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If people do not believe that mathematics is simple
it is only because they do not realise how complicated life is.

— John von Neumann
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A B S T R A C T

The following thesis deals with the modular theory of Fermi fields in
low dimensions; in particular, making use of the algebraic approach
to quantum field theory, we have investigated the behaviour of two-
dimensional theories which split into two separate copies of chiral
fields, each one of them depending on one lightray variable at a time
only.

The remarkable result we have found is the existence of a vac-
uum preserving isomorphism β connecting the vacuum states be-
tween the algebra of N Fermi fields localised in one single interval
I and the algebra of one Fermi field localised in N disjoint intervals
EN = I1 ∪ . . . ∪ IN. Since this map preserves the vacuum states, it
therefore intertwines the respective modular groups; as a result, the
modular automorphism flow for a Fermi field localised in several in-
tervals turns out to mix the field among different points, with the
mixing itself being described through suitable differential equations.
Moreover, using the fact that Wick products are as well preserved,
one can even embed via β the sub-theories of local observables, as
currents and the stress-energy tensor. Consequently, since the iso-
morphism β is multi-local, a new class of multi-local gauge transfor-
mations and diffeomorphisms arise.

Interestingly enough, such characterisation of the modular group
for multi-local algebras was already presented by [Casini and Huerta,
2009] using different techniques, and so far it is a special feature of
free Fermi fields only (although outlooks of generality are fascinating
to investigate).

The isomorphism that we have found is deeply related to the split
property and the way fields transform under diffeomorphism covari-
ance. In particular, it only differs from the action of diffeomorphisms
by a gauge transformation, whose features we have characterised in
the cases at hand, namely for the local algebras of Fermi fields, cur-
rents and stress-energy tensor.

Z U S A M M E N FA S S U N G

Die folgende Doktorarbeit befasst sich mit der Modulartheorie von
Fermifeldern in niedrigen Dimensionen; insbesondere untersuchen
wir das Verhalten der chiralen Felder, nachdem Felder in zwei Di-
mensionen in zwei ein-dimensionale Lichtstrahlkomponenten zerlegt
worden sind. Wir wenden den algebraischen Zugang zur Quanten-
feldtheorie an, in dem man sich mit lokalen Algebren befasst.

Wir finden einen Isomorphismus β zwischen der Algebra von N
Fermifeldern, die in einem einzelnen Interval I lokalisiert sind, und
der Algebra eines Fermifelds, das in mehreren verschieden Intervallen

v
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EN = I1 ∪ . . . ∪ IN lokalisiert ist, der den Grundzustand erhält. Da-
her verknüpft dieser die korrespondierenden Grundzustandmodu-
largruppen. Weil dieser Isomorphismus nicht-lokal ist, ergibt sich
eine Mischung für die Modulargruppe der Multi-Interval-Algebra,
die das Feld in verschiedenen Punkten in den unterschiedlichen In-
tervallen mischt.

Diese Characterisierung der Modulargruppen für die Multi-Interval-
Algebra ist nur für freie chirale Fermifelder bekannt. Da dieser Iso-
morphismus auch Wick Produkte erhält, können auch lokale Observ-
ablen, wie die Ströme und der Energie-Impuls-Tensor, damit einge-
bettet werden. Wegen dieses Merkmals kann man multi-lokale Eich-
symmetrien und Diffeomorphismen generieren, deren Verhalten wir
auch untersucht haben.

Der Isomorphismus, den wir gefunden haben, setzt sich interessan-
terweise zusammen aus dem Split-Isomorphismus einer geeigneten
Wirkung der Diffeomorphismen und einer Eichtransformation. Das
gleiche Verhalten kann man auch auf die Untertheorien der Strömen
und des Energie-Impuls-Tensors einschränken, was wir uns im let-
zten Kapitel angesehen haben.

vi
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I N T R O D U C T I O N

The main theoretical ingredient of algebraic quantum field theory is
the concept of field, which is supposed to implement the principle
of locality. Observables, identified with the quantities that can be ex-
perimentally measured in a laboratory, must satisfy Einstein causal-
ity and additional physical requirements that are seen to be realised
in nature. Fields therefore appear as the building blocks in order
to construct such observables and, though they may themselves be
observables, they need not to. The idea lying at the basis of quan-
tum field theory is the assignment of fields to each space-time region,
where events are supposed to take place. This reflects into the assign-
ment of a net of algebras onto the Minkowski space; physical mea-
surements correspond, roughly speaking, to states on the algebras
and all the most important physical quantities experimentalists are
interested in can usually be traced back to the evaluations of scalar
product or particular combinations thereof, as for example correla-
tions functions and scattering amplitudes: notable in this sense is the
Lehmann-Symanzik-Zimmermann formula reducing scattering am-
plitudes to time-ordered correlations functions and their poles.

The algebraic approach to quantum field theory deals with the
mathematical properties of all these ingredients from the point of
view of operator algebras. A marvelous walkthrough these aspects
is provided by [Haag, 1992] and [Roberts, 2004] who give complete
explanations of why this is a necessary issue. The developement of
such a formalism is the key tool to the understanding of quantum
field theory itself and encodes almost all the features that we find as
realised in nature. Many results have been achieved thanks to the
possibility to handle these mathematical tools, especially after very
important insights by Takesaki and Tomita, [Borchers, 1999], [Take-
saki, 1970], [Takesaki, 2002], who reduced the origin of space-time
symmetries to abstract properties of von Neumann algebras, opening
a brand new research field consequently.

A very important role in physics is played by systems which exhibit
special symmetries, because this characteristic helps a lot to reduce
their complexity. In particular we have been concerned with models
being symmetric under conformal transformations, that is the set of
transformations preserving the angles in the Minkowski space-time.
In low dimensions, namely two, this symmetry happens to reduce to
very strict requirements with a well-known mathematical structure
described by the Virasoro algebra. Investigation of the properties of
such algebras leads to amazing results and progresses in the area. The
Virasoro generators are moreover the modes of the stress-energy ten-
sor, which generates space-time diffeomorphisms of the theory. As
a consequence, a two-dimensional conformal field theory is basically
a quantum field theory endowed with a stress-energy tensor whose

ix
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x contents

generators must satisfy specific algebraic properties and commuta-
tion relations. Also, the theory contains a special class of fields, the
“primary fields”, whose transformations properties are very much re-
lated to how these fields commute with the stress-energy tensor itself.

Interestingly enough, conformal symmetries can be found very of-
ten in actual physical systems. Most of the times this goes along
with scaling invariance and, although the two properties do not co-
incide, they are nevertheless very often interchanged. Models with
no proper scale dimensions, as for example massless models, are
usually conformally invariant and form the prototypes we can look
at, not to mention the huge amount of results, models and features
carried by string theory, which is the straightforward application of
conformal field theory. However, within the already mentioned two-
dimensional models, a special class is given by the so called chiral
theories, a group of models where the fields only depend on the
“light-cone” variables x± := x0 ± x1. Those theories decouples into
two copies of singular theories, either of them being concerned with
the one variable x+ or x−, respectively. This means that the whole
business reduces to a one-dimensional theory, and the original model
can be reconstructed eventually taking the tensor product of the two
one-dimensional copies. The term chiral becomes then synonym of
one-dimensional world living on a light-ray:

x1

x0

x
+x −

Each real line supports both the time-like property (positivity of the
energy) and the space-like commutativity (causality). Moreover the
real line can be taken onto the unit circle (minus a point) via the
Cayley transformations and thus we shall basically be concerned with
fields living on a circle, where the conformal transformations acquire
the form of general diffeomorphisms.

Going back to the mathematical questions, we have already stated
that a revolutionising result was found by Tomita and Takesaki and
undergoes the name of modular theory. Starting with a von Neu-
mann algebra and a cyclic and separating state one can automatically
construct an inner group of automorphisms σt whose explicit form
depends on the algebra itself and on the state provided. In some spe-
cial case, where the algebras are generated by local fields localised in
particular space-time regions, this group of automorphisms happens
to coincide with some symmetry group occurring in physics (Lorentz
boosts, dilations). This result opens a brand new horizon of ques-
tions, because it seems that the space-time symmetries lie behind the
physical content, back in the algebraic properties of the quantities at
hand. It is tempting to generalise such results and further investigate
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them. The main content of this thesis is exactly modular theory for
Fermi fields in one dimension: in particular, we have been looking
at fields localised in disjoint intervals, trying to derive and explain
the features of their modular theory. It turns out that whenever we
choose the fields to be localised in many disjoint intervals, the action
of the modular group introduces a mixing among those different in-
tervals on top of a geometric action moving the points, ([Casini and
Huerta, 2009], [Longo, Martinetti, and Rehren, 2009]). This result can
be traced back to the existence of a vacuum preserving isomorphism
moving the fermions all around the circle [Rehren and Tedesco, 2013].
We have widely exploited this feature considering different represen-
tations of the algebras and different situations at hand, varying the
geometric positions of the intervals and comparing the new results
to previous statements. Besides modular theory itself, this work gave
us a deeper understanding of how Fermi fields behave on the circle.

Also, since products of Fermi fields generate observables as cur-
rents and the stress-energy tensor, these subtheories can be embed-
ded via the mentioned isomorphism and new characteristics emerge.
Currents generate gauge transformations which are therefore delo-
calised all around the circle, as well as new multi-local diffeomor-
phisms given by the embedded stress-energy tensor. As a conse-
quence, all the standard constructions we have for fermions and re-
lated models can be rephrased in terms of this new aspect, giving rise
to a new class of perspectives.

As for the organisation of the material, this thesis is divided into
different parts. In the beginning we provide the standard description
of the mathematical framework lying behind algebraic quantum field
theory, following the lines of [Haag, 1992]. We introduce the technical
aspects of von Neumann algebras and the world of conformal field
theory in the field theoretical setting.

We then move to the analysis of the modular theory for fermions lo-
calised in different intervals, showing the new aspects together with
new insights on the standard constructions. We ought to mention
that part of the ideas were triggered by the original work of Casini
and Huerta, [Casini and Huerta, 2009], where the authors calculated
the modular group for fermions in disjoint intervals using methods
coming from density matrices and statistical mechanics. We took
their starting point to rephrase everything in the language of alge-
braic quantum field theory and operator algebras. Other ideas came
from different works on boson-fermion correspondences, [Anguelova,
2011] as well as others, and we tried to contribute attacking the prob-
lems from the angle of local quantum physics.

A third part describes the class of models which can be obtained
out of Fermi fields, mainly concerning currents and their features, in
the light of the new background provided. The multi-local features
restrict to these subalgebras with the help of suitable gauge transfor-
mations, which can be related to the diffeomorphisms covariance in
a limpid way.
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Part I

P R E L I M I N A R I E S

The German term “Nahwirkungsprinzip”
is more impressive than the somewhat
colourless word “locality.”

R. Haag, Local quantum physics.

[ September 11, 2014 at 12:46 – classicthesis Put data here ]



[ September 11, 2014 at 12:46 – classicthesis Put data here ]



1
I N T R O D U C T I O N T O Q U A N T U M F I E L D T H E O RY

Contents
1.1 General postulates: Wightman axioms 3
1.2 Fermi fields versus Bose fields 5

A rigorous inspection of the behaviour of quantum field theory showed
some common general features which were seen to be always realised,
no matter the physical system at hand. Such features have been thus
taken as defining properties (axioms) of the quantum field theory it-
self and the study of their mathematical properties leads to the charac-
terisation of algebraic quantum field theory. We shall introduce such
postulates following the example given by the standard textbook in
this area, namely [Haag, 1992].

The main objects any physical theory deals with, no matter whether
classical or quantised, are fields x 7→ φ(x) (whose mathematical prop-
erties have to fulfill the requirements of the model at hand). Their
role is to implement the principle of locality; observables are the quan-
tities that can be directly reproduced in a laboratory and they can
in general be read off and reconstructed once the field content is as-
signed. Fields themselves may also be observables, though they need
not to.

1.1 general postulates : wightman axioms

A. Fields: Fields are operator valued distributions on Minkowski
space. This means that the linear assignment f 7→ φ(f) gives
back an (usually unbounded) operator on some Hilbert space
H with dense domain D(φ(f)) ⊆ H. The assignment has to be
thought as a smearing

φ(f) =

∫
M

d4xφ(x)f(x)

with f belonging to some suitable functional space F. The fur-
ther assumption φ(f)D ⊂ D ensures that we may operate arbi-
trarily many times with fields upon vectors ∈ D.

B. Poincaré group and transformation properties: The Hilbert space
H carries a unitary representation U(g) of the covering of the
Poincaré group P. The spectrum of the energy-momentum op-
erators Pµ is contained in the forward light cone and this en-
sures consistency with special relativity, p2 := m2 > 0,p0 > 0.
Moreover, let L ⊂ P = R4 o L be the Lorentz subgroup of the

3
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4 introduction to quantum field theory

Poincaré group and let U(Λ,a) be a representation of P with
Λ ∈ L, a ∈ R4. Fields transform under P as

U(Λ,a) (φ(x))U∗(Λ,a) = S(Λ−1)φ(Λx+ a), S(Λ−1) ∈ L.

In a nutshell the choice of S(Λ) characterises the “spin” of the
field.

C. Hermiticity: Given a field φ(f), the theory contains also the her-
mitian conjugate field φ(f)∗ defined so that

(Φ,φ(f)Ψ) = (φ†(f)Φ,Ψ).

Fields may be self-adjoint, φ(x) = φ†(x) and thus (Φ,φ(f)Ψ) =
(φ(f)Φ,Ψ) given Φ,Ψ.

D. Locality: If the supports of the test functions f and g are space-
like to each other, then fields must satisfy either of the following
commutation relations

[φ(f),φ(g)]Ψ = 0 or {φ(f),φ(g)}Ψ = 0, Ψ ∈ D.

Fields of the former type are called “bosonic”, whereas fields
of the latter type are called “fermionic”. Due to Einstein causal-
ity observables must commute at space-like distances, therefore
fermionic fields by themselves cannot be observables, whilst
bosonic fields may.

E. Vacuum state and completeness: There exists a unique stateΩ ∈ H

invariant under U(g), g ∈ P. Such a state is referred to as
the “vacuum state”. Also, by acting upon the vacuum with an
arbitrary polynomial in the fields φ(f) one can approximate any
operator acting on H.

It turns out that these properties are easily realised by free fields
satisfying linear equations, while constructions in terms of interacting
fields are very difficult to achieve.

Definition: Let Ω be the vacuum vector. The vacuum expectation val-
ues

w(n)(x1, . . . , xn) := (Ω,φ(x1) . . . φ(xn)Ω)

are called (Wightman) n-points correlation functions, though they are,
more precisely, tempered distributions on R4n.

A fundamental result in this respect is the “reconstruction theorem”
[Haag, 1992], namely, under some suitable assumptions that we do
not discuss in here, the whole fields content can be derived out of the
knowledge of all correlation functions.
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1.2 fermi fields versus bose fields 5

1.2 fermi fields versus bose fields

As previously stated, fields appearing in nature must satisfy partic-
ular restrictions on the way they commute between each other, this
being express by either commutation or anti-commutation relations.
Fields of the former kind are referred to as “Bose fields” whereas
fields of the latter kind are usually referred to as “Fermi fields”. In
particular, those fields that belong to integer “spin representations”
of the Lorentz group (in the sense of S(Λ), as we have seen before)
are Bose fields, while those ones that belong to half-odd integer rep-
resentations are Fermi fields. Such particular feature characterises
the spin-statistic theorem ([Haag, 1992]). As a first remark notice
that Bose fields might in principle be already observables, because
they automatically fulfill Einstein causality; on the other hand Fermi
fields do not, and observables must be constructed as particular com-
binations of them (currents and stress-energy tensor, as we will show
later on). However, we shall show the explicit construction of oper-
ator algebras based on the above commutation relations in the very
special case when the space-time is one-dimensional, where this has
to be understood as previously mentioned, namely as decomposition
in terms of light-ray variables.

Let us construct fermionic fields first. Take H as any Hilbert space
of functions with an involution Γ | (Γf)(x) = f(x). Through the follow-
ing linear assignment f 7→ ψ(f), which can be thought as an integral
smearing, we can construct the set

CAR(H, Γ) := {ψ(f) | f ∈ H, (Γf)(x) = f(x) }‖( · )‖ .

The norm of an operator in such a set is uniquely fixed by the relation
ψ(f)∗ = ψ(Γf) and by the anti-commutation relations

{ψ(f)∗,ψ(g)} = (Γf,g)H ; f,g ∈ H (1.2.1)

According to the choice of the Hilbert space one can realise either real
fields or complex fields. The standard choice is to take H = L2(R, dx)
to have real fields and two such copies L2(R)⊕L2(R) = L2(R)⊗C to
have complex fields. The norm is then seen to satisfy the inequality
‖ψ(f)‖ 6 ‖f‖H and therefore the operators are bounded by the norm
of the functions in H. By choosing a projection P | ΓPΓ = − P one
can decompose fields into creation and annihilation modes ψ(f) =

ψ (Pf+ ΓPΓf) = ψ(Pf) + ψ(ΓPΓf) = ψ+(f) + ψ−(f) and also define
two-point function as

ωP (ψ(f)ψ(g)) := (Γf,Pg)H.

Positivity is ensured by positivity in the Hilbert space and higher
order correlation functions can be defined [Boeckenhauer, 1996] as

ωP (ψ(f1) . . . ψ(f2n)) :=

(−1)1/2n(n−1)
∑
σ∈Pn

signσ
n∏
j=1

ωP
(
ψ(fσ(j))ψ(fσ(n+j))

)
(1.2.2)
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6 introduction to quantum field theory

with all the odd correlation functions vanishing. Such a state is usu-
ally called quasi-free. The corresponding irreducible GNS represen-
tation gives the state in terms of scalar product as expressed in the
previous paragraph.

Example (Real Fermi field): The real Fermi field on the real line can
be decomposed into Fourier modes as

ψ(x) =
1√
2π

∫
R

dka(k) e−ikx

with the reality condition a∗(k) = a(−k) and anti-commutation rela-
tions {a(k),a(k ′)∗} = δ(k− k ′). At the level of distributions, commu-
tation relations for the fields themselves are

{ψ(x),ψ(y)} = δ(x− y), x,y ∈ R.

Taking into account that a(k) annihilates the vacuum for each k, the
one point function is easily seen to vanish, ω0(ψ(x)) = 0, whereas
the vacuum two-point function is

ω0(ψ(x)ψ(y)) =

∫
R

dk e−ikx
∫

R

dk ′ e−ik
′yω0(a(k)a(k

′))

which becomes, after using the anti-commutation relations for the
Fourier modes

ω0(ψ(x)ψ(y)) =

∫∞
0

dk e−ik(x−y) =

lim
ε→0+

∫∞
0

dk e−ik(x−y)−kε = lim
ε→0+

−i

x− y− iε
(1.2.3)

and we shall encounter this formula many times later on (e.g 4.1).
The projection defining the two-point function is the projection onto
the positive modes, P = χ

(
]0,∞[

)
such that

(Pf)(x) =

∫∞
0

dk f̃(k) e−ikx .

The construction of Bose field works similarly, with the exception
that commutation relations pose some obstructions for the norm of
the operators to be bounded. However one starts from the assignment
f 7→ φ(f) and defines the Weyl operators as the exponential W(f) =

eiφ(f). Commutation relations are then implemented by means of a
skew-symmetric two form σ : (f,g) 7→ σ(f,g) as

W(f)W(g) = ei/2σ(f,g)W(f+ g).

The set of allW(f) is a *-algebra and imposing the condition ‖W(f)‖ =
1 ensures that it has a unique C∗ norm. The set

{W(f) | f ∈ H }‖( · )‖ =: CCR(H,σ)

is then turned into a C∗-algebra. Notice in turn that unitarity and
the Weyl commutation relations imply W(0) = 1 and W(f)∗ =W(−f).
Along the same lines as before, representations may emerge assigning
the state ω(W(f)) = e−1/2‖f‖

2

.
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Conformal field theories may in general be regarded as quantum field
theories whose symmetry group is the conformal group, namely the
group of angles preserving transformations of the space-time (see def-
inition below in 2.1). Motivations to investigate such a mathematical
structure lie in many different models appearing in nature: physical
realisations can be found, for example, in the free Maxwell theory, the
massless Dirac field in 4-dim, not to mention the whole construction
of string theory and all the related areas, as well as applied mod-
els in material sciences and engineering. A very interesting class of
models, and in particular the actual models we shall be looking at, oc-
curs in two-dimensional theories which are chirally invariant: in this
case the observables depend on the so-called “light-cone” variables
x± := x0 ± x1 only as

φ(x0, x1) = φ+(x+)⊗ − ± + ⊗φ−(x−)

and the set of observables A (O) = A (I)⊗A (J) ⊂ B(O) can be de-
composed into their respective chiral parts, A (I) and A (J), with O
given by O = I× J. Two independent one-dimensional copies living
on the light rays x± ∈ R are therefore obtained and the entire theory
can be reconstructed by taking back the tensor product. The real line
where each of the variables x± lives can be compactified on the circle
S1 via the Cayley transform

C : R→ S1 \ {−1 }

x 7→ z =
1+ ix

1− ix

R

x

y

after identifying C−1(S1) ≡ R = R ∪ {∞ }. This allows us to look
at theories defined on the circle, from which two-dimensional chi-
rally invariant field theories can be reconstructed by following back
the above procedure. So to speak, in case of chiral conformal field
theories, the space-time is (two copies of) the unit circle whose open
intervals form the set of space-time regions under investigation. In

7
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8 conformal field theory

particular, we shall see that the mutual position of such intervals will
carry causality and all the rest of properties that physics requires to
be fulfilled through mathematical axioms.

The conformal group of the two-dimensional theory can be decom-
posed as Conf2 = Conf1 × Conf1, where Conf1 = Diff(S1) is identi-
fied with the group of the orientation preserving diffeomorphisms on
the compactified real line (see below).

Example (Massless Dirac field in two dimensions): The massless Dirac
equation in two dimensions reads

i/∂Ψ(x0, x1) = 0

which can be turned into

(∂0 + ∂1 γ
5)Ψ = 0

where γ5 = γ0γ1. By using the chiral projection P± = 1/2(± γ5)
the Dirac spinor decouples into Ψ = P+ Ψ+ + P− Ψ−, with γ+,γ−

eigenvectors of γ5 with eigenvalues ±1. Introducing the light cone
coordinates x± = x0 ± x1 leads to

∂± Ψ±(x+, x−) = 0,

thus Ψ± ≡ Ψ±(x∓), only depending on one variable at a time. There-
fore the argument introduced above directly applies.

2.1 conformal transformations

Conformal transformations are maps f : Md →Md preserving angles
in the d-dimensional Minkowski space-time Md: this means that the
only possible way the metric may transform is up to a scaling (posi-
tive) factor g ′µν(x ′) = eω(x) gµν(x). Working out the definition we are
led to the following set of transformations ([Evans and Kawahigashi,
1998]):

Table 1: Conformal transformations

Generator transformation

Pµ translations x ′µ = xµ + aµ

Mµν Lorentz x ′µ = Λµν x
ν, Λ ∈ SO(p,q)

D dilations x ′µ = λ xµ, λ ∈ R

Kµ special conformal x ′µ = xµ−bµx2

1−2b·x+b2x2 .

The first two classes generate the Poincaré group SO(p,q) n Rd

and together with the dilations they generate the Weyl group. In the
case d 6= 2 the whole conformal group is (d+1)(d+2)/2-dimensional.
The generators obey the following commutation relations, which in
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2.1 conformal transformations 9

turn define the conformal algebra [di Francesco, Mathieu, and Sénéchal,
1997]

[D,Pµ] = iPµ
[D,Kµ] = −iKµ

[Kµ,Pν] = 2i (gµνD−Mµν)

[Kρ,Mµν] = i (gρµKν − gρνKµ)

[Pρ,Mµν] = i (gρµPν − gρνPµ)

[Mµν,Mρσ] = i (gνρMµσ + gµσMνρ − gµρMνσ − gνσMµρ).

(2.1.1)

For our purposes we restrict to the two-dimensional case, where, in-
terestingly enough, the conditions for a map to be conformal reduce
to the Cauchy-Riemann equations. In terms of complex variables they
are holomorphic and anti-holomorphic maps z 7→ f(z), z̄ 7→ f̄(z̄) such
that ∂z̄f(z) = ∂zf̄(z̄) = 0. When the complex variable corresponds to
the Cayley transform of a lightray coordinate x±, namely on a com-
pactified Minkowski space-time M2 = S1 × S1, then the conformal
group is identified with Diff(S1)×Diff(S1), two commuting copies of
diffeomorphisms of the circle which we are going to look once at a
time.

Example: Here we show some examples of what simple conformal
transformations on the plane look like:

f(z) = z3 f(z) = 1/z2

f(z) = 1/z f(z) =
√
z
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10 conformal field theory

2.2 the virasoro algebra

Let Diff(S1) be the group of orientation preserving diffeomorphisms
on S1, which in turn coincides with the conformal transformations
leaving the circle invariant. Its Lie algebra corresponds to the algebra
of smooth vector fields on the circle whose complexification gives rise
to the Witt algebra with basis elements ln := −zn+1 ddz , such that

[ln, lm] = (n−m)lm+n.

Since we are looking for projective unitary representations of posi-
tive energy we shall be concerned with its unique non-trivial central
extension (see [Evans and Kawahigashi, 1998]), the Virasoro algebra,
given in terms of generators Ln

[Ln,Lm] = (n−m)Ln+m +
c

12
m(m2 − 1) δn+m. (2.2.1)

L0 is referred to as the conformal Hamiltonian and we are interested
in irreducible unitary representations π of the above algebra with
positive energy, namely the spectrum of L0 is required to be positive.
Those representations have been fully classified (see [Friedan, Qiu,
and Shenker, 1984a]) and are given in terms of pairs (c,h) where c is
the central term appearing in (2.2.1) and h is the lowest weight

π(c,h)(L0) |h〉 = h |h〉 π(c,h)(Lm) |h〉 = 0, m > 0.

Positivity of the energy implies h > 0 and from unitarity it follows
Ln
∗ = L−n. These conditions give restrictions on the possible ad-

missible pairs (c,h) and we have that ([Friedan, Qiu, and Shenker,
1984b]) either c > 1 and h > 0 or

c =1−
6

m(m+ 1)
, m = 2, 3, . . .

and

h = hp,q(c) =
((m+ 1)p−mq)2 − 1

4m(m+ 1)

with p = 1, 2, . . . ,m− 1 and q = 1, . . . ,p. Once the lowest weight |h〉
is given the whole representation space (Verma module V(h, c)) can
be obtained as a span of

|v〉 = L−n1 . . . L−nm |h〉 , n1 > . . . > nm > 0.

The set of vectors obtained with fixed m forms a subspace Hm of
energy h + (n1 + . . . + nm). The Hilbert space is then obtained as
completion of the quotient of ⊕∞

m=0H
m with respect to the null vec-

tors [Evans and Kawahigashi, 1998].

2.2.1 The Möbius group

Let us now look at the action of SL(2, R) on the compactified real line
R = C−1(S1) by

x 7→ gx =
ax+ b

cx+ d
g =

(
a b

c d

)
, detg = 1.
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SL(2, R) does not act faithfully on R whereas so does its quotient with
respect to the kernel PSL(2, R) := SL(2, R) / {± }. We call PSL(2, R)

the Möbius group and we see it can be identified, after Cayley trans-
form, with PSU(1, 1) acting on the circle as

z 7→ αz+β

β̄z+ ᾱ
C(g) =

(
α β

β̄ ᾱ

)
, detC(g) = 1.

Notable one-parameters subgroups are given by rotations, transla-
tions and dilations, whose action

R(θ)z = eiθ z, z ∈ S1

δsx = es x, x ∈ R

τtx = x+ t, x ∈ R

is displayed as matrices in PSL(2, R) as

R(θ) =

(
cos
(
θ
2

)
sin
(
θ
2

)
− sin

(
θ
2

)
cos
(
θ
2

)) , δs =

(
e
s
2 0

0 e−
s
2

)
, τt =

(
1 t

0 1

)
.

A convenient basis for the Lie algebra complexification can be given
in terms of elements {L0,L±1 } (see [Longo, 2008]) satisfying

[L1,L−1] = −2L0 [L0,L1] = −L1 [L0,L−1] = L−1

namely they generate the closed subalgebra of (2.2.1) with m,n =

0,±1. The generators of translations P, rotations K and dilations D
can be obtained from

L0 =
1

2
(P+K)

L±1 =
1

2
(P−K)± iD.

We assume that there exist a unique vector |0〉 such that L0 |0〉 =

L±1 |0〉 = 0 and ergo U(g) |0〉 = |0〉 , ∀g ∈ PSL(2, R). We call such
a vector the vacuum state and refer to this feature saying that the
Möbius group is the only subgroup of the conformal transformations
on the circle preserving the vacuum state. Of course this straight-
forwardly emerges also by looking at the explicit realisation of ln as
−zn+1 ddz .

The Virasoro algebra generated by the Ln contains many copies of
the Lie algebra of the cover of the Möbius group. In particular one
may define for each n > 0

L(±n) =
1

n
L±n, L(0) =

1

n
L0 +

c

24

n2 − 1

n

with commutation relations

[L(n),L(−n)] = 2L(0), [L(±n),L(0)] = ±L(±n).
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12 conformal field theory

The subgroup generated by this sub-Lie algebra is isomorphic ([Longo
and Xu, 2004]) to the nth covering of the Möbius group PSU(1, 1)(n)

acting on z ∈ S1 as

g(n)(z) := n

√
αzn +β

βzn +α
.

Equivalently, this group can be defined as the set of all elements g ∈
Diff(S1) for which there exists a Möbius transformation φ such that
g(z)n = φ(zn). Clearly, this is nothing but the definition we just gave
above.

As a remark, we shall very often use in the following the concept
on n-dilations in the context of modular theory, where such transfor-
mations will be exactly defined as

δ
(n)
t (z) = n

√
δt(zn)

and thus they appear as standard dilations in PSU(1, 1)(n). Here
δt are the single-interval dilations defined as the subgroup of the
Möbius group preserving the intervals, having the boundaries as
fixed points (for the precise definition see 4.4).

2.3 the quarks construction

Let us assume the theory contains many complex fields

ψi(z) =
∑
s

ψis z
−s−1/2

satisfying fermionic anti-commutation relations, with (s, r) running
either in Z+ 1/2 (vacuum representation) or in Z (Ramond represen-
tation). Define now the ath current as (“quark construction” [Evans
and Kawahigashi, 1998]):

Ja(z) :=
1

2

∑
i,j

:ψ∗i τaijψ
j :(z) (2.3.1)

where τa ∈ g ⊂ u(n) is a basis of some matrix Lie algebra. The normal
ordering :AB: between two operators is defined by subtraction of the
vacuum expectation value :AB: := AB−ω0(AB). This is a standard
definition for observables in the field theoretical setting in order to
avoid divergences that might otherwise occur when calculating scat-
tering amplitudes and correlation functions. As a straightforward
consequence of such definition the vacuum expectation value of any
normal ordered product vanishes as it is

ω0(:AB:) = ω0(AB−ω0(AB)) = ω0(AB) −ω0(AB) = 0.

By using the fermionic anticommutation relations one finds that, ex-
panding in Fourier modes on the circle, z ∈ S1,

Ja(z) =
∑
n∈Z

jan z
−n−1, Ja(x) = −

dz
dx
Ja(z(x))
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2.3 the quarks construction 13

and thereby

[jan, jbm] = fabc cn+m +nδn+m,0 κ
ab k (2.3.2)

Here fabc are the structure constants and k is a positive integer, called
the “level”, that depends on the Lie algebra g and its matrix represen-
tation in u(n) chosen for the construction. It characterises the model.
Furthermore κab is the Killing form of g. The latter is the trace of the
adjoint action in the Lie algebra Ad : g→ GL(g), x 7→ [x, ( · )]

κab = tr(AdXa ◦AdXb)

(see [Rehren, 2013], [Fuchs, 1992]). Equation (2.3.2) defines the non-
abelian current algebra for g ⊂ u(n) at level k.

In the abelian case the commutation relations for the current look
2πi [j(x), j(y)] = δ ′(x− y); the central operator

Q =
1

2π

∫
R

dx j(x) (2.3.3)

is referred to as the “charge”. In terms of Fourier modes j(z) =∑
n∈Z jnz

−n−1 the charge Q emerges as the mode j0.

The two-point vacuum correlation function for the current can be
easily calculated in terms of the fermionic one by implementing the
quark construction. In fact we have

ω0(j(x)j(y)) = ω0(:ψ
∗ψ:(x) :ψ∗ψ:(y)).

Standard tools in quantum field theories allow to work out product
of normally ordered operators and we remand the reader to any text-
book for explicit proofs. In particular these are given in terms of
pairing between operators at different points and in the case at hand
the only contractions that matter are

ω0(j(x)j(y)) = ω0(:ψ
∗ψ:(x) :ψ∗ψ:(y))

= ω0(ψ(x)
∗ψ(x)ψ(y)∗ψ(y)) +ω0(ψ(x)

∗ψ(x)ψ(y)∗ψ(y))

= ω0(ψ(x)
∗ψ(y))ω0(ψ(x)ψ(y)

∗) + 0

= ω0(ψ(x)
∗ψ(y))2

hence once the fermionic two-point function is given, its square de-
termines ω0(j(x)j(y)). However, the current algebra possesses a con-
tinuum of representations given by the charged states ωq = ω0 ◦
ρq,q ∈ R, where ρq are automorphisms acting on the currents as
ρq(j(x)) = j(x) + 2q/(1+ x2). The one and two-point functions are
given by

ωq(j(x)) =
2q

1+ x2

ωq(j(x)j(y)) =
4q2

(1+ x2)(1+ y2)
+

−1

(x− y)2
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14 conformal field theory

which read, in terms of the z variable on the circle

ωq(j(z)) =
q

z

ωq(j(z)j(w)) =
q2

wz
+

1

(w− z)2

Provided the currents, one can construct the “Sugawara” stress-
energy tensor as

TS(z) := ξ κab : J
aJb :(z) (2.3.4)

with ξ being a normalisation constant. The Fourier expansion on the
circle reads, in terms of modes,

TS(z) =
∑
n∈Z

Ln z
−n−2

and thereby the below commutations relations follow

[Ln,Lm] = (n−m)Ln+m +
c

12
m(m2 − 1) δn+m

i [T(x), T(y)] = − (T(x) + T(y)) δ ′(x− y) +
c

24
δ ′′′(x− y) (2.3.5)

where the central charge c can be expressed as ([di Francesco et al.,
1997], [Fuchs, 1992])

c =
k

k+ g
dim g (2.3.6)

where g is a group factor determined by group theory (dual Coxeter
number). We have purposely introduced again the notation Ln as in
(2.2.1) for the Fourier modes of the stress-energy tensor to explicitely
remark that its modes exactly satisfy the commutation relations defin-
ing the Virasoro algebra (2.2.1). If the theory admits unitary imple-
mentations for z 7→ g(z) then we can write

αg(φ(z)) = φ
′(g(z)) = U(g)φ(z)U(g)∗; U(g) = eiT(f)

g(z) being g(z) = exp(f)(z). The zero mode L0 is the conformal
Hamiltonian and it generates the time evolution automorphism of
the current algebra according to

αt(a) = eitL0 a e−itL0 .

The Fermi fields possess by themselves their own full stress-energy
tensor given by

TF(z) =
1

2

N∑
i

:ψ∗i(z)∂zψ
i(z) : +

ε

16

N

z2
(2.3.7)

with ε = 0, 1 for vacuum representation and Ramond representation,
respectively. Again, this stress-energy satisfies commutation relations
of the type (2.3.5). Nevertheless, in general TF differs from TS; the
difference can be computed (see 5.4) as a new stress-energy tensor
given by TF = TS + Tcoset with central charge given by the difference
of the two initial central charges: ccoset = cF− cS. The class of models
where the difference TF − TS happens to be zero are referred to as
conformal embeddings.
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2.4 primary fields 15

2.4 primary fields

In the field theoretical setting each vector |v〉 ∈ V(c,h) of finite en-
ergy can be thought as |v〉 = limz→0φ(z) |0〉 , |0〉 being a conformally
invariant vacuum state (state-field correspondence). By the spectrum
condition (positivity of L0), vector-valued distribution on S1 as φ(z) |0〉
can be analytically continued to functions in the interior of the circle,
so that the limit is well defined.

Definition: Fields corresponding to lowest weight vectors |h〉 are said
to be primary and of scaling dimension h.

By exploiting the properties of the operators Ln one finds, for pri-
mary fields, the following commutation relations

[Ln,φ(z)] = h(n+ 1)znφ(z) + zn+1∂zφ(z) (2.4.1)

which can be exponentiated to

φ(z) =

(
dg(z)

dz

)h
φ ′(g(z)) (2.4.2)

z 7→ g(z) being any general diffeomorphism of the circle. In particu-
lar the behaviour of conformally invariant fields under infinitesimal
conformal transformations acquires the forms

i[P,φ(x)] = ∂xφ(x)

i[D,φ(x)] = (x∂x + h)φ(x)

i[K,φ(x)] = (x2∂x + 2hx)φ(x)

which can be derived from (2.4.1) in case n = 0,±1.

Quite often the theory may also contain further fields, which do
not transform as above because they are obtained out of non-lowest
weight vectors. Such fields, called secondary or descendant, have addi-
tional contributions in the transformation laws due to further contri-
butions in the commutation relations (2.4.1).

Example: The stress-energy tensor defined in (2.3.4) transforms as

T(z) =

(
dg(z)

dz

)2
T ′(g(z)) +

c

12
s(g(z), z)

where

s(g(z), z) =
d3g

dz3
/
dg

dz
−
3

2

(
d2g

dz2
/
dg

dz

)2
is the Schwarzian derivative. The additional term cancels out if g ∈ Möb
(T is quasi-primary).

Example: Fermi fields ψ(z) and currents J(z) are primary fields of
dimensions 1/2 and 1, respectively. They therefore transform as

ψ(z) =

√
dg(z)

dz
ψ ′(g(z)) and J(z) =

dg(z)

dz
J ′(g(z)).
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16 conformal field theory

2.5 conformal nets

The section at hand deals with some definitions about conformal nets
and their representations in the algebraic setting. For this purpose let
I be the set of non-empty, non-dense open intervals on the circle S1.

Definition: A conformal net on S1 is an assignment of von Neumann
algebras I ∈ I → A (I) ⊂ B(H) such that the following properties
hold ([Carpi, 2004]):

(i) Isotony:
A (I1) ⊂ A (I1) if I1 ⊂ I2.

(ii) Locality:
A (I1) ⊂ A (I2)

′ if I1 ∩ I2 = ∅.

(iii) Möbius covariance, namely a strongly continuos unitary repre-
sentation U(g) ∈ H of the Möbius group exists such that

U(g)A (I)U(g)∗ = A (g I) g ∈Möb.

(iv) Positivity of the energy: spect (U(L0)) > 0, L0 being the generator
of the one-parameter subgroup of rotations R(θ)z = eiθ z.

(v) Existence and uniqueness of the vacuum:

∃! Ω ∈ H | Ker (U(Ln)) = CΩ.

Also, Ω is assumed to be cyclic, i. e. aΩ is dense in H, and
separating, i. e. a1Ω = a2Ω ⇒ a1 = a2, for the whole algebra
A
(
S1
)
= ∨I∈IA (I).

From the above properties further consequences can be proven, as
well as:

(vi) Factoriality: The algebras A (I) are type III1 factors.

(vii) Reeh-Schlieder property:

Ω is cyclic and separating for A (I) , ∀ I ∈ I.

(viii) Irreducibility: The von Neumann algebra generated by all the
intervals exhausts all B(H), i. e.∨

I∈I
A (I) = B(H)

(ix) Haag duality:
A (I) ′ = A

(
I ′
)
∀ I ∈ I.

(x) Bisognano-Wichmann property: from Modular Theory it follows
that the modular operator associated to the pair (A (I) ,Ω) is

∆it(I,Ω) = U
(
Λ−2πt

I

)
where ΛI is the one parameter subgroup of Möb preserving the
interval I (corresponding to the dilations if C(I) = R+).
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Along the same lines a conformal net is said to be diffeomorphisms
covariant if it admits a strongly continuos projective unitary represen-
tation V of Diff(S1) such that

V(h)A (I)V(h)∗ = A (h I) h ∈ Diff(S1).

Definition (Strong additivity): The net is said to be strongly additive if,
for every pair of intervals I1, I2 obtained by removing a single point
from I, i. e. I = I1 ∪ I2 ∪ {P } we have

A (I1)∨A (I2) = A (I) .

Definition (Split property): The net I → A (I) is said to be split if, for
any two intervals I, J with disjoint closure, a von Neumann algebras
isomorphism

χ : A (I)∨A (J)→ A (I)⊗A (J)

exists such that χ(xy) = x⊗ y, x ∈ A (I) , y ∈ A (J). Whenever one of
the two intervals is contained (along with its closure) into the other,
say, I ⊂ J, this is equivalent ([Longo, 2008]) to the existence of an
intermediate type I factor M, A (I) ⊂ M ⊂ A (J). It is essential that
the two interval neither touch nor overlap.

The split map is given in terms of a canonical unitary between the
representing Hilbert spaces V : H→ H⊗H such that

V (A (I)∨A (J))V∗ = A (I)⊗A (J)

As a consequence for any given normal states ϕi on A (Ii) there exists
a normal state ϕ on the total algebra ∨IA (I) such that

ϕ (a1a2) = ϕ1(a1) ·ϕ2(a2).

In the language of field theories this property is never fulfilled by the
vacuum state, because splitting the correlation functions into prod-
ucts would eliminate all correlations between fields in different points,
ω0(a(x)b(y)) 6= ω0(a(x)) ·ω0(b(y)). This means that the state given
by ω0 ◦ V∗ onto A (I)⊗A (J) is an “excited state”.

A complete and full characterisation of the split property can be
found in the literature and we refer the reader to the references. In
particular it can be shown ([Longo, 2008] or [D’Antoni, Longo, and
Radulescu, 2001]) that if the conformal Hamiltonian L0 satisfies the
trace-class condition, namely

tr(e−βL0) <∞ ∀β > 0

then the conformal net is split.

A representation of a conformal net is a family {πI } where πI is a
representation of A (I) on some Hilbert space HπI such that

πJ|A(I) = πI, I ⊂ J.
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18 conformal field theory

A unitary equivalence class [π] of representations on a separable Hilbert
space is called a sector. Since the von Neumann algebras are by defini-
tion subsets of B(H) they are already realised on some Hilbert space:
we refer to their defining representation as to the vacuum sector of
the theory. Furthermore a representation is said to be Möbius (diffeo-
morphisms) covariant ([Carpi, 2004]) if there is a strongly continuous
unitary representation Uπ of the Möbius (diffeomorphisms) group
such that

Uπ(g)πI (A (I))Uπ(g)
∗ = πg(I) (A (g(I)))

namely
AdUπ(g) ◦ πI = πg(I) ◦AdU(g(I)).
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The following sections provide an elementary introduction to the ba-
sic ingredients we shall be dealing with, namely operators on Hilbert
spaces and von Neumann algebras ([Jones, 2009]). This is because the
main features of a physical theory are encoded into the fields content,
which in turn happen to emerge as operator valued distributions as-
signed to each point of the space-time, x 7→ φ(x) ([Haag, 1992]). For
this reason a systematic analysis of their mathematical properties is
needed, and tools ought to be developed in order to better under-
stand their algebraic underlying structure.

3.1 basic definitions and operator topologies

Let H be a Hilbert space and D(A) ⊂ H. An operator on H whose
domain is D(A) is a linear map A : D(A)→ H.

Definition (Operator norm): Let x ∈ D(A) | x 6= 0 and A : x 7→ A(x) ∈
H. The operator norm of A is defined as

‖A‖ = sup
x∈D(A)6=0

‖Ax‖
‖x‖

. (3.1.1)

If ‖A‖ <∞ then the operator A is said to be bounded.

Property: An operator A is bounded if and only if it is continuous.

Property: A bounded (and therefore continuous) operator A defined
on a dense subset D(A) ⊂ H can be uniquely extended to the whole
H by continuity.

As a remark we notice that, by continuity, the convergence of the
sequence xn → x in D(A) implies the convergence of the sequence
Axn → Ax.

Definition (Closed operator): Let xn ∈ D(A) such that xn → x. Let
us also assume that Axn → y. The operator A is called closed if the

19
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20 basics of von neumann algebras

previous assumptions imply x ∈ D(A) and y = Ax. Equivalently, an
operator is closed if its graph is closed in the direct sum H⊕H.

Take now an operator A, not necessarily closed, and assume that
the closure of its graph in H⊕H happens to be the graph of some
operator A, i.e. if G(A) = G(A). Then A is said to be “closable” and
A its closure.

Definition (Adjoint operator): Let Fx : y ∈ D(A)→ (x,Ay) ∈ C for any
operator A. The set of all points { x ∈ H | Fx is continuous } is defined
as D(A∗). On this domain, by means of Riesz representation theorem,
∃! z ∈ H | Fx(y) = (z,y). The operator A∗ adjoint of A is defined as
A∗x = z on D(A∗).

Given any two operators A and B we say that A ⊂ B if D(A) ⊂
D(B) and Ax = Bx on their common domain, i. e. x ∈ D(A). A
densely defined operator is called symmetric if A ⊂ A∗ and self-adjoint
if A = A∗.

Henceforth let B(H) denote the set of all bounded operators on a
Hilbert space H, whose domains then coincide with the whole space,
that is D = H. We assign the following topologies on B(H) ([Jones,
2009]):

Definition (Topologies on B(H)): Let Tn be a sequence of operators
and T a “limit point” in B(H):

(i) Norm topology: Tn → T in norm if ‖Tn − T‖ → 0 in the norm
topology defined above in (3.1.1).

(ii) Strong topology: Tn → T strongly if ∀ x ∈ H then ‖Tnx− Tx‖ → 0

in the vector norm of H.

(iii) Weak topology: Tn → T weakly if ∀ x,y ∈ H then (Tnx,y) →
(Tx,y) as complex functionals, i.e. Fx,y(Tn)→ Fx,y(T).

It is easy to verify that a natural order among these topologies
exists, namely

norm topology B strong topology B weak topology

meaning that if a sequence of operators Tn converges to T in a topol-
ogy on the left then it converges to T in a topology on the right.
Stronger topologies have more open sets than weaker ones, and there-
fore if a set is closed in a weak topology it is also closed in all the
stronger ones.

Definition (von Neumann algebra): A von Neumann algebra is a sub-
set M ⊂ B(H) which is closed under the weak operator topology
and contains the identity. Its commutant M ′ is defined as the set
M ′ := {m ′ ∈ B(H) | [m ′,m] = 0, m ∈M} (similarly for (M ′) ′ = M ′′

and so forth).
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3.2 classification of factors 21

Property (von Neumann bicommutant theorem): Let M = M∗ be a
self-adjoint subalgebra of B(H). The following assumptions are equiv-
alent:

(i) M = M ′′.

(ii) M is weakly closed.

(iii) M is strongly closed.

3.2 classification of factors

Definition (Factor): The centre of an algebra is the set of all elements
within that algebra which commute with all the rest, that is Z(M) =

M ′ ∩M. A von Neumann algebra M whose centre is trivial is called
a factor, i.e. Z(M) = C.

Definition (Projections): p ∈ B(H) is called a projection if and only if
p2 = p = p∗. Likewise v ∈ B(H) is a partial isometry if v∗v = p is a
projection. Given two projections p and q, we say they are equivalent
(p ≈ q) if there is a partial isometry v such that vv∗ = p and v∗v = q.

Given two projections p,q we say that p 6 q if and only if their
ranges are pH ⊆ qH. In addition, a projection p is said to be minimal
if, ∀q 6 p, either q = 0 or q = p. Consider now any q 6= p,q < p;
if there is a partial isometry v ∈ M such that vv∗ = p and v∗v = q

then the projection p is said to be infinite (otherwise p is called finite).
In a nutshell, then, a finite projection has no equivalent subprojec-
tions, whereas infinite projections do. Consequently a von Neumann
algebra is called infinite if its identity is infinite, otherwise it is finite.

Definition (Murray-von Neumann classification of factors): Projections
allow us to classify factors according to the following:

(i) A factor M with a minimal projection is called a Type I factor.

(ii) A factor M with no minimal projections but non-zero finite pro-
jections is called a Type II factor.

(iii) An infinite factor M admitting a non-zero linear functional (trace)
tr : M→ C such that

a) tr(xy) = tr(yx) x,y ∈M,

b) tr(x∗x) > 0,

c) tr is ultraweakly continuous,

is called a Type II1 factor. The trace is said to be normalised if
tr() = 1.

(iv) A factor of the form M⊗B(H), with M Type II1 and dim H =∞ is called a Type II∞ factor.
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Table 2: Type of factors

Type “working” definition

I with minimal projection; also ∃H | M ∼= B(H).

II no minimal projection but non-zero finite projections.

II1 infinite factor with no minimal projections and a trace
tr : M→ C.

II∞ M⊗B(H), M Type II1 and dim H = ∞.

III the rest, i.e. no minimal projections, no non-zero finite
projections.

(v) A factor M with no minimal projections, no non-zero finite pro-
jections is called a Type III factor.

3.3 introduction to modular theory

Let M ⊂ B(H) be a von Neumann algebra and Ω ∈ H a cyclic and
separating vector for M. The anti-linear operator

S0 : aΩ 7→ a∗Ω, a ∈M (3.3.1)

is closable ([Bratteli and Robinson, 1979a]) and in general unbounded.
However, let S = S0 be its closure and S = J∆1/2 the respective polar
decomposition. We call ∆ the modular operator and J the modular
conjugation associated with the pair (M,Ω). Via functional calculus
the strongly continuous unitary group

∆it = eit ln∆, t ∈ R

may be defined and its adjoint action

σt(M,Ω)(m) := ∆itm∆−it, m ∈M, t ∈ R (3.3.2)

induces a one-parameter automorphisms group of M called the mod-
ular automorphisms group. A fundamental result in this respect is the

Theorem 3.3.1 (Tomita-Takesaki ([Bratteli and Robinson, 1979a])): Un-
der the previous assumptions the following statements hold: the op-
erator J = J∗ is anti-unitary and

JMJ = M ′ (3.3.3)

σt(M,Ω)(M) = M, ∀ t ∈ R. (3.3.4)

The algebra is sent into its commutant by the adjoint action of the
modular conjugation J and the modular group acting of M exhausts
all the algebra itself. Since all these quantities explicitly depend on
the pair (M,Ω) we have different realisations of the modular auto-
morphism group according to this choice. The characterisation of its
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shape, according to the choices of (M,Ω) in some particular cases, is
the main topic of the work at hand.

The trivial case, i.e. when the algebra is commutative, is very easy
to handle; take a,b ∈ M and look at (SaΩ,SbΩ), with S defined as
(3.3.1):

(SaΩ,SbΩ) = (a∗Ω,b∗Ω)

= (Ω,ab∗Ω)

by commutativity it follows then

= (Ω,b∗aΩ) = (bΩ,aΩ)

= (aΩ,bΩ)

therefore S is antiunitary and hence ∆ = |S| = . This implies that the
action of the modular group is trivial on each element of the algebra.

3.3.1 Kubo-Martin-Schwinger (KMS) condition

Let M be a von Neumann algebra and ϕ a faithful normal state on M.
Let furthermore σt be a weakly continuous one-parameter group of
automorphisms of M. Fixed a,b ∈ M consider Fa,b(t) := ϕ(aσt(b))

as a function in the variable t ∈ R. The state ϕ is said to satisfy
the Kubo-Martin-Schwinger (KMS) condition at inverse temperature
T = β−1, 0 < β <∞ if

(i) Fa,b(t) can be analytically continued in the strip 0 < Im(t) < β.
It is continuous at the boundaries Im(t) = 0,β and

(ii) Fa,b(t+ iβ) = ϕ(σt(b)a).

Notice that if the algebra were commutative then every state would
satisfy the KMS condition at β = 0, by commutativity. If this only
happens as a special feature of the state at hand then ϕ is said to be
tracial, otherwise β 6= 0 measures the deviation of ϕ from being a
trace. Next note that a state is KMS with respect to σt at T−1 = β 6= 0
if and only if it is KMS with respect to σ−βt at T = −1; therefore by
rescaling the group parameter one can always refer to state of tem-
perature −1. Albeit we shall not discuss this issue any further, KMS
states characterise equilibrium states in quantum thermodynamics
where the one-parameter group σt plays the role of a given time evo-
lution; however, to whom it may concern, a full characterisation and a
systematic study of KMS states is provided in [Bratteli and Robinson,
1979b].

The remarkable connection with modular theory is that a normal
state happens to be a KMS state with respect to its own modular
group ([Haag, 1992]); the converse is also true, namely the modular
group is the only one-parameter group of inner automorphisms sat-
isfying the KMS condition on the state where it comes from. This
feature will be fully used in the following to characterise and inves-
tigate properties of the modular group related to different states and
algebras.
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3.3.2 Bisognano-Wichmann property

As a matter of example let us consider a very important result ob-
tained by Bisognano and Wichmann ([Bisognano and Wichmann, 1975]),
and so far the only (up to geometric transformations) explicit charac-
terisation of modular operators for space-time regions.

Let WR,L := { x ∈M4 | x1 ≷ |x0| } be the right (left) wedge region as
a subset of the space-time M4. There is exaclty a one-parameter sub-
group of the Lorentz group preserving the wedge, namely mapping
the wedge into itself:

Λ(t) =


cosh(t) − sinh(t) 0 0

− sinh(t) cosh(t) 0 0

0 0 1 0

0 0 0 1

 . (3.3.5)

Let the local von Neumann algebra A (W) be generated by Wight-
mann fields W(f) and let us choose as a cyclic and separating vec-
tor the vacuum Ω as Gelfand-Naimark-Segal (GNS) of ω0 (W(f)) =

e−1/2‖f‖
2

. The modular group associated to the pair (A (W) ,Ω) coin-
cides with the unitary representation of the subgroup preserving the
wedge and the modular conjugation acts as reflection through the
edge of the wedge, changing sign to both x0 and x1

∆it = U(ΛW(−2πt)) J = U(rW). (3.3.6)

However, since the vacuum is invariant under Poincaré transforma-
tions g, this result can be generalised to any region of the form
W ′ = gW. Setting ([Longo, 2008])

ΛW ′(t) = gΛW g−1 rW ′ = g rW g−1

we obtain ([Guido, 2011] and [Guido, Longo, and Wiesbrock, 1998])

∆it = U(ΛW ′(−2πt)) J = U(rW ′).

It can be shown (again [Guido, 2011]) that the Bisognano-Wichmann
property also holds for conformally covariant theories that split into
tensor products of two nets on a line, as described in 2.5. In fact,
in two dimensions a wedge reduces to the cartesian product of two
half-lines R+×R−. In the particular case where I = R+ the modular
group explicitly acts as dilations with a scaling factor of e−2πt

σt( · ) = δλt( · ), λt = e−2πt

The two-dimensional modular flow is then δλt ⊗ δλ−1t . Intervals can
be obtained as conformal transformations of the real line and hence
in this case the modular group, corresponding to the subgroup of
the Lorentz transformations preserving the wedge, is replaced by the
subgroup of the Möbius transformations fixing each interval, either
on the circle picture S1 or on the real line.
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WR

R
+

×
R
−

As already mentioned above, the modular group σtΩ uniquely sat-
isfies the KMS condition on Ω and hence it characterises thermal
equilibrium states for an observer whose dynamics is given by σtΩ.
According to this interpretation, the Bisognano-Wichmann property
for wedge regions states that the vacuum state is a thermal equilib-
rium state with temperature T = −1 for an observer accelerated with
Lorentz boosts. This is the case for an observer moving around the
event horizon of a black hole and the example provides an explana-
tion of the Unruh effect, by which the vacuum state behaves like a
thermal states for observers moving in a gravitational field ([Connes
and Rovelli, 2008; Martinetti and Rovelli, 2003]). In fact, the trajectory
of an observer moving in such an event horizon (corresponding in
turn to a wedge region) with constant acceleration a is given by the
orbits of the Lorentz boosts of the form (3.3.5) with the proper “phys-
ical” time τ being t/a. Therefore the trajectory in the wedge can be
parametrised as

xµ(τ) = 1/a (sinh(aτ), cosh(aτ), 0, 0)

and the evolution at later times is x(τ0 + τ) = Λ(aτ)x(τ0). On the
other hand, as we have seen in equation (3.3.6), the modular group
with respect to the vacuum state act as a Lorentz boost of parameter
−2πs and satisfies the KMS property. Therefore, by uniqueness, the
relation between the physical time τ and the modular parameter s has
to be −2πs = aτ, in order to give back the Unruh inverse temperature
β = −dτ/ds = 2π/a.

3.3.3 Reconstruction of the translations

As just stated, the modular group associated with the pair (A (W) ,Ω),
W being a wedge region, acts like the associated group of Lorentz
boosts and this preserves the wedge itself. Remarkable results by
Borchers [Borchers, 1992] and Wiesbrock [Wiesbrock, 1993a,b, 1992]
showed that it is possible, under suitable conditions, to recover the
translations group out of modular data.

Definition: Let M be a von Neumann algebra with a cyclic and separat-
ing vector Ω. Let furthermore U(a) := eiaH, a ∈ R, be a continuous
one-parameter group of unitaries with positive generator H leaving
Ω invariant, i. e. U(a)Ω = Ω. The triple (M,H > 0,Ω) is called
a “Borchers triple”. Also, the triple is said to satisfy the half-sided
translations condition if AdU(a)M ⊂M, a > 0.
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26 basics of von neumann algebras

Theorem 3.3.2 ([Borchers, 1992]): Let M be a von Neumann algebra
with a cyclic and separating vector Ω and denote as ∆, J the modular
data of the pair (M,Ω). Then, given a half-sided translated Borchers
triple as above, the following holds

∆itU(a)∆−it = U(e−2πt a) (3.3.7)

JU(a)J = U(−a), (3.3.8)

namely U(a) is seen to satisfy translations-dilations commutation re-
lations with ∆it.

A stronger result provided by Wiesbrock holds true: given two al-
gebras in suitable position one can automatically recover the unitaries
U(a) out of their modular operators only; the construction is showed
below.

Definition: Let N ⊂ M be two von Neumann algebras with common
cyclic and separating vectorΩ and denote with ∆M,∆N the respective
modular operators. We call the inclusion N ⊂ M half-sided modular
([Wiesbrock, 1993a]) if ∆−it

M N∆itM ⊂ N for t > 0.

Theorem 3.3.3 ([Wiesbrock, 1993a]): Under the previous assumptions
of half-sided modular inclusion N ⊂M let H := 1/2π (ln∆N − ln∆M);
the triple (M,H > 0,Ω) is a half-sided translated Borchers triple ful-
filling theorem 3.3.2.

This result suggests that the information about the translations is
contained into the mutual positions of the two algebras and their com-
mon cyclic and separating vector. As an important application of such
result we mention that wedge regions and their translated indeed
satisfy the half-side modular inclusions and therefore the above re-
sults directly apply. Representations of the Lorentz boosts emerge as
modular operator ∆itM (as a consequence of the Bisognano-Wichmann
property) and translations may be recovered by means of the Wies-
brock procedure (in two dimensions these exhaust the whole Poincaré
group).
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M U LT I - G E O M E T R I C M O D U L A R A C T I O N I N
Q U A N T U M F I E L D T H E O RY

In AQFT it is a long outstanding ques-
tion, what physical meaning the Tomita-
Takesaki modular objects have.

H.-W. Wiesbrock, Commun. Math. Phys.
157, 83 (1993).
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4.1 representations of fermi fields on the circle

We are now interested in the positive energy representation of real
Fermi fields in one dimension, namely fields localised on the real line
(or similarly on the circle via Cayley transform) such that ψ(x)∗ =

ψ(x) which satisfy anti-commutation relations as distribution in the
form

{ψ(x),ψ(y)} = δ(x− y), x,y ∈ R.

In terms of the compact picture the equation takes the form

{ψ(z),ψ(w)} = 2πiz δ(z−w) z,w ∈ S1

and consequently fields are meant to be smeared with functions f ∈
L2(S1). In one dimension, as easily seen, locality is ensured by dis-
jointness. We recall that by means of the anti-commutators (1.2.1)
Fermi fields are bounded operators because ψ(f)ψ(f)∗ +ψ(f)∗ψ(f) =
‖f‖2H · .

By using the GNS construction, representations can arise after choos-
ing appropriate states on the algebra of fields. In particular, we
shall look at quasi-free states, namely states whose high order cor-
relations functions can be calculated by using Wick theorem ([Bratteli

29
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30 multi-geometric modular theory

and Robinson, 1979a] and (1.2.2)) as combinations of two-point func-
tions. Therefore the only ingredient we need is the assignment of
ϕ(ψ(x)ψ(y)).

The vacuum representation of real Fermi fields in one dimension
emerges out of the vacuum two-point function that we already calcu-
lated in the example (1.2.3)

ω0(ψ(x)ψ(y)) = lim
ε↘0

−i

x− y− iε
.

This gives back, via GNS construction, the vacuum representation
π0(ψ(x)). Using the Cayley transform and the standard transforma-
tion laws for fields

x 7→ z =
1+ ix

1− ix
, ψ(z) =

√
−i
dz

dx
ψ(x) =

1− ix√
2
ψ(x)

we obtain the periodic representation (Neveu-Schwarz) of fields on
the circle given in terms of Fourier modes as

π0 (ψ(z)) =
∑

r∈Z+1/2

ψr z
−r−1/2

with two-point function ω0(ψ(z)ψ(w)) = lim
λ↗1

1

z− λw
.

Taking two copies of real Fermi field we obtain a representation
for the complex Fermi field φ(x) = (ψ1(x) + iψ2(x)) /

√
2 with anti-

commutation relations given by

{φ(x),φ(y)∗} = {φ(x)∗,φ(y)} = δ(x− y)

and vacuum two-point function

ω0(φ(x)φ(y)
∗) = ω0(φ(x)

∗φ(y)) = ω0(ψ(x)ψ(y)).

On the cirle instead the adjoint relation reads φ(z)∗ = zφ†(z) and the
two-point function becomes againω0(φ(z)φ(w)∗) = ω0(φ(z)∗φ(w)) =
ω0(ψ(z)ψ(w)).

Notice that the vacuum state is invariant under the action of Möbius
transformations of the form described in 2.2.1, ω0 ◦ αg = ω0, where
g ∈ PSL(2, R) = SL(2, R) / {± } and αg is its implementation on the
algebras as

αg(ψ(x)) =

√
dg

dx
ψ(g(x)).

Consequently, the vacuum representation is covariant.

Another positive energy representation can be constructed out of
the Ramond two-point function

ωR(ψ(x)ψ(y)) = lim
ε→0

1+ xy
√
1+ x2

√
1+ y2

· −i

x− y− iε
(4.1.1)
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whose expression in the compact picture is

ωR(ψ(z)ψ(w)) = lim
λ↗1

z+w

2
√
zw
· 1

z− λw
.

This gives rise to the Ramond representation in terms of Fourier
modes as

πR(ψ(z)) =
∑
n∈Z

ψn z
−n−1/2

which extends anti-periodically on the circle. This reflects the fact
that only local observables, such as currents as bilinear forms in the
fields, need to be well defined after rotations of 2π on the circle, but
Fermi fields themselves need not to.

4.2 operator product expansions

Let us consider the positive energy representations for Fermi fields
on the circle as described in the previous paragraph

π0 (ψ(z)) =
∑

r∈Z+1/2

ψr z
−r−1/2

πR(ψ(z)) =
∑
n∈Z

ψn z
−n−1/2

the former being periodic after rotations of 2πi, the latter being anti-
periodic

π0
(
ψ(e2πi z)

)
= π0 (ψ(z))

πR(ψ(e2πi z)) = −πR(ψ(z)).

Either of these boundary conditions ensure the correct commutation
relations between currents once one performs the quarks construc-
tion. So to speak, only local observables, as the currents are, must
be well defined, but Fermi fields themselves are allowed to carry an
additional minus sign without affecting the algebraic relations. For
the sake of notations we may write either representations as [Fuchs,
1992]

ψ(z) =
∑
s

ψs z
−s−1/2

and intend s ∈ Z+ 1/2 and s ∈ Z for the vacuum and Ramond repre-
sentation, respectively. Anti-commutation relations between Fourier
modes can be written as

{ψs,ψt} = δs+t,0

and the modes themselves can be expressed as

ψs =
1

2πi

∮
dz z−s−1/2ψ(z).

With the help of the above relation we can write the anti-commutator
between fields in terms of the analogue between modes through

{ψ(z),ψ(w)} =
1√
zw

∑
s,r

z−sw−r{ψs,ψr}.
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Such an expression may, in principle, be worked out making use of
the delta function to help the summation: {ψs,ψt} = δs+t,0 gives

{ψ(z),ψ(w)} =
1√
zw

∑
r

(w
z

)r
=

1√
zw

∑
r>0

(w
z

)r
+
∑
r<0

(w
z

)r ;

at a first glance problems occur because, although we can split the
summation into two contributions, each of them represents a geomet-
ric series whose domain of convergency depends on the particular
choice of the variables z,w. In particular the former term converges
for |z| > |w|, the latter otherwise, namely |z| < |w|. This means that, in
order to make sense, we must introduce in the above equation partic-
ular prescriptions on the choice of the allowed variable. To do so we
shall proceed as follows: we invert back such formula to have

{ψs,ψt} =
1

2πi

∮
dz

1

2πi

∮
dwzs−1/2wt−1/2 {ψ(z),ψ(w)}

and consider, on the right hand side, only those contours of inte-
grations where each single term in the anti-commutator is radially
ordered: {ψ(z),ψ(w)} = ψ(z)ψ(w)||z|>|w| +ψ(w)ψ(z)||z|<|w|.

z

γ1

γ2

Once we fix the variable z ∈ C the integration contours for w must
be chosen as γ1 to ensure |z| > |w| and as γ2 to ensure the converse.
The anti-commutator between the modes becomes then

{ψs,ψt} =
1

2πi

∮
0

dz
(
1

2πi

∮
γ1

dwzs−1/2wt−1/2ψ(z)ψ(w)

+

∮
γ2

dwzs−1/2wt−1/2ψ(w)ψ(z)
)

.

We define the operator product expansion of two Fermi fields as

OPE (ψ(z)ψ(w)) :=

ψ(z)ψ(w) if |z| > |w|

−ψ(w)ψ(z) if |z| < |w|

and with the help of this definition the integral can be rewritten as

{ψs,ψt} =
1

2πi

∮
0

dz
1

2πi

∮
γ1∪γ2

dwzs−1/2wt−1/2 OPE (ψ(z)ψ(w)) .

It is even easier if we consider that γ1 ∪ γ2 can be shrinked down
to a loop around the point z so that the integral becomes

{ψs,ψt} =
1

2πi

∮
0

dz
1

2πi

∮
z

dwzs−1/2wt−1/2 OPE (ψ(z)ψ(w)) .
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z

γ1

γ2

z

It is now pretty clear that if no divergences occur in the OPE then,
by means of the Cauchy theorem, the integral on the right hand side
vanishes. Therefore poles must occur in order to have reasonable
anti-commutators. In general we can assume that fields in the opera-
tor product expansions are everywhere analytic except at coinciding
points z = w and hence the prototype expansion would have the form
of a Laurent series ([Fuchs, 1992])

OPE (A(z)B(w)) =

∞∑
n=−n0

cn(w)(z−w)
n (4.2.1)

where the divergences occur for negative n and all the other regular
terms, althoug present in the expansion, give no actual contribution
to the integrals, nor do they to correlation functions. The singular
terms in the expansion are referred to as the “contractions” of the
operators and the coefficient c0 is the “normal ordered product”

A(z)B(w) :=

−1∑
n=−n0

cn(w)(z−w)
n, :A(z)B(z): := c0(z)

so that the OPE is decomposed into

OPE (A(z)B(w)) = A(z)B(w) + :A(z)B(z): + regular terms.

No regular terms occur for free fields, therefore we shall very often
omit them, since we are only dealing with such models. The num-
ber n0 and the actual form of the expansion depend upon the fields
and the commutation relations we want to realise. In the following
two explicit examples of OPE, for Fermi fields and for currents, will
reproduce the standard algebras we are used to.

Example (OPE for Fermi fields): The operator product expansion for
fermions acquires the form

OPE (ψ(z)ψ(w)) =


−

1

z−w
vacuum rep’n

−
1

z−w
· 1
2

(√
z

w
+

√
w

z

)
Ramond rep’n

(4.2.2)
which can be proven right by reproducing the correct relations for the
anti-commutators. In fact, substituting back into

{ψs,ψt} =
1

2πi

∮
0

dz
1

2πi

∮
z

dwzs−1/2wt−1/2 OPE (ψ(z)ψ(w)) .
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gives

{ψs,ψt} =
1

2πi

∮
0

dz
1

2πi

∮
z

dwzs−1/2wt−1/2
−1

z−w

=
1

2πi

∮
0

dz
−1

2πi
zs−1/2

∮
z

dwwt−1/2
1

z−w

=
1

2πi

∮
0

dz
−1

2πi
zs−1/2 2πi lim

w→z
(w− z) · 1

z−w
wt−1/2

=
1

2πi

∮
0

dz zs−1/2 zt−1/2 = δs+t,0.

Of course the Ramond case works similarly. The OPE helps to easily
derive the two-point function: in fact we know by previous argu-
ments that such a function must have poles whenever the two vari-
ables approach each other, i. e. in the limit z → w; the only possible
contributions come then from the singular terms in the OPE that, in
the case at hand, for Fermi fields, are given by (4.2.2). Therefore

ω0(ψ(z)ψ(w)) =
1

z−w

ωR(ψ(z)ψ(w)) =
1

z−w
· 1
2

(√
z

w
+

√
w

z

)
=
1

2
· 1

z−w
· z+w√

zw

reproducing the formulae already shown.

Example (OPE for currents): The operator product expansion for cur-
rents takes the form

OPE
(
Ja(z)Jb(w)

)
=

1

(z−w)2
κab κ−

1

z−w
fabcJ

c(w)

because this correctly reproduces the current algebra

[jan, jbm] = fabc cn+m +nδn+m,0 κ
ab k.

The two-point function, again, must only contain the singular terms,
then it can only be of the form

ω0(j
a(z)jb(w)) = ω0

(
1

(z−w)2
κab κ−

1

z−w
fabcJ

c(w)

)
=

1

(z−w)2
κab κ−

1

z−w
fabcω0(j

c(w))

=
1

(z−w)2
κab κ

because the one-point function ω0(j(z)) vanishes.

Example (OPE for stress-energy tensor): Using the quarks construc-
tion and the previously calculated OPE for Fermi fields and currents,
the operator product expansion for the stress-energy tensor may only
take the form

OPE (T(z)T(w)) =
c/2

(z−w)4
+

2T(w)

(z−w)2
+
∂wT(w)

(z−w)
;
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and thus the central charge c appears as coefficient for the 1/(z−w)4

term in the series.

We want to remark that the normal ordering just defined as the
coefficient c0 in the Laurent expansion for the OPE does in fact corre-
spond to the Wick product of operators used in the standard setting
of quantum field theory in the case of free fields, defined in turn
subtracting the vacuum expectation value. We have then the identifi-
cation

:AB: = OPE(AB) −AB− regular terms = AB−ω0(AB)

and since now on the two operations will be identified as the same.

4.3 fermionisation in one dimension

As useful for the next purposes we are now going to show a simple
example of the feature referred to as “fermionisation” in one dimen-
sion. Starting from fields fulfilling fermionic anti-commutation rela-
tions one can construct fields satisfying bosonic type commutation
relations simply taking particular combinations of the former ones.

In particular we start from fermionic operators of the type {a(k),a(k ′)∗} =
δ(k− k ′) and define the following bosonic-type operators

b(q) :=

∫
R

dka(k+ q)∗ a(k) b(q)∗ :=

∫
R

dka(k− q)∗ a(k)

which we are going to show fulfill bosonic commutation relations as
[b(q),b(q ′)∗] = qδ(q− q ′). The commutator is

[b(q),b(q ′)∗] = b(q)b(q ′)∗ − b(q ′)∗b(q)

=

∫
R

dka(k+ q)∗ a(k)
∫

R

dk ′ a(k ′ − q ′)∗ a(k ′)

−

∫
R

dk ′ a(k ′ − q ′)∗ a(k ′)
∫

R

dka(k+ q)∗ a(k)

=

∫
R

dkdk ′
(
a(k+ q)∗a(k)a(k ′ − q ′)∗a(k ′)

−a(k ′ − q ′)∗a(k ′)a(k+ q)∗a(k)
)

at this point we make use of the anti-commutator a(k)a(k ′ − q ′)∗ =
−a(k ′−q ′)∗a(k)+δ(k−(k ′−q ′)) to switch the operators in the prod-
ucts; the last line becomes∫

R

dk ′
(
a(k ′ − q ′ + q)∗a(k ′) −a(k ′ − q ′)∗a(k ′ − q)

)
because any a(k)∗2 = a(k)2 = 0. Also, we have integrated out the
delta functions. At a first sight the above equation may run into
problems because after intregrating on the whole real line infinities
may arise and it is not clear how to subtract them from each other. In
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order to solve this issue we make use of the definition of the normal
ordered product as :AB: = AB −ω0(AB). With the help of this
substitution we can rewrite the integral as∫

R

dk
(
:a(k− q ′ + q)∗a(k): −:a(k− q ′)∗a(k− q):

)
−

∫
R

dkω0(a(k− q+ q ′)∗a(k)) +
∫

R

dkω0(a(k+ q ′)∗a(k+ q)).

The first contribution containing the normal orderings vanishes af-
ter relabelling the variables as k ′ − q → k ′: both terms are exactly
the same. The other terms in the vacuum expectation value can be
worked out as follows: the domains of integrations are restricted due
to the fact that fermionic operators annihilate the vacuum for posi-
tive k, hence we can cut out the corresponding factors and end up
only with

[b(q),b(q ′)∗] =
∫0
−∞ dkω0(a(k− q+ q ′)∗a(k))

−

∫−q
−∞ dkω0(a(k+ q ′)∗a(k+ q))

= δ(q− q ′)

(∫∞
0

dkω0(a(k)a(k)∗)

−

∫−q
−∞ dkω0(a(k+ q)a(k+ q)∗)

)

= δ(q− q ′)

∫q
0

dk = δ(q− q ′) · q;

this finally shows that [b(q),b(q ′)∗] = qδ(q − q ′), as to be proven.
Along similar lines the authors in [Bischoff and Tanimoto, 2013] show
how to recover the U(1)-current subalgebra in the algebraic setting, as
a subnet of the fermionic Fock space after introducing the correspon-
dence

Jn =

+∞∑
r=−∞:ψr

∗ψn−r:

where theψr are the modes of the free complex Fermi field {ψ∗r,ψm} =

δn+m,0.

4.4 bisognano-wichmann modular flow

Following the standard construction of nets of von Neumann algebras
we may assume to be equipped with an assignment of algebras I →
A (I) of Fermi fields. A standard result by Bisognano and Wichmann
([Bisognano and Wichmann, 1975]) provides the computation of the
modular automorphisms group with respect to the vacuum state for
chiral conformal field theories. In case I = R+ the adjoint action
corresponds to the dilations of δt = e−2πt

σR
t (ψ(x)) = ∆

itψ(x)∆−it =

U(D(δt))ψ(x)U(D(δt))
∗ = e−πt ψ(e−2πt x) (4.4.1)
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and for every other interval the modular automorphisms are obtained
by conjugation with a Möbius transformation µ : I→ R+ that maps I
onto R+. Since Möbius transformations preserve the vacuum states
ω

R+

0 ◦ µ = ωI
0 they intertwine the respective modular groups and

therefore
σI
t = µ

−1 ◦ σR+
t ◦ µ

which allows to calculate the action of the modular automorphisms
group on ψ(x) ∈ A (I) as

σI
t(ψ(x)) =

√
δt µ ′(x)

µ ′(µ−1(δt µ(x)))
ψ(µ−1(δt µ(x)))

namely the subgroup of Möbius transformations preserving the inter-
val I, fixing its boundaries.

R

a1 a2

Since the same is true for the Cayley transform, namely ωR+

0 = ω
S1+
0 ◦

C, then the modular flow on the circle is nothing but

σ
S1+
t = C ◦ σR+

t ◦C
−1.

This property ensures that the action of the modular group on
Fermi fields localised in one interval is geometric. Now the ques-
tion that naturally arises and that we want to address is what the
modular group is whenever fields are localised in different intervals
instead. As we shall see, the action can no more be geometric because
of conflicts with algebraic properties otherwise. As first, we introduce
the following characterisation of von Neumann algebras due to Take-
saki [Takesaki, 1970] and we rephrase it in the language of nets with
cyclic and separating vectors.

Definition (conditional expectation): Let N ⊂ M be an inclusion of
von Neumann algebras and let ϕ be a cyclic and separating state on
M. A linear map E : M→ N is called the “conditional expectation” of
M onto N with respect to ϕ if

(i) ϕ ◦ E = ϕ|N

(ii) E(x) = x, x ∈ N

(iii) E(x)Ω = PI xΩ x ∈M

where Ω emerges out of the GNS representation of ϕ and PI projects
onto HI = { xΩ | x ∈ A (I) }.

Theorem 4.4.1 (Takesaki, [Takesaki, 1970]): Let N ⊂M and ϕ as above.
The existence of a conditional expectation E : M→ N is equivalent to
the global invariance σϕt (N) = N under the modular automorphism
group.
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Let us now assume we take two (for the sake of simplicity) any
disjoint intervals I1, I2 | I1 ∪ I2 =: E2 and consider the action of the
modular group of the algebra A (E2) with respect to the vacuum state.
The action being still geometric within each of the disjoint intervals
would imply that σt(A (Ik)) ⊂ A (Ik) and as a consequence conditions
for the Takesaki’s theorem would apply. The Reeh-Schlieder property
ensures that the vacuum is cyclic and separating for each of the two
subalgebras, hence the subset HI is dense in H. Therefore PI =  and
EΩ = xΩ, x ∈ A (E2). SinceΩ is also separating then Ex = x however
you choose x ∈ A (E2) and thus A (E2) must coincide with A (Ik),
which is not the case at hand. From this we realise that the action
of the modular automorphism group (with respect to the vacuum
state) on Fermi fields localised in disjoint intervals cannot be purely
geometric in order to avoid conflicts with Takesaki’s theorem. We
shall see that a mixing with pointwise coefficients is realised with
free Fermi fields.

4.4.1 Geometric flow for product states

Of course, the situation is quite different if we choose states that de-
compose as the product of many vacuum states. This choice would
destroy all the correlations among different intervals and no restric-
tions given by the Takesaki theorem would therefore apply. This issue
has been investigated by the authors of [Longo et al., 2009] and we
shall summarise here the important results.

Equipped with a net of Fermi algebras I→ A (I) the modular group
with respect to the vacuum state acts geometrically within each inter-
val on localised fields (Bisognano-Wichmann property), the geometric
flow being given by the subgroup δt of the Möbius group preserving
the interval (dilations on I = R+).

Let I be an interval on the circle and EN = N
√

I the symmetric N-
interval generated, i. e. the set of all points z such that zN ∈ I. The
Nth covering of the Möbius group, as introduced in 2.2.1, acts on the
net as

U(N)
(
Λ−2πt

I

)
A (EN) U(N)

(
Λ−2πt

I

)∗
= A

(
δ
(N)
t (EN)

)
where the geometric flow corresponds to the n-dilations δ(n)t (z) =
n
√
δt(zn). Therefore each sub-interval is separately preserved by this

action. If we assume the net to be split, then on EN = I1 ∪ . . .∪ In the
split isomoprhism provides a correspondence χEN : ∨Nk=1 A (Ik) →
⊗Nk=1A (Ik). With the help of such a map we can construct a product
state as follows: let U(gk) implement a family of diffeomorphisms
acting like zk 7→ zN on each of the Ik and let ω0 be the respective
vacuum state. Define now ([Longo et al., 2009]) the Kawahigashi-
Longo state on the algebra of the multi-intervals A (EN)

ϕEN :=

(
n⊗
k=1

ω0 ◦Ad(U(g−1k ))

)
◦ χEN . (4.4.2)
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4.5 the result of casini and huerta 39

The modular automorphisms flow for such a product state is, by con-
struction, geometric within each sub-interval of EN, the geometric
flow being given by the N-dilations:

σ
ϕEN
t (A (Ik)) = A

(
δ
(N)
t (Ik)

)
.

The same construction can be generalised to non-symmetric intervals
accordingly. We choose a general family of diffeomorphisms gk : I→
Ik with the property that, given z ∈ I, then zk = gk(z) ∈ Ik. The
factorisation is then

ϕEN :=

(
n⊗
k=1

ω0 ◦Ad(U(gk))

)
◦ χEN

and the modular group still acts geometrically, the geometric flow
being now given by δEN

t (z) = (g−1k ◦ δ
(1)
t ◦ gk)(z) instead; obviously,

this reduces to the square root map once you go back to gk(z) =

brances of N
√
z. However, we are going to examine the issue of non-

symmetric intervals deeper, later on.

4.5 the result of casini and huerta

We shall focus henceforth on the modular theory for Fermi fields lo-
calised in disjoint intervals and the prototype notation will be ψ(x) ∈
A (EN), with EN = I1 ∪ . . .∪ IN. We shall also switch very often from
the real line picture to the compact picture on the unit circle via Cay-
ley transform. Natural notation is ψ(xk), xk ∈ Ik (and similarly for
zk on the circle) to refer to a field evaluated in Ik.

As we have seen, whenever we consider fields localised in differ-
ent intervals the action of the modular automorphism group with
respect to the vacuum state cannot be geometric because of conflicts
between Takesaki’s theorem and the Reeh-Schlieder property. A pri-
ori, for general space-time regions and massive fields, the action of
the modular group may be of any fuzzy sort. In fact, when conformal
invariance no more holds, one cannot transfer the geometric result of
Bisognano and Wichmann via conformal mappings and thereby the
modular action has to be non-local. In particular the authors in [Saf-
fary, 2006; Figliolini and Guido, 1989] tried to describe the Tomita op-
erators whence the modular automorphisms group comes in terms of
pseudo-differential operators, from which the non-local action of the
modular group arises. As for the modular group of a multi-interval
algebra with respect to the Fock vacuum in free conformal theories, it
will still act linearly on the free fields, because the modular operator
S preserves the N-particle subspaces and hence so does the Tomita
operator ∆. On the other hand, as we have just seen, it cannot pre-
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serve the single-interval subalgebras. If we knew that the action is
pointwise, the most general modular flow would be of the form

σt(ψ(x1)) = c11(x1, t)ψ(ζt(x1))+ . . . + c1N(xN, t)ψ(ζt(xN))
...

...
...

σt(ψ(xN)) = cN1(x1, t)ψ(ζt(x1))+ . . . + cNN(xN, t)ψ(ζt(xN))
(4.5.1)

or, in a more compact notation,

σt


ψ(x1)

...

ψ(xN)

 =


c11(x1, t) . . . c1N(xN, t)

...
. . .

...

cN1(x1, t) . . . cNN(xN, t)



ψ(ζt(x1))

...

ψ(ζt(x1))

 .

(4.5.2)
where ζt(x) is some flow to be determined. Of course, once one
switches to the circle picture, the entries of the matrix are different.
Indeed, the unexpected finding by Casini and Huerta states that for
free Fermi fields, the modular flow is of this form.

The investigation of the modular automorphism group is then re-
lated to the evaluation of the coefficient appearing in (4.5.1). The
original paper by [Casini and Huerta, 2009] provides the calculation
of such coefficients using methods coming from density matrix and
hamiltonian flows. It is known that the time evolution generated by
the modular Hamiltonian K of a system, with eiKt = ∆it satisfies the
KMS property with respect to the vacuum state and therefore coin-
cides with its modular group (for details we refer the reader again
to [Casini and Huerta, 2009] and references therein). Thermal states
are characterised by density matrices of the form ρ ∼ e−K and corre-
lators can be expressed as (Ω, ( · )Ω) = tr(ρ · ( · )). This brings up
a relation between the Hamiltonian and the n-point functions (espe-
cially the two-point function) that can be used to compute the mod-
ular dynamics [K,ψ]. Exponentiating the commutator one gets the
entire time evolution eitKψ(x) e−itK corresponding to the modular
action σtω0(ψ(x)) = ∆itψ(x)∆−it. As a consequence the argument is
that knowledge of the Hamiltonian evolution flow and density matrix
allows, at least formally, the computation of the modular automor-
phisms group in terms of kernel of distributions.

Let us consider the algebra of a Fermi field localised in N disjoint
open intervals I1 ∪ . . . IN =: EN, with Ik = ]ak,bk[ ⊂ R; we call
the interval “symmetric” if Ik are the Nth roots of an interval I ⊂ R

(in this case we write EN = N
√

I). Let us introduce the following
Casini-Huerta function X : EN → R+ mapping each of the intervals
monotonously onto R+ as

X(x) = −

N∏
k=1

x− ak
x− bk

=

N∏
k=1

1+ vk
1+ uk

·
N∏
k=1

z− uk
z− vk

(4.5.3)

where z,uk, vk are the Cayley images of the points x,ak,bk. Each
X ∈ R+ has exactly N pre-images, one in each interval, and we refer
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to them as to X−1
1 (X), . . . ,X−1

N (X), X−1
j (X) ∈ Ij. Similarly, we denote

by z−1k (X) the kth pre-image on the circle. Moreover, this function has
the remarkable property that in case of symmetric intervals, namely
when zN ∈ I and thus zk = ωkz ∈ Ik with ωNk = 1, then X(zN) =

µ ◦C−1(zN), where µ is a suitable Möbius function.

The original result by Casini and Huerta ([Casini and Huerta, 2009]
and [Longo et al., 2009]) states that the modular automorphism group
with respect to the vacuum state acts on Fermi field as√

X−1
k (X)

′
σt
(
ψ(X−1

k )
)
=

N∑
j=1

O(X, t)kj
√
X−1
k (δt(X))

′
ψ
(
(X−1
j (δtX))

)
(4.5.4)

where the flow ζt(X
−1
k (X)) corresponds exactly to the geometric flow

appearing in the one interval case

ζt(X
−1
k (X)) = δt(X

−1
k (X)) = X−1

k (δt(X))

with δt being the one parameter subgroup of Möbius transforma-
tions preserving the interval R+. The geometric part moving the
points happens to be the same as in the one interval case, plus a mix-
ing among different intervals occurs on top of it. Of course, if one
reads the modular flow in terms of hamiltonian evolution, it is easy
to understand that such an evolution usually delocalises fields in the
pure sense of quantum mechanics, and thus we can no more expect
a geometric action within each subinterval.

The matrix O(X, t) appearing in (4.5.4) is an orthogonal cocycle
∈ SO(N) given in terms of a differential equation ([Longo et al., 2009])
as

∂tO(X, t) = O(X, t)K(δtX) (4.5.5)

where the matrix K(X) on the right hand side is

K(X)kj =


2π

√
X−1
k (X)

′
X−1
j (X)

′

X−1
k (X) −X−1

j (X)
if k 6= j

0 otherwise

. (4.5.6)

The solution is a coboundary

O(X, t) = O(X)T ·O(δtX)

where O(X) is the anti-path-ordered exponential

O(X) = P

e
−
1

2π

∫X
X0

dX ′ K(X ′)
 . (4.5.7)

As a matter of example we can carry out the explicit form of this
matrix in the case of symmetric intervals. In this case, as we have seen,
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the related points zk ∈ Ik are obtained by taking one of the Nth roots
of zN, hence zk = ωkz, where ω = e

2πi
N is the Nth root of the unity,

ωN = 1 and ωk = e
2πi
N k. Such points can also be obtained out of

the Casini-Huerta uniformisation function, calculated for symmetric
interval, after a suitable match with a Möbius transformation (this
is necessary whenever the Casini-Huerta function has range R+, to
match the Möbius transformation taking the upper semi-circle to the
interval I).

However, the symmetric form drastically simplifies the entries of
the matrik K(X), as they become

K(z)kj = 2π
ω
k+j
2

(ωk −ωj)z
= −Kkj

1

z
(4.5.8)

with Kkj a matrix with constant entries

Kkj = −
ω
k+j
2

(ωk −ωj)
;

of course K(z)kj is still zero if k = j. Since the matrix K is a con-
stant matrix, it commutes with itself at different points and as a con-
sequence the anti-path-ordered exponential reduces to an ordinary
exponential

O(X) = e

1

2π
2πK

∫z
1

dw
1

w = eK ln z = zK; (4.5.9)

clearly enough, z = eiϕ is any point on the circle. The expression
we have obtained is rather simple, in the case of symmetric inter-
vals; later on we will introduce a lemma stating the particular form
allowed for the spectrum of such a matrix, also calculating the par-
ticular diagonal form it acquires after an orthonormal transformation
K = B−1DB, with a unitary matrix B and a diagonal matrix D. For
the moment we can just plug this expression in the above formula
(no matter what these matrices actually are) to obtain

zK = zB
−1DB = eiϕB

−1DB = B−1 zD B

and the matrix D can be decomposed over its eigenvalues λk as
D =

∑n
k=1 λk Pk, where Pk := |ek〉 〈ek| is the projection over the

kth eigenspace. Running once around the circle the change in the
variable z is z 7→ e2πi z and so the matrix O(z) changes consequently
as

O(e2πi z) = B−1 e
2πi

n∑
k=1

λkPk

zK B.

We shall see that the spectrum λk of D is basically made of natural
numbers so that eventually one obtains e(N+1)iπ and thus we con-
clude that the only change in the matrix O(z) is up to a minus sign:
O(e2πi z) = (−1)N+1O(z).

As we mentioned, the spectrum of the matrix K(X) is given, in the
symmetric case, by the following:
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Lemma ([Rehren and Tedesco, 2013]): The matrix K(X) has integer
spaced spectrum 1−n

2 , . . . , n−12 in the symmetric case. It is diago-
nalised by the unitary matrix 1√

n
Bwhose entries are Bkj = ω(1/2−k)j,

ω being given by the root of the unity as above. This implies BK =

DB, where D is the diagonal matrix with entries Dkk = n+1
2 − k.

Proof. By direct computation of the left hand side

n∑
j6=l

BkjKjl = −

n+l−1∑
j=l+1

ω(1/2−k)jω
j+l
2

ωj −ωl

= −ω(1/2−k)l
n−1∑
j=1

ω(1/2−k)jω
j+2l
2

(ωj − 1)ωl

where we made use of the invariance of the sum under the shift j →
j+n. Now we symmetrise again the sum under j↔ n− j to have

n∑
j6=l

BkjKjl = −Bkl

n−1∑
j=1

ω(1−k)j

ωj − 1

= −Bkl ·
1

2

n−1∑
j=1

(ω(1−k)j

ωj − 1
+
ω(1−k)(n−j)

ωn−j − 1

)
Notice now that whenever z ∈ S1 is a phase, contributions of the form

zm − z−m

z− z−1
= zm−1 + . . .+ z1−m

can be simplified cancelling the denominators. This applies as well
to ω and the right hand side becomes then

−Bkl ·
1

2

n−1∑
j=1

ω(1−k)j −ωkj

ωj − 1
= Bkl ·

1

2

n−1∑
j=1

k−1∑
ν=1−k

ωjν.

Since ωn = 1 we derive that
∑n
j=0ω

jν = nδν,0 and thus

n∑
j6=l

BkjKjl = Bkl

k−1∑
ν=1−k

(nδν,0 − 1) = Bkl ·
1

2
(n− 2k+ 1) = Dkk ·Bkl

completing the proof.

4.6 diffeomorphisms covariance

We shall now turn to a very important feature of conformal nets on
the circle which follows from the way fields are assumed to trans-
form under diffeomorphisms. We shall follow the guide lines pro-
vided by [Longo and Xu, 2004]: we assume the net to be diffeomor-
phisms covariant and split, i. e. for each couple of intervals I1, I2
with disjoint closure, there exist an isomoprhism (the “split map”)
χ : A (I1)∨A (I2)→ A (I1)⊗A (I2) such that χ(a1a2) = a1⊗a2, how-
ever you choose a1 ∈ A (I1) ,a2 ∈ A (I2).
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Let now I be an interval on the circle and denote as AN(I) =

A (I)⊗ . . .⊗A (I) many copies of the related algebra. We introduce a
family of diffeomorphisms γj : I → Ij such that, with natural under-
standing of notations, given z ∈ I then γj(z) = zj ∈ Ij. Diffeomor-
phisms covariance implies the existence of a continuous projective
unitary representation of Diff(S1). Once we choose the γj their action
is implemented on the net by means of unitaries U(γj):

φ
j
I := AdU(γ)| A (I) = A

(
γj(I)

)
= A

(
Ij
)

in this respect φjI is an isomoprhism φ
j
I : A (I) → A

(
Ij
)
. Therefore

taking the tensor product N times we obtain a map

N⊗
k=1

φkI = φ1I ⊗ . . .⊗φnI : AN(I)→ A (I1)⊗ . . .⊗A (IN)

acting on the elements as φ1I (a1)⊗ . . .⊗φNI (aN). We can now com-
pose everything with the inverse split map χ−1 at our disposal in
order to bring A (I1)⊗ . . .⊗A (IN) into A (I1 ∪ . . .∪ IN). The assign-
ment we eventually obtain is called the Longo-Xu map

LX : AN(I)→ A(I1 ∪ . . .∪ IN) (4.6.1)

and it is explicitly realised on the elements as

LX(a1 ⊗ . . .⊗ aN) :=

(
χ−1 ◦

N⊗
k=1

φkI

)
(a1 ⊗ . . .⊗ aN)

= φ1I (a1) · . . . ·φNI (aN)

for each a1, . . . ,aN ∈ A (I). As a matter of example, and very useful
for the forthcoming purposes, we shall give the explicit formulae for
the Longo-Xu map in case the diffeomorphisms γj(z) coincide with
the inverse root map.

Example (Square root map): For the sake of simplicity let us restrict to
a symmetric two-interval

√
I = I1 ∪ I2, that is the set of points z ∈ S1

such that z2 ∈ I. The diffeomorphism at hand is the square root map
z2 7→

√
z2 = ±z and we identify the two solutions as the two branches

µ1(z
2) = z, µ2(z2) = −z and thus the two intervals are related to each

other as I2 = rot(π)(I1). Also, in order to avoid troubles with the dis-
continuities, we require such interval not to contain the point where
the cut in the square root is chosen.

In particular, if we take two copies ψ(1),ψ(2) of a Fermi field lo-
calised in I we have, applying (4.6.1)

LX
(
ψ(1)(z2)⊗ 

)
= AdU

(√
( · )

)
(ψ(1)(z2)) · 

LX
(
⊗ψ(2)(z2)

)
=  ·AdU

(
−
√

( · )
)
(ψ(2)(z2)).
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By using the conformal transformation law of the Fermi fields, the
adjoint action reduces to

AdU(γ)ψ(z) =

√
∂γ

∂z
ψ(γ(z))

and thus

LX
(
ψ(1)(z2)⊗ 

)
=

1√
2z
ψ(z)

LX
(
⊗ψ(2)(z2)

)
=

i√
2z
ψ(−z).

Even more useful for the next issues is the form this map acquires on
the complex fermion

LX(φ(z2)) = LX
(
ψ(1)(z2) + iψ(2)(z2)

)
=

1

2
√
z
(ψ(z) +ψ(−z))

(4.6.2)

LX(φ(z2)∗) = LX
(
ψ(1)(z2) − iψ(2)(z2)

)
=

1

2
√
z
(ψ(z) −ψ(−z)) .

(4.6.3)

The Longo-Xu map allows us to simplify the expression of the
Kawahigashi-Longo state that we have introduced before, (4.4.2). In
fact, again in case of a symmetric two-interval

√
I, the state (4.4.2)

appears to be exactly

ϕ√I = (ω0 ⊗ω0) ◦
(
AdU(z 7→ z2)⊗AdU(−z 7→ z2)

)
◦ χ−1√

I

ϕ√I = (ω0 ⊗ω0) ◦ LX−1

This relation is going to be very useful to compare such product state
with the vacuum state defined on the algebra of the multi-interval.

4.7 a multi-local isomorphism

In this section we present a simple isomorphism between the algebra
of one real chiral Fermi field and the algebras of n real chiral Fermi
fields in the context of nets of von Neumann algebras. Unlike the
Longo-Xu map, this isomorphism preservers the vacuum state due to
a suitable change of localisation; we first prove the result for symmet-
ric intervals and then extend it to the general case of non-symmetric
intervals, using insights and results from [Casini and Huerta, 2009].

As a start-up we recall that in general, due to the split property, we
can make use of the split map between any two algebras χ : A (I)∨
A (J) → A (I)⊗A (J) taking ab → a⊗ b. To be more precise, since
we shall be dealing with Fermi fields, the tensor product ⊗t is under-
stood to be “graded”, namely for any two operators A⊗t B is the true
tensor product A⊗ B if either of them is a Bose field, and a twisted
tensor product A⊗ (−1)B if both of them are Fermi fields. This is
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to ensure the correct commutation or anti-commutation relations, re-
spectively. Of course, whenever we are dealing with sums of Bose
and Fermi fields, the correct formulae for the tensor product follow
by linearity.

However, as shown in the previous paraghraph, this is implemented
on the algebras as the Longo-Xu map, especially when the fields at
hand satisfy diffeomorphisms covariance. Roughly speaking, this al-
lows us to move the fields around the circle and in particular we
can bring any number N of “copies” of one algebra AN(I) onto one
“delocalised” copy of the same algebra A (I1 ∪ . . .∪ IN) via LX(a1 ⊗
. . . ⊗ aN) = φ1I (a1) · . . . · φNI (aN). It is nevertheless clear though,
that such a map does not preserve the vacuum state, because prod-
uct states do destroy correlations between fields at different points,
ω0(a(x)b(y)) 6= ω0(a(x)) ·ω0(b(y)).

The new idea is that, nonetheless, a vacuum preserving isomor-
phism does exist, it just has to be prepared ad hoc, and, interest-
ingly enough, we shall see eventually that it is strongly connected to
the Longo-Xu isomorphism through a general gauge transformation.
Also, this new isomorphism will be globally defined thanks to its ex-
tension to the entire circle. Anyway, before we start we recall once
more the standard notations to be used.

Let AN(I) denote N copies of an algebra of fields localised in the in-
terval I on the circle (likewise on the real line, we shall switch the two
pictures very often), i. e. A (I)⊗ . . .⊗A (I). Whenever no represen-
tation is explicitly stated we assume the fields to be in their defining
vacuum representation, namely π0(A (I)). However, we will try to be
clear enough throughout. A symmetric interval is essentially an Nth

root N
√

I = I1 ∪ . . .∪ IN and, with clear understanding of symbols, we
refer to zN ∈ I and z1, . . . , zN as the roots in each sub-interval Ik, each
of them satisfying zNk = zN ∈ I. Even clearer is the following nota-
tion: the related points zk can be written as zk = ωkz if ω = e

2πi
N and

z = eiϕ is any fixed point ∈ EN. This will ensure that each of those
roots “squares” to zN ∈ I. In the special case of N = 2 this reduces
to z2 ∈ I and I1 ∪ I2 is the set of points of the form z,−z as the two
solutions to

√
z2.

A non-symmetric interval EN, instead, is simply the union of any
N intervals with disjoint closure, wherein the related points zk ∈ Ik
need not be roots of zN, rather they are defined as roots of a particu-
lar N-folded map taking the interval I onto I1 ∪ . . . ∪ IN, where each
of the zk appears as one of the solutions of this equation. In particu-
lar, this assignment will be achieved by means of the Casini-Huerta
function (4.7.9) whose properties have already been stated.

Fields will be considered both on the real line R and on the circle
S1, the passage from either picture to the other being achieved by
means of the Cayley transform. Conformal fields will consequently
change as (the extra factor i is conventional)

φ(z) =

√
−i
dz

dx
φ(x) =

1− ix√
2
φ(x).
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Fields in the compact picture are just a reparametrisation of fields on
the real line, and the extension to the entire circle depends on the
representation. As already introduced in the previous paraghraph
4.1, Fermi fields on the real line posses two faithful representations:
the vacuum (Neveu- Schwarz) and the Ramond representation, the
former extending periodically on the circle, the latter anti-periodically.
The starting point will be a real chiral Fermi field versus two copies
thereof, also seen as a complex fermion again in the sense of 4.1,
where all the notations, two-point functions and commutation rules
have already been stated. Obviously fields must be smeared with
suitable functions in order to obtain operators on a Hilbert space;
nevertheless most of the computations will be clear in the sense of
distribution, if not stated otherwise.

Moreover, due to the fact that the fields are assumed to be free (and
hence their anti-commutators are multiples of the identity operator)
the standard anti-commutation relations can be recovered out of the
two-point function as

ω(ψ(z)ψ(w)) +ω(ψ(w)ψ(z)) = ω(ω(ψ(z)ψ(w))+

ω(ψ(w)ψ(z))) = ω({ψ(z),ψ(w)}) = {ψ(z),ψ(w)}.

In the case at hand we recover

{ψ(z),ψ(w)} = lim
λ→1

(
1

z− λw
+

1

w− λz

)
=
2π

z
δ(ϕ− θ)

if z = eiϕ and w = eiθ, for ϕ, θ ∈ ]−π,π[.

4.7.1 The symmetric case

We start with the symmetric case for N = 2, namely z2 ∈ I and
z,−z ∈ I1, I2 respectively. A complex Fermi field φ(z2),φ∗(z2) is
localised in I and a real Fermi field ψ(z) in

√
I = I1 ∪ I2.

Proposition ([Rehren and Tedesco, 2013]): Let φ and ψ stand for the
complex and real fermion in their vacuum representation, as stated
above. The linear map

β : A2(I)→ A
(√
I
)

(4.7.1)

given by

φ(z2) 7→ 1

2
(ψ(z) +ψ(−z)) (4.7.2)

φ∗(z2) 7→ 1

2z
(ψ(z) −ψ(−z)) (4.7.3)

for z ∈ S1, induces an isomorphism of CAR algebras preserving the
vacuum state on the different algebras: ω(1)

0 ◦ β = ω
(2)
0 . Note that

the map is well defined because the right hand sides are invariant
under z 7→ −z.
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Proof. We start showing the inverse of such a map: clearly, summing
up the two sides of the equations we obtain

2ψ(z) = 2β(φ(z2)) + 2zβ(φ∗(z2))

2ψ(−z) = 2β(φ(z2)) − 2zβ(φ∗(z2))

therefore the inverse relation reads

β−1 (ψ(±z)) = φ(z2)± zφ∗(z2).

The adjoint relation is immediate:

β(φ(z2))∗ = z2 β(φ∗(z2)),

hence β preserves the adjoints too. In terms of the two copies φ(x) =
(ψ1(x) + iψ2(x)) /

√
2 the map β can be written as

ψ1(z
2) 7→ 1

2
√
2
ψ(z)

(
1+

1

z

)
+

1

2
√
2
ψ(−z)

(
1−

1

z

)
ψ2(z

2) 7→ 1

2
√
2
ψ(z)

(
1−

1

z

)
+

1

2
√
2
ψ(−z)

(
1+

1

z

)

with inverse given by

β−1 (ψ(±z)) = ψ1(z
2)(1± z) + iψ2(z2)(1∓ z).

Now we turn to the vacuum preserving features. The simplest proof
proceeds by brute force plugging the right hand side of (4.7.1) into
the two-point function and evaluating the result:

ω0 ◦β
(
φ∗(z2)φ(w2)

)
= ω0

(
β(φ∗(z2))β(φ(w2))

)
= ω0

(
1

2z
(ψ(z) −ψ(−z)) · 1

2
(ψ(w) +ψ(−w))

)
this brings four contributions:

1

4z
(ω0(ψ(z)ψ(w)) −ω0(ψ(−z)ψ(w))

+ ω0(ψ(z)ψ(−w)) −ω0(ψ(−z)ψ(−w)))

which can be summed up using the formula for the vacuum two-
point function for the real chiral Fermi field

ω0 ◦β
(
φ∗(z2)φ(w2)

)
=
1

4z

(
1

z−w
−

1

−z−w
+

1

z+w
−

1

−z+w

)
=
1

4z
2

(
1

z−w
+

1

z+w

)
=
1

2z
· 2z

z2 −w2
=

1

z2 −w2

= ω0
(
φ∗(z2)φ(w2)

)
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as to be proven. By exploiting Wick theorem, this equality extends to
all n-points functions, since these are just sums of products of two-
point functions, see equation (1.2.2). As already pointed out, the stan-
dard anti-commutation relations follow from this correlation function,
therefore they remain preserved as well.

Another proof proceeds by simply looking at Fourier modes. In the
vacuum representation, where we assume the fields are evaluated, we
have

φ(z2) =
∑

r∈Z+1/2

φr (z
2)

−r−1/2
, ψ(z) =

∑
r∈Z+1/2

ψr z
−r−1/2.

A simple look at the right hand sides of (4.7.1) displays that, for ex-
ample,

β
(
φ(z2)

)
=

∑
r∈Z+1/2

β(φr) (z
2)

−r−1/2
=
1

2
(ψ(z) +ψ(−z))

=
1

2

∑
r∈Z+1/2

φr z
−r−1/2

(
1+ (−1)−r−1/2

)

=
∑
p∈Z

ψ2p−1/2(z
2)

−p
=

∑
r∈Z+1/2

ψ2r+1/2(z
2)

−r−1/2

therefore the isomorphism appears as a relabelling of the Fourier
modes φr 7→ ψ2r+1/2. Similarly for the adjoint field we have φ∗r 7→
ψ2r−1/2; the variable r runs into Z + 1/2 for the vacuum representa-
tion. In terms of these Fourier modes the anti-commutation relations
read

{φr,φ∗s} = {ψr,ψs} = δr+s,0

and a simple look shows that

{β(φr),β(φ∗s)} = {ψ2r+1/2,ψ2s−1/2} = δ2r+1/2+2s−1/2,0 = δr+s,0;

the vacuum state is the only state which is annihilated by all ψr, r > 0
and by all φr,φ∗r, r > 0, respectively. Of course the relabelling does
not change these conditions and ergo the vacuum is still sent into
itself. The adjoint relations in terms of modes are φ∗r = (φ−r)

∗ and
we can easily see that, by making use of β(φ(z2))∗ = z2 β(φ∗(z2))

multiplication by z2 becomes a shift by −1 in terms of modes, and
this is exactly 2r + 1/2 − 1 = 2r − 1/2, indeed what happens to φ∗r
under the action of β.

We have thus shown that β is an isomorphism that preserves the
vacuum state, both in the “local” setting (by looking at the two-point
function) and from the algebraic perspective of anti-commutators.
This is due to change of localisation from the point z2 to the points
z,−z with suitable coefficients that must adjust the form of two-point
function eventually. We shall see later on that such coefficients will
acquire a more general form described by the Casini-Huerta func-
tion (4.7.9) in the context of modular theory and this will come as a
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very special feature; with any other function Ik → I the statement
is no more true. The reduction to special symmetric case brings
back the form we have just analysed. However, it is interesting to
show what the map β becomes on the real line, instead. Since R =

C−1(S1 \ {−1 }) then

βR = C−1 ◦βS1 ◦C.

The square root assignment z2 7→
√
z2 = ±z becomes, after Cayley

transform, C−1(z2) = q(x) = 2x/(1− x2), whose two “square roots”
are the points x = C−1(z) and −1/x = C−1(−z). We have that, on the
real line, βR is

φ(q(x)) 7→ 1

q(x)
· 1

1− ix

(
xψ(x) + iψ(−1/x)

)
φ∗(q(x)) 7→ 1

q(x)
· 1

1+ ix

(
xψ(x) − iψ(−1/x)

)
and the inverse relation is simply

β−1(ψ(x)) =
1− ix

1− x2
φ(q(x)) +

1+ ix

1− x2
φ∗(q(x)).

One might still ask to show why the vacuum correlation function
is preserved on the real line too; this can be easily proven by brute
force, though we prefer to show a more elegant solution as follows:
the vacuum states on the real line and on the circle are related via
ωR
0 = ωS1

0 ◦C:

ωR
0 ◦βR = ωS1

0 ◦C ◦βR

= ωS1
0 ◦C ◦C−1 ◦βS1 ◦C

= ωS1
0 ◦βS1 ◦C

= ωS1
0 ◦C = ωR

0

as to be proven.

With a little care the result we have just presented can be straight-
forwardly generalised to the case of symmetric N-intervals. Before
we do so, we notice that a closer look to β brings the following in-
spection to the coefficients appearing on the right hand sides:

φ(z2) 7→ z0

2

(
ψ(ω0z) +ψ(ω1z)

)
φ∗(z2) 7→ z−1

2

(
ψ(ω0z) −ψ(ω1z)

)
where we have introduced the roots of the unity ω0,1 = ±1 as in the
fashion previously described. Even more compact is the form:

φ(k)(z2) 7→ z1−k

N

N−1∑
j=0

ω(1−k)jψ(ωjz) k = 1, 2.

Let us now take any symmetric N-interval with arbitrary N, exploit-
ing the form of N

√
zN with N solutions z1, . . . , zN such that zk =
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ωkz ∈ Ik. Similarly we choose N real Fermi fields lying in A (I)
which we can pairwise combine into N/2 complex Fermi fields: in
formulae we assign ψ(1)(zN), . . . ,ψ(N)(zN) such that φ(k)∗(zN) =

φ(N+1−k)(zN). Then we just have to propose the same ansatz for a
symmetric N-interval β : AN(I)→ A

(
N
√

I
)

φ(k)(z2) 7→ z1−k

N

N−1∑
j=0

ω(1−k)jψ(ωjz) k = 1, . . . ,N. (4.7.4)

In terms of the initial fields and in terms of Fourier modes this be-
comes

ψ(k)(zN) 7→
∑

r∈Z+1/2

ψ1/2−k+(r+1/2)N (zN)
−r−1/2

which corresponds in turn to a relabelling of generators ψ(k)
r 7→

ψ1/2−k+(r+1/2)N. That this is still a vacuum preserving isomorphism
can be again verified by noting that the renumbering of generators
does not affect the vacuum, or by direct computation of the two-point
functions, along the same lines as before.

4.7.2 The Ramond sector

The real free Fermi field possesses another faithful representation of
positive energy, the Ramond sector, as we have seen in 4.1, induced
by the GNS construction from the two-point function (4.1.1). Fields
evaluated in the Ramond sector will be expressed as πR(ψ(z)). Obvi-
ously, as previously stated, their representation on the circle in terms
of Fourier modes has a cut at z = −1 and extends anti-periodically
on the whole S1:

πR(ψ(z)) =
∑
n∈Z

ψR,n z
−n−1/2.

In principle one could just introduce a new field obtained by multi-
plying the actual Ramond field by

√
z, in order to “cancel” the cut:

πR(ψ(z)) 7→
√
z · πR(ψ(z)) and so

πR(ψ(z)) =
∑
n∈Z

ψR,n z
−n

with two-point function

ωR(πR(ψ(z))πR(ψ(w))) =
1

2
· z+w
z−w

.

Indeed, if we do so, the transformation law for the new defined con-
formal field under diffeomorphisms z 7→ γ(z) changes by an extra
factor of

√
z/γ(z). Commutation relations between modes have the

form {ψR,n,ψR,m} = δn+m,0. In particular, the zero mode squares to
one: 2ψ2R,0

= .
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Proposition: A similar isomorphism like in (4.7.1) can be introduced
as

βR : π0(A (I))⊗t πR(A (I))→ πR

(
A
(√
I
))

(4.7.5)

taking the tensor product of fields in the vacuum and in the Ramond
sector and defining

πR(ψ(z
2))⊗t 0 7→

1

2

(
πR(ψ(z)) + πR(ψ(−z))

)
(4.7.6)

R ⊗t π0(ψ(z2)) 7→
1

2z

(
πR(ψ(z)) − πR(ψ(−z))

)
. (4.7.7)

This isomorphism still preserves the vacuum state in the form ωR ◦
βR = ωR ⊗ω0.

Proof. We look again at the Fourier modes and the right hand sides
present a relabelling ψR,n 7→ ψR,2n and ψR,n 7→ ψR,2n+1, respec-
tively; this ensures that the correct commutation relations and two-
point function directly follow.

4.7.3 The non-symmetric case

We turn now the attention to the vacuum representation in the non-
symmetric case and try to follow the same arguments as before, in
order to figure out whether an analogous map, playing the role of β,
can be derived for non-symmetric intervals. As we said, we take EN
to be any union of N disjoint intervals on the real line (likewise on
the circle via Cayley map); thus we are looking for

β ′ : AN(I)→ A (EN) (4.7.8)

that still preserves the vacuum state ω(N)
0 ◦β = ω0 ⊗ · · · ⊗ω0.

For N = 2 every non-symmetric two-interval can be obtained by
applying a Möbius transformation µ on a symmetric one. Therefore
the generic β ′2 is nothing but µ ◦ β2 and the vacuum preservation is
ensured by the fact that any Möbius transformation preserves itself
the vacuum state. This result in no more true for N 6= 2 and in the
general case we need arguments coming from modular theory to help
our constructions.

In order to introduce such a map we briefly recall a general result:
let the intervals be given by Ik = ]ak,bk[ ⊂ R and define the function
X(x), x ∈ R by

X(x) = −

N∏
k=1

x− ak
x− bk

. (4.7.9)

This function maps each interval monotonously onto R+, so that ev-
ery X ∈ R+ happens to have exactly n pre-images (which we refer
to as X−1

1 (X), . . . ,X−1
n (X)), one in each interval, X−1

j (X) ∈ Ij. We bor-
row the formulae appearing in [Casini and Huerta, 2009] for reasons
that will become clear later. In particular, we look at the form of the
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modular automorphisms group for Fermi fields localised in disjoint
intervals, equation (4.5.4)√

X−1
k (X)

′
σt
(
ψ(X−1

k )
)
=

N∑
j=1

O(X, t)kj
√
X−1
k (δt(X))

′
ψ
(
(X−1
j (δtX))

)
.

Here fields are evaluated on the real line as functions of the variable
X ∈ R+. We thus have a collection of N fields: ψ1(X), . . . ,ψN(X). The
map β ′ is explicitly given by

β ′(ψi(X)) =

N∑
r=1

O(X)ir

√
X−1
r (X)

′
ψ(X−1

r (X)) (4.7.10)

where the mixing matrix O(X) is the solution of (4.5.5) given in terms
of the anti-path ordered exponential

O(X) = P exp

(
−
1

2π

∫X
X0

dX ′ K(X ′)

)
(4.7.11)

the matrix K(X) being

K(X)kj =


2π

√
X−1
k (X)

′
X−1
j (X)

′

X−1
k (X) −X−1

j (X)
if k 6= j

0 otherwise

.

The idea is that all the information is encoded into the special form of
the function (4.7.9) and the dependence of O(X) on K(X) as in (4.7.11).
In order to prove that the above β ′ preserves the vacuum state we
show the equality of the two-point functions proving that they sat-
isfy the same differential equation with common initial conditions.
Equality of the two-point function means

(ω0 ◦β ′)(ψi(X)ψj(Y)) = ω
(2)
0 (ψi(X)ψj(Y)) =

−i

X− Y
δij

Expanding the left hand side we are led to

(ω0 ◦β ′)(ψi(X)ψj(Y)) =ω0

(
N∑
r=1

O(X)ir

√
X−1
r (X)

′
ψ(X−1

r (X))

N∑
s=1

O(Y)js

√
Y−1s (Y)

′
ψ(Y−1s (Y))

)

=

N∑
r,s=1

O(X)irO(Y)js

√
X−1
r (X)

′
√
Y−1s (Y)

′

ω0(ψ(X
−1
r (X))ψ(Y−1s (Y)))

!
=ω

(2)
0 (ψi(X)ψj(Y)) =

−i

X− Y
δij .
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Multiplying both sides by X−Y and taking the derivative with respect
to X gives

N∑
r,s=1

O(X)irO(Y)js

√
Y−1s (Y)

′

∑
p6=r

(X− Y)K(X)rp

√
X−1
r (X)

′
ω0(p, s)

+
∂

∂X

(
(X− Y)

√
X−1
r (X)

′
ω0(r, s)

))
= 0

as a consequence, for each r, s it must be proven that 1

∑
p6=r

(X− Y)K(X)rp

√
X−1
r (X)

′
ω0(p, s)

+
∂

∂X

(
(X− Y)

√
X−1
r (X)

′
ω0(r, s)

)
= 0.

The explicit form of K(X) and the derivatives help us to obtain the
easier to handle equation

1

2

(X−1
r ) ′′

(X−1
r ) ′

−
∑
p6=r

(X−1
p ) ′

X−1
r −X−1

p

=

n∑
p=1

(X−1
p ) ′

X−1
p − Y−1s

−
1

X− Y
(4.7.12)

It is now fundamental that the dependence X−1
p ≡ X−1

p (X) is given
by the function (4.7.9); this is because the inverse roots X−1

p appear as
roots of the polynomial PX(x) = X

∏N
k=1(x−bk)+

∏N
k=1(x−ak) = 0.

After the decomposition in terms of its solutions we obtain the useful
identity

(X+ 1)

N∏
k=1

(x−X−1
k (X)) = PX(x) = X

N∏
k=1

(x− bk) +

N∏
k=1

(x− ak)

which in turn becomes, after factorising out
∏N
k=1(x − bk) on the

RHS and evaluating it in x = Y

N∏
k=1

(Y−1 −X−1
k (X)) =

N∏
k=1

(Y−1 − bk)

(
X− Y

X+ 1

)
(4.7.13)

where Y−1 is any of the inverse roots of P(Y). This equation is the
starting point to obtain both sides of (4.7.12) as follows: taking the
derivative with respect to X of the logarithm of (4.7.13) gives back

N∑
k=1

(X−1
k ) ′

X−1
k − Y−1

=
1

X− Y
−

1

X+ 1

therefore the right hand side of (4.7.12) turns out to be nothing but
−1/(X+ 1). Obtaining the right hand side is slightly trickier and we
proceed as follows: we start again from (4.7.13) taking the logarithm

1 In the following line ω0(p, s) stands for ω0(ψ(X−1p (X))ψ(Y−1s (Y))).
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and derivative with respect to X and then we multiply both sides by
(X− Y)(X−1

j − Y−1). This gives

(X− Y)(X−1
r ) ′ +

∑
p6=r

(X−1
p ) ′(X−1

r − Y−1)(X− Y)

X−1
p − Y−1

=

X−1
r − Y−1 −

(X−1
r − Y−1)(X− Y)

X+ 1

from which we take again the derivative with respect to the vari-
able X twice and eventually evaluate it in the point Y−1 = X−1

r

(and therefore Y = X). In the summation term we make use of
(ND−1) ′′ = N ′′D−1 whenever both N and N ′ vanish in the limit
(which is the case at hand). Carrying the algebra out gives

2(X−1
r ) ′′ − 2

∑
p6=j

(X−1
p ) ′(X−1

r ) ′

X−1
r −X−1

p

= (X−1
r ) ′′ −

(X−1
r ) ′

X+ 1

namely nothing but (4.7.12). Now we are left with the common initial
conditions to be proven (we choose X = Y): once again, equality of
the two-point function ω0 ◦β ′ = ω

(2)
0 reads

N∑
r,s=1

O(X)irO(Y)js

√
X−1
r (X)

′
√
Y−1s (Y)

′ −i

X−1
r − Y−1s

=
−i

X− Y
δij.

Multiplying both sides by X− Y and splitting the sum into r = s and
r 6= s leads us to

lim
X→Y

N∑
r=1

∑
r6=s

O(X)irO(Y)js

√
X−1
r (X)

′
√
Y−1s (Y)

′ X− Y

X−1
r − Y−1s

+

O(X)irO(Y)jr

√
X−1
r (X)

′
√
Y−1r (Y)

′ X− Y

X−1
r − Y−1r

)
= δij.

The first term vanishes in the limit, whereas the divergence in the
second term gives back 1/(Y−1r ) ′ which cancels the square roots. Or-
thogonality of the matrix O(Y) ensures then the result.

The symmetric case on the circle can be recovered as a special case
of the general one. In fact the evaluation of X(z) turns out to be the
composition of the inverse Cayley transform with a Möbius transfor-
mation onto R+. Using trigonometric identities like

∏N
k=1(z−ωk) =

zN −ωN we find

X(z) = −
(−1)N − vN

(−1)N − uN
· z
N − uN

zN − vN

which is indeed a Möbius transform of zN−1
i(zN+1)

= C−1(zN). Therefore

X(x) = (C−1 ◦ µ ◦ (z 7→ zN) ◦C)(x)

where µ : I→ S1+ is the Möbius transform of the said form. In the gen-
eral non-symmetric case the map z 7→ zN is replaced by any general
N-folded map g

X(x) = (C−1 ◦ µ ◦ g ◦C)(x)
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and µ here is arbitrary. The passage from the circle to the real line,
in the explicit formulae of β ′, is then achieved with the help of suit-
able Möbius transformations, which do not affect the vacuum state.
Consequently the invariance of the vacuum two-point function on the
real line ensures the same statement on the circle, and viceversa.

The existence of an isomorphism AN(I) → A (EN) preserving the
vacuum state implies that the corresponding GNS vacuum represen-
tations are isomorphic as well. This, in turn, produces a homomor-
phism of many copies of the local algebra of a single theory into the
algebra of a single fermion localised in many intervals, represented
on the Fock space.

4.7.4 Multi-local fermionisation and gauge transformations

The multi-local isomorphism β provides a correspondence between
fermions localised essentially at our will. As we have seen, Fermi
theories sort of automatically contain (non)-abelian current algebras,
due to the fact that these can be embedded using the standard quarks
construction from sufficiently many free fermions.

This feature, in its general behaviour, is referred to in the literature
as “fermionisation”, since it allows to express bosons (the currents)
in terms of products of Fermi fields. In particular currents are ex-
pressed as Wick products (equation (2.3.1)) with subtraction of the
vacuum expectation value; since β preserves the vacuum state it ex-
tends to Wick products and therefore embeds the currents giving rise
to a new feature which is the delocalisation of the components of the
current itself. We shall be more precise showing the construction of
such objects on the circle, because most of the formulae drastically
simplify.

Let us start from the vacuum representation and take the case
N = 2; we look in particular at symmetric intervals, for the sake
of simplicity, though the same construction can be easily generalised
with different coefficients eventually. In terms of the complex fermion
the current is expressed as

j(z) := :φ∗φ:(z) = i :ψ1ψ2:(z); (4.7.14)

we are going to embed such formula with the help of (4.7.1). As so,
we have (we evaluate on z2 due to β)

β(j(z2)) = β
(
:φ∗φ:(z2)

)
= β

(
φ∗(z2)φ(z2) −ω0(φ

∗(z2)φ(z2))
)

= β(φ∗(z2))β(φ(z2)) −ω0 ◦β(φ∗(z2)φ(z2))
= :β(φ∗)β(φ):(z2).
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The feature of β to preserve the vacuum state means that it can be
taken into the Wick product due to commutativity β◦ :( · ): = :( · ):◦β.
Consequently we have

β(j(z2)) = :
1

2z
(ψ(z) −ψ(−z))

1

2
(ψ(z) +ψ(−z)):

=
1

4z
:ψ(z)2 −ψ(−z)ψ(z) +ψ(z)ψ(−z) −ψ(−z)2:

Fermions anti-commute and so ψ(z)2 = ψ(−z)2 = 0; moreover we
have −ψ(−z)ψ(z) = ψ(z)ψ(−z). Making use of such relations we
come to the multi-local fermionisation formula on the circle:

β(j(z2)) =
1

2z
:ψ(z)ψ(−z): (4.7.15)

The same expression, evaluated on the real line, looks like:

β(j(q(x)) =
−i

2x
· (1− x

2)2

(1+ x2)
:ψ(x)ψ(−1/x): .

The current embedded with the isomorphism β happens to be delo-
calised in two anti-podal points on the circle, z and −z. This feature
justifies the term “multi-local” fermionisation (also in [Rehren and
Tedesco, 2013]) here and henceforth, because the fermionisation is
shared between pairs of different points. We notice that this new rep-
resentation of the current is periodic on the circle under the change
z → −z; in fact, both numerator (due to the anti-commutators) and
denominator acquire a minus sign, cancelling each other altogether.
Furthermore, since the expectation value of a Wick product is always
zero, we still have ω0 ◦β(j(z2)) = 0. On the other hand the two-point
function is

ω0 ◦β(j(z2)j(w2)) =
1

4zw
ω0(:ψ(z)ψ(−z): :ψ(w)ψ(−w):)

=
1

4zw

(
ω0(ψ(z)ψ(−z)ψ(w)ψ(−w))

−ω0(ψ(z)ψ(−z)ψ(w)ψ(−w))
)

=
1

4zw

(
−ω0(ψ(z)ψ(w)) ·ω0(ψ(−z)ψ(−w))

+ω0(ψ(z)ψ(−w)) ·ω0(ψ(−z)ψ(w))
)

=
1

4zw
· 4zw

(z2 −w2)2
= ω0(j(z

2)j(w2))

that is, the two-point function is preserved too.

The embedded current can be decomposed into Fourier modes on
the circle

β(j(z2)) =
1

2z

N∑
m,k∈Z+1/2

:ψmψk:(−1)
−k−1/2z−m−k−1
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if m+ k = n is odd then (−1)k−n−1/2 = (−1)−k−1/2 and the sum
vanishes because of the anti-commutation relations: each contribu-
tion has its own opposite. Therefore the only allowed powers ofm+k

are even powers of the form m+ k = 2p, which lead us to

β(jn) =

∞∑
m=0

ψn−m−1/2ψn+m+1/2(−1)
n+m+1.

The complex fermion is invariant under gauge transformations gener-
ated by its own embedded currents: if j(z) = :φ∗φ:(z) then Weyl-type
operators are implemented by smearing with suitable test functions
f : S1 → R in order to obtain W(f) = eij(f). Gauge transformations
are then given by

φ ′(z) = αf(φ(z)) =W(f)φ(z)W(f)∗ = e−if(z)φ(z)

φ∗ ′(z) = αf(φ(z)
∗) =W(f)φ(z)∗W(f)∗ = eif(z)φ(z).

It is now very interesting to embed the gauge transformations them-
selves with the help of β, in order to bring new delocalised gauge
symmetries, a brand new feature that we are going to present and
fully exploit. If β embedds the current then it generates embedded
gauge transformations on the free fermion of the form

β(W(f))ψ(z)β(W(f))∗ = (β ◦αf ◦β−1)ψ(z)

= (β ◦αf)(φ(z2) + zφ(z2)∗)
= β(αf(φ(z

2)) + zαf(φ(z
2)∗))

= e−if(z
2) β(φ(z2)) + z eif(z

2) β(φ(z2)∗)

eventually we end up with

β(W(f))ψ(z)β(W(f))∗ = cos f(z2)ψ(z) − i sin f(z2)ψ(−z). (4.7.16)

The new remarkable feature is the bilocal mixing of ψ(z) and ψ(−z),
reflecting the non-locality of the isomorphism β. Of course the same
calculations can be performed in the situation N > 2: in this case
non-abelian currents of the form jrs(z) := :φ∗rφs:(z) can be embedded
and we obtain representations of all these theories in the Fock space
of a single real free fermion. In the many interval case β delocalises
the fields onto 2N points (equations (4.7.4) and, in general, (4.7.10))
and therefore expressions like :φ∗rφs:(z) present sums of fields in pair-
wise coupled points ψ(zj)ψ(zl) with position dependent coefficients.
Gauge transformations change accordingly, having multi-local contri-
butions from different points.

The same argument can be run in the Ramond sector: the fact that
the current j(z) := :φ∗φ:(z) = i :ψ1ψ2:(z) satisfies commutation rela-
tions in purely algebraic and independent of the representation. As a
consequence one can then take the two fields ψ1 and ψ2 in two differ-
ent representations and twist the product. In fact, by taking ψ1 in the
vacuum sector and ψ2 in the Ramond one, the isomorphism (4.7.5)
embeds the resulting current into the Ramond algebra πR

(
A
(√

I
))

.
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The Wick product here is defined as the subtraction with respect to
the corresponding Ramond two-point function; the result is, in the
compact picture:

βR(j(z
2)) =

1

2iz2
· :πR(ψ(z))πR(ψ(−z)):R.

The new current, as expected, is delocalised at two anti-podal points
in the Ramond representation; the Wick product is essentially the
standard operator product, because the Ramond expectation value
vanishes at the case at hand in the points z,−z. Also, the formula
changes sign under z→ −z, i. e. it is anti-periodic in the variable z2,
expressing the fact that the new current is twisted. Of course, the one-
point function is still zero, whereas the two-point function becomes
now:

ωR ◦βR(j(z
2)j(w2)) = −

1

4z2w2
ωR(:πR(ψ(z))πR(ψ(−z)):

:πR(ψ(w))πR(ψ(−w)):)

=
1

2zw
· z2 +w2

(z2 −w2)2

after making use of the usual Wick contractions within the expecta-
tion value. This formula has been previously mentioned by [Anguelova,
2011] as the “twisted” representation of the current, in the context
of vertex operator algebras (we refer the reader to the references
therein).

4.7.5 Multi-local diffeomorphisms

In the previous paraghraph we showed the construction of the multi-
local current and the resulting multi-local fermionisation and gauge
transformations. It is natural to extend the investigation to the stress-
energy tensor of such a theory and look for the corresponding multi-
local diffeomorphisms that are generated. Again, the special caseN =

2 for symmetric intervals is a guideline, because formulae simplify
and this allows to better understand the features and the behaviours
without getting lost in the nasty coefficient for the general case. Fun-
damental is again the characteristic of β to preserve the vacuum state
in order to be extended to Wick products: β ◦ :( · ): = :( · ): ◦β.

We start in the vacuum representation, as usual. The real free
fermion contains the stress-energy tensor of central charge c = 1/2

T1/2(z) :=
−1

4π
:ψ∂zψ:(z)

whereas the complex fermion is, roughly speaking, two copies thereof,
with c = 1

Tc=1(z) :=
−1

4π
:ψ1∂zψ1:(z) +

−1

4π
:ψ2∂zψ2:(z) =

−1

4π
:φ∗
↔
∂zφ:(z).

In terms of the currents, the stress-energy tensor can be expressed as

T(z) =
1

4π
:j2:(z),
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that is nothing but the abelian version of (2.3.4).
The action of β brings to the embedded stress-energy tensor which

we compute to be

β
(
T1(z2)

)
=

−1

4π
β
(
:φ∗
↔
∂zφ:(z)

)
=

−1

4π
:β(φ(z2)∗)∂z2β(φ(z

2)) − ∂z2(β(φ(z
2)∗))β(φ(z2)):

=
−1

4π

1

2z3
:(ψ(z) −ψ(−z))(ψ(z) −ψ(−z)):

←−−−−−−−−−− ∼β(j(z2))−−−−−−−−−−→

+
−1

4π
· 1
4
· 1
2z2

:
(
(ψ(z) −ψ(−z))∂z(ψ(z) +ψ(−z))−

(∂z(ψ(z) −ψ(−z)))(ψ(z) +ψ(−z))
)
:

= −
1

8πz2
β(j(z2)) +

1

4z2

(
T1/2(z) + T1/2(−z)

)
,

expressed as embedding of two real fermions of central charge c =

1/2. The remarkable feature is the presence of two delocalised stress-
energy tensors in z,−z plus an additional contribution proportional
to the embedded current. We shall see later that this further term can
be cancelled out by composition with a particular automorphism of
the current algebra, though.

The real and complex fermions are invariant under diffeomorphisms
generated by its own stress-energy tensor. If f : S1 → S1 is a general
diffeomorphism, then the unitary operators V(γt) = eitT(f) imple-
ment its action as

ψ ′(γ(z)) = δγ(ψ(z)) = V(γ)ψ(z)V(γ)
∗ =

√
γ ′(z)ψ(γ(z))

where if(z)/z ∈ R integrates to diffeomorphisms given by the one-
parameter group ∂tγt(z) = −(f ◦ γt)(z). Also, γ(z) is meant as
γt|t=1(z). Simpler to write down is its infinitesimal action δ0f ex-
pressed by the commutator

δ0f(ψ(z)) = i [T(f),ψ(z)] =
(
− f(z)∂z −

1

2
f ′(z)

)
ψ(z).

We can now make use of the equation for the embedded stress-energy
tensor

β
(
T1(z2)

)
= −

1

8πz2
β(j(z2)) +

1

4z2

(
T1/2(z) + T1/2(−z)

)
(4.7.17)

in order to derive and calculate the corresponding multi-local dif-
feomorphisms. Similarly to the case of currents we have the action
i
[
β
(
T1(f)

)
,ψ(z)

]
= (β ◦ δ0f ◦ β−1)ψ(z). The contribution due to the

two anti-podal parts T1/2(z) and T1/2(−z) gives rise to a term pro-
portional to δ0f(ψ(z

2)), while the contribution proportional to the em-
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bedded current gives back two anti-podal terms in ψ(z),ψ(−z); in
details we obtain

i
[
β
(
T1(f)

)
,ψ(z)

]
= (β ◦ δ0f ◦β−1)ψ(z)

=
(
−
1

2z
f(z2)∂z −

1

2
f ′(z2)

)
ψ(z)

+
1

4z2
f(z2)

(
ψ(z) −ψ(−z)

)
.

Again, we have a mixing of ψ(z) and ψ(−z) (due to the current), on
top of a geometric action due to the stress-energy tensor itself. Of
course, in equation (4.7.17) everything is expressed in terms of the
two real copies ψ1,ψ2 of the free fermion; nevertheless one can work
it back in terms of the complex fermion φ(z),φ(z)∗: in this case, when
acting with the inverse action β−1, terms proportional to :φ∗∂zφ:(z)

will appear and therefore we will have eventually mixed pairings
φ,φ∗ expressing some sort of multi-local “charged” conjugation.

As previously mentioned (see chapter 2.3), the current algebra pos-
sesses automorphisms of the form

ρq(j(z)) = j(z) +
q

z
, q ∈ R

which give rise to charged states ωq := ω0 ◦ ρq. On the actual Weyl
operators those automorphisms are realised as

γq(W(f)) = eiρ
q(j(z))(f) = eiq

∫
S1 dz f(z)2πiz W(f),

giving rise to different inequivalent representations whenever one
chooses γq1 ,γq2 with q1 6= q2. Moreover, these automorphisms hap-
pen to be even innerly implemented by unitaries if a real function ϕ
exists such that q/z = −iϕ ′(z)

γq( · ) = Ad(W(−φ))( · )

and γq(A (I)) = A (I). In fact the above equation can be taken as
definition for each representation γq(W(f)) ([Carpi, 2004]). However,
since the stress-energy tensor is contained as embedded into the the-
ory of currents, it turns out that composition of β with such a ρq

exactly “undoes” the additional contribution due to the current in
(4.7.17) if we shift back j(z) 7→ j(z) +q/z for q = 1/4. The price to pay
is the appearance of a constant shift ∼ z−4:

β ◦ ρ1/4
(
T1(z2)

)
=

1

4z2

(
T1/2(z) + T1/2(−z)

)
+

1

64πz4
.

Although we have not introduced the issue yet, we want to emphasise
that the constant term popping up is nothing but the Schwarz deriva-
tive of the square root automatically generated because the stress-
energy tensor is a quasi-primary field. In fact the above formula
will coincide with the Longo-Xu map applied to a doubled theory of
stress-energy tensors, as we shall see later on in paraghraph 5.5.
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Anyway, it is always very useful to rephrase the picture in terms
of Fourier modes: as known, T1(z) = 1/2π

∑
n∈Z L

1
nz

−n−2; then the
embedding looks like, in terms of Virasoro generators:

β(L1n) = −
1

4
β(jn) +

1

2
L
1/2
2n

for the general case, and

β ◦ ρ1/4(L1n) = −
1

4
β(jn) +

1

2
L
1/2
2n +(1
4
β(jn) +

1

32
δn,0

)
=
1

2
L
1/2
2n +

1

32
δn,0

for the subtracted q = 1/4 current. Here the subtraction of the current
modes due to the composition with a charged automorphism is even
more evident. In contrast, the first (general) formula involves also
the modes of the current, still, which may in turn be expressed in
terms of the real Fermi fields. This emphasises that the embedded
diffeomorphisms come along with embedded gauge transformations,
i. e. a mixing of ψ(z) and ψ(−z), as described before.

In the Ramond sector the stress-energy tensor presents an addi-
tional term by definition, as shown in equation (2.3.7). Consequently,
the action of βR produces different subtractions that cancel the gauge
term β(j(z2)) which we had to deal with in the vacuum sector. As
such, the formula in the Ramond representation becomes easier even
without composition with a charged automorphism of the currents:

βR
(
T1(z2)

)
=

1

4z2

(
πR
(
T1/2(z)

)
+ πR

(
T1/2(−z)

))
+

1

64πz4
.

Finally, a last remark to conclude this section: the expression of
the multi-local transformations in terms of Virasoro generator is very
useful to understand a brand new picture, which will be pretty con-
venient when we shall turn to modular theory. The subgroup L0,L±1
of the Virasoro algebra generates the Möbius group, which in turn
contains rotations, dilations and translations. Its multi-local version,
given by β(L0),β(L±1) produces the corresponding multi-local rota-
tions, dilations and translations. The passage between a single theory
in one interval to a delocalised theory in many intervals can then by
achieved making use of the same formulae, just taking care of replac-
ing Ln 7→ β(Ln). The multi-local behaviour will then be taken into
account by the presence of β, automatically, producing mixing among
different components all the time.

4.8 multi-local modular theory for fermi fields

The most remarkable feature of β is that it preservers the vacuum
state, and therefore its action extends to Wick products and so forth,
giving rise to multi-local transformations among different intervals.
So far we have not introduced any correspondence with modular
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theory yet, but as we are going to see, very important applications
can be derived implementing the Bisognano-Wichmann property un-
der the action of β. In fact, the modular theory for one-dimensional
fermions is well known and has been widely investigated, producing
the famous result that the action of the modular group with respect
to the vacuum state on the algebra localised in one interval is geo-
metric within the interval and can be expressed in terms of dilations
preserving the interval. The interesting idea is that, since β moves
the theory from one interval to many, preserving the vacuum state,
we can expect a rationale to describe the modular theory for Fermi
fields localised in many disjoint intervals on the circle (respectively
on the real line). In order to characterise the topic in detail we are go-
ing to introduce a very strong result, which is going to play a pretty
fundamental role: whenever two states of two algebras A1,A2 are
intertwined by an isomorphism, such isomorphism also intertwines
the modular groups of the two algebras.

Theorem 4.8.1: If β : AN(I) → A (EN) is a vacuum preserving isomor-
phism, then it intertwines the respective modular groups: σtN =

β ◦ σt1 ◦β−1.

Proof. The proof proceeds by verifying the KMS property for σtN with
respect to the composed state ω0 ◦β. Therefore, let

FNa,b(t) := F
ω0◦β
a,b (t) =

(
Ω,β−1(a)β−1(σtN(b))Ω

)
be the KMS functional we have to look at, for a,b ∈ A (EN). We have
to prove that FNa,b(t) admits analytic continuation in t 7→ t− i and in
addition FNa,b(t− i) =

(
Ω,β−1(σtN(b))β

−1(a)Ω
)
.

FNa,b(t) =
(
Ω,β−1(a)β−1(σtN(b))Ω

)
=
(
Ω,β−1(a)β−1 ◦β ◦ σt1 ◦β−1(b)Ω

)
=
(
Ω,β−1(a)σt1(β

−1(b))Ω
)

the analytic continuation in t− i is ensured by the analytic properties
of σt1, which we know by hypothesis to be a true modular group.
Therefore

FNa,b(t− i) =
(
Ω,β−1(a)σt−i1 (β−1(b))Ω

)
=
(
Ω,σt1(β

−1(b))β−1(a)Ω
)

=
(
Ω,β−1 ◦ σtN ◦β(β−1(b))β−1(a)Ω

)
=
(
Ω,β−1(σtN(b))β

−1(a)Ω
)

as to be proven.

Let us apply this result right away to the modular theory of fermions
localised in disjoint intervals. We assume to have a generic N-interval
on the real line, say EN, and one Fermi field in any of those points,
which we refer to as ψ(X−1

k ). If such points X−1
k are the inverse roots
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of the Casini-Huerta special function (4.7.9) then the action of the
modular group of the delocalised fermion is simply

σtN(ψ(X
−1
k )) = (β ◦ σt1 ◦β−1)(ψ(X−1

k )). (4.8.1)

The explicit expression for β is given by (4.7.10)

β(ψi(X)) =

n∑
r=1

O(X)ir

√
X−1
r (X)

′
ψ(X−1

r (X)).

Since O(X) is an orthogonal matrix, its inverse is simply given by its
transpose O(X)T and thus√

X−1
k (X)

′
σt
(
ψ(X−1

k (X))
)
=

N∑
j=1

O(X, t)kj
√
X−1
k (δt(X))

′
ψ
(
(X−1
j (δtX))

)
reproducing exactly the well-known result found by Casini and Huerta.
Of course, this gives an explanation for the fact that the geometric
part of the modular flow is the same as in the one interval case

ζt(X
−1
k (X)) = δt(X

−1
k (X)) = X−1

k (δt(X)) (4.8.2)

with δt being the one parameter subgroup of Möbius transformations
preserving the interval. This is because the modular action is taken
into account by σt1 anyway, and β just introduces a mixing among
different intervals, with the only role to mix the coefficients appearing
in the formulae; therefore the geometric action is similar to the initial
one (up to an action of X−1

K , as showed in (4.8.2)), on top of a mixing
traced back to the existence of a multi-local isomorphism.

Example: In the special case of symmetric intervals on the circle, the
geometric action of the modular flow acquires the form N

√
δt(zN) =

δ
(N)
t (z), which in turn coincides with the N-dilations as elements of

PSU(1, 1)(n), as introduced in 2.2.1 (see also [Longo et al., 2009]).

Property: Just by manifestly looking at (4.5.4) one can factor out suit-
able linear combinations of fields which diagonalise the modular mix-
ing, also due to the special form of the matrix O(X) as coboundary.
In particular, by construction, the following combination

Dk(X) :=

N∑
j=1

O(X)kj

√
X−1
j (X) ′ψ(X−1

j (X))

diagonalises the modular mixing in disjoint intervals

σtN(Dk(X)) = e−πtDk(δ−2πt(X)).

Proof. Work the left hand side out making use of O(X, t) = O(X)T ·
O(δtX).

[ September 11, 2014 at 12:46 – classicthesis Put data here ]



4.8 multi-local modular theory for fermi fields 65

Indeed, this is no accident and no surprise. The original ideas
came from the investigation of the formula appearing in the paper
by Casini and Huerta, [Casini and Huerta, 2009]; although in the
beginning it may seem surprising, if, for whatever reason, the mod-
ular group for fields in disjoint intervals is assigned in terms of a
mixing matrix O(X), then a vacuum preserving isomorphism must
exist, whose coefficients are exactly given by the matrix O(X). Conse-
quently, an expression like (4.7.10) must be read off and must pre-
serve the vacuum state, justifying its peculiar form in terms of a
very special uniformisation function (4.7.9). The further investiga-
tions have been proofs a posteriori of a result that must hold true at
the algebraic level, as a feature of the algebras itself, as we are going
to show. In fact, although in the general case the mixing cannot be
computed explicitly but it is only determined as the solution to some
differential equations, we can anyway make use of a remarkable re-
sult by [Takesaki, 2002] to derive this property only using the fact that
β intertwines the modular groups.

Theorem 4.8.2: Letω, ξ be a pair of faithful semi-finite normal weights
on a von Neumann algebra M and let D1/2 be the horizontal strip
bounded by R and R − i/2. Assume the cocycle derivative ut can be
extended to a member of AM(D1/2) such that ∃M > 0 | ‖u−i/2‖ 6
M, where AM(D1/2) means the set of all bounded functions (with
values in the algebra) on D1/2 which are holomorphic in D1/2; then:

ω(m) = ξ
(
u∗−i/2mu−i/2

)
, m ∈M.

Let henceforth M be a factor: by means of the previous theorem we
are now able to prove the following

Corollary 4.8.3: Let ω, ξ be two faithful normal states on M such that
σtω(m) = σtξ(m), ∀m ∈M. Then ω = ξ.

Proof: The cocycle derivative ut ∈ M commutes with the images of
the modular flows, because by hypothesis

σtω(m) = utσ
t
ξ(m)u∗t = σ

t
ξ(m)

and viceversa, therefore [σtω,ξ(m),ut] = 0. By virtue of Tomita-
Takesaki theorem σtω(a) exhausts all the algebra, hence ut ∈ Z(M) =

C, because M is a factor. By the cocycle property ut is a continuous
one parameter group, and being unitary implies ut = eitα ∈ S1. This
allows the assumptions of the previous theorem to hold and conse-
quently we obtain

ω(m) = eα ξ(m), m ∈M

but since the states are normalised we conclude that they have to
coincide because α = 0.

Corollary 4.8.4: Let ω be a state on M and α ∈ Aut(M) such that
σtω = α−1 ◦ σtω ◦α. Then α preserves ω, i. e. ω ◦α = ω.
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Proof: α−1 ◦ σω ◦ α satisfies the KMS condition on ω ◦ α, therefore it
coincides with its modular group, which in turns happens to be σω
by hypothesis. By using the previous corollary we then conclude that
σtω◦α = σtω implies ω ◦α = ω.

Corollary 4.8.5: Let µ : M1 →M2 be an isomorphism of von Neumann
algebras. Let furthermore ω1,ω2 be states on M1 and M2 whose
modular groups are σ1,σ2 respectively. The condition σt2 = µ ◦ σt1 ◦
µ−1 implies ω2 ◦ µ = ω1 and viceversa.

Proof: By KMS condition the modular group for ω2 ◦ µ is

σtω2◦µ = µ−1 ◦ σt2 ◦ µ
= µ−1 ◦ µ ◦ σt1 ◦ µ−1 ◦ µ = σt1.

By 4.8.3 the statement directly follows.

In the context of Fermi conformal field theory β ′ : AN(I)→ A (EN)
plays the role of µ; σt1 and σtN are the modular groups with respect to
the respective vacuum states ω0 on A (EN) and ω(N)

0 on AN(I). By
[Casini and Huerta, 2009] σtN = β ◦ σt1 ◦β−1 and therefore, by 4.8.5,

ω
(N)
0 ◦β = ω0 ⊗ · · · ⊗ω0.

We have provided an independent proof of the result given by Casini
and Huerta, tracing back the modular properties to the existence of
a vacuum preserving isomorphism at the level of the algebras. The
passage from the real line to the circle picture can be easily achieved
by noting once again that, due to the special form of X(z) we have
X(z) = (µ ◦ C−1)(z), C−1 being the inverse Cayley map and z ∈ I.
Since the modular flow on the circle is nothing but

σ
S1+
t = C ◦ σR+

t ◦C
−1.

everything is pushed back to a Möbius transformation µ, which pre-
serve the vacuum state and therefore intertwines the respective mod-
ular group, as already stated. Hence, a similar result holds on the
circle. In the general non-symmetric case, though equations apply
with no exceptions, the actual computations are most of the times
very difficult to be performed.

The same intertwining property holds true for the Tomita conjuga-
tion J; let a ∈ M be a generic element in the von Neumann algebra
and Ω be the corresponding cyclic and separating vector, then, it fol-
lows by modular theory that

Ad J(a)Ω = Ad(∆1/2 S)(a)Ω

= Ad∆1/2(a∗)Ω

= Ad∆it|t=−i/2(a
∗)Ω
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and thus the action of J is reduced to the action of ∆it on a∗. It is
straightforward to conclude that if β preserves the vacuum state then

Ad JN = β ◦Ad J1 ◦β−1

and by the previous computation

Ad Jn(a) = σ
−i/2
N (a∗)

where now a can be taken to belong to any local algebra A (I). It is
evident that, due to the presence of the modular group in many inter-
vals σN, the action of JN is still multi-local, as expected by consistency
arguments.

4.8.1 Modular theory in the Ramond sector

One can as well reproduce the same lines in the Ramond sector, ex-
ploiting σtN = β ◦ σt1 ◦ β−1. The difference in this case is that the
modular theory for Fermi fields in the Ramond representation is
not known, not even in the one-interval case. We therefore lack the
analogue of the Bisognano-Wichmann property and the analogue of
equation (4.8.1) will contain unknowns on both sides; nevertheless
we can point out a few interesting features.

Let us take the form of the vacuum preserving isomorphism as
in equation (4.7.5); this map preserves the vacuum state ωR ◦ βR =

ωR ⊗ω0 and therefore

σt2,R = βR ◦
(
σt1,R ⊗ σt1,0

)
◦β−1

R . (4.8.3)

The idea is to apply the above to the particular combination of fields
R ⊗t π0(ψ(z2)), as appearing in the right hand side of the equations
for the Ramond sector. Comparing with (4.7.5) βR

(
R⊗t π0(ψ(z2))

)
=

λR(z) is some linear combination of fields in the Ramond sector at the
points z,−z. Applying (4.8.3) we obtain

σt2,R
(
λR(z)

)
= βR ◦

(
σt1,R ⊗ σt1,0

)
◦β−1

R

(
λR(z)

)
= βR ◦

(
R ⊗ σt1,0(ψ(z

2))
)

= βR ◦
(
R ⊗

√
δ ′−2πt(z

2)π0(ψ(δ−2πt(z
2)))

)
=
√
δ ′−2πt(z

2) λR

(√
δt(z2)

)
=
√
δ ′−2πt(z

2) λR(δ
(2)
t (z))

thus σt2,R acts on the linear combinations λR of πR(ψ(z)) and πR(ψ(−z))

geometrically, like the 2-dilations, because everything is traced back
to the vacuum modular flow in one interval, where we can use the
Bisognano-Wichmann statement. On the other hand little can be said
on the other combination of fields πR(ψ(z

2)) ⊗t 0, in fact, posing
βR

(
πR(ψ(z

2))⊗t 0
)
= µR(z) we have

σt2,R
(
µR(z)

)
= βR ◦

(
σt1,R ⊗ σt1,0

)
◦β−1

R

(
µR(z)

)
= βR ◦

(
σt1,R(πR(ψ(z

2)))⊗ 0

)
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and, as we see, we are taken back to the investigation of the Ramond
modular flow in one interval σt1,R(πR(ψ(z

2))), which is still unknown.
Yet, the question is whether this modular flow can be geometric inside
each interval at all, as in the vacuum case. We are going to show that
it cannot, due to an invariance argument.

Whatever the modular group is, it must preserve the state where it
comes from, thus we must pose

ωR ◦ σt1,R = ωR.

We work in the real line picture and assume, as hypothesis, that the
modular flow is linear in the fields and geometric within each in-
terval, that is σt1,R(πR(ψ(x))) is proportional to πR(ψ(f(x))), where
f : R → R is any diffeomorphism. Notice that however the linear hy-
pothesis is not totally justified, since, unlike the Neveu-Schwarz case,
the Tomita operator does not preserve the particle number, since in
a non-Fock representation such as Ramond, a particle number opera-
tor does not even exist. Invariance of the Ramond two-point function
implies

ωR ◦ σt1,R(πR(ψ(x))πR(ψ(y))) = ωR(πR(ψ(x))πR(ψ(y)));

squaring the expression in (4.1.1) we obtain

f ′(x)f ′(y)

(1+ f(x)2)(1+ f(y)2)
· (1+ f(x)f(y))

2

(f(x) − f(y))2
=

(1+ xy)2

(1+ x2)(1+ y2)(x− y)2
.

The right hand side vanishes at xy = −1, hence by comparison with
the left hand side f(x)f(y) = −1; evaluating in y = −1/x we find
that f must commute with the inversion map on the real line, namely
f(−1/x) = −1/f(x); taking derivatives we get f ′(−1/x) = (x2/f(x)2) ·
f ′(x). Let f(1) = A and thus f(−1) = −1/A; also, f ′(1) = B and
thus f ′(−1) = B/A2, using the relations above. Insert now first y =

1 and then y = −1 into the invariance condition, in order to have
two equations for f ′(x) which must be equated. We are led to the
necessary condition (

Af(x) + 1

f(x) −A

)4
=

(
x+ 1

x− 1

)4
which is solved, omitting the powers, by only

f(x) =
(1+A)x− (1−A)

(1−A)x+ (1+A)
,

the other sign giving an orientation-reversing diffeomorphism. This
is nothing but a Möbius rotation, setting cosα = (1+A)/

√
2(1+A)

and sinα = (1−A)/
√
2(1+A). Rotations have no fixed points, hence

they cannot be candidates for modular group for interval algebras
and therefore we conclude that the interval algebras cannot have
purely geometric linear modular action in the Ramond state.
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4.9 diffeomorphism covariance versus multi-locality

So far we have seen that there are essentially two distinguished ways
to distribute fields around the circle. The first one is by implement-
ing diffeomorphisms covariance, if the net is assumed to fulfill such
property; so to speak, under a general change z 7→ µ(z) fields change
accordingly as φ ′(µ(z)) = (∂µ/∂z)hφ(µ(z)), where h is the field scal-
ing dimension. Unitary operators causing such displacement do exist
and thus φ ′(µ(z)) = Ad(U(µ))(φ(z)). This concept has led [Longo
and Xu, 2004] to the introduction of the Longo-Xu map as isomor-
phism of algebras (4.6.1). Because of the split property being involved,
the Longo-Xu map does not preserve the vacuum state, because cor-
relations are explicitly broken into product of states. This behaviour
does not reflect quantum field theory at all, whose principal feature is
that fields and observables must be correlated anyway, affecting each
other according to the Einstein causality principle.

On the other hand, after investigation of modular theory for fermions
in disjoint intervals, we have found that, however, an isomorphism of
algebras preserving the vacuum state does exist in the form given by
equation (4.7.10). Albeit in principle the two concepts might seem
unrelated, they happen to be intimately connected through suitable
gauge transformations. We start showing a simple example thereof
and then we move to the general case.

Example: Let us take as diffeomorphisms the square root map z 7→
±
√
z. The action of the corresponding Longo-Xu isomorphism on the

complex fermion looks like equation (4.6.2)

LX(φ(z2)) =
1

2
√
z
(ψ(z) +ψ(−z)) .

We can compare this formula with (4.7.2), which shows the same
action under the map β, respectively:

β(φ(z2)) =
1

2
(ψ(z) +ψ(−z)) .

Remarkably we see that the two actions are related as

LX(φ(z2)) = (z2)−1/4 β(φ(z2)),

which can be rewritten as β = LX ◦γ, where γ : A2(I)→ A2(I) acts on
the complex fermion as γ(φ(z)) = z1/4φ(z) and can be interpreted as
a gauge transformation, in particular like pointlike rotations rot(ϕ/4)
if z = eiϕ.

This is not accidental, rather it is pretty general. Let us work for the
sake of simplicity on the real line, making use of the uniformisation
funcion X(x) as variable at hand. Gauge transformations γ : A (I) →
A (I) preserving each subalgebra A (I) can be defined by their action
on AN(I) as

γ(ψi) =

N∑
r=1

O(X)irψr(X) (4.9.1)

[ September 11, 2014 at 12:46 – classicthesis Put data here ]



70 multi-geometric modular theory

with O(X) being the mixing matrix appearing in the Casini-Huerta
modular flow for disjoint intervals. As such, O(X) can be read as an
SO(N) valued function and γ takes fields at the point X into combina-
tion of fields at the same point, with pointlike dependent coefficient
(which justifies the name of gauge transformations). Choosing now
the funcion X(x) as diffeomorphism to be implemented, we can act
with the Longo-Xu map upon (4.9.1) in order to have

LX ◦ γ(ψi(X)) = LX
( N∑
r=1

O(X)irψr(X)
)

=

N∑
r=1

O(X)ir

√
X−1
r (X) ′ψ(X−1

r (X))

that is β(ψi(X)), however we choose ψi as element of the algebras,
and thus

β = LX ◦ γ. (4.9.2)

The vacuum preserving isomorphism β is related to the Longo-Xu
map via choice of suitable gauge transformations, expressed by the
orthogonal cocycle O(X). Composition with such a map exactly un-
does the split property and brings back the correlations among fields.
In fact, although neither LX nor O(X) preserve the vacuum state by
themselves, their joint action does, bringing back the exact form of β
as appearing in the modular flow for free fermions in disjoint inter-
vals. We shall see later on, in the following chapters about currents,
that this is a general issue which will be present in the embedded
models as well. In fact, even though β itself does not completely re-
strict to the embedded subalgebras, its composition with γ−1 does,
giving back the Longo-Xu map for currents and stress-energy tensor
in the context of doubled theories; however, concerning these topics,
we refer the reader to forthcoming chapters 5.2 and 5.5.

4.10 geometric versus non-geometric states

A very interesting comparison can be done between the modular
groups obtained for the vacuum state on the algebra of the multi-
intervals and the product state defined in 4.4.1. Before we carry this
on we introduce an important characterisation, following the lines
of [Summers, 2003]. Given two states ω and φ, cyclic and separat-
ing on the von Neumann algebra A, there is a relation between the
respective modular groups, σωt and σφt , in terms of an intertwining
operator. In details:

Theorem 4.10.1 (Connes cocycle): Given ω and φ as above, then there
exists a strongly continuous unitary operator t ∈ R 7→ U(t) belonging
to the algebra A such that:

• U(t) is a cocycle, namely U(t+ s) = U(t)σωt (U(s)), s, t ∈ R

• U(t) intertwines the two modular groups:

σ
φ
t (a) = U(t)σ

ω
t (a)U(t)∗ a ∈ A, t ∈ R.
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The cocycle U(t) is usually called the (Connes) derivative of φ with
respect to ω.

This result can be applied right away to the special case when the
two states are given by the Kawahigashi-Longo state φE and by the
vacuum state ω0. In particular, we can restrict, for the sake of sim-
plicity, to the case of two intervals. We have then two copies A2(I)
of a fermionic algebra on one interval I and one copy of a fermionic
algebra A (E2). Let ω0 be the vacuum state onto the one interval al-
gebra and LX : A2(I) → A (E2) be the corresponding Longo-Xu map
previously introduced (see 4.6). The two states to be compared are
given by:

ϕE2 = (ω0 ⊗ω0) ◦ LX−1

ω
(2)
0 = (ω0 ⊗ω0) ◦β−1

whose modular groups are, exploiting the KMS property,

σ
ϕE2
t = LX ◦ (σω0t ⊗ σ

ω0
t ) ◦ LX−1

σ
ω

(2)
0

t = β ◦ (σω0t ⊗ σ
ω0
t ) ◦β−1

Now, as we have already pointed out, β is related to the correspond-
ing Longo-Xu map via a gauge transformation inside the initial inter-
val I, β = LX ◦ γ. The key point is that these gauge transformations
are implemented by currents embedded from the Fermi algebra it-
self, hence it exists a Weyl operator W(f) ∈ A2(I) such that γ can be
obtained as its adjoint action Ad(W(f)):

σ
ω

(2)
0

t = LX ◦Ad(W(f)) ◦ (σω0t ⊗ σ
ω0
t ) ◦Ad(W(f)∗) ◦ LX−1. (4.10.1)

The modular group σω0t acts geometrically as the subgroup of the
Möbius group preserving the interval, and thus σω0t ⊗ σ

ω0
t is itself

a diffeomorphism δ on A2(I). We can therefore commute the two
actions as

δ ◦Ad(W(f)∗) = Ad(δ(W(f)∗)) ◦ δ

where W(f)∗ =W(−f) and W(δ(f)) =W(f ◦ δ). Equation (4.10.1) can
be rewritten as

σ
ω

(2)
0

t = LX ◦Ad(W(f)) ◦Ad(W(−f ◦ δ)) ◦ δLX−1

= LX ◦Ad(W(f)W(−f ◦ δ)) ◦ δ ◦ LX−1

= LX ◦Ad(W(f− (f ◦ δ)) ◦ δ ◦ LX−1.

Since δ preserves the boundaries ]a,b[ of the interval I, then the func-
tion f− (f ◦ δ) is zero on such boundaries along with its derivatives;
in fact let h(z) := f(z) − f(δt(z))

h ′(z)|z=a = f ′(a) −
∂f

∂δ

∣∣∣∣
δt(z=a)

· ∂δt(z)
∂z

∣∣∣∣
z=a

=

f ′(a) − f ′(δt(a)) · 1 = f ′(a) − f ′(a) = 0.
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We can as a consequence decompose f− (f ◦ δ) as the sum of two any
functions g+ g ′, where g supported in I and g ′ supported elsewhere
in I ′. This brings us to W(f− (f ◦ δ)) =W(g+ g ′) =W(g)W(g ′) and,
since g ′(z) = 0 if z ∈ I, its adjoint action is the identity within such
interval, hence Ad(W(g)W(g ′)) = Ad(W(g)) on A2(I). Commuting
again through the Longo-Xu map gives

σ
ω

(2)
0

t = Ad(LX(W(g))) ◦ LX ◦ δ ◦ LX−1

= AdW(g ◦ LX) ◦ σφE2
t .

The last term W(g ◦ LX) belongs to A (E2) and thus, comparing this
expression with the definition of Connes derivative, Ad(W(g ◦ LX))
is exactly the cocycle intertwining the two modular groups in the vac-
uum state and in the Kawahigashi-Longo product state. In deriving
this formula we remark once more that the property of δ to preserve
the boundaries of the interval I has played a fundamental role, be-
cause of which the cocycle Ad(W(g ◦ LX)) actually belongs to the
algebra A (E2).

4.11 multi-geometric translations

We have seen that the vacuum modular group for delocalised fermions
provides a mixing between fields in different intervals and explicit
formulae have been carried out. In the case of a symmetric 2-interval
E2 = I∪−I we can express the action of the modular group in terms
of a mixing matrix O(t, z) as

σtI∪−I

(
ψ(z)

ψ(−z)

)
= O(t, z)

 ψ
(
δ
(2)
−2πt(z)

)
ψ
(
δ
(2)
−2πt(−z)

)
where δ(2)t (z) are the “2-dilations” z 7→

√
δ
(1)
t (z2). Since O(z, t) is a

one-parameter subgroup ∈ SO(2) it satisfies the cocycle condition

O(z, t)O
(
δ
(2)
t (z), s

)
= O(z, t+ s)

which is solved by the coboundary O(z, t) = O(z)O(δ(2)t (z))−1.

The Bisognano-Wichmann property ensures that these are in fact
true 2-dilations satisfying the group composition law. The question
is now whether we can find, mutatis mutandis, a similar subgroup
representing true translations just by implementing suitable commu-
tation relations (and of course group properties) with the above flows.
For this purpose let us start considering the inclusion of intervals
J ⊂ I: in case this inclusion is such that A (J) is half-sided modular in-
cluded into A (I), the same holds true for the two-intervals generated
by the square roots, namely A

(√
J
)
⊂ A

(√
I
)

. Then, by a notable re-
sult of Wiesbrock (see 3.3.3), we can automatically reconstruct the gen-
erator of the translations via the difference of the respective modular
groups. The adjoint action as in 3.3.2 provides the defining relations
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for a semidirect product R n R of the form δs ◦ τt = τe−2πs t ◦ δs. The
speculation now is that the one-parameter group of “2-translations”
can be also written accordingly and acts on the fields as

τtI∪−I

(
ψ(z)

ψ(−z)

)
= P(t, z)

 ψ
(
α
(2)
−2πt(z)

)
ψ
(
α
(2)
−2πt(−z)

)
where now α

(2)
t (z) are the “2-translations” z 7→

√
α
(1)
t (z2). The ma-

trix P(z, t) ∈ SO(2) is of course in general not known and has to be
derived by using the properties it is subject to. The fact that it is a
one-parameter subgroup of SO(2) implies again that it satisfies the
cocycle property

P(z, t)P
(
α
(2)
t (z), s

)
= P(z, t+ s)

and moreover it has to fulfill correct commutation relations with the
dilation part, expressed by the matrix O(z, t)

P(z, t)O
(
α
(2)
t (z), s

)
= O(z, s)P

(
δ
(2)
t (z), e−2πs t

)
.

The above relations can be turned easier expressing the matrices in
terms of their rotation angles2 P(z, t) = eiσ2θ(z,t) and likewise with
O(z, t) = eiσ2φ(z,t): they become in turn

θ(z, t) + θ(α(2)
t (z), s) =θ(z, t+ s) (cocycle for P(z, t)) (4.11.1)

φ(z, t) +φ(δ(2)t (z), s) =φ(z, t+ s) (cocycle for O(z, t)) (4.11.2)

θ(z, t) +φ(α(2)
t (z), s) =φ(z, s) + θ(δ(2)t (z), e−2πs) (CRs) (4.11.3)

However, the calculations can be simplified a lot once we have under-
stood that the isomoprhism β intertwines the modular group with
respect to the vacuum states for the one-interval algebra and the two-
intervals algebra. Since the geometric action is then given in terms of
2-dilations, even the 2-translations are intertwined as

τtI∪−I = β ◦ τtI2 ◦β
−1. (4.11.4)

In the circle picture the translations are Möbius transformations act-
ing on z variable as

z 7→ αt(z) =
γz+β

β̄+ γ̄
, αt =

(
1+ it/2 it/2

−it/2 1− it/2

)
that allows to calculate explicitly (4.11.4). For example, taking into
account the transformation laws for Fermi fields and the actual form
of β we have, on ψ(z)

τtI∪−I(ψ(z)) =
1

(2− it) − itz2

(
ψ(αt(z

2))

(
1+

z

αt(z2)

)
+ψ(−αt(z

2))

(
1−

z

αt(z2)

))
(4.11.5)

and of course likewise on ψ(−z), with the due change of signs carried
by β.

2 σ2 is the Pauli matrix

(
0 i

−i 0

)
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4.12 a reverse picture

We have seen that the action of the modular group with respect to the
vacuum state is geometric inside one interval (Bisognano-Wichmann
property, 3.3.6), whilst it introduces a mixing among different inter-
vals described by [Casini and Huerta, 2009]. Now we aim to con-
struct a state whose modular group exactly switches these behaviours,
namely whose action inside one interval is no more geometric, rather
it introduces a mixing among the components described by the same
matrix as above.

Let us consider, on AN(I), I ⊂ R, the following gauge transforma-
tion γ : AN(I)→ AN(I)

γ(ψi(X)) =

n∑
r=1

O(X)ir

√
X−1
r (X)

′
ψr(X)

with the function X(x) as in (4.7.9) and the matrix O(X) exactly given
as in (4.7.11). Define the state ϕ on AN(I) to be ϕ := ω0 ◦ γ−1; its
modular group therefore reads σtϕ = γ ◦ σtω0 ◦ γ

−1 by verification of
the KMS condition. Explicitly, this gives

σtϕ(ψi(X)) = (γ ◦ σtω0 ◦ γ
−1)(ψi(X))

= (γ ◦ σtω0)

(
n∑
r=1

O(X)ir

√
X−1
r (X)

′
)−1

ψr(X)

therefore√
X−1
r (X)

′
σtϕ(ψi(X)) = γ

(
n∑
r=1

O(X)Tir
√
δt(X) ′ψr(δt(X))

)

=

n∑
r,p=1

O(X)Tir
√
δt(X) ′O(δt(X))rp

√
X−1
p (δt(X))

′
ψp(δt(X))

Since the matrix O(X) satisfies O(X)T O(δt(X)) = O(t,X) we end up
with√
X−1
r (X)

′
σtϕ(ψi(X)) =

n∑
p=1

O(t,X)ip
√
X−1
p (δt(X))

′√
δt(X) ′ψp(δt(X))

which presents the same mixing appearing in the vacuum modular
flow on the union of n disjoint intervals [Longo, Martinetti, and
Rehren, 2009, eq (3.1)]. In the same paper the authors also show
that a product state of the form ϕE := (⊗nk=1ϕk) ◦ χE has modular
group with geometric action within n disjoint intervals. Therein χE
is the isomorphism given by the split property and ϕk are state given
by ϕk := ω0 ◦AdU(γk), where U(γk) implements diffeomorphisms
γk : z→ zn on Ik (to be expanded).
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4.13 the free boson case

It is tempting, after the results obtained in the free Fermi model, to
look at the Bose case in order to understand whether a similar iso-
morphism, playing the role of β, exists and preserves the vacuum
state.

The free boson presents some difficulties related to the construc-
tion of the Hilbert space in terms of operators and to the fact that it
is not a conformal field in the proper sense (though it may be consid-
ered as a conformal field of scaling dimension zero). Nevertheless, in
the sense of distributions, we may still think to be provided with a
net of algebras on the circle whose elements are bosonic fields satis-
fying suitable commutation relations and two-point functions. Such
models are realised as solutions to the massless Klein-Gordon equa-
tion, still fulfilling the requirements to be a conformal invariant field
theory.

Let ϕ(x) represent such boson field, in the sense of distributions. In
order to obtain a well defined Hilbert space such distributions must
be smeared with test functions f which integrate to zero, therefore
they appear as derivatives of certain test functions; in formulae

ϕ(f) =

∫
R

dx f(x)ϕ(x) with g(x) | g ′(x) = f(x)

and g(x) → 0 as x → ±∞. If ϕ(x) solves the massless Klein-Gordon
equation, then ϕ ′(x) = j(x) is a current. Following the basic construc-
tion of boson nets of algebras as shown in 1.2 we see that (the minus
sign is only “moral”)

CCR(ϕ(f)) = −CCR(j(g)), f(x) = g ′(x).

To be more precise we start from the massless Klein-Gordon equa-
tion in two dimensions, with ϕ ≡ ϕ(x0, x1); then define j±(x+, x−) :=
∂±ϕ(x

0, x1), where x± are the usual lightcone variables. The equation
of motion then implies ∂−j+ = ∂+j− = 0, in turn the two currents j±
depend on only one variable at a time and we can decompose the
theory into two one-dimensional copies, that we are going to analyse
separately.

Turning back to the search for a vacuum preserving isomorphism,
we intend the notations below as similar to the Fermi case, the only
difference being the change in the vacuum two-point function, which
now becomes [di Francesco et al., 1997]

ω0(j
∗(x)j(y)) = lim

ε→0+
1

(x− y− iε)2
.

The passage to the circle picture is pretty easy, and the two-point
function simply becomes

ω0(j
∗(z)j(w)) =

1

(z−w)2
.

[ September 11, 2014 at 12:46 – classicthesis Put data here ]



76 multi-geometric modular theory

Along the same lines as in the free Fermi case we suppose to have
a complex Bose field (i. e. two copies of a real Bose fiel) j(z), j∗(z)
on A2(I). For the sake of simplicity we work out the symmetric
case, and thus we assume to have a real Bose field j(z) localised in√

I. The standard idea to be undertaken is to define the analogue of
β : A2(I)→ A

(√
I
)

as

j∗(z2) 7→ c1(z)j(z) + c2(z)j(−z)

j(z2) 7→ c3(z)j(z) + c4(z)j(−z)

and to analyse whether ω0 ◦ β = ω0, according to the choice of the
coefficients and to the special form of the vacuum state. Once we
plug the ansatz in we obtain

ω0(j
∗(z2)j(w2)) = ω0 ◦β(j∗(z2)j(w2))

= ω0 ((c1(z)j(z) + c2(z)j(−z))

·(c3(w)j(w) + c4(w)j(−w)) .

Using the explicit form of the two-point function the above equation
becomes

1

(z2 −w2)2
= c1(z)c3(w)

1

(z−w)2
+ c2(z)c3(w)

1

(−z−w)2

+ c1(z)c4(w)
1

(z+w)2
+ c2(z)c4(w)

1

(−z+w)2

but as we see, no choice of coefficients can fulfill this equation, in fact

1

(z2 −w2)2
= (c1(z)c3(w) + c2(z)c4(w))

1

(z−w)2

+ (c2(z)c3(w) + c1(z)c4(w))
1

(z+w)2

gives rise to the condition(
c1(z)c3(w) + c2(z)c4(w)

)
(z+w)2

+
(
c2(z)c3(w) + c1(z)c4(w)

)
(z−w)2 = 1

after multiplying both sides by (z2 −w2)2. This gives rise in turn to
the set of equations

c1(z)c3(w) + c2(z)c4(w) =
1

2(z+w)2

c2(z)c3(w) + c1(z)c4(w) =
1

2(z−w)2

whose solutions obstruct the ansatz c1(z), c2(z) = f(z) only, and like-
wise for c3(w), c4(w). Therefore it is not possible to introduce an
analogous multi-local isomorphism preserving the vacuum state for
the free boson.
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5.1 loop groups

We shall now briefly describe the construction of nets of von Neu-
mann algebras on the circle in the framework of loop groups as
shown in [Pressley and Segal, 1986].

Let G be a compact Lie group whose Lie algebra is denoted by
g: the set of all smooth maps LG := {g | S1 → G } equipped with
pointwise multiplication (g · h)(z) = g(z)h(z) is an infinite dimen-
sional Lie group called the loop group. As such, it possesses a Lie
algebra which can be shown, as expected, to be the set of all maps
Lg = {g | S1 → g }. As set of maps, both of them can be equipped
with the standard topologies of uniform convergence and differential
structure, and thus a smooth map exp : Lg→ LG exists and is a local
homeomorphism in the connected neighbourhood near the identity.

A localised subgroup LIG is the set of all such functions taking the
trivial value G outside the interval I, essentially

LG := {g | S1 → G } LIG := {g | g(z) = G ∈ G, if z /∈ I } .

Since now on we shall focus on projective unitary representations of
the compact Lie group G, where “projective” means that products are
preserved up to a complex phase. In order to make formal sense of
such a concept we introduce the following definition:

Definition (2-cocycle): Let G be a group. A 2-cocycle is a map ω : G×
G→ S1 satisfying, however we choose f,g,h ∈ G

ω(f,g)ω(fg,h) = ω(f,gh)ω(g,h);

also, ωmust be trivial on the identity elementω(G,g) = ω(g,G) =
1. By pointwise multiplication the set of all 2-cocycles forms a group.
Moreover, if there exists β : G→ S1 such that

ω(f,g) =
β(f)β(g)

β(fg)

then the 2-cocycle is said to be a coboundary.

77
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78 currents models and embeddings

With the help of the above definition we can therefore define pro-
jective representations of a loop group as maps from the groups itself
into the set of unbounded operators on some Hilbert space preserv-
ing products

W(g1)W(g2) = ω(g1,g2)W(g1g2), g1,g2 ∈ LG

ω being a cocycle of LG. The assignment I→ A (I) defined as

A (I) := {W(g) | g ∈ LIG }
′′

defines a net of local algebras whenever the cocycle ω is local. Nets
of von Neumann algebras defined out of loop groups representations
have the property to only have finitely many inequivalent representa-
tions.

In the field theoretical setting such construction are realised by tak-
ing the analogue of the Weyl operators for current algebras. Let τa
be a basis of the Lie algebra g of G and define f(z) = τaf

a(z). We
define the smeared current j(f) :=

∮
S1 dz ja(z)fa(z)

[j(f1), j(f2)] = j[f1, f2] + k
∮

S1
dzω(f1, f2)(z), f1, f2 ∈ Lg

(notice here that, despite the same notation, ω is an additive cocycle
playing the infinitesimal version of the previous one introduced for
Weyl relations). The corresponding Weyl operators are

W(g) := eij(f) g(z) = exp(f)(z)

whose collection generates the local net of von Neumann algebras A (I)
as supp f ⊂ I.

In this context gauge transformations γ are defined as automor-
phisms γ : A (I)→ A (I) that preserve every local subalgebra and they
may be inner implemented by means of the unitaries W(g). For in-
stance, on currents, γ(Ja) =W(g)JaW(g)∗ acts as

γ(Jaτa) = g(z)
−1Jaτag(z) + kg(z)

−1∂zg(z);

the matrices τa form a basis in the Lie algebra g and the transforma-
tion law for the actual fields (the currents) follow by multiplying and
taking traces with respect to τa. For example, in case G = SU(2) a
basis for the Lie algebra is given in terms of the Pauli matrices and
thus, after using

σi σj = i ε
k
ij σk + δij

we obtain, taking into account that Pauli matrices are traceless them-
selves

γ(Ja) = fab J
b +

1

2
i tr
(
g(z)−1∂zg(z)σa

)
with f ba σb = g(z)−1σag(z). On the other hand, let now h : S1 →
G be a function periodic up to a central element h0 ∈ Z(G). Any
transformation of the form

γ(J) = Adh−1(J) + h−1dh
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still fulfils the requirements to be an automorphism, because the cen-
tral element cancels out; nevertheless it is not implemented by uni-
taries of the form W(h) because h is no more an element of the loop
group. Therefore, by using elements in Z(G) we can construct auto-
morphisms which are no more implemented by unitaries but which
are still inner symmetries. This is an interesting feature in the context
of representation theory of loop groups, because the composition of
states with such automorphisms gives rise to inequivalent represen-
tations and all simple sectors are of this form. As a consequence,
different sectors arise according to how many central elements the
Lie group G has. Thus compact Lie groups with trivial centre only
have one simple sector (the vacuum sector).

Example (non-trivial sectors): Let I1 and I2 be two intervals on the
circle such that their intersection is the union of two disjoint intervals
J1 and J1: moreover, let A (J1) and A (J2) come accompanied with

I1

I2

J1 J2

two different localised representations π1 (A (J1)), π2 (A (J2)) differ-
ent from the defining vacuum representation. If now U : π1 → π2 is a
map intertwining such representations, namely Uπ1(a1) = π2(a1)U,
then U belongs, by Haag duality, to both π0 (A (I1)) and π0 (A (I2));
yet, the operator U may differ when evaluated in π1 and π2, that
is π1(U) 6= π2(U). One can prove, using Doplicher-Haag-Roberts
theory of localised endomorphisms, that in case the net I → A (I)
has only the vacuum sector no such problem occurs and the vac-
uum representation is always faithful. This also helps to globally
define the whole algebra A

(
S1
)

as the C∗-algebra generated by all
the ∨Iπ0(A (I)) = B(H).

We want to remark once more that the quarks construction, as
showed in the previouos chapters, provides, in the field theoretical
setting, the relation between Fermi fields and currents expressed as
Wick products thereof.

5.2 currents models

We have previously seen that the isomorphism β provides a map
β : A(N)(I) → A( N

√
I) preserving the vacuum state and its represen-

tation π0 ◦ β = π0. In the particular case of N = 2 a complex Fermi

[ September 11, 2014 at 12:46 – classicthesis Put data here ]



80 currents models and embeddings

field localised in one interval I is “decomposed” into its symmetric
and antisymmetric part

φ(z2) =
1√
2

(
ψ(1)(z2) + iψ(2)(z2)

)
7→ 1

2
(ψ(z) +ψ(−z))

φ∗(z2) =
1√
2

(
ψ(1)(z2) − iψ(2)(z2)

)
7→ 1

2z
(ψ(z) −ψ(−z)) .

The resulting representation is a twisted representation π0 ⊗t π0 be-
cause β intrinsically carries a twist on some fields, namely β◦ rot(2π) =
β ◦ ℘ where ℘ is the flip automorphism flipping the tensor product
℘ : A⊗A→ A⊗A such that ℘(x⊗ y) = y⊗ x.

The idea is now to extend this map to embedded models, as well as
currents and stress-energy tensor, trying to preserve its features. We
are then looking for an isomorphism which gives a correspondence
A (I)⊗A (I) → A

(√
I
)

also at the level of currents and stress-energy
tensor, decomposing the fields into their symmetric and antisymmet-
ric parts. Since the restriction of β does not, in general, preserve this
embedded subalgebras we should expect an additional gauge trans-
formation to compose β with in order to achieve the result.

Let us denote by AJ(I) the algebra of currents localised in the inter-
val I. The purpose is to explicitly construct a map ι : AJ(I)⊗AJ(I)→
AJ(
√

I) making use of β. We start by taking two real Fermi fields ψ(z)
and ψ ′(z) localised in

√
I and apply β−1 in order to obtain two com-

plex Fermi fields φ(z2),φ ′(z2) localised I. These fields can in turn be
decomposed into their respective real and imaginary parts as

φ(z2) =
1√
2

(
ψ(1)(z2) + iψ(2)(z2)

)
φ ′(z2) =

1√
2

(
ψ(3)(z2) + iψ(4)(z2)

)
and thus we have generated four real Fermi fields, ψ(1), . . . ,ψ(4).
Combinations of such fields can be used to generate current algebras
models with gauge group O(4), since in principle we can combine any
two Fermi fields into Wick products :ψiψj:; in particular the construc-
tion runs as follows: let us take the U(1) = SU(2) current constructed
out of the combination of the two initial fields j(z) := 2i :ψψ ′:(z) and
embed by β−1, taking into account the inverse formula in [Rehren
and Tedesco, 2013]. We have

β−1(ψ(z)ψ ′(z)) =
(
φ(z2) + zφ∗(z2)

) (
φ ′(z2) + zφ ′∗(z2)

)
β−1(ψ(z)ψ ′(z) −ψ(−z)ψ ′(−z)) = 2zφ∗(z2)φ ′(z2) + 2zφ(z2)φ∗(z2);

as we see, only terms coupling hermitian products of φ∗φ appear,
and thus we may conclude this current is neutral, the total charge
being zero. Everything can be expressed in terms of the initial four
fermions, and since β preserves the vacuum state and then the Wick
products, we find for the even modes of such current

β−1 (z j(z) − z j(−z)) = 2z2
(
J13(z

2) + J24(z
2)
)
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with J13(z) := 2i :ψ(1)ψ(3):(z) and similarly for J24(z). The odd modes,
instead, present charged combinations φ(z2)φ ′(z2)+z2φ∗(z2)φ ′∗(z2),
giving rise to

β−1 (z j(z) + z j(−z)) = J+(z
2) + z2 J−(z

2)

with J(z) := J13(z) − J24(z) + i (J14(z) + J23(z)). In a more compact
way the above relations can be written as

β−1(even) = 2z2 J0(z2)

β−1(odd) = J(z2) + z2 J∗(z2).

Commutation relations between these currents show particular fea-
tures: the commutator [J+, J−] produces the third generator of su(2)
current algebra with J3 := J12 + J34, yet both J+, J− commute with
J0. The structure is the one of a u(2) ⊂ o(4) current algebra u(2) =

su(2)⊕ u(1) where J0 plays the role of the diagonal part in u(1), the
rest being the su(2) current algebra. However, the action of β−1 only
gives back the commuting currents J0 and J±. We may as well re-
verse the picture and look at how the commuting currents, J0 and J±,
localised in AJ(I) are decomposed into symmetric and antisymmetric
part of a single current localised in AJ(

√
I).

With the help of suitable gauge transformations we can reduce the
combination J+(z) + z J−(z) to just a single current. SU(2) gauge
transformations γ on Fermi fields transform the embedded currents
Ja(x) = :ψ∗σaψ:(x) as

γ(Ja)σa = g(z)−1Jaσag(z) + kg(z)
−1∂zg(z)

where g ∈ SU(2) and transformations for the actual fields Ja follow
by multiplying both sides by σc and taking traces. Also, use σaσb =

iε c
ab σc + δab. We obtain eventually

γ(Ja) = fab J
b +

1

2
κ tr

(
g(z)−1∂zg(z)σ

a
)

(5.2.1)

with fab(z)σ
b = g(z)−1σag(z). Such gauge transformations are au-

tomorphisms of the algebras, though they may not preserve the vac-
uum state. Exploiting the above equation with the group element
g(z) = e−i(ϕ/4)σ3 e−i(ϕ/4)σ2 gives back exactly

γ
(
J3(z

2)
)
=
√
z
(
J+(z

2) + z2 J−(z
2)
)

.

Moreover, since J0 plays the role of the diagonal part u(1) in u(2) =

su(2)⊕ u(1) the map γ can be regarded as acting diagonally on J0.
Therefore we have

(β ◦ γ)
(
J0(z

2)
)
=
1

2z
(j(z) − j(−z)) (5.2.2)

(β ◦ γ)
(
J3(z

2)
)
=
1

2z
(j(z) + j(−z)) . (5.2.3)
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Defining ι = β ◦ γ gives us the map we looked for at the level of the
currents. Interestingly enough, this map produces an anti-periodic
field when acting on J3. Therefore

ι : AJ(I)⊗AJ(I)→ AJ(
√

I).

The scenario we are dealing with looks now like, according to the
scaling dimension:

Fermi d=
1
2

φ(z2)

φ∗(z2)

β−→
ψ(z) +ψ(−z)

z−1 (ψ(z) −ψ(−z))

Currents d=1
J0(z

2)

J3(z
2)

β◦γ−−−→
z−1 (j(z) − j(−z))

z−1 (j(z) + j(−z))

Of course, the twist emerges once we compose βwith rot(2π) and this
in turn emerges from the mere commutation relations of any chiral
field with the rotations e2πiL0 ,

i[L0,φ(z)] = i(z∂z + h)φ(z)

which integrates to

eitL0 φ(z) e−itL0 = eithφ(eit z).

This means that for scaling dimension h = 1/2 we have a minus sign
at t = 2π if we evaluate fields in the vacuum representation, while
no minus sign occurs in the Ramond representation, since the latter
presents an additional

√
z which absorbs the −1. In contrast, no mi-

nus sign may appear for local fields with integer scaling dimension.

Now, if we start from non-abelian current algebra with level κ and
structure constants f c

ab , we can easily construct models with twice
the level just by taking the symmetric and anti-symmetric parts. In
detail we start with [Fuchs, 1992][

Ja(z), Jb(w)
]
= fabc J

c(z)
1

w

∑
n∈Z

( z
w

)n
+
1

zw
κhab

∑
n∈Z

( z
w

)n
(5.2.4)

and construct

J2κa (z2) := Jca(z
2)⊗ + ⊗ Jca(z2)

∆2κa (z2) := Jca(z
2)⊗ − ⊗ Jca(z2)

clearly both fields belong to AJ(I)⊗AJ(I). These quantities satisfy cur-
rent algebras commutation relations like (5.2.4) with twice the central
charge [

J2ca (z2), J2cb (w2)
]
= f c

ab J2cc (z2)
1

w2

∑
n∈Z

( z
w

)2n
+

1

z2w2
2chab

∑
n∈Z

n
( z
w

)2n
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as for the other combinations[
J2ca (z2),∆2cb (w2)

]
= f c

ab ∆
2c
c (z2)

1

w2

∑
n∈Z

( z
w

)2n+1
[
∆2ca (z2),∆2cb (w2)

]
= f c

ab J2cc (z2)
1

w2

∑
n∈Z

( z
w

)2n+1
+

1

z2w2
2chab

∑
n∈Z

(n+ 1/2)
( z
w

)2n+1
These commutation relations happen to be satisfied by the odd and
even modes of a single current localised in

√
I, namely the assignment

α
(
J2ca (z2)

)
=
1

2z
(ja(z) − ja(−z)) (5.2.5)

α
(
∆2ca (z2)

)
=
1

2z
(ja(z) + ja(−z)) (5.2.6)

preserves the commutation relations, as easily seen by summing up
the Fourier modes. In detail let us restrict to the abelian case: the
Fourier decomposition of the current J(z) =

∑
n∈Z jnz

−n−1 gives

α
(
J2cn
)
= jc2n, n ∈ Z

α
(
∆2cν

)
= jc2n ν ∈ Z + 1/2

which, by using [jn, jm] = nδn+m,0 c are seen to satisfy the commu-
tation relations[

α
(
J2cn
)

,α
(
J2cm
)]

= nδn+m,0 2c = 2α[jn, jm][
α
(
J2cn
)

,α
(
∆2cν

)]
= nδn+ν,0 2c = 2α[jn, jν][

α
(
∆2cµ

)
,α
(
∆2cν

)]
= µδµ+ν,0 2c = 2α[jµ, jν].

Summing up the Fourier series we obtain[
α
(
J2c(z2)

)
,
(
J2c(w2)

)]
= α

[(
J2c(z2)

)
,
(
J2c(w2)

)][
α
(
J2c(z2)

)
,
(
∆2c(w2)

)]
= α

[(
J2c(z2)

)
,
(
∆2c(w2)

)][
α
(
∆2c(z2)

)
,
(
∆2c(w2)

)]
= α

[(
∆2c(z2)

)
,
(
∆2c(w2)

)]
.

In the abelian case the right hand side coincides with the quantities
(5.2.2) we previously calculated as β ◦ γ, therefore we may write

α
(
J2c(z2)

)
= (β ◦ γ)

(
J2c0 (z2)

)
α
(
∆2c(z2)

)
= (β ◦ γ)

(
J2c3 (z2)

)
meaning (

α−1 ◦β ◦ γ
) (
J0(z

2)
)
= J(z2)⊗ + ⊗ J(z2) (5.2.7)(

α−1 ◦β ◦ γ
) (
J3(z

2)
)
= J(z2)⊗ − ⊗ J(z2) (5.2.8)

with the currents on the left hand side having twice the central charge
of the currents on the right hand side.
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5.2.1 The Kac-Frenkel construction

We have seen in the previous section that starting from two real Fermi
fields the inverse action of β−1 gives back two complex Fermi fields
which in turn can be decomposed into their real and imaginary parts.
This brings us four Fermi fields whose combinations construct a non-
abelian current model. In particular we can get a u(2) current model
constituted by the currents

J0 = J13 + J24

J = J13 − J24 + i (J14 + J23)

J1 = J13 − J24

J2 = J14 + J23

J3 = J12 + J34

whose commutation relations are

[Ji, Jj] = ε
k
ij Jk i, j, k = 1, 2, 3 (5.2.9)

[Ji, J0] = 0 (5.2.10)

giving raise to u(2) = su(2) (the former) ⊕u(1) (the latter). This also
gives back the commutations relations [J, J∗] with J = J1 + i J2.

The same u(2) algebra can be derived by using the Kac-Frenkel
construction ([Kac, 1998]) out of two commuting currents J0 (playing
the role of the diagonal u(1) current) and J3 as follows: the unitary
Weyl operators on currents W(f) = eij(f) evaluated on sharp test
functions Gu(x) = q · θ(x−u) become the “vertex operators” ([Longo
and Rehren, 2009])

Vq(x) = :e
iq

∫x
∞ du j(u)

: ;

the operators V±
√
2(x) can be decomposed as

J±(x) := :e
±
√
2i

∫x
∞ du j(u)

: = J1(x)± iJ2(x)

and J1, J2, together with J3 = j/
√
2, generate an su(2) current algebra

and J0 plays the role of the u(1) contribution. After performing such
construction care must be taken to the fact that the vertex operators
in general do not act on the same Hilbert space as the constituting
currents.

5.3 stress-energy tensor models

The same game can be played with the stress-energy tensor and its
Virasoro generators. Starting from a single Fermi field ψ(z) one can
construct the related stress-energy tensor (again following the quarks
construction) as

Tc=1/2(z) =
−1

4π
:ψ∂zψ:(z) =

−1

8π
:ψ
↔
∂zψ:(z)
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with central charge c = 1/2. Commutation relations follow by imple-
menting its decomposition in terms of Virasoro generators

T(z) =
1

2π

∑
n∈Z

Lnz
−n−2

where Ln commute as in (2.2.1). We obtain, on the real line and on
the circle picture respectively:

[T(x), T(y)] = i (T(x) + T(y)) δ ′(x− y) − i
c

24π
δ ′′′(x− y)

[T(z), T(w)] =
−1

2π

(
T(z)

w2
+
T(w2)

z2

) ∑
n∈Z

n
( z
w

)n
−

c

48π2
1

z2w2

∑
n∈Z

(n3 −n)
( z
w

)n
.

In case of a complex Fermi field φ(z) = ψ(1)(z) + iψ(2)(z) the related
stress-energy tensor is exactly two copies of the individual stress-
energy tensors constructed out of each of the two real Fermi fields
ψ(1)(z) and ψ(2)(z)

Tc=1(z) =
−1

4π
:ψ(1)∂zψ

(1):(z) +
−1

4π
:ψ(2)∂zψ

(2):(z) =
−1

8π
:φ∗
↔
∂zφ:(z)

The central charge is 2 · 1/2 = 1. Let us now define again

T2c(z) := Tc(z)⊗ + ⊗ Tc(z)
D2c(z) := Tc(z)⊗ − ⊗ Tc(z)

and likewise the assignment

α
(
T2c(z2)

)
:=
Tc(z) + Tc(−z)

4z2
+

c

32πz4
(5.3.1)

α
(
D2c(z2)

)
:=
Tc(z) − Tc(−z)

4z2
(5.3.2)

which implies, for the Virasoro modes

α
(
L2cn
)
=
1

2
Lc2n +

c

16
δn,0 n ∈ Z

α
(
D2cν

)
=
1

2
Lc2ν ν ∈ Z + 1/2.

Virasoro relations for the generators Lcn imply[
α
(
L2cm
)

,α
(
L2cn
)]

= (m−n)α
(
L2cm+n

)
+
2c

12
(m3 −m) δm+n,0[

α
(
L2cm
)

,α
(
D2cν

)]
= (m− ν)α

(
D2cm+ν

)
[
α
(
D2cµ

)
,α
(
D2cν

)]
= (µ− ν)α

(
D2cµ+ν

)
+
2c

12
(µ3 − µ) δµ+ν,0

summing up the Fourier modes we obtain[
α
(
T2c(z2)

)
,α
(
T2c(w2)

)]
= α

[(
T2c(z2)

)
,
(
T2c(w2)

)][
α
(
T2c(z2)

)
,α
(
D2c(w2)

)]
= α

[(
T2c(z2)

)
,
(
D2c(w2)

)][
α
(
D2c(z2)

)
,α
(
D2c(w2)

)]
= α

[(
D2c(z2)

)
,
(
D2c(w2)

)]
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meaning that α, again, preserves the commutation relations. We have
thus embedded two copies of the stress-energy tensor algebra of cen-
tral charge c = 1/2 localised in I into one copy of the same algebra
localised in

√
I. Denoting such algebra as Vir1/2(I) we have

α : Vir1/2(I)⊗Vir1/2(I) ⊂ Vir1(I)→ Vir1/2(
√

I).

Notice that the assignment α turns out to be nothing but the com-
position of β with an automorphism of the current algebra ρ

1
4 as in

[Rehren and Tedesco, 2013] with ρq(j(z)) = j(z) + q/z. Thus we have
the identification α = β ◦ ρ 14 and ρ plays the role of the gauge trans-
formation γ we have to compose β with in order to obtain suitable
homomorphisms. As a consequence, though β itself does not restric
to subalgebras, compositions with suitable inner automorphisms do
and we can extend the picture to fields of conformal scaling dimen-
sion 2

Fermi d=
1
2

φ(z2)

φ∗(z2)

β−→
ψ(z) +ψ(−z)

z−1 (ψ(z) −ψ(−z))

Currents d=1
J0(z

2)

J3(z
2)

β◦γ−−−→
z−1 (j(z) − j(−z))

z−1 (j(z) + j(−z))

Virasoro d=2
T1(z2)

D1(z2)

β◦ρ
1
4

−−−−→
z−2

(
T
1
2 (z) + T

1
2 (−z)

)
z−2

(
T
1
2 (z) − T

1
2 (−z)

)
Again, we have a manifestation of the twist carried by β as flip on
one of the two fields

℘
(
T1(z)

)
= T1(z),

℘
(
∆1(z)

)
= −∆1(z).

5.4 coset models

The quarks construction as described in 2.3 shows that starting from
a Lie algebra g ⊂ u(n) one can construct a stress-energy tensor with
a suitable normalisation ξ as

TS(z) := ξ κab : J
aJb :(z)

whose central charge is given by (2.3.6) and whose Fourier modes
satisfy the Virasoro algebra commutation relations. Let now take h

as a Lie subalgebra h ⊂ g and let us apply the Sugawara construc-
tion to h and g respectively. In general, the two stress-energy tensors,
which we denote as Th, Tg do not coincide. By taking Tg/h(z) :=

Tg(z) − Th(z) (as shown in [Goddard, Kent, and Olive, 1986], [God-
dard, Kent, and Olive, 1985]) we can construct another stress-energy
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tensor (“coset” SET) commuting with the Th whose central charge is
the difference of the central charges of the constituent models

cg/h = cg − ch.

An important class of such models is given by the so called “diagonal”
embeddings of an algebra into many of its commuting copies, g ⊂
g⊕ . . .⊕g. The total current is then just the sum of each single current

Ja(x) = (ja(x)⊗ ⊗ . . .+ . . .+ ⊗ . . .⊗ ⊗ ja(x))

and since the different copies commute with one other the level of
the resulting algebra is just the sum of the level of each diagonal
component. As a consequence the total central charge for the stress-
energy tensor is

c =

(
k1

k1 + g
+ . . .+

kn

kn + g
+
k1 + . . .+ kn
k1 + . . . kn + g

)
dim g.

For example, taking k copies of (level k = 1) su(n) current models
we can construct an su(n) at level k current model. Also, by iteration
of this method one can get representations of Virasoro algebras with
c < 1 just by taking diagonal embeddings of su(n)k+1 into su(n)k ⊕
su(n)1, the total central charge being given by

Tsu(n)k⊕su(n)1/su(n)k+1 , ck + c1 − ck+1 = 1−
6

(k+ 2)(k+ 3)
.

Similarly, the stress-energy tensor of two complex Fermi fields has
central charge c = 2, while the stress-energy tensor for the embedded
su1 has c = 1; therefore one can construct a coset stress-energy tensor
whose central charge is c = 2− 1 = 1 and this happens to be exactly
the abelian contribution u(1) into u(2) = u(1)⊕ su(2) of the form

T(x) =
1

4π
:j2:(x)

(see, for example, [Fuchs, 1992]).

5.5 embedding via longo-xu map

We have obtained the results previously mentioned by using the em-
bedding of β and some gauge transformations suitably chosen. We
shall now show that the same result can be easily achieved by us-
ing the general transformation properties of conformal fields under
diffeomorphisms and the Longo-Xu map ([Longo and Xu, 2004] and
4.6). As a recall we assume to be equipped with a conformal net
I → A (I) fulfilling the split property: therefore, given I1, I2 there
exists an isomorphism χ : A (I1)∨A (I2) → A (I1)⊗A (I2) such that
χ(x1x2) = x1 ⊗ x2, however you choose x1 ∈ I1, x2 ∈ I2. Diffeo-
morphisms of the net µ : I → Ij are implemented on the algebras by
means of adjoint action of unitaries U(µ) and this provides isomor-
phisms A (I)→ A

(
Ij
)

given by ([Longo and Xu, 2004])

φI := AdU(µ)| A (I) .
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Consequently the Longo-Xu map LX = χ ◦φNI gives an isomorphism

LX : AN(I)→ A(I1 ∪ . . .∪ IN)

explicitly realised as LX(x1 ⊗ . . .⊗ xN) = φI(x1) · . . . ·φI(xN).

Let us now restrict ourselves to the particular case of two intervals
and diffeomorphisms given in terms of square root maps, namely
µ1(z

2) = z, µ(z2) = −z. They are implemented on fields as

φI(ϕ(z)) = AdU(
√
( · ))ϕ(z) =

(
∂µ(z)

∂z

)h
ϕ(µ(z))

h being the conformal scaling dimension. The corresponding Longo-
Xu map is LX : A2(I)→ A

(√
I
)

. On the doubled currents

J2c(z2) = Jc(z2)⊗ + ⊗ Jc(z2)
∆2c(z2) = Jc(z2)⊗ − ⊗ Jc(z2)

the Longo-Xu map acts as

LX
(
J2c(z2)

)
=

(
1

2z

)1
jc(z)+ 

(
−1

2z

)1
jc(−z) =

j(z) − j(−z)

2z

LX
(
∆2c(z2)

)
=

(
1

2z

)1
jc(z)− 

(
−1

2z

)1
jc(−z) =

j(z) + j(−z)

2z

which exactly correspond to equations (5.2.5) and (5.2.6). Conse-
quently we derive that α = β ◦ γ = LX and thus β and LX are related
to each other through a gauge transformation γ. Of course this must
be the case, since the Longo-Xu map does not preserve the vacuum
state (diffeomorphisms “destroy” correlations), while β does.

Similarly we can apply the Longo-Xu map to the stress-energy ten-
sor and its doubled copy

T2c(z) := Tc(z)⊗ + ⊗ Tc(z)
D2c(z) := Tc(z)⊗ − ⊗ Tc(z)

keeping in mind that T does not transform as a primary field under
diffeomorphisms, rather it is quasi-primary and an extra contribution
due to the Schwarz derivative occurs.

LX
(
T2c(z2)

)
=

((
1

2z

)2
T(z)+

c

12
s(g(z), z)

)


+ 

((
−1

2z

)2
T(−z)+

c

12
s(g(z), z)

)
=
T(z) + T(−z)

4z2
+

c

32πz4
.

On the other hand the Schwarzian derivative cancels out if we take
the difference

LX
(
D2c(z2)

)
=
T(z) − T(−z)

4z2
.
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We have obtained equations (5.3.1) and (5.3.2) just via mere applica-
tion of the diffeomorphisms invariance and the split property, which
we assume to hold for the net at hand. We deduce again α = β ◦ ρ 14 =

LX.

φ(z2) φ(z)

φ(−z)

The picture that we have now is that, for each scaling dimension,
i.e. for Fermi fields, embedded currents and stress-energy tensor, al-
though β does not exactly restrict to the respective subalgebra, its
composition with suitable gauge transformations gives back exactly
the Longo-Xu map, which in turn is the manifestation of the diffeo-
morphisms covariance of the net (assumed the split property to hold).
Both maps, β and LX, somehow “distribute” fields around the circle
I →

√
I and they are related to each other via tailor made gauge

transformations:
β = LX ◦ gauge

where these acquires the explicit forms

Fermi fields: LXd=
1
2 = β ◦OCH

Currents: LXd=1 = β|J ◦ γ

Stress-energy tensor: LXd=2 = β|Vir ◦ ρ
1
4

(of course we can read off γ = OCH|J and likewise ρ
1
4 = OCH|Vir).

5.6 modular theory for currents

In the previous paragraphs we introduced the doubled theory of cur-
rents AJ ⊗AJ as embedded from fermions using the quark construc-
tion: given a theory A2(I) describing two fermions in one interval we
can generate the embedded theory of currents AJ(I) ↪→ A2(I). Fur-
thermore, we found out that the restriction of β|J can still be written
as β|J = LX|F ◦ γ, where LX|F denotes the restriction of the Longo-
Xu map to the embedded fermions. Of course, since β preserves the
vacuum state for Fermions, so does it restriction to currents. Nonethe-
less, one may wonder how the very particular form for gauge trans-
formations on currents, equation (5.2.1), may fit so that the correla-
tors are eventually preserved. This is due to the particular action of
β on Fermi fields; in fact its peculiarity is to distribute fields onto
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anti-podal points and this feature reflects on the currents, as in for-
mula (4.7.15). The presence of delocalised factors in, say, z,−z exactly
cancels out the additional central term appearing in the gauge trans-
formations so that everything cancels out eventually preserving the
form of the vacuum expectation values. As a matter of example we
shall present the case of a doubled theory of currents originated from
four fermions.

Example: Let A2(I) be the theory describing two fermions, say ψ1,ψ2
and A2(I)⊗ A2(I) its double. The four fermions generated thereof
can be labelled as

Ψ1 = ψ1 ⊗ , Ψ2 = ψ2 ⊗ , Ψ3 = ⊗ψ1, Ψ4 = ⊗ψ2.

These four fermions can generate
(
4
2

)
= 6 different currents Jij(z) :=

Ψi(z)Ψj(z) ∈ AJ(I)⊗AJ(I) (no Wick product occurs because the vac-
uum expectation values vanish anyway) generating in turn a non-
abelian current algebra with gauge group O(4). We shall see that the
action of the Longo-Xu map on these currents is local on some pair-
ing, whereas it is non-local on some others. In fact, let us take the
action of diffeomorphisms µj : I → Ij as µ1(z) =

√
z,µ2(z) = −

√
z

upon, for instance, J12(z) = Ψ1(z)Ψ2(z) = ψ1(z)ψ2(z)⊗ ; we have

LX(J12(z)) = LX(ψ1(z)ψ2(z)⊗ )

=
√
µ ′1(z)ψ1(µ1(z))

√
µ ′1(z)ψ2(µ1(z)) · 

because the diffeomorphisms both act on the first term in the tensor
product, distributing the fields in µ1(z). Then

LX(J12(z)) = µ ′1(z)ψ1(µ1(z))ψ2(µ1(z)) = µ
′
1(z) :ψ1ψ2:(µ1(z))

exploiting :ψ1ψ2: = ψ1ψ2 −ω0(ψ1ψ2) = ψ1ψ2 − 0. We can conse-
quently state that the current J12 is distributed locally at the point
µ1(z); the same happens for those other currents having the initial
fermions in the same position in the tensor product, like, for exam-
ple, J34(z) = Ψ3(z)Ψ4(z) = ⊗ψ1(z)ψ2(z)

LX(J34(z)) = µ ′2(z) :ψ1ψ2:(µ2(z));

we conclude then that the two possible local actions are the following
ones:

LX(J12(z)) = µ ′1(z) j12(µ1(z)), LX(J34(z)) = µ ′2(z) j12(µ2(z)).

The other possible pairings present non-local contributions, as well
as, for example, J13(z) = Ψ1(z)Ψ3(z) = ψ1(z)⊗t ψ1(z)

LX(J13(z)) =
√
µ ′1(z)ψ1(µ1(z))

√
µ ′2(z)ψ1(µ2(z));

because of the presence of the same fermion field ψ1, the vacuum
expectation value is non-zero and therefore we get

LX(J13(z)) =
√
µ ′1(z)µ

′
2(z)ψ1(µ1(z))ψ1(µ2(z))

=
√
µ ′1(z)µ

′
2(z) :ψ1(µ1(z))ψ1(µ2(z)): −

√
µ ′1(z)µ

′
2(z)

µ1(z) − µ2(z)
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which is delocalised in the two points µ1(z),µ2(z).

The action of the diffeomorphisms is a “true” action only on some
of the currents, taking them into actual currents localised elsewhere.
This can be viewed as a true action on the currents of the subgroup
O(2) × O(2) ⊂ O(4), while the remaining currents are moved in
µ1(z),µ2(z) without summing up again to actual currents.

We can use this argument to reconstruct the form of the one-point
function. In fact, since ω0(J(z)) = 0, we expect β|J to preserve ω0 ◦
β|J = ω0. Acting on currents we obtain

ω0 ◦β|J(J(z)) = ω0 ◦ LX ◦ γ(J(z))
= ω0 ◦ LX(J(z) + central term)

where (J(z) + central term) has to be intended as in equation (5.2.1)
and the central term is of the form 1/2 κ tr

(
g(z)−1∂zg(z)σ

a
)
. Using

the explicit form of the Lie algebra valued gauge transformations and
the structure constants the trace sums up to either zero or the iden-
tity, the only numerical prefactors being derivatives of the diffeomor-
phisms µ in the point z, which cancel the presence of the additional
vacuum expectation value in some delocalised currents appearing in
the model once we act with the Longo-Xu map. Again, the multi-
local behaviour of β helps to prevent obstructions and to preserve
the one-point function:

ω0 ◦β|J(J(z)) = ω0 ◦ LX(J(z) + central term)

= ω0

(
J(z) −

√
µ ′1(z)µ

′
2(z)

µ1(z) − µ2(z)
+ central term

←−−−−−− cancellations−−−−−−→

)

= ω0(J(z)) = 0.

On the other hand, if the action were strictly local on all the in-
volved currents, then obstructions for the vacuum one-point function
would definitely occur, because cancellations would no more take
place and the additional central term arising from the gauge trans-
formations could not be wiped off. As a consequence, if we start
from a pure local theory of currents, no vacuum preserving isomor-
phism in the form β = LX ◦ γ may exist. As distribution ω0(j(x)) = 0
means that there can be no class of functions f such that ω0(j(f)) 6= 0.
From this it directly follows that a similar argument applies to the
non-existence of a vacuum preserving isomorphism for Bose fields;
in fact, if this were true then we would have

ω0 ◦β (ϕ(f)) = ω0 (ϕ(f))

choosing f integrating to zero. Then, since ϕ(f) = −j(g), with f(x) =
g ′(x) then this would imply

ω0 ◦β (j(g)) = ω0 (j(g)) = 0

and this cannot hold due to the explicit form of β = LX ◦ gauge. In
fact, as we pointed out, β(j) ∼ j+ const. ·  and thus

ω0 ◦β (j(g)) = ω0(j(g)) +

∫
R

dx g(x) = 0+
∫

R

dx g(x)
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and this is again if also g(x) integrates itself to zero, but this cannot
go along with the integral of f(x) = g ′(x) being zero as well.

Example: Let us take again the doubled theory of two fermions, A2(I)⊗
A2(I), containing the four fermions as stated in the previous example

Ψ1 = ψ1 ⊗ , Ψ2 = ψ2 ⊗ , Ψ3 = ⊗ψ1, Ψ4 = ⊗ψ2.

The corresponding stress-energy tensor is, by construction,

T(z) = −
1

4π

4∑
i=1

:Ψi∂zΨ
i:(z)

and thus

T2c(z) = −
1

4π
:ψ1∂zψ1:(z)⊗ −

1

4π
:ψ2∂zψ2:(z)⊗ 

+ ⊗−
1

4π
:ψ1∂zψ1:(z) + ⊗−

1

4π
:ψ2∂zψ2:(z),

which is nothing but T2c(z) = Tc(z) ⊗  +  ⊗ Tc(z). Due to the
fact that there are no mixed terms paired in the tensor products, the
action of the LX map is local on each component of the tensor product
individually. We have

LX
(
T2c(z)

)
= LX

(
Tc(z)⊗ + ⊗ Tc(z)

)
=
(
µ ′1(z)

2 Tc(µ1(z)) +
c

12
s(µ1(z), z)

)
· 

+  ·
(
µ ′2(z) T

c(µ2(z)) +
c

12
s(µ2(z), z)

)
.

On the other hand if one considers the Sugawara stress-energy tensor
Ts(z) = ξ κab:J

aJb:(z) with currents given by Jij(z) = Ψi(z)Ψj(z) then
anti-local components may occur, according to the choice of the Lie
algebra.
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Part III

B A C K M AT T E R

I still belong to the minority of people
who believe that the universe is four di-
mensional.

D. Buchholz, Rome, July 2013.
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a.1 on the passage to two-dimensional models

As aforementioned, we focused our attention on one-dimensional chi-
ral models where fields depend on the light-cone variables x± only.
Taking two such theories, respectively described by the nets of al-
gebras A (I+) ,A (I−) (with obvious understanding of notations), the
chiral two-dimensional model is given by the tensor product A (O) =

A (I+)⊗A (I−) ⊂ B(O), with the space-time region O given by I+ ×
I−. For the tensor product theory of observables the vacuum state
(actually its GNS representation) is the tensor product Ω⊗Ω (acting
on H⊗H) and therefore the modular theory derived thereof decom-
poses into tensor products as well. In fact the anti-linear operator
(3.3.1) becomes S0 : a(Ω⊗Ω) 7→ a∗(Ω⊗Ω), a ∈ A (O) and the cor-
responding modular operator is the tensor product ∆itO = ∆it+ ⊗∆it− ,
giving rise to modular automorphisms group as σt = σtI+ ⊗ σ

t
I−

by
verification of the KMS condition. In particular O are double cones if
I+, I− are two intervals, the forward light cone V+ as R+ ×R+ and
the right wedge as R+ ×R−. Replacing everywhere R+ → R− gives
the backward light cone and the left wedge, respectively.

a.2 more on the geometric action of modular groups

for special regions

It has been pointed out that the most of the modular theory relies on
the result of Bisognano and Wichmann (3.3.6) expressing the modular
group and the modular conjugation for Wightmann fields localised
in wedge regions. This results allows some sort of generalisations
to the cases of space-time regions that can be obtained as geometric
transformations of the wedges, provided the vacuum vector to be
invariant under such transformations. In particular, we shall recall
here a remarkable result found out by [Hislop and Longo, 1982] for
double cones and massless scalar fields obeying the Klein-Gordon
equation.

95
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The original result by Hislop and Longo refers to the four-dimensional
case, but nevertheless it can be transferred to two dimensions. In par-
ticular, in order to do so, the scalar field φ(f) has to be smeared
with test functions which are light-cone variables derivatives, namely
f = ∂±g, g being an appropriate test function. We proceed by notic-
ing that double cones O can be mapped into wedge regions W by
means of the inversion map

ρ : (x0, x1) 7→ ρ(x0, x1) =
1

|x|2

(
− x1,−x0

)
, |x|2 = (x0)2 − (x1)2.

Given φ(f) as a solution of the Klein-Gordon equation φ(�f) = 0,
with f a function of the said form, the authors showed that this action
can be implemented on the one-particle Hilbert space H through Uρ
([Hislop and Longo, 1982])

Uρφ(f)Ω = φ(fρ)Ω

where fρ(x) = −(|x|2)
−3
f(ρ(x)). Due to the conformal symmetry, Uρ

extends to a unitary operator Γ(Uρ) onto the Fock space F(H) pre-
serving the vacuum state whose action is given by Γ(Uρ)φ(f)Γ(Uρ)∗ =
φ(fρ) and gives rise to an isometry between the Weyl algebra of the
double cone and the wedge region Γ(Uρ)A (O) Γ(Uρ)

∗ = A (ρ(O)) =

A (W). Since such a unitary preserves the vacuum state, it does also
connect the modular objects corresponding to A (O) and A (W) as

JO = Γ(Uρ) JW Γ(Uρ)
∗

∆itO = Γ(Uρ)∆
it
W Γ(Uρ)

∗

resulting in a geometric action of the modular group within the dou-
ble cone given in terms of conformal transformations as

x± =
1+ x± − e−s(1− x±)
1+ x± + e−s(1− x±)

with x± the standard light-cone variables and s a real dilation param-
eter.

A similar geometric transformation can be introduced to map the
open double cone O ′ into the forward light cone V+ so that the al-
gebras A (O ′) and A (V+) are equivalent by means of the unitary
Γ(T(1/2)UρT(−1)), where T(λ) implements time translations. The re-
lations

JO ′ = Γ
(
T(1/2)UρT(−1)

)
JV+

Γ
(
T(1/2)UρT(−1)

)∗
∆itO ′ = Γ

(
T(1/2)UρT(−1)

)
∆itV+

Γ
(
T(1/2)UρT(−1)

)∗
reproducing a well known result of Buchholz [Buchholz, 1977] stating
that the modular operator and conjugation for the forward light cone
are respectively given by dilations and CPT inversion mapping V+

onto the backward light cone V−, that is ∆itV+
= Γ(δ(2πλ)) and JV+

=

Γ(−CPT).

In case of massive theories the action of the modular group is
known only for wedge regions, again due to the Bisognano-Wichmann
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property. Since massive theories are in general not conformally in-
variant this result cannot be transferred to double cones and similar
regions, unlike the massless cases. It can be shown that the general
action has to be non-local and presumably given in terms of pseudo-
differential operators; in particular if δ = ∂t∆

it|t=0 is the infinitesi-
mal generator of the modular group, then δ = δ0 + δm, where δ0 is
the standard massless generator and δm is expressed in terms of the
action of a pseudo-differential operator depending on the mass. We
refer the reader to [Saffary, 2006; Yngvason, 1994] for progresses in
these directions.

a.3 correlations functions in conformal field theory

In this section we are going to have a closer look at the explicit form of
correlations functions in conformal field theory. In particular we shall
see that conformal invariance, especially in low dimensions, poses
strong restrictions to the form of such correlations functions and al-
most fixes them all, up to some constants, in the case of two and three
points functions.

In two dimensions the conformal group reduces to the set of holo-
morphic and anti-holomorphic functions and in the special case of
chiral theories we are allowed to look at each copy singularly. This
means that, as already pointed out, the conformal group decomposes
into two copies, each one of them is generated by the Virasoro algebra
(2.2.1)

[Ln,Lm] = (n−m)Ln+m +
c

12
m(m2 − 1) δn+m.

A special class of fields is given by primary fields, as described in 2.4,
which have the special property to transform as in (2.4.2)

φ(z) =

(
dg

dz

)h
φ ′(g(z))

under conformal transformations, h being the conformal dimension
of the fields. Here z 7→ g(z) is the conformal mapping for either of the
holomorphic or anti-holomorphic variables, one at a time. This cor-
responds to the finite exponential form of the infinitesimal commuta-
tion relations between such fields and the generators of the Virasoro
algebra

[Ln,φ(z)] = h(n+ 1)znφ(z) + zn+1∂zφ(z).

Correlations functions are defined as vacuum expectation values of
products of fields (in the sense of tempered distribution)

wn(x1, . . . , xn) := (Ω,φ1(x1) . . . φn(xn)Ω)

and the idea is now that, if we require the above quantities to be
invariant under conformal transformations, we may fix the form of
such functions up to some degrees of freedom. In particular we have
to impose that wn(x1, . . . , xn) = w ′n(x ′1, . . . , x ′n), namely

(Ω,φ1(x1) . . . φn(xn)Ω) = (Ω,φ ′1(x
′
1) . . . φ

′
n(x
′
n)Ω)
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where, with obvious understanding of notations, φ ′k(x
′
k) is the new

field after a change under conformal transformations given by φ ′(x ′) =
Uφ(x)U∗. Exploiting such formula we find interesting results.

a.3.1 The two-point function

Let us concentrate first on the two-point function for primary fields
w(2)(x1, x2) = (Ω,φ1(x1)φ2(x2)Ω) and let us impose invariance un-
der translations, dilations and special conformal transformations keep-
ing in mind that primary fields change as

i[P,φ(x)] = ∂xφ(x)

i[D,φ(x)] = (x∂x + h)φ(x)

i[K,φ(x)] = (x2∂x + 2hx)φ(x)

where we have seen in chapter 2.2.1 that P,D,K can be expressed in
terms of L0,L±1. Invariance under translations requires

(Ω, [P,φ1(x1)φ2(x2)]Ω) = 0;

using [A,BC] = B[A,C] + [A,B]C we are led to

0 = (Ω,φ1(x1) [P,φ2(x2)]Ω) + (Ω, [P,φ1(x1)]φ2(x2)Ω)

= (∂x1 + ∂x2)w
(2)(x1, x2)

and thus w(2)(x1, x2) depends only on the difference of the two vari-
ables w(2)(x1, x2) = w(2)(x1 − x2), which is the standard form re-
quired by translations invariance. Along the same lines, for dilations
invariance we have

0 = (Ω, [D,φ1(x1)φ2(x2)]Ω)

= (x1∂x1 + h1 + x2∂x2 + h2)w
(2)(x1, x2)

introducing the variable x = x1−x2, as we have seen above, we obtain
(x∂x + h1 + h2)w

(2)(x) = 0 and thus

1

w(2)(x)
dw(2)(x) = −(h1 + h2)

1

x
dx

which integrates to w(2)(x) = c12 x
−(h1+h2); keep in mind that we

want the correlations functions to diverge whenever the two points
coincide, therefore for x → 0. This implies that h1 + h2 must be
positive. Last, but not the least, we impose invariance under special
conformal transformations

0 = (Ω, [K,φ1(x1)φ2(x2)]Ω)

= (x21∂x1 + 2h1x1 + x
2
2∂x2 + 2h2x2)w

(2)(x1, x2).
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To help the computation we can plug in the formw(2)(x) = c12 x
−(h1+h2)

and work it out:

0 =
(
x21(−1)(h1 + h2)(x)

−1 + 2h1x1+ x22(h1 + h2)(x)
−1 + 2h2x2

)
w(2)(x)

=
(
(x)−1(h1 + h2)(x

2
2 − x

2
1) + 2h1x1 + 2h2x2

)
w(2)(x)

= (−(x1 + x2)(h1 + h2) + 2h1x1 + 2h2x2)w
(2)(x)

= (h1 − h2)(x1 − x2)w
(2)(x)

interestingly enough then, the two fields are correlated only if the two
scaling dimensions coincide, h1 = h2. Of course, all the calculations
must be intended in the sense of distribution, therefore for primary
fields the two-point function takes the form

w(2)(x1 − x2) = lim
ε→0+

(
c12

x1 − x2 − iε

)2h
where the normalisation constant c12 is the only parameter left free
and can be calculated by imposing further requirements, as well as
positivity of the scalar product in the Hilbert space (in the sense of
operators) and spectrum conditions. It is straightforward now to de-
rive back the expression of the two-point function for fermions and
currents: substitution of h = 1/2 and h = 1 gives the results we
have already stated by performing explicit calculations on the fields
themselves.

a.3.2 The three-point function

Similar arguments can be undertaken for the three-point function too.
Again, translations invariance states

(Ω, [P,φ1(x1)φ2(x2)φ3(x3)]Ω) = (∂x1 +∂x2 +∂x3)w
(3)(x1, x2, x3) = 0

meaning that w(3)(x1, x2, x3) must depend on the pairwise difference
of the variables w(3)(x1 − x2, x1 − x3, x2 − x3). Dilations invariance
brings homogeneity

w(3)(x1, x2, x3) =
c123

(x1 − x2)a · (x1 − x3)b · (x2 − x3)c

and special conformal invariance fixes the exponents a,b, c to be a =

h1 + h2 − h3, b = h2 + h3 − h1, c = h3 + h1 − h2; thus fields of
different scaling dimension may still have non-vanishing three-point
function.

Higher correlations functions might in principle be similarly de-
rived, with the only difference that in this case Möbius invariance
does not give enough restrictions as in the case of two and three
points functions. Nevertheless the idea is always to start with the n-
point function w(n)(x1, . . . , xn) and impose invariance under a gen-
eral change after conformal transformations; for each of the Möbius
generators we have, in principle:

(Ω, [Ln,φ1(x1) . . . φn(xn)]Ω) = 0
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and by multiple application of the Leibniz rule for commutators the
above equation can be turned into a differential equation for the cor-
relator as Dw(n)(x1, . . . , xn) = 0, where D is a differential operator,
depending on case by case. Such differential equations are usually
referred to as “Ward identities” and can be used to test concrete mod-
els, although, as we said, they do not restrict enough the form of the
Wightman n-points functions.
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C O N C L U S I O N S A N D O U T L O O K S

The ideas that we have shown allow many more future perspectives,
both from the point of view of modular theory itself and for what
concerns the investigation of embedded theory of observables as cur-
rents models and so forth. The first bunch of questions arising are
related to possible generalisations of the result of Casini and Huerta
to the free Bose fields, trying to look at the corresponding relation
between density matrix (containing the modular Hamiltonian) and
correlators, that in principle should give back the modular “time evo-
lution” for bosons localised in disjoint intervals, as similar to the case
of Fermi fields in two dimensions.

Then one could try to extend such results to the massive case, again
both for the Bose fields and for the Fermi ones, taking advantage of
some already existing results (mainly by [Figliolini and Guido, 1989;
Saffary, 2006]) who showed that in the massive cases the action of the
modular group for the free Bose field in particular space-time regions
is given in terms of a pseudo-differential operator depending on the
mass. Here the techniques mostly go in the direction of functional
analysis and differential equations, although the insights from the
algebraic approach can still be instrumental.

The understanding of the free Bose fields automatically leads to
the characterisation of the currents models and their modular the-
ory, also moving the interest to the study of loop group models and
their representations. In particular, we have seen that suitably cho-
sen gauge transformations help us to trace modular theory back to
an underlying isomorphism between algebras and perhaps a com-
plete understanding of such gauge maps in a more general setting
(maybe of non-standard form) can help very much to have further
developments in that area. Interestingly enough, the conjecture that
the existence of a vacuum preserving isomorphism is connected to
the absence of sectors is still an open problem.

Very challenging is also the characterisation of modular theory in
higher dimensions. The two-dimensional case can be pretty much de-
rived taking the tensor product of two one-dimensional theories and
therefore all the modular objects can be easily derived. On the other
hand, models in three and four dimensions are a wide open area of in-
vestigation and the first attempt could be trying to understand which
features remain the same and which other features present totally
different behaviours instead.

101
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