
Online Resource Management

Dissertation
zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

Doctor rerum naturalium
der Georg-August-Universität Göttingen

im Promotionsprogramm Mathematik
der Georg-August University School of Science (GAUSS)

vorgelegt von
Morten Tiedemann

aus Stade

Göttingen, 2015

Betreuungsausschuss

Prof. Dr. Stephan Westphal, Institut für Angewandte Stochastik und Operations Re-
search, Technische Universität Clausthal

Prof. Dr. Anita Schöbel, Institut für Numerische und Angewandte Mathematik, Georg-
August-Universität Göttingen

Mitglieder der Prüfungskomission

Referent: Prof. Dr. Stephan Westphal, Institut für Angewandte Stochastik und Opera-
tions Research, Technische Universität Clausthal

Korreferent: Prof. Dr. Sven O. Krumke, Fachbereich Mathematik, Technische Univer-
sität Kaiserslautern

Weitere Mitglieder der Prüfungskomission:

Prof. Dr. Jutta Geldermann, Professur for Produktion und Logistik, Georg-August-
Universität Göttingen

Jun.-Prof. Dr. Andrea Krajina, Institut für Mathematische Stochastik, Georg-August-
Universität Göttingen

Prof. Dr. Gerlind Plonka-Hoch, Institut für Numerische und Angewandte Mathematik,
Georg-August-Universität Göttingen

Prof. Dr. Anita Schöbel, Institut für Numerische und Angewandte Mathematik, Georg-
August-Universität Göttingen

Tag der mündlichen Prüfung: 16.04.2015

Contents

1 Introduction 1
1.1 Preliminaries . 2
1.2 Outline and Contribution . 4
1.3 Credits . 7
1.4 Acknowledgement . 7

2 Online Knapsack Problems with Dynamic Capacity 9
2.1 Introduction . 9

2.1.1 Previous Work . 10
2.2 Problem Definition . 11
2.3 Lower Bounds . 13

2.3.1 A Lower Bound for Deterministic Online Algorithms 13
2.3.2 A Lower Bound for Randomized Online Algorithms 15

2.4 Competitive Algorithms . 17
2.4.1 A Greedy Algorithm . 18
2.4.2 A Balancing Algorithm . 18
2.4.3 A Randomized Greedy Algorithm 20

2.5 Limited Weights . 24
2.5.1 Deterministic Online Algorithms 25
2.5.2 Randomized Online Algorithms . 27

2.6 Increasing the Power of the Online Player 28
2.6.1 Resource Augmentation . 29
2.6.2 Removable Items . 30
2.6.3 Bounded Values . 43

2.7 Empirical Analysis . 45
2.8 Extension to Multiple Knapsacks . 49
2.9 Independent Knapsacks . 50

iii

iv

2.9.1 A Lower Bound for Deterministic Online Algorithms 52
2.9.2 Competitive Online Algorithms . 53

2.10 Conclusion and Future Research . 56

3 Multi-Objective Online Optimization 57
3.1 Introduction . 57

3.1.1 Previous Work . 57
3.2 Competitive Analysis for Multi-Objective Online Algorithms 58

3.2.1 Multi-Objective Online Problems 59
3.2.2 The Competitive Ratio and Competitiveness 59

3.3 The Multi-Objective Time Series Search Problem 62
3.3.1 Worst-Component Competitive Analysis 63
3.3.2 Mean-Component Competitive Analysis 70
3.3.3 A Randomized Bi-Objective Online Algorithm 73

3.4 The Bi-Objective Ski Rental Problem . 81
3.5 The Bi-Objective 2-Server Problem in the Plane 87
3.6 The Multi-Objective k-Canadian Traveller Problem 94
3.7 Relations between Single- and Multi-Objective Online Problems 99
3.8 Yao’s Principle for Multi-Objective Online Problems 104
3.9 Conclusion and Future Research . 109

4 The Linear Search Problem with Turn Costs 111
4.1 Introduction . 111
4.2 Tradeoff between Competitive Factor and Turn Costs 112
4.3 Conclusion . 117

5 Optimization in the Wood Cutting Industry 119
5.1 Introduction . 119
5.2 The Cutting Problem . 121

5.2.1 Classification of the Cutting Problem 123
5.3 Modeling the Deterministic Cutting Problem 124

5.3.1 Variables and Constraints . 124
5.3.2 Objectives . 128
5.3.3 Computational Results . 130

5.4 Robust Cutting Patterns . 131
5.4.1 Uncertain Multi-Objective Optimization 131
5.4.2 A Simplified Version of the Multi-Objective Cutting Problem . . . 133
5.4.3 Minmax Robust Efficiency Applied to the Optimiziation Model . . 135

5.5 Conclusion and Future Research . 139

Bibliography 141

1
Introduction

Decision making is part of our daily routine. Some decisions are easy to make, others
carry you off into an energy-sapping tedious decision making process; and still others
just have to be made, even though you cannot decide which option is the best.

Imagine you want to sell your car and you are facing a sequence of offers by potential
buyers. You have to accept or reject an offer immediately since the potential buyers are
not willing to wait for a decision at a later time and your goal is to maximize the selling
prize for your car. The decision about each offer is a double-edged sword: If you decide
to reject an offer, you gain the possibility to come across an offer with a higher price, but
you bear the risk that all following offers feature a lower price. Otherwise, if you decide
to accept an offer, you obtain the offered price, but you miss out on the opportunity of
better offers in the future.

The decision making problem presented above features certain characteristics: For
one thing, a decision about the optimal use of a resource (the car) has to be reached.
For another thing, the decision has to be finalized without knowledge of future events (if
you would know all offers and the corresponding prices in advance, the optimal decision
would be to accept the highest price).

If input data for a decision problem is modeled as a sequence that is revealed step by
step and decisions have to be made without any knowledge of future inputs, the decision
problem is referred to as an online problem and an algorithm for such a problem is called
online algorithm. In this thesis, the well-established concept of competitive analysis is
applied in order to measure the quality of an online algorithm. Here, the quality of an
online algorithm on each input sequence is given by comparing its objective value to
the objective value of an optimal algorithm that has complete knowledge of the input
sequence in advance.

Many resource management problems are indeed online problems in that they require
immediate decisions based on uncertain data, such as stock trading, portfolio selection,
routing, or search problems. By means of this thesis, we aim at providing better in-
sight into decision processes related to resource management problems without secure
information about the future, i.e., online resource management.

1

2 1. Introduction

1.1 Preliminaries

In this section, we give an introduction to the field of online optimization, based on
(Borodin and El-Yaniv, 1998), and provide some basic definitions used throughout this
thesis. Other definitions, for example, definitions related to the field of multi-objective
optimization, are given when necessary in the corresponding chapters.

When considering a mathematical optimization problem, usually complete knowledge
of all input data is assumed. However, data is often entailed with uncertainty and
decisions have to be made without complete knowledge of all necessary information.
In online optimization, input data is modeled as a sequence that is revealed step by
step to an algorithm. With each new bit of information, the algorithm has to make a
decision that will have an impact on the quality of its overall solution. Additionally, each
decision must be made without knowledge of future items of the input sequence. Such
an algorithm is labeled as online algorithm.

The analysis of online algorithms is mainly motivated by the question: “Which is the
better (or the best) algorithm for a given problem?”. The concept of competitive analysis
has become a well-established theory for measuring the quality of an online algorithm.
Here, the quality of an online algorithm on each input sequence is given by comparing its
objective value to the objective value of an optimal offline algorithm that has complete
knowledge of the input sequence in advance. Since all input sequences are taken into
account in order to measure the quality of an online algorithm, competitive analysis is a
worst-case measure.

We proceed by giving the formal definition of a competitive online algorithm for a
minimization problem. The cost of an online algorithm alg associated with the input
sequence σ is denoted by alg(σ) and the cost of an optimal offline algorithm on the
input sequence σ is denoted by opt(σ).

Definition 1.1.1 (Deterministic Competitive Algorithm). A deterministic online algo-
rithm alg is called c-competitive for a constant c ≥ 1 if there is a constant α such
that

alg(σ) ≤ c · opt(σ) + α

for all request sequences σ.

Definition 1.1.1 is given for minimization problems. For maximization problems, the
inequality in Definition 1.1.1 is replaced by alg(σ) ≥ 1/c · opt(σ) + α. The competitive
ratio of a deterministic online algorithm is defined as the infimum over all c such that
the algorithm is c-competitive.

An illustrative depiction of analyzing online algorithms is given by viewing the prob-
lem as a game between an online player (representing the online algorithm) and a mali-
cious adversary (representing the optimal offline algorithm). The online player runs the
algorithm on a sequence presented by the adversary, whereby the adversary chooses the
sequence in order to maximize the competitive ratio.

1.1. Preliminaries 3

In order to enhance the competitive edge of the online player, the online algorithm
can be based on random decisions: A randomized online algorithm is a probability dis-
tribution over deterministic algorithms. The solution quality obtained by a randomized
online algorithm is measured by considering its competitive ratio against an oblivious ad-
versary, who must construct the input sequence in advance based only on the description
of the online algorithm but before any moves are made:

Definition 1.1.2 (Competitive Algorithm against an Oblivious Adversary). A random-
ized online algorithm alg, distributed over a set {algy} of deterministic algorithms, is
c-competitive (against an oblivious adversary) for a constant c ≥ 1 if there is a constant
α such that

EY [algy(σ)] ≤ c · opt(σ) + α

for all request sequences σ. Here, EY [·] denotes the expectation with respect to the prob-
ability distribution Y over {algy} that defines alg.

As above, Definition 1.1.2 is given for minimization problems. For maximization
problems, the inequality in Definition 1.1.2 is replaced by EY [algy(σ)] ≥ 1/c · opt(σ) +
α. The competitive ratio of a randomized online algorithm is analogously defined as
the infimum over all c such that the algorithm is c-competitive (against an oblivious
adversary) and is denoted by Robl (alg).

The competitive ratio of a randomized online algorithm depends on the adversary’s
knowledge of the randomized decisions of the online algorithm and the adversary’s ability
to react to them. In addition to the model of the oblivious adversary, there are two
further well-known adversary models in the literature of online optimization, namely
the adaptive-online and the adaptive-offline adversary: The adaptive-online adversary
chooses the next request based on the online algorithm’s decisions so far and computes
its solution in an online manner, whereas the adaptive-offline adversary also chooses the
next request based on the online algorithm’s decisions so far, but computes its solution for
the complete resulting sequence. However, in this thesis, we only consider the oblivious
adversary.

For the computation of lower bounds on the competitive ratio of any randomized
online algorithm, we make use of Yao’s principle. According to this, it suffices to choose
a distribution over input sequences and show that no deterministic online algorithm
performs well in expectation in order to establish a lower bound on the competitive ratio
of any randomized online algorithm. In the following, we formally state Yao’s principle
for minimization problems. The proof is given in Yao (1977).

Theorem 1.1.1 (Yao’s Principle for Minimization Problems (Yao, 1977)). Let alg be
any randomized online algorithm for an online minimization problem. Let {algj : j ∈ J }
denote the set of all deterministic online algorithms for this problem and let p be any
probability distribution over request sequences {σi : i ∈ I}. Then,

Robl (alg) ≥ max

{
min
j∈J

Ep[algj(σi)]
Ep[opt(σi)]

, min
j∈J

Ep
[
algj(σi)
opt(σi)

]}
, (1.1)

4 1. Introduction

where Robl(alg) is alg’s competitive ratio against an oblivious adversary.

For maximization problems, the theorem is slightly different:

Theorem 1.1.2 (Yao’s Principle for Maximization Problems (Yao, 1977)). Let alg be
any randomized online algorithm for an online maximization problem. Let {algj : j ∈ J }
denote the set of all deterministic online algorithms for this problem and let p be any
probability distribution over request sequences {σi : i ∈ I}. Then,

Robl (alg) ≥ max

min
j∈J

Ep[opt(σi)]

Ep[algj(σi)]
, min
j∈J

1

Ep
[
algj(σi)
opt(σi)

]

 , (1.2)

where Robl(alg) is alg’s competitive ratio against an oblivious adversary.

1.2 Outline and Contribution

In the following, we give an outline of this thesis and point out the main contributions
of each chapter.

In Chapter 2, we consider an online knapsack problem with incremental capacity. In
each time period, a set of items, each with a specific weight and value, is revealed and,
without knowledge of future items, it has to be decided which of these items to accept.
Additionally, the knapsack capacity is not fully available from the start but increases by
a constant amount in each time period. The goal is to maximize the overall value of the
accepted items. This setting extends the basic online knapsack problem by introducing a
dynamic instead of a static knapsack capacity and is applicable to classic problems such
as resource allocation or one-way trading.

For the case of unit weight requests and unit incremental capacity (i.e., one addi-
tional unit of capacity in each time period), we give a deterministic T -competitive online
algorithm and a matching lower bound on the competitive ratio of any deterministic
online algorithm. For unit weights and k-incremental capacity (where k ≥ 2 additional
units of capacity become available in each time period), a deterministic (T+1)k/(2k−1)-
competitive algorithm is proposed that approaches the lower bound on the competitive
ratio of any randomized (and deterministic) algorithm for k → ∞. Moreover, a best
possible randomized algorithm with a competitive ratio of (T+1)/2 is developed.

For the case that general nonnegative weights are allowed, we show that no compet-
itive online algorithm exists for the problem. However, for limited weights in {1, . . . , k}
and k-incremental capacity, we present a competitive deterministic online algorithm and
a lower bound on the competitive ratio of any deterministic online algorithm that ap-
proaches the competitive ratio of the proposed algorithm for k →∞.1 For the randomized
case, we present a 3 ((T+1)/2)-competitive online algorithm matching the lower bound of

1Note that, for unit incremental capacity k = 1, the case of limited weights in {1, . . . , k} coincides
with the unit weight case, so the results shown for unit weights carry over to the limited weight setting
if k = 1.

1.2. Outline and Contribution 5

unit weights limited weights

k = 1 k ≥ 2 k = 1 k ≥ 2 removable items

det.

LB T T+1
2 T

⌊
Tk

b k2c+1

⌋ √
2

UB T (T+1)k
2k−1 T 2T − 1 3

rand.
LB T+1

2
T+1
2

T+1
2

T+1
2 –

UB T+1
2

T+1
2

T+1
2 3

(
T+1
2

)
–

Table 1.1: Main results for the online knapsack with incremental capacities: deterministic
and randomized lower and upper bounds.

(T+1)/2 up to a factor of 3. The results for the online knapsack problem with incremental
capacity are summarized in Table 1.1.

In order to achieve algorithms with competitive ratios independent of T , we study
different settings in which the power of the online player is increased. In the setting of
resource augmentation, the online player is allowed to use more resources than the ad-
versary. We show that, if there exists a c-competitive algorithm for the online knapsack
problem with incremental capacity, then resource augmentation by a multiplicative factor
of r allows for a (1 + c/r)-competitive algorithm. Then, we discuss the setting of remov-
able items, i.e., the online player is entitled to remove previously accepted items from
the knapsack in any time period, and present a 3-competitive deterministic algorithm
and a lower bound of

√
2 on the competitive ratio of any deterministic online algorithm.

Furthermore, we analyze the setting of bounded values for the online knapsack problem
with incremental capacity and unit weights, i.e., vi ∈ [m,M], and obtain a deterministic√
M/m-competitive algorithm.
In addition to these results for the single knapsack case, we show that all our al-

gorithms can be extended generically to multiple knapsacks while only increasing their
competitiveness by one.

Finally, we study the setting of independent knapsacks with differing capacities, i.e.,
in each time period a certain capacity is available independently of the available capacity
of other time periods and the accepted requests in other time periods. For this setting,
we present a 2-competitive algorithm as well as a lower bound on the competitive ratio
of any deterministic algorithm of (1+

√
5)/2.

In Chapter 3, we introduce a general framework for the competitive analysis of multi-
objective online problems which expands the known theory of competitive analysis for
single-objective online problems to the multi-objective case. The fact that solutions to
multi-objective optimization problems are sets rather than singletons as in the case of
single-objective optimization problems requires a proper adaptation of the definition of
competitiveness for multi-objective online problems.

6 1. Introduction

For c =
(
c1, . . . , cn

)ᵀ, we define a multi-objective online algorithm alg as c-competi-
tive if, for each input sequence, there exists an efficient solution to the offline problem for
which alg is ci-competitive (in the original sense) in the i-th component for i = 1, . . . , n.
Additionally, a multi-objective online algorithm alg is labeled as strongly c-competitive
if, for each input sequence, alg is ci-competitive (in the original sense) in the i-th com-
ponent, for i = 1, . . . , n, for all efficient solutions to the offline problem. For f : Rn → R,
the infimum over the set of all values f(c) such that alg is (strongly) c-competitive is
then defined as the (strong) competitive ratio with respect to f of alg.

Furthermore, we analyze the multi-objective time series search problem by means of
the introduced notions of competitiveness with respect to functions f1(c) = maxi=1,...,n ci,
f2(c) = 1

n

∑n
i=1 ci, and f3(c) = n

√∏n
i=1 ci, and present deterministic algorithms featuring

the best possible (strong) competitive ratios. Additionally, a randomized algorithm that
improves on the best possible deterministic competitive ratio is presented.

The concept of competitive analysis of multi-objective online problems is further
applied to multi-objective extensions of some well-known online problems, namely a bi-
objective variant of the ski rental problem, the bi-objective 2-server problem in the plane,
and the multi-objective k-Canadian traveller problem. We present multi-objective deter-
ministic online algorithms for these problems featuring best possible deterministic com-
petitive ratios. Finally, we discuss general relations between single- and multi-objective
online problems and extend Yao’s principle to multi-objective online problems.

In Chapter 4, we consider the linear search problem with turn costs: A searcher starts
from the origin and tries to find an immobile object located on the real line in minimum
time. Each time the searcher changes direction, a cost of d is incurred. Demaine et al.
(2006) consider the sum of searching time and turn cost as objective function and present
an algorithm which guarantees a solution smaller than 9 · opt + 2d. The additive term 2d
is minimal subject to the (optimal) competitive ratio 9. As mentioned in (Demaine et al.,
2006), it may be desirable to improve the additive term, while allowing an increase in the
competitive ratio. The determining tradeoff curve is obtained experimentally, but it is
not characterized analytically. We present an analytical characterization of the tradeoff
curve between the competitive factor and the turn cost and close this gap.

In Chapter 5, we present a real-world optimization problem, namely a cutting problem
arising in the veneer industry. This problem features uncertainty in the input data but,
for the sake of practicability, we depart from the concept of online optimization. We
present methods to solve this problem by deterministic and (in a simplified version) robust
optimization. We classify the problem, present a detailed single-objective optimization
model and discuss the uncertainties in the problem formulation. Furthermore, we point
out that these uncertainties are a result of the varying wood quality and describe the
various factors influencing this quality. We present a quality distribution obtained from
the experience of the manufacturer and provide computational results of the described
problem. Finally, we present a simplified, yet multi-objective version of the optimization
problem and discuss the uncertainties in this formulation. In order to hedge against
these uncertainties, the concept of minmax robust efficiency is applied to this simplified
version and robust efficient solutions to this problem are computed.

1.3. Credits 7

1.3 Credits

In the following, results accomplished in cooperation with other researchers are outlined:
The first ideas for the online knapsack problem with incremental capacity presented in

Chapter 2 are due to a collaboration with Clemens Thielen and Stephan Westphal. The
elaborations are individual work of the author. Most of the results from Chapter 2 have
been submitted to Mathematical Methods of Operations Research (Thielen et al., 2015).
Moreover, the implementation of the algorithms for the empirical analysis presented in
Section 2.7 is cooperative work with Martin Dahmen.

The development of the concept of multi-objective online optimization as well as
the analysis of the multi-objective time series search presented in Chapter 3 are joint
work with Jonas Ide and Anita Schöbel and are to appear in the Proceedings of the 9th
Workshop on Algorithms and Computations (Tiedemann et al., 2015). The remaining
results given in Chapter 3 are the author’s sole work.

The results on the linear search problem with turn cost presented in Chapter 4 are
individual work of the author and have been submitted to Information Processing Let-
ters (Tiedemann, 2015)

Finally, the application of deterministic and robust optimization to a problem in
the wood cutting industry studied in Chapter 5 is joint work with Jonas Ide, Felix
Haiduk, and Stephan Westphal and is published in 4OR (Ide et al., 2015). While Stephan
Westphal gave a first idea on the modeling of the optimization problem and Felix Haiduk
provided information on the uncertainty in wood quality, most of the work in this chapter
was accomplished by Jonas Ide and the author.

1.4 Acknowledgement

Before we dive into the world of mathematics, I embrace the opportunity to thank the
people who supported me in the course of the preparation and completion of this thesis.

First of all, I am indebted to my supervisor Stephan Westphal for valuable support
and boundless optimism that inspired me to never give up. Moreover, I thank Anita
Schöbel for being my co-supervisor and always providing treasured advice. Addition-
ally, my thanks go to Sven Krumke for taking the position as second examiner without
hesitation.

I thank the German Research Foundation (DFG) and the DFG Research Training
Group 1703 Resource Efficiency in Interorganizational Networks for the financial support
and providing an interdisciplinary context for my work. Furthermore, I give thanks to
the project Optimization and its Applications in Learning and Industry (OptALI) for
providing the possibility of a research stay in New Zealand.

The optimization working group at the Institute for Numerical and Applied Math-
ematics in Göttingen contributed greatly to the completion of this work. Mathematics
is beautiful, thrilling, and often fulfilling, but I enjoyed every day in the office most
of all due to my colleagues. My heartfelt thanks go to Sönke Behrends, Marc Goerigk,
Jonas Harbering, Ruth Hübner, Jonas Ide, Thorsten Krempasky, Corinna Krüger, Robert

8 1. Introduction

Schieweck, and Marie Schmidt. I have to single out my twin brother and office mate
Marco Bender who stayed the course with me and always found the right words to cheer
me up. Thank you!

Finally, I thank Janneke for her unconditional support and reminding me every now
and then just to settle back, have a coffee, and pause for a moment.

2
Online Knapsack Problems with Dynamic Capacity

2.1 Introduction

In this chapter, the online version of the classic knapsack problem is extended by the in-
troduction of an incremental capacity. In each time period, a set of requests (items), each
with a specific weight and value, is revealed and, without knowledge of future requests,
it has to be decided which of these requests to accept (i.e., pack into the knapsack). Fur-
thermore, the knapsack capacity changes dynamically over time, i.e., the capacity is not
fully available from the start but an additional amount of capacity becomes available in
each time period. Hence, if k ≥ 1 denotes the amount of additional capacity that becomes
available in each time period, the available capacity in time period i ∈ {1, . . . , T} is k · i
minus the total weight of all requests that have been accepted in time periods 1 to i− 1,
where T denotes the total number of time periods considered. The goal is to maximize
the overall value of the accepted requests while respecting the capacity constraint in each
time period.

The idea of incremental capacity within the framework of online knapsack problems
can be motivated, for example, by the problem of resource allocation in the context of
renewable resources: In each time period, offerings with specific prices for certain amounts
of the resource are revealed and, at the same time, additional resources become available.
Which offers should be accepted in order to maximize the profit? Such questions occur,
for example, at timber producers who frequently receive supply from the forest and have
to deal with requests offering specific prices for different amounts of timber in each time
period.

Another motivation for studying online knapsack problems with incremental capacity
is the generalization of the classic one-way trading problem introduced by El-Yaniv et al.
(1992) to dynamically increasing funds. In the classic one-way trading problem, an online
player is given an initial amount of dollars that should be converted to yen over a given
number of days. Each day, a new exchange rate is announced and the player has to decide
how many dollars to convert in order to maximize the total amount of yen obtained after
the last day. This can be seen as a special case of the online knapsack problem by viewing

9

10 2. Online Knapsack Problems with Dynamic Capacity

the initial amount of dollars as the knapsack capacity and introducing a request for each
possible amount that could be traded on each day, where all requests on a specific day
have the same value to weight ratio (which corresponds to the exchange rate on this day).
Considering the online knapsack problem with incremental capacity then corresponds to
receiving a certain amount of dollars for conversion every day instead of having the total
amount of dollars available already on the first day.

Both applications above motivate a thorough investigation of the described setting.
In the following, we discuss the setting of the online knapsack problem with incremental
capacity, present deterministic and randomized online algorithms for the problem, and
derive lower bounds on the solution quality achievable by online algorithms.

2.1.1 Previous Work

The offline version of the knapsack problem and a wide range of its variants have been
studied for many years and are covered in the literature comprehensively. For a full-
scale presentation of methods and techniques available for the solution of the knapsack
problem, we refer to the textbooks (Martello and Toth, 1990; Kellerer et al., 2004). The
classic 0/1 knapsack problem is NP-hard as proven by Karp (1972), but it admits an
FPTAS as first shown by Ibarra and Kim (1975).

The online knapsack problem was introduced by Marchetti-Spaccamela and Vercel-
lis (1995), who also showed that the general online knapsack problem does not admit
any competitive online algorithms. Consequently, researchers began to study the online
knapsack problem under additional assumptions that allow the design of competitive
algorithms or in a stochastic setting using average case analysis.

Marchetti-Spaccamela and Vercellis (1995) studied stochastic online knapsack prob-
lems by assuming that the profit and the size coefficients are independent and identically
distributed random variables. The results for this setting were subsequently improved
by Lueker (1998) who presented an online algorithm whose solution differs from the
true optimum by an average of Θ(log n), where n denotes the number of items. Fur-
ther generalizations of the stochastic online knapsack problem were studied, for example,
by Papastavrou et al. (1996); Kleywegt and Papastavrou (1998); van Slyke and Young
(2000).

Babaioff et al. (2007) considered the online knapsack problem without the assump-
tion of any knowledge regarding the distribution of weights, but made the assumption
that items arrive in a random order and presented two e-competitive algorithms for the
unweighted case and a 10e-competitive algorithm for the weighted case as the number of
items tends to infinity. Zhou et al. (2008) studied the online knapsack problem with two
additional assumptions regarding the weights of the items and were able to deduce best
possible algorithms with a competitive ratio of log(U/L) + 1 in this setting, where U and
L are the upper and lower bound for the value-to-weight ratio.

Further variants of the online knapsack problem considered in the literature con-
tain settings with removable items, which means that accepted items can be removed
to give way for newly arriving items. For the case of unit weights, this variant was
considered in (Iwama and Taketomi, 2002) and a

(
(
√
5+1)/2

)
-competitive algorithm was

2.2. Problem Definition 11

presented. For the case of general weights, no competitive algorithms exist. Furthermore,
Babaioff et al. (2009) studied the case where a penalty has to be paid for removing an
accepted item from the knapsack. Another possibility to circumvent the nonexistence
of competitive algorithms for the online knapsack problem is the approach of resource
augmentation. In this setting, the online player is allowed to use a knapsack of capacity
R ≥ 1 while the adversary uses a knapsack of capacity one. In (Iwama and Zhang, 2007),
this approach was combined with the idea of removable items and, for general weights
and 1 < R ≤ 2, a 1/(R−1)-competitive algorithm was presented. In (Noga and Sarbua,
2005), the approach of resource augmentation was applied to the online partially frac-
tional knapsack problem and, for 1 ≤ R ≤ 2, a deterministic 2/R-competitive algorithm
that achieves the best possible competitive ratio was given.

Hajiaghayi et al. (2005) studied online auctions with re-usable goods. This setting
can be viewed as an online knapsack problem in which the knapsack is emptied after
each time period and the items are available from an arrival to a departure time. The
problem analyzed by Hajiaghayi et al. (2005) provided the initial idea for the setting
investigated in this chapter.

However, to the best of our knowledge, there is no previous work on the online knap-
sack problem with incremental capacity as studied in this chapter. The rest of this
chapter is structured as follows: In Section 2.2, we formally introduce the online knap-
sack problem with incremental capacity. In Section 2.3, we derive lower bounds on the
competitive ratio achievable by both deterministic and randomized online algorithms for
the case of unit weight requests. Deterministic and randomized competitive online al-
gorithms for this case are presented in Section 2.4. In Section 2.5, the cases of general
weights as well as limited weights in {1, . . . , k} are considered. In Section 2.6, we dis-
cuss different approaches to increase the power of the online player in order to obtain
competitive algorithms independent of the number of time periods T . Furthermore, in
Section 2.7, we provide an empirical analysis of some of the algorithms presented in the
previous sections and, in Section 2.8, we extend the online knapsack problem with incre-
mental capacity to multiple knapsacks. Finally, we consider the setting of independent
knapsacks with differing capacities in Section 2.9.

2.2 Problem Definition

In this section, we formally introduce the online knapsack problem with incremental
capacity. We consider a time horizon T ∈ N+ and N requests ri = (di, vi, wi), each
consisting of a time period di ∈ {1, . . . , T} in which the request is offered, a value vi ∈ R+,
and a weight wi ∈ N+.

For the sake of simplicity, we first consider unit weights, i.e., wi ≡ 1. The case of
general weights is considered in Section 2.5. The time horizon T is known to an online
algorithm, whereas the number N of requests is not. In each time period t ∈ {1, . . . , T},
the requests ri with di = t are revealed and an online algorithm has to decide which of
these requests to accept. The requests with di = t that are not accepted in time period t
are lost. Note that, even if one would consider requests that remain valid for several

12 2. Online Knapsack Problems with Dynamic Capacity

time periods, it would not be advantageous for the adversary to reveal requests that
remain valid for more than one period. Therefore, this possibility is not considered in our
model. The knapsack capacity is increased by a constant amount of k ∈ N+ units in each
time period, where k is known to an online algorithm. Denoting the available knapsack
capacity in time period t by ct, this means that c1 = k and ct = ct−1 + k − |St−1| for
t ≥ 2, where St−1 denotes the set of indices of requests accepted by the online algorithm
in time period t − 1. The objective is to maximize the total value of accepted requests
over all time periods 1, . . . , T while not accepting requests of total size larger than ct in
any time period t.

The problem described above is in the following referred to as the online incremental
knapsack problem (okic). Before we proceed by developing lower bounds in Section 2.3,
the problem is illustrated in Example 2.2.1.

Example 2.2.1. Consider a time horizon T = 3, an additional capacity of k = 1 in each
time period, and the following four requests: r1 = (1, 1, 1), r2 = (2, 2, 1), r3 = (3, 3, 1),
and r4 = (3, 3, 1). We start with a capacity of c1 = 1, and in each time period one
additional unit of capacity becomes available. The optimal solution is to reject request r1
and accept requests r2, r3, and r4, resulting in an objective value of eight (the right part
of Figure 2.1 gives an illustration).

However, an online algorithm has to decide whether to accept or reject request r1
without any knowledge of future requests. It is only known to the online algorithm that
there is a time horizon of T = 3 and one additional unit of capacity in each time period.
Let us assume that an online algorithm accepts request r1 in the first time period and
request r2 in the second time period. Due to the available capacity, the online algorithm
is then only able to accept either request r3 or request r4 in the third time period, which
results in an objective value of six (the left part of Figure 2.1 gives an illustration).

1 2 3
Available Requests

r1 r2 r3

r4

1 2 3
alg

r1 r1

r2

r1

r2

r3

c1

c2

c3

1 2 3
opt

r2 r2

r3

r4

c1

c2

c3

Figure 2.1: Example for okic.

2.3. Lower Bounds 13

The offline problem corresponding to okic is given as follows. For i = 1, . . . , N , let
xi ∈ {0, 1} be a binary variable with

xi =

{
1, if request i is accepted at time di,
0, otherwise.

By means of these binary variables, we are able to state the following integer programming
formulation for okic:

max
N∑

i=1

xivi

s.t.
∑

i∈It
xiwi ≤ kt for t = 1, . . . , T,

xi ∈ {0, 1} for i = 1, . . . , N,

where It = {i ∈ {1, . . . , N} | di ≤ t}.

2.3 Lower Bounds

Before we discuss competitive algorithms for okic in Section 2.4, lower bounds on the
competitive ratio of any deterministic and randomized online algorithm are given in this
section.

2.3.1 A Lower Bound for Deterministic Online Algorithms

For a lower bound on deterministic algorithms for okic, we first consider the case k = 1.

Theorem 2.3.1. For k = 1, no deterministic online algorithm for okic can achieve a
competitive ratio smaller than T .

Proof. Consider the following sequence of requests: in each time period t, there are t
identical requests rt1 , . . . , rtt with

rti = (t, vt, 1), v ≥ 1, i = 1, . . . , t.

First, we show by induction that, for this sequence of requests, any deterministic on-
line algorithm alg must accept exactly one request in each time period in order to be
competitive against the offline adversary: For t = 1, alg must accept the only available
request r11 , otherwise the adversary accepts r11 and reveals no further requests. Now,
let t = t′ and assume that the statement holds for t < t′. Note that there are only two
options for alg: by induction hypothesis, alg accepted exactly one request in each time
period t < t′ and, since there is only one additional unit of capacity in each time period,
the available capacity at time t′ equals one. Therefore, alg can either accept one request

14 2. Online Knapsack Problems with Dynamic Capacity

1 · · · t · · · T
Available Requests

v1 vt
...

vt

vT
...

vT
...

vT

1 · · · t · · · T
alg

v1 v1

...

vt

v1

...

vt

...

vT

1 · · · t · · · T
opt

vT

...

vT

...

vT

Figure 2.2: A lower bound for okic with k = 1.

or no request at all. If alg accepts none of the available requests rti , i = 1, . . . , t, the
adversary accepts all requests rti , i = 1, . . . , t, in time period t (and no requests in earlier
time periods) and no further requests are revealed. For the competitive ratio, we have
by induction hypothesis

opt
alg

=
tvt

t−1∑
j=1

vj
=

tvt

1−vt
1−v − 1

=
tvt − tvt+1

v − vt =
tv
(
1− 1

v

)

1− v1−t →∞ for v →∞.

Consequently, any competitive deterministic online algorithm for okic accepts exactly
one request rti in each time period t (the left part of Figure 2.2 gives an illustration).
The optimal offline algorithm, on the other hand, accepts no requests until time T and
then accepts the requests rT1 , . . . , rTT (the right part of Figure 2.2 gives an illustration).
Analogously to the calculation above, this leads to a competitive ratio of

opt
alg

=
TvT

T∑
j=1

vj
=

TvT

1−vT+1

1−v − 1
=
TvT − TvT+1

v − vT+1
=
T
(
1− v−1

)

1− v−T → T for v →∞.

Note that, by a sufficiently large choice of v, any additive constant in the competitive
ratio can be eliminated.

For unit incremental capacity, i.e., k = 1, the adversary is able to force the online
player to accept one request in each time period, otherwise the online player cannot be
competitive. For k-incremental capacity with k ≥ 2, the online player still has to accept
at least one request, but the remaining k − 1 additional units in each time period grant
a certain amount of freedom to the online player. Therefore, better competitive ratios
than T can be obtained for the case k ≥ 2, see Section 2.4.2.

2.3. Lower Bounds 15

2.3.2 A Lower Bound for Randomized Online Algorithms

We now present a lower bound on the competitive ratio of any randomized online algo-
rithm for okic. In order to prove the lower bound, we make use of Yao’s principle (cf.
Theorem 1.1.2).

Theorem 2.3.2. For T ≥ 2 and k ∈ N+, no randomized online algorithm for okic can
achieve a competitive ratio smaller than (T+1)/2.

Proof. For each i ∈ {1, . . . , T}, consider the request sequence σi consisting of j ·k requests
with value vj and deadline j in each time period j, i.e., for each j ∈ {1, . . . , i}, we have
j · k requests of the form rj = (j, vj , 1) with v > 0. The optimal solution for sequence
σi is obviously to save up capacity until time period i and then accept all requests of
value vi, resulting in opt(σi) = i · k · vi.

With respect to the request sequences described above, each deterministic online
algorithm alg is characterized by the number of requests accepted at time j, denoted
by αj . Using this notation, the profit ratio of any deterministic online algorithm alg
and the optimal offline algorithm opt with respect to request sequence σi is given by

alg(σi)

opt(σi)
=

∑i
j=1 αjv

j

ikvi
.

In the following, we derive a probability distribution p over the request sequences σi such
that

Ep

[∑i
j=1 αjv

j

ikvi

]
≤ 2

T + 1

for each deterministic online algorithm alg. By Yao’s principle for maximization prob-
lems (cf. Theorem 1.1.2), more precisely the second term of the maximum in (1.2), the
lower bound then follows.
For a given probability distribution p, we have

Ep
[
alg(σi)

opt(σi)

]
=

T∑

i=1

pi

∑i
j=1 αjv

j

ikvi
=

T∑

i=1

i∑

j=1

piv
j−i

ik
αj =

T∑

j=1

T∑

i=j

piv
j−i

ik
αj ,

where pi denotes the probability that request sequence σi occurs. The sum of accepted
requests up to time period i is at most i · k, since there are k additional units of capacity
in each time period, i.e.,

∑i
j=1 αj ≤ ik for i = 1, . . . , T.

Thus, the maximum profit ratio of any deterministic online algorithm and the optimal

16 2. Online Knapsack Problems with Dynamic Capacity

offline algorithm is obtained by the following integer program in the variables αj :

max

T∑

j=1

T∑

i=j

piv
j−i

ik
αj (P)

s.t.
i∑

j=1

αj ≤ ik for i = 1, . . . , T,

αj ∈ N+ for j = 1, . . . , T.

In order to determine an upper bound on (P) it is sufficient to find a feasible solution to
the dual of the linear relaxation of (P), which is given by

min

T∑

i=1

ikΠi (D)

s.t.
T∑

i=j

Πi ≥
T∑

i=j

piv
j−i

ik
for j = 1, . . . , T, (2.1)

Πi ≥ 0 for i = 1, . . . , T.

We set

p1 =
2

T (T + 1)
(2.2)

and

pi = ip1 for i = 2, . . . , T. (2.3)

This is at least a feasible choice for the pi, i = 1, . . . , T , since pi ≥ 0 and

T∑

i=1

pi
(2.3)
=

T∑

i=1

ip1 = p1
T (T + 1)

2

(2.2)
= 1.

In the following, we will show that by this choice of the variables pi a feasible solution
of (D) with objective value 2/(T+1) can be found.

For this purpose, we replace the inequality constraints (2.1) in (D) by equality con-
straints, which only narrows the set of feasible solutions of (D). For the variables Πj ,

2.4. Competitive Algorithms 17

j = 1, . . . , T , we then obtain

Πj
(2.1)
=

T∑

i=j

piv
j−i

ik
−

T∑

i=j+1

Πi

(2.1)
=

T∑

i=j

piv
j−i

ik
−

T∑

i=j+1

piv
j+1−i

ik

(2.3)
=

T∑

i=j

ip1v
j−i

ik
−

T∑

i=j+1

ip1v
j+1−i

ik

=
p1
k

T∑

i=j

vj−i −
T∑

i=j+1

vj+1−i

=
p1
k
vj−T . (2.4)

By means of the analysis above, the objective function of (D) becomes

T∑

j=1

jkΠj
(2.4)
=

T∑

j=1

jk
p1
k
vj−T

=
p1
vT

T∑

j=1

jvj

=
p1
vT

v
(
TvT+1 − (T + 1)vT + 1

)

(v − 1)2

= p1
vT+2

(
T − (T + 1)v−1 + v−(T+1)

)

vT+2 (1− 2v−1 + v−2)

= p1
T − (T + 1)v−1 + v1−T

1− 2v−1 + v−2
.

For v →∞, we thus have

T∑

j=1

jkΠj → p1T
(2.2)
=

2

T + 1
.

This completes the proof.

2.4 Competitive Algorithms

In this section, deterministic and randomized online algorithms for the problem okic
are discussed. The first, obvious choice for an online algorithm for okic is a greedy
algorithm. In the following subsection, we show that the canonical greedy algorithm is
T -competitive and, therefore, best possible for k = 1.

18 2. Online Knapsack Problems with Dynamic Capacity

2.4.1 A Greedy Algorithm

In each time period, the greedy algorithm for okic accepts as many requests as possible
in a greedy manner with respect to the value of the requests, see Algorithm 1.

Algorithm 1: Greedy algorithm for okic.
1 for t = 1, . . . , T do
2 Accept the requests ri with di = t in order of nonincreasing value until either

no more requests are available or the capacity is fully utilized.

Theorem 2.4.1. Algorithm 1 is T -competitive for okic with arbitrary k ∈ N+.

Proof. Algorithm 1 always accepts the k requests of highest value denoted by v(1) ≥
· · · ≥ v(k) among all requests as there are at least k units of capacity available in each
time period. opt can accept no more than T · k requests in total. Since

opt ≤
k∑

i=1

v(i) + (Tk − k)v(k) ≤
k∑

i=1

v(i) + (T − 1)
k∑

i=1

v(i) = T
k∑

i=1

v(i),

and alg ≥∑k
i=1 v(i), we have

max
σ

opt(σ)

alg(σ)
≤
T

k∑
i=1

v(i)

k∑
i=1

v(i)

= T.

For k = 1, the competitive ratio of Algorithm 1 matches the lower bound of T for
any deterministic algorithm as given in Theorem 2.3.1. For k ≥ 2, the online player has
more reach of play in order to outsmart the adversary. Thus, we are able to develop a
better deterministic online algorithm for the case k ≥ 2, which is presented in the next
subsection.

2.4.2 A Balancing Algorithm

For k ≥ 2, a deterministic online algorithm for okic with competitive ratio smaller
than T can be constructed. The idea of the algorithm is as follows: In each time period,
we set an upper bound on the number of requests that may be accepted. This upper
bound increases over time in order to maximize the competitive ratio. In the first half
of the time horizon, less than k requests may be accepted. This way, the online player
is able to save up some capacity in order to hedge against the advantage of the offline
player, which increases over time. In the second half of the time horizon, the saved up
capacity is utilized and more than k requests may be accepted. This policy is formally
summarized in Algorithm 2.

2.4. Competitive Algorithms 19

Algorithm 2: Balancing algorithm for okic.
1 for t = 1, . . . , T do
2 Set Rt =

⌈
t(2k−1)
T+1

⌉
;

3 Accept at most Rt requests ri with di = t in order of nonincreasing value until
no more requests are available.

Theorem 2.4.2. For k ≥ 2, Algorithm 2 is c(k)-competitive with c(k) = (T+1)k/(2k−1).

Proof. The proof is partitioned in two steps. First of all, we show that Algorithm 2
outputs a feasible solution, i.e., it is feasible to accept up to Rt requests in each time
period t. Secondly, we prove the competitive ratio of Algorithm 2.

To begin with, the feasibility of Algorithm 2 is established, i.e., in time period t at
least Rt units of capacity are available. For this purpose, each time period t ≤ T/2 is
paired with the time period T − t+ 1 and it is shown that in both time periods together
not more than 2k requests and in time period t not more than k requests are accepted,
which proves the feasibility. For t ≤ T/2, we have

t(2k − 1)

T + 1
+

(T − t+ 1)(2k − 1)

T + 1
=

(T + 1)(2k − 1)

T + 1
= 2k − 1, (2.5)

i.e., the sum of Rt and RT−t+1 without ceiling functions is integral. We define

x1 = Rt −
t(2k − 1)

T + 1
and x2 = RT−t+1 −

(T − t+ 1)(2k − 1)

T + 1
,

and, due to (2.5) and k ∈ N+, x1 + x2 = 1 or x1 + x2 = 0. Then, Rt and RT−t+1 add up
to

Rt +RT−t+1 =

⌈
t(2k − 1)

T + 1

⌉
+

⌈
(T − t+ 1)(2k − 1)

T + 1

⌉

=
t(2k − 1)

T + 1
+ x1 +

(T − t+ 1)(2k − 1)

T + 1
+ x2.

Thus, we have

Rt +RT−t+1 = 2k − 1 + x1 + x2 ≤ 2k.

Consequently, when considering the sum of the number of accepted requests in two
time periods t and T − t+ 1 for t ≤ T/2, at most 2k requests are accepted. Additionally,
for t ≤ T/2,

⌈
t(2k − 1)

T + 1

⌉
≤
⌈
T/2(2k − 1)

T + 1

⌉
=

⌈
T (k − 1/2)

T + 1

⌉
≤
⌈
k − 1

2

⌉
= k,

i.e., in each time period t ≤ T/2, at most k requests are accepted. Since in each time
period k additional units of capacity are available, it is feasible to accept at most Rt
requests in time period t.

20 2. Online Knapsack Problems with Dynamic Capacity

Now, the competitive ratio of Algorithm 2 is analyzed. Denote by optt the total
value of items accepted by opt in time period t and by algt the total value of items
accepted by Algorithm 2 in time period t. Since the number of items chosen by opt in
time period t is at most t · k, Algorithm 2 recovers at least optt · Rt/tk. Thus, we have

optt
algt

≤ optt
optt · Rt/tk

=
tk

Rt
=

tk⌈
t(2k−1)
T+1

⌉ ≤ (T + 1)k

2k − 1
.

Since this holds for an arbitrary t ∈ {1, . . . , T}, the competitive ratio of Algorithm 2
is given by (T+1)k/(2k−1).

Note that for k →∞ the competitive ratio of Algorithm 2 matches the lower bound
on the competitive ratio of any randomized (and deterministic) algorithm, i.e.,

lim
k→∞

(T + 1)k

2k − 1
=
T + 1

2
.

2.4.3 A Randomized Greedy Algorithm

In this section, a randomized online algorithm for the problem okic is presented. The
idea behind Algorithm 3 is to act greedily with a certain probability in each time period.
This way, the algorithm is eventually able to save up some capacity and at the same time
cannot be leveraged by the adversary.

The probability of being greedy is adjusted in each time period in order to maximize
the competitive ratio. In fact, the competitive ratio of Algorithm 3 matches the lower
bound for any randomized online algorithm for okic given in Section 2.3.2. Basically,
the probability of being greedy in a time period increases over time since we have to
hedge against the capacity possibly saved up by the adversary, which also increases over
time.

Algorithm 3: Randomized greedy algorithm for okic.
1 for t = 1, . . . , T do
2 With probability pt = 2/(T−t+2), accept all requests ri with di = t in order of

nonincreasing value until either no more requests are available or the capacity
is fully utilized. With probability 1− pt, accept no requests at all.

Theorem 2.4.3. Algorithm 3 is (T+1)/2-competitive for okic with k ∈ N+.

Proof. Denote by optt the total value of items accepted by opt in time period t and
by αt the number of items accepted by Algorithm 3 in time period t. Since the number
of items chosen by opt in time period t is at most t · k, Algorithm 3 recovers at least
optt · αt/tk. Thus, the competitive ratio c is given by

2.4. Competitive Algorithms 21

c = max
σ

opt(σ)

E [alg(σ)]
≤ max

t=1,...,T

optt
E [optt · αt/tk]

= max
t=1,...,T

tk

E [αt]
,

where E [αt] denotes the expected number of accepted requests by alg in time period t.
We proceed by proving that

E [αt] = pt

t−1∑

i=1

ikpt−i
i−1∏

j=1

(1− pt−j) + tk
t−1∏

j=1

(1− pj)

 (2.6)

=
2tk

T + 1
. (2.7)

Equality (2.6) results from the following observation: in order to accept i · k requests in
time period t, first of all alg has to accept requests in time period t, which happens
with probability pt. Additionally, i · k units of capacity have to be available in time
period t. Consequently, alg has to reject accepting any requests in the previous i − 1
time periods, which happens with probability

∏i−1
j=1 (1− pt−j), and accept the requests

in time period t − i, which happens with probability pt−i. Furthermore, in order to
accept t · k requests in time period t, alg has to reject accepting any requests in all
previous periods, which happens with probability

∏t−1
j=1 (1− pj). Altogether, we end up

with (2.6).
As a preliminary result for the proof of (2.7), we show by induction that

t−1∏

j=1

(1− pj) =
(T − t+ 1)(T − t+ 2)

T (T + 1)
, for t = 2, . . . , T. (2.8)

Base Case: (2.8) holds for t = 2:

2−1∏

j=1

(1− pj) = 1− p1

= 1− 2

T − 1 + 2

=
T − 1

T + 1

=
(T − t+ 1)(T − t+ 2)

T (T + 1)
.

Inductive Step (?1): Let t ≥ 2, t ∈ N, be arbitrary and assume that (2.8) holds for t.
Then, (2.8) also holds for t+ 1:

(t+1)−1∏

j=1

(1− pj) =

t∏

j=1

(
1− 2

T − j + 2

)

22 2. Online Knapsack Problems with Dynamic Capacity

=
t∏

j=1

T − j
T − j + 2

=
T − t

T − t+ 2

t−1∏

j=1

T − j
T − j + 2

(?1)
=

T − t
T − t+ 2

· (T − t+ 1)(T − t+ 2)

T (T + 1)

=
(T − (t+ 1) + 1) (T − (t+ 1) + 2)

T (T + 1)
.

In a similar manner, we show that

i−1∏

j=1

(1− pt−j) =
(T − t+ 2)(T − t+ 1)

(T − t+ i)(T − t+ i+ 1)
, for i = 2, . . . , T − 1. (2.9)

Base Case: (2.9) holds for i = 2:

2−1∏

j=1

(1− pt−j) = 1− pt−1

= 1− 2

T − (t− 1) + 2

=
T − t+ 1

T − t+ 3

=
(T − t+ 1)(T − t+ 2)

(T − t+ i)(T − t+ i+ 1)
.

Inductive Step (?2): Let i ≥ 2, i ∈ N, be arbitrary and assume that (2.9) holds for i.
Then, (2.9) also holds for i+ 1:

(i+1)−1∏

j=1

(1− pt−j) =
i∏

j=1

(
1− 2

T − (t− j) + 2

)

=
i∏

j=1

T − t+ j

T − t+ j + 2

=
T − t+ i

T − t+ i+ 2

i−1∏

j=1

T − t+ j

T − t+ j + 2

(?2)
=

T − t+ i

T − t+ i+ 2
· (T − t+ 2)(T − t+ 1)

(T − t+ i)(T − t+ i+ 1)

=
(T − t+ 2) (T − t+ 1)

(T − t+ (i+ 1))(T − t+ (i+ 1) + 1)
.

2.4. Competitive Algorithms 23

Then, by means of (2.6), (2.8), and (2.9), we have

E [αt] = pt

t−1∑

i=1

ikpt−i
i−1∏

j=1

(1− pt−j) + tk
t−1∏

j=1

(1− pj)

= kpt

(
t−1∑

i=1

ipt−i(T − t+ 2)(T − t+ 1)

(T − t+ i)(T − t+ i+ 1)
+
t(T − t+ 1)(T − t+ 2)

T (T + 1)

)
. (2.10)

Once again, we use induction to show that

t−1∑

i=1

ipt−i
(T − t+ i)(T − t+ i+ 1)

=
t−1∑

i=1

2i

(T − t+ i)(T − t+ i+ 1)(T − t+ i+ 2)

=
t(1− t)

T (T + 1)(t− T − 1)
, for t = 2, . . . , T. (2.11)

Base Case: (2.11) holds for t = 2:

2−1∑

i=1

ipt−i
(T − t+ i)(T − t+ i+ 1)

=
p1

(T − 1)T

=
2

(T − 1)T (T + 1)

=
t(1− t)

T (T + 1)(t− T − 1)
.

Inductive Step (?3): Let t ≥ 2, t ∈ N, be arbitrary and assume that (2.11) holds for t.
Then, (2.11) also holds for t+ 1:

(t+1)−1∑

i=1

ip(t+1)−i
(T − t− 1 + i)(T − t− 1 + i+ 1)

=
t∑

i=1

2i

(T − t− 1 + i)(T − t+ i)(T − t+ 1 + i)

=
t∑

i=1

2i

(T ′ − t+ i)(T ′ − t+ 1 + i)(T ′ − t+ 2 + i)
with T ′ := T − 1

=

t−1∑

i=1

2i

(T ′ − t+ i)(T ′ − t+ i+ 1)(T ′ − t+ i+ 2)
+

2t

T ′(T ′ + 1)(T ′ + 2)

(?3)
=

t(1− t)
T ′(T ′ + 1)(t− T ′ − 1)

+
2t

T ′(T ′ + 1)(T ′ + 2)

=
t ((1− t)(T ′ + 2) + 2(t− T ′ − 1))

T ′(T ′ + 1)(T ′ + 2)(t− T ′ − 1)

24 2. Online Knapsack Problems with Dynamic Capacity

=
t (T ′ − tT ′ − 2T ′)

T ′(T ′ + 1)(T ′ + 2)(t− T ′ − 1)

=
t(−1− t)

(T ′ + 1)(T ′ + 2)(t− T ′ − 1)

=
t(−1− t)

T (T + 1)(t− T)
=

(t+ 1)(1− (t+ 1)

T (T + 1)((t+ 1)− T − 1)
.

By means of (2.10) and (2.11), the expected number of requests accepted by alg in time
period t with respect to the sequence σ is now given by

E [αt] = kpt

(
t(1− t)(T − t+ 2)(T − t+ 1)

T (T + 1)(t− T − 1)
+
t(T − t+ 1)(T − t+ 2)

T (T + 1)

)

= −2tk(1− t)
T (T + 1)

+
2tk(T − t+ 1)

T (T + 1)

=
2tk

T + 1
.

Finally, by means of this result, the competitive ratio c becomes

c = max
t=1,...,T

tk

E [αt]
=

tk
2tk
T+1

=
T + 1

2
,

which completes the proof.

2.5 Limited Weights

In this section, we drop the assumption of unit weights and discuss the setting of k-
incremental capacity with limited weights, i.e., we have weights wi ∈ {1, . . . , k}. Let St
denote the set of indices of requests accepted by some algorithm in time period t. Then,
the knapsack capacity ct in time period t is now given as ct = ct−1 + k−∑i∈St−1

wi and
c1 = k.

It is reasonable to consider limited weights wi ∈ {1, . . . , k} instead of unlimited
weights wi ∈ N+ since the setting with unlimited weights does not allow any competitive
online algorithm as shown in the following theorem:

Theorem 2.5.1. There does not exist a competitive algorithm for okic with unlimited
weights wi ∈ N+.

Proof. For ε > 0, consider the request sequence σ with requests r1 = (1, ε, k) and r2 =
(2,M, k+ 1) as illustrated in Figure 2.3. In the first time period, request r1 is offered to
any online algorithm and, in order to be competitive, any online algorithm has to accept
this request. Otherwise, the adversary offers no further requests and accepts request r1.
In the second time period, request r2 is offered to any online algorithm. The remaining
capacity available for the online player is given by c2 = c1+k−∑i∈S1

wi = k+k−k = k.
Thus, the online player does not have the capacity to accept request r2. The offline player

2.5. Limited Weights 25

t1 2
Available Requests

r1 r2k k + 1

2k

t1 2
alg

r1 r1

t1 2
opt

r2

Figure 2.3: Request sequence with w2 > k.

rejects request r1, saves up the capacity and accepts request r2. The competitive ratio
is then given by

opt(σ)

alg(σ)
=
M

ε
→∞ for M →∞.

Consequently, there exists no competitive algorithm for okic with weights wi ∈ N+.

2.5.1 Deterministic Online Algorithms

Now, we consider a lower bound for any deterministic algorithm for okic with limited
weights wi ∈ {1, . . . , k}. For k = 1, we have unit weights and the results from Sections 2.3
and 2.4 with k = 1 apply. For k ≥ 2, we show the following lower bound on the
competitive ratio of deterministic online algorithms:

Theorem 2.5.2. For k ≥ 2, no deterministic online algorithm for okic with limited
weights can achieve a competitive ratio smaller than

⌊
Tk/(b k2c+1)

⌋
.

Proof. The proof is analogous to the proof of Theorem 2.3.1. For each time period t =
1, . . . , T − 1, the adversary presents t identical requests rt1 , . . . , rtt with

rti = (t, vt, k), v ≥ 1, i = 1, . . . , t,

and, by the same argumentation as in the proof of Theorem 2.3.1, forces the online player
to accept one request in each time period in order to be competitive.

In time period T , the adversary presents
⌊
Tk/(b k2c+1)

⌋
identical requests with value vT

and weight
⌊
k
2

⌋
+ 1. Since the adversary did not accept any request before, he is able

to accept all of these requests, whereas the online player is able to accept exactly one of
these requests. This leads to a competitive ratio of

opt
alg

=

⌊
Tk

b k2c+1

⌋
vT

T−1∑
j=1

vj + vT
→
⌊

Tk⌊
k
2

⌋
+ 1

⌋
for v →∞.

26 2. Online Knapsack Problems with Dynamic Capacity

Algorithm 4: Greedy algorithm for okic with limited weights.
1 for t = 1, . . . , T do
2 Solve the knapsack problem with all requests ri with di = t and the available

capacity and accept the corresponding requests.

The lower bound given in Theorem 2.5.2 is matched by the competitive ratio of
Algorithm 4 for k → ∞, as shown in the following. Note that the running time of
Algorithm 4 is only pseudo-polynomial in the encoding length of the problem input as the
algorithm has to solve a knapsack problem exactly in each time period. This can be done,
for example, by standard dynamic programming approaches (cf., for example, (Martello
and Toth, 1990; Kellerer et al., 2004)).

Theorem 2.5.3. Algorithm 4 is 2T − 1-competitive for okic with limited weights.

Proof. In each time period t = 1, . . . , T , opt has at most t ·k units of capacity available.
Hence, the requests accepted by opt in time period t can be fractionally assigned to
t knapsacks of size k each, such that at most t − 1 requests overlap from one knapsack
to the next, i.e., at most t− 1 requests are fractionally assigned (cf. Figure 2.4).

0 k 2k 3k 4k (t− 1)k tk

· · ·

Figure 2.4: Fractional assignment to t knapsacks of size k each. Fractionally assigned
requests are shown in grey.

Consequently, removing each of these requests and assigning it to its own additional
knapsack yields an integral assignment of the requests accepted by opt in time period t
to at most 2t− 1 knapsacks. Since alg has at least k units of capacity available in time
period t, alg obtains at least the value of the most valuable of these 2t − 1 knapsacks
in period t. Denote by optt the total value of items accepted by opt in time period t
and by algt the total value of items accepted by alg in time period t. We then have

opt
alg

=

∑T
t=1 optt∑T
t=1 algt

≤
∑T

t=1 optt∑T
t=1

1
2t−1optt

≤
∑T

t=1 optt
1

2T−1
∑T

t=1 optt
= 2T − 1.

For k →∞, the lower bound converges to the competitive ratio of Algorithm 4:

⌊
Tk⌊
k
2

⌋
+ 1

⌋
=

⌊
2T
1+ 2

k

⌋
→ 2T − 1 for k →∞, k even,

⌊
2T
1+ 1

k

⌋
→ 2T − 1 for k →∞, k odd.

2.5. Limited Weights 27

2.5.2 Randomized Online Algorithms

Finally, we consider randomized algorithms for okic with limited weights. By combining
several methods used in the previous sections, a lower bound on the competitive ratio of
any randomized online algorithm and a competitive randomized online algorithm can be
established.

Theorem 2.5.4. For T ≥ 2 and k ∈ N+, no randomized algorithm for okic with limited
weights wi ∈ {1, . . . , k} can achieve a competitive ratio smaller than T+1

2 .

Proof. Consider the proof of Theorem 2.3.2. The request sequences σi consist of j · k re-
quests of the form rj = (j, vj , 1) for each j ∈ {1, . . . , i}. We replace these request
sequences σi by request sequences consisting of j requests of the form rj = (j, vj , k), for
each j ∈ {1, . . . , i}. The remaining proof is then equivalent to the case of k = 1 in the
proof of Theorem 2.3.2.

In order to construct a competitive online algorithm for okic with limited weights,
we combine the methods used in Algorithm 3 and Algorithm 4:

Algorithm 5: Randomized greedy algorithm for okic with limited weights.
1 for t = 1, . . . , T do
2 With probability pt = 2/(T−t+2), solve the knapsack problem with all

requests ri with di = t and the available capacity and accept the
corresponding requests. With probability 1− pt, accept no requests at all.

Theorem 2.5.5. Algorithm 5 is 3 (T+1/2)-competitive for okic with limited weights.

Proof. First of all, note that, in each time period, it is advantageous for the adversary to
reveal additional invaluable requests with appropriate weights such that the online player
uses up all available capacity when solving the knapsack problem. Thus, the expected
available capacity Etc in time period t is given by

Etc =
t−1∑

i=1

ikpt−i
i−1∏

j=1

(1− pt−j) + tk
t−1∏

j=1

(1− pj) .

See the proof of Theorem 2.4.3 for a detailed explanation. Due to (2.7), we have

Etc =
2tk

(T + 1)pt
=
tk (T − t+ 2)

T + 1
. (2.12)

Now we apply the same line of argument as in the proof of Theorem 2.5.3, but incorporate
the expected available capacity. In each time period t = 1, . . . , T , opt has at most
t · k units of capacity available. Hence, the requests accepted by opt in time period t
can be fractionally assigned to dtk/Etce knapsacks of size Etc ≥ k each, such that at most
dtk/Etce − 1 requests overlap from one knapsack to the next, i.e., at most dtk/Etce − 1

28 2. Online Knapsack Problems with Dynamic Capacity

0 Et
c 2Et

c 3Et
c 4Et

ck
(⌈

tk
Et
c

⌉
− 1

)
Et
C

⌈
tk
Et
c

⌉
Et
C

· · ·

Figure 2.5: Fractional assignment to dtk/Etce knapsacks of size Etc each. Fractionally
assigned requests are shown in grey.

requests are fractionally assigned (cf. Figure 2.5). Consequently, removing each of these
requests and assigning it to its own additional knapsack yields an integral assignment of
the requests accepted by opt in time period t to at most 2 dtk/Etce − 1 knapsacks. Since
the expected available capacity of alg in time period t is given by dtk/Etce, alg obtains
at least the value of the most valuable of these 2 dtk/Etce−1 knapsacks in period t. Denote
by optt the total value of items accepted by opt in time period t and by algt the total
value of items accepted by alg in time period t. We then have

opt
E [alg]

=

∑T
t=1 optt∑T

t=1 E [algt]
≤

∑T
t=1 optt∑T

t=1
pt

2dtk/Etce−1optt
≤

∑T
t=1 optt

2
3T+3

∑T
t=1 optt

= 3

(
T + 1

2

)

Here, the second inequality holds since, for all 1 ≤ t ≤ T , we have:

pt

2
⌈
tk
Etc

⌉
− 1

(2.12)
=

2
T−t+2

2
⌈

T+1
T−t+2

⌉
− 1
≥

2
T−t+2

2
(

T+1
T−t+2 + 1

)
− 1

=
2

3T + 4− t ≥
2

3T + 3
.

2.6 Increasing the Power of the Online Player

The lower bounds presented in Section 2.3 and the algorithms presented in Sections 2.4
and 2.5 are all dependent on the time horizon T . For T → ∞, all those algorithms are
not competitive, and, even worse, there are no competitive algorithms at all due to the
dependence of the lower bounds on T .

Therefore, we increase the power of the online player by different means in the follow-
ing sections and investigate the impact on the competitiveness. We apply the concepts
of resource augmentation (Section 2.6.1), removable items (Section 2.6.2), and bounded
request values (Section 2.6.3). These concepts have also been applied to the classic online
knapsack problem:

The concept of removable item gives the online player the ability to remove previously
accepted items from the knapsack in order to give way for newly arriving items. Even
if items are removable, there exists no competitive algorithm for the online knapsack
problem (cf. (Iwama and Zhang, 2003)). The approach of resource augmentation allows
the online player to use more resources than the adversary. Iwama and Zhang (2007)
apply resource augmentation to the online knapsack problem with removable items and

2.6. Increasing the Power of the Online Player 29

provide competitive algorithms: if the online player uses a knapsack of capacity R > 1,
while the adversary uses a knapsack of capacity one, an algorithm with competitive ratio
1/(R−1) for 1 < R ≤ 2 is obtained. The approach of bounded request values is utilized
by Zhou et al. (2008), who studied the online knapsack problem with two additional
assumptions, namely a bounded value-to-weight ratio of each item and a small weight of
each item with respect to the capacity of the knapsack. In this setting, the authors were
able to deduce best possible algorithms with a competitive ratio of log(U/L) + 1, where
U and L are the upper and lower bound for the value-to-weight ratio.

In the following, we analyze the impact of these approaches on the online knapsack
problem with incremental capacity.

2.6.1 Resource Augmentation

In this section, we consider the approach of resource augmentation for okic and analyze
its impact on the competitiveness. In the setting of resource augmentation, the online
player is allowed to use more resources than the adversary. We consider resource augmen-
tation by a multiplicative factor of r ∈ N+, i.e., the offline player starts with capacity k,
whereas the online player starts with capacity r · k. In each subsequent time period, the
capacity is increased by k units for the offline player, whereas the capacity is increased
by r · k units for the online player.

Consider a c-competitive algorithm alg for okic. By means of alg, we are able
to construct a (1 + c/r)-competitive algorithm for okic with resource augmentation by a
factor of r. The proof follows a method proposed by Awerbuch et al. (1996, pp. 436-438).

Theorem 2.6.1. Let alg be a c-competitive algorithm for okic. Then, for r ∈ N+,
there exists a (1 + c/r)-competitive algorithm for okic with resource augmentation by a
factor of r.

Proof. We proceed as follows to construct an algorithm alg′ for okic with resource
augmentation by a factor of r: Consider r copies of alg, denoted by alg1, . . . ,algr. In
each time period, the set of new requests is first presented to alg1. The set of requests
is then reduced by the requests accepted by alg1, and passed on to alg2, and so forth.

Denote by R the set of requests presented to alg′ and by Ri the requests presented
to algi. Moreover, denote by O the set of requests accepted by opt and by Ti the set
of requests accepted by algi. Note that these sets apply to the requests from all time
periods. The value of the requests associated with a set S of items is denoted by v (S).
By definition of alg′, the set of requests presented to algi is given by

Ri = R \ ∪j<iTj .

Furthermore, we have

O \ ∪j<iTj ⊆ Ri.

Thus, the optimal value that can be obtained from requests Ri is at least

v (O \ ∪j<iTj) .

30 2. Online Knapsack Problems with Dynamic Capacity

Applying the fact that algi is c-competitive with respect to the set Ri, we therefore have

v (Ti) ≥
1

c
v (O \ ∪j<iTj) =

1

c
v (O)− 1

c
v (∪j<iTj ∩O) .

Therefore,
r∑

i=1

v (Ti) ≥
1

c

r∑

i=1

v (O)− 1

c

r∑

i=1

v (∪j<iTj ∩O)

≥ r

c
v (O)− 1

c

r∑

i=1

v (∪j<iTj)

≥ r

c
v (O)− r

c

r∑

i=1

v (Ti) .

We thus have
(

1 +
r

c

) r∑

i=1

v (Ti) ≥
r

c
v (O) ⇔

(
1 +

c

r

) r∑

i=1

v (Ti) ≥ v (O) .

Consequently, alg′ is (1 + c/r)-competitive. If alg is a randomized algorithm, the anal-
ysis can be conducted in the same way as shown in (Awerbuch et al., 1996, pp. 437-438).
This completes the proof.

2.6.2 Removable Items

In this section, we increase the power of the online player by allowing the online player
to remove previously accepted items from the knapsack in any time period. Once an
item is removed from the knapsack it cannot be accepted again. We consider the case of
k-incremental capacity and limited weights, i.e., wi ∈ {1, . . . , k}. The problem is in the
following referred to as okic with removable items.

Consider Algorithm 6 for okic with removable items. This algorithm is based on
the linear relaxation of the offline version of okic with removable items, which is hence
an upper bound on the optimal offline solution of okic with removable items. For
1 ≤ t ≤ T , we define the incremental fractional knapsack problem with time horizon t,
denoted by ifkt. For each time period τ ∈ {1, . . . , t} and each item i ∈ {1, . . . , nτ},
we introduce continuous variables 0 ≤

(
xtτ
)
i
≤ 1 that take value 1 if the corresponding

item is accepted and 0 otherwise. Further, nτ denotes the number of items in time
period τ , (vτ)i denotes the value of the i-th item given in time period τ , and (wτ)i the
corresponding weight. The problem ifkt is then given by

max

t∑

τ=1

nτ∑

i=1

(
xtτ
)
i
(vτ)i (ifkt)

s.t.
t∑

τ=1

nτ∑

i=1

(
xtτ
)
i
(wτ)i ≤ k · t for t = 1, . . . , t,

0 ≤
(
xtτ
)
i
≤ 1 for i = 1, . . . , nτ , τ = 1, . . . , t.

2.6. Increasing the Power of the Online Player 31

Algorithm 6: Greedy algorithm for okic with removable items.
1 for t = 1, . . . , T do
2 Let N t be the set of new items (possibly fractionally) accepted by ifkt in time

period t.
3 if αtt = 1 then
4 Accept all items in N t.
5 Remove items accepted in previous time periods in order of nondecreasing

efficiency such that the capacity constraints are satisfied.
6 else
7 if

∑stt−1
i=1 (vt)i ≥ (vt)stt

then
8 Accept items i = 1, . . . , stt − 1.
9 Remove items accepted in previous time periods in order of

nondecreasing efficiency such that the capacity constraints are satisfied.
10 else
11 Accept the split item stt.

Note that ifkt denotes the incremental fractional knapsack problem with t time periods,
i.e., τ = 1, . . . , t.

The optimal solution of ifkt is given by accepting the most efficient items while
respecting the capacity constraint of each time period. In the following, assume that, in
each time period τ , the new items are sorted by nonincreasing efficiency, i.e., (vτ)1/(wτ)1 ≥
(vτ)2/(wτ)2 ≥ · · · ≥ (vτ)nτ/(wτ)nτ . Then, the optimal solution vector xt of ifkt is given by
xt =

(
xt1, . . . , x

t
t

)
, where each xtτ ∈ Rnτ+ for 1 ≤ τ ≤ t is given by

xtτ =
(

1, . . . , 1︸ ︷︷ ︸
stτ−1

, αtτ , 0, . . . , 0
)
, with 0 < αtτ ≤ 1, (2.13)

for some 1 ≤ stτ ≤ nτ (note that stt = |N t|, see Algorithm 6). Keep in mind that it is
possible that xtτ does not use the full k · τ units of capacity available in time period τ
since it may be beneficial to save some capacity for items of higher efficiency arriving
in later periods. The item stτ (possibly fractionally) accepted to an amount αtτ in time
period τ will be referred to as the split item of time period τ . Observe that stτ ≤ st

′
τ for

all t ≥ t′, since, for t > t′, ifkt will never accept any item of time period τ that was not
accepted by ifkt

′ .
We now analyze the competitiveness of Algorithm 6, also referred to as alg in the

proof of the following theorem.

Theorem 2.6.2. For k ≥ 2, Algorithm 6 is 3-competitive for okic with removable items.
For k = 1, Algorithm 6 finds the optimal offline solution.

Proof. First of all, we consider the case k = 1. In this case, ifkT never accepts any item
fractionally, i.e., αTτ = 1 for all τ = 1, . . . , T . It is easy to see that the solution produced

32 2. Online Knapsack Problems with Dynamic Capacity

by alg is identical to the solution of ifkT . Since ifkT ≥ opt, alg obtains an optimal
solution for k = 1.

For k ≥ 2, consider now the incremental fractional knapsack problem with time
horizon T , i.e., ifkT : since ifkT ≥ opt, it suffices to prove 3 · alg ≥ ifkT for k ≥ 2.

For 1 ≤ t ≤ T , denote by algt the online algorithm after time period t and by yt =(
yt1, . . . , y

t
t

)
the solution vector produced by algt, where ytτ ∈ Rnτ+ for 1 ≤ τ ≤ t. In the

following, we prove by induction on t that, for each time period t and the corresponding
program ifkt, we have 3 · algt ≥ ifkt. For t = T , we then have 3 · alg ≥ ifkT ≥ opt.
First of all, we show that this holds for t = 1 and t = 2. The step from an arbitrary t− 1
to t then works analogously.

Without loss of generality, assume that the weight of the new items in each time
period is larger than k: If the weight of new items in time period t is at most k, N t

contains all new items of time period t and αtt = 1. Hence, by Step 4 of Algorithm 6,
alg accepts all new items in addition to the items in the knapsack after the previous
time period and the adversary is not able to gain a competitive edge over the online
player (note that alg does not remove any items in Step 5).

Consider t = 1 and the optimal solution vector x1 =
(
x11
)
for ifk1, where x11 is

given by

x11 = (1, . . . , 1︸ ︷︷ ︸
s11−1

, α1
1, 0, . . . , 0

)
, (2.14)

whereas the solution vector y1 of alg1 is given by y1 =
(
y11
)
, where

y11 = (1, . . . , 1︸ ︷︷ ︸
s11−1

, 0, 0, . . . , 0) if
s11−1∑

i=1

(v1)i ≥ (v1)s11
, (2.15)

y11 = (0, . . . , 0︸ ︷︷ ︸
s11−1

, 1, 0, . . . , 0) if
s11−1∑

i=1

(v1)i < (v1)s11
. (2.16)

Since alg1 accepts the more valuable solution, we have

2 · alg1 ≥ ifk1. (2.17)

Figures 2.6 and 2.7 depict the possible situations after the first time period. Note that
we can neglect items that are rejected by both ifk1 and alg1 since the online algorithm
cannot use them in later time periods and st1 ≤ s11 for t ≥ 1.

Now, consider t = 2. We distinguish two cases with respect to α2
2: either the split

item of the second time period is completely accepted, i.e., α2
2 = 1, or the split item of

the second time period is fractionally accepted, i.e., α2
2 < 1.

Case 1: α2
2 = 1

In this case, the split item of the second time period is completely accepted by ifk2.

2.6. Increasing the Power of the Online Player 33

alg1 1 1 1 1 0

(
y11

)
s11

(
y11

)
i

ifk1 1 1 1 1 α1
1

(
x1
1

)
s11

(
x1
1

)
i

τ = 1

Figure 2.6: alg1 according to (2.15).

alg1 0 0 0 0 1

(
y11

)
s11

(
y11

)
i

ifk1 1 1 1 1 α1
1

(
x1
1

)
s11

(
x1
1

)
i

τ = 1

Figure 2.7: alg1 according to (2.16).

Consequently, alg2 accepts all items in N2, according to Step 4 of Algorithm 6, and
we have

n2∑

i=1

(
y22
)
i
(v2)i

︸ ︷︷ ︸
value of new items
accepted by alg2

=

n2∑

i=1

(
x22
)
i
(v2)i

︸ ︷︷ ︸
value of new items
accepted by ifk2

. (2.18)

Now, consider the items from the first time period. alg2 possibly has to remove some
of the items accepted in the first time period in order to give way for the accepted
items from the second time period (see Step 5 of Algorithm 6). We distinguish two
cases with respect to the behavior of alg1:

Case 1.1: alg1 acted according to (2.15).
In this case, alg1 accepted all items that are accepted by ifk1 in the first time
period except for the split item s11. If alg2 does not have to remove any item from
the first time period, we have 2 · alg2 ≥ ifk2 due to (2.17) and (2.18).
Therefore, assume that alg2 has to remove some items from the first time period
and, hence, the weight of items from the second time period accepted by alg2 is
larger than k. The remaining value for alg2 of items from the first time period is
then given by

n1∑

i=1

(
y21
)
i
(v1)i =

s11−1∑

i=1

(v1)i −
s11−1∑

i=d

(v1)i ,

for some 1 ≤ d ≤ s11 − 1 (note that the items in each time period are sorted by
nonincreasing efficiency). However, since alg2 has to remove items d, . . . , s11 − 1
from the first time period and both alg2 and ifk2 accept the same items from the
second time period, ifk2 cannot accept more than items 1, . . . , d from the first time
period due to capacity constraints, i.e., s21 = d (see Figure 2.8). Therefore, we have

34 2. Online Knapsack Problems with Dynamic Capacity

alg2 1 1 0 0 0

(
y11

)
d−1

1 1 1 1 1

(
y22

)
s22

(
y22

)
i

ifk2 1 1 α2
1 0 0

(
x2
1

)
s21

1 1 1 1 1

(
x2
2

)
s22

(
x2
2

)
i

τ = 1 τ = 2

Figure 2.8: Solution vectors of alg2 and ifk2 in Case 1.1. Hatched fields denote removed
items.

n1∑

i=1

(
y21
)
i
(v1)i =

d−1∑

i=1

(v1)i =

s21−1∑

i=1

(
x21
)
i
(v1)i . (2.19)

The weight of the items from the second time period accepted by alg2 is larger
than k and, additionally, the efficiency of each item from the second time period
accepted by alg2 is at least as large as the efficiency of item s21 (otherwise, ifk2

would not have accepted all new items completely). Since s21 ≤ s11, this holds also
for s11. Thus, we have

n2∑

i=1

(
y22
)
i
(v1)i ≥ (v1)s11

and
n2∑

i=1

(
y22
)
i
(v1)i ≥ (v1)s21

. (2.20)

For the total value of alg2, we then have

2 · alg2 = 2

(
n1∑

i=1

(
y21
)
i
(v1)i +

n2∑

i=1

(
y22
)
i
(v2)i

)

(2.18)
= 2

n1∑

i=1

(
y21
)
i
(v1)i +

n2∑

i=1

(
y22
)
i
(v2)i +

n2∑

i=1

(
x22
)
i
(v2)i

(2.19)
= 2

s21−1∑

i=1

(
x21
)
i
(v1)i +

n2∑

i=1

(
y22
)
i
(v2)i +

n2∑

i=1

(
x22
)
i
(v2)i

(2.20)
≥ 2

s21−1∑

i=1

(
x21
)
i
(v1)i + (v1)s21

+

n2∑

i=1

(
x22
)
i
(v2)i

≥
n1∑

i=1

(
x21
)
i
(v1)i +

n2∑

i=1

(
x22
)
i
(v2)i

= ifk2.

2.6. Increasing the Power of the Online Player 35

alg2 0 0 0 0 0 1 1 1 1 1

(
y22

)
s22

(
y22

)
i

ifk2 1 1 1 1 α2
1

(
x2
1

)
s21

1 1 1 1 1

(
x2
2

)
s22

(
x2
2

)
i

τ = 1 τ = 2

Figure 2.9: Solution vectors of alg2 and ifk2 in Case 1.2. Hatched fields denote removed
items.

Case 1.2: alg1 acted according to (2.16).
In this case, alg1 accepted only the split item s11 in the first time period. If alg2

does not have to remove item s11 from the first time period, we have 2 · alg2 ≥ ifk2

due to (2.17) and (2.18).
Therefore, assume that alg2 has to remove item s11 from the first time period and,
hence, the weight of items from the second time period accepted by alg2 is larger
than k. We then have

n1∑

i=1

(
y21
)
i
(v1)i = 0, (2.21)

see also Figure 2.9. Furthermore, (2.20) holds by the same arguments as in Case 1.1.
In this case, the total value of alg2 satisfies

3 · alg2 = 3

(
n1∑

i=1

(
y21
)
i
(v1)i +

n2∑

i=1

(
y22
)
i
(v2)i

)

(2.21)
= 3

n2∑

i=1

(
y22
)
i
(v2)i

(2.18)
= 2

n2∑

i=1

(
y22
)
i
(v2)i +

n2∑

i=1

(
x22
)
i
(v2)i

(2.20)
≥ (v1)s11

+ (v1)s21
+

n2∑

i=1

(
x22
)
i
(v2)i

(2.16)
≥

s11−1∑

i=1

(
x11
)
i
(v1)i + (v1)s21

+

n2∑

i=1

(
x22
)
i
(v2)i

≥
s21∑

i=1

(
x21
)
i
(v1)i +

n2∑

i=1

(
x22
)
i
(v2)i (since s21 ≤ s11)

= ifk2.

36 2. Online Knapsack Problems with Dynamic Capacity

Case 2: α2
2 < 1

In this case, the split item of the second time period is only fractionally accepted by
ifk2. Therefore, alg2 has to decide whether to take the split item s22, or all new
items accepted by ifk2 except for the split item. Since alg2 accepts the more valuable
solution, we have

2

n2∑

i=1

(
y22
)
i
(v2)i

︸ ︷︷ ︸
value of new items
accepted by alg2

≥
n2∑

i=1

(
x22
)
i
(v2)i

︸ ︷︷ ︸
value of new items
accepted by ifk2

. (2.22)

If alg2 accepts only the split item s22, there is no need for alg2 to remove any of the
items accepted in the first time period since the weight of each item is at most k and
there are k units of additional capacity available. Thus, we have 2 · alg2 ≥ ifk2 due
to (2.17) and (2.22).

Therefore, assume that alg2 accepts all new items of the second time period accepted
by ifk2 except for the split item s22. Before we proceed, we make the following obser-
vation:

Observation 1. Since ifk2 accepted the split item s22 fractionally, the efficiency of
the split item is the lowest among all items accepted by ifk2. In particular, ifk2

accepts each item from the first time period accepted by ifk1 to the same fraction (if
its efficiency is higher than the efficiency of s22), or ifk2 does not accept the item at
all (if its efficiency is lower than the efficiency of s22). For items with equal efficiency,
we can assume without loss of generality that ifk2 is the offline solution that assigns
the fractionality only to s22 since this does not change the value of the solution of ifk2.

As in Case 1, we now distinguish two cases with respect to the behavior of alg1:

Case 2.1: alg1 acted according to (2.15).
In this case, alg1 accepted all items that are accepted by ifk1 in the first time
period except for the split item s11. If alg2 does not have to remove any items from
the first time period, we have 2 · alg2 ≥ ifk2 due to (2.17) and (2.22).
Therefore, assume that alg2 has to remove some items from the first time period
and, hence, the weight of items from the second time period accepted by alg2 is
larger than k. As in Case 1.1, the remaining value for alg2 of items from the first
time period is then given by

n1∑

i=1

(
y21
)
i
(v1)i =

s11−1∑

i=1

(v1)i −
s11−1∑

i=d

(v1)i ,

for some 1 ≤ d ≤ s11−1. Due to Observation 1, ifk2 accepts at most items 1, . . . , d−1
in this case, i.e., s21 ≤ d − 1, since ifk2 uses at least as much capacity as alg2 for

2.6. Increasing the Power of the Online Player 37

alg2 1 1 0 0 0

(
y11

)
d−1

1 1 1 1 0

(
y22

)
s22

(
y22

)
i

ifk2 1 1 0 0 0

(
x2
1

)
s21

1 1 1 1 α2
2

(
x2
2

)
s22

(
x2
2

)
i

τ = 1 τ = 2

Figure 2.10: Solution vectors of alg2 and ifk2 in Case 2.1. Hatched fields denote
removed items.

items from the second time period (see Figure 2.10). Thus, we have

n1∑

i=1

(
y21
)
i
(v1)i =

s21∑

i=1

(
x21
)
i
(v1)i , (2.23)

and obtain 2 · alg2 ≥ ifk2 by means of (2.22) and (2.23).

Case 2.2: alg1 acted according to (2.16).
In this case, alg1 accepted only the split item s11 in the first time period. If alg2

does not have to remove item s11 from the first time period, we have 2 · alg2 ≥ ifk2

due to (2.17) and (2.22).

Therefore, assume that alg2 has to remove item s11 from the first time period and,
hence, the weight of items from the second time period accepted by alg2 is larger
than k. As in Case 1.2, we have

n1∑

i=1

(
y21
)
i
(v1)i = 0. (2.24)

The weight of new items accepted by ifk2 must also be larger than k and, due to
Observation 1, ifk2 does not accept s11. Therefore, we have

n1∑

i=1

(
x21
)
i
(v1)i ≤

s11−1∑

i=1

(v1)i , (2.25)

see also Figure 2.11. Additionally, the efficiency of each item from the second time
period accepted by alg2 is at least as large as the efficiency of item s11 (otherwise,

38 2. Online Knapsack Problems with Dynamic Capacity

alg2 0 0 0 0 0 1 1 1 1 0

(
y22

)
s22

(
y22

)
i

ifk2 1 1 1 1 0

(
x2
1

)
s21

1 1 1 1 1

(
x2
2

)
s22

(
x2
2

)
i

τ = 1 τ = 2

Figure 2.11: Solution vectors of alg2 and ifk2 in Case 2.2. Hatched fields denote
removed items.

ifk2 would not have accepted new items with weight larger than k). Thus, we have

n2∑

i=1

(
y22
)
i
(v1)i ≥ (v1)s11

(2.16)
>

s11−1∑

i=1

(v1)i

(2.25)
≥

n1∑

i=1

(
x21
)
i
(v1)i . (2.26)

For the total value of alg2, we then have

3 · alg2 = 3

(
n1∑

i=1

(
y21
)
i
(v1)i +

n2∑

i=1

(
y22
)
i
(v2)i

)

(2.24)
= 3

n2∑

i=1

(
y22
)
i
(v2)i

(2.22)
≥

n2∑

i=1

(
y22
)
i
(v2)i +

n2∑

i=1

(
x22
)
i
(v2)i

(2.26)
≥

n1∑

i=1

(
x21
)
i
(v1)i +

n2∑

i=1

(
x22
)
i
(v2)i

= ifk2.

Consider now the step from an arbitrary t−1 to t for t > 2. The basic analysis works
analogously, but we have to make some comments concerning the details.

The analysis is identical with respect to the new items accepted in time period t
by algt and ifkt. If no items accepted by algt−1 are removed by algt, we are done.
Thus, assume that algt has to remove items accepted by algt−1. In contrast to the step

2.6. Increasing the Power of the Online Player 39

algt 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

ifkt 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 αt
t

t1 t2 t3 t

Figure 2.12: Solution vectors of algt and ifkt. Hatched fields denote removed items.

from the first to the second time period, algt possibly removes items from several time
periods. A generalization of Observation 1 helps us to analyze this situation:

Observation 2. If ifkt accepts the split item of time period t fractionally, each item
accepted by ifkt−1 is either accepted by ifkt to the same fraction, or not accepted at all
by ifkt.

Observation 3. If ifkt accepts the split item of time period t completely, there is at most
one item accepted by ifkt−1 that is accepted by ifkt to a smaller but positive fraction
compared to ifkt−1.

Both observations hold due to the same argumentation as for Observation 1. Now,
consider the case that ifkt accepts the split item of time period t fractionally. Due to
Observation 2, each time period t′ < t for which algt

′ acted according to (2.15) can be
analyzed as in Case 2.1 (see (2.23) and t1 in Figure 2.12). Each time period for which
algt

′ acted according to (2.16) is analyzed as in Case 2.2 (see t2 and t3 in Figure 2.12),
with the following additional argument: Before algt removes the split item from time
period t′, at least the k additional units of capacity from time period t are used up by new
items with efficiency at least as high as the split item’s efficiency. After algt removed
the split item, the corresponding block of k units of capacity is available. Note that this
must be at least k units of capacity, since αt′t′ < 1 in time period t′. Thus, before the
next split item is removed by algt, again k units of capacity are used by new items with
efficiency at least as high as the previous items, and so forth. Therefore, the total value
of all split items removed by algt is not larger than the total value of all new items
accepted by algt.

Finally, consider the case that ifkt accepts the split item of time period t completely.
Due to Observation 3, there is at most one item accepted by ifkt−1 that is accepted by
ifkt to a smaller but positive fraction compared to ifkt−1. If we neglect this item, the
analysis works as in the case above. Since algt accepts all new items that are accepted
by ifkt, algt obtains the same value from new items as ifkt, instead of only half of the
value as in the case above. Since the neglected item has value not larger than the total
value of the new items of ifkt, the value of the new items accepted by algt is at least
half of the value of both the new items accepted by ifkt and the value of the neglected

40 2. Online Knapsack Problems with Dynamic Capacity

item. The value of the items from previous time periods except for the neglected item
can be bounded as before. This concludes the proof.

In the following, we prove that the analysis of Algorithm 6 is tight for k →∞.

Theorem 2.6.3. For k →∞, the competitive ratio of Algorithm 6 is 3.

Proof. Consider the requests r1 = (1, k, 1), r2 = (1, k + ε, k), ε > 0, and r3 = (1, k −
2, k − 2), that are presented to alg in the first time period. Note that k ≥ 3. We have
an ordering with respect to efficiency of

v1
w1

=
k

1
>

(k + ε)

k
=
v2
w2

> 1 =
v3
w3
,

for ε sufficiently small. Thus, ifk1 accepts r1 and a fraction of k−1/k of r2. Since
w1 + w2 = 1 + k > k and v2 = k + ε > k = v1, alg accepts r2.
Assume that k is odd. Then, in the second time period, two identical requests

r4 = r5 = (2,
(k + 1)(k + 2ε)

2k
,
k + 1

2
)

are revealed (see also Figure 2.13). The efficiency order is given by

v1
w1

=
k

1
>
v4
w4

=
v5
w5

=
(k+1)(k+2ε)

2k
k+1
2

=
k + 2ε

k
>
k + ε

k
=
v2
w2
.

ifk2 accepts r1, r4, r5, and a fraction of k−2/k of r2. Thus, alg accepts r4 and r5. Since
w4 + w5 + w2 = 2k + 1 > 2k, alg has to remove r2. The value of alg is then given by

alg = v4 + v5 =
(k + 1)(k + 2ε)

k
= k + 1 + 2ε+

2ε

k
.

The optimal offline solution is given by accepting r1,r3,r4, and r5. This solution is feasible
since w1 + w3 = k − 1 and w1 + w3 + w4 + w5 = 2k, and the total value is given by

opt = v1 + v3 + v4 + v5 = k + k − 2 +
(k + 1)(k + 2ε)

k
= 3k − 1 + 2ε+

2ε

k
.

Since ε > 0 can be chosen small, the competitive ratio is in this case given by opt/alg =
(3k−1)/(k+1), and for k →∞, we have opt/alg→ 3.

It remains to prove the theorem for even k. For this case, we slightly change the
weight and value of items r4 and r5, i.e., we set

r4 =

(
2,
k + 2ε

2
,
k

2

)
and r5 =

(
2,
k + 2ε

2

(
1 +

2

k

)
,
k

2
+ 1

)
.

Since

v1
w1

=
k

1
>
v4
w4

=
v5
w5

=
k + 2ε

k
>
k + ε

k
=
v2
w2
,

2.6. Increasing the Power of the Online Player 41

t1 2
Available Requests

r2

r3

r1 r4

r5

1

k

k − 2

k+1
2

k+1
2

t1 2
alg

r2 r4

r5

t1 2
opt

r1

r3
r1

r3

r4

r5

Figure 2.13: Lower bound for okic with removable items for k ≥ 2 odd.

alg again accepts r4 and r5 in the second time period and, due to w4 + w5 + w2 =
2k + 1 > 2k, alg has to remove r2. The value of alg is then given by

v4 + v5 =
k + 2ε

2

(
2 +

2

k

)
= k + 1 + 2ε+

2ε

k
.

The optimal offline solution is given by accepting r1,r3,r4, and r5. This solution is
still feasible and features the same total value as in the case of odd k. Therefore, the
competitive ratio of Algorithm 6 is three.

In the following, lower bounds on the competitive ratio of any deterministic online
algorithm for okic with removable items are provided.

Theorem 2.6.4. For k ≥ 4, no deterministic online algorithm for okic with removable
items can achieve a competitive ratio smaller than

√
2. For k = 3 and k = 2, lower

bounds are given by (1+
√
10)/3 ≈ 1.387 and (1+

√
17)/4 ≈ 1.281, respectively.

Proof. Consider the request sequence σ = (a1, b1, a2, b2, . . . , ak, bk). In the first time
period t = 1, the adversary reveals a1 = (1, 1, 1) and b1 = (1, x, k) with x > 1. Obviously,
the online player must accept either a1 or b1 in order to be competitive. If the online
player accepts a1, all further requests at and bt, for t = 2, . . . , k, will be worthless and
the competitive ratio is given by x since the adversary chooses b1.

Otherwise, the online player accepts b1 and the adversary reveals a2 = (1, 1, 1) and
b2 = (1, x, k). Again, if the online player accepts a2, all further requests at and bt, for
t = 3, . . . , k, will be worthless and the competitive ratio is given by (x+2)/(x+1) since the
adversary accepts a1 in the first period and a2 and b2 in the second period. Otherwise,
if the online player accepts b2, the adversary reveals a3 = (1, 1, 1) and b3 = (1, x, k).

This procedure is repeated until the online player either accepts at for some t < k
or t = k. If the online player accepts at for some 2 ≤ t < k, the competitive ratio is

42 2. Online Knapsack Problems with Dynamic Capacity

given by

(t− 1)x+ t

(t− 1)x+ 1
. (2.27)

For 2 ≤ t < k, (2.27) is increasing in t. Thus, the online player accepts a1 in the first
time period and ends up with a competitive ratio of x, or accepts a2 and ends up with
the abovementioned competitive ratio of (x+2)/(x+1), or accepts bt for t = 1, . . . , k− 1. In
the latter case, the online player obviously accepts bk in the last time period since x > 1,
and the competitive ratio is given by

(k − 1)x+ k

kx
. (2.28)

Set x :=
√

2. Then, for k ≥ 4, (2.28) is larger than
√

2, i.e.,

(k − 1)x+ k

kx
=
k − 1

k
+

1√
2
≥ 3

4
+

1√
2
≈ 1.457 >

√
2,

and (x+2)/(x+1) = (
√
2+2)/(

√
2+1) =

√
2. Consequently, for k ≥ 4, no deterministic algo-

rithm for okic with removable items can achieve a competitive ratio smaller than
√

2.
For k = 3, set x := (1+

√
10)/3 ≈ 1.387. Then, (2.28) equals x, i.e.,

(k − 1)x+ k

kx
=

2

3
+

3

1 +
√

10
=

1 +
√

10

3
,

and (x+2)/(x+1) ≈ 1.418. Thus, for k = 3, no deterministic algorithm for okic with
removable items can achieve a competitive ratio smaller than (1+

√
10)/3.

Finally, for k = 2, set x := (1+
√
17)/4 ≈ 1.281. Then, (2.28) equals x, i.e.,

(k − 1)x+ k

kx
=

1

2
+

4

1 +
√

17
=

1 +
√

17

4
.

Therefore, for k = 2, no deterministic algorithm for okic with removable items can
achieve a competitive ratio smaller than (1+

√
17)/4.

Instead of being greedy in each time period t, we could solve the knapsack problem
with all available items and capacity k · t in each time period, see Algorithm 7. Theo-
rem 2.6.5 states that this strategy cannot lead to a better competitive ratio than two.
However, it remains subject to further research whether Algorithm 7 obtains a constant
competitive ratio or even a competitive ratio smaller than three.

Theorem 2.6.5. For k →∞, the competitive ratio of Algorithm 7 is at least two.

Proof. Consider the following sequence of requests: in each time period t, there are two
requests rt1 and rt2 with

rt1 = (t, 1, k) and rt2 = (t, 1− ε, 1),

2.6. Increasing the Power of the Online Player 43

Algorithm 7: Knapsack algorithm for okic with removable items.
1 for t = 1, . . . , T do
2 Solve the knapsack problem with capacity t · k and all available items, i.e.,

both items ri with di = t and items which have been accepted in previous
periods. Accept the corresponding requests and remove requests which have
been accepted in previous periods but are not part of the knapsack solution.

where ε > 0. In the first time period, alg accepts r11 since v11 > v12 and the sum of the
weights of r11 and r12 exceeds the available capacity of k.

In the second time period, alg solves the knapsack problem with capacity 2k and
the available requests r11 (which alg accepted in the first time period), r21 , and r22 .
Thus, alg keeps r11 and accepts r21 .

This situation reoccurs in every following time period. Consequently, alg accepts rt1
in every time period and achieves a total value of T .

On the contrary, opt accepts in the first time period r12 and in the following k − 1
time periods both rt1 and rt2 . In the (k + 1)-st time period, opt again accepts only rt2
and in the following k−1 time periods both rt1 and rt2 , and so forth. Consequently, opt
achieves a total value of

T (1− ε) +

(
T −

⌈
T

k

⌉)
= 2T − Tε−

⌈
T

k

⌉
.

Therefore, the competitive ratio is given by

opt
alg

=
2T − Tε−

⌈
T
k

⌉

T
= 2− ε−

⌈
T
k

⌉

T
≥ 2− ε− 1

k
. (2.29)

For k → ∞, (2.29) converges to 2 − ε, and since ε is arbitrary the competitive ratio of
Algorithm 6 is not smaller than two.

2.6.3 Bounded Values

In this section, the request values vi are bounded in order to give the online player a
competitive edge over the adversary. Thus, consider bounded values vi ∈ [m,M] with
0 < m < M . We confine ourselves to k-incremental capacity and unit weights. The
problem is in the following referred to as okic with bounded values. Note that for
arbitrary or limited weights the analysis of competitive algorithms is subject to further
research.

In the previous sections, we observed that greedy algorithms are not the worst choice.
Thus, consider Algorithm 8 that solves okic with bounded values in a greedy manner.
However, Algorithm 8 achieves only the trivial competitive ratio M/m.

Theorem 2.6.6. For T →∞, the competitive ratio of Algorithm 8 for okic with bounded
values is given by M/m.

44 2. Online Knapsack Problems with Dynamic Capacity

Algorithm 8: Greedy algorithm for okic with bounded values.
1 for t = 1, . . . , T do
2 Accept the requests ri with di = t in order of nonincreasing value until either

no more requests are available or the capacity is fully utilized.

Proof. Algorithm 8 always accepts the k requests of highest value among all requests as
there are at least k units of capacity available in each time period. opt can accept no
more than T · k requests in total. Thus, opt ≤ T · k ·M and alg ≥ k ·M + (T − 1)k ·m,
and we have

max
σ

opt(σ)

alg(σ)
≤ T · k ·M
k ·M + (T − 1)k ·m =

M
M/T + (1− 1/T)m

→ M

m
for T →∞.

In order to find an algorithm for okic with bounded values with a better competitive
ratio, we apply a threshold value policy (as proposed for the time series search problem
by El-Yaniv et al. (2001)): Algorithm 9 accepts only items with value at least matching
a certain threshold.

Algorithm 9: Threshold value policy for okic with bounded values.
1 for t = 1, . . . , T do
2 Accept the requests ri with di = t if vi ≥ v? in order of nonincreasing value

until either no more requests are available or the capacity is fully utilized,
where

v? =

√
M2 + 4T (T − 1)Mm−M

2(T − 1)
.

Theorem 2.6.7. For T →∞, the competitive ratio of Algorithm 9 for okic with bounded
values is given by

√
M/m.

Proof. The value of each request is either smaller than the threshold or it matches at least
the threshold. In the first case, the request is rejected by alg, and, in the latter case,
the request is accepted by alg (if enough capacity is available). In order to maximize
the competitive ratio, the adversary therefore reveals only requests with value v?− ε, for
some ε > 0, or v?.

Depending on the threshold, the adversary now chooses between two strategies in
order to outsmart the online player: Either the adversary first presents requests with a
value matching the threshold such that the online player uses up all available capacity
and then presents requests with maximal value M . Or the adversary presents only
requests which are just below the threshold such that the online player has to settle for

2.7. Empirical Analysis 45

the lower bound m in the end. Note that the best result for the adversary (i.e., the
worst case for the online player) is achieved by sticking to one of these two strategies for
the whole game: otherwise, the online player is either able to accept additional requests
with maximal value instead of requests with value just below the threshold, or the online
player is able to accept additional request with value matching the threshold instead of
requests with minimal value.

If the adversary chooses the first strategy, k requests with value v? are revealed in
time period t = 1, . . . , T − 1, which are accepted by the online player. In the last time
period, k · T requests with value M are revealed, from which the online player is able
to accept k requests and the adversary accepts all of them. This leads to a competitive
ratio of

k · T ·M
k ·M + k(T − 1)v?

=
T ·M

M + (T − 1)v?
. (2.30)

If the adversary chooses the second strategy, k requests with value v? − ε, for some
ε > 0, are revealed in each time period. Since the value of these requests is below the
threshold v?, the online player rejects all of them and ends up with the lower bound m.
Thus, ignoring the ε, the competitive ratio is given by

k · T · v?
k · T ·m =

v?

m
. (2.31)

Due to the choice of v?, we have (2.30) = (2.31), i.e.,

v?

m
=

T ·M
M + (T − 1)v?

.

Thus, the competitive ratio is given by

v?

m
=

√
M2 + 4T (T − 1)Mm−M

2(T − 1)m

=

√
M2

T 2 + 4Mm− 4Mm
T − M

T

2m− 2m
T

→
√
M

m
for T →∞.

2.7 Empirical Analysis

In the previous sections, we have analyzed various settings of okic and presented com-
petitive algorithms as well as lower bounds on the competitive ratio. Since we took the
approach of competitive analysis, we have looked for the weak spot of the presented
algorithms and analyzed their worst-case performance. In order to get a feeling for
the performance of these algorithms on randomly generated instances, we implemented
them and evaluated their average-case competitive ratio for various instances with in-
crements k ∈ {2, 5, 10}, numbers of time periods T ∈ {5, 10, 20, 40}, and numbers of

46 2. Online Knapsack Problems with Dynamic Capacity

items N = l · k · T where l ∈ {1, 2, 4}. The number of items is linked to the number
of time periods and the increment, since otherwise there is a high probability that all
new items fit in the additional k units of capacity in each time period and the problem
is of no interest. The time period in which an item is revealed to the online algorithm
is sampled uniformly from {1, . . . , T} and the value of each item is sampled uniformly
from [1, 100]. Note that the impact of a change of the maximal possible value for each
item was neglectable in all experiments that we carried out. Thus, we decided to fix the
maximal value. For the limited weight case, the weight of each item is sampled uniformly
from {1, . . . , k}.

In Table 2.1, we present the simulation results for Algorithm 1 (greedy algorithm),
Algorithm 2 (balancing algorithm), Algorithm 3 (randomized greedy algorithm), and
Algorithm 9 (threshold value policy). Note that we deal with unit weights. Each row
represents 100 randomly generated instances and the left part of Table 2.1 states the
parameter settings, whereas the right part of Table 2.1 states the average competitivities
along with the standard deviations. The empirical competitive ratio of the randomized
algorithm is given by the mean value of 100 runs on the same instance.

Regardless of the different parameter settings, the greedy algorithm and the thresh-
old value policy perform better than the balancing algorithm and the randomized greedy
algorithm. The greedy algorithm and the threshold value policy achieve on average a
competitivity of 1.031 and 1.029, respectively, while the balancing algorithm and the
randomized greedy algorithm obtain on average a competitivity of 1.502 and 2.679, re-
spectively. In comparison to the worst-case behaviour of these algorithms analyzed in
the course of this chapter, the average-case performance of the greedy algorithm and the
threshold value policy is quite good.

In Table 2.2, we present the simulation results for Algorithm 4 (greedy algorithm), Al-
gorithm 5 (randomized greedy algorithm), Algorithm 6 (greedy algorithm with removal),
and Algorithm 7 (knapsack algorithm with removal). Note that we deal with limited
weights and Algorithm 6 and Algorithm 7 are allowed to remove previously accepted
items. Again, each row represents 100 randomly generated instances and the left part
of Table 2.2 states the parameter settings, whereas the right part of Table 2.2 states the
average-case competitivities. The empirical competitive ratio of the randomized algo-
rithm is given by the mean value of 100 runs on the same instance.

For the limited weights setting, the algorithms that are allowed to remove previously
accepted items (Algorithm 6 and Algorithm 7) achieve on average a competitivity of
1.018 and 1.007, respectively. Due to their ability to remove previously accepted items,
these algorithms outperform the greedy algorithm and the randomized greedy algorithm,
regardless of the instance. The greedy algorithm achieves an average competitivity of
1.076 and is clearly better than the randomized greedy algorithm with an average com-
petitivity of 2.167.

Finally, we consider the dependence of the competitive ratio of the greedy algorithm
on the number of time periods as indicated by the theoretical analysis. Note that all
other algorithms for okic without additional assumptions also feature a competitive
ratio dependent on the number of time periods. However, we picked the greedy algorithm

2.7. Empirical Analysis 47

k T N
Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 9

greedy balance rand. greedy threshold

2 5 10 1.016± 0.045 1.718± 0.350 1.738± 0.206 1.012± 0.030

2 5 20 1.063± 0.059 1.725± 0.154 1.487± 0.143 1.056± 0.055

2 5 40 1.037± 0.037 1.697± 0.073 1.263± 0.069 1.037± 0.037

2 10 20 1.016± 0.028 2.079± 0.351 2.500± 0.361 1.015± 0.022

2 10 40 1.086± 0.045 2.107± 0.191 1.938± 0.186 1.078± 0.042

2 10 80 1.053± 0.033 2.052± 0.080 1.492± 0.082 1.052± 0.032

2 20 40 1.019± 0.026 1.965± 0.205 3.765± 0.579 1.012± 0.013

2 20 80 1.108± 0.040 2.048± 0.133 2.858± 0.333 1.093± 0.038

2 20 160 1.065± 0.025 1.990± 0.067 1.879± 0.124 1.064± 0.024

2 40 80 1.017± 0.015 2.112± 0.177 6.079± 0.839 1.013± 0.010

2 40 160 1.115± 0.029 2.183± 0.112 4.606± 0.465 1.101± 0.026

2 40 320 1.069± 0.017 2.083± 0.053 2.682± 0.221 1.069± 0.016

5 5 25 1.005± 0.016 1.265± 0.118 1.703± 0.187 1.005± 0.013

5 5 50 1.030± 0.024 1.272± 0.076 1.472± 0.095 1.029± 0.022

5 5 100 1.016± 0.017 1.218± 0.029 1.244± 0.041 1.016± 0.017

5 10 50 1.006± 0.009 1.363± 0.108 2.491± 0.249 1.006± 0.006

5 10 100 1.042± 0.021 1.354± 0.060 1.922± 0.125 1.040± 0.020

5 10 200 1.020± 0.013 1.296± 0.023 1.480± 0.054 1.020± 0.012

5 20 100 1.008± 0.010 1.371± 0.064 3.730± 0.367 1.007± 0.005

5 20 200 1.052± 0.016 1.361± 0.043 2.875± 0.213 1.049± 0.015

5 20 400 1.024± 0.008 1.287± 0.018 1.866± 0.091 1.024± 0.008

5 40 200 1.009± 0.008 1.414± 0.060 6.161± 0.600 1.008± 0.004

5 40 400 1.056± 0.014 1.382± 0.033 4.523± 0.346 1.052± 0.012

5 40 800 1.026± 0.006 1.306± 0.014 2.663± 0.150 1.026± 0.006

10 5 50 1.002± 0.006 1.180± 0.063 1.720± 0.124 1.003± 0.004

10 5 100 1.020± 0.016 1.164± 0.039 1.442± 0.072 1.020± 0.016

10 5 200 1.007± 0.006 1.135± 0.016 1.232± 0.033 1.007± 0.006

10 10 100 1.003± 0.005 1.237± 0.058 2.453± 0.190 1.004± 0.003

10 10 200 1.026± 0.012 1.211± 0.036 1.903± 0.101 1.025± 0.012

10 10 400 1.010± 0.006 1.154± 0.017 1.464± 0.043 1.010± 0.006

10 20 200 1.004± 0.006 1.276± 0.041 3.782± 0.247 1.006± 0.004

10 20 400 1.027± 0.010 1.232± 0.030 2.866± 0.180 1.026± 0.009

10 20 800 1.012± 0.004 1.160± 0.011 1.855± 0.070 1.012± 0.004

10 40 400 1.005± 0.004 1.282± 0.036 6.084± 0.440 1.007± 0.002

10 40 800 1.029± 0.006 1.242± 0.021 4.578± 0.212 1.029± 0.006

10 40 1600 1.013± 0.003 1.162± 0.009 2.673± 0.130 1.013± 0.003

Table 2.1: Average competitivities for unit weights.

48 2. Online Knapsack Problems with Dynamic Capacity

k T N
Algorithm 4 Algorithm 5 Algorithm 6 Algorithm 7

greedy rand. greedy greedy remove knapsack remove

2 5 10 1.066± 0.088 1.623± 0.226 1.018± 0.036 1.004± 0.016

2 5 20 1.095± 0.078 1.413± 0.129 1.043± 0.055 1.016± 0.028

2 5 40 1.065± 0.051 1.309± 0.067 1.041± 0.048 1.008± 0.015

2 10 20 1.093± 0.066 2.231± 0.318 1.014± 0.022 1.006± 0.014

2 10 40 1.109± 0.054 1.762± 0.181 1.025± 0.024 1.013± 0.017

2 10 80 1.079± 0.036 1.547± 0.088 1.025± 0.025 1.005± 0.007

2 20 40 1.106± 0.055 3.401± 0.542 1.007± 0.009 1.005± 0.007

2 20 80 1.126± 0.041 2.397± 0.267 1.012± 0.010 1.009± 0.009

2 20 160 1.097± 0.031 1.904± 0.101 1.016± 0.013 1.004± 0.005

2 40 80 1.118± 0.038 5.476± 0.777 1.003± 0.003 1.004± 0.004

2 40 160 1.131± 0.029 3.711± 0.407 1.007± 0.006 1.007± 0.006

2 40 320 1.098± 0.023 2.474± 0.160 1.011± 0.008 1.004± 0.003

5 5 25 1.093± 0.063 1.461± 0.116 1.057± 0.053 1.019± 0.026

5 5 50 1.054± 0.041 1.364± 0.075 1.038± 0.040 1.010± 0.012

5 5 100 1.040± 0.024 1.316± 0.057 1.025± 0.028 1.003± 0.006

5 10 50 1.091± 0.044 1.845± 0.186 1.026± 0.024 1.015± 0.014

5 10 100 1.077± 0.026 1.672± 0.099 1.025± 0.021 1.011± 0.009

5 10 200 1.053± 0.018 1.584± 0.062 1.010± 0.010 1.004± 0.004

5 20 100 1.111± 0.033 2.493± 0.257 1.017± 0.012 1.012± 0.008

5 20 200 1.083± 0.022 2.095± 0.130 1.012± 0.010 1.008± 0.005

5 20 400 1.055± 0.015 1.977± 0.080 1.007± 0.006 1.003± 0.003

5 40 200 1.112± 0.021 3.863± 0.416 1.009± 0.006 1.012± 0.005

5 40 400 1.087± 0.013 2.814± 0.173 1.008± 0.004 1.007± 0.003

5 40 800 1.061± 0.010 2.524± 0.086 1.004± 0.003 1.002± 0.001

10 5 50 1.067± 0.039 1.396± 0.074 1.050± 0.049 1.013± 0.014

10 5 100 1.043± 0.023 1.362± 0.057 1.032± 0.028 1.007± 0.007

10 5 200 1.027± 0.016 1.322± 0.050 1.021± 0.019 1.003± 0.004

10 10 100 1.069± 0.024 1.742± 0.100 1.024± 0.022 1.013± 0.009

10 10 200 1.050± 0.020 1.657± 0.075 1.015± 0.011 1.007± 0.004

10 10 400 1.033± 0.013 1.607± 0.062 1.011± 0.009 1.003± 0.002

10 20 200 1.077± 0.019 2.239± 0.129 1.012± 0.008 1.011± 0.005

10 20 400 1.057± 0.014 2.114± 0.092 1.007± 0.006 1.005± 0.003

10 20 800 1.038± 0.008 2.014± 0.071 1.005± 0.004 1.002± 0.001

10 40 400 1.084± 0.014 2.994± 0.197 1.007± 0.005 1.009± 0.004

10 40 800 1.059± 0.010 2.711± 0.095 1.003± 0.002 1.004± 0.002

10 40 1600 1.040± 0.006 2.607± 0.080 1.002± 0.002 1.002± 0.001

Table 2.2: Average competitivities for limited weights.

2.8. Extension to Multiple Knapsacks 49

1 10 20 30 40 50 60 70 80 90 100

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

number of time periods T

av
er
ag
e
co
m
pe

ti
ti
ve

ra
ti
o

Alg. 1 (greedy, unit weights)
Alg. 4 (greedy, limited weights)

Figure 2.14: Average competitivity of the greedy algorithm for T = 1, . . . , 100.

since it performed best among these algorithms. In Figure 2.14, we depicted the average
competitivity of the greedy algorithm for unit and limited weights on instances with
k = 5, N = 4 · k · T , and T = 1, . . . , 100. Each dot represents the average competitivity
of the greedy algorithm on 100 randomly generated instances (as described above).

For an increasing number of time periods and constant k as well as a constant number
of items per unit of available capacity, the average competitivity of the greedy algorithm
for both unit and limited weights increases, but the increase flattens with an increasing
number of time periods.

2.8 Extension to Multiple Knapsacks

In this section, we consider the extension of the online knapsack problem with incremental
capacity to multiple knapsacks. Instead of a single knapsack with increasing capacity, we
now have multiple knapsacks, each with increasing capacity: at the beginning, there are
m knapsacks and the capacity of each knapsack increases by k units in each time period,
as in the case of a single knapsack.

By means of a result by Awerbuch et al. (1996), the algorithms presented in this work
can be used to obtain competitive algorithms for the problem with multiple knapsacks:
We run m copies of the single knapsack algorithm alg, one for each knapsack, denoted
by alg1, . . . ,algm. In each time period, the set of new requests is first presented to
alg1. The set of requests is then reduced by the requests accepted by alg1, and passed
on to alg2, and so forth.

50 2. Online Knapsack Problems with Dynamic Capacity

If alg is c-competitive, we obtain a (c+ 1)-competitive algorithm for multiple knap-
sacks:

Theorem 2.8.1 (Awerbuch et al. (1996)). If there exists a c-competitive algorithm alg
for okic with a single knapsack, then there exists a (c + 1)-competitive algorithm for
okic with m knapsacks.

The theorem in (Awerbuch et al., 1996) is given for a broad class of packing problems,
but can be translated directly to the online knapsack problem with incremental capacity.
In our setting, in each time period several requests are presented, whereas in the setting
in (Awerbuch et al., 1996) one request is presented in each time period. However, the
proof is based on the following argument: Denote the set of requests accepted by opt
and assigned to knapsack i by Oi, the set of requests accepted by algi by Ti, and the
set of requests presented to algi by Ri. Then,

Oi \
⋃

j<i

Tj ⊆ Ri.

This argument also holds if not only one but several requests are presented in each time
period. The remainder of the proof is then executed in exactly the same way.

2.9 Independent Knapsacks

Up to now, we have always considered the online knapsack problem with incremental
capacity. In this section, we modify this setting and consider independent knapsacks with
differing capacities, i.e., in each time period a certain capacity is available independent
of the available capacity of other time periods and the accepted requests in other time
periods. Consequently, it is not possible to save up capacity for subsequent time periods.
In this setting, the capacity of the knapsack in any time period can, for example, be
regarded as a perishable resource. Note that, in this variant, it can be advantageous for
the adversary to present requests that remain valid for more than one time period. Thus,
the knapsacks of each time period are independent of each other, but the time periods
are linked by the requests.

This setting is on the one hand closely related to the multiple knapsack problem,
which is a generalization of the standard knapsack problem considering several knapsacks
with possibly different capacities (cf. (Kellerer et al., 2004, Chapter 10)). However, in
an online version of the multiple knapsack problem all knapsacks are available in each
time period and the capacity of each knapsack is known in advance. Hence, this setting
differs from the setting proposed in this section.

On the other hand, the setting of independent knapsacks is related to online auctions
with re-usable goods as presented by Hajiaghayi et al. (2005). This problem can be viewed
as an online knapsack problem whereby the knapsack is emptied after each time period
and the items are available from an arrival to a departure time. However, the available
capacity remains the same in each time period and is known in advance. Hence, this
setting also differs from the setting of independent knapsacks discussed in this section.

2.9. Independent Knapsacks 51

t1 2
Available Requests

r1

r2

r2

r3

t1 2
alg

r2
r3

c1

c2

t1 2
opt

r1
r2

r3c1

c2

Figure 2.15: Example for oik.

First, the model is introduced formally. Consider a time horizon T ∈ N+ and N
requests ri = (ai, di, vi, wi), each consisting of an arrival time ai ∈ {1, . . . , T}, a deadline
di ∈ {1, . . . , T} with di ≥ ai, a value vi ∈ R+, and a weight wi ∈ N+.

The time horizon T is known to an online algorithm, whereas the number of requests
N is not. In each time period t ∈ {1, . . . , T}, the available capacity ct as well as the
requests ri with ai = t are revealed. In the setting considered in this section, the available
capacity in each time period is independent from the available capacity in previous time
periods, i.e., in each time period t there is a capacity of ct, but if capacity remains unused
in any time period, it is not available in the next time period.

The problem described above is in the following referred to as the online independent
knapsack problem (oik). The problem is illustrated in Example 2.9.1:

Example 2.9.1. Consider a time horizon T = 2 and the following three requests:

r1 = (1, 1, 1, 1), r2 = (1, 2, 3, 2), r3 = (2, 2, 2, 1).

In Figure 2.15, this example is depicted graphically. In the first time period, requests r1
and r2 are revealed along with capacity c1 = 2. An online algorithm can choose to accept
either r1, r2, or neither of them. It is not feasible to accept both requests due to the
capacity constraint. Assume that an online algorithm accepts request r2. Then, request
r3 is revealed in the second time period along with capacity c2 = 3. The online algorithm
is only able to accept request r3 and achieves an objective value of 5.

However, the optimal solution is to accept request r1 in the first time period and
requests r2 and r3 in the second time period leading to an objective value of 7. Note that
request r2 is still available in the second time period.

The offline problem corresponding to oik can be formulated as an integer program.
Let R = {r1, . . . , rN} be the set of requests and xi,t ∈ {0, 1} be a binary variable with

xi,t =

{
1, if request i is accepted at time t,
0, otherwise,

52 2. Online Knapsack Problems with Dynamic Capacity

where ai ≤ t ≤ di and i = 1, . . . , N . By means of these binary variables, we are able to
state the following integer programming formulation:

max
T∑

t=1

N∑

i=1

xi,tvi

s.t.
∑

i∈It
xi,twi ≤ ct for t = 1, . . . , T,

di∑

t=ai

xi,t ≤ 1 for i = 1, . . . , N,

xi,t ∈ {0, 1} for ai ≤ t ≤ di, i = 1, . . . , N,

where It = {i ∈ {1, . . . , N} | ai ≤ t ≤ di}. Thus, we have T knapsacks with capacity ct,
t ∈ T , and each request ri corresponds to an item with weight wi and value vi. Addi-
tionally, we are only able to pack item ri in knapsacks t′ with ai ≤ t′ ≤ di. So, we have
T knapsack problems linked with each other.

2.9.1 A Lower Bound for Deterministic Online Algorithms

Before we discuss a competitive algorithm for oik in the next section, a lower bound on
the competitive ratio of any deterministic online algorithm is given in this section.

Theorem 2.9.1. No deterministic online algorithm for oik can achieve a competitive
ratio smaller than the golden ratio ϕ = 1+

√
5

2 (≈ 1.61803).

Proof. Consider the following four requests:

r1 = (1, 1, v1, 2),

r2 = (1, 3, v2, 1),

r3 = (2, 2, v3, 2),

r4 = (2, 3, v4, 1),

where v1, . . . , v4 ≥ 0. In the first time period, requests r1 and r2 are revealed along with
capacity c1 = 2 and an online algorithm can choose to accept either r1, r2, or nothing at
all. If no request is accepted, the online algorithm is not competitive, since the adversary
reveals no further requests and is able to accept either r1 or r2. If the online algorithm
accepts request r1, no further requests are revealed. The offline algorithm accepts r2 and
the competitive ratio is v2/v1.

Otherwise, if the online algorithm accepts request r2, requests r3 and r4 are revealed
together with capacity c2 = 2 in the second time period. Now, the online algorithm can
choose between r3 and r4, since r1 is not available in the second time period. If the online
algorithm accepts request r3, capacity c3 = 0 is revealed, the offline algorithm accepts
r1 in the first time period and r2 and r4 in the second time period, and the competitive

2.9. Independent Knapsacks 53

ratio is given by (v1+v2+v4)/(v2+v3). Due to c3 = 0 the online algorithm is not able to
accept request r4.

Finally, if the online algorithm accepts request r4, capacity c3 = 2 is revealed and the
offline algorithm accepts r1 in the first time period, r3 in the second time period, and r2
and r4 in the third time period. The competitive ratio is given by (v1+v2+v3+v4)/(v2+v4).
The rejection of both r3 and r4 leads to a larger competitive ratio for the online algorithm
due to the same argumentation as above.

Recapitulating, no deterministic online algorithm can achieve a competitive ratio
smaller than

max
v1,...,v4

min

{
v2
v1
,
v1 + v2 + v4
v2 + v3

,
v1 + v2 + v3 + v4

v2 + v4

}
.

For ϕv1 = v2 and ϕv3 = v4 (for example, v1 = 1, v2 = ϕ, v3 = 1, v4 = ϕ) the three ratios
above are equal to each other since ϕ2 = ϕ+ 1 for ϕ = (1+

√
5)/2 and thus:

v2
v1

= ϕ,

v1 + v2 + v4
v2 + v3

=
(1 + ϕ)v1 + ϕv3

ϕv1 + v3
=
ϕ((1 + ϕ)v1 + ϕv3)

ϕ2v1 + ϕv3
= ϕ, and

v1 + v2 + v3 + v4
v2 + v4

=
(1 + ϕ)(v1 + v3)

ϕ(v1 + v3)
=
ϕ((1 + ϕ)(v1 + v3))

ϕ2(v1 + v3)
= ϕ.

Therefore, no deterministic online algorithm can achieve a competitive ratio smaller
than ϕ.

2.9.2 Competitive Online Algorithms

In this section, a deterministic 2-competitive online algorithm for oik is presented. Con-
sider the greedy algorithm for oik given by Algorithm 10.

Algorithm 10: Greedy algorithm for oik.
1 for t = 1, . . . , T do
2 Solve the deterministic knapsack problem with capacity ct for all available

requests, i.e., for all requests ri ∈ R such that ri has not been accepted before
and ai ≤ t ≤ di.

Theorem 2.9.2. Algorithm 10 achieves a competitive ratio of two for oik.

Proof. In order to establish a competitive ratio for Algorithm 10, we use a charging
argument: the requests accepted by an optimal solution are charged to the requests
accepted by the online algorithm in such a way that each request accepted by the online
algorithm is at most charged twice its value (see also Figure 2.16).

For a given sequence of requests, consider an optimal offline solution opt and the
solution alg obtained by Algorithm 10. If request ri is accepted by opt in any time
period, the value vi is charged to a request that is accepted by alg in the following way:

54 2. Online Knapsack Problems with Dynamic Capacity

If request ri is accepted both by opt and alg (in any time period), charge the value vi
to the request ri itself.

Otherwise, let Aopt
t be the index set of requests available in time period t by opt and

Sopt
t be the index set of requests accepted in time period t by opt. Correspondingly, let
AG
t be the index set of requests available in time period t for alg and SG

t the index set
of requests accepted in time period t by alg. Request ri ∈ R is available in time period
t if ai ≤ t ≤ di and the request has not been accepted before. So far, we considered the
requests accepted both by opt and alg in any time period, denoted by A:

T⋃

t=1

Sopt
t ∩

T⋃

t=1

SG
t =: A.

Consider now the requests Bτ that are accepted by opt in time period τ , but never by
alg, i.e.,

Sopt
τ \

T⋃

t=1

SG
t =: Bτ .

Note that, thereby, all requests accepted by opt are covered, i.e.

A ∪
T⋃

τ=1

Bτ =
T⋃

t=1

Sopt
t . (2.32)

Since the requests Bτ are never accepted by alg, they are available in time period τ
for alg. Consequently, the sum of the values of all requests accepted by alg in time
period τ is greater than or equal to the sum of the values of requests that are accepted
by opt in time period τ but never accepted by alg, since these requests are available
to alg in time period τ and alg solves the knapsack problem of all available requests
to optimality. Formally, we have

∑

i∈Bτ
vi ≤

∑

i∈SG
τ

vi. (2.33)

For each time period τ , charge the requests ri ∈ Bτ to the requests rj ∈ SG
τ evenly.

Hence, we have

opt =
T∑

t=1

∑

i∈Sopt
t

vi

(2.32)
=

∑

i∈A
vi +

T∑

t=1

∑

i∈Bτ
vi

(2.33)
≤ alg +

T∑

t=1

∑

i∈SG
t

vi

= 2 · alg.

2.9. Independent Knapsacks 55

tt1 · · · t2

(a) (b)

(a) (a)

tt1 · · · t2

ri

rj

rk

ro

rp

SG
t2

ri rj

rk

rl

rm

rn

Bt2

ct1

ct2
ct1

ct2

alg opt

Figure 2.16: Charging of requests: (a) requests accepted by both alg and opt, (b)
requests accepted only by opt.

The analysis of Algorithm 10 is tight, which is established by Lemma 2.9.1.

Lemma 2.9.1. The competitive ratio of Algorithm 10 is two.

Proof. For ε > 0, consider the requests

r1 = (1, 2, 1 + ε, 1),

r2 = (1, 1, 1, 1),

and capacities c1 = c2 = 1. Algorithm 10 accepts r1 in the first time period and cannot
accept any request in the second time period. The optimal solution is to accept r2
in the first time period and r1 in the second time period. Therefore, the competitive
ratio is given by (2+ε)/(1+ε). Since ε is arbitrary this shows that the competitive ratio of
Algorithm 10 is not smaller than two.

The knapsack problem is an NP-hard problem (Karp, 1972). Consequently, this
raises the question, what happens to the competitive ratio of Algorithm 10 if the knap-
sack problem in each time period is not solved to optimality but by an α-approximation
algorithm for the knapsack problem? A proper reconsideration of the proof of Theo-
rem 2.9.2 gives the answer.

Corollary 2.9.1. If Algorithm 10 solves the knapsack problem in each time period by an
α-approximation algorithm, Algorithm 10 achieves a competitive ratio of 1 + α for the
problem oik.

Proof. The proof is analogous to the proof of Theorem 2.9.2, except for the charging of
the requests Bτ that are accepted in time period τ by opt, but never by alg. For (2.33)
we now have

∑

i∈Bτ
vi ≤ α

∑

i∈SG
τ

vi, (2.34)

56 2. Online Knapsack Problems with Dynamic Capacity

since the requests Bτ are available to alg in time period τ and alg solves the knapsack
problem of all available requests by an α-approximation algorithm. Again, for each time
period, charge the requests i ∈ Bτ to the requests j ∈ SGτ evenly. Due to (2.34) and since
the value of each request in A was charged to itself as described in Theorem 2.9.2, each
request accepted by alg is charged at most (1 + α)-times its value on average.

From a theoretical point of view, a fully polynomial time approximation scheme
(FPTAS) is the best approximation for an NP-hard optimization problem, assuming
P 6= NP. Since there exists an FPTAS for the knapsack problem (cf. (Ibarra and
Kim, 1975)), Algorithm 10 achieves a competitive ratio of 2 + ε for any given ε > 0 in
polynomial time.

2.10 Conclusion and Future Research

In this chapter, we considered the online knapsack problem with incremental capacity.
For the restriction to unit weight items, we presented lower bounds on the competitive
ratio and algorithms with competitive ratios matching these lower bounds exactly in
the randomized case and for k → ∞ in the deterministic case. For limited weights in
{1, . . . , k}, a deterministic algorithm with a competitive ratio matching the lower bound
for k → ∞ and a randomized algorithm with a competitive ratio matching the lower
bound up to a factor of 3 have been developed. In order to be able to develop algorithms
with competitive ratios independent of T , we investigated the approaches of resource
augmentation, removable items, and bounded values. Additionally, we provided average-
case competitivities for the developed algorithms and showed how to obtain competitive
algorithms for the problem with multiple knapsacks. Finally, we studied the setting of
independent knapsacks and presented a 2-competitive algorithm and a lower bound on
the competitive ratio for any deterministic algorithm of (1+

√
5)/2.

For some problems presented in this chapter, there is still a gap between the lower
and upper bound on the competitive ratio of any deterministic or randomized algorithm,
which is subject to further research. Additionally, questions for future research include
the study of the online knapsack problem with incremental capacity in a stochastic setting
using average case analysis. Another direction for future research could be to study
further generalizations of the online knapsack problem with incremental capacity, for
example, the case where the increase in capacity is not identical in each time period, but
varies over time.

3
Multi-Objective Online Optimization

3.1 Introduction

Online optimization is a helpful tool for various single-objective decision problems. How-
ever, online problems may also be of multi-objective nature. Imagine you want to sell
your antique car and you are facing a sequence of offers by different people which you
have to reject or accept immediately since the potential buyers are not willing to wait
for a decision at a later time. On the one hand, you are eager to reach a high price, on
the other hand, you want to know your antique car in safe keeping. Consequently, you
evaluate each offer not only by the price, but also by your appreciation for the potential
buyer. This leads to a bi-objective online problem.

In general, the concept of competitive analysis for online problems is only applied to
single-objective online problems. However, the decision process of many online problems
is subject to multiple objectives in real-world situations, but a uniform theory for the
analysis of multi-objective online problems is not provided in the literature so far. In
this chapter, we close this gap and expand the concept of competitive analysis to multi-
objective online problems.

3.1.1 Previous Work

For an overview on the topic of multi-objective optimization, we refer to the textbook
by Ehrgott (2005). The definitions from the field of multi-objective optimization that are
relevant for the development of the concept of competitive analysis for multi-objective
online problems are given in the course of this section when needed. To the best of our
knowledge, there exists no general definition of competitive analysis for multi-objective
online problems. However, some approaches in the field of online optimization are related
to multi-objective online optimization:

Resource augmentation refers to a relaxed notion of competitive analysis, in which the
online player is allowed more resources than the adversary, see for example (Kalyana-
sundaram and Pruhs, 2000; Phillips et al., 1997). Competitive ratios are then stated

57

58 3. Multi-Objective Online Optimization

with respect to a fixed resource augmentation, which can be seen as a bi-objective online
problem. Furthermore, for preemptive online scheduling problems, the trade-off between
the competitive ratio and the cost of preemption is considered, for example, in (Mot-
wani et al., 1994), which is also a bi-objective setting. However, the competitive ratios
considered for these problems are the classical single-objective competitive ratios, while
we derive a notion for a multi-objective competitive ratio, i.e., for defining a competitive
ratio for a multi-objective online problem.

Furthermore, online algorithms are closely related to approximation algorithms. In
the field of multi-objective optimization, a solution x of a multi-objective maximization
problem is called a ρ-approximation of a solution x′ if fi(x) ≥ ρ · fi(x′) for i = 1, . . . , n,
where fi, i = 1, . . . , n, are the components of the objective function and 0 < ρ ≤ 1. A
set of feasible solutions X ′ is called a ρ-approximation of a set of efficient solutions if,
for every feasible solution x, X ′ contains a feasible solution x′ that is a ρ-approximation
of x (see, for example, (Bazgan et al., 2012; Erlebach et al., 2002)). In (Papadimitriou
and Yannakakis, 2000), the authors point out that, under very general conditions, there
exists a (1 − ε)-approximation of the set of efficient solutions, for any ε > 0, whose size
is polynomial both in the size of the instance and in 1/ε.

In our approach, the output generated by an online algorithm is, due to the online
nature of the problem, a single solution instead of a set of solutions. Therefore, the
competitiveness of a multi-objective online algorithm as introduced in this work is not
directly deducible from the concept of ρ-approximation, but in some cases a close relation
between our approach of competitive analysis for multi-objective online algorithms and
multi-objective approximation algorithms is given.

The rest of this chapter is organized as follows: In Section 3.2, we introduce the
notion of a multi-objective online problem and define the concept of competitive analysis
for multi-objective online problems. In the following sections, we make use of the newly
developed concept of multi-objective competitive analysis and present competitive multi-
objective online algorithms for multi-objective variants of classical problems in the field
of online optimization: in Section 3.3, we analyze the multi-objective time series search
problem, in Section 3.4, we discuss a bi-objective variant of the ski rental problem,
in Section 3.5, we investigate the bi-objective 2-server problem in the plane, and, in
Section 3.6, we analyze the multi-objective k-Canadian traveller problem. In Section 3.7,
we discuss general relations between single- and multi-objective online problems and, in
Section 3.8, we extend Yao’s principle to multi-objective online problems. Finally, we
give concluding remarks in Section 3.9.

3.2 Competitive Analysis for Multi-Objective
Online Algorithms

In this section, we first introduce the notion of a multi-objective online problem and,
secondly, define the concept of competitive analysis for multi-objective online problems.

3.2. Competitive Analysis for Multi-Objective Online Algorithms 59

3.2.1 Multi-Objective Online Problems

In the following, we define the concept of competitive analysis for multi-objective online
problems with respect to minimization problems. If not mentioned otherwise, the defini-
tion for the corresponding maximization problem is analogous. First of all, we define a
multi-objective optimization problem P as a triple (I,X , f), consisting of a set of inputs
I, a set of feasible outputs (or solutions) X (I) associated with every input I ∈ I, and
the objective function f given as f : I ×X → Rn+ where, for x ∈ X (I), f(I,x) represents
the objective value of the solution x with respect to input I ∈ I.

Given input I ∈ I, an algorithm alg for a multi-objective optimization problem P
computes a feasible solution alg[I] ∈ X (I). The objective associated with this feasible
output is denoted by alg(I) = f(I,alg[I]). According to (Ehrgott, 2005, p. 24), a
feasible solution x̂ ∈ X (I) is called efficient if there is no other x ∈ X (I) such that
f(I, x) � f(I, x̂), where � denotes a component-wise order, i.e., for x, y ∈ Rn, x � y :⇔
xi ≤ yi, for i = 1, . . . , n, and x 6= y. An optimal algorithm opt for P is such that, for all
inputs I ∈ I, opt[I] is the set of efficient solutions to P, i.e.,

opt[I] = {x ∈ X (I) |x is an efficient solution to P} .

The objective associated with a solution x ∈ opt[I] is denoted by opt(x).
The definition of a multi-objective online problem is now given analogously to the

definition of a single-objective online optimization problem given in (Borodin and El-
Yaniv, 1998, p. 2). Accordingly, multi-objective online problems are multi-objective
optimization problems in which the input is revealed bit by bit and an output must be
produced in an online manner, i.e., after each new bit of input a decision affecting the
output must be made.

3.2.2 The Competitive Ratio and Competitiveness

The study of online problems is concerned with assessing the quality of corresponding
online algorithms and, ultimately, the question of which is the best algorithm. We carry
this leading question forward to multi-objective online problems. In the following, we
list conditions that are supposed to be met by an appropriate measure for the quality of
multi-objective online algorithms:

Condition 1 (worst case model): Just as in the case of competitive analysis for sin-
gle-objective algorithms (cf. (Fiat and Woeginger, 1998, p.4)), we aim for a worst
case model for multi-objective competitive analysis that holds for any input distri-
bution in order to avoid the problems of probabilistic models.

Condition 2 (worst case ratio): Furthermore, a standard worst case analysis of mul-
ti-objective online algorithms leads to the same pitfall as in the single-objective
case (cf. (Fiat and Woeginger, 1998, p.3)): Due to the incomplete knowledge of
the online algorithm, it is often possible to ensure that each decision made by an
online algorithm is the worst possible decision with respect to all components. For

60 3. Multi-Objective Online Optimization

example, consider the multi-objective time series search problem (see Section 3.3):
if a sequence consisting only of the minimal price vector is revealed, the online
player always ends up with the minimal price vector regardless of his strategy.

Therefore, following the underlying idea of competitive analysis, it is desirable to
consider the ratio of the algorithm’s performance and the optimal performance in
every component on the same problem instance.

Condition 3 (independence from efficient solutions): Normally, the solution to a
multi-objective optimization problem is given by a set of efficient solutions (see,
for example, (Ehrgott, 2005)). However, due to the online nature of our approach
and the corresponding urge to obtain an autonomous algorithm, we assume a multi-
objective online algorithm to compute a single solution instead of a set of solutions.
The competitive ratio should, nevertheless, be independent of a particular solution
chosen from the set of efficient solutions of the offline problem.

Condition 4 (total order): In order to compare different multi-objective online algo-
rithms, a total order on the competitive ratio of multi-objective online algorithms
is necessary.

These requirements lead us to the following definition of c-competitiveness for multi-
objective online algorithms:

Definition 3.2.1. A multi-objective online algorithm alg is c-competitive if, for all
finite input sequences I, there exists an efficient solution x ∈ opt[I] such that

alg(I)i ≤ ci · opt(x)i + αi, for i = 1, . . . , n ,

where c =
(
c1, . . . , cn

)ᵀ and α ∈ Rn is a constant vector independent of I.

Note that c is a vector instead of a scalar as in the classic definition of competitiveness
for single-objective online algorithms. A multi-objective online algorithm which accom-
plishes this postulation even for all efficient solutions is called strongly c-competitive:

Definition 3.2.2. A multi-objective online algorithm alg is strongly c-competitive if,
for all finite input sequences I and all efficient solutions x ∈ opt[I],

alg(I)i ≤ ci · opt(x)i + αi, for i = 1, . . . , n ,

where c =
(
c1, . . . , cn

)ᵀ and α ∈ Rn is a constant vector independent of I.

Applying these definitions to single-objective problems results in the classical single-
objective competitive ratio for both Definition 3.2.1 and Definition 3.2.2. Obviously,
every strongly c-competitive multi-objective online algorithm is also c-competitive. For
maximization problems, the inequalities in Definitions 3.2.1 and 3.2.2 are replaced by
alg(I)i ≥ 1/ci · opt(x)i + αi.

The definition of competitiveness for multi-objective online algorithms is a worst case
ratio due to the consideration of all finite input sequences as required by Conditions 1

3.2. Competitive Analysis for Multi-Objective Online Algorithms 61

and 2. Furthermore, the definition takes the set of all efficient offline solutions into
account and hence does not rely on a particular efficient solution, as demanded by Con-
dition 3. In order to achieve a comparable competitive ratio of multi-objective online
algorithms as demanded by Condition 4, a total order on the competitiveness of an online
algorithm is necessary. This gives rise to the following definition of the competitive ratio
for multi-objective online algorithms:

Definition 3.2.3. Let f : Rn → R+. The infimum over the set of all values f(c) such
that alg is (strongly) c-competitive is called the (strong) competitive ratio with respect
to f of alg and is denoted by (Rfs (alg)) Rf (alg).

The choice of the function f grants a certain degree of freedom that is left to the
analyst of the online algorithm (in the style of the decision maker in the field of multi-
objective optimization). However, f has to be chosen such that f(c) ≤ f(ĉ) if ci ≤ ĉi for
i = 1, . . . , n in order to guarantee a reasonable setting.

In this work, we consider three intuitive choices for the function f . First of all,
consider f1 given as f1(c) := maxi=1,...,n ci. By this choice, the competitive ratio is
guaranteed for each component of the objective function. We label this choice as worst-
component competitive ratio. Further, we consider f given by f2(c) := 1

n

∑n
i=1 ci and

f3(c) := n
√∏n

i=1 ci. In these cases, the arithmetic and geometric mean value of the com-
ponents’ competitive ratios is taken, which is why these choices are labeled as arithmetic-
and geometric-mean-component competitive ratio.

For randomized multi-objective online algorithms, the definition of the (strong) com-
petitive ratio is given in the same way. Let alg be a randomized multi-objective online
algorithm. An oblivious adversary must choose a finite input I in advance, based on the
knowledge of the probability distribution(s) alg uses.

Definition 3.2.4. A randomized multi-objective online algorithm alg is c-competitive
against an oblivious adversary if, for every input I chosen as described above, there exists
an efficient solution x ∈ opt[I] such that

E [alg(I)i] ≤ ci · opt(x)i + αi, for i = 1, . . . , n,

where c =
(
c1, . . . , cn

)ᵀ and α ∈ Rn is a constant independent of I.

Definition 3.2.5. A randomized multi-objective online algorithm alg is strongly c-com-
petitive against an oblivious adversary if, for every input I chosen as described above and
all efficient solution x ∈ opt[I],

E [alg(I)i] ≤ ci · opt(x)i + αi, for i = 1, . . . , n,

where c =
(
c1, . . . , cn

)ᵀ and α ∈ Rn is a constant independent of I.

Note that E [alg(I)i] is the expected value of the i-th component of alg with re-
spect to its randomized decisions. Again, applying these definitions to single-objective
problems results in the classical single-objective competitive ratio and, for maximization

62 3. Multi-Objective Online Optimization

problems, the inequalities in Definitions 3.2.4 and 3.2.5 are replaced by E [alg(I)] ≥
1/ci · opt(x) + α.

The definition of the competitive ratio for randomized multi-objective online algo-
rithms is given accordingly:

Definition 3.2.6. Let f : Rn → R+. The infimum over the set of all values f(c)
such that alg is (strongly) c-competitive against an oblivious adversary is called alg’s
(strong) competitive ratio with respect to f against an oblivious adversary and is denoted
by (Rfs (alg)) Rf (alg).

In online optimization, two further adversary models for randomized algorithms are
known, namely the adaptive-online adversary and the adaptive-offline adversary (see
Section 1.1). The definitions of the competitive ratio for these adversaries can be ac-
complished analogously in a straightforward manner, just as it is done for the oblivious
adversary. However, the concept of the oblivious adversary is the most widely used
concept, and since the focus of this work is the initial establishment of multi-objective
online optimization, the adaptive-online adversary and adaptive-offline adversary are not
considered in this work.

3.3 The Multi-Objective Time Series Search Problem

In this section, the concept of competitive analysis for multi-objective online problems
is applied to the classic time series search problem, where an online player is searching
for the maximum (or minimum) price in a sequence of prices. At the beginning of each
time period t = 1, . . . , T , a price pt is revealed to the online player and the player must
decide whether to accept or reject the price pt. When the player accepts a price pt, the
game ends and the return for the player is pt.

Within the framework of competitive analysis, the time series search problem is ini-
tially investigated in (El-Yaniv et al., 2001) and competitive search algorithms are pro-
vided. Here, it is assumed that prices are chosen from the real interval [m,M], where
0 < m ≤ M and the online player can always end the game by accepting the minimum
price m; otherwise the adversary is too powerful and there exist no competitive algo-
rithms for the problem. The ratio ϕ := M/m is defined as the fluctuation ratio of possible
prices. El-Yaniv et al. prove that, if only the fluctuation ratio ϕ is known to the online
player, no better ratio than the trivial one of ϕ is achievable. Therefore, suppose that
both m and M are known to the online player. Then, the best possible deterministic
online algorithm is the reservation price policy rpp, where the algorithm accepts the first
price greater than or equal to p? =

√
Mm, achieving a competitive ratio of √ϕ, as shown

in (El-Yaniv et al., 2001).
The competitive ratio can be improved by means of randomized algorithms. Assume

that ϕ = 2k. The randomized algorithm expo presented in (El-Yaniv et al., 2001),
which chooses the reservation price policy with reservation price m2l, l = 0, . . . , k − 1,
with probability 1/k each before the start of the game, is O (log(ϕ))-competitive, which
is within a constant factor of the best possible competitive ratio. This result also holds

3.3. The Multi-Objective Time Series Search Problem 63

when ϕ is not a power of 2. The best possible competitive ratio is achieved by algorithms
that obey threat-based policies (cf. (El-Yaniv et al., 2001)).

In order to investigate the time series search problem in a multi-objective setting,
a price vector is introduced, i.e., at each time period t = 1, . . . , T , a request rt ∈ Rn+
is revealed to the online player, where rt =

(
p1t , . . . , p

n
t

)ᵀ, and the player must decide
whether to accept or reject rt. When the player accepts a price vector rt, the game
ends and the return for the player is rt. It is assumed that, for i = 1, . . . , n, pit is
chosen from the real interval [mi,Mi], where 0 < mi ≤ Mi. For i = 1, . . . , n, the
ratios ϕi := Mi/mi are defined as the fluctuation ratios of possible prices for the price
component i. The online player can always end the game by accepting the minimum
price vector

(
m1, . . . , mn

)
. Without loss of generality, we assume for the fluctuation

ratios that M1/m1 ≥ M2/m2 ≥ · · · ≥ Mn/mn.

3.3.1 Worst-Component Competitive Analysis

In this section, a competitive analysis with respect to f1(c) := maxi=1,...,n ci, i.e., a worst-
component competitive analysis, for the multi-objective time series search problem is
presented.

In order to develop a deterministic algorithm for the multi-objective time series search
problem the idea of a reservation price policy as for the single-objective time series
search problem is transferred to the multi-objective setting. A first (obvious) approach
is to apply the single-objective reservation price policy to multiple components. We
start by considering not only the component with the highest fluctuation ratio, but also
the component with the second highest fluctuation ratio, and apply the single-objective
reservation price policy to both components, see Figure 3.1. This policy is formally
captured by Algorithm 11, also denoted by rpp-and. Remember that M1/m1 ≥ M2/m2 ≥
· · · ≥ Mn/mn

Algorithm 11: Multi-objective reservation price policy rpp-and.
1 for t = 1, . . . , T do
2 Accept rt =

(
p1t , . . . , p

n
t

)ᵀ if p1t ≥ p1? and p2t ≥ p2?.

As shown by the following theorem, rpp-and is only ϕ1-competitive which is achiev-
able by any algorithm.

Theorem 3.3.1. The (strong) competitive ratio with respect to f1(c) = maxi=1,...,n ci of
rpp-and is given by ϕ1 = M1/m1.

Proof. Consider the request sequence σ = (r1) consisting of only one request,

r1 =
(
M1, p

2
? − ε, m3, . . . ,mn

)ᵀ
, ε > 0.

The online player obviously rejects request r1 since p2? − ε < p2? and has to settle for the
lower bound in each component, i.e., alg =

(
m1, . . . ,mn

)ᵀ. However, the adversary

64 3. Multi-Objective Online Optimization

p1t

p2t

m1 M1

m2

M2

p2⋆

p1⋆

Figure 3.1: Acceptance region of rpp-and.

p1t

p2t

m1 M1

m2

M2

p2⋆

p1⋆

Figure 3.2: Acceptance region of rpp-or.

accepts the request, which is also the only efficient solution, and, therefore, the optimal
solution for the adversary, i.e., opt =

(
M1, p

2
? − ε, m3, . . . ,mn

)ᵀ.
The multi-objective time series search problem is a maximization problem. According

to Definition 3.2.1, a multi-objective online algorithm alg is c-competitive if, for all finite
input sequences I, there exists an efficient solution x ∈ opt[I] such that

alg(I)i ≥
1

ci
· opt(x)i + αi, for i = 1, . . . , n,

where alg =
(
m1, m2, m3, . . . , mn

)ᵀ and opt =
(
M1, p

2
? − ε, m3, . . . ,mn

)ᵀ. By Defi-
nition 3.2.3, the competitive ratio with respect to f1(c) = maxi=1,...,n ci is given by the
infimum over the set of all values f1(c) such that alg is c-competitive, i.e.,

Rf1(rpp-and) = max

{
M1

m1
,
p2? − ε
m2

,
m3

m3
, . . . ,

mn

mn

}
=
M1

m1
,

since any reasonable choice for p2? is smaller than or equal to M2 and, by assumption,
M1/m1 ≥ M2/m2 ≥ · · · ≥ Mn/mn.

Since an algorithm’s strong competitive ratio is never better than its competitive
ratio and rpp-and achieves only the worst possible competitive ratio M1/m1, the strong
competitive ratio of rpp-and is also given by M1/m1.

The analysis of Algorithm 11 is independent of p1? and p2? and, therefore, holds for
any choice of p1? and p2?. Furthermore, it is not advantageous for the online player to
include further components of the price vector and accept a request only if all included
components exceed certain reservations prices: the request sequence σ in the proof of
Theorem 3.3.1 would lead to the same result.

3.3. The Multi-Objective Time Series Search Problem 65

Another approach is to accept a request if the corresponding reservation price policy
is satisfied in at least one component, see Figure 3.2. In the following, this policy is again
applied to the components with the best and the second best fluctuation ratio. Formally,
this policy is given by Algorithm 12, also denoted by rpp-or.

Algorithm 12: Multi-objective reservation price policy rpp-or.
1 for t = 1, . . . , T do
2 Accept rt =

(
p1t , . . . , p

n
t

)ᵀ if p1t ≥ p1? or p2t ≥ p2?.

Nevertheless, rpp-or also achieves only the trivial competitive ratio ϕ1 = M1/m1, as
shown by the following theorem.

Theorem 3.3.2. The (strong) competitive ratio with respect to f1(c) = maxi=1,...,n ci of
rpp-or is given by ϕ1 = M1/m1.

Proof. Consider the request sequence σ = (r1, r2), consisting of two requests,

r1 =
(
m1, p

2
?, m3, . . . ,mn

)ᵀ and r2 =
(
M1, . . . ,Mn

)ᵀ
.

The online player accepts request r1, i.e., alg =
(
m1, p

2
?, m3, . . . ,mn

)ᵀ. The adversary
rejects request r1 and accepts r2, which is the only efficient solution and, therefore,
the optimal solution for the adversary, i.e., opt =

(
M1, . . . ,Mn

)ᵀ. Consequently, the
competitive ratio with respect to f1 is in this case given by

Rf1(rpp-or) = max

{
M1

m1
,
M2

p2?
,
M3

m3
, . . . ,

Mn

mn

}
=
M1

m1
,

since any reasonable choice for p2? is greater than or equal to m2 and, by assumption,
M1/m1 ≥ M2/m2 ≥ · · · ≥ Mn/mn. Obviously, the strong competitive ratio of rpp-or is also
given by M1/m1.

As for rpp-and, the analysis of Algorithm 12 is independent of p1? and p2? and,
therefore, holds for any choice of p1? and p2?. Additionally, it is again not advantageous
for the online player to include further components of the price vector and accept a
request only if at least one of the included components exceeds a certain reservation
price: the request sequence σ in the proof of Theorem 3.3.2 would lead to the same
result.

It seems that rpp-and’s policy is too reserved and rpp-or’s policy is too greedy,
see also Figures 3.1 and 3.2. Thus, we define an algorithm with acceptance region “in
between” rpp-and and rpp-or in order to balance being reserved and being greedy.

Algorithm 13: Multi-objective reservation price policy rpp-prod.
1 for t = 1, . . . , T do
2 Accept rt =

(
p1t , . . . , p

n
t

)ᵀ if p1t · p2t ≥ z?, where z? =
√
m1M1m2M2.

66 3. Multi-Objective Online Optimization

p1t

p2t

m1 M1

m2

M2

z⋆

M2

z⋆

m1

√
m2M2

√
m1M1

p1t · p2t = z⋆

Figure 3.3: Acceptance region of rpp-prod.

p1t

p2t

m1 M1

m2

M2

√
m2M2

√
m1M1

Figure 3.4: Acceptance region of rpp-high.

In order to illustrate the behavior of rpp-prod, the acceptance region is depicted in
Figure 3.3.

Theorem 3.3.3. The strong competitive ratio with respect to f1(c) = maxi=1,...,n ci of
rpp-prod is given by

Rf1s (rpp-prod) =
√
M1M2/m1m2.

Proof. We distinguish two cases with respect to the request sequence σ = (r1, . . . , rT)
revealed by the adversary:

Case 1: there exists a request rt′ with p1t′ · p2t′ ≥ z?.
In this case, the online player accepts the first request rt with p1t · p2t ≥ z?, i.e.,
alg =

(
p1t , . . . , p

n
t

)ᵀ. However, the adversary is able to reveal a further request rj
with pij = Mi for i = 1, . . . , n, which is then the only efficient offline solution and,
therefore, the optimal solution for the adversary, i.e., opt =

(
M1, . . . , Mn

)ᵀ.
In the worst case with respect to all sequences, the request rt accepted by the
online player is such that p1t · p2t = z?. The set of all points

(
p1t , . . . , p

n
t

)ᵀ in
[m1,M1]× · · · × [mn,Mn] satisfying p1t · p2t = z? is given by

I1 =

{(
x1,

z?

x1
, x3, . . . , xn

)ᵀ
|

z?

M2
≤ x1 ≤

z?

m2
and xi ∈ [mi,Mi] for i = 3, . . . , n

}
, (3.1)

since

z?

M2
=

√
m1M1m2M2

M2
≥ m1 (due to

M1

m1
≥ M2

m2
)

3.3. The Multi-Objective Time Series Search Problem 67

and

z?

m2
=

√
m1M1m2M2

m2
≤M1 (due to

M1

m1
≥ M2

m2
).

Thus, the competitive ratio is in this case given by

max
x∈I1

max

{
M1

x1
,
M2x1
z?

,
M3

x3
, . . . ,

Mn

xn

}
(3.1)
≤ max

{
M1M2

z?
,
M2

m2

}

=

√
M1M2

m1m2
, (3.2)

since M1/m1 ≥ M2/m2 ≥ · · · ≥ Mn/mn.

Case 2: for all rt, t = 1, . . . , T , we have p1t · p2t < z?.
In this case, the online player does not accept any request and has to settle for the
lower bounds in each component, i.e., alg =

(
m1, . . . ,mn

)ᵀ.
The adversary is able to offer (and accept) any request rj for which the product
p1t · p2t is smaller than but arbitrarily close to z?, i.e., p1t · p2t = z? − ε, ε > 0. The
set of efficient solutions for opt is given by

I2 =

{(
x1,

z?−ε
x1

, x3, . . . , xn
)ᵀ
|

z? − ε
M2

≤ x1 ≤
z? − ε
m2

and xi ∈ [mi,Mi] for i = 3, . . . , n

}
, (3.3)

due to the same argumentation as in Case 1. Now, ignoring the ε, the competitive
ratio is in this case given by

max
x∈I2

max

{
x1
m1

,
z?

x1m2
,
x3
m3

, . . . ,
xn
mn

}
(3.3)
≤ max

{
z?

m1m2
,
M2

m2

}

=

√
M1M2

m1m2
, (3.4)

since M1/m1 ≥ M2/m2 ≥ · · · ≥ Mn/mn.

By means of (3.2) and (3.4), the competitive ratio Rf1(rpp-prod) results in

Rf1(rpp-prod) =

√
M1M2

m1m2
.

This result holds for all efficient solutions since, in the first case, there is exactly one
efficient solution for the adversary and, in the second case, we considered the maximum
over all x ∈ I2. Consequently, we have Rf1(rpp-prod) = Rf1s (rpp-prod).

68 3. Multi-Objective Online Optimization

If the fluctuation ratios ϕ1 and ϕ2 are equal, i.e., M1/m1 = M2/m2, rpp-prod obtains
only the trivial competitive ratio M1/m1, just as rpp-and and rpp-or. For M1/m1 >
M2/m2, rpp-prod’s competitive ratio is better than the trivial competitive ratio. How-
ever, the best possible algorithm with respect to a worst case competitive analysis is
given by considering only the component with the highest fluctuation ratio and applying
the best single-objective strategy to this component. This policy is formally given by
Algorithm 14 and is denoted by rpp-high (see also Figure 3.4):

Algorithm 14: Multi-objective reservation price policy rpp-high.
1 for t = 1, . . . , T do
2 Accept rt =

(
p1t , . . . , p

n
t

)ᵀ if p1t ≥
√
m1M1.

Theorem 3.3.4. The strong competitive ratio with respect to f1(c) = maxi=1,...,n ci of
rpp-high is given by

Rf1s (rpp-high) = max

{√
M1

m1
,
M2

m2

}
.

Proof. We distinguish two cases with respect to the sequence σ = (r1, . . . , rT) revealed
by the adversary:

Case 1: there exists a request rt′ with p1t′ ≥
√
m1M1.

In this case, the online player accepts the first request rt with p1t ≥
√
m1M1.

However, the adversary is able to reveal a further request rj with pij = Mi for
i = 1, . . . , n, which is then the only efficient offline solution and, therefore, the
optimal solution for the adversary, i.e., opt =

(
M1, . . . , Mn

)ᵀ.
In the worst case with respect to all sequences, the request rt accepted by the
online player is such that p1t =

√
m1M1 and pit = mi for i = 2, . . . , n. According to

Definition 3.2.3, the competitive ratio is in this case given by

max

{
M1√
m1M1

,
M2

m2
, . . . ,

Mn

mn

}
= max

{√
M1

m1
,
M2

m2

}
, (3.5)

since M1/m1 ≥ M2/m2 ≥ · · · ≥ Mn/mn.

Case 2: for all rt, t = 1, . . . , T , we have p1t <
√
m1M1.

In this case, the online player does not accept any request and has to settle in the
worst case for the lower bounds in each component, i.e., alg =

(
m1, . . . ,mn

)ᵀ.
The adversary is able to offer (and accept) any request rj for which the first price
component is smaller than but arbitrarily close to

√
m1M1, i.e., p1j =

√
m1M1 − ε,

ε > 0. For the other components the upper bound is chosen, i.e., pij = Mi for
i = 2, . . . , n. Ignoring the ε, the competitive ratio is in this case given by

max

{√
m1M1

m1
,
M2

m2
, . . . ,

Mn

mn

}
= max

{√
M1

m1
,
M2

m2

}
, (3.6)

3.3. The Multi-Objective Time Series Search Problem 69

since M1/m1 ≥ M2/m2 ≥ · · · ≥ Mn/mn.

The analysis above holds for all efficient solutions. Due to (3.5) and (3.6), the strong
competitive ratio Rf1s (rpp-high) results in

Rf1s (rpp-high) = max

{√
M1

m1
,
M2

m2

}
.

With respect to a worst-component competitive analysis, rpp-high is the best pos-
sible deterministic algorithm for the multi-objective time series search problem which is
proven by the following theorem:

Theorem 3.3.5. No deterministic online algorithm for the multi-objective time series
search problem can achieve a competitive ratio with respect to f1(c) = maxi=1,...,n ci

smaller than max
{√

M1/m1, M2/m2

}
.

Proof. If
√
M1/m1 ≤ M2/m2, the adversary offers the request

r1 =
(
m1, M2, m3, . . . ,mn

)ᵀ
.

If the online player rejects r1, no further requests are revealed, the online player has to
settle for the lower bounds

(
m1, . . . ,mn

)ᵀ, and the adversary accepts r1. In this case,
the competitive ratio is given by the trivial competitive ratio M1/m1. Otherwise, if the
online player accepts r1, the adversary reveals another request r2 =

(
M1, . . . ,Mn

)ᵀ and
accepts this request. Thus, the competitive ratio is in this case given by

max

{
m1

m1
,
M2

m2
,
m3

m3
, . . . ,

mn

mn

}
=
M2

m2
. (3.7)

If
√
M1/m1 > M2/m2, the adversary offers the request

r1 =
(√
m1M1, m2, . . . ,mn

)ᵀ
.

If the online player rejects r1, no further requests are revealed, the online player has to
settle for the lower bounds

(
m1, . . . ,mn

)ᵀ, and the adversary accepts r1. In this case,
the competitive ratio is given by

max

{√
m1M1

m1
,
m2

m2
, . . . ,

mn

mn

}
=

√
M1

m1
. (3.8)

Otherwise, if the online player accepts r1, the adversary reveals another request r2 =(
M1, . . . ,Mn

)ᵀ and accepts this request. Thus, the competitive ratio is in this case given
by

max

{
M1√
m1M1

,
M2

m2
, . . . ,

Mn

mn

}
=

√
M1

m1
. (3.9)

70 3. Multi-Objective Online Optimization

By means of (3.7), (3.8), and (3.9), no deterministic algorithm for the time series search
problem can achieve a smaller worst-component competitive ratio than

max

{√
M1

m1
,
M2

m2

}
= Rf1(rpp-high) .

With respect to a worst-component competitive analysis, only the component with
the highest fluctuation ratio is decisive, and, therefore, the best possible deterministic
single-objective policy applied to this component achieves the best competitive ratio.

3.3.2 Mean-Component Competitive Analysis

In this section, we present a competitive analysis with respect to f2(c) = 1
n

∑n
i=1 ci and

f3(c) = n
√∏n

i=1 ci for the multi-objective time series search problem, i.e., an arithmetic-
mean-component and a geometric-mean-component competitive analysis. We consider
the case n = 2, i.e., the bi-objective time series search problem. Note that the analysis
of mean-component competitive algorithms for the multi-objective time series search
problem for dimensions n ≥ 3 is subject to further research.

The algorithm rpp-prod achieves the best possible arithmetic-mean-component com-
petitive ratio (see also Figure 3.3):

Theorem 3.3.6. The strong competitive ratio with respect to f2(c) = 1
n

∑n
i=1 ci of

rpp-prod for the bi-objective time series search problem is given by

Rf2s (rpp-prod) = 4

√
M1M2

m1m2
.

Proof. We distinguish two cases with respect to the sequence σ = (r1, . . . , rT) revealed
by the adversary:

Case 1: there exists a request rt′ with p1t · p2t ≥ z?.
In this case, the online player accepts the first request rt with p1t · p2t ≥ z?, i.e.,
alg =

(
p1t , p

2
t

)ᵀ. However, the adversary is able to reveal a further request rj with
pij = Mi for i = 1, 2, which is then the only efficient offline solution and, therefore,
the optimal solution for the adversary, i.e., opt =

(
M1, M2

)ᵀ.
In the worst case with respect to all sequences, the request rt accepted by the
online player is such that p1t · p2t = z?. The set of all points in [m1,M1]× [m2,M2]
satisfying p1t · p2t = z? is given by (cf. (3.1))

I1 =

{(
x, z

?

x

)ᵀ | z
?

M2
≤ x ≤ z?

m2

}
. (3.10)

3.3. The Multi-Objective Time Series Search Problem 71

Since f2(c) = 1
n

∑
i=1,...,n ci and due to (3.10), the competitive ratio is given by

1

2
max
x∈I1

{
M1

x
+
M2x

z?

}
=

1

2

 M1√

M1z?

M2

+
M2

√
M1z?

M2

z?

= 4

√
M1M2

m1m2
. (3.11)

Case 2: for all rt, t = 1, . . . , T , we have p1t · p2t < z?.
In this case, the online player does not accept any request and has to settle in the
worst case for the lower bounds in each component, i.e., alg =

(
m1, m2

)ᵀ.
The adversary is able to offer (and accept) any request rj for which the product
p1t · p2t is smaller than but arbitrarily close to z?, i.e., p1t · p2t = z? − ε, ε > 0. The
set of efficient solutions for opt is given by (cf. (3.1))

I2 =

{(
x, z

?−ε
x

)ᵀ | z
? − ε
M2

≤ x ≤ z? − ε
m2

}
. (3.12)

Now, ignoring the ε and due to (3.12), the competitive ratio is given by

1

2
max
x∈I2

{
x

m1
+

z?

m2x

}
=

1

2

√
m1z?

m2

m1
+

z?

m2

√
m1z?

m2

= 4

√
M1M2

m1m2
. (3.13)

Due to (3.11) and (3.13), the arithemtic-mean-component competitive ratio results in

Rf2(rpp-prod) = 4

√
M1M2

m1m2
. (3.14)

This result holds for all efficient solutions since, in the first case, there is exactly one
efficient solution for the adversary and, in the second case, we considered the maximum
over all x ∈ I2. Consequently, we have Rf2s (rpp-prod) = Rf2(rpp-prod).

Note that the arithmetic-mean-component competitive ratio of rpp-prod is closely
related to the competitive ratio of the corresponding single-objective algorithm rpp
which is given by

√
M/m. In the following, we prove that rpp-prod achieves the best

possible arithmetic-mean-component competitive ratio.

Theorem 3.3.7. No deterministic algorithm for the bi-objective time series search prob-
lem can achieve a competitive ratio with respect to f2(c) = 1

n

∑n
i=1 ci smaller than

4
√
M1M2/m1m2.

72 3. Multi-Objective Online Optimization

Proof. The adversary offers a request r with

r =
(
x̃, z

?

x̃

)ᵀ
, where x̃ =

√
M1z?

M2
.

If the online player accepts this request, another request
(
M1, M2

)ᵀ is revealed and the
competitive ratio is given by

Rf2(rpp-prod) =
1

2

 M1√

M1z?

M2

+
M2

√
M1z?

M2

z?

 = 4

√
M1M2

m1m2
. (3.15)

Otherwise, the adversary only reveals r and the online player has to settle for the lower
bounds m1 and m2. The competitive ratio is then given by

Rf2(rpp-prod) =
1

2

√
m1z?

m2

m1
+

z?√
m1z?

m2
m2

 = 4

√
M1M2

m1m2
. (3.16)

Due to (3.15) and (3.16), no deterministic algorithm for the bi-objective time se-
ries search problem can achieve a competitive ratio with respect to f2 smaller than
4
√
M1M2/m1m2. Obviously, the same lower bound holds for the strong competitive ra-

tio.

The competitive analysis with respect to f3(c) = n
√∏n

i=1 ci, i.e., the geometric-mean-
component competitive analysis, yields the same results: For f3, (3.11) and (3.13) are
given by

max
x∈I1

{√
M1

x
· M2x

z?

}
= 4

√
M1M2

m1m2
and max

x∈I2

{√
x

m1
· z?

m2x

}
= 4

√
M1M2

m1m2
.

For the lower bound, a request r =
(
x̃, z

?

x̃

)ᵀ, where x̃ is an arbitrary feasible value, leads
to the same result as given in Theorem 3.3.7.

Summarizing, the best possible deterministic algorithm for the multi-objective time
series search problem with respect to a worst-component competitive analysis is given by
rpp-high, whereas the best possible deterministic algorithm for the bi-objective time se-
ries search problem with respect to a arithmetic/geometric-mean-component competitive
analysis is given by rpp-prod.

Finally, we give a short example for the bi-objective time series search problem in
order to illustrate the behavior of the multi-objective online algorithms and the difference
to the single-objective algorithm.

Example 3.3.1. As in the example given at the beginning of this section, you would like
to sell your antique car and aim for both a high price and a buyer you appreciate. You
are not willing to sell your car for less than $ 5000 and some market research yielded a

3.3. The Multi-Objective Time Series Search Problem 73

peak price of $ 20000 for your car, i.e., m1 = 5000 and M1 = 20000. Furthermore, you
rate the potential buyers on a scale from 1 to 5, 1 is your arch enemy and 5 is your best
friend, i.e., m2 = 1 and M2 = 5.

In the single-objective case, you would have accepted any offer which features either
a price of at least $ 10000 =

√
m1M1 or an appreciation of at least 2.24 ≈ √m2M2.

First of all, consider now the multi-objective case with respect to a worst-component
competitive analysis. As shown in this section, the best course of action is to apply
the single-objective strategy to the component with the highest fluctuation ratio. Since
20000/5000 ≥ 5/2, the algorithm rpp-high tells you to accept any price that is at least
$ 10000 =

√
m1M1 and not to care about your appreciation of the buyer at all.

The situation looks different for the less conservative arithmetic/geometric-mean-
component competitive analysis: Here, the best possible algorithm is given by rpp-prod
that tells you to accept any request for which the product of price and appreciation is at
least 31622.776 ≈ √m1M1m2M2. So, for example, you would accept a request with a
moderate price of $ 9000 (which you would not have accepted in the previous case), if
your appreciation of the buyer is at least 3.51.

This concludes the analysis of deterministic multi-objective online algorithms for the
multi-objective time series search problem. In the next section, a randomized algorithm
for the multi-objective time series search problem is presented.

3.3.3 A Randomized Bi-Objective Online Algorithm

In this section, a randomized algorithm for the bi-objective time series search problem
is presented and analyzed by worst-component competitive analysis. As for the single-
objective time series search problem, the competitive ratio is reduced by randomization.
Note that we consider the bi-objective time series search problem, i.e., n = 2. Addition-
ally, we consider only the competitive ratio, rather than the strong competitive ratio.
Competitive randomized algorithms for the multi-objective time series search problem
with n ≥ 3 are subject to further research, as well as strongly competitive randomized
algorithms for n ≥ 2.

We follow the same approach as presented for the single-objective case in (El-Yaniv
et al., 2001) and assume that Mi/mi = 2ki for ki ∈ N+, i = 1, 2. Without loss of
generality, suppose that k1 ≥ k2. For the fluctuation ratio ϕ of the multi-objective time
series search problem we then have ϕ = (M1M2)/(m1m2) = 2k, where k = k1 +k2. Consider
the deterministic algorithms rpp-prodl for l = 0, . . . , k − 1:

Algorithm 15: Multi-objective reservation price policy rpp-prodl.
1 for t = 1, . . . , T do
2 Accept rt =

(
p1t , p

2
t

)ᵀ if p1t · p2t ≥ m1m22
l.

The randomized algorithm expo-mult chooses strategy rpp-prodl, l = 0, . . . , k − 1,
with probability 1/k each before the first request is revealed.

74 3. Multi-Objective Online Optimization

Theorem 3.3.8. For k1 ≥ k2, the competitive ratio with respect to f1 of expo-mult is
given by

Rf1(expo-mult) = log(ϕ).

Proof. The idea for the worst case sequence presented to the online player by the adver-
sary is analogous to the worst case sequence in the single-objective variant: The efficient
offline solution for the adversary is supposed to be given by a request rj+1 =

(
p1j , p

2
j

)ᵀ
with p1t · p2t just below the threshold m1m22

j+1 for some j. This request will not be
accepted by the online player when a policy rpp-prodl with l ≥ j + 1 is selected. In
order to prevent the online player from accepting this request in case a policy rpp-prodl
with l ≤ j is selected, the adversary initially presents requests ri =

(
p1i , p

2
i

)ᵀ that match
the threshold for policy rpp-prodl, i.e., with p1i ·p2i = m1m22

i for i = 0, . . . , j. This way,
the expected value of the request accepted by the online player is minimized. Choosing
the index j which maximizes the competitive ratio then gives the worst case instance.

Note that, in order to maximize the competitive ratio (rather than the strong com-
petitive ratio), the requests triggering the thresholds m1m22

i with i ≤ j have to be
chosen such that the request rj+1 remains the only efficient solution. Otherwise, the
algorithm’s value would also be compared to the other efficient solutions leading to a
smaller competitive ratio. See also Figures 3.5 and 3.6 for an illustration of the worst
case instance.

Let rj+1 =
(
p1j+1, p

2
j+1

)ᵀ be an efficient offline solution and let j be an integer
such that

m1m22
j ≤ p1j+1 · p2j+1 < m1m22

j+1.

For the maximal choice of j = k, we have pij+1 = Mi, i = 1, . . . , n, due to bounded
prices and m12

k1 ·m22
k2 = m1m22

k = M1M2. This choice is not advantageous for the
adversary, since the online player obtains this price with probability 1/k and any other
choice for j gives the adversary the possibility to prevent the online player from obtaining
the best price.

So, for any particular choice of j < k, the adversary selects p1j+1 · p2j+1 arbitrarily
close to m1m22

j+1, since, thereby, the adversary’s return is increased whereas the return
of the online player remains unchanged. Therefore,

p1j+1 · p2j+1 = m1m22
j+1 − ε, ε > 0. (3.17)

Ignoring the ε, efficient offline solutions are given by

rj+1 =
(
p1j+1, p

2
j+1

)ᵀ
=
(
xj+1,

m1m22j+1

xj+1

)ᵀ
for xj+1 feasible. (3.18)

The feasible values for xj+1 are restricted by xj+1 ∈ [m1,M1] and

m1m22
j+1

xj+1
∈ [m2,M2] ⇔

m1m22
j+1

M2
≤ xj+1 ≤ m12

j+1.

3.3. The Multi-Objective Time Series Search Problem 75

p1t

p2t

m12
0 m12

1 m12
2 m12

3 m12
4 m12

5 = M1

m22
0

m22
1

m22
2

m22
3 = M2

p1t · p2t = m1m22
6

p1t · p2t = m1m22
7

rs
r7

ǫ

rs r6

rs r5

rs r4rs
r3

rs
r2

rs
r1

Figure 3.5: Example for a worst case sequence in Case 1.1: k1 = 5, k2 = 3, j = 6, and
x7 = m12

4, the squares mark the requests.

Since M2 = m22
k2 , we have xj+1 ∈ Ij+1 with

Ij+1 :=
[
max

{
m1,m12

j+1−k2
}
,min

{
M1,m12

j+1
}]

For the following analysis, we consider three cases with respect to the relation of j, k1,
and k2:

Case 1: j + 1 ≥ k1
By assumption, we have k1 ≥ k2, and, due to j+1 ≥ k1, we have j+1 ≥ k2. Therefore,
m12

j+1−k2 ≥ m1 and M1 = m12
k1 ≤ m12

j+1. Thus, the interval Ij+1 is given by

Ij+1 =
[
m12

j+1−k2 ,M1

]
.

Due to (3.18), the competitive ratio with respect to f1(c) = maxi=1,...,n ci is maximized
by choosing the minimal or maximal feasible value for xj+1, i.e., xj+1 = m12

j+1−k2 or
xj+1 = M1:

Case 1.1: xj+1 = m12
j+1−k2

Consider the minimal feasible value for xj+1, i.e., xj+1 = m12
j+1−k2 (see r7 in

Figure 3.5). Then, rj+1 is given by rj+1 =
(
m12

j+1−k2 , m22
k2
)ᵀ. Request rj+1 will

not be accepted by the online player when a policy rpp-prodl with l ≥ j + 1 is
selected. Note that for l = j + 1, the request rj+1 is not accepted by the online
player since p1j+1 · p2j+1 = m1m22

j+1 − ε (see (3.17), we ignored the ε to improve the
readability).

76 3. Multi-Objective Online Optimization

In order to prevent the online player from accepting this request rj+1 in case a
policy rpp-prodl with 0 ≤ l ≤ j is selected, the adversary initially presents requests
ri =

(
p1i , p

2
i

)ᵀ with p1i · p2i = m1m22
i for i = 0, . . . , j (see also Figure 3.5). Thus,

request ri is given by

ri =
(
p1i , p

2
i

)ᵀ
=
(
xi,

m1m22i

xi

)ᵀ
, xi ∈ Ii.

The interval Ii of feasible values for xi is in this case determined by the following
conditions: In order to obtain a feasible request, we need to guarantee xi ∈ [m1,M1]
and

m1m22
i

xi
∈ [m2,M2] ⇔ m12

i−k2 ≤ xi ≤ m12
i.

Furthermore, we have to ensure that ri 5 rj+1, i.e., that ri does not represent another
efficient solution. Otherwise, the algorithm’s value would also be compared to this
efficient solution leading to a smaller competitive ratio (see Definition 3.2.1). Hence,
we have xi ≤ m12

j+1−k2 and

m1m22
i

xi
≤ m22

k2 ⇔ xi ≥ m12
i−k2 .

Since j + 1 ≤ k = k1 + k2 and, hence, M1 = m12
k1 ≥ m12

j+1−k2 , the interval of
feasible values Ii is given by

Ii =
[
max

{
m1,m12

i−k2
}
, min

{
m12

i,m12
j+1−k2

}]
. (3.19)

xj+1 is chosen as the minimal feasible value in order to maximize the second compo-
nent p2j+1 for the adversary. Thus, we are looking for the maximal feasible value for
xi in order to minimize the second component p2i for the online player and, hence,
maximize the competitive ratio with respect to f1.

Due to (3.19), we have xi ≤ m12
i for i = 0, . . . , j + 1 − k2 and xi ≤ m12

j+1−k2 for
i = j + 2− k2, . . . , j. Thus, ri is chosen as

ri =
(
m12

i, m2

)ᵀ for i = 0, . . . , j + 1− k2, and
ri =

(
m12

j+1−k2 , m22
i−j−1+k2)ᵀ for i = j + 2− k2, . . . , j.

For the expected value of the i-th component of alg with respect to its randomized

3.3. The Multi-Objective Time Series Search Problem 77

decisions, denoted by E [algi], we have

E [alg1] =
1

k

j+1−k2∑

i=0

m12
i +

1

k

j∑

i=j+2−k2
m12

j+1−k2 +
k − (j + 1)

k
m1

=
m1

k

(
2j−k2+2 − 1 + (k2 − 1) 2j−k2+1 + k − j − 1

)

=
m1

k

(
(k2 + 1) 2j+1−k2 + k − j − 2

)
,

E [alg2] =
1

k

j+1−k2∑

i=0

m2 +

j∑

i=j+2−k2
m22

i−j−1+k2 +
k − (j + 1)

k
m2

=
m2

k

(
j + 2− k2 + 2k2 − 2 + k − j − 1

)

=
m2

k

(
2k2 + k1 − 1

)
.

The competitive ratio with respect to f1 is then given by

max
k≥j+1≥k1

max

{
m12

j+1−k2

E [alg1]
,
m22

k2

E [alg2]

}

= max
k≥j+1≥k1

max

{
k2j+1−k2

(k2 + 1) 2j+1−k2 + k − j − 2
,

k2k2

2k2 + k1 − 1

}

(j+1=k)
= max

{
log(ϕ)

k2 + 1− 1
2k1

,
log(ϕ)

1 + k1−1
2k2

}
. (3.20)

Note that the continuous maximum with respect to j is obtained for j = k−2+ 1
log(2) .

However, for integer j ≤ k − 1, the maximum is given by j = k − 1.
Case 1.2: xj+1 = M1

Now, consider the maximal value for xj+1, i.e., xj+1 = M1 (see r7 in Figure 3.6).
Then, rj+1 is given by rj+1 =

(
M1, m22

j+1−k1)ᵀ. By the same argumentation as in
the previous case, the adversary previously presents requests

ri =
(
p1i , p

2
i

)ᵀ
=
(
xi,

m1m22i

xi

)ᵀ
, xi ∈ Ii,

where Ii is again the set of feasible values for xi (see also Figure 3.6). In order to
obtain a feasible request, we need to guarantee xi ∈ [m1,M1] and

m1m22
i

xi
∈ [m2,M2] ⇔ m12

i−k2 ≤ xi ≤ m12
i.

As above, we also have to ensure that ri 5 rj+1, i.e., xi ≤M1 and

m1m22
i

xi
≤ m22

j+1−k1 ⇔ xi ≥ m12
i−j−1+k1 .

78 3. Multi-Objective Online Optimization

p1t

p2t

m12
0 m12

1 m12
2 m12

3 m12
4 m12

5 = M1

m22
0

m22
1

m22
2

m22
3 = M2

p1t · p2t = m1m22
6

p1t · p2t = m1m22
7

rs
r7

ǫ

rs r6rs r5rs r4rs r3rsr2

rsr1

Figure 3.6: Example for a worst case sequence in Case 1.2: k1 = 5, k2 = 3, j = 6, and
x7 = m12

5, the squares mark the requests.

Since j + 1 ≤ k = k1 + k2 and, hence, m12
i−k2 ≤ m12

i−(j+1−k1), the interval of
feasible values Ii is given by

Ii =
[
max

{
m1,m12

i−j−1+k1
}
, min

{
M1,m12

i
}]
. (3.21)

Since xj+1 is in this case chosen as the maximal feasible value in order to maximize
the first component p1j+1 for the adversary, we are looking for the minimal feasible
value for xi in order to minimize the first component p1i for the online player and,
hence, maximize the competitive ratio with respect to f1. Thus, ri is given by

ri =
(
m1, m22

i
)ᵀ for i = 0, . . . , j + 1− k1, and

ri =
(
m12

i−j−1+k1 , m22
j+1−k1)ᵀ for i = j + 2− k1, . . . , j.

For the expected value of alg we then have

E [alg1] =
1

k

j+1−k1∑

i=0

m1 +
1

k

j∑

i=j+2−k1
m12

i−j−1+k1 +
k − (j + 1)

k
m1

=
m1

k

(
j + 2− k1 + 2k1 − 2 + k − j − 1

)

=
m1

k

(
2k1 + k2 − 1

)
,

E [alg2] =
1

k

j+1−k1∑

i=0

m22
i +

1

k

j∑

i=j+2−k1
m22

j+1−k1 +
k − (j + 1)

k
m2

3.3. The Multi-Objective Time Series Search Problem 79

=
m2

k

(
2j−k1+2 − 1 + (k1 − 1) 2j+1−k1 + k − j − 1

)

=
m2

k

(
(k1 + 1)2j+1−k1 + k − j − 2

)
.

The competitive ratio with respect to f1 is then given by

max
k≥j+1≥k1

max

{
M1

E [alg1]
,
m22

j+1−k1

E [alg2]

}

= max
k≥j+1≥k1

max

{
k2k1

2k1 + k2 − 1
,

k2j+1−k1

(k1 + 1)2j+1−k1 + k − j − 2

}

(j+1=k)
= max

{
log(ϕ)

1 + k2−1
2k1

,
log(ϕ)

k1 + 1− 1
2k2

}
. (3.22)

Note that the competitive ratio is symmetrical to the competitive ratio in Case 1.1
with respect to k1 and k2.

Case 2: j + 1 ≤ k2
By assumption, we have k1 ≥ k2, and, due to j+1 ≤ k2, we have j+1 ≤ k1. Therefore,
m1 ≥ m12

j+1−k2 and m12
j+1 ≤ m12

k1 = M1. Thus, the interval Ij+1 is given by

Ij+1 =
[
m1,m12

j+1
]
.

Due to (3.18), the competitive ratio with respect to f1 is maximized by choosing the
minimal or maximal feasible value for xj+1, i.e., xj+1 = m1 or xj+1 = m12

j+1. We
proceed with the analysis as in Case 1:

Case 2.1: xj+1 = m1

Consider the minimal feasible value for xj+1, i.e., xj+1 = m1. Then, rj+1 is given
by rj+1 =

(
m1, m22

j+1
)ᵀ. By the same argumentation as in the previous cases, the

adversary previously presents requests

ri =
(
p1i , p

2
i

)ᵀ
=
(
xi,

m1m22i

xi

)ᵀ
, xi ∈ Ii.

The interval Ii is determined by xi ∈ [m1,M1], m12
i−k2 ≤ xi ≤ m12

i, and ri 5 rj+1,
i.e., m12

i−j−1 ≤ xi ≤ m1 (for a detailed explanation see the previous cases). Conse-
quently, Ii is given by Ii = [m1, m1], i.e., xi = m1 and we have

ri =
(
m1, m22

i
)ᵀ for i = 0, . . . , j.

80 3. Multi-Objective Online Optimization

For the expected value of alg we then have

E [alg1] =
1

k

j∑

i=0

m1 +
k − (j + 1)

k
m1 = m1,

E [alg2] =
1

k

j∑

i=0

m22
i +

k − (j + 1)

k
m2

=
m2

k

(
2j+1 − 1 + k − j − 1

)

=
m2

k

(
2j+1 + k − j − 2

)
.

The competitive ratio with respect to f1 is then given by

max
j+1≤k2

max

{
m1

E [alg1]
,
m22

j+1

E [alg2]

}

= max
j+1≤k2

max

{
1,

k2j+1

2j+1 + k − j − 2

}

(j+1=k2)
=

log(ϕ)

1 + k1−1
2k2

. (3.23)

Case 2.2: xj+1 = m12
j+1

Consider the maximal value for xj+1, i.e., xj+1 = m12
j+1. Then, rj+1 is given by

rj+1 =
(
m12

j+1, m2

)ᵀ. As seen in Case 1.1 and Case 1.2, this case is symmetrical
with respect to k1 and k2 to Case 2.1. Consequently, we have for the expected value
of alg

E [alg1] =
m1

k

(
2j+1 + k − j − 2

)
,

E [alg2] = m2,

and the competitive ratio with respect to f1 is given by

max
j+1≤k2

max

{
m12

j+1

E [alg1]
,

m2

E [alg2]

}
=

log(ϕ)

1 + k2−1
2k1

. (3.24)

Case 3: k1 ≥ j + 1 ≥ k2
Since, in this case, m12

j+1−k2 ≥ m1 and m12
j+1 ≤ m12

k1 = M1, the interval Ij+1 is
given by

Ij+1 =
[
m12

j+1−k2 ,m12
j+1
]
.

Due to (3.18), the competitive ratio with respect to f1 is maximized by choosing the
minimal or maximal feasible value for xj+1, i.e., xj+1 = m12

j+1−k2 or xj+1 = m12
j+1.

These cases have been analyzed before, see Case 1.1 and Case 2.2.

3.4. The Bi-Objective Ski Rental Problem 81

Now, we bring together the competitive ratios of the different cases analyzed above.
By (3.20), (3.22), (3.23), and (3.24), the competitive ratio with respect to f1 of expo-
mult is given by

Rf1(expo-mult) = max

{
log(ϕ)

k2 + 1− 1
2k1

,
log(ϕ)

1 + k1−1
2k2

,
log(ϕ)

1 + k2−1
2k1

,
log(ϕ)

k1 + 1− 1
2k2

}
.

Then, we have

1 +
k2 − 1

2k1
≤ k2 + 1− 1

2k1
and 1 +

k1 − 1

2k2
≤ k1 + 1− 1

2k2
,

and, due to k1 ≥ k2,
k2 − 1

2k1
≤ k1 − 1

2k2
.

Therefore, we have

Rf1(expo-mult) =
log(ϕ)

1 + k2−1
2k1

≤ log(ϕ).

3.4 The Bi-Objective Ski Rental Problem

In the context of online optimization and competitive analysis, the ski rental problem
(originally suggested by Larry Rudolph, cf. (Fiat et al., 1998, p. 374) and (Karlin et al.,
1988)) is often used as an analogy to introduce the concept of online problems. Imagine
you are about to go skiing for the first time in your life and you are faced with the
question of whether to buy skis or to rent them. If you knew how often you would go
skiing in the future, the optimal decision could be calculated based on the rental costs
and the buying costs:

Assume, renting skis costs $ 2 and buying skis costs $ 50. If you knew that you would
go skiing at least 25 times in the future, buying skis at the very beginning would be the
right decision. Otherwise, if you would go skiing less then 25 times in the future, renting
skis every time you go skiing would be the optimal decision with respect to your costs.

Obviously, the online manner of the problem lies in the number of days you will go
skiing in the future. Suppose that renting skis costs $ 1 and buying skis costs $ B and
consider the online algorithm which rents B − 1 times and then buys skis. In the worst
case, you go skiing B times, occasioning costs of $ 2B − 1, wheres the optimal solution
would have been to buy skis for $ B in the very beginning. Consequently, this algorithm
is 2−1/B-competitive and it can be proven that this is the best possible competitive ratio
(cf. (Karlin et al., 1988)).

Now, what if you are not only interested in your expenditures but also in your personal
comfort? Maybe you prefer having your own skis in your garage instead of renting skis

82 3. Multi-Objective Online Optimization

every time and having to deal with the renting effort and probably slightly varying skis.
Or, maybe you do not want to make room in your garage in order to store all the
skiing gear and you prefer renting skis. Thus, your decision of renting or buying skis
depends not only on financial costs but also on your personal comfort. This motivates
the introduction of the bi-objective ski rental problem.

As for the classical ski rental problem, renting skis costs 1 and buying skis costs
B > 1; if B ≤ 1, the problem would be trivial. The (unknown) number of skiing
days is denoted by n. Furthermore, we now introduce inconvenience. Analogously to
the financial costs, buying skis induces a onetime inconvenience of C > 0 and renting
skis induces normalized inconvenience of 1 for each rental transaction. Depending on
the preferences of the online player, C could be smaller or greater than 1. The goal
is to minimize financial costs and inconvenience simultaneously. Note that the units of
financial costs and inconvenience are not comparable and, thus, a bi-objective approach
to the problem is necessary, instead of simply optimizing the sum of both costs.

In the following, we present competitive algorithms and lower bounds for the bi-
objective ski rental problem. First, we consider the worst-component competitive ratio,
i.e., the competitive ratio with respect to f1 = maxi=1,...,n ci. Without loss of generality,
assume that B ≥ C. For B ≤ C the same analysis holds with B and C exchanged.
Consider Algorithm 16 for the bi-objective ski rental problem, also denoted by ski.

Algorithm 16: Bi-objective ski rental algorithm ski for B ≥ C.
1 Rent skis r times, then buy skis, where

r =

br?1c if br

?
1c+B
br?1c+1

≤ dr
?
1e+C
C ,

dr?1e otherwise,

and

r?1 =

√
1

4
+ C(B − 1)− 1

2
.

Before we analyze the competitive ratio of ski, we give a numerical example in order
to illustrate the algorithm:

Example 3.4.1. Assume renting regular skis costs $ 25 a day and buying skis costs
$ 350. If your only objective is the minimization of your financial expenses and you act
according to the optimal online algorithm for the ski rental problem, you would rent skis
13 times and buy them when you go skiing for the 14-th time (for normalized renting
costs of $ 1 the buying costs amount to $ 14). In the worst case, you never go skiing
after the 14-th time again and pay 13 · $25 + $350 = $675. The optimal offline solution
would have been to buy skis in the very beginning and pay only $ 350. The competitive
ratio is then given by $ 675/$ 350 = 2− 1/14 ≈ 1.928.

3.4. The Bi-Objective Ski Rental Problem 83

Now you would like to apply the bi-objective ski rental algorithm ski. Assume your
inconvenience for buying skis is given by C = 0.5 and the inconvenience for renting skis
is given by 1, i.e., you prefer owning skis over renting skis every time. Then,

r? =

√
1

4
+ 0.5 (14− 1)− 1

2
≈ 2.098

Since (2+14)/(2+1) < (3+0.5)/(0.5), you rent skis two times and buy skis on the third skiing
day. In the worst case, you never go skiing again after the third time and pay 2 · $ 25 +
$ 350 = $ 400. Additionally, your inconvenience amounts to 2 + 0.5 = 2.5. There are
two efficient offline solutions, namely renting skis three times leading to a cost vector of(
75, 3

)ᵀ, and buying skis in the very beginning leading to a cost vector of
(
350, 0.5

)ᵀ.
The worst-component competitive ratio is thus given by

max

{
400

75
,
2.5

3
,
400

350
,
2.5

0.5

}
= 5.3,

which is the optimal worst-component competitive ratio as shown by Theorem 3.4.1. Due
to the low value of C, you buy skis much earlier than in the single-objective case.

For a higher value of C, for example C = 20, the situation is different: In this case,
your inconvenience of buying skis equals the inconvenience ascribed to renting skis twenty
times, i.e., compared to the case above, you do not mind renting skis. Once again, you
apply ski. Note that we have to exchange B and C since now C ≥ B. Thus

r? =

√
1

4
+ 14 (20− 1)− 1

2
≈ 15.817,

and, since (15+20)/(15+1) ≥ (16+14)/(14), you rent skis 16 times and buy skis on the 17-th
skiing day. In the worst case, you never go skiing after the 17-th time and pay 16 ·$ 25 +
$ 350 = $750. Additionally, your inconvenience amounts to 16 + 0.5 = 16.5. As above,
there are two efficient offline solutions, namely renting skis 17 times leading to a cost
vector of

(
425, 17

)ᵀ, and buying skis in the very beginning leading to a cost vector of(
350, 20

)ᵀ. The worst-component competitive ratio is thus given by

max

{
750

425
,
16.5

17
,
750

350
,
16.5

20

}
≈ 2.142.

Due to the high value of C, you buy skis later than in the single-objective case.

Theorem 3.4.1. The strong competitive ratio with respect to f1 = maxi=1,...,n ci of ski
is given by

Rf1s (ski) = min

{br?1c+B

br?1c+ 1
,
dr?1e+ C

C

}
.

Proof. The proof is a basic case distinction with respect to the relations of B, C, and
the number of skiing days n. The analysis of each case is then similar to the analysis of
the well-known (single-objective) ski rental problem.

84 3. Multi-Objective Online Optimization

×

×

financial costs

inconvenience

opt =
(
B, C

)⊺

B

C

n

n

(a) n ≥ B and n ≥ C.

×

×

financial costs

inconvenience

opt =
(
n, n

)⊺

Bn

n

C

(b) n < B and n < C.

×

×

financial costs

inconvenience

opt =
{(

B, C
)⊺

,
(
n, n

)⊺}

Bn

C

n

(c) n < B and n ≥ C.

Figure 3.7: Relations of B, C, and n.

Case 1: n ≥ B
If the number of skiing days n is greater than or equal to B, i.e., n ≥ B, it follows
that n ≥ C since by assumption B ≥ C. Consequently, the only efficient offline
solution is given by buying skis at the very beginning leading to financial costs of
B and inconvenience of C, i.e., opt =

(
B, C

)ᵀ, see also Figure 3.7a.
If the number of skiing days n is greater than r, i.e., n > r, ski rents r times and
then buys skis. Consequently, ski’s costs result in alg =

(
r +B, r + C

)ᵀ. Since
there is exactly one efficient solution in this case, the strong competitive ratio with
respect to f1 = maxi=1,...,n ci is given by

max

{
r +B

B
,
r + C

C

}
(B≥C)

=
r + C

C
. (3.25)

Otherwise, if the number of skiing days n is smaller than or equal to r, i.e., n ≤ r,
ski rents n times. Consequently, ski’s costs result in alg =

(
n, n

)ᵀ and the strong
competitive ratio with respect to f1 is given by

max
{ n
B
,
n

C

} (n≤r)
≤ max

{ r
B
,
r

C

}
(B≥C)

=
r

C
.

Since C > 0, the strong competitive ratio is in this case always smaller than in
(3.25) and, hence, is neglected in the following.

Case 2: n < B and n < C
In this case, the number of skiing days n is smaller than both B and C. Con-
sequently, there is again exactly one efficient solution for the adversary given by
opt =

(
n, n

)ᵀ, see also Figure 3.7b.
If the number of skiing days is smaller than or equal to r, i.e., n ≤ r, the solution
of alg would be the same as opt’s solution, leading to a competitive ratio of 1.
Therefore, assume n > r. The competitive ratio with respect to f1 is then given by

max

{
r +B

n
,
r + C

n

}
(n>r)

≤ max

{
r +B

r + 1
,
r + C

r + 1

}
(B≥C)

=
r +B

r + 1
(3.26)

3.4. The Bi-Objective Ski Rental Problem 85

Case 3: n < B and n ≥ C
Again, the number of skiing days n is smaller than B, but now n ≥ C. Thus, both
buying at the very beginning and renting for the whole time represent efficient
solutions for the adversary, i.e., the set of efficient offline solutions is given by

opt =

{(
B
C

)
,

(
n
n

)}
,

see also Figure 3.7c.

If n ≤ r, the strong competitive ratio with respect to f1 is now given by

max
{

max
{ n
B
,
n

C

}
,max

{n
n
,
n

n

}} (n≤r)
≤ max

{ r
B
,
r

C

}
(B≥C)

=
r

C
, (3.27)

which can be neglected due to (3.25).

Otherwise, if n > r, ski rents r times and then buys skis. The strong competitive
ratio with respect to f1 is given by

max

{
max

{
r +B

B
,
r + C

C

}
,max

{
r +B

n
,
r + C

n

}}

(B≥C)
= max

{
r + C

C
,
r +B

n

}

(n>r)

≤ max

{
r + C

C
,
r +B

r + 1

}
. (3.28)

Due to (3.25), (3.26), and (3.28), the overall strong competitive ratio with respect to f1
of ski is given by

max

{
r + C

C
,
r +B

r + 1

}
. (3.29)

In order to obtain the best possible strong competitive ratio with respect to f1, we
calculate the solution of

r?1 + C

C
=
r?1 +B

r?1 + 1
, r? > 0 ⇔ r?1 =

√
1

4
+ C(B − 1)− 1

2
.

Note that r?1 is, in general, not integer. Thus, we set the number of rental transactions
to br?1c or dr?1e, depending on (3.29). Since r?1+C

C is monotonically increasing in r?1 and
r?1+B
r?1+1 is monotonically decreasing in r?1, we establish the number of rental transactions
r1 as br?1c if

br?1c+B

br?1c+ 1
≤ dr

?
1e+ C

C
,

and dr?1e otherwise (see also Figure 3.8). Consequently, the strong competitive ratio with

86 3. Multi-Objective Online Optimization

r

bc bc

⌊r⋆1⌋ ⌈r⋆1⌉r⋆1

r+C
C

r+B
r+1

Figure 3.8: Number of rental transactions r.

respect to f1 of ski is given by

Rf1s (ski) = min

{br?1c+B

br?1c+ 1
,
dr?1e+ C

C

}
.

The analysis of the competitive ratios with respect to f2 and f3 is conducted anal-
ogously to the proof of Theorem 3.4.1 (replacing the maximum by the arithmetic mean
and the geometric mean). The optimal number of rental transactions corresponding to
a competitive ratio with respect to f2 is then given by

r?2 =

√
1

4
+
BC(B + C − 2)

B + C
− 1

2
.

For the competitive ratio with respect to f3, the optimal number of rental transactions
is given by

r?3 =
√
BC − 1.

The competitive ratios with respect to f2 and f3 are then calculated analogously to the
competitive ratio with respect to f1. We omit these calculations (since the steps are
exactly the same as in the proof of Theorem 3.4.1) and just state the competitive ratios
with respect to f2 and f3:

Rf2s (ski) = min

{
1

2

(dr?2e+B

B
+
dr?2e+ C

C

)
,

1

2

(
2 br?2c+B + C

br?2c+ 1

)}
,

Rf3s (ski) = min

{√
(dr?3e+B) (dr?3e+ C)

BC
,

√
(br?3c+B) (br?3c+ C)

(br?3c+ 1)2

}
.

Now, we have a closer look at r?1, r?2, and r?3: Some basic calculations show that
r?1 ≥ r?2 ≥ r?3, i.e., the optimal algorithm with respect to f3 does not rent more often

3.5. The Bi-Objective 2-Server Problem in the Plane 87

than the optimal algorithm with respect to f2 which in turn does not rent more often
than the optimal algorithm with respect to f1. This matches the fact that f1 is the most
pessimistic way (compared to f2 and f3) of measuring the competitive ratio, and renting
skis is the more cautious action compared to buying skis.

The algorithm ski presented above achieves the best possible competitive ratio with
respect to f1 for the bi-objective ski rental problem with B ≥ C, which is formally proven
by the following theorem.

Theorem 3.4.2. No deterministic algorithm for the bi-objective ski rental problem with
B ≥ C can achieve a smaller (strong) competitive ratio with respect to f1 than

Rf1s (ski) = min

{br?1c+B

br?1c+ 1
,
dr?1e+ C

C

}
.

Proof. Denote by algr the deterministic algorithm that rents skis r times and then
buys skis. Obviously, there are no other reasonable deterministic algorithms for the
bi-objective ski rental problem and, in order to be competitive, r < +∞ must hold.

The cruel adversary chooses n = r + 1, i.e., the adversary waits until the online
player buys skis and then ends the game. Thus, the online player’s costs amount to
alg =

(
r +B, r + C

)ᵀ. This case has been considered in the proof of Theorem 3.4.1
and Algorithm 16 chooses the optimal value for r with respect to this case in order to
minimize the competitive ratio. Consequently, there is no deterministic algorithm for
the bi-objective ski rental problem with B ≥ C that achieves a competitive ratio with
respect to f1 smaller than Rf1s (ski).

3.5 The Bi-Objective 2-Server Problem in the Plane

Consider k servers which are located on points of a metric space M = (M,d), where
d is a metric over the set of points M with |M | > k. In every time period, a request
r ∈ M is presented to the online player and the request r is served if one of the servers
is located at r. The goal of the online player is to minimize the total distance traveled
by the servers in order to serve all requests sequentially.

This problem is known as the k-server problem and was introduced in (Manasse et al.,
1990, 1988). Since then, the k-server problem attracted attention of many researchers
in the area of online algorithms and fostered the development of competitive analysis
substantially. Manasse et al. (1990) proved that k is a lower bound on the competitive
ratio for any deterministic algorithm for the k-server problem on any metric space with
at least k + 1 points and presented a 2-competitive algorithm for the 2-server problem.
Furthermore, they gave a k-competitive algorithm on any metric space with exactly k+1
points. The question of the existence of a k-competitive algorithm solving the k-server
problem in an arbitrary metric space, also known as the k-server conjecture, is still
unsolved.

For arbitrary metric spaces, Koutsoupias and Papadimitriou (1995) proved a compet-
itive ratio of (2k − 1) for the so-called work function algorithm for the k-server problem

88 3. Multi-Objective Online Optimization

for all k. More recently, Bansal et al. (2011) presented a randomized algorithm for the
k-server problem that achieves a competitive ratio of O(log2 k log3 n log logn) on any
metric space with n points, which improves upon the deterministic (2k− 1)-competitive
algorithm given by Koutsoupias and Papadimitriou (1995) whenever n is sub-exponential
in k. The gap between the lower bound of k and the competitive ratio of (2k − 1) of
the work function algorithm is only closed in some special cases, such as when M is a
tree (Chrobak and Larmore, 1996) or M has at most k+ 2 points (Koutsoupias and Pa-
padimitriou, 1996). However, for arbitrary metric spaces, the k-server conjecture remains
unsolved.

Consider the k-server problem on the line. For this problem, Chrobak et al. (1990)
gave a k-competitive (and hence optimal) deterministic algorithm double-coverage
(see Algorithm 17) which moves the server nearest to the request if the request is on one
side of all servers. If the request is between two servers, both adjacent servers are moved
closer to the request until one of them covers the request.

Algorithm 17: double-coverage (Chrobak et al., 1990).
1 if the request is between two servers then
2 Move both adjacent servers at the same speed closer to the request until one of

them covers the request.
3 else if the request is on one side of all servers then
4 Move the server nearest to the request.

Now, we transfer this problem to the plane and restrict ourselves to two servers that
are allowed to move horizontally and vertically. Additionally, we introduce a bicriterial
objective function which aims to minimize the distance traveled by both servers in the first
dimension and the second dimension. More precisely, we consider the positive quadrant
of the euclidean plane R2

+ and the pseudo-metrics d1 and d2, where

di(x,y) = |xi − yi|, for x,y ∈ R2
+.

Note that d1 and d2 are only pseudo-metrics since, in general, di(x,y) = 0 does not
imply that x = y (hence, the identity of indiscernibles is not satisfied).

Thus, in every time period, a request r ∈ R2
+ is presented to the online player and

the request is served if either server is located at r. Both servers are allowed to move
horizontally and vertically. The goal of the online player is to minimize the total distance
traveled by the servers in both dimensions in order to serve all requests sequentially. This
problem is labeled as the bi-objective 2-server problem in the plane.

In the following, we present a deterministic online algorithm for the bi-objective
2-server problem in the plane which is best possible with respect to a worst-component
competitive analysis and a mean-component competitive analysis.

The positions of the online player’s servers are in the following denoted by s and t.
We subdivide the positive quadrant of the euclidean plane into four sections A,B,C, and

3.5. The Bi-Objective 2-Server Problem in the Plane 89

bc s

bc t

A
BC
D

A1A2

A3A4

C1C2

C3C4

Figure 3.9: Subdivision of the positive quadrant of the euclidean plane according to the
current positions s and t of the two servers.

D, according to the positions s and t of the online player’s servers (see also Figure 3.9):

A =
{
x ∈ R2

+ | d1(x, s) ≤ d1(x, t) ∧ d2(x, s) ≤ d2(x, t)
}
,

B =
{
x ∈ R2

+ | d1(x, s) ≥ d1(x, t) ∧ d2(x, s) ≥ d2(x, t)
}
,

C =
{
x ∈ R2

+ | d1(x, s) ≤ d1(x, t) ∧ d2(x, s) ≥ d2(x, t)
}
,

D =
{
x ∈ R2

+ | d1(x, s) ≥ d1(x, t) ∧ d2(x, s) ≤ d2(x, t)
}
.

By means of this subdivision, the algorithm dc-plane for the bi-objective 2-server
problem in the plane is given by:

Algorithm 18: Bi-objective 2-server problem in the plane: dc-plane.
1 if request r ∈ A,B then
2 Apply double-coverage to both components.
3 else if request r ∈ C,D then
4 Move both servers at the same speed and in horizontal and vertical direction

closer to the request as long as each server also moves closer to the starting
point of the other server.

5 if no server covers the request then
6 Cover the request with the server closer to r with respect to the sum of the

distances in the first and the second component between the server’s
position and the request’s position.

For an illustration of the functioning of dc-plane, see Figures 3.10a-3.11b.

Theorem 3.5.1. The strong competitive ratio with respect to f1 = maxi=1,...,n ci of
dc-plane is given by 2.

90 3. Multi-Objective Online Optimization

Proof. Consider a sequence of requests σ = (r1, . . . , rn) and a corresponding efficient
offline solution x ∈ opt[I] with objective value opt(x). Furthermore, let algi denote
the algorithm’s cost for the i-th step and let opt(x)i denote the cost of the i-th step of
the efficient solution x. The proof is now based on a potential function Φ := Γ+∆ where

Γ := 2

(
Mmin

Mmin

)
and ∆ :=

(
d1(s, t)
d2(s, t)

)
.

Note that s and t are the positions of the online player’s servers. Mmin is the minimum
sum of the components of the 2-dimensional minimum cost matching between the online
player’s servers and the adversary’s servers with respect to the efficient solution x: Denote
the position of the adversary’s servers with respect to the efficient solution x by u and v.
Additionally, for i = s, t and j = u,v, consider binary variables xi,j that take value one
if the online player’s server i is matched to adversary’s server j. Mmin is then the optimal
objective value of the following integer program:

min
∑

i∈{s,t}

∑

j∈{u,v}
xi,j (d1 (i, j) + d2 (i, j)) (M)

s.t.
∑

i∈{s,t}
xi,j = 1 for j ∈ {u,v},

∑

j∈{u,v}
xi,j = 1 for i ∈ {s, t},

xi,j ∈ {0, 1} for i ∈ {s, t} and j ∈ {u,v}.

Note that Φ ∈ R2
+ and denote by Φi ∈ R2

+ the value of the potential function after
step i. Now, we use a potential function argument in order to prove the competitive
ratio. In particular, we utilize the interleaving moves style (see (Borodin and El-Yaniv,
1998, Section 1.4)), i.e., we show for each step that

(I) if the online player moves v ∈ R2
+, Φ decreases by at least v, i.e., Φi−Φi−1 5 −v.

(II) if the offline player moves v ∈ R2
+, Φ increases by at most 2v, i.e., Φi−Φi−1 5 2v.

By means of (I) and (II), we have

Φi − Φi−1 5 2 · opt(x)i − algi

⇒ algi + Φi − Φi−1 5 2 · opt(x)i

⇒
n∑

i=1

algi + Φn − Φ0 5 2 ·
n∑

i=1

opt(x)i

⇒ alg 5 2 · opt(x) + Φ0,

since Φn ≥ 0. Consequently, dc-plane is 2-competitive in both components due to the
independence of Φ0 of the sequence σ. Therefore, the competitive ratio with respect to
f1 is given by 2.

3.5. The Bi-Objective 2-Server Problem in the Plane 91

bc
r

bc s

bc t

A1

(a) r ∈ A1.

bc r

bc s

bc t

A4

(b) r ∈ A4.

bc r

bc s

bc t

A3

(c) r ∈ A3.

Figure 3.10: Servers’ movements according to dc-plane in case r ∈ A.

It is obvious that (II) holds in every step, since ∆ is independent of the moves of the
offline player and Γ increases by at most 2v if the offline player moves v. It remains to
prove that (I) holds. For the following analysis, assume that a new request r is revealed
and the offline player has already made its move. We distinguish two cases depending
on the relation of the location of the new request r to the servers s and t of the online
player:

Case 1: r ∈ A,B
Without loss of generality, we assume that r ∈ A, since, due to the symmetry of the
problem, the analysis is performed analogously for r ∈ B. According to dc-plane,
the single-objective algorithm double-coverage is applied to both components.

If r ∈ A1 (see Figure 3.9), both servers are moved in both components since the request
is in between both servers in both components (see Figure 3.10a). Due to r ∈ A1 and,
hence, d1(s, r) ≤ d1(t, r) and d2(s, r) ≤ d2(t, r), s covers r. Since the online player’s
servers move towards each other, and s covers r, ∆ is decreased by 2

(
d1(s, r), d2(s, r)

)ᵀ.
Furthermore, since both servers move towards r,Mmin does not increase: If s is matched
to the adversary’s server covering r before the online player’s move, Mmin decreases by
the distance moved by s and increases at most by the distance moved by t. Since s
and t move the same total distance,Mmin does not increase. Otherwise, if t is matched
to the adversary’s server covering r before the online player’s move, the situation is
analyzed analogously due to symmetry. The total change of Φ is hence bounded by

2

(
0
0

)
+

(
−2d1(s, r)
−2d2(s, r)

)
=

(
−2d1(s, r)
−2d2(s, r)

)
,

which implies that (I) holds.

If r ∈ A4, only the server s is moved by
(
d1(s, r), d2(s, r)

)ᵀ in order to cover r since
the request is on one side of both servers with respect to both components (see Fig-
ure 3.10b). Due to r ∈ A4, there exists an optimal solution to (M), such that s is

92 3. Multi-Objective Online Optimization

matched to the adversary’s server covering r before and after its move. Thus, ∆ in-
creases by

(
d1(s, r), d2(s, r)

)ᵀ and Mmin decreases by d1(s, r) + d2(s, r). The total
change of Φ is thus bounded by

2

(
−(d1(s, r) + d2(s, r))
−(d1(s, r) + d2(s, r))

)
+

(
+d1(s, r)
+d2(s, r)

)
=

(
−d1(s, r)− 2d2(s, r)
−2d1(s, r)− d2(s, r)

)
,

which again implies that (I) holds.

Finally, if r ∈ A3 (the case of r ∈ A2 is analyzed analogously due to symmetry), both
servers are moved towards r in the first component since the request is in between
both servers with respect to the first component, and only s is moved towards r in the
second component since the request is on one side of both servers with respect to the
second component (see Figure 3.10c). Due to r ∈ A, s covers r. Thus, ∆ changes by(
−2d1(s, r), d2(s, r)

)ᵀ.
Mmin does not increase by the move in the first component since both servers move
towards r (see the argumentation in the case r ∈ A1). Thus, after the move in the
first component, Mmin did not increase and we have the following situation: s and r
are equal in the first component and d2(r, s) ≤ d2(r, t). Consequently, there exists an
optimal solution to (M) such that s is matched to r. Therefore, Mmin decreases by at
least d2(s, r) due to the move in the second component and the overall change in the
potential function Φ is bounded by

2

(
−d2(s, r)
−d2(s, r)

)
+

(
−2d1(s, r)
d2(s, r)

)
=

(
−2d1(s, r)− 2d1(s, r)

−d2(s, r)

)
.

Since the online player’s move is given by
(
2d1(s, r), d2(s, r)

)ᵀ, (I) holds.

Case 2: r ∈ C,D
As before, we assume, without loss of generality, that r ∈ C since, due to the symmetry
of the problem, the analysis is performed analogously for r ∈ D.

If r ∈ C1, i.e., r lies between both servers in both components (see Figure 3.11a) and
either s or t will cover r during Step 4 of Algorithm 18. Thus, ∆ decreases exactly
by the distance of the online move, since both servers move towards each other for the
whole move. Figure 3.11a gives an example for the movement of both servers. Note
that server t could also be moved first in the second component and then in the first
component, or first in the first component, continuing in this direction longer than
depicted in the example, as long as the rule of dc-plane is obeyed. Furthermore,
Mmin does not increase since both servers move the same overall distance towards r
(see the argumentation in the case r ∈ A1). Consequently, (I) holds.

If r ∈ C2, C3, or C4, first of all both servers are moved at the same speed and in
horizontal and vertical direction closer to the request as long as each server is also
moved closer to the starting point of the other server. Figure 3.11b gives an example
for the movement of both servers: the end point of Step 4 of Algorithm 18 is marked by
a cross for both servers and, during this step, s cannot move to the left since this would

3.5. The Bi-Objective 2-Server Problem in the Plane 93

bc
r

bcs

bc t
C1

(a) r ∈ C1.

bc
r

bcs

s̃ bc tt̃× ×
C4

(b) r ∈ C4.

Figure 3.11: Servers’ movements according to dc-plane in case r ∈ C.

mean moving away from t, and t cannot move down since this would mean moving
away from s. As described above for the case r ∈ C1, ∆ decreases exactly by the
distance of the online move since both servers move towards each other for the whole
move, and Mmin does not increase since both servers move the same overall distance
towards r.

Denote the positions of s and t after Step 4 of Algorithm 18 by s̃ and t̃. Now, con-
sider (M). There exists an optimal solution to (M) such that the server closer to r with
respect to the sum of the distances in the first and the second component between the
server’s position and the request’s position is matched to r since s̃ and t̃ are equal
in at least one component (otherwise, the servers could move closer to the request).
According to dc-plane, the server closer to r with respect to the sum of the distances
in the first and the second component between the server’s position and the request’s
position is moved to cover r. Assume, without loss of generality, that s̃ is the closer
server, the other case is analyzed analogously due to symmetry. Then, ∆ increases by(
d1(s̃, r), d2(s̃, r)

)ᵀ and Mmin decreases by d1(s̃, r) + d2(s̃, r). Thus, the overall change
of Φ is bounded by

2 ·
(
−d1(s̃, r)− d2(s̃, r)
−d1(s̃, r)− d2(s̃, r)

)
+

(
−d1(s, s̃)− d1(t, t̃) + d1(s̃, r)
−d2(s, s̃)− d2(t, t̃) + d2(s̃, r)

)

=−
(
d1(s, s̃) + d1(t, t̃) + d1(s̃, r) + 2d2(s̃, r)
d2(s, s̃) + d2(t, t̃) + d2(s̃, r) + 2d1(s̃, r)

)
,

which is, in both components, a decrease by at least the distance of the online move
which is given by

(
d1(s, s̃) + d1(t, t̃) + d1(s̃, r)
d2(s, s̃) + d2(t, r) + d2(s̃, r)

)
.

Thus, (I) holds also in this case.

94 3. Multi-Objective Online Optimization

By the reasoning above, dc-plane is 2-competitive in both components. Therefore,
the competitive ratio with respect to f1 is given by 2. Since the proof is conducted for
an arbitrary efficient offline solution, the competitive ratio holds for all efficient offline
solutions, and, therefore, the strong competitive ratio with respect to f1 of dc-plane is
also given by 2.

Note that this result also holds for the strong competitive ratio with respect to f2
and f3 since dc-plane is 2-competitive in both components. Due to Theorem 3.7.1 (see
Section 3.7), there is no algorithm for the bi-objective 2-server problem in the plane with
a strong competitive ratio with respect to f1 smaller than 2, since the lower bound on
the competitive ratio of any algorithm for the 2-server problem on the line is given by 2.
The same holds for the strong competitive ratio with respect to f2 and f3.

3.6 The Multi-Objective k-Canadian Traveller Problem

In this section, we introduce the multi-objective k-Canadian traveller problem and per-
form a worst-component competitive analysis. The Canadian traveller problem (ctp)
is a variant of the shortest path problem and was initially introduced by Papadimitriou
and Yannakakis (1991) in the following way:

Consider an undirected graph G = (V,E) with non-negative edge-weights w : E →
R+ and distinguished nodes s ∈ V and t ∈ V . The goal is to find a shortest path from
s to t with respect to w. However, some of the edges may be blocked and an online
algorithm only learns about the blockade of an edge when reaching one of its endpoints.
In the k-Canadian traveller problem (k-ctp), the number of blocked edges is bounded
from above by k.

The k-ctp is firstly studied in the framework of competitive analysis by Westphal
(2008). Here, a lower bound of 2k + 1 for the competitive ratio of any deterministic
algorithm is given and, additionally, the deterministic algorithm backtrack achieving
the optimal competitive ratio of 2k + 1, is presented. backtrack repeatedly computes
the shortest path in G, returns to s when a blockade is reached, and erases the blocked
edge from G:

Algorithm 19: backtrack for the k-ctp (Westphal, 2008).
Data: Graph G = (V,E) with non-negative edge-weights w : E → R+,

distinguished start and end nodes s and t.
Result: Shortest path p from s to t.

1 while t is not reached do
2 Compute shortest path p with respect to w from s to t in G = (V,E) and

traverse it.
3 if edge e on path p is blocked then
4 Return to s and set E ← E \ e.

3.6. The Multi-Objective k-Canadian Traveller Problem 95

s t

(
1
0

)

(
0
1

)

(
0
0

)

(
0
0

)

Figure 3.12: A worst case example for the multi-objective k-ctp.

Furthermore, a lower bound of k + 1 for any randomized algorithm for the k-ctp is
proven. For node-disjoint paths, this lower bound is matched by a randomized version
of backtrack given in (Bender and Westphal, 2013). The algorithm computes the
k+ 1 shortest node-disjoint paths in the graph and chooses one of them according to an
appropriately defined probability distribution. If the path is blocked, the procedure is
repeated for a smaller set of paths.

We introduce a multi-objective version of the k-ctp by replacing the non-negative
edge-weights w by a non-negative weight vector w : E → Rn+. The goal is to find a
shortest path from s to t with respect to w. Note that the optimal offline solution is a
set of efficient paths. This problem is denoted as the multi-objective k-ctp.

First of all, we observe that, without any further restrictions, there exist no compet-
itive algorithms for the multi-objective k-ctp:

Theorem 3.6.1. There is no competitive randomized algorithm for the multi-objective
k-ctp for any n ≥ 2 and k ≥ 1.

Proof. Consider the graph in Figure 3.12. An online player chooses the upper path from
s to t with probability p1 and the lower path from s to t with probability p2, which
characterizes all randomized algorithms for this instance. alg’s costs are then given by

alg =

p1

(
1

0

)
+ p2

(
1

2

)
if the lower edge is blocked,

p1

(
2

1

)
+ p2

(
0

1

)
if the upper edge is blocked.

Since opt is given by
(
1, 0

)ᵀ if the lower edge is blocked and
(
0, 1

)ᵀ otherwise, the
competitive ratio is always unbounded in at least one component.

Thus, similar to the time series search problem investigated in Section 3.3, we assume
that the weight w(p) of each path p from s to t (without any cycles) is bounded in each
component by 0 < m ≤ w(p)i ≤ M , for i = 1, . . . , n, and define ϕ = M/m as the
fluctuation ratio of the weight of possible paths. This problem is denoted as the multi-
objective k-ctp with bounded paths.

96 3. Multi-Objective Online Optimization

In the following, a competitive deterministic algorithm for the multi-objective k-
ctp with bounded paths is presented, which is, basically, a multi-objective version of
backtrack:

Algorithm 20: multi-backtrack.
Data: Graph G = (V,E) with non-negative edge-weights w : E → Rn+,

distinguished start and end nodes s and t.
Result: Shortest path p from s to t.

1 Calculate the set of efficient solutions P for shortest paths from s to t with respect
to the edge-weight vector w.

2 Set i← 0.
3 while t is not reached do
4 Choose an efficient solution p ∈ P that minimizes component (i mod n) + 1

and traverse it.
5 if edge e on path p is blocked then
6 Return to s and set E ← E \ e.
7 Recompute the set of efficient solutions P in G = (V,E).
8 Set i← i+ 1.

Theorem 3.6.2. The worst-component competitive ratio of multi-backtrack for the
multi-objective k-ctp with bounded paths is given by

Rf1(multi-backtrack) = 1 + 2

(
kϕ−

⌊
k

n

⌋
(ϕ− 1)

)
.

Proof. In the worst case, the first k paths chosen by alg are blocked by the adversary
and alg reaches t via the (k + 1)-st path. Denote the costs of the paths by w (pj), for
j = 1, . . . , k + 1. Then, the costs of alg are given by

alg = w (pk+1) + 2

k∑

j=1

w (pj) . (3.30)

For some efficient solution x ∈ opt [I], we then have

alg
(3.30)

= opt(x) + 2

k∑

j=1

w (pj) , (3.31)

since alg always computes the current set of efficient solutions and, consequently, there
exists an efficient offline solution x ∈ opt[I] such that w (pk+1)i = opt(x)i, for i =
1, . . . , n. The competitive ratio with respect to f1 of alg is now given by

Rf1(multi-backtrack) ≤ max
i=1,...,n

{
opt(x)i + 2

∑k
j=1w (pj)i

opt(x)i

}
, (3.32)

3.6. The Multi-Objective k-Canadian Traveller Problem 97

where w (pj)i is the i-th component of the weight of path pj . The path pj chosen by
alg is selected from the set of (currently available) efficient paths such that component
i′ := (j mod n) + 1 is minimized (see Step 4 of Algorithm 20). Thus, for every efficient
offline solution x̃, we have opt(x̃)i′ ≥ w(pj)i′ and, in particular,

opt(x)i′ ≥ w (pj)i′ . (3.33)

For the other components i 6= i′, we have

w(pj)i
opt(x)i

≤ ϕ. (3.34)

For i = 1, . . . , n, we then have

opt(x)i + 2
∑k

j=1w (pj)i
opt(x)i

≤ 1 +

(3.33)︷ ︸︸ ︷
2

⌊
k

n

⌋
+

(3.34)︷ ︸︸ ︷
2

(
k −

⌊
k

n

⌋)
ϕ

= 1 + 2

(
kϕ−

⌊
k

n

⌋
(ϕ− 1)

)
. (3.35)

This completes the proof.

The worst-component competitive ratio of multi-backtrack is best possible, as
shown by the following theorem:

Theorem 3.6.3. No deterministic algorithm for the multi-objective k-ctp with bounded
paths can achieve a smaller worst-component competitive ratio than

Rf1(multi-backtrack) = 1 + 2

(
kϕ−

⌊
k

n

⌋
(ϕ− 1)

)
.

Proof. Consider the graph given in Figure 3.13, where wj ∈ Rn for 1 ≤ j ≤ k+1 is given
by

wj =
(
wj1, . . . , w

j
n

)ᵀ
= (M, . . . ,M︸ ︷︷ ︸

j mod n

,m,M, . . . ,M)ᵀ ,

with m at the 1 + (j mod n)-th position. Note that the weight for each path p from s
to t is bounded by m ≤ w(p)i ≤M , i = 1, . . . , n.

For any deterministic algorithm alg, the first k choices are blocked, forcing the
online player to return to s. The last remaining possibility cannot be blocked by the
adversary. Assume that the successful path has cost m in component j′, and M in all
other components. Since there is only one path left, the efficient solution chosen by the
adversary denoted by x is the path ultimately chosen by the online player.

98 3. Multi-Objective Online Optimization

s t

w1

wj 0

wk+1

0

0

...

...

Figure 3.13: A worst case example for the multi-objective k-ctp with bounded paths.

If n > k, all other paths previously chosen by alg have cost M in component j′ (see
the definition of wj). Otherwise, if n ≤ k, there are at most

⌊
k
n

⌋
paths previously chosen

by alg that have cost m in component j. Therefore, we have

max
i=1,...,n

{
algi

opt(x)i

}
≥
m+

blocked paths p
with w(p)j′=m︷ ︸︸ ︷

2

⌊
k

n

⌋
m+

blocked paths p
with w(p)j′=M︷ ︸︸ ︷

2

(
k −

⌊
k

n

⌋)
M

m

= 1 + 2

⌊
k

n

⌋
+ 2

(
k −

⌊
k

n

⌋)
ϕ

= 1 + 2

(
kϕ−

⌊
k

n

⌋
(ϕ− 1)

)
.

Note that, for n > k, the worst-component competitive ratio of multi-backtrack is
given by 1 + 2kϕ and, for n = 1, multi-backtrack coincides with the single-objective
algorithm backtrack. Furthermore, Theorem 3.6.2 considers the competitive ratio
rather than the strong competitive ratio of multi-backtrack. In the course of the
proof of Theorem 3.6.2 the choice of a specific efficient solution is crucial in order to
obtain the stated competitive ratio. If all efficient solutions are taken into account, the
competitive ratio with respect to f1 of multi-backtrack increases:

Theorem 3.6.4. The strong competitive ratio with respect to f1(c) = maxi=1,...,n ci of
multi-backtrack for the multi-objective k-ctp with bounded paths is given by

Rf1s (multi-backtrack) = ϕ+ 2

(
kϕ−

⌊
k

n

⌋
(ϕ− 1)

)
.

Proof. Consider (3.31) in the proof of Theorem 3.6.2. Here, we chose the efficient solution
x ∈ opt[I] such that opt(x)i = w(pk+1)i for i = 1, . . . , n, i.e., the efficient solution
coincides with the last path of the online player. If the efficient solution x chosen by the

3.7. Relations between Single- and Multi-Objective Online Problems 99

adversary differs from the path chosen by the online player in component i′, the ratio
of the weight of the adversary’s and the online player’s path in component i′ is only
bounded by ϕ. Analogous to the proof of Theorem 3.6.2, the strong competitive ratio
with respect to f1 is then given by

Rf1s (multi-backtrack) = max
i=1,...,n

{
w(pk+1)i + 2

∑k
j=1w (pj)i

opt(x)i

}

≤ M

m
+

2
∑k

j=1w (pj)i
m

= ϕ+ 2

(
kϕ−

⌊
k

n

⌋
(ϕ− 1)

)
.

The worst case instance given in Theorem 3.6.3 can be extended in order to provide
a lower bound for the strong competitive ratio with respect to f1 for any deterministic
algorithm for the multi-objective k-ctp with bounded paths:

Theorem 3.6.5. No deterministic algorithm for the multi-objective k-ctp with bounded
paths can achieve a strong competitive ratio smaller than

Rf1s (multi-backtrack) = ϕ+ 2

(
kϕ−

⌊
k

n

⌋
(ϕ− 1)

)
.

Proof. Consider the graph in Figure 3.13 and add another path from s to t consisting of
an edge with cost wk+2 and a subsequent edge with cost 0. The weight vector wk+2 is
defined analogously to the weight vectors wj in the proof of Theorem 3.6.3.

The adversary can always choose between two remaining paths after blocking the
first k paths and obviously selects the one not chosen by the online player. By the same
argumentation as in the proof of Theorem 3.6.3, we then have

max
i=1,...,n

{
algi

opt(x)i

}
≥ M + 2

⌊
k
n

⌋
m+ 2

(
k −

⌊
k
n

⌋)
M

m

= ϕ+ 2

(
kϕ−

⌊
k

n

⌋
(ϕ− 1)

)
.

3.7 Relations between Single- and Multi-Objective
Online Problems

In this section, general relations between single- and multi-objective online problems
are considered. More precisely, we consider questions of the following type: If, for
i = 1, . . . , n, a ci-competitive algorithm for the single-objective online problem associ-
ated with the i-th component of a multi-objective online problem’s objective function is

100 3. Multi-Objective Online Optimization

known, which statements about the competitiveness of algorithms for the corresponding
multi-objective online problem can be deduced? Vice versa, if a (strongly) c-competitive
algorithm for the multi-objective online problem is known, what can be stated about the
competitiveness of algorithms for the associated single-objective online problems?

First of all, we formally define the notion of a corresponding single-objective online
problem to a multi-objective online problem:

Definition 3.7.1. Given a multi-objective online problem P, a set I of inputs and an
objective function g : I ×X (I)→ Rn, where I ∈ I and X (I) is the set of feasible outputs
with respect to input I. For i = 1, . . . , n, denote by gi the i-th component of the objective
function g. Then, the i-th corresponding single-objective online problem to P is given by
P, the set I of inputs and the objective function gi.

Consider a multi-objective online problem and the corresponding single-objective
online problems. If we know the competitive ratios of the corresponding single-objective
online problems, which conclusions can be drawn for the competitive ratio of the multi-
objective online problem?

Theorem 3.7.1. Let P be a multi-objective online problem and, for i = 1, . . . , n, let ci
be the optimal competitive ratio for any algorithm for the i-th corresponding single-
objective online problem. Then, we have for the strong competitive ratio with respect
to f1(c̃) = maxi=1,...,n c̃i, f2(c̃) = 1

n

∑n
i=1 c̃i, and f3 = n

√∏n
i=1 c̃i of any multi-objective

online algorithm alg for P,

Rfjs (alg) ≥ fj(c) for j = 1, . . . , 3,

where c =
(
c1, . . . , cn

)ᵀ.

Proof. First, we show that the functions f1, f2, and f3 have the following common
property:

If fj(c̃) < fj(c), then there exists an index i′ such that c̃i′ < ci′ . (3.36)

For f1, we have c̃k ≤ f1(c̃) < f1(c) = maxi=1,...,n ci for all k = 1, . . . , n and, hence, (3.36)
holds. For f2, assume that c̃i ≥ ci for all i = 1, . . . , n. Then, f2(c̃) ≥ f2(c) due to c̃i ≥ 1
and ci ≥ 1, and, hence, (3.36) holds. For f3, (3.36) holds due to the same argumentation
as for f2.

For j = 1, . . . , 3, suppose, there is an algorithm alg for P with a strong competitive
ratio fj(c̃) such that fj(c̃) < fj(c). By the definition of strong c-competitiveness (see
Definition 3.2.2), we have, for all finite input sequences I and all efficient solutions
x ∈ opt[I],

alg(I)i′ ≤ c̃i′ · opt(x)i′ + αi′ . (3.37)

Since (3.37) holds for all efficient solutions, this is also true for the optimal offline solution
to the i′-th corresponding single-objective online problem denoted by x?. For all finite

3.7. Relations between Single- and Multi-Objective Online Problems 101

input sequences I, we then have

alg(I)i′
(3.37)
≤ c̃i′ · opt(x?)i′ + αi′ .

Consequently, there exists a c̃i′-competitive algorithm for the i′-th corresponding single-
objective online problem which is a contradiction since c̃i′ < ci′ due to (3.36). Therefore,
fj(c̃) ≥ fj(c).

In particular, if one of the corresponding single-objective online problems is not com-
petitive, the multi-objective online problem is not strongly competitive either. Note that
Theorem 3.7.1 holds for any function f with property (3.36). An immediate implication
of Theorem 3.7.1 is given by the following corollary:

Corollary 3.7.1. Consider a multi-objective online problem P. If there exists an al-
gorithm for P with a strong competitive ratio fj(c̃), j = 1, . . . , 3, then there exists an
algorithm for each corresponding single-objective online problem to the multi-objective
online problem P with competitive ratio smaller than or equal to fj(c̃).

Note that Theorem 3.7.1 only holds for the strong competitive ratio but not for the
competitive ratio:

Example 3.7.1. Consider the time series search problem without any bounds on the
prices pt and objective function max

(
−pt, pt

)ᵀ. Due to the lack of bounds, there exists
no competitive algorithm both for the single-objective problem corresponding to the first
component of the objective function, i.e., max−p1t , and for the single-objective problem
corresponding to the second component of the objective function, i.e., max p1t .

1

2

3

4

−1−2−3−4 −pt

pt

×

×

×

×
max (−pt, pt)

⊺

Figure 3.14: Every price is an efficient solution.

However, for the bi-objective problem, every solution is an efficient solution due to
the objective function max

(
−pt, pt

)ᵀ. Consequently, any multi-objective online algorithm
achieves a competitive ratio of 1 for the bi-objective problem, since any accepted price is
also an efficient offline solution. We consider the competitive ratio with respect to any
reasonable function f , i.e., a function that maps

(
1, 1

)ᵀ to 1. The strong competitive
ratio, on the other hand, is unbounded for any multi-objective online algorithm.

102 3. Multi-Objective Online Optimization

Example 3.7.1 leads to the following observation:

Observation 4. In general, the existence of a competitive algorithm for the multi-
objective online problem does not imply the existence of competitive algorithms for the
corresponding single-objective online problems.

Now, we consider upper bounds on the competitive ratio of any multi-objective online
algorithm based on the competitive ratios of the corresponding single-objective problems.
The analysis of the multi-objective k-ctp in Section 3.6 showed that, even if there ex-
ists a competitive deterministic algorithm for each corresponding single-objective online
problem, in general, this does not imply the existence of a competitive deterministic
multi-objective online algorithm. This observation can also be made for the bi-objective
online layered graph traversal problem:

The bi-objective online layered graph traversal problem.

Consider the online layered graph traversal problem which was introduced by Papadim-
itriou and Yannakakis (1991). A layered graph is a connected graph G = (V,E) whose
set of vertices V is partitioned into subsets L0 = {s}, L1, L2, . . . and whose edges e ∈ E
have nonnegative integral weights and run between Li and Li−1 for some i. The width w
of a layered graph is defined as w := max {|Li|}.

In the online layered graph traversal problem, a searcher starts at a source node s
in a layered graph of unknown width w and tries to reach a target node t using the
shortest possible path. However, the nodes in layer Li and the edges from layer Li−1
to layer Li with corresponding weights are only revealed when the searcher reaches
layer Li−1. In (Papadimitriou and Yannakakis, 1991), the authors present an algorithm
with the optimal competitive ratio of 9 for the graph traversal problem on layered graphs
of width 2, i.e., |Li| ≤ 2. For a layered graph consisting of w disjoint paths, i.e., w paths
that are vertex disjoint except for the source s, Baeza-Yates et al. (1991) derive an opti-
mal deterministic algorithm for all w with competitive ratio 1+2w (1 + 1/(w−1))w−1 which
is asymptotic to 2ew. Furthermore, in (Fiat et al., 1998), an algorithm with competi-
tive ratio O(9w) on layered graphs of arbitrary width w is presented, and, additionally,
a lower bound on the competitive ratio of any deterministic online algorithm for the
layered graph traversal problem of 2w−2 is given.

We consider the online layered graph traversal problem on graphs of width 2 and
introduce a second weight component for each edge, in order to obtain a bi-objective on-
line problem. As stated above, for both corresponding single-objective online problems
there exists a (best possible) deterministic online algorithm with competitive ratio 9.
However, as shown by the following example, there exists no competitive determinis-
tic multi-objective online algorithm for the bi-objective online layered graph traversal
problem on graphs of width 2.

Example 3.7.2. Consider the graphs G1 and G2 given in Figure 3.15a and Figure 3.15b,
respectively. Note that the layer L1 and the corresponding edges from s to L1 are identical
in both graphs.

3.7. Relations between Single- and Multi-Objective Online Problems 103

s t

(
1
0

)

alg

(
0
1

)

(
1
1

)

(
0
0

)

(
0
0

)

(
0
0

)

(a) Graph G1.

s t

(
1
0

)

(
0
1

)

alg

(
0
0

)

(
1
1

)

(
0
0

)

(
0
0

)

(b) Graph G2.

Figure 3.15: The bi-objective online layered graph traversal problem on graphs of width 2.

If an online algorithm decides to choose the upper edge from s to the first layer L1, the
adversary reveals L2 and the corresponding edges from L1 to L2 as given in G1. Regardless
of whether the online player turns around and chooses the lower path or continues on
the upper path, the cost of the online algorithm results in

(
2, 1

)ᵀ. The optimal offline
solution is given by the lower path with a cost of

(
0, 1

)ᵀ. Consequently, this strategy is
not competitive in the first component.

Otherwise, if an online algorithm decides to choose the lower edge from s to the first
layer L1, the adversary reveals L2 and the corresponding edges from L1 to L2 as given
in G2. The online player finds himself in the same dilemma as in the first case and
the cost of the online solution results in

(
1, 2

)ᵀ, compared to the optimal offline solution
with cost

(
1, 0

)ᵀ. Consequently, this strategy is not competitive in the second component.
Therefore, there exists no competitive online algorithm for the bi-objective online layered
graph traversal problem on graphs of width 2.

The analysis of the multi-objective k-ctp and the bi-objective online layered graph
traversal problem lead to the following observation:

Observation 5. Even if there exists a competitive deterministic algorithm for each cor-
responding single-objective online problem to a multi-objective online problem, in general,
this does not imply the existence of a (strongly) competitive deterministic multi-objective
online algorithm.

Finally, consider Example 3.7.3: Here, a bi-objective multi-objective online problem
does not allow for an algorithm with finite competitive ratio. For one of the corresponding
single-objective problems, there exists no competitive algorithm either. For the other
corresponding single-objective problem, there exists a competitive algorithm.

Example 3.7.3. Consider the online dial-a-ride problem in which objects are to be trans-
ported by a server between points in a metric space. Transportation requests arrive on-
line, specifying the objects to be transported and the corresponding source and destination.
Moving at a constant speed, the server starts its work at a designated origin and returns
to its origin after all requests are served.

For the minimization of the completion time there exist competitive algorithms (see,
for example, (Ascheuer et al., 2000)). However, for the minimization of the maximal flow

104 3. Multi-Objective Online Optimization

time, i.e., the maximal difference between the point in time a request becomes known and
the point in time this request is served, there exist no competitive algorithms (Hauptmeier
et al., 2000):

Consider the nonnegative real line R+ as the metric space and 0 as the starting point
for the server. Assume that an online algorithm alg is c-competitive. At time t = c,
the position s(t) of the server of alg is somewhere in [0, c] and the adversary reveals
a request at time t = c with source x and destination x + ε, where ε > 0 and x =
arg maxp∈{0,c} {d (s(t), p)}. Consequently, the cost for alg is at least c/2 and the optimal
offline solution is given by opt = ε. Therefore, the competitive ratio is given by c/2ε,
and, since ε can be chosen arbitrarily small, alg cannot be c-competitive.

Now, we consider the bi-objective online dial-a-ride problem with the minimization
of both the completion time and the maximal flow time. By means of the same analysis
as above, alg’s cost are at least

(
c+ c/2, c/2

)ᵀ and the optimal offline solution is given
by opt =

(
c+ ε, ε

)ᵀ, resulting in a competitive ratio of

max

{
c+ c/2

c+ ε
,
c

2ε

}
.

Again, since ε can be chosen arbitrarily small, alg cannot achieve a finite competitive
ratio with respect to a reasonable function f , i.e., a function f that maps a vector with
at least one unbounded component to ∞.

3.8 Yao’s Principle for Multi-Objective Online Problems

Yao’s principle is a method for obtaining lower bounds on the competitive ratio of any
randomized online algorithm. In order to obtain a lower bound on the competitive ratio of
any randomized online algorithm with this method, it is sufficient to choose a probability
distribution q over request sequences and then consider the ratio of the expected optimal
offline value and the expected value of any deterministic online algorithm, where the
expectation is taken with respect to q. An upper bound on this ratio then gives a lower
bound on the competitive ratio of any randomized online algorithm.

Instead of considering all possible randomized online algorithms, it suffices to con-
sider the expected value of any deterministic online algorithm and, hence, this method
often facilitates the search for lower bounds on the competitive ratio of any randomized
online algorithm. In this section, we extend Yao’s principle to multi-objective online algo-
rithms, i.e., we present a method for obtaining lower bounds on the (strong) competitive
ratio of any multi-objective randomized online algorithm. As for single-objective online
algorithms, the cases of profit maximization and cost minimization online problems are
treated separately. We start with profit maximization problems:

Theorem 3.8.1. Let alg be any randomized multi-objective online algorithm for a multi-
objective online maximization problem and let {algi : i ∈ I} denote the finite set of all
deterministic multi-objective online algorithms for this problem. Let q be any probability
distribution over the finite set of possible request sequences {σj : j ∈ J }. Let f : Rn → R+

3.8. Yao’s Principle for Multi-Objective Online Problems 105

be a monotonically increasing function and, for j ∈ J , let xj be an efficient solution with
respect to request sequence σj, i.e., xj ∈ opt[σj]. Then,

Rfs (alg) ≥ f(c),

where c =
(
c1, . . . , cn

)ᵀ ∈ Rn is given by

ck = min
i

Eq(j)
[
opt

(
xj
)
k

]

Eq(j)
[
algi (σj)k

] , for k = 1, . . . , n.

For the worst-component competitive ratio Rf1s (alg), where f1(c) = maxi=1,...,n ci, we
additionally have

Rf1s (alg) ≥ min
i

1

Eq(j)
[
maxk

algi(σj)k
opt(xj)k

] .

Proof. First of all, we prove that any randomized multi-objective online algorithm alg
is at most c-competitive with c =

(
c1, . . . , cn

)ᵀ ∈ Rn given by

ck = min
i

Eq(j)
[
opt(xj)k

]

Eq(j) [algi(σj)k]
for k = 1, . . . , n.

Since f is a monotonically increasing function and the strong competitive ratio is given
by the infimum over the set of all values f(c) such that alg is strongly c-competitive, we
then have Rfs (alg) ≥ f(c). The proof given below differs only slightly from the proof
of Yao’s principle for single-objective online problems, cf. (Borodin and El-Yaniv, 1998,
pp. 117-118, Theorem 8.3).

Consider the constant vector c̃ =
(
c̃1, . . . , c̃n

)ᵀ ∈ Rn. For k = 1, . . . , n, define the
two-person zero-sum game Gk(c̃) between the online player and the adversary. The payoff
function hk(i, j) for the online player is given by

hk(i, j) = c̃k · algi(σj)k − opt(xj)k, k = 1, . . . , n, (3.38)

i.e., hk(i, j) gives the payoff for the online player choosing strategy i against strategy j
of the adversary. Note that algi(σj)k denotes the k-th component of the solution of the
deterministic multi-objective online algorithm algi with respect to request sequence σj
and opt(xj)k denotes the k-th component of the efficient offline solution xj with respect
to request sequence σj . Due to (Borodin and El-Yaniv, 1998, p.112, Theorem 8.2), every
finite two-person zero-sum game has a value V (c̃k). Furthermore, due to (Borodin and
El-Yaniv, 1998, p.113, Lemma 8.2), V (c̃k) is given by

V (c̃k) = max
p(i)

min
j

Ep(i) [hk(i, j)] , k = 1, . . . , n, (3.39)

106 3. Multi-Objective Online Optimization

where p(i) is a mixed strategy for the online player. If V (c̃k) < 0, for k = 1, . . . , n, then,
due to (3.38), the best randomized online algorithm is not strongly c̃-competitive. For
k = 1, . . . , n, suppose that

min
i

Eq(j)
[
opt(xj)k

]

Eq(j) [algi(σj)k]
> c̃k

⇔ Eq(j)
[
opt

(
xj
)
k

]
> c̃k ·max

i
Eq(j) [algi(σj)k]

⇔ 0 > max
i

Eq(j) [hk(i, j)] .

Due to Yao’s inequality, cf. (Borodin and El-Yaniv, 1998, p.113), we hence have

0 > max
i

Eq(j) [hk(i, j)] ≥ max
p(i)

min
j

Eq(j) [hk(i, j)]
(3.39)

= V (c̃k).

Therefore, alg is at most c-competitive and since f is a monotonically increasing func-
tion, we have Rfs (alg) ≥ f(c).

Now, we consider the worst-component competitive ratio, i.e., f1(c) = maxk=1,...,n ck,
and the payoff function

h(i, j) = max
k

algi(σj)k
opt (xj)j

. (3.40)

Consider some distribution q(j) over request sequences and some xj ∈ opt [σj] for j ∈ J .
By applying Yao’s inequality (cf. (Borodin and El-Yaniv, 1998, p.113)), we get

max
p(i)

Eq(j)
[
max
k

algi(σj)k
opt (xj)k

]
≥ max

p(i)
min
j

Ep(i)

[
max
k

algi(σj)k
opt (xj)j

]

≥ max
p(i)

min
j

max
k

Ep(i) [algi(σj)k]
opt (xj)k

(3.41)

≥ max
p(i)

min
j

min
k

Ep(i) [algi(σj)k]
opt (xj)k

(3.42)

=
1

minp(i) maxj maxk
opt(xj)k

Ep(i)[algi(σj)k]

. (3.43)

Here, (3.41) is due to the convexity of the maximum and, in (3.42), maxk is just replaced
by mink. Since the optimal strong competitive ratio for maximization problems with
respect to f1 is given by

Rf1s (alg) = min
p(i)

max
j

max
xj∈opt[σj]

max
k

opt
(
xj
)
k

Ep(i) [algi(σj)k]
,

we have, by (3.43),

Rf1s (alg) ≥ min
i

1

Eq(j)
[
maxk

algi(σj)k
opt(xj)k

] .

This completes the proof.

3.8. Yao’s Principle for Multi-Objective Online Problems 107

For cost minimization problems, the lower bounds are given in the same line. How-
ever, the proof differs slightly from the one given for profit maximization problems.

Theorem 3.8.2. Let alg be any randomized multi-objective online algorithm for a multi-
objective online minimization problem and let {algi : i ∈ I} denote the finite set of all
deterministic multi-objective online algorithms for this problem. Let q be any probability
distribution over the finite set of possible request sequences {σj : j ∈ J }. Let f : Rn → R+

be a monotonically increasing function and, for j ∈ J , let xj be an efficient solution with
respect to request sequence σj, i.e., xj ∈ opt[σj]. Then,

Rfs (alg) ≥ f(c),

where c =
(
c1, . . . , cn

)ᵀ ∈ Rn is given by

ck = min
i

Eq(j)
[
algi (σj)k

]

Eq(j) [opt (xj)k]
, for k = 1, . . . , n.

For the worst-component competitive ratio Rf1s (alg), where f1(c) = maxi=1,...,n ci, we
additionally have

Rf1s (alg) ≥ min
i

Eq(j)

[
min
k

algi(σj)k
opt (xj)j

]
.

Proof. The lower bounds for Rfs (alg) and Rf (alg) can be proven by defining the payoff
function hk(i, j) as

hk(i, j) = c̃k · opt(xj)k − algi(σj)k, k = 1, . . . , n,

and applying Yao’s inequality for cost minimization problems. The remaining steps can
be performed analogously to Theorem 3.8.1

For the worst-component competitive ratio, i.e., f1(c) = mini=1,...,n ci, we define the
payoff function

h(i, j) = min
k

algi(σj)k
opt (xj)j

. (3.44)

Consider some distribution q(j) over request sequences and some xj ∈ opt [σj] for j ∈ J .
By applying Yao’s inequality for cost minimization problems, we get

min
i

Eq(j)

[
min
k

algi(σj)k
opt (xj)j

]
≤ min

p(i)
max
j

Ep(i)

[
min
k

algi(σj)k
opt (xj)j

]

≤ min
p(i)

max
j

min
k

Ep(i) [algi(σj)k]
opt (xj)k

(3.45)

≤ min
p(i)

max
j

max
k

Ep(i) [algi(σj)k]
opt (xj)k

. (3.46)

108 3. Multi-Objective Online Optimization

Here, (3.45) is due to the concavity of the minimum, and, in (3.46) mink is just replaced by
maxk. Since the optimal strong competitive ratio with respect to f1 for cost minimization
problems is given by

Rf1s (alg) = min
p(i)

max
j

max
xj∈opt[σj]

max
k

Ep(i) [algi(σj)k]
opt (xj)k

,

we have, by (3.46),

Rf1s (alg) ≥ min
i

Eq(j)

[
min
k

algi(σj)k
opt (xj)j

]
.

This completes the proof.

The lower bounds obtained in Theorem 3.8.1 and Theorem 3.8.2 for the strong com-
petitive ratio depend on the efficient offline solution chosen for each sequence. If all
efficient offline solutions for each sequence are taken into account, a lower bound on the
competitive ratio Rf (alg) is obtained.

In the following example, we show how to apply Theorem 3.8.2 to a multi-objective
online minimization problem in order to obtain a lower bound on the (strong) competitive
ratio for any randomized algorithm.

Example 3.8.1. Consider the bi-objective ski rental problem as introduced in Section 3.4
and set B = 2 and C = 1, i.e., buying skis costs

(
2, 1

)ᵀ and renting skis costs
(
1, 1

)ᵀ.
Now, we choose the distribution q over the request sequences (the number of skiing days)
as q(1) = 1/2 and q(3) = 1/2, i.e, with probability 1/2 there is one skiing day and with
probability 1/2 there are three skiing days. For n = 1, the only efficient offline solution is
given by renting skis with costs

(
1, 1

)ᵀ, since buying skis would cost
(
2, 1

)ᵀ. For n = 3,
the only efficient solution is given by buying skis with costs

(
2, 1

)ᵀ, since renting skis
would cost

(
3, 3

)ᵀ. Thus, we have

Eq(j)
[
opt

(
xj
)]

=
1

2

(
1
1

)
+

1

2

(
2
1

)
=

(
3/2
1

)
.

Let algi denote the deterministic online algorithm that rents skis i − 1 times and buys
skis on the i-th skiing day. The expected value with respect to q of algi is then given by

Eq(j) [algi (σj)] =

(
2

1

)
for i = 1,

1
2

(
1

1

)
+ 1

2

((
i− 1 + 2

i− 1 + 1

))
for i = 2, 3,

1
2

(
1

1

)
+ 1

2

(
3

3

)
for i > 3.

≥
(

2
1

)
.

3.9. Conclusion and Future Research 109

Therefore, we have

min
i

Eq(j) [algi (σj)]

Eq(j) [opt (xj)]
=

(
4/3
1

)
,

and, by Theorem 3.8.2,

Rf1s (alg) ≥ max

{
4

3
, 1

}
=

4

3
.

Consequently, the strong competitive ratio with respect to f1(c) = maxi=1,...,n ci for any
randomized online algorithm for the bi-objective ski rental problem is at least 4/3. Since
there is only one efficient solution in both cases (n = 1 and n = 3), this holds also for the
competitive ratio for any randomized online algorithm. Considering the competitive ratio
with respect to f2 or f3, we get the following lower bounds on the (strong) competitive
ratio of any randomized algorithm: for f2(c) = 1

n

∑n
i=1 ci, we have a lower bound of 7/6

and, for f3(c) = n
√∏n

i=1 ci, we have a lower bound of
√

4/3.

3.9 Conclusion and Future Research

In this chapter, we introduced a general framework for the competitive analysis of multi-
objective online problems which expands the known theory of competitive analysis for
online problems in a straightforward manner. In the course of this chapter, we gave
several examples for the application of competitive analysis for multi-objective online
problems and demonstrated that the analysis of multi-objective online problems by means
of the introduced notions of competitiveness yields reasonable results which are closely
related to the single-objective algorithms and their competitive ratios. Furthermore,
we discussed relations between multi-objective online problems and the corresponding
single-objective online problems and extended Yao’s principle to multi-objective online
problems.

The concept of competitive analysis for multi-objective online problems seems highly
promising and provides further insight into the nature of online problems. Questions
for future research include a more in-depth analysis of the problems proposed in this
chapter such as randomized algorithms for the multi-objective k-ctp, and the analysis
of multi-objective counterparts of other well-known online problems such as scheduling
problems. Additionally, the definition of the competitive ratio given in this work serves
as a basis for further extensions such as a vector of competitive ratios with respect to
different functions: for example, if the analyst of the online problem wants the worst
component and the average of the components to be reasonably small at the same time,
the vector of both competitive ratios could be analyzed in the sense of multi-objective
optimization.

110 3. Multi-Objective Online Optimization

4
The Linear Search Problem with Turn Costs

4.1 Introduction

The linear search problem is an optimal search problem independently introduced by Bell-
man (1963) and Beck (1964) in which an immobile object is located on the real line
according to a probability distribution. A searcher starts from the origin and tries to
find the object in minimum expected time. It is assumed that the searcher cannot see
the object until she reaches the point at which the object is located. Originally, it is
also assumed that the location of the object is given by a known probability distribution.
However, in this work we consider the problem without knowledge about the probability
distribution, leading to a basic online problem which is then analyzed by competitive
analysis. The optimal competitive ratio for deterministic algorithms solving the linear
search problem is 9, as first shown by Beck and Newman (1970). The optimal strategy
for the searcher is to alternate between going to the right and to the left, doubling the
step size in each iteration.

In (Demaine et al., 2006), the linear search problem (in the context of competitive
analysis) is expanded by turn costs, i.e., each time the searcher changes direction a cost of
d is incurred. The authors consider the sum of searching time and turn cost as objective
function and present an algorithm which guarantees a solution smaller than 9 · opt + 2d.
Note that, for deterministic algorithms, a minimum cost of d is required, regardless of
opt, by placing the object arbitrarily close to the origin on the side not chosen by the
searcher to start with. The additive term 2d is minimal subject to the (optimal) com-
petitive ratio 9. As mentioned in (Demaine et al., 2006), it may be desirable to improve
the additive term, while allowing an increase in the competitive ratio. The determining
tradeoff curve is obtained experimentally, but it is not characterized analytically.

In this chapter, we close this gap by presenting an analytical characterization of the
tradeoff curve between the competitive ratio and the additive term for the linear search
problem with turn costs. We apply the analysis of the linear search problem presented
in (Demaine et al., 2006) to an arbitrary competitive factor c̃ and determine the minimal
additive factor analytically.

111

112 4. The Linear Search Problem with Turn Costs

start

x1x2 x3x4

x2 + ǫ

first turn

×searcher finds the object

Figure 4.1: Path of the searcher for an object placed at x2 + ε.

4.2 Tradeoff between Competitive Factor and Turn Costs

In the following, we apply the method of infinite linear programs, introduced by Demaine
et al. (2006), in order to solve the single-objective linear search problem with turn costs.
In particular, we give an analytic characterization of the tradeoff curve between the
competitive factor and the additive term.

A search strategy is given by a sequence of step lengths xi, i = 1, . . . , each starting
from the origin, where x1, x3, . . . are increasing step lengths to the right and x2, x4, . . .
are increasing step lengths to the left. Consequently, the turn positions are given by
pi = (−1)i+1xi, see also Figure 4.1. The following theorem states the minimal additive
term α(c̃) for a competitive factor c̃ ≥ 9. The corresponding search strategy is given in
the course of the proof.

Theorem 4.2.1. For a competitive factor c̃ ≥ 9, the minimal additive term α(c̃) for the
linear search problem with turn cost is given by

α(c̃) =
2d

1 +
√

c̃−9
c̃−1

.

Proof. In (Demaine et al., 2006), the authors determine the minimal possible additive
term for the competitive factor 9 (which is the optimal competitive factor). In the
following, we apply this method in order to determine the minimal additive term for an
arbitrary competitive factor c̃ ≥ 9.

Suppose that the adversary places the object at xn + ε, ε > 0, which is the worst
case placement with respect to a search strategy as described above. Furthermore, let
α(c̃) be the minimal additive term for the competitive factor c̃. Then, opt is given by
opt = xn+ ε. Now, we are looking for an algorithm alg such that alg ≤ c̃ ·opt+α(c̃).

Let xi be alg’s search strategy. The adversary’s set of possible (worst case) locations
is then given by yi = (−1)i+1(xi + ε). Suppose, the adversary places the object at yn.
Then, it will take the online player

∑n+1
i=1 2xi + xn + ε time and n + 1 turns to reach

the object. Now, we would like to achieve a competitive factor of c̃ and determine the

4.2. Tradeoff between Competitive Factor and Turn Costs 113

corresponding minimal additive cost α, i.e.,
n+1∑

i=1

2xi + xn + ε+ (n+ 1)d ≤ c̃(xn + ε) + α

⇔
n+1∑

i=1

2xi + (1− c̃)xn + (n+ 1)d ≤ α,

since xi > 0 and ε > 0 is chosen arbitrarily. This gives us the following infinite linear
program (ILP):

minα

s.t. 2x1 +d ≤ α
(3− c̃)x1+ 2x2 +2d ≤ α

2x1+(3− c̃)x2+ 2x3 +3d ≤ α
2x1+ 2x2+(3− c̃)x3+2x4 +4d ≤ α

...
...

...
...

2x1+ 2x2+ · · ·+2xi−2+(3− c̃)xi−1 + 2xi + id ≤ α
...

...
...

...
xi ≥ 0.

(ILP)

Infinite linear programs can be regarded as the limit of finite linear programs succes-
sively extended by variables and constraints. Consequently, the solution to an infinite
linear program is an infinite sequence. The dual to an infinite linear program is defined
analogously to the finite case. Demaine et al. (2006) establish duality results for certain
types of infinite linear programs, in particular, weak duality:

Theorem 4.2.2 (Demaine et al. (2006)). Let c = (ci)i∈N and b = (bj)j∈N be sequences
of real numbers, let A = (aij)i,j∈N be a doubly indexed sequence of real numbers, and let
x = (xi)i∈N and y = (yi)i∈N be sequences of real variables.

Then, let {max cᵀx,Ax ≤ b, x ≥ 0} be an infinite linear program. Assume that the set
I := {i ∈ N | ci 6= 0} is finite, and that for i ∈ N, all but finitely many aij have the same
sign. Let x be a feasible solution for the infinite linear program and let y be a feasible
dual solution. Then, cᵀx ≤ bᵀy and if cᵀx = bᵀy, x is optimal.

(ILP) is an infinite linear program and the set of nonzero coefficients of the objective
function of (ILP) is finite since the objective function is given by α. Furthermore,
for each constraint, there is exactly one negative coefficient, due to c̃ ≥ 9. Thus, the
conditions of Theorem 4.2.2 are fulfilled for (ILP) and weak duality holds. Consider the
dual multipliers

yj = qj , where q =
1−

√
c̃−9
c̃−1

2
.

114 4. The Linear Search Problem with Turn Costs

Now, multiplying the j-th constraint of (ILP) with yj and adding up all constraints,
yields

x1

2

∞∑

j=1

yj − (c̃− 1)y2

+ x2

2

∞∑

j=2

yj − (c̃− 1)y3

+ · · ·

+xi

2

∞∑

j=i

yj − (c̃− 1)yi+1

+ · · ·+ d

∞∑

j=1

(yj · j) ≤ α
∞∑

j=1

yj . (4.1)

Furthermore, a closer examination of the coefficient of xi results in

2

∞∑

j=i

yj − (c̃− 1)yi+1 = 2

∞∑

j=i

qj − (c̃− 1)qi+1

= qi

2

∞∑

j=i

qj−i − (c̃− 1)q

(|q|<1)
= qi

(
2

1− q − (c̃− 1)q

)

= qi

 2

1− 1−
√
c̃−9
c̃−1

2

− (c̃− 1)
1−

√
c̃−9
c̃−1

2

= qi

 4

1 +
√

c̃−9
c̃−1

−
(c̃− 1)

(
1−

√
c̃−9
c̃−1

)

2

= qi

8− (c̃− 1)
(

1− c̃−9
c̃−1

)

2
(

1 +
√

c̃−9
c̃−1

)

= qi

8− c̃+ 1 + c̃− 9

2
(

1 +
√

c̃−9
c̃−1

)

= 0.

Thus, the coefficients of the xi converge to 0 and (4.1) yields

d

∞∑

j=1

(yj · j) ≤ α
∞∑

j=1

yj

⇔
d
∞∑
j=1

(yj · j)
∞∑
j=1

yj

≤ α.

4.2. Tradeoff between Competitive Factor and Turn Costs 115

Therefore,

α ≥
d
∞∑
j=1

(yj · j)
∞∑
j=1

yj

(|q|<1)
=

d q
(1−q)2
q

1−q
=

d

1− q =
d

1− 1−
√
c̃−9
c̃−1

2

=
2d

1 +
√

c̃−9
c̃−1

,

which gives us a lower bound for α. It remains to prove that 2d/
(
1+
√
c̃−9
c̃−1

)
is also an upper

bound for α. To this end, consider the feasible solution sequence xi for (ILP) with

xi =
d
(
pi − 1

)

2
, where p =

2

1 +
√

c̃−9
c̃−1

.

Thereby, the i-th constraint, i > 1, yields

i∑

j=1

2xj − (c̃− 1)xi−1 + id ≤ α

⇔ d

i∑

j=1

(
pj − 1

)
− d (c̃− 1)

(
pi−1 − 1

)

2
+ id ≤ α

⇔
i∑

j=1

pj − (c̃− 1)
(
pi−1 − 1

)

2
≤ α

d

⇔ p
(
pi − 1

)

p− 1
− (c̃− 1) pi−1

2
+
c̃− 1

2
≤ α

d

⇔ pi+1

p− 1
− p

p− 1
− (c̃− 1) pi−1

2
+
c̃− 1

2
≤ α

d
. (4.2)

The first and the third term of (4.2) vanish due to

pi+1

p− 1
− (c̃− 1) pi−1

2

=
pi−1

p− 1

(
p2 − (c̃− 1) (p− 1)

2

)

=
pi−1

p− 1

 4
(

1 +
√

c̃−9
c̃−1

)2 −
c̃− 1

1 +
√

c̃−9
c̃−1

+
c̃− 1

2

=
pi−1

2 (p− 1)
(

1 +
√

c̃−9
c̃−1

)2

8− 2 (c̃− 1)

(
1 +

√
c̃− 9

c̃− 1

)
+ (c̃− 1)

(
1 +

√
c̃− 9

c̃− 1

)2

︸ ︷︷ ︸
=0

= 0.

116 4. The Linear Search Problem with Turn Costs

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 c̃

α(c̃)
d

α(c̃)
d = 2

1+
√

c̃−9
c̃−1

Figure 4.2: Tradeoff between competitive factor and additive term.

The second and the fourth term of (4.2) collapse to p, since

c̃− 1

2
− p

p− 1
=

(p− 1)(c̃− 1)− 2p

2(p− 1)

=
p− (p−1)(c−1)

2

1− p

=
p2 − (p−1)(c̃−1)

2

1− p︸ ︷︷ ︸
=0

+
p− p2
1− p

= p,

where p2− (p−1)(c̃−1)
2 vanishes as shown in the previous calculation. Therefore, for i > 1,

the i-th constraint results in α ≥ dp, and the first constraint is given by

2x1 + d ≤ α⇔ dp ≤ α.

Thus, we have the trivial linear program min {α | α ≥ pd} with optimal objective value

α = pd =
2d

1 +
√

c̃−9
c̃−1

.

Since the objective value matches the lower bound calculated above, the solution sequence
xi is indeed an optimal solution to (ILP).

The analysis above gives us the minimal additive term α(c̃) for an arbitrary compet-
itive factor c̃ ≥ 9 and the corresponding search strategy xi. For c̃ ≥ 9, the curve α(c̃)

d is
given in Figure 4.2. For c̃ = 9, we have α(c̃) = 2, as in the analysis of Demaine et al.
(2006). For c̃ → ∞, we have α(c̃) → d: in order to find the object with only one turn,
the searcher has to walk infinitely long into one direction before making the turn.

4.3. Conclusion 117

4.3 Conclusion

In this chapter, we gave an analytical characterization of the tradeoff curve between the
competitive ratio and the additive term for the linear search problem with turn costs
(note that the result matches the experimental characterization given in (Demaine et al.,
2006)). Furthermore, the optimal search strategy corresponding to a competitive ratio
c̃ ≥ 9 is given. Therefore, we now have a complete characterization of the linear search
problem with turn costs.

118 4. The Linear Search Problem with Turn Costs

5
Optimization in the Wood Cutting Industry

5.1 Introduction

The problem considered in this chapter is a real-world application from the veneer cutting
industry, which we were introduced to by Fritz Becker KG, a manufacturer of shaped
wood components from Northern Germany, who also provided us with real-world data.
In the application problem, tree trunks are peeled into thin veneer strips which are cut,
glued together and pressed into bentwood pieces for seats, backrests, armrests, chair legs,
etc. The production process of these veneers is to be optimized with respect to a minimal
wood offcut.

Currently, the production process is planned manually. On the one hand, this en-
ables the planner to utilize his experience and certain rules of thumb, especially with
respect to the wood quality, which is an important aspect of the problem. On the other
hand, with an increasing number of orders, the problem becomes hardly comprehensible
and understandable and, consequently, optimization tools have the potential to increase
the quality of the production process significantly, especially with respect to long term
planning periods. In the first part of this chapter, we develop a model for the problem
at hand that both computes an optimal solution in reasonable time and incorporates all
restrictions and features of the production process.

In the second part of this chapter, we have a closer look at the inherent uncertainties
of the problem attributable to the quality of the wood. Before production, the quality
of the wood is not known with certainty, but can only be estimated. In general, dealing
with uncertainties in optimization problems is an important issue as disturbances or
fluctuations in the problem formulation might significantly change the value of a formerly
optimal solution. In fact, formerly feasible solutions may even become infeasible. With
respect to the considered problem, the quality of the used wood is subject to fluctuations
and it is only possible to determine the quality during the production process itself, which
makes it necessary to take these uncertainties into account already during the planning
of the production process. Due to the complex structure of the problem and for the sake
of practicability, we depart from the concept of online optimization in this chapter.

119

120 5. Optimization in the Wood Cutting Industry

Different ways of dealing with uncertain input data are commonly known throughout
the literature such as stochastic optimization (for an overview, we refer to (Birge and
Louveaux, 2011)). While stochastic optimization assumes some kind of probability dis-
tribution for the realizations of the uncertain parameters, the problem at hand calls for
a different approach since the manufacturer could not provide any probabilistic informa-
tion about the quality distribution of the wood. Therefore, we decided to approach the
problem via robust optimization where we do not need such probabilistic information.
The aim of robust optimization is to find solutions which remain feasible and of good
quality in all scenarios, whereby a scenario is a realization of the uncertain input data.

For single-objective optimization problems several definitions of robustness, i.e., when
a solution is seen as robust against uncertainties, have been analyzed thoroughly. One of
these concepts is the concept of minmax robustness, introduced by Soyster (1973) and
extensively researched by Ben-Tal and Nemirovski (1998, 1999); Ben-Tal et al. (2009).
Here, a solution is called robust if it is feasible for every scenario and minimizes the
objective function in the worst case. Very close to this concept is the concept of regret
robustness, suggested, for example, by Kouvelis and Yu (1997), where the worst case
regret is to be minimized and the solution has to be feasible in every scenario. Both
of these concepts are quite strict with respect to the requirement that a solution has to
be feasible in every scenario. To loosen this strict requirement, several other concepts
have been proposed, such as the concept of light robustness (see, for example, (Fischetti
and Monaci, 2009; Schöbel, 2014)) or the concept of recovery robustness (see, for ex-
ample, (Liebchen et al., 2009; Erera et al., 2009; Goerigk and Schöbel, 2011)). Since
the manufacturer’s goal is to hedge against the worst case, we will follow the concept of
minmax robustness throughout this chapter.

In applications of mathematical optimization and especially in the application pre-
sented in this chapter, there is often more than just one objective to consider. Therefore,
we have to deal with uncertain multi-objective optimization for which several definitions
of robustness have been presented in the literature, see for instance (Branke, 1998; Deb
and Gupta, 2006).

Since we would like to hedge against the worst case, we follow the concept of minmax
robust efficiency for multi-objective optimization problems. This concept is an extension
of the concept of minmax robustness for single-objective optimization problems and has
been presented by Ehrgott et al. (2014). Since in multi-objective optimization the term
worst case is not that clear, as there is no total order on Rk, the authors replace the
worst case with a multi-objective maximization problem and define a dominance relation
between the resulting sets, namely a set dominates another if it is completely contained
in the other set minus the positive orthant of Rk.

The rest of this chapter is organized as follows: In Section 5.2, the problem is pre-
sented explicitly and classified with respect to cutting stock problems. Then, in Sec-
tion 5.3, the real-world cutting problem is modeled as a deterministic single-objective
optimization problem and results for instances with practical relevance are presented.
Then, we apply the concept of minmax robust efficiency to the cutting problem in Sec-
tion 5.4. After clarifying the notation for uncertain multi-objective optimization and

5.2. The Cutting Problem 121

recalling the concept of minmax robust efficiency in Section 5.4.1, we simplify the ap-
plication problem in Section 5.4.2 in order to be able to apply the concept of minmax
robust efficiency properly in Section 5.4.3. We discuss the value of the minmax robust
efficient solutions in practice and, finally, give concluding remarks and an outlook to
future research in Section 5.5.

5.2 The Cutting Problem

In the following, the cutting problem is described in more detail. The manufacturer
receives N orders {1, . . . , N} from different customers. Each order i is characterized by
length li, width wi, thickness ti, and quality qi of the requested veneer pieces which have
to be cut from the veneer strip that is peeled off the tree trunk. The length dimension of
a veneer piece corresponds to the length of the tree trunk and the width dimension of a
veneer piece corresponds to the footage that is peeled off the tree trunk. The (previously
fitted) length of a tree trunk ranges from 800mm to 2000mm and, depending on the
diameter of the tree trunk, up to 150 meters of veneer strip can be peeled off the tree
trunk. Length, width, and thickness are given in millimeters, the quality ranges from very
bad (quality 10) to very good (quality 1). For the quality, certain wood characteristics
such as wood color, vain, or knotholes are taken into account. The quality of the veneer
strip can be determined by the veneer peeling machine during the cutting process.

Furthermore, each order specifies the number of required pieces ni and a deadline di.
The main goal of the manufacturer is to find cutting patterns on each day that fulfill all
orders with deadline at this day and minimize the wood offcut. Further objectives are
described in Section 5.3.2.

Consequently, we are dealing with a multi-objective optimization problem. The man-
ufacturer provided preferences for the different objectives, from which we were able to
deduce reasonable weights. Therefore, we applied the concept of weighted-sum scalar-
ization and obtained a single-objective optimization problem as described in Section 5.3.
In contrast, in Section 5.4.2, a multi-objective simplified version of the cutting problem
is considered.

For a better understanding of the problem and the notion of a cutting pattern, the
production process is described in the following: Depending on the orders, the tree trunks
are cut to lengths and the bark is removed. Subsequently, the tree trunk is peeled into
a thin veneer strip which is then cut down to the required veneer pieces. This process is
visualized in Figure 5.1. In this phase, only cuts in the width dimension can be made.
Thus, the length of the pieces cannot be changed. If necessary, the length is manually
cut to size in an additional working step. In order to plan the production process, it
has to be decided which tree trunk lengths are used and how the veneer strips are cut
down to pieces, both in the width and the length dimension. Each length corresponds
to a cutting scheme and due to certain characteristics of the production process, the
number of different cutting schemes per day is limited to Cmax. Furthermore, there is a
limit of Pmax on the volume of wood in cubic meters that can be processed on each day.
The difficulty of the problem is further increased by the following two aspects:

122 5. Optimization in the Wood Cutting Industry

Figure 5.1: The tree trunk is peeled into a thin veneer strip and cut into veneer pieces.
c© Becker KG

First of all, the quality of the wood is uncertain. Wood of European beech (bot. Fa-
gus sylvatica), which is commonly used by the manufacturer, has several characteristics
which have to be taken into account when producing rotary cut veneer. These character-
istics have an influence on optical and mechanical properties such as color and bending
strength. In our case, the most important characteristics are heartwood and knottiness,
which will be briefly explained in the following.

Red heartwood labels the appearance of red colored wood in the center of the beech
tree trunk. Unlike other species, such as oak, where all trees have heartwood, not all
beech trees have a heartwood area. If they do, this area is colored red to reddish-brown.
Another difference to, for example, oak wood, is that heartwood of beech wood does
not have other mechanical properties like strength. There have been some investigations
(see, for example. (Ràcz, 1961)) but not much can be said about the likelihood of the
appearance of heartwood in beech. It can be said though that heartwood appears more
often with increasing age and diameter at breast height (cf. (Lohmann, 2003)).

Knottiness describes the frequency of occurrence of knots in round wood and timber.
Apart from the frequency, form and type of knots is important. A forest tree can be
divided into three parts: the lower part of the tree which is more or less free of external
branches (ground tree trunk), the middle part with thick dead branches and branch
stubs, and the top end of the tree trunk with living branches. For the production of
veneer mostly the ground tree trunk is used. Even though it is free of external branches,
it contains inner knots. During the growing of the tree it builds branches which are dying
and falling off very early. Knotless wood is then growing over these branch stubs, so that
the ground tree trunk wood is more or less free of knots except for its inner part. The
number and size of these knots cannot be estimated easily before cutting the tree. Beech
trees have so-called “Chinese beards”, oval marks on the bark, which allow making rough
estimations about inner knots (cf. (Lohmann, 2003)).

Due to these problems in determining the quality of the wood, the distribution of
the different qualities can only be estimated and is therefore an uncertain parameter in

5.2. The Cutting Problem 123

orders cutting pattern
order li wi ti qi ni li wi ti qi ni

1 400 390 1.5 2 50 800 390 1.5 1,2 25
2 400 470 1.5 4 200 800 470 1.5 3,4 100
3 800 490 1.1 5 200 800 490 1.1 5 200

800 450 1.1 > 5 400

Table 5.1: Orders and a cutting pattern for length 800mm.

the problem formulation. In Section 5.3, a distribution of the wood quality provided
by the manufacturer based on historical values is used to model the uncertainties. In
Section 5.4, we take into account the uncertainty of this quality distribution and, due
to the requirements of the manufacturer, the concept of robust optimization is chosen
to be applied to a simplified version of the problem. Furthermore, orders can always
be satisfied with veneer pieces of a higher quality than requested. Obviously, satisfying
orders with higher qualities than requested is a loss of profit for the manufacturer and
is, therefore, to be minimized.

Secondly, the manufacturer has the possibility to manually cut down the veneer pieces
to the appropriate size. For example, there is an order for 100 pieces of length 800mm and
width 350mm and another order for 200 pieces with length 300mm and width 390mm.
The manufacturer could schedule to cut 200 pieces of length 800mm and width 390mm,
and cut down the width from 390mm to 300mm for the first order and the length from
800mm to two pieces with length 300mm for the second order. Of course, the manual
cutting incurs additional working time, therefore the number of manually cut pieces is
limited for each day.

In Table 5.1, three exemplary orders and an appropriate cutting pattern are given.
Note that, due to the distribution of the wood quality in the tree trunk, certain amounts
of each quality have to be used. Therefore, there is an additional line in the cutting
pattern, covering all qualities worse than five: the first three lines are sufficient to meet
the three orders on the left, but, in order to deal with qualities worse than five, which are
inevitably peeled off the tree trunk as well, the last line is added. Furthermore, qualities
one and two are used for order one, and qualities three and four are used for order two.
Finally, orders one and two are cut with length 800mm and then manually cut down to
400mm. Therefore, only half the number of pieces of orders one and two is needed.

This example is supposed to give a brief glimpse of the planning problem of the
manufacturer. The real-world problem is comprised of several hundreds of available
orders with up to 50 different lengths and widths, 4 thicknesses and 10 qualities.

5.2.1 Classification of the Cutting Problem

The problem presented in this work is basically a cutting stock problem. The ordered ve-
neer pieces are characterized by length and width, leading to a two-dimensional problem.

124 5. Optimization in the Wood Cutting Industry

Furthermore, all ordered veneer pieces have to be assigned to a selection of tree trunks
of different lengths and thicknesses. Finally, there are several different tree trunks and
many ordered veneer pieces of many different shapes. Therefore, according to Dyckhoff’s
typology for cutting and packing problems (Dyckhoff, 1990), the problem is classified
as 2/V/D/M. But, in addition, we have to deal with heterogeneous tree trunks, i.e., each
tree trunk consists of different qualities. Furthermore, deadlines add a temporal dimen-
sion to the problem and certain production restrictions, such as a limited production for
each day, increase the difficulty of the problem.

According to the classification of cutting and packing problems by Wäscher et al.
(2007), we are faced with a two-dimensional input minimization problem where all or-
dered veneer pieces (strongly heterogeneous) have to be accommodated to several tree
trunks for which one dimension is considered as a variable, resulting in an open dimen-
sion problem. Still, we have to deal with the aforementioned additional aspects of the
problem, making it significantly more difficult. To the best of our knowledge, the cutting
problem as described above is not discussed in the literature. The basic cutting stock
problem on a strip, which is the core of our problem, is for example considered by Benati
(1997); Zhiping et al. (1997).

5.3 Modeling the Deterministic Cutting Problem

ConsiderN orders {1, . . . , N} characterized by length li, width wi, thickness ti, quality qi,
the number of required pieces ni, and a deadline di. The goal is to determine cutting
patterns for the next nd (working) days, starting from day d′, minimizing the wood offcut.
We assume that all orders i are due on day d′ or later, i.e., di ≥ d′. Furthermore, the
deadline of all orders with deadline later than day d′+nd will be set to day d′+nd. The
primary goal is to satisfy all orders i with deadline di < d′ + nd before their deadline.
All other orders with deadline di = d′+nd can be used to minimize the wood offcut and
to increase the workload of the production.

The sets of all lengths L, widths W, thicknesses T , qualities Q, and relevant days D
are given by L = {l1, . . . , lN}, W = {w1, . . . , wN}, T = {t1, . . . , tN}, Q = {q1, . . . , qN},
and D =

[
d′, d′ + nd

]
∩ N. Furthermore, the last day, i.e., d′+nd, is not to be planned,

so we define the set of working days Dw as Dw = D \
{
d′ + nd

}
.

5.3.1 Variables and Constraints

First of all, binary variables

zl,w,t,q,d1,d2 ∈ {0, 1} for all l ∈ L, w ∈ W, t ∈ T , q ∈ Q,
d1, d2 ∈ Dw, d2 ≥ d1,

representing the fulfillment of orders are introduced. If zl,w,t,q,d1,d2 equals one, order i
with li = l, wi = w, ti = t, qi = q, di = d1 is completed on day d2. For d2 = d1,
the order is fulfilled before or at the deadline (an earlier fulfillment does not grant any
benefits for the manufacturer), for d2 > d1, the order is fulfilled after the deadline. We

5.3. Modeling the Deterministic Cutting Problem 125

require each order to be fulfilled at most once, i.e., for all l ∈ L, w ∈ W, t ∈ T , q ∈ Q,
and d1 ∈ Dw we have

∑

d2≥d1
zl,w,t,q,d1,d2 ≤ 1. (5.1)

If an order is not accomplished at all or after its deadline, corresponding penalty terms
are added to the objective function as described in Section 5.3.2. We choose to model the
fulfillment of orders as soft constraints in order to be able to optimize sets of orders that
are not all simultaneously satisfiable within their deadlines due to the limited production
capacity.
Further, we introduce variables

xl,w,t,q,d ∈ N for all l ∈ L, w ∈ W, t ∈ T , q ∈ Q, d ∈ Dw,
representing the number of veneer pieces with length l, width w, thickness t, and quality q
produced on day d without an additional manual cutting step.

For the variables xl,w,t,q,d, the quality distribution of the wood is required. Denote
by pl,q,t the probability of quality q for a veneer strip with length l and thickness t.
Note that the distribution depends on the length and the thickness. The manufacturer
provided us with the necessary estimates for the distributions. Now, we introduce the
variables

yl,t,d ∈ R for all l ∈ L, t ∈ T , d ∈ Dw,
representing the total width cut from length l with thickness t on day d, and demand

∑

w∈W
w · xl,w,t,q,d ≤ yl,t,d · pl,q,t. (5.2)

The veneer pieces produced on day d without an additional manual cutting step
represented by xl,w,t,q,d are either correctly sized and in the right quality, or will manually
be cut down or used for an order with lower quality, respectively. In order to model this
situation, we introduce transfer variables

τ l
2,q2

l1,q1,w,t,d
∈ R for all l1 ∈ L, q1 ∈ Q, w ∈ W, t ∈ T , d ∈ Dw,

l1 ≥ l2, q1 ≤ q2, and (l2, w, t, q2) ∈ S,
for the number of pieces that are manually cut down from length l1 to length l2 with
l2 ≤ l1 or used for an order of lower quality, i.e., q1 ≤ q2. Additionally, S is the set of all
stacks, i.e., the combinations of length, width, thickness, and quality derived from the
orders {1, . . . , N}. Note that we use only the combinations of length, width, thickness,
and quality that appear in the original orders {1, . . . , N} for potential stacks.

On the first day d′, the newly cut pieces xl,w,t,q,d are distributed among all possible
transfer variables, i.e., for all l1 ∈ L such that l1 ≥ lmin, w ∈ W, t ∈ T , and q1 ∈ Q, we
have

∑

l2∈L,q2∈Q
τ l

2,q2

l1,q1,w,t,d′ = xl1,w,t,q1,d′ , (5.3)

126 5. Optimization in the Wood Cutting Industry

where lmin is given by the minimal tree trunk length the veneer peeling machine can
process. All orders with a length smaller than lmin have to be cut down manually and,
therefore, for all l1 ∈ L such that l1 < lmin, w ∈ W, t ∈ T , and q1 ∈ Q, we have

∑

l2∈L,q2∈Q
τ l

2,q2

l1,q1,w,t,d′ = 0. (5.4)

Imagine stacks for each configuration (length, width, thickness, quality) from which
the orders have to be satisfied. The stacks change over time, since new pieces are pro-
duced and added to the corresponding stack and some pieces are manually cut down and
therefore change their stack (see also Figure 5.2). The transfer variables model this stack-
transfer-concept which is the basis for a compact model for our complex problem.

days configurations (l, w, t, q) new pieces

1

2

...

d′ + nd

xl,w,t,q,1

xl,w,t,q,2

...

xl,w,t,q,d′+nd

· · ·

· · ·

τ l,ql,q,w,t,1

τ l
3,q3

l1,q1,w,t,1
τ l

3,q3

l2,q2,w,t,1

Figure 5.2: Stack-transfer-concept.

On the following days, the stack for a certain configuration (the left hand side of (5.5))
is composed of the stack for that configuration of the previous day and the newly produced
pieces for that configuration reduced by the satisfied orders (the right hand side of (5.5)),
i.e., for all l1 ∈ L such that l1 ≥ lmin, w ∈ W, t ∈ T , and q1 ∈ Q, we have

∑

l2∈L,q2∈Q
τ l

2,q2

l1,q1,w,t,d
=

∑

l2∈L,q2∈Q
τ l

1,q1

l2,q2,w,t,d−1 ·
⌊
l2

l1

⌋

−
∑

i∈I
ni · zl,w,t,q,di,d−1 + xl,w,t,q,d, (5.5)

where

I = {i ∈ {1, . . . , N} | li = l, wi = w, ti = t, qi = q, di < d− 1} .

Again, for lengths smaller than the minimal length lmin, (5.5) has to be altered slightly,
i.e., for all l1 ∈ L such that l1 < lmin, w ∈ W, t ∈ T , and q1 ∈ Q, we have

∑

l2∈L,q2∈Q
τ l

2,q2

l1,q1,w,t,d
=

∑

l2∈L,q2∈Q
τ l

1,q1

l2,q2,w,t,d−1 ·
⌊
l2

l1

⌋
−
∑

i∈I
ni · zl,w,t,q,di,d−1. (5.6)

5.3. Modeling the Deterministic Cutting Problem 127

Furthermore, it is possible to produce beyond the number of ordered pieces and store
these pieces in a warehouse, but the manufacturer only wants to store a limited amount
of frequently ordered combinations of length, width, thickness and quality. This set of
combinations of length, width, thickness and quality is specified by the manufacturer and
denoted by W. Additionally, the manufacturer specified the corresponding limits on the
amount of stored pieces, which is denoted by n(l,w,t,q), for all (l, w, t, q) ∈W. We consider
the storage of certain kinds of veneer pieces up to a limited amount as additional orders
with the corresponding length, width, thickness, and quality and include them in the set
of orders. The deadline is set to d′ + nd and the upper limits on the amount of stored
pieces is considered as the number of required pieces for these storage orders.

On the last production day, i.e., d′ + nd − 1, we have to make sure that all produced
pieces can be assigned to any of the regular orders or orders with deadlines set to d′+nd.
Thus, for all j ∈ {1, . . . , N} such that lj = l, wj = w, tj = t, qj = q, dj = d′ + nd, we
have

∑

l2∈L,q2∈Q
τ l,q
l2,q2,w,t,d′+nd−1 ·

⌊
l2

l

⌋
−
∑

i∈I
ni · zl,w,t,q,di,d′+nd−1 ≤ nj , (5.7)

where

I =
{
i ∈ {1, . . . , N} | li = l, wi = w, ti = t, qi = q, di ≤ d′ + nd − 1

}
.

The production of regular orders is supposed to take priority over the production of
storage orders. Therefore, we introduce variables s(l,w,t,q), for all (l, w, t, q) ∈ W, and
require, for all (l, w, t, q) ∈W,

s(l,w,t,q) ≥
∑

l2∈L,q2∈Q
τ l,q
l2,q2,w,t,d′+nd−1 ·

⌊
l2

l

⌋
−
∑

i∈I
ni · zl,w,t,q,di,d′+nd−1 (5.8)

−
(
nj − n(l,w,t,q)

)
,

where j is such that lj = l, wj = w, tj = t, qj = q, dj = d′ + nd − 1. The variables
s(l,w,t,q) represent the number of pieces produced for storage orders and will be penalized
in the objective function, see Section 5.3.2.

Finally, we make sure that all orders are fulfilled by means of the binary vari-
ables zl,w,t,q,d1,d2 . The stack for a certain configuration on some day d2 has to be
large enough in order to fulfill the order for that configuration, otherwise the vari-
able zl,w,t,q,d1,d2 has to be set to zero:

∑

l2∈L,q2∈Q
τ l

1,q1

l2,q2,w,t,d
·
⌊
l2

l1

⌋
≥
∑

i∈I
ni · zl,w,t,q,dj ,d. (5.9)

If zl,w,t,q,d1,d2 is set to zero, a penalty is included in the objective function, see Sec-
tion 5.3.2.

128 5. Optimization in the Wood Cutting Industry

Furthermore, certain restrictions with respect to the production capacity have to
be considered. On each day, at most Pmax cubic meters may be processed and the
manufacturer aims for a production at full capacity. Consequently, we introduce the
variable gd ∈ R for all d ∈ Dw for the gap between the actual production and the
capacity and have, for all d ∈ Dw,

gd +
∑

l∈L,t∈T
yl,t,d · l · t = Pmax. (5.10)

In order to ensure a minimal production Pmin on each day, we have, for all d ∈ Dw,

gd ≤ Pmax − Pmin. (5.11)

Additionally, on each day d ∈ Dw, the number of used lengths, i.e., the number of
cutting patterns, is limited by Cmax. In order to model this situation, we introduce
binary variables cl,d ∈ {0, 1}, for all l ∈ L, d ∈ Dw, taking value one if length l is cut
on day d, and zero otherwise. For all l ∈ L, d ∈ Dw, we model cl,d by

∑

t∈T
yl,t,d ≤ cl,d ·M, (5.12)

where M is given by M = Pmax/
(
min
l∈L

l·min
t∈T

t

)
, i.e., the maximum width cut for length l,

and restrict the number of cutting patterns for each day d ∈ Dw by
∑

l∈L
cl,d ≤ Cmax. (5.13)

It remains to bound the number of manually cut down pieces by Tmax in order to
comply with the production capacity. We therefore define

L̃ :=
{(
l1 ∈ L, w ∈ W, t ∈ T , q1 ∈ Q, l2 ∈ L, q2 ∈ Q

)
| l1 6= l2

}
.

Then, for all d ∈ Dw, we require

∑

L̃

(
τ l

2,q2

l1,w,t,q1,d
·
(⌈

l1

l2

⌉
− 1

))
≤ Tmax. (5.14)

This completes the description of the constraints of the cutting problem. In the next
section the objectives of the cutting problem are discussed.

5.3.2 Objectives

The objective for the model is comprised of several aspects such as the minimization of
the wood offcut in cubic meters denoted by c1, the total number of delayed or unfulfilled
orders denoted by c2, the use of high quality pieces for lower quality orders in cubic meters
weighted by a penalty function denoted by c3, the number of manually cut down pieces

5.3. Modeling the Deterministic Cutting Problem 129

denoted by c4, and the overproduction, i.e., produced veneer pieces that will be stored
in the warehouse, in cubic meters denoted by c5. In the following, these five aspects are
described in more detail. First of all, the wood offcut is to be minimized. The total
wood offcut c1 is given by the total amount of processed wood minus the fulfilled orders
given by

∑

l,t,d

yl,t,d · l · s−
∑

i∈{1,...,N}
s.t. di∈Dw

ni · l · w · t ·

∑

d2≥di
zl,w,t,q,di,d2

 ,

minus the veneer pieces that are cut on the last production day for orders with dead-
line d′ + nd given by

∑

l1,w,t,q1

∑

l2,q2

(
τ l

1,q1

l2,w,t,q2,d′+nd−1 ·
⌊
l2

l1

⌋)
−
∑

i∈I1
ni · zl1,w,t,q1,di,d′+nd−1

 l · w · t

where

I1 = {i ∈ {1, . . . , N} | li = l1, wi = w, ti = t, qi = q1, di ≤ d′ + nd − 1}.

Secondly, we want to minimize delayed or unfulfilled orders c2. A delayed order is
penalized proportionally to the number of days the order is late, and if the order is not
fulfilled at all during the planned period, the penalty is nd + 1. Thus, c2 is given by

c2 =
∑

i∈{1,...,N}
s.t. di∈Dw

∑

d2>di

((
d2 − di

)
· zl,w,t,q,di,d2

)

+
(
nd + 1

)
·

1−

∑

d2∈Dw
s.t. d2≥di

zl,w,t,q,di,d2

 .

Thirdly, we want to minimize the use of high quality pieces for lower quality orders c3,
which is given by summing up the corresponding transfer variables,

c3 =
∑

l1,l2,q1,q2,w,t,d:
q1<q2 ∧ l1≥l2

τ l
2,q2

l1,q1,w,t,d
· l2 ·

⌊
l1

l2

⌋
· w · s · p̂(q1, q2),

where p̂(q1, q2) is a fixed penalty for using wood of quality q1 for an order of quality q2.
Note that c3 is given in cubic meters in order to interrelate this part of the objective
function with part c1.

130 5. Optimization in the Wood Cutting Industry

The number of manually cut down pieces is also given by summing up the corre-
sponding transfer variables,

c4 =
∑

l1,l2,q1,q2,d,w,t:
l1 6=l2

(
τ l

2,q2

l1,q1,w,t,d
·
(⌈

l1

l2

⌉
− 1

))
.

Finally, the number of produced veneer pieces that will be stored in the warehouse is
given by

c5 =
∑

(l,w,t,q)∈W
s(l,w,t,q) · l · w · t.

The objective function is then given by

min

5∑

i=1

ωi · ci,

where the weighs ωi, i = 1, . . . , 5 are chosen with respect to the preferences of the man-
ufacturer. In interaction with (5.1) - (5.14), the mixed integer programming formulation
for the cutting problem is given.

5.3.3 Computational Results

The model for the cutting problem presented in Section 5.3 is implemented with FICO
Xpress Mosel Version 3.4.0 and solved with the FICO Express Optimizer Version 23.01.05.
The model is tested on three real-world instances provided by the manufacturer and all
computations were performed on a PC with an Intel Core i3-2350M 2.30GHz, 6.00 GB
RAM. The weights wi, i = 1, . . . , 5, of the objectives were chosen with respect to the
requirements of the manufacturer as w1 = 1, w2 = Pmax, w3 = 0.1, w4 = 0.0001, and
w5 = 0.5. Note that by choosing w2 in cubic meters, w1c1, w2c2, w3c3, and w5c5 become
comparable. w4 is chosen sufficiently small in order to obtain a lexicographic solution,
minimizing w4c4 after minimizing the sum of the other four objectives.

For example, an instance which is typical for the problem of the manufacturer consists
of 466 orders leading to 47 lengths, 37 widths, 4 thicknesses, and 9 qualities. For a single
day, the model was solved to optimality in 52 seconds on average. Note that in the
case of a single day still all available orders are considered, but cutting patterns are
only generated for the first day. For two days, the model is solved to optimality in
355 seconds on average and for three days in 915 seconds on average. In practice, it is
not reasonable to plan ahead more than at most three days, due to eventually necessary
adjustments caused by the uncertainty in the wood quality. For 6 days the model is
solved to optimality in 1297 seconds on average.

The optimization model fulfills all production requirements and is able to generate
cutting patterns that consider the full set of available orders. This leads to an improve-
ment over the manual planning for which the set of considered orders is limited to a

5.4. Robust Cutting Patterns 131

certain extent. Due to a lack of data, a direct comparison of generated solutions to the
manual process is not possible. The generated solutions feature approximately 10 %
wood offcut, whereas, according to the manufacturer, the manual production process
exhibits about 20 % wood offcut.

The wood offcut of the generated solutions can be further decreased by increasing the
value of the corresponding multiplier w1 in the objective function. However, a trade-off
between the wood offcut (c1) and the use of high quality pieces for lower quality orders
(c3) and the volume of produced veneer pieces that will be stored in the warehouse (c5)
can be observed, and, at some point, even the number of delayed or unfulfilled orders
(c2) increases if w1 is increased, see Table 5.2. Note that, in this example, c4 always
obtains the upper bound of Tmax = 1000.

w1 c1 c2 c3 c4 c5

0.1 3.12 0 30.12 1000 4.49
1 2.94 0 33.24 1000 4.44
10 2.11 0 50.97 1000 9.11
100 1.62 0 96.14 1000 14.92
1000 0.26 10 73.22 1000 16.48

Table 5.2: Sensitivity of the wood offcut c1 to changes in w1.

5.4 Robust Cutting Patterns

As mentioned in Section 5.2, it is difficult to formulate the cutting problem in a de-
terministic way because the distribution of qualities in the used wood is not known at
the time the pattern is determined. Therefore, it is not possible to know how bad a
pattern becomes if the quality distribution of the wood differs from the expected quality
distribution. In order to handle these uncertainties we now apply the concept of robust
optimization to the cutting problem. Since, in fact, the problem is a multi-objective one,
which for computational purposes we modeled as a single-objective one, we will use multi-
objective robust optimization, namely the concept of minmax robust efficiency hedging
against the set of worst cases, introduced by Ehrgott et al. (2014). To this end, we first
introduce the general idea of an uncertain multi-objective optimization problem and the
concept of minmax robust efficiency, and apply this concept to a simplified version of the
cutting problem.

5.4.1 Uncertain Multi-Objective Optimization

First of all, we need to define an uncertain multi-objective optimization problem. Here,
our assumption is that the uncertain data is given by an uncertainty set U ∈ Rm, i.e.,
a set of scenarios ξ ∈ U representing the various possible realizations of the uncertain

132 5. Optimization in the Wood Cutting Industry

data. The definition of this uncertainty set U is a crucial step in formulating the model,
as we will see in Section 5.4.2.

For every possible realization of the uncertain parameters, we obtain a single (de-
terministic) multi-objective optimization problem P(ξ), ξ ∈ U , which we denote in the
following way:

Notation 5.4.1. Given a set of feasible solutions X ∈ Rn, a vector-valued objective
function f : X × U → Rk, an uncertainty set U , and a scenario ξ ∈ U , we denote the
multi-objective optimization problem of minimizing f(x, ξ) over X by

P(ξ) min f(x, ξ)

s.t. x ∈ X .

Note that, due to the lack of a total order on Rk, the minimization of a vector-
valued objective function is dependent on the definition of dominance. Here, we use the
definition which goes back to Pareto (1896) and has been extensively studied throughout
the literature. For an overview see (Ehrgott, 2005). Here a solution x ∈ X is said to
be efficient if there does not exist an x ∈ X such that f(x) is at least as good as f(x) in
every component and better in at least one component.

By means of Notation 5.4.1, we can now define an uncertain multi-objective opti-
mization problem P(U):

Definition 5.4.1 (Uncertain multi-objective optimization problem). Given a set of fea-
sible solutions X ∈ Rn, a vector-valued objective function f : X × U → Rk, and an un-
certainty set U , an uncertain multi-objective optimization problem P(U) is defined as
the family of multi-objective optimization problems (P(ξ), ξ ∈ U).

Since it is not clear, when to call a solution to the family P(U) of optimization
problems a “desired” solution, we need an interpretation of a “desired” solution. As
mentioned before, we follow the concept of minmax robust efficiency.

The concept of minmax robust efficiency we use throughout this section is an ex-
tension of the concept of minmax robustness, originally introduced by Soyster (1973)
and extensively studied by Ben-Tal et al. (2009). This concept was originally designed
for single-objective functions and follows the general idea that a solution is robust if
it is feasible in every scenario and minimizes the worst case of the objective value un-
der all scenarios. It has later been extended to multi-objective optimization problems
by Ehrgott et al. (2014). Here, the following definition is presented:

Definition 5.4.2 (Minmax Robust Efficiency). Given an uncertain multi-objective opti-
mization problem P(U), for every x ∈ X we define fU (x) := {f(x, ξ) : ξ ∈ U}. A solution
x ∈ X is called minmax robust efficient if there is no x ∈ X such that

fU (x) ⊆ fU (x)− Rk≥.

Here Rk≥ is the (closed) positive orthant of Rk, without the 0.

5.4. Robust Cutting Patterns 133

The intuition behind this concept is the following: The worst case of a single-objective
optimization problem is in fact a maximization problem for a fixed feasible solution over
the uncertainty set. Therefore, for an uncertain multi-objective problem, this “worst
case” becomes a multi-objective maximization problem. This would yield a set of effi-
cient solutions for this maximization problem and now, minmax robust efficiency calls a
solution “robust” if its set of worst cases (i.e., the efficient solutions of the multi-objective
maximization problem over U) is not dominated by the set of worst cases of another
solution. This is formally described by Definition 5.4.2.

Several algorithms for calculating minmax robust efficient solutions have been pro-
vided by Ehrgott et al. (2014). We will use some of them later on for obtaining the
computational results.

5.4.2 A Simplified Version of the Multi-Objective Cutting Problem

In order to obtain computational results in reasonable time, we first simplify the deter-
ministic formulation of the cutting problem. Furthermore, we design new (also simpler)
objective functions in order to obtain a multi-objective optimization problem. This is
motivated by the nature of the application problem, which is in fact a multi-objective
one. We did not use the multi-objective approach before, because the manufacturer had
specific ideas about the weighting of the different objective functions, but for research
purposes, a more general approach is of greater value.

Simplified Deterministic Formulation.

The differences to the full size single-objective problem are the following:
Let orders 1, . . . , N be given, each defined by length li, quality qi, and number of

items ni. In contrast to the full size single-objective problem, width and thickness of
the items are considered standardized for simplification of the program. For instance, an
order i now could be 400 items of length 960mm in quality 4 (the qualities are given in
classes from 1 to 10, 1 being the best quality). The output of the optimization program
again is a cutting pattern defined by a length l ∈ L and a set of orders I with li ≤ l, for
all i ∈ I. This problem can be formulated in the following way:

Input: A set of orders I, every order i with length li, quality qi, and number of items ni,
L and Q as before, and a distribution p ∈ R10×|L|

≥0 of the qualities in the veneer strip
of length l (

∑10
q=1 pq,l = 1 for every l ∈ L). Note that, due to the simplification,

orders do not feature a width and a thickness anymore, i.e., width and thickness
are standardized.

Decision variables: x ∈ Z|I|×|L|, where xi,l indicates how many pieces of order i are
satisfied by the cutting pattern for length l.

c ∈ B|L|, where cl indicates whether there is a cutting pattern for length l or not.

Objective functions: Note that the length of the veneer strip produced by the stripping
machine can be modeled with an additional decision variable w ∈ R|L|, where wl

134 5. Optimization in the Wood Cutting Industry

indicates the width of the veneer strip cut in the cutting pattern of length l (mea-
sured in standard units which is the width of one veneer). With the additional
constraints

∑

i∈I:qi≤q
xi,l ≤ wl ·

∑

q′∈Q:q′≤q
pq′,l for all q ∈ Q, l ∈ L, (5.15)

wl is modeled correctly. Since, in the objective function, wl is to be minimized,
(5.15) is equivalent to

wl = max
q∈Q

(∑
i∈I:qi≤q xi,l∑
q′∈Q:q′≤q pq′,l

)
, (5.16)

for all l ∈ L and, therefore, we can drop (5.15) and use the explicit expression (5.16)
for wl in order to clarify that the uncertainty only lies in the objective functions.

Minimize wood offcut:

f1(x, p) :=
∑

l∈L
l ·max

q∈Q

(∑
i∈I:qi≤q xi,l∑
q′∈Q:q′≤q pq′,l

)
−
∑

i∈I
li · ni

The wood offcut of a cutting pattern can be determined by the length of the
veneer strip the machine has to peel from the tree in order to get enough
wood to satisfy the orders assigned to the current cutting pattern minus all
produced veneers.

Minimize lost high quality wood:

f2(x, p) :=
∑

l∈L

l ·max

q∈Q

(∑
i∈I:qi≤q xi,l∑
q′∈Q:q′≤q pq′,l

)
·
∑

q∈{1,2,3}
pq,l

−

∑

i∈I:qi≤3
li · ni

Qualities 1, 2, and 3 are of high value and should not be wasted or used to
satisfy orders of lower quality.

Now, the objective function is given

min

(
f1(x, p)
f2(x, p)

)
.

Note that p is an input parameter and therefore constant.

5.4. Robust Cutting Patterns 135

Constraints: The following constraints have to be met:
∑

l∈L
xi,l = ni for all i ∈ I (5.17)

xi,l = 0 for all i ∈ I, l < li (5.18)
∑

l∈L
cl ≤ 2 (5.19)

∑

i∈I
xi,l ≤ cl ·

∑

i∈I
ni for all l ∈ L (5.20)

xi,l ∈ N for all i ∈ I, l ∈ L (5.21)
cl ∈ B for all l ∈ L (5.22)

(5.17) mean that all items are produced (where it is possible to cut a veneer from
a higher length down to a smaller length). (5.18) mean that produced veneers can
only be used for orders with a length that is smaller than or equal to the length
of the produced veneer. (5.19) limits the total number of cutting patterns since
changing the cutting length of the machine is very time consuming. (5.21) and
(5.22) define the decision space of the variables.

5.4.3 Minmax Robust Efficiency Applied to the Optimiziation Model

Now, after formulating the simplified deterministic optimization problem, we apply the
concept of minmax robust efficiency. Obviously, to do so, we first need to determine the
uncertain parameters in the formulation.

Uncertainties in the Problem Formulation.

The uncertainties in the problem formulation are due to fluctuations of the qualities of
the used wood. As the machine only uncovers the true quality of the veneer strip at
the time of production, this quality distribution is unknown at the time of creating the
cutting patterns. We now consider the distribution of the qualities to be uncertain, i.e.,
we work with an uncertainty set Up in which each scenario represents another quality
distribution. By means of this uncertainty set, we formulate the minmax robust version
of the deterministic formulation of the simplified problem given in Section 5.4.2.

Formulating the Robust Version of the Problem.

Formulating the robust version of our problem from Section 5.4.2 is fairly simple:

Input: Instead of a single distribution p the input is the whole uncertainty set Up. The
rest of the input remains unchanged.

Decision variables: The decision variables remain unchanged.

136 5. Optimization in the Wood Cutting Industry

Objective functions: We re-formulate the objective function as proposed by Ehrgott
et al. (2014) in the following way:

min max
p∈U

(
f1(x, p)
f2(x, p)

)

Constraints: All constraints remain unchanged since they are not affected by the un-
certain parameters.

Note that the solutions to this problem are the minmax robust efficient solutions as
defined in Section 5.4.1. To this end, we use the techniques proposed by Ehrgott et al.
(2014) in this section.

Modeling the Uncertainty Set.

Modeling the uncertainty set is a crucial point in the formulation of the uncertain multi-
objective optimization problem. With too strict uncertainty sets the robust version
can become arbitrarily bad. Thus, the modeling of the uncertainty set has to be done
carefully.

The uncertainty set we use was developed together with Fritz Becker KG who pro-
vided the application problem using empirically established quality distributions. In Fig-
ure 5.3, we give a rough idea of what the quality distributions look like. Here, the quality
distribution for length 390mm is given, meaning that, for example, in Scenario 1 20 % of
the veneer strip will be of quality 5. The uncertainty sets for the other lengths look sim-
ilar even though the graphs are shifted a little to the right since obtaining good qualities
becomes more unlikely with increasing lengths of the tree trunk.

Figure 5.3: Quality distributions for length 390mm.

Computational Results.

Calculating minmax robust efficient solution is done using the weighted-sum scalarization
method presented by Ehrgott et al. (2014). Here, both objective functions are weighted

5.4. Robust Cutting Patterns 137

with a scalar λ ∈ R2
+ and added, and the worst-case of this sum is to be minimized:

min max
p∈U

(λ1 · f1(x, p) + λ2 · f2(x, p)) , (WS(λ))

such that x satisfies (5.17) - (5.22) from Section 5.4.2. This will yield minmax robust
efficient solutions as defined in Section 5.4.1. We compare the results in the following
way:

First, we choose weights λ ∈ R2
+. These weights represent a trade-off between the two

objective functions. For instance, λ =
(
1, 0.1

)ᵀ represents a decision makers preference
that saving 1m of wood offcut is worth loosing 10m of high quality wood. In order to get
a first insight into the benefit of the different strategies of a decision maker, we choose the
ratios 1 : 10, 1 : 5, 1 : 1, 5 : 1, and 10 : 1. For each of the resulting weights, we calculate a
minmax robust efficient solution xrobλ obtained by optimizing (WS(λ)). Furthermore, we
calculate for every scenario p ∈ U an optimal solution xpλ to the corresponding determinis-
tic multi-objective optimization problem via the deterministic weighted-sum scalarization
with weight λ via the optimization problem

min (λ1 · f1(x, p) + λ2 · f2(x, p)) . (WSp(λ))

Then, for each p ∈ U , we compare the two objective values

max
p′∈U

(
λ1 · f1(xrobλ , p′) + λ2 · f2(xrobλ , p′)

)
(5.23)

(independent of p) and

max
p′∈U

(
λ1 · f1(xpλ, p′) + λ2 · f2(xpλ, p′)

)
. (5.24)

For a given λ, (5.23) is the worst case of the minmax robust efficient solution in the
weighted sum and (5.24) is the worst case of xpλ in the weighted sum. We chose this
comparison strategy for a reason: Usually, in real world applications, some knowledge
about the past is available and, therefore, the scenario which seems most likely is used
as reference. Since we do not know which scenario is seen as most likely, we assume
all scenarios to be equally realistic. Therefore, we compute the optimal solutions to the
model in the different scenarios, since those are the solutions most likely to be used
in application. However, since our motivation is to hedge against the worst case, we
compare these solutions in their respective worst cases (5.24) to the worst case of the
minmax robust efficient solution in the same setting (5.23).

The used data sets were obtained from the full-size data, described in Section 5.3.3,
by randomized selection leading to 59 (smaller) instances of order sets. Furthermore,
5 different weights λ ∈ R2

+ were used for the weighted-sum scalarization. We then
computed the average and the maximum gain of xrobλ against xpλ for all 59 instances.
Due to the simplified problem structure and smaller data sets, the computational time of
each of the four problems (5.23) and (5.24) (the latter has to be solved once for each of
the three scenarios) decreased to 1.4 seconds per weight where the choice of λ had only
marginal impact.

138 5. Optimization in the Wood Cutting Industry

λ

(
1

0.1

) (
1

0.5

) (
1
1

) (
0.5
1

) (
0.1
1

)

avg gain 1.11 0.79 0.68 0.58 0.37
max gain 35.66 34.31 33.69 32.65 7.94

Table 5.3: Gain of xrobλ against xpλ in percentage.

The computational results for the different weights λ are stated in Table 5.3. On
average, the gain of using minmax robust efficient solutions does not seem to matter
very much, i.e., the gain ranges from 0.37 % to 1.11 %. More interesting are the results
on the maximal gain. Using a minmax robust efficient solution over an optimal solution
for some scenario leads in our example to a significant gain of up to 35 %. The minimal
gain is omitted in the presentation of the results, since it equals zero for most of the
instances.

Furthermore, one of the reasons for the quite low average values is that a lot of the
optimal solutions to the different scenarios are also minmax robust efficient solutions
themselves. If we neglect those instances for which this is the case and only have a look
at the instances for which not all solutions to the different scenarios are also minmax
robust efficient, we obtain different results, stated in Table 5.4.

λ

(
1

0.1

) (
1

0.5

) (
1
1

) (
0.5
1

) (
0.1
1

)

avg gain 5.45 3.87 3.32 2.64 1.45

Table 5.4: Gain of xrobλ against xpλ, for instances for which not all solutions to the different
scenarios are also minmax robust efficient, in percentage.

One might argue that comparing (5.23) to (5.24) does not reflect a realistic gain, since
in practice the manufacturer does not optimize with respect to an arbitrary scenario, but
with respect to a specific scenario. In our case, this is Scenario 1 from Figure 5.3, as
this is the scenario based on empirical values as described in Section 5.3. Instead of
comparing objective (5.23) to (5.24), we can also compare objective (5.23) to

max
p′∈U

(
λ1 · f1(xp1λ , p′) + λ2 · f2(xp1λ , p′)

)
, (5.25)

where p1 is Scenario 1 from Figure 5.3 and xp1λ is an optimal solution to (WSp1(λ)). The
results we obtained for all instances are stated in Table 5.5.

As we can see, the benefit of a minmax robust efficient solution against an optimal one
is (even though lower than before) quite significant in the maximal case. Furthermore, if
we again neglect the instances where the optimal solution to (WSp1(λ)) is not a minmax
robust efficient solution itself, we obtain different average values, stated in Table 5.6.

These results strengthen the concept of minmax robust efficiency as they show the
advantage of using minmax robust efficient solutions.

5.5. Conclusion and Future Research 139

λ

(
1

0.1

) (
1

0.5

) (
1
1

) (
0.5
1

) (
0.1
1

)

avg gain 0.64 0.44 0.39 0.39 0.28
max gain 8.80 7.59 6.60 5.78 3.50

Table 5.5: Gain of xrobλ against xp1λ in percentage.

λ

(
1

0.1

) (
1

0.5

) (
1
1

) (
0.5
1

) (
0.1
1

)

avg gain 4.72 3.22 2.87 2.59 1.36

Table 5.6: Gain of xrobλ against xp1λ for instances for which not all solutions to the different
scenarios are also minmax robust efficient, in percentage.

5.5 Conclusion and Future Research

In this chapter we presented a real-world optimization problem, namely a cutting problem
arising in the veneer industry. We classified the problem, presented a detailed single-
objective optimization model, and discussed the uncertainties in the problem formulation.
We pointed out that these uncertainties are a result of the varying wood quality, described
the various factors influencing this quality, and presented a quality distribution obtained
from the experience of the manufacturer. We concluded the deterministic section with
computational results of the described problem.

Then we presented a simplified, yet multi-objective version of the optimization prob-
lem and discussed the uncertainties in this formulation. In order to hedge against these
uncertainties, the concept of minmax robust efficiency was applied to this simplified ver-
sion and robust efficient solutions to this problem were computed. We discussed and
analyzed the results. The results motivate an application of this concept to the original,
much more complicated problem.

Summing up, we thoroughly examined a complex real-world cutting problem which
was formerly only approached by heuristics and presented methods to solve this problem
by deterministic and (in a simplified version) robust optimization, generating applicable
solutions. Furthermore, the analysis substantiates the relatively novel concept of minmax
robust efficiency and motivates its application to more complex problems.

140 5. Optimization in the Wood Cutting Industry

Bibliography

Ascheuer, N., Krumke, S. O., and Rambau, J. (2000). Online Dial-a-Ride Problems:
Minimizing the Completion Time. In Proceedings of the 17th International Symposium
on Theoretical Aspects of Computer Science (STACS), pages 639–650.

Awerbuch, B., Azar, Y., Fiat, A., Leonardi, S., and Rosén, A. (1996). On-line competitive
algorithms for call admission in optical networks. In Proceedings of the 4th Annual
European Symposium on Algorithms (ESA), volume 1136 of LNCS, pages 431–444.

Babaioff, M., Hartline, J. D., and Kleinberg, R. D. (2009). Selling ad campaigns: On-
line algorithms with cancellations. In Proceedings of the 10th ACM Conference on
Electronic Commerce (EC), pages 61–70.

Babaioff, M., Immorlica, N., and Kempe, D. (2007). A knapsack secretary problem with
applications. In Proceedings of the 10th International Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX), pages 16–28.

Baeza-Yates, R. A., Culberson, J. C., and Rawlins, G. (1991). Searching in the Plane.
Information and Computation, 106(2):234–252.

Bansal, N., Buchbinder, N., Madry, A., Joseph, A., and Naor, A. (2011). A
polylogarithmic-competitive algorithm for the k-server problem. In Proceedings of
the 52nd Annual IEEE Symposium on the Foundations of Computer Science (FOCS),
pages 267–276.

Bazgan, C., Gourvès, L., and Monnot, J. (2012). Approximation with a Fixed Number of
Solutions of Some Biobjective Maximization Problems. In Proceedings of 9th Workshop
on Approximation and Online Algorithms (WAOA), volume 7164 of LNCS, pages 233–
246. Springer.

Beck, A. (1964). On the linear search problem. Israel Journal of Mathematics, 2(4):221–
228.

141

142 Bibliography

Beck, A. and Newman, D. J. (1970). Yet more on the linear search problem. Israel
Journal of Mathematics, 8(4):419–429.

Bellman, R. (1963). An optimal search. SIAM Review, 5(3):274.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust Optimization. Princeton
University Press.

Ben-Tal, A. and Nemirovski, A. (1998). Robust convex optimization. Mathematics of
Operations Research, 23(4):769–805.

Ben-Tal, A. and Nemirovski, A. (1999). Robust solutions of uncertain linear programs.
Operations Research Letters, 25(1):1–13.

Benati, S. (1997). An algorithm for a cutting stock problem on a strip. The Journal of
the Operational Research Society, 48(3):288–294.

Bender, M. and Westphal, S. (2013). An optimal randomized online algorithm for the
k-Canadian Traveller Problem on node-disjoint paths. Journal of Combinatorial Op-
timization, Published online: 07 June 2013:1–10.

Birge, J. and Louveaux, F. (2011). Introduction to Stochastic Programming. Springer.

Borodin, A. and El-Yaniv, R. (1998). Online Computation and Competitive Analysis.
Cambridge University Press.

Branke, J. (1998). Creating robust solutions by means of evolutionary algorithms. In Pro-
ceedings of the 5th International Conference on Parallel Problem Solving from Nature
(PPSN), pages 119–128.

Chrobak, M., Karloff, H., Payne, T., and Vishwanathan, S. (1990). New results on server
problems. In SIAM Journal on Discrete Mathematics, pages 291–300.

Chrobak, M. and Larmore, L. L. (1996). An optimal on-line algorithm for k servers on
trees. SIAM Journal on Computing, 20:144–148.

Deb, K. and Gupta, H. (2006). Introducing robustness in multi-objective optimization.
Evolutionary Computation, 14(4):463–494.

Demaine, E. D., Fekete, S. P., and Shmuel, G. (2006). Online searching with turn cost.
Theoretical Computer Science, 361(2-3):342–355.

Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of
Operational Research, 44:145–159.

Ehrgott, M. (2005). Multicriteria Optimization. Springer.

Ehrgott, M., Ide, J., and Schöbel, A. (2014). Minmax robustness for multi-objective
optimization problems. European Journal of Operational Research, 239:17–31.

Bibliography 143

El-Yaniv, R., Fiat, A., Karp, R. M., and Turpin, G. (2001). Optimal search and one-way
trading online algorithms. Algorithmica, 30(1):101–139.

El-Yaniv, R., Turpin, G., Karp, R., and Fiat, A. (1992). Competitive analysis of financial
games. In Proceedings of the 33rd Annual IEEE Symposium on the Foundations of
Computer Science (FOCS), pages 327–333.

Erera, A., Morales, J., and Savelsbergh, M. (2009). Robust optimization for empty
repositioning problems. Operations Research, 57(2):468–483.

Erlebach, T., Kellerer, H., and Pferschy, U. (2002). Approximating Multiobjective Knap-
sack Problems. Management Sciences, 48(12):1603–1612.

Fiat, A., Foster, D. P., Karloff, H., Rabani, Y., Ravid, Y., and Vishwanathan, S. (1998).
Competitive Algorithms for Layered Graph Traversal. SIAM Journal on Computing,
28(2):447–462.

Fiat, A. and Woeginger, G., editors (1998). Online Algorithms - The State of the Art,
volume 1442 of LNCS. Springer.

Fischetti, M. and Monaci, M. (2009). Light robustness. In Robust and Online Large-scale
Optimization, pages 61–84. Springer.

Goerigk, M. and Schöbel, A. (2011). A scenario-based approach for robust linear opti-
mization. In Theory and Practice of Algorithms in (Computer) Systems, pages 139–150.

Hajiaghayi, M. T., Kleinberg, R. D., Mahdian, M., and Parkes, D. C. (2005). Online
auctions with re-usable goods. In Proceedings of the 6th ACM Conference on Electronic
Commerce (EC), pages 165–174.

Hauptmeier, D., Krumke, S. O., and Rambau, J. (2000). The Online Dial-a-Ride Problem
under Reasonable Load. In Proceedings of the 4th Italian Conference on Algorithms
and Complexity, pages 125–136.

Ibarra, O. H. and Kim, C. E. (1975). Fast approximation algorithms for the knapsack
and sum of subset problems. Journal of the ACM, 22(4):463–468.

Ide, J., Tiedemann, M., Westphal, S., and Haiduk, F. (2015). An application of deter-
ministic and robust optimization in the wood cutting industry. 4OR, 13(1):35–57.

Iwama, K. and Taketomi, S. (2002). Removable online knapsack problems. In Proceed-
ings of the 29th International Colloquium on Automata, Languages and Programming
(ICALP), pages 293–305.

Iwama, K. and Zhang (2003). Removable online knapsack - weighted case. In Proceedings
of the 7th Japan-Korea Workshop on Algorithms and Computation (WAAC), pages
223–227.

144 Bibliography

Iwama, K. and Zhang, G. (2007). Optimal resource augmentations for online knapsack.
In Proceedings of the 10th International Workshop on Approximation Algorithms for
Combinatorial Optimization (APPROX), pages 180–188.

Kalyanasundaram, B. and Pruhs, K. (2000). Speed is as powerful as clairvoyance. Journal
of the ACM, 47(4):617–643.

Karlin, A. R., Manasse, M. S., Rudolph, L., and Sleator, D. D. (1988). Competitive
snoopy caching. Algorithmica, 3(1-4):79–119.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Proceedings of a
symposium on the Complexity of Computer Computations, pages 85–103.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack Problems. Springer.

Kleywegt, A. J. and Papastavrou, J. D. (1998). The dynamic and stochastic knapsack
problem. Operations Research, 46(1):17–35.

Koutsoupias, E. and Papadimitriou, C. (1995). On the k-server conjecture. Journal of
the ACM, 42:507–511.

Koutsoupias, E. and Papadimitriou, C. (1996). The 2-evader problem. Information
Processing Letters, 57(5):473–482.

Kouvelis, P. and Yu, G. (1997). Robust Discrete Optimization and Its Applications.
Kluwer Academic Publishers, Dordrecht.

Liebchen, C., Lübbecke, M., Möhring, R., and Stiller, S. (2009). The concept of recov-
erable robustness, linear programming recovery, and railway applications. In Robust
and Online Large-Scale Optimization, pages 1–27. Springer.

Lohmann, U. (2003). Holzlexikon (in German). DRW-Verlag Weinbrenner GmbH & Co.,
Leinefelden-Echterdingen.

Lueker, G. S. (1998). Average-case analysis of off-line and on-line knapsack problems.
Journal of Algorithms, 29(2):277–305.

Manasse, M., McGeoch, L., and Sleator, D. (1988). Competitive algorithms for on-line
problems. In Proceedings of the 20th ACM Symposium on the Theory of Computing
(STOC), pages 322–333.

Manasse, M. S., McGeoch, L. A., and Sleator, D. D. (1990). Competitive algorithms for
server problems. Journal of Algorithms, 11(2):208–230.

Marchetti-Spaccamela, A. and Vercellis, C. (1995). Stochastic on-line knapsack problems.
Mathematical Programming, 68(1-3):73–104.

Martello, S. and Toth, P. (1990). Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley & Sons, Chichester.

Bibliography 145

Motwani, R., Phillips, S., and Torng, E. (1994). Non-clairvoyant scheduling. Theoretical
Computer Science, 130:17–47.

Noga, J. and Sarbua, V. (2005). An online partially fractional knapsack problem. In
Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms
and Networks (ISPAN), pages 108–112.

Papadimitriou, C. H. and Yannakakis, M. (1991). Shortest paths without a map. Theo-
retical Computer Science, 84:127–150.

Papadimitriou, C. H. and Yannakakis, M. (2000). On the approximability of trade-offs
and optimal access of web sources. In Proceedings of the 41st Annual IEEE Symposium
on the Foundations of Computer Science (FOCS), pages 86–92.

Papastavrou, J. D., Rajagopalan, S., and Kleywegt, A. J. (1996). The dynamic and
stochastic knapsack problem with deadlines. Management Sciences, 42(12):1706–1718.

Pareto, V. (1896). Manuel d’économie politique (in French). F. Rouge, Lausanne.

Phillips, C. A., Stein, C., Torng, E., and Wein, J. (1997). Optimal time-critical scheduling
via resource augmentation. In Proceedings of the 29th ACM Symposium on the Theory
of Computing (STOC), pages 140–149.

Ràcz, J. (1961). Untersuchungen über das Auftreten des Buchenrotkerns in Niedersachsen
(in German). PhD thesis, University of Göttingen, Faculty of Forest Sciences.

Schöbel, A. (2014). Generalized light robustness and the trade-off between robustness
and nominal quality. Mathematical Methods of Operations Research, 80(2):161–191.

Soyster, A. (1973). Convex programming with set-inclusive constraints and applications
to inexact linear programming. Operations Research, 21(5):1154–1157.

Thielen, C., Tiedemann, M., and Westphal, S. (2015). The online knapsack problem
with incremental capacity. Mathematical Methods of Operations Research. Submitted.

Tiedemann, M. (2015). A note on online searching with turn cost. Information Processing
Letters. Submitted.

Tiedemann, M., Ide, J., and Schöbel, A. (2015). Competitive analysis for multi-objective
online algorithms. In Proceedings of the 9th Workshop on Algorithms and Computations
(WALCOM), volume 8973 of LNCS, pages 210–221.

van Slyke, R. and Young, Y. (2000). Finite horizon stochastic knapsacks with applications
to yield management. Operations Research, 48(1):155–172.

Wäscher, G., Haußner, H., and Schumann, H. (2007). An improved typology of cutting
and packing problems. European Journal of Operational Research, 183(3):1109–1130.

146 Bibliography

Westphal, S. (2008). A note on the k-Canadian Traveller Problem. Information Process-
ing Letters, 106(3):87–89.

Yao, A. C. (1977). Probabilistic computations: Toward a unified measure of complexity.
In Proceedings of the 18th Annual IEEE Symposium on the Foundations of Computer
Science (FOCS), pages 222–227.

Zhiping, C., Hurkens, C., and Jong, J. (1997). A branch-and-price algorithm for solving
the cutting strips problem. Applied Mathematics - A Journal of Chinese Universities,
12(2):215–224.

Zhou, Y., Chakrabarty, D., and Lukose, R. (2008). Budget constrained bidding in key-
word auctions and online knapsack problems. In Proceedings of the 4th Workshop on
Internet and Network Economics (WINE), pages 566–576.

	Introduction
	Preliminaries
	Outline and Contribution
	Credits
	Acknowledgement

	Online Knapsack Problems with Dynamic Capacity
	Introduction
	Previous Work

	Problem Definition
	Lower Bounds
	A Lower Bound for Deterministic Online Algorithms
	A Lower Bound for Randomized Online Algorithms

	Competitive Algorithms
	A Greedy Algorithm
	A Balancing Algorithm
	A Randomized Greedy Algorithm

	Limited Weights
	Deterministic Online Algorithms
	Randomized Online Algorithms

	Increasing the Power of the Online Player
	Resource Augmentation
	Removable Items
	Bounded Values

	Empirical Analysis
	Extension to Multiple Knapsacks
	Independent Knapsacks
	A Lower Bound for Deterministic Online Algorithms
	Competitive Online Algorithms

	Conclusion and Future Research

	Multi-Objective Online Optimization
	Introduction
	Previous Work

	Competitive Analysis for Multi-Objective Online Algorithms
	Multi-Objective Online Problems
	The Competitive Ratio and Competitiveness

	The Multi-Objective Time Series Search Problem
	Worst-Component Competitive Analysis
	Mean-Component Competitive Analysis
	A Randomized Bi-Objective Online Algorithm

	The Bi-Objective Ski Rental Problem
	The Bi-Objective 2-Server Problem in the Plane
	The Multi-Objective k-Canadian Traveller Problem
	Relations between Single- and Multi-Objective Online Problems
	Yao's Principle for Multi-Objective Online Problems
	Conclusion and Future Research

	The Linear Search Problem with Turn Costs
	Introduction
	Tradeoff between Competitive Factor and Turn Costs
	Conclusion

	Optimization in the Wood Cutting Industry
	Introduction
	The Cutting Problem
	Classification of the Cutting Problem

	Modeling the Deterministic Cutting Problem
	Variables and Constraints
	Objectives
	Computational Results

	Robust Cutting Patterns
	Uncertain Multi-Objective Optimization
	A Simplified Version of the Multi-Objective Cutting Problem
	Minmax Robust Efficiency Applied to the Optimiziation Model

	Conclusion and Future Research

	Bibliography

