x, ξ) ∈WFψSG(u), x′ ∈ R \ {0}}.

Remark 2.34. While the previous formulae may seem complicated at first, they

are a natural extension of the classical (see e.g. [81]) formula (2.18), which can be

reformulated in terms of the map tprd : Rd → Rd+1 given by x 7→ (x, 0) to

WFcl(pr∗du) ⊂ {(x,tprdξ) | (prdx, ξ) ∈WFcl(u)}.

The behaviour in the corner component may be interpreted in the following sense:

all components of the wave front sets of the factors contribute to the corner compo-

nent - as in Example 2.31 - and points of the form “(x, x′, ξ, ξ′∞)” are “condensed”

into points of the form (x, x′, 0, ξ′∞), since ξ is “infinitesimally small” compared

to ξ′∞.22

22Geometrically, this corresponds to the fact that the images of parallel rays under radial com-
pactification intersect at the boundary.
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Next we examine how a linear change of coordinates, i.e. the dilation operation of

Lemma A.6 influence the SG-wave front set.

Lemma 2.35. Let u ∈ S ′ (Rd
)
, A ∈ GL(d,R). The SG-wave front set of the

distribution A∗u := DA−1u ∈ S ′ (Rd
)

fulfils

WFSG(A∗u) = A∗WFSG(u) :=
{

(x,tAξ)
∣∣(Ax, ξ) ∈WFSG(u)

}
.

For each Γ ⊂ WSG closed, we have that A∗ is a sequentially continuous map

S ′
Γ(Rd)→ S ′

A∗Γ(Rd).

Proof. This can be obtained using the characterization of WFSG in terms of cut-

offs, Lemma 2.5. �

Remark 2.36. We could have considered more general changes of coordinates, in

particular the S -admissible coordinate transforms of [36, Chap. 4.2]. Since the

focus in this document lies on the linear theory, we omit such a discussion.

We now turn to study pairings of tempered distributions using the SG-wave front

set:

Theorem 2.37 (Pairings of tempered distributions via WFSG). Let Γ1,Γ2 ⊂WSG

closed subsets satisfying (in each component)

(2.19) (x, ξ) ∈ Γ1 ⇒ (x, ξ) /∈ Γ2.

Then the map given by the pairing of two elements of S
(
Rd
)

can be extended

in a canonical way to S ′
Γ1

(
Rd
)
× S ′

Γ2

(
Rd
)
. The resulting map is sequentially

continuous with respect to the notions of convergence in S ′
Γ.23

To prove Theorem 2.37, we need to be able to choose the pseudo-differential

operator used in the definition of WFSG freely, as long as the support of its (full)

symbol is suitably bounded:

Lemma 2.38. Let u ∈ S ′ (Rd
)
, A,B ∈ LSG0,0(Rd) and let their respective sym-

bols (modulo SG−∞,−∞) fulfil Csp(b) ⊂ ellSG(a). Then Au ∈ S
(
Rd
)

implies

Bu ∈ S
(
Rd
)
.

23That means if (un, vn)
S ′Γ1
×S ′Γ2

−−−−−−−→ (u, v) then 〈un, vn〉 → 〈u, v〉.
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Proof. This is a consequence of the local parametrix construction in Theorem A.23:

pick P ∈ LSG0,0 such that PA = B + R with a residual element R : S ′ (Rd
)
→

S
(
Rd
)
. Then Bu = PAu−Ru ∈ S

(
Rd
)
. �

Remark 2.39. In particular, Lemma 2.38 allows us to choose a b that satisfies b ≡ 1

in a neighbourhood of (x0, ξ0) ∈ Csp(a).

Proof of Theorem 2.37. Using the assumption (2.19), it is possible to use Lemma

2.38 and A.19 to construct a microlocal partition of unity:

For each point (xi, ξi) ∈ WSG we can find an operator Ai ∈ LSG0,0(Rd) such

that either Aiu ∈ S
(
Rd
)

or tAiv ∈ S
(
Rd
)

and such that its symbol a(x, ξ) is

positive and identically one in a neighbourhood (in the sense of Construction 1.1)

of (xi, ξi). Using the identification ι and compactness of W̃SG, we may assume a

finite set {Ai}i=1..N such that
∑N

i=1 σ(Ai) = 1Rd and Aiu ∈ S
(
Rd
)

for 1 ≤ i ≤ k

and tAiv ∈ S
(
Rd
)

for k + 1 ≤ i ≤ N .

Since
∑N

i=1Ai is SG-elliptic, it admits a parametrix P by Theorem A.21, i.e. an

operator P ∈ LSG0,0(Rd) such that PA = 1+R with a residual element R : S ′ →
S . Using Lemma 2.38 once more we can conclude that even tAi

tPv ∈ S for

k + 1 ≤ i ≤ N .

We now define

〈u, v〉 :=
k∑
i=1

〈P Aiu︸︷︷︸
∈S

, v〉+
N∑

i=k+1

〈u, tAi
tPv︸ ︷︷ ︸
∈S

〉 − 〈 Ru︸︷︷︸
∈S

, v〉.(2.20)

By a refinement argument it is straightforward to prove independence of this notion

on the choice of partition of unity and the continuity statement. That the map is

an extension of the product on test functions follows by approximation of u and v

in terms of test functions as granted by Lemma 2.27 and continuity. �

Lemma 2.40. Let u ∈ S ′ (Rd
)
, A ∈ LSGm,−∞(Rd). Then WFψSG(Au) = ∅.

Similarly, let B ∈ LSG−∞,m(Rd). Then WFeSG(Au) = ∅.

Proof. Consider the case A ∈ LSGm,−∞(Rd) and let (x0, ξ0) ∈ Wψ
SG. Take any

B ∈ LSG0,0(Rd) elliptic at (x0, ξ0) whose symbol is compactly supported in the

first set of variables, thus satisfying B ∈ LSG−∞,0(Rd). Then the composition BA

is a residual element, BA ∈ LSG−∞,−∞(Rd), and consequently B(Au) = (BA)u ∈
S
(
Rd
)
, which proves (x0, ξ0) /∈WFSG(Au).
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The case where A ∈ LSG−∞,m(Rd) follows by the same argument with exchanged

variables. �

Remark 2.41. As a trivial corollary we obtain the well-known statement that u ∈
S ′ (Rd

)
and f ∈ S

(
Rd
)

implies u ∗ f ∈ C∞(Rd) ∩S ′ (Rd
)
.

Proposition 2.42 (Products of tempered distributions via WFSG). Let Γ1,Γ2 ⊂
∂(Bd × Bd) closed subsets satisfying

(x, ξ) ∈
(
Γ1 ∩

(
Bd × Sd−1

))
⇒ (x, ξ) /∈ Γ2.

Then the product map S
(
Rd
)
×S

(
Rd
)
→ S ′ (Rd

)
can be extended to a sequen-

tially continuous map S ′
Γ1

(
Rd
)
×S ′

Γ2

(
Rd
)
→ S ′ (Rd

)
.

Proof. This result is a consequence of Theorem 2.37 when defining 〈u · v, f〉 :=

〈uf, v〉 and using Lemma 2.40 combined with the fact that multiplication with a

test function can be reformulated as the action of the ΨDO with symbol f ⊗ 1 ∈
SG−∞,0(Rd × Rd). �

Remark 2.43. This wave front set condition for the existence of a product is far

from being a necessary condition. We will discuss this in the Outlook, that is

Section 4.

Remark 2.44. The previous results about pairings and products of tempered dis-

tributions are to the best of our knowledge unpublished so far, although some have

appeared in unpublished lecture notes of R.B. Melrose, [106]. Therein, the results

are achieved by estimating convolutions and products directly, in particular by

breaking down a general product (by use of cut-offs and Fourier transformation)

into the cases S ′ ·S , S ′ ∗ E ′ and S ′ ∗S . These constructions have also been

complemented by some additional details in [129]. Here we pursued a pseudo-

differential approach.

Before we analyse the behaviour of the wave-front sets under such products,

let us examine the case of a special product which can be used to construct an

elementary pull-back. We note that this way of thinking about a pull-back has

already appeared in the appendix to [118, Sect. IX.10] and the aforementioned

unpublished lecture notes [106].
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Example 2.45. The distribution v = δ0 ⊗ 1Rd , consider Example 2.31, fulfils

WFψSG(v) ∪WFψeSG(v) =
{

(0, y, ξ, 0)
∣∣ y ∈ (Rd t (Rd \ {0})), ξ ∈ (R \ {0})

}
The product of u ∈ S ′(Rd+1) with v is thus defined, in terms of Proposition 2.42,

if

WFSG(u) ∩
{

(0, y, ξ, 0)
∣∣ y ∈ (Rd t (Rd \ {0})

)
, (ξ ∈ R \ {0})

}
= ∅

This product provides a way to define the pull-back of a distribution by the map

ιd : Rd → Rd+1 defined by x 7→ (0, x):

Consider any cut-off φ0 around 0 and define ι∗du(f) = (u · v)(φ0 ⊗ v). This map

does not depend on the cut-off. We then have

〈u · v, φ0 ⊗ f〉
Prop.
2.42
= 〈u, v · (φ0 ⊗ f)〉 = 〈u, v · (φ0(0)︸ ︷︷ ︸

=1

⊗f)〉,

For u = g ∈ S
(
Rd
)

this yields

〈g · v, φ0 ⊗ f〉 = 〈g, v · (φ0 ⊗ f)〉 = 〈g(φ0 ⊗ f), v〉 = 〈g(0, ·) · f,1〉 = 〈ι∗dg, f〉,

so this map really extends the pull-back by ι∗d.

Now we may examine the wave-front set of the resulting distribution. This is easily

done in terms of the FBI-transform, since we have for f ∈ S (Rd+1) (with (y′, y)

denoting an element in Rd+1) after a quick calculation:24

Fλ,µ{ι∗df}(x, ξ) = Cψ0µ
d/4λ3d/4

∫
f(0, y)ψ0

((
λ

µ

) 1
2

(y − µx)

)
e−iλ(y−µx)ξdy

=

∫
Fλ,µ(f)

(
(x′, x), (ξ′, ξ)

)
e−iλµx

′ξ′dx′dξ′.

By approximation, this relation carries over to tempered distributions, provided

the integral is defined. Using the characterization of WFSG via Fλ,µ, i.e. Lemma

2.19, Corollary 2.21 and Theorem 2.22 it is thus possible to prove

Lemma 2.46. Let u ∈ S ′(Rd+1) such that

WFSG(u) ∩ {(0, y, ξ, 0) | y ∈ Rd t (Rd \ {0}), ξ ∈ (R \ {0})} = ∅.

Then we can define the pull-back ι∗du ∈ S ′ (Rd
)

and we have

WFSG(ι∗du) ⊂ ι∗dWFSG(u) := {(x, ξ), | ∃ ξ′ ∈ R s.t. (ιdx, (ξ
′, ξ)) ∈WFSG(u)}.

24This uses the oscillatory representation δ0 = (2π)−d
∫
e−ix·ξdξ.
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Pullbacks by general linear maps:

Since general linear maps may be decomposed into the elementary maps of the

form pr, ι and a change of basis A, we can obtain pull-backs by general linear

maps, using Lemma 2.33, 2.35 and 2.46. This follows the train of thoughts in the

proof of [82, Prop. 2.9], where a similar analysis is done in the framework of the

G-calculus. However, we often use different methods, in particular because the

structure of the SG-wave front set makes the analysis more complicated.

This analysis may also be used to obtain a wave front inclusion for products that

has (to the best of our knowledge) previously only been stated without proof in

the aforementioned unpublished lecture notes [106].

Corollary 2.47. Let u, v ∈ S ′ (Rd
)
. If the assumptions of Proposition 2.42 are

fulfilled, then we have the inclusion

WFSG(u · v) ⊂

WFSG(u) ∪WFSG(v) ∪
{

(x, ξ + η)
∣∣∣ (x, ξ) ∈WFSG(u), (x, η) ∈WFSG(v)

}
Idea of the proof. We can rewrite the product u ·v = δ∗(u⊗v) in terms of the map

δ : Rd ↪→ Rd × Rd given by δ(x) = (x, x), which can be decomposed into

x
ι17−→ (0, x)

x 7→Ax7−→

(
1 1

−1 1

)
(0, x) = (x, x).

Using the preceding discussion on how to define general pull-backs by linear maps,

we obtain the wave front set inclusion. �

Remark 2.48. Proposition 2.42 and Corollary 2.47 enables us to extend convo-

lutions to tempered distributions and estimate the resulting SG-wave front sets.

This is done by using Lemma 2.4 and f ∗ g = F−1
{
F{f} · F{g}

}
. As a special

case, this reproduces the wave front inclusion results known for the distributions

of compact support, see e.g. [10, Prop. 3.1].

2.4.2. Composition with operators.

Next, we briefly discuss actions of general linear operators, following the outline

in [82, Prop. 2.10.] where the analysis is carried out in the framework of the

G-calculus.

Consider A : S
(
Rd
)
→ S ′(Rd′). Then, by the Schwartz kernel theorem, The-

orem A.4, A has a distributional kernel KA ∈ S ′(Rd+d′) defined via 〈Af, g〉 =
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〈KA, f ⊗ g〉. Formally, we have

Af(x) =

∫
KA(x, y)f(y)dy

= F−1
ξ→x

(
ι∗ξ→(ξ,0)F(x,y)→(ξ,η)(KA · (1⊗ f))

)
(2.21)

The expression (2.21) is composed of the elementary maps we have already en-

countered:

• the tensor product by 1 (Lemma 2.33),

• the multiplication by KA (Corollary 2.47),

• the (inverse) Fourier transformation (Lemma 2.4),

• the restriction to η = 0 (Lemma 2.46).

and using these results, one may extend A to tempered distributions. In particu-

lar this allows to study the propagation of singularities under partial differential

equations if the distributional kernel of a solution map is known.

2.4.3. Affine maps and translation invariant distributions.

Having studied the composition of distributions with linear maps, we can turn to

affine maps. This amounts to the study of the translation operation, which was

already extended to distributions in Lemma A.6. We now state how it acts on the

SG-wave front set.

Lemma 2.49. Let u ∈ S ′ (Rd
)
, x0 ∈ Rd. Then we have

WFψSG(Tx0u) =
{

(x+ x0, ξ) | (x, ξ) ∈WFψSG(u)}

WFSG(Tx0u) \WFψSG(Tx0u) = WFSG(u) \WFψSG(u).

This means that a translation by a finite element x0 shifts WFψSG(u), that is the

differential singularities at finite distances of u, by x0 in the variable and leaves

the part of WFSG(u) “at infinity” invariant. We may take this analysis one step

further and discuss translation invariant distributions.

Definition 2.50. Let k ∈ N0. A tempered distribution u ∈ S ′ (Rd
)⊗k

= S ′ (Rkd
)

is translation invariant if for any x0 ∈ Rd we have T ⊗kx0
u = u, where T ⊗kx0

is the

map Tx0 ⊗ · · · ⊗ Tx0︸ ︷︷ ︸
k−fold

extended to S ′ (Rkd
)
.

We now analyze these kinds of tempered distributions. We first note that we

have Fu = F ◦ T ⊗kx0
u =M⊗k

−x0
Fu, by Lemma A.6, meaning the Fourier transform
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of a translation invariant distribution is modulation invariant.

Using this, it is possible to show the following characterization of translation in-

variant distributions:

Lemma 2.51. Let u ∈ S ′ (Rd
)⊗k

translation-invariant. Then

supp(û) ⊂

{
(ξ1, . . . , ξk) ∈

(
Rd
)×k ∣∣∣∣∣

k∑
i=1

ξi = 0

}
.

There is a Theorem due to L. Schwartz, [132, Thm. 36], see also [81, Thm.

2.3.5], which characterizes these kinds of distributions supported on a subspace.25

Theorem 2.52. Let Rd = X × Y a decomposition into subspaces. Then each

distribution u ∈ S ′ (Rd
)

supported on X × {0} admits a unique decomposition

into a finite sum of the form

u =
∑
|α|≤N

uα ⊗Dα
y δY

where δY (f) = f(0) for all f ∈ S (Y ), uα ∈ S ′(X), and the D
αj
y indicate deriva-

tives transversal to X × {0}.

By modulation invariance, we may even rule out the transversal derivatives in

our setting and thus the Fourier transform of a translation invariant distribution is

of the form û = v⊗δY where X is the subspace given by the solutions to
∑
ξi = 0.

This subspace is (k − 1)d-dimensional and we can express δY in formal notation

δd(
∑k

i=1 ξi).

We can now determine the SG-wave front set of such u. Since supp(û) ⊂ X, is

easily seen to be contained in the set

WFSG(û) ⊂ X × (Rdk \ {0})︸ ︷︷ ︸
⊃WFSG(û)∩Wψ

SG

t (X \ {0})× (Rdk \ {0})︸ ︷︷ ︸
⊃WFSG(û)∩Wψe

SG

t (X \ {0})× Rdk︸ ︷︷ ︸
⊃WFSG(û)∩We

SG

By the Fourier symmetry of WFSG, that is Lemma 2.4, we thus have for translation

invariant distributions

WFSG(u) ⊂ Rdk × (X \ {0})︸ ︷︷ ︸
⊃WFSG(u)∩Wψ

SG

t (Rdk \ {0})× (X \ {0})︸ ︷︷ ︸
⊃WFSG(u)∩Wψe

SG

t (Rdk \ {0})×X︸ ︷︷ ︸
⊃WFSG(u)∩We

SG

We deduce from Proposition 2.42:

25We state a tempered version of the Theorem, which follows trivially from the original one.
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Corollary 2.53. Let u ∈ S ′(Rdk) translation invariant, v ∈ S ′(Rdk) such that

(2.22) (x, ξ) ∈ (WFψSG(v) ∪WFψeSG)⇒
∑
k

ξk 6= 0.

Then u · v yields a well-defined tempered distribution.

In particular Condition (2.22) is met if pr2

(
WFSG(v) ∩ (Wψ

SG ∪Wψe
SG)
)

= Γ for

some convex cone Γ ⊂ Rdk \ {0}.

Remark 2.54 (A remark about applicability in quantum field theory). This corol-

lary can be used to give a simple proof of the “Theorem 0” of Epstein and Glaser

[58] by microlocal methods. A microlocal proof of this in terms of D ′(X) (on

manifolds X) has already been given in [16]. Here, however, we also take the

temperedness of the involved distributions into the account, as in the original for-

mulation of the result.

In Section 3.5, we will study several other applications of these global methods to

quantum field theory.

Having established some first applications of WFSG, we now turn to a different

global notion of singularities on Rd, associated to the G-calculus and the compact-

ification of T ∗Rd by WG.
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2.5. The G-wave front set.

2.5.1. Introduction, basic properties and some first examples.

A second, maybe lesser known, wave front set suitable for the analysis of tempered

distributions on Rd is the G-wave front set. It was originally defined by Hörman-

der [82] to study propagation of singularities for quadratic hyperbolic operators.

Recently, the notion has attracted attention due to its applicability to Schrödinger

equations and (almost) metaplectic operators, see e.g. [30, 34].

In the following, we will point out several common features and differences be-

tween the two notions WFSG and WFG and other wave front sets. In particular,

we already mention that in a recent approach, Nakamura defined a similar notion

called homogeneous wave front set, HWF(u), in [111] by methods of semi-classical

analysis, see also [100, 101, 109]. The equality HWF(u) = WFG(u) and the rela-

tion between WFG and other notions of wave front set will be discussed in more

detail in Section 2.6.26 For now we mention that the main difference with respect

to the SG-wave front set (or in that matter the classical one) is that in WFG any

point outside {0}×(Rd \ {0}) encodes both high frequency contributions as well as

large spacial arguments. This may be interpreted from a geometrical viewpoint by

considering the different compactification and of T ∗Rd used, i.e. B2d as opposed to

Bd × Bd, and the different induced notion of neighbourhoods at infinity, as shown

in Figure 5.

We begin by introducing WFG using Weyl-quantized pseudodifferential operators

with Shubin symbols. The following definition and basic properties are due to [82].

Definition 2.55 (G-wave front set). Let u ∈ S ′ (Rd
)
. Then u is G-microlocally

S -regular at (x0, ξ0) ∈WG if there exists a ∈ G0(Rd × Rd), G-elliptic at (x0, ξ0),

such that aW (x,D)u ∈ S
(
Rd
)
.

The complement WFG(u) in WG of all such points at which u is G-microlocally

S -regular is called the G-wave front set of u.

Lemma 2.56. Let u ∈ S ′ (Rd
)
.

26A note about nomenclature: In [82], Hörmander simply calls this notion C∞-wave front set,
WF, thus not distinguishing from the classical wave front set. Nakamura [111] uses the symbol
HWF for his homogeneous wave front set. In the recent [121], Hörmander’s original object is
called Gabor wave front set, WFG, due to the newly found characterization in terms of Gabor
frames. In this document, we also use the symbol WFG, but simply call it G-wave front set to
emphasize the calculus used.
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(1) WFG(u) is a closed conic (in both variable and covariable jointly) subset of

WG = (R2d \ {0}).

(2) Microlocality of G-operators: let A ∈ LGm
(
Rd
)
. Then WFG(Au) ⊂

WFG(u).

(3) Global regularity: WFG(u) = ∅ ⇔ u ∈ S
(
Rd
)
.

Remark 2.57. We may again introduce the analogous object W̃FG as a subset of

W̃G = S2d−1 by identifying (x0, ξ0) with the ray R+·(x0, ξ0). We will not make much

use of this, however. The reason to use W̃SG in the SG-context is that therein,

statements about topological properties “at infinity” are easily formulated. In

the G-setting, the topological structure is much simpler (since there is no corner

component), allowing us to simply work in WG.

We also note that it is straight-forward to introduce Sobolev-analogons of WFG

as in Definition 2.8 for the SG setting, see also [111].

The following proposition underlines one of the main features of WFG, its be-

haviour under symplectic transformations.

Proposition 2.58 (Behaviour of WFG under metaplectic transformations). Recall

that for each linear symplectic map χ in T ∗Rd, there exists a (unique up to a phase

factor) unitary operator Uχ on L2(Rd), such that27

U∗χa
W (x,D)Uχ = (a ◦ χ)W (x,D).

Let u ∈ S ′ (Rd
)

and let χ be a linear symplectic map. Then

WFG(Uχu) = {χ(x, ξ) | (x, ξ) ∈WFG(u)} .

In particular we have for the generators of such linear symplectic transformations

• Fourier symmetry: Consider for some k ∈ N0 with 0 < k < d the splitting

T ∗Rd ∼= T ∗(Rd−k × Rk) and denote its elements by
(
x, y; ξ, η

)
. Then we

have Fourier Symmetry:(
x, y; ξ, η

)
∈WFG(u)⇔

(
ξ, y;−x, η

)
∈WFG(Fx→ξu).

• Covariance: Let A ∈ GL(d,R). Then

(x, ξ) ∈WFG(u)⇔ (A−1x,tAξ) ∈WFG(DAu).

27A proof for this fact may be found in [83, Thm. 18.5.9.], see also [82] and [94, Thm. 2.1.2.].
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• Multiplication by a chirp: Let A a real, symmetric d× d matrix. Then

(x, ξ) ∈WFG(u)⇔ (x, ξ + Ax) ∈WFG

(
e
i
2
〈Ax,x〉u

)
.

We can now review the distributions of Example 2.10 in the context of the G-wave

front set:

Example 2.59. Let x0 ∈ R, ξ0 ∈ R, λ > 0. Then we can list the G-wave front

sets of the following tempered distributions on R, cf. [121]:

WFG (δx0) = {0} × (R \ {0}),

WFG

(
eiξ0·

)
= (R \ {0})× {0},

WFG

(∑
j∈N0

Tλjδ0

)
= {(x, y) ∈ (R2 \ {0}) |x ≥ 0},

WFG

(
e
i
2
λ(·)2
)

= (R+ · {(1, λ)}) ∪ (R+ · {(−1,−λ)}).

Therefore the information about lack of smoothness at finite points is condensed

into {0} × R \ {0}, lack of decay and slow oscillations at infinity are encoded at

R \ {0} × {0} and the rest of R2 \ {0} encodes higher oscillations, in particular

quadratic ones.

We are now in the position for a first comparison between WFG and WFSG, which

we will continue in Section 2.6.5 (cf. also [121]). From the example of δx0 it is

evident that WFG does not share the property of WFSG that pr1(WFSG(u)) =

Css(u) and WFG is thus less useful to localize singularities at finite arguments.

However, the asymptotic component gives us a better resolution of (quadratic)

oscillations, which are condensed in the corner component in the SG case, as can

be seen from the example of the chirp e
i
2
λx2

and was visualized in Figure 5. The

example of the chirp also underlines how the SG-wave front set does not share

the full invariance under all generators of the symplectic transformations of WFG.

The better resolution of the corner component will also be made evident when we

construct a tempered distribution with assigned singularities for the G-wave front

in Section 2.6.3. We have already seen in the SG-case that such a construction was

highly accessible in the time-frequency plane. This time, we will first introduce

how WFG can be characterized using the STFT, which will greatly facilitate the

construction.
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2.6. Characterization of WFG in the time-frequency plane.

2.6.1. Characterization in terms of the STFT.

As may be expected from the analysis of WFSG, WFG may be characterized in

the time-frequency plane. Due to the simpler structure of WG in comparison with

WSG, this takes a simpler form than for WFSG. In particular we do not need to

employ an FBI-transform with two scaling parameters, but may simply use decay

properties of the STFT or with reference to one scaling parameter. For Gaussian

windows this was established in [82], for general Schwartz windows in [121].

Proposition 2.60 (Characterization of WFG via the short-time Fourier trans-

form). Let u ∈ S ′ (Rd
)

and (x0, ξ0) ∈ WG. Then we have (x0, ξ0) /∈ WFG(u) if

and only if for one (equivalently all) ψ ∈ S
(
Rd
)
\ {0} there exists an open cone

Γ0 ⊆ R2d \ {0} containing (x0, ξ0) such that

sup
(x,ξ)∈Γ0

〈(x, ξ)〉N |Vψu(x, ξ)| <∞, N ≥ 0,

Ideas of the proof. Since this result was proved in [121] in great detail, we only

list the main ideas of the proof to be able to compare these techniques to those of

Section 2.3.1.

Let a ∈ G0(Rd × Rd) identically 1 for |(x, ξ)| > R and (x, ξ) in a conic neigh-

bourhood of (x0, ξ0) such that Au = aW (x,D)u ∈ S
(
Rd
)
. Pick another symbol

b ∈ G0(Rd × Rd) such that a+ b = 1R2d . Then

Vψ0(u) = Vψ0 Au︸︷︷︸
∈S

+Vψ0Bu,

where the latter term is estimable by using the support properties of b, (A.21) and

Lemma A.31.

Conversely, if we have

sup
(x,ξ)∈Γ

〈(x, ξ)〉N |Vψ0u(x, ξ)| <∞, N ≥ 0,

then we may find an asymptotic cut-off φ(x0,ξ0), equal to 1 for |(x, ξ)| > R and (x, ξ)

in a conic neighbourhood Γ′ ⊂ Γ0 of (x0, ξ0) such that φ(x0,ξ0)Vψ0u ∈ S
(
R2d
)
.

Then V ∗ψ0
φ(x0,ξ0)Vψ0 = Aψ0

φ(x0,ξ0) is a localization operator and may, by Proposition

A.30, be expressed as a ΨDO with Weyl symbol b given by (A.19). By direct
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estimates on the convolution (using (A.1)) and use of Proposition A.10 it is then

possible to prove

• b ∈ G0(Rd × Rd),

• b is G-elliptic at (x0, ξ0),

• bW (x,D)u ∈ S
(
Rd
)
,

which yields the claim for ψ0. General windows are then estimated by (A.11). �

The characterization of WFG in terms of the STFT gives us the opportunity to

review Example 2.59, since the STFT for these model examples can be explicitly

computed. The graphs of the (absolute values of the) resulting transformed distri-

butions for parameters λ = 1 for the chirp and λ = 5 for the Dirac δ-comb, x0 = 0

and ξ0 = 3 are depicted in Figure 9.28

Figure 9. The STFTs of the distributions in Example 2.59

28The graphs were scaled in amplitude and include level set lines.
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With little adaptation, the proof of Proposition 2.60 has the consequence of a

characterization of WFG in terms of localization operators.

Corollary 2.61. Let u ∈ S ′ (Rd
)
, (x0, ξ0) ∈WG. Then (x0, ξ0) /∈WFG(u) if and

only if there exists a ∈ G0(Rd × Rd) such that

(1) a is an asymptotc cut-off around (x0, ξ0),

(2) We have Aψ0
a u ∈ S

(
Rd
)
.

Proof. The characterization of WFG in terms of the STFT, see the proof of Propo-

sition 2.60, yields the existence of a if (x0, ξ0) /∈WFG(u).

Conversely, if a as in the statement exists, we can use (A.19) to express Aψ0
a as a

ΨDO and estimate its Weyl symbol as in [121]. �

The previous characterization of WFG may also be given in terms of an FBI-like

transform, or a rescaled STFT with (small) parameter ~,29 see [130]:

Definition 2.62. Let u ∈ S ′ (Rd
)
. For ~ ∈ (0, 1] and x, ξ ∈ Rd, the ~-dependent

STFT (short: ~STFT) is defined by

V~u(x, ξ) = (2π)−d/2D~−1(u, TxMξψ0) = D~−1

(
e−iξxVψ0u

)
.

Remark 2.63. We have V~u(x, ξ) = (F~−1,~−1u) (x, ξ), meaning the conic (jointly

in x and ξ) structure of WG allows us to replace µ and λ by a single scaling

parameter.

Then we have (see [130]) the following characterization of WFG in the time-

frequency plane:

Proposition 2.64. Let u ∈ S ′ (Rd
)
. Then (x0, ξ0) ∈ WG is not contained in

WFG(u) if and only if there exists an open set U 3 (x0, ξ0) such that

‖V~u|U‖L∞(R2d) = O(~∞), ~ ∈ (0, 1].

Proof. This can be proved by scaling, i.e. taking U as a base for the cone Γ0 in

Proposition 2.60 and using |V~u(x, ξ)| = h−d |Vψ0(~−1x, ~−1ξ)|, see [130]. �

29Often ~ stands for the reduced Planck-constant and the letter h is used to denote the semi-
classical parameter. To distinguish it from a test or window function, we instead use ~ here.
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As was shown in [121], the characterization of WFG of Proposition 2.60 may be

tested on a lattice, using Gabor frames (cf. [68]). Recall that a Gabor frame (or

Weyl-Heisenberg frame) G(ψ, α, β) is given by a lattice with parameters α, β > 0,

i.e. Λαβ = αZd × βZd ⊂ R2d and a (non-zero) window function ψ ∈ S
(
Rd
)

such

that the collection {MξTxψ}(x,ξ)∈Λαβ is a frame30 for L2(Rd).

Proposition 2.65. Let u ∈ S ′ (Rd
)
. Then (x0, ξ0) ∈ WG is not contained in

WFG(u) if and only if for one (equivalently all) Gabor frame G(ψ, α, β) there exists

an open cone Γ0 ⊆ R2d \ {0} containing (x0, ξ0) such that

sup
(x,ξ)∈Γ0∩Λαβ

〈(x, ξ)〉N |Vψu(x, ξ)| <∞, N ≥ 0.

This result is important for determination of the G-wave front set by numerical

means.31

2.6.2. G-microlocality of operators.

The previous results on the characterization of WFG in the time-frequency plane

may be used to study G-microlocality of various classes of operators. For the simple

case of pseudo-differential operators with symbols in Gm(Rd×Rd), G-microlocality

was stated in Lemma 2.56.

In [121] this was generalized further. We state their result for pseudo-differential

operators with symbols in G0
0(Rd × Rd), meaning those satisfying

|∂αx∂
β
ξ a(x, ξ)| . C ∀α, β ∈ Nd

0.

Proposition 2.66. Let a ∈ G0
0(Rd×Rd), u ∈ S ′ (Rd

)
. Then WFG(aW (x,D)u) ⊂

WFG(u), i.e. aW (x,D) : S ′ (Rd
)
→ S ′ (Rd

)
is G-microlocal.

Using the Weyl-Wick connection, i.e. Proposition A.30, we can extend these

results to localization operators.

Proposition 2.67. Let u ∈ S ′ (Rd
)

and

a ∈ Gm(Rd × Rd) or a ∈ G0
0(Rd × Rd).

30Recall: a sequence of vα ∈ H,
(
H, (·, ·)H)

)
a separable Hilbert space, is called a frame, if

∃B ≥ A > 0 s.t. for all w ∈ H we have

A‖w‖H ≤
∑
α

|(w, vα)H|2 ≤ B‖w‖H.

31It further provides the original reason why this notion of singularities was called “Gabor wave
front set”, i.e. WFG, in [121].
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Then Aψ0
a : S ′ (Rd

)
→ S ′ (Rd

)
is G-microlocal.

Proof. Use Peetre’s inequality (A.1) (as in the proof of Proposition 2.60, see [121])

to show that a either symbol space implies that (A.19) yields an amplitude in the

same symbol space. Then use the microlocality of such ΨDOs, i.e. Lemma 2.56

or Proposition 2.66. �

This further underlines that the G-wave front set is a notion of singularity

well-adapted to problems of time-frequency analysis, in particular localization op-

erators. We refer the reader to [30, 31] for a study of propagation of singularities

under (almost) metaplectic operators.

2.6.3. Existence of distributions with assigned singularities.

In this section, we repeat32 the construction first obtained in collaboration with

Wahlberg in [130] which yields, for any closed conic set Γ0 ⊆ R2d \ {0}, a distribu-

tion u ∈ S ′(Rd) with WFG(u) = Γ0. It is based on the construction used in the

SG-setting to prove Corollary 2.17.

Again, u is constructed in terms of modulated and translated Gaussian functions,

and thus we can calculate its STFT in terms of elementary functions and simply

read off its decay properties.

Recall the shifted Gaussians of Definition 2.14. Using (A.9) and performing

a simple Gaussian integration, we may compute the STFT of ψk(·, x0, ξ0) for

(x0, ξ0) ∈WG:

Vψ0

(
ψk(·;x0, ξ0)

)
(x, ξ) = (2π)−

d
2 e−

i
2
k4x0ξ0 (ψ0,Mξ−k2ξ0Tx−k2x0

ψ0)

=
(π

2

) d
2
e−

i
2
k4x0ξ0e−

i
2

(x−k2x0)(ξ−k2ξ0) exp

(
−1

4

(
|x− k2x0|2 + |ξ − k2ξ0|2

))
.

In particular we have

(2.23)
∣∣Vψ0

(
ψk(·;x0, ξ0)

)
(x, ξ)

∣∣ =
(π

2

) d
2

exp

(
−1

4

(
|x− k2x0|2 + |ξ − k2ξ0|2

))
.

For any f ∈ S
(
Rd
)

we further have, by direct comparison of the definition of the

STFT and the ψk:

(2.24) (ψk, f) = 2d/2e−
i
2
k4x0ξ0Vψ0f(k2x0, k2ξ0).

32With slight, straight-forward adaptations due to different conventions.
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Since Vψ0f ∈ S (R2d), by Lemma A.9, and (x0, ξ0) 6= 0, the series

(2.25) v(·;x0, ξ0) =
∞∑
k=1

ψk(·;x0, ξ0)

converges in S ′ (Rd
)
, which gives v(·;x0, ξ0) ∈ S ′ (Rd

)
.33

We may summarize the upcoming construction in a few lines: several copies of

v(·, xj, ξj) are summed up to construct a tempered distribution whose STFT is

rapidly decaying everywhere, except in the directions given by the closure of

{xj, ξj} ⊂ S2d−1, i.e. Γ0. That this procedure yields the claimed result can be

understood by considering Figure 10, where the graph of the STFT of (v; 1, 1) is

depicted.34

Figure 10. The graph of |Vψ0v(·; 1, 1)| (up to k = 4)

Theorem 2.68. For any closed set Γ ⊆ WG there exists u ∈ S ′ (Rd
)

such that

WFG(u) = Γ.

33Note that we have already established v(·;x0, ξ0) ∈ S ′
(
Rd
)

in Lemma 2.15 for x0 6= 0 and
ξ0 6= 0. Therein, we studied the cone singular support of v. Here we lay specific weight on the
explicit form of its action in terms of the STFT, i.e. (2.25), and also address the cases where
either x0 or ξ0 may vanish.
34Figure 10 may be seen as a non-schematic version of Figure 7: the STFT allows us to obtain
a visualization of v(x; 1, 1) in the time-frequency plane.
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Proof. Take a dense subset of distinct vectors {wj}j∈N0 ⊆ Γ0 ∩ S2d−1.35 Then

define, by means of (2.25),

(2.26) u :=
∞∑
j=0

2−jv(·;wj), x ∈ Rd.

We have u ∈ S ′ (Rd
)
, since for all f ∈ S

(
Rd
)
, by (2.25) and (2.24), it holds that

|(v(·;wj), f)| ≤
∞∑
k=1

|(ψk(·;wj), f)| = 2d/2
∞∑
k=1

∣∣(Vψ0f)(k2wj)
∣∣ .

Since Vψ0f ∈ S (R2d) and |wj| = 1 it follows that |(v(·;wj), f)| is bounded by a

constant, uniformly over j ∈ N0. This in turn shows that the sum over j in (2.26)

converges in S ′ (Rd
)
.

We now show that WFG ⊂ Γ0. For that consider z0 ∈ S2d−1 such that z0 /∈ Γ0.

By Lemma 1.4, there exists an open conic set Γ ⊆ R2d \ {0} and ε > 0 such that

z0 ∈ Γ, and for any z ∈ Γ, k ≥ 1, w ∈ Γ0 we have

|z − k2w| ≥ ε(|z|+ k2).

Using (2.23), this gives for z ∈ Γ0 and N ≥ 0 arbitrary

〈z〉N |Vψ0u(z)| ≤
∞∑
j=0

2−j
∞∑
k=1

〈z〉N |Vψ0ψk(·;wj)(z)|

.
∞∑
k=1

〈z〉N exp

(
−ε

2

4

(
|z|2 + k4

))
<∞.

Thus z0 /∈WFG(u), which proves WFG(u) ⊆ Γ0 since z0 /∈ Γ0 was arbitrary.

On the other hand we show that wm, for m ∈ N0 fixed is in WFG(u). Then, since

{wj}j∈N0 is dense in Γ0 ∩ S2d−1, and since WFG(u) ⊂WG is a closed conic set, we

have Γ0 ⊂WFG(u). In order to show wm ∈WFG(u), we prove a lower bound on

(2.27) ∃ε > 0 such that lim sup
λ→∞

|Vψ0u(λwm)| > ε.

by showing that at a “peak” at n2wm (consider Figure 10), all summands except

one - originating from the Gaussian centred around it - become negligible for

suitably large arguments. We dedicate the rest of the proof to detailed estimates

35I.e. the wj are of the form (xj , ξj). If Γ0 ∩ S2d−1 happens to be finite, simply take all of its
elements.
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to obtain the lower bound (2.27).

Let m ∈ N0 fixed and n ≥ 1 be an integer to be specified later on. Formula (2.23)

gives

(2.28)
∣∣Vψ0(v(·;wm))(n2wm)

∣∣ ≥ (π
2

)d/2
−

∞∑
k=1, k 6=n

∣∣Vψ0(ψk(·;wm))(n2wm)
∣∣ .

The same formula yields

(2.29)

|Vψ0(ψk(·;wj))(n2wm)| =
(π

2

)d/2
exp

(
−1

4

∣∣n2wm − k2wj
∣∣2)

≤
(π

2

)d/2
exp

(
−1

4
(n+ k)2(n− k)2

)
, j ∈ N0.

This gives

(2.30)

∑
k 6=n

|Vψ0(ψk(·;wj))(n2wm)| −→ 0, n→ +∞,

independently of j ∈ N0. Inserting j = m, we obtain from (2.28) the lower bound

|Vψ0(v(·;wm))(n2wm)| ≥ 1

2

(π
2

)d/2
, n ≥ N,

for some integer N ≥ 1, which yields for n ≥ N

(2.31)

| (Vψ0u) (n2wm)| =
(π

2

)d/2 ∣∣∣∣∣
∞∑
j=0

2−jVψ0(v(·;wj))(n2wm)

∣∣∣∣∣
≥
(π

2

)d/2(
2−m−1 −

∞∑
j=0, j 6=m

2−j
∣∣Vψ0(v(·;wj))(n2wm)

∣∣) .
We are now able to estimate the remainder. From (2.25), (2.29) and (2.30) we

obtain ∣∣Vψ0(v(·;wj))(n2wm)
∣∣ ≤ 2

(π
2

)d/2
, j ∈ N0, n ≥ N,

after possibly increasing N . Since this bound is uniform with respect to j ∈ N0,

it implies that the existence of an integer M ≥ m+ 1 such that

(2.32)
∞∑
j=M

2−j
∣∣Vψ0(v(·;wj))(n2wm)

∣∣ ≤ 2−m−3
(π

2

)d/2
, n ≥ N.
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For 0 ≤ j ≤M − 1 and j 6= m we have |wm − wj| ≥ δ for some δ > 0. Combining

this fact with the previous (in-)equalities (2.23), (2.25) and (2.30), yields∣∣Vψ0(v(·;wj))(n2wm)
∣∣

≤
∣∣Vψ0(ψn(·;wj))(n2wm)

∣∣+
∑
k 6=n

∣∣Vψ0(ψk(·;wj))(n2wm)
∣∣

≤
(π

2

)d/2 (
exp

(
−n4δ2/4

)
+ 2−m−5

)
≤ 2−m−4

(π
2

)d/2
, 0 ≤ j ≤M − 1, n ≥ N,

again after possibly increasing N . Summing up, we thus obtain

M−1∑
j=0, j 6=m

2−j
∣∣Vψ0(v(·;wj))(n2wm)

∣∣ ≤ 2−m−3
(π

2

)d/2
, n ≥ N,(2.33)

Combining the two estimates (2.32) and (2.33) for j 6= m and inserting them into

(2.31) we finally obtain the lower bound∣∣(Vψ0u) (n2wm)
∣∣ ≥ 2−m−2

(π
2

)d/2
for n ≥ N . Consequently, Vψ0u does not decay rapidly in any conic neighbourhood

of wm, which concludes the proof. �

2.6.4. A semi-classical description.

This section is devoted to another characterization of WFG in the time-frequency

plane, via semiclassical methods. Consider first the characterization of WFG by

means of the STFT and by the G-pseudo-differential calculus. Both approaches

can be thought of as localizing u in the time-frequency plane in a fixed cone and

testing for rapid decay.

We have already seen in Definition 2.62 how equivalently a small semiclassical dila-

tion parameter ~ may be introduced in both phase space variables simultaneously

to characterize WFG by localizing in a finite neighbourhood of the time-frequency

plane by scaling behaviour. The same picture on the side of pseudo-differential

operators is achieved by the notion of homogeneous wave front set of Nakamura

[111].

Definition 2.69. Let u ∈ S ′ (Rd
)
. A point (x0, ξ0) ∈WG is not in the homoge-

neous wave front set HWF(u) if there exists a ∈ C∞c (R2d) with a(x0, ξ0) = 1 such
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that

(2.34) ‖aW~ (x,D)u‖L2 = ‖aW (~x, ~D)u‖L2 = O(~∞) for ~ ∈ (0, 1].

where aW (~x, ~D) is the operator S ′ (Rd
)
→ S

(
Rd
)

that is obtained as the Weyl

quantization of a(~x, ~ξ).

This notion of wave front set was used to study propagation of singularities for

Schrödinger equations, see [111]. “Analogons” of it for various functional settings

were already defined in terms of the STFT, see [100, 101, 109]. Here we focus on

the smooth case. In this case, there is a connection with the quadratic scattering

wave front set of [153, 154]. This notion is a modification (“blow up in the corner”)

of the scattering wave front set and may be defined in the qsc-calculus, which may

be obtained by changing the boundary defining function of the compactification

of Rd. The wave front set then encodes the usual one and quadratic singularities

at infinity.

The following theorem was established in [85, 86]:

Theorem 2.70. Let Ψ : Rd \ {0} → GL(d,R) defined via

Ψ(x) =

(
δjk +

xjxk

|x|2

)
j,k

.

Then we have, for u ∈ S ′ (Rd
)
, the equality

{(x,Ψ(x)ξ) | (x, ξ) ∈ HWF(u), x 6= 0} = R+ ·
(

qscWF(u) ∩ (Sd−1 × Rd)
)

Remark 2.71. Despite this connection, we will only make use of WFG, since the

{0}×(Rd \ {0})-component of WFG carries essential information for our purposes,

see Proposition 2.86.

Before discussing how HWF and WFG relate, we first review the classical setting.

In semi-classical analysis, one introduces the so-called frequency set (consider [64,

99, 157]) in terms of its complement in T ∗Rd as follows:

Definition 2.72. Let (u~)~∈(0,1] a bounded family of elements in S ′ (Rd
)
. Then

(x0, ξ0) ∈ T ∗Rd is not in FS(u~) if there exists a ∈ C∞c (Rd) with a(x0, ξ0) = 1 such

that

‖aW (x, ~D)u~‖2 = O(~∞).
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When u does not depend on ~, this essentially coincides with the classical wave

front set:

Proposition 2.73. Let u ∈ S ′ (Rd
)
. Then FS(u) = WFcl(u) t (supp(u)× {0}).

Thus FS provides a description of WFcl by testing in a small (time-frequency)

neighbourhood and scaling by the small parameter ~. This result is the initial

motivation for the introduction of HWF, see [111].

Additionally, we have the description of WFcl by the FBI-transform Fλ in Propo-

sition 2.18. Setting ~ = λ−1, we obtain a description of WFcl similar to the one of

WFG of Proposition 2.64 (cf. [157, Thm. 13.14]).

It is therefore reasonable to assume that HWF and WFG should be related in the

same way as FS and WFcl are. Indeed, we have the following equivalence, which

was proven in [130]:

Theorem 2.74. Let u ∈ S ′ (Rd
)
. Then WFG(u) = HWF(u).

In the following, we repeat the proof for Theorem 2.74 obtained in collaboration

with Wahlberg in [130]. First we need to state certain results about operators

of the form Opt a(~x, ~D). While in the appendix of [130] a calculus for such

operators is worked out in detail, here we just state the results needed in order to

prove Theorem 2.74. They allow for us to choose the operator in the definition of

HWF to have additional properties and to change quantization.

Lemma 2.75. Let u ∈ S ′ (Rd
)

and a ∈ C∞c (R2d), (x0, ξ0) ∈ (R2d \ {0}),

a(x0, ξ0) = 1 and

‖aW (~x, ~D)u‖L2 = O(~∞), ~ ∈ (0, 1].

Then there exists a bounded neighbourhood U of (x0, ξ0), such that for any b ∈
C∞c (R2d) with supp(b) ⊆ U we have

‖bW (~x, ~D)u‖L2 = O(~∞), ~ ∈ (0, 1].

Furthermore, there exists ã ∈ C∞c (R2d) supported in a neighbourhood of z0 and

equal to one in a (smaller) neighbourhood of (x0, ξ0), such that

‖ã(~x, ~D)u‖L2 = O(~∞), ~ ∈ (0, 1].

Next, we need two lemmas which can be used to estimate the action of an oper-

ator of the form Opt a~(x,D) on modulated and translated Gaussians, i.e. on V~u
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in some neighbourhood when a satisfies certain support properties. Both Lemmas

can be obtained by integral regularization using stationary phase methods, i.e.

repeated partial integration, consider [130, Sect. 3].

Lemma 2.76. Suppose a ∈ G0(Rd×Rd) vanishes in a neighbourhood of (x0, ξ0) ∈
R2d. Then there exists a (smaller) neighbourhood V of (x0, ξ0) such that for any

N,M ∈ N0,

(2.35) ρS
N

(
aR(~y, ~Dy)

(
Tx/~Mξ/~ψ0

) )
≤ CN,M~M , ~ ∈ (0, 1], (x, ξ) ∈ V.

Lemma 2.77. Let (x0, ξ0) ∈ R2d and ε > 0. Suppose a ∈ C∞c (R2d) with

supp(a) ⊆ Bdε/4(x0, ξ0) =
{

(x, ξ) ∈ Rd
∣∣ |(x, ξ)− (x0, ξ0)| ≤ ε

4

}
.

For all (x, ξ) ∈ R2d such that

(2.36) |x− x0|2 + |ξ − ξ0|2 ≥ ε2 > 0,

there exists, for all N ∈ N0, a constant CN > 0 such that

‖aW (~y, ~Dy)
(
Tx/~Mξ/~ψ0

)
‖2
L2 ≤ CN~2N〈(x, ξ)〉−N , ~ ∈ (0, 1].

Proof of Theorem 2.74. WFG(u) ⊂ HWF(u):

Suppose (x0, ξ0) /∈ HWF(u) and (x0, ξ0) 6= (0, 0). Then, by the Definition 2.69 of

HWF(u) and Lemma 2.75, there exists a ∈ C∞c (R2d) with a = 1 in a neighbour-

hood of (x0, ξ0) such that

‖aW (~y, ~Dy)u‖L2(Rd) . ~N , ~ ∈ (0, 1], N ≥ 0.

By Lemma 2.75 we may instead take a different symbol b and the left quantization,

thus assuming

‖b(~y, ~Dy)u‖L2(Rd) . ~N , ~ ∈ (0, 1], N ≥ 0.

Splitting u = b(~y, ~Dy)u+ (1− b)(~y, ~Dy)u we obtain, by use of Definition 2.62

and the Cauchy-Schwarz inequality, for any (x, ξ) ∈ R2d

(2.37)
|V~(b(~y, ~Dy)u)(x, ξ)| ≤ (2π)−d/2~−d‖b(~y, ~Dy)u‖L2(Rd) ‖ψ0‖L2

. ~N−d, ~ ∈ (0, 1], N ≥ 0.
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From Lemma A.19, i.e. (b(x,D)u, g) =
(
u, b

R
(x,D)g

)
for g ∈ S

(
Rd
)
, and Lemma

2.76, we obtain for some m, k ∈ N0∣∣V~
(
(1− b)(~y, ~Dy)u

)
(x, ξ)

∣∣
= (2π)−d/2~−d|((1− b)(~y, ~Dy)u, Tx/~Mξ/~ψ0)|

= (2π)−d/2~−d
∣∣(u, (1− b)R(~y, ~Dy) (Tx/~Mξ/~ψ0))

∣∣
. ~−dρN

(
(1− b)R(~y, ~Dy) (Tx/~Mξ/~ψ0)

)
. ~M−d, ~ ∈ (0, 1], M ≥ 0,

for (x, ξ) in a sufficiently small neighbourhood of (x0, ξ0). Combining with (2.37)

we may conclude for some small δ > 0

sup
(x,ξ)∈Bdδ(x0,ξ0)

|V~u(x, ξ)| . ~N , ~ ∈ (0, 1], N ≥ 0,

and by Proposition 2.64 it follows that (x0, ξ0) /∈WFG(u), which proves WFG(u) ⊆
HWF(u).

HWF(u) ⊂WFG(u):

Suppose that 0 6= (x0, ξ0) /∈ WFG(u). By means of the Moyal identity (A.8) and

Lemma A.19 we obtain for a ∈ C∞c (R2d)

(2.38)
‖aW (~y, ~Dy)u‖L2

= sup
g∈S (Rd), ‖g‖=1

∣∣(aW (~y, ~Dy)u, g)
∣∣

= sup
g∈S (Rd), ‖g‖=1

∣∣(u, aW (~y, ~Dy)g)
∣∣

. sup
g∈S (Rd), ‖g‖=1

~−d
∫
R2d

∣∣V~u(x, ξ) (aW~ (y,Dy)(Tx/~Mξ/~ψ0), g)L2

∣∣ dx dξ
. ~−d

∫
R2d

|V~u(x, ξ)| ‖aW~ (y,Dy)(Tx/~Mξ/~ψ0)‖L2 dx dξ.

By Proposition 2.64 there exists a bounded open neighbourhood U 3 (x0, ξ0) such

that

sup
(x,ξ)∈U

|V~u(x, ξ)| . ~N , ~ ∈ (0, 1], N ≥ 0.
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By Theorem A.24 we have for some n ≥ 0 the estimate

‖aW~ (y,Dy)(Tx/~Mξ/~ψ0)‖L2 . ‖ψ0‖L2

∑
|α|≤n

~|α| ‖∂αa‖∞ .

This gives for ~ ∈ (0, 1], N ≥ 0

(2.39)

∫
U

|V~u(x, ξ)| ‖aW~ (y,Dy)(Tx/~Mξ/~ψ0)‖L2 dx dξ . ~N ,

It remains to estimate the integral over R2d \ U : since u ∈ S ′ (Rd
)
, we have for

some M ∈ N0 the polynomial bound

|V~u(x, ξ)| . h−d〈(x/~, ξ/~)〉M ≤ ~−d−M〈(x, ξ)〉M , ~ ∈ (0, 1].

Lemma 2.77 then yields for a ∈ C∞c (R2d) supported in a suitably small neighbour-

hood of (x0, ξ0), ~ ∈ (0, 1],∫
R2d\U

|V~u(x, ξ)| ‖aW~ (y,Dy)(Tx/~Mξ/~ϕ)‖L2 dx dξ

. ~−d−M
∫∫

R2d\U
〈(x, ξ)〉M CN~N〈(x, ξ)〉−N/2 dx dξ

. ~N−d−M ,

provided N > 2(M + 2d). Using (2.38) and (2.39) this shows that (x0, ξ0) /∈
HWF(u), which completes the proof of HWF(u) ⊆WFG(u) and thus of the The-

orem. �

2.6.5. A comparison between WFSG and WFG.

We have already compared WFSG and WFG to some extent in the discussion

following Example 2.59. Having Theorem 2.74 at hand, we may reformulate, using

Fourier symmetry and the Sobolev spaces, some results that were given in [111,

Prop. 1] for HWF in order to to compare WFG and WFSG further.

Proposition 2.78. Let u ∈ S ′ (Rd
)
.

(1) Let ξ0 ∈ Rd \ {0}. If (0, ξ0) /∈ WFG(u), then ∀x ∈ Rd we have (x, ξ0) /∈
WFψSG(u). In particular, if (0, ξ) /∈ WFG(u) for all ξ ∈ Rd \ {0}, then

u ∈ C∞(Rd).

(2) Let x0 ∈ Rd \ {0}. If (x0, 0) /∈ WFG(u), then ∀ξ ∈ Rd we have (x0, ξ) /∈
WFeSG(u). In particular, if (x, 0) /∈ WFG(u) for all x ∈ Rd \ {0}, then

û ∈ C∞(Rd).
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(3) Let x0 ∈ Rd \ {0}. If there is a cut-off φx0∞ such that φx0∞u ∈ H∞,0SG (Rd),

then ∀ξ ∈ Rd we have (x0, ξ) /∈ WFG(u). In particular, if u ∈ H∞,0SG (Rd),

then WFG(u) ⊂ {0} × Rd \ {0}.
(4) Let ξ0 ∈ Rd \ {0}. If there is a cut-off φξ0∞ such that φξ0∞û ∈ H∞,0SG (Rd),

then ∀x ∈ Rd we have (x0, ξ0) /∈ WFG(u). In particular, if u ∈ H0,∞
SG (Rd),

then WFG(u) ⊂ Rd \ {0} × {0}.

We remark that these results may be visualized in the time-frequency plane. We

do so for (1) in Figure 11.

x

ξ

ξ0

x1 x2

Figure 11. Inclusion results of WFSG and WFG.

The following example (see also [22]) underlines the usefulness of the WFG:

Example 2.79. Let u0 ∈ S ′ (Rd
)
. Then the family of distributions

u : [0,∞)→ S ′ (Rd
)

t 7→ F−1
(
eiξ

2tF(u0)
)

is a solution to the homogeneous initial value problem for the Schrödinger equation−i∂tu+ ∆u = 0

u|t=0 = u0.

By Lemma 2.56 we have

(x, ξ) ∈WFG(u0)⇔ (x+ tξ, ξ) ∈WFG(u(t, ·)).
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In particular this may be used to visualize (using of Proposition 2.78), with refer-

ence to the time-frequency plane, the well-known facts (see e.g. the introduction

in [153]) that

• u0 is compactly supported, then u(t, ·) is smooth for all t > 0,

• u0 = e−
i
2
λ(·)2

, then u(t, ·) develops a singularity at t = 1
λ
.

For more on propagation of these kind of singularities under Schrödinger operators

in various functional settings consider [30, 31, 85, 86, 100, 101, 109, 111, 153].

Remark 2.80. We mention that in [149], another global notion of singularity struc-

ture suitable for the analysis of Schrödinger equations, the metaplectic wave front

set, MWF, is introduced with reference to yet another symbol class. It combines

features of WFG(u) and WFSG(u) in that it contains the classical wave front set,

but at the same time transforms adequately under the full metaplectically group.

However, it has several draw-backs, which were already pointed out in [149], such

as the facts that it is not defined as a closed set and does not possess the feature

of global S -regularity.
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2.7. Operations on tempered distributions using WFG.

2.7.1. Multilinear operations and composition with operators.

It would be possible to produce the result about the pairing of distributions using

the G-wave front set in a similar fashion as before in the SG-setting, i.e. Theorem

2.37.

However, due to the simpler structure of WFG, it is more convenient to obtain

the result using pull-backs by linear maps and the tensor product of distributions,

since these results take a much simpler form in the G-setting. This has already

been achieved by Hörmander [82]. We present some of these results here to be

able to use them for later applications and to be able to compare them with our

findings in the SG-setting. For that, again, we first introduce the space of all

distributions with wave front set in a given cone. By abuse of notation, we give it

the same symbol as before, noting that this time Γ is a subset of WG instead of

WSG.

Definition 2.81. Let Γ ⊂WG closed subset. Define

S ′
Γ

(
Rd
)

= {u ∈ S ′ (Rd
)
|WFG(u) ⊂ Γ}

with a notion of convergence given by u
S ′Γ→ 0 if

(1) u
S ′→ 0,

(2) for all a ∈ Gm
(
Rd
)

characteristic on all of Γ we have aW (x,D)u
S→ 0.

Again, when we speak about sequential continuity in the following, we do so with

reference to this notion of convergence. Once more we have denseness of S in S ′
Γ,

see [82]:

Lemma 2.82. S
(
Rd
)

is dense in S ′
Γ

(
Rd
)
.

By analysing the elementary maps ιd : Rd → Rd+1, prd : Rd+1 → Rd and DA of

Section 2.4.1, Hörmander [82] obtains:

Theorem 2.83 (Behaviour of WFG under pull-backs by linear maps). Let A be a

linear map Rd → Rs, Γ ⊂WG closed. Then for all u ∈ S ′
Γ(Rd) such that

(2.40) Γ ∩ {(0, ξ) | tAξ = 0} = ∅
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the pull-back A∗u can be uniquely defined, such that it is a sequentially continuous

map from S ′
Γ(Rs) to S ′(Rd). In fact we have the inclusion

(2.41) WFG(A∗u) ⊂ A∗WFG(u) = {(x,tAξ) | (Ax, ξ) ∈WFG(u)}.

We further have the following behaviour under tensor products

Lemma 2.84 (Behaviour of WFG under tensor products). Let ui ∈ S ′(Rdi
)
.

Then we have

WFG(u1 ⊗ u2) ⊂
{(
x1, x2; ξ1, ξ2

)∣∣(xi, ξi) ∈ (WFG(ui) ∪ {0}
)}
\ {0}.

Remark 2.85. Both of the previous results can be proved in two ways: either by

pseudo-differential calculations, or, in a more straight-forward calculation-based

approach, by use of Proposition 2.60 and by calculating Vψ0(pr∗du), Vψ0(ι∗du),

Vψ0(A∗u) and Vψ0(u1 ⊗ u2). The latter is particularly easy, since

Vψ0(u1 ⊗ u2) = Vψ0(u1)⊗ Vψ0(u2),

while it is quite complicated for pseudo-differential operators, see [82, Prop. 2.8],

since36

G0(Rd × Rd)⊗G0(Rd′ × Rd′) 6⊂ G0(Rd+d′ × Rd+d′).

With Theorem 2.83 and Lemma 2.84, we are once more able to characterize

the product of two tempered distributions in terms of the diagonal embedding δ

via δ∗(u ⊗ v). Hörmander obtained the pairing from the fact that F{f}(0) =∫
Rd f(x) dx and thus by applying Fourier transformation and the pull-back by

0 ↪→ R2d to u ⊗ v. Alternatively (to avoid the Fourier transform) it is possible

to repeat the construction of 2.37 for the G-calculus. We summarize the two

operations in the following Proposition. We do not give a proof here, since the

pairing is already covered in [82]. A proof for the product, which is not treated in

[82], is a special case of the construction in Section 3.4.

Proposition 2.86. Let u1, u2 ∈ S ′ (Rd
)
. Then

(1) If (0, ξ) ∈ WFG(u1) ⇒ (0,−ξ) /∈ WFG(u2), then their product is well-

defined. The G-wave front set of the product is contained in

WFG(u1) ∪WFG(u2) ∪ {(x, ξ1 + ξ2)|(x, ξi) ∈WFG(ui)} .
36Recall that we have already used this to overcome the same difficulties in the SG-setting.
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The product map is a sequentially continuous map

S ′
WFG(u1)(Rd)×S ′

WFG(u2)(Rd)→ S ′ (Rd
)
.

(2) If (x, ξ) ∈ WFG(u1) ⇒ (x,−ξ) /∈ WFG(u2), then their pairing is well-

defined. The pairing is a sequentially continuous map

S ′
WFG(u1)(Rd)×S ′

WFG(u2)(Rd)→ Rd.

Remark 2.87. Again, Proposition 2.86 enables us to define convolutions as well.

This can be used to define composition with operators in terms of their kernels,

by revisiting (2.21), as in [82, Prop. 2.11]:

Proposition 2.88 (Composition with operators). Let u ∈ S ′ (Rd
)

and KA ∈
S ′(Rd′+d

)
the Schwartz kernel of an operator A : S

(
Rd
)
→ S ′(Rd′

)
.

Let

WF′G (KA) = {(x, y; ξ,−η) | (x, y; ξ, η) ∈WFG (KA)}

pr0
1WF′G (KA) = {(x, ξ) | (x, 0, ξ, 0) ∈WF′G (KA)}

pr0
2WF′G (KA) = {(y, η) | (0, y, 0, η) ∈WF′G (KA)}

Then we have, for f ∈ S
(
Rd
)
,

WFG(Af) ⊂ pr0
1

(
WF′G (KA)

)
.

More generally, A may be extended in a canonical fashion to all u ∈ S ′ (Rd
)

with

WFG(u) ∩ pr0
2

(
WF′G (KA)

)
= ∅.

For those we have

(2.42) WFG(Au) ⊂ pr0
1

(
WF′G (KA)

)
∪
(
WF′G (KA) ◦WFG(u)

)
,

where WF′G (KA), the G-wavefront relation is regarded as a set theoretical relation

WF′G (KA) : T ∗Rd → T ∗Rd′.

2.7.2. Affine maps.

To conclude this section, one might again study affine maps. In the G-setting

these are treated in a simple Lemma:

Lemma 2.89. For x0, ξ0 ∈ Rd we have

WFG(u) = WFG(Tx0u) = WFG(Mξ0u).
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Proof. This was concluded in [121] from the fact that translations and modulations

may be written as pseudo-differential operators with symbol in G0
0 and by applying

Proposition 2.66. It may also be obtained from the characterization of WFG in

terms of the STFT and (A.9). �

Thus finite translations are not “seen” by WFG. One may, however, apply

Theorem 2.52 and Lemma 2.84 to characterize the wave front set of translation-

invariant distributions.
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3. Special constructions and applications

3.1. Outline.

On a formal level, the SG- and G-wave front sets are defined in a very similar

manner, but we have already seen that they differ quite significantly in some

details. The main features that separate them are their different resolutions of the

time-frequency plane:

• WFSG contains local information, in particular pr1(WFSG)(u) = Css(u)

and WFψSG = WFcl.

• WFG, however, transforms in a known way under symplectic transforma-

tions, but is not as “localizable”.

We will take advantage of these features during the next sections, for which we

indicate the following outline.

• The property of WFψSG = WFcl enables us to ask how constructions in-

volving the classical wave front set can be “globalized” to such involving

WFSG. Some of the most important applications of microlocal methods

are within the theory of Fourier integral operators and Lagrangian distri-

butions, see Hörmander [79]. Oscillatory integrals, which (micro-)locally

represent these objects, form a class of distributions whose classical wave

front sets are well-understood. In fact the arising wave front sets are of

a special type, namely (conic) Lagrangian submanifolds known from sym-

plectic geometry, parametrised in terms of the phase functions associated

to the corresponding families of oscillatory integrals. Conversely, all such

conic Lagrangian submanifolds can (locally) be parametized by some phase

function and give rise to a class of distributions.

We may therefore ask if such a theory has a generalization to the tempered

SG-microlocal setting. This is discussed in Section 3.2. We give a brief sum-

mary of the classical theory in Section 3.2.1. In Section 3.2.2 and 3.2.3 we

present results, obtained in collaboration with Coriasco [49], on how to de-

fine tempered oscillatory integrals and how their singularities are bounded

by the stationary phase points of the associated phase function. Contin-

uing this analysis with recent results from our ongoing collaboration [49],

in Section 3.2.4, we study the underlying geometry “at infinity”. In accor-

dance with the classical theory, we characterize, for certain non-degenerate
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SG-phase functions, the aforementioned geometric bounds on the SG-wave

front sets as SG-Lagrangians. We also obtain a a converse characteriza-

tion, meaning all such SG-Lagrangians are again locally parametrizable by

non-degenerate SG-phase functions.

• We have already seen how dilations, i.e. scaling of distributions, may be

used to obtain (microlocal) information about this distribution. It is also

easy to see that the scaling behaviour of a distribution is linked to its order.

In Section 3.3.1, we follow the ideas of Weinstein [148] to discuss how these

considerations may be used to give a notion of “microlocal order” at a point

and how to define the symbol of a tempered distribution.

In Section 3.3.2, bounds on the scaling behaviour of a distribution are used

to extend distributions defined outside of a subspace to the whole space.

• In Section 3.4, the train of thought of Section 2.7.1 is continued, taking into

account the full symplectic invariance of WFG to study, G-microlocally, the

Weyl product and Weyl quantization of distributions.

• In Section 3.5 we discuss how our previous techniques may be employed

to define certain distributions arising in the perturbative approach to ax-

iomatic constructive quantum field theory. In particular, we discuss the

two-point function as a tempered oscillatory integral and discuss its singu-

larities in Section 3.5.2. We use this to define products with other distri-

butions as well as (twisted) powers of it in Section 3.5.3.
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3.2. Tempered oscillatory integrals.

3.2.1. Introduction and elements of the classical theory.

Oscillatory integrals arise in many subjects of mathematics and physics. They

take the form

(3.1) Iϕ(a) =

∫
Rs
eiϕ(x,θ)a(x, θ) dθ,

where ϕ is called the phase function and a is called the amplitude. Even if the

integral does not converge to a function in x, we are, under the right assumptions

on ϕ and a, able to treat these objects as distributions, meaning via their action

(3.2) f 7→
∫∫

X×Rs
eiϕ(x,θ)a(x, θ)f(x) dθdx.

Oscillatory integrals were studied by Hörmander as the (micro-)local representa-

tions of Lagrangian distributions in [79], see also [55, 56, 67, 81, 83, 84, 145]. These

distributions arise in particular as kernels of Fourier integral operators (FIO),

which often appear as solution operators to hyperbolic partial differential equa-

tions. His theory is well suited to study problems in open neighbourhoods of Rd

and compact manifolds. In order to treat global problems on non-compact spaces

(or on their compactifications, that is spaces with boundaries) it is necessary to

impose bounds on these distributions, such as temperedness. This translates to

studying objects of the form (3.1) where we impose bounds on the (derivatives of

the) symbols and phase functions. Several authors have adapted to work with SG-

or G-symbols.37 We are going to consider the SG-setting here.

While the subject of Lp-continuity of Fourier integral operators on Rd has been

studied in many global classes of FIOs, see e.g. [2], [3], [32, 33] and [123], to the

best of our knowledge propagation of SG-singularities were only studied in the ap-

proach using SG-Fourier Integral operators on Rd of Coriasco ([38, 39, 44, 45, 46],

see also [1]) and in the formalism of Legendrian distributions on scattering man-

ifolds, by Melrose and Zworski [102], see also [107, 70, 71]. We also note that in

recent works of Battisti, Coriasco and Schrohe [7, 8], a Boutet de Monvel-type

calculs of FIOs associated to boundary-preserving symplectomorphisms is estab-

lished, which is also suitable for the study of propagation of singularities, but does

37The Fourier Integral operators studied that may be represented by quadratic phase functions
and admit G-symbols are often so-called “Metaplectic operators”, see e.g. [30, 31, 32, 33, 34].
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not allow for propagation into and out of the boundary.

In the following we will present a theory of generalized oscillatory integrals and

Lagrangians as developed in collaboration with Coriasco [49, 50]. The advantage

of our approach is that we are able to formulate it in terms manifestly similar to

the classical ones, while still admitting a broad class of phase functions that give

rise to “singularities at infinity”. In particular we allow for corner-type, that is

ψe-contributions to the wave front set.38

In order to properly motivate the upcoming results and definitions and for the

convenience of the reader, we are first going to recall some elements of the classi-

cal theory of oscillatory integrals and Lagrangian distributions.

In the following, let X ⊂ Rd. We begin by introducing classical (homogeneous)

phase functions ϕ, see [81, Sect. 7.8.] and [67, Def. 1.10]. These are elements of

C∞
(
X × (Rs \ {0})

)
such that for all (x, θ) ∈ X × (Rs \ {0}) we have

• =ϕ ≥ 0, (Positivity of the imaginary part)

• ϕ(x, λθ) = λϕ(x, θ), (Homogeneity)

• dϕ 6= 0. (Absence of critical points)

The following Theorem, see [79, Prop. 1.2.2], allows us to then define oscillatory

integrals as distributions.

Theorem 3.1. Let ϕ a phase function. Then (3.2) can be extended39 in a unique

way to all Hörmander symbols a such that a 7→ Iϕ(a) ∈ D ′
(
Rd
)

is linear and

continuous40 in a.

38This is the main difference with respect to the previously mentioned approaches:

• In [38], see also [1], the phase functions (or phase components) under consideration fulfil

〈∇xϕ(x, θ)〉 � 〈θ〉
〈∇θϕ(x, θ)〉 � 〈x〉

which enforces, by the upcoming analysis, Css(Iϕ(a)) ⊂ {0}.

• The singularities of the Fourier transforms of Legendrian distributions on Euclidean
spaces are contained in compact sets, by [107, Prop. 10], a feature that is not true for
our class of distributions.

39The expression is obviously well-defined if a ∈ S (Rd × Rs) and u ∈ D(Rd).
40Continuity is meant with respect to the Frechét topology on the space of all Hörmander sym-
bols.
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Consequently we have, for any phase function, an associated family of distri-

butions. We will now turn to the characterization of the classical singularities

of such distributions, which are bounded by geometric objects associated to the

phase function.

To any phase function one associates the set

(3.3) Cϕ := {(x, θ) ∈ X × (Rs \ {0}) | ∇θϕ = 0}

and the map

(3.4) λϕ : X × Rs \ {0} → X × Rd (x, θ) 7→ (x,∇xϕ(x, θ)).

By the homogeneity assumption on ϕ, Cϕ is conic in the second set of variables.

By the assumption on the absence of critical points, we have that λϕ maps Cϕ →
X × (Rd \ {0}) and the conic (in the covariable) target set

(3.5) Λϕ := λϕ(Cϕ) = {(x,∇xϕ(x, θ)) | (x, θ) ∈ Cϕ}

is called the set of stationary points associated to ϕ. Then the following inclusion

(see [55, Thm. 2.2.2], [79, Prop. 2.5.7.], [81, Thm. 8.1.9], [67, Chap. 7]) holds:

Theorem 3.2. For the distribution defined in Theorem 3.1 we have

singsupp(Iϕ(a)) ⊂ pr1(Cϕ)

WFcl(Iϕ(a)) ⊂ Λϕ.

A phase function is called non-degenerate, see [83, Def. 21.2.15.], if

• Cϕ is a d-dimensional C∞-manifold with tangent plane defined by the equa-

tions d(∇θϕ) = 0 and the differentials {d(x,θ)∂θjϕ(x, θ)}j∈{1..s} are linearly

independent. (Non-degeneracy)

The symplectic properties of manifolds of the form Λϕ are recalled in the following

result (see e.g. [55, Prop 3.7.3.])

Proposition 3.3. For a non-degenerate phase function ϕ on X × (Rs \ {0}), the

set of stationary points Λϕ is an immersed conic Lagrangian submanifold of T ∗X,

which means Λϕ is a C∞-manifold of dimension d that satisfies αψ|Λϕ ≡ 0, where

αψ is the tautological one-form on T ∗X.

We then also have the converse characterization, see e.g. Theorem 21.2.16. and

21.2.17. in [83]:
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Theorem 3.4. Let Λ ⊂ T ∗Rd \ {0} a conic Lagrangian submanifold.

Let z0 = (x0, ξ0) ∈ Λ and dim
(
Tz0Λ ∩ T ∗x0

Rd
)

= s. Then there exists a neigh-

bourhood U of x0, a cone Γ ⊂ (Rs \ {0}) and a non-degenerate phase function

ϕ ∈ C∞
(
U × Γ

)
41 such that Λ can be locally parametrized as Λϕ in the sense of

(3.5).

The following Theorem, [79, Thm. 6], guarantees the existence of a diffeomor-

phism mapping two such phase functions ϕ1, ϕ2 into each other, which means that

they are equivalent.

Theorem 3.5. Two phase functions ϕ1 and ϕ2 in conic neighbourhoods of

(x0, θ0,1) ∈ Rd×Rs and (x0, θ0,2) ∈ Rd×Rs respectively are equivalent in some conic

neighbourhood of these points, under a (local) diffeomorphism mapping (x0, θ0,1) to

(x0, θ0,2), if and only if

• ϕ1 and ϕ2 locally parametrize the same Lagrangian,

•
(
∂θj∂θkϕ1(x0, θ0,1)

)
j,k

and
(
∂θj∂θkϕ2(x0, θ0,2)

)
j,k

have the same signature.

We conclude this brief recap of the classical theory by coming back to the initial

oscillatory integrals and how they relate to the previous geometric objects. We

have recalled how any (non-degenerate) phase function gives rise to an associated

family of distributions and a conic Lagrangian. Conversely, any conic Lagrangian

gives rise (locally) to a phase function. The so-called Lagrangian distributions (or

Lagrangian distributional densities) associated to Λ are then those distributions

that are (micro-)locally given by oscillatory integrals for phase functions locally

parametrizing Λ, see [79, Def. 3.2.2.].

In the following we will now present our findings in [49, 50], which generalize the

previous notions to the global setting on Rd in an outline as above.42 We first define

tempered oscillatory integrals and study their singularities and then discuss the

geometric objects associated to the class of phase functions used in the analysis.

3.2.2. Definition of tempered oscillatory integrals.

We begin by introducing a very broad class of SG-phase functions. We focus on

real-valued phase functions, the extension to such with positive imaginary part is

straight-forward.

41Here we use the definition of non-degenerate phase function on open cones U × Γ.
42For that, as in [50], we have updated our notation with respect to [49] to a notation closer to
[79, 83], for the convenience of the reader.
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Remark 3.6. In the following, we generalize the notion of SGme,mψ to Rd × Rs,

which is a straight-forward modification of the definitions in Section 1.2.3. In

particular, we have SG
me,mψ
cl (Rd × Rs) ∼= Smecl (Rd)⊗ S

mψ
cl (Rs).

Definition 3.7. Let (ne, nψ) ∈ R2
+. An admissible inhomogeneous SG-phase func-

tion of order (ne, nψ) is a real-valued element of SGne,nψ(Rd × Rs) such that

(3.6) Φ(x, θ) := 〈x〉2 |∇xϕ(x, θ)|2 + 〈θ〉2 |∇θϕ(x, θ)|2,

as an element of SG2ne,2nψ(Rd × Rs), is elliptic, i.e. satisfies for some R > 0

(3.7) Φ(x, θ) & 〈x〉2ne〈θ〉2nψ when |x|+ |θ| ≥ R

Remark 3.8. We note that these SG-phase functions do not form a subset of the

classical phases that occurred in Section 3.2.1, since the are in general inhomoge-

neous. It has been already remarked by Hörmander [79], see also [67], that the

assumption of homogeneity may be relaxed. Indeed our theory is based on the

works of [156], where a local theory of oscillatory integrals with inhomogeneous

phase functions was developed.

Indeed, there is a connection to the classical theory: assuming nψ = 1 and that ϕ

admits a homogeneous symbol ϕψ := σψ(ϕ) such that ϕ− (1⊗ χ)ϕψ ∈ SGne,0 for

any excision function χ, we can write in (3.2)43

(3.8) eiϕ(x,θ) = eiϕ
ψ(x,θ)︸ ︷︷ ︸

Cl. phase

· χ(θ)ei(ϕ−ϕ
ψ)(x,θ)︸ ︷︷ ︸

Cl. symbol

+ (1− χ(θ))eiϕ(x,θ)︸ ︷︷ ︸
Compactly supported in θ

.

Therefore relaxing the assumption of homogeneity to asymptotic homogeneity is

not a big change. Our assumption on the phase function being smooth everywhere,

even at θ = 0, however, is an important feature during the upcoming analysis.

Using the notion of an admissible phase function, we are now ready to make sense

of the formal expression (3.2) as a tempered distribution.

Theorem 3.9. With any fixed admissible inhomogeneous SG-phase function ϕ of

order (ne, nψ) we may associate a map

Iϕ : SG(Rd × Rs)→ S ′(Rd),

43This can be compared with the treatment of Example 7 in [118, Sect. IX.10], wherein the
phase of the two-point function was similarly “homogeneized”, which we will discuss in more
detail in Section 3.5.2.

94



uniquely determined by the the following properties:

(1) a 7→ Iϕ(a) is a linear map;

(2) If a ∈ S (Rd × Rs), then Iϕ(a) coincides with the (absolutely convergent)

integral (3.1);

(3) the restriction of Iϕ to SGme,mψ(Rd × Rs) is a continuous map

SGme,mψ(Rd × Rs)→ S ′(Rd).

We call the resulting distribution Iϕ(a) a SG-oscillatory integral.

We follow our proof of [49, Thm. 3.1], which in turn is based on the classical

proof in [79, Sect. 1.2] with the adaptations for inhomogeneous phase functions

of [156, Thm. 1].44 It essentially breaks down into two parts: one is to prove

the existence of an operator associated to the phase function that can be used to

regularize the integral (3.2) by suitably reducing the symbol order of the amplitude.

The second is to prove that this procedure may be used to continuously extend

(3.2) in S ′ even for amplitudes for which the integral does not converge.

Lemma 3.10. Let ϕ be a given admissible inhomogeneous SG-phase function of

order (ne, nψ). Then there exists

bj ∈ SG−ne+1,−nψ(Rd × Rs) j ∈ {1, . . . , s},

ck ∈ SG−ne,−nψ+1(Rd × Rs) k ∈ {1, . . . , d},

d ∈ SG−ne,−nψ(Rd × Rs),

such that the linear differential operator

(3.9) P = b · ∇θ + c · ∇x + d,

with (formal) transpose (with respect to f ∈ S (Rd × Rs) ⊂ L2(Rd × Rs))

(3.10) tPf = −∇θ · (bf)−∇x · (cf) + df

satisfies

(3.11) tPeiϕ(x,θ) = eiϕ(x,θ).

44For further versions following the same idea, see [55, Thm. 2.2.1.], [67, Thm. 1.1] and [118,
Thm. IX.47]. The proof in [81, Thm. 8.1.9] makes use of the stationary phase lemma. Since we
consider unbounded sets and need global bounds, we do not that approach here, since we do not
restrict our analysis to classical SG-symbols, where we could take advantage of the isomorphism
of Proposition 1.20.
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Furthermore, P is a continuous map

(3.12) P : SGme,mψ(Rd × Rs)→ SGme−ne,mψ−nψ(Rd × Rs).

Proof. The proof coincides in its essentials with that of our proof of [49, Lem. 4]

and is basically a SG-variant of the one from [156, Lem. 2.10].

Consider the SG-symbol Φ associated to ϕ introduced in (3.6) and take an excision

function χ(x, θ) = (1− φ0)(x, θ) in SG0,0(Rd × Rs) such that on the support of χ

we have

|Φ(x, θ)| & 〈x〉2ne〈θ〉2nψ ,

by taking χ ≡ 1 for |x| + |θ| > R + 1 and χ ≡ 0 for |x| + |θ| ≤ R with respect to

the R in (3.6).

Then χΦ−1 ∈ SG−2ne,−2nψ(Rd × Rs) and we can set

bj(x, θ) = i
(
χΦ−1

)
(x, θ) 〈θ〉2 ∂θjϕ(x, θ) ∈ SG−ne+1,−nψ(Rd × Rs),

ck(x, θ) = i
(
χΦ−1

)
(x, θ) 〈x〉2 ∂xkϕ(x, θ) ∈ SG−ne,−nψ+1(Rd × Rs),

d(x, θ) = (∇θ · b+∇x · c+ φ0)(x, θ) ∈ SG−ne,−nψ(Rd × Rs).

Using integration by parts (note that the boundary terms vanish, since we consider

the transpose with respect to S (Rd × Rs)), it is easy to verify that the operator
tP defined in (3.10) is indeed the transpose of P with respect to S (Rd×Rs). One

verifies (3.11) by calculating

tPeiϕ = −∇θ ·
(
beiϕ

)
−∇x ·

(
ceiϕ

)
+ deiϕ

=
(
−∇θ · b− ib · ∇θϕ−∇x · c− ic · ∇xϕ+∇θ · b+∇x · c+ φ0

)
eiϕ

=
(
(1− φ0) · Φ−1 · Φ + φ0

)
eiϕ = eiϕ,

where we have made use of the definition (3.6) of the symbol Φ.

The continuity (3.12) of P is immediate, by the continuity of differentiation and

multiplication by another symbol as operations between SG-classes, see Section

1.2.3, in particular the orders in (3.9) match in exactly such a way that the conti-

nuity between the indicated spaces follows. �

The next lemma allows us to estimate (3.2) with respect to the topologies of

S (Rd × Rs) and SGme,mψ(Rd × Rs). It essentially coincides with [49, Lem. 5].

Lemma 3.11. Let ϕ be an admissible inhomogeneous SG-phase function of order

(ne, nψ) and a ∈ S (Rd × Rs). Then, the associated oscillatory integral Iϕ(a),
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defined in (3.1), is an element of S
(
Rd
)

that satisfies, when considered as a

(regular) tempered distribution, for any (me,mψ) ∈ R2 and each f ∈ S (Rd),

|〈Iϕ(a), f〉| . ρ
me,mψ
M (a) ρS

N (f),

where the indices N and M depend solely on (me,mψ).

Proof. The fact that (3.1) converges for every x ∈ Rd and yields a smooth and

rapidly decreasing function in x follows from∣∣∣∣∫
Rs
eiϕ(x,θ) a(x, θ) dθ

∣∣∣∣ ≤ ∫
Rs
|a(x, θ)| dθ,

the rapid decay of a in both x and θ, differentiation under the integral sign and

dominated convergence.

By applying the operator defined in Lemma 3.10 several times, r ∈ N0, we obtain,

for a fixed f ∈ S
(
Rd
)
,∣∣∣∣∫

Rs×Rd
eiϕ(x,θ) a(x, θ)f(x) dθ dx

∣∣∣∣ =

∣∣∣∣∫
Rs×Rd

(
tP
)r
eiϕ(x,θ) a(x, θ)f(x) dθ dx

∣∣∣∣
≤
∫
Rs×Rd

∣∣P r
(
a(x, θ)f(x)

)∣∣ dθ dx.
Since multiplication by f ∈ S

(
Rd
)

(in the first set of variables) is a continuous

map SGme,mψ → SG−∞,mψ and the inclusion map SGm′e,m
′
ψ ↪→ SGme,mψ , m′e ≤ me,

m′ψ ≤ mψ, is continuous, we have that the map given by a 7→ P r
(
a(x, θ)f(x)

)
is

a continuous map from SGme,mψ(Rd × Rs) to SGme−rne,mψ−rnψ(Rd × Rs) for any

r ∈ N0. In particular we have

sup
Rd×Rs

∣∣P r
(
a(x, θ)f(x)

)∣∣ 〈x〉rne−me〈θ〉rnψ−mψ . ρ
me,mψ
M (a) ρS

N (f)

with M and N in N0 depending solely on r and the orders (me,mψ) and (ne, nψ).

Thus, for suitably large r (such that the following integral converges) we have

(3.13)

|〈Iϕ(a), f〉| . ρ
me,mψ
M (a) ρS

N (f)

∫
Rs×Rd

〈x〉me−rne〈θ〉mψ−rnψ dθ dx . ρ
me,mψ
M (a) ρS

N (f)

which proves the claim. �

Using the previous lemmas, we may conclude the proof of Theorem 3.9 as in [49].
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Proof of Theorem 3.9. Looking at the proof of Lemma 3.11, it is possible to define,

for f ∈ S
(
Rd
)

and r ∈ N0 large enough (which depends, for a fixed admissible

phase-function ϕ, only on the order (me,mψ) of a),

〈Iϕ(a), f〉 :=

∫
Rs×Rd

eiϕ(x,θ) P r
(
a(x, θ)f(x)

)
dθ dx.

That this is a well-defined tempered distribution is granted by (3.13). By the

continuity with respect to the symbol topologies we may conclude that this is

indeed a well-defined (independently of r, provided it is chosen large enough) and

unique continuation of the map defined by (3.2), since we may approximate any

amplitude by a series of Schwartz functions, as granted by Lemma A.11. �

Remark 3.12. In a similar approach of defining oscillatory integrals, one makes use

of a mollifier φ0
ε , setting

(3.14) 〈Iϕ(a), f〉 := lim
ε→0

〈
eiϕ, a · (f ⊗ φ0

ε)
〉
.

Due to the uniqueness statement in Theorem 3.9, the two methods coincide.45

Both approaches underline how the definition of Iϕ(a) can actually be seen as the

extension of the distribution eiϕ from the space

SG−∞,0(Rd × Rs)︸ ︷︷ ︸
3f⊗1

· SGme,−∞(Rd × Rd)︸ ︷︷ ︸
3φεa

= S
(
Rd
)
(Rd×Rd)→ SG−∞,mψ(Rd × Rs)︸ ︷︷ ︸

3f ·a

.

This is useful to keep in mind during Section 3.3.2, where we will consider exten-

sions of tempered distributions.

3.2.3. Singularities of tempered oscillatory integrals.

Having defined oscillatory integrals, we may turn to a description of their singu-

larities, essentially following our approach in [49, Sect. 4]. In order to do so, we

first generalize the notion of Cϕ as encountered in Section 3.2.1. In the following,

we again make systematic use of the identification Rd t ((Rd \ {0})/ ∼) ∼= Bd

of Construction 1.1 in terms of the isomorphism ι and the identification ∂Bd =

∂Sd−1 = (Rd \ {0})/ ∼, as well as of the conification map Γ. Again, we consider

subsets of (Rd \ {0})/ ∼ as conic subsets of Rd \ {0}.
In the upcoming constructions, we will often pass from one of these viewpoints to

the other: whenever we make use of the conic structure, we work on Rdt(Rd \ {0})
45Actually, the mollifier approach is usually used to prove Lemma A.11, which was used in the
proof.
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and when we analyse “topological properties at infinity”, we work on Bd. In order

to facilitate the comprehension, we adopt the notation of [50], which is introduced

in the following.

Notation.

• y denotes “variable-type” elements of Bd, η denotes “co-variable-type” el-

ements of Bd, γ denotes “co-variable-type” elements of Bs,
• the corresponding elements of Rd t (Rd \ {0}) are denoted by x and ξ

respectively and elements of Rs t (Rs \ {0}) are named θ.

In a completely similar fashion to the definition of W̃SG = ∂(Bd × Bd), substituting

s in place of d in the dimensions of the second factors in (1.2), we define B̃ :=

∂(Bd × Bs) = B̃ψ ∪ B̃e ∪ B̃ψe and, again with s in place of d in the dimensions of

the second factors of (1.3), B := Bψ tBe tBψe. Finally, we set S = Sψ t Se t Sψe,

with

Sψ = Rd × Ss−1 Se = Sd−1 × Rs Sψe = Sd−1 × Ss−1.

Remark 3.13. Note that we may also formulate for instance

Bψ = (id× Γ)(Sψ) = (ι−1 × Γ)(B̃ψ)

Be = (Γ× id)(Se) = (Γ× ι−1)(B̃e)

Bψe = (Γ× Γ)(Sψe) = (Γ× Γ)(B̃ψe)

Definition 3.14. Let ϕ ∈ SGne,nψ(Rd × Rs) an admissible phase function. Then

〈θ〉2|∇θϕ|2 ∈ SG2(ne,nψ)(Rd × Rs). Then C̃ϕ denotes the (closed) set46

C̃ϕ :=
{

(y0, γ0) ∈ ∂(Bd × Bs)
∣∣ 〈θ〉2|∇θϕ|2 is not elliptic at (y0, γ0)

}
We now establish the first half of an analogue to Theorem 3.2.

Proposition 3.15. Let ϕ an admissible phase function. Then for any amplitude

a ∈ SG(Rd × Rs) we have

C̃ss(Iϕ(a)) ⊂ pr1(C̃ϕ).

As in [49], we conclude this Proposition as a consequence of the following one:

46I.e. we have C̃ϕ = c̃harSG(|∇θϕ|2).
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Proposition 3.16. Let ϕ be an admissible inhomogeneous SG-phase function of

order (ne, nψ) and let a ∈ SG(Rd × Rs).

If C̃sp(a) ∩ C̃ϕ = ∅, then C̃ss(Iϕ(a)) = ∅, that is, Iϕ(a) ∈ S (Rd).

We delay the proof of this statement to first conclude Proposition 3.15.

Proof of Proposition 3.15. Let y0 /∈ pr1(C̃ϕ). Choose a (possibly asymptotic) cut-

off φx0 around the element x0 corresponding to y0 such that C̃sp(φx0)∩pr1(C̃ϕ) = ∅.
Revisiting the construction of the map Iϕ in the proof of Theorem 3.9, we have

φx0Iϕ(a) = Iϕ(φx0a), and the latter belongs to S
(
Rd
)
, by Proposition 3.16. �

Proof of Proposition 3.16. We follow our proof in [49], which is again based on a

regularization argument, cf. [156, Prop. 3.3] and the original [79, Prop. 1.2.5.].

Choose first a neighbourhood Ṽ ⊂ Bd × Bs of C̃sp(a) whose closure does not

intersect C̃ϕ . Then, by the definition of C̃ϕ , |∇θϕ(x, θ)|2 is elliptic at each (y0, γ0)

in Ṽ ∩ B̃. By compactness, we can then obtain a single open neighbourhood

Ũ ⊂ Bd × Bs of Csp(a) ∩ B̃ ⊂ (Bd × Bs) with Ũ ⊂ Ṽ such that

(3.15) |∇θϕ(x, θ)|2 & 〈x〉2ne〈θ〉2nψ−2 ∀(x, θ) ∈ (ι−1 × ι−1)(Ũ o).

We then fix a cut-off function φU , as in Construction 1.3 (see Figure 2) identically

equal to 1 on ι(Ũ o) with C̃sp(φU) ⊂ Ṽ such that we have the estimate (3.15) on

all of the support of φU . We now write Iϕ(a) = Iϕ(φUa) + Iϕ
(
(1 − φU)a

)
. By

construction, (1 − φU)a is compactly supported, which implies Iϕ
(
(1 − φU)a

)
∈

S
(
Rd
)
. To analyse Iϕ(φUa), we define

bj(x, θ) = i|∇θϕ(x, θ)|−2 ∂θjϕ(x, θ), c(x, θ) = ∇θ · b(x, θ),

Q = b · ∇θ + c.

Observe that bj is well-defined on supp(φU), since |∇θϕ|2 is strictly positive on

supp(φU), and as a consequence of (3.15) we have that

φUbj ∈ SG−ne,−nψ+1(Rd × Rs) and φUc ∈ SG−ne,−nψ(Rd × Rs).

Furthermore we may compute

(3.16) φU [ tQeiϕ] = φU(−∇θ · b− ib · ∇θϕ+∇θ · b)eiϕ = φUe
iϕ.

The same holds true if we replace φU by any SG-symbol of order (0, 0) with the

same support properties. We can then conclude by an approximation argument as
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in the proof of Theorem 3.9 and in the proof of Lemma 3.11:

Q involves only differentiations with respect to θ and as a consequence we can

insert it into the expression of Iϕ(φUa), and find, using (3.16),

Iϕ(φUa) = Iϕ(Qr(φUa)) for arbitrary r ∈ N0.

since the identity holds true for a ∈ S (Rd × Rs) supported in V and extends by

continuity.

Since Q is a continuous map from SGme,mψ(Rd ×Rs) to SGme−ne,mψ−nψ(Rd ×Rs),

we can achieve arbitrarily low order of Qr(φUa), by choosing r large enough. Thus

Iϕ(φUa) ∈ S
(
Rd
)
, and consequently Iϕ(a) = Iϕ(φUa) + Iϕ((1− φU)a) ∈ S

(
Rd
)
,

which proves the claim. �

Having suitably generalized Cϕ, we can turn to generalizing Λϕ as in [49]. The

following definition may seem, at first, a bit tedious to compute for general phase

functions, but it will simplify a great deal and obtain a clear geometric interpre-

tation if we consider a SG-phase function ϕ ∈ SG1,1
cl , which we will do in Section

3.2.4.

Definition 3.17. Let ϕ a SG-phase function ϕ of order (ne, nψ). Denote by prC̃ϕ
the projection of C̃ϕ × Bd ⊂ ∂(Bd × Bs) × Bd onto Bd × Bd. We define the set of

stationary phase points of ϕ, Λ̃ϕ ⊂ W̃SG, given in terms of its complement (with

respect to W̃SG) by

(3.17)

(Λ̃ϕ)c := {(y0, η0) ∈ W̃SG : ∃ Ũ open neighbourhood of (y0, η0) in Bd × Bd

∃ Ṽ open neighbourhood of pr−1

C̃ϕ
(Ũ) such that

|∇xϕ(x, θ)− ξ| & 〈x〉ne−1〈θ〉nψ + |ξ|

for any (x, θ, ξ) ∈ (ι−1 × ι−1 × ι−1)(Ṽ o)}.

As usual, we set

Λ̃e
ϕ := Λ̃ϕ ∩ W̃e

SG, Λ̃ψ
ϕ := Λ̃ϕ ∩ W̃ψ

SG, Λ̃ψe
ϕ := Λ̃ϕ ∩ W̃ψe

SG.

Λ̃ϕ is defined as the complement of a manifestly open set in W̃SG and therefore

constitutes a closed subset of W̃SG and consequently also of Bd × Bd. We are now

ready to prove an analogue of Theorem 3.2 by following our proof of [49, Thm.

4.1], which is again inspired by [156] and the classical [79, Prop. 2.5.7] by applying,
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as in the previous proofs, integral regularization to the expressions that arise when

determining W̃FSG(Iϕ(a).

Theorem 3.18. Let ϕ be an admissible inhomogeneous SG-phase function of order

(ne, nψ) and let a ∈ SG(Rd × Rs). For the temperate oscillatory integral Iϕ(a),

defined in Theorem 3.9, we have

(3.18) W̃FSG(Iϕ(a)) ⊂ Λ̃ϕ .

Proof. Let (y0, η0) ∈ W̃SG \ Λ̃ϕ and denote by (x0, ξ0) the corresponding point in

WSG. By Prop. 3.15, we may limit our attention y0 ∈ pr1(C̃ϕ), since otherwise

y0 /∈ pr1(C̃ϕ) ⊃ C̃ss(Iϕ(a)) = pr1(W̃FSG(Iϕ(a))).

Using the characterization of W̃FSG in terms of cut-offs, i.e. Lemma 2.5, we have

to prove that there exists a pair of (asymptotic) cut-offs φx0 and φξ0 such that on

the support of φξ0 we have

φξ0Fx→ξ[φx0Iϕ(a)] ∈ S
(
Rd
)
.

In fact, we will show that for a ∈ S
(
Rd
)

(3.19)
∣∣φξ0F [φx0Iϕ(a)](ξ)

∣∣ . ρ
me,mψ
M (a)(1 + |ξ|)−N ,

for arbitrarily high N ∈ N0, some M ∈ N0 and any ξ ∈ supp(φξ0). Then an

approximation argument as in the proof of Theorem 3.9 yields the result.

Since (y0, η0) /∈ Λ̃ϕ we can, by Definition 3.17, find an open neighbourhood Ũ of

(y0, η0) and a triple of localizing cut-offs (φx0(x), φξ0(ξ), φ(θ)) such that

• the product ψx0(x)φ(θ)φξ0(ξ) does not vanish on some neighbourhood of

(ι−1 × ι−1 × ι−1)(pr−1

C̃ϕ
(Ũ))o

• on the support of ψx0(x)φ(θ)φξ0(ξ) the function defined by Ψ(x, θ, ξ) :=

|∇xϕ(x, θ)− ξ|2 fulfils

(3.20) Ψ(x, θ, ξ) & (〈x〉ne−1〈θ〉nψ + |ξ|)2.

The supports of the cut-offs were chosen in such a way that C̃sp (φx0 ⊗ [1− φ])

does not intersect C̃ϕ. Thus, by Proposition 3.15, we can restrict our analysis to

an amplitude of the form φ(θ)a(x, θ) by writing

φx0Iϕ(a) = Iϕ
(
(φx0 ⊗ (1− φ))a

)︸ ︷︷ ︸
∈S (Rd)

+Iϕ
(
(φx0 ⊗ φ)a

)
.
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In the remainder of the proof we thus assume a to be supported in such a way

that on the support of φξ0(ξ)φx0(x) a(x, θ) we can estimate Φ̃ as in (3.20). For

now assume further a ∈ S (Rd × Rs).

We define another operator for the purpose of integral regularization via

bj(x, θ, ξ) = iΨ(x, θ, ξ)−1 φx0(x) (∂xjϕ(x, θ)− ξj),

c(x, θ, ξ) = ∇x · b(x, θ, ξ),

Q = b · ∇x + c.

By the previous assumptions on the supports, the operator Q is well-defined on

the support of φξ0(ξ)a(x, ξ). We construct the transpose of Q (boundary terms

vanish since a ∈ S (Rd × Rs)) and conclude that on the support of φξ0a we have

(3.21)
tQeiϕ(x,θ)−ix·ξ =

= [−∇x · b(x, θ, ξ)− ib(x, θ, ξ) · (∇xϕ(x, θ)− ξ) +∇x · b(x, ξ, p)] eiϕ(x,θ)−ix·ξ

= φx0eiϕ(x,θ)−ix·ξ.

Since we may assume φx0 ≡ 1 in a neighbourhood of x0, we can pick another

(asymptotic) cut-off φx0
2 supported in that smaller neighbourhood of x0 such that

φx0
2 φ

x0 = φx0
2 .

By (3.21), for arbitrary r ∈ N0, we have

(3.22)

∣∣φξ0F[φx0
2 Iϕ(a)

]
(ξ)
∣∣ =

∣∣∣∣φξ0(ξ)

∫
Rd×Rs

eiϕ(x,θ)−ix·ξ φx0
2 (x) a(x, θ) dxdθ

∣∣∣∣
≤
∣∣∣∣∫

Rd×Rs
eiϕ(x,θ)−ix·pQr

(
φξ0(ξ)φx0

2 (x) a(x, θ)
)
dxdθ

∣∣∣∣
≤
∫
Rd×Rs

∣∣Qr
(
φξ0(ξ)φx0

2 (x) a(x, θ)
)∣∣ dxdθ.

By (3.20), using the fact that differentiation decreases the respective symbol order

by 1, for any (me,mψ) there exists a semi-norm ρ
me,mψ
M on SGme,mψ(Rd×Rs) such

that∣∣Qr
(
φξ0(ξ)φx0

2 (x) a(x, θ)
)∣∣ . ρ

me,mψ
M (a)〈x〉me−rne/2〈θ〉mψ−rnψ/2(1 + |ξ|)−r/2.

Therefore, for large enough r, the final integral in (3.22) is integrable and decays in

ξ faster than any inverse power, we have therefore proved (3.19). By differentiating

under the integral sign, we can show similar estimates for any derivative with
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respect to ξ. If we approximate general a ∈ SGme,mψ(Rd×Rs) via test functions,47

this proves the claim. �

3.2.4. A study of the underlying geometry.

In the previous setting, we have defined oscillatory integrals for a very general

class of phase functions and amplitudes. In the following, we will restrict our

attention to classical phases (in the SG-sense of classicality) of order (1, 1), meaning

ϕ ∈ SG1,1
cl (Rd × Rs).

Under this stronger assumption, we will, following [50], calculate the objects C̃ϕ
and Λ̃ϕ in terms of the principal symbol of ϕ and discuss their geometric properties.

The approach will be to use Proposition 1.20 and Construction 1.1 to associate to

C̃ϕ and Λ̃ϕ triples of conic submanifolds, much in the same way as one associates

to a classical symbol a triple of homogeneous principal symbols. Consequently, we

first discuss the principal symbol of a SG1,1
cl -phase function.

By (1.11), we can write (using excision functions χe and χψ) and the notation

• ∈ {ψ, e, ψe} and σ•(φ) =: φ•

(3.23) ϕ(x, θ) = χeϕe + χψϕψ − χeχψϕψe + rϕ

with the principal symbol of σ(ϕ) = (ϕe, ϕψ, ϕψe) where

• ϕe ∈P1,1
e (Rd × Rs) is ψ-polyhomogeneous,

• ϕψ ∈P1,1
ψ (Rd × Rs) is e-polyhomogeneous,

• ϕψe ∈P1,1
ψe (Rd × Rs) satisfies σψ(ϕe) = σe(ϕ

ψ) = ϕψe,

• rϕ ∈ SG0,0(Rd × Rs).

As in Remark 3.8 we may absorb eirϕ ∈ SG0,0(Rd × Rs) into the amplitude of an

oscillatory integral. We have thus reduced our study to the case of phase functions

of the form

ϕ(x, θ) = χe(x)ϕe(x, θ) + χψ(θ)ϕψ(x, θ)− χe(x)χψ(θ)ϕψe(x, θ).

In order to attach geometric meaning to the singularity structures, we work on

the compactification B̃. We must first find a suitable representation of the phase

function over that space. We recall that, by Proposition 1.20, we have

ϕ̃ := (ι−1 × ι−1)∗ϕ ∈ ỹ−1γ̃−1C∞(Bd × Bs).

47This approximation has to be compatible with the support assumptions on a. Reviewing the
proof of [113, Prop. 1.1.5]), that is of Lemma A.11, this can be achieved.
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This allows us to work with smooth functions (multiplied by a weight function) in-

stead of symbols. However, we remark that one has to be careful when differentials

are involved, since we have

(3.24)

γ̃∇̃xϕ :=
(
ι0,1SG(∇xϕ)

)
(y, γ) = γ̃∇yϕ̃(y, γ) ·

(dι−1(y)

dy

)−1

.

ỹ∇̃θϕ :=
(
ι1,0SG(∇θϕ)

)
(y, γ) = ỹ∇γϕ̃(y, γ) ·

(dι−1(γ)

dγ

)−1

.

As in [50], we now analyse how the additional structure which we put on ϕ trans-

lates to the object ϕ̃ and how we are able to characterize C̃ϕ in terms of ϕ̃.

Lemma 3.19. The ellipticity assumption (3.7) on the associated function

Φ = |〈x〉∇xϕ|2 + |〈θ〉∇θϕ|2

is equivalent to the condition that
(
γ̃∇̃xϕ, ỹ∇̃θϕ

)
is nowhere vanishing on B̃. Fur-

thermore, we can write

C̃ϕ = {(y0, γ0) ∈ B̃ : ỹ∇̃θϕ(y0, γ0) = 0}.

Proof. By Proposition 1.20, we have that Φ is elliptic if and only if ι2,2SG(Φ) is

nowhere vanishing on B̃. We rewrite this as

ι2,2SG(Φ)(y, γ) = γ̃2ỹ2
(
〈x〉2|∇xϕ(x, θ)|2 + 〈θ〉2|∇θϕ(x, θ)|2

) ∣∣
(x,θ)=(ι−1(y),ι−1(γ))

=
[
|(ι1,0SG(〈x〉) · ι0,1SG(∇xϕ)|2 + |(ι0,1SG(〈θ〉) · ι1,0SG(∇θϕ)|2

]
(y, γ)

The maps (ι1,0SG(〈x〉)2 and (ι0,1SG(〈θ〉))2 are nowhere vanishing, since the maps (x, θ) 7→
〈x〉 and (x, θ) 7→ 〈θ〉 are elliptic and polyhomogeneous (see Example 1.11), which

proves the first assertion.

The characterization of C̃ϕ is a consequence of the same argument carried out for

the second summand by itself, that is |〈θ〉∇θϕ|2, in view of Definition 3.14. �

We now seek to obtain a similar characterization of Λ̃ϕ. We do so by finding an

analogue of the map λϕ defined in (3.4). For an SG-phase function, we may define

λϕ : Rd × Rs → Rd × Rd by (x, θ) 7→
(
x,∇xϕ(x, θ)

)
. In the following discussion,

we translate this to a map (Bd × Bs)o → Bd × Bd and then show that it extends

to parts of the boundary B̃ in a neighbourhood of C̃ϕ.

We thus start by considering the map (ι−1× ι−1)∗λϕ =
(

(y, γ) 7→ (ι−1y, ∇̃xϕ
)
. By
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compactification of the image space to Bd × Bd we set

(3.25) λ̃ϕ|(Bd×Bd)o = (ι× ι) ◦
(
(ι−1 × ι−1)∗λϕ

)
We now study the extendability of this map to parts of the boundary B̃, that is to

(3.26)
Ẽ = ((Bd)o × (Bs)o) t B̃e t B̃ell,

B̃ell = {(y0, γ0) ∈ B̃ψ ∪ B̃ψe : |∇xϕ|2 is elliptic at (y0, γ0)}.

Remark 3.20. This definition of λ̃ϕ may be illustrated in the following commutative

diagram.

Rd × Rs
(
Bd
)o × (Bs)o Ẽ

Rd × Rd
(
Bd
)o × (Bd)o Bd × Bd

ι× ι

∃λ̃ϕλ̃ϕλϕ

ι−1 × ι−1

We will prove the extendability of λ̃ϕ in terms of that of the map (ι1,0SG× ι
0,1
SG)λϕ :

Bd × Bs → Bd × Rd, which is given by

(3.27) (y, γ) 7→
(
y, γ̃ ∇̃xϕ(y, γ)

)
and is smooth up to the boundary by Proposition 1.20. We will show that, close

to the boundary components of Ẽ , this property yields the desired extension of λ̃ϕ.

Proposition 3.21. The map λ̃ϕ, defined on (Bd)o × (Bs)o by (3.25), admits a

smooth extension to the subset Ẽ ⊂ Bd × Bs defined in (3.26).

Proof. We prove this as in [49] by considering each component of Ẽ individually.

Since the first component of λ̃ϕ coincides with the projection on the first set of

variables pr1, that is pr1 ◦ λ̃ϕ = pr1, it is smoothly extendible from the interior to

the whole of Bd×Bs. Consequently it is enough to consider the second component

of λ̃ϕ.

Since ι is a diffeomorphism between Rd (or Rs) and
(
Bd
)o

(or (Bs)o), λ̃ϕ is smooth

in the interior, i.e. on (Bd)o × (Bs)o as a composition of smooth maps.

Consequently it is enough to consider (3.25) for |y| > 2/3 or |γ| > 2/3. We

first consider this map near the interior of the e-face B̃e, i.e. for |y| > 2/3 with

|γ| < c < 1. Here we write, using 3.23 and Proposition 1.18, for some vector-valued
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symbol p ∈ SG−1,1,

(3.28)

ι(∇̃xϕ(y, γ)) = ι

(
∇xϕ

e

(
y

|y|
(1− |y|)−1,

γ

|γ|
(1− |γ|)−1

)
+ (ι−1 × ι−1)∗p(y, γ)

)
= ι

(
∇xϕ

e

(
y

|y|
,
γ

|γ|
(1− |γ|)−1

)
+ (ι−1 × ι−1)∗p(y, γ)

)
.

where in the second step we have used the 0-homogeneity of ∇xϕ
e in the first set

of variables. Using this expression, we now extend λ̃ϕ smoothly to

Ã1 = {y ∈ Bd : 2/3 < |y| ≤ 1} × {γ ∈ Bs : |γ| < r′},

with arbitrary r′, 1 > r′ > 2/3. In fact, this is clearly possible for the first

summand in the argument of ι in the right hand side of (3.28). For the second

summand, Proposition 1.20 grants that for each vector component of p, that is

pj ∈ SG−1,1(Rd × Rs), that

(ι−1 × ι−1)∗pj ∈ ỹγ̃−1C∞(Bd × Bs) ⊂ γ̃−1C∞(Bd × Bs)

and consequently (ι−1 × ι−1)∗p is smooth on Ã1 as well. Moreover, the values of

both such extensions to Ã1 remain bounded, and ι is smooth on Rd. This implies

the extendability of λ̃ϕ to any point in B̃e.

We now consider the subset of Bd × Bs given by

Ã2 = {y ∈ Bd : 2/3 < |y| ≤ 1} × {γ ∈ Bs : |γ| > r},

r′ > r > 2/3. Observe that we have B̃ell ⊂ Ã2. Again we may write (close to the

boundary) for a vector-valued symbol q ∈ SG0,0(Rd × Rs),

(3.29)

ι(∇̃xϕ(y, γ)) = ι

(
∇xϕ

ψ

(
y

|y|
(1− |y|)−1,

γ

|γ|
(1− |γ|)−1

)
+ (ι−1 × ι−1)∗q(y, γ)

)
= ι

(
∇xϕ

ψ

(
y

|y|
(1− |y|)−1,

γ

|γ|

)
(1− |γ|)−1 + (ι−1 × ι−1)∗q(y, γ)

)
.

By Proposition 1.20, (ι−1 × ι−1)∗q = ι0,0SG(q) extends smoothly to Bd × Bs and in

particular stays bounded.
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Due to ellipticity, we have at points (y0, γ0) ∈ B̃ell, by Proposition 1.18 and 1.20,

either (y0, γ0) ∈ B̃ψ and ∇xϕ
ψ(ι−1(y0), γ0) 6= 0,

or (y0, γ0) ∈ B̃ψe and ∇xϕ
ψe(y0, γ0) 6= 0.

In the former case, the norm of the first summand in the argument of ι in the right

hand side of (3.29) tends to +∞ when |γ| ↗ 1. Then, sufficiently close to (y0, γ0),

we have

ι(∇̃xϕ) =
∇̃xϕ

|∇̃xϕ|

(
1− 1

|∇̃xϕ|

)
=

γ̃∇̃xϕ

|γ̃∇̃xϕ|

(
1− γ̃

|γ̃∇̃xϕ|

)
,(3.30)

where γ̃∇̃xϕ = ι0,1SG(∇xϕ) is smooth up to the boundary, granted by Proposition

1.20. Moreover, by homogeneity, we can write

γ̃∇̃xϕ(y, γ) = γ̃(ι−1 × ι−1)∗∇xϕ(y, γ) = ∇xϕ
ψ

(
y

|y|
(1− |y|)−1,

γ

|γ|

)
+ γ̃ι0,0SGq(y, γ).

Consequently this expression cannot vanish close to (y0, γ0), since by elliptic-

ity |∇xϕ
ψ(ι−1(y0), γ0)| 6= 0 and we have (since γ̃ vanishes on the ψ-boundary)

|γ̃ι0,0SGq(y, γ)| = 0. The smooth extendibility of (3.30) to points in B̃ell∩ B̃ψ follows.

The remaining case of points at the corner, that is the result for (y0, γ0) ∈ B̃ell∩B̃ψe,

follows in a similar way, writing by homogeneity

ι(∇̃xϕ(y, γ)) = ι((ι−1 × ι−1)∗∇xϕ(y, γ))

= ι

(
∇xϕ

ψe

(
y

|y|
,
γ

|γ|

)
(1− |γ|)−1 + (ι−1 × ι−1)∗(p+ q)(y, γ)

)
,

with p ∈ SG−1,1, q ∈ SG0,0 and ∇xϕ(y0, γ0) 6= 0, so that

γ̃(∇̃xϕ(y, γ) = ∇xϕ
ψe

(
y

|y|
,
γ

|γ|

)
+ γ̃(ι−1 × ι−1)∗p(y, γ) + γ̃(ι−1 × ι−1)∗q(y, γ).

All summands are smoothly extendible to (y0, γ0), the latter two even vanishing

there. The proof is complete. �

Note that the extendibility of λ̃ϕ to Ẽ , in view of Lemma 3.19, includes that

λ̃ϕ is well defined in a neighbourhood of C̃ϕ. Indeed, by the characterization of

C̃ϕ in terms of vanishing of ỹ∇̃θϕ, at points (y0, γ0) ∈ C̃ϕ we necessarily have
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γ̃∇yϕ̃(y0, γ0) 6= 0 and consequently the same holds, by continuity, in a neighbour-

hood of (y0, γ0) in B̃.

We may now characterize Λ̃ϕ in terms of λ̃ϕ and C̃ϕ, in analogy to (3.5).

Lemma 3.22. Let ϕ ∈ SG1,1
cl (Rd × Rs) be a classical SG-phase function. Then,

we have Λ̃ϕ = λ̃ϕ(C̃ϕ).

For the sake of brevity, we omit the details of the proof, which is achieved by

use of the same methods used in the proof of Proposition 3.21 above and Lemma

1.4.

We have characterized the sets C̃ϕ and Λ̃ϕ associated to a phase function ϕ as

subsets of the boundary of the corresponding compactifications. As in [50], we

will now make a non-degeneracy assumption on the phase function that allows us

to study these objects in the framework of the theory of analysis on manifolds with

corners. As mentioned, [98] serves as our main reference for this theory, consider

also the unpublished [105]. An overview of the concepts we use in the following

may also be found in the appendix of [50].

Definition 3.23 (Non-degenerate classical SG-phase functions).

Let ϕ ∈ SG1,1
cl (Rd × Rs) be a classical SG-phase function. Then ϕ is called non-

degenerate if the differentials
{
d
(
ỹ∂̃θjϕ|X

)}
j=1,...,s

form, for every (y0, γ0) ∈ C̃ϕ,

a set of linearly independent vectors in T ∗(y0,γ0)X, where the placeholder X may be

replaced by all possible boundary and corner components of Bd × Bs, that is,

X ∈
{

B̃e, B̃ψ, B̃ψe
}
.

This definition precisely guarantees that ỹ∇̃θϕ fulfils the assumptions of the

regular value theorem for manifolds with corners as stated in [98, Prop. 4.2.10] on

C̃ϕ, which by Lemma 3.19 is defined as (ỹ∇̃θϕ)−1{0}.
Before we formulate the consequences of this theorem as in [50], we recall that a

totally neat submanifold N of a manifold with boundary M is simply a submanifold

with boundary such that ∂N ⊂ ∂M . Two submanifolds N1 and N2 of some

manifold M are said to intersect cleanly (consider [83, App. C.3.]) if for every

(y0, γ0) ∈ (M1 ∩M2) we have for some e > 0 (called the excess)

T(y0,γ0)(N1 ∩N2) = T(y0,γ0)N1 ∩ T(y0,γ0)N2.

codimM(N1) + codimM(N2) = codimM(N1 ∩N2) + e
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Indeed, each of the boundary faces B̃e and B̃ψ are submanifolds (with boundary)

of the manifold with corners Bd×Bs that intersect cleanly at their joint boundary

B̃ψe. For the components of C̃ϕ situated in these boundary faces, we find a similar

set-up.

Proposition 3.24. Let ϕ ∈ SG1,1
cl (Rd × Rs) be a non-degenerate SG-phase func-

tion. Then C̃ϕ has the following properties.

(1) The different components of C̃ϕ are totally neat submanifolds of the corre-

sponding boundary component of Bd × Bs. In particular we have

C̃ϕ = C̃ψϕ︸︷︷︸
⊂B̃ψ

∪ C̃eϕ︸︷︷︸
⊂B̃e

,

and their possible boundaries form a subset C̃ψeϕ of B̃ψe.

(2) The codimension of the respective component is always s, i.e. dim(C̃eϕ) =

dim(C̃ψϕ ) = d− 1 and (if non-empty) dim(C̃ψeϕ ) = d− 2.

(3) The tangent space to each face of C̃•ϕ in B̃• may be calculated as{
v ∈ T(y0,γ0)(B̃

•)
∣∣∣ (dy,γ (ỹ∂̃θjϕ∣∣B̃•))v = 0 ∀j ∈ {1, . . . , s}

}
.

As a consequence of these properties, the intersection C̃ψϕ ∩ C̃eϕ = C̃ψeϕ is clean.

Since λ̃ϕ is smooth up to the boundary in a neighbourhood of C̃ϕ, we obtain a

similar statement for its image Λ̃ϕ.

Proposition 3.25. Let ϕ ∈ SG1,1
cl (Rd × Rs) be a non-degenerate SG-phase func-

tion. Then Λ̃ϕ has the following properties.

(1) The different components of Λ̃ϕ are each totally neat submanifolds of the

corresponding boundary component of Bd × Bs. In particular we have

Λ̃ϕ = Λ̃ψ
ϕ︸︷︷︸

⊂W̃ψ
SG

∪ Λ̃e
ϕ︸︷︷︸

⊂W̃e
SG

and their possible boundaries form a subset Λ̃ψe
ϕ of W̃ψe

SG.

(2) The codimension of the respective component is always d, i.e. dim(Λ̃e
ϕ) =

dim(Λ̃ψ
ϕ) = d− 1 and (if non-empty) dim(Λ̃ψe

ϕ ) = d− 2.
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(3) The tangent space to each face of Λ̃•ϕ in W̃SG may be calculated by means

of the differential of λ̃ϕ, that is, via

T Λ̃•ϕ =
(
d
(
λ̃ϕ|C̃•ϕ

))
T C̃•ϕ

(4) The intersection Λ̃ψ
ϕ ∩ Λ̃e

ϕ = Λ̃ψe
ϕ is clean.

As in [50, Fig. 1], this geometric setup of clean intersection may be schematically

visualized, see Figure 12. Therein, since we are limited to 3 dimensions, the

variables parallel to the corner, (y‖, η‖), are projected into one.

Having established the geometric set-up on the compactifications of Rd × Rs

W̃ψ
SG

W̃e
SG

W̃ψe
SG

Λ̃ψe

y‖, η‖
ỹ

η̃ Λ̃e
ϕ

Λ̃ψ
ϕ

Figure 12. Intersection of Λ̃ψ
ϕ ⊂ W̃ψ

SG and Λ̃e
ϕ ⊂ W̃e

SG at the corner W̃ψe
SG

and Rd × Rd, we now establish, as in [50], a characterization of C̃ϕ and Λ̃ϕ in

terms of the different components of the principal symbol of ϕ. As in the classical

theory recalled in Section 3.2.1, the homogeneity of the different components of

σ(ϕ) has as a consequence that the associated submanifolds are conic. This can

be formulated using the map Γ introduced in Construction 1.1.

Lemma 3.26. Let ϕ ∈ SG1,1
cl (Rd × Rs) be a classical SG-phase function. Then,

we have

Cψϕ := (ι−1 × Γ)(C̃ϕ ∩ B̃ψ) = {(x0, θ0) ∈ Bψ : ∇θϕ
ψ(x0, θ0) = 0},

Ceϕ := (Γ× ι−1)(C̃ϕ ∩ B̃e) = {(x0, θ0) ∈ Be : ∇θϕ
e(x0, θ0) = 0},

Cψeϕ := (Γ× Γ)(C̃ϕ ∩ B̃ψe) = {(x0, θ0) ∈ Bψe : ∇θϕ
ψe(x0, θ0) = 0}.

Proof. By Definition 3.14,

C̃ϕ =
{

(y0, γ0) ∈ B̃
∣∣ |∇θϕ|2 is not elliptic at (y0, γ0)

}
.
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By the characterization of ellipticity of Proposition 1.20, we have that |∇θϕ|2 is

elliptic at (y0, γ0) ∈ B̃ if and only if the corresponding principal symbol is non-

vanishing at the corresponding point (x0, θ0) ∈ B. By Proposition 1.18, we have

σ•(|∇θϕ|2) = σ•

(
s∑
j=1

|∂θjϕ|2
)

=
s∑
j=1

|∂θjσ•(ϕ)|2 =
s∑
j=1

|∂θjϕ•|2,

for any of the labels • ∈ {ψ, e, ψe} of the principal symbol, and the assertion

follows. �

Remark 3.27. Note that the Cψϕ -component coincides with the standard notion Cϕ
for a homogenous (classical) phase function ϕψ, as in (3.3).

Similarly to Lemma 3.26, we obtain a characterization of the different compo-

nents of Λ̃ϕ.

Lemma 3.28. Define the triple (Λψ
ϕ,Λ

e
ϕ,Λ

ψe
ϕ ) ⊂ (Wψ

SG,W
e
SG,W

ψe
SG) by

Λ•ϕ :=
{

((x,∇xϕ
•(x, θ))

∣∣∃ (x, θ) ∈ B• : ∇θϕ
•(x, θ) = 0

}
for • ∈ {ψ, e, ψe}. Then we have

Λψ
ϕ = (ι−1 × Γ)(Λ̃ψ

ϕ), Λe
ϕ = (Γ× ι−1)(Λ̃e

ϕ) and Λψe
ϕ = (Γ× Γ)(Λ̃ψe

ϕ ).

Proof. We start with the proof for Λψ
ϕ, which coincides with the classical definition

of the manifold of stationary points for a classical homogeneous phase function

(3.5). By Lemma 3.22, we may obtain Λ̃ψ
ϕ as λ̃ϕ(C̃ψϕ ) and thus we may write

(ι−1 × Γ)(Λ̃ψ
ϕ) = [(ι−1 × Γ) ◦ λ̃ϕ](C̃ψϕ ).

By Lemma 3.19 we have ỹ∇̃θϕ(y, γ) = 0 on C̃ϕ and consequently, in view of the

absence of critical points characterized in same Lemma, γ̃∇̃xϕ(y, γ) 6= 0.

Revisiting the explicit form of λ̃ϕ near C̃ψϕ , that is (3.30) from the proof of Propo-

sition 3.21, and using the fact that γ̃ vanishes on C̃ψϕ , we can write

(ι−1 × Γ)(Λ̃ψ
ϕ) =

{(
(ι−1(y), µ

γ̃∇̃xϕ(y, γ)

|γ̃∇̃xϕ(y, γ)|

)∣∣∣∣(y, γ) ∈ C̃ψϕ , µ > 0

}

=

{(
(x, µ

∇xϕ
ψ(x, θ)

|∇xϕψ(x, θ)|

) ∣∣∣∣(x, θ) ∈ Cψϕ , µ > 0

}
,
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where we have made use of the characterization of the principal symbol by evalu-

ation at the boundary in Proposition 1.20 and where we have commuted differen-

tiation and the principal symbol map as granted by Proposition 1.18. Making use

of the homogeneity of ϕψ, we may write this simply as

(ι−1 × Γ)(Λ̃ψ
ϕ) =

{(
(x,∇xϕ

ψ(x, θ)
)
| (x, θ) ∈ Rd × (Rs \ 0) and ∇θϕ

ψ(x, θ) = 0
}
,

which is the definition of Λψ
ϕ, as claimed.

Making use of the same techniques, we write for the e-component

(Γ× ι−1)(Λ̃e
ϕ) =

[
Γ× ι−1)λ̃ϕ

]
(C̃eϕ)

=
{(
µy, ∇̃xϕ(y, γ)

)
: (y, γ) ∈ C̃eϕ

}
=
{

(x,∇xϕ
e(x, θ)) : (x, θ) ∈ Ceϕ

}
.

where we have again obtained the principal symbol by evaluation on the boundary,

as in Proposition 1.20.

We may obtain the characterization of the corner component Λψe
ϕ in exactly the

same way. �

As mentioned in Proposition 3.3, a fundamental property of Λψ
ϕ, as defined in

Lemma 3.28, is that it is a conic Lagrangian submanifold of Rd × (Rd \ {0}).
We recall that a closed d-dimensional submanifold Λψ of T ∗Rd \ {0} = Rd ×
(Rd \ {0}) is called conic Lagrangian if one of the following equivalent conditions

is met

• Λψ is conic in the second variable and the symplectic two-form ω vanishes

over it.

• The tautological 1-form on Rd × (Rd \ {0}) ∼= T ∗Rd \ {0} vanishes on Λψ.

We refer to Chapter 3.7. of [55] for a proof of this equivalence. In what follows,

we establish an analogous statement for Λe, as in [50].

From the discussion in [55], we deduce that the two formulations are equivalent

by noticing that (using local canonical coordinates)

dαψ = d(ξdx) = dξ ∧ dx = ω and

i%ψω(·) = (dξ ∧ dx)(ξ · ∂ξ, ·) = ξdx = αψ(·),

where the (radial) vector field %ψ = ξ ·∂ξ can be invariantly obtained, consider [83,

Sect. 21.1], by defining it as the generator of the dilation in the co-variable, that
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is by

(3.31) %ψ(f) =
d

dµ
f(·, µ·)|µ=1 f ∈ C∞(T ∗M \ {0})

When M = Rd \ {0} is the (flat) Euclidean space (with 0 removed), we also may

dilate in the variable, and define a similar vector field.

Definition 3.29. Define the (radial exit) vector field %e on T ∗(Rd \ {0}) by setting,

for f ∈ C∞(T ∗(Rd \ {0})), %e(f) = d
dµ
f(µ·, ·)|µ=1.

The exit-one-form on T ∗(Rd \ {0}) is defined as

αe := −i%eω.

In local coordinates we have

%e(f) =
d

dµ
f(µx, ξ)|µ=1 = x · (∇xf).

In local canonical coordinates we may write this as αe = −i%eω = −xdξ, and

therefore, again, dαe = ω. We may specify in which sense Λe
ϕ is a Lagrangian that

is conic in the first set of variables.

Lemma 3.30. Let ϕ be a non-degenerate classical SG-phase function. Then αe

vanishes on Λe
ϕ.

Remark 3.31. Before we prove this, we remark that Lemma 3.30 indeed requires

its own proof, and cannot be simply “deduced by symmetry” from the classical

theory, because of the “asymmetrical definition” of Λϕ with respect to x and θ.

Proof. This proof is again an excerpt from [49], and we adopt the notation of [55]

for it, that is we denote for some coordinates x on a manifold M the induced

coordinates on TM by (x, δx).

We first notice that Λe
ϕ is, by its definition in Lemma 3.28, the image of

Ceϕ = {(x0, θ0) ∈ Rd \ {0} × Rs | ∇θϕ
e(x0, θ0) = 0}

under the map λeϕ = (pr1,∇xϕ
e). By non-degeneracy of ϕ, this yields a smooth

manifold and we may calculate its tangent space in terms of that of the preimage.48

T(x,θ)Ceϕ is given by

(3.32) (δx · ∇x)∇θϕ+ (δθ · ∇θ)∇θϕ = 0,

48In fact, as in Lemma 2.3.2 of [55], we can conclude from the upcoming (3.32) and (3.33) that
(pr1,∇xϕe) is an immersion, and thus its image is an immersed d-dimensional conic submanifold.

114



and we thus have (denoting by J the Jacobian)

T(x,∇xϕe(x,θ))Λ
e
ϕ = J(pr1,∇xϕ

e) · T(x,θ)Ceϕ.

Furthermore,

(3.33) J(x,θ)(pr1,∇xϕ
e)(δx, δθ) = (δx, (δx · ∇x)∇xϕ

e + (δθ · ∇θ)∇xϕ
e).

Computing αe = x · dξ on such a vector, we observe

x · (δx · ∇x)∇xϕ
e + x · (δθ · ∇θ)∇xϕ

e

=
∑
j,k

xj(δxk∂xk)∂xjϕ
e +
∑
j

(δθ · ∇θ)xj∂xjϕ
e

=
∑
j,k

(δxk∂xk)xj∂xjϕ
e −

∑
k

δxk∂xkϕ
e +
∑
j

(δθ · ∇θ)xj∂xjϕ
e.(3.34)

By Euler’s theorem for homogeneous functions applied to ϕe this equals

(3.34) =
∑
k

(δxk∂xk)ϕ
e −

∑
k

δxk∂xkϕ
e + (δθ · ∇θ)ϕ

e,

= δθ · (∇θϕ
e)

(x,θ)∈Ceϕ
= 0,

which proves the assertion. �

By now we have established the symplectic properties of Λe
ϕ and Λψ

ϕ. From the

geometrical set-up in the compactification, we realize that Λψe
ϕ may be viewed as

an intersection “at infinity” of the two. This results in an additional property that

these kind of submanifolds, arising from SG-classical phase functions, have, which

may be viewed as a “conormality in the corner”-condition.

Lemma 3.32. The pairing 〈x, ξ〉 vanishes on Λψe
ϕ .

Proof. On Λψe
ϕ we have, by Euler’s theorem for homogeneous functions applied

twice,

〈x, ξ〉 = 〈x,∇xϕ
ψe(x, θ)〉 = ϕψe(x, θ) = θ · ∇θϕ

ψe(x, θ) = 0.

�

With the previous characterizations providing a motivation, we will now define

SG-Lagrangians. A SG-Lagrangian Λ̃ is a collection of submanifolds of W̃SG with

Lagrangian properties. When defining this, we have to take into account that W̃SG

is not a manifold, but a pair of submanifolds of ∂(Bd × Bd) that intersect cleanly
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at their joint boundary, the corner of Bd × Bd, see Figure 12. Therefore, we have

to consider a number of cases when we define such a pair of submanifolds. We first

consider the case where Λ̃ intersects the corner.

Definition 3.33. A SG-Lagrangian Λ̃ in W̃SG with non-empty corner component

is a pair of closed immersed submanifolds (with boundary) of Bd×Bd, Λ̃ = (Λ̃e, Λ̃ψ),

such that

• (Λ̃e)o ⊂ W̃e
SG, (Λ̃ψ)o ⊂ W̃ψ

SG,

• dim(Λ̃e) = dim(Λ̃ψ) = d− 1,

• (Λ̃e ∩ Λ̃ψ) = ∂Λ̃e = ∂Λ̃ψ =: Λ̃ψe ⊂ W̃ψe
SG (with dim(Λ̃ψe) = d − 2) and the

intersection being clean,

• on the associated conifications

Λe := (Γ× ι−1)
(

(Λ̃e)o
)
, Λψ := (ι−1 × Γ)

(
(Λ̃ψ)o

)
, Λψe := (Γ× Γ)(Λ̃ψe),

we have

αe|Λe = 0, αψ|Λψ = 0, αe|Λψe = αψ|Λψe = 0,

• in canonical coordinates we have the conormality condition 〈x, ξ〉|Λψe = 0.

The triple (Λe,Λψ,Λψe) is then called a conic SG-Lagrangian in T ∗Rd.

The “degenerate cases” are then straightforward to define. If there is no inter-

section in the corner, then one of the submanifolds (which will no longer have a

boundary) may be empty, or they form two disjoint d − 1-dimensional submani-

folds of W̃e
SG and W̃ψ

SG respectively. We may then state, to sum up our previous

characterizations of C̃ϕ and Λ̃ϕ as well as Cϕ and Λϕ:

Theorem 3.34. Let ϕ ∈ SG1,1
cl (Rd × Rs) non-degenerate. Then Λ̃ϕ = (Λ̃e

ϕ, Λ̃
ψ
ϕ) is

a SG-Lagrangian in W̃SG.

In analogy to Theorem 3.4, we may expect a converse result to hold locally, i.e.

that every Lagrangian is locally parametrizable by some non-degenerate SG-phase

function.

Before investigating into that direction, we note that the Λe-component of our

Lagrangians are closely related to Legendrian submanifolds investigated - in the

larger framework of scattering manifolds in lieu of Rd - by Melrose and Zworski

[107], and in the semi-classical context in [70, 71] as mentioned in the introduction
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to this section.

Therein, the scattering one-form, that corresponds to αe, denoted by scα is defined

on scT ∗X, which is an extension of the co-tangent bundle of a scattering manifold

X up to the boundary. The form scα is obtained by the contraction of ω with the

“radial vector” - given in terms of the boundary defining function via x̃2 · δx̃ - and

restriction to the fibers over the boundary of X, i.e. to scT ∗∂XX.

A Legendrian submanifold of the boundary is then a submanifold of the boundary

on which scα vanishes. [107, 70, 71] proceed by indicating parametrization re-

sults and to study “intersecting Legendrians with conical points”. The associated

distributions, Legendrian distributions, are smooth functions in the interior and

have oscillatory singularities at the boundary. In particular, on Euclidean spaces,

the singularities of the Fourier transforms of such Legendrian distributions on Eu-

clidean spaces are contained in compact sets, by [107, Prop. 10], a feature that is

not true for our class of distributions.

To the best of our knowledge, this property of being “Lagrangian up to the corner”

as in our setting, i.e. matching Lagrangian-type singularities both in the interior

as well as at the boundary, is not covered in the literature so far, especially not

in the formalism we use, which differs from the one in [107] by rather working,

whenever possible, on the original manifold and conifications of its “ends” than on

its compactification.

We now turn to a converse result to Theorem 3.34, which is the main result of

[50] and guarantees that, given an SG-Lagrangian, one may always find a non-

degenerate SG-phase function which locally parametrizes the Lagrangian. For its

formulation, we observe that it is a straight forward adaptation to define (non-

degenerate) SG-phase functions locally, that is on open subsets in Rd.

Theorem 3.35. Let Λ̃ = (Λ̃e, Λ̃ψ) be a SG-Lagrangian submanifold. Then Λ̃ is

locally parametrizable by a non-degenerate SG-classical phase function, that is,

∀(y0, η0) ∈ Λ̃ there exist

(1) a neighbourhood Ũ of (y0, η0) in Bd × Bd,
(2) an open set Ṽ ⊂ Bd × Bs,
(3) a function ϕ̃ ∈ γ̃−1ỹ−1C∞(Ũ) such that the corresponding (locally defined)

phase function ϕ = (ι× ι)∗(ϕ̃) is non-degenerate,
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such that these fulfil

Λ̃ ∩ Ũ = λ̃ϕ

({
(y0, γ0) ∈ Ṽ ∩ B̃ : (y0, γ0) ∈ C̃ϕ

})
.

Proof. We follow our proof as given in [49].

We will only consider the case where (y0, η0) ∈ Λ̃ψe, since the other possible sit-

uations will be covered by the same argument. The underlying idea of the proof

is classical, cf. [71] and [83], however we need to switch carefully between coordi-

nates on the compactification Λ̃ϕ - where we may make use of continuity “up to

the corner” - and such on the triple of conic manifolds (Λe
ϕ,Λ

ψ
ϕ,Λ

ψe
ϕ ), where the

symplectic structure is particularly accessible.

Λ̃ψe is a (d − 2)-dimensional embedded submanifold of Sd−1 × Sd−1 and we may

assume, in a neighbourhood Ũ of (y0, η0), that Λ̃ψe may be locally parametrized

(possibly after a rearrangement of variables) as

Ũ ∩ Λ̃ψe =
{
y′, y′′,

√
1− (y′)2 − (y′′)2,

√
1− (η′)2 − (η′′)2, η′, η′′

}
.

Therein we have denoted independent variables by (y′′, η′), defined for some s ≤
d− 1 as η′ = (η2, . . . , ηs) and y′′ = (ys+1, . . . , yd−1) and the remaining variables,

y′ = Ỹ ψe(y′′, η′),

η′′ = H̃ψe(y′′, η′),

are smoothly dependent on (y′′, η′). We may further assume, in the chosen coor-

dinate neighbourhood, that yd and η1 are non-vanishing, that is yd > c and η1 > c

for some 1 ≥ c > 0.

Since the intersection at the corner Λ̃ψe = Λ̃e ∩ Λ̃ψ = ∂Λ̃e = ∂Λ̃ψ is clean, and we

therefore have TΛ̃ψeΛ̃
e ∩ TΛ̃ψeΛ̃

ψ = T Λ̃ψe, we may find corresponding parametriza-

tions of Λ̃e and Λ̃ψ near the corner point (y0, η0) in terms of that of Λ̃ψe, that

is

Ũ ∩ Λ̃e =
{
y′, y′′,

√
1− (y′)2 − (y′′)2, η1, η

′, η′′
}
,

Ũ ∩ Λ̃ψ =
{
y′, y′′, yd,

√
1− (η′)2 − (η′′)2, η′, η′′

}
.

Here the independent coordinates are (y′′, η1, η
′) on Λ̃e and (y′′, yd, η

′) on Λ̃ψ. The

remaining variables on each face may be chosen as smooth functions up to the
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boundary, that is on Ũ ∩ Λ̃e we may write

y′ = Ỹ e(y′′, η1, η
′), η′′ = H̃e(y′′, η1, η

′),

and on Ũ ∩ Λ̃ψ as

y′ = Ỹ ψ(y′′, yd, η
′), η′′ = H̃ψ(y′′, yd, η

′).

By Λ̃e ∩ Λ̃ψ = ∂Λ̃e = ∂Λ̃ψ = Λ̃ψe we may conclude in this set of coordinates that

for elements of the corner, that is(
η1, η

′, H̃e(y′′, η1, η
′)
)
∈ Sd−1 and

(
Ỹ ψ(y′′, yd, η

′), y′′, yd
)
∈ Sd−1

we have

Ỹ e(y′′, η1, η
′) = Ỹ ψ(y′′, yd, η

′) = Ỹ ψe(y′′, η′),(3.35)

H̃e(y′′, η1, η
′) = H̃ψ(y′′, yd, η

′) = H̃ψe(y′′, η′).(3.36)

This choice of coordinates yields induced coordinates on the associated conifica-

tions Λe = (Γ× ι−1)(Λ̃e) and Λψ = (ι−1×Γ)(Λ̃ψ). To establish these, we may take,

as independent variables on Λe,

x′′ = (µy′′, µ
√

1− (y′)2 − (y′′)2), ξ′ = ι−1(η1, η
′).

In particular, x′′ may be defined implicitly in terms of the map

(y′′, µ) 7→
(
µ(id× ι)∗Ỹ e(y′′, ξ′), µy′′, µ

√
1− ((id× ι)∗Ỹ e(y′′, ξ′))2 − (y′′)2

)
.

We obtain that x′ = µ(id×ι)∗Ỹ e(y′′, ξ′) =: Xe(x′′, ξ′) is a smooth function of x′′ and

ξ′ and polyhomogeneous in ξ′, of maximal degree 0. By |(x′, x′′)| = µ it is further

1-homogeneous in x′′. Similarly we have that ξ′′ = ι−1
(

(id× ι)∗H̃e(y′′, ξ′)
)

=:

Ξe(x′′, ξ′) is 0-homogeneous in x′′ and polyhomogeneous in ξ′.

Consequently, in a suitable neighbourhood of (x0, ξ0) = (id× ι−1)(y0, η0), we may

write

Λe =
{(
Xe(x′′, ξ′), x′′; ξ′,Ξe(x′′, ξ′

)}
.

In the same way we may write, in coordinates

x′′ = ι−1(y′′, yd), ξ′ = (µη1, µη
′),

that

Λψ =
{(
Xψ(x′′, ξ′), x′′; ξ′,Ξψ(x′′, ξ′

)}
.
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We may now define phase functions in terms of the above coordinate functions,

parametrizing these conic submanifolds in the given neighbourhoods. We will first

introduce phase functions which are possibly not non-degenerate, and will later

reduce the number of variables to establish non-degeneracy. We set, on suitable

open sets,

φe(x, ξ) = 〈x′, ξ′〉+ 〈x′′,Ξe(x′′, ξ′)〉,(3.37)

φψ(x, ξ) = 〈x′, ξ′〉 − 〈Xψ(x′′, ξ′), ξ′〉.(3.38)

From the above definitions of Ξe and Xψ we may conclude that these are (poly-)

homogeneous functions in the two sets of variables. In fact we observe that φe is

1-homogeneous in x and 1-polyhomogeneous in ξ, whereas φψ is 1-homogeneous

in ξ and polyhomogeneous in x, that is (i.e. φe ∈P1,1
e and φψ ∈P1,1

ψ ). This may

be observed by writing these functions, restricted to suitable neighbourhoods in

Sd−1 × Rd and Rd × Sd−1 respectively, as

φe(x, ξ)|Sd−1×Rd = (id× ι)∗
(〈

(y′, y′′, yd) , ι
−1
(
η1, η

′, H̃e(y′′, η1, η
′))
)〉)

︸ ︷︷ ︸
=:ỹ·φ̃e|

W̃e
SG

(3.39)

φψ(x, ξ)|Rd×Sd−1 = (ι× id)∗
(〈
ι−1(y′)− ι−1

(
Ỹ ψ(y′′, yd, η

′)
)
, (η1, η

′)
〉)

︸ ︷︷ ︸
=:η̃·φ̃ψ |

W̃e
SG

.(3.40)

Using ι−1(y) = y
|y|(1− |y|)

−1 = ỹ−1 y
|y| for large arguments and Proposition 1.20,49

we obtain the desired symbol properties.

We now show that φe and φψ may be obtained as the respective principal symbol

components of a single SG-phase function. For that we calculate the principal

symbols of φe and φψ by the means of the proof of Proposition 1.20, that is by

evaluation on the boundary. Using limn→∞ ỹn ι
−1(yn) = y

|y| in case yn → y with

yn ∈ (Bd)o and y ∈ Sd−1 as well as (3.35) and (3.36) in (3.39) and (3.40) we obtain

in the corner component

σψ(φe)|Sd−1×Sd−1 = (id× id)∗
〈
(y′, y′′, yd),

(
η1, η

′, H̃ψe(y′′, η′)
) 〉

σe(φ
ψ)|Sd−1×Sd−1 = (id× id)∗

〈
y′ − Ỹ ψe(y′′, η′), (η1, η

′)
〉
.

49Here we use a local analogue of Propostion 1.20, which may be obtained by using suitable
cut-offs.
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Consequently we have

σψ(φe)|Sd−1×Sd−1 − σe(ϕψ)|Sd−1×Sd−1 =

(id× id)∗
(〈
Ỹ ψe(y′′, η′), (η1, η

′)
〉

+
〈

(y′′, yd), H̃
ψe(y′′, η′)

〉)
,

which is nothing else than 〈x, ξ〉 at an element of Λψe and thus vanishes by

the conormality assumption. We are then able to, using (3.35) and (3.36) and

Proposition 1.19, continue (φe, φψ) to a single SG-symbol with principal symbol

(φe, φψ, φψe).

We note that, so far, this resulting phase function is by no means non-degenerate,

since it is actually constant in the ξ′′-variables. Getting rid of these redundant

variables, we may define ϕ : Rd × Rs → R by ((x′, x′′); θ) 7→ φ((x′, x′′); (θ, ξ′′0 ))

for some arbitrary ξ′′0 . We then obtain the components of the principal symbol

ϕ• = σ•(ϕ) for • ∈ {e, ψ, ψe} and may define ϕ̃ ∈ γ̃−1ỹ−1C∞(Ũ) via (ι−1× ι−1)∗ϕ.

We now have to see that the functions ϕ• indeed parametrize Λϕ and conclude

non-degeneracy. From the vanishing of the one forms α•|Λ• = 0 we obtain the

identities

Xe(x′′, ξ′) +∇ξ′ (x
′′ · Ξe(x′′, ξ′)) = 0,

x′′ · ∂x′′j Ξe(x′′, ξ′) = 0 j ∈ {s+ 1, . . . , d},

θ · ∂ξ′kX
ψ(x′′, ξ′) = 0 k ∈ {1, . . . , s},

∇x′′
(
θ ·Xψ(x′′, ξ′)

)
+ Ξψ(x′′, ξ′) = 0.

We may then compute, using (3.37) and (3.38),

∇θϕ
e(x, θ) = x′ + x′′ · ∇θΞ

e(x′′, θ)︸ ︷︷ ︸
=−Xe(x′′,θ)

,

∂θkϕ
ψ(x, θ) = (x′k −X

ψ
k (x′′, θ))−

(
∂θkX

ψ(x′′, θ)
)
· θ︸ ︷︷ ︸

=0

.

and conclude that we have ∇θϕ
• = 0 if and only if x′ = X•(x′′, θ). We have

obtained

C•ϕ = {
(
X•(x′′, θ), x′′; θ

)
}.
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From this we may conclude non-degeneracy of ϕ. In a similar fashion, using the

remaining two identities,

Λ•ϕ =
{(
X•(x′′, θ), x′′; θ,Ξ•(x′′, θ)

)}
= Λ•.

We can thus (locally) parametrize Λ• by ϕ•. The proof is complete. �

Having established that we can always find a (local) parametrizing phase func-

tion for such an SG-Lagrangian, we now state our result from [50] about when two

such phase functions may be considered equivalent.

Theorem 3.36. Let ϕ̃1, ϕ̃2 ∈ C∞(Bd × Bs) be two non-degenerate phase func-

tions that parametrize the same Lagrangian Λ̃ ⊂WSG in a neighbourhood of some

(y0, η0) ∈ Λ̃. Assume that

(1) there exists (y0, γ0,1) ∈ C̃ϕ1 and (y0, γ0,2) ∈ C̃ϕ2 such that we have (y0, η0) =

λ̃ϕi(y0, γ0,i) and ϕ̃1(y0, γ0,1) = ϕ̃2(y0, γ0,2),50

(2) The matrices
(
γ̃−1ỹ ∂̃2

θjθk
ϕ1|X

)
j,k=1,...,s

and
(
γ̃−1ỹ ∂̃2

θjθk
ϕ2|X

)
j,k=1,...,s

have

the same signature at (y0, γ0,i) ∈ C̃ϕi, where ϕi := (ι× ι)∗ϕ̃i are the (locally

defined) phase functions associated with ϕ̃i, i = 1, 2.

Then, there exists a local homeomorphism κ̃ of the boundary S̃ 7→ S̃ that is defined

in a neighbourhood of the (y0, γ0,2) in the corresponding faces, which is smooth on

each face and such that ϕ̃2 ◦ κ̃ = ϕ̃1|S̃.

Remark 3.37. The statement only ensures that the principal symbols (ϕei , ϕ
ψ
i , ϕ

ψe
i )

of the corresponding phase functions ϕi may be arranged to agree. This is, however,

not a drawback, since the principal symbols of ϕi carry all the information about

the asscociated sets of singularities Λ̃ϕ and C̃ϕ, by Lemmas 3.26 and 3.28.

For a proof of Theorem 3.36, we refer to [50]. The idea of the proof is to adapt

the classical outline of [79] and [55] to this global setting and in particular the

corner. This is done by first arranging that the Cϕi agree, and consequently the

differentials of the involved phase functions (on principal level) locally agree up to

first order. One then arranges, by use of a Taylor-like expansion and the implicit

function theorem (and essentially Morse’s Lemma) for the phase functions to be

locally identical.

50We note that this is always fulfilled in the classical case since, by homogeneity, ϕi vanishes on
Cϕi .
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3.3. Scaling properties of tempered distributions.

3.3.1. Weinstein’s order and symbol of a (tempered) distribution.

We have already seen in the context of the FBI-transform in Section 2.3.1 how

scaling behaviour of distributions may be used to obtain microlocal information

on their singularities. In this section, we will extend our findings by considering

how the previous methods relate to the symbol construction of Weinstein [148].

In [148], Weinstein introduces a symbol for general distributions, which provides

the means of classifying distributions “on principal level”, that is up to “lower order

terms”, around a given points in phase-space T ∗X. This symbol is introduced

by studying the “magnitude of scaling” of a distribution at a given point when

multiplied by a rapidly oscillating phase factor. The main result of [148] is that this

notion of symbol coincides with the usual notion for Lagrangian distributions in

case u is a Lagrangian distribution with homogeneous principal symbol. The aim

of this section is to show how Weinstein’s definitions may be understood as part of

the framework of phase-space analysis of distributions, especially considering our

findings in Section 2.3.1, and to give an adapted definition of symbol that mimics

the one which arises in the SG-calculus.

In [148], the order N ∈ [−∞,∞) of a (a priori non-tempered) distribution u ∈
D ′(Rd) at a point in phase space (0, ξ0) ∈ T ∗Rd \ {0} is defined by saying that u

is of order ≤ N if the family {λ−Nuλϕ |λ ≥ 1} is bounded, where

• ϕ is a real valued function ϕ ∈ C∞(Rd), ϕ(0) = 0 and dϕ(0) = ξ0

• uλϕ is the distribution 〈uλϕ, f〉 := 〈u, λd/2e−iλϕ(x)f(
√
λx)〉.

Weinstein proceeds to investigate the dependence of the order on ϕ ([148, Prop.

1.2.1]). He notices that if φ = ϕ + q + r, where q is a homogeneous quadratic

polynomial and r vanishes up to order at least 3 at 0, then the order of eiquλϕ− uλφ
is ≤ N − 1/2.

It is then concluded ([148, Cor. 1.2.2]) that the order depends only upon ϕ through

its differential dϕ(0) and the factor eiϕ may thus be replaced by modulation. We

may thus reformulate using Proposition A.2(3) and [148, Lem. 1.1.4] (i.e. we may

replace the lower bound λ ≥ 1 by λ ≥ R for any R):
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Definition 3.38 (Weinstein’s order of a distribution). We say u ∈ S ′ (Rd
)

is of

order ≤ N at (x0, ξ0) if for any window g ∈ S
(
Rd
)

(3.41)
{
λ−N+d/4D√λ〈M−ξ0T−x0D√λ−1u, g〉

∣∣∣ λ > R
}

is bounded.

If the infimum N0 := inf{N |u is of order ≤ N} is obtained, we say that the order

of u is N0.

The condition (3.41) means nothing else than that the FBI transform of u –

with respect to an arbitrary window g instead of ψ0 – at (x0,−ξ0) is bounded by

O(λN−d/4), compare with (A.6) and Proposition A.2 (3).

Remark 3.39. In light of the characterization of WFcl in terms of the FBI trans-

form, that is Lemma 2.19, we have that [148, Corollary 2.2.2.] becomes evident,

that is that the order of u at (x0, ξ0) = −∞ if (x0, ξ0) /∈WFcl(u), since the condi-

tion (x0, ξ0) /∈WFcl(u) just imposes the bound in (3.41) in an open neighbourhood

of (x0, ξ0).

The converse is not true, by [148, Example 2.2.4], which may be easily understood

in the time frequency plane:

Weinstein constructs a distribution u in R2 whose Fourier transform F(x,y)→(ξ,η)u

ξ

η

Γ

(ξ0, η0)

Csp(û)

Figure 13. The counterexample of Weinstein, schematic

is singular on {(ξ, ξβ) | ξ > 0}, for β ∈ (1/2, 1). Of course this set of singularities

stays in every cone Γ around (1, 0), but is intersected at most once by any ray

λ(ξ0, η0), consider Figure 13. He shows that the wave front set of u at (x, y) = 0

is non-empty, but the order there is −∞ for all ξ 6= 0.
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The previous set-up allows for the definition of a symbol of a given distribution

u. Weinstein originally takes the aforementioned behaviour under the change

ϕ 7→ ϕ + q into account, we consider only the fixed phase ϕ(x, ξ0) = 〈x, ξ0〉. In

this case, the symbol of order N of a distribution which is of order ≤ N at (x0, ξ0)

is the (λ-dependent) distribution

g 7→ λd/4D√λ〈M−ξ0T−x0D√λ−1u, g〉

modulo contributions of order ≤ N − 1/2. Weinstein then proceeds and calculates

this symbol for Fourier integral distributions u and proves that it coincides with

the usual definition of principal symbol for Lagrangian distributions as introduced

in [79], in case the principal symbol of u is homogeneous.

For a generalization to tempered distributions, just as the SG calculus generalizes

calculus of Hörmander symbols, one would assume that such a symbol construc-

tion must in the end yield three separate symbols, the standard one “at frequency

infinity” σψ(u), one at “spacial infinity” σe(u) and one at “both spacial and fre-

quency infinity” σψeu.

Having noticed the connection of Weinstein’s order and the FBI transform, we use

the generalized FBI transform (compare with (2.7))

g 7→ F g
λ,µ(u)(x0, ξ0) := µ−3d/4λd/4D√µλ

〈
M−ξ0T−x0D√µ

λ

u, g
〉

Definition 3.40 (SG-order of a distribution). Let u ∈ S ′ (Rd
)

and (x0, ξ0) ∈
∂(Bd × Bd). We say that u has

(1) ψ-order ≤ mψ ∈ R at (x0, ξ0) ∈ Rd × Sd−1 if

{g 7→ λ−mψF g
λ,µ(u)(x0, ξ0)|λ > R, µ = 1} is bounded in S ′ (Rd

)
(2) e-order ≤ me ∈ R at (x0, ξ0) ∈ Sd−1 × Rd if

{g 7→ µ−meF g
λ,µ(u)(x0, ξ0)|λ = 1, µ > R} is bounded in S ′ (Rd

)
(3) ψe-order ≤ (me,mψ) ∈ R× R at (x0, ξ0) ∈ Sd−1 × Sd−1 if

{g 7→ λ−mψµ−meF g
λ,µ(u)(x0, ξ0)|λ > R, µ > R} is bounded in S ′ (Rd

)
for some R > 0.
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Using the continuity of u : S
(
Rd
)
→ C is is easy to prove that each of these

orders are indeed bounded from above.51 From the identity

F g
λ,µ(u)(x0, ξ0) = λdµ−deiµλx0ξ0F ĝ

µ,λ(û)(ξ0,−x0)

we conclude

Lemma 3.41. Let u in S ′(Rd). Then if

• u is of ψ-order ≤ mψ at (x0, ξ0) ∈ Rd×Sd−1, then û is of e-order ≤ mψ−d
at (ξ0,−x0).

• u is of e-order ≤ me at (x0, ξ0) ∈ Sd−1×Rd, then û is of ψ-order ≤ me + d

at (ξ0,−x0).

• u is of ψe-order ≤ (me,mψ) at (x0, ξ0) ∈ Sd−1×Sd−1, then û is of ψe-order

≤ (mψ − d,me + d) at (ξ0,−x0).

For given (me,mψ) we denote families (depending on the parameters (λ, µ)) of

distributions of the form

WSG × [1,∞)2 → S ′ (Rd
)

(x, ξ, λ, µ) 7→
(
f 7→ 〈uλ,µ(x, ξ) , f〉

)
for which for some R > 0

(1) ∀(x0, ξ0) ∈ Rd × Sd−1 {uλ,µ(x, ξ) |λ > R, µ = 1} is bounded in S ′ (Rd
)

(2) ∀(x0, ξ0) ∈ Sd−1 × Rd {uλ,µ(x, ξ) |λ = 1, µ > R} is bounded in S ′ (Rd
)

(3) ∀(x0, ξ0) ∈ Sd−1 × Sd−1 {uλ,µ(x, ξ) |λ > R, µ > R} is bounded in S ′ (Rd
)

by by S G•,mψ(Rd×Rd) S Gme,•(Rd×Rd) and by S Gme,mψ(Rd×Rd) respectively.

Given u of ψ-order ≤ mψ, e-order ≤ me and ψe-order ≤ (me,mψ) at each possible

(x0, ξ0) we define the symbol σe(u), σψ(u) and σψe(u) as the image of Fλ,µ(u) in

(1) S Gme,•(Rd×Rd)

S Gme−1/2,•(Rd×Rd)
for σe(u),

(2) S G
•,mψ (Rd×Rd)

S G
•,mψ−1/2

(Rd×Rd)
for σψ(u),

(3) S G
me,mψ (Rd×Rd)

S G
me−1/2,mψ+S G

me,mψ−1/2
(Rd×Rd)

for σψe(u).

This definition of symbol as a triple of equivalence classes then provides an ana-

logue to Weinstein’s notion in the SG-setting.

51For a proof using the same methods, consider that of the upcoming Lemma 3.44.
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3.3.2. The Steinmann scaling degree and extensions of distributions.

The previous discussion was concerned with the order of a distribution at a given

point x0. For a finite point, Weinstein obtained it by scaling and testing with

rapidly oscillating functions represented by ξ0 ∈ Sd−1, thus picking up the the

symbol, defined for (x0, ξ0) ∈ Rd × Sd−1.

The upcoming theory may be understood as a similar study of the behaviour in

the interior, i.e. at a given finite (x0, ξ0) ∈ Rd × Rd. The scaling, however, makes

any finite (or slowly oscillating) phase contribution “look constant” and thus neg-

ligible. We may therefore just consider ξ0 = 0.

In the following, we thus wish to obtain information on u at some point or lower

dimensional subset X ⊂ Rd by scaling “towards X”. Bounds on the scaling prop-

erties of u - or asking for pointwise Hölder regularity - may be used to define, by

magnification, “point values” and in more generality whole “Taylor expansions”

of distributions, consider e.g. [17, 59, 96].52

The point of view we are going to take is that which arises in the continuation or

extension problem, see [108, Chap. 1] as well as [16, Sect. 5] and [75, 112] which

provides a framework for the problem of renormalization in perturbative quantum

field theory.

In the following, we therefore assume that a distribution is “undefined at some

X ⊂ Rd”, meaning it is as a functional only defined for test functions f with

X ∩ supp(f) = ∅. We then wish to establish scaling criteria for u to be extendible

to the whole of Rd.

Take first x = 0. The solution to one such extension problem, the extension of

singular integrals by the so-called method of finite parts, dates back to Hadamard.

The main example for this procedure is the renormalization of 1[0,∞)
1
x
: in order

to make sense of the integral
∫∞

0
f(x)
x

dx, which is defined for f ∈ S
(
Rd
)

with

f(0) = 0, one replaces it for general f by
∫M

0
f(x)−f(0)

x
+
∫∞
M

f(x)
x

dx. This leaves us

with the freedom to choose M ∈ (0,∞) and consequently two extensions of this

form differ by ln
(
M2

M1

)
δ0, see [117, Ex. V.3.9].

More generally, this continuation problem is well-understood for general homoge-

neous distributions, i.e. such that satisfy, for some κ ∈ R,
(
Dλ − λκ+d/2

)
u = 0, see

52In [59], the connection u(0) = 〈u, δ0〉 is used to define the “adiabatic limit” 〈u, ,1〉 =
(2π)−d〈û, δ0〉. In Sections 2.4.1 and 2.7.1, such pairings have already been studied from a mi-
crolocal point of view. In the following, we do not assume “microlocal rapid decay”, but instead
a scaling behaviour bounded by some power.
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[81, Sect. 3.2]. In this case, an extension is possible if the degree of homogeneity

of the distribution satisfies κ ≤ −d and it is unique if κ /∈ Z. Otherwise, the

extension is unique up to derivatives of δ0.

The idea in the following is to generalize this by assuming that u is weakly-,

or quasi-homogeneous, i.e. has a “leading scaling behaviour”. This precisely leads

to the notion of the Steinmann scaling degree, see [16, 127, 140] for the initial

introduction and applications in quantum field theory.

Definition 3.42 (Steinmann scaling degree at the origin). Let u ∈ S ′ (Rd
)
. The

Steinmann scaling degree of u at x0 = 0 is

sd0(u) = inf{κ|λκ−d/2Dλu
λ→0−→ 0 in S ′ (Rd

)
}

Instead of the origin, we can also consider extended surfaces up to dimension d−1.

We will do so by considering the linear case.53 Throughout this section, we split

Rd ∼= Rd′×Rk with d′ = d−k, k < d, and denote the variables (x′, x′′). Then we set

X = {0}d′×Rk and consider the “scaling transversal to X” i.e. the transformation

DX,⊥λ f(x′, x′′) := λ
d′
2 f(λx′, x′′) = (Dλ ⊗ idRk)f(x′, x′′).

Just as in Lemma A.6, we may extend DX,⊥λ to tempered distributions, by duality.

We now define the scaling degree transversal to X.

Definition 3.43 (Transversal scaling degree). Let u ∈ S ′ (Rd
)
. We say the

transversal Steinmann scaling degree of u at X = {0}d′ × Rk is

sd⊥X(u) = inf{κ |λκ−d′/2DX,⊥λ u
λ→0−→ 0 in S ′ (Rd

)
}

For any tempered distribution, this degree is always finite (or −∞):

Lemma 3.44. Let u ∈ S ′ (Rd
)
. Then there exist κ ∈ R such that sd⊥X(u) ≤ κ.

53Extensions of (non-tempered) distributions on manifolds, or “curved spacetimes”, are discussed
in [16, 112].

128



Proof. From u ∈ S ′ (Rd
)

we gather that there exists some (N,M) ∈ N2
0

|λ−d′/2DX,⊥λ u, f〉| = λκ−d
′/2|〈u,DX,⊥λ−1 f〉|

. λ−d
′/2ρS

N,M

(
DX,⊥λ−1 f

)
= λ−d

′/2 sup
x∈Rd

∑
|α|≤N

∑
|β|≤M

〈x〉|α|
∣∣∂βxDX,⊥λ−1 f

∣∣
= λ−d

′
sup
x∈Rd

∑
|α|≤N

∑
|β|≤M

〈(λx′, x′′)〉|α|(λ,1k)−β
∣∣∂βxf ∣∣

If we now assume λ ≤ 1 we have

|〈λ−d′/2DX,⊥λ u, f〉| . λ−d
′−MρS

N,M(f),

from which we can gather that for κ > d′ +M we have sd⊥X(u) ≤ κ. �

Remark 3.45. We observe that we get a better control of the scaling degree if we

use an equivalent family of semi-norms on S
(
Rd
)

that is given by

ρS ∗
N,M ′,M ′′(f) = sup

x∈Rd

∑
|α|≤N

∑
|β′|≤M ′
|β′′|≤M ′′

〈x〉|α|
∣∣∂βxf ∣∣ β = (β′, β′′) ∈ Nd′

0 × Nk
0.

Thus any tempered distribution (defined on the full space) has a finite scaling

behaviour. The observation in [16, 108, 140] is that this notion may in turn be

generalized to distributions that are a priori undefined on a subspace and used to

extend these under the assumption that they admit a finite scaling behaviour.

Our main tool in the upcoming analysis will be a sequence of excision functions

that approach 1 in a controlled manner, as in Construction 1.5, meaning a dyadic

decomposition, cf. [108, Sect. 1.1]. We recall from this construction that there

exists a positive function φ1 ∈ C∞c (Rd′) supported on {x ∈ Rd′| |x| ∈ [1/2, 2]}
such that

∑∞
j=0 2jd

′/2D2−jφ
1 = χ0, where χ0 is an excision function, supported in

{x ∈ Rd′ | |x| ∈ [1/2,∞)}. In fact, we may express χ0 by the limit

χ0 = 1−
∞∑
j=1

2−jd
′/2D2jφ

1 =: 1− φ0.

Notation. In this Section, we always use the symbols φ0, φ1 and χ0 to denote the

above, and not generic cut-offs and excision functions.

We now introduce the aforementioned tempered distributions that “are not defined

on X”. First we note that the definition of D(Rd \X) = {f ∈ D(Rd) | supp(f) ∩
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X = ∅} and of the corresponding distribution space D ′(Rd \X) is canonical, see

[81], since Rd \X is an open subset of Rd. For a space S ′(Rd \X) this is not the

case, so we introduce it in detail.

Definition 3.46. We define the space of Schwartz functions on Rd, vanishing of

infinite order on X as

S (Rd \X) =
{
f ∈ S

(
Rd
)∣∣ ∂αf |X ≡ 0 ∀α ∈ Nd

0

}
,

Before relating this to D(Rd \X), we study how we may decompose such functions

“close to X”. For that we first write an arbitrary f ∈ S
(
Rd
)

as

f(x) = f0(x) +
∑
|α|=1

(x′)αfα;1

with functions f0, fα;1 ∈ S
(
Rd
)

and f0(0, x′′) = f(0, x′′). We obtain this splitting

by the following procedure:

1.) Set f0(x′, x′′) = f(0, x′′)e−
|x′|2

2 .

2.) Observe that f − f0 ∈ S
(
Rd
)
, and it may be expressed as

(f − f0)(x′, x′′) =

∫ 1

0

d

dt
(f − f0)(tx′, x′′) dt = x′ ·

∫ 1

0

(∇x′(f − f0)) (tx′, x′′) dt.

Repeating this splitting on fα;1 we obtain, recursively, a splitting up to any degree

N ∈ N0 (with α a multiindex in Nd′
0 )

f =
∑

|α|≤(N−1)

(x′)αfα +
∑
|α|=N

(x′)αfα;N .

where each fα and fα;N ∈ S
(
Rd
)
.

For f ∈ S (Rd \ X) we calculate that f0 = 0 and thus
∑

α=1(x′)αfα,1(x) = f ∈
S (Rd \ X). By induction we gather f =

∑
|α|=N(x′)αfα;N for any finite N . We

have obtained

Lemma 3.47. Let f ∈ S (Rd \X). Then for any N ∈ N0 we may decompose f

with respect to some fα ∈ S (Rd \X) as f =
∑
|α|=N(x′)αfα;N .

We now recall that D(Rd) is densely embedded in S
(
Rd
)
, and consequently

S ′ (Rd
)

= {u ∈ D ′(Rd) |u is continuously extendible to S
(
Rd
)
}, meaning pre-

cisely that |u(f)| . ρS
N (f) for all f ∈ D(Rd) and some N ∈ N0. For S (Rd \ X)

we are in a similar situation:
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Lemma 3.48. Let f ∈ S (Rd \ X). Then, using the notation as above, we have

that (with respect to the induced topology of S
(
Rd
)
)

(χ0 ⊗ 1Rk)f +
n∑
j=1

((2−jd
′/2(D2jφ

1)⊗ 1Rk)f)
n→∞−→ f.

Proof. Using an excision function and the support properties of χ0, we may replace

w.l.o.g. f by a function g supported in the tube Yn around around X, where

Yn = {x ∈ Rd′ | |x| ≤ 2−n} × Rk. We thus have (χ0 ⊗ 1Rk)g = 0 and consequently

we must verify that if g ∈ S (Rd \X) with support in Y1, then

gn :=
n∑
j=1

((2−jd
′/2(D2jφ

1)⊗ 1Rk)g)
n→∞−→ g

It is easy to prove pointwise convergence, since by the support properties of φ1

only finitely many summands are non-zero at a given x /∈ X while n → ∞. We

now verify that the gn constitute a Cauchy sequence in S
(
Rd
)
. For that, we first

verify for m > n

ρS
N,M(gn − gm) = sup

x∈Rd

∑
|α|≤N

∑
|β|≤M

〈x〉|α||∂βx (gn − gm)|

= sup
2−1−m≤|x′|≤2−n

x′′∈Rk

∑
|α|≤N

∑
|β|≤M

〈x〉|α||∂βx (gm)|.

Using Lemma 3.47 and the support properties of the dilated φ1, we may bound

this by an arbitrary high factor |x′|N . By 2−1−m ≤ |x′| ≤ 2−n we see that the

sequence is indeed a Cauchy sequence. �

As a consequence of Lemma 3.48, we have the following Corollary:

Corollary 3.49. D(Rd \X) is densely embedded in S (Rd \X).

Consequently we may introduce the space S ′(Rd \ X) as the space of such

distributions in D ′(Rd \ X) that are extendible to S (Rd \ X). We may now

introduce tempered distribution u̇ on Rd \ X as an element u̇ ∈ D ′(Rd \ X),54

which is extendible to all of S (Rd \X). The question of whether u̇ is extendible

to a tempered distribution on all of Rd breaks down into several parts

• Is there an extension u ∈ D ′
(
Rd
)
?

54We recall that it is possible to define D ′ for any open set of Rd.
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• Is it unique? If it is not, which degrees of freedom are there to extend u̇?

• Can the extension be chosen/seen to be tempered, i.e. u ∈ S ′ (Rd
)
?

We first generalize the notion of scaling degree to u̇ ∈ S ′(Rd \X).

Definition 3.50. Let u̇ ∈ S ′(Rd \X). We say sd⊥X(u̇) ≤ κ if ∀f ∈ S (Rd \X) we

have (N,M) ∈ N2
0 such that for λ ≤ 1 and

(3.42) |〈λκ−d′/2DX,⊥λ u̇, f〉| . ρS
N,M(f).

We may set sd⊥X(u̇) = inf{κ | sd⊥X(u̇) ≤ κ}.

We may obtain the following properties of this notion of scaling degree (compare

with [16, Lem. 5.1]):

Lemma 3.51 (Properties of the scaling degree). Let u̇ ∈ S ′(Rd \X).

(1) For all f ∈ S
(
Rd
)
, we have sd⊥X(fu̇) ≤ sd⊥X(u̇).

(2) Let v̇ ∈ S ′(Rd \X). Then sd⊥X(u̇+ v̇) ≤ max{sd⊥X(u̇), sd⊥X(v̇)}
(3) Let P ∈ C∞(Rd′) a homogeneous polynomial of degree N . Then

sd⊥X(P (x′)u̇) ≤ sd⊥X(u̇)−N.

(4) Let P ∈ C∞(Rd′) a homogeneous polynomial of degree N . Then

sd⊥X(P (∂x′)u̇) ≤ sd⊥X(u̇) +N.

(5) Let u of the form ud′ ⊗ uk with ud′ ∈ S ′(Rd′) and uk ∈ S ′(Rk) 6= 0. Then

sd⊥X(u) only depends on ud
′
.

Proof. Property (1) may be obtained by the Banach-Steinhaus theorem for tem-

pered distributions, that is Proposition A.2 (3). The other properties are straight-

forward applications of (3.42). �

Proposition 3.52. Let u̇ ∈ S ′(Rd \ X) as above such that sd⊥X(u̇) = κ < ∞.

Then ∃u ∈ S ′ (Rd
)

such that

(1) u|S (Rd\X) ≡ u̇,

(2) sd⊥X(u) ≤ sd⊥X(u̇),

Furthermore we have
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(3) if κ < d′, then u is uniquely determined by the above conditions, else it is

unique up to an element of

Rκ−d′ =

 ∑
|α′|≤κ−d′

∂α
′

x′ δX ⊗ vα′
∣∣∣∣ vα′ ∈ S ′(Rk)

 .

Proof. The proof follows the outline in [16] and [112], with the additional aspects

of taking temperedness into account. At the heart of the proof is the Littlewood-

Paley-type partition of unity as introduced above.55

Suppose first that sd⊥X(u̇) < d′. Let f ∈ S
(
Rd
)
. We seek to define 〈u, f〉. Set

(formally)

〈u, f〉 := 〈(χ0 ⊗ 1Rk)u, f〉︸ ︷︷ ︸
=:〈uχ,f〉

+ 〈(φ0 ⊗ 1Rk)u, f〉︸ ︷︷ ︸
=:〈uφ,f〉

(3.43)

We give meaning to (3.43) term by term:

Since (χ0 ⊗ 1Rk)f is an element of S (Rd \ X), we can define the first term in

accordance with assumption (1) to equal

uχ := (χ0 ⊗ 1Rk)u̇,

trivially extended to an element of S ′ (Rd
)
.

For the second term in (3.43), we use the decomposition of φ0 into the dilated copies

of φ1. We first act as if uφ was already extended, and do a formal calculation in

order to motivate the upcoming definition of uφ in terms of u̇

〈uφ, f〉 =
〈
(φ0 ⊗ 1Rk)u, f

〉
=
〈
u, (φ0 ⊗ 1Rk)f

〉
=
∞∑
j=1

2−jd
′/2
〈
u,
(
(D2jφ

1)⊗ 1Rk
)
f
〉

=
∞∑
j=1

2−jd
′/2
〈
DX,⊥

2−j u, 2
jd′/2

(
φ1 ⊗ 1Rk

)
DX,⊥

2−j f
〉

55Helpful comments on the role of boundedness and the Banach-Steinhaus theorem in the proof
by Nguyen Viet Dang were gratefully received.

133



Since (φ1 ⊗ 1Rk)DX,⊥2−j f is an element of S (Rd\X), we can thus set, in accordance

with assumption (1),

(3.44) 〈uφ, f〉 := lim
N→∞

N∑
j=1

2−jd
′/2
〈
DX,⊥

2−j u, 2
jd′/2

(
φ1 ⊗ 1Rk

)
DX,⊥

2−j f
〉
.

Each summand in (3.44) is well-defined. To guarantee the convergence of the sum,

we want to use the bound on the scaling degree of u̇: since (φ0 ⊗ 1Rk)DX,⊥2−j f is

not a single test function, but actually a family of test functions with respect to

the index j, to make use of (3.42) we need the following lemma, which may be

obtained by similar estimates as those in the proof of Lemma 3.44 and 3.48.

Lemma 3.53. The family of elements of S (Rd \X) given by

{fj}j∈N0 :=
{

2jd
′/2
(
φ1 ⊗ 1Rk

)
DX,⊥

2−j f
}
j∈N0

is bounded in the topology of S
(
Rd
)
.

Using the version of the Banach-Steinhaus Theorem available for Schwartz func-

tions, i.e. Proposition A.2 (3) we conclude by (3.42) that the family of distributions

2−j(κ−d
′/2)DX,⊥

2−j u̇ is bounded on {fj}j∈N0 , meaning that we have

〈uφ, f〉 = lim
N→∞

N∑
j=1

2−jd
′/2
〈
DX,⊥

2−j u, fj

〉

= lim
N→∞

N∑
j=1

2j(κ−d
′)
〈

2−j(κ−d
′/2)DX,⊥

2−j u̇, fj

〉
.

∞∑
j=1

2−j(d
′−κ) <∞ by κ < d′.

We obtain a well-defined element u in S ′ (Rd
)
, which satisfies u|S (Rd\X) = u̇, i.e.

the claim (1), as a consequence of Lemma 3.48.

Calculating |〈λκ−d′/2DX,⊥λ u, f〉| by going through the construction once more, one

obtains (2).

We postpone the question of uniqueness and first address the case ∞ > sd⊥X(u) ≥
d′. We decompose f as in the construction leading up to Lemma 3.47 and specify
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N = bsd⊥X(u)− d′c+ 1 and set

(3.45) 〈u , f〉 :=
∑
|α|=N

〈
(
(x′)αu̇

)
ext.
, fα;N〉

where the right-hand side is defined by the extension process granted by the

first part of the proof, wherein we notice that, by Lemma 3.51, for |α| = N ,

sd⊥X ((x′)αu̇) ≤ d′.

We have to make sure that this really extends u̇, meaning that (1) is satis-

fied. For that we use the statement of Lemma 3.47, meaning we may write

f =
∑
|α|=N(x′)αfα;N , and compute, using that we have proved (1) for distri-

butions with scaling degree less than d′ in first part of the proof,

〈u , f〉 =
∑
|α|=N

〈
(
(x′)αu̇

)
ext.
, fα;N〉

=
∑
|α|=N

〈(x′)αu̇, fα;N〉

= 〈u̇,
∑
|α|=N

(x′)αfα;N〉

= 〈u̇ , f〉.

We now discuss the amount of possible extensions. By u|S (Rd\X) ≡ u̇, we have

that the difference of two possible extensions u − ũ = v ∈ S ′ (Rd
)

must be

supported on X. Recalling Theorem 2.52, we can write such distributions as a

finite sum of the form v =
∑
|α′|≤N ∂

α′

x′ δX ⊗ vα′ , where vα′ ∈ S ′(Rk). Calculating

the scaling degree for such a v is, by homogeneity of δ, straight-forward and we

obtain sd⊥X(v) ≤ d′ +N . To match assumption (2), we thus obtain (using Lemma

3.51(2)) that all possible extensions are obtained as the sum of one representative

u and an element of the subspace

Rκ−d′ =

 ∑
|α′|≤κ−d′

∂α
′

x′ δX ⊗ vα′
∣∣∣∣ vα′ ∈ S ′(Rk)


�

Remark 3.54. We notice that when it comes to considering the extension problem,

it is in fact unnecessary to consider the scaling degree of the whole distribution,

since the construction is local. Since (χ0 ⊗ 1Rk)u̇ is supported away from X, it
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was trivially extendible to all of S
(
Rd
)

and we were left with the extension of

(φ0⊗1Rk)u̇. We may thus relax our condition on the scaling degree of u̇ by imposing

it only on sd⊥X((φ̃0⊗1Rk)u̇) for some cut-off φ̃0 ∈ C∞(Rd′) (which is then necessarily

smaller or equal to the original scaling degree, sd⊥X((φ̃0 ⊗ 1Rk)u̇) ≤ sd⊥X(u̇), by a

Banach-Steinhaus type argument). We may localize even further by a partition

of unity “along X”. For the sake of comprehensibility, we have refrained from

carrying out such straight-forward generalizations.

Remark 3.55. We remark that it is possible, under certain conditions, to estimate

the wave front set of u̇ in terms of u which is a subset T ∗Rd \ X, see [16, Sect.

6] and [112, Thm. 3.2.1.]. Of course, we always have WFcl(u) ⊂WFcl(u̇) ∪ (X ×
(Rd \ {0})). A particular case in which WFcl(u) may be bounded further is if the

closure of Γ = WFcl(u̇) ⊂ (Rd × Rd \ {0}) stays in the conormal to X, and if the

notion of scaling degree is refined with respect to the topology on the space D ′Γ
defined in [81, Sect. 8.2]

D ′Γ = {u ∈ D ′ |WFcl(u) ⊂ Γ},

see [112, Sect. 3.1.1]. Therein, the resulting u may be chosen to fulfil WFcl(u) =

WFcl(u̇).

It seems very likely that these considerations may be generalized to the tempered

setting (with reference to the space S ′
Γ), the details of which will be subject to

further investigation.

We will now sketch how the previous theory may be applied to renormalize a

priori undefined products of distributions. Let u, v ∈ S ′ (Rd
)
. Assume that the

assumptions of Proposition 2.42 hold outside a “subspace” Xt(X \{0}) of WFSG.

Then, for any excision function χ that vanishes on X, we have a well-defined

product (χu) · v. Suppose that by shrinking the support of χ, we may extend this

to a distribution (u · v)· on all f ∈ S X(Rd) and that sd⊥X ((u · v)·) <∞.56

One may then define an extension of this product and call it the renormalized

product of u and v - of course, if sd⊥X ((u · v)·) ≥ d, this product can only be

regarded either as an equivalence class or it has to be determined by some choice

of the ambiguity.

56To guarantee this, one would have to require that the convergence in the definition of the
scaling degree (3.42) is “microlocal”, as in Remark 3.55, that is impose convergence with respect
to the notion of convergence of SWFSG(ui).
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Remark 3.56. In quantum field theory, in one of the main applications of this

theory, the remaining arising freedoms are essential and fixed by experimental

data, see e.g. [127]. Note that this is - for dimX > 0 - in general only possible

if we fix additional criteria, since in that case Rκ−d′ is not finite dimensional.

The common way to do so is to reduce Rκ−d′ to a finite dimensional subspace by

imposing u to share certain symmetries of u̇. Special cases of this could be

• u̇ is (quasi-)homogeneous,

• u̇ is translation invariant, or more generally invariant under some Lie group

action,

• u̇ is solves a differential equation.

It has been shown in [6], see also [152, Chap. 7] and [112, Chap. 8], how symmetries

may be efficiently incorporated into the extension process.

The immediately arising question is if this renormalized product, when definable,

yields an extension of the product of S in S ′ in the previous sense of Section

2.1, i.e. an associative product that coincides with the usual one on continuous

functions and which is subject to the Leibniz rule. The answer is no, since we

can simply consider, in S ′(R), the example used in the proof of the impossibility

result in [133] to see that on the one hand(
x ·D2(x(log(|x|)− 1)

)
· δ0 =

(
x · p.v.(x−1)

)
· δ0 = 1 · δ0 = δ0

and on the other

x ·
(
D2(x(log(|x|)− 1) · δ0

)
= x ·

(
p.v.(x−1) · δ0

)
= x · (0)·

ext.−→ x · 0 = 0.

In the same way we calculate δ0 · δ0 = (0)·
ext.−→ 0. One could of course, during the

renormalization process, keep track of the scaling degrees of u and v and ask that

the scaling degree of the resulting distribution matches that of the sum of that of u

and v, instead of that of (u ·v)· which may be lower, yielding the freedom of setting

δ0 · δ0 = C1δ0 + C2∂xδ0. Depending on the application under consideration, these

ambiguities have to be fixed “manually” or the outcome of the product has to be

viewed as an equivalence class, which leads into the area of algebras of generalized

functions, see [25, 26, 27].

Remark 3.57. The methods previously used to extend distributions to subspaces

can be generalized to yield extensions to submanifolds, see [16, 112].
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We remark at this point that in light of the definition of the scaling degree, the

methods used in extending to a submanifold X can be used as well to extend

distributions to tempered distributions and to such on bounded smooth functions.

In fact, the usual method of proof to show that D(Rd) is dense in S
(
Rd
)

is by

the use of an increasing sequence of cut-offs. The proof of Lemma 3.44 reveals

how the finiteness of the scaling degree of a distribution stems from a finite order

of a distribution - a scaling towards the boundary would be the same for the

“multiplicative order” or “growth rate” of a tempered distribution.

Using a refined partition of unity as above and decomposing χ0 (instead of φ0)

into factors of φ1, one could then carry out a similar analysis to the above. We

have extended with respect to the spaces

D ′(Rd \X)→ S ′(Rd \X)→ S ′ (Rd
)
,

and accordingly one could extend distributions by

D ′
(
Rd
)
→ S ′ (Rd

)
→ (C∞b )′(Rd)

by scaling “towards the boundary” instead of “towards X”, see Figure 14. The

ambiguity in the extension process would amount to fixing the values of 〈u, 〈x〉−n〉
for small values of n ∈ N0.

This procedure would then be applicable to problems in quantum field theory

involving large scales, in particular the adiabatic limit, see Section 3.5.3.

Figure 14. Schematic comparison between extensions by scaling
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3.4. Weyl-quantized operators and the Weyl product.

3.4.1. Weyl products of tempered distributions.

In this section, we address - in the spirit of Section 2.7.1 - how the notion of WFG

can be used to obtain existence criteria for twisted products, in particular the Weyl

product, of tempered distributions and how the action of Weyl-quantized operators

with distributional symbols can be extended to tempered distributions. Recall (see

(A.18)) that the Weyl product of two symbols a and b takes the form

a#b(x, ξ) = exp

(
i

2
ω(Dx, Dξ;Dy, Dη)

)
a(x, ξ)b(y, η)

∣∣
(x,ξ)=(y,η)

where the exponential is viewed as a Fourier multiplier. Using Theorem 2.83 and

the symplectic transformation properties of the G-wave front set in Proposition

2.58, this can be extended to distributions:

Proposition 3.58. Let ω be a antisymmetric form on Rd given by the skew-

symmetric matrix Θ via ω(x, y) = xtΘy and let u, v ∈ S ′ (Rd
)
.

If the equation

(3.46) x+
Θ

2
ξ = 0

has no solutions with (x, ξ) ∈WFG(u), (x,−ξ) ∈WFG(v), then we can define the

twisted product in terms of the map δ(x) = (x, x) by

u#Θv = δ∗F−1
(x′,y′)→(x,y)

{
e
i
2

(x′)tΘy′(Fu)(x′)⊗ (Fv)(y′)
}

in a canonical way and have the inclusion

(3.47) WFG(u#Θv) ⊂WFG(u) ∪WFG(v)

∪
{(

x+ y

2
+

Θ

2

ξ − η
2

, ξ + η

) ∣∣∣∣x− y =
Θ

2
(ξ + η)

}
,

where (x, ξ) ∈WFG(u) and (y, η) ∈WFG(v). This yields a sequentially continuous

map #Θ : S ′
WFG(u)×S ′

WFG(v) → S ′
Γ with Γ given by the right-hand side in (3.47).

Remark 3.59. If Rd is even dimensional and ω is the standard symplectic form,

then this twisted product yields the Weyl product.

In case Θ = 0, the twisted product degenerates to the usual product in case Θ = 0.

The following proof therefore yields Proposition 2.86 (1) as a special case.
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Proof. We obtain (3.46) and (3.47) from Theorem 2.83 constructively by using

Proposition 2.58 in several steps:

By the behaviour under tensor products, i.e. Lemma 2.84, and Fourier symmetry,

we have

WFG(Fu⊗Fv) ⊂

{(ξ, η,−x,−y) | (x, ξ) ∈WFG(u) ∪ {0}; (y, η) ∈WFG(v) ∪ {0}} \ {0}.

By the skew-symmetry of Θ we may write

e
i
2
xtΘy = e

i
2

(x,y)tA(x,y) for A =

(
0 Θ/2

−Θ/2 0

)
.

Notice that we have tA = A and the symplectic transform corresponding to the

unitary transform f(x, y)→ e
i
2

(x,y)tA(x,y)f(x, y) is therefore

χ(x, y; ξ, η) =

(
1R2d 0

A 1R2d

)
(x, y; ξ, η) = (x, y; ξ + Θ/2y, η −Θ/2x).

Thus we have

WFG

(
F−1

{
e
i
2
xtΘy(Fu⊗Fv)

})
⊂{

(x− Θ

2
η, y +

Θ

2
ξ, ξ, η)

∣∣∣∣ (x, ξ) ∈WFG(u) ∪ {0}; (y, η) ∈WFG(v) ∪ {0}
}
\{0}.

The pullback δ∗ corresponds to the linear map x 7→ (x, x) and thus its transpose

is (ξ, η) 7→ ξ + η. Therefore the pullback criterion (2.40) becomes(
x− Θ

2
η, y +

Θ

2
ξ

)
= (0, 0) =⇒ ξ + η 6= 0,

which yields (3.46). We then use (2.41) to compute (3.47). �

Remark 3.60. For nonsingular Θ, the existence criterion may be reformulated as

(3.48) WFG(u) 3 (x,−2Θ−1x)⇒ (x, 2Θ−1x) /∈WFG(v).

Remark 3.61. We note that the Weyl product is related to the so-called twisted

convolution similarly to the way as the ordinary product is linked to the convolu-

tion, see [54, Sect. 3.6]. By the Fourier symmetry of WFG, it is straightforward

to extend our results about Weyl products to twisted convolutions.
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Corollary 3.62. Let Θ as in Proposition 3.58. Let V be a conic subset of Rd \ {0}
closed under addition and W a conic subset of Rd such that

x ∈ W, ξ ∈ V ⇒ x−Θξ/2 ∈ W.

Define Γ := W × V . Then S ′
Γ(Rd) is a topological algebra containing S

(
Rd
)

which is closed under both products and twisted products.

Finding and studying such algebras was of interest - motivated by the so called

“phase space approach to quantum mechanics” - in [66, 97, 54] and [137, 138, 139],

cf. also the references therein for this wide subject.57 A similar train of thoughts is

adapted in in [76, 144], where existence criteria for the Weyl product in weighted

modulation spaces are indicated.

The main idea that all of these have in common is that they assume that the

distributions in consideration fulfil global “growth estimates” and they proceed to

estimate the Weyl product or twisted convolution by these. In this document, as

discussed also in Section 2.1 , we follow a microlocal approach to the question of

existence of operations on distributions: we allow both factors to be rather wild in

general (i.e. to be elements of S ′), but impose that whenever one of the factors is

not rapidly decaying in one direction in the time-frequency plane, i.e. microlocally,

the other one is decaying in “a compensating direction”. By our techniques - and

by considering analogues of WFG adapted to the various norms and spaces used58-

it seems very likely that our approach may be generalized further with respect to

the spaces used in the aforementioned references.

3.4.2. Weyl-quantization of tempered distributions.

In this section we study how the previous results may be applied to Weyl-quantized

operators and study their mapping properties. The question is natural, since Weyl

products of distributions arise in particular if one considers products of pseudo-

differential operators, where the amplitudes are allowed to be distributions, and

one tries to set, for the composition,

aW (x,D)bW (x,D) = (a#b)W (x,D).

57Note that in the latter sources, the algebras under consideration were tempered ultradistribu-
tions. These spaces can be treated similarly, but a modified version of the G-wave front set has
to be used, see Section 4.1.
58Such as Sobolev versions of WFG.
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Weyl quantizations of distribution may of course be defined as in Appendix A.3,

but it is unclear how to define compositions, since in general these provide oper-

ators a : S
(
Rd
)
→ S ′ (Rd

)
. Using the machinery of Section 2.7, however, we

may define such compositions if we can bound the G-wave front set of the involved

kernels. Therefore, we express aW (x,D) as an operator with kernel KA, and com-

pute KA in several steps in terms of a as follows (therein, we write distributions

as formal integral kernels to be able to keep track of the variables):

(1) Take a distribution a(x, ξ) ∈ S ′(R2d
)
,

(2) tensor it with 1 to obtain a(x, ξ)1(y) ∈ S ′(R3d
)
,

(3) apply a change of coordinates to obtain A∗ (a(x, ξ)1(y)) = a
(
x+y

2
, ξ
)

(4) multiply by e
i
2

(x,y,ξ)tA(x,y,ξ) = ei(x−y)ξ with the real symmetric matrix

A =

 0 0 1

0 0 −1
1 −1 0


to obtain a

(
x+y

2
, ξ
)
ei(x−y)ξ

(5) integrate over ξ, i.e. apply ∂ξ∗=0F−1
ξ 7→ξ∗ to obtain

KA(x, y) = (2π)−d
∫
Rd
a

(
x+ y

2
, ξ

)
ei(x−y)ξdξ ∈ S ′(R2d

)
.

Going through the individual steps and applying Proposition 2.58 and Theorem

2.83, we see that the criterion for the pullback is always satisfied and using Propo-

sition 2.88 we obtain

Proposition 3.63. Let a ∈ S ′(R2d
)
. Then the kernel KA of the associated Weyl

operator A = aW (x,D) : S
(
Rd
)
→ S ′ (Rd

)
satisfies

WFG(KA) ⊂
{(

x− ξ∗

2
, x+

ξ∗

2
,
x∗

2
+ ξ,

x∗

2
− ξ
) ∣∣∣(x, ξ, x∗, ξ∗) ∈WFG(a)

}
.

We may extend A to u ∈ S ′ (Rd
)

with

WFG(u) ∩ {(x, ξ) | (x, ξ,−2ξ, 2x) ∈WFG(a)} = ∅.

We then have the inclusion

WFG(Au) ⊂ {(x, ξ) | (x, ξ, 2ξ, 2x) ∈WFG(a)} ∪WF′G(KA) ◦WFG(u).
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In particular, for f ∈ S
(
Rd
)

we have

WFG(Af) ⊂ pr0
1(WF′G (KA)) = {(x, ξ) | (x, ξ, 2ξ, 2x) ∈WFG(a)}.

Remark 3.64. If a ∈ S ′ (Rd
)

happens to satisfy that all elements of WFG(u) are

of the form {(x, ξ, 0, 0)}, then aW (x,D) is G-microlocal, as is the case for e.g.

elements of Gm
(
Rd × Rd

)
.

Compositions of such Weyl operators with symbols a, b ∈ S ′(R2d) are then defined

if (3.48) is fulfilled, that is

(x, ξ,−2ξ, 2x) ∈WFG(a)⇒ (x, ξ, 2ξ,−2x) /∈WFG(b).
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3.5. Applications to quantum field theory.

3.5.1. Introduction.

Quantum field theory (QFT) is a theoretical framework to describe particle interac-

tions at the (sub-)atomic level. Consequently, it describes high energy phenomena

- and thus high frequencies - at small distances, which already hints at the appli-

cability of microlocal methods to it.

There are various branches of quantum field theory which are active research top-

ics, we are going to be concerned with axiomatic constructive quantum field theory,

in particular constructions that arise in perturbation theory. We can not go into

the details of these theories, which would be outside the scope of this dissertation,

but merely focus on some applications of our findings to questions arising in QFT

and provide the reader with some keywords about the context in which these con-

structions arise. Our main reference in the following discussion is [118].

One choice of minimal assumptions that a quantum field theory is supposed to

fulfil is given by the G̊arding-Wightman axioms, consider [118, Sect. IX.8] and

the discussion therein. The fundamental objects of study in such quantum field

theories are fields Φ. Such a field59 is mathematically modelled on some separable

Hilbert spaceH as an operator-valued tempered distribution Φ : S
(
Rd
)
→ Op(H),

meaning ∀v, w ∈ H we have that f 7→ 〈v, Φ(f)w〉 is a tempered distribution, for

which one assumes, among other properties,

• the existence of some dense subset D ⊂ H such that for any f ∈ S
(
Rd
)

dom(Φ(f)) ⊃ D and dom(Φ(f)∗) ⊃ D, and we have Φ(f)|D = Φ∗(f)|D,

• ∀v ∈ D the map f 7→ Φ(f)v is strongly continuous and linear,

• there exists a distinguished vector Ω ∈ D called the vacuum.

The only theories (in 3+1 dimensions) for which the full set of G̊arding-Wightman

axioms is known to hold, are the (generalized) free field theories (see [118, Sect.

X.7]). These theories, however, are associated to linear partial differential equa-

tions and lack interaction terms. Interactions are then introduced into this frame-

work in a perturbative approach. We consider here : Φn :-theories, which may be

viewed as toy models in QFT, but already capture a lot of the interesting struc-

ture.

In the Epstein-Glaser-approach to perturbation theory, one obtains the S-matrix

59Here, we assume our theory is described by only one type of field.
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to describe the transition from one state v ∈ H to another w ∈ H in an experiment

with reference to Fermi’s golden rule. This S-matrix is constructed as a formal

power series (the Dyson’s series) in the coupling constant λ

(3.49) S(g) = 1H +
∞∑
n=1

λn
(−i)n

n!
〈Tn, g

⊗n〉 g ∈ S
(
Rd
)
,

where the Tn are some causal time-ordered products that are inductively con-

structed in terms of the free fields Φ.

The starting point of our analysis is that these time-ordered products may be ex-

pressed in terms of Wick products of fields and some formal integral kernels. Such

expressions are then well-defined (tempered) operator valued distributions (by use

of Epstein and Glaser’s Theorem 0 ) if these formal integral kernels are (translation

invariant) tempered distributions. It is therefore imperative to see that the arising

expressions are indeed well-defined distributions - or may be extended to such.

We will analyse some of these expressions in the following. We mention that parts

of this analysis has already been carried out in [129] and the two-point function has

been already treated as an oscillatory integral in [49, 118]. Some of the upcoming

constructions, in particular those involving the G-wave front set, are to the best

of our knowledge entirely new. Others are generalizations of procedures that were

established in terms of classical microlocal analysis, see [4], and we employ our

methods to complement these with a study in the framework of tempered distri-

butions.

Temperedness is of interest for several models of QFT, especially when one is also

concerned with asymptotics of the involved distributions. It is of particular in-

terest in the so-called non-commutative quantum field theory, meaning QFT over

non-commutative space times, cf. e.g. [4, 5, 53], since in several of these models,

the involved test functions can not be assumed compactly supported.

3.5.2. The two-point function as a tempered oscillatory integral.

In the following, we first consider free, scalar, bosonic QFT on flat space time,

that is Minkowski space Md,1 = R × Rd, wherein we denote points by (x0, x) for

x0 ∈ R and x = (x1, . . . , xd) ∈ Rd. Elements of M1,d × Rd are brought into the

format (x0, x; θ).

Let m > 0 the mass, ωm(x) =
√
m2 + |x|2. The two-point function on M1,d×M1,d
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is obtained as (see [112, Chap. 5], [118, Sect. IX.8])

∆+(x0 − x′0, x− x′) := i(Ω, Φ(x0, x)Φ(x′0, x
′)Ω)H

After passing to difference variables (x0−x′0, x−x′) 7→ (x0, x) it may be represented

by a formal integral expression on M1,d, that is

(3.50) ∆+(x0, x) :=
i

2(2π)d

∫
Rd

ei(−x0ωm(θ)+xθ)

ωm(θ)
dθ.

We observe that this is of the form of a formal oscillatory integral as in (3.1). We

thus seek to define the two-point function as a tempered oscillatory integral and

must verify that its symbol and phase function are SG-symbols. We note that we

have already achieved such a characterization in [49]. Here we simplify the analysis

by using that the SG-phase function of ∆+ is classical.

For that, we observe that, by Example 1.11, we have ωm(θ) =
√
m2 + |θ|2 =

m〈θ/m〉 ∈ S1
cl(M1,d). Consequently we have

ϕ(x0, x; θ) := −x0ωm(θ) + xθ ∈ SG1,1
cl (M1,d × Rd) = S1(M1,d)⊗̂S1(Rd).

We may compute the principal symbols and, by use of Proposition 1.18, their

gradients at some (x0, x; θ) on their respective domains of definition

ϕψ = −x0|θ|+ xθ ∇θϕ
ψ = −x0

θ
|θ| + x ∇xϕ

ψ = (−|θ|, θ)t

ϕe = −x0ωm(θ) + xθ ∇θϕ
e = −x0

θ
ωm(θ)

+ x ∇xϕ
e = (−ωm(θ), θ)t

ϕψe = −x0|θ|+ xθ ∇θϕ
ψe = −x0

θ
|θ| + x ∇xϕ

ψe = (−|θ|, θ)t

Since ∇xϕ
• vanishes nowhere on W•

SG, the function Φ associated to ϕ is SG-

elliptic, and ϕ is indeed a classical (1, 1)-SG-phase function. We may consequently

use Theorem 3.9 to define ∆+:

Definition 3.65. The two-point function ∆+ is the tempered oscillatory integral

∆+ ∈ S ′(M1,d) with

ϕ(x0, x; θ) = −x0ωm(θ) + x · θ

a(x0, x; θ) =
i

2(2π)dωm(θ)
,

where (x0, x) ∈M1,d and θ ∈ Rd.

Remark 3.66. This two-point function was already studied as an oscillatory integral

in [118]. Therein, however, the phase function is “homogeneized” as in (3.8), that
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is by writing

(3.51) eiϕ(x0,x;θ) = eiϕ
ψ(x0,x;θ)︸ ︷︷ ︸

Hom. phase

·
(
χ(θ)ei(ϕ−ϕ

ψ)(x0,x;θ)︸ ︷︷ ︸
Cl. symbol

+ (1− χ(θ))ei(ϕ−ϕ
ψ)(x0,x;θ)︸ ︷︷ ︸

Compactly supported in θ

)
.

The draw-back of this procedure is that it introduces an artificial differential sin-

gularity in the symbol at θ = 0, which then needs to be treated as a asymptotic

symbol. Such artificial singularities in θ = 0 influence the singularity structure

of the resulting distribution at infinity, since the integration over a non-smooth

perturbation - even if it is compactly supported - will not result in rapid decay.

That means that this approach is not suited for the study of global singularities.

We will see, in fact, that the mass parameter, which is removed from the phase,

shows up in the e-component of the set of stationary points Λe
ϕ, and thus cannot

be reproduced in the above approach if the mass term is absorbed into the symbol

and “forgotten”.

Our approach of instead treating ∆+ as an oscillatory integral with inhomogeneous

phase function is instead closely related to that of [156].

Another way to introduce the two-point function (see again [118]) is as the Fourier

transform of some positive measure on the negative mass shell Hm

Hm = {(−ωm(θ), θ) | θ ∈ Rd} ⊂M1,d

∆+ = iπF−1
θ 7→x

δHm
ωm(θ)

,(3.52)

where δHm is the distribution that acts on f ∈ S (M1,d) by

〈δHm , f〉 =

∫
Rd
f(−ωm(θ), θ) dθ.

From the principal symbols of ϕ, we may now establish bounds on the singularities

of ∆+ in terms of the associated geometric sets Cϕ and Λϕ. We calculate, by use

of Lemma 3.26,

Cψϕ =
{

(0, 0; θ)
∣∣ θ ∈ (Rd \ {0})

}
∪
{

(±|x|, x;±λx)
∣∣x ∈ Rd \ {0}, λ > 0

}
Ceϕ =

{(
±x0, x;

±mx√
x2

0 − |x|2

) ∣∣∣∣x0 ∈ R+, x ∈ Rd, |x|2 < x2
0

}
Cψeϕ =

{
(±|x|, x;±λx) |x ∈ Rd \ {0}, λ > 0

}
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and Λϕ is, by Lemma and 3.28, the union of60

Λψ
ϕ =

{
(0, 0;−|ξ|, ξ)

∣∣ ξ ∈ Rd
}
∪
{

(±|x|, x;−λ|x|,±λx)
∣∣x ∈ Rd \ {0}, λ > 0

}
Λe
ϕ =

{(
±x0, x;

−m|x0|√
x2

0 − |x|2
,
±mx√
x2

0 − |x|2

) ∣∣∣∣x0 ∈ R+, x ∈ Rd, |x|2 < x2
0

}
Λψe
ϕ =

{
(±|x|, x;−λ|x|,±λx)

∣∣x ∈ Rd \ {0}, λ > 0
}

As in [49], we may parametrize the e-component of Λϕ also as follows:

(3.53) Λe
ϕ =

{
(±λωm(θ),±λθ;−ωm(θ), θ)

∣∣∣∣ θ ∈ Rd, λ > 0

}
.

Before we discuss the (physical) meaning of these sets, we first use Theorem 3.18

to calculate the singularities of ∆+, following our proof in [49, Thm 5.1].

Corollary 3.67. Let ∆+, Cϕ and Λϕ as above, then

Css(∆+) = pr1(Cϕ) = pr1(Λϕ)

WFSG(∆+) = Λϕ.

Proof. It is enough to prove the second statement. The inclusion ⊂ follows by

Theorem 3.18. The converse inclusion WFcl(u) ⊃ Λψ was proven (by use of Lorentz

invariance) in [118, Thm. IX.48]. The inclusion WFψeSG ⊃ Λψe then follows by the

closedness of WFSG in WSG.

For the WFeSG-component, we make use of the fact that, see Lemma 2.4,

(x, ξ) ∈WFeSG(∆+)⇔ (ξ,−x) ∈WFψSG(F∆+).

Making use of the explicit characterization (3.52) of F∆+ and the parametrization

(3.53) of Λe
ϕ as well as the fact that the wave front set of this δ-type distribution

is well-known to be the set of normals to Hm (see [81, Ex. 8.2.5]), we conclude the

claim. �

We now turn to a discussion of these sets. pr1(Λψ
ϕ) yields the light-cone, that is

{(x0, x) | |x0| = |x|}, and pr1(Λψe
ϕ )) is simply the boundary of the light-cone “at

infinity”. That means all differential singularities of ∆+ lie on the light cone.

pr1(Λe
ϕ) is formed by (all non-light-like) time-like directions, that is those that

60In the following, elements of M1,d ×M1,d are brought into the format (x0, x; ξ0, ξ).
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satisfy |x|2 < x2
0, and consequently ∆+ is not rapidly decaying into these direc-

tions, but merely smooth and polynomially bounded. In the remaining space-like

directions with x2
0 < |x|2, it is smooth and of rapid decay. In (1 + 1)-dimensions,

meaning d = 1, this may be visualized as a subset of Bd in Figure 15. In [118,

x0

x

Figure 15. The cone singular support of the two-point function

Thm. IX.48], more precise decay rates for the two point function are given. We

also note that the precise asymptotics of ∆+ near the light-cone are known, see

e.g. [11, App. II].

We now turn towards the set Λϕ. The Λψ
ϕ and Λψe

ϕ -component are formed by attach-

ing those tangential vectors to the light cone that have a negative ξ0-component.

Λe
ϕ is best understood if one considers the set

WFeSG(F∆+) = {(ξ,−x) | (x, ξ) ∈WFψSG(∆+)},

as in the proof of Corollary 3.67, which is formed by the set of normals to Hm.

This information (schematically, in 1 + 1 dimensions) is visualized in Figure 16,

consider also [118, Fig. IX.7] and [50, Fig. 2].

Remark 3.68. We note that due to the conic singularity at (x0, x) = 0, Cψϕ is not

a manifold, and thus ϕ is not non-degenerate (around this point).

Having used our findings of Section 3.2 to define ∆+ as a tempered distribution,

we may now turn to the definition of further constructions involving ∆+.
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x0

x

Figure 16. W̃F
ψ

SG(∆+) ∪ W̃F
ψe

SG(∆+) and W̃F
ψ

SG(F∆+)

3.5.3. Well-definedness of distributional products in QFT.

We have already mentioned time-ordered products in (3.49). In its simplest form,

these occur in terms of the Heaviside-function ϑ = 1[0,∞) ∈ S ′(R) by (T denotes

the time-ordering)

i(Ω,T (Φ(x0, x)Φ(x′0, x
′))Ω)H

= i
(
Ω, ϑ(x0 − x′0)Φ(x0, x)Φ(x′0, x

′)Ω
)
H +

(
Ω, ϑ(x′0 − x0)Φ(x′0, x

′)Φ(x0, x)Ω
)
H

= ϑ(x0 − x′0)∆+(x0 − x′0, x− x′) + ϑ(x′0 − x0)∆+(x′0 − x0, x
′ − x)

The latter expression constitutes the Feynman-Propagator, one of the distinguished

fundamental solutions (see [56]) of the Klein-Gordon equation.

There are other ways of defining this distribution, in particular through a pre-

scribed contour integration. We follow the train of thoughts of [118] of defining it

as a product of distributions.

We therefore wish to define the product (ϑ ⊗ 1Rd) · ∆+. For that, since we have

already determined the wave front set of the two-point function, we first calculate

by means of the analysis in Section 2.4.1

WFψSG(ϑ⊗ 1Rd) = {(0, x,±λ, 0) |x ∈ Rd, λ > 0}

WFψeSG(ϑ⊗ 1Rd) = {(0, x,±λ, 0) |x ∈ (Rd \ {0}), λ > 0}.

Since WFψSG(∆+) and WFψeSG(∆+) contain no element of the form (0, x,±λ, 0), we

may conclude by Proposition 2.42:
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Corollary 3.69. The product (ϑ⊗1Rd)·∆+ is a well-defined tempered distribution.

This statement was also established in [118] in the non-tempered setting.

In Dyson’s series (3.49), several of factors of these Feynman propagators appear.

Of course, these may be viewed as multiple products of Heaviside functions and

two-point functions. These are, in general, not well-defined in terms of Proposition

2.42. Nevertheless, if one seeks a way to define such a product, it is necessary to

first understand powers of the two-point function (since if ∆+ was a function, we

would for instance have ϑ(x0)∆+(x0, x)ϑ(x0)∆+(x0, x) = ϑ(x0)∆+(x0, x)2). By

Corollary 2.47, we conclude by induction

Corollary 3.70. For any k ∈ N0, the product ∆k
+ is a well-defined tempered

distribution. Furthermore we have the wave front inclusion

WFψSG(∆k
+) ⊂WFψSG(∆+) ∪ {(0, 0;−λ, |x|) | |x| ∈ Rd, λ > |x|}

WFeSG(∆k
+) ⊂
k⋃
j=1

{(
± x0, x;

−jm|x0|√
x2

0 − x2
,
±jmx√
x2

0 − x2

) ∣∣∣∣ (x0, x) ∈ R+ × Rd, |x|2 < x2
0

}

WFψeSG(∆k
+) ⊂WFψeSG(∆+)

This information on the ψ and the ψe-components are visualized in Figure 17.

We gather that the only newly arising problem to define ϑ∆k
+ is caused by high-

frequency contributions at (x0, x) = 0. We may therefore still define ϑ · (χ∆k
+)

for any excision function χ. The actual powers of the Feynman propagator may

then only be obtained by renormalizing, that is extending, this product to zero by

methods as in Section 3.3.2. This procedure, from a microlocal point of view, is

carried out in [16, 112].

Remark 3.71. In this particular problem, we only have to extend the product to a

single point, but for more complicated expressions, involving several variables, the

products are ill-defined on whole subspaces, as in Section 3.3.2. In this setting, our

methods may be used to control the asymptotic behaviour at infinity during the

extension process, which may be of particular interest when studying the adiabatic

limit, which is (termwise) obtained in the limit g → 1 in (3.49). Of course, this
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x0

x

Figure 17. A bound for W̃F
ψ

SG(∆k
+) ∪ W̃F

ψe

SG(∆k
+)

limit is not in general well-defined, but could again be canonically obtained, see

the discussion in Remark 3.55, by

• reducing the problem, by microlocal methods, to those points at infinity

where the involved distributions are not rapidly decaying (for the Feynman

propagator, this would be time-like points at infinity),

• applying sequences of cut-offs to extend the distributions to test functions

of suitable decay,

• extending to all other bounded test functions, in particular 1 trivially and

fixing the ambiguity by some convention (for instance by fixing accordance

with some predicted experimental data).

Using our methods, it is thus possible to treat certain expressions that arise in

QFT as tempered distributions. As previously mentioned, some models where as-

ymptotic behaviour of distributions is of particular interest, come from the area

of non-commutative quantum field theory. Again, we cannot introduce this area of

study in great detail, and refer the reader to [4, 5, 53].

The idea behind these models is given by Doplicher, Fredenhagen and Roberts

[53]: at small distances, that is at Planck-scale, if one interpolates elements from

the relativistic theory of gravity, the nature of space-time must be fundamentally

different from M1,d in that distances cannot be measured with arbitrary precision.

The arising bounds may be understood as uncertainty relations and may then be

realized by replacing the space-time coordinates by non-commuting operators.
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Under these considerations, one may again formulate certain models, see [5, 53].

One feature which naturally occurs is that the point-wise product of functions (and

distributions) is modified to accommodate the underlying non-commutativity. One

of these models, where the product of fields is modified to a regularized product in-

volving Gaussian integral kernels, which leads to a regularized quantum field theory,

was treated from a microlocal point of view in [129]. Here, we will consider a dif-

ferent framework over the Minkowski Moyal plane, where the non-commutativity

causes the presence of twisting factors.

Such deformations of the product are of course of great interest for the study of

singularities. The hope is, that due to the “non-local nature” of non-commutative

spaces,61 singularities from models over corresponding “commutative space times”

may be “smeared out”, which might lead to models with less singularities. There

occur, however, also new types of singularities, such as the famous infrared-ultraviolet

mixing problem. These considerations have sprouted a whole field of study, we re-

fer the reader to [4, 5] and the references therein.

The simplest example of one of the newly arising expressions that need to be de-

fined as a distribution are twisted squares of the two-point function ∆+#Θ∆+ for

some anti-symmetric Θ. We seek to define it by use of Proposition 3.58. For that,

we establish bounds on the G-wave front set of ∆+.

By Proposition 2.78, we may deduce such bounds from the support and decay

properties of F∆+ and ∆+. By Corollary 3.67, we see that ∆+ is rapidly decaying

in any direction (x0∞, x∞) with |x0| < |x|. Additionally, any ray (ξ0∞, ξ∞) with

ξ0 6= −|ξ| has a neighbourhood that does not intersect Css(F∆+), see Figure 16.

Therefore we may obtain the bound62

WFG(∆+) ⊂ {(x0, x; ξ0, ξ) | |x0| ≥ |x|, ξ0 = −|ξ|}

We may thus, by Proposition 3.58, define the twisted square of ∆+, if (3.46)

is fulfilled. By the above bound we have that (x0, x; ξ0, ξ) ∈ WFG(∆+) and

(x0, x;−ξ0,−ξ) ∈ WFG(u) implies (ξ0, ξ) = 0. Consequently, (3.46) is always

fulfilled, and therefore we may define twisted squares for any skew-symmetric Θ.

By (3.47), the bound −ξ0 ≥ |ξ| is preserved under the twisted product. Conse-

quently, we may even define any twisted power of ∆+. By Proposition 2.78, we

61This “non-local nature” is also what causes that one may often not be able to assume compactly
supported test functions.
62We may obtain this bound as well by considering the STFT of ∆+.
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may then obtain the bound (x0, x; ξ0, ξ) ∈WFcl(u)⇒ −ξ0 ≥ |ξ|, that means that

also for the twisted powers, the only “singular frequency directions” that occur

are such in the interior of the negative-directed light-cone. This reproduces what

we have encountered for the “ordinary” powers of ∆k
+, see Figure 17. We have

obtained

Proposition 3.72. For any k ∈ N, Θ skew-symmetric, we may define the twisted

power ∆#k
+ . We furthermore have the inclusions

(x0, x; ξ0, ξ) ∈WFG(∆#k
+ )⇒ −ξ0 ≥ |ξ|

(x0, x; ξ0, ξ) ∈WFcl(∆
#k
+ )⇒ −ξ0 ≥ |ξ|.

In particular, we may use Corollary 3.62 to obatin an algebra under both products

as well as twisted products generated by ∆+ and elements of S
(
Rd
)
.
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4. Outlook

In this thesis we have addressed how concepts from classical microlocal analysis

may be translated and generalized to the global setting of tempered distributions.

We were able to establish such generalizations for several constructions, and we

have addressed multiple ways of how to characterize and work with global singu-

larities. Nevertheless, there are still a lot of interesting directions into which our

analysis may be pursued further. Before giving a general outlook on many topics of

this thesis, we will first address how our methods may be transferred to a different

functional setting, the Gelfand-Shilov spaces of funtions and ultradistributions.

4.1. Microlocal analysis on Gelfand-Shilov spaces.

In the previous analysis, we have established microlocal constructions involving

tempered distributions. We have further, at times, mentioned modulation spaces,

in particular Sobolev spaces, that provide a resolution of the space of rapidly

decaying functions. In the the following, we will address a different functional

setting, that is Gelfand-Shilov functions and ultradistributions of type S . Since

these ultradistributions share many features with the tempered distributions, it is

a natural question if some of the preceding results may be generalized to them.

For that, depending on the “degree of analyticity” one imposes, various techniques

to (micro-)localize need to be replaced. Since the study of microlocal properties

of Gelfand-Shilov type ultradistributions is a vast subject on its own, we will only

discuss this in a brief and by no means complete fashion here.

Gelfand-Shilov spaces (of type S ), which are subspaces S
(
Rd
)
, were treated in

great detail in [63], see also references to earlier works therein. Their dual spaces

constitute the tempered ultradistributions, which generalize S ′ (Rd
)
, consider also

[90, 91, 92]. We introduce these spaces of functions and tempered ultradistributions

as in [113, Chap. 6], making use of the characterization obtained in [24].

Definition 4.1. A function f ∈ S
(
Rd
)

is an element of S µ
ν (Rd), µ > 0, ν > 0,

if there exists ε > 0 such that

|f(x)| . e−ε|x|
1/ν

and |Ff(ξ)| . e−ε|ξ|
1/µ
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or equivalently if ∃C ′, C > 0 such that ∀α, β ∈ Nd
0

|xα∂βxf(x)| ≤ C ′C |α|+|β|(α!)ν(β!)µ.(4.1)

These spaces are non-trvial63 if and only if µ + ν ≥ 1. One also defines spaces

for fixed C > 0 in (4.1) and equip these with norms given by the best possible

constants C ′. Then S µ
ν (Rd) is equipped with the topology of the inductive limit

of these Banach spaces.

The corresponding topological dual, denoted by (S µ
ν )′ (Rd), is the space of tem-

pered ultradistributions.

For an in-depth analysis of these spaces, we refer the reader to [63, 113]. They

share many properties with S
(
Rd
)

and S ′ (Rd
)
, in particular F extends to a

continuous isomorphism

F :

S µ
ν (Rd)→ S ν

µ (Rd)

(S µ
ν )′ (Rd)→

(
S ν
µ

)′
(Rd).

Furthermore, the spaces may be studied using methods of time-frequency analysis,

and there are again resolutions in terms of modulation spaces, see e.g. [29, 141,

142, 143].

We will now give a brief overview of how the concepts of microlocal analysis carry

over to these classes of ultradistributions. We restrict our attention to the Fourier-

symmetric case, and set µ = ν =: θ ≥ 1/2 and Sθ(Rd) := S θ
θ (Rd).

By the Denjoy-Carleman theorem, see [81, Thm 1.3.8], Sθ(Rd) does not contain

non-trivial compactly supported functions for θ ≤ 1, therefore we cannot find a

class of cut-offs which are multipliers in this case. In fact, we need to consider

three fundamental cases, which we discuss separately:

• θ > 1, where many of the previous techniques may still be employed, in

particular we may employ (Gevrey) cut-offs,

• θ = 1, in which Sθ coincides with the real analytic functions of exponential

decay, and in which consequently methods from the theory of (Fourier)

hyperfunctions may be employed,

• θ < 1, the quasi-analytic case, in which however several of these techniques

break down and cannot be generalized.

63Meaning that S µ
ν (Rd) 6= {0}.
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Remark 4.2. We note that it is also possible to work in more general spaces,

such as the ultradistributions of Beurling type. These are essentially obtained by

replacing the factorials in (4.1) by other suitable sequences γn, and yield further

quasi-analytic cases when “γn ≈ n!”.

The case of θ > 1:

In this case, many of the previous techniques may be generalized. For exam-

ple, there are adapted generalizations of the SG-pseudo-differential calculus (see

[20, 21, 113] and in particular classes of Gevrey cut-offs and adapted classes of

(asymptotic) cut-offs.64

Consequently, WFcl has an analogue in these spaces, the Gevrey-wave front set,

which was already established in [78], see also [81, Sect. 8.4.] and [120].

The SG-wave front set was then generalized to these spaces in terms of Gevrey

cut-offs and pseudo-differential operators, see [21], and many concepts may be gen-

eralized to these spaces, in particular SG-Fourier Integral operators, see [18, 19].

One thing to note is that statements in the smooth setting whose proofs are ob-

tained by integral regularizations often need to be adapted, since the regularization

needs to be “up to infinite order”. One way to overcome such issues is by use of

ultradifferential operators.

In various sources, such as [23, 99, 109], the Gevrey (or Denjoy-Carleman) wave

front set for ultradistributions was characterized by means of an FBI-transform

and it seems likely that this may be generalized to the SG-wave front set as well,

as in Section 2.3.1.

In [109], the formulation of WFG(u) in terms of the short time Fourier transform

was extended to Gelfand-Shilov spaces.

The case of θ = 1:

In this case, we have that each f ∈ S1(Rd) extends to an entire analytic function

in some strip {x + iy |x ∈ R, |y| < T} for some T > 0, which is exponentially

decaying in x (see e.g. [113, Prop. 6.1.8.]). Consequently, S ′
1(Rd) coincides with

the space of Fourier hyperfunctions, as introduced by Kawai [89] based on the

works of Sato [124, 125]. This allows for the use of various techniques from sheaf

theory and complex analysis.

64These are obtained by use of Gevrey functions (on both Rd and Sd−1) in Construction 1.3.
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We may obtain the notion of an analytic wave front set in several equivalent65

ways, also called singular spectrum, see [81, Chap. 9], [147] and [89]. We will not

go into much detail here considering techniques from hyperfunction theory, but

mention that the analytic wave front set may be characterized by

(1) analyticity of (microlocal) boundary value representations in terms of an-

alytic functions,

(2) boundary behaviour a fixed boundary value representation in terms of a

convolution operator (see [81, Def. 9.3.2.]),

(3) decay properties of the FBI-transform (see also [15]).

(4) sequences of approximating distributions with increasing regularity, as well

as pseudo-differential methods (see [147, Sect. 3.1.] and for tempered

distributions [81, Def. 8.4.3.]).

The essential ingredient in all of these constructions is the concept of localizability

of hyperfunctions. Again, these notions of analytic wave front set may then be

used to establish operations on hyperfunctions, see e.g. [147, Sect. 3.4.].

We may thus attempt to generalize global wave front sets. Fourier hyperfunctions

are already introduced in terms of the compactification Rd t (Rd \ {0}) and the

analytic wave front set generalizes to a subset of the compactification Bd × Sd−1,

see [89, 110]. This may be obtained in accordance with (1) in terms of regularity

of microlocal boundary value representations, as in [88], and also by the approach

(2), see [110]. It also seems very plausible that WFSG may be generalizable in

terms of the FBI-transform and by approximating sequences of (asymptotic) cut-

offs and pseudo-differential methods.

For WFG, there exists again an analytic analogue in terms of the FBI transform,

see [100, 101].

The case of θ < 1:

In the case θ < 1, the situation changes drastically. There is no adequate notion

of support for general ultradistributions in these spaces (as also metioned [82])

and consequently also no notion of singular support. There exist, however, various

concepts to generalize the classical wave front set to capture local singularities of

65As mentioned before, this equivalence is due to the fundamental result of Bony [12] that all
notions of singular spectrum fulfilling certain criteria all coincide.
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this type for distributions in D ′(Rd), see [115, 116], using the localization tech-

niques available for these spaces.

For general ultradistributions, there is, to the best of our knowledge, no such no-

tion. Many techniques simply break down - for example the convolution of (2) in

the previous discussion can not be extended to θ < 1. There is also (to the best

of our knowledge) no adapted partial differential calculus for these spaces.

The approach via the FBI-transform seems like a good candidate for generaliza-

tion, since the transform extends to u ∈ S ′
θ(Rd) for θ < 1, by ψ0 ∈ S1/2. In the

following example, we highlight the difficulties in obtaining a suitable generaliza-

tion of WFcl for this approach. For that, we first state (see e.g. [109]) how the

FBI-transform may be used to characterize Gevrey singularities of type θ ≥ 1:

Proposition 4.3. Let u ∈ S ′ (Rd
)
, θ ≥ 1. Let x0 ∈ Rd, ξ0 ∈ Rd with ξ0 6= 0.

Then u is microlocally Sθ-regular at (x0, ξ0∞) if and only if there is an open

neighbourhood U ⊂ Rd × Rd of (x0, ξ0) for which ∃ε, R > 0 such that for λ > R

(4.2) |Fλ,1(u)|U(x, ξ)| . e−ελ
1/θ

Example 4.4. We see that for u = δ0 we have

|Fλ,1(u)(x, ξ)| = (2π)d/2λ3d/4ψ0

(
λ1/2x

)
,

which decays like e−λε outside of x = 0, thus verifying that its analytic wave front

set is {0} × (Rd \ {0}).
However, if we simply extend the requirement (4.2) without modification to θ < 1,

then u is singular on all of Rd × (Rd \ {0}), not only at x = 0. This reflects the

lack of locality in these spaces: a singularity at any fixed point is “seen” at all

other points.

Being unable to generalize the classical wave front set in a desirable way to these

kinds of ultradistributions, there is of course no hope to generalize WFSG.

For the G-wave front set, the previous problems do not arise.66 The definition

in terms of the FBI-transform or STFT may be generalized in a straight forward

manner, see [82] for the case θ = 1/2. In [22], we have complimented this definition

by a consideration of the cases 1/2 < θ < 1. One way to define an adapted G-wave

front set for these spaces is the following:

66This may be traced back to the different shape of characteristic sets therein, see Figure 11.
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Definition 4.5. u ∈ Sθ(Rd) is G-microlocally Sθ-regular at (x0, ξ0) ∈WG if and

only if there exists a (conic) neighbourhood Γ of (x0, ξ0) such that ∃ε > 0 for which

|Vψ0u(x, ξ)| . e−ε(|x|
1/θ+|ξ|1/θ) (x, ξ) ∈ Γ.

This notion of wave front set may be used to obtain analogous results to many

of those contained in Section 2.5 in this functional setting. For that, one often

replaces the STFT by an FBI transform with complex phase to prove invariance

results and to make use of the analyticity. We refer the reader to [22, 82] for

the details. In [22], we also discuss microlocality results for various operators, in

particular localization (or Toeplitz-) operators, which is of particular interest in

this functional setting, since there is no adapted pseudodifferential calculus, see

also [29].
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4.2. General outlook.

In this section, we will discuss further open ends and interesting starting points

for a continuation of our analysis.

We have already mentioned that there are many different kinds of global wave

front sets, and some of these notions were - to the best of our knowledge - not

studied in great detail so far, for instance the metaplectic wave front set of [149].

There are also inhomogeneous calculi, where the x and ξ variables are weighted

with different scaling exponents. Consequently, different topologies “at infinity”

would arise in the compactifications. It would be interesting, in the future, to

see which of our methods to characterize wave front sets and to study operations

with it may be applicable also for such other notions, and which have “universal”

character.

Considering the characterization of the SG-wave front set in Section 2.3, we note

that the (standard) FBI transform is closely related to the so called wave packet

transform, consider [37], which in its simplest form takes the form (for f ∈ S
(
Rd
)
)

(x, ξ) 7→ cn〈ξ〉d/4
∫
f(y)eiξ(x−y)e−

1
2
〈ξ〉(x−y)2

dy.

This transform has the property that it transforms the action of a classical pseudo-

differential operator into multiplication by its symbol and terms of lower order.

To unify global and local singularities, the following transform was suggested (in

the framework of the homogeneous wave front set) in [100]

(x, ξ) 7→
∫
f(y)eiξ(x−y)e−

〈ξ〉
〈x〉 (x−y)2

dy.

It seems very likely that using such a transform and the SG-calculus would yield

a similar characterization of WFSG(u) as in Theorem 2.22 in terms of rapid de-

cay of this wave packet transform. In [61, Chap. 3.2] it is mentioned that, by

an observation of Weinstein [149], it is possible to characterize the wave front set

in terms of decay of the Wigner transform. It is again very likely that this may

be generalized, employing the techniques of Section 2.3.1, to the SG-wave front

set. Using these transforms, it also seems likely that they might lead to a better

understanding of the symbol construction in Section 3.3.1.

Another approach to study WFSG in the time-frequency plane can be found in the

series of papers [40, 41, 42]. Therein, the integral transform used is the (unscaled)
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short-time Fourier transform. To achieve (micro-)localization, again a cut-off func-

tion is used and the resulting transformed expression is tested for decay in a cone.

This framework yields both global as well as local wave front sets with respect to

various function spaces E with S
(
Rd
)
⊂ E ⊂ S ′ (Rd

)
, in particular a resolution

of WFSG in terms of modulation spaces. The approach has been further used to

study the propagation of singularities under the action of SG-Fourier Integral op-

erators in [43]. It seems likely that our methods using the FBI-transform may be

applicable as well with respect to these functional settings.

In Section 2.4.1 we have already mentioned that the microlocal existence crite-

ria we have established are far from being necessary conditions. One fairly simple

way of generalizing them further would be taking “microlocally compatible spaces”

into account, that is considering at each point different wave front sets, e.g. with

respect to Sobolev spaces. In particular, if one views the product as a restriction

of u ⊗ v to the diagonal {(x, x) |x ∈ Rd} ⊂ Rd × Rd in terms of the pull-back by

δ : x 7→ (x, x), then the tensor product is always well defined, the restriction how-

ever is not. The well-known Sobolev trace theorem provides us with an existence

criterion for such restrictions in terms of Sobolev regularity. Imposing Sobolev

regularity microlocally at a submanifold naturally leads into the field of study of

2-microlocal analysis, see [13, 93]. We hope to be able to strengthen our results

using such techniques in the future.

For WFG, the situation is similar. In the Gelfand-Shilov setting, there is so far

only the characterization in terms of the FBI/STFT-transforms. It remains to be

checked if the wave front set is also characterizable by adapted pseudodifferential

calculi, for θ > 1, or by localization operators and Gabor frames. It also remains

to be seen if one is able to prove a micro-ellipticity-type result for localization

operators. We will address the latter issue in future studies.

For both wave front sets, there already exist plenty of applications to the theory of

partial differential equations. It is our hope that the techniques discussed in this

thesis will be applicable to obtain further results on propagation of singularities

and (unique) solvability.

In Section 3.2 we have defined a tempered version of oscillators integrals and La-

grangian submanifolds on Euclidean spaces. This rich field of study opens up many

unresolved questions. First of all, it is important to define a class of invariantly

defined Lagrangian distributions and in particular to obtain a symbol map for
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them. The next step would be to construct a corresponding operator theory, with

particular emphasis on applications to partial differential as a consequent further

step. In particular, one may study Fourier integral operators of the form

(4.3) S
(
Rd
)
3 u 7→

∫
eiϕ(x,θ)a(x, θ)û(θ) dθ

and their transposes.

Using the results of Section 2.4.1, one may extend these operators to tempered

distributions under suitable assumptions on their wave front set, in terms of Λϕ.

Operators of this kind “of type I” with very regular phases, i.e.

(4.4) 〈∇xϕ〉 � 〈θ〉 〈∇θϕ〉 � 〈x〉

have been introduced in [38], see also [1, 39, 45, 46, 47] and the propagation of the

SG-wave front set under the action of such operators has been studied in [43, 44].

Our assumptions on SG-phases are far less restrictive than (4.4), and in particular

the solution operator to the Cauchy problem of the free Klein-Gordon-equation on

Rd+1, where the time is not treated as a parameter but as a space-time variable,

may be brought into the form (4.3). First steps in this direction of research have

been made in [49]. With a fully developed calculus at hand, we will be able to

study global (in time and space) solutions to such equations and various problems

from scattering theory very efficiently. We will address such questions in future

publications.

Generally speaking, we have made, throughout this thesis, thorough use of prop-

erties and tools unique to Euclidean spaces, such as the Fourier transform and

time-frequency shifts. Nevertheless, we are confident that several of our findings

may be generalized to asymptotically flat, or scattering manifolds, such as in e.g.

[107]. In particular there exists a notion of FBI-transform on compact manifolds,

see [155]. Connections of our findings considering SG-Lagrangians with results

that have been achieved from the viewpoint of the theory of Legendrian distribu-

tions, see [71, 70, 107], remain to be established.

In Section 3.3 we have discussed the scaling behaviour of a distributions. There

are several directions in which one could pursue the investigation of the SG-symbol

in 3.3.1. So far, all that has been shown is how the definitions of [148] relate to

the generalized FBI-transform, so there are quite a few starting points for further
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investigations, in particular one could check if the SG-symbol for tempered os-

cillatory integrals of Section 3.2, in analogy to the results in [148], will coincide

with a suitable global notion of symbol for the SG-Lagrangian distributions. An-

other aspect of study would be an analogous G-symbol and an investigation of the

properties and applicability of such a notion, especially for Shubin-type Fourier

operators, see e.g. [31].

Concerning the extensions of distributions in terms of the scaling degree of Sec-

tion 3.3.2, we have already mentioned that it is possible to combine these methods

with microlocal considerations, in particular to bound the wave front set of the

resulting distributions, and to use this theory to renormalize products of (tem-

pered) distributions defined outside a subspace. This remains to be carried out

in detail for tempered distributions. How this renormalized product relates to the

notion of product in the framework of Colombeau’s algebras of generalized func-

tions, [25, 26, 27], also remains to be clarified.

It has already been noted in Remark 3.55 that a particular case in which it is

possible to control the wave front set of the extended distribution is under certain

conormality conditions. It is known that the deviation of a distribution from be-

ing conormal may be measured in terms in the framework of 2-microlocal analysis,

see [13, 93]. It is a remarkable feature that in the case of a single point x0, the

spaces of weakly homogeneous distributions arising in the continuation procedure,

see [108], are deeply connected with the two-microlocal spaces Cs,s′
x0

, which are a

generalization of Hölder-Zigmund-spaces cf. [146, Rem. 3.40], in terms of which

two-microlocal regularity is measured. It is therefore reasonable to assume that

techniques from 2-microlocal analysis may be applied to the extension procedure,

and in particular the renormalization of the product, for which we have already

discussed how 2-microlocal analysis may yield a more general existence criterion.

This connection will be subject to further investigation.

It is further interesting to study if this extension procedure is applicable to the

problem of existence of tempered solutions for non-linear partial differential equa-

tions involving products of distributions, such as Burger’s equation or differential

equations with distributional coefficients.

In Section 3.5, we have discussed some applications of our techniques to the theory

of quantum fields. Therein, we have only treated some examples and pointed out

several directions in which it is possible to generalize the analysis, such as the
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study of the adiabatic limit. We have demonstrated that our methods provide an

efficient framework to define various distributions from QFT by reducing the anal-

ysis to simple algebraic criteria on the involved wave front sets. In order to apply

these concepts in a more general framework, it would again be of great interest to

first generalize our methods to manifolds, in particular globally hyperbolic mani-

folds with prescribed asymptotic behaviour, in order to be able to study models

from quantum field theory on curved spacetimes. With that, it would be very

interesting to complement results of [16, 74, 75, 112, 152] by taking into account

asymptotic features of distributions.

Additionally, it would be interesting, especially for applications to partial differen-

tial equations to also study different functional settings, such as Modulation spaces,

Gelfand-Shilov spaces, the analytic framework, etc. In each of these frameworks,

there are interesting new phaenomena to consider. We mention as example that

the sheet of (Fourier) hyperfunctions is flabby, meaning that any such element

defined on Rd \ X admits some extension, which is not the case for tempered

distributions, for which we assumed finiteness of the scaling degree, see Section

3.3.2. In the Gelfand-Shilov framework for any θ ≥ 1
2
, one is able to consider the

Weyl operators with (ultra-)distributional symbol of Section 3.4. We have seen

in Proposition 3.63, that under reasonable assumptions on the G-wave front set

of the kernels, we obtain a class of operators closed under composition. This is

of particular interest in the quasi-analytic case, since there is no adapted symbol

class for a pseudodifferential calculus available in the quasianalytic framework.
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Appendix A. Collection of auxiliary results

A.1. Notation, spaces of test functions and distributions.

In the following, some basic notation is collected that is used throughout this thesis.

For the reader’s convenience, recurring notation is also collected in Appendix B.

• We use the notation i =
√
−1, N0 = {0, 1, 2, . . . }, R+ = {x ∈ R|x > 0},

Bd = {y ∈ R | |y| ≤ 1}, Sd−1 = ∂Bd = {y ∈ R | |y| = 1}.

• We use standard multi-index notation and δj,k =

1 j = k

0 j 6= k.

• We set Dα
x = i|α|∂αx for multi-indices α ∈ Nd

0 and ∇ for the gradient on Rd,

i.e. in coordinates ∇x = (∂x1 , . . . , ∂xd)
t.

• Let X be a subset on Rd that admits a smooth structure, such as a manifold

(with boundary). Then Xo denotes its interior and ∂X its boundary.

• The symbol E (X) = C∞(X) stands for the space of all smooth functions

on X, and D(X) = C∞c (X) for those that are compactly supported in the

interior of X. Both spaces are equipped with the usual topologies that turn

them into Fréchet spaces.

• For two maps f, g : X → [0,∞) we say f . g if there exists C > 0 such

that for all x ∈ X f(x) ≤ Cg(x), and f � g means that f . g and g . f .

If f and g depend on indices, then so may C.

• The Japanese bracket is given by the map 〈·〉 : Rd → R+, x 7→ 〈x〉 :=√
1 + |x|2, where |x| denotes the Euclidean norm on (subsets of) Rd. For

this map we have Peetre’s inequality, i.e. ∀x, y ∈ Rd, k ∈ Z

(A.1) 〈x+ y〉k . 〈x〉k〈y〉|k|.

• The symbol (·, ·) denotes the complex L2-scalar product between functions,

vectors etc. and restrictions and extensions of it to other spaces. The real

pairing is denoted by 〈·, ·〉.
• The letter ω denotes the canonical two-form on the cotangent bundle T ∗X

of a manifold X.

For X = Rd we define ω : R2d×R2d → R: ω ((x, ξ); (y, η)) = 〈ξ, y〉− 〈η, x〉.
• We indicate by 1 both the constant unit function as well as unit matrices,

and by 1X , for X ⊂ Rd, the indicator function, i.e. 1X(x) =

1 x ∈ X

0 x /∈ X.
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A.2. Schwartz functions and tempered distributions.

In the following, we have collected some established facts about Schwartz functions

and tempered distributions. Since we will not include proofs, we refer to [61, 62,

68, 81, 122, 117, 132, 135] as general references for the upcoming statements.

Definition A.1 (Schwartz functions and tempered distributions). A smooth func-

tion f ∈ C∞(Rd) is called to be of rapid decay, or a Schwartz (test) function, if it

satisfies supx∈Rd
∣∣xα∂βxf ∣∣ <∞ for all multi-indices α, β ∈ Nd

0.

The Fréchet space of all Schwartz functions is denoted by S
(
Rd
)
, and a family

of semi-norms {ρS
N }N∈N0 is given by

(A.2) ρS
N (f) = sup

x∈Rd

∑
|α|+|β|≤N

〈x〉|α||∂βxf |.

The space of tempered distributions S ′ (Rd
)

is defined as the topological dual of

S
(
Rd
)
, i.e. all C-linear maps u : S

(
Rd
)
→ C such that |u(f)| . ρS

N (f) for some

N ∈ N0. The real pairing between distributions and test functions is denoted by

u(f) =: 〈u, f〉.

In the following, we list some well-established facts about Schwartz functions and

tempered distributions, see in particular [117, Chap. V]:

Proposition A.2 (Topological and embedding properties of tempered distribu-

tions).

(1) A family of seminorms on S
(
Rd
)
, {ρS

N,M}(N,M)∈N2
0
, equivalent to the one

defined by (A.2) is given by

(A.3) ρS
N,M(f) = sup

x∈Rd

∑
|α|≤N

∑
|β|≤M

〈x〉|α||∂βxf |.

(2) S ′ (Rd
)

may be equipped with the weak-∗-topology, which induces the fol-

lowing notion of convergence of distributions: a sequence of tempered dis-

tributions (un)n∈N0 converges to u ∈ S ′ (Rd
)

if we have 〈un, f〉 → 〈u, f〉
for all f ∈ S

(
Rd
)
.

(3) (Banach-Steinhaus-principle) A subset {uλ} ⊂ S ′ (Rd
)

is bounded if ∀f ∈
S
(
Rd
)

there exists a constant C(f) such that supλ{〈uλ, f〉} ≤ C(f) ,

(4) We have the dense inclusions E
(
Rd
)
⊂ S

(
Rd
)
⊂ D

(
Rd
)

and conse-

quently D ′(Rd) ⊂ S ′ (Rd
)
⊂ E ′(Rd).
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(5) We have the embedding of continuous, polynomially bounded functions

(A.4) Cpol(Rd) ↪→ S ′ (Rd
)

via g 7→
(
f →

∫
Rd
g(x)f(x)dx

)
.

(6) S
(
Rd
)

is dense in L2
(
Rd
)
. In fact we have a family of S

(
Rd
)
-functions,

the Hermite functions {ψα}α∈Nd0 , defined via

• ψ0(x) := π−d/4e−
x2

2 ∈ S
(
Rd
)

being the normalized Gaussian,

• ψα := (α!)
1
2

(
x−∂x√

2

)α
ψ0,

which form an orthonormal basis of L2(Rd). In particular we have that

f =
∑

α∈Nd0
aα ψα is in S

(
Rd
)

if and only if the Hermite coefficients67 aα

satisfy supα∈Nd0 |aα||α|
k ≤ ∞ for all k ∈ N0.

(7) S
(
Rd
)

equipped with the family of semi-norms {ρN}N∈N0 is a nuclear space

and we have S
(
Rd
)
⊗̂S

(
Rd′
) ∼= S

(
Rd × Rd′

)
.

(8) S
(
Rd
)
, under the embedding (A.4), is dense in in S ′ (Rd

)
. We call an

element of S ′ (Rd
)

that is given by some f ∈ S
(
Rd
)

(globally) S -regular.

These topological properties allow for a definition of analogues of operations on

functions in the space of distributions. This is normally done either

• by duality, meaning for a map A : S
(
Rd
)
→ S

(
Rd
)

with continuous

L2-transpose one sets 〈Au, f〉 = 〈u, tAf〉 or

• by continuous extension,68 meaning one sets for an approximative sequence

gn → u the distribution 〈Au , f〉 = limn→∞〈Agn , f〉.

(1) We have the Fourier transform, which yields an isomorphism on S
(
Rd
)

and S ′ (Rd
)

respectively, with the notation and normalization

Ff(ξ) = f̂(ξ) =

∫
Rd
e−ixξf(x)dx f ∈ S

(
Rd
)

and 〈Fu, f〉 := 〈u,Ff〉.
(2) There exists a natural product S

(
Rd
)
× S ′ (Rd

)
→ S ′ (Rd

)
given by

〈(f · u), g〉 = 〈u, f · g〉 which is sequentially continuous, i.e. if fn
S→ f and

un
S ′→ u, then we have fnun → fu. We further have a natural notion of

67We recall that, cf. e.g. [73], |ψα(x)| is bounded independently of x and |α| by a (dimensional-
dependent) constant, thus the sum in the expansion converges absolutely for each x ∈ Rd.
68Here, “continuous” means sequential continuity, that is referring to the notion of convergence
of sequences of distributions recalled in Proposition A.2.
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convolution S
(
Rd
)
×S ′ (Rd

)
→ S ′ (Rd

)
∩ C∞(Rd) that satisfies

(A.5) F(u ∗ f) = (Fu) · (Ff)

(3) Differentiation yields a continuous map on S ′ (Rd
)

via

〈∂αu, f〉 = (−1)|α|〈u, ∂αf〉.

We further have the following regularity statements that provide a fairly explicit

characterization of tempered distributions:

Proposition A.3. Let u ∈ S ′ (Rd
)
.

• Then there exists a finite collection of uαβ ∈ L2(Rd) such that

u =
∑
α,β

xαDβuαβ.

• Similarly, u may be written, for some α ∈ Nd
0, as the α-th (distributional)

derivative of a continuous, polynomially bounded function g ∈ Cpol(Rd),

u = ∂αg.

The following famous Schwartz kernel theorem marks one of the main applica-

tions of distribution theory.

Theorem A.4 (Schwartz kernel theorem). There is a 1 : 1-correspondence between

linear operators A : S
(
Rd
)
→ S ′(Rd′) and their kernels KA ∈ S ′(Rd×Rd′) given

by

〈KA, f ⊗ g〉 = 〈Af, g〉.

A.2.1. Basics of time-frequency analysis on tempered distributions.

In addition to the previously introduced operations, we have the following:

Definition A.5 (Isometries of the time-frequency plane). Let f ∈ S
(
Rd
)
. Then

we can define the following operations:

• Modulation by ξ0 ∈ Rd: (Mξ0f) (x) = eiξ0·xf(x),

• Translation by x0 ∈ Rd: (Tx0f) (x) = f(x− x0),

• Dilation by A ∈ GL(d,R) or λ > 0: DAf(x) =
√
| det(A)|f(Ax) and

(Dλf) (x) = (Dλ1f) (x) = λd/2f(λx).

169



Lemma A.6. All of the above maps are L2-isometries with inverses given by their

adjoints

M∗
ξ0

=M−ξ0 T ∗x0
= T−x0 D∗A = DA−1

and can be defined on S ′ (Rd
)

by duality, i.e. 〈Uu, f〉 = 〈u,tUf〉. They admit the

following behaviour under Fourier transformation:

F ◦ DA = D(tA)−1 ◦ F F ◦Mξ = Tξ ◦ F F ◦ Tx =M−x ◦ F .

The time-frequency plane T ∗Rd is the model space in which information about

location and direction of singularities of a distribution are encoded. The so-called

short-time Fourier transform (STFT), a basic tool of time-frequency analysis, see

e.g. [61, 68, 69], can be used to obtain a representation of a tempered distribution

over that space.

Definition A.7 (The short-time Fourier transform). Let g ∈ S
(
Rd
)
\{0}, called

the window function. Then the short-time Fourier transform (STFT) Vg(u), for

u ∈ S ′ (Rd
)
, is defined as

Vg(u)(z) =
1

(2π)d/2‖g‖2︸ ︷︷ ︸
=:Cg

(u,MξTxg) with z = (x, ξ).

In particular we have for u = f ∈ S
(
Rd
)

Vg(f)(x, ξ) = Cg

∫
Rd
f(y)g(y − x)e−iξ·y dy.

The standard (Gaussian) window is given by the normalized Gaussian ψ0(x).

Figure 18, fashioned after [68, Figure 3.5], provides a schematic illustration of the

short-time Fourier transform.

Remark A.8. The STFT with standard window ψ0 is closely related to several

different transforms used in microlocal analysis, among them the Bargmann or

Fourier-Bros-Iagolnitzer transform (short: FBI-transform). One such transform

(with quadratic phase and index λ) takes the following form for f ∈ S
(
Rd
)

Fλf(x, ξ) =

(
λ

2π3/2

)d/2
︸ ︷︷ ︸

=:Cλ

∫
Rd
f(y)ψ0

(
λ1/2(x− y)

)
e−iλξy dy
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u(y)

g(y − x′)u(y)

g(y − x)u(y)

x′ x

Figure 18. The short-time Fourier transform: localization by a
window function (schematic)

and may thus be defined also for u ∈ S ′ (Rd
)

by (using (A.10))

(A.6) Fλu(x, ξ) = λd/4VD
λ1/2ψ0(u)(x, λξ) = Dλ1/2Vψ0(Dλ−1/2u).

This transform (in a generalized form) will be the main tool in Section 2.3.1.

In the following Lemma, well-known properties of the STFT are listed, proofs

for which can be found in [69] and in [68, Chap. 11.2].

Lemma A.9 (Properties of the STFT). For any window g ∈ S
(
Rd
)

we have that

the STFT is a continuous map S
(
Rd
)
→ S

(
R2d
)

and S ′ (Rd
)
→ S ′ (R2d

)
. In

fact Vgu for u ∈ S
(
Rd
)

will be continuous and polynomially bounded.

We have the following orthogonality relation for gi ∈ S
(
Rd
)
\ {0}, f ∈ S

(
Rd
)
,

u ∈ S ′ (Rd
)
:

(A.7)
(
Vg1(u),Vg2(f)

)
=

(g2, g1)

‖g1‖2‖g2‖2

(u, f).

In particular the STFT is an isometry ‖Vgf‖L2(R2d) = ‖f‖L2(Rd). Furthermore, if

(g1, g2) 6= 0, the inversion formula, or Moyal identity

(A.8) u = Cg2

‖g1‖1‖g2‖2

(g2, g1)
〈Vg1u,MξTxg2(·)〉,

holds, which may also be written for g1 = g2 = g as (V ∗g )Vgu = u with the L2-

adjoint V ∗g of Vg, which may be written as

F 7→ Cg2〈F,MξTxg2(·)〉,
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where the pairing is carried out with respect to the variables (x, ξ) ∈ R2d.

The STFT admits the following transformation behaviour under time-frequency

shifts and dilations:

Vg(Mξ0Tx0u)(x, ξ) = e−ix0ξVg(u)(x− x0, ξ − ξ0)(A.9)

Vg(Dλu)(x, ξ) = VDλ−1g(u)(λx, λ−1ξ)(A.10)

The following estimate serves to estimate changes to another non-zero window

h ∈ S
(
Rd
)
:

(A.11) |Vgu| . ‖h‖−1
2 (|Vhg| ∗ |Vhu|) .

The following proposition, which can be found in [68, Prop. 11.2.4] and [69],

underlines how Schwartz functions may be constructed from a superposition of

time-frequency shifts with a rapidly decaying amplitude, that is in terms of the

adjoint V ∗g . We have already seen a special case of this in the inversion formula.

Proposition A.10. Let g ∈ S
(
Rd
)

non-zero. Assume F ∈ L∞loc(R2d) satisfies

the rapid decay condition

|F (x, ξ)| . 〈(x, ξ)〉−N ∀N ∈ N0.

Then f defined via

y 7→ f(y) := Cg
〈
F, (MξTxg)(y)

〉
,

where the scalar product is carried out with respect to the variables (x, ξ), is an

element of S
(
Rd
)
.

Conversely, consider [68, Cor. 11.2.6], if we have for some N ∈ N0 that F ∈
L∞loc(R2d) satisfies the (polynomial) bound |F (x, ξ)| . 〈(x, ξ)〉N for some N ∈ N0,

then we can set

(u, f) = (F,Vgf).

The latter expression is well-defined, since F ∈ S ′(R2d) and Vgf ∈ S (R2d) by

Lemma A.9 and can be shown to yield u ∈ S ′ (Rd
)
.
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A.3. Elements of pseudodifferential calculus.

A.3.1. Pseudodifferential operators and parametrices. In this appendix, further

facts on SG- and G-symbol classes as well as elements of the associated pseudo-

differential calculi associated will be recalled. Since many authors have previously

addressed this subject, we include it mainly to recall the results and to fix nota-

tion. The main reference for this section is [113], additional proofs and historical

remarks can be found in e.g. [83, 94, 131, 135] and many others.

Since most concepts may be formulated in a similar fashion for both SG- as well

as G-classes, we use the following abbreviation, to avoid repetitions.

Notation. Denote by SX a place-holder for either G and SG: all symbols SX in

a statement my be replaced either by G or SG and the statement remains valid.

The symbol SXm specifies the order, i.e. SXm can be replaced by either Gm or

SGme,mψ . Furthermore, SXm−r, r ∈ R, means either Gm−r or SGme−r,mψ−r. To

shorten notation, we sometimes omit the base space from the notation of such a

space when there can be no confusion, writing e.g. SX instead of SX(Rd × Rd).

The first result allows for an approximation of symbols by such of lower order or

test functions (cf. [113, Prop. 1.1.5]).

Lemma A.11. For any ε > 0 we have that S (Rd×Rd) is dense in SXm(Rd×Rd)

in the topology of SXm+ε(Rd × Rd).

Consider first a ∈ S ′(Rd × Rd). The associated t-quantization (cf. [135, Sect.

23.3]) to a, t ∈ [0, 1], is defined as the operator Opt(a) : S (Rd) → S ′(Rd) given

by

〈Opt(a)f, g〉 =
〈
F−1
ξ→(x−y)a

(
(1− t)x+ ty, ξ

)
, f ⊗ g

〉
,

which takes the following form for a ∈ S (Rd × Rd)

〈Opt(a)f, g〉 = (2π)−d
∫
ei(x−y)ξa

(
(1− t)x+ ty, ξ

)
f(y)g(x) dxdydξ.(A.12)

The special cases t = 0, 1
2

and 1 are denoted by Op0(a) =: aL(x,D) =: a(x,D),

Op1(a) =: aR(x,D) and Op 1
2
(a) =: aW (x,D) and are called, left-, right- and Weyl

quantization, respectively.
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Remark A.12. For the Weyl quantization of distributions, this may be reformulated

in terms of the Wigner distribution function and the pairing (see [61, Prop. 2.5])

〈aW (x,D)f, g〉 = 〈a, W (g, f)〉 ∀f, g ∈ S
(
Rd
)

where W (f, g) ∈ S
(
R2d
)

is given by

(A.13) W (f, g)(x, ξ) = (2π)−d
∫
Rd
f(x+ y/2)g(x− y/2)e−ixξdy

and maps S
(
Rd
)
×S

(
Rd
)
→ S

(
R2d
)
.

If a is a symbol in SX, the integral (A.12) is explicitly computable and one obtains

the following (cf. [113, Prop. 1.2.7]):

Proposition A.13. Let a ∈ SX(Rd × Rd). Then for each t ∈ [0, 1] the iterated

integral

Opt(a)f = (2π)−d
∫
ei(x−y)ξa

(
(1− t)x+ ty, ξ

)
f(y) dy dξ.(A.14)

defines a continuous operator S
(
Rd
)
→ S

(
Rd
)
, which is extendible by duality69

to an operator S ′ (Rd
)
→ S ′ (Rd

)
for which we use the same notation.

From an operator defined in this way, we can re-obtain its full symbol or amplitude

a from Op0(a) by

(A.15) a(x, ξ) = eixξ Op0(a)e−ixξ.

Definition A.14. We write LSXm(Rd) for the class of all pseudo-differential op-

erators A : S ′ (Rd
)
→ S ′ (Rd

)
that can be written in the form A = Opt(a) + R

for some a ∈ SXm(Rd × Rd) and R a residual element, i.e. a regularizing (or

“Schwartzing”) continuous operator R : S ′ (Rd
)
→ S

(
Rd
)
.

Remark A.15. By the Schwartz kernel theorem, residual operators are precisely

the ones with a kernel in S (Rd × Rd). Since we have for both symbol classes

S (Rd × Rd) =
⋂
r∈R SX0−r(Rd × Rd), the residual element may be dropped from

the definition.

To list further properties of the calculus, we first have to introduce asymptotic

expansions. In Section 1.2.4 we consider asymptotic expansions into homogeneous

69Consider the characterization of the transpose operator in Lemma A.19 below.
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functions. The following definition is valid for general symbols, consider [48, 113,

131].

Notation (Asymptotic expansions). Let {mj}j∈N0 be a decreasing sequence in R
or R2 such that limj→∞mj = −∞ or (−∞,∞) respectively.70 Let a ∈ SXm0 ,

aj ∈ SXmj . Then a is asymptotically equivalent to the asymptotic sum
∑

j aj, i.e.

a ∼
∑

j aj, if ∀M ∈ N0 there exists N ∈ N0 such that a−
∑N

j=0 aj ∈ SXm0−M .

Lemma A.16 (Asymptotic completeness). Let {mj}j∈N0 be a decreasing sequence

in R or R2 as above, aj ∈ SXmj . Then there exists a ∈ SXm0, determined uniquely

up to elements in S (R2d), such that a ∼
∑

j aj.

For a proof by approximation, using cut-offs, consider e.g. [36, Lem. 1.6.4],

[113, Prop. 1.1.6], [131, Thm. 1.4.3], [135, Prop. 23.1].

Different quantizations may be related in terms of a certain Fourier multiplier or

asymptotic expansions of the respective symbols (cf. [113, Thm. 1.2.4, Prop. 1.2.5

and 1.2.12]):

Proposition A.17 (Change of quantization). Using the Fourier multiplier

ei(t1−t2)DxDξ : SXm → SXm

defined as a continuous map in terms of the oscillatory integral

(A.16) eitDxDξa(x, ξ) = (2π)−2d

∫
ei(xy+ξη)eityηFa(y, η)dydη,

we have

Opt1(a) = Opt2
(
ei(t1−t2)DxDξa

)
.

Furthermore, the following asymptotic expansion holds:

(A.17) eitDxDξa(x, ξ) ∼
∑
α

(it)|α|

α!
Dα
ξD

α
xa(x, ξ).

In particular, eitDxDξa(x, ξ) is elliptic at (x0, ξ0) if and only if a(x, ξ) is elliptic at

(x0, ξ0).

Remark A.18. Using this result, we can re-obtain a from Opt(a) for any t ∈ [0, 1]

using (A.15) and Proposition A.17.

70Use R if SX stands for G and R2 if it stands for SG. In that case decreasing means ∀ j′ > j:
(me,mψ)j′ − (me,mψ)j ∈

(
(−∞, 0]2 \ (0, 0)

)
.
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Furthermore, this may be used to obtain information on adjoints and transposes,

cf. e.g. [113, Prop. 1.2.12].

Lemma A.19 (Characterization of the transpose operator). Let a ∈ SXm. Then
tOpt(a) = Op1−t

(
a(·,−·)

)
. In particular, its symbol is

b(x, ξ) = ei(1−2t)DxDξa(x,−ξ)

and tOpt(a) is SG-elliptic at (x0,−ξ0) if and only if Opt(a) is SG-elliptic at

(x0, ξ0).

The symbol of the adjoint operator is given via

b(x, ξ) = ei(1−2t)DxDξ ā(x, ξ).

For either object, (A.17) may be used to obtain an asymptotic expansion.

The same map may be used to describe what happens under composition of oper-

ators ([113, Thm. 1.2.16]):

Lemma A.20 (Composition of operators). Let a1 ∈ SXm1 and a2 ∈ SXm2. Then

Op1(a1) Op1(a2) = Op1(b) with b ∈ SXm1+m2 given by

b(x, ξ) = eiDyDηa1(x, η)a2(y, ξ)
∣∣
(x,η)=(y,ξ)

.

In principle, using Proposition A.17, composition formulae for any t-quantization

may be obtained. For the Weyl quantization it takes the simple form (see [113,

Thm. 1.2.17] and [83, Formula 18.5.6]):

aW1 (x,D)aW2 (x,D) = bW (x,D),(A.18)

b(x, ξ) = e
i
2
ω(Dx,Dy ;Dη ,Dξ)a1(x, η)a2(y, ξ)

∣∣
(x,η)=(y,ξ)

,

b(x, ξ) ∼
∑
α,β

(−1)|β|

2−|α|−|β|α!β!
∂αξD

β
xa1(x, ξ) ∂βξD

α
xa2(x, ξ).

Having discussed compositions, it is possible to introduce a quasi-inverse or

parametrix of a pseudodifferential operator, cf. [113, Thm. 1.3.6].

Theorem A.21 (Existence of a parametrix). Let a ∈ SXm be elliptic, t ∈ [0, 1].

Then there exists b ∈ SX−m and regularizing operators R1, R2 such that

Opt(a) Opt(b) = id +R1 Opt(b) Opt(a) = id +R2,
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as operators on S
(
Rd
)

as well as on S ′ (Rd
)
. The operator Opt(b) is called a

parametrix for Opt(a) and is unique modulo regularizing operators.

If a is classical, then b may be chosen classical as well.

When dealing with localized phenomena in T ∗Rd, it is often necessary to consider

a localized version of this theorem, consider [36, Thm. 2.3.3], [94, Thm. 1.1.15.].

Definition A.22. A symbol a ∈ SXm is called SX-elliptic with respect to φ ∈ SX0,

if a is elliptic on all of Csp(φ) ∩WSX.

Theorem A.23 (Existence of a local parametrix). Let a ∈ SXm SX-elliptic with

respect to φ ∈ SX0. Then there exists bj ∈ SX−m, j ∈ {1, 2} and regularizing

operators Rj : S ′ (Rd
)
→ S

(
Rd
)

such that

a(x,D)b1(x,D) = φ(x,D) +R1 b2(x,D)a(x,D) = Op1(φ) +R2.

Additionally, there exists bj ∈ SX−m, j ∈ {1, 2} and regularizing operators R′j such

that

aW (x,D)bW1 (x,D) = φW (x,D) +R′1 bW2 (x,D)aW (x,D) = φW (x,D) +R′2.

The next section is devoted to spaces that are specifically adapted for pseudo-

differential analysis in terms of a given calculus, the so-called Sobolev spaces.

A.3.2. Sobolev spaces and L2-boundedness.

Global Sobolev spaces intermediate spaces between S ′ and S that provide a res-

olution of S ′ in terms of continuous parameters, thus allowing us to study the

mapping properties of ΨDOs in a more refined way. For the two calculi indepen-

dently, they are discussed in detail in [131, Sect. 1.4.2] and [135, Sect. 25]. We

introduce them on the basis of [113],71 cf. also [94, Sect. 2.6]. In order to do so, it

is first important to study the action of ΨDOs on L2(Rd) (see [113, Thm. 1.4.1]):

Theorem A.24 (Calderón-Vaillancourt). Let a an element of SG0,0(Rd × Rd) or

G0(Rd × Rd). Then the corresponding quantization a(x,D) is bounded on L2(Rd)

and we have the estimate

‖a(x,D)‖B(L2(Rd)) . ρ0,0
N (a),

71We list the particularly relevant sections: for the G-case consider Chapter 1.5, Chapter 1.7.4,
Definition 2.1.8 and the following discussion and for the SG-case Definition 3.1.4 and the following
discussion.
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or correspondingly

‖a(x,D)‖B(L2(Rd)) . ρ0
N(a),

where N ∈ N0 depends only on the dimension.

Definition A.25 (Sobolev spaces). Let A ∈ SXm(Rd × Rd) be SX-elliptic. De-

note by B a corresponding parametrix (see Theorem A.21) and by R the residual

element that satisfies BA+R = id.

The Sobolev space Hm
SX

(
Rd
)

(i.e. H
me,mψ
SG

(
Rd
)

or Hm
G

(
Rd
)
) of index m is defined as

the normed space

Hm
SX

(
Rd
)

:= {u ∈ S ′ (Rd
)
|Au ∈ L2(Rd)}.

with the norm

‖u‖
HmSX

(
Rd
) = ‖Au‖L2(Rd) + ‖Ru‖L2(Rd).

Example A.26. In the simplest case, one may use the left quantizations of

〈x〉mx〈ξ〉mξ in the SG- and 〈(x, ξ)〉m in G-case to introduce these spaces. Both

operators are exactly invertible, thus we can neglect the R-term in the norm.

We list some well-known properties of Sobolev spaces.72

Proposition A.27 (Properties of Sobolev spaces).

• Hm
SX

(
Rd
)

does not depend on the choice of (A,B,R), meaning that different

choices yield the same space endowed with an equivalent norm.

• Let A′ ∈ LSXm′
(
Rd × Rd

)
. Then ∀m ∈ R or (me,mψ) ∈ R2 we have a

continuous extension of A′, denoted by the same letter, mapping Hm
SX

(
Rd
)

continuously into Hm−m′
SX (Rd). If A′ is elliptic, then it its extension consti-

tutes a Fredholm operator.

• We have the continuous inclusions S
(
Rd
)
↪→ Hm

SX

(
Rd
)
↪→ S ′ (Rd

)
. In

fact we have⋂
m

Hm
SX

(
Rd
)

= S
(
Rd
) ⋃

m

Hm
SX

(
Rd
)

= S ′ (Rd
)
,

where the index m runs over all possible choices of m ∈ R or (me,mψ) ∈ R2

respectively.

72Proofs for these can be found i.e. in [113] in the aforementioned chapters.
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For the special case of the SG-calculus and (me,mψ) ∈ N2
0, we have the equivalent

definition, with an equivalent norm

H
me,mψ
SG (Rd) =

{
u ∈ S ′ (Rd

)
|xαDβu ∈ L2(Rd) for |α| ≤ me, |β| ≤ mψ

}
,

‖u‖∗
H
me,mψ
SG

=
∑
|α|≤me,
|β|≤me

‖xαDβu‖L2 .

Notice thus that H
0,mψ
SG (Rd) coincides with the classical Sobolev space, denoted here

by H
mψ
cl (Rd) and thus we have H

me,mψ
SG (Rd) = 〈x〉meHmψ

cl (Rd), i.e. the SG-sobolev

space is a weighted version of the standard classical Sobolev space.

For the special case of the G-calculus, we have if m ∈ N0 the equivalent definition,

with an equivalent norm

Hm
G(Rd) =

{
u ∈ S ′ (Rd

)
|xαDβu ∈ L2(Rd) for |α|+ |β| ≤ m

}
,

‖u‖∗HmG =
∑

|α|+|β|≤m

‖xαDβu‖L2 .

We remark that both Sobolev spaces may be obtained as special cases of modula-

tion spaces. We follow [68, Chap. 11] to introduce these and restrict our analysis

to a subclass of these spaces useful for the analysis of tempered distributions.

Modulation spaces are designed specifically for applicability in time-frequency

analysis and were invented by Feichtinger (consider [60] for a broad discussion

about the rich history and applications of these spaces). Due to their well-

understood behaviour with respect to the analytical tools of time-frequency anal-

ysis they have been used to great extent in microlocal analysis, consider e.g. [31],

the series of articles [40, 41, 42, 43] as well as [68, Chap. 11] and the references

therein.

Definition A.28 (Modulation spaces). Let w(x, ξ) a non-negative weight function

satisfying

• w ∈ L1
loc(R2d),

• |w(x1 + x2, ξ1 + ξ2)| . w(x1, ξ1)〈(x2, ξ2)〉s for some s ≥ 0.

179



The Modulation space M p,q
w (Rd) consists of all u ∈ S ′ (Rd

)
such that for some

non-zero window g ∈ S
(
Rd
)

Vgu ∈ Lp,qm (R2d), i.e.

‖Vgu‖Lp,qm (R2d) =

(∫ (∫
w(x, ξ)p|Vgu(x, ξ)|pdx

) q
p

dξ

) 1
q

<∞.

We obtain the previous Sobolev spaces by choosing the weights as follows (cf.

[42],[68, Prop. 11.3.1]):

• If w = 〈(x, ξ)〉m, we obtain M 2,2
w (Rd) = Hm

G(Rd),

• If w = 〈x〉me〈ξ〉mξ , we obtain M 2,2
w (Rd) = H

me,mψ
SG (Rd).
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A.3.3. The action of pseudo-differential operators and the STFT.

The symbol of a pseudo-differential operator may be regarded as a function of

T ∗Rd. It is therefore natural to examine its relationship to the STFT - i.e. to

understand how the action of a pseudo-differential operator on a distribution can

be understood in the time-frequency plane.

For that, we first introduce a class of operators defined in terms of the STFT of

a distribution. They are known under the name of Anti-Wick quantized opera-

tors, localization operators, Toeplitz operators and many others, depending on the

context. For an introduction from the viewpoint of time-frequency analysis and

additional resources on this rich topic we refer to [28] and [35] and the references

therein.

Definition A.29 (Localization operator). Let a ∈ S ′(R2d), g ∈ S (Rd) \ {0} a

window function. Then the localization operator Aga : S
(
Rd
)
→ S ′ (Rd

)
is given

by

Agau = V ∗g (aVgu)

or equivalently, in the weak formulation,

〈Agau, v̄〉 = 〈a,Vgu Vgv〉.

The following proposition (see e.g. [113, Prop. 1.7.9], [135, Thm. 24.1]) allows

us to rewrite a localization operator with standard window in terms of a Weyl-

quantized pseudo-differential operator.

Proposition A.30 (Weyl-Wick connection). Let a ∈ S ′(R2d). Then Aψ0
a = bW ,

where b ∈ S ′(R2d) is given by

(A.19) b(x, ξ) = π−d
(
a ∗ e−|·|2

)
(x, ξ).

To now relate how pseudo-differential operators act on the STFT of a distribution,

we wish to write for a ∈ SX

Vψ0a(x,D)u = AVψ0u

for some operator A : S ′(R2d)→ S ′(R2d). From the Moyal identity (A.8) we can

deduce Vψ0a(x,D)u = Vψ0a(x,D)V ∗ψ0
Vψ0u and thus A = Vψ0a(x,D)V ∗ψ0

.

Its Schwartz kernel KA can be explicitly computed (consider [113, Eq. (1.7.27)])
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to equal the oscillatory integral

(A.20)

KA(y′, η′; y, η) = (2π)−2d

∫
eix(η−η′)+iξ(y′−y)+ixξa(x+ y′, ξ + η)ψ0(ξ)ψ0(x)dxdξ.

By the same reasoning as in [113], we can deduce for arbitrary N ∈ N0 the estimate

|KA(y′, η′; y, η)| . Ca,N〈y − y′〉−2N〈η − η′〉−2N ,

where Ca,N can be given by some semi-norm ‖a‖SXm(N) . We therefore have for any

N ∈ N0

(A.21) |Vψ0a(x,D)u| . Ca,N
(
(〈x′〉−2N〈ξ′〉−2N) ∗ |Vψ0u|

)
.

To sum up: we may estimate the STFT of a pseudo-differential operator acting

on u in terms of a convolution of Vψ0u with arbitrary high negative powers of the

weights 〈x〉〈ξ〉 and we may rewrite the action of a localization operator in terms of

a pseudo-differential operator, which involve a convolution by a (rapidly decaying)

Gaussian. It is therefore necessary be able to estimate such convolutions, cf. e.g.

[121, Prop. 2.2].

Lemma A.31. Suppose F is a measurable function that satisfies

|F (x)| . 〈x〉M for some M ∈ N0,

suppose x0 ∈ Sd−1 and x0 ∈ Γ for some open conic set Γ ⊂ Rd \ {0}. Suppose

further that F is rapidly decaying on Γ, i.e.

∀N ∈ N0 :
∣∣F |Γ(x)

∣∣ . 〈x〉−N .
Let f ∈ S

(
Rd
)
. Then f ∗ F is a smooth and polynomially bounded function,

which is rapidly decaying on all open subcones Γ′ ⊂ Rd \ {0} containing x0 such

that Γ′ ⊂ Γ.
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Appendix B. List of recurring symbols and abbreviations

Notation: Roman letters

Symbol Description Reference
a, b Amplitude functions/Symbols Sect. 1.2

a•(x,D) Various quantizations of a (with • ∈ {L,R,W}) Sect. 1.2
Aga Localization operator with symbol a and window g Def. A.29
Bd Unit ball, radial compactification of Rd Sect. 1.1.1
Cϕ Critical set of ϕ w.r.t. the second variable Def. 3.14

Css,Csp Cone (singular) support of a tempered distribution (1.6)
C∞(X) Smooth functions on X, up to ∂X if present

Ċ∞(X) C∞-functions vanishing of order ∞ on ∂X Sect. 1.1.1
Dλ,DA Dilation by λ > 0 or A ∈ GL(d,R) Def. A.5
F , û Fourier transform (of u) Sect. A.1

Fλ,Fλ,µ (Generalized) Fourier-Bros-Iagolnitzer transform (A.6); (2.7)
G Shubin G-symbols Def. 1.12

GL(d,R) Group of invertible R-valued d× d-matrices
HSG,HG Adapted Sobolev spaces to the SG and G calculi Sect. A.3.2
Iϕ(a) Oscillatory integral with phase ϕ and symbol a Thm. 3.9
KA Schwartz kernel of the operator A Thm. A.4
LG The class of G-ΨDOs Def. A.14

LSG(cl) The class of (classical) SG-ΨDOs Def. A.14
M1,d Minkowski space Sect. 3.5.2
Mξ0 Modulation by ξ0 ∈ Rd Def. A.5
m,m• Symbol orders, in Section 3.5: mass
ne, nψ Phase function order
Opt(a) t-quantization of the symbol a Sect. 1.2
pr•, prj, Projection on •/the jth set of variables

sd⊥X(u) Transversal scaling degree of u at X Def. 3.43
S(cl) (polyhomogeneous) Symbols in one variable Sect. 1.2.1

SG(cl) (polyhomogeneous) SG-symbols Def. 1.12
S , S ′ Schwartz functions, Tempered distributions Def. A.1
Sθ, S ′

θ Gelfand-Shilov functions and ultradistributions Def. 4.1
Sd−1 d− 1-dimensional sphere
Tx0 Translation by x0 ∈ Rd Def. A.5
Vg Short-time Fourier transform with window g Def. A.7

WG G-wave front space Sect. 1.1.4
WSG SG-wave front space Sect. 1.1.4
WFG G-wave front set Def. 2.55
WFSG SG-wave front set Def. 2.3
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Notation: Greek letters

Symbol Description Reference
αe 1-form associated to %ψ Def. 3.29
αψ Canonical 1-form
δx0 Dirac delta distribution at x0

∆+ Two-point function Def. 3.65
Γ, Γ(U) Cones in Rd, Conification of U ⊂ Sd−1 Const. 1.1

ι Embedding Rd → (Bd)o Sec. 1.1.1
Λ,Λϕ Lagrangian submanifold (associated to ϕ) Def. 3.17

ρS
N , ρ

S
N,M Semi-norms on the Schwartz functions (A.2), (A.3)

ρ
me,mψ
N Semi-norm on SGme,mψ Sect. 1.2.3
ρmN Semi-norm on Gm (and Sm) Sect. 1.2.1
%e Exit radial vector field Def. 3.29
%ψ Radial vector field (3.31)
σ•• Principal symbols associated to ΨDOs Def. 1.17

φx0 , φx0
R Cut-off (around a point x0) Const. 1.3

ϕ Phase function Def 3.7
χ Excision function Sect. 1.1.2

ψ0, ψk Normalized and shifted Gaussians Def. A.7; 2.14
ω Canonical 2-form Sect. A.1
ωm energy-momentum relation Sect. 3.5.2

Notation: Mathematical symbols

Symbol Description Reference

〈x〉 Japanese bracket, x 7→
√

1 + |x|2 Sect. A.1
f . g ∃C > 0 such that ∀x ∈ X : f(x) ≤ Cg(x) Sect. A.1
f � g Asymptotical equivalence: f . g, g . f Sect. A.1

Ũ Set in Bd associated to U ⊂ Rd Const. 1.1
x0∞ Point “at infinity” associated to x0 Const. 1.1

x1 ∼ x2 x1 = λx2 for λ > 0 Const. 1.1
a ∼

∑∞
j=0 aj Asymptotic equivalence Sect. 1.2.4
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Abbreviations

Abbreviation Description
App. Appendix
cf. Confer; compare to

Chap. Chapter
Def. Definition
e.g. Exempli gratia, for example
etc. Et cetera; and so forth
FBI Fourier-Bros-Iagolnitzer
Fig. Figure
i.e. Id est; that is

Lem. Lemma
Prop. Proposition
ΨDO Pseudo-differential operator
QFT Quantum field theory
Rem. Remark
Sect. Section
STFT Short-time Fourier transform

s.t. Such that
Thm. Theorem

w.l.o.g. Without loss of generality
w.r.t. With respect to
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non-linéaires, Invent. Math. 95 2 (1989), 277–323.

189



[94] N. Lerner, Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators,
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