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1 Introduction 

1.1 Definition and characteristics of stem cells 

A stem cell is an unspecialized cell, which is capable of renewing itself on the one hand, and 

giving rise to specialized cells on the other hand. Depending on its biological niche, a stem 

cell can either divide symmetrically into two identical daughter cells, each with characteristics 

of a stem cell, or asymmetrically into a stem cell and a more specialized cell, a process called 

cellular programming or differentiation. This process of differentiation occurs in a series of 

steps resulting in a cell with an increasingly limited developmental potential. Therefore, stem 

cells provide the basis for the development of the different tissues and organs of the 

multicellular organism as well as for its ability to regenerate. 

Stem cells are typically classified according to their origin, i. e. embryonic, fetal, neonatal, or 

adult stem cells, or their developmental potential (Stem Cells: Scientific Progress and Future 

Research Directions 2001). If a stem cell is capable of giving rise to a whole organism 

including its extraembryonic tissues, it is regarded to be totipotent. All cells from the (murine) 

zygote to the 8-cell-morula are totipotent (Kelly 1977). In comparison, pluripotent stem cells 

can only differentiate into all specialized cell types in the body, encompassing the three 

embryonic germ layers mesoderm, endoderm, and ectoderm as well as germline cells. 

Embryonic stem cells (ESCs) represent one famous example for pluripotent stem cells. They 

are usually derived from the inner cell mass of an early stage embryo, called the blastocyst, 

before implantation in the uterus would normally occur. Once removed from the blastocyst, 

these cells can be cultivated in vitro, where they proliferate indefinitely while maintaining an 

undifferentiated state. Alternatively, they can differentiate into any specialized cell of the 

more than 200 different cell types of the body. ESCs were first obtained from 4- to 5-day-old 

mouse embryos (Evans and Kaufman 1981; Martin 1981), but have now been derived from a 

number of different species including human (Thomson et al. 1998). Multipotent stem cells 

exhibit an even more restricted developmental potential, being only able to differentiate into 

specialized cells of several lineages. After embryonic development, adult stem cells reside in 

various tissues of the fetal, juvenile, or adult body like in the brain, blood vessels or skin 

epithelia, in skeletal muscles, liver, pancreas and so forth. Here, they replace continuously 

dying cells and contribute to the regeneration of the tissue from which they originate. Stem 

cells from the bone marrow are the most studied types of adult stem cells and can be classified 

into two major types: mesenchymal and hematopoietic stem cells. They are multipotent and 
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hence can provide several cell types. Mesenchymal (or stromal) stem cells form bone, 

cartilage, and fat tissue, whereas hematopoietic stem cells form blood and immune cells. They 

are already used in clinic for transplantation after cancer treatment to restore the immune 

system. Unipotent adult stem cells have the capacity to differentiate into one cell type. For 

example, spermatogonial stem cells can only differentiate into sperm cells, providing a 

constant supply of sperm cells for an entire lifetime. 

 

1.2 Cellular reprogramming 

When a sperm and an egg cell fuse together, they form a diploid zygote, which starts to divide 

continuously to provide enough cells for the generation of a new organism. During embryonic 

development, most of the initially unspecialized cells develop into somatic cells with 

characteristic shapes and specialized functions, such as heart muscle cells or neurons. Within 

this well-controlled process, a differentiating cell gets increasingly restricted in its 

developmental potential, leading to a cell expressing specific genes for its specific function in 

the body. The differentiation of cells depends on a stable restriction of their genetic 

information. Cellular reprogramming on the other hand is a process that converts one specific 

cell type into another, including the induction of a somatic cell into a pluripotent stem cell 

(Nicholas and Kriegstein 2010). As mentioned above, cells in a pluripotent state can turn into 

the various types of cells that make up the body. Therefore, they are ideal for studying the 

development of diseases or the effectiveness of drugs, and could also be transplanted to 

regenerate failing organs, which is described in a later chapter. 

 

1.2.1 Inducing pluripotency 

In the last 60 years, researchers put much effort in uncovering the mechanism underlying 

cellular reprogramming. The first study was performed in amphibians at the beginning of the 

second half of the 20
th

 century. In the early 1950´s, Robert Briggs and Thomas King invented 

a technology, called somatic cell nuclear transfer (SCNT), where they transplanted nuclei 

from different embryonic developmental stages of the frog Rana pipiens into enucleated and 

activated oocytes (Briggs and King 1952). Based on these experiments, Sir John B. Gurdon 

was able to show that even more differentiated nuclei from the tadpoles’ intestinal epithelium 

of Xenopus laevis could be reprogrammed to a totipotent state after transplantation into 

enucleated oocytes (Gurdon 1962). Some of these oocytes fertilized in this way were able to 

develop into new tadpoles. The efficiency of the nuclear reprogramming could even be 
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improved by serial transplantations, i. e. taking the nuclei from the developed blastulae and 

transplanting them again into enucleated and activated oocytes. 

It took a further 35 years until the group of Sir Ian Wilmut demonstrated that not only 

amphibian, but also mammalian eggs have the potential to convert a somatic state of a nucleus 

back to the totipotent state (Wilmut et al. 1997). By using the SCNT method, Wilmut and his 

colleagues were able to reprogram the nucleus of an adult mammary epithelial cell, resulting 

in the first cloned mammal, Dolly the sheep. Since Dolly, many other mammalian species had 

been cloned (Wakayama and Yanagimachi 1999; Grisham 2000; Hochedlinger and Jaenisch 

2002). 

Furthermore, ESCs were known to induce pluripotency in somatic cell nuclei after induced 

cell fusion of both cell types (Tada et al. 2001). All these experiments revealed that 

differentiated cell nuclei can be reverted into an undifferentiated state with a higher 

developmental potential. This reversion must have been induced by unknown factors 

contained in oocytes and ESCs. Both methods for inducing toti-/pluripotency have several 

disadvantages. The SCNT method is technically challenging and requires huge sources for 

oocytes. The cell fusion method is also inefficient, and in addition, generates tetraploid cells. 

 

1.2.2 Induced pluripotent stem cells 

It was not until 2006, when the factors being crucial for nuclear reprogramming were 

identified (Takahashi and Yamanaka 2006). In their studies, Takahashi and Yamanaka 

focused on factors which are important for the maintenance of pluripotency in ESCs. They 

initially selected a set of 24 transcription factors and introduced them into murine skin 

fibroblasts by retroviral transfection. Some of these cells formed colonies that showed similar 

characteristics to ESCs. By excluding a series of factors in a stepwise manner, Takahashi and 

Yamanaka finally identified a combination of only four transcription factors, encoded by Oct4 

(octamer binding transcription factor 4), Sox2 (SRY-box 2), Klf4 (Krüppel-like factor 4), and 

c-Myc that was sufficient to induce pluripotency by overexpression in somatic cells. They 

called these cells induced pluripotent stem cells (iPSCs). However, unlike ESCs, the 

generated iPSCs from the first study failed in germ line transmission through chimeric mice. 

This problem was solved in the second iPSC generation (Okita et al. 2007; Maherali et al. 

2007; Wernig et al. 2007). The first human iPSCs (hiPSCs) could be generated in the same 

year by using the same factors (Takahashi et al. 2007). Yu and colleagues from James A. 
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Thomson’s lab used a different combination of genes for the reprogramming (Yu et al. 2007). 

Here, they successfully introduced OCT4, SOX2, NANOG, and LIN28 into human fibroblasts, 

avoiding the transduction with the proto-oncogene c-MYC. 

For their fundamental discovery, Yamanaka together with Sir John B. Gurdon were awarded 

with the Nobel Prize in Physiology or Medicine 2012 “for the discovery that mature cells can 

be reprogrammed to become pluripotent” (The Nobel Prize in Physiology or Medicine 2012, 

press release 2012). The iPSC technology opened a new, incredibly fast growing research 

field, which has been adopted by many laboratories all over the world. 

Substantial progress has been made since the first generated iPSCs in 2006. For instance, 

besides fibroblasts, iPSCs could be generated from many other cell types (Aoi et al. 2008; 

Aasen et al. 2008; Haase et al. 2009; Novak et al. 2010; Chen et al. 2013). It also appeared 

that in some cell types, fewer than four factors are sufficient to induce pluripotency, as shown 

in adult mouse neural stem cells, where only Oct4 is needed (Kim et al. 2009). Researchers 

have also rapidly improved the techniques to generate integration-free iPSCs. First iPSCs 

were generated by random genomic integration of retroviruses containing the four Yamanaka 

factors (Takahashi and Yamanaka 2006). Genomic integration carries the risk of destroying 

functional genes or activating oncogenes, which might result in cancer cells (Okita et al. 

2007). Currently, it is already possible to generate iPSCs with nonintegrating viral vectors, 

like adenoviruses (Stadtfeld et al. 2008) or plasmids (Okita et al. 2008). The attempt to 

reprogram somatic cells even with a DNA-free method has also successfully been shown by 

introducing the reprogramming factors in the form of recombinant proteins into somatic cells 

(Zhou et al. 2009; Kim et al. 2009). However, the recombinant proteins are challenging to be 

produced and purified in the required quantities. In addition, the reprogramming efficiency to 

generate protein-induced pluripotent stem cells is still relatively low. Other approaches to 

circumvent the reprogramming with DNA is to use RNA as a vehicle, like the Sendai virus, 

which has a completely RNA-based reproductive cycle (Fusaki et al. 2009; Ye et al. 2013), or 

synthetically modified mRNA as transcripts of the four Yamanaka factors generating RNA-

induced pluripotent stem cells (Warren et al. 2010). 

 

1.2.3 Stimulus-triggered pluripotency 

Very recent studies indicate that some somatic cells might possess surprisingly huge plasticity 

when exposed to strong external stimuli. Obokata and colleagues showed that leukocyte-
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specific antigen CD45 positive hematopoietic cells could obtain pluripotency after low-pH 

treatment (Obokata et al. 2014a, b). This reprogramming phenomenon does not require the 

introduction of any transcription factor into the cell and is called “stimulus-triggered 

acquisition of pluripotency (STAP)”. Other types of sublethal stress, such as physical damage, 

plasma membrane perforation, heat shocks or high calcium exposure, might also lead to 

reprogramming events in somatic cells, leaving open questions that still need to be addressed. 

Currently, many scientists who tried to reproduce STAP cells have failed, leading to an 

investigation of Obokata´s publications by the RIKEN research institute 

(http://www.riken.jp/en/pr/press/2014/20140314_1). However, if their results are proven to be 

valid, STAP cells could represent an innovative, easy, and efficient way to generate 

pluripotent stem cells and might open a new area in stem cell biology. 

 

1.2.4 Direct transdifferentiation 

Yamanaka´s approach to systematically define a small set of transcription factors to bring a 

somatic cell back to an embryonic stem cell-like state has inspired many scientists to find a 

way in changing the fate of a cell without passing through the pluripotent state, a process 

called direct transdifferentiation or direct reprogramming. Findings in an early study showed 

that a single factor, MyoD, was able to transdifferentiate mouse fibroblasts into skeletal 

muscle cells (Davis et al. 1987). However, attempts to identify a single “master” transcription 

factor have failed until then for most somatic lineages. In light of the success of the iPSC 

technology, fibroblasts could be directly converted into neuronal-, hepatocyte-, or 

cardiomyocyte (CM)-like cells using a combinatorial delivery of multiple transcription factors 

or microRNAs (Vierbuchen et al. 2010; Ieda et al. 2010; Huang et al. 2011). 

All these efforts in improving cellular reprogramming by trying to overcome genomic 

manipulation and at the same time to increase the reprogramming efficiency, seek to make 

these cells safer and therefore applicable for a potential clinical use. 

 

1.3 Cardiac electrophysiology and arrhythmias 

1.3.1 The cardiac conduction system 

The human heart is the first functional organ in the developing embryo, showing its 

importance in providing each cell of the body with oxygen and nutrients by persistent beating 

throughout life (Developmental Biology, 9
th

 Edition, Sinauer Associates Inc.). During systole, 
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blood is pumped out of the contracting heart chambers followed by diastole when the heart 

chambers relax and refill with blood. Although the heart is enervated by the autonomic 

nervous system, it is capable to beat autorhythmically, initiated by specialized cardiac cells in 

the sinoatrial node, located right next to the superior vena cava in the right atrium. Like all 

CMs, they are electrically excitable cells, capable of initiating and propagating action 

potentials (APs). These cells control the heart rate and are therefore called pacemaker cells. 

The generated electrical impulses spread throughout both atria, resulting in their contraction, 

and then toward the atrioventricular (AV) node which is located in the septum between the 

right atrium and ventricle. The electrical conduction is delayed for about 0.1 s to ensure that 

the blood is pumped out of both atria into the ventricles completely, before the latter start to 

contract. The electrical signals propagate further through the conduction system, composed of 

the bundle of His and the Purkinje fibers, to the apex of the heart, where it spreads throughout 

the ventricular myocardium. The electrical activity of the heart over time can be detected by 

electrodes and visualized with an electrocardiogram or ECG (Fig. 1). 

 

 

Figure 1. Correlation of an ECG tracing with the electrical events in the heart. (1) Cells of sinoatrial node 

are at rest. Cells of the sinoatrial node initiate electrical signals spreading throughout the atria represented by a 

prominent P-wave on ECG (2). During propagation of the electrical signals towards the AV node, the atria start 

to contract (3). The electrical signals propagate further through the conduction system to the apex of the heart 

(4) followed by ventricular depolarization (5) and contraction (6). The QRS-complex on the ECG represents 

the ventricular depolarization. The ventricular repolarization is illustrated by a T-wave. (Figure taken from 

CNX Anatomy and Physiology: http://cnx.org/content/m46664/latest/?collection=col11496/latest) 
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The ECG is used as an indispensable clinical tool to monitor the state of heart function. In a 

standard surface ECG, the cardiac cycle is illustrated in typical P-QRS-T-waveforms. The P-

wave represents the depolarization of the atria, followed by their contraction. The QRS-

complex represents the ventricular depolarization. The ventricles begin to contract at the peak 

of the R-wave. Finally, the T-wave depicts the repolarization, which means the electrical 

recovery of the ventricles. The different segments and intervals of an ECG trace, like the PR-

segment or the QT-interval, can give important clinical information about the condition of a 

patient’s heart. 

 

1.3.2 Action potentials and excitation-contraction coupling 

In a healthy heart, the generated electrical signals of the sinoatrial node are propagated by the 

CMs in a strongly synchronized way leading to simultaneous contractions of the cells. The 

process from the electrical excitation of the myocytes to a contraction of the heart is called 

“excitation-contraction coupling”. To ensure a fast electrical conduction, CMs are tightly 

connected to each other through intercalated discs, composed of desmosomes and 

connexones. Thus, small molecules and ions can pass from one cell to another rapidly. The 

heart consists of two major types of cardiac muscle cells: myocardial conducting and 

contractile cells. 

The myocardial conducting cells form the conduction system of the heart. They initiate and 

propagate APs at a constant rate, without possessing a stable resting membrane potential 

(RMP). Rather, their membrane potential is always drifting towards a threshold, caused by a 

slow influx of Na
+
 ions into the cell. This drift is called the pacemaker potential. Upon 

reaching this threshold, calcium channels open and the rapid influx of Ca
2+

 ions leads to a 

depolarization of the cell. The calcium channels close at the maximum of the depolarization 

rate. At the same time, potassium channels open, allowing the efflux of K
+
 ions and resulting 

in repolarization of the cell. 

In contrast, the APs of the myocardial contractile cells, which form the main part of the atria 

and ventricles, can be subdivided into five phases (Fig. 2). In the resting state (phase 4), adult 

CMs have a very negative membrane potential at approximately -80 to -90 mV. It is caused 

by different ion concentrations across the membrane and its selective permeability toward 

various ions. The RMP is dominated by the potassium equilibrium potential according to its 
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electrochemical gradient across the cell membrane. Inward rectifying potassium channels, as 

well as the Na
+
/K

+
 and Na

+
/Ca

2+ 
ion pumps contribute to its maintenance. 

 

Figure 2. AP of myocardial contractile cells. A typical ventricular AP can be subdivided into five phases. 

The RMP of approximately –90 mV is caused by the difference in ionic concentrations and conductances 

across the membrane and is dominated by the potassium equilibrium potential. If the cell gets stimulated by an 

adjacent cell, sodium channels open and a rapid influx of Na+ ions occurs, leading to the depolarization of the 

cell (phase 0). Phase 1 is characterized by an early repolarization (“notch”) due to the inactivation of the fast 

sodium channels and a net efflux of K+ ions. The following plateau phase is sustained by a balance between the 

net inward calcium and outward potassium currents. The Ca2+ ion influx leads to cell contraction. Phase 3 is 

predominated by a net K+ ion efflux, leading to the repolarization of the cell. The delayed rectifier potassium 

channels close, when the membrane potential is restored. 

 

In phase 0, voltage-gated sodium channels located in the plasma membrane open immediately 

after electrical stimulation coming from an adjacent cell. This leads to a rapid influx of Na
+
 

ions into the cell and causes the depolarization of the cell. Phase 1 of the AP is due to the 

immediate inactivation of the fast sodium channels and the simultaneous transient outward 

current of K
+
 ions (Ito). This short repolarization is followed by a plateau phase, where Ca

2+
 

ions enter the cell through voltage-gated L-type calcium channels (phase 2). The plateau is 

caused by a balance between the inward calcium current and the outward potassium current. 

After the inactivation of the calcium channels, the cell repolarizes rapidly as the slow delayed 

rectifier potassium channels remain open, accompanied by the additional opening of rapid 

delayed rectifier potassium channels as well as inward rectifying potassium channels (phase 

3). The delayed rectifier potassium channels close, when the RMP is accomplished and the 

cycle starts again. 
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The extended refractory period during the plateau phase allows the cell to fully contract 

before another AP can occur. During this phase, Ca
2+

 ions enter the cell and activate 

ryanodine receptors resulting in the Ca
2+

 ion release from the sarcoplasmic reticulum into the 

cytosol. This positive feedback process is called “calcium-induced calcium release” and leads 

to a significantly increased cytoplasmic Ca
2+

 ion concentration, which is essential for the cell 

contraction. The released Ca
2+

 ions bind directly to the protein troponin C, which is part of the 

sarcomeric myofilaments and switches on the contractile machinery. For relaxation of the cell, 

intracellular Ca
2+ 

ions must decline, allowing Ca
2+

 ions to dissociate from troponin. This 

requires Ca
2+

 ion transport out of the cytosol by four pathways involving sarcoplasmic 

reticulum Ca
2+

-ATPase, sarcolemmal Na
+
/Ca

2+
 exchange, sarcolemmal Ca

2+
-ATPase or 

mitochondrial Ca
2+

 uniport (for review see Bers 2002). 

 

1.3.3 Structure, function, and regulation of the cardiac sodium channel 

The cell membrane consists of a hydrophobic phospholipid bilayer, which forms a natural 

barrier to ions and other molecules. Ion pumps and ion channels ensure a controlled exchange 

of ions between the inside of a cell and its environment. Ion channels are integral 

transmembrane proteins and are highly selectively permeable to certain ions. They can change 

between an opened and a closed state, a process, which is called gating. The gating process in 

different ion channels may be triggered by a voltage change across the cell membrane, by 

binding of ligands to the channel, or by the phosphorylation status of the channel as well as 

mechanical or other stimuli. In CMs, various ion channels contribute to the maintenance of 

the negative RMP and the generation of APs, which finally leads to the contraction of the cell 

(Fig. 2). 

The cardiac sodium channel consists of a transmembrane pore-forming α-subunit associated 

with one or two ancillary modulatory -subunits (Abriel 2010). It is responsible for the rapid 

upstroke during phase 0 of nonpacemaker APs through a fast inward sodium current (INa) and 

for the maintenance of the electrical conduction in the heart. The family of voltage-gated 

sodium channel α-subunits encompasses nine members (NaV1.1 – NaV1.9) with a homology 

of more than 50 % in their amino acid sequences (Catterall et al. 2005). The isoform NaV1.5 

is predominantly, but not exclusively expressed in the human heart (Blechschmidt et al. 

2008). The 2016 amino acids long α-subunit is encoded by the sodium channel, voltage-gated, 

type V, alpha subunit (SCN5A) gene, which is located on chromosome 3p21 and consists of 

28 exons. Immunocytochemical staining in murine CMs showed its preferential localization 
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in intercalated discs (Maier et al. 2002; Maier et al. 2004) and in the T-tubular system. 

NaV1.5 is composed of four homologous domains (DI – DIV), each containing six 

transmembrane segments (S1 – S6). The four domains are connected to each other by 

cytoplasmic linker sequences (see Fig. 4). The positive charges of amino acid residues in the 

S4 segments are assumed to act as the voltage sensor important for activating the channel, 

whereas the linking region between DIII and DIV together with the COOH terminus is 

thought to act as the inactivation gate (Stühmer et al. 1989; West et al. 1992; Motoike et al. 

2004). The region between S5 and S6 within the four domains forms the narrowest part of the 

pore and the negatively charged amino acid residues are responsible for ion selectivity. 

NaV1.5 is a dynamic molecule which changes its structural conformation in response to 

voltage changes across the cell membrane. It can exist in an activated (opened), inactivated 

(closed), or deactivated (closed) state (Fig. 3). 

 

 

Figure 3. The conformational states of the voltage-gated sodium channel. During RMP, the activation gate 

of the sodium channel is closed, preventing Na+ ions from entering the cell (resting or deactivated state). Upon 

depolarization, the activation gate opens, allowing Na+ ions to pass the membrane (activated state). When the 

inactivation gate closes, the inward INa is blocked (inactivated state).  During repolarization the sodium channel 

returns to its deactivated state. (Figure modified and taken from: http://droualb.faculty.mjc.edu/Course%20 

Materials/Physiology%20101/Chapter%20Notes/Fall%202011/chapter_7%20Fall%202011.htm) 
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According to this model, the activation gate of the sodium channel is closed in the resting 

state of the cell, whereas the inactivation gate is open. Upon voltage changes of the membrane 

coming from adjacent cells, the fast opening of the activation gate in the voltage-sensitive 

channel allows Na
+
 ions to enter and therefore depolarize the cell immediately. After a few 

milliseconds, the inactivation gate closes and stops the inward current. The channel is 

inactivated and not able to open again until further conformational changes. During 

repolarization, the activation gate closes and the inactivation gate reopens. The channel is now 

again in its deactivated state and ready to open with the next voltage change of the membrane. 

Although NaV1.5 is already a self-forming functional unit that conducts Na
+
 ions, a large 

number of proteins are involved in the regulation of the cardiac sodium channel (reviewed by 

Abriel 2010). The -subunits directly interact with the -subunit through their extracellular 

immunoglobulin-fold domains and play important roles in NaV1.5 cell surface expression and 

channel gating. Four β-subunits (β1 – β4) have been identified in the human heart. They all 

consist of an N-terminal domain, a transmembrane segment, and an intracellular C-terminal 

domain. In addition, several other proteins, including adapter, accessory, cytoskeletal and 

regulatory proteins are associated with NaV1.5, forming macromolecular complexes and are 

involved in regulation of the channel activity, trafficking, and cellular localization as well as 

channel biosynthesis and degradation (for more details see Abriel 2010 or Rook et al. 2012). 

 

1.3.4 Cardiac sodium channelopathies 

Cardiac arrhythmias are any inotropic or chronotropic alterations in the rhythm of the heart 

beat. Thereby, the electrical activity of the heart can either be too slow (bradycardia) or too 

fast (tachycardia) in a regular or irregular way. Both the atria as well as the ventricles can be 

affected. Cardiac arrhythmias can be life-threatening and are one of the major causes of 

mortality in developed countries (Wolf and Berul 2008). Sudden arrhythmic deaths can either 

be associated with a structural heart disease or with an electrical disease in the structurally 

normal heart. Many arrhythmic syndromes are now known to have an underlying genetic 

background. Arrhythmias primarily caused by mutations in genes encoding for cardiac ion 

channels, including sodium, potassium and calcium channels, are called cardiac 

channelopathies (Wilde and Bezzina 2005). The first mutation in SCN5A was reported in 

patients with Long-QT syndrome (LQTS) type 3 (Wang et al. 1995). In 1998, mutations in 

SCN5A were also described in patients with Brugada syndrome (BrS, Chen et al. 1998). To 
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date, more than 200 different mutations in the SCN5A gene have been identified, the vast 

majority in patients with either LQTS type 3 or BrS (Ruan et al. 2009; Fig. 4). 

 

Figure 4. Localization of different mutations in the α-subunit of the cardiac sodium channel associated 

with arrhythmogenic cardiac disorders. LQT: Long-QT syndrome, BrS: Brugada syndrome, CCD: cardiac 

conduction disease, SSD: sick sinus node syndrome, DCM: dilated cardiomyopathy, MIX: mixed phenotype. 

(Figure taken from Ruan et al. 2009) 

 

Several other cardiac diseases are also linked to mutations in this gene, such as cardiac 

conduction disease, sick sinus node syndrome, and dilated cardiomyopathy. Besides these 

distinct diseases, some genetic defects lead to overlapping syndromes, where clinical 

characteristics of more than one disease exist in the same patient. The broad phenotypic range 

of SCN5A mutations indicates the importance of tight sodium channel regulation in 

maintaining normal cardiac rhythmicity. Mutations at different sites of the protein might 

cause distinct conformational changes leading to specific electrophysiological alterations. 

This may provide an explanation why different mutations in the SCN5A gene can lead to 

either loss- or gain-of-functions of the protein, and therefore to different clinical phenotypes. 

In addition, mutations in the genes encoding for the β-subunit of the cardiac sodium channel 

as well as for the proteins in the associated macromolecular complex can also cause 

arrhythmias (Ruan et al. 2009). 
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1.3.4.1 SCN5A mutations and Long-QT syndrome  

LQTS is a hereditary cardiac disease characterized by prolonged QT-intervals on the ECG 

and a high risk of life-threatening arrhythmias. Mutations in several genes (KCNQ1, KCNH2, 

KCNE1, KCNE2, CACNA1c, CAV3, SCN5A, and SCN4B) can cause LQTS. Various subtypes 

of LQTS exist, each associated with distinct clinical features and underlying genetic defects. 

LQTS can be inherited in an autosomal dominant or an autosomal recessive fashion. The most 

common causes are mutations in the genes KCNQ1, KCNH2, and SCN5A, leading to LQTS 

type 1, 2, and 3, respectively. 

LQTS type 3 is characterized by an abnormal prolongation of the ventricular repolarization 

revealed by a prolonged QT interval on the ECG with susceptibility to ventricular tachycardia 

and ventricular fibrillation. Patients with LQTS type 3 display arrhythmias mainly at slow 

heart rates (e. g. during rest or sleep), and are often present with bradycardia (Schwartz et al. 

2001). Cardiac arrest is often the first clinical event and patients are at high risk for sudden 

death (Zareba et al. 2001). 

A large number of SCN5A mutations have been characterized as leading to or predisposing to 

LQTS type 3. The SCN5A mutations involved in LQTS type 3 slow the inactivation of the 

sodium channel, resulting in prolongation of the Na
+
 ion influx during depolarization. In 

addition, the mutant sodium channels recover faster from inactivation, allowing for sodium 

channels to reopen, leading to an increased persistent INa during the AP plateau phase. 

Therefore, delayed repolarization and prolonged action potential durations (APDs) occur, and 

subsequent early afterdepolarizations (EADs) may trigger torsades de pointes and sudden 

cardiac death (Bennett et al. 1995). 

 

1.3.4.2 SCN5A mutations and Brugada syndrome 

The BrS is a congenital cardiac disease which may cause unexpected sudden cardiac death in 

apparently healthy people due to severe disturbances of the heart rhythm. BrS usually affects 

young and middle-aged males in their third or fourth decade of life but can also appear less 

frequently during infancy (Antzelevitch and Fish 2006; Chen and Priori 2008). The symptoms 

typically occur during sleep or at rest, and may include seizures, syncope, arrhythmias as 

polymorphic ventricular tachycardia or ventricular fibrillation and even cardiac arrest 

(Antzelevitch et al. 2005). The disease was first recognized by the Brugada brothers as a new 

clinical entity in the early 1990´s (Brugada and Brugada 1992). Patients diagnosed with BrS 
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have a structurally normal heart but show an abnormal ECG, characterized by an atypical 

right bundle branch block and a ST-segment elevation in the precordial leads V1 to V3 of a 

classical 12-lead ECG. The ECG manifestations of BrS patients are often dynamic and can 

vary spontaneously, i. e. it can be abnormal at times, but completely normal at others. For 

diagnostic purposes, the typical ECG pattern in BrS patients can be provoked by the 

administration of the sodium channel blockers ajmaline, flecainide, or procainamide to 

confirm or demask BrS (Antzelevitch and Fish 2006). 

The only available and effective treatment for BrS patients today is an automatic implantable 

cardioverter-defibrillator (ICD; Brugada et al. 1999; Antzelevitch and Fish 2006). It senses 

the heart beats and gives an electrical shock, when potentially dangerous ventricular 

arrhythmia is detected. These electrical shocks are painful to the patient, but prevent him from 

sudden cardiac death. 

BrS is inherited autosomal dominant but with incomplete penetrance. Mutations in the genes 

encoding for the α- and β-subunits of the cardiac L-type calcium channel (CACNA1C, 

CACNB2b), the β-subunits of the sodium channel (SCN1B, SCN3B), glycerol-3-

phosphatedehydrogenase 1-like enzyme (GPD1L), as well as genes that effect the potassium 

outward current (KCNE3, KCND3, KCNE5) are linked to BrS (reviewed by Mizusawa and 

Wilde 2012). In about 18 – 30 % of all BrS patients, a mutation in the SCN5A gene was 

identified (Antzelevitch et al. 2005). Today more than 100 different SCN5A mutations have 

been reported, including missense mutations, nonsense mutations, splice site mutations, and 

nucleotide insertions/deletions, which may alter mRNA splicing or create a stop codon by 

shifting the open reading frame (Mizusawa and Wilde 2012). Although extensive research on 

BrS has revealed parts of its genetic background and clinical characteristics in the last two 

decades, many questions still remain. For example, the mechanism that plays the central role 

of the disease is not clearly understood. Furthermore, limited progress has been made in the 

development of treatment strategies.  

 

1.3.4.3 Model systems for studying SCN5A mutation-caused channelopathies  

The majority of current functional studies investigating the underlying electrophysiological 

consequences of SCN5A mutations have either relied on heterologous expression systems or 

on transgenic mouse models. 
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In heterologous expression systems, the mutated gene of interest is ectopically expressed in 

noncardiac cells, such as Xenopus oocytes, human embryonic kidney (HEK) cells or Chinese 

hamster ovary cells (Wei et al. 1999; Bankston et al. 2007; Makita et al. 2008). These model 

sytems do not consider the macromolecular protein complex, in which ion channels are 

naturally embedded. However, this might be essential to reproduce the electrophysiological 

and molecular phenotype of the mutation. In this respect, characterization of sodium channel 

mutations using heterologous expression systems in nonexcitable cells can produce 

inconsistent and even confounding results. For instance, Watanabe and colleagues showed 

that heterologous expression of SCN5A mutation G3823A (p.D1275N) in Chinese hamster 

ovary cells or tsA201 demonstrated near-normal sodium channel function. In contrast, the 

same mutation expressed in knock-in mice revealed impaired sodium channel function, 

faithfully phenocopying the human disease (Watanabe et al. 2011). 

Several transgenic mouse models carrying SCN5A mutations have been established (reviewed 

by Derangeon et al. 2012). The first knock-in mouse model (SCN5A
Δ/+

) containing a three 

amino acid deletion at position 1505 – 1507 (ΔKPQ) was generated for studying LQTS type 3 

(Nuyens et al. 2001). This mouse model showed typical features of LQTS type 3, such as QT 

prolongation on ECG, spontaneous ventricular tachycardia and EADs caused by increased 

persistent INa. In addition, an early study reported that knock-in mice carrying the Scn5a  

mutation (p.1798insD) revealed overlap features of both LQTS type 3 and BrS (Remme et al. 

2006), similar to the phenotype of patients carrying the human equivalent mutation 5387 – 

5389insTGA (p.1795insD; Bezzina et al. 1999). 

In contrast to the heterologous expression systems, mouse models provide important 

constituents of the complex living environment of an ion channel so as to reproduce the exact 

molecular and electrophysiological phenotype. Mouse models of sodium channelopathies 

appear as promising tools for understanding the pathophysiological sequence of the diseases. 

However, there are some limitations of the mouse models, which are mainly associated with 

the differences between mouse and human physiology, such as the heart rate (much higher 

rate in mice) and AP morphology (no plateau phase and a shorter APD in mice), as mice use 

less L-type calcium channels. In addition, the generation of mouse models is expensive and 

time consuming. 

The hiPSC technology allows the generation of patient-specific pluripotent stem cells. The 

remarkable potential of self-renewal and differentiation capacities of hiPSCs allows us to 
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propagate them in vitro almost indefinitely and to differentiate them into cell types of interest. 

In this way, personalized CMs could be potentially limitlessly generated, which would 

obviate the need for heterologous expression systems and circumvent species-specific 

variations. 

 

1.4 Application of human iPSCs in cardiac research 

The discovery of inducing pluripotency in somatic cells has opened a very exciting and 

promising field with regard to potential applications in medical research. Although the hiPSC 

technology still needs improvements and refinements, its contributions to disease modelling, 

drug screening and discovery, toxicity tests as well as cell transplantation studies are already 

well-recognized (Bellin et al. 2012; Fig. 5). 

 

 

Figure 5. Promises of hiPSCs in medical research. Generated hiPSCs from a patient with a degenerative 

disease could be used for cellular therapy by autologous transplantation to repair degenerated or damaged 

tissues. Another medical use is to derive hiPSCs from patients with genetically inherited or other disorders, 

differentiate them in vitro and get novel insights into the molecular mechanisms of the disease. Differentiated 

cells of interest can also provide platforms for toxicology testing and personalized drug development. (Figure 

taken from Bellin et al. 2012) 

 

1.4.1 Cell replacement therapy 

The hiPSC technology offers the possibility to treat many degenerative diseases, including 

diabetes, Alzheimer´s disease, Parkinson´s disease or cardiovascular diseases by autologous 

cell transplantation (Fig. 5). The risk of immune rejection after autologous transplantation 

would be minimized and the use of immunosuppressive drugs might become unnecessary. In 

contrast to human ESCs (hESCs), patient-specific hiPSCs circumvent ethical concerns 

regarding their origin. 
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First therapeutic application studies with a mouse model of sickle cell anemia revealed 

promising results and provided a proof-of-concept illustration of the therapeutic use of iPSCs 

(Hanna et al. 2007). In this study, mice suffering from this disease could be rescued by 

autologous transplantation of iPSC-derived hematopoietic progenitor cells after the correction 

of the mutated hemoglobin allele by homologous recombination. 

Studies like this may support the idea of using hiPSCs for heart regeneration. Recent work 

showed that hiPSC-derived CMs from a heart failure patient were able to engraft, survive, and 

integrate structurally with the host CMs after transplantation into rat hearts (Zwi-Dantsis et al. 

2013). However, the correction of gene defects in (h)iPSCs remains challenging. More 

research focus has to be applied to improve efficiencies of gene correction technologies such 

as the use of zinc-finger nucleases (Wang et al. 2012), transcription activator-like effector 

nucleases (Hockemeyer et al. 2011), or clustered regularly interspaced short palindromic 

repeats (Mali et al. 2013) that induce DNA double-stranded breaks, followed by subsequent 

homology directed repair. Further investigation is necessary to ensure that the use of hiPSCs 

in cellular therapy is safe for patients and applicable in future. 

 

1.4.2 Disease modelling 

Patient-specific hiPSCs as a renewable and unlimited source for CMs also provide the 

possibility to study the pathophysiology of specific genetically inherited cardiac diseases in 

vitro (Fig. 5). Here, patient-specific hiPSC-derived CMs can act as a complementary model 

system to get a deeper insight into the molecular and electrophysiological mechanisms of 

arrhythmic syndromes. Patient-specific hiPSCs have already been generated from a wide 

spectrum of cardiac channelopathies, including LQTS type 1 (Moretti et al. 2010), type 2 

(Itzhaki et al. 2011; Matsa et al. 2011; Lahti et al. 2012), and type 3 (Ma et al. 2013; 

Terrenoire et al. 2013), Timothy syndrome (Yazawa et al. 2011), and catecholaminergic 

polymorphic ventricular tachycardia (CPVT, Fatima et al. 2011; Novak et al. 2012). All of 

these hiPSC models showed that the patient-specific hiPSC-derived CMs could recapitulate 

the disturbed electrophysiological phenotype of the arrhythmia syndromes in vitro. 

Currently, four different (h)iPSC models have been generated for studying SCN5A mutation-

related sodium channelopathies. The first iPSC model was generated from mouse embryonic 

fibroblasts (MEFs) of a Scn5a
Δ/+

 mouse model (ΔKPQ), showing that Scn5a
Δ/+

 iPSC-derived 

CMs could recapitulate the typical pathophysiological phenotype of LQTS type 3 in vitro 
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(Malan et al. 2011). In another study, Davis and colleagues generated iPSCs from tail tip 

fibroblasts of the Scn5a
1798insD/+

 mouse, and differentiated them into CMs. They showed that 

Scn5a
1798insD/+

 iPSC-derived CMs exhibited features of both loss-of-function (reduced INa 

density) and gain-of-function (larger persistent INa), mirroring the defects observed in primary 

adult CMs isolated from the Scn5a
1798insD/+

 mouse (Davis et al. 2012). Subsequently, hiPSCs 

were generated from a patient carrying the equivalent SCN5A
1795insD/+

 mutation in this study, 

and patch clamp measurements on derivative CMs revealed the biophysical abnormalities 

similar to those in mouse Scn5a
1798insD/+

 iPSC-derived CMs. It is interesting to note that the 

SCN5A
1795insD/+

 mutation clinically gives rise to an overlap phenotype of LQTS type 3 and 

BrS with conduction defects due to both gain- and loss-of-function effects on Nav1.5 (Bezzina 

et al. 1999). Moreover, hiPSCs carrying two other SCN5A mutations (p.F1473C, p.V1763M) 

were derived from patients with LQTS type 3 (Ma et al. 2013; Terrenoire et al. 2013). CMs 

derived from these hiPSCs showed significantly prolonged APD and enhanced persistent INa, 

recapitulating the typical pathophysiological phenotype of LQTS type 3. All of these studies 

indicate that (h)iPSC-derived CMs are suitable for studying complex sodium channel 

mutations in vitro. To our knowledge, no hiPSCs models have been reported regarding BrS 

associated with a SCN5A mutation. 

 

1.4.3 Drug discovery and toxicity tests 

In the last decade, novel drug discovery, development, and safety testing consisted of an 

arduous and expensive process. In 2001, drug development was abandoned because of lack of 

efficacy in 30% of the medicines that entered clinical trials, and in another 30% because of 

safety concerns such as cardiotoxicity and hepatotoxicity (Laustriat et al. 2010). 

One major reason for the difficult translation of drug discovery from molecular levels and 

animal models to human therapeutics is the lack of economical and reliable methods that can 

accurately mimic the human physiological response. So far, the success of preclinical phases 

of drug development is mainly based on animal models (Gunaseeli et al. 2010). For instance, 

a number of drugs have been developed that showed therapeutic effects in rodent models of 

amyotrophic lateral sclerosis. Unfortunately, all of them turned out to be ineffective in human 

patients, emphasizing the necessity of disease models using human cells (Groeneveld et al. 

2003; Shefner et al. 2004).  
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For the development of anti-arrhythmic drugs, hiPSC-derived CMs may be useful in filling 

the gap between animal models and clinical trials. Importantly, they exhibit many of the 

characteristics of normal in vivo CMs, including molecular, structural, and functional 

properties such as ion channel, transporter, and receptor expression, as well as similar 

electrophysiological properties and biochemical responses (Ma et al. 2011). Recent studies 

show that hiPSC-derived CMs respond to specific drugs in a similar way that the human heart 

responds (Dick et al. 2010). Due to the properties of disease-specific hiPSC-derived CMs 

(e. g. cells from patients with sodium channelopathies), their application would provide a 

unique and predictive model for the pre-clinical screening of candidate anti-arrhythmic 

pharmacological agents. In addition, the effective development of new drugs requires 

predictive toxicity assays of adequate accuracy during preclinical testing. Currently, CMs 

from animals are used in pre-clinical models for cardiac toxicity tests. However, 

pharmaceuticals are designed to act on human targets. Because of species-related differences, 

the increased risk of cardiotoxicity may not be recognized prior to clinical trials. Furthermore, 

the use of animals is costly and involves ethical concerns. Differentiated CMs derived from 

hiPSCs may provide an alternative source for cardiac toxicity tests. 

 

1.5 Aim of this thesis 

The aim of this thesis was to establish an in vitro cell culture system using the hiPSC-

technology as a disease model to study the pathophysiological and molecular mechanisms of 

BrS putatively caused by the SCN5A point mutation C5435A (p.S1812X). The scientific and 

technological objectives of the work included: 

(1) Generation and characterization of hiPSCs from the BrS patient and control hiPSCs 

from a donor without a known inherited cardiac disease. 

(2) Differentiation of the BrS- and Ctrl-hiPSCs into functional CMs. 

(3) Electrophysiological phenotype characterization of the BrS- compared to Ctrl-

hiPSC-derived CMs (BrS-CMs, Ctrl-CMs). 

(4) Effects of experimental drugs on the function of hiPSC-derived CMs. 

(5) Analysis of SCN5A expression on mRNA and protein level in BrS- compared to 

Ctrl-CMs. 
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2 Materials and methods 

2.1 Materials 

2.1.1 Cells 

Mouse embryonic fibroblasts (MEFs): isolated from 15- to 17-day-old embryos of NMRI 

mice (Central Animal Facility, Universiy Medical Center Göttingen) 

Human mesenchymal stem cells (hMSCs): BM69 >> isolated from bone marrow aspirate of 

a 18-year-old male patient (without known cardiac disease) left from diagnostic purposes, 

Department of Accident Surgery, Universiy Medical Center Göttingen; BM76 >> isolated 

from bone marrow aspirate of a 45-year-old female patient (without known cardiac disease) 

left from diagnostic purposes, Department of Hematology and Oncology, Universiy Medical 

Center Göttingen; BM77 >> obtained from bone marrow aspirate of a 50-year-old male BrS 

patient, Department of Cardiology and Pneumology, Universiy Medical Center Göttingen 

Human embryonic stem cells (hESCs): stem cell line HES03 generated by ES Cell 

International (Singapore) and imported from NIH National Stem Cell Bank 

Human induced pluripotent stem cells (hiPSCs): generated from hMSCs (BM69, BM76, 

BM77) with single lentivirus particles (OCT4, SOX2, LIN28, NANOG) or STEMCCA 

lentivirus; proved by the Institutional Ethical Committee (21/2/10), Universiy Medical 

Center Göttingen 

 

2.1.2 Oligonucleotides 

All oligonucleotides used for polymerase chain reaction (PCR) were purchased from Eurofins 

MWG Operon. The sequences are listed in alphabetical order (Table 1) together with the 

amplified fragment length (F), annealing temperature (TA), and number of cycles (C). 
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Table 1. Oligonucleotides used for DNA sequencing and PCR analyses 

Gene Sequence F [bp] TA [°C] C 

AFP 
for: 5´-ACT CCA GTA AAC CCT GGT GTT G-3´ 

rev: 5´-GAA ATC TGC AAT GAC AGC CTC A-3´ 
255 60 33 

ALB 
for: 5´-CCT TTG GCA CAA TGA AGT GGG TAA CC-3´ 

rev: 5´-CAG CAG TCA GCC ATT TCA CCA TAG G-3´ 
284 62 35 

α-MHC 
for: 5´-GTC ATT GCT GAA ACC GAG AAT G-3´ 

rev: 5´-GCA AAG TAC TGG ATG ACA CGC T-3´ 
413 60 35 

CASQ2 
for: 5´-GGT CAC GCA AAA ACA GTT CC-3´ 

rev: 5´-CGA AGG CTT GGA CTT CCA GT-3´ 
284 60 40 

cTNT 
for: 5´-GAC AGA GCG GAA AAG TGG GA-3´ 

rev: 5´-TGA AGG AGG CCA GGC TCT AT-3´ 
305 55 35 

FOXD3 
for: 5´-GTG AAG CCG CCT  TAC TCG TAC-3´ 

rev: 5´-CCG AAG CTC TGC ATC ATG AG-3´ 
353 61 38 

GAPDH 
for: 5´-AGA GGC AGG GAT GAT GTT CT-3´ 

rev: 5´-TCT GCT GAT GCC CCC ATG TT-3´ 
265 55 34 

GDF3 
for: 5´-TTC GCT TTC TCC CAG ACC AAG GTT TC-3´ 

rev: 5´-TAC ATC CAG CAG GTT GAA GTG AAC AGC ACC-3´ 
331 54 32 

LIN28 
for: 5´-AGT AAG CTG CAC ATG GAA GG-3´ 

rev: 5´-ATT GTG GCT CAA TTC TGT GC-3´  
410 52 36 

NANOG 
for: 5´-AGT CCC AAA GGC AAA CAA CCC ACT TC-3´ 

rev: 5´-ATC TGC TGG AGG CTG AGG TAT TTC TGT CTC-3´ 
164 64 36 

SCN5A 

(1) 

for: 5´-TCA ACT TCC AGA CCT TCG CC-3´ 

rev: 5´-CGA TAC GGA GTG GCT CAG AC-3´ 
408 60 35 

SCN5A 

(2) 

for: 5´- GAG AGC ACC GAG CCC CTG AGT GAG G-3´ 

rev: 5´-CAC CAT GGG CAG GTC CAT GTT GAT G-3´ 
189 59 35 

SYP 
for: 5´-GCC TGT CTC CTT GAA CAC GAA C-3´ 

rev: 5´-TAC CGA GAG AAC AAC AAA GGG C-3´  
288 56 35 

TH 
for: 5´-GCG GTT CAT TGG GCG CAG G-3´ 

rev: 5´-CAA ACA CCT TCA CAG CTC G-3´ 
215 60 34 

AFP: alpha-1-fetoprotein, ALB: albumin, α-MHC: myosin heavy chain (alpha), CASQ2: calsequestrin 2, 

cTNT: cardiac troponin T, FOXD3: forkhead box D3, GAPDH: glyceraldehyde-3-phosphate dehydrogenase, 

GDF3: growth differentiation factor 3, SYP: synaptophysin, TH: tyrosine hydroxylase 

 

2.1.3 STEMCCA lentivirus 

Human iPSCs were generated from hMSCs using the humanized single polycistronic 

lentiviral “stem cell cassette” (STEMCCA) system (kindly provided by Prof. Kotton, Boston 

University School of Medicine). This vector contains all four Yamanaka factors OCT4, SOX2, 

KLF4, and c-MYC, separated by the self-cleaving 2A peptide and internal ribosome entry site 

(IRES) sequences, driven by a constitutive elongation factor-1 alpha (EF-1α) promoter (Fig. 

6). The STEMCCA lentivirus contains also loxP sites for a potential Cre-mediated removal of 

the transgenes after successful reprogramming. However, even after excision, around 200 bp 

of an inactive viral long terminal repeat site remains in the host genome, hence the risk of 

insertional mutagenesis may not be completely eliminated (Somers et al. 2010). 
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Figure 6. Excisable human STEMCCA lentivirus containing the reprogramming factors OCT4, KLF4, 

SOX2, and c-MYC. The factors are separated by 2A peptide and IRES sequences and driven by the EF-1α 

constitutive promoter. The vector is flanked with loxP sites. (Figure taken from Merck Millipore) 

 

2.1.4 Antibodies 

 

Table 2. Primary antibodies used for immunofluorescence (IF) and Western blot (WB) analyses 

Antigen Type Supplier Dilution 

   IF WB 

AFP polyclonal rabbit IgG Dako, A0008 1 : 100 - 

α-actinin mouse IgG1 Sigma-Aldrich, A7811 1 : 1000 1 : 10 000 

class III β-tubulin mouse IgG2A  Covance®, MMS-435P 1 : 2000 - 

cTNT mouse IgG1 Thermo Scientific, MS295PABX 1 : 200 - 

CamKII rabbit IgG D. Bers, University of California - 1 : 12 000 

Cx43 rabbit IgG Abcam, ab11370 1 : 1000 - 

GAPDH mouse IgG Biotrend, BT46-9995-55 - 1 : 50 000 

LIN28 goat IgG R&D Systems, AF3757 1 : 300 - 

MLC2a mouse IgG2B Synaptic Systems, 311-011 1 : 200 - 

NANOG goat IgG R&D Systems, AF1997 1 : 200 - 

NaV1.5 (1) mouse IgM Abcam, ab62388 1 : 100 failed 

NaV1.5 (2) polyclonal rabbit IgG Alomone Labs, ASC-005 - failed 

NaV1.5 (3) polyclonal guinea pig Alomone Labs, AGP-008 - failed 

NaV1.5 (4) polyclonal rabbit IgG Alomone Labs, ASC-013 - 1 : 2000 

OCT4 goat IgG R&D Systems, AF1759 1 : 40 - 

SMA mouse IgG2A Sigma-Aldrich, A2547 1 : 3000 - 

SOX2 mouse IgG2A R&D Systems, MAB2018 1 : 50 - 

SSEA4 mouse IgG Abcam, ab16287 1 : 100 - 

TRA-1-60 mouse IgM Abcam, ab16288 1 : 200 - 

CamKII: Ca2+/calmodulin-dependent protein kinase II, Cx43: connexin 43, MLC2a: myosin light chain 2 

(atrial), SMA: smooth muscle actin, SSEA4: stage-specific embryonic antigen 4 
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Table 3. Secondary antibodies 

Antibody Supplier Dilution 

Alexa 488-conjugated goat-α-mouse IgG Life Technologies™, A-11001 1 : 200 

Cy3-conjugated donkey-α-goat IgG Jackson ImmunoResearch, 705-166-147 1 : 600 

Cy3-conjugated goat-α-mouse IgG + IgM Jackson ImmunoResearch, 115-165-068 1 : 300 

Cy3-conjugated goat-α-rabbit IgG Jackson ImmunoResearch, 111-165-003 1 : 800 

FITC-conjugated donkey-α-rabbit IgG Jackson ImmunoResearch, 711-095-152 1 : 200 

FITC-conjugated goat-α-mouse IgG Jackson ImmunoResearch, 115-096-072 1 : 200 

FITC-conjugated goat-α-mouse IgM Jackson ImmunoResearch, 115-095-020 1 : 100 

HRP-conjugated donkey-α-rabbit IgG GE Healthcare, NA934 1 : 10 000 

HRP-conjugated goat-α-mouse IgG + IgM Jackson ImmunoResearch, 115-036-068 1 : 10 000 

HRP-conjugated sheep-α-mouse IgG GE Healthcare, NA931V 1 : 20 000 

 

2.1.5 Media, solutions, and chemicals for cell culture 

Table 4. Components for cell culture 

Components Supplier 

AccutaseTM PAA Laboratories #L11-007 

B-27® serum free supplement (50x) Life Technologies™ #17504044 

B-27® serum free supplement (w/o insulin, 50x) Life Technologies™ #0050129SA 

-mercaptoethanol Serva Electrophoresis #28625 

Bovine albumin fraction V solution (BSA, 7.5 %) Life Technologies™ #15260037 

CHIR99021 Merck Millipore #361559 

Collagenase type 2 Worthington  #LS004176 

Collagenase type 4 Worthington  #LS004189 

Diltiazem hydrochloride Sigma-Aldrich #D2521 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich #D2650 

Dulbecco´s modified Eagle medium (DMEM) Life Technologies™ #11960044 

Dulbecco´s modified Eagle medium/F-12 Life Technologies™ #31331028 

Dulbecco´s phosphate buffered saline (DPBS) Life Technologies™ #14190094 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich #E6758 

Essential 8™ basal medium Life Technologies™ #A1516901 

Essential 8™ supplement Life Technologies™ #A1517101 

Fetal bovine serum (FBS) Sigma-Aldrich #F7524 / 

Lonza #DE14802F 

Fibroblast growth factor basic (bFGF) PeproTech #100-18B 

Gelatin Sigma-Aldrich #48720 
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Geltrex™ Life Technologies™ #A1413301 

HEPES sodium salt solution (1 M) Sigma-Aldrich #H3662 

Iscove´s modified Dulbecco´s medium (IMDM) Life Technologies™ #31980022 

Isopropanol Merck Millipore #1096341000 

IWP2 Merck Millipore #681671 

KnockoutTM serum replacement Life Technologies™ #10828028 

L-glutamine (200 mM) Life Technologies™ #25030024 

Lymphocyte separation medium 1077 PAA #J11-004 

Mitomycin C Serva Electrophoresis #29805.02 

Monothioglycerol (MTG) Sigma-Aldrich #M6145-25ML 

Non-essential amino acids (NEAA, 100x) Life Technologies™ #11140035 

Penicillin-streptomycin solution (100x) Life Technologies™ #15140-122 

Polybrene (hexadimethrine bromide)  Sigma-Aldrich #107689 

Pro-survival compound Merck Millipore #529659 

Roswell Park Memorial Institute (RPMI 1640) medium  Life Technologies™ #72400-021 

RPMI 1640 (w/o glucose) Life Technologies™ #11879-020 

Sodium DL-lactate solution 60 % (w/w) Sigma-Aldrich #L4263 

(S)-(-)-Bay K8644 Sigma-Aldrich #B133 

Trypsin Life Technologies™ #27250-018 

 

bFGF: dissolved in 0.1 % v/v BSA/DPBS to a stock solution of 10 ng/µl  

-mercaptoethanol (100x for cell culture): 7 µl diluted in 10 ml DPBS and sterile filtrated 

with Steriflip


 filters (0.22 µm, Merck Millipore #SCGP00525) 

BSA/DPBS (1 % w/v): 1 ml of 7.5 % w/v BSA added to 6.5 ml DPBS 

Cardiac selection medium (100 ml): 100 ml RPMI 1640 (w/o glucose), 0.4 ml of 1 M 

lactate/ HEPES solution 

CHIR99021 (12 mM stock solution): 5 mg dissolved in 0.894 ml DMSO, stored at –20 °C 

Collagenase type 2: dissolved in DMEM/F12 to a working solution of 300 U/ml, sterile 

filtrated, and stored at –20 °C  

Collagenase type 4: dissolved in DMEM/F12 to a working solution of 200 U/ml, sterile 

filtrated, and stored at –20 °C  
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Differentiation medium I (100 ml): 98 ml RPMI 1640, 2 ml B-27
®

 serum free supplement 

(w/o insulin) 

Differentiation medium II (100 ml): 98 ml RPMI 1640, 2 ml B-27
®

 serum free supplement 

EDTA (50x): 1 g EDTA dissolved in 100 ml DPBS; pH adjusted to 7.0 with 1 M NaOH; 

sterile filtrated and stored at 4 °C 

EDTA (0.5 M): 14.617 g EDTA dissolved in 50 ml dH2O, pH adjusted to 8.0 with NaOH, 

filled up to 100 ml with dH2O, sterile filtrated and stored at –20 °C 

EDTA dissociation solution: 500 μl EDTA (0.5 M) in 500 ml DPBS, 0.9 g NaCl to adjust 

the osmolarity to 340 mOsm; sterile filtrated and stored at 4 °C 

Essential 8™ medium (100 ml): 99 ml essential 8™ basal medium, 1 ml essential 8™ 

supplement 

FBS: heat inactivated for 30 min at 56 °C 

Feeder layer medium (100 ml): 84 ml DMEM, 15 ml FBS, 1 ml L-glutamine 

Freezing medium (100 ml): 72 ml DMEM, 20 ml FBS, 8 ml DMSO 

Gelatin stock solution (1 % w/v): 10 g gelatin dissolved in 1000 ml dH2O, autoclaved, and 

stored at 4 °C 

Geltrex™: 2 mg aliquoted and stored at -80 °C; dissolved in 12 ml cold DMEM/F12 before 

use  

hESC medium (100 ml): 78 ml DMEM/F-12, 20 ml Knockout
TM

 SR, 1 ml NEAA, 1 ml -

mercaptoethanol (100x), 10 ng/ml medium bFGF 

hMSC medium (100 ml): 77 ml DMEM, 20 ml FBS, 1 ml NEAA, 1 ml L-glutamine, 1 ml -

mercaptoethanol (100x), 10 ng/ml medium bFGF 

Iscove´s medium (100 ml): 79 ml IMDM, 20 ml FBS, 1 ml NEAA, 450 µM MTG (freshly 

prepared) 

IWP2 (5 mM stock solution): 10 mg dissolved in 4.28 ml DMSO and incubated at 37 °C for 

10 min, stored at –20°C 
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Lactate/HEPES (1 M stock solution): 3 ml of 60 % w/w sodium DL-lactate solution diluted 

in 18 ml of 1 M HEPES sodium salt solution, store at –20°C 

Mitomycin C stock solution: dissolved in DPBS (200 µg/ml) and stored at –20 °C 

MTG (150 mM): 13 µl MTG diluted in 1 ml IMDM and sterile filtrated with Millex


-GS 

filter (0.22 µm, Merck Millipore #SLGS033SS), freshly prepared before use 

Polybrene: 1 mg dissolved in 1 ml dH2O, sterile filtrated, and stored at –20 °C 

Pro-survival compound (5 mM stock solution): 10 mg dissolved in 6.8 ml DMSO, stored at 

–20 °C 

Trypsin (0.2 % w/v): 2 g trypsin dissolved in 1000 ml DPBS; sterile filtrated with 

Steritop™-GP filters (0.22 µm, Merck Millipore #SCGPT02RE) 

Trypsin/EDTA (0.1 % w/v): 0.2 % w/v trypsin mixed in a ratio 1 : 1 with 1x EDTA (50x 

EDTA diluted 1/50 with DPBS); stored at 4 °C 

 

2.1.6 Solutions, buffers, and chemicals for molecular biological, and protein analyses  

Table 5. Components for molecular biological methods, and protein analyses 

Components Supplier 

AgarTM Serva Electrophoresis #200201 

Agencourt® AMPure® XP PCR purification kit Beckman Coulter #A63882 

Alkaline phosphatase staining kit Sigma-Aldrich #86R-1KT 

Ammonium persulfate (APS, (NH4)2S2O8) Roth® #9178 

AmpliTaq® DNA polymerase with buffer II Life Technologies™ #N808-0167 

Boric acid Sigma-Aldrich #15663 

Bromphenol blue Sigma-Aldrich #B0126 

cOmplete (protease inhibitor cocktail tablets) Roche # 04693132001 

DAPI (4′, 6-diamidino-2-phenylindole dihydrochloride) Sigma-Aldrich #D9542 

DEPC-treated water Ambion® #AM9915G 

Dithiothreitol (DTT) Roth® #6908 

dNTP mix Bioline #BIO-39029 

Ethidium bromide Roth® #2218 

Fluoromount-G™  eBioscience #00-4958-02 

Formalin (37 %) Merck Millipore #1039991000 
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GeneRead library quant kit Qiagen # 180612 

GeneRuler™ 100 bp Plus DNA Ladder Thermo Scientific #0321 

Giemsa stain Sigma-Aldrich #GS500 

Glacial acetic acid Merck Millipore #1.00063.1000 

Glycerin (87 %) Merck Millipore #4094 

Glycine Serva Electrophoresis #23391 

GoTaq® DNA polymerase Promega #M3175 

Immobilon™ Western chemiluminescent HRP substrate Merck Millipore #WBKLS0500 

Karyomax® Colcemid® solution (demecolcine) Life Technologies™ #15210-040 

Maxwell 16 cell DNA purification kit Promega #AS1020 

Methanol J. T. Baker #8402 

MuLV reverse transcriptase (50 U/µl) Life Technologies™ #N808-0018 

Nonfat dry milk TSI GmbH & Co 

Oligo d(T)16 (50 µM) Life Technologies™ #N808-0128 

Paraformaldehyde (PFA) Sigma-Aldrich #158127 

PeqGold protein marker V Peqlab #27-2210 

PhosSTOP (phosphatase inhibitor cocktail tablets) Roche #04906837001 

Pierce™ BCA protein assay kit Thermo Scientific #23225 

Ponceau S solution Sigma-Aldrich # P7170-1L 

Potassium chloride (KCl) Roth® #6781 

QIAamp® DNA mini kit Qiagen #51304 

QIAquick® gel extraction kit Qiagen #28706 

RNase inhibitor (20 U/µl) Life Technologies™ #N808-0119 

Rotiphorese® gel 30 Roth® #3029 

Sodium cloride (NaCl) Roth® #P3957 

Sodium dihydrogen phosphate (NaH2PO4 · H2O) Merck Millipore #1.06345 

Sodium dodecyl sulfate (SDS; NaC12H25SO4) Roth® #2326 

Sodium fluoride (NaF) Roth® #P756 

Sodium hydrogen phosphate (Na2HPO4) Merck Millipore #567547 

SV total RNA isolation system Promega #Z3105 

SYBR® Green PCR master mix Life Technologies™ #4309155 

Tetramethylethylenediamine (TEMED, C6H16N2) Roth® #2367 

Tris Roth® #5429 

Triton™ X-100 Sigma-Aldrich #X-100 

TrypLE™ Express Life Technologies™ #12604-013 

Tween 20 Bio-Rad #170-6531 
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Agar gel (1.5 % w/v): 1.5 g DNA Agar
TM

 dissolved in 100 ml 1x TB buffer by boiling in a 

microwave, 6 µl of 10 mg/ml ethidium bromide was added to 100 ml agar gel for 

visualization of DNA under ultraviolet light 

APS (10 % w/v): 10 g APS dissolved in 100 ml dH2O, sterile filtrated, and stored at –20 °C 

Blue loading buffer (5x): 31.25 ml 1 M Tris-HCl (pH 6.8), 10 g SDS, 5 mg bromphenol 

blue, 57 ml glycerin (87 %), filled up to 100 ml with dH2O; pH adjusted to 6.8, stored at 

-20 °C; before use, 40 µl β-mercaptoethanol were added to 360 µl buffer 

Cell lysis buffer (10 ml): 100 µl 2 M Tris-HCl (pH 7.4), 500 µl NaCl (4 M), 1 ml NaF 

(200 mM), 100 µl Triton™ X-100, 100 µl Na3VO4 (100 mM), 100 µl DTT (100 mM), 

½ tablet of cOmplete (EDTA-free), 1 tablet of PhosSTOP, filled up to 10 ml with dH2O 

Fixation buffer: methanol (3) : glacial acetic acid (1) freshly prepared and cooled at –20 °C 

Nonfat dry milk (5 % w/v): 5 g nonfat dry milk, 100 ml 1x TBS-T buffer 

PFA (4 % w/v): 4 g PFA dissolved in 100 ml DPBS under heated conditions, used for 1 week 

Phosphate buffered formalin: 4.6 g NaH2PO4 · H2O, 6.5 g Na2HPO4 in 900 ml dH2O, pH 

adjusted to 7.0 with HCl; 89.2 ml of buffer in 10.8 ml 37 % formalin; stored at 4 °C 

Running buffer (5x): 30.2 g Tris, 144 g glycine, 10 g SDS filled up to 2000 ml dH2O, pH 

adjusted to 8.3 with HCl 

SDS (10 % w/v): 10 g SDS dissolved in 100 ml dH2O and stored at 4 °C 

Separating gel (7.5 %, 10 ml): 2.5 ml Rotiphorese
®

 gel 30, 4.9 ml dH2O, 2.5 ml Tris/SDS 

(4x, pH 8.8), 100 µl APS (10 %), 10 µl TEMED 

Stacking gel (10 ml): 1.66 ml Rotiphorese
®

 gel 30, 5.72 ml dH2O, 2.5 ml Tris/SDS (4x, pH 

6.8), 100 µl APS (10 %), 10 µl TEMED 

TB buffer (5x): 108 g Tris, 55 g boric acid, filled up to 2000 ml with dH2O 

TBS buffer (10x): 48.4 g Tris, 58.48 g NaCl, filled up to 2000 ml with dH2O, pH 7.5; stored 

at 4 °C 

TBS-T buffer (1x): 500 ml TBS buffer (10x), 5 ml Tween 20, filled up to 5000 ml with dH2O 
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Transfer buffer (5x): 39.4 g Tris, 144 g glycine, filled up to 2000 ml with dH2O, pH adjusted 

to 8.3 with HCl 

Transfer buffer (1x, 20 % v/v methanol): 400 ml transfer buffer (5x), 400 ml methanol, 

2 ml SDS (10 % w/v) filled up to 2000 ml with dH2O 

Tris/SDS (4x, pH 6.8): 6.05 g Tris, 0.4 g SDS in 100 ml dH2O; pH adjusted to 6.8 with HCl 

Tris/SDS (4x, pH 8.8): 45.5 g Tris, 1 g SDS in 250 ml dH2O; pH adjusted to 8.8 with HCl 

Triton™ X-100 (0.1 % v/v): 1 ml Triton™ X-100 diluted in 999 ml DPBS 

 

2.1.7 Solutions and chemicals for electrophysiological analyses 

Table 6. Chemicals for electrophysiological analyses 

Chemicals Supplier 

Adenosine 5′-triphosphate magnesium salt (Mg-ATP) Sigma-Aldrich #A9187 

Calcium chloride (CaCl2) Sigma-Aldrich #21115 

Cesium chloride (CsCl) Sigma-Aldrich #C3032 

Cesium hydroxide solution (CsOH) Sigma-Aldrich #232041 

D(+)-glucose Merck Millipore #108337 

Ethylene glycol tetraacetic acid (EGTA) Sigma-Aldrich #E3889 

Flecainide acetate salt Sigma-Aldrich #F6777 

Guanosine 5′-triphosphate lithium salt (Li-GTP) Sigma-Aldrich #G5884 

HEPES Roth #9105 

L-aspartic acid potassium salt Sigma-Aldrich #A6558 

L-glumatic acid Sigma-Aldrich #G1251 

Magnesium chloride (MgCl2) Sigma-Aldrich #M8266 

Nifedipine Sigma-Aldrich #N7634 

Niflumic acid Sigma-Aldrich #N0630 

Potassium chloride (KCl) Roth® #6781 

Potassium hydroxide (KOH) Roth® #6751 

Quinidine Sigma-Aldrich #Q3625 

Sodium chloride (NaCl) Roth #3957 

Strophantidine Sigma-Aldrich #S6626 

Tetramethylammonium chloride (TMAC) Sigma-Aldrich #87718 

0.25 % trypsine/EDTA solution Life Technologies™ #25200-056 
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Pipette solution for AP measurements (in mM): 122 L-aspartic acid potassium salt, 10 

NaCl, 8 KCl, 1 MgCl2, 5 Mg-ATP, 0.3 Li-GTP, 10 HEPES; pH adjusted to 7.2 with KOH 

Pipette solution for INa measurements (in mM): 100 CsCl, 40 Cs-glutamate (L-glumatic 

acid + CsOH), 5 NaCl, 0.92 MgCl2, 1 EGTA, 5 Mg-ATP, 0.3 Li-GTP, 0.36 CaCl2, 

0.03 niflumic acid, 0.02 nifedipine, 0.004 strophantidine, 5 HEPES; pH adjusted to 7.2 with 

CsOH 

Pipette solution for persistent INa measurements (in mM): 95 CsCl, 40 Cs-glutamate, 10 

NaCl, 0.92 MgCl2, 1 EGTA, 5 Mg-ATP, 0.3 Li-GTP, 0.36 CaCl2, 0.03 niflumic acid, 0.02 

nifedipine, 0.004 strophantidine, 5 HEPES; pH adjusted to 7.2 with CsOH
 

External solution for INa measurements (in mM): 5 NaCl, 135 TMAC, 4 CsCl, 2 MgCl2, 

0.4 CaCl2, 10 D(+)-glucose, 10 HEPES; pH was adjusted to 7.4 with CsOH 

External solution for persistant INa measurements (in mM): 135 NaCl, 5 TMAC, 4 CsCl, 2 

MgCl2, 0.4 CaCl2, 10 D(+)-glucose, 10 HEPES; pH adjusted to 7.4 with CsOH 



Materials and methods 

31 

2.2 Methods 

2.2.1 Cell culture 

All cells were cultivated under humidified conditions at 37 °C and 5 % carbon dioxide 

(incubators from Heraeus Instruments or Thermo Scientific). All culture work was performed 

under sterile conditions using a laminar airflow cabinet (Heraeus Instruments or Thermo 

Scientific) to avoid microbiological contamination. Tissue culture dishes (35 x 10 mm, 60 x 

15 mm, 100 x 20 mm) and 12-well plates were bought from Starlab. 

 

2.2.1.1 Isolation and cultivation of human bone marrow-derived mesenchymal stem cells 

Bone marrow aspirates from iliac crest of a BrS patient and a healthy donor were diluted 

1 : 2 – 3 in DMEM depending on the viscosity. In a 50 ml reagent and centrifuge tube 

(Sarstedt), 20 ml of the diluted bone marrow aspirate was carefully poured over 20 ml 

lymphocyte separation medium 1077, a separation solution made with Ficoll™ density 

gradient media. After 15 min centrifugation at 800 x g without brake (Eppendorf Centrifuge 

5810R), mononuclear cells were obtained from the interphase between the plasma and the 

separation solution. The cells were washed two times with DMEM and plated onto 0.1 % w/v 

gelatin coated tissue culture dishes in hMSC medium (see 2.1.5). The fibroblast-like hMSCs 

attached to the culture dish and could be separated from nonadherent cells by medium change. 

The medium was changed every second day and the cells were passaged every 3 to 4 days 

using 0.1 % trypsin/EDTA. Single cells were resuspended in hMSC medium and seeded onto 

new culture dishes. 

 

2.2.1.2 Cultivation and inactivation of mouse embryonic fibroblasts 

MEFs were isolated from 15- to 17-day-old mouse embryos and subsequently cultivated on 

0.1 % gelatin coated culture dishes in feeder layer medium (see 2.1.5) for at most 4 passages. 

Before used for cultivation of hESCs or hiPSCs, MEFs were treated with a final concentration 

of 10 µg/ml mitomycin C for 3 h at 37 °C to stop cell proliferation. MEFs were washed three 

times with DPBS and subsequently treated with 0.2 % trypsin until the adherent cells started 

to detach. The single cells were resuspended in feeder layer medium and counted with a 

Thoma counting cell chamber. A certain number of cells (e. g. 3 x 10
5
 cells on 6 cm dishes) 

was then plated onto 0.1 % gelatin coated culture dishes. 
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2.2.1.3 Generation of human iPSCs 

Human iPSCs were generated by transducing hMSCs with the STEMCCA lentivirus 

containing four different transcription factors (see 2.1.4). One day before transduction, the 

hMSCs were plated onto 0.1 % gelatin coated 12-well plates with 0.3 x 10
5
 cells per well. The 

cells were infected with STEMCCA particles at a multiplicity of infection (MOI) of 0.5, 1.0 

and 2.0 in freshly prepared hMSC medium containing 1 µg/ml polybrene and 1x penicillin-

streptomycin solution. Polybrene is a cationic polymer, which increases the efficiency of 

infection of eukaryotic cells with DNA. The next day medium was changed with fresh hMSC 

medium containing penicillin/streptomycin solution after washing the cells with DMEM 

twice. The medium was changed daily. From day 7 on the cells were cultivated on inactivated 

MEFs. The hMSC medium was replaced by hMSC medium mixed with hESC medium (3 : 1) 

at day 11 and by hES medium at day 14 after transduction. Single colonies that appeared with 

typical hESC morphology were picked mechanically using a sharpened glass pipette and were 

propagated further on MEFs (see 2.2.1.4). 

 

2.2.1.4 Cultivation of human iPSCs and ESCs with feeder cells 

In most experiments, undifferentiated hiPSCs and hESCs were cultivated on mitomycin C-

treated MEFs (see 2.2.1.2) in hESC medium. The medium was changed daily and cells were 

split every 4 to 5 days. The cells were treated with 200 U/ml collagenase type 4 for 5 min at 

37 °C followed by two washing steps with DMEM/F12. The cells were additionally cut into 

small clusters using a cell scraper (Sarstedt). After pipetting two to three times up and down, 

the cells were seeded onto new culture dishes with inactivated MEFs. Colonies starting to 

differentiate were removed mechanically. 

 

2.2.1.5 Cultivation of human iPSCs without feeder cells 

In some experiments hiPSCs were cultivated on culture dishes coated with growth factor 

reduced Geltrex™ in feeder-free Essential 8™ medium. At about 85 – 90 % confluency the 

cells were passaged onto new dishes. They were washed two times and incubated for 3 to 4 

min with EDTA dissociation solution at room temperature. The small cell clusters or rather 

single cells were subsequently transferred in Essential 8™ medium onto new culture dishes 

coated with Geltrex™. After passaging, Pro-survival compound was added to the medium to a 

final concentration of 5 μM. The medium was changed daily. 
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2.2.1.6 Spontaneous differentiation of human iPSCs and ESCs in vitro 

For spontaneous in vitro differentiation experiments of hiPSCs and hESCs, the cells were 

treated with 200 U/ml collagenase type 4 (see 2.2.1.4) and dissected with a cell scraper into 

bigger clusters as compared to passaging. The cell clusters were transferred to bacteriological 

dishes (Sarstedt) and kept in suspension with hESC medium for 1 day. During this time, the 

cells formed multi-cellular aggregates known as embryoid bodies (EBs). After 1 day, the 

medium was changed to Iscove´s medium and spent medium was changed every second day. 

At day 8, EBs were plated on 0.1 % gelatin coated tissue culture dishes. During this 

spontaneous differentiation, clusters of beating CMs appeared beside other cell types. To 

circumvent cell overgrowth of noncardiac cells in long-term culture (3 months), FBS content 

in the differentiation medium was reduced from 20 to 5 % after 1 month. Aditionally, beating 

clusters were picked and plated onto new gelatin coated culture dishes after 1 month and 

whenever necessary. After 1 and 3 months of maturation, the differentiated CMs were used 

for further experiments. 

 

2.2.1.7 Directed differentiation of human iPSCs into cardiomyocytes 

A protocol for directed cardiac differentiation as described previously (Lian et al. 2012; Lian 

et al. 2013) was used to obtain a high number of CMs resulting in a high amount of isolated 

cardiac-specific proteins for Western blot analyses. At about 95 – 100 % confluency, the 

medium of undifferentiated hiPSCs cultivated under feeder-free conditions (see 2.2.1.5), was 

replaced by differentiation medium I supplemented with a final concentration of 9 – 10 µM 

CHIR99021, a highly selective inhibitor of glycogen synthase kinase 3β. Exactly 24 h later 

(= day 1), the medium was carefully replaced by differentiation medium I without 

CHIR99021. At day 3, half of the spent medium was aspirated and replaced with new 

differentiation medium I supplemented with a final concentration of 5 µM Wnt antagonist II 

(IWP2). At day 5, the medium was replaced with fresh differentiation medium I without 

IWP2 and from day 7 on, the medium was replaced by differentiation medium II (see 2.1.5). 

First beating cells could be observed at day 7 – 8 of differentiation. Between day 16 and 20, 

the medium was changed from differentiation medium II to cardiac selection medium to 

increase the yield of pure CMs. The cardiac selection medium lacks glucose, but contains 

lactate instead, which can be used as a source of energy only by CMs (Tohyama et al. 2013). 

After 4 to 5 days of selection, the medium was changed back to differentiation medium II and 

the selected CMs could be kept in culture for several months. 
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2.2.1.8 Freezing and thawing of cultivated cells 

For cryopreservation, hiPSCs and hESCs were treated with collagenase type 4 and dissected 

into small pieces as described before (see 2.2.1.4). The cell clusters were transferred into 

15 ml reagent and centrifuge tubes (Sarstedt) and centrifuged in DMEM/F12 at 180 x g for 3 

min. After centrifugation, the supernatant was discarded and the cells were carefully 

resuspended in 1 ml freezing medium and transferred into cryovials (Greiner Bio-one). The 

cells were kept overnight at –80 °C in a freezing box (Thermo Scientific) containing 

isopropanol, allowing controlled freezing at –1 °C per min. The following day, the frozen 

cells were stored in liquid nitrogen. 

For thawing, the frozen cells were placed in a 37 °C warm water bath. Immediately after 

thawing, the cells were transferred dropwise into 10 ml DMEM/F12 and centrifuged at 

180 x g for 3 min. The supernatant was discarded and the cell pellet was resupended in hESC 

or Essential 8™ medium and plated onto 6 cm culture dishes either coated with inactivated 

MEFs or with Geltrex™, respectively. 

 

2.2.2 Alkaline phosphatase staining 

One of the first evidence for successful somatic cell reprogramming is alkaline phosphatase 

activity. In reprogrammed cells, alkaline phosphatase expression is significantly increased. 

Alkaline phosphatase activity in hiPSCs was detected using an alkaline phosphatase staining 

kit according to the manufacturer´s instructions. Cells were washed with DPBS and 

subsequently fixed for 30 s using a fixation solution provided by the kit. Fixed cells were 

washed two times with dH2O and stained for 15 min at 37 °C with a staining solution. After a 

final washing step with dH2O, cells were dried at room temperature. Alkaline phosphatase 

positive cells are stained in red. 

 

2.2.3 Genomic DNA isolation for DNA sequencing 

Prior to genomic DNA isolation, cultivated cells (without MEFs) were treated with accutase 

for cell dissociation and washed with DPBS. After centrifugation, single cells were 

resuspended in 400 µl DPBS. The genomic DNA was isolated and purified using the 

automated Maxwell


 16 cell DNA purification kit according to the manufacturer´s 

instructions. The concentration of the isolated DNA was measured with an Eppendorf 

biophotometer at 260 nm and 280 nm. The samples were subsequently stored at –80 °C. For 
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genomic DNA sequencing, the DNA sequence from the gene of interest (SCN5A) was initially 

amplified by PCR using the primer set SCN5A (1). In each reaction, 100 ng of total genomic 

DNA was used. The PCR product was electrophoretically separated on a 1.5 % agar gel and 

subsequently excised with a scalpel. The DNA fragment was then extracted from the agar gel 

using the QIAquick
®

 gel extraction kit according to the manufacturer´s instructions using a 

microcentrifuge. The DNA sequencing was performed by a commercial sequencing facility 

(Seqlab, Göttingen). 

 

2.2.4 Epigenetic analyses 

Cytosines in so-called “CpG sites”, where a cytosine nucleotide occurs next to a guanine 

nucleotide, can be methylated by DNA methyltransferases to form 5-methylcytosine. This 

methylation of CpG sites within the promoter of a gene can lead to its transcriptional 

silencing. Bisulfite-treated DNA can be sequenced to determine the methylation status at CpG 

dinucleotides. This is possible because bisulphite treatment converts unmethylated cytosine 

residues into uracil, whereas 5-methylcytosines stay unaffected. Through direct comparison of 

the DNA sequence of interest before and after bisulfite treatment, one can distinguish between 

methylated and unmethylated cytosines. The methylation pattern of the promoter regions of 

the pluripotency related genes NANOG and OCT4 was compared before and after 

reprogramming of human MSCs into iPSCs. For this purpose, the genomic DNA of hMSCs, 

the generated hiPSCs between passage 8 and 16, and hESCs as positive control was isolated 

using the DNA purification from blood or body fluids spin protocol from the QIAamp
®

 DNA 

mini kit according to the manufacturer´s instructions. 

Sodium bisulfite sequencing assays were performed by Epigenomics in Berlin. The region 

from –378 to +64 bp relative to the transcription start site of NANOG and –213 to +185 bp 

relative to the transcription start site of OCT4 were analyzed using the following primers: 

NANOG: 

5´-TAA TTT CAA ACT CCT AAC TTC AAA TAA T-3´and 5´-TAA TAT GAG GTA ATT 

AGT TTA GTT TAG T-3´ 

OCT4: 

5´-GAT TTG TAT TGA GGT TTT GGA-3´ and 5´-TCC AAA AAA ACC TTA AAA ACT 

T-3´ 
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2.2.5 Gene expression analyses 

2.2.5.1 RNA isolation 

For gene expression analyses, cultured cells were washed with DPBS three times. Depending 

on the density, cells were lysed with 300 – 500 µl RNA lysis buffer. Total RNA isolation and 

purification was done with the SV total RNA isolation system according to the 

manufacturer´s instructions without the heating step in RNA dilution buffer. The 

concentration of the isolated RNA was measured with an Eppendorf biophotometer at 260 nm 

and 280 nm. The RNA was subsequently used for reverse transcription (RT) reaction or stored 

at –80 °C. 

 

2.2.5.2 Reverse transcription reaction 

After RNA isolation, total mRNA was transcribed into complementary DNA (cDNA) using 

the enzyme reverse transcriptase. All components for one RT reaction are listed in Table 7. 

 

Table 7. RT reaction components 

Components for RT 20 µl final volume 

200 ng RNA + DEPC-treated H2O 10.2 µl 

10x PCR buffer II 2 µl 

25 mM MgCl2 4 µl 

100 mM dNTPs 0.8 µl 

RNase inhibitor (20 U/µl) 1 µl 

50 µM Oligo d(T)16 1 µl 

MuL V reverse transcriptase (50 U/µl) 1 µl 

 

The RT reaction was accomplished in a thermocycler (SensoQuest) using the following 

program: 

10 min 22 °C 

50 min 42 °C 

10 min 95 °C 

 4 °C 

The resulting cDNA was stored at –80 °C. 
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2.2.5.3 Semi-quantitative PCR 

All components for one PCR to amplify certain cDNA fragments are listed in Table 8. 

 

Table 8. PCR reaction components 

Components for PCR 50 µl final volume 

cDNA 2 µl 

DEPC-treated H2O 30.6 µl 

5x Green GoTaq reaction buffer 10 µl 

10 mM dNTPs 3.2 µl 

sense primer (10 µM) 2 µl 

antisense primer (10 µM) 2 µl 

GoTaq DNA polymerase 0.2 µl 

 

The reaction was performed in a thermocycler using the following standardized program: 

 

3 min 95 °C 

15 s 95 °C 

15 s 55 °C
*
 32 – 38 cycles

* 

30 s 72 °C 

10 min 72 °C 

 4 °C 

 

*
Exact annealing temperature and number of cycles for the different oligonucleotides are 

listed in Table 1. 

 

2.2.5.4 Gel electrophoresis 

All amplified PCR products were analyzed by electrophoretic separation on a 1.5 % agar gel. 

The particular size of the DNA fragments was determined by GeneRuler
TM

 100 bp Plus DNA 

Ladder. All results were documented under ultraviolet light with MultiImage Light Cabinet 

(Alpha Innotech Corporation). 
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2.2.5.5 Quantitative real-time PCR 

Quantitative real-time PCR (qPCR) was used to amplify cDNA products from the RT reaction 

for comparison of the cardiac-specific gene expression between BrS-CMs and Ctrl-CMs. All 

components for one qPCR are listed in Table 9. 

 

Table 9. qPCR reaction components 

Components for qPCR 10 µl final volume 

cDNA 1 µl 

DEPC-treated H2O 3.5 µl 

SYBR® Green PCR master mix 5 µl 

sense primer (10 µM) 0.25 µl 

antisense primer (10 µM) 0.25 µl 

 

Triplicates for each sample were carefully added into the appropriate wells of a MicroAmp
®

 

optical 384-well reaction plate (Life Technologies™) and the plate was sealed with an 

adhesive film. After a brief centrifuge spin at 1000 rpm, the qPCR was performed in a 

7900HT fast real-time PCR system (Life Technologies™) using the following program: 

 

10 min 95 °C followed by: 15 s 95 °C 

15 s 95 °C 15 s 60 °C 

1 min 60 °C 15 s 95 °C 

  

SYBR
®

 Green is a fluorescent dye which intercalates with double-stranded DNA. Upon DNA 

amplification during qPCR, the fluorescence signal increases. This allows the quantification 

of the PCR product at any point in the amplification process by measuring the fluorescence. 

The SDS 2.4 software (Life Technologies™) was used for the operation of the cycler and 

analysis of the data. The software automatically determined a threshold for the detection of 

DNA-based fluorescence. The number of cycles at which the fluorescence crosses this 

threshold is called the threshold cycle (Ct). During amplification, the fluorescence of a 

particular reaction will reach the threshold at an earlier cycle if the given gene is higher 

expressed in that sample compared to another sample. However, the qPCR efficiency is 

strongly dependent on the target gene and its corresponding primers. A relative standard curve 

for each pair of primers was generated by serial dilution of a cDNA sample to determine the 

40 cycles 
dissociation curve 
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particular efficiency. An efficiency of 100 % means a doubling of the product with each 

cycle. The ratio of gene expression change (R) of the samples relative to the controls was 

calculated using the following equations. 

 

(1) ΔCt = Ct (target gene) − Ct (reference gene) 

(2) ΔΔCt = ΔCt (BrS) − ΔCt (Ctrl) 

(3) R = 2
–ΔΔCt

 

 

2.2.5.6 Allele-specific expression analysis of the SCN5A gene 

One allele of the SCN5A gene of the BrS patient is characterized by a point mutation in exon 

28, where the cytosine is substituted by an adenine nucleotide (C5435A). For an allele-

specific expression analysis of SCN5A, the mRNA of differentiated CMs from the BrS patient 

was sequenced using the Ion Torrent™ semiconductor sequencing system (Life 

Technologies™). 

Initially, 3-month-old beating clusters from six independent spontaneous differentiation 

experiments and 2-month-old selected CMs from one directed differentiation experiment were 

collected and stored at –80 °C until further use. The total amount of mRNA was isolated and 

reverse transcribed into cDNA as described before (see 2.2.5.1 and 2.2.5.2). A 189 bp long 

DNA fragment, which includes the region with the point mutation, was amplified using the 

primer set SCN5A (2), with Colorless GoTaq


 reaction buffer and 1x Q-solution (Qiagen). 

The time for DNA denaturation and primer annealing was increased to 30 s. The PCR product 

was diluted 1/200 and used for a second PCR run with 12 cycles using a forward primer and 

different reverse primers, which contained a unique barcode to distinguish different samples 

from different experiments (Table 10). 

The DNA concentration of each sample was measured with Qubit
®

 2.0 Fluorometer (Life 

Technologies™) and 250 ng of each sample was pooled and electrophoretically separated on 

a 2 % agar gel. The specific product was extracted from the gel in a QIAcube system (Qiagen) 

using the QIAquick
®

 gel extraction kit according to the manufacturer´s instructions. After gel 

extraction, the DNA was purified with Agencourt
®

 AMPure
®

 XP PCR purification kit 

according to the manufacturer´s instructions and eluted in low TE buffer (Life 

Technologies™). 
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Table 10. Primers with specific barcodes for Ion Torrent™ sequencing 

Name Sequence 

SCN5A_BC01 
5´-CCA TCT CAT CCC T*G*C GTG TCT CCG ACT CAG CTA AGG TAA CCG ATC 

ACC ATG GGC AGG TCC ATG TTG ATG-3´ 

SCN5A_BC02 
5´-CCA TCT CAT CCC T*G*C GTG TCT CCG ACT CAG TAA GGA GAA CCG 

ATC ACC ATG GGC AGG TCC ATG TTG ATG-3´ 

SCN5A_BC03 
5´-CCA TCT CAT CCC T*G*C GTG TCT CCG ACT CAG AAG AGG ATT CCG 

ATC ACC ATG GGC AGG TCC ATG TTG ATG-3´ 

SCN5A_BC04 
5´-CCA TCT CAT CCC T*G*C GTG TCT CCG ACT CAG TAC CAA GAT CCG ATC 

ACC ATG GGC AGG TCC ATG TTG ATG-3´ 

SCN5A_BC05 
5´-CCA TCT CAT CCC T*G*C GTG TCT CCG ACT CAG CAG AAG GAA CCG 

ATG ACA GGG CAT CGG CAA AGT CAG ACA-3´ 

SCN5A_BC06 
5´-CCA TCT CAT CCC T*G*C GTG TCT CCG ACT CAG CTG CAA GTT CCG ATC 

ACC ATG GGC AGG TCC ATG TTG ATG-3´ 

SCN5A_BC07 
5´-CCA TCT CAT CCC T*G*C GTG TCT CCG ACT CAG TTC GTG ATT CCG ATC 

ACC ATG GGC AGG TCC ATG TTG ATG-3´ 

SCN5A_BC08 
5´-CCA TCT CAT CCC T*G*C GTG TCT CCG ACT CAG TTC CGA TAA CCG ATG 

ACA GGG CAT CGG CAA AGT CAG ACA-3´ 

SCN5A_BC09 
5´-CCA TCT CAT CCC T*G*C GTG TCT CCG ACT CAG TGA GCG GAA CCG 

ATC ACC ATG GGC AGG TCC ATG TTG ATG-3´ 

SCN5A_for 
5´-CCA CTA CGC CTC CGC TTT CCT CTC TAT GGG CAG TCG GTG ATG TGT 

GGA GAG CAC CGA GCC CCT GAG TGA GG-3´ 

 

The DNA quantity was determined by qPCR analysis in a 384-well plate using the GeneRead 

Library Quant kit. The purified PCR product was diluted 1/10 000 and 1/100 000. One 

reaction mix contained 3.86 µl RNAse free H2O, 5.68 µl GeneRead qPCR SYBR
®

 Green 

mastermix, 0.45 µl primer mix and 3 µl of the template. The PCR reactions of the DNA 

standards and sample dilutions were performed in triplicates in a 7900HT fast real-time PCR 

system using the following program: 

2 min 50 °C 

10 min 95 °C 

15 s 95 °C 

1 min 60 °C  

 

400 µl of 10 pM PCR product was used for clonal amplification onto Ion Sphere™ particles 

accomplished by an emulsion PCR in the Ion OneTouch™ (Life Technologies™) system 

according to the manufacturer´s instructions. The Ion Sphere™ particles coated with the 

amplified template DNA were applied to an Ion Torrent™ sequencing chip and placed on the 

Ion Personal Genome Machine (PGM™) for sequencing. The sequencing was kindly 

performed by the Clinical Pharmacology, University Medical Center Göttingen. 

40 cycles 
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2.2.6 Western blot analyses 

2.2.6.1 Preparation of cell lysates 

For protein analyses, CMs were generated from hiPSCs using the directed differentiation 

protocol including the cardiac selection to obtain a sufficient amount of cardiac cells (see 

2.2.1.7). Prior to the preparation of the cell lysates, the 2-month-old CMs were washed with 

DPBS. After centrifugation and discarding the DPBS, the cell pellets were snap-frozen and 

stored at –80 °C until further use. 

The frozen cell pellets were lysed in 200 µl cell lysis buffer by vortexing the samples and 

using an Omnican 40 syringe (B. Braun) for mechanical disruption. The samples were kept on 

ice to prevent enzymatic damage and centrifuged for 10 min at 4 °C to get rid of bigger cell 

fractions. The supernatant was transferred into new Eppendorf cups and 5 μl of each sample 

was diluted in 95 μl DPBS for protein measurements. The protein concentration was 

determined using the Pierce™ BCA protein assay kit according to the manufacturer´s 

instructions and a photometer at 562 nm (Biotek). The samples were mixed with blue loading 

buffer and the proteins were denatured at 70 °C for 10 min and stored at –20 °C until further 

use. 

 

2.2.6.2 SDS-polyacrylamide gel electrophoresis 

Frozen cell lysate samples were thawed on ice. The proteins in the samples were separated by 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) according to their molecular weight. 

The gel electrophoresis was repeated 3 times on different gels. The samples were loaded into 

the wells of the stacking gel, followed by a separation gel with a polyacrylamid concentration 

of 7.5 %. One electrophoresis run for two different gels at the same time took nearly 2 h at 60 

mA. Both gels were covered by 1x running buffer all the time. 

 

2.2.6.3 Protein transfer and detection 

After electrophoretic separation, the proteins were electrically transferred in a blotting 

chamber (Bio-Rad) onto a nitrocellulose membrane (GE Healthcare) for antibody detection. 

The blotting chamber was filled with 1x transfer buffer and continuously cooled with ice 

during the electroblotting at 400 mA for 2 h. 
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The successful transfer of the proteins was confirmed by Ponceau S solution staining. The 

membrane was then washed three times with TBS-T buffer and subsequently blocked with 

5 % nonfat dry milk in TBS-T for 1 h at room temperature to avoid nonspecific binding. The 

primary antibodies were diluted in 5 % nonfat dry milk in TBS-T (Table 2) and incubated 

with the membrane at 4 °C overnight with gentle agitation. The next day, the membrane was 

washed three times with TBS-T buffer for 10 min each, followed by a second incubation with 

horseradish peroxidase (HRP)-coupled secondary antibodies (Table 3) for 1 h at room 

temperature under gentle agitation. The membrane was again washed three times with TBS-T 

buffer. Visualization of the HRP-coupled secondary antibodies was done using Immobilon™ 

Western chemiluminescent HRP substrate. The HRP catalyzes the oxidation of luminol by 

peroxide resulting in luminescence. A light-sensitive photographic film (Fujifilm) was placed 

against the membrane, and du to the exposure of light bands representing proteins of interest 

could be captured on the film.  

All data generated by Western Blot experiments were quantified using AlphaEase
TM

 (Alpha 

Innotech) and GraphPad Prism
®

 5.02 (GraphPad Software, Inc.) softwares. 

 

2.2.7 Immunofluorescence analyses 

The expression of pluripotency related proteins in undifferentiated hiPSCs, germ layer-

specific proteins in differentiated hiPSCs, as well as cardiac-specific proteins in CMs was 

shown by immunostaining. The hiPSCs and differentiated cells were initially cultivated on 

cover slips (Thermo Scientific). Beating bodies were digested and the resulting single CMs 

were plated on 35mm cell culture dishes with glass bottom (WPI) and further cultivated for at 

least 10 days before fixation. The cells were washed with DPBS two times, followed by 

20 min fixation in 4 % paraformaldehyde at room temperature with three further washing 

steps. The cells which were stained for nuclear transcription factors (OCT4, SOX2, and 

NANOG) as well as the cardiac-specific proteins cTNT, α-actinin, Cx43, and MLC2a were 

additionally treated with 0.1 % Triton™ X-100/DPBS for 10 min at room temperature. Prior 

to antibody incubation, the fixed cells were blocked in 1 % BSA overnight at 4 °C. The cells 

were incubated with primary and subsequently with secondary antibodies, both diluted in 1 % 

BSA (Table 2) for 1 h at 37 °C (NANOG at 4 °C overnight). The nuclei were stained with 

0.4 μg/ml DAPI. The stained cells were washed with dH2O once before mounting with 

Fluoromount-G™. Fluorescent images were taken with a fluorescence microscope (Zeiss 

Observer.Z1 or Axio Imager.M2). For some images, the ApoTome modus (Zeiss) was used. 
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2.2.8 Teratoma formation and analysis 

Undifferentiated hiPSCs were mechanically dissected using a cell scraper and transferred into 

200 – 300 µl DPBS. The cell clusters were injected subcutaneously into recombination 

activating gene 2 and gamma C deficient (RAGC) mice, which lack B cells, T cells, and 

natural killer cells. Teratomas were collected about three months after injection and fixed in 

phosphate buffered formalin (pH 7.0) for 4 h at room temperature or at 4 °C overnight. After 

washing with dH2O the teratomas were dehydrated and paraffinized using the Benchtop 

Tissue Processor 1020 (Leica Biosystems). The samples were embedded into paraffin using a 

tissue embedding system (Leica Biosystems) and processed into 6 µm sections with a 

microtome (Leica Biosystems). The histological sections were stained with hematoxylin and 

eosin at the Department of Pathology of the University Medical Center Göttingen and 

subsequently analyzed under a light microscope (Zeiss). 

 

2.2.9 Karyotyping 

All hiPSCs were cultured on Geltrex™ prior to analyzing the karyotypes. The cells were 

treated with 100 ng/ml of the microtubule-depolymerizing drug colcemid (Karyomax
®

 

Colcemid
®

 solution) for 16 h. The supernatant containing detached cells was collected in a 

15 ml reagent and centrifuge tube and the adherent cells were washed with DMEM basal 

medium once and subsequently treated with TrypLE™ for 1 min at 37 °C. Single cells were 

collected in the 15 ml tube and centrifuged at 200 x g for 5 min. The supernatant was 

discarded, leaving about 0.5 ml in which the cell pellet was resupended by tapping carefully 

against the tube. Pre-warmed (37 °C) KCl solution (0.075 M) was added drop-wise to the cell 

suspension up to 8 ml while shaking the tube carefully. After 45 min of incubation at 37 °C, 

the cells were centrifuged and the supernatant was aspirated to a residue of 0.5 ml, in which 

the cells were resupended again. Freshly prepared and pre-cooled (–20 °C) fixation buffer was 

then added drop-wise to the suspension while shaking the tube carefully. The cells were 

incubated on ice for 10 min and then centrifuged. The fixation step was repeated two times. 

After the third fixation, the cells were resuspended in a final volume of about 2 ml to obtain 

an optimal density before dropping them onto cold microscope slides. After air-drying, the 

chromosomes were stained with Giemsa solution (1/20 diluted in dH2O) for 5 min and 

washed twice with tap water. The stained chromosomes were counted under a light 

microscope (Zeiss Axio Imager.M2) and documented using the karyotyping analysis software 

Case Data Manager 6.0 (Applied Spectral Imaging, ASI). 
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2.2.10 Electrophysiological analyses 

2.2.10.1 Cardiomyocyte preparation and data acquisition 

Single beating CMs from spontaneous differentiation experiments were used at early 

(1 month) and late (3 months) developmental stages. Beating areas were picked mechanically 

using a sharpened glass pipette and either digested with collagenase type 2 and 4 (1 : 1) for up 

to 1 h or with 0.25 % trypsin/EDTA solution for 25 – 30 min at 37 °C. The single CMs were 

plated onto 0.1 % gelatin coated 3 cm tissue culture dishes and cultured in Iscove´s medium 

with 5 % FBS for at least a further 6 days for AP and INa measurements. CMs were identified 

by cell contraction. 

All electrophysiological recordings were performed at room temperature using an EPC10 

USB patch clamp amplifier together with the PatchMaster software (HEKA). The signals 

were filtered with 2.9 and 10 kHz Bessel filters.  

 

2.2.10.2 Action potential measurements 

APs were measured with the ruptured-patch whole-cell current clamp technique. Spontaneous 

APs were recorded in IMDM basal medium immediately after rupturing with self-pulled 

microeletrodes of 3 – 5 MΩ resistance (thin-wall capillaries, WPI). No current was injected 

into the cells. In some experiments, CMs were paced with 0.4, 0.8, and 1.0 Hz. APs were 

analyzed using LabChart
®

 8 Pro software (ADInstruments) to determine the RMP, the 

maximal upstroke velocity (Vmax), the AP amplitude (APA), the APDs at 50 %, 70 %, and 

90 % of repolarization (APD50, APD70, APD90). The parameters of at least 10 APs in a row 

were averaged for the analysis. 

 

2.2.10.3 INa measurements 

INa was measured using the ruptured-patch whole-cell voltage clamp technique with self-

pulled microelectrodes of 1.8 – 3 MΩ resistance. External solutions with low [Na
+
]o (5 mM) 

were used for a better voltage control in peak current and gating property measurements. For 

persistent INa measurements, an external solution with high [Na
+
]o (135 mM) was used. Liquid 

junction potentials were corrected before cell attachment. All recordings started at least 1 min 

after rupture. Membrane capacitance (Cm) and series resistance (Rs) were compensated 
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automatically after rupture. Measurements were performed using a holding potential of          

–100 mV. 

Current-voltage (I-V) relationship was determined by increasing the voltage stepwise from    

–95 mV to +35 mV in 5 mV steps from a holding potential of –100 mV. Each pulse lasted 

50 ms. All currents were normalized to Cm. Steady-state inactivation was measured by a 

double pulse protocol from a holding potential of –120 mV consisting of a 500 ms pulse of 

increasing amplitude from –120 mV to –20 mV in 5 mV steps. INa was normalized to the 

maximum current (which was usually after the first pulse). Steady-state activation and 

inactivation curves were fitted with a standard Boltzmann function: 

Y = 1/(1 + exp((V1/2 – V)/κ)), where V is the voltage, V1/2 is the half-maximal voltage of 

steady-state (in)activation and κ is the slope factor of voltage dependence of (in)activation. 

Intermediate inactivation of the sodium channels was measured by a double pulse protocol 

from a holding potential of –100 mV to –20 mV. The duration of the first pulse increased 

stepwise starting with 15 ms up to 1054 ms. After the first pulse, a recovery interval at           

–100 mV for 20 ms was used to recover all sodium channels that were not in the intermediate 

inactivation state. The second test pulse at –20 mV was used to measure the INa generated by 

the noninactivated sodium channels. The peak current from the second pulse was divided by 

the first pulse and then normalized to the 15 ms peak current. The development of 

intermediate inactivation was fitted with a single exponential function (one-phase decay): 

Y(t) = Y0 + A(–1 + exp(–t/τ)), where Y0 is the Y value at t = 0, A is the amplitude, and τ the 

time constant of inactivation. 

For the recovery from inactivation kinetics, a two-pulse protocol was used, with an increasing 

delay between the two pulses ranging from 1 ms to 165 ms. The first conditioning pulse of 

1000 ms duration induced sodium channel inactivation and the second pulse measured INa 

generated by sodium channels that had recovered from inactivation. The data obtained from 

the second pulse were normalized to the current from the first pulse and fitted with a single 

exponential function (one-phase association): 

Y(t) = Y0 + A(1 – exp(–t/τrec)), where Y0 is the Y value at t = 0, A is the amplitude, and τrec the 

time constant of recovery from inactivation. 



Materials and methods 

46 

Persistent INa density was measured in the interval between 50 – 450 ms of a 1000 ms pulse 

from a holding potential of –100 mV to –20 mV. Currents were normalized to Cm.  

The data were analyzed using Clampfit (Axon Instruments), Excel (Microsoft), and GraphPad 

Prism
®

 5.02 software. 

 

2.2.11 Statistical analyses 

Experimental data obtained from qPCR, Western blot, and patch clamp analyses are presented 

as mean ± standard error of mean (SEM). For comparison of two data sets, two-tailed 

unpaired Student´s t-test was applied. For comparison of more than two variables, the two-

way repeated analysis of variance (ANOVA) test with Bonferroni posttests was applied. 

Statistical significance is expressed by the p-value represented as (*) p < 0.05, (**) p < 0.01, 

and (§) p < 0.001. All statistical analyses were performed using GraphPad Prism
®

 5.02 

software. 
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3 Results 

3.1 Clinical profile of a patient suffering from Brugada syndrome 

A 50-year-old male patient diagnosed with BrS was recruited in this study. The patient 

suffered from several seizures during his childhood and adolescence, including epileptic 

shocks. These symptoms, together with recurrent syncope, were first believed to have a 

neurological cause. However, findings in ECG recordings revealed a slight coved type ST-

segment elevation in the right precordial leads V1 and V2 (BrS type I ECG) and a more 

saddleback pattern in V3 (BrS type II ECG) followed by a negative T-wave (Fig. 7, arrows). 

Additionally, atrial fibrillation occurred spontaneously in rest (data not shown). In long-term 

ECG recordings multiple episodes of polymorphic ventricular tachycardia as well as 

ventricular extrasystoles appeared spontaneously. First-degree AV blocks could be induced, 

which are characterized by a delayed electrical conduction from the atria to the ventricles 

through the AV node. As a result a cardioverter-defibrillator was implanted to help reducing 

the number of arrhythmias experienced by the patient. 

 

 

Figure 7. Resting ECGs from the BrS patient (right) and a 31-year-old healthy control (left). Recordings 

from precordial leads V1 – V3 are shown. The recordings of the BrS patient show a slight coved ST-segment 

elevation in V1 and V2 (BrS type I ECG) and a more saddleback pattern in V3 (BrS type II ECG), followed by a 

negative T-wave in each case. ECG recordings were kindly provided by the University Medical Center 

Göttingen. 

 

Genetic screening for possible mutations in several cardiac-specific genes showed that the 

patient is heterozygous for a nonsense mutation of the SCN5A gene. A nucleotide substitution 

in position 5435 of exon 28 (C > A) results in an in-frame premature termination codon 

(PTC). This mutation might lead to a truncation of NaV1.5 in the C-terminus (p.S1812X) and 
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is associated with BrS (Schulze-Bahr et al. 2003; Ruan et al. 2009). The cardiac phenotype of 

the patient seems to have a familial background (Fig. 8). The point mutation in the SCN5A 

gene was also identified in some of the family members. 

 

 

Figure 8. Family tree of the BrS patient. The 50-year-old BrS patient suffers from idiopathic ventricular 

tachycardia, several seizures and syncopes. He is heterozygous for a point mutation in the SCN5A gene, which 

leads to a PTC in exon 28. The patient carries an implantable cardioverter-defibrillator (ICD). His sister carries 

the mutation and had to be resuscitated after a collapse due to ventricular fibrillation. She also carries an ICD. 

Both have healthy daughters without this mutation. One brother died from sudden cardiac death at the age of 

15. Genomic information is not known. A second brother is healthy and not carrier of the mutation. The father 

suffers from cardiac disorder, but is not carrier of the mutation, whereas the mother is carrier, but healthy. 

  

One younger brother of the patient had to be resuscitated after a collapse due to physical 

stress at the age of 15. In the hospital, ventricular fibrillation was observed. He died one week 

later from sudden cardiac death. The following autopsy revealed an extensive fibrosis in the 

endocardium along the conduction system next to the left ventricle. There is no information 

regarding his genotype. 

The sister had to be resuscitated after a collapse at the age of 25 years. She was found to carry 

the mutation. ECG patterns showed a discrete ST-segment elevation in the right precordial 

leads, but no BrS-specific alterations during rest. Idiopathic ventricular fibrillation was 

observed during flecainide medication which might be an indication of BrS. She also carries 

an implantable cardioverter-defibrillator. 

A second brother of the index patient is healthy without the SCN5A mutation. Two daughters 

of the sister and the daughter of the index patient neither carry the point mutation nor show 

any cardiac disorders so far. 
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The mother carries the mutation, but is healthy and does not show a BrS-specific ECG pattern 

at rest. However, a first-degree AV block was also observed. 

The father does not have the SCN5A mutation and does not show a BrS-specific ECG pattern. 

But he demonstrated atrial fibrillation, right ventricular arrhythmia, and ventricular 

extrasystoles in ECG recordings since the age of 52. The subject is obese. 

 

3.2 Generation of human iPSCs and proof of pluripotency 

3.2.1 Generation of human iPSCs 

Bone marrow aspirate from iliac crest of the male BrS patient was taken by physicians at the 

University Medical Center Göttingen. As it was not possible to obtain cells from healthy 

realtives the bone marrow aspirate left-over from diagnosis of an unrelated healthy female 

person without known cardiac disease was used as control. The cell separation of the bone 

marrow samples was accomplished by the Ficoll gradient centrifugation. Mononuclear cells 

were collected from the interface after centrifugation. The hMSCs were isolated by their 

property to adhere to tissue culture dishes. Nine days after isolation about 2 x 10
6
 hMSCs with 

a fibroblast-like morphology (Fig. 10A, D) were obtained for further expansion. 

The isolated hMSCs from the BrS patient and the control were transduced with STEMCCA 

lentivirus particles between passage 2 and 4. The reprogramming procedure is illustrated in 

Fig. 9. 

 

Figure 9. Scheme of reprogramming procedure of isolated hMSCs. 

 

First colony-like areas appeared on day 11 after transduction. These cells were already 

positive for alkaline phosphatase (data not shown). Several colonies resembling hESCs with 

respect to their morphology were picked mechanically and propagated further on new culture 

dishes coated with feeder cells (Fig. 10B, E). Three independent cell clones from the BrS 

patient (Na6 – 8) and the healthy donor (iBM76.1 – 3) were further characterized. The 

enzyme alkaline phosphatase was expressed in all generated hiPSCs (Fig. 10C, F). 



Results 

50 

 

Figure 10. Generation of hiPSCs. Isolated and cultivated hMSCs from the bone marrow of the BrS patient 

(D) and the healthy donor as control (A) were reprogrammed into hiPSCs (B, E) using the STEMCCA 

lentivirus. The hiPSC clones showed alkaline phosphatase activity (C, F). Scale bar: 200 µm. 

 

3.2.2 Expression of pluripotency related markers 

Cellular reprogramming involves an extensive remodelling of gene expression. The 

expression of the pluripotency related marker genes NANOG, LIN28, GDF3, and FOXD3 was 

investigated by semiquantitative RT-PCR analyses in the generated hiPSCs compared to their 

parental hMSCs (BM76 and BM77). The results revealed a significant upregulation of these 

genes in all generated hiPSC clones (iBM76.1 – 3 and Na6 – 8), which was comparable to the 

expression level in hESCs (Fig. 11). 

 

 

Figure 11. Gene expression analysis of generated hiPSCs and their parental hMSCs. The pluripotency 

related genes NANOG, LIN28, GDF3, and FOXD3 were highly expressed in hESCs and in the generated 

hiPSCs. These genes were downregulated in the parental hMSCs (BM67 and BM77) as well as in MEFs. 
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In contrast to LIN28 and GDF3, a very weak transcription of NANOG and FOXD3 was 

already detectable in the hMSCs. But their expression levels in the generated hiPSCs were 

much higher and comparable to that of pluripotent hESCs. These data show an activation of 

endogenous gene expression since the four genes are not component parts of the STEMCCA 

lentivirus vector. 

In addition, the pluripotency related proteins NANOG, OCT4, SOX2, LIN28, SSEA4, and 

TRA-1-60 were detected in all generated hiPSC clones (Fig. 12). 

 

 

Figure 12. Immunostaining of the generated hiPSCs detecting pluripotency related proteins. Ctrl- (A – F) 

and BrS-hiPSCs (G – L) were positive for the transcription factors NANOG (A, G), OCT4 (B, H), and SOX2 

(C, I), as well as for the cytoplasmic located marker LIN28 (D, J). SSEA4 (E, K) and TRA-1-60 (F, L), both 

located in the cell membrane were also detectable. The cell nuclei were stained with DAPI. Scale bar: 100 µm. 
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The transcription factors NANOG, OCT4, and SOX2 (Fig. 12A – C, G – I) are located in the 

nuclei of both the BrS- and Ctrl-cells. LIN28 is located in the cytoplasm (Fig. 12D, J), 

whereas SSEA4 (Fig. 12E, K) and TRA1-60 (Fig. 12F, L) are located on the membrane 

surface. No significant difference among the analyzed hiPSC clones was observed. 

 

3.2.3 Activation of NANOG and OCT4 promoters 

The methylation status of different CpGs in the promoter regions of NANOG and OCT4 was 

evaluated using sodium bisulfite sequencing assays, to confirm the endogenous activation of 

these pluripotency related genes in the generated hiPSCs compared to their parental hMSCs 

(Fig. 13). The promoter regions of OCT4 and NANOG were highly methylated in BM76 and 

BM77, whereas the CpG sites in hiPSCs of passage 8 to 16 showed a more unmethylated 

pattern. However, in all hiPSC clones the two promoter regions were still partially methylated 

compared to hESCs. 

 

Figure 13. Methylation status of the promoter regions of pluripotency marker genes NANOG 

and OCT4. In comparison to their parental hMSCs (BM76, BM77), both promoter regions were 

more demethylated in all generated hiPSC clones. Human ESCs were used as positive control, 

where the analyzed CpG sites of both promoters were almost unmethylated. 
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3.2.4 Differentiation potential in vitro and in vivo 

The differentiation ability of the generated hiPSCs in vitro and in vivo was determined by the 

spontaneous differentiation protocol via EB formation and teratoma formation, respectively. 

For the in vitro differentiation, the Ctrl- and BrS-hiPSCs were cultivated in suspension for 8 

days in Iscove´s medium. During this cultivation, the cells formed multi-cellular aggregates 

known as EBs, which were plated onto gelatin coated culture dishes at day 8 of 

differentiation. The mRNA was isolated and reverse transcribed into cDNA at three different 

time points (day 0, day 8, and day 8+25). In all differentiation experiments, the cells showed a 

mRNA expression specific for all three embryonic germ layers in a developmentally 

controlled manner (Fig. 14). The early endodermal marker gene alpha-1-fetoprotein (AFP) 

was expressed at a low level at day 0 of differentiation and upregulated at day 8, whereas 

albumin (ALB), a late marker for hepatocytes, was highly expressed at late stages during the 

differentiation process. The same pattern was observed with the mesodermal marker genes 

cardiac troponin T (cTNT) and alpha myosin heavy chain (α-MHC), which showed a very low 

level or no expression at day 0, but an upregulation at day 8. Both ectodermal marker genes, 

synaptophysin (SYP) and tyrosine hydroxylase (TH) were also expressed in each differentiated 

cell clone. 

 

 

Figure 14. Gene expression analysis of differentiated hiPSCs. Ctrl- and BrS-hiPSCs were differentiated 

spontaneously in vitro and mRNA was isolated on day 0 (d0), day 8 (d8), and day 8+25 (d8+25) of 

differentiation. All analyzed genes are expressed in a developmentally controlled manner. MEFs were used as 

negative control. 
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The differentiated hiPSCs were also stained with antibodies against three germ layer-specific 

proteins (Fig. 15). Both Ctrl- and BrS-hiPSCs were able to differentiate into cells, which were 

positive for the mesodermal marker smooth muscle actin (SMA, Fig. 15A, D). The 

neuroectodermal marker class III β-tubulin (Fig. 15B, E) as well as the endodermal marker 

AFP (Fig. 15C, F) were also detected among the differentiated cells. 

 

 

Figure 15. Immunostaining of differentiated hiPSCs detecting three germ layer-specific proteins. Both 

differentiated Ctrl- and BrS-hiPSCs were positive for the mesodermal marker protein SMA (A, D), the 

ectodermal marker class III β-tubulin (B, E) and the endodermal marker AFP (C, F). The cell nuclei were 

stained with DAPI. Scale bar: 50 µm. 

 

The differentiation potential of the generated hiPSCs was also analyzed in vivo by 

subcutaneous injection of the cells into immunodeficient RAGC mice. The injected cells 

formed mature teratomas, which were analyzed histologically (Fig. 16). The teratomas 

derived from Ctrl-hiPSCs contained derivatives of all three embryonic germ layers, which 

showed cartilage (Fig. 16A) and muscle cells (Fig. 16B) as mesodermal tissue, neural rosettes 

(Fig. 16C) and intestinal tissue (Fig. 16D) representing ectodermal and endodermal tissues, 

respectively. The teratomas derived from BrS-hiPSCs contained mesodermal tissues 

represented by cartilage, muscle, and fat cells (Fig. 16E – G) as well as endodermal tissue 

(Fig. 16H). Ectodermal tissue was not found morphologically within the teratomas. 
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Figure 16. Teratoma formation of hiPSCs after subcutaneous injection into immunodeficient RAGC 

mice. Teratomas developed from Ctrl-hiPSCs (A – D) contained derivatives of all three embryonic germ 

layers: mesoderm represented by cartilage (A) and muscle cells (B), ectodermal neural rosettes (C), and 

intestinal tissue with endodermal origin (D). Teratomas derived from BrS-hiPSCs (E – H) contained 

derivatives of mesoderm, represented by cartilage (E), muscle (F), and fat (G) as well as endoderm, 

represented by intestinal tissue (H). Scale bar: 100 µm. 
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Taken together, the data show that the generated Ctrl- and BrS-hiPSCs are pluripotent. They 

express pluripotency related markers on mRNA and protein levels. The promoter regions of 

NANOG and OCT4 in the generated hiPSCs were demethylated, indicating that the 

endogenous expression of these two genes was activated. Furthermore, Ctrl- and BrS-hiPSCs 

were able to differentiate into derivatives of the three germ layers in vivo and in vitro. 

 

3.2.5 Karyotyping 

It is known that hESCs and hiPSCs might develop chromosomal instability under long-term 

culture conditions. The generated hiPSCs in this study were used for differentiation 

experiments until a maximum of passage 30. To determine whether these cells exhibit 

numerical aberrations of their chromosomes, hiPSCs in passage ≥ 30 were analyzed. Seven 

out of 64 (46, XX) in Ctrl-hiPSCs and 7 out of 83 BrS-hiPSCs (46, XY) exhibited an 

abnormal karyotype with 45 or less chromosomes. A trisomy of chromosome 12 or 17, which 

might provide a selective advantage for the propagation of undifferentiated cells, was not 

detected in the generated hiPSCs. Representative diploid karyograms for both Ctrl- and BrS-

hiPSCs are shown in Figure 17. 

  

 

Figure 17. Karyotype of generated hiPSCs after long-term culture. Ctrl-hiPSCs (A) and BrS-hiPSCs 

(B) showed a normal karyotype of 46, XX and 46, XY, respectively. 



Results 

57 

These data indicate that the majority of the cells have a normal karyotype. 

 

3.2.6 Verification of the SCN5A point mutation in BrS-hiPSCs 

The SCN5A gene region containing the mutant site found in the BrS patient was sequenced to 

confirm the genotypes in BrS- and Ctrl-hiPSCs. The genomic DNA of the generated hiPSCs 

was isolated and sequenced approximately 200 bp up- and downstream of the predicted 

mutation at position 5435 within the SCN5A gene. As mentioned before, SCN5A is located on 

chromosome 3p21 and codes for the α-subunit of the cardiac sodium channel. All established 

BrS-hiPSCs showed the mutation C5435A referred to the coding sequence of the SCN5A 

transcript variant 1 (NCBI reference sequence: NM_198056.2; Fig. 18). All Ctrl-hiPSCs did 

not have this mutation and therefore both alleles carry a cytosine leading to the amino acid 

serine. In addition, the sequencing data revealed that all clones of both Ctrl- and BrS-hiPSCs 

exhibited a synonymous single nucleotide polymorphism (SNP) on position 5457. Here, one 

allele carries a cytosine, whereas the other allele carries a thymine. On translational level both 

variants lead to the amino acid aspartic acid (p.D1819D). 

 

Figure 18. Verification of the SCN5A point mutation in the generated BrS-hiPSCs. All BrS-

cells exhibited the point mutation on position 5435 referred to the coding sequence of the SCN5A 

transcript variant 1, where a cytosine is replaced by an adenine on one of the alleles. The mutation 

leads to a premature stop codon. All Ctrl-cells did not show this mutation. The hiPSCs from both 

donors showed a synonymous SNP on position 5457, where one allele carries a cytosine and the 

other one carries a thymine. Both triplets code for aspartic acid (Asp). 



Results 

58 

3.3 Generation and phenotype characterization of hiPSC-derived cardiomyocytes 

3.3.1 Ctrl- and BrS-hiPSCs differentiate into cardiomyocytes 

Ctrl- and BrS-hiPSCs as well as hESCs were differentiated into CMs using either the EB 

method (Fig. 19A) or direct differentiation method (Fig. 19B). 

Approximately 2 – 3 days after plating the EBs onto gelatin coated dishes, first beating areas 

appeared. To assess the maturation of differentiated CMs, spontaneously beating areas at 

early stages (1 month) and late stages (3 months) were used for electrophysiological 

experiments. To avoid an overgrowth of noncardiac cell types in long-term culture, beating 

areas were manually picked and re-plated around day 8+25 and allowed to further mature for 

an additional 2 months. About 8 – 42 % of plated hiPSC-bodies and 16 % of hESC-bodies 

contained beating clusters. No significant difference in differentiation efficiencies was 

observed between Ctrl- and BrS-hiPSCs. However, remarkable line-to-line differences and 

experiment-dependent variability resulted in inconsistent differentiation efficiencies. These 

factors were mainly associated with the cell quality (size, morphology and density of the 

colonies) before the initiation of the differentiation. 

 

Figure 19. Schematic cardiac differentiation procedures of pluripotent stem cells using the EB method 

(A) and the directed differentiation method (B). 
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In the directed cardiac differentiation experiments, first beating cells appeared at day 7 – 8 of 

differentiation. Compared to the EB method, the directed differentiation method gave rise to 

much higher differentiation efficiencies of more than 50 % by visual observation. Removal of 

glucose together with application of lactate in the culture medium for 4 days resulted in the 

purification of CMs higher than 90 % by visual observation. No significant difference in 

differentiation efficiency was observed between Ctrl- and BrS-hiPSCs using the directed 

differentiation method. 

CMs isolated from the beating clusters showed round, spindle-shaped, tri-, or multiangular 

morphologies. They displayed organized cross-striations following staining with antibodies 

against the myofilament proteins α-actinin, myosin light chain 2a (MLC2a), and cTNT 

(Fig. 20). No significant difference was observed between Ctrl- and BrS-CMs regarding 

cardiac-specific structural proteins across all the cell clones. Additionally, the gap junction 

protein connexin 43 (Cx43) was detected between adjacent CMs, indicating a cell-to-cell 

coupling (Fig. 20A, D in green). Cx43 is important for conducting electrical signals between 

neighboring cells. 

 

Figure 20. Cardiac differentiation of Ctrl- and BrS-hiPSCs. Isolated CMs expressed structural myofilament 

proteins α-actinin (A, D in red), cTNT (B, E), and MLC2a (C, F). The gap junction protein Cx43 was detected 

at the connection between adjacent CMs (A, D in green). Cell nuclei were stained with DAPI (in blue). Scale 

bar: 50 µm. 

 

Furthermore, the generated hESC- and hiPSC-CMs responded to the exposure of known 

drugs. The beating frequency was measured before and after the addition of different 

concentrations of (S)-(-)-Bay K8644 and Diltiazem hydrochloride. Diltiazem blocks L-type 
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calcium channels and hence leads to slower contraction rates of the CMs. Both hESC- and 

hiPSC-CMs stopped beating when exposed to Diltiazem hydrochloride with a concentration 

of 10
–2

 mM (Fig. 21). In contrast, when the CMs were treated with the calcium channel 

agonist (S)-(-)-Bay K8644 the beating frequency raised significantly (Fig. 21). In hESC-CMs 

the beating frequency was raised up to 250 % of the initial frequency at a concentration of  

10
–2

 mM, whereas hiPSC-CMs could almost double their frequency. 

 

 

Figure 21. Response of generated hESC- and hiPSC-CMs when exposed to known drugs in different 

concentrations. Both, hESC- and hiPSC-CMs slightly increased their beating frequency when exposed to very 

low concentration of Diltiazem hydrochloride but decreased their frequency at higher concentrations until they 

stopped beating at 10–2 mM. When treated with (S)-(-)-Bay K8644 beating frequencies increased up to 250 % 

of the initial frequency in hESC-CMs and 200 % in hiPSC-CMs.  

  

These data indicate that both Ctrl- and BrS-hiPSCs are able to differentiate efficiently into 

CMs displaying normal sarcomeric structures and the ability to respond to known drugs 

similar to hESC-CMs. 

 

3.3.2 BrS-CMs display reduced INa 

INa density and gating properties of sodium channels were analyzed in single CMs to assess 

whether BrS-CMs recapitulate the disease phenotype in vitro.  

It is known that voltage-gated sodium channels are activated by voltage changes across the 

cell membrane. The INa was measured in 1- and 3-month-old hiPSC-CMs using the ruptured-

patch whole-cell voltage clamp technique. The current-voltage (I-V) relationship was 

determined by changing the voltage from –95 to +35 mV in 5 mV increments from a holding 

potential of –100 mV. The I-V patch protocol and representative traces of I-V measurements 

in a Ctrl- and a BrS-CM are shown in Figure 22A. 



Results 

61 

 

Figure 22. Sodium current-voltage (I-V) relationship in 1- and 3-month-old Ctrl- and BrS-CMs. The I-V 

protocol and representative INa traces of a BrS- and a Ctrl-CM (normalized to Cm) are presented in (A). BrS-

CMs showed a significant reduced INa in both 1-month-old (B) and 3-month-old (C) cells compared to the Ctrl-

cells. Average INa density (left) and the averaged maximum peak current density (right) in Ctrl- and BrS-CMs 

are presented. A right-shift of I-V curves was detected in BrS-CMs. INa densities were increased in 3-month-old 

CMs compared to 1-month-old cells (D). Data are presented as mean ± SEM. Two-way repeated measures 

ANOVA for I-V curves or unpaired Student´s t-test for peak INa densities were used for statistical analyses: 

(*) p < 0.05, (**) p < 0.01, (§) p < 0.001, n. s. = not significant. 
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The membrane capacitance of both 1- and 3-month-old BrS-CMs was comparable to 1- and 3-

month-old Ctrl-CMs (Table 11), respectively, which excludes possible functional differences 

relating to the cell size. A significant reduction of the average INa density was observed in 

both 1- and 3-month-old BrS-CMs compared to the Ctrl-CMs (Fig. 22B, C). The maximal INa 

density reached only 54 % in 1-month-old BrS-CMs and 49 % in 3-month-old BrS-CMs 

compared to their respective Ctrl-CMs. 

 

Table 11. Biophysical parameters of the sodium channel in Ctrl- and BrS-CMs 

Parameter Ctrl (1 month) BrS (1 month) Ctrl (3 months) BrS (3 months) 

Cm [pF] 

n 

48.90 ± 3.63 

25 

59.87 ± 6.89 

22 

58.22 ± 5.23 

24 

67.72 ± 5.55 

26 

Steady-state activation 

V1/2 [mV] 

κ [mV] 

n 

 

–40.99 ± 0.27 

4.95 ± 0.24 

25 

 

–36.95 ± 0.19§ 

5.35 ± 0.16 

22 

 

–41,31 ± 0.26 

5.07 ± 0.23 

24 

 

–35.54 ± 0.34§ 

5.90 ± 0.29* 

26 

Steady-state inactivation 

V1/2 [mV] 

κ [mV] 

n 

 

–78.10 ± 0.19 

5.47 ± 0.17 

23 

 

–78.60 ± 0.24 

5.60 ± 0,22 

20 

 

–77.89 ± 0.19 

5.75 ± 0.17 

21 

 

–78.08 ± 0.13 

5.49 ± 0.12 

21 

Intermediate inactivation 

A 

τ [ms] 

n 

 

0.091 ± 0.006 

189.5 ± 38.42 

22 

 

0.118 ± 0.008 

156.8 ± 29.85 

20 

 

0.095 ± 0.006 

180.6 ± 30.62 

19 

 

0.111 ± 0.004 

165.3 ± 15.14 

21 

Recovery from inactivation 

A 

τrec [ms] 

n 

 

0.95 ± 0.02 

11.71 ± 0.56 

23 

 

0.88 ± 0.02 

17.47 ± 1.02§ 

22 

 

0.96 ± 0.01 

16.40 ± 0.67 

22 

 

0.91 ± 0.01 

14.94 ± 0.59 

24 

Membrane capacitance (Cm), number of cardiomyocytes (n), half-maximal voltage of steady-state 

(in)activation (V1/2), slope factor of voltage dependence of (in)activation (κ), amplitude of intermediate 

inactivation/recovery from inactivation (A), time constant for development of intermediate inactivation (τ), 

time constant of recovery from inactivation (τrec). Data are presented as mean ± SEM. Statistical analysis 

was performed between BrS- and Ctrl-CMs of the same developmental stage. Statistical significance is 

represented by (*) p < 0.05 and (§) p < 0.001. 

 

In addition, an increase of peak INa densities was observed in prolonged cultures (Fig. 22D). 

Three-month-old Ctrl-CMs showed a significant increase of 39 % whereas BrS-CMs 

demonstrated 26 % (not significant) more current compared to their 1-month-old counterparts. 
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Based on these data, at least 2-month-old CMs were further analyzed for the underlying 

molecular mechanisms in section 3.4. 

A significant right shift of the I-V curve to a more positive potential in BrS-CMs compared to 

Ctrl-CMs was detected (Fig. 22B, C). The maximal current in Ctrl-CMs appeared at the 

membrane potential of –35 mV, whereas in BrS-CMs it appeared at –30 mV. This right shift 

is reflected in the activation curves of the sodium channels (Fig. 23B, C). The potential of 

half-maximal steady-state activation (V1/2) of sodium channels in 1- and 3-month-old Ctrl-

CMs was –40.99 mV and –41.31 mV with a slope factor κ of 4.95 mV and 5.07 mV, 

respectively (Table 11, Fig. 23B, C). V1/2 of steady-state activation shifted significantly 

towards more positive potentials in BrS-CMs (1-month-old: V1/2 = –36.95 mV, κ = 5.35 mV; 

3-month-old: V1/2 = –35.54 mV, κ = 5.90 mV). However, V1/2 of steady-state activation 

remained unchanged in 3-month-old Ctrl- or BrS-CMs compared to their respective 1-month-

old cells. 

These data demonstrate that CMs derived from BrS-hiPSCs display a significant reduction of 

INa and a significant right shift of the I-V and activation curves. In addition, 3-month-old CMs 

exhibit larger INa than 1-month-old CMs, indicating functional maturation of the cells. 

 

3.3.3 Sodium channels of BrS-CMs show no significant changes in steady-state 

inactivation, intermediate inactivation, and recovery from inactivation 

The differentiated CMs were held at various membrane potentials from –120 mV to –20 mV 

for 500 ms in 5 mV increments to determine the voltage-dependent steady-state inactivation 

(availability) of sodium channels. A short (20 ms) test pulse of –20 mV was given after this 

steady-state to elicit remaining sodium currents (Fig. 23A, left, voltage protocol; right, 

example of INa traces). In contrast to the activation curves, the steady-state inactivation of 

sodium channels did not differ between BrS- and Ctrl-CMs (Fig. 23B, C) as indicated in the 

half-maximal voltage of inactivation (V1/2) and the slope factor κ (Table 11). V1/2 in 1-month-

old Ctrl-CMs was –78.10 mV with a slope factor κ of 5.47 mV compared to V1/2 = –78.60 mV 

and κ = 5.60 mV in BrS-CMs (Table 11). No significant differences in steady-state 

inactivation were detected between 1- and 3-month-old Ctrl-CMs and BrS-CMs, respectively. 
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Figure 23. Steady-state activation (SSact) and inactivation (SSinact) of cardiac sodium channels in 1- and 3-

month-old Ctrl- and BrS-CMs. The inactivation protocol and a typical inactivation trace are presented in (A). 

The average voltage dependence of inactivation was not affected in BrS-CMs compared to Ctrl-CMs in both, 1- 

(B) and 3-month-old (C) cells. The voltage dependent activation in BrS-CMs is characterized by a right shift of 

their activation curves compared to Ctrl-CMs, indicating a delayed activation of the sodium channels in BrS-

CMs. Data are presented as mean ± SEM and summarized in Table 11. 

 

To study the intermediate inactivation of the sodium channels, a double pulse protocol with 

depolarization pulses from –100 to –20 mV was applied. The time length of the first pulse 

was increased from 15 to 1054 ms within a series of measurements (Fig. 24A). The time-

dependent availability of sodium channels was monitored at the second pulse. The amplitude 

of intermediate inactivation (A), representing the fraction of sodium channels that enter the 

inactivated state, was not significantly changed between Ctrl- and BrS-CMs in both 1- and 3-

month-old cells (Fig.24B, C; Table 11). The time constants for development of intermediate 

inactivation (τ) were slightly increased in Ctrl-CMs compared to BrS-CMs, showing that 

sodium channels in BrS-CMs inactivate not significantly faster compared to Ctrl-CMs. In 

addition, the amplitude of intermediate inactivation and the time constants for development of 

intermediate inactivation did not exhibit significant changes with the maturation status of the 

cells (1- vs. 3-month-old cells in both Ctrl- and BrS-cells; Fig. 24D).     
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Figure 24. Intermediate inactivation of cardiac sodium channels in 1- and 3-month-old Ctrl- and BrS-

CMs. The inactivation protocol and a typical trace of intermediate inactivation are presented in (A). The 

development of intermediate inactivation was not significantly affected in BrS-CMs compared to Ctrl-CMs in 

both 1- (B) and 3-month-old (C) cells. The inactivation did also not change with the maturation status of the 

cells (D). Data are presented as mean ± SEM and summarized in Table 11. 

 

The rate of sodium channel recovery of inactivation was next investigated by using a double 

pulse protocol with an increasing delay from 1 – 165 ms between the first and the second 

pulse (Fig. 25A). CMs were depolarized from –100 to –20 mV for 1000 ms to initiate sodium 

channel inactivation. A longer delay period between the two pulses resulted in the recovery of 

a higher fraction of sodium channels at the second pulse of –20 mV (Fig. 25A). The recovery 

from inactivation was significantly faster in 1-month-old Ctrl-CMs compared to BrS-CMs 

(Fig. 25B; Table 11), whereas no significant differences were observed in 3-month-old Ctrl-

CMs compared to BrS-CMs (Fig. 25C; Table 11). Seemingly, the rate of recovery in Ctrl-

CMs was decreased upon maturation and there was no significant difference between BrS- 

and Ctrl-CMs anymore at the developmental stage of 3 months (Fig. 25C, D). 
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Figure 25. Recovery from inactivation of cardiac channels in 1- and 3-month-old Ctrl- and BrS-CMs. 

The protocol for recovery from inactivation and a typical trace are presented in (A). 1-month-old Ctrl-CMs 

recovered significantly faster than BrS-CMs (B). There was no significant difference in recovery between 3-

month-old Ctrl- and BrS-CMs (C), which may be due to a slower recovery in 3-month-old Ctrl-CMs (D). Data 

are presented as mean ± SEM and summarized in Table 11. Two-way repeated measures ANOVA was used for 

statistical analysis. Statistical significance is represented by (**) p < 0.01 and (§) p < 0.001. 

 

Taken together, these data show that the steady-state inactivation and the recovery from 

inactivation of sodium channels in 3-month-old BrS-CMs are comparable to Ctrl-CMs. 

However, the intermediate inactivation of cardiac sodium channels is slightly, but not 

significantly enhanced in BrS-CMs. 

 

3.3.4 BrS-CMs show no significant changes in persistent INa 

Persistent INa in cardiac cells may have a substantial contribution to Na
+
 ion loading during 

each cardiac cycle and contribute to triggered arrhythmia by causing repolarization failure 

(EADs), or by inducing delayed afterdepolarizations (DADs) attributable to calcium 

oscillations in Na
+
/Ca

2+
 ion overload conditions. To study whether the SCN5A mutation 

C5435A (p.S1812X) leads to an enhanced INa in BrS-CMs, persistent INa density was 
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measured in the interval between 50 – 450 ms of a 1000 ms pulse in 3-month-old CMs (Fig. 

26A). No significant difference between BrS- and Ctrl-CMs could be detected (Fig 26B). 

 

Figure 26. Persistent INa in 3-month-old CMs. Normalized INa recordings of a representative Ctrl- (black) 

and BrS-CM (red) are presented as an overlay (A). The normalized persistent INa density in the time interval 

between 50 – 450 ms (B) showed no significant difference between BrS- (n = 24) and Ctrl-CMs (n = 19). Data 

are presented as mean ± SEM. Student´s unpaired t-test was used for statistical analysis (n. s. = not significant). 

 

3.3.5 Action potentials of BrS-CMs exhibit a reduced Vmax 

To assess whether the BrS-CMs can recapitulate the disease phenotype in vitro, APs in single 

BrS-CMs compared to Ctrl-CMs were recorded. Electrophysiological studies showed that 

both Ctrl- and BrS-CMs generated APs spontaneously. Three major cardiac subtypes 

(embryonic ventricular-, atrial-, and nodal-like) were identified in Ctrl- and BrS-CMs based 

on AP morphologies. In addition to the AP shape, stringent criteria were defined to classify 

the cardiac subtypes for further analyses. The morphologies of different APs are shown in 

Fig. 27. 

 

 

Figure 27. Classification of differentiated CMs according to their AP morphologies. The APs of a 

ventricular-like CM are characterized by a very negative RMP, a rapid AP upstroke, and a long plateau phase, 

whereas the APs of an atrial-like CM lack the plateau and instead show a more triangular-like shape. A typical 

AP of a nodal-like CM has a less negative RMP and a slower upstroke velocity. Furthermore, the AP amplitude 

is much shorter in these cells compared to ventricular- or atrial-like CMs. 
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The typical AP of a ventricular-like CM is characterized by a relative negative RMP          

(< –60 mV), a rapid AP upstroke, an APA bigger than 95 mV, and a prominent plateau phase. 

The atrial-like AP exhibits similar properties but lacks the plateau phase, leading to a 

triangular-like shape. A nodal-like AP exhibits typically a less negative RMP (≥ –55 mV), an 

APA smaller than 85 mV and a very slow maximal upstroke velocity (Vmax ≤ 5 V/s). 

The majority of the analyzed cells were found to be ventricular-like cells (Table 12). On 

average, the ventricular- and atrial-like CMs showed a slightly more negative RMP in BrS-

CMs compared to Ctrl-CMs, whereas the APA showed no difference. The characteristics of 

nodal-like APs were similar between Ctrl- and BrS-CMs (Table 12). 

 

Table 12. Action potential characteristics 

 RMP [mV] APA [mV] Vmax [V/s] 

Ctrl (1 month)    

Ventricular-like (n = 9) 

Atrial-like (n = 3) 

Nodal-like (n = 2) 

–69.7 ± 1.2 

–67.5 ± 1.4 

–54.6 ± 3.6 

107.3 ± 2.0 

102.2 ± 2.6 

71.9 ± 13.5 

17.9 ± 2.2 

19.1 ± 3.0 

2.5 ± 0.7 

BrS (1 month)    

Ventricular-like (n = 19) 

Atrial-like (n = 3) 

Nodal-like (n = 1) 

–73.1 ± 1.2 

–72.9 ± 1.4 

–48.4 

106.3 ± 1.4 

108.5 ± 5.2 

61.0 

17.8 ± 1.8 

16.2 ± 7.1 

3.5 

Ctrl (3 months)    

Ventricular-like (n = 17) 

Atrial-like (n = 1) 

Nodal-like (n = 3) 

–66.1 ± 1.1 

–69.4 

–54.7 ± 1.8 

105.8 ± 1.4 

91.5 

80.3 ± 2.7 

25.1 ± 0.8 

20.7 

1.7 ± 0.1 

BrS (3 months)    

Ventricular-like (n = 17) 

Atrial-like (n = 1) 

Nodal-like (n = 3) 

–68.0 ± 1.1 

–70.2 

–53.1 ± 1.5 

105.8 ± 1.8 

101.4 

87.4 ± 0.6 

16.9 ± 1.1 

21.5 

2.3 ± 0.1 

Resting membrane potential (RMP), action potential amplitude (APA), maximal upstroke velocity (Vmax), 

number of cardiomyocytes (n). Data are presented as mean ± SEM. 

 

The Vmax is a measure of sodium channel availability in ventricular- and atrial-CMs. Due to 

the minor role of sodium channels contributing to the depolarization in nodal-like cells, this 

subtype was excluded from further AP analyses regarding the Vmax during depolarization. The 

Vmax values of atrial- and ventricular-like CMs were pooled and grouped into 1- and 3-month-



Results 

69 

old BrS- and Ctrl-CMs (Fig. 28). On average, the difference of Vmax in 1-month-old BrS- 

compared to Ctrl-CMs was marginal (see also Table 12). However, a population with a 

reduced Vmax (≤ 10 V/s) in 1-month-old BrS-CMs was clearly detectable (Fig. 28). In 3-

month-old BrS-CMs, Vmax was significantly smaller than in Ctrl-CMs, with a subpopulation 

of cells where Vmax is ≤ 15 V/s. Additionally, the average Vmax was significantly increased in 

3-month-old Ctrl-CMs compared to 1-month-old CMs (see also Table 12). 

 

Figure 28. Vmax in atrial- and ventricular-like CMs of 1- and 3-month-old BrS- and Ctrl-CMs. On 

average, the difference of Vmax in 1-month-old BrS- compared to Ctrl-CMs was marginal, although a 

population of BrS-cells with Vmax < 10 V/s was visible (blue circle, left). In 3-month-old Ctrl-CMs the average 

Vmax was significantly increased compared to 1-month-old Ctrl-CMs. A significantly reduced Vmax in 3-month-

old BrS-CMs compared to Ctrl-CMs was clearly detectable. Unpaired Student´s t-test was used for statistical 

analysis. Statistical significance is represented by (§) p < 0.001. 

 

3.3.6 BrS-CMs show increased AP irregularities and beat-to-beat variability of 

repolarization duration 

BrS is associated with increased incidences of ventricular tachycardia. EAD- and DAD-

induced triggered activity is capable of initiating cardiac arrhythmias. To further investigate 

the functional consequences of the reduced INa in BrS-CMs and its impact on arrhythmias, 

irregularities during spontaneous AP recordings were studied compared to Ctrl-CMs. Three 

prominent irregularities were detected: EADs and EAD-induced triggered activity (Fig. 29C), 

DADs and DAD-induced triggered activity (Fig 29D), as well as beat-to-beat variability of 

repolarization durations of sequential APs (Fig. 29B). These irregularities were counted 

together as arrhythmogenic and compared between BrS- and Ctrl-CMs. In 35 % of all 

recorded 1-month-old BrS-CMs (n = 77) arrhythmic events were detectable, compared to 
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16 % of all 1-month-old Ctrl-CMs (n = 48). Among the 3-month-old cells 44 % of the BrS-

CMs (n = 27) showed arrthythmic events compared to 11 % of the Ctrl-CMs (n = 45). 

 

 

Figure 29. Traces of spontaneous AP recordings from Ctrl- (A) and BrS-CMs (B – D). The absolute 

majority of the Ctrl-CMs showed rhythmical AP recordings (A). Arrhythmical AP recordings were observed 

more often among the BrS-CMs. In many cases, APs showed a high APD variability (B). Additionally, EADs 

and EAD-induced triggered activity (C) and DADs and DAD-induced triggered activity (D) appeared 

spontaneously in BrS-CMs. 

 

Electrophysiological recordings of spontaneously beating CMs already revealed a high beat-

to-beat variability of repolarization durations of sequential APs within one measurement. The 

APD is defined by the time needed for the repolarization of the cell. For example, APD90 

defines the time, which is needed for 90 % of the full repolarization of the cell. However, the 

APDs are dependent on the beating frequency. Moreover, it is well known that the clinical 

manifestation of BrS is dependent on the beating rate (Extramiana et al. 2006). Therefore, in 

order to compare the APDs between Ctrl- and BrS-CMs, the cells were paced at a 

physiological rate. In this study, the APs were recorded while the CMs were paced at two 

different frequencies (0.8 and 1.0 Hz). The variability among sequential APs within one 

measurement was defined by the difference between the shortest and the longest APD 

(Fig. 30). The difference was calculated for APD50, APD70, and APD90. Patch clamp 

recordings in 1- as well as 3-month-old Ctrl-CMs demonstrated a relatively low beat-to-beat 

variability, when paced at 0.8 and 1.0 Hz (Fig. 30A). In contrast, BrS-CMs showed a high 

beat-to-beat variability (Fig. 30B). 
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Figure 30. APD variability in Ctrl- and BrS-CMs. When electrically paced with 0.8 or 1.0 Hz, Ctrl-CMs 

showed little beat-to-beat variability of sequential APs regarding the duration of 50 %, 70 %, and 90 % of 

repolarization (shortest and longest AP in black (A)). In contrast, BrS-CMs showed a significantly increased 

beat-to-beat variability compared to Ctrl-CMs (B). 

 

When paced at 0.8 and 1.0 Hz, the variability of APD50, APD70, and APD90 was 

significantly increased in both 1- and 3-month-old BrS-CMs compared to the respective Ctrl-

CMs (Fig. 31A – D). 
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Figure 31. Quantitative analysis of the beat-to-beat APD variability in 1- and 3-month-old Ctrl- and BrS-

CMs. For the calculation of the variability, the shortest APD of one measurement was substracted from the 

longest APD for APD50, APD70, and APD90. (A) 1 month (0.8 Hz), (B) 1 month (1.0 Hz), (C) 3 months 

(0.8 Hz), and (D) 3 months (1.0 Hz). The variability of APD50, APD70, and APD90 was significantly 

increased in BrS-CMs compared to Ctrl-CMs measured at 0.8 and 1.0 Hz for both 1- and 3-month-old cells. 

Data are presented as mean ± SEM. Unpaired Student´s t-test was used for statistical analysis. Statistical 

significance is represented by (*) p < 0.05 and (§) p < 0.001. 

 

3.3.7 Sodium channel blocker flecainide induces increased APD variability in Ctrl-CMs 

To find out whether the increased APD variability in BrS-CMs is correlated to the reduced 

INa, 3-month-old Ctrl-CMs were treated with the sodium channel blocker flecainide. INa and 

APs were recorded. When the Ctrl-CMs were treated with flecainide at a concentration of 

2.5 µM, a reduction of the average INa density similar to that of 3-month-old BrS-CMs was 

observed (see Fig. 22C). Furthermore, a slight right-shift of the I-V curve was also detected, 

indicating delayed sodium channel activation (Fig. 32A). The peak INa density in Ctrl-CMs 

treated with flecainide was significantly reduced to 50 % (Fig. 32B) and appeared at a more 

positive potential (–30 mV) compared to Ctrl-CMs without treatment (–35 mV).  
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Figure 32. INa measurements in Ctrl-CMs treated with flecainide. 3-month-old Ctrl-CMs were treated with 

2.5 µM of the sodium channel blocker flecainide. The I-V curve of Ctrl-CMs treated with flecainide showed a 

significant reduced INa and a slight right shift compared to untreated Ctrl-CMs (A). Peak current density in Ctrl-

CMs with flecainide (at –30 mV) was significantly reduced to 50 % in comparison to Ctrl-CMs without 

treatment (at –35 mV) (B). Data are presented as mean ± SEM. Two-way repeated measures ANOVA for I-V 

curves and unpaired Student´s t-test for peak INa densities were used for statistical analysis: (*) p < 0.05, 

(**) p < 0.01, (§) p < 0.001. 

 

AP recordings during pacing at 0.8 Hz (Fig. 33A) and 1.0 Hz (Fig. 33B) demonstrated a 

significantly increased variability of APD50, APD70, and APD90 when the cells were treated 

with flecainide. These data indicate a correlation of the reduced INa and the APD variability. 

 

 

Figure 33. Beat-to-beat APD variability in Ctrl-CMs treated with flecainide. The APs of paced Ctrl-CMs 

at 0.8 Hz (A) and 1.0 Hz (B) showed a significantly increased beat-to-beat variability when treated with 

flecainide. Ctrl (– flecainide): n = 16, Ctrl (+ flecainide): n = 9. Data are presented as mean ± SEM. Student´s 

t-test was used for statistical analysis. Statistical significance is represented by (*) p < 0.05, and (§) p < 0.001. 

 

3.3.8 Antiarrhythmic agent quinidine does not decrease APD variability in BrS-CMs 

Quinidine is a class I antiarrhythmic agent which is currently used in clinical trials for the 

treatment of BrS patients. To study the influence of quinidine on APD variability in BrS-

CMs, the cells were treated with the drug at concentration of 5 μM. AP measurements showed 
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a prolongation of the APD and a slower spontaneous beating frequency (Fig. 34A). Pacing 

experiments could not be performed under previous conditions (pacing frequencies of 0.8 and 

1.0 Hz) because of the increased APD under quinidine treatment. When paced at 0.8 or 

1.0 Hz, the cells were not able to repolarize completely before the next stimulus. Therefore, 

the cells were paced at 0.4 Hz to allow for complete repolarization. However, AP recordings 

with lower pacing frequencies still revealed a high beat-to-beat APD variability in BrS-CMs, 

indicating that quinidine has no effect on the APD variability (Fig. 34B). 

 

 

Figure 34. AP recordings of BrS-CMs under quinidine treatment. Spontaneous AP measurements showed 

a prolongation of the APD and a slower spontaneous beating frequency (A). AP recordings with low pacing 

frequencies (0.4 Hz) still revealed a high beat-to-beat APD variability in BrS-CMs (shortest and longest AP in 

black (B)). 

 

3.4 Role of SCN5A mutation C5435A (p.S1812X) in the pathogenesis of BrS 

3.4.1 Expression of SCN5A in BrS-CMs on mRNA level 

To study the total SCN5A gene expression in BrS-CMs in comparison to Ctrl-CMs, 

quantitative real-time PCR was performed. Three-month-old CMs from spontaneous and two-

month-old CMs from directed differentiations were analyzed. Since a 100 % purity of CMs in 

the samples cannot be guaranteed, the SCN5A expression was normalized to the early cardiac 

differentiation marker cTNT and the late cardiac differentiation marker CASQ2. The qPCR 

data revealed a higher SCN5A expression in BrS-CMs compared to Ctrl-CMs when 

normalized to cTNT (1.6-fold) and to CASQ2 (2-fold). However, the higher expression level 

was not significant. Additionally, the expression level of CASQ2 when normalized to cTNT 

showed no significant difference between BrS- and Ctrl-CMs (Fig. 35). These data indicate no 

significant maturation differences between BrS- and Ctrl-CMs. 
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Figure 35. Total SCN5A gene expression in Ctrl- and BrS-CMs. On average, qPCR analyses 

showed a higher SCN5A expression in BrS-CMs compared to Ctrl-CMs when normalized to 

cTNT (1.6-fold) as well as to CASQ2 (2-fold). However, the difference was not significant 

(tested with unpaired Student´s t-test, n. s. = not significant). The CASQ2 expression normalized 

to cTNT was not altered in BrS-CMs compared to Ctrl-CMs. Data are presented as mean ± SEM. 

 

One allele of the SCN5A gene of the BrS patient is characterized by the point mutation 

C5435A in exon 28. To study whether an allelic expression imbalance of SCN5A exists in 

BrS-CMs, the allele-specific expression of the gene was determined with the Ion Torrent™ 

semiconductor sequencing system. Total mRNA of 3-month-old beating clusters and 2-

month-old selected CMs from one directed cardiac differentiation experiment were collected, 

reverse transcribed into cDNA and the region which included the mutation was amplified and 

subsequently sequenced. In addition, genomic DNA (gDNA) from differentiated hiPSCs of 

the BrS patient was sequenced as control. The results showed no significant difference of the 

gene expression level of the wildtype (wt, 47.8 ± 0.32 %) allele compared to the mutated 

(C5435A, 52.2 ± 0.31 %) allele (Fig. 36). Sequencing of the gDNA revealed similar copy 

numbers of the wt allele (52.2 ± 0.29 %) and mutated allele (47.8 ± 0.29 %) in the hiPSC-

derived CMs of the BrS patient. 
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Figure 36. Allele-specific SCN5A expression in BrS-CMs. The sequencing of cDNA copies revealed no 

significant difference in the expression level of the wt (47.8 ± 0.32 %) compared to the mutated 

(52.2 ± 0.31 %) allele. The gDNA sequencing showed similar copy numbers of the wt allele (52.2 ± 0.29 %) 

compared to the mutated allele (47.8 ± 0.29 %). Data are presented as mean ± SEM. 

 

3.4.2 Expression of NaV1.5 protein in BrS-CMs 

To further investigate the functional consequences of the SCN5A mutation C5435A 

(p.S1812X) in BrS-CMs, the cellular distribution of the NaV1.5 channels was first examined 

using an antibody against the total protein of NaV1.5 (Fig. 37). Immunostaining showed that 

the NaV1.5 channels were mainly expressed in a diffused or a fine granular network-like 

pattern in hiPSC-derived CMs. A similar distribution of the NaV1.5 channels in Ctrl-CMs 

compared to BrS-CMs was found. 

 

Figure 37. Immunostaining of hiPSC-derived CMs detecting NaV1.5. Ctrl-CMs (A) and BrS-CMs (B) 

showed a similar distribution of NaV1.5. Cell nuclei were stained with DAPI (in blue). Scale bar: 10 µm. 
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As mentioned before, the SCN5A mutation C5435A (p.S1812X) is expected to give rise to a 

truncated NaV1.5 protein. As the patient is heterozygous for this mutation, it is expected that 

50 % of the functional, full-length protein is translated. To address the question whether the 

significantly reduced INa of about 50 % in BrS-CMs is due to nonfunctional sodium channels 

or due to less sodium channels integrated into the cell membrane, Western blot analyses with 

anti-NaV1.5 antibodies binding at different epitopes of the channel were performed. Four 

different antibodies were tested: three antibodies against the total NaV1.5 protein in both Ctrl- 

and BrS-CMs (anti-human-NaV1.5 detecting an extracellular domain (1), anti-mouse-NaV1.5 

detecting amino acid residues 493 – 511 with 17/19 identical with human (2), anti-rat-NaV1.5 

detecting amino acid residues 493 – 511 with 17/19 identical with human (3)) and one against 

only the full length protein which binds on the C-terminus of the protein (anti-human-NaV1.5 

detecting amino acid residues 1978 – 2016). Only the latter showed specific results (Fig. 38). 

 

Figure 38. Western blot analyses in BrS- ad Ctrl-CMs. Antibodies detecting the full-length protein NaV1.5 

demonstrated 82 % expression in BrS- compared to Ctrl-CMs, indicating an upregulation of the full-length 

protein in BrS-CMs. In BrS-CMs, both isoforms of Ca2+/calmodulin-dependent protein kinase II-δ (CamKIIδ) 

together contributed to 84 % of the expression level in Ctrl-CMs. The isoform CamKIIδB was 40 % 

downregulated in BrS-CMs, whereas CamKIIδC was slightly higher expressed compared to that in Ctrl-CMs. 

All proteins were normalized to α-actinin. 
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The Western blot results showed that the expression of the full-length NaV1.5 protein in BrS-

CMs was reduced by 18 % when normalized to α-actinin and compared to Ctrl-CMs. 

Previous studies showed that Ca
2+

/calmodulin-dependent protein kinase II-δ (CamKIIδ) could 

modulate NaV1.5 and was involved in regulation of INa (Ashpole et al. 2012). Therefore, the 

expression level of the predominant cardiac isoform CamKIIδC, which is part of the 

macromolecular complex surrounding NaV1.5, was studied in Ctrl- and BrS-CMs. The 

antibody used in this Western experiment recognizes both isoforms CamKII-δB and 

CamKIIδC. The data showed that the average expression of both CamKIIδ isoforms together 

was 16 % reduced in BrS-CMs compared to Ctrl-CMs when normalized to α-actinin. A 

similar expression relationship was observed for NaV1.5 between BrS- and Ctrl-CMs 

(Fig. 36). The isoform CamKIIδB was 40 % downregulated in BrS-CMs, whereas the 

expression level of CamKIIδC was slightly higher in comparison to that in Ctrl-CMs (Fig. 36). 

Taken together, SCN5A expression analyses revealed a slight upregulation on mRNA level, 

with a balance in allele-specific expression. The translation of full-length NaV1.5 protein was 

however reduced by only 18 % in BrS-CMs compared to Ctrl-CMs, although the expression 

level was expected at 50 %. 
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4 Discussion 

The Brugada syndrome is a distinct subgroup of idiopathic ventricular tachycardia or 

ventricular fibrillation and is one of the major causes of sudden cardiac death in healthy 

young people. However, the underlying electrophysiological and molecular mechanisms have 

not been completely understood. A big challenge in cardiac translational research is the lack 

of tissue culture systems recapitulating human pathology to study disease mechanisms and to 

identify druggable targets. The discovery of inducing pluripotency by the ectopic expression 

of certain transcription factors in somatic cells represents a milestone in medical research 

(Takahashi and Yamanaka 2006). Patient-specific hiPSCs as a renewable and unlimited 

source for CMs provide the possibility to study the pathophysiology of genetic diseases in 

vitro. 

The aim of this thesis was to investigate whether CMs differentiated from hiPSCs generated 

from hMSCs of a BrS patient could recapitulate electrophysiological features of the disease in 

vitro as well as to study the underlying molecular mechanisms. Firstly, hiPSCs were 

generated from a 45-year-old female healthy control and a 50-year-old male BrS patient 

heterozygous for a point mutation (C5435A) in the SCN5A gene, encoding for the α-subunit 

of the cardiac sodium channel NaV1.5. 

The generated Ctrl- and BrS-iPSCs exhibited hESC-like characteristics, demonstrated by 

pluripotency related gene expression, demethylation status in the promoter regions of NANOG 

and OCT4, in vitro differentiation capacity, and teratoma formation. Furthermore, both Ctrl- 

and BrS-hiPSCs were able to differentiate into functional CMs, which were shown by 

spontaneous contraction, drug response and cardiac-specific protein expression. 

Electrophysiological analyses showed a loss-of-function of the sodium channels with a 

delayed activation in BrS-CMs compared to Ctrl-CMs. Steady-state inactivation and the 

recovery from inactivation of sodium channels in BrS-CMs were comparable to Ctrl-CMs, 

whereas the intermediate inactivation of cardiac sodium channels was slightly, but not 

significantly enhanced in BrS-CMs. AP measurements revealed a reduced Vmax and higher 

arrhythmic tendencies in BrS-CMs, mainly expressed as an increased beat-to-beat APD 

variability. 

Total SCN5A expression on mRNA level was found to be slightly upregulated in BrS-CMs 

compared to Ctrl-CMs, albeit showing allele balanced expression. On protein level, full-

length NaV1.5 expression was reduced by 18 % in BrS-CMs compared to Ctrl-CMs.  
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4.1 Successful generation of human iPSCs 

In this study, the STEMCCA lentivirus system was used for the reprogramming of Ctrl- and 

BrS-hMSCs into hiPSCs. STEMCCA is single polycistronic “stem cell cassette” containing 

all four Yamanaka factors OCT4, SOX2, KLF4, and c-MYC, separated by self-cleaving 2A 

peptide and IRES sequences (Somers et al. 2010). The combination of 2A peptide and IRES 

elements allows for the production of the four individual transcription factors (Ibrahimi et al. 

2009). The simultaneous expression of the four transcription factors is driven by a constitutive 

EF-1α promoter on a single vector, which leads to a reduction of viral integration sites and a 

higher reprogramming efficiency compared to the use of four single vectors (Somers et al. 

2010; Streckfuss-Bömeke et al. 2013). However, STEMCCA integrates randomly into the 

genome, which might disrupt important genetic information and increase the risk of 

insertional mutagenesis. Even after excision of STEMCCA using the Cre/LoxP system, 

around 200 bp of an inactive viral long terminal repeat site remains in the host genome 

(Somers et al. 2010). There are continuing efforts in the development of transgene-free 

reprogramming methods with high efficiencies (Durruthy-Durruthy et al. 2014).  

The molecular mechanisms behind the process of cellular reprogramming have not been 

completely understood yet. In the present study, ectopic expression of the four Yamanaka 

factors (Takahashi and Yamanaka 2006) in hMSCs resulted in the successful generation of 

hiPSCs. The homeodomain transcription factor of the POU family Oct4 is expressed in the 

nuclei of early blastomeres (Rosner et al. 1990). During development, its expression becomes 

restricted to the pluripotent inner cell mass and later to the primordial germ cells and finally to 

oocytes (Pesce et al. 1998). Oct4 dimerizes with Sox2 to form a transcription complex, which 

activates their own gene expression in a positive feedback (Masui et al. 2007; Tomioka et al. 

2002). Furthermore, Oct4 seems to inhibit the transcription of the microRNA miR145, which 

would on its part block the translation of Oct4, Sox2, and Klf4 (Chivukula and Mendell 2009; 

Xu et al. 2009). These transcription factors in turn activate other transcription factors 

important for inducing pluripotency, for example, Nanog (Rodda et al. 2005). Nanog, a 

homeodomain protein is essential for the maintenance of self-renewal in ESCs (Chambers et 

al. 2003; Mitsui et al. 2003). Importantly, previous studies show that human OCT4, SOX2, 

and NANOG are central to the transcriptional network and regulate actively transcribed 

genes, including transcription factors and signaling components necessary to maintain the 

pluripotent state of hESCs (Boyer et al. 2005). 
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These genes, including others like LIN28, FOXD3, GDF3, SSEA4, or TRA-1-60 are found to 

be highly expressed in undifferentiated hESCs, whereas their downregulation is linked to 

differentiation (Henderson et al. 2002; Sato et al. 2003; Richards et al. 2004; Bhattacharya et 

al. 2004; Clark et al. 2004; Levine and Brivanlou 2005; Hyslop et al. 2005; International 

Stem Cell Initiative 2007). The generated hiPSCs of the present study showed hESC-like 

characteristics with regards to their morphology and expression of pluripotency related 

markers, including OCT4, SOX2, NANOG, LIN28, FOXD3, GDF3, SSEA4, or TRA-1-60, 

indicating that the ectopic expression of OCT4, SOX2, KLF4, and c-MYC in hMSCs initiated 

the activation of pluripotency related endogenous genes (Boyer et al. 2005; Kim et al. 2008). 

This is preceded by alterations of the epigenome (epigenomic reprogramming), as 

demonstrated by the demethylation state of the analyzed promoter regions of NANOG and 

OCT4 in the generated hiPSCs. 

Furthermore, upon in vitro differentiation of both Ctrl- and BrS-iPSCs the cells expressed 

markers specific for all three germ layers, demonstrating that they are truly pluripotent. The 

ability to differentiate into almost all tissue types is the hallmark of human pluripotent stem 

cells (Itskovitz-Eldor et al. 2000). Teratoma formation assays are considered to be the “gold 

standard” for demonstrating the differentiation potential of human pluripotent stem cells 

(Zhang et al. 2008). In vivo differentiation of Ctrl-hiPSCs revealed tissue-specific cells 

including all three germ layers, such as cartilage and muscle cells (mesoderm), neural rosettes 

(ectoderm) and intestinal tissue (endoderm). BrS-hiPSCs formed teratomas containing 

endodermal and mesodermal cell, but no ectodermal cells. However, gene expression analyses 

showed the expression of ectodermal markers SYP and TH on RNA level as well as III β-

tubulin on protein level, indicating the ability of BrS-hiPSCs to differentiate into the 

ectodermal lineage. 

The evaluation of a normal diploid karyotype in hiPSCs is important for both basic research 

and future clinical use. In this study, hiPSCs up to a maximum of 30 passages were used for 

differentiation experiments to reduce the risk of the accumulation of chromosomal 

aberrations. Karyotype analyses showed that the majority (> 90 %) of both Ctrl- and BrS-

hiPSCs (at passage ≥ 30) exhibited a normal diploid karyotype. Only a few counted 

karyotypes showed 45 or less chromosomes. Adaptive partial and full chromosomal 

abnormalities have already been reported in various hESC lines after long-term cultivation, 

such as isodicentric X chromosomes (Inzunza et al. 2004) or gains of chromosomes 12 and 

17q (Draper et al. 2004). The authors assumed that the increased dosage of the genes located 
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on chromosomes 12 and 17 provided a selective advantage for the propagation of 

undifferentiated cells (Draper et al. 2004). The accumulation of either entire chromosome 12 

or part of the short arm 12p during long-term culture was also found in some of hiPSC lines 

reported previously (Mayshar et al. 2010). Mayshar and colleagues identified in 13 out of 66 

analyzed hiPSC lines chromosomal abnormalities, with 6 of them carrying at least one full 

trisomy (Mayshar et al. 2010). In addition, they found an abnormally high frequency of 

overexpressed genes on chromosome 12 at early passages, suggesting a remarkable selective 

pressure during the reprogramming process. The gain of chromosome 12 was shown to be 

associated with a significant overexpression of pluripotent and cell cycle-related genes, such 

as NANOG and GDF3 compared to other hiPSC lines carrying a diploid karyotype (Mayshar 

et al. 2010). Chromosomal aberrations adapted during culture conditions may limit the 

differentiation capacity of the hiPSCs (Enver et al. 2005) and may increase their 

tumorigenicity (Blum and Benvenisty 2009). Furthermore, such aberrations might also 

influence the interpretation of biological and disease-related studies of hiPSCs. In this study, a 

trisomy of chromosome 12 or 17 was not detected in the generated hiPSCs. So far, there is no 

literature reporting a loss of entire chromosomes in hESCs or hiPSCs during long-term 

cultivation. Thus, it is very likely that the loss of one or more chromosomes in some of the 

analyzed cells in this study was due to technical difficulties in preparations. 

However, the karyotyping method in this study has some limitations. Structural chromosomal 

aberrations including insertions, deletions, or translocations of genetic material cannot be 

detected. Other methods such as fluorescence in-situ hybridization, spectral karyotyping, 

high-density comparative genomic hybridization arrays, or global gene expression meta-

analysis allow the detection of structural chromosomal abnormalities at a higher resolution 

than standard karyotyping and should be considered for future chromosomal analyses. 

Interestingly, sequencing analyses of genomic BrS- and Ctrl-hiPSCs revealed that both donors 

are carrier of a synonymous SNP on position 5457, with a cytosine on the one allele and a 

thymine on the other. Both variants lead to a codon for aspartic acid (D1819D). This SNP was 

already described within the Han Chinese population with a frequency of 41.3 %, in 46 % of 

the Japanese, and in 12.3 % of the American population (ethnicities not specified; 

Wattanasirichaigoon et al. 1999; Iwasa et al. 2000; Chen et al. 2004). The genotype and allele 

frequencies showed no significant difference when the control group was compared to BrS 

patients, demonstrating that this SNP is unlikely to be linked with BrS (Chen et al. 2004). 
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Taken together, the generated patient-specific hiPSCs have similar characteristics as hESCs 

and fulfill the criteria defining fully reprogrammed hiPSCs with a stable karyotype. Because 

of their origin (somatic cells), the further use for research purposes does not raise underlying 

ethical concerns as hESCs do. In addition, to investigate the disease-specific phenotype of the 

mutation of interest (in the case of this study, the C5435A mutation in SCN5A) using hESCs, 

the mutation has to be inserted artificially. Moreover, the genetic background of hESCs 

differs from the BrS patient. Therefore, patient-specific hiPSCs carrying the mutation are 

more suitable for BrS disease modelling than hESCs. 

 

4.2 hiPSC-derived CMs are functional 

In the present study, both EB formation and directed cardiac differentiation methods were 

used for the generation of functional CMs. The EB method can also be referred as 

spontaneous differentiation method because no lineage-specific stimulus is applied during 

differentiation. Using the EB method, the generated hiPSCs, similar to hESCs, give rise to 

CMs at a rather low and variable differentiation efficiency (Kehat et al. 2001). About          

8 – 42 % of EBs contained beating clusters and lower than 5 % of total cells were CMs. In 

addition, CMs generated with this method have to be manually isolated from the culture for 

further molecular and biochemical analyses, a laborious and time consuming task. To produce 

sufficient CMs for biochemical analyses, upscaling CM formation from hiPSCs was essential. 

In this study, the directed cardiac differentiation method (Lian et al. 2012; Lian et al. 2013) 

was combined with a metabolic-based cardiac selection (removal of glucose and application 

of lactate; Tohyama et al. 2013) for the generation of large quantities and a high purity 

(> 90 %) of CMs. Together with CMs obtained from EB differentiation method, these cells 

were also used for SCN5A gene expression analyses. No significant difference in total and 

allele-specific SCN5A expression between spontaneously and directed differentiated CMs was 

observed, indicating the generated CMs from the two methods are comparable. Therefore, the 

analyzed data were pooled. Cells obtained with the directed differentiation method were used 

for Western blot analyses as high quantity of cells were needed for sufficient protein isolation.  

The contractile properties of both Ctrl- and BrS-CMs were similar to those derived from 

hESCs, and did not differ significantly among all analyzed hiPSC lines. The present data 

showed that the hiPSC-derived CMs have the complex functional properties of native CMs, 

including responses to L-type calcium channel blocker Diltiazem and activator Bay K8644. 

The hiPSC-derived CMs responded to the L-type calcium channel blocker Diltiazem in the 
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same way as hESC-derived CMs, which led to concentration-dependent reduction of up to a 

stop of contraction. These data are consistent with studies working with hESC-derived CMs 

(Xu et al. 2002). Application of the calcium channel activator Bay K8644 led to a 

significantly increased beating frequency. Taken together, these data reflect the normal 

expression of functional L-type calcium channels, one of the major components in the cardiac 

excitation-contraction coupling system (Bers 2002), in hESC- and hiPSC-derived CMs. 

The data of this study also showed that hiPSC-derived CMs expressed sarcomeric and gap 

junction proteins that are critical for cardiac function, although the CMs were 

morphologically heterogeneous. Immunocytological staining showed a cardiac-specific 

protein expression in these cells, represented by cTNT, MLC2a, α-actinin, and Cx43. These 

data are in line with those described in previous studies, where human pluripotent stem cells 

were differentiated into CMs (Kehat et al. 2001; Xu et al. 2002; Zhang et al. 2009). The 

antibody staining revealed an organized sarcomeric cross-striation pattern in the cells. 

Furthermore, Cx43 was expressed at cell-to-cell contacts in cardiac clusters, indicating the 

presence of gap junctions between CMs. Ctrl- and BrS-CMs showed no differences regarding 

sarcomeric organization and gap junction, indicating they are structurally comparable. This is 

consistent with the clinical findings that patients diagnosed with BrS have a structurally 

normal heart (Antzelevitch et al. 2005). 

Electrophysiological recordings in both Ctrl- and BrS-CMs revealed on the bases of distinct 

classes of APs, the three major cardiac subtypes embryonic ventricular-, atrial-, and nodal-like 

CMs, similar to those found in hESC-derived CMs (He et al. 2003). This classification was 

based on the shape and properties of the APs, such as the RMP, APA, Vmax, and prominence 

of a plateau phase. In this study, two developmental stages of CM maturation (1- and 3-

month-old) were analyzed electrophysiologically. The criteria for the classification due to AP 

parameters were selected strictly to exclude relatively immature CMs (indicated as 

intermediate stage). In contrast to the previous study (He et al. 2003), CMs with a RMP more 

positive than –60 mV and an APA shorter than 95 mV were denoted as intermediate CMs and 

excluded from further analyses. By using these strict criteria, possible differences in Vmax 

among CMs caused by different developmental stages (and therefore by a different amount of 

sodium channel expression) were minimized for comparison of Ctrl- with BrS-CMs. 

In the present study, INa measurements in 1-month-old compared to 3-month-old CMs showed 

a significant increase of maximal INa density in 3-month-old CMs, indicating a maturation 
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process of the CMs over time. These findings correlate with the significantly increased Vmax 

in 3-month-old Ctrl-CMs compared to 1-month-old cells. In a previous study, Sartiani and 

colleagues investigated the maturation process of CMs obtained from hESCs within a time 

period of 3 months and found significant changes during in vitro differentiation (Sartiani et al. 

2007). They also observed a stage-dependent significant increase of Vmax as well as an 

increase of the inward L-type calcium current (ICaL), which is suggested to control the plateau 

phase of APs in hESC-derived CMs. Furthermore, the authors found that early-stage CMs (1-

month-old) presented a low density of inward rectifier (IK1) and transient outward (Ito1) 

potassium currents, whereas late-stage CMs (3-month-old) expressed higher densities and 

therefore presented a larger range of APDs. Taken together with the INa data of this study, it is 

obvious that CMs derived from human pluripotent stem cells can reach more mature 

phenotypes over a period of 3 months of in vitro culturing. 

In this study, both 1-month-old and 3-month-old CMs were used for the identification of a 

BrS-specific phenotype in vitro. Due to the more mature properties in 3-month-old Ctrl- and 

BrS-CMs, the phenotypes of 3-month-old BrS-CMs demonstrated in the electrophyiological 

studies may reflect more closely the disease-specific phenotypes than 1-month-old CMs. 

 

4.3 BrS-CMs can recapitulate disease-specific physiological phenotypes in vitro 

It was more than 20 years ago that the Brugada brothers recognized an abnormal ECG as a 

distinct clinical entity, causing sudden cardiac death due to ventricular fibrillation in patients 

with structurally normal hearts (Brugada and Brugada, 1992), a condition which was later 

known as BrS. The syndrome is characterized by specific ST-segment elevation in the right 

precordial leads of a classical 12-lead ECG. Over the past two decades, there has been major 

progress in the study of genetic aspects of the syndrome as well as pathophysiology and 

management of patients (Wilde et al. 2002; Antzelevitch et al. 2005; Veerakul and 

Nademanee 2012). About 18 – 30 % of BrS patients carry a mutation in the SCN5A gene 

(Antzelevitch et al. 2005) and more than 100 different SCN5A mutations are associated with 

BrS (Mizusawa and Wilde 2012). However, the electrophysiological mechanisms underlying 

the syndrome are still ambiguous and remain a matter of debate (Wilde et al. 2010). The 

´repolarization hypothesis´ initiated by studies in canine wedge preparations relies on 

transmural dispersion of repolarization between the right ventricular (outflow tract) 

endocardium and epicardium (Yan et al. 1998). In contrast, the ´depolarization hypothesis´ 

supports a slowing right ventricular conduction and involvement of (mild) structural 
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abnormalities (Meregalli et al. 2005). Therefore, risk stratification for sudden cardiac death, 

timely treatment, and prevention of sudden death, requires the crucial understanding of the 

pathophysiological mechanism behind the syndrome. In this study, patient-specific hiPSCs 

were generated from a patient with a typical BrS ECG and polymorphic ventricular 

tachycardia. CMs derived from these hiPSCs were used to investigate the pathophysiological 

mechanisms underlying the BrS on cellular level. 

 

4.3.1 Model systems for studying BrS 

In the past 5 years, an increasing number of studies were reported which use patient-specific 

hiPSCs for modelling cardiac channelopathies, including LQTS type 1 (Moretti et al. 2010), 

type 2 (Itzhaki et al. 2011; Matsa et al. 2011; Lahti et al. 2012) and type 3 (Ma et al. 2013; 

Terrenoire et al. 2013) as well as Timothy syndrome (Yazawa et al. 2011) and CPVT (Fatima 

et al. 2011; Novak et al. 2012). The present BrS-hiPSC model is the first derived from a BrS 

patient carrying a nonsense mutation in the SCN5A gene. The generation of disease-specific 

hiPSC-CMs provides a tool for the identification of the electrophysiological and molecular 

mechanisms in cardiac channelopathies. This overcomes the impossibility of harvesting adult 

human CMs from patients and expanding them in culture. 

Previously, functional characterization of sodium channels in BrS has been done by a number 

of methods. A common method is the heterologous system expressing mutated SCN5A in 

Xenopus oocytes, HEK293, or tsA201 cells (Bezzina et al. 1999; Barajas-Martinez et al. 

2008; Petitprez et al. 2008). Heterologous expression of mutated ion channels in noncardiac 

cells may show disturbed function but can only predict the impact of the mutation with regard 

to AP generation and excitation-contraction coupling (Malan et al. 2011). Moreover, 

heterologous expression systems might not recapitulate the in vivo phenotype of a 

channelopathy because of the lack of the entire molecular complexity in which the ion 

channel is naturally embedded (Watanabe et al. 2011). Furthermore, transfection studies of 

the SCN5A mutation 5387 – 5389insTGA (p.1795insD) in HEK cells revealed kinetic 

properties of the cardiac sodium channel (Veldkamp et al. 2000) which could not be 

confirmed in adult CMs obtained from Scn5a
1798insD/+

 mice (Remme et al. 2006). 

A mouse model with targeted disruption of Scn5a gene could reproduce the clinical BrS 

condition by displaying ventricular arrhythmias (Martin et al. 2010). Although mouse models 

may provide a more powerful tool compared to heterologous expression systems to elucidate 
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the pathophysiological mechanisms underlying ion channel related cardiac diseases, they are 

still of limited relevance because of striking physiological differences between the mouse and 

human heart. In the mouse, the ventricular AP lacks a plateau phase and has a shorter APD 

resulting from less ICaL (Danik et al. 2002). This means that the spike and plateau morphology 

present in human, which are prerequisites for phase 2 re-entries is not present in the mouse 

model. In addition, establishing a mouse model of a particular mutation is laborious and 

expensive. A mouse model with the SCN5A gene mutation C5435A (p.S1812X) has not been 

established yet (Derangeon et al. 2012). Compared to all these systems, hiPSC technology 

provides a new platform and strategy to investigate the mechanisms of SCN5A mutations. 

This approach would circumvent inter-species and allogenic variations, allowing 

unprecedented resolution of channel behavior from patient-specific CMs. 

 

4.3.2 Loss-of-function of cardiac sodium channel in BrS-CMs 

The BrS-CMs carrying the SCN5A mutation C5435A (p.S1812X) demonstrated a 

significantly reduced (about 50 %) peak INa compared to Ctrl-CMs. These data correlate with 

the INa measurements of a BrS mouse model which was established by a knock-out of one 

Scn5a allele (Papadatos et al. 2002). The SCN5A mutation C5435A (p.S1812X) leads to a 

loss-of-function of sodium channels in CMs instead of gain-of-function, supported by 

persistent INa measurements. No significant differences between Ctrl- and BrS-CMs could be 

detected, showing that the mutation does not lead to a leakage of the sodium channels. 

Enhanced persistent INa is typical for gain-of-function of sodium channels in CMs carrying 

SCN5A mutations associated with LQTS (Malan et al. 2011; Ma et al. 2013). The SCN5A 

mutation 5387 – 5389insTGA (p.1795insD), which is located close to C5435A (p.S1812X) 

was further investigated using iPSC technology (Davis et al. 2012). Davis and colleagues 

could show in vitro that the mutation leads to both a loss- and gain-of-function of the cardiac 

sodium channel. The (h)iPSC derived CMs carrying this mutation demonstrated a peak INa 

reduction (loss-of-function) on the one hand and an increased persistent INa (gain-of-function) 

on the other hand. These disturbed sodium channel properties lead to phenotypes typical for 

both LQTS and BrS in affected patients and is therefore called “overlap syndrome” (Bezzina 

et al. 1999). 

Furthermore, the activation of sodium channels in BrS-CMs of this study is delayed, 

represented by a right-shift of the steady-state activation curve compared to the Ctrl-CMs. 

Interestingly, other gating properties were not significantly influenced, such as steady-state 
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inactivation, intermediate inactivation and recovery from inactivation. However, INa 

measurements revealed a slightly but not significantly enhanced intermediate inactivation of 

sodium channels. An enhanced intermediate inactivation is believed to play a significant role 

in the pathogenesis of BrS (Wang et al. 2000). Wang and colleagues transfected mammalian 

cells with the SCN5A allele containing the missense mutation T1620M associated with BrS. 

The entry of the intermediate inactivated state measured at near physiological temperature of 

32 °C was significantly enhanced in the mutant compared to the wildtype in the presence of 

the human β1-subunit (Wang et al. 2000). However, the enhanced intermediate inactivation of 

the cardiac sodium channels in 3-month-old BrS-CMs in this study was not significant. The 

inactivation might be influenced by the temperature at which cells were measured; in this case 

at room temperature. It has been demonstrated that the kinetics of sodium channels are highly 

sensitive to temperature, showing a 2-fold faster activation and inactivation kinetics for early 

INa at 33 °C compared to 23 °C as well as a positive shift of the activation and steady-state 

inactivation at the higher temperature (Nagatomo et al. 1998). 

Recovery from inactivation measurements revealed that 1-month-old Ctrl-CMs recover faster 

than BrS-CMs. However, no significant difference was observed among 3-month-old cells, 

excluding a disease-specific phenotype. One explanation could be a high variability of the 

developmental stage among 1-month-old CMs. These data indicate that 3-month-old CMs are 

more suitable for BrS disease modelling to reveal authentic disease-specific differences. 

Sodium channels play an important role in depolarization (phase 0) of the AP in the 

myocardial contractile cell and determine the upstroke velocity (Satin et al. 2004). The RMP 

is critical for the availability of sodium channels, which becomes obvious when a more 

positive RMP leads to more inactivated channels and finally to a reduced Vmax (Davis et al. 

2012). Therefore, stringent criteria regarding RMP and APA were set in this study for the 

Vmax analysis. Vmax in 3-month-old BrS-CMs was significantly reduced compared to Ctrl-CMs 

of the same developmental stage, probably caused by the sodium channel loss-of-function in 

BrS-CMs. These findings were also demonstrated in hiPSC-derived CMs carrying the SCN5A 

mutation 5387 – 5389insTGA (p.1795insD), where a significant INa reduction was observed 

(Davis et al. 2012). However, Davis and colleagues found that the average Vmax in the 

mutated (57.6 V/s) and control cells (115.7 V/s) was much higher than that reported by others 

(Moretti et al. 2010; Itzhaki et al. 2011) or compared to the cells in the present study (see 

Table 12). The authors explained this differences with an alternative differentiation method 

they used (co-culture with END-2 cells) together with the fact that quiescent instead of 
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spontaneously beating cells were used for their AP recordings. The very negative RMP of 

their cells (–72.4 mV) compared to the other reports (Moretti et al. 2010; Itzhaki et al. 2011) 

was also discussed. A further possible explanation for the higher Vmax in cells reported by 

Davis and colleagues is that AP properties were recorded from cells after pacing, where 

artificial current is put into the cell by the patch pipette. In the present study, Vmax was 

measured from spontaneous APs without pacing, and the RMP of the cells ranges from          

–66.1 mV to –73.1 mV. These data suggest that the cells measured in the present study are at 

a comparable maturity stage as those used in the study by Davis and colleagues. 

The authors further argue that the lack of a rapid upstroke in hiPSC-derived CMs might 

influence loss-of-function modelling of sodium channels (Davis et al. 2012). The Vmax data of 

the measured APs in this study support the idea that the higher maturation status of 3-month-

old CMs with respect to NaV1.5 expression level helps to identify possible disease-specific 

differences between BrS- and Ctrl-CMs. For instance, whereas Vmax in 1-month-old CMs 

show no significant difference between BrS- and Ctrl-CMs, the difference becomes more 

obvious in 3-month-old cells. Here, Vmax is significantly lower in BrS- compared to Ctrl-CMs. 

These data show that it is possible to model BrS with 3-month-old hiPSC-derived CMs using 

the differentiation protocols described in this study, although the average Vmax is markedly 

lower than reported by Davis and colleagues. 

 

4.3.3 Instability of AP repolarization in BrS-CMs 

Electrophysiological analyses showed three times higher arrhythmic tendencies in BrS-CMs 

compared to Ctrl-cells. EADs and EAD-induced triggered activity, DADs and DAD-induced 

triggered activity, and in the majority of cases a beat-to-beat variability of repolarization 

durations of sequential APs were observed. Recordings of spontaneous APs in beating BrS-

CMs already revealed a high beat-to-beat variability of the APDs. Since APDs are highly 

dependent on the beating frequency (He et al. 2003), the cells were paced at 0.8 and 1.0 Hz to 

allow comparison. The APD variability was calculated by the difference between the longest 

and the shortest AP within one measurement. The variability of APD50, APD70, and APD90 

were significantly increased in BrS-CMs compared to Ctrl-CMs. An increased beat-to-beat 

variability of repolarization duration is a proarrhythmic marker (Johnson et al. 2013) and a 

more reliable indicator for drug-induced cardiac arrhythmias than just a prolonged APD per se 

(Jacobson et al. 2011). The complex mechanisms underlying this phenomenon at single-cell 

level are still poorly understood (Johnson et al. 2013). In their study, Johnson and colleagues 
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could illustrate in canine myocytes that spontaneous Ca
2+

 ion release from the sarcoplasmic 

reticulum is a central element in triggered activity and repolarization instability (Johnson et 

al. 2013). By blocking ryanodine receptors with ryanodine, the authors demonstrated a 

significant decrease in beat-to-beat variability of APD. 

To prove whether this instability of the APDs were somehow associated with the reduced INa 

and putatively caused by the C5435A (p.S1812X) mutation in the BrS-cells of the present 

study, Ctrl-cells were treated with the sodium channel blocker flecainide during AP 

measurement. An experimentally identified concentration of 2.5 μM decreased the peak INa in 

Ctrl-CMs to 50%, which reflected a similar level found in BrS-CMs. The Ctrl-CMs treated 

with flecainide during pacing showed a significantly increased beat-to-beat APD variability 

compared to untreated cells. These findings suggest that the decreased INa might be linked to 

the increased APD variability. However, the reason why flecainide leads to an increased APD 

variability in our hiPSC-derived CMs needs to be further investigated. Future studies should 

also include investigation of diastolic spontaneous calcium release in BrS-CMs, as well as 

deciphering the roles of Na
+
/Ca

2+
 exchanger and L-type calcium channels in EAD- or DAD-

induced triggered activities in BrS-CMs. 

 

4.4 Molecular mechanisms underlying the loss-of-function in BrS-CMs 

The BrS patient in this study carries a point mutation in one allele of the SCN5A gene 

resulting in an in-frame PTC. Introducing a PTC in mRNA may lead to degradation of the 

mRNA template by the nonsense-mediated mRNA decay (NMD) pathway (Kuzmiak and 

Maquat 2006) if the PTC is less than 50 – 55 nucleotides upstream of an exon-exon junction 

complex (Kuzmiak and Maquat 2006). Since the point mutation of the BrS patient is located 

on the last exon (exon 28), it is not very likely that the resulting nonsense transcripts undergo 

a degradation through NMD. The allele-specific expression data, which showed no difference 

between wildtype and mutated mRNA, endorse this assumption. However, INa measurements 

showed a 50 % reduction of the peak INa in BrS-CMs compared to Ctrl-CMs. Due to the 

heterozygosity of the mutation, it was expected that in the BrS-CMs a truncated and a full-

length version of NaV1.5 protein would be translated. Whether the truncated NaV1.5 is then 

correctly integrated into the cell membrane (and nonfunctional due to INa reduction data) or 

degraded directly after translation still remains an open question. 
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Western blot analyses with anti-NaV1.5 antibodies binding at different epitopes of the channel 

were performed in this study in order to determine the expression of NaV1.5 protein. Three 

antibodies detecting the total NaV1.5 protein in both Ctrl- and BrS-CMs and one antibody 

binding at the C-terminus of the protein (amino acid residues 1978 – 2016, unable to bind the 

truncated protein) were tested. However, only the one recognizing the amino acid residues 

1978 – 2016 resulted in specific detection. The analyzed data revealed 82 % of the full-length 

NaV1.5 protein expression in BrS-CMs compared to Ctrl-CMs. Using this antibody, the 

expression of the full-length NaV1.5 protein in BrS-CMs would be expected at 50% of that in 

Ctrl-CMs if the expression of NaV1.5 protein was not upregulated. The data presented here 

indicate an upregulated expression of the wildtype NaV1.5 protein in BrS-CMs. These data are 

in line with the total SCN5A gene expression obtained by qPCR analyses, showing 1.6- to 2-

fold expression in BrS-CMs compared to Ctrl-CMs. In parallel, allele-specific analyses 

showed no significant imbalance between both alleles in BrS-CMs (as discussed below). 

Another possibility for the upregulated protein expression is that translational readthrough of 

the PTC in BrS-CMs occurs (see 4.5.2). Experimental data of a previous study support this 

possibility (Teng et al. 2009). Teng and colleagues demonstrated translation of full-length 

NaV1.5 protein in HEK cells transfected only with a mutated SCN5A cDNA containing a 

PTC. The authors explained these findings with a lower termination efficiency of PTCs 

compared to natural stop codons (Teng et al. 2009). However, the question remains open, 

why an expression level of full-length NaV1.5 in BrS-CMs of 82 % still leads to a 50 % INa 

reduction. One reason could be that the full-length NaV1.5 obtained from translational 

readthrough might be non- or dysfunctional. During readthrough events, the PTC might be 

replaced by any amino acid (Linde and Kerem 2008), leading to an altered function of the 

sodium channel. Interestingly, in Scn5a
+/–

 mice, variable penetrance of the phenotype is 

correlated with the variable amount of functional NaV1.5 channel proteins (Leoni et al. 2010). 

As mentioned above, the allele-specific SCN5A gene expression level showed no allelic 

imbalance between both alleles in BrS-CMs, demonstrating that both alleles are expressed 

equally in the differentiated BrS-CMs. The genomic DNA of the BrS-hiPSCs and hMSCs was 

sequenced showing that both alleles are present in the same ratio. A previous study showed a 

significant higher proportion of the mutated allele compared to the wildtype allele in hiPSC-

derived CMs (Ma et al. 2013). In that study, the point mutation G5287A (associated with 

LQTS type 3) leads to an amino acid exchange on protein level, where valine is substituted by 

methionine (p.V1763M). However, the expression level of total SCN5A was comparable 
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between control and patient hiPSC-CMs. The authors assumed that more mutated and less 

wildtype NaV1.5 was expressed. In their study, Ma and colleagues did not analyze genomic 

DNA of patient hiPSCs to demonstrate similar efficiencies of the individual primers for both 

alleles. Methodological problems need to be ruled out before the reason for allelic imbalance 

of SCN5A expression in CMs with the mutation G5287A but not in CMs with the C5435A 

mutation can be addressed. 

Future studies are needed to investigate whether the mRNA template is degraded in BrS-CMs, 

or whether the truncated protein is integrated into the cell membrane but is nonfunctional. 

Furthermore, the regulation of NaV1.5 protein should be studied, including CaMKII-

dependent phosphorylation. Previous studies showed a stable interaction between CaMKIIδc 

and the intracellular loop between domains 1 and 2 of NaV1.5 and CaMKII-dependent 

phosphorylation at multiple sites of NaV1.5 protein. This appears to evoke loss-of-function 

changes in INa gating (Aiba et al. 2010; Hund et al. 2010; Ashpole et al. 2012). 

 

4.5 Possible therapeutic treatments of BrS 

To date, the only proven effective therapeutic strategy for the prevention of sudden cardiac 

death in BrS patients is the implantation of an ICD (Priori et al. 2013). The ICD provides an 

excellent and uniform efficacy for terminating ventricular fibrillation, but is not able to 

prevent it. Recently, clinical trials showed that catheter-based electrical epicardial substrate 

ablation in the right ventricular outflow tract can prevent ventricular fibrillation episodes in 

BrS patients (Nademanee et al. 2011). In the present discussion, both ICD implantation and 

catheter ablation will not be described in detail. Focus will be on the pharmacological 

development and treatment as well as enhancing translational readthrough of nonsense 

mutations instead. 

 

4.5.1 Potential antiarrhythmic drugs in treatment of BrS patients 

No drug therapy for BrS patients is recommended so far because clinical trials have failed to 

convincingly prove effectiveness (Antzelevitch et al. 2005; Márquez et al. 2005; Márquez et 

al. 2007; Yang et al. 2009). However, two drugs (isoproterenol and quinidine) have been 

reported to prevent the recurrence of ventricular fibrillation and repetitive traumatizing 

therapeutic shocks in patients with an ICD during electrical storm (Maury et al. 2004; Mok et 

al. 2004; Bettiol et al. 2005). Currently, quinidine is reconsidered for the treatment of BrS 

(Yang et al. 2009). Drug therapy may play a complementary role to the ICD by reducing the 
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number of ICD shocks delivered. Prevention of ventricular fibrillation also contributes to the 

improvement in the quality of life of the patients by avoiding uncomfortable ICD shock 

deliveries. 

According to the repolarization hypothesis, an outward shift in the balance of transmembrane 

ionic currents at the end of phase 1 and phase 2 of the AP leads to the loss of the phase 2 AP 

plateau. This cellular mechanism is believed to cause a marked transmural voltage gradient 

that leads to the ST segment elevation and the higher susceptibility for ventricular fibrillation 

in BrS (Antzelevitch 2001). At the end of phase 1 and phase 2 of the AP, the outward current 

is mainly due to activation of the transient outward potassium current (Ito) and the inward 

current is mainly due to activation of an inward calcium current (ICa) and an inward INa. Due 

to the loss-of-function of sodium channels in BrS, the net outward shift of the current balance 

leads to a loss of plateau or phase 2 of the AP (Antzelevitch 2001). In theory, this means that 

drugs that counteract the ionic current imbalance in BrS could be used for treatment. 

Quinidine is a class I antiarrhythmic agent, which blocks the calcium-independent Ito and Ikr 

(Yan and Antzelevitch 1999; Priori et al. 2013). Previous studies showed that in animal 

models, quinidine (5 µM) inhibited Ito and exerted an antiarrhythmic effect by restoring the 

AP plateau in the epicardium (Yan and Antzelevitch 1999). In the present study, although the 

treatment of BrS-CMs with quinidine (5 µM) resulted in reduced beating frequencies and 

prolonged APDs and restored the AP plateau, it did not reduce the beat-to-beat variability of 

repolarization duration and EADs. These data indicate that quinidine cannot completely 

restore the normal properties of the AP. Clinical trials with quinidine were already performed 

to treat BrS patients. It could be shown that quinidine suppresses spontaneous ventricular 

tachyarrhythmias and prevented ventricular fibrillation induction in 22 of the 25 (symptomatic 

and asymptomatic) BrS patients (Belhassen et al. 2004). However, the basis for quinidine 

efficacy remains to be elucidated due to a limited number of patients in this study and a high 

incidence of side effects (36 %). Furthermore, although quinidine is believed to be the only 

effective oral medication to prevent ventricular arrhythmias and fibrillation in BrS patients, it 

is inaccessible in many countries (Viskin et al. 2013). Further studies with regards to the 

effect of quinidine on Ito, ICa and INa in BrS-CMs should be performed. In addition, other Ito 

blockers without strong sodium channel effects, for example, tedisamil, which may be more 

effective than quinidine (Antzelevitch 2001), should be tested in BrS-CMs. 
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Another group of drugs that can counteract the ionic current imbalance in BrS are the drugs 

which can result in a marked increase in ICa, and compensate for the prominent loss of plateau 

during phase 2 of the AP. By this way, they may result in a decrease in electrical 

heterogeneity underlying the ST elevation in BrS patients. For example, isoproterenol, which 

induces the ICaL, has been proven to be useful for the treatment of electrical storm in BrS 

(Maury et al. 2004). However, convincing data on its therapeutic mechanism of action is not 

available (Priori et al. 2013). The effect of isoproterenol on BrS-CMs needs to be studied 

next. The most obvious difference between BrS- and Ctrl-CMs is an INa reduction of about 

50 % in BrS-CMs, which could imply that an effective treatment of the BrS patient would be 

to induce the enhancement of the cardiac INa. 

 

4.5.2 Readthrough therapy for suppression of nonsense mutation 

In the past two decades, remarkable advances in the ability to treat genetic disorders have 

been made, including the search for mutation-targeted molecular therapies. One of such 

therapies is called nonsense suppression therapy, using compounds or small-interfering RNAs 

(siRNAs) to induce the translation machinery to recode a nonsense codon into a sense codon. 

Thereby a translational readthrough of the PTC is promoted to enable the synthesis of a full-

length functional protein (Keeling and Bedwell 2011), given that enough nonsense mRNA 

transcripts are not degraded by the NMD pathway. 

Different approaches might lead to PTC readthrough, such as siRNA targeting translation-

termination factors, which would otherwise cause the release of the shortened polypeptide 

from the ribosome due to the PTC. Another therapeutic approach is focusing on 

aminoglycoside antibiotics, such as G418 or gentamicin (reviewed by Linde and Kerem 

2008). Aminoglycosides can bind to the A site of the ribosomal RNA translational complex 

and thereby cause a conformational change. This in turn leads to a reduced accuracy between 

codon and anticodon pairing, which enables a readthrough of the PTC. Aminoglycosides have 

shown minimal effects on the normal termination sites (Linde and Kerem 2008). The authors 

argue that in eukaryotes, the efficiency of normal translation termination is enhanced by 

certain upstream and downstream sequences as well as the proximity of the natural stop codon 

to the poly(A) tail, which is usually not the case in PTCs. 

Aminoglycosides-induced nonsense mutation readthrough and thus synthesis of functional 

full-length protein was first reported in nonsense mutations resulting in cystic fibrosis 

(Howard et al. 1996) and Duchenne muscular dystrophy (Howard et al. 2000). In 2009, Teng 
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and colleagues were the first who tried to restore the function of mutated NaV1.5 channels 

caused by the PTC mutation W822X using the readthrough strategy (Teng et al. 2009). They 

transfected HEK293 cells with mutated and nonmutated SCN5A cDNA. HEK293 cells 

transfected only with the mutated channel showed an INa density of < 3 % compared to 

HEK293 cells with the wildtype channel and reached 30 % of the wildtype level after 

treatment with gentamicin or G418. Cells transfected with both cDNAs showed an INa density 

of 56 % compared to the wildtype level. These cells increased their peak INa up to 70 % of the 

wildtype level when treated with gentamicin or G418. Western blot analyses confirmed a 

higher expression of the full-length protein after antibiotic treatment. In addition, the authors 

showed that siRNAs targeting the eukaryotic release factor eRF3a revealed similar results as 

antibiotic treatment regarding protein expression and INa measurements. Although the 

expression of full-length NaV1.5 protein could be partially restored in that study, the 

following impact on the electrical behavior in CMs could not be tested. The hiPSC 

technology would provide the ideal model system to investigate possible effects of the 

readthrough treatment in human CMs. A potential impact on the INa density in BrS-CMs 

could be subsequently measured after treatment. In addition, AP recordings can directly show 

if an enhanced INa would have positive effects on the AP morphology and properties as well 

as the rhythmic beating of the cell. Hence, suppression experiments of the SCN5A nonsense 

mutation C5435A (p.S1812X) in the generated BrS-CMs of this study could shed light on the 

relation between partial restoration of the sodium channel by translational readthrough, and 

the accompanying reversion of electrophyiological behavior of BrS-CMs. 

Although aminoglycosides like gentamicin already demonstrated promising results in many 

studies, the benefit of long-term use is limited because of the antibiotic related severe side 

effects, such as kidney damage (Mingeot-Leclercq and Tulkens 1999). However, high-

throughput screens identified the small molecule PTC124 without antibiotic-associated side 

effects, which can promote ribosomal readthrough of PTCs (Hirawat et al. 2007; Welch et al. 

2007). Importantly, PTC124 does not affect the termination at natural stop codons at the end 

of a coding sequence (Hirawat et al. 2007). First clinical trials showed improved 

electrophysiological function in patients with cystic fibrosis caused by PTCs in the cystic 

fibrosis transmembrane conductance regulator mRNA after treatment with PTC124 (Kerem et 

al. 2008). In addition, an increased full-length synthesis of the cystic fibrosis transmembrane 

conductance regulator protein was evoked by PTC124. However, these studies revealed a 

high variability in the response to the readthrough treatments, possibly due to different 

readthrough efficiencies at the various triplet codons (reviewed by Linde and Kerem 2008). 
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Readthrough efficiency is highest on a UGA codon and lowest on a UAA codon (UGA > 

UAG > UAA; Howard et al. 2000). Additionally, it has been demonstrated that the base 

following directly the PTC might also play an important role for the readthrough efficiency. 

The efficacies regarding chemical composition of the aminoglycosides, the brand, and the 

origin of production have also been discussed (Linde and Kerem 2008). 

Taken together, PTC124 might also provide a possible approach to treat BrS caused by the 

nonsense mutation C5435A (p.S1812X), since the mRNA is not believed to be degraded 

through NMD (as discussed in 4.4). Furthermore, BrS-CMs can be used in high throughput 

screening of drugs or small molecules that can induce translational readthrough of this 

mutation. This might contribute to personalized genetic medicine that aims to treat patients 

according to their specific genetic defects and molecular phenotypes. 

 

4.6 Conclusion and future perspectives 

In conclusion, the findings of this study suggest that patient-specific hiPSCs can serve as a 

suitable model for studying sodium channel mutations. CMs derived from BrS-hiPSCs 

display features of loss-of-function of sodium channels and corresponding changes in AP 

recordings such as reduced upstroke velocity and increased beat-to-beat variability of 

repolarization duration. Although the phenotypic immaturity of hiPSC-derived CMs has been 

discussed for their feasibility in studying adult channelopathies, the data presented in this 

study demonstrate that these cells can recapitulate human sodium channelopathy in a dish. 

The data also show that hiPSC-derived CMs can provide a platform for investigating the 

effect of antiarrhythmic drugs and studying their underlying physiological mechanisms.  

In the future, it is of paramount importance to perform expression profiling between family 

members, which may help to identify critical genetic modifiers of disease severity. The 

underlying molecular mechanisms of loss-of-function of sodium channels need to be further 

investigated. Another potential area of using the BrS-CMs will be in high throughput 

screening of drugs or small molecules that can enhance sodium channel activity, or induce 

translational readthrough of nonsense mutations. In addition, hiPSC-derived CMs may move 

us closer to personalized medicine for BrS, where drug regimens can be tested in vitro before 

being administered to the patient. 
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5 Summary 

Brugada syndrome (BrS), a cardiac genetic disease, is one of the major causes of sudden 

cardiac death in healthy young people. However, the underlying electrophysiological and 

molecular mechanisms have not been completely understood. A major challenge in cardiac 

translational research is the lack of tissue culture systems replicating human pathology to 

study disease mechanisms and to identify druggable targets. Aim of this study was to study 

the pathophysiological and molecular mechanisms of BrS in vitro using patient-specific 

induced pluripotent stem cells (iPSCs) as a renewable and unlimited source for 

cardiomyocytes (CMs). 

In this study, human iPSCs were generated from a 45-year-old healthy donor and a 50-year-

old patient with BrS putatively caused by the heterozygous point mutation C5435A in the 

gene SCN5A coding for the α -subunit of the cardiac sodium channel (NaV1.5). The generated 

human iPSCs showed pluripotency and were able to differentiate into spontaneously beating 

CMs. Sodium current (INa) measurements revealed a significantly reduced current with a 

delayed activation in BrS-CMs compared to control cells, indicating a NaV1.5 loss of 

function. In BrS-CMs, the intermediate inactivation of sodium channels was slightly but not 

significantly enhanced whereas steady-state inactivation, recovery from inactivation, and 

persistent INa were not affected. In addition, an electrophysiological maturation process could 

also be detected, which was shown by a larger INa in 3-month-old compared to 1-month-old 

CMs. 

Action potential (AP) measurements showed a reduced Vmax and higher arrhythmic tendencies 

in BrS-CMs compared to control cells. A significantly higher variability of the AP durations 

as well as early and delayed afterdepolarizations could be observed. AP measurements in 

control cells under the treatment with the sodium channel blocker flecainide suggest that the 

increased AP duration variability in BrS-CMs is linked to the reduced INa. However, treatment 

of BrS-CMs with the class I antiarrhythmic agent quinidine, which is currently investigated 

for its therapeutic effect on BrS, could not reduce the beat-to-beat variability of AP durations. 

Furthermore, quantitative real-time PCR showed that SCN5A was slightly but not 

significantly upregulated in BrS-CMs compared to the control cells with an allele-specific 

balanced expression. However, full-length NaV1.5 protein was detected in BrS-CMs at a level 

of 82 % compared to the control. The question whether the truncated NaV1.5 protein is 

integrated into the cell membrane or regulated by increased protein degradation remains open.  
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The data of this study demonstrate that patient-specific hiPSCs can be used to model BrS and 

provide a platform for the development of personalized drug therapy. 
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