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Chapter 1
Introduction

The brain is the most flexible information processing and controlling device we know. It receives
inputs from a broad range of sensors, including detectors for electro-magnetic radiation, pressure,
temperature, and is equipped with acoustic and even chemical sensors. By processing the inputs
from these different sources, it constructs an internal representation of the real world, stores
information about the past, processes data about the present, interpolates into the future,
enables us to interact with our environment, and — even more astonishing — is the source of
something we call “consciousness”.

The human brain itself is an assembly of more than 85 billion single information processing units
(Azevedo et al., 2009; Herculano-Houzel, 2009), called neurons — cells that are highly specialized
for generating electrical signals to communicate with. These neurons are accompanied by about
the same number of non-neuronal glia cells (Azevedo et al., 2009) which are thought to not
directly be involved in information processing, but fulfill a variety of supporting functions. It is
a crucial, established assumption that the source of the complex dynamics of the brain arises from
the high number of neurons and the complex interconnection scheme among them — the neural
network (Kandel et al., 2000; Purves et al., 2008). This assumption suggests that it is possible
to reveal basic properties and functions of cortical networks by studying (comparatively) simple
neuron models and considering their interactions in large networks. Such studies may reveal
general mechanisms underlying (neuronal) information processing which might be obscured by
highly detailed description of single neurons otherwise.

Networked dynamical systems

Moreover, recognizing the brain as a network of interacting units opens the path to draw connec-
tions between different research areas, as the dynamics of a plethora of real world systems can
be described as a networked dynamical system (Newman, 2010): Prominent examples include
spreading of diseases (Hufnagel et al., 2004), rumor spreading in social networks (Moreno et al.,
2004), chains of chemical reactions in biological cells (Johnson and Alberts, 2002), regulation
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of gene activation and deactivation (Bornholdt, 2008), and energy transmission in power-grids
(Rohden et al., 2012; Filatrella et al., 2008). Interestingly, sometimes not only the interaction
topology but also the dynamics of single units are approximated by similar models for distinct
systems. For instance, phase or pulse coupled oscillators have been successfully employed to
describe dynamics of earthquakes (Herz and Hopfield, 1995), synchronization phenomena of
flashing fireflies (Mirollo and Strogatz, 1990; Strogatz, 2003), neural network dynamics (Ernst
et al., 1995; Timme, 2002; Jahnke et al., 2008) and properties of power grids (Filatrella et al.,
2008; Rohden et al., 2012). Likewise, the underlying networks share features across different
disciplines. For example, many real world networks have been shown to be small-world networks
(i.e., networks are highly clustered, but the average distance between two nodes is small) and/or
to contain a few number of highly connected nodes — called “Hubs” (Watts and Strogatz, 1998;
Bornholdt and Ebel, 2001; Liljeros et al., 2001; Riley et al., 2003; Hagmann et al., 2008; Bonifazi
et al., 2009; Newman, 2010; Varshney et al., 2011). Thus, studying neural network models —
besides beeing helpful for understanding information processing in the brain itself — might yield
some insights into general mechanisms of information processing, with potential applications to
other research fields.

The neural code

How is information stored and represented in the brain? What are candidates for the neural
code? Single neurons in the brain communicate with each other by exchanging electrical signals
in the form of short, strong variations of their trans-membrane voltage — called action potentials
or spikes. There is evidence that both the mean activity of neurons (or ensemble of neurons)
averaged over longer time intervals (firing rate; rate-code) and the exact timing (or relative
timing) of single spikes (temporal code) encode sensory information and represent memory.

In this thesis we concentrate on the latter, and investigate the emergence of precisely timed spike
patterns in recurrent networks. Such patterns have been experimentally found in various neural
systems: They indicate whisker position and movement in the rat (Panzeri et al., 2001; Jones
et al., 2004), complex features of tactile stimuli (Johansson and Birznieks, 2004; Birznieks et al.,
2010), and noise source position and auditory stimulus identity (Gutfreund et al., 2002; Schnupp
et al., 2006; Engineer et al., 2008). Also in cortical regions where activity cannot be directly
linked to external stimuli, precise spiking has been found: In songbirds, precise spike patterns are
locked to the song generation process and are replayed during sleep (Yu and Margoliash, 1996;
Dave and Margoliash, 2000; Leonardo and Fee, 2005). In the motor cortex of mammals, precisely
synchronous spiking between neurons was found to be correlated with internal cognitive states
and task performance (Riehle et al., 1997; Kilavik et al., 2009; Putrino et al., 2010). Despite
the strong evidence that precise spike patterns are crucially involved in information processing,
their dynamical origin, however, is not yet well understood.
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Feed-forward networks

A possible explanation for the occurrence of such patterns is the existence of feed-forward struc-
tures, also known as “synfire chains” (Abeles, 1982, 1991). These are layered subnetworks (i.e.,
there are groups of neurons (layers) where each group has prominent excitatory connections to
its subsequent group) embedded in a larger recurrent network. A synchronous signal (pulse-
packet) may propagate from one layer to next by exciting a sufficiently large number of neurons
to spike synchronously, and thereby generate the precise spike patterns observed in experiments.
Moreover, this mechanism of propagating synchrony constitute a promising candidate to explain
the transmission of information in cortical networks within or between brain regions (reviewed
in Kumar et al., 2010).

Numerical and theoretical studies have shown that synfire chains indeed are capable of propagat-
ing synchronous signals, however, very prominent feed-forward anatomies have to be assumed:
Either in the sense of dense (possibly all-to-all) coupling, or in form of very strong synaptic
efficiencies (Diesmann et al., 1999; Gewaltig et al., 2001; Aviel et al., 2003; Mehring et al., 2003;
Vogels and Abbott, 2005; Kumar et al., 2008a). Moreover, systematic computational studies
have shown that the interaction between the embedded feed-forward structure and the embed-
ding network might hinder meaningful signal propagation: On the one hand, synchronous signals
tend to spread out over the whole network and cause pathological activity (“synfire-explosion”
Aviel et al., 2003; Mehring et al., 2003). On the other hand, correlations in the spike times
induced by the background activity might accumulate over the layers of the embedded feed-
forward network and thus induce spontaneous propagation of synchronous signals (Litvak et al.,
2003; Tetzlaff et al., 2002, 2003; Rosenbaum et al., 2010, 2011) which hinders a separation of
the signal (induced propagating synchrony) and background activity.

Dendritic spikes

Neurons in cortical networks typically receive inputs from thousands of other neurons. The
input sites of the neurons, often organized like a broad arborescent tree, are called dendrites.
Traditionally, they are considered as a tree of passive cables that conduct the electrical signal
from the contact sites with the presynaptic neurons (synapses) to the postsynaptic neurons’ cell
body — the soma (Bear et al., 2006). Here the signals are integrated over time, and the actual
neuronal computation takes place. Yet, this view has changed over the last decades: It has been
demonstrated that in addition to just conducting signals, dendrites can actively contribute to
computational processes by generation of dendritic spikes (reviewed in, e.g., Häusser and Mel,
2003; London and Häusser, 2005; Spruston, 2008; Major et al., 2013): Some dendrites express
a high density of voltage gated ion channels which can be activated by sufficiently strong and
synchronous presynaptic inputs, and if so, cause a strong voltage transient — a regenerative,
all-or-none event similar to somatic spikes. As a consequence the impact on the postsynaptic
neuron (somatic depolarization) substantially exceed the responses expected from summation
of single input responses. Thus dendritic spikes contribute a synchrony detection mechanism
to the computing capabilities of single neurons (cf., e.g., Poirazi and Mel, 2001; Poirazi et al.,
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2003b; Polsky et al., 2004; Rhodes, 2008). In particular, dendritic sodium spikes exhibit a
remarkable sensitivity to input synchrony: Only inputs received within a time interval of less
than a few milliseconds might elicit such dendritic spikes (Ariav et al., 2003; Gasparini et al.,
2004; Gasparini and Magee, 2006).

Once generated a dendritic spike can trigger a somatic spike in the postsynaptic neuron, and
if so, this output is can be highly precise with trial-to-trial jitter in the millisecond (or even
sub-millisecond) range (Ariav et al., 2003; Losonczy et al., 2008; Müller et al., 2012; Makara
and Magee, 2013). In particular, sodium spikes generated in the basal dendrite of hippocampal
pyramidal neurons exhibit such a precise input-output relation.

Hippocampus

The hippocampus is one of the evolutionary oldest regions of the brain and crucially involved in
episodic memory formation and consolidation (reviewed in, e.g., Girardeau and Zugaro, 2011).
This involvement has been directly demonstrated experimentally (Girardeau et al., 2009; Ego-
Stengel and Wilson, 2010): Selective suppression of short episodes of highly increased hippocam-
pal activity (Sharp-Wave-Ripple complexes; SWR) during sleep, significantly reduces the day-
by-day performances increase (learning) in solving spatial memory tasks (finding food rewards
in a maze) in multi-day training episodes. This observation supports the “two-stage model” of
memory (Marr, 1971; Buzsáki, 1989) which assumes that information is first preliminary stored
(in the hippocampus) and later (e.g., during rest or sleep) recalled and consolidated (i.e., trans-
ferred to the neocortex for long-term memorization). The storage of spatial information is likely
to be based on a temporal code: During SWRs previously experienced spatio-temporal spike
patterns reflecting spatial properties of the environment (e.g., traversed paths in the maze) are
replayed (Wilson and McNaughton, 1994; Nadasdy et al., 1999; Ji and Wilson, 2007). The replay
is accompanied by a synchronous activation of 10− 20% of the hippocampal pyramidal neurons
(Ylinen et al., 1995; Buzsáki and Silva, 2012). The occurrence of highly synchronous events
(SWRs) in conjunction with precise spike patterns in a brain region where highly synchrony
sensitive dendritic sodium spikes have been prominently found, might suggest that the observed
activity patterns are based on exactly those spikes (cf., Memmesheimer, 2010).

Synopsis and structure of this thesis

In this thesis we study the impact of dendritic sodium spikes on the activity of recurrent (neural)
networks. In particular, we investigate synchrony propagation in embedded feed-forward sub-
structures. We study the signal transmission analytically, supported by numerical simulations
and take the interactions between embedded structures and surrounding network into account.
As a direct biological application, we demonstrate that hippocampal activity patterns may be
generated by dendritic sodium spikes.
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In Chapter 2 we provide information about the neurophysiological background as well as the
computational and analytical tools used in this thesis. Moreover, this chapter serves as an
extended introduction.

In Chapter 3 we consider synchrony propagation in isolated feed-forward networks, i.e., the
embedding network is modeled by externally generated random input spike trains. We compare
the propagation properties of networks with and without dendritic nonlinearities, derive an
analytical description for the propagating (synchronous) pulse-packet, and identify linear and
nonlinear propagation as qualitatively different phenomena.

In Chapter 4 we proceed by considering feed-forward networks which are natural part of a
recurrent, sparsely connected, random network. We show that dendritic nonlinearities enable ro-
bust signal propagation in networks with biologically plausible topology, and synaptic efficiencies
in the biologically observed range.

In Chapter 5 we consider the interaction between the embedding network and the embedded
substructure in more detail. We show that for purely random networks, synchronous activity
in the feed-forward subnetworks may either have only a small effect on the activity of the
remaining network, or cause pathological activity by inducing global network synchrony. In
contrast, in networks with long-tailed degree distribution (that contain some highly connected
nodes — hubs), a propagating signal can induce moderate network oscillations (within the
“hub-network”) without causing pathological activity states, and these oscillations may in turn
stabilize signal propagation. This phenomenon of hub-activated signal transmission further
relaxes the requirement for a prominent feed-forward anatomy. The proposed function of hubs
is fundamentally different to the function usually attributed to them: In our settings they
do not spread the relevant signal, but act as an unspecific signal amplifier. We note that
the underlying mechanism does not depend on single neuron properties, rather it is generic
for networks of sharply nonlinear threshold units, and thus may be found in other networked
dynamical systems as well.

In Chapter 6, motivated by the abundance of cortical oscillations observed in experiments,
we study the interaction of (external) oscillations and signal propagation. In particular, we
show the existence of resonances between oscillatory input and propagating synchronous signals.
Such resonance are absent in linearly coupled networks. Thus the co-action of oscillations and
dendritic nonlinearities, additionally to their support of signal transmission in general, can serve
as mechanism to selectively activate different pathways in a recurrent network.

In Chapter 7 we develop a unified model for the storage and replay of spatial information in
the hippocampus in conjunction with SWR-like spiking activity. We consider activity patterns
observed during spatial exploration phases and show by simulations that they lead to a formation
of a stripe-like feed-forward substructure. In a later resting phase, the imprinted information is
recalled, i.e., previously learned spike patterns are replayed supported by dendritic spikes. We
analyze the replay events and show that they resemble hippocampal activity observed during
SWRs. We further discuss the plausibility of our model for SWR-generation and replay in the
light of recent experiments.

In Chapter 8 we summarize and discuss the results achieved in this thesis.





Chapter 2
Fundamentals

The aim of the present chapter is to provide the basic concepts and methods used in the main
part of this thesis. Although each chapter constitutes a self-contained publication and thus
includes an introduction and model section, this presentation of fundamentals is meant to be
more comprehensive than it is possible in a typical journal article due to length restrictions, and
necessary due to the specialized readership. Besides explaining the fundamental concepts, we
refer to further literature, in particular textbooks and review articles, which might serve as a
starting point to gain a deeper understanding of the considered topics.

The main computing units of the brain are neurons which interact by sending and receiving
electrical pulses. In Section 2.1, we briefly discuss the biological/chemical processes underlying
signal generation and transmission in the brain and describe how neurons and their communi-
cation among each other can be modeled.Information processing in active dendrites (the input
sites of neurons) is of particular interest for this thesis. In Section 2.2 we discuss different forms
of active dendrites observed in neuroscientific experiments.

In Section 2.3 we consider the topology of cortical networks, and also discuss the highly irregular
ground state dynamics of such networks. A central question in neuroscience (and this thesis) is
the question of how information is represented and transmitted in the brain. In Section 2.4 we
outline how signals might be encoded and transmitted in cortical networks in general, and by
feed-forward sub-networks in particular.

The hippocampus is one of the evolutionary oldest brain regions which is crucially involved
in, e.g., the formation of long-term memory. One of the main motivations of this thesis is to
gain a deeper understanding of the activity patterns observed in the hippocampus and how
information, in particular spatial information, is stored in that brain region. In Section 2.5 we
briefly describe the anatomy and activity patterns of the hippocampus and refer to previous
modeling studies.

Finally, in Section 2.6 we outline how the dynamics of neuronal networks can be numerically
simulated, and comment on the techniques and algorithms employed in this thesis.
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2.1. Neurons - Building blocks of the brain

Historical preface

Up to the end of the nineteenth century the brain and the spinal cord were believed to be a giant
network of fusing elements (also known as “reticular theory”, Gerlach, 1872; Glickstein, 2006).
It was assumed that signals were carried from the skin to the brain and from the brain to the
muscles by a hypothesized fluid (possibly “electrical fluid”, Galvani and Aldini, 1792; Reeves
and Taylor, 2004) which flows along hollow tubes (Van Leeuwenhoek, 1719; Glickstein, 2006,
and Figure 2.1A). This (nowadays proved as wrong) belief was partly attributed to the fact that
fresh brain tissue, as studied by early microscopists, is soft; clean cuts are difficult to make and
the optical resolution was not sufficient to discriminate single cells in the cortex. Just subtle
difference in the structure of different areas could be identified (Gennari, 1782; Vicq-d’Azur,
1786; Glickstein and Rizzolatti, 1984).

In the late 19th century a paradigm change was facilitated by experimental techniques developed
by Camillo Golgi. In 1873 he wrote in a letter to his friend Nicolo Manfredi:

“I have found a new reaction to demonstrate, even to the blind, the structure of the
interstitial stroma of the cerebral cortex. I let the silver nitrate react with pieces of
brain hardened in potassium dichromate. I have obtained magnificent results and
hope to do even better in the future.” (reprinted in Mazarello, 1999).

This was the first record of the “black reaction” (nowadays known as Golgi staining), which
allows to visualize single neurons (in fact a small set of randomly selected cells) and its attached
dendritic trees and axons (cf. Figure 2.1B). Golgi himself, however, was still convinced to observe
a giant communication network of fused axonal branches (he considered the dendrites just as a
nutrition network, Golgi, 1873; Raviola and Mazzarello, 2011), and not single processing units.

It was Ramón y Cajal who used Golgis method to produce fascinating drawings of nerve cells
(cf. Figure 2.1C) and came to the conclusion that the brain is made up of individual elements,
which may touch each other but do not fuse (Ramón y Cajal, 1888a,b,c; Sotelo, 2003). Later,
his ideas were put forward by – among others – H.W.G. Waldeyer-Hartz, who coined the term
“neuron” for the single units of the brain (Waldeyer-Hartz, 1891; Glickstein, 2006).

The “neuron doctrine” is a fundament of modern neuroscience, however, it is worth mentioning,
that in the end the idea of a fusing network – which was strongly promoted by Golgi – turned
out to be partly true: While the most prevalent mechanism of communicating signals from
one neuron to another is by chemical synapses, where the signals are transferred between two
individual neurons by the usage of neurotransmitters (detailed description see below), it turned
out that additionally, some neurons have the ability to communicate electrical signals (and even
exchange cytoplasm, Payton et al., 1969; Dermietzel, 1998) directly via so called gap-junctions
(see Connors and Long, 2004, for a recent review on this topic).

Recent studies suggest that gap-junctions and electrical coupling are much more ubiquitous than
assumed in the last decades (Connors and Long, 2004, and references therein). However, we
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Figure 2.1: Historical pictures. (A) Drawing of a peripheral nerve by Leeuwenhoek (adapted from
Van Leeuwenhoek, 1719, copyright expired) clearly showing single fibers containing (prob-
ably) myelinated axons. He depicted the axons in the centers of each fiber as small slits.
He misinterpreted these as — due to the fast escape of a very liquid humour — collapsed
tubes. This drawing is probably the first attempt to represent a cross section of a peripheral
nerve in human history. (B) Cerebral cortex of the rabbit impregnated by the black reaction
(Golgi staining). Photomicrograph of a preparation signed by C. Golgi, 1877 (reproduced
with permission from Mazarello, 1999). (C) Illustration by Ramón y Cajal (Ramón y Cajal,
1888a) showing the five classes of neuron population that exist in the cerebellum (reproduced
with permission from Sotelo, 2003).
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Figure 2.2: Anatomical overview of a neuron. The major morphological features of a typical neuron
are the axon and the dendrites outgrowing from the soma. The axons form connections
(synapses) to postsynaptic neurons and may target the soma, dendrites or even axons.
Signals between two connected neurons are transmitted over the synaptic cleft (extracellular
fluid) by releasing neurotransmitters (see zoomed view of a synapse in the lower right). For
detailed explanation of signal transmission by chemical synapses see main text. Figure is
modified from Wikimedia (2007) published under public domain.

will not go into details as this thesis (almost) exclusively deals with chemical synapses (but, cf.
Section 2.5.3 and Chapter 7, where one of the models (Traub et al., 1999; Traub and Bibbig,
2000) proposed for the generation of Sharp-Wave-Ripple complexes crucially depends on axo-
axonic gap-junctions).

2.1.1. Biological fundamentals

Signal generation

On a coarse scale, a typical neuron can be separated into cell body (soma), the axon which
transfers signals to other neurons, and the dendrites which receive signals from other neurons
(cf. Figure 2.2). The morphological features of a neuron, e.g., the number of dendritic and axonal
branches or the length of these outgrowths varies strongly between different neuron types (cf.
also Figure 2.1C). The axon of a neuron might form “connections” to other neurons (the contact
points are called synapses) that allow the transfer of an electrical signal from one neuron to
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another by the usage of chemical messengers (neurotransmitters). If two neurons are coupled,
the cell receiving inputs is called postsynaptic to the sending neuron, and the sending neuron is
termed presynaptic with respect to the neuron receiving signals.

Neurons are cells that are highly specialized to generate and transfer electrical signals. In
particular, the membrane (separating the neuron from the extracellular fluid) contains a wide
variety of ion-channels. These channels control the flow of ions, predominantly sodium (Na+),
potassium (K+), calcium (Ca2+) and chloride (Cl−), between inside and outside the cell. The
channels may open and close in response to voltage changes or due to other external or internal
signals.

Under resting conditions, there is a difference in the electrical potential between the interior
of a neuron and the extracellular medium of about −70mV (by convention the potential of
the surrounding of the cell is defined as 0mV). This difference is termed membrane potential
and is maintained by “ion pumps”, integral membrane proteins, that actively transport charged
particles over the membrane. For example, there is typically much more potassium (K+) inside
a cell than outside, and much more sodium (Na+) outside the cell than inside. The electrical
as well as concentration gradients cause a flow of charged particles, if the channels (which may
be permeable for only a subset of ions) open. If the membrane potential inside the neuron is
reduced in response to opening of some channels (e.g., by the outflux of positively charged ions
or the influx of negatively charged ions), the neuron is said to be hyperpolarized. Likewise the
increase of the membrane potential is called depolarization.

sub−threshold
stimulation

supra−threshold
stimulation

−62 mV

0 mV

10 mV
1 ms

spiking threshold

resting potential

Figure 2.3: Anatomy of an action potential
recorded from a pyramidal neuron in CA1 (modified
with permission from Bean, 2007).

Communication between neurons is mainly
mediated by the generation of action poten-
tial (also called “spikes”, “nerve impulses” or
“neuronal discharges”). This is a brief, but
large depolarization of the membrane poten-
tial of roughly 100mV (cf. Figure 2.3). It is
generated in the axon initial segment (adja-
cent to the axon hillock where the axon leaves
the soma; cf. Figure 2.2), if the membrane po-
tential becomes sufficiently strong depolarized
(i.e., exceeding a “threshold potential”). Sub-
threshold depolarization does not elicit an ac-
tion potential and thus such (sub-threshold)
fluctuations in the membrane potential are
typically not transmitted to subsequent neu-
rons.

Action potentials result from a complex interplay of different voltage-gated ion channels (Bear
et al., 2006; Bean, 2007; Dayan and Abbott, 2001): Neuronal discharges are initiated, if the
membrane potential is sufficiently depolarized by, e.g., the influx of sodium ions in response to
a presynaptic action potential. If the depolarization exceeds a threshold potential (typically
≈ −55mV), more and more voltage gated sodium channels open in a positive feed-back cascade
(the opening of channels results in an influx of sodium ions that depolarizes the neuron even more
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and thus opens more sodium channels, etc.). The opening (activation) of the channels is typically
very fast (hundreds of microseconds) and thus cause a very rapid rise of the membrane potential
up to a value close to the reversal potential of sodium (ENa ≈ 55mV). The sodium channels
typically stay open for up to one millisecond and become impermeable to sodium afterwards.
Simultaneously to the opening of sodium channels, other voltage-gated channels, in particular
potassium channels, open. When the maximal permeability for sodium is achieved and the ion
channels are closing, the dynamics of the flow of potassium ions start to govern the change of
the membrane potential. The strong depolarization of the neuron cause a strong driving force
on (positively charged) potassium ions to leave the neuron. The membrane potential decreases
towards the reversal potential of potassium (EK ≈ −80mV) causing a hyperpolarization relative
to the resting potential. Finally, also the voltage gated potassium channels close and the neuron
reverses to the resting potential. After generation of an action potential, the ion channels are in
an “inactivated” state that makes it impossible to elicit another action potential. The time period
for which no further spikes can be generated or require a substantially larger depolarization to
elicit a spike is called (absolute/relative) refractory period.

We note that the above description of action potential generation is very basic, e.g., we consider
only two type of ion channels. Neurons in the brain might express a plethora of such channels,
thus generating action potentials with widely varying amplitudes and timescales. However, the
basic mechanism as outlined above still holds. More detailed descriptions of action potential
generation can be found in recent textbooks or review articles (e.g., Bear et al., 2006; Bean,
2007; Dayan and Abbott, 2001).

Axonal transmission

Once an action potential is initiated, it is actively transmitted along the axonal tree. The
depolarization caused by an action potential activates the voltage gated ion channels downstream
the axon and thereby “refresh” the signal.

nodes of Ranvier

myelin sheaths

axon terminalssoma

Figure 2.4: Sketch of a myelinated axon (modi-
fied from Wikimedia, 2009, published under CC-BY-
SA-3.0).

In vertebrates most axons are myelinated,
which drastically increases the speed and de-
creases the energetic cost of signal transmis-
sion. Parts of the axon are sheath by myelin
cells that isolate the axon from the surround-
ing intercellular plasma and therefore allow
the direct electromagnetical transmission of
an action potential (which would not be pos-
sible in uninsulated axons due to the leak over
the membrane and the resulting strong atten-
uation). The myelin sheaths are interrupted
by so called “nodes of Ranvier”, where the
membrane contains a large amount of voltage
gated ion channels that refresh the action potential (see also description of generation of action
potentials above).
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Chemical transmission

At the axonal terminals (the synapses) the chemical signal transmission to other neurons takes
place. These terminals contain synaptic vesicles filled with neurotransmitters (cf. Figure 2.2).
The neurotransmitters are amino acids, amines or peptides which are synthesized in specialized
fabrication units and/or by the support of enzymes in the soma or directly at the axonal terminal
(see, e.g., Bear et al., 2006, for detailed description). An arriving action potential causes opening
of voltage-gated calcium channels that are found within the membrane in the “active zones” of
the axonic terminal. At resting conditions the concentration of calcium within the cell is very
low such that an opening of the calcium channels causes an influx of calcium to the cell.

In a process termed exocytosis, the calcium influx triggers a fusion of the vesicles with the
membrane and thus causes the release of the contained neurotransmitters. The exocytosis can
happen remarkably rapid within tens of microseconds after the onset of the calcium influx
(Sabatini and Regehr, 1996) allowing for a fast signal transmission. After the release of the
neurotransmitters, the vesicle membrane is recovered in a process called endocytosis (Sudhof,
2004; Bear et al., 2006). The precise mechanism by which calcium stimulates exocytosis and the
cellular mechanisms underlying endocytosis are not completely understood, but are currently
under intensive investigation (see, e.g., Sudhof, 2004; Jahn and Fasshauer, 2012, for recent
reviews).

Figure 2.5: Chemically gated ion
channel (modified from Wikimedia, 2013,
published under CC-BY-3.0).

After being released, the neurotransmitters diffuse
across the synaptic cleft (separating the pre- and post-
synaptic terminal) and bind to specific receptor pro-
teins embedded in the postsynaptic membrane. The
binding causes conformational changes in the receptor
protein and induce a signal either by the opening of ion
channels (cf. Figure 2.5) or by triggering the release
of secondary messengers to the cytosol of the postsy-
naptic neuron (Bear et al., 2006). In the final step of
synaptic transmission, the released neurotransmitters
are removed from the synaptic cleft. This removal may
happen by re-uptake through specialized proteins (neu-
rotransmitter pumps) in the membrane of the presy-
naptic terminal (or other surrounding non-neural cells,
called glia cells), simple diffusion away from the synapse
or enzymatic destruction of the transmitter.

On the postsynaptic side the opening of channels cause
an influx or efflux of ions. Depending whether the mem-
brane potential is depolarized or hyperpolarised (post-
synaptic potential), the effect of the synaptic transmis-
sion is called excitatory or inhibitory. There is a wide
variety of neurotransmitters and -receptors present in
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the nervous system. However, the most abundant receptors mediating (fast) excitatory sig-
nals in the mammalian brain are α-amino-3-hydroxy-5-methyl-4-isocazoleprpionic acid receptors
(AMPA receptors) which open channels permeable to potassium and sodium. Inhibitory signals
are mainly mediated by receptors responding to gamma-aminobutric acid (GABA receptors)
that allow an influx of chloride to the cell. We note that depending on the concentration of the
single ions within the cell and in the intercellular medium a synapse might act excitatory or
inhibitory. For example it has been shown that the chloride level inside a cell decreases during
development of the brain and thus GABA acts excitatory in the immature brain and inhibitory
in later development stages (Ben-Ari et al., 1997).

Dendritic transmission and signal integration

The induced (excitatory or inhibitory) postsynaptic potential is transmitted from the synaptic
terminal to the soma of the postsynaptic cell by the dendrites (cf. Figure 2.2). The dendritic tree
gathers signals from thousands of presynaptic inputs and this bombardment causes fluctuations
of the membrane potential of the postsynaptic cell, and if the cell is sufficiently depolarized an ac-
tion potential might be elicited. The transfer of signals by the dendrites is typically passive, i.e.,
the electrical signal is conducted like in a (dendritic) cable. The amplitude decays over distance
and the contribution of a single presynaptic input to the total depolarization/hyperpolarization
at the soma is comparably weak. In this thesis, we refer to this type of dendritic signal trans-
mission and integration as “linear”, appreciating the fact that multiple presynaptic inputs are
summed approximately linearly. This, however, does not mean that all postsynaptic quantities
are just a linear summation of single responses: For example, a second identical presynaptic
input might double the (total) amount of presynaptic transmitter release and thus double the
number of open ion channels (i.e., the total conductance change is a linear superposition of
single responses). Yet, the depolarization at the soma is not the arithmetic sum of the single
responses as it also depends on the reversal potential of involved ion channels (cf. also Section
2.1.2 below), and thus single postsynaptic potentials are typically summed sublinearly.

However, recent neurophysiological experiments have shown that neuronal dendrites are capable
of actively integrating synchronous presynaptic inputs (e.g., Ariav et al., 2003; Gasparini et al.,
2004; Gasparini and Magee, 2006; Nevian et al., 2007; Losonczy et al., 2008; Remy et al., 2009;
Branco et al., 2010; Müller et al., 2012; Makara and Magee, 2013). Temporally and spatially
simultaneous presynaptic stimulation might elicit dendritic spikes (similiar to somatic spikes
described above), that are actively (by voltage gated channels along the dendrite) or passively
transmitted to the soma, and cause somatic depolarizations of the postsynaptic neuron much
stronger than expected from linear transmission of signals. In this thesis, we study the impact
of such nonlinear amplification on the dynamics of neuronal networks. Appreciating the great
importance of active dendrites to this thesis, we discuss them separately in Section 2.2.
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Synaptic plasticity

The connections between neurons, i.e., the underlying network that gives birth to the fascinating
computing capabilities of our brain, are far from being static. Our brain restructures perma-
nently by creating new neurons (which was recently shown to happen even in adult mammals,
cf. Kempermann et al., 2004; Lledo et al., 2006, for reviews), building new connections be-
tween them or abolishing existing ones (Bear et al., 2006). Additionally, also existing synapses
undergo changes of their efficiencies in an activity dependent manner on different timescales
(Tetzlaff et al., 2012).

On a short time scale (up to some minutes) the repetitive activation of a synapse, might lead to
a facilitation or depression of consecutive postsynaptic responses (see, e.g., Zucker and Regehr,
2002, for a comprehensive review on underlying biochemical mechanisms): Facilitation is mostly
attributed to enhanced calcium influx or an increased residual level of calcium concentration
inside the presynaptic terminal after multiple stimulation. Depression might arise from depletion
of release-ready pool of vesicles, release of modulatory messengers from presynaptic, postsynaptic
or glia cells, and/or a desensitization of postsynaptic receptors. However, after short recovery
periods postsynaptic responses return to the initial amplitude.

In contrast, a coordinated pre- and postsynaptic activity might induce changes that are “per-
manent”, i.e., lasting for days, weeks or even months (Sjöström et al., 2008, and references
therein). Synaptic efficiencies might be enhanced (“long term potentiation”; LTP) or decreased
(“long term depression”; LTD) and this adaptation is assumed to be controlled by calcium influx
to the postsynaptic terminal (Bear et al., 2006): A high calcium concentration may activate dif-
ferent protein kinases which then enhance the efficiency of AMPA receptors by phosphorylation
or — on a longer time scale — trigger the insertion of entirely new AMPA receptors in the
postsynaptic membrane. In contrast, modest and prolonged elevations in calcium concentration
activate protein phosphatases, which by dephosphorylasation weaken the efficiency of AMPA
receptors.

Figure 2.6: NMDA receptors are opened by
binding of presynaptic glutamate and removal
of Mg2+-block by postsynaptic depolarization
(modified from Sjöström et al., 2008, with permis-
sion).

The level of calcium influx itself is dominantly
controlled by N-methyl-D-aspartate (NMDA)
receptors (cf. Figure 2.6) which are integrated
in the postsynaptic membrane. These work as
coincidence detectors between pre- and post-
synaptic stimulation (see also Section 2.2):
The channel opens by binding of presynaptic
released glutamate, however, ion conduction is
minimized by a Mg2+ ion blocking the channel
and only moderate amounts of ions (mainly
calcium and sodium) pass through the chan-
nel. Yet, a sufficient postsynaptic depolariza-
tion removes the Mg2+ block, thus opens the
channel completely and causes strong calcium
fluxes. The depolarization might arise from
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back propagating action potentials (originat-
ing from the soma) and thus provide a mechanism for coincidence detection of pre- and post-
synaptic activity. Thus the timing of the action potentials of pre- and postsynaptic neurons
intimately control the depression or potentiation of the synaptic efficiencies (more detailed de-
scription, additional mechanisms are discussed in Sjöström et al., 2008).

We note that the above description of the biophysical foundations of signal generation, transmis-
sion and processing outlines some of the basic principles, but is by no means complete. Further
informations can be found in recent textbooks (e.g., Dayan and Abbott, 2001; Bear et al., 2006;
Purves et al., 2008).

2.1.2. Neuron models

Neuron models exists on a large scale of abstraction levels. There are attempts to simulate
cortical networks with highly detailed neuron models which include a large number of compart-
ments and precise distribution of ion channels (e.g., the “Blue Brain Project”, Markram, 2006).
Simulation of such systems can yield a good picture of the neural dynamics, but might be far
too complex to gain insight about the mechanisms underlying neuronal information processing.
In the other extreme, neurons can be simplified to threshold units with only two active states
(“firing” or “not firing”, e.g., Hopfield, 1982) and allow an analytical treatment of the dynamics
of networks of such units. Of course, simplification bears the risk of studying model artifacts
which cannot be generalized; thus it might be reasonable to verify prediction with more complex
neuron models and experiments.

In this thesis we employ single compartment models, i.e., we neglect the spatial extend of the
neurons. Thus the membrane potential of each neuron can be described by a single variable V
and the influence of spikes on postsynaptic neurons is described by its effective action on the
action potential initiation zone of the postsynaptic neurons.

Leaky integrate-and-fire neurons

In most parts of the thesis we deal with neurons of the leaky integrate-and-fire (LIF) type
(Lapicque, 1907; Dayan and Abbott, 2001; Tuckwell, 1988). These models have a reasonable
degree of accuracy, but are often still analytically tractable (for an extensive review of current
research see Burkitt, 2006a,b).

For small fluctuations around the resting potential, the neuronal conductances are approximately
constant. The LIF model omits the voltage dependency of the ion channels (and thus the mech-
anism of generation of action potentials) completely and models subthreshold dynamics only.
All membrane conductances are lumped togethet into one single term gL (leak conductance).
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Figure 2.7: Equivalent circuit for the
LIF model.

The model behaves like an electrical circuit (cf. Fig-
ure 2.7) consisting of (1) a capacitor with capacity Cm
(representing the charge separating membrane), (2) a
resistor with leak conductance gL parallel to the ca-
pacitor (representing the leak current over the passive
ion channels) and (3) a battery generating the poten-
tial difference equal to the leak (or resting) potential EL
(representing the ion pumps charging the neuron). The
capacitor (neuron) might be charged by an additionally
(time varying) current I(t), arising from presynaptic
stimulation (or direct injections by electrodes). Taken together, the subthreshold dynamics is
governed by

Cm
dV

dt
= −gL (V − EL) + I(t). (2.1)

It is convenient to multiply Equation (2.1) by the membrane resistance R = 1/gL which yields

τm
dV

dt
= EL − V +RI(t) (2.2)

where τm = RCm is the membrane time constant.

When the potential difference (at the capacitor) reaches a certain threshold (spiking threshold)
Θ it is assumed that an action potential is generated. The membrane potential is reset to the
reset potential Vreset < Θ and the action of the generated spike on the postsynaptic neurons is
considered in form of injected currents to the postsynaptic cell (cf. Section 2.1.3).

Despite its simplicity, the LIF model reproduces several aspects of the response properties of
real neurons to constant and fluctuating input with not too high frequencies fairly well (Dayan
and Abbott, 2001; Rauch et al., 2003; Naundorf et al., 2005; Burkitt, 2006b).

Hodgkin-Huxley type neurons
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Figure 2.8: Equivalent circuit for the
Hodgkin-Huxley model.

Although the main results in this thesis are de-
rived for networks of LIF neurons, we verified some
of the analytical predictions by simulations em-
ploying the biophysically more plausible Hodgkin-
Huxley model (Hodgkin and Huxley, 1952). This
model was established in 1952 to describe the giant
axon of the squid and takes three different types of
ion currents (leak current, potassium current and
sodium current) into account. In contrast to the
LIF model, it explicitly models the generation of
action potentials.
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The potassium and sodium currents, IK(V ) and INa(V ), are assumed to be voltage dependent
(see also Section 2.1.1), the leak current IL (gathering all other channels which are not explicitly
described) is not. Figure 2.8 shows the equivalent electrical circuit. According to Kirchoff’s Law
the membrane potential obeys

Cm
dV

dt
= −IL − INa(V )− IK(V ) + I(t), (2.3)

where I(t) is a temporally varying stimulation current as before (cf. Equation 2.1). We denote
the reversal potentials of the single currents by EL, ENa, EK and the (maximal) conductance
for each considered channel by gL, gNa and gK. Hodgkin and Huxley found that the voltage
dependence of the channels can be described by three gating variables, m(V ), h(V ) and n(V ),

Cm
dV

dt
= −gL (V − EL)− gNam

3h (V − ENa)− gKn
4 (V − ENa) + I(t). (2.4)

Figure 2.9: View of the ribbon rep-
resentation of the Kv1.2 (potassium)
channel from the extracellular side
of the membrane. All four subunits
are colored individually (modified from
Pathak et al., 2007, with permission).

The gating variables can be interpreted as the probabil-
ity that a subunit of a specific ion channel gate has un-
dergone a conformal change which is necessary to open
the gate (Dayan and Abbott, 2001). The exponents in
Equation (2.4) arise from the fact that for some channels
more than one of this subunits are involved in the open-
ing of the channel: For example to open the potassium
channel, the gate has four identical subunits (cf. Figure
2.9) that have to undergo a structural change to open
the channel. We note that the sodium current involves
two different gates, an activating gate (described by m)
and an inactivating gate (described by h), which is re-
sponsible for the deactivation of the channel for strong
depolarizations (cf. also Section 2.1.1).

Denoting the voltage dependent opening rate of a sub-
unit gate by α(V ) and the closing rate by β(V ), the
temporal dynamics of the probability that a subunit
gate is open obeys

dm

dt
= αm(V )(1−m)−mβm(V ) (sodium activation) (2.5)

dn

dt
= αn(V )(1− n)− nβn(V ) (potassium activation) (2.6)

dh

dt
= αh(V )(1− h)− hβh(V ) (sodium deactivation) (2.7)

Here, the probability that a gate is opened (in a short time interval) is the product of the
probability to find the gate closed times the opening rate, (1 − n)α(V ), minus the probability
to find the gate open times the closing rate, nβ(V ).
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The voltage dependent opening and closing rates have to be determined experimentally and
can be found elsewhere (e.g., Hodgkin and Huxley, 1952; Dayan and Abbott, 2001 or in the
supplement of Chapter 3). We note that the original model considers only two types of channels
as described above, however, other channels can easily be added to the model with the same
approach.

The Hodgkin-Huxley model has been proven to reproduce the dynamics of real neurons quite
well. However, despite its complexity it fails to describe some features of the initiation dynamics
of cortical action potentials (rapid initiation and variable onset potential) accurately (Naundorf
et al., 2006).

2.1.3. Modelling synaptic interactions

Analogous to the formulation of an appropriate neuron model, there are different level of ab-
stractions for modeling the impact of presynaptic spikes on the membrane potential of the post
synaptic neurons.

Conductance based models

When neurotransmitters are released to the synaptic cleft and there is a large portion of this
transmitters available, the postsynaptic receptor gated ion channels open at a high rate. After
the neurotransmitters are removed, the channel closes with a time constant typically substan-
tially larger than the time constant for opening the channels.

To account for the two different timescales (for opening and closing the channels), the temporal
development of the conductance (for the currents across one channel type) might be described
by the difference of two exponentials (Dayan and Abbott, 2001). The transient conductance
change in response to one single input (received at t = 0) is then

g(t) = gmaxA
(
e−t/τ1 − e−t/τ2

)
(2.8)

with time constants τ1 > τ2 and normalization factor A that assures that the peak value of the
conductance equals gmax,

A =
[(

τ2
τ1

) τ2
τ1−τ2 −

(
τ2
τ1

) τ1
τ1−τ2

]−1

. (2.9)

The rise time of the synaptic conductances is determined by τrise = τ1τ2/(τ1− τ2) and the decay
time is set by τ1. The peak conductance gmax measures the strength (determined by, e.g., the
density of postsynaptic ion channels and the amount of presynaptic transmitter release) of the
synaptic connection.

If a neuron receives multiple inputs at times t ∈ {t1, t2, . . .}, the temporal development of the
induced conductance change obeys

g(t) = gmaxA
∑
i

Θ(t− ti)
(
e−(t−ti)/τ1 − e−(t−ti)/τ2

)
, (2.10)
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where Θ(·) is the Heaviside step function. Accordingly, the induced current in the postsynaptic
neuron is

I(t) = [E − V (t)] gmaxA
∑
i

Θ(t− ti)
(
e−(t−ti)/τ1 − e−(t−ti)/τ2

)
(2.11)

where E is the reversal potential of the considered ion channel and V (t) the membrane potential.

The input zones to neurons typically express more than one channel type (cf. Section 2.1.1)
and the contribution of each of these channels has to be described separately. In this thesis we
consider AMPA and GABAA receptor channels which are the main excitatory and inhibitory
channels in the adult brain. The synaptic time constants τ1 and τ2 for each of these channels
have to be measured experimentally and are available in the literature (e.g., Jonas et al., 1993;
Pearce, 1993; Liu and Tsien, 1995; Hájos and Mody, 1997, and others).

We note that the choice to describe the time course of the conductances by the difference of two
exponential functions is attributed to the types of channels we describe and the level of accuracy
we want to achieve. For other types it might be reasonable to consider different interaction
functions (interaction kernels) K(t) which might be more or less complex, and describe the
postsynaptic current by

I(t) = [E − V (t)] gmax
∑
i

Θ(t− ti)K (t− ti) . (2.12)

Current based models

By neglecting the voltage dependency in Equation (2.12) one derives the so-called current based
synapse models. Replacing V (t) by the resting potential Vrest yields,

I(t) = [E − Vrest] gmax
∑
i

Θ(t− ti)K (t− ti) . (2.13)

Each presynaptic input causes a stereotypical current pulse (equivalent to a current pulse ob-
tained by clamping the membrane potential to the resting potential).

Networks of neurons with either conductance based or current based synapses can generate quite
different dynamics (e.g., Kuhn et al., 2004; Vogels and Abbott, 2005; Kumar et al., 2008a). For
example, for conductance based synapses, the amplitude and also the width of postsynaptic
potentials are influenced by external constant currents, and even by balanced (i.e., equal average
amount of presynaptic excitatory and inhibitory input) synaptic bombardments (cf. Figure
2.10). Besides the general decrease of postsynaptic responses for membrane potentials closer
to the reversal potential of the considered ion channel (cf. Equation 2.12), this is attributed
to the decrease of the effective membrane time constant in the high-conductance state (Kuhn
et al., 2004, and Figure 2.10C). Due to the negligence of the voltage dependence of the synaptic
interactions, such an alteration of the postsynaptic response is not found in current based models
(cf. Figure 2.10B,D). Therefore, in networks, current based models have a higher tendency to
cause epileptic-like pathological activity by amplifying strong synchronous signals (Mehring
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Figure 2.10: Current based versus conductance based synapses. For models with current based
synapses the amplitude and width of the postsynaptic potential is decreased by the injec-
tion of a constant input current (A) and also by bombardment with balanced excitatory
and inhibitory inputs (C). Neurons with current based synapses do not show such a depen-
dency (B,D). The panels show simulations of LIF neurons (cf. Equation 2.2 ) with double
exponential conductances (A,C; Equation 2.13) and alpha-function shaped input currents
(B,D; K(t) = e tτ1

exp(−t/τ1)). The main panels show the average postsynaptic potentials,
the insets their standard deviations.

et al., 2003), whereas conductance based synapses might hinder this behavior by extenuating
too strong synchronous activity (Kumar et al., 2008a and Chapter 6).

Nonetheless, current based models have been proven to be very useful to describe and understand
activity states of neural networks, e.g., its irregular ground state, and their simplicity often allows
even an analytical treatment (e.g., v. Vreeswijk and Sompolinsky, 1996; Brunel and Hakim,
1999; Timme et al., 2002; Denker et al., 2004; Goedeke and Diesmann, 2008; Jahnke et al., 2008;
Memmesheimer, 2010; Helias et al., 2010, and many others).

In this thesis, we employ the leaky integrate-and-fire model in conjunction with the assump-
tion of ultra-fast current responses to obtain analytical predictions (Chapter 3 and 4). Single
presynaptic inputs are assumed to induce an instantaneous jump in the membrane potential (of
size ε), and the model equation can be written — in abuse of mathematical notation — as (cf.
Equation 2.2 and 2.13)

τm
dV

dt
= EL − V + ε

∑
i

δ (t− ti) , (2.14)
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where δ(·) is the Dirac delta function.

2.1.4. Models of Spike Time Dependent Plasticity (STDP)

In Chapter 7 we consider the (unsupervised) learning of network substructures (feed-forward
subnetworks) in the presence of behavior-reflecting spiking patterns (place cell activity during
exploration of space; cf. also Section 2.5). The formation of feed-forward anatomy is based on
long-term potentiation and depression (LTP; LTD). In this thesis, we do not consider the impact
of short term plasticity which is a source of additional computing capabilities for single neurons
and networks, but its plasticity effects are restricted to short times (up to some seconds) and
does not induce permanent changes (cf. Section 2.1.1). Models of short-term plasticity and their
biological basis have been recently reviewed by Hennig (2013).

Pair based STDP

Although he had very limited knowledge about the cellular mechanism underlying the modifica-
tion of synaptic weights (cf. Section 2.1.1), in 1949 Hebb postulated how synaptic connections
might modify during activity:

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one
or both cells such that A’s efficiency, as one of the cells firing B, is increased. (Hebb,
1949)

This statement has become famous in the more catchy formulation: Fire together wire together.

Figure 2.11: Time window of STDP
for pair-based stimulation protocol
(modified from Bi and Poo, 2001, with
permission).

In classical Hebbian models modification of synaptic
efficiencies is driven by correlations in the firing rate
of pre- and postsynaptic neurons. The activity is ex-
pressed in terms of rates — a continuous description —
and the fine temporal structure between pre- and post-
synaptic spikes is neglected (e.g., Oja, 1982; Bienen-
stock et al., 1982).

However, it has been shown that the timing of single
spikes is important: Using a pair-based stimulation pro-
tocol Bi and Poo (1998) have demonstrated that the
strength of a synaptic connection increases, if the post-
synaptic cell fires after the presynaptic one, and that
the strength decreases if the spiking order is reversed.
The amplitude of weight change decreases with the tem-
poral difference between the spikes (cf. Figure 2.11)
and the potentiation/depression is stronger for initially
weak synapse than for strong ones (cf. Figure 2.12).
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More formal, the change of the synaptic strength w induced by one spike pairing of a pre- and
postsynaptic spike, can be written as

∆w =

F+(w) · exp
(
− |∆t|τ+

)
if ∆t > 0

F−(w) · exp
(
− |∆t|τ−

)
if ∆t ≤ 0

(2.15)

where ∆w is the amplitude of the positive/negative weight change (potentiation/depression),
F±(w) describe the weight dependence on the current weight w, and ∆t is the time difference
between the post- and presynaptic spike. To completely define the model, one has to additionally
specify which spike pairings are taken into account: For updating the weights one could pair
only temporally neighbored spikes (nearest neighbors) or all spikes (for a discussion of the single
approaches see, e.g., Morrison et al., 2008).

For the weight dependence, different functions have been proposed. In the simplest case they
might be purely additive (the update does not depend on the weight at all),

F+(w) = λ (2.16)
F−(w) = αλ, (2.17)

where λ is the learning rate and α the asymmetry factor (relating potentiation to depression).
However, additive learning rules tend to develop bimodal weight distributions, where the peaks
are placed at the extrema of the possible weights, i.e., w = 0 or w = wmax assuming that a
synapse cannot become infinitly strong (Rubin et al., 2001).
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Figure 2.12: Weight dependence of
synaptic potentiation and depression;
data from (Bi and Poo, 1998) together with
predictions from different update rules (black:
powerlaw, pale gray: additive, dark gray: mul-
tiplicative). Figure reproduced from Morrison
et al. (2007) with permission.

For multiplicative update rules where

F±(w) ∝ w, (2.18)

and also for rules placed somewhere between ad-
ditive and multiplicative, i.e., F±(w) ∝ wµ with
0 < µ < 1, it has been shown that they typically
yield an unimodal weight distribution for uncor-
related Poissonian spiking activity (Rubin et al.,
2001; Gütig et al., 2003; Morrison et al., 2007).
Experiments analyzing the weight distribution of
cortical networks suggest that such an unimodal
distribution is more realistic than a bimodal one
(Song et al., 2005).

In Chapter 7 we employ the “powerlaw-update-
rule”,

F+(w) ∝ λwµ (2.19)
F−(w) ∝ λαw (2.20)

which has been shown to yield an unimodal weight distribution in large balanced random net-
works with plastic couplings (Morrison et al., 2007). Moreover, it resembles the experimental
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data of Bi and Poo (1998) better than additive or purely multiplicative update rules (cf. Figure
2.12, black curves).

We remark that reported STDP curves may vary for different areas and neuron types (Abbott
and Nelson, 2000; Caporale and Dan, 2008) and also higher order correlation (triplet-stimulation)
may change the properties of synaptic plasticity (Wang et al., 2005; Gjorgjieva et al., 2011). More
information can be found in recent reviews on mechanism and modelling of STDP(Morrison
et al., 2008; Caporale and Dan, 2008; Tetzlaff et al., 2012).

2.2. Active dendrites

2.2.1. Dendritic democracy

basal

dendrites

dendrites

apical

tuft

apical

soma

Figure 2.13: Morphology of the
dendritic tree of a pyramidal
CA1 neuron (modified from Gold-
ing et al., 2005, with permission)

In classical view, signals arriving at the synapses are chem-
ically transmitted to the postsynaptic terminal (see Section
2.1 above) and passively conducted along the dendrites down
to the soma. Yet, the signal is strongly attenuated while
spreading along the dendrites (especially within thin den-
dritic branches with high ohmic resistance) and thus the con-
tribution of single inputs, in particular at distal synapses, to
the de-/hyperpolarization of the soma is very weak (cf. Fig-
ure 2.13 illustrating the widespread morphological structure
of a pyramidal neuron). This raises the question, why neu-
rons are equipped with such long dendrites, extending up
to several hundreds of micrometers (Andersen et al., 2007;
Cutsuridis et al., 2010) away from the soma, if the inputs do
not affect the somatic output at all?

Different mechanisms have been proposed — and experimen-
tally verified – to counterbalance this discrimination of distal
inputs: Remote synapse might be stronger to overcome the
distance dependent attenuation (“synaptic scaling”, Iansek
and Redman, 1973; Magee and Cook, 2000; Häusser, 2001),
and/or the leak currents are counterbalanced by (gradu-
ally) opening of voltage gated ion channels along the den-
drite causing inward directed currents (“subthreshold boost-
ing”, Cook and Johnston, 1997, 1999; Migliore and Shepherd,
2002), and/or dendritic spikes — all-or-none events — might
be elicited in distal locations and thus provide a (nonlinear) amplification of presynaptic inputs
(see, e.g., numerous recent reviews on different aspects and variants of dendritic spikes, Häusser
et al., 2000; Häusser and Mel, 2003; London and Häusser, 2005; Spruston, 2008; Major et al.,
2013). Whereas the first both effects ensure that the remote signal can contribute to the volt-
age changes of the soma (also known as “dendritic democracy”), the latter one adds additional
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computing power to the dendrites: Dendritic spikes are elicited by sufficiently strong and syn-
chronous stimulation only and might require back propagating action potentials in addition;
thus the dendrite itself carries out some part of the neural computation (cf. also Section 2.2.3).

2.2.2. Dendritic spikes

The term “dendritic spike” describes strong, often stereotypical, voltage transient in the den-
drite; they have some kind of threshold (voltage or other input variables, e.g., concentration of
neurotransmitter in the synaptic cleft) and the response to suprathreshold input qualitatively
differs from subthreshold responses, and finally the event is regenerative (see also definition in
Major et al., 2013). So far three different types of dendritic spikes have been reported and they
can be classified depending on the main underlying class of conductances/ion channels, i.e.,
there are NDMA- (based on NMDA gated ion channels; cf. also Figure 2.6), Ca2+-spikes (based
on voltage gated calcium channels) and Na+-spikes (based on voltage gated sodium channels).

Na+-spikes

In this thesis, we consider the influence of fast (compared to other types of dendritic spikes, see
below) dendritic sodium spikes on the dynamics of recurrent networks. These spikes have been
found prominently in hippocampal regions CA1 in basal (Ariav et al., 2003; Losonczy et al.,
2008; Remy et al., 2009; Müller et al., 2012) and apical dendrites (Golding and Spruston, 1998;
Gasparini et al., 2004; Jarsky et al., 2005; Losonczy and Magee, 2006; Gasparini and Magee,
2006; Makara et al., 2009), recently in CA3 (Kim et al., 2012; Makara and Magee, 2013) and
also in the neocortex (Stuart et al., 1997; Larkum et al., 2001; Nevian et al., 2007).

The dendritic Na+-spike is initiated by voltage gated sodium channels, causing a sharp rise of
the voltage transient, and shaped by concurrent activation of NMDA receptors, voltage gated
Ca2+- and A-type K+-currents (cf. Figure 2.14; Ariav et al., 2003; Losonczy and Magee, 2006;
Remy et al., 2009; Kim et al., 2012). The generation of dendritic spikes requires sufficiently
strong, or — if elicited by multiple presynaptic inputs — highly synchronized (in time and
space) inputs (Ariav et al., 2003; Gasparini et al., 2004; Gasparini and Magee, 2006). This
synchrony detection is remarkably sensitive, probably due to the small membrane time constant
in thin dendrites; only sufficiently strong inputs within a very short time interval of up to roughly
3ms may generate dendritic sodium spikes (cf. also Figure 2.14).

Dendritic spikes may cause depolarizations at the soma, which substantially exceed the depo-
larizations expected from summation of the effect of single inputs. Interestingly, it has been
shown that this increased depolarization may even trigger somatic spikes (e.g., Ariav et al.,
2003; Losonczy et al., 2008; Müller et al., 2012; Makara and Magee, 2013): The triggering of
somatic action potentials by dendritic spikes generated in the apical dendrite (in particular in
the apical tuft) has been shown to be highly variable; the dendritic spike is attenuated during
transmission down the dendrite, but can be modulated (in particular reinforced) by additional
inputs to the apical dendrite, which establishes a kind of gating mechanism for the remotely
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µ40   m

Figure 2.14: Nonlinear amplification of synchronous inputs. (a) Fluorescent image of a CA1
pyramidal neuron. Two stimulating electrodes were placed in close proximity to a basal
dendrite. (b) Traces showing the individual excitatory postsynaptic potentials (EPSPs)
evoked by each of the synaptic stimulating electrodes, the summed synaptic potential dur-
ing coincident activation of the two synaptic stimulating electrodes, and the arithmetic
sum of the two individual responses (bold line). Note the large supralinear amplification
and sharpening of the summed synaptic potential, as compared with the expected arith-
metic sum response. The fast component is attributed to voltage gated sodium channels,
followed by a longer lasting component mediated by subsequent opening of NMDA recep-
tors. (c) Voltage traces obtained in response to coincident activation of two closely spaced
electrodes at various time delays (0 − 20ms). Black traces represent voltage responses to
activation of the electrodes at time delays of 0 and 2ms. Gray traces show the responses
for activation at time delays of {3, 5, 10, 15, 20}ms. Note that, in this experiment, the time
window for coincident detection was < 3ms. Figure and caption modified from Ariav et al.
(2003) with permission.
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generated signal (Golding and Spruston, 1998; Gasparini et al., 2004; Jarsky et al., 2005; Makara
and Magee, 2013). Dendritic sodium spikes generated in basal (or radial oblique) dendrites are
much more reliable in triggering somatic spikes (Ariav et al., 2003; Losonczy et al., 2008; Müller
et al., 2012; Makara and Magee, 2013). The timing of the evoked somatic action potential can
be surprisingly precise; the temporal jitter is in the sub-millisecond range (Ariav et al., 2003;
Losonczy et al., 2008).
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Figure 2.15: Characteristics of dendritic
spikes evoked by optically stimulated gluta-
mate uncaging in strong (red) and weak (blue)
dendritic branches (modified from Losonczy et al.,
2008, with permission).

The strength of sodium spikes (both the am-
plitude ∆V and rate of rise dV/dt) is relatively
invariant between different trials, but there
is remarkable variance between the branches
(Losonczy et al., 2008; Makara et al., 2009;
Müller et al., 2012). They can be classi-
fied in strong and weak dendritic branches
(cf. Figure 2.15). The propagation of weak
dendritic spikes is strongly attenuated until
they reach the soma, and the timing of sub-
sequent action potentials — probably elicited
by the slow, longer lasting spike component
following the initial sodium spike, cf. Fig-
ure 2.14 and 2.15 — is relatively unreliable;
thus the temporal jitter between trials is high
(Gasparini et al., 2004; Losonczy et al., 2008;
Müller et al., 2012). In contrast, dendritic
spikes generated in strong branches require
less presynaptic stimulation, are transmitted
essentially without attenuation, are very reli-
able in triggering of somatic action potentials
— probably due to the fast sodium spike —
with sub-millisecond precision (Ariav et al.,
2003; Losonczy and Magee, 2006; Losonczy
et al., 2008; Müller et al., 2012; Makara and
Magee, 2013).

Interestingly, it has been shown that weak branches can be transformed into strong branches by
suitable stimulation protocols — e.g., by mimicking the presynaptic stimulation on hippocampal
pyramidal cells during exploration of space, cf. also Section 2.5.3 — and/or by the application of
neuromodulators (Losonczy et al., 2008; Müller et al., 2012). This suggests that single branches
may act as sub-processing units which can be turned on and off in an experience-based manner,
e.g., during phases of spatial exploration.

Finally, it is noteworthy that strong dendritic sodium spikes cannot be suppressed by (both
recurrent or locally applied) inhibition, whereas weak dendritic spikes are completely attenuated
(Müller et al., 2012; though the inhibition decreases the probability that the dendritic spike can
elicit a somatic spike). Interestingly, this mechanism further increases the output precision of
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somatic spikes: All somatic action potentials, but the highly precise ones caused by strong
dendritic spikes, are suppressed.

Taken together, (strong) dendritic sodium spikes act as powerful coincidence detectors with
remarkable precision, regarding both the detection of input synchrony and the generation of
output spikes. They are prominently found in the basal dendrites of hippcampal pyramidal
neurons. In this dendritical region most of the recurrent excitatory inputs (from other pyramidal
of the same region) in hippocampal area CA1/CA3 arrive (Andersen et al., 2007; Cutsuridis
et al., 2010). Thus, the available data suggest that dendritic sodium spikes are crucially involved
in processing synchronous inputs in the hippocampus (e.g., during Sharp-Wave-Ripple events;
cf. Sections 2.5.3, 2.5.4 and Chapter 7).

NMDA- and Ca2+-spikes

As mentioned above, additionally to dendritic sodium spikes, dendritic NMDA-spikes and calcium-
spikes have been reported in the hippocampus and neocortical areas (cf., e.g., Major et al., 2013,
for a review). These spike also nonlinearly amplify presynaptic inputs, but are far less sensitive
to input synchrony. For example, Polsky et al. (2004) reported that two stimuli on the same
dendritic branch cause somatic responses exceeding the level expected from linear summation
of inputs up to time intervals of more than 40 ms between the stimuli. This insensibility (com-
pared to sodium spikes) is attributed to the fact that, in particular NMDA receptors (cf. also
Figure 2.6 and describing text), typically deactivate only slowly (Paoletti, 2011, and references
therein). As a consequence, the caused somatic depolarization is long lasting or “plateau-like”
(Major et al., 2013, and references therein), and NMDA-spikes and calcium spikes are often
associated with the generation of bursts of action potentials (Traub and Wong, 1982; Williams
and Stuart, 1999; Larkum and Zhu, 2002; Milojkovic et al., 2004; Polsky et al., 2009; Long et al.,
2010).

2.2.3. Previous work on dendritic computation

The first indications of dendritic nonlinearities (spikes) have been measured more than 50 years
ago (Spencer and Kandel, 1961, measured small pre-potential (spikelets) and proposed the ex-
istence of dendritic nonlinearities). During the last decades a wealth of experimental data
accumulated clearly showing the existence (and measuring the properties) of dendritic spikes
(see Section 2.2.2). Nonetheless, there are astonishing few theoretical/modelling studies so far
aiming to an understanding of the impact of these dendritic spikes on computational properties
on the network level.

Single neuron level

Theoretical studies on active dendrites mainly focused on single neurons. Simulations of neuron
models with detailed channel density and morphology showed dendritic spike generation and its
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sensitivity to synchronous stimulations (coincidence detection) in agreement with neurobiological
experiments (Stuart and Häusser, 2001; Ariav et al., 2003; Gasparini et al., 2004; Poirazi et al.,
2003a,b; Nevian et al., 2007). It has been shown that, e.g., presynaptic inputs to the apical
dendrite might function as a gating mechanism for signal propagation from the apical tuft to
the soma and back (Larkum et al., 2001; Jarsky et al., 2005; Katz et al., 2007, and Figure 2.16A).

On the basis of these detailed modelling studies more abstract rate models have been developed
(Poirazi and Mel, 2001; Poirazi et al., 2003a,b; Häusser and Mel, 2003; Polsky et al., 2004;
Larkum et al., 2009): Single dendrites are considered as independent computational units with
a sigmoidal input-output relation, and neurons equipped with such dendrites effectively act like
multi-layer feed-forward networks (cf. Figure 2.16B). Thus nonlinear dendrites improve the
ability of single neurons and ensembles of single neurons to discriminate and learn different
input patterns (Mel, 1992; Poirazi and Mel, 2001; Rhodes, 2008; Branco et al., 2010; Schiess
et al., 2012). The propagation of dendritic spikes in branched dendrites with step-like activation
functions (i.e. without analogous signal transmission) has been studied by Gollo et al. (2012,
2013) where the authors derived a statistical description of the input-output relations.

Network level

So far, only few studies considered the impact of nonlinear dendrites on network dynamics.
Dendrites equipped with voltage gated calcium channels and NMDA receptors have been shown
to provide a bursting mechanism, which may synchronize network activity (and serve as a
model for epilepsy, Traub and Wong, 1982), or explain the emergence and propagation of burst
in the high vocal center (HVC) of songbirds (Long et al., 2010). Further, it has been proposed
that NMDA-receptor dependent dendritic nonlinearities play a crucial role in working memory
(Lisman et al., 1998; Wang, 1999, 2001): Here the dynamical system is bistable (high- and low-
activity attractor) and the activation of NMDA receptors with slow time constant enables to
shift between the both states.

Recently, it has been shown that fast dendritic sodium spikes may explain the occurrence
of intermittent or persistent high-frequency oscillations in sparse recurrent random networks
(Memmesheimer, 2010; Memmesheimer and Timme, 2012). Spontaneous or induced synchronous
activity is amplified by local dendritic spikes, and thus might spread over moderate fractions of
a recurrent network.

2.3. Networks and dynamics

2.3.1. Some notations from graph theory

We describe the structure of a neural network by a directed graph, also called digraph (Chartrand
and Lesniak, 2000; Bang-Jensen and Gutin, 2002). The neurons are the nodes, the synaptic
connections are the directed edges of the graph and the weights of the edges are the coupling
strengths.
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A graph G = (V,E) is a pair of two finite sets: The nonempty set V which is the set of nodes
or vertices and the set of edges E. The elements of V (the nodes or neurons) are labeled by a
natural number (index),

V = {1, . . . , N} with N = |V | . (2.21)

For a directed graph, the set E contains ordered pairs of elements of the set of nodes V . These
edges are often called arcs to distinguish between directed and undirected graphs. Additionally
one can define a weighting function c on the edges of graph G,

c : E → R, (2.22)

which assigns a weight (coupling strength) to every arc. The triple (V,E, c) is called weighted
graph. In this thesis, we describe the coupling structure of our networks by a coupling matrix ε
with

εji =
{
c(i, j) if (i, j) ∈ E
0 if (i, j) /∈ E.

(2.23)

We further denote the set of neurons which have a connection to a given node j,

Pre(j) = {i|εji 6= 0} , (2.24)

as the presynaptic neurons to neuron j. Likewise the set of neurons

Post(j) = {i|εij 6= 0} , (2.25)

which receives connections from neuron j are called postsynaptic neurons to neuron j.

2.3.2. Connectivity between neurons

Dale’s Law

It has been found that neurons in the brain typically release the same set of neurotransmit-
ters at all their axonal terminals — an observation which is nowadays known as “Dale’s Law”
(Dale, 1935; Eccles et al., 1954). In particular, neurons can be classified as either excitatory
or inhibitory, depending on their main effect on postsynaptic cells. The most abundant excita-
tory cell type in mammalian cortical structures are so called pyramidal neurons which received
their name due to the pyramidal shape of their cell body, and constitute around 80% of cortical
neurons (Braitenberg and Schüz, 1998).

Connection probabilities

In general, the local connectivity between pyramidal neurons, estimated from dual cell record-
ings, is low (e.g., Deuchars and Thomson, 1996; Thomson et al., 2002; Holmgren et al., 2003, and
references therein). It varies between different areas and usually decays with the distance be-
tween two neurons: For example, the connection probability between two neocortical pyramidal
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neurons in Layer 2/3 has been estimated to be approximately 10% for adjacent cells and decays
to approximately 2.5% in a distance of 130µm (Holmgren et al., 2003). In the hippocampal
region CA3, the connectivity has been estimated to be between 2 − 6% (Amaral et al., 1990;
Ascoli and Atkeson, 2005), and in the CA1, a very sparse region, it is approximately 1% in a
distance of 200µm (Deuchars and Thomson, 1996; Ascoli and Atkeson, 2005).

As a starting point we model local recurrent networks as classical (Erdös-Renyi) random graphs
(cf. Chapter 4 - 7). In such networks each possible edge is realized with a fixed probability
p, and thus the indegree (number of incoming connections) and outdegree (number of outgoing
connections) distribution follows a Binomial distribution (Newman, 2010): Denoting the number
of neurons by N the probability that a single neuron has exactly k presynaptic neurons is

p (|Pre(i)| = k) =
(
N − 1
k

)
(p)k (1− p)N−1−k , (2.26)

and equals the probability to have exactly k postsynaptic partners,

p (|Post(i)| = k) = p (|Pre(i)| = k) . (2.27)

Figure 2.17: Example of network motifs in
clusters of six cells (modified from Perin et al.,
2011, with permission).

We assume a pure random graph as the ba-
sis connectivity attributing the fact that the
actual degree distribution in cortical networks
is unknown (due to experimental difficulties).
However, simultaneous measurements of a
small number of cells (up to 12, Perin et al.,
2011), have shown small, but significant devia-
tions from random graphs even if the distance
dependency is taken into account (Song et al.,
2005; Perin et al., 2011): Certain sub-patterns
(called motifs, cf. Figure 2.17) are signif-
icantly more often detected than expected.
Moreover, Bonifazi et al., 2009 provided direct experimental evidence that so called “hubs”,
highly-connected nodes, are found in developing hippocampal networks. This observations in-
spired us to also consider scale-free networks (cf. Chapter 5) where the degree distribution obeys
a power-law, e.g.,

p (|Pre(i)| = k) ∝ k−γ . (2.28)

Here super-connected nodes are relatively common due to the “fat-tail” of the distribution
(Newman, 2010).

In Chapter 5 we demonstrate that these hubs alter the network response properties: Whereas in
simple random networks synchronous activity might spread out over the whole network or decay
fastly, in the same class of networks, but containing hubs, synchrony might spread to only a
fraction of neurons. Thus, moderate-amplitude — non-pathological — network oscillations are
excited which interestigly may foster signal transmission (cf. also Section 2.4.2 and Chapter 6).
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2.3.3. The ground state of cortical networks

The ground state activity of cortical networks is characterized by highly irregular activity with
low spiking rates of several Hz per neuron (Softky and Koch, 1993; Rieke et al., 1997; Shadlen
and Newsome, 1998). The spike train statistics resemble that of a Poissonian spike train, where
inter-spike-intervals (ISIs) are exponentially distributed,

p(ISI = ∆t) = ν exp (−ν∆t) . (2.29)

Although the cortical networks are sparse, they are large (the brain contains more than 85 billion
neurons in total; Herculano-Houzel, 2009), and each neuron in the brain receives inputs from
ten thousands of presynaptic neurons. Yet, an ongoing bombardment with random (Poissonian)
spike trains is expected to cause a much more regular spiking activity than the one observed
(Softky and Koch, 1993): According to the central limit theorem (Rice, 2007), the summed
inputs can be approximated by a normal distribution and the standard deviation is expected to
be small with respect to the mean input. As a consequence the neurons would receive an almost
constant input which would lead to a regular spiking activity.

Balance of excitation and inhibition

This apparent paradoxical situation might be resolved by considering balanced excitatory and
inhibitory inputs (Shadlen and Newsome, 1994, 1998). Although there are far less inhibitory
neurons than excitatory neurons in the brain (Braitenberg and Schüz, 1998; Ascoli and Atkeson,
2005), many types of the inhibitory acting neurons are more active and densely coupled to
surrounding excitatory cells (Ascoli and Atkeson, 2005; Jonas et al., 2004; Klausberger, 2009),
and thus they may counterbalance the excitatory input on average.

Figure 2.18: Example dynamics of highly ir-
regular activity in balanced state networks
(modified from Jahnke et al., 2008, with permission).

If the average excitatory and inhibitory in-
puts are of the same order of magnitude,
the membrane potential fluctuates (below the
spiking thresholds) and spikes are elicited
by random fluctuations in the input — also
called “fluctuation driven regime” (cf. Fig-
ure 2.18). Theoretical studies have shown
that such balance between excitation and in-
hibition naturally emerge in sparsely coupled
networks and indeed generates highly irreg-
ular spiking dynamics as observed in experi-
ments (v. Vreeswijk and Sompolinsky, 1996,
1998; Brunel, 2000; Jahnke et al., 2008; Re-
nart et al., 2010). Indeed, a detailed balance between excitation and inhibition has been shown
to exist during spontaneous as well as sensory evoked activity (Haider et al., 2006; Okun and
Lampl, 2008; Atallah and Scanziani, 2009) allowing single neurons (in this fluctuation driven
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Figure 2.19: Rate and temporal coding in hippocampal place cells. (A) As a rat runs on a track,
a place cell in the hippocampus fires as the animal passes through a specific region (the
“place field”, B). This firing rate code for location is also a temporal code (C): spikes (ticks)
are fired at successively earlier phases of the theta rhythm of the local field potential (blue
trace), referred to as “theta-phase precession”. Figure and caption modified from Burgess
and O’Keefe (2011) with permission.

regime) to respond very fast to changes in presynaptic stimulations (Tchumatchenko et al., 2011,
and references therein).

2.4. Information representation and transmission in recurrent
networks

2.4.1. Rate code vs. temporal code

Our brain encodes, decodes and processes information about our environment. The underlying
neural code must serve four key functions: stimulus representation, interpretation, transforma-
tion and transmission (Perkel and Bullock, 1968; Kumar et al., 2010). In this thesis we consider
two of these aspects, representation (Chapter 7) and transmission (Chapter 3-6) of information.

How is a stimulus (or a previously processed and stored information; memory) represented
in the brain? It is somewhere hidden in the spiking activity, the spike trains of neurons or
populations of neurons. Traditionally, it is assumed that most of the information is contained
in the firing rate of neurons (“rate code”; reviewed in standard textbooks, e.g., Rieke et al.,
1997; Gerstner and Kistler, 2002): For example, single “place cells” (cf. also Section 2.5.2) in
the hippocampus encode the current position in space partly by a rate code — when an animal
traverses the receptive field of a particular neuron its firing rate increases (O’Keefe, 1976; Wilson
and McNaughton, 1993; Kjelstrup et al., 2008 and Figure 2.19B).
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The rate approach neglects information that may be contained in precise spike times. However,
the responses of neurons to repeated stimuli can be rather reliable (Mainen and Sejnowski, 1995;
Nowak et al., 1997), and thus may lead to precisely timed spike patterns where the information
is encoded in the timing — or relative timing — of the spikes (temporal code). Indeed, such
patterns have been experimentally found in various neural systems and can be related to infor-
mation representation and processing of stimuli: They indicate whisker position and movement
in the rat (Panzeri et al., 2001; Jones et al., 2004), complex features of tactile stimuli in hu-
mans and monkeys (Johansson and Birznieks, 2004; Birznieks et al., 2010), noise source position
and auditory stimulus identity (Gutfreund et al., 2002; Schnupp et al., 2006; Engineer et al.,
2008). In the motor cortex of mammals, precisely synchronous spiking among neurons has been
observed which is correlated with internal cognitive states and task performance (Riehle et al.,
1997; Kilavik et al., 2009; Putrino et al., 2010).

Information provided by precise spike patterns can be complementary to that of spike rates over
longer time windows (O’Keefe and Recce, 1993; Skaggs and McNaughton, 1996; Maurer and
McNaughton, 2007; Kayser et al., 2009; Panzeri et al., 2010): For example place cells encode the
current position in space by a rate code (see above) and, additionally, by precisely timed spikes
— occurring spikes are locked to the oscillations of the LFP and indicate the position within
the traversed place field (O’Keefe and Recce, 1993; Skaggs and McNaughton, 1996; Maurer and
McNaughton, 2007, and Figure 2.19C).

2.4.2. Signal transmission in feed-forward networks

Figure 2.20: Schematic illustration of
synfire anatomy (modified from Dies-
mann et al., 1999, with permission).

A common hypothesis states that such precise spike
patterns are generated by synchronous activity prop-
agating in specific sub-populations of neurons, so-called
“synfire chains”, which are embedded in a larger recur-
rent network. This concept was introduced by Abeles
(1982) as feed-forward chains of groups of neurons (lay-
ers) with dense anatomical connections between subse-
quent groups (cf. Figure 2.20). Synchronous activity
may spread from layer to layer by exciting a sufficiently
large number of neurons to spike synchronously in ev-
ery layer, and thus generate precise spike patterns (as
observed in experiments; see above) reflecting the trans-
mitted synchronous pulse. In an alternative view, by this mechanism information in the form
of synchronous activity can be transmitted through recurrent networks (Kumar et al., 2010).

During the last decades a large number of theoretical and modelling studies have elaborated
on this idea (Aertsen et al., 1996; Diesmann et al., 1999; Gewaltig et al., 2001; Kistler and
Gerstner, 2002; Aviel et al., 2003; Mehring et al., 2003; Vogels and Abbott, 2005; Kumar et al.,
2008a; Goedeke and Diesmann, 2008; Kumar et al., 2010; Kremkow et al., 2010) and looked for
conditions for (and properties of) robust propagation of synchrony in synfire chains.
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Figure 2.21: Illustration of the synfire attractor. Pulse packets (a) may or (b) may not propagate
along a synfire chain, depending on the initial conditions. (c) Temporal development of
synchronous pulses in the (α, σ)-space (size and width of pulse packet). The blue line
(seperatrix) separates the basin of attraction of persistent propagation (green) and the
region where synchronous activity decays (red). Figure modified from Kumar et al. (2010)
with permission.

Isolated synfire chains

To describe and quantify the propagation of synchrony, it is useful to introduce the notion of a
“pulse packet”(Aertsen et al., 1996; Diesmann et al., 1999): This is a volleys of α spikes that
are drawn from a Gaussian distribution with standard deviation σ. By computer simulations
it has been demonstrated that such pulse packets can propagate robustly along isolated synfire
chains (where the embedding network is emulated by Poissonian spike trains) provided that the
initial pulse is sufficiently large and synchronized (Aertsen et al., 1996; Diesmann et al., 1999;
Gewaltig et al., 2001, and Figure 2.21).

The location of the seperatrix (separating regimes of successful and unsuccessful propagation)
depends on the synfire architecture (e.g., the size of the layers, Diesmann et al., 1999), synaptic
and background noise (Câteau and Fukai, 2001; Gewaltig et al., 2001), the input-output transfer
function of the neurons (Goedeke and Diesmann, 2008), and refractory properties of single units
(Kistler and Gerstner, 2002).

Embedded synfire chains

Further computational studies revealed that it is not straight forward to actually embed feed-
forward chains into recurrent networks and still keep the capability to robustly propagate syn-
chrony (Aviel et al., 2003; Mehring et al., 2003; Vogels and Abbott, 2005; Kumar et al., 2008a,
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2010): Synchronous activity tend to spread out over the whole network and cause patholog-
ical, epileptic-like activity (“synfire explosions”, Aviel et al., 2003; Mehring et al., 2003). To
counterbalance this pathological activity either very large networks and/or very prominent feed-
forward structures with respect to the remaining (i.e., embedding) network have to be assumed
(Aviel et al., 2003; Vogels and Abbott, 2005). However, considering a local connectivity and
conductance based synapses with sufficiently long time-scales (cf. Section 2.1.2) may also pre-
vent synfire explosions (Kumar et al., 2008a), partly because of the reduced membrane time
constants in the high-conductance state (Kuhn et al., 2004; Kumar et al., 2008b). Yet, also in
this study the authors assumed an all-to-all coupling between successive layers.

Alternatively to densely connected layers, one may consider “diluted” synfire chains with sparse
connectivity that naturally occur as part of a random neuronal circuit. In this scenario, the low
connection probability between neurons of successive layers may be compensated by strength-
ening synapses (Vogels and Abbott, 2005). Following this “pathway” approach, a propagation
of synchrony over a certain number of groups can be enabled if synaptic efficiencies are strongly
(about a factor of ten) enhanced and a negative gain modulation is added (i.e., weakening all
synapses onto pathway neurons).

However, for both types of embedding, highly prominent feed-forward structures are assumed
— either in the sense of dense, possibly all-to-all coupling or in the sense of strongly, selectively
modified local features — that are not experimentally observed. Additionally, prominent feed-
forward structures hinder the signal separation from background activity: Correlations in the
spike times induced by (even random) background activity, can accumulate over the layers and
lead to spontaneous synchronous spiking activity (Litvak et al., 2003; Rosenbaum et al., 2010,
2011). Such spontaneous propagation of synchrony may happen even in isolated synfire chains
with large layer sizes or too strong connection strengths (Tetzlaff et al., 2002, 2003; Mehring
et al., 2003).

Fast dendritic spikes and synfire chains

In this thesis, we study the impact of fast dendritic spikes (cf. Section 2.2.2) on propagation
of synchrony in diluted feed-forward networks, and demonstrate that they lessen the problems
raised above: We show that these spikes relax the requirement of prominent feed-forward struc-
tures by selectively amplifying synchronous inputs, and therefore enabling signal propagation in
isolated as well embedded feed-forward networks with biological plausible topology (Chapter 3
and 4). Moreover, due to the sensitivity of dendritic spike generation to only highly synchronous
activity, spontaneous propagation of synchrony is hindered (Chapter 4). This sensitivity also
opens the possibility to stabilize signal propagation by oscillatory inputs of suitable frequencies
which further relax the requirement for prominent feed-forward anatomy (Chapter 5 and 6).
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2.5. The Hippocampus

The hippocampus is one of the evolutionary oldest regions of the brain and crucially involved in
episodic memory formation and consolidation (reviewed in, e.g., Girardeau and Zugaro, 2011).
According to the “two-stage model” of memory (Marr, 1971; Buzsáki, 1989) information is
first preliminary stored (in the hippocampus) and later (e.g., during rest or sleep) recalled and
consolidated (i.e., transferred to the neocortex for long-term memorization). As discussed in
Section 2.2.2, fast dendritic sodium spikes have been prominently found in hippocampal area
CA1 (and to a lesser extent in CA3). In the very same regions, high-frequency oscillations
(i.e., highly synchronized population activity) in conjunction with re-occurrence (replay) of
previously learned spatio-temporal patterns occur during sleep and resting phases (“Sharp-
Wave-Ripple complexes”; see Section 2.5.3 below). This might suggest a connection between
dendritic nonlinearities and the observed activity patterns. In Chapter 7 we derive a model for
learning and replay of spike patterns in the hippocampus based on fast dendritic spikes. As a
basis for the results presented in Chapter 7, we provide a short overview of the anatomy of the
hippocampus and observed activity patterns below.

2.5.1. Brief anatomical overview

Figure 2.22: Preparation of a human
hippocampus alongside a sea horse
(from Wikimedia, 2010, published under
CC-BY-3.0).

The hippocampus derived its name from the Greek
words hippos (horse) and kampos (sea monster) because
it resembles the form of a seahorse (cf. Figure 2.22).
The hippocampus is part of the limbic system, and its
size generally increase in higher species (Stephan, 1983;
although there are some highly developed species like
dolphins and whales which do not follow this law Ja-
cobs et al., 1979; Stephan and Manolescu, 1980). For
example, the volume is ten times larger in monkeys
than in rats, and even hundred times larger in humans.
Nonetheless the basic anatomy is similar in all three
species (Andersen et al., 2007), and therefore it is as-
sumed that also the general functions (including the
behavioral functions it subserves) are similar. The following description, and also the studies
of hippocampal activity described afterwards, refer to rat experiments, because this species has
become the main target of experimentalist.

The hippocampus consists of three subregions: The dentate gyrus (DG), the hippocampus
proper (HP; subdivided into CA1,CA2 and CA3) and the subiculum (Andersen et al., 2007; van
Strien et al., 2009; Cutsuridis et al., 2010, and Figure 2.23).

It has a laminar structure with three main sublayers: The deepest layer contains a mixture of
afferent and efferent fibers and interneurons. It is called hillus in the DG and stratum oriens in
the CA regions. Superficial to this polymorph layer there is the cell layer that contains principal
cells (mainly pyramidal neurons) and interneurons This layer is named granule layer in the DG,
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Figure 2.23: Basic anatomy of the hippocampus. (A) Nissl-stained crossection of the hippocam-
pal formation and the parahippocampal region in the rat brain (Figure modified from van
Strien et al., 2009, with permission). (B,C) The wiring diagram of the hippocampus is
traditionally presented as a trisynaptic loop. The major input is carried by axons of the
perforant path, which convey polymodal sensory information from neurons in layer II of
the entorhinal cortex to the dentate gyrus. Perforant path axons make excitatory synaptic
contact with the dendrites of granule cells: axons from the lateral and medial entorhinal
cortices innervate the outer and middle third of the dendritic tree, respectively. Granule
cells project, through their axons (the mossy fibers), to the proximal apical dendrites of
CA3 pyramidal cells which, in turn, project to ipsilateral CA1 pyramidal cells through
Schaffer collaterals and to contralateral CA3 and CA1 pyramidal cells through commis-
sural connections. In addition to the sequential trisynaptic circuit, there is also a dense
associative network interconnecting CA3 cells on the same side. CA3 pyramidal cells are
also innervated by a direct input from layer II cells of the entorhinal cortex. The distal
apical dendrites of CA1 pyramidal neurons receive a direct input from layer III cells of the
entorhinal cortex. There is also substantial modulatory input to hippocampal neurons.
The three major subfields have an elegant laminar organization (see also zoomed view in
C) in which the cell bodies of principal cells are tightly packed in an interlocking C-shaped
arrangement (granule layer/stratum pyramidale), with afferent fibers terminating on se-
lective regions of the dendritic tree. The hippocampus is also home to a rich diversity of
inhibitory neurons that are not shown in the figure. Figure and caption modified from
Neves et al. (2008) with permission.
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and stratium pyramidale in the HP. The most superficial layer is referred to as the molecular
layer (stratum moleculare) in the DG and the subiculum; in the HP it can be further subdivided
into stratum lucidum (only in CA3), stratum radiatum and stratum lacunosum-moleculare (cf.
zoomed view of CA1 in Figure 2.23C).

The most prominent connection pathways to and within the hippocampus are summarized in
Figure 2.23 (for a more complete description see, e.g., Witter and Amaral, 2004; Andersen et al.,
2007; van Strien et al., 2009; Cutsuridis et al., 2010): The main input to the hippocampus arises
from the entorhinal cortex (EC) via the so called perforant pathway and terminates at the
dendrites of granule cells in the DG. These cells project forward via the mossy fibers to the
pyramidal neurons in CA3, which in turn project to the CA1 pyramidal neurons via the Shaffer
collaterals. This feed-forward projection (EC→DG→CA3→CA1) is referred to as the trisynaptic
loop, or in an extended version polysynaptic pathway, where the subsequent projection from CA1
to the subiculum is also considered. In fact the projection from CA1 to the subiculum has turned
out to be even more prominent than the CA1→EC projection, the classical termination of the
trisynaptic loop (Andersen et al., 2007; Cenquizca and Swanson, 2007; van Strien et al., 2009).
The output from the hippocampus formation arises (mainly) from CA1 and subiculum and
targets, in particular, the deeper layers of the entorhinal cortex.

Besides this feed-forward pathway, recurrent connections within the areas of the hippocampus,
and back projections (i.e., in the reverse direction of the polysynaptic pathway) have been
described (reviewed in, e.g., Witter and Amaral, 2004; Andersen et al., 2007; van Strien et al.,
2009). Recurrent connection (also referred to as associational projections) are most prominent
in area CA3, but they are also found — although less prominent — in the other regions of
the hippocampal formation (Witter and Amaral, 2004; van Strien et al., 2009, and references
therein).

In Chapter 7 we consider the representation of spatial information (location) by the principal
cells, i.e., the pyramidal neurons, in area CA1 and CA3. These cells (cell bodies) are placed
in the stratum pyramidale, with the basal dendritic tree located in the stratum oriens and the
apical tree extending to the superficial layers (cf. Figure 2.13 and 2.23C). The pyramidal cells
are surrounded by a very heterogeneous group of GABAergic interneurons (at least 12 types of
interneurons differing in single cell properties, formation and extent of axonal and dendritic trees
have been reported so far, Witter and Amaral, 2004; Klausberger, 2009). These interneurons
form mainly (but not exclusively) local recurrent connections to both the soma (in particular the
axonal initial segment) and the dendrites of the pyramidal neurons, and therefore provide a feed-
back loop which dampens excitatory input, but might be also involved in dendritic computation
(see Section 2.2).

More information about the anatomy and the properties of single cells can be found in textbooks
and review articles (e.g., Paxinos, 2004; Duvernoy, 2005; Andersen et al., 2007; van Strien et al.,
2009; Klausberger, 2009; Cutsuridis et al., 2010)
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2.5.2. Place cells

In a given environment a large fraction of pyramidal neurons in CA1 and CA3 display sensitivity
to the current position (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976; Ekstrom et al., 2003;
Mizuseki et al., 2012). The receptive fields are referred to as “place fields”; and the same neurons
encode for different positions in different environments, i.e., the place fields are environment
specific and the place field in one environment does not predict the place field in another (Muller
and Kubie, 1987; Colgin et al., 2008).

Figure 2.24: Global vs. rate remapping. The panels show
the location depend firing rate of four cells (in a square box) and
the remapping of the receptive field due (A) to changes of the
wall color or (B) replacement to another box. The maximal
firing rate (corresponding to red color) is given next to each
rate map. Figure modified from Leutgeb et al. (2005a) with
permission.

Additionally to such “global remap-
ping” (or total remapping) where
the firing rate as well as firing fields
are altered, more subtle remapping,
“rate remapping” are reported (rele-
vant literature is reviewed in Leut-
geb et al., 2005b; Colgin et al.,
2008). In rate remappings substan-
tial changes in the firing rates are
observed, but place field locations
are little shifted. They are more
likely to be observed when the en-
vironmental changes are small (e.g.,
changing the wall color of a room, cf.
Figure 2.24A). Global remapping is
more likely to be induced by larger
changes (like complete replacement
to a new room, cf. Figure 2.24B). In new environments place fields emerge on the time-scale
of minutes (Bostock et al., 1991; Wilson and McNaughton, 1993), but can be stable in a non-
changing environment for long time periods up to months (Thompson and Best, 1990; Agnihotri
et al., 2004).

We remark that additionally to the key role in spatial representation, there is evidence that
position is only one of the — although very important — facets stored in the hippocampal
network (cf. reviews Eichenbaum et al., 1999; Leutgeb et al., 2005b; Colgin et al., 2008; Moser
et al., 2008, and references therein): For example single place cells might have different place
fields in the same environment while different tasks are performed, or for different running
directions (e.g., Markus et al., 1995; Wood et al., 2000). Place-fields might also be altered by
other non-spatial influences (e.g., presentation of odors or fear conditioning, Wood et al., 1999;
Moita et al., 2004).
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Figure 2.25: Replay of experienced spike sequences. (A) Spike raster plot from 10 CA1 cells
(different colors) from 30 runs along a linear track (for each cell the recordings from every
trial are placed one over each other). (B) Activity of the same cells during slow-wave sleep
following the exploration. Modified from Lee and Wilson (2002) with permission.

2.5.3. Activity patterns in the hippocampus

Movement on a linear track

We now consider the run along a linear track (cf. also Figure 2.19). During the traversal of
the track, neurons which encode a position in this particular environment are activated in the
same order as the the place fields are traversed, and thus define a spike pattern (sequence) that
corresponds to that specific track. Interestingly, this sequence is replayed during sleep or resting
phases following the exploration in a highly compressed manner (Wilson and McNaughton, 1994;
Nadasdy et al., 1999; Lee and Wilson, 2002; Ji and Wilson, 2007; Davidson et al., 2009, and cf.
also Figure 2.25).

Theta phase precession

Figure 2.26: Hippocampal spatio-
temporal field. The firing rate of a hip-
pocampal neuron as a function of position
and phase. Modified from Mehta et al.
(2002) with permission.

The learning of spike patterns taking places during ex-
ploration is most likely based on the phenomenon of
phase precession, a form of temporal coding of position
complementing the rate coding discussed above (cf. also
Section 2.4.1 and Figure 2.19).

While exploration of space prominent rhythmic modula-
tions of the local field potential (LFP) in the frequency
range 4 − 10Hz, called theta oscillations, are observed,
and the timing of single spikes of place cells reflects the
position within the corresponding place field (O’Keefe
and Recce, 1993; Skaggs et al., 1996; Mehta et al., 2002;
Maurer and McNaughton, 2007; Gupta et al., 2012):
When entering the place field spikes occur preferentially
late in the theta-cycle and move to earlier and earlier
times while the place field is traversed (cf. Figure 2.26).
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Neurons with overlapping place fields are activated during one theta-cycle, and the phenomenon
of phase precession yields a compressed representation of recently traversed, present and future
locations in space: Neurons representing positions already passed, spike (on average) early in
each theta cycle (i.e., at lower phases with respect to the theta rhythm), followed by neurons
representing the present position and neurons corresponding to places that will be passed in the
future. The average time difference between spikes of place cells with nearby place field centers
is in the order of tens of milliseconds and therefore perfectly suited for inducing spike time
dependent plasticity (cf. Section 2.1.4). Thus, the combination of the compressed representation
of the sequence of locations by phase precession favors the emergence of feed-forward structures
(Skaggs et al., 1996; Buzsáki, 2006; Mehta et al., 1997; Bush et al., 2010). These structures are
candidates for the later replay of the spike sequences during sleep (cf. also “Spatial exploration
phase” in Chapter 7).

Sharp-Wave-Ripples

The replay of experienced spike patterns occurs in sleep (slow-wave sleep) or resting phases after
exploration during short phases of strongly enhanced network activity, called “sharp waves”,
superimposed by high-frequency oscillations, called “ripples” (Buzsáki et al., 1992; Ylinen et al.,
1995; Maier et al., 2003, 2011; Buzsáki and Silva, 2012). The sharp-wave-ripple complex (SWR)
has a duration of approximately 50 − 150ms and the ripple frequency is in the range of 100 −
200Hz (cf. Figure 2.27). SWRs are reported all over the hippocampus and in parts of the
entorhinal cortex, however, the superimposed oscillations are most prominent and have the
highest frequency (up to 200Hz) in the CA1 region (Chrobak and Buzsáki, 1996; Csicsvari et al.,
1999a; Andersen et al., 2007; Sullivan et al., 2011).

Figure 2.27: Unfiltered extracellular local field
potential (LFP) recording of SWRs in CA1
(top) and 120−300Hz bandpassed-filtered ver-
sion (below). Figure reproduced from Maier et al.
(2011) with permission.

A moderate fraction of approximately 10 −
20% of pyramidal neurons (Ylinen et al., 1995;
Buzsáki and Silva, 2012) contribute only a
single spike or single burst (Buzsáki et al.,
1992) to the SWR event, nonetheless, the co-
ordination of single neuronal discharges over
the whole CA3-CA1-subicular complex-EC re-
gion makes them the most synchronous event
observed in the mammalian brain (Chrobak
and Buzsáki, 1996; Csicsvari et al., 1999a,b,
2000; Buzsáki and Silva, 2012). Although, the
sharp-wave is highly coordinated over all par-
ticipating areas via the polysynaptic loop, the
high-frequency oscillations (ripples), in par-
ticular in CA1, are generated locally (Yli-
nen et al., 1995; Csicsvari et al., 1999a; Maier
et al., 2011; Sullivan et al., 2011).
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Models of Sharp-Wave-Ripples

Experiments show that the pyramidal neurons fire action potentials synchronized to the local
field potential oscillations (ripples) during the SWRs (Buzsáki et al., 1992; Csicsvari et al.,
1999b; Maier et al., 2011). Likewise the spiking probability of various types of interneurons
change during the SWR events (Klausberger et al., 2003, 2004, 2005; Klausberger, 2009). In
particular, basket cells (targeting the soma of pyramidal neurons — and therefore having a
powerful direct inhibitory control) and bi-stratified cells (targeting the dendrites in stratum
radiatum and stratum oriens) show increased spiking activity in SWR episodes (Klausberger
et al., 2003, 2004).

This observations lead to the idea that transiently increased excitatory input (e.g., from CA3
to CA1 via the Schaffer collaterals) during sharp-waves excites oscillations in the interneuron
network of basket cells (Ylinen et al., 1995; Buzsáki and Chrobak, 1995; Brunel and Wang,
2003; Geisler et al., 2005). The induced oscillations in the sharp-wave ripple frequency range
then entrain the phasic spiking of the pyramidal cells (Ylinen et al., 1995; Buzsáki and Chrobak,
1995; Brunel and Wang, 2003; Geisler et al., 2005). Alternatively, it was proposed that the
high-frequency oscillations are based on axo-axonal gap junctions (Traub et al., 1999; Traub and
Bibbig, 2000; Maex and Schutter, 2007). Here, it is assumed that the axons of the pyramidal
neurons form a sparse (electrically coupled) network, where spikes may propagate and multiply
in the presence of transiently increased depolarizing input. This yields rhythmic generation of
bursts of axonal spiking, which excites the pyramidal cell somata to spike after antidromic and
orthodromic propagation.

The third model (considered in Chapter 7) is based on fast dendritic spikes (Memmesheimer,
2010): Spontaneous fluctuations (or appropriate stimulations) cause (weakly) synchronized firing
of a subset of pyramidal neurons. The impact of this synchronized pulse on postsynaptic neurons
is amplified by synchrony sensitive dendritic spikes (cf. also Section 2.2.2), and thus generates
an even more synchronized pulse which in turn may cause synchronous spiking in the subset
of postsynaptic neurons, etc. By this mechanism larger and larger groups of neurons spike
synchronously and establish neuronal oscillations resembling an SWR events. The oscillation
frequency (time difference between subsequent groups) is determined by the conductance delays
and the initiation time of dendritic sodium spikes. For sparsely and locally coupled networks (like
CA1) and plausible parameters for dendritic spike generation (cf. Ariav et al., 2003; Müller et al.,
2012) the oscillation frequency is in the range of approximately 200Hz, for more globally coupled
networks (and thus larger average conductance delays; like CA3) it decreases (Memmesheimer,
2010), consistent with experimental findings (Chrobak and Buzsáki, 1996; Ylinen et al., 1995;
Csicsvari et al., 1999a; Sullivan et al., 2011). This may also explain, why the ripple frequency in
in vitro slice is generally higher than those detected in vivo (Maier et al., 2003; Nimmrich et al.,
2005; Both et al., 2008), since long-range connections are decreased during the preparation.
We remark that we discuss the plausibility of this model comprehensively in the light of recent
experimental findings in Chapter 7.
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Replay

Replay of experienced spike sequences during sleep has been demonstrated in a wealth of exper-
imental studies (Wilson and McNaughton, 1994; Nadasdy et al., 1999; Lee and Wilson, 2002;
Ji and Wilson, 2007; Davidson et al., 2009, and others) and is thought be initiated in CA3
(Chrobak and Buzsáki, 1996; Csicsvari et al., 1999a, 2000; O’Neill et al., 2008). In this com-
paratively densely coupled region an initial coincident activation (spontaneously or induced) of
a subgroub of cells (“initiator cells” Buzsáki, 1989) is assumed to trigger the activation of the
whole previously stored sequence (cf. also Section 2.4.2 about signal transmission in feed-forward
networks). Then the activity is projected to region CA1 via the Shaffer Collaterals, where the
high-frequency oscillations are superimposed by a local network mechanism (see subsections
above).

A replay in CA1 itself based on recurrent connections is assumed to be unlikely because of the
sparse recurrent connectivity. However, recent in vivo experiments with mutants having a pro-
jection from CA3 to CA1 (Shaffer collaterals) that can be temporally deactivated (Nakashiba
et al., 2008, 2009), have shown that replay during SWRs in CA1 still persists if CA1 is deaffer-
ented from CA3 (Nakashiba et al., 2009).

2.5.4. A unified model of sharp-wave-ripple events and replay

In this thesis we demonstrate that fast dendritic spikes (as found in CA regions), allow a replay in
very sparse networks (Chapter 3 and 4). In particular, in Chapter 7 we argue that even the sparse
recurrent connectivity in CA1 is indeed sufficient to induce dendritic sodium spikes in the basal
dendrites of pyramidal neurons during SWR events in the absence of input from CA3. Similiarly,
a replay in CA3 based on recurrent connections is possible, however, the oscillation frequency is
reduced by long-ranging connections (cf. also Memmesheimer, 2010). Whereas usually studied
as separated effects, in our approach the replay, the sharp-wave and the superimposed high-
frequency oscillations are intimately interrelated with each other (Chapter 7). Furthermore, we
show that high-frequency oscillations itself may foster replay of previously learned spike patterns
(Chapter 6), and that such network oscillations naturally emerge in networks with heavy-tailed
degree distribution (Chapter 5).

2.6. Remark on simulation strategies

2.6.1. Hybrid systems

In favor of an efficient numerical simulations of neural networks, it is reasonable to rewrite
the model equations defining the dynamics of the membrane potential (e.g., Equations 2.2 and
2.4) and the synaptic currents (cf. Equations 2.12 and 2.13) to a hybrid system (Brette et al.,
2007): Let the vector ~X(t) define the state of a single neuron: the membrane potential and
other state variable, e.g., the state of activated currents, gates or conductances. The state ~X
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evolves continuously according to some function f( ~X), and spikes received by synapses cause
non-continous changes in some of the state variables,

d ~X

dt
= f( ~X) (2.30)

~X ← hn( ~X) upon spike arrival from synapse n. (2.31)

To be more specific, we consider the leaky integrate-and-fire neuron with one single exponential
conductance-based synapse (cf. Section 2.1.2 and 2.1.3),

Cm
dV

dt
= gL (EL − V ) + (E − V ) gmax

∑
i

Θ(t− ti)
(
e−(t−ti)/τ1

)
, (2.32)

where Cm is the membrane capacity, gL the leak conductance, EL the leak potential, gmax the
maximal conductance induced by a single presynaptic spike, τ1 the decay time constant of the
postsynaptic conductance transient, and ti the arrival time of the ith presynaptic input. The
state ~X of the neuron is given by the membrane potential X1 = V and the actual value of the
synaptic conductance X2 = g; the system evolves according to

d ~X

dt
= f( ~X) =

( 1
Cm

[gL (EL −X1) + (E −X1) (X2)]
− 1
τ1
X2

)
(2.33)

hn( ~X) =
(

X1
X2 + gmax

)
. (2.34)

The advantage of this formalism is that the temporal development of the state of a neuron does
not explicitly depend on the former spike times ti, and thus spike times need not to be stored.
For Hodgkin-Huxley type neurons the state vector ~X has to be extended by the gating variables
(cf. Equations 2.5 - 2.7). Likewise the extension to double exponential or α-function shaped
kernels is straightforward. Spike time dependent synaptic plasticity (STDP; cf. Section 2.1.4)
can also be included into this formalism by keeping track of previous spikes by an additional
variable which decays according to the temporal interaction window (Song et al., 2000; Morrison
et al., 2007, 2008).

Spikes are emitted and transferred to postsynaptic neurons when the threshold condition is
satisfied, e.g., for integrate-and-fire neurons when the V = X1 ≥ ΘV. The membrane potential
is reset V = X1 ← Vreset (if applicable), and an absolute refractory time can be introduced by
holding the membrane potential to the reset value for the refractory time period.

2.6.2. Simulation strategies

There are two different approaches to simulate the dynamics of neural networks (Brette et al.,
2007): Synchronous (“clock-driven”) simulation strategies, where the neuronal dynamics of all
units is updated simultaneously; and asynchronous (“event-driven”) simulation strategies, where
the state of a unit is updated only when it sends or receives a spike.
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Both approaches have its advantages and disadvantages: Clock-driven algorithms can be im-
plemented comparatively easily independent of the complexity of the neuron model. However,
spike times are bound to a discrete grid and thus the precision of the simulation results might
be an issue. Event-driven algorithms are “more precise”, ideally exact, in the sense that at each
point in time the next event (sending or receiving of spikes) is determined and the system is
updated accordingly. However, for complex neuron models this determination might become
arbitrary difficult and time consuming (consider, e.g., the complex dynamics of Hodgkin-Huxley
type neurons) and an event-driven algorithm might not be affordable.

Clock-driven algorithms

For numerical simulations of networks of leaky integrate-and-fire neurons with temporal ex-
tended interactions (Chapter 3 – 7) and Hodgkin-Huxley type neurons (Chapter 3), we employ
a clock-driven algorithm. We use the “NEural Simulation Tool” (NEST; Gewaltig and Dies-
mann, 2007), a software developed for clock-driven simulations of spiking neural networks. It is
optimized to scope with large networks with a high number of synaptic connections and supports
parallel computing. Some standard neuron models are available in the NEST release, and it is
comparatively simple to extend the simulation engine by own models: One has to define a new
model as an C++-class, provide methods for initialization and update of neuronal dynamics,
and handlers for spiking events (more in formation can be found in Gewaltig and Diesmann,
2007).

In clock-driven simulations the state variables are updated in time intervals dt. After each
update the neurons are tested if the threshold condition is satisfied, and if so, the relevant
neurons are reset and spikes are generated. Spikes are stored in circular array (spike list), where
each element corresponds to a future time bin and specifies the arrival of the spikes at the
postsynaptic neurons (Morrison et al., 2005). A pseudo-code representation of the algorithm is
shown in Figure 2.28. It is straight forward to include external random input spike trains in the
formalism by inserting the arriving spikes in the spike list or handle them in a separate circular
array.

The drawback of this approach is that spikes are aligned to a grid, thus the simulation results
are approximate even when the state update is computed exactly. Additionally, there is small
probability that spikes are missed because the threshold condition is checked only in intervals
of dt. However, both approximation errors generally decrease with decreasing time bin dt,
appear to have only minor effects on the statistical measures of network dynamics and are
less serious for models with continuous postsynaptic responses. Yet, the errors can become
a serious for systems with instantaneous postsynaptic responses. Here the strong, jump-like
nonlinearity in the membrane potential (cf. Equation 2.14), particularly in combination with
highly synchronized network events, might cause delay, cancellation and generation of such
synchronous pulses (Brette et al., 2007; Rudolph and Destexhe, 2007).
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1 time = 0
2 while ( time < total time )
3 for every neuron
4 advance neuron dynamics by dt
5 process incomming spikes from spike list
6 end
7

8 for every neuron
9 if ( threshold condition satisfied )

10 reset neuron (if applicable)
11 for every outgoing connection
12 insert spike in spike list
13 end
14 end
15 end
16

17 time = time + dt
18 end

Figure 2.28: Pseudo-code of simple clock-driven simulation scheme.

Event-driven algorithms

In Chapter 3 and 4 we verified some of the analytical results by network simulations of leaky
integrate-and-fire neurons with jump-like postsynaptic potentials (i.e., currents with infinitesimal
fast rise and decay, cf. Equation 2.14). Here we took advantage of the very simple single neuronal
dynamics and implemented a standard event-driven algorithm (cf. pseudo-code in Figure 2.29).

In an initialization phase for every neuron the next spike times are computed (which might be
+∞) and stored in an ordered list (NextSpikeList). Spikes which have been already emitted
but not reached the postsynaptic neurons are stored in a second ordered list (ArrivalSpikeList),
which might be empty or not initially. External random spikes might be stored in an additional
list or inserted in the list of arrival spikes (not explicitly considered in the simple pseudo-code
in Figure 2.29).

Each iteration starts with evaluating the next event, which can be sending of a spike or receiving
of a spike. Then the state of the relevant neuron (sender or receiver) is updated and the
action (sending and reset, or receiving of spike) is computed and the spike lists are updated
accordingly. For systems with homogenous delays, one might store each spiking event only once
in the ArrivalSpikeList and consider the complete set of postsynaptic neurons at spike arrival.

In our example (Equation 2.14) the state vector of each neuron is one-dimensional (just the
membrane potential) and spikes simply induce jumps in the membrane potential,

dV

dt
= 1
τm

(EL − V ) (2.35)

hn = (V + ε), (2.36)
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1 for every neuron
2 compute time to next spike
3 insert event in NextSpikeList
4 end
5

6 time = 0
7 while (NextSpikeList not empty) or (ArrivalSpikeList not empty)
8 (NextArrivalTime, postsynaptic neuron j, weight )
9 <- extract event with lowest timing from ArrivalSpikeList

10 (NextSpikeTime, spiking neuron i )
11 <- extract event with lowest timing from NextSpikeList
12

13

14 if NextSpikeTime < NextArrivalTime
15 t <- NextSpikeTime
16 compute state of neuron i at time t
17 reset neuron
18 compute timing of next spike of neuron i
19 insert event in NextSpikeList
20

21 for every outgoing connection of neuron i
22 insert event (Arrival time, postsynaptic neuron, strength) in ArrivalSpikeList
23 end
24 else
25 t <- NextArrivalTime
26 compute state of neuron j at time t
27 change state of neuron j according to weight
28 compute timing of next spike of neuron j
29 insert/change/suppress event in NextSpikeList
30 end
31

32 if t > maximal simulation
33 finish simulation
34 end
35

36 end

Figure 2.29: Pseudo-code of simple event-driven simulation scheme.
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where τm is the membrane time, EL the leak potential (which might be shifted by additional con-
stant currents) and ε the interaction strength. The solution of Equation (2.35) is an exponential
function and thus the update of a neurons’ state is given by

V (t+ ∆T ) = EL − e−
∆T
τm (EL − V (t)) , (2.37)

and the time interval to the next spike of a neuron is

∆t =

τm log
(
EL−V (t)
EL−Θ

)
if EL > Θ

+∞ if EL ≤ Θ
. (2.38)

If all external currents are sub-threshold (EL ≤ Θ) the NextSpikeList list has not to be consid-
ered, because neurons may generate spikes only in response to arriving spikes (from the network
or from external sources).
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Coordinated patterns of precisely timed action potentials (spikes) emerge in a variety
of neural circuits but their dynamical origin is still not well understood. One hypothesis
states that synchronous activity propagating through feed-forward chains of groups of
neurons (synfire chains) may dynamically generate such spike patterns. Additionally,
synfire chains offer the possibility to enable reliable signal transmission. So far,
mostly densely connected chains, often with all-to-all connectivity between groups,
have been theoretically and computationally studied. Yet, such prominent feed-forward
structures have not been observed experimentally. Here we analytically and numerically
investigate under which conditions diluted feed-forward chains may exhibit synchrony
propagation. In addition to conventional linear input summation, we study the impact
of non-linear, non-additive summation accounting for the effect of fast dendritic spikes.
The non-linearities promote synchronous inputs to generate precisely timed spikes. We
identify how non-additive coupling relaxes the conditions on connectivity such that it
enables synchrony propagation at connectivities substantially lower than required for
linearly coupled chains. Although the analytical treatment is based on a simple leaky
integrate-and-fire neuron model, we show how to generalize our methods to biologically
more detailed neuron models and verify our results by numerical simulations with, e.g.,
Hodgkin Huxley type neurons.

Keywords: synchrony, networks, synfire chains, spike pattern, mathematical neuroscience, non-additive coupling,

non-linear dendrites

1. SPIKE PATTERNS AND SIGNAL TRANSMISSION IN
NEURONAL CIRCUITS

Reliable signal transmission is a core part of neuronal process-
ing. A common hypothesis states that activity propagating along
neuronal sub-populations that are connected in a feed-forward
manner may support such signal transmission. Indeed, there is
strong indication that activity propagation along feed-forward
structures drives the generation of bird songs (Long et al., 2010)
and experiments have shown propagation of synchronous and
rate activity in feed-forward networks (FFNs) in vitro (Reyes,
2003; Feinerman et al., 2005; Feinerman and Moses, 2006).
Sequential replay in the hippocampus and in neocortical net-
works also suggest underlying feed-forward mechanisms (August
and Levy, 1999; Nadasdy et al., 1999; Lee and Wilson, 2002;
Leibold and Kempter, 2006; Xu et al., 2011; Eagleman and Dragoi,
2012; Jahnke et al., 2012) and propagation of synchronous activity
along feed-forward chains is a possible explanation for exper-
imentally observed precise spike timing in the cortex (Riehle
et al., 1997; Kilavik et al., 2009; Putrino et al., 2010). Further,
the modular, hierarchical structure of many sensory and motor
systems suggests propagation over sequences of areas in feed-
forward manner, e.g., in bottom-up signal transfer (Felleman and
Van Essen, 1991; Scannell et al., 1999; Bullmore and Sporns, 2009;
Kumar et al., 2010).

Feed-forward structures which support the propagation of
synchronous activity are termed synfire chains. The concept

was introduced by Abeles (1982) as groups of neurons (layers)
with dense anatomical connections between subsequent groups
that are embedded in otherwise roughly randomly connected
local neural circuits. Two major questions regarding the dynam-
ical options for synfire activity include a) how synchrony may
actively propagate and b) how such spatio-temporally coordi-
nated spike timing may be robust against irregular background
activity, because the synfire chains are part of a cortical network
with dynamics defined by the so-called irregular balanced state
(van Vreeswijk and Sompolinsky, 1996, 1998).

Addressing these points, theoretical studies have established
conditions for stable propagation of synchrony in synfire chains
(Diesmann et al., 1999; Gewaltig et al., 2001). Most synfire chain
models assume functionally relevant FFNs that exhibit a very
dense, often all-to-all connectivity between subsequent layers
(Aviel et al., 2003; Mehring et al., 2003; Kumar et al., 2008)
(see also a recent review on this topic Kumar et al., 2010).
Such highly prominent feed-forward-structures, however, have
not been found experimentally. Since cortical neural networks
are overall sparse (e.g., Braitenberg and Schüz, 1998; Holmgren
et al., 2003), we may also expect some level of dilution for embed-
ded feed-forward chains. So far, computational model studies
assumed that such chains created from existing connections in
sparse recurrent networks exhibit strong synaptic efficiencies
and specifically modified neuron properties to enable synchrony
propagation (Vogels and Abbott, 2005).
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Recently, we have shown that non-additive dendritic interac-
tions promote propagation of synchrony (Jahnke et al., 2012).
The non-additive dendritic interactions considered are medi-
ated by fast dendritic spikes (Ariav et al., 2003; Gasparini et al.,
2004; Polsky et al., 2004; Gasparini and Magee, 2006): upon
stimulation within a time interval less than a few milliseconds,
dendrites are capable of generating sodium spikes. These induce
a strong, short and stereotypical depolarization in the soma. If
this depolarization elicits a somatic spike, the spike occurs a
fixed time interval after stimulation with sub-millisecond preci-
sion. This dendritic non-linearities relax the requirement of dense
feed-forward anatomy and thereby allow for robust propagation
of synchrony even in diluted FFNs with synapses of moderate
strength within the biologically observed range.

In the present article, we analytically and numerically inves-
tigate in detail under which conditions synchronous activ-
ity may reliably propagate along the layers of an FFN where
the inter-group connectivity is diluted, as may be expected
when they are part of a sparse cortical network. An embed-
ding network is mimicked by external, noisy input. We study
the influence of the network setup, including the influence
of the emulated embedding network, and of different types
of standard linearly additive as well as non-additive dendritic
interactions.

We derive analytical estimates for the critical connectivity—
the minimal connectivity that allows robust propagation of syn-
chrony. Some fundamental analytical results, in particular the
ansatz for deriving a critical connectivity in the first place, have
been briefly reported before (Jahnke et al., 2012). Here, we extend
the approach and show how the bifurcation point, i.e., the transi-
tion point from the non-propagating to the propagating regime,
can be estimated quantitatively from the neurons’ ground state
properties. We investigate the validity range of the analytical
predictions and check them via direct numerical simulations.
Furthermore, we discuss the applicability of our results to bio-
logically more detailed neuron models and network setups. In
particular, we argue that the assumptions underlying the ana-
lytical approach are met by a wide class of neuron models,
including, e.g., conductance based leaky integrate-and-fire and
Hodgkin–Huxley-type neurons.

The article is structured as follows: After introducing the neu-
ron model and network setup in section 2, we study in the main
part the propagation of synchrony in linearly coupled FFNs (sec-
tion 3.1) and in FFNs incorporating dendritic non-linearities
(section 3.2). In particular, we derive tools to study the system
analytically, compare the results to computer simulations and
elaborate differences of the dynamics of FFNs with and without
non-additive dendritic interactions. In the final part (section 3.3),
we discuss the application of our analytical results to biologically
more detailed neuron models.

2. METHODS AND MODELS
2.1. NEURON MODEL
2.1.1. Linear model
Consider networks of leaky integrate-and-fire neurons that inter-
act by sending and receiving spikes via directed connections. The
state of neuron k at time t is described by its membrane potential

Vk(t) and its dynamics satisfy

dVk(t)

dt
= −Vk(t)

τm
k

+ Iconst
k + Inet

k (t) + Iext
k (t), (1)

where τm
k is the membrane time constant of neuron k, Iconst

k :=
I0
k /τm

k a constant input current, Inet
k (t) the input current caused

by spikes within the network and Iext
k (t) the input current arising

from spikes from external sources. When the neuron’s mem-
brane potential reaches or exceeds the threshold �k its membrane
potential is reset to V reset

k and a spike is sent to the postsy-
naptic neurons n, where it changes the postsynaptic potential
after a delay τnk. After emitting a spike at t = t0 the neuron
becomes refractory for a time period tref, i.e., Vk(t) = V reset

k for

t ∈ [t0, t0 + tref
]
.

To keep the model analytically tractable, we model the fast rise
of the membrane potential upon the arrival of presynaptic spikes
by instantaneous jumps of the membrane potential, such that the
resulting input current reads

Inet
k (t) =

∑
l

∑
m

εklδ
(

t − t
f
lm − τkl

)
. (2)

Here εkl denotes the coupling strength from neuron l to neuron k,

t
f
lm is the mth spike time of neuron l and τkl specifies the synap-

tic delay. In addition to spikes from the network each neuron
receives excitatory and inhibitory random inputs that emulate an
embedding network. These external inputs are modeled as ran-
dom Poisson spike trains with rate νexc and νinh, respectively. The
resulting input current is given by

Iext
k (t) =

∑
m

εexcδ
(
t − text, exc

km

)+∑
m

εinhδ
(

t − text, inh
km

)
, (3)

where text, exc
km (text, inh

km ) is the arrival time of the mth excitatory

(inhibitory) spike to neuron k and εexc > 0 (εinh < 0) denote the
corresponding coupling strength.

2.1.2. Non-linear model
In the above model all input currents are summed up linearly.
To also investigate the effect of dendritic spikes we modulate the
sum of synchronously arriving excitatory inputs by a non-linear
dendritic modulation function σNL (·). This can be directly read
off from experimental data (Ariav et al., 2003; Gasparini et al.,
2004; Polsky et al., 2004; Gasparini and Magee, 2006): If the sum
of excitatory inputs is below the dendritic threshold �b, the single
inputs are processed linearly (σNL (·) equals the identity). If the
sum of inputs exceeds the dendritic threshold �b, the depolariza-
tion is strongly non-linearly enhanced compared to that expected
from linear summation. This is, in biological terms, due to a
dendritic spike elicited. Larger inputs have been experimentally
found to not further increase the somatic peak depolarization.
The dendritic modulation function may then be modeled as

σNL (ε) =
{

ε for ε < �b

κ otherwise
. (4)
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The dendrites process synchronous inputs non-additively: inputs
below the dendritic threshold are summed linear, inputs above
this threshold are summed supra-linear and, due to the satura-
tion, very large inputs are summed sub-linear.

If not stated otherwise, we consider only exactly simultaneous
arriving spikes as sufficiently synchronous; to allow for exactly
simultaneous arrivals, the synaptic delays are chosen as homo-
geneous τkl ≡ τ. The input currents caused by spikes that are
received from the network are then given by

Inet
k (t) =

∑
tf

⎡
⎣σNL

⎛
⎝ ∑

l ∈ Mexc(tf )

εkl

⎞
⎠+

∑
l ∈ Minh(tf )

εkl

⎤
⎦ δ
(

t − tf − τ
)

. (5)

Here, the sum over tf denotes the sum over all times at which
spike(s) are sent in the network, irrespective of which neuron(s)
is (are) spiking. The sets Mexc

(
tf
)

and Minh
(
tf
)

specify the set

of neurons that send an excitatory or inhibitory spike at time tf ,
respectively. (To describe a network with linear dendrites σNL(ε)

is replaced by ε).
In section 3.3.1 we consider inhomogeneous delay distribu-

tions and finite dendritic integration window �t (i.e., non-linear
amplification of inputs received within finite time interval �t)
and discuss how the results achieved for homogeneous systems
can be generalized.

2.2. NETWORK TOPOLOGY
We consider the propagation of synchrony in diluted Feed-
Forward-Networks (FFNs, synfire-chains). They consist of a
sequence of m layers, each composed of ω neurons. Neurons
of one layer form excitatory projections to the neurons of the
subsequent layer with probability p; the strength of an existing
connection from neuron l to neuron k is denoted by εkl.

For simplicity of presentation, we consider homogeneous
neuronal populations, i.e., all neurons have identical properties
(τm

k = τm, �k = � and V reset
k = V reset for all i), as well as homo-

geneous coupling strengths, i.e., εkl = ε if a connection is realized,
throughout this article. If not stated otherwise, we use τm =
14 ms and � = 15 mV as standard values for the membrane time
constant and the neuron threshold.

2.3. GROUND STATE DYNAMICS
We consider networks, where the single neurons are placed in a
“fluctuation driven regime,” i.e., in the ground state the average
input to each neuron is sub-threshold and spiking of neurons is
caused by fluctuations of the inputs. This setup allows to emulate
the dynamics of neurons which are part of a balanced network
(van Vreeswijk and Sompolinsky, 1996, 1998). The neurons fire
asynchronously and irregularly with low firing rate ν; the spike
trains resemble Poissonian spike trains (Tuckwell, 1988; Brunel
and Hakim, 1999; Brunel, 2000; Burkitt, 2006). Thus, the inputs
to the neurons may be described by three Poissonian spike trains
with rates νexc (external, excitatory), νinh (external, inhibitory)
and νint = νpω (inputs from the preceding layer). Since the num-
ber of inputs NX

T , X ∈ {exc, inh, int}, in a time interval T is
Poisson distributed, the expected number of inputs

〈
NX

T

〉
and the

variance
〈(

NX
T − 〈NX

T

〉)2〉
, equal νXT = 〈NX

T

〉 = 〈(NX
T − 〈NX

T

〉)2〉
.

Then

μ = I0 + τmνexcεexc + τmνinhεinh + τmpωνε (6)

is the mean of the total input to the neurons in an interval of the
size of the membrane time constant, T = τm, and

σ2 = τmνexc (εexc)2 + τmνinh
(
εinh
)2 + τmpωνε2 (7)

is its variance. In diffusion approximation, the distribution of
membrane potentials PV (V) and the mean firing rate ν can
be derived analytically (Brunel and Hakim, 1999; Brunel, 2000;
Helias et al., 2010). In particular, for networks with low firing
rates the probability density of membrane potentials (see, e.g.,
Tuckwell, 1988)

PV (V) = 1√
πσ2

exp

[
−
(

V − μ

σ

)2
]

(8)

is Gaussian and can be expressed in terms of the input current. In
this approximation the average firing rate is

ν = 1√
πτm

� − μ

σ
exp

[
−
(

� − μ

σ

)2
]

(9)

and depends on μ and σ only via the quotient

α := � − μ

σ
, (10)

which is the distance of the average input μ from the neurons’
threshold � normalized by the standard deviation σ of the input.
For the analytical derivations throughout this article we focus on
the regime of low spiking rates

(
α � 2; ν � 1.5Hz

)
.

In the absence of synchronous activity each neuron receives a
large number of inputs from the external network and only a few
inputs from the previous layer of the FFN, such that the ground
state dynamics of the network is mainly established by the exter-
nal inputs. To keep the input balanced we choose νexc = νinh =:
νext and εexc = −εinh =: εext throughout the article.

2.4. PROPAGATION OF SYNCHRONY
To initiate propagating synchronous activity along the considered
diluted FFN, we excite in the first layer a subgroup of g0 ≤ ω neu-
rons to spike synchronously. This causes a synchronous input to
the following layer after the synaptic delay τ and may therefore
initiate synchronous spiking of a subgroup of neurons in that
layer. These may again excite synchronous spiking in the next
layer and so on. Depending on the ground state, i.e., the layout
of the external network, on the layer size ω, and on the coupling
strength ε, a synchronous pulse may or may not propagate along
the FFN (cf. Figures 1A,B,D,E).

In addition to the triggered propagation, one might generally
also expect the occurrence of spontaneous propagation of syn-
chronous activity: Neurons of a particular layer share inputs from
the previous layer and this causes correlations in their spiking
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FIGURE 1 | Propagation of synchrony in diluted FFNs. (A,B,D,E) Raster
plots of diluted feed-forward networks (m = 10, ω = 200, ε = 0.25 mV).
With increasing connection probability p propagation of synchrony can be
enabled (A,B) in networks with additive (linear) and (D,E) in networks with
non-additive (non-linear) dendritic interactions (�b = 4 mV, κ = 11 mV). (C,F)

Average number of synchronously active neurons in the second layer,

g2, vs. the number of synchronously active neurons in the initial layer, g1;
panel (C) linear, panel (F) non-additive dendritic interactions (average over
n = 10, 000 trials: solid line, transition probability: shading). Note that
non-linear dendrites allow for sparser connectivity, (E) vs. (B) and for a
sparser code, i.e., for smaller numbers of spiking neurons in an activated
group, (F) vs. (C).

activity. Over the layers these correlations can accumulate and
lead to synchronous spiking (Aviel et al., 2003; Rosenbaum et al.,
2010, 2011; Litvak et al., 2013). However, in the setups consid-
ered in this article, the effect is negligible due to two reasons: (1)
each neuron receives a large number of external (uncorrelated)
inputs and this background noise has a decorrelating effect, (2)
we study the system near the critical point, i.e., for parameters
where even synchronized spiking of all neurons of a particu-
lar layer is just sufficient to initiate a propagation of synchrony.
Thus, spontaneous propagation of synchrony effectively does not
occur.

We study the transition from the non-propagating to the
propagating regime by means of a iterated map that yields the
expectation value of the number of synchronously spiking neu-
rons gi + 1 in layer i + 1 if gi neurons are synchronously active
in layer i. There is always one trivial fixed point, G0, of this iter-
ated map with 0 = G0 = gi + 1 = gi, which corresponds to absent
activity. If gi + 1 < gi for all gi > G0, synchronous activity will die
out after a small number of layers. If gi + 1 ≥ gi for some substan-
tial group size, gi > G0, a stable propagation of synchrony may
be enabled (cf. Figures 1C,F). More precisely, we will show in
this article that with increasing connectivity p the system under-
goes a tangent bifurcation and two fixed points G1 and G2 ≥ G1

appear. If existing, G1 is always unstable (the diagonal is crossed
from below; the slope of the iterated map needs to be larger than
one) and G2 is always stable [all connections within the FFN are
excitatory such that the iterated map is monotonically increasing
(slope larger than zero, in particular larger than −1)]; further at
G2 there is an intersection with the diagonal from above thus the
slope is smaller than one and stationary propagation with group
sizes around G2 is enabled.

In computer simulations, we determine for each given net-
work setup by the following procedure whether a propagation
is possible: after some initial time tinit we excite all neurons of
the first layer to spike synchronously and measure the num-
ber of active neurons gi in the ith layer at the expected spiking
time t

exp
i = tinit + iτ. If gi is substantially larger than the num-

ber of active neurons arising from spontaneous activity in more
than 50% of n trials (i.e., n repetition of the same simulation
with different initial conditions), we denote the propagation of
synchrony as successful. The critical connectivity p∗, that marks
the transition from a regime where propagation of synchrony
is not possible to a regime where propagation of synchrony is
enabled, is found by determining the lowest connection prob-
ability p for which an initial synchronous pulse propagates
successfully.

As the connections within the FFN are all excitatory, it is suffi-
cient to check whether propagation of synchrony can be initiated
by inducing synchronized spiking of all ω neurons of the first
layer: Stationary propagation of synchrony can be enabled if there
is a non-trivial stable fixed point (G2) of the iterated map for the
average group size. For purely excitatory connections the basin of
attraction of this fixed point is bounded from the left by an unsta-
ble fixed point (G1) and from the right by the maximum group
size given by the layer size ω.

3. RESULTS AND DISCUSSION
Under which conditions can synchronous signals propagate
robustly along diluted FFNs? To answer this question in detail,
we first focus on networks with linear dendrites. Afterwards we
study the propagation of synchrony in networks incorporating
non-additive dendritic interactions and compare with the linear
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case. Finally, we show that the derived results are directly appli-
cable in biologically more detailed neuron models and network
configurations.

3.1. FFNs WITH LINEAR DENDRITES
In this section, we consider linearly coupled FFNs. In the first
part, we derive analytical estimates for the critical connectivity
p∗

L that marks the transition from the non-propagating to the
propagating regime; the initial steps follow the lines of Jahnke
et al. (2012); Memmesheimer and Timme (2012). In the second
part we investigate the influence of the external network on the
propagation of synchrony and determine the parameter-region
for which the analytical estimates are applicable. In particu-
lar, we show that the derived estimates are applicable in the
biologically relevant parameter-region, where the spontaneous
firing rate is low and the distribution of membrane poten-
tials is sufficiently broad. Finally, we study how the properties
of propagating synchronous pulses depend on different system
parameters.

3.1.1. Analytical derivation of critical connectivity
To access the properties of propagation of synchrony we consider
average numbers of active neurons in the different layers of an
FFN: for this, we derive a iterated map which yields the expected
number of neurons that will spike synchronously in one layer
given that in the preceding layer a certain number of neurons was
synchronously active.

If in the ith layer, gi neurons spike synchronously, the num-
ber of synchronous inputs h a single neuron in layer i + 1 receives
follows a binomial distribution h ∼ B

(
gi, p
)
. We denote the spik-

ing probability of a single neuron due to an input of strength x
by pf (x). The average or expected spiking probability psp

(
gi
)

of a
single neuron in layer i + 1 is then given by

psp (gi
) = E

[
pf (hε)

∣∣ gi
] =

gi∑
h = 0

(
gi

h

)
ph (1 − p

)gi − h
pf (hε) .(11)

Here and in the following we denote the expectation value
of a function f (X) of a random variable X by E[f (X)];
conditional expectations are denoted by E[f (X)|Y]. The
expected number of spiking neurons in layer i + 1 is then
simply

E
[

gi + 1

∣∣ gi
] = ωpsp (gi

)
(12)

= ω

gi∑
h = 0

(
gi

h

)
ph (1 − p

)gi − h
pf (hε) . (13)

If the connection probability p is low and/or the connection
strengths ε are small, the spontaneous spiking activity in the
absence of synchrony is only weakly influenced by the spiking
activity within the FFN. Thus as a starting point, we assume
that the ground state is exclusively governed by external inputs
(effectively setting εij ≡ 0). Then, the mean input to the neurons
in an interval of length τm is μ = I0 with standard deviation
σ = εext

√
2τmνext (cf. section 2.3). Using the probability den-

sity (Equation 8), we calculate the spiking probability of a single

neuron, pf (x), due to an input of strength x;

pf (x) =
∫ �

� − x
PV (V) dV (14)

= 1

2

(
Erf

[
� − μ

σ

]
− Erf

[
� − μ + x

σ

])
(15)

equals the probability of finding a neuron’s membrane potential
in the interval [� − x, �]. To derive a iterated map for the aver-
age number of active neurons (which maps E[gi] → E[gi + 1]),
we interpolate E

[
gi + 1

∣∣ gi
]

for continuous gi and in the second
step replace gi by its expectation value E

[
gi
]
. The fixed points,

E
[

gi + 1

∣∣E [gi
]] = E

[
gi
]
, qualitatively determine the propagation

properties of synchronous activity. In the rest of the manuscript
we are dealing with the average number of active neurons in a
given layer. Therefore, for simplicity we denote the expectation
value of the average number of active neurons in a given layer i by
gi instead of E

[
gi
]
.

For sufficiently small connection probabilities p the map
(Equation 12) has only one (trivial) fixed point G0 = gi + 1 =
gi = 0. Any initial synchronous pulse will die out after a small
number of layers (see also Figure 1). With increasing connectiv-
ity two additional fixed points G1 (unstable) and G2 ≥ G1 (stable)
appear via a tangent bifurcation.

For FFNs with purely excitatory couplings between the layers,
the second fixed point G2 (if it exists) is always stable: The spik-
ing probability pf (x) is monotonically increasing with input x and
thus also the iterated map (Equation 13) is monotonically increas-
ing (i.e., the slope is larger than 0). Moreover, if G2 exists the slope
of the iterated map at this intersection point with the diagonal
is smaller than 1. This implies that G2 is stable and synchronous
pulses of size gi ≥ G1 typically initiate a propagation of synchrony
with an average number of active neurons around G2. The criti-
cal connectivity p∗

L at the bifurcation point marks the minimal
connectivity that allows for stable propagation of synchrony.

Although the distribution of inputs from one layer to the
subsequent one and the spiking probability of a single neuron
pf (·) are known, there is no analytic closed form solution to
the fixed point equation gi + 1 = gi = g∗

i . In other words, we can
compute the firing probability pf (x0) for any x0, and therefore
also E

[
gi + 1

∣∣ gi
]

for any gi, but g∗
i = E

[
gi + 1

∣∣ g∗
i

]
is transcenden-

tal. We thus derive an approximate solution. We choose some
expansion point gi (see section 3.1.2 for details), and approxi-
mate the function E

[
gi + 1

∣∣ g∗
i

]
by a polynomial gi + S(g∗

i − gi)

in second order in (g∗
i − gi) near gi. The arising quadratic fixed

point equation g∗
i = gi + S(g∗

i − gi) is then analytically solvable
in g∗

i . This also allows to analytically compute the critical con-
nectivity p∗

L: it is the parameter value at which the iterated map
undergoes a tangent bifurcation, i.e., at which the two solutions
of the fixed point equation become equal upon changing from
complex-conjugate to real. Since the right hand side of Equation
(13) does not offer itself for a direct series expansion in g∗

i , we
derive gi + S(g∗

i − gi) from an appropriate expansion of pf (hε)

and a subsequent computation the arising expectation values.
In biologically relevant scenarios, the neurons usually receive

a large number of synaptic inputs and thus the distribution of
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membrane potentials PV (V) is broad, PV (V) changes slowly with
V . Then, PV (V) around some V = V0 can be approximated by
considering a series expansion with a small order and it is pos-
sible to derive an approximation for the critical connectivity p∗

L
based on an expansion of pf (·). Expanding pf (x) into a Taylor
series around some x0 and using Equation (12) yields

gi + 1 = ωE

⎡
⎣ ∞∑

n = 0

p(n)
f (x0)

n! (hε − x0)
n

∣∣∣∣∣∣ gi

⎤
⎦ (16)

= ω

∞∑
n = 0

p(n)
f (x0)

n! E
[
(hε − x0)

n
∣∣ gi
]
. (17)

Here and in the following we denote the nth derivative of a
function f (x) at x = x0 by

f (n) (x0) = d

dnx
f (x)

∣∣∣∣
x = x0

. (18)

Replacing the derivatives of pf (·) by the (one order lower)
derivatives of probability density of membrane potentials PV (V)

according to Equation (14) yields

gi + 1 = ωpf (x0) + ω

∞∑
n = 1

P(n − 1)
V (V0)

(−1)n − 1 n! E
[
(hε − x0)

n
∣∣ gi
]
,(19)

where we defined

V0 := � − x0 (20)

for better readability.
We have recently shown (Jahnke et al., 2012) that it is possible

to derive a scaling law for the critical connectivity using

x0 = gipε, (21)

the (unknown) average input from one layer to the next during
stationary synchrony propagation, as expansion point. For this
choice the expectation value E

[
(hε − x0)

n
∣∣ gi
]

in Equation (19)
simplifies to

E
[
(hε − x0)

n
∣∣ gi
] = εnE

[
(h − E [h])n

∣∣ gi
] = εnmn, (22)

where we denote by mn the nth central moment of the Binomial
distribution B

(
gi, p
)
, specifying the distribution of inputs to the

(i + 1)th layer. In the limit of large layer sizes ω and small cou-
pling strengths ε keeping the maximal input εω to each layer
constant (to preserve the network state), all summands for n ≥ 2
vanish, and Equation (19) simplifies to

gi + 1 = ωpf
(
gipε
)
. (23)

Using the implicit function theorem one can show that this
implies the scaling law

p∗
L = 1

λεω
(24)

where λ is a constant independent of ε and ω (Jahnke et al., 2012).
We note that for the derivation of the scaling law (Equation 24) we
did not use the actual functional form of the distribution of mem-
brane potentials PV (V). Therefore this estimate holds if PV (V) is
sufficiently slow changing with V such that the Taylor expansion
(cf. Equation 16) is applicable, but its validity is not restricted to
the low-rate approximation.

However, the dependence of the prefactor 1/λ on the layout
of the external network remained unknown. Here, we present an
approach that enables us to derive an approximate value for λ.
We consider the expansion (Equation 19) around x0 up to second
order,

gi + 1 ≈ ωpf (x0) + ωPV (V0) · (εgip − x0
)

− ωP(1)
V (V0)

2

[(
εgip − x0

)2 + ε2gip
(
1 − p

)]
(25)

The truncated series (Equation 25) is quadratic in gi such that the
fixed points g∗

1/2 = gi + 1 = gi can be obtained analytically,

g∗
1, 2 = γL ±

√√√√√γ2
L −

x0

(
2PV (V0) + x0P(1)

V (V0)
)

− 2pf (x0)

p2P(1)
V (V0)ε2

, (26)

where we defined

γL :=
pεω
(

2
(

PV (V0) + x0P(1)
V (V0)

)
+ (p − 1

)
P(1)

V (V0)ε
)

− 2

2p2P(1)
V (V0)ε2ω

. (27)

At the bifurcation point, the root in Equation (26) vanishes
such that both fixed points agree (g∗

1 = g∗
2 ) and γL = g∗

1 = g∗
2

specifies the average size of a propagating synchronous pulse.
Consequently, the critical connectivity is obtained by choosing p
such that

γ2
L =

x0

(
2PV (V0) + x0P(1)

V (V0)
)

− 2pf (x0)

p2P(1)
V (V0)ε2

(28)

which yields

p∗
L = 1

2
− 1

ε

⎡
⎢⎢⎣ λ∗

P(1)
V (V0)

−

√√√√√√ 2

P(1)
V (V0)ω

+
(
εP(1)

V (V0) − 2λ∗
)2

4
(

P(1)
V (V0)

)2

⎤
⎥⎥⎦ (29)

where we defined

λ∗ := PV (V0) + x0P(1)
V (V0) (30)

−
√

P(1)
V (V0)

(
x0

(
2PV (V0) + x0P(1)

V (V0)
)

− 2pf (x0)
)

which is independent of the setup of the FFN and completely
determined by the layout of the external network and the choice
of the expansion point x0.
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As before we consider the limit of large layer sizes ω and
small coupling strengths ε, i.e., we replace ω → const

ε
and con-

sider the leading terms of a series expansion of Equation (29).
The expansion of the square bracket in Equation (29) yields

λ∗

P(1)
V (V0)

−

√√√√√√ 2

P(1)
V (V0)

ε

const
+
(
εP(1)

V (V0) − 2λ∗
)2

4
(

P(1)
V (V0)

)2

=
[

λ∗

P(1)
V (V0)

− λ∗

P(1)
V (V0)

]
− ε

(
1

λ∗ · const
− 1

2

)
+ O
(
ε2), (31)

such that the critical connectivity assumes the functional form
given by Equation (24),

p∗
L ≈ 1

λ∗εω
. (32)

Thus λ = λ∗ defined by Equation (30) provides an approxima-
tion of the constant λ fully specifying the critical connectivity p∗

L.

3.1.2. Optimal expansion point
To derive Equation (30) we assumed that it is sufficient to con-
sider the second order expansion of pf (x). It is thus necessary
to choose an appropriate expansion point that results in fast
convergence. In particular for the choice x0 = x∗

0 , that we will
now derive, Equation (37) below, the bifurcation diagram near
the bifurcation point is well approximated already for k = 2 (cf.
Figure 2).

The size of a propagating group at the critical connectivity is
γL (cf. Equation 27) and thus the resulting average input is p∗

LγLε.
Our expansion point x0 should lie near to this value, which is, of
course, unknown prior to solving the fixed point equation. We
will thus compute a range in which p∗

LγLε has to lie and choose
the expansion point appropriately within. We assume that ω is
large and employ Equation (23) which allows an direct estimate
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FIGURE 2 | Iterated map and bifurcation diagram for the average group

size of a propagating synchronous pulse. (A) Iterated map (Equation 19)
truncated after expansion order k (color code) with x0 = x∗

0 (cf. Equation
37). (B) Fixed points of the iterated maps shown in (A); with increasing
connectivity two fixed points appear by a saddle node bifurcation. We note
that already a second order expansion (red), i.e., the lowest order at which a
saddle node bifurcation can occur, approximates the bifurcation diagram
(blue) near the bifurcation point well.

of this range as we know the functional form explicitly. Equation
(23) with gi + 1 = gi is just another transcendental equation for
the fixed points and it has zero, one, or two non-trivial fixed
point solutions points g∗

1 and g∗
2 , which are then also solutions

of Equation (19) with gi + 1 = gi. At the bifurcation point (g∗ =
g∗

1 = g∗
2 ) where the diagonal is touched, the function pf (gpε) has

to be concave and monotonic increasing with respect to g. The
definition (Equation 14) of pf (x) implies that it is monotonic
increasing for all x ≥ 0. Moreover, it is concave for all x ≥ � − μ,

p(1)
f (x) = PV (� − x) ≥ 0 for x ≥ 0 (33)

p(2)
f (x) = −P(1)

V (� − x) ≤ 0 for x ≥ � − μ, (34)

such that the bifurcation point satisfies

x0 ≥ � − μ. (35)

The condition Equation (33) holds because PV (V) ≥ 0 is a prob-
ability density and Equation (34) is derived directly from differen-
tiating Equation (8). To maximize the quality of the second order
approximation Equation (25), we choose x0 = x∗

0 such that the
contribution to the expansion (Equation 19) of the k = 3rd order
term equals zero. According to Equation (19), all 3rd order terms

are proportional to P(2)
V (� − x0); so we determine the expansion

point x∗
0 as a deflection point of PV (·), requiring that the second

derivative of PV (V) vanishes for V = � − x∗
0 ,

p(3)
f (x∗

0) = d2PV (V)

dV2

∣∣∣∣
V = � − x∗

0

!= 0. (36)

In the considered regime of low spiking rates, we find x∗
0 = � −

μ ± σ√
2

, cf. Equation (8). Due to Equation (35)

x∗
0 = � − μ + σ√

2
. (37)

For x0 = x∗
0 the bifurcation diagram near the bifurcation point is

well approximated already for k = 2 (cf. Figure 2) and Equation
(30) provides a good estimate of the critical connectivity p∗

L (cf.
Figure 3).

3.1.3. Influence of external network
In the previous section we derived an iterated map for the average
group size (cf. Equation 13) and an approximation for the critical
connectivity p∗

L (cf. Equations 30 and 32) that marks the transi-
tion from FFNs which do not support propagation of synchrony
to FFNs that do. In this section we focus on the robustness of our
results. How does the critical connectivity change with the layout
of the external network? For which parameter range does the esti-
mate of the critical connectivity (given by Equations 30 and 32)
yield reasonable results?

The derivation was based on the assumption that the ground
state dynamics of the neurons of the FFN is completely deter-
mined by the external inputs. This assumption holds if the spon-
taneous firing rate ν of the neurons and/or the coupling strengths

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 153 | 7

72 Original Manuscript: Propagating sychrony in feed-forward networks



Jahnke et al. Propagating synchrony in feed-forward networks

A B

(mV)

(mV)

1.0

0.6

0.4

0.2

0.0

p*

p*

1.0

0.6

0.4

0.2

0.0

p*

p*

0.05

0.1

1.0

0.05

0.1

1.0

50 150 350 0.1 0.2 0.3ω

100 ω 400 0.05 0.1 0.540 ε
ε

FIGURE 3 | Critical connectivity p∗
L

in FFNs with linear dendrites decays

algebraically with coupling strength ε and layer size ω. The parameters
of the external inputs (emulated embedding network) are fixed (I0 = 5 mV,
νext = 3 kHz, εext = 0.5 mV). Panel (A) shows the critical connectivity p∗

L vs.
the layer size ω for different coupling strengths (ε = {0.05 mV (red), 0.1 mV
(cyan), 0.125 mV (green), 0.2 mV (blue), and 0.4 mV (black)}) and panel (B)

shows p∗
L vs. the coupling strength ε for different layer sizes (ω = {50 (red),

100 (cyan), 150 (green), 200 (blue), and 400 (black)}). In the main panels we
use a logarithmic scale, the insets have a linear scale. The squares indicate
the connectivity above which a synchronous pulse propagates from the 1st
to the 20th layer of a FFN in at least 50% of n = 30 trials. The critical
connectivity given by Equation (32) (solid lines) with x0 = x∗

0 (cf. Equation
37) is in good agreement with computer simulations. As predicted
p∗

L ∝ (εω)−1 and the proportionality factor 1/λ is well approximated by the
estimate 1/λ∗ derived in Equation (30).

ε and/or the connectivity p are sufficiently small. We will gener-
alize our approach and show how the impact of preceding layers
on a layer’s ground state can be taken into account. Thereafter we
will compare the results with computer simulations, identify the
regions in parameter space for which the derived approximations
hold and discuss deviations between direct numerical simulations
and analytics.

The first layer of an FFN receives inputs only from the exter-
nal network and according to Equations (6, 7) the mean μ1 and
standard deviation σ1 of its input is

μ1 = I0 (38)

σ1 = εext
√

2τmνext, (39)

as assumed in the previous section. All following layers receive
external inputs and spikes from their preceding layer(s). The
mean μn and standard deviation σn of the input to neurons of
the nth layer (with n ≥ 2) reads (cf. Equations 6 and 7)

μn = I0 + τmpωνn − 1ε (40)

σn =
√

2νextτm (εext)2 + pωνn − 1τmε2. (41)

Here we denote the spontaneous firing rate (in the absence of syn-
chrony) of neurons of the (n − 1)th layer by νn − 1. It is given by
Equation (9) as

νn − 1 = 1√
πτm

� − μn − 1

σn − 1
exp

[
−
(

� − μn − 1

σn − 1

)2
]

. (42)

From layer to layer, the mean input, the standard deviation as
well as the firing rate increase. For setups, where the ground state
of the FFN is non-pathological, i.e., the firing rates of all lay-
ers are bounded, the additional corrections �Xn := Xn − Xn − 1

for X ∈ {μ, σ, ν} decrease with n, and μn, σn and νn saturate for
sufficiently large n. Thus, μ∞ and σ∞ describe the input to the
neurons of an infinitely long FFN and the single neurons of such
an FFN spike with an average rate ν∞. Accordingly, replacing μ

and σ by μ∞ and σ∞ in Equation (13) [where they appear as
parameters of pf (·)] yields an iterated map for the average group
size.

In Figure 4, we compare the critical connectivity found by
numerically determining the bifurcation point of the iterated
map (Equation 13) (i.e., we determined the connectivity p for
which the iterated map touches the diagonal; solid lines) with
computer simulations of propagating synchrony (markers). To
also cover scenarios, where the input from the preceding layer
is not negligible, we consider infinitely long FFNs (then, the
distribution of membrane potentials is equal in all layers). In
computer simulations this can be approximated by a sufficiently
long FFN with periodic boundary conditions, i.e., an FFN where
the last layer connects to the first layer. For moderate external
inputs, i.e., moderate I0 and εext, already the analytical results
neglecting the influence of the preceding layers (using μ1 and
σ1) agree well with computer simulations (cf. Figure 4A, solid
lines). However, for large external inputs, i.e., large I0 and εext,
the critical connectivity is overestimated. Here, the assumption
that the distribution of membrane potentials is not influenced
by the connectivity of the FFN does not hold. The additional
input shifts the membrane potentials to higher values and con-
sequently a lower connectivity is required for a propagation of a
synchronous pulse. The corrections given by Equations (38–42)
account for these deviations to some extent (cf. Figures 4B,C;
solid lines), in particular for setups where the spontaneous firing
rate is low. However, for very large I0 and εext, the critical con-
nectivity is under-estimated. Here, the spontaneous firing rate is
too high and the low-rate approximation, Equations (8–9), is not
adequate to describe the system; the firing rate and thus the mean
input from the previous layer are over-estimated. This becomes
particularly clear in Figure 4C, where we show the critical con-
nectivity as a function of the strength of the external inputs εext.
For any given I0 (different colors), the critical connectivity for
small εext is well approximated; with increasing εext the firing
rate increases [α decreases and thus ν increases; cf. Equations
(9 and 10)] and when the coupling strengths εext exceed a
I0-dependent threshold, the low-rate approximation becomes
inapplicable.

Applying the methods in Brunel and Hakim (1999); Brunel
(2000), the firing rate and the distribution of membrane poten-
tials can be derived in diffusion approximation for states with
higher spontaneous firing rates. Although most of the analyti-
cal considerations above are also applicable within this approx-
imation, the determination of an optimal expansion point
(cf. Equations 36 and 37) becomes more difficult and a closed
form expression does not exist. However, the critical connectiv-
ity can be obtained by numerically determining the fixed points
of the iterated map (Equation 13) and we find that it agrees with
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FIGURE 4 | Robustness of analytical estimates of the critical

connectivity. (A–C) We consider the critical connectivity p∗
L of infinitely long

FFNs, that are approximated by an FFN (m = 20, ω = 150, ε = 0.2 mV) with
periodic boundary conditions in direct numerical simulations (markers), for
different layouts of the external network. Panels (A,B) show p∗

L vs. I0 for fixed
εext and panel (C) shows p∗

L vs. εext for fixed I0. The solid (colored) lines
indicate the critical connectivity found by numerically determining the
bifurcation point of the iterated map (Equation 13). In panel (A) we neglect
the influence of previous layers on the ground state of a considered layer in
the analytical computations [i.e., we use μ1 and σ1, cf. Equations (38) and
(39)]. In (B,C) we employ corrections to account for their influence, cf.
Equations (38–42). We show the third order correction, higher orders add

only small modifications to the curves, but the numerical computations get
more costly. The thick gray lines in (B,C) indicate the bifurcation point of the
iterated map (Equation 13) with PV (V ) derived from the diffusion
approximation of leaky integrate-and-fire neuron dynamics with Poissonian
input (Brunel and Hakim, 1999; Brunel, 2000). The dashed lines are the
estimates of the critical connectivity given by Equations (30 and 32). Again, in
panel (A) we neglect the influence of previous groups on the ground state, in
panels (B,C) we use the third order correction. The estimates agree with the
data from numerical simulations within the biologically relevant parameter
range, where (1) the spontaneous spiking activity is low and (2) the
distribution of membrane potentials is sufficiently broad. For further
explanations see text (section 3.1.3).

computer simulations for the entire considered range of I0 and
εext, (cf. Figures 4B,C; gray lines).

Analogous to the approach presented above, corrections for
the influence of preceding layers can be taken into account for
the analytical estimate of the critical connectivity derived in the
previous section (Equations 30 and 32). Replacing the connectiv-
ity p by the approximation p∗

L = (λ∗εω)−1 in Equations (40, 41)
yields

μn = I0 + τm/λ∗
n − 1νn − 1 (43)

σn =
√

2νextτm (εext)2 + ενn − 1τm/λ∗
n − 1 (44)

where λ∗
n − 1 := λ∗ (μn − 1, σn − 1) is given by Equation (30) and

νn − 1 = ν (μn − 1, σn − 1) is given by Equation (42). In Figure 4

we show the estimate of the critical connectivity p∗
L = (λ∗

nεω
)−1

(cf. Equation 32) using λ∗
1 (panel a; dashed line), i.e., neglect-

ing the influence of the preceding layers, and using a higher
correction order (panel b,c; dashed line: third order). For suffi-
ciently large εext the critical connectivity found by numerically
determining the bifurcation point agrees with the analytical esti-
mate given by Equation (32). As discussed above, the correc-
tions Equations (43, 44) account for the deviations from the
simulated data as long as the total spontaneous firing rate is
sufficiently low. However, for small εext the critical connectivity
is under-estimated. Here, the standard deviation of the inputs
(cf. Equation 7) is low, such that the distribution of membrane
potentials PV (V) is narrow [for εext → 0: PV (V) → δ (V − μ);
cf. Equation (8)], the spiking probability of one neuron, pf (·),
increases steeply in a small interval [for εext → 0: pf (x) →
� (x − μ); cf. Equation (8)] and thus the approximation of pf (·)

by the leading terms of a Taylor expansion is not sufficiently
accurate.

However, in the biologically plausible parameter regime, where
the firing rates are small and the distribution of membrane
potentials is broad, the critical connectivity is approximated
well by Equation (32) together with Equation (30) (defin-
ing λ∗), Equation (37) (defining x∗

0) and the corrections that
account for the influence of the preceding layers, Equations
(43, 44).

3.1.4. Characteristics of propagating synchronous pulses
In the previous sections, we have shown that a synchronous pulse
may propagate along a diluted FFN. In this section we study the
characteristics and properties of a propagating synchronous sig-
nal. We consider them at the transition to stable propagation,
p∗

L, because there they depend only weakly on the network setup.
How large is the fraction of neurons that participate in propa-
gating synchrony? How does this fraction depend on the network
setup?

To answer such questions, we consider the effect of a prop-
agation synchronous pulse on the single layers in the network,
as a measure for the effective pulse size. In other words, we con-
sider the mean input μL a neuron receives from the preceding
layer if a synchronous pulse propagates along the FFN at the crit-
ical connectivity p∗

L. It is given by the product of the connection
probability p∗

L, the connection strength ε and the average size of
a propagating synchronous signal γL; using Equations (27) and
(29) yields

μL = γLp∗
Lε = PV (� − x∗

0) + P(1)
V (� − x∗

0)x∗
0 − λ∗

P(1)
V (� − x∗

0)
(45)
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and after inserting λ∗ as given by Equation (30),

μL =

√√√√√x∗
0

(
2PV (� − x∗

0) + x∗
0P(1)

V

(
� − x∗

0

))− 2pf
(
x∗

0

)
P(1)

V

(
� − x∗

0

) . (46)

According to Equation (46) the average input μL to the neurons
due to a propagation of a synchronous pulse is independent of
the layer size ω and coupling strength ε. For setups with mod-
erate external inputs (i.e., inputs of the preceding layer influence
the neurons’ ground state only weakly; see also section 3.1.3) the
distribution of membrane potentials PV (·) (cf. Equation 8), the
firing probability of single neurons pf (·) (cf. Equation 14) as well
as the expansion point (deflection point of PV (·); cf. Equation 37)

x∗
0 = � − I0 + εext

√
τmνext (47)

are fully determined by the external inputs (I0, νext and εext).
Figures 5A,B illustrates the dependence of μL on the layout of
the external network and the FFN: as expected from our analyti-
cal considerations, the dependence on the layer size and coupling
strength is weak when I0 and εext are kept fixed. With increas-
ing mean of the external input (I0) the distribution of membrane
potentials PV (V) is shifted toward the threshold �, such that
it is more likely to find the membrane potential of the neurons
near the threshold and the critical connectivity decreases (cf. also
Figures 4A,B). Naturally this implies a decreasing average input
μL at p∗

L, which is shown in Figure 5A for different external cou-
plings εext and parameters of the FFN. Increasing the external

coupling strength εext (and with it the variance of the exter-
nal input) causes a broadening of the distribution of membrane
potentials; the membrane potentials of some neurons are shifted
toward the threshold and the membrane potentials of other neu-
rons are shifted away from it. If the fraction of neurons that
participate in the propagation of the synchronous pulse is large,
this implies an increasing critical connectivity (Figure 5B; cf. also
Figure 4C).

The spiking probability of a single neuron due to the mean
input μL equals the average fraction pfrac of neurons of one layer
that participate in a propagating synchronous pulse,

pfrac = γL

ω
= pf (μL) . (48)

Interestingly, in the considered regime of low spiking rates and
sufficiently broad distribution of membrane potentials, where
the approximations given in section 3.1.1 are applicable, pfrac

depends on the setup of the external inputs only via the quotient
α = � − μ

σ
(cf. Equation 10), or, equivalently, on the spontaneous

firing rate ν of the neurons (cf. Equation 9). This can be shown by
combining Equations (8, 37) and (Equation 46),

μL = σ
( eπ

2

)1/4

⎡
⎣
(√

2 + 2α
) (

3 + √
2α
)

2
√

eπ

−Erf

(
1√
2

)
− Erf (α)

]1/2

(49)

=: σfμ(α) (50)
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FIGURE 5 | Properties of propagating synchronous pulses at the

transition from the no-propagation to the propagation regime. Panels
(A,B) show the mean input μL that a layer receives due to a propagating
synchronous pulse in the preceding layer. μL measures the effective pulse
size (the impact of a propagating synchronous pulse) and is mainly determined
by the external inputs rather than by the setup of the FFN. In (A) the variance
of the external input (measured by εext) is fixed and μL is plotted vs. I0; in (B)

the mean external input I0 is fixed and μL is plotted vs. εext. The markers
indicate μL for FFNs of different sizes [ω and ε are given by the legend in (A)]
obtained by numerical simulations of propagating synchrony. The dashed lines
shows the approximation of μL given by Equation (46) (which is independent
of ω and ε); the solid lines indicate μL = p∗

LG2ε; values of p∗
L and G2 are found

semi-analytically, by numerically identifying the bifurcation point of the
analytically derived iterated map (Equation 13) for the different network setups

(both analytical estimates are corrected for the influence of inputs from the
preceding layer up to the first order). Panel (C) shows the fraction pfrac of
neurons in a layer that participate in the propagation of a synchronous signal
vs. α [(Equation 10); main panel] and vs. the spontaneous firing rate ν (inset).
Data from different network setups are plotted without distinction as black
dots in the main panel and with distinction by different colors and symbols in
the inset (see legend); Simulations are repeated for different layouts of the
external network (I0 ∈ {1, 3, . . . , 11} mV; εext ∈ {0.1, 0.125, . . . , 1.0} mV). The
solid lines indicate pf (μL) = fp (α) as given by Equation (53). The layer size ω

as well as the coupling strength ε influence pfrac only weakly. pfrac depends on
the network setup mainly through α or, equivalently, through ν (cf. Equation 9):
Measurement values from different network setups largely collapse to the
graph of the function pf (μL) = fp (α). For further explanations see text
(section 3.1.4).
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such that

pf (μL) = 1

2

[
Erf

(
� − μ

σ

)
+ Erf

(
μL − � + μ

σ

)]
(51)

= 1

2

[
Erf (α) + Erf

(μL

σ
− α
)]

(52)

= 1

2

[
Erf (α) + Erf

(
fμ(α) − α

)] =: fp(α). (53)

In Figure 5C we compare the above predictions with direct
numerical simulations: For different layer sizes ω, coupling
strengths ε and layouts of the external networks (i.e., different
values of I0 and εext), we detect whether propagation of a syn-
chronous pulse is possible and if so, we numerically determine
the average fraction of participating neurons as well as the spon-
taneous firing frequency. We find that indeed the size of the
synchronous pulse is determined essentially by the quotient α =
� − μ

σ
and Equation (53) is a reasonable estimate of the average

fraction of neurons spiking in each layer. With increasing α the
fraction of participating neurons increases, it thus decreases with
spontaneous firing rate ν see Figure 5C. For FFNs with low spon-
taneous spiking frequency almost all neurons of a layer participate
in the propagation of a synchronous pulse.

3.2. FFNs WITH NON-LINEAR DENDRITES
In this section, we investigate propagation of synchrony mediated
by dendritic non-linearities. Although the mechanism underly-
ing the propagation is generally related to that in linear networks,
the discontinuities introduced by non-additive dendritic interac-
tions prevent a similar analytical approach. In the first part of
this section, we thus derive analytical estimates for the critical
connectivity p∗

NL in non-linearly coupled networks based on a
self-consistency approach (see also Jahnke et al., 2012). In the sec-
ond part, we study the transition from propagation of synchrony
mediated by linear dendrites to propagation of synchrony medi-
ated by non-additive dendritic interactions upon increasing the
degree of non-linearity in the networks. In the last part, we eval-
uate the robustness of the analytical estimates with respect to the
layout of the external network.

3.2.1. Analytical derivation of critical connectivity
Neurons with non-additive dendritic interaction process exci-
tatory input by a non-linear dendritic modulation function
σNL (see section 2.1), i.e., synchronous inputs that exceed the
dendritic threshold �b are amplified to an effective input of
size κ (cf. Equation 4). Therefore the spiking probability of
a single neuron due to a synchronous input of strength x,
pf (σNL(x)), is discontinuous and an approach based on expan-
sion of pf (·) is inappropriate. To derive an analytical expres-
sion for the critical connectivity p∗

NL in FFNs incorporating
dendritic non-linearities, we consider the (average) fraction of
neurons of one layer, pγ, that receive an input x larger than
the dendritic threshold, x ≥ �b, due to the propagating syn-
chronous pulse. If there is a stable (stationary) propagation of
synchrony established, pγ is constant throughout the layers, which
allows us to formulate a self-consistency equation. The basic
derivations have been published recently (Jahnke et al., 2012)

and will be briefly reviewed in the following for the readers
convenience.

For sufficiently small dendritic thresholds �b and sufficiently
large κ, the spiking probability of a neuron due to a sub-threshold
input is small compared to the spiking probability of a supra-
threshold input. Therefore, we approximate the spiking proba-
bility of a single neuron in response to a synchronous input of
strength x by

pf (σNL(x)) =
{

pf (κ) if x ≥ �b

0 otherwise
, (54)

i.e., we assume that somatic spikes due to the synchronous pulse
are exclusively generated by dendritically enhanced inputs. We
denote the fraction of neurons that receive a dendritic spike by
pγ. This may be considered as constant throughout the differ-
ent layers if stable propagation of synchrony is enabled. Then the
probability that a neuron receives exactly k inputs from the pre-
ceding layer follows a binomial distribution k ∼ B

(
ω, pγpf (κ) p

)
,

where pγpf (κ) p is the probability that (1) a neuron of the pre-
ceding layer receives a supra-threshold input (pγ), (2) a somatic
spike is elicited by that input

(
pf (κ)

)
and there is a connection

from this spiking neuron to the considered neuron of the follow-
ing layer (p). So we can formulate the self-consistency equation
for pγ,

pγ =
ω∑

k = 
�b/ε�

(
ω

k

) (
pγpf (κ) p

)k (
1 − pγpf (κ) p

)ω − k
. (55)

To solve Equation (55) we approximate the binomial distribu-
tion by a Gaussian distribution with mean δ := ωpγppf (κ) and
standard deviation σδ := √δ(1 − pγppf (κ)), which yields

pγ = 1

2

[
1 + Erf

(
n√
2

)]
, (56)

where we defined

n := δ − �b/ε

σδ

(57)

= ωpγppf (κ) − �b/ε√
ωpγppf (κ) (1 − pγppf (κ))

(58)

as the difference between the average number of inputs (δ) and the
number of inputs needed to reach the dendritic threshold (�b/ε)
normalized by the standard deviation of the number of inputs
(σδ). Solving definition (Equation 58) for p and replacing pγ by
Equation (56) yields

pNL =
n2ε + 2�b + n

√
n2ε2 + 4�b

(
ε − �b

ω

)
pf (κ)ε(n2 + ω)

(
1 + Erf

(
n√
2

)) , (59)

which is the connectivity pNL where stable propagation of syn-
chrony with some given n (or, equivalently, some given pγ;
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cf. Equation 56) is established. We note that a propagation of
synchrony mediated by dendritic spikes requires

εω > �b (60)

(otherwise even the input caused by a synchronized spiking of
all neurons of a layer in a fully connected FFN (p = 1) is not
sufficient to reach the dendritic threshold �b).

For parameters fulfilling the inequality (Equation 60), pNL(n)

has a global minimum (see Appendix) and the critical connec-
tivity p∗

NL, again defined as the smallest connectivity that allows
for a stable propagation of synchrony, matches that global mini-
mum: any connectivity pNL above the minimal connectivity p∗

NL
has two preimages n1 and n2 corresponding to the both non-
trivial fixed points G1 and G2 of the iterated map for the average
group size (cf. Figure 1 and section 2.4). However, there exists
smaller connectivities for which a stationary propagation can be
established. At the global minima p∗

NL both preimages n1 and
n2 collapse to n∗ = n1 = n2 and correspond to the fixed point
G = G1 = G2 of the iterated map at the bifurcation point of the
tangent bifurcation. Here the transition from the regime where
no propagation of synchrony is possible to the regime where a
propagation of synchrony is enabled takes place. For pNL smaller
than p∗

NL there are no preimages (i.e., a stationary propagation of
synchrony mediated by non-additive dendritic interactions can-
not be established); this scenario correspond to the absence of
the non-trivial fixed points of the iterated map for connectivities
below the tangent bifurcation.

In the following we will obtain the minima of pNL (i.e., the
critical connectivity p∗

NL) in the limit of large layer sizes ω and
small coupling strength ε. We first derive an approximation of
Equation (59) (cf. Equation 62), determine the validity range of
this approximation (cf. Equation 69) and finally obtain an esti-
mate for the critical connectivity (cf. Equation 71). As before, we

fix the maximal input εω to each neuron to preserve the network
state and expand Equation (59) in a power series around ε → 0
and ω → ∞. Considering the leading terms yields

pNL ≈ pNL, a := 2�b

pf (κ) εω

1 + n
√

ε
�b

− 1
ω

1 + Erf
(

n√
2

) . (61)

Further a propagation mediated by dendritic spikes (as intro-
duced above) requires that the layer size ω and the coupling
strength ε are sufficiently large such that a sufficiently large frac-
tion of neurons of each layer receive a total input larger than
the dendritic threshold �b. In particular for diluted FFNs, this
requirement translates to εω � �b and Equation (61) simplifies
further to

pNL, b := 2�b

pf (κ) εω

1 + n
√

ε
�b

1 + Erf
(

n√
2

) . (62)

Whereas pNL has always a global minimum for εω > �b, this does
not hold for the approximation pNL, b, e.g., (cf. also Figure 6C)

lim
n→−∞

(
pNL, b

) = −∞. (63)

However, we will now show that pNL, b has a (local) minimum if

(and only if) ε ∈
(

0,
2�b
π

]
which approximates the global min-

imum of pNL and therefore serve as an estimate for the critical

connectivity. Starting with
dpNL, b(n)

dn

∣∣∣
n = n∗ = 0 yields

√
�b

ε
=
√

π

2
exp

(
n∗2

2

)(
1 + Erf

(
n∗
√

2

))
− n∗ =: f

(
n∗) , (64)

ε (mV)0 0.5 1 1.5 2

0.5

1

1.5

2

n*

n*0 21 3

ε (mV)

0.8

0.7

0.6

0.9
ε = 0.075 mV
ε = 0.3 mV
ε = 2.0 mV

ω = 400

10n40−41.50

0.6

0.5

0.7

0.8

1

β

0.4

0.2

0.6

0.8

p

0.0

20.5 1

NL
pγ

A B C

FIGURE 6 | Determining the critical connectivity in FFNs with

non-additive dendritic interactions. (A) For a given setup, i.e., for a given
dendritic threshold �b and coupling strength ε <

2�b
π

, the corresponding
n∗ (or equivalently pγ; cf. Equation 56) is found by Equation (64). The solid
line indicates n∗ vs. ε (left vertical scale), the dashed line pγ vs. ε (right
vertical scale) and the markers n∗(ε) for ε = {0.075, 0.3, 2.0} mV (see
legend). [Here, the dendritic threshold is �b = 4 mV, such that the estimate
(Equation 64) is valid within the range ε ∈ (0, 2.55] mV; Equation (69)] (B)

Knowing n∗ allows to evaluate β
(

�b
ε

)
∈
[

1
2 , 1
]

according to Equation (70).

Panel (B) shows β (cf. Equation 70) vs. ε (solid line, lower horizontal axis)
and β vs. n∗ (dashed line, upper horizontal axis), respectively. (C) Finally,
the critical connectivity p∗

NL is obtained by Equation (71) which depends on

β
(

�b
ε

)
. Panel (C) shows the connectivity pNL[dashed; Equation (59)] and

its approximation pNL, b [solid; Equation (62)] vs. n; for ε ∈ (0, εmax ], pNL, b

has a local minimum which agrees with the global minimum of pNL. The
markers indicate the critical connectivity p∗

NL obtained by the procedure
described in (A) and (B). For further explanations see text
(section 3.2.1).
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and n∗ specifies the extremum of pNL, b(n). The second derivative
of pNL, b(n) at the extremum n∗ given by Equation (64) satisfies

dp2
NL, b

dn2

∣∣∣∣∣
n = n∗

=
2n∗
√

�b
ε

pf (κ) ω
(

1 + Erf
[

n∗√
2

]) > 0 (65)

if n∗ > 0 such that the extremum actually is a minimum. Taken
together, for a given setup, i.e., for given dendritic threshold �b

and coupling strength ε, the transcendent Equation (64) defines
n∗ which maximizes or minimize pNL, b(n) and if additionally
n∗ > 0 the extremum pNL, b (n∗) is a minimum.

Differentiating the right hand side of Equation (64),

df (n∗)
dn∗ = n∗ · e

n∗2
2

√
π

2

(
1 + Erf

[
n∗
√

2

])
(66)

d2f (n∗)
dn∗2

= n∗ + (1 + n∗2) e
n∗2

2

√
π

2

(
1 + Erf

[
n∗
√

2

])
, (67)

shows that f (n∗) (as defined in Equation 64) is (1) minimal for
n∗ = 0 and (2) monotonically increasing for n∗ > 0; according to
Equation (64) the minimum n∗ = 0 corresponds to

εmax := �b[
f (0)
]2 = 2�b

π
≈ 0.64�b. (68)

The left hand side of Equation (64), i.e.,
√

�b/ε, is monotonically
decreasing with ε from infinity to zero. Thus Equation (64) has a
solution for any

ε ∈ (0, εmax] =
(

0,
2�b

π

]
(69)

and p∗
NL := p∗

NL, b (n∗) is the (local) minimum of Equation (62)
and provides an estimate for the critical connectivity, the (global)
minimum of Equation (59).

For better readability we define the function β(·),

β

(
�b

ε

)
:= 1

2

(
1 + Erf

[
n∗
√

2

])
− n∗ e− n∗2

2√
2π

, (70)

where n∗ = n∗
(

�b
ε

)
as given by Equation (64). We note that

β
(

�b
ε

)
can also be considered as a function of n∗. By combining

Equations (62), (64), and (70) we obtain the critical connectivity

p∗
NL = �b

pf (κ) εω
· 1

β
(

�b
ε

) . (71)

The function β(·) itself is monotonically decreasing with ε in the
validity range ε ∈ (0, εmax] of the above approximation: within

this interval n∗ > 0 and d
dn∗ f (n∗) > 0 and thus the derivative

dβ

dε
= dβ

dn∗ · dn∗

d
√

�b/ε
· d

√
�b/ε

dε
(72)

= − e− n∗2
2 n∗2

√
2π

·
(

df (n∗)
dn∗

)−1

·
√

�b

4ε3
(73)

< 0. (74)

Consequently β assumes its minimum

βmin = β
(
n∗ = 0

) = 1

2
(75)

for ε = εmax = 2�b
π

and increases monotonically with decreasing
ε against its asymptotic value

βmax = lim
n∗→∞

⎡
⎣1

2

(
1 + Erf

[
n∗
√

2

])
− n∗ e− n∗2

2√
2π

⎤
⎦ = 1. (76)

Thus the critical connectivity is bounded by

p0 := �b

pf (κ) εω
≤ p∗

NL ≤ 2 · �b

pf (κ) εω
= 2 · p0 (77)

and converges to the lower bound p0 for small ε and to its upper
bound 2p0 for large ε.

In Figure 6 we visualize the determination of the critical con-
nectivity (Equations 64, 70) and Equation (71). The critical
connectivity obtained with the approach presented above agrees
well with simulation data (cf. Figure 7).

3.2.2. Transition from linear to non-linear propagation
In the previous section we derived analytical estimates for the
critical connectivity p∗

NL in FFNs with non-additive dendritic
interactions; p∗

NL is determined by (1) the setup of the FFN (i.e.,
the layer size ω and coupling strength ε; cf. Figure 7), (2) the
parameters of the non-linear modulation function (i.e., the den-
dritic threshold �b and enhancement level κ) and (3) the layout
of the external network (i.e., the mean external input I0 and its
variance, which is proportional to εext). In this section, we dis-
cuss the influence of the parameters of the non-linear modulation
function and study the transition from a regime where propaga-
tion of synchrony is mediated by dendritically enhanced inputs to
a regime where the majority of inputs is processed linearly.

In general, with increasing threshold �b more and more inputs
are needed to reach this threshold and consequently the critical
connectivity p∗

NL increases. If �b exceeds μL, which is the average
input to the neurons if a synchronous pulse propagates in lin-
early coupled FFNs (cf. Equation 45 and Figure 5), propagation
mediated by linearly processed spikes is enabled for lower connec-
tivities than propagation mediated by dendritic non-linearities. In
this regime the linearly summed inputs (for p = p∗

L) are sufficient
to maintain propagation of synchrony, but are not sufficient to
cross the dendritic threshold. Increasing �b even further has no
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FIGURE 7 | Critical connectivity in FFNs with non-linear dendrites. The
panels show (A) the critical connectivity p∗

NL vs. the layer size ω for
different coupling strengths (ε = {0.05 mV (red), 0.1 mV (cyan), 0.125 mV
(green), 0.2 mV (blue), and 0.4 mV (black)}) and (B) p∗

NL vs. the coupling
strength ε for different layer sizes (ω = {50 (red), 100 (cyan), 150 (green),
200 (blue), and 400 (black)}). The points indicate the minimal connectivity
for which a synchronous pulse propagates from the first to the last layer in
an FFN with m = 20 layers in at least 50% of n = 30 trials. The critical
connectivity given by Equation (71) (solid lines) is in good agreement with
the computer simulations. (C) The critical connectivity is confined to the
interval p∗

NL ∈ [p0, 2p0] [indicated by the gray area for ω = 150 (green), cf.
Equation (77)] and approaches its lower bound for small ε and its upper
bound for large ε. Like in linearly coupled networks the critical connectivity
decays inversely proportional to layer size, p∗

NL ∝ ω−1, (cf. also Figure 3),
but the scaling with coupling strength is more complicated,
p∗

NL ∝ ε−1 · 1/β
(

�b
ε

)
; the factor β

(
�b
ε

)
∈ [0.5, 1] [cf. Equation (70) and

Figure 6] measures the deviation from the algebraic decay (as found in
linearly coupled networks). In this figure the parameters of the external
network are fixed to I0 = 5 mV, νext = 3 kHz, εext = 0.5 mV.

influence on the critical connectivity p∗
NL, here a propagation of

synchrony is possible for p ≥ p∗
L as discussed in section 3.1.

We illustrate this transition from non-linear to linear prop-
agation in Figure 8A: We start with large �b = μL such that
propagation is enabled for p ≈ p∗

L and also set κ = μL. In fact,
the linear critical connectivity p∗

L slightly under-estimates the
observed critical connectivity p∗

NL as it does not account for
the saturation of the non-linear modulation function, i.e., for
the cutoff σNL(x) = κ of inputs x ≥ κ. With decreasing �b the
critical connectivity is substantially reduced and well approx-
imated by Equation (71). Propagation of synchrony is now
mainly mediated by dendritically enhanced inputs as described
in section 3.2.1. The inset illustrates the impact of decreas-
ing the dendritic threshold �b on the iterated map. Initially,
for �b = μL = κ, the iterated map for linearly coupled and
non-linearly coupled FFNs is similar; with decreasing �b the
jump like rise in the iterated map is shifted to lower group
sizes and consequently the bifurcation point is shifted to lower
connectivities.

The non-linear modulation function σNL(·) (cf. Equation 4)
saturates for strong inputs, thus the enhancement level κ defines
the maximal (effective) input to a neuron and pf (κ) is an upper
bound for the spiking probability of any neuron in response to
incoming inputs. This implies that in contrast to linearly cou-
pled FFNs, the average size of a propagating synchronous pulse,
γNL, given by the product of the probability of a neuron receiv-
ing sufficiently strong input to reach the dendritic threshold (pγ;

cf. Equation 56), the spiking probability due to that input [pf (κ)]
and the layer size ω, is bounded from above by

γNL = pγpf (κ)ω ≤ ωpf (κ) =: γmax. (78)

This bound decrease with decreasing κ as illustrated by Figure 8B
(inset), where we compare the iterated maps for different values of
κ. pf (κ) also influences the critical connectivity p∗

NL (cf. Equation
71): For small κ the spiking probability pf (κ) is low and thus
p∗

NL is large (it may even exceed p∗
L). With increasing κ also pf (κ)

increases and consequently the critical connectivity p∗
NL decreases;

for very large κ the spiking probability pf (κ) approaches 1 (cf.
Equation 14) and p∗

NL saturates (cf. Figure 8B).
In Figure 8C we show the critical connectivity for an additive

enhancement by a constant �, i.e., inputs exceeding the dendritic
threshold �b are increased by the constant value � = κ − �b.
For small κ the critical connectivity p∗

NL is relatively large and
may exceed p∗

L due to the low saturation level of the non-linear
modulation function σNL(·) (cf. also Figure 8B). As mentioned
above, with increasing κ, also pf (κ) increases and the critical
connectivity p∗

NL decreases. However, for large κ and thus large
dendritic threshold �b propagation of synchrony mediated by
linearly processed spikes is possible for lower connectivities than
propagation mediated by dendritic non-linearities. Consequently,
p∗

NL converges toward p∗
L (cf. also Figure 8A).

3.2.3. Influence of external network
In section 3.2.1 we derived an estimate of the critical connectivity
p∗

NL for FFNs with non-additive dendritic interactions. So far we
discussed the influence of the setup of the FFN (layer size ω and
coupling strength ε) as well as the parameters of the non-linear
modulation function σNL (dendritic threshold �b and enhance-
ment level κ). In the current section, we focus on the remaining
determining factor, the layout of the external network. How does
the critical connectivity change with the mean external input I0

and external coupling strength εext and how well are these changes
covered by our analytics?

For the derivation of p∗
NL we assumed that somatic spikes are

elicited exclusively by dendritically enhanced inputs (cf. Equation
54) and thus the critical connectivity depends on the layout of
the external network only via pf (κ) (cf. also Equation 71), i.e.,
on the average spiking probability of a neuron receiving an input
larger than the dendritic threshold x ≥ �b. For sufficiently small
pf (κ), p∗

NL > 1 and propagation of synchrony is not possible.
With increasing pf (κ) the critical connectivity decreases and for

pf (κ) → 1 it converges to �b (εωβ [�b/ε])−1, independent of
the external network.

In the regime of low spiking rates, changing the mean exter-
nal input I0 simply shifts the distribution of membrane poten-
tials PV (V) (which is a Gaussian distribution centered at I0;
cf. Equation 8). Thus, with increasing I0, pf (κ) increases and the
critical connectivity p∗

NL decreases.
In Figure 9A we show the critical connectivity for different

εext [which determines the width of PV (V)] vs. the mean exter-
nal input I0. For I0 = � − κ (such that the sum of a dendritically
enhanced input and the center of the distribution of membrane
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FIGURE 8 | Transition from linear to non-linear propagation. The figure
shows the critical connectivity p∗

NL vs. the parameters of the non-linear
modulation function σNL (cf. Equation 4) for different network setups (color
code, see (C)). The lines are the theoretical predictions for p∗

NL [solid,
Equation (71)] and p∗

L [dashed, Equation (32)]. The markers indicate the
minimal connectivity for which a synchronous pulse propagates from the first
to the last layer in an FFN (I0 = 5 mV, νext = 3 kHz, εext = 0.5 mV) with
m = 20 layers in at least 50% of n = 30 trials. The insets illustrate the effect
of changing �b and κ on the iterated map, cf. Equation (13), where
connectivity is kept constant. (A) Critical connectivity vs. dendritic threshold
�b for constant enhancement level κ = μL ≈ 13.7 mV (cf. Equation 50). If the
dendritic threshold �b is sufficiently small such that pf (�b) � pf (κ)

(cf. Equation 54), the propagation of synchrony is mainly mediated by
non-linear enhanced inputs and the critical connectivity can be estimated by

Equation (71). For large �b the probability that an input from the preceding
layer exceeds the dendritic threshold is very low, propagation of synchrony is
mainly mediated by linearly processed inputs and the critical connectivity is
given by Equation (32). Between these scenarios (for moderate �b) there is a
“transition regime,” where linear and non-linear propagation mix [similarly in
(C)]. (B) Critical connectivity vs. enhancement level κ for constant threshold
�b = 4 mV. For small enhancement levels κ the (maximal) spiking probability
of a single neuron, pf (κ), is small and thus the critical connectivity p∗

NL is
large. With increasing κ, pf (κ) increases and thus p∗

NL decreases; for large κ,
pf (κ) → 1 (a neuron will almost surely spike upon the receipt of a
non-linearly enhanced pre-synaptic input) and the critical connectivity
saturates. (C) Critical connectivity vs. enhancement level κ for an additive
enhancement by a constant � = κ − �b = 4 mV. For further explanations see
text (section 3.2.2).
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on the layout of

the external network. (A,B) The lines indicate the theoretical prediction for
p∗

NL given by Equation (71) and agree well with the data from direct
numerical simulations (markers; FFN with ω = 150, ε = 0.2 mV, �b = 4 mV,
κ = 11 mV, m = 20). Panel (A) shows the critical connectivity vs. the mean
external input I0 for fixed εext and panel (B) shows the critical connectivity
vs. εext for fixed mean external input I0. The gray line indicates the minimal
critical connectivity obtained for pf (κ) = 1. With increasing mean (external)
input I0 the distribution of membrane potentials PV (V ) is shifted toward the
somatic threshold �, thus the spiking probability pf (κ) upon the reception
of a non-linear enhanced input increases and the critical connectivity p∗

NL
decreases. For I0 = � − κ, pf (κ) ≈ 0.5 (cf. Equation 80) and p∗

NL is largely
independent of the layout of the external network [blue solid line in (B); cf.
also (A) where all curves coincide]. Further explanations see text
(section 3.2.3).

potentials equals the somatic threshold �), pf (κ) simplifies to

pf (κ) = 1

2

(
Erf

[
� − I0

σ

]
+ Erf

[
κ − � + I0

σ

])
(79)

= 1

2
Erf

(
� − I0

σ

)
(80)

and thus in the regime of low spiking rates, i.e., (� − I0) /σ �
1, pf (κ) ≈ 0.5 independent of the width of the distribution of
membrane potentials. Consequently, all curves for different εext

coincide at this point. For I0 > � − κ the majority of neurons
(>50%) would spike upon receipt of a dendritically enhanced
input. Thus pf (κ) increases and therewith the critical connectiv-
ity decreases upon decreasing εext . In the limit of ε → 0, PV (V)

converges toward a δ-distribution centered at I0 and pf becomes
a step-function

pf (κ) =
{

0 κ < � − I0

1 κ ≥ � − I0
(81)

such that the critical connectivity is either constant and minimal
for I0 ≥ � − κ or it diverges (no propagation possible) for I0 <

� − κ (cf. Figure 9A; magenta curve).
In Figure 9B we illustrate the effect of changing εext on the

critical connectivity for constant I0. As discussed above for I0 =
� − κ, pf (κ) and thus p∗

NL are rather independent of εext and
for I0 > � − κ the critical connectivity increases with εext. For
I0 < � − κ an increase of the width of the distribution of mem-
brane potentials shifts the membrane potential of more and more
neurons toward the relevant interval [� − κ, �] and thus pf (κ)

increases and the critical connectivity p∗
NL decreases.

For the derivation of p∗
NL we have assumed that the ground

state dynamics is essentially not influenced by the spontaneous
activity of the FFN itself (i.e., μ = I0 and σ = εext

√
2τmνext ). As
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discussed in section 3.1.3, we can correct the results for such influ-
ences. However, since in non-linearly coupled FFNs the impact of
(non-linearly enhanced) synchronous activity is much stronger
than the impact of spontaneous activity (which is irregular and
not amplified by non-additive dendritic interactions), we find
that the deviations between the corrected and uncorrected version
of p∗

NL is negligible.
Finally, we compare the critical connectivity for networks with

and without non-additive dendritic interactions: The factor

crat := p∗
L

p∗
NL

= pf (κ)

λ�b
β

(
�b

ε

)
(82)

measures how much the connectivity within the FFN can be
reduced by introducing non-additive dendritic interactions. It is
independent of the layer size ω and becomes maximal in the limit
of small coupling strengths ε as β (�b/ε) → βmax = 1 for ε → 0
(cf. Equation 76). It increases with decreasing �b and increas-
ing κ (see discussion in section 3.2.2). In Figure 10 we show
the influence of the external network. As discussed above, for
small I0, propagation of synchrony is not possible (the non-linear
enhanced input is insufficient to elicit sufficiently many spikes in
the layers of the FFN; white areas in Figure 10). With increasing
I0, p∗

NL decreases and crat increases.

3.3. GENERALIZATIONS
In the final section we discuss generalizations of the methods and
results we derived. Compared to biological neurons, our models
have simplifications which enable the analytical treatment, but
might be suspected to be influential on the final result. These
simplifications are the homogeneous delay distribution, the sim-
plified initiation and impact of dendritic spikes, the limit of short
synaptic currents and the sub-threshold leaky integrate-and-fire
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FIGURE 10 | Critical connectivity and reduction factor. Panel (A) shows
the critical connectivity obtained from simulations of an FFN (ω = 150,
ε = 0.2 mV, m = 20) incorporating non-additive dendritic interactions
(�b = 4 mV, κ = 11 mV; see also Figure 9). Within the white area,
propagation of synchrony is impossible because even for a fully coupled
chain the input to the next layer (limited by the saturation of the non-linear
modulation function and the layer size) is insufficient. Panel (B) shows the
reduction factor crat (cf. Equation 82), the quotient between the critical
connectivity in FFNs without and with non-additive dendritic interactions.
The lines enclose the area for which the spontaneous firing is between
ν ∈ [0.5, 1.5] Hz obtained from simulations (solid) and low-rate
approximation (cf. Equation 9; dashed).

dynamics. Here, we verify that our results generalize to biolog-
ically more detailed neurons without these simplifications. In
particular, we show that the estimates for the critical connectivity
hold. Further, we consider a qualitatively different dendritic inter-
action function which assumes that the saturation is incomplete,
i.e., beyond a region of saturation the impact of larger inputs
increases. We show that the tools developed in the article are
still applicable and reveal a new phenomenon, the coexistence of
linear and non-linear propagation of synchrony.

In the first part (section 3.3.1), we discuss the influence of
inhomogeneous delay distribution and finite dendritic integra-
tion windows. In the second part (section 3.3.2), we consider
the non-linear modulation function with incomplete saturation.
Finally, we consider biologically more detailed neuron models
(section 3.3.3).

3.3.1. Heterogeneous delays
So far we considered FFNs with homogeneous delay distribution
and dendritic modulation functions with integration window of
zero length, i.e., only exactly synchronized inputs were possi-
bly non-linearly amplified. Are these assumptions crucial for the
obtained results? How does the critical connectivity change in the
presence of heterogeneous delay distributions?

To answer this question, we consider synaptic delays τkl (speci-
fying the synaptic delay between neuron l and k) uniformly drawn
from

τkl ∈
[
τ − �T

2
, τ + �T

2

]
, (83)

where τ is the mean delay. A direct consequence of heteroge-
neous delay distribution is that the spikes of the propagating
synchronous signal are not simultaneous (i.e., exactly synchro-
nized) anymore. To describe the system accurately one has to
consider additionally to the size (gi) also the temporal jitter (si)
of the synchronous pulse in the ith layer and investigate the two-
dimensional iterated map for (gi, si) (e.g., Diesmann et al., 1999;
Gewaltig et al., 2001; Goedeke and Diesmann, 2008). However,
even if the synchronous pulse is blurred out to a pulse packet with
finite width, for sufficiently large connectivity stable propagation
still can be obtained (see e.g., Gewaltig et al., 2001).

For linearly coupled FFNs, with increasing width of the delay
distribution, �T, the propagating pulse becomes broader and
thus the critical connectivity p∗

L increases (cf. Figures 11A,B;
squares). However, the scaling with layer size (cf. Figure 11A) and
coupling strength (data not shown) is the same.

Under the assumption that the width of the pulse packet stays
bounded, one can derive a lower bound for the critical connectiv-
ity. We assume that a pulse in layer i is perfectly synchronized and
calculate the effective peak of the depolarization in the (i + 1)th
layer. Replacing the coupling strength ε by the effective depolar-
ization ε′ (derived below, cf. Equation 89) in the estimate of the
critical connectivity (cf. Equation 32) one gains an estimate of
the critical connectivity for systems with heterogeneous delays
[Equation (90); shown in Figure 11]. Consider a perfectly syn-
chronized pulse in layer i. Due to inhomogeneities in the delay,
the inputs arriving at the (i + 1)th layer are distributed uniformly
in an interval of size �T (Equation 83). We assume that all inputs
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FIGURE 11 | Robustness against heterogeneities in the response

delays. (A) Critical connectivity vs. layer size for FFNs (m = 20,
ε = 0.25 mV, I0 = 5 mV, εext = 0.5 mV) with additive (squares) and
non-additive (�b = 4 mV, κ = 11 mV, �t = 2.5 ms; circles) dendritic
interactions. Different colors indicate different widths of the delay
distribution (cf. Equation 84). The solid lines indicate the critical connectivity
p∗

L corrected for inhomogeneous delay distribution (cf. Equation 90), the
dashed line p∗

NL for �T = 0 ms. (B) Critical connectivity vs. width of delay
distribution �T . Different colors indicate different setups of the FFN (red:
ω = 275, ε = 0.4 mV; green: ω = 125, ε = 0.25 mV; blue: ω = 200,
ε = 0.1 mV). Solid and dashed lines are p∗

L and p∗
NL as before.

arriving at a neuron of layer i + 1 are equidistantly distributed
over [−�T/2, �T/2], i.e., the arrival time of the lth of a total
number of k inputs is

tarr
l = τ − �T

2
+ �T

k − 1
· (l − 1) . (84)

We consider the subthreshold dynamics only. Each single input
depolarizes the neuron by an amount ε and afterwards the mem-
brane potential V(t) decays exponentially toward its asymptotic
value (I0) with the membrane time constant τm (cf. Equations
1, 2) until the next input arrives after a time interval �T

k − 1
(cf. Equation 84). Thus the total (effective) depolarization caused
by the sum of these k inputs at the end of the considered time

interval
(
τ + �T

2

)
is

�εk =
k∑

l = 1

ε exp

(
− 1

τm

�T

k − 1
(l − 1)

)
(85)

= ε
exp
(
−�T

τm
k

k − 1

)
− 1

exp
(
−�T

τm
1

k − 1

)
− 1

. (86)

We consider the effective depolarization per input, ε′, in the limit
of a large number of inputs k (k → ∞),

ε′ = lim
k→∞

(
�εk

k

)
(87)

= τm

�T

(
1 − exp

[
−�T

τm

])
ε (88)

=: C (�T) ε. (89)

Thus the correction factor C (�T) ≤ 1 defined in Equation (89)
relates the coupling strength ε to the effective coupling strength ε′
in the presence of inhomogeneous delays. The critical connectiv-
ity is then given by (cf. Equation 32)

p∗
L = 1

C (�T)
· 1

λ∗εω
(90)

and this estimate agrees well with direct numerical simulations
(cf. Figure 11).

For FFNs with dendritic non-linearities and inhomogeneous
delays τkl, one has to consider a finite dendritic integration win-
dow �td. Instead of amplifying only simultaneously received
spikes (cf. Equation 5), the sum of spikes within the time inter-
val �t is considered. We denote the sum of inputs to a neuron
within the time interval [t − �t, t] by

S�t
k (t) =

∑
l

∑
m

εχ[t−�t, t]

(
t

f
lm + τkl

)
, (91)

where

χA(x) =
{

1 if x ∈ A

0 if x /∈ A
(92)

is the indicator function and t
f
lm is the mth firing time of neuron

l as before. If S�t
k (t) exceeds the dendritic threshold �b for some

t = t0, neuron k is depolarized additionally (to the depolarization
arising from linear spike summation) by

εadd
κ (t0) = κ − S�t

k (t0) (93)

such that the total (effective) depolarization caused by an input
x ≥ �b equals κ, modeling the effect of a dendritic spike; cf. also
section 3.3.3. After such an additional depolarization the den-
drite becomes refractory for a time tref,ds and does not transfer
additional spikes within the interval

[
t0, t0 + tref,ds

]
. For �t = 0

we recover the non-linear modulation function σNL(·) given by
Equation (4). Due to the finite dendritic interaction window, a
delay distribution with �T ≤ �t affects the critical connectivity
only weakly (cf. Figure 11B). For �T > �t, some of the inputs
received from the preceding layer upon a propagation of syn-
chrony fall out of the dendritic interaction window �T and thus
the critical connectivity increases. However, the scaling with layer
size ω (cf. Figure 11B) and coupling strength ε (data not shown)
is practically identical with the scenario �T = 0.

Before we discuss propagation of synchrony in biologically
more plausible neuron models in section 3.3.3, we consider gener-
alization of the non-linear modulation function in the following
section.

3.3.2. Coexistence of linear and non-linear propagation
In this article, we employed a non-linear modulation func-
tion σNL(ε) that is linear for dendritic stimulation smaller
than the dendritic threshold, ε < �b, and constant (i.e., satu-
rates) for supra-threshold stimulation, ε ≥ �b (cf. Equation 4).
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Biologically, if the linear inputs are transmitted despite the den-
dritic sodium spike and are not shadowed by, e.g., an NMDA
spike, they may lead to a second, later peak depolarization after
the one generated by the sodium spike. Since our models replace
depolarizations by jumps to the peak depolarization, we have to
account for the later peak as soon as it exceeds the earlier one.
In this part, we thus assume that if the synchronous input is so
large that the depolarization it generates upon linear summation
exceeds the depolarization κ generated by the dendritic spike, this
former is considered as the effect of the input. In other words, we
assume that the dendritic modulation function continues linearly
beyond κ, i.e., we define

σ′
NL(ε) =

⎧⎪⎨
⎪⎩

ε for ε ≤ �b

κ for �b ≤ ε ≤ κ

ε for ε ≥ κ

(94)

(cf. inset of Figure 12A).
The iterated map, mapping the number of active neurons in

layer i to the average number of active neurons in layer i + 1
may now have (depending on the system parameters) between
one and five fixed points (cf. Figure 12). As before, G0 = 0 is a
trivial fixed point corresponding to the level of absent activity
and the only fixed point of the iterated map for small connec-
tivity p. With increasing connectivity p, two additional pairs of
fixed points G1 ≤ G2 and G3 ≤ G4 appear via tangent bifurca-
tions. The first pair of fixed points, G1 and G2, correspond to
the propagation of synchrony mediated by non-additive den-
dritic interactions (as discussed in section 3.1), the second pair,
G3 and G4, correspond to propagation of synchrony mediated
by linearly processed inputs (as discussed in section 3.2). By
further increasing the connectivity p, the fixed points G2 and
G3 disappear via a tangent bifurcation (cf. Figure 12A). Within

the region, where five fixed points exists, both types of prop-
agation of synchrony coexists (illustrated in Figures 12B–D):
Synchronized pulses of size g0 < G1 typically decay to zero after
a small number of layers. Pulse sizes with G1 < g0 < G3 typ-
ically initiate propagation of synchrony with an average pulse
size around G2 (where the propagation is mediated by non-
additive dendritic interactions) and synchronous pulses of size
g0 > G3 typically initiate propagation of synchrony with aver-
age pulse sizes around G4 (linear propagation). For sufficiently
large p, i.e., the fixed points G2 and G3 disappeared, a synchro-
nized pulse of size g0 ≥ G1 will initiate propagation of synchrony
with pulse sizes around G4; in this parameter region the non-
additive dendritic interactions essentially increase the basin of
attraction of G4.

Within the framework of our analytical tractable model, we
neglect, e.g., the initiation time of a dendritic spike (in our
model non-linear amplifications are instantaneous) or the differ-
ent shapes of potential deflections caused by linearly and non-
linearly processed inputs. Therefore, propagating synchronous
signals mediated either by linear or non-linear dendrites differ
only in their size. In biological more detailed models (briefly dis-
cussed in section 3.3.3 below) both propagation types will be
more distinct, e.g., the propagation frequency (speed) and the
quality of synchrony of the propagating pulses are different (see
also Jahnke et al., 2012).

3.3.3. Biological more detailed models
The model we mainly consider in this article has the advantage of
being analytically tractable. Here we ask whether it over-simplifies
the considered systems. More precisely, we study whether the
results derived above, in particular the analytical estimates for
the critical connectivity, generalize to biologically more detailed
models.
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FIGURE 12 | Coexistence of linear and non-linear propagation.

(A) Bifurcation diagram obtained from Equation (13) for an FFN (ω = 150,
ε = 0.225 mV) with a non-linear modulation function σ′

NL with incomplete
saturation [cf. Equation (94) and inset]. Panel (B) shows the iterated maps
(Equation 13) for p = 0.5 with the different non-linear modulation functions
considered in this article (linear coupling: green,dashed; non-linear coupling
σNL: red, dashed; modified non-linear coupling σ′

NL: blue). Panel (C) depicts

the development of the size of the synchronous pulse along the layers of the
FFN (single trials). The blue and yellow regions are the basins of attraction of
G2 and G4, respectively, derived from the data in panel (B). Panel (D) shows
the probability pconv of converging to the linear propagation regime (yellow
area, blue line) and the non-linear propagation regime (blue area, red line)
after m = 20 layers (pconv is obtained from n = 150 runs with different
networks and initial conditions).
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The main assumption underlying our analysis of linearly cou-
pled networks is a very general one, namely that synchronous
single inputs sum up linearly: we assumed that the spiking prob-
ability pf (·) of a neuron due to the reception of x synchronous
inputs of size ε equals the spiking probability due to the recep-
tion of one single input of size y = xε. Therefore, the results will
hold also for more complex neuron models, as long as the effect
of a synchronous input pulse is approximately the sum of the
effects of single inputs. In particular, if the spiking probability
due to an input of strength x, pf (x), is sufficiently slowly chang-
ing with x, according to Equation (24) the critical connectivity
scales like p∗

L ∝ (εω)−1 for sufficiently large layer sizes and small
coupling strengths. To fully compute the critical connectivity, the
actual form of pf (·) has to be known. Our leaky integrate-and-fire
neuron with infinitesimally short current pulses approximates the
behavior of a wide class of neuron models for which an analyti-
cal derivation of pf (·) is impossible. Still even for more detailed
models, pf (·) is accessible for measurements in single neuron
(computer) experiments.

In Figure 13 we verify our predictions exemplary for two types
of neuron models: We employ a model of conductance based
leaky integrate-and-fire-type neurons with exponential input
conductances (CB-type; see Appendix) and a Hodgkin-Huxley-
type neuron model with alpha-function shaped input currents
(HH-type; see Appendix). The post-synaptic potential induced

by single excitatory inputs is shown in panels (a) and (b) and the
scaling of the critical connectivity p∗

L with εω in panel (c): the
scaling of p∗

L is well described by p∗
L ∝ (εω)−1.

The main assumptions underlying our analysis of non-linearly
coupled networks are (1) that the maximal spiking probability
due to inputs which are subthreshold relative to the dendritic
threshold, pf (�b), is significantly smaller than the spiking prob-
ability due to a suprathreshold input, pf (κ), and (2) that the
temporal jitter of somatic spikes evoked by suprathreshold inputs
is small such that synchronized inputs stay synchronized. Both
conditions have been found to be satisfied in biological neu-
rons (e.g., Ariav et al., 2003). Therefore, Equation (71) specifying
the critical connectivity p∗

NL also holds for more detailed neuron
models if these models incorporate biologically plausible features
of fast dendritic spikes. To obtain a quantitative prediction of p∗

NL,
it is sufficient to estimate (a) the number of inputs needed to elicit
a dendritic spike, �b/ε, (b) the layer size ω, and (c) the spiking
probability due to the reception of a total input that is sufficiently
strong to elicit a dendritic spike.

To investigate the scaling of the critical connectivity p∗
NL in

direct numerical simulations, we account for the effects of den-
dritic spikes in the CB-type and HH-type: When the total exci-
tatory input within the dendritic integration window exceeds
the dendritic threshold level, a current pulse modeling the
effect of a dendritic spike is initiated and causes an additional
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FIGURE 13 | Same scaling of propagating regime for networks of

biologically more detailed neuron models. (A,B) Time course of the
membrane potential of single neurons receiving inputs that are sufficiently
strong to elicit a dendritic spike, with (non-linear model) and without (linear
model) dendritic spike generation mechanism, for (A) a conductance based
LIF-type neuron (henceforth: CB-type), and (B) a Hodgkin–Huxley-type neuron
(HH-type). The insets show the observed peak of the induced postsynaptic
potential (pEPSP) vs. the pEPSP expected from linear input summation
(equivalent to the dendritic modulation function in the analytically tractable
model). (C) Critical connectivity p∗

L vs. εω in linearly coupled networks. For
each value εω, we evaluated the critical connectivity for four different group
sizes ω = 100, 300, 500, 700 and four different coupling strengths ε = 0.3,
0.6, 0.9, 1.2 nS (CB-type; squares; lower horizontal axis) and ε = 9, 18, 27,
36 pA (HH-type; crosses; upper horizontal axis), respectively. The lines are
fitted functions of the form (λεω)−1. The analytical estimate given by
Equation (24) holds in the limit of large layer sizes ω and small couplings ε,

therefore we exclude data points from the fitting where a single input yields
an EPSP larger than 0.6 mV (CB-type: ε ≥ 1.4 nS; HH-type: ε ≥ 46 pA; these
points are marked in gray). (D,E) Probability distribution of somatic spike
times after stimulation of the neuron by an input which is sufficiently strong
to generate a dendritic spike (D: CB-type, E: HH-type). We show exemplary
two different configurations for the external inputs, which result in a total
somatic spiking probability after dendritic spike generation of pf ≈ 0.97 (solid
lines; set 1) and pf ≈ 0.67 (dashed lines; set 2). pf equals the saturation level
of the corresponding cumulative distribution function (shown in the insets).
(F) Critical connectivity p∗

NL vs. group size ω (lower horizontal scale) and
coupling strength ε normalized by threshold �b (upper horizontal scale),
respectively. The theoretical estimate of p∗

NL (cf. Equation 71) is a function of
ω, �b/ε and pf , therefore the predictions agree for both models and the data
from direct numerical simulations are consistent with the theoretical
predictions. [All simulations of FFNs in this figure are obtained for
inhomogeneous delay distribution with �T = 1 ms (cf. Equation 83)].
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depolarization of the soma of the post-synaptic neuron (see
Appendix for details; cf. also section 3.3.1). In Figure 13 we com-
pare the results of direct numerical simulations with the estimate
given by Equation (71). The post-synaptic potential induced by
single excitatory inputs is shown in panels (A) and (B). Panel (D)
and (E) shows the spiking probability of a single neuron (in the
ground state of the FFN), pf , due to an input exceeding the den-
dritic threshold level; as examples we present two different setups
with pf = {0.67, 0.97}. Panel (F) shows the scaling of p∗

NL with
layer size and coupling strength and the good agreement of the
analytical estimate with direct numerical simulations.

4. SUMMARY AND CONCLUSIONS
Propagation of synchrony in feed-forward sub-structures that are
embedded in randomly connected recurrent networks has been a
research topic for more than two decades now [see, e.g., review on
this topic (Kumar et al., 2010)] and it is hypothesized that such
propagation possibly explain the emergence of spatio-temporal
spike patterns and information transmission.

In this article, we have analyzed diluted FFNs and investi-
gated their capability to propagate synchrony. In addition to
conventional additive (linear) input processing at single neurons,
we considered non-additive dendritic interactions modeling the
impact of fast dendritic spikes (Ariav et al., 2003; Gasparini et al.,
2004; Polsky et al., 2004; Gasparini and Magee, 2006). We emu-
lated the influence of the embedding recurrent network which
establishes the irregular ground state in the FFN, by random
Poissonian inputs (van Vreeswijk and Sompolinsky, 1996, 1998;
Brunel, 2000). This approach does not account for back-reactions
of activity within the FFN on the embedding network. It is justi-
fied as long as the connectivity and connection strength between
the neurons of the FFN and the embedding network is low and
weak compared to the feed-forward connectivity and connec-
tion strength. The back-reaction then influences the activity of
the embedding network only weakly and a robust propagation
of synchrony can be achieved (Vogels and Abbott, 2005; Kumar
et al., 2008; Jahnke et al., 2012). Yet, if the condition is not
met, synchronous activity within the FFN may spread out over
the embedding network and potentially cause pathological activ-
ity (“synfire-explosions”) (Mehring et al., 2003). For specifically
structured networks also more complex interactions are possible,
such as an enhancement of propagating synchrony (manuscript
in preparation).

In the main part of the article, we studied the propaga-
tion of synchrony employing leaky integrate-and-fire neurons
in the limit of temporally short synaptic inputs and homo-
geneous synaptic delays. Synchronous pulses consist of exactly
synchronized (simultaneous) spikes. This allows to investigate
propagation of synchrony by considering the size of a syn-
chronized pulse only, so that the analysis becomes analytically
tractable. Nevertheless, in the second part of our article we also
consider systems with heterogeneous coupling delays and tem-
porally extended interactions. In agreement with the literature
(e.g., Diesmann et al., 1999; Gewaltig et al., 2001; Goedeke and
Diesmann, 2008), we observe that pulse packets tend to syn-
chronize along the layers of the FFN so that the results of our
simplified description are directly applicable.

We derived scaling laws as well as quantitative estimates for
the critical connectivity marking the bifurcation point between
the regime where robust propagation of synchrony is possible
and where it is not. In particular, based on a suitable series
expansion we have shown that for linearly coupled FFNs the crit-
ical connectivity decays inversely proportional to layer size and
coupling strength. Moreover, the proportionality factor can be
estimated from the ground state properties of the single neurons.
The estimate agrees with direct numerical simulations within the
biologically relevant parameter regime where (a) the spontaneous
firing rate of the neurons is low and (b) the distribution of mem-
brane potentials is broad (each neuron receives a huge number
of almost random presynaptic inputs). If a synchronous pulse
propagates along the layers of a linearly coupled FFN, most of the
neurons of each layer participate in the propagation of synchrony,
independent of the actual layer size, coupling strength or layout of
the external network.

For neurons incorporating non-additive dendritic interac-
tions, the spiking probability as a function of the dendritic
stimulation becomes discontinuous. Therefore, the analytical
estimation of the critical connectivity in non-linearly coupled
FFNs required a different approach than the treatment of lin-
early coupled FFNs. We have shown that the critical connectivity
decays inversely proportional to the layer size (as in linearly cou-
pled FFNs), and we have derived the dependence on the coupling
strength which is more complicated. The critical connectivity is
completely determined by layer size, spiking probability of the
single neuron upon the reception of a non-linearly enhanced
presynaptic input and the number of inputs required to reach
the dendritic threshold. Our results indicate that in presence of
non-linear dendrites, neurons process synchronous inputs sim-
ilar to threshold units. Such units have been previously used as
simplified rate neuron models to study activity propagation in
discrete time, e.g., in Nowotny and Huerta (2003); Leibold and
Kempter (2006); Cayco-Gajic and Shea-Brown (2013). Because
the non-linear modulation function saturates, FFNs with non-
additive dendritic interactions allow for a sparser coding, i.e.,
only a sub-fraction of each layer (the actual size depends on
the non-linear enhancement level) participates in the propaga-
tion of synchrony. Whereas stable propagation of synchrony is
possible in systems with and without dendritic non-linearities, it
occurs in non-linearly coupled FFNs with substantially reduced
feed-forward anatomy (reduced connectivity or reduced coupling
strength) compared to linearly coupled FFNs.

The analytic derivation of the critical connectivity is based
on rather general assumptions: (a) the effect of a synchronous
input pulse is approximately the sum of the effects of single inputs
and (b) for networks with non-additive dendritic interactions the
spiking probability due to non-linearly enhanced input is sub-
stantially larger than due to a non-enhanced input. Therefore the
predictions and estimates are directly applicable to networks of
biologically more detailed neuron models.

In our article we have shown that even highly diluted feed-
forward structures are suitable to reliably support the directed
and constrained propagation of synchronous activity. Such struc-
tures occur naturally in sparse, random recurrent networks which
are typical for the cortex. These structures might be enhanced
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by simple synaptic plasticity to enable synchrony propagation.
Fast dendritic spikes promote this propagation, as they selectively
amplify synchronous inputs and are only weakly influenced by
irregular background activity.

Indeed, important candidate regions for the generation of
propagating synchrony such as the hippocampus and other, neo-
cortical regions exhibiting replay of activity (Nadasdy et al.,
1999; Lee and Wilson, 2002; Ji and Wilson, 2007; Xu et al.,
2011; Eagleman and Dragoi, 2012) are sparse and show synap-
tic plasticity (Debanne et al., 1998; Kobayashi and Poo, 2004).
Dendritic spikes as prominently found in, e.g., the hippocam-
pus (Ariav et al., 2003; Gasparini et al., 2004; Polsky et al., 2004;
Gasparini and Magee, 2006) trigger depolarizations and calcium
influx sufficient to change synaptic strengths (Golding et al., 2002;
Remy and Spruston, 2007) and the dendrites itself exhibit branch
“strength potentiation,” i.e., the strength of a dendritic spike on
a dendritic branch exhibits experience- and activity-dependent
plasticity (Losonczy et al., 2008; Makara et al., 2009; Müller et al.,
2012).

Our work indicates that fast dendritic spikes reduce the
required synaptic strength and connection density for replay of
spike patterns. Moreover, their saturation and the resulting sparse
coding might explain the observed variability during replay. Thus,
in particular, our understanding of propagation along diluted
feed-forward chains may now be combined with knowledge
on synaptic plasticity and generation of activity accompanying
replay (e.g., sharp wave/ripples) to gain an integrated mechanistic
understanding for encoding, replay and memory transfer.
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A. APPENDIX
A.1 PROOF OF EXISTENCE OF A GLOBAL MINIMUM OF PNL(n)

We will show that pNL(n) as derived in Equation (59),

pNL(n) =
n2ε + 2�b + n

√
n2ε2 + 4�b

(
ε − �b

ω

)
pf (κ)ε(n2 + ω)

(
1 + Erf

(
n√
2

)) (A.1)

= 1

pf (κ)

2�b + n2ε
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1 +
√

1 + α
n2

)
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1 + Erf
(

n√
2
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n2ε + ωε

) , (A.2)

has a global minimum for εω > �b. In Equation (A.2) we defined

α := 4�b

ε

(
1 − �b

εω

)
. (A.3)

For εω > �b, pNL is positive and continuous, and approaches

lim
n→−∞

(
pNL(n)

) = ∞, (A.4)

lim
n→∞

(
pNL(n)

) = 1

pf (κ)
, (A.5)

in the limit of large/small n. Further, the derivative of pNL can be
written as

d

dn
pNL(n) = (2 − h1(n)) h2(n), (A.6)

where we defined the functions
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ω
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)2 . (A.8)

For n > 0 and εω > �b,

α > 0, (A.9)

h1(n) > 0, (A.10)

h2(n) > 0, (A.11)

and in the limit of large n,

lim
n→∞ h1(n) = 1

εω

(
0 + 2�b + αε

2

)
(A.12)

= 2
2�bωε − �2

b

ω2ε2
(A.13)

lim
n→∞ h2(n) = 0. (A.14)

For εω > �b, h1(n) is smaller than two for sufficiently large n
(cf. Equation A.13) and thus the derivative of pNL(n) becomes
positive (cf. Equation A.6). Consequently pNL approaches
1/pf (κ) from below for large n (cf. also Equation A.5). This
proves the existence of a global minimum of pNL(n), because
pNL > 1/pf (κ) for sufficiently small n (cf. Equation A.4).

A.2 BIOLOGICAL MORE DETAILED NEURON MODELS
In section 3.3.3 we consider biologically more detailed neu-
ron models. In this appendix we present descriptions of these
models including the parameters used for the numerical simu-
lations in Figure 13. These simulations were done using NEST
(Gewaltig and Diesmann, 2007), a simulator for spiking neu-
ral network models (available at http://www.nest-initiative.org).
We implemented new model classes within the NEST framework
to handle conductance-based leaky integrate-and-fire neurons
with double exponential input conductances as well as non-
linear dendritic interactions (source code available from Sven
Jahnke).

A.2.1 CB-type model
The CB-type model is a leaky integrate-and-fire neuron with con-
ductance based synapses, augmented with a mechanism for the
generation of current pulses mimicking the effect of a dendritic
spike (see also Memmesheimer, 2010; Jahnke et al., 2012). The
subthreshold dynamics of the membrane potential Vl of neuron l
obeys the differential equation

Cm
l

dVl(t)

dt
= gL

l

(
V rest

l − Vl(t)
)+ gA

l (t)
(
EEx − Vl(t)

)
+ gG

l (t)
(
EIn − Vl(t)

)+ IDS
l (t) + I0

l . (A.15)

Here, Cm
l is the membrane capacity, gL

l is the resting conduc-
tance, V rest

l is the resting membrane potential, EEx and EIn are

the reversal potentials, and gA
l (t) and gG

l (t) are the conductances
of excitatory and inhibitory synaptic populations, respectively.
IDS
l (t) models the current pulses caused by dendritic spikes and

I0
l is a constant current gathering slow external and internal

currents. The time course of single synaptic conductances con-
tributing to gA

l (t) and gG
l (t) is given by the difference between

two exponential functions (e.g., Dayan and Abbott, 2001) with
time constants τA, 1 and τA, 2 for the excitatory and τG, 1 and τG, 2

for the inhibitory conductances. Whenever the membrane poten-
tial reaches the spike threshold �l, the neuron sends a spike to its
postsynaptic neurons, is reset to V reset

l and becomes refractory for

a period tref
l . Additionally to inputs from the preceding layer each

neuron receives excitatory and inhibitory Poissonian input spike
trains with rates νex and νin; single inputs have coupling strength
εex and εin, respectively.

To account for dendritic spike generation, we consider the
sum gl,�t of excitatory input strengths (characterized by the cou-
pling strengths), arriving at an excitatory neuron l within the time
window �t for non-linear dendritic interactions,

gl, �t(t) =
∑

j

∑
k

εljχ[t−�t, t](t
f
jk + τ), (A.16)
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where χ[t − �t, t] is the characteristic function of the interval

[t − �t, t], t
f
jk is the kth firing time of neuron j and τ denotes

the synaptic delay. We denote the peak conductance (coupling
strength) for a connection from neuron j to neuron l by gmax

lj . If
gl, �t exceeds a threshold g�, a dendritic spike is initiated and the
dendrite becomes refractory for a time window tDS,ref. The effect
of the dendritic spike is incorporated into the model by the cur-
rent pulse that reaches the soma a time τDS thereafter. This cur-
rent pulse is modeled as the sum of three exponential functions,

IDS
l (t) = c(g�t)

[
−Ae

− t
τDS,1 + Be

− t
τDS,2 − Ce

− t
τDS,3

]
,(A.17)

with prefactors A > 0, B > 0, C > 0, decay time constants τDS,1,
τDS,2, τDS,3 and a dimensionless correction factor c

(
g�t
)
, where

g�t is the summed excitatory input at the initiation time of the
dendritic spike as given by Equation (A.16). The factor c

(
g�t
)

modulates the pulse strength, ensuring that the peak of the exci-
tatory postsynaptic potential (pEPSP) reaches the experimentally
observed region of saturation. At very high excitatory inputs,
the conventionally generated depolarization exceeds the level of
saturation, c

(
g�t
)

is zero and the pEPSP increases (cf. inset of
Figure 13A).

Parameters for Figure 13
The single neuron parameters for the numerical sim-
ulations are Cm

l = Cm = 400 pF, gL
l = gL = 25 nS,

V rest
l = V rest = −65 mV, �l = � = −50 mV, tref

l = tref = 3 ms
and V reset

l = V reset = −65 mV. The reversal potentials are
EEx = 0 mV and EIn = −75 mV and the time constants for the
excitatory and inhibitory conductances are τA,1 = τG,1 = 2.5 ms
and τA,2 = τG,2 = 0.5 ms. The parameters of the dendritic spike
current are �t = 2 ms, g� = 8.65 nS, τDS = 2.7 ms, A = 55 nA,
B = 64 nA, C = 9 nA, τDS,1 = 0.2 ms, τDS,2 = 0.3 ms,
τDS,3 = 0.7 ms and tref, DS = 5.2 ms and the dimensionless cor-
rection factor is given by c(g) = max

{
1.5 − g · 0.053nS−1, 0

}
.

For the first setup (pf ≈ 0.97) we set I0
l = I0 = 250 pA,

νex = 2.4 kHz, νin = 0.6 kHz, εex = 0.6 nS and εin = 6.6 nS;
for the second setup (pf ≈ 0.67) we set I0

l = I0 = 0 pA,

νex = 20 kHz, νin = 5 kHz, εex = 0.6 nS and εin = −6.6 nS.

A.2.2 HH-type model
We employ a standard model provided by NEST
(“hh_psc_alpha”; Hodgkin–Huxley type neuron with alpha-
function shaped postsynaptic currents) and incorporated a
dendritic spike current as in the CB-Model. The membrane
potential Vl of neuron l obeys the differential equation

Cm
l

dVl(t)

dt
= INa

l (t) + IK
l (t) + IL

l (t) + I0
l

+ Iex
l (t) + Iin

l (t) + IDS
l (t). (A.18)

For clarity we drop the index l in the following; all quantities refer
to some neuron l. In Equation (A.18),

INa(t) = gNam(t)3h(t)
[
ENa − V(t)

]
(A.19)

IK(t) = gKn(t)4 [EK − V(t)
]

(A.20)

IL(t) = gL [EL − V(t)
]

(A.21)

specify the Na+current, the K+ current and leak current. The
dynamics of the gating variables m, n and h are governed by

dm(t)

dt
= αm(t) [1 − m(t)] − βm(t)m(t) (A.22)

dh(t)

dt
= αh(t) [1 − h(t)] − βh(t)h(t) (A.23)

dn(t)

dt
= αn(t) [1 − n(t)] − βn(t)n(t), (A.24)

where the voltage dependencies are given by

αn(t) = 0.01
[
Ṽ(t) + 55

]
1 − exp

[
− Ṽ(t)+55

10

] (A.25)

βn(t) = 0.125 · exp

[
− Ṽ(t) + 65

80

]
(A.26)

αm(t) = 0.1
[
Ṽ(t) + 40

]
1 − exp

[
−V(t)+40

10

] (A.27)

βm(t) = 4 · exp

[
− Ṽ(t) + 65

18

]
(A.28)

αh(t) = 0.07 · exp

[
− Ṽ(t) + 65

20

]
(A.29)

βh(t) =
(

1 + exp

[
− Ṽ(t) + 35

10

])−1

. (A.30)

In Equations (A.25–A.30) Ṽ(t) := V(t)
1mV is the value of membrane

potential normalized by 1 mV. Spikes are detected by a com-
bined threshold-and-local-maximum search, if there is a local
maximum above a certain threshold of the membrane poten-
tial, U� = 0 mV, it is considered a spike (for more details see
the NEST manual and the model implementation available at
http://www.nest-initiative.org). After a synaptic delay time τ a
spike initiates an alpha-function shaped current pulse at the post-
synaptic neurons. The total excitatory and inhibitory input to
neuron l is given by

Iex(t) =
∑

k

εex
k

e

τex
exp
[
− t

τex

]
�
[
t − tex

k

]
(A.31)

Iin(t) =
∑

k

εin
k

e

τin
exp
[
− t

τin

]
�
[

t − tin
k

]
, (A.32)

where εex
k > 0

(
εin

k < 0
)

is the strength of the kth arriving excita-

tory (inhibitory) spike at neuron l, tex
k

(
tin
k

)
denotes the reception

time of that spike and e is the Euler constant [the currents Iex(t)
and Iin(t) are normalized such that an input of strength ε = 1 pA
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causes a peak current of 1 pA]. The time constants τex and τin

are the synaptic time constants. As before, we account for den-
dritic spike generation by considering the sum of excitatory input
strengths received by neuron l within the time window �t,

ε�t(t) =
∑

k

εex
k χ[t − �t,t](t

f
k + τ). (A.33)

If this sum exceeds the dendritic threshold I�, a dendritic spike is
initiated and we model its effect is by the current pulse

IDS(t) = c(ε�t)
[
−Ae

− t
τDS,1 + Be

− t
τDS,2 − Ce

− t
τDS,3

]
,(A.34)

starting after a delay time τDS after the initiation time of the den-
dritic spike. The correction factor c (ε�t) modulates the pulse
strength such that the depolarization saturates for suprathresh-

old inputs until the effects of linearly summed input exceed the
effects of the dendritic spike (cf. inset of Figure 13B).

A.2.3 Parameters for Figure 13
As before, we consider homogeneous neuronal properties.
The single neuron parameters for the numerical simulations
are Cm = 200 pF, EK = −77 mV, EL = −70 mV, ENa = 50 mV,
gK = 3600 nS, gL = 30 nS, gNa = 12000 nS, τex = 2 ms and
τin = 2 ms. The parameters of the dendritic spike current
are �t = 3.5 ms, I� = 270 pA, τDS = 2.7 ms, A = 27.5 nA,
B = 32 nA, C = 4.5 nA, τDS,1 = 0.2 ms, τDS,2 = 0.3 ms,
τDS,3 = 0.7 ms and tref,DS = 5.2 ms and the dimensionless cor-
rection factor is given by c(ε) = max

{
1.54 − ε · 0.002 pA−1, 0

}
.

For the first setup (pf ≈ 0.97) we set I0 = 500 pA, νex = 3 kHz,
νin = 3 kHz, εex = 20 pA and εin = −20 pA; and for the sec-
ond setup (pf ≈ 0.67) we set I0 = 250 pA, νex = 10 kHz,
νin = 10 kHz, εex = 20 pA and εin = −20 pA.
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Sparse random networks contain structures that can be considered as diluted feed-forward networks.

Modeling of cortical circuits has shown that feed-forward structures, if strongly pronounced compared to

the embedding random network, enable reliable signal transmission by propagating localized (subnet-

work) synchrony. This assumed prominence, however, is not experimentally observed in local cortical

circuits. Here, we show that nonlinear dendritic interactions, as discovered in recent single-neuron

experiments, naturally enable guided synchrony propagation already in random recurrent neural networks

that exhibit mildly enhanced, biologically plausible substructures.

DOI: 10.1103/PhysRevX.2.041016 Subject Areas: Biological Physics, Complex Systems

I. INTRODUCTION

Cortical neural networks generate a ground state of
highly irregular spiking activity whose dynamics is sensi-
tive to small perturbations such as missing or additional
spikes [1–4]. A robust, reliable transmission of information
in the presence of such perturbations and noise is nonethe-
less assumed to be essential for neural computation. It has
been hypothesized that this reliable transmission might be
achieved by propagation of pulses of synchronous spikes
along feed-forward chains [5]. In current models, function-
ally relevant chains require a dense connectivity between
the neuronal layers of the network [6] or strongly enhanced
synapses and specifically modified response properties of
neurons within the chain [7]. Such highly distinguished
large-scale structures are not observed experimentally,
however.

Can less-structured networks also guide synchrony?
Recently, single-neuron experiments have revealed a
mechanism that nonlinearly promotes synchronous inputs.
On synchronous dendritic stimulation, neurons are capable
of generating fast dendritic spikes. In the soma, these
spikes induce rapid, strong depolarizations [8] that are
nonlinearly enhanced compared to depolarizations ex-
pected from linear summation of single inputs. If the
dendritic spike induces an action potential in the soma,
the potential occurs at a fixed time after the stimulation,
with submillisecond precision. Other experiments have
found slow dendritic spikes that are comparably insensitive
to input synchrony [9]. These slow dendritic spikes endow
single neurons with computational capabilities comparable
to multilayered feed-forward networks of simple-rate

neurons [10]. Furthermore, they provide a possible mecha-
nism underlying neural bursting and its propagation, which
have been shown to enhance reliability and temporal
precision of signal propagation [11,12]. The impact on
collective circuit dynamics of fast dendritic spikes that
induce nonadditive coupling has not been systematically
investigated in a general setting so far.
In this article, we show that and describe how fast

dendritic nonlinearities may support guided-synchrony
propagation in neural circuits. First, we develop an ana-
lytical approach to describe such propagation in linearly
and nonlinearly coupled networks. In particular, we derive
expressions for the critical connectivity above which
propagation occurs and for the size of the propagating
pulse. We quantify how dendritic nonlinearities compen-
sate for dense anatomical connections and thereby promote
propagation of synchrony. Finally, using large-scale simu-
lations of more detailed recurrent network models, we
show that feed-forward networks that occur naturally as
part of random circuits enable persistent guided synchrony
propagation due to dendritic nonlinearities.

II. MODELS AND METHODS

A. Analytically tractable model

Model with linear summation of inputs. As a basis
model, we consider networks of conventional leaky
integrate-and-fire neurons that interact by sending and
receiving spikes via directed connections. The membrane
potential Vl of a neuron l satisfies

_VlðtÞ ¼ ��lVlðtÞ þ IlðtÞ; (1)

where �l is the inverse membrane time constant and IlðtÞ is
the total input current at time t. In addition to inputs from
the network, the neurons receive excitatory and inhibitory
random inputs that emulate an embedding network, i.e.,
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IlðtÞ ¼ I0l þ Iext;exl ðtÞ þ Iext;inl ðtÞ þ Inetl ðtÞ; (2)

where I0l is a constant input current modeling slow external

(from outside the chain) and internal (from the chain)

currents; Iext;exl ðtÞ and Iext;inl ðtÞ are the contributions due to
arriving external excitatory and inhibitory spikes [which
are modeled as independent random (Poissonian) spike
trains with rate �ext;ex and �ext;in, respectively]; and Inetl ðtÞ
are the contributions originating from spikes of neurons of
the network. In the absence of any spiking activity, the
membrane potential exponentially converges toward its
asymptotic value V1

l
:¼ I0l =�l. When the neuron’s mem-

brane potential reaches or exceeds its threshold �l, its
membrane potential is reset to Vreset

l and a spike is emitted,

which arrives at the postsynaptic neuron j after a delay
time �jl. For a refractory period trefl after the reset, all

incoming spikes to neuron l are ignored, and the membrane
potential is kept at Vreset

l .

We model the fast rise of the membrane potential on the
arrival of a presynaptic spike by an instantaneous jump,
such that the contributions of the arriving external spikes to
the total input current are given by

Iext;exl ðtÞ ¼ X
k2Z

�ext;ex�ðt� text;exl;k Þ; (3)

Iext;inl ðtÞ ¼ X
k2Z

�ext;in�ðt� text;inl;k Þ; (4)

where text;exl;k (text;inl;k ) are the arrival times of the kth excita-

tory (inhibitory) external spike at neuron l, �ext;ex > 0 or
�ext;in < 0 are the strengths of single external spikes, and
�ð�Þ is the Dirac � distribution. Analogously, the contribu-
tion of spikes received from neurons of the network is
given by

Inetl ðtÞ ¼ X
j

X
k

�lj�ðt� tfj;k � �ljÞ; (5)

where �lj is the coupling strength from neuron j to l and tfj;k
is the kth spike time of neuron j.

Model with nonlinear summation of inputs. In the above
model without nonlinear dendrites, the strengths of syn-
chronous inputs are summed up linearly [cf. Eq. (5)]. We
incorporate nonlinear dendrites by modulating this sum for
excitatory inputs by a nonlinear function � that can be
directly read off from experimental results [8]:� equals the
identity for small excitatory input, increases steeply when
the input exceeds a threshold �b, and saturates for larger
inputs. We define the dendritic modulation function as

�ð�Þ ¼
�
� for � � �b

� otherwise.
(6)

For simplicity, we consider only exactly simultaneous
spikes as synchronous. Accordingly, conduction delays
are chosen homogeneously, �ij � �, so that synchronous

presynaptic spiking can be amplified. In this scenario, the

detection of synchronous events is straightforward.
However, systems with heterogeneous delays and a finite
dendritic integration window exhibit qualitatively the same
phenomena [13]. The contribution of spikes received from
the network is then given by

Inetl ðtÞ ¼X
tf

�
�

� X
j2MexðtfÞ

�lj

�
þ X

j2MinðtfÞ
�lj

�
�ðt� tf � �Þ;

(7)

where tf are all firing times in the network. The sets
MexðtfÞ and MinðtfÞ denote the sets of indices of neurons
sending an excitatory or inhibitory spike at time tf, re-
spectively. Networks with linear dendrites can be described
by setting �ð�Þ ¼ �.

B. Biologically more detailed model

Conductance-based model. In the last part of this article,
we employ a biologically more detailed neuron model to
highlight the generality of our findings on propagation
enhancement. The neuron model is a conductance-based,
leaky integrate-and-fire neuron that is augmented by terms
introducing the impact of dendritic spikes (see also [14]).
The subthreshold dynamics of the membrane potential Vl

of neuron l obeys the differential equation

Cm
l

dVlðtÞ
dt

¼ gLl ½Vrest
l � VlðtÞ� þ gAl ðtÞ½EEx � VlðtÞ�

þ gGl ðtÞ½EIn � VlðtÞ� þ IDSl ðtÞ þ I0l : (8)

Here, Cm
l is the membrane capacity, gLl is the resting

conductance, Vrest
l is the resting membrane potential, EEx

and EIn are the reversal potentials, and gAl ðtÞ and gGl ðtÞ are
the conductances of excitatory and inhibitory synaptic
populations, respectively. IDSl ðtÞ models the current pulses

caused by dendritic spikes, and I0l is a constant current

gathering slow external and internal currents. The time
course of single synaptic conductances contributing to
gAl ðtÞ and gGl ðtÞ is given by the difference between two

exponential functions (e.g., [15]). Whenever the membrane
potential reaches the spike threshold�l, the neuron sends a
spike to its postsynaptic neurons, is reset to Vreset

l , and

becomes refractory for a period trefl .

To account for dendritic spike generation, we consider
the sum gl;�t of excitatory input strengths (characterized by
the coupling strengths) arriving at an excitatory neuron l
within the time window �t for nonlinear dendritic inter-
actions,

gl;�tðtÞ ¼
X
j

X
k

gmax
lj �½t;t��t�ðtfj;k þ �Þ; (9)

where �½t;t��t� is the characteristic function of the interval

½t; t� �t�, tfj;k is the kth firing time of excitatory neuron j,

and � denotes the synaptic delay. We denote the peak
conductance (coupling strength) for a connection from
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neuron j to neuron l by gmax
lj . If gl;�t exceeds a threshold

g�, a dendritic spike is initiated and the dendrite becomes
refractory for a time window tDS;ref . The effect of the
dendritic spike is incorporated into the model by the cur-
rent pulse that reaches the soma a time �DS thereafter. This
current pulse is modeled as the sum of three exponential
functions,

IDSl ðtÞ ¼ cðg�tÞ½�Ae�ðt=�DS;1Þ þ Beð�t=�DS;2Þ � Ce�ðt=�DS;3Þ�;
(10)

with prefactors A > 0, B> 0, C> 0, decay time constants
�DS;1, �DS;2, �DS;3, and a dimensionless correction factor
cðg�tÞ, where g�t is the summed excitatory input at the
initiation time of the dendritic spike as given by Eq. (9).
The factor cðg�tÞ modulates the pulse strength, ensuring
that the peak of the excitatory postsynaptic potential
(pEPSP) reaches the experimentally observed region of
saturation. At very high excitatory inputs, the convention-
ally generated depolarization exceeds the level of satura-
tion, and the pEPSP increases [cf. Fig. 1(a)].

Detection probability. In the last part of this article, we
investigate recurrent networks where a feed-forward sub-
network consisting of a certain number of layers (groups)
is created by modifying strengths of existing synaptic
connections of the network. To decide whether propagation
of synchrony in recurrent networks is successful, we con-
sider the signal-to-noise ratio (SNR): We pick ! neurons,
randomly selected from the network, to be a first group.
After initiation of synchronous activity in this group, we
count the number of spikes from neurons of the ith group,
Si, within a time window [texpi � tw

2 , t
exp
i þ tw

2 ]. (For details

on how the ith group is defined, see Sec. III C on recurrent
networks.) Here, t

exp
i is the expected time for the synchro-

nous pulse to reach layer i, and tw is the expected width
of the synchronous pulse. We consider all spikes within
the time window of size tw centered at texpi as part of
the synchronous pulse. We assume that texpi ¼ texp1 þ
ði� 1Þ�texp, where �texp itself is chosen after simulation
such that

P
iSi becomes maximal:

Si ¼
X
k

X
j2GrðiÞ

�½texpi �ðtw=2Þ;texpi þðtw=2Þ�ðtfj;kÞ: (11)

Here, GrðiÞ are the indices of neurons of group i, tfj;k is the

kth firing time of neuron j, and � denotes the characteristic
function, as before.
To determine the noise level of group i, we measure the

probability Pi
�tobs;tw

ðkÞ of finding k spikes from neurons of

group iwithin time windows tw over a control time interval
during which no synchronous activity is initiated. The
noise level Ni of group i is the minimal value satisfying

XNi

k¼0

Pi
�tobs;tw

ðkÞ � a; (12)

with a constant a & 1.
Finally, we denote the propagation of synchrony up to

the ith layer as successful if the SNR is larger than b,

SNR i :¼ min
j¼1;...;i

�
Sj
Nj

�
> b; (13)

where b � 1. This means, in particular, that we can dis-
tinguish the background (spontaneous) activity from the
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FIG. 1. Example dynamics of a conductance-based, leaky integrate-and-fire neuron with dendritic spike generation. (The neuron is
initially at resting membrane potential Vrest ¼ �65 mV, there are no external inputs, and I0 ¼ 0.) Panel (a) shows the pEPSP after a
stimulation versus the expected pEPSP, i.e., the pEPSP for a neuron without dendritic spike generation. For inputs corresponding to a
pEPSP larger than about 3:8 mV, a dendritic spike is generated which leads to a higher depolarization than expected from additive
integration. Panel (b) shows the time course of the membrane potential of a neuron with (green) and without (black) nonlinear dendritic
interaction in response to different excitatory inputs sequences. (The red horizontal line indicates the somatic spike threshold). Panel
(c) shows the input sequences (black lines, strength: gex ¼ 2:3 nS; close-ups given in insets) and the sum gl;�tðtÞ of excitatory inputs

received within the dendritic integration window [t��t, t] (gray lines); cf. Eq. (9). At the first spike arrival around t ¼ 1 ms, three
inputs are received within �t such that gl;�tðtÞ reaches 6.9 nS. The sum is smaller than the dendritic threshold g� ¼ 8:65 nS [red

horizontal line in (c)], so no dendritic spike is generated and there is no difference between the membrane potential for a neuron with
and without a mechanism for dendritic spike generation. Around t ¼ 50 ms, four spikes arrive within �t, gl;�tðtÞ exceeds the dendritic
threshold, and a dendritic spike is generated. Around t ¼ 100 ms, four spikes arrive at the neuron, but the temporal difference between
the last and the first spike is slightly larger than �t. Consequently, gl;�tðtÞ does not exceed the dendritic threshold and no dendritic

spike is initiated.
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signal induced by propagation of synchrony in all layers
1; . . . ; i.

III. RESULTS

A. Feed-forward chains with linear coupling

How can diluted feed-forward networks (FFNs) propa-
gate synchrony? FFNs consist of a sequence of layers, each
composed of ! excitatory neurons; they forward connec-
tions to neurons in the subsequent layer randomly present
with probability p. Present connections have strength �.
Synchronous spiking activity is initiated by exciting neu-
rons of the first layer to spike simultaneously. In the second
layer, the synchronous pulse arriving from the first layer
excites a certain subgroup of neurons to spike simulta-
neously which in turn generates a synchronous input to
layer three, etc.

To understand the collective dynamics analytically, we
consider networks of leaky integrate-and-fire neurons in
the limit of fast synaptic currents (cf. Sec. II). In the
absence of synchronous activity, each neuron of the FFN
receives a large number of inputs from an emulated exter-
nal network and only very few inputs from the previous
layer, such that its dynamics is practically identical to the
ground state of balanced networks. If the connections
within the FFN are weak and/or the connection probability
is low, the spontaneous spiking activity is influenced only
weakly by spiking activity of the FFN. Therefore, we
assume that the ground-state activity is exclusively gov-
erned by the external inputs, effectively setting couplings
within the chain to �ij ¼ 0. The external input is balanced,

i.e., the mean input is subthreshold, and spontaneous spik-
ing is caused by fluctuations in the input. The network’s
neurons thus spike in an asynchronous and irregular man-
ner [1,2] and the stationary distribution of membrane

potentials PVðVÞ can be calculated analytically in diffusion
approximation [2,16].

pfðxÞ :¼
Z �

��x
PVðVÞdV (14)

is the probability of finding a neuron’s membrane potential
in the interval [�� x, �]. We model the fast rise of the
membrane potential on the arrival of (possibly nonlinear
enhanced) presynaptic spikes by an instantaneous jump in
the membrane potential (cf. Sec. II); thus, pf½�ðh�Þ�
specifies the spiking probability of a single neuron, after
receiving h input spikes of strength � from the preceding
layer.
To assess the propagation of synchrony, we consider the

average number of neurons that are activated in each layer
in response to the initial synchronous pulse (cf. also [17]).
When gi neurons spike synchronously in layer i,

pspðgiÞ :¼
Xgi
h¼0

gi
h

� �
phð1� pÞgi�hpf½�ðh�Þ� (15)

is the probability of spiking of a particular neuron in layer
iþ 1, where the number of simultaneous inputs h is bino-
mially distributed, h� Bðgi; pÞ. Thus, for layers of size!,
the average number of neurons spiking in layer iþ 1 is

hgiþ1i ¼ !pspðgiÞ: (16)

Substituting the average group size hgii for the actual size
gi yields the interpolated map hgiþ1i ¼ !pspðhgiiÞ, whose
fixed points qualitatively determine the propagation of
synchronous activity (cf. Fig. 2).
The trivial, absorbing fixed point G0 ¼ 0, defining a

state of extinguished activity, always exists. For suffi-
ciently small p, �, and !, this is the only fixed point.
With increasing connectivity and layer size, a pair of fixed
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FIG. 2. Emergence of propagation of synchrony. (a) Analytically derived iterated maps approximating the time evolution of the
synchronous pulse [solid line, cf. Eq. (16)] and transition probability obtained from network simulations (color code). (b) The basin of
attraction of the stable fixed point G2 is illustrated. Initial pulses within the range ðG1; !� propagate with an average pulse size around
G2. (c) Iterated maps for FFNs with linear (solid lines) and nonlinear dendritic interactions (dashed lines). Nonlinear interactions
reduce the connectivity required for propagation and allow for smaller fractions of active neurons.
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points (G1, unstable, and G2, stable) appears via a tangent
bifurcation. Initial pulses in the basin of G2 (i.e., those
larger than G1) typically initiate stable propagation of
synchrony with group sizes around G2. For given layer
size ! and connection strength �, the critical connectivity
p� for whichG1 ¼ G2 marks the minimal connectivity that
supports stable propagation of synchrony.

To elaborate the influence of nonlinear dendritic inter-
actions, we derive the critical connectivity for FFNs. The
mechanisms underlying propagation of synchrony are dif-
ferent for networks with and without nonlinear dendritic
interactions and thus require different analytical ap-
proaches to derive p�. We first consider feed-forward
chains with conventional, linear coupling, i.e., �ðxÞ ¼ x.
To obtain p�, we first expand pfðxÞ into a Taylor series up

to first order around the mean of the binomial distribution
specifying the average number pgi of active neurons in
each layer, such that Eq. (16) simplifies to

hgiþ1i ¼ !
Xgi
h¼0

gi

h

 !
phð1� pÞgi�hpfðh�Þ (17)

	 !
Xgi
h¼0

gi

h

 !
phð1� pÞgi�h (18)


 ½pfðgip�Þ þ p0
fðgip�Þðh�� gip�Þ� (19)

¼ !pfðgip�Þ: (20)

The linear approximation becomes exact in the limit of
large layer sizes ! and small couplings �, where the
product �! is kept constant. We obtain an interpolated
map from expression (20) by replacing gi by its mean value
hgii. At the fixed point G :¼ hgiþ1i ¼ hgii, the function

FðG;py; !; �Þ :¼ G�!pfðpyG�Þ ¼ 0 (21)

vanishes. Here, the values G and py are the average group
size and the connection probability at the fixed point for
given layer size ! and coupling strength �, respectively.
Furthermore, F has a double root at the bifurcation point,
so the derivative

@FðG;p�; !; �Þ
@G

¼ 1�!p��p0
fðp�G�Þ ¼ 0 (22)

also vanishes such that the derivative of pf at the bifurca-

tion point is given by

p0
fðp�G�Þ ¼ 1

!p��
: (23)

Combining the above equations, we express the derivatives
of F at the bifurcation point by

@FðG;p�; !; �Þ
@p� ¼ �!G�p0

fðp�G�Þ ¼ � G

p� ; (24)

@FðG;p�; !; �Þ
@!

¼ �pfðp�G�Þ ¼ �G

!
; (25)

and

@FðG;p�; !; �Þ
@�

¼ �!Gp�p0
fðp�G�Þ ¼ �G

�
: (26)

Applying the implicit function theorem yields the set of
derivatives of p�,

@p�ðG;!; �Þ
@G

¼ �
�
@FðG;p�; !; �Þ

@p�

��1
�
@FðG;p�; !; �Þ

@G

�
¼ 0; (27)

@p�ðG;!; �Þ
@!

¼ �
�
@FðG;p�; !; �Þ

@p�

��1
�
@FðG;p�; !; �Þ

@!

�

¼ �p�ðG;!; �Þ
!

; (28)

and

@p�ðG;!; �Þ
@�

¼ �
�
@FðG;p�; !; �Þ

@p�

��1
�
@FðG;p�; !; �Þ

@�

�

¼ �p�ðG;!; �Þ
�

; (29)

which are solved by

p�
L
:¼ p� ¼ 1

	�!
; (30)

where 	 is a constant independent of! and �. We note that
we did not make explicit assumptions on the distribution of
membrane potentials PVðVÞ, which is determined by the
setup of the external network, i.e., the external input cur-
rent I0, the coupling strengths �ext;ex and �ext;in, as well as
the firing rates �ext;ex and �ext;in. With a different, lengthier
approach based on a second-order expansion of pf, one

can derive an analytical estimate of 	 [13]. Figure 3(a)
displays this analytical approximation for p�

L and its agree-
ment with numerical simulations. For connectivity larger
than p�

L, there is stable propagation of synchrony even in
networks with linear dendritic interactions, and the size of
the propagating pulse fluctuates around the stable fixed
point G2 of Eq. (16). (For very large connectivity, patho-
logical high-frequency spiking activity can emerge due to
spontaneous chain activation.)

B. Feed-forward chains with nonlinear coupling

We now consider networks incorporating nonlinear den-
dritic interactions and show that the connectivity and num-
ber of active neurons required for propagation of
synchrony are smaller. In such networks, the mechanism
underlying propagation of synchrony is different, because
it is supported predominantly by nonlinearly enhanced
inputs. As a consequence, the maximal input is bounded
by �, leading to a saturation in the return map (16)
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[cf. Fig. 2(c)]. The saturation enables propagating pulses of
a size substantially smaller than !, in contrast to linearly
coupled networks. The discontinuity in the modulation
function � induces a discontinuity in pf½�ðxÞ�, which

prevents our previous analytical method. We thus deter-
mine the critical connectivity by a self-consistency ap-
proach. When a synchronous pulse arrives at a specific
layer, the summed excitatory input strength x is either
smaller or larger than the dendritic threshold �b. For
sufficiently small �b, the spiking probability of a neuron
due to a subthreshold input is much smaller than that due to
a suprathreshold input, i.e., pfð�bÞ � pfð�Þ. Thus, only a
small fraction of neurons receives an input smaller than�b

and is elicited to spike. We approximate pfðxÞ ¼ 0 for x �
�b. When there is persistent propagation of synchrony, p�

(which denotes the fraction of neurons that receive suffi-
ciently strong input to reach the dendritic threshold) is
constant throughout the layers. The total spiking probabil-
ity of a single neuron on the arrival of the synchronous
pulse is then given by the product p�pfð�Þ. The probability

p#ðgÞ ¼ !
g

� �
½p�pfð�Þ�g½p�pfð�Þ�w�g (31)

for g neurons to spike synchronously follows a binomial
distribution. By combining the total spiking probability
and the topological connection probability p, we compute
the probability

PðkÞ ¼ X!
g¼k

g

k

 !
pkð1� pÞg�kp#ðgÞ (32)

¼ !

k

 !
½p�ppfð�Þ�k½1� p�ppfð�Þ�w�k (33)

that a neuron of the subsequent layer receives exactly k
synchronous spikes. Thus, k itself is binomially distributed,

andwe denote itsmeanvalue by� and its standard deviation
by ��. Using a Gaussian approximation of the binomial
distribution yields the self-consistent equation

p� ¼ X!
k¼d�b=�e

PðkÞ (34)

	
Z 1

�b=�

1ffiffiffiffiffiffiffi
2


p
��

exp

�
� 1

2

�
k� �

��

�
2
�
dk (35)

¼ 1

2

�
1� Erf

��b

� � �ffiffiffi
2

p
��

��
(36)

¼:
1

2

�
1þ Erf

�
nffiffiffi
2

p
��

; (37)

where we defined

n :¼ ���b=�

��

(38)

¼ !p�ppfð�Þ ��b=�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!p�pfð�Þp½1� p�pfð�Þp�

q (39)

as the distance between the average number of inputs and
the number needed to reach the onset of the nonlinearity,
measured in units of ��. Solving definition (38) for p that
occurs as an argument of� and�� and using Eq. (37) yields
the connection probability in terms of n,

pNL ¼ n2�þ 2�b þ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�2 þ 4�bð�� �b

! Þ
q

pfð�Þ�ðn2 þ!Þ½1þ Erfð nffiffi
2

p Þ� : (40)

For a certain setup of the FFN with variable connectivity,
pNLðnÞ is the connectivity for which a stationary propaga-
tion of synchrony occurs with a certain n. Any pNL

above the critical connectivity p�
NL has two preimages n,

*

εω100 500 0.1 0.5 100 ω 600

Lin
Nonl

ω
ω
ω

= 100
= 250
= 600

Lin
Nonl

= 0.6ε

= 0.1ε
= 0.3ε

p

(c)(b)(a)
1.4

2.0

L
*

p*
NL

0.1

0.6

ε

1

0.2

p

FIG. 3. Critical connectivity in isolated FFNs. (a),(b) Network simulations (symbols) agree well with analytical predictions (solid
lines) (30) and (45). The critical connectivity decays with layer size and coupling strength. (c) The reduction factor c ¼ p�

L=p
�
NL > 1

shows that nonlinear dendritic interaction compensates for reduced connectivity. In both scenarios, with linear and nonlinear coupling,
we find that p� / !�1, such that the reduction factor is independent of the layer size. In networks with linear couplings, the critical
connectivity is p� / ��1, whereas, in networks with nonlinear coupling, the dependence on ��1 is nonlinear. Therefore, the reduction
factor increases with decreasing coupling strength. Dashed horizontal lines indicate jumps in the reduction factor at which the number
of inputs needed for dendritic spike generation changes.
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corresponding to the group sizes G1 and G2, p
�
NL has one

preimage, and any pNL below p�
NL has none [cf. Fig. 2(c)].

Thus, pNLðnÞ has one global minimum at n ¼ n� where
dpNLðnÞ

dn jn¼n� ¼ 0, and the critical connectivity is pNLðn�Þ ¼
p�
NL.
The comparison of the results for linearly and nonli-

nearly coupled FFNs is particularly enlightening in the
limit of large layer size (! � 1) and small coupling
strengths (� � �� Vreset). We fix the maximal input to
a neuron from the previous layer, �! ¼ const, to preserve
the network state and expand Eq. (40) in a power series
around ! ! 1 and � ! 0. Considering the leading terms,
we find

pNL 	 2
�b þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bð�� �b

! Þ
q

pfð�Þ�!½1þ Erfð nffiffi
2

p Þ� : (41)

We note that propagation of synchrony mediated by den-
dritic spikes is enabled if a sufficiently large fraction of
neurons of each layer receives a total input larger than or
equal to �b, which implies in particular that �b < !�.
Moreover, if the connectivity within the FFN is low, stable
propagation even requires that �b � !�, and pNL further
simplifies to

pNL 	 2�b

pfð�Þ�!
1þ n

ffiffiffiffiffi
�
�b

q
1þ Erfð nffiffi

2
p Þ : (42)

As described above, the critical connectivity is given by the
minimum of pNL as a function of n, which is assumed at

n ¼ n�. dpNLðnÞ
dn jn¼n� ¼ 0 yields n� as an implicit function

of �b

� , ffiffiffiffiffiffiffi
�b

�

s
¼

ffiffiffiffi



2

r
exp

�
n�2

2

��
1þ Erf

�
n�ffiffiffi
2

p
��

� n�: (43)

For better readability, we define

�

�
�b

�

�
:¼ 1

2

�
1þ Erf

�
n�ffiffiffi
2

p
��

� n�
e�ðn�2=2Þffiffiffiffiffiffiffi

2

p ; (44)

where n� ¼ n�ð�b

� Þ as given by Eq. (43). Combining

Eqs. (42)–(44) enables to simplify the critical connectivity
to

p�
NL ¼ �b

pfð�Þ�!
1

�ð�b=�Þ ; (45)

which depends nonlinearly on the number of spikes needed
to reach the dendritic threshold�b=� through the function
1=�ð�Þ. One can show that �ð�b=�Þ increases with de-
creasing coupling strength � from�ð�b=�Þ ¼ 0:5 for large
� and becomes maximal in the limit of small couplings,
lim�!0�ð�b=�Þ ¼ 1. Figure 3(b) displays the results for
p�
NL together with the results of numerical simulations. As

in the linearly coupled network, the critical connectivity

decays with layer size and coupling strength, but the
dependence on 1=� is nonlinear. The factor

c :¼ p�
L

p�
NL

¼ pfð�Þ
	�b

�

�
�b

�

�
; (46)

by which the nonlinear dendritic interactions reduce the
required network-connectivity, increases with decreasing
threshold �b and increasing enhancement �. Figure 3(c)
illustrates the numerically obtained reduction of connec-
tivity: The critical connectivity p�

NL is smaller over the
whole parameter range; the reduction is most effective for
small � and largely independent of !.
Nonlinear dendrites thus foster propagation of syn-

chrony. We note that our model still overestimates the
capability of linearly coupled networks to propagate syn-
chrony: On synchronous input, linearly coupled groups of
neurons generate synchronous output (if they generate
output at all). This fact is a consequence of the infinitesi-
mally short synaptic currents. In neurons with extended
synaptic currents, the timing of the output strongly depends
on the neurons’ state and input strength. In contrast, the
timing of somatic action potentials elicited by dendritic
spikes is largely independent of neuron state and input
strength. We therefore expect the effect of nonlinear den-
drites to be even stronger in networks of biologically more
detailed neurons, as considered in the next section.

C. Recurrent networks

The main findings generalize in two ways: to FFNs
occurring in recurrent random networks and to biologically
more detailed models. For such systems, we show that, in
nonlinearly coupled networks, stable propagation naturally
emerges, whereas it is difficult to achieve in linearly
coupled networks. In contrast to isolated FFNs studied
above, we now account for effects of the FFN on the
surrounding network and its feedback. Further, we choose
a more detailed neuron model (see Sec. II) to ensure that
the main assumptions underlying the analytically tractable
model are not crucial for stable propagation of synchrony.
In particular, we show that systems with temporally ex-
tended postsynaptic responses and a temporally extended
nonlinear dendritic interaction window exhibit qualita-
tively the same phenomena as found above.
We consider networks of randomly connected

conductance-based leaky integrate-and-fire neurons
[cf. Eqs (8)–(10)]. The networks consist of NE excitatory
and NI inhibitory neurons. A directed connection between
two neurons is present with probability p. As for the
isolated FFNs considered above, we construct the network
such that the ground state in the absence of synchronous
activity is characterized by balanced excitatory and inhibi-
tory input, which results in an asynchronous irregular
spiking activity. For simplicity, all neurons have the same
parameters, e.g., Cm

l ¼ Cm, gLl ¼ gL, etc.
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First, we set up a model network in which the total
excitation and inhibition to the neurons is balanced such
that the spiking activity is asynchronous irregular. The
external constant current I0, together with the leak con-
ductance gL and the resting potential Vrest, determines the
asymptotic membrane potential in the absence of incoming
spikes:

V1 ¼ Vrest þ I0

gL
: (47)

Additionally, each neuron receives excitatory and inhibi-
tory random Poissonian spike trains. The frequencies are
denoted by �ext;ex and �ext;in, and the ratio between them is
chosen such that it equals the ratio of the number of
excitatory and inhibitory neurons in the network:

�ext;ex

�ext;in
¼ NE

NI
: (48)

This ensures that each neuron receives the same ratio of
excitatory and inhibitory input from both the network and
the external sources when neurons in the excitatory and
inhibitory network populations spike on average with the
same mean rate. All excitatory as well as all inhibitory
connections have the same strength, i.e., gmax

lj ¼ gex for

excitatory and gmax
lj ¼ gin for inhibitory connections. The

ratio of the peak postsynaptic potentials due to an inhibi-
tory input and an excitatory input at the asymptotic mem-
brane potential V1 is approximately given by

grat :¼ ginjV1 � Einj
gexjV1 � Eexj : (49)

We set

grat ¼! N
E

NI
¼ �ext;ex

�ext;in
; (50)

gin ¼ jV1 � Eexj
jV1 � Einj

NE

NI
gex (51)

to obtain balanced activity.
In contrast to the model considered in the first sections,

now excitatory neurons have a nonzero time window�t for
nonlinear dendritic modulation. When the strength of the
excitatory input within �t exceeds a threshold, a current
pulse is injected into the soma, modeling the effect of a
dendritic spike. The neuron parameters for this phenome-
nological model are chosen according to experimental
findings to reproduce quantitatively the time course of
the membrane potential in response to a dendritic spike.
[See Sec. II and Figs. 1(b) and 1(c).]

Considering a random network, we detect naturally
occurring weak feed-forward structures suitable for signal
transmission in the following way: We randomly choose a
group of x neurons to be the first layer. The second layer

is composed of x neurons out of those receiving the
largest numbers of connections from the initial group.
By repeating this selection process l times, we identify
a FFN consisting of l layers. In each selection step, we
exclude the x neurons of the previous layer, but do not
exclude neurons that are members of the layers preceding
the previous one. The high-connectivity subnetwork se-
lected from an existing random network as described
above by construction has a slightly higher-than-average
connection probability. Therefore, this structure is particu-
larly well suited to enable propagation of synchrony.
Alternatively, one can assign neurons randomly to the
different layers and compensate for smaller connectivity
by, e.g., larger layer sizes, according to Eq. (45).
The measurements start after an equilibration phase.

(Initially, the network is at rest.) In the ground state, the
network generates balanced irregular activity. Propagation
of synchrony is initiated by exciting the neurons of the first
layer to spike within a short time interval that is smaller
than the time window of dendritic integration, �t. This
synchronous spiking leads to an increased input to the
second layer after a delay time �. This input, in turn,
may lead to highly synchronous spiking of a certain num-
ber of neurons of the second layer (possibly supported by
dendritic spikes) and therewith to synchronous spiking
after another delay time � in the third layer, etc.
Propagation of synchrony requires (i) that the total input
of a layer to its successor within the FFN is sufficiently
strong and (ii) that the input to the remaining network is
sufficiently weak to avoid excitation of too many neurons
to synchronous spiking. Requirement (ii) prevents patho-
logical activity such as ‘‘synfire explosions’’ [6].
After initiating a propagation of synchrony by exciting

the neurons of the first group to spike within a short time
interval, we measure the probability of detecting a syn-
chronous pulse in the subsequent groups [see Sec. II;
cf. Figs. 4(a) and 4(b)]. Although the average connectivity
within the identified FFN is significantly larger than the
overall connectivity p, it is still small, and propagation of
synchronous activity is very unlikely [upper insets of
Figs. 4(a) and 4(b)]. We find that it is not sufficient to
choose high-connectivity subnetworks as FFNs (as de-
scribed above) to obtain a stable propagation of synchrony,
but that the synapses within the FFN have to be strength-
ened. To study the transition to propagation, we gradually
strengthen the synapses within the FFN. As suggested by
the results on isolated chains, we observe a propagation of
synchrony over more and more layers for moderate en-
hancements [Figs. 4(c) and 4(d)]. For very strong enhance-
ments, the feedback from the network becomes important:
The synaptic amplification leads to an increased sponta-
neous activity within the FFN, and this in turn results in an
increased background activity. The overall increased spik-
ing activity causes spontaneous synchronous pulses, and a
separation of the induced synchronous signal from the
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background activity is not possible anymore [the detection
probability decreases; see Figs. 4(a) and 4(b) and lower
insets].

In agreement with previous studies (cf. [7]), we find that,
in the linearly coupled networks considered, a synchronous
pulse propagates only over a few layers, even in the opti-
mal enhancement range [Fig. 4(a)]. In contrast, networks
incorporating nonlinear dendrites support stable propaga-
tion of synchrony [Fig. 4(b)] in a substantial region of
parameter space. In addition, the propagation is enabled
for enhancements considerably smaller than the optimal
enhancement for networks with linear dendrites.

IV. DISCUSSION

In conclusion, we have analyzed strongly diluted net-
works with linear and nonlinear dendritic interactions. We
have demonstrated how nonlinear dendritic interactions
may enhance and stabilize synchrony propagation in both
isolated feed-forward chains and recurrent network struc-
tures. Moreover, our results show that such local nonlinear
interactions support the separation of propagating syn-
chrony and asynchronous background activity. Earlier
works [6,7] did not take into account supralinear amplifi-
cation of synchronous activity. One study [7] used existing
connections in recurrent networks to create diluted chains
assuming strongly enhanced synapses and at the same time
partially decoupling the chain from the rest of the network;
still, synchrony could propagate only over a few groups. In
contrast, the results presented here indicate that a reliable

propagation is achieved by only mildly adapted synapses
and without specifically tuning or changing neuron prop-
erties or rewiring the network.
The recent study [18] incorporating nonlinear dendrites

has shown that synchronous activity can propagate in
purely random networks without modified connections.
There are no specific propagation paths, but neurons are
recruited in a quasirandom manner. Our results described
here now indicate that specific feed-forward chains that
naturally occur in random neural circuits are capable of
persistently propagating synchronous signals if their syn-
aptic strengths are increased. The strengths required in the
presence of nonlinear interactions are common in biologi-
cal neural circuits [19] and may well be generated by
learning, e.g., through spike-timing-dependent plasticity.
Dendritic (coupling) nonlinearities therefore offer a via-

ble mechanism for guiding synchrony through weakly
structured random topologies.
Recently [12], feed-forward chains with slow dendritic

(probably calcium) spikes have been simulated to check
the possibility of the occurrence of specific spike patterns
that are experimentally observed in the higher vocal center
of song birds. Our theoretical work now yields analytic
insights about the collective dynamics of circuits with fast
dendritic (sodium) spikes. Fast dendritic spikes have been
found in the hippocampus and in the neocortex and may
thus be involved in hippocampal replay, memory forma-
tion, and other computational processes. Experimentally,
the influence of fast dendritic spikes could be directly
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checked by selectively blocking dendritic sodium channels
(see, e.g., [20], which indicates that the types of sodium
channels in the dendrite and soma are different) and
thereby distinguishing those effects that come from non-
additive coupling via fast dendritic spikes from those
induced by other mechanisms. During the last decade,
the number of neurons simultaneously accessible has mul-
tiplied from a few to the order of 102 neurons, with this
rapid trend continuing. When recording the activity of a
substantial fraction of neurons of a local circuit, synchrony
propagation should be clearly detectable and analyzable.
Our results suggest that synchrony propagation and thus
spike patterns should be influenced if dendritic sodium
channels and thus fast dendritic spikes are blocked.
Specifically, in the hippocampus, the precision of (re-
played) spike patterns decreases or the patterns vanish after
blocking. Such experiments would thus provide a direct
test of how nonadditive coupling is exploited for the col-
lective dynamics of neural circuits. Once the connectome,
i.e., the structural synaptic connectivity, of neural circuits
becomes available in the future [21], the relative impact of
synaptic, structural to dynamic features of single neurons
on circuit dynamics may be well distinguishable.

The basic model of pulse-coupled units considered here
is applicable to a range of systems in nature, not only to
neural circuits but also, e.g., to earthquakes emerging from
abruptly relaxing tectonic plates, and fireflies interacting
by exchanging light flashes (e.g., [22]). We have now
studied the impact of nonlinear input modulation on col-
lective network dynamics and derived methods for their
analysis that may also be useful in a non-neuronal setting.
Interestingly, very recent results [23] have shown that fire-
flies are more prone to respond to synchronous flashes
rather than to asynchronous ones, suggesting a direct ap-
plication of our model.
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APPENDIX

1. Parameters for Figs. 2 and 3

The single-neuron parameters and the coupling delay are
�m ¼ 1=� ¼ 14 ms, � ¼ 15 mV, Vreset ¼ 0 mV, tref ¼
2 ms, and � ¼ 10 ms [15,24]. The external input is char-
acterized by �ext;ex ¼ ��ext;in ¼ 0:5 mV [19,25], �ext ¼
�ext;ex ¼ �ext;in ¼ 3 kHz, and V1 ¼ 5 mV. The parame-
ters of the dendritic modulation function were chosen
according to single-neuron measurements as �b ¼ 4 mV
and � ¼ 11 mV [8].

The maps and transition matrices presented in Fig. 2 are
derived for ! ¼ 100 and �ij ¼ � ¼ 0:3 mV. To obtain the

distribution of active neurons giþ1 in layer iþ 1, we excite
gi neurons of the first layer to spike simultaneously and
measure the number of active neurons in the following
layer. For each value of gi, we calculate the distribution
for m ¼ 1000 different realizations of the FFN and initial
conditions.
In Fig. 3, existing connections within the FFN have

strengths �ij ¼ �. We determine the critical connectivity

for � 2 ½0:05 mV; 0:6 mV� and layer sizes ! 2 ½50; 600�
as follows: We construct a FFN consisting of 20 layers,
with ! neurons in each layer, and connect neurons of
successive layers with probability p 2 ½0; 1�. After an
equilibration time tinit (initially, the network is at rest),
we initiate propagation of synchrony by exciting all neu-
rons of the first layer to spike simultaneously. We then
check whether the synchronous pulse propagates up to
layer i, i.e., whether there is synchronous activity in layer
i at time texpi ¼ tinit þ ði� 1Þ�. We consider the propaga-

tion for a certain setup specified by �, !, and p to be
successful if a synchronous pulse propagates along the
whole FFN in more than 50% of o ¼ 31 realizations of
the FFN with different initial conditions. We derive the
critical connectivities p�

L and p�
NL up to a resolution of

�p
p ¼ 5
 10�3 by repeatedly bisecting the interval [0,1]

and testing the success of propagation.

2. Parameters for Fig. 4

For the network simulations, we employed the simula-
tion software NEST [26]. The networks had a total number
of N ¼ 10 000 neurons with NE ¼ 8 000 and NI ¼ 2 000.
For simplicity, all neurons are considered identical, i.e.,
Cm
l ¼ Cm, gLl ¼ gL, Vrest

l ¼ Vrest, I0l ¼ I0,�l ¼ �, trefl ¼
tref , and Vreset

l ¼ Vreset. The single-neuron parameters are

Cm ¼ 400 pF, Vrest ¼ Vreset ¼ �65 mV, gL ¼ 25 nS,
� ¼ �50 mV, tref ¼ 3 ms [24,27], and I0 ¼ 250 pA,
and the frequencies of the external inputs are �ext;ex ¼
2:4 kHz and �ext;in ¼ 0:6 kHz. The recurrent connectivity
in cortical and hippocampal networks is sparse:
Connection probabilities between 1% and 10%, depending
on the distance and the region, have been estimated (e.g.,
[19,24,25]). For our simulations, we choose p ¼ 0:03.
The time constants of the excitatory (AMPA) conduc-

tances are �A;1 ¼ 2:5 ms and �A;2 ¼ 0:5 ms [28]. For sim-
plicity, we choose the same time constants for the
inhibitory (GABAA) conductances: �G;1 ¼ 2:5 ms and
�G;2 ¼ 0:5 ms. The reversal potentials are Eex ¼ 0 mV
and Ein ¼ �75 mV [15,24]. The strengths of experimen-
tally observed pEPSPs due to single inputs range from
small values like 0.1 mV to larger values like 2 mV
[19,24,25]. For nonenhanced couplings, we set gex ¼
0:6 nS, which corresponds to a pEPSP of approximately
0.3 mV at rest. According to Eq. (51), the coupling
strengths of the inhibitory synapses are gin ¼ �6:6 nS to
maintain balanced input. This configuration results in an
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asynchronous irregular ground state with a spontaneous
firing rate � 	 1:8 Hz.

The parameters of the dendritic spike current are chosen
according to single-neuron measurements in hippocampal
cells: �t ¼ 2 ms [8], g� ¼ 8:65 nS (corresponding to a
pEPSP of about 3.8 mV at rest [8]), �DS ¼ 2:7 ms (such
that �þ �DS ¼ 4:7 ms and the peak of the depolarization
is reached approximately 5 ms after presynaptic spiking),
A ¼ 55 nA, B ¼ 64 nA, C ¼ 9 nA, �DS;1 ¼ 0:2 ms,
�DS;2 ¼ 0:3 ms, �DS;3 ¼ 0:7 ms, and tref;DS ¼ 5:2 ms.
The correction factor, which modulates the strength of
the dendritic spike, is found by fitting a linear correction
function, cðgÞ ¼ maxf1:5� g
 0:053 nS�1; 0g, such that
the experimentally observed region of saturation is ob-
tained. The dynamics of the neuron model incorporating
the mechanism for dendritic spike generation is illustrated
in Fig. 1.

For calculating the SNR, we use an a ¼ 0:99 and b ¼ 2
and an expected width of the synchronous pulse tw ¼
10 ms; the result is insensitive to changes in these parame-
ters. The expected interval between successive synchro-
nous active layers, �texp, is chosen from the interval [2 ms,
7 ms] such that the signal,

P
iSi, is maximized (cf. Sec. II).

The time interval for the estimation of the noise level is
�tobs ¼ 15 s. The detection probability shown in Figs. 4(a)
and 4(b) is the fraction of successful propagations obtained
from 10 different network realizations, where, for each
network setup, propagation of synchrony was tested for
20 initial conditions.

All measurements start after an initial equilibrium phase
of t0 ¼ 4000 ms.
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A wide range of networked systems exhibit highly connected nodes (hubs) as prominent structural elements.
The functional roles of hubs in the collective nonlinear dynamics of many such networks, however, are not well
understood. Here, we propose that hubs in neural circuits may activate local signal transmission along sequences
of specific subnetworks. Intriguingly, in contrast to previous suggestions of the functional roles of hubs, here,
not the hubs themselves, but nonhub subnetworks transfer the signals. The core mechanism relies on hubs and
nonhubs providing activating feedback to each other. It may, thus, induce the propagation of specific pulse and
rate signals in neuronal and other communication networks.

DOI: 10.1103/PhysRevE.89.030701 PACS number(s): 87.10.−e, 05.45.Xt, 89.75.Hc

Hubs—nodes that are significantly more highly connected
than average—constitute a prominent structural feature of
many network dynamical systems, such as infection, trans-
portation, communication, and social networks [1]. The exis-
tence of hubs may follow from intentional design to optimize
network properties (such as in airline, transportation, and
technical communication infrastructure) or may emerge due to
self-organization via intrinsic growth rules (World Wide Web
and social networks) [1–4]. As hubs can structurally improve
the capabilities of networks to transfer signals [5], it is not
surprising that they were also found in the brain on different
scales: In cortical neuronal circuits, hub regions are assumed
to coordinate the activity of other regions and to organize the
flow of information between them [6]. On the microscopic
level, for instance, the nervous system of Caenorhabditis
elegans contains single cell hubs [7] involved in the control
of pheromone attraction as well as social behavior [8].

Interestingly, Bonifazi et al. [9] recently experimentally
discovered hub cells also in higher animals where they support
synchronous activity in the developing hippocampus. Yet, how
exactly hubs dynamically influence information transmission
in neural circuits still remains unknown [10].

In this Rapid Communication, we show that hub activity
may amplify local signals and may enable their targeted
transmission. Specifically, we show how hubs and nonhub
subnetworks in neural circuits activate each other to exhibit
synchronous pulse emission. Thereby, synchronous pulse
activity may robustly propagate along sequences of nonhub
subnetworks, thus, enabling directed and specific routing of
information across the entire system. The generic mechanism
of mutual hub and nonhub activation may equally enable the
transmission of pulse-coded as well as rate-coded signals in a
wide range of natural and artificial communication networks.

For an example of spiking neural circuits, consider net-
works of N units randomly connected to each other. Each
connection is present with a fixed probability. In the simplest
setting, between any pair of neurons, there is an excitatory
connection of strength ε+ with probability p+ and an inhibitory
connection of strength ε− with probability p− = p+ =: p. The
dynamics of each unit i is described by a real state variable, its

membrane potential Vi(t) in real time t and changes according
to leaky integrate-and-fire dynamics. Specifically, Vi integrates
excitatory (positive) and inhibitory (negative) pulsed inputs,
and when crossing a threshold from below, the potential resets
and the unit emits a pulse. This pulse arrives at the postsynaptic
neurons after a transmission delay, and its effects are modeled
by transient double-exponential conductance changes [11].

Typically, some of the pulse inputs to a neuron are
synchronous (i.e., are received within a few milliseconds),
and others are asynchronous. Whereas, the neuron integrates
all inhibitory and asynchronous excitatory inputs additively,
synchronous excitatory inputs are processed nonadditively
(nonlinearly). This nonadditive integration takes into account
the influence of fast dendritic spikes found in single neuron
experiments [12] on the dendritic (input) sites of neurons:
Whenever the total excitatory input to a dendrite summed over
a short time interval (typically 2 to 3 ms) exceeds a dendritic
threshold �d, a dendritic spike is initiated and changes the
membrane potential of the neuron after a short delay in a
stereotypical way. We model its effect by a stereotypical
current pulse causing a rapid strong increase (depolarization)
of Vi , which substantially exceeds the level of depolarization
expected from linear summation of inputs [11,13,14] and
resembles the shape of the depolarization found in experiments
[12]. We account for the experimentally observed saturation of
the depolarization by inputs exceeding the dendritic threshold
�d [12] as well as for the refractory time of ion channels
generating dendritic spikes by assuming that the dendrite
becomes refractory for a short time period t ref,ds after a
dendritic spike is initiated.

In our numerical simulations, we focus on networks of
spiking leaky integrate-and-fire neurons as described above
(Simulation results were obtained using the simulation
software NEST [15]). To achieve a mechanistic understanding
of the observed phenomena, we further derive an analytically
tractable description in terms of probabilistic threshold units
below.

Motivated by recent anatomical and physiological findings
[9], we assume that some Nh � 0 neurons are hub neu-
rons. They are distinguished (exclusively) by an increased
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probability ph > p to receive input connections from other
units in the network.

Following a standard approach for signal transmission in
cortical networks [16], we consider signal propagation along
weak feed-forward structures: The network contains sequences
(chains) of m subnetworks (groups) with Ng neurons each.
The neurons in each group are randomly chosen from
the nonhub population, and excitatory connection strengths
between subsequent subnetworks are increased compared to
other coupling strengths in the network, εsub > ε+.

We consider networks with balanced excitatory and in-
hibitory connectivities such that, in the absence of external
inputs, asynchronous irregular spiking dynamics constitutes
their ground state activity [17]. Externally exciting an initial
subnetwork to spike synchronously causes synchronous in-
puts to neurons of the downstream subnetwork and induces
synchronous spiking of a fraction of its neurons. This may
excite neurons in the ensuing subnetwork to spike, etc.,
thereby transmitting signals along the chain of subnetworks.
However, as the subnetworks are parts of a larger recur-
rent network, synchronous activity not only may spread
from one subnetwork to the next, but also may induce a
synchronous spiking response (echo) in the remainder of
the network. Depending on the parameters and the number
of initially synchronous neurons g0 in the first subnetwork
and r0 in the remainder of the network, synchronous ac-
tivity may, in principle, stably propagate, spread across the
entire recurrent network, and, thus, may obscure a prop-
agation signal (not shown) or may extinguish after a few
subnetworks.

Sample simulations of networks without hubs [Nh = 0,
Fig. 1(a)] illustrate that spreading and dying out of syn-
chrony dominate state space in agreement with the lit-
erature [18] because there is no mechanism keeping the
synchronization in the network remainder at a moderate
level.

Networks with a substantial number Nh of hub units exhibit
qualitatively different dynamics and support signal transmis-
sion: As hubs receive more input connections than other
units, they have a higher probability of spiking in response
to synchronous inputs from a certain subnetwork. Thereby,
hubs may establish a synchronous response to propagating
synchronous pulses. Due to increased connectivity at hubs
only, such an echo is confined to the hub neuron subpopulation
and, thus, does not spread over the entire network [cf.
Fig. 1(b)].

The increased connectivity towards hubs plays an interest-
ing double role: It ensures that a population of sufficiently
many hub neurons exhibits, itself, synchronous activity if
supported by synchrony in a (nonhub) subnetwork. At the
same time, the fact that the network remainder without
hubs has relatively low connectivity prevents spreading
of synchronous activity beyond the hub population. This
combination enables robust synchrony propagation along
sequences of nonhub subnetworks for a range of initially
synchronous neurons g0 in a subnetwork [cf. Fig. 1(b), main
panel].

To further understand this coaction mechanism, we consider
the dynamics only at the relevant time intervals where
synchronous pulses are sent and are received. Observing that
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FIG. 1. (Color online) Hubs activate signal transmission in a
neural network. Signals consist of localized synchronous spiking
activity (times marked green in the insets) transmitted across a
sequence of subnetworks (displayed as lowest neuron indices).
Spike times of hubs (red) displayed at the top, above those of
the remaining neurons (black). Main panels: Joint dynamics of the
number of synchronously spiking neurons in the nth subnetwork
(gn) and the total number of synchronously coactivated neurons of
the network remainder (rn) during signal propagation initiated by
synchronously stimulating g0 neurons of the initial subnetwork and
r0 neurons of the network remainder. (a) In networks without hubs,
the overall network activity either becomes pathological (large scale
synchrony: red shading, gray trajectories) or extinguishes quickly to
background activity (yellow shading, black trajectories). Hub neurons
in otherwise the same network (b) can induce a persistent signal
transmission across nonhubs (green shading, blue trajectories) by
generating sustained but bounded synchrony. Red trajectories indicate
example dynamics shown in the insets. The dashed lines indicate
the borders of activity regions analytically estimated in this Rapid
Communication (cf. Eqs. (5) and (6) and Ref. [11]). Parameters:
N = 5000, m = 10, Ng = 200, and p = 0.05; furthermore, Nh = 0
in (a) and Nh = 900 and ph = 0.12 in (b).

the neurons effectively act as probabilistic threshold units, we
derive an approximate analytic map for the joint response sizes
of active hubs and signal carrying (nonhub) units. The spiking
probability due to a synchronous input below the dendritic
threshold �d is very low [cf. Fig. 2(a)] so that we neglect it
against the probability of spiking due to inputs above threshold.
The probability psp(I+,I−) of a neuron spiking in response
to excitatory and inhibitory inputs I+ and I− is a function
of the probability distribution of the membrane potentials
of that neuron at the time of input reception. We take this
dependency into account by assuming that, immediately before
every spike reception time, the neuronal state is distributed
as in the unperturbed ground state. The function psp, thus,
obeys

psp(I+,I−) =
{

0 for I+ < �d,

p0(I−) for I+ � �d,
(1)

where p0(I−) is the spiking probability of a neuron in
the ground state receiving a dendritically suprathreshold
excitatory input and an inhibitory input of size I−. In particular,
p0(0) is the spiking probability of a single neuron when a
dendritic spike is generated in the absence of inhibition. p0

depends solely on the inhibitory input I− because, on one
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FIG. 2. (Color online) Hubs induce tangent bifurcations towards
signal transmission (neuron and network parameters as in Fig. 1).
(a) and (b) Firing probability psp of a neuron in the ground state as
a function of synchronous (a) excitatory input I+ and (b) inhibitory
input I−. (c) and (d) Iterated maps for (c) the number gn of (syn-
chronously) active neurons in the nth subnetwork (different colors
indicate different fixed hn’s) and (d) the number of synchronized hub
neurons hn (different colors: ph fixed; different line styles: gn fixed).
Analytical predictions [solid and dashed lines; Eqs. (5) and (6)] agree
well with numerical simulations of the spiking neural network model
(markers). Sufficiently large hn enables propagation of synchrony (c),
and a sufficiently large connection probability ph enables a persistent
hub echo for a propagating synchronous pulse (d). Hubs and nonhubs
reactivate each other.

hand, only sufficiently strong excitatory inputs exceeding the
dendritic threshold elicit a dendritic spike and the effect of
a dendritic spike on the postsynaptic neuron saturates, i.e.,
it remains the same, for stronger excitation [cf. Fig. 2(a)]
as found in experiments [12]. On the other hand, inhibition
will generally decrease a neuron’s spiking probability as
it partially compensates the input to the soma due to the
dendritic spike (cf. Fig. 2(b) and the experimental findings
in Ref. [19]). The precise form of p0(I−) depends on the
details of the background activity and the properties of neurons
and interactions. As will become clear below, all qualitatively
similar p0(I−)’s induce the same type of bifurcation relevant
for robust signal transmission, and thus, details of p0(I−) do
not matter.

During robust signal transmission promoted by a hub echo,
spikes of hub neurons and neurons of the currently active
subnetwork dominate the network dynamics [cf. inset of
Fig. 1(b)]. We, thus, focus on these two groups of neurons.
The influence of the remaining neurons can be analytically
derived analogously [11]. To be specific, assume that gn � Ng

neurons in a given subnetwork n and hn � Nh hub neurons are
active simultaneously, i.e., they spike synchronously. Given
the random network topology, for sufficiently large gn and hn,
the total input to the neurons of the (n + 1)th subnetwork is
approximately Gaussian distributed (approximating the actual
binomial distributions) I± ∼ N (μ±,σ 2

±) with probability den-
sity functions f+(I+) and f−(I−) and means and variances

given by

μ+ = (ε+hn + εcgn)p, σ 2
+ = (

ε2
+hn + ε2

c gn

)
p(1 − p),

(2)

μ− = ε−(hn + gn)p and σ 2
− = ε2

−(hn + gn)p(1 − p).

(3)

The expected number of neurons that spike synchronously in
subnetwork n + 1 becomes

gn+1 = Ng

∫ ∞

0

∫ ∞

0
psp(I+,I−)f+(I+)f−(I−)dI+dI−. (4)

Whereas, psp discontinuously depends on I+, it changes
smoothly and, thus, locally linearly with I− [cf. Figs. 2(a) and
2(b)] such that we may set f−(I−) = δ(I− − μ−) to evaluate
the integral in Eq. (4), yielding the iterated map,

gn+1 = Ngp
0(μ−)

1

2

(
1 + Erf

[
�d − μ+√

2σ+

])
(5)

for the number of active signal transferring (nonhub) neurons
in the next subnetwork. Note that all three quantities μ−, μ+,
and σ+ depend on hn and gn through Eqs. (2) and (3).

The iterated map for the number of synchronously active
hub neurons hn+1 is derived analogously: We discard those
hn neurons that have spiked together with the nth subnetwork
because they are unlikely to spike again due to their relative
refractoriness such that Nh − hn hub neurons are available to
spike. Replacing Ng by Nh − hn in Eq. (4) and computing the
Gaussian probability densities of the inputs yield the iterated
map,

hn+1 = (Nh − hn)p0(μ̃−)
1

2

(
1 + Erf

[
�d − μ̃+√

2σ̃+

])
, (6)

where μ̃+ = ε+ph(hn + gn), μ̃− = ε−ph(hn + gn), and σ̃ 2
+ =

ε2
+ph(1 − ph)(hn + gn).

The joint two-dimensional map (5) and (6) explicates how
the hub neurons can enable robust propagation of synchrony
[see Figs. 2(c) and 2(d)]: For a given number hn of active
hub neurons, the fixed points of Eq. (5) determine whether
robust propagation of synchrony can be initiated in the chain of
subnetworks. For networks without (active) hubs hn = 0, there
is only one fixed point G0 = 0, and any initial synchronous
pulse extinguishes after a small number of subnetworks.
With increasing hn, two additional fixed points G1 (unstable)
and G2 (stable) appear via a tangent bifurcation at some
hn = h∗, and robust signal transmission is enabled for initial
synchronous pulses g0 � G1 [cf. Fig. 2(c)]. For large numbers
of active hubs, even small initial group sizes g0 are sufficient
to generate robust signal transmission across the chain of
subnetworks.

Analogously, the fixed points of Eq. (6) determine whether
a persistent hub echo for the propagating synchronous pulse
establishes for a given hub connectivity ph and group size
gn [cf. Fig. 2(d)]. For small ph and gn, there is only one
fixed point H0 = 0. With increasing ph or gn, two additional
fixed points H1 (unstable) and H2 (stable) appear via a tangent
bifurcation for some p∗

h and g∗. Thus, for sufficiently large
hub connectivity ph � p∗

h , a persistent echo for a propagating
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FIG. 3. (Color online) Hub neurons act as a generic signal ampli-
fier and activate different signal routes. The figure shows simulation
data for a sparse recurrent spiking neural network [the same network
as in Fig. 1(b)] with two chains of subnetworks. (a) Raster plot of the
network activity; the background colors indicate whether the neurons
are members of one or both chains, hub neurons or remaining neurons,
as visualized by (b). (c) Current activity (spikes per bin; bin size 1 ms)
of the different neuron populations. If synchronous spiking is initiated
either in the initial subnetwork of one chain (t = 50 ms) or in the
hub neurons (t = 100 ms) only, synchronous activity extinguishes
quickly. In contrast, if the initial subnetwork of one of the chains as
well as the hub neurons are excited (t = 150 and 250 ms), robust
propagation of synchrony establishes in that specific chain.

synchronous pulse of size gn can be established; equivalently,
for fixed connectivity ph, sufficiently many synchronously
active neurons in the subnetwork maintain a hub echo. The
bifurcations resulting from the analytic mapping (5) and (6)
approximately predict the numerically found region where
robust signal transmission is possible (see the dashed line in
Fig. 1 and Ref. [11]).

Having gained this mechanistic understanding, we now
illustrate that hubs unspecifically but selectively activate
synchrony propagation. Signal propagation becomes possible
along any chain of subnetworks that structurally exists in the
system if its initial group is excited. In particular, in systems
with a second chain of subnetworks embedded, the mutual
hub and nonhub feedback can amplify signal transmission
along one chain without activating transmission in the other
one (cf. Fig. 3).

To summarize, we have demonstrated that hubs may act
as amplifiers that enable signal generation and transmission
in recurrent networks. So far, hubs were thought to directly
distribute various types of signals (e.g., actual information on
the World Wide Web, certain infections in disease spreading,
and people in travel networks) across a network. We now
identified a complementary fundamentally different role
of hubs in signal transmission: The hubs studied here do
not communicate the specific signal themselves; instead,
increased hub activity mirrors the presence of some localized
signal in other network parts, and the hubs promote the
transmission of any such signal across sequences of nonhub
subnetworks.

This mechanism of hub-activated signal propagation
essentially relies on: (a) the existence of some highly
connected nodes and (b) some sharp thresholdlike processing
of incoming inputs by single units (as, for instance,
mediated by fast dendritic sodium spikes in neural circuits).

Furthermore, the phenomenon is robust against changes in
the network topology. As an explicit example, we show that it
occurs in scale-free networks [1] where hubs naturally emerge
due to the “fat tail” of the degree distribution (cf. Ref. [11]
for an example). We, thus, expect that this type of signal
transmission may well play a role in biological networks and
may even be exploited in self-organized solutions of technical
communication networks [20].

It has long been hypothesized that cortical neural networks
transmit signals via propagating synchronous spiking activity
across subnetworks connected in a feed-forward manner
[14,16,18]. The results above now suggest that hubs might
enable robust propagation of synchronous signals even in
weak embedded feed-forward structures by echoing the
synchronous signal propagating along them. In the absence
of hubs (and due to the lack of a confining mechanism), the
echo cannot contribute in this way as synchronous activity
either dies out or spreads across the whole network and
causes pathological activity [e.g., Ref. [18] and cf. also
Fig. 1(a)]. To reveal the essential mechanisms underlying
signal transmission, we disregarded “Dale’s law” [21] (stating
that each neuron either has only excitatory or has only
inhibitory outgoing connections) and considered a simple
bimodal degree distribution clearly splitting the system into
hub and nonhub neurons. In additional simulations, we
verified that the uncovered new type of signal transmission
equally emerges in networks with neurons obeying Dale’s law
and exhibiting natural and broad degree distributions [11].

Interestingly, hubs have recently also been uncovered
experimentally in the developing hippocampus [9]. As in the
adult hippocampus, synchronized oscillatory activity abounds,
and the structural feature of hub neurons might support the
directed transmission of specific signals. Such hub-feedback
support may provide one reason why hubs emerge in these
systems in the first place, cf. also Ref. [22].

Specifically, hub feedback might also be involved in the
replay of spike sequences during so-called sharp wave-ripple
complexes observed in the hippocampus [23]. Here, during
sleep, neurons are activated in the same order as they have been
during an exploration phase, accompanied by strong network
oscillations. Whereas, most neurons take part in only a few of
the different replayed patterns, some are activated in a large
fraction of events [24]. Our results suggest that the latter may
be unspecific for certain memories and, rather, hub neurons
generating a synchronous feedback signal to stabilize signal
propagation along a previously learned feed-forward structure
of specific neurons.

Finally, our analytical results (5) and (6) for the activity
of the hubs and the signal-carrying units clearly demonstrate
that the principle of mutual activation underlying the support
of signal transmission may act in any network of sharply
nonlinear (probabilistic) threshold units as characterizing,
e.g., transmission of rate activities in networks of neural
populations (McCullogh-Pitts model, e.g., Ref. [25]), (failure)
cascades in social, supply, or communication networks (e.g.,
Ref. [26]), or signaling in gene and protein networks (threshold
Boolean networks, e.g., Ref. [27]).
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S. Gonzáles-Bailón, J. Borge-Holthoefer, A. Rivero, and Y.
Moreno, Sci. Rep. 1, 197 (2011).

[6] C. Zhou, L. Zemanova, G. Zamora, C. C. Hilgetag, and J. Kurths,
Phys. Rev. Lett. 97, 238103 (2006); O. Sporns, C. J. Honey, and
R. Kötter, PLoS One 2, e1049 (2007); P. Hagmann et al., PLoS
Biol. 6, e159 (2008); G. Zamora-López, C. Zhou, and J. Kurths,
Front. Neuroinform. 4, 1 (2010).

[7] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner,
Philos. Trans. R. Soc., B 314, 1 (1986); D. H. Hall and R. L.
Russell, J. Neurosci. 11, 1 (1991); L. R. Varshney, B. L. Chen,
E. Paniagua, D. H. Hall, and D. B. Chklovskii, PLoS Comput.
Biol. 7, e1001066 (2011).

[8] E. Z. Macosko et al., Nature (London) 458, 1171 (2009).
[9] P. Bonifazi et al., Science 326, 1419 (2009).

[10] S. Luccioli, E. Ben-Jacob, A. Barzilai, P. Bonifazi, and A. Torcini
(unpublished).

[11] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.89.030701 for further details.

[12] G. Ariav, A. Polsky, and J. Schiller, J. Neurosci. 23, 7750 (2003);
A. Polsky, B. W. Mel, and J. Schiller, Nat. Neurosci. 7, 621
(2004); S. Gasparini, M. Migliore, and J. C. Magee, J. Neurosci.
24, 11046 (2004); S. Gasparini and J. C. Magee, ibid. 26, 2088
(2006).

[13] R. M. Memmesheimer, Proc. Natl. Acad. Sci. USA 107, 11092
(2010).

[14] S. Jahnke, M. Timme, and R. M. Memmesheimer, Phys. Rev. X
2, 041016 (2012); ,Front. Comput. Neurosci. 7, 153 (2013).

[15] M. O. Gewaltig and M. Diesmann, Scholarpedia 2, 1430
(2007).

[16] M. Abeles, Corticonics: Neural Circuits of the Cerebral
Cortex (Cambridge University Press, Cambridge, UK, 1991);
M. Diesmann, M. O. Gewaltig, and A. Aertsen, Nature (London)
402, 529 (1999); T. Vogels and L. Abbott, J. Neurosci. 25, 10786
(2005).

[17] C. V. Vreeswijk and H. Sompolinsky, Science 274, 1724
(1996); ,Neural Comput. 10, 1321 (1998); N. Brunel, J. Comput.
Neurosci. 8, 183 (2000).

[18] C. Mehring, U. Hehl, M. Kubo, M. Diesmann, and A. Aertsen,
Biol. Cybern. 88, 395 (2003); A. Kumar, S. Rotter, and A.
Aertsen, J. Neurosci. 28, 5268 (2008).

[19] C. Müller, H. Beck, D. Coulter, and S. Remy, Neuron 75, 851
(2012).

[20] J. Klinglmayr, C. Kirst, C. Bettstetter, and M. Timme, New J.
Phys. 14, 073031 (2012).

[21] H. Dale, Proc. R. Soc. Med. 28, 319 (1935); J. C. Eccles,
P. Fatt, and K. Koketsu, J. Physiol. 126, 524 (1954).

[22] L. Tattini, S. Olmi, and A. Torcini, Chaos 22, 023133
(2012).

[23] M. A. Wilson and B. L. McNaughton, Science 265, 676 (1994);
W. E. Skaggs and B. L. McNaughton, ibid. 271, 1870 (1996);
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5.1. Supplemental Material

This supplemental material recapitulates further details on the neuron model and single neu-
ron parameters (Section 5.1.1 and 5.1.2) otherwise available in existing literature, it provides
additional simulation results for the abstracted threshold model (Section 5.1.3) and bifurcation
diagrams complementing the ones of the main article (Section 5.1.4). Further, we demonstrate
that hub-activated signal propagation is also found in networks with topologies more natural
than the idealized bimodal setting (Section 5.1.5).

5.1.1. Additional information on the neuron models

In the explicit numerical computations supporting and illustrating our theoretical arguments,
we employed networks of spiking neurons, more specifically, standard conductance-based leaky
integrate-and-fire neurons (e.g., Dayan and Abbott, 2001) endowed with non-additive couplings
(cf. also Memmesheimer, 2010; Jahnke et al., 2012)). Here we briefly recapitulate the details of
the neuron model.

The state of neuron i is described by its membrane potential Vi and the temporal dynamics are
governed by

Ci
dVi (t)
dt

= gL
i [V eq

i − Vi (t)] + Iex
i (t) + I in

i (t) , (5.1)

where Ci is the membrane capacity, gL
i is the leak conductance and V eq

i is the equilibrium poten-
tial. Iex

i (t) and I in
i (t) are currents arising from excitatory and inhibitory inputs, respectively.

Whenever the membrane potential Vi (t) reaches the spiking threshold V Θ
i at some t = t∗−, a

spike is sent to the post-synaptic neurons j, where it arrives after a delay time τji. The sending
neuron is reset to Vi (t∗) = V reset

i and the neuron is refractory for a time period tref
i . The effect of

the synaptic inputs on the postsynaptic neurons is modeled by transient conductance changes.
The excitatory and inhibitory input currents to neuron i arising from synaptic inputs from other
neurons of the network are given by

Iκi (t) =
∑
n,j

εκijf
κ
(
t− tfjn − τij

)
[Eκ − Vi (t)] , (5.2)

where κ ∈ {ex, in}, Eex (Ein) denotes the excitatory (inhibitory) reversal potentials, εex
ij (εinij)

the excitatory (inhibitory) coupling strength from neuron j to neuron i, tfjn the nth spike time
of neuron j and f ex (t) (f in (t)) specify the time course of the synaptic conductance given by the
difference of two exponentials,

fκ (t) = (Zκ)−1
(
e−

t

τκ,1 − e−
t

τκ,2
)

Θ(t). (5.3)

In Equation (5.3), Θ (·) denotes the Heaviside step-function, τκ,1 > τκ,2 are the time constants
dominating the rise and decay of the induced conductance change, and

Zκ =
(
τκ,2

τκ,1

) τκ,2
τκ,1−τκ,2

−
(
τκ,2

τκ,1

) τκ,1
τκ,1−τκ,2

(5.4)
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is the normalization factor such that the peak conductance caused by a single input of strength
ε = 1 equals maxt {fκ (t)} = 1.

In addition to linear summation of inputs, we consider nonlinear amplification of synchronous
inputs as mediated by fast dendritic spikes in biological circuits. We augment the neurons with
a nonlinear dendrite. Inputs that are considered to arrive at a linear dendrite are processed as
described above. Inputs on a nonlinear dendrite also cause a conductance change as described
above, but additional depolarizations of the membrane potential mimicking the effect of a den-
dritic spike can be generated. If the total excitatory input to a nonlinear dendrite within a time
interval ∆T s exceeds a certain threshold Θd, a current pulse is initiated, which takes effect on
the membrane potential after a delay time tds. We model the current pulse in a phenomenologi-
cal approach such that the depolarization caused by a supra-threshold input, ε ≥ Θd, resembles
the characteristics and time course of the depolarization observed in single neuron experiments
(e.g., Ariav et al., 2003). More precisely, the current pulse is described by the sum of three
exponential functions,

Ids = Θ
(
t− tds

) [
−A1e

− t−t
ds

τds,1 +A2e
− t−t

ds

τds,2 −A3e
− t−t

ds

τds,3

]
(5.5)

with positive prefactors A1, A2, A3 and decay time constants τds,1, τds,2 and τds,3. After
initiation of such a current pulse the (nonlinear) dendrite becomes refractory for a time period
tref,ds and does not transmit spikes within the refractory time period.

All simulations were performed using NEST (Gewaltig and Diesmann, 2007), a powerful sim-
ulator for spiking neural networks (available at http://ww.nest-intiative.org), augmented by a
self-written model class which implements the model described above.

5.1.2. Additional details to Figure 1

In Figure 1 of the main manuscript we demonstrate that hubs can activate signal transmission in
spiking neural networks. As stated in the manuscript, the figure displays results from networks
of N = 5000 neurons, where a sub-population of Nh = 900 neurons is assumed to be hubs. The
networks are sparse, neurons are randomly connected with probability p− = p+ = p = 0.05 and
ph = p (sub-figure A, i.e., no hubs are present) or ph = 0.12 > p (sub-figure B), respectively;
single connections have identical coupling strength εex

ij = ε+ = 0.2nS (if connection is present)
and εinij = ε− = 0.55nS (if connection is present). Feed-forward structures are brought out
by randomly selecting m = 10 non-overlapping subnetworks of size Ng = 200 and increasing
the excitatory coupling strength between neurons of successive subnetworks to εsub = 1.1nS.
Additional to inputs from the recurrent network each neuron receives (external) excitatory and
inhibitory Poissonian spike trains with rate νin = νex = 2.4kHz, where single inputs have
strengths εex = 1nS and εin = 2.75nS, respectively. With this choice of parameters the network
is in the so-called balanced state (v. Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000) and
single neurons fire asynchronously with low rate. For each neuron, the recurrent connections
are assumed to project on one non-linear dendrite, whereas the external inputs project on linear
dendrites, i.e., they do not contribute to the generation of dendritic spikes.
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The neurons have identical parameters, C = 400pF, V eq = −55mV, Eex = 0mV, Ein = −75mV,
V reset = −65mV, V Θ = −50mV, gL = 25nS, tref = 3ms, τ ex,1 = 2.5ms, τ ex,2 = 0.5ms, τ in,1 =
2.5ms and τ in,2 = 0.5ms. The parameters of the dendritic spike current are A1 = 55nA, A2 =
64nA, A3 = 9nA, τds,1 = 0.2ms, τds,2 = 0.3ms, τds,3 = 0.7ms, ∆T s = 2ms, Θd = 8.65nS,
tds = 2.7ms and tref,ds = 3.5ms.

After an equilibration time tinit = 200ms, a randomly selected subset of g0 neurons of the ini-
tial subnetwork as well as a subset of r0 neurons from the remaining network are excited to
spike synchronously. We track the spreading of synchronous activity by counting the num-
ber of spiking neurons in the time-interval

[
tinit + ∆T1 −∆Tw/2, tinit + ∆T1 + ∆Tw/2

]
with

∆Tw = 3ms and ∆T1 ∈ [1ms, 7ms]; the time ∆T1 (estimated in steps of size 0.1ms) which
maximizes this number is assumed to be the temporal difference between the initial and first
evoked synchronous pulse. By repeating this procedure we obtain the time-intervals ∆Tn for
n ∈ {1,m− 1} between successive synchronous pulses and denote the number of spiking neurons
of the nth subnetwork (n = 1 is referring to the first subnetwork following the initial one) within[
tinit + ∆Tn −∆Tw/2, tinit + ∆Tn + ∆Tw/2

]
by gn and the number of spiking neurons in the

remaining network by rn. If the total activity, i.e., gn + rn, exceeds a threshold Θpath = 900
(we verified that different threshold values do not change the result) for some n the activity is
classified as “pathological”; non-pathological trials are classified as “propagating” if gm−1 ≥ 100
(i.e., there is sufficient synchronous activity detected in the final subnetwork) and as “non-
propagating” otherwise. For each pair (g0, r0) we repeated the experiment nrep = 300 times,
and mark the initial conditions in Figure 1 in red, if in at least 50% of the trials the activity is
pathological, in green, if in at least 50% of the trials the activity is non-pathological and in 50%
of the non-pathological trials the activity is propagating, and in yellow otherwise. The arrows
depicted in Figure 1 are sequences of (gn, rn). To indicate a dominating direction of flow, they
are averaged over all trials that are pathological, propagating or non-propagating, respectively,
depending on the classified type of the corresponding initial conditions.

5.1.3. Deriving an iterated map for the remaining neurons

In the main article we demonstrated that hub neurons can enable robust signal propagation.
We considered the number of simultaneously active hub neurons, hn, and the number of syn-
chronously active neurons in a given layer of a sequence of (non-hub) subnetworks, gn. The
co-action of these two populations is sufficient to understand the emergence of echo-promoted
propagation of synchrony (cf. Figure 2).

To reproduce the full dynamics, in particular the emergence of pathological activity states
(cf. Figure 1; red area), we extend the analysis to the subset of neurons which are neither
members of the currently active subnetwork or hub neurons. This extension is analogous to the
derivation of the iterated maps Equations (5,6). For the reader’s convenience we briefly present
the extension below.

We denote the number of remaining neurons by

Nx = N −Nh −Ng, (5.6)
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Figure 5.1: Same experiment as shown in Figure 1 but with threshold units as defined by Equation (1).
The trajectories indicating the temporal development of synchronous activity and the areas
marking the type of the initial conditions are derived from the iterated maps (5.23) and
(5.24). Model parameters such as coupling strengths and connection probability, are the
same as in the original figure.

where N is the total number of neurons, Nh the number of hub neurons and Ng the size of
the subnetworks as specified in the main article. We note that in this section we consider the
subset of neurons which are neither hubs nor members of the currently active subnetwork as
the “remaining neurons” and therefore use a slightly different notation than in the main article
(where all neurons which do not belong to the currently active subnetwork were denoted as the
remaining set of neurons).

The average excitatory coupling strength of connections between the remaining neurons is
slightly larger than the average coupling strength ε+, because this subset contains also neu-
rons which are part of some other (currently non-active) subnetwork and therefore some of the
connections are strengthened to εsub. The fraction of strengthened connections,

pfrac =
pN2

g (m− 1)
pN2

x
, (5.7)

is given by the quotient of the number of enhanced connections and the total number of con-
nections and thus the average (excitatory) coupling between two remaining neurons is

εx = pfracεsub +
(
1− pfrac

)
ε+. (5.8)

As before, we denote the number of simultaneously active neurons in the nth subnetwork by gn
and the number of synchronously active hub neurons by hn. The number of active neurons out of
the remaining neurons is denoted by xn. In the (n+1)th time step, the number of synchronously
active neurons of each population is given by the product of the number of available neurons of
that population (pool) and the spiking probability of a single neuron out of the particular pool
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due to the input from the active neurons in the nth time step. The number of available neurons
is

Nh − hn for the hub neurons, (5.9)
Nx − xn for the remaining neurons and (5.10)

Ng −
xn
Nx

Ng for members of the next subnetwork. (5.11)

We note that by considering the remaining neurons, in Equation (5.11) we were able to esti-
mate the fraction, xn/Nx, of refractory neurons in the (n + 1)th subnetwork. As before, the
spiking probability of the single neurons of each sub-population is derived by calculating the
probability density function of the total excitatory and inhibitory input, which can be approx-
imated by Gaussian distributions. The mean inputs and the standard deviations are (cf. also
Equations (2,3))

µh
+ = ε+ph (hn + gn + xn) (5.12)
µh
− = ε−ph (hn + gn + xn) (5.13)

σh
+ =

√
ε2+ph (1− ph) (hn + gn + xn) (5.14)

µx
+ = ε+p (hn + gn) + εxpxn (5.15)
µx
− = ε−p (hn + gn + xn) (5.16)

σx
+ =

√
ε2+p (1− p) (hn + gn) + ε2xp (1− p)xn (5.17)

µg
+ = ε+p (hn + xn) + εsubpgn (5.18)
µg
− = ε−p (hn + gn + xn) (5.19)

σg
+ =

√
ε2+p (1− p) (hn + xn) + ε2subp (1− p) gn (5.20)

which yield the iterated maps

hn+1 = (Nh − hn) ·
p0
(
µh
−

)
2

(
1 + Erf

[
Θd − µh

+√
2σh

+

])
, (5.21)

xn+1 = (Nx − xn) · p
0 (µx

−
)

2

(
1 + Erf

[
Θd − µx

+√
2σx

+

])
, (5.22)

gn+1 =
(
Ng −

xn
Nx

Ng

)
·
p0 (µg

−
)

2

(
1 + Erf

[
Θd − µg

+√
2σg

+

])
. (5.23)

The iterated maps (5.21-5.23) are a good deterministic approximation for the full dynamics of
the system: Figure 1 shows the number of all remaining neurons which are synchronously active,

rn = hn + xn, (5.24)

versus the number of synchronously active neurons in the nth subnetwork. The trajectories
derived from the maps (5.23) and (5.24) are displayed in Figure 5.1 and agree well with direct
numerical simulations as shown in Figure 1.
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Figure 5.2: Bifurcation diagrams derived from the iterated maps depicted in Figure 1C,D. The dashed
lines depict unstable fixed points/periodic orbits (F/POs), the solid lines stable F/POs, and
the green areas the basins of attraction of the stable F/POs. (A) Bifurcation diagram for
the number of active neurons gn in the chain of subnetworks as a function of the number of
active hub neurons hn. (B,C) Bifurcation diagram for the number of active hub neurons hn
as a function of (B) the hub-connectivity ph and (C) the number of synchronously active
neurons in the chain of subnetworks gn. For further explanation see Section 5.1.4.

In the propagating state, we typically have xn � hn, gn, such that the approximation xn = 0
made within the main article is justified.

5.1.4. Bifurcation diagrams for the iterated maps (5) and (6)

In the main text we derived iterated maps for gn and hn, cf. Equations (5,6), and discussed the
transition from non-propagating to propagating regime, cf. 2. For completeness, in Figure 5.2,
we provide the bifurcation diagrams derived from the iterated maps (5) and (6).

As discussed in the main text, the number of synchronously active neurons gn undergoes a
tangent bifurcation at some hn = h∗ and two fixed points G1 (unstable) and G2 (stable) emerge
(cf. Figure 5.2A and also Figure 2C). The bifurcation point h∗ defines the minimal size of the
echo to a propagating synchronous pulse (i.e. the minimal number of synchronously active hub
neurons) which is required to enable robust propagation of synchrony.

Likewise, the fixed points of Equation (6) determine whether a persistent echo to propagating
synchronous pulses can be established. Starting with only one stable fixed point H0 = 0, with
increasing connectivity ph and/or increasing gn two additional fixed points H1 (unstable) and
H2 (stable) appear by a tangent bifurcation for some p∗h and g∗ (cf. Figure 5.2B,C and see
also Figure 2D). Interestingly, upon further increasing ph and/or gn the second fixed point H2
becomes unstable by a period doubling bifurcation and a stable orbit of period two emerges,
followed by further period doubling bifurcations for larger parameter values (cf. Figure 5.2B,C).
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For fixed gn, if the connectivity towards the hub neurons is sufficiently large, i.e. ph ≥ p∗h, a
persistent echo to the propagating synchronous pulse can be established. If the connectivity
ph is fixed, at least g∗ synchronously active neurons in the chain of subnetworks are required
to maintain an echo within the hub neuron population. The approximate size of the echo is
either given by the value of the stable fixed point H2 or by the stable periodic orbit around the
unstable fixed point H2.

5.1.5. Generalizations regarding inhibitory and excitatory neurons as well as
network topology

In this section we discuss generalizations of the network topology. We first show that hub-
activated propagation of synchrony can be found in networks respecting “Dale’s Law” and as a
second generalization, we consider scale-free networks, where hubs emerge due to the “fat-tail”
of the degree distribution.

Networks respecting Dale’s Law

“Dale’s Law” (Dale, 1935; Eccles et al., 1954) states that a neuron releases the same set of
neuro-transmitters at all its post synaptic terminals. In particular, its commonly assumed that
cortical neurons can be classified as either excitatory or inhibitory depending on their main
effect on postsynaptic cells.

Experimental data (Haider et al., 2006; Okun and Lampl, 2008; Atallah and Scanziani, 2009)
suggests that there is a detailed balance between excitatory and inhibitory input to single neurons
in cortical networks during spontaneous and sensory-evoked activity. We consider such balanced
state networks (v. Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000), where excitatory and
inhibitory inputs are of the same order of magnitude and cancel each other on average. Thus,
in the ground state spikes are generated by fluctuations of the input and result in irregular
asynchronous spiking activity.

A balance between excitatory and inhibitory inputs can be established in networks obeying or
disregarding “Dale’s Law”, thus we expect that the mechanism of hub-activated signal propa-
gation is found in both types of networks. In the previous sections we have considered “hybrid
networks” (disregarding Dale’s Law). It has been shown that such networks have reduced cor-
relations and fluctuations in the network activity (Kriener et al., 2008) and therefore a reduced
tendency to develop (pathological) large scale synchronization. This may raise the question
whether the observed phenomenon of hub-activated propagation of synchrony is indeed also
found in networks respecting Dale’s law. In the following we show that it is the case.

We construct a network similar to the network used for generating the data in Figure 1 (cf. also
Section 5.1.2): We take the base population of N = 5000 neurons as excitatory and augment it
by a population of N/4 = 1250 inhibitory neurons. Connections between any pair of neurons
are realized with probability p = 0.05. In contrast to the simplified model, all connections orig-
inating from excitatory neurons are excitatory with strength εexex = 0.2nS, if targeting another
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Figure 5.3: Hub-activated propagation of synchrony in networks respecting Dale’s Law. In-degree dis-
tribution for (A) excitatory neurons and (B) inhibitory neurons. The bimodal distributions
in (A) reflect the fact that the network (N = 5000 excitatory and N/4 = 1250 inhibitory
neurons) contains a subset of Nh = 900 highly connected excitatory nodes (ph = 0.12).
Panel (C) depicts the spiking dynamics of the network after an initial stimulation of (I) the
initial subnetwork (g0 = 180) only, (II) a fraction of the remaining excitatory population
(r0 = 150) only, and (III) simultaneous stimulation of the initial network and a fraction of
the remaining excitatory poulation. In the main panels the dots indicate spikes of excitatory
neurons (black) and inhibitory neurons (red), respectively. The colored area highlights the
population of hubs (gray) and the fraction of neurons that are members of the chain of
subnetworks (blue). The upper panels show the current spiking rate of the different sub-
populations (red: inhibitory neurons, blue: excitatory neurons which are members of the
chain of subnetworks, black: remaining excitatory neurons). A synchronous pulse propa-
gates only if the initial sub-network as well as a fraction of the network remainder is initially
stimulated (III). The propagation is maintained by mutual re-activation of hubs and chain
neurons (cf. also Figure 1 and Figure 3 in the main article).
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excitatory cell, and strength εinex = 0.38nS, if targeting an inhibitory neuron. Connections
starting from inhibitory neurons have strength εexin = 1.32nS and εinin = 1.1nS for excitatory
or inhibitory target cells, respectively, and are exclusively inhibitory. A subset of the excitatory
neurons, Nh = 900, is considered to have a higher than average probability, ph = 0.12, to receive
inputs from other neurons.

The conduction delays between the neurons are

τ exex = 2.0ms, τ inex = 1.0ms, (5.25)
τ exin = 1.2ms and τ inin = 1.2ms, (5.26)

where τXY with X,Y ∈ {ex,in} refers to the conduction delays from neurons of type Y to
neurons of type X. The conductions delays for connections to and from the inhbitory neurons
(compared to recurrent excitatory connections), are reduced to account for the experimentally
observed fast response properties of interneurons (Geiger et al., 1997).

Fast dendritic sodium spikes have been prominently found for excitatory (pyramidal) neurons
(Ariav et al., 2003), thus we only equip excitatory neurons with non-linear dendrites. All other
neuron parameters as well as the external random inputs stay unchanged (cf. Section 5.1.2).
The chain of subnetworks is constructed from the set of (non-hub) excitatory neurons as before
and also its parameters are unchanged (m = 10, Ng = 200 and εsub = 1.1nS).

Figure 5.3 shows that this network exhibits the same behavior as the original network. Whereas
the activity quickly decays to the level of spontaneous activity after synchronous stimulation of
the initial subnetwork only, a simultaneous co-stimulation of a random subset of the remaining
network results in persistent propagation of synchrony. As before, the propagating pulse acti-
vates the hub neurons and the hub neurons at the same time activate the chain of subnetworks.
During propagation of synchrony a large fraction of inhibitory neurons is active and provides
stabilizing inhibitory feed-back to the excitatory neurons.

Scale-free networks

So far we assumed that hubs are a distinct sub-population of the excitatory neurons, i.e., we
assumed a bimodal degree distribution (cf. Figure 5.3A,B for an illustration). However, the
existence of hubs is an intrinsic feature of networks with “fat-tailed” degree distribution, in
particular of the prominent class of scale-free networks (Newman, 2003, 2010). These networks,
where the degree distribution obeys a power-law, are found in a plethora of network dynamical
systems, ranging from social, information or technology to biological networks (Newman, 2003,
2010). In particular, also the link distribution of neurons in some cortical networks, e.g., in
developing hippocampus, has been shown to be scale-free (Bonifazi et al., 2009).

Given that the main prerequisite for its underlying mechanism is the existence of highly con-
nected nodes, we expect that hub-activated propagation of synchrony is also found in such
scale-free networks. To test this hypothesis, we modify the network topology by drawing the
number of incoming excitatory connections to excitatory neurons from a truncated power-law
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Figure 5.4: Hub-activated propagation of synchrony in scale-free networks. The network is almost iden-
tical to the network employed in Figure 5.3, but instead of assuming a distinct population
of hubs, the indegree distribution of the excitatory neurons obeys a power-law (exponent
γ = 2) truncated at kmin = 200 and kmax = 700; cf. panel (A). The indegree distribution
of the inhibitory neurons remains unchanged; cf. panel (B). The chain of subnetworks is
constructed from the subset of neurons with a low indegree k ≤ 350. (C) Network activity
for the same stimulation protocol as in Figure 5.3C. In the main panels, the blue area indi-
cates the subset of neurons which are members of the chain of subnetworks, the remaining
neurons are sorted by their indegree k from down to top. As before, only a simultaneous
stimulation of the initial subnetwork and a fraction of the remianing excitatory population
results in propagation of synchrony (III).
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distribution, i.e., the probability that a single neuron receives k incoming excitatory connections
is given by

p(k) =
{
Anorm · k−γ kmin ≤ kmax

0 otherwise,
(5.27)

with the normalization factor

Anorm :=

 kmax∑
k=kmin

k−γ

−1

(5.28)

and kmin (kmax) denoting the minimal (maximal) indegree. To keep the network balanced, for
each neuron the number of incoming inhibitory inputs is assumed to be proportional to the
number of excitatory inputs with a proportionality factor λ which equals the ratio of the sizes
of the inhibitory and excitatory neuron populations, λ = 1/4. An example of the indegree
distributions is shown in Figure 5.4A. The network setup in Figure 5.4 is almost identical to the
setup in Figure 5.3. However, besides the modified degree distribution, to avoid pathological
activity we enlarged the weights of single connections between inhibitory and excitatory neurons
to εexin = 2.2nS. All other network parameters are left unchanged. To keep the network dynamics
comparable to the dynamics of the network with bimodal degree distribution, we construct
the chain of subnetworks from the neurons with low or moderate indegree (i.e., we draw the
subnetworks from the subset of neurons with k ≤ 350).

The network with scale-free degree distribution as described above exhibits the same dynamics
as the network with bimodal degree distribution (cf. Figure 5.3C and Figure 5.4C). A successful
propagation of synchrony can be established only, if the initial subnetwork and a fraction of
the network remainder are initially stimulated. This propagation is maintained by the mutual
activation of neurons with a large number of incoming connections and the neurons propagating
the synchronous signal.
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Abstract

Reliable signal transmission constitutes a key requirement for neural circuit function. The prop-
agation of synchronous pulse packets through recurrent circuits is hypothesized to be one robust
form of signal transmission and has been extensively studied in computational and theoretical
works. Yet, although external or internally generated oscillations are ubiquitous across neural
systems, their influence on signal propagation remains partly unclear. Here we systematically
investigate the impact of oscillations on propagating synchrony. We find that for standard,
additive couplings and a net excitatory effect of oscillations, robust propagation of synchrony
is enabled in less prominent feed-forward structures than in systems without oscillations. In
the presence of non-additive coupling (as mediated by fast dendritic spikes), even balanced
oscillatory inputs may enable robust propagation. Here, emerging resonances create complex
locking patterns between oscillations and spike synchrony. Interestingly, these resonances make
the circuits capable of selecting specific pathways for signal transmission. Oscillations may thus
promote reliable transmission and, in co-action with dendritic nonlinearities, provide a mecha-
nism for information processing by selectively gating and routing of signals.

6.1. Introduction

The ground state of cortical networks is characterized by irregular and asynchronous spiking
activity (Softky and Koch, 1993; v. Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000) and
its dynamics are highly sensitive to perturbations, e.g., missing or additional spikes (v. Vreeswijk
and Sompolinsky, 1996, 1998; Denker et al., 2004; Jahnke et al., 2009; London et al., 2010;
Monteforte and Wolf, 2012). Yet, reliable transmission of information in the presence of such
perturbations is assumed to be essential for neural computation. A common hypothesis states
that such transmission might be achieved by propagating signals along subnetworks (layers)
connected in a feed-forward manner. Indeed, propagation of synchronous and rate signals in feed-
forward networks (FFNs) has been demonstrated in vitro (e.g., Reyes, 2003; Feinerman et al.,
2005; Feinerman and Moses, 2006) and recent experiments suggest that, e.g., the generation of
bird-songs relies on activity propagation in feed-forward structures (Long et al., 2010). Moreover,
sequential replay observed in hippocampal and neocortical areas also suggest such an underlying
feed-forward structure (August and Levy, 1999; Nadasdy et al., 1999; Lee and Wilson, 2002;
Leibold and Kempter, 2006; Xu et al., 2012; Eagleman and Dragoi, 2012).

Layered feed-forward networks that support propagation of synchrony are termed synfire chains
(e.g., Abeles, 1982, 1991; Diesmann et al., 1999; Gewaltig et al., 2001; Kumar et al., 2010).
The propagated signal is a synchronous pulse-packet (Aertsen et al., 1996; Diesmann et al.,
1999), i.e., a fraction of synchronously active neurons of one layer which induces synchronous
activity in the following, postsynaptic, layer and so on. Robust signal transmission in synfire
chains embedded in larger recurrent networks is usually obtained by an increased connectivity
(compared to the embedding network) between the neurons of successive layers of the FFN (e.g.,
Aviel et al., 2003; Mehring et al., 2003; Kumar et al., 2008a). Alternatively, increased synaptic
efficiencies (Vogels and Abbott, 2005), or the combination of enhanced synaptic weights and
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non-additive coupling (mediated by fast dendritic spikes, cf. Ariav et al., 2003) can enable such
a robust propagation (e.g., Jahnke et al., 2012, 2013).

Whereas the neuronal background in cortical networks is asynchronous and irregular, during
behavior and cognitive tasks more correlated activity, in particular, oscillations of various fre-
quencies prevail. A plethora of experimental studies links oscillations in, e.g., delta- (0.1−4Hz),
alpha- (10 − 25Hz) or gamma-band (25 − 100Hz), to attentional states and sensory stimulus
selection (e.g., Fries et al., 2002; Fries, 2005; Palva and Palva, 2007; Womelsdorf et al., 2007;
Womelsdorf and Fries, 2007; Lakatos et al., 2008; Kopell et al., 2010; Buschman et al., 2012).

In this article we investigate how background oscillations influence the transmission of syn-
chronous activity in feed-forward networks. More precisely, we consider sparse feed-forward
structures that emerge as part of a random network and that exhibit moderately enhanced
synaptic efficiencies (cf. also Jahnke et al., 2012, 2014a). In particular, the feed-forward struc-
tures considered are too weak (in the sense of connectivity and coupling strength) to propagate
synchronous signals on top of asynchronous background activity. However, we demonstrate
that additional oscillatory input, excitatory and inhibitory spike trains generated by an external
oscillating neuronal population, can enable robust propagation of synchrony.

We consider both conventional additive couplings, mediated by transient conductance changes on
the dendritic input site, and non-additive couplings that take nonlinear processing of inputs by
fast dendritic spikes (e.g., Ariav et al., 2003; Polsky et al., 2004; Gasparini et al., 2004; Gasparini
and Magee, 2006) into account. These dendritic spikes are evoked by highly synchronous inputs
(i.e., inputs arriving within a time window of less than a few milliseconds) and cause strong, rapid
depolarization in the soma of the postsynaptic neuron, exceeding the depolarization expected
from additive processing of inputs. Thereby they may foster directed (Jahnke et al., 2012, 2013)
and undirected (Memmesheimer and Timme, 2012) propagation of synchrony.

We show that for additively coupled networks, external oscillations support propagation of
synchrony only if the (average) excitatory input exceeds the inhibitory input. This exceed
causes a net depolarization of the neurons which in turn enables propagation of synchrony.
However, there is no resonance between the propagating synchronous signal and the oscillatory
stimulation, and temporally distributed external inputs would have the same effect. In contrast,
for non-additively coupled networks the sensitivity of dendritic spike elicitation to synchronous
inputs yields resonances to oscillations, i.e., there is a specific stimulation frequency range which
enables propagation of synchrony. Dendritic spikes are not suppressed by inhibition (cf. Müller
et al., 2012) such that they support synchrony propagation also if the inputs are balanced, i.e.,
if the (average) inhibitory input equals (or even exceeds) the excitatory input. Interestingly, the
existence of resonance frequencies provides the possibility to guide synchronous activity along
different pathways with distinct resonance frequencies.
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6.2. Material & Methods

In this section we briefly introduce the neuron model and system setup. A complete list of
standard neuron and model parameters is given in Appendix 6.5.1.

6.2.1. Neuron model

We consider networks of neurons of the integrate-and-fire type (Dayan and Abbott, 2001). Single
neurons interact by sending and receiving action potentials (spikes). The state of neuron i is
described by its membrane potential Vi and its temporal dynamics are determined by

Ci
dVi (t)
dt

= gL
i [V eq

i − Vi (t)] + Iex
i (t) + I in

i (t) , (6.1)

where Ci is the membrane capacity, gL
i is the leak conductance and V eq

i is the equilibrium poten-
tial. Iex

i (t) and I in
i (t) are currents arising from excitatory and inhibitory inputs, respectively.

Whenever the membrane potential Vi (t) exceeds the spiking threshold V Θ
i at some time t = t∗,

a spike is sent to the post-synaptic neurons j, where it arrives after a delay time τji. The sending
neuron’s potential is reset to Vi (t∗) = V reset

i , and the neuron is refractory for a time period tref
i ,

i.e., Vi(t) ≡ V reset
i for t ∈

[
t∗, t∗ + tref

i

]
.

6.2.2. Linear (additive) coupling

The effects of the synaptic inputs on postsynaptic neurons are modeled by transient conductance
changes. Denoting the reversal potentials of excitatory and inhibitory currents by Eex and Ein,
the input currents to neuron i arising from synaptic inputs from other neurons of the network
are given by

Iex
i (t) = gex

i (t) [Eex − Vi (t)] , (6.2)

I in
i (t) = gin

i (t)
[
Ein − Vi (t)

]
. (6.3)

gex
i (t) and gin

i (t) are linear superpositions of single responses,

gex
i (t) =

∑
n,j

εex
ij f

ex
(
t− tfj,n − τij

)
, (6.4)

gin
i (t) =

∑
n,j

εin
ijf

in
(
t− tfj,n − τij

)
, (6.5)

where εex
ij and εin

ij denote the excitatory and inhibitory coupling strength from neuron j to neuron
i and tfj,n is the nth spiking time of neuron j. f ex and f in specify the time course of the synaptic
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conductance change given by the difference of two exponentials (Dayan and Abbott, 2001) with
time constants τk,1 and τk,2,

fk (t) =


(
Ak
)−1 (

e
− t

τk,1 − e−
t

τk,2
)

for t ≥ 0
0 for t < 0

, (6.6)

for k ∈ {ex,in} describing the effect of an excitatory and inhibitory input, respectively, that is
received at time t0 = 0. The normalization constant

Ak =
(
τk,2

τk,1

) τk,2

τk,1−τk,2

−
(
τk,2

τk,1

) τk,1

τk,1−τk,2

. (6.7)

is chosen such that the peak conductance maxt≥t0
{
fk (t)

}
= 1. Throughout this article, we

denote the strength of a synaptic connection by the value of the peak conductance, i.e., a single
input of strength ε causes a conductance change ε · fk(t).

6.2.3. Non-linear (non-additive) coupling

Besides linear summation of inputs (as described above), we consider nonlinear amplification
of synchronous inputs mediated by fast dendritic spikes. These have been found in single neu-
ron experiments (e.g., Ariav et al., 2003; Polsky et al., 2004; Gasparini et al., 2004; Gasparini
and Magee, 2006) and introduced in recent models of neural networks (Memmesheimer, 2010;
Memmesheimer and Timme, 2012; Jahnke et al., 2012, 2014a; Breuer et al., 2014). The ampli-
fication is based upon dendritic action potentials which generate a strong depolarization in the
soma. Here, three properties are of particular interest: (i) The amplification is very sensitive to
input synchrony (relevant time window / 3 milliseconds), (ii) the peak of the depolarization in
the postsynaptic neuron (pEPSP) is reached a certain time interval after stimulation with only
sub-millisecond jitter and (iii) with increasing stimulation strength the amplitude of the pEPSP
saturates.

We model the contribution of such dendritic spikes to the neuronal input as follows (see also
Memmesheimer, 2010; Jahnke et al., 2012): We augment the neurons with an additional non-
linear dendrite. Inputs that arrive at the linear dendrite are processed as described in Section
6.2.2. Inputs on the nonlinear dendrite also cause a conductance change as described above,
but additional depolarizations of the membrane potential mimicking the effect of a dendritic
spike may be generated. If the total excitatory input to a nonlinear dendrite within a time in-
terval ∆T s exceeds a certain threshold Θb, a current pulse is initiated which takes effect on the
membrane potential after a delay time tds. We model the current pulse in a phenomenological
approach such that the depolarization caused by a suprathreshold input, ε ≥ Θb, resembles the
characteristics and time course of the depolarization observed in single neuron experiments (cf.
Ariav et al., 2003). More precisely, the current pulse is described by the sum of three exponential
functions,
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Ids (t) = Θ
(
t− tds

) [
−A exp

(
− t− t

ds

τds,1

)
+B exp

(
− t− t

ds

τds,2

)
− C exp

(
− t− t

ds

τds,3

)]
, (6.8)

with positive prefactors A,B,C and decay time constants τds,1, τds,2 and τds,3 which are chosen
such that the somatic depolarization fits experimental data. After initiation of such a current
pulse the (nonlinear) dendrite becomes refractory for a time period tref,ds and does not transmit
spikes within the refractory time period.

We note that for the generation of a dendritic spike only the excitatory inputs are considered.
Consequently, in accordance with recent experimental findings, inhibition fails to suppress fast
dendritic sodium spikes. However, the probability that a somatic spike is initiated by a dendritic
one might be reduced by hyperpolarization of the soma (Müller et al., 2012; cf. also Jahnke et al.,
2014a).

6.2.4. Network setup

We investigate sparsely, randomly connected recurrent networks and study the propagation
of synchrony in naturally occurring feed-forward subnetworks (FFNs). “Naturally occurring”
here means that the feed-forward structures are present as part of a recurrent network and
are not generated by, e.g., adding feed-forward connections. However, they are highlighted by
moderately increased excitatory connections.

We denote the total number of neurons in the recurrent network by N . The network itself con-
stitutes an Erdös-Rényi random graph: A directed excitatory synaptic connection between any
pair of neurons exists with probability pex. Inhibition in recurrent networks is usually assumed
to be mediated by a population of inhibitory neurons (interneurons). Spiking of excitatory neu-
rons causes a response of inhibitory neurons which in turn project an inhibitory input to the
excitatory neurons. Here, we simplify this inhibitory feed-back mechanism and assume that the
spiking of neurons, additionally to the excitatory input on the postsynaptic neurons, have an
inhibitory effect: An inhibitory connection between any pair of neurons exists with probability
pin. We remark that there might exist an inhibitory and excitatory connection between two
neurons. However, these cases are rare due to the sparsity of the considered networks (typi-
cally pex, pin ≈ 0.05). The simplification of the inhibitory feed-back loop eases the analytical
treatment, but is not crucial for the effect of oscillation induced propagation of synchrony as
discussed later on (cf. also Jahnke et al., 2014a).

For clarity of presentation coupling strengths are assumed homogeneous; excitatory connections
have strength εex

ij = εp, the strength of inhibitory connections is denoted by εin
ij = εm. We choose

the ratio between inhibitory and excitatory connection strengths, γ = εm/εp, such that the
peaks of single excitatory and inhibitory postsynaptic potentials measured at resting membrane
potential are of equal amplitude.
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We define FFNs by assigning neurons randomly to m groups of ω neurons each, where each
neuron belongs to one group at most. These groups constitute the layers of the FFN. By
construction, the connectivity between neurons of successive groups of the FFN statistically
equals the overall connectivity. To enable propagation of synchrony, we increase the strengths of
the already existing excitatory connections between neurons of successive layers; this connection
strength is denoted by εc.

For clarity of presentation, in the first part of the article we investigate the influence of oscil-
lations on propagating synchrony in isolated FFNs (Section 6.3.1-6.3.4). Here, only excitatory
connections between neurons of successive layers are present, i.e., εp = εm = 0, but εc > 0.
However, recurrent connections (εp, εm > 0) do not change the results qualitatively. We com-
prehensively study recurrent FFNs and discuss differences to isolated FFNs in Appendix 6.5.3.

6.2.5. Homogeneous neuronal background

In the ground state of balanced networks (v. Vreeswijk and Sompolinsky, 1996, 1998) single
neurons fire irregularly and their spiking activity is approximately described by Poissonian spike
trains (Tuckwell, 1988; Brunel and Hakim, 1999; Brunel, 2000). In addition to inputs from
the recurrent network each neuron receives inputs from remote networks, and we emulate this
influence by independent excitatory and inhibitory (Poissonian) spike trains. We denote the
rates by νext,ex and νext,in and the strength of single spikes (peak conductances) by εext,ex and
εext,in, respectively. Similarly to the recurrent connections, we assume the external input to be
balanced, such that the total input is balanced as well. As a consequence, the neurons are in
a fluctuation-driven regime, and in the absence of synchrony the neurons spike asynchronously
and irregularly and their output spike trains resemble Poissonian spike trains themselves.

6.2.6. Background oscillations

In this article we study the impact of neuronal oscillations on the ability of recurrent networks
to propagate synchronous signals. Oscillatory input may arise from oscillations in other circuits
or within the local network itself.

To systematically investigate the influence of oscillations on synchrony propagation in a con-
trolled way, we emulate such oscillations by excitatory and inhibitory inputs generated by a
‘virtual’ population of Ne neurons that spike with a mean frequency νs. Within each oscillation
period T s = 1/νs, Ne spike times are drawn from a Gaussian distribution centered at tn := n/νs

(for the nth oscillation, n ∈ Z) with standard deviation σs. Each of these spikes causes an
excitatory input of strength εext

p with probability pext
ex and an inhibitory input of strength εext

m
with probability pext

in to each neuron of the recurrent network (cf. Figure 6.1).

Here and in the following the term “balanced oscillations” refers to oscillatory input for which
excitatory inputs and inhibitory inputs cause postsynaptic potentials of equal amplitude (cf. also
Section 6.2.4); if the average excitatory inputs exceed the inhibitory inputs or vice versa, we
denote such inputs as “unbalanced oscillations”.
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Figure 6.1: Schematic illustration of oscillatory inputs. Oscillatory input is generated by a (vir-
tual) population of Ne neurons which spike once during each oscillation period of length
1/νs. The actual spiking times are drawn from a Gaussian distribution. At each neuron
in the network, each spike causes an excitatory input of strength εext

p with probability pext
ex

and an inhibitory input of strength εext
m with probability pext

in .

Whereas unbalanced oscillations induce a net depolarization or hyperpolarization of the neurons
in the network, balanced oscillations maintain the balance between excitation and inhibition,
and are thus expected to change the average membrane potential in the ground state only weakly.
However, they may influence the effective time constant of the neurons as discussed below in,
e.g., Section 6.3.2 (cf. also Destexhe et al., 2003; Kuhn et al., 2004).

The aim of the article is to understand the influence of the oscillatory nature of the input on
propagating synchrony, and resonances between signal propagation and input oscillations. We
discuss balanced oscillations (Section 6.3.2) and unbalanced oscillations (Section 6.3.3) sepa-
rately.

6.3. Results

Synchrony propagation through feed-forward structures has been demonstrated for additive
and non-additive coupling, and non-oscillatory network background activity (e.g., Diesmann
et al., 1999; Gewaltig et al., 2001; Aviel et al., 2003; Vogels and Abbott, 2005; Kumar et al.,
2008a; Jahnke et al., 2012). In general, if synaptic coupling is additive (i.e., in the absence of
dendritic spikes), the connection strength within the structure, i.e., synaptic efficiencies and/or
connectivity, need to be much stronger (perhaps outside the biological plausible range) than for
non-additive coupling (Figure 6.2a,d and Jahnke et al., 2012, 2013). With too small coupling
strength a synchronous signal fails to propagate, the synchronous activity dies out after a small
number of layers (Figure 6.2b,e).

Interestingly, even balanced oscillatory inputs (cf. Section 6.2.6) may stabilize synchrony prop-
agation if the coupling is non-additive (Figure 6.2f), but do not influence or even suppress
synchrony propagation in circuits with additive couplings (Fig. 6.2c). With too strong coupling
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Figure 6.2: Signal transmission in isolated FFNs (m = 10, ω = 200, pex = 0.05) with linear
(a-c) and nonlinear (d-f) dendritic interactions. For each dendritic interaction type,
raster plots for two different coupling strengths εc are shown. Panels (a), (b), (d) and (e)
display the network activity in the absence of oscillations; in panels (c) and (f) balanced
oscillatory input is present (parameters see inset). The stimulation frequency νs equals the
propagation frequency νp of the stable propagation shown in (a) and (d).

strength spontaneous propagation of synchrony might be initiated causing pathological activity
(not shown; cf. Litvak et al., 2003; Rosenbaum et al., 2010, 2011).

Whether synchrony propagation is stabilized or enabled depends on features of neurons, network
and oscillatory input, e.g., stimulation frequency or synaptic coupling strength. We investigate
the mechanism underlying this stabilization numerically (Section 6.3.2-6.3.4) and analytically
(Section 6.5.2). We identify parameter regions for which synchrony propagation is facilitated
by oscillations. In particular, we demonstrate that nonlinearly coupled FFNs show resonance to
(balanced and unbalanced) oscillations. Interestingly, such resonances provide a gating mecha-
nism for information flow across the network: Different stimulation frequencies may selectively
activate different FFNs (with corresponding resonance frequencies) embedded in a recurrent
network (Section 6.3.5).

6.3.1. Synchrony Propagation

As a starting point, we investigate isolated FFNs and briefly describe the mechanism underlying
propagation of synchrony in networks with and without dendritic nonlinearities.

Each neuron of the FFN receives much more input from the external homogeneous background
than from the preceding layer. Therefore, in the absence of synchrony, the FFN’s dynamics in
the ground state is mainly determined by this external background input, and the neurons of
the FFN fire asynchronously with a low rate. However, exciting a fraction of neurons of the
first layer of the FFN to spike synchronously causes a synchronous input to the second layer, a
fraction of which subsequently spikes synchronously. This process continues from layer to layer
and thus can induce persistent propagation of synchrony.
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Figure 6.3: Transition from non-propagating to propagating regime. (a) The probability psp
10(ε)

that a single neuron in the ground state (receiving homogenous background inputs) spikes
within 10ms after stimulation by a synchronous input pulse of strength ε. For neurons with
linear dendritic interactions (additive coupling; solid line) the spiking probability increases
continuously with increasing input ε. For neurons with nonlinear dendritic interactions
(non-additive coupling; dashed line), inputs larger than the dendritic threshold Θb elicit a
dendritic spike and therefore the spiking probability jumps to a constant value, psp

10 (ε) =:
p∗, for ε ≥ Θb. The probabilities are estimated from averaging over 10.000 single trials
per connection strength. (b) Map (6.10) specifying the average number of synchronously
spiking neurons gl+1 in one layer given that in the previous layer gl neurons have spiked
synchronously; derived from the single neuron response probability in (a) for an isolated
FFN (here ω = 200, pex = 0.05). Different colors indicate different strengths of feed-
forward connections (εc ∈ {1.0, 2.0, 4.0}nS), continuous and dashed lines indicate additive
and non-additive coupling.

One can derive an iterated map (cf. also Jahnke et al., 2012, 2013) that specifies the average
number of neurons ḡ which spike synchronously, i.e., within a certain time interval, given that
in the preceding layer gin neurons have spiked synchronously. We denote the probability for
a neuron in the asynchronous ground state to spike within a time interval of x milliseconds
after receiving an input of strength ε by psp

x (ε). Say that in some layer, gin neurons spike syn-
chronously, then each neuron of the following layer will receive some number k ∈

{
0, 1, . . . , gin}

of synchronous inputs of strength εc. As each of the gin spikes sent is received by every neuron
of the postsynaptic layer with probability pex, k follows a binomial distribution, k ∼ B

(
gin, pex

)
,

such that on average

ḡ = ω
gin∑
k=0

(
gin

k

)
pkex (1− pex) ω−kpsp

x (kεc) (6.9)

neurons spike within a time interval of x milliseconds.

We asses the temporal development of the size of the synchronous pulse in every layer by
considering gl+1 the average number of neurons spiking synchronously in layer l+1 as a function
of gl the average number synchronous spiking neurons in the preceding layer l. Thus, replacing
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ḡ by gl+1 and gin by gl in Equation (6.9) we obtain the map

gl+1 = F (gl) (6.10)

where F (·) is the continuous interpolation of the right hand-side of Equation (6.9) for continuous
gl ∈ R. The fixed points of the map (6.10) determine the stability region for the propagation of
synchrony (cf. Figure 6.3). For small coupling strength εc, there is only one fixed point G∗0 ≈ 0
and any synchrony propagation will extinguish within few layers (cf. also Figure 6.2b,e). For
sufficiently large layer size ω and coupling strengths εc, stable propagation of synchrony can
be achieved, the size and temporal spread of the synchronous pulse are stable throughout the
layers (for an extensive analysis see Jahnke et al., 2013): This is due to the appearance of two
additional fixed points, G∗1 (unstable) and G∗2 (stable), which emerge via a tangent bifurcation
in the map (6.10) upon increasing εc. A synchronous pulse g0 ≥ G∗1 will propagate with a typical
group size g∗ ≈ G∗2.

In a given network, persistent propagation is possible if the connection strengths are larger than
some critical value. We denote the critical connection strength, i.e., the bifurcation point at
which the fixed points G∗1 and G∗2 emerge, by εc = ε∗L for FFNs with linear dendrites and by
εc = ε∗NL < ε∗L for FFNs with nonlinear dendritic interactions.

Stable propagation of synchrony occurs with a certain propagation frequency νp, which is defined
as the inverse of the average time interval between two consecutive synchronous pulses. νp is
governed by (i) the synaptic delay and (ii) the average time tsp that an arriving input needs to
trigger a spike in the postsynaptic neuron (if it does so). The synaptic delay is fixed for a given
setup, but tsp in general depends on the strength of the input and thereby on the connection
strength εc.

For networks with linear dendrites, tsp decreases with increasing input strength (cf. Figure
6.4a): The increase of the input causes a steeper and steeper rise of the evoked postsynaptic
potential, and therefore reduces the (average) time the neuron needs to reach the threshold V Θ.
In contrast, tsp is constant for networks with nonlinear dendritic interactions: The spiking of the
neuron is triggered by the additional current pulse mimicking the dendritic spike. This current
pulse (and with it the resulting depolarization) is independent of the actual input strength (see
Section 6.2.3), and the rise of the postsynaptic potential is so steep that tsp (ε) is practically
constant for ε ≥ Θb.

As a consequence, for FFNs with non-additive couplings the propagation frequency νp depends
only weakly on the connection strength εc. If a propagation of synchrony is enabled for εc ≈
ε∗NL, this propagation occurs with a certain ‘natural’ propagation frequency νp = νnat. In
contrast to linearly coupled FFNs, the propagation frequency remains approximately constant
for connection strengths above the critical connection strength, εc > ε∗NL (Figure 6.4b). For
connection strengths satisfying Θb/εc ∈ N the propagation frequency νp jumps: If εc is increased
above Θb/i for some i, a smaller number i of spikes can trigger a dendritic spike, i.e., a reduced
fraction of the synchronous pulse packet is sufficient to trigger dendritic spikes, such that the
neurons in each layer tend to spike earlier. This shortens the (average) responding time to the
synchronous pulse packet and the propagation frequency increases.
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Figure 6.4: Propagation frequency of a synchronous pulse. (a) Mean spiking time tsp of a neuron
after stimulation with an input of strength ε (shaded areas indicate the regions between the
0.2 and 0.8 quantiles; only data for psp

10 (ε) ≥ 0.5 are shown). For neurons with nonlinear
dendritic interactions tsp is constant, whereas for neurons with linear dendritic interactions
tsp decreases with increasing stimulation strength ε. (b) Propagation frequency νp of a
synchronous pulse versus strength of the feed-forward connections εc in the absence of
external oscillations (ω = 200, pex = 0.05); the inset shows a zoomed view of the propagation
frequency in FFNs with non-additive couplings for εc ≈ ε∗

NL. The yellow line indicates the
natural propagation frequency νnat.

We remark that for large connection strengths εc, the FFN enters a pathological state of activity:
Neurons of one particular layer share inputs from the preceding layer and this causes correlations
in their spiking activity. If the single connections become stronger (i.e., only a few inputs
are needed to generate a dendritic spike and a somatic output spike) also these correlations
become stronger. They may accumulate over the layers of the FFN and lead to spontaneous
synchronous spiking activity propagating along the later layers of the FFN (Litvak et al., 2003;
Rosenbaum et al., 2010, 2011). Thus, there exist cutoff-connection strengths εpath

L and εpath
NL

for networks with linear and nonlinear dendritic interactions, above which the global spiking
activity is characterized by network oscillations and a meaningful propagation of synchronous
activity is not possible anymore.

Whereas signal transmission is possible in FFNs with and without dendritic nonlinearities, the
underlying mechanism is different: In linearly coupled networks transmission is achieved by elic-
iting somatic spikes directly, thus also asynchronous inputs and depolarizing constant external
currents may contribute to spike propagation. In nonlinearly coupled networks transmission is
mediated by dendritic spikes (all-or-none events), and therefore only highly synchronized spiking
input contributes.

6.3.2. Synchrony propagation in the presence of balanced oscillations

Depending on the coupling strength FFNs may or may not be capable of propagating syn-
chronous signals. But how do external oscillations influence the propagation of synchrony? Do
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as a function of the coupling strength εc and the amplitude of the external network oscilla-
tions, measured by Ne. Configurations, where the system enters a pathological activity state
(i.e., ongoing spontaneous propagation of synchrony) are marked in gray. Panels (a,c) show
simulation results for networks with linear dendritic interactions (νs = 230Hz, σs = 0.3ms)
and (b,d) for networks with nonlinear dendritic interactions (νs = 180Hz, σs = 0.3ms);
panels (c) and (d) are close up views of (a) and (b). The black stars indicate the values
of εc and Ne used in Figure 6.7a,c. Whereas balanced oscillations hinder signal propaga-
tion in additively coupled networks (i.e., require compensation by stronger coupling), they
can support it in non-additively coupled ones. Other parameters are pext

ex = pext
in = 0.05,

εext
p = 0.3nS, εext

m = 0.825nS.

systems with and without dendritic nonlinearities exhibit qualitatively the same behavior?

To answer this question, we first consider isolated FFNs, which receive balanced oscillatory
stimulation with frequencies νs equal to the propagation frequencies νp observed for the onset
of propagation of synchrony in unstimulated FFNs (see Section 6.3.1). Thus we expect the
stimulation to be in resonance with the propagating synchronous pulse in the FFN. The impact
of different stimulation frequencies and the possibility of complex locking patterns between
oscillations and propagating synchrony is investigated in Section 6.3.4 below.

How does the amplitude of the oscillatory input as controlled by the number Ne of oscillating
(virtual) neurons (see Section 6.2.6 for details) influences signal propagation?

For networks with additive couplings we find that the critical connection strength (i.e., the
minimal connection strength which enables propagation of synchrony) increases with increasing
oscillation amplitude Ne as illustrated in Figure 6.5a,c: The additional input is balanced, so
that the mean input to each neuron is constant (for all Ne), but both the mean excitatory and
inhibitory conductances are increased. In this high-conductance state the effective membrane
time constant decreases and consequently the amplitude and the width of postsynaptic potentials
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decrease (Destexhe et al., 2003; Kuhn et al., 2004). In other words, the additional inputs arising
from oscillations decrease the excitability of the neurons. Thus, stronger inputs (in terms of
conductances) are needed to generate the same depolarization as in networks without external
oscillations and the critical connectivity, ε∗L, increases. This is the same phenomenon that
hinders synfire-explosions (Hehl, 2001; Mehring et al., 2003) in networks with conductance-based
synapses as described in Kumar et al. (2008a).

In contrast, in networks with non-additive couplings, the critical connection strength decreases
with increasing oscillation amplitude Ne (see Figure 6.5b,d). In such networks the propagation of
synchrony is mainly mediated by dendritic spikes. Dendritic spikes are elicited if the excitatory
input on a dendrite within a certain time-window, ∆T s, is larger than the dendritic threshold
Θb (see Section 6.2.3). Inhibition fails to suppress dendritic spikes (Müller et al., 2012) and thus
its increase does not hinder signal propagation. If the frequency νs of network oscillations is in
the range of the natural propagation frequency νnat ≈ νs, and the oscillations are in phase with
the propagating signal, the synchronous pulse from the preceding group arrives at each layer
synchronously with the oscillatory inputs. Thus, less input from the preceding layer is needed
to reach the dendritic threshold. Taken together, by effectively lowering the dendritic threshold
Θb the external inputs reduce the critical connectivity ε∗NL. In Figure 6.5b,d we show that this
reduction can yield propagation of synchrony at drastically reduced synaptic efficiencies within
the FFN; in the given example the critical connection strength ε∗NL is reduced by a factor of two
to three (from 1.45nS to 0.6nS).

The downside of the robustness of dendritic spikes to inhibition is that even balanced oscillations
may cause pathological activity if oscillation amplitude becomes too strong: With increasing
amplitude Ne the neurons of the FFN become more and more sensitive to inputs from the
previous layer. Thus, similar to the regime of overly strong feed-forward connections (cf. remark
at the end of the previous Section 6.3.1), correlations in their spiking activity accumulate along
the layers of the FFN (Litvak et al., 2003; Rosenbaum et al., 2010, 2011) and induce spontaneous
propagation of synchrony (gray areas in Figure 6.5).

6.3.3. Synchrony propagation in the presence of unbalanced oscillations

Like balanced oscillations also unbalanced oscillations may be expected to alter the propagation
efficiencies of FFNs: The average external excitatory input is larger or smaller than the inhibitory
input, and thus the average ground state membrane potential of the neurons is shifted which
influences the neurons’ excitability. As we show below this shift clearly influences propagation of
synchrony in additively coupled networks, but has only a weak effect in non-additively coupled
systems.

For a given excitatory coupling strength εext
p we denote the corresponding balanced inhibitory

coupling strength by
ε0

m := γεext
p , (6.11)

where γ is chosen such that the peaks of the excitatory and inhibitory postsynaptic potentials
are of equal amplitude when the input is received at resting potential (cf. Section 6.2.6). We
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Figure 6.6: Support of propagation of synchrony by unbalanced oscillations. Same setup
as in Figure 6.5, but with altered inhibitory coupling strength εext

m = αε0
m as indicated

in (b). The lines inclose the parameter regions for which an initial synchronous pulse is
detectable up to the final layer. (a) For FFNs with linear dendritic interactions unbalanced
oscillations may foster propagation of synchrony, if the excitation exceeds the inhibition
(α < 1, i.e., εext

m < ε0
m; red lines) or impede it, if the inhibition exceeds the excitation,

respectively (α > 1, i.e., εext
m > ε0

m; blue lines). (b) In contrast, in FFNs with nonlinear
dendritic interactions the balance between excitation and inhibition has only a weak effect
on the parameter region in which robust propagation of synchrony is possible. For further
explanations see Section 6.3.3.

consider isolated FFNs stimulated by oscillations as in the previous section, but we decrease or
increase the strength of the inhibitory inputs by a factor α compared to the balanced regime,
i.e.,

εext
m = αε0

m. (6.12)

For additively coupled networks and α < 1 such input indeed promotes synchrony propagation
(cf. Figure 6.6a, red lines): The oscillatory input depolarizes the neurons of the FFN and thus
less synaptic input is needed to elicit a somatic spike; the critical connectivity ε∗L decreases. At
the same time, the increased excitability of the neurons lowers the threshold for pathological
activity, εpath

L . Likewise, for α > 1 the neurons are hyperpolarized by the oscillatory input which
impedes the generation of somatic spikes; the critical connectivity ε∗L increases (cf. Figure 6.6a,
blue lines).

In contrast, in non-additively coupled networks, the critical connectivity ε∗NL is largely unaf-
fected by changing the balance of inhibition and excitation (cf. Figure 6.6b). Here, propagation
of synchrony is mediated mainly by dendritic spikes, and their generation is not influenced by
inhibition (cf. Section 6.2.3 and Müller et al., 2012). Pathological activity is induced if correla-
tions in spontaneous spiking activity accumulate over the layers. Because inhibition reduces the
overall spiking activity (and also the probability that a dendritic spike triggers a somatic one),
with increasing α (and thus increasing inhibition) the pathological threshold εpath

NL increases.

We note that although unbalanced oscillations may promote propagation of synchrony in ad-
ditively coupled networks, the mechanism underlying this support differs from propagation of
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synchrony in non-additively coupled networks. The effect is attributed to the increase of the (av-
erage) ground state membrane potential and, as we demonstrate in the next Section 6.3.4, could
as well be obtained by additional constant (over time) input currents with the same strength as
the mean input due to the oscillations.

6.3.4. Network Resonance

Oscillations may support propagation of synchrony (if in resonance), but how does their actual
impact depends on system features such as frequency and amplitude of external oscillations. In
the following, we investigate which frequency ranges support or hinder synchrony propagation.
In particular, we show that networks with non-additive coupling exhibit resonance to stimula-
tions where the frequency νs is rationally related to the natural propagation frequency νnat. In
networks with additive couplings, we do not find such a resonance effect, even if the stimulation
is unbalanced and therefore supports signal propagation.

First, we consider networks with linear couplings: As pointed out in the previous section, bal-
anced oscillatory inputs decrease the excitability of the neurons of the FFN. Thereby it decreases
the capability of the network to propagate synchronous signals for all stimulation frequencies νs.
With increasing νs, the total number of input spikes per unit time increases and the effective
time constant decreases further such that the propagation becomes more and more difficult.
Figure 6.7a illustrates that the presence of balanced oscillations indeed inhibits synchrony prop-
agation increasingly, the stronger and the more prominent the oscillations are (i.e., larger Ne
and νs).

The support of signal transmission by unbalanced input (cf. Figure 6.6) is caused by an increase of
the ground state’s membrane potential. With increasing Ne and νs this depolarization increases
(increased net excitation) and thus facilitates synchrony propagation more and more. Likewise,
the propagation frequency νp increases until the stimulation gets too strong and the system
enters a pathological activity state. We do not observe resonance to the oscillatory stimulation,
and the promotion of propagation of synchrony can equally well be obtained by an additional
constant (over time) excitatory input Is which is proportional to the stimulation frequency νs

(cf. Figure 6.7b).

In contrast, networks with non-additive couplings show resonance, and even balanced oscillations
enable propagation of synchrony for configurations where signal propagation fails for homoge-
neous external background (i.e., in the absence of external oscillations, cf. Figure 6.5b,d). For
stimulation frequencies νs ≈ νnat, we observe a locking of the propagating signal to the external
stimulus: The input from a preceding layer is not sufficient to excite sufficiently many neurons
to spike synchronously and to enable persistent propagation. It can, however, take place if there
is additional input. An oscillatory external input then influences the timing of the propagating
pulse-packet and the propagation frequency νp locks to the stimulation frequency νs (cf. Figure
6.7c,d).

With changing νs, we observe multiple resonance peaks for setups where the ratio of νs and νnat

is rational, νnat : νs = n : m for some small integers n,m. The arrival of the input from every
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Figure 6.7: FFNs with nonlinear dendritic interactions show resonance. Same network setup
as in Figure 6.4; coupling strengths are (a) εc = 3.5nS, (b) εc = 2.8nS and (c,d) εc = 0.8nS.
(a-c) The upper panels display the propagation frequency νp of the synchronous signal, the
lower panels show the layer up to which propagation occurs, as a function of the stimulation
frequency νs for FFNs with (a,b) linear and (c) nonlinear dendritic interactions. Different
colors represent different amplitudes Ne of external oscillations as indicated by insets. In
additively coupled FFNs (a) balanced oscillations hinder synchrony propagation, whereas
(b) unbalanced oscillations (α = 0.5, i.e., excitation exceeds inhibition, cf. Equation 6.12)
support it. This support, however, might be equally well achieved by temporally constant
additional excitatory inputs: The thick gray filled lines indicate the propagation properties
of an FFN, where single neurons receive constant additional current Is (red; upper vertical
axis), 2Is (black) or 3Is(blue). In non-additively coupled FFNs even (c) balanced oscillations
foster synchrony propagation and, in contrast to additively coupled FFNs, the propagating
signal may lock to the oscillatory stimulation if the ratio νnat : νs is rational; the gray lines
indicate νp : νs = {2 : 1, 1 : 1, 2 : 3, 1 : 2}. This locking is illustrated in (d): Raster plots of
spikes of the external oscillating population (upper panel) and of the FFN (lower panel).
The yellow lines indicate the time intervals [n/νs − σs, n/νs + σs] for n ∈ N, containing
≈ 68% of the spikes of the external oscillatory population (cf. also Figure 6.8).
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Figure 6.8: Examples of resonance in isolated FFNs with non-additive coupling (m = 20,
pex = pin = 0.05, ω = 200). The ratio between the stimulation frequency νs and the natural
propagation frequency νnat is rational: (a) νs = 1

3ν
nat = 59Hz, (b) νs = 3

2ν
nat = 265.5Hz

and (c) νs = 2νnat = 354Hz. The gray areas indicate the time interval in which the external
oscillations may contribute to the generation of somatic spikes. At t = 0 synchronous
activity is induced in the first layer. The upper panels show the spiking rate of neurons of
the FFN in the presence of external oscillations (black solid). The firing rates for identical
networks, where the oscillatory input stops at t = 0 are shown for comparison (green
dashed). The lower panels show the spiking activity of the first nine layers (odd layers: red,
even layers: blue). Other parameters are (a-c) pext

ex = pext
in = 0.05, σs = 0ms, εext

p = 0.15nS,
εext

m = 0.4125 and (a) εc = 1.3nS, Ne = 900, (b) εc = 1.0nS, Ne = 600 and (c) εc = 0.8nS,
Ne = 700.
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mth external oscillation coincides with the arrival of the synchronous pulse from the preceding
layer at every nth group. Examples are shown in Figure 6.8 for frequency ratios n : m = 3 : 1
(the propagation at every third layer is supported by the external input), n : m = 2 : 3 (the
propagation at every second layer is supported by the external input from every third oscillation)
and n : m = 1 : 2 (every second oscillatory input coincides with the arrival of the synchronous
pulse from the preceding layer).

Near the resonance frequencies the propagation frequency νp locks to the stimulation frequency
νs (cf. Figure 6.7c gray areas). If the stimulation frequency increases above the resonance
frequencies, synchrony propagation breaks down: Due to non-zero synaptic delay, initiation time
of a dendritic spike and rise-time of the excitatory postsynaptic potential, there is a minimal
time interval a signal needs to propagate from one layer to another. Thus, if the external
stimulation frequency becomes too large, the inputs from the preceding layer arrive too late,
i.e., outside the dendritic integration window ∆T s, and therefore the additional inputs do not
support propagation of synchrony as described above.

We only observe frequency lockings for small integers n,m. The number n counts the (minimal)
number of layers a signal has to propagate in the absence of external simulations as the prop-
agation of synchrony is supported by the oscillatory input only for every nth layer. For large
n, however, the signal either propagates even in the absence of additional inputs (i.e., there is
no need for supporting the signal propagation) or it has decayed after n layers and cannot be
stabilized by external inputs. Large m imply high stimulation frequencies, and with increasing
stimulation frequency the external input becomes more and more stationary in the sense that
additional (oscillatory) inputs are delivered to the neurons of the FFN all the time. A propa-
gation of synchrony may be enabled, but the signal does not lock to the stimulation frequency
anymore (cf. Figure 6.7c).

Finally, we remark that we can describe the emergence of oscillation supported propagation of
synchrony using methods introduced in Jahnke et al. (2012, 2013). In Appendix 6.5.2 we derive
an analytical expression for the minimal amplitude of the oscillatory input, N∗e , for which robust
signal propagation is possible and compare the analytical predictions with numerical simulations
(cf. Appendix 6.5.3).

6.3.5. Selecting transmission pathways by resonance

Networks with non-additive coupling exhibit resonance to oscillatory signals and this provides the
possibility of specifically activating FFNs with different resonance frequencies. As we demon-
strate below such resonant signal transmission establishes a mechanism to read out signals
encoded in the structure of a recurrent network.

In how far do the results for pure feed-forward structures without recurrent connectivity can be
generalized to recurrent systems as relevant for biological neural circuits? The main difference
between isolated FFNs and recurrent FFNs is the emergence of a projection of the synchronous
activity to all neurons of the network, not only to the neurons of the layer following the currently
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Figure 6.9: Activation of specific signal transmissions in FFNs with different resonance fre-
quencies. (a) With increasing average coupling delays τ̄ (distribution width ∆τ = 0.3ms)
resonance peaks (isolated FFN; m = 20, ω = 200, pex = 0.05, εc = 1.0nS) are shifted to
lower frequencies (cf. Equation 6.14). The panels show up to which layer a synchronous
pulse propagates in the presence of balanced oscillations (pext

ex = pext
in = 0.05, Ne = 250,

εext
ex = 0.3nS, εext

in = 0.825nS, σs = 0.3ms). The width of the resonance peaks increases
with increasing size of the dendritic integration window (solid: ∆T s = 1.0ms, dashed:
∆T s = 1.5ms, dotted: ∆T s = 2.0ms). (b) Raster plot of the spiking activity of a recurrent
network (N = 3800, pex = pin = 0.05, εex = 0.2nS, εin = 0.55nS) which contains two FFNs
(m = 10, ω = 200, εc = 1.0nS) which share the initial layer. Both FFNs have different
average coupling delays (τ̄1 = 2.0ms and τ̄2 = 3.5ms; ∆τ = 0.3ms) and thus different res-
onance frequencies (cf. panel a); for the remaining connections the average coupling delays
is τ̄ = 2.75ms. Whereas a synchronous pulse extinguishes after a few layers in the absence
of oscillations (t = 30ms), it may propagate along the layers of one FFN or the other de-
pending on the stimulation frequency (t = 130ms and t = 230ms; Ne = 250, εext

ex = 0.3nS,
εext

in = 0.825nS, σs = 0.3ms). Panel (c) is a close-up view of the raster plot shown in (b).
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active one. For additively coupled networks this projection (similar to balanced oscillatory input)
shifts the range of coupling strengths

εc ∈
[
ε∗L, ε

path
L

]
(6.13)

for which a persistent propagation of synchrony is possible to larger connection strengths. The
length of the interval, however, is unchanged (cf. Figure 6.11 in Appendix 6.5.3). For non-
additively coupled networks, the critical connectivity ε∗NL is largely unaffected, but with more and
more prominent recurrent connections the pathological threshold εpath

NL decreases. For moderate
recurrent connection strengths propagation of synchrony can be induced by oscillations also in
recurrent networks without causing pathological activity; though if the connections are too large
activity might spread not only from one layer to the next, but might propagate over the whole
network (“synfire explosion” activity, Hehl, 2001; Mehring et al., 2003; Aviel et al., 2003). We
investigate and discuss such recurrent systems in detail in Appendix 6.5.3

The main resonance frequency in non-additively coupled FFNs is given by the natural propaga-
tion frequency νnat. This frequency, however, is determined by the average time tsp an arriving
synchronous input at a given layer needs to trigger a somatic spike (cf. Section 6.3.1) and the
average synaptic delay τ̄ ,

νnat ≈ 1
tsp + τ̄

. (6.14)

We illustrate this dependency in Figure 6.9a indicating the resonance peaks for different τ̄ . Here,
the coupling delays τij between neurons of successive layers are drawn uniformly from an interval
of length ∆τ centered at τ̄ ,

τij ∈
[
τ̄ − ∆τ

2 , τ̄ + ∆τ
2

]
. (6.15)

With increasing τ̄ , the natural propagation frequency and thus the resonance peaks are shifted
to smaller frequencies.

The width of the resonance peak is determined by the temporal spread of the propagating
synchronous pulse itself, the temporal spread of the oscillatory inputs (σs; cf. also Appendix
6.5.2) and the width of the dendritic integration window ∆T s. In particular, the width of the
resonance peaks increases with increasing ∆T s as shown in Figure 6.9a.

The existence of separated resonance peaks provides the possibility to specifically activate dif-
ferent signal transmission routes by oscillations of suitable frequencies. As a simple example
consider a recurrent network containing two FFNs (cf. Figure 6.9b,c). The coupling delays be-
tween neurons of successive layers of the first FFN are centered at τ̄1 = 2.0ms, the coupling
delays between neurons of successive layers of the second FFN are centered at τ̄2 = 3.5ms > τ̄1.
As before, the feed-forward couplings εc in both FFNs are too weak to enable a robust prop-
agation of synchrony in the absence of external oscillations (cf. Figure 6.9b). Yet, external
oscillations fitting to the resonance frequencies of the FFNs may enable robust propagation in
one of the FFNs without activating the other. The close-up view in Figure 6.9c shows that
indeed the propagation in both FFNs occur with different propagating frequencies.
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6.4. Summary and discussion

Reliable and controlled transmission of signals is considered essential for computation in cortical
networks. Propagation of synchronous activity along layered feed-forward networks may be one
important way to realize such transmissions (Abeles, 1982; Diesmann et al., 1999; Kumar et al.,
2010). Starting with a random recurrent network, feed-forward structures are assumed to be
formed in a “training phase” previous to the recall of the learned sequences by, e.g., spike time
dependent plasticity (Jun and Jin, 2007; Fiete et al., 2010; Waddington et al., 2012). Moreover,
propagating synchronous pulse are also a candidate for generating precisely timed spike patterns
in the millisecond range as observed in various neurophysiological studies (e.g., Abeles et al.,
1993; Riehle et al., 1997; Johansson and Birznieks, 2004; Putrino et al., 2010).

Robust propagation, however, typically requires a highly prominent feed-forward anatomy, either
in the sense of densely connected layers of neurons (Aviel et al., 2003; Mehring et al., 2003; Kumar
et al., 2008a) or strongly increased connection strengths between neurons of successive layers
(compared to remaining connections of the network) (Vogels and Abbott, 2005). Such prominent
structures are experimentally not observed.

In this article we demonstrated that the presence of background oscillations can relax this re-
quirement by supporting the propagating signal by additional external inputs. These additional
inputs excite the neurons of the network (including the current target layer of the propagating
synchronous pulse) and therefore enable a robust propagation with less inputs from the preced-
ing layer. As a consequence robust signal transmission may emerge in networks with weaker
couplings between the layers of the feed-forward network.

Such weaker structures, where the differences between feed-forward connections and remaining
recurrent couplings are smaller, can be formed faster by synaptic plasticity (assuming a con-
stant plasticity rate), i.e., the process of creating (and reconfiguring) information pathways is
simplified. Alternatively, the background oscillations can enable robust signal transmission in
feed-forward networks with reduced layer size (while keeping the coupling strengths fixed). We
thus expect that this leads to an increase in the storage capacity of recurrent networks, because
a reduced number of “memory-encoding” neurons is required for reliable signal propagation.

Experimental data suggests that there is a balance between excitatory and inhibitory input to
single neurons in cortical networks during spontaneous and sensory-evoked activity (Haider et al.,
2006; Okun and Lampl, 2008; Atallah and Scanziani, 2009). We therefore considered external
oscillatory input, which is composed of an excitatory as well as an inhibitory component.

We find that for additively coupled networks only unbalanced external inputs that cause a net
depolarization, support propagation of synchrony. Further, this support does not depend on the
oscillatory nature of the input and could equally well be established by a temporally constant
input current with the strength of the temporal mean input.

In contrast, for networks with non-additive couplings the ratio of the excitatory and inhibitory
input is less important. In these networks propagation of synchrony is mainly mediated by
dendritic spikes, which are elicited if the excitatory input within a short time interval exceeds
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the dendritic threshold (Ariav et al., 2003; Polsky et al., 2004; Gasparini et al., 2004; Gasparini
and Magee, 2006). Further, inhibition fails to suppress the generation of such dendritic spikes
(Müller et al., 2012) and thus even inputs with a net hyperpolarizating effect support signal
propagation. Due to the short dendritic integration window the timing of the external input
is important, and thus only oscillatory inputs of a suitable frequency range can facilitate the
propagation of synchrony. Whenever the ratio of the stimulating frequency and the “natural”
propagation frequency of the feed-forward network is rational, resonances and locking patterns
emerge. The resonance frequencies themselves are determined by the average conduction delays
between the neurons of the FFN. This provides a mechanism to selectively activate different
signaling pathways by oscillations of suitable frequency.

We conclude that fast dendritic spikes can support signal transmission in the form of propaga-
tion of synchrony in several ways: They specifically amplify activity that is synchronous, and
thus enable a robust propagation in networks with moderate feed-forward anatomy even in the
absence of oscillations (Jahnke et al., 2012, 2013). The amplification (i.e., the eliciting of den-
dritic spikes) itself depends on the excitatory inputs only. The propagation can be additionally
supported by external oscillatory inputs independent of the balance of excitation and inhibition
and their relative phase. Thus the occurrence of resonances enables specific information routing
through recurrent networks.

Oscillations may arise from external sources (i.e., spatially separated oscillating networks), but
also from the embedding network itself provided the network has a suitable topology (e.g.,
broad distribution of the number of synaptic connections, cf. Jahnke et al., 2014a). In the latter
scenario, so-called hub-neurons can echo the propagating synchronous signal, start to oscillate
and therefore provide an oscillatory (feed-back) input to the embedded feed-forward structure.

Dendritic spikes are prominently found in, e.g., the hippocampus (cf. Ariav et al., 2003; Gasparini
et al., 2004; Müller et al., 2012; Makara and Magee, 2013, and others). In this cortical area
spike patterns observed during spatial exploration are replayed during sleep or resting phases
(e.g., Nadasdy et al., 1999; Lee and Wilson, 2002; Ji and Wilson, 2007; Davidson et al., 2009).
Interestingly, this replay is accompanied by high frequency oscillations up to 200Hz (e.g., Ylinen
et al., 1995; Csicsvari et al., 1999a; Maier et al., 2003). Our results suggest that the high-
frequency oscillations may contribute to the stabilization of the replay of spike patterns.

Finally, we remark that the mechanism of signal transmission in terms of oscillation induced
propagation of synchrony is not restricted to information processing by dendritic spikes in neural
networks. As our analytical analysis reveals, the main prerequisite is the threshold-like process-
ing of inputs of the single units of the network. We therefore expect that it may also be found
in other networks of sharply nonlinear threshold units, which have been successfully applied to
describe a variety of real-world phenomena, like the transmission of rate activities in neural net-
works (McCullogh-Pitts model, e.g., Nowotny and Huerta, 2003; Cayco-Gajic and Shea-Brown,
2013), (failure) cascades in social, supply or communication networks (e.g., Watts, 2002; Lorenz
et al., 2009), or signaling in gene and protein networks (threshold Boolean networks, e.g., Born-
holdt, 2008).
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6.5. Appendix

6.5.1. Standard neuron parameters

Throughout the article (for simplicity) we consider a homogeneous neuron population. The
single neuron parameters are Ci ≡ C = 400pF, V reset

i ≡ V reset = −65mV, V Θ
i ≡ V Θ = −50mV,

gL
i ≡ gL = 25nS, V eq

i ≡ V eq = −55mV and tref
i ≡ tref = 3ms (Andersen et al., 2007; Staff et al.,

2000) for all i.

The time constants of the excitatory conductances (AMPA) are τ ex,1 = 2.5ms and τ ex,2 = 0.5ms
(Jonas et al., 1993; Liu and Tsien, 1995). For simplicity we assume the same time constants for
inhibitory conductances (GABAA), τ in,1 = τ ex,1 = 2.5ms and τ in,2 = τ ex,2 = 0.5ms. The reversal
potentials are Eex = 0mV and Ein = −75mV (Dayan and Abbott, 2001; Andersen et al., 2007).
To obtain balanced recurrent (and external oscillatory) inputs, the ratio γ between excitatory
and inhibitory couplings is chosen such that the peaks of single excitatory and inhibitory postsy-
naptic potentials equal each other when the inputs are received at resting membrane potential,
i.e.,

γ = |V
eq − Eex|

|V eq − Ein|
= 2.75 (6.16)

for standard neuron parameters.

We consider sparsely connected networks (standard connection probability pex = pin = 0.05)
with homogenous coupling delays τij ≡ τ̄ = 2.5ms in Section 6.3.1-6.3.4 and with inhomogeneous
coupling delay distribution in Section 6.3.5. Each neuron receives excitatory and inhibitory
Poissonian spike trains with rates νext,ex = νext,in = 2.4kHz. Single inputs have strength εext,ex =
1nS and εext,in = 2.75nS, respectively.

The parameters of the dendritic spike current are chosen according to single neuron experiments
(e.g., Ariav et al., 2003; Polsky et al., 2004; Gasparini et al., 2004; Gasparini and Magee, 2006),
Θb = 8.65nS, A = 55nA, B = 64nA, C = 9nA, τds,1 = 0.2ms, τds,2 = 0.3ms, τds,3 = 0.7ms
and tref,ds = 5ms (cf. also Memmesheimer, 2010; Jahnke et al., 2012). The standard value for
the length of the dendritic integration window is ∆T s = 2ms; in Section 6.3.5 it is varied as
indicated.

6.5.2. Analytical considerations

Under which conditions do oscillations induce a transition from a regime of non-robust to ro-
bust synchrony propagation? In particular, what is the (minimal) amplitude or the degree of
synchrony required that allow for robust signal propagation?

To answer this question, we investigate the emergence of oscillation-supported propagation in
FFNs with non-additive couplings analytically. We employ a self-consistency approach (cf. also
methods introduced in Memmesheimer and Timme, 2012; Jahnke et al., 2012, 2013) to derive an
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approximation of the iterated map for the average size of a synchronous pulse that propagates
along the layers of an FFN. In particular, we find a scaling law for the amplitude of the external
oscillations that enable stable propagation as a function of the system parameters and the
dendritic nonlinearity.

Synchronous spiking of neurons in some layer causes a synchronous input to the neurons of the
next layer. In the presence of oscillations of suitable frequency, e.g., νs ≈ νnat, this input may
be supported by inputs from the external oscillations. Then the total excitatory input

I = Ie + Ic (6.17)

is the sum of inputs arising from external oscillations, Ie, and from the preceding layer, Ic. In
networks with non-additive coupling, the spiking probability psp due to a synchronous input
I below the dendritic threshold Θb is typically much smaller than due to a suprathreshold
input (cf. Figure 6.3a). We thus assume that only neurons that receive a suprathreshold input
(I > Θb) generate a spike with fixed probability p∗, i.e.,

psp (I) :=
{
p∗ if I ≥ Θb

0 if I < Θb
. (6.18)

Thus, neurons process synchronous signals like simple threshold units, i.e., they generate no
response for subthreshold inputs and a fixed response for suprathreshold inputs. For clarity of
presentation, we assume that the firing probability p∗ is fixed. In general it might be reduced
by inhibitory input, but the extension is straightforward and leads to similar results (cf. also
Jahnke et al., 2014a).

The timing of somatic spikes initiated by dendritic spikes is highly precise, i.e., the temporal
distribution of somatic spikes triggered by dendritic ones is very narrow (cf. Figure 6.4a), in the
sub-millisecond range (cf. also Ariav et al., 2003). In particular, the jitter in time is typically
much smaller than the dendritic integration window ∆T s. This let us assume that a synchronous
pulse packet in one layer causes synchronous spiking within a time interval smaller than ∆T s in
the next layer and so on.

In the following we calculate the probability density function fI(I) for the total excitatory input
I to the neurons of a given layer conditioned on (i) the number of synchronously spiking neurons
in the previous layer, gin, and (ii) the amplitude of external oscillations, Ne. Then, the average
number of synchronously spiking neurons in the considered layer is

gout = ω

∫ ∞
0

psp(I)fI(I|gin, Ne)dI (6.19)

= ωp∗
∫ ∞

Θb
fI(I|gin, Ne)dI. (6.20)

First we consider the input from the previous layer. Given the random topology of the FFN, the
probability that a neuron receives exactly k (out of the maximal number gin) inputs is binomially
distributed,

p (k) =
(
gin

k

)
(pex)k (1− pex)g

in−k . (6.21)
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For a sufficiently large number gin of neurons participating in the synchronous pulses, we can
approximate the binomial distribution (6.21) by a Gaussian distribution and thus the excitatory
synchronous input follows

Ic = kεc ∼ N
(
µc, σ

2
c

)
(6.22)

with mean

µc = εcg
inpex (6.23)

and standard deviation

σc = εc

√
ginpex (1− pex). (6.24)

Likewise, the number of excitatory inputs l each neuron receives within one oscillation period
from the external (virtual) neuron population is binomially distributed, l ∼ B

(
Ne, p

ext
ex
)

(cf.
Section 6.2.6). The arrival times are drawn from a Gaussian distribution with standard deviation
σs. We assume that propagation of synchrony in the FFN and the external oscillations are in-
phase. Then for σs > 0 the fraction

p∆T s =
∫ ∆T s

2

−∆T s
2

1√
2πσs exp

[
−1

2

(
τ

σs

)2
]
dτ (6.25)

= Erf
( ∆T s
√

8σs

)
(6.26)

of the additional inputs arrive within the dendritic integration window ∆T s and can support
the generation of dendritic spikes. For σs = 0, all inputs are received synchronously and thus
p∆T s = 1; for non-zero σs the effective size of the external oscillation (i.e., the effective average
number of neurons that may contribute to the generation of dendritic spikes) is

N eff
e = p∆T sNe, (6.27)

and the number of excitatory inputs from the oscillatory neuron population is distributed ac-
cording to l ∼ B

(
N eff
e , pext

ex

)
.

For sufficiently large N eff
e , one can again use a Gaussian approximation which yields

Ie ∼ N
(
µe, σ

2
e

)
(6.28)

with
µe = εext

p N eff
e pext

ex and σe = εext
p

√
N eff

e pext
ex (1− pext

ex ). (6.29)

The sum of the inputs Ie and Ic is then also approximately Gaussian distributed,

I = Ie + Ic ∼ N
(
µ, σ2

)
, (6.30)
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Figure 6.10: Map yielding the temporal evolution of the average size of a synchronous pulse
in an FFN with non-additive coupling (cf. Equation 6.33; ω = 200, pex = 0.05, Θb =
8.65nS). (a) Ne =0 (absence of external oscillations), different colors indicate different
coupling strength εc. (b) The coupling strength εc = 1.0nS is fixed and external oscillations
(pext

ex = 0.05, εext
p = 0.3nS, σs = 0ms) are present, different colors indicate different Ne.

With increasing (a) connection strength εc or increasing (b) oscillation amplitude Ne, two
fixed points emerge by a tangent bifurcation. This bifurcation point marks the transition
from a regime where no propagation is possible to a regime where persistent propagation
of synchrony can be achieved (cf. also Figure 6.3b).

with mean µ = µe + µc and variance σ2 = σ2
e + σ2

c , i.e.,

µ = εext
p N eff

e pext
ex + εcg

inpex (6.31)

and
σ =

√(
εext

p

)2
N eff

e pext
ex (1− pext

ex ) + ε2
cg

inpex (1− pex). (6.32)

Using the distribution (6.30) of I allows us to specify the iterated map for the average size of a
synchronous pulse according to Equation (6.20),

gout = ωp∗

2

(
1 + Erf

[
µ−Θb√

2σ

])
, (6.33)

where the size of the initial pulse packet gin appears as argument of µ and σ (see Equations 6.31
and 6.32).

As explained in Section 6.3.1 (cf. Equation 6.10), the fixed points G∗ = gout = gin of Equation
(6.33) determine the stability of the propagation of a synchronous pulse. With increasing cou-
pling strength two fixed points emerge via a tangent bifurcation (Figure 6.10a; cf. also Figure
6.3b), and external oscillations have a similar effect (Figure 6.10b). This transition enables
robust propagation of synchrony, and the external oscillations thus reduce the critical connec-
tion strength ε∗NL (i.e., the minimal coupling strength for which robust signal propagation is
possible).

For a given network setup, Ne = N∗e specifies the minimal size of the external oscillation which
enables stable propagation of synchrony. It can be found by numerically determining the bifur-
cation point of Equation (6.33). Additionally, one can derive a scaling law for N∗e based on two
observations:
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1. In the absence of external oscillations (Ne = 0), the position of the bifurcation point of
Equation (6.33) depends on the coupling strength εc and the dendritic threshold Θb only
via the quotient

κ := Θb
εc
, (6.34)

which is the number of spikes from the preceding layer that are needed to elicit a dendritic
spike. Equation (6.33) reads

gout = ωp∗

2

(
1 + Erf

[
ginpex − κ√

2ginpex (1− pex)

])
. (6.35)

For a given network setup, the connection probability pex, group size ω and spiking prob-
ability p∗ (which is determined by the ground state and the parameters of the dendritic
spike) are fixed. Thus the bifurcation point where the fixed points G∗1 = G∗2 = gout = gin

appear by a tangent bifurcation, depends solely on κ (the only unknown quantity). Con-
sequently, there is some κ∗ = κ specifying this bifurcation point, i.e., the transition point
from non-propagating to propagating regime depends just on the number of spikes nec-
essary to elicit a dendritic spike. The actual value κ∗ can be found either by numerical
simulation of the system, numerical solution of Equation (6.35) or by the analytical meth-
ods introduced in Jahnke et al. (2012, 2013).

2. The main influence of external oscillatory inputs is an effective reduction of the dendritic
threshold Θb, such that the properties of the system described above can be approximated
by a network without external oscillatory input, but with a reduced dendritic threshold
Θeff

b < Θb: In the setups considered the additional oscillatory input contributes to the
generation of dendritic spikes, but the main contribution arises from the input arriving
from the previous layer (the signal to be propagated), i.e., µe < µc. Moreover, the feed-
forward connections εc are enhanced compared to the remaining excitatory couplings,
εext

p < εc. Thus the total variation of the input σ = σ2
e + σ2

c (cf. Equation 6.32) is
dominated by the contribution σ2

c of the input from the previous layer,

εext
p µe

(
1− pext

ex

)
< εpµc (1− pex) (6.36)

σ2
e < σ2

c . (6.37)

In particular for εext
p � εc the contribution of the external inputs to the total variation

of the input becomes negligible, i.e., σ2
e � σ2

c , and the argument of the error function in
Equation (6.33) simplifies to

µ−Θb√
2σ

= µc + µe −Θb√
2 (σ2

c + σ2
e )

(6.38)

≈ µc −Θeff
b√

2σc
(6.39)

where we defined the effective dendritic threshold

Θeff
b := Θb − µe. (6.40)
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The above observations indicate that the bifurcation point is found for some constant

κ∗ = Θeff
b
εc

= Θb − µe
εc

, (6.41)

such that the minimal size of the external oscillations N∗e , which enables propagation of syn-
chrony, is given by (using Equations 6.29, 6.27 and 6.26)

N∗e = Erf
[ ∆T s
√

8σs

]−1 Θb − εcκ
∗

εext
p pext

ex
. (6.42)

Equation (6.42) indicates that N∗e changes linearly with the coupling strength εc (cf. Figure
6.5 and 6.6). Further it is inversely proportional to the coupling strength between the external
oscillatory population and the neurons of the FFN, N∗e ∝ 1/εext

p , and the dependence of N∗e on
the temporal spread σs of the external oscillations is determined by the prefactor 1/p∆T s .

The above results are derived for isolated FFNs. However, we will show and discuss in the
following Appendix 6.5.3 that the results hold in good approximation also for FFNs that are
part of recurrent networks.

6.5.3. Synchrony propagation in recurrent FFNs

For clarity of presentation, in this article we focus mainly on isolated FFNs (i.e., εm = εp = 0;
only feed-forward connection are present; cf. Sections 6.3.1-6.3.4). However, FFNs which are
part of a random recurrent network show qualitatively the same dynamics as isolated ones as
we demonstrate in this section. We consider recurrent FFNs where all neurons of the network
are assigned to be a member of exactly one layer, i.e., N = mω (cf. Figure 6.11a). In the
first subsection we consider propagation of synchrony in front of a homogeneous background
activity, and afterwards, in the second subsection, we study the impact of external oscillations.
We investigate the influence of network parameters, discuss the differences to isolated FFNs
and compare the results of network simulations with the analytical predictions presented in
Appendix 6.5.2.

Homogenous background activity

What is the impact of recurrent connections on propagation of synchrony? Do recurrent con-
nections within the FFN alter its propagation efficiency?

To gain some insight into the dynamics of recurrent FFNs, we start with isolated FFNs (εp =
εm = 0, as before) and gradually increase the recurrent coupling strengths εp and εm. We keep
the ratio of the coupling strengths εp and εm balanced (i.e., εm = γ · εp, cf. Section 6.2.4), such
that the mean additional input to each neuron arising from recurrent connections is approxi-
mately zero and the network remains in the balanced state (v. Vreeswijk and Sompolinsky, 1996,
1998; Brunel, 2000).
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Figure 6.11: Propagation of synchrony in embedded FFNs. (a) Scheme of the network setup:
We show an example network of 32 neurons that are assigned to 4 consecutive layers
(yellow→green→blue→red). The arrows indicate connections between neurons (excitatory:
black; inhibitory: gray), their thickness highlights the connection strength (thin arrows: εp
and εm; thick arrows: feed-forward couplings εc, with increased strength). The connectivity
between neurons of successive layers equals the overall connectivity. (b,c) Upper panel:
Illustration of the range of coupling strengths εc between the layers of the FFN that
allow for a robust and non-pathological propagation of synchrony in recurrent networks
(N = 3000, m = 15, ω = 200, pex = pin = 0.05) with (b) linear and (c) nonlinear dendritic
interactions for different recurrent connection strengths εp (color coded; εm = 2.75εp).
The lower panel shows the region of successful propagation (horizontal axis: size of the
initial synchronous pulse, g0; vertical axis: feed-forward coupling strength εc).

For networks with linear dendritic interactions, the critical connection strength ε∗L (the mini-
mal coupling strength εc for which a robust propagation of synchrony is possible) as well as
the pathological connection strength εpath

L (the maximal coupling strength εc for which a non-
pathological propagation of synchrony is possible) increases with increasing recurrent connection
strength εp and εm. However, the length of the interval

[
ε∗L, ε

path
L

]
is only weakly affected (cf. Fig-

ure 6.11b).We note that the additional input arising from the projection of the synchronous pulse
in one layer to the whole network (instead of only to the following layer) is similar to the input
originating from balanced external oscillations (cf. also Figure 6.5) and this additional balanced
inputs decrease the excitability of the neurons by lowering the effective membrane time constant
(cf. Section 6.3.2 and Destexhe et al., 2003; Kuhn et al., 2004).

In contrast, in networks with nonlinear dendritic interactions, where propagation of synchrony
is mainly mediated by dendritic spikes, recurrent connections influence the critical connection
strength ε∗NL only weakly (cf. Figure 6.11c): In principle, the additional inputs arising from
recurrent connections support the generation of dendritic spikes as additional excitatory inputs
effectively lower the dendritic threshold Θb, and therewith decrease ε∗NL (compare also the
analytical considerations in Appendix 6.5.2). However, in the ground-state the neurons of the
recurrent network spike asynchronously with a low rate and therefore the additional excitatory
input to each neuron within the dendritic integration window ∆T s is small compared to the
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dendritic threshold Θb.

However, recurrent connections decrease the pathological connection strength εpath
NL , above which

propagation of synchrony causes pathological network states: In recurrent FFNs all neurons, not
only the neurons belonging to one specific layer, receive synchronous inputs if a synchronous
pulse packet propagates along the layers of an FFN. Thus each neuron which is not member
of the currently active layer receives an additional (compared to the isolated FFN) input, the
projection of the synchronous activity. The average strength of the excitatory part of the input
during persistent propagation is given by

Iadd = g∗pexεp / ωpexεp, (6.43)

where g∗ denotes the average size of the propagating pulse and g∗ ≈ G∗2 with the stable fixed
point G∗2 of the iterated map (6.33) (cf. also Equation 6.10). Iadd effectively decreases the
dendritic threshold, i.e., even for neurons that do not belong to the next layer the amount
of synaptic input needed to elicit a dendritic spike is reduced by propagation of synchrony.
This can become detrimental for information processing: In combination with inputs arising
from spontaneous activity the additional input may induce synchronous spiking in currently
non-active layers and the synchronous pulse starts to spread over the whole network causing
pathological activity (‘synfire explosion’, cf. Mehring et al., 2003). Thus recurrent connections
within the FFN decrease the length of the interval

[
ε∗NL, ε

path
NL

]
of coupling strengths for which

a non-pathological propagation of synchrony is possible (cf. Figure 6.11c).

Background oscillations

External oscillations can induce robust synchrony propagation in networks with recurrent con-
nections. The underlying mechanism is the same as in isolated chains. The amplitude Npath

e of
external oscillation above which the system enters pathological dynamics is reduced by recur-
rent connections. The critical amplitude N∗e for which the transition from non-propagating to
oscillation induced propagation of synchrony occurs, however, is largely unaffected. Moreover,
the analytical considerations for N∗e derived in Appendix 6.5.2 are in good approximations also
for recurrent FFNs.

In this section we consider recurrent FFNs as introduced above and assume that the connectivity
between the external oscillating (virtual) neuron population and the neurons of the network is
statistically identical to the recurrent connectivity in the network itself, i.e., εp = εext

p , εm = εext
m ,

pex = pext
ex and pin = pext

in .

According to Equation (6.42) we expect a linear relationship between the excitatory feed-forward
coupling strength εc and the amplitude N∗e . Indeed, we observe such a relation in isolated (Figure
6.5b,d) as well as in recurrent FFNs (Figure 6.12a). The impact of recurrent connections on N∗e
is negligible (as discussed above) and Equation (6.42) well predicts the scaling of N∗e (dashed
line in Figure 6.12a).

However, the presence of recurrent connections lowers the threshold for pathological activ-
ity, Npath

e : In absence of recurrent connections (εp = εm = 0) an external oscillation of size
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Figure 6.12: Oscillation induced propagation of synchrony in recurrent FFNs (m = 15,
ω = 200, pex = pin = 0.05). Panels (a-c) show up to which layer a synchronous pulse
propagates in the presence of external network oscillations (cf. also Fig. 6.5d). The lines
indicate the estimated critical amplitude N∗

e , above which propagation of synchrony is en-
abled, derived from Equation (6.33) (solid; numerical solution of the fixed point equation)
and Equation (6.42) (dashed). Gray areas indicate parameter sets causing pathological
activity. The individual panels show the amplitude of the external oscillations vs. (a) the
feed-forward connectivity εc, (b) the recurrent connectivity εp = εext

p and (c) the width of
the external oscillations νs (other parameters are fixed with values displayed in the insets).
In panel (d) we compare N∗

e and Npath
e for recurrent FFNs (red solid line; same data as

in panel a) and isolated FFNs (black solid line, εext
p = εext

m = 0). The black dashed line
indicates the pathological threshold Npath

e for isolated FFNs reduced by the average size
g∗ of a (stable) propagating synchronous pulse. Panel (e) shows the region of recurrent
coupling strengths, εp = εext

p , and feed-forward coupling strengths, εc, for which propaga-
tion of synchrony is possible (white area) or causes pathological activity (red area). The
separation line is denoted by εoff (cf. panel b). The blue lines indicate the contour lines of
N∗
e = {100, 200, . . . , 900}. For setups where N∗

e > 1000 due to limitations of computing
capabilities no simulations are performed (gray area). (f) Same data as in panel (c), but
with rescaled (effective) size N eff

e of external oscillations (cf. Equation 6.27).
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Ne ≥ Npath
e causes pathological activity (cf. Figure 6.5b,d). Here, in the presence of recurrent

connections all neurons ‘feel’ the propagating synchronous signal through recurrent projections.
The recurrent input resembles an external oscillatory input of size g∗ (where g∗ is the aver-
age size of the propagating synchronous pulse packet) with coupling strengths εext

p = εp and
εext

m = εm. Thus, the threshold for pathological activity Npath
e is reduced by the average size of

the propagation pulse packet g∗, Npath
e → Npath

e − g∗ as illustrated in Figure 6.12d.

Further, Equation (6.42) indicates that N∗e is inversely proportional to the excitatory coupling
strength εext

p . Indeed, for small εext
p large amplitudes Ne of oscillations are required to enable

propagation of synchrony and with increasing εext
p smaller and smaller amplitudes of oscilla-

tions are sufficient (cf. Figure 6.12b). At the same time the threshold for pathological activity
decreases: By increasing the excitatory connection strengths εp and εext

p both (i) the impact
of the projection of the propagating synchronous pulse and (ii) the impact of external oscilla-
tions increase. For sufficiently large recurrent coupling strengths the threshold for pathological
activity, Npath

e , decreases below the critical oscillation amplitude, Npath
e ≤ N∗e . The sum of

the projection of the propagating synchronous signal and the external oscillation becomes large
and even spontaneous spiking activity is sufficient to trigger more and more spikes in the net-
work and thus cause pathological activity (’synfire-explosion’). For given coupling strength εc
between the layers of the FFN there is a maximal recurrent coupling strength εoff, such that
for εp = εext

p ≥ εoff, no meaningful, i.e., non-pathological, propagation of synchrony is possible
(cf. Figure 6.12b). In Figure 6.12e we illustrate the region of coupling strengths (εp = εext

p and
εc) for which a robust propagation of synchrony can be achieved given that an external oscilla-
tion of suitable size is present. In particular, it turns out that the maximal recurrent coupling
strength εoff depends linearly on the feed-forward coupling strength εc between the layers of the
FFN.

Finally, Equation (6.42) predicts that N∗e is related to the temporal width σs of the external
oscillations via the factor p∆T s (cf. Equation 6.26). As discussed in Appendix 6.5.2, the effective
size N eff

e of the external oscillation decreases with increasing σs (cf. Equation 6.27). Conse-
quently, the critical size N∗e and the pathological threshold Npath

e increase. However, the length
of the interval

[
N∗e , N

path
e

]
, i.e., the size of the interval of oscillation amplitudes that enable

persistent propagation of synchrony, stays almost constant (Fig. 6.12c,f).
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Abstract

The hippocampus is crucially involved in episodic memory formation and consolidation. Consol-
idation takes place during Sharp-Wave-Ripple complexes (SPW/Rs) which are short episodes of
highly increased hippocampal activity with superimposed high-frequency oscillations. Addition-
ally, previously learned spike sequences reflecting behavior, e.g., traversed trajectories in space,
are replayed. The neurophysiological mechanisms underlying this activity patterns are not yet
well understood. In the present article, we derive a unifying model showing how experience may
be stored and thereafter be replayed in conjunction with SPW/Rs. In the proposed model, the
generation of the sharp wave activity itself, the ripples and the replay are all based on dendritic
sodium spikes and therefore are intimately interrelated. These spikes, prominently found in the
basal dendrites of pyramidal neurons, selectively amplify highly synchronous presynaptic inputs,
and thus enable replay of spike sequences even in very sparsely connected networks like the CA1.
Somatic spikes elicited by dendritic ones are very precise, and the typical time difference between
presynaptic spiking and postsynaptic spiking caused by dendritically amplified inputs predicts
the ripple frequency of about 200Hz. The wave-form of the SPW/Rs is determined by an ini-
tial increase of synchronous activity supported by dendritic spike generation, and a subsequent
decrease of activity by inhibitory feed-back, which eventually terminates the event.

7.1. Introduction

The interest in spatial processing and memory in the hippocampus, has been driven to a large
extent by the observation of hippocampal “place cells”: During exploratory behavior they signal
by their spiking the position of an animal in the environment (O’Keefe and Dostrovsky, 1971;
O’Keefe, 1976; Ekstrom et al., 2003; Kjelstrup et al., 2008; Harvey et al., 2009). Exploration is
accompanied by theta oscillations, rhythmic modulations in neural population activity and in
the local field potential (LFP) with frequencies of 4 − 10Hz. When several places are visited,
sequences of spiking activity emerge within the theta cycles due to preferred place cell firing
relative to the phase of the theta oscillation (O’Keefe and Recce, 1993; Skaggs et al., 1996; Maurer
and McNaughton, 2007; Gupta et al., 2012). These reflect the recent past and future place field
traversing, compressed in time. The sequences of activity are replayed in a further compressed
manner, while the animal rests and sleeps (Wilson and McNaughton, 1994; Nadasdy et al., 1999;
Lee and Wilson, 2002; Pastalkova et al., 2008; Davidson et al., 2009). This happens during so-
called sharp-wave-ripple events (SPW/Rs), short phases of strongly enhanced activity (“sharp
waves”, durations of about 50-100ms) with highly synchronous spiking at about 120-200Hz
(“ripples”) (Buzsáki et al., 1992; Ylinen et al., 1995; Maier et al., 2003).

SPW/Rs and the associated replay are assumed to be crucial for memory consolidation (Buzsáki,
1989). Indeed, the replay reflects activity from exploration phases (Wilson and McNaughton,
1994; Nadasdy et al., 1999; Lee and Wilson, 2002; Pastalkova et al., 2008; Davidson et al., 2009),
the inter-ripple-interval of 5ms is in the optimal range for the induction of synaptic modifications
(Markram et al., 1997; Bi and Poo, 1998), SPW/Rs occur coordinated with activation across
neocortical brain regions (Ji and Wilson, 2007; O’Neill et al., 2010; Logothetis et al., 2012), and
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suppression of SPW/Rs impairs memory consolidation (Girardeau et al., 2009; Ego-Stengel and
Wilson, 2010; Jadhav et al., 2012). The “two-stage model” for memory (Marr, 1971; Willshaw
and Buckingham, 1990), assumes that SPW/Rs and replay lead to the consolidation of memory
content by transferring it from preliminary storage in the hippocampus to long-term storage
in the neocortex (Buzsáki, 1989). It has also been suggested that SPW/Rs and replay are
involved in incorporation of new information into existing contexts, associating and processing
previous experiences, planning of future behavior and deleting memories from hippocampal
storage (O’Keefe and Nadel, 1978; Buzsáki, 2006; Tse et al., 2007; Mehta, 2007; Gupta et al.,
2010; Pfeiffer and Foster, 2013). To assess whether and how the different assumed tasks can
be fulfilled, it is essential to understand the mechanisms underlying SPW/R patterns and the
replay.

Sequence learning and sequence generation

Previous modeling studies mainly focused on the encoding part of sequence generation and
did not consider biological plausible SPW/R-like activity. In a series of articles, W. Levy and
coworkers have explored characteristics of sequence learning and later, time compressed recall,
on different levels of abstraction (Levy, 1996; August and Levy, 1999; Sullivan and Levy, 2004).
Most related to our study, August and Levy (1999) consider a population of spiking, leaky
integrate-and-fire neurons with excitatory connections and overall averaged inhibition. In an
exploration phase, part of the neuron population is sequentially stimulated, and as a consequence
of learning also the unstimulated neurons become sensitive to a specific stimulation period: The
entire network dynamics organize into one activity sequence. In a subsequent recall phase,
synaptic plasticity is switched off, the level of inhibition is lowered and random or targeted
external stimulation are applied to the network. This evokes compressed replay of the activity
sequence observed during exploration. The model was modified to learn multiple sequences of
subsequently active neuron groups with a multiplicative learning rule including an additional
synaptic competition term (Samura et al., 2008).

Molter et al. (2007) describe place cell populations as coupled phase oscillators, which possess
an intrinsic theta oscillation frequency during exploration. The model incorporates theta phase
precession by assuming that the intrinsic frequency increases with progress in the place field such
that the activity in different place cell populations peaks sequentially within the theta cycle.
During exploration, recurrent connections are functionally inactivated but learned. This allows
later recall of the sequence when recurrent connectivity is switched on.

Bush et al. (2010) have implemented the theta phase precession by a modulation of the external
input current that depends on the position relative to the place field center and the theta phase.
The study employs a spiking network of one hundred excitatory neurons to show that different
additive spike- and spike/rate-dependent learning rules are suitable to learn activity sequences:
The network organizes into a feed-forward chain, where the weights between subsequently ac-
tivated groups of neurons have weights saturated at the maximal weight, while background
weights that are not part of the chain have weights close to zero.
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Cutsuridis and Hasselmo (2011) have used a CA1 microcircuit of four pyramidal cells and four
interneurons of different types to study how the experimentally found distinct firing patterns
of the involved neuron types may be relevant for encoding and replay. The generation of a
short activity sequence is imposed on the CA1 microcircuit model by a CA3 network that is not
explicitly modeled.

Very recently, Scarpetta and coworkers have estimated the ability of networks to store multiple
precisely timed, simple periodic spike sequences (every neuron contributes one spike) in networks
of leaky integrate-and-fire neurons endowed with additive Hebbian learning (Scarpetta and Gi-
acco, 2013; Scarpetta et al., 2013). Further studies used two-state neurons to assess the network
capacity for activity sequences (Leibold and Kempter, 2006; Scarpetta et al., 2011) or rate units
to model learning of sequential activation of neuron populations (Verduzco-Flores et al., 2012).

Only one study has considered the replay of spike sequences in conjunction with SPW/R-like
activity (Vladimirov et al., 2013): The model assumes that the plexus of proximal axon collat-
erals is connected by axo-axonic gap junctions. In this plexus, spikes multiply in avalanche-like
manner, overall generating a continuous ripple-frequency oscillation. The spikes enter the main
axon and the soma only if the soma receives a (subthreshold) dendritic depolarization. By
this mechanism weak dendritic inputs are amplified and somatic spiking was observed to be
propagated over short chains of mono-synaptically connected single neurons.

Activity propagation along feed-forward structures has also been investigated as a model for
reliable information transmission in noisy networks, largely independently from hippocampal
sequence learning (Abeles, 1982; Diesmann et al., 1999; Kumar et al., 2010). These studies
on “synfire chains” have mostly considered feed-forward networks with a dense, often all-to-all
connectivity between subsequent layers (Aviel et al., 2003; Mehring et al., 2003; Kumar et al.,
2008b). However, since cortical neural networks are overall sparse (Braitenberg and Schüz, 1998;
Holmgren et al., 2003)), we may also expect some level of dilution for embedded feed-forward
chains. Such chains created from existing connections in sparse recurrent networks require strong
synaptic efficiencies and specifically modified neuron properties to enable synchrony propagation
(Vogels and Abbott, 2005). Very recently, we have shown that the nonlinear dendritic inter-
actions which have been suggested to underlie generation of SPW/Rs (Memmesheimer, 2010),
promote propagation of activity along biologically plausible, comparably weak and highly diluted
synfire chains (Jahnke et al., 2012, 2013).

Synopsis and structure of this article

In the present article, we derive a unifying model showing how experience may be stored and
thereafter be replayed in conjunction with SPW/Rs. We model spatial exploration accompa-
nied by place cell activity and theta oscillations in the hippocampus, followed by a resting or
slow-wave-sleep phase in which the network generates SPW/Rs and replay. We first consider
the encoding phase and model learning of network structures reflecting place cell sequences dur-
ing exploration of an environment. These structures are part of a large, sparse, spiking neural
network. Thereafter, we consider the recall and show that the sequences are replayed in con-
junction with emergent SPW/R-like global network activity. The third part assesses the quality
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of the replay as well as different ways of its initiation. Finally, we consider storage and recall of
multiple sequences. We conclude the main part of the article with a comprehensive discussion
of the biological plausibility of the model.

7.2. Results

7.2.1. Spatial exploration phase

Location tuning and phase precession

In a given environment, a large fraction of pyramidal cells (“place cells”) in hippocampal regions
CA3 and CA1 display well-defined sensitivity to spatial positions (Mizuseki et al., 2012), and
therewith form a cognitive map of the environment. In different environments, the same neurons
encode different places (e.g., Muller and Kubie, 1987; Quirk et al., 1990; Bostock et al., 1991;
Colgin et al., 2008). Place cells encode position by spike rate and by spike timing. They fire
at increased rate when the current position of an animal is within their receptive (place) fields
(O’Keefe and Dostrovsky, 1971; O’Keefe, 1976; Ekstrom et al., 2003; Kjelstrup et al., 2008;
Harvey et al., 2009). The preferred timing of single spikes depends on the position relative to
the place field center and on the phase of the background theta oscillation (O’Keefe and Recce,
1993; Skaggs et al., 1996; Maurer and McNaughton, 2007; Gupta et al., 2012): When the animal
enters a place field, single cells spike late in the theta-cycle. While traversing the place field,
spiking occurs at earlier and earlier times (“phase precession”) and when the animal leaves the
place field, the place cell preferably spikes at the beginning of the cycle.

The neuronal mechanisms underlying phase precession and location tuning is still under debate.
It has been proposed that phase precession may arise from interference between two oscillatory
inputs with slightly different frequencies (O’Keefe and Recce, 1993; Lengyel et al., 2003). Spikes
are elicited if the summed input exceeds a certain threshold and thus timing of single spikes is
determined by the high-frequency wave of the interference pattern, which progressively advances
relative to the lower frequency input which is in synchrony with the background theta oscillation.
Alternatively, phase precession may arise from interaction of theta-modulated inhibition with
external excitation of increasing strength (Magee, 2001; Mehta et al., 2002; Harris et al., 2002;
Thurley et al., 2008). Spikes are triggered, if the excitation exceeds the inhibition and thus
spikes are shifted to earlier and earlier times in the theta cycle. As a third option, it has been
proposed that phase precession is caused by asymmetric recurrent connections between place
cells which have been learned in earlier training sessions on the same track and predict the
animal’s path (Jensen and Lisman, 1996; Tsodyks et al., 1996). At the beginning of each theta
cycle, location specific excitation activates some place cells and initiate a wave of activity that
spreads towards cells with place fields shortly ahead of the current position along the path.

In this article, we implement a phenomenological approach which is compatible with all three
models: Phase precession is established by adding an external excitatory input current (to each
activated cell) that peaks near the time of preferred firing (cf. Figure 7.1). For simplicity, we
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Figure 7.1: Place tuning and phase precession of single cells. (A) When the actual position x
is within the place field of a neuron, rectangular current pulses are injected to the neuron.
Their amplitudes Ipf (solid, left vertical axis; Equation 7.21) and temporal offsets (DT )
with respect to the background theta rhythm (dashed line, right vertical axis; Equation
7.22) are functions of the relative position x̃ in the place field (cf. Equation 7.20). In panel
(B) we show examples of the current pulses for a place field P = [10, 40] cm and the positions
x = {15, 25, 35} cm. The positions in the place field are shown in the upper subpanel, the
resulting input currents in the lower subpanel. (C) The main panel displays the resulting
spatio-temporal receptive field. The inset shows the average firing rate (solid; left vertical
axis) and average phase shift against the theta rhythm (dashed; right vertical axis) as a
function of the current position. The neuron increases firing rate for positions within the
place field and shows phase precession. For further details see methods section.



Results 167

assume that the current takes the form of a short, rectangular pulse which is shifted relative
to the beginning of the theta cycle by a temporal offset DT . DT is almost equal to a full
period when the place field is entered and decreases while traversing it. The amplitude increases
with proximity to the place field center, incorporating the experimentally observed increase in
firing rate (or firing probability). As a result, the neurons show both, phase precession and an
increase in firing rate for positions nearer to the place field center (cf. Figure 7.1C and detailed
description in methods section).

Learning of feed-forward sub-structures

During spatial exploration, sequences of visited places are reflected by sequences of increased
activity of place cells. Independent of the exact underlying mechanism, the phenomenon of
phase precession yields a compressed version of such sequences: During one theta cycle, neurons
with overlapping place fields spike in the same order as the place fields of the single neurons have
been or will be traversed. The (average) time difference between spikes of neurons with nearby
receptive fields is in the range of tens of milliseconds, i.e., in the range of spike timing dependent
plasticity (STDP; cf. Caporale and Dan, 2008, for a review) where dependent on the exact
timing of presynaptic and postsynaptic spikes changes of connection strengths between neurons
are induced. For hippocampal pyramidal neurons in culture it has been demonstrated that
causal spiking results in potentiation and anti-causal spiking results in depression of synaptic
efficiencies (Bi and Poo, 1998). The combination of compressed representation of sequences by
phase precession and potentiation of synaptic efficiencies by causal spiking favors the emergence
of feed-forward structures (Skaggs et al., 1996; Mehta et al., 1997; Buzsáki, 2006; Bush et al.,
2010).

Network setup and equilibrium phase

We consider sparsely connected random networks with a biological plausible STDP update rule,
where theta phase precession and background dynamics generate spiking that resembles the
activity during a run along a linear track. By numerical simulations we show that feed-forward
substructures are formed which enable the guided propagation of synchronous activity, and thus
replay of the previously experienced spike patterns, in a subsequent recall phase.

We consider networks of N ex excitatory and N in inhibitory neurons of leaky integrate-and-fire
type. The neurons are globally, but sparsely connected, with heterogeneous connection strengths
and coupling delays. Single spikes induce transient conductance changes on the postsynaptic
neurons. Motivated by recent neurophysiological experiments (Ariav et al., 2003; Gasparini
et al., 2004; Polsky et al., 2004; Gasparini and Magee, 2006), we integrate nonlinear dendritic
interactions, modeling the ability of (basal) dendrites of hippocampal pyramidal cells to initiate
dendritic sodium spikes (cf. also Memmesheimer, 2010; Jahnke et al., 2012, 2014a). Highly
synchronized excitatory input can elicit such a dendritic spike (modeled by a stereotypical current
pulse) which causes a stronger depolarization in the soma of the postsynaptic neuron than
expected from linear summation of single inputs.
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Recurrent connections between excitatory neurons are plastic and updated according to a
“power-law” update rule (Morrison et al., 2007; Standage et al., 2007), i.e., the dependence
of potentiation/depression on the weight before this increase or decrease obeys a power-law.
All other connections are considered static. It has been shown that the power-law update rule
yields an unimodal weight distribution (Morrison et al., 2007) for the asynchronous irregular
background activity of balanced networks (v. Vreeswijk and Sompolinsky, 1996, 1998; Brunel,
2000). Due to the fact that dendritic spikes are elicited by highly synchronous input only, this
still holds in the presence of nonlinear dendritic interactions as considered in this article (data
not shown). Further details on the neuron model, network setup and STDP update rule are
given in the methods section.

Running along a linear track

After an equilibration phase where the recurrent network weights have assumed the stationary
weight distribution, we consider the movement along a linear track of length L. A subset of
Npf < N ex excitatory neurons is assumed to have an active place field on the track. Without
loss of generality, we consider the first Npf neurons with the index i ∈

{
1, . . . , Npf

}
as neurons

with an active place field. For simplicity, we assume that the place fields Pi have identical widths
∆wi ≡ ∆w and their centers

xctr
i = L

Npf − 1 · (i− 1) (7.1)

are distributed homogeneously along the track (cf. also methods section). To prevent boundary
effects, we extend the track by ∆w/2 at the beginning and at the end (i.e., total track length
Ltot = L+∆w), such that during the movement all place fields are completely traversed (cf. gray
shaded area in Figure 7.2A). Further, we discretize the movement along the linear track: We
assume that the position is fixed during each theta cycle with period T , and that the position
increases in jump-like manner between consecutive cycles. Starting initially with x0 = 0, the
position during the jth oscillation is given by

xj+1 = xj + ∆x (7.2)

and the jump-size ∆x is drawn uniformly from the interval

∆x ∈ [0, 2v̄T ] (7.3)

where v̄ specifies the average running velocity (cf. inset of Figure 7.2A).

During the run single neurons with overlapping place fields spike in an order approximately
reflecting the order in which the place fields are traversed during the run (examples are shown
in Figure 7.2B,C). As discussed above, this ordered spiking in combination with plastic synapses
results in the formation of a feed-forward structure. In Figure 7.2D, we show the distribution of
synaptic weights as a function of the distance between the place field centers of the postsynaptic
and the presynaptic neuron. Its shape and development can be understood as follows. With
repeating traversals of the track, the feed-forward structure becomes more and more prominent.
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Figure 7.2: Learning of feed-forward structures. (A) Example trajectory of a modeled run along
a linear track of a total length of Ltot = 190cm with average velocity v̄ = 8cm/s. For
simplicity, we assume that the position is fixed for the short period of one theta cycle
(T = 125ms). Between consecutive theta cycles the position increases randomly in jump-
like manner, here on average by one centimeter (cf. zoomed view of the trajectory presented
in the inset). Place fields are assigned to Npf = 1500 of N ex = 2500 excitatory neurons
and the centers are distributed homogeneously in the interval

[∆w
2 , Ltot − ∆w

2
]

(indicated
by the gray shaded area). (B,C) Spiking activity of the excitatory neuron population for the
period of one theta cycle at different positions (indicated by the blue and green circle in A).
The colored area indicates the fraction of neurons with place fields containing the current
position. (D) Distribution of synaptic weights as a function of the distance between the
place field centers of the postsynaptic and the presynaptic neuron. The solid line indicates
the mean weight and the colored area the interval containing 80% of the weights (0.1 to 0.9
percentile). Different colors show the distribution after different numbers of runs as indicated
by the inset. (E) Connectivity matrix for connections between the first 400 neurons after
10 runs (red curve in D).
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Strengths of connections between neurons with similar place fields are altered only weakly:
During the run such neurons spike at similar times and therefore the order of spiking of these
neurons (and with it the potentiation or depression of synaptic weights) is approximately ran-
dom. Consequently, even after multiple runs along the same track, the weight distribution is
similar to the equilibrium weight distribution. With increasing distance between the centers of
the place fields, the average temporal distance between spiking times increases, and the order of
spiking is more reliably preserved. Accordingly, also the average weight change increases. How-
ever, the amplitude of weight changes induced by a single spike pairing decreases exponentially
with temporal difference between spikes. Therefore, the average weight assumes a maximum
(minimum) for moderate distances between place field centers and converges to the equilibrium
weight distribution for large distances.

7.2.2. Replay of spike patterns

Replay and emergence of SPW/R-like events

As discussed above, during the exploration phase a “stripe-like” feed-forward structure is formed
(cf. Figure 7.2D,E). In the following we show that such a structure enables replay of spike
patterns experienced during the run. Importantly, the observed replay resembles the replay
observed during SPW/Rs in the hippocampus in several aspects: It occurs together with high
frequency oscillations (Buzsáki et al., 1992; Ylinen et al., 1995; Maier et al., 2003), it is strongly
stochastic, i.e., has a high trial-to-trial variability (Wilson and McNaughton, 1994; Nadasdy
et al., 1999; Lee and Wilson, 2002; Pastalkova et al., 2008; Davidson et al., 2009), the replay is a
short intermittent activity pattern in front of asynchronous low rate activity, and the wave-form
of the total activity increases in the beginning of the replay event and decreases towards the end
of the event (Buzsáki et al., 1992; Ylinen et al., 1995; Maier et al., 2003).

In the ground state the neurons spike asynchronously and irregular. To keep the ground state
activity of networks after different number of runs comparable (and to account for possible
homeostatic effects), we adjust an external constant input current I0 to the neurons such that
the average spiking rate of the neurons equals ν = 1Hz. Replay events are initiated in a target
manner by eliciting a group of g0 neurons with adjacent place fields to spike synchronously. This
spiking causes a synchronous input to the postsynaptic neurons after some delay time and there-
fore might induce synchronous spiking of a fraction of these neurons. Due to the feed-forward
structure, neurons with place fields subsequent to place fields of the initially synchronous subset
of neurons receive stronger total input than other neurons of the network, and therefore have a
higher probability to spike. In particular, in these neurons more dendritic spikes are initiated
which elicit a subsequent somatic spike with high probability and high temporal precision (Ariav
et al., 2003; Müller et al., 2012 and cf. also Jahnke et al., 2012, 2013). As a consequence the
spikes of the postsynaptic neurons remain synchronized even if the synaptic delays are mod-
erately heterogeneous: Only spikes received within the dendritic integration window ∆T s can
contribute to the initiation of a dendritic spike, and inputs which arrive outside a small window
around the peak of an input pulse (consisting of multiple input spikes) are unlikely to generate
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chronous stimulation. (A) Average number of consecutive synchronous groups (“ripples”)
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respond to different number of runs along the linear track. The inset shows the average
fraction pfrac of place cells that spike at least once during the replay events. The data are
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a active place field on the track. (E) Closeup view of the spike data shown in (C) which
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text.
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dendritic spikes and somatic output. This keeps the propagating activity confined to highly
synchronous pulses.

For small g0 only a small number g1 of the postsynaptic neurons spike in response to the initial
synchronous pulse. With increasing g0 also the size g1 of the secondary synchronous pulse
increases, and at some point g1 exceeds g0, i.e., more than initially synchronized neurons are
excited to spike synchronously. This secondary synchronous pulse induce a third one, for which
similar rules hold, etc. The synchronous activity can propagate across the network reflecting
the previously learned feed-forward structure.

In contrast to layered feed-forward networks (e.g., Diesmann et al., 1999; Vogels and Abbott,
2005; Jahnke et al., 2012), where the size of each synchronous pulse is bounded from above by
the layer size, here the sizes of the synchronous pulses may be expected to grow, and potentially
lead to epileptic-like pathological activity. Such pathological activity, however, is prevented by
the inhibitory feed-back loop: Increasing activity of excitatory neurons cause increasing activity
of the inhibitory neuron population. The resulting inhibitory feed-back does not hinder the
generation of dendritic spikes, but it decreases the probability that a somatic spike is initiated
by hyperpolarization of the postsynaptic neurons (cf. Müller et al., 2012). As a consequence, for
very large synchronous pulses the inhibitory feed-back overwhelms the excitation, the pulse does
not spread further across the network, and the overall activity decays to the level of spontaneous
activity. Pathological activity in the form of global synchrony is prevented.

In Figure 7.3 we illustrate typical replay events after the exploration phase on a linear track
(cf. Figure 7.2). If the initial synchronous pulse is too small, insufficiently many neurons respond
to the initial pulse and the activity decreases quickly. If the initial stimulation is too large,
the size of the synchronous pulse grows too fast and the replay event is terminated almost
immediately by recurrent inhibition. In between there is a broad range of initial stimulations for
which synchronous activity propagates along the feed-forward structure lasting for a moderate
number of synchronous pulses (ripples): There is an optimal stimulation size g∗, where the
number of ripples becomes maximal (cf., e.g., black square in Figure 7.3A, and Figure 7.3C).
g∗ separates the regime, where the sizes of the synchronous groups decays from the beginning
and the regime, where the sizes of the synchronous groups initially grow (cf. also Jahnke et al.,
2012, 2014a).

A replay event is also elicited by initial stimulations g0 exceeding g∗ (cf. Figure 7.3D for an
example). However, with increasing g0 the sizes of subsequent synchronous groups as well as
the inhibitory feed-back increase, and thus the event is terminated by recurrent inhibition after
a shorter number of ripples. The moderate number of ripples is consistent with the low number
of ripples observed in neurophysiological experiments (e.g. Maier et al., 2003). The mechanism
described above is thus suitable to “read-out” finite sequences of the previously learned feed-
forward structure. The wave-form of the total activity resembles the wave-form observed during
SPW/Rs in the hippocampus.
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Characteristics of replay events

In the following we quantitatively analyze the replay events. In particular, we focus on the
propagation frequency and the quality of the ordering of single spikes during replay events
compared to the ordering of the place field centers in the track.

Replay events are mainly mediated by dendritic spikes and the propagation frequency is de-
termined by the average temporal difference tdiff between presynaptic spikes and postsynaptic
spikes elicited by dendritic ones. The expected propagation frequency can thus be calculated
taking the axonal delay τax, the synaptic delay τ ex, the latency of the dendritic spike τDS,
and the average time difference tds between the onset of the response to the dendritic spike
and the spiking of the postsynaptic neurons into account. Considering quantitative neurophys-
iological measurements we estimate the expected temporal difference tdiff to be in the range
of 3.7− 6.4ms (cf. methods section for more details). Therefore, the expected propagation fre-
quency (approximately 150−270Hz) is consistent with the frequencies observed during SPW/Rs
in the hippocampus (Buzsáki et al., 1992; Ylinen et al., 1995; Maier et al., 2003 and cf. also
Memmesheimer, 2010). Indeed, for the standard parameters employed in the article (chosen to
be approximately centered within the biologically plausible parameter range), the propagation
frequency is approximately 200Hz as illustrated in Figure 7.4A.

To quantify the quality of ordering of spikes in a replay event we calculate the matching index
I (Ji and Wilson, 2007) with respect to the original ordering of place field centers for each
event: We consider all neurons with an active place field that take part in the replay events.
We count the total number of spike pairs where the spikes are sent in the same order as in
the original sequence, subtract the number of pairs with reverse ordering, and normalize by
the total number of spike pairs occurring in the replay event. Thus the matching index I is a
real number in the interval [−1, 1], which is I = 1 for perfect replay of the original sequence,
I = −1 for reverse replay, and I ≈ 0 for random replay sequences. In Figure 7.4B we show the
average matching index for replay events induced after different number of runs along the linear
track. The matching index increases with the number of ripples, i.e., the number of successive
synchronous groups (cf. Figure 7.3A) and becomes maximal for the same initial stimulations for
which the number of ripples is maximal.

However, even for the optimal parameter range, we find I < 1, i.e., the replay is not perfect
(the sequence is not perfectly ordered). In contrast to layered feed-forward networks (e.g.,
Diesmann et al., 1999; Vogels and Abbott, 2005; Kumar et al., 2010; Jahnke et al., 2012),
there are no separated subsets of neurons (layers) which constitute the potentially members of
each synchronous pulse. Instead, the neurons participating in subsequent synchronous pulses
are recruited from the set of neurons with place field centers following the place field centers
of the neurons of the preceding synchronous pulse. Thus the synchronous pulse propagates
along the previously learned feed-forward structure, yet, the range of place field centers of
neurons of consecutive synchronous pulses overlap (cf. Figure 7.3E). Additionally, the ordering
of spikes within one synchronous pulse depends strongly on the current state of the neurons
upon reception of the synchronous input, and thus the spiking order within one of these pulses
is approximately random. Both effects mentioned above cause deviations between the order of
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Figure 7.4: Characteristics of replay events. (A) The lower panel shows the spectrogram of the
dynamics of the excitatory neuron population displayed in Figure 7.3C, and the upper
panel shows the corresponding network rate. There are clear maxima at a frequency of
about 200Hz during replay events. (B) Average matching index I (solid lines) versus the
number of initially synchronously spiking neurons g0 after different numbers of runs along
a linear track (same data and color-code as in Figure 7.3A). Only runs where at least two
“ripples” are initiated are considered for the analysis, therefore the curves are truncated
at the left side. The shaded areas indicate the value range containing 50% of the values
(0.25 to 0.75 quantiles). With increasing number of ripples (cf. Figure 7.3A) the quality of
the ordering within replay events increases. (C) As a control experiment we shuffled the
neuron indices and calculated the matching index. As expected, the matching index index
fluctuates around zero, highlighting that the sequence is randomly ordered.
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spikes in the replay event and the order of the place field centers, and they therefore reduce
the matching index I below the maximal value Imax = 1. Nonetheless, after a few number of
runs along the linear track, the average matching index is substantially larger compared to a
control scenario where the neuron indices are shuffled (cf. Figure 7.4B,C). The “center of place
field centers” of neurons participating in subsequent synchronous pulses propagate along the
feed-forward structure (cf. Figure 7.3C,D).

Robustness of the occurrence of replay events

Besides the number of runs along the linear track, also the widths ∆w of the place fields,
the maximal synaptic modification, and the strength of the excitatory-inhibitory feedback loop
influence the properties and quality of replay events. In the following we show that the emergence
of replay and SPW/R-like activity is robust against changes of the network setup.

With increasing place field width ∆w, the range of positions

x ∈
[
xctr
i −∆w/2, xctr

i + ∆w/2
]

(7.4)

where a single (place encoding) neuron i becomes active increases. Assuming a fixed running
velocity v̄ and learning rate λ, this increase implies that each neuron is activated for a longer time
interval during one run. Thus also the total number of spike pairings between place encoding
neurons increases resulting in a faster formation of the feed-forward structure. Indeed, with
increasing ∆w, the average number of ripples per replay event (cf. Figure 7.5A) as well as the
ordering (cf. Figure 7.5B) increase for fixed number of runs. This increase is similiar to the
increase achieved by an increasing number of runs for fixed ∆w (cf. Figure 7.3A and Figure
7.4B).

As argued above, the excitatory-to-inhibitory and inhibitory-to-excitatory coupling controls the
number of ripples and the length of replay events. To illustrate the influence of this feed-back
loop, we scale the relevant coupling strengths by a factor γ, i.e.,

ε′inex = γ · εinex and ε′exin = γ · εexin, (7.5)

where εinex (ε′inex) denotes the (modified) excitatory-to-inhibitory, and εexin (ε′exin) the (modified)
inhibitory-to-excitatory coupling strengths. With decreasing γ (i.e., less prominent feed-back
loop), we observe more and more ripples (cf. Figure 7.5C), and replay events become longer and
longer. However, the quality of the ordering within the replay events do not increase (cf. Figure
7.5D). Synchronous activity propagates along the learned feed-forward structure (see previous
subsection), but additionally the synchronous activity might also spread to other neurons with
place fields not subsequent to the currently active synchronous group. Such spreading is hindered
by an increase of γ. Here only the strongest signals (i.e., the projection of the propagating signal
on the neurons with subsequent place fields) are sufficiently strong to overcome the inhibitory
feed-back which yields more ordered replay sequences (cf. Figure 7.5D).

We conclude that the occurrence of induced replay events is robust against variations of ini-
tial stimulation size, number of runs along the linear track, place field width and strength of
inhibitory feed-back loop.
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Figure 7.5: Impact of place field width and strength of inhibitory feed-back loop on replay
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Unspecific stimulation

So far we considered replay events triggered by a specific (read-out) stimulation, i.e., events
are started by synchronous spiking of a subset of neurons with neighboring place field centers.
However, with more and more prominent feed-forward structures (achieved, e.g., by increasing
number of runs) the minimal number of initially synchronized neurons which are sufficient to
elicit a replay event decreases. This decrease suggest that replay events might also be triggered
by unspecific stimulation of a random subset of neurons which contain subsets of neurons with
nearby place field centers by chance, and thus might induce replay events.

We test this conjecture, by stimulating a small subset of g0 randomly selected neurons out of the
total population of N ex neurons to spike synchronously. If the formed feed-forward structure is
sufficiently prominent (i.e., after sufficiently many runs along the track and/or for sufficiently
large place field widths ∆w) this random stimulation indeed elicit SPW/Rs-like events with a
moderate number of consecutive synchronous groups (ripples).

To evaluate if this events contain information about the order of the place field centers, we
calculate the matching index I with respect to the original order of place field centers as before.
Furthermore, we test whether the information about the order can already be inferred from the
activity of a limited number of neurons (as it is the case in experimental setups where only spike
data from a very limited number of neurons are available). We calculate the matching index
from a randomly selected subset of S neurons out of all place-encoding neurons: Indeed, the
distribution of matching indices (Figure 7.6A) clearly shows that the order within the replay
events is non-random and reflects the original order of place field centers along the linear track
(examples of spiking activity of the subset S of selected neurons are shown in Figure 7.6B-D).

Storing and recall of multiple sequences

The hippocampus is assumed to serve as a preliminary storage device for information (Buzsáki,
1989; Willshaw and Buckingham, 1990) and simultaneous storage (and recall) of multiple mem-
ory contents is essential for its function. In the following, we demonstrate that multiple sequences
can be simultaneously stored and successfully recalled in a single network.

We consider the encoding of ntr different linear tracks. For each track, we assume that a
number Npf randomly selected neurons out of the total set of N ex excitatory neurons encodes a
position on the specific track. As before, the encoded positions (i.e., the place field centers) are
distributed homogeneously along the corresponding track and randomly assigned to the selected
place-encoding neurons. In the exploration phase all ntr tracks are traversed one after each other,
and thus multiple stripe-like feed-forward substructures are formed. For the recall phase we
selectively stimulate replay events corresponding to one of the traversed tracks: g0 neurons with
neighboring place field centers with respect to one of the tracks are stimulated synchronously.
We analyze the elicited replay events, by calculating the matching index with respect to order
of place field centers for each of the trained tracks. The distributions of this matching indices
clearly show, that the different feed-forward structures can be selectively activated (cf. Figure
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7.7A,C). We conclude that even relatively small networks with simple (global) connectivity, as
considered in the article, enable a storage of multiple sequences and a successful recall is possible,
although the single feed-forward substructures have a substantial overlap.

7.2.3. Biological plausibility of SPW/R and replay model

In our article we have derived a unifying model to understand learning of activity during ex-
ploratory phases and its recall together with emergent Sharp-Wave-Ripples. So far, studies have
investigated either learning and recall, or mechanisms of emergent network phenomena. Stud-
ies on the former often use abstract neuron models and/or consider small neuron populations
with dense, often all-to-all coupling. Investigating emergent phenomena requires larger systems.
Neural networks are usually taken to be spiking and have very sparse topology to be compatible
with experimental findings. Further, they often incorporate specific, experimentally established
single neuron properties which are not covered by standard neuron models.

Our study has bridged the gap between the previously separated fields of research on learning
and on emergent neural network activity. In the remainder of the article, we review proposed
mechanisms for generation of SPW/Rs, underlying sequence learning and recall. We further
discuss the plausibility of our model with respect to recent experimental observations.

Models for SPW/Rs

So far, mainly three mechanisms have been suggested to underlie SPW/R events. The sharp
wave may depend on short term plasticity leading to population bursts (Deuchars and Thomson,
1996; Loebel and Tsodyks, 2002; Memmesheimer, 2010), on recurrent excitation enhanced by
nonlinear dendrites and inhibition (Memmesheimer, 2010), and/or on recurrent excitation and
inhibition only (Taxidis et al., 2012).

For the ripple oscillations, three models exist: The first one assumes that the presence of ex-
citatory input due to a sharp wave input excites the interneuron networks to oscillate. The
inhibition from the interneurons entrains the phasic spiking of the pyramidal cells (Buzsáki
and Chrobak, 1995; Ylinen et al., 1995) and thereby yields network oscillations in the ripple
frequency range in response to both constant (Brunel and Wang, 2003; Geisler et al., 2005)
and sharp wave-like transient input (Taxidis et al., 2012, 2013). The second model is based
on the assumption that axo-axonal gap junctions (Schmitz et al., 2001; Hamzei-Sichani et al.,
2007) connect pyramidal cell axons to a network where spikes can propagate and multiply in the
presence of an external depolarizing input (Traub et al., 1999; Traub and Bibbig, 2000; Maex
and Schutter, 2007). Rhythmic generation of bursts of axonal spiking are generated, which
excite pyramidal cell and interneuron somata to spike after antidromic and orthodromic spike
propagation. The third model is based on nonlinear dendrites which enable propagation of syn-
chronous activity (Memmesheimer, 2010; Memmesheimer and Timme, 2012; Jahnke et al., 2013)
and thereby generate sharp-wave-like events with high-frequency ripples. The ripple frequency
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range is determined by experimentally measured characteristics of nonlinear dendrites (Ariav
et al., 2003; Müller et al., 2012) and agrees with the experimentally found one.

The models are not mutually exclusive and, in view of current experimental knowledge on
SPW/Rs, all three are plausible (for a more detailed discussion, see Memmesheimer, 2010). We
note that the oscillations might also depend on the excitatory-inhibitory loop, like in the gamma
“PING”-mechanism (Börgers and Kopell, 2003; Bartos et al., 2007; Tiesinga and Sejnowski,
2009): This feed-back loop can generate oscillations in the ripple frequency range and the fast
response properties of the involved interneurons (cf. Geiger et al., 1997; Csicsvari et al., 1998;
Jonas et al., 2004) allow for the experimentally observed phase differences between the preferred
spiking of the pyramidal and the interneuron populations (Geisler et al., 2005; Memmesheimer,
2010).

The choice of the SPW/R-model in our article

As basis of our article, we have chosen the model established by Memmesheimer (2010) for sev-
eral reasons: The events generated in the model networks resemble the experimentally measured
ones in their shape, duration, firing and current input characteristics. The model explains the
ripple frequencies based on data from single neuron measurements (Ariav et al., 2003; Müller
et al., 2012). This also holds for the lower frequency, less pronounced ripples in CA3 in vivo
(Memmesheimer, 2010). The model explains sharp wave and ripples as one event and does not
require the assumption of an external sharp wave input for region CA1, consistent with the
experimental observation of SPW/Rs in the functionally disconnected or partially deafferented
CA1 in vitro and in vivo (Maier et al., 2003; Nimmrich et al., 2005; Nakashiba et al., 2009;
Maier et al., 2011). Our model is based on the assumption that excitatory input mediated
by recurrent connections generates strong, fast dendritic sodium spikes in regions CA3 and in
CA1. Indeed, recent experiments show ripple-locked excitatory input currents even in the func-
tionally disconnected region CA1 (Maier et al., 2011), suggesting a role of recurrent excitatory
connectivity in generating ripples. While recurrent and feed-forward inhibition, as prevalent
during SPW/Rs, severely affects responses to non- or weakly-dendritically amplified excitatory
input (Müller et al., 2012), strong dendritic spikes and their triggering of action potentials are
robust against it (Kamondi et al., 1998; Müller et al., 2012). Further, it has recently been shown
that the frequency of ripple oscillations in vitro is insensitive against changes in strength and
duration of inhibitory interactions (Viereckel et al., 2013). In contrast, in vitro experiments on
(gamma) oscillations that depend on recurrent inhibition or the excitatory-inhibitory loop, as
well as several modeling studies found a decrease of oscillation frequency with increasing inhi-
bition strength and duration (Whittington et al., 1995; Wang and Buzsáki, 1996; Fisahn et al.,
1998; Tiesinga and José, 2000; Tiesinga et al., 2001; Bartos et al., 2007). This may indicate that
ripples do not depend on inhibition or that they obey a low firing rate oscillation mechanism
(Brunel and Wang, 2003; Donoso et al., 2013) despite the high fraction of participating neurons
(Csicsvari et al., 1999a; Klausberger et al., 2003). Finally, a functional connection between the
fast dendritic sodium-based spikes and SPW/Rs may be suggested by the fact that SPW/Rs
occur exclusively in the hippocampus (Buzsáki and Silva, 2012), the only structure where also
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fast dendritic sodium spikes have been found to dominate (Ariav et al., 2003; Nevian et al.,
2007; Müller et al., 2012; Major et al., 2013).

Recurrent connectivity may be expected to induce dendritic spiking

To further stress the plausibility of our model, we highlight a rough computation that shows
that recurrent connectivity may be expected to be sufficient to generate dendritic spiking during
SPW/Rs. We show that the strength of input which a pyramidal neuron receives during SPW/Rs
from recurrent connectivity is comparable to the input a CA1 neuron receives from Schaffer
collaterals. The latter has been experimentally directly shown to generate dendritic spikes
(Kamondi et al., 1998).

Recurrent connectivity in both hippocampal regions CA3 and CA1 is sparse, but individual
connections are strong. The estimates for the connection probability are about 5% for CA3
(Amaral et al., 1990; Traub and Miles, 1991), and 1% for CA1 in a distance of 200µm (Deuchars
and Thomson, 1996). Anatomical data and comparison with other brain areas may suggest
a more localized coupling in CA1, such as an increase of connectivity with greater proximity
due to a local axonal plexus (Knowles and Schwartzkroin, 1981; Holmgren et al., 2003; Orman
et al., 2008). We first consider CA1 recurrent connections and assume that the connectivity is
unstructured and that a possible coupling is present with probability 1%. The fraction of CA1
pyramidal neurons sending a spike within a window of 5ms around the peak of a SPW is 5%
(Csicsvari et al., 2000), and the total number of pyramidal neurons within CA1 is about 3× 105

(Andersen et al., 2007; Ascoli and Atkeson, 2005). So, about 150 recurrent inputs per neuron are
generated around the peak of a SPW, while a few synchronous recurrent inputs are sufficient to
generate a dendritic spike (about 6 for the mean coupling strength measured by Deuchars and
Thomson, 1996). Additionally, the presence of several dendrites can lead to a further increase
in the effect of the supra-linearity, because more than one dendrite can generate spikes (Breuer
et al., 2014).

The estimated number of inputs can now be compared to a similarly estimated number of inputs
from CA3 neurons. The connectivity from CA3 to CA1 pyramidal neurons is also sparse, it was
estimated to 6% (Sayer et al., 1990). In a window of 5ms around the peak of a SPW, 1% of the
CA3 pyramidal neurons send a spike (Csicsvari et al., 2000), and the total number of pyramidal
neurons within CA3 is about 2 × 105 (Ascoli and Atkeson, 2005; Andersen et al., 2007). This
estimation yields a number of 120 inputs to each CA1 pyramidal neuron. The input strength of
CA3 to CA1 connections is smaller than the strength of CA1 recurrent inputs (mean somatic
EPSP 0.1mV for CA3→CA1, Sayer et al., 1990, vs. 0.7mV for CA1→CA1 connections, Deuchars
and Thomson, 1996), and the complexity of the basal and apical dendrites (such as the number
of branches) is similar (e.g., Andersen et al., 2007).

We conclude that the total excitatory input received by a basal dendritic branch within SPW/Rs
due to recurrent CA1→CA1 connections is at least comparable to the input an apical dendritic
branch receives through CA3→CA1 Schaffer collaterals. However, inputs from CA3 are known
to generate dendritic spikes during SPW/Rs in the apical dendrites of CA1 neurons (Kamondi
et al., 1998). Thus, the comparison indicates that inputs from recurrent connections are likely
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to generate dendritic spikes in CA1 basal dendrites. For CA3 recurrent connections, a similar
argument holds with 5% recurrent connectivity, so 100 inputs per neuron around the peak of
the SPW and a strength of 0.6− 1.3mV for individual inputs (Traub and Miles, 1991).

7.3. Discussion

In the present article, we have suggested a unifying model for learning, replay, sharp wave
generation, and ripple generation. In our model, all four experimentally observed abilities of
hippocampal networks are intimately interrelated. They are enhanced or enabled by nonlinear
dendritic interactions mediated by fast dendritic spikes: The nonlinear dendrites promote replay
directly and via the generation of sharp waves and ripples. The replay can take place on under-
lying networks that are only weakly structured and sparse, therewith the nonlinear dendrites
indirectly simplify learning.

We introduced learning during an exploration phase by incorporating a standard type of network
plasticity; changes of synaptic strengths depend on the timing of presynaptic and postsynaptic
somatic spikes. We have incorporated a learning rule which possesses a power-law dependence
on the synaptic weight before modification, in agreement with experimental findings (Bi and
Poo, 1998; Morrison et al., 2007). It leads to a biologically plausible, stable, unimodal synaptic
weight distribution. Our work shows that despite the tendency of the synapses to converge to the
same equilibrium value, and the persistence of non-negligible background weights, the network
structures established during exploration are strong enough to generate replay. We emphasize
that our networks do not organize into a single feed-forward structure to enable replay, and that
they allow learning of multiple sequences.

Besides synaptic weight modification also other forms of network plasticity have been exper-
imentally found (Mozzachiodi and Byrne, 2010). Our network model suggest that especially
the activity-dependent change of coupling between nonlinear dendritic branches and the soma
(branch strength potentiation) may play a prominent role during learning of activity patterns in
the hippocampus: When dendritic spike initiation occurs together with somatic action poten-
tials, the strength of the dendritic spikes and their impact on the soma increase (Losonczy et al.,
2008; Müller et al., 2012). This leads to strong dendritic spikes that support the reproduction of
input-output relations from exploration phases, and may thus be expected to enhance dendritic
spike based replay of activity during SPW/Rs.

We find that supported by nonlinear dendrites, activity propagates along comparably weakly
enhanced, sparse, biologically plausible network structures. This generates a recall of the original
sequence, which is noisy in the sense that the spike order is only roughly preserved and not every
neuron of the sequence participates in every recall, in agreement with the experimental findings
(Wilson and McNaughton, 1994; Nadasdy et al., 1999; Lee and Wilson, 2002; Pastalkova et al.,
2008; Davidson et al., 2009).

Our model suggests that replay in hippocampal region CA1 may proceed dependent on its own
recurrent connectivity and does not need to be directly imposed by replay in CA3. This is
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consistent with experimental observations of replay in CA1 which is deafferented from CA3
(Nakashiba et al., 2009). It may support the different functionality of cells in CA3 and CA1
(Mizuseki et al., 2012), and allow for a more complex impact of replay within CA3 (and perhaps
further regions such as the enthorinal cortex) and replay in CA1.

A common question is why replay is absent during exploration phases, while similar network
structures generate replay during recall phases. This is usually explained by a strengthening of
effective recurrent excitation by neuromodulators during recall (Hasselmo, 2006). In contrast to
previous models, we do not have to assume such a strengthening. In our model, replay requires
synchronous spiking, due to the sensitivity of nonlinear dendrites to it. To evoke the common
targeted recall starting from a salient location, in our model a group of neurons with a subgroup
encoding the location is activated to spike synchronously. For spontaneous, random recall, the
spiking activity may be overall increased such that also a high level of synchronous spiking is
present which at times evokes spontaneous recall. Since sufficient synchronous spiking is not
present during exploration, replay will not be generated.

The learned network structures are “stripe-like” , they do not possess segmented, distinct groups
of neurons like synfire chains (cf. Abeles, 1982, 1991). Importantly, we nevertheless observe that
the propagation of activity proceeds in synchronous pulses, and thus “ripples” as experimentally
found superimposed to sharp waves are generated. The occurrence of the pulses can be under-
stood as follows: Replay is initiated by a synchronous stimulation of a few neurons partially
sensitive to places near the same position in a trained sequence. This increases synchronous
input and thus dendritic spiking in postsynaptic excitatory neurons, especially in such post-
synaptic neurons which receive stronger synaptic input from many of the stimulated neurons.
Due to the previous learning phase, these are neurons which signal places in the near future
relative to the original position within the trained sequence. The dendritic spikes promote so-
matic spikes or directly generate them, with high temporal precision after the experimentally
measured delay time of about 5ms (Ariav et al., 2003; Müller et al., 2012). Together with con-
ventional inputs, this evokes a better synchronized, larger pulse of response spikes, in which
neurons signaling the near future of the learned sequence are overrepresented. The pulse evokes
a third one, with neurons farer in the future of the sequence being particularly prevalent and so
on. Our simulations show that the pulses do not broaden despite the lack of underlying group
structure in the network; they stay narrow and precise, due to the high precision of dendritic
spike triggered somatic output spikes. In turn, the temporal structuring of propagating activity
and the consequent input synchronization allow dendritic amplification of many inputs and thus
promote the underlying replay.

Our model explains the experimentally found “sharp wave” in the hippocampus by an initially
increase in the size of the synchronous pulses, and a subsequent decrease by inhibitory feed-
back. The amplitude of the increase is determined by the broadness of the learned network
structure, by the amount of recurrent excitation and by the limiting action of accumulating
overall recurrent inhibition in the network. We have recently shown that synchronous activity
does not only affect neurons within the feed-forward structure, but induces a broader increase
in network spiking activity (Jahnke et al., 2014a). The unspecific overall increase in activity
supports replay by providing additional input to the neurons and the dendrites, thus making
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them more ready to generate spikes in response to recurrent input which generates the replay.
The event terminates when the overall inhibition overcomes recurrent excitation.

Taken together, our model suggests that ripple oscillations are generated by propagating activity
and in turn enhance it. This idea of ripples supporting replay does not necessarily require
that either of them depends on nonlinear dendrites. Indeed, we have recently shown that
externally imposed high-frequency oscillations support propagation of synchrony along synfire
chains both in presence and absence of nonlinear dendrites (Jahnke et al., 2014b). We expect that
propagation along non-segmented network structures may equally well be supported. Further,
we expect that also intrinsic ripple oscillations that are not dependent on nonlinear dendrites
may be able to serve this purpose.

Our study clears the path for investigating the role of replay and SPW/Rs in learning and
memory. An important direction of future research is how replay and SPW/Rs act back to
restructure hippocampal networks. In particular it has been hypothesized that SPW/Rs may
consolidate (Nadasdy et al., 1999) or erase (Buzsáki, 2006; Mehta, 2007) memory content in the
hippocampus, and that they may lead to associative processes (Buzsáki, 2006; Andersen et al.,
2007). The plasticity rules responsible for such restructuring may be different from those in
exploration phases, due to the high level of inhibition during SPW/Rs (Nishiyama et al., 2000;
Aihara et al., 2007; Cutsuridis, 2013) and it may be necessary to account for the prevalence of
dendritic spikes (Remy and Spruston, 2007; Losonczy et al., 2008; Müller et al., 2012). Another
important question is how replay and SPW/Rs shape neocortical networks. In particular, future
research will clarify whether and how highly noisy, scarce replay in conjunction with SPW/R-
activity and neocortical sleep spindles can imprint and consolidate memory content, as assumed
by the two-stage memory hypothesis.
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7.5. Methods

In this section we introduce the neuron model and system setup, provide a complete list of
standard neuron and model parameters and derive a quantitative estimate for the average prop-
agation frequency during induced replay events.
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7.5.1. Neuron model

We consider networks of leaky integrate-and-fire neurons. The state of neuron i is described by
its membrane potential Vi and the temporal dynamics of the membrane potential obey

Ci
dVi (t)
dt

= gL
i [V eq

i − Vi (t)] + Iex
i (t) + I in

i (t) + I0
i , (7.6)

where Ci is the membrane capacity, gL
i is the resting conductance and V eq

i is the equilibrium
potential. I0

i is a constant input current to neuron i and Iex
i (t) and I in

i (t) are currents arising
from excitatory and inhibitory inputs, respectively. Whenever the membrane potential Vi (t)
exceeds the spiking threshold V Θ

i at some t = t∗, a spike is sent to the postsynaptic neurons j,
where it arrives after a delay time τji. The sending neuron is reset to Vi (t∗) = V reset

i and the
neuron is refractory for a time period tref

i , i.e. Vi(t) ≡ V reset
i for t ∈

[
t∗, t∗ + tref

i

]
.

7.5.2. Synapses and dendrite models

Synapses

The effects of the synaptic inputs on the postsynaptic neurons are modeled by transient con-
ductance changes. The time course of the synaptic conductance is given by the difference of two
exponentials with time constants τk,1 and τk,2,

fk (t) =


(
Ak
)−1 (

e
− t

τk,1 − e−
t

τk,2
)

for t ≥ 0
0 for t < 0

, (7.7)

for k ∈ {ex,in} describing the effect of an excitatory and inhibitory input, respectively, that is
received at time t0 = 0. The normalization constant Ak is chosen such that the peak conductance
maxt≥t0

{
fk (t)

}
= 1,

Ak =
(
τk,2

τk,1

) τk,2

τk,1−τk,2

−
(
τk,2

τk,1

) τk,1

τk,1−τk,2

. (7.8)

Throughout this article, we denote the strength of a synaptic connection by the value of the peak
conductance, i.e., a single input from a connection of strength ε causes a conductance change
ε · fk(t). Denoting the reversal potentials of excitatory and inhibitory currents by Eex and Ein,
the input currents to neuron i arising from synaptic inputs from other neurons of the network
are given by

Iex
i (t) = gex

i (t) [Eex − Vi (t)] , (7.9)

I in
i (t) = gin

i (t)
[
Ein − Vi (t)

]
. (7.10)
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gex
i (t) and gin

i (t) are linear superpositions of single responses (cf. Equation 7.7),

gex
i (t) =

∑
n,j

εex
ij f

ex
(
t− tfj,n − τij

)
, (7.11)

gin
i (t) =

∑
n,j

εinijf
in
(
t− tfj,n − τij

)
, (7.12)

where εex
ij (and εinij) denote the excitatory (and inhibitory) coupling strength from neuron j to

neuron i and tfj,n is the nth spiking time of neuron j.

Non-linear dendrites

The above model implicitly assumes linear input summation in the dendrites. In addition to
this, we incorporate nonlinear amplification of synchronous inputs mediated by fast dendritic
spikes which have been found in single neuron experiments (Ariav et al., 2003; Gasparini et al.,
2004; Polsky et al., 2004; Gasparini and Magee, 2006) and have been introduced in recent
models of neuronal networks (Memmesheimer, 2010; Jahnke et al., 2012, 2013). Whenever
the excitatory input to a (nonlinear) dendrite summed over a short time interval (∆T s) of
less than some milliseconds crosses the dendritic threshold Θb, a dendritic spike is initiated and
causes a depolarization in the some of the postsynaptic neuron, which exceeds the depolarization
expected form linear summation of single inputs. We model the effect of a dendritic spike by
a stereotypical current pulse, which is injected to the some after a time interval τDS after the
dendritic threshold is crossed. The temporal offset τDS models the latency between the onset of
the (linear) postsynaptic response and the response to the dendritic spike as observed in single
neuron experiments (Ariav et al., 2003). The current pulse is described by the sum of three
exponential functions,

Ids = Θ
(
t− τDS

) [
−A exp

(
− t− τ

DS

τds,1

)
+B exp−

(
t− τDS

τds,2

)
− C exp

(
− t− τ

DS

τds,3

)]
(7.13)

with positive prefactors A,B,C and decay time constants τds,1, τds,2 and τds,3 which are chosen
such that the somatic depolarization fits experimental data. To obtain the experimentally
observed saturation of the somatic depolarization for inputs exceeding the dendritic threshold,
the nonlinear dendrite becomes refractory for a time period tref,ds after generation of such a
current pulse and does not transmit spikes within the refractory time period.

Synaptic plasticity

Recurrent excitatory connections are considered to be plastic and their weights are adjusted
activity dependent. We employ a pair-based update rule for synaptic connections, i.e., the
change of the weight of a synaptic connection depends on the temporal difference between pairs
of pre- and post-synaptic spikes. Let ∆ be the temporal difference between the spike of a post-
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and a pre-synaptic neuron and denote the synaptic weight by ε, then this spike pair induces a
weight change

∆ε =

F
+ (ε) exp

(
− |∆t|

τ+

)
if ∆t > 0

−F− (ε) exp
(
− |∆t|τ−

)
if ∆t < 0.

(7.14)

Here τ± are the time constants of the update window and F± (ε) describes the weight dependence
of the update rule. As proposed by Morrison et al. (2007) we use a power-law update rule

F+ (ε) = λε1−µ0 εµ (7.15)
F− (ε) = λαε (7.16)

where λ specifies the learning rate, ε0 is a reference weight, µ ∈ [0, 1] is the exponent of the
synaptic potentiation rule and α is the asymmetry parameter which scales the synaptic depress-
ing with respect to the synaptic potentiation. We choose the power-law update rule, because
(i) it can be fitted to experimental data (Bi and Poo, 1998) better than, e.g., pure additive or
multiplicative update rules (Morrison et al., 2007), and (ii) it has been shown that this update
rule generate an unimodal weight distribution in the presence of uncorrelated Poissonian inputs
(Morrison et al., 2007).

7.5.3. Network setup

We consider networks that are composed of N ex excitatory and N in inhibitory neurons. The
neurons are randomly connected. Single connections are present with constant probabilities
pX,Y (where X,Y ∈ {ex, in}) which depend on the type of post- and pre-synaptic neurons, e.g.,
pin,ex specifies the probability that a connection between an excitatory and inhibitory neuron
is realized. The connection strengths are drawn from a Gaussian distribution with mean µX,Y

and standard deviation σX,Y . The recurrent excitatory connections are considered plastic and
adjust their weights according to the update rule (7.14-7.16), all other weights are static.

Like the synaptic weights the conduction delays are chosen heterogeneous. The total conduction
delay between the presynaptic spiking and the onset of the postsynaptic somatic response can
be decomposed into two components: (i) the axonal delay τax and (ii) the time between the
onset of synaptic transmission and the onset of the somatic response τX . We assume that τX
is constant, but depends of the type of the postsynaptic neuron, whereas τax depends on the
distance between pre- and post-synaptic neuron and the conduction velocity. All neurons are
placed on square patch witch edge length S, and τax is computed by dividing the euclidean
distance between the neurons by the conduction velocity vax. The mean distance between two
(uniformely distributed) neurons on the quadratic patch is given by (Mathai et al., 1999)

d̄ =
2 +
√

2 + 5Log
(√

2 + 1
)

15 · S ≈ 0.5214 · S (7.17)

and thus the mean axonal delay are

¯τax ≈ 0.5214 · S
vax . (7.18)
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To exclude finite size effects all axonal delays are shuffled. Additionally, neurons receive external
Poissonian spike trains with rate νX,Y and constant input strength cX,Y .

7.5.4. Place cell tuning curves

Differrent mechanisms underlying the location tuning and phase precession of hippocampal
place cells have been proposed (see, e.g., Maurer and McNaughton, 2007; Moser et al., 2008,
for reviews). In this article we adopt the idea that they are caused by the interaction of theta-
modulated inhibition and excitation which increases along the place field (Mehta et al., 2002;
Harris et al., 2002).

In our simplified model, spiking of place cells is generated by injection of rectangular current
pulses whose amplitude and timing is determined by the current position x on a linear track.
We assign a place field, centered at xctr

i with width ∆wi,

Pi =
[
xctr
i −

∆wi
2 , xctr

i + ∆wi
2

]
, (7.19)

randomly to some neurons i; we assume that only a fraction, ppf, of the excitatory neurons are
place-encoding on a given track. If the current position is within the place field of neuron i, i.e.,
x ∈ Pi, additional rectangular current pulses of duration ∆τ are injected. The amplitude as
well as the timing of this current pulses depend on

x̃i =
x−

(
xctr
i − ∆wi

2

)
∆wi

, (7.20)

the relative position within the place field of that cell.

The current pulses are time locked to an (virtual) oscillating background signal, the theta
oscillation. During each oscillation period T , all neuron with a place field that incloses the
current position x (i.e., 0 ≤ x̃i ≤ 1) receives an input of strength

Ipf (x̃i) = Imax
[
− (2 · x̃i − 1)2 + 1

]
(7.21)

which is shifted against the background oscillation by

DT (x̃i) = 0.9
(
1− x̃2

i

)
T. (7.22)

Such the amplitude is maximal at the center (Ipf (x̃i = 0.5) = Imax) and decays quadratically
to zero towards the beginning (Ipf (x̃i = 0) = 0) and the end (Ipf (x̃i = 1) = 0) of the place field
(cf. Figure 7.1A; solid line). Further, the current pulse is shifted by almost a full oscillation
period T against the theta oscillation when the position x is in the beginning of the place field
(DT (x̃i = 0) = 0.9T ), and this time shift decreases quadratically to zero with increasing position
(DT (x̃i = 1) = 0) (cf. Figure 7.1A; dashed line).
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To quantify the location tuning properties, we measure the spatio-temporal receptive field of
a neuron with some place field P: We record the spiking activity for different positions x =
{x1, x2, . . . , xn}. For each recorded spike we calculate the phase-shift with respect to the theta
oscillation,

φ := 360◦ ·
(
tsp

T
−
⌊
tsp

T

⌋)
∈ (0◦, 360◦] . (7.23)

where tsp denotes the spiking time and bxc is the floor-function which maps a real number x to the
largest integer not greater than x. The spatio-temporal receptive field is then a two-dimensional
histogram for the location x (binning δx) and the phase shift φ (binningδφ) normalized by the
total time spent in this bin. As illustrated in Figure 7.1C the spiking reflects the characteristic of
the rectangular input current: When traversing the place field, the average firing rate increases
until it reaches the maximum at the center of the place field, and decreases afterwards. The
single spikes are correlated to the theta rhythm: When entering the place field, the neuron
spikes late in the theta rhythm and the preferred spiking moves to earlier and earlier times with
increasing position.

7.5.5. Standard neuron and model parameter

Throughout the article we consider homogeneous neuron populations. We consider networks
with N ex = 2500 excitatory and N in = 250 inhibitory neurons. The single neuron parameters
for excitatory cells are Ci ≡ C = 400pF, V reset

i ≡ V reset = −65mV, V Θ
i ≡ V Θ = −45mV,

gL
i ≡ gL = 25nS, V eq

i ≡ V eq = −65mV and tref
i ≡ tref = 3ms (Andersen et al., 2007; Staff et al.,

2000) for all i. For inhibitory neurons we set Ci ≡ C = 200pF, V reset
i ≡ V reset = −65mV,

V Θ
i ≡ V Θ = −55mV, gL

i ≡ gL = 25nS, V eq
i ≡ V eq = −65mV and tref

i ≡ tref = 3ms (Buhl et al.,
1996; Geiger et al., 1997) for all i.

For excitatory neurons, the time constants of the excitatory conductances (AMPA) are τ ex,1 =
2.5ms and τ ex,2 = 0.5ms (Jonas et al., 1993; Liu and Tsien, 1995), and the time constants for
inhibitory conductances (GABAA) are τ in,1 = 4.0ms and τ in,2 = 0.3ms (Pearce, 1993; Hájos and
Mody, 1997; Bartos et al., 2007). For inhibitory neurons, the time constants of the excitatory
conductances (AMPA) are τ ex,1 = 2.0ms and τ ex,2 = 0.35ms (Geiger et al., 1997; Galarreta
and Hestrin, 2001; Angulo et al., 2001), and the time constants for inhibitory conductances
(GABAA) are τ in,1 = 2.5ms and τ in,2 = 0.4ms.

The connection probability are pex,ex = 0.08, pex,in = 0.1, pin,ex = 0.1 and pin,in = 0.02 (Ascoli
and Atkeson, 2005; Andersen et al., 2007; Deuchars and Thomson, 1996). Recurrent excitatory
neurons are plastic, with τ+ = 15ms, τ− = 30ms, λ = 0.05, ε0 = 1nS, µ = 0.4 and α =
0.68 as standard values for the power-law update rule. For this parameters the equilibrium
weight distributions is approximately Gaussian with mean µex,ex = 0.7nS and standard-deviation
σex,ex = 0.16nS. All other weights are drawn from Gaussian distributions with µex,in = 2.5nS,
µin,ex = 1.0nS, µin,in = 2.0nS, and σex,in = 0.25nS, σin,ex = 0.1nS, σin,in = 0.2.

The dendritic conduction delays are τ ex = 1ms and τ in = 0.5ms; the axonal delays are distance
dependent (cf. Section 7.5.3). Neurons are randomly distributed on a square path with edge
length S = 350µm and the conduction velocity is vax = 300µm/ms.
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The parameters of the dendritic spike current are chosen according to single neuron experiments
(e.g., Ariav et al., 2003; Polsky et al., 2004; Gasparini et al., 2004; Gasparini and Magee, 2006),
Θb = 8.65nS, A = 55nA, B = 64nA, C = 9nA, τds,1 = 0.2ms, τds,2 = 0.3ms, τds,3 = 0.7ms,
τDS = 2.7ms and tref,ds = 5ms (cf. also Memmesheimer, 2010; Jahnke et al., 2012). The standard
value for the length of the dendritic integration window is ∆T s = 2ms.

The neurons receive external Poissonian random inputs with rates νex,ex = 1.5kHz, νex,in =
0.5kHz, νin,ex = 0.3kHz and νin,in = 0.1kHz, and input strengths cex,ex = 1.8nS, cex,in = 2.875nS,
cin,ex = 1.875nS and cin,in = 2.5nS.

7.5.6. Estimating the propagation frequency of Sharp-Wave-Ripple like events

In our model, the spiking probability of a neuron due to an excitatory input below the dendritic
threshold (i.e., no dendritic spike is elicited) is substantially smaller than the spiking probability
due to a supra-threshold input (cf., also Jahnke et al., 2012, 2013, 2014a). Therefore replay
events (i.e., propagating synchronous pulses) are mainly mediated by nonlinearly dendritically
amplified inputs, and thus the propagation frequency is determined by the average time between
presynaptic spikes and postsynaptic spikes elicited by dendritic ones.

The relevant neurophysiological quantities to estimate the propagation frequency are the axonal
delay τax, the synaptic delay τ ex, the latency of the dendritic spike τDS, and the average time
difference tds between the onset of the response to the dendritic spike and the spiking of the
postsynaptic neurons. For hippocampal neurons, the synaptic delay τ ex is typically in the range
of 0.5 − 1.5ms (Miles and Wong, 1986; Debanne et al., 1995; Boudkkazi et al., 2007) and the
latency of dendritic spikes τDS is in the order of 2.4 − 2.9ms (Ariav et al., 2003). The average
axonal delay τax depends on the the distance between presynaptic and postsynaptic neurons
and the propagation velocity vax. The range of local connections in the hippocampus have been
measured to be in the order of 300− 400µm (Knowles and Schwartzkroin, 1981; Christian and
Dudek, 1988; Oram et al., 1999; Orman et al., 2008). We therefore assume that the neurons are
distributed on a quadratic patch width edge length S in the order of 300 − 400µm. Together
with the a conduction velocity of 200 − 400µm (Andersen et al., 2000; Meeks and Mennerick,
2006), the average axonal delay is in the range of 0.3− 1.3ms. The time tds between the onset
of the response to the dendritic spike and the spike of the postsynaptic neuron depends weakly
on the parameters of the current mimicking the dendritic spike and the neurons’ ground state.
For standard parameters it is typically between 0.5− 0.9ms. Combining the above estimations
the average temporal difference between a presynaptic and postsynaptic spikes elicited by a
dendritic spikes is between 3.7 − 6.4ms and therefore the propagation frequency is expected to
be in the range 150− 250Hz.





Chapter 8
Summary and discussion

In this thesis we investigate the impact of dendritic sodium spikes on the dynamics of recurrent
networks. These spikes endow neuronal dendrites with a powerful coincidence detection mecha-
nism, and thereby enable them to detect and to nonlinearly amplify highly synchronous inputs
(Ariav et al., 2003; London and Häusser, 2005; Spruston, 2008). In particular, we concentrate
on signal transmission in the form of synchronous pulse packets in embedded feed-forward sub-
structures. Such structures are hypothesized to underlie the generation of precisely timed spike
patterns and signal transmission in recurrent networks (Abeles, 1982, 1991; Diesmann et al.,
1999; Kumar et al., 2010).

Isolated feed-forward networks

As a starting point, we analyze signal transmission in isolated feed-forward structures (Chapter
3). We investigate leaky integrate-and-fire neurons in the limit of infinitesimal short interaction
pulses. Here, the transmitted signal consists of exactly synchronous pulses. This approach allows
to study the propagating of synchrony by considering solely the size of the pulse in terms of the
number of synchronous spikes (instead of the size and the temporal spread, cf., e.g., Diesmann
et al., 1999; Gewaltig et al., 2001; Goedeke and Diesmann, 2008), such that the analysis becomes
analytically tractable. We consider both linearly and nonlinearly coupled networks. We derive
scaling laws as well as quantitative estimates for the critical connectivity, marking the bifurcation
point between regimes where robust propagation of synchrony is possible and where it is not.

The analytical derivations are based on rather general assumptions: (a) The effect of a syn-
chronous pulse packet is approximated by the summed effect of single inputs, and (b) the
spiking probability due to an dendritically enhanced input is substantial larger than due to a
non-enhanced input. Therefore the scaling laws can be directly applied to biologically more plau-
sible models, and in particular for networks incorporating nonlinear dendrites, even quantitative
predictions for the critical connectivity are obtained.
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Dendritic spikes indeed substantially reduce the coupling strength or layer size required for
robust signal propagation. We conclude that even highly diluted feed-forward structures with
synaptic efficiencies in the biological plausible range may be capable of transmitting synchronous
signals if nonlinear dendritic interactions are taken into account.

Feed-forward sub-networks in recurrent networks

We furthermore consider embedded feed-forward substructures that occur naturally as parts of
sparse random recurrent networks: The substructures are distinct from the remaining network
by increased coupling strengths (Chapter 4 - 6) which might well be generated by learning, e.g.,
spike-time-dependent plasticity (cf. also Chapter 7).

Robust signal transmission requires a reliable separation of background activity and the trans-
mitted signal. This puts conflicting requirements on the strength of the feed-forward structure:
On the one hand it must be sufficiently strong to enable a robust signal propagation, on the
other hand it must be sufficiently weak to prevent spontaneous synchrony propagation caused
by accumulated correlations (Tetzlaff et al., 2002; Litvak et al., 2003; Rosenbaum et al., 2011).
These constraints strongly limit the capability of linearly coupled networks to robustly propa-
gate synchronous signals (Chapter 4, and cf. also Vogels and Abbott, 2005), in particular, if the
layer sizes are small.

In nonlinearly coupled networks, propagation of synchrony is mainly mediated by dendritic
spikes that are sensitive to synchronous input only, i.e., the effective strength of the synaptic
connections changes dynamically with input synchrony. Therefore these spikes support sep-
aration of signal and background activity. Robust propagation is enabled (by dendritically
enhanced inputs), while the asynchronous background activity does not induce spontaneous
synchrony propagation. We conclude that dendritic nonlinearities offer a viable mechanism for
robust signal transmission in recurrent networks with weakly (biological plausible) feed-forward
substructures.

Network echo

In recurrent networks, the propagating signal also influences the global activity of the embedding
network. Propagating synchronous signals induce synchronous spiking in the embedding network
that might cause pathological activity states (“Synfire explosions” Mehring et al., 2003; Aviel
et al., 2003).

In Chapter 5 we consider the network echo to propagating synchronous signals, and their back-
reaction to the propagating pulses in nonlinearly coupled networks. We show analytically, sup-
ported by direct numerical simulations, that for standard (Erdös-Renyi) random topologies
this network echo is either negligible (if the recurrent coupling is weak — the embedded feed-
forward network behaves like an isolated structure with appropriate random background inputs),
or synchrony spreads over the whole network and cause large scale synchronous events (synfire
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explosions). In essence, for such random graphs all neurons have a similar connectivity and thus
either none or all neurons of the network echo the synchronous propagating signal.

However, if the degree distribution (i.e., the distribution of incoming and outgoing connections
for each neurons) is broader, also moderate — non pathological — network echos can emerge. In
particular, we show that in networks that contain a small number of hubs (nodes that are higher-
than-average connected), these nodes preferably respond to propagating synchronous signals in
the feed-forward substructure. In the presence of a synchronous signal, the population of hubs
starts to oscillate (i.e., it echos the transmitted signal) and its feedback in turn stabilizes the
propagating pulse. Hub- and signal-carrying populations activate each other and thereby the
hub-nodes enable signal transmission through weakly structured networks in which a robust
signal propagation is not possible in the absence of hubs.

This mutual activation is in contrast to the function commonly associated with hubs: In our
setting the hubs themselves do not spread the relevant signals, but unspecifically activate the
signal carrying subnetworks. We show that this phenomenon is generic in networks whose units
have some probabilistic threshold character. This character is abundant throughout networks
in nature and society, e.g., it occurs in neural networks, in gene and protein networks, in social
networks, in supply networks and in communication networks (e.g., Granovetter, 1978; Watts,
2002; Nowotny and Huerta, 2003; Bornholdt, 2008; Lorenz et al., 2009; Cayco-Gajic and Shea-
Brown, 2013). Likewise, hubs constitute a prominent structural feature in many real world
networks (Bornholdt and Ebel, 2001; Liljeros et al., 2001; Riley et al., 2003; Ebel et al., 2002;
Hufnagel et al., 2004; Bonifazi et al., 2009; Kaluza et al., 2010; Newman, 2010; Barthelemy, 2011;
Varshney et al., 2011). We conclude that hubs can act as generic (dynamic) signal amplifier in
recurrent networks.

It remains to investigate how other prominent features of real world networks, like small-world
properties (Watts and Strogatz, 1998; Newman, 2010), or the prevalence of certain small sub-
patterns (called “motifs”; Milo et al., 2002; Song et al., 2005; Perin et al., 2011) influence signal
transmission. We hypothesize that they might likewise have a selective amplifying effect on
synchronous signals.

Neuronal oscillations

Network oscillations of various frequencies are abundant in cortical networks and can be related
to attentional states and sensory stimulation (Fries et al., 2002; Fries, 2005; Palva and Palva,
2007; Womelsdorf et al., 2007; Womelsdorf and Fries, 2007; Lakatos et al., 2008; Kopell et al.,
2010; Buschman et al., 2012). Moreover, in the hippocampus the occurrence of precise spike
patterns is accompanied by high-frequency oscillations of up to 200 Hz (Buzsáki et al., 1992;
Ylinen et al., 1995; Maier et al., 2003, 2011; Buzsáki and Silva, 2012, cf. also Chapter 7).

In Chapter 6 we investigate the impact of background oscillations (in particular, high-frequency
oscillations) on the capabilities of recurrent networks to transmit synchronous signals. Such
oscillations, by exciting the neurons of the network (including the current target layer of a prop-
agating synchronous pulse) and thus contributing to spike generation, may enable a robust signal
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propagation in weak feed-forward structures, even if those are too weak to robustly propagate
a signal in the absence of this additional stimulation.

We highlight that propagation in networks with and without dendritic nonlinearities differ quali-
tatively: In linearly coupled networks the time between presynaptic stimulation and postsynaptic
spike generation (if the input is sufficiently strong to elicit a spike) decreases with increasing
stimulation strength — larger and larger depolarization causes shorter and shorter responding
times. In nonlinearly coupled networks, if the postsynaptic spike is caused by a dendritic one
(which is an all-or-none event), the time difference between stimulation and postsynaptic spike
only weakly depends on stimulation strength. As a consequence, propagation of synchrony in
nonlinearly coupled feed-forward networks exhibits a “natural” propagation frequency, while in
linearly coupled networks the propagation frequency increases with coupling strength.

The existence of a natural propagation frequency together with the short dendritic integration
window (i.e., the sensitivity of dendritic spike generation to highly synchronous stimulation
only) yields resonances and locking between (external) oscillations and propagating synchronous
signals: The additional (oscillatory) input may contribute to dendritic spike generation only if
the ratio between the natural frequency and stimulation frequency is rational. Therefore the
emergence of resonance yields a mechanism to selectively activate different signal propagation
pathways (i.e., different feed-forward substructure) with appropriate stimulation frequencies.

In linearly coupled networks such resonances are absent. The additional oscillatory input, how-
ever, might nonetheless support signal propagation, but this support is caused by a net depo-
larizing effect which can be equally well obtained by a temporally constant depolarizing input
current.

Experimental data suggest that there is a balance between excitatory and inhibitory inputs
to single neurons in cortical networks during spontaneous and sensory-evoked activity (Haider
et al., 2006; Okun and Lampl, 2008; Atallah and Scanziani, 2009). We therefore consider external
inputs composed of inhibitory and excitatory spike trains. In linearly coupled networks, the
temporally averaged net depolarization (or hyperpolarization) determines whether a propagation
of synchrony is supported or not: Only net depolarizing inputs promote signal transmission.
In contrast, in nonlinearly coupled networks, the ratio between excitation and inhibition is less
important: Dendritic spikes are elicited by sufficiently strong and synchronous excitatory inputs,
and inhibition fails to suppress dendritic spike generation (Müller et al., 2012). Thus, oscillations
can support signal transmission even if the net effect of the inputs is hyperpolarizing.

Memory formation

Taken together, in Chapter 3 - 6 we analytically and computationally study synchrony propaga-
tion in isolated and embedded feed-forward networks. We show that nonlinear dendrites relax
the requirement of prominent feed-forward structures for robust signal transmission, and that
this is requirement can be even more relaxed by neuronal oscillations, or by suitable connection
topologies of the embedding network.
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Mildly prominent feed-forward structures (in contrast to all-to-all coupled synfire chains) are
compatible with experimental findings. Further, they can be formed faster by synaptic plastic-
ity (assuming a constant plasticity rate), i.e., the process of formation and reconfiguration of
information pathways (memories) is simplified. Alternatively, they allow signal transmission in
networks with reduced layer size (assuming constant synaptic efficiencies). We thus expect an
increase in storage capacity, as the number of neurons required to represent a certain memory
is reduced.

Biological application

An important candidate region for the generation of propagating synchrony is the hippocam-
pus. Here during sleep or rest, previously learned spike patterns are replayed (Wilson and
McNaughton, 1994; Lee and Wilson, 2002) in conjunction with globally increased spiking activ-
ity and superimposed high-frequency oscillations (Buzsáki et al., 1992; Ylinen et al., 1995; Maier
et al., 2003) — the Sharp Wave Ripple complexes (SPW/Rs). Strong dendritic sodium spikes
that are capable of generating highly precise output spikes are prominently found in the basal
and radial oblique dendrites of hippocampal pyramidal neurons (Ariav et al., 2003; Losonczy
et al., 2008; Müller et al., 2012; Makara and Magee, 2013). At these dendritic regions most
of the recurrent connections in area CA1/3 terminate (Andersen et al., 2007; Cutsuridis et al.,
2010), suggesting that the replay observed in CA1/3 may be mediated by these spikes.

In Chapter 7 we derive a unified model to describe the learning of activity patterns during spatial
exploration phases, and its subsequent recall with emergent Sharp Wave Ripples. During the
exploration phase, spiking activity resembling the one observed in in vivo experiments generates
a stripe-like feed-forward structure by spike-time-dependent plasticity and the later recall of the
learned spike patterns is enabled by dendritic spikes.

Our model explains the (comparatively) short duration of the events, the form of the Sharp
Wave and the high stochasticity of the replay. It even quantitatively predicts the oscillation
frequency of the ripples (Memmesheimer, 2010). SPW/R events are started by an initial spe-
cific (i.e., targeted to a special “initial” subset of neurons) or unspecific (i.e., targeted to the
whole network) synchronous stimulation. Synchronous activity propagates along the stripe-like
learned feed-forward structure. In contrast to layered feed-forward networks, where the size of
each synchronous pulse is bounded from above by the layer size, here no such confining mech-
anism is present. The size of subsequent synchronous pulses increases. However, at the same
time the activity of the inhibitory interneurons increases. The inhibitory feed-back might not
suppress strong dendritic spikes, but if too strong hinder somatic spike generation by strong hy-
perpolarization of the cell body (Müller et al., 2012). Thus after an initial increase of activity the
inhibition overwhelms the excitatory input and terminates the event. This mechanism explains
the finite duration and the wave form of the event. Due to the absence of a layered structure,
consecutive pulses smear out and overlap each other. Moreover, because of the sparse connec-
tivity only a moderate fraction of neurons take part in a single SPW/R event. These effects
explain the trial-to-trial variability of the replayed spike patterns. Finally, the ripple frequency
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is determined by the average time interval between a presynaptic stimulation and postsynap-
tic spike elicited by dendritic ones. We show that for biologically plausible parameter values
(including heterogeneous distance-dependent delay distributions and finite activation times for
dendritic spike generation), the propagation (i.e., oscillation) frequency is in the experimentally
observed range of 150− 200 Hz (cf. also Memmesheimer, 2010). In our model and in agreement
with recent experimental findings the oscillation frequency does not change with strength and
duration of inhibitory interactions (Viereckel et al., 2013).

It is commonly assumed that area CA1 is too sparsely connected to enable a replay based on
recurrent connectivity (Andersen et al., 2007; Cutsuridis et al., 2010). Yet, we discuss in Chapter
7 that even the sparse connectivity in CA1 is sufficient to generate local dendritic spikes (during
SPW/R events) and therefore render the local generation of replay and SPW/R in that sparsely
connected region possible. This is in agreement with experimental observation of replay in CA1
which is deafferented from CA3 (Nakashiba et al., 2009).

Our study clears the path for investigating the role of replay and SPW/Rs in learning and
memory. An important direction of future research is how replay and SPW/Rs act back to
restructure hippocampal networks. In particular it has been hypothesized that SPW/Rs may
consolidate (Nadasdy et al., 1999) or erase (Buzsáki, 2006; Mehta, 2007) memory content in the
hippocampus, and that they may lead to associative processes (Buzsáki, 2006; Andersen et al.,
2007). The plasticity rules responsible for such restructuring may be different from those in
exploration phases, due to the high level of inhibition during SPW/Rs (Nishiyama et al., 2000;
Aihara et al., 2007; Cutsuridis, 2013) and it may be necessary to account for the prevalence of
dendritic spikes (Remy and Spruston, 2007; Losonczy et al., 2008; Müller et al., 2012). Another
important question is how replay and SPW/Rs shape neocortical networks. In particular, future
research will clarify whether and how highly noisy, scarce replay in conjunction with SPW/R-
activity and neocortical sleep spindles can imprint and consolidate memory content, as assumed
by the two-stage memory hypothesis (Marr, 1971; Buzsáki, 1989).
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