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Abstract

Metagenomics, as a culture-independent approach, enables the exploration of complex heteroge-
neous microbial communities under natural conditions by massive sequencing of community-
specific DNA. Metagenomic data sets, derived from various environments, provide new insights
into microbial life. Large-scale projects like the Human Microbiome Project or the Earth Mi-
crobiome Project emphasize the increasing importance of metagenomics for biomedical and
ecosystem research. However, such projects are currently challenging bioinformatics due to the
explosive increase in sequencing data. New computationally efficient and statistically adequate
methods are required to answer the essential questions “Who is in there?” and “What are they
doing?”.

In this thesis, I developed the Mixture-of-Pathways (MoP) model and Tax4Fun approach.
Both methods link the taxonomic profile to a set of pre-computed reference profiles to predict
the metabolic repertoire of the microbial community. Since the taxonomic profile is normally
estimated to answer the question “Who is in there?”, the further use of the taxonomic profile
avoids additional costs for answering the question “What are they doing?”. Tax4Fun is specifically
designed for the output of 16S rRNA analysis pipelines using the SILVA database as reference,
whereas the MoP model is especially conceived for metagenome sequence data and provides a
robust statistical basis to describe the metabolic potential of a microbial community. The adequate
metabolic modeling of metagenomes provides a concise summary of the functional variation of
metagenomes across many samples, enabling the identification of relevant metabolic differences
in comparative analyses.

For comparative metagenomics, the identification of similar metagenomes to a newly obtained
dataset is of growing importance. For an efficient large-scale identification of closely related
metagenomes within a database retrieval context, I conducted a detailed evaluation of a k-nearest-
neighbor search utilizing different biological feature profiles and metrics. I demonstrated that
different features and metrics can be chosen for a convenient interpretation of results in terms
of the underlying features. The integration of the k-nearest-neighbor search into metagenome
annotation and comparison systems is beneficial to automatically identify additional metagenomes
for comparative analyses as well as to detect mislabeled or contaminated datasets by unexpected
neighboring habitat labels.

The MoP approach and k-nearest-neighbor search are available to the scientific community as
part of the CoMet-Universe web server application. Additionally, the MoP and Tax4Fun approach
are provided as R Package.
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1 Introduction

Microorganisms were the first form of life about 3.5 billion years ago [1]. They are genetically
and metabolically highly diverse and exist across a wide range of physiological conditions where
they are important members of their ecosystems [2–4]. After their discovery through a microscope
by Antoni van Leeuwenhoek in the 1670s [5], microorganisms have been intensively studied
and much has been learned about them. With the contribution of Robert Koch in the late 1800s
[6], cultivation and isolation became the gold standard for the identification and characterization
of microorganisms [7, 8]. The diversity and functions of single bacterial or archaeal species
were discovered by techniques such as direct observation of the cells, biochemical testing, and
differential staining. In the 20th century, genomics has evolved as an effective technology to study
microorganisms and their genetic material [9, 10]. However, all these techniques require prior
cultivation under laboratory conditions.

In 1985, Staley and Konopka [11] revealed that the number and diversity of cells observed
microscopically far exceeded those of cells grown in culture, a phenomenon that became known
as the “Great Plate Count Anomaly”. Culture-based methods are biased towards microorganisms
easily grown with standard culturing techniques. The majority of microorganisms requires
growth conditions that are so far unknown or difficult to obtain in the laboratory [12]. Generally,
less than 1% of the microbial diversity is estimated to be cultivable [13–18]. For example,
although human-associated microorganisms were among the first investigated by microscopy,
most organisms are difficult to culture under convenient laboratory conditions. In a typical human
gut microbiome, Escherichia coli accounts for at most 5% of the microorganisms [19]. The
vast majority of the remaining microbial species have never been grown in the laboratory [20].
Furthermore, cultivability of microorganisms is heavily dependent on the habitat. For example, in
a freshwater lake up to 10% [21] and in a marine tidal sediment 23% [22] of the microorganisms
can be cultivated, whereas in natural soil and aquatic communities only a minor fraction has yet
been grown in culture and characterized [23–28]. Therefore, cultivated microorganisms lead
to a narrow picture of the variety of microorganisms and provide only a glimpse of the total
microbial diversity. In addition, microbial communities consist of hundreds of different species.
For example, one gram of soil may contain 1010 bacteria and a ton could consists of 4 ×106

different taxa [15, 28]. In seawater the number of bacteria is approximately 106 per milliliter
from a total of about 2×106 bacterial taxa [15] and the human microbiota consists of about
1014 microbial cells that outnumber the human cells 10 to 1 [29]. This enormous number of
microorganisms cannot be analyzed in appropriate time using traditional genomic and approaches
in microbiology, which are therefore unsuitable to study entire microbial communities residing in
a particular environment [30, 31].
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A new era of microbial ecology was initiated by advances in molecular biology which allow
to access the genetic material without laboratorial cultivation [32]. For studying heterogeneous
microbial communities in their natural habitats, cultivation-independent approaches extract a
comprehensive set of marker genes or genomes which are then sequenced and analyzed. The
analysis aims in particular for a quantitative description of the microbial community under
investigation. The taxonomic composition gives valuable insights into the diversity of different
habitats. However, inferring which organisms are present in a sample alone does not necessarily
lead to an understanding of the potential biological activity of the microbial community. The
functional and metabolic capabilities of a microbial community indicate the ability to carry
on functioning when conditions change. Thus, two major objectives are addressed by the
investigation of microbial communities without prior cultivation: Determining the taxonomic
composition (“Who is in there?”) and functional and metabolic capabilities (“What are they
doing?”). Besides these two major objectives, regarding the comprehensive description of a single
microbial community, the increasing number of datasets for various conditions or environments
provide a wealth of opportunities for comparative studies. These studies cover the question how
the findings regarding a single community compare with other communities. The exploration of
similarities and dissimilarities of different samples can be summarized with the question “What
are the differences that make a difference?”. In order to answer these questions, appropriate
computational methods are required. The bioinformatical analysis of heterogeneous microbial
communities faces a huge challenge due to the rapidly growing amount of sequencing data.
Currently, the bottleneck in metagenomic studies is the analysis of the sheer amount of data and
not the sequencing itself [33, 34].

In my thesis, I focus on the computationally efficient quantitative functional and metabolic
description of microbial communities. Furthermore, I address the identification of appropriate
samples for comparative analysis. For a better understanding of the underlying data and the
resulting difficulties in the analysis, I start with a synopsis of the development of the 16S ribosomal
ribonucleic acid (rRNA) gene and metagenomic sequencing approach for analyzing microbial
communities (see Section 1.1). Following this, I briefly introduce existing analysis strategies for
the 16S rRNA gene and metagenomic sequencing approach (see Section 1.2 and Section 1.3).
Here, I review bioinformatic approaches particularly addressing the question: “What are they
doing?”. In Section 1.3.1, I outline the state-of-the-art approaches for functional and metabolic
profiling in metagenomics. In the first instance, I focus on the quantitative functional description
of microbial communities since the resulting abundances are crucial for the subsequent metabolic
characterization. Especially, I discuss the computational drawbacks using homology search for
functional annotation in metagenomics (see Section 1.3.1.1), which further affects metabolic
profiling. Thereafter, I summarize existing approaches for pathway reconstruction in genomics
and pathway profiling in metagenomics and address the inherent methodological drawbacks (see
Section 1.3.1.2). In particular, I stress the handling of the ambiguity of the function-to-pathway
mapping, which can lead to an incorrect quantification and motivated me to develop a statistically
adequate estimation of the metabolic potential (see Chapter 2).

Further, I address comparative metagenomic studies highlighting benefits from previous studies.
Finally, I motivate an efficient large-scale identification of similar metagenomes within a database
retrieval context, which represents an additional important part of my thesis.
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1.1 Progress of culture-independent analysis strategies for
whole microbial communities

In the following sections, I introduce the development of two different approaches for the
investigation of microbial communities without prior cultivation. First, I treat the amplicon-based
approach targeting a phylogenetic marker region for analyzing the taxonomical composition.
Then, I proceed to the whole-metagenome sequencing approach for characterizing the whole
collection of genes of a microbial community. Finally, I address the impact of next generation
sequencing technologies on both approaches.

1.1.1 The amplicon-based approach

In the 1980s, the idea of studying microorganisms by the comprehensive extraction and analysis
of mixed microbial nucleic acid (deoxyribonucleic acid (DNA) or ribonucleic acid (RNA)) from
environmental samples was introduced by Pace and colleagues [35] and applied by Schmidt et
al. [36] to a marine picoplankton community (see also [20, 37–39]). They amplified the well-
conserved small subunit (SSU) 16S rRNA gene sequence selectively from total DNA extracted
from an environmental sample. Subsequent to isolation and amplification by polymerase chain
reaction (PCR), the sequences were cloned and sequenced. Following this, they utilized the
established framework for bacterial phylogeny by Woese and Fox [40] for taxonomic classification.
At that time, the analysis was restricted to certain phylogenetic markers due to time-consuming
and costly sequencing. However, remarkable, unexpected insights and discoveries regarding the
microbial diversity of environmental samples were gained [41–44].

This earliest high-throughput technique, known as amplicon profiling, is a powerful tool and
still the most common technique for assessing and comparing the taxonomic composition of
environmental microbial communities [45]. Amplicon-based analysis of community structure
is focused on a targeted phylogenetic marker region. This region has to be ubiquitous in the
taxonomic range of interest and variable enough to discriminate between different species.
Additionally, the region must be flanked by highly conserved sequences for the purpose of
amplification. Several phylogenetic markers have been defined, including ribosomal protein
subunits, elongation factors, and RNA polymerase subunits [46, 47]. However, the 16S rRNA
gene has been established as the gold standard for taxonomic assessment of prokaryotic microbial
communities [45].

16S rRNA

The 16S rRNA gene is a component of the prokaryotic SSU ribosome. The 1.5 kilo base pairs (bp)
multi-copy 16S rRNA gene contains both highly conserved, ubiquitous regions and nine short
species-specific hypervariable regions that allow reliable reconstruction of phylogeny [48]. The
conserved regions are well-suitable for PCR amplification using broad-range primers [41, 45].
Sequence variations in the 16S rRNA genes are considered to reflect the universal molecular
clock of life [49]. 16S rRNA gene sequences allow to relate any organism, even uncultured and
distantly related, to cultivated and characterized strains based on a single phylogenetic tree of
life [50, 51]. Further, the abundances of 16S rRNA sequences are used to describe microbial
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communities in terms of species richness, evenness, or related microbial diversity measurements
[52].

1.1.2 The whole-metagenome sequencing approach

Phylogenetic marker sequencing provides only limited functional information. At the end of
the 20th century, as sequencing became cheaper, more than just phylogenetic marker genes
could be studied. The improvements in sequencing techniques led to the development of the
so-called whole-metagenome sequencing approach. In 1998, Jo Handelsman used the term
“metagenome” to describe the collective genomes obtained from soil microflora and coined
the term “metagenomics” [53]. In metagenomics, a set of genomes from an environmental
community is sampled randomly by means of cultivation-independent methods. Metagenomics
goes beyond 16S rRNA gene-based characterization of microbial communities by determining
directly the whole collection of genes within an environmental sample. The investigation of the
whole collection of genes allows the prediction of potential functions of the collective organisms
in a sample.

In 2004, two research groups published results from different large-scale environmental
sequencing projects. Tyson et al. [54] conducted a metagenomic analyses of a microbial
community from an acid-mine drainage environment and Venter et al. [55] characterized a much
more complex community of oceanic microbial assemblages from the Bermuda Atlantic Time-
series Study site in the Sargasso Sea. After these two landmark pioneering studies, metagenomes
from a large variety of environments such as soils [56, 57], marine sites [58, 59], human and mouse
gastrointestinal tract [60–62], and extreme environments [63–65] have been sequenced. These
studies gave valuable insights into microbial genomic diversity and functional complexity. Thus,
culture-independent metagenomic approaches complement traditional culture-based techniques
by providing a comprehensive view of the microbial communities.

1.1.3 The impact of high-throughput next-generation sequencing (NGS)
on metagenomic research

Since the initial study of Handelsman et al. [53], metagenome analysis has altered from time-
consuming, labor-intensive sequencing of cloned DNA fragments to direct sequencing of DNA
without heterologous cloning [66]. In 2005, with the advent of next-generation sequencing (NGS)
[67, 68], both the amplicon- and the whole-metagenome shotgun-approach have considerably
changed [69]. Using NGS, hundreds of microbial communities can be run simultaneously yielding
tens of thousands of tag sequences per sample at reasonable cost [70]. But despite decreasing
costs for metagenomic sequencing, they are still an order of magnitude higher compared to
amplicon sequencing. Additionally, metagenomic sequencing provides lower throughput than
amplicon sequencing. Since the 16S rRNA approach is relatively cheap and easy to carry out,
it has been widely used to characterize microbial communities across thousands of ecosystems
[71–73]. Occasionally, 16S rRNA studies are called “metagenomic”, too, as they also analyze
a heterogeneous sample of community DNA [74]. However, amplicon sequencing is limited to
analyze microbial community structure and does not provide insights into the functional repertoire.
Therefore, the 16S rRNA approach has to be combined with whole metagenome sequencing,
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which provides additional information about the collective functions and metabolism.

From analyzing single communities to large-scale studies

The 16S rRNA and metagenome sequencing approach have evolved as helpful disciplines to
unlock the composition of heterogeneous microbial communities in their natural habitats [45].
These analyses provide insights into how microorganisms adapt to or reshape their environment
[75]. Inter-environmental metagenomic dataset comparisons can provide further insights. Here,
the studies of Tringe et al. [76] and Dinsdale et al. [77] have given rise to the sequencing of
multiple samples for different conditions or environments in order to determine similarities and
differences. The differences in cost and explanatory potential have led to a proliferation of two-
stage study designs for large scale environmental microbial community analysis. In a two-stage
study, first a comprehensive collection of microbial community samples is efficiently surveyed by
sequencing the 16S rRNA gene. In this step, the microbial community structure is determined
with considerable sensitivity and depth of coverage in a cost-effective manner. In the second
step, a subset of microbial communities or samples with particular characteristics is selected
by experts for targeted in-depth profiling approaches [63, 78–80]. These approaches comprise
metagenomic sequencing as well as other functional assays. Two prominent large-scale studies for
this two-stage design are the Human Microbiome Project (HMP) [81] and the Earth Microbiome
Project (EMP) [82, 83]. These and other microbial community studies are increasingly turning to
larger sample sizes using sequencing of the 16S rRNA taxonomic marker gene [84].

Although metagenomics has great potential for new insights into the hidden world of microor-
ganisms, many challenges still remain before this potential can be realized. DNA sequence data
generation is no longer the bottleneck in microbial studies. Even laboratories with comparatively
small budgets can afford metagenomic sequencing projects nowadays. In contrast, increased
data volumes are posing significant challenges to the existing analysis tools [34] and even the
computing of sequence similarities represents a limiting factor in metagenome analysis [85, 86].

1.2 Analysis of 16S rRNA data

The microbial diversity of microbial environments can be assessed with high phylogenetic
resolution by deep sequencing of particular phylogenetic marker genes. The 16S rRNA gene is
the gold standard for phylogenetic studies [13, 56]. During sample preparation using primer-based
amplification steps, sequences are targeted by means of taxonomically universal primers. The
universal primers target conserved regions in the 16S rRNA gene. However, the choice of hyper-
variable region [84, 87–89] and the amplification itself introduce bias [90–94]. Some primers
do not bind in all taxa with sufficient stringency leading to a biased amplification [95, 96]. In
addition, prokaryotes and eukaryotes need to be analyzed separately due to their basic difference
in rDNA sequence. Further, only genomes of organisms with amplicon target genes can be
captured - excluding, for example, viruses.

After amplification, the resulting amplicons are generally subjected to high-throughput se-
quencing by NGS platforms. Due to the inherent sequencing read length of NGS, a shorter region
of the sequence must be selected to act as proxy for the full-length sequence [97, 98]. Previous
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studies revealed that for many 16S rRNA microbial community studies, a read length of 250 bp is
sufficient [88, 97, 99]. Commonly, studies target between one and three of the hyper-variable
regions. However, there is currently no consensus on a single best region. Consequently, different
groups are sequencing different regions complicating direct comparisons among studies [74].

Following the sequencing, several data processing steps have to be conducted. For analysis of
16S rRNA gene sequence data a variety of software pipelines exist (e.g Quantitative Insights Into
Microbial Ecology (QIIME) [100], mothur [101], and SILVAngs [102]). The initial processing
includes read quality and read length filtering [89]. Further, chimeric sequences and other PCR
artifacts are identified and removed [103].

Afterwards, the 16S rRNA-based analysis of microbial communities relies on the construction
of similarity clusters to infer the abundance of the composing species. For this purpose, some
degree of sequence divergence is typically allowed. In practice, 95%, 97%, or 99% sequence
identity cutoffs are often used [89]. The resulting sequence clusters are also referred to as
operational taxonomic unit (OTU). The assignment of sequences to OTUs is referred to as
binning and allows a computationally tractable representation for biological analysis. From
each OTU a representative 16S rRNA gene sequence is used for taxonomic assignment. The
taxonomy is assigned using either the Basic Local Alignment Search Tool (BLAST) [104] or the
Ribosomal Database Project Classifier (RDP Classifier) [105]. For the taxonomic assignment,
reliable reference databases and taxonomies are crucial. Several resources provide phylogenetic
classification of publicly available 16S rRNA gene sequences. These resources include the
greengenes [106], the Ribosomal Database Project (RDP) [107], and the SILVA [102] databases.
Subsequent to the assignment of OTUs to taxonomic identities based on a reference database,
further downstream ecological and diversity analyses can be carried out. Here, for example, the
OTU abundances can be used to describe the microbial communities in terms of species richness,
evenness, or related microbial diversity measurements [52].

However, the functional inventory of the communities can generally not be assessed when
restricting analyses to the 16S rRNA gene. The genes as well as the functional and metabolic
repertoire of a community are sometimes indirectly inferred [108–110]. Here, the inference is
based on available genome sequences of the community members. However, for most microbial
organisms the genome and thus the functional and metabolic repertoire is unknown. Recently, an
approach called Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) [111] was proposed to predict functional profiles of microbial communities
using 16S rRNA gene sequences and a database of reference genomes.

1.2.1 Predictive functional profiling of microbial communities using 16S
rRNA marker gene sequences

The PICRUSt approach comprises two steps: the gene content and the metagenome inference step.
In the gene content inference step, the gene family abundances and 16S rRNA copy number for
each organism in a 16S rRNA-based phylogeny is pre-computed. PICRUSt applies an extended
ancestral state reconstruction algorithm to infer the functional abundances and 16S rRNA copy
numbers for organisms that have not yet been sequenced. Typically, ancestral state reconstruction
algorithms are intended to recover states from ancestral organisms from measured characteristics
of living organisms [112, 113]. Here, the extrapolation back in time is achieved by fitting evolu-
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tionary models to the distribution of observed states using criteria such as maximum likelihood or
Bayesian posterior probability [114–117]. In PICRUSt, ancestral state reconstruction algorithms
are extended to infer the content of microorganisms for which no genome sequence is available by
using the predicted character states from ancestral genomes and available reference genomes. To
account for the distance to the next relative, a weighting scheme is implemented based on the phy-
logenetic distances. Per default, the greengenes phylogenetic tree of 16S rRNA gene sequences
is used for phylogenetic information. Further, the Integrated Microbial Genomes (IMG) [118]
database is utilized for retrieval of 16S rRNA copy number information and functional annotation
in terms of KEGG Orthology (KO) [119, 120] and Clusters of Orthologous Groups (COGs) [121].
In total, 2,590 genomes with identifiers in the greengenes reference tree were used for the initial
computationally intensive genome prediction step. The subsequent metagenome inference step
uses the abundances of OTUs as input, e.g., as obtained from QIIME analysis. First, the OTU
abundances are normalized using the pre-computed 16S rRNA copy number. Then, the normal-
ized OTU abundances are combined with the inferred functional abundances during the gene
content inference step. The resulting estimated metagenomic functional profile can be further
utilized to infer the metabolic profile.

So far, PICRUSt is the only approach which addresses the limitation of 16S rRNA data to
infer the taxonomic composition, showing that it is possible to predict functional profiles from
16S rRNA data in principle. But, PICRUSt predictions depend heavily on the topology of the
phylogenetic tree and the inferred ancestral genomes. Especially, the lack of closely related
genomes increases uncertainty in the predictions of ancestral character states. Thus, the distance
to the next sequenced organism along the branches of the tree strongly influences the prediction
of gene content for the tips in the tree. Since there is always a neighbor in the tree topology,
PICRUSt links all OTUs, even if distances are large. This procedure can be problematic when
analyzing microbial communities with a large proportion of so far not well-characterized phyla.
Furthermore, different ancestral state reconstruction methods can lead to strikingly different
reconstructions. Therefore, the predicted gene content can be regarded as an estimate at best.

In this work, I introduce the novel “Tax4Fun” approach which efficiently predicts the functional
repertoire of a microbial community from 16S rRNA data and can directly be applied to output
from the SILVAngs web server, QIIME, or any other analysis pipeline using the SILVA database
as reference. Tax4Fun is entirely based on close homologies between 16S rRNA gene sequences
and differs substantially from the PICRUSt approach that relies on a phylogenetic tree of the 16S
sequences (see Chapter 4).

1.3 Analysis of whole-metagenome sequence data

Metagenomic sequencing projects study the entire genetic material from aggregated members
of the community. The sequencing results in a mixture of fragmented sequences originating
from the community members. Unlike in amplicon metagenomics, whole-metagenome sequence
data can provide both community composition and insights into the whole gene content of the
microbial community. Thus, both fundamental questions “Who is in there?” and “What are they
doing?” can be addressed [122]. However, the metagenomic samples typically contain huge
collections of short sequence reads from hundreds to thousands of species, most with unknown
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phylogenetic origin [123]. Though NGS methods can be applied faster, more easily, and at lower
cost per base and per read than Sanger sequencing, there is a tradeoff in information quality.
The cheaper sequencing comes at the cost of reduced sequence length, resulting in a sparse
gene annotation. In Hamady and Knight [74], different metagenome approaches are discussed
revealing the strengths and weaknesses of the different experimental approaches, sequencing
methodologies, and analytical methods.

The first steps after sequencing comprise filtering for quality and control of the obtained
reads [124, 125]. In case of host-associated samples, the reads have to be further screened for
residual host DNA [126]. After preprocessing, the analysis comprises estimation and comparison
of the taxonomic composition and the functional repertoire of the microbial community [127].
However, metagenomic analysis is heavily affected by inherent problems of the data itself
including incomplete coverage, generally short read lengths, fragmented sequences from multiple
species, and the sheer amount of data [125, 128, 129].

1.3.1 Predicting the functional and metabolic capabilities of microbial
communities from metagenomic shotgun data

Regarding the metagenome analysis, this work focuses especially on the prediction of metabolic
capabilities. The quantitative functional description of a metagenome provides the basis of the
subsequent metabolic characterization. In the next section, I introduce strategies for functional
profiling. Further, I point out computational limitations of BLAST-based homology search
for functional annotation of metagenome sequence data. In Section 1.3.1.2, I discuss existing
approaches for quantitative metabolic description. Thereby, I address the computational and
algorithmic drawbacks which gave rise to the development of the Mixture-of-Pathways (MoP)
model (see Chapter 2).

1.3.1.1 Functional profiling

The functional repertoire of a microbial community is usually quantified by counting the number
of reads assigned to functional categories. The assignment is often derived from homology
search of metagenomic sequences against a database of functionally annotated genes or proteins
originating from studied cultured isolates that have well-characterized genomes. The comparison
against reference databases is performed either directly, using all raw metagenomic sequences,
or using representatives from priorly formed sequence groups. The grouping of sequences can
be performed applying a sequence similarity criterion (e.g., using CD-HIT [130, 131] with a
95% nucleotide identity) [82, 132, 133]. Further, potentially uninformative sequences can be
excluded from functional annotation using gene-prediction tools, which estimate the likelihood
of a DNA sequence coding for a gene. However, gene prediction for metagenomes is a non-
trivial task due to frame shifts, sequencing errors, and partial genes with missing proper gene
starts, stops, or even both [134, 135]. A number of tools were specifically designed to handle
metagenomic prediction of coding DNA sequences (e.g., FragGeneScan [136], MetaGeneMark
[137], MetaGeneAnnotator/Metagene [138, 139], and Orphelia [140]). Regardless whether
raw, clustered, or predicted coding DNA sequences are used, they are classified into functional
categories using reference databases such as the NCBI NR database of non-redundant protein
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sequences [141], COGs, FIGfams [142], KO, or protein families such as Pfams [143].
The assignment of sequencing reads to functional categories is often performed using pairwise

sequence similarity. For annotation, the best hit assignment is frequently used. Commonly, the
pairwise sequence similarity is derived by utilizing an algorithm from the NCBI’s BLAST suite.
However, BLAST based homology search shows serious drawbacks in metagenome analysis.

Limitations of functional annotation of metagenome sequence data using BLAST
based homology search

By far most functional profiling approaches rely on pairwise sequence similarity in terms of
a BLAST matching of metagenomic sequence reads against databases of annotated DNA and
protein reference sequences. Particularly, the comparison at the protein level are challenging
since shotgun sequences must be translated into polypeptides in all six reading frames and in turn,
a comparison for each polypeptides must be performed against the reference database. Usually,
the BLASTX tool is utilized, which has high computational demands even for a moderately sized
dataset.

NCBI’s BLAST suite of algorithms was introduced in the early 90s. The original BLAST pro-
gram was optimized for searching individual sequence reads produced by 1990s technology, but
not designed for the sheer volume of sequence data produced in nowadays metagenomic studies.
Additionally, current metagenomic datasets must be compared to a much larger database of known
sequences. BLAST-based analyses represent significant bottlenecks due to the quadratic runtime
complexity of the all-versus-all comparison. Owing to the anticipated exponential increase in
data, the problem is unlikely be addressed simply by scaling up computational resources [85].
New or improved software tools are needed to keep pace with the anticipated increase in data.
Especially comparisons for large datasets, such as the HMP, could take decades when utilizing the
conventional BLASTX program [78]. To cope with this bottleneck, supercomputers, accelerated
BLAST programs, or both must be used [144]. Such technologies allow more than a thousandfold
speed increase with only marginal loss in sensitivity compared to BLASTX [124, 145]. Specifi-
cally designed protein search tools such as RAPsearch2 [146] or protein alignment using a DNA
aligner (PAUDA) [147] use reduced amino acid alphabets to decrease the overall complexity of
the search. However, the reduced complexity comes at the expense of the assignment rate. For
example, using PAUDA, the assignment rate is only 33% compared to BLASTX [147].

Besides the computational effort for the identification of homologs, BLAST-based analysis is
hampered by the requirements of a sufficient read length and phylogenetically close species in
the reference database, which are rarely met in metagenomic studies. The fragmentary nature of
metagenomic data leads to partial proteins, which in turn affects the homology-based function
prediction negatively. Commonly, a major part of the sequences cannot be functionally annotated
due to inherent problems of similarity-based methods. In addition, reads may match genes whose
function has not yet been elucidated [148]. These sequences of unknown origin or function can
remain a considerable uninformative fraction of data [149].

The functional profile of a metagenome typically comprises frequencies for several thou-
sand functional categories. In order to make functional profiles more interpretable and easier
to understand, higher-level functional abstraction layers are required. A number of projects
provide such functional hierarchies, e.g., SEED SubSystems [150], COGs, eggNOGs [151],
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Kyoto Encyclopedia of Genes and Genomes (KEGG) [119, 120] database, and Gene Ontology
(GO) [152].

Biological pathways provide key insights into the metabolic capabilities of microbial com-
munities and have high explanatory power. The resulting pathway abundance profiles help to
elucidate the relations between microbial communities and their environment and to explore
significant variations of metabolic capabilities between microbial communities. Therefore, the
development of methods for so-called pathway profiling based on metagenomic sequence data is
of high importance for quantitative analysis.

1.3.1.2 Pathway profiling

This section, first the concept of pathway reconstruction in whole genome sequencing projects is
introduced. Then, the inherent differences between genomics and metagenomics, which have to
be taken into account, are discussed. Finally, current state-of-the-art approaches for metagenomic
pathway profiling and the drawback of these approaches is reviewed.

Genomic pathway reconstruction

The reconstruction of biological pathways encoded by an organism is one of the first analyses in
microbial whole genome sequencing projects. Pathway reconstruction is based on the assumption
that experimentally identified metabolic pathways are conserved between organisms. For this
purpose, the curated reference databases KEGG and MetaCyc [153] are widely used as template.
Both databases contain manually curated biological pathways which represent a series of molecu-
lar interactions and reactions that concur to a biological function. For example, the curated KEGG
reference database comprises the KO families, which are directly linked to KEGG Pathways.

The genomic pathway reconstruction consists of two major key steps. First, the functions
of protein coding genes are predicted. This task is usually carried out using homology-based
approaches, e.g., BLAST. In case of multiple BLAST hits, the highest scoring match is used
to assign the sequencing reads to enzymes and pathways. Second, the pathway inference step
is carried out to predict which pathways may be occurring. A complete biological pathway is
inferred to be present if one or more predicted protein functions can be assigned to the pathway
[154]. However, this second step is not trivial. Curated reference pathways are simplified views
of the biological processes and molecular interactions. They represent unified representations
which divide simultaneously occurring biological functions into subsets of functional units. A
pathway can be considered as a group of functionally related genes which are usually created
from literature or expert knowledge. The current knowledge about pathways is largely fragmented
and far from being completely clarified. Moreover, reference pathways are unified representations
which often combine the knowledge about several organisms. Therefore, not every organism
necessarily performs all molecular interactions and reactions included in a reference pathway.
This leads to the fact that genomes have gaps in the commonly used reference pathways [155].

The ambiguous assignments of functional categories to pathways remain another aspect which
has to be addressed. Most functional categories are associated with multiple pathways. In the
KEGG database, e.g., phosphoenolpyruvate carboxykinase (GTP) (KO group K01596) is associ-
ated with the tricarboxylic acid cycle (TCA cycle), glycolysis, and various signaling pathways
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[156]. Both the ambiguity of the function to pathway mapping and the unified representations
makes the pathway inference in genomics difficult. In Caspi et al. [153] the challenges of
representing and constructing metabolic pathways are further discussed by taking the example of
MetaCyc.

Pathway inference in genomics rests upon a minimal number of elements sufficient for a
pathway to be considered as present. The genomic pathway reconstruction approaches follow
simple rules of thumb. The naïve genomic pathway reconstruction approach assumes that a
biological pathway can be considered as present if at least one element of a pathway is present
in a gene set. In contrast, a conservative assumption is that a pathway is only present if all its
elements exist in a gene set. These two simple rules of thumb lead to an overestimation and
underestimation of the reconstructed metabolic capabilities of an organism, respectively. In the
former case, a functional annotation of the phosphoenolpyruvate carboxykinase (GTP) (K01596)
automatically leads to the conclusion that ten different pathways are encoded in the genome.
However, this inference ignores that in certain circumstances no evidence for further molecular
interactions and reactions of a particular pathway is available. In the latter case, the inference
of a pathway is strongly influenced by the number of genes associated with a pathway. The
smaller the number of associated genes, the more likely it is to identify all required evidences.
Furthermore, both naïve genomic pathway reconstruction approaches make use of the assumption
that functions are equally active in all reference pathways.

Towards a more conservative estimation, the MinPath (Minimal set of Pathways) approach was
proposed. This parsimony method solved with integer programming attempts to determine the
minimal set of biological pathways that have to exist in the biological system to explain the input
protein sequences sampled from it [154].

A more sophisticated genomic pathway reconstruction approach is PathoLogic [157], which
is implemented in the Pathway Tools software suite [158, 159]. PathoLogic implements a set
of inference rules which, for example, take into account pathway variants, composition, and
connectivity. In addition, manually imposed constraints inferred from completed genomes are
incorporated. The considered features enable the elimination of pathways that are unlikely to
occur.

However, those genomic pathway reconstruction approaches are not directly transferable to
metagenomics. In metagenomics, the objective is to quantify the metabolic capabilities. Therefore,
the purpose of pathway reconstruction to predict the presence of pathways does not meet the
requirements in metagenomics. Accordingly, metabolic profiling requires a different modeling
approach. Moreover, due to variations of the pathway-specific enzyme sets across different
species the metabolic profiling approach is a highly challenging task and more complicated than
in genomics. In the following section, the objective and difficulties of pathway profiling for
microbial communities are discussed in detail.

Quantification of the metagenomic metabolic repertoire

In a microbial community, the metabolic potential is a complex composite of the metabolic
capabilities of all present organisms. Each species encodes a unique set of metabolic functions.
Hence, the pathway profiling approach in metagenomics does not attempt to predict the metabolic
potential of a single organism but an entire microbial community. To account for this, the entire
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microbial community is often modeled as a single supra-organism [160]. To characterize the
aggregated metabolic processes of microbial communities in a given environment, the entire set
of functions is studied as a proxy for the microbiome’s repertoire. This requires an appropriate
catalog of reference pathways. However, pathways are typically modeled for single organisms.
Neither KEGG nor MetaCyc [153] are currently optimized for modeling communities. More
importantly, the objective is to quantify the amount of genomic material that can be explained in
terms of biological pathways. Therefore, approaches which attempt to predict the presence of
pathways like in genomics are unsuitable. A sufficiently deep sampling would raise evidence for
almost all pathways resulting in a limited explanatory power. In contrast, the quantification of
metabolic pathways enables to draw conclusions which metabolic potential is most abundant and
thus potentially reveals significant metabolic differences between different conditions.

Several approaches have been proposed for a quantitative representation of the metabolic
potential of a metagenome. Usually, the metabolic profile is inferred from counting the number
of sequence fragments that can be assigned to a particular biological pathways. The number of
sequence fragments is deduced from predicted gene functions which can be related to biological
pathways. Similar to the pathway reconstruction in genomics, metabolic profiling is strongly
affected by the ambiguity of function-to-pathway mapping.

In the following, three common approaches, the naïve mapping, PathoLogic, and HMP Unified
Metabolic Analysis Network (HUMAnN) [145], are discussed. These approaches are differing
in terms of the proposed noise reduction, smoothing steps, and counting schemes. In contrast
to HUMAnN, the naïve mapping and the PathoLogic approach require prior gene abundance
filtering since no preprocessing, e.g., outlier removal or filtering of low abundances, is performed.

Naïve mapping approach

A commonly-used metabolic profiling approach is the naïve mapping approach. The naïve
mapping approach increments the abundance of a pathway whenever a assigned function can be
found in the metagenomic sequences. This naïve counting scheme does not consider the counts
of other functions associated with the pathway. Further, the approach assumes that functions are
equally active in all associated pathways. Therefore, the functional abundances are counted among
all associated pathways regardless of whether a function is associated with one or more possible
pathways. For example, phosphoenolpyruvate carboxykinase (GTP) (K01596) contributes to
several pathways. A nonzero abundance for K01596 automatically increases the abundance of
all associated pathways. Similarly to genomics, the naïve mapping strategy overestimates the
metabolic potential encoded by a microbial community. In addition, both the size of a reference
pathway and the distribution of functional abundances in a pathway can strongly influence the
final metabolic abundances. Few high abundances can result in a highly abundant pathway despite
the fact that the residual functions have either no or minor abundances.

Consequently, the naïve mapping approach is a clear simplification to compute the metabolic
abundances and can give rise to a misleading description of the metabolic potential of a microbial
community. However, the approach is implemented in several state-of-the-art metagenome
analysis tools, e.g., in MEtaGenome ANalyzer (MEGAN) [161], MG-RAST [162] and IMG/M
[163–165].
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PathoLogic

Since version 17.0 of Pathway Tools [158, 159], the genomic pathway reconstruction approach
PathoLogic [157] (see Section 1.3.1.2) is extended by pathway abundance prediction for metage-
nomic datasets. In contrast to the presented naïve approach, the abundance counting scheme of
PathoLogic takes into account the uneven distribution of gene abundances for a pathway. The
abundance of a pathway is defined as the sum of gene abundances involved in the pathway divided
by the number of reactions of the pathway for which gene abundances are given. However, neither
the size of a reference pathway nor the ambiguity of function-to-pathway assignments is taken
into account.

The PathoLogic approach is for example incorporated in the modular MetaPathways pipeline
for constructing environmental pathway/genome databases from metagenome data [166]. Fur-
thermore, the MetaPathways pipeline was applied by Hanson et al. [167] to assess the impact of
different metagenomic dataset characteristics, e.g., read length, coverage, sample diversity, and
taxonomic pruning on the prediction of environmental pathway/genome databases by Pathway
Tools. In their study, Hanson et al. [167] pointed out different limitations of Pathway Tools
for the scope of metagenomics including the multiple mapping problem and prediction hazards
arising from pathway variants.

HMP Unified Metabolic Analysis Network (HUMAnN)

The HMP Unified Metabolic Analysis Network (HUMAnN) software performs functional and
metabolic profiling directly from high-throughput metagenomic short sequence reads [145].
The pipeline starts with a similarity search of cleaned short DNA reads against a functional
protein sequence database. Per default a similarity search against the KO (Release 54) using the
accelerated translated MBLASTX is performed. Subsequently, the output of the similarity search
is used for a series of gene- and pathway-level quantification, noise reduction, and smoothing
steps. First, the functional abundances of individual orthologous gene families are calculated
as weighted sums of the alignments from each read, normalized by each gene family’s average
sequence length and alignment quality. Next, pathway reconstruction is performed using the
MinPath approach [154]. In this step, the relative KO abundances are consolidated into one or
more pathways. Hereby, the abundance of a KO assigned to two or more pathways is effectively
duplicated. Subsequently, filtering and normalization steps based on taxonomic profiles from
BLAST hits are performed to ensure that unlikely pathways are removed and normalized for
genes’ average copy number. After removing false positive pathway identifications, a smoothing
or gap-filling step is performed to account for rare genes in abundant pathways. Finally, a
coverage (presence/absence) and abundance score is assigned to each pathway resulting in the
identification of present/absent pathways and modules together with their relative abundances.
HUMAnN implements different filtering, normalization, and smoothing steps. So far, HUMAnN
is the most sophisticated pathway profiling approach for metagenomes. However, here too, KO
abundances are effectively duplicated, thus the ambiguity of the function-to-pathway mapping
remains mostly unaddressed.
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Model-based estimation of pathway abundances

There are two major difficulties with these existing approaches for metabolic profiling. First, the
presented metabolic profiling methods rely on a predicted functional abundance profile. How-
ever, the computational effort for the identification of homologs can become burdensome. As
discussed in Section 1.3.1.1, the complexity of BLAST-based analyses represents a significant
bottleneck. Accelerated translated BLAST technologies and specifically designed protein search
tools such as RAPsearch2 or PAUDA reduce the overall search complexity and computational
costs. The functional annotation remains computationally intense with the result that a consider-
able amount of central processing unit (CPU) time is spent for a moderately sized dataset. The
growth in dataset size, in conjunction with computational complexity of the analysis, has left the
metagenomics community in a difficult position, in terms of both financial cost and feasibility
of analysis itself. Without novel algorithms for analysis, the sheer volume of sequencing data
will overwhelm available resources. Besides the computational effort for the identification of
homologs, difficulties arise from the inherent ambiguity in the function-to-pathway mapping.
Some solutions have been proposed to adjust pathway abundance and to avoid overestimation.
However, none of these approaches provides a strict probabilistic description of metagenomic
sequence data and thereby may overrate the metabolic repertoire.

The objective of this work is to develop an efficient and statistically reasonable method for
characterization of the metabolic potential in metagenomic samples. The method should address
both, the statistically adequate modeling of the inherent ambiguous function-to-pathway mapping
and the reduction of computational cost for the estimation of metabolic profiles. For estimating
the fraction of sequence material that can be assigned to a particular pathway, a statistical model
has to be developed. This model should be capable to provide both a sound statistical basis
and a fast estimation of pathway abundances. The relative pathway abundances should provide
a clear statistical meaning which permits a comparison across different studies. Further, the
method should be fully operational for the growing amount and the heterogeneity of metagenomic
sequence data.

1.4 Comparative analysis of microbial communities

Following the taxonomic and metabolic characterization of a single microbial community, the
question “What are the differences that make a difference?” is addressed by comparative
metagenome analyses. For comparison of microbial communities in different environments,
points in time or conditions, the taxonomic, functional, and metabolic abundance profiles are used
as input for techniques such as principal component analysis [168], nonmetric multidimensional
scaling [169], and hierarchical clustering [170]. In addition, several metagenome annotation and
comparison systems exist, e.g., MG-RAST, IMG/M, and WebMGA [171]. Furthermore, a number
of dedicated comparison tools have been developed, including JCVI Metagenomics Reports
(METAREP) [172], STatistical Analysis of Metagenomic Profiles (STAMP) [173, 174], and Rapid
Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (RAMMCAP)
[175].

One of the first comparative metagenomic studies were performed by Tringe et al. [76]
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and Dinsdale et al. [77]. For example, Dinsdale et al. [77] conducted a broad metagenomic
comparison among 45 distinct microbiomes and 42 distinct viromes. Following this, a number of
other metagenomic comparisons have been realized [62, 176–179]. For instance, differences in
gut microbiota composition between lean and obese individuals arouse interest in commensal
microorganisms [180]. Following this, additional comparative studies have been performed
to gain insight into host microbe interactions and to yield hypotheses about microbiota-based
disease mechanisms [110, 181–183], which could often be confirmed by subsequent microbiota-
manipulation studies [182, 184].

1.4.1 Example: The human microbiome

The human microbiome provides a number of biomolecular functions that are not encoded in
the human genome and are necessary for human health [60]. For example, the human intestinal
microbiota is involved in several nutritional, physiological, and immunological processes [185–
190], and provides metabolic activity for central, carbohydrate, and amino-acid metabolism.
The comparison of taxonomic, functional and pathway abundances between different conditions
revealed that the microbiota composition and activity influences host metabolism and disease
development such as obesity, inflammatory bowel disease, Crohn’s disease, diabetes, cancer,
and allergies [183, 185, 191–195]. Conversely, the activity and composition of the microbiota is
affected by age, diet, health status, and genetic background of the host [80, 183, 194, 196–203].
Therefore, understanding the interplay between the human microbiome and the human body can
help to improve human health.

Several large-scale studies have been carried out to characterize microbial communities at
multiple body sites and to investigate the association between the human microbiome and human
development, physiology, immunity, and nutrition. For example, at the end of 2007, the US
National Institutes of Health launched the Human Microbiome Project (HMP) [81] and, in early
2008, the European Commission initiated the Metagenomics of the Human Intestinal Tract
(MetaHIT) project [204]. Both projects aim to characterize the microbiome of healthy individuals.
First studies provide a preliminary understanding of the biological and medical significance of
the human microbiome and its collective genes. In the following section, I am focusing on the
HMP, which I am using as data basis for evaluating the methods proposed in Chapter 2, Chapter
3, and Chapter 4.

The Human Microbiome Project

The HMP’s study design included extensive sampling of the human microbiome from 242 healthy
adults in the United States at five clinically relevant major body sites. These are airways, skin,
oral cavity, gastrointestinal tract, and vagina. Within each of these major body sites, 15 (for
males) or 18 (for females) more specific body subsites were sampled, often at multiple time
points, resulting in a wealth of samples [78].

The HMP study used a two-stage design. In the first instance, over 5000 samples were
analyzed using 16S rRNA sequencing followed by merely about 700 samples using metagenomic
sequencing. Despite the different number of data samples, both collections represent roughly
equal experimental costs [79]. The efforts of the HMP have produced more than 70 million
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16S rRNA gene sequences and more than 3.5 Tbp of whole-metagenome sequence data [79].
Important questions concerning the commonalities and differences among healthy individuals
in both microbial taxa and functional pathways are being addressed. Using the data, it was
demonstrated that body habitat accounts for much of the variation in bacterial community
composition. In addition, despite considerable variation in the microbiota composition across
individuals, the functional abundance profiles are quite similar [19, 205].

1.4.2 Identification of closely related metagenome datasets

With the rapid development of sequencing technologies, statistical replication of metagenomic
samples became technically and financially feasible [206]. Recently, several large-scale studies
with hundreds of samples were initiated [62, 78, 83, 207]. However, apart from large-scale
studies, existing single or small-scale datasets in public repositories, e.g., MG-RAST or IMG/M,
provide a rich resources for comparative analyses. The number of metagenome datasets is rapidly
increasing and every single dataset represents a microbial community with a unique biological
history, sampling location, and environmental context [208]. Thus, comparative analyses can
profit from the existing wealth by comparing newly obtained datasets with existing datasets.
These may serve as additional data sources or biological replicates for a statistical characterization
of variations.

To derive benefit from the wealth of existing datasets, appropriate datasets have to be selected
beforehand. The manual identification of datasets requires a comprehensive overview of all avail-
able datasets or at least reliable and informative metadata. Particularly, if a habitat label is rather
abundant within a repository. For example, in [209] we compiled the so-called “metagenome
universe”. The metagenome universe is a comprehensive metagenome collection of HMP datasets
and publicly available metagenome datasets from the MG-RAST and European Bioinformatics
Institute (EBI) [210] online resources. The metagenome universe comprises 1745 metagenomes
each labeled with one of twelve habitat categories. The number of metagenomic datasets with
habitat label “Feces + GI tract” (581) is rather abundant. Supposing that one is interested in
selecting a “Feces + GI tract” sample, the question remains which of the 581 samples might
be most suitable and requires in-depth investigations. Thus, sample selection solely based on
metadata is difficult.

Not only the metadata categories itself, but also the reliability of metadata is another im-
portant aspect. Since we rely on the accuracy of available metadata for comparative analyses,
erroneous metadata strongly influences biological interpretations. Nevertheless, mislabeling is
likely during processing and pooling of samples. For example, in the study of [211] several 16S
rRNA amplifications of bacterial community DNA samples collected along a time series were
accidentally mislabeled [212]. Further, datasets from public repositories can also be affected
by mislabeling. However, in this case, we cannot reconfirm sample labels or even resequence
questionable samples. Accordingly, it is advantageous to detect and even correct erroneous
metadata in some datasets. Knights et al. [212] addressed the identification of mislabeled data
with a supervised classification to retrieve the correct groupings of mislabeled 16S rRNA surveys
at various rates of error. However, in Knights et al. [212] only 16S rRNA data was investigated.
For metagenomic datasets, it remains unclear which approach might be successful and has not
been addressed so far.
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In this thesis, I investigate both the identification of similar metagenomes for comparative
analyses and the identification of mislabeled datasets. In contrast to [212], I do not consider su-
pervised methods which are well-suitable in conjunction with well-defined categories and reliable
labels. However, well-defined categories are commonly not available in public metagenomic
repositories. Therefore, the identification of related metagenomes by means of the available
sequence data alone is more promising. However, in contrast to 16S rRNA, the computational
cost for all pairwise sequence comparisons between a new query dataset and n metagenomes
in a repository is prohibitively expensive. Especially, on account of the growing amount of
metagenome datasets, it is reasonable to compare feature profiles instead of the sequence data.
However, it has not been investigated which feature profiles and which kind of metrics are most
effective for identification of similar datasets to a newly obtained dataset. In this work, I utilize
a k-nearest-neighbor search for identification of closely related metagenome datasets which
does not depend on the quality of labels. In Chapter 3, I thoroughly investigate different feature
profiles and metrics for a k-nearest-neighbor search to identify similar datasets for comparison
and mislabeled datasets by means of unexpected neighboring habitat labels.

1.5 Objective and overview

The objective of this work is to support the development of new computationally efficient and
statistically adequate methods for large-scale comparative metagenome analyses. Metagenome
sequence data enable a comprehensive description of the metabolic capacities of microbial
communities. However, difficulties arise from the computational effort to identify homologs and
the inherent ambiguity in the function-to-pathway mapping. In this thesis, I consider the question
whether the taxonomic composition in conjunction with knowledge of reference organisms may
serve as a proxy for predicting the metabolic repertoire of a microbial community to reduce the
total analyses costs.

The first publication (Chapter 2) introduces a novel metabolic profiling approach for metage-
nomics which is based on a Mixture-of-Pathways (MoP) model. With regard to the description in
terms of metabolic abundances, a mixture model is introduced which provides an estimate of the
fraction of sequence material that can be mapped to a particular pathway. Further, a shortcut for
fast estimation is introduced. This nested model links the taxonomic profile of the metagenome to
a set of pre-computed metabolic reference profiles overcoming computationally intense homology
searches.

The second publication addresses the identification of similar metagenomes to a newly obtained
dataset. Despite its growing importance for comparative metagenome analysis, this is a largely
uninvestigated field. In Chapter 3, a k-nearest-neighbor search based on biological feature profiles
is assessed for the identification of closely related metagenome datasets.

Chapter 4 contains a submitted manuscript describing the Tax4Fun approach, which is designed
for the prediction of the functional repertoire of a microbial community from 16S rRNA data.
So far, insights into the functional capabilities of a microbial community are not provided by
restricting the analysis to 16S rRNA sequence data. In this thesis, the transformation of OTU
abundances to KEGG based taxonomic profiles based on 16S rRNA sequence similarity is
presented which enables the linear combination of pre-computed reference profiles to estimate
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the functional capacities of a microbial community.
Both, the functional annotation approaches and the k-nearest-neighbor search approach, were

evaluated with the publicly available HMP datasets [19]. For the evaluation of Tax4Fun, we used
three additional datasets where both 16S rRNA and metagenome sequence data were available
[110, 213–215]. To study the performance of the retrieval of similar metagenome sequencing
samples in a broader more complex setting, the so-called metagenome universe was constructed
from publicly available datasets.

In Chapter 5, the overall results of the publications and manuscript are discussed.
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Abstract
Metagenomics enables the characterization of the specific metabolic potential of a microbial
community. The common approach towards a quantitative representation of this potential is to
count the number of metagenomic sequence fragments that can be assigned to metabolic pathways
by means of predicted gene functions. The resulting pathway abundances make up the metabolic
profile of the metagenome and several different schemes for computing these profiles have been
used. So far, none of the existing approaches actually estimates the proportion of sequences
that can be assigned to a particular pathway. In most publications of metagenomic studies,
the utilized abundance scores lack a clear statistical meaning and usually cannot be compared
across different studies. Here, we introduce a mixture model-based approach to the estimation of
pathway abundances that provides a basis for statistical interpretation and fast computation of
metabolic profiles. Using the KEGG database our results on a large-scale analysis of data from
the Human Microbiome Project show a good representation of metabolic differences between
different body sites. Further, the results indicate that our mixture model even provides a better
representation than the dedicated HUMAnN tool which has been developed for metabolic analysis
of human microbiome data.
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1 Introduction

In metagenomics a central task is to characterize the metabolic potential of a microbial
community. The metabolic profile of a metagenome quantifies the amount of genetic material
that can be attributed to metabolic pathways. The abundance of a pathway is usually
estimated by the number of sequences that can be mapped to gene families with functional
roles within that pathway. Several heuristics exist to compute a corresponding estimate.
Using for instance the KEGG database, an abundance may be estimated by counting all
BLAST best hit matches to KEGG Orthologs which are annotated for the particular pathway
(see e.g. [4]). There are two major difficulties with this classical approach of metabolic
profiling: First, the computational effort for the identification of homologs can become
burdensome. Usually the BLASTX tool is required, which takes a considerable amount of
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2 On the estimation of metabolic profiles in metagenomics

CPU-time even for a moderately sized data set. Second, the usual counting scheme lacks
a probabilistic model that would provide a clear statistical interpretation of the resulting
quantities. To our knowledge, none of the existing heuristics actually yields an estimate of
the fraction of sequence material that can be mapped to a particular pathway. Depending on
the particular method the existing tools merely provide different kinds of abundance scores
[14, 12, 1, 5, 4]. Although these scores may be used for comparative analysis as well, they do
not provide a strictly probabilistic description of metagenomic sequence data. Therefore,
the comparison and combination with other methods or models is at least problematic. We
address both problems, the algorithmic and statistical efficiency within a metabolic mixture
model in terms of a mixture of pathways (MoP). This model is capable to provide both,
a sound statistical basis and a fast estimation of pathway abundances. Our results on a
large-scale analysis of data from the Human Microbiome Project (HMP) show the utility of
our method for fast model-based estimation of pathway abundances. Further, the results for
the mixture-based metabolic profiles indicate a better separation between body sites than
for the profiles of the HUMAnN tool which has particularly been developed for analyis of
HMP data.

2 Material

2.1 Human Microbiome Project (HMP)

Within the scope of the Human Microbiome Project (HMP) [3] an extensive collection of
samples from healthy individuals from diverse human body sites was established allowing
an insight into the functions of the healthy human microbiome. More than thousand HMP
data sets are recorded in HMP’s Data Acquisition and Coordination Center (DACC) Project
Catalog (http://www.hmpdacc.org/resources/data_browser.php) providing a comprehensive
data basis for large-scale comparative studies investigating the associations of the human
microbiome in healthy and diseased states.

From the HMP-DACC website we assessed the available metadata for the metagenomic
samples (http://www.hmpdacc-resources.org/hmp_catalog/main.cgi) and the metabolic
reconstruction data (http://www.hmpdacc.org/HMMRC/). The metabolic reconstruction
data is obtained through the HMP Unified Metabolic Analysis Network (HUMAnN) pipeline
[1]. HUMAnN performs functional and metabolic profiling directly from high-throughput
metagenomic short sequence reads. The pipeline starts with a similarity search against a
functional sequence database including the KEGG Orthologs (Release 54) using an accelerated
translated BLAST implementation. Subsequently, the output is used for a series of gene-
and pathway-level quantification, noise reduction, and smoothing steps resulting in the
identification of present/absent pathways and modules together with their relative abundances.
From the available metabolic reconstruction data, we used the “KEGG pathway abundance
values – Summary file” (as of February 2013).

For our mixture modeling approach we used the reduced data samples of the HMP
as describes in [10]. For comparability, the available samples and pathway abundances of
HUMAnN and our mixture modeling approach were reduced to a subset of samples and
pathways available in both methods. The final dataset includes 680 data samples from 14
specific body subsites, which can be grouped into five major body sites.



K. P. Aßhauer and P. Meinicke 3

2.2 KEGG database
For the metabolic mixture modeling approach introduced here, we use the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database as reference knowledge base for estimating the
pathway abundances of metagenomic samples [9, 8]. KEGG integrates a variety of information
and provides links from gene catalogs to higher-level systematic functions of the organisms
enabling biological interpretation of genomes and high-throughput datasets.

An essential part of the database with respect to metabolic profiling are the KEGG
Orthologs (KO) that consist of gene groups with specific functions directly linked to known
pathways in the KEGG Pathway database. Further, the KEGG Orthology is structured as a
hierarchy of four flat levels: top, second, third level, and leaf nodes. While the leaf nodes
represent the KEGG Orthologous groups, the third level represents the KEGG Pathways,
which can be further summarized in higher level pathway classes (top and second level).

For the mixture modeling the required data reference was extracted from the KEGG
database (Release 64.0).

2.3 MarVis
The MarVis-Suite (Marker Visualization) [7, 6], a toolbox originally developed for the
analysis of metabolomic data, was used for filtering, clustering, and visualization of the
pathway abundances. For exploration of complex pattern variation within the samples of the
different body sites/subsites we used the MarVis-Cluster interface which permits high-level
visualization and cluster analysis based on a one-dimensional self-organizing map (1D-SOM).
The MarVis-Filter software was used for the identification of pathways overrepresented in
the gastrointestinal tract samples compared to the other body subsites.

3 Methods

3.1 Taxonomic mixture modeling
The mixture model based Taxy approach provides a fast and direct estimation of taxonomic
abundances in metagenomes. Taxy-Oligo [13] and Taxy-Pro [10] do not perform a taxonomic
classification of sequencing reads but instead apply a mixture model to approximate the
overall metagenome distribution of oligonucleotides and protein domain hits, respectively.
The discrete distribution of oligonucleotides/protein domains is modeled by a mixture of
organism-specific profiles as obtained from sequenced reference genomes. Because of the
computational efficiency of the taxonomic mixture model approach, both methods were able
to perform a large-scale analysis of sequence data from the HMP without using a computer
cluster or special hardware. All reference profiles were obtained from the bacterial and
archaeal genomes available in the KEGG database (Release 64.0). These genomes were also
used for pre-computing the organism-specific pathway abundances for the metabolic profiling
of metagenomes. For Taxy-Pro, all protein domain profiles according to the Pfam database
[2] were obtained from the CoMet web server [11].

3.2 Metabolic mixture modeling
For metabolic profiling, we assume that the genomic sequence material to some degree can
be explained by a mixture of pathways. The mixture approach accounts for the fact that in
most cases a putative gene function as observed in a sequence fragment provides evidence for
more than one metabolic pathway. The statistical representation of this ambiguity of the
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function-to-pathway mapping was the main motivation for the development of the following
model. With M pathways Pi the probability to observe a function F encoded in sequences
under this model is:

p̃(F ) =
M∑

i=1
p(Pi)p(F |Pi) (1)

The tilde indicates that p̃(F ) only is an approximation of the functional profile p(F ) because
not every function can be explained in terms of metabolic pathways. The prior pathway
probabilities p(Pi) denote the overall sequence-based abundance of functions associated with
pathway Pi and correspond to the mixture weights of the model. These weights are the
central model parameters, which can directly be used and interpreted in terms of the relative
abundances of a metabolic profile. The conditional probability p(F |Pi) denotes the i-th
pathway-specific distribution over N possible gene functions Fj . The annotation in current
databases, such as KEGG, can be represented by some M ×N assignment matrix A with
binary entries Aij = 1 denoting that function j is associated with pathway i. From that
assignment it follows that all functions not associated with pathway i must attain a zero
conditional probability. Just from the annotation, we cannot draw any conclusions about
the other probabilities. Without further knowledge the only reasonable assumption is that
the p(F |Pi) are proportional to the corresponding overall function probabilities, i.e.

∀i, j : p(Fj |Pi) ∝ Aijp(Fj). (2)

This constraint implies that the ratio between any two non-zero function probabilities in a
pathway is equal for all pathways these two functions are associated with and must equal
the global ratio of the corresponding probabilities of the functional profile p(F ). With the
N estimates p̂(Fj) of the specific function probabilities of the profile as derived from the
observed frequencies, e.g. from BLAST hit counts, we have the following estimator of the
conditional probabilities:

p̂(Fj |Pi) = Aij p̂(Fj)
∑N

k=1 Aikp̂(Fk)
. (3)

Now let us consider the assignment probability

p(P |Fj) = p(P )p(Fj |P )
∑M

i=1 p(Pi)p(Fj |Pi)
(4)

which denotes the responsibility of a pathway for a given function Fj , i.e. the contribution
of a pathway to the explanation of that function. We assume that this probability is equal
for all pathways the function is associated with. Without further knowledge, just with the
underlying pathway annotation, there is no reason to prefer a particular pathway for the
explanation of an observed function. This implies the following additional constraint:

∀i, j, k : Akjp(Pi|Fj) = Aijp(Pk|Fj). (5)

For a function Fj that is annotated in two pathways Pi and Pk we can obtain the ratio of
the corresponding pathway abundance estimators using the former three equations (3), (4)
and (5):

p̂(Pi)
p̂(Pk) = p̂(Fj |Pk)

p̂(Fj |Pi)
=

∑N
s=1 Aisp̂(Fs)

∑N
t=1 Aktp̂(Ft)

. (6)
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From the above proportionality, we finally obtain the estimator of the pathway probabilities:

p̂(Pi) =
∑N

j=1 Aij p̂(Fj)
∑M

k=1
∑N

l=1 Aklp̂(Fl)
. (7)

Using matrix vector algebra we can compute the whole metabolic profile vector p with
entries p̂(Pi) from the functional profile vector f with entries p̂(Fj) by

p = Af
1T Af (8)

where 1 is an M -vector of ones. In an application of the above mixture model most time
will be spent for the computation of the functional profile which usually requires a costly
BLASTX matching of metagenomic reads against a database of functionally annotated
protein sequences, such as the KEGG Orthologues. However, with our formulation in terms
of a statistical model we are able to provide a shortcut that utilizes the combination with
another model to obtain a hierarchical mixture of pathways. Assume that we have the
functional profiles of K reference organisms as columns in an N ×K matrix F and we have
estimated the relative abundances of the reference organisms in a taxonomic profile vector t.
Then we can approximate the functional profile of the metagenome by a linear combination
of reference profiles Ft. In Taxy-Pro [10] we use this mixture model in combination with
Pfam functional profiles to estimate the taxonomic abundances in a metagenome. Here,
we propose a combination with K pre-computed KEGG reference profiles to predict the
functional profile of a metagenome from its taxonomic profile which may be obtained by
some fast method such as the oligonucleotide-based Taxy tool [13]. The estimator of the
metabolic profile is then

p = AFt
1T AFt . (9)

Note that also the matrix product AF can be pre-computed to obtain K organism-specific
metabolic profiles which are then just combined by the taxonomic weights t of a metagenome
to obtain its metabolic profile. In principle, this gives rise to a nested model where a mixture
of pathways is first used for each reference organism to estimate its metabolic profile. This
step has only to be performed once for each organism and therefore even a costly BLASTX
analysis may be used for the “offline” training of the organism-specific models. When applied
to metagenomic data a mixture of the utilized reference organisms has to be estimated by
some taxonomic profiling method. In order to combine the two models the second step
requires a profiling method that actually estimates the abundances in terms of the amount
of sequence material that can be attributed to a particular organism. For example, this
requirement is automatically fulfilled when using Taxy-Oligo [13] or Taxy-Pro [10], which we
both included in the evaluation of our approach, as described above. For an application of
the MoP model, it is important to check whether the metagenome composition can actually
be approximated by a mixture of known reference organisms. If the reference is completely
insufficient for a description of the metagenome composition, the mixture approach in general
would become inadequate. Therefore, it is desirable, that the taxonomic profiling method
gives us an indication of the fidelity of the abundance estimates. Both, Taxy-Oligo and
Taxy-Pro provide a specific error measure to assess the adequacy of the underlying model. In
this case, the fraction of oligonucleotides unexplained (FOU) and the fraction of domain-hits
unexplained (FDU) should be inspected when using Taxy-Oligo and Taxy-Pro, respectively.
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3.2.1 Workflows
For the evaluation of our model, we implemented the direct application of the metabolic
mixture model as well as the nested model.

The direct application of the mixture model starts with a BLASTX analysis where the
metagenomic reads are mapped against a reference database consisting of KO amino acid
sequences of bacterial or archaeal origin. By default BLAST hits with E-value ≤ 10−2 were
considered to be significant. The functional profile vector f is obtained by counting the KO-
specific BLAST hits using a fractional increment of 1/K if K different KOs simulataneously
show significant hits for a particular sequence. Note that due to the computational expense of
BLASTX on metagenomes, we restricted the correlation analyis (see section 4.1) to a subset
of six HMP data samples from different body subsites (SRS013825, SRS016752, SRS022621,
SRS024265, SRS024428, and SRS055401). For the computation of the assignment matrix
A the association of KOs with KEGG Pathways was extracted from the database and
transformed into a binary matrix. Finally, the mixture model was applied as described above
using the functional KO profile vector f and matrix A as input.

For the nested model, we first pre-computed the organism-specific metabolic profiles from
reference genomes using all bacterial and archaeal KEGG Genomes. The KEGG Genomes
were downloaded and subsequently fragmented in overlapping reads of length 400 bp with
200 bp overlap simulating a two-fold coverage of the genomes as previously described in [10].
For each reference organism, first the functional profile vector is calculated and then the
metabolic profile is estimated applying the steps as described for the direct mixture approach.
By combining the weights t of a metagenome with the pre-computed organism-specific
metabolic profiles the metabolic profile of a metagenome can be obtained in an efficient
manner. Note that a BLASTX/KO analysis of the metagenome is not required in this case.
For the estimation of the taxonomic profile t, we were using both, Taxy-Oligo and Taxy-Pro.
According to the utilized taxonomic profiling method we denote our metabolic mixture model
MoP-Oligo and MoP-Pro, respectively.

4 Results

To validate the metabolic mixture model on a well-studied dataset, we analyzed metagenomic
sequences from the Human Microbiome Project (HMP) [3]. Originally, the metabolic profiles
of the HMP data have been investigated by means of the HMP Unified Metabolic Analysis
Network (HUMAnN) pipeline [1]. In the following, we use the metabolic profiles of HUMAnN
for comparison with the abundance estimates that we obtained from our mixture of pathways
model.

4.1 Correlation analysis
To study the similarity of metabolic profiles across different methods we computed the
Pearson and Spearman (rank) correlation coefficients of the pathway abundance estimates.
First, we evaluated the fast approximation scheme using pre-computed reference profiles based
on Taxy-Pro taxonomic profiles (MoP-Pro). The resulting metabolic profiles were compared
with the direct application of the mixture model to KO frequencies, which were obtained
from a more time consuming BLASTX analysis. For each data sample, the correlation of the
pathway abundances on two different pathway hierarchy levels (second and third level) was
calculated.

The means and standard deviations of all data examples of the Pearson and Spearman
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correlation coefficients are shown in Table 1. The results show a very high correlation of
the approximation-based and the directly obtained abundances. By reducing the number
of pathways from 340 to 38 according to the third and second pathway hierarchy levels an
increase of the correlation from 0.9558 to 0.9804 and 0.9491 to 0.9842 could be observed for
the Taxy-Pro-based approximation. These results indicate that the approximative approach
is very close to the direct approach and therefore provides a computationally attractive
alternative to the BLAST-based estimation.

Table 1 Correlation analysis based on the metabolic abundances obtained by applying the
Taxy-Pro-based approximation and the direct mixture approach. The correlation is calculated
according to Spearman and Pearson and at the third and second pathway hierarchy level.

Pearson Spearman
Third level 0.9557 (± 0.0409) 0.9491 (± 0.0124)
Second level 0.9803 (± 0.0150) 0.9842 (± 0.0110)

The correlations are similarly high for the even faster Taxy-Oligo variant (MoP-Oligo)
with results shown in Table 2.

Table 2 Correlation analysis based on the metabolic abundances obtained by applying the
Taxy-Oligo-based approximation and the direct mixture approach. The correlation is calculated
according to Spearman and Pearson and at the third and second pathway hierarchy level.

Pearson Spearman
Third level 0.9575 (± 0.0409) 0.9466 (± 0.0105)
Second level 0.9796 (± 0.0138) 0.9813 (± 0.0087)

In contrast to the high similarity of results between different variants of the mixture
approach the correlation between the mixture-based pathway abundances and the HUMAnN-
based profiles is comparatively low with a Pearson correlation of 0.5290 as shown in Table 3.
However, the correlation is increasing when considering the second pathway level or when
using the Spearman rank correlation. A maximum rank correlation of 0.9080 indicates that
the coarse shape of metabolic profiles is still rather similar between different approaches.
Note that the correlation with HUMAnN profiles was averaged over all 680 HMP samples.

Table 3 Correlation analysis based on the metabolic abundances obtained by applying HUMAnN
and the TaxyPro-based mixture model. The correlation is calculated according to Spearman and
Pearson and at the third and second pathway hierarchy level.

Pearson Spearman
Third level 0.5290 (± 0.0206) 0.7588 (± 0.0242)
Second level 0.7884 (± 0.0308) 0.9080 (± 0.0135)

4.2 Nearest neighbor classification
To assess the quality of the estimated metabolic profiles we first investigated whether the body
site (subsite) classification of HMP samples can be reproduced by the corresponding pathway
abundances. For that purpose, we evaluated the predictive power of metabolic profiles by
some nearest neighbor classification scheme using different profile distance measures. We
utilized a leave-one-out cross validation, measuring the classification rate for Euclidean
distance, City block metric and Shannon-Jensen divergence on profiles.
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The results for body sites and subsites as shown in Table 4 reveal that the nearest neighbor
classification rate is rather high and varies between 0.9735 and 0.9897 for the five body sites
and between 0.8853 and 0.9235 for the 14 body subsites. For both classification problems,
HUMAnN shows the highest prediction accuracy irrespective of the distance measure used.
However, the two mixture variants are always very close with a maximum difference of 2.94%
for the Euclidean distance on body subsite level between HUMAnN and MoP-Oligo.

Table 4 Nearest neighbor classification performing a leave-one-out cross validation with the
Euclidean distance, City block metric and Shannon-Jensen divergence as distance measure for the
approaches HUMAnN, MoP-Pro, and MoP-Oligo.

Body site Body subsite
Euclidean City block Jensen-Shannon Euclidean City block Jensen-Shannon

HUMAnN 0.9838 0.9897 0.9868 0.9147 0.9235 0.9132
MoP-Pro 0.9794 0.9809 0.9779 0.9103 0.9103 0.9059
MoP-Oligo 0.9735 0.9750 0.9779 0.8853 0.8956 0.9132

4.3 Clustering performance
For a more comprehensive analysis of profile distances, we compared the body site (subsite)
classification of samples with a profile-based clustering of the data. For clustering, we used a
standard hierarchical approach with average linkage, also known as UPGMA. In this context,
we evaluated the same three distance measures as for the nearest neighbor classification
experiment. The quality of the cluster partitioning was assessed by the Jaccard coefficient,
measuring the overlap of the resulting clusters with the HMP body site (subsite) groups.

The results obtained through the application of HUMAnN, MoP-Pro, and MoP-Oligo are
presented in Table 5 which shows a large variation of the clustering performance.

Table 5 Cluster partitioning quality in terms of the Jaccard coefficient based on Euclidean
distance, City block metric and Shannon-Jensen divergence for metabolic profiles of HUMAnN,
MoP-Pro, and MoP-Oligo

Body site Body subsite
Euclidean City block Jensen-Shannon Euclidean City block Jensen-Shannon

HUMAnN 0.4335 0.4342 0.4325 0.2361 0.3715 0.2344
MoP-Pro 0.6958 0.8817 0.6971 0.4791 0.4603 0.4801
MoP-Oligo 0.6577 0.7251 0.6382 0.3671 0.3008 0.3939

The Jaccard coefficient varied between 0.4325 and 0.8817 at body site level and between
0.2344 and 0.4801 at body subsite level. The partitioning of the MoP-Pro approach always
showed the highest values on body site and subsite level. For both levels, the clustering
performance of the MoP-Oligo approach is superior to HUMAnN except for the City block
metric at body subsite level.

4.4 1D-SOM clustering and visualization
In order to study the overall variation of pathway abundance patterns over the whole range
of HMP samples, we analyzed the estimated metabolic profiles with the MarVis tool. A
one-dimensional self-organizing map (1D-SOM) was created using MarVis-Cluster (see Figure
1) to obtain a set of ordered prototypes well-suitable for visualization of profile variations.
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Here, we utilized the second pathway level where we reduced the profiles to include
just the top 10 pathways with the highest variance over all samples. Taking the union of
the top 10 MoP and HUMAnN pathways we achieved a total of 13 profile dimensions that
we used for 1D-SOM clustering with 14 prototypes and a unit 2-norm scaling of profile
vectors. The resulting visualization indicates that most of the body sites are separated
into distinct clusters (Figure 1). For the MoP profiles three major groups of clusters can
be identified: gastrointestinal tract (GI tract, left side), urogenital tract (UG tract, right
side), and an intermediate set of clusters from airways, oral and skin sites. Furthermore
there are some interesting gradients (left to right) that show a decreasing relative abundance
for Amino Acid Metabolism, Carbohydrate Metabolism, and Signal Transduction pathways
and an increasing abundance for Membrane Transport, Nucleotide Metabolism, Replication
and Repair, and Translation pathways. In contrast, the 1D-SOM based on the HUMAnN
pathway profiles shows a distinct picture of the overall variation. The different body sites are
not as clearly separated as for the MoP-based SOM and the overall abundance gradients of
selected pathways are not as prominent as for the MoP results. The visible gradients (left to
right) that show a decreasing abundance include the Amino Acid Metabolism and Metabolism
of Cofactors and Vitamins pathways while an increasing abundance can be observed for
Metabolism of Other Amino Acids, Replication and Repair, and Translation pathways.

Figure 1 1D-SOM created with MarVis-Cluster at second pathway hierarchy level for MoP-Pro
(upper) and HUMAnN (lower) profiles (GI tract – gastrointestinal tract; UG tract – urogenital tract).
The numbers (in brackets) indicate the number of profiles (samples) assigned to the corresponding
prototype (cluster) above.
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4.5 Significant pathways
For a specific analysis of the metabolic profiles in terms of statistically significant differences
in pathway abundances between different body sites we compared the gastrointestinal (GI)
tract samples with all other HMP samples. To identify overrepresented pathways for the
GI body site we applied an ANOVA with Holm-Bonferroni (FWER) correction on pathway
abundances of the second level pathway hierarchy, filtered for pathways with an FWER
below 0.05, and ranked the remaining pathways according to their fold-change in terms of
the corresponding overrepresentation factor on mean abundances. In Table 6 the significant
pathways of MoP-Pro and HUMAnN with a calculated fold-change larger than 1 are listed.

Table 6 MarVis-Filter analysis for the identification of overrepresented pathways in the gastroin-
testinal tract samples in comparison to all other body subsites. All second level pathways obtained
through the application of the MoP-Pro and HUMAnN approach with a fold-change larger than 1
are listed.

MoP-Pro
Pathway (second level) Fold-Change
Transport and Catabolism 2.00
Signal Transduction 1.81
Digestive System 1.79
Biosynthesis of Other Sec-
ondary Metabolites

1.53

Nervous System 1.48
Carbohydrate Metabolism 1.23
Glycan Biosynthesis and
Metabolism

1.15

Endocrine System 1.13
Immune System 1.12

HUMAnN
Pathway (second level) Fold-Change
Digestive System 2.04
Endocrine System 1.12
Glycan Biosynthesis and
Metabolism

1.07

Amino Acid Metabolism 1.06
Biosynthesis of Other Sec-
ondary Metabolites

1.06

Energy Metabolism 1.01

HUManN and MoP-Pro identified pathways associated with the Digestive System, En-
docrine System, Biosynthesis of Other Secondary Metabolites, Glycan Biosynthesis and
Metabolism to be overrepresented in GI tract samples. For all these pathways, except for
the Digestive System, the MoP-Pro fold-change was higher than the corresponding factor of
HUManN. Exclusively for the HUMAnN approach, pathways associated with Amino Acid
Metabolism and Energy Metabolism are found to be slightly overrepesented. Furthermore,
through the application of the MoP-Pro we detected five additional pathways to be overrep-
resented: Transport and Catabolism, Signal Transduction, Nervous System, Carbohydrate
Metabolism, and Immune System. These additional pathways are possibly related to a mutu-
ally beneficial relationship between the gut microbiota and the host, maintaining a normal
mucosal immune function and nutrient absorption. Furthermore, the overrepresentation of
pathways associated with the nervous system may provide an indication for the bidirectional
brain-gut interactions which have an important role in the modulation of gastrointestinal
functions and possibly support the hypothesis of a communication pathway between the
microbiota and the host’s central nervous system [15].

4.6 Runtime
To get an overview of the computational cost of the different variants of the mixture modeling,
we measured the approximate runtime averaged over the six selected HMP data samples
(average size ~200 MB) used for the correlation analysis. For the selected data sets the
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mean runtime ranges from minutes to months. The longest CPU times were required by the
direct application of the mixture model due to the costly similarity searches against the KO
database. On a computer with four CPUs (2.4 GHz) BLASTX searches and calculation of
the metabolic profile took approximately 58 days. The fastest method was MoP-Oligo with
about half a minute, followed by the MoP-Pro method with about one minute runtime in
total. Once the taxonomic profile is estimated, using either MoP-Oligo or MoP-Pro, the
resulting matrix vector multiplication for obtaining the metabolic profile of a metagenome
can be done within a second.

5 Discussion

We presented a novel metabolic profiling approach for metagenomics, which is based on
a mixture of pathways (MoP) model for estimation of pathway abundances. To overcome
computationally intense homology searches, we implemented a shortcut to estimate the
metabolic profile of a metagenome. Here, we link the taxonomic profile of the metagenome
to a set of pre-computed metabolic reference profiles. The combination of the taxonomic
abundance estimates, obtained through the fast methods Taxy-Oligo and Taxy-Pro, and the
metabolic reference profiles, based on the KEGG database, achieves an unrivaled speed of
the metabolic profiling approach.

We are aware of the difficulties in the evaluation that arise when trying to assess the
quality of the resulting metabolic profiles. Therefore we restricted our evaluation to the
large-scale data from the Human Microbiome Project (HMP) and to the comparison with
the observations and findings for this data obtained through the HUMAnN approach. In this
setup we tried to provide several views on metabolic profiles considering different aspects of
quality: Our correlation analysis has shown that the pathway abundances obtained through
our statistical model are slightly different when compared to the HUMAnN abundance
predictions. However, we demonstrated through the nearest neighbor classification that our
model based approach is at least comparable to the HUMAnN approach when considering
the prediction of body sites and subsites. Considering the cluster performance analysis,
our approach even outperforms the HUMAnN pipeline in most cases. Furthermore, our
case study on statistically overrepresented pathways in the gastrointestinal tract provides
additional insight in comparison with the results of the dedicated HUMAnN approach.

To our knowledge, the MoP approach for the first time provides a potentially unbiased
estimator of the fraction of sequences that can be attributed to a particular pathway. In
addition, our model-based combination with taxonomic abundance estimators also provides
the fastest way to estimate the metabolic profile of a metagenome. We intend to make the
method accessible via an easy-to-use interface by integration into the CoMet web server [11]
(http://comet.gobics.de).
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Abstract: The variety of metagenomes in current databases provides a rapidly growing
source of information for comparative studies. However, the quantity and quality of
supplementary metadata is still lagging behind. It is therefore important to be able to identify
related metagenomes by means of the available sequence data alone. We have studied
efficient sequence-based methods for large-scale identification of similar metagenomes
within a database retrieval context. In a broad comparison of different profiling methods we
found that vector-based distance measures are well-suitable for the detection of metagenomic
neighbors. Our evaluation on more than 1700 publicly available metagenomes indicates
that for a query metagenome from a particular habitat on average nine out of ten nearest
neighbors represent the same habitat category independent of the utilized profiling method
or distance measure. While for well-defined labels a neighborhood accuracy of 100% can
be achieved, in general the neighbor detection is severely affected by a natural overlap
of manually annotated categories. In addition, we present results of a novel visualization
method that is able to reflect the similarity of metagenomes in a 2D scatter plot. The
visualization method shows a similarly high accuracy in the reduced space as compared with
the high-dimensional profile space. Our study suggests that for inspection of metagenome
neighborhoods the profiling methods and distance measures can be chosen to provide
a convenient interpretation of results in terms of the underlying features. Furthermore,
supplementary metadata of metagenome samples in the future needs to comply with readily
available ontologies for fine-grained and standardized annotation. To make profile-based
k-nearest-neighbor search and the 2D-visualization of the metagenome universe available to
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the research community, we included the proposed methods in our CoMet-Universe server
for comparative metagenome analysis.
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1. Introduction

With the rapidly increasing number of sequenced metagenomes in current databases it has become
important to be able to compare novel metagenomic data with the existing data on a large scale [1,2].
In particular, the identification of closely related metagenome datasets (“neighbors”) to a newly obtained
dataset is of growing importance for downstream analysis. Firstly, inspection of the neighbors and
their associated annotations can be used as a final quality control of the dataset and may reveal
unexpected flaws of the sampling, sequencing or data processing procedures. For instance, neighbors
with unexpected habitat labels may indicate some contamination of the sample [3]. Secondly, related
metagenome datasets in the neighborhood can be used as additional data sources for comparative
analyses. Similar to biological replicates in gene expression analysis or homology extension in
sequence analysis, the neighbors may be used for a statistical characterization of variations. However,
manually identifying neighboring datasets on the basis of metadata can be misleading with the currently
available coarse-grained and non-standardized annotation categories. If, for instance, the existing habitat
annotations are used for sample selection, it is unclear which metagenomes are good neighbors for
a data-driven comparative analysis, in particular, if a habitat label is rather abundant or rather sparse
within the database.

Because metagenomic data usually consists of huge collections of short anonymous sequences,
the comparison of two metagenomes is notoriously difficult. In analogy to comparative genomics a
comparison may be conducted on a sequence-by-sequence basis to identify all pairwise similarities
between two metagenomic data sets [4]. However, the computational cost for all pairwise sequence
comparisons between a new query data set and n metagenomes in a database is prohibitively expensive
due to the average size of a single file that may comprise several millions of sequences. Therefore,
instead of the sequences it is reasonable to compare feature profiles that can represent relevant aspects of
the functional and taxonomic composition of metagenomic sequence data [5–11]. But so far, it is unclear
what kind of features and which metrics are most suitable for the comparison of metagenomes.

We present here a study of profile-based methods for nearest neighbor identification according
to metagenome habitat annotation, using a broad spectrum of profile representations and distance
metrics. Our results indicate that taxonomic as well as functional profiles can be used to retrieve
related metagenomes in a database with a high confidence. Furthermore, we found that several
standard metrics such as the City block or Euclidean distance are well-suitable for the identification
of biologically meaningful nearest neighbors. In this context, we also investigated the performance of
dimensionality reduction methods for visualization of the “metagenome universe”, where unsupervised
kernel regression [12] showed the best representation in terms of neighborhood conservation.
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2. Results and Discussion

The rapidly growing number of publicly available metagenomes nowadays requires efficient tools to
compare and relate a novel metagenome to those in databases. In this study, we investigate the possibility
to detect and visually explore metagenomic neighbors based on taxonomic, functional and metabolic
profiles. In the following, we will first present the results of our evaluation of neighborhood accuracy and
then discuss the opportunities and difficulties of a dimensionality-reduced representation of metagenome
profiles for visual inspection.

2.1. Neighborhood Accuracy

The neighborhood accuracy measures the fraction of metagenomes with the same habitat label among
the k nearest neighbors as obtained from a leave-one-out cross-validation. It is an estimator of the
posterior probability to find related metagenomes within a local neighborhood of the profile space.
For profile-based approaches the achievable accuracy depends on the particular feature space and the
distance metrics that is used for comparison.

2.1.1. HMP Collection

The Human Microbiome Project (HMP [13], see also Section 3.1.1. ) provides high-quality
sequencing data and a consistent habitat annotation of metagenomes in terms of distinct body sites.
Therefore, we expect only a small overlap of HMP samples from different body sites, indicating
a suitable benchmark dataset for the evaluation of metagenome profiling methods. Originally, the
phylogenetic, functional, and metabolic profile of the HMP data have been investigated by means of the
HMP Unified Metabolic Analysis Network (HUMAnN) pipeline [15], the Metagenomic Phylogenetic
Analysis (MetaPhlAn) tool [14] and a Gene Ontology (GO) Slim analysis. Besides these annotations
we also used different taxonomical, functional and metabolic profiling methods as described in
Section 3.2.1. and evaluated the k nearest neighbors according to Section 3.3.

Figure 1 shows the neighborhood accuracy on the HMP dataset for different profiling methods,
metrics and body sites. Figure 1A indicates that in general a high fraction (≈90% to 97% on average) of
equally-labelled neighbors can be detected by all methods. Here, the MetaPhlAn and MoP-Pro methods
show very little variation of the accuracy with respect to the underlying profile distance measure. On the
other side, Taxy-Oligo and GO show a relatively low accuracy on average and are much more susceptible
with respect to the distance metric. The GO Slim profile space has the lowest dimensionality and it
seems to require a nonlinear metric or a more suitable normalization, while the relatively low accuracy
of Taxy-Oligo is mainly caused by the standardized Euclidean metric (see Figure S1) that seems to be
unsuitable for the corresponding profiles. This distance measure showed the lowest average accuracy for
most of the methods (see Figure 1B), but as an exceptional case it did improve the performance of the
7-mer approach (see Figure S1).

Figure 1B also indicates the Spearman metric as the most robust distance measure with respect to the
choice of the profiling method, however, the conversion of category counts to ranks for the calculation
of this metric is problematic when only a few counts are present for many categories. Except for the
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GO profile space, the City block metric generally showed a high accuracy and allows a fast calculation
of distances as well as an intuitive interpretation. Further inspecting the City block results, we found
that three HMP body sites (“GI tract”, “UG tract”, “Oral”) allow a high neighborhood accuracy for all
methods, while the “Skin” and “Airways” categories show a low average accuracy and a large variation
with respect to the utilized method (Figures 1C and S2). The low accuracy cannot be attributed to
particular profiling methods or metrics (see Figures S3 and S4) and thus indicates a systematic overlap
of categories. Indeed, the “Skin” body site comprises only a few datasets (26 samples) and the confusion
matrix of the neighborhood evaluation (Figure 1D) indicates a large fraction of neighbor misassignments
to the “Airways” category. Because the Airways samples have been taken from nose regions there might
be a natural overlap with skin-associated microbial communities.

Figure 1. Neighborhood accuracy on Human Microbiome Project (HMP) data for different
profiling methods, metrics and body sites. (A) Accuracy of profiling methods with
average/minimum/maximum over six different metrics; (B) Accuracy of distance metrics
with average/minimum/maximum over all nine profiling methods; (C) Body site-specific
accuracy for City block metric averaged over nine profiling methods; (D) Confusion matrix
of neighborhood evaluation for different body sites according to UProC protein domain
profiles and City block metric. Values represent rounded percentages and entries lower than
0.5 are omitted.
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Further characterization of the overlap in terms of the profile space distances turned out to be difficult
because the corresponding neighborhood patterns can vary considerably. To illustrate this variation
for the Airways and Skin body sites, we represented the metagenome neighborhood of two query
metagenomes from the Airways category in terms of multidimensional scaling (MDS) plots and a
hierarchical clustering analysis (HCA) of the neighboring functional profiles (see Figure S5). Based
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on the evaluation of k = 10 neighbors in the UProC domain profile space using the City block metric,
the two Airways query metagenomes are in one case assigned to the right habitat (6 correct labels) and in
the other case misclassified (4 correct labels). In the first case (Figure S5A,B) the five nearest neighbors
of the query are grouped into a cluster consisting of four correctly (Airways) and one incorrectly (Skin)
assigned neighbor(s). Another cluster shows a mixed composition of metagenomes from the Skin and
Airways categories. In the second example (Figure S5C,D) the Airways query metagenome is grouped
within a cluster of four Skin samples. However, another cluster consisting of four Airways samples
and one Skin sample is located nearby. Although these examples indicate the difficulties of overlapping
habitats, they do not allow inferences about the reasons of possible misclassifications. Here, further
statistical analysis based on taxonomic, functional or metabolic features of the metagenomic neighbors
would be necessary.

2.1.2. Metagenome Universe Collection

To investigate whether the findings on the HMP dataset collection could be reproduced with a more
diverse range of biomes, we analyzed a set of 1745 publicly available metagenomes associated with
twelve different habitat categories (“metagenome universe”, see Section 3.1.2. for details). Here, we
expect that the overlap of categories is larger than in the HMP collection, since not all labels actually
describe distinct environments. We excluded MetaPhlAn and the HUMAnN pipeline from the analysis
for computational reasons and the Taxy-Oligo method because of its shortcomings regarding the profiling
of viral metagenomes [9].

Figure 2 shows the neighbor detection performance on the metagenome universe collection for
different profiling methods, metrics and habitats. In general, the average neighborhood accuracy of
all methods is slightly lower (∼83% to 87%) than on the HMP dataset (see Figure 2A). In particular,
the protein alignment using a DNA aligner (PAUDA) method for detection of significant Pfam protein
domains and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs shows a substantially lower
accuracy and higher variation. This is mainly caused by use of the standardized Euclidean metric (see
Figure 2B), which seems to be susceptible to small Pfam/KO counts resulting from the low sensitivity of
the PAUDA similarity detection.

Concentrating on more robust metrics such as the City block and Spearman distance, we observe large
differences in the ability to correctly detect neighbors for different habitat categories (see Figures 2C,
S6 and S7). In particular, the categories “Extreme”, “Virus-enriched”, “Host-associated” and “Skin”
indicate low accuracies and/or large variations with respect to the utilized profiling method. While the
performance of the oligonucleotide-based 7-mer method noticeably decreases for virus-enriched and
skin metagenomes, the GO method shows particularly low accuracy for the host-associated category.

Considering the habitat annotation of the metagenomes, the difficulties of the evaluation of
neighborhood detection become apparent. For instance, the “Extreme”, “Virus-enriched” and
“Host-associated” categories just provide a rather unspecific labelling of datasets. A closer look
at the confusion matrix associated with our neighborhood evaluation using UProC indicates a
systematic overlap of the “Extreme” and “Virus-enriched” categories with the “Aquatic” habitat and
of “Host-associated” environments with the “Feces/GI tract” category (see Figure 2D and Table S1).
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This can be well explained by the natural overlap of the annotation, which does not define mutually
exclusive habitat categories in this case.

Figure 2. Neighborhood accuracy on metagenome universe collection for different methods
and habitats. (A) Accuracy of profiling methods with average/minimum/maximum over six
different metrics; (B) Accuracy of distance metrics with average/minimum/maximum over
all seven profiling methods; (C) Habitat-specific accuracy for City block metric averaged
over seven profiling methods; (D) Heatmap of confusion matrix for different habitats
according to UProC protein domain profiles and City block metric. Habitat labels on y-axis
abbreviated to three letters.
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2.2. Visual Exploration of the Metagenome Universe

The objective of the dimensionality reduction was to obtain a two-dimensional representation of
the comprehensive metagenome collection (“metagenome universe”) for scatter plot visualization.
In a suitable scatter plot, data points appear closer to each other on the plot when they reflect similar
properties. Therefore, the adjacent data points should correspond to related metagenomes with the
2D neighborhoods reflecting the habitat labeling. To obtain the scatter plots, we applied different
dimension reduction methods to the UProC protein domain profiles of metagenomes. First, we
applied classical principal component analysis (PCA) which showed the well-known susceptibility to
outliers ([25], see Figure 3). In this case a few virus-enriched metagenomes are spanning the whole
scatter plot and one has to zoom into the main part of the distribution to see meaningful neigborhoods.
This is also reflected by the 2D Euclidean neighborhood accuracy which is only 72%. Plotting
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subsequent principal components (e.g., PC 2 and PC 3) against each other or removing a few apparent
(viral) outliers did not enhance the overview given by the PCA plot (data not shown). Only the
complete removal of viral metagenomes from the database yields a visualization of the metagenome
universe with distinguishable clusters according to habitats (see Figure S8). Using a City block distance
matrix, classical multidimensional scaling (MDS) shows a more suitable sketch of the distribution with
a considerably reduced influence of the virus-enriched metagenomes. This also resulted in an increased
neighborhood accuracy of 78.3% for the MDS coordinates which show an interesting distribution.
The shape corresponds to the so-called horseshoe effect which is well-known for MDS and occurs
when only the distances between nearby points are representative [26]. Thus, we speculate that for
unrelated habitats the distance between protein domain profile vectors does not reflect biologically
meaningful differences. We also used the City block distances as an input for the Sammon mapping
which also shows a good clustering of metagenomes according to their habitat and a slightly increased
neighborhood accuracy of 81.8%. The most convincing result we achieved with unsupervised kernel
regression which showed the best utilization of the image area and the highest neigborhood accuracy.
In this case, the 87.1% accuracy in 2D was nearly as good as for the original space of the
high-dimensional Pfam profiles (87.4%).

Figure 3. 2D representation of metagenome universe for different dimension reduction
methods using UProC protein domain profile space. Markers represent metagenome
datasets with colors corresponding to habitat labels as provided in legend in subfigure
(A) Principal component analysis (PCA) using Euclidean metric with dimension-specific
variance in parantheses; (B) Multidimensional scaling (MDS) using City block metric with
dimension-specific variance in parantheses; (C) Sammon mapping using City block metric;
(D) Unsupervised kernel regression (UKR) using City block metric.
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3. Materials and Methods

In the following, we will describe the datasets and the experimental setup used in this study. First,
we will give an overview of the two different collections of metagenome datasets and the methods used
to compute the taxonomic, functional and metabolic profiles. Finally, we present the profile distance
measures for neighbor detection and the dimensionality reduction methods used for visualization.

3.1. Metagenome Dataset Collections

3.1.1. HMP Collection

The Human Microbiome Project (HMP, [13]) provides an extensive collection of samples from human
body sites of healthy individuals for large-scale comparative studies. More than a thousand HMP data
sets have been recorded and are publicly available in HMP’s Data Acquisition and Coordination Center
(DACC) Project Catalog [29]. From the HMP-DACC website we obtained the available metadata for the
metagenomic samples including taxonomic and functional annotations [30]. The taxonomic annotation
comprises the results of the Metagenomic Phylogenetic Analysis (MetaPhlAn) tool [14,31]. Further, we
used the summary matrix of the Gene Ontology (GO) Slim analysis [32] (“GO Slim Summary File”) and
the functional and metabolic reconstruction data as precomputed through the HMP Unified Metabolic
Analysis Network (HUMAnN) pipeline [15,33] (“KEGG pathway abundance values—Summary file”
and “Enzyme Abundance Data”).

For our evaluation, we used 750 clinical study-related samples of HMP data as described in [9]
(see also Supplementary Information). Furthermore, we restricted our evaluation to those body sites
for which at least ten samples were available. The final dataset includes 640 data samples from five
major body sites (see Table S2A).

3.1.2. Metagenome Universe

In addition to the HMP datasets, we used a large collection of publicly available metagenome datasets
from the MG-RAST [16] and European Bioinformatics Institute (EBI) online resources [17] to compile
a “metagenome universe”. For this purpose, all publicly accessible dataset files from the MG-RAST
website [34] were downloaded in December 2012. We selected the FASTA files that passed the
MG-RAST quality control filters and removed datasets with less than 1000 hits to Pfam protein domains.
We used the metadata annotation of MG-RAST to assign each of the resulting 664 metagenomes to one
of twelve habitat categories (see Table S2B). Furthermore, we downloaded the “project.csv” file from
the EBI metagenomic projects website [35] and used it to obtain all associated FASTA files that also
passed the EBI quality control. After filtering datasets with less than 1000 hits to Pfam domains, 821 of
the 1307 samples were used for our reference database.

To reduce redundancy in the database, we computed Pfam domain profiles of all metagenomes and
selected one representative file from datasets with a high profile correlation (>0.995). Furthermore, we
assessed taxonomic coverage quality values in terms of the “fraction of domains unexplained” (FDU,
see [9]) for all metagenomes and removed those with an FDU value above 0.6. Finally, we removed
datasets associated with profiles that had hits to less than 400 different Pfam families from our database.
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As an exception, we did not apply this procedure to virus-enriched metagenomes, i.e., datasets with a
high fraction of viral DNA (>20% as measured by Taxy-Pro). The total number of datasets according
to habitat categories can be found in Table S2B. A CSV-formatted list containing the metagenome
identifiers and habitat labels as used in our evaluation can be found in Supplementary Dataset.

3.2. Profiling Methods

We used a variety of different profiling methods with largely varying dimensionality ranging from
61 (GO) to 16,384 (7-mer oligonucleotide frequencies). The theoretical dimensionality of the different
profile spaces and the actual number of non-zero dimensions can be found in Table S3.

3.2.1. Pfam Protein Domain Annotation

The ultrafast protein classification (UProC) that is part of the CoMet web server [8] was used for
computation of the functional profiles according to the Pfam 27 database. The Pfam profiles also served
for estimation of taxonomic and metabolic abundances with the protein-based mixture models (Taxy-Pro,
MoP-Pro). For metagenome universe datasets we used the Pfam profiles to calculate GO functional
profiles according to the HMP GO Slim ontology scheme. For this purpose, we downloaded the Pfam
to GO mapping from the GO website [36] and counted all associations of GO Slim terms with Pfam
domains detected in a metagenome.

3.2.2. Taxonomic Profiling

The mixture model-based Taxy approach provides a computationally efficient and direct estimation
of taxonomic abundances in metagenomes. Taxy-Oligo [18] and Taxy-Pro [9] apply a mixture model
to approximate the overall metagenome distribution of oligonucleotides and protein domain hits,
respectively. For the evaluation on HMP data, all reference profiles were obtained from 1912 bacterial
and 133 archaeal genomes available in the KEGG database (release 64.0). These genomes were
also used for precomputing the organism-specific pathway abundances for the metabolic profiling of
metagenomes. For each reference genome we computed oligonucleotide (7-mers) and protein domain
signatures. To measure the influence of the taxonomic model, the raw 7-mer oligonucleotide frequencies
were used as an additional profile space.

For the evaluation of the metagenome universe, all archaeal, bacterial and viral genomes were
downloaded from the National Center for Biotechnology Information (NCBI) FTP server [37,38]. They
were complemented by 53 Eukaryotic genomes, 33 from diArk [19] and 20 from NCBI. As described
in [9], we also included virus-enriched metagenomes to manage the underrepresentation of viral diversity
in genome databases. For each reference, the Pfam profile was calculated and profiles with low coverage
(<1000 Pfam hits) were excluded from downstream analysis. In addition, we removed similar profiles
(correlation of >99% on phylum level) to reduce reference profile redundancy. This process reduced the
number of reference genomes to 2199, including 157 Archaea, 1617 Bacteria, 50 Eukaryota, 273 Viruses
and 102 viral metagenomes.
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3.2.3. Mixture-of-Pathways

The Mixture-of-Pathways (MoP) model extends the taxonomic mixture model to a statistically
adequate modeling of the metabolic potential of metagenomes [20]. MoP is based on a mixture model
of pathways for the estimation of relative KEGG pathway abundances. To overcome computationally
intense homology searches, we used the MoP-Pro approach introduced in [20]. MoP-Pro implements
a shortcut to estimate the metabolic profile of a metagenome by linking the taxonomic profile of the
metagenome to a set of pre-computed metabolic reference profiles. Here, organism-specific metabolic
profiles in terms of KEGG Ortholog groups are computed for all bacterial and archaeal genomes in the
KEGG database. Combining these organism-specific profiles according to the taxonomic profile of the
metagenome, we estimate the relative pathway abundances by the posterior probabilities of the metabolic
mixture model described in [20].

3.2.4. Protein Alignment Using a DNA Aligner (PAUDA) Annotation

The protein alignment using a DNA aligner (PAUDA) approach performs a protein database
search [21]. PAUDA converts all protein sequences into pseudo DNA by mapping the amino acid
alphabet onto a four-lettered alphabet. Then the read aligner Bowtie2 is used to compare the pseudo
DNA reads with a pseudo DNA database. The statistical significance of matches is calculated based
on protein alignments of the backtranslated protein sequences. PAUDA runs ∼10,000 times faster than
BLASTX, while achieving about one-third of the assignment rate of reads to KEGG orthology groups.
In this study, PAUDA was used to perform a search against the functional sequence database including
all KEGG Orthologs of bacterial and archaeal origin available in the KEGG database (Release 64.0) and
protein domain families in the Pfam database (Release 27). Here we extracted all full length sequences
labeled according to their Pfam ID from the ’Pfam-A.full’ multiple alignment file. The homology search
was executed in --fast mode with default parameters. In the case of multiple matches, only the best
hit is considered.

3.3. Nearest Neighbor Analysis

In our study, we introduce the concept of identifying neighbors of a query metagenome within
a database of annotated reference metagenomes based on their taxonomic or functional profiles. For
evaluation of the neighbor detection we performed a leave-one-out cross-validation on all metagenome
profiles using a k-nearest-neighbor search with k = 10. As an accuracy measure we counted the fraction
of profiles in the neighborhood with the same habitat label as the query profile. Here, we used the
habitat assignments of publicly available metagenomes (see above) as obtained from their annotation.
We utilized different linear and nonlinear metrics in the profile space to calculate the distances between
pairs of metagenomes.

Let x and y be taxonomic or functional profile vectors of two metagenomes, then the City block
(or L1) distance between x and y can be calculated according to

d1(x,y) =
∑

i

|xi − yi| (1)
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Note that in case of relative abundances, i.e.,
∑

i xi =
∑

i yi = 1, the City block distance corresponds to
the Bray–Curtis dissimilarity, which is widely used in ecology for comparison of two assemblages [22].
Analogously to the City block metric, the Euclidean (or L2) distance can be computed according to

d2(x,y) =

√∑

i

(xi − yi)2 (2)

A standardized version of the Euclidean distance can be obtained by normalizing each profile dimension
with respect to its standard deviation, i.e.,

d2s(x,y) =

√√√√∑

i

(
xi − yi
σi

)2

(3)

The Pearson correlation coefficient

%(x,y) =

∑
i(xi − µx)(yi − µy)√∑

i(xi − µx)2 ·∑i(yi − µy)2
(4)

between two metagenome profiles can be utilized as a distance according to dP (x,y) = 1 − %(x,y).
Similarly, Spearman’s rank correlation coefficient defines a distance metric dS(x,y) = 1 − %(x̂, ŷ),
whereby x̂ corresponds to a representation of the profile x with values converted to ranks.

Finally, we used the Jensen–Shannon divergence, a symmetrized version of the Kullback–Leibler
divergence dKL, to measure the distance between metagenomes. The Jensen–Shannon divergence is
defined by

dJS(x,y) =
1

2
dKL(x,m) +

1

2
dKL(y,m) (5)

whereby dKL(x,y) =
∑

i xi ln
(

xi

yi

)
and m = 1

2
(x + y). To prevent numerical problems we excluded

profile dimensions that did not contribute any counts from the computation.

3.4. Dimensionality Reduction

For visualization of the high-dimensional metagenome profile data we compared different
dimensionality reduction methods: principal component analysis (PCA, [23]), classical
multidimensional scaling (MDS, [23]), Sammon mapping [24] and unsupervised kernel regression
(UKR, [12]). Sammon mapping and MDS were both based on City block (L1) distances and UKR was
used with the L1-kernel. The iterative optimization schemes of the Sammon and UKR methods were
initialized with the MDS and L1-kernel PCA, respectively. For computation we used the dimensionality
reduction [39] and UKR [40] toolboxes in MATLAB. No additional parameters (hyperparameters) were
required by any of the chosen methods. The resulting 2D coordinates of the dimensionality-reduced
representation of all metagenomes were used for the neighborhood evaluation based on an
Euclidean distance.
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4. Conclusions

The focus of our study has been on the comparison of unsupervised methods for metagenome
similarity search. The aim was not to introduce a particular method that has been tuned to provide
the best classification performance for a given labeling of the data. If the prediction of certain
categories is the main objective, then supervised methods can be used that explicitly utilize the
label information for parameter optimization [27]. However, our results indicate that the labeling of
metagenomic data may also give rise to uncertain categories that are not well represented in terms
of profile similarity. Therefore, a supervised approach may be adequate for a rather specific task if
well-defined categories and reliable labels are available, for instance to predict a certain disease in a
medical context. In contrast, an unsupervised approach to metagenome similarity computation can be
more general and may even provide the potential for the discovery of novel or unexpected relationships.
Furthermore, the performance of unsupervised methods does not depend on the quality of labels and
mislabeled data may even be identified by inconsistent neighborhoods in profile space. On the other
hand, metagenomic database retrieval would largely benefit from high-quality metadata and therefore
the increasing acceptance of the “Minimum Information about a Metagenome Sequence” (MIMS)
specification [28] will multiply the utility of profile-based metagenome comparison. We are aware of
the fact that the coarse habitat-oriented labeling that we used in our comparison can only give a first
impression of what is actually possible with profile similarity detection. However, the results indicate
that a sequence feature-based identification of meaningful metagenomic neighbors is possible and
computationally efficient for a wide range of profiles and distance metrics. Although we identified certain
combinations that should not be used, in general no single metric or profiling method systematically
outperformed the other methods in terms of the neighborhood accuracy. This implies that the profile
space and the distance measure can in principle be chosen to allow a convenient interpretation of results
in terms of the underlying features. In this context, protein families and metabolic pathways can provide
a biologically more powerful representation than oligonucleotide-based features. With biologically
meaningful profile features at hand our approach for neighbor identification allows subsequent in-depth
analysis such as the identification and interpretation of features which contribute most to the distance
between two metagenomes. Therefore, we have started to integrate a k-nearest-neighbor search based
on protein domain frequency features in the CoMet-Universe server [41], which already implements
some of the techniques that we have evaluated in our study.
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Motivation: The characterization of phylogenetic and functional diversity are key
elements in the analysis of microbial communities. Amplicon-based sequencing of
marker genes, such as 16S rRNA, is a powerful tool for assessing and comparing
the structure of microbial communities at a high phylogenetic resolution. Because
16S rRNA sequencing is more cost-effective than whole metagenome shotgun se-
quencing, marker gene analysis is frequently used for broad studies that involve a
large number of different samples. However, in comparison to shotgun sequencing
approaches, insights into the functional capabilities of the community get lost when
restricting the analysis to taxonomic assignment of 16S rRNA data.

Results: Tax4Fun is a software package that predicts the functional capabilities of
microbial communities based on 16S rRNA datasets. We evaluated Tax4Fun on
a range of paired metagenome/16S rRNA datasets to assess its performance. Our
results indicate that Tax4Fun provides a good approximation to functional profiles
obtained from metagenomic shotgun sequencing approaches.

Availability: Tax4Fun is an open-source R package and applicable to output as
obtained from the SILVAngs web server or the application of QIIME with a SILVA
database extension.
Tax4Fun is freely available for download at http://tax4fun.gobics.de/.
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1 Introduction

Amplicon-based sequencing of marker genes is widely used for large-scale studies that involve
many different sampling sites or time series. The common 16S rRNA gene-based analysis is a
powerful tool for assessing the phylogenetic distribution of a metagenome but does not provide
insights into the communities metabolic potential. Therefore, the prediction of the functional ca-
pabilities of a microbial community based on marker gene data would be highly beneficial. As a
particular difficulty of such a predictive approach for most organisms in marker gene databases
the genome and therefore the functional repertoire is not known. For instance, the SILVA SSU
rRNA database [1] (SILVA 115 – full release) contains 3,808,884 rRNA sequences whereas
KEGG (Release 71.1) [2] only comprises 2982 complete prokaryotic genomes. Recently, the
PICRUSt approach was proposed to predict functional profiles of microbial communities using
16S rRNA gene sequences [3]. PICRUSt infers unknown gene content by an extended ances-
tral state reconstruction algorithm. The algorithm uses a phylogenetic tree of 16S rRNA gene
sequences to link operational taxonomic units (OTUs) with gene content. Thus, PICRUSt pre-
dictions depend on the topology of the tree and the distance to the next sequenced organism.
Because a nearest neighbor within the tree topology always exists, PICRUSt links all OTUs,
even if distances are large. This procedure can be problematic when analyzing microbial com-
munities with a large proportion of so far not well-characterized phyla.

Here, we present Tax4Fun, a novel tool for functional community profiling based on 16S
rRNA data. In Tax4Fun the linking of 16S rRNA gene sequences with the functional annotation
of sequenced prokaryotic genomes is realized with a nearest neighbor identification based on a
minimum 16S rRNA sequence similarity. Tax4Fun can be applied to the output of 16S rRNA
analysis pipelines that can perform a mapping of 16S rRNA gene reads to SILVA. The results of
Tax4Fun indicate that the correlation of functional predictions with the metagenome profile is
higher as compared to the PICRUSt tool.

2 Implementation

Our method provides a prediction of functional profiles on the basis of SILVA-labeled OTU
abundances. After preprocessing and clustering of the 16S rRNA sequencing reads the resulting
OTUs have to be assigned to reference sequences in the SILVA database. The SILVA assignment
counts are then transformed to functional profiles using Tax4Fun, which proceeds in three steps.

First, the SILVA-based 16S rRNA profile is transformed to a taxonomic profile of the prokary-
otic KEGG organisms. The linear transformation is realized by a pre-computed association
matrix. The matrix was built from a BLASTN analysis where we extracted 16S rRNA gene
sequences of all prokaryotic KEGG organisms and searched them against the SILVA SSU Ref
NR database (Release 115). For the assignment, we require a sufficient sequence similarity ac-
cording to a threshold on the BLAST bitscore (>1500). A non-zero entry in this sparse matrix
represents a valid assignment of a SILVA sequence identifier to one of the KEGG organisms. In
case that K different KEGG organisms simultaneously show significant hits for a SILVA 16S
rRNA gene sequence the corresponding entries in the association matrix were set to 1/K.

Then, the estimated abundances of KEGG organisms are normalized by the 16S rRNA copy
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number obtained from the NCBI genome annotations. Finally, the normalized taxonomic abun-
dances are used to linearly combine the pre-computed functional profiles of the KEGG organ-
isms for the prediction of the functional profile of the microbial community. The organism-
specific reference profiles are estimated with the same method as used for the Taxy-Pro refer-
ence profiles [4]. For a fast computation of the organism-specific and metagenomic functional
KEGG Ortholog (KO) profiles, we utilized UProC [5] and PAUDA [6], respectively.

3 Results

We applied Tax4Fun and PICRUSt to a collection of paired metagenome/16S rRNA datasets that
have also been used in the original PICRUSt study [7–11]. Before applying Tax4Fun, the SILVA-
based 16S rRNA profile was computed using the QIIME tool [12] or the SILVAngs web server
[1], respectively. For each paired dataset, the Spearman correlation of the whole metagenome
and the 16S rRNA-predicted KO profile was calculated. The resulting correlation coefficients
are shown in Figure 1 for the UProC-based functional profiles.

Figure 1: Spearman correlations between metagenomic and 16S-predicted functional profiles for
comparison of Tax4Fun and PICRUSt on paired datasets from the human microbiome
(HMP), mammalian guts, Guerrero Negro hypersaline microbial mat and soils.
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Using Tax4Fun, the median of the correlation coefficient varies between 0.8706 (soils) and
0.6427 (Guerrero Negro hypersaline microbial mat). In comparison with PICRUSt the correla-
tion of Tax4Fun is significantly higher for all four datasets according to a nonparametric sign
test (p-value <0.001). Similar results are obtained using the PAUDA tool for estimation of the
functional profiles (see Tax4Fun web site).

Further, we compared the coverage of the analysis pipelines in terms of the fraction of reads
that were classified by QIIME/SILVAngs and the percentage of OTUs that were mapped to
KEGG organisms using Tax4Fun. Especially for the soil samples, we observed rather low frac-
tions of 16S rRNA sequences that were finally used to predict the functional profiles (SILVAngs:
0.02%, Tax4Fun: 4.78%; QIIME: 95.21%, Tax4Fun: 55.36%). Contrary, the coverage for the
human microbiome and mammalian guts datasets is rather high for both QIIME/SILVAngs and
Tax4Fun (SILVAngs: 95%, Tax4Fun 95%). For all datasets, the coverage values are shown on
the Tax4Fun website. Thus, the coverage of taxonomic assignments should always be inspected
to check the reliability of predictions, in particular when using SILVAngs.

4 Conclusion

Tax4Fun predicts the functional profile of a microbial community just from 16S rRNA sequence
data. Our approach cannot replace whole metagenome profiling but is useful to supplement
16S rRNA analyses in metagenome pre-studies or in situations where shotgun sequencing is
prohibitively expensive, e.g. for broad surveys in microbial ecology applications. We evalu-
ated our method on four paired data collections from different habitats and compared it to the
PICRUSt tool. The results indicate a high correlation of the predicted Tax4Fun profiles with
the corresponding functional profiles obtained from whole metagenome sequence data. More-
over, the results show that Tax4Fun outperforms PICRUSt on all test datasets. Tax4Fun allows
easy processing of the output from SILVAngs, QIIME or any other analysis pipeline using the
SILVA database as reference. The implementation in R facilitates further statistical analyses of
the Tax4Fun predictions, which can be processed within the same R environment.
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5 Discussion

In this work, I introduced algorithmically efficient statistical models for comparative metagenome
analysis. The Mixture-of-Pathways (MoP) model provides a strictly probabilistic description
of metagenomic sequence data in terms of KEGG Pathways (see Chapter 2). To avoid the
expense to compute the functional profile in terms of KEGG Ortholog groups via homology
search, I introduced the nested metabolic mixture model (see Chapter 2). In the nested model,
the metabolic profile of the metagenome is predicted from its taxonomic profile by a linear
combination of pre-computed metabolic reference profiles. The organism-specific profiles are
estimated by applying the MoP model to all prokaryotic genomes in the KEGG database.

Further, I transferred the idea of predicting the metabolic profile from the taxonomic profile
to 16S rRNA sequence data. In Chapter 4, I introduced Tax4Fun, a novel tool for functional
community profiling based on 16S rRNA data. For Tax4Fun, I realized a linking of 16S rRNA
sequences with the functional annotation of sequenced prokaryotic genomes with a nearest
neighbor identification based on a minimum 16S rRNA sequence similarity. The linking, based
on close homologies between 16S rRNA gene sequences, enables the transformation of SILVA-
labeled OTU abundances to KEGG based taxonomic profiles. Like in the nested metabolic
mixture model, the functional profile is computed from the transformed KEGG based taxonomic
profile by a linear combination of pre-computed functional reference profiles. Tax4Fun utilizes
the SILVA database as reference and can be applied to the output of 16S rRNA analysis pipelines
performing a mapping of 16S rRNA reads to SILVA, e.g., by using the QIIME or the SILVAngs
web server [102].

The results of the nested metabolic mixture model and Tax4Fun approach reveal that the
taxonomic composition can be used to approximate the metabolic profile of a microbial com-
munity. In metagenomics, the application of the nested mixture model obviates the need for the
computationally demanding estimation of functional abundances by homology search. Moreover,
the Tax4Fun approach broadens the perspective of microbial communities based on the more
cost-effective 16S rRNA sequencing. The application of Tax4Fun extends the explanatory poten-
tial of 16S rRNA studies from assessment of the phylogenetic distribution to valuable insights
into the metabolic capabilities of microbial communities.

Further, I investigated the important problem how to automatically identify metagenomes that
are closely related to a newly obtained dataset. First and foremost, similar metagenomes can
serve as additional data sources in comparative analyses. Second, unexpected habitat labels
of the related metagenomes provide an indication of potentially mislabeled datasets. However,
the unsupervised identification of closely related metagenomes is a mostly uninvestigated field
for comparative metagenome analysis, I evaluated different feature profiles and metrics for a
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k-nearest-neighbor search in the study “Exploring Neighborhoods in the Metagenome Universe”
(see Chapter 3).

I implemented the nested metabolic mixture model and k-nearest-neighbor search approach in
the CoMet-Universe webserver (http://comet2.gobics.de/) which enables exploratory
analysis and comparison of metagenome data. Further, I implemented the Tax4Fun and the
metabolic mixture model approach in R. The R Package can be easily integrated into existing
analysis pipelines and facilitates further statistical analyses. Both approaches can process large
datasets in reasonable time without using a computer cluster or special hardware. Due to the
computational efficiency, both tools are well suitable for large-scale analysis on the growing
amount of metagenomic sequence data.

5.1 Predicting the functional and metabolic potential from
the taxonomic profile

The study of microbial communities using either 16S rRNA or whole-metagenomic sequencing
has become a routinely used tool. Metagenomics provides a comprehensive view of the taxo-
nomic composition as well as the functional and metabolic potential of heterogeneous microbial
communities under natural conditions. In the following two sections, I separately discuss the
MoP model and the Tax4Fun approach for a quantitative metabolic characterization.

5.1.1 Mixture-of-Pathways: a probabilistic model for the quantification of
the metabolic potential from metagenomic shotgun data

For analyzing microbial communities in terms of their metabolic potential, a central task is
the assignment of sequencing reads to functionally characterized categories and the subsequent
transformation into pathway abundances. Several approaches using different counting schemes
have been proposed for computing the pathway abundances. However, existing approaches do
not properly address the ambiguity of the function-to-pathway mapping (see Section 1.3.1.2).

In this work, I introduced a metabolic mixture model in terms of a mixture of pathways which
addresses the ambiguity of the function-to-pathway mapping (see Chapter 2). The MoP model
provides an estimate of the fraction of sequence material that can be mapped to a particular
pathway. The strict probabilistic description of metagenomic sequence data in terms of pathways
enables a clear statistical interpretation of the resulting quantities. However, the direct application
of the metabolic mixture model requires a functional profile as input to estimate the fraction
of sequence material that can be mapped to a particular pathway. The computational effort
for the identification of homologs can become burdensome and most time will be spent on the
computation of the functional profile (see Section 1.3.1.1). To illustrate, running BLASTX
requires thousands of CPU hours per million reads. In a metagenomic study of 12 permafrost
samples [63] the functional annotation against the KEGG database of approximately 246 million
reads reportedly took 800,000 CPU hours [147]. Both, the MoP model and existing approaches
are impaired by the effort to compute the functional abundances.

In Chapter 2, I further addressed the computational challenges related to the prediction of the
functional capacities. The deep impact of the taxonomic distribution on the functional properties
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have been demonstrated in several microbial community studies [108–110]. Since the taxonomic
composition of a metagenomic sample can be efficiently estimated, I investigated whether the
functional capacities of a microbial community can be predicted from the taxonomic distribution.
In Chapter 2, I introduced a shortcut to estimate the metabolic profile of a metagenome avoiding
the expense to compute the functional profile. The metabolic profile is predicted by linking
the taxonomic profile of the metagenome to a set of pre-computed reference profiles. For the
taxonomic abundance estimation, I used the fast mixture model based methods Taxy [216]
and Taxy-Pro [217]. When using Taxy-Pro, the nested model is further denoted MoP-Pro. By
using Taxy or Taxy-Pro the taxonomic profile can be computed on a local standard PC in a few
minutes. The subsequent linear combination of reference profiles is achieved in an unrivaled
speed without the need of a computationally intense homology search for the functional profile of
a metagenomic sample. The reference profiles are pre-computed by applying the MoP model to
BLAST-derived functional abundances from 2045 prokaryotic reference organisms available in
the KEGG database (Release 64.0). However, this computationally intense homology search has
to be performed once.

The evaluation of the runtime of the different metabolic mixture modeling variants pointed out
that the total CPU time can be considerably decreased using the nested metabolic mixture model.
For HMP data samples with average size of 200 MB, the computational cost on a computer with
four CPUs (2.4 GHz) can be reduced from 58 days to about one minute runtime in total. Due to
the computational efficiency, even a large-scale comparison of many metagenomic datasets can
be realized in reasonable time.

Regardless of the differences in computational cost, the evaluation on datasets from the large-
scale HMP study indicates a high correlation between the predicted metabolic profiles obtained
through the direct and nested metabolic mixture model. Moreover, our analysis of the clustering
performance shows that the nested mixture model outperforms the HUMAnN approach in most
cases. The case study on statistically overrepresented pathways further demonstrates that the
nested model provides valuable insights into the metabolic capacities of microbial communities.
Further, additional insights in comparison to the HUMAnN approach could be obtained. Thus,
the MoP approach provides both a fast and potentially unbiased estimator of the metabolic profile
of a metagenome.

5.1.2 Tax4Fun: predicting the functional potential of microbial
communities using 16S rRNA sequence data

In Chapter 2, I examined whether the functional properties of microbial communities can be
estimated based on taxonomic profiles predicted from metagenome sequence data. However, about
90% of publicly available microbial community datasets have been taxonomically investigated
using the amplicon based 16S rRNA approach [162, 208]. The analysis of 16S rRNA data is a
very common tool for large sample collections of microbial communities in ecological and human
microbiome research, but inherently limited to the characterization of the taxonomic composition
and phylogenetic diversity (see Section 1.1.1). With the restriction on 16S rRNA marker genes,
insights into the functional inventory of the communities generally get lost. So far, the PICRUSt
tool provides the only approach which addresses this drawback, showing that in principle it is
possible to predict functional profiles from 16S rRNA data.
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In Chapter 4, I introduced the Tax4Fun approach which efficiently predicts the functional
repertoire of a microbial community from 16S rRNA data. Tax4Fun transfers the nested mixture
model approach to 16S rRNA studies (see Chapter 4). The core of the Tax4Fun approach
is a transformation of the SILVA-labeled OTU abundances to a taxonomic profile based on
KEGG reference organisms and a subsequent linking with pre-computed functional or metabolic
abundances. For the transformation, I implemented a conservative mapping of 16S rRNA gene
sequences to sequenced reference genomes. The association between 16S rRNA gene sequences
from the SILVA database and sequenced reference organisms is established based on a homology
search. Here, only associations for relationships to closely related sequenced organisms are
allowed where a reasonable conclusion can be drawn with certainty. The transformation is
entirely based on close homologies between 16S rRNA gene sequences and substantially differs
from the PICRUSt approach that relies on a phylogenetic tree of the 16S rRNA sequences. The
PICRUSt approach infers unknown gene content from the closest sequenced organism based
on extended ancestral state reconstruction algorithm using a phylogenetic tree of 16S rRNA
sequences as reference. However, the distance to the next closely related sequenced organism is
not restricted. Consequently, PICRUSt considers all taxonomic units regardless of the distance to
the next closely related sequenced organism Section 1.2.1. This procedure can be problematic
when analyzing microbial communities with a large proportion of so far not well-characterized
phyla.

I thoroughly assessed the performance of Tax4Fun and compared the predictions of both
Tax4Fun and PICRUSt with functional profiles obtained from whole metagenome sequence data
on several test datasets [78, 110, 213–215]. In this work, I used the well-established QIIME
software package and the web-based NGS analysis pipeline of the SILVA rRNA gene database
project (SILVAngs 1.0) [102] for classification of 16S rRNA reads. But, any other 16S rRNA
pipeline is conceivable. The application of Tax4Fun to a range of paired data samples, where
both 16S rRNA and metagenome data is available, revealed a strong correspondence between the
predicted functional profiles for both data types. The evaluation indicates that Tax4Fun provides a
good approximation to the functional profiles and consistently outperforms the PICRUSt approach.
In addition, I investigated the application of KEGG Pathway reference profiles. As pathway
reference profiles, I used the metabolic reference profiles computed for the MoP-Pro approach
(see Chapter 2). The metabolic abundances predicted by the Tax4Fun approach and the direct
annotation of metagenome data by MoP-Pro have a high correspondence. Detailed investigations
have shown that the Tax4Fun predictions produce very similar biological findings as reported in
the original publication for the functional annotation of the metagenome data samples.

Tax4Fun provides valuable insights into the functional and metabolic repertoire of microbial
communities for which only 16S rRNA surveys are available. Furthermore, microbial communi-
ties can be efficiently sampled with the cost-effective 16S rRNA strategy and conclusions about
both the taxonomic and functional properties can be drawn. In two-stage study designs (see
Section 1.1.3), the functional properties can be used for targeted in-depth second-stage profiling
sample selection. All in all, the explanatory potential of 16S rRNA studies is increased with the
new Tax4Fun approach.
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5.2 Limitations of the prediction of functional capacities
using the taxonomic profile for approximation

The nested MoP model and the Tax4Fun approach provide a fast estimation of functional and
pathway abundances from metagenome and 16S rRNA data. Both studies demonstrated that
knowing “Who is in there?” may serve as a proxy for the substantial question “What are they
doing?”. However, both the MoP-Pro and Tax4Fun approach use a KEGG based taxonomic
profile restricted to prokaryotes for linear combination with pre-computed functional or metabolic
reference profiles. The reference profiles again are limited to KEGG Orthologs and Pathways
for which an annotation in at least one prokaryotic organism exists. Since the reference data is
restricted to prokaryotic annotations, the models exclude the annotation of the eukaryotic or viral
subset of a microbial community. Thus, both approaches do not infer capabilities restricted to
viral or eukaryotic members of a microbial community.

In addition, the approach is limited to known capacities of the KEGG reference organisms.
Therefore, potentially exclusive functions encoded in unknown organisms cannot be revealed.
This is reflected by the number of sequences that lack a functional annotation or cannot be
assigned to a reference organism. Typically, one-third of the metagenome sequences lacks a
reference genome and about half of the genes miss a known function [62, 149, 204, 218, 219].
The majority of the sequences are hypothetical or conserved hypothetical genes. Therefore, the
analysis of microbial communities is affected by the restriction of functional prediction to genes
with known function and the large number of organisms that have not been cultured, or even
sequenced. In the following, I discuss both points individually.

5.2.1 Measuring the reliability of taxonomic and functional predictions

Taxonomic and functional predictions of microbial communities are impaired by the number
of sequences that lack a functional annotation or cannot be assigned to a reference organism.
Different measurements can be considered for quantifying the proportion that is not included
in the taxonomic or functional characterization. For the nested MoP model, we proposed the
estimation of the taxonomic abundances by applying Taxy or Taxy-Pro. For Taxy and Taxy-Pro,
the fraction of oligonucleotides unexplained (FOU), the fraction of sequences unassigned (FSU),
and the fraction of domain hits unexplained (FDU), respectively, were introduced which are
important indicators of the reliability of the functional and taxonomic abundance estimates.
Generally, the lower the value of one of these indicators, the more we can rely on the taxonomic
profile. In Taxy-Pro, the FSU corresponds to the amount of sequences without Pfam domain
hits. A corresponding measure can be applied to the direct MoP model approach. Here, the
proportion of sequences without significant hits to the KEGG Orthologs can be used as measure
of uncertainty for the underlying functional profile. The smaller the number of sequences used to
estimate the functional abundance profile, the higher the uncertainty of the subsequent metabolic
estimates.

For Tax4Fun, both the taxonomic classification rate of 16S rRNA sequencing reads and the
amount of classified sequences mapping to the prokaryotic KEGG reference organisms have
to be taken into account. The quality of a 16S rRNA data analysis pipeline, e.g. QIIME or
SILVAngs, can be determined in terms of the fraction of sequences classified. Further, the fraction
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of sequences that contribute to the functional predictions must be determined. For Tax4Fun, the
corresponding measure is termed fraction of taxonomic units unexplained (FTU) which reflects
the amount of sequences assigned to a taxonomic unit and not transferable to KEGG reference
organisms.

If the quality of one of these measures is completely insufficient for a description of a microbial
community in terms of taxonomic or functional abundances, the direct and nested metabolic
mixture model as well as the Tax4Fun approach become inadequate. For example, the highly
diverse soil data samples show a very poor taxonomic description using SILVAngs. Only 0.02
percent of the reads can be taxonomically assigned. From these only 4.78 percent can be used for
functional annotation using the Tax4Fun approach. Likewise, the functional annotation of the
soil metagenome sequence data show a low fraction of annotated sequences. For both datasets,
a relatively small amount of sequences is used for functional inference. The poor coverage
may indicate a large proportion of unknown functions and organisms in the soil datasets which
is consistent with the commonly described complexity and heterogeneity of soil ecosystems
[220]. In contrast, the HMP data samples exhibit a very high taxonomic and functional annotation
coverage for both the 16S rRNA and metagenome datasets. In the case of HMP, the measurements
indicate a good coverage with the existing reference organisms and thus a reliable prediction.
Consequently, the measurements described above have to be taken into consideration in order to
assess the confidence of the predictions. In case one of the measurements indicates an unreliable
prediction, the derived profiles should be treated with caution.

5.2.2 The need for reference genomes: closing the gap of the unknown
microbial diversity

The coverage of sequencing reads in terms of functional and taxonomical annotation is limiting
the analysis of microbial communities. Often a substantial fraction of metagenome sequence
reads cannot be assigned to a function or organism. In addition, a number of organisms are
only known by their 16S rRNA gene sequence. Both issues re-emphasize the narrow picture
of the microbial diversity through culture-based methods. Reference genome sequences are
needed for both the taxonomic and functional annotation of metagenome data as well as for the
inference of functional properties from 16S rRNA data. Especially, MoP-Pro and Tax4Fun will
highly benefit from a higher coverage of the microbial diversity since the functional prediction is
derived from the annotation of available reference organisms. In particular, the transformation of
16S rRNA sequence identifiers to KEGG reference organisms is highly affected by the limited
number of available reference organisms. For example, the Tax4Fun association matrix attempts
to link 3,808,884 SSU Parc aligned rRNA sequences (SILVA Release 115) to 2045 sequenced
prokaryotic KEGG genomes (KEGG Release 64.0) with functional annotation of high quality.
However, one must consider that not every 16S rRNA sequences correspond to a species since
the copy number per genome vary from 1 to 15 or more copies [221] which commonly differ by
more than 1% [222]. However, it is estimated that the amount of 16S rRNA variants is 2.5 fold
greater than the number of bacterial species [223]. Despite these facts, a substantial dimensional
difference of sequenced organisms and those only known by their 16S rRNA gene sequence is
currently existing.

Systematic investigations are indispensable in order to increase the coverage of the microbial
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diversity and to eliminate the cultivation bias towards easy grown microorganisms. Initiatives
such as the HMP [224] and the Genomic Encyclopedia of Bacteria and Archaea (GEBA) [225]
produce reference genomes by the thousands. These and other initiatives make use of the
inherent advantages of the new sequencing technologies. The high throughput and low cost
led to an increase in the production of "complete" genome sequences. More than 500 new
species are now described annually [226, 227]. However, a general change from a few finished
high-quality genomes to a high number of draft genomes can be found [228]. Nevertheless, this
procedure helps to close the gap of under-represented organisms along with the contribution to
the improvement of the annotation of microbial communities.

Additionally, it is often not possible to differentiate between closely related species due to the
restricted resolution of the 16S rRNA gene. This limits both the diversity estimates obtained by
OTU construction and the calculation of the functional or metabolic abundances by the taxonomic
composition [229, 230]. For example, if the taxonomic resolution at species level is poor and a
16S rRNA gene sequence is assigned to the genus Pseudomonas this can indicate the presence of
either a beneficial or pathogenic bacterium in a sample with distinct functional properties [231].
Another striking example of a limited resolution of the 16S rRNA sequence occurs in the two
strains of Escherichia coli, O157:H7 and K-12. Although both Escherichia coli strains have
extremely closely related 16S rRNA sequences, there is considerable variation in the genomes.
For these two strains, it is reported that they differ in hundreds of genes and have significant
differences in their major functions [232, 233].

5.2.3 Beyond the functional and metabolic potential

Although a wealth of knowledge can be gained from metagenomic and amplicon-based commu-
nity characterizations, these methods only provide information about the functional potential.
The inherent limitations of the techniques itself constitute one of the biggest drawbacks. Using
metagenomics or the taxonomic composition of a microbial community, all genes or members
serve as basis for the functional and metabolic abundance estimation. However, a large proportion
of the microorganisms in a given environment is inactive at a particular time. In addition, not
only living but also dead cells are considered which can make up a considerable proportion of
a sample. For instance, in fecal samples more than half of the cells are non-viable or heavily
damaged [234]. Further, the techniques cannot distinguish between expressed and non-expressed
genes in a sample [235]. Because both active and inactive microorganisms and expressed and
non-expressed genes are used for the calculations, the approaches are incapable of displaying
the actual metabolic activity. Therefore, metagenomics in general and especially the MoP(-Pro)
and Tax4Fun approach give insights into the functional and metabolic potential of organisms in a
selected habitat. Whether identified metabolic pathways are functional, to what extent, and under
which conditions remain to be quantified. Therefore, targeted methods that are able to detect the
expressed genetic information, proteins, and metabolites of a microbial community are necessary
to go beyond the potential capacities.
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Outlook: metatranscriptomics, metaproteomics, and metametabolomics

Recently, more complementary meta’omics technologies became available to describe entire
ecosystems. These complementary techniques, e.g. metatranscriptomics, metaproteomics [236],
and metametabolomics, are more likely to consider the active constituents of the microbial
consortia, thus able to reveal the dynamics of genes, proteins, and metabolites in an environment.

Transcriptional level control of gene expression enables microorganisms to rapidly adapt
to changing environmental conditions. In metatranscriptomics, the whole transcriptome of a
microbial community is analyzed [237]. By investigating the actively transcribed ribosomal
and messenger RNA (mRNA), metatranscriptomics can reveal which microbial organisms are
active and which genes are actually being expressed in different environments and to what
extent. However, metatranscriptomics faces several methodological challenges which are absent
in metagenome-based studies. In contrast to DNA, the RNA is highly unstable with a short
half-life and a rapid turnover rate [238, 239] which makes recovery of high-quality RNA from
environmental samples challenging. Only a small fraction of the transcripts represent mRNA
derived sequences. The majority of the extracted RNA comprises ribosomal RNA (rRNA)
molecules [240]. However, only protein coding sequences matter to reveal which genes and
pathways are expressed under a given condition. Therefore, an enrichment or separation of
mRNA from the total RNA pool is necessary [241]. Further, metatranscriptomics as much is
affected as metagenomics by the large fraction of reads without significant hits to any known
gene sequence in the databases [149].

Given that proteins are much more stable than mRNAs [242], a proteome-based analysis is
expected to provide a more accurate view of the functionality of a given environment [243].
In metaproteomics, the complete proteome of an environmental sample under a given set of
conditions at a specific point in time is studied [244]. In metaproteomics, proteins are extracted
from a mixed microbial community sample and quantified using two-dimensional polyacrylamide
gel electrophoresis and mass spectrometry [236]. Here, too, the drawback of metaproteomics is the
low extraction yield and the lack of reference sequences in databases for functional assignments
of protein fragments. Due to the complexity of protein extraction, separation and identification,
metaproteomics is still in its infancy and has less widely been used than metagenomics and
metatranscriptomics [74, 245, 246].

Further, the quantification of community metabolites by metametabolomics is a promising
approach [247, 248]. Metametabolomics could provide a qualitative and quantitative measure
of all low molecular-weight molecules involved in metabolic reactions and required for the
maintenance, growth, and function of a microbial community. Changes at the metabolome are
expected to be amplified relative to changes at the transcriptome or proteome level, and thus the
metabolome can provide informative details about key metabolic pathways.

In conclusion, metagenomic studies provide a snapshot of the genetic composition of a
microbial community. Combining metagenomic studies with metatranscriptomic, metaproteomic,
or metametabolomic studies offers additional insights into the dynamics of microbial communities,
e.g., [240]. However, integration of these vast and diverse meta’omic datasets will be challenging.
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5.3 Benefits of the unsupervised identification of related
metagenomes

A wealth of knowledge can be gained from the metagenomic and amplicon-based community
characterizations. Beyond the functional capacities and taxonomic composition of a single
community, the similarities as well as dissimilarities of microbial communities are subsequently
investigated. Replicated experimental design and large-scale projects with multiple samples in
different conditions or environments allow for robust statistical analysis. However, not only
these specifically designed projects, but also existing data repositories provide a rapidly growing
source of information for comparative studies. For example, the popular web-based MG-RAST
server [162], which serves as data repository and analysis pipeline, contains 140250 metagenome
datasets of which 20289 are publicly available (as of October 16th, 2014). Finding samples
similar to a given query sample is becoming a central operation. In particular, the identification
of closely related metagenome datasets to a newly obtained dataset is of growing importance for
downstream comparative analysis.

A conceivable starting point for selecting metagenome datasets is the associated metadata
describing the environmental context and the experimental methods of a sample. However,
supplementary high-quality metadata is often not available or not in a standardized fine-grained
format. Metagenomic database retrieval and comparisons between datasets would largely benefit
from standards for metadata collection and high-quality metadata. In this regard, the Minimum
Information about a Metagenome Sequence (MIMS) [249] specification is increasingly accepted.
However, a large number of currently available metagenome data lacks this information. Although
the existing habitat annotations are used for sample selection, it is unclear which metagenomes
are good neighbors for a comparative analysis, in particular, if a habitat label is rather abundant
within the database (see Section 1.4.2).

Thus, unsupervised methods are desirable for the identification of related metagenomes.
Although, the computation of similar datasets needs to be reasonably fast. The identification
of similar metagenomes by means of all pairwise sequence comparisons between a new query
dataset and all metagenomes in a repository is prohibitively expensive. In contrast, feature profile-
based comparison avoids computationally expensive pairwise sequence comparisons. However,
the feasibility of profile-based comparison starts from the premise that the feature profiles itself
are efficiently computable and captures biologically meaningful information gathered during
the preceding non-comparative analysis. For example, the taxonomic, functional, and pathway
profile is normally already calculated to answer the questions “Who is in there?” and “What are
they doing?”, thus the further use avoids additional computational costs. However, so far, it was
unclear what kind of features and which metrics are most suitable for the identification of closely
related metagenomes. In this work, I addressed this topic in the context of a nearest neighbor
identification.

In Chapter 3, I performed a leave-one-out cross-validation using a k-nearest-neighbor search.
The accuracy of the different feature profiles was assessed in terms of the fraction of profiles in
the neighborhood with the same habitat label as the query profile. Here, I used two metagenome
collections in order to evaluate the k-nearest-neighbor search. First, I made use of the HMP
dataset collection which provides high-quality sequencing data and a consistent habitat annotation
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of metagenomes in terms of five distinct body sites. Second, I utilized the “metagenome universe”
dataset collection of 1745 publicly available metagenomes and their associated assignments in 12
habitats [209]. The neighborhood accuracy varied on average from 90% to 97% for the HMP and
from 83% to 87% for the metagenome universe collection. Presumably, both the high-quality
sequencing data and the consistent habitat annotation of the HMP collection have a beneficial
effect on neighborhood detection. It is easily conceivable that methodological differences and
biases along the analysis steps lead to the poorer neighborhood accuracy. In the metagenome
universe collection different DNA extraction, sequencing technologies, etc. were applied. Related
to the DNA extraction protocol and read length, it has previously been reported that both factors
influence the quantitative description of a metagenome [250], thus presumably affecting the
subsequent k-nearest-neighbor search. Nevertheless, as reported in [250] and revealed in Chapter
3, the methodological variations do not appear to limit global comparisons.

Notably, the differences in accuracy cannot be attributed to a particular profiling method or
metric, but rather to the quality of the currently used habitat labels. For example, for well-
defined labels a neighborhood accuracy of 100% can be achieved. In contrast, a large fraction
of samples from the “Skin” and “Host-associated” category were misassigned to the “Airways”
and “Feces/GI tract” category, respectively. Presumably, there is a natural overlap of airways-
and skin-associated microbial communities due to the proximity of the sampling location of
both body regions. Also, the non-mutually exclusive habitat categories “Host-associated” and
“Feces/GI tract” lead to a systematical confusion. The results indicate that the categories “Host-
associated” and “Feces/GI tract” are not mutually exclusive or at least are not well represented in
terms of profile similarity. To exemplify, depending on the study objective, the investigator can
assign to an animal fecal samples the label “Feces/GI tract” focusing on the type of sample or
“Host-associated” focusing on the sample source.

Moreover, the results reveal another application area of the k-nearest-neighbor search. Apart
from the initial intention to identify similar datasets for comparison and mislabeled datasets,
the k-nearest-neighbor search also appears well-suited for the definition and verification of
non-overlapping habitat categories. Identified non-mutually exclusive categories, as in the case
of “Host-associated” and “Feces/GI tract”, should be reconsidered. However, as long as this
issue is not addressed and categories are overlapping, metadata should not be considered for
the identification of similar metagenomes. In contrast, the k-nearest-neighbor search considers
all samples irrespective of the habitat labels. Thus, for the currently existing habitat labels, the
k-nearest-neighbor search is more general and may even provide the potential for the discovery
of novel or unexpected relationships.

The accuracy differences are mainly attributed to the quality of the currently used habitat labels,
thus a wide range of profiles and distance metrics can be applied for the k-nearest-neighbor search.
Since the functional, taxonomic, and metabolic profiles are already calculated to answer the
questions “Who is in there?” and “What are they doing?”, the further utilization of the computed
profiles reduces the additionally required computational costs considerably. However, one should
select a feature representation and distance measures that allow a convenient interpretation in
terms of the underlying features and subsequent in-depth analyses. Given the fact that taxonomic,
functional, and metabolic features provide a biologically more meaningful representation than
oligonucleotide-based features, those features should be preferred. Albeit, the MoP-Pro approach
shows very little variation of the accuracy with respect to the underlying profile distance measure.
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Hence, the MoP-Pro approach not only provides a reasonably rapidly calculable pathway profile
but also a suitable feature profile for the neighborhood detection. Further, the profiles can
be utilized in downstream analysis to identify similarities and differences between samples
at the pathway level. In conclusion, the k-nearest-neighbor search utilizing a wide range of
biological feature profiles and metrics enables an efficient, automatic identification of additional
metagenomes for comparative analyses. In addition, the neighboring habitat labels can provide
an indication of mislabeled or contaminated datasets.

5.4 CoMet-Universe - a web-server for comparative analysis
of metagenomes based on protein domain signatures

In order to make the MoP-Pro approach and the k-nearest-neighbor search accessible for the
scientific community, I integrated them into the CoMet-Universe web server (http://comet2.
gobics.de). The CoMet-Universe web server is especially developed for high-performance
comparative metagenomics and integrates several tools for the analysis and comparison of user-
supplied sequence data. Beyond the analysis of uploaded metagenome data, the user has the
possibility to compare a particular metagenome with more than thousand pre-computed profiles
from a broad variety of publicly available datasets or with previously uploaded data from the
same user.

The ultrafast protein classification (UProC) tool (http://uproc.gobics.de/) provides
the basis for all analyses implemented in CoMet-Universe. UProC enables a computationally
efficient protein domain classification according to the Pfam database. Using UProC, the pro-
cessing of large amounts of unassembled short read data is orders of magnitude faster than
with a conventional BLAST-based approach. Further, the analysis pipeline implements the
mixture modeling approaches Taxy-Pro and MoP-Pro for taxonomic and metabolic profiling of
metagenomic sequences. Due to the computational efficiency of all prediction methods used,
the user-supplied multi-FASTA sequence files can be processed by the CoMet-Universe engine
within a few minutes. On that account, CoMet-Universe is well-suitable to cope with large
collections. Subsequent to the fast calculation of the functional, taxonomic, and metabolic profile,
the user can analyze the annotated metagenomics datasets by the supplied graphical and tabular
summaries including interactive Krona charts [251] for profile visualization.

Further, I included the visualization method proposed in [209]. With the help of the visualiza-
tion of the metagenome universe in a 2D scatter plot the user has the possibility of a final quality
control of the dataset by inspecting the neighbors and their associated annotations. As discussed
in Chapter 3, the inspection may reveal unexpected flaws of the sampling, sequencing or data
processing procedures. For instance, neighbors with unexpected habitat labels may indicate some
contamination of the sample.

In addition to the analysis of user-supplied metagenome shotgun sequence data, CoMet-
Universe supports the comparative analysis. The incorporation of precomputed profiles from
publicly available metagenome datasets allows to compare a selected metagenome directly
with other metagenomes. In order to facilitate the selection of interesting related metagenome
datasets, the results of the k-nearest-neighbor search based on Pfam protein domain frequencies
can be used as starting point for detailed comparisons. After selection of appropriate and
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interesting metagenomes for comparison, the statistical differences between the selected samples
are computed. For analysis of statistical differences between the selected metagenome samples,
the number of different Pfam domain families between two samples is used to determine highly
variable Pfam families across all samples and statistically enriched GO terms associated with
these families. Furthermore, the significantly differing domain families are used to perform
multi-dimensional scaling (MDS) and a hierarchical clustering analysis (UPGMA).

At the moment, CoMet-Universe is designed to perform the whole annotation workflow after
uploading the metagenome sequence data. Especially with the increasing size of data the upload
of the data becomes increasingly difficult. The reduction of the upload size of the data is a
promising approach. The direct upload of the Pfam protein domain abundances suggests itself
since they are the basis for all further analyses and UProC is available as command line tool. This
would significantly reduce the data transmission and storage. Therefore, it would be necessary
to extend the internal CoMet-Universe engine in order to be able to handle both data types,
multi-FASTA sequence files as well as files containing the domain frequencies. The prediction
of KEGG Orthologs by CoMet-Universe is another striking point since UProC can also provide
KEGG Orthologs classification, in principle. Thus, the integration would enable the user to get
another very comprehensive functional overview about the functional properties of a metagenome.
Further, the KEGG Ortholog profiles could be used to apply the direct MoP model approach
instead of the currently implemented MoP-Pro approach. Following completion of the evaluation
of UProC regarding the classification performance for KEGG Orthologs this additional feature
would further increase the value of CoMet-Universe.

CoMet-Universe is well-suitable for scientists without extensive programming skills. However,
for analyzing a collection of newly sequenced metagenome datasets the one by one data upload
and subsequent download of all computed results become a laborious task. For large-scale
datasets and scientists with programming skills, it is preferable to offer stand-alone tools which
facilitate the integration of the corresponding methods in specialized local workflows. In addition,
locally installed pipelines allow a much more flexible exploratory data analysis and comparison.
Therefore, the functionality of MoP-Pro and Tax4Fun is additionally available as an open-source
R Package. Tax4Fun is applicable to output as obtained through the SILVAngs web server
(https://www.arb-silva.de/ngs/) or the application of QIIME against the SILVA
database [102]. The corresponding package allows the combination with an adapted R-based
workflow, featuring more sophisticated tools for graphical representation and statistical testing.
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6 Summary and conclusion

Metagenomics, as a culture-independent approach, enables the exploration of complex microbial
communities by massive sequencing of community-specific DNA. The analysis of metagenomic
sequence data involves the functional classification of sequencing reads. The resulting functional
profile typically comprises the frequencies of several thousand functional categories which are
often summarized in terms of easily understandable biological pathways. For the functional
characterization, a homology search is usually utilized which requires a considerable amount
of CPU-time even for a moderately sized dataset. This computational drawback is unlikely to
be addressed simply by scaling up computational resources and affects both the functional and
subsequent metabolic characterization. Furthermore, the ambiguous assignment of functions to
pathways impairs the quantification in terms of biological pathways.

Several approaches have been proposed to describe the metabolic potential of microbial
communities. However, none of these approaches provides a strict probabilistic description of
metagenomic sequence data and thereby may overrate the metabolic capabilities. Furthermore,
all existing methods assume as input a functional profile. So far, the HUMAnN tool has been the
most sophisticated approach implementing several filtering, normalization, and smoothing steps
to adjust pathway abundances and to avoid overestimation.

In this work, I developed an efficient and statistically reasonable method for characterizing
the metabolic potential in metagenomic samples. In comparison to other metagenomic pathway
profiling methods, the expensive computation of the functional profile is avoidable. The mixture
model-based approach provides a shortcut to estimate the pathway profile of the metagenome by
a linear combination of reference profiles. The nested MoP model approach provides a concise
summary of the functional variation across many samples in reasonable time. This enables the
fast identification of relevant metabolic differences.

Further, I investigated the computation of the functional profile from 16S rRNA sequence
data. By applying Tax4Fun, the previously restricted analysis of the taxonomic composition is
extended by the functional capabilities. In contrast to the PICRUSt approach, Tax4Fun does not
depend on the topology of a phylogenetic tree but close homologies between 16S rRNA gene
sequences. Further, PICURST applies the greengenes database, whereas Tax4Fun utilizes the
high quality SILVA database. Further, Tax4Fun narrows down the inference to reliable linkages
and does no attempt to links all OTUs to the next sequenced organism. This moderate inference
is especially beneficial for analyzing microbial communities with a high proportion of so far not
well-characterized phyla where phylogenetic distances to the next sequenced organism can be
large. Altogether, the Tax4Fun evaluation shows a good approximation of the functional profiles
and outperforms PICRUSt on all test datasets.
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Both the Tax4Fun and nested MoP model approach are provided as R Package in order to
facilitate the integration into existing analysis pipelines and further statistical analyses. Further,
CoMet-Universe provides an interactive user interface for exploratory analysis and comparison
of metagenome data. Here, the comparison with more than thousand precomputed profiles in
the CoMet database is facilitated by the implemented k-nearest-neighbor search approach. The
integration of the k-nearest-neighbor search into metagenome annotation and comparison systems
is beneficial to automatically identify additional metagenomes for comparative analyses as well as
to detect mislabeled or contaminated datasets by unexpected neighboring habitat labels. Overall,
CoMet-Universe and the Tax4Fun R Package are valuable tools for the analysis of microbial
communities. Both tools can process large-scale datasets in reasonable time and are well-suitable
for answering the fundamental questions “What are they doing?” and “What are the differences
that make a difference?” for the growing amount of sequence data from microbial communities.
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